
EY-5315E-P0-0001

VAX/VMS Troubleshooting

Ruth Goldenberg

Revision 0.C

VAX/VMS Troubleshooting
Revision 0.C

INTERNAL USE ONLY .

CONTENTS

Page ii
14 August 1985

MESSAGES • • • • • • • • • • • • • • • 1
STARTING POINTS • • • • • • • • • • • 4
ACCESSING PROCESS CONTEXT WITH SDA • 5

The PCB And JIB • • • • • • • • • • • • 6
The PIID • • • • • • • • • • • • • • • • • • 6

BUGCHECKS • • • • • • • • • • • • • 11
CPU-SPECIFIC INTERRUPTS • • • • • • • • • • • • • 16
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785 17

SBI Silo Compare • • • • • • • • • 17
CRD~S • • • • • • • • • • • • • 17
SBI Alert • • • • • • • • • • 18
SBI Fault • • • • • • • • • • • 19
Cpu Timeout • • • • • • • • • 19

CRASHDUMP REQUIREMENTS • 21
Crashdump File • • • • • • • 21
Bugcheck Mechanism • • 22
SYSINIT Processing • • • • • • • • • • 24

EXCEPTIONS • • • • • • • • • • • • • • • 25
Software Exceptions • • • • 25
Hardware Exceptions •• ~. • • ••. 25
Exception Dispatching 26
Some Conunon Exception Types • • • • 27

Access Violation Fault • • • • • • • 28
Reserved Opcode Faults • • • • 30
Reserved Addressing Mode Fault • 30
Reserved Operand Exception • • • • • • • 31

FATALEXCPT BUGCHECK • • • • • • • • • • • • 3 3
FORCED CRASHES • • • • • • • • • • • • • • • 43
HALTS - VAX-11/780 AND VAX-11/785 • • • • 46

Likely Halt Indications 47
HALTED AT XXXXXXXX • • • • • • • • 4 7
HALT INST EXECUTED • • • • • • • • 48
?CHM ERR • • • • • 50
?CLOCK PHASE ERROR • • • • • • • • • • 51
?CPU DBLE-ERR HALT • • • • • • 51
?ILL I/E VEC • • • • • • • • 52
?INT-STK INVALID • • • • • • • • • 53
?NO USR WCS • • • 54
Pathological Halts • • • • • • • • • 54
RESTAR.CMD Command Procedure • • • • • • • • 57

VAX-11/780 And VAX-11/785 Restart Mechanism • 57
Editing RESTAR.CMD • 59

l!AOOS • • • • • • • • • • • • • • • • • • 65
System Hangs • • • • . • • • • • • 6 5
Process Hangs • • • • • • • • • • • • 75

INVEXCEP'IN BUGCHECK • • • • • • 84
KERNEL STACK LOCATIONS • 87
KRNLSTAKNV BUGCHECK • • • • • • • • • 89
LOCATING I/0 REQUESTS • • • • • • • 92
MACHINE CHECKS • • • • • • • • • • • 97
MACHINE CHECKS - VAX-11/780 AND VAX-11/785 • • • • 101

Read Data Substitute Error • • • • • • • • • 102

VAX,IVMS Troubleshooting *INTERNAL USE pNLY*
Revision O.C

Page iii
14 August 1985

Translation Buffer Parity Error • • • • • • 104
Cache Parity Error • • • • • • • • • 105
Control Store Parity Error • • • . 106
Microcode Not Supposed To Be Here • 107
Read Timeout Or Error Confirm Error • 108

PGFIPLHI BUGCHECK • • • • • • 113
REIATED REFERENCE MATERIAL • • • • • • 116

Call Frame Layout . 116
PSL Layout . • . • • • • • . • • • . 116

RESOURCE WAITS • • • • • • • • • . 11 7
Mutex Wait • • • • • • • • • • • 119
RWAST Resource Wait • • • • • . 120
RWMBX Resource Wait • • • • • • • • • • . 123
RWNPG Resource Wait • 124
RWPFF Resource Wait . • • • • • • • 126
RWPAG Resource Wait . • • • • 126
RWBRK Resource Wait • • • • • • • • • • • • 126
RWIMG Resource Wait • • • • • • 129
~ Resource Wait . • • • • • • • 129
RWLCK Resource Wait • • • • • • • 129
RWSWP Resource wait • 130
RWMPE Resource Wait 131
RWMPB Resource Wait • • 132
RWSCS Resource wait • • • • • 132
RWCLU Resource Wait • • • • 133

RESTART BUGCHECKS • • • . • 135
IVLISTK Bugcheck • • • • • • • • 137
DBLERR Bugcheck • • • • • • • • • 138
HALT Bugcheck . • • • • • 139
ILLVEC Bugcheck • • • • • • • • 140
NOUSRWCS Bugcheck • • • • . • • • • 141
ERRHALT Bugcheck • • • • • • • • 141
CHMONIS Bugcheck • • • • • • 141
CHMVEC Bugcheck • • • • • • • • • • • 143
SCBRDERR Bugcheck • 144
WCSCORR Bugcheck • . • • 144
CPUCF.ASED Bugcheck • • • • • • • • • • • • • . • 144
OU'IOFSYNC Bugcheck • • • • • • • • • • • 144
ACCVIOMCHK Bugcheck • 144
ACCVIOKSTK Bugcheck • 145

SSRVEXCEPT BUGCHECK • • • •• 146
STACK PATTERNS • • • • 149
STACK PATTERNS - EXEC MODE STACK • 152

Exec Mode Stack Patterns • • • • • • • • • • 152
STACK PATTERNS - INTERRUPT STACK • • • • • • • 156

Interrupt Stack Priority Level usage Table . 157
STACK PATTERNS - KERNEL MODE STACK • • • • • • • • 161

Kernel Mode Stack Patterns • • • • 162
SYSTEM SERVICE VECTORS • • • • • • • • • • • 166

System Service Vector Addresses • 166
System Service Vector Contents • • • • • • 166
System Service Vector Stack Footprints • • • 167
Resolving System Service Vector Addresses • • • 168

UNXSIGNAL·BUGCHECK •••••••••••••••• 170

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
Revision O.c

Page iv
14 August 1985

VIRTUAL ADDRESSES • • • • • • • • • • • • 174
VIRTUAL ADDRESSES - PO SPACE • • • • . . 176
VIRTUAL ADDRESSES - Pl SPACE • • • 178

V3 Pl Space Organization • • • • • • 180
V4 Pl Space Organization • • • 182
User Stack . • • • • • • • • • • • 185
Extra User Stack Pages • • • • • • • • • . . • • 185
Image I/O Segment • • • • • • 185
Per-Process Message Section • • • • • 186
CLI Symbol Table • • • • • • • • • • • • • . . • 186
CLI Command Table • • • • . • • • • 186
CLI Image • • • • • • • • • • • 186
Files-11 XQP Regions • • . • . 186
Process I/O Segment • • • 187
Process Allocation Region • 188
Channel Control Block Table • • • . . • • 188
Pl Window To Process Header • • • • • • • • . • 189
RMS Process Context Area • . • • 190
RMS Tracepoint Page • 190
RMS Directory Cache . . • 191
RMS IFAB/IRAB Tables • • • • • • 191
Per-Process Conunon Regions • 191
Compatibility Mode Data Pages .• • • • • • • • • 192
User Mode Data Page • • • • • • • • 192
Security Audit Data Pages • • • • • • • 192
Image Activator Context Page • • • • • 192
CLI Data Page • • • • • • • • • • • • • • • 192
Image Activator Scratch Pages • 193
Debugger Context Pages • • • • • • • • • • • • • 193
Dispatch vectors For User-Written System
Services And Messages • • • • ••• 193

• 193
•• 194

Image Header Buffer • • • •
KRP Lookaside List . • • • •
Inner Access Mode Stacks • • • • • 194
System Service Vector Pages
Pl Pointer Page • • • • • • • • • • •

• 195
195

Debugger Symbol Table • • • • • • • •
VIRTUAL ADDRESSES - SYSTEM SPACE •

V3 System Space Organization •
V4 System Space Organization • • • • •
SYS .EXE • • • • • • • • • •
Allocatable System Space • • • • •

Adapter I/O Space
CONINTERR SPTEs • • • •
Black Hole Page • • • •
Mount verify Page •
Erase Pattern Buffer • • • • • •
Erase Pattern Pseudo Page Table
RMS.EXE • • • • • • •
SYSMSG. EXE • • • • • • • • • • •
Device Driver SVPNs • • • • •

• 195
• • • . • 196

• • 198
• 201

205
•• 205

• 205
• • • • • 207
• • • • • 207

• 207
• • 208

208
208

• . • 208
• • • • • 209

MSCP .EXE • • • • • • • • • • • • • • • • 209
Restart Parameter Block (RPB) •
Page Frame Number (PFN) Data Base

• • • • • 209
. • • • . 209

VAX/VMS Troubleshooting
Revision 0.C

INTERNAL USE ONLY . Page v
14 August 1985

Paged Pool • • • • • • • . • • • • . • • •
Nonpaged Pool variable Length List •

Device Driver Images • • • • •
MP.EXE • • • •
VAXEMUL.EXE •
FPEMUL. EXE • •
CLUSTRLOA.EXE
SCSLOA.EXE •••
SYSLOAxxx.EXE
TTDRIVER.EXE • • • • •
System Disk Boot Driver • • • • •
CI Microcode • • • • • • • • • • • • •

Large Request Packet (LRP) Lookaside List
I/O Request Packet (IRP) Lookaside List
Small Request Packet (SRP) Lookaside List

. 210
• • • 210

• 211
• 212
• 212

. • 212

.• 213
. 213
• 214
. 214

215
. 216
• 216
. 217

Interrupt Stack • • • • • • • •
. 217
. 218
• 218 System Control Block • • • • • • • • •

Balance Set Slots
System Header

. 219
• • • . . 219

System Page Table • • • • • 219
Global Page Table • • • • • • • • • • 220

INDEX

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
Revision O.C

PREFACE

Page vi
14 August 1985

This document is a step by step approach to help you analyze VAX/VMS
crashdumps, processor halts, and process or system hangs.

The approach documented for analyzing crashdumps will not work for.
all crashdumps, but it should be helpful for many. The sequence of
steps documented is not necessarily the only valid sequence, merely
one believed to be useful in many circumstances, helping you more
quickly to identify the point of failure.

The approach documented for analyzing processor halts should help you
determine whether a halt is due to hardware or software failure.

Process and system hangs may be due to user error, hardware problems,
software error, or inadequate system resources. The approach
documented for analyzing hangs should help you determine the nature
of some hangs and perhaps restore normal operations.

Please note that this document is currently FOR INTERNAL USE ONLY.

Note to Reviewers

If you are reading this, please consider yourself a reviewer.

This document is available on the following Easynet systems:
VAXWRK::SYS$NOTES:BUGCHECK.MEM,
VMS SWE cluster DOCD$:[V4LIBRARY.MISC]BUGCHECK.MEM,
ISOIA::BUGCHECK.MEM

This book may also be ordered from Educational Services/Software
Services Training. See below for further information.

This is a draft of a larger undertaking. I would appreciate comments
on the format, on errors of omission or conunission, on your own
favorite tricks, hints, folklore, and other useful information. This
document is the beginning of a tree-like set of procedures, and I'm
interested in your reaction to the basic idea.

Please send review comments, suggestions, and omissions from the
Index via engineering net mail to VAXWRK::GOLDENBERG or interoffice
mail to Ruth Goldenberg PK02/M21.

Change bars mark the changes between this version, Revision o.c, and
the previous one. Revision O.c renames several sections. In
particular, IDENTIFYING VIRTUAL ADDRESSES is now titled VIRTUAL
ADDRESSES; DECIPHERING STACKS is now STACK PATTERNS; CPU HALTS is now
HALTS. Future enhanced versions of BUGCHECK.MEM will be announced in
VAXWRK: :SYS$NOTES:VMSNOTES.NOT, in the VMS SWE cluster SYSNOTES, and
in VAXworks' VMSnews.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
Revision 0.C

Intended Audience

Page vii
14 August 1985

This document is intended for Software Specialists, Field Service
engineers, and others who must troubleshoot VAX/VMS problems. You
are presumed to have knowledge of VMS internals and some familiarity
with its sources and with the System Dump Analyzer (SDA) utility.

How to Use This Document

This manual is organized into sections and is not intended to be read
straight through from the first page to the last.

Each section begins on a new page and is titled in the top left hand
corner. Except for the first two sections, the sections are in
alphabetic sequence by section title.

The first section, MESSAGES, is an index to messages described
elsewhere in the document. These include console halt messages,
fatal bugcheck messages, and SDA error messages.

The second section is STARTING POINTS. If you are trying ·to
troubleshoot a crash, halt, or hang, begin with STARTING POINTS.

If you are looking for information on a particular topic, the index
at the back of the document may be helpful.

Conventions Used in This Document

The phrase CTRL/x indicates that you must press the key labeled CTRL
while you simultaneously press another key, for example, CTRL/Z.

Conunand examples include underlines for all output lines or prompting
characters that the system prints or displays.

Angle brackets ("<"and">"), enclosing a descriptive name, are used
to indicate information which you must supply as part of a conunand,
and should not themselves be included in the conunand. For example,

$EXIT %X<exception_type>

means that you supply the actual exception type value when you issue
this DCL conunand.

The expression A(symbol) means address of symbol.
A(SRVEXIT) means the address of the symbol SRVEXIT.

For example,

For consistency with the VAX/VMS Internals and Data Structures
manual, the term "SYSBOOT parameter" is used rather than "SYSGEN
parameter", to describe any of the adjustable parameters used by the
secondary bootstrap program SYSBOOT to configure the system.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
Revision 0.C

Page viii
14 August 1985

All addresses in the text are hexadecimal. All other numbers in the
text are decimal unless otherwise identified.

Stack layouts show positional information, for example, which
longword in a signal array is the PC of the exception. Where
appropriate, stack layouts show actual hexadecimal numeric
information, for example, OOOOOOOC as the exception type in an access
violation signal array. Variable contents of a stack longword are
expressed as some number of unknown hexadecimal digits, such as
"xxxxxxxx" for the value of the exception PC in a signal array.

All addresses in the text are virtual unless identified as physical.

Unidentified global names are defined in SYS.EXE.

System modules are identified as [<facility name>]<module name>, for
example, [SYS]ASTDEL or [DRIVER]LPDRivER. The source listing
microfiche is organized by facility name. The last sheet of the
source fiche contains an index to the rest of the fiche. The
facilities are ordered alphabetically in the fiche with link maps and
source listings for the components of the facility.

The term <er> means the RETURN key. It is shown only in examples ·of
relatively unfamiliar utilities, such ·as MicroODT on the console
LSI-11 of a VAX-11/780. Most examples in this document do not
explicitly show the RETURN key being pressed following commands.
Assume that all command lines shown end with a <er> unless stated
otherwise.

[TBS] means "to be supplied".

VMS manuals referenced in the text are V4 manuals unless otherwise
noted.

Associated Documents

The following documents are necessary accompaniments to this
document:

o VAX/VMS Internals and Data Structures Manual

o VAX/VMS System Dump Analyzer Reference Manual

o VAX Architecture Standard (DEC Standard 032) or VAX-11
Architecture Reference Manual

o VAX/VMS Source List Microfiche

VAX,IVMS Troubleshooting *INTERNAL USE ONLY*
Revision 0.C

Ordering Information

Page ix
14 August 1985

Ordering information for employees wishing self-paced training
material and information documents produced by Educational
Services/Software Services Training appears below. Note that this is
not necessarily the same procedure as for enrolling in lecture
courses in your particular geography.

U.S.

US Software Specialists should order from their Software Services
Training Registrar. Other us employees should order directly from
the Educational Services Bookroom in Billerica, Massachusetts.

When ordering directly from the Bookroom, specify title, order
number, quantity, full ship-to address (not just a mailstop), if
partial shipments are allowed, name, badge number, and cost center.
Send order by VAXmail to CECILE: :MAILPO, by DECmail to MAILPO @BKO,
by interoffice mail to mailstop BKO, by postoffice to Digital
Equipment Corporation/12A Esquire Road;N. Billerica, MA 01862/USA,
or telephone 800-343-8321.

Europe

European Software Specialists should order from their logistics
contact. Other European employees should order from· their logistics
contact, or directly from the Educational Services Bookroom in
Billerica, Massachusetts (see instructions under us, above).

GIA

All GIA employees should order from their logistic contact.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MESSAGES

MESSAGES

%%
VAX-11/750, 66

?CHM ERR
VAX-11/780, 50
VAX-11/785, 50

?CLOCK PHASE ERROR
VAX-11/785, 51

?CPU DBLE-ERR HALT
VAX-11/780, 51
VAX-11/785, 51

?ILL I/E VEC
VAX-11/780, 52
VAX-11/785 I 52

?INT-STK INVALID
VAX-11/780, 53
VAX-11/785, 53

?NO USR WCS
VAX-11/780, 54
VAX-11/785, 54

@ console prompt
VAX-11/780, 56
VAX-11/785, 56

ATTEMPTING WARM RESTART
VAX-11/780, 58
VAX-11/785, 58

FATAL BUG CHECK, VERSION • Vn.n
ASYNCWRTER, 18 I 19
CHMONIS, 141
CHMVEC, 143
DBLERR, 138
FATALEXCPT, 33
HALT, 139
ILLVEC, 140
INVEXCEPTN, 84
IVLISTK, 137
KRNLSTAI<NV, 89
MACHINECHK, 98
NOUSRWCS, 141
OPERA'roR, 13
OUTOFSYNC, 51, 144
PGFIPLHI, 113
SCBRDERR, 144
SSRVEXCEPT, 146
STATENTSVD, 135
UNKRSTRT, 51, 59, 136
UNXINTEXC, 17
UNXSIGNAL, 170

Page 1
14 August 1985

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MESSAGES

FATAL BUG CHECK, VERSION = vn.n, 11

HALT INST EXECUTED
VAX-11/780, 48
VAX-11/785, 48

HALTED AT 00000000
VAX-11/780, 48
VAX-11/785, 48

HALTED AT 200034F9
VAX-11/780, 49

HALTED AT 2000350A
VAX-11/780, 48, 58

HALTED AT 20003552
VAX-11/780 I 49
VAX-11/785, 49

HALTED AT 20003563
VAX-11/780, 58
VAX-11/785, 58

HALTED AT 20003564
VAX-11/780, 48
VAX-11/785, 48

HALTED AT 8xxxxxxx
VAX-11/780, 49
VAX-11/785, 49

HALTED AT xxxxxxxx
VAX-11/780, 47
VAX-11/785, 47

OPCOM
mount verification in progress, 68

RMS-F-DME, 188

SDA
Remaining registers not available, 145
SDA-E-DUMPEMPTY, 13
SDA-W-NOREAD, 12
SDA-W-NOREQ, 12
SDA-E-NOSYMBOLS, 197
SDA-W-SHORTDUMP, 22
SYSTEM-E-SP'INOTFND, 22
SYSTEM-F-VASFULL, 12
unable to access location, 5

Page 2
14 August 1985

SYSTEM SHU'l'DOHN COMPLETE - USE CONSOLE 'ID HALT THE SYSTEM, 23
SYSTEM-F-MCHECK, 98
SYSTEM-W-PAGECRIT, 66
SYSTEM-W-PAGEP'RAG, 66
SYSTEM-F-INSFMEM, 188, 210, 211
SYSTEM-W-POOLEXPF, 125

VAX-11/750
%%, 66

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MESSAGES

VAX-11/780
@ console prompt, 56
?CHM ERR, SO
?CPU DBLE-ERR HALT, 51
?ILL I/E VEC, S2
?INT-STK INVALID, 53
?NO USR WCS, S4
ATrEMPTING WARM RESTART, S8
HALT INST EXECUTED, 48
HALTED AT 00000000, 48
HALTED AT 200034F9, 49
HALTED AT 2000350A, 48, S8
HALTED AT 20003552, 49
HALTED AT 20003563, 48, 58
HALTED AT 8xxxxxxx, 49
HALTED AT xxxxxxxx, 47

VAX-11/785
@ console prompt, 56
?CHM ERR, SO
?CLOCK PHASE ERROR, 51
?CPU DBLE-ERR HALT, 51
?ILL I/E VEC, 52
?INT-STK INVALID, 53
?NO USR WCS, S4
ATTEMPTING WARM RESTART, 58
HALT INST EXECUTED, 48
HALTED AT 00000000, 48
HALTED AT 200035S2, 49
HALTED AT 20003563, 48, 58
HALTED AT Sxxxxxxx, 49
HALTED AT xxxxxxxx, 47

Page 3
14 August 1985

VAX,IVMS Troubleshooting *INTERNAL USE ONLY*
STARTING POINTS

STARTING POINTS

Page 4
14 August 1985

The initial starting point for troubleshooting crashes is the section
BUGCHECKS. Follow the directions in that section and in any sections
to which the text directs you.

The initial starting point for troubleshooting processor halts is the
section HALTS - VAX-11/780 and VAX-11/785. (Other VAX processors'
halts will be documented in future revisions of this document.)
Follow the directions in that section and in any sections to which
the text directs you.

The initial starting point for troubleshooting suspected hangs,
process or system, is the section HANGS. Follow the directions in
that section and in any sections to which the text directs you.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
ACCESSING PROCESS CONTEXT WITH SDA

ACCESSING PROCESS CONTEXT WITH SDA

Page 5
20 May 85

Process context means the per-process virtual address space, general
registers, processor registers, and system data structures associated
with a particular process. The major system data structures that
describe a process are the software Process Control Block (PCB), Job
Information Block (JIB), and the Process Header (PHD). Examining
these data structures, whether in a crashdump or on the running
system, is usually straightforward. Type the following SDA command

SDA> SHCM SUMMARY !to get process id and pix

Under V4, the column labeled "Indx" contains the process index, or
"pix". Under V3, the pix is the low word of the process id. Type
the following SDA commands

SDA> SET PROCESS/INDEX=<pix>
SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven't
SDA> SHCM PROCESS/PCB !display PCB and get JIB address
SDA> FORMAT <jib address> !format JIB
SDA> SHCM PROCESS/PHO !display PHD fixed part
SDA> SHCM PROCESS/REG ! ••• process registers
SDA> SHCM PROCESS/WORK ! ••• working set.list
SDA> SHCM PROCESS/PROC · ! ••• process section table
SDA> SHCM PROCESS/PAGE ! ... page tables
SDA> SHC1f1 STACK/USER !user stack
SDA> SHC1f1 STACK/SUP !sup. stack
SDA> SHC1f1 STACK/EXEC !exec stack
SDA> SHC1f1 STACK/KERNEL !kernel stack

Issue EXAMINE commands to examine whatever per-process addresses you
want to see.

Under some circumstances, SDA is unable to execute any of the
commands above and outputs the error

unable to access location <x>

This error means that SDA, analyzing the running system, is unable to
access the target process.

When you are analyzing the running system, SDA queues a special
kernel AST to the process of interest in order to examine its address
space, its PCB, or its PHD. The special kernel AST collects
information, running in the context of the target process, and
requeues itself to the process running SDA. SDA waits three seconds
for the special kernel AST to complete this. Even if the target
process is outswapped, the AST enqueuing makes the process computable
and usually causes it to be inswapped. If, however, the process's
priority is very low with respect to other computable processes
and/or the system is heavily loaded, SDA's three second timeout may
expire. Furthermore, if the process is in a lengthy wait at IPL 2,
the AST cannot be delivered, and SDA's timeout will expire. When the
timeout expires, SDA issues the error message above.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
ACCESSING PROCESS CONTEXT WITH SDA

Page 6
20 May 85

If you suspect that the process's priority is the problem, first
display the system with either the SDA SHCM SUMMARY command or the
DCL SHCM SYSTEM conunand for confirmation. Increase the process's
priority and then re-issue the SDA conunand. Remember to lower the
process's priority when you are done. From an account with ALTPRI
and i«>RLD privileges, type the DCL conunand

.i SET PROCESS/PRIORITY=<new_priority>/IO-<pid>

You may still be unable to examine the process's context after
altering its priority, particularly if the process is being waited at
IPL 2. The sections below discuss possible alternative ways to
examine the PCB, JIB, and PHO. There is no way to examine the
per-process address space of a process on the running system which is
being waited at IPL 2.

The PCB And JIB

The software PCB and JIB are in nonpaged pool and always accessible
to SDA. However, SDA's usual method of obtaining these for a process
on the current system fails under the circumstances described above.

The alternative is the following SDA commands

SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> DEF PCS-@(@SCH$GL PCBVEC+(4*<pix>))
SDA> FORMAT PCB - ! display PCB
SDA> FORMAT @(PCB + PCB$L_JIB) !display JIB

The PHO

The PHO contains information which is generally not needed unless the
process is resident: the hardware PCB, the working set list, the
process section table, the per-process page tables, and accounting
and quota information. The hardware PCB is the area used to record
the process's general registers when the process's context is saved.
The hardware PCB may be of particular interest if you are trying to
determine why a process is in a lengthy wait. The PHO is
nonpageable, except for the per-process page tables.

The PHD is in a region of system space called the balance set slots.
When a process is inswapped a balance set slot is allocated for its
PHO. When a process is outswapped, its PHO may be outswapped also,
and the balance set slot virtual address space set to no access or
allocated to another process. When the process is inswapped again,
its PHD is likely to be in a different balance set slot. Because the
PHO is not permanently resident, SDA always accesses it from the
context of its process. However, if the process is being waited at
IPL 2, SDA's special kernel AST is unable to run in that process's
context.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
ACCESS.ING PROCESS CONTEXT WITH SDA

Page 7
20 May 85

The program in subsection Hints and Kinks is an alternative way to
access the nonpageable part of the process header. Run it from a
process with CMKRNL privilege. Given the pix of a target process,
the program makes various checks on the validity of the process
header and displays its hardware PCB if possible. Modification of
the program to display the working set list, process section table,·
or accounting and quota information is left as an exercise to the
reader.

If you are trying to learn more about a problem involving a hung
process which can be reproduced at will, you should lock the process
into the balance set before reproducing the problem so that its PHD
is always resident. The user must be granted the privilege PSWAPM
and must issue the DCL conunand SET PROCESS/NOSWAP before running the
program that causes the process to hang.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
ACCESSING PROCESS CONTEXT WITH SDA

Page 8
20 May 85

Hints And Kinks

.title READPHD
;
; This program, run from an account with CMKRNL privilege, displays the
; hardware pcb from the process header of a specified process. Its.
; intended use is to display the general registers of a resident process
; being waited at IPL 2 and thus inaccessible to online SDA.

Build it using the following commands:
MACRO READPHD + SYS$LIBRARY:LIB/LIB
LINK READPHD + SYS$SYSTEM:SYS.STB/SEL

; When you run it, it will prompt for the process index, or "pix" of the
; target process. Under V3, the pix is the low word of the process

id. Under V4, SDA SHCM SUMMARY has a colunm "Indx" which contains the
pix of each process. If the input pix contains any non-hex digits, the
program will reprompt. If the pix isn't valid or the PHD unavailable,
the program will exit with status nonexistent process.

$IPLDEF
$PCBDEF
$PHDDEF

start:: .word 0

get target process index
;
10$: pushaw

pushaq
pushaq
calls
blbc

pix input
pixprompt
pix input
#3,gAlib$get input
r0,20$ -

; convert pix to binary

;

clrl
push!
pushal
pushaq
calls
blbc

-(sp)
#4
pixarg
pixinput
#4,gAots$cvt tz 1
r0,10$ - -

;define IPL symbols
;define process control block offsets
;define process header offsets

;gets input size from lib$get_input
;prompt arg
;input arg
;get target pix
;branch if error

;zero flags arg
;value-size arg • longword
;binary result arg
;input string address arg
;convert pix to binary
;branch if non-hex digit

; call kernel mode procedure to copy hardware pcb of target process
;

;

$cmkrnl s getphd,arglist
blbc -r0,20$

format and display hardware pcb

;read hardware pcb of target
;branch if failure to access phd

$faol s faoctr,outsize,output,phdbuffer ;format hardware pcb
pushaq output ; output arg
calls #l,gAlib$put output ;display hardware pcb

20$: $exit_s rO -
;

SS

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
ACCESSING PROCESS CONTEXT WITH SDA

Page 9
20 May 85

; kernel mode procedure to read target's process header if available
;

.enable lsb
getphd: .word Am<r2,r3,r4,r5>

movl 4(ap),r2
cmpl r2,sch$gl maxpix
bgtr 20$ -

5$: setipl synch

;get pix of target
;is pix too large?
;branch if yes
;raise ipl and lock pages touched
; at high ipl

movl @sch$gl_pcbvec[r2],r4 ;get pcb address of target
cmpl r4,#sch$gl nullpcb ;has target process been deleted?

20$ - ;branch if yes beql
bbc #pcbv_phdres,pcbl_sts(r4),20$

movl
bgeq

pcb$l_phd(r4),r3
20$

;branch if phd not resident
;get phd address of target
;additional sanity check
;branch if phd not system space addre

movc3 #24*4,phd$1 ksp(r3),phdbuffer ;copy hardware pcb fields only
#ss$ normar-;-ro ;return success movzwl

10$: setipl #0 - ;restore ipl
ret

20$: movzwl #ss$_nonexpr,r0

brb 10$

data
;
phdbuffer:

.blkl 24
synch: .long ipl$ synch

assume <.-5$> le 512-
.disable lsb

;
end of data accessed at high ipl

;
arglist:.long 1
pixarg: .blkl 1
;
pixprompt:

.ascid \enter hex pix:\
pixinput:

.ascid \ \

;proc. outswapped, pix incorrect, etc

;for getphd procedure
;process index of target phd

faoctr: .ascid \KSP-!XL ESP-!XL SSP-!XL USP-!XL!/\-
\ RO•!XL Rl•!XL R2•!XL R3•!XL!/\-
\ R4•1XL RS-!XL R6•!XL R7•!XL!/\-
\ R8•1XL R9•!XL RlO•!XL Rll•!XL!/\-
\ AP-!XL FP-!XL PC•!XL PSL-!XL!/\-
\POBR•!XL POLRASTL-!XL PlBR•!XL PlLR•!XL\
output: .long 400

.address 10$
10$: .blkb 400
outsize: .blkw

.end start
1

;buffer for fao output
;length of fao output

VAX/VMS Troubleshooting *INTERNAL USE DNLY*
ACCESSING PROCESS CONTEXT WITH SDA

Additional References

Page 10
20 May 85

V3 VAX/VMS Internals and Data Structure Manual, Chapter 14, Memory
Management Data Structures

VAX/VMS Troubleshooting *INTERNAL USE E:>NLY*
BUGCHECKS

Page 11
10 June 85

BUGCHECKS

The main steps of initial bugcheck analysis follow.

o Find the dump file and determine the bugcheck type. If you are
uncertain about how to do this or experience problems, see the
following pages in this section for more detailed directions.

0
FOR BUGCHECK TYPE:

ASYNCWRTER
CHMONIS
CHMVEC
DBLERR
FATALEXCEPT
HALT
ILLVEC
INVEXCEPTN
IVLISTK
KRNLSTAKNV
MACHINECHK
OPERATOR
OUTOFSYNC
PGFIPLHI
SCBRDERR
SSRVEXCEPT
STATENTSVD
UNKRSTRT
UNXSIGNAL

GO TO SECTION:

CPU-SPECIFIC INTERRUPTS
RESTART BUGCHECKS
RESTART BUGCHECKS
RESTART BUGCHECKS
FATALEXCEPT BUGCHECK
RESTART BUGCHECKS
RESTART BUGCHECKS
INVEXCEPTN BUGCHECK
RESTART BUGCHECKS
KRNLSTAKNV BUGCHECK
MACHINE CHECKS
uninteresting dump
RESTART BUGCHECKS
PGFIPLHI BUGCHECK
RESTART BUGCHECKS
SSRVEXCEPT BUGCHECK
RESTART BUGCHECKS
RESTART BUGCHECKS
UNXSIGNAL BUGCHECK

o If the bugcheck type is not one of those listed above, see the
following pages in this section.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
BUGCHECKS

Page 12
10 June 85

All crashes result from a system software decision that system
integrity is compromised. Following this decision, the system
software bugchecks by executing the code generated by the BUG CHECK
macro. An example of a system software decision to crash the system
is in the IPL 3 interrupt service routine; the code which selects a
new process to place into execution bugchecks if the data structure
it removed from a compute queue is not a software PCB.

The BUG CHECK macro has one required argument, the bugcheck name, and
an optional argument, the keyword FATAL. The macro generates the
two-byte opcode FEFF followed by an inunediate operand generated from
the macro arguments. Execution of the bugcheck opcode results in an
Opcode Reserved to Digital exception. The exception service routine
special cases the bugcheck opcode by dispatching to EXE$BUG CHECK.
For a fatal exec or kernel mode bugcheck, EXE$BUG CHECK crashes the
system, writing a register and stack display to the console terminal
and, if conditions allow (see section CRASHDUMP REQUIREMENTS),
writing a dump of physical memory to the system dump file.

1. First, find the dump file. Initially, the dump should be in
SYS$SYSTEM:SYSDUMP.DMP or SYS$SYSTEM:PAGEFILE.SYS. Often the
dump will have been copied elsewhere. If it hasn't been, do · so
before proceeding further to avoid its loss following another
crash or a normal system shutdown. Note that the dump file by
default has the NOBACKUP attribute. This means that if you copy
the dump with BACKUP, you must use the /IGNORE-NOBACKUP
qualifier.

2. Run SDA to determine whether the dump file is valid. From an
account with file access to the dump, type the DCL command

.i ANALyzE/CRASH <dump_filespec>

SDA should respond with the date the dump was taken and the
bugcheck type and message text.

3. If SDA reports the error SDA-W-NOREQ, symbol "<x>" not found in
system symbol table, or the error SDA-W-NORE'AD, unable to access
location <x>, then most likely there is an incompatibility among
the version of SDA, the version of SYS.STB SDA reads as part of
its initialization, and the version of the crashed system. In
order for you successfully to analyze a dump, the dump, SDA, and
the SYS.STB must be from the same major release of VMS.

If you don't specify the /SYMBOL qualifier to the ANALyzE
command, SDA looks for SYS.STB first in the directory containing
the dump and then in SYS$SYSTEM.

4. If SDA reports the error SYSTEM-F-VASFULL, virtual address space
is full, then the SYSBOOT parameter VIR'IUALPAGCNT is too small.
Analyzing a dump requires a SYSBOOT VIRTUALPAGCNT parameter of
some 2000 pages plus the size of the dump file, whether it is
SYSDUMP.DMP or PAGEFILE.SYS. (Actual requirements may yary as a

VAX/VMS Troubleshooting
BUGCHECKS

INTERNAL USE ONLY

function of SYSBOOT parameters.)

Page 13
10 June 85

5. If SDA reports the error SDA-E-DUMPEMPTY, dump file contains no
valid dump, first check whether a BACKUP save and restore
performed without the /IGNORE=NOBACKUP could have restored the
size and other attributes of a NOBACKUP dump file without its
contents. If that is not the problem, see the section on
CRASHDUMP REQUIREMENTS and take appropriate action to get a valid
dump the next time the system crashes.

If you do not have a valid dump file, but do have console
bugcheck output, analysis of the crash may be possible. You
should attempt it, following the directions below to the extent
possible. The console bugcheck output is similar to the result
of issuing the SDA conunands

SDA> SHCM CRASH
SDA> SHCM STACK

The console output omits the processor register contents.
However, the bugcheck errorlog entiry from the time of the crash,
which may have been written to SYS$ERRORLOG:ERRLCX;.SYS, would
contain the processor register contents. Under V3, run SYE and
specify S in response to the "OPTIONS" prompt and /BU in response
to the "DEVICE NAME" prompt to limit the display to bugcheck
entries. Under V4, type the DCL command
ANALyzE/ERROR/INCLUDE=BUGCHECKS <file spec>. Locate the entry
corresponding to the date and time the-system crashed and read
its processor register contents.

6. If the bugcheck type is OPERATOR, this crashdump resulted from an
operator requested shutdown of the system. These always occur as
the last step of shutdown and are generally of no interest. If
you or someone else mistakenly shut down the system because you
wanted to examine a hung or slow system, next time use the CRASH
command procedure documented in Section 4.1 of the Guide to
VAX/VMS System Management and Daily Operations.

7 • Type the SDA conunand

SDA> SHCM CRASH

to display the system version and register contents. The
registers displayed are the register values at the time the
BUG CHECK was requested. Subtract 4 from the displayed PC to
determine the address of the BUG CHECK macro.

8. Type the SDA conunand SHCM STACK to display the stack current at
the time of crash. Note that for each V3 SDA COPY command used
to copy the dump, the SP will be 8 bytes greater than its actual
value; that is, SDA will show the SP pointing to a stack address
8 bytes higher than it should. This V3 bug has been corrected in
V4.

.:,1"'

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
BUGCHECKS

Page 14
10 June 85

9. If the bugcheck type is in the list below, continue with the
steps in the specified section.

FOR BUGCHECK TYPE:

ASYNCWRTER
CHMONIS
CHMVEC
DBLERR
FATALEXCEPT
HALT
ILLVEC
INVEXCEP'IN
IVLISTK
KRNLSTAKNV
MACHINECHK
OPERATOR
OUTOFSYNC
PGFIPLHI
SCBRDERR
SSRVEXCEPT
STATENTSVD
UNKRSTRT
UNXSIGNAL

GO 'IO SECTION:

CPU-SPECIFIC INTERRUPTS
RESTART BUGCHECKS
RESTART BUGCHECKS
RESTART BUGCHECKS
FATALEXCEPT BUGCHECK
RESTART BUGCHECKS
RESTART BUGCHECKS
INVEXCEP'IN BUGCHECK
RESTART BUGCHECKS
KRNLSTAKNV BUGCHECK
MACHINE CHECKS
uninteresting dump
RESTART BUGCHECKS
PGFIPLHI BUGCHECK
RESTART BUGCHECKS
SS~CEPT BUGCHECK
RESTART BUGCHECKS
RESTART BUGCHECKS
UNXSIGNAL BUGCHECK

10. If the bugcheck type is not one of those listed above, identify
in what source module the PC is, using directions in section
VIRTUAL ADDRESSES. Locate and read the source code to determine
what anomaly the system detected and the significance of the
general registers and relevant data structure contents.

11. Decipher the current stack to trace control flow up to the point
of error. See the section STACK PATTERNS.

Hints And Kinks

1. Although "deciphering stacks" and "identifying virtual addresses"
are listed as single and separate steps, in practice, they are
usually repetitive and intertwined. For example, that a
particular longword can be interpreted as a particular address
should be confirmed in the context of what code was executing and
manipulating that longword. Usually this requires that some
piece of the stack be deciphered. Another example is that
identifying a particular footprint on the stack may require or
result in the identification of addresses within that footprint.

2. When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process's context and displays

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
BUGCHECKS

Page 15
10 June 85

them in response to the SHCM PROCESS/REGISTER command.

3. Whenever you modify SYSBOOT parameters, remember to make AU'IOOEN
aware of your changes so that they propagate across AU'IOOENs.
Include any parameter changes you make in V3
SYS$SYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 8.2, System
Crashes

VAX/VMS System Dump Analyzer Reference Manual, for use of SDA

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CPU-SPECIFIC INTERRUPTS

CPU-SPECIFIC INTERRUPTS

Page 16
20 May 85

Five vectors in the System Control Block, at hex offsets 50 through
60, are reserved for cpu-specific system bus and memory errors.
These interrupts occur at cpu-specific IPLs within the range hex 18
through lD.

VMS services these interrupts in a cpu-specific image loaded into
nonpaged pool during system initialization. The image name is of the
form SYSLOAxxx.EXE, where xxx designates the cpu type.

CPU

MicroVAX I
MicroVAX II
VAX-11/730
VAX-11/750
VAX-11/780
VAX-11/785
VAX 8600
VAXstation I
VAXstation II

IMAGE NAME

SYSLOAUVl.EXE
SYSLOAUV2.EXE
SYSI.l:JA730.EXE
SYSI.l:JA750.EXE
SYSI.l:JA780.EXE
SYSI.l:JA780.EXE
SYSI.l:JA790.EXE
SYSLOAWSl.EXE
SYSLOAWS2.EXE

See the subsection SYSLOAXXX.EXE in the section VIRTUAL ADDRESSES -
SYSTEM SPACE for more information on the mechanism for dispatching
into SYSLOAxxx.EXE.

In general, VMS servicing of these interrupts is done at IPL 31 and
includes logging an error to the error log.

For more information, see the section corresponding to the cpu of
interest

CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785
[others TBS]

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/78S

CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-ll/78S

Page 17
lS May 8S

The VAX-11/780 and VAX-11/785 have five cpu-specific interrupts.

Hex SCB Off set Hex IPL Interrupt Name

so 19 SBI Silo Compare
54 1A CRD/RDS
S8 lB SBI Alert
SC 1c SBI Fault
60 10 CPU Timeout

SBI Silo Compare

This interrupt occurs when a match is detected on particular signal
fields of the SBI bus. The signal fields being checked can be
program-selected by control bits in the SILO COMPARA'IOR register.
The previous sixteen cycles on the SBI bus are latched in the silo
register for interrogation by diagnostic software.

This interrupt can occur only if it is enabled in the SILO COMPARA'IOR
register. It is very unlikely to occur and documented here for
completeness more than anything else. VMS does not enable it and
handles this interrupt as an unexpected interrupt. That is, VMS
signals the nonfatal bugcheck UNXINTEXC. If BUGCHECKFATAL is 0, its
default value, the result is a bugcheck error log entry.

This interrupt can be used as an ad hoc troubleshooting tool for
particular kinds of hardware problems by someone who understands the
SBI protocol, who can interpret the silo contents, and who can load a
service routine for the interrupt into nonpaged pool.

CRD/RDS

The Corrected Read Data (CRD) interrupt occurs when the processor
receives read data which has been error-corrected by memory. The
Read Data Substitute (RDS) interrupt may occur when the processor
receives bad data which cannot be error-corrected. If the cpu
attempts to use bad data in instruction execution, a machine check
occurs. If instruction execution alters control flow so that bad
data in the instruction prefetch buffer is unused, the RDS interrupt
occurs.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the memory controllers or their memory
arrays.

VMS's interrupt service routine logs this in the error log with type
SE (soft memory error) and increments EXE$GL_ MEMERRS. The contents

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785

Page 18
15 May 85

of EXE$GL MEMERRS are displayed in the output from the DCL command
SHCM ERROR as MEMORY errors. VMS reads the memory controller status
registers to include them in the errorlog entry. If there is a
MS780E controller indicating either SBI interface write data parity
error or microsequencer parity error, VMS signals the fatal bugcheck
ASYNCWRTER. (In contrast to the ASYNCWRTER bugcheck signaled by the
cpu write timeout interrupt service routine, this crashdump does not
have a faked machine check logout on the stack.) Otherwise, it
dismisses the interrupt.

If you think an ASYNCWRTER crash was caused by this problem, the best
way to learn more is through analyzing the error log, because the
crashdump does not contain the contents of all the interesting
processor and memory controller registers. Under V3, run SYE and
specify s in response to the "OPTIONS" prompt and /CP to the "DEVICE
NAME" prompt. Under V4, type the DCL conunand
J.\NALyzE/ERROR/INCLUDE-CPU <filespec>. The error log report displays
and interprets the contents of the SBITA and SBIER registers. The
SBITA register contains the physical SBI address (of a longword) that
timed out. The error log report shows this as the address (of a
byte) following "TIMEOUT CONSOLE ADDR •". If this address is less
than 20000000, then it is a memory address. Otherwise, it is a nexus
register address. The physical address corresponding to the start· of
nexus N's registers is 200xx000, where xx equals 2 times N in hex.
For example, the registers for nexus 4 begin at 20008000. Compute
the nexus number. To find out what is present at that nexus, look at
the error log report. It displays the configuration/status register
for each nexus, along with the nexus number and type.

SBI Alert

This interrupt occurs when an SBI adapter or controller asserts the
SBI Alert line. Adapters or controllers which have no other means of
requesting SBI interrupts can assert this signal to request an
interrupt. currently, only MS780C and MS780E memory controllers
without ISP ROMs assert this line to report memory power failure or
recovery. (A memory controller with an ISP ROM is considered more
critical to system functioning and is usually jumpered to assert a
different SBI signal to report power problems.)

This interrupt cannot be generated through software error. It can be
caused by hardware problems in memory controllers or their power
supplies.

VMS logs this in the error log with type SA (SBI Alert) and
increments EXE$GL MEMERRS. The contents of EXE$GL MEMERRS are
displayed in the output from the DCL command SHON ERROR as MEMORY
errors. VMS reads the memory controller status registers to include
them in the errorlog entry. If there is a MS780E controller
indicating either SBI interface write data parity error or
microsequencer parity error, VMS signals the fatal bugcheck
ASYNCWRTER. (In contrast to.the ASYNCWRTER bugcheck signaled by the

)

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785

Page 19
15 May 85

cpu write timeout interrupt service routine, this crashdump does not
have a faked machine check logout on the stack.)

If you think an ASYNCWRTER crash was caused by this problem, the best
way to learn more is through analyzing the error log, because the
crashdump does not contain the contents of all the interesting
processor and memory controller registers.

SBI Fault

This interrupt occurs if an SBI bus error was detected by any adapter
or controller on the SBI, including the cpu. Possible bus errors
include SBI parity error, write sequence fault, interlock sequence
fault, and multiple SBI transmitter 'fault. If the cpu detects a
fault condition preventing completion of a read cycle for the cpu,
the cpu also generates a machine check, typically a read timeout
machine check. See section MACHINE CHECKS - VAX-11/780 and
VAX-11/785.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the SBI, ,memory controllers, and SBI
nexus.

VMS's interrupt service routine logs this in the error log with type
BE (bus error), increments EXE$GL MCHKERRS, and dismisses the
interrupt. The contents of EXE$GL McHKERRs are displayed in the
output from the DCL command SHcM ERROR as CPU errors. If you see
errors of this sort in the error log, contact Field Service.

Cpu Timeout

This interrupt occurs if the processor receives an error confirmation
from an SBI nexus for the second longword of an extended read
operation or does not receive SBI command completion within 512 SBI
cycles.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the SBI, memory controllers, and SBI
nexus.

VMS's interrupt service routine logs the error in the error log with
an entry type of AW (asynchronous write) and increments
EXE$GL MCHKERRS. The contents of EXE$GL MCHKERRS are displayed in
the ootput from the DCL command SHCM ERROR as CPU errors. VMS then
tests whether the address reference was made from user/supervisor
mode or from exec/kernel mode. If the reference was made from exec
or kernel mode, VMS signals the fatal bugcheck ASYNCWRTER. If the
reference was made from user or supervisor mode, VMS signals a
machine check exception to the access mode active at the time the
interrupt occurred. If you see errors of this sort in the error log,

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785

contact Field Service.

Page 20
15 May 85

The error log from the time of the crash is very important in
analyzing this error, because the crashdump does not contain the
contents of all the interesting processor and memory controller
registers. The interrupt PC and PSL are possibly irrelevant to the
error, since these interrupts do not necessarily occur during the
instruction which caused them; the processor is allowed to continue
execution while an SBI write cycle is pending.

The crashdump interrupt stack contains a faked microcode machine
check error logout, beginning with a hex byte count of 28. This
error logout on the stack is present for convenience in executing a
common code path, is meaningless, and should be ignored.

Additional References

VAX-11/780 TB/CACHE/SBI Control Technical Description

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
CRASHDUMP REQUIREMENTS

CRASHDUMP REQUIREMENTS

Page 21
15 April 85

Following is a list of requirements that must be met for VAX/VMS to
write a complete crashdump. Most of these are discussed in more
detail below.

o There must be a crashdump file in SYS$SYSTEM named either
SYSDUMP.DMP or PAGEFILE.SYS. If the dump file is SYSDUMP.DMP, it
must be four blocks bigger than physical memory. If SYSDUMP.DMP
is not present, VMS will write crashdumps to PAGEFILE.SYS; it
must be at least 1004 blocks bigger than physical memory, and the
SYSBOOT parameter SAVEDUMP must be 1 (default is 0).

o The data fields in system space describing the dump file's
extents must be intact when the system crashes.

o The resident part of EXE$BUG CHECK must be able to read in the
non-resident code, using the-rx,ot driver.

o The SYSBOOT parameter DUMPBUG must be 1 (default is 1).

o Physical memory must contain no pages with unrecoverable parity
errors.

o The boot driver must be able to write to the dump file.

o The user must not halt the system via the console terminal until
after the console dump messages have been printed in their
entirety and memory contents have been written to the crashdump
file.

Crashdump File

During system initialization, SYSBOOT first looks up the crashdump
file as the highest version of SYS$SYSTEM:SYSDUMP.DMP and records the
location of its extent(s) in a data structure called the Boot Control
Block. If there is no SYSDUMP.DMP, SYSBOOT maps the extent(s) of
SYS$SYSTEM:PAGEFILE.SYS instead. The contents of the Boot Control
Block are checksummed at system initialization and again during fatal
bugcheck processing. A crash dump is written only if the two
checksums are equal. When the system crashes, VMS does not do a
further lookup of the dump file. Note that you run a serious risk of
corrupting your system disk if you delete the dump file whose
extent(s) VMS mapped at system initialization.

For a complete dump to be written, the dump file must be at least as
big as local physical memory (unless the SYSBOOT parameter
PHYSICALPAGES is less than this) plus any multiport memory plus four
blocks. For example, a 2 mb VAX system requires a SYSDUMP.DMP file
of 4100 blocks; a lmb system requires 2052 blocks. If the dump is to
be written to PAGEFILE.SYS, increase these numbers by 1000 blocks.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CRASHDUMP REQUIREMENTS

Page 22
15 April 85

The first block of the dump file is used for a formatted error log
message with bugcheck information and the contents of the processor
registers. The second and third blocks of the file are used to save
the contents of the error log message block buffers (error log
messages not yet written to SYS$ERRORLOG:ERRLOG.SYS) The fourth block
is reserved and currently unused.

Fatal bugcheck processing code writes physical memory contents to the
crashdump file following the reserved blocks of the file. If the
dump does not include all of physical memory, SDA outputs the error
SDA-W-SHORTDUMP, the dump only contains x out of y pages of phyical
memory. If you have set the SYSBOOT parameter PHYSICALPAGES so as

·not to use all of physical memory, and the dump file is PHYSICALPAGES
plus 4, ignore this warning message.

If, however, the dump file is too small to include the System Page
Table (SPT), SDA cannot analyze it and outputs the error
SDA-E-SPTNOTFND, system page table not found in dump file. The
System Page Table (SPT), the key to translating physical addresses to
virtual addresses, is usually allocated in the highest physical
memory.

You can alter the dump file size with the command procedure
SYS$UPDATE:SWAPFILES.COM. For size increases, SYSGEN (invoked by
SWAPFILES.COM) extends the current dump file by default. Use of a
new or extended dump file, whether it is SYSDUMP.DMP or PAGEFILE.SYS,
requires a system reboot. SWAPFILES.COM is documented in Section
11.7 of the Guide to VAX/VMS System Management and Daily Operations.

If you have insufficient free disk space to extend SYSDUMP.DMP large
enough, a larger PAGEFILE.SYS and no SYSDUMP.DMP may solve the
problem. First, rename SYSDUMP.DMP so that system initialization
code cannot find it. Do not delete the renamed SYSDUMP.DMP until
after you have rebooted the system, because its extents will be used
for a dump when you shut down the system. Shutdown the system and
then reboot the system. Delete the renamed SYSDUMP.DMP, and extend
PAGEFILE.SYS to the necessary size. Shutdown and reboot again in
order to use the extended portion of PAGEFILE.SYS.

Bugcheck Mechanism

When the service routine for Opcode Reserved to Digital exceptions
detects either of the two bugcheck special opcodes, "'XFEFF (BUGW) or
"'XFDFF (BUGL, currently unused), it transfers control to
EXE$BUG CHECK. Use of the exception mechanism automatically changes
access iiiode to kernel and allows code running in other than kernel
mode to report bugchecks.

To determine what to do, EXE$BUG CHECK looks at the PSL previous
mode, that is, the access mode-in which the exception occurred; the
word or longword of bugcheck information that follows the bugcheck
opcode; and several SYSBOOT parameters.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CRASHDUMP REQUIREMENTS

Page 23
15 April 85

If the previous mode was kernel or exec, EXE$BUG CHECK deteimines
whether the bugcheck was fatal or continuable. II the bug severity
is greater or equal to ERROR, the bugcheck is considered fatal.
Also, if SYSBCXJT parameter BUGCHECKFATAL is 1, all kernel and exec
mode bugchecks become fatal. BUGCHECKFATAL is 0 in the V3 and V4
default parameters.

For non-fatal exec and kernel mode bugchecks, EXE$BUG CHECK fills in
an error log entry with bugcheck information and REis:-

For fatal exec and kernel mode bugchecks, EXE$BUG CHECK creates an
error log entry with bugcheck information ana displays bugcheck
information on the system console. It should write bugcheck
information, error log message block buffers, and memory contents to
the crashdump file.

The code which processes fatal bugchecks is not part of the resident
executive. EXE$BUG CHECK reads it from the system image into system
space, over read-only non-paged executive, at global symbol
BUG$FATAL. EXE$BUG CHECK first initializes the system disk's adapter
and then calls any 'Unit initialization z;outine specified by the boot
driver. If the unit initialization routine fails, EXE$BUG CHECK
sends a reboot message to the console and halts. If the- unit
initialization succeeds, EXE$BUG CHECK calls the bootstrap driver to
read the fatal bugcheck processing code. If the bootstrap driver
gets a fatal I/O error or exceeds its retry count for recoverable
errors, it returns an error status code.

If an error occurs, EXE$BUG CHECK loops, re-initializing the adapter
and attempting to read the-fatal bugcheck code. Eventually, its I/O
should succeed, and fatal bugcheck processing will continue.

After EXE$BUG CHECK'S fatal bugcheck overlay creates the bugcheck
error log entry in the page of memory preceding BUG$FATAL and
displays bugcheck information on the console, it tests the SYSBOOT
parameter BUGREBOOT. If BUGREBOOT is 0, EXE$BUG CHECK dispatches to
code which causes an XDELTA breakpoint if XDELTA -is resident. The

_user then has an opportunity to examine system data structures of
interest. When the user types ";p" to terminate the breakpoint,
control returns to EXE$BUG CHECK. If SYSBOOT parameter DUMPBUG is 1,
EXE$BUG CHECK then attempts to write information to the crash dump
file. i5uMPBUG is 1 in the V3 and V4 default parameters.

After fatal bugcheck processing is complete, EXE$BUG CHECK concludes
either by halting or by looping endlessly to avoid automatic restart.
If BUGREBOOT is 1, EXE$BUG CHECK sends a reboot message to the
console and halts. BUGRiBooT is 1 in the V3 and V4 default
parameters. If BUGREBOOT is 0, EXE$BUG CHECK prints the following
message on the console terminal and loops.

SYSTEM SHlJ'l'IXJiqN COMPLETE - USE CONSOLE TO HALT THE SYSTEM

VMS V3 systems loop at PC 80007D3C. VMS V4 systems loop at PC
80008D7E.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
CRASHDUMP REQUIREMENTS

SYSINIT Processing

Page 24
15 April 85

When the system is first rebooted after a crash, SYSINIT uses the
second and third blocks of the dump file to restore the error log
message block buffers, so that error messages from the time of the
crash will be written to the error log file by ERRFMT's normal
processing.

By default SYSINIT enables the use of PAGEFILE.SYS (other than the
first four blocks) as pagefile. As modified pages are written to
PAGEFILE.SYS, any dump in it is overwritten. To prevent this when
PAGEFILE.SYS is used as a dump file, set parameter SAVEDUMP to 1 and
ensure that PAGEFILE.SYS is as big as physical memory (including any
MA780 memory) plus 4 blocks plus at least 1000 blocks. SAVEDUMP is 0
in the V3 and V4 default parameters. After a crash run SDA from an
account with CMI<RNL privilege and access to the dump. Use SDA to
copy the dump elsewhere to enable the pages of PAGEFILE.SYS occupied
by the dump to be used as normal pagefile.

Hints And Kinks

1. Whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUTOGENs.
Include any parameter changes you make in V3
SYS$SYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 8.2, System
Crashes

Guide to VAX/VMS System Management and Daily Operations, Section
3.4.3, on dumps in PAGEFILE.SYS

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

EXCEPTIONS

Page 25
12 August 85

An exception is an unusual event encountered in the flow of
instruction execution that alters that normal flow. Many exceptions
are detected by the hardware (including microcode), but some types of
exceptions are detected by software. Most exceptions that cause
system crashes are detected by the hardware.

An exception may simply mean, for example, that an arithmetic
operation overflowed, that a progranuning error resulted in an attempt
to execute an illegal or invalid instruction, that a virtual page
referenced needs to be read into memory, or that a program is
requesting a system service.

Exceptions do not directly cause crashes. However, VMS assumes that
certain kinds of exceptions in inner access modes (kernel and exec)
mean that system integrity is compromised, that the system should be
crashed or the current process deleted. A fairly large percentage of
system crashes occur as the result of inner access mode exceptions.
Most often the exception indicates that an earlier corruption or
error has occurred.

In order to analyze these crashes, you must examine the stack
footprints left by the exception to learn what exception occurred,
and then examine the relevant code and data structures to infer what
error(s) led up to the exception.

