

VMS File System Internals

VMS File System Internals

Kirby McCoy

~nmnama

DIGITAL PRESS

Copyright © 1990 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, without prior written permission
of the publisher.

Printed in the United States of America.

9 8 7 6 5 4 3 2

Order number EY-F575E-DP

The following trademarks of Digital Equipment Corporation are cited in this book:
DECnet, the Digital logo, DIGITAL, HSC, UNIBUS, VAX, VAXcluster, VAX RMS, VMS.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this book.

This book was produced by Digital's Corporate User Publications Group with the
VAX DOCUMENT electronic publishing system.

Library of Congress Cataloging-in-Publication Data
McCoy, Kirby

VMS File System Internals/Kirby McCoy.
p. cm.

Includes index.
ISBN 1-55558-056-4
l. VAX/VMS (Computer operating system) 2. File organization

(Computer science) I. Title.
QA76.76.063M385 1990
005.74-dc20 90-3746

CIP

Lovingly dedicated to the memory of my father,
C. C. McCoy, Sr.

Contents

Preface
xv

1 Introduction to the VMS File System
1.1 Introduction . 3

1.2 Tasks of a File System . 3
1.2.1 Evolution of the VMS File System 4
1.2.2 Creation of the XQP . 4
1.2.3 VMS File System in a VAXcluster 5

1.2.3.1 VAX/VMS Environment and the File System.......... 6

1.3 User Interface to the File System 6
1.3.l VMS I/O System . 7
1.3.2 Queue I/O Request Service. 9

2 Files-11 On-Disk Structure
2.1 Introduction . 13

2.2 Basic Concept of a Volume . 13
2.2.1 Volume Identification. 14
2.2.2 Volume Integrity . 14
2.2.3 Volume Sets . 15

2.2.3.1 Tightly Coupled Volume Sets . 15
2.2.3.2 Loosely Coupled Volume Sets . 15

2.3 Basic Concept of a File , 16
2.3.1 Logical to Virtual Mapping . 16
2.3.2 File Identification. 17
2.3.3 File Header . 18

2.3.3.1 Header Area. 20
2.3.3.2 Ident Area . 30
2.3.3.3 Map Area . 32

2.3.3.3.1 Retrieval Pointer Format 0 . 33

viii Contents

2.3.3.3.2 Retrieval Pointer Format 1 . 34
2.3.3.3.3 Retrieval Pointer Format 2 . 35
2.3.3.3.4 Retrieval Pointer Format 3 . 36

2.3.3.4 Access Control List Area . 37
2.3.3.4.1 Alarm Access Control Entry....................... 42
2.3.3.4.2 Application Access Control Entry 43
2.3.3.4.3 Directory Default Protection Access Control Entry 46
2.3.3.4.4 Identifier Access Control Entry . 4 7
2.3.3.4.5 RMS Journaling Access Control Entries 48

2.3.3.5 User-Reserved Area . 52
2.3.4 Multiheader Files . 52
2.3.5 Multivolume Files . 53

2.4 Basic Concept of a Directory . 53
2.4.1 Directory Structure . 53
2.4.2 Multiple Directory Records . 56
2.4.3 Directory Hierarchies . 56

2.4.3.1 Multivolume Directory Structure................... 57

2.5 Reserved Files . 58
2.5.1 Index File . 59

2.5.1.1 Bootstrap Block . 61
2.5.1.2 Home Block . 61
2.5.1.3 Cluster Filler . • 69
2.5.1.4 Backup Fiome Block . 70
2.5.1.5 Backup Index File Header . 70
2.5.1.6 Index File Bitmap . 70
2.5.1.7 File Headers . 71

2.5.2 Storage Bitmap File . 71
2.5.2.1 Storage Control Block . 72
2.5.2.2 Storage Bitmap . 76

2.5.3 Bad Block File . 76
2.5.3.1 Manufacturer's Bad Block Descriptor 77
2.5.3.2 Software Bad Block Descriptor . 79
2.5.3.3 Bad Block Processing on DSA Disks 80

2.5.4 Master File Directory. 81
2.5.5 Core Image File . 81
2.5.6 Volume Set List File . 82
2.5. 7 Continuation File . , . 82
2.5.8 Backup Journal File. 82
2.5.9 Pending Bad Block Log File . 83

Contents Ix

3 Volume Structure Processing
3.1 Introduction................................... 87

3.2 Initializing the Volume . 87
3.2.1 Checking the Preliminary Parameters 88
3.2.2 Formatting the Disk , . 89
3.2.3 Processing Software Bad Blocks . ·. 89
3.2.4 Performing a Data Security Erase 90
3.2.5 Locating the Volume Structures . 91
3.2.6 Building the Storage Bitmap File 91
3.2. 7 Setting Up the Index File . 92
3.2.8 Writing the Master File Directory 92

3.3 Mounting a Volume . 93
3.3.1 1/0 Database . 94

3.3.1.1 Volume Control Block............................ 96
3.3.1.2 Window Control Block . 102
3.3.1.3 ACP Queue Block 106
3.3.1.4 File Control Block . 108
3.3.1.5 Relative Volume Table . 114

3.3.2 Processing the Volume Mount . 116
3.3.2.1 Obtaining User Input. 116
3.3.2.2 Searching for a Mountable Device 117
3.3.2.3 Setting Up Device Context........................ 119
3.3.2.4 Establishing the Volume Defaults 124
3.3.2.5 Initializing the Prototype Index File FCB 126
3.3.2.6 Constructing the Prototype Index File Window 126
3.3.2. 7 Reading the SCB . 127
3.3.2.8 Establishing the Volume Lock . 127
3.3.2.9 Locating the Highest File Number 129

3.3.2.10 Allocating the 1/0 Database Structures 129
3.3.2.11 Creating the AQB . 130
3.3.2.12 Establishing File System Context 131

3.3.3 Processing a Volume Set . 132
3.3.3.1 Creating a Volume Set . 133
3.3.3.2 Mounting a Volume Set . 133

3.3.4 Rebuilding the Bitmap and Disk Quota Files 134

3.4 Dismounting a Volume . 137
3.4.1 Beginning the Dismount Procedure 138

3.4.1.1 Preparing the Volume to be Dismounted 138
3.4.1.2 Validating the Volume Characteristics 139
3.4.1.3 Checking Privileges . 140

3.4.1.3.1 Checking for a Private Mount . 140

x Contents

3.4.1.3.2 Checking for a Volume Mounted with /ABORT or
/CLUSTER . 141

3.4.1.3.3 Checking for a Volume Mounted Privately by Another
Process . 141

3.4.1.3.4 Checking for a Volume Mounted for Group or System
Access . 142

3.4.1.4 Setting Up the Local Mounted Volume Database....... 143
3.4.2 Device-Independent Dismount Processing 144
3.4.3 Final Dismount Processing . 145

4 Cache Processing on a Single Node
4.1 Introduction . 149

4.2 Buffer Initialization and Allocation 149
4.2.1 Layout of the 1/0 Buffer Cache . 150
4.2.2 XQP Cache Header . 153
4.2.3 Buffer Descriptors . 157
4.2.4 Buffer Lock Block Descriptors . 160
4.2.5 LBN and the Lock Basis Hash Tables 163
4.2.6 Buffer Pools . 168

4.2.6.1 Storage Bitmap Cache . 171
4.2.6.2 File Header and Index File Bitmap Cache 171
4.2.6.3 Directory Data Block Cache . 172
4.2.6.4 Directory Index Cache , 172

4.2.7 Specialized Caches.............................. 175
4.2.8 Extent Cache . 176
4.2.9 File ID Cache . 180

4.2.10 Quota Cache . 182

4.3 Obtaining Buffers . 187
4.3.1 Extending Buffer Credits......................... 187

4.4 Multiblock Disk Read Operations 188

4.5 Disk Write Operations . 188

4.6 Systemwide Buffer Validation . 189
4.6.1 Invalidating a Buffer . 190
4.6.2 Changing the LBN of a Buffer . 191

Contents xi

5 The ACP Functions
5.1 Introduction. 195

5.2 ACP-QIO Interface . 195
5.2.1 Getting the Request............................. 197
5.2.2 Dispatching the Operation . 199
5.2.3 Posting the Results . 199
5.2.4 Returning Resources 200

5.3 Major ACP Functions . 200
5.3.1 Access Function . 201
5.3.2 Create Function . 202
5.3.3 Delete Function . 204
5.3.4 Modify Function . 205
5.3.5 Deaccess Function . 205
5.3.6 ACP Control Functions . 206

5.4 Miscellaneous File System Requests 207
5.4.1 Disk Quota Operations . 207

5.4.1.1 Quota File Operations . 208
5.4.1.2 Quota Cache . 209
5.4.1.3 Accessing the Quota File 210
5.4.1.4 Processing the Quota File . 211
5.4.1.5 Deaccessing the Quota File . 211

5.4.2 Directory Manipulation . 211
5.4.3 Space Management . 212
5.4.4 Attribute Handling . 213
5.4.5 Dynamic Highwater Marking. 214

5.4.5.1 Basic Highwater Mark Algorithm 215
5.4.5.2 Highwater Mark Handling Routines 215

5.4.6 Spool File Processing . 218
5.4. 7 Access Control List Processing. 219
5.4.8 Dynamic Bad Block Processing . 219

5.4.8.1 Handling an 1/0 Error . 220
5.4.8.2 The Bad Block Scanner . 220

5.4.9 Window Handling . 222
5.4.9.1 Mapping a Window . 226
5.4.9.2 Turning a Window . 228

5.5 ACP Functions and Buffer Caching 235

xii Contents

6 The XQP and 1/0 Processing
6.1 Introduction. 241

6.2 XQP Initialization 242
6.2.1 Allocating Impure Storage . 242

6.3 XQP Call Interface . 257
6.3.1 110 Request Packet 257
6.3.2 Function Decision Table . 267
6.3.3 Driver Dispatch Table . 269

6.4 Internal Dispatching 269
6.4.1 $QIO System Service Dispatching 270
6.4.2 Function Decision Table Dispatching 27 4
6.4.3 Building the XQP 1/0 Packet . 278
6.4.4 Checking the Volume Status . 286
6.4.5 Queuing the 1/0 Packet to the XQP '· . . 287

6.5 XQP Code Execution . 291
6.5.1 Dispatching a Request . 293
6.5.2 Processing in Secondary Context 294
6.5.3 Switching Stacks . 296
6.5.4 Stalling a Transaction . 298

6.6 Error Processing, Status, and Cleanup 301
6.6.1 XQP Normal Cleanup . 302
6.6.2 XQP Error Handling . 303
6.6.3 Event Notification . 303

6. 7 Termination of Processing . 304
6.7.1 Completing File Functions 305
6. 7 .2 Device 1/0 . 306
6. 7 .3 Checking for Dismount . 307

7 Serialization of File System Activity
7 .1 Introduction . 311

7.2 Distributed Lock Manager........................ 311
7.2.1 Locking Conventions 312
7.2.2 Distributed Lock Manager System-Owned Locks 313

7.2.2.1 Volume Allocation Lock 314
7 .2.2.2 Serialization Lock . 320

7 .3 Serializing Access to Files and Volumes 325

7 .4 Serializing Access to Shared Data Structures 327
7 .4.1 Serializing the File Control Block 327

Contents xiii

7.4.1.1 Using the Serialization Lock to Serialize Access 327
7.4.1.2 Synchronizing Access to FCBs and WCBs 328

7.4.2 Serializing the Volume Control Block 328
7.4.3 Serializing the File Number and Extent Caches 328
7.4.4 Serializing the Buffer Cache . 329

7.5 Deadlock Considerations . 330

7.6 File System Internal Serialization Checks.. 331

7. 7 File System Lock Indexes . 332

7 .8 Ambiguity Queue . 335

8 File System Operation in a VAXcluster
Environment

8.1 Introduction . 339

8.2 Mounting 8: Disk Clusterwide . 339

8.3 Locking in a VAXcluster. 341
8.3.1 Volume Allocation Lock . 342
8.3.2 Arbitration Lock. 343
8.3.3 Cache Flush Lock............................... 344
8.3.4 Quota Cache Lock . 346
8.3.5 Blocking Lock. 348

8.4 Access Arbitration . 352
8.4.1 Delayed Truncation . 354

8.5 System Blocking Routines . 356
8.5.1 Volume Activity Blocking . 357
8.5.2 Dynamic Quota Cache Entry Lock Passing 369
8.5.3 FCB Invalidation . 37 4
8.5.4 Cache Flushing . 383

8.6 Cache Processing . 386
8.6.1 Lock Value Blocks . 386
8.6.2 Other Value Block Fields . 389
8.6.3 Associating Locks with Buffers . 390
8.6.4 Cache Invalidation . 391
8.6.5 Directory Index Cache . 393
8.6.6 RMS Directory Pathname Cache 397
8.6.7 User Invalidation of Cached Buffers 398

Index
399

Preface

VMS File System Internals provides information about the internal components
of the VMS Version 5.2 file system, which is that part of the VAXNMS operating
system responsible for storing and managing information and files in memory and
on secondary storage.

Intended Audience
This book is intended primarily for software specialists, system programmers,
and other users who wish to understand the underlying components of the VMS
file system.

System managers may benefit from understanding the details of file system data
structures and caches when they configure the system. Application designers may
likewise benefit from understanding the file system structures and logic that may
affect various design decisions.

The audience is assumed to be familiar with the VAX architecture, the VMS
operating system as a whole, 1/0 devices, and device drivers.

Document Structure
This book contains the following eight chapters:

• Chapter 1 introduces the VMS file system. It provides insight into how
the file system has evolved, and gives an overview to the file system user
interface.

• Chapter 2 discusses the Files-11 On-Disk Structure, including the basic
structures of the VMS file system and general file system concepts.

• Chapter 3 covers volume structure processing. Major topics include the
Initialize, Mount, and Dismount Utilities, and the structures of the 1/0
database.

xvi Preface

• Chapter 4 explains the fundamentals of cache processing on a single node.
This discussion includes cache structures, special caches, and basic caching
algorithms.

• Chapter 5 discusses major and miscellaneous ACP functions, including access,
create, delete, modify, deaccess, and ACP control. It also gives an overview to
the Queue 1/0 (QIO) interface.

• Chapter 6 provides a detailed discussion of the XQP and 1/0 processing,
including an in-depth explanation of the the QIO interface. Topics also
include XQP dispatching, XQP code execution, and 1/0 postprocessing.

• Chapter 7 describes the various serialization techniques used to synchronize
file system activity, including the distributed lock manager, raised IPL, and
the file system structures themselves.

• Chapter 8 discusses the file system in a VAXcluster environment. It covers
the coordination of clusterwide file system structures and resources, and how
file system requests are passed to all nodes of a VAXcluster.

Acknowledgments
This project has been both long and hard, and I am thankful for the caliber of
help that I have had.

My first thanks go to Susan Denham and to Ann MacDonald, my current and my
former supervisor, for supporting me in what at times has seemed a neverending
endeavor. Both of these women were deeply committed to ensuring that I succeed
in writing this book.

I am grateful to all the people who provided editing and production support.
Lisi Urban edited the first versions of all the chapters. Judy Blachek provided a
comprehensive edit of the final version of the whole book out of the goodness of
her heart. Jill Angel magnificently coordinated the entire production. Lee Segal,
Chris Caron, Sheila Lawner and Brenda Rogers of Graphic Services provided
book design and production assistance. Paul King provided the art work, which is
particularly notable because it was given to him at the last minute.

I also thank Chase Duffy and Michael Meehan of Digital Press for their
publishing experience and their on-going support.

I am grateful for the help and suggestions provided by Ruth Goldenberg and the
rest of the VAX works team. I also acknowledge the help provided by friends and
reviewers (you know who you are!) around the world, whom I never would have
met otherwise.

I also thank the many talented VMS engineers who reviewed and significantly
improved portions of the book: Paul Destefano, Paul Houlihan, Hai Huang, Mark
Pilant, and Ralph Weber. I appreciate all the errors and omissions they found.

Preface xvii

I also appreciate the help of Christian D. Saether, designer and implementer of
the XQP. He provided a document on XQP internals that later became the core
of Chapters 4, 6, and 7. He also helped establish the outline for the book and
provided reviews of some of the early chapters.

I am especially grateful to two brilliant engineers, without whom I would not
have been able to write this book. It has indeed been an honor and a privilege to
have been able to work with both of them.

Andy Goldstein was the original perpetrator of ODS-2, and he wrote a document
on the Files-11 On-Disk Structure that was later subsumed into Chapter 2.
Notoriously overworked, he nevertheless patiently answered a multitude of
questions, and took the time to provide a comprehensive, incisive, and generally
excellent review of the whole book, enlivened by his barbed sense of humor.

Keith Walls is the current architect and maintainer of the file system, and I
am deeply indebted to all the extra work he put in to make sure the book was
successful. This help included (but was not limited to) giving weekly tutorials
and code walk-throughs, answering innumerable questions, providing the original
version of Chapter 1, bringing a pizza to work at night so we could review a
chapter without missing dinner, bringing comments in at midnight and going
over them with me till the wee hours when I was under a deadline, and generally
helping me put the mysterious pieces of the file system together. Keith kept me
(and the book) going when the project stalled, and provided help of a nature that
went far above and beyond the call of duty.

Finally, I would like to thank all those who have designed, implemented, or
contributed to the VMS file system. This book is but a small tribute to their
monumental engineering effort.

Kirby McCoy
April 1990

Conventions
The following conventions are used in this manual:

<>

boldface text

UPPERCASE TEXT

numbers

data structures

system parameter

Executive

In examples, a horizontal ellipsis indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information
can be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In format descriptions, angle brackets indicate that the
user must supply the information.
Boldface text represents the introduction of a new term or
the name of an argument, an attribute, or a reason.
Uppercase letters indicate that you must enter a command
(for example, enter OPEN/READ), or they indicate the
name of a routine, the name of a file, the name of a file
protection code, or the abbreviation for a system privilege.
Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
·follows.
Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary, octal,
or hexadecimal-are explicitly indicated.
All data structures are assumed to run right to left. That
is, the lowest addressed byte (or bit) in a longword is on the
right-hand side of a figure, and the most significant byte (or
bit) is on the left-hand side.
This term is used to describe any of the adjustable
parameters (also called SYSGEN parameters) that are
used to configure the system.
This term refers to those parts of the operating system that
reside in system virtual address space.

Chapter 1

Introduction to the VMS File System

Begin at the beginning ... and go on till you come to the end: then stop.
Lewis Carroll

If you want to fix something, you are first obliged to understand, in detail, the
whole system.
Lewis Thomas

Outline

Chapter 1 Introduction to the VMS File System

1.1 Introduction

1.2 Tasks of a File System
1.2.1 Evolution of the VMS File System
1.2.2 Creation of the XQP
1.2.3 VMS File System in a VAXcluster

1.3 User Interface to the File System
1.3.1 VMS 1/0 System
1.3.2 Queue 1/0 Request Service
1.3.3 Reserved Files
1.3.4 Major File Functions

Introduction to the VMS File System 3

1.1 Introduction
The file system of the VAX/VMS operating system has an interesting history and
has evolved to occupy an interesting and unique place in the computing industry.
This book is intended to deliver a detailed description of the VMS file system for
Version 5.0 of VAX/VMS. Particular attention is given to the methodology and
tactics employed in the file system to achieve the synchronization, efficiency, and
flexibility it does.

1.2 Tasks of a File System
File systems in general are exceptional pieces of code within operating systems.
They are relied upon to deliver data with absolute integrity and virtual immunity
to security problems and media defects. Furthermore, file systems are expected to
do this with minimal impact on system performance. For example, the XQP runs
/as a kernel-mode asynchronous system trap (AST) delivered to the requesting
(and owning) process. As a result, the processing performed by the XQP is
absolute overhead, and is measured as such in all forms of monitoring.

A timesharing file system is, by its very nature, unique in the computer science
realm. Its implementation should provide the following:

• The imposition of a hierarchical name space on an otherwise flat logical space

• An immutable name space

• Multiplexed usage of block space

• Implicit synchronization

• A bridge between the unprivileged user and the privileged operating system

• File management on secondary storage

• Private and secure storage

• The sharing of files in a controlled fashion

• A fault-free environment for the upper layers and to the operating system

A failure (such as a security violation or the detection and repair of a bad
block) is either hidden from upper levels (in the case of bad block handling),
or it is returned to the user as an error (in the case of the security violation).
However, the latter case actually represents a success because the file system
successfully detected an attempted security violation and prevented it.

Most importantly, the file system is expected to perform all these tasks without
making a significant impact on the environment or the users whom it serves.

4 Introduction to the VMS File System

1.2.1 Evolution of the VMS File System

The VAX/VMS operating system evolved from the RSX-UM operating system
in the 1970s. On the RSX series of operating systems, the Files-11 On-Disk
Structure Level 1 (ODS-1) file system functions were implemented as a
separate process called an ancilliary control process (ACP). Thus, each request
that involved the file system ACP likewise involved a process context switch to
the ACP, as well as a context switch back to the requesting process.

Early versions of VAX/VMS also used a file system ACP to handle file I/O
functions. Although VAX/VMS provided a more secure domain than that provided
by RSX and, in Version 1.0, tightly bound volume sets under the heading of ODS-
2, these early implementations of the VMS file system still required the context
to be switched and data to be transferred between processes in order to perform
file system operations.

In addition to the overhead incurred by a separate process context, the ACP
design also suffered from being a systemwide bottleneck because all process
requests were funneled through a single ACP for any given disk. Despite
the apparent shortcomings of these early versions of the VMS file system
implementation, synchronization was implicit within the ACP. Updates and
privileged references to the file system in-memory data structures were
synchronized by processor interrupt priority level (IPL), but only one VMS
process had control of any given disk. In other words, all file-system-related
requests were channeled through an entity of atomic or implicit synchronization.

1.2.2 Creation of the XQP

In VAX/VMS Version 4.0, Digital introduced the VAXcluster system. In order
to maintain rational and useful file sharing within the cluster, the file system
had to adopt a different synchronization technique because processes could no
longer depend on the implicit synchronization offered by the scheduling entity
(the ACP). So it became necessary to develop a means by which many "ACPs"
could synchronize across the boundaries within the VAXcluster.

As an answer to the problems posed by the now-outdated ACP, the extended
QIO processor (XQP) was designed. It was intended to perform the following
tasks:

• Eliminate the ACP bottleneck

• Provide synchronization between processes within a VAXcluster

• Ensure that copies of data structures across the VAXcluster were properly
maintained (generally by an invalidation-and-update technique)

Introduction to the VMS File System 5

On the basis of these requirements, the XQP was developed as a "per-process
ACP." In this way, each process mapped the code of the XQP from a global Pl-only
image section and maintained per-process, private, in-memory data structures
relevant to the file system operations of that process. Thus, the file-system
activity of any one process had no impact on that of any other process on the
system, except where file (read and write) sharing was concerned.

The synchronization between processes became solely dependent on the
distributed lock manager, which allowed process-based XQPs to express interest
at a file granularity level as opposed to the volume granularity of the ACP
system. In-memory data structures were still protected by the IPL scheme offered
by VMS (and later by the spin lock mechanism implemented for symmetric
multiprocessing).

So where the ACP was a separate process, the XQP was merged into the process
(so that only the impure area was charged to the working set). The ACP handled
requests for all users; the XQP handled requests for the single user of its process.
The ACP was usually single threaded and lacked cluster synchronization, but the
XQP effectively provided multiple copies and cluster synchronization.

1.2.3 VMS File System in a VAXcluster
The VAX/VMS file system is further distinguished in its involvement in
the Digital VAXcluster technology. Users of VAXclusters have long enjoyed
transparent synchronization and transparent file-sharing by the cluster
integrated VMS file system.

In fact, the development of the VMS operating system itself is now fully
dependent on its own VAXcluster technology and the accompanying file system.
In 1977, compiling a new VAX/VMS operating system from its source files
consumed the resources of an entire VAX-11/780 for 12 hours. In 1979, building
the VMS operating system consumed the resources of an entire VAX-llfi82, with
nearly twice the horsepower, for the same amount of time.

'lbday, a complete build of the VAX/VMS operating system consumes the resources
of an entire VAXcluster consisting of two VAX 8800-class machines, three VAX
6000-class machines, and miscellaneous VUPs for still the same amount of time.
If it were not for VAXcluster technology, building VMS would probably be a very
lengthy process. Further, if all file activities went through a single-threaded ACP,
more time would be spent waiting for the ACP than for the operation to complete.

6 Introduction to the VMS File System

1.2.3.1 VAXNMS Environment and the File System
The VMS file system stands out in many ways. Unlike many operating system
:file systems, the VMS file system was designed as an integral component of the
operating system. In the architectural phase of VAX/VMS hardware and software
development, a successful :file system was considered essential to the success of
the hardware-software architectural teams.

For example, data reliability features in the VAX architecture, such as the
CRC (Cyclic Redundancy Check) instruction, were used to advantage in the
VMS file system and related utilities. In addition, the memory-management
unit (the page) is the same size as the :file system block. I/O postprocessing
performed by the operating system in response to I/O completion consists of
explicit considerations of :file system I/O.

In addition, the page fault handler of VMS deals directly with :files and file blocks
(or pages). In fact, the VMS page-fault mechanism provides the means by which
image pages are read from disk images (files) into memory for execution.

Many parts of the VMS operating system have knowledge of the VMS :file system.
The swapper, although it does not have PO or Pl space (and therefore is the only
VMS process that cannot map the XQP code) is involved in :file-related I/O and in
file system synchronization.

The XQP has significantly influenced the VMS operating system. Without the
XQP, system-owned locks would not be necessary in the distributed lock manager.
The major premise of the distributed lock manager is that any lock has an owner
process. In the case of the :file system, however, it is necessary for some locks to
outlive the process that created them (for example, a disk that has been mounted
clusterwide).

1.3 User Interface to the File System
Perhaps the most distinguishing feature of the VMS file system is that it makes
every attempt to detach itself from all the I/O operations it can. This is a benefit
inherited from the ACP design of the RSX and VMS :file systems from which it
evolved. The VMS file system is involved only with I/O that requires access to
the :file system metadata. Once the :file system has been called to make an access
path to a file, it represents its presence, as far as it can reasonably do, by leaving
nonpaged data structures (window control block, :file control blocks) that provide
a mapping from virtual (:file-based) blocks to logical (disk-based) blocks.

In this way, the :file system only needs to be involved in the initial open operation
(and associated synchronization) and in window tuniing (updating the virtual-to
logical map) to provide the user with direct access to the blocks of the file through
the window control block. In this sense, the VMS :file system is integrated
completely into the QIO subsystem of the operating system.

Introduction to the VMS File System 7

In fact, all 1/0 to a :file can be expressed in terms of virtual QIOs, which allows
a record management subsystem (like RMS or Rdb) to impose its own structure
within files without the involvement of the :file system. Despite the level of
integration between the operating system and its :file system, the XQP presents
an object-oriented and hierarchical layer upon which upper-level facilities can
build.

In addition to these constraints and design decisions presented by the VMS file
system, 1/0 passed to the XQP can be made completely asynchronous to the upper
layers, and in a transparent manner to the application designer or programmer.

1.3.1 VMS 1/0 System
The VAX/VMS 1/0 system is composed of several layers. The top layer is the VAX
Record Management Services (RMS), which provides controlled access to :files and
records. All VAX high level languages invoke VAX RMS to perform 1/0. VAX RMS
is also the recommended 1/0 mechanism for the assembly language programmer.

The middle layer is the Queue 1/0 ($QIO) system service, which interfaces with
the XQP to perform device-dependent 1/0. A programmer would use the $QIO
system service when accessing devices not supported by RMS; when performing
1/0 operations not supported by RMS; or when performing 1/0 operations not
supported by the language's interface to RMS.

The bottom layer is the device driver itself. The $QIO service acts as the
interface to the device driver, which is rarely accessed directly by the application
programmer.

A user program can interface with the 1/0 system at different levels, depending
on its requirements. At each level, the user program makes tradeoffs between
ease of use and execution speed. As a general rule, the lower the level at which
the user program interfaces with the VAX/VMS executive, the less overhead is

. involved in the 1/0 operation. On the other hand, less opportunity is provided for
data caching.

In most instances, a programmer uses VAX RMS either directly or implicitly to
perform input and output operations to :file-structured devices. Access to real
time devices is usually done by directly invoking the $QIO system service to the
driver level.

Any functions that can be performed on a device can also be enqueued with an
appropriate $QIO.

Figure 1-1 shows the relationship between the components of the 1/0 system.

a Introduction to the VMS File System

Figure 1-1: The Components of the 1/0 System

PO and P 1 Space

Application
Image

F11BXQP
WCB

Nonpaged
Pool

SO Space

RMS

1/0 System
Services

JSB calls, ...

1/0
Drivers

MSCP, ...

Disk
Device

ZK-9709-HC

Introduction to the VMS File System 9

1.3.2 Queue 1/0 Request Service

The Queue 110 request service ($QIO) queues an 110 request to a channel
associated with a device. The $QIO service completes asynchronously; that is, it
returns to the caller immediately after queuing the 110 request, without waiting
for the 110 operation to complete. '

$QIO operates only on assigned 110 channels and only from access modes that are
equal to or more privileged than the access mode from which the original channel
assignment was made.

$QIO consumes the process quota for the following resources:

• Buffered 110 limit (BIOLM) or direct 110 limit (DIOLM)

• Buffered 110 byte count (BYTLM)

• AST limit (ASTLM), if an AST service routine is specified

System dynamic memory is also required to hold a database to queue the 110
request, and additional memory may be required on a device-dependent basis.

Chapter 2

Files-11 On-Disk Structure

Within that awful volume lies
The mystery, of mysteries!
Sir Walter Scott

Something deeply hidden had to be behind things.
Albert Einstein

Outline

Chapter 2 Files-11 On-Disk Structure

2.1 Introduction

2.2 Basic Concept of a Volume
2.2.1 Volume Identification
2.2.2 Volume Integrity
2.2.3 Volume Sets

2.3 Basic Concept of a File
2.3.1 Logical to Virtual Mapping
2.3.2 File Identification
2.3.3 File Header
2.3.4 Multiheader Files
2.3.5 Multivolume Files

2.4 Basic Concept of a Directory
2.4.1 Directory Structure
2.4.2 Multiple Directory Records
2.4.3 Directory Hierarchies

2.5 Reserved Files
2.5.1 Index File
2.5.2 Storage Bitmap File
2.5.3 Bad Block File
2.5.4 Master File Directory
2.5.5 Core Image File
2.5.6 Volume Set List File
2.5. 7 Continuation File
2.5.8 Backup Journal File
2.5.9 Pending Bad Block Log File

Files-11 On-Disk Structure 13

2.1 Introduction
A major component of the VMS operating system is the file system. The file
system, also called the file control processor (FCP), maintains the structure
and integrity of data stored on file-structured devices such as disks.1

The file system is responsible for the following tasks:

• Maintaining the directory files on the volume

• Opening, closing, creating, deleting, extending, and truncating files

• Managing free space on the volume

• Ensuring the integrity of files

• Mapping logical blocks to virtual blocks

• Translating RMS data requests for device drivers

The standard file structure for all medium-to-large PDP-11 and VAX systems is
Files-11. This book, and this chapter in particular, describes the Files-11 On·
Disk Structure Level 2 (ODS-2) used by VAX/VMS systems. The following
sections provide a conceptual overview of the basic components of the file
system-volumes, files, and directories.

2.2 Basic Concept of a Volume
A volume is the basic medium with a Files-11 structure. It is an ordered set
of logical blocks. A logical block is an array of 512 8-bit bytes. If the volume
contains n logical blocks, the logical blocks are consecutively numbered from 0 to
n - 1. The number assigned to a logical block is called its logical block number
orLBN.

In practice, a volume should be at least 100 blocks to be useful, and Files-11 can
describe volumes up to 232 blocks.

The logical blocks of a Files-11 volume must be randomly addressable. The
volume must also allow transfers of any length up to 65,536 bytes in multiples of
four bytes. If the data is longer than 512 bytes, consecutively numbered logical
blocks are transferred until no more data remains to be transferred.

In other words, the volume can be viewed as a partitioned array of bytes. It
must allow read and write operations on arrays of any length up to 65,536 bytes,
provided that the array starts on a logical block boundary and that its length is
a multiple of four bytes. When only part of a block is written, the contents of the
remainder of that logical block are undefined.

1 Block addressable storage devices such as disks and TU58 magnetic tapes are the assumed media,
and they are generically referred to as disks.

14 Files-11 On-Disk Structure

The logical blocks of a volume are grouped into clusters. The cluster is the basic
unit of space allocation on the volume. Each cluster contains one or more logical
blocks, and the number of blocks in a cluster is called the volume cluster factor
or the storage bitmap cluster factor.

2.2.1 Volume Identification

The file system identifies a volume as a Files-11 volume by its home block. The
home block is located at a defined physical location on the volume-usually LBN
1. The file system verifies the home block by its checksums and predictable
values. The home block also contains a volume label, which is an ASCII
character string, to identify the volume.

The home block also serves another important function. It contains a pointer to
the index file INDEXF.SYS, which is the file that contains the information the file
system needs to access the rest of the files on the volume.

For more information on the home block, refer to Section 2.5.1.2.

2.2.2 Volume Integrity

One of the basic concepts of the file system is that it be robust, or tolerant of
system failure, particularly across a VAXcluster. The file system must be able to
tolerate the random failure of a node in the VAXcluster without destroying file
data or access to files from other nodes in the cluster. In other words, a critical
requirement of a robust file system is the integrity of a volume. It is imperative
that the data on a volume be correct and valid at any given time.

The essential way in which the integrity of a volume is ensured is the redundancy
of key structures on the volume. For example, multiple copies of the home block
along the home block search sequence allow access to the volume even if the
primary home block is corrupted. For more information on the home block, see
Section 2.5.1.2.

Another structure that is recorded multiple times on the volume is the index file
header. The backup index file header allows data on the volume to be recovered
even if the primary index file header is corrupted.

A second method that ensures volume integrity is the order in which specific
structures are updated so that a system failure in the middle of an operation does
not compromise the entire volume. For example, to extend a file, the file system
must allocate free storage from the disk. The desired number of blocks is first
reserved in the storage bitmap. Only then does the file system write out to disk
the file header of the file being extended, which associates those blocks with that
particular file.

Files-11 On-Disk Structure 15

If the header were written out to disk before the blocks were reserved in the
storage bitmap, two files could potentially map the same blocks, resulting in
multiply allocated blocks and file corruption. So any structure that involves
multiple disk blocks must be sensitive to the order in which they are written.

Yet another way that volume integrity is ensured is the distinction between
directory structure and file structure. This difference allows files to be recovered
from a directory that has been deleted or corrupted.

2.2.3 Volume Sets

A collection of related disks that is treated as one logical device is called a
volume set. Although each volume contains its own Files-11 structure, there
is only one directory structure on the volume set. Files on the volumes of the set
are referenced with a relative volume number, which uniquely determines the
disk in the set on which the file is located.

2.2.3.1 Tightly Coupled Volume Sets
A volume set that is consistent and self-identifying is called a a tightly coupled
volume set. The volume label of each volume in the set is unique within the
set and is different from the structure name, which is a string of up to twelve
ASCII characters which identifies the volume set. Relative volume 1 (the root
volume) of the set contains a file (VOLSET.SYS) that lists the volume labels of
all the volumes in the set and thus associates volume labels with relative volume
numbers. Each volume is identified as part of the set by its structure name,
volume label, and relative volume number. ·

For more information on VOLSET.SYS, refer to Section 2.5.6.

2.2.3.2 Loosely Coupled Volume Sets
A loosely coupled volume set is a collection of volumes that is not self
identifying. It does not contain a file that lists the volume labels. Moreover,
only one file per volume may cross from one volume in the set to the next, and
files that cross volumes may only be processed sequentially.

Loosely coupled volume sets emulate multivolume magnetic tape, which allows a
file to be sequentially read or written with only one volume mounted at a time.

Correct sequencing of the volumes that hold a particular file is the responsibility
of both the system operator and the application using the volume set, although
there are checks and corrections that can catch most handling errors.

The Backup Utility (BACKUP) produces a loosely coupled volume set when, for
instance, a large disk such as an RA81 is backed up onto multiple RA60s.

16 Files-11 On-Disk Structure

2.3 Basic Concept of a File
A file is an organized collection of data. Files contain any data on a volume
or volume set that is of interest (that is, all the blocks that are not currently
available for allocation).

To be independent of disk drivers, the file system imposes a logical structure on
the data on each disk. Essentially, the FCP treats a disk as a logically contiguous
series of data units called logical blocks. A logical block contains 512 8-bit bytes
and is numbered from O to n - 1, where n is the number of blocks on the disk.

2.3.1 Logical to Virtual Mapping

A file is an ordered set of virtual blocks, where a virtual block, like a logical
block, is an array of 512 8-bit bytes. The :file system regards a file as being
virtually contiguous.

Unlike logical blocks, however, the virtual blocks of a :file are consecutively
numbered from 1 to n, where n is the highest numbered block that has been
allocated to the file. A logical block and a virtual block describe the same physical
unit of storage on the disk; the only difference between them is the way they are
numbered.

Logical blocks have logical block numbers (LBNs), and virtual blocks have virtual
block numbers (VBNs). Virtual blocks have LBNs, but logical blocks do not have
VBN s, unless they are allocated to a file.

Virtually contiguous does not necessarily mean logically contiguous. There is
more than one file on a disk. As these files consume space on the disk, there
are fewer available contiguous logical blocks. Eventually, the file system creates
or extends a file so that portions of it reside on different parts of the disk. The
blocks retain their serial VBN s, but they are no longer logically contiguous.

Files-11, which is device-independent, is responsible for associating, or mapping,
virtual blocks to unique logical blocks in a volume set. For example, if a user
requests access to a block within a :file, the file system calculates the logical block
on the volume that corresponds to the VBN. It takes into account the fact that
the virtual blocks may or may not be logically contiguous.

After calculating the LBN, the file system requests that block from the disk driver
for the device containing the file. The driver then translates that request into the
cylinder/track/sector, or physical block, that the device hardware must read or
write.

Files can be either dense-or sparse. A file in which all the VBNs less than or
equal to the highest allocated VBN have been mapped to a corresponding LBN in
the volume set is a dense file.

Files-11 On-Disk Structure 17

On the other hand, files that are sparse contain virtual blocks that have not been
allocated logical blocks. Unallocated virtual blocks are represented by mapping
data that contains an LBN of all ls. Sparsely allocated files are not currently
supported.

2.3.2 File Identification
Every file in a volume set is uniquely described by a number called a file
identifier, a file ID, or simply a FID. A file ID is a 48-bit binary value that
is supplied by the file system when the file is created. Users must supply it when
they want to access a particular file. The :file identifier points to the location of
the file header, which contains a listing of the extent or extents that locate the
actual data on the disk.

The :file ID is divided into· four :fields:

• File number

• File sequence number

• Relative volume number

• File number extension

These fields are shown in Figure 2-1 and are described in Table 2-1.

Figure 2-1: Format of the File Identifier

[FID$W_SEQ FID$W_NUM 0

FID$B_NMX I FID$B_RVN

18 Files-11 On-Disk Structure

Table 2-1 : Contents of the File Identifier

Field Name

FID$W_NUM

FID$W_SEQ

FID$B_RVN

FID$B_NMX

Description

File number. This field contains the low 16 bits of the file number. With
the FID$B_NMX field, it forms a 24-bit file number that locates the file
within a particular volume of the volume set.

The set of file numbers on a volume is not totally dense. The file
number uniquely identifies one file on that volume at any one time.
File numbers for a volume start with the number 1; 0 is not valid. File
numbers with zeros in the low 16 bits (multiples of 65,536) are not used.

File sequence number. It represents the current use of a particular
file number on a volume. When a file is deleted, its file number can
be used again. Each time a file number is reused, a different file
sequence number is assigned to distinguish the uses of that particular
file number.

The file sequence number is essential. It prevents a user from
accidentally using the file ID of an already deleted file to access a
file that was later given the same file number.

File sequence numbers are assigned by maintaining the current
sequence number in each file header and incrementing it each time
the header is reused. If the previous value of the header's sequence
number cannot be obtained, the file sequence number is generated
randomly.
Relative volume number. It indicates the volume of a volume set on
which a file is located. If this volume is not part of a volume set, then
this word contains a value of 0. If the volume is part of a volume set,
then the relative volume number (RVN) can range from 1 to 255.

When a file must be referenced in the context of the volume on which it
lies, a relative volume number of 0 is used, regardless of the RVN that
may be assigned to that volume.

File number extension. This byte is the high-order part of the file
number. 'lbgether with the FID$W _NUM field, it forms the complete
24-bit file number.

2.3.3 File Header
In addition to the file ID, every file on a Files-11 volume is described by a
file header. It is not actually part of the file; rather, it is contained in the
volume's index file (see Section 2.5.1). The file header is essentially a catalog
of information about the file, such as where the data is located and how it is
structured. It is used by the file system itself, RMS, the Dump Utility, and the
Backup Utility.

Files-11 On-Disk Structure 19

The file header, also called the header block, contains all the information
necessary to access the file, including the list of extents that make up the file.
File extents describe where the file is physically located on the volume. If a file
has a large number of extents, multiple file headers are used to describe them.
The :file header also contains such information as the file ownership, protection,
creation date, and creation time.

The file header has six areas:

• Header area

• Ident area

• Map area

• Access control list area

• Reserved area

• End checksum

The :first :five areas vary in size, and only the header area and the end checksum
are mandatory. Because the areas are variable in length, any software that
processes these structures must check their length before accessing any fields.
Fields contained within the fixed portion of the header (that is, the header area
up to, but not including, the FH2$L_HIGHWATER :field) can be assumed to be
present.

The fixed portion includes any :fields in the header area before the start of the
ident area. The FH2$B_IDOFFSET field points to the ident area, which is the
:first available area in which to store data. In other words, the header may
contain variable-length areas, but its size is fixed at 512 bytes.

A valid file header is defined by the following rules:

• The header end checksum in the FH2$W _CHECKSUM :field must be correct.
The end checksum (or block checksum) is a word occupying the last two bytes
of the :file header, and it is a simple additive checksum of all other words in
the header block. It is verified every time a header is read and is recalculated
every time a header is written.

• The value (that is, the address) contained in the FH2$B_IDOFFSET :field is
no less than the value represented by FH2$L..HifHWATER.

• The four offset bytes are related such that the value contained in the
FH2$B_IDOFFSET field is less than or equal to the value in the FH2$B_
MPOFFSET :field, which is less than or equal to the value in the FH2$B_
ACOFFSET field, which is less than or equal to the value in the FH2$B_
RSOFFSET :field.

• The high byte of the FH2$W _STRUCLEV field contains the value 2.

20 Files-11 On-Disk Structure

• The low byte of the FH2$W _STRUCLEV field contains a value greater than
or equal to 1.

'

• The word FH2$W _FID_NUM contains the file number.

• The word FH2$W _FID_SEQ contains the file sequence number.

• The high byte of the FH2$W_FID_RVN field (the FH2$B_FIX_NMX field)
may contain the file number extension.

• The contents of the byte FH2$B_MAP _INUSE must be less than or equal to
the value given by FH2$B..AOOFFSET- FH2$B.MPOFFSET.

A deleted file header conforms to the format of a valid file header, with the
following exceptions:

• The FH2$V _MARKDEL bit is set in the FH2$L_FILECHAR field.

• The FH2$W _FID_NUM, FH2$B_FID_NMX, and the FH2$B_FID_RVN fields
all contain a value of 0.

• The FH2$W _CHECKSUM field contains a value of 0.

2.3.3.1 Header Area
The header area of the file header always starts at byte 0. It contains information
that allows the file system to make sure that this block is a valid file header and
that this header is the correct one. It contains the file number and file sequence
number of the file as well as its ownership and protection codes.

This area also contains offsets to the other areas of the file header, so it defines
their size as well. Unlike the header area and the end checksum, the ident, map,
access control list, and reserved areas are optional. If an area is not defined, the
offset does not contain a value of O; rather, the two offsets from which the size
of the area can be calculated are equal. All areas except the end checksum are
variable in length.

The symbol FH2$C_LENGTH contains the size of the header area, excluding the
last field, FH2$R_CLASS_PROT.

The fields in the header area are illustrated in Figure 2-2, and each field is
described in Table 2-2.

Files-11 On-Disk Structure 21

Figure 2-2: Format of the Header Area

FH2$B_RSOFFSET I FH2$B_ACOFFSET FH2$B_MPOFFSET I FH2$B_IDOFFSET 0

FH2$W_STRUCLEV FH2$W_SEG_NUM 4

FH2$W_FID 8

12

FH2$W_EXT_FID

* FH2$W_RECATIR (32 bytes) F~ 20

FH2$L_FILECHAR 52

FH2$B_ACC_MODE I FH2$B_MAP _INUSE reserved 56

FH2$L_FILEOWNER 60

FH2$W_FILEPROT 64

FH2$W_BACKLINK

reserved FH2$B_RU_ACTIVE I FH2$B_JOURNAL 72

FH2$L_HIGHWATER 76

reserved 80

* FH2$R_CLASS_PROT (20 bytes) * 88

22 Files-11 On-Disk Structure

Table 2-2: Contents of the Header Area

Field Name

FH2$B_IDOFFSET

FH2$B_MPOFFSET

FH2$B_ACOFFSET

FH2$B_RSOFFSET

FH2$W_SEG_NUM

Description

!dent area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the ident
area. It defiiles both the location of the ident area and the size of
the header area.
Map area offset. This byte contains the number of 16-bit words
between the start of the file header and the start of the map
area. It de:fiiles both the location of the. map area and, with the
FH2$B_IDOFFSET field, the size of the ident area.1

Access control list offset~ This byte contains the number of 16-
bit words between the start of the file header and the start of
the access control list. It defiiles both the location of the access
control list and, with the FD2$B_MPOFFSET field, the size of
the map area.

Reserved area offset. This byte contains the nuinber of 16-
bit words between the start of the header and the start
of the reserved area. The reserved area is not used by
Files-11, so it may be used for special applications. With the
FH2$B...ACOFFSET field, this byte defines the size of the access
control list. The size of the reserved area can be calculated from
the value in the FH2$B_RSOFFSET field and the end of the
header block (excluding the end checksum).
Extension segment number. This word contains a value n, which
indicates the header's ordinal position in the file. However, file
headers are numbered sequentially starting with 0, so the header
of value n is actually the header of position n + 1 in the file. For
example, a header defiiled by the value 2 is the third header in
the file.

1 Any free space in the file header should be allocated to the map area. In the primary header of a
file, at least 8 bytes must be available for the map area.

(continued on next page)

Files-11 On-Disk Structure 23

Table 2~2 (Cont.): Contents of the Header Area

Field Name

FH2$W _STRUCLEV

FH2$W_FID

FH2$W _EXT_FID

FH2$W _RECA'ITR

Description

Structure level and version. This word is used to identify
different versions of Files-11 because they affect the structure of
the· file header.

This field also identifies the version of Files-11 used to create a
file, which permits upward compatibility of file structure!!. Under
the Files-11 On-Disk Structure Level 2, the high byte of this
field must contain the value 2. ·

The low byte contains the version number (currently version 1 of
structure level 2), which must be greater than or equal to 1. The
version number will be incremented when compatible additions
are made to the Files-11 structure.
File identifier. This field contains the file ID of the file. The
format of a file ID is described in Section 2.3.2. This field
contains the following four subfields:
FH2$W _FID_NUM Low-order file number
FH2$W _FID_SEQ File sequence number
FH2$B_FID_RVN Relative volume number. Because the

file ID refers to itself (and therefore
always points to the same volume), the
value of this field is always 0.

FH2$B_FID_NMX High-order file number

Exten$ion file identifier. This field contains the file ID of the file's
next extension header, if one exists. A value of 0 indicates that
no extension header exists. This field contains the following four
subfields:
FD2$W _EX.._FIDNUM
FH2$W _EX,_FIDSEQ
FH2$B_EX_FIDRVN
FH2$B_EX,_FIDNMX

Low-order file number
File sequence number
Relative volume number
High-order file number

File record attributes. This area is used by the record manager
or any other high-level access mechanism to store information
necessary for processing the file, such as record control data or
an end-of-file (EOF) mark.

(continued on next page)

24 Files-11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

Field Name

FH2$L_FILECHAR

Description

File characteristics. The following flag bits are defined relative to
the start of this field:
FCH$V _NOBACKUP Set if the file contents are not to

be copied.by the Backup Utility
(BACKUP).

FCH$V _ WRITEBACK Set if a write-back cache may be used.
With this type of caching operation,
the cached data is written to the
disk only when it is removed from
the cache. This bit is clear for write
through cache operations.

FCH$V _READCHECK Set if read-check operations are to
be performed. All read operations
on the file, including the file header,
are verified with a read-compare
operation to ensure data integrity.

FCH$V _ WRITCHECK Set if write-check operations are to
be performed. All write operations
on the file, including modifications of
the file header, are performed with
a read-compare operation to ensure
data integrity.

FCH$V _CONTIGB Set if the file is to be allocated
contiguously in as few contiguous
sections as possible. The storage
bitmap is scanned for this purpose,
causing the file system to perform
extra I/O operations.

The file system allocates the three
largest contiguous pieces. If the
request has not been satisfied, the
file system disregards this bit and
satisfies the request as best it can.
The resulting allocation cannot be
determined.

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file.

(continued on next page)

Files-11 On-Disk Structure 25

Table 2-2 {Cont.): Contents of the Header Area

Field Name Description

FCH$V _LOCKED

FCH$V _CONTIG

FCH$V _BADACL

FCH$V _SPOOL

FCH$V _DIRECTORY
FCH$V _BADBLOCK

FCH$V _MARKDEL

Set if the file was locked on deaccess.
This bit warns that the file was not
properly closed and may contain
inconsistent data. Access to the file is
denied if this bit is set.

Set if the file is logically contiguous
(that is if, for all virtual blocks in the
file, virtual block i maps to logical
block k + i on one volume for some
constant k).

This bit may be implicitly set or
cleared by file system operations that
allocate space to the file. The user
may only clear it explicitly.

Set if the access control list of this
file is not valid (if, for example, a
system failure occurred while the list
was being updated). In this case, the
access control list for the file is not
used for protection checking.

Set if the file is a spool file (for
example, a temporary storage area
for files that are to be printed later).
File operations not related to spool
file handling are not allowed.

Set if the file is a directory.

Set if there is a bad data block in the
file. It indicates that deferred bad
block processing is to be done on the
file at some suitable later time, such
as after the file is deleted.

Set if the file is marked for deletion.
If this bit is set, further access to the
file is denied, and the file is physically
removed from the disk after the last
user has closed it.

(continued on next page)

26 Files-11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

FieldNrune Description

FCH$V _NOCHARGE Set if the space used by this file is not
to be charged to its owner.

FCH$V _ERASE Set if the file is to be erased or
overwritten when it is deleted.

FH2$B_MAP _!NUSE Map words in use. This byte contains a count of the number of
map area words currently in use.

FH2$B_ACC_MODE Accessor privilege level. This byte defines the lowest privilege
level that an accessor must have to access the file.

Each privilege level is a 2-bit integer. A value of 0 indicates
the lowest privilege and 3 the highest. Privilege levels may be
assigned separately to the basic file access modes, using this bit
assignment in the access mode byte:
Read Bits <0:1>
Write Bits <2:3>
Execute
Delete

Bits <4:5>
Bits <6:7>

FH2$L_FILEOWNER File owner identication. This field may be a user identification
code (UIC) identifier or a general identifier. The file owner is
usually, but not necessarily, the creator of the file.

FH2$W _FILEPROT File protection code. This word controls what access all users
in the system can have to the file. When a user tries to open a
file, the user's UIC is compared to the UIC of the owner of the
file. Depending on the relationship of the UICs, the user may be
classified in one or more of the categories below. Each category is
controlled by a 4-bit field in the protection word.

(continued on next page)

Files-11 On-Disk Structure 27

Table 2-2 (Cont.): Contents of the Header Area

Field Name Description

System Bits <0:3>

Owner Bits <4:7>

Group Bits <8:11>

One of these four conditions must
be met:

• The group number of the
user's UIC is less than
or equal to the value set
with the system parameter
MAXSYSGRP (the default is
10s).

• The user holds SYSPRV
privilege.

• The user holds GRPPRV
privilege and is in the same
group as the file's owner.

• The user is the owner of the
volume.

The UIC exactly matches the file
ownerUIC.

The group number of the UIC
matches the group number of the
file owner UIC. If a file is owned
by a general identifier, however,
group protection checking is not
done.

World Bits <12:15> The user does not fit into any of
the categories above.

Four types of access are defined in Files-11: read (R), write (W),
execute (E), and delete (D). Each 4-bit :field in the protection
word is bit-encoded to permit or deny any combination of the four
types of access to that category of accessors. Setting a bit denies
that type of access to that category. The bits within each 4-bit
field have the following uses:
Bit <0> Set to deny read access.

Bit <1> Set to deny write access.

Bit <2>

Bit <3>

Set to deny execute access.

Set to deny delete access.

(continued on next page)

28 Files-11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

Field Name

FH2$W _BACKLINK

FH2$B_JOURNAL

Description

When a user tries to access a file, protection checks are
performed in each category in this order: system, owner, group,
and world. Access to the file is granted if any of the categories
match.

A fifth type of access-control access-governs the right
to change the attributes of a file, such as its protection or
its characteristics. In other words, control access allows
modifications to the file header. Control access is not granted
by a protection mask. It is always available to the system and
owner categories but never to the group and world categories.

Back link file ID. This field contains the file's back link pointer.
It contains the file ID of the directory file that contains the
primary directory entry for the file. If the file header is an
extension header, the back link contains the file ID of the
primary header. A value of 0 indicates that no back link exists.
This field contains the following four subfields:
FH2$W _BK_FIDNUM Low-order file number

FH2$W _BK_FIDSEQ File sequence number

FH2$W _BK_FIDRVN Relative volume number

FH2$W _BK_FIDNMX High-order file number

Journal control flags. This field is reserved. This field contains
flags used to control the journaling facility provided by a high
level access method. The following flag bits are defined relative
to the start of this field:
FJN$V_ONLY_RU

FJN$V_RUJNL

FJN$V _BIJNL

FJN$V _AIJNL

FJN$V _ATJNL

Set if the file is to be accessed only
in a recovery unit.

Set if recovery-unit journaling is to
be enabled.
Set if before-image journaling is to
be enabled.

Set if after-image journaling is to be
enabled.

Set if audit-trail journaling is to be
enabled.

(continued on next page)

Files-11 On-Disk Structure 29

Table 2-2 (Cont.): Contents of the Header Area

Field Name Description

F JN$V _NEVER_RU Set if the file is not to be accessed
from within a recovery unit.

FJN$V_JOURNAL_FILE Set ifthe file is an RMS journal file.
FH2$B_RU_ACTIVE Recoverable facility ID number. This field contains an identifier

of the facility managing the file in an active recovery unit.
FH2$L_HIGHWATER File highwater mark. This field contains the virtual block

number, plus 1, of the highest block written. This form of
security protection prevents blocks past this point from being
read.

If the highwater mark field contains 0, or if the header area is
too short to contain this field (if the disk predates VMS Version
4.0), then no highwater mark has been maintained for the file.
In this case, the file system does not use highwater marking.

FH2$R_CLASS_PROT Security classification mask. This field contains the security
classification of the file, which is used when the file system
enforces a lattice-model security system incorporating the Bell
and La Padula secrecy model and the Biba integrity model. This
field is not currently supported.

The classification mask block has the structure shown in
Figure 2-3. The following field names are defined relative to
the start of the classification mask block:
CLS$B_SECUR_LEV Secrecy level. This byte contains the

secrecy classification level. A value of
0 indicates the least sensitive level,
and 255 the most sensitive.

CLS$B_INTEG_LEV Integrity level. This byte contains the
integrity classification level. A value
of 0 indicates the least trustworthy

CLS$Q_SECUR_CAT
level, and 255 the most trustworthy.
Secrecy category mask. This 8-
byte field contains a bit mask of
the secrecy classes applicable to the
file. In other words, to protect the
confidentiality of the file, a user must
hold the identifiers corresponding to
the individual bits in this mask.

(continued on next page)

30 Files-11 On-Disk Structure

Table 2-2 (Cont.): Contents of the Header Area

Field Name Description

CLS$Q_INTEG_CAT Integrity category mask. This 8-
byte field contains a bit mask of the
integrity classes applicable to the
file. In other words, to protect the
veracity of the file, a user must hold
the identifiers corresponding to the
individual bits in this mask.

Figure 2-3 shows the classification mask block.

Figure 2-3: Format of the Classification Mask Block

reserved I CLS$8_1NTEG_LEV I CLS$8_SECUR_LEV

CLS$Q_SECUR_CAT

0

4

CLS$Q_INTEG_CAT 12

2.3.3.2 ldent Area
The ident area of a file header is an optional area that stores the identification
and accounting data about the file. It contains the primary name of the file; its
creation date and time; revision count, date and time; expiration date and time;
and backup date and time.

The ident area of the file begins at the word indicated by the FH2$B_IDOFFSET
field. To allow more room for map pointers and access control list entries, the
ident area is usually truncated in extension headers.

The symbol Fl2$C_LENGTH contains the size of the ident area.

Files-11 On-Disk Structure 31

The field names of the ident area are illustrated in Figure 2-4 and are described
in Table 2-3.

Figure 2-4: Format of the ldent Area

* Fl2$T_FILENAME (20 bytes) * 0

1 Fl2$W_REVISION 20

Fl2$Q_CREDATE

l 28

Fl2$Q_REVDATE

l 36

Fl2$Q_EXPDATE

l 44

Fl2$Q_BAKDATE

l 52

* Fl2$T_FILENAMEXT (66 bytes) *

32 Files-11 On-Disk Structure

Table 2-3: Contents of the ldent Area

Field Name Description

Fl2$T_FILENAME File name. This field contains the file name in ASCII form. A
period separates the file name from the file type, and a semicolon
separates the file type from the version number; both are always
present. Names shorter than 20 bytes are padded with blanks.
Longer names are continued in the FI2$T_FILENAMEXT field.

Fl2$W _REVISION Revision number. This word contains the revision count of the
file in binary form. The revision count is the number of times the
file has been accessed for writing.

Fl2$Q_CREDATE Creation date and time. These eight bytes contain the date
and time at which the file was created. The time is expressed
in the standard internal time format, which is a 64-bit integer
representing tenths of microseconds elapsed since midnight,
November 17, 1858.1

FI2$Q_REVDATE Revision date and time. The revision time is the time at which
the file was last closed after being accessed for write. It is
expressed in the same format as the FI2$Q_CREDATE field.

FI2$Q_EXPDATE Expiration date and time. These eight bytes contain the date and
time at which the file becomes eligible for deletion. The format is
the same as that of the Fl2$Q_CREDATE and FI2$Q_REVDATE
fields above.

FI2$Q_BAKDATE Backup date and time. These eight bytes contain the date and
time at which the file was last backed up. The format is the
same as the other dates and times.

Fl2$T_FILENAMEXT File name extension. This field contains the remainder of the file
name, continued from the FI2$T_FILENAME field above. The
86-character file name field allows for the 80 characters of the
file name and type, plus the five digits of the version number.

1This date, base date for the Smithsonian astronomical calendar, is derived from the Julian Date.
Julian Date (JD) is used by astronomers and is expressed in days elapsed since January 1, 4713
B.C. The modified Julian Date base of JD 2,400,000 was adopted by the Smithsonian Astrophysical
Observatory for satellite tracking, and this date corresponds to the Julian date of November 17,
1858.

2.3.3.3 Map Area
The map area of the file header is an optional area that contains the information
necessary to map the virtual blocks of the file to the logical blocks of the
volume. This area of the file header starts at the word indicated by the
FH2$B_MPOFFSET field.

Files-11 On-Disk Structure 33

The map area consists of a list of retrieval pointers or map pointers describing
the logical blocks allocated to the file. Retrieval pointers are listed in the order of
the virtual blocks they represent.

Each retrieval pointer describes an extent, a consecutively numbered group of
logical blocks allocated to the file. The count field of the pointer contains the
binary value n, which represents a group of n + 1 logical blocks. The logical block
number field contains the logical block number of the first logical block in the
group.

Mapping can be described with the following formula:

• j is the total number, plus 1, of the virtual blocks represented by all preceding
retrieval pointers in the current and all preceding headers of the file.

• k is the value contained in the logical block number field.

• n is the value contained in the count field.

GiYen the arguments in the previous list, then each retrieval pointer maps virtual
blocks j through j + n into logical blocks k through k + n, respectively. Note,
however, that j, k, and n + 1 must always be integer multiples of the volume
cluster factor (the minimum disk allocation unit in blocks). The cluster factor
default is 3 for disks larger than 50,000 blocks. Otherwise, the default is 1.

Retrieval pointers have four formats, and they may be intermixed within a
file header. The format code of each retrieval pointer is contained in the
FM2$V _FORMAT field, which represents the two high-order bits of the first
word.

The four formats are described in the following sections.

2.3.3.3.1 Retrieval Pointer Format O
Retrieval pointer format 0 describes a structure called a placement header.
This 2-byte field is represented by the value FM2$C_PLACEMENT, which means
the FM2$V_FORMAT bit contains a value of O(binary). It stores information
in the file header about a file's allocation. It records the placement options
selected when the file was created so that the conditions of the allocation may
be duplicated.

The format of this retrieval pointer is illustrated in Figure 2-5.

34 Files-11 On-Disk Structure

Figure 2-5: Retrieval Pointer Format O

--- FM2$C_PLACEMENT

FM2$V_FORMA T
0

FM2W_WORDO

ZK-9580-HC

A placement header, denoted by the FM2$W _ WORDO field, contains the following
placement control bits.

Bit Name

. FM2$V _EXACT

FM2$V_ONCYL
FM2$V_LBN

FM2$V_RVN

Description

Set if exact placement is requested or if space must be allocated as
specified.

Set if space is to be allocated on one cylinder of the volume.

Set if space is to be allocated at the start of the LBN contained in the
next retrieval pointer in the list.

Set if space is to be allocated on the specified volume (the volume on
which this extent is located).

2.3.3.3.2 Retrieval Pointer Format 1
Retrieval pointer format 1 is represented by the value FM2$C_FORMAT1, which
means that FM2$V _FORMAT contains a value of l(binary). This 4-byte field
provides an 8-bit count field and a 22-bit LBN field. It is therefore capable of
representing a group of up to 256 blocks on a volume of up to 222 blocks in size.

The format of this retrieval pointer is illustrated in Figure 2-6.

Files-11 On-Disk Structure 35

Figure 2-6: Retrieval Pointer Format 1

--- FM2$C_FORMA T 1

FM2$V_FORMA T
31 0

FM2$W _LOWLBN 01 FM2$V_HIGHLBN FM2$B_COUNT 1

ZK-9581-HC

The following three :field names are associated with this format.

Field Name

FM2$B_COUNT1

FM2$W _LOWLBN

FM2$V _HIGHLBN

Description

Block count. This 8-bit count field contains the binary value n,
which represents a group of n + 1 logical blocks.

Low-order LBN. This field contains the logical block number of the
first LBN in the group described by the count field. This field and
the FM2$V _HIGHLBN field form the total 22-bit LBN.

High-order LBN. This field contains the high 6 bits of the logical
block number. This field and the FM2$W _LOWLBN field form the
total 22-bit LBN.

2.3.3.3.3 Retrieval Pointer Format 2
Retrieval pointer format 2 is represented by the value FM2$C_FORMAT2, which
means that FM2$V _FORMAT contains a value of 2(binary). This 6-byte :field
provides a 14-bit count :field and a 32-bit LBN :field. It is capable of representing
a group of up to 16,384 blocks on a volume of up to 232 blocks.

The format of this retrieval pointer is illustrated in Figure 2-7.

36 Files-11 On-Disk Structure

Figure 2-7: Retrieval Pointer Format 2

FM2$C FORM A T2 -

31
.----- FM2$V_FQRMAT
t 0

c. FM2$L_LBN2 10 FM2$V_CQUNT2

FM2$L_LBN2

ZK-9582-HC

The following two field names are associated with this format.

Field Name

FM2$V _COUNT2

FM2$L_LBN2

Description

Block count. This 14-bit count field contains the binary value n,
which represents a group of n + 1 logical blocks.
LBN. This 32-bit field contains the logical block number of the first
LBN in the group described.

2.3.3.3.4 Retrieval Pointer Format 3
Retrieval pointer format 3 is represented by the value FM2$C_FORMAT3, which
means that FM2$V _FORMAT contains a value of 3(binary). This 8-byte field
provides a 30-bit count field and a 32-bit LBN field. It is capable of describing a
group of up to 230 blocks on a volume of up to 232 blocks.

The format of this retrieval pointer is illustrated in Figure 2-8.

Files-11 On-Disk Structure 37

Figure 2-8: Retrieval Pointer Format 3

FM2$C FORMA T3 -

31 r-- FM2$V_FORMA T 0

FM2$W _LOWCOUNT 111 FM2$V_COUNT2

FM2$L_LBN3

ZK-9583-HC

The following three field names are associated with this format.

Field Name Description

FM2$V _COUNT2 High-order 14 bits of the count field. Thia 30-bit count field
contains the binary value n, which represents a group of n + 1
logical blocks.

FM2$W _LOWCOUNT Low-order 16 bits of the count field. FM2$W _LOWCOUNT and
FM2$V _COUNT2 form: the total 30-bit count field.

FM2$L_LBN3 Logical block number. Thia 32-bit field contains the logical block
number of the first LBN in the group described by the count
field.

2.3.3.4 Access Control List Area
The access control list (ACL) area is an optional area containing, among other
things, a list of users or identifiers who are allowed to access a file. The access
control list can describe user communities for a particular file that cannot be
expresssed with the regular protection classes.

This area may also be used for storing additional information about the file.

The individual access control entries (ACEs) are stored in the ACL area with
no surrounding structure. The access control list may span multiple headers,
occupying the ACL area in each header.

An ACE cannot cross a file header. A single ACE is limited to a total of 256 bytes
(including the size, type, :flags, and access fields).

There may be up to 255 types of ACEs, but only five types are currently
supported. All other types are reserved. The five supported types are as follows:

• Alarm ACE-See Section 2.3.3.4.1

• Application ACE-See Section 2.3.3.4.2

38 Files-11 On-Disk Structure

• Directory default protection ACE-See Section 2.3.3.4.3

• Identifier ACE-See Section 2.3.3.4.4

• RMS journaling ACE-See Section 2.3.3.4.5

Each has a different format, and each is referenced by a unique symbolic
constant.

However, every ACE structure contains the basic fields shown in Figure 2-9 and
described in Table 2-4. Note, however, that access bits are stored true, as opposed
to existing protection masks. In other words, a bit containing a value of 0 (clear)
denies access, while a value of 1 (set) grants access.

Figure 2-9: Format of the Basic Access Control Entry

ACE$W_FLAGS ACE$B_TYPE ACE$B_SIZE

Table 2-4: Contents of the Basic Access Control Entry

Field Name

ACE$B_SIZE

ACE$B_TYPE

Description

ACE size. This size includes the overhead area and all of the keys.

ACE type. This type code determines how the remainder of the ACE
is interpreted. A related field, ACE$W _FLAGS, contains both type
dependent and type-independent flags. The type codes are as follows:

ACE$C_ALARM The name of the journal to
which a security alarm is to be
written when the file is accessed
successfully or unsuccessfully.
(See ACE$V _SUCCESS and
ACE$V _FAILURE for more
information.)

0

(continued on next page)

Files-11 On-Disk Structure 39

Table 2-4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$C_AUDIT

ACE$C_DIRDEF

ACE$C_INFO

ACE$C_KEYID

ACE$C_RMSJNL_AI

The name of the journal to
which a security audit journal
record is to be written when
the file is either successfully or
unsucessfully accessed. This
format is not supported by VMS
Version 5.0.

The ACE contains default
protection for files created in
a directory. This protection
information is used instead of
the process default protection,
unless it is explicitly overridden.

The ACE contains general
or application-dependent
information. The maximum
length of the information that
can be stored is 252 bytes
although there is no limit to
the number of INFO ACEs that
may appear in a file's ACL. (See
ACE$V_INFO_TYPE for more
information.)

The longword identifiers used
to determine who may gain
access to the file. One type of
identifier is the UIC identifier.
The other types of identifiers are
general and system-defined. The
maximum number of identifiers
that can be defined is 62. (See
ACE$V _RESERVED for more
information.)

The location of the RMS after
image journal.

(continued on next page)

40 Files-11 On-Disk Structure

Table 2-4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$C_RMSJNL_AT

ACE$C_RMSJNL_BI

ACE$C_RMSJNL_RU

ACE$C_RMSJNL_RU_DEFAULT

The location of the RMS audit
trail journal.
The location of the RMS before
image journal.

The location of the RMS recovery
unit journal.

The location of the default RMS
recovery-unit journal.

ACE$W_FLAGS Type flags. This field, along with the ACE$B_TYPE field, determines
how the ACE is used. This word is divided into two 1-byte fields:
type-dependent flags and type-independent flags.

The type-dependent :flags augment the type code, which allows many
different subtypes to be defined. The type-independent flags are used to
provide features that do not depend on the ACE type.

The type-dependent flags are as follows:
ACE$V _INFO_TYPE This 4-bit :flag contains a value to indicate

a subtype of the general information ACE.
The following three values are defined for
this field:

• The ACE$C_CUST value indicates
that the information belongs to a user
application.

• The ACE$C_CSS value indicates that
the information belongs to a Digital
Computer Special Services (CSS)
application.

• The ACE$C_ VMS value indicates that
the information is valid only for a
specific VAXNMS utility, application,
or layered product.

(continued on next page)

Files-11 On-Disk Structure 41

Table 2-4 (Cont.): Contents of the Basic Access Control Entry

Field Name Description

ACE$V _RESERVED

ACE$V _SUCCESS

ACE$V_FAILURE

This flag is valid only for the ACE$C_KEYID
type. See Section 2.3.3.4.4 for more
information.

This :flag is valid only for the ACE$C....ALARM
type. See Section 2.3.3.4.1 for more
information.
This flag is valid only for the ACE$C_ALARM
type. See Section 2.3.3.4.1 for more
information.

The type-independent :flag definitions are as follows:
ACE$V _DEFAULT The ACE is a directory default ACE.

ACE$V _PROTECTED

ACE$V _HIDDEN

ACE$V_NOPROPAGATE

This ACE is applied to all files created
in a common directory. When the ACE
is propagated, the DEFAULT option is
removed from the ACE before it is added
to the ACL of the created file.

This option is valid only for directory files.
A default ACE does not control access to
the directory to which it belongs. It only
specifies the ACL for files created in that
directory.

The ACE will not be deleted when
the ACL for the file is deleted (by the
ATR$C_DELETEACL attribute code).
Instead, the ACE must be deleted
explicitly with the A.TR$C_DELACLENT
attribute code.

The ACE is not one that the user should
usually see, but it may be used by some
application. The DIRECTORY command,
for example, does not display it.

This ACE should not be copied dun'ng any
form of ACL copy operation, either from
one version of a file to a later version of
the same file or from the parent directory
to a newly created file within it.

42 Files-11 On-Disk Structure

2.3.3.4.1 Alarm Access Control Entry
The alarm ACE provides a security alarm when an object is accesssed in a
particular way. It may be referenced by the symbol ACE$C_ALARM. Figure 2-10
shows the format of the alarm ACE type, and Table 2-5 describes the fields
unique to this format.

Figure 2-10: Format of the Alarm ACE

ACE$W_FLAGS l ACE$B_TYPE I ACE$B_SIZE 0

ACE$L_ACCESS 4

F~ ACE$T_AUDITNAME (16 bytes) ~ 8

Table 2-5: Contents of the Alarm ACE

Field Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W _FLAGS

Description

ACE size.

ACE type.

Type flags. The following two type-dependent :flags are valid for
the alarm ACE:
ACE$V _SUCCESS This field specifies that a security alarm

should be generated when access is
granted to a file. This flag is valid only
for the ACE$C_,A.LARM type.

ACE$V _FAILURE This field specifies that a security alarm
should be generated when access is
denied to a file. This flag is valid only
for the ACE$C_,A.LARM type.

(continued on next page)

Files-11 On-Disk Structure 43

Table 2-5 (Cont.): Contents of the Alarm ACE

Field Name

ACE$L_ACCESS

Description

Access type. This longword specifies the type of access for
which a security audit or alarm message is to be issued. The
following access rights are defined:
ACE$V _READ A message is issued if read access to

the file is attempted.

ACE$V _WRITE A message is issued if write access to
the file is attempted.

ACE$V _EXECUTE A message is issued if execute access to
the file is attempted.

ACE$V _DELETE A message is issued if delete privilege
for the file is attempted.

ACE$V _CONTROL A message is issued if any of the rights
of the file's owner are attempted.

ACE$T_AUDITNAME Alarm journal name. This field is the start of the alarm
journal-name counted string.

2.3.3.4.2 Application Access Control Entry
The application ACE (also called the INFO ACE) contains application-dependent
or user-defined information. It may be referenced by the symbol ACE$C_INFO.
Figure 2-11 shows the format of the application ACE type, and Table 2-6
describes the fields unique to this format.

Figure 2-11: Format of the Appllcatlon ACE

ACE$W_FLAGS I ACE$B_TYPE I ACE$B_SIZE

ACE$L_INFO_FLAGS

+ ACE$T_INFO_START (248 bytes) +

0

4

8

44 Files-11 On-Disk Structure

Table 2-6: Contents of the Application ACE

Field Name

ACE$B_SIZE
ACE$B_TYPE
ACE$W _FLAGS

ACE$L_INFO_FLAGS

ACE$T_INFO_START

Description

ACE size.
ACE type.
Type flags. No type-dependent flags are valid for the
application ACE.
Application flags. This longword is used for VMS-specific
application ACEs. This field is currently interpreted as two
VMS-specific word subfields. RMS, for example, uses an
application ACE of this type as an extension of the file header
to store more information about a file, such as file statistics
(see Figure 2-12 and Table 2-7 for more information).
However, other applications are not restricted from using
these application-defined subfields.

The following word subfields are defined:
ACE$W _APPLICATION_FLAGS VMS application flags

field.
ACE$W _APPLICATION_FACILITY VMS application facility

field.
Information area. This location is the start of the application
dependent information area. The RMS attributes ACE
uses this portiOn of the application ACE to store additional
information about a file. Figure 2-12 shows the format of the
RMS attributes ACE type, and Table 2-7 describes the fields
unique to this format.

Figure 2-12: Format of the RMS Attributes ACE

ACE$W_FLAGS ACE$B_TYPE I ACE$B_SIZE 0

ACE$L_INFO_FLAGS 4

reserved I ACE$B_FIXLEN ACE$W_RMSATR_VARIANT 8

ACE$W_RMSATR_MAJOR_ID ACE$W_RMSATR_MINOR_ID 12

ACE$L_RMS_ATIRIBUTE_FLAGS 16

Files-11 On-Disk Structure 45

Table 2-7: Contents of the RMS Attributes ACE

Field Name

ACE$B_SIZE
ACE$B_TYPE

ACE$W _FLAGS

ACE$L_INFO_FLAGS
ACE$W_RMSATR_ VARIANT

ACE$B_RMSATR_FIXLEN

ACE$W _RMSATR_MINOR_ID

ACE$W _RMSATR_MAJOR_ID

ACE$L_RMS_ATTRIBUTE_FLAGS

Description

ACE size.
ACE type.

Type flags. No type-dependent flags are valid for
the application ACE.

Application flags.
Variant of the RMS attributes ACE. This field is
currently set to 0.
Fixed-format length. This field contains the
length of the fixed portion of the ACE in bytes,
which is currently 20 bytes.
RMS file attributes ACE minor identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when compatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 2.
RMS file attributes ACE major identifier. This
field contains an integer that identifies the
current version of the ACE. This number is
incremented when incompatible changes to the
ACE have been made. For VMS Version 5.0, this
field is set to 1.

RMS file attributes flags definitions. The
following flags are defined for this field:
STATISTICS If set, statistics monitoring is

enabled for the file.

XLATE_DEC If set, file semantics are private
to Digital. This field is not
supported for VMS Version 5.0.

46 Files-11 On-Disk Structure

2.3.3.4.3 Directory Default Protection Access Control Entry
The directory default protection ACE (also called the DIRDEF ACE) defines the
default protection for a directory so that protection can be propagated to the files
and subdirectories in that directory .. This type of ACE specifies protection for one
directocy structure that is different from the default protection applied to other
directories. Default protection ACEs can be applied only to directory files.

This ACE may be referenced by the symbol ACE$d_DIRDEF. Figure 2-13 shows
the format of the directory default protection ACE type, and Table 2-8 describes
the fields unique to this format.

Figure 2-13: Format of a Directory Default Protection Ace

ACE$W_FLAGS l ACE$B_TYPE l ACE$B_SIZE 0

ACE$L_ACCESS (unused) 4

ACE$L_SYS_PROT 8

ACE$L_OWN_PROT 12

ACE$L_GRP _PROT 16

ACE$L_WOR_PROT 20

Table 2-8: Contents of the Directory Default Protection ACE

Field Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W_FLAGS

ACE$L_ACCESS

ACE$L_SYS_I>ROT

ACE$L_OWN_PROT

Description

ACE size.

ACE type.

Type :flags. No type-dependent flags are valid for the directory
default protection ACE.

Access type. This longword is unused.

Directory default system protection.

Directory default owner protection.
(continued on next page)

Files-11 On-Disk Structure 47

Table 2-8 {Cont.): Contents of the Directory Default Protection ACE

Field Name

ACE$L_GRP _PROT
ACE$L_ WOR_PROT

Description

Directory default group protection.
Directory default world protection.

2.3.3.4.4 Identifier Access Control Entry
The identifier ACE (also called the KEYID ACE) controls the type of access
allowed to a particular user or group of users as specified by an identifier. Each
ACE contains a list of identifiers that control access to the file or volume. An
identifier is a logical extension to a UIC because it defines a particular entity in
the system. The identifier may represent a UIC or a process rights list entry. In
order to match a particular ACE, all of the identifiers must successfully match
the corresponding identifiers of the accessor. If no ACE is matched or an ACL
is not associated with the file, access is then granted or denied based on the
conventional protection fields.

The identifier ACE is referenced by the symbol ACE$C_KEYID. Figure 2-14
shows the format of the identifier ACE type, and Table 2-9 describes the fields
unique to this format.

Figure 2-14: Format of the Identifier ACE

ACE$W_FLAGS l ACE$B_TVPE l ACE$B_SIZE

ACE$L__ACCESS

ACE$L_KEY

0

4

8

48 Files-11 On-Disk Structure

Table 2-9: Contents of the Identifier ACE

Field Name

ACE$B_SIZE

ACE$B_TYPE

ACE$W _FLAGS

ACE$L_ACCESS

ACE$L_KEY

Description

ACE size.

ACE type.
Type flags. One type-dependent :flag is valid for the identifier ACE:
ACE$V _RESERVED. This 4-bit flag field indicates the number of
longwords to reserve for CSS or the user. Up to 15 longwords
may be reserved. The reserved area starts at the ACE$L_KEY
field. The actual keys then follow. This field is valid only for the
ACE$C_KEYID type.

Access type. This longword specifies the type of access to be
granted if all the keys are matched. The following access rights
are defined:
ACE$V_READ

ACE$V _WRITE
ACE$V_EXECUTE
ACE$V_DELETE

ACE$V _CONTROL

Read access to the file is granted.

Write access to the file is granted.
Execute access to the file is granted.

Delete privileges for the file are granted.

The right to change the protection and file
characteristics of the file (that is, access to
the file header) is granted.

Key field. This longword is the start of the variable-length key
field. The number of identifiers listed in the ACE is implied by its
size.

2.3.3.4.5 RMS Journaling Access Control Entries
RMS journaling provides a way to store changes that have been made to a file.
Some journal information may be stored in access control entries. There are five
types of RMS journaling access control entries. Table 2-10 shows each type of
ACE, the symbolic name by which each may be referenced, and a description of
each one.

Files-11 On-Disk Structure 49

Table 2-10: RMS Journaling ACE Types

Type of ACE Description

RMSJNL_AI The location of the after-image journal. A BI journal records
changes to a file so that the journal can be used to roll the
current copy of the file backward. In other words, the changes
are undone. The journal name must be specified with the SET
FILE/AI_JOURNAL command before a file is modified. Only
one AI ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_AI.

RMSJNL_AT ACE The location of the audit-trail journal. An AT journal records
information about file and record accesses. Only one AT ACE
may exist per file.

The symbolic name is ACE$RMSJNL_AT.

RMSJNL_BI The location of the before-image journal. An AI journal
records changes to a file so that the journal can be used to roll
a backup copy of the file forward. In other words, the changes
are redone. The journal name must be specified with the SET
FILEIBI_JOURNAL command before a file is modified. Only
one BI ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_BI.
RMSJNL_RU The location of a particular instance of a journal file. An RU

journal records changes made during a recovery unit so that if
the recovery unit aborts, the changes can be undone. The RU
ACE is created at run time when a process uses the file in a
recovery unit for the first time. It is removed when the file is
closed. The RU ACE does not represent a particular journal
stream; instead, it represents the existence of a potentially
active transaction. Multiple RU ACES may exist per file.

The symbolic name is ACE$C_RMSJNL_RU.

RMSJNL_RU_DEFAULT The default location of a new journal file. The RU_DEFAULT
ACE allows the RU journal to be created on a different volume
than the volume on which the data file is being journaled,
chiefly for performance reasons. If this ACE is not set, the RU
journal is created on the same volume as the data file being
journaled. Only one RU_DEFAULT ACE may exist per file.

The symbolic name is ACE$C_RMSJNL_RU_DEFAULT.

All these ACEs are created as hidden, protected, and nopropagate.

so Files-11 On-Disk Structure

These ACEs all have the same form.at, but not all :fields apply to each
type of ACE. For example, the RMSJNL_RU_DEFAULT ACE uses only the
ACE$T_ VOLNAM :field. Figure 2-15 shows the form.at of these ACEs, and
Table 2-11 describes the :fields unique to this format.

Figure 2-15: Format of the RMS Journaling ACEs

ACE$W_FLAGS ACE$B_TYPE I ACE$B_SIZE

* ACE$T_VOLNAM (12 bytes)

ACE$B_RJRVER l ACE$B_ VOLNAM_LEN

ACE$W_FID

...... ACE$L_JNLIDX ACE$W_RMSJNL_FLAGS

ACE$L_JNLIDX

ACE$Q_CDATE

ACE$L_BACKUP_SEQNO
ACE$L_BACKUP_SEQNO

ACE$Q_MODIFICATION_ TIME

Table 2-11: Contents of the RMS Journaling ACEs

Field Name

ACE$B_SIZE

ACE$B_TYPE

Description

ACE size.
ACE type.

0

Fl:I 4

16

24

28

36

40

(continued on next page)

Fi les-11 On-Disk Structure 51

Table 2-11 (Cont.): Contents of the RMS Journaling ACEs

Field Name

ACE$W _FLAGS

ACE$T_ VOLNAM

ACE$B_ VOLNAM_LEN

ACE$B_RJRVER

ACE$W_FID

ACE$W _RMSJNL_FLAGS

ACE$L_JNLIDX

ACE$Q_CDATE

Description

Type flags.

Volume name. This 18-byte field contains the
volume label in ASCII form, padded to 12 bytes
with spaces, plus the 6-byte binary file ID. The
RU_DEFAULT ACE uses only the basic ACE fields
plus this field.
Length of the journal file volume name in bytes.
In other words, this field contains the length of the
nonblank portion of the ACE$T_ VOLNAM field.

RMS journal file structure level. This field
contains the version number of the journal format.
Currently, this field is set to 1.

File identifier of the journal file. The format of a
file ID is described in Section 2.3.2.

RMS journaling flags. The follQwing flags are
defined:

• ACE$V _JOURNAL_DISABLED-Indicates
that journaling has been disabled. This bit
applies only to after-image, before-image, and
audit-trail journaling, and it is set by the
Backup Utility.

• ACE$V _BACKUP _DONE-Indicates that this
file has been backed up and that RMS needs
to write a backup marker to the journal file.

Journal stream index number. More than one
file can post entries to a journal file. This field
contains a unique number used to distinguish the
entries posted for one file from the entries posted
for another.

Creation date and time of the journal file, in
standard VMS format.

(continued on next page)

52 Files-11 On-Disk Structure

Table 2-11 (Cont.): Contents of the RMS Journaling ACEs

Field Name

ACE$L_BACKUP _SEQNO

ACE$Q_MODIFICATION_TIME

2.3.3.5 User-Reserved Area

Description

Backup sequence number. This field indicates
where to start in the journal. In other words,
this field is incremented each time RMS posts a
backup marker to the journal file. This number is
compared to the backup marker to determine if the
journal entries bracketed by the backup markers
need to be processed.
Time-stamp of the last backup or last journal entry
recovered, in standard VMS format.

The optional reserved area of the file header starts at the word indicated by the
byte FH2$B_RSOFFSET. It is only available in the primary header. This area
is not used by the Files-11 file system, so it can be used by Computer Special
Services (CSS) or a user's applications.

Application-dependent information may also be stored in an information ACE.

2.3.4 Multiheader Files
The size of the file header is fixed, so the mapping or access control information
for some files will not fit in the allocated space. A file in which the information
overflows the allocated space is called a multiheader file. It is represented by a
chain of file headers called an extension linkage.

Each header in the chain maps a consecutive set of virtual blocks, and the
extension linkage links the headers together in the order of ascending virtual
block numbers. The extension pointer (located in the FH2$W _EXT_FID field) in
each file header is the file ID of the next header in the sequence.

The access control list segments in the various headers are likewise considered
one large access control list, concatenated in the order of the file headers. Access
control lists and arrays of map pointers may be intermixed in the various headers
of a file. In other words, each header may contain any amount of map or access
control data regardless of its position in the sequence.

Technically, each header of a multiheader file could be accessed as a file because
it has a file ID of its own. However, since the complete access control information
is visible only from the primary header of a file, the file system prevents access to
extension headers as files so that file protection can be correctly enforced.

Files-11 On-Disk Structure 53

2.3.5 Multivolume Files

Multiple headers are also needed for files that span volumes in a volume set. A
header maps only those logical blocks of a file located on its volume. However,
a multivolum.e file is represented by a header on each volume that contains a
portion of that file.

If the multivolume file is contained on a loosely coupled volume set, the file ID of
the first header on each continuation volume always has the value 7, 7, n, where
n is the RVN of the volume on which the file starts plus the number of preceding
volumes containing portions of the file.

2.4 Basic Concept of a Directory
A directory is simply a file used to locate other files on a volume. It contains a
list of files and their unique internal identifications.

Files-11 provides directories to allow the organization of files in a meaningful
way. The file ID uniquely locates a file on a volume set, but it is not very easy to
remember. Directories are the special files that match alphabetic names with file
identifiers.

2.4.1 Directory Structure

A directory file is always contiguous, and it is identified as a directory by the set
FCH$V _DIRECTORY bit in the file characteristics field (FH2$L_FILECHAR). It
is organized as a sequential file with variable-length records. The FAT$V _NOSPAN
bit is also set, specifying that records may not cross block boundaries. No carriage
control attributes are set.

The last word of the directory file's record attributes area (FAT$W _VERSIONS) is
used to store the directory's default version limit. This version limit is assigned
to all new files created in the directory if a version limit is not specified by the
creator.

Directory records within each block of the directory file are packed together
to conform to the variable-length record format. At the end of the sequence of
records in each block, a word containing -1 signals the end of records for that
block. This word is always present in a directory block, but it is optional in the
variable-length record format itself.

The entries in a mrectory are sorted alphabetically, which allows for optimized
searching. Entries which are multiple versions of the same name and type are
arranged in order of decreasing version numbers to optimize version-related
operations. Each directory record consists of the fields shown in Figure 2-16.

54 Files-11 On-Disk Structure

Figure 2-16: Format of a Directory Record

DIR$W_VERLIMIT DIR$W_SIZE 0

DIR$B_NAMECOUNT 1 DIR$B_FLAGS 4

DIR$T_NAME

12

Value Field

Table 2-12 shows the contents of a directory record.

Table 2-12: Contents of a Directory Record

Field Name Description

DIR$W _SIZE Record byte count. This field is the standard byte count field
of a variable length record. It contains the length in bytes of
the record (not including the two bytes of the count). The byte
count is always an even number.

DIR$W _ VERLIMIT File version limit. This word contains the maximum number
of versions that are retained for this file name and type. An
attempt to create more versions than the limit will either cause
the oldest version of the file to be deleted, or it will cause an
error to be returned (if the oldest version cannot be deleted).

DIR$B_FLAGS Flags. This byte contains the type code of the directory entry
and assorted flag bits. It contains the following subfields and
status bits:
DIR$V ""TYPE The type code is contained in the three

low bits of the flags byte.
DIR$C_FID The value field is a list of version

numbers and 48-bit file identifiers.
DIR$B_NAMECOUNT File name length. This field contains the length (in bytes) of

the file name.
(continued on next page)

Files-11 On-Disk Structure 55

Table 2-12 (Cont.): Contents of a Directory Record

Field Name

DIR$T_NAME

Value field

Description

File name string. This field contains the file name and file type
in ASCII form, separated by a period. The period is present
even if either the name or the type, or both, are null. The
file name and type may be composed of any of the standard
name characters: alphanumerics (including the Multinational
Character Set), the dollar sign (reserved for special use by
Digital), the underscore, and the hyphen. The name and type
fields are each limited to 39 characters.

If the length of the name is an odd number, the name string is
padded with a single null character.
Directory entry information. This variable field contains
the information returned to the user by a directory lookup
operation. Its interpretation depends on the directory record
type.

For a file ID record type (the type field is DIR$C_FID), a
list of version numbers and corresponding file identifiers, in
descending order by version number, is returned to the value
field. The number of entries in the list can be calculated with
this formula:

recordlength. - overhead. - namestring = entries

Figure 2-17 and Table 2-13 describe the format and contents of
an individual directory entry.

Figure 2-17: Format of a Directory Entry

DIR$W_ VERSION 0

DIR$W_FID

56 Files-11 On-Disk Structure

Table 2-13: Contents of a Directory Entry

Field Name Description

DIR$W _VERSION Version number. This word contains the version number of the
directory entry in binary form. Version numbers can range from 1 to
32,767.

DIR$W _FID File ID. These three words are the file identifier to which the
directory entry points.

2.4.2 Multiple Directory Records
Directory records may not cross block boundaries, so there is a limit to the
number of file versions that can be contained in one directory record. That
number is 62 for the shortest possible file name.

'lb represent more versions of a file than will fit into one directory block, multiple
directory records are used. The records are ordered by descending version
numbers, as are the versions within each record. Each record contains the full
file name.

2.4.3 Directory Hierarchies
Because directories are files with no special attributes, they may list files that
are in tum directories. The user' may construct directory hierarchies of arbitrary
depth and complexity to structure files as needed. The maximum depth of a
directory hierarchy is nine levels.

Historically, Files-11 on PDP-11 systems supported a two-level directory
hierarchy that relied on UIC syntax. Each UIC was associated with a user
file directory (UFD) and was referenced by a UIC construction of the form
[nnn,mmm]. This construction then translated to a user file directory name
of nnnmmm.Dm;l in the master file directory (MFD).

The current file system uses a multilevel directory hierarchy. The first level below
the volume's master file directory is the user file directory, but further levels in
the directory structure may be defined; these are called subfile directories (SFDs).
The top-level directory is generally used to represent individual system users
or important facilities. As a result, MFD entries would correspond to the user
names in a multiuser system.

Figure 2-18 shows the hierarchical directory structure.

Files-11 On-Disk Structure 57

Figure 2-18: Hierarchical Directory Structure

MFD

l
HOBART DARWIN PERTH

I
l l 1 l l
x y SUB D p Q R

l l
A B c

ZK-9705-HC

A directory specifier has the format [namel.name2.name3]. Each name in
the list translates to a directory file name of the form name.DIR;l in the current
directory level.

The current file system still supports the former UIC-based directory structure.

2.4.3.1 Multivolume Directory Structure
In a volume set, the MFD for all the user files on the volume set is the MFD of
relative volume 1. Its entries point to UFDs located on any volume in the set.
The UFD entries in turn point to files and subdirectories on any volume in the
set. The MFDs of the remaining volumes in the set list only the reserved files on
each volume. ·

58 Files-11 On-Disk Structure

2.5 Reserved Files
Any file system must maintain some data structures on the medium that are used
to control the file organization. In Files-11, this data structure is kept in several
files. These files are created when a new volume is initialized. They are unique
in that their file identifiers are known constants.

The relative volume number used when accessing one of these files depends upon
the context. The exact number of these files which is present on a particular
volume may vary, but at least five must be present. None of these files can be
deleted. Table 2-14 shows the nine reserved files.

Table 2-14: Reserved Files

File ID

1,1

2,2

3,3

4,4

5,5

6,6

7,7

File Name Description

INDEXF.SYS;l Index file. This file is the root of the entire Files-11
structure. It contains the volume's bootstrap block (or
boot block) and the home block, which identifies the
volume and locates the rest of the file structure. The
index file also contains all of the file headers for the
volume and a bitmap to control their allocation.

BITMAP.SYS;! Storage bitmap file. This file controls the allocation of
logical blocks on the volume.

BADBLK.SYS;l Bad block file. This file contains all the known bad blocks
on the volume.

000000.DIR; Master file directory (MFD). This file forms the root of
the volume's directory structure. The MFD lists the nine
known files, all first-level user directories, and whatever
other files the user chooses to enter.

CORIMG.SYS;l System core image file. This file provides a file of
known file identification for the operating system. Its
use depends on the operating system. This file is not
currently used.

VOLSET.SYS;l Volume set list file. This file contains a list of the labels of
the volumes in a tightly coupled volume set if this volume
is the first relative volume of such a set.

CONTIN.SYS;l Standard continuation file. This file contains the first
segment of the portion of the multivolume file that resides
on a loosely coupled volume set if this volume is part of
such a set.

(continued on next page)

Files-11 On-Disk Structure 59

Table 2-14 (Cont.): Reserved Files

File ID

8,8

9,9

File Name Description

BACKUP.SYS;! Backup file. This file logs and controls an incremental
backup system. This file is not currently used.

BADLOG.SYS;l Pending bad block log file. This file contains a list of
suspected bad blocks on the volume that have not yet
been turned over to the bad block file.

NOTE: Digital may reserve more file identifiers in the future,
so users should make no assumptions about the values of user
created file identifiers.

2.5.1 Index File
The index file has file ID 1,1. It is listed in the MFD as INDEXF.SYS;l. The
index file is the root of the Files-11 structure in that it provides the means for
identification and initial access to a Files-11 volume. It also contains the access
data for all files on the volume, including itself. This file has the record format of
512-byte fixed-length records with no carriage control.

Figure 2-19 shows the layout of the blocks in the index file. This figure assumes
a storage map cluster factor greater than 2.

60 Files-11 On-Disk Structure

Figure 2-19: Layout of the First Extent of the Index File

Boot Block

Home Block
Cluster 1

More Home Blocks

More Home Blocks

Cluster 2

Backup Home Block

More Home Blocks Cluster 3

Backup Index File Header

Cluster 4

(Not Used)

Index File Bitmap

Contiguous

16 File Headers

More File Headers

ZK-9584-HC

Files-11 On-Disk Structure 61

2.5.1.1 Bootstrap Block
Virtual block 1 of the index file is the volume's bootstrap block, or boot block.
It is almost always mapped to logical block 0 of the volume. If the volume is
the system device of an operating system, the boot block contains an operating
system-dependent program that reads the operating system into memory when
the boot block is read and executed by a machine's hardware bootstrap.

If the volume is not a system device, the boot block contains a small program that
outputs a message on the system console to inform the operator to that effect. If
block 0 of a volume is bad, VBN 1 of the index file can be mapped to some other
block. However, the volume cannot be used as a system volume.

2.5.1.2 Horne Block
Virtual block 2 of the index file is the volume's home block. The home block
identifies the volume as a Files-11 volume, establishes the specific identity of the
volume, and serves as the entry point into the volume's :file structure. The home
block is recognized as a home block by the presence of checksums in known places
and by the presence of predictable values in certain locations.

The home block is located on the :first good block of the home block search
sequence. The formula of the search sequence is

1 + n *delta

where n is a positive integer (such as 0, 1, 2, 3, ...).

The home block search delta is calculated from the geometry of the volume.
If the volume is viewed as a three-dimensional space, the search sequence
approximately travels down the body diagonal of the space. Since volume failures
tend to occur across one dimension, this algorithm minimizes the chance of a
single failure destroying both home blocks of the search sequence.

The volume geometry is expressed in sectors (s), tracks or surfaces (t), and
cylinders (c), and the search delta is calculated according to the following rules, to
handle the cases where one or two dimensions of the volume have a size of 1.

Geometry Delta

s x 1 x 1 1
1 x t x 1 1
1 x 1 x c 1

s x t x 1 s + 1
s x 1 x c s + 1
1 x t x c t + 1

s x t x c (t + 1) x s + 1

In most cases, however, the home block is located on LBN 1.

62 Files-11 On-Disk Structure

The fields of the home block are shown in Figure 2-20 and are described in
Table 2-15. All copies of the volume's home block contain the same data, with the
exception of the fields containing the block's VBN and LBN.

Figure 2-20: Format of the Home Block

HM2$L_HOMELBN 0

HM2$L_ALHOMELBN 4

HM2$L_ALTIDXLBN 8

HM2$W_CLUSTER HM2$W_STRUCLEV 12

HM2$W_ALHOMEVBN HM2$W_HOMEVBN 16

HM2$W_IBMAPVBN HM2$W_ALTIDXVBN 20

HM2$L_IBMAPLBN 24

HM2$L_MAXFILES 28

HM2$W_RESFILES HM2$W_IBMAPSIZE 32

HM2$W_RVN HM2$W_DEVTYPE 36

HM2$W_VOLCHAR HM2$W_SETCOUNT 40

HM2$L_ VOLOWNER 44

reserved 48

HM2$W_FILEPROT HM2$W_PROTECT 52

HM2$W_CHECKSUM1 reserved 56

HM2$0_CREDATE 60

HM2$W_EXTEND HM2$B_LRU_LIM l HM2$B_WINDOW 68

(continued on next page)

Files-11 On-Disk Structure 63

Figure 2-20 (Cont.): Format of the Home Block

HM2$Q_RETAINMIN 72

HM2$Q_RETAINMAX 80

HM2$Q_REVDATE 88

$~ HM2$R_MIN_CLASS (20 bytes) * 96

* HM2$R_MAX_CLASS (20 bytes) $~ 116
i

* reserved (320 bytes) $~ 136

HM2$L_SERIALNUM 456

* HM2$T_STRUCNAME (12 bytes) $~, 460

* HM2$T_VOLNAME (12 bytes) ~· 472

$~ HM2$T_OWNERNAME (12 bytes) *· 484

$~ HM2$T_FORMAT (12 bytes) *' 496

HM2$W_CHECKSUM2 l reserved 508

64 Files-11 On-Disk Structure

Table 2-15: Contents of the Home Block

Field Name

. HM2$L_HOMELBN

HM2$L_ALHOMELBN

HM2$L_ALTIDXLBN

HM2$W_STRUCLEV

HM2$W_CLUSTER

Description

Home block LBN. This longword contains the logical block
number of this particular copy of the home block. This value
must be nonzero for a valid home block.
Alternate home block LBN. This longword contains the LBN
of the volume's secondary home block. When scanning the
home block search sequence, the user may determine whether
the block read is the primary or the secondary home block by
comparing the HM2$HOMELBN field with this field. This
value must be nonzero for a valid home block.
Backup index file header LBN. This longword contains the
logical block on which the backup index file header is located.
This value must be nonzero for a valid home block.
Structure level and version. The volume structure level and
version is used to identify different versions of Files-11 when
they affect the structure of all parts of the volume except
the file header. Because the structure level word identifies
the version of Files-11 that created this particular volume,
upward compatibility of file structures as Files-11 evolves is
assured.

The current structure level of Files-11 is level 2, so the high
byte of this field must contain the value 2. The low byte
contains the version number, which must be greater than or
equal to 1. The version number will be incremented when
compatible additions are made to the Files-11 structure. The
current version is version 1 of structure level 2.
Storage bitmap cluster factor. This word contains the cluster
factor used in the storage bitmap file. The cluster factor is
the number of blocks represented by each bit in the storage
bitmap. This value is also called the volume cluster factor.
It must be nonzero for a valid home block.

(continued on next page)

Files-11 On-Disk Structure 65

Table 2-15 (Cont.): Contents of the Home Block

Field Name Description

HM2$W_HOMEVBN Home block VBN. This word contains the virtual block that
this particular copy of the home block occupies in the index
file. This value must be nonzero for a valid home block.

HM2$W _ALHOMEVBN Backup home block VBN. This word contains the virtual
block number that the cluster containing the secondary home
block occupies in the index file. The contents of this word is
calculated with the formula v * 2 + 1, where v is the storage
map cluster factor.

HM2$W_ALTIDXVBN Backup index file header VBN. This word contains the virtual
block number that the backup index file header occupies in
the index file. The contents of this word is calculated with the
formula v * 3+1, where vis the storage map cluster factor.

HM2$W _IBMAPVBN Index file bitmap VBN. This word contains the starting virtual
block number of the index file bitmap. The contents of this
word is calculated with the formula v * 4 + 1, where v is the
storage map cluster factor.

HM2$L_IBMAPLBN Index file bitmap LBN. This longword contains the starting
logical block address of the index file bitmap. Once the home
block of a volume has been found, this value provides access to
the rest of the index file and to the volume. This value must
be nonzero for a valid home block.

HM2$L_MAXFILES Maximum number of files. This longword contains the
maximum number of files that may be present on the volume
at any time. This value must be greater than the contents
of HM2$W _RESFILES for the home block to be valid. The
maximum number of files cannot exceed 224 - 1.

HM2$W _IBMAPSIZE Index file bitmap size. This 16-bit word contains the number
of blocks that make up the index file bitmap. This value must
be nonzero for a valid home block.

HM2$W _RESFILES Number of reserved files. This word contains the number of
reserved files on the volume. The file sequence number of
each reserved file is always equal to its file number. Reserved
files may not be deleted, and at least five must be present on
a volume. Tu be valid, this word cannot contain a value less
than 5.

HM2$W _DEVTYPE Disk device type. This word is an index identifying the type
of disk that contains this volume. It is currently not used and
always contains a value ofO.

(continued on next page)

66 Files-11 On-Disk Structure

Table 2-15 (Cont.): Contents of the Home Block

Field Name

HM2$W_RVN

HM2$W_SETCOUNT

HM2$W_ VOLCHAR

HM2$L_ VOLOWNER

Description

Relative volume number. This word contains the relative
volume number that this volume has been assigned in a
volume set. If the volume is not part of a volume set, then
this word contains a value of 0.

Number of volumes. This word contains the total number of
volumes in a tightly coupled volume set if this volume is the
first volume of the set (the HM2$W _RVN field contains 1). In
a loosely coupled volume set, this word contains a value of 0.

Volume characteristics. This word contains bits that provide
additional control over access to the volume. The following
bits are defined:
HM2$V _READCHECK Set if read-check operations

are to be performed. All read
operations on the file, both for
data and for file structure, are
verified with a read-compare
operation to ensure data

HM2$V _ WRITCHECK

HM2$V _ERASE

integrity.

Set if write-check operations
are to be performed. All write
operations on the file, both
for data and for file structure,
are performed with a read
compare operation to ensure
data integrity.

Set if all files on the volume
are to be erased or overwritten
when they are deleted.

HM2$V_NOHIGHWATER Set if highwater mark
enforcement is to be disabled
on the volume.

Volume owner. This longword contains the binary identifica
tion code of the owner of the volume. The format is the same
as that of the file owner stored in the file header.

(continued on next page)

Files-11 On-Disk Structure 67

Table 2-15 (Cont.): Contents of the Home Block

Field Name

HM2$W _PROTECT

HM2$W _FILEPROT

HM2$W_CHECKSUM1

HM2$Q_CREDATE

HM2$B_ WINDOW

HM2$B_LRU_LIM

HM2$W_EXTEND

Description

Volume protection code. This word contains the protection
code for the entire volume. All operations on all files on the
volume must pass both the volume protection and the file
protection checks to be allowed.

Just as in file protection, accessors to the volume are
categorized into system, owner, group and world. Each
category is controlled by the standard 4-bit field, which is
encoded in the following manner:
Bit <0> If set, files cannot be read.

Bit <1>

Bit <2>

Bit <3>

If set, existing files cannot be written to
(modified).

If set, files cannot be created.

If set, files cannot be deleted.

Default file protection. This word contains the file protection
that is assigned to files created on this volume if no file
protection is specified by the user or the operating system.
This field is not currently supported.
First checksum. This word is an additive checksum of all
preceding entries in the home block. It is computed by the
same sort of algorithm as the file header checksum.

Volume creation date. This quadword contains the date and
time that the volume was initialized. It has the same binary
format as the file header.

Default window size. This byte contains the number of
retrieval pointers that are used for the window (in core file
access data) when files are accessed on the volume, if this
value is not specified by the user.

Directory preaccess limit. This byte contains a count of
the number of directories to be stored in the file system's
directory access cache. It is also an estimate of the number of
concurrent users of the volume.
Default file extend. This word contains the number of blocks
allocated to a file when a user extends the file and asks for
the system default value for allocation.

(continued on next page)

68 Files-11 On-Disk Structure

Table 2-15 (Cont.): Contents of the Home Block

Field Name

HM2$Q_RETAINMIN

HM2$Q_RETAINMAX

HM2$Q_REVDATE

HM2$R_MIN_CLASS

HM2$R_MAX_CLASS

HM2$L_SERIALNUM:

Description

Minimum file retention period. This field contains the
minimum length of time that a file will be retained by a
file expiration system after that file is last accessed. Its value
is expressed in the standard delta time format (minus the
time in tenths of microseconds).

Maximum file retention period. This field contains the
maximum length of time that a file will be retained by a
file expiration system after that file is last accessed. Its value
is also expressed in the standard delta time format.

The minimum and maximum retention fields are used
together in this way: when a file is accessed, if the sum of
the current time plus the minimum retention period exceeds
the current expiration date of the file, then the file's expiration
date is reset to the sum of the current time plus the maximum
retention period.

In other words, how often the expiration date of a frequently
accessed file is updated is determined by the difference
between the minimum and the maximum retention periods.

Volume revision date. This field contains the date and time at
which the last significant modification, such as copying during
a full backup, was made to the volume.

Minimum security class. This field contains a classification
mask that represents the minimum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.
Maximum security class. This field contains a classification
mask that represents the maximum secrecy and integrity
classification of files that may be created on this volume.
The structure of this field is the same as that of the secrecy
classification mask (FH2$R_CLASS_PROT) in the header
area.

Media serial number. This field contains the binary serial
number of the physical medium on which the volume is
located.

(continued on next page)

Files-11 On-Disk Structure 69

Table 2-15 (Cont.): Contents of the Home Block

Field Name

HM2$T_STRUCNAME

HM2$T_ VOLNAME

HM2$T_OWNERNAME

HM2$T_FORMAT

HM2$W _CHECKSUM2

2.5.1.3 Cluster Filler

Description

Structure name. This area contains the name of the volume
set (in ASCII form) to which this volume belongs, padded to 12
bytes with spaces. The characters must be ASCII characters
that can be printed (that is, no control or delete characters).
Moreover, using only alphanumerics is also recommended to
avoid conflicts with command languages.

This field may not be null. If this volume is not a member of a
volume set, this area is filled with spaces.

Volume name. This area contains the volume label in ASCII
form. It is padded to 12 bytes with spaces. The characters
must be ASCII characters that can be printed (that is,
no control or delete characters). Moreover, using only
alphanumerics is also recommended to avoid conflicts with
command languages. This field may not be null.

If the volume is a member of a shadow set, the name is the
same across all the members.

Volume owner. This area contains an ASCII string identifying
the owner of the volume. The area is padded to 12 bytes with
trailing spaces.

Format type. This field contains the ASCII string "DECFILEllB"
padded to 12 bytes with spaces. It identifies the volume as
being of Files-11 format, structure level 2.
Second checksum. This word is the last word of the home
block. It contains an additive checksum of the preceding 255
words of the home block, calculated by the same algorithm
used to calculate the end checksum of the header area.

If the cluster factor t1 of the volume is greater than 1, then the next t1 * 2 - 2 blocks
of the index file are copies of the home block used to fill out the first two clusters
of the index file. Note that, for cluster factors greater than 1, this method results
in a wasted disk cluster. The benefit of this technique is a much simpler rule for
finding the VBN of parts of the index file.

70 Files-11 On-Disk Structure

2.5.1.4 Backup Home Block
The backup home block is a copy of the home block that is located farther
along the home block search sequence. It permits the volume to be used even if
the primary home block is destroyed.

In general, the backup home block should be allocated on the second good block of
the search sequence. If it is not, then no preceding block of the sequence can be
available for allocation. Otherwise, a malicious user could construct a counterfeit
index file which would be used if the primary home block were corrupted.

The cluster which contains the backup home block is mapped into the index file
as virtual blocks v * 2 + 1 through v * 3, where v is the volume cluster factor.

The backup home block may be located anywhere within this cluster because
there is no definite relationship between the cluster factor and the volume's track
and cylinder boundaries. The entire cluster is therefore filled out with copies of
the home block. The file system must be able to allocate two good home blocks
on the home block search sequence. The blocks in the sequence preceding the
two home blocks that are not used for home blocks must be marked both bad and
allocated, especially LBN 1.

2.5.1.5 Backup Index File Header
The next cluster of the index file contains the backup index file header so data
on the volume can be recovered if the index file header is corrupted. The cluster
occupies virtual blocks v * 3 + 1 through v * 4, where v is the volume cluster factor.

The LBN of the backup index file header is stored in location HM2$L_ALTIDXLBN
in the home block. The backup index file header occupies the first block of this
cluster. The remaining blocks are not used, so their contents are undefined.

2.5.1.6 Index File Bitmap
The index file bitmap is used to control the allocation of file numbers and file
headers. It is simply a bit string of length n, where n is the maximum number of
files allowed on the volume. This value is stored in the HM2$L_MAXFILES field
in the home block.

The bitmap spans as many blocks as needed to map the allocation of the files
on the volume. This number is the maximum number of files divided by 4096
and rounded up. The number of blocks in the bitmap is contained in the
HM2$W _IBMAPSIZE field of the home block.

The bits in the index file bitmap are numbered sequentially from 0 to n - 1 from
right to left in each byte, and in order of increasing byte address. Bit j is used to
represent file number j + 1. If the bit is set (or 1), then that file number is in use;
if the bit is clear (or 0), then that file number is not in use and may be assigned
to a newly created file. The index file bitmap is not used to determine whether a
header is valid when accessing an existing file; the validation is done using the
contents of the header itself.

Files-11 On-Disk Structure 71

The index file bitmap starts at virtual block v * 4 + 1 of the index file and continues
through VBN v * 4 + m, where m is the number of blocks in the bitmap, and v is
the storage map cluster factor. It is located at the logical block indicated by the
HM2$L_IBMAPLBN field in the home block.

2.5.1. 7 File Headers
The rest of the index file contains all the file headers for the volume. The first
sixteen file headers (for file numbers 1 to 16) are logically contiguous with the
index file bitmap to make them easy to locate, but the rest may be suitably
allocated wherever the file system decides. Thus, the first sixteen file headers
may be located from the information in the home block (HM2$W _IBMAPSIZE
and HM2$L_IBMAPLBN) while the rest must be located through the mapping
data in the index file header. The file header for file number n is located at
virtual block v * 4 + m + n, where m is the number of blocks in the index file
bitmap and v is the storage map cluster factor.

The end-of-file (EOF) mark for the index file is located at or beyond the last file
header ever used. All header blocks located before the end-of-file mark must be
validated when they are used to create a new file. If the block does not contain
a valid file header, it is allocated for a new header. The new header is assigned
a file sequence number of 1 if it is the first use of this header block. Index file
blocks beyond the end-of-file mark are assumed not to be valid file headers for the
purpose of creating new file headers.

If the block contains a deleted file header, the new header is assigned a sequence
number one higher than the header currently contained in the block.

A block containing a valid file header must never be used to create a new file,
even if it is marked free in the index file bitmap. This rule prevents files from
being lost if bits are dropped in the bitmap.

2.5.2 Storage Bitmap File

The storage bitmap file has file ID 2,2. It is listed in the MFD as BITMAP.SYS;l.
The storage bitmap is used to control the available space on a volume. It consists
of both a storage control block, or SCB, which contains summary information
about the volume, and the storage bitmap itself, which lists the individual
blocks that are available for allocation.

This file has the format of 512-byte fixed-length records with no carriage control.
The end-of-file mark points to the last block used. The storage bitmap file must
be contiguous.

72 Files-11 On-Disk Structure

2.5.2.1 Storage Control Block
Virtual block 1 of the storage bitmap is the storage control block (SCB). It
contains summary information about the volume. Note that some of the features
in the SCB require it to be written when the volume is mounted or dismounted.
The fields of the SCB are shown in Figure 2-21 and are described in Table 2-16.

Figure 2-21 : Format of the Storage Control Block

SC8$W_CLUSTER 1 SCB$W_STRUCLEV 0

SCB$L_ VOLSIZE 4

SCB$L_BLKSIZE 8

SCB$L_SECTORS 12

SCB$L_TRACKS 16

SCB$L_CYLINDER 20

SCB$L_STATUS 24

SC8$L_STATUS2 28

l SC8$W_WRITECNT 32

~~ SCB$T_VOLOCKNAME (12 bytes) * 1 44

SCB$Q_MOUNTTIME

SCB$W_BACKREV l 52

SCB$Q_GENERNUM 56

* SCB$B_RESERVED (446 bytes) Fl:! 64

SCB$W_CHECKSUM l 508

Files-11 On-Disk Structure 73

Table 2-16: Contents of the Storage Control Block

Field Name

SCB$W _STRUCLEV

SCB$W _CLUSTER

SCB$L_ VOLSIZE

SCB$L_BLKSIZE

SCB$L_SECTORS

SCB$L_TRACKS

SCB$L_CYLINDER

Description

Storage map structure level. This word contains the structure
level of the storage control block. The high byte contains the
value 2 to indicate Files-11 structure level 2. The low byte
contains the version number, which must be greater than or
equal to 1.

Storage map cluster factor. This word contains the storage
map cluster factor of the volume. Its contents are identical to
the contents of HM:2$W_CLUSTER in the home block. It is
placed here for convenience.

Volume size. This field contains the volume size expressed as
logical blocks.

Blocking factor. This field contains the blocking factor of the
volume, that is, the number of physical blocks or sectors that
make up one logical block.

Sectors per track. This field contains the number of logical
blocks in each track of the volume.

Tracks per cylinder. This field contains the number of tracks
contained in each cylinder of the volume.

Number of cylinders. This field contains the total number
of cylinders on the volume. The preceding three fields allow
space on the physical boundaries of the volume to be allocated
in an optimized manner.

(continued on next page)

74 Files-11 On-Disk Structure

Table 2-16 (Cont.): Contents of the Storage Control Block

Field Name

SCB$L_STATUS

SCB$L_STATUS2

Description

Status word. This word contains the volume status :flags that
follow; these bits are not currently supported.
SCB$V _MAPDIRTY Set if the storage map is "dirty," or

only partially updated.
SCB$V _MAPALLOC

SCB$V _FILALLOC

SCB$V_QUODIRTY

SCB$V _HDRWRITE

Set if the storage map is
preallocated, which may result
in lost blocks.
Set if file numbers are preallocated,
which may result in lost header
slots.
Set if the quota file is "dirty," or
only partially updated.
Set if file headers are to be cached
with write-back operations.

Secondary status. This word contains a copy of the status
:flags while the volume is mounted for write access. The
volume :flag bits match those of the SCB$L_STATUS field.
These bits are not currently supported. The volume status
:flags are as follows:
SCB$V_MAPDIRTY2

SCB$V _MAPALLOC2

SCB$V _FILALLOC2

SCB$V _QUODIRTY2

SCB$V _HDRWRITE2

Set if the storage map is "dirty," or
only partially updated.

Set if the storage map is
preallocated, which may result
in lost blocks.
Set if file numbers are preallocated,
which may result in lost header
slots.
Set if the quota file is "dirty," or
only partially updated.
Set if file headers are to be cached
with write-back operations.

SCB$W _ WRITECNT Writer count. This word contains the number of systems that
have the volume currently mounted for write access.

SCB$T_ VOLOCKNAME Volume lock name. This word contains a unique name used as
a root for file system serialization or resource synchronization
on the volume.

(continued on next page)

Files-11 On-Disk Structure 75

Table 2-16 {Cont.): Contents of the Storage Control Block

Field Name

SCB$Q_MOUNTTIME

SCB$W _BACKREV

SCB$Q_GENERNUM

Description

Time of last mount. This field contains the date and time of
the last time the volume was mounted for write access. It is
expressed in the standard time format.
BACKUP revision number. This field indicates the number of
times the volume has been copied using the DCL command
BACKUP/IMAGE.
Shadow set revision number. This field is the blli!iC shadow
volume generation indicator. It has two characteristics:

• Its value always increases.

• It represents the time at which the most recent change in
shadow set status occurred while the volume was still a
member of the shadow set.

If the two characteristics conflict, the increasing value takes
priority, and the generation number is updated using the
following algorithm:

Let CURRENT TIME be the current time.
Let OLD_GENERNUM be the generation

number to be increased.
Let NEW_GENERNUM be the increased

generation number.
If CURRENT_TIME > OLD_GENERNUM,

then NEW GENERNUM = CURRENT_TIME;
otherwise

NEW GENERNUM = OLD GENERNUM + 1.

The generation number is updated by writing directly to
·the shadow set, never to the individual members of the
shadow set. It is updated just before the entire shadow
set is dismounted or after processing is completed when
the membership of the shadow set changes. A change in
membership occurs when a volume is added, a volume is
removed because of hardware failure, or a volume is removed
with a user command. Note that an added volume will receive
the updated generation number, but a removed volume will
not because the generation number is written to the current
membership only after the addition or the removal has been
completed.

(continued on next page)

76 Files-11 On-Disk Structure

Table 2-16 {Cont.): Contents of the Storage Control Block

Field Name

SCB$B_RESERVED

SCB$W_CHECKSUM

2.5.2.2 Storage Bitmap

Description

Reserved.
End checksum. This word contains the block checksum. It is
calculated using the same algorithm as the end checksum of
the header area.

Virtual blocks 2 through n + 1 are the storage bitmap itself. It is best viewed as a
bit string of length m, numbered from 0 to m - 1, where m is the total number of
clusters on the volume rounded up to the next multiple of 4096.

Each cluster contains v logical blocks, where v is the storage map cluster factor
(also referred to as the volume cluster factor) contained in the field in the
home block. The bits are addressed in the usual manner (packed right to left
in sequentially numbered bytes).

Since each virtual block holds 4096 bits, n blocks (where n = ~) are used
to hold the bitmap. Bit j of the bitmap represents logical blocks j * v through
j * v + v - 1 of the volume. If the bit is set, the blocks are free; if clear, the
blocks are allocated. The last k bits of the bitmap are always clear, where k is the
difference between the true size of the volume and m, the length of the bitmap.

Rounding the storage map file up to the next multiple of the volume cluster factor
may result in some unused blocks at the end of the file. The end-of-file mark
points to the last block used.

2.5.3 Bad Block File

The bad block file has file ID 3,3. It is listed in the MFD as BADBLKSYS;l. The
bad block file is simply a file containing all the known blocks on the volume that
cannot reliably store data. This file has the record format of 512-byte fixed-length
records with no carriage control.

On disks containing a bad block descriptor, the last track of the volume comprises
the first several clusters of the bad block file. This rule ensures that the bad
block data is available to software in a file-structured manner and is preserved
when the volume is initialized again.

The end-of-file mark is placed during volume initialization at the end of the bad
blocks found during the initialization. At all times, the end-of-file mark must
point past the bad block descriptor data.

Files-11 On-Disk Structure 77

2.5.3.1 Manufacturer's Bad Block Descriptor
Many Digital-supplied disks that predate Digital Storage Architecture (DSA)
disks have a manufacturer-supplied format that lists on the volume's last
(highest) track all the known bad blocks or sectors. It is written in 16-bit format.
Disks of this type include the RK06, RK07, RP06, and the RM03.

The fields of a manufacturer-supplied bad block descriptor are shown in
Figure 2-22 and are described in Table 2-17.

Figure 2-22: Format of the Manufacturer-Supplied Bad Block Descriptor

BBD$L_SERIAL

BBD$W_FLAGS I BBD$W_RESERVED

~~ Bad block entries (500 bytes)

0

4

* 8

BBD$L_LASTWORD 508

Table 2-17: Contents of a Manufacturer-Supplied Bad Block Descriptor

Field Name

BBD$L_SERIAL
BBD$W _RESERVED
BBD$W _FLAGS

Description

Serial number of the disk.

Reserved area.

Status flags. This field contains a value of 0 for normal use. A
nonzero value is used to identify maintenance disks, which should
never be initialized.

(continued on next page)

78 Files-11 On-Disk Structure

Table 2-17 (Cont.): Contents of a Manufacturer-Supplled Bad Block Descriptor

Field Name Description
' '

BBD$L_BADBLOCK Bad block entry. This longword is an individual bad block entry,
which identifies a defective block on the disk. The start of the bad
block entries is pointed to by the symbol BBD$C_DESCRIPI'. A
list of bad block entries may occupy up to 500 bytes; that is, only
126 bad block eritries may be recorded. After the last bad block
has been listed, the rest of the field is padded with all ls, which
identifies the end of the bad block list.

The format of an individual bad block entry is shown in
Figure 2-23.

BBD$L_LASTWORD Last longword of block. This field contains all ls to signal the end
of the bad block descriptor to the file system.

Figure 2-23 shows the format of an individual bad block entry. Table 2-18
describes the bits contained in the BBD$L_BADBLOCK field.

Figure 2-23: Format of a Bad Block Entry (BBD$L_BADBLOCK)

31 24 16 15

BBD$V_TRACK BBD$V_SECTOR BBD$V_CYLINDER

0

ZK-9585-HC

Table 2-18: Contents of a Bad Block Entry

Bit Meaning

BBD$V _CYLINDER Cylinder number of the bad block. This field is 15 bits long and
starts at bit 0.

BBD$V _SECTOR

BBD$V _TRACK

Sector number of the bad block. This field is 8 bits long and starts
at bit 16.

Track number of the bad block. This field is 7 bits long and starts
at bit 24.

All the sectors on the last track that contain bad block data are written in the
same format as any other track on the disk; that is, they have the same preamble,
gaps, error correction code (ECO), and postamble. The even-numbered sectors of

Files-11 On-Disk Structure 79

the highest ten sectors (that is, sectors 0, 2, 4, 6, and 8) are available for the
manufacturer's bad block descriptor.

The rest of the sectors on the last track (sectors 10 to 21) contain the software
bad block descriptor. These sectors have the same format as the manufacturer's
bad block descriptor except that the area for the bad block entries contains all
ls, which indicates that no bad sectors are listed. This area is where the system
software may list the sectors that have become defective while in use.

2.5.3.2 Software Bad Block Descriptor
For disks that do not have factory last-track bad block data and are not DSA
disks, a software-generated bad block map is supplied. It is always located on the
last good block of the volume. There must be at least one reliable block in the
last 256 blocks of the volume for this bad block map to be generated.

The fields of a bad block descriptor are illustrated in Figure 2-24 and are
described in Table 2-19. /

Figure 2-24: Format of a Software Bad Block Descriptor

BBM$B_AVAIL l BBM$B_INUSE l BBM$B_LBNSIZE l BBM$B_COUNTSIZE 0

F~ Retrieval Pointers (506 bytes) F~ 4

BBM$W..:_CHECKSUM 1 508

Table 2-19: Contents of a Software Bad Block Descriptor

Field Name

BBM$B_COUNTSIZE

BBM$B_LBNSIZE

BBM$BJNUSE

Description

Count size. This field contains the retrieval pointer count field
size, which must always contain a value of 1.

Logical block number. This field contains the retrieval pointer
LBN field size, which must always contain a value of 3.

Map words in use. This field contains the number of retrieval
words that contain bad block data.

(continued on next page)

so Files-11 On-Disk Structure

Table 2-19 (Cont.): Contents of a Software Bad Block Descriptor

Field Name Description

BBM$B....AVAIL Map words available. This field contains the number of
retrieval words that are available to bad block data.

BBM$W _CHECKSUM End checksum.

Each bad block descriptor retrieval pointer is four bytes long. The fields of a
retrieval pointer are shown in Figure 2-25 and are described in Table 2-20.

Figure 2-25: Format of a Bad Block Descriptor Retrieval Pointer

BBM$W_LOWLBN BBM$B_COUNT BBM$B_HIGHLBN

Table 2-20: Contents of a Bad Block Descriptor Retrieval Pointer

Field Name Description

BBM$B_HIGHLBN High-order LBN. This field contains the high-order bits of the
24-bit LBN.

BBM$B_COUNT Block count. This field contains the count field (in excess 1
format).

BBM$W _LOWLBN Low-order LBN. This field contains the low 16 bits of the 24-bit
LBN field.

2.5.3.3 Bad Block Processing on DSA Disks

0

Disks conforming to the Digital Storage Architecture (DSA) format have no
visible bad blocks. Disks of this type include the RA60, RASO, RA87, RA81, and
RA90. Instead, the hardware and the disk class driver (DUDRIVER) produce a
logically contiguous range of good blocks. If a block in the user area of the disk
becomes defective, further accesses to that block are revectored to a nearby spare
good block. A percentage of blocks are reserved for revectoring when the disk is
formatted.

Files-11 On-Disk Structure 81

There are two types of block replacement:

• Host-initiated-The operating system implements the replacement
algorithm because the disk controller does not have sufficient memory.

• Controller-initiated-A disk controller with sufficient memory (such as an
HSC) implements the replacement algorithm.

The list of replacement blocks is kept in the replacement and caching table
(RCT). The RCT provides the control structures and extra storage used during
automatic block replacement operations. The RCT also keeps a list of defective
blocks and replacement blocks currently in use. In a sense, the RCT replaces the
manufacturer's bad block list because the factory enters any defective blocks in
the RCT before shipment. As a result, it is never necessary to run the Bad Block
Locator Utility (BAD) on DSA disks. Also, the file BADBLK.SYS;l is empty.

Any inconsistencies in the RCT will cause the disk to be write-locked automati
cally. The RCT can become invalid in the following two ways:

• All the replacement blocks may be in use. In this case, an entry is made in
the error logger, and the disk is mounted for read access only.

• The blocks of the RCT itself cannot be revectored, so the RCT is recorded
multiple times on the disk. The locations are maintained by the disk
controller. Each copy of the RCT is sequentially read from or updated during
read or write operations. If and only if every copy is defective, the volume is
automatically protected against write access.

2.5.4 Master File Directory

The master file directory has file ID 4,4. It is listed in the MFD (itself) as
000000.DIR;l. The MFD is the root of the volume's directory structure. It lists
the reserved files plus entries for all top-level user file directories (UFDs). It also
contains whatever files the user chooses to enter.

The format of the MFD is the same as that of all directory files. The format of
directory files is covered in Section 2.4.1.

2.5.5 Core Image File

The core image file has file ID 5,5. It is listed in the MFD as CORIMG.SYS;l. Its
use depends on the operating system. In general, it provides a file of known file
ID for the use of the operating system (as a swap area, for example). This file has
the record format of 512-byte fixed-length records with no carriage control. The
end-of-file mark points to the physical end of the file.

82 Files-11 On-Disk Structure

2.5.6 Volume Set List File

The volume set list file has file ID 6,6. It is listed in the MFD as VOLSET.SYS;l.
It is used only on relative volume 1 of a tightly coupled volume set. It contains a
list of the volume labels of the volumes contained in the volume set.

The format of this file is 64-byte fixed-length records with implied carriage
control. The first 12 bytes of record 1 contain the volume set name. The first 12
bytes of record n contain the volume label of relative volume n - 1. The remaining
52 bytes of each record are reserved.

Figure 2-26 shows the format of the volume set list :file.

Figure 2-26: Format of the Volume Set List Fiie

VSL$T_NAME (12 bytes)

reserved (52 bytes)

2.5. 7 Continuation Fiie

The standard continuation file has file ID 7, 7. It is listed in the MFD as
CONTIN.SYS;l. It is used as the extension file ID when a file crosses from
one volume of a loosely coupled volume set to another.

* 0

* 12

The purpose of this reserved file ID is to allow a multivolume file to be written
sequentially with only one volume mounted at a time. Ordinarily, when a file is
extended onto another volume, the new header must be created first so that the
new file ID can be obtained before the extension linkage in the current header
can be written. The use of this reserved file ID allows the extension linkage to be
written with a known constant before the next volume is even on line.

2.5.8 Backup Journal Fiie

The backup journal file, also called the backup log file, has file ID 8,8. It is
listed in the MFD as BACKUP.SYS;l. This file contains a history of volume and
incremental backups performed on the volume. This file is not currently used.

Files-11 On-Disk Structure 83

2.5.9 Pending Bad Block Log File
The pending bad block log file has file ID 9,9. It is listed in the MFD as
BADLOG.SYS;l. This file contains a list that identifies the suspected bad blocks
on the volume that are not currently contained in the volume's bad block file. The
format of this file is 1~-byte fixed-length records.

Each record in the file represents one bad block. The format of each record is
shown in Figure 2-27 and is described in Table 2-21.

For more information about how this file is used in bad block processing, see
Section 5.4.8.

Figure 2-27: Format of a Pending Bad Block Log Record

PBB$W_FID

PBB$B_COUNT I PBB$B_FLAGS 1
PBB$L_VBN

PBB$L_LBN

Table 2-21: Contents of a Pending Bad Block Log Record

Field Name Description

PBB$W _FID File ID of the file that contains the bad block.
PBB$B_FLAGS Flags. The following flag bits are defined:

PBB$V _READERR Set if a read error has occurred on this block.
PBB$V _ WRITERR Set if a write error has occurred on this block.

PBB$B_COUNT Error count.
PBB$L_ VBN Virtual block number. This field contains the VBN of the bad block of

the file.
PBB$L_LBN Logical block number. This field contains the LBN of the bad block of

the file.

0

4

8

12

Chapter 3

Volume Structure Processing

. . . creators of odd volumes.
Charles Lamb

This is one of those cases in which the imagination is baffied by the facts.
Winston Churchill

Outline

Chapter 3 Volume Structure Processing

3.1 Introduction

3.2 Initializing the Volume
3.2.1 Checking the Preliminary Parameters
3.2.2 Formatting the Disk .
3.2.3 Processing Software Bad Blocks
3.2.4 Performing a Data Security Erase
3.2.5 Locating the Volume Structures
3.2.6 Building the Storage Bitmap File
3.2.7 Setting Up the Index File
3.2.8 Writing the Master File Directory

3.3 Mounting a Volume
3.3.1 I/O Database
3.3.2 Processing the Volume Mount
3.3.3 Processing a Volume Set
3.3.4 Rebuilding the Bitmap and Disk Quota Files

3.4 Dismounting a Volume
3.4.1 Beginning the Dismount Procedure
3.4.2 Device-Independent Dismount Processing
3.4.3 Final Dismount Processing

Volume Structure Processing 87

3.1 Introduction
This chapter describes the file system operations and data structures involved in
volume structure processing.

Volume structure processing describes a broad spectrum of activities, ranging
from making the disk available to the user to accessing the data on the
disk. It also includes how both the in-memory and the on-disk structures are
manipulated. ·

Part of making the disk available to the user involves initializing, mounting,
and dismounting the disk. Disk initialization is covered in Section 3.2. Section
3.3 describes the Mount procedure and the primary data structures of the 110
database. Among these structures are the ACP queue block, the file control block,
the relative volume table, the volume control block, and the window control block.
Rebuilding the bitmap and the disk quota files is also covered in this section. The
Dismount procedure is described in Section 3.4.

3.2 Initializing the Volume
Before files or data can be written to a disk volume for the first time, the volume
must be initialized. The DCL command INITIALIZE is used to format data
structures and to write a label to the volume. In general, the INITIALIZE
command invalidates all exieiting data (if any) on the volume and creates a new
file structure. One of the most important tasks is to place and write the volume's
reserved files.

Initializing involves the following main tasks:

• Gathering and checking the preliminary parameters

• Processing the bad blocks on the disk

• Performing a Data Security Erase (DSE), should one be requested

• Placing the reserved files on the volume

• Creating the storage bitmap file

• Initializing the index file

• Creating the master file directory

Most of the modules pertaining to initializing a disk are located in the INIT
facility; some are located in the MOUNT facility. The main program is located in
the INIVOL module in the INIT facility, and the routine INIT_ VOLUME in the
INIVOL module contains most of the initialization logic.

88 Volume Structure Processing

3.2.1 Checking the Preliminary Parameters

Certain preliminary checking and processing needs to be done before the volume
can actually be initialized. To begin with, the $GETJPI system service obtains
the UIC of the process from which the INITIALIZE command was issued. The
INITIALIZE command line is then parsed to acquire the user's input, including
the device and volume name, and the results are written to a global data area.

After the command line has been parsed, the device is allocated, and a channel
is assigned to it. If the user has specified a logical name on the command line, it
is translated. The device characteristics are obtained with the $GETDVI system
service, and the device is checked to ensure that it is a file-oriented device.

The routine INIT_DISK in the module INIDSK is then called. It defines an
internal allocation table in memory containing an entry for the necessary reserved
structures. The table actually consists of two parallel tables: one stores the size
of allocated areas and the other stores the LBN of each area.

The volume valid bit in the unit control block (UCB$V_VALID) is set, indicating
to the operating system that the volume is valid. A pack acknowledgment
function (10$_PACKACK) is then issued to enable 1/0 to the volume because
it is not mounted.

The privilege mask of the process that issued the INITIALIZE command is
checked for VOLPRO privilege. If the process does not have that privilege, the
original home block of the volume is read to find the UIC of the volume owner,
which is contained in the HM2$L_ VOLOWNER field. The UIC must either be
zero, indicating that the volume is not owned, or it must match the UIC of the
process that issued the INITIALIZE command.

All the volume parameters-including protection, extension size, window size,
and the number of headers-that were not specified on the INITIALIZE command
line are established from the system and group defaults. These parameters are
verified against the volume size and characteristics.

The volume size is calculated and rounded up to the next cluster boundary.
The maximum number of files can either be specified with the INITIALIZE
/MAXIMUM_FILES command or defaulted from the volume size and cluster
factor.

The minimum number of preallocated headers is specified with the INITIALIZE
/HEADERS command. The maximum number of headers is 65,500, and the
default is 16.

The initial position of the index file is determined based on user input. The index
file can be placed at the beginning, the middle, or the end of a disk. It can also
start at a specific LBN. If the user did not specify the /INDEX qualifier on the
INITIALIZE command line, the default position is the middle of the disk, which
minimizes the disk seek time.

Volume Structure Processing 89

3.2.2 Formatting the Disk

The Initialize Utility is capable of formatting floppy disks on RX02, RX33, and
RX23 disk drives. If a /DENSITY qualifier is specified on the command line, an
IO$_FORMAT function is issued with an appropriate density parameter to cause
the disk controller to format the disk.

3.2.3 Processing Software Bad Blocks
After the preliminary checking is completed, the routine INIT_BADBLOCK
performs bad block processing to see in which blocks data cannot be written. DSA
disks with replacement and caching tables (RCT) do not have visible bad blocks,
so they are not processed. Disks that have fewer than 4096 blocks are also not
processed by default.

If the NERIFIED qualifier was specified on the command line, INIT_BADBLOCK
first establishes whether the volume has factory last-track bad block data
or software bad block data and then calls either the GET_FACTBAD or the
GET_SOFTBAD routine.

If the disk has a manufacturer-supplied format, routine GET_FACTBAD marks
the entire last track of the disk bad (or invalid) to prevent the software from
using it. The last track of the disk contains bad block data written by the factory
formatting process. The data consists of two sections:

• The first block

• The first good block after sector 10

The purpose of this data is to record both factory- and software-detected bad
block data. The list containing the factory bad block data is written in the first
five even-numbered sectors (sectors 0, 2, 4, 6, and 8) of the last track of the disk.
The software bad block data can be written in sectors 10 through 21. For more
information on the manufacturer-supplied disk format, see Section 2.5.3.1.

After a good copy of each of the bad block lists has been found, all the bad block
entries in them are processed. Descriptors containing the cylinder, sector, and
track numbers of the bad blocks are created.

If the disk does not have a manufacturer-supplied format and is not a DSA disk,
the user must first run the Bad Block Locator Utility (BAD) on the disk to detect
defective blocks. The routine GET_SOFTBAD processes the data left by this bad
block scan. It searches backward from the end of the volume to find the bad block
data. When a valid bad block descriptor is found, its LBN is entered in the bad
block list. Then its contents are processed and entered in the bad block list.

If the /NOVERIFIED qualifier was specified on the INITIALIZE command line,
the existing bad block data on the disk is temporarily ignored until the difference
between the disk size and the cluster blocking factor is calculated. Blocks that
form the partial cluster are entered in the bad block file so they cannot be used.

90 Volume Structure Processing

The bad block entries are stored in descending LBN order. The bad block table
is searched until an entry is found with a starting LBN that is lower than the
current entry. The table is then extended, and the current entry is inserted in its
proper position.

Contiguous or overlapping areas are also merged. Neighboring entries are
compared to see if their LBN s are adjacent; if they are, the two entries are
combined to form one entry expressing a range of LBN s. For more information on
the software bad block format, see Section 2.5.3.2.

If the user has specified the /BAD BLOCKS qualifier on the INITIALIZE command
line (if the user has previously run the Bad Block Locator Utility (BAD), for
example), the routine GET_USERBAD is called. It processes any bad block
entries the user entered on the command line and puts them in the bad block
table. If the entry was specified in cylinder/sector/track format, it is first
converted to an LBN.

3.2.4 Performing a Data Security Erase
If the user specified the /ERASE qualifier on the INITIALIZE command line, a
data security erase (DSE) is performed on the disk. A DSE can either be:

• A one-step procedure that zeroes the designated blocks on the disk

• An iterative procedure that writes a special pattern to the disk

Both procedures use the $ERAPAT system service, an erase pattern generator.
The $ERAPAT code is loadable and may vary from site to site, but the default
pattern is 0.

If the default $ERAPAT code is used (or already loaded), the one-step DSE
procedure is performed, and the designated blocks are zeroed.

However, if the flag SGN$V _LOADERAPAT1 in the cell SGN$GL~LOADFLAGS
is set, an alternate $ERAPAT has been specified. In this case, the iterative DSE
procedure is performed, and it is repeated until $ERAPAT returns a status of
SS$_NOTRAN.

Before the disk is erased, the area to be erased is determined, making sure that
any bad block data, particularly the factory bad block file, is not overwritten
during the procedure. The disk may be erased either from the beginning to the
start of the allocated extent or, if there is no bad block data, to the end of the
volume.

1 This flag corresponds to the system parameter LOADERAPAT. This parameter is dynamic (it may
be changed on a running system). However, the site-specific $ERAPAT (ERAPAT.EXE) may not be
loaded until the system is rebooted.

Volume Structure Processing 91

A DSE is performed only when the user explicitly requests it. The /ERASE
qualifier also sets the ERASE volume attribute (HM2$V _ERASE), so when a file
on the disk is deleted, it is overwritten with an erase pattern. This can also be
accomplished with the command SET VOLUME/ERASE_ON_DELETE.

3.2.5 Locating the Volume Stn~ctures

After the data security erase is completed, the allocation routine is called. This
routine determines the size and location of each component of the volume's file
structure.

An allocation table holds descriptors for all the structure components. The bad
block list is part of this table.

Each time a part of the disk is allocated to some structure, an entry is written
to this table. The extent of each entry is rounded up or down to the next cluster
boundary.

The allocation table index entry for the boot block is inserted. This entry has the
effect oflocating the boot block at the first available cluster (usually 0).

Next, the primary and secondary home blocks are allocated. If the boot block
starts at LBN 0 and the cluster factor is greater than 1, a dummy primary home
block cluster is allocated because the real home block starts at LBN 1. If the boot
block does not start at LBN 0, the home block search sequence is calculated, and
the home block is allocated to the first available block in the sequence. For more
information on the home block search sequence, refer to Section 2.5.1.2.

The master file directory, the storage bitmap file, the initial index file, and the
alternate index file header are all inserted, in that order, into the allocation table,
provided that the /INDEX=END qualifier was not specified on the INITIALIZE
command line. This logic results in the best placement of the most frequently
referenced portions of the file structure. If the index file is placed at the end of
the volume, these files are allocated in reverse order to achieve the same effect.

3.2.6 Building the Storage Bitmap File

After the volume structures have been located in the allocation table, the storage
bitmap file (file ID 2,2 or BITMAP.SYS;!) is built and initialized. First, the fields
of the storage control block are filled in and written to disk. Then the contents of
the bitmap itself are written, making sure that the areas listed in the allocation
table (the reserved files) are marked as being in use. The table entries are
processed in LBN order, starting with the lowest LBN, to prevent disk thrashing.

The internal allocation table is adjusted to reflect the cluster size. There is one
bit in the bitmap for each cluster on the disk. Therefore, each block (512 bytes) in
the storage bitmap or allocation table can represent 512 * 8 or 4096 clusters.

92 Volume Structure Processing

3.2. 7 Setting Up the Index File
After the SCB and the storage bitmap file have been written to disk, the index :file
(file ID 1,1 or INDEXF.SYS;l), the boot block, multiple copies of the home block,
the index :file bitmap, and the initial file headers are all initialized.

First, the boot block is written. Then the current system date and time are
obtained with the $GETTIM system service, and the :fields of the home block are
constructed in order. The quadword containing the date and time is copied to the
HM2$W _CREDATE :field.

The home block is then written to disk multiple times, depending on the cluster
factor. It is written to the remainder of the boot block cluster as well as to the
two home block clusters.

The initial index file bitmap is the next data to be written. Its size is sufficient
to accommodate the specified maximum number of :files on the volume. The :first
block indicates the reserved :files in use. The rest of the blocks contain all Os.

The :first file header to be written is the core image file header. The core image
file is used because it is the :first file to be written on the volume. The directory
back link :field points to the MFD. This initial header is then used as the template
for the remainder of the reserved files. Essentially, the only information that
differs among the file headers is the file ID, the file name, the record attributes
(including the record size, the maximum record size, the highest allocated VBN,
and the end-of-file block), map pointers (if any), and the checksum.

The :first header to be constructed and written using the fields of the core image
file header as a guide is the continuation file header. Then the backup journal file
header and the pending bad block log file header are constructed and written to
disk.

The index file header is the next header to be constructed. Retrieval pointers for
the components of the index :file are appended to the map area.

The bad block file header and then the storage bitmap :file header are constructed.
A retrieval pointer is appended to the map area.

The last header to be constructed is the master file directory header. The
FH2$V _DIRECTORY bit is set, indicating that this reserved file is a directory;
the FAT$M_NOSPAN bit is also set, indicating that the records cannot cross block
boundaries. A retrieval pointer is appended to the map area.

3.2.8 Writing the Master File Directory
Last, the contents of the master :file directory (:file ID 4,4 or 000000.DIR;l) are
initialized. In other words, the records for all the reserved files, including the
MFD itself, are written into the master file directory.

Volume Structure Processing 93

The MFD records are copied into a zero-filled buffer and written in this order:

• Master file directory record itself

• Backup journal file

• Bad block file

• Pending bad block log file

• Storage bitmap file

• Standard continuation file

• Core image file

• Index file

• Volume set list file

Each record is 24 bytes long (the record byte count field contains 22, which does
not include its own 2 bytes). The following chart shows the contents of each
directory record in the MFD:

Field Name

DIR$W _ VERLIMIT

DIR$B_FLAGS

DIR$B_NAMECOUNT

DIR$T_NAME

DIR$C_FID

Meaning

Version limit

Flags field

File name length

Name string

File ID

Value

1

0

10

Name of the file

File identification number of
the file

After the MFD is written to the disk, initialization is complete, and the volume is
ready to be mounted. ·

3.3 Mounting a Volume
Before files or data on a volume can be processed, the volume must be mounted.
The Mount Utility (MOUNT) is used to make a disk volume and the files it
contains accessible to the file system. It also establishes the necessary resident
1/0 database structures.

94 Volume Structure Processing

3.3.1 1/0 Database
The 1/0 database is a collection of control blocks generally allocated from
nonpaged system (or dynamic) memory. It consists of two types of data structures:

• Those that provide information used by device-oriented components such as
drivers, channel control routines, and device interrupt dispatchers.

They include the unit control block (UCB), the device data block (DDB), the
channel request block (CRB), the 1/0 request packet (IRP), the interrupt
dispatch block (IDB), the UNIBUS adapter control block (ADP), and the
channel control block1 (CCB).

• Those that provide information used by file-oriented components such as the
file system.

The file-oriented data structures are created dynamically when a volume is
mounted on a device and file activity starts. The information is specific to
a particular volume and its files and is maintained as long as the volume
remains mounted. There are five major data structures in the 1/0 database:

- Volume control block-The VCB is a system data structure to describe
volumes.

- ACP queue block-The AQB identifies a file processor. For an ACP, it
contains the 1/0 queue listhead and a pointer to the ACP process. For the
XQP, however, it points to the buffer cache.

- File control block-The FCB is a collection of per-file process-related
information (such as the file highwater mark, UIC, and protection).

- Window control block-The WCB is the means by which a process looks
at a file.

- Relative volume table-The RVT is a system data structure to track
volume sets.

All these structures are protected so that users can neither read nor write to
them.

Not only does MOUNT create the data structures of the 1/0 database and link
the structures but it also creates mount-specific data structures such as mounted
volume list entries, and logical names associated with the mounted volume, which
provide device independence.

The file-oriented data structures are located using a pointer in the appropriate
unit control block to find the associated VCB of the mounted volume. Similarly, a
pointer in the channel control block is used to locate the WCB for an accessed file.

1 Channel control blocks are located in Pl space.

Volume Structure Processing 95

Figure 3-1 shows the structures of the I/O database and how they are linked.

Figure 3-1 : Relationship Among the File-Oriented Data Structures

CCB UCB UCB

WCB RVT VCB

FCB
AQB IRP IRP

FCB

ZK-9586-HC

96 Volume Structure Processing ·

3.3.1.1 Volume Control Block
The volume control block (VCB) contains the information needed to control
access to a volume. It is created when the volume is mounted, and there is
one VCB for each mounted volume (or volume set) on the system. The VCB is
permanent for the life of the volume.

It is located by the address in the UCB$L_VCB field in the unit control block.
The VCB also contains the addresses for other structures in the 110 database,
including the relative volume table and the ACP queue block.

The fields of the VCB are shown in Figure 3-2 and are described in Table 3-1.

Figure 3-2: Format of the Volume Control Block

VCB$L_FCBFL

VCB$L_FCBBL

VCB$B_STATUS l VCB$B_TYPE VCB$W_SIZE

VCB$W_RVN VCB$W_TRANS

VCB$L_AQB

~ VCB$T_VOLNAME (12 bytes) $~

VCB$L_RVT

VCB$L_HOMELBN

VCB$L_HOME2LBN

VCB$L_IXHDR2LBN

VCB$L_IBMAPLBN

VCB$L_SBMAPLBN

VCB$W_IBMAPVBN VCB$W_IBMAPSIZE

0

4

8

12

16

20

32

36

40

44

48

52

56

(continued on next page)

Volume Structure Processing 97

Figure 3-2 (Cont.): Format of the Volume Control Block

F~

VCB$W_SBMAPVBN VCB$W_SBMAPSIZE

VCB$W_EXTEND VCB$W_CLUSTER

VCB$L_FREE

VCB$L_MAXFILES

VCB$W_FILEPROT VCB$B_LRU_LIM I VCB$B_WINDOW

VCB$B_RESFILES VCB$B_EOFDELTA VCB$W_MCOUNT

VCB$B_STATUS2 VCB$B_BLOCKFACT reserved

VCB$L_QUOTAFCB

VCB$L_CACHE

VCB$L_QUOCACHE

VCB$W_PENDERR VCB$W_QUOSIZE

VCB$L_SERIALNUM

VCB$L_RESERVED1

VCB$Q_RETAINMIN

VCB$Q_RETAINMAX

VCB$L_ VOLLKID

VCB$T _ VOLCKNAM (12 bytes)

VCB$L_BLOCKID

~

F~

60

64

68

72

76

80

84

88

92

96

100

104

108

112

120

128

132

144

(continued on next page)

98 Volume Structure Processing

Figure 3-2 (Cont.): Format of the Volume Control Block

VCB$0_MOUNTTIME 148

VCB$L_MEMHDFL 156

VCB$L_MEMHDBL 160

VCB$B_SHAD_STS l VCB$B_SPL_CNT l VCB$W_ACTIVITY 164

VCB$L_SHAD_LKID 168

F~ VCB$B_ACB (28 bytes) * 172

F~ reserved (20 bytes) * 200

F~ reserved (20 bytes) Fj:I. 220

Table 3-1 : Contents of the Volume Control Block

Field Name

VCB$L_FCBFL

VCB$L_FCBBL

VCB$W_SIZE

VCB$B_TYPE

VCB$B_STATUS

Description

Forward link of the FCB listhead. All open files on a volume
are represented by an FCB linked into this list.

Backward link of the FCB listhead.

Size of VCB in bytes.

Structure type. This field contains the DYN$C_ VCB type code
to identify the data structure as a volume control block.

Volume status flags. The following flag bits are defined within
VCB$B_STATUS:

(continued on next page)

Volume Structure Processing 99

Table 3-1 (Cont.): Contents of the Volume Control Block

Field Name

VCB$W_TRANS

VCB$W_RVN

VCB$L_AQB

VCB$T_ VOLNAME

VCB$L_RVT

VCB$L_HOMELBN

VCB$L_HOME2LBN

VCB$L_IXHDR2LBN

VCB$L_IBMAPLBN

VCB$L_SBMAPLBN

VCB$W _IBMAPSIZE

Description

VCB$V_ WRITE_IF

VCB$V _ WRITE_SM

VCB$V _HOMBLKBAD

VCB$V _IDXHDRBAD

VCB$V _NOALLOC

VCB$V _EXTFID

VCB$V _GROUP

VCB$V _SYSTEM

Index file is open for write access.
This is bit 24.

Storage map is open for write
access. This is bit 25.
Primary home block is bad. This
is bit 26.

Primary index file header is bad.
This is bit 27.

Allocation and deallocation are
inhibited because of invalid
bitmaps. This is bit 28.

This bit is no longer used.

Volume is mounted /GROUP. This
is bit 30.
Volume is mounted /SYSTEM.
This is bit 31.

Volume transaction count. This field maintains the number
of files open on the volume plus the number of I/O request
packets in the ACP queue.

Relative volume number (RVN). This field contains the RVN
of the volume within a multivolume set.

Address of ACP queue block.

Volume label.

Address of the RVT or the UCB. This field may contain either
the address of the relative volume table if the volume is part
of a volume set or the unit control block for the volume if it is
not.
LBN of the home block for the volume.

LBN of the alternate home block for the volume.

LBN of the alternate index file header.

LBN of the index file bitmap.

LBN of the storage bitmap.

Size of the index file bitmap in blocks.
(continued on next page)

100 Volume Structure Processing

Table 3-1 (Cont.): Contents of the Volume Control Block

Field Name

VCB$W_IBMAPVBN

VCB$W _8BMAPSIZE

VCB$W_SBMAPVBN

VCB$W_CLUSTER

VCB$W _EXTEND

VCB$L_FREE

VCB$L_MAXFILES
VCB$B_WINDOW

VCB$B_LRU_LIM

VCB$W _FILEPROT

VCB$W_MCOUNT

VCB$B_EOFDELTA

VCB$B_RESFILES

VCB$B_BLOCKFACT

VCB$B_STATUS2

Description

Current VBN in the index file bitmap. This field contains the
virtual block number of the block at which to start the next
file creation scan.

Size of the storage bitmap in blocks.

Current VBN in the storage bitmap. This field contains the
virtual block number of the block at which to start the next
allocation scan.

Volume cluster size.

Default file extension length for the volume.

Number of free blocks on the volume.

Maximum number of files allowed on the volume.

Default window size for the volume.

Directory least recently used (LRU) cache entry limit for the
volume. This field is not supported.
Volume default file protection.

Mount count. This field contains the number of processes that
have the volume mounted. This field applies only to shareable
mounts.

Index file EOF update count. This field is not supported.

Number of reserved files on the volume.

Volume blocking factor.

Second status byte. The following flag bits are defined within
VCB$B_STATUS2:
VCB$V _WRITETHRU

VCB$V _NOCACHE

VCB$V _MOUNTVER

VCB$V _ERASE

Write-through caching is
enabled for the volume. This
is bit 24.

All caching is disabled on
volume. This is bit 25.

Volume can undergo mount
verification. This is bit 26.

Data is erased when blocks are
deleted from the file. This is
bit 27.

(continued on next page)

Volume Structure Processing 101

Table 3-1 (Cont.): Contents of the Volume Control Block

Field Name

VCB$L_QUOTAFCB

VCB$L_CACHE

VCB$L_QUOCACHE
VCB$W _QUOSIZE

VCB$W _PENDERR

VCB$L_SERIALNUM
VCB$L_RESERVED1

VCB$Q_RETAINMIN

VCB$Q_RETAINMAX
VCB$L_ VOLLKID

VCB$T_ VOLCKNAM

VCB$L_BLOCKID

VCB$Q_MOUNTTIME
VCB$L_MEMHDFL

VCB$L_MEMHDBL

Description

VCB$V _NOHIGHWATER Highwater marking is disabled.
This is bit 28.

VCB$V _NOSHARE Nonshared mount. This bit
starts at bit 29.

VCB$V _CLUSLOCK Clwiterwide locking is necessary.
This is bit 30.

Address of the FCB of the disk quota file.

Address of the volume cache block.

Address of the volume quota cache.

Size of the quota cache in bytes.
Count of pending write errors.

Volume serial number.
This field is reserved.
Minimum file retention period in ADT format.

Maximum file retention period in ADT format.

Volume lock ID.

Name for volume lock.
Volume blocking lock. This field contains the 12-byte
unique volume identifier. It is used, along with the
VCB$W _ACTIVITY field, to stall activity on a single volume.
It is also called an activity blocking lock, or blocking lock.
See Section 8.3.5 for more information on the blocking lock.

However, if the volume is a volume set member, the
Corresponding fields in the RVT are used instead, so blocking
occurs over the entire volume set. See Section 3.3.1.5 for more
information.

Volume mount time.
Controller shadow set members queue header forward link.
This field contains the linked list pointer from the virtual unit
VCB through the list of physical member VCBs.

Controller shadow set members queue header backward link.
This field contains the linked list pointer from the virtual unit
VCB through the list of physical member VCBs.

(continued on next page)

102 Volume Structure Processing

Table 3-1 (Cont.): Contents of the Volume Control Block

Field Name

VCB$W _ACTIVITY

VCB$B_SPL_CNT

VCB$B_SHAD_STS

VCB$L_SHAD_LKID

VCB$B_ACB

Description

Activity count flag. This field determines whether or not
processing can be performed on the volume. If the low bit of
this field is set (that is, it contains an odd value), status is
normal, and volume activity can proceed.

If the field contains a value of 0, the volume is idle, and
further activity is blocked.

If the field contains an even, nonzero value, the volume is not
idle, and further activity is blocked.

Count field of devices' spooled to the volume. A volume
that has devices spooled to it cannot be dismounted, so
DISMOUNT checks this field for a value of 0. This field is
incremented by the command SET DEVICE/SPOOLED.

Controller shadowing rebuild state flags.

Controller shadowing rebuild synchronization lock ID.
Controller shadowing uses this lock through an AST to
the swapper to synchronize a shadow set rebuild operation
between different VAXcluster nodes.

AST control block for a blocking AST.

3.3.1.2 Window Control Block
The window control block (WCB) has two main purposes:

• It provides storage for access control information.

• It contains a set of mapping pointers that allow the virtual block numbers of
a file to be mapped to the logical block numbers on a disk.

In other words, the WCB contains the information necessary to transfer
information from the disk.

The WCB is located in nonpaged pool. It is pointed to by the CCB$L_ WCB field
in the channel control block, and it points to both the relative volume table and
the file control block associated with the file.

A WCB is local to one access, and when another access to a file is sought, another
WCB is built. Multiple WCBs may be associated with a single file. Of all the
data structures in the 110 database, it is the most likely to be adjusted because
of window turns. Also, accessing and deaccessing a file causes the WCB to be
discarded.

Volume Structure Processing 103

The fields of the WCB are shown in Figure 3-3 and are described in Table 3-2.

Figure 3-3: Format of the Window Control Block

WCB$L_WLFL

WCB$L_WLBL

WCB$B_ACCESS l WCB$B_TYPE WCB$W_SIZE

WCB$L_PID

WCB$L_ORGUCB

WCB$W_NMAP WCB$W_ACON

WCB$L_FCB

WCB$L_RVT

WCB$L_LINK

WCB$L_READS

WCB$L_WRITES

WCB$L_STVBN

WCB$L_P1_LBN WCB$W_P1_COUNT
WCB$W_P2_COUNT WCB$L_P1_LBN

WCB$L_P2_LBN

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

104 Volume Structure Processing

Table 3-2: Contents of the Window Control Block

Field Name

WCB$L_WLFL

WCB$L_WLBL

WCB$W_SIZE
WCB$B_TYPE

WCB$B_.ACCESS

Description

Window list forward link. This field contains the forward
link of the window list that connects all windows for a given
file to their respective file control blocks.

Window list backward link.

Size of window block in bytes.
Structure type. This field contains the DYN$C_ WCB type
code to identify the data structure as a window control block.
Access control byte. The following flag bits are defined
within WCB$B_ACCESS:
WCB$V _READ Set if read access is allowed. This

is bit 24.

WCB$V_WRITE

WCB$V _NOTFCP

WCB$V _SHRWCB

WCB$V_OVERDRAWN

WCB$V _COMPLETE

WCB$V _CATHEDRAL

Set if write access is allowed.
This is bit 25.
Set if the file is not accessed by
the standard file system. This is
bit 26.
Shared window. This is bit 27.

File accessor has overdrawn
the quota allotted to accessor's
process. This is bit 28.
Set if the window maps the entire
file. This is bit 29.

Large, complex window used
to map the file completely.
Contiguous files are always
completely mapped, but
noncontiguous file may or may
nQt be completely mapped.
However, if the file is opened with
a cathedral window, complete
mapping may be ensured. All
the mapping information will be
read from the file headers (from
the map area or areas) into a
WCB, so no window turn is ever
necessary. This is bit 30.

(continued on next page)

Volume Structure Processing 105

Table 3-2 (Cont.): Contents of the Window Control Block

Field Name

WCB$L_PID

WCB$L_ORGUCB

WCB$W_ACON

Description

WCB$V _EXPIRE File expiration date may need to
be set. This is bit 31.

Process ID of the accessor process.

Address of the original UCB from the CCB.
Access control information. Note that these bits track the
bits in the FIB$L_ACCTL field. The following flag bits are
defined within WCB$W_ACON:

WCB$V _NOWRITE

WCB$V _DLOCK

WCB$V _SPOOL

WCB$V _ WRITECK

WCB$V _SEQONLY

WCB$V _ WRITEAC

WCB$V _READCK

WCB$V_NOREAD

Other writers are not allowed.
This is bit 0.
Deaccess locking is enabled.
This is bit 1.
File is spooled when it is
closed. This is bit 4.
Write checking is enabled.
This is bit 5.

Sequential access only is
permitted. This is bit 6.

Write access is permitted. This
is bit 8.

Read checking is enabled. This
is bit 9.

Other readers are not allowed.
This is bit 10.

WCB$V _NOTRUNC Truncation is not allowed. This
is bit 11.

The following flag bits defined within WCB$W _ACON do not
track the bits in the FIB$L_ACCTL field:

(continued on next page)

106 Volume Structure Processing

Table 3-2 (Cont.): Contents of the Window Control Block

Field Name

WCB$W_NMAP

WCB$L_FCB

WCB$L_RVT

WCB$L_LINK

WCB$L_READS

WCB$L_ WRITES

WCB$L_STVBN

WCB$W_Pl_COUNT

WCB$L_Pl_LBN

WCB$W_P2_COUNT

WCB$L_P2_LBN

3.3.1.3 ACP Queue Block

Description

WCB$V _NOACCLOCK

WCB$V _ WRITE_TURN

Number of mapping pointers.

Address of the FCB.

Arbitration lock checking
is not performed (that is,
the file was opened with the
FIB$V _NOLOCK flag set).
This is bit 2.

Window turns are forced
during write operations. This
bit starts at bit 12.

Address of either the RVT or the UCB (if the volume is not a
member of a volume set).

Link to the next window segment.

Count of read operations performed.

Count of write operations performed.

Starting VBN mapped by the window.

Count field of the first pointer in the WCB.

Disk address (LBN field) of the first pointer.

Count field of the second pointer.

Disk address (LBN field) of the second pointer. Format of
retrieval pointer.

The AQB represents an instance of an ACP or XQP. For an ACP, the AQB
contains the listhead of the queue of 1/0 request packets. On the other hand,
the XQP uses the listhead for other purposes, and keeps its queue listhead in the
Pl space of each process.

The AQB is the communication path between the Queue 1/0 Request ($QIO)
system service and the XQP. Each process has its own AQB, while one AQB
represents the XQP in all processes.

The fields of the AQB are shown in Figure 3-4 and are described in Table 3-3.

Volume Structure Processing 101

Figure 3-4: Format of the ACP Queue Block

AQB$L_ACPQFL 0

AQB$L_ACPQBL 4

AQB$B_MNTCNT I AQB$B_TYPE I AQB$W_SIZE 8

AQB$L_ACPPID 12

AQB$L_LINK 16

Reserved I AQB$B_CLASS I AQB$B_ACPTYPE l AQB$B_STATUS 20

AQB$L_BUFCACHE 24

Table 3-3: Contents of the ACP Queue Block

Field Name

AQB$L_ACPQFL

\

AQB$L_ACPQBL

AQB$W_SIZE
AQB$B_TYPE

AQB$B_MNTCNT

AQB$L_ACPPID

AQB$L_LINK

Description

ACP IRP queue listhead forward link. This field points t;o the
first IRP in the queue.

However, if the ACB represents an XQP, this queue listhead is
used to synchronize access t;o the buffer cache.
ACP IRP queue listhead backward link. This field points t;o the
last IRP in the queue.

Size of the AQB in bytes.

Structure type. This field contains the DYN$C_AQB type code
t;o identify the data structure as an ACP queue block.
ACP mount count. This field contains the number of volumes
being serviced by an ACP process.

Process identification. This field contains the process
identication (PID) of the ACP process servicing the queue.
If the ACP represents an XQP, this field contains 0.

AQB list linkage.
(continued on next page)

10s Volume Structure Processing

Table 3-3 (Cont.): Contents of the ACP Queue Block

Field Name

AQB$B_STATUS

AQB$B_ACPTYPE

AQB$B_CLASS

AQB$L_BUFCACHE

Description

Status byte. The following flag bits are defined within
AQB$B_STATUS:
AQB$V_UNIQUE ACP is unique to this device. This is

bit 0.

AQB$V _DEFCLASS

AQB$V _DEFSYS

AQB$V _CREATING

ACP is default for this class. This is
bit 1.

ACP is default for the system. This
is bit 2.

ACP is currently being created. This
is bit 3.

AQB$V_XQIOPROC Extended QIO processor is being
used. This is bit 4.

ACP type code-magnetic tape ACP (MTAACP), remote ACP
(REMACP), or network ACP (NETACP).

ACP class code.

Pointer to the buffer cache if this is an XQP.

3.3.1.4 File Control Block
The file control block (FCB) contains the information needed to control access to
a file. It is created when a file is accessed for the first time; subsequent accesses
to this file must use the same FCB.

FCBs for recently used directories are retained to optimize repeated access to
directories.

The FCB points to the file header for additional mapping information about the
file. It is pointed to by the WCB$L_FCB field. FCBs are chained together in a
doubly linked list.

A file is represented by one FCB per node, but copies of that FCB exist on
every node of a VAXcluster. In this way, an FCB may be considered global to
a VAXcluster but local to a system.

The fields of the FCB are shown in Figure 3-5 and are described in Table 3-4.

Volume Structure Processing 109

Figure 3-5: Format of the File Control Block

FCB$L_FCBFL

FCB$L_FCBBL

FCB$B_ACCLKMODE I FCB$B_TYPE

FCB$L_EXFCB

FCB$L_WLFL

FCB$L_WLBL

FCB$W_ACNT

FCB$W_LCNT

FCB$W_STATUS

FCB$W_FID

FCB$W_SEGN

FCB$L_STVBN

FCB$L_STLBN

FCB$L_HDLBN

FCB$L_FILESIZE

FCB$L_EFBLK

..... FCB$L_DIRINDX

FCB$W_OIRSEQ

FCB$L_ACCLKID

FCB$L_LOCKBASIS

FCB$L_ TRUNCVBN

FCB$W_SIZE

FCB$W_REFCNT

FCB$W_WCNT

FCB$W_TCNT

FCB$W_VERSIONS

FCB$L_DIRINDX

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

(continued on next page)

110 Volume Structure Processing

Figure 3-5 (Cont.): Format of the File Control Biock

FCB$L_CACHELKID

FCB$L_HIGHWATER

FCB$L_NEWHIGHWATER

FCB$W_HWM_ERASE FCB$W_HWM_UPDATE

reserved FCB$W_HWM_PARTIAL

FCB$L_HWM_WAITFL

FCB$L_HWM_WAITBL

FCB$L_FILEOWNER

reserved

reserved

reserved

FCB$0_ACMODE

FCB$L_SYS_PROT

FCB$L_OWN_PROT

FCB$L_GRP _PROT

FCB$L_WOR_PROT

FCB$L_ACLFL

FCB$L_ACLBL

* reserved (20 bytes) *

84

88

92

96

100

104

108

112

116

120

124

128

136

140

144

148

152

156

160

(continued on next page)

Volume Structure Processing 111

Figure 3-5 (Cont.): Format of the File Control Block

Table 3-4: Contents of the File Control Block

Field Name

FCB$L_FCBFL

FCB$L_FCBBL

FCB$W_SIZE
FCB$B_TYPE

FCB$B_ACCLKMODE

FCB$L_EXFCB

FCB$L_WLFL

FCB$L_WLBL
FCB$W _REFCNT

FCB$W_ACNT

FCB$W_WCNT

De~ription

FCB list forward link. This field is the forward link for linking
the FCB to the chain of FCBs off the volume control block.
FCB list backward link. This field is the backward link for
linking the FCB to the chain of FCBs off the volume control
block.
Size of FCB in bytes.
Structure type. This field contains the DYN$C_FCB type code
to identify the data structure as a file control block.
Arbitration lock mode. This field contains the highest lock
mode of an accessor on this node of the VAXcluster.
Address of the extension FCB. This field contains the address
of the extension file control block. If one does not exist, this
field contains a 0. An extension FCB is created for each
extension header of a multiheader file.
Forward link of the window listhead.

Backward link of the window listhead.
Reference count. This field gives the total references to this
FCB, which represents the number of channels active to the
file. In other words, it indicates the number of processes that
are currently accessing the file.
File access count. The field gives the number of users that
currently have the file open for access. This count does not
include accesses with the FIB$V _NOLOCK flag, so it can be
less than the reference count.
File writer count. This field gives the number of channels
open to the file that have the ability to write to the file.

(continued on next page)

112 Volume Structure Processing

Table 3-4 (Cont.): Contents of the File Control Block

Field Name

FCB$W_LCNT

FCB$W_TCNT

FCB$W _STATUS

FCB$W_FID
FCB$W_SEGN
FCB$L_STVBN

FCB$L_STLBN

FCB$L_HDLBN
FCB$L_FILESIZE

Description

File lock count. This field gives the number of accessors that
have the file locked against writers.
Count of truncate locks. This field gives the number of
accessors that have the file locked to prevent truncation.
File status. The following flag bits are defined within
FCB$W _STATUS:
FCB$V _DIR FCB is a directory LRU entry. This

is bit 16.
FCB$V _MARKDEL

FCB$V _BADBLK

FCB$V_EXCL

FCB$V _SPOOL

FCB$V _RMSLOCK

FCB$V _ERASE

File is marked for deletion. This is
bit 17.
Bad block encountered in file. This
is bit 18.
File is exclusively accessed. This is
bit 19.
File is an intermediate spool file.
This is bit 20.
File is open with RMS record
locking. This is bit 21.

Data will be erased when the blocks
are removed from the file. This is
bit 22.

FCB$V _BADACL ACL is corrupt. This is bit 23.
FCB$V _STALE FCB must be reconstructed from the

file header. This is bit 24.
FCB$V _DELAYTRNC Delayed truncation is pending

against the file. This is bit 25.
File identifier.
File segment number.
Starting VBN. This field contains the starting virtual block
number of the file section represented by this FCB.

Starting LBN. This field contains the starting logical block
number of the file, if it is contiguous. If the file is not
contiguous, this field contains a value of 0.

LBN of the file header.
File size in blocks.

(continued on next page)

Volume Structure Processing 113

Table 3-4 (Cont.): Contents of the File Control Block

Field Name

FCB$L_EFBLK

FCB$W _VERSIONS

FCB$L_DIRINDX

FCB$W _DIRSEQ

FCB$L_ACCLKID
FCB$L_LOCKBASIS

FCB$L_TRUNCVBN

Description

End-of-file VBN.
Maximum number of versions in directory. This field applies
to directory files only.
Directory index block pointer. This field contains a pointer to
the directory index block in the buffer cache that corresponds
to this directory file. It is used only for directory FCBs.
Directory use sequence number. This field applies to directory
files only.
Access lock ID.
Lock basis for this FCB. This field contains the basis (a file
number and an RVN) for building the resource name for locks
taken against this file.
VBN for delayed truncation.

FCB$L_CACHELKID Cache interlock lock ID.
FCB$L_HIGHWATER Highwater mark in file.
FCB$L_NEWHIGHWATER Highwater mark of a pending write operation. This field

FCB$W _HWM_UPDATE

FCB$W _HWM_ERASE
FCB$W _HWM_PARTIAL

FCB$L_HWM_WAITFL

FCB$L_HWM_WAITBL

FCB$L_FILEOWNER
FCB$Q_ACMODE
FCB$L_SYS_PROT

FCB$L_OWN_PROT

contains the highest block in the file that is in the process of
being written.
Count of write operations in progress that affect the highwater
mark.
Count of highwater mark erase operations in progress.
Count of partially validated erase operations. This field
contains a count of pending highwater mark erase operations
that were truncated by end of file. (Corresponding IRPs are
flagged with the IRP$V _PART_HWM bit.)
Highwater mark update queue forward link. This field
contains the queue head for virtual I/Os waiting for conflicting
highwater-mark-related operations to complete. Pending write
operations are stored on the front of the queue.
Highwater mark update queue backward link. Pending read
operations are stored on the back of the queue.

File owner UIC.
Access mode protection vector.
System protection word.

Owner protection word.
(continued on next page)

114 Volume Structure Processing

Table 3-4 (Cont.): Contents of the File Control Block

Field Name

FCB$L_GRP _PROT
FCB$L_ WOR_PROT
FCB$L_ACLFL
FCB$L_ACLBL

Description

Group protection word.

World protection word.

Access control list forward link.

Access control list backward link.

3.3.1.5 Relative Volume Table
The relative volume table (RVT) contains the information to associate the
volumes of a multivolume set with the address of the UCB of the unit on which
each of the volumes is mounted. In other words, there is one RVT per volume set.
It is pointed to by both the window control block and the volume control block.
The RVT may point to multiple UCBs.

The fields of the RVT are shown in Figure 3-6 and are described in Table 3-5.