Software Exceptions

Software-detected exceptions are errors detected by software and
signaled in such a way that they can be processed analogously to
hardware exceptions. An example of a software exception is the
condition AST fault. An AST fault means that an AST could not be
delivered to a particular access mode in a particular process because
its stack was invalid. Another example is the condition system
service failure, which means that a system or RMS service completed
with an error or a severe error.

In general, software exceptions are implemented to allow application
level software to signal errors, although VMS makes some use of the
mechanism. Most software exceptions occur in outer access modes and
do not result in system crashes.

Hardware Exceptions

A hardware exception is synchronous with and caused by the execution
of an instruction. Hardware exceptions include arithmetic overflow,
access violation, translation not valid (known as pagefault), trace
fault, and change mode traps.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

Page 26
12 August 85

When the processor detects an exception, it pushes on the stack the
PC and PSL at which the exception occurred. It also pushes on the
stack any exception dependent information, for example, the address
whose attempted reference caused an access violation.

A hardware exception is either a fault, a trap, or an abort. The
exception type depends on the individual exception; for example, an
access violation exception is a fault. The distinction among these
that is key to troubleshooting is the significance of the exception
PC saved on the stack.

A trap is an exception that occurs at the end of the instruction that
caused the exception. The PC saved on the stack is the address of
the next instruction that would have been executed had the exception
not occurred. This means that you must examine the instruction
before the exception PC to analyze the exception.

A fault is an exception that occurs during an instruction. The
microcode leaves the registers and memory in a consistent state such
that elimination of the fault condition and restart of the
instruction will give correct results. The PC saved on the stack is
the address of the faulting instruction. This means that you must
examine the instruction at the exception PC to analyze the exception.

An abort is an exception that occurs during an instruction, leaving
the registers and memory unpredictable, such that the instruction
cannot necessarily be correctly restarted, completed, simulated, or
undone. After an abort, the PC saved on the stack is the address of
the aborted instruction. This means that you must examine the
instruction at the exception PC to analyze the exception.

Exception Dispatching

After saving on the stack the PC, PSL, and any exception dependent
information, the processor transfers control to the service routine
specified in the System Control Block vector for that particular
exception. Most of these exception service routines run in kernel
mode.

Exceptions can be divided into two categories: ones which VMS will
pass on to process-declared condition handlers and ones which VMS
uses to perform its normal work (such as CHME and CHMK traps,
pagefaul t) •

The service routines for exceptions that are passed on to condition
handlers are very simple and very similar. The service routines push
more information on the stack: a system status code indicating what
type of exception occurred (for example, SS$ ACCVIO) and a count of
how many longwords of exception information are now on the stack.
The exception information on the stack now comprises a signal
argument list (also called a signal array). The exception service
routines all converge to a conunon dispatching routine called

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

EXE$EXCEPTION.

Page 27
12 August 85

EXE$EXCEPTION builds another argument list on the stack called a
mechanism argument list (or mechanism array) and then checks whether
this exception has occurred in a legal context; that is, it checks
that the processor is currently not running on the interrupt stack
and is running at an IPL no higher than two. If either of these
checks fails, EXE$EXCEPTION signals the fatal bugcheck INVEXCEPTN.
See section INVEXCEP'IN BUGCHECK for a detailed stack layout.

If the checks pass, EXE$EXCEPTION builds one more argument list on
the stack, the condition handler argument list, which contains the
addresses of the signal and mechanism arrays. It then makes several
more checks to prevent possible loops in exception servicing; for
example, it checks whether the exception occurred calling a last
chance handler or an AST procedure. If either of these checks fails,
EXE$EXCEPTION signals a FATALEXCEPT bugcheck. See section
FATALEXCEPT BUGCHECK for a detailed stack layout.

If the checks pass, EXE$EXCEPTION moves the three argument lists to
the stack of the access mode that incurred the exception and REis to
that mode.

Executing in the access mode of the exception, EXE$EXCEPTION searches
for a process-declared condition handler to handle the exception. It
checks the primary and secondary exception vectors for that access
mode. The primary and secondary exception vectors are in the first
and second longword of CTL$AQ EXCVEC, postindexed by access mode.
EXE$EXCEPTION then traverses-the the current stack, following nested
call frames, looking for a call frame condition handler. The last
place EXE$EXCEPTION looks is the last chance vector, CTL$AL FINALEXC
postindexed by access mode. -

EXE$EXCEPTION calls any condition handler it finds with the condition
handler argument list. A condition handler typically examines the
signal array to decide whether it can handle that exception type.

If a condition handler returns a status indicating it cannot handle
that particular exception type, EXE$EXCEPTION continues its search
for a condition handler.

There are two conmen bugcheck types that are signaled by condition
handlers: SSRVEXCEPT and UNXSIGNAL. SSRVEXCEPT is signaled by the
default last chance handlers for kernel and exec mode. See section
SSRVEXCEPT BUGCHECK for a detailed stack layout. UNXSIGNAL is
signaled by call frame condition handlers used by several ACPs and
the Files-11 XQP. See section UNXSIGNAL BUGCHECK for a detailed
stack layout.

Some Conunon Exception Types

Some of the more conmen hardware exceptions that cause INVEXCEP'IN,

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

Page 28
12 August 85

SSRVEXCEPT, and UNXSIGNAL bugchecks are access violation fault,
opcode reserved to customers and opcode reserved to Digital faults,
reserved addressing mode fault, and reserved operand fault.

The subsections below describe each of these exceptions in slightly
more detail with a layout of its signal array. The intent is to to
show how the information in the documentation listed below can be
applied to analyze these and other hardware exceptions which cause
system crashes.

Access Violation Fault

An access violation fault means that an instruction has tried to
reference a virtual address whose page table entry protection field
prohibits that reference from that access mode. An access violation
can also result from attempting access to an address beyond the range
mapped by its respective page table; this is called a length
violation.

The microcode pushes two longwords of exception dependent information
on the stack: the address whose attempted reference caused the fault
and a reason mask. The VAX architectures specifies that the faulting
virtual address may be some other address in the same virtual page as
the actual faulting operand address, but this rarely happens.

The signal array for this exception follows.

00000005
oooooooc
OOOOOOOx
xxxxxxxx
xxxxxxxx
xxxxxxxx

argument count
SS$ ACCVIO signal type
reason mask
faulting virtual address
exception PC
exception PSL

The reason mask longword contains 3 bits of information.

1. Bit 0 - the type of access violation

0 means the PTE protection code prohibits the intended access
1 means the reference was a length violation

2. Bit 1 - page table entry reference

0 means the virtual address itself was not accessible
1 means the PTE mapping the virtual address was not accessible

3. Bit 2 - intended access

0 means the intended access was a read
1 means the intended access was a write

VAX/VMS Troubleshooting
EXCEPTIONS

INTERNAL USE ONLY . Page 29
12 August 85

First, examine the reason mask to determine whether this is a length
violation, whether the PTE mapping the virtual address was not
accessible, or whether the PTE's protection simply prohibited the
intended access. A length violation occurs when the virtual page
number of a PO or System virtual address is greater than the contents
of the PO or System length register; a Pl space length violation
occurs when the virtual page number is less than the contents of the
Pl length register. Length violations are among the more conunon
kinds of access violation and often easy to spot because the faulting
virtual address looks "strange". Incorrect references to location O,
or any address in virtual page 0, are another conunon cause of access
violations. Inaccessible PTEs are less conunon.

Examine the instruction that incurred the fault and its operands to
determine which operand reference caused the fault.

Many crash-causing access violations result from software errors.
Software errors that can cause access violations include:

1. use of a corrupted pointer in one data structure to reference
another data structure

2. use of a corrupted register as a pointer to a data structure
3. use of an invalid input argument, such as size, in an address

computation
4. corruption of code in memory (or code on disk)
5. erroneous transfer of control into the middle of random data or

code
6. corruption in a page table resulting in incorrect protection

information.

An access violation can also be signaled by VMS memory management
code; that is, this exception is not always detected by hardware.
The pagefault exception service routine, MMG$PAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in
another process's process header. Although a process header is in
system space, not per-process space, it is paged in the working set
list of the process whose header it is. The system cannot allow one
process to fault a page which belongs to another process.

You can check whether the access violation might be an attempt to
touch another process's process header by comparing the faulting
virtual address to the address range reserved for the balance set
slots. Type the following SDA conunands.

SDA> DEF BALBASE • @SWP$GL BALBASE tdefine symbol
SDA> EVAL BALBASE - !start address
SDA> EVAL BALBASE + (@SGN$GL BALSETCT*@SWP$GL BSLOTSZ*200)
SDA> - tend address

If the address is not within that range, then it is a hardware
detected access violation. If the address is within that range, then
see whether the address is within the process's own header by ·typing
the following SDA conunands.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

Page 30
12 August 85

SDA> SH()q PROCESS !PHD start address
SDA> EVAL <phd> + (@SWP$GL BSLOTSZ*200)
SDA> - ! end address

If the address is within the process's own header, then most likely
this is a hardware detected access violation.

Reserved Opcode Faults

An opcode reserved to Digital fault (SS$ OPCDEC) means that an
attempt was made to execute an undefined-opcode or, from an outer
mode, an instruction which requires the process to be in kernel mode.
Examples of instructions that may only be executed in kernel mode are
SVPCTX and MTPR.

An opcode reserved to customer fault (SS$ OPCCUS) means that an
attempt was made to execute an instructTon starting with the hex
opcode FC.

For either of these faults, no extra exception information is pushed
on the stack.

The signal array for these exceptions follows.

I 00000003
I0000043C/00000434
I xxxxxxxx
I xxxxxxxx

argument count
SS$ OPCDEC/SS$ OPCCUS signal type
exception PC -
exception PSL

Many crash-causing reserved operand faults result from software
errors. Software errors that can cause reserved opcode faults
include corruption of code in memory (or code on disk) and erroneous
transfer of control into the middle of random data or code.

Reserved Addressing Mode Fault

A reserved addressing mode fault means that an instruction contains
an operand specifier for an addressing mode that is not allowed in
the context in which it occurs. No extra exception information is
pushed on the stack. An example of a reserved addressing mode is the
use of a short literal as a destination operand. See the VAX-11
Architecture Reference Manual or System Reference Manual, section
6.4.3, for a list of illegal addressing modes.

VAX/VMS Troubleshooting *INTERNAL USE pNLY*
EXCEPTIONS

The signal array for this exception follows.

+-~~~~~-----+

00000003 I argument count

Page 31
12 August 85

0000044C I SS$ RADRMOD signal type
xxxxxxxx I exception PC
xxxxxxxx I exception PSL

Many crash-causing reserved operand faults result from software
errors. Software errors that can cause reserved addressing mode
faults include corruption of code in memory (or code on disk) and
erroneous transfer of control into the middle of random data or code.

Reserved Operand Exception

A reserved operand exception means that an attempt was made to
execute an instruction with an operand that has an invalid format.
One example of a reserved operand fault is a CALLS/G to a procedure
with an invalid entry mask. Another example is an attempt to REI
with an invalid saved PSL. Whether the exception is an abort or· a
fault depends upon the cause. See the VAX-11 Architecture Reference
Manual or System Reference Manual, section 6.4.3, for a list of
causes of reserved operand exceptions and their exception types. No
extra exception information is pushed on the stack.

The signal array for this exception follows.

00000003 argument count
00000454 SS$ ROPRAND, signal type
xxxxxxxx exception PC
xxxxxxxx exception PSL

Examine the instruction that incurred the fault and its operands to
determine which operand reference caused the fault.

If the exception PC is the address of an REI instruction, then the
two longwords on the stack at higher addresses than the signal array
should be a PC-PSL pair to be restored with the REI. The REI
microcode makes numerous integrity checks on the saved PSL before
restoring it. (See the VAX-11 Architecture Reference Manal or System
Reference Manual, section 6.9, for a list of these checks.) Examine
the PSL to see which test failed and to evaluate whether the PSL has
been corrupted.

Many crash-causing reserved operand faults result from software
errors. Possible software errors that result in reserved operand
faults include corruption of code in memory (or code on disk) and
erroneous transfer of control into the middle of random data or code.

b.L,l11n

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
EXCEPTIONS

Page 32
12 August 85

For REI reserved operand faults some more specific possibilities are:

1. stack corruption overwriting the PSL
2. incorrect stack usage popping too many or too few longwords prior

to an REI
3. attempts to run a compatibility mode image on a MicroVAX
4. incorrect lowering of IPL in an interrupt service routine or

system service.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, Condition
Handling, for details of VMS exception dispatching

VAX/VMS Run-Time Library Routines Reference Manual, Chapter 7,
Condition Handling Procedures, for information on writing condition
handlers and using related RTL routines and condition handlers

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services, for a list of hardware detected and
VMS-signaled software exceptions and their exception-dependent
information and use of system services related to condition
handling

VAX-11 Architecture Reference Manual or System Reference Manual,
Chapter 6, Exceptions and Interrupts, for the architectural
definition of hardware detected exceptions and the details of
interrupt/exception initiation and the REI instruction

Introduction to VAX/VMS System Routines, Chapter 2, VAX Procedure
Calling and Condition Handling Standard, for background on the
goals of the condition handling design

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

FATALEXCPT BUGCHECK

Page 33
12 July 85

The FATALEXCPT bugcheck is signaled by the conunon exception
dispatching code when it is unable to dispatch to a condition handler
for a kernel or exec mode exception. In kernel mode, this bugcheck
is fatal. In exec mode, this bugcheck is fatal only if the SYSBOOT
parameter BUGCHECKFATAL is 1; by default, BUGCHECKFATAL is o.
There are several sets of circumstances under which the common
exception dispatching code signals this bugcheck.

1. EXE$ASTDEL, the AST delivery code, incurs an exception trying to
call a kernel or exec mode AST procedure, and there is no last
chance handler declared for that access mode.

2. The common exception dispatching code incurs an exception trying
to call the kernel or exec mode last chance handler.

3. The common exception dispatching code is unable to copy the
condition handler argument list, signal and mechanism arrays to
the exec mode stack using the current exec mode stack pointer,
and there is no exec mode last chance handler.

4. A kernel or exec mode exception occurs, and no condition handler
for that access mode handles that conditon.

In practice, these circumstances are rare. VMS always declares last
chance condition handlers for kernel and exec mode. Only inner
access mode code can override those declarations or overwrite the Pl
space locations which contain the last chance handler addresses. The
address of the kernel mode last chance handler is stored in
CTL$AL FINALEXC; the address of the exec mode handler, in
CTL$AL=FINALEXC+4.

The stack layout varies, depending on which set of circumstances
triggered the FATALEXCPT bugcheck, although, in all cases, there
should be at least one signal and mechanism array on the current
stack visible among the newer stack longwords (i.e., lower
addresses).

Select the stack layout that matches your crash from among the
following ones. The EXCEPTION PC in the (newer) signal array on your
stack is a good clue for most of them. Follow the directions in the
text associated with the appropriate stack layout.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

Page 34
12 July 85

1. EXE$ASTDEL Exception

/I 00000002 argument count
cond. handler I xxxxxxxx mechanism array address

arglist \I xxxxxxxx signal array address

/I 00000004 argument count
/I xxxxxxxx saved FP

mechanism array! FFFFFFFD depth of scan
\I xxxxxxxx RO at exception
\I xxxxxxxx R1 at exception - a(AST proc.

I xxxxxxxx flags
I
I /I OOOOOOOx argument count
I /I xxxxxxxx exception type

signal array I exception parameters
I \I A(EXE$ASTDEL) exception PC
I \I xxxxxxxx exception PSL

stack growth
/I 00000005 argument count
/I xxxxxxxx AST proc. argument

I I xxxxxxxx saved RO
AST proc. arglistl xxxxxxxx saved R1

\ I xxxxxxxx AST interrupt PC
\I xxxxxxxx AST interrupt PSL

If the exception PC is the address EXE$ASTDEL, then an exception
occurred at the call to a kernel or exec mode AST procedure, and
there was no last chance handler for that mode. This means that
there are at least two anomalies to be explained:

o the exception calling the AST procedure;
o zero contents in CTL$AL FINALEXC (kernel mode) or

CTL$AL_FINALEXC+4 (exec mode)":-

a. Locate the mechanism array. Saved RO and saved R1 are the
registers' values at the time the exception occurred. Saved
R1 is the address of the AST procedure EXE$ASTDEL tried to
call.

b. Skip 1 longword, the flags longword.

c. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

Page 35
12 July 85

d. The exception type is a status value, e.g., c (hex) or
SS$_ ACCVIO. The DCL command

1 EXIT %X<exception_type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception_type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more common hardware
exceptions.

e. The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec· or
kernel mode exception. In this ·case, the instruction at
EXE$ASTDEL is a CALLG (SP) , (R1) •

f.

g.

h.

Figure out why the CALLG generated an exception. Use saved
R1 in the mechanism array: determine whether it points to a
valid AST procedure, whether that address exists and has
suitable protection, etc.

The argument list built by AST delivery code contains the PC
and PSL that describe the thread of execution interrupted by
AST delivery and the contents of RO and R1 at the time of the
interrupt. These may be important in explaining both
anomalies, the exception at EXE$ASTDEL and the clearing of
the last chance handler address.

Examine Pl space around CTL$AL FINALEXC, comparing it to that
of other processes, to determine if there is any other
corruption. If not, it is more likely that the current image
issued a $SETEXV system service request from an inner mode to
clear the handler address.

Decipher anything earlier on the current stack to trace
control flow, in case there are clues about what led to the
current situation. See section STACK PATrERNS.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

Page 36
12 July 85

2. SYS$CALL_HANDL Exception

/I
call except./ I

mechanism array!

I
I

\I
\I

I /I
call except./

signal array
I
I
I

stack growth
I
I /I

cond. handler I
arglist \ I

/I
/I

mechanism array!
\I
\I

/I
/I

signal array I
\I
\I

00000004 argument count
xxxxxxxx saved FP
FFFFFFFD depth of scan
xxxxxxxx saved RO
xxxxxxxx saved R1 a(handler)

xxxxxxxx flags

OOOOOOOx argument count
xxxxxxxx exception type

exception parameters
80000010 exception PC - SYS$CALL HANDL
xxxxxxxx exception PSL -

00000002 argument count
xxxxxxxx mechanism array address
xxxxxxxx signal array address

00000004 argument count
xxxxxxxx saved FP
FFFFFFFD depth of scan
xxxxxxxx RO at exception
xxxxxxxx R1 at exception

xxxxxxxx flags

OOOOOOOx argument count
xxxxxxxx exception type

exception parameters
xxxxxxxx exception PC
xxxxxxxx exception PSL

If the exception PC is the addresss SYS$CALL HANDL, then an
exception occurred at the call to a kernel or exec mode last
chance handler. This means that there are at least two anomalies
to be explained:

o the exception calling the last chance handler;
o the original exception.

a. Locate the newer mechanism array. Saved RO and saved R1 are
the registers' values at the time the exception occurred.
Saved R1 is the address of the last chance handler
SYS$CALL_HANDL tried to call.

VAX/VMS Troubleshooting *INTERNAL USE pNLY*
FATALEXCPT BUGCHECK

b. Skip 1 longword, the flags longword.

Page 37
12 July 85

c. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

d. The exception type is a status value, e.g., C (hex) or
SS$_ ACCVIO. The DCL command

1 EXIT %X<exception_type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception_type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more conunon hardware
exceptions.

e. The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or
kernel mode exception. In this case, the instruction at
SYS$CALL _ HANDL is a CALLG 4 (SP) , (Rl) •

Figure out why the CALLG generated an exception. Use saved
R1 in the mechanism array: determine whether it points to a
valid last chance procedure, whether that address exists and
has suitable protection, etc. Compare saved R1 to the
contents of CTL$AL FINALEXC (kernel mode) or CTL$AL FINALEXC
+ 4 (exec mode) ; tliey should be the same. -

f. Examine Pl space around CTL$AL FINALEXC, comparing it to that
of other processes, to determine if there is any other
corruption. If not, it is more likely that the current image
issued a $SETEXV system service request from an inner mode
with an invalid handler address.

g. The older signal and mechanism arrays describe the original
exception, for which the common exception dispatching code
was trying to locate a handler. Analyze that exception to
see whether there might be a common cause for both
exceptions.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

Page 38
12 July 85

3.

h. Decipher anything earlier on the current stack to trace
control flow, in case there are clues about what led to the
current situation. See section STACK PATTERNS.

Stack Problem

+-
/I 00000002 argument count

cond. handler I xxxxxxxx mechanism array address
arglist \I xxxxxxxx signal array address

/I 00000004 argument count
/I xxxxxxxx saved FP

mechanism array! FFFFFFFD depth of scan
\I xxxxxxxx RO at exception
\I xxxxxxxx R1 at exception

I I 000002BO flags - SS$_BADSTACK
stack growth

I /I ooooooox argument count
II xxxxxxxx exception type

signal array I exception parameters
\I xxxxxxxx exception PC
\I xxxxxxxx exception PSL

If the exception PC is neither EXE$ASTDEL nor SYS$CALL HANDL and
the bugcheck stack is the exec stack, then the conunon exception
dispatching code was unable to copy information to the exec stack
to dispatch to a condition handler. It therefore reset the exec
mode stack pointer, recreated the stack address space if
necessary, and copied the exception information to the stack,
before it signaled the FATALEXCPT bugcheck.

a. The PC displayed by the SDA SHCM CRASH conunand reflects the
common exception dispatching code rather than the location of
the exception(s). RO and R1 in the SH~ CRASH display have
been altered by the exception dispatching code. The PC, RO,
and R1 at the time of the exception(s) can be obtained as
described below.

b. Locate the mechanism array. Saved RO and saved R1 are the
registers' values at the time the exception occurred.

c. Skip 1 longword, the flags longword, which should contain
SS$_BADSTACK.

d. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE {)NLY*
FATALEXCPT BUGCHECK

Page 39
12 July 85

e. The exception type is a status value, e.g., c (hex) or
SS$_ ACCVIO. The DCL conunand

§. EXIT %X<exception_type>

writes the message text associated with the exception type
status value. The V4 SDA conunand

SDA> EVAL/CONDITION <exception_type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more conunon hardware
exceptions.

f. The PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec· or
kernel mode exception. Whether the PC points to the
beginning of the instruction or the end depends on whether
the exception was a trap (end), fault (beginning), or abort
(beginning). The reference above specifies whether each
exception is a trap, fault, or abort. Identify in what
source module the PC is. See section VIRTUAL ADDRESSES.
Of ten examining instructions around the PC is helpful enough
to eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception_pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the
operands to see which access was in error.

g. In this particular case, all stack footprints are gone. The
exception PC and other register and data structure contents
are the only clues you have as to what the thread of
execution was doing.

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
FATALEXCPT BUGCHECK

Page 40
12 July 85

4. No Condition Handler

/I
cond. handler I

arglist \ I
+--

/I
/I

mechanism array!

I
I

\I
\I

I /I
I I I

signal array I
I \I
I \I

stack growth

00000002 argument count
xxxxxxxx mechanism array address
xxxxxxxx signal array address

00000004 argument count
xxxxxxxx saved FP
FFFFFFFD depth of scan
xxxxxxxx RO at exception
xxxxxxxx R1 at exception - a(AST proc.

xxxxxxxx flags

OOOOOOOx argument count
xxxxxxxx exception type

exception parameters
xxxxxxxx exception PC
xxxxxxxx exception PSL

If none of the previous cases applies, then the conunon
dispatching code signaled this bugcheck because it was unable to
find any condition handler to dispatch. This means that there
are at least two anomlies to be explained:

o the exception;
o zero contents, for kernel mode, in the longwords at

CTL$AQ EXCVEC and CTL$AL FINALEXC or, for exec mode, in the
longwords at CTL$AQ_EXCVEc+a and CTL$AL_FINALEXC+4.

a. The PC displayed by the SDA SHOil CRASH command reflects the
common exception dispatching code rather than the location of
the exception(s). RO and R1 in the SHOil CRASH display have
been altered by the exception dispatching code. The PC, RO,
and R1 at the time of the exception(s) can be obtained as
described below.

b. Locate the mechanism array. Saved RO and Saved R1 are the
registers' values at the time the exception occurred.

c. Skip 1 longword, the flags longword.

d. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

e. The exception type is a status value, e.g., C (hex) or
SS$_ ACCVIO. The DCL command

VAX,IVMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

1 EXIT %X<exception_type>

Page 41
12 July 85

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception_type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX,IVMS System Services Reference Manual. See section
EXCEPTIONS for information about the more conunon hardware
exceptions.

f. The PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or
kernel mode exception. Whether the PC points to the
beginning of the instruction or the end depends on whether
the exception was a trap (end), fault·(beginning), or abort
(beginning). The reference above specifies whether each
exception is a trap, fault, or abort. Identify in what
source module the PC is. See section VIRTUAL ADDRESSES.
Often examining instructions around the PC is helpful enough
to eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception_pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the
operands to see which access was in error.

Hints And Kinks

1. The FATALEXCPT bugcheck may also be signaled by software other
than the VMS exec. In particular, the REMACP signals this
bugcheck fatally from its kernel-mode condition handler if any
unexpected exceptions occur. Under those circumstances the AP
register should point to a condition handler argument list
containing the addresses of the signal and mechanism arrays, and
the newer stack should resemble that in section SSRVEXCEPT
BUGCHECK.

2. Not all access violations are signaled by microcode. The
pagefault exception service routine, MMG$PAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FATALEXCPT BUGCHECK

another process's process header.

Page 42
12 July 85

3. Note that for each V3 SDA COPY conunand used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

4. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, for
general exception dispatching and details of exceptions signaled by
VMS system software

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE PNLY*
FORCED CRASHES

FORCED CRASHES

Page 43
12 July 85

Forced crashes cause INVEXCEPTN bugchecks. If the signal array shows
the PC as approximately FFFFFFFF and the PSL as kernel mode and IPL
31, the system was probably crashed through the console CRASH
procedure, as documented in the Guide to VAX/VMS System Management
and Daily Operations Section 4 .1. On a VAX-11/780, VAX-11/785, and
MicroVAX II, the faulting virtual address from a forced crash is
FFFFFFFC; on a VAX-11/730, VAX-11/750, MicroVAX I, and VAX 8600, the
faulting virtual address from a forced crash is FFFFFFFF. This
sequence of commands writes to the console terminal the PC, PSL, and
the 5 stack pointer registers and then deposits into the PC and PSL
to cause a crash. The PC is loaded with FFFFFFFF, a nonexistent
address, and the PSL is set to IPL 31 and kernel mode. When the
processor is continued, attempted execution at location FFFFFFFF
causes an access violation. With the processor running at IPL 31,
the access violation causes an INVEXCEPTN bugcheck.

There are two important differences between forced crashes and other
crashes. The first difference is that some human decided to crash
the system. Thus, it is important to find out why s,lhe crashed the
system, what s,lhe thought was wrong. The second difference is that
the CRASH procedure alters control flow and possibly access mode and
stack. Thus, the values of the processor registers written to the
console terminal are critical in determining what the system was
doing prior to the crash.

Whether or not it is important to know what the system was doing
prior to the crash depends on why the system was crashed. For
example, some crashes are forced to record a scheduler data base or
memory management data base believed to be corrupted. In such a
case, you should ignore the directions below, since examining the
stack may not be very useful; instead, examine the data structures
having to do with the reason for the forced crash. If the system was
crashed because it was hung, see sections HANGS and RESOURCE WAITS
for hints on what to look for in the dump. Some crashes are forced
because the system is believed to be looping at high IPL. In such a
case, examining the stack is important.

1. Read the PSL in the console terminal output from the CRASH
procedure (written by one of the following console commands:
VAX-11/780 and VAX-11/785 EXAMINE PSL; VAX-11/750 and MicroVAX I
E P; VAX-11/730 and MicroVAX II E PSL). It specifies what IPL
and what access mode the processor was in prior to the crash, and
whether the system was running on the interrupt stack. Decode
the PSL using the layout in the section REIATED REFERENCE
MATERIAL or with the V4 SDA command EXAMINE/PSL.

2. Select a number between 0 and 4 using the decoded PSL access mode
and interrupt stack (IS) fields as follows

VAX/VMS Troubleshooting *INTERNAL USE PNLY*
FORCED CRASHES

o if IS is 1, the number is 4

Page 44
12 July 85

o if IS is 0, the number is the access mode (e.g., kernel is 0,
exec is 1, etc.).

This is the number of the processor register which records the
stack pointer current at the time of the console halt.

3. Read the console terminal output from the CRASH procedure and
locate the display of the processor register whose number you
selected in the previous step. Read its value. These process
registers are written to the console terminal by one of the
following console conunands depending on cpu type.

o VAX-11/780, VAX-11/785 - EXAMINE/INTERN/NEXT: 4 0
0 VAX-11/750, MicroVAX I, MicroVAX II - E/I 0, E/I 1, E/I 2,

E/I 3, E/I 4
o VAX-11/725, VAX-11/730 - E/I/N: 4 0

The value displayed is the lowest end of that stack, the address
of the newest valid stack contents.

4. Invoke SDA and determine the high erid of that stack. If the
stack was the interrupt stack, type the following conunand· to
determine its high end (that is, the initial address loaded into
the stack pointer register)

SDA> EXAMINE EXE$GL_INTSTK

If the stack was not the interrupt or kernel stack, then type the
following conunand to determine its high end

SDA> EXAMINE (4 * <access_mode_number>) + CTL$AL_STACK

If the access mode at the time the crash was forced was kernel,
see the section KERNEL STACK LOCATIONS to determine the high
(oldest) limit of the kernel stack.

5. Display the stack just prior to the crash by using the values you
determined above. SDA writes this range in "stack" format, with
attempted symbolic interpretation, in response to the conunand

SDA> SHCM STACK <low_address>:<high_address>

6. Read the PC in the console terminal output from the CRASH
procedure (written in response to HALTing a 780 and 785, typing
CTRL/P on a 750 and 730, or depressing the halt button on a
MicroVAX I and II) • value is the address of the instruction that
was about to be executed. If appropriate, identify in what
source module the PC is. See the section VIRTUAL ADDRESSES.
Often examining instructions around the PC is helpful enough to
eliminate a microfiche search. Try the SDA conunand

SDA> EXAMINE/INSTRUCTION <halt_pc>-20;30

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
FORCED CRASHES

Page 45
12 July 85

7. If appropriate, decipher the stack to trace control flow. See
the section STACK PATTERNS. If the access mode just prior to the
execution of the crash procedure was kernel, you can ignore the
signal and mechanism arrays from the access violation and any
stack contents newer than they are, that is, at lower addresses.

Hints And Kinks

1. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One conunon error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page· before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

HALTS - VAX-11/780 AND VAX-11/785

Page 46
15 July 85

VAX-11/780s and VAX-11/785s halt in response to halt instructions,
console HALT conunands, and various error conditions. The VAX-11/780
and VAX-11/785 halt behaviors are identical, except that the
VAX-11/785 has one unique error halt, clock phase error.

The error conditions that cause halts are severe enough to interfere
with the normal exception/interrupt mechanism; for example, if the
interrupt stack is invalid, the cpu cannot write a microcode machine
check error logout on the stack. The LSI-11 console software
periodically polls the state of the VAX cpu, testing to see if the
cpu has halted, and has access to information about the halt PC, PSL,
reason for the halt, and the setting of the auto restart switch.

If auto restart is disabled, the console prompts, leaving the VAX cpu
halted, and accepts commands if the cpu key is in the LOCAL ENABLE
position. If auto restart is enabled, the console restarts VMS,
using the floppy command procedure RESTAR.CMD. Following a powerfail
recovery, the console reloads writable control store on the VAX cpu
and, if auto restart is enabled, executes RESTAR.010, which passes
control to the instruction-level ROM (ISP ROM) in the memory
controller. The ISP ROM passes control to a restart routine in VMS.

Restarting VMS for any reason ·other than power fail recovery causes a
crash. The system is crashed to preserve pending error log messages
and to provide information that might be useful in troubleshooting
the halt. As a result of the VAX-11/780 and VAX-11/785 restart
mechanism, these crashdumps do not contain the contents of RO - RS,
RlO, Rll, AP, FP, and SP at the time of the halt. See below the
subsection VAX-11/780 and VAX-11/785 Restart Mechanism for further
details. If analyzing a particular halt's dump is reconunended in the
subsections below, see section RESTART BUGCHECKS for any additional
crashdump analysis suggestions.

Many of these halts are caused by hardware problems. Unfortunately,
the default restart mechanism sometimes provides insufficient
hardware status. The subsection Editing RESTAR.010 reconunends
editing RESTAR.CMD to display various internal registers at the time
of a halt. Each of the subsections below describing a particular
halt indicates which internal registers are of interest and how to
display them. If you have edited RESTAR.010 on the halting system,
the information will be displayed automatically. Otherwise, if the
system is still halted, enter the reconmended commands to display
that information. If the system has already restarted, it is too
late to obtain any desirable additional information.

For all of these halt conditions, carefully examine the system
errorlog file, SYS$ERRORLOG:ERRLOG.SYS for any errors or anomalies
that occurred before or at the time of the halt that might be
associated with the halt or provide a clue about possible hardware
problems.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 47
15 July 85

Likely Halt Indications

The console control panel is at the top right of the CPU cabinet.
When the VAX cpu is halted, normally the red leftmost light, labeled
AT'IN, is lit; the green RUN light is not lit; and the green PCMER
light is lit. See below subsection Pathological Halts for other
possibilities.

Normally the LSI-11 console software prints a message on the console
terminal indicating the nature of the halt and the PC at the halt.
In the case of a power failure, the message is printed after power is
restored.

Console Halt Message Meaning

HALTED AT xxxxxxxx
HALT INST EXECUTED
?CHM ERR

?CLOCK PHASE ERROR
?CPU DBLE-ERR HLT

?ILL I/E VEC
?INT-STK INVALID

?NO USR WCS

xxxxxxxx is updated PC at halt; see below
Halt instruction executed in kernel mode
CHMx instruction executed on the interrupt

stack
VAX-11/785 cpu and SBI clocks out of phase
Machine check occurred during machine check

servicing
Illegal value in low 2 bits of SCB vector
ISP points to invalid page or one without

write access
Attempt to jump to nonexistent user WCS

If there are unexpected (i.e., not the result of someone's typing
CTRL/P) LSI-11 console software prompts (»>) without any halt
messages, then there may be a problem in the console interface board,
cpu power supplies, or the LSI-11. Contact Field Service.

If you see an LSI-11 MicroODT prompt (@), see below the subsection
Pathological Halts.

If the system seems to be halted but there is no message, see below
the subsection Pathological Halts.

The subsections below contain more information about each halt
message listed above.

HALTED AT Xxxxxxxx

Normally this message follows a message describing the reason for the
halt. If a user types CTRL/P and HALT on the console terminal, this
message is printed with no other message. xxxxxxxx is normally the
PC at which the cpu was halted. For example, xxxxxxxx is the address
of a halt instruction plus 1; xxxxxxxx is the address of a CHMx
opcode the system tried to execute while on the interrupt stack;
xxxxxxxx is the offset of an SCB vector containing illegal values for
the low two bits.

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 48
15 July 85

When xxxxxxxx is an address (rather than an SCB vector offset), the
address is a physical address if memory management is disabled or a
virtual address if memory management is enabled.

Conceivably, this message may appear without any other message and
any user intervention. This could be due to intermittent very brief
power problems that don't cause a power fail sequence or due to
problems in the console interface board (CIB).

After a power fail and recovery, the cpu is halted at physical
location 0. This halt can usually be ignored. This message is
printed along with other text

CPU HALTED,SOMM CLEAR, •.••
RAD-HEX ,ADO-PHYS, •••
INIT SEQ DONE
HALTED AT 00000000

(RELOADING WCS)

A power failure recovery on a system without battery backup and with
auto restart enabled should result in another halt from the ISP ROM
and a reboot from the default system disk. The ISP ROM checks
whether memory contents are valid. Without battery backup, the
memory contents are not valid after a power failure. The ISP ROM for
the MS780-C memory controllers halts at 2000350A if memory is
invalid. The newer ISP ROM for the MS780-E memory controllers halts
at 20003563 if memory is invalid. These ISP ROM addresses are
physical addresses. The system also exhibits that behavior if the
battery backup is faulty or doesn't have enough charge to power the
memory for the duration of the power failure.

If you see these messages without a true electrical failure (e.g.,
the room lights are still on), then there may be a problem in the VAX
or LSI-11 power supplies.

HALT INST EXECUTED

This halt usually means that some kernel mode code halted. (The HALT
instruction can only be executed from kernel mode.) The PC following
the HALT instruction is displayed in the console's "HALTED AT
xxxxxxxx" message. If memory management is enabled (normal state
while VMS is running), xxxxxxxx is a virtual address; if memory
management is disabled, xxxxxxxx is a physical address. The cpu may
execute a byte of 0 as a HALT instruction following corruption of
code or erroneous dispatch into random code or data. VMS contains
various HALTS that are executed in extreme cirC\.llnStances where no
recovery is possible.

One such extreme cirC\.llnStance is a failure in fatal bugcheck
processing. If EXE$BUG_CHECK cannot initialize the system disk or

VAX/VMS Troubleshooting *INTERNAL USE E>NLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 49
15 July 85

finds the boot control block corrupted, EXE$BUG CHECK writes a reboot
message to the console and halts. When the-console sees a reboot
message and a halt, it reboots VMS using DEFBOO.CMD, regardless of
the setting of the auto restart switch. The following console
messages are printed. Sxxxxxxx is an address within the console
terminal driver in SYSLOA780.EXE.

HALT INST EXECUTED
HALTED AT Sxxxxxxx

(BOOTING)
CPU HALTED
INIT SEQUENCE DONE

Note that this message is also printed as the result of bootstrap
operations (the ISP ROM for the MS780-C memory controllers halts at
physical 200034F9; the ISP ROM for the newer MS780-E memory
controllers halts at physical 20003552), normal VMS shutdown
operations with reboot requested, and, if SYSBOOT parameter BUGREBOOT
is 1, fatal bugcheck processing. You should ignore it under those
circumstances.

If this halt is the result of a software error or a deliberately
executed HALT instruction, analyzing the dump is the best way to
troubleshoot the problem. You should analyze the dump to rule out a
software caused problem before contacting Field Service.

Possible hardware causes of this halt include problems in the memory
controller(s), instruction buffer, datapath, adapters (particularly
in their map registers), and, less frequently, cache.

If you have already edited RESTAR.CMD, look at the output in response
to the examine conunands below. If you have not edited RESTAR.CMD,
but the system is still halted, type the following conunands.

»>E IR
»>E;'N:E RO
»>E/ID;'N: 3F 0
»>E PC
>»E,IV @
»>E,IV -
> > >D/ID 10 18000
»>E PC
»>E,IV @
»>E,IV -
»>DEP AP 6
>>>@RESTAR.CMD

!examine opcode just executed
!examine RO - SP
!dump the ID registers
!PC points 1 byte past opcode
!examine @PC
!re-examine previous longword
!turn off cache

!examine @PC again
!examine previous longword
!set code for halt executed
!invoke normal restart command procedure

If the displayed contents of the memory at PC-1 change after you
turned off cache, then probably cache is at fault. If the byte at
PC-1 is not a 0 (halt opcode), then you may have a problem in either
the IDP or the IRC board. Examining IR results in a display of three
numbers, the first of which is the opcode just executed. If this is
a O, but the byte at PC-1 is not a 0, there may be faulty shifting in

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 50
15 July 85

the instruction buffer or an intermittent addressing problem during
instruction decode. In any of these cases, contact Field Service.

?CHM ERR

This halt means that while the system was running on the interrupt
stack, an attempt was made to execute one of the change mode
instructions (CHMU, CHMS, CHME, or CHMK). The PC of the CHMx
instruction is displayed in the console's "HALTED AT xxxxxxxx"
message.

This halt might occur as the result of software error; for example,
some process context code's executing in system context, a
user-written driver's erroneously requesting system services while
executing on the interrupt stack, erroneous transfer of control to
data or the middle of an instruction, etc.

If this halt is the result of a software error, analyzing the dump is
the best way to troubleshoot the problem. You should analyze the
dump to rule out a software caused problem before contacting Field
Service.

This halt has rarely, if ever, been seen as a result of hardware
error. Conceivable hardware causes of this halt include problems in
the datapath boards or the interrupt and exception logic (CEH and ICL
boards).

If you have already edited RESTAR.CMD, look at the output in response
to the examine commands below. If you have not edited RESTAR.CMD,
but the system is still halted, type the following commands.

»>E IR
>»E/N:E RO
»>E/ID;N:3F 0
»>E PC
>»E/V @
»>D/ID lD 18000
>»E PC
»>E/V @
»>DEP AP 6
>>>@RESTAR.CMD

!examine opcode just executed
!examine RO - SP
!dump the ID registers
!PC points at opcode
!examine @PC
!turn off cache

!examine @PC again
!set code for halt executed
!invoke normal restart command procedure

If the displayed contents of the memory at PC change after you turned
off cache, then probably cache is at fault. If the byte at PC is not
a hex BC, BD, BE, or BF (CHMx opcode), then you may have a problem in
either the IDP or the IRC board. Examining IR results in a display
of three numbers, the first of which is the opcode just executed. If
this is a hex BC, BD, BE, or BF, but the byte at PC is not the same,
there may be faulty shifting in the instruction buffer or an
intermittent addressing problem during instruction decode. In any of
these cases, contact Field Service.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

?CLOCK PHASE ERROR

Page 51
15 July 85

This error is unique to the VAX-11/785. When the LSI-11 console
software detects this error during its periodic polling of the
VAX-11/785 state, the console initializes the VAX cpu to reset it to
a known state. This is a serious error that cannot be caused by
software problems. Under VMS V3, if auto restart is enabled, this
halt results in the fatal bugcheck UNKRSTRT. Under VMS V4, if auto
restart is enabled, this halt results in the fatal bugcheck
OU'IOFSYNC. Analyzing the resulting crashdump is not recommended.
There is no useful state saved in the crashdump. Contact Field
Service.

The VAX-11/785 cpu runs at 133 nanoseconds per cycle, and the SBI at
200 nanoseconds per cycle. The cpu and SBI are in synch in a 3:2
ratio. If either clock shifts with respect to the other or if the
SBI clock stops, the clocks become out of phase, and the SBI freezes
to prevent corruption of data on mass storage devices. Since the SBI
is therefore inaccessible, the cpu stalls the next time it sends out
an SBI command, for example, to fetch data from memory.

?CPU DBLE-ERR HALT

This halt usually means that while the cpu was trying to write the
microcode machine check logout onto the stack, another machine check
occurred. Actually, the microcode sets a flag called EFP at entry to
its error handling routine and clears it at exit. If the flag is
already set, the microcode halts with a double error halt. Hardware
problems are usually responsible for this halt. One of the few ways
software can cause a double error halt is a corrupted interrupt stack
pointer that points to UNIBUS I/O space or nonexistent memory or
nonexistent I/O space.

This problem can occur during the boot or warm restart sequences if
the boot or restart command procedure deposits an incorrect value
into R1. The ISP ROM in the memory controller uses the map registers
of the adapter whose nexus number is in R1 as a stack. If R1 points
to a non-existent nexus or one without map registers, the ISP ROM's
stack manipulations cause a double error halt.

For this halt, the auto restart actions destroy critical information
in internal processor registers. If you have already edited
RESTAR.CMD, look at the output in response to the examine conunands
below. If you have not edited RESTAR.010, but the system is still
halted, type the following conunands.

>>>! display information about 1st machine check
»>E/ID/N:9 30 !ID 30 = SUMMARY PARAMETER
- !ID 31 = CES

!ID 32 = TRAPPED UPC
! ID 33 • VA/VIBA
! ID 34 = 0-REG

VAX,IVMS Troubleshooting *INTERNAL USE .ONLY*
HALTS - VAX-11/780 AND VAX-11/785

!ID 35 • TB REG 0
! ID 36 • TB REG 1
! ID 37 • TIMEOUT ADDR
! ID 38 = PARITY
!ID 39 • SBI ERROR

>>>! display information about 2nd machine check
>>>E/ID c !display CES
»>E/ID 20 !display TRAPPED UPC
>>>E/ID 8 !display D-REG
>>>E/ID 12 !display TB REG 0
> » E/ID 13 ! di splay TB REG 1
>>>E/ID 1A !display TIMEOUT ADDR
> > > E/ID lE ! di splay PARITY
>»E/ID 19 !display SBI ERROR
>>>E/N:D RO !examine general registers
>>>E/I/N:4 0 !examine stack pointer registers
>»DEP AP 5 !set DBL-ERR halt code
>>>@RESTAR.CMD !invoke usual restart

Page 52
15 July 85

Use the references listed in ADDITIONAL REFERENCES to decode the
processor register contents in an attempt to identify what kinds of
machine checks occurred to rule out a software caused problem before
contacting Field Service.

See section MACHINE CHECKS - VAX-11/780 AND VAX-11/785 for further
information on specific types of machine checks.

Note that occasionally system software, such as the ISP ROM or VMS
system initialization code, executes instructions anticipated to
cause cpu timeout machine checks in an attempt to determine what
hardware is present on the system. If there is a problem such as a
control store parity error while the microcode is processing the
initial cpu timeout, a double error halt results. Therefore, it is
recommended that you be somewhat cautious in drawing conclusions from
any first machine check which is a cpu timeout; try to correct the
cause of the second machine check so that system software can service
the initial cpu timeout.

?ILL I/E VEC

This halt means that an interrupt or exception dispatch was attempted
through a System Control Block (SCB) vector whose low two bi ts
contained an illegal value; that is, the low two bits were either
binary 10 on a machine without user optional Writable Control store
(WCS) or binary 11. The offset from the beginning of the SCB of the
vector containing the illegal value is displayed in the console's
"HALTED AT xxxxxxxx" message and is passed in RlO to VMS restart code
when auto restart is enabled. The PSL contains an accurate IPL and
is passed to VMS restart code in Rll when auto restart is enabled.

This halt can be caused by software corruption of a System Control
Block vector or of the PR$_SCBB register.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 53
15 July 85

Troubleshooters sometimes alter an SCB vector as a "trap catcher" so
that an interrupt or exception through a particular vector causes a
halt rather than execution of the usual service routine. Therefore,
when you see this halt, check to see whether it might have been
caused deliberately by human intervention.

Pbssible hardware causes of this halt include problems in the
datapath boards, ICL or CEH boards, or vector PROM. This halt can
also be caused by hardware corruption of an SCB vector resulting from
memory problems or adapter map register problems. Analyze the dump,
checking the relevant vector and surrounding vectors to rule out a
software caused problem before contacting Field Service.

?INT-STK INVALID

This halt means that an attempted cpu read or write reference to the
interrupt stack during interrupt or exception processing would have
resulted in a translation not valid or access violation.

This halt can be caused by stack overflow, stack underflow,
corruption of the interrupt SP, or corruption in the System Page
Table Entries (SPTEs) that map the interrupt stack. SPTE corruption
can be due to software problems or hardware problems. A frequent
hardware cause is corruption in the memory array containing the SPT.

If this halt is the result of a software error or an insufficiently
large interrupt stack, analyzing the dump is the best way to
troubleshoot the problem. You should analyze the dump to rule out a
software problem before contacting Field Service. Check for
user-written drivers or other kernel-mode code that may have
corrupted the interrupt stack pointer or the SPTEs that map it.

If the stack pointer at the time of the halt contains a valid
interrupt stack address (the interrupt stack pointer low and high
boundaries are stored in EXE$GL INTSTKLM and EXE$GL INTSTK), there
may be a hardware problem In the translation bu'lfer or cache or
corruption in the interrupt stack's SPTEs.

If the stack pointer at the time of the halt contains an address
below the low boundary of the interrupt stack, the stack is likely to
have overflowed. Look for recurring machine check frames or other
recurring exceptions on the stack that may have caused it to
overflow.

If the SP contains a random address, there may be a memory problem or
a bad instruction decode. If you have already edited RESTAR.CMD,
look at the output in response to the examine commands below. If you
haven't edited RESTAR.CMD, but the system is still halted, type the
following commands.

»>E SP
>»E/I 4

!examine stack pointer register
!examine PR$_ISP

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

»>E/N:D RO
»>DEP AP 4
>>>@RESTAR.CMD

!examine RO - FP
!load inv. int. stk. halt code
!invoke usual restart

Page 54
15 July 85

The contents of SP and PR$ ISP should be the same. If they are not,
there may be a hardware problem in one of the datapath boards.

?NO USR WCS

Although this halt code is defined, the microcode on a VAX-11/780 cpu
revision level 7 or later never generates it. If you see this
message on a rev 7 or later VAX-11/780, you may have hardware
problems in the console interface board.

Pathological Halts

If the system seems to be halted, but .there are no console halt
messages, first look at the cpu front panel lights. There are four
indicators; from left to right they are AT'IN, RUN, PCMER, and REMOTE.

When the red AT'IN light is lit, the VAX cpu is halted; that is, it is
executing the console wait loop microcode, waiting for a command from
the console. When the green RUN indicator is lit, the cpu is
strobing for hardware interrupts regularly. When the green PCMER
indicator is lit, the +5 volt power supply is on. When the red
REMOTE indicator is lit, remote console access is enabled through the
cpu key rotary switch. When the cpu is operating normally, running
VMS, for example, the AT'IN light is off, and the RUN and PCMER lights
on.

Find the subsection below corresponding to the state of the lights
you see.

If the console terminal has a @ prompt, also see the subsection below
@ Prompt on Console Terminal.

AT'IN Lit, PCMER Lit, RUN Off

The cpu is halted. If there are no console messages, there may be a
simple console terminal problem preventing output, such as a blown
fuse, paper fault, or terminal left in local mode. If none of these
is the case, then, in all likelihood, there is a hardware problem.
Contact Field Service.

There may be a VAX power supply problem, console interface board
problem, or LSI-11 problem that prevents a halt message from being
output.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

ATIN Off, PCMER Lit, RUN Off

Page 55
15 July 85

If the PCMER light is lit, but RUN and AT.IN are off, either the cpu
clock is stopped or the cpu is hung in a microcode loop. You can
determine which it is by opening the cpu cabinet and looking at the
leds on the microsequencer (USC) and clock (CLK) boards.

These boards are on the left side of the cabinet. Each board has a
small tab in the middle with its module number. On the VAX-11/780
the USC board is M8235, and the CLK board is M8232. On the
VAX-11/785, the USC board is M7476, and the CLK board is M7474. In
addition, most cpu cabinets have stickers to the left of the door
showing what modules are in what slots. Look for a sticker titled
KA780 Module Utilization on the VAX-11/780 or KA785 Module
Utilization on the VAX-11/785. The sticker lists the cpu modules and
their board slot numbers (for example, 21) • The board slots are
identified by stickers that run horizontally beneath the boards and
that have a number under each board slot.

If the clock is running, four leds on the VAX-11/780 clock board
(M8232) or eight leds on the VAX-11/785 clock board (M7474) are
solidly lit. If they are dimly lit or if only one is lit, the cpu
clock is stopped. Sometimes in response to console commands, the
LSI-11 console software stops the clock, 'but this is generally a
temporary state which you should not see under normal circumstances.

The microsequencer board has fourteen leds: one halfway up the
board, and thirteen leds below that one and separate from it. The
lower thirteen leds on the microsequencer board display the micropc
and, thus, normally flash on and off. If the system is very busy,
the flashes may be quick enough to make the leds glow dimly. If the
microsequencer is caught in a loop, the leds glow more brightly and
appear solidly lit.

You can determine the micropc by reading the leds on the
microsequencer board or by using the console commands below

CTRL/P
»> H
-NO CPU RESPONSE !if cpu really hung
>>> SET STEP STATE
-CLK STOPPED

CPTO UPC <xxxx>
»> N
~CPTl <space bar>

CPT2 <space bar>
...,..CPT_3.,...___AP~C <yyyy>
CPTO UPC <xxxx>

<space bar>
<CR>

In the console output at CTPO, <xxxx> is the micropc. If the output
at both times is the same, then there may be a clock problem or the
microcode may be branching back to itself waiting for some condition
to be completed. If the output is different, the microcode is caught
in a loop.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 56
15 July 85

Read the micropc from the top of the thirteen leds to the bottom. A
lit led indicates a 1 and an unlit led a 0. The most significant bit
is the top led. The micropc is read as 4 hexadecimal digits, with
the most significant digit either a 1 or 0 depending on the top led.

If the VAX-11/780 or VAX-11/785 micropc is at 0100, the cpu is
executing its !NIT sequence. This indicates a likely power problem.
If the VAX-11/780 micropc is at OOFF, the cpu is executing its
console wait loop, and the ATI'N light would normally be lit. If the
VAX-11/785 micropc is at OE13, the cpu is executing its console wait
loop. (The VAX-11/785 init micropc is [TBS].)

The top led on the microsequencer board lights when the cpu is in a
"cache stall", typically performing a read from memory of data not in
cache. This led should normally flash on and off. If it is solidly
lit, that indicates a problem in the SBI or one of its nexus.

One possibility is a power problem locking up the SBI. The voltages
and connectors on the power supplies and backplanes should be
checked.

In any of these cases, contact Field Service.

A'ITN Off, PCMER Lit, RUN Lit

If the RUN and PCMER lights are lit and AT'IN is off, that means that
the cpu has power and is strobing interrupts. If the leds on the USC
board and the CLK board are flashing, then the cpu is indeed running
and not hung in a microloop. See the subsection above, A'ITN Off,
PCliER Lit, RUN Off, for information on how to find these boards.

If the system is in this state and you thought it was halted because
of abnormal or nonexistent response to users, see section HANGS.

@ Prompt On Console Terminal

If the console terminal has a @ prompt, that means the LSI-11 is
executing MicroODT, rather than the console software.

On some systems, when the console terminal sends a <BRFAK>, the
LSI-11 executes MicroODT. This means that an interactive user on
that terminal can accidentally hit the <BRFAK> key and invoke
MicroODT. If this has happened, type P to the @ prompt to resume
execution of the console software.

This behavior can be disabled through the FEH jumper on the DLV-11
that interfaces the console terminal to the LSI-11. Contact Field
Service to change the jumper.

Additionally, if the console terminal is an LA120, it may have been

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 57
15 July 85

set up to generate a break signal in response to paper out, head jam,
or cover open. Put the terminal into SET-UP mode and then type u to
see the current setting of the LA120 break action. A 1 means that
the LA120 automatically sends a break signal in response to paper
out, head jam, or cover open. If 1 is the current setting, type u
again to disable the sending of the break.

If no one typed <BRFAK> and if nothing is wrong with the console
terminal, then the @ prompt may be caused by a problem in the LSI-11
or its power supplies. Type the following conunands (without the
conunents following the exclamation points) on the console terminal to
gather information about the state of the LSI-11 console software and
to restart it.

@Mxxxxxn
@RO/xxxxxx<LF>
Rl/xxxxxx<LF>
R2/xxxxxx<LF>
R3/xxxxxx<LF>
R4/xxxxxx<LF>
RS/xxxxxx<LF>
R6/xxxxxx<LF>
R7/xxxxxx<CR>
@R6/xxxxxx@
- ~~<LF>

xxxxxx+;ZZZizz<CR>
@R7/xxxxxx 141330<CR>
@p
)>>SET TERMINAL PROGRAM

!M must be typed uppercase
!exam RO
!exam R1
!exam R2
!exam R3
!exam R4
!exam RS
!exam R6, the SP
!PC at halt
!examine SP
!examine (SP) old PC
!examine (SP)+2 old PSW
!load PC
!restart console software

This should restart either a VAX-11/780 or VAX-11/785 console without
rebooting the VAX cpu. Save the console printout, and contact Field
Service. The VAX Maintenance Handbook VAX-11/780 (August 1982
edition) pages 97-98 describe the LSI-11 MicroODT commands and the
meanings of the value displayed in response to the M conunand.

RESTAR.CMD Command Procedure

The console floppy contains a file called RESTAR.CMD. This conunand
procedure is used when the LSI-11 restarts a VAX-11/780 or VAX-11/785
following a power failure recovery or cpu halt. The subsections
below describe the VAX-11/780 and VAX-11/785 restart mechanism and
discuss editing REST.AR.CMD to gather more information about a cpu
halt.

VAX-11/780 And VAX-11/785 Restart Mechanism

The auto restart toggle switch at the left of the console control
panel determines the system's response to a power failure recovery or
cpu halt. The usual recommendation is that the switch be set to ON.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785 •

Page 58
15 July 85

This means that after a power fail recovery or halt, the LSI-11
console subsystem attempts a warm restart by copying the halt PC,
halt PSL, and reason for the halt to RlO, Rll, and AP, and by
executing the command procedure RESTAR.CMD from the console floppy.

The distributed RESTAR.CMD procedure initializes the cpu and nexus
adapters and controllers, deposits into RO - RS and FP, and passes
control to the restart entry point of the VAX instruction-level ROM
(ISP ROM) present as part of the (first) local memory controller.
The combination of console actions and execution of RESTAR.CMD
initializes many processor registers and overwrites most of the
general registers.

The ISP ROM tests that memory contents are valid (that is, that
battery backup during a power failure was sufficient), that local
memory (MS780) is configured correctly, and tries to locate the
Restart Parameter Block (RPB) built during system initialization.

The ISP ROM reports errors on the console terminal. Fatal errors
result in a loop in the ISP ROM to prevent infinite attempts at warm
restart. Following are the possible messages from the ISP ROM. For
further information on the error messages, see the [TBS] section BOOT
FAILURES - VAX-11/780 AND VAX-11/785.