Figure 3-6: Format of the Relative Volume Table

RVT$L_STRUCLKID 0

RVT$W_ACTIVITY RVT$W_REFC 4

RVT$B_NVOLS J RVT$B_TYPE RVT$W_SIZE 8

* RVT$T_STRUCNAME (12 bytes) Fl:1 12

* RVT$T_VLSLCKNAM (12 bytes) * 24

RVT$L_BLOCKID 36

* RVT$B_ACB (28 bytes) * 40

(continued on next page)

Volume Structure Processing 115

Figure 3-6 (Cont.): Format of the Relative Volume Table

Table 3-5: Contents of the Relative Volume Table

Field Name

RVT$L_STRUCLKID
RVT$W_REFC

RVT$W _ACTIVITY

RVT$W_SIZE

RVT$B_TYPE

RVT$B_NVOLS

RVT$T_STRUCNAME

RVT$T_ VLSLCKNAM
RVT$L_BLOCKID

RVT$B_ACB

Description

Lock ID of volume set lock.
Reference count, which is the number of volumes in the
volume set that are currently mounted.

,Activity count flag. This field determines whether or not
processing can be performed on the volume set. If the low bit
of this field is set (that is, it contains an odd value), status is
normal, and volume set activity can proceed.

If the field contains a 0, the volume set is idle, and further
activity is blocked.

If the field contains an even, nonzero value, the volume is not
idle, and further activity is blocked.

Size of RVT in bytes.

Structure type. This field contains the DYN$C_RVT type code
to identify the data structure as a relative volume table.

Number of volumes in the set.

Volume set name.

Volume set lock name.

Blocking lock ID. This field contains the 12-byte unique vol
ume set identifier. It is used, along with the RVT$W _ACTIVITY
field, to stall volume set activity. It is also called an activity
blocking lock.

AST control block for blocking AST.
(continued on next page)

116 Volume Structure Processing

Table 3-5 (Cont.): Contents of the Relative Volume Table

Field Name

RVT$L_UCBLST

Description

Addresses of UCBs. This field contains the beginning of a
table of UCB addresses for all volumes in the set. For a given
relative volume number (RVN), the UCB can be accessed by
using the RVN as an index into the RVT$L_UCBLST table.
For example, the UCB address of relative volume number 1
is at location RVT$L_UCBLST; the UCB address of relative
volume number 2 is at location RVL_UCBLST + 4; and so on.

3.3.2 Processing the Volume Mount
A request to mount a volume occurs because of initial system startup or because
a specific request is received from a user or an operator to mount a volume.
The Mount Utility (MOUNT), which makes a disk available for processing, is
a privileged shareable image. Therefore, it has the privilege to change mode to
kernel so that it can allocate and build the resident I/O database components.

However, MOUNT does as much work as possible in executive mode. For
example, all the disk blocks (including the index file, the storage bitmap headers,
and the storage bitmap itself) are read in executive mode.

The VMOUNT module is the main routine of the $MOUNT system service. It
contains the general control flow of the mount operation.

The module MOUNTIMG is located in the VMOUNT image. This image acquires
the DCL MOUNT command line from the CLI parser, parses this command line,
and calls the $MOUNT system service.

The $MOUNT system service performs the actual mount operation.

3.3.2.1 Obtaining User Input
The main routine SYS$VMOUNT processes the parameters the user entered on
the command line. The user's current privilege mask is saved, and the following
amplified privileges are granted:

Privilege

ACNT

ALTPRI

BUGCHK

Meaning

Disable accounting

Set base priority higher than allotment

Make bugcheck error log entries

Privilege

BYPASS
DETACH
EXQUOTA

GROUP

MOUNT
PHY_IO

PSWAPM
TMPMBX
SETPRV
SYSLCK

WORLD

Volume Structure Processing 111

Mea.Ding

Disregard protection
Create detached processes of arbitrary UIC

Exceed disk quota
Control processes in the same group

Execute mount volume QIO

Issue physical I/O requests

Change process swap mode

Temporary mailbox
Enable any privilege bit

Lock systemwide resources
Control any process

SYS$VMOUNT transfers control to the routine VMOUNT_ENVELOPE, which
serves as the base call frame for all the executive mode code, and it intercepts
all executive mode conditions. It calls the MOUNT_ VOLUME routine, which
attempts to mount the volume.

If the user specified the /SHARE, /GROUP, or the /SYSTEM qualifier on the
command line, the 1/0 database must be .searched for a matching volume label.

The volume lock, which correctly serializes simultaneous shared mounts, is
released by the SYS$VMOUNT routine when the volume has been completely
and successfully mounted.

3.3.2.2 Searching for a Mountable Device
A volume may be mounted in one of two ways:

• Shared mount-Specified by the /SHARE, /GROUP, /SYSTEM, or /CLUSTER
qualifier; The device on which the volume is mounted is not allocated; the
volume may be accessed from more than one process.

• Private mount-Default. The device that the volume is mounted on is
allocated to the job from which the mount request was issued.

If the volume is to be mounted with the /SHARE, /GROUP, or /SYSTEM qualifier,
the 1/0 database is searched for a device with the label specified on the command
line. The database must be locked during the search. The list of device data
blocks (DDBs) is walked, and the UCB list off each DDB is followed to find file
structured devices that are mounted but not allocated. If the search is successful,
the UCB address is returned.

11s Volume Structure Processing

If the volume is being mounted with the /SYSTEM or the /GROUP qualifier, an
error is signaled if a duplicate volume name is found. Only if the volume is being
mounted for sharing can a duplicate volume name be tolerated. In this case, the
mount count is incremented, and the volume found is successfully mounted.

If the volume is not found or it is being mounted with the /NOSH.ARE qualifier,
the J/O database is searched again for a device that can be mounted. If a private
mount is requested, the IOC$V_ALLOC flag is set to take out an exclusive lock.
When the device is found, a lock is taken out against the allocation class device
name. An exclusive mode lock is acquired if the device is being allocated (that
is, the volume is being mounted privately) and a protected write inode lock is
acquired if the volume is being mounted publicly. The lock is taken in noqueue
mode, so that if the device is in use elsewhere in the cluster, the lock request
will fail. Once the device is successfully locked, it is allocated with the following
actions:

• The access mode is set to the access mode of the caller.

• The DEV$V _ALL bit is set in the UCB$L_DEVCHAR field, indicating that it
is allocated.

• The reference count is incremented in the UCB$W _REFC field.

• The device owner is set.

Once the device is acquired, the mount lock or mount interlock is taken in
exclusive mode to synchronize all mounts on this device. It has the following
form:

MOU$<allocation-class-device-name>

This lock is also taken in noqueue mode.

If the MOU$ interlock fails, the device is released, and MOUNT queues for the
MOU$ lock. Once the lock is granted, it is released. MOUNT waits a short
random interval to prevent "livelock" with other processes, and then repeats the
device acquisition procedure.

Figure 3-7 shows the format of the mount lock.

Volume Structure Processing 119

Figure 3-7: Mount Synchronlzatloo Lock

$ l u 1 0 l M

Device Name

ZK-9729-HC

3.3.2.3 Setting Up Device Context
Once the device has been acquired, a channel to the device is obtained with
the $GETCHAN system service. The device characteristics are obtained with
$GETDVI, and the device type is validated. The mount qualifiers are checked to
ensure that they are consistent with the device type.

Next, the device context must be obtained to ensure that mounts of the same
device from different nodes in a cluster are consistent. The mount context
relevant to the device and volume locks must be initialized by acquiring the
value block of the device lock, if it exists. The device lock has the following
form:

SYS$<device-name>

Figure 3-8 shows the format of the device lock.

Figure 3-8: Device Allocation Lock

$ l s l y I s

Device Name

ZK-9728-HC

120 Volume Structure Processing

Lock modes for the device lock have the following meanings:

Lock Mode

Concurrent read
Protected write
Exclusive

Meaning

Channel assigned or mounted.
Mount is in progress.

Device is allocated.

Figure 3-9 shows how the mount and device locks are acquired.

Volume Structure Processing 121

Figure 3-9: Device Synchronization Flow

Get device and lock

Get mount lock

Yes
Proceed with mount

No

Release device lock

Wait for mount lock

Release mount lock

ZK-9706-HC

122 Volume Structure Processing

The mount context for a device (if it is already mounted) is contained in the
device lock value block. The lock ID is obtained from the UCB$L_LOCKID
:field. The device lock value block is checked when a volume is mounted shared
or clusterwide. The device context of the mounted volume is compared with the
qualifiers specified in the MOUNT command to see if the two are compatible. If
they are incompatible, an error is returned.

The value block of the device lock is heavily used. For example, it tracks the
following MOUNT information:

• Mount mode

• Structure level of the volume

• UIC

• Protection

• Whether the volume is mounted read-only or read/write

This information is all used by MOUNT to guarantee consistency in the way the
volume is mounted across the cluster.

Figure 3-10 shows the value block for the device lock.

Figure 3-10: Device Lock Value Block

OC_PROTECTION I DC_FLAGS

DC_OWNER_UIC

reserved

reserved

ZK-9704-HC

Volume Structure Processing 123

Table 3-6 shows the fields of the device allocation lock value block.

Table 3-6: Contents of the Device Lock Value Block

Field Name

DC_FLAGS

Description

Device usage flags. This field corresponds to the DAL$W _FLAGS field.
The following flag bits are defined within DC_FLAGS:
DC_NOTFIRST_MNT Not the first time mounted. This bit

is clear if the volume has not been
mounted elsewhere. It corresponds to
the DAL$V _NOTFIRST_MNT bitfield
mask.

DC_FOREIGN

DC_ GROUP

DC_SYSTEM

DC_ WRITE

DC_NOQUOTA

DC_OVR_PROT

DC_OVR_OWNUIC

DC_NOINTERLOCK

DC_SHADOW_MBR

The device was mounted with the
MOUNT/FOREIGN command. This bit
corresponds to the DAL$V _FOREIGN
bitfield mask.

The device was mounted with the
MOUNT/GROUP command. This bit
corresponds to the DAL$V_GROUP
bitfield mask.

The device was mounted with the
MOUNT/SYSTEM command. This bit
corresponds to the DAL$V _SYSTEM
bitfield mask.

Write access allowed. This bit
corresponds to the DAL$V _WRITE
bitfield mask.
Quota checking disabled. This bit
corresponds to the DAL$V _NOQUOTA
bitfield mask.

Override protection. This bit
corresponds to the DAL$V _OVR_PROT
bitfield mask.

Override volume ownership. This bit
corresponds to the DAL$V_OVR_OWNUIC
bitfield mask.

Access is not VAXcluster inter-
locked. This bit corresponds to the
DAL$V _NOINTERLOCK bitfield mask.

Shadow set member. This bit corre
sponds to the DAL$V _SHADOW _MBR
bitfield mask.

(continued on next page)

124 Volume Structure Processing

Table 3-6 (Cont.): Contents of the Device Lock Value Block

Field Name Description

DC_PROTECTION Volume protection.

DC_OWNER_UIC Volume owner UIC.

If the device lock value block is zero, the process is considered the first mounter
on this device.

3.3.2.4 Establishing the Volume Defaults
The actual process of mounting an ODS-2 disk is handled by the routine
MOUNT_DISK2 in the module MOUDK2. This routine does as much preliminary
work as possible in executive mode. All the disk blocks (including the index file,
the storage bitmap headers, and the storage bitmap itself) are read in executive
mode so that the program can be aborted without corrupting the reserved files or
leaving the structures of the 1/0 database in an undefined state. Also, prototype
control blocks are built in local storage and then copied into system pool for the
same reason.

The process and volume owner UIC are obtained. The current PCB is located
in the scheduler database, and the process UIC is read from the PCB$L_UIC
field. The volume owner UIC is read from the HM2$L_ VOLOWNER field in the
private copy of the home block. Privilege checks are made for overriding volume
protection and for options requiring operator privilege.

The volume set name is established, either from the /BIND qualifier on the
command line or from the HM2$T_STRUCTNAME field in the home block. If
both are present, they must match.

The system defaults are checked to establish the following specialized cache sizes:

• Extent cache-If the size of the extent cache has not been set and the user
did not explicitly disable caching for the volume, the default extent cache
size is established from the value set with the ACP _EXTCACHE system
parameter. Otherwise, the cache size is set to 0, disabling extent caching for
the volume.

The default limit of the volume space to which the extent cache can point is
established using the ACP _EXTLIMIT system parameter.

• FID cache-The default FID cache size is established from the value set
with the ACP _FIDCACHE system parameter. If no FID cache is needed on.
the volume, the cache size is set to 1.

Volume Structure Processing 125

• Quota cache-The default quota cache size is established from the value set
with the ACP _QUOCACHE system parameter. The cache size is contained in
the VCB$W_QUOSIZE field, and the quota file itself is always placed on RVN
1. If no quota cache is needed on the volume (or on the remaining members
of a volume set),. the cache size is set to 0.

The transaction count and the mount count are both set to 1 in the prototype
VCB. Other fields of the prototype VCB are filled in using the fields of the
home block, including the fields HM2$V _ERASE, HM2$L_SERIALNUM, and
HM2$V _NOHIGHWATER. If the volume is being mounted with the /GROUP
qualifier, the VCB$V _GROUP bit is set to 1. If it is being mounted with the
/SYSTEM qualifier, the VCB$V _SYSTEM bit is set to 1.

The value of the VCB$L_HOMELBN field of the prototype VCB is copied from
the LBN of the primary home block. The value of the VCB$L_HOME2LBN field
is likewise copied from the HM2$L_ALHOMELBN field of the home .block. If
the value of the two fields is equal, then the VCB$V _HOMBLKBAD bit is set,
indicating that the primary home block is invalid.

The device blocking factor is obtained from the device information block. The
index file bitmap LBN, the volume cluster factor, and the default window size are
also filled in using the fields in the home block. If the current number of window
pointers is 0, the default number of window pointers is set to 7. However, if the
volume is being mounted with the /SYSTEM qualifier, the default number of
pointers is established by the ACP _WINDOW system parameter. Otherwise, the
value is taken from the /WINDOW qualifier the user specified on the command
line.

The LRU limit is the directory preaccess limit. It is a count of the number of
directories to be stored in the directory index cache. For a volume managed by an
ACP, it is an estimate of the number of concurrent users (that is, the number of
directories that will be in use concurrently) on the volume. If the volume is being
mounted with the /SYSTEM qualifier, the default number of directory FCBs to be
cached is set with the ACP _SYSACC system parameter. Otherwise, the value is
taken from the I ACCESS qualifier the user specified on the command line. If the
user explicitly specified that no caching was to be enabled for the volume, then
the LRU limit is set to 0. ·

For a volume managed by an XQP, however, the LRU limit is obsolete. Accessed
directories are instead managed on a per-buffer-cache basis and are limited by
the ACP_DINDX_CACHE system parameter.

The value in the VCB$W _EXTEND field is copied from the HM2$W _EXTEND
field in the home block. Although the VCB$W _EXTEND field is set up by
MOUNT, it is not used by any other VMS facility (including RMS).

The number of blocks that are allocated to a file when a user extends the file and
asks for the system default allocation is taken from the HM2$W _EXTEND field.
If the current value is 0, it is set to 5. Otherwise, the value is taken from the
/EXTEND qualifier the user specified on the command line.

126 Volume Structure Processing

The index file bitmap size and the maximum number of files are also established
by the fields of the home block.

If the user specified the /CACHE=WRITETHROUGH qualifier, the VCB$V_WRITETHRU
bit is set to 1. If the /NOCACHE qualifier was specified, the VCB$V _NOCACHE
bit is set to 1.

3.3.2.5 Initializing the Prototype Index Fiie FCB
The first step in initializing the FCB of the index file is to read and verify the
index file header. If the header is invalid, the alternate index file header is used
instead. The address of the header is used to initialize the prototype index file
FCB.

The map area of the index file, pointed to by the FH2$B_MPOFFSET field of
the home block, is scanned. The file size is calculated from the value in the
FCB$L_FILESIZE field, plus the number of retrieval pointers.

In computing the number of retrieval pointers, the type of map pointer is
determined, and the size and LBN fields of the pointer are filled in accordingly.
The pointer count is incremented, and another pointer is fetched; placement
pointers, however, are transparently excluded in the count. For more information
on the format of retrieval pointers, see Sections 2.3.3.3.1 through 2.3.3.3.4.

The rest of the fields in the index file FCB are then filled in. The file attributes of
the FCB are updated using the attributes of the index file header, but the file size
is preserved.

The address of the object rights block (FCB$R_ORB) is noted. The header LBN,
file ID, starting VBN, file owner, and file protection are filled in. The lock basis,
from which a serialization lock is constructed, is extracted from the low-order file
number (FCB$W _FID_NUM), the high-order file number (FCB$B_FID_NMX),
and the relative volume number (FCB$B_FID_RVN). If the directory bit is not
set, add 1 to the volume's directory LRU.

3.3.2.6 Constructing the Prototype Index File Window
After the prototype index file FCB is set up, the prototype index file window
is built. The WCB$W _SIZE field is calculated by adding the value specified by
WCB$C_LENGTH and the value the user specified with the /WINDOW qualifier
on the MOUNT command line. The WCB$V _READ bit is set to 1, allowing read
access. Then a window is set up that maps as much as possible of the index file,
starting with VBN 3. The presence of the WCB and the FCB causes the index file
to be open on the volume when it is mounted.

The map area of the file header is scanned, and retrieval pointers in the window
are built until one of the following results occurs:

• The entire header has been scanned.

Volume Structure Processing 121

• The first retrieval pointer in the window maps the desired VBN.

The window is scanned for the starting VBN of the header. If the VBN is
contained within the window, the window is truncated so that it maps up to
the start of the header exactly.

However, if the starting VBN of the header is not contained in the window,
the entire window must be discarded (it is retained in cache, if possible) in
preparation for a window turn. However, if the desired VBN precedes th~ starting
VBN of the header, the existing window is the best possible effort.

After the window is initialized, the necessary pointers are set up. The map area
is scanned and the retrieval pointers are obtained.

As many new retrieval pointers are built as necessary to describe the window. If
the window is full, the entries are shifted up by one until the operation would
cause the pointer mapping the desired VBN to shift off the top. Finally, the
pointer is built, and is included in the count given by the WCB$W _NMAP field.

3.3.2.7 Reading the SCB
The storage map file header is read, and the starting LBN of the storage bitmap
is calculated. The size of the storage bitmap is computed from the volume size
and cluster factor because the storage bitmap file is rounded up to the next
cluster boundary.

The storage control block is read. The shared file system cannot tolerate failure
to read the storage control block because that is where the volume label used for
locking is stored.

3.3.2.8 Establishing the Volume Lock
The volume lock is obtained and the volume lock name is established. The
resource name used for the volume allocation lock is stored in the VCB.

If the volume is being mounted with the /NOSHARE qualifier, the resource name
is a unique node identifier plus a unique device identifier. The node identifier
is taken from the global cell SCS$GB_NODENAME and stored in the prototype
VCB$T_ VOLCKNAM field. The device identifier is taken from the UCB of the
device being mounted.

For shared mounts, however, the resource name is the volume label. Because
volume labels may change after the volume is mounted, the first process
to mount the device for write access writes the volume label used into the
SCB$T_ VOLOCKNAME field. All other processes mounting the volume read
the SCB$T_VOLOCKNAME field for the resource name and write it into the
prototype VCB$T_ VOLCKNAM field.

12a Volume Structure Processing

The volume allocation lock is then acquired in protected write mode, which is
necessary to allow the value block to be written later. If this is a nonshared
mount, the system-owned lock (stored in the global cell EXE$GL_SYSID_LOCK)
is used as a parent lock to cause the lock to be mastered locally without any
cluster message traffic from the distributed lock manager.

A $GETLKI function is also performed on the volume allocation lock to determine
the number oflocks granted on that resource (that is, the number ofVAXcluster
nodes that have this volume mounted). This information is later used to
determine whether a rebuild operation should be performed on the volume after
it is mounted.

If the count of volume locks does not match the count in the storage control block
(SCB$W _ WRITECNT), the count is updated, and the volume is marked to be
rebuilt, if necessary (depending on the flags set in the SCB$L_STATUS2 field).
The SCB$L_STATUS2 flags are cleared only upon successful completion of a
rebuild, so rebuilds are attempted until the volume is actually rebuilt.

The flags in the SCB$L_STATUS field are set to mark which caches are enabled.
If the size of the extent cache has been established, the SCB$V _MAPALLOC
bit is set. Likewise, if the size of the file ID cache has been established, the
SCB$V _FILALLOC bit is set. If the size of the quota cache has been established
and the device is not part of a volume set, the SCB$V_QUODIRTY bit is set.
These bits may already be set if the disk has been mounted elsewhere in the
VAXcluster with the same caches enabled.

The storage bitmap sequence number in the volume lock value block is
incremented to invalidate potential copies in the file system caches. The storage
control block is rewritten; if the write fails, the volume is write-locked.

If this is not the first mount for this device, essential mount parameters are
checked to make sure they are consistent. The information from the current
mount request is compared with the value block of the device lock, which contains
information about this device from all nodes in the cluster. This information must
be consistent across the cluster, and it includes the following parameters, for
example:

• The ownership of the volume

• The protection of the volume

• Whether the volume is locked or enabled for write access

• Whether the volume has been mounted foreign or file-structured

The device and volume lock value blocks are also compared to see if this is the
first mount for this device. If the value blocks do not match, another volume of
the same name is already mounted in the cluster.

Volume Structure Processing 129

3.3.2.9 Locating the Highest File Number
The index file bitmap is scanned backwards from the end to find the highest file
number. The VBN of this file is compared to the index file end-of-file mark. If the
EOF is short, the EOF delta is set higher so that the first create operation will
update the index file header. If this is not the initial mount of the volume, the
index file EOF is copied from the value block.

If this is the first mount of the volume, the storage map is scanned to compute
the number of free blocks on the volume, and the VCB$L_FREE field is updated.

3.3.2.10 Allocating the 1/0 Database Structures
The routine MAKE_DISK_MOUNT performs all of the database manipulation
needed to mount a volume. The mode is set to kernel to gain write access to the
1/0 database.

This routine allocates the real VCB, FCB, and WCB in nonpaged system pool,
and links them. The control blocks are all allocated in advance to avoid having to
back out of some awkward situations later. The one exception is the AQB, which
is either found or allocated by the START_ACP routine.

The first required control block to be allocated is the VCB. The following actions
are performed:

• Memory is allocated according to the size indicated by the VCB$C_LENGTH
field.

• The constant DYN$C_ VCB is written to the VCB$B_TYPE field.

• The UCB is established, and forward and backward links are set up.

• The object rights block (ORB) is established, and forward and backward links
are set up.

The index file FCB is the second structure to be constructed. The following
actions are performed:

• Memory is allocated according to the size indicated by the FCB$C_LENGTH
field.

• The constant DYN$C_FCB is written to the FCB$B_TYPE field.

• The forward and backward links to the window listhead are set up.

• The ACL fields in the ORB are initialized.

• The FCB is inserted as the first element on the volume control block's FCB
list.

130 Volume Structure Processing

The index file WCB is the third structure to be constructed. The following actions
are performed:

• Memory is allocated according to the size indicated by the WCB$C_LENGTH
field and the number of mapping pointers indicated by the WCB$W _NMAP
field.

• The constant DYN$C_ WCB is written to the WCB$B_TYPE field.

• The WCB is inserted on the file control block's WCB listhead.

The cache block (VCA) for the volume is then allocated. Its size is computed from
the cache parameters. The address of the VCA is written to the VCB$L_CACHE
field, and the constant DYN$C_ VCA is written to the VCB$B_TYPE field.

If the volume is part of a volume set, the volume is attached to the RVT for the
set, creating an RVT if one does not exist. The pointers to the VCB and the WCB,
as well as a lock basis, are established. The volume set lock is taken out, and the
volume set structure name is checked to ensure that it is unique.

Space is allocated for logical name and mounted volume list entries. If a logical
name is given in the command, it is assigned to the volume. Otherwise, the
logical name is constructed from the volume label.

3.3.2.11 Creating the AQB
At this point, all data blocks except the AQB have been allocated. Before the
AQB can be allocated, the volume ownership and protection must be set up in
the VCB (in the ORB$L_OWNER field). The default comes from the volume
UIC; otherwise, a volume owner is established on the command line by the
/OWNER_UIC qualifier. The rest of the data structures are hooked up in the
device database.

The VCB pointer in the UCB is set up. The 1/0 database mutex (IOC$GL_MUTEX)
is acquired. Nonpaged dynamic memory for the AQB is allocated and initialized,
and the DYN$C_AQB constant is copied into the AQB$B_TYPE field. The mount
count is initialized to 1, indicating that a single volume is being handled. The
AQB$V_XQIOPROC·field is set to 1, indicating that an XQP is being used.

The AQB forward and backward links are set up. The AQB is linked into the
system AQB list, headed by the system cell IOC$GL_AQBLIST.

The routine SETUP _BLOCKCACHE is called to allocate dynamic memory and
initialize it for use in the buffer cache.

The UCB$V _MOUNTING field is initialized to 1. The address of the AQB is
moved into the VCB.

Volume Structure Processing 131

3.3.2.12 Establishing File System Context
The various value block contexts are stored by converting the volume, volume set
(if present), and device locks to their system-owned compatible modes.

The device lock may not be present if the device is not cluster-accessible.

In addition, the IO$_MOUNT function is issued to synchronize the file system to
the newly mounted volume. The following actions then occur:

• The function decision table (FDT) processing for IO$_MOUNT checks and
clears the UCB$V _MOUNTING bit.

• The file system finds the AQB and verifies that the :file structure type is one
that it supports.

• The :file system sets the UCB$V _MOUNTED bit.

MOUNT also creates the mounted volume list entry (MTL), or mount list
entry, and the logical name for the volume. An MTL appears in the job mounted
volume list for each volume mounted by the process with either the /SHARE or
the /NOSHARE qualifier. In addition, each volume mounted with the /SYSTEM
or the /GROUP qualifier has an entry in the systemwide mounted volume list.
The list itself is a doubly linked list.

The fields of the mounted volume list entry are shown in Figure 3-11 and are
described in Table 3-7.

Figure 3-11 : Format of the Mounted Volume list Entry

MTL$L_MTLFL

MTL$L_MTLBL

MTL$B_STATUS I MTL$B_TYPE I MTL$W_SIZE

MTL$L_UCB

MTL$L_LOGNAME

reserved

0

4

8

12

16

20

132 Volume Structure Processing

Table 3-7: Contents of the Mounted Volume List Entry

Field Name

MTL$L_MTLFL

MTL$L_MTLBL

MTL$W_SIZE

MTL$B_TYPE

MTL$B_STATUS

MTL$L_UCB
MTL$L_LOGNAME

Description

Forward pointer to the rest of the entries in the list.
Backward pointer to the rest of the entries in the list.

Structure size in bytes.

Structure type code. This field contains the DYN$C_MTL type
code to identify the data structure as a mounted volume list
entry.
Status byte. MTL$V _ VOLSET is defined within MTL$B_STATUS.
This mounted volume list entry is for a volume set. This is
bit 24.

Pointer to device UCB.
Pointer to the logical name associated with the volume. If this
field contains a value of 0, no logical name exists for the volume.

3.3.3 Processing a Volume Set
A volume set is a collection of related volumes that is normally treated as
a single logical device. Information about a volume set is maintained in the
relative volume table (RVT), which is a dynamic structure in the 1/0 database
that is allocated from nonpaged pool. The format of the relative volume table is
discussed in Section 3.3.1.5.

Each volume in a volume set contains its own Files-11 structure; however, files
on the various volumes in a volume set may be referenced with a relative volume
number that uniquely determines on which volume in the set the file is located.

A volume set has a structure name associated with it, which is a string of up to
twelve ASCII characters which identifies the volume set. The characters in the
structure name should not include control characters or the delete character, and
the structure name cannot be null.

The volume label of each of the volumes malting up the set must be unique
within the set, and must be different from the structure name. The first relative
volume of the set contains a volume set list file (VOLSET.SYS, located in the
master file directory) which lists the volume labels of all the volumes in the set,
thus associating volume labels with relative volume numbers. Each volume is
identified as being part of the set by carrying the structure name, its volume
label, and its relative volume number.

Volume Structure Processing 133

Volume set processing differs from single-volume processing in two main areas:

• Space management-When a file is created, the file is located on the volume
with the most space, unless the user explicitly specifies the placement. Once
created, a file is always extended on the volume on which it resides unless the
volume is full or the user specifies the placement.

• Root volume-The root volume must be mounted for any of the remaining
volumes in the set to be referenced.

3.3.3.1 Creating a Volume Set
Two or more disk volumes may be bound into a volume set using the MOUNT
/BIND=volume-set-structure-name command. The volumes specified in the
volume-label list are assigned relative volume numbers based on their position in
the label list. The first volume specified becomes the root volume (relative volume
1) of the volume set.

Also, a volume may be added to an existing volume set that is already mounted
by using the MOUNT/BIND command. The /BIND qualifier needs to be specified
the first time the volume set is created or when a new volume is added. On
subsequent mounts, the MOUNT command uses the information (for example,
the structure name and the relative volume number) recorded in the home block
to form the volume set.

3.3.3.2 Mounting a Volume Set
The following steps are performed for each volume set member when a volume
set is created or mounted:

• The volume set structure name is established.

If the relative volume number field in the home block (the HM2$W_RVN field)
contains a value of 0, indicating that this volume has never been a part of any
volume set, then the structure name is established from the /BIND qualifier
on the MOUNT command line.

If the HM2$W _RVN field contains a nonzero value, then the structure name
in the HM2$T_STRUCNAME field is used.

When the /BIND qualifier is specified and the HM2$W _RVN field contains a
nonzero value, then the structure names specified in the /BIND qualifier and
the HM2$T_STRUCNAME field in the home block must match.

• The volume is mounted as a single volume.

• A routine is called to enter this volume into the relative volume table. This
routine finds the RVT of this volume set by its structure name.

134 Volume Structure Processing

If such an RVT does not exist (that is, this volume is the first volume of the
set to be mounted), an RVT is created, and the relative volume number for
this volume is set to 1 if its RVN was 0.

If an RVT already exists (that is, this volume is not the first to be mounted),
this volume is entered in the RVT. When a new volume is added to the set,
the relative volume number is set to the previous number of volumes in the
set, plus 1. For an existing volume already bound to the volume set, the value
in the HM2$W _RVN field is used as the relative volume number.

• When a volume set is created, or when a volume is added to an existing
volume set (with the MOUNT/BIND command), the new volume must be
bound into the volume set. Its volume label is entered into the volume set
list file, which is the VOLSET.SYS file in the MFD on the root volume.
For this reason, the root volume must be mounted first (or be already
mounted) in a /BIND operation. Also, the home block of this new volume
must be updated to reflect that it is a member of the volume set. That is, the
HM2$T_STRUCNAME field and the HM2$W _RVN field are updated to reflect
this volume's membership in the volume set.

3.3.4 Rebuilding the Bitmap and Disk Quota Files
If a disk volume has· been improperly dismounted (for example, as a result of a
system failure), the index file bitmap, the allocation bitmap, and the quota file
must be rebuilt in order to recover caching contents that were enabled on the
volume at the time of the dismount. By default, MOUNT attempts the rebuild.
The rebuild may consume a considerable amount of time, mainly depending upon
the number of files on the volume.

The following three types of caches may be enabled on a volume:

• Extent cache-preallocated free space. Blocks are allocated from the volume
and marked in the storage bitmap as being in use.

• File ID cache-preallocated file numbers. File IDs are preallocated from the
index file and marked in the index file bitmap as being in use.

• Quota cache-disk quota usage.

Sections 4.2.8 through 4.2.10 contain more information on these caches.
I

If both extent caching and file ID caching were enabled, the rebuild time is
directly proportional to the greatest number of files that ever existed on the
volume at one time. If disk quota caching was enabled, additional time to handle
quota processing may be required.

If none of these caches was in effect, then the rebuild is not necessary and does
not occur.

Volume Structure Processing 135

When a volume is rebuilt, the ACP control function 10$_ACPCONTROL is issued
to lock the volume against modifications whjle the rebuild is taking place. The
FIB$C_LOCK_ VOL constant is specified in the FIB$W _CNTRLFUNC field. The
ACP control function sets the VCB lock bit in the VCB$W _ACTIVITY field.

Virtual memory for 1/0 buffers is allocated with a call to LIB$GET_ VM.

The index file INDEXF.SYS is opened with the ACP function 10$_ACCESS (or
the ACP subfunction 10$M_ACCESS). The home block is read and validated, and
the volume characteristics are established, including the VBN offset for the file
headers of the volume, the cluster factor of the volume, the VBN offset of the
index file bitmap, and the end of the index file. The INDEXF.SYS file is then
deaccessed by the ACP function 10$_DEACCESS.

The storage bitmap file is accessed so that the SCB can be checked to see if a
rebuild is still necessary. The flags of the SCB$L_STATUS2 field are set when the
volume is mounted if the following two conditions exist:

• The corresponding flags are set in the SCB$L_STATUS field.

• The current count of VAXcluster nodes enabled for write access to the volume
(contained in the SCB$W _ WRITECNT field) does not match the current
number of outstanding locks. This condition indicates that caching was
enabled on the volume and that the volume was improperly dismounted.

If the volume is part of a volume set, the index file is accessed for each volume in
the set to obtain the characteristics of each volume.

Two types of rebuild operations may occur: conditional or unconditional. If the
rebuild is conditional (that is, if the QUODIRTY or MAPDIRTY bits are set in
the SCB, meaning that the quota file or storage map are only partially updated),
the quota file is checked to see if it needs to be rebuilt; it is not rebuilt unless
it was active. If the quota file has to be rebuilt, the storage bitmap file and the
allocation bitmap are also rebuilt. If nothing needs to be rebuilt, the volume lock
is released and the rebuild is finished.

If the rebuild is not conditional (that is, the volume will be rebuilt regardless),
the FIB$C_ENA_QUOTA constant is moved into the FIB$L_CNTRLFUNC field
to enable the quota file. The quota file is then scanned from beginning to end
to build the usage table. The usage table is a chained hash table consisting of
entries for all the quota file records that show zero blocks in use. The key to the
hash table is the UIC that is to be stored there. The hash function is a simple
modulus function on the UIC of the file in question with the number of entries in
the table. The overflow caused by collisions is handled by chaining each bucket.
The quota file is then deaccessed.

136 Volume Structure Processing

The main reasons for having conditional and unconditional rebuilds is because
the System Management Utility (SYSMAN)1 and the SET VOLUME/REBUILD
command specify rebuild operations.

The bitmap file is opened for each volume in the volume set, and all the file
headers are read. The SCB is also read to obtain the volume size and cluster
factor. From these, the size of the allocation bitmap is calculated. The allocation
bitmap is then initialized to show all the space available on the volume. A set bit
in the bitmap indicates a free block on the volume.

The index file is opened. Virtual memory for a working copy of the index file
bitmap is allocated. The old index file bitmap is read into a buffer.

All the virtual blocks in the index file are scanned. The file headers, starting with
the MFD, are read, and each is verified to ensure that it is valid. The verification
includes the following checks:

• The structure level contained in the FH2$B_STRUCLEV must equal 2.

• The area offsets and the retrieval pointer use counts must be consistent.

• The file number (comprised of the FH2$W_FID_NUM and FH2$B_FID_NMX
fields) cannot equal 0.

• The header checksum is calculated and validated.

• The header file number (FH2$W _FID_NUM) and file sequence number
(FH2$W _FID_SEQ) are compared to the file number (FID$W _NUM) and
file sequence number (FID$W _SEQ).

If the file header is valid, the number of blocks it occupies is computed and then
charged to the owner UIC. The blocks in use are marked in the storage bitmap,
and, if quotas are being rebuilt, are entered in the quota hash table under the
owner UIC of the file.

However, if the file header is not valid, a check is made to see if it is marked as
being in use in the index file bitmap. If it is, the sequence number of the file ID
is incremented and written. The header is then marked as being free in the index
file bitmap.

If an I/O error occurs while a header is being read, an invalid header with a
random sequence number is written to the header slot. This action is to prevent a
valid file header from reappearing later, if the I/O error happens to be transient.

After all the headers have been accounted for, all the unreferenced bits past the
end of the index file are cleared. The index file bitmap is written back to disk.
The virtual memory for the working copy of the index file bitmap is released.

1 SYSMAN includes the functions of the Disk Quota Utility (DISKQUOTA), which operated as a
standalone utility in VMS Version 4.6.

Volume Structure Processing 137

The new storage bitmap is written back to disk and any working memory is also
released. The pertinent flag bits (SCB$V _MAPDIRTY2, SCB$V _MAPALLOC2,
and SCB$V _FILALLOC2) are cleared in the SCB.

The number of free blocks (that is, the volume size) is updated in the VCB.

At this point, the entire volume set has been scanned, and a table of total disk
usage (the usage table) for the volume exists. Each table entry is used to update
the corresponding quota file entry in QUOTASYS. The update consists of two
passes:

1. Existing entries are updated and the volume is unlocked.

2. New quota file records are created for UICs that have blocks in use but have
no corresponding quota file entries. Because the quota file may have to be
extended, this action must be done after the volume is unlocked.

The SCB$V_QUODIRTY2 flag bit must be updated in the SCB, so the storage
bitmap file is opened for write access. The flag bit is cleared, and the SCB is then
written back to disk. The storage bitmap file is then closed.

At this point, the volume has been rebuilt. Any remaining virtual memory is
released, and the rebuild exit handler is canceled.

3.4 Dismounting a Volume
The volume dismount operation is the camplement of the volume mount. Like
the Mount Utility, the Dismount Utility (DISMOUNT) is a privileged shareable
image. Its chief function is to mark a volume for dismount.

A volume will not be dismounted1 if the transaction count is greater than 1,
which can be caused by any of the following reasons:

• Paging files, swapping files, or images have been installed on the volume.

• Devices are spooled to the volume.

• Secondary page or swap files are resident on the volume.

• Files are open on the volume.

When a dismount operation for a Files-11 volume is requested, the volume is only
marked for dismount. Once the volume is marked, the final cleanup operations
(for example, the deallocation of the FCBs and the VCB) are done by the file
system when the last file on the volume is closed. Therefore, there is a delay from
the time the volume is marked for dismount to the time the volume is actually
dismounted.

1 This can be overridden by the DISMOUNT/OVERRIDE=CHECKS command.

138 Volume Structure Processing

The asynchronous nature of the volume dismount requires that three different
components of the system be involved in the dismount procedure:

Component

Dismount Utility
IOC$DISMOUNT routine
File system

Function

Prepares the volume to be dismounted
Handles device-independent dismount processing
Handles the actual dismount of the volume

3.4.1 Beginning the Dismount Procedure

A volume dismount may be triggered by two events:

• If a process explicitly issues a dismount request with the DCL DISMOUNT
command or the $DISMOU system service.

• If a top-level process is deleted, then all volumes that were mounted either
privately or shareable by this job are implicitly dismounted.

When a dismount operation is requested, the dismount image is activated. The
main module of the Dismount Utility is DISMOU, located in the DISMOU facility.
This module includes the SYS$DISMOU routine, which contains the basic logic of
the DISMOUNT command.

3.4.1.1 Preparing the Volume to be Dismounted
In general, when a dismount is requested, certain information about the device
has to be acquired. For example, the mounted volume list entry for this particular
device is retrieved, and the name of the device to be dismounted is determined.
If a logical name is. associated with the physical device name descriptor, it is
first translated, and then a channel is assigned to the device using the $ASSIGN
system service. A channel is needed for two reasons:

• The device UCB address is needed, and it is contained in the CCB.

• The assigned channel acts as an interlock to prevent premature deallocation
of the VCB.

The user is granted the BUGCHECK and EXQUOTA privileges using the
$SETPRV system service.

'lb prevent race conditions between simultaneous dismounts on the same volume,
the dismount interlock on the device is obtained and taken out in exclusive
mode. This lock has the following form:

DMT$<allocation-class-device-name>

Volume Structure Processing 139

The allocation class device name is established using the $GETDVI system
service. Figure 3-12 shows the format of the dismount interlock.

Figure 3-12: Format of the Dismount Lock

$ I T I M I D

Device Name

ZK-9730-HC

3.4.1.2 Validating the Volume Characteristics
The routine MAKE_DISMOUNT is called to dismount the volume. This routine
does the kernel-mode validation and initial setup of the dismount operation. The
following device characteristics, returned by the $GETDVI system service, are
checked to ensure that the volume can be dismounted:

Device Characteristic

DEV$V_FOD

DEV$V_MNT

DEV$V_DMT

DEV$V_AVL

Description

The device is :file-oriented. If this bit is not set, a status of
SS$_NOTFILEDEV is returned.

The device is properly mounted. See the description of the
DEV$V _DMT bit for more information.

If this bit is set, the device is in the process of being
dismounted.

If this bit and the DEV$V _MNT bit are clear, the device
is idle (that is, dismounted). In this case, a status of
SS$_DEVNOTMOUNT is returned.

If this bit is clear and the DEV$V _MNT bit is set, the
volume is mounted.

The device is available for use. If this bit is not set, a
status of SS$_DEVOFFLINE is returned.

The primary and secondary device characteristics must match; otherwise, the
device may be spooled.

140 Volume Structure Processing

The UCB and the VCB addresses for the channel are obtained If this is a volume
set, the RVT address is also obtained. The address of the channel comes from the
global cell CTL$GL_CCBBASE, which contains the base address of the CCB table.
The address of the UCB comes from the CCB$L_UCB field, and the address of
the VCB comes from the UCB$L_ VCB field.

The job mounted volume list is searched for entries of the volume; if found, they
are removed and the dismount procedure may proceed. If none is found, the
system mounted volume list is searched for any volumes that were mounted with
the /GROUP or /SYSTEM qualifiers. Dismounting these volumes requires the
appropriate privilege. If the volume is mounted by the current process and the
dismount request is a normal 1 one, no privilege checks need to be made.

3.4.1.3 Checking Privileges
In the course of verifying whether the dismounter has the proper privileges
to dismount the volume, various conditions are checked for. The four main
conditions are as follows:

• If the volume was mounted privately

• If DISMOUNT/ABORT or /CLUSTER was specified

• If the volume was mounted privately by another process

• If the volume was mounted for group or system access

3.4.1.3.1 Checking for a Private Mount
The process mount list is searched for a privately mounted volume ifthe /ABORT
or the /CLUSTER qualifier was not specified on the DISMOUNT command line.
This is done by obtaining the address of the job information block from the
PCB$L_JIB field in the current process control block whose address is stored in
the scheduler database. The address of the process or jobwide mount list can then
be obtained from the JIB$L_MTLFL field.

The 110 mutex IOC$GL_MUTEX is then acquired to synchronize operations
while the entries of the mounted volume list are searched to see if the volume is -
privately mounted.

The mounted volume list is searched for the entry representing the desired UCB
(the MTL$L_UCB field). If the MTL$B_TYPE field does not contain the constant
DYN$C_MTL, an error is returned.

After the search concludes, the 1/0 database mutex is released. If a mounted
volume list entry was found, a success status is returned; no privilege is required
to dismount a private volume. At this point, a privately mounted volume has
been properly dismounted.

1 /ABORT, /OVERRIDE, /GROUP, or /SYSTEM was not specified on the command line.

Volume Structure Processing 141

3.4.1.3.2 Checking for a Volume Mounted with I ABORT or /CLUSTER
If no MTL was found in the process mount list or if the process mount list was
not searched because the /ABORT or the /CLUSTER qualifier was specified on
the DISMOUNT command line, then the system mount list is searched. The
address of the systemwide mounted volume list is contained in the global cell
IOC$GQ_MOUNTLST.

To determine if the process has the necessary privilege to dismount the volume,
the privilege mask contained in the PHD$Q_PRIVMSK :field pointed to by the
global cell CTL$GL_PHD is obtained. The address of the VCB contained in the
UCB$L_ VCB :field is also obtained to determine whether the volume was mounted
for group or systemwide access.

3.4.1.3.3 Checking for a Volume Mounted Privately by Another Process
If an MTL is not found in the system mount list, then the volume must be
mounted privately by some other process. In order for the current process to
dismount the volume, the process must meet the following two conditions:

• Must have specified the /ABORT qualifier on the DISMOUNT command line

• Must either own the volume or have the necessary privilege to override
volume protection (VOLPRO)

The DISMOUNT/ABORT command allows a user to dismount a volume that is
owned by a different process. It is useful, for example, when a volume is mounted
shareable (that is, many processes have MTLs for the volume). /ABORT also
performs the following tasks:

• Cancels pending 110

• Cancels mount verification

The address of the object rights block (ORB) is obtained from the UCB in order
to determine which process owns the volume. The I/O mutex is then released.
The UIC of the current process is obtained from the PCB$L_UIC :field in the PCB
of the current process. A status value of SS$_NOPRIV is returned if any of the
following conditions are met:

• The DMT$V _ABORT bit is set.

• The UIC does not match the UIC contained in the ORB$L_OWNER field.

• The dismounting process does not have VOLPRO privilege.

142 Volume Structure Processing

3.4.1.3.4 Checking for a Volume Mounted for Group or System Access
If an MTL was found in the system mount list, the following two conditions must
exist:

• The volume must be mounted for group or system access. The VCB$V _GROUP
bit is set if the volume has been mounted with the /GROUP qualifier.

• The current process must have the correct privileges necessary to dismount
the volume.

If the P~V$V _SYSNAM bit is set in the privilege mask for the process, the
process has SYSNAM privilege, which means that the process can dismount
volumes owned by any group, and no further checking needs to be done.

If the process has the PRV$V _GRPNAM bit set in its privilege mask (meaning
that it has GRPNAM privilege), the ownership of the volume must be checked to
see if the current process is in the same group as the v:olume owner. This is done
by determining which group owns the logical name table· that contains the logical
name for the volume.

If there is no logical name associated with the volume (the MTL$L_LOGNAME
field contains a value of 0), it is assumed that the process is in the correct group.
However, if there is a logical name a.ssociated with the volume, then the logical
name mutex is obtained, and the MTL$L_LOGNAME field is used to obtain
the address of the logical name block. The address of the logical name table
is obtained from the LNMB$L_TABLE field in the logical name block, and the
address of the object rights block is obtained from the LNMTH$L_ORB field in
the logical name table.

The UIC or the volume owner is then obtained from the ORB and the logical
name mutex released. The upper 16 bits of the volume owner UIC (the UIC group
number) are then compared with the UIC group number of the current process
(contained in the PCB$W _GRP field in the PCB of the current process). If they
do not match, the 1/0 mutex is released, and a status value of SS$_NOGRPNAM
is returned.

If the VCB$V _SYSTEM bit is set, the volume has been mounted for system
access. If the PRV$V _SYSNAM bit is not set in the privilege mask, then the 1/0
database mutex is released and a status value of SS$_NOSYSNAM is returned.

After the process has been checked to see if it has the necessary privileges to
dismount a volume that was mounted for group or system access, the 1/0 mutex
is released. One last check compares the UIC of the device being dismounted
with the UIC of the system disk.

A system disk cannot be dismounted; otherwise, all 1/0 to the system disk, such
as image activation, fails. The global cell EXE$GL_SYSUCB contains the address
of the UCB of the system device. If the device being dismounted is a system disk,
the dismount operation fails with a value of DISM$_SYSDEV.

Volume Structure Processing 143

3.4.1.4 Setting Up the Local Mounted Volume Database
The routine SETUP _MTL sets up a local mounted volume database by collecting
the appropriate mount list entries from the system's mounted database. How it
is set up depends on whether a normal dismount or DISMOUNT/ABORT was
specified.

If DISMOUNT/ABORT was specified (the DMT$V _ABORT bit is set) the 1/0
database must be scanned. This requires raising IPL to IPL$_SYNCH (IPL 8)
so that systemwide data structures can be searched. Also, no page faults can be
incurred while at IPL$_SYNCH, so the pages are explicitly locked in memory.

The PCB of the null process is obtained from the scheduler database (to be
able to distinguish a nonnull process), and the 1/0 database mutex is acquired.
The scheduler database is searched for valid processes that have MTLs for the
mounted volume.

The IPL is lowered to IPL$_ASTDEL (IPL 2-the highest level at which page
faults are permitted) because mounted volume lists are located in paged pool.
This can be done because the existence of a mounted volume list entry means
that this process will not be deleted until the I/O database mutex is released. At
this point, the jobwide mount listhead JIB$L_MTLFL is used to find the correct
entry.

Setting up the local mounted volume database is much more simple in the case of
a normal dismount. If a normal dismount was specified (the DMT$V_ABORT flag
is not set), the scheduler database is used to find the address of the JIB contained
in the PCB$L_JIB field. After the 1/0 database mutex is acquired, the jobwide
mount listhead JIB$L_MTLFL is used to find the correct entry.

All the mounted volume list entries for the current process must be found so
that the local mounted volume database can be set up. Figure 3-13 shows the
relationship of the data structures in the mounted volume database.

The MOVE_MTL routine removes all the appropriate MTLs from the mounted
database and moves them to the local mounted volume database. If the volume
is a member of a volume set, then the routine loops for each volume. If the
DMT$V _UNIT flag is set, however, the requested UCB points to a single
volume rather than to a member of a volume set. The address of the RVT is
obtained from the VCB$L_RVT field, and that of the UCB is obtained from the
RVT$L_UCBLST field.

If an entry is found, it is removed from the old list and inserted into the new
list representing the local mounted volume list database. After all the entries
have been located, the 1/0 database mutex is released, and the system dismount
routine is called.

144 Volume Structure Processing

Figure 3-13: Mounted Volume Database

[

JIB$L_MTLFL .,
IOC$GQ_MOUNTLST

~

UCB

L
Moumed
Volume

List

C>

C>

VCB

l

J l

Logical Name
Table Root

IOC$GL_AQBLIST

C>

~
Logical
Name
Table

J ~
~

AQB

3.4.2 Device-Independent Dismount Processing

,.
ACP .,
XOP

ZK-9737-HC

In the second step of the volume dismount procedure, the device-independent
dismount routine in the VAX/VMS executive-the IOC$DISMOUNT routine-
is called to dismount the volume. This routine is called when any device is
dismounted, regardless of whether the volume is mounted Files-11 or as a foreign
volume. It performs some of the device-independent dismount operations for the
indicated MTL entry.

To begin with, the routine performs the following three actions:

• The logical name associated with the volume is deallocated.

• The mount list entry is deallocated.

• The mount count in the VCB (the VCB$W _MONT field) is decremented.

If the mount count is nonzero (for example, more than one process mounted
the volume with the /SHARE qualifier), this routine is complete, and control
is returned to the caller.

When the mount count reaches zero, the device is marked for dismount. At this
point, the volume's mount verification bit (VCB$V _MOUNTVER) is cleared to
disable future mount verification on the volume.

A channel is assigned to the device. For nonforeign devices, an ACP control
function with the dismount subfunction is issued to the file system (whether the
file system is the XQP, the FllAACP, or the MTAACP). When the ACP control
function completes, the channel is deassigned, and control is returned to the
caller.

Volume Structure Processing 145

3.4.3 Final Dismount Processing

The initial file system ciismount occurs when the file system receives an ACP
control function with the dismount subfunction.

This routine in the XQP performs the following actions:

• The FID cache, the extent cache, and the quota cache are flushed.

• The SCB$W _ WRITECNT field in the storage control block is decremented,
indicating that the volume has been properly dismolinted.

Any subsequent file operations are done without caching to preserve the integrity
of the volume.

Final file system dismount processing occurs after two conditions have been met:

• The last file is closed on the volume.

• The last queued file system function has been processed.

In the XQP's 1/0 completion routine, the CHECK_DISMOUNT routine is called to
check if the volume is marked for dismount. If it is, and the volume transaction
count in the VCB$W_TRANS field is 1, then the volume is dismounted
immediately. The UCB$V _DISMOUNT bit in the device UCB is set to stop
further activity.

CHECK_DISMOUNT performs the following tasks:

• Makes an error log entry to record this dismount operation and send it to the
error logger.

• Issues an available (or an unload) 1/0 function to the driver to clear the
drive's volume valid status (or to unload the device).

• Raises the device lock to protected write mode, if the volume was mounted
shareable, so the lock can be written back later. If the mount was private, the
device lock is already at exclusive mode.

• Marks the volume as dismounted by clearing the following bits:

DEV$V _MNT Device is mounted.

DEV$V _DMT Device is marked for dismount.

DEV$V _SWL Device is software-writelocked.

• Decrements the device reference count in the UCB$W _REFC field.

• Clears the device protection fields in the ORB.

• Disconnects the VCB from the UCB by clearing the pointer to the VCB (the
UCB$L_ VCB field).

• Decrements the mount count on the AQB (the AQB$B_MNTCNT field). If
this mount count has a value of 0, this AQB will be deallocated later.

146 Volume Structure Processing

• Deallocates all FCBs.

• Deallocates the FID cache, the extent cache, and the quota cache, and
dequeues the corresponding cache locks.

• Dequeues the volume allocation lock.

• Deallocates the VCB.

• Demotes the device lock to the appropriate mode. If this is the final dismount
in the cluster, the device lock value block is zeroed.

• Deallocates the device if the device is marked as deallocate-on-dismount.

• Deallocates the AQB, if necessary. The buffer cache associated with the AQB
is also deallocated.

At this point the volume is completely dismounted.

Chapter 4

Cache Processing on a Single Node

Buffer n. [Origin obscure: possibly Italian buffo "farcical, comic" or Latin bufo "a
toad.''] 1 A region between two devices designed to distort or, if possible, prevent
the flow of data in either direction. 2 An old, greasy, and abrasive rag used to
clean tape heads.
Stan Kelly-Bootle

Cache A very expensive part of the memory system of a computer that no one is
supposed to know is there.
Jeff Pesis

Outline

Chapter 4 Cache Processing on a Single Node

4.1 Introduction

4.2 Buffer Initialization and Allocation
4.2.1 Layout of the I/O Buffer Cache
4.2.2 XQP Cache Header
4.2.3 Buffer Descriptors
4.2.4 Buffer Lock Block Descriptors
4.2.5 LBN and the Lock Basis Hash Tables
4.2.6 Buffer Pools
4.2. 7 Specialized Caches
4.2.8 Extent Cache
4.2.9 File ID Cache

4.2.10 Quota Cache

4.3 Obtaining Buffers
4.3.1 Extending Buffer Credits

4.4 Multiblock Disk Read Operations

4.5 Disk Write Operations

4.6 Systemwide Buffer Validation
4.6.1 Invalidating a Buffer
4.6.2 Changing the LBN of a·Buffer

Cache Processing on a Single Node 149

4.1 Introduction
Cache processing is a part of volume structure processing because it is an efficient
way of transferring data from disk to memory and back again. The contents of
the cache buffers are copies of the corresponding disk blocks (with the exception
of the directory index cache).

The file system manages its cache buffers as an LRU, or least recently used,
cache whose purpose is to retain in memory the buffers corresponding to the disk
blocks that the file system has most recently referenced. In this way, the data
does not have to be transferred from disk after it has already been read from
disk.

A major task of the XQP 110 buffer cache is to provide. a shared, system wide
cache in a multithreaded, procedure-based environment. Each node maintains
a systemwide 1/0 buffer cache. All XQP I/O is performed to the buffers in the
cache.

To maintain coordinated access to the file structure and to the buffer cache, the
XQP uses the distributed lock manager. Because the file structure components
(such as file headers, bitmaps, and directories) are themselves contained in or
associated with files, the components are generally synchronized with locks
corresponding to their associated files. For example, both the header and all
the data blocks of a directory are synchronized under a single lock based on the
directory's file ID. Each data block in the buffer cache is therefore identified by
the lock under which it is read.

4.2 Buffer Initialization and Allocation
The XQP uses a systemwide (single-node) 1/0 buffer cache allocated from paged
pool. The Mount Utility qualifiers are used to control buffer cache creation when
a disk is mounted. By default, all mounted volumes share the same buffer cache
that is allocated when the system disk is mounted during the boot process. If the
system parameter ACP _MULTIPLE is set, a new cache for each different device
type will be created.

A separate, private 1/0 buffer cache can be specified with the MOUNT qualifier
/PROCESSOR=UNIQUE. A specific 1/0 buffer cache can be specified with the
/PROCESSOR=SAME:mntdev qualifier, where mntdev is the name of an already
mounted device. In VMS Version 3, these qualifiers created unique ACP processes
for concurrency and caching. In Version 4, they create unique caches, and
concurrency is provided by the XQP design.

For most systems, increasing the size of the system default cache is better than
creating multiple caches (that is, one 800-block cache is more adaptive than
two 400-block caches). In rare circumstances, unique caches might be useful to
prevent activity on one set of volumes from flushing caches on a second set of
volumes.

150 Cache Processing on a Single Node

The SHOW DEVICE/FULL command shows the maximum buffers in the
file system cache and the size of the cache in blocks. This number should
approximate the sum of the various ACP _xxxCACHE system parameters.

If an attempt is made to allocate a separate cache but the allocation fails because
of a lack of sufficient contiguous space in paged pool, MOUNT will try to allocate
a minimal size cache instead. If the minimal size cache can be allocated, a
reduced cache message (REDCACHE) will be issued, and the volume will be
mounted successfully. However, performance will be greatly degraded because,
due to the lack of available buffers, only one request at a time can be processed.
If the minimal cache allocation attempt fails, an error is returned to the user.

4.2.1 Layout of the 1/0 Buffer Cache

The cache for a given mounted device is found by following the UCB$L_ VCB
pointer to the VCB, then the VCB$L_AQB pointer to the ACP queue block, and
finally the AQB$L_BUFCACHE pointer to the cache header. There is a single
AQB for each buffer cache. However, multiple VCBs may (and usually do) point
to a single AQB. The file system always uses the AQB to find the correct cache.

Figure 4-1 shows the how the structures of the 1/0 database point to the 1/0
buffer cache.

Cache Processing on a Single Node 151

Figure 4-1: Finding the XQP 1/0 Buffer Cache

l UCB l ~~ VCB ~~
l

t-- 1---

T UCB$L_VCB 1 r VCB$L_AQB 1 ~~ AOB ~~

AOB$L _BUFCACHE

UCB t--- VCB t--

~

Cache Header

1/0 Buffer Cache

ZK-9587-HC

The buffer cache itself consists of various areas:

• Fixed overhead area-A fixed area called the cache header containing the
addresses and the sizes of the following variable areas. The cache header, or
FllBC structure, also contains the queue headers discussed in Section 4.2.2.

• Buffer descriptor array-A variable area containing an array of buffer
descriptors, or BFRD structures. These structures describe what disk block
a given buffer belongs to (by LBN and UCB address), whether it is valid or
modified or being used, and what type of buffer it is. It also has an index to
its associated lock descriptor.

• Lock descriptor array-A variable area containing an array of lock
descriptors, or BFRL structures. These structures describe the locks
associated with the buffers in the cache.

152 Cache Processing on a Single Node

• Buffer LBN hash table-A variable area containing an array of word
indexes into the BFRD array. It tends to reduce the amount of time required
to search the cache to determine if a given LBN is already in the cache (over
what a linear search of all the descriptors would involve).

• Lock basis hash table-A variable area serving a similar function to the
LBN hash table. It allows a relatively quick search of tile BFRLs to determine
if one already exists for a given lock basis. A lock basis, consisting of a file
number and an RVN, is a unique way of locating a file on a volume set. It is
essentially another representation of the file ID, where the sequence number
is irrelevant (and is thus omitted). The lock basis becomes a component of the
lock resource name for its associated lock.

• Array of page-aligned buffers-Buffer pools of variable size. The number
of pages allocated for each of the pools is taken from the active values of the
ACP system parameters. Caches exist for the following types of blocks:

Block Type Minimum Size Location

Storage bitmap blocks 1 block Pool 0
Directory index blocks 1 block Pool 3
Directory data blocks 2 blocks Pool 1
Disk quota file blocks 2 blocks Pool 1

Random data blocks 2 blocks Pool 1
File header blocks 3 blocks Pool 2

Index file bitmap blocks 3 blocks Pool 2

Figure 4-2 shows the layout of the XQP 1/0 buffer cache.

Cache Processing on a Single Node 153

Figure 4-2: Contents of the XQP Buffer Cache

r Fixed overhead area

I Cache Header F 11 BC structure

I I Buffer Descriptors (BFRDs)

I I Lock Table Descriptors

I I LBN Hash Table

I I Lockbasis Hash Table

t
Extra space because of
page alignment

Start of page-aligned
buffers

Buffer Pool 0

I
Storage bitmap blocks

Directory file blocks

I
Buffer Pool 1 Random data blocks

I Quota file blocks

Buffer Pool 2 File header blocks

I I Index file blocks

Buffer Pool 3 Directory index blocks

t J
ZK-9588-HC

4.2.2 XQP Cache Header

The cache header, represented by the prefix FUBC$, contains pointers to the
variable areas that follow it. The cache header and the buffers are each allocated
as a single contiguous portion of paged pool. However, the descriptor area may
be allocated separately from the buffers. The total area occupied by the cache
header is about 10% of the area occupied by th~ buffers.

154 Cache Processing on a Single Node

The fields of a cache header are shown in Figure 4-3 and are described in
Table 4-1.

Figure 4-3: Format of the Cache Header

F11 BC$L_BUFBASE

F11 BC$L_BUFSIZE

F11BC$B_SUBTYPE l F11BC$B_TYPE l F11 BC$W_SIZE

F11 BC$L_REALSIZE

F11 BC$L_LBNHSHBAS

F11 BC$W_BFRCNT l F11BC$W_LBNHSHCNT

F11 BC$L_BFRDBAS

F11BC$L_BFRLDBAS

F11 BC$L_BLHSHBAS

F11 BC$W_FREEBFRL I F11 BC$W_BLHSHCNT

* F11BC$Q_POOL_LRU (32 bytes)

* F11BC$Q_POOL_WAITQ (32 bytes)

* F11BC$L_POOLAVAIL (16 bytes)

F11 BC$W_POOLCNT

F11 BC$L_AMBIGQFL

0

4

8

12

16

20

24

28

32

36

* 40

F~ 72

F~ 104

120

128

(continued on next page)

Cache Processing on a Single Node 155

Figure 4-3 (Cont.): Format of the Cache Header

F11 BC$L_AMBIGQBL 132

F11 BC$L_PROCESS_HITS 136

F11 BC$L_ VALID_HITS 140

F11 BC$L_INVALID_HITS 144

F11BC$L_MISSES 148

F11 BC$L_DISK_READS 152

F11 BC$L_DISK_WRITES 156

F11 BC$L_CACHE_SERIAL 160

F11 BC$L_CACHE_STALLS 164

F11BC$L_BUFFER_STALLS 168

* F11BC$T_CACHENAME (24 bytes) ~~ 172

Table 4-1: Contents of the Cache Header

Field Name

FllBC$L_BUFBASE

FllBC$L_BUFSIZE
FllBC$W _SIZE

FllBC$B_TYPE

FllBC$B_SUBTYPE

Description

Base address of the buffer area.

Size of the buffer area in bytes.
Standard size field. This field contains the size of the
block. However, because the total size of the buffer
cache may exceed 65Kb, the contents of this cell may
not reflect the true size of the structure.
Standard (VMS control block) type field. This field
contains the DYN$C_FllBC constant.

Standard subtype field.
(continued on next page)

156 Cache Processing on a Single Node

Table 4-1 (Cont.): Contents of the Cache Header

Field Name

FllBC$L_REALSIZE

FllBC$L_LBNHSHBAS
FllBC$W _LBNHSHCNT

FllBC$W _BFRCNT
F11BC$L_BFRDBAS
F11BC$L_BFRLDBAS

FllBC$L_BLHSHBAS

F11BC$W _BLHSHCNT
F11BC$W _FREEBFRL

F11BC$Q_POOL_LRU

FllBC$Q_POOL_ WAITQ

FllBC$L_POOLAVAIL

FllBC$W _POOLCNT

FllBC$L_AMBIGQFL
F11BC$L_AMBIGQBL

FllBC$L_PROCESS_HITS

FllBC$L_ VALID_HITS

FllBC$L_INVALID_HITS

F11BC$L_MISSES

Description

Size of memory allocated for the whole cache
structure.

Pointer to the beginning of the LBN hash table.
Count of entries in the LBN hash table.

'lbtal number of buffers.
Base address of the buffer descriptor area.
Base address of the buffer lock descriptor area.

Base address of the buffer lock hash table.
Number of entries in the buffer lock hash table.

First free buffer lock descriptor in the chain.

Array of quadword LRU queue headers for each
buffer pool. Buffers are arranged in the queues in
least recently used order.
Array of quadword cache wait queue headers for
each buffer pool. IRPs are inserted in a queue if the
process runs out of credits from a particular pool.

Number of available buffers in each of the buffer
pools.
Count of buffers in each of the buffer pools. This field
is composed of four word subfields (that is, 8 bytes),
each of which represents the buffer count in the pool
with which it is associated, as Figure 4-4 shows.

Ambiguity queue forward link.

Ambiguity queue backward link.

In-process buffer hits. This field counts the number
of times a buffer was reused from the in-process list.

Valid buffer cache hits. This field counts the number
of times a valid buffer is successfully found in the
cache.

Invalid buffer cache hits. This field counts the
number of times a buffer is successfully found in
the cache but the contents are invalid.

Buffer not found. This field counts the number of
times the buffer being sought is not present in the
cache.

(continued on next page)

Cache Processing on a Single Node 157

Table 4-1 (Cont.): Contents of the Cache Header

Field Name

Fl1BC$L_DISK_READS

F11BC$L_DISK_ WRITES

Fl1BC$L_CACHE_SERIAL

Fl1BC$L_CACHE_STALLS

F11BC$L_BUFFER_STALLS

Fl1BC$T_CACHENAME

Description

Number of read operations from disk into the buffer.
Number of write operations from the buffer to disk.

Number of cache serialization calls.

Number of cache serialization stalls.
Number of stalls caused by the lack of available
buffers.

Name of the cache. This field contains the device and
cache name for which the cache was created. The
format is device:"xqpcache". The cache name tells
whether the disk is using the default systemwide file
system cache or whether the disk was mounted using
a private cache. If the disk is using a systemwide
cache, the eache name refers to the system disk
because that disk is mounted first.

Figure 4-4 shows the format of the four word subfields of the F11BC$W _POOLCNT
field.

Figure 4-4: Format of the Four Buffer Pool Subfields

Pool 1 PoolO

Pool 3 Pool 2

ZK-9589-HC

4.2.3 Buffer Descriptors
A buffer descriptor, or BFRD, identifies the contents of a given buffer and
its status. Among other things, a BFRD identifies the LBN and the UCB from
which a buffer's contents were obtained. Each BFRD may be accessed quickly
and efficiently by using the modulus of the LBN and the LBN hash count as an
index into the LBN hash table.

Because the buffer descriptors, lock descriptors, and block buffers are all arrays,
they are generally referenced by array index. The total count is limited to 65K,
so the array index is limited to a word, saving space in the descriptors.

158 Cache Processing on a Single Node

Each buffer in the buffer pools is represented by a buffer descriptor. Because of
this one-to-one correspondence, the buffer descriptors, like the buffers themselves,
are likewise divided into pools. The buffer and its descriptor are associated
simply by using a common index value to locate either of them. The pool to which
a BFRD belongs can be found in the BFRD$B_FLAGS field.

There are as many BFRDs as buffers, so the size of the descriptor area is directly
proportional to the number of buffers in the cache.

Free BFRDs may be found on their respective LRU queues. If the BFRD is not in
the LRU queue, it is on an in-process queue.

The fields of a buffer descriptor are shown in Figure 4-5 and are described in
Table 4-2.

Figure 4-5: Format of a Buffer Descriptor

BFRD$L_QFL

BFRD$L_QBL

BFRD$L_LBN

BFRD$L_UCB

BFRD$L_LOCKBASIS

BFRD$L_SEQNUM

BFRD$W_CURPID BFRD$B_BTYPE l BFRD$B_FLAGS

BFRD$W_BFRL BFRD$W_NXTBFRD

reserved BFRD$W_SAME_BFRL

0

4

8

12

16

20

24

28

32

Cache Processing on a Single Node 159

Table 4-2: Contents of a Buffer Descriptor

Field Name

BFRD$L_QFL

BFRD$L_QBL

BFRD$L_LBN

BFRD$L_UCB

BFRD$L_LOCKBASIS

BFRD$L_SEQNUM

BFRD$B_FLAGS

BFRD$B_BTYPE

Description

Queue forward link. The queue can be either an in-process
queue (BFR_LIST) or a pool queue (POOL_LRU).

Queue backward link. The queue can be either an in-process
queue (BFR_LIST) or a pool queue (POOL_LRU).

LBN of buffer. This field, with the BFRD$L_UCB field,
uniquely identifies the contents of the buffer.

UCB of buffer. This field, with the BFRD$L_LBN field,
uniquely identifies the contents of the buffer.

Unique file identifier. This field contains the FID (without its
sequence number) used in the lock. This number follows the
prefix F11B$s in the resource name.

Buffer validation sequence number. This field contains the
clusterwide buffer sequence number initially obtained from
the value block.

Status flags. The following fields are defined within
BFRD$B_FLAGS:
BFRD$V _POOL Pool number to which this buffer

belongs.

BFRD$V _DIRTY Dirty buffer. If set, this bit indicates
that the buffer has been modified.

BFRD$V _VALID Valid buffer. If set, this bit indicates
that the buffer's contents are current
and may be used as is.

Buffer type. The following chart shows the possible buffer
values and their meanings.

Value Description

0 Header block

1 Bitmap block

2 Directory data block

3 Index file block

4 Random data block

5 Quota file block

6 Directory index block

(continued on next page)

160 Cache Processing on a Single Node

Table 4-2 (Cont.): Contents of a Buffer Descriptor

Field Name Description

BFRD$W _CURPID Process index of the current process. This field contains the
process index of the process that owns the buffer.

BFRD$W_NXTBFRD Index of next BFRD. This field contains the index of the next
buffer descriptor in the hash chain.

BFRD$W _BFRL Index to buffer lock hash chain. This field contains the index
to the BFRL to which this buffer belongs.

BFRD$W _8.AME_BFRL Index to the next BFRD under the same BFRL.

4.2.4 Buffer Lock Block Descriptors
A buffer lock block descriptor. or BFRL, describes the lock associated with
each buffer in the cache. Because each buffer descriptor may have a lock
associated with it, the number of BFRLs equals the number of BFRDs. Unlike
buffer descriptors, however, buffer lock descriptors are not divided into pools.

A single lock may be associated with more than one buffer descriptor when
multiple blocks are read under the same lock, such as for the quota file, a
directory, or a multiheader file.

Essentially, BFRLs are used to associate buffers with a particular file. One BFRL
exists for each BFRD for a file, and one BFRD represents one disk block. Thus,
multiple BFRDs per BFRL are possible, but multiple BFRLs per BFRD are not.

BFRLs are used to keep track of system-owned null locks that are always
on a block in one of the block caches. They are not used for protected write
serialization process locks. For more information on serialization of file system
activity on a single node and in a VAXcluster environment, see Chapters 7 and 8.

The fields of the buffer lock block descriptor are shown in Figure 4-6 and are
described in Table 4-3.

Figure 4-6: Format of the Buffer Lock Block Descriptor

BFRL$W_BFRD BFRL$W..:..NXTBFRL

reserved BFRL$W_REFCNT

0

4

(continued on next page)

Cache Processing on a Single Node 161

Figure 4-6 (Cont.): Format of the Buffer Lock Block Descriptor

BFRL$L_LKID 8

BFRL$L_LCKBASIS 12

BFRL$L_PARLKID 16

Table 4-3: Contents of the Buffer Lock Block Descriptor

Field Name

BFRL$W _NXTBFRL

BFRL$W _BFRD
BFRL$W _REFCNT

BFRL$L_LKID

BFRL$L_LCKBASIS

BFRL$L_PARLKID

Description

Index to the next BFRL in the hash chain. This field also serves
as an index to the next entry in the buffer lock descriptor chain
(F11BC$W _FREEBFRL) that contains all the BFRLs that are
not in use.

The buffer index is used as a word pointer. The last entry in
the list is indicated by a value of 0. The most-recently-used
entry is inserted at the beginning of the list, and all allocations
also take place from the beginning of the list.

The free BFRL list is shown in Figure 4-7.
Index to first BFRD.
Number of buffers represented by this lock.

Lock ID of buffer lock.
Unique file identifier. This FID follows the prefix FllB$s to
form the resource name. Because this field is used as an index
to the lock hash table, it provides fast access to the locks.
Parent lock ID. This field contains the lock ID of the volume
allocation lock of the volume to which the buffer contents
belong.

162 Cache Processing on a Single Node

Figure 4-7: Free Buffer Lock Descriptor List

Cache Header

l 1
F11BC$VV_FREEBFRL

J J
Buffer Lock Descriptor

BFRL$V\l _NXTBFRL

Buffer Lock Descriptor

00000000

ZK-9590-HC

Cache Processing on a Single Node 163

4.2.5 LBN and the Lock Basis Hash Tables

The LBN hash table and the lock basis hash table (or buffer lock hash table)
both contain a minimum of one word each per buffer. An extra page is added
to the total so the buffers themselves are always aligned on a page boundary
regardless of where the space is actually allocated in paged pool. Any extra space
between the lock descriptors and the start of the buffers is split between the two
hash tables.

The chief purpose of the LBN hash table is to provide fast access to the LBN s in
the cache. The hash function is a modulo function using the desired LBN and the
size of the hash table (contained in F11BC$W_LBNHSHCNT) in words. Collisions
are handled by chaining the BFRDs. The last entry in the hash chain is indicated
by a value of 0. The hash table entries and chain links are both buffer index word
pointers.

Buffers without valid blocks are not contained in the hash table.

Figure 4-8 shows the relationship between the cache header, the LBN hash table,
and the buffer descriptors.

164 Cache Processing on a Single Node

Figure 4-8: Layout of the LBN Hash Table

Cache Header

l ;y

F11BC$L_LBNHSHBAS

1

0

2

F 11 BC$W _LBNHSHCNT - 1 l
Buffer Descriptor

*
BFRD$W_NXTBFRD l

l
Buffer Descriptor

rl,,

1 00000000

1 ;y

1--

j
....---

1--

I
..--

~

,..(,

I

LBN Hash
Table

ZK-9591-HC

Cache Processing on a Single Node 165

The lock basis hash table also provides quick access to buffer locks by using a lock
basis, which is a longword composed of a relative volume number, an extended file
number, and a file ID. This lo.ck basis is used in the lock resource name, prefixed
by F11B$s. The BFRL$L_PARLKID field identifies the volume ori which the file
is located.

The hash function is a modulo function using a unique identifier (obtained by
adding the BFRL$L_LCKBASIS and the BFRL$L_PARLKID :fields) and the size
of the hash table (contained in F11BC$W _BLHSHCNT) in words. The last entry
in the hash chain is indicated by a value of 0. The hash table entries and chain
links are both buffer index word pointers.

Figure 4-9 shows the relationship between the cache header, the lock basis hash
table, and the buffer lock descriptors. ·

166 Cache Processing on a Single Node

Figure 4-9: Layout of the Lock Basis Hash Table

Cache Header

l 1
F 11 BC$L _BLHSHBAS

T T

0

2

F 11BC$W_BLHSHCNT - 1 ~1-----------------11
Buffer Lock Descriptor

BFRL$W_NXTBFRL

1 I
Buffer Lock Descriptor

00000000

1 I

Lockbasis
Hash
Table

ZK-9592-HC

Cache Processing on a Single Node 167

Figure 4-10 shows the relationship between the cache header, the buffer
descriptors, and the buffer pool.

Figure 4-10: Layout of the XQP Block Cache

Lock Basis
Hash Table

BFRL

BFRL

Cache
Header

BFRD

Buffer

LBN
Hash
Table

ZK-9651-HC

168 Cache Processing on a Single Node

4.2.6 Buffer Pools

The remainder of the 1/0 buffer cache is divided into four pools of data buffers:

• Storage bitmap blocks and the SCB

These are all the data blocks mapped by the BITMAP.SYS file. See
Section 4.2.6.1.

• Directory data blocks, random data blocks, and quota file blocks

This is the only pool on which multiblock read operations may be performed.
See Sections 4.2.6.3 and 4.2.10.

• File headers and index file bitmap blocks

These are all data blocks mapped by the index file. See Section 4.2.6.2.

• Directory index blocks

This cache is used by the directory index caching mechanism. These pages
are not 1/0 buffers, but they are managed by the buffer caching routines
because they provide the necessary cluster validation. See Section 4.2.6.4.

The constant F11BC$K_NUM_POOLS, currently equal to 4, indicates the number
of buffer pools.

A least recently used, or LRU, algorithm is used to replace buffers (that is, the
first three cache pools). When the desired disk block cannot be found in the cache,
the buffer that was referenced earliest is discarded. and replaced with the desired
block.

This algorithm is accomplished by linking all BFRDs for a given pool onto a
queue header for that pool. This address of this queue header is contained in the
F11BC$Q_POOL_LRU field, which is actually a vector of four queue headers that
represent the four pools.

The pool to which a buffer belongs is contained in the BFRD$B_FLAGS field.
Also, because more than one buffer type resides in a pool, the BFRD$B_BTYPE
field is used to differentiate between the buffer types.

The four pools are numbered from 0 through 3, and the POOL array is used to
find the pools.

Buffers read by file system operations are not "locked down"; rather, they may
be reused any time further reads are issued in the same buffer pool. The buffer
manager guarantees that the last n buffers read in each pool will be available,
where n is the minimum buffer credit reserved for that pool (see Section 4.3). If
it is necessary to read a set of blocks that exceeds the minimum credit, the local
and global variables pointing to the blocks that were read earlier may no longer
be valid. In this case, the original blocks must be read again.

Cache Processing on a Single Node 169

When there is no file system activity, the four values in the F11BC$L_POOLAVAIL
vector equal the four values in the F11BC$W _POOLCNT field. In addition, all
buffers for a given pool are linked onto their respective F11BC$Q_POOL_LRU
queue headers.

Figure 4-11 shows the location of the available queue and the POOLCNT array
in the cache header.

Figure 4-11: Relationship Between F11BC$L_POOLAVAIL and F11BC$W_
POOLCNT

Cache Header

Pool 0

Pool 1

Pool 2

Pool 3

) '""''-""'~""
Pool 1 Pool 0

Pool 3 Pool 2
} F11BC$W_PQOLCNT

.

ZK-9710-HC

When a buffer is being used by a particular process during an operation, it is
removed from the POOL_LRU queue and inserted onto a per-process (or in
process) BFR_LIST queue. The BFR_LIST structure itself is a vector of queue
headers, one for each pool. Each process also has two four-element vectors,

110 Cache Processing on a Single Node

BFR_CREDITS and BFRS_USED, representing, respectively, the number of
buffers reserved and the number actually in use.

Figure 4-12 shows the in-process queue and two vectors in the XQP impure area
that keep track of buffer information.

Figure 4-12: Location of BFR_LIST, BFR_CREDITS, and BFRS_USED

XQP Impure Area

-- .
CURRENLVCB

.
I-- Pool 0

I-- Pool 1

I-- Pool 2

I-- Pool 3

Pool 1

Pool 3

Pool 1

Pool 3

-

I

Pool 0

Pool 2

Pool 0

Pool 2

-

__,

__,

__,

__,

-

BFR_LIST

} BFR _CREDITS

I BFRS_USED

ZK-9711-HC

The purpose behind buffer credits is to avoid resource deadlocks. The credits
prevent stalls in critical sections of XQP code (any section where a lock is held
on a systemwide resource such as a cache). A stall could potentially cause a
deadlock. If credits are obtained before any processing can proceed, XQP code
can be executed more quickly and without stalling. For more information on how
buffer credits are extended, refer to Section 4.3.1.

Cache Processing on a Single Node 111

The number of BFRDs in each queue header in the BFR_LIST structure must
always correspond to the value in the BFRS_USED vector. When a BFRD is on
the BFR_LIST queue, the BFRD$W_CURPID field contains the internal PID
index for that process.

4.2.6.1 Storage Bitmap Cache
The storage bitmap cache contains blocks from the storage bitmaps of volumes
mounted on the system. Each bit in the bitmap for a given volume represents one
disk cluster of disk space.

The size of this cache is controlled by the ACP _MAPCACHE system parameter.
The default value is eight blocks, which is sufficient unless many volumes are
mounted and they all have a significant amount of file creation and extension
activity.

Caching the entire bitmap on a volume that is heavily fragmented may benefit
performance; the file system makes multiple passes over the bitmap in the
following cases:

• When trying to cache a reasonable amount of disk space in the extent cache

• When determining whether or not a contiguous file creation or extension
operation may be completed if the existing entries in the bitmap cache cannot
satisfy the space requirement

The file system makes three complete searches of the storage bitmap to satisfy
a contiguous-best-try allocation request. If this request cannot be satisfied, the
allocation will be fragmented.

Access to this cache is synchronized by the volume lock of the block being
accessed.

4.2.6.2 File Header and Index File Bitmap Cache
The file header cache greatly decreases the time needed to open a file. The file
header contains information used to construct the FCB, the data structure that
the file system uses to control access to the file. It also contains the mapping
pointers that define the locations of all the data blocks associated with the file.

This pool also contains the index file bitmap cache. This cache holds blocks
from the index file bitmap that are used to allocate unused file IDs to the FID
cache when the FID cache is depleted.

The size of this cache is controlled by the ACP _HDRCACHE system parameter.
The default value of 128 pages allows slightly less than 128 file headers to be
cached. Files that have multiple extension headers because of fragmentation and
large ACLs take up more space in the cache and decrease the number of files for
which headers are cached.

172 Cache Processing on a Single Node

If the file header is in the cache, the performance decrease caused by a window
tum is lessened because the file header (or headers) contains all the mapping
information for the file.

Each entry (that is, each page) in this cache has its own lock.

4.2.6.3 Directory Data Block Cache
The directory data block cache contains directory data blocks so that file
lookups can be performed more quickly. That is, the cache contains the contents
of recently referenced directories.

The size of this cache is controlled by the ACP _DIRCACHE system parameter,
and the default is 80 pages. The ACP _M.AXREAD system parameter controls the
maximum number of directory data blocks read in one VO operation. For more
information, refer to Section 4.4.

Each entry (that is, each page) in this cache is synchronized by its own lock.

4.2.6.4 Directory Index Cache
The directory index cache is the fourth pool in the buffer cache. It is located
in paged pool. Unlike the other pools, this pool does not contain buffers; rather,
it contains-an index into a given directozyiile-, constructed while the directory is
being processed.

Figure 4-13 shows the relationship between the directory file FCB, the XQP
impure area, and the buffer descriptor.

Cache Processing on a Single Node 173

Figure 4-13: Locating the Directory Index Cache

XOP Impure Area ,, - - _, -
•
• .

Directory File FCB

-- DIR_FCB

.
~ ~ . . -~ ~ -

FCB$L _DIRINDX t--

t r
r---

BFRD

QFL

OBL

L....- FCB LBN

UCB

•
• .

~ ".'Lo!

ZK-9707-HC

174 Cache Processing on a Single Node

Each entry in the DINDX cache points to a particular location in a directory file.
One page is dedicated to each directory; entries consist of the last file entered in
each directory data block. This cache allows the file system to search a directory
for a given file without having to do a linear search on the entire directory. This
advantage saves time and also reduces the number of ·block buffers used in the
directory cache.

Figure 4-14 shows an example of entries in the directory index cache.

Figure 4-14: Directory Index Cache Entries

VBN1 VBN2

4

f
4 AAA.DAT;1 CCC.DAT;1

1 15

nnn

BBB.DAT;1

DDD.DAT;2 BBB.DAT;1 DDD.DAT;2

1 FFF.DAT;3

hl VERY _LQNG_FILENAME.DA T;4

VBN3 VBN4

EEE.DAT;1 VEAy_LQNG_FILENAME.DA T ;4

Last 29 entries unused FFF.DAT;3

ZK-9712-HC

The size of this cache is controlled by the ACP _DINDXCACHE system parameter.
Its value should equal the number of active directories on the system. For large
directories, each cache entry represents a group of blocks rather than a single
block, so that the number of groups does not exceed the fixed size of the index.

For more information on the directory index cache, see Section 8.6.5.

Cache Processing on a Single Node 175

4.2.7 Specialized Caches

There are three specialized caches on a disk volume:

• Extent cache

• File ID cache

• Quota cache

The volume cache block (VCA) points to two of these caches: the file ID cache
and the extent cache. These two caches are located together in one block. The
quota cache, however, is located separately in another block.

The volume cache block is located in nonpaged pool, and is pointed to by the VCB.

The fields of the volume cache block are shown in Figure 4-15 and are described
in Table 4-4.

Figure 4-15: Format of the Volume Cache Block

VCA$L_FIDCACHE 0

VCA$L_EXTCACHE 4

VCA$B_FLAGS 1 VCA$B_TYPE I VCA$W_SIZE 8

* FID cache * 12

* Extent cache *

176 Cache Processing on a Single Node

Table 4-4: Contents of the Volume Cache Block

Field Name Description

Pointer to the file ID cache.

Pointer to the extent cache.

Block size.

Block type code.

VCA$L_FIDCACHE

VCA$L_EXTCACHE

VCA$W_SIZE

VCA$B_TYPE

VCA$B_FLAGS Flags. The following fields are defined within VCA$B_FLAGS:

4.2.8 Extent Cache

VCA$V _FIDC_ VALID

VCA$V _EXTC_ VALID

VCA$V _FIDC_FLUSH

VCA$V_EXTC_FLUSH

FID cache valid

Extent cache valid

FID cache to be flushed to disk

Extent cache to be :flushed to
disk

Th~_ extent cache is essentially a preallocated section of the storage bitmap file.
It contains a list of known free (unused) extents that can be allocated when a file
is newly created or extended. An extent is a pointer (consisting of an LBN and a
size) that maps a logically contiguous area of disk space on a disk volume.

The main purpose of the extent cache is to maintain a certain fraction of the
free space on the disk in the extent cache. It is found from the addresses in
the VCB$L_CACHE and the VCA$L_EXTCACHE fields. A default value of 64
extents is controlled by the system parameter ACP _EXTCACHE. The cache is
allocated from nonpaged pool.

When the file system tries to allocate an extent, the extent cache is checked first.
If the cache allocation fails, the storage bitmap itself is scanned. It is scanned
twice: once from the given starting point to the end, and, if necessary, again from
the beginning of the bitmap to the end.

After the allocation, an attempt is made to refill the extent cache from the bitmap
block in memory, and then from the bitmap itself. The VBN of the bitmap block
last used to allocate disk blocks is recorded in the storage bitmap VBN field
(SBMAPVBN) in the allocation lock value block.

When the tile system returns blocks (for example, when a file is deleted), they
are returned to the extent cache. If the cache overflows, some extents are purged
back to the storage map. ·

Cache Processing on a Single Node 177

Note that the system parameter ACP _EXTLIMIT controls only how many extents
are actually in the cache, and this number will never be more than the following
value:

ACP-EXTLIMIT
10 percent of the free space on the volume

Once this limit is reached, no more extents will be added to the cache. On
volumes with large amounts of contiguous free space, the cache will not contain
many extents.

The extent cache consists of the cache header, followed by a quadword vector of
extents, densely packed. Each quadword contains a block count and a starting
LBN.

The fields of the extent cache are shown in Figure 4-16 and are described in
Table 4-5.

Figure 4-16: Format of the Extent Cache Block

VCA$W_EXTCOUNT I VCA$W_EXTSIZE

VCA$L_EXITOTAL

reserved l VCA$W_EXTLIMIT

0

4

8

VCA$L_EXTCLKID 12

""" VCA$B_EXTCACB (28 bytes) I,

VCA$Q_EXTLIST

178 Cache Processing on a Single Node

Table 4-5: Contents of the Extent Cache Block

Field Name

VCA$W _EXTSIZE

VCA$W _EXTCOUNT

VCA$L_EXTTOTAL

VCA$W _EXTLIMIT

VCA$L_EXTCLKID

VCA$B_EXTCACB

VCA$Q_EXTLIST

Description

Number of entries allocated, controlled by the system
parameter ACP _EXTLIMIT

Number of entries currently in use

Tutal number of blocks contained in cache

Limit of volume to be cached, in tenths of a percent
Extent cache lock ID

Extent cache blocking AST control block (ACB)

First entry in list

Figure 4-17 shows the format of an extent cache entry. The VCA$L_EXTBLOCKS
field represents the number of blocks, and the VCA$L_EXTLBN field contains the
starting LBN.

Figure 4-17: Format of an Extent Cache Entry

1--~~~~~~~~~~~v_c_A$_L ___ Ex_T_B_L_o_cK_s~~~~~~~~~~~--11 40

VCA$L_EXTLBN .

Cache Processing on a Single Node 179

Figure 4-18 shows how the address in the VCB$L_CACHE field locates the
volume cache block and the extent cache.

Figure 4-18: Locating the Extent Cache from the Volume Cache Block

VCB

l 1
VCB$L_CACHE

T T

VCA

VCA$L _EXTCACHE

1------ -------
T Extent Cache J

ZK-9594-HC

1ao Cache Processing on a Single Node

4.2.9 File ID Cache

The file ID, or FID cache, is effectively a preallocated section of the index
file bitmap. In other words, it is a cache of unused file identifiers that can be
allocated when a file is created or an extension header for a file is needed.

The FID cache is found using the addresses in the VCB$L_CACHE and the
VCA$L_FIDCACHE fields. The default value of 64 file IDs is obtained from the
system parameter ACP _FIDCACHE. The cache is allocated from nonpaged pool.

When the file system allocates a file ID, the FID cache is checked first. If the
cache is empty, blocks are read from the index file map until a block with a free
bit is found, and the free bits are then added to the FID cache. The file header
for this file ID must, of course, be available.

The index file bitmap block is written to the disk during this operation. If it is
not written back, two processes searching for a free FID in the bitmap might
allocate the same FID.

The fields of the file ID cache are shown in Figure 4-19 and are described in
Table 4-6.

Figure 4-19: Format of the File ID Cache Block

VCA$W_FIDCOUNT I VCA$W_FIDSIZE

VCA$L_FIDCLKID

0

4

1~" ____________________ V_C_A_$_B __ F_ID_C_A_C_B_(_28 __ b~_e_s_)--------------------tI .

1 _________________________ V_C_A-$L ___ F_ID_Ll_S_T ______________________ __.J36

Cache Processing on a Single Node 101

Table 4-6: Contents of the File ID Cache Block

Field Name.

VCA$W _FIDSIZE

VCA$W_FIDCOUNT

VCA$L_FIDCLKID

VCA$B_FIDCACB

VCA$L_FIDLIST

Description

Number of entries allocated to the cache

Number of entries present in the cache

FID cache lock ID

FID cache blocking AST control block

First entry in list

Figure 4-20 shows how the address contained in the VCB$L_ CACHE field locates
the volume cache block and the file ID cache.

182 Cache Processing on a Single Node

Figure 4-20: Locating the File ID Cache from the Volume Cache Block

VCB

l 1
VCB$L_CACHE

T T

VCA

VCA$L _FIDCACHE

1 FID Cache ~
-----------1

T T
ZK-9595-HC

4.2.1 O Quota Cache
The quota cache contains UIC-based entries to keep track of the allowed usage
ari.d current usage of disk blocks without continually having to read and write the
blocks of the QUOTA.SYS file. This cache is irrelevant if the volume has been
mounted with the /NOQUOTA qualifier or does not have quotas enabled. The
quota cache is pointed to by the address in the VCB$L_QUOCACHE :field. It is
allocated from nonpaged pool.

Cache Processing on a Single Node 183

Each quota entry contains a UIC, the quota information, a lock status block used
with the quota cache entry locks, the quota file :record number, and LRU indexes.
The cache header contains a LRU counter; when a new entry is added, the value
is put into .the entry, and this counter is increinented.

When the cache is flushed, each entry is returned to disk, and the corresponding
record on disk is located and updated. Any quota entry locks are released, and
the quota cache lock is converted to null mode.

The quota cache consists of the cache header, followed by the cache entries. Each
cache entry is a block as defined below.

The fields of the quota cache header block are shown in Figure 4-21 and are
described in Table 4-7.

Figure 4-21 : Format of the Quota Cache Header Block

VCA$W_QUOLRU l VCA$W_QUOSIZE

VCA$L_ QUOCLKID

VCA$B_OUOCFLAGS] reserved

* VCA$B_OUOACB (28 bytes) ~

* VCA$B_QUOFLUSHACB (28 bytes) ~

* VCA$L_QUOLIST ~

0

4

8

12

40

68

184 Cache Processing on a Single Node

Table 4-7: Contents of the Quota Cache Header Block

Field Name

VCA$W_QUOSIZE

VCA$W_QUOLRU

VCA$L_QUOCLKID

VCA$B_QUOCFLAGS

VCA$B_QUOACB

VCA$B_QUOFLUSHACB

VCA$L_QUOLIST

Description

Number of entries allocated.
Current LRU counter.

Whole cache lock ID.

Flags. The following fields are defined within
VCA$B_QUOCFLAGS:
VCA$V _CACHEVALID Valid cache. The cache is

enabled and may contain
entries.

VCA$V_CACHEFLUSH Cache is to be flushed.

ACB to deliver blocking AST on the cache lock.
ACB to deliver cache flush AST.

Start of entries.

Figure 4-22 shows the fields of a quota cache entry. These 24 bytes form the
substructure VCA$R_QUOLOCK, which is used for the lock status block. Note
that-the fields ~f the figure run right-to-left.

Figure 4-22: Format of a Quota Cache Entry

VCA$W_QUOLRUX l VCA$W_QUOSTATUS

VCA$L_QUOLKID

VCA$B_QUOFLAGS l VCA$L_QUORECNUM

VCA$L_USAGE

VCA$L_PERMQUOTA

VCA$L_OVERDRAFT

VCA$L_QUOUIC

0

4

8

12

16

20

24

Cache Processing on a Single Node 185

Table 4-8: Contents of a Quota Cache Entry

Field Name

VCA$W _QUOSTATUS

VCA$W _QUOLRUX

VCA$L_QUOLKID

VCA$L_QUORECNUM

VCA$B_QUOFLAGS

VCA$L_USAGE

VCA$L_PERMQUOTA

VCA$L_OVERDRAFT

VCA$L_QUOUIC

Description

Current $ENQ status. This field is also used to hold the value
ofVCA$W_QUOINDEX, which represents the number of this
entry in the quota cache.

LRU index for entry.

Lock ID of cache entry.

Record number.

Flags. The following fields are defined within
VCA$B_QUOFLAGS:

VCA$V _QUOVALID

VCA$V _QUODIRTY

Current usage.

Permanent quota.

Overdraft limit.

UIC.

Valid entry is present. This flag
indicates that the quota cache
entry is valid and contains current
data.

Modified entry is present. This
flag indicates that the quota cache
entry has been modified but not yet
written to the quota file.

Figure 4-23 shows how the quota cache may be located from the VCB.

186 Cache Processing on a Single Node

Figure 4-23: Locating the Quota Cache from the Volume Control Block

l

T

VCB$L _QUOCACHE

ACB for Quota Cache
Blocking AST

1

T

7 longwords

ACB for Quota Cache 1 r 7 longwords
Flushing AST

Ti--Q-u-o-ta-Ca_c_h_e -E-nt-ri-es---1 7 * VCA$W _QUOSIZE

.. _______ ___.T longwords

ZK-9596-HC

Cache Processing on a Single Node 187

4.3 Obtaining Buffers
Before a given file system operation is allowed to use any buffers in the cache
or before any operation is allowed to hold any locks, the minimum number of
buffers required to perform the operation must :first be reserved. The process of
obtaining buffers is managed by maintaining counters, one for each pool, in the
:fixed overhead area. These counters represent the number of buffers currently
reserved for concurrent :file system activity. The number of buffers currently
available in each pool is contained in the F11BC$L_POOLAVAIL vector. The
currently required buffer credits are as follows:

• One bitmap block buffer

• Two directory data block buffers

• Three file header buffers

• One directory index buffer

A process is stalled until enough buffers are available to complete the activity.
The F11BC$Q_POOL_ WAITQ vector has listheads for each pool, and an IRP is
queued on the pool wait queue while the request is stalled. The process is sent an
AST when buffer credits are returned.

The logic behind the process of obtaining buffers prevents resource deadlocks that
could result if the following three conditions exist:

• A partially completed operation requires additional buffers to complete.

• No free buffers are available.

• Other processes holding buffers are waiting for the partially completed
operation to complete.

The obtaining of credits is controlled by the cache interlock. The buffer credits
are returned to the free pool counts, under the cache interlock, but only if the
buffers are not in use. If there is a process either on the pool wait queue or on
the ambiguity queue, the process is added to the cache interlock queue after the
current process. The process is awakened when the cache interlock is released.
For more information on the cache interlock, see Chapter 7.

4.3.1 Extending Buffer Credits

A certain number of buffers must be reserved before any process is allowed to
start a file system operation. For example, three buffers from the file header
pool are always reserved. If only six buffers were resident in the :file header pool
(set by the ACP _HDRCACHE system parameter), only two processes would be
allowed to proceed concurrently. Until one of them completed, a third process
could be stalled.

188 Cache Processing on a Single Node

In this situation, if a file with four headers is accessed, the process would have
to discard from its buffer the first header read from its BFR_LIST and use that
buffer to read the fourth header. The BFR_LIST structure is managed with an
LRU algorithm, and the oldest buffer is always discarded.

However, if there are more than six unreserved buffers in a given pool, additional
buffer credits are extended to a process to avoid invalidating a recently accessed
buffer (as the previous example did). This operation is done by decrementing
the contents of the Fl1BC$L_POOLAVAIL field and then incrementing a pool
counter when the additional buffer is desired, but only if the number in the
F11BC$L_POOLAVAIL field is greater than or equal to six.

In other words, the file system uses as many buffers from the pool as are available
without affecting other users.

4.4 Multiblock Disk Read Operations
The directory and quota file data block pool allow multiblock read operations.
A contiguous group of buffers is assembled to be used in a single multiblock
QIO operation when the buffer desired by the caller is not already in the cache.
Directory and quota file processing also request multiblock read operations. The
number-0f_buffers-assembed fo the caches is limited by the value of the- system
parameter ACP _MAXREAD.

The contiguous group of buffers is assembled starting with a BFRD pulled
from the POOL_LRU list. The file system tries to assemble adjacent BFRDs
in ascending memory sequence. If the end of the pool is reached, the file system
then tries to proceed from the starting BFRD in descending memory sequence.

Assembling a group of contiguous buffers may fail under three conditions:

• If any BFRD is already in use (that is, the BFRD$W _CURPID is nonzero)

• If the LBN the file system intended to read into that BFRD is already in the
cache somewhere

• If the buffer credits for the process are exceeded and the process is not
extended any more credits

4.5 Disk Write Operations
All writing to disk (except for normal virtual write functions and erase
functions) is performed by the WRITE_BLOCK routine (in RDBLOK) or the
WRITE_HEADER routine (also in RDBLOK), which performs a checksum first.
Buffers can be explicitly written in this way.

Cache Processing on a Single Node 189

WRITE_BLOCK is invoked automatically when it is necessary to remove a
buffer from the in-process list (dirty buffers must be only on the in-process list).
WRITE_DIRTY can be called to write all dirty buffers associated with a lock basis
(which implies that all buffers should be written).

TOSS_CACHE_DATA will do the same for a given lock array index, except that it
also invalidates the cache buffers. This is done when closing a file opened using
OPEN_FILE.

Most operations that modify buffers will simply mark them as dirty and allow
CLEANUP to write them with the WRITE_DIRTY routine. There are various
exceptions, as follows:

• ERR_ CLEANUP force writes the current directory buffer when it performs a
re-enter function.

• CREATE_HEADER force writes the index file header when advancing the
EOF (not currently done). CREATE_HEADER also force writes blocks of the
index file bitmap when filling the FID cache. DELETE_FID performs likewise
when returning FIDs to the index file bitmap.

• DEALLOCATE_BAD force writes modified file headers. SCAN_BADLOG
force writes the pending bad block file (BADLOG) file header when extending
its header.

• MARK_DELETE force writes the updated (marked as deleted or actually
deleted) headers out to disk. DELETE_FILE does likewise.

• EXTEND_CONTIG force writes data blocks as it copies them to the new
extended contiguous file. The new header is force written. Likewise,
SHUFFLE_DIR force writes directory blocks during its copy.

• TRUNCATE force writes the file header with the map pointers truncated so
that the header is guaranteed to be updated before the storage bitmap shows
the blocks as free.

• WRITE_AUDIT force writes all modified buffers given the primary lock basis
before doing the FID_TO_SPEC translation, which releases the lock basis.

4.6 Systemwide Buffer Validation
Buffers are located in one of two places:

• In the system list, possibly marked as containing valid data read from disk

• In an in-process list,· containing either valid data from disk or "dirty" data
that has been modified but not yet written to disk

When a buffer is moved from the system list to the in-process list, it is read if the
buffer descriptor describes it as invalid.

190 Cache Processing on a Single Node

CREATE_BLOCK is a general-purpose routine that creates a new buffer filled
with Os. Under some circumstances, though, it is called with a backing LBN of
-1. This means that the desired buffer is a scratch buffer and does not represent
any data on disk.

The file system uses this technique in a truncate function. Two copies of the file
header are temporarily needed because the updated file header must be written
before the blocks are freed.

A truncate function performs the following steps when it is creating a new file
header:

1. Calls CREATE_BLOCK with an LBN argument of -1

2. Copies the file header into the created block

3. Zeroes the map area of the original file header and updates it

4. Uses the file header copy to free the blocks

5. Deallocates the copy by calling INVALIDATE

4.6.1 Invalidating a Buffer
When a buffer is invalidated; it is moved to the front of the in~process LRU list
and marked as not valid (but not dirty). The following operations will mark a
buffer invalid:

• Any process that performs either a read or a write operation to the SCB
(such as a dismount function) invalidates the buffers to ensure that the
SCB is not cached on behalf of a shadow set (since mount verification writes
asynchronously to the SCB).

• When a new header is being created, the file system may invalidate the
header if it finds it does not want to use the header (if, for instance, the
header appears to be valid). This invalidation prevents confusion if the
header is found in the cache when it should not be.

• When a new header is being read and the operation fails, a test is performed
to see if the block can be written. If the write operation succeeds, the buffer
is invalidated, and a read operation is tried again.

• When an unused header is sought and found, the file system reads and
validates it. However, the validation is expected to fail because only invalid
headers should exist in the buffer. If the validation succeeds, then a problem
may occur because the header already points to another file. In this case, the
buffer is marked invalid and then discarded.

• Any buffer being discarded is also invalidated.

Cache Processing on a Single Node 191

• When a directory is marked to be deleted, the first data block of the directory
is read tO make sure the directory is empty. The buffer read is invalidated
since it is no longer needed. The directory cache is also flushed to write out
its data blocks. Turning off the directory bit for a directory also flushes the
directory blocks.

• When the volume is being dismounted or is being mounted with the
/NOCACHE qualifier, the buffers of the cache are flushed. This operl:ltion
invalidates all the buffers associated with a particular UCB. Buffers in the
system list are purged; buffers in the pro~ess list are marked invalid; and
buffers in other process lists are ignored.

• When a directory is write-accessed, the directory data block and directory
index pool are flushed, thus invalidating the buffers associated with the
current UCB. This invalidation is performed only on a single node because
the sequence numbers associated with the serialization locks protect these
buffers in a VAXcluster.

• The special file write virtual function also scans through all the BF]lDs in the
cache, discarding those in the specified pool for the CU:rrent UCB when the
user writes to the following special files:

- Index file

Storage bitmap file

- Quota file

- Directory

For more information about how writing to these special files is done in a
VAXcluster system, see Chapter 8.

• When the quota file is deaccessed, all the quota file blocks that were modified
are written out to disk after the quota cache is cleared. Then the buffers
associated with the quota file data. blocks are purged.

4.6.2 Changing the LBN of a Buffer
When the index :file header is modified (in the CREATE_HEADER routine), the
LBN of the buffer is changed by the RESET_LBN routine to reflect the alternate
index file header. This modification ensures that a file header will be available
when a block is written to disk. The buffers containing the alternate index file
header are immediately invalidated to avoid confusion.

A similar operation is performed when the index file header is either read or
extended (in the READ_IDX_HEADER routine). If the file s~ze from the header
is incorrect, the altel'l}.ate index file header is read, and the LBN of the buffer is
changed. If either operation fails, the buffer is simply invalidated Likewise, the
LBN of a buffer must be changed when the index file itself is extended.

192 Cache Processing on a Single Node

The RESET _LBN routine is also used when a contiguous :file is copied to extend
it. It performs the following actions:

• Reads the blocks of the old file as data blocks

• Changes the LBN s associated with the buffers

• Writes the blocks explicitly

The blocks may remain in the cache because the LBN recorded matches their new
location. This operation is also performed when a directory is compressed.

Chapter s

The ACP Functions

Fudd's Law of Insertion What goes in, must come back out.
Van Mizzel, Jr.

Agnes Allen's Law Almost anything is easier to get into than out of.
Agnes Allen

Outline

Chapter 5 The ACP Functions

5.1 Introduction

5.2 ACP-QIO Interface
5.2.1 Getting the Request
5.2.2 Dispatching the Operation
5.2.3 Posting the Results
5.2.4 Returning Resources

5.3 Major ACP Functions
5.3.1 Access Function
5.3.2 Create Function
5.3.3 Delete Function
5.3.4 Modify Function
5.3.5 Deaccess Function
5.3.6 ACP Control Functions

5.4 Miscellaneous File System Requests
5.4.1 Disk Quota Operations
5.4.2 Directory Manipulation
5.4.3 Space Management
5.4.4 Attribute Handling
5.4.5 Dynamic Highwater Marking
5.4.6 Spool File Processing
5.4. 7 Access Control List Processing
5.4.8 Dynamic Bad Block Processing
5.4.9 Window Handling

5.5 ACP Functions and Buffer Caching

The ACP Functions 195

5.1 Introduction
Accessing data on disk is controlled by the ACP functions and function modifiers,
which are part of the QIO interface to the file system. The seven main functions
are as follows:

• Accessing a file

• Creating a file

• Deaccessing a file

• Modifying a file

• Deleting a file

• Mounting a disk1

• ACP control (disk quota adjustments, dismounting a disk)

These virtual I/O functions may be invoked by the $QIO system service:

• Directly by the user

• Implicitly as part of an RMS operation

• As a result of the MOUNT command

• As a result of using the System Management Utility (SYSMAN)2

5.2 ACP-QIO Interface
The file system data structures are represented by on-disk information. The XQP
replaces the metadata (that is, the information about the file) on disk with in
memory copies or representations of the same things-WCBs, FCBs, VCBs, and
so on.

All the functions require access to the file header. For example, the functions
must read the header or alter it. An open operation (which is expressed as an
access function with access modifier; without the access modifier, it is a lookup
function) takes the map data from the header and represents some of it in a
window control block in the privileged I/O database.

1 The XQP does not perform the entire mount. The SYS$MOUNT service does most of the work and
sets up file system data structures; the IO$_MOUNT QIO executed by the XQP simply verifies and
acknowledges the mount.

2 SYSMAN includes the DISKQUOTA command set, which operated as a standalone utility in VMS
Version 4.6.

196 The ACP Functions

All the major functions are executed by the XQP, where they are translated to
logical read and write QIO functions. In the normal case, read and write requests
go through the SYSQIOREQ module, not through the XQP, which must reference
WCBs, VCBs, and FCBs. If the necessary disk information is mapped and if the
access is legitimate, the $QIO request may bypass the XQP altogether. In fact,
this is the desired outcome.

In a sense, the XQP merely takes care of the housekeeping functions (the
metadata-establishing functions), and the XQP code is often avoided. For
example, the major ACP functions are usually only performed once: once per
file open, per file remap, and so on. And because 110 is a limiting factor, data
is often represented with absolute data structures such as cathedral windows
(which avoid the remap function).

Figure 5-1 shows how data travels from the user through the 1/0 subsystem to
theXQP.

Figure 5-1 : ACP-QIO Interface

PO Space

User Program

PUSH

P1 Space

System Service Vector

SYS$010W::
entry mask
CHMK #code
RET

System Space

Change Mode Dispatcher

EXE$CMODKRNL::

1) Build call frame
2) Check argument list
3) JMP -----+-----.

Common Exit Path

SERVICE_EXIT::

RET

Service-Specific Procedure

EXE$SYSQIO::
entry mask

RET

ZK-9708-HC

When performing 1/0, the file system is awakened in a manner that is appropriate
to its environment. With an ACP, a $WAKE is issued to the ACP. On the other
hand, the XQP is entered when a kernel-mode AST is queued, and control is then
transferred to the XQP dispatcher.

The ACP Functions 197

In either case, the following four steps are performed:

1. Getting the request

2. Dispatching to the main operation

3. Posting the results of the operation

4. Returning resources

5.2.1 Getting the Request

When the user issues a $QIO system service request with a main function and a
function modifier, the $QIO service and its associated function decision table
(FDT) routines verify the corretj;ness of the parameters passed and construct a
complex buffer packet, or ABD. The routine EXE$QXQPPKT is then called,
which queues a kernel-mode AST to the process with the following two pieces of
information: ·

• The XQP entry point F11B$L_DISPATCH as the AST routine address

• The IRP address as the AST parameter in the call to SCH$QAST

The routine DISPATCH queues the IRP to the tail of the XQP work queue and
returns if a request is currently in progress. This can be determined by checking
whether IO_PACKET (in the XQP impure area) has a nonzero value. If there are
no packets in the queue, DISPATCH performs the following actions:

• Prohibits process deletion

• Changes the access mode of the 1/0 channel to kernel

• Switches to the XQP private stack as the kernel stack

• Saves the frame pointer

• Calls the main XQP routine DISPATCHER

At this point, DISPATCHER takes the following three actions:

• Finds the (next) request on the work queue

The DISPATCHER routine first calls the routine GET_REQUEST to remove
an IRP from the XQP work queue. An ACP maintains its work queue using a
queue header in the system pool. The queue header of the XQP work queue is
part of the XQP impure area in Pl space and is therefore process specific.

198 The ACP Functions

• Validates the information

After DISPATCHER dequeues the request packet, it performs the necessary
validation. It initializes the value of the per-operation performance counters
and the common data area (the impure area). DISPATCHER also checks
the device control blocks that the request references to ensure they are valid
and that the device is mounted. In addition, it validates the user-supplied
parameters to make sure they are consistent with each other for an operation.
For example, an extend operation and a truncate operation at the same time
are not allowed.

DISPATCHER sets up UCB and VCB pointers to point to the correct device,
and then assigns the 110 channel to the UCB. If the operation involves a
volume set, DISPATCHER also assigns a pointer to the RVT of the current
volume, and obtains the relative volume number.

A local copy of the user's privileges is made and is used for all subsequent
privilege checks. The SYSPRV bit is set in this local copy if any of the
following conditions is true:

- The user has a UIC group less than or equal to MAXSYSGROUP.

- The user is the owner of the volume.

The-user's UIC-gr-oup-matches th& volume owner group and the user has
GRPPRV privilege.

Also, the following cleanup flags are set:

- CLF_VOLOWNER or CLF_GRPOWNER, ifthe user is the owner of the
volume or has GRPPRV and the volume group matches the owner's group

- CLF _SYSPRV, if the user has BYPASS, READALL, or SYSPRV privileges

• Sets up the impure area

After GET_REQUEST zeroes the impure area to clear the :fields from the
previous operation, it sets up pointers to the control blocks that are relevant
for the operation. For example, if the operation is on an open file, pointers
are set up to point to the file control block and to the window control block so
that access to all of the relevant data structures is established.

The ACP Functions 199

5.2.2 Dispatching the Operation
There is a major function routine for each of the major functions, and every
function involves the following steps:

1. Setting up the operation.

An important part of setting up the operation is obtaining the required
number of buffers, or buffer credits, to perform the operation. The routine
GET_REQD_BFR_CREDITS ensures that the process has sufficient buffer
credits to proceed with any function. The buffer credit quota mechanism
prevents a process from stalling for lack of available buffers while it holds a
lock on a critical system resource.

This routine checks buffer credits for all three buffer pools, and if they are
sufficient for the operation, it releases the cache lock. If there is an entry
waiting in the ACP queue block, an AST is queued to resume the stalled
thread for that process. If there are not enough credits, the process is
inserted in the pool wait queue and stalled with the usual WAIT_FOR_AST
CONTINUE_THREAD mechanism.

2. Performing the requested operation.

3. Cleaning up after the operation.

4. Lowering the IPL to allow process deletion.

5. Restoring the stack.

This approach is followed because many cleanup functions should be performed
in a centralized manner. When these functions are done at the end of processing,
they must be done only once. However, potentially, they might need to be done
many times during the course of processing a request. For example, functions
such as performing checksum operations on file headers and reinitializing the file
control block are usually done more than once while a request is being processed.

5.2.3 Posting the Results
The following actions occur after the request has been processed:

• The complex buffer packet is modified; any buffers that need to be returned to
the user are written back to the complex buffer packet.

• The completion status is placed in the I/O packet.

• The I/O packet is sent to the VMS common I/O post facility. Here, the complex
buffer is disassembled, and the individual pieces are revalidated and written
back to the user buffers from which they came.

200 The ACP Functions

Although necessary in the ACP environment, copying buffers back to the user
is not strictly necessary in the XQP environment because the XQP executes in
the context of the requesting process. The same mechanism is used for both
the ACP and the XQP to simplify the QIO interface. Also, because the XQP
does not access user buffers directly, address probing is not necessary.

5.2.4 Returning Resources
Once the file operation has been completed, any resources are returned. The file
system uses two major resources when it is processing a request:

• Locks-Any locks that were taken out to synchronize the operation or to
protect data are released.

• Buffers-Any buffers that were allocated for this operation are released.

5.3 Major ACP Functions
The file system ACP functions are well-structured. Utility routines exist within
the file system that the file system itself uses, so a map of what routines call
other routines is meaningless.

ACP function execution can be divided into four levels:

Level

Dispatch level

Function level

Synchronization level

Utility routine level

Description

Handles user input and dispatches requests. This level
consists of modules such as SYSACPFDT (in the SYS
facility) and DISPATCH and DISPAT (in the FllX
facility).
Consists of the top-level ACP function routines such as
ACCESS and CREATE.
Controls access to file system entities by means of locking,
FCB invalidation, system blocking routines, and other
routines in the LOCKERS module.

Performs the low-level simple functions such as reading
a file header (READ_HEADER), writing a file header
(WRITE_HEADER), or establishing a connection to the
quota file (CONN_QFILE).

The ACP Functions 201

There is a separate top-level routine in the file system for each of the major
functions:

Function

Access

Create

Delete

Modify

Deaccess

ACPcontrol

Meaning

Opens a file or looks up a file (establishes that it exists). It also retrieves
information from a file. For example, a directory lookup to take a
file name and return the file ID would use the access function. The
I0$M_ACCESS modifier establishes an access path to the file. For more
information, refer to Section 5.3.1.
Creates a file. It also creates a directory entry, either for the file that
is being created or for an existing file. The IO$M_ACCESS modifier
establishes an access path to the file. For more information, refer to
Section 5.3.2.
Deletes a file. It can also remove the directory entry for the file that is
being deleted. For more information, refer to Section 5.3.3.

Changes the characteristics of an existing file, which may involve
extending it, writing attributes to it, or truncating it. For more
information, refer to Section 5.3.4.
Deaccesses a file. For more information ... Afer to Section 5.3.5.

Consists of miscellaneous functions. For more information, refer to
Section 5.4.

5.3.1 Access Function

Part of the QIO interface to the XQP is the ACP function 10$_ACCESS. This
function searches a directory for a specified file and accesses the file, if it is found.
It can take two function modifiers:

• 10$M_CREATE-Creates the file if it does not exist.

• 10$M_ACCESS-Opens the file on the user's channel.

Because the function is 10$_ACCESS, the routine ACCESS is called. The access
function performs the following tasks:

• Finds the directory entry, if necessary.

• Serializes processing to the file, allowing stable FCBs to be found or created.
Establishing serial access to the file and to the FCB chain is important
because it prevents another process from changing the information in the
FCB chain while the chain is being scanned. Serializing access to the file also
prevents the file itself from changing state (including protection, size, access
by other users) while the current request is in progress.

202 The ACP Functions

• Locates the file control block. If the wrong lock basis was serialized on (that
is, if the user was trying to access an extension header directly), this problem
is detected. In this case, the serial lock is released, and the correct lock basis
(for the primary header) is serialized on.

• The file header is read, and a file control block is created if one was not found.

• The primary FCB is created if one is not found.

• Checks access conflicts, and obtains the access lock in the appropriate mode.
For more information on the access lock, refer to 8.3.2.

• Creates a window to the file. The routine MAKE_ACCESS threads the
window onto the FCB and updates the access counts.

• Sets the WCB$V _ WRITE_TURN bit for directories and other special files
(such as QUOTA.SYS) whose contents may be contained in the XQP cache.
Write operations to such files cause the cache contents to be invalidated.

• Checks the expiration date.

• Builds and validates extension FCBs

• Checks and audits user access to the file, if necessary.

• . Flushes the eaches ifthe file is-a special .one.-

• Obtains the appropriate cache lock.

• Reads attributes if they were requested.

• Determines the need for cathedral windows.

5.3.2 Create Function
Create file is a virtual 1/0 function that creates a directory entry or a file on a
disk or tape.

The function modifiers are:

• IO$M_CREATE-Creates a file.

• IO$M_ACCESS-Opens the file on the specified channel.

• IO$M_DELETE-Marks the file for deletion when it is created. No directory
entry for the file is made because it is only a temporary file.

If the modifier IO$M_CREATE is specified, a file is created. The file ID of the
file created is returned in the file information block (FIB). If the modifier
IO$M_DELETE is specified, the file is marked for deletion immediately.

The ACP Functions 203

If a nonzero directory ID is specified in the FIB, a directory entry is created. The
file name specified by the user is entered in the directory, together with the
file ID.

The create function is invoked if an IO$_ CREATE function code is specified, or if
DISPATCHER detects SS$_NOSUCH FILE from ACCESS when IO$M_CREATE
(create_if) was specified. The create function performs the following basic steps:

• Performs a cleanup operation from a failed access attempt if this is a create-if
operation.

• Performs a write access check on the parent directory because the FIND
routine within the access operation only checked execute access.

• Finds the volume for the file.

• Checks the user's rights to create files on that volume.

• Creates a file header.

• Creates the primary FCB.

• Enters the file (if it is not a temporary one) into the specified directory.

• Serializes access to the previous version of the file if attributes are to be
propagated. The FCB-list is searched, and an FCB is created, if necessary.
Also, attributes are copied to the file.

• Determines the back link.

• Writes the updated header to disk.

• Performs write-attribute processing, and updates any ACLs to include the
creator.

• Charges quota for the file (if quotas are enabled).

• Accesses the file if requested.

• Extends the file to the desired length.

• Updates the file header chain with the ACL.

• Remaps the file if it was extended (and if cathedral windows were specified).

• Deletes any file that was superseded or removed (which is a cleanup function).

204 The ACP Functions

5.3.3 Delete Function
Delete file is a virtual 1/0 function that removes a directory entry or file header
from a disk. It can take one function modifier, IO$M_DELETE, which deletes the
file (or marks it for deletion).

If the function modifier IO$M_DELETE is specified, the file is marked for
deletion. If the file is not currently open, it is deleted immediately. If the file
is open, it is marked to be deleted when the last accessor deaccesses it.

If I0$M_DELETE is not specified, the directory entry only is removed.

If a nonzero directory ID is specified in the FIB, a lookup subfunction is
performed. The file name located is removed from the dire~ory.

The DELETE function is invoked if an IO$_DELETE function code is specified. It
performs the following basic steps:

• Finds and removes the directory entry.

• Serializes access to the file, and reads its header.

• Seeks for and creates the FCB if necessary.

• Checks if the directory entry removed was the primary entry. If it is not, the
file itself is not deleted. A directory entry is considered the primary entry if
the directory file ID matches the file's back link and the name in the directory
matches the name stored in the header.

• Checks for delete access to the file.

• Checks to guarantee that the file is empty if the file is a directory.

• Audits the deletion if required.

• Checks for other accessors.

• Marks the header for deletion.

• Returns any cached buffers for the file (directories only).

• Marks the FCB for deletion.

• Deletes the file if this process is the only accessor.

• Releases the access lock (manipulated when checking for other accessors).

• Deletes any FCBs.

The ACP Functions 20s

5.3.4 Modify Function

Modify file is a virtual I/O function that modifies the file attributes or allocation
of a disk file. The I0$_MODIFY function is not applicable to magnetic tape.

The function code I0$_MODIFY takes no function modifiers. It is used for
modifying the characteristics of an existing file, which means extending it, writing
attributes, or truncating it.

The MODIFY function is invoked if an 10$MODIFY function code is specified. It
performs the following basic steps:

• Locates the directory entry if required

• Serializes access to the file

• Seeks for and creates the FCB if necessary

• Interlocks against other accessors

• Checks access to the file

• Performs and audits write-attributes processing if necessary

• Performs extension or truncation

• Updates the file header chain

5.3.5 Deaccess Function
Deaccess file is a virtual I/O function that deaccesses the file. It has no function
modifiers.

Because the function is 10$_DEACCESS, the routine DEACCESS is called. It
performs the following basic steps:

• Serializes access to the file.

• Rebuilds the FCBs if any operation must be done to the file.

• Requests cleanup deletion of the file if it is marked for deletion and this is the
last access.

• Updates the revision count.

• Updates the file highwater mark.

• Clears the deaccess lock flag if attributes are being written.

206 The ACP Functions

• Writes the attributes.

• Performs any requested truncation. if this process is not the only accessor,
delayed truncation is performed. However, if this process is the last accessor
and delayed truncation was requested, truncation is performed at this time.

The ERR_CLEANUP routine actually deaccesses the file; it is is invoked after the
DEACCESS routine exits.

5.3.6 ACP Control Functions

Miscellaneous control functions are performed by the ACP control functions. ·All
ACP control functions originate from the ACPCONTROL routine.

The following table lists these control functions and what they do:

Function

Remap

Lock volume

Unlock volume

Mount verification

Mount

Description

The REMAP function invokes REMAP _FILE under the file
serialization lock to completely map the file.

The LOCK.... VOL function locks the current volume by taking
the blockingJock_for the volume (TAKE~BLOCI<...LOCK).

The UNLK_ VOL function clears the VCB$V _NOALLOC bit,
establishes the free space value clusterwide (referenced in
the free space allocation lock block field), and dequeues the
blocking lock.

The FORCE_MV function forces a. shadow set virtual
unit through mount verification to ensure that the SCB
is consistent and that shadowing information is updated
throughout the cltister. This function can be requested by a
process with SYSPRV.
The MOUNT function infol'DiS the file system when a volume
is mounted. This function is part of the volume mount
procedure only, so users cannot access it directly. For more
information on the volume mount procedure, see Section 3.3.

Function

Disk quota

Dismount

The ACP Functions 201

Description

Enables disk quota enforcement on a volume or volume set.
This function includes two types of operations:

• To enable and disable the quota file itself

• To manipulate individual quota entries

For more information on disk quota operations, see
Section 5.4.1.
Flushes all caches and marks the SCB as the volume being
dismounted. The interesting aspect of this operation is that
the SCB is possibly written to (asynchronously) by mount
verification. The SCB I/O must be retried to make sure that a
consistent SCB is read or written.

5.4 Miscellaneous File System Requests
The major ACP functions are represented by QIO functions. Moreover,
multiplexed under those are a variety of operations that are distributed across
those major functions. A number of these other functions may occur as a result of
any of several major functions. Although some of these file system functions are
performed explicitly, others are performed implicitly on behalf of the user.

Miscellaneous file system functions include the following:

• Disk quota operations

• Directory manipulation

• Space management

• Attribute handling

• Bad block processing

5.4.1 Disk Quota Operations

Some quota operations are implicit, in that when space is allocated or deallocated,
the user's quota is automatically adjusted.

Disk quota enforcement is enabled by a quota file on the volume, or on relative
volume 1 if the file is on a volume set. The quota file appears in the volume's
master file directory under the name QUOTA.SYS;!.

20s The ACP Functions

Operations that may be performed on the quota file include the following:

• Enable

• Disable

• Add entry

• Examine entry

• Modify entry

• Remove entry

5.4.1.1 Quota File Operations
A user can request that various ACP control functions be performed on the quota
file. These quota operations involve explicit manipulation of the quota file, and
they are called by the System Management Utility (SYSMAN)1. The quota file
is never manipulated directly by VMS because its individual entries are cached
by the file system. Rather, the operations interlock with the cache, so consistent
results are always seen.

These user-invoked quota operations are performed by the QUOTA_FILE_OP
l'Q~n.~_, __ whlcb_hf!11_cil.~_~n~l:>J.il!g_ a:nd dt~abling_qy_Qt_a PJ.:oces~ing, and _addb;J.g,
examining, modifying, and deleting quota file entries.

'
The XQP synchronization rules dictate that the file serialization lock must be
acquired before the volume allocation lock. The lock basis for the quota file
is contained in the quota file FCB, which is located by means of the pointer
VCB$L_QUOTAFCB. However, the allocation lock protects the quota file FCB;
that is, VCB$L_QUOTAFCB is not stable except under the allocation lock.

The solution is for QUOTA_FILE_OP to perform the following loop:

1. Request the serialization lock on the quota file (using whatever random value
it gets by looking at VCB$L_QUOTAFCB)

2. Take out the allocation lock

3. Check that VCB$L_QUOTAFCB matches

4. Unlock and retry until it does

However, an additional aspect of these quota operations is that the blocking
lock is requested for an add quota function. DISPATCHER does not request the
blocking lock for ACP control functions because some affect the blocking lock
state.

QUOTA_FILE_OP also checks protection and permission to the file (by privilege
or access).

1 SYSMAN includes the DISKQUOTA command set, which operated as a standalone utility in VMS
Version 4.6.

The ACP Functions 209

The following table describes the quota operations and their functions:

Quota Function

Enable

Disable

Examine

Add entry

Modify

Remove entry

5.4.1.2 Quota Cache

Description

Connects to the quota file. In other words, it enables quota for the
volume.

Flushes the quota cache, forces writes of any quota file buffer
blocks, and then performs the actual quota file deaccess
(DEACC_QFILE).

Returns a quota file record.

Finds the next free record, writes the quota information, and calls
the EXTEND_CONTIG routine if it is necessary to enlarge the file.

Changes an entry and writes it. The process must hold the volume
blocking lock to modify the usage figure.

Returns an old entry. The entry is zeroed under an exclusive lock
on the quota entry.

The quota cache has entries based on UICs to keep track of allowed usage,
current usage, and so on, without having to read and write the QUOTA.SYS
file itself all the time. The quota cache is allocated in nonpaged pool by
MAKE_DISK_MOUNT in the MOUNT module MOUDK2 and deallocated by
CHECK_DISMOUNT.

The quota cache is found by following the VCA block pointer in the VCB$L_
QUOCACHE field.

Each quota cache entry contains the following information:

• UIC

• Quota information (usage, permanent quota, overdraft)

• Lock status

• Block used with the quota cache entry locks

• Quota file record number

• LRU indexes

The cache header contains an LRU counter. When a new entry is added, the
value is put into the entry, and this counter is incremented.

210 The ACP Functions

The following routines operate on the quota cache:

Routine

FLUSH_QUO_CACHE

SCAN_QUO_CACHE

CLEAN_QUO_CACHE

ENTER_QUO_CACHE

Function

Flushes all entries to disk. The corresponding record on disk
is located and updated (by CLEAN_QUO_CACHE). Any quota
entry locks are released, including a conversion to null mode
of the quota cache lock itself.

Finds an entry in the cache. If the cache is marked invalid,
this routine tries to get the normal protected read cache lock
to enable the cache.

If the entry is not valid, the quota entry lock (protected write)
is obtained to make it valid and to get the current quota
values from the lock value block.

If the entry is not found in the cache, it is added to the cache
(either by LRU replacement or by expansion).

SCAN_QUO_CACHE also sets the VCA$V_CACHEFLUSH
flag in the cache header if it finds the quota cache invalid and
cannot obtain the cache lock. The CLEANUP routine checks
for this condition and flushes the quota cache when processing
is finished (to reflect the changes to the process holding the
quota cache lock).

Updates the disk record from a cache entry. The disk buffer is
marked as dirty, and the cache entry is marked as clean.

Copies a given record into the cache. The LRU index is
updated if requested, and the entry is marked as dirty if
requested.

5.4.1.3 Accessing the Quota File
Enabling quota processing on a volume makes a call to CONN_QFILE. The
CONN_QFILE routine establishes a connection to the quota file and calls the
FIND routine to locate the quota file. CONN_QFILE performs these additional
actions:

• Finds or creates the FCB under the quota file serialization lock

• Builds the extension FCBs

• Requests write access for the quota file

• Allocates the quota cache, linking it to the VCB

• Sets up the ACBs in the cache header for the various blocking routines

• Takes out the quota cache lock if the quota file is already write-accessed

The ACP Functions 211

5.4.1.4 Processing the Quota File
The quota file is a sequential contiguous file with no version limit, and quota
file records are fixed-length 32-byte records. The main routine for quota file
processing is SEARCH_ QUOTA. This routine locates a quota record for a given
UIC.

SEARCH_QUOTA scans the quota cache, updating the quota file from the cache
entry if necessary. It scans the quota file if the record cannot be found, or if a
wildcard search was requested.

If a wildcard search was specified, the scan of the quota file is performed before
the scan of the quota cache to return the records in order by UIC. If the record
returned is in the cache, the returned address is that of DUMMY_REC within
CHARGEQ. This value takes on special-case status in other places within
CHARGEQ.

REAL_Q_REC is the address of the buffer containing the actual disk quota record,
if there is one. WRITE_ QUOTA updates the cache entry and the disk record (in
which case the buffer is marked as dirty) depending on these variables.

CHARGE_ QUOTA performs the system processing of charging for quota, checking
for overdrawn quota, and so on. It writes out the new quota record if the quota
charge is valid.

5.4.1.5 Deaccessing the Quota File
The inverse of connecting the quota file is done by DEACC_QFILE, which
deaccesses the quota file. It starts by returning any quota file buffers (in
KILL_BUFFERS). It performs these other actions:

• Demotes the access lock on the quota file to show that the process has
deaccessed the file

• Deallocates the quota cache

• Releases the quota cache lock if it was taken out

5.4.2 Directory Manipulation
Directory manipulation is an implicit file system function in many ways. Several
of the file functions result in a directory search to look up a file. For example, in
the case of a delete function, a directory entry is removed. In the case of a create
function, a directory entry may be created. This type of directory processing is all
handled with a common mechanism.

Directory manipulation is done with a common set of directory routines. First of
all, the directory file must be located, so there is a process for implicitly accessing
the directory. A window does not have to be built because directories are always
contiguous. As a result, there is enough information in the file control block to
find the directory on disk.

212 The ACP Functions

Because there is bounded access control information, the file system keeps
file control blocks for recently referenced directories, which is a performance
optimization. Repeated references to the same directory eliminate the 1/0
bottleneck of having to go to the disk to read the file header for the directory
file every time a directory operation is requested for that directory.

There is a common directory scanner routine that does all the directory processing
for all the components of the file system. This scanner implements wildcard
searching so it can find the next occurrence of the specified wildcard string. It
accepts input pointers to specify a point at which to start scanning the directory,
and it returns the output pointers of where it has stopped scanning. It also
returns pointers to the previous directory entry. The interface to this scanner is
enormous because it is used by so many different facilities in the file system.

Once a directory has been scanned, several conditions can result:

• For a directory access, the scanner obtains the directory entry and returns
the file ID.

• For a create function, the file system either has the pointers to where a file
should be created or the pointers to a previously existing directory entry that
is to be superseded.

• For a delete function, the scanner returns the pointer to the directory entry
that is to be· removed.

These operations are then performed by separate routines.

5.4.3 Space Management

Space management is another common mechanism. Any of the following
functions can result in either allocating or deallocating disk space:

• The extend and truncate routines operate on the :file header and call the
common allocation and deallocation routines.

• The allocation routines manipulate the storage bitmap as well as some of the
allocation caches. They are capable of several different types of allocation.

The default is random allocation, which is based on the assumption that
most file activity is dynamic. That is, for files that are written once and may
be read once, or never, or twice, it is more efficient to do the allocation as
quickly as possible without trying to optimize file placement. As a result,
these routines simply take whatever disk blocks are readily available at hand
and allocate them to the file being created or extended.

For files that have a greater degree of permanance, there are several other
options:

Contiguous allocation guarantees that all of the space allocated is in one
area.

The ACP Functions 213

Contiguous-best-try allocation specifies that the allocation is contiguous if
possible (within three tries).

Placed allocation specifies that the first attempts at allocation occur at
a specified location on the volume. That is very useful for co-locating
different portions of an active database.

5.4.4 Attribute Handling
Attribute handling interprets the attributes that are specified in the complex
buffer packet, and it involves either the reading or writing of attributes. For
instance, the access function causes attributes to be read from the file back to the
user. The create, modify, and deaccess functions result in attributes being written
or propagated to the file.

A number of file attributes are protected. That is, they can be read but they can
only be written in a controlled way.

However, some attributes cannot be written at all. This restriction is primarily
to protect the integrity of the file system. These attributes are represented as
follows in the file header field FH2$L_FILECHAR:

Bit Name

FCH$V _CONTIG

FCH$V _SPOOL

FCH$V _BADBLOCK

FCH$V _NOCHARGE

Meaning

The file is contiguous. This bit can only be cleared by the
user. It is possible for a user to take a file that has been
marked contiguous and mark it noncontiguous. However, the
file system does not allow the reverse to be done (that is, it
is not possible for a user to mark a file as contiguous).

The file is spooled. The spool bit is a special case for the
internal handling of spooled files on transparently spooled
devices. The file system does not allow a user to modify this
bit.

The file contains a bad block. It indicates that bad block
processing is to be performed on the file at a later time,
such as after it is deleted. For more information, see
Section 5.4.8.
The file space is not charged against quota. The nocharge bit
suppresses charging the space of a file to its owner's quota.

One of the last functions performed in an XQP request is to
reflect new disk usage in the quota file. This is done unless
FIB$V _NOCHARGE is set (a user cannot set this bit because
GET_FIB clears it).

214 The ACP Functions

Bit Name

FCH$V _MARKDEL

Meaning

The file is marked for deletion. The mark-for-delete bit is
used for the internal purposes of the file system, so a user
cannot modify it directly.

5.4.5 Dynamic Highwater Marking

Disk scavenging is a security problem where a user allocates disk space and
then searches it for interesting contents of previous :files that have been deleted.
VMS solves this problem with the combination of the two following techniques:

• Erase-on-allocate

• Highwater marking

Both are enabled when the highwater marking volume attribute is enabled with
the SET VOLUME/HIGHWATER command.

VMS maintains a highwater mark which indicates how far the file has been
written in its allotted space on the disk. All blocks in the file up to the highwater
mark are guaranteed to have been written since they were allocated to the file.
Theuserisnot permitted to read beyond the highwatermark, and thus cannot
read stale data from the :file.

Erase-on-allocate is the more costly but conservative technique. It is used when
the file is open, allowing any form of shared access or nonsequential access.
Erase-on-allocate, as its name implies, simply means erasing all disk blocks when
they are allocated to the :file. The :file's highwater mark is set to point to the end
of the newly allocated and erased space.

Highwater marking is used only when the :file is open for write with exclusive
access in sequential-only mode.1 In this mode, the highwater mark is maintained
in memory and cannot be maintained across multiple nodes of a cluster with
acceptable performance (which is why access is limited to a single accessor).

This is a restrictive but common set of circumstances that allow the file system to
perform the following functions:

• Maintain a valid highwater mark dynamically

• Incur erase operations only under unusual circumstances

Sequential-only access is specified to the XQP with the FIB$V _SEQONLY bit in
an IO$_ACCESS function. It is a declaration that the file is a sequential file, but
it does not enforce any ordering of disk 1/0. This type of access contributes to the
complexity of the highwater marking logic.

1 This mode of access results when a sequential file is opened for write through RMS with the usual
defaults.

The ACP Functions 215

Sequential-only access is an enabling factor in highwater marking to prevent
possible corruption of nonsequential file organizations (such as indexed files)
during a system failure. The highwater mark is maintained in the FCB while
a file is open and is written to disk only when the file is closed. Thus, should
the system fail while the file is open, the blocks written past the last-recorded
highwater mark will be lost.

This loss can be tolerated and controlled with sequential files, but it can cause
arbitrary corruption in nonsequential file organizations. Nonsequential files are
therefore opened without FIB$V _SEQONLY and are handled with the erase-on
extend technique.

5.4.5.1 Basic Highwater Mark Algorithm
The basic principle of highwater marking is not to allow the process to read what
has not yet been written. The highwater mark indicates the highest block that
has been written in the file. If the user attempts to read past the highwater
mark, the read is stopped. No error status is returned; as far as the user is
concerned, the read has completed successfully.

When a write function occurs that extends past the current highwater mark,
the highwater mark is updated to reflect the point at which the write operation
ended.

Finally, when a write occurs that begins beyond the current highwater mark, the
blocks between the current highwater mark and the start of the write function
are erased to fill the gap that would otherwise be left in the file. The code that
implements this simple algorithm is deceptively complex because the VMS 1/0
system allows multiple concurrent read and write functions whose interactions
must be controlled.

5.4.5.2 Highwater Mark Handling Routines
Most highwater mark processing is handled by the executive 1/0 routines in
SYSACPFDT and IOCIOPOST. Certain exception cases are handled by the
module RWVB in the XQP, along with the other exception cases of virtual 1/0.

Highwater mark processing begins in the IOC$MAPVBLK routine. This routine
enforces the highwater mark for read operations by not mapping blocks past the
highwater mark. Thus, if a read QIO extends past the highwater mark, it is
treated as a segmented read, and the following actions occur:

• The portion of the file that lies within the highwater mark is mapped and is
executed by the driver.

• The IOCIOPOST routine then attempts to map the remaining portion, as it
would for any segmented 1/0.

• Total map failure occurs, which causes the IRP to be sent to the XQP.

216 The ACP Functions

In this circumstance, IOC$MAPVBLK indicates that the IRP starts past the
highwater mark by setting the flag IRP$V _START_PAST_HWM. This flag causes
the RWVB routine to recognize the IRP as a read-past-highwater IRP, and it
immediately returns the IRP to the user.

Write operations past the highwater mark are permitted, and they are mapped by
the IOC$MAPVBLK routine. However, a write-past-highwater operation requires
the highwater mark to be updated. This checking is done by IOC$CHECK_HWM,
located in SYSACPFDT.

While a write-past-highwater operation is in progress, the highwater mark is
in transition; until the write completes, it is impossible to know whether the
blocks affected by the write operation have been written or not. Therefore, the
file system does not permit read operations into the transition region of the file.

Concurrent reads and writes are managed by having two highwater marks for the
file:

• FCB$L_HIGHWATER-Is the current highwater mark. All blocks up to this
location are known to have been written and therefore may be read.

• FCB$L_NEWHIGHWATER-Is the new highwater mark. All blocks between
this location and FCB$L_HIGHWATER are in the process of being written.

Each: write operation that goes past the current value of FCB$L_NEWHIGHWATER
causes its value to be updated. The following two fields are also modified:

• The IRP is flagged with the bit IRP$V_END_PAST_HWM to indicate that it
affects the highwater mark.

• The counter FCB$W _HWM_UPDATE is incremented to reflect the outstand-
ing update.

While writes are in progress in the transition region, reads cannot be allowed in
the transition region because the file system does not know which blocks have or
have not been written. Such reads must be stalled until the writes complete and
the highwater mark is again stable. This stalling is done by queuing read-past
highwater IRPs onto the end of the FCB$L_HWM_ WAITFL queue.

Completed writes flagged with the IRP$V_END_PAST_HWM flag are processed
by the routine HWM_END in IOCIOPOST. This routine performs the following
actions:

• Decrements the pending write counter. If the counter goes to zero, it means
that all blocks in the transition region have been written and that the new
highwater mark is stable.

• Copies FCB$L_NEWHIGHWATER into FCB$L_HIGHWATER.

• Dequeues any pending reads on the wait queue, and reprocesses them by
sending them through the IOC$QNXTSEG routine.

The ACP Functions 211

Write operations that start beyond the new highwater mark cause considerably
more trouble. If such a write were simply executed, it would leave a gap in
the blocks written to the file. This gap must be filled by erasing the blocks
between where the FCB$L_NEWHIGHWATER field indicates and where the
write actually begins. This type of write operation is flagged with the bit
IRP$V_START_PAST_HWM, and the file system performs the following actions:

• Copies the starting VBN of the gap (represented by the current value of
FCB$L_NEWHIGHWATER) into IRP$L_ERASE_ VBN.

• Increments the pending erase counter FCB$W _HWM_ERASE.

• Queues the IRP to the XQP routine RWVB, which uses the routine
ERASE_ VIRTUAL to erase the appropriate file blocks.

While the erase operation is in progress, asynchronous writes to the transition
region of the file cannot be allowed because there is no way to guarantee whether
the write operations or the erase operation will be processed :first by the disk
driver. As a result, while the pending erase count is nonzero, write operations
into the transition region are likewise stalled on the FCB$L_HWM_ WAIT queue.
Pending read operations are stored on the back of the queue (that is, in the
FCB$L_HWM_ WAITBL field), and pending writes are stored on the front of the
queue.

After the RWVB routine has executed the erase operation, the following actions
occur:

• Its subroutine END_HWM_ERASE decrements the pending erase counter.

• If the counter goes to zero, RWVB pulls any pending write operations (but not
reads) from the front of the stall queue and restarts them by means of the
IOC$QNXTSEG routine in a manner similar to IOC$HWM_END.

• Finally, the write that incurred the erase operation is sent to the driver
through the REQUEUE_REQ routine. This write operation is now a normal
write-past-highwater operation and is treated as one.

Additional complexity can be introduced by undisciplined software that attempts
to write past the end of the file's allocated space. Because the :file can also be
extended asynchronously, such a write only extends the highwater mark to the
end of the allocated space (where the write operation will stop if the file is not
extended), and its IRP is flagged with IRP$V _PART_HWM.

If the file is extended while the 110 is in progress, a subsequent trip through
IOC$QNXTSEG will map the new blocks. The IRP$V _PART_HmA flag indicates
that the IRP must be revalidated with another call to IOC$CHECK_HWM before
proceeding.

218 The ACP Functions

Finally, write-past-highwater operations that encounter an 1/0 error require
special handling. If the write contained multiple blocks, some blocks usually
remain unwritten because the 1/0 was stopped short by the error. Because the
advance of the highwater mark has already been committed, these blocks must be
overwritten to avoid having unwritten blocks in the file. This is accomplished (in
RWVB) by erasing the unwritten blocks of the transfer before returning the error
to the user.

5.4.6 Spool File Processing
A spool file is a file without a directory entry that is flagged as spooled. It is
sent to the symbiont when it is deaccessed. The idea behind spooling is to allow
a process to pretend it is writing to a printer, when in fact it is writing to an
intermediate file.

The IRP$L_UCB field (which is loaded into the impure cell CURRENT_UCB by
the GET_REQUEST routine) refers to the spool file. IRP$L_MEDIA is set to
the spooled device UCB (a printer). Spool file operations are recognized when a
process sends a create function to a printer specified as spooled, and this function
is then translated into the creation of a spooled file.

R~ql!ef!tEI t() ()pera~e on spo()l file_s. are re~9@ize<i in FI>_T processin_g. The file
name user buffer is replaced by the user name and account to become the file
name in the header. GET_REQUEST then notices that IRP$L_UCB is different
from IRP$L_MEDIA, and sets the cleanup flag CLF _SPOOLFILE.

The spool flag is set in the file header for spool files by the CREATE routine.
This flag causes the FILL_FCB routine to set the FCB$V _SPOOL bit in the file
control block. This flag is one of the characteristics that cannot be changed by
WRITE_ATTRIB.

When a spool file is deaccessed, the 10$_DEACCESS FDT processing transmits
the caller's user name in the P2 string buffer of the complex buffer packet. The
user name is used by an ACP-type file processor to submit the queued request
under the right user name; it is not used by the XQP because the XQP is runmng
in the caller's process.

In the file system, the CLF _DOSPOOL cleanup flag is set, which causes a queue
request to be sent to the job controller containing the following information:

• File ID

• Filename string constructed from the device name and the name in the file
header

• Queue name taken from the VCB of the spooled device

If the symbiont request fails, the file is deleted (by setting CLF _DELFILE), and
the job controller error status is returned to the user (in USER_STATUS).

The ACP Functions 219

5.4. 7 Access Control List Processing

Access control lists (ACLs) are also managed through attribute handling. There
are several attribute control codes that are used to read either the entire access
control list or selected entries, to update the access control list, and so on.

The access control list is contained in the ACL area of a file header. Although
an ACL can be relatively large, unrestricted use of access control lists forces
multiheader files to be created-an important performance consideration. A file
header is 512 bytes long, and when either the access control list or the map
pointer space exceeds this length, extension headers must be created and chained
to the original header to control the overflow.

The address of the ACL for a file is a parameter passed to the CHECK_PROTECT
routine. It is created (copied from the file header chain) only during initial FCB
creation.

For an open file, the access control list is maintained in paged pool, and it can
be located from the ACL queue of the ORB, which is located in the primary FCB
for the file. When an ACL is processed, the file system actually uses the access
control list in paged pool. When the ACL processing is complete, the entire ACL
is copied back into the file header on disk.

The ACL is returned to the user through a read attributes function, and it is set
by WRITE_ATTRIB. The GET_FIB routine initially sets the FIB$L_ACL_STATUS
field to success. This field gets its real value in the routines READ_ATTRIB
and WRITE_ATTRIB. Writing to the ACL causes the FCB to be marked stale
clusterwide, which forces the in-memory ACL to be rebuilt across the cluster.

The CHECK_DISMOUNT routine deletes any ACLs when it deallocates any
FCBs associated with a device.

5.4.8 Dynamic Bad Block Processing

Bad block processing is not invoked explicitly by any user operations but happens
as the result of normal file system processing in a way that is mostly transparent
to the user. It is initiated when a hard 1/0 error occurs during file 110, on either
a read or a write function. The failing 1/0 is turned over to the file system, which
flags the file as having a bad block but does nothing more at that time; dynamic
bad block processing occurs when the file is deleted.

When this flagged file is deleted, it is sent to a. special bad block scanner process
instead of being directly deallocated. This process, created by the file system,
asynchronously scans the file and accesses the blocks to search for the error.

220 The ACP Functions

5.4.8.1 Handling an 110 Error
When a read or write function on a file returns from a driver with an error status,
the IOPOST routine clears the IRP$V _VIRTUAL bit in the IRP and queues it to
the XQP. (Clearing the virtual bit distinguishes 1/0 error processing from requests
for window turns and highwater mark processing, which arrive at the XQP with
IRP$V _VIRTUAL set.) The XQP performs bad block processing if the error
code in IRP$L_IOST1 is a parity, format, or datacheck error. Other error codes
indicate problems other than media errors and do not cause bad block processing.

The MARKBAD_FCB routine in the RWVB module sets the bad block bit
(FCB$V _BADBLK) in the indicated FCB. The routine SCAN_BADLOG is called
to locate the block in BADLOG.SYS, the pending bad block log file. BADLOG.SYS
is opened in secondary context and is searched for the LBN on which the 1/0
failed. If an entry is found, it is updated. If one is not found, it is created.

If the deaccess function sees that the bad block bit is set in the file header, it
sets the FH2$V _BADBLOCK bit in the file header. Likewise, INIT_FCB2, which
initializes the FCB according to the given file header, sets the FCB$V _BADBLK
bit if the FH2$V _BADBLOCK bit is set. Setting FH2$V _BADBLOCK, in tum,
causes the DELETE_FILE routine to send the file to the bad block scanner for
deletion.

5.4.8.2 The Bad Block Scanner
Normally, when a file is deleted, the mapped blocks are returned to the storage
bitmap. If the bad block flag in the header is set, the routine SEND_BADSCAN
(in the SNDBAD module) sends a message through the special mailbox
(ACP$BADBLOCK_MBX) created by INIT_FCP during SYSINIT, and it specifies
the UCB and FID of the file to be deleted. If the message is sent successfully,
a request is made for a process called BADBLOCK_SCAN, or the bad block
scanner.

The bad block scanner contains all privileges, and its UIC is [1,3]. Its job is to
scan the deleted file to locate the bad block. When the block that generated
the error is found, it is exercised by being written and read three times to
determine whether the error can be reproduced. If the block can be read and
written satisfactorily all three times, then the file system continues to use the
block. (In fact, most of these errors are not repeated, and the block is read and
written satisfactorily.) However, if it cannot be read or written any one of those
three times, the block is considered bad, and it is retired.

Blocks that do not have errors after this scan are returned to the storage bitmap,
and those that do have errors are appended to BADBLK.SYS (by moving the map
pointer from the deleted file to BADBLK.SYS).1

1 Note that, logically, DSA disks contain no bad blocks. On a DSA disk, bad blocks are revectored in
the RCT when they are written or read. If an error occurs while a block is being read, it is flagged
as a "forced error." Rewriting the block is necessary to clear the forced error flag. Because DSA

The ACP Functions 221

Fot more information on bad block processing on DSA disks, see Section 2.5.3.3.
To find the defective blocks, the bad block scanner runs BADBLOCKEXE in the
BADBLK facility.

The main BADBLOCK processing routine, MAIN_BAD (in the BADBLK module
GETREQ) reads each message from the bad block mailbox. For each, it resets the
UCB address in a CCB it holds for that purpose to the UCB address of the file
containing the suspected bad blocks. The routine SCAN (in the BADBLK module
SCANFILE) searches through the file to determine which blocks are defective.

The SCAN routine tests each block of the file, truncating the trailing blocks from
the file. This function occurs in user mode, and retries are inhibited to prevent
the disk driver from automatically performing offset recovery. If the block is
found to be bad, SCAN uses the MARKBAD truncate option FIB$V _MARKBAD.
This option causes the specified blocks (only the last cluster) to be sent to
DEALLOCATE_BAD. This operation requires SYSPRV.

DEALLOCATE_BAD, in secondary context, serializes on the bad block file. A
map pointer is added to the last header to map the bad blocks. The end-of-file
mark and highwater mark are reset to include these blocks.

In secondary context, SCAN_BADLOG in the FllX module BADSCN is called
to scan the pending bad block log and remove any existing BADLOG entries for
these blocks. The bad block scanner will also check the BADLOG file for any
references to the file when it is done.

When all blocks are truncated from the file, the empty file is deleted and
deaccessed.

Figure 5-2 shows a diagram of virtual 1/0 error handling.

disks relocate bad blocks when they are rewritten, the bad block scanner never finds the bad blocks
again after it rewrites its test pattern. As a result, BADBLK.SYS is always empty on DSA disks. In
other words, if the file system finds a block with a forced em>r, the bad block processor runs when
the block is deallocated. A DSA disk will try to read and write the block repeatedly; if the block
cannot be read or written, it is revectored. So no bad blocks are entered in BADBLK.SYS for DSA
disks.

222 The ACP Functions

Figure 5-2: Virtual 1/0 Error Handling

Error Return 1/0 Call
User

1/0 Error

1/0 Post Processed Error 010 Service

--
1/0 Error

Driver ACP/XOP

t Mapped 1/0 Function

ZK-9731-HC

5.4.9 Window Handling
A file may contain one or more extents, and the file header contains a pointer
to each extent. Each pointer consists of a starting LBN and an extent size (in
bytes).

Figure 5-3 shows the virtual and physical representations of a file with nine
extents. Extents are virtually contiguous, but they may physically reside
anywhere on the disk.

The ACP Functions 223

Figure 5-3: Virtual and Physical Representations of a File

Virtual Representation Physical Structure on Disk

Extent 1
Extent 3

Extent 2

Extent 3
Extent 6

Extent 4

Extent 8

Extent 5

Extent 6

Extent 7

Extent 8

Extent 1

Extent 9

Extent 2

Extent 4

Extent 7

Extent 9

ZK-9606-HC

224 The ACP Functions

For retrieval purposes, these extent pointers reside in a structure in memory
called a window. The window control block resides in the top portion of the
window. Each WCB contains a starting LBN and a variable number of retrieval
pointers. The number of pointers may be set with the following methods:

• The DCL command INITIALIZE/WINDOWS=n

• The FAB$B_RTV field at file open time

• The FDL attribute FILE WINDOW _SIZE

• The system paramter ACP _ WINDOW1

• The DCL command MOUNT/WINDOWS=n

A special type of window that maps the entire file is called a cathedral window.
This type is window is also known as a "segmented window" because multiple
WCBs are usually required to contain its mapping information. Each WCB in the
chain is called a "window segment."

When a data transfer (a virtual read or write operation) is requested, a starting
VBN and the size of the request in bytes is given. The file system then maps the
VBN to an LBN, which is used to locate the file's blocks on disk.

When an extent whose pointer is not in the current window is accessed, the XQP
has fo ·read the file-header to construct a new window that maps the desired
extents. This 1/0 operation is called a window turn. When the file system turns
a window, it reads the header chain to find the file header that contains the
desired retrieval pointer.

Figure 5-4 shows the mapping information in both the file header and the
window control block. The WCB forms the top portion of the window, and it
contains mapping information for the first two extents. In this figure, however, if
the information contained in extents 6 through 9 is needed, the XQP must turn
the window.

1 Applies only to disks mounted with the /SYSTEM qualifier.

The ACP Functions 225

Figure 5-4: Mapping a File with a Window Size of 5

File Header

,.._

Map information
for extent 1

Map information
for extent 2

Map information
for extent 3

Map information
for extent 9

- ""' -- -

Window Control Block and Window

WCB

Map information for extent 1

Map information for extent 2

Map information for extent 3

Map information for extent 4

Map information for extent 5

)
Fixed
portion
of WCB

Window

ZK-9607-HC

Virtual read or write operations are processed by the FDT routines, which force
a window turn if the existing WCBs do not map the desired VBN. A request
to turn a window is converted into an I0$_READPBLK or IO$_ WRITEPBLK
operation. The DISPATCHER routine forwards these function codes directly to
the READ_ WRITEVB routine in the FllX module RWVB.

READ_ WRITEVB obtains the necessary information (such as the address of the
current window, the block count, and the desired VBN) from the IRP. It obtains
the serialization lock on the file and then calls the MAP_ VBN routine.

226 The ACP Functions

5.4.9.1 Mapping a Window
The MAP_ VBN routine in the FllX module MAPVBN is responsible for mapping
the specified virtual blocks to their corresponding logical blocks, using the
supplied window. Because the serialization lock is being held, MAP_ VBN can
rebuild the FCB (and the extension FCB chain) if the FCB has been modified.
If an extend operation was performed on a cathedral window being accessed by
multiple users, the current window does not map the entire file. In other words,
the WCB$V _CATHEDRAL bit is set, but the WCB$V _COMPLETE bit is not. The
REMAP _FILE routine in the ACPCNTRL module is called to remap the file to
update the mapping information.

REMAP _FILE ensures that the entire file is mapped. If necessary, it creates
multiple WCBs (window segments) and links them together. While building the
window segments, the following situations may occur:

• The window completely maps the file. In this case, the WCB$V_COMPLETE
bit is already set, so REMAP _FILE likewise sets the WCB$V _CATHEDRAL
bit and returns.

• The window was previously complete, but the file was extended. In this case,
new window pointers must be added to the last window segment, or a new WCB added: · · -·· -·-· - - - ·-

• The window never completely mapped the file. In this case, the header chain
is traversed to build the associated window segments.

If the file has extension headers, the FCB chain must be searched for the blocks
that need to be mapped. The correct FCB is identified either when there are no
more FCBs or when the starting VBN of the next FCB is greater than the desired
VBN. After :finding the correct FCB, three cases may occur when the 1/0 transfer
is attempted:

• A successful mapping occurs because the current window contains the desired
mapping information.

• A partial mapping occurs because the window contains the starting VBN, but
it does not map contiguous extents.

• Total map failure occurs because the window does not contain any of the
desired mapping information.

If the mapping information in the current window is either totally or partially suf
ficient, the MAP_ WINDOW routine is called to map the transfer. MAP_ WINDOW
maps the specified virtual blocks into their corresponding logical blocks. It calls
the system routine IOC$MAPVBLK in the SYS module IOSUBRAMS to perform
the actual mapping.

The ACP Functions 221

IOC$MAPVBLK searches the WCB list associated with the request to :find the
mapping pointers that locate the desired VBN. It compares the desired VBN to
the starting VBN in the WCB$L_STVBN field. If the desired VBN precedes the
starting VBN, the count of mapping pointers is obtained from the WCB$W _NMAP
:field.

If the VBN is not contained in the window, total map failure occurs. In this case,
a new UCB address (the current UCB address may have been modified by other
code) is obtained from the WCB$L_ORGUCB field, which points to the volume
containing the file.

If the VBN is in this segment, however, the window is scanned, and the count
:field of each retrieval pointer is subtracted from the current block number. When
the l'etrieval pointer containing the starting VBN is found, the next pointer is
also scanned to see if it is contiguous with the one just found, in case the transfer
request spans two pointers. The maximum number of contiguous retrieval
pointers checked for a segment is two. Although some DSA disks support longer
transfers, this limitation only affects transfers greater than 65K blocks, which are
extremely rare.

If the total transfer has been mapped contiguously, IOC$MAPVBLK performs the
following actions:

• Returns the number of bytes mapped

• Returns the starting LBN

• Returns a status of SS$_NORMAL

• Allows interrupts

• Performs an RSB

However, if the transfer has not been completely mapped, the routine performs
the following actions:

• Returns the number of unmapped bytes

• Returns the LBN of the first block mapped

• Returns status

• Performs an RSB

In both cases, if the :file is on a volume set, the LBN :field in the map pointer
contains an RVN in bits <24:31>. This RVN is used to index into the RVT to fetch
the UCB address for the volume containing the blocks mapped. The UCB address
is returned to the caller.

After the :file has been mapped, the IRP is queued to the driver's start I/O routine.

228 The ACP Functions

5.4.9.2 Turning a Window
However, if the map fails because the mapping information in the window is
not sufficient, the TURN_ WINDOW routine is called to turn the window. This
routine contains the code to update window control blocks. The routine handles
cases where the file was truncated or extended, and where the WCBs describe
VBNs prior to or beyond the desired area. It scans the map area of the supplied
file header and builds retrieval pointers in the window until one of the following
conditions is met:

• The first retrieval pointer in the window maps the desired VBN.

• The entire header has been scanned.

If no window exists, a new window is created. However, if a window1 already
exists, one of several situations may occur:

• The window must be turned to map a different portion of the file.

• The header contains pointers which may be added to the existing window
after the existing window is truncated from the beginning.

• The desired VBN is less than the specified starting VBN and the starting
VBN is greater than 1.

• .. The window already maps a portion-0f theheader-and only th& new pointel's
(which may include a partial map pointer if two contiguous extents were
collapsed into one map pointer in the header) have to be mapped.

Figure 5-5 illustrates the first situation, where a window must be turned to map,
or point to, a totally different portion of the file because neither the starting VBN
nor the desired VBN is contained in the current window. In other words, the
window must be turned because of complete map failure. The end result is a
window that contains totally new VBNs.

A "scanning window" is contructed, containing the desired VBN s. When this
scanning window is complete, all the old VBNs (VBNs 22 through 99) in the
original window are discarded, and the new VBNs (VBNs 100 through 145) are
copied to the window.

1 Does not include cathedral windows.

The ACP Functions 229

Figure 5-5: Turning a Window Because of Complete Map Failure

VBN 22

VBN 99

VBN 100

VBN 145

Map area in file header

File on disk

l Current window maps J VBNs 22-99

)
Desired window maps
VBNs 100-145

ZK-9608-HC

Figure 5-6 illustrates the second situation, where the header contains pointers
that may be added to the existing window after the existing window is truncated
from the beginning (or the top).

This situation usually occurs when a file is extended without causing a new file
header to be created. The difference between this case and the previous one is
that the starting VBN of the file header is contained within the current window,
which prevents the window from being discarded totally. In this example, the
starting VBN is VBN 18, and the desired VBN is VBN 26. The new window must
include both VBN s.

230 The ACP Functions

Figure 5-6: Turning a Window to Map Addltlonal Pointers

VBN 10

VBN19
VBN 20

VBN 27

VBN 99

Map area in file header

... --------------------~ \

> Current window
_______________ _, maps VBNs 10-19

~Starting VBN (VBN 18)
-=--- - --=_- -"- --/

+--Desired VBN (VBN 26)

ZK-9609-HC

Figure 5-7 shows how the existing window is truncated from the top, or
beginning, of the window. The pointer containing the starting VBN (VBN 18)
was part of the old window, but it becomes the beginning of the new window. The
new window also includes the desired VBN (VBN 26).

The ACP Functions 231

Figure 5-7: Truncating an Existing Window

VBN 10

Old
Window

VBN 19
VBN 20

VBN 27

VBN 99

Map area in file header

Truncated portion of old window

Starting VBN

New window (VBNs 18-27)

Desired VBN

ZK-9610-HC

Figure 5-8 illustrates the third situation, where the desired VBN is less than the
specified starting VBN and the starting VBN is greater than 1. This situation
occurs when a file is extended and a new file header (an extension header) is
created.

In this example, the current window is mapped by extents (VBNs 150 through
199) from the extension header, and extents mapped by the primary header
(VBNs 22 through 99) are desired. In effect, as the primary file header is read,
the window is turned "backwards."

232 The ACP Functions

Figure 5-8: Turning a Window to Map a Previous Header

VBN 22

VBN 99

VBN 150

VBN 199

Map area in primary
header

Map area in
extension header

File on disk

+
I
I

Extents mapped by primary header I
-------------1
Extents mapped by extension header I

I

+

Current window

ZK-9611-HC

Figure 5-9 illustrates the fourth situation, where the window already maps a
portion of the header and only the new pointers (which may include a partial
map pointer if two contiguous extents were collapsed into one map pointer in the
header) have to be mapped.

The ACP Functions 233

In this example, VBNs 1through100 are mapped by a single contiguous extent,
and VBNs 101through105 are mapped by a second single contiguous extent.
If the file is extended contiguously, the new VBNS may also be mapped by the
second extent.

Figure 5-9: Turning a Window to Map a Contiguous Extent

VBN 1

Current window maps
VBNs 1-105

VBN 100

VBN 105

VBN 110

LBN

LBN

100

5

Map area in file header

File on disk

First single extent

l Second s;ngle e'1ent

l Extend the file
contiguously

ZK-9612-HC

234 The ACP Functions

Figure 5-10 shows how the file system efficiently collapses, or combines, the
contiguous extents into a single extent. The second pointer in the file header now
reflects the addition of the new VBN s.

Figure 5-10: Collapsing the Contiguous Extents

LBN 100

LBN 10

VBN 1 1.-----------..

Current window maps <
VBNs 1-110

~· -

VBN 100 1- - - - - - - - - - - -I

VBN 110\._ __________________ _.

Map area in file header

File on disk

First single extent

Second single extent

ZK-9613-HC

After the new window has been initialized, the new window pointers are
constructed in a buffer. They are copied into the WCB at IPL$_SYNCH to
synchronize with other FDT routines trying to map virtual requests.

After TURN_ WINDOW returns, MAP_ WINDOW again tries to obtain the
mapping information.

When control is returned to READ_ WRITEVB, the routine checks to see if the
IRP$V _VIRTUAL bit is set and if this operation affects a reserved file (the index
file or the bitmap file). For a cluster, all cached buffers are invalidated. The
appropriate lock (allocation or serial) is obtained so that the sequence number

The ACP Functions 235

in the value block is updated. On a single node, the buffers are purged from the
cache.

Once the block has been mapped, the IRP is requeued to the driver for which it
was originally intended. REQUEUE_REQ, in the module REQUEU, translates
the LBN into the corresponding physical block number and converts the I/O
function code into the appropriate physical function. The number of unmapped
blocks is deducted from the byte count.

If the transfer was only partially mapped, the number of unmapped bytes is
subtracted from the value in the IRP$L_BCNT field, and the byte count is
rounded to the next block boundary.

If the transfer was mapped at all, the UCB$L_MAXBCNT is checked for the
largest transfer allowed. If this value is still under the limit in the IRP$L_BCNT
field, then the IOC$CVTLOGPHY routine is called to convert a logical block to a
physical block. After this conversion, the EXE$INSIOQ routine is called to queue
the IRP back to the driver.

5.5 ACP Functions and Buffer Caching
The file "subsystem" uses or consumes resources external to itself as it does work
for the user or the system. There are three major resources in VMS:

• Memory

• CPU

• I/O

Like any system, the file system must balance these resources in an adaptive
fashion. A cache is nothing more than an in-memory resource management
scheme.

File system operations involve at least two levels:

• Metadata, or information about the data, such as file headers, directory
entries, and in-memory data structures

• Data, such as user blocks

Table 5-1 shows the I/O operations that the file system uses to create a file if
caching is not available.

236 The ACP Functions

Table 5-1: Number of QIOs with Caching Disabled

Action

Scan index file (that is, the bitmap) for a free headert
Read directory for placementt
Read storage bitmap to find free blockst
Read quota blockt
Write header
Write directory block
Write quota block
'lbtal (estimated) number of QI Os

tMust be fowid before being allocated

QIOs Used (Estimated)

2

3
4

3

1

1

1

15

This number represents the number of QIOs needed to create a file before data
is written. That is, it represents only the number of QIOs needed to perform the
housekeeping or overhead functions.

~bfilance_is heaYily against IlO, so caching is p_erformed to balance 1/0. against
memory. 1/0 is the limiting factor, and memory is inexpensive. Five special
caches are as follows:

• Extent cache (bitmap cache)

• FID cache (file ID cache)

• Directory block cache

• Quota cache

• Directory index cache

Table 5-2 shows how many 1/0 operations the file system performs to do a create
operation with a cache hit rate of 100%.

The ACP Functions 237

Table 5-2: Number of QIOs with Caching Enabled

QI Os QI Os
Action Cache Used Used Saved

Search in-memory bitmap and cachet FID cache 0 2

Search cache by binary searcht Directory block cache and 0 3
directory index cache

Search cache Extent cache 0 4

Search cache Quota cache 0 3
Write header (remove entry from cache) FID cache 1 0

Update caches and write header Directory block cache and 1 0
directory index cache

Update (write-back) cache Quota cache 0 l:j:

Tutal number of QIOs 2 13

tMust be found before being allocated
:j:Deferred

The performance gain with caching provides speed and efficiency for the price of
some memory and CPU usage.

The file system has resources it must manage, and these resources have a price:

• Directory blocks

• Directory lookups (searches)

• Headers (file IDs)

• Quota entries

• Data blocks (bitmap)

So it makes sense to cache them, just as it makes sense to cache pages in the
memory management subsystem (free page list and modified page list). In
addition, the caches are coordinated across the cluster.

With a VAXcluster, caching is more important because there is more contention
on each disk. It is more complex because the distributed or shared nature of a
VAXcluster system necessarily requires more synchronization. However, there are
more advantages.

2aa The ACP Functions

There are two sch~mes that promote resource sharing within a VAXcluster
system:

• Competition (highest demand is next)

• Sharing, or coordinated payback

Table 5-3 shows the types of file system caches and identifies the type of resource
sharing they provide.

Table 5-3: Caches and Resource Sharing

Cache

Quota
Extent

Dil'ectory index
Directory block
Bitmap block
Header block

File ID

Type of Resource Sharing

Competitive. Shifts as needed from node to node.
Shared cache with coordinated payback. Resource is shared or
divided among the participants. If the usage on one node is very
great, the coordinated payback is initiated, after which demand is
lower. The cache flush blocking AST is used.

Created on delete and truncate, debited on create and extend.
Flushed by AST arid DISMOUNT, and populated by MOUNT.

Shar~d-with-c-001'dinated invalidation.- --
Shared with coordinated invalidation.
Shared with coordinated invalidation.
Shared with coordinated invalidation.

Shared cache with coordinated payback. Resource is shared or
divided among the participants. If the usage on one node is very
great, the coordinated payback is initiated, after which demand is
lower. The cache flush blocking AST is used.

Created on delete and truncate, debited on create and extend.
Flushed by AST and DISMOUNT, and populated by MOUNT.

Chapter 6

The XQP and 1/0 Processing

Dispatch is the soul of business.
Philip Dormer Stanhope, Earl of Chesterfield

A mighty maze! but not without a plan.
Alexander Pope

Outline

Chapter 6 The XQP and 1/0 Processing

6.1 Introduction

6.2 XQP Initialization
6.2.1 Allocating Impure Storage

6.3 XQP Call Interface
6.3.1 1/0 Request Packet
6.3.2 Function Decision Table
6.3.3 Driver Dispatch Table

6.4 Internal Dispatching
6.4.1 $QIO System Service Dispatching
6.4.2 Function Decision Table Dispatching
6.4.3 Building the XQP 1/0 Packet
6.4.4 Checking the Volume Status
6.4.5 Queuing the 1/0 Packet to the XQP

6.5 XQP Code Execution
6.5.1 . Dispatching a Request
6.5.2 Processing in Secondary Context
6.5.3 Switching Stacks
6.5.4 Stalling a Transaction

6.6 Error Processing, Status, and Cleanup
6.6.1 XQP Normal Cleanup
6.6.2 XQP Error Handling
6.6.3 Event Notification

6. 7 Termination of Processing
6.7.1 Completing File Functions
6.7.2 Device 1/0
6.7.3 Checking for Dismount

The XQP and 1/0 Processing 241

6.1 Introduction
I/O processing is the handling of a user request for an input/output operation to
the driver associated with a particular device. I/O processing can be divided into
three phases:

• IIO request preprocessing

• Driver-specific processing

• I/O postprocessing

I/O request preprocessing is handled in the VMS executive by the $QIO system
service. Driver-specific processing is performed by the driver associated with a
particular device. I/O postprocessing is also handled by other VMS executive
routines.

Although I/O can complete without involving the file system, a specific part of the
file system called the extended QIO processor (XQP) must intervene to perform
additional processing that cannot be done by either the QIO system service or by
the driver. Specifically, the XQP performs the following tasks:

• Processes a nontransfer request (for example, a file access)

• Handles bad blocks found in the course of performing an I/O operation

• Processes a transfer request when the current information in memory is
insufficient to convert the virtual blocks of a file to the logical blocks of the
disk

This chapter describes I/O pre- and postprocessing, which is essentially the fl.ow
of I/O requests into and out of the XQP itself. The following topics are discussed:

• How and where the XQP is mapped

• The layout of impure storage

• The $QIO system service interface to the XQP

• The format of 110 request packets

• FDT action routines

• XQP packet building and processing

• XQP kernel stack switching

• Error handling

• Posting I/O status to the user

242 The XQP and 1/0 Processing

6.2 XQP Initialization
The Files-11 image (FllBXQP.EXE) contains only pure code, which is code that
is never written to and thus cannot be modified It is mapped into Pl, or process
control, space when the process is created. The mapping can be performed quickly
and efficiently because no 1/0 needs to be done for the process at this time.
The XQPMERGE routine in the SYS facility module PROCSTRT performs the
mapping operation. Because it is kernel mode code, this routine is optimized. A
single permanent global section is created for the FllBXQP image during system
initialization by the SYSINIT process.

If the system parameter ACP _XQP _RES is set, SYSINIT maps the code into
physical memory so that global valid page faults may be avoided. However, under
exceptional circumstances, the ACP _XQP _RES parameter may not be set (for
example, on a system with restricted memory that shows little :file activity or a
system with a small number of users), the code is not resident.

In addition, when the XQP initializes the impure· area in the SYSINIT process
(the :first process to execute in the system), it creates a permanent mailbox named
ACP$BADBLOCK_MBX to communicate with the bad block processor .

. 6.2.1 Allocating. Impure Storage
Once the code has been mapped, the XQPMERGE routine jumps to the lowest
address mapped-the initialization routine is the INITXQP in the module
DISPATCH. This routine is linked as the first in the image.

The initialization routine INITXQP changes mode to kernel, specifying the
INIT_FCP routine in the INIFCP module. This routine calls the $EXPREG
system service to add virtual pages in Pl space to map the impure storage area.
It also sets the process cell CTL$GL_F11BXQP to point to the queue header
F11B$Q_XQPQUEUE (or XQP _QUEUE) in the XQP impure area.

There are three major portions of the XQP impure area:

• A private per-process kernel stack for use by the XQP

• An XQP queue

• Per-process XQP data, which includes a context save area

The INIT_FCP routine locks into the working set of the process the area for the
kernel stack and those portions of the impure area and the XQP code that may be
referenced at an elevated IPL (any IPL greater than 2). In other words, the pages
of the impure area are counted as part of the working set size. The routine also
assigns a channel for the XQP and initializes the XQP queue header.