ATTEMPTING WARM RESTART
FATAL ERROR- CPU ERROR, R7 INDICATES FAILING SUBTEST
FATAL ERROR- MEMORY ADDRESS SPACE OVERLAPS
FATAL ERROR- MEMORY(IES) IMPROPERLY INTERLEAVED
FATAL ERROR- MEMORY NOT INITIALIZED
FATAL ERROR- MIX OF 64K AND 256K ARMY CARDS
FATAL ERROR- NEXUS HAS BAD MAPS
FATAL ERROR- NO WORKING MEMORY
FATAL ERROR- UNEXPECTED MACHINE CHECK
WARNING- FAULT DETECTED ON SBI, CONTINUING

If the ISP ROM locates the RPB and validates its contents, the ISP
ROM .types the message "ATTEMPTING WARM RESTART" on the console
terminal and jumps to the address contained in RPB off set
RPB$L RESTART. This longword should contain the physical address of
the vMs routine EXE$RESTART.

If the ISP ROM finds that memory contents are not valid, if it is
unable to locate the RPB, or if the RPB has been corrupted, the ISP
ROM sends a reboot message to the console and halts. The console
reboots the system from the default system disk. The MS780-C ISP ROM
halts at physical 2000350A; the newer MS780-E ISP ROM halts at
physical 20003563.

EXE$RESTART's responsibility is either to restart the system
following a power fail or to crash the system following a halt. The
system is crashed to preserve error log messages that have not yet
been written to SYS$ERRORLOG:ERRLOG.SYS and to provide information
useful for troubleshooting the halt. {SYSINIT locates the error log
messages in the dump during the next reboot and causes them to be

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 59
15 July 85

written to the error log file.) EXE$RESTART crashes the system with a
bugcheck whose type is a function of the halt code passed in AP. The
halt PC and halt PSL are in RlO and Rll when EXE$RESTART bugchecks.
See the section RESTART BUGCHECKS for more information on
EXE$RESTART.

For certain kinds of processor halts, the auto restart actions above
destroy information likely to be needed in troubleshooting the
problem. In such cases, there are two possibilities: set the auto
restart toggle switch OFF, use the console to display what
information you need, deposit a halt code into AP, and manually
invoke RESTAR.CMD; or alter the RESTAR.CMD procedure to display
needed information automatically. See below the subsection Editing
RESTAR.CMD for further details.

If the auto restart toggle switch is off, the cpu remains halted
until some human intervenes. If the cpu key is in local enable, the
console accepts commands in response to its >>> prompt. You may
enter conunands to display various registers. Afterwards, you should
manually invoke RESTAR.CMD by typing @RESTAR.CMD. Unless you load AP
with a halt code before you invoke: RESTAR.CMD, EXE$RESTART will
signal the bugcheck UNKRSTRT. See the section RESTART BUGCHECKS for
a table of possible halt codes and their meaning.

The advantage to disabling auto restart and invoking RESTAR.CMD
manually is that you can obtain the contents of RlO, Rll, and AP at
the time of the halt. Occasionally, these may be important in
troubleshooting a problem. The disadvantage is the required human
intervention. For this reason, editing RESTAR.CMD is preferred and
is reconunended for any systems experiencing intermittent problems or
frequent halts.

Editing RESTAR.CMD

The basic sequence is to

1. copy the console floppy

2. determine adapters and controllers present on the system

3. create a console command file named DISPIA.CMD that examines
various internal, processor, and nexus registers and includes
the commands from RESTAR.CMD

4. create a new RESTAR.CMD that only invokes DISPIA.CMD

5. copy the new and altered files to the new console floppy

When auto restart is enabled, the console automatically invokes
RESTAR.CMD after a halt (unless it has received a reboot message).
RESTAR.CMD invokes DISPIA.CMD, which displays various registers and

VAX/VMS Troubleshooting *INTERNAL USE DNLY*
HALTS - VAX-11/780 AND VAX-11/785

restarts the system.

Page 60
15 July 85

The reason for not placing the contents of DISPIA.CMD into RESTAR.CMD
is that invoking DISPIA.CMD explicitly as a command procedure (rather
than the console's invoking it automatically as RESTAR.CMD) results
in the echoing of the conunands in the procedure. This makes the
output somewhat easier to interpret. If you are indifferent to the
echoing of the DISPIA.CMD commands, then simply edit RESTAR.CMD to
include the conunands shown below as the contents of DISPIA.CMD.

First, log into the SYSTEM account or one with CMKRNL, SYSPRV, and
SYSNAM privileges. Make a copy of the console floppy using CONSCOPY,
as documented in section 2.81 of the Guide to VAX/VMS System
Management and Daily Operations. Ensure that the original copy of
the console floppy is in the drive whenever VMS maintenance updates
are installed to prevent failure of any updates to the floppy as a
result of insufficient free space on it. Ensure that your altered
console floppy reflects any console floppy changes made by VMS
maintenance updates, VAX FCO installations, or system management
actions.

Next, determine the adapters and controllers present at each nexus,
using the following conunands

$ MC SYSGEN
SYSGEN> SH~ /ADAPTER
SYSGEN> EXIT

Note that SYSGEN displays decimal nexus numbers.

VAX/VMS Troubleshooting *INTERNAL USE E:>NLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 61
15 July 85

Next, using your favorite editor, create a file called DISPIA.CMD
containing the commands below.

HALT
E/ID,/N: 17 0
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID 18
E/ID,IN:6 19
E/ID 20
E/ID 20
E/ID 20
E/ID 20
E/ID,/N:lE 21
E,/N:D RO
E PSL
E SP
E/V,/N:lO @
E/I 4
E/V,/N:lO @
E/I,IN:3 0
E IR
E PC
E/V@
E/V -
D/ID lD 18000
E PC

!halt cpu
lexamine ID 0 - 17
!examine 16 entries in SBI silo

!examine ID 19 - lF
lpop microstack

!examine ID 21 - 3F
!examine RO-FP

!11 longwords of current stack
!examine PR$ ISP
!11 longwords of interrupt stack
1PR$ KSP - PR$ USP
!examine instriiction register
lexamine PC
lexamine (PC)
!examine (PC)-4
!turn off cache

E/V @ lexamine (PC)
E/V - !examine (PC)-4
1 THE ADDRESSES IN THE FOLLOWING COMMANDS DISPLAY NEXUS REGISTERS FOR A
1 POSSIBLE CONFIGURATION. THEY SHOULD BE ALTERED ANO/OR COMMANDS ADDED
1 TO REFLECT THE ACTUAL ~ CONFIGURATION.
E 20002000,IN:3 !MS780E MEMORY TRl
E 20004000,IN:2 !MS780C MEMORY TR2
E 20006000;N:7 !UNIBUS ADAPTER TR3
E 20010000;N:7 !MASSBUS ADAPTER TR8
E 20012000;N:7 !MASSBUS ADAPTER TR9
E 20004000;N:9 !MA780 MEMORY TR 2
E 20014000,IN:l !DR780 TRlO
E 2001C000,IN:l !CI780 TR14

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785 •

Page 62
15 July 85

Tailor the command procedure to reflect the hardware configuration
you determined with SYSGEN. Tailor it by deleting, adding, or
modifying the conunands that examine the nexus registers. The
physical address corresponding to nexus N's registers is 200xx000,
where xx equals 2 times N in hex. For example, the registers for
nexus 4 begin at 20008000.

You might also want to include conunands to examine the registers of
the system disk drive, if it is not a DSA-style disk.

Then, enable access to the console floppy with the following commands

$! load the console driver if it hasn't been
$ MC SYSGEN
SYSGEN> CONNECT CONSOLE
SYSGEN> EXIT

Under V3, type the following commands

$! mount the console floppy if it hasn't been
$ MOONT/FOR/SYS/PROT-(SY:RWLP) CSAl: CONSOLE
$!
$! copy restar..cnrl to your default disk, directory
$MC FLX
FLX> /RS==CSl:RESTAR.CMD,IRT
FLX> CTRL/Z
~
$! include restart procedure in DISPIA.CMD
$ APPEND RESTAR.CMD DISPIA.CMD
$
$ here use EDT to create a new RESTAR.CMD
$ to contain only the conunand @DISPIA.CMD
$
$ replace console RESTAR.CMD with edited version and
$ copy DISPIA.CMD to console floppy
$ MC FLX
FLX> CSl:,IRT-DISPIA.CMD/RS
FLX> CSl:RESTAR.CMD/DE/RT
FLX> CSl:,IRT-RESTAR.CMD/RS
FLX> CTRL/Z
~clean up default directory
! DELETE RESTAR.CMD;*,DISPIA.CMD;*

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
HALTS - VAX-11/780 AND VAX-11/785

Under V4, type the following commands

$! copy original RESTAR.CMD
$EXCHANGE COPY CSl:RESTAR.CMD RESTAR.CMD
$!
$! include RESTAR.CMD in DISPLA.CMD
$ APPEND RESTAR.CMD DISPLA.CMD
$
$ here use EDT to create RESTAR.CMD
$! to contain only the command @DISPLA.CMD
$1
$! copy DISPLA.CMD and RESTAR.CMD to console floppy
$ EXCHANGE
ExCHANGE> COPY RESTAR.CMD CSl:RESTAR.CMD
EXCHANGE> COPY DISPLA.CMD CSl:DISPLA.CMD
EXCHANGE> EXIT
$! clean up default directory
~DELETE RESTAR.CMD;*,DISPLA.CMD;*

Hints And Kinks

Page 63
15 July 85

1. If you have auto restart enabled and set the VAX cpu into single
instruction step mode and erroneously continue it via the console
commands

»>SET STEP INSTRUCTION
>>>CONTINUE

when the cpu halts after executing the next instruction, the
console restarts the VAX, probably resulting in a crash.

If. you are trying to single step the VAX through the console, use
the following commands instead.

»>SET STEP INSTRUCTION
»>NEXT
<space>

Each time you depress the space bar, the cpu will execute one
instruction, and the console will not auto restart the VAX cpu.

2. The LSI-11 console software is case-sensitive. Ensure that all
invocations of chained command procedures are upper case.

3. The console block storage medium has an RT-11 file structure.
The RT-11 file structure implements three different record
formats: stream ASCII, formatted binary, and fixed-length
record. Under VMS you use the V3 FLX utility or the V4 EXCHANGE
utility to transfer files to and from the console.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HALTS - VAX-11/780 AND VAX-11/785

Page 64
15 July 85

Both FLX and EXCHANGE select a default record transfer mode based
on file extension type. For example, extensions of OBJ and BIN
default as EXCHANGE /RECORD-BINARY and FLX /FB transfer modes.

Occasionally the default based on file extension type is
inconsistent with the file's record format. In particular,
CI780.BIN, the CI microcode; WCSxxx.PAT, the VAX-11/780
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be
copied correctly unless you override the default transfer mode.

If you are not sure what the transfer mode should be, you can use
the EXCHANGE qualifier /RECORD FORMAT-STREAM or the FLX switch
/FA for all text files (e.g. comiiiand files). Use the EXCHANGE
qualifier /RECORD FORMAT-FIXED (or /TRANSFER MODE-BLOCK) or the
FLX switch /IM for-all other files (binary files such as images,
microcode files, patch files). The VMS console contains no
formatted binary files, · so you will never want
/RECORD_FORMAT-BINARY or FLX's /FB.

Additional References

VAX Architecture Standard (DEC Standard 032), Section 12.7 Halts

VAX-11/780 Console Interface Board Technical Description

VAX-11/780 Datapath Description, Section 5.3 Machine Halts

VAX-11/780 Hardware User's Guide, Chapter 3 Console Operator/Program
Communication

VAX-11/780 VAX Maintenance Handbook for processor
(pp. 133-154 of the 8/82 edition)

VAX-11/780 VAX Maintenance Handbook for additional
interpreting the contents of the SBI silo (pp.
185-188 of the 8/82 edition)

register layouts

information on
156-158 and pp.

VAX-11/780 VAX Maintenance Handbook for the location of the DLV-11
FER jumper (p. 103 of the 8/82 edition)

Sheet ESOAD-1, VAX Hardware Documentation Microfiche Library, MS780-C
ISP ROM listing

VAX/VMS Error Log Utility Reference Manual

Microcomputers and Memories (EB-20912-20) for more information on
LSI-11 MicroODT

VAX/VMS Troubleshooting *INTERNAL USE E>NLY*
HANGS

HANGS

Page 65
1 August 85

There are many possible reasons for lack of system response to users,
ranging from a blown fuse on a terminal to a compute-bound user
program to a halted processor. This section describes procedures and
suggestions to help you determine why the system is not interacting
with one or more users after it has been running normally. If the
system has only just been booted and seems not to have completed
system initialization successfully, see [TBS] section BOOT FAILURES.

First, find out whether or not the whole system seems hung. Ask the
users. Try a terminal other than the one(s) in use by the affected
user(s) to issue the DCL conunand SHCM SYSTEM. If the system seems
not to be responding to any users, follow the directions in
subsection System Hangs. Otherwise, follow the directions in Process
Hangs.

System Hangs

1. First, look at the console terminal for any messages.

2. If there are no messages, put the cpu key in the local enable
position and type CTRL/P on the console terminal. If the console
terminal and its cpu connection are working, you should get a
console subsystem prompt > > >. On a VAX-11/780 or VAX-11/785,
type SET TERMINAL PROGRAM in response to the prompt to continue.
On other processors, type a c in response to the console prompt
to continue. Then go on to item 8.

If you don't get the prompt, put the terminal into local mode and
check for problems such as a blown fuse or paper out. If the
terminal works in local mode, but you are unable to communicate
with the console subsystem, then the system may have some sort of
hardware hang. Additionally, you may have missed an important
message concerning a software problem. See the section HALTS -
<cpu type> for information about processor specific hardware
hangs and halts.

On a VAX-11/750 without remote diagnosis, cpu microcode
implements the console interface. If the UNIBUS is hung in such
a way as to hang the cpu microsequencer, the console subsystem is
uncommunicative. This is a known symptom, in response to which
you should probably power sequence the processor, by pushing the
white RESET button on the front of the machine. This may clear
the UNIBUS hang. (If you don't have memory battery backup, this
causes a reboot.) If this doesn't clear the hang, call Field
Service.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 66
1 August 85

nue

3. If there is a halt code or other console software message on the
console terminal and/or you think the system may be halted, see
section HALTS - <cpu_type>.

One possibility on a VAX-11/750 is a reboot following a halt
restart. After a processor halt, the console checks the auto
restart switch to determine whether to leave the processor
halted, to reboot it, or to restart it. If a VAX-11/750 auto
restart switch is in the reboot position, the console reboots the
system. For example, if a power fail recovery occurs and the
auto restart switch is in the reboot position, the system will
reboot. The only console message printed is %%, followed by the
VMS announcement message. If you suspect that is happening, put
the auto-restart switch into the halt position, so that the
system will halt instead. This will enable you to distinguish
between power recovery restarts and software initiated reboots.

4. If there is a fatal bugcheck message on the console terminal, the
system is crashing or has crashed. If SYSBOOT parameter
BUGREBOOT is 0, the fatal bugcheck code prints the following
message on the console terminal and loops.

SYSTEM S~ COMPLETE - USE CONSOLE TO HALT THE SYSTEM ·

If parameter BUGREBOOT is 1, the fatal bugcheck code reboots the
system from the default system disk. After the system reboots,
analyze the crashdump, following the. directions in section
BUGCHECKS.

5. Under V3 there are two possible messages about the page file you
may see

SYSTEM-W-PAGEFRAG, Pagefile 65% full, system continuing
SYSTEM-W-PAGECRIT, Pagefile 90% full, system trying to continue

Under V4, the text of these messages is changed to

SYSTEM-W-PAGEFRAG, Pagefile badly fragmented,system continuing
SYSTEM-W-PAGECRIT, Pagefile space critical, system trying to conti

These messages are each issued only once during a boot of the
system, no matter how many page files you have installed. When
one page file becomes badly fragmented or fairly full, the first
message is output; when this or another page file becomes very
full, the second message is output. These messages may be an
indication that the system requires an(other) alternate page
file, although they may also merely mean that one particular file
has become full. Furthermore, because of the nature of the
system checks, it is possible for the system to run out of page
file space without any message's having been printed.

When the page file(s) become full, the SWAPPER process may be
unable to write the modified page list. As the modified page
list grows and reaches the size of the SYSBOOT parameter

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 67
1 August 85

MPW WAITLIM, processes faulting modified pages out of their
working sets are placed into resource wait RSN$ MPWBUSY. If your
system is swapping to page file(s) that nave become full,
processes whose working sets are being expanded may be placed
into resource wait RSN$ SWPFILE. See section RESOURCE WAITS for
more information on these wait states.

To find out which file(s) are becoming full, you may be able to
issue the DCL command SHCM MEMORY/FILES/FULL. If a heavily used
page file is full or almost full, you may be able to install
another one in an attempt to prevent a system hang. Because a
process is assigned for its lifetime to a particular page file,
installing a new page file will not necessarily clear up the
problem. It may be necessary to remove user processes, whether
through LCX30UT, explicit STOP/ID commands, or a system shutdown.

While you are trying to take these steps, temporarily raise the
parameter MPW WAITLIMIT so that your own process is not placed.
into resource- wait. Raising MPW WAITLIMIT is a temporary
workaround that works until the system runs out of free pages.

From an account with CMKRNL privilege, type the following DCL
commands.

$ SHCM MEMORY/FILES/FULL
$MC SYSGEN
SYSGEN> SHCM MPW WAITLIMIT
Parameter Name -current
MPW WAITLIMIT xxxx
SYSGEN> SET MPW WAITLIMIT 16384
SYSGEN> WRITE ACTIVE
SYSGEN> SHCM PAGFILCNT
SYSGEN> EXIT

If the setting of parameter PAGFILCNT is too low to allow
installation of another page file, have users log out, alter the
parameter, and shut down the system. After it reboots, create
and install another page file.

If the setting of PAGFILCNT permits installation of another page
file, from the SYSTEM account or one set to a SYSTEM UIC, type
the following DCL commands to install another page file and reset
MPW WAITLIMIT.

$ SET PROT-(SY:RWED,CM:RWED)/DEFAULT
$MC SYSGEN
T specify a unique page file name
SYSGEN> CREATE <file spec>/SIZE-<size>
SYSGEN> INSTALL <file spec>/PAGEFILE
SYSGEN> SET MPW WAITLlMIT <xxxx> !previous value
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT

If your own process goes into RSN$_MPWBUSY wait and you are

VAX,IVMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 68
1 August 85

unable to issue any DCL commands, then you must alter
MPW WAITLIMIT from the console terminal. With the key in local
enaEle, type the following conunands, filling in the global values
from the table below. On a MicroVAX I, depress the HALT button
on the front panel instead of typing CTRL/P.

CTRL/P
»>H
> > > ! examine MPW WAITLIMIT
» >E;V /L <A(MPW$GL WAITLlM) >
>>>! read number of pages on modified list
>>>E;V/L <A(SCH$GL MFYCNT)>
>>>! examine PSL
»>E p

»>!
»>D P 0

xxxxxxxx
put processor into kernel mode

»> ! raise MPW WAITLIMIT
»>D;V/L <A(MPW$GL WAITLIM)> 3FFF
>>>! trigger modified page writer
»>D;V/L <A(SCH$GL MFYLIM)> 0
>>>! restore previous PSL

·>>>DP <xxxxxxxx>
>>>! continue processor
»>C

GLOBAL NAME

MPW$GL WAITLIM
SCH$GL-MFYCNT
SCH$GL=MFYLIM

V3 VALUE

8000328C
80001DF4
80001E04

V4 VALUE

80003C90
80001EFO
80001FOO

6. The following message on the console terminal indicates that
nonpaged pool could not be expanded.

%SYSTEM-W-POOLEXPF, Pool expansion failure
The system may hang as a result, if it runs out of nonpaged pool.
See section RESOURCE WAITS, subsection RWNPG for more
information.

7. If you see messages indicating that a disk is undergoing mount
verification, then user, system, and Files-11 I/O requests to
that disk are being stalled. Users may be able to type CTRL/Y
and STOP to abort their images and thus cancel their outstanding
I/O requests. Files-11 I/O, however, cannot be canceled. Under
V3, Files-11 is implemented as a separate process, an "ACP",
which does one I/O request at a time. While the ACP is
processing one request, other I/O requests queued to it must
wait. This means that if a Files-11 ACP I/O request is queued to
a disk in mount verification, the ACP's I/O request is stalled,
the ACP itself is stalled, and all I/O requests queued to the ACP
are stalled. How noticeable this effect might be is partially a
function of how many disk volumes this ACP is managing. If the
system is set up with very few ACPs and lots of caching, then the
effect is likely to be quite noticeable. See the Guide to

VAX/VMS Troubleshooting *INTERNAL USE DNLY*
HANGS

Page 69
1 August 85

VAX,IVMS System Management and Daily Operations Guide, section
7.6, for more information on the possible causes of a disk's
going into mount verification and actions to take.

Under V4, Files-11 ODS-2, the default file structure, is
implemented with procedure-based routines, the Files-11 XQP, that
run in process context. If a process's XQP I/O request is
stalled, then any further Files-11 I/O requests (for example,
IO$ ACCESS, IO$ DEACCESS, window turns) from that process are
also stalled. - Files-11 ODS-1, the RSX-11 file structure, is
still implemented with a separate ACP.

8. If you see messages on a V4 member of a cluster indicating that
connections have been lost or timed out and that quorum has been
lost, see below item 11.

9. If there are no messages and the cpu does not appear to be
halted, try to log in on the console terminal. If you are able
to, then possibly there is a hardware problem preventing access
to all the other terminals, such as no power to the UNIBUS or
UNIBUS adapter or perhaps the termipal controller is not working.
(Note that on a VAX-11/750, if the UNIBUS has no power or is
broken, you will probably not be able to use the console terminal
in any way, other than terminal local mode.)

10. If you are unable to login on the console terminal, the system
may be rebooting without having been shutdown. This can happen
following an aborted fatal bugcheck. Fatal bugcheck processing
may be aborted due to corruption in the boot control block that
maps the extents of the system dump file or a failure to
initialize the system disk. Depending on cpu type, you may see
console messages indicating a halt instruction excecuted and a
reboot initiated.

11.

These conditions are rare, but if you hear a lot of console
medium and/or system disk activity, wait for several minutes to
see whether the system is booting before continuing with these
directions. If the system doesn't reboot, continue with the next
item.

If the system does reboot following an aborted bugcheck, there is
no way to find out why it crashed; the only thing you can do is
prevent the immediate reboot next time by booting the system with
XDELTA. If XDELTA is present, the bugcheck routine breakpoints
before rebooting, allowing you to examine the general registers
and current stack from the console terminal.

If you are unable to login on the console terminal and the system
is not rebooting, it may be hung in a high IPL loop, it may be
continually servicing interrupts from a malfunctioning device, or
there may be a compute bound realtime process preventing any
normal processes from being scheduled.

You should single step the system through enough instructions to

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 70
1 August 85

capture the addresses of any loop it may be caught in. In fact,
it's generally a good idea to go through the loop, continue the
processor, and then single step it at least once more through the
loop to be certain that the addresses you obtained are
representative of any loop causing the hang. Afterwards, if
appropriate, crash the system and examine the dump. First make
sure that the cpu key is in the local enable position. Then type
CTRL/P and the console commands below applicable to the cpu type.
on a MicroVAX I and MicroVAX II, depress the HALT button on the
front panel instead of typing CTRL/P.

o For a VAX 8600
CPU HALT, csm code: 11
PC: xxxxxxxx ! xxxxxxxx is PC

>>>D/I 18-0- !disable timer
>>>E PSL !examine PSL
»>NEXT

U PSL xxxxxxxx
PC: xxxxxxxx>>><space bar> !xxxxxxxx is PC
PC: xxxxxxxx>>><space-bar> !each space is 1 step
PC: xxxxxxxx>>><CR> - !exit step mode

>>>E PSL !exam PSL every several steps
U PSL xxxxxxxx

>»NEXT
PC: xxxxxxxx>>><space bar> !each space is 1 step
PC: xxxxxxxx>>><CR> - !exit step mode

>>>D/I 18 80000051
»>E,IN:E RO
>»C

o For a VAX-11/780 or VAX-11/785

!re-enable timer
!examine registers
!continue the cpu

>>>H !halt cpu
HALTED AT xxxxxxxx !xxxxxxxx is PC
>>>D/I 18 O !disable timer
>>>E PSL !examine PSL

xxxxxxxx
>»N
HALTED AT xxxxxxxx
»><space bar>
HALTED AT-xxxxxxxx
<space bar>
<er> -
»>E PSL
>»N
>>><space_ bar>

<er>
>>>D/I 18 80000051
»>E,IN:E RO
»>C

!xxxxxxxx is PC
!each space is 1 step
lxxxxxxxx is PC
!each space is 1 step
!exit space bar step mode
!exam PSL every several steps

leach space is 1 step

!exit space bar step mode
!re-enable timer
!examine registers
!continue the cpu

. -···-···-------·-·---~--~-----··----"······"'"""" _________ " ___ -~~---·

VAX/VMS Troubleshooting *INTERNAL USE .ONLY*
HANGS

Page 71
1 August 85

o For a VAX-11/750
xxxxxxxx 02
»>D/I 18 0
»>E p

xxxxxxxx
»>N
xxxxxxxx 02
>»E p
>»N

>>>D/I 18 8000005
>»E/G 0
>»E/G 1
»>E/G 2

»>E/G E
»>C

o For a VAX-11/730 (it is
interrupts)

?02 PC==xxxxxxxx
>»E PSL
MOOOOOOOO xxxxxxxx
>»N
?O'! PC==xxxxxxxx
>»<space bar>
?O'! PC==xixxxxxx
»>E PSL
>»N
>»<space_bar>

>»E/G/N:E RO
»>C

o For a MicroVAX I
xxxxxxxx 02
»>D/I 18 0
»>E p
Pxxxxxxxx
)>>N xxxxxxxx/yyyyyyyy
»>
»>N
»>E p
»>N

>>>D/I 18 80000040
»>E/G 0
»>E/G 1
»>E/G 2

»>E/G E
»>C

!xxxxxxxx is PC
!disable timer
!examine PSL

leach N is 1 step

!exam PSL every several steps
!each N is 1 step

lre-enable timer
!examine RO
!examine R1
!examine R2

lexamine SP
!continue the cpu

not necessary to disable timer

lxxxxxxxx is PC
!examine PSL

!xxxxxxxx is PC
!each space is 1 step
!xxxxxxxx is PC
!exam PSL every several steps

!each space is 1 step

!examine registers
!continue the cpu

!xxxxxxxx is PC
!disable timer
!examine PSL

! xxxxxxxx is PC, and yyyyyyyy
! is contents
!each N is 1 step
!exam PSL every several steps
!each N is 1 step

!re-enable timer
!examine RO
!examine R1
!examine R2

!examine SP
!continue the cpu

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 72
1 August 85

o For a MicroVAX II
?02 EXT HLT

PC • xxxxxxxx
»>D/I 18 0
>»E PSL
M 00000000 yyyyyyyy
>»S
~ EXT HLT

PC • xxxxxxxx
»>S
~ EXT HLT

PC • xxxxxxxx
»>E PSL
>»S

»>E/G/N:E RO
>>>D/I 18 80000040
»>C

!xxxxxxxx is PC
! di sable timer
!examine PSL
!yyyyyy is PSL
!each s is one step

!xxxxxxxx is PC
!each S is one step

!xxxxxxxx is PC
!examine PSL
!each s is one step

!examine registers
!re-enable timer
!continue the cpu

a. If the halt PC and the single step PC are the address
EXE$NULLPROC, that means the system is running the null job.
The V3 address of EXE$NULLPROC is 80007B06. The V4 address
of EXE$NULLPROC is 80008B1F. The null job is scheduled when
there are no other resident computable processes. This
happens frequently during normal system operation for
relatively brief intervals, but should not persist. One
possible cause of this is a modified page list larger than
the SYSBOOT parameter MPW WAITLIMIT. You can confirm this by
using the console -to examine MPW$GL WAITLIM and
SCH$GL MFYCNT. See item 5 above for directions and more
information. If too large a modified page list is not the
problem, crash the system and look at the scheduling state of
processes to try to determine why they were not computable.
Follow the directions in subsection Process Hangs to learn
more about various scheduling states.

b. If the system is not looping at EXE$NULLPROC, then decode the
PSL using the layout in the section REIATED REFERENCE
MATERIAL. If it shows interrupt stack execution at device
IPLs (hex 14 to 17) , then the system may be continuously
executing a device interrupt service routine because of some
hardware problem. Once you have the loop addresses, crash
the system. If you are sufficiently familiar with the
hardware configuration, also examine device registers before
crashing the system. See section HALTS - <cpu type> for
typical console conunands used to do this. Follow the
directions in section FORCED CRASH to examine the interrupt
stack and determine in what code the system was looping.
Read the code to figure out which general registers point to
data structures that identify which device or controller is
causing the interrupts.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 73
1 August 85

c. Under V4, a system which is a member of a cluster that has
just lost quorum loops until quorum is regained. The other
members of the cluster are hung in similar loops. There
should be console messages indicating that connections have
been lost or timed out and that quorum has been lost. The
PSL should show interrupt stack execution at IPL 8 and,
occasionally, IPL 4. The loop includes addresses within
CLUSTRLOA.EXE and in the vicinity of IOC$IOPOST. The V4
value of IOC$IOPOST is 80004910. CLUSTRLOA.EXE is loaded
during system initialization; the address at which it is
loaded is recorded in system global CLU$GL LOA ADDR. The
console messages and interrupt stack execution at IPLs 8 and
4 should be sufficient to identify this loop.

If a member of the cluster has crashed and cannot be
rebooted, it is possible that there may not be enough votes
among the remaining nodes to make up a quorum. You can force
quorum to be recalculated as a function of the votes of only
the remaining members by typing the following console
conunands on one of the remaining cluster nodes.

CTRL,/P
>>>H !halt cpu
»>D/I 14 c ! request IPL C interrupt
>>>C !continue cpu
IPC> Q !request quorum calculation
IPC> CTRL/Z !exit IPL c service routine
! type the following commands for VMS V4.0 only
CTRL,/P
>>>H !halt cpu
>>>D/I 20 40 !enable console receive interrupts
>>>D/I 22 40 !enable console transmit interrupts

The V4.0 IPL c interrupt service routine leaves console
interrupts disabled, preventing further VMS use of the
console terminal. This has been corrected in V4.1.

d. If IPL is lF, the system may be looping trying to bugcheck
fatally. The system may or may not be running on the
interrupt stack, depending on what code signaled the fatal
bugcheck. The general sequence for a fatal bugcheck is to
initialize the adapter, controller, and unit of the system
disk and use the minimal boot driver to read in the fatal
bugcheck overlay. If there are hardware errors, the system
generally repeats this sequence. This loop is near the
global MPH$BUGCHI<HK and includes subroutine calls to a
routine in SYSLOAxxx.EXE and to routines in the system disk
boot driver. (See the section VIRTUAL ADDRESSES - SYSTEM
SPACE for information on locating SYSLOAxxx.EXE and the
system disk boot driver.) The V3 value of MPH$BUGCHKHK is
8000397A. The V4 value of MPH$BUGCHI<HK is 8000436A.

If the system is hung in this loop, try to spin down the
system disk, power it off and on, and spin it up again. This

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 74
1 August 85

may clear the problem. If the system remains hung in this
loop, call Field Service.

e. If the PSL interrupt stack bit is clear and IPL is 0, the
system may be executing some compute bound process whose base
priority is higher than that of the other processes on the
system. This is particularly likely if many of the PCs are
in process space (although note that the image may request
system services that cause execution of system space code and
a non-user mode PSL). You can confirm this by examining the
global SCH$GL CURPCB, which contains the address of the
software PCB o! the current process. If the contents seem to
remain the same for several minutes, then the system may be
running the same compute bound process. The V3 address of
SCH$GL CURPCB is 8000210C. The V4 address of SCH$GL CURPCB
is 8"0'0021F8. Type the following console conunand,
periodically halting the processor and then continuing it.

>>>E/V/L <A(SCH$GL_CURPCB)>

If a compute bound process is tile problem, you can lower its
priority and thus allow other processes to be scheduled by
altering SCH$GB PRI and the priority fields in the process's
software PCB. - Type the following conunands, replacing the
expressions in angle brackets with the actual values in the
table below.

»>E p !examine PSL
xxxxxxxx

>>>D P 0 !put processor into kernel mode
>>>E/V/L <A(SCH$GL CURPCB)>
>>>D/V/B <A(SCH$GB-PRI)> lD !priority 2
>>>D/V/B <<contents of SCH$GL CURPCB> + <PCB$B PRIB>> lD
>>>D/V/B <<contents of SCH$GL-CURPCB> + <PCB$B-PRI>> lD
>>>D P <xxxxxxxx> !restore previous PSL -
>»C

GLOBAL NAME

SCH$GB PRI
SCH$GL-CURPCB
PCB$B PRI
PCB$B=PRIB

V3 VALUE

80002158
8000210C

B
2F

V4 VALUE

80002244
800021F8

B
2F

Once you've issued these conunands, the process should be
running at external priority 2, and the system should be
scheduling other processes. You might suspend the process
for later examination with the DCL conunand SET
PROCESS/SUSPEND. If the problem is an intermittent one and
likely to occur again, create an interactive, nonswappable,
realtime process with a higher priority in order to stop the
runaway realtime process without having to repeat the above
or crash the system.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 75
1 August 85

f. If none of the above possibilities applies, once you have the
loop addresses and general register contents, crash the
system. Follow the directions in section FORCED CRASH to
examine the stack current at the time of the loop and to
determine in what code the system was looping.

Process Hangs

1. First, look at the SHCM SYSTEM output to see if the process(es)
of interest still exist(s).

2. If the process does not exist, then it was unexpectedly deleted.
This could occur as the result of a nonfatal bugcheck from kernel
or exec mode, a malicious or mistaken user with enough privilege
to delete the affected process, or some problem that occurred in
the process in an inner mode. If process accounting is enabled
for the system and was not disabled for the deleted process,
there should be an entry written in the accounting log at the
time the process was deleted. It may contain an informative
final status. From an account with access to
SYS$MANAGER:ACCOUNTNG.DAT, type the following DCL conunand to see
the accounting entries for that user.

1 ACCOUNTING/SINCE:TODAY/FULL;USER•<username>

Also, check the error log to see if the process was deleted after
a nonfatal bugcheck. From an account with SYSPRV privilege or
access to SYS$ERRORLOG:ERRLOG.SYS, type the following V4 DCL
conunand to see any bugcheck entries made today.

§_ ANALyzE/ERROR/INCLUDE-BUGCHECKS/SINCE:TODAY

Under V3, run SYE and specify s in response to the "OPTIONS"
prompt, /BU in response to the "DEVICE NAME" prompt, and
"- 08:00" in response to the "AFTER DATE" prompt to limit the
display to bugcheck entries made since 8 a.m. today.

If the process was deleted after a nonfatal bugcheck, the
bugcheck errorlog entry may have enough information to identify a
known problem but probably not have enough to troubleshoot an
unknown problem. You may want to set the SYSBOOT parameter
BUGCHECKFATAL to 1 and try to reproduce the problem to cause a
system crash so a full crashdump is available for analysis.

3. If the process does exist, and under V3, its scheduling state is
MWAIT, see the section RESOURCE WAITS; under V4, if its
scheduling state is displayed as a resource wait (e.g., RWAST),
see the section RESOURCE WAITS.

VAX/VMS Troubleshooting
HANGS

INTERNAL USE ONLY . Page 76
1 August 85

4. If the process's scheduling state is COMO (computable and
outswapped), perhaps the system has no more balance set slots to
inswap the process. Issue the DCL conunand SHCM MEMORY/swrs to
see if there are fr~e balance set slots. If there are no free
balance set slots, probably the SYSBOOT parameter BALSETCNT is
too small. Try increasing it, shutting down the system, and
rebooting.

5. If the process's scheduling state is COM (computable) or COMO
(computable and outswapped) and you suspect that process priority
is the problem, first look at the SHa-7 SYSTEM output. Compare
the process's priority to that of other computable processes. It
may be that the system is heavily loaded and/or that this process
is very low priority with respect to other computable processes.
To alter the process's priority, type the following DCL command
from an account with ALTPRI and WORLD privileges •

.i SET PROCESS/PRIORITY<new_priority> /ID=<pid>

6. If the process is COM and its priority is not the reason for lack
of system response, it is possible that the process is in an
infinite loop. Issue the DCL commarid SHa-7 SYSTEM or MONITOR
PROCESSES to see if the process's cpu time increases. (If its
cpu time doesn't increase, there may be a higher priority compute
bound job.)If this is an interactive process and the user has
enabled CTRL/T, have the user type CTRL/T several times to see
whether his cpu time increases. (This will work only if the
process is looping in user or supervisor mode.) If the process is
looping in user mode, the user may be able to type CTRL/C DEBUG
and use the Debugger to trace the loop. (This will not work if
the image has been linked ,/NOTRACE or installed with privilege.)

If the process is looping below IPL 2, you should be able to
obtain some information through the DCL command SHCM
PROCESS/CONTINUOUS. Write down PC and PSL values as possible
clues to its loop. You may suspend the process for later
examination with the DCL conunand SET PROCESS/SUSPEND. You may
want to attempt further investigation through SDA, either on the
current system or a crashdump.

If the process is looping at IPL 2, you may be able to read its
registers (including PC and PSL) by running the program GETPHD,
listed in section ACCESSING PROCESS CONTEXT WITH SDA.

7. If the process does exist and is in LEF or LEFO, it is possible,
though quite difficult in many cases, to determine what the
process is waiting for; it may not be possible to take the
process out of its wait, although in many cases you should be
able to abort the image or delete the process.

A process in LEF or LEFO may be waiting for any number of
different things; I/O completion, a lock grant, or timer
expiration are the likeliest. Failure of an I/O request to
complete can be due to a lost device interrupt, device failure,

VAX,/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 77
1 August 85

disk undergoing mount verification, software error, etc. A
process waiting for a lock grant may be blocked by another
process which has taken out an incompatible lock. A process
waiting a long time for timer expiration may have specified an
incorrect expiration time.

a. If the process is an interactive process, first type CTRL/Q
on the user's terminal in case the problem is merely that
terminal output is blocked by a previous CTRL/S. Also, check
the console terminal or any disk operator terminals for a
mount verification message concerning a disk to which the
process is doing I/O. If the process is doing I/O to a disk
in mount verification, its I/O requests to the disk are
stalled. See subsection System Hangs, item 7, for more
information.

b. If you can examine the process's registers, see if the wait
PC is informative. It should fall within the system service
vector area. Follow the directions in the section SYSTEM
SERVICE VECTORS to determine whether the process is waiting
after having issued a compound system service request. If it
is, determine which service and, if possible, examine the
argument list and read the code of that service to determine
the exact nature of the process's request. If the service
was a $QICM or $ENCW, see below for information on locating
I/O requests and lock blocks.

c. If the wait PC is within SYS$WAITFR, SYS$WFLAND, SYS$WFLOR,
or, under V4, SYS$SYNCH, then determining what the process is
waiting for is much more difficult. Basically, you must
determine which flag(s) the process is waiting for; try to
locate all the process's outstanding I/O requests, lock
requests, and timer requests; identify the request associated
with this flag; and determine why the request has not
completed. Note that under V4, there are several other
asynchronous system services whose completion is signaled by
the setting of an event flag. A V4 process in LEF or LEFO
could be waiting for any of these.

Several fields in the PCB specify which event flag(s) the
process is waiting for: PCB$L EFWM, PCB$B WEFC, and the wait
all bit PCB$V WALL in PCB$L STS. In SDA, s SHCH PROCESS
output, these are called "Event flag wait mask", "Waiting EF
cluster", and "WALL" in "Process status". PCB$L EFWM is the
one's complement of the flags in a particular cluster, with a
0 bit indicating a flag being waited for. PCB$B WEFC
specifies whether the mask applies to event flag cluster-0 or
1. (Clusters 2 and 3 are common event flag clusters; a
process waiting on common event flags would be in state CEF.)
PCB$V WALL, when set, indicates that the process is waiting
for all the flags described by PCB$L EFWM; a zero PCB$V WALL
indicates that the process issued a $WFLOR system service.

Determine the flag number(s) by first writing the contents of

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 78
1 August 85

PCB$L EFWM in binary to determine the position of each zero
bit (Eit 0 means flag O; bit 1, flag 1; etc.) Then, if
PCB$B WEFC is a 1, add 20 hex or 32 decimal to each flag
number. For example, if PCB$B WEFC contains 0, PCB$L EFWM
contains F7FFFFFF, then the- zero bit and the flag Eeing
waited for is decimal number 27. If this flag is associated
with an I/O request, for example, then you should be able to
find an IRP for this process with IRP$B EFN equal to hex lB,
or decimal 27. -

d. Determine whether the process has any outstanding I/O
requests by examining the output of the SDA command SHCM
PROCESS. If the displays for Buffered I/O count/limit and
Direct I/O count/limit show the same numbers (e.g., 6/6),
then the process has no outstanding I/O. Go to the next item
to determine whether the process has outstanding lock
requests or timer queue requests.

If the count/limit numbers are different, then the process
does have outstanding I/O requests, approximately the
difference between the numbers in each of the two displays.
(The number may not be precise because certain ACP requests
are charged as both buffered and direct I/O.)

If the process has outstanding I/O requests, then you must
locate them to see which, if any, are associated with the
event flag(s) being waited for. Follow the directions in
section LOCATING I/O REQUESTS to locate the request(s)
associated with a particular event flag number. Note that
when SDA displays a request (IRP or CORP) as part of the SHCM
DEVICE display, it converts the flag number to decimal; if
you format an IRP or CORP, all numbers are displayed in hex.

For an IRP that specifies a flag for which the process is
waiting, read the driver code and try to figure out the
device state in order to determine why the request has not
completed.

If the I/O request is for a terminal, see item 9 below for
hints specific to terminals.

If the flag is one for which the process is waiting and the
request is queued to an ACP or, under V4, Files-11 XQP, then
you must determine what is blocking the ACP or XQP.

An ACP may be too low a priority to get enough cpu time; it
may be in LEF/O waiting for an I/O request of its own to
complete; etc. You may have to look through the ACP's CCBs
to locate its IRP and determine why that request hasn't
completed.

e. one way to find out whether a process has outstanding locks
or timer requests is to examine the JIB. (Under V4, the
easier way to find out if the process has outstanding locks

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 79
1 August 85

is the SDA command SHCM PROCESS/LOCKS.) The JIB contains the
count/limit information for timer queue requests and lock
requests. The names of these fields are JIB$W TQCNT,
JIB$W TQLM, JIB$W ENQCNT, and JIB$W ENQLM. The numEer of
outstanding timer requests is -the difference between
JIB$W TQLM and JIB$W TQCNT. The number of outstanding locks
is tlie difference Eetween JIB$W ENQLM and JIB$W ENQCNT. To
display the JIB, type the following SDA commands.-

SDA> SHCM PROCESS !read address of JIB
SDA> READ SYS$SYSTEM:SYSDEF.STB!if you haven't already
SDA> FORMAT <jib_address>

Remember, though, that the JIB describes the job as a whole,
the main process and any of its subprocesses. If this
process is the only one in the job, then JIB$W PRCCNT will be
zero, and any outstanding locks or timer requests belong to
this process. If there are multiple processes in the job and
outstanding timer requests or lock requests, then you must
further examine the LEF/O process to determine whether it
really has outstanding timer requests or locks.

f. If you think a V4 process is waiting for a lock request ·to
complete, type the following SDA commands to display those
locks and, possibly, get information about the process
blocking the ungranted lock request.

SDA> ! under V4
SDA> SHCM PROCESS/LOCK !display all locks
SDA> ! For each lock displayed as "Waiting for •.. "
SDA> ! get Lock ID and LKB address
SDA> DEF LKB==<lkb address>
SDA> EXAM LKB+LKB$B EFN !examine associated EFN
SDA> ! If EFN is the one in question, then display RSB
SDA> SHCM RESOURCE/LOCK=<lock id>
SDA> ! If CSID is 0, then issue following commands;
SDA> ! else, resource is mastered on other node
SDA> ! Examine the Grant Queue to get the Lock Id of the
SDA> ! granted lock blocking this one
SDA> ! Display that lock to get PID of owner
SDA> SHCM LOCK <blocking lock id>
SDA> SHCM PROCESS/INDEX•(pix>-

If the process is waiting for a blocked lock request, examine
the process(es) with incompatible granted locks and try to
determine if they themselves are -blocked for some reason.
See the Lock ~agement System Services chapter in the
VAX/VMS System Services Reference Manual for a table showing
compatibility among the various lock modes.

When RSB$L CSID is nonzero, the resource is being mastered on
another nooe of the cluster. [more information TBS]

V3 VMS's use of locks is minimal; it uses them only for RMS

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 80
1 August 85

shared files. There are no SDA commands to make finding lock
requests easy. If you find a V3 process in LEF/O that you
think is waiting for a blocked lock request, read Chapter 10
in the V3 VAX/VMS Internals and Data Structures Manual to see
how PCBs, LBKs, and RSBs are connected and then issue
appropriate SDA EXAMINE and FORMAT commands.

g. If the process has outstanding timer request(s), locate them
and compare their expiration times to the system time by
typing the following SDA commands.

SDA> EVAL EXE$GL TQFL !timer queue listhead
SDA> EXAM EXE$GL-TQFL !address 1st TQE
SDA> ! Repeat next command til back at EXE$GL TQFL or
SDA> ! you have located the TQE(s) -
SDA> FORMAT @. !display one TQE
SDA> If matching TQE$L PIO, then check RQTYPE and EFN
SDA> ! if TQE$B RQTYPE • 1
SDA> ! and TQE$B EFN matches, you've found the request
SDA> ! TQE$Q TIME is expiration time
SDA> EXAM EXE$GQ SYSTIME !read system time
SDA> EXAM EXE$GQ=SYSTIME+4

8. If the process is waiting for terminal I/O to complete and the
user has not disabled all broadcasts, then, under V4, from a
process with SHARE privilege, first try the DCL command

~ SET TERM/XON <terminal>

a. If that doesn't work, try doing a broadcast to the user's
terminal to see if the problem lies in his terminal
connection. Although V4 broadcast is done with a $QIO, it
may work in some cases even though the terminal seems hung.
From an account with OPER privilege, type one of the
following DCL commands.

$ REPL/URGENT/TERM•<term> <some message> !V4
~ REPL,ITERM-<term> <some_message> !V3

If you see the broadcast message on the user's terminal, then
his physical terminal connection is fine.

b. If the user hasn't disabled broadcasts and the broadcast
message does not appear, then there may be a problem in the
user's terminal connection. You might try any or all of the
following:

o Type the DCL command SHCM ERROR to see if the terminal is
listed in the display. Terminal hardware errors are not
logged; however, that hardware errors have occurred is
recorded. Any errors indicate some sort of hardware
problem.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 81
1 August 85

o Check whether a keyboard locked light is on. The
terminal could have been put into a strange state as a
result of random binary data output interpreted as escape
sequence(s). If the light is on, press the SETUP key
twice to see if that fixes the problem. If the light is
still lit, press SETUP and then RESET.

o Put the terminal in local mode and try typing to
determine whether the terminal works at all. Check for a
blown fuse, paper out, etc.

o If the terminal works, check that its baud rate, type,
and other changeable characteristics are consistent with
what the system believes them to be.

o If the terminal is connected through a patch panel or
switch, check that its connections are intact.

o If all else fails, try a SETUP/RESET if the terminal
supports that feature.

o Replace the terminal with one known to work to see if
that makes a difference.

c. If you suspect a software problem, type the following DCL
commands. Under V4, your process needs SHARE, PHY IO, and
SYSPRV or READALL. Under V3, your process needs PHY-IO and
SYSPRV.

$ SHO TERM <terminal>
I SHO TERM/PERM <terminal>

Save the output, along with a display of the IRP that
describes the uncompleted I/O request. Delete the process
and try to reproduce the problem in the simplest way
possible. If you can reproduce the problem, get the SHCM
TERM output and IRP display again. If you can't reproduce
the problem in a simpler way, try to find out what kinds of
I/O requests were made to the terminal with what modifiers.
Report the problem with that information, the SHCM TERM
output, and the IRP display.

9. For a process in any other wait state, read Chapter 12 of the V3
VAX/VMS System Management and Operations Guide and/or the
Internals and Data Structures Manual to learn more about the wait
state and possible reasons for its length.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 82
1 August 85

Hints And Kinks

1. Under V4, you must be careful about single stepping with the
console or XDELTA on a system which is a member of a cluster.
The CI port has a 99 second sanity timer which, if enabled, must
be reset by software every 99 seconds. Whenever the CI driver
initializes the CI port, the driver uses the value of the dynamic
SYSBOOT parameter PASANITY to determine whether or not to enable
the sanity timer. The default value of PASANITY, which is 1,
causes the sanity timer to be enabled.

If the timer is enabled and not reset by software every 99
seconds, the CI port places itself into maintenance mode,
breaking SCS connections to other nodes on the cluster. The
other nodes, as a result, reconfigure the cluster to exclude this
node.

If you know you're going to be single stepping a system, boot
interactively and use SYSBOOT to change PASANITY to 0. If the
system is already running when you decide to single step, run
SYSGEN first to alter PASANITY. When you're done using the
console or XDELTA, reset PASANITY.

Use the following conunands from an account with CMKRNL privilege

$ MC SYSGEN
SYSGEN> SHCM PASANITY
SYSGEN> SET PASANITY 0

or
SYSGEN> SET PASANITY 1
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT

!display current setting
!to disable timer

!to enable timer

Then, if you're disabling the sanity timer, halt the cpu for 100
seconds and continue it. The CI port will reinit due to sanity
timer expiration. When the CI port reinitializes, it does so
with the sanity timer disabled.

2. Whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUl'OGENs.
Include any parameter changes you make in V3
SYS$SYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 10,
Scheduling; Chapter 12, Process Control and Conmunication; Chapter
13, VAX/VMS Lock Manager; Section 14.5, Data Structures that

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
HANGS

Page 83
1 August 85

Describe the Page and Swap Files; Section 15.5.2, Modified Page
Writing; Chapter 18, I/O System Services

Guide to VAX/VMS System Management and Daily Operations, Section 4.1,
Shutting Down the Operating System

Guide to VAX,IVMS Performance Management

VAX/VMS Troubleshooting *INTERNAL USE -ONLY*
INVEXCEPTN BUGCHECK

INVEXCEPTN BUGCHECK

Page 84
10 June 85

The INVEXCEPTN bugcheck is signaled by the conunon exception
dispatching code when it detects that an exception occurred above IPL
2 or on the interrupt stack. Somewhat simplistically, this bugcheck
means that while the processor was running in system context, an
exception occurred which VMS would normally handle by dispatching to
a condition handler established by a process.

This bugcheck is also signaled if the conunon dispatching code
determines that the current process's CTL$AL STACK array is
inaccessible. This is taken to imply that the current process has no
Pl space and is thus either the SWAPPER or the NULL process, neither
of which should incur exceptions of this sort.

The PC displayed by the SDA SHCM CRASH conunand reflects the exception
dispatching code rather than the location of the exception. RO and
R1 in the SHCM CRASH display have been altered by the exception
dispatching code. The PC, RO, and R1 at the time of the exception
can be obtained as described below.

.
When this bugcheck is signaled, signal and mechanism arrays have
already been built on the current stack and should be visible among
the newest (i.e., lowest addresses) entries on the stack.

/I 00000004 argument count
/I xxxxxxxx saved FP

mechanism array! FFFFFFFD depth of scan
\I xxxxxxxx RO at exception
\I xxxxxxxx R1 at exception

I
I I xxxxxxxx flags

stack growth
/I OOOOOOOx argument count
/I xxxxxxxx exception type

signal array I exception parameters
\I xxxxxxxx exception PC
\I xxxxxxxx exception PSL

1. Locate the mechanism array and identify all its entries. Saved
RO and saved R1 are the registers' values at the time the
exception occurred.

2. Skip 1 longword, the flags longword.

3. The next longword, the beginning of the signal array, contains an
argument count, the number of longwords that follow. Use the
count to identify all entries in the signal array. The number of
exception parameters present is a function of exception type and
can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
INVEXCEPTN BUGCHECK

Page 85
10 June 85

4. The exception type is a status value, e.g., C (hex) or
SS$_ ACCVIO. The DCL conunand

.i EXIT %X<exception_type>

writes the message text associated with the exception type status
value. The V4 SDA conunand

SDA> EVAL/CONDITION <exception_type>

writes the message text associated with the exception type status
value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware" generated
exceptions are listed with a description of their associated
exception parameters in Section 10.1 of the VAX/VMS System
Services Reference Manual. See section EXCEPTIONS for
information about the more conunon hardware exceptions.

5. Forced crashes cause INVEXCEPTN bugchecks. If the signal array
shows the exception type as SS$ ACCVIO, the PC as approximately
FFFFFFFF, the faulting virtual adaress as approximately FFFFFFFF,
and the PSL as kernel mode and IP~ 31, the system was crashed
using the console CRASH procedure. Continue with the section
FORCED CRASHES.

6. The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or kernel
mode exception. Whether the PC points to the beginning of the
instruction or the end depends on whether the exception was a
trap (end), fault (beginning), or abort (beginning). The
reference above specifies whether each exception is a trap,
fault, or abort. Identify in what source module the PC is. See
the section VIRTUAL ADDRESSES. Often examining instructions
around the PC is helpful enough to eliminate a microfiche search.
Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception_pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the operands to
see which access was in error.

7. Look at the IPL and IS values in the exception PSL to determine
if the IPL was above 2 and/or the exception occurred on the
interrupt stack. Decode the PSL using the PSL layout in the
section REIATED REFERENCE MATERIAL or with the V4 SDA command
EXAMINE/PSL.

8. If the exception occurred on the interrupt stack, the saved FP in
the mechanism array is probably from the current process and not
that relevant in analyzing the crash. If the exception occurred
on the kernel stack, the saved FP is likely to be the address of

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
INVEXCEPIN BUGCHECK

Page 86
10 June 85

the previous call frame, which contains the previous saved FP.
If the stack is intact, these saved FPs can be used to trace the
sequence of calls that occurred prior to the crash.

9. Decipher the current stack to trace control flow.
section STACK PATTERNS.

Hints And Kinks

See the

1. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

2. When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process's context and displays
them in response to the SHai PROCESS/REGISTER conunand.

3. The VAX instruction set is. sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One connnon error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, for
general exception dispatching and details of exceptions signaled by
VMS system software

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services

VAX/VMS Troubleshooting
KERNEL STACK LOCATIONS

KERNEL STACK LOCATIONS

INTERNAL USE ONLY . Page 87
15 April 85

1. If the process is the Swapper, determine the high and low ends of
its stack by typing the SDA commands

SDA> EVAL SWP$A KSTK-(4*SWP$K KSTKSZ)!low end
SDA> EVAL SWP$A =KSTK - ! high end

2. If the process is the Null Job, determine the high and low ends
of its stack by typing the SDA commands

SDA> EVAL SWP$A KSTK-(4*SWP$K KSTKSZ)-80 !low end
SDA> EVAL SWP$~KSTK-(4*SWP$K=KSTKSZ) !high end

3. If the process is not the Null Job or the Swapper, determine the
current high and low ends of its kernel stack by typing the SDA
conunands

SDA> EXAM CTL$AL STACKLIM ! low end
SDA> EXAM CTL$AL =STACK ! high end

The usual kernel mode stack is in a fixed position in Pl space.
Its size and location varies from major release to major release.

For V3, the high and low ends are 7FFEAE00 and 7FFFA800. These
are the values stored at CTL$AL STACK and CTL$AL STACKLIM. No
distributed VMS code moves the kernel mode stack. -

With V4, the usual high and low ends are 7FFE7EOO and 7FFE7800.
If the kernel stack is expanded, CTL$AL STACKLIM is altered. If
CTL$AL STACK contains 7FFE7EOO, then the-process is running on
the usual kernel stack, and you have determined its limits.

4. If CTL$AL STACK and CTL$AL STACKLIM do not contain the limits of
the usuaI kernel stack,- then the process may be executing
Files-11 XQP code, which runs on a private kernel stack. To
locate the high and low ends of this stack, type the following
SDA commands

SDA> DEF XQP - @CTL$GL FllBXQP!Pl space location of XQP
SDA> EXAM XQP + 2C ! read XQP STKLIM+4 • low end
SDA> EXAM XQP + 28 !read XQP=STKLIM - high end

If CTL$AL STACK and CTL$AL STACKLIM contain these values, then
the process is executing XQP code on the XQP stack, and you have
determined its limits.

When the XQP is started up via a call from kernel mode, it saves
the contents of CTL$AL STACK, CTL$AL STACKLIM, and the FP before
switching to its private stack. You- can determine the saved
values and display the process's usual kernel stack contents by
typing the following SDA commands.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
KERNEL STACK LOCATIONS

Page 88
15 April 85

SDA> DEF XQP - @CTL$GL FllBXQP !Pl space location of XQP
SDA> EXAM XQP + 24 !read PREV STKLIM+4=old CTL$AL STACKLIM
SDA> EXAM XQP + 20 ! read PREV-STKLIM - old CTL$AL-STACK
SDA> EXAM XQP + lC !read P~FP = former FP, on KSP
SDA> SHO STACK @(XQP+1C):@(XQP+20) !display krnl stack

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
KRNLSTAKNV BUGCHECK

KRNLSTAKNV BUGCHECK

Page 89
26 June 85

The KRNLSTAI<NV bugcheck is signaled by the service routine for the
exception kernel stack not · valid. The microcode generates this
exception when it is unable to push information onto the kernel stack
during the initiation of an exception or interrupt. This exception
is serviced on the interrupt stack at IPL 31. The service routine
immediately signals a fatal bugcheck. The bugcheck means that while
the processor was running in process context, the current process's
kernel mode stack was found invalid by the microcode.