The XQP and 1/0 Processing 243

At the top of the XQP impure area is the XQP private stack. The stack occupies 5
pages. When the XQP dispatcher processes requests, the process uses this private
kernel stack instead of the normal kernel stack. The stack thus contains normal
call frames and data normally placed on the kernel stack. How the XQP switches
from one stack to the other is discussed in more detail in Section 6.5.3.

Figure 6-1 shows the FllBXQP structure, which is part of the XQP impure area.
It is pointed to by the process cell CTL$GL_Fl1BXQP. The FllBXQP structure is
an external, global structure that defines per-process XQP symbols. It overlays
the top portion of the actual per-process XQP symbols defined by FCPDEF.B32 in
the FllX facility. The symbols defined by FCPDEF are internal to the XQP, but
the FllBXQP structure allows the symbols defining the size and location of the
XQP to be visible to the System Dump Analyzer Utility (SDA).

Figure 6-1: Format of the F11BXQP Structure

F11 B$Q_XQPQUEUE 0

F11 B$L_DISPATCH 8

"

F11B$L_CODESIZE 12

F11 B$L_CODEBASE 16

F11 B$L_IMPSIZE 20

F11 B$L_IMPBASE 24

244 The XQP and 1/0 Processing

Table 6-1 describes the contents of the FllBXQP structure.

Table 6-1 : Contents of the F11 BXQP Structure

Field Name

F11B$Q_XQPQUEUE

F11B$L_DISPATCH

F11B$L_CODESIZE
F11B$L_CODEBASE

F11B$L_IMPSIZE
F11B$L_IMPBASE

Description

XQP per-process queue header. This queue contains the 1/0
request packets (IRPs) that are currently queued to the XQP
by the process. Each IRP describes an individual 1/0 request.
Entry point to the XQP for first-level request dispatching.
This longword is a pointer to the DISPATCH routine in the
DISPATCH module.
Size of XQP code in bytes.
Base address of XQP code. This field contains the starting
address of the pure XQP code in Pl space.
Size of impure area in bytes.
Base address of XQP impure area. This field contains the
starting address (that is, the top of the XQP private kernel
stack) of the XQP impure data storage area in Pl space.

The space for the XQP impure area is allocated dynamically, and it can be
allocated anywhere in Pl space because it is based off a single register. All
variables in the context area are defined as offsets to the base register. Register
RlO is the base register for the XQP impure area, and it is initialized to the
address labeled CONTEXT_START.

Figure 6-2 shows the layout of the XQP impure area and code in the process
control region. The shaded area pointed to by the process cell CTL$GL_F11BXQP
is expanded in Figure 6-3.

The XQP and 1/0 Processing 245

Figure 6-2: Layout of the XQP

(

,-------------....-- F 11 B$L_IMPBASE

XQP impure area XOP Internal Stack

F 11 B$L _IMPSIZE = length .
CTL$GL_F11BXOP

F 11 B$L _CODEBASE

F11B$L_CODESIZE l
...._ __________ ~ XOP Code

ZK-9597-HC

Figure 6-3 shows a further expansion of the XQP impure area. The impure
storage area is delimited by the symbols STORAGE_START and STORAGE_END.
The symbol L_DATA_START also points to the beginning of this area.

The pages represented by the cells located between L_DATA_START and
L_DATA_END are locked into the working set of the process because they must
be present at an elevated IPL.

IMPURE_START and IMPURE_END delimit the cells that are initialized to
known values (usually 0) by the per-request initialization routine.

CONTEXT_START and CONTEXT_END mark the beginning and end of the
re-enterable context area, which must be saved when a secondary operation is
performed.

The context save area, delimited by CONTEXT_SAVE and CONTEXT_SAVE_END,
is the area in which the primary context is saved when a secondary operation is
performed. This topic is covered in more detail in Section 6.5.2.

246 The XQP and 1/0 Processing

Figure 6-3: Format of the Impure Area

~ STORAGLST ART

lr~~-X-Q-p_-S_T_A_C_K~~--1~ L_DATA_START

Overlaid by
systemwide
F11 BXQP
structure

>y

*

(5 pages)

XOP_QUEUE

XQP _DISPATCHER

CODE_SIZE

CODLADDRESS

DATA_SIZE

DAT A _ADDRESS

BLOCK_LQCKID

USER _ST A TUS

CACHE_HDR

CLEANUP_FLAGS

PREV_LINK

Context Save Area

LB_LOCKID

SECOND_FIB

LOCAL_ARB

AUDILCOUNT

PMS Statistics

AUDILARGLIST

~

-

.....

..... --
* --

.....

-

CTL$GL_F11 BXQP

IMPURE _ST ART

CONTEXLSTART

CONTEXLEND
CONTEXLSAVE

CONTEXT_SAVE_END

L_DATA_END

IMPURE_ENO

STORAGE_END

ZK-9598-HC

The XQP and 1/0 Processing 247

Table 6-2 lists all the symbols of the XQP impure area, their size, and a short
description of each.

Table 6-2: Contents of the XQP Impure Area

Impure Symbol Size Description

STORAGE_START 0 l.abel marking the beginning of the impure
storage area.

L_DATA.._START 0 Label marking the beginning of data that
has been ''locked down," or locked in the
working set of the process.

XQP_STACK 5 pages XQP kernel stack.
XQP_QUEUE 2 longwords Two-longword XQP queue head. This cell

corresponds to the F11B$Q_XQPQUEUE
field.

XQP _DISPATCHER Longword Address of the XQP dispatch routine. This
cell corresponds to the F11B$L_DISPATCH
field.

CODE_SIZE Longword Length of the XQP code. This cell
corresponds to the FllB$L_CODESIZE
field.

CODE_ADDRESS Longword Base address of the XQP code. This cell
corresponds to the FllB$L_CODEBASE
field.

DATA...SIZE Longword Length of the impure data area. This cell
corresponds to the FllB$L_IMPSIZE field.

DATA._ADDRESS Longword Base address of the impure data area. This
cell corresponds to the F11B$L_IMPBASE
field.

PREV_FP Longword Saved frame pointer.
PREV _STKLIM 2 longwords Two-longword saved kernel stack limits.
XQP_STKLIM 2 longwords Two-longword XQP kernel stack limits.
XQP_SAVFP Longword Saved XQP frame pointer.

(continued on next page)

248 The XQP and 1/0 Processing

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol Size

IO_CCB Longword

IO_CHANNEL Longword

BLOCK,...LOCKID Longword

IMPURE_START 0

Description

Address of the channel control block of
IO_CHANNEL, initialized by INIT_FCP.
This cell locates the CCB, which in
tum locates the UCB. That is, the
structure represented by the construct
IO_CCB[CCB$L_UCBJ is essentially a
volatile UCB pointer.

For the duration of the current oper-
ation, IO_CCB[CCB$L_UCB] is set to
CURRENT_UCB by GET_REQUEST and
to the new UCB by SWITCH_ VOLUME. It
also locates the correct UCB while the least
recently used (LRU) buffers in a cache are
written to disk by WRITE_BLOCK

Channel number of the channel pointed to
by IO_CCB. This channel is used for all 1/0
issued by the XQP.
Lock ID of the· activity-blocking lock held
by this process. See Section 8.5.1 for more
information.
Label marking the start of the impure data
area, the cells of which are initialized
to known values by the per-request
initialization routine.

(continued on next page)

The XQP and 1/0 Processing 249

Table ~2 (Cont.): Contents of the XQP Impure Area

Impure Symbol

USER_STATUS

IO_STATUS

IO_PACKET

CURRENT_UCB

CURRENT_ VCB

CURRENT_RVT

CURRENT_RVN

SAVE_ VC_FLAGS

Size

2 longwords

2 longwords

Longword

Longword

Longword

Longword

Longword

Word

Description

I/O status to be returned to user. It is
a two-longword vector returned through
IRP$L_MEDIA, which forms the I/O status
block (IOSB).

EXTEND sets the second longword to
the size extended, and EXTEND_INDEX
purposely zeroes it. For a contiguous
extend function, this value is the largest
contiguous extent size found.

For a truncate operation, this value is
the number of blocks left in the file such
that the truncated file still has an integral
number of clusters.

READ_WRITEVB sets this value to the
second word of the I/O status block returned
by the I/O. See Section 6.6.2 for more
information.

Status block for XQP I/O.

Address of the current I/O request packet,
set in the DISPATCHER routine. If this cell
contains a value of 0, the XQP is currently
idle.

Address of the UCB of the current
request, set in GET_REQUEST and
SWITCH_ VOLUME.

Address of the VCB of the current
request, set in GET_REQUEST and
SWITCH_ VOLUME.

Address of the RVT of the current volume
set, or UCB, set in GET_REQUEST.

Address of the RVN of the current
volume, set in GET_REQUEST and
SWITCH_ VOLUME.

Save volume context :flags. These flag bits
belong to the allocation lock value block.
They contain the quota file buffer sequence
number in bits 1 to 15.

(continued on next page)

250 The XQP and 1/0 Processing

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol Size

STSFLGS Byte

BLOCK_ CHECK Byte

NEW_FID Longword
NEW _FID_RVN Longword
HEADER_LBN Longword

BITMAP_VBN Longword

BITMAP_RVN Longword

BITMAP _BUFFER LOngword

SAVE_STATUS Longword

PRIVS_USED Quadword

Description

Various internal status flags. These are
global flags that allow special processing to
be requested by a routine without having to
pass extra arguments to the routine.

Operation blocking check.

File number of the unrecorded file ID.

RVN of NEW _FID.

LBN of the last file header read. This
value is placed into FCB$L_HDLBN by
FILL_FCB.

VBN of the current storage map
block. This value is used along with
BITMAP _RVN to determine the validity
of BITMAP _BUFFER. This value is cleared
when the allocation lock is released because
a bitmap buffer cannot be active at this
time ... InvaJ.i.~tiJlg the BITMAP _BUFF'ER
will also clear this value.

RVN of the current storage map block,
BITMAP _BUFFER.

Address of the current storage map block.
This value is used as an optimization in
ALLOC_BLOCKS to decide if a storage
map block needs to be read. The validity
of BITMAP _BUFFER is indicated by a
nonzero value in BITMAP_ VBN.

Saved status. During a create op-
eration, this cell holds the saved
status while attributes are copied in
READ_IDX_HEADER. During a delete
operation, it is used to restore the old
USER_STATUS if the operation fails.

Privileges used to gain access. This bit
array is maintained by CHEC!LPROTECT.
This value can be returned as a read
attribute.

(continued on next page)

The XQP and 1/0 Processing 251

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol

ACB_ADDR

BFR_LIST

BFR_CREDITS

BFRS_USED

CACHE_HDR

CONTEXT_START

CLEANUP _FLAGS

FILE_HEADER

PRIMARY_FCB

Size

Longword

4 quadwords

4 words

4 words

Longword

0

Longword

Longword

Longword

Description

Address of the AST control block (ACB) for
cross-process ASTs, set in READ_BLOCK
to the CDRP portion of the IRP indicated in
IO_PACKET.

Listheads for in-process buffers. See
Section 4.2.6 for more information.

Count of buffers credited to the process.

Count of buffers actually in-process.

Address of the buffer cache header, set by
GET_REQD_BFR_CREDITS.

Label marking the beginning of the re
enterable context area, which must be
saved when a secondary operation is
performed.
Cleanup action flags.

Address of current file header, set
by CREATE and CREATE_HEADER.
EXTEND_HEADER sets this value to the
new extension header. DELETE_FILE
zeroes FILE_HEADER when the new
header is written.

Address of primary file FCB. This cell is set
by the following routines: GET_REQUEST,
ACCESS,CREATE,MARK_DELETE,
EXTEND_CONTIG, EXTEND_INDEX,
OPEN_FILE, MODIFY, DEACC_QFILE,
CONN_QFILE, and SHUFFLE_DIR.

It is cleared by CLOSE_FILE and by
MARK_DELETE when the file is deleted. It
is also cleared by GET_FIB, ACCESS, and
MODIFY when the FID in the user's FIB
does not match that of the FCB associated
with the channel.

(continued on next page)

252 The XQP and 1/0 Processing

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol Size

CURRENT_ WINDOW Longword

CURRENT_FIB Longword

CURR_LCKINDX Longword

PRIM_LCKINDX Longword
LOC_Ry:r.l Longword

LOC_LBN Longword

UNREC_LBN Longword

UNREC_COUNT Longword

UNREC_RVN Longword

PREV_LINK 6 bytes

CONTEXT_END 0

CONTEXT_SAVE 54 bytes

CONTEXT_SAVE_END 0

Description

Address of the file window. This cell is set
by the following routines: GET_REQUEST,
ACCESS, CREATE, EXTEND_INDEX, and
OPEN_FILE.

It is cleared by GET_FIB, ACCESS,
DELETE, and MODIFY when the FID
in the user's FIB does not match that of the
FCB associated with the channel.
Pointer to FIB currently in use, set
to LOCAL_FIB by GET_FIB and
GET_REQUEST. It is set to SECOND_FIB
by SAVE_CONTEXT (LOCAL_FIB is not in
the context save area).

Current file header lock index. Refer to
Section 7. 7 for more information.

Primary file lock basis index.

RVN specified by placement data, set by
GET_LOC.

LBN specified by placement data, set by
GET_LOC.

Starting LBN of unrecorded blocks.

Count of unrecorded blocks.

RVN containing unrecorded blocks.

Old back link of file. This length of this
cell is specified by the FID$C_LENGTH
constant, which is currently 6 bytes.

Label marking the end of the secondary
context area.

Context save area. This area, currently 54
bytes, is where the primary context is saved
when a secondary operation is performed.

Label marking the end of the context save
area.

(continued on next page)

The XQP and 1/0 Processing 253

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol Size

LB_LOCKID 5 longwords

LB_BASIS 5 lOngwords

LB_HDRSEQ 5 longwords

LB_DATASEQ 5 longwords

LB_OLDHDRSEQ 5 longwords

Description

Serialization lock IDs. This length of this
cell is determined by the LB_NUM literal,
which is the length of the lock basis vectors
(representing the number of serialization
lock blocks). Its value is currently 5; that
is, the XQP is capable of holding up to
5 serialization locks at once, and one of
those is the volume allocation lock. For
more information on serialization locks, see
Section 7 .3.
This cell contains the file number, which,
when combined with the appropriate lock
name prefix, forms the resource name for
the lock.
File header cache sequence number.
LB_HDRSEQ is incremented as blocks
under the related lock are updated. For
more information, see Section 8.6.1.
File data block cache sequence number.
LB_DATASEQ is incremented as blocks
under the related lock are updated. For
more information, see Section 8.6.1.

Saved file header cache sequence
number. This field contains the value of
LB_HDRSEQ as it was read from the
value block when the lock was taken.
LB_OLDHDRSEQ is not incremented
as blocks under the related lock are
updated. Its value is used at the end of
the RELEASE_LOCKBASIS routine to
determine if each BFRD found under the
lock in question was valid at the time the
lock was taken.

(continued on next page)

254 The XQP and 1/0 Processing

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol Size

LB_OLDDATASEQ 5 longwords

QVOTA__DATASEQ Longword

QUOTA__OLDDATASEQ Longword

DIR_FCB Longword

DIR_LCKINDX Longword

DIR_RECORD Longword

DIR_CONTEXT 112 bytes

OLD_ VERSION_FID 6 bytes

Description

Saved file data block cache sequence
number. This field contains the value of
LB_DATASEQ as it was read from the
value block when the lock was taken.
LB_OLDDATASEQ is not incremented
as blocks under the related lock are
updated. Its value is used at the end of
the RELEASE_LOCKBASIS routine to
determine if each BFRD found under the
lock in question was valid at the time the
lock was taken.
Current value of the sequence number for a
quota file block.
Saved value of the sequence number for a
quota file block.
FCB of directory file, set in DIR_ACCESS.
This field is cleared in DELETE if the
directory .itself ia. deleted.
Directory lock basis index. See Section 7. 7
for more information.
Record number of found directory entry
within the block. This value is maintained
by DIR_SCAN and FIND. It is zeroed
before an enter operation. The value
in DIR_RECORD, plus 1, becomes the
low order 6 bits of the wildcard context
(FIB$L_ WCC) returned to the user.
Current directory context. The directory
context is saved within ENTER when it is
necessary to do another DIR_SCAN to find
the lowest entry to remove. It is restored by
RESTORE_DIR when a directory operation
is done at cleanup time.
FID of the previous version of the file, set
by DIR_SCAN.

(continued on next page)

The XQP and 1/0 Processing 255

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol

PREV _VERSION

PREV_NAME

PADDING_O

PREV_INAME

SUPER_FID

LOCAL_FIB

SECOND_FIB

LOCAL_ARB

L_DATA_END

QUOTA_RECORD

FREE_ QUOTA

REAL_Q_REC

QUOTA_INDEX

DUMMY_REC

AUDIT_COUNT

Size

Longword

80+1 bytes

1 byte

86 bytes

6 bytes

64 longwords

64 longwords

52 bytes

0

Longword

Longword

Longword

Longword

32 bytes

Longword

Description

Version number of a directory entry being
removed as a result of a create operation.
It is used to restore the entry if the create
operation fails.

Name string of a directory entry being
removed as a result of a create operation.
It is used to restore the entry if the create
operation fails.

Alignment byte.

Previous internal file name from the
file header. It is used during a rename
function.

File ID of the superseded file.

Primary FIB of this operation (see
CURRENT_FIB). The length of this
cell is determined by the constant
FIB$C_LENGTH.

FIB for a secondary file operation (see
CURRENT_FIB). The length of this cell is
specified by the constant FIB$C_LENGTH.

Local copy of the caller's access rights block
(ARB).

Label marking the end of the data that
has been locked into the working set of the
process.

Record number of the quota file entry,
returned as wildcard context to the user.

Record number of the free quota file entry.

Buffer address of the quota record read.

Cache index of the quota cache entry found.

Dummy quota record for cache con-
tents. This cell is a special case in
WRITE_QUOTA, meaning that the quota
record pointer does not point into a cache
buffer.

Number of argument lists in AUDIT_ARGLIST.

(continued on next page)

256 The XQP and 1/0 Processing

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol

IMPURE_END

MATCHING_ACE

NOTIFY_AST_ADDR

NOTIFY_NAME_LEN

NOTIFY_NAME_TXT

BLOCK_VCB

FILE_SPEC_LEN

FULL_FILE_SPEC

PMS_TOT_READ

PMS_TOT_ WRITE
PMS_TOT_CACHE

PMS_FNC_READ
PMS_FNC_ WRITE

PMS_FNC_CACHE

PMS_FNC_CPU

Size

0

512 bytes

Longword

Word

89 bytes

Longword

Word

1022 bytes

Longword

Longword
Longword

Longword
Longword

Longword

Longword

1 In the absence of concealed device definition.

Description

Label marking the end of the impure data
area zeroed at the start of each function.

Matching access control entry (ACE)
storage, set by CHECK_PROTECT to
the ACE which the access check matched,
returnable via READ_ATTRIB.

User notification AST routine. This field
contains the user address at which to
deliver file operation notification ASTs.

Length of file name. This field con
tains the length of the string built in
NOTIFY_NAME_TEXT.

Buffer to build a file operation notification
message in response to events enabled
with SET WATCH FILE. This unsupported
utility allows types of calls to the XQP to
be either displayed on a user's terminal or
written to a selected batch log.

Locked volume. This field contains the VCB
address of the volume a process has locked
using the FIB$C_LOCK_ VOL function.

Full file specification length.

Full file specification storage, including
full directory specification.1 This cell
is a storage area to hold the output of
FID_TO_SPEC, used by WRITE_AUDIT
and READ_ATTRIB.

Total number of disk reads.

Total number of disk writes.

Total number of cache reads.
Total number of read functions.

Total number of write functions.
Total number of cache hits, or how many
times the desired record was in the cache.

Total CPU time used per function.

(continued on next page)

The XQP and 1/0 Processing 257

Table 6-2 (Cont.): Contents of the XQP Impure Area

Impure Symbol

PMS_FNC_PFA

PMS_SUB_NEST
PMS_SUB_FUNC

PMS_SUB_READ

PMS_SUB_ WRITE

PMS_SUB_CACHE

PMS_SUB_CPU

PMS_SUB_PFA

AUDIT_ARGLIST

STORAGE_END

Size

Longword

Longword

Longword

Longword

Longword

Longword

Longword

Longword

64 bytes

0

6.3 XQP Call Interface

Description

'lbtal number of page faults incurred.

Nested subfunction flag.

Subfunction code.

Number of subfunction read operations.

Number of subfunction write operations.

Number of subfunction cache hits.

Subfunction CPU time used.

Number of subfunction page faults.
Security auditing argument lists. This
array is used to accumulate audit records.

Label marking the end of the impure
storage area.

The user interface to the XQP is provided by the Queue 1/0 Request ($QIO)
system service. All file system functions are QIOs. When a user process issues an
1/0 request, QIO gains control and coordinates the preprocessing of the request.
The QIO system service is dispatched by a system service vector in Pl space,
which changes the access mode of the process to kernel and dispatches to the
EXE$QIO procedure.

Also used by the XQP are the 1/0 request packets (IRPs), the function decision
table (FDT) of the pertinent driver, and the driver dispatch table (DDT).

6.3.1 110 Request Packet

The VO request packet (IRP) is the basic argument block passed to the file
system for all functions. An IRP is a piece of nonpaged pool that describes the 1/0
request. When a process requests that 1/0 be performed, an IRP is constructed in
a standard format.

The IRP contains fields into which the system 1/0 preprocessing routines write
information. The packet also includes buffer addresses, a pointer to the target
device, 1/0 function codes, and pointers to the 1/0 database.

258 The XQP and 1/0 Processing

Some of the packet is device-independent information filled in by the $QIO system
service; the rest is device-dependent information filled in by function decision
table routines. The IRP is first processed by the file system FDT routines, which
later queue the IRP to the XQP, if necessary.

Figure 6-4 shows a diagram of a typical file system function.

Figure 6-4: File System Function

Data Return

1/0 Post --

Driver

User

Completed Function

File
Structure 1/0

1/0 Call

ACP/XQP

om service

File
Function

ZK-9735-HC

IRPs are a part of the 1/0 database. They are allocated from nonpaged pool. The
IRP cannot be accessed by the user so the user cannot change the parameters
after the $QIO system service has validated them and copied them into the
IRP. Also, the driver can access queued packets without process context (and
therefore the process page table). QIO fills in the first part of the packet from the
device-independent parameters, of which there are six:

• Event flag number (EFN)

• Channel number

• 1/0 function code

The XQP and 1/0 Processing 259

• AST parameter

• AST routine address

• 1/0 status block (IOSB) address

The fields of the IRP are shown in Figure 6-5 and are described in Table 6-3.
Note that the fields of the figure run right to left.

Figure 6-5: Format of the 1/0 Request Packet

IRP$L_IOQFL

IRP$L_IOQBL

IRP$B_RMOD I IRP$B_TYPE IRP$W_SIZE

IRP$L_PID

IRP$L_AST

IRP$L_ASTPRM

IRP$L_WIND

IRP$L_UCB

IRP$B_PRI I IRP$B_EFN IRP$W_FUNC

IRP$L_IOSB

IRP$W_STS IRP$W_CHAN

IRP$L_SVAPTE

.......
IRP$L_BCNT IRP$W_BOFF

IRP$W_STS2 IRP$L_BCNT

IRP$L_IOST1

IRP$L_IOST2

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

(continued on next page)

260 The XQP and 1/0 Processing

Figure 6-5 (Cont.): Format of the 1/0 Request Packet

IRP$L_ABCNT 64

IRP$L_OBCNT 68

IRP$L_SEGVBN 72

IRP$L_DIAGBUF 76

IRP$L_SEQNUM 80

IRP$L_EXTEND 84

IRP$L_ARB 88

IRP$L_KEYDESC 92

* reserved (72 bytes) * 96

-- -

Table 6-3: Contents of the 1/0 Request Packet

Field Name

IRP$L_IOQFL

IRP$L_IOQBL

IRP$W_SIZE

IRP$B_TYPE

Description

I/O queue forward link. This field contains the address of the
listhead of the queue for all systemwide pending I/O.
I/O queue backward link.

Size of the IRP in bytes. The EXE$QIO routine writes the constant
IRP$C_LENGTH into this field when the routine allocates and fills
anIRP.
Structure type for an IRP. The EXE$QIO routine writes the
constant DYN$C_IRP into this field when the routine allocates
and fills an IRP.

(continued on next page)

The XQP and 1/0 Processing 261

Table 6-3 (Cont.): Contents of the 1/0 Request Packet

Field Name

IRP$B_RMOD

IRP$L_PID

IRP$L_AST

IRP$L_ASTPRM

IRP$L_WIND

IRP$L_UCB

Description

Access :ip.ode of request. IRP$B_RMOD contains information used
by I/O postprocessing. It also contains the same bit field.S as the
ACB$B_RMOD field of an AST control block. The EXE$QIO routine
obtains the processor access mode from the PSL and writes the
value into this field.

One field is defined within IRP$B_RMOD-IRP$V _MODE, which is
the mode subfield. This field indicates the mode of the process at
the time of the I/O request. In this case, for efficiency, the front part
of the IRP has been allocated as an ACB. This field is 2 bits long,
and occupies bit positions <0:1>.

Process ID of requesting process. The EXE$QIO routine obtains the
PID of the proooss that issued the I/O request from the PCB and
writes the value into this field.
Address of AST routine: If the process specified an AST routine .
address in the call to the $QIO system service, EXE$QIO writes the
address in this field.

During I/O postprocessing, the special kernel-mode AST routine
queues a user mode AST to the requesting process if this field
contains the address of an AST routine.
AST parameter. If the process specified an AST routine and a
parameter to that AST routine in the $QIO call, EXE$QIO writes
the parameter in this field.

During I/O postprocessing, the special kernel-mode AST routine
queues a user-mode AST if the IRP$L_AST field contains an
address, and passes the value in IRP$L_ASTPRM to the AST
routine as an argument.
Address of the window control block. This field contains the
address of the WCB that describes the file being accessed in the
I/O request. EXE$QIO writes this field if the I/O request refers to a
file-structured device. The XQP (or ACP) reads this field.
Address of the device UCB. The EXE$QIO routine copies the
address of the UCB for the device assigned to the process I/O
channel into this field.

(continued on next page)

262 The XQP and 1/0 Processing

Table 6-3 (Cont.): Contents of the 110 Request Packet

Field Name

IRP$W_FUNC

IRP$B_EFN

IRP$B_PRI

IRP$L_IOSB

IRP$W_CHAN

IRP$W_STS

Description

110 function code and modifiers. This field specifies the 110 function
code that identifies the function to be performed for the 110 request.
The EXD$QIO routine and driver FDT routines map the code value
to its most basic level and copy the reduced value into this field.

Based on this function code, EXE$QIO calls FDT action routines to
preprocess the 110 request. Six bits of the function code describe the
basic function, and the remaining 10 bits modify the function.

The following fields are defined within IRP$W _FUNC:
IRP$V _FCODE Function code field. This field is 6 bits long,

and starts at bit 0.

IRP$V_FMOD Function modifier field. This field is 10 bits
long, and starts at bit 6.

Event flag number and event group. If the 110 request call does not
specify an event flag number, EXE$QIO uses event flag 0 by default.
EXE$QIO writes this field, and the 110 postprocessing routine calls
SCH$POSTEF to set this event flag when the 110 operation is

.. complete.

Base priority of the requesting process. EXE$QIO obtains a value
for this field from the PCB. This field is used when an IRP is
inserted into a priority-ordered pending 110 queue.

Address of the 110 status block. This field receives the final status
of the 110 request at 110 completion. EXE$QIO writes a value into
this field if the 110 request call specifies an IOSB address. The
110 postprocessing special kernel-mode AST routine writes two
longwords of 110 status into the IOSB after the 110 operation is
complete.

Process 110 channel number. This field contains the index number
of the process 110 channel for the 110 request. EXE$QIO writes this
field.

Request status. EXE$QIO and FDT routines modify this
field according to the current status of the 110 request. 110
postprocessing routines read this field to determine what
postprocessing is necessary.

(continued on next page)

The XQP and 1/0 Processing 263

Table 6-3 (Cont.): Contents of the 110 Request Packet

Field Name Description

The status word is used to identify whether the 110 is direct I/O or
buffered I/O. Direct 1/0 is performed by locking the pages of the
user buffer in physical memory. Buffered 1/0, on the other hand,
is performed by writing the data to a user buffer in nonpaged pool
with a special kernel-mode AST.

This field also contains bits to specify pager 110 and swapper 110,
which are performed by special system subroutines, not by the $QIO
system service.

There is also a bit that specifies a virtual request (a request for
file I/0). If a virtual request for file 110 completes with an error
caused by a bad disk block, the XQP is inform.Eid as part of bad
block support. The XQP then records in the file's header that a bad
block was found, so that when the file is deleted, appropriate action
can be taken.

Other bits in this field specify complex buffered 110, chained
complex buffered 110, and long virtual 110.

Complex: buffered 1/0 and chained buffered 1/0 are used by
the XQP. Complex buffered 110 is used for access and deaccess ACP
functions, and chained complex buffered 110 is used by the NETACP
for transmit QIO requests.

Long virtual 1/0 is virtually contiguous in the file but physically
discontiguous on the disk. This type of I/O is usually done by the
VMS executive.

The following bits are defined within IRP$W _STS. These bits are
adjacent and in order:
IRP$V _BUFIO Buffered 110 function. This is bit 16.

IRP$V _FUNC Function bit. A set bit indicates a read
function; a clear bit indicates a write
function. This is bit 17.

IRP$V _PAGIO

IRP$V _COMPLX

IRP$V _VIRTUAL

IRP$V _CHAINED

Pager I/O function. This is bit 18.

Complex buffered I/O function. This is
bit 19.

Virtual 110 function. This is bit 20.

Chained buffered 110 function. This is
bit 21.

(continued on next page)

264 The XQP and 1/0 Processing

Table 6-3 (Cont.): Contents of the 1/0 Request Packet

Field Name

IRP$L_SVAPl'E

IRP$W_BOFF

Description

IRP$V _SWAPIO

IRP$V _DIAGBUF

IRP$V _PHYSIO

IRP$V _TERMIO

IRP$V _MBXIO

IRP$V _EXTEND

IRP$V _FILACP

IRP$V _MVIRP

IRP$V _SRVIO

Swapper 110 function. This is bit 22.

Diagnostic buffer allocated. This is bit 23.

Physical 110 function. This is bit 24.

'Thrminal 110 function. This is bit 25.

Mailbox buffered read function. This is
bit 26.

An extended IRP (an IRPE) is linked to
this IRP. This is bit 27.

File ACP 110. This Is bit 28.

Mount verification IRi? function. This is
bit 29.

Server-type 110. This bit indicates that
mount verification is triggered on an error
but the 110 is not stalled. This is bit 30.

IRP$V _KEY IRP$L_KEYDESC contains the address of
a k~yusedfor encryption. This is bit 31.

This field has two functions. For a direct 110 transfer, this field
contains the system virtual address of first page table entry (Pl'E)
of the 110 transfer buffer.

For a buffered 110 transfer, this field contains the address of the
buffer in system address space.

110 postprocessing uses this field to deallocate the system buffer
for a buffered-110 transfer or to unlock pages locked for a direct-110
transfer.

Byte offset in first page of a direct 110 transfer. FDT routines
calculate this offset and write the field.

For buffered 110 transfers, FDT routines must write the number of
bytes to be charged to the process in this field because these bytes
are used for a system buffer.

110 postprocessing uses this field with the IRP$L_BCNT and
IRP$L_SVAPl'E fields to unlock pages locked for direct 110. For
buffered 1/0, 110 postprocessing adds the value in this field to the
process byte count quota.

(continued on next page)

The XQP and 1/0 Processing 265

Table 6-3 (Cont.): Contents of the 1/0 Request Packet

Field Name

IRP$L_BCNT

IRP$W_STS2

IRP$L_IOST1

IRP$L_IOST2

IRP$L_ABCNT

IRP$L_OBCNT

Description

Byte count of the I/O transfer. FDT routines calculate the count
value and write the field. IOC$INITIATE copies the low-order word
of this field into UCB$W _BCNT before calling a device driver's start
I/O routine.

For a buffered I/O read function, I/O postprocessing uses
IRP$L_BCNT to determine how many bytes of data to write to
the user's buffer.

Second word of I/O request status. EXE$QIO initializes this field to
0. EXE$QIO, FDT routines, and driver fork processes modify this
field according to the current status of the I/O request.

The following bits are defined within IRP$W _STS2. These bits are
adjacent and in order.
IRP$V _START_PAST_HWM

IRP$V_END_PAST_HWM

IRP$V _ERASE
IRP$V _PART_HWM

IRP$V _LCKIO

I/O starts past the file highwater
mark.

I/O ends past the file highwater
mark.

Erase I/O function.

Partial file highwater mark
update. (The count of partially
validated highwater mark
operations is contained in the
FCB$W _HWM_PARTIAL field.)

Locked I/O request, as used by
DECnet direct I/O.

First I/O status longword. The I/O postprocessing routine copies the
contents of this field, also called IRP$L_MEDIA, into the IOSB.

Second I/O status longword. The contents of this field are also
copied into the IOSB during I/O postprocessing.

The low byte of this field is also called IRP$B_CARCON. It contains
carriage control instructions to the driver.

Accumulated bytes transferred. IOC$IOPOST reads and writes this
field after a partial virtual transfer.

Original transfer byte count. IOC$IOPOST reads this field to
determine whether a virtual transfer is complete, or whether
another I/O request is necessary to transfer the remaining bytes.

(continued on next page)

266 The XQP and 1/0 Processing

Table 6-3 (Cont.): Contents of the 1/0 Request Packet

Field Name

IRP$L_SEGVBN

IRP$L_DIAGBUF

Description

Virtual block number of the current segment of a virtual I/O
transfer. IOC$IOPOST writes this field after a partial virtual
transfer.
Diagnostic buffer address in system address space. EXE$QIO copies
the buffer address into this field if the following three conditions
exist:

• The I/O request call specifies this address.

• A diagnostic buffer length is specified in the driver dispatch
table.

• The process has diagnostic privilege.

IRP$L_SEQNUM I/O transaction sequence number. If an error is logged for the
request, this field contains the universal error log sequence number.

IRP$L_EXTEND Address of the I/O request packet extension (IRPE). FDT routines
write an extension address to this field when a device requires more
context than the IRP can accommodate. IOC$IOPOST reads this
field.The1RP$V_EXTEND bifln tlie IRP$W _:srs field is set if this
extension address is used.

IRP$L_ARB Access rights block (ARB) address. This block is located in the PCB
and contains the process privilege mask and UIC, which are set up
as follows:
ARB$Q_PRIV Quadword containing process privilege mask
SPARE$L Reserved longword
ARB$L_UIC Longword containing process UIC

IRP$L_KEYDESC Address of encryption descriptor.

IRPs appear on a variety of queues. Those queued to a particular device
driver, for example, are linked to the UCB$L_IOQFL and UCB$L_IOQBL
listhead. All IRPs waiting for completion processing are queued to the global
cell IOC$GL_PSFL.

An IRP may also be used as an AST control block. For more information, see
Section 6.4.5.

The XQP and 1/0 Processing 267

6.3.2 Function Decision Table
Every device driver contains a function decision table (FDT) that lists all the
valid function codes for the device, and associates valid codes with the addresses
of 1/0 preprocessing routines called FDT routines.

Allocated from nonpaged pool as part of the driver image, the FDT is pointed
to by the associated driver dispatch table. The FDT routines execute in process
context, and they access process space (PO and Pl). The :file system is primarily
concerned with five major FDT functions:

• Access (and create)

• Deaccess

• Modify (and delete)

• Mount

• Read (and write)

All disk drivers that support the VMS :file system are expected to use the FDT
routines for :file system functions in the SYS module SYSACPFDT.

When a user process calls the $QIO system service, the system service uses the
110-function code specified in the request to traverse the FDT. The FDT contains
information for the device-dependent portion of 1/0 preprocessing, and one or
more of these routines is selected for execution.

FDT routines complete the 1/0 preprocessing phase by performing setup and
initialization functions. For example, for virtual read and write requests, the
FDT routines initialize two fields in the IRP. The IRP$L_OBCNT field contains
the total number of bytes in the original request, and the IRP$L_ABCNT field,
initialized to 0, accumulates the total number of bytes actually transferred. The
function routines then queue the IRP to the XQP for processing.

FDT routines also detect total mapping failure (that is, the information in
memory that describes the sections of the disk to be accessed is not sufficient).

FDT routines are accessed and run in the context of the process that requested
the 1/0. They execute at IPL$_ASTDEL, which prevents ASTs from being
delivered to the process but allows the FDT routine code to be pageable. ASTs
must be blocked to prevent process deletion because the address of the allocated
1/0 packet is held in a register and is not recorded elsewhere in the system.

QIO processing is also performed in process context. While QIO processes the
request or while the FDT routines are executing at IPL 2, the process can be
preempted; therefore, context can be lost.

Except for two special cases, FDT entries consist of three longwords: two
longwords containing a 64-bit function mask and one longword containing the
address of an action routine.

268 The XQP and 1/0 Processing

The I/O function code requested by the user is 16 bits long and is encoded in two
fields:

• The first 6 bits (bits 0 through 5) contain the function code.

• The remaining 10 bits (bits 6 through 15) contain the modifier code.

The 6-bit function code is used as a bit number into the 64-bit masks. If the bit
number corresponding to the I/O function is set in the mask, QIO dispatches to
the action routine.

There are two special cases; each consists of a 64-bit mask. The first of these
contains bits set to identify legal I/O functions for this device, which allows QIO
to validate the function code. The second identifies buffered I/O functions.

Every function decision table has this format: two special masks followed by a
variable number of 3-longword entries. No special entry denotes the end of the
FDT.

Figure 6-6 shows the format of a function decision table.

The XQP and 1/0 Processing 269

Figure 6-6: Format of a Function Decision Table

2 longwords { valid 1/0
1-- - - - - - - - - -

functions

2 longwords { buffered 1/0 !------------functions

3 longwords {
64-bit

t----- ------ -
mask

r-----------
routine address

3 longwords {
64-bit

~----------
mask !-----------....,

routine address

•

•

•
ZK-921-82

6.3.3 Driver Dispatch Table
The driver dispatch table (DDT) contains the address of the function decision
table as well as other driver-specific information such as the addresses of the
entry points of standard routines within the driver. It is pointed to by the UCB
for the device.

6.4 Internal Dispatching
Internal dispatching is a part of the 110 preprocessing phase. Dispatching begins
with a call to the $QIO system service.

270 The XQP and 1/0 Processing

Issuing a QIO results in a call to the SYS$QIO system service vector. The vector
contains an entry mask, a CHMK #QIO instruction, and a RET instruction.
Execution of the CHMK instruction causes an exception, which is vectored
through the system control block to the change mode dispatcher.

The exception mechanism changes the access mode to kernel mode and places the
CHMK operand, the #QIO, on top of the stack. All the registers are saved by the
call, with the exception of RO and Rl.

The change mode dispatcher obtains the exception code and verifies that it is
legitimate. It checks that the argument list is the right length for the QIO and
that the argument list may be read in the access mode from which the system
service request was issued. The change mode dispatcher then calls the QIO
service routine EXE$QI 0.

6.4.1 $QIO System Service Dispatching

QIO preprocessing begins in the SYS module SYSQIOREQ. The EXE$QIO routine
in the SYSQIOREQ module performs the device-independent preprocessing of
an 1/0 request and calls a driver's FDT routines to perform device-dependent
processing. Once the operation has been started, control returns to the caller,
whocansynchronizeI/O comi>lt3tion in one of three ways:

• Specifying the address of an AST routine to be executed when the 1/0
completes

• Waiting for the specified event flag to be set

• Using the $SYNCH system service to wait for the 1/0 status block (IOSB) to
be completed and the event flag to be posted.

There are twelve parameters to the QIO system service: six device-independent
parameters and six device-dependent parameters defined by the actual device.
EXE$QIO processes only the device-independent parameters; the driver defines
FDT routines to process the device-dependent parameters.

To validate the 1/0 request, the following function-independent parameters are
verified:

• The event flag number (EFN) must be legal. EFN 0 is the default. Local
event flags process more quickly than common event flags because the local
event flags are actually contained in the PCB. Only the addresses of the
common event flags are contained in the PCB, and therefore, an extra level of
indirection is incurred.

• The access mode must be legal. This mode applies to the channel over which
1/0 has been requested.

• A UCB must be assigned to the channel.

• The UCB status word is checked to ensure that the online bit is set.

The XQP and 1/0 Processing 211

• The 110 function code, which is validated by the/ FDT, must be legal for the
device.

• The IOSB must be writable in the mode in which the QIO was issued. If
the 110 request specifies an IOSB to receive final 110 status information,
EXE$QIO determines whether the process issuing the request has write
access to the status-block locations specified. If the process has write access,
EXE$QIO fills the IOSB with zeros. If the process does not have write access,
the procedure terminates the request with an error status.

• The DIOCNT or BIOCNT quota is checked and updated. IPL is raised to
IPL$_ASTDEL to prevent process deletion.

EXE$QIO determines whether satisfying the 110 request will cause the
process to exceed its quota of outstanding direct or buffered I/O requests. If
the requests remain under quota, the system service allows 110 preprocessing
to continue. If either quota is exceeded, EXE$QIO checks the resource wait
flag (the PCB$V_SSRWAIT bit in the PCB$L_STS field).

If the flag is clear, EXE$QIO aborts the 110 request. If the flag is set, the
process is placed in a wait state until the number of requests drops below
quota. When this occurs, process execution resumes, at which time EXE$QIO
charges process quotas as appropriate for the requested operation.

After the request is validated, it is synchronized with any pending access or
deaccess functions on the channel. While an access or deaccess function is in
progress, bit <0> of the WCB pointer is set to 1 to indicate that the channel is in
transition. If the $QIO service finds the bit set, it goes into ASTWAIT state and
retests the bit until the pending access or deaccess has completed and the bit is
clear.

The 110 request packet is then allocated from nonpaged pool. Before EXE$QIO
actually allocates the IRP, it raises the IPL of the processor to IPL$_ASTDEL
to block any other asynchronous activity in the process. The new IPL prevents
possible termination of the process; process termination causes the operating
system to lose track of the system memory allocated to the IRP.

To save time, EXE$QIO first tries to allocate an IRP from a lookaside list
containing preallocated IRPs. The EXE$ALLOCIRP routine in the MEMORYALC
module handles this function. If no preallocated packets exist, the procedure calls
a routine to allocate an IRP from general nonpaged pool. This allocation routine
synchronizes with the rest of the system at IPL$_SYNCH so it can allocate the
memory needed.

To keep track of 110 requests outstanding on the channel, the channel 110 count
field (CCB$W_IOC) is incremented in the CCB.

The IRP is then filled in; the function-independent parameters and process
information are copied to the 110 packet. The 110 function code is validated
against process privilege and device characteristics.

212 The XQP and 1/0 Processing

If a user AST has been specified for notification of AST completion, the AST count
quota field (PCB$W _ASTCNT) is checked and decremented, and the AST quota
update flag (ACB$V_QUOTA in the IRP$B_RMOD field) is set.

After the IRP is filled in, the driver's FDT routines that correspond to the
specified function are called. At this point, all device-independent processing
is done, and device-dependent processing begins.

Figure 6-7 shows the user, VMS executive, and XQP images that are executed
while the XQP processes an 1/0 request.

The XQP and 1/0 Processing 273

Figure 6-7: Images Used to Process an 1/0 Request

User Image

$010

Yes

VMS Executive Image

EXE$QIO::

FDT routines detect
an ACP function or
total map failure,
so the XQP is needed

EXE$QXQPPKT:: sends
an AST to the XQP

XQP Image

DISPATCH::
1) Does the requested

function
2) Sets up the IOPOST

interrupt or calls
IOPOST directly

.--------1 3) Returns

No

1) Posts results to
the user

2) Cleans up
3) Performs an REI

ZK-9599-HC

274 The XQP and 1/0 Processing

6.4.2 Function Decision :Table Dispatching
When the $QIO system service has executed all the device-independent code, QIO
searches the device database and finds the correct function decision table address.
The channel control block, located through the channel number argument,
contains the UCB address. The UCB contains the address of the driver dispatch
table (DDT), which contains the address of the function decision table.

$QIO scans the function decision table, starting at the third entry (that is, the
first entry after the two special cases), using the 6-bit function code as a bit
number into each mask. If the bit is set, QIO calls the routine that the bit
represents. The routine must then finish filling in the device-dependent part of
the I/O packet.

The most frequently used functions are at the front of the table, so scanning is
fast.

If the FDT routine returns to $QIO, $QIO advances to the next entry in the
FDT and checks the I/O function code and mask. If the bit is not set, QIO again
advances to the next FDT entry. Ifthe bit is set, however, QIO dispatches to the
indicated routine.

FDT routines are responsible for all device- and function-dependent processing.
They.interpret~ the.device.-.dependent-J>arameters of-the $.QIO.argumentlist and
translate them into fields in the IRP. The FDT routines are also responsible for
proper handling of the IRP, ultimately by queuing it to a driver, to a file processor,
or even to I/O postprocessing for immediate completion. $QIO continues to call
FDT routines until one exits the $QIO service by executing a RET instruction.

The SYS module SYSACPFDT contains the FDT routines used to handle all
processing related to the disk file system. For each IO$_xxx function, there is an
ACP$xxx routine (such as ACP$ACCESS, ACP$CREATE, and ACP$READVBLK).

The virtual I/O functions fall into two major categories:

• File functions such as access, deaccess, create, and so on. These operations
result in the queuing of a buffered IRP to the XQP for processing.

If a nontransfer request (such as a deaccess function if the process was not
the last writer, or an access to an already accessed file) was specified, an XQP
packet is built instead. See Section 6.4.3 for more information on building the
XQP I/O packet.

• Transfer functions such as read and write virtual. This type of operation
is usually converted into a physical transfer operation by the FDT routine
and then directly queued to the driver. The mapping data in the file's WCB is
used to translate file virtual blocks into physical disk addresses. Only if this
translation fails is a transfer request queued to the XQP.

The XQP and 1/0 Processing 275

Figure 6-8 shows the logic that determines the action the file system takes when
a transfer request is initiated.

Figure 6-8: XQP Logic for an 1/0 Transfer Request

Dispatch
ACP function

Queue to driver

Perform 1/0
postprocessing

(in IOPOST)

Post results
to user

Lower IPL
and return

Turn window

Queue another
packet to the
1/0 subsystem
(in SYSACPFOT)

Queue another
packet to the
1/0 subsystem
(in SYSACPFDT)

ZK-9600-HC

276 The XQP and 1/0 Processing

Figure 6-9 shows a diagram of a virtual transfer function.

Figure 6-9: Virtual Transfer Function

Data Return 1/0 Call
User

~

1/0 Post 010 Service

f
Completed 1/0

Virtual

Mapped
1/0 Fun ct ion

1/0 Function
14--...__ Driver ACP/XQP

ZK-9734-HC

When a transfer request is processed, one of two cases exists:

• The map information in memory is sufficient to map the request either
successfully or partially.

• The map information is totally insufficient (total map failure).

In the first case, the available information is queued to the driver, and the results
are posted to the user. Figure 6-10 shows a diagram of a mapped virtual transfer
function.

The XQP and 1/0 Processing 2n

Figure 6-10: Mapped Virtual Transfer Function

Data Return 1/0 Call
User

1/0 Post 010 Service

Completed 1/0

Driver ACP/XOP

1 Mapped 1/0 Function

ZK-9733-HC

If the virtual transfer function is fragmented, the file system handles that
condition by cycling between the IOPOST routine and the driver, mapping
each successive fragment with each loop through IOPOST. Figure 6-11 shows
a diagram of a fragmented virtual transfer function.

278 The XQP and 1/0 Processing

Figure 6-11: Fragmented Virtual Transfer

Data Return

1/0 Post

Partially
Completed 1/0

-Driver

User

Incomplete 1/0

1/0 Call

A{;P/XQP

t Partially Mapped 1/0

OIO Service

ZK-9732-HC

If total mapping failure occurs, the XQP must obtain new mapping information
by turning the current window. When the new mapping information is obtained,
it is queued to the driver's routine to start I/O (EXE$QIODRVPKT).

6.4.3 Building the XQP 1/0 Packet
For file functions, the IRP sent to the XQP contains the address of an XQP 1/0
buffer packet (referred to as an AIB) in the IRP$L_SVAPTE field. This XQP
packet is built in the SYSACPFDT routine BUILDACPBUF.

The AIB has a 12-byte header. The first longword, the AIB$L_DESCRIPT field,
points to a vector of buffer descriptors. Between the header and the buffer
descriptors is a copy of the fixed portion of the ABD for the process. ABD buffer
descriptor, or ABD, refers to a user area into or from which information is
transferred. The actual user buffers are copied into the AIB buffers during FDT
processing (see Figure 6-16). They are copied back to the user's area during I/O

The XQP and 110 Processing 279

postprocessing in the BUFPOST routine in the SYS module IOCIOPOST. For
more information on 110 postprocessing, see Section 6. 7.

The format of the XQP 110 buffer packet header is shown in Figure 6-12 and
described in Table 6-4. The AIB contains all the data transmitted from the user
to the XQP and back during an ACP function.

Figure 6-12: Format of an XQP 110 Buffer Packet Header

AIB$L_DESCRIPT

reserved

reserved l AIB$B_TYPE l AIB$W_SIZE

Table 6-4: Contents of an XQP 110 Buffer Packet Header

Field Name Description

Address of start of descriptors.

Size of packet in bytes.

0

4

8

AIB$L_DESCRIPT

AIB$W_SIZE

AIB$B_TYPE Packet type code. This field contains the constant DYN$C_BUFIO
for a buffered I/O function.

Before the buffer can be allocated, BUILDACPBUF performs the following
actions: ·

• Ensures that the buffer byte count quota has not been exceeded

• Checks the user's parameters to the QIO (such as the FIB) to ensure that
they can be accessed

• Allocates the buffer

• Inserts the buffer descriptors (ABDs) for each user parameter in the XQP
packet

A complex buffer is a set of pointers to a collection of ACP buffer descriptors
(ABDs). It consists of the packet header and a list of descriptors. Each descriptor
contains the actual size of the buffer. There is an offset pointer to the data text,
which is located farther down in the packet.

280 The XQP and 1/0 Processing

Each ACP buffer descriptor contains an offset to the text data, the size, and
the user virtual address of the data. The offset, plus 1, added to the address of
the buffer descriptor gives the address of the buffer (the preceding byte is the
access mode taken from IRP$B_RMOD). Each possible user buffer has a reserved
index in the vector. The indexes are zero origin. The last element reserved
corresponds to the read/write attribute user function. All buffers from then on
correspond to read/write attribute buffers. IRP$L_BCNT contains the number
of buffer descriptors present. (Note that for a virtual read or write function,
IRP$V_COMPLX is clear, so the above description does not apply).

The fields of a ACP buffer descriptor are shown below in Figure 6-13 and are
described in Table 6-5.

Figure 6-13: Format of an ACP Buffer Descriptor

1--~~~~A_s_o_$_w ___ c_o_u_NT~~~~~.._~~~~-A-s_o_$_w __ r_E_x_r~~~~---11
4
o

ABD$L_USERVA .

Table 6-5: Contents of an ACP Buffer Descriptor

Field Name

ABD$W_TEXT

ABD$W _COUNT
ABD$L_USERVA

Description

Word offset to the data text in the text area. Figure 6-15 shows the
format of a single data text entry.

Length of text in bytes.

User virtual address of text (PO address). This address is needed to
post buffers back to the user.

The SVAPTE field of the IRP points to the complex buffer packet. The byte count
word in this case indicates the number of buffers; that is, it indicates the number
of descriptors and the number of buffers that are in the complex buffer packet.

Figure 6-14 shows how the complex buffer descriptor is constructed.

The XQP and 1/0 Processing 2a1

Figure 6-14: Locating the Complex Buffer Descriptors

IRP

l 1
IRP$L_SVAPTE

BOFF BCNT

T T

Complex Buffer Descriptor

I
AIB

Cop f ARB heade "ti yo r ,.,, I
ABD$C_ WINDOW

ABD$C_FIB

ABD$C_NAME

ABD$C_RESL

ABD$C_RES
(

Descriptor for first
attribute ABO

30 Maximum ::~ ::~

Descriptor for last
attribute

Text area used to

::~
contain information

::~ to which the above
descriptors point

ZK-9601-HC

282 The XQP and 1/0 Processing

The ABD may contain a maximum of 35 descriptors. The first five descriptors
have special names and uses:

• ABD$C_WINDOW

The first descriptor is for returning the window pointer. The user does not
supply this buffer. Many file system routines use this field differently.

During FDT processing, the BUILDACPBUF routine sets the window pointer
return address to the value in the CCB$L_ WIND field.

When retrieving a request from the XQP queue, the GET_REQUEST routine
zeroes the window pointer return length (except during window turns) so that
the value is not returned.

When accessing a file, the MAKE_ACCESS routine restores the window
pointer return length to 4 and returns the window pointer.

If an access attempt fails, the ZCHANNEL cleanup routine returns a zero for
the window pointer.

• ABD$C_FIB

The second descriptor contains the user's FIB. The FIB travels in two
directions: both from the user to the XQP, and from the XQP back to the
user. It is copied into the L0eAL_FIB portion of the XQP impure area by the
GET_FIB routine. The updated FIB is copied back to the FIB buffer by the
IO_DONE routine.

• ABD$C_NAME

The third descriptor contains the file name buffer. It is passed as the input
to the PARSE_NAME routine from the enter and find functions to parse the
user's file name into the internal name block. The COPY_NAME routine
(called from the create and find functions for spooled devices) copies the file
name buffer into the result string buffer. It also sets the result string length
buffer value.

The file name string travels only in one direction: from the user to the XQP.
Its counterpart, the result name string, is what is sent back to the user from
the XQP. For efficiency, the IO_DONE routine clears the file name return
length to prevent it from being written back.

For quota file operations, the file name buffer is used to pass a quota file
transfer block. For a deaccess function on a spooled device, FDT processing
places the user name and account in the file name string descriptor to be sent
to the job controller.

The XQP and 1/0 Processing 283

• ABD$C_RESL and ABD$C_RES

The fourth and fifth descriptors are descriptors for the result length and
the result string, respectively. The RETURN_DIR routine, called from
the enter and find functions, returns the name from the DIR_ENTRY and
DIR_ VERSION routines into the result string buffer. The result string length
buffer is also set. The result string is itself passed to the PARSE_NAME
routine from the find function when the XQP processes a wildcard search.
Quota file operations call the RET_QENTRY routine in the QUOTAUTIL
module to return the quota record (DQF) into the result string buffer. The
result string length is set here.

If a user attribute buffer exists, a read/write attributes function is performed.
The access function performs an attribute read. The create, deaccess, and modify
functions perform an attribute write function. The IO_DONE routine sets the
IRP$L_BCNT field during nonread operations so that the attributes, which are no
longer needed, are not written back to the user buffers for optimization reasons.

The attribute list sometimes contains placement data (processed for compatibility)
when the FIB$V _ALLOCATR field is set. The GET_LOC_ATTR routine, called
from create and modify functions, scans the user's attribute list for placement
data and copies it into standard format in the FIB.

The format of a data text entry is shown in Figure 6-15. The buffer descriptors
point to this area. The figure shows the prefix byte in front of the data buffer.
This byte normally contains the access mode against which the buffer is
validated. Generally, that is the mode of the caller, with the exception of the
very first buffer, which is used to access the user's channel control block when the
CCB needs to be adjusted by the file system. In that case, the prefix byte contains
the kernel mode code.

For the attribute buffers, the prefix byte contains the attribute code as the
complex buffer packet travels from the user to the XQP. When the complex buffer
packet is sent back to the user, the prefix byte has been changed to contain the
access mode.

284 The XQP and 1/0 Processing

Figure 6-15: Format of a Data Text Entry

l
Text Data

Access mode from IRP$B_RMOD
or attribute descriptor code

ZK-9602-HC

Figure 6-16 shows how user information is copied from user context to the XQP.
In this case, a FIB is copied from the user's stack in Pl space into the data text
portion of the ABD. A FIB descriptor is created to describe and locate the data.

The text offset field points to the data text portion of the ABD. The access mode
area of the data text entry contains a 1, which indicates executive mode.

The module GETFIB performs the copy operation from the data portion of the
ABD into the LOCAL_FIB portion of the XQP impure area. The CURRENT_FIB
field, which points to the FIB currently in use, points to the LOCAL_FIB field,
which points to the primary FIB of this operation. The count field of the ABD
contains the number of bytes in the FIB text, which are copied to LOCAL_FIB.

The XQP and 1/0 Processing 285

Figure 6-16: Passing User Information to the XQP

User's Stack in P 1 Space

+ ~
User's copy of FIB FIB {

descriptor

t f
n bytes .--{

XQP Impure Area
CTL$GL_F11BXQP

CURRENLFIB

A. "'-'

XQP Buffer Descriptors

n bytes 1 Text offset t--

User virtual address of FIB

~ ~

--
FIB from ~ user's context

Acee ss mode
XEC of E

ZK-9603-HC

The number of descriptors is placed in the IRP$L_BCNT field, and the number
of bytes charged to the buffer byte count quota is written into the IRP$L_BOFF
field. In addition, the COMPLX, FILACP, and VIRTUAL bits are set in the
IRP$W _STS field. Finally, the original UCB address in CCB$L_UCB is placed
into IRP$L_MEDIA, and IPL is set to IPL$_SYNCH.

Figure 6-17 shows the relationship of all the components of the XQP-QIO
interface.

286 The XQP and 1/0 Processing

Figure 6-17: XQP-QIO Interface

010
Parameter

List

P1

P2

P3

P4

P5

Descriptor

Descriptor

Word

Descriptor

Attribute
Control 1------
List

0

6.4.4 Checking the Volume Status

--- Code

FIB

Name
String

Result
String

Length

Attribute
Text

ZK-9736-HC

The FDT routines ensure that the volume has the correct state for the request.
For a request to succeed, the volume must not be in one of the following states:

• Marked for dismount

• Not mounted

• Mounted with the /FOREIGN qualifier (that is, the volume is not a Files-11
volume)

The check dismount routine CHKDISMOUNT ensures that the volume is not
being dismounted. If the DEV$V _DMT bit is set in the UCB$L_DEVCHAR field,
the volume has been marked for dismount.

The XQP and 1/0 Processing 287

The CHKMOUNT routine checks to ensure that the following states exist:

• The device is mounted. If so, the DEV$V _MNT bit is set in the
UCB$L_DEVCHAR field.

• The device is not a member of a shadow set.

• The device is not in the dismount state. If so, the UCB$V _DISMOUNT bit is
set in the UCB$W _STS field.

• The volume is not mounted foreign.

Once the volume checks succeed, the volume transaction count (contained in
the VCB$W _TRANS field) is incremented. This update is normally done for the
volume describing the desired UCB, but it may be done to the UCB on which a file
is open, if the WCB so indicates. The IRP$L_UCB field is updated to this value.
The IRP$L_MEDIA field is updated to this UCB if the device is not spooled.

The channel cannot be closed until outstanding QIOs are completed. If the
function is 10$_DEACCESS and the I/O count in the channel is nonzero, the
address of the IRP is saved in CCB$L_DIRP and the $QIO service returns to
the caller. The pending deaccess will be queued to the file system when other
outstanding I/Os have completed.

6.4.5 Queuing the 1/0 Packet to the XQP

It is crucial for proper synchronization that the XQP dispatcher be called via
AST scheduling. XQP packets may be queued, or dispatched, to the XQP by the
following two routines:

• IOC$WAKACP in the SYS module IOCIOPOST via a special kernel AST. The
special kernel AST ensures that the IRP will not be invalidated by process
deletion between the time IOPOST is exited and the time a normal kernel
AST could be delivered to the process.

• EXE$QIOACPPKT in the SYS module SYSQIOREQ via a normal kernel AST.

After the FDT routines have completed filling in the device-dependent parame
ters, the last entry usually contains a branch instruction to the EXE$QIOACPPKT
routine in the SYSQIOREQ module to perform one of the following actions:

• Terminate the current request with an error status

• Put the request in the driver queue, and return an appropriate status to the
user

• Signal that the 1/0 request has been completed, and return an appropriate
status to the user

288 The XQP and 1/0 Processing

EXE$QIOACPPKT is called at IPL$_ASTDEL to prevent the user's process
from being deleted; the IRP cannot be lost before it is inserted in the XQP
request queue. The routine generates, within the context of the user's
process, a kernel-mode AST specifying as the AST routine the value found
in the F11B$L_DISPATCH field, which contains the XQP dispatcher address.
EXE$QXQPPKT then queues the kernel-mode AST to the XQP dispatcher.

To avoid allocating an AST control block (ACB), the class driver request packet
(CDRP), an extension to the IRP, is used as an ACB. This area is normally used
by the disk class driver when processing disk 1/0 requests.

The fields of the ACB are illustrated in Figure 6-18 and are described in
Table 6-6. Note that the fields of the figure run right to left.

Figure 6-18: Format of the AST Control Block

ACB$L_ASTQFL

ACB$L_ASTQBL

ACB$B_RMOD 1 ACB$B_TYPE 1 ACB$W_SIZE

ACB$L_PID

ACB$L_AST

ACB$L_ASTPRM

ACB$L_KAST

0

4

8

12

16

20

24

The XQP and 1/0 Processing 289

Table 6-6: Contents of the AST Control Block

Field Name

ACB$L_ASTQFL

ACB$L_ASTQBL

ACB$W_SIZE

ACB$B_TYPE

ACB$B_RMOD

ACB$L_PID

ACB$L_AST

ACB$L_ASTPRM
ACB$L_KAST

Description

AST queue forward link. This field links the ACB into the AST queue
for the process; the listhead for the queue is the PCB$L_ASTQFL
field.

AST queue backward link. This field links the ACB into the
AST queue for the process; the listhead for the queue is the
PCB$L_ASTQBL field.

Structure size in bytes.

Structure type code. This field should contain the constant
DYN$C_ACB.

Access mode of the requestor. The following fields are defined within
ACB$B_RMOD:
ACB$V _MODE Mode for final delivery. This field contains

the access mode (0 through 4) in which the
AST routine is to execute. This field occupies
bits 24 and 25.

ACB$V _PKAST Piggyback special kernel AST. This is bit 28.

ACB$V _NODELETE ACB is not deallocated after the AST is
delivered. This bit generally indicates that
the ACB is part of a larger structure. This is
bit 29.

ACB$V_QUOTA

ACB$V_KAST

Process AST quota (PCB$W _ASTCNT) has
been updated. This is bit 30.

Special kernel AST. This is bit 31.

Process ID of the process to receive the request, from IRP$L_PID.

AST routine address. EXE$QXQPPKT writes into this field the
address of the DISPATCH routine from (@CTL$GL_F11BXQP) +
F11B$L_DISPATCH.

AST parameter. This field contains the address of the IRP.

Internal kernel-mode transfer address. This field contains the
address of the EXE$QXQPPKT routine.

290 The XQP and 1/0 Processing

The following code fragment shows a portion of EXE$QXQPPKT in SYSQIOREQ.
This routine is called to add a packet to the queue. The XQP packet is queued to
the XQP with a normal kernel AST, and the CDRP extension to the IRP is used
as anACB.
EXE$QXQPPKT: :

MOVL GACTL$GL FllBXQP, RO ;XQP queue head address
MOVAB CDRP$L_IOQFL(RS), ACB$L_ASTPRM(RS) ;IRP address is AST

MOVB

MOVL
MOVL
MOVL
BSBW
RSB

#PSL$C KERNEL!ACB$M NODELETE, -
ACB$B RMOD(RS) -
PCB$L-PID(R4), ACB$L PID (RS)
F11B$L OISPATCH(RO),-ACB$L AST(RS)
#PRI$ RESAVL, R2 -
SCH$QAST

;parameter
;Kernel mode---don't delete
; IRP
;Copy PIO
;XQP dispatcher address
;Like waiting for a lock
;Queue the AST
;And return

This code fragment shows a portion of IOC$WAKACP in IOCIOPOST. This
routine is called to start up the XQP. Like the code in EXE$QXQPPKT, the CDRP
extension to the IRP is used as an ACB. However, the XQP packet is queued to
the XQP with a special kernel-mode AST instead of with a normal kernel AST;
the XQP can be entered and exited only with a special KAST.
IOC$WAKACP: :

TSTL
BEQL

XQP::
PUSHL
MOVAB
MOVB
MOVL
MOVAB
CLRL
BSBW
POPL
RSB

AQB$L_ACPPID(R2)
XQP

RS
IRP$L FQFL(R3), RS
#ACB$M KAST, ACB$B RMOD(RS)
IRP$t PID(R3), ACB$L PIO(RS)
WAEXE$QXQPPKT, ACB$L-KAST(RS)
R2 -
SCH$QAST
RS

;No PIO if XQP
;Equal, then branch to XQP

;Preserve RS
;Get temp ACB address in RS
;Note as special kernel AST
;Copy PIO of process
;Address of queuing routine
;No priority increment
;Queue the AST
;Restore RS
;And return

The XQP and 1/0 Processing 291

6.5 XQP Code Execution
When the kernel AST queued to the XQP dispatcher begins to execute, the code
in the FllBXQP image is executed. This code is entered from three routines:

• EXE$QIO via EXE$QXQPPKT

This routine calls the XQP to perform ACP 1/0 functions and window turns
for 10$_READVBLK/WRITEVBLK with total map failure.

• IOC$IOPOST via IOC$WAKACP

This routine calls the XQP to perform dynamic bad block handling and
window turns for the next segment of discontiguous long virtual 1/0 with
total map failure.

• DIRPOST via IOC$WAKACP

This routine calls the XQP to queue 10$_DEACCESS on an idle channel.

The DISPATCH routine is the XQP dispatcher routine. The argument to this
routine (that is, the AST parameter) is the IRP.

Figure 6-19 illustrates the flow of code through the XQP after the AST has been
sent to DISPATCH.

292 The XQP and 1/0 Processing

Figure 6-19: Overview of XQP Code Flow

EXE$QXOPPKT issues an AST to the XQP
in the routine DISPATCH

Call component parts

Put IRP on XQP_QUEUE

>-'v..-e s --Return

Switch to XQP internal stack

No

Get next request
from XQP_QUEUE

Do requested function

Yes

Queue
empty

Queue to 1/0 post queue

Restore
kernel
stack

of IOPOST directly with JSB by calling COM$POSLNOCNT

--- Return

ZK-9604-HC

The routine also sets up a register (RlO, called the base register) to point to the
XQP impure area, the address of which is contained in the cell CTL$GL_Fl1BXQP).
All XQP routines assume that RlO points to the CONTEXT_START offset in the
XQP storage area. The IRP is then queued onto a per-process queue in the
impure area called XQP _QUEUE. F11B$Q_XQPQUEUE is another label for this
queue.

The XQP and 1/0 Processing 293

The PCB$B_DPC cell is incremented to prevent process deletion while any
:file system request is being processed. This field must contain a 0 before the
EXE$DELPRC routine, in the SYS module SYS$DELPRC, can proceed with
process deletion. EXE$DELPRC waits at IPL 0 to allow kernel ASTs to be
delivered so that pending :file system requests can complete. Similar code in
the process suspension service prevents a process from being suspended until
pending file system requests are completed.

Process suspension must be prevented while file system requests are active;
otherWise, random synchronization locks could be held indefinitely, which could
potentially hang an entire VAXcluster. On the other hand, process deletion must
be blocked while a :file system request is being processed to prevent problems that
could be caused by partially completed operations.

If there are no other requests being processed, which is the normal case, the
routine enables the special XQP channel by writing 1 into the CCB$B_AMOD
field so it appears to be a norm.al kernel-mode channel; the CCB$B_AMOD
field contains the current access mode (kernel, or 0) plus 1. The channel thus
becomes inaccessible to any other process at any mode because the privilege
check for channels in IOC$VERIFYCHAN performs a signed comparison against
access mode. The system rundown routine, EXE$RUNDWN, in the SYS module
SYSRUNDWN, also does signed comparisons against access mode to determine if
a given channel should be deassigned. When the XQP is not actively processing
a request, the special XQP channel contains a negative access mode (that is, -1),
which prevents it from being deassigned.

6.5.1 Dispatching a Request

The main dispatch routine, DISPATCHER, is called from DISPATCH. This
routine dequeues a request, executes it, and signals the user when the request
has been completed. The XQP uses its private kernel stack to process the
requests. After completing the first request, it attempts to dequeue another
request and process it.

The actual requests to be processed are obtained by GET_REQUEST. The routine
first initializes the impure area, which involves zeroing the impure area and
setting the user request status USER_STATUS to 1 (or success). The per
process buffer (BFR_LIST) queue heads are set to empty lists. Also, Performance
Monitoring Services (PMS) metering is started.

The pointers to the current UCB, FIB, and WCB are obtained from the current
1/0 packet and are written to the CURRENT_FIB, CURRENT_UCB, and
CURRENT_ WINDOW cells of the XQP impure area. If the low bit of the pointer
to the window (the IRP$L_ WIND field) is set, a deaccess function is pending on
the file, and so CURRENT_ WINDOW is zeroed.

The value for PRIMARY_FCB is set if a window exists; a window does not exist
for access, create, or mount functions.

294 The XQP and 1/0 Processing

If the 1/0 request is a normal file system request and not a window tum (that is,
the IRP$V_COMPLX bit is set), the byte count for the window block descriptor
(ABD$C_ WINDOW) is cleared to prevent the 1/0 completion routines from writing
it back.

The SYSPRV flag in the local copy of the access rights block is set if appropriate.
The VOLOWNER and GROUPOWNER cleanup flags are set, as well as the
SYSPRV cleanup flag if SYSPRV, BYPASS, or READALL privileges are set.

Returning to the main flow of DISPATCHER, the file system function code is
obtained from the IRP$V _FCODE field. The minimum number of buffers needed
for the function is obtained in the GET_REQD_BFR_CREDITS routine (see
Section 5.2.2).

The read and write physical block, ACP control, and :mount functions are
performed directly. All other functions must first ensure that the activity block
lock (in the BLOCK_LOCKID cell), which blocks all XQP activity on the volume,
is free by calling the routine START_REQUEST in the module DISPATCH.

START_REQUEST sets the IPL to SYNCH and tests the VCB$L_BLOCKID field
to see if a blocking lock already exists. If no blocking lock is currently held on the
volume, the activity count in RVT$W _ACTIVITY is incremented by 2 (so that the
count remains even), and the IPL is lowered to 0.

If a blocki.ng fock 81.ready eXists, the IPL is immediately lowered to 0, and the
routine BLOCK_ WAIT in the module LOCKERS is called, which waits for the
volume blocking lock to be released. When the blocking lock becomes available,
START_REQUEST is called again.

DISPATCHER then calls the appropriate routines to process the designated file
system function. After the function has completed, PERFORM_AUDIT is called.
See Section 6.6.3 for more information' on PERFORM_AUDIT.

In addition, cleanup is performed. If the status indicates success, then a normal
cleanup is done; any error invokes ERR_CLEANUP.

DISPATCHER then calls the routines that hand.le termination of 110 processing.
For more information, refer to Section 6. 7.

6.5.2 Processing in Secondary Context
Some file system functions require what are called secondary functions. A
secondary function is a normal file system function that is generated by, or on
behalf of, another file system function, called a primary function. The primary
function is not necessarily dependent on the results of the secondary function in
order to complete.

The XQP and 1/0 Processing 295

To simplify matters when a secondary function is necessary, the context of
the primary function, contained in the cells of the impure area delimited by
CONTEXT_START and CONTEXT_END, is copied to the area delimited by
CONTEXT_SAVE and CONTEXT_SAVE_END. The secondary function can then
process as if it were a primary function. Saving the primary context eliminates
having to allocate and queue another IRP, which makes processing more. efficient.
The secondary save area allows only one secondary operation nested within the
primary.

The routines that perform the context change are SAVE_CONTEXT and
RESTORE_CONTEXT in the module GETREQ.

Figure 6-20 shows how the primary context is copied from the primary function
area to the context save area.

Figure 6-20: Saving and Restoring Primary Context In the XQP Impure Area

CONTEXLSTART

[:

Context is Context of Primary Function }

t{or~ONTE~~~~~~:--EN_D_::::::;~---------:_,____. ~:i:~v context is

Context Save Area ,....

CONTEXLSAVE_END -~1------------1

STORAGE_END

ZK-9605-HC

After all processing for the secondary function has been completed, the primary
context is restored. The ERR_CLEANUP routine detects if any processing has
been done in secondary context, and cleans up secondary context before switching
to primary context.

Secondary context may leave unwritten buffers. However, any serialization
locks obtained in secondary context must be released, and any buffers protected
by these locks must be written to disk (refer to Chapters 4 and 7). Also, any
unrecorded blocks must be recorded before leaving secondary context (refer to
Section 6.5.2).

296 The XQP and 1/0 Processing

The following functions require the use of the secondary context area:

• Operating upon the pending bad block file, BADLOG.SYS. The routines re
sponsible for this function are the SCAN_BADLOG and DEALLOCATE_BAD
routines. See Section 5.4.8 for more information.

• Marking for deletion a file being removed or superseded during a file creation.
The CREATE routine handles this function.

• Opening a file from which attributes are being propagated. The CREATE
routine also handles this function.

• Opening a file to determine placement. The GET_LOC routine is responsible
for this function.

• Extending the index file. This function is performed by the EXTEND_INDEX
routine.

• Extending or compressing a directory. The SHUFFLE_DIR routine handles
this function.

6.5.3 Switching Stacks
TheXQP has an· independent operating stack in the impure ·area that it uses
when processing an XQP request. This stack allows the XQP to operate as an
asynchronous kernel-mode thread. When the XQP has to wait for an I/O or lock
request to complete, for example, it leaves its operating context on its private
stack, switches back to the normal kernel stack, and returns to the caller. When
the I/O or lock request completes, the XQP resumes operation on its internal
stack.

In the case of insufficient resources, the XQP has to wait, or stall, in the mode
of the requestor. The normal kernel stack must be emptied before returning, but
the XQP private stack allows the call frames on the stack to be saved.

The DISPATCH routine saves the current kernel stack variables in the impure
area. The current kernel stack base, contained in the cell CTL$AL_STACK, is
written into the first longword of PREV _STKLIM in the XQP impure area. The
current stack limit, contained in CTL$AL_STACKLIM, is written into the second
longword of PREV _STKLIM. The current frame pointer is saved in PREV _FP in
the impure area.

DISPATCH then sets the first longword of XQP _STKLIM, the base of the private
XQP kernel stack, to be CTL$AL_STACK It also sets the second longword of
XQP _STKLIM to be CTL$AL_STACKLIM. XQP _STKLIM also becomes the new
stack pointer, which initially points to the base of the private XQP kernel stack.

The XQP and 1/0 Processing 297

A list of the pointer updates that occur when the XQP switches from the normal
kernel stack to its own private stack follows. The values in the :first column are
set to be the values in the second column.

Original Variable

CTL$AL_STACK
CTL$AL_STACKLIM
FP
XQP_STKLIM
XQP _STKLIM (second longword)

New Variable

PREV _STKLIM (first longword)

PREV _STKLIM (second longword)
PREV_FP
CTL$AL_STACK (also SP)
CTL$AL_STACKLIM

Figure 6-21 shows how the XQP switches from the normal kernel stack to its own
internal stack. Note that the stack in this figure grows from bottom to top.

298 The XQP and 1/0 Processing

Figure 6-21 : Switching from the Kernel Stack to the XQP Internal Stack

Kernel Stack

CTL$AL _ST ACKLIM

Call Frame

CTL$AL_STACK

t
Growth

6.5.4 Stalling a Transaction

Impure Area

PREV_FP

PREV_STKLIM

8 bytes

XQP_STKLIM

8 bytes

XQP_SAVFP

XQP Internal Stack

CTL$AL_STACKLIM

Call Frame

CTL$AL_STACK

ZK-9614-HC

Because many copies of the XQP run on a system, an XQP request may be
processing, have to stall for a resource wait, and then return to the point of
execution. The XQP stalls in the mode of the caller, not kernel mode. The XQP
private stack is used to store the context, and ASTs are used to signal that
execution may resume.

The XQP is initially entered via AST delivery, so ASTs are blocked while the
XQP code is executing (that is, XQP operations are performed at AST level).
When the XQP has to stall in the caller's mode for either 110, a cache wait, or an
enqueued lock request, the file system dismisses this kernel AST. A completion
AST resumes the thread of execution. XQP activity is generally asynchronous
with respect to normal process operation; however, the XQP is itself a serial
function. ·

Two routines in the DISPATCH module are used to accomplish stalls: WAIT_FOR_AST
and CONTINUE_THREAD.

The XQP and 1/0 Processing 299

If a QIO or ENQ request is queued for which the XQP must stall, the
WAIT_FOR_AST routine is called to exit from the current AST so that the
completion AST may be delivered. This routine performs the following actions:

• The current frame pointer is saved in XQP _SAVFP in the impure area.

• The XQP channel is made inaccessible by writing a -1 into the CCB$B_AMOD
field.

• The previous kernel stack limits and frame pointer are restored.

• A RET instruction is performed to dismiss the AST. Because the frame pointer
has been restored, the RET resumes where execution stalled on the original
kernel stack.

Performance Monitoring Services (PMS) metering is stopped for the duration of
the stall.

The following list shows the pointer updates that occur when the XQP switches
from the XQP internal stack to the normal kernel stack.

Original Variable

FP

PREV _STKLIM (first longword)
PREV _STKLIM (second longword)
PREV_FP

New Variable

XQP_SAVFP

CTL$AL_STACK
CTL$AL_STACKLIM
FP

Figure 6-22 illustrates the kernel stack and the XQP internal stack before and
after a stall. The process-specific pointers point to the XQP internal stack before
the stall and to the normal kernel stack after the stall. Note that the stack in
this figure grows from bottom to top.

300 The XQP and 1/0 Processing

Figure 6-22: Stalling a Transaction·

AFTER BEFORE

Kernel Stack XQP Internal Stack
c TL$AL _ST ACKL IM

EXE$QXQPPKT
AST

Call Frame Stack Pointer

....

/ WAILFOR_AST
Call Frame

Frame Pointer

0

QIOW DISPATCHER
Call Frame

0
CTL$AL_STAC K

l
Growth

ZK-9615-HC

The QIO or ENQ request that was queued specifies the impure pointer (contained
in RlO) as the AST parameter and the routine CONTINUE_THREAD as the AST
routine. CONTINUE_THREAD resets the kernel stack limits to the XQP private
stack and restores the saved frame pointer. It then returns to resume execution
of the request at the instruction following the WAIT_FOR_AST call.

When the AST is delivered to the CONTINUE_THREAD routine, the following
actions occur:

• The impure pointer is restored from the AST parameter.

• The stack limits are set to point back to the XQP stack.

• The saved XQP frame pointer is restored.

• The XQP channel is made accessible again by writing 1 into the CCB$B_AMOD
:field to indicated a normal kernel-mode channel.

• PMS monitoring (including CPU time and number of page faults) resumes.

• A RET instruction is executed, which returns control to the caller of the
WAIT_FOR_AST routine (that is, the stalled thread).

The XQP and 1/0 Processing 301

Figure 6-23 illustrates the kernel stack and the XQP private stack during and
after a stall. The process-specific pointers point to the normal kernel stack before
the stall and to the XQP internal stack after the stall. Note that the stack grows
from bottom to top.

Figure 6-23: Unstalling a Transaction

BEFORE AFTER

Kernel Stack XQP Internal Stack
~ T C L$AL_STACKLIM

AST Call Frame I~ for XOP Lock or
010 Completion Stack Pointer

WAILFQR_AST
Call Frame

Frame Pointer

0

OIOW DISPATCHER
Call Frame

0 CTL$AL _ST ACK

t
Growth

ZK-9616-HC

6.6 Error Processing, Status, and Cleanup
One of the basic philosophies of the file system is that it either has to complete
an operation successfully or do a bugcheck. The routine CLEANUP in the module
CLENUP performs the functions necessary to leave file system structures in a
more consistent state after a successfully completed file operation.

As a general rule, the file system modules do not clean up after themselves.
An operation performed in secondary context must clean up before returning to
primary context, but the primary context need not be cleaned up. In primary
context, the dispatcher invokes a routine that cleans up before considering the
request :finished.

302 The XQP and 1/0 Processing

Errors can occur at various places while a request processed. Some routines
return an error status that is handled by the calling routine. Other file system
routines signal errors. When a fatal error is signalled, the dispatcher invokes the
ERR_CLEANUP routine, and the error is reported in USER_STATUS.

If ERR_ CLEANUP does not initially succeed in leaving file system structures in
a consistent state, it is called again. If it succeeds, however, CLEANUP is called.
If CLEANUP fails, ERR_ CLEANUP is invoked again. This procedure is repeated
many times before the file system gives up. ERR_CLEANUP is also responsible
for cleaning up secondary context.

6.6.1 XQP Normal Cleanup

After the XQP has :finished successfully processing a request, it must restore the
file system structures to their proper state. Normal XQP cleanup involves the
following steps:

• Context is changed back to primary if secondary context is current because
secondary context is responsible for performing its own normal cleanup.
ERR_CLEANUP resolves secondary context before secondary context is left.

• If the quota file is open for write access, the quota cache is flushed. The
VCA$V _CA€HEFLUSH bit is set in the quota cache header when an attempt
to acquire the quota cache lock fails because the quota file is write-locked.
If the volume has been mounted with the /NOCACHE qualifier, or if it is
currently marked for dismount, the buffer caches are flushed.

All modified buffers are also written to disk, storage map buffers first, in case
the storage map is updated before the file headers. No more modified buffers
may be created until this request has been completed.

• All windows are invalidated, if requested.

• The. directory FCB is deallocated. The FCB is saved if a directory index
block is associated with it. If the directory is open for write access, though,
directory buffers are discarded, and the directory index block is invalidated.

• The primary FCB is marked stale clusterwide, if requested. The FCBs are
purged unless they are currently accessed or directory index blocks are
associated with them.

The XQP and 1/0 Processing 303

6.6.2 XQP Error Handling
When a routine detects an error, it can take one of three actions:

• It can return the error as a return status.

• It can store the error status in the user return status cell (USER_STATUS)
by calling the ERR_STATUS macro. USER_STATUS is a two-longword vector
that is returned to the user in the IRP$L_MEDIA field. These two longwords
form the IOSB returned to the user. ERR_STATUS only stores the status
value if the existing value is either success or informational. This action
is taken for errors that are not fatal but that the user should see. Because
invoking ERR_STATUS writes USER_STATUS directly, calling routines
cannot intercept the error.

• It can invoke the ERR_EXIT macro. This macro signals the condition value by
performing a CHMU instruction of the argument, which declares an exception
to VMS. If a condition handler is present, it will deal with the condition.
Otherwise, the macro performs a return instruction with the value left in RO.

The error is reported in USER_STATUS. The DISPATCHER condition
handler MAIN_HANDLER copies the argument into USER_STATUS (unless
USER_STATUS already indicates an error), places USER_STATUS into
the value that will be restored into RO, and unwinds to the routine that
established the handler. The mainline call to an XQP processing routine
returns with the status value passed to ERR_EXIT, and the processing
routine is aborted. No XQP routines handle the unwind condition.

6.6.3 Event Notification
The file system provides two sets of messages. A privileged user may request
notification of interesting file system events. The system itself requests
notification of security-related events. These two sets of events are reported
in the following way:

• The SET WATCH command1 allows a suitably privileged user to request
notification of significant events in the file system. The list of significant
events is stored as bits in the array PI0$GW _DFPROT, which is indexed
by the XQP event index. Various routines in the file system check their
corresponding bit and invoke the NOTIFY_USER routine to send the user a
message.

• When all file system activity has been completed for a request, the
PERFORM_AUDIT routine is called, if necessary. During the course of the
request, audit blocks were placed by CHECK_PROTECT in the impure cell
AUDIT_ARGLIST. These requests are passed to NSA$EVENT_AUDIT one at
a time.

1 Unsupported.

304 The XQP and 1/0 Processing

For each audit entry, the specified file ID from the supplied header must
be translated to a full file specification. AB a result, performing an audit is
deferred until the request has been processed because the FID_TO_SPEC
routine seriously affects other file system operations; it releases the primary
serialization lock. The one exception is that a WRITE_AUDIT call appears in
the MARK_DELETE routine because the file will not exist to be audited after
MARK_DELETE operates.

6. 7 Termination of Processing
After all pending requests have been processed and the necessary cleanup has
been performed, DISPATCHER calls the UNLOCK...,XQP routine to release the
XQP synchronization locks. The serialization lock is released, the value block is
updated, the current volume allocation lock (if any) is released, the in-process
buffer credits are returned to the buffer pool, PMS monitoring is halted, and the
cache interlock is released. DISPATCHER then calls the routine IO_DONE.

IO_DONE posts 1/0 completion for the file system request. It performs the
following actions:

• Mmres_USER_STATUS _into IRP$L__MEDIA{whic::h is actually a. qua.dword).

• Decrements the transaction count for the VCB.

• Clears the name string descriptor length in the complex buffer packet to
prevent the name from being written back for efficiency.

• Copies the local FIB back into the complex buffer packet. The FIB contains a
variety of values which are returned to the user, such as the file ID, final file
size, status flags, and so on.

• Sets IRP$L_BCNT to ABD$C_ATTRIB (if the function was not a read
function1) to prevent the attribute list descriptors from being written
back to the user's buffers. Attributes are only returned to the user on an
10$_ACCESS function. The IRP$V _FUNC bit is then set to cause IOPOST to
copy the remaining descriptors back to the user's buffers.

IO_DONE :finishes posting 1/0 completion for the request and then calls
CHECK....DISMOUNT (see Section 6.7.3).

The 1/0 completion routines in IOCIOPOST are called in different ways,
depending on whether the 1/0 being completed is a file function or a transfer
function: ·

• Transfer functions are completed by posting a software interrupt to cause
postprocessing to be executed on the primary CPU in a multiprocessor system.
This guarantees that transfer operations complete in the proper order.

1 The IRP$V _FUNC bit is clear.

The XQP and 1/0 Processing 305

• File functions, on the other hand, are completed by calling the component
routines of IOCIOPOST directly. This saves the overhead of an AST and
guarantees that posprocessing will be complete before IO_DONE calls
CHECK_DISMOUNT.

6.7.1 Completing File Functions

Because the XQP performs :file system functions within process context, issuing
an IOPOST software interrupt and a special kernel AST to post 1/0 completion is
unnecessary. As a result, IO_DONE optimizes the code by calling (via JSB) the
special entry point IOC$BUFPOST in IOCIOPOST.

IOC$BUFPOST executes the same code executed by the IOPOST software
interrupt; PCB quotas are reset, and the equivalent of the special kernel-mode
AST completion routine is set up, which specifies the BUFPOST routine for XQP
functions (except window turns) requiring a complex buffer and buffered 1/0.

After returning, IO_DONE posts an event flag, and then another JSB instruction
executes the special kernel AST code to complete posting of the 1/0 completion. If
the specified completion routine was BUFPOST, the !RP-described buffers (such
as the FIB) are copied back to the user buffers, the accumulated buffered 1/0
count in PHD$L_BIOCNT is incremented, the complex buffer is deallocated, and
DIRPOST is called.

DIRPOST performs the following general 1/0 completion activities:

• Updates proces~ header quotas (PHD$L_DIOCNT is incremented).

• Decrements the channel activity count in CCB$W _IOC, showing that there is
no more 1/0 in progress.

• Sends a deaccess request to the XQP if the activity count is zero and
CCB$L_DIRP indicates a pending deaccess function (CCB$L_DIRP contains a
nonzero value).

• Writes the user IOSB.

• Sets the event flag specified in the $QIO call by calling SCH$POSTEF.

• Queues the user AST by using the IRP as an ACB.

• Deallocates the 110 packet and buffer packet.

Finally, the DISPATCHER routine calls FINISH_REQUEST. This routine sets the
IPL to IPL$_SYNCH and lowers the volume activity count by decrementing the
value in the VCB$L_ACTIVITY field by 2. For a volume set, the activity count is
decremented in the RVT$L_ACTIVITY field of each volume. FINISH_REQUEST
then resets the IPL to 0 and returns to the DISPATCH routine-the routine to
which the original AST was delivered.

306 The XQP and 1/0 Processing

DISPATCH restores the original kernel stack limits and frame pointer,
decrements the PCB$B_DPC field to allow process deletion and suspension again,
makes the XQP channel inaccessible, and returns.

Figure 6-24 illustrates the kernel stack and the XQP private stack after the
request has been completed. The process-specific pointers are reset from the XQP
internal stack to the normal kernel stack. Note that the stack grows from bottom
to top.

Figure 6-24: XQP Transaction Completion

AFTER

Kernel Stack
..... c

EXE$0XOPPKT AST
or Completion

AST Call Frame

OIOW

6. 7 .2 Device 1/0

BEFORE

XQP Internal Stack
TL$AL_STACKLIM ------------

Frame Pointer

Stack Pointer

DISPATCHER
Call Frame

0
CTL$AL_STACK __ ________ ___,

t
Growth

ZK-9617-HC

Because the XQP executes within process context, it does not have to issue an
IOPOST software interrupt and a special kernel AST to post 1/0 completion.
However, when a device driver or FDT routine posts 1/0 completion, it calls a
routine (IOC$REQCOM) that inserts the IRP at the tail of the 1/0 postprocessing
queue (located by the global cell IOC$GL_PSBL) and requests a software
interrupt at IPL$_IOPOST (IPL 4).

The XQP and 1/0 Processing 307

The routine IOPOST in the SYS module IOCIOPOST executes as a result of the
1/0 posting interrupt. All driver 1/0 is completed there. It removes 1/0 packets
from the postprocessing queue (located by the global cell IOC$GL_PSFL) and
processes them until completion. IOPOST also performs the following actions:

• Unlocks any system memory used for the 1/0 request.

• Increases process quota usage by incrementing the PCB$W _BIOCNT or
PCB$W _DIOCNT fields.

• Unlocks the user's pages if the request was a direct 1/0 (indicated by the bits
in the IRP$W _STS field).

• Deallocates the buffer if the request was a buffered write.

• Transfers the information from the buffer to the user's part of the addresss
space, if the 1/0 was a buffered read.

• Posts the 1/0 status to the user's 1/0 status block.

However, because a driver or FDT routine does not execute in process context, a
special kernel AST is queued to the process that initiated the 1/0 request. The
1/0 packet is turned into an AST control block and placed into the AST queue
for the process that reqeusted the 1/0. The kernel AST routine address is set up
to be a part of the IOPOST code. The IOPOST interrupt service routine then
loops back to remove another 1/0 packet from the beginning of the post queue
(located through global pointer IOC$GL_PSFL). When the queue is empty, the
IPL 4 software interrupt is dismissed.

6.7.3 Checking for Dismount

The CHECK_DISMOUNT routine, in the CHKDMO module, performs deferred
dismount processing. The UCB linked list for the volume or volume set is
traversed, and any volume is dismounted whose DEV$V _DMT bit is set (which
indicates that the volume is marked for dismount) and whose transaction count is
1 (which indicates that the volume is idle, except for the current process).

CHECK_DISMOUNT performs the following actions:

• Sets the UCB$V _DISMOUNT bit while the 110 database is locked to prevent
other processes from starting 1/0 on the volume.

• Issues an IO$_UNLOAD/10$_AVAILABLE function.

• Obtains the value block for the volume lock in protected write mode if the
volume is mounted clusterwide.

• Clears the high bit of the UCB$W _DIRSEQ field to warn RMS of the volume
dismount (for more information, refer to Section 8.6.6).

• Decrements the UCB$W _REFC field.

308 The XQP and 1/0 Processing

• Decrements the AQB$W _MNTCNT field and removes the AQB from the AQB
list if the field goes to 0.

• Deallocates all FCBs, ACBs, and WCBs.

• Dequeues access locks by forcing FCB$W _REFCNT to 0.

• Dequeues the FID and ex.tent cache locks, and deallocates the caches.

• Dequeues the quota cache lock, and deallocates the quota cache.

• Dequeues the volume lock (VCB$L_ VOLLKID).

• Dequeues the shadow lock.

• Clears the RVT list entry for volume sets, and decrements the RVT$W _REFC
field. If it is 0, the structure lock and the blocking lock are dequeued.
BLOCK_CHECK is cleared so DISPATCHER will not release the block lock,
and the RVT is deallocated.

• Dequeues the blocking lock for single volumes.

• Deallocates the VCB.

• Demotes the device lock, if any, either to concurrent read mode if the volume
is not all_ocated QI' to ~:iccl~sive mod~ ifit is, Th~-V'al\le bl<>c~ is clearedif this
is the final dismount.

• Calls the routine IOC$DALLOC_DMT in the SYS module IOSUBPAGD to
deallocate the device.

• Decrements the AQB reference count. If it goes to 0, the buffer cache is
deallocated.

Chapter 1

Serialization of File System Activity

Serial adj. Being or pertaining to just one damned thing after another.
Stan Kelly-Bootle

Suhor's Law A little ambiguity never hurt anyone.
Charles Suhor

Chapter 7

7.1

7.2
7.2.1
7.2.2

7.3

7.4
7.4.1
7.4.2
7.4.3
7.4.4

7.5

7.6

7.7

Outline

Serialization of File System Activity

Introduction

Distributed Lock Manager
Locking Conventions
Distributed Lock Manager System-Owned Locks

Serializing Access to Files and Volumes

Serializing Access to Shared Data Structures
Serializing the File Control Block
Serializing the Volume Control Block
Serializing the File Number and Extent Caches
Serializing the Buffer Cache

Deadlock Considerations

File System Internal Serialization Checks

File System Lock Indexes

7.8 Ambiguity Queue

Serialization of File System Activity 311

7.1 Introduction
When there is concurrent file system activity, the potential for overlap exists.
The goal of turning concurrent file system activity into serial activity is to
define a mechanism within the directory hierarchy and the lock structure so
that some concurrencies can occur while others can be prohibited. The way the
XQP coordinates, or serializes, this activity is by using the distributed lock
manager.

7 .2 Distributed Lock Manager
The XQP is mapped i.rlto the virtual address space of every process, and it
executes operations for that process in its own process context. For the most
part, XQP processes synchronize with each other using the same mechanism
available to users in general: the distributed lock manager. Thus, each process
is able to hold its own locks, queue its own locks, wait for its own resources,
maintain its own data, and so on, in the normal process sense.

The file system uses a number of locks in a strict hierarchy to control and
communicate dynamic information about files, caches, volumes, and usage. For
most file system operations, the .order in which locks are acquired, converted,
manipulated, and released is strictly defined.

The file system extensively uses the distributed lock manager to synchronize file
activity. If one process is performing some file system activity, a second process is
prevented from performing the same activity until the first process is finished.

Locks can be held in a variety of modes. The available locking modes are mapped
directly onto file access and sharing modes. The various access and sharing
combinations are controlled by lock modes as shown in the following table.

Lock Mode Meaning

LCK$K_EXMODE Exclusive

LCK$K_PWMODE Protected write

Description

Grants read and write access to the resource
and prevents the resource from being shared
with any other readers or writers. This lock
is the traditional "exclusive lock."
Grants write access to the resource and
allows the resource to be shared with
concurrent readers. No other writers are
allowed access to the resource. This lock is
the traditional "update lock."

312 Serialization of File System Activity

Lock Mode Meaning

LCK$K_FRMODE Protected read

LCK$K....CWMODE ConCUITent write

LCK$K....CRMODE Concurrent read

LCK$K....NLMODE Null mode

7.2.1 Locking Conventions

Description

Grants read access to the resource and allows
the resource to be shared with other readers.
No writers are allowed access to the resource.
This lock is the traditional "share lock.,.

Grants write access to the resource and
allows the resource to be shared with other
writers. This lock mode is typically used
to perform additional locking at a finer
granularity, or to write in an "unprotected"
fashion.

Grants read access to the resource and
allows the resource to be shared with other
writers. This mode is generally used when
additional locking is being performed at a
finer granularity with sublocks, or to read
data from a resource in an "unprotected"
fashion (allowing simultaneous writes to the
resource).

Grants no access to the resource. The null
mode- is typically-used as an indicator of- - ·-
interest in the resource, or as a placeholder
for future lock conversions. Null mode is
compatible with all other modes, so it ignores
all other lock modes. Essentially, queuing a
null-mode lock allows all other lock modes to
be overridden.

The file system cannot deal with true concurrent activity, so locks are used as a
means to serialize. A lock is not a form of permission; rather, it is a block or a
preventive. Although in reality a lock is merely a portion of memory, it represents
something larger and more significant-access to a resource. The process that
holds the lock also holds the power to access (and to modify) the resource.

Locking before accessing a resource is a convention. It is not strictly necessary
and can be overridden. However, locking conventions presume that if locks are
not correctly obtained, the potential exists to corrupt data and to destroy the
important data structures of the file system.

Serialization of File System Activity 313

The following types of locking are used in the VMS kernel:

• Spin locks-Provide low-level protection against concurrent access to a
resource by multiple CPUs. Spin locks are so named because the waiting CPU
"spins" on the lock, repeatedly testing it until the lock holder frees it. Spin
locks are held for relatively short periods of time and only at an elevated IPL.
They are a generalization of, and replace, the old IPL synchronization design
used before symmetric multiprocessing (SMP) was introduced in Version
5.0. Each spin lock corresponds to a particular IPL; the spin lock prevents
concurrent access by another CPU, and the elevated IPL prevents delivery of
conflicting interrupts on the same CPU.

• Mutexes-Provide low-level protection against concurrent access to a
resource by multiple processes. To use a mutex, a process must be executing
at IPL2 in kernel mode. When a process waits on a busy mutex, it goes
into MWAIT state and is resumed by the scheduler when the mutex is
made available. Mutexes are used for resources in paged memory and other
resources that must be held too long to be appropriate for a spin lock.

• Distributed lock manager locks-Provide high-level protection against
concurrent access to any resource by multiple processes. Lock manager
locks are the only mechanism for synchronizing among the members of a
VAXcluster system. They also provide a variety of powerful features such as
multiple lock modes, value blocks, and blocking ASTs.

• XQP-internal locks-Used by the XQP to provide its own style of
synchronization for the components of the buffer cache. Processes wishing
to synchronize insert an AST control block on a queue; the first process on the
queue is permitted to execute. When the executing process wishes to release
the lock, it uses the next-queued ACB to wake up the next waiting process.

7 .2.2 Distributed Lock Manager System-Owned Locks

A variation of the lock manager lock commonly used by the file system is the
system-owned lock. The primary feature of a system-owned lock is that it is
not owned by any particular process but by the system as a whole. A system
owned lock does not disappear when the process that created it terminates; it
is removed only by explicitly dequeuing it. System-owned locks have two major
uses:

• To synchronize resources whose lifetimes are independent of individual
processes

• To combine the multiple locks of several processes into one lock

The following two system-owned locks are used to serialize file system activity:

• The volume allocation lock

• The serialization lock

314 Serialization of File System Activity

These locks are maintained both as system-owned and as process locks under
different circumstances.

7.2.2.1 Volume Allocation Lock
The volume allocation lock controls volume allocation and deallocation. It is
the top-level lock for the volume, and it synchronizes critical operations on the
volume. For example, the volume lock serializes operations on the index and
storage bitmaps (that is, the allocation of tree space and file IDs) and on their
related caches (the FID cache and extent cache).

Because the volume allocation lock name is unique for any given volume or
volume set, it is the logical choice as the parent lock for the file serialization
lock (see Section 7.2.2.2 for information on the serialization lock). It can also be
generated from any node in a VAXcluster from which a shared volume has been
mounted.

This lock is the first on the volume to appear and the last to disappear. It exists
longer than any other lock because all file activity must stop before the volume
can be dismounted.

Along with the device name, the volume name is also used by the Mount Utility
to enforce the requirement· that two volumes with the same name cannot be
mounted shareable at the same time in a VAXcluster.

Any number of volumes with the same volume label can be mounted privately. In
that case, combining the system name and the address of the UCB for the device
forms a name guaranteed to be unique throughout the VAXcluster.

The resource name used is the character string F11B$v, followed by one of three
volume identifiers:

• The volume label, if the volume has been mounted shareable (that is,
system wide).

• A combination of the node name and the UCB address if mounted privately.
When a volume is mounted with the /NOSHARE qualifier, the volume does
not interact with other volumes on the system, so the UCB address is used
as part of the volume lock name to guarantee both that the name does not
duplicate a legitimate volume name and also that the name is unique.

• The volume set name, if this is a volume set.

Using the volume label or volume set name for shareable mounts also enforces
uniqueness of volume labels across the VAXcluster system.

The volume allocation lock may have the following forms:

FllB$v<volume ID>
F11B$v<system name><UCB address>
FllB$v<volume set ID>

Serialization of File System Activity 315

Figure 7-1 shows the internal representation of a volume allocation lock.

Figure 7-1: Format of a Volume Allocation Lock

B I 1 1 F

v $

Volume Lock Name

ZK-9618-HC

The 12-byte volume identifier part of this lock name is read from disk by the
routine GET_ VOLUME_LOCK_NAME when the volume is mounted. It is stored
in the VCB field VCB$T_ VOLCKNAM for later use by MOUNT and the XQP. (See
Section 3.3.1.1 for more information on the volume control block.)

The volume identifier can be obtained with the DEVLOCKNAME item code of
the $GETDVI system service. The item code actually returns a 16-byte field.
One of the extra bytes is used to distinguish which volumes have been mounted
shareable and which have been mounted privately to prevent possible duplicate
names. Note that the volume lock name is stored in the VCB because the actual
volume name can be changed with the SET VOLUME command after the volume
has been mounted.

The file system avoids any interference between private and shared volumes by
using the system-specific lock as a parent for privately mounted volumes. This
approach also has the advantage of not requiring VAXcluster traffic to determine
on which system the lock is mastered, which is a performance gain. The system
lock ID is contained in the executive cell EXE$GL_SYSID_LOCK

The volume lock ID is stored in the field VCB$L_ VOLLKID.

The volume allocation lock is initially acquired in protected write mode by the
MOUNT routine GET_ VOLUME_LOCK (in CLUSTRMNT). Figure 7-2 shows the
first stage in the life cycle of this lock.

316 Serialization of File System Activity

Figure 7-2: First Stage In the Volume Allocatlon Lock Life Cycle

F 11 B$vUSERDISKNAME

z
PW

Process
Lock

ZK-9619-HC

It is converted to a system-owned lock in concurent read mode by the STORE_CONTEXT
routine _whell.]MOUNT proce~si.ng is complete. }figure 7 ~ shows the second st~ge.

Serialization of File System Activity 317

Figure 7-3: Second Stage in the Volume Allocation Lock Life Cycle

F 118$vUSERDISKNAME

L
CR

System-Owned
Lock

ZK-9620-HC

The lock remains granted in concurrent read mode until the volume is
dismounted. It is dequeued by the CHECK_DISMOUNT routine when the
transaction count on the volume becomes idle after the volume has been marked
for dismount.

The volume lock remains permanently granted as long as the volume is mounted.
It serves as the parent lock for all file number serialization locks. To synchronize
volume operations, the volume allocation lock is taken as a process lock in
protected write mode. Figure 7-4 shows the last stage.

318 Serialization of File System Activity

Figure 7-4: Third Stage in the Volume Allocation Lock Life Cycle

F 118$vUSERDISKNAME

z ~
CR PW

System-Owned Process
lock lock

ZK-9621-HC

Because the volume lock or volume set lock is used as the parent lock for all
synchronization locks, its lock ID also appears as the parent lock in BFRLs for
blocks read on that volume or volume set.

In addition, the volume lock value block contains the current free space on the
volume as well as some pointers to manage allocation. In effect, it acts as a
rotating pointer in the storage bitmap to find free space in the bitmap more
quickly.

Figure 7-5 shows the format of the volume allocation lock value block.

Serialization of File System Activity 319

Figure 7-5: Format of the Volume Allocation Lock Value Block

VC_SBMAPVBN 1 VC_IBMAPVBN 1 vc_FLAGS

vc_VOLFREE

VC_IDXFILEOF

VC_IDXSEQ 1 VC_BITSEQ

ZK-9622-HC

Table 7-1 shows the contents of the volume allocation lock value block.

Table 7-1: Contents of the Volume Allocation Lock Value Block

Value Block
Field Name

VC_FLAGS

Description

Status flags. The following flag bits are defined within VC_FLAGS:
VC_NOTFIRST_MNT Bit <0> First mounted. This bit is

clear if the volume has not
been mounted elsewhere in the
VAXcluster.

VC_QUOTASEQ Bits <1:15> Sequence number for quota
file data blocks. This field is
incremented to invalidate the
quota cache entry.

VC_IBMAPVBN Current VBN in the index file bitmap. This field contains the virtual
block number of the block at which to start the next file creation scan.
It is taken from the value in VCB$B_IBMAPVBN.

VC_SBMAPVBN Current VBN in the storage bitmap. This field contains the virtual
block number of the block at which to start the next allocation scan. It
is taken from the value in VCB$B_SBMAPVBN.

VC_ VOLFREE Number of free blocks on the volume. The value in this field is taken
from VCB$L_FREE.

(continued on next page)

320 Serialization of File System Activity

Table 7-1 (Cont.): Contents of the Volume Allocation Lock Value Block

Value Block
Field Name

VC_IDXFILEOF

yc_BITSEQ

VC_IDXSEQ

Description

End-of-file VBN for the index file. This field is obsolete.

Sequence number for the storage bitmap. This field is incremented to
invalidate all cached entries.
Sequence number for the index file bitmap. It is incremented to
invalidate all cached entries.

7.2.2.2 Serialization Lock
The serialization lock controls the serialization of file system processing on
individual files. It is a sublock, and its parent lock is the volume allocation
lock associated with a volume or volume set. It is held while the file system is
changing the state of a particular file.

For example, the serialization lock is held to accomplish the following tasks:

• Extending a file

• Accessing a file

• Deleting a file

• Performing a directory operation

While this lock is actually held, it is held as a process lock to synchronize activity.
Its purpose is to prevent two processes from making simultaneous modifications
to the same file or directory.

Like the volume allocation lock name, the serialization lock name also uniquely
identifies a file on a volume set or single volume. The resource name used for a
serialization lock is the string F11B$s, followed by the 3-byte file number (a 2-
byte file number and a 1-byte file number extension) plus a 1-byte relative volume
number. It has the following form:

F11B$s<file number><relative volume number>

Figure 7-6 shows the internal representation of a file serialization lock.

Serialization of File System Activity 321

Figure 7-6: Format of a Serialization Lock

l B l 1 1 F

C;
File ID s $

RVN

ZK-9635-HC

File serialization locks are taken out by the routine SERIAL_FILE. Either the
volume lock or the volume set lock is specified as a parent lock depending on
whether the file is on a single disk volume or a volume set.

The file serialization lock is taken out when the on-disk structures for a file (such
as the file header) and the in-memory data structures (such as the FCB) are
modified.

Like the volume lock, the serialization lock is always queued in protected write
mode. Its completion AST is the XQP routine CONTINUE_THREAD, and its
ASTPRM is the base register of the XQP impure area (RlO). Processes must
queue for ownership of this lock.

Figure 7-7 shows the protected write lock resulting from the first access of a
header. After the lock has been granted, a buffer descriptor is allocated, and the
header block is read in.

322 Serialization of File System Activity

Figure 7-7: First Stage in the Serialization Lock Life Cycle

BFRD

F11B$s < 10> <O> <O>

0 l
<10> <O> <O>

z
PW

Process
Lock

ZK-9624-HC

The serialization lock is released when the XQP is finished operating on the
resource it represents. To coordinate with other nodes of the VAXcluster that may
want to acquire or convert the lock, a BFRL structure is used to keep track of the
system-owned lock.

Figure 7-8 shows this stage of the lock life cycle. In this instance, the system
owned lock has a lock ID of 10, and the BFRL a buffer index of 25.

Serialization of File System Activity 323

Figure 7-8: Second Stage in the Serialization Lock Life Cycle

BFRD

F11$s <10> <10> <10>

,.--- 25 l
<10> <O> <O>

z
NL

r- System-Owned
Lock

LOCKID=10

,.---

BFRL

....._
10

<10> <O> <O>

ZK-9625-HC

324 Serialization of File System Activity

When the system-owned lock is taken out, it remains until the header is flushed
from the cache. Once that happens, a new owner can take out a protected write
mode lock. Figure 7-9 shows this last stage in the lock life cycle.

Figure 7-9: Third Stage in the Serialization Lock Life Cycle

F11B$s < 10> <O> <O>

z \
NL PW

System-Owned Process
Lock Lock

ZK-9626-HC

Figure 7-10 shows the format of the serialization lock value block.

Figure 7-10: Format of the Serialization Lock Value Block

FC_HDRSEQ

FC_DATASEQ

reserved

reserved

ZK-9627-HC

Serialization of File System Activity 325

Table 7-2 shows the contents of the serialization lock value block.

Table 7-2: Contents of the Serialization Lock Value Block

Value Block
Field Name

FC_HDRSEQ

FC_DATASEQ

Description

File header sequence number. This value is incremented if the primary
or extent header is modified.

Directory file data sequence number. This value is incremented if any
data blocks in the directory file containing the target file are modified.
One number applies to all data blocks of the file. However, it does not
apply to the directory file header. This field may also apply to bad
block data.

The serialization lock is also used to synchronize the buffer cache. For more
information, see Section 7.4.4.

7 .3 Serializing Access to Files and Volumes
Every file has at least one file header, which is contained in the index file

· (INDEXF.SYS). Every file header has a unique set of numbers that identify
it, and these numbers can be used to calculate the block in the index file that
contains the corresponding file header. The file header for the index file is itself
one of the blocks within the index :file.

The :file system extensively uses the distributed lock manager to synchronize file
activity (such as updating the index :file). Many routines and macros (such as
SERIAL_FILE) exist to serialize activity, and they take as an argument the FID
of the file to be locked.

During any file system function, any or all of the following disk volume structures
may be referenced (in this order):

1. A directory file, including the directory header or the directory file data
blocks. This is the file specified by the FIB$W _DID or directory ID, and it
may be used to look up the target file in an access function or to make a
directory entry in a create operation.

2. The target file header and any possible extension headers. Serialization
locks for the directory and target :files are handled by the SERIAL_FILE
routine, which performs the following actions:

• Takes the file ID as input and extracts the :file number and relative
volume number to construct the F11B$s lock resource name.

326 Serialization of File System Activity

• Tak.es out the serialization lock.

• Returns an index into the vector LB_LOCKID, which keeps track of the
lock ID of the lock granted. This index is stored in the following cells:

DIR_LCKINDX-For the directory serialization lock

PRIM_LCKINDX-For the target or primary file

In order to minimize both the number of locking operations and the number
of locks required to perform a given operation, access to extension headers
is not serialized with a separate lock but rather with a serialization lock on
the primary header. In normal operations, this approach works because the
primary header is always taken out first, and the link is followed from header
to header.

Serialization locks on the directory and primary file are normally held until
the completion of the entire operation. All locks are released in the routine
UNLOCK_XQP, which is called from the DISPATCHER routine after the
operation completes.

3. The storage and index file bitmaps. If caching is not enabled, the storage
bitmap is used during the following operations:

• When free storage is mapped to a file being extended or created.

• When free storage is returned from a :file being truncated or deleted

Likewise, the index :file bitmap is scanned during the following operations:

• When a new :file or extension header is created

• When a file header is deleted

However, if caching is enabled, the extent cache and the file number caches
are searched instead of their corresponding on-disk structures.

Operations that involve the storage or index file bitmaps are serialized with
an F11B$v lock. This lock is taken out by the ALLOCATION_LOCK routine,
which is very similar to the SERIAL_FILE routine. The lock ID of this
allocation lock is always stored in element 0 of the LB_LOCKID vector.

Manipulating the headers of the storage or bitmap files requires taking out
the serialization lock on the file as well as the allocation lock.

4. The quota file, which reflects allowed and current disk quota usages (if
enabled).

Serialization of File System Activity 327

7.4 Serializing Access to Shared Data Structures
The file system uses multiple synchronization mechanisms to serialize access to
data structures that may be shared by multiple processes. For example, access to
the following data structures is serialized:

• File control block

• Volume control block

• FID, extent, and quota caches

• Buffer cache

7.4.1 Serializing the File Control Block
The file control block is a volatile data structure that is shared by all the
accessors of a particular file. Access to a file is controlled by two mechanisms:

• Taking out the serialization lock on the file and therefore the FCB

• Raising the IPL (spin lock)

7.4.1.1 Using the Serialization Lock to Serialize Access
The serialization lock synchronizes activity on a file after the FCB corresponding
to the file has been found or created. (Access to buffers associated with a given
file is also serialized by the F11B$s locks; however, this mechanism is not the
same as that used to locate the buffers in the cache.)

The volume lock is the parent lock of the file serialization lock for efficiency and
to save the overhead of moving locks around the cluster. Also, creating a sublock
uses fewer resources than creating a top-level lock.

When a file is opened for the first time, an FCB is created. It exists from the time
the first accessor in a VAXcluster opens the file until the time the last accessor in
the cluster closes the file.

A file is represented by one FCB per node. If the FCB on one node is updated,
all the other FCBs. corresponding to that file must also be marked invalid. 'Th
signal that the information in the other FCBs is stale and must be invalidated,
a blocking AST is fired. For further accesses, the file header must be read from
disk and the FCB chain rebuilt. For these reasons, the FCB is a convenient data
structure for those files that change most rapidly.

For example, the FCB is a practical structure for a situation in which one process
on one node is reading and another process on another node is writing. In this
case, the FCB does not have to be rebuilt often because the file is represented by
a window control block (unless deferred truncation has been enabled). Therefore,
the read operation can continue without reading from disk, and the write

328 Serialization of File System Activity

operation can continue modifying the file (thus invalidating the other FCBs)
and updating EOF markers.

However, if two processes try to write to the file simultaneously, there is
contention for the disk. In this case, the write operations must be serialized
by a lock instead of by the FCB.

A consistency bugcheck within the XQP is not necessary to guarantee that an
appropriate serialization lock is held when an FCB is referenced.

7.4.1.2 Synchronizing Access to FCBs and WCBs
The majority of the FCB contents are used only by the file system and so are
synchronized by taking the file's serialization lock before referencing or modifying
the FCB.

However, the FCB list, rooted in the VCB, must be separately synchronized
to prevent, for example, a process that is searching the FCB list from seeing
an inconsistent list because another process has added or inserted an FCB. To
accomplish this, the process must take the FILSYS spin lock while searching the
FCB list or inserting or removing FCBs.

Other fields in the FCB such as file size and access counts are referenced but
never modified outside the XQP. ·These fields· are not-synchronized but are
updated conservatively such that outsiders see only safe values (for example,
a file size that is never larger than the file is at that instant).

The WCB is used and modified by the XQP, and is scanned by IOC$MAPVBLK It
is also synchronized with the FILSYS spin lock.

7.4.2 Serializing the Volume Control Block

Another data structure to which access must be serialized is the volume control
block, a static data structure. A VCB is created when a device is mounted, and
it survives for the life of the volume. It is customized for each node at the time
it is created, but once it has been built, much of the information stays the same
(except for the volume label). Important information such as the UCB address
does not change. The information in the VCB that does change, such as the
volume free space count (VCB$L_FREE), is synchronized with the volume lock.

7.4.3 Serializing the File Number and Extent Caches

The file extent and file number caches (pointed to by VCB$L_ VCA) are serialized
by the F11B$v allocation lock. That is, access to those shared structures by
multiple processes is controlled by the volume allocation lock.

Serialization of File System Activity 329

In a VAXcluster, every node has an extent cache and a header cache. These
special caches exist so a single node can get blocks without disrupting activity
on the rest of the VAXcluster. When the cache is created, bits from the bitmap
are divided among the local caches with no overlap. Local nodes can read and
write their particular part of the cache without interfering with the rest of
the bitmap. The convention is that when disk space is reserved to the cache,
the corresponding bitmap bits are cleared (indicating that those blocks are not
available for allocation). When the cache is flushed back to disk, then the bits
truly reflect the disk blocks that are available or allocated.

Additional locks are used to cause the special caches to be flushed under
appropriate circumstances, such as when access to related files would interfere
with the cache or when the resources are needed elsewhere in the cluster., Such
cache-flush-and-fill operations are also done under the volume lock to synchronize
access to both the cache and the related resource. Refer to Section 8.3.3 for more
information on the cache flush lock.

7.4.4 Serializing the Buffer Cache

Changing the state of the buffer cache descriptors in the overhead area must
be done atomically so that any process needing to use the cache always sees
a consistent picture. Searching or manipulating the cache must therefore be
serialized.

Serial access to the buffer cache only needs to be enforced for the processes on
a single node, however, not across an entire cluster. Serial access to the buffer
cache is achieved without locking (the INSQUE instruction is used). Because the
lock manager is not involved, cache serialization can be performed very quickly.

Serialization is controlled by the AQB$L_ACPQFL queue, and the first entry (an
IRP) in the queue has control of the cache. An ACB in the class driver extension
to the IRP (CDRP) is set up to point to the XQP routine CONTINUE_THREAD.

The two routines that acquire and release the cache interlock are SERIAL_ CACHE
and RELEASE_CACHE, which are called by the other routines in the RDBLOK
module. SERIAL_CACHE performs the following actions:

• Queues the IRP at the tail of the AQB$L_ACPQFL queue.

• If the queue is empty, returns so that its caller can proceed.

• Calls the WAIT_FOR_AST routine if another entry is on the queue. This
routine returns only after obtaining ownership of the cache.

The RELEASE_CACHE routine performs the following actions:

• Removes the IRP from the head of the queue when the transaction is
complete.

330 Serialization of File System Activity

• If another IRP is found on the queue, uses the CDRP portion of the IRP to
queue an AST to the waiting process.

The CDRP area of the IRP is again used as an ACB, just as it was used to start
the AST thread in the first place. When it is inserted in the queue, SCH$QAST
(queue restart of first IRP in queue) is called.

The cache serialization interlock is held only while the cache is searched or the
state of the buffer descriptors is changed. It is never held when the XQP must
stall for 1/0 to finish or for any other reason.

Figure 7-11 shows how access to the block cache is serialized.

Figure 7-11: Serializing Access to the Block Cache

AQB IRP (Current) IRP

AQB$L_ACPQFL

AQB$L_ACPQBL

ZK-9629-HC

7.5 Deadlock Considerations
The file system is designed to be free of deadlocks. By assuming a hierarchical
directory and file structure, taking out locks in the order prescribed in Section 7 .3
results in a deadlock-free system.

Certain operations, such as creating a new file, must access files in a different
order. Specifically, the allocation lock must be taken out first to determine the
file number of the primary file to be created, and then the directory entry can be
made.

In this case, deadlock is avoided by releasing the allocation lock prior to acquiring
the serialization lock on the new file header. In general, the allocation lock is
always released before a new file number serialization lock is acquired. The
ALLOCATION_ UNLOCK routine performs this function.

The FID_TO_SPEC routine is an even more pathological example of needing locks
in the wrong order because it walks the directory hierarchy backwards.

Serialization of File System Activity 331

The serialization lock can be held on a newly created file before the directory
serialization lock is taken out (even though it violates the ordering rule). The
reasoning is that if this is a new file, no other users should be able to find it in
the directory.

7 .6 File System Internal Serialization Checks
To enforce the requirement that an appropriate serialization lock be held when
a header is read from disk, there is another vector called LB_BASIS that uses
the lock index returned from the SERIAL_FILE routine. LB_BASIS contains the
lock basis, or file number plus the RVN field, of a given serialization lock.

The last lock index returned by SERIAL_FILE is contained in the XQP impure
area cell CURR_LCKINDX. The READ_HEADER routine uses these bits
of information, in addition to looking at the header just returned from the
READ _BLOCK routine, to determine whether the correct serialization lock
is held for the header just requested. This behavior is enforced because the
READ_HEADER routine is used by all XQP code to read a header.

For example, if a user specifies an extension header by file ID and attempts a
delete function on the extension header, the following actions occur:

• The given file ID is serialized by the MARK_DELETE routine.

• The CURR_LCKINDX and LB_BASIS fields are filled in by SERIAL_FILE.

• The header is obtained by READ_HEADER.

• An extension header is detected by READ_HEADER based on the FH2$W _SEG_NUM
field in the header. Furthermore, the routine finds that the locl:t basis for the
serialization lock does not match the primary header for that file (determined
from the FH2$W _BK_FIDNUM and FH2$B_BK_FIDNMX fields).

• A status of SS$_NOSUCHFILE is returned as READ_HEADER exits, thereby
making direct access to extension headers impossible.

There are exceptions to the rule of not allowing access by extension header,
however. The Backup and Dump Utilities perform access functions explicitly on
extension headers to get the extension header with a read attributes list that
returns the complete file header. This is because both utilities need to have all
the extension headers of a given file.

The ACCESS routine calls the READ_HEADER routine to handle this case. To
perform an access function on an extension header, the following actions are
performed:

• The ACCESS routine first takes out the serialization lock on the given file ID
as if it were a primary header. This is allowed because the file systei:n cannot
tell whether the header is a primary or an extension header at this point.

332 Serialization of File System Activity

• ACCESS calls READ_HEADER with an extra argument-an optional output
from READ_HEADER. The extra argument tells READ_HEADER not
simply to return a status of SS$_NOSUCHFILE if it encounters a lock basis
mismatch, but rather to return the real lock basis for that extension header,
derived from the primary header back link field.

• The incorrect serialization lock is released.

• The correct one based on the information from READ_HEADER is taken out.

• The whole operation is retried, including the call to READ_HEADER, because
until the correct serialization lock has been taken out, the header could be
changed at any time by another process.

7. 7 File System Lock Indexes
The file system uses the following fields in the XQP impure area to keep track of
three lock indexes:

Impure Area Field
Name Description

CURR_LCKINDX Current file header lock index. This field is set by SERIAL_FILE
to record the last index it returned. If RELEASE_SERIAL_LOCK
is called with a lock index equal to CURR_LCKINDX, CURR_LCKINDX
is zeroed. However, zero (the allocation lock) is not a valid value
for these lock index variables.

PRIM_LCKINDX Primary file lock basis index. This field is the index corresponding
to the lock on the primary file header. Normally, PRIM_LCKINDX
has the same value as CURR_LCKIND:X. PRIM_LCKINDX

DIR_LCKINDX

is normally not itself referenced although ERR_ CLEANUP
forces CURR_LCKINDX to equal PRIM_LCKINDX. However,
PRIM_LCKINDX does not always have the same value as
CURR_LCKINDX.

The lock basis corresponding to PRIM_LCKINDX can be wrong
if an attempt is made to access an extension file header directly.
PRIM_LCKINDX must be corrected (that is, the correct lock basis
and lock must be obtained) in ACCESS.

Directory lock basis index. This field records the index into the
lock arrays (LB_BASIS and LB_LOCKID) for the parent directory
of the operation. DIR_LCKINDX is not in the context area saved
for secondary operations.

Serialization of File System Activity 333

The following table shows some basic file system activities, which lock index is
used to perform the activity, and the routine that sets the lock index:

Activity Lock Index

Reading random file CURR_LCKINDX
headers and blocks

Checking for the correct CURR_LCKINDX
lock basis

Removing blocks from a CURR_LCKINDX
file into the BADBLOCK
file

Marking a file for CURR_LCKINDX
deletion

Serializing on the quota CURR_LCKINDX
file (to rebuild stale
FCBs)

Performing quota file CURR_LCKINDX
operations

Advancing the index file CURR_LCKINDX
EOF

Remapping the index file CURR_LCKINDX

Routine

Used by READ_BLOCK This lock is
not normally released until request
cleanup time.

Used by READ_HEADER. This lock
is not normally released until request
cleanup time.
Used by DEALLOCATE_BAD. If this
lock is taken out in secondary context
or on the index file in primary context
(moving the EOF marker), it must be
released separately. An explicit write
of modified buffers is performed, and
the lock is explicitly released (clearing
PRIM_LCKINDX also).

Used by MARK_DELETE. If this lock
is taken out in secondary context or
on the index file in primary context
(moving the EOF marker), it must be
released separately. An explicit write
of modified buffers is performed, and
the lock is explicitly released (clearing
PRIM_LCKINDX also).
Used by SEARCH_QUOTA. The
CURR_LCKINDX value must be saved
during the rebuild operation because it
refers to the quota file.

Used by QUOTA_FILE_OP. The quota
file serialization lock (as well as the
allocation lock) is held.

Refers to the index file serialization
itself during the header write.

Refers to the index file serialization
lock.

334 Serialization of File System Activity

Activity Lock Index

Copying attributes from PRIM_LCKINDX
one file to another

Creating a file PRIM_LCKINDX

Purging the buffers for CURR_LCKINDX
the extension headers

Accessing a directory

Translating a file ID to a
file specification via back
links

Reading and writing
virtual blocks

CURR_LCKINDX
DIR_LCKINDX

CURR_LCKINDX
PRIM_LCKINDX

CURR_LCKINDX

Routine

Used by PROPAGATE_ATTR (in
CREATE). In this routine, executed
in secondary eontext, PRIM_LCKINDX
points to the file from which attributes
are copied.

CURR_LCKINDX is saved across the
OPEN_FILE call and points to the
target file in case its headers must be
reread (when buffers in which to write
attributes are sought).

Used by CREATE. A serialization
lock can be held from a previous
access attempt (if this was a create-
if access), so any PRIM_LCKINDX
lock is released. (ACCESS, like most
routines, does not clean up after itself.)

Used by DELETE_FILE. A serialization
lock is built on the extension header file
ID as a basis for pur~ the buffers.
The value of CURR_LCKINDX must be
saved.

Used by DIR_ACCESS. CURR_LCKINDX
is saved while DIR_LCKINDX is being
established (in a call to SERIAL_FILE).

Used by FID_TO_SPEC. This routip.e
releases the PRIM_LCKINDX lock
to avoid synchronization deadlocks
when processes traverse the directory
hierarchy.

The reference count is incremented
on the FCB, though, to maintain its
existence. CURR_LCKINDX refers
to the variotis directories in the
back link chain. PRIM_LCKINDX is
redetermined when control is returned
to the file after the search.

Used by READ_WRITEVB. A
serialization lock (CURR_LCKINDX)
is obtained on a file ID when it is
determined that a process is trying to
directly write a file header.

Serialization of File System Activity 335

Activity

Extending or compress
ing a directory

Lock Index

CURR_LCKINDX
DIR_LCKINDX

7 .8 Ambiguity Queue

Routine

Used by SHUFFLE_DIR. This
function resets (in secondary context)
CURR_LCKINDX to DIR_LCKINDX so
that READ_BLOCK works.

It is possible to serialize on the wrong lock basis if an attempt is made to access
an extension file header directly. If that same extension header is concurrently
accessed by another process as an extension header using the correct lock basis,
it is possible for one of those processes to locate the buffer in the cache that is in
use by the other process, a condition known as ambiguity.

Normal file number.serialization usually prohibits this behavior, and except for
the specific case of file headers, it would cause an XQPERR bugcheck. However,
in this case, the process puts itself on the ambiguity queue and goes to sleep.

Two situations in which ambiguity can occur is during BACKUP and DUMP
processing. Both these utilities process extension headers directly, which is
normally not allowed. They take out a lock on the primary header (which
constitutes the lock basis); this lock also covers the extension header chain.

When the chain is locked, it can change unexpectedly even while it is being
traversed. For example, an extension header could even switch files. So to handle
this problem, the ambiguity queue is used.

The queue header F11BC$L_AMBIGQFL points to the ambiguity queue. When
the XQP detects ambiguity, the RESOLVE_AMBIGUITY routine queues the
current IRP onto the ambiguity queue, and the process goes to sleep. When the
next operation completes, the RETURN_CREDITS routine awakens the process
to try again. This cycle can happen any number of times until the ambiguity is
resolved.

FIND_BUFFER detects the ambiguity case (when it :finds a buffer in use in
some other process). WRONG_LOCKBASIS and RETURN_CREDITS check the
ambiguity queue for processes to waken.

Chapter a

File System Operation in a
VAXcluster Environment

That's our system, Nickleby; what do you think of it?
Charles Dickens

There ain't nothing more to write about, and I am rotten glad of it, because if I'd
'a' knowed what a trouble it was to make a book I wouldn't 'a' tackled it, and ain't
a' going to no more.
Mark Twain

Outline

Chapter 8 File System Operation In a VAXcluster Environment

8.1 Introduction

8.2 Mounting a Disk Clusterwide

8.3 Locking in a VAXcluster
8.3.1 Volume Allocation Lock
8.3.2 Arbitration Lock
8.3.3 Cache Flush Lock
8.3.4 Quota Cache Lock
8.3.5 Blocking Lock

8.4 Access Arbitration
8.4.1 Delayed Truncation

8.5 System Blocking Routines
8.5.1 Volume Activity Blocking
8.5.2 Dynamic Quota Cache Entry Lock Passing
8.5.3 FCB Invalidation
8.5.4 Cache Flushing

8.6 Cache Processing
8.6.1 Lock Value Blocks
8.6.2 Other Value Block Fields
8.6.3 Associating Locks with Buffers
8.6.4 Cache Invalidation
8.6.5 Directory Index Cache
8.6.6 RMS Directory Pathname Cache
8.6. 7 User Invalidation of Cached Buffers

File System Operation in a VAXcluster Environment 339

8.1 Introduction
Originally, a single-user system (batch with orthogonal file access) had no write
sharing problems. A solution for a single system with multiple users (that
is, a timesharing system) was to allow only exclusive access for reading or
writing. Eventually, users wanted time sharing with file sharing, and so their
needs outgrew the standard multiple file access methodologies and various data
organizations. Most of these techniques involved exclusive write access to a file
but shared read access.

VAXcluster systems introduced new dimensions to these problems because
multiple processes (on the same or different nodes) needed shared write and
read access within the cluster. There were two major problems in a VAXcluster
environment:

• Interprocess communication on the same node

• Interprocess communication among VAXcluster members

When the problem of distinguishing between processes for synchronization in the
cluster was solved, the same synchronization problem per node was also solved.
Both of these problems were solved by putting the XQP in process space and by
extensive use of the distributed lock manager.

8.2 Mounting a Disk Clusterwide
Figure .8-1 shows how some of the VAXcluster components operate to mount a
disk clusterwide.

340 File System Operation in a VAXcluster Environment

Figure 8-1: Mounting a Disk Clusterwide

Cl Node NSW Cl Node VIC

Process SYDNEY Process MELBOURNE

DJ $MOUNT/CLUSTER OPAL

CLUSTER_SERVER CLUSTER_SERVER

NI Node SA OPAL

CLUSTER_SERVER

Process ADELAIDE

ZK-9723-HC

The file system performs the following steps when mounting a disk clusterwide:

1. OPAL is a disk on node NSW. Process SYDNEY on node NSW issues the
command MOUNT/CLUSTER OPAL. This request is queued through SOS
communication channels to all other nodes in the VAXcluster.

2. The cluster server process on nodes S_AUST and VIC respond by mounting
volume OPAL on their nodes. The cluster server process on node NSW is not
notified because the request came from that node.

File System Operation in a VAXcluster Environment 341

8.3 Locking in a VAXcluster
In a VAXcluster, locks are used to control access. There are essentially two
kinds of locks: system-owned and process-owned. A process-owned lock has the
property that it is dequeued when the process vanishes. A system-owned lock,
on the other hand, is not directly associated with any process. As a result, no
process-specific functions can be communicated by means of the lock. Blocking
ASTs are not delivered to a process; rather, they execute as interrupt-level JSB
routines in kernel mode.

System-owned locks are an unsupported interface and Digital recommends that
they never be used in any application or system environment. They are defined,
designed, and maintained strictly for the internal use of VMS.

There are six system-owned locks, and the following five locks are covered in this
chapter:

• Volume allocation lock

• Arbitration lock

• Blocking lock

• Cache flush lock

• Quota cache lock

The serialization lock is covered in Chapter 7.

Each of the special locks has a separate purpose. Generally, they must be
acquired and released in hierarchical order. In addition, some are related in
function. For example, the volume allocation lock and the quota cache lock are
both affected when a file is extended. However, affecting what is protected by the
quota cache lock does not necessarily mean that the volume allocation lock will be
affected, and vice versa (quotas are not always enabled).

The various access and sharing combinations map into the distributed lock
manager lock modes as follows:

Lock Mode Meaning File System Interpretation

LCK$K:_EXMODE Exclusive access Read/write, disallow read/write

LCK$K:_PWMODE Protected write Read/write, disallow write

LCK$K_PRMODE Protected read Read, disallow write

LCK$K_CWMODE Concurrent write Read/write, allow read/write

LCK$K_CRMODE Concurrent read Read, allow read/write

LCK$K_NLMODE Null access Ignore all

342 File System Operation in a VAXcluster Environment

8.3.1 Volume Allocation Lock

The volume allocation lock is the top-level lock of the hierarchy, and it controls
access to a volume. Top-level locks are mastered by the first node to acquire
them, which contributes to locality of lock use. Like a number of the other locks,
it serves several different purposes:

• Acts as the parent lock for most of the other locks on the volume.

• Indicates that a volume is mounted. For example, the Mount Utility uses the
presence of the volume lock to prevent duplicate volumes from being mounted
in a VAXcluster system.

• Passes context back and forth between VAXcluster nodes.

• Synchronizes operations that need to be synchronized on a volumewide basis.
For example, the allocation of free space and file IDs is synchronized under
the volume lock.

In addition, the volume lock controls pointers to manage allocation. It serves,
in effect, as a rotating pointer in the storage bitmap that the file system uses
to find free space in the storage bitmap more quickly than could be done with
1/0 to and from the disk.

The volume allocation.lock has the following form:

F11B$v<volume ID>

Figure 8-2 shows the in-memory representation of the allocation lock.

Figure 8-2: Format of a Volume Allocation Lock

B l 1 1 F

v $

Volume Lock Name

ZK-9630-HC

File System Operation in a VAXcluster Environment 343

The volume lock name is normally derived from the volume name of a volume
that has been mounted systemwide. However, when a volume has been mounted
with the /NOSHARE qualifier (which means that the volume cannot be mounted
on oth~r nodes in the cluster), the UCB address is used to ensure that the
lock name does not conflict with another volume name. The UCB address also
guarantees that the name is unique.

8.3.2 Arbitration Lock
The arbitration lock or access lock is the system-owned lock used to manage
file access. It relates to a file in the same way the volume allocation lock relates
to a volume. The access lock is a root lock, and it has the following form:

FllB$a<volume ID><f ile number>

Figure 8-3 shows the in-memory representation of the arbitration lock.

Figure 8-3: Format of an Arbitration Lock

B I 1 1 F

a $

Volume Lock Name

File ID

ZK-9631-HC

The volume lock name is present because the arbitration lock is a top-level lock,
not a sublock. The volume lock name or <Volume ID> follows the rules for F11B$v
locks, and the file number is the 3-byte file number (a 2-byte file number and a
1-byte file number extension).

The arbitration lock is mastered by the first node to acquire it, which contributes
to locality of lock use. In general, for a file that is opened and not shared
across the cluster, the arbitration lock is held and mastered only on the node on
which the file is opened. This logic results in savings both in space and in lock
processing overhead. The value block of the arbitration lock is used to manage
file truncation, and it is held in the mode in which the file was accessed.

344 File System Operation in a VAXcluster Environment

The arbitration lock serves an alternate purpose. While a file is accessed, a
blocking AST is enabled on the arbitration lock. This blocking AST is used to
invalidate stale file control blocks clusterwide.

This technique may be used if, for example, a file is opened for shared write
· across the cluster and a process on one of the nodes extends the file, modifies the
access control list, or otherwise changes one of the file attributes. File attributes
are contained in the file control block, which, in effect, acts as a cache for the file
header. The FCB is updated on the node on which the change is made, but it is
not updated on the other nodes. These file control blocks then become stale on
the other nodes, and must be updated from disk.

The file system corrects this situation by taking the following actions:

• The file system raises the arbitration lock to an incompatible lock mode.

• This enqueue operation causes the blocking AST to fire on the other nodes.
Immediately after this request is enqueued, it is dequeued; the only purpose
of the enqueuing operation is to cause the AST to fire.

• The blocking AST marks the file control block as stale.

• The file system will rebuild the FCB the next time it is referenced.

For more information on access arbitration, see Section 8.4.

8.3.3 Cache Flush Lock
The cache flush lock is used to force the following caches (under different
circumstances) to write their contents back to disk:

• The file ID cache

• The extent (bitmap) cache

• The quota cache

The cache :flush lock has the following form:

FllB$c<file ID><relative volume number>

Figure 8-4 shows the in-memory representation of the cache :flush lock.

File System Operation in a VAXcluster Environment 345

Figure 8-4: Format of a Cache Flush Lock

l B l 1 1 F

File ID c $

RVN

ZK-9632-HC

The lock name is constructed from the F11B$c prefix, followed by a 3-byte file
number and a 1-byte relative volume number. The FID that is used depends on
the cache. Table 8-1 shows the three special caches, the FID used, and the :file
from which the FID was taken.

Table 8-1: Determining the FID in the Cache Flush Lock Name

Special Cache

FID cache

Extent cache

Quota cache

File
Number

1

2

NIA

Source

FID of the index file

FID of the storage bitmap file

FID of the quota file

The cache flush lock is subordinate to the volume allocation lock. The :file
system uses the cache flush lock to interlock user :file access to the three special
system caches. Blocking ASTs are used to cause these caches to be flushed. The
cache flush lock is normally held in a compatible mode (protected read). When
everything is consistent within the cache, holding the lock in this mode allows the
system to build cache entries. When an event occurs that requires the cache to be
flushed, the lock mode is raised to concurrent write, which :fires the blocking AST
on the other nodes that eventually causes the caches to be flushed.

Specifically, the following actions are performed:

• The :file system queues the AST control block (in the extent cache, the quota
cache, and the :file ID cache) to the process called the cache server (see
Section 8.5.4). The AST parameter identifies the current volume and which
cache needs to be flushed.

• In process context, the cache server process executes the appropriate control
functions that cause the cache to be emptied.

346 File System Operation in a VAXcluster Environment

• The file system releases the cache lock after the cache is flushed.

• The process that originally raised the cache lock proceeds.

For example, if a process opens the quota file for write, all the entries in the
quota cache will be invalid. So when the quota file is opened for write, the cache
lock is obtained, and the cache is flushed. The cache lock is also held as part of
the opened file, which prevents the other nodes from taking out the lock again.
This, in turn, prevents them from building cache entries, which they will not be
allowed to do until the file is closed. Similar interlocking occurs for the FID cache
and extent cache when the index file or storage bitmap file, respectively, is opened
for write.

The extent cache also has to be flushed, generally when a process demands
additional resources. For example, a user may request additional free space while
extending a file. If all the remaining free space in the storage bitmap has been
assigned to the local extent cache, and if there is still not enough space available
to fill the user's request, the cache flush lock is raised as a signal to flush the
caches on the other nodes of the cluster. As a result, the other caches are flushed,
and the bitmap is then searched to see if the remaining space is adequate for the
request.

Similarly, the file ID cache is flushed when no free file IDs are available on the
system:· For example, a user may want to create or extend a file. If all the valid
file IDs in the cache have been used, the cache flush lock is raised to signal
the other cluster members to flush their caches. After all the caches have been
flushed, the index bitmap is scanned to find the free file IDs.

8.3.4 Quota Cache Lock

The quota cache lock is a top-level lock that controls access to quota cache
entries. There is one quota cache lock for each quota cache entry (that is, for each
quota cache record). It has the following form:

F11B$q<volume ID><UIC>

Figure 8-5 shows the in-memory representation of the quota cache lock.

File System Operation in a VAXcluster Environment 347

Figure 8-5: Format of a Quota Cache Lock

B I 1 1 F

q $

Volume Lock Name

UIC

ZK-9633-HC

The lock name is derived from the F11B$q prefix followed by the volume name
and the UIC that is the individual name of the quota cache entry.

Each individual entry in the quota cache points to a quota cache lock. This lock
is a top-level lock to promote locality of use because there are individual users on
individual nodes in the cluster who are working with their individual disk quotas.

The value block contains the entire dynamic portion of the quota record; that is,
the value block contains the authorized quota, which consists of the curent usage
and other subsidiary pieces of information (such as the quota record number).

As with the other system-owned locks, a blocking AST is used on the quota cache
lock in the following way:

• While a quota cache entry is validated on a particular CPU, the cache
lock is held in protected write mode. That is, while the lock is held in an
incompatible mode, the cache entry is marked valid. In this state, the current
value of the quota can be maintained with no other copies. It has not been
written to the quota file or anywhere else.

• When another node in the cluster wants to use that quota cache entry, it will
enqueue for that lock in protected write mode.

• The blocking AST is fired on the node that is currently holding it. As a result,
the following actions happen:

The lock is dequeued.

- The value block is released.

- The other node acquires the lock and the current cache contents.

In effect, the contents of cached entries are traded around the cluster by the lock
manager.

348 File System Operation in a VAXcluster Environment

8.3.5 Blocking Lock

The blocking lock is the only lock that serves only one purpose; it is used to
interlock all file activity on a volume when, for example, a rebuild operation is
necessary.

The blocking lock has the following form:

FllB$b<volume ID>

Figure 8-6 shows the in-memory representation of the blocking lock.

Figure 8-6: Format of a Blocking Lock

B J 1 1 F

b $

Volume Lock Name

ZK-9634-HC

The lock name is derived from the F11B$b prefix followed by a 12-byte unique
volume or volume set identifier.

The blocking lock is normally held in a compatible mode, which signals that
normal file activity can proceed. Figure 8-7 shows the first stage in the life cycle
of the blocking lock.

File System Operation in a VAXcluster Environment 349

Figure 8-7: First Stage In the Life Cycle of the Blocking Lock

F 11 B$bUSERDISKNAME

CR
System-Owned

Lock

CR

}

One lock for each
CR node of the V AXcluster

System-Owned that has the volume

L~L:'.:o'.:ck:__J----J------' mounted

CR

When a process wants to lock the volume, the following actions occur:

• The blocking lock is raised to an incompatible mode.

• As a result, blocking ASTs are fired to the other nodes in the cluster.

• If the file system is not active, these steps are taken:

- The lock is dequeued.

- The VCB is marked as blocked.

Figure 8-8 shows the second stage.

ZK-9636-HC

350 File System Operation in a VAXcluster Environment

Figure 8-8: Second Stage in the Life Cycle of the Blocking Lock

F 11 B$bUSERDISKNAME

z
EX

Process
Lock

The following actions then occur:

ZK-9637-HC

• Subsequent :file operations will try to re-enable the blocking lock by queuing
for the lock in protected write mode.

• If the :file system is active and the blocking lock is currently held, :file
operations will stall until the blocking lock is released.

Figure 8-9 shows the third stage in the life cycle of the blocking lock.

File System Operation in a VAXcluster Environment 351

Figure 8-9: Third Stage in the Life Cycle of the Blocking Lock

F 11B$bUSERDISKNAME

EX
Process

lock

PW
}

One PW lock for each node
PW f.rom which an .XQP transaction

Process accessed the volume while
L_:l:oc::k~J---r--........ activity was stalled

ZK-9638-HC

When the blocking lock is released, the first process waiting for protected write
gets the lock. It converts the lock back to a system-owned concurrent read lock
and writes its lock ID in VCB$L_BLOCKID (or RVT$L_BLOCKID for a volume
set). The remaining processes waiting for protected write mode execute in tum.
Each one discovers that the blocking lock has already been rearmed by noting the
nonzero value in VCB$L_BLOCKID (or RVT$L_BLOCKID), and so each simply
dequeues its copy of the lock. ·

The volume and the volume allocation lock then return to their initial state.
Figure 8-10 shows this fourth stage.

352 File System Operation in a VAXcluster Environment

Figure 8-1 O: Fourth Stage in the Life Cycle of the Blocking Lock

F 11 B$bUSERDISKNAME

CR
System-Owned

Lock

CR CR
node of the VAX cluster
that has the volume

CR
System-Owned

Lock
J

One lock for each

1-------' mounted
l----~~~__t~~~~

ZK-9639-HC

8.4 Access Arbitration
The arbitration, or access, lock serves two purposes:

• To control file access by being held and mastered only on the node on which a
file is opened

• To invalidate a stale file control block by means of a blocking AST

• To manage delayed file truncation

The routine ARBITRATE_ACCESS is called to arbitrate a new file access against
existing accesses to a file. This routine first arbitrates the desired access against
any pre-existing accesses on that node. Then it computes the correct mode for
the access lock and attempts to take out the lock. (This information is contained
in the FCB; the current access lock mode is stored in the FCB$B_ACCLKMODE
field, and the lock ID in the FCB$L_ACCLKID field.)

ARBITRATE_ACCESS is normally called when controlled access to a file is
required. For example, it is called under the following circumstances:

• To start up quota operations

• To determine if no write access to a directory has been requested in an explicit
user open of a directory

In this case, ARBITRATE_ACCESS is called to see if write access has been
granted, but the access lock is returned to its original mode (implying a null
lock for the requesting process).

File System Operation in a VAXcluster Environment 353

• To open a file (except for explicit interlock ignore)

• To extend or truncate a file

These functions are allowed to lower the access lock because they also hold
the serial lock on the file, thus preventing any new accessors from interfering
with the intended operation. The combination of the FCB reference counts
and the LOCK_COUNT of the access lock indicates the other accessors of the
file. Certain operations do not allow other users even though they are allowed
by the normal access rules.

The most obvious of these operations is truncation. A file cannot be truncated
until it has no accessors other than the current process to ensure that an 1/0
is not in progress.

• To change the security classification of a file

ARBITRATE_ACCESS first does local arbitration by checking the desired file
access against other accessors on the same node. (For example, a write access
is checked against locks against writers, and so on.) If the system is not in
a VAXcluster or if the volume is not cluster-accessible, only the local check is
needed, and no access lock is taken.

However, if the volume is cluster-accessible, the access lock is needed to arbitrate
the access against other accessors elsewhere in the cluster. If this is the first
access to the file on this node, the routine NEW _ACCESS_LOCK is called to
take out a new access lock. Otherwise, CONV _ACCLOCK is called to convert the
existing access lock to its new value.

When the file is deaccessed, CONV _ACCLOCK lowers the lock back to the
supplied (previous) value. If the FCB reference count is zero, the access lock is
dequeued because no other users on this node need it. It is called by the following
routines:

• The MAKE_DEACCESS routine in CLENUP converts the lock when a
process deaccesses the file. Using the updated reference counts in the FCB
(FCB$W _ WCNT and FCB$W _LCNT), new access control information is
determined, which is then used to determine a new lock mode and lock value.
If this lock value is lower than the current lock mode (or the node's FCB
reference count drops to zero), CONV _ACCLOCK is called to convert the lock.

• DEACC_QFILE (in QUOTAUTIL) performs a similar computation when
deaccessing the (nodewide) quota file.

• NUKE_HEAD_FCB, called by CLEANUP, MARK_DELETE, CLOSE_FILE,
and UNHOOK_BFRD (when the directory index buffer block of a directory
FCB is deleted) also requests a lock conversion to null mode to write out the
value block. CONV _ACCLOCK also dequeues the lock if the reference count
for the FCB is zero.

354 File System Operation in a VAXcluster Environment

Figure 8-11 shows the value block of the access lock.

Figure 8-11: Arbitration Lock Value Block

A V_DELA YTRNC

AV_TRUNCVBN

reserved

reserved

ZK-9640-HC

8.4.1 Delayed Truncation

When a process accesses a file for writing, truncation is implicitly disallowed. The
problem is that truncation depends on the ability to invalidate windows tWCBs) ·
for all accessors. This is especially difficult because it would mean that the 1/0
that was in driver queues when the truncation was performed must be revoked.

The result is that truncation is only allowed by a single writer accessing the file.
If other users have accessed the file for reading when the truncation is requested,
the actual truncation is delayed or deferred until the last reader has deaccessed
the file. This practice is very similar to the way in which a file is marked for
deletion but is not really deleted until it is completely deaccessed.

The access lock is the mechanism used to determine when the last accessor has
deaccessed the file. If a $GETLKI function returns a value of 1 for a count of
locks on an access lock, this means that no user on any other node in the cluster
has the file accessed. The routine LOCK_COUNT performs this function. In
addition, the lock access count must be checked for other local accessors.

When a truncation is deferred, a flag is set in the value block of the access lock,
along with the VBN to which the truncation was requested. The lock value block
is how the information is passed to another node when the truncation occurs on
one node but the last deaccessor is on another. Because this information is also
recorded in the FCB, it is also necessary to mark the FCBs stale clusterwide.

If another writer accesses the file after the writer requesting the truncation has
deaccessed the file, the delayed truncation operation is canceled. This is done by:

• Forcing the access lock to at least protected write mode

File System Operation in a VAXcluster Environment 355

• Clearing the delayed truncation flags in the FCB (which implies the lock
value block also)

• Converting the lock to that same mode (which will cause the value block to be
written)

The first conversion to protected write mode is always possible immediately.
However, if the delayed truncation flag is set, two conditions are indicated:

• A user requested truncation while the file was accessed in protected write
mode (that is, no other writers were allowed). But because the file was
successfully locked for writing, that other exclusive writer must have ·
deaccessed the file.

• Some readers are still present (who must have allowed writers for the process
to have succeeded in getting write access).

Thus, the highest mode requested in the cluster must be concurrent read mode,
which allows the process to convert the lock to protected write mode.

When a file is deaccessed, the following actions are taken:

• Any requests for truncation are checked. If the process deaccessing the file
is the only accessor, this check is made directly. Otherwise, the truncation
validity checks are made and the values stored in the value block.

• The lock is upgraded to at least protected write mode. When the deaccess is
actually finished, the subsequent lowering of the mode forces the value block
to be written out.

• The following checks are made:

To see if the process had accessed the file for reading

To see if the process was the last one to deaccess the file

If so, and delayed truncation was requested, the truncation is performed.

When a file is modified, a truncation request is allowed only if the process is the
only accessor because MODIFY truncates the file at the time of the request. If
the process has the file accessed, the following two checks can be made:

• The reference count in the FCB

• The lock count for the access lock

If the process does not have the file accessed, the access lock must be obtained (by
ARBITRATE_ACCESS) specifying no readers. A check is then made to see if the
process is the only accessor. CONV _ACCLOCK restores the original lock mode.

356 File System Operation in a VAXcluster Environment

8.5 System Blocking Routines
There must be a reliable method for communicating within a cluster. Some
resources are shared within a node, others with or by the cluster. For example,
free space on the disk is shared by all cluster members because it is a clusterwide
resource, as opposed to compute cycles, which is a per-node resource. These
clusterwide resources must be coordinated.

System blocking routines are the mechanism by which the members of a
VAXcluster system communicate certain clusterwide file system demands. For
example, these demands may be requests for the members to release a quota lock
for a volume or for the members to return all their free blocks from cache to the
storage bitmap because one member cannot allocate enough free space.

System blocking routines are specific AST routines to handle the blocking ASTs
from various system-owned locks. The system blocking ASTs are called in
interrupt context. However, in response to some of these ASTs, locks must be
dequeued or lowered. Calling the $DEQ or $ENQ service to do this requires
execution in process context. For this purpose, the AST "borrows" the swapper
process by queuing a kernel-mode AST to it. The system-owned lock is armed by
the XQP before the first file system request is performed for a given volume as
part of mounting the volume.

There are four system blocking routines:

XQP$BLOCK....ROUTINE

XQP$REL_QUOTA

XQP$FCBSTALE

XQP$UNLOCK_CACHE

Blocks all activity on a particular volume. This routine
receives the AST from the blocking lock, releases the lock,
and marks the VCB as blocked. See Section 8.5.1 for more
information.

Releases the lock on the individual quota caches. See Section
8.5.2 for more information.
Invalidates the FCB when a file has been modified. This
routine receives the blocking AST from the access lock and
then sets the stale bit in the FCB. See Section 8.5.3 for more
information.

Releases the contents of a cache. This routine receives the
blocking AST for the cache :flush lock and wakes up the file
system's cache server process. See Section 8.5.4 for more
information.

The system blocking routines are located in the SYS module SYSACPFDT. They
are not FDT routines, but they need to reside in the nonpaged executive.

File System Operation in a VAXcluster Environment 357

8.5.1 Volume Activity Blocking

The file system must be able to stall clusterwide requests to allow the storage and
index bitmaps and the quota cache to be rebuilt while a volume is active and in
use. Any changes that potentially modify these structures must be blocked.

Part of the blocking lock mechanism used to stall activity on a volume is the
XQP$BLOCK_ROUTINE, which is a system blocking routine on the blocking
lock (or activity blocking lock). The blocking lock is a system-owned lock held in
concurrent read mode. It is armed by the XQP before the first file system request
is performed for a given volume as part of mounting the volume.

One important time when it is necessary to stall activity on a volume is when
a bitmap or the quota file is being rebuilt. This operation is a function of the
REBUILD module in the MOUNT facility, and it occurs under the following
conditions:

• When mounting a disk (MOUNT)

• When recovering cache contents for a volume that was improperly dismounted
(SET VOLUME/REBUILD)

• When setting disk quotas for users and monitoring disk usage (System
Management Utility (SYSMAN)l)

Repairing errors in the file structure of a volume (with ANALYZE/DISK_STRUCTURE
/REPAIR) is a similar function. Both the REBUILD module and ANALYZE
/DISK_STRUCTURE/REPAIR use the ACP control lock volume function to
prevent file creation, deletion, extension, and truncation activity while the volume
is being rebuilt. In this way, the volume is prevented from being modified while
the rebuild operation is in progress.

ANALYZE/DISK_STRUCTURE/NOREPAIR is the default. This command does
not take out the volume lock, so false inconsistencies can be reported both because
caches are not flushed and because the volume may change during the operation.

The file system controls when processing may be performed on a volume with two
fields in the VCB (or the RVT for a volume set):

• The activity count field, VCB$W _ACTIVITY (or RVT$W _ACTIVITY),
determines whether processing may be performed on the volume.

• The volume blocking lock field, VCB$L_BLOCKID (or RVT$L_BLOCKID),
stores the lock ID of the blocking lock.

Either a nonzero value in the VCB$L_BLOCKID field or an odd (low bit set) value
in the VCB$W _ACTIVITY field means that processing status is normal and may
proceed.

1 SYSMAN includes the functions of the Disk Quota Utility (DISKQUOTA), which operated as a
standalone utility in VMS Version 4.6.

358 File System Operation in a VAXcluster Environment

These fields are used in the XQP routine START_REQUEST. This routine is
called from the DISPATCHER routine to check that processing status is normal
before any serialization locks are permitted to be enqueued or before any file
system processing which may affect or be affected by other file system processing
is performed.

If the blocking lock currently exists, START_REQUEST adds 2 to the activity
count (to preserve its odd value and to keep the low bit set) and returns.
DISPATCHER then calls the appropriate routines to process the desired file
system function.

If there is no blocking lock, START_REQUEST calls BLOCK_ WAIT to wait out
the lock (if any) and to take the blocking lock. The XQP$BLOCK_ROUTINE
routine is specified as the blocking routine address, and the VCB address as the
AST parameter, thus arming the blocking lock.

When the request is completed, the FINISH_REQUEST routine is called from
DISPATCHER and decrements the activity count by 2, thus returning it to its
original value.

When the ACP control function LOCK_ VOL is performed, the routine
TAKE_BLOCK_LOCK is called. This routine queues an exclusive mode lock for
the F11B$b lock. This request is incompatible with the system-owned concurrent
readlock, and on every node that holds that lock (normally, all the nodes that
have the volume mounted), the lock manager calls the XQP$BLOCK_ROUTINE
entry point at IPL$_SYNCH with the VCB address in Rl.

The LOCK_ VOL function stalls all activity by using the XQP$BLOCK_ROUTINE.
The routine first checks the VCB or RVT activity count to see if the volume is
active. It then decrements the previously odd activity count, making the value of
the field even.

If the volume is not currently active, the following actions occur:

• If, as a result, the count becomes zero, the volume becomes idle, and further
activity on the volume is blocked.

• After the VCB$L_BLOCKID field is cleared, a kernel-mode AST is queued to
execute in the context of the swapper with the following information:

- An AST parameter of the lock ID of the F11B$b lock

- An AST entry point of the XQP$DEQBLOCKER routine

The XQP$DEQBLOCKER routine causes the system-owned concurrent read
mode blocking lock to be dequeued. The ACB that is used is contained in the
VCB or the RVT. The ACB is part of the per-volume file system database in
nonpaged pool, and it was set up by the file system when the lock with this
blocking routine was armed.

File System Operation in a VAXcluster Environment 359

However, if the volume is active (that is, if XQP$BLOCK_ROUTINE did not
decrement the value in the VCB$W _ACTIVITY field to zero), the following actions
occur:

• XQP$BLOCK_ROUTINE returns.

• The clear low bit of the activity count indicates that all further file system
requests for the volume are blocked. Once the activity field is even (low bit
clear), subsequent callers to START_REQUEST may not add to it. Instead,
they must call the BLOCK_ WAIT routine. This routine queues for the F11B$b
lock in protected write mode, which will not be granted until the process that
queued for it in exclusive mode dequeues that lock by doing an ACP control
UNLK_ VOL function.

• Further activity on the volume is stalled after the last request is completed
(that is, when the process that called FINISH_REQUEST finally decrements
the activity count to zero and dequeues the lock).

After all nodes of the VAXcluster have released their locks, and the volume is
idle, the following steps are taken:

• TAKE_BLOCK_LOCK obtains the requested exclusive mode lock, and
proceeds.

• The START_REQUEST and FINISH_REQUEST routines make their tests
and changes at IPL$_SYNCH to interlock with the blocking routine correctly.

• When the exclusive mode F11B$b lock is dequeued, the first waiting process
to get the protected write lock:

- Converts that lock to the concurrent read mode system-owned lock

- Sets the low bit of the ACTIVITY count, thus allowing events to proceed

In fact, the F11B$b lock is initially armed in this fashion by the first function
that calls START_REQUEST after the volume is mounted. Other users on
the same node waiting for the lock find the blocking lock ID to be nonzero, so
they must dequeue their (redundant) version of the lock.

Figure 8-12 shows how the XQP$BLOCK_ROUTINE system blocking routine is
used in a VAXcluster.

360 File System Operation in a VAXcluster Environment

Figure 8-12: XQP$BLOCK_ROUTINE Blocking Routine

Cl Node BAHT

~ Steady State [I)

Process THAILAND

$ANAL YZE/DISK_STRUCTURE
_$/REPAIR RUBY

ACPCNTRL LOCK_ VOL

RUBY

--------(_:1
: ------ I

I
l _________ ~J

RUBY

Cl Node RUPEE

~ Steady State 0
Process INDIA

0
ACPCNTRL UNLK_ VOL

XQP$BLOCK-ROUTINE

XQP$BLOCK_RQUTINE

SWAPPER

XOP$DEQBLOCKER

NI Node KYAT

~ Steady State [I)

XOP$BLOCK_RQUTINE

SWAPPER

XOP$DEOBLOCKER

Process BURMA

lock Header

Granted Queue

Conversion Queue

Waiting Queue

r:------_-~
I ------ I

- ------
RUBY

I
I

j

SWAPPER

XOP$DEOBLOCKER

ZK-9724-HC

The file system performs the following steps when handling clusterwide volume
locking with the XQP$BLOCK_ROUTINE system blocking routine:

1. All nodes hold the volume allocation lock in concurrent read mode; this is the
steady state mode.

2. Process THAILAND on node BAHT issues the command ANALYZE
/DISK_STRUCTURE/REPAIR RUBY. The file system ACP control function
LOCK_ VOL is called to lock volume RUBY. LOCK_ VOL raises the lock mode
of the blocking lock to exclusive.

File System Operation in a VAXcluster Environment 361

3. Because exclusive mode is incompatible with concurrent read, the swapper
processes on nodes RUPEE and KYAT are delivered the blocking AST
XQP$BLOCK_ROUTINE. This releases the concurrent read mode lock and
immediately requeues the same lock with a BLKAST of XQP$BLOCK_ROUTINE.
Process THAILAND on node BAHT is now granted a protected write mode
lock on volume RUBY. This lock state transition is shown in Figure 8-13
through Figure 8-18.

4. THAILAND finishes the task and issues the ACP control function
UNLK_VOL.

5. The blocking lock mode is demoted to concurrent read with the blocking AST.
Process BURMA enqueues for the lock in protected write mode, and demotes
to concurrent read mode when the lock is granted.

6. All nodes hold the blocking lock in concurrent read mode.

In addition, BLOCK_WAIT also returns the buffer credits it acquired while
waiting for the blocking lock to be granted. This action is to avoid a deadlock
caused by the cache server's not being able to flush caches due to lack of available
buffers.

The process holding the exclusive FUB$b lock (via the LOCK_ VOL function)
and cache flush operations are allowed to proceed because both are necessary
for the rebuild operation to work. The process holding the blocking lock is
allowed to proceed because it has a nonzero value for BLOCK_LOCKID (one
of the nonimpure XQP variables). However, any other :file system activity (such
as file creation, and so on) is prevented by the VCB$V _NOALLOC flag.

Figure 8-13 shows the initial lock state (the "steady state") of the resource block
associated with volume RUBY during the ACP control lock volume function
shown in Figure 8-12. All nodes hold the volume allocation lock in concurrent
read mode.

362 File System Operation in a VAXcluster Environment

Figure 8-13: Initial Lock State in a LOCK_VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

BAHT
RUPEE
KYAT

CR
CR
CR

ZK-9714-HC

Figure8-14 shows the lock state transition that happens when BART enqueues
to convert its lock mode to exclusive because it requested a LOCK_ VOL function.
As a result, blocking ASTs are fired on the nodes RUPEE and KYAT. Because
their modes (CR) are incompatible with EX, they are forced to drop the lock.

File System Operation in a VAXcluster Environment 363

Figure 8-14: First Lock State Transition in a LOCK_ VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

lock Header

RUPEE CR
KYAT CR

BAHT EX

ZK-9715-HC

364 File System Operation in a VAXcluster Environment

Figure 8-15 shows the lock state transition that happens when BAHT is granted
an exclusive mode lock.

Figure 8-15: Second Lock State Transition in a LOCK_ VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

BAUT
RUPEE

KYAT

CR
PW

PW

ZK-9716-HC

Nodes RUPEE and KYAT have no locks on the blocking lock until the next file
system operation is attempted. Figure 8-16 shows the lock state transition that
happens when, as a result of a file system operation, nodes RUPEE and KYAT
re-establish the blocking lock. This action is started by enqueuing in protected
write mode and then lowering to concurrent read (shown in Figure 8-18).

File System Operation in a VAXcluster Environment 365

Figure 8-16: Third Lock State Transition In a LOCK_ VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

BAHT EX

ZK-9717-HC

Figure 8-17 shows the lock state transition that happens after nodes RUPEE
and KYAT have enqueued in protected write mode when BAHT unlocks the
volume. BAHT's exclusive mode lock is demoted to concurrent read, and RUPEE
is granted the blocking lock in protected write mode lock. KYAT remains in the
waiting queue.

366 File System Operation in a VAXcluster Environment

Figure S-17: Fourth Lock State Transition In a LOCK_ VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

BAHT

RUPEE
KYAT

EX

PW
PW

ZK-9718-HC

File System Operation in a VAXcluster Environment 367

Figure 8-18 shows the lock state transition that happens as node KYAT is still
trying ¥> re-establish the blocking lock. RUPEE is demoted to concurrent read,
and KYAT is finally granted the blocking lock in protected write mode.

Figure 8-18: Fifth Lock State Transition in a LOCK_ VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

BAHT CR
RUPEE CR
KYAT CR

ZK-9719-HC

368 File System Operation in a VAXcluster Environment

Figure 8-19 shows the final lock state (the "steady state") after KYAT has lowered
its lock to concurrent read mode.

Figure 8-19: Final Lock State In a LOCK_VOL Function

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

GIDAY
MATE

Lock Header

cw
cw

ZK-9720-HC

The following functions also require the blocking lock:

• Modifying the quota usage of a process (QUOTAUTIL)

• Adding quota (the blocking lock is obtained in ACPCONTROL)

• Locking and unlocking ACP control functions (BLOCK_LOCKID is checked)

A disadvantage to this approach, though, is that only one volume can be
locked at a time, per-process. Also, failure of the process to unlock the volume
prevents the volume from ever being unlocked.

The following functions do not require the blocking lock:

• Invoking a file system function (DISPATCHER)

• ACP control functions (with the exception of ADD_QUOTA)

File System Operation in a VAXcluster Environment 369

8.5.2 Dynamic Quota Cache Entry Lock Passing

Each quota record or entry in the quota cache has its own quota lock. When
another node in the cluster wants to obtain the quota lock to modify a quota
cache entry, the routine XQP$UNLOCK_QUOTA is called.

All the relevant information of the quota entry is packed into the value block of
the lock, so it can be shared clusterwide.1

Figure 8-20 shows which fields of a quota cache entry make up the value block.

Figure 8-20: Quota Cache Entry Value Block

LRU Index I Cache Index

Lock ID

Flags I Record Number

Usage

Permanent Quota

Overdraft

UIC

Value
Block

ZK-9643-HC

1 If the value block is returned as invalid from the lock manager, the quota cache entry is likewise
marked as invalid.

370 File System Operation in a VAXcluster Environment

The quota lock is held in protected write mode. It is taken out when an entry is
first cached. Figure 8-21 shows this first stage in the life cycle of the quota cache
lock.

Figure 8-21: First Stage In the Quota Cache Lock Life Cycle

group member
number number ,_,.,__ ,_,.,__

F118$qUSERDISKNAME <0040 OOOC>

L
PW

Process
Lock

Node NEPAL

ZK-9644-HC

The lock is immediately converted to a system-owned protected write mode lock.
It specifies the XQP$REL_QUOTA routine as the AST blocking routine. When
a new entry is added to the quota cache (by SCAN_QUO_CACHE), the quota
lock is obtained. When an entry is removed from the cache, either by explicit
flush (in FLUSH_QUO_CACHE) or by LRU replacement, the lock is dequeued.
Figure 8-22 shows the second stage.

File System Operation in a VAXcluster Environment 371

Figure 8-22: Second Stage in the Quota Cache Lock Life Cycle

Value Block

F11B$qUSERDISKNAME <0040 OOOC> Valid

z Node NEPAL

PW Quota Cache Entry

System-Owned
Lock

Node NEPAL
/

Copy of
the
value

Valid

block

' UIC 0040 oooc

Lock
Status
Block

ZK-9645-HC

When another node queues for the F11B$q lock, the blocking routine XQP$REL_QUOTA
is triggered, and an AST is sent to the swapper (in routine XQP$UNLOCK_QUOTA).
If the quota entry is valid, the cache lock is demoted to concurrent read mode,
which is compatible with the protected write mode that the other node has
requested. This lock conversion updates the value block, which the other node
picks up when it succeeds in getting its protected write mode lock. If the quota
entry is not valid, the lock is dequeued entirely, and the entry marked vacant.
Figure S-23 shows the third stage.

372 File System Operation in a VAXcluster Environment

Figure 8-23: Third Stage in the Quota Cache Lock Life Cycle

F118$qUSERDISKNAME <0040 OOOC>

z
CR

System- Owned
Lock

Node NEPAL

Node NEPAL
Quota Cache Entry

~
PW

Process
Lock

Node ITALY

Invalid

Value Block

Valid

ZK-9646-HC

When a quota entry is removed from the quota file itself, the quota lock is
requested in exclusive mode. This request forces any node that holds a quota
lock on the quota entry to perform a cache flush of the entry. Figure 8-24 shows
the fourth stage.

File System Operation in a VAXcluster Environment 373

Figure 8-24: Fourth Stage In the Quota Cache Lock Life Cycle

F11B$qUSERDISKNAME <0040 OOOC>

s:
EX

Process
Lock

Node HNGKNG

ZK-9647-HC

374 File System Operation in a VAXcluster Environment

Figure 8-25 shows how the the· quota cache is shared.

Figure 8-25: Quota Cache Sharing

Node LIRA

Blocking AST
$ENO <UIC>

Lock granted

8.5.3 FCB Invalidation

Node RUPEE

XQP$REL_QUOT A

l AST

XOP$UNLOCK_QUOTA

l
Mark entry invalid

l
$DEO <UIC>

ZK-9648-HC

An FCB is an in-memory summary of a file's metadata, or the data about the file,
rather than the data within the :file. That is, when any action is performed upon
a file, an FCB is :first built from the header. For an accessed file, one FCB exists
for each header in the file, and the FCB remains in nonpaged pool.

FCBs are queued from the VCB and can be found from either a window or from
the file system context area. Most of the FCB is filled in from the :file's header
chain when the file is accessed. Thus, the information in the header and the FCB
must be updated in a synchronized fashion. Since the file can be op~n for write
access on more than one node in a cluster, multiple FCBs may exist for a file
across the cluster. It is therefore critical to coordinate updates to the on-disk and
distributed in-memory data.

Even if a file is accessed on one node, a process on another node may access
the file header to change protection, to add extension headers, or to mark it for
deletion. Because the XQP assumes the presence of an FCB without reading the
header, a mechanism is needed to signal that an accessed file has been updated.
Then the FCB chain can be rebuilt from the header chain only as needed.

File System Operation in a VAXcluster Environment 375

A system blocking routine associated with the access lock is used for this purpose.
The access lock is armed with the following pieces of information:

• The routine XQP$FCBSTALE as the blocking AST

• The primary FCB address as its parameter

When a file header is modified in a way that changes the FCB contents, the XQP
calls the routine MAKE_FCB_STALE. This action triggers the following sequence
of events:

• MAKE_FCB_STALE queues for exclusive mode on the access lock.

• This action triggers the blocking routine.

• The AST routine sets the FCB$V _STALE flag in the FCB$W _STATUS field.

• Meanwhile, MAKE_FCB_STALE cancels the exclusive lock, which is generally
never granted. In the rare case when it is, MAKE_FCB_STALE then calls
CONV_ACC_LOCK to re-establish the original lock.

Figures 8-26, 8-28, and 8-30 comprise a series showing how an FCB is
invalidated in a VAXcluster. After each of these figures, there is another figure
(Figures 8-27, 8-29, and 8-31) showing the resource blocks associated with
events in Figures 8-26, 8-28, and 8-30.

Figure 8-26 shows how a file can be shared for write access between two nodes of
a VAXcluster.

376 File System Operation in a VAXcluster Environment

Figure 8-26: First Stage of FCB lnvalldatlon

GIOAY

r.I Process WOOLOOMOOLOO

l...!...J Access for Write ~
TASSIE.DAT 1---+--CW--

BLKAST

FCB

XQP$FCBST AlE

I
Access Lock

I
File Header

I
I

MATE

lol Process BREWARRINA

~ Access for Write
--cw---+--...! TASSIE.DAT

BLKAST

XQP$FCBSTALE

8
DUBBO

I

ZK-9725-HC

1. Process WOOLOOMOOLOO issues a request to access the file TASSIE.DAT
for write on node GIDAY, which generates an FOB on node GIDAY. As a
result, the following actions occur:

a. The file header is read.

b. The access lock is taken out and held in concurrent write mode with
a BLKAST of XQP$FCBSTALE and an ASTPRM of the address of the
FOB.

2. The same file (TASSIE.DAT) is accessed for write on node MATE, which
generates an FOB on that node. As a result, the following actions occur:

a. The file header is read.

b. The access lock is taken out and held in concurrent write mode with
a BLKAST Qf XQP$FOBSTALE and an ASTPRM of the address of the
FOB.

File System Operation in a VAXcluster Environment 377

Figure 8-27 shows the initial state of the resource block associated with the file
TASSIE.DAT before FCB invalidation. In this case, both nodes GIDAY and MATE
hold the access lock in concurrent write.

Figure 8-27: Initial Lock State During FCB lnvalldatlon

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

GIDAY
MATE

Lock Header

cw
cw

ZK-9722-HC

378 File System Operation in a VAXcluster Environment

Figure 8-28 shows what happens if one node issues a request that would change
the contents of the FCB.