An invalid kernel stack can result from stack overflow, stack
underflow, corruption in the Pl page table entries that map the
kernel stack, some other kind of software error, or an obscure
hardware problem.

V3 VMS defines the kernel stack to be three pages which are locked
into the process's working set and which should thus always be valid.
V4 VMS defines the process's usual kernel stack to be four pages
which are locked into the process's working set and which should thus
always be valid.

The PC and PSL displayed by the SDA SHOil CRASH conunand reflect the
exception service routine rather than the location of the exception.
The PC and PSL at the time of the exception can be obtained as
described below.

1. ·To display the interrupt stack, type the SDA conunand SHOil STACK.
Its format follows

"

I
I

stack growth

xxxxxxxx exception PC
xxxxxxxx exception PSL

2. The KSP value displayed by SDA in response to SHOil CRASH is the
address at which the microcode tried to write, after
autodecrementing the stack.

3. See the section KERNEL STACK LOCATIONS to determine its high and
low limits.

4. Display the pages allocated for the process's kernel stack by
using the stack limits you determined. SDA writes this range in
"stack" format, with attempted symbolic interpretation, in
response to the conunand

SDA> SHOil STACK <low_address>:<high_address>

If the KSP value is at or just above its expected high end, then
it is possible that some kernel mode code popped more off the
stack than it should have. One way this might occur is a RET
back to the change mode dispatcher from a kernel mode system
service with a corrupted FP. A value of KSP lower than its
expected low end generally indicates an overflowed kernel stack.

VAX/VMS Troubleshooting *INTERNAL USE .ONLY*
KRNLSTAKNV BUGCHECK

Page 90
26 June 85

5. If the KSP is within the limits you determined above, check to
see if the page table entries that map it have been corrupted.
The page table entries that map it should include the valid bit,
the protection as SRKW, _and the owner access mode as kernel

V3 SDA displays only entire process page tables. First convert
the low limit virtual address to a virtual page number by issuing
the following DCL cormnands.

$ VPN• (%X<faulting address> .AND. %X3FFFFE00) / 512
I SHCM SYMBOL VPN -

To see 10 PlPTEs (10*4 bytes per PTE • 28 hex bytes), issue the
SDA cormnand

SDA> EXAM @PlBR + (4*<virtual_page_number>);28

See the Internals and Data Structure Manual reference below for
information to enable you to decode the PTE.

V4 SDA can display a range of process PTEs. Type the conunand

SDA> SHCM PROC/PAGE <low_limit>:<high_limit>

6. Identify in what source module the EXCEPTION PC is.
section VIRTUAL ADDRESSES.

See the·

7. Start at the highest end of the kernel stack and decipher as much
of the stack pages as seems to make sense. Without knowing the
lowest valid address, this may be difficult since many previous
kernel mode threads of execution have used the stack. See the
section STACK PATTERNS.

Hints And Kinks

1. When SDA examines the process current at the time of a KRNLSTKNV
bugcheck, SDA displays the bugcheck PC and PSL as part of that
process's context in response to the SH<li PROCESS/REGISTER
command. The process's most recent PC and PSL are those pushed
on the interrupt stack as the exception PC and PSL.

2. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

3. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
KRNLSTAI<NV BUGCHECK

Page 91
26 June 85

floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

one conuuon error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
LOCATING I/O REQUESTS

LOCATING I/O REQUESTS

Page 92
1 August 85

Locating a process's outstanding I/O requests is difficult, although
the process's Channel Control Blocks (CCBs) include a count of
outstanding I/O requests on the channel and the address of the Unit
Control Block (UCB) to which the channel has been assigned. This,
however, is just the beginning; I/O requests may be queued to a
number of different places. Possibilities include (but are
absolutely NOT limited to) the following:

1. An I/O request is generally described by an I/O Request Packet
(IRP). IRPs may be queued to a list of pending IRPs for a
particular unit. For a conventional device, this queue is at
UCB$L_IOQFL and UCB$L_IOQBL.

2. If the IRP is the current request of a conventional device, its
address is in UCB$L_IRP.

3. The IRP may be queued to the ACP or, under V4, the Files-11 XQP
servicing a volume mounted on the unit.

4. The IRP may be the current request of the ACP or, under V4, the
Files-11 XQP servicing a volume mounted on the unit.

5. An IRP for a file that spans a nrul ti-volume set may be queued to
a UCB describing another disk in the multi-volume set.

6. An I/O request to an scs device (e •• g, UDA disk, HSC disk,
MSCP-served disk, etc.) is described by a Class Driver Request
Packet (CDRP) • A CDRP includes an IRP, a fork block, and space
for scs parameters. The driver is multi-threaded and handles
multiple requests concurrently. Requests do not necessarily
complete in the order they were queued. CDRPs in progress are
queued to a Class Driver Data Block (CDDB).

7. CDRPs waiting for an unavailable resource may be in any number of
different wait queues.

8. A write request to a full duplex terminal is described by a
Terminal Write Packet ('!WP) and queued to a different UCB queue
than UCB$L_IOQFL.

9. An IRP for a V4 virtual terminal is queued to the UCB describing
the physical terminal to which the virtual terminal is connected.

The directions that follow address some, but not all of the
possibilities listed above. In order to locate other I/O request
queues, you may have to read the relevant driver, ACP, SCS code, etc.
[More information TBS]

1. First, look through the process's CCBs for any with non-zero I/O
count. CCB$W IOC is incremented by EXE$QIO and decremented by
the IOC$IOPOST-special kernel AST that completes post-processing

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
LOCATING I/O REQUESTS

Page 93
1 August 85

of the request. Note that CCB$W IOC is incremented whether the
request has been queued to the driver, to the ACP servicing the
volume mounted on that unit, or to the Files-11 XQP servicing a
V4 Files-11 ODS-2 volume mounted on that unit.

For each CCB with non-zero CCB$W IOC, determine to which device.
and unit the channel is assigned. To look through the CCBs,
follow the directions in subsection Channel Control Block Table
in section VIRTUAL ADDRESSES - Pl SPACE.

Using the results from these conunands, issue the SDA command SHaiv
DEVICE, specifying the device name and the unit number converted
to decimal.

For some devices, SDA's SHCM DEVICE output device will be
sufficient to locate the process's request. That is, the request
may be the unit's current request, it may be queued to the unit's
pending request list, or it may be queued to the ACP Queue Block
(AQB) for the ACP servicing the volume mounted on that unit.

2. Under V4, Files-11 ODS-2 is implemented by procedure-based
routines called the Files-11 XQP that run in the context of the
process issuing the Files-11 request. The XQP services one
request at a time. Pending IRPs are generally queued to its
queue in Pl space. To determine whether the XQP is active, to
format its pending I/O request queue and its current request,
type the following SDA conunands.

SDA> SHCM PROCESS !get PCB address
SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> EXAM <PCB address>+PCB$B DPC
SDA> ! zero PcB$B DPC implies-no XQP activity
SDA> EXAM CTL$GL FllBXQP !address of XQP QUEUE
SDA> EXAM @. - !contents of XQP QUEUE
SDA> ! if XQP QUEUE doesn't contain its own address,
SDA> ! then-repeat next command til back at list head
SDA> FORMAT @. ! format each pending IRP
SDA> FORMAT @(@CTL$GL_F11BXQP+50) !format current IRP

For relatively short periods of time during the XQP's processing
of a request, the IRP is queued on the AQB queue. At that point,
the process is the only process allowed to deal with the file
system cache. This is done to interlock searching the cache for
a given buffer, to modify the description of what a buffer
contains, etc. This interlock is only held while the buffer
descriptors are modified, not while the buffer is read/written to
disk, or while any of the rest of the file system manipulates the
contents of the buffer.

3. The IRP in question may be the current request of an ACP
servicing the volume. In both the Files-11 ODS-1 and ODS-2 ACPs
there is a global IO PACKET which contains the address of the
current IRP. Lo0k at the maps ([FllA]FllAACP.MAP and
[FllB]FllBACP.MAP) in the source fiche to determine the value of

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
LOCATING I/O REQUESTS

this symbol.

Page 94
1 August 85

4. For scs devices, such as units of a disk class driver, you will
have to look further. A single device-unit may be servicing many
CORPs concurrently, which do not necessarily complete in order.
CORPs in progress are queued to the Class Driver Data Block
(CODB). A CORP that requires an unavailable SCS resource before
it can be serviced may be queued to any number of places: the
Response Descriptor Table (RDT), if a response ID is needed; the
Connection Descriptor Table, if a send credit or message buffer
is needed; the Port Descriptor Table, if nonpaged pool is needed.
[others TBS]

To try to locate a process's CORPs, type one of the following
sets of SDA conunands.

SDA> ! Under V3
SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> READ SYS$SYSTEM:SCSDEF.STB
SDA> SHC»l DEVICE <device name>
SDA> DEFINE UCB • <UCB aadress>.
SDA> DEFINE CODB=@(<CRB address>+CRB$L AUXSTRUC)
SDA> EXAM CODB+CODB$L cDRPQFL -
SDA> ! Repeat next coiiimand til back at listhead
SDA> FORMAT @./TYP-CORP
SDA> ! Examine RDT queue, at beginning of RDT
SDA> EXAM (@SCS$GL RDT)-18
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP-CDRP
SDA> ! Examine PDT queue
SDA> DEF PDT- @(UCB+UCB$L PDT)
SDA> EXAM PDT+PDT$L WAITQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @ ./TYP-CDRP
SDA> ! Examine CDT queues
SDA> DEF UCB$L CDT-BS
SDA> DEF CDT-@TUCB+UCB$L CDT)
SDA> EXAM CDT+CDT$L WAI'IQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @ .;TYP-CDRP
SDA> EXAM CDT+cDT$L CRWAITQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP-CORP
SDA>
SDA>
SDA> ! Under V4
SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> READ SYS$SYSTEM:SCSDEF.STB
SDA> ! SH<li DEVICE displays CODB CORP queue
SDA> SH<li DEVICE <device name>

VAX/VMS Troubleshooting *INTERNAL USE 'ONLY*
LOCATING I/0 REQUESTS

SDA> DEFINE UCB = <UCB address>
SDA> !
SDA> ! Examine ROT queue, at beginning of ROT
SDA> EXAM @SCS$GL ROT
SDA> ! If this doesn't contain its own address,

Page 95
1 August 85

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./I'YP=CORP
SDA> ! Examine PDT queue
SDA> DEF PDT= @(UCB+UCB$L PDT)
SDA> EXAM PDT+PDT$L WAITQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @.,ITYP•CORP
SDA> ! Examine CDT queues
SDA> DEF CDT=@(UCB+UCB$L CDT)
SDA> EXAM CDT+CDT$L WAI'IQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./I'YP=CORP
SDA> EXAM CDT+CDT$L CRWAITQFL
SDA> ! If this doesn't contain its own address,
SDA> ! then repeat next conunand til back at listhead
SDA> FORMAT @./I'YP=CORP

If you find CORPS queued to the ROT, this may mean that SYSBOOT
parameter SCSRESPCNT is set too low. It could also mean that,
because of some other problem, previously issued SCS requests are
not completing. You may want to alter SCSRESPCNT and reboot the
system. If you find CORPS queued to PDT$L WAITQFL, this means
that there isn't enough nonpaged pool.- Check with the DCL
conunand SHC»l MEMORY, alter parameters as necessary, and reboot.
[more information TBS]

5. If the device is a V4 virtual terminal, VTA, look at the SHC»l
DEVICE display to see whether it is connected. The second line
of the characteristics will include "det" if the virtual terminal
is disconnected from a physical terminal. Any pending IRPs to a
disconnected virtual terminal are queued to the virtual terminal
pending I/O queue, at UCB$L IOQFL. If the virtual terminal is
connected to a physical terminal, UCB$L TL PHYUCB contains its
address, and I/O requests are queued to the-physical UCB.

6. If the device is a terminal device set to full duplex, the IRP
will not be queued to the usual UCB I/O pending queue. Instead,
the IRP will be pointed to by a terminal write packet ('!WP). The
current write request is pointed to by UCB$L 'I'I' WRTBUF; pending
write requests are queued to the UCB at- UCB$L 'I'I' WFLINK.
UCB$L Tl' WRTBUF is not cleared at I/O completion; It may,
thereiore, contain a stale '!WP address. If the write state
(TTY$V ST WRITE) is set in the terminal state quadword
(UCB$Q-TTSTATE), then the contents of UCB$L 'I'I' WRTBUF are valid.
Type tlie following conunands to examine these fields.

SDA> CTRL/Y

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
LOCATING I/O REQUESTS

$ SPAWN
$ MACRO/OBJ•SYS$LOGIN:TTYDEF SYS$INPUT: -
$ + SYS$LIBRARY:LIB/LIB
- $TTYDEF GLOBAL

.END
CTRL/Z
$ LO
$ CONT
SDA> RFAD SYS$LOGIN:TTYDEF.OBJ
SDA> !If device is a V4 connected 'VTA, then
SDA> DEF UCB-@(<ucb address>+UCB$L TL PHYUCB)
SDA> ! else, do next conunand - -
SDA> DEF UCB-<ucb address>
SDA> EXAM UCB+UCB$Q TT STATE
SDA> EVAL TTY$V ST WRITE

Page 96
1 August 85

SDA> !If TTY$V ST WRITE bit clear in UCB$Q TT STATE,
SDA> ! then tliere are no write conunands q\ieued to
SDA> ! the terminal, and you're done
SDA> DEF '!WP- @(<ucb address> + UCB$L TT WRTBUF)
SDA> !See if this '!WP is a broadcast or normal write
SDA> EXAM 'IWP+TTY$L WB IRP !if zero, then ignore
SDA> FORMAT @. - - ! else, format IRP
SDA> DEF '!WP-@(<ucb address>+UCB$L TT WFLINK)
SDA> EXAM 'IWP+TTY$L WB. IRP ! if zero~ tlien ignore
SDA> FORMAT @. - - ! else, format IRP
SDA> DEF 'IWP=@'IWP !flink to next '!WP •••
SDA> ! Continue til back at listhead

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS

MACHINE CHECKS

Page 97
21 May 85

A machine check is an exception reported when the cpu microcode
detects an internal error. Machine check errors are cpu-specific;
possible machine check errors include cache parity error, translation
buffer parity error, and cpu timeout. Almost all machine checks
represent potentially serious problems. Many machine checks are
caused by some type of hardware problem; some can be caused by errors
in user-written software or VMS.

The following external symptoms indicate that a system is incurring
machine checks

o the error message SYSTEM-F-MCHECK
o the fatal bugcheck MACHINECHK
o a console halt code of 5, double error halt (or equivalent

message, depending on cpu type)
o machine check entries in the error log
o non-zero CPU errors as displayed by the DCL command SH~ ERROR.

During machine check exceptions, the microcode logs information,
called the microcode machine check logout, on the interrupt stack.
The machine check logout identifies the type of machine check and
includes the contents of relevant cpu registers. The exact layout
and cqntents of the logout are cpu-specific. The generic microcode
machine check error logout is shown below. The byte count describes
the size of the cpu-specific information and does not include the PC,
the PSL, and the longword containing the byte count.

II
OOOOOOxx bytes I

I
I

stack growth

\I

OOOOOOxx byte count

xxxxxxxx cpu-specific
machine check

xxxxxxxx information

xxxxxxxx machine check PC
xxxxxxxx machine check PSL

The microcode then vectors through the System Control Block (SCB)
vector at offset 4 to a VMS machine check exception service routine.
VMS sets the low order bit in the sea vector, specifying that the
exception be serviced on the interrupt stack and at IPL 31. The VMS
machine check exception service routine is in the cpu-specific module
[SYSLOA]MCHECKxxx, which is loaded into nonpaged pool as part of a
cpu-specific image named SYSLOAxxx.EXE

See the subsection SYSLOAXXX.EXE in the section VIRTUAL ADDRESSES -
SYSTEM SPACE for more information on the mechanism for dispatching
into SYSLOAxxx.EXE and on the names of the SYSLOAxxx.EXE images.

VMS first determines which type of machine check occurred from the

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS

Page 98
21 May 85

machine check logout. Although VMS treats each type of machine check
somewhat differently, its general response is to log a machine check
error and increment EXE$GL MCHKERRS. The DCL command SHCM ERROR
displays the contents of EXE$GL MCHKERRS as CPU errors.

VMS then determines whether the error is recoverable or not.
Recoverability is minimally a function of two things: whether the
machine check exception was a fault or an abort and whether the
instruction is resumable. Whether an instruction is resumable or not
is a function of the microcode that implements it.

If the machine check is recoverable, VMS dismisses the exception,
resuming the thread of execution that incurred the machine check.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. If
the process has declared no condition handler for machine checks, the
last chance handler generates the following error message

SYSTEM-F-MCHECK, detected hardware error, PCsxxxxxxxx, PSL-xxxxxxxx

If the machine check is nonrecoverable and occurred in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck.

Typically, machine checks are caused by hardware faults, but they may
also occur as the result of software error. Follow the directions
below to analyze a MACHINECHK bugcheck.

1. If you have the ERRORLOO.SYS file in use at the time of the
crash, use SYE to decode the machine check information. With V3,
specify s in response to SYE's "OPTIONS" prompt and /CP in
response to the "DEVICE NAME" prompt. With V4, type the DCL
conunand ANALyzE/ERROR/INCL=MACHINE_CHECK <file_spec>.

2. If you don't have ERRORLOO.SYS, you must decode the machine check
information yourself. If you don't know the cpu type, type the
SDA command EXAMINE EXE$GB CPUDATA to display the contents of the
processor ID register.- The high-order byte displayed is
processor type. If the high-order byte is a 1, the processor may
be ·a VAX-11/780 or a VAX-11/785. Bit 23 (decimal) of the
displayed longword specifies which processor type it is: for a
VAX-11/780 bit 23 is O; for a VAX-11/785 bit 23 is 1. The
VAX-11/785 machine check logout is identical to that of the
VAX-11/780. See the table below to interpret the other processor
type values and to determine the corresponding machine check
error logout size. Note that a "VAX-11/725" is really a
VAX-11/730 cpu and that a VAX-11/782 is two VAX-11/780s.

EXE$GB_CPUDATA CPU TYPE

1 VAX-11/780 & VAX-11/785
2 VAX-11/750
3 VAX-11/730
4 VAX 8600

HEX BYTE COUNT

28
28
c

58

VAX/VMS Troubleshooting *INTERNAL USE .ONLY*
MACHINE CHECKS

7 MicroVAX I
8 MicroVAX II

Page 99
21 May 85

c
c

3. The sununary parameter, the first longword of cpu-specific
information, is the key to an intelligent guess about whether the
problem is hardware related. Likely hardware problems are values
such as "translation buffer parity error fault", "cache parity
error fault", "control store parity fault", "read data substitute
fault", "microcode not supposed to get here abort". "Read
timeouts" are sometimes caused by software specifying erroneous
I/O space addresses.

See section MACHINE CHECKS - <cpu type> for further information
on specific types of machine -checks, or see below Additional
References for documentation on the cpu-specific microcode
machine check logout. Using the machine check logout
documentation and processor register layouts, decode the machine
check logout.

4. The PC displayed by the SDA SH<:li CRASH command reflects machine
check exception processing rather than the location of the
machine check, and the PSL displayed has been altered by the
machine check exception.

In the stack layout above, the machine check PC is the address of
the instruction whose [attempted] execution resulted in the
machine check exception. This is of particular interest if you
suspect a software-induced machine check. Identify in what
source module the PC is. See section VIRTUAL ADDRESSES. Often
examining instructions around the PC is helpful enough to
eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <machine_check~c>-20;30

5. If you suspect a software problem, decipher the stack of the
access mode that incurred the machine check to trace control
flow. Decode the machine check PSL to get the current mode
field. Use the layout in the section REIATED REFERENCE MATERIAL
or the V4 SDA command EXAMINE/PSL. Then, enter the SDA conunand
SHCM STACK/<current_mode>. See the section STACK PATI'ERNS.

6. Call Field Service about machine checks which seem to be hardware
related.

Hints And Kinks

1. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
MACHINE CHECKS

Page 100
21 May 85

2. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One conunon error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

3. When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process's context and displays
them in response to the SHCM PROCESS/REGISTER command.

4. If you're looking at a dump with more than one machine check
logout on the stack and the newest one doesn't make sense,
examine the earlier ones for a clue about what the problem is.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Section 8.3, Machine
Check Mechanism

VAX/VMS Error Log Utility Reference Manual

VAX-11/750 Self Maintenance Diagnostic Guide booklet, for VAX-11/750
microcode machine check error logout and processor register layout.
Also, VAX-11/750 VAX Maintenance Handbook (pp. 267-269 of the 3/83
edition) for microcode machine check logout and processor registers
and (pp. 239 - 242 of the 3/83 edition) for a discussion of
evalutating the microcode logout. Also, see VMS module
[SYSLOA]MCHECK750.

VAX Architecture Standard, Rev. 7 (DEC Standard 032) p. 12-26, for
VAX-11/730 microcode machine check error logout. Also, see VMS
module [SYSLOA]MCHECK730.

MicroVAX I CPU Technical Description (pp. 2-62 through 2-66 of the
8/84 edition). Also, see VMS module [SYSLOA]MCHECKUVl.

RA630-A CPU Module User's Guide (pages 5-11 through 5-12 of the 4/53
edition). Also, see VMS module [SYSLOA]MCHECKW2.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 101
11 June 85

MACHINE CHECKS - VAX-11/780 AND VAX-11/785

During machine check exceptions, the microcode logs information,
called the microcode machine check logout, on the interrupt stack.
The machine check logout identifies the type of machine check and
includes the contents of relevant cpu registers.

If another machine check occurs before the microcode has serviced the
first, the cpu is halted with a double error halt. You should see
the following halt message printed on the console terminal

?CPU DBLE-ERR HALT

The second error may occur before or during the time when the
microcode writes the machine check logout on the stack; therefore,
you must obtain the type of machine check and register contents from
ID bus temporaries and various internal registers rather than from
the stack. See section CPU HALTS - VAX-11/780 AND VAX-11/785 for
more information.

The microcode machine check logout follows

I
I
I
I
I
I
I
I
I

stack

00000028 I
+-~~~~~~~~~~~~~~~-+\

SUMMARY PARAMETER
CPU ERROR STATUS

TRAPPED MICROPC
VA/VIBA

D REGISTER
TB ERR 0
TB ERR 1

SBI TIMEOUT ADDRESS
PARITY

SBI ERROR

I\
I \
I \
I \
I 28 hex bytes
I I
I I
I I
II
II

growth MACHINE CHECK PC
MACHINE CHECK PSL

I
I

The summary parameter, the first longword of cpu-specific
information, describes the type of machine check. Bytes 0 and 1 of
the summary parameter are stored by the machine check microcode. VMS
stores information into bytes 2 and 3 on certain kinds of errors.
The summary parameter layout follows

Byte 0 Error code (See the table below)
Byte 1 A non-zero value means there was a cpu timeout or cpu

error confirm pending at the time of the machine check
Byte 2 During control store parity errors and "microcode not

supposed to be here" errors, this contains the opcode
of the instruction executing at the time of error

Byte 3 During cache parity errors, this contains the cache
disable flag (l=group 0, 2=group 1)

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 102
11 June 85

Examine the summary parameter on the stack or in the error log entry,
locate its low order byte in the table below, and read the subsection
below on that error for more information. For a description of
general VMS machine check servicing, see section MACHINE CHECKS if
you haven't already. See the VAX-11/780 Maintenance Handbook
reference listed in subsection Additional References for information
on decoding the rest of the microcode machine check logout.

In the table below "CP" refers to memory references explicitly
requested by microcode, and "IB" refers to memory reads generated by
the instruction buffer in the process of prefetching the instruction
stream. In the table below, a "fault" is an error that may be
retriable; an "abort" is an error that is not retriable.

Byte 0

00
02
03
05
OA
oc
OD

. OF
FO
Fl
F2
F3
F5
F6

Summary Parameter Error Code Values

Error Name

CP Read Timeout/Error Confirm Fault
CP Translation Buffer Parity Error Fault
CP Cache Parity Error Fault
CP Read Data Substitute Fault
IB Translation Buffer Parity Error Fault
IB Read Data Substitute Fault
IB Read Timeout/Error Confirm Fault
IB Cache Parity Error Fault
CP Read Timeout/Error Confirm.Abort
Control Store Parity Error Abort
CP Translation Buffer Parity Error Abort
CP Cache Parity Error Abort
CP Read Data Substitute Abort
Microcode not Supposed to Be Here Abort

Read Data Substitute Error

A read data substitute (RDS) error occurs when the processor is
performing a read or an interlocked read on the SBI and the memory
controller returns uncorrected read data. That is, a multiple-bit
error in memory contents occurs which cannot be corrected by the
memory controller's error checking and correction logic. These
errors are never the result of software problems (except for the rare
possibility that a privileged user forces them through manipulation
of the memory controller registers). These errors can be caused by
hardware problems in memory array boards or in the memory controller.

A read data substitute error can be reported through either a machine
check or an interrupt. If the cpu attempts to use uncorrected read
data in instruction execution, a machine check occurs. If
instruction execution alters control flow so that uncorrected read
data in the instruction buffer is unused, an RDS interrupt occurs.
(See section CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11/785 for
information on RDS and other cpu-specific interrupts.)

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 103
11 June 85

In response to an RDS machine check, VMS increments EXE$GL MEMERRS
and logs the read data substitute error in the error log. -The DCL
command SHCM ERROR displays the contents of EXE$GL MEMERRS as MEMORY
errors. The error log entry includes the -memory controller
registers, one of which contains the physical address in error. The
error log entry is type HE, hard memory error. These error log entry.
types are in the V3 SYE display from the /ME qualifier or in the V4
display from ANALyzE/ERRORLOG/INCLUDE==MEMORY. The error log entry
also includes any previously unrecorded errors from all the other
memory controllers on the system.

Whenever VMS discovers an error on a particular memory controller, it
increments a counter, local to SYSLOA780, for that controller. The
counter records the number of corrected read data (CRD) and RDS
errors on that controller during the current fifteen-minute period.
When a particular controller has more than 3 CRD and RDS errors
within a fifteen-minute period, VMS disables CRD interrupts for that
controller for the remainder of the fifteen-minute period.

once a minute, VMS scans all memory controllers for unreported CRD
errors so that (some) errors on controllers with disabled CRD
interrupts can still be logged. If, however, a particular controller
has more than than 6 CRD and RDS errors within fifteen-minute period,
any CRD errors it has during the remainder of the fifteen-minute
period are not logged. This prevents filling the error log with CRD
error entries. Every fifteen minutes all the counters are reset to
zero.

To examine the array of these counters (which is post-indexed by
memory controller nexus number) , type the following SDA conunands
under VMS V4

SDA> EXAM EXE$MCHK ERRCNT
SDA> EXAM @.+10;10-

After logging the memory error, VMS also logs a machine check,
increments EXE$GL MCHKERRS, and determines whether the read data
substitute error is recoverable. Because recovery from a read data
substitute error requires paging in a fresh copy of the virtual page,
recoverability is based on a number of factors: at what IPL the
memory reference was made, whether the error was a fault or an abort,
whether the page has a PFN database entry, whether the page had been
modified, whether the page is global, whether there was I/O in
progress to the page, and whether the instruction is resumable.

If the RDS machine check is recoverable, VMS removes the page from
whatever working set list it is in and places it on the bad page
list. When VMS REis from the machine check exception, the process
pagefaults attempting to execute the instruction that incurred the
RDS error. Pagefault servicing reads in a fresh copy of the virtual
page.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. If

VAX/VMS Troubleshooting *INTERNAL USE {)NLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 104
11 June 85

the machine check is nonrecoverable and occurred in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck. In all cases, the
microcode machine check logout is recorded in the error log entry.

To learn more about the read data substitute error, examine the
memory error log entry. Also, if you're looking at a dump, you can
examine the contents of the VA/VIBA register in the stack to get the
approximate virtual address of the memory error. Then follow the
directions below in subsection Read Timeout or Error Confirm Error to
translate that virtual address into a physical address.

In the case of a double error halt, a second machine check occurs
before the first is serviced. Thus, there will be no error log
entries for the two errors. However, if one of the machine checks is
a read data substitute error, the physical address in error may still
be in the memory controller register (Configuration Register C for a
MS780C controller, Configuration Register C or D for a MS780E
controller) at the time of the halt.

Translation Buffer Parity Error

The translation buffer is a two-way set associative cache of page
table entries. The translation buffer on a VAX-11/780 contains 128
entries, half of which are reserved for system space page table
entries and half for process space page table entries. A VAX-11/785
translation buffer has 512 entries. Each of the entries contains a
tag field with address, parity, protection, modify status, and
validity information, and a data field with a page frame number and
parity information.

When a virtual address reference from a VAX-11/780 is translated to a
physical address, bits 9-13 of the virtual address are used to index
entries in the two groups of the translation buffer. Bit 31 selects
for system space page table entry or process space. Bits 14-30 (the
"tag field") of the page table entries whose contents are stored at
those entries are compared to those of the virtual address being
translated to determine if there is a translation buffer "hit" or
"miss". On a VAX-11/785, bits 9-15 of the virtual address are index
field, and bits 16-30 of the address are tag field.

on a hit, the page frame number and protection information are
retrieved from the cache; on a miss, the microcode performs the
address translation and replaces one of the two entries with the
contents of the page table entry it accessed from memory. The system
cannot run with both groups of translation buffer disabled. Although
~t is possible to disable a translation buffer group through console
conunands, it is not possible to disable it from software running on
the VAX. Since translation buffer parity failures are generally
random, disabling half of the cache from the console is not a useful
workaround.

A translation buffer parity error occurs when the processor is

VAX/VMS Troubleshooting *INTERNAL USEDNLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 105
11 June 85

translating a virtual address to resolve a virtual memory reference
and a parity error occurs on data read out of the translation buffer
or on the tag field. These errors are never the result of software
problems and can only be caused by hardware problems.

When this type of machine check occurs, VMS invalidates all entries
in the translation buffer, logs the translation buffer parity error
in the error log (with type MC, machine check), and increments
EXE$GL MCHKERRS. VMS then determines whether the error is
recoverable. Recoverability is based on whether the error is an
abort or a fault, and, if a fault, whether the instruction is
resumable.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. If
the machine check is nonrecoverable and occured in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck. On a MACHINECHK
bugcheck, the microcode machine check logout is visible on the
interrupt stack. In all cases, the microcode machine check logout is
recorded in the error log entry.

Examine the contents of the TB ERR1 register on the stack or in the
error log entry. Bit 8 set means that there has been a parity error.
If any of bits 9-14 are set, there has been a tag parity error. Most
of the tag parity logic is in the CAM board (M8220 on a VAX-11/780,
M7462 on a VAX-11/785). If any of bits 15-20 are set, there has been
a data parity error. Most of the data parity logic is in the TBM
board (M8222 on a VAX-11/780, M7464 on a VAX-11/785).

Cache Parity Error

Cache is a two-way set associative buffer for the storage of memory
contents most likely to be accessed next. Its access time is
considerably shorter than that of main memory.. Each of the two
groups of cache memory locations contains 512 entries on a
VAX-11/780. On a VAX-11/785, each group contains 2048 entries. Each
of the entries contains a tag field with address, parity, and
validity information and a data field with eight bytes of data and
eight bits of parity.

When a VAX-11;780 cpu references memory, bits 3-11 (the "index
field") of the 30-bit physical address are used to index entries in
the two groups of cache. Bits 12-29 (the "tag field") of the
physical addresses whose contents are stored at those entries are
compared to those of the address being referenced to determine
whether this is a cache "hit" or a cache "miss". On a VAX-11/785,
bits 3-13 of the physical address are index field, and bits 14-29 of
the address are tag field.

On a hit, the contents of the physical address are retrieved from
cache; on a miss, one of the two entries is replaced with the
contents of the quadword containing the physical address being

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 106
11 June 85

referenced by the cpu. Each group of cache can be disabled
independently, and the system can run with both groups of cache
disabled.

A cache parity error occurs when the processor is performing a read
memory reference and a parity error is detected on either data read
out of the cache or on the tag field. These errors are never the
result of software problems (except for the rare possibility that a
privileged user forces them through manipulation of processor
registers). These errors can be caused by hardware problems.

When this type of machine check occurs, VMS determines whether there
have been three cache parity errors within the last 100 milleseconds.
If not, VMS restores the cache to its previous state of enables, logs
the cache parity error in the error log (with type MC, machine
check), increments EXE$GL MCHKERRS, and determines whether the error
is recoverable. Recoverability is based on whether the error is an
abort or a fault and, if a fault, whether the instruction is
resumable. If there have been three cache parity errors within the
last 100 milleseconds, VMS determines which cache group is currently
in error, forces misses in both groups to cause replacement of all
entries, and enables replacements only in the cache group which
didn't have the last error. This means that· the last cache group· to
have an error is disabled, even if previous errors occurred in the
other cache group. VMS records in byte 3 of the machine check
summary longword which group of cache, if either, it disabled.

Examine the contents of the PARITY register on the stack or in the
error log entry. Bit 15 set means that there has been a parity
error. If any of bits 6-13 is clear (note clear, not set!), there
has been a data parity error. Most of the cache parity logic is in
the CDM board (M8221 on a VAX-11/780, M7463 on a VAX-11/785). If any
of bits 0-5 is clear(!), there has been a tag parity error. Most of
the tag parity logic is in the CAM board (M8220 on a VAX-11/780,
M7462 on a VAX-11/785).

Control Store Parity Error

The basic microprogram of the VAX-11/780 is contained in a 4k 99-bit
PROM control store (PCS). The 99-bit control word contains 96 data
bits and 3 parity bits. The system also contains a 2K 99-bit
writable diagnostic control store (WCS) used for microdiagnostics and
updates to the microprogram in PCS and, optionally, another 2K 99-bit
writable control store for G and H floating point support and/or
customer-written microcode. When the system is powered up, the
console subsystem loads the writable control store from a file on the
console floppy. Micropc addresses between 0 and FFF select
microwords in PCS; micropc addresses between 1000 and 17FF select
microwords in WCS, and addresses 1800-lFFF select the optional
writable control store. G and H floating point support is between
1800 and lBFF, if it is present.

VAX/VMS Troubleshooting *INTERNAL USE QNLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 107
11 June 85

The basic microprogram of the VAX-11/785 is contained in a 512
microword PROM control store (PCS) and a 7.SK microword writable
control store (WCS).

Parity is checked on each microword read from PCS or wcs. A control
store parity error occurs when a parity error is detected on a
microword from PCS or WCS. These errors are never the result of
software problems and can only be caused by hardware problems in the
microstore boards.

When this type of machine check occurs, VMS records the opcode of the
instruction being executed in byte 2 of the machine check summary
longword.

VMS logs the control store parity error in the error log (with type
MC, machine check) , increments EXE$GL MCHKERRS, and determines
whether to bugcheck based on the access mode in which the error
occurred. If the control store parity error machine check occurred
in either of the outer modes, VMS signals a machine check exception
to that mode. If the control store parity error machine check
occurred in kernel or exec mode, VMS signals a fatal MACHINECHK
bugcheck. On a MACHINECHK bugcheck, the microcode machine check
logout is visible on the stack. In all cases, the microcode machine
check logout is recorded in the error log entry.

Examine the TRAPPED MICROPC and CPU ERROR STA'IUS registers on the
stack or in the error log entry. Bit 15 in the CPU Error Status
register indicates that there has been a control store parity error.
Bits 12-14 indicate which group is in error. The parity checking
logic is part of the PCS board; this means that wcs parity errors can
result from hardware problems on the PCS board.

If you see this error, you might power down the LSI to cause the WCS
to be reloaded. Open the cpu cabinet and locate the LSI in the lower
left hand corner. Its leftmost switch, labeled DC ON/OFF is the
power switch. Toggling the switch will powerfail the LSI and the
VAX-11/780 or VAX-11/785. If the system still incurs control store
parity errors after wcs has been reloaded, you might try replacing
the console floppy and reloading WCS from the new floppy in case a
floppy disk error has resulted in alterations to wcsxxx.PAT.

Microcode Not Supposed To Be Here

A microcode not supposed to be here error occurs when microcode
detects that it has arrived at an illegal microaddress. These errors
are never the result of software problems. These errors can be
caused by various hardware problems as well as simply a bad copy of
wcs from the floppy.

When this type of machine check occurs, VMS records the opcode of the
instruction being executed in byte 2 of the machine check summary
longword. The opcode might be useful information if it is the same

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 108
11 June 85

opcode in most or all of these exceptions on a system incurring many
microcode not supposed to be here machine checks.

VMS then logs the microcode not supposed to be here error in the
error log (with type MC, machine check), increments EXE$GL MCHKERRS,
and determines whether to bugcheck based on the access mode-in which
the error occurred. If the machine check is nonrecoverable and
occurred in either of the outer modes, VMS signals a machine check
exception to that mode. If the machine check is nonrecoverable and
occured in kernel or exec mode, VMS signals a fatal MACHINECHK
bugcheck. On a MACHINECHK bugcheck, the microcode machine check
logout is visible on the stack. In all cases, the microcode machine
check logout is recorded in the error log entry.

If you see this error, you might power down the LSI to cause the WCS
to be reloaded. Open the cpu cabinet and locate the LSI is on the
lower left hand corner. Its leftmost switch, labeled DC ON/OFF is
the power switch. Toggling the switch will powerfail the LSI and the
VAX-11/780 or VAX-11/785. See if the system will run without machine
checks for a while before reloading any customer-written microcode.
If the the system still incurs these errors after wcs has been
reloaded, you might try replacing the console floppy and reloading
wcs in case a floppy disk error has resulted in alterations · to
wcsxxx.PAT. Locate a known good console floppy, copy its wcsxxx.PAT
file to the console floppy, shut down the system, power it off, and
power it back on.

If the problem persists, there may be problems in the PCS or WCS
boards, the microsequencer logic, the clock board, the CIB board, or
the LSI subsystem.

Read Timeout Or Error Confirm Error

A read timeout error occurs when the cpu is performing a read or
interlocked read on the SBI and either there is no response to the
cpu's command within 512 SBI cycles, the cpu bus control logic could
not gain access to the SBI, or the addressed nexus responded with
BUSY for 512 cycles. An SBI error confirm occurs when the cpu is
performing a read or interlocked read on the SBI, and the target
nexus responds with an error confirm because the command is in error.
Both read timeouts and error confirms can occur as the result of data
path action or instruction buffer prefetch.

These errors can be caused by software problems, for example, word
references to MASSBUS adapter or UNIBUS adapter registers, longword
references to UNIBUS address space, references to nonexistent
physical memory, refences to nonexistent adapter register space, or
page table corruption. A read timeout can also be caused by a
program which issues an incorrect $CRMPSC system service that does
PFN-mapping to a nonexistent PFN and which then references the
section. Hardware problems that can cause these errors include
problems in nexus, memory controllers, and the translation buffer.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 109
11 June 85

When this type of machine check occurs, VMS logs the error in the
error log (with type MC, machine check) and increments
EXE$GL MCHKERRS. It then tests whether the PC of the machine check
and vTrtual address referenced match particular instructions in the
UBA interrupt service routines that access the BRRVR registers.
These instructions generate UNIBUS bus grants and obtain the vector
of the device making the bus request. A timeout on one of these
instructions is dismissed, to minimize the possibility that a device
hung in interrupt sequence or a lost UNIBUS bus grant causes a system
crash.

If the machine check does not match the UBA interrupt service routine
test, VMS determines whether this is the second timeout or error
confirm within 10 milliseconds. If there have been two timeouts or
error confirms within 10 milliseconds, if the error is an abort, or
if the instruction is not resumable, VMS determines whether to
bugcheck based on the access mode in which the error occurred. If
the error occurred in supervisor or user mode, VMS signals a machine
check exception to that access mode. If the error occurred in kernel
or exec mode, VMS signals a fatal MACHINECHK bugcheck.

Examine the SBI Error Register on the stack or in the error log entry
to distinguish between read timeout and error confirm errors. Bit 6
is set if an instruction buffer requested cycle timed out. Bit 12 is
set if a cpu requested cycle timed out. Bit 3 of the SBI Error
Register is set if an instruction buffer requested cycle received an
error confirm to a command. Bit 8 of the register is set if a cpu
requested cycle received an error confirm to a command.

Read Timeout Error

If a timeout occurred, examine the contents of the SBI Timeout
Address (SBITA) on the stack or in the error log entry to determine
the address which caused the timeout. This address may give some
indication of the cause of the problem. The SBITA contents are a
physical SBI address, the address of a longword, and must be shifted
two bits to the left to get the physical address in byte form. Bits
31 and 30 of the SBITA indicate the access mode of the request. Bit
29 is the protection check bit. Bit 27 of the SBITA set to 1
indicates an I/O space address.

Physical addresses below 20000000 (byte address) are memory
addresses. The address range above that is reserved for nexus
register space and UNIBUS space. If the converted SBITA address is
in I/O space, converting it to a particular nexus address may be
~elpful.

The space for nexus 1 registers begins at 20002000; the space for
nexus 2, at 20004000; the space for nexus 3, 20006000; etc. There
are four address ranges reserved for UNIBUS space: the first UNIBUS
space begins at 20100000; the second, at 20140000; the third, at
20180000; and the fourth, at 201COOOO.

VAX;VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 110
11 June 85

To determine what nexus are present on the running system, type the
following commands.

$ MC SYSGEN
SYSGEN> SHCM /ADAPTER
SYSGEN> EXIT

SYSGEN displays nexus numbers as decimal numbers.

To determine what nexus are present on a system represented by a
crash dump, examine and interpret the contents of the byte array
whose address is in EXE$GL CONFREG. This array contains one byte of
adapter type code, indexed by nexus number. The adapter type codes
are defined by the SYS$LIBRARY:LIB.MLB macro $NDTDEF. Display the
adapter type codes and the array contents with the following
commands.

SDA> CTRL/Y
$SPAWN
$ LIBR/OUT-TT:jEXTRACT-$NDTDEF SYS$LIBRARY:LIB,IMACRO
$LOGOUT
$ CONTINUE
SDA> EXAM @EXE$GL _ CONFREG ;@EXE$GL _ NUMNEXUS

Error Confirm Error

If an error confirm occurred, examine the longword VA;VIBA on the
stack or in the error log entry to determine the virtual address
reference which caused the error confirm.

The VA, the Virtual Address register, contains the address of the
memory data referenced by the cpu which is to be read or written into
the cpu. The VA generally contains a virtual address which must be
translated to physical.

The VIBA, Virtual Instruction Buffer Address, contains the address of
the instruction stream data which is to be loaded into the
instruction buffer.

If you are analyzing a crash dump, you can translate the VA;VIBA
contents on the stack to a physical address. If the VA;VIBA contents
are a system space address, type the following SDA conunand to display
and format the PTE corresponding to that address

SDA> SHC»l PAGE/SYSTEM <virtual_address>;200

V3 SDA displays only entire process page tables. If the faulting
virtual address is in process space, first convert the faulting
virtual address to a virtual page number by issuing the following DCL
conunands>

VAX/VMS Troubleshooting *INTERNAL USE -ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

$ VPN= (%X<virtual address> .AND. %X3FFFFEOO) / 512
I SHCM SYMBOL VPN -

Page 111
11 June 85

Then select the SDA symbol POBR or PlBR, based on whether the address
is in PO or Pl space. Issue the SDA conunand

SDA> EXAM @<PxBR> + (4*<VPN>)

V4 SDA can display a range of process PTEs. Type the command

SDA> SHO'.i PROC/PAGE <virtual_address>;200.

The low 21 bits of the page table entry are the page frame number
(PFN). Multiply the PFN by 200 hex (bytes per page) and add the low
order 9 bits of the virtual address. Type the following conunands.

SDA> CTRL/Y'
$SPAWN
$ BOFF = (%X<virtual address> .AND. %X000001FF)
$LOGOUT -
~ CONTINUE
SDA> DEF PHYS ADDRESS • <pfn>*200 + <BOFF>
SDA> EVAL PHYS ADDRESS

Hints And Kinks

1. If you are looking at a dump with more than one machine check
logout on the stack and the newest one makes no sense, examine
the earlier ones for a clue about what the problem is.

2. If a machine check occurs during the execution of kernel mode
code which has protected itself by declaring a "machine check
recovery block", VMS dismisses the exception without logging an
error or incrementing any counters. See the VAX/VMS Internals
and Data Structures reference below for more information.

3. The console block storage medium has an RT-11 file structure.
The RT-11 file structure implements three different record
formats: stream ASCII, formatted binary, and fixed-length
record. under VMS you use the V3 FLX utility or the V4 EXCHANGE
utility to transfer files to and from the console.

Both FLX and EXCHANGE select a default record transfer mode based
on file extension type. For example, extensions of OBJ and BIN
default as EXCHANGE /RECORD-BINARY and FLX /FB transfer modes.

Occasionally the default based on file extension type is
inconsistent with the file's record format. In particular,
CI780.BIN, the CI microcode; WCSxxx.PAT, the VAX-11/780
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be
copied correctly unless you override the default transfer mode.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MACHINE CHECKS - VAX-11/780 AND VAX-11/785

Page 112
11 June 85

If you are not sure what the transfer mode should be, you can use
the EXCHANGE qualifier /RECORD FORMAT=STRF.AM or the FLX switch
/FA for all text files (e.g. coniiland files). Use the EXCHANGE
qualifier /RECORD_FORMAT=FIXED (or /TRANSFER_MODE-BLOCK) or the
FLX switch /IM for all other files (binary files such as images,
microcode files, patch files). The VMS console contains no
formatted binary files, so you will never want
/RECORD_FORMAT=BINARY or FLX's /FB.

Additional References

VAX-11/780 VAX Maintenance Handbook (pp. 6-27 through 6-30 of the
12/78 edition, pp. 159-160 of the 8/82 edition), for VAX-11/780
microcode machine check error logout. The processor registers
displayed as part of the stack are also documented there (pp. 3-26
through 3-48 in 12/78 edition, pp. 133-154 of the 8/82 edition).

VAX-11/780 VAX Ma·intenance Handbook (pp. 197-199 of the 8/82
edition) for a description of MS780C memory controller registers

VAX-11/780 Data Path Manual, Chapter 6, Machine Check
Abort/Fault/Halt.

VAX-11/780 TB/Cache/SB! Control Technical Description

V3 VAX/VMS Internals and Data Structures, Section 8.3.4, Machine
Check Recovery Blocks

VMS module [SYSLOA]MCHECK780.

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
PGFIPLHI BUGCHECK

Page 113
26 June as

PGFIPLHI BUGCHECK

The PGFIPLHI bugcheck is signaled by MMG$PAGEFAULT, the exception
service routine for translation not valid faults (pagefaults). After
saving RS and R4 on the stack, MMG$PAGEFAULT tests whether the
pagefaul t occurred either on the interrupt stack or at an IPL above·
2. If either is true, MMG$PAGEFAULT signals this fatal bugcheck.

The PC displayed by the SDA SH~ CRASH conunand reflects the location
of the bugcheck rather than the location of the pagefault. The
location of the the pagefault can be obtained as described below.

When this bugcheck is signaled, the translation not valid exception
microcode has recorded on the stack the exception PC and PSL, the
faulting virtual address, and a longword with more information about
the pagefault.

Sometimes this bugcheck is due to a software fault in a rarely-taken
error path which erroneously touches nonvalid pages at high ipl.
Sometimes this bugcheck occurs when system software uses a data
structure field containing an address which has been corrupted by
some earlier problem.

I
I

SP:

stack growth

xxxxxxxx
xxxxxxxx
OOOOOOOx
xxxxxxxx
xxxxxxxx
xxxxxxxx

saved R4
saved RS
exception parameter
faulting address
exception PC
exception PSL

xxxxxxxx older •••
xxxxxxxx ... stack contents

1. Using the SP, locate the pagefault exception information.

2. The exception parameter contains 2 bits with additional
information about the pagefault. Bit 1 set to 1 means that the
fault occurred during the reference to the process page table
associated with the faulting virtual address. Bit 2 set to 1
means that the intended access was a modify or write. Bit 2
equal to 0 means the program's intended access was a read.

3. The faulting address is a location in the page whose access
caused the pagefault. Identify in what source module it is or
what data structure. See section VIRTUAL ADDRESSES. Use bit 1
of the exception parameter to determine whether the PTE for this
address is invalid or whether the page that maps the page table
containing the PTE is invalid.

VAX,IVMS Troubleshooting *INTERNAL USE ONLY*
PGFIPLHI BUGCHECK

Page 114
26 June 85

4. Sometimes additional useful information can be obtained by
examining the invalid PTE. If the faulting virtual address is in
system space, SDA formats the PTE if you issue the conunand

SDA> SHai PAGE/SYSTEM <faulting_address>;200

V3 SDA displays only entire process page tables. If the faulting
virtual address is in process space, first convert the faulting
virtual address to a virtual page number by issuing the following
DCL commands

$VPN= (%X<faulting address> .AND. %X3FFFFE00) / 512
~ SHai SYMBOL VPN -

Then select the SDA symbol POBR or PlBR, based on whether the
address is in PO or Pl space. Issue the SDA command

SDA> EXAM @<PxBR> + (4*<VPN>)

See the Internals and Data Structure Manual reference below for
information to enable you to decode.the PTE.

V4 SDA can display a range of process PTEs. Type the conunand

SDA> SHCJ41 PROC/PAGE <faulting_address>;200.

5. The exception pc is the instruction whose attempted execution
resulted in the pagefault. Identify in what source module the PC
is. See section VIRTUAL ADDRESSES. Often examining instructions
around the PC is helpful enough to eliminate a microfiche search.
Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception_pc>-20;30

6. Decipher the current stack to trace control flow. See section
STACK PATTERNS.

Hints And Kinks

1. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

2. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
PGFIPLHI BUGCHECK

boundary.

Page 115
26 June 85

One conunon error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Section 15.1.2,
Initial Pager Action, and Chapter 14, Memory Management Data
Structures.