Figure 8-28: Second Stage of FCB Invalidation

GIDAY

Process WOOLOOMOOLOO

0 Extend TASSIE.DAT

FCB

XOP$FCBST ALE

I

Access Lock

I
File Header

I
TASSIE.DAT

I I
I I

~: :
I I
I I
L---,----_J

I
I

DUB BO
I

I
I

MATE

Process BREWARRINA

FCB

XQP$FCBST ALE

ZK-9726-HC

3. On node GIDAY, process WOOLOOMOOLOO issues a request to extend the
:file TASSIE.DAT. This causes the following actions to happen:

a. TASSIE.DAT is extended.

b. The file header for TASSIE.DAT is updated in memory.

c. The primary header is flushed back to disk (the header is generally kept
in memory) so that the other VAXcluster node has the means of updating
the FCB from the reliable data on disk.

File System Operation in a VAXcluster Environment 379

d. The access lock is requested in exclusive mode. Figure 8-29 shows the
resource block after this request is enqueued.

e. The blocking AST (with a BLKAST ofXQP$FCBSTALE and an ASTPRM
of the address of the FCB) is fired.

f. The exclusive mode lock request is then canceled.

g. The FCB is marked stale on node MATE by the blocking routine
XQP$FCBSTALE. XQP$FCBSTALE marks the appropriate bit (FCB$V _STALE)
to indicate that the information in the FCB is no longer valid.

Figure 8-29 shows the lock state transition of the resource block after node
GIDAY requests an exclusive mode lock in order to extend TASSIE.DAT. This is a
new lock, not a conversion, and once requested, it is immediately dequeued.

Figure 8-29: Lock State Transition During FCB Invalidation

Granted
Queue

Conversion
Queue

Waiting
Queue

Resource Block

Lock Header

GIDAY
MATE

GIDAY

cw
cw

EX

ZK-9721-HC

380 File System Operation in a VAXcluster Environment

Figure 8-30 shows what happens when a node in a VAXcluster notices that the
FCB$V _STALE bit is set.

Figure 8-30: Third Stage of FCB Invalidation

GIDAY

Process WOOLOOMOOLOO

FCB

XQP$FCBST ALE

I
File Header

I
I

TASSIE.DAT

T
I

DUBBO

MATE

Process BREWARRINA

0 Read TASSIE.DAT

r.:i
FCB t.=J

XQP$FCBST ALE

ZK-9727-HC

4. Process BREWARRINA on no~e MATE issues a read request. As a result, the
following actions occur:

a. Node MATE sees the FCB$V_STALE bit set.

b. MATE updates its FCB by reading the header chain on disk. For a single
header file, this action involves two or more QIOs: a write on the node
that marks the FCB, and a read function on each node that has an active
interest in the file.

File System Operation in a VAXcluster Environment 381

Figure 8-31 shows the final lock state of the resource block, where both nodes
GIDAY and MATE once again hold the access lock in concurrent write mode.

Figure 8-31 : Final Lock State During FCB Invalidation

Granted
Queue

Resource Block

GIDAY
MATE

Lock Header

cw
cw

Conversion
Queue

Waiting
Queue

ZK-9720-HC

The following functions require that the FCB be marked stale:

• Cleaning up after an operation

This routine monitors the CLF _MAKEFCBSTALE flag, which is set by
any routine that modifies a file header in such a way that would require
rebuilding the FCBs. This flag is set by the following routines:

EXTEND and RWATTR, which modify protected attribute, UIC, class, file
protection, and ACL information

- TRUNCATE (although this function is performed by its callers)

In the case of MODIFY, truncation is allowed only if there are no
other accessors, so MAKE_FCB_STALE is not called. Likewise,
MAKE_FCB_STALE is not called for DEACCESS because a delayed
truncation implies that there are no accessors.

• Extending the quota file

• Extending or compressing a directory file (in SHUFFLE_DIR)

• Marking an FCB for deletion (in MARKDEL_FCB)

382 File System Operation in a VAXcluster Environment

• Deleting a file (in DELETE)

In this routine, the blocking AST is explicitly fired to signal that it has
marked the file to be deleted when there are no other accessors.

• Deaccessing a file (in DEACCESS)

This routine invalidates the local FCB chain if the access lock is held in null
mode (all accessors on the node requested no lock). In this case, the FCBs are
always questionable because blocking ASTs are not delivered to nodes holding
null locks. CREATE_HEADER also invalidates the index file FCB for the
same reason.

• Searching the FCB chain (in SEARCH_FCB)

Like DEACCESS, this routine also invalidates the local FCB chain if the
access lock is held in null mode.

• Accessing a file (ACCESS)

• Finding an entry in the quota file (SEARCH_QUOTA)

This function may also require that the serialization lock be taken out on the
quota file.

• Creating the file to be accessed (CREATE)

• Deaccessing a file (DEACCESS)

• Marking a file for delete (MARK_DELETE)

• Opening the file to be accessed (OPEN_FILE)

• Modifying a file (MODIFY)

• Connecting to and activating the quota file (CONN_QFILE)

When the FCB chain is found to be stale, the REBLD_PRIM_FCB routine is
. called to initialize a new FCB from the real file header and to rearm the blocking
AST by converting the lock to the same mode. The BUILD_EXT_FCBS routine is
then called to build the extension FCBs which might also have changed.

It is possible to open a file ignoring access interlocks by specifying FIB$V _NOLOCK
in the access request. Such a file open is represented by a null mode access
lock. Enqueuing ~ exclusive mode lock against the null lock does not cause the
blocking AST to fire because null and exclusive mode are compatible. Because it
is thus impossible to mark the FCB stale dynamically on such an access, an FCB
opened with the FIB$V _NOLOCK bit is always assumed to be stale.

File System Operation in a VAXcluster Environment 383

8.5.4 Cache Flushing

Some resources in a cluster can be shared but do not have to be cached. Likewise,
some resources can be cached but cannot be shared. An example of a shared
resource that can also be cached is the free space on the disk, which is controlled
by the extent, or bitmap, cache. The presence of the extent cache (as well as the
FID cache) implies that the index file and storage bitmaps do not actually reflect
the true amount of free space available on the disk.

The extent cache is populated the first time that allocation or deallocation occurs
on a volume after it is mounted. The amount of available storage on the disk is
divided among the number of cluster members plus 1, and that amount is allotted
to the extent cache on each cluster member. This technique guarantees that some
space will be available to each VAXcluster member with some left over if the
entire cluster fails.

For a variety of reasons, it may be necessary to flush the extent caches back to
the bitmap. To do this, each node must be notified. This function is done with
system blocking locks and the cache server process. This process is named
CACHE_SERVER. Its process ID is stored in XQP$GL_FILESERVER, and its
AST entry point is stored in XQP$GL_FILESERV _ENTRY. Each member of the
cluster has its own cache server process.

If a cache is too small (if the number of cluster members is large), cache flush
operations may occur frequently, causing performance degradation. In this case,
smaller nodes or satellites may elect not to cache. A cache is volume-specific and
is held under the volume lock. To be effective, a cache should represent at least
1000 blocks.

Flushing the extent cache can be triggered by the following conditions:

• When storage is allocated

• When the BITMAP.SYS file is accessed for write

Flushing the file number, or FID, cache can be triggered by the following
conditions:

• Failing to find a free header (in the CREATE_HEADER routine)

• Accessing INDEXF.SYS for write

Basically, when these caches are in use, they hold the cache flush lock with the
blocking routine XQP$UNLOCK_CACHE and an AST parameter that identifies
the UCB with the cache type encoded in the low bits. The cache type is encoded
as follows:

384 File System Operation in a VAXcluster Environment

Value Cache

1 FID cache
2 Extent cache
3 Quota cache

Normally, each node will take out a protected read mode lock on each cache. If
any node needs specific processing (such as accessing one of the special :files for
write or requesting a cache flush elsewhere), a cache flush operation is requested
as follows:

1. An incompatible lock in concurrent write mode is queued for the appropriate
F11B$c lock (routine CACHE_LOCK).

2. The blocking routine in turn queues an AST for the cache server process with
the appropriate AST parameter.

3. The cache server process, in turn, does a normal XQP call with a special ACP
control function (CACHE_FLUSH) that flushes the correct cache.

Flushing the cache also demotes the cache lock to null mode, indicating that
the cache is no longer active. The process runs the image FILESERVER,
which is a fully mapped program in PO space. When it receives a blocking
AST, the ACP control function is called. The cache flushing function needs a
dedicated process to avoid deadlocks. Other processes may be in the middle
of :file operations themselves, or waiting for resources, or otherwise unable to
execute the cache flush function.

4. The other nodes flush their caches.

5. After all cache locks are converted to null mode, the node which requested the
cache flush operation gets the lock.

Figure 8-32 shows how a cache is flushed.

File System Operation in a VAXcluster Environment 385

Figure 8-32: Flushing a Special Cache

Node PESO

Blocking AST
$ENO <cache lock>

Lock granted

Node BAHT

XQP$UNLOCK_CACHE

! AST

CACHE_SERVER process

!
Empty cache

!
$DEO <cache lock>

ZK-9650-HC

The following conditions cause a system-owned lock in concurrent write mode to
be taken out on a cache:

• When one of the special files (INDEXF, BITMAP, or QUOTA) is accessed for
write. Other nodes must first release their protected read locks, so the process
that requested the concurrent write mode lock performs the WAIT_FOR_AST
and CONTINUE_THREAD routines. In addition, a concurrent write mode
lock is taken out on the quota cache lock if the quota file is found to be write
accessed at the time quotas are enabled.

• When an attempt to allocate a new file ID from the index file bitmap fails.
When a new header is created, a process concurrent write lock is taken out
on the cache lock. No blocking AST is associated with this lock, and it is
dequeued as soon as it is obtained.

• When any attempt to allocate space from the storage bitmap fails. A process
concurrent write mode lock is taken out on the cache lock. The process waits
for the lock to ensure that all other nodes dequeued their protected read locks
(that is, that they flushed their caches).

If a cache is found invalid (which is both the starting state for a cache and also
the state after a cache flush), a protected read mode lock is requested on the
cache lock. If the lock request fails, the cache is flagged as invalid.

386 File System Operation in a VAXcluster Environment

In addition, the quota cache is also marked as needing to be flushed; otherwise,
quota records will still be read into the cache and modified. The process does not
wait for the lock because another node may be indefinitely holding a concurrent
write mode lock (in the case that the file associated with the cache lock is accessed
for write).

When a cache has been completely flushed, the cache lock is reduced to null mode
to allow requesting nodes to continue with their lock requests.

When a volume in use is marked for dismounting, any special cache locks are
dequeued (by CHECK_DISMOUNT). Similarly, a cache write lock is dequeued
when a file is deaccessed (by MAKE_DEACCESS), and the quota cache lock is
dequeued when the quota file is deaccessed (by DEACC_QFILE).

8.6 Cache Processing
Cache contents can be divided into the following three categories:

• Disk blocks (for example, the directory block cache)

• Parts of disk blocks (for example, the extent cache)

• Pointers to structures (directory index cache)

In a cluster, there are separate caches on each processor. The contents· of a given
buffer in the 1/0 cache on a specific processor will become invalid if that disk
block is modified by the file system on another processor.

Because each buffer corresponds to some on-disk structure the file system
manipulates, the reading and writing of those buffers must be serialized by
one of the serialization locks discussed in Chapter 7. Those locks, and their value
blocks, are the key to clusterwide buffer validation. One of the central aspects
in the design of the XQP is clusterwide validation and invalidation of buffer
contents.

8.6.1 Lock Value Blocks

Philosophically, a cluster may be thought of as a single system, and because the
cache is a part of that system, the cache is split across members of the cluster.
This distributed nature of the cache requires a lot of coordination. Dynamic
coordination of the cache contents is performed by the following mechanisms:

• Locks-Both process-owned and system-owned. Because an ordering is
associated with locks and implemented by the distributed lock manager,
atomic operations are thus guaranteed.

File System Operation in a VAXcluster Environment 387

• The disk itself-There are three ways the disk coordinates access to shared
structures:

Through the disk contents

When cache contents are found to be invalid, they are refreshed from the
corresponding data on the disk.

Through write-through caches

If a buffer is modified, it is written directly back to the disk.

Through FCB invalidation

A set FCB$V _STALE bit causes the FCB to be flushed back to disk and
the header chain to be rebuilt from the FCB.

• Lock value blocks-The distributed lock manager provides a general
mechanism that associates lock client data with a lock. When a lock is passed
around and ownership is gained, the value associated with the lock is passed
along with it. The lock value block is the name given to the data carried
around by the lock manager. Specifically, information about quotas is passed
and maintained through lock value blocks.

The locks used to serialize access to a given disk block are also used to validate
a cached copy of that disk block in a cluster. These are the FUB$v and F11B$s
locks. The basic scheme of coordinating cache contents is to maintain a sequence
number in the value block of the serialization locks (which are associated with
specific buffers in the cache). This sequence number is incremented when any
buffer associated with that lock is modified. All buffers associated with a given
lock in a given cache retain a copy of the sequence number, which indicates the
last time those buffers were used and valid. The sequence number changes every
time the contents of the buffer change.

When a buffer is found in the cache by a later operation, the retained sequence
number is compared to the current value from the serialization lock. If they
match, no other processor has modified the associated disk block, and so the
contents of the cached buffer are valid. However, if the retained sequence number
and the current sequence number do not match, the contents of the cached buffer
are invalid, and the buffer must be refreshed by reading the current contents
from disk.

Different parts of different value blocks are used to validate different buffers. The
following buffers are validated by the FUB$s file number serialization lock:

• File headers are validated by the FC_HDRSEQ field in the serialization lock
for that file. A single sequence number is used to validate all headers for
a given file; therefore, modifying just the primary header causes all cached
headers for that file elsewhere to become invalid.

388 File System Operation in a VAXcluster Environment

• Directory data blocks are validated by the FC_DATASEQ :field in the
serialization lock for a given directory :file. All data blocks are validated
by a single sequence number. However, a directory :file header and its data
blocks are validated by different parts of the same value block, so each can be
independently modified without invalidating each other.

Data blocks of any :file opened by the internal OPEN_FILE routine are also
validated by this :field.

The actual :fields in the value blocks are only referenced by the SERIAL_FILE
and RELEASE_SERIAL_LOCK routines. They are referenced elsewhere by the
LB_HDRSEQ and LB_DATASEQ vectors, and indexed by the lock index returned
by SERIAL_FILE.

The following buffers are validated by the volume allocation lock:

• Storage bitmap blocks (BITMAP.SYS data blocks) use the VC_BITSEQ :field.

• Index file bitmap blocks use the VC_IDXSEQ :field.

• Quota :file data blocks use the VC_QUOTASEQ :field (bits 1through15 of the
VC_FLAGS :field).

The validation for buffers found in the cache is done by the FIND _BUFFER
routine in the RDBLOK module. Modification of the sequence numbers is done by
the WRITE_BLOCK routine. This is the only routine that writes modified buffers
to disk.

When a node fails, the latest copy of the value block may be lost. The distributed
lock manager then returns an SS$_ VALNOTVALID warning status on $ENQ
operations requesting the value block. In this case, the SERIAL_FILE and
ALLOCATION_LOCK routines check for this status and increment all of
the sequence number :fields in the value block to force a cache miss. The
SS$_ VALNOTVALID condition is cleared by rewriting the value block.

File System Operation in a VAXcluster Environment 389

8.6.2 Other Value Block Fields

The allocation lock value block also contains the fields VOLFREE, IBMAPVBN,
SBMAPVBN, and IDXFILEOF. These fields are used as follows:

Field

VOLFREE

IBMAPVBN

SBMAPVBN

Meaning

Free volume block count. This field is passed around so that the last node
to update the volume free block count can reflect that to other nodes.
This count must be considered only approximate because a node can
crash while it holds the value block, which would cause it not to reflect
the true value.

Assuming that the VOLFREE value is valid, EXTEND_INDEX uses this
value in its algorithm to estimate the number of files to be created on
the volume when it is deciding by how much to extend the index file.
Likewise, this figure is used by SELECT_ VOLUME to pick a volume for a
file.

The free figure is also used when deciding how many blocks to record in
the extent cache.

When a volume is unlocked, the unlocking node (which must also
have been the locking node) has the only valid notion of free space.
So LOCK_ VOLUME saves the free space figure from the VCB and writes
it back into the VCB under the allocation lock. (Acquiring the allocation
lock updates the volume free count from some random value block.)
Index file bitmap VBN. The index map VBN is maintained (by
FILE_FID_CACHE and REMOVE_FILE_NUM) in the VCB as a starting
point for header allocation (CREATE_HEADER). This value is used
since it reflects the last place of interest in the index file map, a likely
location for new headers. When file headers are allocated, the value is
incremented to the index file map block from which the allocation was
performed.

If a FID with a lower value is returned to the map (from the FID cache),
the value is decremented. When other systems fill their FID caches, their
allocation will start with this block.

Storage bitmap VBN. In a similar manner to the index map VBN, the
storage map VBN is kept to record a starting point of interest in the
storage map. It is updated only during storage map allocations. If the
desired blocks are not found from this point to the end of the map, a scan
is started from the beginning. This value may be reset to a lower value if
the desired blocks are found lower in the map.

390 File System Operation in a VAXcluster Environment

Field Meaning

IDXFILEOF Index file end-of-file. The index file EOF (set in CREATE_HEADER and
EXTEND_INDEX) are passed around as an obvious limit to the header
validation. The volume allocation lock must be taken out before the EOF
can be obtained from the on-disk header.

8.6.3 Associating Locks with Buffers
The lock manager maintains two structures for a given lock:

• The resource block-Contains the resource name and the value block

• The lock block-Represents a specific lock on that resource and contains
pointers to the granted, waiting, and conversion queues

The resource and lock blocks are created when the first lock is taken out on
a given resource name. The resource block disappears when the last lock is
dequeued.

The F11B$v and F11B$s locks used to serialize access to a specific disk block
are also used to validate a cached copy of that disk block in a cluster. Because
F11B$s locks are normally dequeued at the end of an operation, the resource
block is deallocated and the value block is lost.

The problem with this locking approach is that just because a process is finished
with a resource and does not want to keep track of it does not necessarily mean
that the process is ready to return it altogether. However, the only way a buffer
can remain in the cache is for a lock to be held on it.

Therefore, the concept of a system-owned lock was invented, which allows a
granted lock to be converted so that it is no longer associated with a particular
process. The resource it represents is available for a longer period of time than
the process wanted to use it. To keep track of what buffers will remain in the
cache, the cache is handled in a least recently used, or LRU, fashion.

When a buffer is in the cache, it must have a null-mode, system-owned lock
associated with it. A buffer lock descriptor or BFRL is used to keep track
of these locks. Multiple buffers may have the same lock basis, so many buffer
descriptors or BFRDs may point to the same BFRL. The BFRL contains a
reference count of the number of BFRDs so the file system knows when the lock
can be completely dequeued.

Figure 8-33 shows the relationship between BFRLs and BFRDs in the file system
cache structure.

File System Operation in a VAXcluster Environment 391

" Figure 8-33: Buffer Descriptors and Buffer Lock Descriptors

Lock Basis
Hash Table

BFRL

BFRL

Cache
Header

8.6.4 Cache Invalidation

BFRD

Buffer

LBN
Hash
Table

ZK-9651-HC

Although most locks protect a single resource, caching is a case where locks are
used to guarantee the validity of the cache contents. The major technique for
protecting the cache from corruption and ensuring its validity is the lock value
block.

392 File System Operation in a VAXcluster Environment

A problem with this locking approach is that the sequence number is transmitted
from system to system by the value block associated with the lock protecting a set
of buffers. Because many buffers may be associated with a particular BFRL (for
example, there might be ten storage bitmap blocks for the same volume in the
cache), their sequence numbers must be synchronously updated.

If one of the buffers is modified by another operation on that system, both the
BFRD$L_SEQNUM field and the appropriate value block field will be updated.
However, other buffers held under the same lock but not referenced in this
operation need special handling; otherwise, their sequence numbers would not
be updated, and they would appear to be invalid when they were subsequently
referenced.

This problem was solved with additional logic introduced in Version 5.2. After
the buffers used in the current operation are released, all buffer descriptors held
under the lock are checked. Those BFRDs that are currently valid are marked
with the udpated sequence number to keep them valid.

Releasing a serialization lock and potentially converting it to a system-owned
lock is done by two routines working together: RELEASE_SERIAL_LOCK and
RELEASE_LOCKBASIS.

RELEASE_SERIAL_LOCK calls RELEASE_LOCKBASIS to perform the following
actions:

• Scan the in-process list of buffers.

• Search for a specific lock.

• Associate a BFRL with the buffers if one does not already exist.

• Scan the BFRDs associated with the BFRL. The buffer is still valid if the two
following conditions apply to the buffer sequence number in each buffer:

- Is equal to or greater than the sequence number read from the lock value
block when the lock was taken

Is less than or equal to the current sequence number

If both these conditions exist, the buffer sequence number receives the current
sequence number.

• Return to RELEASE_SERIAL_LOCK with the appropriate status if a new
BFRL has been created.

When RELEASE_LOCKBASIS returns with the status indicating that a new
BFRL has been created, RELEASE_SERIAL_LOCK performs the following
actions:

• Converts the serialization lock to a system-owned lock.

• Stores the lock ID in the BFRL.

File System Operation in a VAXcluster Environment 393

Otherwise, the serialization lock is simply dequeued. Because the cache serializa
tion interlock is held during this scan, the process cannot be stalled. For that rea
son, all modified buffers must have been written before RELEASE_SERIAL_LOCK
is called. Modified buffers may be written by making explicit calls to WRITE_BLOCK
for individual buffers, or to the WRITE_DIRTY routine to scan the lists.

For a nonclustered system or disks that are not cluster-accessible, null locks are
not associated with buffers because they are not necessary.

The allocation lock protects the storage bitmap and index file map blocks, so they
must be written to disk and released before the allocation lock can be released.
ALLOCATION_ UNLOCK performs this function.

The DELETE_FILE routine, when purging the buffers for extension headers,
fabricates a serial lock on the extension header file ID as a basis for purging the
buffers. The buffer purging is done immediately instead of waiting for the normal
cleanup procedure later to prevent another process from using these file IDs as
primary headers and reading the buffers.

8.6.5 Directory Index Cache
The directory index cache occupies the fourth pool in the buffer cache. This cache
does not contain buffers, though, but rather an index into a given directory file,
constructed as the directory is processed.

There are actually two file system directory caches:

• A block cache containing a portion of data from a directory file.

• A directory index cache containing information about the contents of a
specific directory file. Entries in this cache may even point to directory file
blocks that are no longer present in the block cache.

The main purpose of the directory index cache is to serve as an index into the
contents of the sequential files that serve as the directory file. This index allows
the file system to locate directory entries directly rather than having to scan the
directory file from the beginning.

A directory index cache can outlive access to a directory when a file is accessed
through a directory path. Likewise, a directory index cache entry (along with the
FCB) can outlive access to a file. Thus, when the directory file is opened again, it
is still in the directory index cache, and the directory FCB still exists.

The directory index cache is both a CPU and an 1/0 saver. It requires the file
system to reference fewer blocks in the directory to find an entry, which requires
fewer cache buffers to hold the blocks, fewer 1/0 operations to read them, and less
CPU time to search them.

RMS has a related cache-the directory pathname cache. (See Section 8.6.6.)

394 File System Operation in a VAXcluster Environment

The directory index cache is managed by the buffer cache code because it
essentially has the same clusterwide content validation problems that other
caches do. One of its purposes is predicting the cyclic usage of caches.

A directory index block has a small header area followed by about 30 15-byte
cells. Each cell represents the highest record found in the corresponding directory
data block. This scheme allows every block to have an entry for directory files
smaller than thirty blocks; every other block for directories between 30 and
60, and so on. The cell size is set to 15 characters for small directories and is
reduced for larger directories to allow more cells. The total index is limited to 512
bytes for each directory. A size of 15 bytes was picked because MAIL$800 ... files
that are about a day apart in creation time vary in the fourteenth or fifteenth
character.

Instead of being located by hashing on the LBN, a directory index block is
pointed to by the FCB$L_DIRINDX field in the directory FCB (protected by
IPL$_SCHED). The BFRD$L_LBN field points back to the directory FCB. If the
FCB has no corresponding DIRINDX block, one is removed from the list for the
directory index pool and linked to the FCB. Otherwise, the block is used.

The block is validated from the LB_HDRSEQ and LB_DATASEQ values for the
directory. Only one directory index block is allowed to be used by the process
(because the XQP only works with a single-parent directory in an operation).

Figure 8-34 shows the location of the directory index cache pool.

File System Operation in a VAXcluster Environment 395

Figure 8-34: Directory Index Cache Pool

CELL 0

CELL 1

CELL 2

Cells

CELL (MAXCELL-1)

ZK-9713-HC

Some important routines that work with the directory FCB are as follows:

Routine Meaning

MAKE_DIRINDX Validates a directory FCB. It is located in RDBLOK and called from
DIR_ACCESS in DIRACC.

KILL_DINDX Breaks the linkage between the FCB and the directory index block.
ERR_CLEANUP calls KILL_DINDX when it needs to delete a
directory with a corresponding directory index block. Likewise, when
MARK...DELETE deletes a file (when the reference count goes to zero),
it calls KILL_DINDX before purging the FCBs.

396 File System Operation in a VAXcluster Environment

Routine Meaning

KILL_DINDX also invalidates the directory index block pointed to
by a particular FCB. It calls UNHOOK_BFRD to unhook the buffer
descriptor for a directory index block to break the link to the FCB.
This is done when the BFRD pops to the top of the LRU list and is
being used for a new directory. Other routines which also unhook the
BFRD are KILL_BUFFERS and KILL_CACHE.

SET_DIRINDX Tries to maintain FCBs for popular directories and to keep the
association of the FCB to the directory index block. It is called from
CLEANUP and CLOSE_FILE. If the caller of SET_DIRINDX finds
that the reference count for the FCB goes to zero, the FCB would
normally be deleted. However, if a directory index block exists, the
FCB$V _DIR bit is set.

DIR_ACCESS Requests the creation of a directory index block. Finding a valid block
indicates a valid FCB (because of the checks in MAKE_DIRINDX).
Otherwise, the header is read, and MAKE_DIRINDX is called.

If the directory is not really a directory, KILL_DINDX is called to
remove the invalid directory index block. Likewise, clearing the
directory bit (by WRITE_ATTRIB) also calls KILL_DINDX.

UPDATE_INDX Builds the directory index block as it is scanned. This routine is called
by ENTER and DIR_SCAN. DIR_SCAN uses the block it found to save
work on subsequent scans.

ZERO_IDX Updates the directory's header. The routine is located in CLENUP and
is called by SHUFFLE_DIR. It increments the FCB$W _DIRSEQ field
and sets the corresponding INUSE value in the directory index block
to zero because the block layout is not different. FCB$W _DIRSEQ is
updated under the following conditions:

• When a directory is directly accessed

• When SHUFFLE_DIR rearranges the directory contents

• After a directory is accessed but a valid directory index block is
not located

For more information on the RMS directory cache, see Section 8.6.6.

File System Operation in a VAXcluster Environment 397

8.6.6 RMS Directory Pathname Cache

The RMS directory cache is a list of directory names and file IDs that RMS has
recently processed. Its purpose is to save RMS from having to call the XQP when
repeatedly stepping down levels of a subdirectory tree. However, the XQP must
still be called to step down the tree under the following conditions:

• When the directory tree is initially referenced

• If the directory structure is changed (for example, during a delete or rename
operation, or when the volume is dismounted)

To ensure that the RMS directory cache is valid and that it is synchronized
with the XQP cache, the sequence number UCB$W _DIRSEQ is stored with the
directory entries cached by RMS. Whenever the file system changes the directory
structure, UPDATE_DIRSEQ (in CHKDMO) is called. The following directory
operations udpate the sequence number:

• Superseding a directory (ENTER)

• Removing a directory name (REMOVE)

• Clearing the directory bit (RWATTR)

• Mounting the volume

The volume lock is used for RMS cache invalidation in the following way:

1. When the volume is first mounted, the volume lock is converted to concurrent
read mode by RM$ARM_DIRCACHE (in RMOSETDID). This routine specifies
RM$DIRCACHE_BLKAST (in the SYS module RMSRESET) as the blocking
AST routine.

2. When the XQP invalidates the RMS directory cache, it temporarily enqueues
the volume lock for exclusive access (in QEX_N_CANCEL). This action
triggers the blocking AST routine RM$DIRCACHE_BLKAST.

This routine refers to the high-order bit of the UCB$W _DIRSEQ field as the
armed bit, indicating that blocking AST of the volume lock is armed. When
this blocking AST routine fires, the UCB$W _DIRSEQ field is incremented,
and the armed bit is cleared.

3. When the next RMS user references a directory file on the device whose
UCB$W _DIRSEQ field was incremented, RMS compares the sequence number
for the RMS directory cache entry with the sequence number in the UCB and
finds that they are not equal. RMS then flushes all RMS directory cache
entries for this device. RMS also calls RM$ARM_DIRCACHE again to rearm
the blocking AST of the volume lock and to set the armed bit.

4. When the volume is dismounted, the armed bit is cleared when the lock (and
therefore the blocking AST) is disarmed (by CHECK_DISMOUNT).

398 File System Operation in a VAXcluster Environment

8.6. 7 User Invalidation of Cached Buffers

Because ail 'volume structures that the file system uses to maintain the volume
are themselves files, it is possible for random users to access those files and to
read and write the blocks in them. For example, anyone with write access to a
directory can open the directory file and write random data into its data blocks.
Or with appropriate privileges, a user could open BITMAP.SYS and rewrite it. A
disk rebuild operation does this, for example.

The problem is how to invalidate cached copies of those blocks that may be in the
buffer cache.

The solution is to trap all write virtual requests in the file system. This is done
by setting the WCB$V _ WRITE_TURN flag in the WCB of any write-accessed
directory file (by ACCESS), or the index file, or the storage bitmap file (by
MAKE_ACCESS).

When a write virtual function is performed on one of those files, the QIO FDT
routine forces a window turn. The appropriate cache is. flushed under the
allocation lock when one of these files is initially accessed for writing. The cache
flush lock is then taken out.

The XQP takes out the appropriate serialization lock (if it is not already held) to
validate that buffer and increment the appropriate field in the value block (in the
READ_ WRITEVB routine). In many cases, a program that accesses file structure
files for write should first take out the blocking lock to block other activity on the
volume. Patching elements of the file structure is usually done in conjunction
with other analysis of the file structure; such analysis will only be valid if the file
structure cannot change.

The cache flush lock is released in MAKE_DEACCESS.

If the node is not in a cluster, the KILL_BUFFERS routine is called by
READ_ WRITEVB to scan the cache and invalidate the correct buffers.

399

Index

A
ABD$C_FIB, 282
ABD$C_NAME, 282
ABD$C_RES, 282
ABD$C_RESL, 282
ABD$C_ WINDOW, 282

during a normal I/O request, 294
ABD$L_USERVA field, 280
ABD$W _COUNT field, 280, 284
ABD$W _TEXT field, 280
ABD (complex buffer descriptor)

start address :field, 279
ABD (complex buffer packet), 283

clearning the ruune string descriptor,
304

constructing, 197
copying user input to the XQP, 284
data text offset field, 280
deallocating, 305
definition of, 278
for a spool file, 218
format of, 280
interpreting the specified attributes,

213
maximum number of, 282
modifying, 199
structure of, 279

ACB$B_RMOD field, 289
ACB$B_TYPE field, 289
ACB$L_AST field, 289
ACB$L_ASTPRM field, 289
ACB$L_ASTQBL field, 289
ACB$L_ASTQFL field, 289
ACB$L_KAST field, 289
ACB$L_PID field, 289

ACB$V _KAST bit, 289
ACB$V _MODE bit, 289
ACB$V _NO DELETE bit, 289
ACB$V _PKAST bit, 289
ACB$V _QUOTA bit, 289

decrementing during 1/0 processing,
272

ACB$W _SIZE field, 289
ACB (AST control block)

allocating from an IRP, 261
avoiding allocation of, 288
during a cache flush, 345
for cross-process ASTs, 251
format of, 288
for the blocking AST field, 102, 115
not deallocated bit, 289
of cache flush blocking AST, 184
of extent cache blocking AST, 178
of FID cache blocking AST, 181
of quota cache blocking AST, 184
setting up in the quota cache header,

210
ACB_ADDR symbol, 251
Access

arbitrating, 352
arbitrating locally, 353
checking, 202, 203, 205, 208
create-if, 334
delete, 204
group

during volume dismount, 142
system, 142

during volume dismount, 142
Access control entry

See ACE (access control entry)

400

Access control flags field, 104
Access control information field, 105
Access control list

See ACL (access control list)
Access control list area

See ACL area
Access function, 201, 267

description of, 201
ignoring access interlocks, 382
pending, 271
reading attributes, 213, 283
using complex buffered I/O, 263
using the file header, 195
writing attribute list descriptors to the

user's buffers, 304
Access lock

See Arbitration lock
Access mode

of requester field, 289
of request field, 261
protection vector field, 113

Accessor privilege level field, 26
ACCESS routine, 201, 203

invalidating an FCB, 382
primary file FCB address

clearing, 251
setting, 251

setting the write turn bit, 398
window address

clearing, 252
setting, 252

Access type field
in the alarm ACE, 43
in the directory default protection ACE,

46
in the identifier ACE, 48

Accumulated bytes transferred field, 265
ACE$B_RJRVER field, 51
ACE$B_SIZE field, 38, 42, 44, 45, 46, 48,

50
ACE$B_TYPE field, 38, 42, 44, 45, 46, 48,

50
ACE$B_ VOLNAM_LEN field, 51
ACE$C_ALARM symbol, 38
ACE$C_AUDIT symbol, 39
ACE$C_DIRDEF symbol, 39

ACE$C_INFO symbol, 39
ACE$C_KEYID symbol, 39
ACE$C_RMSJNL_AI symbol, 39
ACE$C_RMSJNL_AT symbol, 40
ACE$C_RMSJNL_BI symbol, 40
ACE$C_RMSJNL_RU symbol, 40
ACE$C_RMSJNL_RU_DEFAULT symbol,

40
ACE$L_.ACCESS field, 43, 46, 48
ACE$L_BACKUP _SEQNO field, 52
ACE$L_GRP _PROT field, 4 7
ACE$L_INFO_FLAGS field, 44
ACE$L_JNLIDX field, 51
ACE$L_KEY field bit, 48
ACE$L_OWN_PROT field, 46
ACE$L_SYS_PROT field, 46
ACE$L_ WOR_PROT field, 47
ACE$Q_CDATE field, 51
ACE$Q_MODIFICATION_TIME field, 52
ACE$T_AUDITNAME field, 43
ACE$T_INFO_START field, 44
ACE$T_ VOLNAM field, 51
ACE$V_BACKUP_DONE bit, 51
ACE$V _CONTROL bit, 43, 48
ACE$V _DEFAULT bit, 41
ACE$V _DELETE bit, 43, 48
ACE$V _EXECUTE bit, 43, 48
ACE$V _FAILURE bit, 41, 42
ACE$V _HIDDEN bit, 41
ACE$V _INFO_TYPE bit, 40
ACE$V_JOURNAL_DISABLED bit, 51
ACE$V _NOPROPAGATE field, 41
ACE$V _PROTECTED bit, 41
ACE$V _READ bit, 43, 48
ACE$V _RESERVED bit, 40, 48
ACE$V _SUCCESS bit, 41, 42
ACE$V _WRITE bit, 43, 48
ACE$W _APPLICATION_FACILITY field,

44
ACE$W _APPLICATION_FLAGS field, 44
ACE$W_FID field, 51
ACE$W _FLAGS field, 40 to 41, 42, 44,

45,46,48,51
ACE$W _RMSJNL_FLAGS field, 51
ACE (access control entry)

after-image journaling type, 49

ACE (access control entry) (Cont.)
alarm type, 42
and ident area, 30
application type, 43
audit-trail journaling type, 49
before-image journaling type, 49
default recovery-unit journaling type,

49
directory default protection type, 46
file identifier field, 51
flags field, 42, 44, 45, 46, 48, 51
format of, 38
identifier type, 4 7
journal file structure level field, 51
journaling flags field, 51
journaling types, 48 to 49
recovery-unit journaling type, 49
rules for, 37
size field, 38, 42, 44, 45, 46, 48, 50
storage of, 256
type field, 38, 42, 44, 45, 46, 48, 50
volume length field, 51
volume name field, 51

ACL (access control list), 171
address of, 219
and ident area, 30
and multiheader files, 52
corrupted bit, 112
initializing in the ORB, 129
offset field, 22
processing, 219
queue

locating, 219
updating, 203
writing, 219

invalidating an FCB, 219
ACL area

definition, 37
entry types, 37 to 48

ACL listhead
backward link, 114
forward link, 114

ACP$BADBLOC!t_MBX bad block
mailbox, 220

ACP$BADBLOCK_MBX mailbox
communicating with the bad block

scanner, 242
ACP (ancillary control process)

ACP-QIO interface, 195
awakening, 196
being created bit, 108
class code field, 108
comparing with the XQP, 5
default for the class bit, 108
default for the system bit, 108
mount count field, 107

decrementing during dismount
procedure, 145

queue, 197
type code field, 108
unique bit, 108

ACP control function, 201
and the blocking lock, 368
dismount subfunction, 145
IO$_ACCESS, 135
IO$_ACPCONTROL, 135
IO$_DEACCESS, 135
locking a volume, 206
remapping a file, 206
unlocking a volume, 206

ACPCONTROL routine, 206, 368
ACP control subfunction

IO$M_ACCESS,c 135
ACP function

IO$_MOUNT, 131
ACP queue block

See AQB (ACP queue block)

401

ACP _DINDXCACHE system parameter,
174

ACP _DINDX_CACHE system parameter,
125

ACP_DIRCACHE system parameter, 172
ACP _EXTCACHE system parameter, 124,

176
ACP _EXTLIMIT system parameter, 124,

177, 178
ACP _FIDCACHE system parameter, 124,

180

402

ACP _HDRCACHE system parameter,
171, 187

ACP _MAPCACHE system parameter, 171
ACP _MAXREAD system parameter, 172,

188
ACP_MULTIPLE system parameter, 149
ACP _QUOCACHE system parameter, 125
ACP _SYSACC system parameter, 125
ACP _WINDOW system parameter, 125,

224
ACP _XQP _RES system parameter, 242
Activity

blocking, 115, 349, 357
channel, 305
count flag field

going to zero, 305
of the RVT, 115
of the VCB, 101

preventing, 361
serializing, 311
stalling, 357

for a rebuild operation, 357
stalling with XQP$BLOCK_ROUTINE,

358
Activity blocking lock, 294

See Blocking lock
Add quota entry function, 209
ADD_QUOTA function, 209
After-image journaling ACE

format of, 49
AIB$B_TYPE field, 279
AIB$L_DESCRIPT field, 279
AIB$W _SIZE field, 279
AIB (XQP 1/0 buffer packet)

constructing, 278
header, 278

format of, 279
Alarm ACE, 42

contents, 42
format, 42

Alarm journal name field, 43
Allocation

contiguous, 212
contiguous-best-try, 171, 212
deriving the number of blocks for, 125
managing, 342

Allocation (Cont.)
of impure storage, 242
of storage, 383
of XQP impure area, 244
placed, 213
random, 212

Allocation bitmap
See Storage bitmap file

Allocation class device name
in the dismount lock, 138
in the mount lock, 118

Allocation lock
See Volume allocation lock

Allocation table, 88
ALLOCATION_LOCK routine, 326
ALLOCATION_UNLOCK routine, 330
ALLOC_BITMAP routine

returning user status, 249
ALLOC_BLOCKS routine

optimizing, 250
Alternate home block

allocating storage for, 91
LBN field, 64, 99

Alternate index file header, 91, 126
LBN field, 99

Ambiguity
detecting, 201
occurring, 335

Ambiguity queue, 187
backward link, 156
description of, 335
forward link, 156

ANALYZEIDISK_STRUCTURE command
/NOREPAIR qualifier, 357
/REPAIR qualifier, 357

Application
facility field, 44
flags field, 44

application-defined, 44
Application ACE

contents of, 44
format, 43

AQB$B_ACPTYPE field, 108
AQB$B_CLASS field, 108

AQB$B_MNTCNT field
decrementing during dismount

procedure, 145
AQB$B_MNTCOUNT field, 107
AQB$B_STATUS field, 107
AQB$B_TYPE field, 107, 130
AQB$L_ACPPID field, 107
AQB$L_ACPQBL queue, 107
AQB$L_ACPQFL field, 107
AQB$L_ACPQFL queue

controlling serial access, 329
AQB$L_BUFCACHE, 150
AQB$L_BUFCACHE field, 108
AQB$L_LINK field, 107
AQB$V _CREATING bit, 108
AQB$V _DEFCLASS bit, 108
AQB$V _DEFSYS bit, 108
AQB$V _UNIQUE bit, 108
AQB$V _XQIOPROC bit, 108, 130
AQB$W _MNTCNT field

decrementing, 308
AQB$W _SIZE field, 107
AQB (ACP queue block), 94

address field, 99
allocating, 129
and the VCB, 96
creating, 130
deallocating

during dismount procedure, 145,
146

deallocating during volume dismount,
308

definition of, 106
list linkage field, 107
locating the buffer cache, 150
reference count

deallocating during volume
dismount, 308

size field, 107
verifying the file structure type, 131

ARB (access rights block), 255
address field, 266

ARBITRATE_ACCESS routine, 353, 355
controlling access to a file, 352

Arbitration lock, 354
checking not performed bit, 106

Arbitration lock (Cont.)
dequeuing, 353

403

dequeuing during volume dismount,
308

format of, 343
interlocking against other accessors,

205
invalidating an FCB, 344
locality of use, 343
lock ID, 113
mode field, 111
obtaining, 202
on the quota file, 211
purpose of, 343, 352
releasing, 204
value block

controlling clusterwide truncation,
354

format of, 354
writing out, 353, 355

XQP$FCBSTALE routine, 356
Array index, 157
AST (asynchronous system trap)

blocking, 397
count quota field, 272
delivering, 329
delivery mode, 261
kernel-mode

entering the XQP, 196
parameter, 259
parameter field

in the ACB, 289
in the IRP, 261

queue
backward link, 289
forward link, 289

queuing, 330
quota update flag, 272
routine, 270, 356

F11B$L_DISPATCH field, 288
routine address, 259
routine address field

in the ACB, 289
in the IRP, 261

saving the overhead of, 305
special kernel-mode, 261

posting I/O completion, 305

404

AST (asynchronous system trap)
special kernel-mode (Cont.)

with buffered I/O, 263
synchronizing a shadow set rebuild

operation, 102, 159
user notification routine, 256
using the IRP as an ACB, 305

ASTWAIT state
caused by a channel in transition, 271

ATR$C_DELACLENT attribute code, 41
ATR$C_DELETEACL attribute code, 41
Attribute list descriptors

writing back during an access function,
304

Attributes
changing, 344
copying, 334
handling, 213
protected, 213

Audit record, 257
Audit-trail journaling ACE

format of, 49
AUDIT_ARGLIST array, 257
AUDIT_COUNT symbol, 255
Available function, 145

B
Back link file ID field, 28
BACKUP.SYS

See Backup journal file
Backup date and time field, 32
Backup file

description of, 59
Backup home block

definition of, 70
VBN field, 65

Backup index file, 14
file header

LBN field, 64
location of, 70

header
VBN field, 65

Backup journal file
file header

initializing, 92
format of, 82

Backup log file
See Backup journal file

Backup Utility (BACKUP)
accessing extension headers directly,

331,335
BADBLK.SYS, 58

See Bad block file
Bad block descriptor

and retrieval pointer format, 80
manufacturer's

contents of, 77
description of, 77
format of, 77
sectors available for, 78

software
contents of, 79
description of, 79
format of, 79

Bad block entry, 90
field, 78
format of, 78

Bad block file
See also Pending bad block log file
description of, 58, 76
file header

initializing, 92
manufacturer's bad block .descriptor,

77
resetting highwater marking, 221
serializing on, 221
software bad block descriptor, 79

Bad block in file bit, 112
Bad Block Locator Utility (BAD), 89

and DSA disks, 81, 89
Bad block mailbox, 220

reading, 221
Bad block processing

by the XQP, 241
communicating with the bad block

scanner, 242
controller-initiated, 81
during a virtual request, 263
host-initiated, 81
initiating, 219
last track, 89
on a DSA disk, 80

Bad block processing (Cont.)
on non-DSA disks, 77
removing blocks from a file, 333
setting the bad block bit, 213
software, 89

Bad block scanner, 219, 220
BADBLOCK,_SCAN process

See Bad block scanner
BADLOG.SYS, 296

See atso Pending bad block file
Base priority field, 262
Base register of the XQP impure area,

292,321
BBD$L_BADBLOCK field, 78
BBD$L_LASTWORD field, 78
BBD$V _CYLINDER bit, 78
BBD$V _SECTOR bit, 78
BBD$V _TRACK bit, 78
BBD$W _FLAGS field, 77
BBD$W _RESERVED field, 77
BBD$W _SERIAL field, 77
BBM$B_AVAIL field, 80
BBM$B_COUNT field, 80
BBM$B_COUNTSIZE field, 79
BBM$B_HIGHLBN field, 80
BBM$B_INUSE field, 79
BBM$B_LBNSIZE field, 79
BBM$W _CHECKSUM field, 80
BBM$W _LOWLBN field, 80
Before-image journaling ACE

format of, 49
BFRD$B_BTYPE, 159
BFRD$B_BTYPE field, 168
BFRD$B_FLAGS field, 158, 159, 168
BFRD$I,._LBN field, 159

pointing to a directory FCB, 394
BFRD$L_LOCKBASIS field, 159
BFRD$L_ QBL field, 159
BFRD$L_ QFL field, 159
BFRD$L_SEQNUM field, 159

updating, 392
BFRD$L_ UCB field, 159
BFRD$V _DIRTY bit, 159
BFRD$V _POOL bit, 159
BFRD$V _VALID bit, 159
BFRD$W _BFRL field, 160

405

BFRD$W_CURPID field, 160, 171, 188
BFRD$W _NXTBFRD field, 160
BFRD$W _SAME_BFRL field, 160
BFRD Q>uffer descriptor), 167

array, 151
base address field, 156
chailling, 168
contiguous, 188
definition of, 157
hash chain, 163
index to first, 161
index to next field, 160
locating, 157

from the LBN hash table, 163
number of, 160
pool, 158
relation to BFRL, 390
scanning, 191, 392
size of descriptor area, 158
unhooking, 396
updating the sequence number, 392

BFRL$L_LCKBASIS field, 161, 165
BFRL$L_LKID field, 161
BFRL$L_PARLKID field, 161, 165, 318
BFRL$W _NXTBFRL field, 161
BFRL$W _REFCNT field, 161
BFRL (buffer lock descriptor)

array, 151
associating one lock with multiple

BFRDs, 160
associating with .a buffer, 392
base address field, 156
definition of, 160
first free in chain, 156

index into, 161
index field, 160 ·
index to the next BFRD, 160
locating from the lock basis hash table,

165
lock ID, i61
next in the hash chain index field, 161
number of, 160
relation to BFRD, 390
searching with, 152

BFRL_ W _BFRD field, 161
BFRS_USED vector, 170, 251

406

BFR_CREDITS vector, 170, 251
BFR_LIST queue, 159, 251, 293

definition of, 169
managing with an LRU algorithm, 188

BIOCNT quota
See Buffered 1/0

BITMAP.SYS, 58, 168
See also Storage bitmap file
accessing for write, 383

Bitmap cache
See also Extent cache

BITMAP _BUFFER symbol, 250
BITMAP _RVN symbol, 250
BITMAP_ VBN symbol, 250
Block

returning, 176
unrecorded count of, 252
unrecorded LBN of, 252

Block cache
See Buffer cache

Block count field
and retrieval pointer format 1, 35
and retrieval pointer format 2, 36
in a bad block descriptor retreival

pointer, 80
Blocking AST, 115, 327

arming, 382
control block, 102
definition of, 341
extent cache, 178
FID cache, 181
firing

flushing a cache, 345
flushing the quota cache, 347
invalidating an FCB, 344
locking a volume, 349, 364
RM$DIRCACHE_BLKAST routine,

397
from system-owned lock, 356
on the arbitration lock, 344
quota cache lock, 184
rearming, 397

Blocking lock
acquiring

for an add quota function, 208, 368
writing to file structure files, 398

Blocking lock (Cont.)
dequeuing

dismounting a volume, 308
unlocking a volume, 206

determining the lock name, 348
format of, 348
life cycle, 348 to 352
lock ID, 357

in the impure area, 248
in the RVT, 115
nonzero, 359

lock ID field, 115
locking a volume, 368
manipulating over its life cycle, 351
modify a quota file entry, 209
modifying quota usage, 368
unlocking a volume, 368
using a lock volume function, 206
XQP$BLOCK_ROUTINE routine, 356,

357
BLOCK.._CHECK symbol, 250

clearing during volume dismount, 308
BLOCK_LOCKID symbol, 248, 294, 361

having a nonzero value, 361
BLOCK_ VCB symbol, 256
BLOCK WAIT routine, 294, 359

armi~g the blocking routine, 358
returning buffer credits, 361

Boot block
allocating storage for, 91
initializing, 92
location of, 59 to 61

Buffer
allocating memory for, 135
buffer list queue, 159, 169
cache

improving performance, 393
contiguous, 188
credit, 170, 187, 188

extending, 187
lack of, 156
obtaining, 187
returning, 187

descriptor area
size of, 158

determining which buffer pool, 168

Buffer (Cont.)
diagnostic buffer allocated bit, 264
discarding, 190
file name, 282
I/O transfer buffer, 264
index, 161
index word pointer, 161, 163
in-process

removing, 189
scanning, 392

invalidating, 189, 190, 191, 234, 392
locks, 165
managing, 149
maximum number of in the cache, 150
modification bit, 159
modified

writing, 333
number in use, 170
number of field, 156
number of reserved, 170
obtaining, 187
owner PID index field, 160
page-aligned, 152, 163
posting, 280
purging, 334
quota file

invalidating, 211
purging data blocks, 191
returning, 211
sequence number, 249

reading, 168
read operations field, 157
releasing, 200
result string, 282
returning, 204
returning to the user, 199
scratch, 190
sequence number

validating, 392
stall count field, 157
type field, 159
UCB field, 159
user attribute buffer, 283
validating, 189
validation sequence number field, 159
valid bit, 159
write operations field, 157

Buffer (Cont.)
writing

attributes, 334
dirty, 189
LRU buffers to disk, 248

Buffer area
base address field, 155
size field, 155

Buffer cache, 168
See also Cache
allocating a separate cache, 150
allocating memory for, 130
buffer descriptor array, 151
buffer LBN hash table, 152
buffer not found field, 156
creating, 149
deallocating

407

during dismount procedure, 146
deallocating during volume dismount,

308
fixed overhead area, 151
fourth pool, 172, 393
in-process hit rate count field, 156
invalid buffer hit rate count field, 156
layout of, 150 to 153
locating from the AQB, 150
lock basis hash table, 152
lock descriptor array, 151
managing, 149
memory allocation size, 156
pointer field, 108
preventing a cache flush, 149
serializing access to, 107, 329
size, 149, 150

field, 155
user invalidation of, 398
valid buffer hit rate count field, 156

Buffer credits
exceeding, 168
obtaining the minimum number, 199,

294
returning, 361

Buffer descriptor
See BFRD (buffer descriptor)

Buffered I/O, 305
buffered I/O bit, 263

408

Buffered I/O (Cont.)
definition of, 263
incrementing the process byte count

quota, 264
quota

incrementing during I/O
postprocessing, 305

verifying during I/O processing,
271

read function
calculating the byte count to the

user buffer, 265
recording the number of bytes for the

system buffer, 264
using the iRP$L_SVAPTE field, 264

Buffered read
bit, 264
function, 307

Buffer index word pointer, 161, 163, 165
Buffer LBN hash table, 152
Buffer lock descriptor

See BFRL (buffer lock descriptor)
Buffer lock hash table.

See also Lock basis hash table
base address field, 156

Buffer owner PID index field, 171
Buffer pool, 152, 158, 167

buffer count field, 156
checking buffer credits for, 199
data blocks in, 152, 168
directory data blocks in, 152, 168, 188
directory index blocks in, 152, 168
file header, 187
file header blocks in, 152, 168
identifying the buffer type, 168
index file bitmap blocks in, 168
index file blocks in, 152
issuing multiple read operations to,

168
locating; 168
queue header field, 156, 168, 169
quota file blocks in, 152, 168, 188
replacing buffers in, 168
storage bitmap blocks in, 152, 168

BUFPOST routine, 278
BUGCHECK privilege, 138

BUILDACPBUF routine, 278
setting the window pointer, 282

BUILD_EXT_FCBS routine
building an extension FCB, 382

BYPASS privilege, 198, 294
Byte count

of an I/O transfer, 264
quota, 285

Byte offset field
in the IRP, 264

c
Cache

allocating a separate cache, 150
buffer, 130, 168

deallocating during volume
dismount, 308

fourth pool, 172
buffer descriptor array, 151
buffer LBN hash table, 152
buffer not found field, 156
contents

findinginvalid, 387
recovering, 357

creating during the mount procedure,
149

data block
sequence number, 254

data block cache
sequence number, 253

directory block cache, 393
directory data block, 172

flushing, 191
size of, 172

directory index, 125, 168
directory index cache, 172, 393

size of, 174
directory pathname cache, 393

flushing, 397
disabling during dismount procedure,

145
distributed nature of, 386
extent, 124, 134

definition of, 176
size of, 128

Cache, (Cont.)
FID, 124, 134, 180

size of, 128
file header

increasing performance, 172
sequence number, 253
size of, 171

file header cache, 171
sequence number, 253

fixed overhead area, 151
flushing, 183, 191,202,329,383

causing with a blocking AST, 345
preventing, 361
triggering with

XQP$UNLOCK_CACHE, 356
header, 150, 153

definition of, 151
index file bitmap

size of, 171
index file bitmap cache, 171
in-process hit rate count field, 156
interlock, 187, 346

lock ID field, 113
invalidating, 189, 202, 391, 392, 394
invalid buffer hit rate count field, 156
layout of, 150 to 153
locating from the AQB, 150
lock basis hash table, 152
lock descriptor array, 151
LRU, 149
managing resources, 235
name field, 157
not flushing, 357
overflow, 176
preventing a cache flush, 149
private, 149
quota, 124, 134, 182

clearing, 191
releasing the cache flush lock, 356
sequence number, 254
size of, 128

reducing search time, 152
RMS directory pathname cache, 397
serialization

call count field, 157
stall count field, 157

Cache (Cont.)
size, 149, 150
storage bitmap cache, 171
type, 383

409

valid buffer hit rate count field, 156
wait queue

header field, 156
write-through cache, 387

Cache block
See VCA (volume cache block)

Cache flush
during dismount procedure, 145
flushing a special cache, 384
preventing, 149
triggering, 383

Cache flush function, 384
Cache flush lock, 398

determining the lock name, 345
format of, 344
normal lock mode, 345, 34 7
purpose of, 344
releasing, 199
XQP$UNLOCK_CACHE routine, 356

Cache header, 167
address of, 251
block, 159
locating the LBN hash table, 163
locating the lock basis hash table, 165
quota cache, 183
setting the cache flush flag, 210

Cache lock
dequeuing during dismount procedure,

146
Cache server process, 345, 356, 361

CACHE_SERVER process ID, 383
flushing a cache, 383

CACHE_FLUSH routine, 384
CACHE_HDR, 251
CACHE_LOCK routine, 384
CACHE_SERVER process

See Cache server process
Caching disabled bit, 100, 126
Call frame, 243
Carriage control field, 265
Cathedral window

bit, 104

410

Cathedral window (Cont.)
definition of, 224
during a create function, 203
performing an extend operation on, 226
reducing 110, 196
using during an access function, 202

CCB$B_AMOD field, 293
CCB$L_DIRP

indicating a pending deaccess function,
305

CCB$L_DIRP field, 287
CCB$L_UCB field, 140
CCB$L_ WIND field, 282
CCB$W _IOC field, 305

tracking outstanding 110 requests, 271
CCB (channel control block), 248

locating a WCB, 102
CDRP (class driver request pack.et), 251

extension to the IRP, 329
using as an ACB, 288, 290

Chained buffered 110 bit, 263
Chained complex buffered 110, 263
Change mode dispatcher, 270
Channel

assigning a UCB to, 270
assigning for volume dismount, 138
assigning to the XQP, 243
assignment, 88
closing, 287
in transition, 271
number

in the IRP, 258
number of

accessing a file, 111
writing to a file, 111

obtaining, 119
validating the access mode, 270
XQP channel, 197

Channel control block
See CCB (channel control block)

Channel number field, 262
CHARGE_QUOTA routine, 211
Checksum field

first, 67
second, 69

CHEC~ISMOUNT routine, 145, 307,
317

clearing the armed bit, 397
deallocating an FCB, 219
deallocating the quota cache, 209
deleting an ACL, 219

CHECK_PROTECT routine, 219, 250
matching an access control entry, 256

CHKDISMOUNT routine, 286
CHKMOUNT routine, 287
CHMK instruction, 270
Cleanup flag

CLF _DELFILE, 218
CLF _DOSPOOL, 218
CLF _GRPOWNER, 198
CLF_MAKEFCBSTALE, 381
CLF_SPOOLFILE, 218
CLF _SYSPRV, 198
CLF _ VOLOWNER, 198

Cleanup operation
after a failed access attempt, 203
centralizing processing, 199
during a create function, 203
during a deaccess function, 205
during dismount, 137
flushing the quota cache, 210
marking the FCB stale, 381
on a directory, 254
releasing a lock, 333
writing dirty buffers, 189

CLEANUP routine
deleting an FCB, 353
deleting the FCB, 396
during error processing, 301
flushing the quota cache, 210
writing dirty buffers, 189

CLEANUP _FLAGS symbol, 251
CLEAN_QUO_CACHE routine, 210
CLF _DELFILE cleanup flag, 218
CLF _DOSPOOL cleanup flag, 218
CLF GRPOWNER cleanup flag, 198
CLF - MAKEFCBSTALE cleanup flag, 381
CLF =SPOOLFILE cleanup flag, 218
CLF _SYSPRV cleanup flag, 198
CLF _ VOLOWNER cleanup flag, 198

CLOSE_FILE routine, 353, 396
clearing the primary file FCB address,

251
CLS$B_INTEG_LEV field, 29
CLS$B_SECUR_LEV field, 29
CLS$Q.JNTEG_CAT field, 30
CLS~SECUR_CAT field, 29
Cluster

blocking factor, 89
definition of, 13
factor, 127

in the storage bitmap, 64
filler, 69
number left after truncation, 249
representing in the storage bitmap,

171
size field for a volume, 100

Clusterwide locking bit, 101
CODE SIZE symbol, 247
CODE_ADDRESS symbol, 247
Collision

hash buffer descriptors, 167
LBN hash table, 163

Complete file mapped bit, 104
Complex buffer

locating the descriptors, 280
structure of, 279

Complex buffered 1/0, 263
chained, 263

Complex buffered 1/0 bit, 263
Complex buffer packet

See ABD (complex buffer packet)
CONN_QFILE routine, 200, 210

invalidating an FCB, 382
setting the primary file FCB address,

251
Context

interrupt
calling a system blocking AST, 356

primary, 245
saving, 295

re-enterable context area, 251
secondary, 221, 294

cleaning up after, 295
context area, 252
copying attributes, 334

Context
secondary (Cont.)

extending or compressing a
directory, 335

taking out a lock, 333
switching, 302

Context area

411

charging to process working set, 311
context save area, 242, 245, 252

end of, 252
start of, 252

defining variables in, 244
locating the FCB, 374
re-enterable, 245
secondary, 296

CONTEXT_END symbol, 245, 252, 295
CONTEXT_SAVE symbol, 245, 252, 295
CONTEXT_SAVE_END symbol, 245, 252,

295
CONTEXT_START symbol, 244, 245, 251,

295
pointed to by RlO, 292

CONTIN.SYS
See Continuation file
See Standard continuation file

Continuation file
description of, 58
file header

initializing, 92
for a multivolume file, 82
format of, 82

CONTINUE_THREAD routine, 199
as the serialization lock completion

AST, 321
locating, 329
resetting the stack, 300
stalling 1/0, 298

Controller shadowing, 102
Conversion queue, 390
CONV _ACCLOCK routine, 353, 355
Copy operation

extending a contiguous file, 192
COPY_NAME routine, 282
Core image file

description of, 58

412

Core image file (Cont.)
file header

initializing, 92
format of, 81

CORIMG.SYS
See Core image file

Count field, 37
in the ABD, 284
of accessors who have a file locked, 112
of buffer misses, 156
of buffers in the buffer cache, 156
of buffers in the buffer pool, 156
of buffer stalls, 157
of cache serialization calls, 157
of cache serialization stalls, 157
of devices spooled to a volume, 102
of entries in the LBN hash table, 156
of entries in the lock basis hash table,

156
of extent cache entries in use, 178
of FID cache entries present, 181
of in-process buffer hits in the cache,

156
of invalid buffer hits in the cache, 156
of read errors on a block, 83
of read operations, 106
of the ABD, 280
of the bytes in a variable-length record,

54
of the first window pointer, 106
of the second window pointer, 106
of valid buffer hits in the cache, 156
of write errors on a block, 83
of write operations, 106

Create function, 201, 267
and the SAVE_STATUS field, 250
description of, 202
failing, 255
on a directory entry, 212
preventing, 357
triggering a cache flush, 346
updating the index file header, 129
writing attributes, 283
writing or propagating attributes, 213

Create-if access, 334
CREATE routine, 251, 296

invalidating an FCB, 382

CREATE routine (Cont.)
setting the FCH$V _SPOOL bit, 218
setting the primary file FCB address,

251
setting the window address, 252

CREATE_BLOCK routine, 190
CREATE_HEADER routine, 189, 191,

251,383
invalidating the index file FCB, 382

Creation date and time, 30
for a volume, 67
of a fiie, 32
of a journal file, 51

CTL$GL_CCBBASE cell, 140
CTL$GL_FllBXQP cell, 242, 243, 244,

292
CTL$GL_PHD cell, 141
CURRENT_FIB symbol, 252, 284, 293
CURRENT_RVN symbol, 249
CURRENT_RVT symbol, 249
CURRENT_UCB symbol, 218, 248, 249,

293
CURRENT_ VCB symbol, 249
CURRENT_ WINDOW symbol, 252, 293
CURR_LCKINDX symbol, 252, 331, 332
Cylinder number

of a bad block, 78

D
DAL$V _FOREIGN bit, 123
DAL$V _GROUP bit, 123
DAL$V _NOINTERLOCK bit, 123
DAL$V _NOQUOTA bit, 123
DAL$V _NOTFIRST_MNT bit, 123
DAL$V _OVR_PROT bit, 123
DAL$V_OVR_UWNUIC bit, 123
DAL$V _SHADOW _MBR bit, 123
DAL$V _SYSTEM bit, 123
DAL$V _WRITE bit, 123
DAL$W _FLAGS field, 123
Data block, 159

cache
sequence number, 253

in buffer pool, 152, 168
Datacheck error, 220

Data Security Erase
See DSE (Data Security Erase)

Data text entry
format of, 283

DATA....ADDRESS symbol, 247
DATA_SIZE symbol, 247
DC_FLAGS field, 123
DC_FOREIGN bit, 123
DC_GROUP bit, 123
DC_NOINTERLOCK bit, 123
DC_NOQUOTA bit, 123
DC_NOTFIRST_MNT bit, 123
DC_OVR_OWNUIC bit, 123
DC_OVR_PROT bit, 123
DC_OWNER_UIC field, 124
DC_PROTECTION field, 124
DC_SHADOW _MBR bit, 123
DC_SYSTEM bit, 123
DC_ WRITE bit, 123
DDB (device data block), 117
Deaccess function, 201, 267, 353, 355

description of, 205
determining the last accessor, 354
during 1/0 postprocessing, 305
for· the quota file, 353
on a spooled device, 282
on a spool file, 218
on the quota file, 191
pending, 271, 287
setting the FH2$V _BADBLOCK bit,

220
using complex buffered 110, 263
writing attributes, 283
writing or propagating attributes, 213

Deaccess locking enabled bit, 105
DEACCESS routine, 205

invalidating an FCB, 382
DEACC_QFILE routine, 209, 211, 353

setting the primary file FCB address,
251

Deadlock, 330
avoiding during a cache flush function,

384
avoiding while traversing the directory

hierarchy, 334
preventing, 187, 361

Deadlock (Cont.)
resource, 170

413

DEALLOCATE_BAD routine, 189, 221,
296

DECFILEllB format type, 69
Default file protection field, 67
Default window size, 125
Delayed truncation, 354

cancelling, 354
delayed truncation bit, 112

clearing, 355
set, 355

performing, 355
starting VBN field, 113
using a deaccess function, 206

DELETE FID routine, 189
Delete function, 201, 267

and the USER_STATUS field, 250
changing the directory structure, 397
description of, 204
directory, 190
during a create function, 203
marking a file for, 333
on a directory entry, 212
preventing, 357
preventing for a process, 197
prohibiting for a process, 293
with a bad block error, 263

DELETE routine
clearing the directory file FCB, 254
clearing the window address, 252
invalidating an FCB, 382

DELETE_FILE routine, 189, 251
sending a file to the bad block scanner,

220
Descriptor, buffer

See BFRD (buffer descriptor)
Descriptor, buffer lock

See BFRL (buffer lock descriptor)
DEV$V _ALL bit, 118
DEV$V _AVL bit, 139
DEV$V _DMT bit, 139, 145, 286

setting, 307
DEV$V _FOD bit, 139
DEV$V _MNT bit, 139, 145, 287
DEV$V _SWL bit, 145

414

Device
allocating, 118
allocation class device name, 118
blocking factor, 125
characteristics, 118, 119, 139

verifying for an IRP, 271
context, 119, 122
deallocating, 146
deallocating during volume dismount,

308
driver

start I/O routine, 265
foreign

dismounting, 144
I/O, 306
initializing pointers to, 198
locating in the I/O database, 118
spooled, 139, 282

count of, 102
effect on volume dismount, 137

validating, 198
Device database

searching during device-dependent
processing, 27 4

Device driver, 241
accessing queued packets, 258
bad block processing, 80
defining an FDT routine, 270
queuing an IRP on, 266

Device lock, 119, 131
acquiring, 120
demoting, 146, 308
format of, 119
raising during dismount procedure,

145
value block, 122, 128

clearing during volume dismount,
308

, contents of, 123
Diagnostic buffer

address field, 266
allocated bit, 264

Diagnostic privilege, 266
DINDXcache

See Directory index cache

DIOCNT quota
See Direct I/O

000000.DIR, 58
See MFD (master file directory)

DIR$B_FLAGS field, 54
DIR$B_NAMECOUNT field, 54
DIR$C_FID type code, 54
DIR$T_NAME field, 55
DIR$V _TYPE, 54
DIR$W _FID field, 56
DIR$W _SIZE field, 54
DIR$W _ VERLIMIT field, 54
DIR$W _VERSION field; 56
DIRDEFACE

See Directory default protection ACE
Direct I/O

definition of, 263
quota

incrementing during I/O
postprocessing, 305

verifying during I/O processing,
271

transfer byte offset, 264
unlocking pages, 264
using a locked I/O request, 265
using the IRP$L_SVAPI'E field, 264

Directory
accessing, 396
accessing by FCB, 108
block cache, 393

identifying the type of resource
sharing, 238

compressing, 192, 296, 335
marking FCBs stale, 381

concepts, 53 to 57
creating an entry in, 201, 203
data block

flushing, 191
in buffer pool, 152, 168, 188
obtaining buffer credits, 187
validating by the serialization lock,

387
data block cache, 172

flushing, 191
size of, 172

deleting, 254

Directory (Cont.)
deleting an entry in, 201
directory context, 254
directory tree, 397
extending, 296, 335

marking FCBs stale, 381
FCB, 113, 393

clearing, 254
locating, 394
routines that operate on, 395

forced writing
a block, 189
buffer, 189

forcing a window turn, 398
header, 396
hierarchical structure, 330
hierarchy, 56

walking backwards, 330, 334
index block, 396

cell size, 394
flushing, 191
header area, 394
in buffer pool, 152
obtaining buffer credits, 187

index cache, 172
size of, 174

lock basis index, 254
looking up an entry, 172, 201, 204, 237
LRU cache entry limit field, 100
LRU entry bit, 112
marking for deletion, 190
maximum number of versions in, 113
multiblock read operations, 188
multilevel

· and UIC-based protocol, 56
definition of, 56
user file directory, 56

multivolume structure, 57
operating on, 211
preaccess limit, 125
preaccess limit field, 67
reading multiple blocks under one lock,

160
record attributes area, 53
reducing the search time of, 17 4

Directory, (Cont.)
removing an entry from, 204

with a delete function, 204
root directory, 81
scanner routine, 212
serializing access to, 325
specifier, 57
sub-file, 56
top-level, 56
user, 56
use sequence number field, 113
version limit, 53
write accessing, 352
writing, 191

Directory data
block, 159

Directory default protection ACE
contents, 46
format of, 46

Directory entry
contents, 56
creating, 201, 202, 203, 212
deleting, 201, 212
finding, 201
format, 55
information field, 55
locating, 205
looking up, 172, 201, 237
obtai:qing, 212
previous name of, 255
previous version number of, 255
primary, 204
record number of found record, 254
removing, 204

Directory index
block, 159
directory index block

in buffer pool, 168
locating, 396
pointer field, 113

Directory index cache, 168, 393
cache pool

locating, 394

415

identifying the type of resource sharing,
238

number of directories in, 125

416

Directory pathname cache, 393, 397
flushing, 397

Directory record
contents of, 54
format, 53
multiple

and multiple file versions, 56
value field, 55

DIRPOST routine, 305
entering the XQP via IOC$WAKACP,

291
DIR_ACCESS

validating a directory FCB, 395
DIR_ACCESS routine, 334, 396

setting the directory file FCB, 254
DIR_CONTEXT symbol, 254
DIR_ENTRY routine, 282
DIR_FCB symbol, 254
DIR_LCKINDX symbol, 254, 326, 332
DIR_RECORD symbol, 254
DIR_SCAN routine

maintaining the directory entry record
number, 254

preventing unnecessary scans, 396
setting the file ID of the previous file

version, 254
DIR_ VERSION routine, 282
Disable quota file function, 209
Disk

See also Volume
device type field, 65
drive

RX02, 89
RX23, 89
RX33, 89

mounting, 124, 149
mounting clusterwide, 340
rebuilding, 134
serial number field, 77

Disk initialization
See Volume

Disk quota
operations, 207
usage, 134, 182

Disk Quota Utility (DISKQUOTA)
See System Management Utility

(SYSMAN)
Disk rebuild operation

See Rebuild operation
DISMOUNT command

/ABORT qualifier, 140, 141
purpose of, 141
setting up mounted volume

database, 143
/CLUSTER qualifier, 140, 141
/GROUP qualifier, 140, 142
/OVERRIDE=CHECKS, 137
/OVERRIDE qualifier, 140
/SHARE qualifier, 144
/SYSTEM qualifier, 140
triggering a volume dismount, 138

Dismount function, 190, 207
normal, 140, 143

Dismount lock
format of, 139

Dismount operation, 191
improperly performed, 134, 135

Dismount procedure
beginning, 138
clearing the directory sequence number

armed bit, 397
deferred, 307
device-independent dismount

processing, 138, 144
improperly performed, 357
requesting, 137

Dismount Utility (DISMOUNT), 137, 138
dismounting a volume that has devices

spooled to it, 102
DISPATCH

module, 244
routine, 244

DISPATCHER routine, 197, 203, 293, 368
and ACP control functions, 208
checking processing status, 358
during I/O postprocessing, 304
setting the addressing of the current

IRP, 249
Dispatching, 199

exception, 270

Dispatching (Cont.)
FDT, 274
first-level request, 244
identifying the components of, 200
SYS$QIO, 270
XQP, 287

DISPATCH routine, 200, 291
queuing an IRP to the XQP, 197

Dispatch table
driver, 266

DISPAT routine, 200
Distributed lock manager

See Lock management
DMOUNT function

See Dismount function
DMT$ interlock

See Dismount lock
DMT$V _ABORT bit, 141, 143
DMT$V _UNIT bit, 143
Driver

using an FDT routine, 267
Driver dispatch table, 266, 267, 269
Driver queue

cancelling I/O in, 354
inserting the I/O request, 287

DSA disk, 227
and the Bad Block Locator Utility, 81,

89
and the bad block scanner, 220
bad block processing

during volume initialization, 89
manufacturer's bad block descriptor,

77
replacement and caching table, 80
software bad block descriptor, 79

DSA_QUOTA function
See Disable quota file function

DUDRIVER device driver, 80
DUMMY_REC symbol, 211, 255
Dump Utility (DUMP)

accessing extension headers directly,
331,335

DYN$C_ACB type code, 289
DYN$C_AQB type code, 107, 130
DYN$C_BUFIO type code, 279
DYN$C_F11BC type code, 155

DYN$C_FCB type code, 111, 129
DYN$C_IRP type code, 260
DYN$C_MTL type code, 132, 140
DYN$C_RVT type code, 115
DYN$C_ VCA type code, 130
DYN$C_ VCB type code, 98, 129
DYN$C_ WCB type code, 104, 130

E
EFN (event flag number)

in the IRP, 258, 262
validating, 270

Enable quota file function, 209
ENA_QUOTA function

417

See Enable quota file function
Encryption descriptor address field, 266
Encryption key bit, 264
End checksum

header area, 19
software bad block descriptor, 80
storage control block, 76

Enter operation
clearing the directory entry record

number, 254
ENTER routine, 396

saving directory context, 254
updating the directory sequence

number, 397
ENTER_QUO_CACHE routine, 210
Erase after delete bit, 112
Erase-on-delete bit, 100
Erase operation, 188, 265

affecting the highwater mark, 113, 265
Error handling, 303
Error log

recording bad block data, 81
recording dismount procedure, 145
universal sequence number, 266

Error processing, 301
ERR_CLEANUP routine, 189, 206, 294

cleaning up secondary context, 295
unlinking a directory FCB from a

directory index block, 395
Event notification, 303
Examine quota entry function, 209

418

EXA_QUOTA function, 209
Exception

dispatching, 270
Exclusive access bit, 112
EXE$ALLOCIRP routine, 271
EXE$DELPRC routine, 293
EXE$GL_SYSID_LOCK cell, 128
EXE$GL_SYSUCB cell, 142
EXE$INSIOQ routine, 235
EXE$QIO, 270

device-independent processing, 270
writing the IRP$L_DIAGBUF field,

266
EXE$QIOACPPKT routine, 287
EXE$QIODRVPKT routine, 278
EXE$QIO routine, 257

entering the XQP via EXE$QXQPPKT,
291

mapping a function code, 262
writing the access mode, 261
writing the AST parameter, 261
writing the AST routine address, 261
writing the IOSB, 262
writing the PID, 261
writing the process base priority, 262
writing the size of the IRP, 260
writing the UCB address, 261

EXE$QXQPPKT routine, 197, 288
adding a packet to the queue, 290
address of, 289

EXE$RUNDWN routine, 293
Expiration date

and time field, 32
bit, 105
checking, 202
maximum file retention period field, 68
minimum file retention period field, 68

EXQUOTA privilege, 138
Extended file number

using as a lock basis, 165
Extended IRP

address field, 266
IRPE bit, 264

Extend operation, 353
affecting free space, 212
contiguous, 249

Extend operation (Cont.)
copying a contiguous file, 192
ensuring integrity, 14
file, 249
index file, 191, 249
index file header, 191
on a cathedral window, 226
preventing, 357
triggering a cache flush, 346
using a modify function, 205

EXTEND routine
requiring FCBs to be rebuilt, 381
returning user status, 249

EXTEND_CONTIG routine, 189, 209
setting the primary file FCB address,

251
EXTEND_HEADER routine, 251
EXTEND_INDEX routine, 296, 389

clearing user status, 249
setting the primary file FCB address,

251
setting the window address, 252

Extension FCB
address field, 111
building, 202, 210, 226, 382

Extension file identifier field, 23
Extension header, 30, 171, 226

accessing directly, 201, 331, 335
creating, 180, 219, 231
purging buffers for, 334
serializing.access to, 325

Extension linkage
See Multiheader file

Extension segment number field, 22
Extent

allocating, 176
definition, 33
definition of, 176, 222
number of in the extent cache, 177

Extent cache, 134, 175
See also Storage bitmap cache
cache header, 177
deallocating

during dismount procedure, 146
deallocating during volume dismount,

308

Extent cache (Cont.)
definition of, 176
establishing during the mount

procedure, 124
first entry field, 178
flush bit, 176
flushing, 344, 346, 383

during a dismount procedure, 145
format of entry, 178
interlocking, 346
locating from the VCA, 179
lock ID field, 178
pointer field, 176
populating, 383
refilling, 176
serializing access to, 328
size of, 128
triggering a flush, 383
valid bit, 176

F
F11B$a lock

See Arbitration lock
F11B$b lock

See Blocking lock
F11B$c lock

See Cache flush lock
F11B$L_CODEBASE field, 244, 247
F11B$L_CODESIZE field, 244, 247
F11B$L_DISPATCH field, 244, 24 7

specifying the XQP dispatcher address,
197,288

F11B$L_IMPBASE field, 244, 24 7
F11B$L_IMPSIZE field, 244, 24 7
F11B$q lock

See Quota cache lock
F11B$Q_XQPQUEUE field, 242, 244, 247,

292
F11B$v lock

See Volume allocation lock
F11BC$BFRLDBAS field, 156
F11BC$B_SUBTYPE field, 155
F11BC$B_TYPE field, 155
F11BC$K_NUM_POOLS field, 168
F11BC$L_AMBIGQBL field, 156

419

F11BC$L_AMBIGQFL field, 156
F11BC$L_AMBIGQFL queue header, 335
F11BC$L_BFRDBAS field, 156
F11BC$L_BLHSHBAS field, 156
F11BC$L_BUFBASE field, 155
F11BC$L_BUFFER_STALLS field, 157
F11BC$L_BUFSIZE field, 155
F11BC$L_CACHE_SERIAL field, 157
F11BC$L_CACHE_STALLS field, 157
F11BC$L_DISK_READS field, 157
F11BC$L_DISK_ WRITES field, 157
F11BC$L_INVALID_HITS field, 156
F11BC$L_LBNHSHBAS field, 156
F11BC$L_MISSES field, 156
F11BC$L_POOLAVAIL field, 156, 169

extending buffer credits, 188
F11BC$L_POOLAVAIL vector

obtaining buffers, 187
F11BC$L_PROCESS_HITS field, 156
F11BC$L_REALSIZE field, 156
F11BC$L_ VALID_HITS field, 156
F11BC$Q_POOL_LRU field, 156, 168, 169
F11BC$Q_POOL_ WAITQ field, 156
F11BC$Q_POOL_WAITQ vector, 187
F11BC$T_CACHENAME field, 157
F11BC$W _BFRCNT field, 156
F11BC$W _BLHSHCNT field, 156, 165
F11BC$W _FREEBFRL field, 156, 161
F11BC$W _LBNHSHCNT field, 156, 163
F11BC$W _POOLCNT field, 156, 169
F11BC$W _SIZE field, 155
FllBC structure, 151, 153
FllBXQP image, 242, 291

contents of, 244
format of, 243

FAB$B_RTV field, 224
Factory last-track bad block data, 89
FAT$M_NOSPAN bit

and the MFD, 92
FAT$V _NOSPAN bit, 53
FAT$W _VERSIONS field, 53
FCA$L_EXTCACHE field, 176
FCA$L_FIDCACHE field

locating the FID cache, 180
FCB$B_ACCLKMODE field, 111, 352
FCB$B_FID_NMX field, 126

420

FCB$B_FID_RVN field, 126
FCB$B_TYPE field, 111, 129
FCB$C_LENGTH field, 129
FCB$L_ACCLKID field, 113, 352
FCB$L_ACLBL field, 114
FCB$L_ACLFL field, 114
FCB$L_CACHELKID field, 113
FCB$L_DIRINDX field, 113

pointing to a directory index block, 394
FCB$L_EFBLK field, 112
FCB$L_EXFCB field, 111
FCB$L_FCBBL field, 111
FCB$L_FCBFL field, 111
FCB$L_FILEOWNER field, 113
FCB$L_FILESIZE

modifying, 328
FCB$L_FILESIZE field, 112, 126
FCB$L_GRP _PROT field, 113
FCB$L_HDLBN field, 112, 250
FCB$L_HIGHWATER field, 113
FCB$L_HWM_ WAITBL field, 113
FCB$L_HWM_ WAITFL field, 113
FCB$L_LOCKBASIS field, 113
FCB$L_NEWHIGHWATER field, 113
FCB$L_OWN_PROT field, 113
FCB$L_STLBN field, 112
FCB$L_STVBN field, 112
FCB$L_SYS_PROT field, 113
FCB$L_TRUNCVBN field, 113
FCB$L_ WLBL field, 111
FCB$L_ WLFL field, 111
FCB$L_ WOR_FROT field, 114
FCB$Q_ACMODE field, 113
FCB$R_ORB field, 126
FCB$V _BADACL bit, 112
FCB$V _BADBLK bit, 112

setting, 220
FCB$V _DELAYTRNC bit, 112

clearing, 355
FCB$V _DIR bit, 112

setting, 396
FCB$V _ERASE bit, 112
FCB$V _EXCL bit, 112
FCB$V _MARKDEL bit, 112
FCB$V _RMSLOCK bit, 112
FCB$V _SPOOL bit, 112

FCB$V _STALE bit, 112
set by XQP$FCBSTALE, 375
setting, 356

FCB$W _ACNT field, 111
FCB$W _DIRSEQ field, 113

incrementing, 396
FCB$W _FID field, 112
FCB$W _FID_NUM field, 126
FCB$W _HWM_ERASE field, 113
FCB$W _HWM_PARTIAL field, 113, 265
FCB$W _HWM_UPDATE field, 113
FCB$W _LCNT field, 111, 353
FCB$W_QUOSIZE field, 101
FCB$W _REFCNT field, 111

dequeuing the arbitration lock, 308
FCB$W _SEGN field, 112
FCB$W _SIZE field, 111
FCB$W _STATUS field, 112
FCB$W _TCNT field, 112
FCB$W _VERSIONS field, 113
FCB$W _ WCNT field, 111, 353
FOB (file control block), 94

address field, 106
allocating the index file FCB, 129
and the file header, 374
building an extension FCB, 202, 210,

226
constructing, 171
containing the quota file lock basis,

208
creating, 202, 203, 204, 205, 210, 219,

327
deallocating

during dismount, 137
during dismount procedure, 146

deallocating during volume dismount,
308

definition of, 108
deleting, 204, 396
directory, 108, 125, 254, 393

and the directory index cache, 393
deallocating, 302
maintaining, 396
routines that operate on, 395

in a VAXcluster, 108
initializing, 220

FCB (file control block) (Cont.)
invalidating, 352, 354

during normal XQP cleanup, 302
ignoring access interlocks, 382
mechanism, 327
synchronizing access to file system

structures, 200
writing an ACL, 219
XQP$FCBSTALE, 356

invalidating clusterwide, 344
invalidation, 374, 375 to 381, 387
invalid bit, 112
listhead

backward link, 98
forward link, 98

locating, 201
locating a directory, 211
locating the ORB, 219
marking for deletion, 204
primary file FCB address, 251
reading, 396
rebuilding, 226
reference count, 353, 355

dequeuing the arbitration lock, 353
serializing access to, 201, 327
size field, 111
stale bit, 112
threading a window onto, 202

FCB chain
inserting the first element, 129
invalidating, 382
rebuilding, 205
searching, 203, 205, 210, 226
synchronizing access to, 328

FCB listhead
backward link, 111
forward link, 111

FCH$V _BADACL bit, 25
FCH$V _BADBLOCK bit, 25

preventing user modification of, 213
FCH$V.:_CONTIGB bit, 24
FCH$V_CONTIG bit, 25

preventjng user modification of, 213
FCH$V _DIRECTORY bit, 25, 53
FCH$V _ERASE bit, 26
FCH$V _LOCKED bit, 25

421

FCH$V _MARKDEL bit, 25
preventing user modification of, 214

FCH$V_NOBACKUP, 24
FCH$V _NOCHARGE bit, 26

preventing user modification of, 213
FCH$V _READCHECKbit, 24
FCH$V _SPOOL bit, 25

preventing user modification of, 213
FCH$V _ WRITEBACK bit, 24
FCH$V _ WRITECHECK bit, 24
FCP (file control processor)

See File system
FCPDEF.B32

defining per-process symbols, 243
FC_DATASEQ field, 325

validating directory data blocks, 387
FC_HDRSEQ field, 325

validating file headers, 387
FD2$B_EX....FIDNMX field, 23
FD2$B~EX....FIDRVN field, 23
FD2$W _EX._FIDNUM field, 23
FD2$W _EX._FIDSEQ field, 23
FDL attribute FILE WINDOW _SIZE, 224
FDT (function decision table)

dispatching, 274
format of, 268
locating, 27 4
processing, 218

copying user buffers, 278
on a spooled device, 282

processing the IO$_MOUNT function,
131

routine, 267
calculating the byte count of an I/O

transfer, 264
checking volume status, 286
converting a virtual to a physical

transfer, 274
device-dependent processing, 270
exiting, 27 4
filling in an IRP, 258
forcing a window turn, 398
IPL level, 267
mapping a function code, 262
purpose of, 267

422

FDT (function decision table)
routine (Cont.)