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 5, Memory Management

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
REIATED REFERENCE MATERIAL

REIATED REFERENCE MATERIAL

Call Frame Layout

CONDITION HANDLER ADDRESS I
~~~~~~~~~~-~~-~~~~~-! 

REGISTER MASK/CONTROL I SAVED PSW I 
I 

SAVED AP I 
SAVED FP I 
SAVED PC I 

SAVED REGISTERS SPECIFIED BY MASK •• • I.Oil NUMBERS I 
I 

TO HIGHER REGISTER NUMBERS I 

(0 TO 3 BYTES AS SPECIFIED BY SPA VALUE) 

The register mask/control field is broken down as follows 
3 3 2 2 2 1 
1 0 9 8 7 6 

ISPAISIOI REGISTER MASK <11:0>1 

___ SET IF CALLS; CLEARED IF CALLG 

Page 116 
7 May 84 

0-3 BYTES REQUIRED FOR LONGWORD STACK ALIGNMENT ----

PSL Layout 

3 3 2 2 2 2 2 2 2 1 1 
1 0 7 6 5 4 3 2 0 6 5 0 

I I. IMBZ I I I I/I IPL I PSW 

A A A 

I I I I ! __ PREVIOUS ACCESS MODE 
I I I I CURRENT ACCESS MODE 
I I I I INTERRUPT STACK 
I I I FIRST PART DONE 
I I TRACE FAULT PENDING 
I COMPATIBILITY MODE 

Additional References 

v"AX Architure Standard (DEC Standard 032) or VAX-11 Architecture 
Reference Manual, Section 4.6 Procedure Call Instructions and 
Section 6.2 Processor Status 



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESOURCE WAITS 

RESOURCE WAITS 

Page 117 
12 August 85 

A process in a resource wait is waiting to allocate some unavailable 
resource or to acquire ownership of a mutex. In theory, a process is 
placed in this scheduling state for a short time, until the resource 
becomes available. Occasionally, however, because of some system 
problem, a process remains in this state for a long enough time that 
the user notices the lack of system response. 

When a process is placed into any wait state, its context is saved 
such that when it is placed back into execution, it repeats the code 
thread which resulted in its wait. The PC and PSL saved in its 
process header determine what code runs, at what access mode, and at 
what IPL. For example, the saved PC for a process in PFW (pagefault 
wait) is the address of the beginning of the instruction that 
incurred the pagefault. When the process is placed back into 
execution, the instruction is repeated. If all pages referenced by 
the instruction are now valid, the instruction completes. If a page 
referenced by the instruction is not valid, the process is placed 
back into PFW with the same saved PC. 

A process placed into resource wait becomes computable (or computable 
outswapped) whenever an AST is queued to it and/or whenever system 
code reports as available the resource the process is waiting for. 
An enqueued AST cannot be delivered if the process is waiting at IPL 
2 or if the process is waiting in a more privileged access mode than 
that of the AST. (Also, an enqueued normal AST cannot be delivered 
if AST delivery to that mode has been disabled or if there is already 
an AST active in that mode.) 

Careful specification of the wait PC and PSL simplifies delivery of 
ASTs to a process whose main thread of execution has just placed it 
into a wait: after the AST is delivered (if the wait access mode and 
IPL pennit), the REI that dismisses the AST interrupt results in 
execution at the wait PC with the wait PSL. If the process should 
still wait, it will, by executing the same code which caused it to 
wait previously. 

Because processes are frequently placed into resource wait in kernel 
mode, sometimes at IPL 0 and sometimes at IPL 2, user attempts to 
type CTRL/C, CTRL/Y, or CTRL/T often are in vain. CTRL/C, CTRL/Y, 
and CTRL/T are implemented with supervisor or user mode ASTs; an 
outer mode AST cannot be delivered to a process waiting in kernel 
mode. Since SDA uses special kernel ASTs to examine the context of a 
process on the running system, you cannot learn much with SDA about a 
process waiting at IPL 2. (This is not an issue with a crashdump, 
only the running system.) Furthermore, since process deletion is 
implemented with ASTs, it is impossible to delete a process waiting 
at IPL 2. 

If you are dealing with a resource wait process 'on a running system, 
ideally you would like to learn enough about the problem to take 
whatever action might be possible to satisfy the process's resource 
wait. However, you might have to force a crash to learn the reason 



VAX/VMS Troubleshooting *INTERNAL USE DNLY* 
RESOURCE WAITS 

Page 118 
12 August 85 

for the resource wait. Even if you can identify the reason for the 
wait, you may be unable to do anything to satisfy it without shutting 
down and rebooting the system. 

There should be fewer IPL 2 MWAITS under V4 than under V3. If you 
encounter one, you should determine whether it is a known problem 
before trying to take the process out of its wait using any methods 
indicated below. If the problem is not a known one, it might be 
better to crash the system so that the problem can be investigated. 

For a process in MWAIT, or resource wait, the software PCB field 
PCB$L EFWM contains either the system space address of a mutex or a 
small- positive integer which is a system resource . number. 
Occasionally, this piece of information is sufficient for you to make 
an intelligent guess about the problem; however, you often must also 
know the process's wait PC and other general registers, and you may 
need to examine its kernel stack. 

1. 

2. 

First, if you're looking at the running system, follow the 
directions in section ACCESSING PROCESS CONTEXT WITH SDA to 
examine the process's PCB and, possibly, process header and 
kernel stack. If you're looking at a dump, use the SDA command 
SHCM PROCESS/INDEX•<n>. 

If PCB$L EFWM contains a system space address, 
directions in subsection Mutex Wait below. 

follow the 

3. If PCB$L EEWM contains a small integer, use the table below to 
translate that integer to a resource name and follow the 
directions in the appropriate subsection below. Under V4, the 
largest resource number defined is hex E. Under V3, it is hex c. 
If PCB$L EEWM contains a number larger than the largest defined 
resource- number, then it has been corrupted. The Displayed Name 
column indicates the process state name used by V4 SHCM SYSTEM 
and SDA SHCM SUMMARY to describe that particular MWAIT state. 

RESOURCE NAME DISPIAYED NAME HEX VALUE 
SUBSECTION NAME 

RSN$ AS'IWAIT RWAST 1 
RSN$MA!LBOX RWMBX 2 
RSN$-NPDYNMEM RWNPG 3 
RSN$-PGFILE RWPFF 4 
RSN$-PGDYNMEM RWPAG 5 
RSN$-BRKTHRU RWBRK 6 
RSN$-IACLOCK RWIMG 7 
RSN$-JQUOTA RWQUO 8 
RSN$-LOCKID RWLCK 9 
RSN$-SWPFILE RWSWP A 
RSN$-MPLEMPTY RWMPE B 
RSN$-MPWBUSY RWMPB c 
RSN$-SCS RWSCS D 
RSN(~ CLUSTRAN RWCLU E 



VAX/VMS Troubleshooting *INTERNAL USE QNLY* 
RESOURCE WAITS 

Page 119 
12 August 85 

Mutex Wait 

If the process is waiting to acquire a mutex and continues to be in 
that state for more than ten minutes, it is quite possible that the 
process's state will not change, that something is wrong with the 
system. In such a case, probably the best thing to do is force a 
system crash in order to find out what process(es) own(s) the mutex 
and why it has not been released. See section 7.2.3 in the V3 
Systems and Operations Guide for instructions on forcing a crash. 

There is no simple way to determine which process(es) currently 
own(s) the mutex. The mutex data structure specifies only how many 
owner processes there are, and PCB$W MTXCNT specifies only how many 
mutexes that particular process owns. Which mutexes a process owns 
can only be inferred from following the thread of execution on its 
kernel stack. A well-behaved process does not leave kernel mode or 
lower IPL below 2 until it releases all mutexes it owns. 

1. First, examine the address pointed to by PCB$L EFWM, and confirm 
that it is a mutex and that its owner count-indicates at least 
one owner. The SDA EXAMINE command . displays any known symbol 
name associated with that address. If SDA does not display a 
symbol name, the address may be that of the mutex associated with 
each line printer UCB. Use the SHC1ti DEVICE LP conunand to get the 
addresses of the line printer UCBs. See the V3 VAX/VMS Internals 
and Data Structure Manual, Section 2.3, for a list of V3 mutexes. 
A list of V4 mutex names follows: 

MUTEX NAME 

LNM$AL MUTEX 
IOC$GL-MUTEX 
EXE$GL-CEBMTX 
EXE$GL-PGDYNMTX 
EXE$GL-GSDMTX 
EXE$GL-SHMGSMTX 
EXE$GL-SHMMBMTX 
EXE$GL-ENQMTX 
EXE$GL-ACLMTX 
CIA$GL-MUTEX 
EXE$GL-KFIMTX 
UCB$L _LP_ MUTEX 

DATA.STRUCTURE(S) 

Logical Name Tables 
I/O Data Base 
Common Event Block List 
Paged Dynamic Memory 
Global Section Descriptor List 
Shared Memory Global Section Descriptor List 
Shared Memory Mailbox Descriptor Table 
Enqueue/Dequeue Tables (unused) 
Access Control Lists 
CIA Queues of Suspected and Known Intruders 
Known File Table (unused) 
Line Printer Unit Control Block, 1 per UCB 

A mutex data structure is one longword, with the owner count in 
the low order word. A count of -1 (FFFF) indicates no owners; a 
count of 0, one owner; etc. The high word has 1 bit defined, 
MTX$VWRT, which indicates that some process has requested write 
ownerihip of the mutex. If PCB$L EFWM is not the address of a 
mutex, it has been corrupted. II you are looking at the running 
system and you find that the owner count of the mutex is FFFF, 
see if the MWAIT process is still in MWAIT. The process should 
not remain in MWAIT once all owners release the mutex. 



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESOURCE WAITS 

Page 120 
12 August 85 

2. If the mutex is still owned, look through all the processes on 
the system, setting SDA process index to each in turn, checking 
for PCB$W_MTXQ\tT non-zero. 

3. Each process you find that owns a mutex should still be in kernel 
mode at IPL 2. If you are looking at a dump, you should be able 
to decipher the process's kernel stack, using sections STACK 
PATTERNS - KERNEL MODE STACK and VIRTUAL ADDRESSES wherever 
necessary. Following the kernel thread of execution, determine 
whether the process owns the mutex for which the MWAIT process is 
waiting. When you find the mutex owner, try to determine why it 
hasn't released the mutex and what's happening in its process 
context. 

A process with PCB$W MTXQ\tT non-zero which is not in kernel mode 
indicates a problem, generally software. Try to find out from 
the user what image ( s) the process was running, whether there 
were error messages, and any other background information that 
might be helpful. In such a case, try to reproduce the problem 
in the simplest way, crash the system, and report the problem 
with background information, the dump, and the console output. 

RWAST Resource Wait 

RSN$ AS'IWAIT is a general purpose resource wait used primarily when 
the -wait is expected to be satisfied by the delivery and/or 
enqueueing of an AST to the process. That is, there is no "real" 
system wide resource AS'IWAIT, although there are places in the system 
where RSN$_AS'IWAIT is reported available. 

One use of AS'IWAIT is in EXE$QIO and the routines it calls to do 
quota checking, EXE$SNGLEQUOTA, EXE$BUFQUOPRC, etc. EXE$QIO uses 
these routines to check whether a process is allowed any more 
outstanding direct or buffered I/O requests; driver-specified FDT 
routines may also use these routines to see if a process has 
sufficient byte count quota for a buffered I/O request. When the 
process can have, for example, no more outstanding direct I/O 
requests, EXE$SNGLEQUOTA puts the process into RSN$ AS'IWAIT wait 
state. The process leaves the wait state whenever an AST is queued 
to it. The process is placed back into execution again at 
EXE$SNGLEQUOTA, which repeats its test for whether the process can 
issue another direct I/O request. In this particular AS'IWAIT case, 
when IOC$IOPOST post-processes a direct I/O request for this process, 
IOC$IOPOST increments the count of direct I/O requests that the 
process can issue and queues a special kernel AST to the process to 
do process context post-processing. The AST enqueueing results in 
making the process computable; EXE$SNGLEQUOTA repeats the test for 
whether the process can issue another direct I/O request, and this 
time the process can. 

Similarly, FDT routines call EXE$BUFFRQUOTA to test for sufficient 



VAX/VMS Troubleshooting *INTERNAL USE .oNLY* 
RESOURCE WAITS 

Page 121 
12 August 85 

buffered I/O byte count quota. If the process has insufficient 
buffered I/O byte count quota, it may wait in RSN$ AS'IWAIT wait state 
(depending on the state of the process resource wait flag). When 
IOC$IOPOST post-processes a buffered I/O request for the process, it 
returns buffered I/O byte count quota and queues a special kernel AST 
to the process to do process context post-processing. The AST 
enqueueing results in making the process computable; EXE$BUFFRQUOTA 
repeats the test for whether the process has sufficient buffered I/O 
byte count, and this time the process may. 

The byte count example above, though, is somewhat misleading in that 
buffered I/O byte count quota is a quota pooled among all the 
processes in a job tree. The enqueueing of an AST to one subprocess 
does not cause another subprocess in that job to become computable. 
Hence, approximately once a second, RSN$ AS'IWAIT is declared 
available for all processes in the system waiting on it. 

RSN$ AS'IWAIT is also used by EXE$DASSGN to wait for all the process's 
outstanding I/O on a channel to complete. It is possible for a 
process to be hung in RSN$ AS'IWAIT when an I/0 request is lost, when 
a driver fails to complete-an I/O request. 

Another V4 use of RSN$ AS'IWAIT is forcing a. process about to ·be 
deleted or suspended to wait until outstanding Files-11 XQP activity 
completes. · 

In order to find out what a process in AS'IWAIT is really waiting for, 
you need to know the PC at which the process is waiting and possibly 
the contents of other general registers and the process's kernel 
stack. 

1. One common RSN$ AS'IWAIT occurs in the quota checking routines 
used by driver FDT routines, EXE$SNGLEQUOTA, EXE$BUFFRQUOTA, 
EXE$BUFQUOPRC, and EXE$MULTIQUOTA. First, check whether the 
process is waiting in that code by comparing its PC to the result 
of the following SDA command. 

SDA> EVAL EXE$MULTIQUOTA+32 

2. If the process's wait PC is the address of EXE$MULTIQUOTA + 32, 
then R2 contains the address of an insufficient process quota. 
This quota field could be in the PCB or the JIB. If necessary, 
re-format the PCB and JIB using the method in ACCESSING PROCESS 
CONTEXT WITH ONLINE SDA to determine what resource the process is 
waiting for. In many cases the process is waiting at IPL 2 and 
thus cannot be deleted. If the process is part of a 
multi-process job and the resource is one pooled among the job's 
processes (that is, a quota described by the JIB) , you may be 
able to take the process out of its wait by deleting another 
process in the job. 

If the process cannot be deleted and deleting other processes in 
the job doesn't work or is not possible, another possibility is 
to alter the field containing the quota with DELTA and then issue 



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESOURCE WAITS 

Page 122 
12 August 85 

the DCL conunand STOP/ID. The desired effect is to increase the 
quota so that the process can complete whatever service it is 
requesting, queue an AST to the process to change its state to 
COM(O), and delete it before it goes into MWAIT again. This 
risks crashing the system and should be done only as a last 
resort. First, issue a SHCM SUMMARY SDA conunand to get the PID 
(Internal PID, under V4) of your own process for use in the DELTA 
deposit conunand below. Then, from an account with CMKRNL and 
WORLD privileges, type the following conunands. 

$ ! The combination of l;M and a pid in the deposit command 
$ ! "enables" kernel mode operation and deposits. 
$ RUN SYS$LIBRARY:DELTA.EXE 
DELTA Vx.y 
l;M<cr> 
00000001 
[W !issue this if quota field is word 
<pid>:<A(quota field)>/xxxxxxxx yyyyyyyy<cr> 
EXIT<cr> 
~ STOP /ID=<n> 

Longer term solutions might include altering the user's 
authorization file record to increase his quota, or perhaps 
recoding the user's application to use less of the resource. 

3. If the process's wait PC is not EXE$MULTIQUOTA + 32, then see if 
it is waiting in EXE$DASSGN. Compare its PC to the result of the 
following SDA conunand. 

SDA> EVAL EXE$DASSGN + 60 
SDA> EVAL EXE$DASSGN + 67 

!for V4 
!for V3 

If the process is being waited by EXE$DASSGN, then R6 contains 
the address of the channel control block with outstanding I/O 
request(s). Type the following SDA conunands to determine to 
which device-unit this channel is assigned. 

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven't already 
SDA> EXAM @R6+CCB$W IOC ! # outstanding requests 
SDA> DEF UCB-@(@R6+CCB$L UCB) !UCB address 
SDA> EXAM UCB + UCB$W UNIT ! low word is unit # 
SDA> EXAM @(UCB+UCB$L=DDB)+DDB$T_NAME;8 !device name 

See section LOCATING IRPS for information on locating the 
outstanding IRP(s). 

4. Under V4, if the process's wait PC is not within EXE$MULTIQUOTA 
or EXE$DASSGN, then see if delete or suspend code is forcing the 
process to wait until Files-11 XQP activity completes. If the 
process is being forced to wait under these circumstances, the 
SDA SHCM PROCESS conunand displays the Process status as "DELPEN" 
or "SUSPEN", and PCB$B DPC is greater than zero. To check for 
this possibility and to format the XQP's current and pending 
requests, type the following SDA commands. 



VAX/VMS Troubleshooting *INTERNAL USE 'ONLY* 
RESOURCE WAITS 

Page 123 
12 August 85 

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven't already 
SDA> SHCki PROCESS !get PCB address and see 
SDA> ! whether DELPEN or SUSPEN is set in PCB$L STS 
SDA> EXAM <PCB address>+PCB$B DPC -
SDA> ! zero PcB$B DPC implies-no XQP activity 
SDA> EXAM CTL$GL FllBXQP !address of XQP QUEUE 
SDA> EXAM @. - ! contents of XQP QUEUE 
SDA> ! if XQP QUEUE doesn't contain its own address, 
SDA> ! then-repeat next command til back at list head 
SDA> FORMAT @. ! format each pending IRP 
SDA> FORMAT @(@CTL$GL_F11BXQP+50) !format current IRP 

5. If the process's wait PC is not one of the possibilities listed 
above, then determine at what offset in what module the wait PC 
is, using the section VIRTUAL ADDRESSES. 

Read the source code of that module, beginning at the wait PC. 
The wait PC is always set up to repeat the attempted resource 
allocation that placed the process into the resource wait. You 
may need to examine the process's general registers and/or kernel 
mode stack to follow the code path that would occur were the 
process to be placed into execution. 

RWMBX Resource Wait 

This resource wait means that a process is trying to write to a 
mailbox that is full or has insufficient buffering space. A mailbox 
is created with some amount of "space" for buffering messages that 
have been written to the mailbox and not yet read. This quota is 
specified as the BUFQUO argument to $CREMBX system service. If that 
argument is omitted, its value defaults to the SYSBOOT parameter 
DEFMBXBUFQUO. 

If process resource wait mode is enabled, a process trying to write 
to a full mailbox waits transparently at IPL 0 in the access mode 
which issued the $QIO request until its write can complete. If wait 
mode is disabled, the I/O is completed immediately with the error 
SS$ MBFULL. The resource wait mode flag can be toggled through DCL 
coniiand SET PROCESS/RESOURCE or system service $SETRWM. By default, 
resource wait mode is enabled. Under V4, there is a new I/O function 
modifier, IO$M NORSWAIT, that allows a user to specify that a 
particular write attempt should not wait, independent of the setting 
of the process resource wait mode flag. 

Resource wait RSN$ MAILBOX is usually caused by application error. 
One possible error is that the reader process's priority is lower 
than that of the writers. Another possibility is that the reader 
process does not read the mailbox often enough or completely enough. 
One more possibility is that a single reader process also writes to 



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESOURCE WAITS 

Page 124 
12 August 85 

the mailbox and is put into MWAIT when the mailbox is full, thus 
deadlocking the application system. 

A simple possible workaround is to specify a larger BUFQUO argument 
to $CREMBX or increase SYSBOOT parameter DEFMBXBUFQUO, although this 
may just delay the onset of the problem. Another way to avoid the 
problem is that the reader process always have an outstanding read on 
the mailbox (without the modifier IO$M NCM). Another workaround is 
that the reader process issue a setmode QIO request to ask for AST 
notification of unsolicited messages placed into the mailbox and read 
the mailbox whenever the AST is delivered. Another possibility is 
that the writers (and perhaps the reader) disable resource wait mode. 

If you want to determine which mailbox the process is trying to 
write, type the following SDA conunands. 

SDA> SET PROCESS/INDEX=<pix> 
SDA> ! get mailbox channel number 
SDA> DEF MBCHAN = @(@AP+8) !read QIO channel number 
SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven't already 
SDA> ! get mailbox UCB address ~ 
SDA> DEF MBUCB = @(@CTL$GL CCBBASE-MBCHAN+CCB$L UCB) 
SDA> ! display unit - -
SDA> EVAL (@(MBUCB+UCB$W UNIT)@l0)@-10 
SDA> display device name 
SD.A) EXAM @(MBUCB+UCB$L_DDB)+DDB$T_NAME 

If the process is waiting in user mode, the user can simply type the 
DCL commands CTRL/Y' and STOP. If, however, the user's program has 
disabled CTRL/Y' recognition or is waiting in exec mode (as the result 
of an RMS write to the mailbox), you nrust either delete the process 
with the DCL.conunand STOP/ID or read messages from the mailbox to 
unblock the process. 

To read messages from the mailbox, first display the protection and 
owner of the mailbox with the DCL command SHai DEVICE/FULL. From an 
account with CMKRNL privilege, set your UIC appropriately. Read a 
message from the mailbox by issuing a DCL COPY command, specifying 
the input file as the mailbox and the output file as TT:, SYS$OUTPUT, 
NIAO:, or a file. Convert the unit number of the mailbox to decimal 
for the DCL conunands. 

RWNPG Resource Wait 

This resource wait means that a process is waiting to acquire 
nonpaged pool. This resource wait should be rare under normal 
circumstances, since nonpaged pool is ext>anded upon demand up to a 
SYSBOOT parameter specified limit. 

On the running system, type the following DCL commands to find out 
whether any of the nonpaged pool lists has approached its limit. If 
so, consider altering your parameters and rebooting. 



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESOURCE WAITS 

$ MC SYSGEN 
SYSGEN> USE ACTIVE 

Page 125 
12 August 85 

SYSGEN> SHCli NPAGEVIR !expanded limit variable list 
SYSGEN> SHCli LRPCOUN'IV !expanded limit LRP list 
SYSGEN> SHCli IRPCOUN'IV !expanded limit IRP list 
SYSGEN> SHOW SRPCOUN'IV !expanded limit SPR list 
SYSGEN> SHCli WSMAX !largest working set size 
SYSGEN> SHCli FREELIM !minimum free list size 
SYSGEN> SH<:li MPW LOWLIMIT !minimum mod. list size 
SYSGEN> EXIT 
1 SHCli MEMORY/POOL/PHYSICAL 

If the lists have not expanded to their limits (if the Total column 
is less than the relevant parameter value), one possible reason is 
that there is not enough free physical memory left in the system. 
Before expanding nonpaged pool, the system checks to see that there 
will be enough pages left on the free list for the sum of the largest 
working set (parameter WSMAX), the free list low limit (parameter 
FREELIM)' and the modified page low limit (parameter MPW LOLIMIT). 
SHCli MEMORY displays the number of pages currently on the-free list 
as Physical Memory usage (Free column). If the free list is not 
sufficiently large, VMS does not expand nonpaged pool and prints the 
following message on the console terminal. 

SYSTEM-W-POOLEXPF, Pool expansion failure 

It is also possible that a process is in resource wait because it is 
asking for a piece of pool larger than the largest piece available. 
SHCli MEMORY displays the largest piece free in the Largest column. 
The process's R1 may contain the number of bytes of pool requested, 
depending on which system code tried to allocate pool. 

Under V3, a process waits for this resource in kernel mode. Under 
V4, a process may wait for RSN$ NPDYNMEM in kernel mode or in the 
access mode from which it called a- system service that tried to 
allocate pool. The process may or may not be deletable, depending on 
the IPL at which it waits. 

If you're looking at a crashdump, type the following SDA conunands. 
to compute and display the number of free pages that must be 
available for VMS to expand pool 

SDA> !compute # bytes variable list can be expanded 
SDA> EVAL @MMG$GL NPAGEDYN+@SGN$GL NPAGEVIR-@MMG$GL NPAGNEXT 
SDA> !compute # bYtes LRP list can0e expanded -
SDA> DEF LRPV•@IOC$GL LRPSPLIT+(@SGN$GL LRPCN'IV*@IOC$GL LRPSIZE) 
SDA> EVAL LRPV-@MMG$GL LRPNEXT - -
SDA> !compute # bytes IRP list can be expanded 
SDA> DEF IRPV•@EXE$GL SPLITADR+(@SGN$GL IRPCN'IV*AO) 
SDA> EVAL IRPV-@MMG$GL IRPNEXT -
SDA> !compute # bytes SRP list can be expanded 
SDA> DEF SRPV•@IOC$GL SRPSPLIT*(@SGN$GL SRPCN'IV*@SGN$GL SRPSIZE) 
SDA> EVAL SRPV-@MMG$GL SRPNEXT - -
SDA> !evaluate whether-expansion is possible 
SDA> DEF MEM_NEED-@SGN$GL_MAXWSCNT+@SGN$GL_FREELIM 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
RESOORCE WAITS 

Page 126 
12 August 85 

SM> DEF MEM NEED-MEM NEED+((@MPl1$GN LOLIM@l0)@-10) 
SDA> EVAL MEii NEED Tdisplay pages of memory required 
Si5i>' EXAM SCB$GL FREECNT !number of pages on free list 
Sh\) 1 MEM_NEED iiust be less than SCH$GL_FREECNT for expansion 

RWPFF Resource Wait 

Although this resource name is defined, it is not used by any code in 
V3 or V4. If a process is waiting for this resource, its PCB$L EFWM 
has been corrupted. -

RWPAG Resource Wait 

Although this resource name is defined in V3, no system code waits a 
process on this resource. V4 does place processes into wait on this 
resource. 

This resource wait means that a process is waiting to acquire paged 
pool. under some circumstances the process waits in kernel mode; 
under others it waits in the access mode from which it made a system 
service request that resulted in a failure to allocate paged pool. 
The allocation failure can happen because there is not enough paged 
pool left or because there is not a large enough piece left. 'Jhe 
process's R1 may contain the number of bytes of pool requested, 
depending on which system code tried to allocate pool. 'l'he process 
may or may not be deletable, depending on the IPL at which it waits. 

If you're examining the running system, type the DCL comnand SHCM 
MEMORY/POOL to see the amount of unallocated paged pool (the Free 
colUD'l) and the largest piece available (the Largest column). 

If you're looking at a crash dump, type the following SM conaands to 
locate the free paged pool blocks. 

SD.\> EXAM EXE$GL PAGED 1 address of 1st block 
Sta> EXAM @.;8 - !size of this block & address of next 
'Sfii>' EXAM @.;8 !size of this block & address of next 
SDi>" EXAM @.;8 !size of this block & address of next 

!continue til address of next is 0 

RWBRK Resource wait 

This particular resource wait should never occur under V4. The 
broadcast mechanism is rewritten and uses normal $QIOs, with an 
optional timeout. If the timeout period expires before the I/O 



VAX/VMS Troubleshooting *INTERNAL USE WLY* 
RESOURCE WAITS 

Page 127 
12 August 85 

request completes, a $CANCEL is done. If you find a V4 process in 
MNAIT on this resource, its PCB$L_EFWM has been corrupted. 

Under V3, this resource wait means that the process is waiting for a 
broadcast to complete. Typically, this wait occurs because the user 
has issued the DCL command REPLY/ALL and there is a bad terminal or 
an unterminated EIA line. It can also happen if a terminal 
controller has an input-only device which has not been set 
nobroadcast. 

A process waiting on RSN$ BRKTHRU waits in kernel mode at IPL 2. 
This means that the process cannot be deleted and cannot be easily 
examined through SDA. 

It is possible, although awkward, to determine which terminal line(s) 
is (are) at fault. It is possible, although risky, to end the 
process's wait. 

A broadcast request is described by a broadcast data block (BRO), 
which includes the pid of the requesting process, the broadcast 
message, and a count of how many terminals have yet to write the 
broadcast message. A terminal write request is described by a 
terminal write packet ('IWP). 'IWPs for broadcast writes have offset 
TTY$L WB IRP equal to 0 and offset 'rl'Y$L WB RETADDR equal to the 
address of EXE$BRDCSTCOM. A 'lWP corresponding to a particular 
broadcast request contains the address of the broadcast message in 
the BM> (that is, offset TTY$L _WB _NEXT points into the BRO) • 

In order to determine the terminal(s) at fault, first locate the BRO 
and then examine each terminal UCB to see whether this terminal has a 
corresponding write request queued to it. In order to end the wait, 
you must also locate the BRO. 

Type the following commands. 

SDA> CTRL/Y 
$SPAWN 
$ MACRO/OBJ•SYS$LOGIN:DEFS SYS$INPt11': -
$ + SYS$LIBRARY:LIB/LIB 
$BRDDEF GLOBAL 

$TTYDEF GLOBAL 
.END 

CTRL/Z 
$ LO 

'ca4T SI:»\> READ SYS$LOOIN:DEFS.OBJ . 
SDl> 1 do following if you can read the process's R7 
Sill> DEi' BRO • @R7 !define symbol 
SM> FORMAT BRD/rYP-BRD !display BRO 
SDA> 1 
SDA> 1 do following if you can't read the process's R7 
SDA> DEF BRO - @IOC$GQ Bm>CST 1 define symbol 
SDA> !do til BRD$L PIO-matches that of mwait process 
SDA> FORMAT BRD,/'l'YP-BRD !display broadcast queue entry 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
RESOORCE WAITS 

SDA> DEF BRD - @BRDlfollow forward link to next BRD 
SDA> land format it, til matching PID 
SDl> I 
!Bl> 1 for BRD with matching pid ••• 
m56' 1 BRD$L DATA is start of broadcast msg. 
mlS' I BRD$W-REFC is # of terminals waited for 
msi) DEF BRIXtJSG-. BRO + BRD$L DATA 
SDA> 1 -

Page 128 
12 AuCJUSt 85 

SDA> !search the terminal database, looking at each UCB, 
SDA> SH<Jtl DEVICE ! to see list of terminal names, 
SDA> 1 usually tta, ttb, txa, etc. 
SDA> SH<Jtl DEVICE <terminal name> !e.g., tta 
SDA> !for each UCB, e.g., ttaO, ttal, etc. 
SDA> DEF 'IWP- @(<ucb address> + UCB$L TT WRTBUF) 
SDA> !see if this '!WP is a broadcast - -
SDA> EXAM 'IWP+'l'l'Y$L WB IRP lif zero, then a broadcast 
SDA> !you might also look at queued 'IWPs 
SDA> DEF 'IWP-@( <ucb address>+uCB$L TT WFLINK) 
SDA> EXAM 'IWP+'l'l'Y$L Ws IRP !if zero-; tlien a broadcast 
SDA> DEF 'IWP-@'IWP - - 1 fl ink to next '!WP ••• 
SDA> 1 
SDA> !for each '!WP, compare 'rl'Y$L WB NEXT to BRDMSG 
SM> EXAM 'l.WP+'l'l'Y$L WB NEXT - -
SDA> !if equal, thii ii a terminal which hasn't completed 
SDA> 1 the broadcast message 

If you have a process stuck in RSN$ BRKTHRU that you want to unwait, 
at the risk of crashing the system,use DELTA to clear the BRD$W :RBFC 
field, and then issue a successful broadcast to several working 
terminals so that RSN$ BRKTBRU is declared available for any 
processes waiting for that-resource. 'Ibis should be sufficient to 
make the MNAIT process computable again at a time when its BRD$W REFC 
is zero. If the problem terminal(s) complete the broadcast it a 
later time, there will be a nonfatal BRDMSGLOST bugcheck entry 
written-to the error log. First, issue a SH<Jtl SUMMARY SDA. connand to 
get the PID of your own process for use in the DELTA deposit camnand 
below.- Type the following canands from an account with CMDNL and 
OPER privileges. Replace A( BRD$W RE!'C) with the address you 
determined using SDA.. -

$ MC SYSGIN !so that nonfatal bugchecks don't crash 
SYSGDf> SET BOOCHECKFATAL 0 

:+ •• :, FIVE 
.,.~'T_:'·tion of l;M and a pid in the deposit conmand 

· ... ,,kernel mode operation and deposits. 
. . :DELTA.EXE 

.,>-x;_,._ ., .,,,. 
<pid>:<A(BRD$W_REFC)>/xxxxyyyy xxxxOOOO<cr> 
EXIT<cr> 
$ 1 pick 3 terminals known to work 
! REPL/TERM-(<terml>,<term2>,<term3>) "<som_message>" 



VAX/VMS Troubleshooting *INTERNAL USE mLY* 
RESOURCE WAITS 

RWIMG Resource Wait 

Page 129 
12 August 85 

This particular resource wait should never occur under V4. The 
interlocking between the image activator and the INSTALL utility is 
rewritten and uses the lock management system services. If a process 
is waiting for this resource, its PCB$L_EFWM has been corrupted. 

A V3 mechanism called the image activator lock synchronizes access to 
the data structures involved in the activation of images made known 
to the system through the INSTALL utility. The lock synchronizes the 
activities of the INSTALL utility and its use of the image activator 
system service with other processes' image activations. 

The image activator lock is similar to a mutex in that it allows one 
and only one writer or mUltiple readers. unlike a mutex, the image 
activator lock can be used by the image activator system service, 
which runs mostly in exec mode. 

If a process is waiting for this resource, then examine the image 
activator lock 

SDA> EXAM MMG$GL_ IACLOCK 

If the image activator lock is owned by a writer, MMG$GL IACLOCK 
contains the address of the writing process's software-PCB. A 
positive integer in MMG$GL IACLOCK indicates how many reading 
processes own the lock. A value of 0 indicates no readers and no 
writer. A process which has locked MMG$GL IACLOCK has the flag bit 
RND$V _ IACLOCK set in CTL$GL_ RUNDNFLG. -

A process deadlocked in this resource wait has never been seen. This 
information is included for completeness. If you find a V3 process 
in this resource wait, crash the system and report the problem. 

RWQtJO Resource Wait 

Although this resource name is defined, it is not used by any code in 
V3 or V4. If you find a process in MNAIT on this resource, its 
PCB$L_EFWM has been corrupted. 

RWLCK Resource wait 

Although this resource name is defined, it is not used by any code in 
V3 or V4. If a process is waiting for this resource, its PCB$L_EPWM 
has been corrupted. 



VAX/VMS Troubleshooting 
RESOORCE WAITS 

RWSWP Resource Wait 

*INTERNAL USE ~Y* . Page 130 
12 August 85 

When a process is first created, a minimal swap file slot is 
allocated for it. The system has a table of installed page and swap 
files. It looks first in the swap files to allocate swap slots; if 
there is not enough room, the system allocates a swap slot from a 
page file with roam. As the process pagefaul ts and its working set 
grows, a larger swap slot is allocated. The process's maximum swap 
slot is limited by its working set quota. If a larger slot is not 
available when the process's working set size is being increased, the 
process is waited on ~ SWPFILE in the access mode that incurred 
the pagefault. The RSN$-SWPFILE wait state can mean that the system 
is running out of swap spice or that there is too much fragmentation 
to allocate a swap slot. 

If you see processes in this wait state, issue the DCL cODIDand SHC»l 
MJ!H)RY/FILES/FULL to determine the state of your page and swap files. 
The Slla'l M!X)RY/FILES/FULL output identifies swap files as "used 
exclusively for swapping". You may be able to create and install an 
additional swap file to remove the process(es) from this wait. 

The SYSBOOT parameter SWPFILCNl' is the maximum number of swap files 
you can install; the parameter PAGFILCNT, the maximum number of page 
files. If you have fewer swap files than. the value of SWPl'ILCNr, you 
may install a new one. (Enlarging an existing one would solve your · 
problem but not without a reboot of the syst•. ) If you can't install. 
JIK)re swap files, then you •Y be able to install an additional. page: 
file as a teqx>rary measure rather than rebooting the system' 
innediately. Installation of· either a page or swap file causes the 
resource RSN$ SWPFILE to be declared available. Pren the SYSTEM 
account or oni set to a SYSTEM UIC, type the following DCL camnands. 

$ SH<>l M!K>RY/FILES/FULL 
$ SET PRO'!'-( SY:RNEO,Clf :RNED) /DEFAULT 
$MC SYSGEN 
SYSGEN> USE ACTIVE 
SYSGEN> SIDl SNPFILCm' 
SYSGIN> SID1 PAGFILQft' 
1 specify a unique swap or page file nw 
SYSGIN> CRJrATB <file spec>/SIZE-<size> 
SYSGiN) INSTALL <fili spec> /SWAP!'ILE 
11ssue ccn·nd below Instead fo-r page file 

<file_spec>/PAGEFILE 

into this wait state in the access mode at which 
·, In theory, therefore, a user could type CTRL/C or 

... . --~;~).y STOP, to have his process becane computable 
aCJf. 'Flk any subsequent pagefaul t (except for pages paged 
through the syst• working set list) causes the process to wait 
again, fran a different thread of execution. You should be able to 
delete or suspend the process through DCL comand. Suspending the 
process may be a good alternative if there is only one very large 
process that is in this state because the swap file is fragmented 



VAX/VMS Troubleshooting *INTERNAL USE 9ffLY* 
RESOURCE WAITS 

Page 131 
12 August 85 

rather than almost full. When the system runs low on memory, the 
process's working set may be shrunk enough that it will fit its 
allocated swap slot. If this happens, you can resume it and have the 
user decrease his working set list size. 

If you're looking at a crash dump, type the following SDA commands to 
see the state of the swap files. 

SDA> READ SYS$SYSTEM:SYSDEF.STB 
SDA> DEF ARRAY • @MMG$GL PAGSWPVC 
SDA> EXAM SGN$GW SWPFILcT lmax # swap files 
SDA> EXAM SGN$GW-PAGFILCT lmax # page files 
SDA> 1 repeat coiiimands for sum of swap & page files 
SDA> FORMAT @ARRAY ! format 1 page/swap file block 
SDA> DEF ARRAY•ARRAY+4 
SDA> 1 ignore block if its address is MMG$GL NULLPFL 
SDA> PFL$L_FREPAGCNT is # of free pages -

RWMPE Resource Wait 

When a process faults a page, the pagefault service routine, 
MMG$PAGEFAULT, calls MMG$FRE.WSLE to find a working set list entry to 
describe the page to be added to the process's working set list. One 
possible working set list entry is a process page table page that is 
now inactive; that is, the page table page maps no valid pages. such 
a working list entry can be re-used. If, however, the page table 
page still describes a page on the modified list, the modified page 
must be written to its backing store before the working set list 
entry used by the page table page can be released. 

In such a case, the modified list high limit is temporarily set to 
zero to force a flush, and the process is placed into resource wait 
on RSN$ MPLEMPTY until its modified page has been written to its 
backing- store. The modified page writer (part of the swapper) 
declares RSN$ MPLEMPTY available when the modified page list is 
emptied. -

The modified page writer can fail to write the entire list if there 
is insufficient page file or if a disk goes off line which contains a 
file (page, swap, or section file) to which modified pages are being 
written. If the modified page list grows above the SYSBOOT parameter 
MPW_WAITLIMIT, other processes may go into RSN$_MPWBUSY waits. 

A process is placed into this wait state in the access mode at which 
it pagefaulted. In theory, therefore, a user could type CTRL/C or 
CTRL/Y, followed by S'IUP, to have his process become computable 
again. If the process pagefaults again, the process may be waited 
again, from a different thread of execution. However, if the 
process's modified page has already been written to its backing store 
or if the process faults a page which is paged through the system 
working set list, the process won't go into this wait again. You 
should be able to delete the process through DCL command. 



VAX/VMS Troubleshooting 
RESOORCE WAITS 

R5iMPB Resource Wait 

*INTERNAL USE 00..Y* . Page 132 
12 August 85 

A process which faults a modified page out of its working set is 
placed into this wait if the modified page list contains more pages 
than the SYSBOOT parameter MPW WAITLIMIT. Typically, this resource 
wait is noticeable only on syitems with insufficient page file space 
or incorrect para.ter settings. That is, if the Swapper process 
cannot write the modified page list because there is insufficient 
space in the page file(s), the list continues to grow. When it 
reaches MPW WAITLIMIT, processes are placed into RSN$ MPWBUSY 
resource wait:- Modified page writing is triggered when the iiiodified 
page list reaches the size of MPW HILIMIT. Therefore, MPW WAITLIMIT 
should never be less than the parameter MPW HILIMIT. If it- is, the 
system is likely to deadlock. This resource wait may also be 
noticeable on systems with compute bound realtime processes which 
block the Swapper process. 

A process is placed into this wait state in the access mode at which 
it pagefaulted. In theory, therefore, a user could type C'l'RL/C or 
CTRL/Y, followed by S'roP, to have his. process becom computable 
again. However, any subsequent pagefault (except for pages paged 
through the system working set list) causes the process to wait 
again, from a different thread of-execution. 

You are very unlikely to see processes in this wait state on a 
running system; that is, your own process is likely to be in the sam 
state~ However, if you do, see section HANGS, subsection System 
Hangs, the paragraph following the console message SYSTEM-W-PAGBPJW;, 
for directions on creating and installing a new page file and 
altering para.ter MPW _ WAITLIMIT. 

If you are looking at a crash dump, type the following Sill>. conmands 
to determine why processes were placed into RSN$_MPWBUSY wait. 

SM> EXAM SCH$GL MFYCNT 1# pages on mfy. list 
SM> EXAM MPl1$GL-WAITLIM !MEW WAITLIMIT 
SDA> RF.AD SYS$SYSTDl:SYSDIF.STB -
~DEF ARMY-@Ift;$GL P.AGSWPVC+(4*(@SGN$Gf SWP!'ILCT@l0)@-10) 
~ EXAM ~ PAG!'ILcT lax # page filis 
SM> 1 repeat coimanda below for number of page files 
SDi> roRMAT @ADAY !format 1 page file block 
Sia>' DI!' ADAY-ARMY+4 

l block if its address is I9G$GL NlJLLP!'L 
· WlCN'1' is # of free pages -

The V4 lock manager places a process into this wait when the lock 
manager 1111st COlllllUllicate with its counterparts on other VAXcluster 
nodes to obtain information about a particular lock resource. 
Typically, the process has requested the $ENQ[W] system service to 
enqueue a new lock or convert an existing lock on a resource 



VAX/VMS Troubleshooting *INTERNAL USE pNLY* 
RESOURCE WAITS 

Page 133 
12 August 85 

"mastered" on another node. A resource that is mastered on a remote 
node can be identified by the non-zero cluster system ID ( CSID) in 
its resource block. A process requesting the $GETLKI system service 
to obtain lock information about a remote resource is also placed 
into this wait. 

The first node in a cluster to take out a lock on a resource and· 
create the resource is always master of the resource. For example, 
the first node to open a file becomes the master of the resource that 
represents that file. All other nodes in the cluster that want to 
open the file or lock records in the file must communicate with the 
master node. 

When a process queues a lock at the root level of a resource, the 
local lock manager must first determine if a master already exists 
for the resource by sending a message to the resource "directory" 
node, which is determined by a hash algorithm. While the process 
waits for a reply from the directory node, it waits on resource 
RSN$ scs. If that resource has been mastered on another node, the 
locaI lock manager must communicate with the master node and places 
the process into a resource wait on RSN$ SCS until the master node 
replies. -

This wait happens frequently during normal system operation for 
relatively brief intervals, most often as the result of a $ENQ(W] 
request for a lock conversion and occasionally as the result of a 
$GETLKI request. 

If you are looking at a dump and happen to see one or more processes 
in this state, most likely the state is merely an indication that 
there is remote lock activity at the time the system crashed. 

If a process has been in this wait state for more than a few 
milliseconds, it may be an indiation of CI problems, an unstable 
cluster, or loss of quorum. Check the consoles for messages that 
might indicate cluster status and check the error logs and consoles 
for information about possible CI problems. 

A process waits on this resource in kernel mode at IPL 2. This means 
that the process cannot be deleted, suspended, or easily examined 
with SCA and that the user cannot CTRL/Y out of the wait. 

RNCLU Resource Wait 

A V4 process which issues any lock requests on any node of a cluster 
in transition (that is, while a node is being added or removed) is 
placed into this wait state while the cluster membership stabilizes. 
This can be a relatively lengthy wait if node(s) are being removed 
and locks must be remastered. 

A process waits on this resource in kernel mode at IPL 2. This means 
that the process cannot be deleted, suspended, or easily examined 



VAX/VMS Troubleshooting *INTERNAL USE !J:«,Y* 
RESOORCE WAITS 

Page 134 
12 August 85 

with SOP. and that the user cannot CTRL/Y out of the wait. 

[more information TBS] 

Hints And Kinks 

1. Whenever you modify SYSBOOT parameters, remember to make AUTOGEN 
aware of your changes so that they propagate across AUTOGENs. 
Include any parameter changes you make in V3 
SYS$SYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See 
Chapter 11 in the Guide to VAX/VMS System Management and Daily 
Operations for further ~nformation on AUTOGEN. 

Additional References 

V3 VAX/VMS Internals and Data Structures Manual, Chapter 3, Dynamic 
Memory Allocation; Chapter 10, Scheduling; Section 14.5, Data 
Structures that Describe the Page and swap Files; Section 15.5.2, 
Modified Page Writing; Section 19.5.4, Mailbox Driver 

Guide to VAX/VMS Performance 

VAX/VMS System Generation Utility Reference Manual 



VAX/VMS Troubleshooting *INTERNAL USE PNLY* 
RESTART BUGCHECKS 

RESTART BUGCHECKS 

Page 135 
27 June 85 

VAX cpus halt in response to various severe error conditions, halt 
instructions, and console halt commands. The console (whether it is 
implemented as a separate processor or as cpu microcode) prints an 
error message and/or halt code on the console terminal. In the case 
of a powerfail recovery, the message and/or halt code is printed 
after power is restored. 

The console's actions following a halt generally depend on cpu type 
and front panel switch settings. In no case will there be much, if 
any, information about the error causing the halt in the errorlog 
written by VAX/VMS. The console tests the auto restart switch. See 
the section HALTS <cpu type> for cpu-specific details on the restart 
mechanism. -

If auto restart is not enabled, the console prompts or reboots, 
depending on the switch setting. If auto restart is enabled, the 
console tests whether memory contents are valid. If they are, the 
console attempts to locate the Restart Parameter Block (RPB). If the 
console locates a valid RPB, it passes control to EXE$RESTART (whose 
physical address is contained in RPB$L RESTART) with information in 
several general registers -

RlO - PC at the time of the halt 
Rll - PSL at the time of the halt 
AP - code indicating reason for halt 
SP - address of the end of the RPB page. 

EXE$RESTART is entered in kernel mode, at IPL 31, with the PSL<IS> 
bit set, and with memory management disabled. It uses a temporary 
stack at the end of the RPB. EXE$RESTART turns on memory management, 
using information saved in the RPB. 

EXE$RESTART's subsequent actions depend upon what kind of halt 
occurred. If a powerfail recovery occurred and if system state was 
saved completely prior to the powerfail, EXE$RESTART resumes system 
operations using information saved in the RPB. 

If a powerfail recovery has occurred and system state was not saved 
completely, EXE$RESTART signals the fatal bugcheck STATENTSVD. This 
bugcheck generally means that there was not enough time between the 
powerfail interrupt grant and the total loss of power to the CPU for 
the volatile processor and general registers to be saved. It can 
also mean that through some hardware error, the system entered 
powerfail recovery without having taken a powerfail interrupt. 

There is another possible cause of the STATENTSVD bugcheck on a 
VAX-11/780 or VAX-11/785. These systems have UNIBUS adapters which 
can interrupt at decimal IPL 20, as the result of failing power on 
the UNIBUS. VMS's response to this interrupt is to remap the SPTEs 
that mapped UNIBUS address space to prevent UNIBUS device drivers 
from getting machine checks when they access UNIBUS address space. 
If the UNIBUS adapter detects a pending powerfail before the cpu does 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
RESTART BUGCHECKS 

Page 136 
27 June 85 

AND if a UNIBUS device driver is currently running at or above IPL 
20, then the UNIBUS adapter interrupt is not granted until the driver 
lowers IPL or is done. If the driver reuins at high IPL for too 
long, there •Y be no power on the UNIBUS when the driver tries to 
reference an address on the UNIBUS. This will result in a machine 
check exception. The machine check exception service routine runs at 
IPL 31 and thus blocks the cpu powerfail interrupt. This can result 
in a failure to enter the cpu powerfail interrupt service routine 
with sufficient time to save volatile system state. The subsequent 
restart results in the bugcheck STATENTSVD. 

- After any kind of halt other than powerfail recovery, EXE$RESTART 
crashes the system to provide information that might be useful in 
troubleshooting the halt and to preserve pending error log messages. 
(When the system is rebooted, SYSINIT will cause them to be written 
to the error log.) EXE$RESTART signals a bugcheck specific to the 
type of halt. If the code in AP is unknown, EXE$RESTART signals the 
fatal bugcheck UNKRSTRT. 

Under V3, the VAX-11/785 halt ?CLOCK PHASE ERROR results in a 
UNI<RSTRT crash if auto-restart is enabled. If the AP contains hex I' 
(deci•l 15) and this crash is from a VAX-11/785, see subsection 
?CLOCK PHASE ERROR in the section HALTS - VAX-.11/780 AND VAX-11/785. 

The table below lists the various bugcheck 11ama, the corresponding 
deci•l halt codes, and to which VAX cpus they apply. A "Y" in the 
colum under a cpu type means that halt and bugcheck type are 
possible on that cpu type; a blank means that the halt and bugcheck 
type are not applicable. Note that a VAX-11/725 is really a 
VAX-11/730 and that a VAX-11/782 is two VAX-11/780s connected through 
shared MA780 memory. Cpu types UV1 and UV2 in the table refer to 
MicroVAX I and MicroVAX II. 

The subsections below describe each halt further and suggest 
approaches to analyzing the crashdump, if applicable. Read the 
section HALTS <cpl type> for information on related hardware 
problems. -



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
RESTART BUGCHECKS 

Page 137 
27 June 85 

HEX 
BUGCHECK NAME AP DESCRIPTION 

8 
u u 7 7 7 7 6 
v v 3 5 8 8 0 
1 2 0 0 0 5 0 

UNRRSTRT 

IVLISTK 
DBL ERR 
HALT 
ILLVEC 
NOUSRWCS 
ERRHALT 
CHMONIS 
CHMVEC 
SCBRDERR 
WCSCORR 
CPUCEASED 
OU'roFSYNC 
ACCVIOMCHK 
ACCVIOKSTK 

IVLISTK Bugcheck 

0,1, Unknown restart code yyyyyyy 
2,>11 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

10 
11 

Invalid interrupt stack 
Double error halt 
Halt instruction 
Illegal Vector code 
No user wcs for vector 
Error pending on halt 
CHM on interrupt stack 
CHM vector <1:0> .NE. 0 
SCB physical read error 

yyyyyyy 
yyyyyyy 
yyyyyyy 

yyyyyy 
yyyy 

yyy 
yyyyyyy 
yyyy y 
yyy 

WCS error correction failed 
CPU ceased execution 
Processor clocks out of synch 
Machine check accvio y 

y 

y 
y 

y 

KSP accvio 

This halt means that an attempted cpu write reference to the 
interrupt stack during interrupt or exception processing would have 
resulted in a translation not valid or access violation exception. 
There is no way to determine the SP value at the time of halt from 
looking at the crashdump. The PC at the time of the halt is in RlO; 
the PSL at the time of the halt is in Rll. 

An IVLISTK bugcheck can result from software problems that corrupt 
the stack pointer, overflow or underflow the interrupt stack, or 
corrupt the System Page Table Entries (SPTEs) that map the interrupt 
stack. This bugcheck can also occur simply because the interrupt 
stack is too small. 

1. Examine the pages allocated to the interrupt stack through the 
SDA command 

~ SHCM STACK @EXE$GL_INTSTKLM : @EXE$GL_IN'l'STK 

If the low address end of the interrupt stack contains several or 
more longwords of zero, there is a high probability that the 
stack did not overflow. 

2. Examine the SPTEs that map the interrupt stack. Type the SDA 
CODIDalld 

SDA> SHCJf PAGE/SYSTEM @EXE$GL_INTSTKLIM : @EXE$GL_INTSTK 

SDA should display the page type as VALID and the protection as 



VAX/VMS Troubleshooting *INTERNAL USE j:H'.,Y* 
RESTART BOOCHECKS 

Page 138 
27 June 85 

ERIN. If the page has been modified, there will be an M by the 
protection. If the display of the lower SP!'Es does not include 
the M bit, those pages have not been modified, and, therefore, 
the stack did not become invalid as the result of an overflow. 

3. If you suspect an overflow, look for any repeated patterns that. 
might be footprints of nested or recurring exceptions, 
particularly machine checks. Such repeating patterns generally 
indicate hardware problems. 

4. Try to decipher the interrupt stack using section STACK PATTERNS 
- INTERRUPT STACK. 

5. Determine the IPL at time of halt by examining Rll. Decode it as 
a PSL using the layout in the section REIATED REFERENCE MATERIAL 
or the V4 SM camnand EXAMINE/PSL. 

6. Locate the PC at the time of halt ( RlO contents) using section 
VIRTUAL ADDRESSES. Try to determine what code was running, using 
the PC and IPL. Check whether some thread might have been 
running at too low an IPL to block interrupts it was causing if 
you suspect an overflow. If you can identify the most recent 
thread that ran on the interrupt stack, read its code carefully 
looking for errors that may have resulted in stack pointer 
corruption or stack underflow. 

7. If you suspect that the interrupt stack did overflow, a 
[t~rary] workaround may be to reboot VMS with an increased 
SYSBOOT parameter INTSTKPAGES. You may wish to check the SPl'E of 
the lowest interrupt stack page during system operation, to see 
whether the page has been modified, as in item 2 above. If the 
lowest stack page remains unllkXiified during heavy operations, it 
is likely that INTSTKPAGES is large enough 

8. Read the section HALTS - <cpu type> for information on disabling 
auto-restart and/or examining the SP and any other destroyed 
registers from the time of the halt in case this halt occurs 
again and for information on possible hardware problems • 

. " .. t while the cpu was trying to write the microcode 
.': ~t onto the stack, another mchine check occurred. 
· ~s: ~t is an indication of hardware proble•. 

·~~~ from a double error halt is unlikely to be 
useful. '!he needed information is in processor registers which have 
been overwritten. See the section HALTS - <~ type> for information 
on disabling auto-restart and/or examining the processor registers at 
the tim of halt in case this halt occurs again and for information 
on possible hardware problems. 



VAX/VMS Troubleshooting *INTERNAL USE .OOLY* 
RESTART BUGCHECKS 

Page 139 
27 June 85 

LoOk carefully at any error log entries from before and at the time 
of halt to see whether there are any related unexpected errors, for 
example, achine checks, bus errors, memory errors. 

HALT Bugcheck 

This halt may mean that some kernel mode code halted. (The HALT 
instruction can only be executed from kernel mode.) The various HALTS 
throughout VMS code are executed under extreme circumstances where no 
recovery is possible. Also, sometimes erroneous transfers of control 
or overwriting of code can cause the cpu to execute a byte of zero as. 
a HALT instruction. 

If this halt is the result of a software error, the crashdump 
contains useful information. 

1. Determine the address of the HALT instruction and examine that 
code with the f~llowing SDA comands 

SDA> EVAL @Rl0-1 
SDA> EVAL BUG$FATAL 
SM> EVAL BUG$FATAL+2DSO 
SDA> EXAM/INST (@Rl0-1) 

2. If the PC falls within the fatal bugcheck overlay (if it is 
within the approximate range BUG$FATAL - hex 200 : BUG$FATAL + 
hex 2050), then the previous contents of that location have been 
overwritten. Locate the PC in source code using section VIRTUAL 
ADDRESSES to see whether there is a halt instruction in the 
sources. If there is a halt in the source code, read it to 
determine what anomaly caused the halt. If there is not a halt 
in the source code, there may have been a hardware error or there 
may have been a software problem that corrupted the code over 
which the fatal bugcheck overlay was written. 

3. If the PC does not fall within the fatal bugcheck overlay, and 
the instruction you examined is not a halt, then possibly a 
hardware error (cache or instruction decode, for example) caused 
this problem. See the section HALTS - <cpu type> for information 
on disabling auto-restart and/or examining the SP and any other 

. •trW"·>· z::"isters and for information on possible hardware 
•0.J:i':: 

'4'':'·~ re'.·-· not fall within the fatal bugcheck overlay, and 
la.tmction you examined is a halt, locate the PC using 

~~ .vnt!ulL ADDRESSES and try to determine whether code 
&lftierately halted or whether a previous error (such as software 
corruption at that virtual address) caused this halt. Look at 
the contents around the halt and try to determine whether they 
make sense. 



VAX,IVMS Troubleshooting 
RESTART BUGCHECKS 

*INTERNAL USE CH:,Y* . Page 140 
27 June 85 

5. Decode the PSL at the time of the halt in Rll to determine 
whether the system was running on a process kernel stack or the 
interrupt stack. There is no way to determine from the crashdump 
what the SP contained at the time of halt. use the PSL layout in 
the section RELATED REFERENCE MATERIAL or the V4 SDI\ camnand 
EXAMINE/PSL. 

6. If the system was running on the interrupt stack, examine the 
stack with the SD&\. camnand 

SDI\) SHCJf STACK @EXE$GL_INTSTK @EXE$GL_INTSTKLIM 

Try to determine what was happening based on the PC at time of 
halt and stack footprints. See section STACK PA~S -
INTERRUP!' STACK. 

7. If the system was running on a process's kernel stack, use the 
section KERNEL STACK LOCATICfiS to determine the limits of the 
stack. Then display it with SDA. 

ILLVEC Bugcheck 

This halt means that an interrupt or exception dispatch was attempted 
through a System Control Block vector whose low two bits contain an 
illegal value, for exaJll)le, binary 11. On some cpus, this halt can 
occur if the vector's low two bits are binary 10. 

VMS software never deliberately sets the low two bits to binary 11 or 
10. This halt might occur as the result of a previous software 
error's overwriting the System Control Block or memory errors. These 
bits may have been set deliberately by a user through the console or 
XDELTA or kernel mode code, in an attempt to determine through which 
vector an unexpected interrupt or exception is occurring. 

Examine the SCB in the crashdump to see if there is a vector with the 
low two bits set. In an ILLVBC era~ from a VAX-11/780 or 
VAX-11/785, RlO should contain the offset into the SCB. of the· vector 
that caused the probl•. You can exmaine only this vector through 
the SM comnand 

' )' ~I not fran a VAX-11/780 or VAX-11/785, type one of 
~,Ill\'. COlllDands 
'.::" .; :,.. . ~:"''~ 

. ···~·; ~~&:f~~~;'.~·~ .. ~ .. '.'.'.:<. <·~~ 
· '.,.,~- llXl$GL SCB : @SNP$GL BALBASE 

Sh6 SHON STACK @EXE$GL _ SCB : @SWPlGL _ BALBASE 

If there is no vector with the low two bits containing binary 11 or 
10, there may be a hardware problem. See the section HALTS -
<cpu_type> for information on disabling auto-restart and/or examining 



VAX/VMS Troubleshooting *INTEBNAL USE ~Y* 
RESTART BOOCHECKS 

Paqe 141 
27 June 85 

the SP and any other destroyed registers from the time of the halt 
and for information on possible hardware problems. 

NOOSRNCS Bugcheck 

This halt means that an interrupt or exception dispatch was attempted 
through a System Control Block vector whose low two bits were binary 
10 and that no user writable control store (WCS) exists on the cpu. 
Note that user WCS is only supported on the VAX-11/780, VAX-11/750, 
and VAX-11/785. 

VMS software never deliberately encodes the low two bits as binary 
10. This halt might occur as the result of a previous software 
error's overwriting the System Control Block or memory errors. 

Examine the SCB in the crashdump to see if you can locate a vector 
with the low two bi ts equal to binary 10. Type one of the following 
SDA connands. 

SDA.> EXAMINE @EXE$GL SCB : @SWP$GL BALBASE 
SM> SHCli STACK @EXE$GL _ SCB : @SWP$GL _ BALBASE 

If there is no such vector, hardware problems may be responsible. 
See the section HALTS - <cpu type> for information· on possible 
hardware problems. One very unliiely way that software error could 
cause this problem is corruption of the register PR$ SCBB. To 
confirm that PR$ SCBB contains its original value, examine -the SPl'E 
mapping the virt\ial address stored in EXE$GL SCB, and compare its PFN 
to the contents of PR$ SCBB as displayed in- the Process Registers 
screen from SBCJi CRASH: Type the following SDA conaands 

SI»\> SHC»l CRASH !to see processor register display 
SM> EVAL <scbb>/200 !convert contents of SCBB to PFN 
SI»\.> SHat PAGE/SYSTEM @EXE$GL_SCB;200 !to see PTE contents 

~s Bugcheck 

This halt means that while the system was running on the interrupt 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
RESTART BOOCHECKS 

Page 142 
27 J\Ule 85 

stack, an attempt was made to execute one of the change mode 
instructions (CHMU, CHMS, CHME, or CHMK). 

'Ihi1 halt miqht occur as the result of software error; for example, 
some process context code's executing in system context, a 
user-written driver's erroneously requesting system services while 
executinq on the interrupt stack, erroneous transfer of control to 
data or the middle of an instruction, etc. 

The PC of the CHMx instruction is in the crashdump RlO; the PSL at 
the time of halt is in the crashdump Rll. There is no way to 
determine the SP value at the time of the crash from the dump. See 
the section HALTS - <cpu type> for information on disabling 
auto-restart and/or examining the SP and any other destroyed 
registers from the time of the halt and for information on possible 
hardware problems. 

1. Determine the address of the CHMx instruction and examine that 
code with the following SM conaands 

SM> EVAL @RlO 
SM> EVAL BOO$FATAL - 200 
SM> EVAL BOO$FATAitf.2DSO 
Sbb EXAM/INST @Rl0-20;30 

MOst CBMK and CHME instructions are in the system service. 
vectors. See section SYSTEM SERVICE VECTORS for more information 
on these vectors and their addresses. 

2. If the PC falls within the fatal bugcheck overlay (if it is 
within the approxi•te ranqe BOO$FATAL - hex 200 : BOO$FATAL + 
hex 2050), then the previous contents of that location have been 
overwritten, and the SDA. comands above will not display the 
contents at the time of the halt. Locate the PC in source code 
using section VIRTUAL ADDRESSES to see whether there is a CHMx 
instruction in the sources. 

3. If there is not a CHMx in the source code, there may have been a 
hardware error or there •Y have been a software problem that 
corriipted the code over which the fatal bugcheck overlay was 
written. 

;,not fall within the fatal bugcheck overlay, and 
you examined is not a CHMx then possibly a 

(cache.or instruction decode, for example) caused 
See the section HALTS - <~ type> for information 

. ... . .. :'· ·:•.·· .·.·· o-restart and/or examining the SP and any other 
" trbyea'. · · titisters and for information on possible hardware 

errors. 

5. If there is a CHMx in the source code, try to determine whether 
this code was indeed intended to run on the interrupt stack. If 
it is intended to run on the interrupt stack in system context, 



VAX/VMS Troubleshooting *INTERNAL USE .CBLY* 
RESTART BUGCHECKS 

the CHMx instruction is definitely in error. 

Page 143 
27 June 85 

6. If the code appears to be process context code, then try to 
figure out why it is running on the interrupt stack. Examine the 
pages allocated to the interrupt stack through the SDA command 

ma> SHON STACK @EXE$GL_INTSTKLM : @EXE$GL_INTSTK 

Try to decipher the interrupt stack using section STACK PATTERNS 
- INTERRUPT STACK. 

CHMVEC Bugcheck 

This halt means that one of the four CHMx vectors in the System 
Control Block (SCB) has the low order two bits set to something other 
than binary 00. 

VMS always encodes these bits as 00. This halt might occur as the 
result of a previous software error's overwriting the SCB or memory 
errors •. 

The PC at the time of halt is in the crashdump RlO; the PSL at the 
time of the halt is in the crashdump Rll. There is no way to 
determine the SP value at the time of the halt from the crashdump. 
See the section HALTS - <~ type> for information on disabling 
auto-restart and/or examining the-SP and other registers at the time 
of the halt and for information on possible hardware problems. 

Examine the SCB in the crashdump to see which, if any, CHMx vector 
has non-zero low bi ts. Type the following SM commands 

SDA> SH<M STACK @EXE$GL_SCB + 40 ;10 

Under.normal circumstances, if no vector has been altered, SDA's 
symbolic display for those vectors should be EXE$CXl>DNL, 
EXE$CI«>DBXBC, EXE$CX)DSUPR, and EXE$ODXJSER. (It is remotely 
possible that on some systems the exception service routines for CHMI< 
and cmm: are, respectively, EXl$Ql)DDNLX and EXB$Ql)DEXBCX. ) Any 
other values, including values such as EXE$QD)DNL+l, indicate sane 
kine!, .. ~ qorrupt ~· 

, · '. fl~J"-y that software error could cause this problem is 
. ·of:, the register PR$ SCBB. To confirm that PR$ SCBB 

i·· . . ,,~,original value, examine the SPTE mapping the virtual 
~:~t.:•tlJed. in EXE$GL SCB, and caapare its PPN to the contents of 
Plt$8Cla·:a. displayed in tlie Process Registers screen fran SHON CRASH. 
Type the following SDA commands 

SDA> SHClf CRASH lto see processor register display 
SDA> EVAL <scbb>/200 !convert contents of SCBB to PFN 
SDA> SID1 PAGE/SYSTEM @EXE$GL_SCB;200 !to see PTE contents 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
RESTART BUGCHECKS 

SCBRDERR Bugcheck 

Page 144 
27 June 85 

'!his halt mans that the cpu got an uncorrectable meJOOry error trying 
to read an SCB vector. Generally this halt is an indication of a 
JDeB)ty error or other hardware problem. 

One very unlikely way that software error could cause this problem is 
corruption of the register PR$ SCBB. To confirm that PR$ SCBB 
contains its original value, examine the SPTE mapping the virtual 
address stored in EXE$GL SCB, and compare its PFN to the contents of 
PR$SCBB as displayed in tlie Process Registers screen from s~ ~H. 

· Type the following SDA camnands 

SDA> SHON CRASH lto see processor register display 
SDA> EVAL <scbb>/200 lconvert contents of SCBB to PFN 
SDA> SHON PAGE @EXE$GL_SCB;200 lto see PTE contents 

Look carefully at any error log entries from before and at the time 
of halt to see whether there are any related unexpected errors, for 
example, machine checks, bus errors, memory errors. 

WCSCO!tlt Bugcheck 

[TBS] 

CPUCEASED Bugcheck 

[TBS] 

OOlOl'SYNC Bugcheck 

O: t the VAX-11/785 cpu and SBI clocks are out of 
:, r cannot be caused by software. For further 

,l .. Lf\Jbsection ?CLOCK PHASE DBOR in section HALTS -
, _T,t.A~111785. 

ACCVICME< Bugcheck 

[TBS] 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
RESTART BUGCHECKS 

ACCVIOKSTK Bugcheck 

[TBS] 

Hints And Kinks 

Page 145 
27 June 85 

· 1. For halts other than power failures, EXE$RESTART uses a temporary 
stack at the end of the page containing the Restart Parameter 
Block when it bugchecks. As a result, SDA.'s display in response 
to SHC»l STACK is not very informative about the state of the 
stack at the time of the halt. 

If the halt occurred on the kernel stack, see the section 
LOCATING THE KERNEL STACK to determine the possibilities for its 
low and high limits. 

The interrupt stack high end is contained in EXE$GL_INTSTK; its 
low end in EXE$GL_INTSTKLM. 

2. When SDA processes the SHON CBASH coumand, SDA outputs the PC and 
PSL and the message "Remaining registers not available - wiped 
out by console." Despite this, it is possible and useful to· 
examine the general registers. You can do this with the ~ 
ccmnand 

SM> EXAM R<number> 

See section HALTS - <cpu type>, subsection Restart Mechanism, for 
information on which general register contents are lost through 
the restart mechanism. 

3. Note that for each V3 SDA COPY camand used to copy the dump, the 
SP will be 8 bytes greater than its actual value; that is, SDA 
will show the SP pointing to a stack address 8 bytes higher than 
it should. 'Ihis V3 bug has been corrected in V4. 

:·}i,*,.:.;;t~~=ees 

,:.~:,~~re standard (DEC Standard 032), Section 12. 7 Halts, 
v~~'1l System Bootstrapping and Console 

MicroVAX I CPU Technical Description, Chapter 2, Proqranming 
Interface. 

[MicroVAX II] KA630-A CPU Module user's Guide, Chapter 3, Booting and 
Console Program Interface 



VAX/VMS Troubleshooting *INTERNAL USE _CH.,Y* 
SSRVEXCEPT BUGCHECK 

Page 146 
10 July 85 

SSRVEXCEPT BUGCBECK 

'Ihe SSRV!XCEP'l' bugcheck is signaled by the default last chance 
condition handlers for kernel mode and exec mode. That is, if 
proce1a-context code has declared no other primary, secondary, or 
call frame condition handler to deal with a particular exception 
type, the last chance handler is invoked to bugcheck. In kernel 
mode, this bugcheck is always fatal. In exec mode, this bugcheck is 
fatal only if the SYSBOOT parameter BUGCHECKFATAL is 1; by default, 
BUGCHECKFATAL is 0. 

The PC displayed by the SDA. SHC>l CRASH camnand reflects the last 
chance handler rather than the location of the exception. RO, Rl, 
AP, and FP in the SH<Jf CRASH display have been altered by the 
exception dispatching code. The PC, RO, Rl, AP, and FP at the time 
of the exception can be obtained as described below. 

When this bugcheck is signaled, signal and mechanism arrays have 
already been built on the current stack and are pointed to by the 
condition handler argument list, also on the stack. The condition 
handler argument list is pointed to by AP. '!he newest information on 
the stack is a frame generated by the call to the last chance 
handler. 

FP: /I 
/I 

SYS$CALL HANDL I I 
call f r'ime \ I 

\I 

I 

AP: /I 
cond. handler I 

arglist \ I 

II 
/I 

mechanism array! 
\I 
\I 

I 

00000000 null condition handler 
xxxxxxxx register save mask/PSW 
x_y_y_y_y_y_xx saved AP 
xxxxxxxx saved FP 
80000014 saved PC - SYS$CALL_HANDL+4 

00000002 argument count 
xxxxxxxx mechanism array address 
xxxxxxxx signal array address 

00000004 argument count 
x_y_y_xxxxx saved FP 
FFPl'ITl'D depth of scan 
x_y_uxxxx RO at exception 
xxxxxxxx R1 at exception 

xxxxxxxx flags 

OOOOOOOx argument count 
xxxxxxxx exception type 

exception parameters 
XJl_Y_Y_Y_Y_Y_x exception PC 
xxxxxxxx exception PSL 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
SSRVEXCEPT BUGCHECK 

Page 147 
10 July 85 

1. The FP register displayed by SH<Jf CRASH points to the frame 
generated by SYS$CALL HANDL's call to the last chance handler. 
'1ht saved AP and saved FP in this call frame are the AP and FP at 
the ti• ·the exception occurred. Typically, the saved AP 
contains the address of the argument list with which the most 
recent procedure was called. This saved FP usually points to a 
fram which contains the address of the previous saved FP. If 
the stack is intact, these saved FPs can be used to trace back 
the sequence of calls that occurred in this process. 

2. use the AP displayed by SHCM CRASH to obtain the addresses of the 
signal and mechanism arrays. 

3. Locate the mechanism array. Saved RO and saved Rl are the 
registers' values at the time the exception occurred. 

4. Skip 1 longword, the flags longword. 

5. The next longword, the beginning of the signal array, contains an 
argument count, the number of longwords that follow. Use the 
count to identify all entries in the signal array. The number of 
exception parameters present is a function of exception type and 
can be 0, 1, or 2 longwords. · 

6. The exception type is a status value, e.g., C (hex) or 
SS$_ ACCVIO. The DCL conmand 

! EXIT %X<exception_type> 

writes the message text associated with the EXCEP'l'Ia.t TYPE status 
value. The V4 SDA conmand 

SCA.> EVAL/CCNDITI~ <exception_type> 

writes the message text associated with the exception type status 
value. 

Typically, the exception is one generated by "hardware" (or 
microcode), for example, access violation. "Hardware" generated 
exceptions are listed with a description of their associated 
exception paramters in Section 10.1 of the VAX/VMS System 
Services Reference Manual. See section EXC!PTI~ for 

/'..,,._t the more COlllDOll hardware exceptions. 

. ::., lf~1c in the signal array is the instruction whose 
· ·t::'. execution resulted in the unexpected exec or kernel 

,._ :*C>R• Whether the PC points to the beginning of the 
._.·''"•-~;:or: the end depends on whether the exception was a 

ftJ{ (endh' fault (beginning) I Or abort (beginning)• The 
reference above specifies whether each exception is a trap, 
fault, or abort. Identify in what source module the PC is. See 
section VIRTUAL ADDRESSES. Often examining instructions around 
the PC is helpful enough to eliminate a microfiche search. Try 
the SDA command 



VAX/VMS Troubleshooting *INTERNAL USE mLY* 
SSRVEXCEPI' BUGCHECK 

SDA> EXAMINE/INSTRUCTI~ <exception_pc>-20;30 

Page 148 
10 July 85 

Figure out why the instruction generated an exception. For 
example, if an access violation occurred, look at the operands to 
see which access was in error. 

8. Decipher the current stack to trace control flow. See section 
STACK PATTERNS. 

Hints And Kinks 

1. Not all access violations are signaled by microcode. The 
pagefault exception service routine, MMG$PAGEFAI.JLT, may signal an 
access violation if a process incurs a pagefault for a page in 
another process's process header. 

2. Note that for each V3 SDA COPY connand used to copy the dump, the 
SP will be 8 bytes greater than its actual value; that is, ~ 
will show the SP pointing to a stack address 8 bytes higher than 
it should. This V3 bug has been corrected in V4. 

3. The VAX instruction set is sufficiently rich that most randan 
data can be interpreted as instructions. Most system code deals 
with binary integer and character data. '!'his •ans that if an 
EXAMINE/INSTRUCTI~ display includes many packed decimal and/or 
floating point instructions, you are probably examining a data 
area or using a start address which is not an instruction 
boundary. 

one COlllm)n error that results in a nonsensical display is to 
examine instructions in the bugcheck overlay area. During a 
crash, fatal bugcheck code and message text overlay resident 
system image code, beginning one page before label BOO$FATAL, for 
a length of about 12000 decimal or 3000 hex bytes. 

",,,,.,,.,_. .. 
':•c {;:.' ~~,~~\1:~:~~~< 

. .:~;· · · . _; , >' s and Data Structure Manual, Chapter 4, for 
;~~ion dispatching and details of exceptions signaled by 
' · · x·aoftware 

.,/J4;· -.... ,,. .· ii -

VAX .ktfii 'r• standard (DEC Standard 032) or VAX-11 Architecture 
Reference Manual, Chapter 6, Exceptions and Interrupts 

VAX/VMS System Services Reference Manual, Chapter 10, 
Condition-Handling Services 



VAX/VMS Troubleshooting *INTERNAL USE .00.,Y* 
STACK PA'rl'ERNS 

STACK PATTERNS 

Page 149 
20 August 84 

Tracing flow of control is often necessary to determine the history 
of unexpected or erroneous system behavior. Whether the problem is a 
crash or a hung process, you need to determine the sequence of events 
that led to the current state. Normally, the best way to attempt 
that is to examine the contents of the appropriate stack and identify 
the "footprints" left on it by the thread(s) of execution which used 
that stack. You identify the footprints to trace what code 
routine(s) ran in that access mode. 

Some examples of footprints are the return PC following a JSB or 
BSBB/W instruction, stack frames built by a CALLS/G instruction, and 
information pushed on the stack for temporary storage. Some 
footprints are easily identifiable patterns unique to particular 
access modes; these are described in the following sections on 
deciphering particular stacks. other possible footprints are simple 
patterns commQn to all access modes, such as the return PC resulting 
from execution of a JSB or BSBB/W instruction. Patterns that simple 
are not unique enough to identify easily other than through reading 
the code which made them. 

In general, you should start at the highest addresses, or oldest 
information on the stack. This is not the only approach; sometimes 
it is more expeditious to work backwards, from newer information to 
older, particularly when there are nested call frames on the stack. 
However, it is usually mre reliable to trace a thread of execution 
from its start than to infer earlier events. 

A useful approximation is that once VMS is running, the processor 
will be running in process context in user mode until some interrupt 
occurs or until execution of an instruction results in an exception. 
So, the question "how did the process or system change to this 
stack?" is a good place to start when you're examining inner access 
mode stacks. You should usually be able to answer this question, 
perhaps drawing inferences from the older stack contents and the PSL 
and perhaps the PC at the ti• of crash. 'lhe next question is "what 
happened in this access mode?". You should usually be able to answer 
this by drawing inferences from the footprints on the stack. 

On a well-behaved system, that the current mode in a process is exec 
implies that the kernel stack is empty; that the systea is running in 
pr .~·<;on~.:illllies that the interrupt stack is empty. There are 

.... )~'\.;~ this you may encounter: when you examine the 
<: .· ..... ·rtt .. the tim of a fatal bugcheck from exec mode, its 
···d(;r contains footprints left . by execution of the fatal 
;code; ':process running in an outer mode may have Files-11 

· .. ,#- saved on the XQP's private kernel stack. 

1. If you have already identified in which stack you are interested, 
go on to item 4. 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
STACK PATTERNS 

Page 150 
20 August 84 

2. If you are looking at a crashdump, determine what stack was 
current at the time of the crash. The SCA ccmnand SHC»l CRASH 
displays the contents of the PSL from the crash. This indicates 
the system-wide interrupt stack or the kernel or exec stack of 
the current process. (The system cannot be crashed from a 
process running in user or supervisor mode. ) Decode the PSL using 
the layout in the section RELATED REFERENCE MATERIAL or with the 
V4 S~ ccmnand EXAMINE/PSL. If the system crashes on the 
interrupt stack, the current process is frequently (but not 
always) irrelevant to the crash. 

· 3. If you are looking at a hung process on the current system, the 
appropriate stack is usually the one for the process's current 
access mode, as determined from the saved PSL displayed by the 
SCA command 

SDA> SHC»l PROCESS/INDEX•<x>,IREGISTER 

Decode the PSL using the layout in the section REIATED REFERENCE 
MATERIAL or with the V4 ~ ccmnand EXAMINE/PSL. 

4. See the section corresponding to the stack of interest: 
STACK PA'rl'ERNS· - EXEC MODE STACK . 
STACK PA'l'l'ERNS - INTERRUPT STACK 
STACK PATTDNS - KERNEL 1'D>E STACK 

Hints And Kinks 

1. Although "deciphering stacks" and "identifying virtual addresses" 
are listed as single and separate steps, in practice, they are 
usually repetitive and intertwined. For example, that a 
particular longword can be interpreted as a particular address 
should be confirmed in the context of what code was executing and 
manipulating that · longword. Usually this requires that some 
piece of the stack be deciphered. Another example is that 
identifying a particular footprint on the stack may require or 
result in the identification of addresses within that footprint. 

2. ch V3 Sta COPY camnand used to copy the dump, the 
·bytes greater than its actual value; that is, ~ 
. pointing to a stack address 8 bytes higher than 

·.'• V3 bug has been corrected in V4. 
-'\.·.,'._,il:5 

·,. :~·<~· 

3 ·A'1111>..,..wr~ ~k:::i wi:ck~=r~!i~~~~ 
all the ti•, you •Y be trying to examine an unaligned stack. 
Try one or more of the following SJ». camnands to see if any 
recognizable footprints or patterns emerge. 

S~ SHC»l STACK <low_address-l>:<high_address-1> 



VAX/VMS Troubleshooting *INTERNAL USE .CNLY* 
STACK PA'rl'ERNS 

Page 151 
20 August 84 

SDA> SHClf STACK <low address-2>:<high address-2> 
SDA> SHCM' STACK <low=:address-3>:<high=:address-3> 

Additional References 

VAX Architecture Standard (DEC Standard 032) or VAX-11 Architecture 
Reference Manual, Chapter 6, Exceptions and Interrupts; Chapter 7, 
Process Structure 

V3 VAX/VMS Internals and Data Structures Manual, Section 1.3, 
Hardware Implementation of Operating System Kernel 



VAX/VMS Troubleshooting *INT!:RNAL USE ~Y* 
STACK PATTERNS - EXEC lO>E STACK 

Page 152 
6 July 85 

STACK PA'l'TDNS - EXEC ?«>DE STACK 

The system runs on the exec imxie stack of the current process to 
service CHME exceptions and to deliver exec imxie ASTs. In practice, 
most·of the processes you see in exec mode are executing exec-mode 
system services or RMS services. 

Possible patterns that you may see on a exec stack are described 
below. You may see these patterns more than once on the same stack, 
and you may see more than one of them. Some patterns should not be 
followed by other described patterns. Each pattern description 

- includes any such restrictions. 

1. Identify the initial reason for the exec mode switch using the 
patterns below. 

2. Account for as much of the stack as possible, using the patterns 
below. 

3. Read the relevant code and try to determine what happened based 
on stack footprints, register contents, and data structure 
alterations ude by the code. Use the section VIRTUAL ADDRBSSES 
wherever appropriate. 

Exec Mode Stack Patterns 

1. one comon pattern, most likely to be the highest (oldest) two 
longwords on the stack, is an exception PSL and PC from the 
syst• service vector area. 

A 

I 
I 

stack growth 

xxxxxxxx CHME exception PC 
xxxxxxxx CHME exception PSL 

If si:..'s symbolic interpretation of the hypothetical exception PC 
is of the fora SYS$<service nam> + 6, then these two longwords 
are a CHMI exception PC and PSL, and the symbolic nam shown is 

~'a symbolic interpretation is an offset other 
t• service vector nam, subtract 6 f ran the 

determine to which syst• service vector, if any, 
responds, following the steps in the section 
VBC'l'ORS. 

~x~~:y\\'r., .~(·< • 
'.~tfte,;teceaa is already executing in exec mode and an exec 

mode system service is requested, you should see the frame from 
the CALL to the system service vector at stack addresses higher 
(older) than the CHMI£ exception PC and PSL. 

When you see a CHMB exception PC and PSL on the exec stack, there 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
STACK PATTERNS - EXEC MODE STACK 

Page 153 
6 July 85 

r page 

will usually be a change mode dispatcher call frame (described 
below) at the next lower (newer) stack addresses. The change 
mode dispatcher simulates a CALL to the real system service 
procedure, which is usually a global EXE$<service name>, where 
<service_name> is from the SYS$<service_name> globaI. 

2. The change mode dispatcher builds "by hand" a 5 longword call 
frame prior to entering a system service procedure. This call 
frame should never be the oldest information on the exec stack. 

I 
I 
I 

stack growth 

00000000 I null condition handler 
00000000 I reg. save mask/PSW 
xxxxxxxx I saved AP 
xxxxxxxx I saved FP 

A( SRVEXIT) I saved PC (in CMODSSDSP) 

The V3 address of SRVEXIT is 8000CFE6. The V4 address of SRVEXIT 
is 8000FDCE. The saved AP is the address of the argument list 
with which the system service was called. The saved FP, 
typically a Pl address, is the address of the previous call 
frame. 

3. In the case of change mode dispatching to a loadable exec mode 
system service, whether user added or VMS supplied, there are two 
extra longwords on the stack at addresses lower (newer) than the 
change mode dispatcher call frame. 

xxxxxxxx I address in Pl sys. ser. vecto 

xxxxxxxx I return address in CMODSSDSP 

00000000 I null condition handler 
00000000 I reg. save mask/PSW 

I xxxxxxxx I saved AP 
I xxxxxxxx I saved FP 
I A(SRVEXIT) I saved PC (in Ql)[)SSDSP) 

stack growth 

'l'be V3 address of SRVEXIT is 8000CrE6. '!he V3 return address in 
OlllSIDl•.-;'/i:,~·,. 8000CEBA. The V3 address in Pl sys. ser. page 

1111,h:~~n the range CTL$A_DISPVEC + 100 to CTL$A_DISPVEC 
. ·. 7,,..00 to 7FFEA1FF. 

:~i.~;:of SRVEXIT is 8000FDCE. The V4 return address in 
...... ~·••aooorcc7. '11le V4 address in Pl sys. ser. page 
sheUldf' fall within the range CTL$A DISPVEC + 100 to CTL$A DISPYEC 
+ l!T or 7PTE6100 to 7FFE61FF. - -

4. One possible pattern results from an IPL 2 AST delivery interrupt 
and dispatch to an exec mode AST procedure. The IPL 2 AST 
delivery interrupt service routine REI's to exec mode to deliver 
the AST. This pattern is possible as the oldest exec stack 



VAX/VMS Troubleshooting *INTERNAL USE t:H.Y* 
STACK PATTERNS - EXEC MODE STACK 

Page 154 
6 July 85 

contents and as intermediate exec stack contents. That is, 
delivery of an exec mode AST is a reason for an access mode 
switch to exec, and delivery of an exec mode AST is possible to a 
process running in exec IIK>de. '!his pattern includes the argument 
list with which the AST is entered and the frame built by CALLing 
the AST procedure. · 

I 
xxxxxxxx I 0 or a(condition handler) 
xxxxxxxx I register save mask/PSW 
xxxxxxxx I saved AP 
xxxxxxxx I saved FP 

A( EXE$ASTRET) I saved PC 
I I 
I xxxxxxxx I saved registers 

stack growth 
/I 00000005 I argument count 
/I xxxxxxxx I AST proc. argument 

I I xxxxxxxx I saved RO 
AST proc. arglistl XXXXXlpCX I saved R1 

\ I xxxxxxxx I AST interrupt PC 
\I XXl'.JOr..XXX I AST interrupt PSL 

'1'he V3 address of EXE$ASTRET is 80008AFA. '!he V4 address of 
EXE$ASTRET is 80009E5E. 

An exec mode AST should not be interrupted for delivery of 
another exec mode AST. '!bat is, you should not see this pattern 
on an exec mode stack more than once. 

Hints And Kinks 

1. occasionally you may find a stack whose ·contents make little or 
no sense. Although VMS keeps the stacks longword aligned almost 
all the ti•, you may be trying to examine an \maligned stack. 
Try one m: more of the following SM cc:maands to see if any 

~tprints or patterns emerge. 

,STAcx <low address-l>:<high address-1> 
.. ,.{STACK <low-address-2>: <higtC address-2> 

. , ,J; STACK <low-address-3>: <high-address-3> 
\·~:·=· .. -.:~~· ·.·. - -



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
STACK PATI'ERNS - EXEC MODE STACK 

Additional References 

Page 155 
6 July 85 

V3 VAX/VMS Internals and Data Structures Manual, Chapter 9, System 
Service Dispatching; Chapter 7, AST Deli very 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
STACK PATTERNS - INTERRUPT STACK 

STACK PATTERNS - IN'l'ERRUPT STACK 

Page 156 
1 August 85 

'!'he system switches to the interrupt stack to service all hardware 
interrupts, to service all software interrupts above IPL 3, and to 
service aa. serious exceptions such as machine check. In addition, 
the system runs on the interrupt stack in the IPL 3 interrupt service 
routine.after it has taken the current process out of execution and 
before it has placed a new process into execution. 

Note that one interrupt stack thread of execution may be interrupted 
by another higher priority interrupt. Because of this, you usually 
should begin with the newer stack contents rather than older. 

Because interrupts are asynchronous, because one interrupt may 
interrupt another interrupt service routine, and because many System 
Control Block vectors point to instructions that jump elsewhere in 
the system, deciphering the interrupt stack is more difficult than 
the kernel or exec stack. 

1. If the stack contains more than just a PC and PSL, try to 
associate system space addresses it contains with a particular 
exception or interrupt service routine (E/ISR). Look 
particularly at contents newer than the interrupt PC and PSL, and 
keep in mind that most E/ISRs begin by saving registers (ccaaonly 
RO through RS) on the stack prior to using them. You might try 
to find the newest PC-PSL pair on the stack, then skip four to. 
six longwords (saved registers), and then look for footprints. 

'Ihe general idea is to try to find a footprint (for example, a 
return PC following a JSB instruction) fran the E/ISR on the 
stack, rather than beginning with the bugcheck PC, which may be 
in a routine called by another routine • • • • called by the E/ISR. 
See the IPL usage table below and the notes following it for 
hints on determining E/ISR addresses. Use the section VIRTUAL 
ADDRESSES to translate any addresses of interest to source module 
names and offsets. 

2. If you were unable to find a footprint f ran an E/ISR, try to 
associate the bugcheck PC with a particular E/ISll. use the 
section VIRTUAL ADDRESSES to translate any addresses of interest 
to source 8X!ule names and offsets. 

sociate an address with a particular interrupt or 
ce routine, the PSL<IPL> •Y be helpful. Try to 

. with a particular E/ISR using the IPL USAGE 
;~-s below. '.this may be difficult since many service 

;@:IPL. Some service routines save the previous IPL 
,,.·· .. j{prior to raising it •. If all else fails, look for a 
, (a.· hex number between 4 and lD) on the stack as a clue 

to what interrupt may have occurred. 

4. If you have identified the E/ISR, or if you have a candidate 
E/ISR, read the E/ISR code and that of any routines it calls, 
checking for footprints on the stack, data structure changes, 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
STACK PATTERNS - INTERRUPT STACK 

Page 157 
1 August 85 

· reqister contents, etc. to corroborate or disprove your 
hypothesis. Use the section VIRTUAL ADDRESSES wherever 
appropriat~. 

Interrupt Stack Priority Level Usage Table 

HEX 
IPL TYPE E/ISR SOURCE I«>DULE NOTE(S) 

0 illegal 1 
1 unexp. interrupt 2 
3 rescheduling SCB$RESCHED [SYS]SCHED 

782 rescheduling MPS$RESCHED [MP ]MPSCHED 
4 IOPOST IOC$IOPOST [SYS]IOCIPOST 
5 XDELTA request INI$MASTERWAKE [SYS]INIT 3 

782 rescheduling MPS$RESCHED5 [MP]MPSCHED 
6 fork dispatch EXE$FRKIPL6DSP [SYS]FORKCNTRL 4,10 
7 software timer EXE$SWI'IMINT [SYS]TIMESCHDL 5 
8 fork dispatch EXE$FRKIPL8DSP [SYS] FORI<Qfl'RL 5,6,10 
9 fork dispatch EXE$nu<IPL9DSP [SYS]FORKCNTRL 7,10 
A fork dispatch EXE$FRKIPL10DSP [SYS]!'ORKCNTRL 8,10 
B fork dispatch EXE$FRKIPL11DSP [SYS]FORKCNTRL 9,10 
c console request EXE$IPCCN!'ROL [SYS]IPC<KrROL 3 
D ·unused 
E unused 
!' 782 XDELTA request INI$MASTERWAKE [SYS]INIT 3 

10 unused 
11 unused 
12 unused 
13 unused 
14 device interrupts (BR4/SBIREQ4) 11 

780, 785, 730 console devices 
750, 8600, MicroVAX I, MicroVAX II console terminals 

15 device interrupts (BRS/SBIRJ!XlS) 11 
16 device interrupts (BR6/SBIRr.Q6) 11 

uVAX interval timer EXE$1MCKLINT [SYS]TIMESCHDL 
17 device interrupts (BR7/SBI~7) 11 

750, 8600 console block storage 
18 interval ti•r EXE$11iCKLINT [SYS]TIMESCHDL 
l,f4'\.;.,; · ' ... interrupt 12 

:: .. interrupt 12 
·interrupt 12 

, .. :.ft~t interrupt 12 
~f~c interrupt 12 

. . ·~Y' / . EXE$PamRFAIL [SYS] EQ1BRFAIL 
m·chedt exc. ED$MCHK [ SYSLC».]MCBECKxxx 12,13 

invalid ksp exc. EXE$KERSTKNV [SYS]EXCEPrI~ 



I 

VAX/VMS Troubleshootinq *INTERNAL USE s:m,.Y• 
STACK PATl'ERNS - INTERRUPT STACK 

Paqe 158 
1 August 85 

NOTES on INTERRUPT PRIORITY LEVEL USAGE TABLE 

·1 1. Being on the interrupt stack at IPL O is an inconsistent state 
I that should be very short-lived. That is, if any interrupt or 
I exception occurs while the processor is in this state, the REI 
I f rem its service routine should result in a reserved operand 
I exception (on the interrupt stack) to which VMS's normal reaction 
I is a fatal bugcheck. 

2. The IPL 1 interrupt is currently unused. Any IPL 1 interrupt is 
due to an error, most likely a hardware error. IPL can also be 
raised to 1 as the result of executing a SVPCT.X instruction from 
IPL 0, as could happen throuqh hardware or software error; the 
microcode raises IPL to 1 because beinq on the interrupt stack at 
IPL 0 is an inconsistent and illeqal state. 

3. These interrupt are requested only by a human at the console 
terminal depositinq into the software interrupt request reqister. 
The interrupts at IPL 5 and IPL hex F are used to awaken XDELTA, 
if present, throuqh a BPT instruction at a location known to 
XDELTA. The interrupt at IPL hex C is used primarily to cancel 
mount verification or force recomputation of cluster quorum 
instead of crashinq the system and may also be used to awaken 
XDELTA. If someone was usinq XDELTA prior to a crash, you should 
consider the possibility that user corruption of data structures 
or interference with normal system operation contributed to the 
crash. 

4. IPL 6 fork dispatchinq is used primarily by V3 drivers which run 
at hiqher fork IPLs and which need to create a thread to execute 
some code which would affect a system wide data base synchronized 
at IPL$ SYNCH. Many fork IPL 8 drivers which created IPL 6 forks 
for this reason still do under V4, althouqh IPL$ SYNCH is now 8. 
IPL 6 is also the fork IPL of the connect to interrupt driver. 

5. Under V3, IPL 7 is the value of IPL$ SYNCH, the IPL used to 
serialize access to system databases such as the scheduler and 
memory manaqement databases. It is also the IPL of the software 
timer interrupt. Under V4, the software timer interrupt is 
requested at IPL 7, but EXE$SWl'IMINT runs primarily at IPL 8, the 
V4 value of IPL$_snlll. 

6. -,_.used by most device drivers. It is the IPL 
~~~-~:-~.'~-"·-···· h sy&t• Conamication Services. It is also the 