writing the IRP$L_EXTEND field,
266

writing the IRP$W _BOFF field,
264

FH2$B_ACC_MODE field, 26
FH2$B_ACOFFSET field, 22
FH2$B_FID_NMX field, 23, 136
FH2$B_FID_RVN field, 23
FH2$B_IDOFFSET field, 22
FH2$B_JOURNAL field, 28
FH2$B_MAP _INUSE field, 26
FH2$B_MPOFFSET field, 22, 126
FH2$B_RSOFFSET field, 22
FH2$B_RU_ACTIVE field, 29
FH2$B_STRUCLEV field, 136
FH2$L_FILECHAR, 53
FH2$L_FILECHAR field, 23 to 26, 213
FH2$L_FILEOWNER field, 26
FH2$L_HIGHWATER field, 29
FH2$R_CLASS_PROT field, 29 to 30
FH2$V _BADBLOCK bit

setting, 220
FH2$V _DIRECTORY bit

and the MFD, 92
FH2$W _BACKLINK field, 28
FH2$W _BK,_FIDNMX field, 28
FH2$W _BK_FIDNUM field, 28
FH2$W _BK_FIDRVN field, 28
FH2$W _BK_FIDSEQ field, 28
FH2$W_CHECKSUM field, 19
FH2$W _EXT_FID field, 23
FH2$W _FID field, 23
FH2$W_FID_NUM field, 23, 136
FH2$W _FID_SEQ field, 23
FH2$W _FILEPROT field, 26 to 28
FH2$W _RECATTR field, 23
FH2$W _SEG_NUM field, 22
FH2$W _STRUCLEV field, 22
Fl2$Q_BAKDATE field, 32
FI2$Q_CREDATE field, 32
Fl2$Q_EXPDATE field, 32
Fl2$Q_REVDATE field, 32
Fl2$T_FILENAME field, 32
FI2$T_FILENAMEXT field, 32
Fl2$W _REVISION field, 32

FIB$L_ACCTL field, 105
FIB$L_ACL_STATUS field, 219
FIB$L_ WCC field, 254
FIB$V _ALLOCATR field, 283
FIB$V_MARKBAD bit, 221
FIB$V _NOCHARGE bit

preventing user modification of, 213
FIB$V _NOLOCK bit, 382

setting, 106
FIB (file information block), 282, 284

copying into the complex buffer packet,
304

returning the file ID, 202
specifying a directory ID, 203, 204

FID$B_NMX field, 18
FID$B_RVN field, 18
FID$C_LENGTH constant, 252
FID$W _NUM field, 18
FID$W _SEQ field, 18
FID cache, 134, 175

deallocating
during dismount procedure, 146

deallocating during volume dismount,
308

definition of, 180
establishing during ~e mount

procedure, 124
filling, 189
first entry field, 181
flush bit, 176
flushing, 344, 346
flushing during dismount procedure,

145
format of, 180
identifying the type of resource sharing,

238
interlocking, 346
locating from the VCA, 181
lock ID field, 181
pointer field, 176
refilling, 171
serializing access to, 328
size of, 128
triggering a flush, 383
valid bit, 176

FID_TO_SPEC routine, 189, 330, 334

FID_TO_SPEC symbol
storing output, 256

File
accessing, 201, 203

controlling with the arbitration
lock, 343, 352

accessing by FCB, 108
allocating extents for, 176
allocation

clusters, 13
arbitrating access to, 352
back link of, 203, 252

matching the directory file ID, 204
translating a file ID via, 334

changing the characteristics of, 201,
205

charging quota for, 203
checking the access to, 202, 205
closing, 189
contiguous, 112
copying to extend contiguously, 192
creating, 176, 180, 202, 250

contiguous, 171
creating a directory entry for, 201, 203
deaccessing, 201, 205
default extend field, 67
default protection field

for the volume, 100
definition of, 16
deleting, 204, 250

a directory entry for, 201
the primary directory entry for,

204
with a bad block error, 219, 263

establishing the maximum number of,
88, 126

expiration date
bit, 105
checking, 202
maximum file retention period

field, 68
minimum file retention period field,

68
extending, 125, 176,203, 249, 353

contiguous, 171, 189, 249
extension length, 100

File (Cont.)
function

completing, 305
ejectcolumn

423

highwater marking, 113, 214, 265
resetting on the bad block file, 221
setting the IRP$V _VIRTUAL bit,

220
updating, 205

installed
effect on volume dismount, 137

looking up in a directory, 172, 201, 237
mapping, 16
marking for deletion, 202, 204, 296,

333
maximum retention period field, 68,

101
metadata, 195
modifying, 205
multiheader, 111

reading multiple blocks under one
lock, 160

multiple versions, 56
multivolume

and the continuation file, 82
number

extended bit, 99
in the LB_BASIS cell, 253

number of open on the volume, 99
opening, 352

effect on volume dismount, 137
reducing the time of, 171

owner UIC, 26, 113
performing delayed truncation on, 352
placement, 133

contiguous, 212
optimizing, 212

previous version of, 203
primary lock basis index, 252
protection code field, 26
record attributes field, 23
remapping, 203

using a remap function, 206
removing a directory entry for, 204
segment number field, 112
sequence number field, 18

424

File, (Cont.)
serializing access to, 325

using a create function, 203
using a deaccess function, 205
using a delete function, 204
using a modify function, 205
using an access function, 201

size, 126
modifying, 328

spool
deaccessing, 218
processing, 218

spooled, 213
statistics, 44
structure, 17 to 20
temporary, 202; 203
truncating, 190, 249, 353, 354

during a modify operation, 355
version limit field, 54
without a directory entry, 218

File access count field, 111
File ACP 110 bit, 264
File allocation

and mapping, 16
dense, 16
map area, 33
retrieval pointer formats, 33 to 37
sparse, 16

File attributes
changing, 344
handling, 213
modifying, 205
placing in SAVE_STATUS, 250
processing, 283
propagating, 203
reading, 202, 219
writing, 201, 203, 205

using a deaccess function, 206
File characteristics field, 23 to 26
File control processor

See File system
File function, 304
File header, 195, 325

ACL area, 37 to 48
writing, 219

address of current, 251

File header (Cont.)
and file ID, 17
available, 180
bad block bit, 220
block

in buffer pool, 152, 168
obtaining buffer credits, 187

buffer pool, 187
cdche, 171

increasing performance, 172
sequence number, 253
size of, 171

chain
updating, 205

checksum, 136, 188
copying during a truncate function, 190
creating, 190, 203
current lock index, 252
description of, 18
extension, 171
failing to find a free, 383
failing to read, 190
for a multivolume file, 53
forced writing, 189
header area, 20
ident area, 30
including an ACL, 203
index file

modifying, 191
invalid, 136
LBN of last read, 250
locating by FCB, 108
location of, 71
map area, 32
marking for deletion, 204
minimum number of preallocated, 88
modifying, 381
pending bad block file, 189
reading, 200, 202, 204, 333
recording a bad block error, 263
rules for validity, 19
serializing access to, 325
starting LBN of, 112
unused, 190
user-reserved area, 52
valid, 136
validated by the serialization lock, 387

File header (Cont.)
writing, 200, 334

to disk, 203
File header cache

sequence number, 253
File highwater mark field, 29
File ID

allocating, 180, 342
back link pointer, 28
caching, 180
directory entry, 55
extension header, 23
field

in a pending bad block log record,
83

file header, 17
file identifier field, 23, 112
file number, 18, 136
file number extension, 18
file sequence number, 18, 136
format, 17
in a directory entry, 56
in the directory pathname cache, 397
multiheader file, 52
of a superseded file, 255
of the previous file version, 254
relative volume number, 18
returning after a directory search, 212
unrecorded, 250
unused, 171
using as a lock basis, 159, 161, 165

File ID cache
See FID cache

File identification
See Ident area

File identifier
See File ID

File ID field
in the FCB, 112

File name, 32
buffer, 282
extension field, 32
length field, 54
string, 282

descriptor, 282
string field, 55
user notification AST routine, 256

File number
extension field, 18
field, 18
high order, 126
in the cache flush lock name, 345
in the volume lock name, 343
low order, 126

File number cache
See FID cache

File protection code field, 28
File specification

length of, 256
storage of, 256

File system
balancing resources, 235
definition, 13
directory hierarchy, 56
dismounting a volume, 138
evolution, 4
in a VAXcluster, 5
performance, 235, 237

with caching enabled, 236
setting context, 131
tasks, 3
user interface, 6

FILE_HEADER symbol, 251
FILE_SPEC_LEN symbol, 256
FILL_FCB routine, 250

425

setting the FCB$V_SPOOL bit, 218
Final delivery mode bit, 289
FIND routine, 203

maintaining the directory entry record
number, 254

FIND BUFFER routine, 335, 388
FINIS-H_REQUEST routine, 305, 358,

359
First I/O status longword field, 265
Fixed overhead area

of the buffer cache, 151
F JN$V _AIJNL bit, 28
FJN$V_ATJNL bit, 28
FJN$V_BIJNL bit, 28
FJN$V_JOURNAL_FILE bit, 29
FJN$V_NEVER_RU bit, 29
FJN$V_ONLY_RU bit, 28
FJN$V _RUJNL bit, 28

426

Flags field
in a directory record, 54
in a pending bad block log record, 83
in the VCB

for a controller shadowing rebuild
operation, 102

journal control, 28
of an application ACE, 44
ofBBD, 77
ofBFRD, 159
of device lock value block, 123
ofVCA, 176

FLUSH_QUO_CACHE routine, 210, 370
FM2$B_COUNT1 field, 35
FM2$L_LBN2 field, 36
FM2$L_LBN3 field, 37
FM2$V_COUNT2 field, 36, 37
FM2$V _EXACT bit, 34
FM2$V _HIGHLBN field, 35
FM2$V _LBN bit, 34
FM2$V _ONCYL bit, 34
FM2$V _RVN bit, 34
FM2$W _LOWCOUNT field, 37
FM2$W _LOWLBN field, 35
Forced write operation, 189, 202

on quota file buffer blocks, 209
FORCE_MV function

See Mount verification function
Format error, 220
Format type field, 69
Fragmentation

volume, 171
Frame pointer, 197

restoring, 300, 306
saving, 247
saving the XQP frame pointer, 247

Free buffer lock descriptor field, 156
index into, 161

Free space
allocating, 342
controlling the amount of, 383
dividing among VAXcluster members,

383
managing, 212
requesting while extending a file, 346
sharing, 356

FREE_QUOTA symbol, 255
FULL_FILE_SPEC symbol, 256
Function code bit, 262
Function decision table

See FDT
Function modifier

IO$M_ACCESS, 201, 202
I0$M_CREATE, 201, 202
IO$M_DELETE, 202, 204
IO$V _CREATE, 203

Function modifier bit, 262

G
GET_FACTBAD routine, 89
GET_FIB routine, 252, 282

clearing the FIB$V _NOCHARGE bit,
213

clearing the primary file FCB address,
251

clearing the window address, 252
setting the FIB$L_ACL_STATUS field,

219
GET_LOC routine, 252, 296
GET_LOC_ATTR routine, 283
GET_REQD_BFR_CREDITS, 199
GET_REQD_BFR_CREDITS routine, 251,

294
GET_REQUEST routine, 197, 248, 252,

293
setting the address of the current RVN,

249
setting the address of the current RVT,

249
setting the address of the current UCB,

249
setting the address of the current VCB,

249
setting the primary file FCB address,

251
setting the window address, 252
writing the IRP$L_UCB field, 218
zeroing the window pointer, 282

GET_SOFTBAD routine, 89
GET_USERBAD routine, 90
GET_ VOLUME_LOCK routine, 315

GET_ VOLUME_LOCK,_NAME routine,
315

Global section, 242
Granted queue, 390
Group mount, 140
Group mount bit, 99, 123
Group protection field, 113
GRPNAM privilege

for volume dismount, 142
GRPPRV privilege, 198

Hash chain, 165
of BFRDs, 163

H

Hash function, 163, 165
Hash table

base address field, 156
buffer LBN, 152
definition of, 163
entry count field, 156
LBN

layout of, 163
lock basis, 152, 165

entry count field, 156
index into, 161
layout of, 165

pointing to entries, 163
size of, 163, 165

Header
cache, 150, 153
directory, 396
extension

purging buffers for, 334
Header area

contents, 22 to 30
location of, 20
of a directory index block, 394

Header block
See File header

Header chain
rebuilding after FCB invalidation, 387

HEADER_LBN symbol, 250
High order LBN field

and retrieval pointer format 1, 35
Highwater marking, 113, 265

disabled bit, 101

427

Highwater marking (Cont.)
protecting against disk scavenging, 214
resetting on the bad block file, 221
setting the IRP$V _VIRTUAL bit, 220
updating, 205

Highwater marking bit, 66
Hit rate

count field, 156
HM2$B_LRU_LIM field, 67
HM2$B_ WINDOW field, 67
HM2$L_ALHOMELBN field, 64, 125
HM2$L_ALTIDXLBN field, 64
HM2$L_HOMELBN field, 64
HM2$L_IBMAPLBN field, 65, 71
HM2$L_MAXFILES field, 65
HM2$L_SERIALNUM field, 68, 125
HM2$L_ VOLOWNER field, 66, 88, 124
HM2$Q_CREDATE field, 67

setting during volume initialization, 92
HM2$Q_RETAINMAX field, 68
HM2$Q_RETAINMIN field, 68
HM2$Q_REVDATE field, 68
HM2$R_MAX_CLASS field, 68
HM2$R_MIN_CLASS field, 68
HM2$T_FORMAT field, 69
HM2$T_OWNERNAME field, 69
HM2$T_STRUCNAME field, 133, 134
HM2$T_STRUCNAMES field, 69
HM2$T_STRUCTNAME field, 124
HM2$T_ VOLNAME field, 69
HM2$V _ERASE bit, 66, 125

setting during a data security erase, 91
HM2$V _NOHIGHWATER, 66
HM2$V _NOHIGHWATER bit, 125
HM2$V _READCHECK bit, 66
HM2$V _ WRITECHECK bit, 66
HM2$W _ALHOMEVBN field, 65
HM2$W _ALTIDXVBN field, 65
HM2$W _CHECKSUM1 field, 67
HM2$W _CHECKSUM2 field, 69
HM2$W _CLUSTER field, 64
HM2$W _DEVTYPE field, 65
HM2$W _EXTEND field, 67, 125
HM2$W _FILEPROT field, 67
HM2$W _HOMEVBN field, 65
HM2$W _IBMAPSIZE field, 65, 71

428

HM2$W _IBMAPVBN field, 65
HM2$W _PROTECT field, 67
HM2$W _RESFILES field, 65
HM2$W _RVN field, 66, 133, 134
HM2$W _SETCOUNT field, 66
HM2$W _STRUCLEV field, 64
HM2$W _ VOLCHAR field, 66
Home block

allocating storage for, 91
alternate, 99
backup

VBN field, 65
contents, 64 to 69
definition of, 14
format, 62 to 64
initializing, 92
LBN field, 64
primary, 125
search sequence, 61, 70, 91
updating for a volume set, 134
VBN field, 65

110
buffered, 263, 305

definition of, 263
incrementing the process byte

count quota, 264
read function, 265
system buffer size, 264
using the IRP$L_SVAPTE field,

264
chained buffered 110, 263
chained complex buffered 1/0, 263
channel, 197
completion, 287

status, 199
synchronizing, 270

complex buffered 110, 263
direct

definition of, 263
transfer byte offset, 264
unlocking pages, 264
using a locked 1/0 request, 265
using the IRP$L_SVAPTE field,

264

110 (Cont.)
driver, 306
error processing, 219, 220

datacheck error, 220
format error, 220
parity error, 220

file ACP 110, 264
function code, 258, 267

identifying in the FDT, 268
in the FDT, 267
in the IRP, 261
validating, 271
verifying for an IRP, 271

improving performance, 393
locked, 265
long virtual 110, 263
outstanding, 287
pager 110, 263
physical 110, 264
request

aborting, 271
getting next from the XQP queue,

197
physical, 27 4
validating, 198, 270
virtual, 263

resuming, 199
stalling, 170, 199
swapper 110, 263, 264
terminal 110, 264
transaction sequence number field, 266
transfer buffer, 264
transfer request, 274
traveling from the user to the XQP,

196
virtual 110, 263

110 buffer
See Buffer

110 database, 117, 195, 258
allocating structures in, 129
and the Mount Utility, 93, 116
locating the buffer cache, 150
locking, 307
mutex, 140, 141, 143
scanning, 143
structures in, 94

INIT_FCP routine, 242
initializing the XQP channel, 248

INIT VOLUME routine, 87
In-pr~cess buffer hit count field, 156
In-process queue

backward link, 159
finding a BFRD, 158
flushing buffers on, 191
forward link, 159
inserting a buffer on, 169
invalidating a buffer, 190
locating a buffer, 189
removing a buffer from, 189
scanning, 392

INSQUE instruction, 329
Interlock

access, 382
cache, 346

releasing, 329
Interprocess communication, 339
Interrupt

allowing, 227
IOPOST software, 304, 306
protecting against with a spin lock, 313

Interrupt priority level
See IPL (interrupt priority level)

INVALIDATE routine, 190
Invalidation

buffer, 189, 190, 191
cache, 189, 391, 394
FCB, 327,344,352,354,356,374,375

to 381, 381, 382
FCB chain, 382
file header, 190
of cached buffers by users, 398
WCB, 354

Invalid buffer
cache hit field, 156

IO$M_ACCESS function modifier, 135,
201,202

IO$M_CREATE function modifier, 201,
202,203

IO$M_DELETE function modifier, 202,
204

IO$_ACCESS function, 135
See Access function

IO$_ACPCONTROL function, 135
See ACP control function

IO$_AVAILABLE function, 307
IO$_CREATE function

See Create function
IO$_DEACCESS function, 135

See Deaccess function
IO$_FORMAT function, 89
IO$_MODIFY function

See Modify function
IO$_MOUNT function

See Mount procedure
IO$_PACKACK function, 88
IO$_READPBLK function, 225
IO$_ UNLOAD function, 307
10$_ WRITEPBLK function, 225
IOC$BUFPOST routine, 305
IOC$CVTLOGPHY routine, 235
IOC$DALLOC_DMT routine, 308
IOC$DISMOUNT routine, 138, 144
IOC$GL_AQBLIST cell, 130
IOC$GL_MUTEX, 130, 140
IOC$GL_PSFL cell

431

linking IRPs for completion processing,
266

IOC$GL_PSFL global cell, 307
IOC$GQ_MOUNTLST cell, 141
IOC$INITIATE routine, 265
IOC$IOPOST

using the IRP$L_OBCNT field, 265
IOC$IOPOST routine

entering the XQP via IOC$WAKACP,
291

reading the IRP$L_EXTEND field, 266
using the IRP$L_ABCNT field, 265
writing the IRP$L_SEGVBN field, 265

IOC$MAPVBLK routine, 226, 227, 328
IOC$REQCOM routine, 306
IOC$VERIFYCHAN routine, 293
IOC$V _ALLOC flag, 118
IOC$WAKACP routine, 287

starting the XQP, 290
IOCIOPOST module, 278, 287, 304
IOPOST routine

handling I/O error processing, 220
IOPOST software interrupt, 306

432

IOSB (1/0 status block), 249, 270
address of, 259
verifying during 1/0 preprocessing, 271
writing during 1/0 postprocessing, 305

IOSB address field, 262
IO_CCB symbol, 248
IO_CHANNEL symbQl, 248
IO_DONE routine, 282, 304, 305

clearing the file name return length,
282

IO_PACKET symbol, 249
IO_STATUS symbol, 249
IPL (interrupt priority level), 5

IOL$_IOPOST, 306
IPL$....ASTDEL

allowing page faults, 143
calling EXE$QIOACPPKT, 288
preventing AST delivery, 267
preventing process deletion, 271

IPL$_SCHED
protecting a directory FCB, 394

IPL$_SYNCH, 285, 359
protecting the 1/0 database, 143
synchronizing to allocate memory,

271
lowering to allow process deletion, 199
protecting against interrupts, 313

IRP$B_CARCON field
See IRP$L_IOST2 field

IRP$B_EFN field, 262
IRP$B_FRI field, 262
IRP$B_RMOD field, 261, 280
IRP$B_TYPE field, 260
IRP$L__ABCNT field, 265
IRP$L__ARB field, 266
IRP$L....AST field, 261
IRP$L_ASTPRM field, 261
IRP$L_BCNT field, 235, 264, 280

number of ABD descriptors, 285
setting, 283
setting to. ABD$C....ATTRIB, 304
using with the IRP$W _BOFF field, 264

IRP$L_BOFF field, 285
IRP$L_DIAGBUF field, 266
IRP$L_EXTEND field, 266
IRP$L_IOQBL field, 260

IRP$L_IOQFL field, 260
IRP$L_IOSB field, 262
IRP$L_IOST1 field, 265

and bad block processing, 220
IRP$L_IOST2 field, 265
IRP$L_KEYDESC field, 266
IRP$L_MEDIA field, 249, 285, 287, 304

See IRP$L_IOST1 field
setting to a spooled device UCB, 218

IRP$L_OBCNT field, 265
IRP$L_PID field, 261
IRP$L_SEGVBN field, 265
IRP$L_SEQNUM field, 266
IRP$L_SVAPTE bit, 264
IRP$L_SVAPTE field

address of an AIB, 278
locating the complex buffer packet, 280
using with the.IRP$W_BOFF field, 264

IRP$L_UCB field, 218, 261, 287
IRP$L_ WIND field, 261, 293
IRP$V _BUFIO bit, 263
IRP$V _CHAINED bit, 263
IRP$V _COMPLX bit, 263, 280, 285, 294
IRP$V _DIAGBUG bit, 264
IRP$V _END_PAST_HWM bit, 265
IRP$V _ERASE bit, 265
IRP$V _EXTEND bit, 264

using with the IRP$L_EXTEND field,
266

IRP$V _FCODE bit, 262
IRP$V _FCODE field

obtaining the file system function code,
294

IRP$V _FILACP bit, 264, 285
IRP$V _FMOD bit, 262
IRP$V _FUNC bit, 263

setting, 304
IRP$V _KEY bit, 264
IRP$V _LCKIO bit, 265
IRP$V _MBXIO bit, 264
IRP$V _MODE bit, 261
IRP$V _MVIRP bit, 264
IRP$V _PAGIO bit, 263
IRP$V _PART_HWM bit, 113, 265
IRP$V _PHYSIO bit, 264
IRP$V _SRVIO bit, 264

IRP$V _START_PAST_HWM bit, 265
IRP$V _SWAPIO bit, 264
IRP$V _TERMIO bit, 264
IRP$V _VIRTUAL bit, 234, 263, 285
IRP$W _BOFF field, 264
IRP$W _CHAN field, 262
IRP$W _FUNC field, 261
IRP$W _SIZE field, 260
IRP$W _STS2 field, 265
IRP$W _STS field, 262

setting IRP$V _FUNC bit, 304
IRP (110 request packet), 106, 244

allocating, 271
as an AST parameter, 197
CDRP extension to, 329
CDRP portion, 251
contents of, 260
current address, 249
deallocating, 305
definition of, 257
driver-dependent part, 27 4
format of, 259
getting the next from the XQP queue,

197
linking, 266
number of in the ACP queue, 99
on the ambiguity queue, 335
queueing, 187
queue listhead

backward link, 107
forward link, 107

queuing to the driver's start 1/0
routine, 227

queuing to the XQP, 197
removing from the head of the queue,

329
using as an ACB, 261, 266
validating, 198

IRPE
See Extended IRP

IRP mode subfield bit, 261
IRP status field

first, 262
second, 265

J
JIB$L_MTLFL field, 140, 143
Job controller, 218, 282
Job mounted volume list, 140
Journal file

storing information in an ACE, 48
volume name of, 51

length, 51

K
Kernel-mode AST, 287, 288, 290

entering the XQP, 196

433

queuing to the swapper, 358
queuing to the XQP dispatcher, 288
special, 261, 287, 306

posting 1/0 completion, 305
with buffered 1/0, 263

Kernel-mode transfer address field, 289
Kernel stack

description of, 243
restoring original limits, 306
saving, 247
XQP private kernel stack, 293, 296

Key field, 48
KEYIDACE

See Identifier ACE
KILL_BUFFERS routine

invalidating buffers, 398
returning quota file buffers, 211
unhooking a buffer descriptor, 396

KILL_CACHE routine
unhooking a buffer descriptor, 396

KILL_DINDX routine
unlinking a directory FCB from a

directory index block, 395

L
Last-track bad block data, 89
LBN (logical block number)

and file mapping, 16
calling with a value of -1, 190
changing, 191
definition, 13
of buffer field, 159
specifying placement, 252

434

LBN field
in a bad block descriptor retrieval

pointer, 80
in a pending bad block log record, 83
in retrieval pointer format 1, 35
in retrieval pointer format 2, 36
in retrieval pointer format 3, 37
of a buffer, 159
of a map pointer, 227
of index file bitmap

filling in, 125
of the alternate home block, 64
of the alternate index file header, 99
of the backup index file header, 64
of the first window pointer, 106
of the home block, 64
of the index file bitmap, 65, 99
of the second window pointer, 106
of the volume alternate home block, 99
of the volume home block, 99

LBN hash table, 152
base field, 156
definition of, 163
entry count field, 156
layout of, 163

LB_BASIS symbol, 253, 331
LB_DATASEQ symbol, 253, 388

validating a directory index block, 394
LB_HDRSEQ symbol, 253, 388

validating a directory index block, 394
LB_LOCKID symbol, 253, 326
LB_OLDDATASEQ symbol, 254
LB_OLDHDRSEQ symbol, 253
Least recently used

See LRU (least recently used)
LIB$GET_VM

allocating memory for 1/0 buffers, 135
LNMB$L_TABLE field, 142
LNMTH$L_ORB field, 142
LOADERAPAT system parameter, 90
LOCAL_,ARB symbol, 255
LOCAL_FIB, 252
LOCAL_FIB symbol, 255, 282, 284

Lock
access count, 354
accessing, 161
arbitration

and SYS$GETLKI, 354
during a modify function, 205

associating with a buffer, 390
blocking

and XQP$BLOCK_ROUTINE, 357
blocking lock

acquiring to write access file
structure files, 398

dequeuing during volume
dismount, 308

lock ID, 115, 248, 359
controller shadowing rebuild

synchronization lock, 102
dequeuing during dismount procedure,

146
device lock, 119

acquiring, 120
demoting, 308

guaranteeing atomic operations, 386
hierarchy, 311, 341, 342
index, 332
mount lock, 118

acquiring, 120
name

of volume set, 115
null lock

system-owned, 160
parent, 342
process-owned, 341
quota cache entry lock, 183
quota cache lock, 183
releasing, 200
serialization

modifying the FCB, 328
serialization lock

format of, 320
lock ID, 253
purpose of, 320
sequence number, 191

shadow lock
dequeuing, 308

spin
modifying the FCB chain, 328

spin lock, 313
structure

dequeuing, 308
system-owned, 313, 341, 390

arming, 356
validating a cached copy of a disk block,

390
vollume allocation lock

dequeuing during volume
dismount, 308

volume allocation lock, 171
releasing, 250

Lock basis, 152
checking for the correct, 333
constructing, 126, 253
establishing, 130
for an FCB, 113
ID field

of a BFRD, 159
of a BFRL, 161

of a serialization lock, 331
serializing on the wrong lock basis,

201,335
using the same for multiple buffers,

390
Lock basis hash table, 152, 165

base address field, 156
definition of, 163
entry count field, 156
index into, 161
layout of, 165

Lock block, 390
Lock descriptor

See BFRL
Locked I/O request, 265
LOCKERS routine, 200
Lock ID

of buffer lock, 161
of the access lock, 113
of the blocking lock, 115, 248, 357, 359
of the cache interlock, 113
of the device lock, 122
of the volume allocation lock, 101, 161,

165

Lock ID (Cont.)
of the volume set lock, 115

Lock management
conventions, 312
handling livelock, 118
in a VAXcluster, 341
locality of use, 343, 347

435

local mastering of the volume allocation
lock, 128

preventing deadlocks, 330
purpose, 313
synchronizing access, 200

Lock mode, 341
access and sharing combinations, 311
during the mount procedure, 118

Lock resource name
See Resource, name

Lock state
during a lock volume function, 361 to

368
during FCB invalidation, 377, 379, 381

Lock status block, 183
of quota cache entry, 184

Lock value block
See also Value block
of a device, 122

contents of, 123
Lock volume function, 206, 357, 358, 361
LOCK_COUNT routine, 354
LOCK_ VOL function

See Lock volume function
LOC_LBN symbol, 252
LOC_RVN symbol, 252
Logical block

definition, 13
definition of, 16

Logical block number
See LBN (logical block number)

Logical name
allocating space for entries, 130
deallocating, 144
for a volume, 132, 142

creating, 131
Long virtual I/O, 263
Lookaside list, 271
Lookup operation, 172, 195, 201, 204, 237

436

LRU (least recently used)
algorithm to replace buffers, 168
buffer pool queue header field, 156,

168, 169
cache, 149
counter, 209

field, 184
in the quota cache header, 183

directory limit, 125
index

into quota cache, 183, 185
updating, 210

managing the BFR_LIST vector, 188
queue

backward link, 159
forward link, 159
locating a free BFRD, 158

replacement
in the quota cache, 210

tracking buffers in the cache, 390
writing LRU buffers to disk, 248

L_DATA_END symbol, 245, 255
L_DATA_START symbol, 245, 24 7

M
Mailbox

bad block, 220
buffered read bit, 264
for bad block processing, 242

MAIN_BAD routine, 221
MAKE_ACCESS routine

creating a window .to a file, 202
restoring the window pointer, 282
setting the write turn bit, 398

MAKE_DEACCESS routine, 353
releasing the cache flush lock, 398

MAKE_DIRINDX routine, 395, 396
MAKE_DISK_MOUNT routine, 129

allocating the quota cache, 209
MAKE_DISMOUNT routine, 139
MAKE_FCB_STALE routine, 375
Manufacturer's bad block descriptor

contents of, 77
description of, 77
format of, 77
sectors available for, 78

Manufacturer-supplied format, 77
See also Factory last-track bad block

data
Map area, 126

definition of, 32
offset field, 22
overflowing a file header, 219
retrieval pointers, 32 to 37, 126, 127
zeroing during a truncate function, 190

Mapped virtual transfer function, 276
Mapping failure, 226

detecting, 267
total, 276

Mapping information, 226
sufficient, 276
translating virtual blocks to physical

disk addresses, 274
Map pointer

See Retrieval pointer
Map words

available field, 80
in use field, 79

Map words in use field, 26
MAP_ VBN routine, 225
MAP_ WINDOW routine, 226
MARKBAD_FCB routine, 220
MARKDEL_FCB routine

invalidating an FCB, 381
Marked for deletion bit, 112
MARK_DELETE routine, 189, 353

clearing the primary file FCB address,
251

invalidating an FCB, 382
setting the primary file FCB address,

251
unlinking a directory FCB from a

directory index block, 396
Master file directory

See MFD (master file directory)
MATCHING_ACE symbol, 256
Media

serial number field, 68
Memory

dynamic, 94
memory management subsystem, 237

Memory (Cont.)
size of allocated for the buffer cache,

156
Metadata, 195, 235, 374
MFD (master file directory)

allocating storage for, 91
description of, 58
format of, 81
header

initializing, 92
in a multilevel directory structure, 56
in a multivolume directory structure,

57
writing records into, 92

Minimum file retention period field, 101
Modify function, 201, 205, 267

allowing a truncate operation, 355
writing attributes, 283
writing or propagating attributes, 213

Modify quota entry function, 209
MODIFY routine, 355

clearing the primary file FCB address,
251

clearing the window address, 252
invalidating an FCB, 382
setting the primary file FCB address,

251
MOD_QUOTA function, 209
MOU$ interlock

See Moilnt lock
Mount

context, 122
group, 140
private, 117, 118, 140
shared, 117
system, 140
time field, 101

MOUNT command, 116, 195
/ACCESS qualifier, 125
/BIND command, 134
/BIND qualifier, 124, 133
/CACHE=WR1TETHROUGH qualifier,

126
/CLUSTER qualifier, .117
/EXTEND qualifier, 125
/FOREIGN qualifier, 123, 286

437

MOUNT command (Cont.)
/GROUP qualifier, 99, 117, 123, 125,

131
/NOCACHE qualifier, 126, 191
/NOQUOTA qualfier, 182
/NOSHARE qualifier, 127, 131, 343

constructing the resource name,
314

/OWNER_UIC qualiner, 130
/PROCESSOR=SAME qualifier, 149
/PROCESSOR=UNIQUE qualifier, 149
/lIBBUILD qualifier, 134
/SHARE qualfier, 131
/SHARE qualifier, 117
/SYSTEM qualifier, 99, 117, 123, 125,

131
/WINDOW qualifier, 125, 126
/WINDOWS qualifier, 224

Mount count
field, 100

decrementing, 144
incrementing, 118
initializing, 125, 130

Mounted foreign bit, 123
Mounted volume database

data structures in, 143
local

setting up, 143
Mounted volume list

allocating space for entries, 130
job, 140
location of, 143
process, 131, 140, 141
searching for a private mount, 140
system, 131, 141

Mounted volume list entry
See MTL (mounted volume list entry)

MOUNT facility, 87
Mount function, 267

See also Mount procedure
as part of the mount procedure, 206

Mount interlock
See Mount lock

438

Mount list entry
See MTL (mounted volume list entry)

Mount lock, 118
acquiring, 120
format of, 118

Mount procedure
arming a system-owned lock, 356
mounting a disk clusterwide, 340
preventing duplicate mounted volumes,

342
setting file system context, 131
stalling to rebuild volume structures,

357
taking out the volume allocation lock,

315
updating the directory sequence

number, 397
Mount Utility (MOUNT), 116

and the I/O database, 93, 116
creating the buffer cache, 149
using the volume allocation lock, 342
using the volume allocation lock value

block, 122
using the volume name, 314

Mount verification, 190
bit, 144
canceling, 141
disabling, 144
field, 100
function, 206, 207
IRP bit, 264
server I/O bit, 264

MOUNT_DISK2 routine, 124
MOUNT_ VOLUME routine, 117
MOVE_MTL routine, 143
MTL$B_STATUS field, 132
MTL$B_TYPE field, 132, 140
MTL$L_LOGNAME field, 132, 142
MTL$L_MTLBL field, 132
MTL$L_MTLFL field, 132
MTL$L_UCB field, 132, 140
MTL$V _ VOLST bit, 132
MTL$W _SIZE field, 132
MTL (mounted volume list entry)

allocating space for, 130
backward pointer field, 132

MTL (mounted volume list entry) (Cont.)
deallocating, 144
definition of, 131
failing to find during volume dismount,

141
format of, 131
forward pointer field, 132
on system mounted volume list, 142

Multiblock read operation, 188
on buffer pool, 168

Multiheader file, 111
description of, 52
reading multiple biocks under one lock,

160
Multivolume file

definition, 53
Mutex

I/O database, 130, 140, 141, 143
logical name, 142

N
Nallie string descriptor, 304
NETACP

using chained complex buffered I/O,
263

NEW _ACCESS_LOCK routine, 353
NEW _FID symbol, 250
NEW_FID_RVN symbol, 250
Noallocation bit, 99

preventing file system activity, 361
Nonpaged pool, 358, 374

allocating an IRP, 271
allocati11g I/O database structures, 129
allocating the function decision table,

267
allocating the IRP, 258
allocating the quota cache, 182
allocati11g the RVT, 132
locating the extent cache, 176
locating the user buffer, 263
locating the VCB, 175

Nonshared mount bit, 101
Nonstandard file system access bit, 104
Nontrlinsfer request, 241, 274
NOTIFY_AS'i'_ADDR symbol, 256
NOTIFY_NAME_LEN symbol, 256

NOTIFY_NAME_TXT symbol, 256
Not the first time mounted bit, 123
NUKE_HEAD_FCB routine, 353
Null lock

system-owned, 160
Null process

PCB of, 143
Number field

maximum
of files, 65, 126
of files allowed on a volume, 100
of versions in a directory, 113

of allocated quota cache entries, 184
of available buffers in the buffer pool,

156
of blocks in the extent cache, 178
of buffer pools, 168
of buffers in the buffer cache, 156
of buffers in the buffer pool, 156
of buffers represented by a lock, 161
of buffer stalls, 157
of cache serialization calls, 157
of cache serialization stalls, 157
of cylinders, 73
of entries in the LBN hash table, 156
of entries in the lock basis hash table,

156
of extent cache entries allocated, 178
of extent cache entries in use, 178
of FID cache entries allocated, 181
of FID cache entries present, 181
of free blocks on the volume, 319
of read operations from disk to buffer,

157
of reserved files, 65
of reserved files on volume field, 100
of retrieval pointers, 106
of total extent cache blocks, 178
of volumes, 66
of volumes in a volume set, 115
of write operations from buffer to disk,

157

0
OLD_ VERSION_FID symbol, 254

Open operation, 352
reducing the time of, 171
using the file header, 195

OPEN_FILE
setting the window address, 252

OPEN_FILE routine, 189, 334, 388
invalidating an FCB, 382

439

setting the primary file FCB address,
251

ORB (object rights block), 126
determining volume ownership, 141
establishing, 129
initializing the ACL fields, 129
locating the ACL queue, 219

Original transfer byte count field, 265
Overdrawn quota bit, 104
Override protection bit, 123
Override volume ownership bit, 123
Owner protection field, 113

p
Pl space

See Process control space
Pack acknowledgement function, 88
PADDING_O symbol, 255
Paged pool

allocating buffers, 163
locating cache structures, 153
locating the directory index cache, 172
locating the 110 buffer cache, 149
locating the mounted volume list, 143

Page fault, 143
for global valid pages, 242
prevented by IPL$_SYNCH, 143

Page file
effect on volume dismount, 137

Pager 110, 263
Pager 110 bit, 263
Parent lock ID field, 161, 165
Parity error, 220
PARSE_NAME, 282
PARSE_NAME routine, 282
Pathname cache, 397

flushing, 397
PBB$B_COUNT field, 83

440

PBB$B_FLAGS field, 83
PBB$L_LBN field, 83
PBB$L_ VBN field, 83
PBB$V _RE.ADERR bit, 83
PBB$V _ WRITERR bit, 83
PBB$W _FID field, 83
PCB$B_DPC field

incrementing, 293
PCB$L_ASTQBL field, 289
PCB$L_ASTQFL field, 289
PCB$L_JIB field, 140
PCB$L_UIC field, 124, 141
PCB$V _SSRWAIT bit

and I/O quota, 271
PCB$W _ASTCNT field

decrementing during I/O processing,
272

Pending bad block log file, 296
description of, 59
file header

initializing, 92
Pending bad.block log file header, 189
Pending bad block log record

contents, 83
format of, 83

Pending I/O, 293
canceling, 141
during I/O processing, 271

Pending write errors count field, 101
Performance

degrading with large ACLs, 219
disabling caching, 235
enabling caching, 236
improving, 393
improving with caching, 237
monitoring

initializing, 198
PMS symbols, 256 to 257
resuming, 300
starting, 293
stopping, 299, 304

optimizing, 212
optimizing by retaining FCBs for

recently used directories, 108
optimizing file placement, 212

PERFORM_AUDIT routine, 294, 303

Permanent quota field, 185
PHD$L_BIOCNT field

incrementing, 305
PHD$L_DIOCNT field

incrementing, 305
PHD$Q_PRIVMSK field, 141
Physical block

definition, 16
Physical I/O bit, 264
Physical transfer, 274
Piggyback special kernel AST bit, 289
Placement data

in an attribute list, 283
Placement header

See Retrieval pointer, format 0
PMS (Performance Monitoring Statistics)

See Performance
PMS_FNC_CACHE symbol, 256
PMS_FNC_CPU symbol, 256
PMS_FNC_PFA symbol, 257
PMS_FNC_READ symbol, 256
PMS_FNC_WRITE symbol, 256
PMS_SUB_CACHE symbol, 257
PMS_SUB_CPU symbol, 257
PMS_BUB_FUNC symbol, 257
PMS_SUB_NEST symbol, 257
PMS_SUB_PFA symbol, 257
PMS_SUB_READ symbol, 257
PMS_SUB_ WRITE symbol, 257
PMS_TOT_CACHE symbol, 256
PMS_TOT_READ symbol, 256
PMS_TOT_ WRITE symbol, 256
Pool

directory index cache pool
locating, 394

nonpaged, 358, 374
allocating an IRP, 271
allocating I/O database structures,

129
allocating the function decision

table, 267
allocating the IRP, 258
allocating the RVT, 132
containing the system blocking

routines, 356
locating the extent cache, 176

Pool
nonpaged (Cont.)

locating the quota cache, 209
locating the user buffer, 263
locating the VCB, 175

paged
allocating buffers, 163
locating cache structures, 153
locating the directory index cache,

172
locating the 1/0 buffer cache, 149
locating the mounted volume list,

143
maintaining an ACL, 219

POOLCNT array, 168
Pool number bit, 159
Pool wait queue, 156, 187

inserting a process into, 199
POOL_LRU queue, 159
Postprocessing

See also I/O postprocessing
1/0 postprocessing, 241, 262, 265

using the IRP$W _BOFF field, 264
Preprocessing

See also 1/0 prepreprocessing
I/O preprocessing, 241, 257, 262

PREV _FP symbol, 24 7
PREV _INAME symbol, 255
PREY _LINK symbol, 252
PREY _NAME symbol, 255
PREV _STKLIM symbol, 24 7
PREV _VERSION routine, 255
Primary context, 245, 302

restoring, 295
saving, 295
taking out a lock on the index file, 333

Primary context area, 252
Primary home block

allocating storage for, 91
bad bit, 99

Primary index file, 14
Primary index file header

bad bit, 99
Primary operation, 294
PRIMARY_FCB symbol, 251, 293
PRIM_LCKINDX symbol, 252, 326, 332

Print symbiont
and a spooled file, 218
handling spooled files, 218

441

Private mount, 117, 118, 140, 141, 314
Privilege, 250

BUGCHECK, 138
checking, 203
checking during a volume dismount

procedure, 141
checking for volume dismount, 142
diagnostic privilege, 1266
EXQUOTA, 138
verifying for an IRP, 271

Privileged shareable image, 137
Privileges

granted during volume mount, 116
PRIVS_USED symbol, 250
Process

associating a lock with, 390
awakening, 187
byte count quota, 264
context

using with a system blocking
routine, 356

control space, 384
creating, 242
deleting

effect on volume dismount, 138
modifying the quota usage of, 368
number of currently accessing a file,

111
preventing deletion, 197, 288, 293
preventing from stalling, 199
preventing suspension, 293
process privilege mask, 266
PROCSTRT module, 242
queuing an AST to, 330
stalling, 187, 199
synchronizing, 339
SYSINIT process, 242
working set, 242, 245

Process AST quota bit, 289
Process cell

CTL$GL_F11BXQP, 242, 243, 244
Process context

and QIO processing, 267

442

Process context (Cont.)
and the cache server process, 345
FDT routines, 267

Process control space, 242, 257
allocating XQP impure area, 244
locating the XQP queue, 197
mapping impure storage, 242

Process ID field, 289
of an accessor, 105
of an ACP, 107
of the requesting process, 261

Process index of the current process field,
160, 171

Process mounted volume list, 131
checking for a private mount, 140

Process-owned lock, 341
Process working set, 24 7
PROPAGATE....ATl'R routine, 334
Protection

field, 113
overriding, 123
volume, 124

PRV$V _GRPNAM bit, 142
PRV$V _SYSNAM bit, 142

Q

QE:x_N_CANCEL routine, 397
QIO system service

See SYS$QIO
$QIO system service

See SYS$QIO
Queue

ambiguity, 187, 335
backward link, 156
forward link, 156

buffer list, 159, 169
cache interlock, 187
driver

cancelling 1/0 in, 354
inserting the 1/0 request, 287

header, 169
highwater mark update, 113
XQP per-process, 244

in-process, 189, 190
finding a BFRD, 158

Queue
in-process (Cont.)

flushing buffers on, 191
removing a buffer from, 189

IRP, 107
LRU, 158
pool, 158, 159
pool wait queue, 156, 187, 199
priority-ordered pending 1/0 queue,

262
resource block, 390
system

flushing buffers on, 191
XQP, 242, 244

queue head, 24 7
queue header, 197

Queue header
for cache wait, 156
for the buffer pool, 156, 168, 169

Quota
adding, 368
BIOCNT, 271

incrementing during 1/0
postprocessing, 305

charging, 203, 211
DIOCNT, 271

incrementing during 1/0
postprocessing, 305

disabling, 209
enabling, 209
operations

description of, 207
setting, 357

Quota cache, 134, 175
allocating, 210
buffer

invalidating, 211
containing current data, 185
containing modified data, 185
deallocating, 211

during dismount procedure, 146
deallocating during volume dismount,

308
definition of, 182
description of, 209

Quota cache (Cont.)
establishing during the mount

procedure, 124
first entry field, 184
flush bit, 184
flushing, 183, 209,210,344

during dismount procedure, 145
header, 183
identifying the type of resource sharing,

238
invalidating, 210
invalidating entries, 346
locating from the VCB, 185
lock ID, 184
LRU index field, 185
releasing the cache flush lock, 356
sharing, 374
size of, 128
valid bit, 184

Quota cache address field, 101
Quota cache entry

cache index of, 255
contents of, 209
finding, 210
format, 184
index field, 185
lock, 183
lock ID, 185
lock passing, 369
marking valid or invalid, 210
modified bit, 185
record, 183

buffer address of, 255
record number, 185
updating, 211
validating, 34 7
valid bit, 185
value block, 369

format of, 369
updating, 371

Quota cache lock, 183
acquiring, 210
deallocating, 211
dequeuing, 34 7
determining the lock name, 34 7
format of, 346

Quota cache lock (Cont.)
life cycle, 370, 371, 372
purpose of, 346
releasing, 210
value block

information in, 34 7
releasing, 347

Quota checking disabled bit, 123
Quota entry, 183

returning, 283
Quota file, 353

adding an entry, 209
and the blocking lock, 368
block, 159

in buffer pool, 152, 168, 188
buffer

returning, 211
buffer sequence number, 249
connecting to, 200, 209, 210
data blocks

purging, 191

443

validated by volume allocation lock,
388

deaccessing, 191, 209, 211
extending, 137, 209

marking the FCB stale, 381
FCB address field, 101
flushing, 302
format of, 211
lock basis, 208
modifying an entry, 209
multiblock read operations to, 188
operating on, 208, 333
partially updated, 135
preventing continual read operations

to, 182
processing, 283
reading multiple blocks under one lock,

160
rebuilding, 134, 357
removing an entry, 209, 372
requesting write access to, 210
returning an entry, 209
serializing access to, 326, 333
setting the write turn bit for, 202
starting operations, 352

444

Quota file (Cont.)
transfer block, 282
usage table, 135
writing, 191
writing to, 346

Quota file entry, 137
adding, 209
constructing the quota cache lock value

block, 347
format of, 211
modifying, 209
record number of the free entry, 255
record number returned as wildcard

context, 255
removing, 209, 372
returning, 209, 211
writing, 211

Quota file record
See Quota file entry

Quota overdraft limit, 185
Quota usage field, 185
QUOTAUTIL routine, 368
QUOTA_DATASEQ symbol, 254
QUOTA_FILE_OP routine, 208, 333
QUOTA .. JNDEX symbol, 255
QUOTA_OLDDATASEQ symbol, 254
QUOTA_RECORD symbol, 255

R
RlO

initializing, 244
pointing to the XQP impure area, 292,

321
restoring, 300

Race condition, 138
RCT (replacement and caching table), 81,

89
RDBLOCK routine, 395
Read access bit, 104, 126
REAOALL privilege, 198, 294
Read attributes function, 219
Read checking bit, 105
Readers disallowed bit, 105
Read function bit, 263
Read operation, 267

count field, 106

Read operation (Cont.)
exceeding the buffer credit, 168
failing to read a new header, 190
index file header, 191
multiblock, 168, 188
returning an 110 error, 219
writing attribute list descriptors to the

user's buffers, 304
Read virtual function, 274
Read/write attributes function, 283
READ_ATTRIB routine

returning an access control entry, 256
using a full file specification, 256

READ_BLOCK routine, 331, 333
setting the ACP, 251

READ_HEADER routine, 200, 331
READ_ID:x_HEADER routine, 191, 250
READ_ WRITEVB routine, 225, 249, 334

incrementing the serialization lock
value block, 398

REAL_Q_REC routine, 211
REAL_Q_REC symbol, 255
REBLD_PRIM_FCB routine

initializing a new FCB, 382
Rebuild operation, 128, 134

blocking activity for, 357
conditional, 135
length of time, 134
on a controller shadow set, 102
rebuilding a bitmap, 357
rebuilding the quota file, 357
unconditional, 135

Recoverable facility ID number field, 29
Recovery-unit journaling ACE

format of, 49
Recovery-unit volume journaling ACE

default
format of, 49

REDCACHE message, 150
Re-enterable context area, 245, 251
Re-enter operation, 189
Reference count

dequeuing the arbitration lock, 353
in the AQB, 308
in the FCB, 396

incrementing, 334

Reference count (Cont.)
in the UCB, 118
of the FCB, 111
of the RVT, 115

Reference countfield
of the FCB, 396

Relative volume number
See RVN (relative volume number)

Relative volume number field, 66
RELEASE_CACHE routine, 329
RELEASE_LOCKBASIS routine, 392

validating a BFRD, 254
RELEASE_SERIAL_LOCK routine, 388,

392
Remap function, 196, 206, 226

during a create function, 203
REMAP function

See Remap function
REMAP _FILE routine, 206, 226
Remove quota entry function, 209
REMOVE routine

updating the directory sequence
number, 397

REM_QUOTA function, 209
Rename operation

changing the directory structure, 397
using the internal file name, 255

Replacement and caching table
See RCT (replacement and caching

table)
REQUEUE_REQ routine, 235
Reserved area

offset field, 22
Reserved file, 58

backup file, 59
backup journal jile, 82
bad block file, 58, 76
continuation file, 58, 82
core image file, 58, 81
index file, 58, 59
master file directory, 58, 81
pending bad block log file, 59, 83
performing virtual I/O on, 234
storage bitmap, 58
stOrage bitmap file, 71
volume set list file, 58, 82

Reserved files, 87
RESET_LBN routine, 191, 192
RESOLVE_AMBIGUITY routine, 33q
Resource

accessing, 312
clusterwide, 356
competing for, 238
deadlock, 170
name, 113

445

constructing, 152, 159, 161, 165,
253

for the volume allocation lock, 127
returning, 200
sharing, 238, 383
wait flag

and I/O quota, 271
Resource block, 376, 390
Resource name, 390
Resources

consuming, 235
insufficient, 296

RESTORE_CONTEXT routine, 295
RESTORE_DIR routine

restoring directory context, 254
Result string

buffer, 282
descriptor, 282

Result string buffer, 218
Retrieval pointer, 171, 224

and ident area, 30
calculating file size, 126
count field, 106
definition, 33
form.at 0, 33
form.at 1, 34
form.at 2, 35
form.at 3, 36
initializing, 92
LBN address, 106
number of, 106, 127, 130
of a bad block descriptor, 80
truncating, 189

RETURN.;..CREDITS routine, 335
RETURN_DIR routine, 282
RET_QENTRY routine, 283

446

Revision count
updating, 205

Revision date
and time field, 32

Revision number field, 32
RM$ARM_DIRCACHE routine, 397
RM$DIRCACHE_BLKAST routine, 397
RMS

storing file statistics, 44
RMS directory pathname cache, 397

flushing, 397
RMSJNL_AI ACE

See After-image journaling ACE
RMSJNL_AT ACE

See Audit-trail journaling ACE
RMSJNL_BI ACE

See Before-image journaling ACE
RMSJNL_RU ACE

See Recovery-unit journaling ACE
RMSJNL_RU_DEFAULT ACE

See Recovery-unit journaling ACE
RMS record locking bit, 112
RMSRESET routine, 397
Root volume, 133

creating, 133
RVN (relative volume number), 126, 132

containing unrecorded blocks, 252
current address, 249
defintion of, 15
field, 18, 99, 133
in the cache flush lock name, 345
mapping blocks on a volume set, 227
obtaining, 198
of the current storage bitmap file, 250
specifying placement, 252
using as a lock basis, 165

RVT$B_ACB field, 115
RVT$B_NVOLS field, 115
RVT$B_TYPE field, 115
RVT$L_BLOCKID field, 101, 115, 357

indicating the state of the blocking
lock, 351

RVT$L_STRUCLKID field, 115
RVT$L_UCBLST field, 115
RVT$T_STRUCNAME field, 115
RVT$T_ VLSLCKNAM field, 115

RVT$W _ACTIVITY
incrementing, 294

RVT$W_ACTIVITY field, 101, 115, 357
RVT$W _REFC field, 115

decrementing, 308
RVT$W _SIZE field, 115
RVT (relative volume table), 94, 132

adding a volume entry, 134
address field, 99, 106
and the VCB, 96
creating, 130, 134
current address, 249
deallocating during volume dismount,

308
definition of, 114

RWATTR routine
requiring FCBs to be rebuilt, 381
updating the directory sequence

number, 397
RX02 disk drive, 89
RX23 disk drive, 89
RX33 disk drive, 89

s
SAVE CONTEXT routine, 295
SAVE=CONTEXT symbol, 252
SAVE_STATUS symbol, 250
SAVE_ VC_FLAGS symbol, 249
SBMAPVBN field

in the allocation lock value block, 389
SCAN routine, 221
SCAN BADLOG routine, 189, 221, 296
SC~QUO_CACHE routine, 210, 370
SCB$L_BLKSIZE field, 73
SCB$L_CYLINDER field, 73
SCB$L_SECTORS field, 73
SCB$L_STATUS2 field, 7 4, 135

rebuilding a disk, 128
SCB$L_STATUS field, 74, 128, 135
SCB$L_TRACKS field, 73
SCB$L_ VOLSIZE field, 73
SCB$Q_GENERNUM field, 75
SCB$Q_MOUNTTIME field, 75
SCB$T_ VOLOCKNAME field, 127
SCB$V_FILALLOC2 bit, 74, 137
SCB$V _FILALLOC bit, 7 4, 128

SCB$V _HDRWRITE2 bit, 74
SCB$V_HDRWRITE bit, 74
SCB$V_MAPALLOC2 bit, 74, 137
SCB$V_MAPALLOC bit, 74, 128
SCB$V _MAPDIRTY2 bit, 74, 137
SCB$V _MAPDIRTY bit, 7 4, 135
SCB$V_QUODIRTY2 bit, 74, 137
SCB$V_QUODIRTY bit, 74, 128, 135
SCB$W _BACKREV field, 75
SCB$W _CHECKSUM field, 76
SCB$W _CLUSTER field, 73
SCB$W _STRUCLEV field, 73
SCB$W _ VOLOCKNAME field, 7 4
SCB$W_WRITECNT field, 74, 128, 135

decrementing during dismount
procedure, 145

SCB (storage control block)
contents, 73 to 76
description of, 72
failing to read, 127
failing to write, 128
in buffer pool, 168
reading, 190
writing, 190
writing to by mount verification, 207

SCH$GL_CURPCB cell, 124
SCH$GL_CURPCB field, 141
SCH$POSTEF routine, 262
SCH$QAST routine, 197, 330
Scheduler database, 143
Scratch buffer

creating, 190
SCS$GB_NODENAME cell, 127
SEARCH_FCB routine

invalidating an FCB, 382
SEARCH_QUOTA routine, 211, 333

invalidating an FCB, 382
Secondary context, 221, 294, 302

cleaning up after, 295
extending or compressing a directory,

335
Secondary context area, 252, 296
Secondary home block

See Alternate home block
Secondary operation, 245, 251, 252, 294
Second I/O status longword field, 265

SECOND_FIB, 252
SECOND_FIB symbol, 255
Sector number

of a bad block, 78
Security

Maximum class field, 68
minimum class field, 68

Security classification
changing, 353

447

Security classification mask field, 29 to
30

Segmented window, 224
SELECT_ VOLUME routine, 389
SEND_BADSCAN routine, 220
Sequence number, 234

buffer validation, 159
for the index file bitmap, 320
for the storage bitmap, 320
maintaining in the value block, 387
of a serialization lock, 191
of directory use, 113
of the data block cache, 253
of the file header cache, 253
of the quota file, 249
omitting, 152
updating, 392
validating, 392

Sequential access only bit, 105
Serialization lock, 226, 353, 358, 390

acquiring before the volume allocation
lock, 208

format of, 320
life cycle, 321, 322, 324
lock ID, 253
modifying the FCB, 328
obtained in secondary context, 295
on the quota file, 210, 333
purpose of, 320
releasing, 201, 304
remapping a file, 206
sequence number, 191
validating a buffer, 398
validating a cached copy of a disk block,

387
value block

format of, 324

448

SERIAL_CACHE routine, 329
SERIAL_FILE routine, 321, 325, 331,

334,388
SET DEVICE command

/SPOOLED qualifier, 102
SETUP _BLOCKCACHE routine, 130
SETUP _MTL routine, 143
SET VOLUME command

/ERASE_ON_DELETE qualifier, 91
/REBUILD qualifier, 136, 357

SET WATCH command, 303
SET_DIRINDX routine, 396
SGN$GL_LOADFLAGS cell, 90
SGN$V _LOADERAPAT flag, 90
Shadow set, 190, 287

controller
rebuilding, 102

determining membership, 75
member bit, 123
revision number field, 75
volume name, 69

Shareable image
privileged, 137

Shared mount, 117, 314
Shared window bit, 104
SHOW DEVICE command

/FULL qualifier, 150
SHUFFLE_DIR routine, 189, 296, 396

marking FCBs stale, 381
setting the primary file FCB address,

251
Size field

in the ACB, 289
of AIB, 279
ofAQB, 107
of buffer area, 155
of default window, 100
of extent cache, 178
ofFCB, 111
offile, 112
ofMTL, 132
of quota cache, 101, 184
ofRVT, 115
of the blocks in the buffer cache, 155
of the index file bitmap, 65, 99
of the IRP, 260

Size field (Cont.)
of the memory allocated for the buffer

cache, 156
of the retrieval pointer count, 79
of the retrieval pointer LBN field, 79
of the stOrage bitmap, 100
of the XQP impitre data area, 24 7
of VCA block, 176
ofVCB, 98
of volume cluster, 100
of WCB, 104, 126
of XQP code, 244
of XQP impure area, 244

SMP (symmetric multiprocessing), 313
Software bad block descriptor

See also Manufacturer's bad block
descriptor

contents of, 79
description of, 79
format of, 79

Software bad block processing, 89
Software last-track bad block data, 89
Special kernel-mode AST, 261, 287, 290

bit, 289
posting I/O completion, 305
with buffered I/O, 263 ·

Spin lock, 5, 313
modifying the FCB chain, 328

Spooled device, 139, 282
count of, 102
effect on volume dismount, 137

Spooled file bit, 105
Spool file, 213

bit, 112
deaccessing, 218
processing, 218

Stack
kernel

locking into the process working
set, 242

saving, 247
switching, 296

resetting the kernel stack to the XQP
private stack, 300

XQP, 242, 243, 247
limits, 300

Stack
XQP (Cont.)

size of, 247
starting address of, 244
switching, 296

Stack pointer
clearing, 227

Standard continuation file
See Continuation file

Starting LBN field
of a file header, 112
of an FCB, 112
of the extent cache, 178

START....ACProutine, 129
START_REQUEST routine, 294, 358, 359
Status field

ofAQB, 107
ofFCB, 112
ofMTL, 132
of SCB, 74, 128, 135
ofVCB, 98
secondary, 7 4
second status field

ofVCB, 100
Storage bitmap, 176, 250

address of current, 250
allocating storage for, 91
and the volume allocation lock, 342
block, 159

in buffer pool, 152, 168
obtaining buffer credits, 187

clearing, 189
cluster factor

See Volume cluster factor
cluster factor field, 64, 73
current VBN field, 100
description of, 71, 76
file header, 127

initializing, 92
forcing a window turn, 398
initializing, 91
operating on, 212
rebuilding, 134, 135, 357
scanning, 171
sequence number, 128
serializing access to, 326

Storage bitmap (Cont.)
structure level field, 73
triggering a cache flush, 346
updating partially, 135
writing, 191

Storage bitmap block

449

validated by volume allocation lock,
388

Storage bitmap cache, 171
identifying the type of resource sharing,

238
size of, 171

Storage bitmap file, 58
description of, 71
writing to, 346

Storage bitmap LBN field, 99
Storage control block

See SCB (storage control block)
Storage map open for write access bit, 99
STORAGE_END symbol, 245, 257
STORAGE_START symbol, 245, 24 7
STORE_CONTEXT routine, 316
Structure level, 64 ·
Structure level and version field, 22
Structure name field

of a volume set, 133
Structure subtype field, 155
Structure type field

in the ACB, 289
in the AIB, 279
in the AQB, 107
in the FCB, 111
in the IRP, 260
in the VCB, 98
in the WCB, 104
ofMTL, 132
ofRVT, 115
of the buffer cache, 155

STSFLGS symbol, 250
SUPER_FID symbol, 255
Swap file

effect on volume dismount, 137
Swapper, 358

and controller shadowing, 102
delivered an AST, 371
delivering an AST to, 356

450

Swapper 110, 263
bit, 264

SWITCH_ VOLUME routine, 248
setting the address of the current RVN,

249
setting the address of the current UCB,

249
setting the address of the current VCB,

249
Symbiont

handling spooled files, 218
Synchronization

of processes, 339
using the volume allocation lock, 342

SYS$ASSIGN, 138
SYS$DISMOU, 138
SYS$ENQ status field, 185
SYS$ERAPAT, 90
SYS$EXPREG, 242
SYS$GETCHAN, 119
SYS$GETDVI, 88, 138, 139
SYS$GETJPI, 88
SYS$GETLKI, 128, 354
SYS$GETTIM, 92
SYS$MOUNT, 116
SYS$QIO, 241, 257

and the AQB, 106
bypassing the XQP, 196
dispatching, 270
filling in an IRP, 258
finding a set bit in the WCB pointer,

271
invoking virtual I/O functions, 195
issuing a request, 197
returning, 287
vector contents, 270

SYS$SYNCH, 270
SYS$VMOUNT routine

processing user parameters, 116
releasing the volume allocation lock,

117
SYS$WAKE, 196
SYSACPFDT module, 200, 267, 278, 356
SYSINIT process, 242

setting up a permanent mailbox
channel, 242

SYSNAM privilege
for volume dismount, 142

SYSPRV privilege, 198, 221, 294
SYSQIOREQ module, 196, 270, 287
System address space buffer address field,

264
System blocking lock

flushing a cache, 383
System blocking routine, 356

synchronizing access, 200
System disk

and volume dismount, 142
System initialization, 242
System Management Utility (SYSMAN),

136, 195,208
System mount, 140

determining the volume lock name,
343

System mount bit, 99, 123
System mounted volume list, 131
System-owned lock, 313, 341, 390

arming, 356
keeping track with a BFRL, 160
volume allocation lock, 128

System parameter
ACP_DINDXCACHE, 174
ACP _DINDX_CACHE, 125
ACP _DIRCACHE, 172
ACP _EXTCACHE, 176
ACP _EXTLIMIT, 124, 177, 178
ACP _FIDCACHE, 180
ACP _HDRCACHE, 171, 187
ACP _MAPCACHE, 171
ACP _MAXREAD, 172, 188
ACP _MULTIPLE, 149
ACP _WINDOW, 224
ACP _x:QP _RES, 242
setting the buffer pool size, 152

System protection field, 113
System queue

flushing buffers on, 191
System space, 258
System virtual address of first page table

entry field, 264

T
TAKE_BLOCK_LOCK routine, 206, 358,

359
Terminal I/O bit, 264
TOSS_CACHE_DATA routine, 189
Total map failure

See Mapping failure
Track number

of a bad block, 78
Transaction

stalling, 298
Transaction count, 99, 125, 137

decrementing, 304
indicating an idle volume, 307

Transfer function, 304
Transfer request, 241, 276

and XQP action, 275
processing by the FDT routine, 274

Transmit request, 263
Truncate lock count

file, 112
Truncate operation, 353

affecting free space, 212
delayed, 354, 355

and the arbitration lock, 352
cancelling, 354
delayed truncation bit, 112
starting VBN field, 113
using a deaccess function, 206, 381

during a modify operation, 355
file, 249
preventing, 357
using a modify function, 205, 381
using a scratch buffer, 190

TRUNCATE routine, 189
requiring FCBs to be rebuilt, 381

Truncation disallowed bit, 105
TURN_ WINDOW routine, 234
Type field

ofVCA, 176
Type flags field, 40 to 41

u
UCB$L_DEVCHAR field, 118, 286
UCB$L_IOQBL field, 266

UCB$L_IOQFL field, 266
UCB$L_LOCKID field, 122
UCB$L_MAXBCNT field, 235
UCB$L_ VCB, 150
UCB$L_ VCB field, 140, 141

clearing, 145
UCB$V_DISMOUNT bit, 145

setting, 307
UCB$V _MOUNTED bit

setting, 131
UCB$V _MOUNTJNG bit

clearing, 131
UCB$V _MOUNTING field, 130
UCB$V _VALID field, 88
UCB$W _DIRSEQ field

clearing the high bit, 307

451

using in the directory pathname cache,
397

using the the directory pathname
cache, 397

UCB$W _REFC field, 118
decrementing, 307
decrementing during dismount

procedure, 145
UCB (unit control block), 138

address
mapping blocks on a volume set,

227
address field, 99, 105, 261

of an MTL, 132
of an RVT, 115

assigning during I/O preprocessing,
270

current address, 249
establishing, 129
initializing the pointer to a device, 198
invalidating buffers associated with,

191
locating the address, 117
locating the VCB, 96
of a buffer, 159
pointer to, 248
using as the volume lock name, 343

UCB status word
verifying, 270

452

UIC, 113
basing quota cache entries on, 182, 209
checking for volume dismount, 142
determining the quota cache lock name,

347
hashing for quota file records, 135
in the access rights block, 266
matching during volume dismount, 141
owner, 136
process, 124
volume owner, 124, 130

UIC field, 185
UNHOOK_BFRD routine, 353

unhooking the buffer descriptor for a
directory index block, 396

Unit control block
See UCB (unit control block)

Universal error log sequence number, 266
UNLK_ VOL function, 359

See Unlock volume function
Unload function, 145
Unlock volume function, 206
UNLOCK_XQP routine, 304
UNREC_COUNT symbol, 252
UNREC_LBN symbol, 252
UNREC_RVN symbol, 252
UPDATE_DIRSEQ routine, 397
UPDATE_INDX routine, 396
User attribute buffer, 283
User buffer, 263
User notification AST routine, 256
User status

returning, 287
User virtual address field, 280
USER_STATUS symbol, 249, 293, 304

restoring after a failed delete operation,
250

returning a job controller error, 218

Validation
buffer, 189

Valid buffer
bit, 159

v

cache hit field, 156

Value block
arbitration lock

controlling clusterwide truncation,
354

format of, 354
writing out, 353

buffer validation sequence number, 159
device lock

clearing during volume dismount,
308

index file EOF, 129
of a device, 122

contents of, 123
of the arbitration lock

writing out, 355
of the quota cache lock, 210, 369

information in, 34 7
of the serialization lock

incrementing, 398
of the volume allocation lock, 128

saving the flag bits, 249
passing and maintaining information,

387
serialization lock

format of, 324
storing context, 131
volume allocation lock, 128, 176

acquiring, 307
format of, 318

VBN (virtual block number), 16
VBN field

for delayed truncation, 113
in a map pointer, 227
in a pending bad block log record, 83
in the allocation lock value block

for the index file bitmap, 389
for the storage bitmap, 176, 389

in the index file bitmap, 319
in the storage bitmap, 319
of end-of-file, 112
ofFCB, 112
of the backup home block, 65
of the backup index file header, 65
of the current I/O segment field, 265
of the home block, 65
of the index file bitmap, 65, 99

VBN field (Cont.)
of the storage bitmap, 100
of'WCB, 106

VCA$B_EXTCACB field, 178
VCA$B_FIDCACB field, 181
VCA$B_FLAGS field, 176
VCA$B_QUOACB field, 184
VCA$B_QUOCFLAGS field, 184
VCA$B_QUOFLAGS field, 185
VCA$B_QUOFLUSHACB field, 184
VCA$B_TYPE field, 176
VCA$L_EXTBLOCKS field, 178
VCA$L_EXTCACHE field, 176
VCA$L_EXTCLKID field, 178
VCA$L_EXTLBN field, 178
VCA$L_EXTTOTAL field, 178
VCA$L_FIDCACHE field, 176
VCA$L_FIDCLKID field, 181
VCA$L_FIDLIST field, 181
VCA$L_OVERDRAFT field, 185
VCA$L_PERMQUOTA field, 185
VCA$L_QUOCLKID field, 184
VCA$L_QUOLIST field, 184
VCA$L_QUOLKID field, 1S5
VCA$L_QUORECNUM field, 185
VCA$L_QUOUIC field, 185
VCA$L_USAGE field, 185
VCA$Q_EXTLIST field, 178
VCA$R_QUOLOCK field, 184
VCA$V _CACHEFLUSH bit, 184

setting, 210
VCA$V _CACHEFLUSH field, 302
VCA$V _CACHEVALID bit, 184
VCA$V ...;EXTC_FLUSH bit, 176
VCA$V _EXTC_ VALID bit, 176
VCA$V _FIDC_FLUSH bit, 176
VCA$V _FIDC_ VALID bit, 176
VCA$V _QUODIRTY bit, 185
VCA$V_QUOVALID bit, 185
VCA$W _EXTCOUNT field, 178
VCA$W _EXTLIMIT field, 178
VCA$W _EXTSIZE field, 178
VCA$W _FIDCOUNT field, 181
VCA$W_FIDSIZE field, 181
VCA$W _QUOINDEX field, 185
VCA$W _QUOLRU field, 184
VCA$W_QUOLRUX field, 185

VCA$W_QUOSIZE field, 184
VCA$W _QUOSTATUS field, 185
VCA$W _SIZE field, 176
VCA (volUm.e cache block), 175

address field, 101
allocating, 130
locating the extent cache, 179

VCB$B_ACB field, 102
VCB$B_BLOCKFACT field, 100
VCB$B_EOFDELTA field, 100
vc:a$B_LRU_LIM field, 100
VCB$B_RESFILES field, 100
VCB$B_SHAD_STS field, 102
VCB$B_SPL_CNT field, 102
VCB$B_STATUS2 field, 100

· VCB$B_STATUS field, 98
VCB$B_TYPE field, 98, 130
VCB$B_ WINDOW field, 100
VCB$C_LENGTH field, 129
VCB$L_ACTIVITY field

decrementing, 305
VCB$L_AQB, 150
VCB$L_AQB field, 99
VCB$L_BLOCKID field, 101, 357

indicating the state of the blocking
lock, 351

453

testing for existence of blocking lock,
294

VCB$L_CACHE field, 101, 130, 176
locating the VCA, 180, 181

VCB$L_FCBBL field, 98
VCB$L_FCBFL field, 98
VCB$L_FREE field, 100, 129

synchronizing with the voiume lock,
328

VCB$L_HOME2LBN field, 99, 125
VCB$L_HOMELBN field, 99, 125
VCB$L_IBMAPLBN field, 99
VCB$L_IXHDR2LBN field, 99
VCB$L_MAXFILES field, 100
VCB$L_MEMHDBL field, 101
VCB$L_MEMHDFL field, 101
VCB$L_QUOCACHE field, 101, 182, 209
VCB$L_QUOTAFCB field, 101, 208
VCB$L_RESERVED1 field, 101
VCB$L_RVT field, 99

454

VCB$L_SBMAPLBN field, 99
VCB$L_SERIALNUM field, 101
VCB$L_SHAD_LKID field, 102
VCB$L_ VOLLKID field, 101, 308
VCB$Q_MOUNTTIME field, 101
VCB$Q_RE;TAINMAX field, 101
VCB$Q_RETAINMIN field, 101
VCB$T_ VOLCKNAM field, 101, 127, 315
VCB$T_ VOLNAME field, 99
VCB$T_ VOLOCKNAME field, 127
VCB$V _CLUSLOCK bit, 101
VCB$V _ERASE bit, 100
VCB$V _EXTFID bit, 99
VCB$V _GROUP bit, 99, 125, 142
VCB$V _HOMBLKBAD bit, 99, 125
VCB$V _IDXHDRBAD bit, 99
VCB$V _MOUNTVER bit, 100

disabling mount verification, 144
VCB$V _NOALLOC bit, 99

preventing file system activity, 361
VCB$V _NOALLOC field, 361
VCB$V _NOCACHE bit, 100, 126
VCB$V _NOHIGHWATER bit, 101
VCB$V _NOSHARE bit, 101
VCB$V _SYSTEM bit, 99, 125, 142
VCB$V_TYPE bit, 129
VCB$V _ WRITETHRU bit, 100, 126
VCB$V _ WRITE_IF bit, 99
VCB$V _ WRITE_SM bit, 99
VCB$W....ACTIVITY field, 101, 135, 357

decrementing, 359
VCB$W _CLUSTER field, 100
VCB$W _EXTEND field, 100, 125
VCB$W _FILEPROT field, 100
VCB$W _IBMAPSIZE field, 99
VCB$W JBMAPVBN field, 99
VCB$W _MCNT field

decrementing, 144
VCB$W _MCOUNT field, 100
VCB$W _PENDERR field, 101
VCB$W _QUOSIZE field, 125
VCB$W _RVN field, 99
VCB$W _SBMAPSIZE field, 100
VCB$W _SBMAPVBN field, 100
VCB$W _SIZE field, 98

VCB$W _TRANS field, 99
during dismount procedure, 145
incrementing during 1/0 processing,

287
VCB (volume control block), 94

address field, 106
allocating, 129
current address, 249
deallocating, 138

during dismount, 137
during dismount procedure, 146

deallocating during volume dismount,
308

definition of, 96
disconnecting from the UCB, 145
filling in the prototype, 125
initializing the pointer to a device, 198
linking the quota cache, 210
locating the quota cache, 185
locating the RVT, 114
locating the VCA, 175, 179
marking as blocked, 349, 356
serializing access to, 328
size, 98

VC_BITSEQ field, 320
validating storage bitmap blocks, 388

VC_FLAGS field, 319
VC_QUOTASEQ field, 388

VC_IBMAPVBN field, 319
VC_IDXFILEOF field, 320
VC_IDXSEQ field, 320

validating index file bitmap blocks, 388
VC_NOT_FIRST_MNT bit, 319
VC_QUOTASEQ field, 319

validating quota file data blocks, 388
VC_8BMAPVBN field, 319
VC_ VOLFREE field, 319
Vector

BFRS_USED, 170
BFR_CREDITS, 170
BFR_LIST, 170, 188
F11BC$L_POOLAVAIL

obtaining buffers, 187
F11BC$Q_POOL_ WAITQ, 187
of extents, 177

Version number field, 56
Versions

maximum number of in a directory,
113

Virtual block
converting to logical block, 241
definition of, 16
reading, 334

Virtual block number
. See VBN (virtual block number)
VJ.rtual I/O function bit, 263
Virtual request

completing with a bad block error, 263
Virtual to logical mapping, 226
Virtual transfer

complete, 265
function

incompletely mapped, 277
mapped, 276

partial, 265
request, 224, 27 4

Virtual write operation, 188
VMOUNT_ENVELOPE routine, 117
VOLFREE field

in the allocation lock value block, 389
VOLPRO privilege, 88

for volume dismo"ilnt, 141
VOLSET.SYS

See Volume set list file
Volume

See also Disk
allocating, 88
back.up revision number field, 75
blocked, 256
blocking activity on, 115, 349, 356, 357
blocking factor field, 73, 100
blocking lock field, 101
boot block, 61
cachii:tg limit field, 178
characteristics

validating, 139
characteristics field, 66
checking status, 286
cluster-accessible

needing the arbitrate lock, 353

Volume, (Cont.)
cluster factor, 89, 125, 127

and storage bitmap, 76
default values, 33
definition, 13
file mapping, 33

concepts, 13 to 15
controlling access to, 342
coordinating access to shared

structures, 387
creation date field, 67

setting during volume
initialization, 92

default file extension length, 100
default file protection field, 100
definition of, 13
dismount, 137

device-independent dismount
processing, 144

preventing, 137
triggering, 138

dismounting, 191, 307, 397
DSA

455

and the Bad.Block Locator Utility,
81

bad block processing, 80, 220
manufacturer's bad block

descriptor, 77
software bad block descriptor, 79
supporting long transfers, 227

ensuring integrity, 14
erase bit, 66

setting during a data security
erase, 91

fragmentation, 171
free blocks, 319

field, 100
synchronizing with the volume

lock, 328
free space, 176, 177
geometry, 61
home block LBN field, 99
identifying, 14
idle, 307
improperly dismounted, 357

456

Volume, (Cont.)
initializing, 87

boot block, 59, 61
index file, 88
preserving bad block data, 76
reserved files, 58, 87

installed file or image on
effect on volume dismount, 137

journal name, 51
label, 127

entering into the volume set list
file, 134

field, 99
for shared mounts, 127
identifying, 14
using as the resource name, 314

last-track bad block data, 89
locating, 203
lock name field, 7 4
logical name

creating, 131
marking for dismount, 307
mounting, 93, 118

arming a system-owned lock, 356
updating the directory sequence

number, 397
mount time, 101
name

for a shadow set, 69
name field

of the home block, 69
owner, 66

in the home block, 69, 88
overriding, 123
UIC field, 124

ownership, 142
processing, 133

definition, 87
protection field, 67, 124
RA60, 80
RASO, 80
RA81, 80
repairing errors, 357
revision date field, 68
RK06, 77
RK07, 77

Volume (Cont.)
RM03, 77
RP06, 77
sectors per track field, 73
serializing access to, 325
serial number field, 101
shadowing, 190
size, 88
size field, 73
software-writelocked, 145
spooled device on

effect on volume dismount, 137
stalling activity on, 357
structure level, 22, 64, 69

and version field, 64
system, 59
time of last mount field, 75
tracks per cylinder field, 73
transaction count, 137

decrementing, 304
during dismount procedure, 145
field, 99
incrementing during I/O

processing, 287
indicating an idle volume, 307

usage
monitoring, 357

using a lock volume function, 206
using the blocking lock, 368

using an unlock volume function
i.tsing the blocking lock, 368

valid bit, 88
write-locking, 128

Volume allocation lock, 128, 131, 171, 390,
398

acquiring after the serialization lock,
208

acting as the parent lock to the cache
flush lock, 345

dequeuing, 308
dequeuing during dismount procedure,

146
determining the lock name, 343
format of, 314, 342
identifying, 161, 165
ID field, 101
initial lock mode, 315

Volume allocation lock (Cont.)
invalidating the pathname cache, 397
life cycle, 315, 316, 317
name field, 101
not taking out, 357
purpose of, 314, 342
releasing, 250, 304
serializing simultaneous shared

mounts, 117
validating a cached copy of a disk block,

387
value block, 128, 176

acquiring, 307
format of, 318
saving the flag bits, 249

Volume blocking lock
See Blocking lock

Volume cache block
See VCA (volume cache block)

Volume list
See Mounted volume list

Volume lock
See Volume allocation lock

Volume set, 114
adding a volume to, 133
and multivolume files, 53
constructing the blocking lock for, 101
creating, 130, 133
definition of, 15, 132
initializing pointers to, 198
lock, 131
lock ID field, 115
lock name, 115
loosely coupled

and the Backup Utility, 15
and the continuation file, 58, 82
and the HM2$W _SETCOUNT field,

66
description of, 15

marking for dismount, 307
mounting, 133
MTL bit, 132
multivolume directory structure, 57
name, 115, 124

using as the resource name, 314
number of volumes in the set field, 115

Volume set (Cont.)
processing, 133
root volume, 133
structure name, 132
structure name field, 69
tightly coupled, 82

description of, 15
usage table, 137
volume label, 132

Volume set list file
description of, 58
entering the volume label, 134
format of, 82
locating, 132

w
Waiting queue, 390
WAIT_FOR_AST routine, 199

resuming execution, 300
serializing a cache, 329
stalling I/O, 298

WCB$B_ACCESS field, 104
WCB$B_TYPE field, 104, 130
WCB$C_LENGTH field, 126, 130
WCB$L_FCB field, 106, 108
WCB$L_LINK field, 106
WCB$L_ORGUCB field, 105
WCB$L_Pl_LBN field, 106
WCB$L_P2_LBN field, 106
WCB$L_PID field, 105
WCB$L_READS field, 106
WCB$L_RVT field, 106
WCB$L_STVBN field, 106, 227
WCB$L_ WLBL field, 104
WCB$L_ WLFL field, 104
WCB$L_ WRITES field, 106
WCB$V _CATHEDRAL bit, 104

setting, 226
WCB$V_COMPLETE bit, 104

clearing, 226
WCB$V _DLOCK bit, 105
WCB$V _EXPIRE bit, 105
WCB$V _NOACCLOCK bit, 106
WCB$V _NOREAD bit, 105
WCB$V _NOTFCP bit, 104
WCB$V _NOTRUNC field, 105

457

458

WCB$V _NOWRITE bit, 105
WCB$V _OVERDRAWN bit, 104
WCB$V _READ bit, 104, 126
WCB$V _READCK bit, 105
WCB$V _SEQONLY bit, 105
WCB$V _SHRWCB bit, 104
WCB$V _SPOOL bit, 105
WCB$V _ WRITEAC bit, 105
WCB$V _WRITE bit, 104
WCB$V _ WRITECK bit, 105
WCB$V _ WRITE_TURN bit, 106, 202

setting, 202
setting for a write-accessed directory

file, 398
WCB$W _ACON field, 105
WCB$W_NMAP field, 106, 127, 130, 227
WCB$W_Pl_COUNT field, 106
WCB$W _P2_COUNT field, 106
WCB$W _SIZE field, 104, 126
WCB (window control block), 94, 195

address field, 261
allocating the index file WCB, 130
deallocating during volume dismount,

308
definition of, 102
invalidating, 354
locating of in a window, 224
locating the FCB, 102
locating th~RVT, 102, 114
mapping information

translating virtual blocks to
physical disk addresses, 27 4

pointer, 271
size field, 104
synchronizing access to, 328

Wildcard
context, 254
scanning a directory, 212
scanning the quota file, 211, 283

Window
address of, 252
cathedral, 104

definition of, 224
during a create function, 203
performing an extend operation on,

226

Window
cathedral (Cont.)

reducing I/O, 196
using during an access function,

202
creating, 202
default size field, 67, 100
definition of, 224
invalidating, 354
LBN address of the first pointer, 106
LBN address of the second pointer in

the WCB, 106
locating the FCB, 374
pointer, 282
segmented, 224
segment link field, 106

Window control block
See WCB (window control block)

Window listhead
backward link, 104, 111, 129
forward link, 104, 111, 129

Window turn, 102, 222, 224, 278, 282
because of total map failure, 228
collapsing contiguous extents, 234
decreasing performance, 172
forced during write operations, 106
forcing during a write virtual function,

398
mapping a contiguous extent, 233
mapping additional pointers, 229
mapping a previous header, 231
setting the IRP$V _VIRTUAL bit, 220
truncating an existing window, 230

Word pointer, 161, 163
buffer index, 165

Working set
locking XQP structures into, 242

World protection field, 114
Write acccess

writer count field, 74
Write access bit, 104, 105

of device lock, 123
Write checking bit, 105
Write function bit, 263
Write operation, 188, 267

affecting the highwater mark, 113
count field, 106

Write operation (Cont.)
file header, 190
forced, 189

on quota file buffer blocks, 209
invalidating cache contents, 202
returning an I/O error, 219
to a directory, 191
to the index file, 191
to the quota file, 191
to the storage bitmap file, 191

Writer count field, 135
decrementing during dismount

procedure, 145
file, 111

Writers disallowed bit, 105
Write-through caching enabled bit, 100,

126
Write virtual function, 191, 274

trapping to force window turns, 398
WRITE_ATl'RIB routine, 218, 396

setting FIB$L_ACL_STATUS field, 219
WRITE_AUDIT routine, 189

using a full file specification, 256
WRITE_BLOCK routine, 188, 248, 393
WRITE_DIRTY routine, 189, 393
WRITE_HEADER routine, 188, 200
WRITE_QUOTA routine, 211, 255
WRONG_LOCKBASIS routine, 335

x
XQP$BLOCK...ROUTINE routine, 356,

357
in a VAXcluster, 359 to 361
stalling activity, 358

XQP$DEQBLOCKER routine, 358
XQP$FCBSTALE routine, 356, 375
XQP$GL_FILESERVER cell, 383
Vl""\ndai"""T UTT 'l:'C!Dn~7 T.t'a..Tmn"'CT _ - n nnn
...... ""' ~---............ ~....,.~ _.&::1 ... , .&..&.".&. "~.1..1., uuu

XQP$REL_QUOTA routine, 356
as an AST blocking routine, 370

XQP$UNLOCK...CACHE routine, 356, 383
XQP$UNLOCK...QUOTA routine, 369
XQP (extended QIO processor), 241

arming a system-owned lock, 356
base register, 244
bit, 108, 130

XQP (extended QIO processor) (Cont.)
call interface, 257
channel, 293, 300
code base address field, 244
comparing with an ACP, 5
creating, 4
entering, 196
entering and exiting, 290
entry point, 244
executing ACP functions, 196
executing the code, 291
frame pointer, 300
I/O buffer packet

SeeAIB
idle, 249
impure area

allocating, 244
base address, 244
base register, 244, 292
beginning of, 245, 24 7
contents of, 24 7
end of, 256, 257
format of, 245
initializing, 198, 293
layout of, 244
lock index, 332

459

locking into the process working
set, 242

mapping, 242
initialization routine, 242
initializing, 242
location of, 339
managing the directory preaccess limit,

125
mapping, 311
passing user information to, 284
private kernel stack, 197, 242, 243,

293.296
limits of, 247, 300
locking into the process working

set, 242
size of, 247
starting address of, 244

queue, 197, 242
queue header, 197, 244, 247

queuing an I/O packet, 287

460

XQP (extended QIO processor) (Cont.)
reading the IRP$L_ WIND field, 261
stalling, 170, 296, 298, 350
stepping down a directory tree, 397
synchronization rules, 208
XQP-QIO interface, 285

XQP dispatcher, 243, 247, 287
address of, 244
dispatcher routine, 291

address field, 244
receiving a kernel AST, 288

XQPMERGE routine, 242

XQP _DISPATCHER symbol, 247
XQP_QUEUE symbol, 242, 247

queuing the IRP, 292
XQP _SAVFP symbol, 247
XQP _STACK symbol, 247
XQP _STKLIM symbol, 247

z
ZCHANNEL routine

zeroing the window pointer, 282
ZERO_IDX routine, 396

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	xback