· %«.: ·... . . _ . -. ·.. _ ;~ with distributed lock mnaqement and cluster
' , •• "' 'eodi. '·::1~~L?!ltt·'>.\,:;: .. _._· .. .

7. - RfJt.'; •\:~9 ·is_· unused by any known VMS drivers.

8. Fork IPL A hex is unused by any known VMS drivers.

9. Fork IPL B hex is used by the mailbox driver ([SYS]MBDRIVER) and
shared memory mailbox driver ([DRIVER]MBXDRIVER). This IPL is
also used for synchronizinq nonpaged pool variable list

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
STACK PA'rl'DNS - INTERRUPT STACK

allocation and deallocation.

Page 159
1 August 85

10. A fork process is entered with RS pointing to the fork block,
which. is frequently part of some other data structure, such as a
UCB or CDU. If the system crashes at a fork IPL, formatting the
fork block may be helpful; in particular, the offset FKB$L FPC
usually contains the address to which the fork dispatching code
passed control. Type the following SDA conmands to format the
data structure.

SDA> READ SYS$SYSTEM:SYSDEF.STB tread symbol definitions
SDA> FORMAT @RS,ITYP-FKB !format fork block portion
SDA> FORMAT @RS !format anything else

11. Device ISRs are entered at hex IPLs 14 through 17. Also driver
fork processes sometimes raise IPL to that associated with their
devices to block interrupts during a critical section of code.

To find out what devices are present on a system and their
associated device IPLs, display the I/O database with the SDA
camnand SHON DEVICE. The device IPL is displayed as part of the
UCB information. ·

To get a list of many ISR addresses and global names, type the
following SDA command.

SDA> SHaf STACK (@EXE$GL _ SCB+FO) : (@SWP$GL _BALBAS -4)

The low order two bits of the vector do not contain address
information. In practice, this means that you must subtract one
from each of the contents displayed. This display includes the
addresses of the console ISRs, unexpected interrupt service
routines, nexus ISRs, and any directly vectored UNIBUS ISRs.

In most cases, there is an extra level of indirection in that the
SCB contents are the addresses of dispatch instructions. Under
V4, the real console interrupt routines are within SYSLOAxxx.EXE
images. For many nexus ISRs and any directly vectored UNIBUS
ISRs, the addresses point to a Controller Request Block (CRB) JMP
to the appropriate ISR (qenerally within a driver image).

If you suspect an address to be within a device driver ISR, first
~-- ~ct:,h driver using the section VIRTUAL ADDRESSES -

" The driver nam should be of the form
_ ., .. , . • 'Dlen examine any Controller Request Block
·.·:.~with that driver to see the addresses of ISRs
{~~•iver. Type the following SM connand.

'.Ji;i7h~,~DBYICE <device_name>.

12. The cpu-specific ISRs and the machine check ESR are part of code
loaded during system initialization. The SCB vectors point to
instructions which dispatch into the loaded code. The sources
are in [SYS~]MCHECKxxx, where xxx designates a cpu. "xxx" in

VAX/VMS Troubleshooting *INTERNAL USE CH,Y*
STACK PA'rrERNS - INTERRUPT STACK •

Page 160
1 August 85

the MCHECKxxx names is the same as in the SYSLOi\xxx.EXE names.

For further information on the SYSLOi\xxx names and on the
mechanisms for dispatching into SYSLCP., see subsection
SYSI.C:aXXX. EXE in the section VIRTUAL ADDRESSES. For information
on cpu-specific interrupts, see section CPU-SPECIFIC INTERRUPTS.
For information on machine checks, see section MACHINE CHECKS.
Although these interrupts occur at IPLs in the hex range 19 to
lD, their ISRs imnediately raise IPL to lF.

13. Microcode initiation of a machine check exception or invalid
kernel stack exception causes an IPL raise to hex lF. Drivers
and other system code occasionally raise IPL to lF to block all
interrupts. Also, the system runs at this IPL during system
initialization and restart following a halt.

Hints And Kinks

1. Occasionally you may find a stack whose contents make little · or
no sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying to examine an unaligned stack.
Try one or more of the following SDA. camaands to see if any
recognizable footprints or patterns emerge.

SDA.> SHCJf STACK <low address-l>:<high address-1>
SDA.> SHON STACK <low-address-2>:<hiqh-address-2>
SI».> SHON STACK <low:address-3>:<high:address-3>

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 5, Hardware
Interrupts; Chapter 6, Software Interrupts; Section 8.3, Machine
OWck Mechani•

·,,~, . ~tandard (DEC Standard 032) or VAX-11 Architecture
· ··, \, Section 6.6, System Control Block

J~(~rd (DEC Standard 032) Section 12.4, Format and
~cJi'eontents of the System control Block

VAX/VMS Troubleshooting *INTERNAL USE (:NLY*
STACK PA'rl'DNS - KERNEL MODE STACK

STACK PATTERNS - KERNEL MODE STACK

Page 161
6 July 85

The system runs on the kernel mode stack of the current process to
service IPL 2 AST delivery interrupts, to deliver kernel mode ASTs,
to service most exceptions, and to execute kernel D:>de system
services (a special case of exception servicing). In practice, many
exceptions are ultimately serviced by process-declared condition
handlers in the access mode that incurred the exception, and most of
the processes you will see in kernel mode are executing kernel mode
system services.

· In addition, the SWAPPER process and NULL process execute only in
kernel mode, and newly created processes execute EXE$PROCSTRT and any
code it invokes in kernel mode.

Possible patterns that you may see on a kernel stack are described
below. You may see these patterns more than once on the same stack,
and you may see more than one of them. Some patterns should not be
followed by other described patterns. Each pattern description
includes any such restrictions.

1. First, see the section KERNEL STACK LOCATI~S to identify its
high and low limits and to determine whether the process· of
interest is running on it~ usual kernel stack.

2. If the process of interest is 00'1' the SWAPPER or NULL job,
identify the initial reason for the kernel mode switch, using the
patterns below. Account for as much of the stack as possible,
using the patterns below. Read the relevant code and try to
determine what happened based on stack footprints, register
contents, and data structure alterations made by the code. Use
the section VIRTUAL ADDRESSES wherever appropriate.

3. If the process of interest is the SNAPPER, read its code
([SYS]SWAPPER) following the path from label LOOP. (Whenever the
SNAPPER is awakened, it resumes at a location near label LOOP, a
local symbol.) Try to determine what it did based on stack
footprints, register contents, and data structure alterations
made by the code.

4. The NULL job consists of 1 instruction at location EXE$NtJLLPROC
10$: BRB 10$

.QP. circumstances the NULL job should incur no
should not receive ASTs. It may, however, be

'a spurious AST interrupt intended for the previous

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
STACK PA'l'l'ERNS - KERNEL MODE STACK •

Page 162
6 July 85

Kernel Mode Stack Patterns

1. Qle cOJllDOn·pattern, most likely to be the highest (oldest) two
longwords on the stack, is an exception PSL and PC from the
system ~ervice vector area •

I
I

stack growth

..---~~--~----.....
xxxxxxxx CHMK exception PC
xxxxxxxx CHMK exception PSL

If SDA's symbolic interpretation of the hypothetical exception PC
is of the form SYS$<service name> + 6, then these two longwords
are a CHMK exception PC and PSL, and the symbolic name shown is
accurate. If SDA's symbolic interpretation is an offset other
than 6 from a system service vector name, subtract 6 from the
address, and determine to which system service vector, if any,
the address corresponds, following the steps in the section
SYSTEM SERVICE VECTORS.

When the process is already executing in kernel mode and a kernel
mode system service is requested, you should see the f ram from
the CALL to the system service vector at stack addresses higher .
(older) than the CHME exception PC and PSL.

When you see a CHMK exception PC and PSL on the exec stack, there
will usually be a change mode dispatcher call frame (described
below) at the next lower (newer) stack addresses. 'l'he change
mode dispatcher simulates a CALL to the real system service
procedure, which is usually a global EXE$<service name>, where
<service_nam> is from the SYS$<service_name> global'.

2. The change IOOde dispatcher builds "by hand" a 5 longword call
frame prior to entering a system service procedure. '1'his call
frame should never be the oldest information on the kernel stack.

00000000 l null condition handler
00000000 I reg. save mask/PSW
xxxxxxxx I saved AP
xxxxxxxx I saved n

A(SRVBXIT) I saved PC (in CXX>SSDSP)

~i'v . . .

'., ··· .. ·. ~~~<~··;_ . n of SRVEXIT is 8000CFE6. 'the V4 address of SRVEXIT
:r~.;~t%t:·.~-. The saved AP is the address of the argu1Mnt list
,~:,~~(_--,.,iu.Cft'·' . the system service was called. The saved FP,
"'qpiially ·:··a Pl address, is the address of the previous call
fra..

-----------------------· ------------

VAX/VMS Troubleshooting *INTERNAL USE ~Y* Page 163
6 July 85 STACK PATTDNS - KERNEL MODE STACK

r page

3. In the case of change mode dispatching to a loadable kernel mode
system service-, whether user added or VMS supplied there are two
extra longwords on the stack at addresses lower (newer) than the
change mode dispatcher call frame.

I
I
I

stack growth

xxxxxxxx address in Pl sys. ser. ·vecto

xxxxxxxx return address in CMODSSDSP

00000000 I null condition handler
00000000 I reg. save mask/PSW
xxxxxxxx I saved AP
xxxxxxxx I saved FP

A(SRVEXIT) I saved PC (in CMODSSDSP)

The V3 address of SRVEXIT is 8000CFE6. The V3 return address in
CMODSSDSP is 8000D11E. The V3 address in Pl sys. ser. page
should fall within the range CTL$A DISPVEC to CTL$A DISPVEC + FF
or 7!'FEAOOO to 7FFEAOFF. - -

The V4 address of SRVEXIT is 8000FDCE. The V4 return address in
CIO>SSDSP is 8000FFOD. The V4 address in Pl sys. ser. page
should fall within the range CTL$A DISPVEC to CTL$A DISPVEC + FF
or 7FFE6000 to 7FFE60FF. - -

4. one possible pattern results from an IPL 2 AST delivery interrupt
and dispatch to a special kernel mode AST. This pattern is
possible as the oldest kernel stack contents and as intermediate
kernel stack contents. That is, delivery of an AST is a reason
for an access mode switch to kernel, and delivery of a kernel
mode AST is possible to a process running in kernel mode at an
IPL below 2. During execution of the special kernel AST, the
process's current IPL should be no lower than 2, and the stack
should contain the following pattern.

I

'.~~5#J
I'.,•

' t
I

stack growth

I
A(SCH$ASTDEL+C) I

xxxxxxxx I
xxxxxxxx I
xxxxxxxx I
xxxxxxxx I
xxxxxxxx I
xxxxxxxx I
xxxxxxxx I
xxxxxxxx I

saved RO
saved R1
saved R2
saved R3
saved R4
saved RS
interrupt PC
interrupt PSL

The V3 address of SCH$ASTDEL + c is 80008A38. The V4 address of
SCH$ASTDEL + c is 80009D9C. SCH$ASTDEL is within the module
[SYS]ASTDEL.

VAX/VMS Troubleshooting *IN'r!:INAL USE ~Y* Page 164
6 July 85 STACK PATTERNS - KERNEL MODE STACK •

During the execution of most special kernel ASTs, RS contains the
address of the AST Control Block (ACB). Well behaved special
kernel AST routines do not invoke system services; therefore, you
should not expect to see the pattern above followed (i.e. , at
lower addresses) by a system service vector CHMK exception PC and
PSL and change mode dispatcher call frame. While IPL is at 2 or
higher, any other AST delivery interrupts are blocked, so you
should not expect to see this pattern followed by the pattern for
delivery of another special kernel AST or the pattern for
deli very of a normal kernel AST.

The exception to both those restrictions occurs in V3 process
deletion. The special kernel AST routine DELETE lowers IPL to O
to allow delivery of other kernel ASTs, from subprocesses of the
process being deleted. In addition, DELETE requests various
system services.

5. one possible pattern results from an IPL 2 AST delivery interrupt
and dispatch to a normal kernel mode AST. This pattern is
possible as the oldest kernel stack contents and as intermediate
kernel stack contents. That is, delivery of an AST is a reason
for an access mode switch to kernel; and delivery of a kernel
mode AST is possible to a process running in kernel mode at· an
IPL below 2. This pattern includes the argumnt list with which
the AST is entered and the frame built by CALLing the AST
procedure.

I
I

stack growth
/I
/I

I I
AST proc. arglistl

\ I
\I

I
xxxxxxxx I 0 or a(condition handler)
xxxxxxxx I register save mask/PSW
xxxxxxxx I saved AP
xxxxxxxx I saved FP

A(EXE$ASTRET) I saved PC
I

xxxxxxxx I saved registers

00000005 I argument count
xxxxx..v_v..x ·I AST proc. argument
xxxxxxxx I saved RO
xxx_y..xx_u I saved R1
xxxxxxxx I AST interrupt PC
xxxxxxxx I AST interrupt PSL

; of EXE$ASTRET is 80008AFA. The V4 address of
lt!J•,,::ta 80009ESE. -

·Jl1'~~ .. l)k~~~l AST procedure may be interrupted for delivery of
a special kernel AST but not for delivery of another kernel mode
AST.

The exceptions to that restriction occur in V4 process deletion
and suspension. The kernel AST procedure DELETE clears the

VAX/VMS Troubleshooting *INTERNAL USE ~Y* Page 165
STACK PA'r.I'ERNS - KERNEL MODE STACK 6 July 85

PCB$B ASTACT bit to enable further normal kernel mode ASTs to be
deli vired to the process. The normal kernel AST procedure
SUSPEND also clears the PCB$B ASTACT bit to enable further normal
kernel mode ASTs to be delivered to a process with outstanding
Piles-11 XQP activity.

6. If the process of interest is running on the Files-11 XQP stack,
the oldest (highest) information on the stack will be a call
frame from routine DISPATCH in [FllX]DISPATCH (entered on the
previous kernel stack via normal kernel AST) to routine
DISPATCHER in [FllX]DISPAT (which runs on the XQP's private
kernel stack).

7. Another event that can leave kernel stack footprints is an
exception. For most exceptions, VMS dispatches to a condition
handler declared by the process; that is, VMS locates the
condition handler, cleans up the kernel stack, REIS to the access
mode that incurred the exception, and CALLS the condition
handler. Conceivably, a bugcheck could occur sanewhere in this
sequence prior to the kernel stack cleanup and REI. In this
case, the older stack contents should contain (partial) signal
and mechanism arrays and resemble the stacks pictured in sections
INVEXCEP!N BUGCHECK and SSRVEXCEP'l' BUGCHECK. ·

8. Another possibility is that an exception occurred which VMS
handles itself in kernel mode, for example, translation. not
valid. In this case, there may be a footprint on the stack which
is an address within an exception service routine.

Hints And Kinks

1. Occasionally you may find a stack whose contents make little or
no sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying· to examine an unaligned stack.
Try one or DV)re of the following sm comnands to see if any
recognizable footprints or patterns emrqe.

SDl> SHCJf S'l'AClt <low addresa-l>:<hi~ addresa-1>
"Bi .._. STACK <low - address-2>: <hi~ 8ddress-2>

:;.:: i.,;m:;.,_;$TACJC <low-address-3>: <hi~ -address-3>
'.~ .. ,irt·f)t . , (Fi" /f·:).;~;'.;· - -

:;i'~t:f ~~; .
, ,t~~~'.3~f ;,{r,.·.·.·,,····•·.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, dlapter 4, Condition
Handling; Chapter 9, System Service Dispatching; Chapter 7, AST
Delivery

VAX/VMS Troubleshootinq *INTERNAL USE ~Y*
SYSTEM SERVICE VECTORS

SYSTEM SERVICE VECTORS

Page 166
15 January 85

System service vectors are system global procedure names CALL'ed to
invoke a particular service. They contain small procedures which
execute in the mode of the caller and which serve as a bridge between
the caller and the actual procedure(s) which implement the service
request. The actual procedures may be part of SYS.EXE or some other
loaded image such as RMS.EXE and may execute in an inner access mode.

System Service Vector hidresses

The values of system service vectors are fixed across all VMS
releases, so that user programs need not be relinked for a new VMS
version. System service vectors are located in the lowest pages of
system space. They are also located (doubly-mapped) in Pl space.
The Pl definitions were added in V3 to allow per-process redirection
of selected system services. Per-process redirection of selected
system services is currently unused.

As of V3, the Linker uses by default the module SYS$Pl VEC'fOR in
SYS$LIBRARY:ST.ARLE'l'.OLB to resolve system se.rvice vector-globals· to
Pl space addresses. Earlier Linkers resolved system service vector
globals to system space addresses. These system space addresses are
defined by the module SYS$VECTOR in SYS$LIBIU\RY:STARLET.OLB.

The only system service global names known to SM by default are
those referenced within SYS.EXE, a snall subset of the total system
service and RMS service globals. This •ans that SM can make valid
symbolic interpretations of only those system service vector
addresses.

System Service Vector contents

System service vectors begin with a register save mask. What follows
the save mask varies, in part as a function of the access mode in
which. the actual procedure executes. ror the very few system
services that execute in the access mode of the caller, the save mask
is followed only by a JMP to the actual procedure, which is most
oft . .~~t .. :, >. · .EXE. ror services that execute in an inner mode,
-. ··,c·-{: llowed by a CHMZ or CHMlt instruction with an

· · · . . · the service request and, usually, by a RET to
r tbf: .. t~ker. However, sa. system service vectors,

...... ., .·.··· .•.. callfl.dA< "caaposi te vectors", contain lengthier procedures;
tlW.:iC!lfll~.~lnattuetion is followed by something other than a RET.

- ·<,' ' ·'~?!~:. ·. • ... · .. ~·

One exaq>le of a composite system service vector is SYS$QICM, which
includes a CHMIC #QIO and a CHMK #WAITFR request. '?he RMS system
service vectors are composite vectors that branch to RMS
synchronization code which conditionally stalls the process until all
I/O associated with its request is complete. The RMS synchronization

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
SYSTEM SERVICE VEC'roRS

Page 167
15 January 85

code uses the status in the FAB or RAB associated with the request to
determine whether the I/O is complete and executes a CHMK #WAITFR if
it is not.

V4 contains a number of additional composite system service vectors;
all the services which guarantee not to return to the invoker until
all I/O associated with the request is complete have composite
vectors. These V4 system services, called "synchronous services",
use a combination of status block (for example, IOSB or lock status
block) contents and event flag to test for I/O completion. Examples
of synchronous services are $QICfi, $UPDSECW, and $GETJPIW.

The V4 composite system service vectors for these synchronous
services contain a CHMx instruction that dispatches in the usual way
to the actual procedure, whose responsibilities include clearing the
associated event flag and zeroing the contents of the status block if
one was specified. The CHMx instruction is followed by a branch to
common synchronization code.

The synchronization code first tests the status block, if one was
specified. If its status word is zero, the synchronization code
waits on the event flag. Whenever the flag is set and the process
placed into execution, the synchronization code tests the status word
and, if it is zero, clears the flag and waits for it again. If the
user specifies a status block with the system service request, this
mechanism. eliminates the traditional problem of returning before I/O
is complete as a result of concurrent multiple uses of the same flag.

System Service Vector Stack Footprints

Executing the CALLS/G to a system service vector always generates a
call frame on the current access mode stack.

For system services that execute in the mode of the caller (for
example, $FAD), the actual procedure executes on this stack and
U'l'urns to the instruction following the call to the system service
vector.

For inner access mode system services, executing the CHMB/I<
instruction causes an exception. When such a syst• service request
i• .·. · ,tfr:• out.er mode, the CHMx exception results in a stack
.... ·· · · · · ~ss mode change to the mode in which the system

. ... · ~·ly be performed. '!be address following the CHMx
··:<~t .. *1,r· . t119 exception PC saved on. the target access mode

,· r:·tlie·access mode in which the CHMx is executed is outer
k~§~:U· ·the target access mode.

These exception PCs are camnonly found as the oldest contents on a
kernel or exec mode stack. Resolving such an address to its system
service name is an important step in tracing what happened in exec or
kernel mode in a process which is hung or a process in whose context
the system crashed. Note that these addresses within syst• service

VAX/VMS Troubleshooting
SYSTEM SERVICE VEC'roRS

INTERNAL USE OOLY . Page 168
15 January 85

vectors may also appear in the middle of an exec or kernel mode
stack, as the result of one system service's requesting another or as
the reault of an AST procedure's requesting a system service.

The exception PC following a CHME/K instruction is frequently the
address corresponding to SYS$<service name> + 6 and, thus, relatively
easy to resolve as a system service global name. (6 - 2 bytes of
register save mask + 1 byte of CHMx opcode + 1 byte of operand
specifier + 2 bytes of immediate operand) However, the composite
system service vectors contain or branch to synchronization code
which issues other CHME/K instructions. As a result, identifying the
original system service global name is more difficult in these cases.

Resolving System Service Vector Addresses

To determine whether a particular address is within the system
service vectors and which system service it is, follow the directions
below.

1. The Pl vectors begin at the symbol PlSYSVEC'IORS. The V3 value of
PlSYSVEC'roRS is 7FFEDE00. The end of the V3 Pl vectors· is
7FFEE5FF. The V4 value of PlSYSVEC'l'ORS is 7FFEDEOO. The end of
the V4 Pl vectors is 7FFEE7FF.

To create a list of Pl space system service vector addresses and
their global names, use the following comands.

$ LIBR/00'1'-PlVEC'l'OR/EXTMC'l'SYS$Pl VECTOR -
f SYS$LIBRARY:STARLET.OLB -
!LINK/l«>EXE/MAP/FULL Pl VECTOR

2. If the address is between 80000000 and the symbol MMG$A ENDVEC,
it is within the system space system service vectors. - The V3
value of Mr«;$A ENDVEC is 80000800. 'lhe V4 value of l9l:;$A ENDVBC
is 80000AOO. - -

To create a list of system space system service vector addresses
and their global 11a1ms, use the following ccmaands.

, LI SYS$V!CTOR -
·f~·; .. :~:-LIBRARY: STARLET .OLB
;~~/MAP/FULL SYSVBC'IOR

::,;::.,,:,,,:.o:ireaa is not within either of the ranges above, it is
:<":a:~ayatea service vector.

4. If the address is within one of the ranges above, search the
relevant map by eye, with the SF.ARaf utility, or with your
favorite editor to locate the address of interest and obtain its
corresponding global name.

VAX/VMS Troubleshooting *INl'EBNAL USE CH..Y*
SYSTEM SERVICE VEC'roRS

Page 169
15 January 85

5. If your address is within the system service vector range but you
cannot find a corresponding global name of the form
SYS$<service name>, then the address is likely to follow an
aditional ciMx instruction within a composite system service
vector. To identify the original system service, locate the
original call instruction using the directions below.

o If the stack contains a change mode dispatcher call frame,
then use its SAVED P'P value as the address of the frame built
by the original call. (See the section STACK PATTERNS -
KEBNEL MODE for a layout of the change mode dispatcher call
frame.)

o If there is no change mode dispatcher call frame, then use
the contents of the.FP register.

o In the.frame pointed to by the SAVED FP value or FP register,
locate the SAVED PC. (See the section RELATED REFERENCE
MATERIAL for the layout of a call frame.) This should be the
address of the instruction following the call to the system
service vector. p

o Issue the following SDA comand to see the original CALLS/G
instruction

SI»\> EXAM/INST <saved _pc>-10; 10

o The target of the CALLS/G is the address of the original
system service vector and should be the value of a
SYS$<service name>. Search the relevant map to locate the
corresponding global name if SDA is unable to resolve it.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 9, for more
information on system service vector contents and dispatching to
syst• service procedures

VAX/VMS Troubleshooting
UNXSIGlAL BUGCHECK

UNXSI~ BUGCHECK

INTERNAL USE ~Y . Page 170
12 August 85

'!be UNXSI~ bugcheck is signaled by a V4 Files-11 XQP (ODS-2), V3
rilea-11 Ace (ODS-2) , a magtape ACP, or Files-11 ODS-1 ACP condition
handler~ In all cases, the bugcheck indicates that some unexpected
exception has occurred. In all cases, the stack patterns are
similar, with condition handler argument list, signal and mechanism
arrays, and a call frame to the condition handler as newest stack
contents.

In the case of the Fil~s-11 XQP, the bugcheck text "unexpected signal
in ACP", is historically true but somewhat misleading in that V4
Files-11 ODS-2 support is procedure-based code that runs in the
context of the process requesting the I/O rather than as an ACP.

The PC displayed by the SDA SHC»l CRASH connand reflects the condition
handler signaling the bugcheck rather than the location of the
exception. RO, Rl, AP, and FP in the SID'l CRASH display have been
altered by the exception dispatching code. The PC, RO, Rl, AP, and
FP at the time of the exception can be obtained as described below.
The stack pattern follows.

FP: /I
/I

SYS$CALL HANDL I I
call £rime \ I

\I

I

AP: /I
cond. handler I

arglist \ I

/I
II

mechanism array!
\I
\I

00000000
.xxxxxxxx
xxxxxxxx
xxxxxxxx

SYS$CALL_HANDL+4

00000002
xxxxxxxx
xxxxxxxx

00000004
.xxxxxxxx
OOOOOOOx
xxx..v..xxxx
xxxxxxxx

xxxxxxxx

OOOOOOOx
X,_Y_Y_Y.JCXXX

xxxxxxxx
.xxxxxxxx

null condition handler
register save mask/PSW
saved AP
saved FP
saved PC

argument count
mechanism array address
signal array address

argumnt count
saved FP
depth of scan
RO at exception
Rl at exception

£lags

argument count
exception type
exception parameters
exception PC
exception PSL

1. '1'he SIDI CRASH output includes the nam of the current process
and its image. This indicates whetj'ler the bugcheck was signaled
from code within a Files-11 ODS-1 process, a mgtape ACP, a V3

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
UNXSI~ BUGCHECK

Page 171
12 August 85

Files-11 ODS-2 process, Files-11 XQP procedures running in some
process's context.

'1he process names of ACPs are constructed from the mounted device
nu., an ACP type letter, and "ACP". For Files-11 ODS-1, the
type letter is A; for Files-11 ODS-2, the letter is B. For
mgtape ACPs, the type letter is A. For example, DUAOBACP is an
V3 Files-11 ODS-2 ACP.

2. The FP register displayed by SHCM CRASH points to the frame
generated by SYS$CALL HANDL's call to the condition handler. The
saved AP and saved FP-in this call frame are the AP and FP at the
time the exception occurred. Typically, the saved AP contains
the address of the argument list with which the ioost recent
procedure was called. This saved FP usually points to a frame
which contains the address of the previous saved FP. If the
stack is intact, these saved FPs can be used to trace back the
sequence of calls that occurred in this thread of execution.

3. Use the AP displayed by SHCM CRASH to obtain the addresses of the
signal and mechanism arrays.

4. Locate the mechanism array. Saved RO ~d saved R1 are the
registers' values at the time the exception occurred.

5. The depth value specifies how many nested procedures there are on
the current stack between the exception and the procedure that
declared the condition handler.

6. Skip 1 longword, the flags longword.

7. The next longword, the beginning of the signal array, contains an
argument count, the number of longwords that follow. Use the
count to identify all entries in the signal array. The number of
exception parameters present is a function of exception type and
can be 0, 1, or 2 longwords.

8. The exception type is a status value, e.g. , c (hex) or
SS$_ ACCVIO. The DCL camnand

! EXIT %X<exception_type>

Wl'~'tu the ••sage text associated with the exception type status
···. " ,. ,.ii;.;. --\~ . SM camnand

''§1 ,,,,.y.::,'JIJi~) --ITI~ <exception type>
,_;,~::~·i;i;J~·:.~:~~~~'.~ '·.·. ·.~ :. -
:--l~:the••sage text associated with the exception type status
value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware" generated
exceptions are ltsted with a description of their associated
exception parameters in Section 10.1 of the VAX/VMS System

I
I
I

VAX/VMS Troubleshootinq
UNXSIGlAL BUGCHECK

INTERNAL USE CJtlLY . Paqe 172
12 August 85

Services Reference Manual. See section EXCEPTI~S for
information about the more common hardware exceptions.

9. 'ftle exception PC in the signal array is the instruction whose
[ajtempted] execution resulted in the unexpected exec or kernel
mode exception. Whether the PC points to the beqinninq of the
instruction or the end depends on whether the exception was a
trap (end) , fault (beqinning) , or abort (beqinninq) • The
reference above specifies whether each exception is a trap,
fault, or abort.

· 10. Identify in what module the exception PC is. Figure out why the
instruction qenerated an exception. For example, if an access
violation occurred, look at the operands to see which access was
in error.

If the current imaqe is a Files-11 ODS-1 ACP, then the buqcheck
has been signaled by its exec mode condition handler MAIN HANDLER
and is always fatal. The exception PC is most likely- within
FllAACP.EXE, described by [FllA]FllAACP.MAP.

If the current process is a maqtape ACP, then the buqcheclc has
been signaled by the exec mode condition handler EXCEPl' HANDLER
and is fatal only if the SYSBOOT paramter BOOCHECKFATAL- is 1.
By default, BOOCHECKFATAL is O. 'Ihe exception PC is mst likely
within MTAAACP.EXE, described by [MTMCP]MT.MACP.MAP.

If the current process is not an ACP, then the bugcheck has been
signaled by one of several Files-11 XQP kernel mode condition
handler. It is always fatal. 'Ihe initial Files-11 XQP procedure
declares MAIN HANDER as a call frame condition handler. Other
Files-11 XQP procedures declare call frame condition handlers
that issue this buqcheck: ACL-related code declares the handler
BUILD HANDLER; the procedure READ ATTRIB declares the handler
READ HANDLER. 'Ihe exception -PC is most likely within
FllBXQP.EXE, which is loaded into the process's Pl space. For
the location of the Files-11 XQP and its stack, see subsection
Files-11 XQP Re9'ions in section VIRTUAL ADDRBSSES - Pl SPACE.

If the PC is no~ within one of those i•ges, see section VIR'J.UAL
ADDllBSSBS for inform.tion on identifying its source.

-rrent stack to trace control fl<7tf. see section

I 1. Not all access violations are signaled by microcode. The
I paqefault exception service routine, Mr«;$P.AGEFAULT, may signal an

. I access violation if a process incurs a paqefault for a page in

VAX/VMS Troubleshooting *INTERNAL USE (:H,Y*
UNXSIGNAL BUGCHECK

another process's process header.

-· --·----~---·----·-·-·------- -~~-

Page 173
12 August 85

2. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

3. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTI~ display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One COIDll¥)n error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUG$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, for
general exception dispatching and details of exceptions signaled by
VMS system software

VAX Archi ture Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE !NLY*
VIRTUAL ADDRESSES

VIRTUAL ADDRESSES

Page 174
22 April 85

When you are looking at a crashdump and trying to determine the
sequence of events that led to a problem, it is necessary to identify
what code executed and what data structures were referenced. This
means that· you must associate virtual addresses with the code or data
structures they contain. You must associate code or data with source
modules; you must identify type and format of dynamically created
data structures.

All executable code, both in system space and process space, consists
of source modules compiled and linked into images. Images that
execute in PO space are loaded by the image activator. Pl space
images are limited to comnand language interpreters and, under V4,
the Files-11 XQP. The Files-11 XQP is mapped as a global section.
Conaand language interpreters are mapped into Pl space by merged
image activation. Images that execute in system space are loaded by
system code. .Many system space images, including SYS. EXE, are loaded
during system initialization. Other images are loaded later. For
example, SYSGEN loads driver images in response to CCRmCT and/or
LOAD camaands; 782 support (MP.EXE) is ~oaded in response to the DCL
comnand START/CPU. .

By default, SDA knows about symbols defined in SYS.STB, the SYS.EXE
symbol table, and some other self-defined symbols. (See section
6. 2. 4. of the VAX,IVMS System Dump Analyzer Reference Manual.) SI». will
attempt symbolic interpretation of virtual addresses based on the
symbols it knows. That is, SDA will interpret an address as a
positive offset less than hex 1000 from the closest symbol with a
smaller value. This means that spurious labels may be attached to
displayed data and addresses; for example, SDA will interpret the hex
value 00002336 as SS$ OOSHRIMG + 17A. (SS$ OOSHRIMG, a status value
unrelated to any PO address, coincidentally has the hex value 2336 -
17A.)

1. If your hypothetical address is between 0 and 3FFFF!TF, follow
the directions in section VIRTUAL ADDRESSES - PO SPACE.

2. If your hypothetical address is between 40000000 and 7FFP'!TFF,
follow the directions in section VIRTUAL ADDRESSES - Pl SPACE.

3. tical address is between 80000000 and BFFFFFFF,
,. ·rections in section VIRTUAL ADDRESSES - SYSTEM

:·::;.···:. '""-,.,•' -

4. .·>·hJIPthetical address is COOOOOOO or above, it is not a
'······ ..• resa. Go back to the path of investigation that led you

here· am develop another hypothesis.

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES

Hints And Kinks

Page 175
22 April 85

1. Although "deciphering stacks" and "identifying virtual addresses"
are listed as single and separate steps, in practice, they are
usually repetitive and intertwined. For example, that a
particular longword can be interpreted as a particular address
should be confirmed in the context of what code was executing and
manipulating that longword. usually this requires that some
piece of the stack be deciphered. Another example is that
identifying a particular footprint on the stack may require or
result in the identification of addresses within that footprint.

VAX/VMS Troubleshooting *INTERNAL USE a.JLY*
VIRTUAL ADDRESSES - PO SPACE

VIRTUAL ADDRESSES - PO SPACE

Page 176
10 July 85

PO apace is defined dynamically at image activation by the image a
user runs and its referenced shareable images and their referenced
shareable images, and so on. Also, a running image may create PO
address space for its own use through system services such as
$CRE'l'\1A, $CRMPSC, or $MGBLSC.

In addition, if the process runs out of storage in the Pl process
allocation region, the process allocation region may be increased to
include a segment of PO space if the image has not explicitly
prohibited this through the Linker option ?«>POBUFS.

As the V4 image activator processes an image and its references to
other images, the image activator builds a list in Pl space of work
items for itself. Each work item is an image described by an Image
Control Block (ICB). As an image is activated, the ICB describing it
is moved to a list of completed ICBs. You may be able to examine
this list of ICBs to determine what images are mapped into PO space.
(The Debuqger traverses this list to define its SHARE$ symbols.)

The directions below will not work for V3. The V3 analogue is to
examine the shareable image list in the fixup vector section. see
Additional References below fo~ a pointer to more information.

1. First, confirm that your hypothetical PO space address falls
within the range of.PO space for this process. Find the high end
of its defined PO space by typing the following SM camnands.

SDA> SET PROCESS/INDEX•<n>
SDA> EVAL 200 * @POLR

If your address is larger than that, it is not a legal PO space
address for this process. Go back to the path of investigation
that led you here and develop another hypothesis.

2. If the address is legal, examine the image activator ICB list to
find out whether the address is within an activated image. Try
the following SM coanands.

SM> !.VAL IAC$GL IMAGE LIST !get address listhead
Sm> DBI' ICB • Iic$GL IMAGE LIST

ing of ripeat Ioop
• @ICB lget address next ICB

.. -CB
'._ .. l- -if:.:?CB address is not equal to listhead, continue

<. .. :-, _.g .. ICB + 48 !start address of image
'"'?3ff~!<~J;--·:zcs + 4C lend address of image

"'·' : • 1!1) ZX»t' ICB + 15 ; ((@(ICB+l4)@18)@-18) 1 image name
SM>' 1 go to beginning of repeat loop

You may not be successful with these, because the listhead and
ICBs are pageable.

VAX/VMS Troubleshooting *INTERNAL USE CNLY*
VIRTUAL ADDRESSES - PO SPACE

Page 177
10 July 85

3. 'Ihe low end of the process's defined PO space varies with the
imge it is nmning. An image is linked to a default base of 200
hex, unless another base address is specified through the Linker
MD option.

'1'o determine whether location x is valid for this process, type
the following SDA command to display the page table entry that
maps that location.

SDA> SHCM PROCESS/PAGE <x>; 200

Hints And Kinks

1. Any SDA commands to examine PO or Pl space assum that you have
already established the process to be examined by issuing one of
the following commands.

SDA> SET PROCESS/INDEX•<n>
SDA> SET PROCESS <processnam>

2. SD.\. uses special kernel ASTs to access the PO or Pl space of
another process on the current system. 'Ihe special kernel AST,
rUnning in the context of the target process, examines its
address space and sends the information back to the process
running SDA.. Delivery of the special kernel AST cannot happen if
the target process is being waited at IPL 2. 'Ibis •ans that you
cannot examine that process's context until the process lowers
its IPL.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 21.1.2, '!be
Address Relocation Fixup System Service

VAX/VMS Troubleshooting *INTERNAL USE OOLY*
VIRTUAL ADDRESSES - Pl SPACE

VIRTUAL ADDRESSES - Pl SPACE

Page 178
12 June 85

Pl space is primarily defined by the prototype page table and other
assembly-tine information in [SYS]SHELL. Some pieces of Pl space are
created dynamically at process creation, others at image activation,
arid others by images that run in Pl space.

Pl space is divided into a permanent portion and a nonpermanent
portion. The global CTL$GL CTLBASVA contains the current boundary
between the two portion; the aOdress range below its contents is
deleted at image exit. This nonpermanent portion of Pl space

- includes the user stack and the extra pages of image I/O segment. If
the user creates a per-process message section through the SET
MESSAGE comtand, the boundary moves to include the newly mapped
message section.

1. Determine whether your hypothetical Pl space address falls within
the range of Pl space for the relevant process. Find the low end
of its defined Pl space by typing the following SDA comnands.

SCA> SET PllOCESS/INDEX•<n>
SCA> EVAL 40000000+(200*@PlLR)

If your address is smaller than that, it is not a legal Pl space
address for this process. Go back to the path of investigation
that led you here and develop another hypothesis.

2. Using the table below, determine into which region of Pl space
the address falls. If the address does not fall within an image
identified in the table below, go to item 7.

3. Subtract the starting address of the loaded image from your
virtual address to determine the offset of the address into the
loaded image.

4. Reading the subsections below the table, identify to what VMS
facility the loaded image belongs and where in the linked image
the loaded code begins.

5. Locate the facility in the source fiche. '1'he last sheet · of the
source fiche contains an index to the rest of the fiche.
Maintenance" update additions to the source fiche contain an

as the last sheet. The facilities are ordered
. ~in the fiche. Each facility includes link maps

.. ": <Jt'tings for the components of the facility.
,. ,;;',.'··,<i'·- ,,-

6. .<~·'lllP· for that module, determine the relevant source
aftd»c offset within the source module. Then return to the

;investigation that led you here.

7. If the virtual address does not fall within the boundaries of a
loaded image, but is in the process allocation region, then it
may be the address of a data structure. The following SDA
connands should identify a data structure with a standard dynamic

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE

data structure header.

Page 179
12 June 85

SDA> READ SYS$SYSTEM: SYSDEF. STB ! if you haven, t already
Sill\> FOMAT <address>

SDA. may report that there are no symbols to format a block of
type <xxx>. Most likely this means that the block has a standard
dynamic data structure header, but that neither SYS.STB nor
SYSDEF.S'l'S contains symbolic definitions for its fields. If this
happens, you might try to generate the symbols yourself by typing
the following sequence.

SDA>CTRL/Y
$SPAWN
$ MACRO/OBJ•SYS$LOOIN:<xxx>DEP' SYS$INPUT: -
l + SYS$LIBRARY:LIB/LIB
- $<xxx>DEF GLOBAL

.END
CTRL/Z
$ LO
$ C<N1'
SDA>READ SYS$LOOIN: <xxx>DEF. OBJ •
SDA>FORMAT <address>

8. If the address is not within the process allocation region or a
loaded image, determine into which other regions it falls. Read
the subsection under the table that discusses that region for
further information, and return to the path of investigation that
led you here.

The following table describes the various "regions" of Pl space. In
this context, region means a distinct area, with defined boundaries
and characteristics. One example region of Pl space is the pages
that the CLI i•ge occupies. The table is ordered by increasing
virtual address. Each region is described briefly in each table by
its contents and protection and the SCA comands to determine its
boundaries. More detailed descriptions of each region follow the
table. use the first table for V3 systems and the second for V4
systems.

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE V3

V3 Pl Space Organization

RmICfi SDA CCJt1MANDS
PROTEC'l'I~

Page 180
12 June 85

User Stack UN BAD SYS$SYSTEM:SYSDEF.S'l'B !if you haven't already
EXAM @CTL$GL PCB + PCB$L PHD ! address of PHD
EVAL @(@.+PHD$L FREPlVA)-+ 200 !low address of stack
EVAL @(Cl'L$AL_STACK+c)-@SG1$GL_EXUSRSTK lhigh address

Extra User Stack EVAL @(CTL$AL STACK+c)-@~GL EXUSRSTK !low address
UN EXAM CTL$AL_STACK + C - !high address

Image I/O Segment READ SYS$SYSTEM:RMSDEF.STB !if you haven't already
UR!.W EXAM CTL$AL STACK + C ! start address

EXAM PIO$GNIIOIMPA + IMP$L IOSECW>DR
EVAL @. + @TPIO$GW_IIOIMPA + IMP$L_IOSEGLEN) !end address

Per-Process UR EXAM CTL$GL PPMSG
Message Section EXAM • + 4 -

CLI Symbol Table EXAM CTL$AG CLIDATA+lO
SW EVAL @.+ @(7-4)

CLI Image URSW/UR EXAM CTL$AG CLIMAGE
EXAM.+4-

!start address - 0-none
!end address

!start address
lend address

!start address
lend address

Channel Table EVAL @CTL$GL CCBBASE-(10*((@SGN$Gf PCBANQll'@l0)@-10))
URE.W - 110w address

EXAM CTL$GL_CCBBASE !high address

Pl Window to PHD EXAM CTL$GL PHD
URKW EVAL PIO$GL=FMLH

RMS Process URKW EVAL PIO$GL FMLH
Context Area EVAL PIO$GL=FMLH + 200

!start address
!end address

!start address
!end address

Process I/O EVAL PIO$GL FMLH + 200 !start address
segawnt URDf EVAL PIO$GL=FMLH + PIO$C_S~IZ lend address

11'/.Ut CTL$A CDIDJ-@CTL$GQ ca•nn start address
""" CTL$A:CCJ4ltDI - lend address

BYM. CTL$A CaoD1 1 start address
BVaL CTL$A:CXJ91B+.@CTL$GQ_CC>11Uflend address

:tr.~f t. .. ·, : .).)~~;· .···
Ccapatl .. tty tM !YAta CTL$AL 01Clfl'X !·start address

Mode Data Page EVAL CTL$AL:CMCN.rX+200 !end address

user Mode Data EVAL CTL$GL DCLPRSa4N
Page UN EVAL CTL$GL=DCLPRSCR1+200

!start address
lend address

VAX/VMS Troubleshooting *INTERNAL USE 00.,Y*
VIRTUAL ADDRESSES - Pl SPACE V3

Unused Pages 2 pages

Image.Activator EVAL CTL$GL IAFLINK
Context URD1 EVAL CTL$GL ~)AFLINK+200

Page 181
12 June 85

1start address
lend address

Process Allocation EVAL CTL$A PRCALLREG ?start address
Region UREN EVAL CTL$A PRCALLREG+(CTL$C PRCALLSIZ*200) lend address - -

CLI Data Pages EVAL CTL$AL CLICALBK !start address
URSW EVAL CTL$AG=CLIDATA+cTL$C_CLIDATASZ lend address

Image Activator EVAL MMG$IMGA.CTBUF
Scratch UREW EVAL MMG$IMGACTBUF + 1000

Debugger Context EVAL MMG$IMGACTBUF + 1000
Pages UR EVAL C'l'L$A_DISPVEC

Dispatch Vectors EVAL CTL$A DISPVEC
UREN EVAL MMG$IMGHDRBUF

Image Header EVAL MMG$IMGHDRBUF
Buffer TJW EVAL MMG$IMGHDRBUF+200

Guard Page 1 page

Kernel Stack SRKW EXAM C'l'L$AL STACKLIM
EXAM CTL$AL =STACK

Exec Stack

Sup. Stack

SR!.W EXAM CTL$AL STACKLIM+4
EXAM CTL$AL=STACK+4

URSW EXAM CTL$AL STACKLIM+8
EXAM CTL$AL=STACK+8

lstart address
!end address

!start address
lend address

!start address
lend address

lstart address
lend address

!low address
!high address

!low address
!high address

1low address
!high address

System Service EVAL PlSYSVECTORS !start address
Vector Pages URKW EVAL P1SYSVECTORS+(~C_SYSVECPGS*200) lend address

Spare Pages for System 12 (decimal) pages
Service Vectors

?start address
lend address

?start address
lend address

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE V4

V4 Pl Space Organization

RrGIC. SDA CCJt1MANDS
PROrECTIOO'

Page 182
12 June 85

User Stack UN READ SYS$SYSTEM:SYSDEF.STB !if you haven't already
EXAM @CTL$GL PCB + PCB$L PHD ! address of PHD
EVAL @(@.+PBD$L FREPlVA)-+ 200 !low address of stack
EVAL @(CTL$AL_STAcK+c)-@SG1$GL_EXUSRSTK !high address

EXtra User Stack EVAL @(CTL$AL STACK+c)-@~GL EXUSRSTK !low address
uw EXAM CTL$AL_STAcK+c - !high address

Extra Image I/O
Segment UR!.W (see subsection below)

Per-Process UR EXAM CTL$GL PPMSG !start address - o-none
Message Section EXAM.+4- !end address

CLI Symbol Table EXAM CTL$AG CLIDATA+lO !start address
UR/SW EVAL @.+ @(-:--4) lend address

CLI Ccmnand EXAM CTL$AG CLITABLE !start address
Tables UR EXAM.+4- !end address

CLI Image UR EXAM CTL$AG CLIMAGE !start address
EXAM.+4- lend address

Files-11 XQP CTRL/Y !leave SDA to get symbols
Data KW SPAWN ! create subprocess

MACRO/OBJ•SYS$LOGIN:Fl1BDEF SYS$INPUT:+SYS$LIBRARY:LIB/LIB
$Fl1BDEF GLOBAL
.END

CTRL/Z
LOGOUT
CCNI'INUE
RF.AD SYS$LOGIN:FllBDEF.OBJ
DEF XQP-@CTL$GL FllBXQP
EXAM XQP+F11B$L-IMPBASE
EVAL @.+@(XQP+Fl1B$L_IMPSIZE)

';;jf::""' XQP+F11B$L CODEBASB
a:~1:- @.+@(XQP+FI1B$L CODESIZE)

(;~;tj,f'i:'.J'.(i;~;~~>~t. -
·"'·:·.; __ PIO$GQ IIODEFAULT+4

;>-·:.c IVAL @. + @T.-4)
·~ 'ij·i:~~,:il:~:_,;.;;,_ ,:

!attach main process
1 return to SDA
tread few XQP symbols

!data start address
!data end address

!code start address
!code end address

!start address
lend address

Process I;t> READ SYS$SYSTEM:RMSDEF.STB !read symbols
Segment UREW EXAM PIO$Gf PIOIMPA + IMP$L IOSBGADDR

DEF PIOEND-f .+@(PIO$Gi PIOIMPA+IMP$L IOSEGLEN)
EVAL PIOEND-(200*((@~ PIOPAGES@!0)@-10))

- !start address

VA1VVMS Troubleshooting *INTERNAL USE c:m,y• Page 183
VIRTUAL ADDRESSES - Pl SPACE V4 12 June 85

EVAL PIOEND !end address

Process UREW EVAL PIOEND !start address
Allocation Region EVAL PIOEND + (200*((@SGN$GW CTLPAGES@l0)@-10))

-. !end address

Channel Table EVAL @CTL$GL CCBBASE-(lO*((@~GW PCHANCN'l'@l0)@-10)).
UR&W - ! l'Ow address

EVAL @CTL$GL_CCBBASE+10 !high address

Pl Window to PBD EXAM CTL$GL PHO
. URKW EVAL PIO$GL=FMLH

RMS Process UREN EVAL PIO$GL FMLH
Context Area EVAL PIO$A_T.RACE

RMS Tracepoint EVAL PIO$A TRACE
Page tJRP..W EVAL PIO$A=DIRCACHE

RMS Directory EVAL PIO$A DIRCACHE
cache tJREH EVAL PIO$JCDIRCACHE+400

!start address
!end address

!start address
lend address

!start address
lend address

!start address
!end address

RMS IP'AB/IMB BF.AD SYS$SYSTEM: RMSDEF. STB !if you haven, t already
Table UREN EXAM PIO$GW PIOIMPA+IMP$L IFABTBLlstart address

EVAL @. + 2lf O - 1 end address

Per-Process UN EVAL CTL$A COMMCfi-@CTL$GQ ~!start address
CC>Jm:>n for Users EVAL CTL$~~ - !end address

Per-Process uw EVAL CTL$A ~ !start address
comon Digital EVAL CTL$A=CcntCfi+@CTL$GQ_~lend address

Compatibility Mode EVAL CTL$AL CMCNTX
Data Pages uw EVAL CTL$AL_OtCNTX+400

User Mode Data EVAL CTL$GL DCLPRSaiN
Page UW EVAL CTL$GL=DCLPRSa4N+200

unused Pages NA 2 pages

Security Audit I.VAL NSA$T IDT
Data Pages KW EV.AL NSA$~IDT+600

··.··•·· C'1'L$GL IAFLINK SAL-C'l'L$GL=IAFLINK+200

!start address
lend address

!start address
lend address

!start address
!end address

!start address
lend address

ct.I· EV.llt· C'l'L$AL CLICALBK 1 start address
11YA1:.· CTL$J\G=CLIDATA+C'l'L$C_CLIMTASZ lend address

Image Act Scratch EVAL IAC$AL IMG1Cl'SUF
Pages UR!.W EVAL IAC$AL=IMG1Cl'SUF+1000

Debugger Context EVAL IAC$AL IMGA.CTBUF+lOOO
Pages uw EVAL CTL$A_DISPYEC

!start address
!end address

!start address
lend address

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE V4

Dispatch Vectors EVAL CTL$A DISPVEC
URllf EVAL Mrt3$IMGHDRBUF

Image Header EVAL MMG$IMGHDRBUF
Buffer URSW EVAL MMG$IMGHDRBUF+200

Page 184
12 June 85

!start address
lend address

!start address
lend address

KRP Lookaside EVAL CTL$GL KRP !start address
List URKW EVAL CTL$GL-KRP+(CTL$C KRP COUNT*CTL$C KRP SIZE)

- - - ! end aOdreis

G\.iard Page NA 1 page

Kernel Stack NA EVAL CTL$GL KSTKBASEXP
Expansion Pages EVAL CTL$GL~)STKBAS

Kernel Stack SRKW EVAL CTL$GL KSTKBAS

Exec Stack

Sup. Stack

. EVAL CTL$GL=KSPINI

SREW EXAM CTL$AL STACKLIM+4
EXAM CTL$AL=STACK+4

URSW EXAM CTL$AL STACKLIM+8
EXAM CTL$AL=STACK+8

llow address
!high address

!low address
!high address

!low address
!high address

!low address
!high address

System Service UR EVAL PlSYSVECTORS !start address
vector Pages EVAL PlSYSVECTORS+(~C_SYSVECPGS*200) lend address

Spare Pages for System 11 (decimal) pages
Service Vectors NA

Pl Pointer Page EVAL CTL$GL VEC'roRS
URKW EVAL CTL$GL=VEC'roRS+200

Debugger Symbol EXAM CTL$GQ DBGAREA+4
Table UN EVAL @. + @T.-4)

!start address
lend address

!start address
!end address

VAX/VMS Troubleshootinq *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE

User Stack

Paqe 185
12 June 85

'l'he pageable user stack is normally allocated at the lowest defined
end of Pl space to enable its automatic expansion on demand. To
examine the current contents of this stack, type the followinq SDA
command.

SDA> SIDl STACK @USP:(@(CTL$AL_STACK+c)-@SGN$GL_EXUSRSTK)

- Extra User Stack Paqes

Extra paqes are allocated at the hiqh end of the user stack for use
by the system durinq exception processinq if the user stack is
corrupted. The size of this reqion is defined by SYSBOO'I' parameter
EXUSRSTK, with a default value of 2 paqes. Usually, these paqes show
up as extra zeros at the end of what SDA displays in response to the
conaand SHCM STACK/USER.

Imaqe I/O Segment

The pageable imaqe I/O segment contains RMS data structures for files
which can be open only durinq the life of an imaqe. under V4,
EXE$PROCSTRT allocates a default imaqe I/O segment that is SYSBOO'l'
para.tar PIOPAGES paqes lonq. An imaqe needinq Jlk)re space than this
should be linked with ,the IOSEGMENT option. When an imaqe which
specified an IOSEGMENT l;>iqqer than the default is activated, the
imaqe activator allocates virtual address space equal in size to the
difference between the default segment size and the size specified at
link time. This additional portion of imaqe I/O segment lies in
virtual addresses just hiqher than the end of the user stack. RMS
data structures allocated from the Imaqe I/O Segment include Internal
File Access Blocks (IFABs) , Internal Record Access Blocks (IMBs) ,
Buffer Descriptor Blocks (BDBs), I/O buffers, etc.

To display the data structures allocated from this reqion, type the
SM command SIDJ PROCESS/MS.

Pieces of the i•ge I/O segment that have been used and then
dHU~·-:'•~•·,.:cJ.inked toqether at the listhead PIO$<M IIOIMPA +

,, ,c;' '' '·-' ' '.' IMP$ symbols are defined by SYS$LIBRAiY:LIB.MLB
'. •' ::aiso in SYS$SYSTEM:RMSDB!'.STB.) Any additional I/O

:·-, ,,,.,
1Jby the V4 imaqe activator is inser.ted on this list

.'l'IW1~:,;·portion of the imaqe I/O Se<Jmnt that has never been
·:; defillled in the imaqe I/O s991D9nt context area. Its

start address is in PIO$GN IIOIMPA + IMP$L IOS!XaDDR; its size is
in PIO$<M_IIOIMPA + IMP$L_IOSEGL!N -

VAX/VMS Troubleshooting *IN'l'DNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE

Per-Process Message Section

Page 186
12 June 85

A message section is mapped into a process's Pl space as the result
of the DCL camnand $SET MESSAGE <filename>. The $GETMSG system
service uses this message section in addition to the system message
section to translate status codes into message text.

CLI Symbol Table

· L(X;IH:Xn'.EXE creates this pageable virtual address space with a
$EXPREG of SYSBOOT parameter CLISYMTBL pages. The CLI uses this to
store the definitions of process global and local symbols, labels,
and scratch storage. DCL manages this area using EXE$ALLOCATE and
EXE$DF.ALLOCATE.

CLI Comand Table

L(X;Itlln'.EXE maps the conmand table for the process's CLI. A user
can override the default tables with the SP~ and login qualifier
,l'l'ABLES. The usual tables for DCL and MCR are
SYS$SHARE:DCLTABLES.EXE and SYS$SHARE:MCRTABLES.EXE. These tables
contain all the camnand definitions for the CLI. They can be
replaced or altered with the SET COMMAND utility. under V4, the
filename of the mapped cooaand tables is in CTL$GT TABLENAME.

CLI Image

L<:X;I~.EXE, using the authorization file record and/or camnand used
to create the process, determines which camnand language interpreter
the process will use. It maps the CLI into pageable Pl space.

Under V4, to find out which CLI a process has mapped, type the
following SI»\ camnand.

SM> EXAMINE C'l'L$GT_CLINME;8

'lht .. ~i'· ~ -~-~\'~. loaded starting at
. . · ri·ii;ot:x· ·. .. CLIMAGE correspond
· · . ·:m.•r,_ .,'Ta in facility [CCL].

,>:f MClll~:· '!he V4 MCR CLI is
. . ,, ·1 frQll VJB.
>:>;·t!iii\1~1 · :. .· ," .

. :;~~ ..

Files-11 XQP Regions

offset O. That is, the
to offset 0 in the linked

'!he V3 MCR CLI is in
a layered product, shipped

under V4 the Files-11 XQP runs in process context and is mapped into
Pl space by EXE$PROCSTRT. The location in FllBXQP.EXE that

VAX/VMS Troubleshootill<j *INTERNAL USE ~Y* Page 188
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

concurrently or if you have too many concurrent P$SEARCH contexts,
you may nm out of space in this region and receive the error
RMS-1'-.DMI, dynamic memory exhausted. In extreme cases, there may not
be···· an error message, •rely that status value set in the DCL symbol
$STA'1US.

Process Allocation Region

This region is a pageable pool for process-specific data structures.
· Mounted volume list entries for privately mounted volumes and the

process logical name table are allocated from it. under V4, this
address space is sized by SYSBOOT parameter C'l'LPAGES and created by
EXE$PROCST.RT and is also used for the allocation of process logical
name directories and image control blocks, among other things. under
V4, the process allocation region can be increased to include a
segment of PO space, if it becomes full and if the image has not
explicitly prohibited this through the Linker option R:>POBUFS.

Blocks not in use are linked in a singly linked list whose head is at
CTL$GQ ALLOCREG. Each block contains the pointer to the next free
block it offset 0 and its own size at offset 4. ·

There is no useful way to display this region other than through
repeated EXAMINE connands. 'l'he DCL connand Sllaf PROCESS/MDl:>RY
displays information about this region, its size, number of bytes
free, etc.

Insufficient process allocation region is one possible cause of the
error SYSTEM-P-INSFMEM.

Channel Control Block Table

The pageable Channel Control Block (CCB) Table has room for SYSBOOT
parameter CHANNBLQft' CCBs. Whenever a process issues the $ASSI~
system service, a CCB is allocated to describe the state of the
process's connection to the assigned device unit. '!he "channel
number" returned frca the system service is the positive byte index
which is subtracted f ran the base of the table to form the address of
the. ,Channel 0 is left unassigned for error detection.

· na the positive 17fte index of the highest channel
in the life of this process.

CCB$B Nm· equal to 0. An assigned CCB has
· 1 plus -the access mode from which the channel was

The CCB table is the key to determining what I/O is or has been going
on in the process. An assigned CCB contains the unit Control Block
(UCB) address of the assigned device unit and an indirect pointer to
any file opened on that channel. CCB$W_IOC is the number of I/O

VAX/VMS Troubleshooting *INTERNAL USE Cf«,Y*
VIRTUAL ADDRESSES - Pl SPACE

Page 187
12 June 85

corresponds to the contents of CTL$GL FllXQP is global symbol
XQP_QUEUE. Files-11 XQP sources are in facility [FllXJ.

EXE$PROCS'l'.RT calls the Files-11 XOP's initialization routine. This
routine creates an impure area and private kernel stack on which the
XQP keeps the context of an I/O request in progress, and locks the
private kernel stack and some of the Files-11 image pages into the
process working set, making it nonpageable. To determine the
boundaries of the XQP stack, type the following SDA commands.

SDA> EXAM @CTL$GL F11BXQP+2C 1 low end
SDA> EXAM @CTL$GL=F11BXQP+28 !high end

The SYS$LIBRARY:LIB.MLB macro $FllBDEF defines symbols for several
variables at the beginning of the data area. A layout of the entire
impure area is in [FllX]FCPDEF, in the macro GLOBAL sroRAGE. The
contents of CTL$GL FllBXQP correspond to the location XQP QUEUE in
that layout. - -

Process I/O Segment

'Ihe pageable process I/O segment contains RMS data structures
describing "process permanent" files, those which can, and usually
do, remain open across image activations. SYS$INPt11', SYS$001'Pt11', and
files opened through the DCL camnand OPEN are examples of process
permanent files. These data structures include Internal File Access
Blocks (IFABs) , Internal Record Access Blocks (IRABs) , Buffer
Descriptor Blocks (BDBs), I/O buffers, etc.

To display the data structures allocated f ran this region, type the
following SDA commands.

SDA> ! save value of image I/O seqment context
SDA> DEF SAW-PIO$GN IIOIMPA
SD.\> 1 set symbol to process I/O segment context
SCA> DEF PIO$GN IIOIMPA-PIO$Qt7 PIOIMPA
SDl> 1 display process I/O dita structures
SM> SID1 PROCESS/RMS
SM> 1 restore value of iage I/O segmnt context
SM> DEF PIO$Qtl_IIOIMPA • SAVE

Pi~;~ef'.<.lthe process I/O segment that have been used and then
ded:~, are linked together at the listhead PIO$Qt7 PIOIMPA +
~il·~· '!!le portion of the process I/O segment -that has
~-t5!'··bfftn allocated is defined in the process I/O segment context
area~~;'.. Its starting address is in PIO$Gf PIOIMPA + IMP$L IOSEGM>DR;
its· size is in PIO$GN PIOIMPA + IMP$L IOSEGL!N ('Ihe IMP$ symbols are
defined by SYS$LIB~Y:LIB.MLB macro $IMPDEP and also in
SYS$SYSTEM:RMSDEF.S'l'B.)

'Ibis size of this region is determined by the SYSBOOT parameter
PIOPAGES. If you have too many process permanent files open

VAX/VMS Troubleshooting *INTERNAL USE ~Y*
VIRTUAL ADDRESSES - Pl SPACE

Page 189
12 June 85

requests outstanding on this channel. The outstanding I/O requests
are described by I/O Request Packets (IRPs) that contain the process
ID of this process in IRP$L PID, the contents of CCB$L UCB in
IRP$L_UCB, and the negative "cliannel number" in IRP$W_ClfAN. -

If a file is open on the channel, CCB$L WIND contains its Window
Control Block (WCB) address. If a section has been mapped on the
channel, CCB$L_wnm contains the section table index.

Under V4, a negative value in CCB$B AMOD identifies the single
channel control block reserved for- the use of Files-11 XQP.

- (Files-11 XQP alters CCB$L UCB dynamically in order to issue an I/O
request to a particular- disk.) Files-11 XQP zeroes CCB$B AMOD to
issue an I/O request through that CCB; when the request coiipletes,
Files-11 XQP stores a negative value in that field to prevent the
channel from being deassigned by image rundown.

To display the region under V3, select one of the following sets of
SDA commands.

SDA> !use this method to scan through CCBs quickly
SDA> 1 to locate a particular CCB
SDA> READ SYS$SYSTEM:SYSDEF.STB lif you haven't already
SDA> EXAM @CTL$GL CCBBASE
SM> !repeat next-command til CCB is all zeroes
SDA> FORMAT .-10/TYP-CCB
SDA> !or use this method to scan through CCBs determining
SDA> ! assigned device for each
SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven't already
SDA> DEF x - @CTL$GL CCBBASE !base address of CCB table
SM> !next CCB -
SDA> DEF x • X-10 1 address of next CCB
SDA> !if X < @CTL$GL CCBBASE- (@CTL$GW_CHINDX*l0)
SDA> ! then you're aone
SDA> FOBMAT X/TYP-CCB !display CCB
Si»S 1 if CCB$B AMOD-0, go to next CCB
SDA> DEF UCB-@(X+cCB$L UCB) - ! address of UCB
SDA> EXAM @(UCB+UCB$L DDB)+DDB$T NAME;8 !device name
SDA> EXAM UCB + UCB$WUNIT Tunit nUmber in low word
SM> 1 go to next CCB

type the following SDA command.

All of the process's header, except for the page table pages, is
double-mapped in Pl space so that kernel mode code can access it
using Pl addresses which are invariant across process outswaps and
inswaps (which can result in allocation of a different system space
balance set slot for the process's header). 'Ibis region is not

11·' 111'NV111 mv 1111•wttt!t!htt uli
11 j ·111 "•*'*'"Whttz bbtJ! 1

VAX/VMS Troubleshooting *INTERNAL USE CNLY*
VIRTUAL ADDRESSES - Pl SPACE •

pageable.

To display these pages, type the following SDA ccmnands.

Paqe 190
12 June 85

Sm> FORMAT @CTL$GL PHD/l'YP-PHD!display fixed part of PHO
IDi) SIDl PROCESS/RiGISTER !display hardware PCB
JD() Sll>1 PROCESS/tl>RK !display working set list
SDA> SHCt1 PROCESS/PROC !display section table

RMS Process Context Area

RMS uses this page to locate and control per-process RMS-32 resources
and data structures. It is divided into several areas: an overall
area that includes globals that define process RMS defaults and
listheads for directory caches and free meJOOry; a process I/O segment
context area; and an imaqe I/O segment context area. This page is
pageable.

'!be best way to look at the overall area is by repeated SDA EXAMINE
camnands, reading [SYS 1 SHELL, since the globals are not all
longwords. The globals are defined beginning in the source module· at
subtitle PROCESS I/O SEGMENT and continue.up to PIO$GW_PIOIMPA.

The process and image I/O segment context areas contain pointers to
some of the data structures in their respective segments.that
describe RMS operations.

To display the process and image I/O segmnt context areas, type the
following SDA ccmnands.

SDA> RFAD SYS$SYSTEM:RMSDEF.STB
SDA> FORMAT PIO$GW PIOIMPA/'l'YPE-IMP !process I/O context
SDA> FORMAT PIO$GW=IIOIMPA/'l'YPE-IMP 1 iuqe I/O context

RMS Tracepoint Page

'l'his paqeable page contains RMS per-process statistics, COW'lters for
the various RMS operations. 'lhe symbolic offsets in this page are
gl. · ·... · c,~, ~P~ TPT$L _<mm> defined in SYS$SYSTEM:RMS. S'l'S. Look

· ·· · fatft,Che at iiodule [RMS]RMOIUIMY for ·the values of these
· f, ec.nents that explain them.

_ijxhwlnci SM conmands to display this page.
,, \1:~·, .. :./P} ... ·' .
'.'"-.:nM> SYS$SYSTEM:RMS.STB

JBI> FORMAT PIO$A _ TRACE/l'YP-TPT

VAX/VMS Troubleshooting *INI'DNAL USE OOLY*
VIRTUAL ADDRESSES - Pl SPACE •

RMS Directory Cache

Page 191
12 June 85

These pageable pages are used to cache the mappings between a
directory name and the file id of the file that contains that
directory. This caching minimizes Files-11 directory file lookups
for heavily used directory paths.

The format of the cache elements is defined by the macro $DRCDEF,
whose symbols are also in SYS$SYSTEM:RMSDEF.STB. The cache elements
are linked together in a tree structured list whose head is at
PIO$GL DIRCACHE and the next longword. PIO$GL DIRCACHE heads a queue

· of caclie elements, each describing a volume, !Inked together through
DRC$L NXTFLNK and DRC$L NXTBLNK. Each of these volume elements
contains a list head (DRC~L LVLFLNK and DRC$L LVLBLNK) for top level
directories contained on -that volume. Thi cache elements for top
level directories on a particular volume are themselves linked
together through DRC$L NXTFLNK and DRC$L NXTBLNK, with the element at
the end of the list pointing back to its-upper level cache element.
A cache element for a top level directory contains a list head for
the next lower level subdirectory (DRC$L LVL!'LNK and DRC$L LVLBLNK),
and so on. - -

unused cache elements are singly linked at PI~GL_DIRCFRLH.

MS IFAB/IRAB Tables

This page contains the process I/O Internal File Access Block (IFAB)
and Internal Record Access Block (IRAS) tables. The IFAB/IRAB Table
page is pageable. Whenever the process opens a process permanent
file, an IFAB is allocated and an Internal File Identifier (IFI) is
associated with that file. The address of the IFAB is stored in the
IFAB table at the longword entry indexed by the IFI. Whenever a
record stream is connected to such a file, an IRAS is allocated and
an Internal Stream Identifier (ISI) is associated with the file. The
address of the IRAS is stored in the IRAS table at the longword entry
indexed by the ISI.

Under V4, these tables each have room for 64 (decimal) entries.
under V3, these tables eaCh have room for 12 (decial) entries. An
entry containing a zero indicates that its corresponding identifier
is ~ ... ·. in. u•h·. 'ltlis page is displayed as part of the process I/O
•• · ·~;'lfith t::l\tt~SEa conaands in the subsection above on Process I/O

'·:~lf. RMS·' finds these tables by following the pointers from the
'\ ?t1) sewent context area, PIO$Gf PIOIMPA + IMP$L IFABTBL and

::ta9'1'9L., ' . - -
.~,·.~c·

Per-Process COlllllOn Regions

The four pages beginning at CTL$A ~ are for use by VAX-11 BASIC
to provide "core ccmmon" requirea to pass data when one image chains

VAX/VMS Troubleshooting *INTERNAL USE OOLY* Page 192
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

to another. An identical area, negatively displaced, is allocated
for use by customers and css. These are pageable.

Compatibility Mode Data Pages

One use of these pageable pages is ccmmunication between the initial
service routine for compatibility llKXle exceptions, EXE$COMPAT, and
any compatibility mode handler declared through $DCLCMH. In most
cases, the declared compatibility mode handler is part of the RSX-11

· AME. EXE$COMPAT saves RO-RS, the compatibility D:lde exception
parameter, and the faulting PC and PSL in this page.

User Mode Data Page

This page is writable from user mode and pageable. It is used by
user-mode VMS components. It contains two globals used as pointers
for CLI context and work area.

Security Audit Data Pages

'lhese ·pages are used by routines in V4 module [SYS 1 SECAIJDIT to
construct security audit journal records and/or OPC<Jtl messages. The
SYS$LIBBARY:LIB.MLB macro $NSAID'l'DEP defines the layout of this
region. ·

Image Activator Context Page

This page contains image activator context that remains after an
image is activated, for use by the $IltllFIX system service and image
rundown. It is pageable.

CLI Data Page

CLI data COID)n to both MCR and DCL. It contains,
:. "\· ~·. nae of the CLI image used by the process and the
·;:,fijto which the CLI and its conaand tables have been

·J'·~ ,; .

sag£· · nj~;':~t':Ldn.$M; CLI~TA is an area used for connunication between
LOGI!l:X11' and the cLI it maps. It contains, for example, information
about the size and location of the CLI symbol table; the file ids,
IFis, ISIS, and channel numbers of SYS$INPt11' and SYS$<X11'PUT. It also
contains a pointer to the data structure DCL uses to describe its
current state. '!'bis data structure includes the listheads for local

VAX/VMS Troubleshooting *INTERNAL USE ~Y* Page 193
VIRTUAL ADDRESSES - Pl SPACE • 12 June 85

and global symbols, labels, and available space in the CLI symbol
table pages.

To examine these areas, type the following SDA commands.

SDA> READ SYS$SYSTEM:DCLDEF.STB
SD.\> !display CLI-LOGINOUT communication area
SM> FORMAT CTL$AG CLIDATA/TYPE-PPD
SDA> !get address of DCL per-process area
SDA> EXAM CTL$AG CLIDATA+PPD$L PRC
SDA> FORMAT @./TYPE-PRC !display DCL per-process area

To see the definitions of these data structures, look at the source
fiche

PPD$ symbols
PRC$ symbols

[LOGIN]PPDDEF.MDL
[DCL]DCLDEF.MDL

Image Activator Scratch Pages

This pageable region is used as local storage by the . $IMGACT system
service. It is used to store the image header of the image being
activated and various RMS data structures for files opened by the
Image Activator.

Debugger Context Pages

[TBS]

Dispatch vectors For User-Written System Services And Messages

These pages contain the linkages for dispatching into privileged
shareable libraries (user-written system services and rundown
routines) and the linkages for per-process message sections. The
pages are initialized by EX!$PIOCS'l'R'l'. Actual linkages are
established by the image activator and cleared at image rundown. The
~~~:,;.·~,. d~apatchers (EXE$0D>DNL and EXE$CX>DEXEC) use these 

; .. !-C:lyto user-written system services, and EX!$R'UNl:MN to 
\JMl'~itten inner access mode rundown routines. 

r Buff er 

If an image is currently active in the process, CTL$GL IMGBDRBUF 
contains the address of this pageable region. When CTL$GL-IMGHDRBUF 
is nonzero, this region's contents are valid. Image rundoWn clears 
CTL$GL _ IMGBDRBUF. The page contains part of the i•ge header from 



VAX/VMS Troubleshooting *IN'l'DNAL USE CfiLY* 
VIRTUAL ADDRESSES - Pl SPACE 

the image and the image file descriptor block (IFD). 

To display this reqion, type the following SDA connands. 

~ READ SYS$SYSTEM:IMGDEF.STB 

Page 194 
12 June 85 

~ FOJUttAT @MMG$IMGHDRBUF/'l'YPE-IHD !display image header 
SM> DEFINE IFD - @(MMG$IMGHDRBUF+4)1address of IFD 
SM> FOMAT IFD/'l'YPE-IFD !display image file desc. 
SDA> !display filename of image being run 
SDA> EXAMINE @(IFD+IFD$Q_CURPROG+4);@(IFD+IFD$Q_CURPROG) 

KRP Lookaside List 

under V4, there is a lookaside list of buffers used by kernel-mode 
code. The most common use of these buffers is to hold equivalence 
names returned from logical name translations. Formerly, space was 
allocated on · the kernel stack for this purpose. EXE$PROCSTRT 
initializes the list. Available blocks are queued to the listhead at 
CTL$GL KRPFL and CTL$GL KRPBL. Allocation and deallocation from the 
list ii done via REMQtJE ind INSQUE. 

Inner Access Mode Stacks 

The supervisor, exec, and kernel mode stack sizes and locations are 
fixed for a given release of VMS. Their highest addresses are 
recorded in C'1'L$AL STACK, a longword array indexed by access mode. 
Their lowest addresses are recorded in CTL$AL STACKLIM, a similar 
array. The hardware PCB of a process whose context has been saved 
contains the values of the current pointers into each of these stacks 
(PHD$L USP, PHD$L SSP, PHD$L ESP, and PHD$L KSP) The kernel stack is 
nonpagiable; the others are p:ageable. -

under V4, the kernel stack can be expanded into several pages of 
address space reserved for this purpose. When the kernel stack is 
expanded, the low limit stored in C'l'L$AL_STACKLIM is also altered. 

under V4, the Files-11 XQP runs on its own private kernel stack. See 
subsection FILBS-11 XQP Regions. 

ent contents of these stacks in a dump, type the 

See the section STACK PATTERNS for hints on interpreting the contents 
of the stacks. 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - Pl SPACE • 

System Service Vector Pages 

Page 195 
12 June 85 

Several pages of Pl space double-map the system service vectors. See 
the section SYSTEM SERVICE VECTORS for a description of this region. 

Pl Pointer Page 

This page is defined in [SYS]SHELL and contains much of the 
process-specific data. used by the exec. The page is a permanent 

· member of the process working set and thus nonpageable. See section 
A.3.1 in the V3 VAX/VMS Internals and Data Structure Manual for a 
list of its global variables and their contents. 

The best way to look at the Pl pointer page is by repeated SDA 
EXAMINE camnands, reading [SYS]SHELL, since the globals are not all 
longwords. The globals are defined beginning in the source module at 
subtitle BODY OF SHELL PROCESS. 

Debugger Symbol Table 

[TBS] 

Hints And Kinks 

1. All of the above SDA. comands to examine Pl space assume that you 
have already established the process to be examined by issuing 
one of the following comands. 

SDA> SET PROCESS/INDEX•<n> 
SDA> SET PROCESS <processname> 

2. SM uses special kernel ASTs to access the Pl space of another 
process on the current system. The special kernel AST,· running 
in the context of the target process, examines its address space 
and sends the information back to the process running SDl\.. 
~~,i~~. ~~::i~ specia~ kernel AST cannot happen if the target 

· · _,~ ;,:; ~~~~~Jjeing wa1 ted at IPL 2. '!'his means that you cannot 
H~··· • ._:.~ftocess' s context until the process lowers its IPL. 

Additional References 

V3 VAX/VMS Internals and Data Structures Manual, Section 1.5.2, The 
Control Region (Pl Space); Section 26.4, Sizes of Pl Space; Section 
A.3, Process Specific Executive Data 



VAX/VMS Troubleshooting *INTERNAL USE 00,Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 196 
9 July 85 

Since lllUCh of system space is variable lenqth, sized by SYSBOOT, and 
since many imaqes other than SYS.EXE reside in system space, decoding 
a system space address is not trivial. 

1. Determine whether your hypothetical system space address falls 
within the range of system space defined in the system under 
examination. Find the end of defined system space by typing the 
following SDA command. 

sorv EXAM MMG$GL - MAXGPTE 

If your hypothetical address is larger than that, it is not a 
legal address for this system. Go back to the path of 
investigation that led you here and develop another hypothesis. 

2. Using the tables below, determine into which [sub- J region of 
system space the address falls. The first table is for V3 
systems; the second is for V4 systems. The most likely 
possibilities are SYS.EXE, MS.EXE, nonpaged pool, and the 
lookaside lists. If the address does not fall within an imqe 
identified in the table below, go to item 7. 

3. Subtract the starting address of the loaded image from your 
virtual address to determine the offset of the address into the 
loaded image. 

4. Reading the subsections below the table, identify to what VMS 
facility the loaded image belongs and where in the linked image 
the loaded code begins. 

5. Locate the facility in the source fiche. The last sheet of the 
source fiche contains an index to the rest of the fiche. 
Maintenance update additions to the source fiche contain an 
updated index as the last sheet. The facilities are ordered 
alphabetically in the fiche. The fiche for each facility 
includes link maps and source listings of its components. 

6. Reading the map for that module, determine the relevant source 
moclule and offset within the source module. Then re tum to the 
path of investigation that led you here. 

7. '>: c }::~d/r~. address does not fall within the boundaries of a 
•...•.. ~'·t~~tbut is in paged pool, nonpaged pool, or one of the 

'\cj';i ' . . dlJ u:1u, then most likely it is the address of a data 
't?;~e.:~ ·. J:f the virtual address does not fall within pool, 
::•1-·•W:to item 9. The following SDA commands should identify a 
ifBa\structura.with a standard dynamic data structure header. 

SDrV READ SYS$SYSTEM:SYSDEF.STB !if you haven't already 
SDA> FORMAT <address> 

SDA may issue the error 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* Page 197 
VIRTUAL ADDRESSES - SYSTEM SPACE • 9 July 85 

SDA.-E-?«>SYMBOLS, no "<xxx>" symbols found to format this block 

Moat likely this means that the block has a standard dynamic data 
structure · header, but that neither SYS.STB nor SYSDEF .STB 
contains symbolic definitions for its fields. If this happens, 
you might try to generate the symbols yourself by typing the 
following sequence. 

SDA>CTRL/Y' 
$SPAWN 
$ MACRO/OBJ•SYS$LOGIN:<xxx>DEP' SYS$INPUT: -
$ + SYS$LIBRARY:LIB/LIB 
- $<xxx>DEF GLOBAL 

.END 
CTRL/Z 
$ LO 
$ aNr 
SDA>READ SYS$LOGIN:<xxx>DEF.OBJ 
SDA>FORMAT <address> 

8. If the pool virtual address is still not identified, try 
examining meD:>ry on either side of it. If it appears to· be 
instructions in nonpaged pool, rather than data, possibily it is 
part of an extended AST Control Block allocated for use by 
$GETJPI system service, on-line SDA., or DELTA. Return . to the 
path of investigation that led you here. 

9. If the address is not within pool or a loaded imaqe, determine in 
which other regions or sub-regions it falls. Read the subsection 
under the table that discusses that [sub-Jregion for further 
information, and return to the path of investigation that led you 
here. 

'!he following table describes the various "regions" of system space. 
In this context, region means a distinct area, with defined 
boundaries and characteristics. One example region of system space 
is the syst• imaqe itself. It has "sub-regions", that is-, pieces 
with defined boundaries and possibly different characteristics, 
permanently resident and pageable, for example. '!be table is ordered 

inci: . . ~~ address of the regions; to the extent possible, 
;1 also ordered by increasing virtual address. Each 

·· ribed briefly in the table by its contents and 
SDP. com:aands to determine its boundaries. Use the 

i~?~til'J:.VJ systems and the second for V4 systems. 



s 

VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE V3 

V3 System Space Organization 

R!GI~ SDA COMMANDS 
PRO'l'ECTICJtl 

SYS.EXE EVAL G 
EVAL MMG$A_SYS_END 

system service EVAL G 
vectors URKW EVAL MMG$A_ENDVEC 

nonpaged exec EVAL MMG$A ENDVEC 
data URKW EVAL MMG$Fis'l'l01LY 

nonpaged exec EVAL MMG$FRST101LY 
code UR EXAM MMG$GL_PGDCOD 

pageable exec EXAM MMG$GL PGDCOD 
UR EVAL MMG$AL=PGDCODEN 

Page 198 
9 July 85 

!start address 
lend of system image 

!start address 
!end address 

!start address 
!end address 

!start address 
!end address 

!start address 
lend address 

allocatable system EVAL MMG$A SYS END linital start address 
space EVAL G + @BOo$Gt SPTFREL*200 !current low address 

EVAL G200 + @BOO$GL_SPTFBEH*200 lend address 

adapter DEF IOSPACE -@(@MMG$GL SBICCM') !define symbol 
I/O space EVAL IOSPACE - !start address 

KW EVAL @(@MMG$GL SBICCla'+((@EXE$GL NUMNEXUS-1)*4))+200 
- Tapprox. end address 

coninterr sptes EXAM EXE$GL RTIMESPT !if 0, none allocated 
KR or KW DEF RTSPTE - G+@(@EXE$GL RTBITMAP)*200 !define symbol 

system disk 
SVPN 

KW 

black hole 

Pfl.98"}:" 
,., 

·~j~~~~· .. 
S'YSlllSC·.111 '"i:, 

tJ1't 

EVAL RTSPTE - !start address 
EVAL RTSPTE + 200*(@EXE$GL RTIMESPT) 

- lend address 

RF.AD SYS$SYSTEM:SYSDEF.S'IB !define UCB symbols 
EVAL G+(@(SYS$GL BOOTUCB+UCB$L SVPN)*200) !start address 
EV.AL G200+(@(SYS$GL_BOOTUCB+UC8$L_SVPN)*200) !end address 

EVAL G+((@EXE$GL SVAPTE-@MMG$GL SPTBASE)*80) !start address 
!.VAL G200+((@EXElc;L_SVAPTE-@Mltl3$GL_SP'i'BASE)*80) !end addres 

BYAL RMS 
EXAM EXE$GL_SYSMSG 

DBI' SYSMSG • @EXE$GL SYSMSG 
EVAL SYSMSG -
! [TBS] 

!start address 
!end address 

!define symbol 
!start address 
lend address 

device driver SVPNs 
KW 

!see subsection below 



VAX/VMS Troubleshooting *INTERNAL USE Cl-ILY* Page 199 
9 July 85 VIRTUAL ADDRESSES - SYSTEM SPACE V3 • 

RPB DEF RPB • @EXE$GL RPB 
URKW EVAL RPB -

EVAL RPB+200 

!define symbol 
!start address 
!end address 

PFN database 
URKW 

DEF PFNDATA - @PFN$A_BASE !define symbol 
EVAL PFNDATA !start address 

paged pool 
- URKW 

nonpaged pool 
variable 

ERKW 

EVAL @PFN$AB TYPE+(@MMG$GL MAXPFN-@MMG$GL MINPFN) 
- - ! end address 

DEF PAGEDYN - @MMG$GL PAGEDYN !define symbol 
EVAL PAGEDYN - !start address 
EVAL PAGEDYN + @SGN$GL_PAGEDYN !end address 

DEF NPAGEDYN - @MMG$GL NPAGEDYN !define symbol 
EVAL NPAGEDYN - !start address 
EXAM MMG$GL NPAGNEXT !actual end address 
EVAL NPAGEDYN + @SGN$GL _ NPAGEVIR 1 "virtual" end address 

device driver SHClf DEVICE 
images 

!DPT is start address 
!DPT plus DPT size is end address 

MP.EXE EXAM EXE$GL _MP 

DEF MP • @EXE$GL MP 
EVAL MP + (@(MP+"S')@l0)@-10 

!if 0, then not loaded 
1 else start address 
!define symbol 
!end address 

sc~.EXE EXAM/INST SCS$ACCEPT !if JMP @tEXE$LOAD ERROR, 
! then scs is not-loaded 

DEF SCSLOi\ - @(SCS$ACCEPT+2)-C !define symbol 
EVAL SCSLOi\ !start address 
EVAL SCSLOi\ + (@(SCSLOA.+8)@10)@-10 lend address 

SYSL01oocx.EXE 
EXAM EXE$GB CPU'1'YPE 
DEF SYSLOA. ;; MCHK-2BC 
DEF SYSLOA. • MCHK-2C8 
DEF SYSLOA. • MCHK-00 
EVAL SYSI..Oa\; 
EVAL SYSLC». + @SYSLOi\ 

!read cpu type low byte 
!if cpu - 3 - 730/725 
!if cpu - 2 - 750 
!if cpu - 1 - 780/785/782 
!start address 
!end address 

TTDRIVER.BXB BYAL '1'TDRIVER !start address 
.... IVAI. 'l'TDRIVER+( @( TTDRIVER+8 )@10 )@-10 ! end address 

~fh~f··••.:,;,;,•+;u;:i~'il:~P--. 
. --:: •. , : ... SYS$SYSTDl:SYSDEF.STB !get RPB symbols 

.... IOVEC - @(@EXE$GL RPB +RPB$L IOVEC) !define symbol 
BYAL IOVBC - Tstart address 

···:1J!J;:1J:;;:·:'::t>· BVAI. IOVEC + @(@EXE$GL RPB+RPB$L IOVBCSZ) 
- Tend address 

CI microcode EXAM SCS$GL MCADR !start address 
EVAL @. + ('2°00•12) !end address 

LRP list DEF LRPLIST - @IOC$GL_LRPSPLIT !define symbol 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE V3 • 

Page 200 
9 July 85 

ERKW EVAL LRPLIST !start address 
EXAM MMG$GL LRPNEXT !approx. end address 
EVAL LRPLIST + (@SGN$GL LRPCN'lV*@IOC$GL LRPSIZE) 

- !"virtual" end address 

IRP list DEF IRPLIST - @EXE$GL SPLITADR !define symbol 
ERKW EVAL IRPLIST - !start address 

EXAM MMG$GL IRPNEXT ! approx. end address 
EVAL IRPLIST + (@S~GL_IRPCN'lV*AO) !"virtual" end address 

SRP list DEF SRPLIST - @IOC$GL SRPSPLIT !define symbol 
ERKW EVAL SRPLIST - !start address 

EXAM MMG$GL SRPNEXT 1 approx. end address 
EVAL SRPLIST + (@SGN$GL SRPCN'1V*@SGN$GL SRPSIZE) 

- ! "vi rtuil" end address 

null access page EVAL @EXE$GL INTSTI«,M - 200 
NA EXAM EXE$GL_INTSTKLM 

interrupt stack EXAM EXE$GL INTSTKLM 
ERKW EXAM EXE$GL=INTSTK 

null access page EXAM EXE$GL INTSTK 
EVAL @EXE$GL_INTSTK+200 

System Control DEF SCB - @EXE$GL SCB 
Block ERKW EVAL SCB -

EXAM SWP$GL_BALBASE 

!start address 
!end address 

!low address (newest stack) 
lhigh address (oldest stack 

!start address 
lend address 

!define symbol 
!start address 
lend address 

balance set slots DEF BALBASE • @SWP$GL BALBASE !define symbol 
ERKW EVAL BALBASE - 1 start address 

EVAL BALBASE + (@SGN$GL BALSETCT*@SWP$GL BSLOTSZ*200) 
- lend address 

system header DEF SYSPHD - @MMG$GL SYSPHD !define symbol 
ERKW EVAL SYSPHD - !start address 

EVAL SYSPHD + @MMG$GL _SYSPHDLN 1 end address 

system page table DEF SP'l' - @MMG$GL SPTBASE 
ERltW EVAL SPr -

EXAM MrG$GL _ GPTE 

!define symbol 
!start address 
lend address · 

!define symbol 
!start address 
lend address 



s 

VAX/VMS Troubleshooting *INTERNAL USE CH..Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE V4 

V4 System Space Organization 

RIGIQ+l SDA COMMANDS 
PROTECT!~ 

SYS.EXE EVAL G 
EVAL MMG$A_ SYS_ END 

system service EVAL G 
vectors UR EVAL MMG$A_ENDVEC 

nonpaged exec EVAL MMG$A ENDVEC 
data URKW/UR!.W EVAL MMG$FRSTRONLY 

nonpaged UR EVAL MMG$FRSTRONLY 
exec code EXAM MMG$GL_PGDCOD 

pageable 
exec UR 

Page 201 
9 July 85 

!start address 
lend of system image 

!start address 
lend address 

!start address 
lend address 

!start address 
lend address 

!start address 
lend address 

allocatable EVAL MMG$A SYS END linital start address 
system space EVAL G + @Boo$GL SPITREL*200 !current low address 

EVAL G200 + @BOO$GL_SPITREH*200· lend address 

adapter DEF IOSPACE -@@MMG$GL SBicc::fi!' !define symbol 
I/O space EVAL IOSPACE - 1 start address 

KW EVAL @(@MMG$GL SBICCM'+((@EXE$GL NUMNEXUS-1)*4))+200 
- Tapprox. end address 

coninterr sptes EXAM EXE$GL RTIMESPT 1 if 0, none allocated 
KR or KW DEF RTSPTE - G+@(@EXE$GL RTSITMAP)*200 !define symbol 

system disk 
SVPN 

KW 

EVAL RTSPTE - !start address 
EVAL RTSPTE + 200*(@EXE$GL RTIMESPl') 

- lend address 

RF.AD SYS$SYSTEM:SYSDEF.sm !define UCB symbols 
EVAL G+(@(SYS$GL BOOTUCB+UCB$L SVPN)*200) !start address 
EVAL G200+(@(SYS$GL_BOO'l'UCB+UCi$L_SVPN)*200) lend address 

mount verify EVAL G+((@EXE$GL SVAPTE-@MMG$GL SP!'BASE)*80) !start address 
page KW EVAL G200+((@EXE$GL_SVAPl'E-@MMGlGL_SPTBASE)*80) lend addres 

erU..,!",pattem EXAM EXE$GL _ ERASEPPT 
PPI' ·· • !!VAL @EXE$GL _ DASEPP1'+200 

RMS.EXE 
UR 

SYSMSG.EXE 
UR 

EVAL RMS 
EXAM EXE$GL_SYSMSG 

DEF SYSMSG • @EXE$GL SYSMSG 
EVAL SYSMSG -
1 [TBS] 

!start address 
lend address 

!start address 
lend address 

!start address 
lend address 

!define symbol 
!start address 
lend address 



VAX/VMS Troubleshootinq *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE V4 

Paqe 202 
9 July 85 

RPB 

MSCP.EXB EVAL MSCP 

EVAL MSCP + @MSCP 

device driver SVPNs 
KW 

DEF RPB • @EXE$GL RPB 
EVAL RPB -
EVAL RPB+200 

lif 0, then not loaded 
1 else, start address 
!end address 

!see subsection below 

!define symbol 
!start address 
!end address 

PFN database DEF PFNDATA - @PFN$A BASE !define symbol 
ERKW EVAL PFNDATA - !start address 

EVAL @PFN$AB TYPE+(@MMG$GL MAXPFN-@MMG$GL MINPFN) 
- - ! end address 

paqed pool 
ERKW 

DEF PAGEDYN • @MMG$GL PAGEDYN 
EVAL PAGEDYN -
EVAL PAGEDYN + @SGN$GL_PAGEDYN 

!define symbol 
!start address 
lend address 

nonpaqed pool 
variable 

ERKW 

DEF NPAGEDYN - @MMG$GL NPAGEDYN !define symbol 
EVAL NPAGEDYN - !start address 
EXAM MMG$GL NPlamXT 1 actual end address 
EVAL NPAGEDYN + @SGN$GL _ NPAGEVIR 1 "virtual" end address 

lDPT is start address device driver SH<>l DEVICE 
imaqes !DPT plus DPT size is end address 

MP.EXE EVAL MP 

EVAL MP + @(MP+4) 

VAXEMUL.EXE EXAM MMG$GL_VAXEMUL_BASE 

EVAL @.+ @(@.) 

FPEMUL.EXE EXAM MMG$GL_FPEMUL_BASE 

EVAL @.+ @(@.) 

1 if 0, then not loaded 
1 else, start address 
lend address 

!if 0, then not loaded 
1 else, start address 
lend address 

lif 0, then not loaded 
!else, start address 
!end address 

CLtJSTJtLCa. EXI &VAI, CLUSTRLOI\ 1 if 0, then not loaded 
1 else, load address 

BYAL CLUSTRLOl\+380 !start address ; V4.0 
EVAL CLU~+380+@( CLUSTRLOl\+380) 1 end address 

SYSLOl\xxx.EXB EXAM EXE$GB CPUTYPE 
EXAM MMG$GL-SYSLOA BASE 
DEi' SYSLOA; MCHK;...I8 
DEF SYSLOA • MCHK-CE:O 
DEF SYSLOA • MCHK-A74 
DEi' SYSLOA • MCHK-18 
DEF SYSLOA • MCHK-A6C 

!read cpu type low byte 
!load address 
1cpu•l•780/2/5 V4.0-V4.2 
lcpu-2•750 V4.0-V4.2 
lcpu-3•730 V4.0-V4.2 
1cpu•4•VAX 8600 V4.l-V4.2 
1cpu•7-uVAX I V4.1-V4.2 



) 

VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE V4 

Page 203 
9 July 85 

SCSLOA.EXE 

DEF SYSLOA • MCHK-AEC 
DEF SYSLOA • MCHK-C44 
DEF SYSLOA • MCHK-CC4 

lcpu•7-WS I V4.l-V4.2 
lcpu•8-uVAX II V4.2 
lcpu•8-WS II V4.2 
!start address EVAL SYSLOA 

EVAL SYSLOA + (@(SYSLOA+8)@10)@-10 
lend address 

EVAL SCSLOA lif 0, not loaded 
1 else, load address 

EVAL SCSLOA+2BO lstart address; V4.0 
EVAL SCSLOA+2BO+@(SCSLOA+2BO) !end address; V4.0 

TTDRIVER. EXE EVAL TTDRIVER 1 start address 
EVAL TTDRIVER+(@(TTDRIVER+8)@10)@-10 lend address 

system disk RF.AD SYS$SYSTEM:SYSDEF.STB lget RPB symbols 
boot driver DEF IOVEC - @(@EXE$GL RPB +RPB$L IOVEC) !define symbol 

EVAL IOVEC - Tstart address 
EVAL IOVEC+@(@EXE$GL RPB+RPB$L IOVECSZ) 

- - 1 end address 

CI microcode EXAM SCS$GL_MCADR 

EVAL @. + (200*12) 

lif 0, not loaded 
! else, load address 
lend address 

LRP list DEF LRPLIST - @IOC$GL LRPSPLIT !define symbol 
ERKW EVAL LRPLIST - lstart address 

EXAM MMG$GL LRPNEXT ! approx. end address 
EVAL LRPLIST + (@SGN$GL LRPCN'IV*@IOC$GL LRPSIZE) 

- l"virtu'il" end address 

IRP list DEF IRPLIST - @EXE$GL SPLITADR !define symbol 
ERKW EVAL IRPLIST - !start address 

EXAM MMG$GL IRPNEXT !approx. end address 
EVAL IRPLisT + (@SGN$GL_IRPCN'IV*D0) !"virtual" end address 

SRP list DEF SRPLIST - @IOC$GL SRPSPLIT ldefine symbol 
EUN EVAL SRPLIST - 1 start address· 

EXAM MrG$GL SRPNEXT ! approx. end address 
EVAL SRPLIST + (@SGN$GL SRPaf1V*@SGN$GL SRPSIZE) 

- !"virtuil" end address 

null a~.,~ EV.AL @EXE$GL INTSTKLM - 200 
: !·''' . . ·.ia. EXAM EXE$GL _ INTSTKLM 

interrlC't'stad. 
ERIW 

EXAM EXE$GL INTSTKLM 
EXAM EXE$GL:INTSTK 

null access page EXAM EXE$GL INTSTK 
NA EVAL @EXE$GL_INTSTK+200 

System Control EXAM EXE$GL SCB 
Block ERKW EXAM SWP$GL:BALBASE 

!start address 
lend address 

!low address (newest stack) 
!high address (oldest stack 

!start address 
lend address 

!start address 
lend address 



VAlVVMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE V4 

Page 204 
9 July 85 

balance set slots DEF BALBASE • @SWP$GL_BALBASE ldefine symbol 
ERKW EVAL BALBAS! lstart address 

EVAL BALBAS! + (@SG1$GL BALSETCT*@SWP$GL BSLOTSZ*200) 
- lend address 

system header EXAM MMG$GL SYSPHD lstart address 
ERKW EVAL @MMG$GL _ SYSPHD + @MMG$GL _ SYSPHDLN 1 end address 

system page table EXAM MMG$GL SPTBASE 
- ERKW EXAM MMG$GL =GPTE 

global page table EXAM MMG$GL GPTE 
URKW EXAM MMG$GL=MAXGPTE 

!start address 
lend address 

!start address 
lend address 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

SYS.EXE 

Page 205 
9 July 85 

SYS.EXE is, of course, the system image. It contains most of the 
system services, the software interrupt service routines, scheduling 
and mmory management code, etc. Its first several pages contain the 
system service vectors. For more information on them, see the 
section SYSTEM SERVICE VEC'IORS. 

The nonpaged exec code sub-region has different protections at 
different times. Initially, its protection prohibits any write • 

. However, when a fatal bUgcheck occurs, nonpaged exec code is made 
writable so that the fatal bugcheck overlay can overwrite it. Thus, 
if you look at the System Page Table in a crash dump, the protection 
in the SPTEs that map the nonpageable exec code is t.JRKW. Also, the 
protection of this sub-region is changed temporarily by XDELTA so 
that breakpoints can be set and other modifications made. 

Between the end of the pageable exec and MMG$A SYS END is virtual 
address space used by the INIT module and xDELTA. INIT executes 
during system initialization. At its completion, it releases the 
physical pages it occupied (and those of XDELTA, if XDELTA is not to 
remain resident) to the free list. The SPTEs which mapped it have no 
further use and are left invalid. 

SYS. EXE modules are in the facility [SYS] • 'l"he location in SYS. EXE 
that corresponds to the start of the loaded image is 80000000. 

Allocatable System Space 

During system initialization, a number of system page table entries 
(SPTEs) are reserved for variable allocation of system address space. 
These allocatable SPTEs begin at the end of the address space used to 
map SYS.EXE. RMS, connect to interrupt driver SPTEs, and I/O 
adapters' physical register spaces are among the things mapped in 
this region. 

The start and end sytem virtual page numbers (SVPN) available for 
allocation are recorded in BOO$GL SP'l'FBBL and BOO$GL SPT!'REH. As 
SPTEs are allocated from the low end,-BOO$GL SPtPREL is- updated to 
reflect the new low SVPN. Allocation ii no longer possible when 
BOO$GL SP,1'RIZ. ~ IOO$GL SPTFREH are equal. Allocation from these 
SP'J.'U;I:J°•:generally permaiient and is usually done through invoking the 
systttll\ routine IOC$ALOSPT. 

Adapter I/O Space 

During system initialization VAX/VMS determines what kind of adapter 
or controller, if any, is present at each backplane interface, or 
nexus. A nexus is a physical connection to the backplane which 
transmits and responds to commands. Each nexus has a unique number 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 206 
9 July 85 

used for identification and for priority arbitration. Each nexus 
also is assigned a range of physical address space for device control 
registers. See the VAX Hardware Handbook for a brief description of 
the physical address space layouts for each processor. Additionally, 
VAX I/O space includes an assignment of 128K words for the entire 
UNIBUS address space of each UNIBUS the processor supports. After 
system initialization code turns on memory management, access to 
nexus registers and UNIBUS address space requires that page table 
entries contain page frame numbers (PFN) corresponding to these 
physical VAX I/O addresses. 

VAX/VMS allocates system virtual address space for each nexus present 
in the hardware configuration to allow virtual access to the nexus's 
registers. The physical address range reserved for each nexus is 
considerably larger than current nexus use. VMS maps only the 
portion of the range that corresponds to actual adapter registers. 
VMS maps only the I/O portion of the UNIBUS address range to enable 
access to UNIBUS peripherals' registers. The table below lists how 
many pages are allocated for each adapter type. 

ADAPTER TYPE NUMBER OF PAGES (DECIMAL) 

local mellk>ry controller 1· 
multiport mellk>ry controller 1 
MASSBUS adapter 8 
UNIBUS adapter 24 

Adapter registers (8) 
UNIBUS I/O space (16) 

DR780 or DR750 4 
CI780 or CI750 8 

In addition, one page of system address space is allocated for each 
nexus without a controller or adapter to allow for an adapter's being 
brought on line subsequent to system initialization. currently, this 
mechanism is used only for MA780s. 

TWo arrays are allocated from nonpaged pool and filled in to record 
the nexus present on the system and the starting system virtual 
address space for the nexus registers. The global symbol 
EXE$GL NUMNEXUS contains the number of entries in each of the two 
arrays-: The global symbol MMG$GL SBI~ contains the address of a 
longword array of starting system-virtual addresses. 

Although only VAX-ll/780s have SBis, all VAXen have nexus and 
adapters whose registers must be accessed virtually during VMS's 
operations. The name is historical, reflecting hardware on the first 
VAX, the VAX-11/780. 

The global symbol EXE$GL ~ contains the address of a byte array 
of nexus device types-: The values for the different nexus device 
types are defined by the macro $NDTDEF in SYS$LIBBARY:LIB.MLB. To 
obtain the adapter type and starting virtual address of a particular 
nexus, use the nexus number as a subscript or index into these two 
arrays. 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 207 
9 July 85 

If the SYSBOOT parameter REALTIME SPTES is nonzero, SPTEs are 
allocated for the Connect to Interrupt driver's use in double-mapping 
user supplied code and buffers into system space. The protection on 
the pages is either KW or KR, depending on whether or not the user's 
QIO request is IO$ ~NTRF.AD. A data structure is allocated in 
nonpaged pool to aescribe which SPTEs are available and which are in 
use. The data structure offsets are defined with SYS$LIBRARY:LIB.MLB 
macro $RBMDEF. EXE$GL RTBITMAP contains the starting address of the 

· data structure. -

RBM$L_STARTVPN 

RBM$L_FREECOtJNT 

I RBM$B - 'fiPE I RBM$W _SIZE 

RBM$L STARTVPN contains the starting SPTE number. RBM$L FREECaJN'l' 
contains the number of COOINTERR SPTEs still avaiiable for 
allocation. The bitmap has 1 bit for each SPTE, with the bit clear 
to indicate that the SPTE is in use. If you suspect a problem 
related to the Connect to Interrupt driver or user supplied code 
mapped into this virtual address range, read the driver module 
[DRIVER]CClaNTERR, the user program that issues $QIOs to this driver, 
and the V3 VAX/VMS Real-Ti• User's Guide, Chapter 4. 

Black Hole Page 

The black hole page consists of a physical page of memory (whose PP'N 
is recorded in EXE$GL BLAKHOLE). Under V3, an SPTE is also allocated 
to map the black hole-page. When a UNIBUS adapter powers down, all 
SPTEs that mapped adapter register and UNIBUS I/O space are modified 
to point to the black hole page in order to prevent drivers' causing 
machine checks by referencing the no-longer accessible adapter I/O 
space. 'lbe power failure of a MASSBUS adapter results in · similar 
use. under V3, the black hole page is also used as a one page buffer 
for a:>Unt verifi?tion's use in reading a disk's hane block. With 
V4, -.,,,,...Jatf:;l)thpical page is used for this purpose. 

;.'~;{~1")51,i·r.'r; :.;) ·•· · · · ........ ·· ...••. · .. 
'!he .. llCl,ICC88' for the black hole page are six thousand light years 
away~o·:.~,,;the direction of Cygnus X-1. 

( '~~·/. 

Mount Verify Page 

This page is a buffer for mount verification's use in reading a 
disk's home block. 



VAX/VMS Troubleshooting *INI'ERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Erase Pattern Buffer 

Page 208 
9 July 85 

During system initialization, the erase pattern buffer is allocated 
and initialized as a page of binary zeros. The contents of the 
buffer are the default source for overwriting the contents of files 
marked "erase on delete". 

Erase Pattern Pseudo Page Table 

During system initialization, the erase pattern pseudo page table is 
allocated and initialized as 128 page table entries, each of which 
maps to the physical page containing the erase pattern buffer. The 
page table is used to enable OMA transfer of potentially 128 copies 
of the erase pattern buffer to overwrite a large piece of a file in 
one I/O request. 

RMS.EXE 

The RMS· image contains the procedures that make up the Record 
Management Services. During system initialization, system address 
space is allocated to map RMS.EXE as a pageable section. Its 
starting address is stored in MMG$GL llMSBASE and in CTL$GL RMSSSE. 
SM autoatically defines the symbol -RMS to be the contents of 
MMG$GL RMSBASE. Since the system message file is mapped inmediately 
above iMs, the simplest way to determine RMS's end boundary is as the 
start of the message file. 

Most RMS modules are in the facility [RMS]; the exceptions are 
[ INSTAL] INSKFSCAN, [ VMSLIB ]MATCHNAME, and [SYS] :RMSVEC'IOR. The 
location in RMS.EXE that corresponds to the start of the loaded image 
and to SDA symbol RMS is local symbol MS$DISPATCH in module 
[SYS]llMSVECTOR. For debugging RMS problems there is a symbol table, 
SYS$SYSTEM:RMSDEF.STB, which contains symbol definitions for user RMS 
data structures (e.g., FAB) and RMS status codes. 

If you are debugging a problem involving RMS, type the following SDA 
comnand to get addresses in the loaded image resolved to RMS.EXE 
symbols. 

SDl\>IUW> /RELOCATE• @19G$GL RMSBASE SYS$SYSTEM:RMS.STB - -

SYSMSG.EXB 

During system initialization, system address space is allocated to 
map SYSMSG.EXE as a paqeable section. Its starting address is stored 
in EXE$GL SYSMSG. SYSMSG.EXE is a shareable image consisting 
entirely of data, the standard system message text. The $GETMSG 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 209 
9 July 85 

system service uses this section to translate message identification 
codes to message text. 

Device Driver SVPNs 

SPTEs needed by VMS direct I/O device drivers are also allocated from 
this region. Typically, a disk driver uses its SPTE to make a 
virtual mapping to a process buffer page to which ECC correction must 

-be applied. Determining all the SPTEs allocated to DMA device 
drivers requires looking through the I/O data space for DMA device 
uni ts and examining UCB$L SVPN for each one. UCB$L SVPN records the 
system virtual page number-allocated to that device \init. 

MSCP.EXE 

MSCP.EXE, the MSCP server for local disks, is loaded into this r99ion 
as a result of issuing the MSCP conmand to the SYSGEN image. It 
accepts as input MSCP conmand packets received from other cluster 
nodes and translates them into the corresponding QIO requests· to 
local disks. MSCP. EXE returns MSCP status and data to the requesting 
node. 

MSCP D¥Xiul.es are in facility [MSCP]. 'Ihe location in MSCP.EXE that 
corresponds to the start of the loaded image is offset 0 in the 
image. Its starting address is stored in SCS$GL MSCP. V4 SDA 
automatically defines the symbol MSCP to be tlie contents of 
SCS$GL_MSCP. 

Restart Parameter Block (RPB) 

'!he RPS is a data structure that is physically and virtually based; 
it is not pageable. CPU console restart code locates it in order to 
restart a system following a powerfail or other halt. '!he RPB also 
camaunicates information between the various steps in system 
initialization. To display it, type the following SM camnands. 

SDI.) .. RDD. SYS$SYST!M: SYSDE!'. STB 
-ro.RMt·@BD$GI, RPB/'l'YPE-RPB !necessary to specify type -·· -

P•g•· Fraa Number ( PFN) Data Base 

'!he PP'N data base, which is nonpageable, is used to record the 
current state of any pages of physical me.,ry whose virtual state can 
change. It is actually eight different arrays, each of which. is 
indexed by page frame number. 'Ihe highest valid subscript into those 
arrays is the contents of MMG$GL_MAXPFN. If MMG$GL_MINPP'N is 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 210 
9 July 85 

nonzero, its contents are the lowest valid subscript; otherwise, the 
lowest valid subscript is 1. 

'1'he 8 longwords beginning at PFN$A BASE contain the starting 
addresses of the various PFN arrays. You can use the first SDA 
camoand shown below to obtain the information for a specific physical 
page; the second command displays the entire data base; and the 
others display pages on the selected list 

SDA> SHCM PFN_DATA <pfn> !show data for page <pfn> 
SDA> SHC»l PFN DATA/SYSTEM !show entire P!N data base 
SDA> SHC»l PFN-DATA,IFREE ! show PFN data for free list pages 
SDA> SHCM PFN-DATA,lftl)DIFY lshow PFN data for md. list pages 
SDA> SHQtl PFN=DATA/BAD !show P!N data for bad list pages 

Paged Pool 

Paged pool is pageable dynamic data storage. It is typically used 
for logical name blocks (LOOs), mount list entries (M'l'Ls), global 
section descriptors ( GSDs) , known file headers ( K!'Hs) , known file 
entries (Kl'Is), and, under V4, process quota blocks (PQBs). 

To display allocation from this region, type either of the following 
SDA conmands. 

~ SHaf POOL/PAGED !display data structure contents 
SDA> SHCM POOL/PAGED/HEADER !display only structure headers 

Blocks not in use are linked in a singly linked list whose head is at 
EXE$GL PAGED. Each block contains the pointer to the next free block 
at off'iet 0 and its own size at offset 4. 

Under V4, PQBs, initially allocated from paged pool, are deallocated 
to a lookaside list whose head is at EXE$GL PQBFL. Process creation 
code attempts to allocate a PQB through remoVing an entry from this 
list, as a faster alternative to general pool allocation. 

To see the state of paged pool on a running syst•, type the DCL 
camoand SHClf MDl)RY. 

pool is one possible cause of the error 

~,>troo1 Variable Length List 

'l!le nonpaged pool variable length list is used for allocating 
nonpaged pool that doesn't fit the allocation constraints of any of 
the lookaside lists. Typically, the larger unit control blocks 
(UCBs) and loaded images such as device drivers are allocated here. 



VAX/VMS Troubleshooting *INTERNAL USE (]\JLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Paqe 211 
9 July 85 

Nonpaqed pool is extended dynamically as needed, up to a total of 
SYSBOOT parameter SGN$GL NPAGEVIR bytes. MMG$GL NP.AeimXT contains 
the start address of the extensible area. That is-; pool addresses 
lower than this are valid. 

To display the allocation from this region, type either of the 
following SDA commands. 

SDA> SH<li POOL;Nem'AGED ldisplay data structure contents 
SDA> SHCM POOL;Nem'AGED/HFADER !display structure headers 

Blocks not in use are linked in a singly linked list whose head is at 
EXE$GL ~AGED + 4. Each block contains the pointer to the next 
free biock at offset 0 and its own size at offset 4. 

To see the state of nonpaged pool on a running system, type the DCL 
command SHCM MEMORY. 

Insufficient nonpaged pool is one possible cause of the error 
SYSTEM-F-INSFMEM. Dynamically loaded images are usually placed in 
the nonpaged pool variable list, although if they are smaller than an 
LRP, they may be loaded into an allocated LRP. The following 
subsections describe the various images that are loaded dynamically 
into nonpaged pool. 

Device Driver Images 

Most VMS device drivers are loaded dynamically into nonpaged pool. 
The initial output (titled DDB list) of the SDA SHC»l DEVICE comnand 
shows the starting address (DPl') and size (DPl' size) of most loaded 
drivers. SDA omits the terminal class driver, TTDRIVER, from its 
display, unless virtual terminals are enabled, but does define a 
symbol TTDRIVER as equal to the contents of TTY$GL DPl'. VMS driver 
images have the same filenames as those displayed- in SDA's SHCM 
DEVICE output. Most driver modules are part of facility [DRIVER]. 
The exceptions are 

[ TTDRVR]DZDRIVER, TTDRIVER, YCDRIVER 
[ TMDRVR]TMDRIVER (V3 only) 
[NBTACP ]NDDIUVER, NETDRIVER 
[SYS )MBDltl'VD· . NLDRIVER 
t:SYSZ.OA;JoPDBIVn 

DriVtH:' images are linked to a base of 0 with $$$105 PROLOGUE as the 
first PSBCT. '!his PSECT is defined through the-invocation of the 
DPTA& macro which also names the driver and builds a header for the 
Driver Prologue Table (DPT) dynamic data structure. The loaded 
driver image begins with PSECT $$$105 PROLOGUE and its DPT header. 
All loaded drivers are queued together through the DPT header's first 
two longwords. The listhead for the queue of loaded drivers is at 
IOC$GL DPTLIST and the following longword. ~ defines a symbol for 
each loaded driver it finds, using the name in the DPT. For example, 



VAX/VMS Troubleshooting *INTERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 212 
9 July 85 

SDA's symbol LPDRIVER would correspond to offset O in PSECT 
$$$105_PROLOGUE in [DRIVER]LPDRIVER. 

MP.EXE 

VAX-11/782 support is loaded into nonpaged pool on a suitable 
configuration in response to the START/CPU DCL command. The nonpaged 
pool area includes data storage, the attached processor's interrupt 

.stack, code executed by the attached processor, and code executed by 
the primary processor. If you are debugging a 782 crash, read the MP 
symbol table with the following SDA command to get addresses in the 
loaded image resolved to MP.EXE symbols. 

SDA> RFAD /RELOCATE • @EXE$GL_MP SYS$SYSTEM:MP.STB 

MP JOOdules are in facility [MP] • The location in MP. EXE that 
corresponds to the start of the loaded image is global symbol 
MPS$BEGIN. Its starting address is stored in EXE$GL MP. V4 SDA 
automatically defines the symbol MP to be the contents of EXE$GL_MP. 

VAXEMUL.EXE 

VAXEMUL.EXE is loaded into nonpaged pool during system initialization 
on MicroVAX CPUs to emulate VAX instructions not supported by 
MicroVAX microcode, such as the character istructions, decimal 
instructions, and EDITPC. Two vectors in the System Control Block, 
hex offsets ca and cc, point to exception service routines within the 
loaded code. The protection on the pages containing this code is 
altered to be URKW, to allow execution of the code from all access 
modes. 

The VAXEMUL.EXE image is built as part of the [EMUIAT] facility. The 
location in VAXEMUL.EXE that corresponds to the start of the loaded 
image is global symbol VAX$BEGIN. 

FPEMUL. EXE 

FPDIJ£.BB is loaded into nonpaged pool during syst• initialization 
on arPJ VAX CPU that doesn't have microcode support for any class of 
floating.point instructions. The Opcode Reserved to Digital vector 
in the System Control Block, hex offset 10, points to an exception 
service routine within the loaded code. FPEMUL's service routine 
transfers back to EXE$0PCDEC any opcode reserved to Digital 
exceptions with opcodes other than the floating point ones it 
emulates. The protection on the pages containing this code is 
altered to be URKW, to allow execution of the code from all access 
modes. 



VAX/VMS Troubleshooting *INl'ERNAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 213 
9 July 85 

The FPEMUL.EXE image is built as part of the [EMULAT] facility. The 
location in FPEMUL.EXE that corresponds to the start of the loaded 
image is global symbol FPS$BEGIN. 

CLUS'!'RLM.EXE 

CLUSTRLOA.EXE, a module containing cluster connection management and 
distributed lock management code, is loaded into nonpaged pool on all 

_ the nodes of a VMS cluster. That CLUSTRLOA. EXE is loaded implies 
that SCSLOA.EXE is, as well. The array beginning at system global 
CLU$AL LOAVEC defines CLUSTRLOA globals to the rest of SYS.EXE and to 
other -modules linked against SYS.S'l'B. Most of these CLUS'l'RLOA 
globals are the addresses of JMP instructions. Before CLUSTRLOA.EXE 
is loaded, the target of the JMP instructions is EXE$LOAD ERROR. 
After CLUSTRLOA.EXE is loaded, the JMP destinations are altered to 
cause dispatch into the loaded code, and CLU$GL LOA ADDR contains the 
address at which CLUSTRLOA is loaded. - A!ter CLUS'l'RLOA' s 
initialization is complete, CLUSTRLOA deallocates its initialization 
code. Thus, the contents of CLU$GL LOA ADDR no longer point to the 
beginning of the loaded code. - -

The CLUSTRLOA.EXE image is built as part of the [SYSLOA] facility. 
'lbe location in CLUSTRLOA.EXE that corresponds to the contents of 
CLU$GL LOA ADDR is offset 0. V4 SDA automatically defines the symbol 
CLUS~ to be the contents of CLU$GL_LOA_ADDR. 

SCSLOA.EXE 

SCSLOA.EXE, a module containing port-independent System Communication 
Services (SCS) routines, is loaded into nonpaged pool on systems 
which use the disk class, tape class, or DECnet class drivers. The 
array beginning at system global SCS$AL LOA.VEC defines scs globals to 
the rest of SYS.EXE and to other moduies linked against SYS.STB. 
Most of these scs globals are the addresses of JMP instructions. 
Before SC~.EXE is loaded, the target of the JMP instructions is 
EXE$LOAD ERROR. After SCSLOA. EXE is loaded, the JMP destinations are 
altered to cause dfspatch into the loaded code. SCS$GA EXISTS 
contains the address at which SCSLOA is loaded. V4 SM automatically 

=~ti-~i~ toi": ~:~ts ~:ft:'!tesAfi~! 
initiali.zation code. 'Itlus, SCS$~ EXISTS no longer points to the 
beep.~<· of the loaded code. -

The ~.mm image is built as part of the [SYSLC».J facility. The 
location in SCSLOA.EXE that corresponds to the contents of 
SCS$~ EXISTS is offset O. For debugging, there is a symbol table, 
SYS$SYSTEM:SCSDE!'.STB, which contains symbol definitions for all the 
scs data structures. 



VAX/VMS Troubleshooting *INTERNAL USE CJ.JLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

SYSLOAxxx.EXE 

Page 214 
9 July 85 

Cpu-specific support is loaded into nonpaged pool during system 
initialization. Cpu-specific support consists of routines such as 
the machine check exception service routine, the service routines for 
the cpu-specific interrupts, and a routine to purge UNIBUS adapter 
buffered datapaths. [ SYSLOA] , the facility for these modules, 
contains sources for one image for each cpu type. The image name is 
of the form SYSLOAxxx.EXE, where xxx designates the cpu type. 

CPU 

MicroVAX I 
MicroVAX II 
VAX-11/730 
VAX-11/750 
VAX-11/780 
VAX-11/785 
VAX 8600 
VAXstation I 
VAXstation II 

IMAGE NAME 

SYSLOAUVl.EXE 
SYSLOAtN2.EXE 
SYSLOA730.EXE 
SYSLOA750.EXE 
SYSLOA780.EXE 
SYSLOA780.EXE 
SYSLOA790.EXE 
SYSLOAWSl.EXE 
SYSLOAWS2.EXE 

The array beginning at SYS.EXE global EXE$AL LOAVEC defines SYSLOA 
globals to the rest of SYS.EXE and to other modules linked against 
SYS. STB. Most of these SYSLOA globals are the addresses of JMP 
instructions. Before SYSLOAxxx.EXE is loaded, the target of the JMP 
instructions is EXE$LOAD ERROR. After SYSLOAxxx.EXE is loaded, the 
JMP destinations are altered to cause dispatch into the loaded code. 
under V4 MMG$GL SYSLOA BASE contains the address at which the SYSLOA 
image is loaded:- Offset 0 in the SYSLOAxxx.EXE images corresponds to 
the contents of MMG$GL SYSLOA BASE. After SYSLOA's initialization is 
complete, SYSLOA deallocates its initialization code. Thus, 
MMG$GL SYSLOA BASE no longer points to the beginning of the loaded 
code. - -

Global symbol EXE$LOAD SIZE in the V3 SYSLOAxxx.EXE images 
corresponds to the start-of the loaded image~. 

TTDRIVER.EXE 

TTDRIVER.EXE, the terminal class driver, does device-independent 
processing of terminal I/Q. SYSBOOT builds the name of the terminal 
class, driver image using the parameter TTY CLASSNAME, the default 
contents of which are "TT". SYSBOOT then-locates the class driver 
and loads it into nonpaged pool. Under V4, the SYSINIT process loads 
OPDRIVER, the operator console port driver, and invokes routines 
which establish connections between OPDRIVER and the terminal class 
driver. SYSGEN builds the I/O data base for a terminal controller, 
loads its terminal port driver, and invokes driver initialization 
routines which establish connections between the terminal port and 
class drivers. 



VAX/VMS Troubleshooting *IN'I'E!NAL USE ~Y* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 215 
9 July 85 

TTDRIVER.EXE modules are in facility [TTDRVR]. The location in 
TTDRIVD.EXE that corresponds to the start of the loaded image and to 
SDA. symbol TTDRIVER is global symbol TT$DPT. 

System Disk Boot Driver 

The system disk boot driver is a minimal driver used during system 
initialization to read images off the system disk and during fatal 

-bugcheck processing to-write the contents of physical memory to the 
crashdump file. It consists of some device-independent code that 
interprets $0IO requests ([BOOTS]BOOTDRIVER) and some code which is 
specific to the boot device. 

There are a number of different device-specific modules linked with 
VMB.EXE, the primary bootstrap. Using register arguments that 
describe the type and location of the system disk, VMB selects the 
appropriate device-specific module. During a later step in system 
initialization psect BOOTDRIVR 1 from the BOOTDRIVER module and psect 
BOOTDRIVR 4 from the appropriate device-specific module are moved to 
nonpaged Pool for use during a system crash. Offset RPB$L IOVEC in 
the RPB contains the starting address ~f the combined nii:iules and 
offset RPB$L_IOVECSZ their size. 

The simplest way to determine the boundary between the two pieces in 
nonpaged pool is to read the size of psect BOOTDRIVR 1 in the VMS.MAP 
corresponding to the VMB that booted the system. -

The beqinninq of psect BOOTDRIVR 1 is a table, defined by macro 
$BQODEF in SYS$LIBRARY:LIB.MLB7 SQO$L SELECT contains the offset 
from the beginning of the boot driver to the device-specific qio code 
in the BOOTDRIVR 4 portion. In the device-specific boot driver 
module, this offset corresponds to the value of the ADDR argument in 
the $BOOT_DRIVER macro. 

The device-specific modules are in facility [BOOTS J • Following is a 
list of these modules and their corresponding devices: 

FILENAME 

C'VB'l'DltIVR 
. DDtn'DR1Vlt 

DLBmR?Vlt 
DMB'l'D1tIVR 
DQ8'1'DRIVR 
DXBTDRIVR 
MBB'mRIVR 
PABTDIUVR 
PUBTDRIVR 

DEVICE 

VAX 8600 console RL02 
VAX-11/730, VAX-11/750 console TU58 
RL01/RL02 
RK06/RK07 
VAX-11/730 RB730 RB02/RB80 
VAX-11/780 console RXOl 
MASSBUS disks 
CI MSCP device 
UDA 



VAX/VMS Troubleshooting *INTERNAL USE 001.Y* 
VIR!UAL ADDRESSES - SYSTEM SPACE 

CI Microcode 

Page 216 
9 July 85 

During system initialization, CI microcode is loaded into nonpaged 
pool from a file called CI780.BIN on the console block storage 
medium. This filename is used regardless of processor type, since 
the microcode is the same for all current implementations of the CI. 
PADRIVER port initialization loads the microcode from pool into the 
CI at startup, following a powerfail, and after certain serious CI 
errors, such as CI local store parity error. 

When you copy CI780.BIN, you must override the default copy modes 
that FLX and EXCHANGE use. See subsection Hints and Kinks for more 
information. 

This area of pool has a secondary use as storage for contents of the 
CI port local store (device registers, virtual circuit descriptor 
table, translation cache, etc. ) during crashes initiated by the 
PADRIVER.. If the PADRIVER detects a serious inconsistency, it copies 
1000 hex longwords from the CI port into this area so that the 
information is available in the crashcluq> and usable to someone 
familiar with the CI. 

Large Request Packet (LRP) Lookaside List 

This region is typically used for the allocation of DECnet receive 
buffers ( NETs) • Note that on systems with a large value for LRPSIZE 
parameter, many loaded images, such as device drivers or SCSLOA.EXE, 
may be allocated off the LRP lookaside list rather than the variable 
length list. 

The LRP lookaside list is extended dynamically as needed, up to a 
total of SYSBOOT parameter SGN$GL LRPCN'lV packets. MMG$GL LRPNEXT 
contains the start address of the extensible area. That Ts, LRP 
addresses lower than this are valid. 

To display allocation from this region, type either of the following 
SM camands. 

am> SIDf POOL/LRP !display data structure contents 
stil> SEN PClC>L;t.LRP/Hl'ADER !display only structure headers 

Packets,· not in UH are inserted onto the lookaside list through their 
first; two longwords. The queue header is at IOC$GL LRPFL and 
IOC$R;: LRPBL. No longer needed LRPs are deallocated by -inserting 
thea it the back of the queue, and LRPs are allocated by removing 
them from the front of the queue. Thus it is sometimes possible to 
find an intact LRP which has been deallocated but whose.contents are 
of interest, by starting at IOC$GL LRPBL and following the back links 
in the queued LRPs. -



VAX/VMS Troubleshooting *INTERNAL USE ONLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

I/O Request Packet (IRP) Lookaside List 

Page 217 
9 July 85 

This region is typically used for the allocation of I/O request 
packets (IRPs), process control blocks (PCBs), job information blocks 
(JIBs), volume control blocks (VCBs), unit control blocks (UCBs), 
class driver request packets ( CRDPs) , and larger buffered I/O 
buffers. 

The IRP lookaside list is extended dynamically as needed, up to a 
total of SYSBOOT parameter SGN$GL IRPCN'IV packets. MMG$GL IRPNEXT 

.contains the start address of the extensible area. That Is, IRP 
addresses lower than this are valid. 

To display allocation from this region, type either of the following 
SDA commands. 

SDA> SHCM POOL/IRP !display data structure contents 
SDA> SHCM POOL/IRP/HFADER !display only structure headers 

Packets not in use are inserted onto the lookaside list through their 
first two longwords. The queue header is at IOC$GL IRPFL and 
IOC$GL IRPBL. No longer needed IRPs are deallocated by -inserting 
them it the back of the queue, and IRPs are allocated by removing 
them from the front of the queue. Thus it is sometimes possible to 
find an intact IRP which has been deallocated but whose contents are 
of interest, by starting at IOC$GL IRPBL and following the back links 
in the queued IRPs. -

Small Request Packet (SRP) Lookaside List 

This region is typically used for the allocation of file control 
blocks (FCBs) and window control blocks (WCBs). other data 
structures conmonly found here are ACP queue blocks (AQBs) , timer 
queue elements ( 'llJEs) , interrupt dispatch blocks ( IDBs) , channel 
(controller) request blocks (CRBs), typeahead buffers (TYPAHDs), 
device data blocks ( DDBs) , and smller nonpaged pool buffers 
(BUFIOs) .. 

The SRP lookaside list is extended dynamicetlly as needed, up to a 
total of SYSBCX>T para.ter SGN$GL SRPCN'lV packets. MMG$GL SRPNEXT 
contains the S·tart address of the extensible area. That Is I SRP 
addresses. lower than this are valid. 

To display allocation from this region, type either of the following 
SDA camands. 

SM> SHON POOL/SRP !display data structure contents 
SDA> SH<Ji POOL/SRP/HFADER !display only structure headers 

Packets not in use are inserted onto the lookaside list through their 
first two longwords. The queue header is at IOC$GL SRP!'L and 
IOC$GL_SRPBL. No longer needed SRPs are deallocated by -inserting 



Id'+ '"1.HJ.•4 "H+!.41il .HJ!.J,Jjl!'!!lllN"U IW'!+Y 

VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Page 218 
9 July 85 

them at the back. of the queue, and SRPs are allocated by removing 
them from the front of the queue. Thus it is sometimes possible to 
find an intact SRP which has been deallocated but whose contents are 
of interest, by starting at IOC$GL_SRPBL and following the back links 
in the queued SRPs. 

Interrupt Stack 

.The system switches to the interrupt stack to service all hardware 
interrupts, all software interrupts above IPL 3, and some serious 
exceptions such as machine check. In addition, the system runs on 
the interrupt stack in the IPL 3 interrupt service routine after it 
has taken the current process out of execution and before it has 
placed a new process into execution. It is not pageable. To display 
this region, type one of the following SDA commands. 

SDA> SHGi' STACK/INTERRUPT 
SDA> SHC»l STACK @EXE$GL_INTSTKLM:@EXE$GL_INTSTK 

If the interrupt stack is empty, and its stack pointer points to the 
high end of the stack, the first command displays nothing. The 
second command displays the current contents of all pages allocated 
to the stack. The second display is difficult, perhaps impossible, 
to interpret since, as events occur and the stack expands and 
contracts, one usage [partially] overwrites previous usages. 

An invalid page with no access to any access mode is allocated on 
both sides of the interrupt stack so that underflow and overflow of 
the interrupt stack cause a system halt. 

System Control Block 

The System Control Block (SCB) contains the interrupt and exception 
vectors for the system. Its size is a function of cpu type and 
number of UNIBUSes: a VAX 8600 SCB is four pages long; a VAX-11/780 
SCB is one page long; the SCB for a VAX-11/750 with 1 UBI is two 
pages; the SCB for a VAX-11/750 with 2 UBis is three pages; the SCB 
for a VAX-11/730 is two pages. A MicroVAX I SCB is two pages. A 
MicroVAX II SCB is two pages. A vector contains the system virtual 
address of the service routine for its interrupt or exception, plus 
inform:tionin the low order two bits specifying whether the service 
routine should run on the interrupt stack or the current process's 
kernel stack. '!be SCB is built by SYSBOOT and filled in by various 
systea initialization steps. It is also modified as a result of 
SYSGEN AI.J'l'OCaft'IGURE and CCH-mCT ccmnands. The SCB is not pageable. 
To display it with the names of many interrupt and exception service 
routines, type the following SDA command. 

SDA> SHCM STACK @EXE$GL _SCB ( @SWP$GL _ BALBASE - 4) 



. , VAX/VMS Troubleshooting *INTERNAfif,~ USE OOLY* 
VIR'lUAL ADDRESSES - SYSTEM SPACE 

Page 219 
9 July 85 

Balance Set Slots 

The balance set slot region isa table containing resident process 
headers. Each process header is SWP$GL BSLOTSZ pages large, some of 
it pageable and some of it nonpageable. -If one process faults a page 
in another process's header, as could happen with careless use of 
on-line SDA, MMG$PAGEFAULT signals an access violation. 

PHV$GL_PIXBAS contains the address of a word array that identifies 
the owner process of each header slot. The array has SGN$GL BALSETCT 

. elements. An element in the array contains either a zero - or the 
index part of the PIO to which the corresponding header belongs. To 
examine this array, type the following SDA command. 

SDA> EXAMINE @PHV$GL_PIXBAS ; (2 * @SGN$GL_BALSETCT) 

To display an entire process header, type the following SDA commands. 

SDA> SET PROCESS/INDEX•<n> 
SDA> SHCM PROCESS/PHO 
SDA> SHOW PROCESS/REGISTER 
SDA> SHOW PROCESS/PAGE 
SDA> SHOW PROCESSfi«)RK 
SDA> SHCJf PROCESS/PROC 

System Header 

! replace <n> with pix 
!display fixed portion of phd 
!display hardware pcb 
!display PO and Pl page tables 
!display working set list 
!display process section table 

The system header is structured somewhat like a process header. It 
contains _the system working set list and global section table and 
basically enables system code to be pageable. It is not pageable. 
To display it, type the following SDA commands. 

1.1L 

sDIO· "sHCM PROCESS/SYSTEM/PHO 
SDA>·saON PROCESS/SYS~RK !display working set list 
SDA> SHai PROCESS/SYSTEM/PROC !display global section table -- ~ 

System Page Table 

The .•. · ·' pa9f!;,qble is used to translate system virtual addresses 
to . ·,,. ..:_ .. ~en addresses. It is not pageable, is typically placed in 
the. "/_put physical memory, and must be physically contiguous. on a 
VAX•ll/'782 systeJll~ the primary processor· and the attached processor 
sharf one system page table. To display the system page table, type 
the followin9 SJ». command. 

SDA> SHCl-1 PAGE_ TABLE/SYSTEM 



VAX/VMS Troubleshooting *INTERNAL USE OOLY* 
VIRTUAL ADDRESSES - SYSTEM SPACE 

Global Page Table 

'.Page: 220 
9 July 85 

The global page table is unlike other page tables in that it is not 
used by cpu memory management microcode ·for address translation. VMS 
memory management code uses the global page table to keep track of 
the state and location of global pages. The global page table is 
pageable. To display it, type the following SDA command. 

SDA> SHCM PAGE_TABLE/GLOBAL 

Hints And Kinks 

1. The console block storage medium has an RT-11 file structure. 
The RT-11 file structure implements three different record 
formats: stream ASCII, formatted binary, and fixed-length 
record. Under VMS you use the V3 FLX utility or the V4 EXCHANGE 
utility to transfer files to and from the console. 

Both FLX and EXCHANGE select a default record transfer mode based 
on file extension type. For example, extensions of OBJ and BIN 
default as EXCHANGE /RECOM>-BINARY and· FLX /FB transfer modes. 

Occasionally the default based on file extension type is 
inconsistent with the file's record format. In particular, 
CI780.BIN, the CI microcode; WCSxxx.PAT, the VAX-11/780 
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be 
copied correctly unless you override the default transfer mode. 

<. 

If you are not sure what the transfer mode should ·);le, you can use 
the EXCHANGE qualifier /RECORD FORMAT-STREAM ~Jlhe FLX switch 
/FA for all text files (e.g. coni'iand files) • use the EXCHANGE 
qualifier /RECORD FORMAT-FIXED (or /TMNSFER MOD~~WCK) or the 
FLX switch /IM for-all other files (binary files ,such as images, 
microcode files, patch files). The VMS C...PJ1sole contains no 
formatted binary files, so you will never want 
/RECORD_FORMAT-BINARY or FLX's ;rs. 

AdditiOnal References 

V3 ~ Internals and Data Structures Manual, Section 31.2, Use of 
Map Files; Appendix A, Executive Data Areas; Chapter 26, Size of 
Virtual Address Space. 



,VAXt,VMS- Troubleshooting *IN'!JmNAL~USE ONLY* Page Index-1 
14 August 1985 :~' 

-A-

Access violation exception 
software induced, 29 

Access violation fault, 28 
Adapter I/O space, 205 
ASYNc.wRTER bugcheck, 18, 19 

-B-

Bad page list, 103 
Balance set slot, 219 
Black hole page, 207 
Boot driver, 215 
BRDMSGLOST bugcheck, 128 
Bugcheck 

analysis, 11 
AS'YNCWRTD,,, 18 , 19 
~T,.~J:l28 
BUG CHECK;•cro, 12 
CHMONis., .141:.·:,_ 
CHMVEC, _143 
DBLERR, 138 
FATALEXCEPT, 33 
HALT, 13'9 
ILLVEC,, 140 
INVEXCEP'fbt, 84 
IVLISTK-, .137 
KRNLSTADIT, 89 
MACHINBCB-1 98 
mechanism, 22 
NCXJSl&lCS,, ~Dl. 41 
OPERAroR, 13 
Otrl'OFSYNC, 51, 144 
overlay, 23 
PGl'IPIHI, 113 
Restad;i-.::.~35 -
SCBJmUB, 144 
SSRY1XC111, .. 146·. 
s ",j; 135 
UN.lm88 ' 51, 59, 136 
~;,11 
UNXSIGML,. 170 

-c-

cache parity error 
VAX-11/780 and VAX-11/785, 105 

to 106 . 

INDEX 

Call frame 
change Mode dispatcher, 162 
layout, 116 

Channel control block, 188 
CHMONIS bugcheck, 141 
CHMVEC bugcheck, 143 
CI microcode, 216 
CI780.BIN 

See CI microcode 
CLI 

conunand table, 186 
data page, 192 
image, 186 
image name, 186 
symbol table, 186 

Cluster Connection Management 
See CLUSTRLOA.EXE 

CLUSTRLOA.EXE, 213 
Conmon 

per-process, 191 
Compatibility mode 

data page, 192 
~NTERR SPTEs, 207 
Control store parity error 

VAX-11/780 and VAX-11/785, 106 
to 107 

Corrected read data 
See cm error 

Cpu timeout 
VAX-11/780 and VAX-11/785, 19 

Cpu type 
identification, 98 

Cpu-specific interrupt 
VAX-11/780 and VAX-11/785, 17 

to 20 
Cpu-specific support 

See SYSLOloocx.EXE 
interrupt, 16 

Crashciunp file, 12 
backup of, 12 
deletion, 21, 22 
PAGEFILE.SYS, 21, 22, 24 
size, 21 
size affected by PHYSICALPAGES, 

21 
size alteration, 22 

Crashciunp requirements, 21 
cm error 

VAX-11/780 and VAX-11/785, 17, 
102 



VAX/VMS Troubleshooting *INTERNAif\JUir'OOLY* 

-D-

DBLERR bugcheck, 138 
Debugger 

symbol table, 195 
DELTA 

kernel mode deposit, 122 
Device driver SVPNs, 209 
Dispatch vector 

user-written system service, 
193 

Dump file 
see Crashdump file 

-E-

Emulation 
VAX character instructions 

See VAXEMUL.EXE 
VAX decimal instructions 

See VAXEMUL.EXE 
VAX floating point instructions 

See FPEMUL.EXE 
Erase pattern 

buffer, 208 
pseudo page table, 208 

Error confirm error 
VAX-11/780 and VAX-11/785, 108 

to 111 
Error log entry 

AW 
VAX-11/780 and VAX-11/785, 19 

BE 
VAX-11/780 and VAX-11/785, 19 

bugcheck, 13, 23 
HE 

VAX-11/780 and VAX-11/785, 
103 

MC, 98 
pending, 22, 24 
SA 

VAX-11/780 and VAX-11/785, 18 
SE 

VAX-11/780 and VA&-11/785, 18 
Exception, 25 

access violation 
see Access violation fault 

dispatching; 26 
hardware, 25 
reserved addressing mode 

see Reserved addressing mode 
fault 

reserved opcode 
see Reserved opcode fault 

Exception (Cont.) 
reserved operand 

see Reserved operand 
exception 

software, 25 
EXE$GL MCHKERRS _ 

asynChronous write timeout 
VAX-11/780 and VAX-11/785, 19 

machine check, 98 
SBI fault 

VAX-11/780 and VAX-11/785, 19 
EXE$GL MEMERRS 

corrected read data 
VAX-11/780 and VAX-11/785, 18 

RDS error 
VAX-11/780 and VAX-11/785, 

103 
SBI alert 

VAX-11/780 and VAX-11/785, 18 

-F- _.,, -~ 

FATALEXCEPT bugcheck ,1·~3;k 
Fiche organization--<en.~_;;D:.: 

See Microfiche organization 
Files-11 XQP, 186 · " 

current IRP, 93 
location, 186 
pending IRP, 93 
stack, 87 

Forced crash, 43 
FPEMUL.EXE, 212 

- 7 

, ~-"· 

.. .-~·'?:,' ::: 
"r • ·. 
!::;..,. J... . ~ .. 

Global page table, ·-220 . .,.C:'.)h'" 
( J ::re·:- r=· . 

-H--- I~ ~~:;?.',/_; . . -,· 

'- ' ' , ;:: .i.. .; .. ~I ' 

Halt :;,_,;.,_; IFt.?~iU ~,._/_: 

CHMx on interrupt ;4itiaalf:,,:: .. ~;t&--:· r: 
VAX-11/780 and VAX-ffl-78! ~. 50 

clock phase error ., ~- ·" -- -· 
VAX-11/785, 51 C" ~-

double error 
VAX-11/780 and VAX-11/785, 51 

halt instruction 
VAX-11/780 and VAX-11/785, 48 

illegal vector 
VAX-11/780 and VAX-11/785, 52 

invalid interrupt stack 
VAX-11/780 and VAX-11/785, 53 

no user WCS 
VAX-11/780 and VAX-11/785, 54 



t·~···'"°"i!'. 1·:~ ._ .... • '"~:~. ~ 

.: .. :.~·Troubleshooting 
... ,, " . \;. 

Halt (Cont,..) 
pathological i 

VAX-11)780 and VAX-11/785, 54 
VAX-11/780, 46 r. _ 

VAX-11/780 and'VAx-11/785 
console message, 47 

VAX-11/785, 4Q·-i·· ' 
HALT bugcheck, 139 
Hang, 65 

process, 75 
system, 65 

-I~ 

I/O request 
location, 92 "#.~ 

I/O request packet lookaside list 
See IRP lookaside list 

ILVISTK bugcheck, lJJ 
Image activator 

context page, 192 
scratch page, 19~ 

Image header buffer, 193 
Image I/O segment, 185 
INVEXCEP'1'f .~g~e9k, 84 
IPL usage-,- 157 · ·' 
IRP lookasid.tt list, 217 -· .. ..... 

. ,{ -K-

Kernel request packet lookaside 
list·.-- .. · .... 

see KRPftookaside list 
Kernel .atac:Jt. r .. ,,. . ..,,.. 

see · Su'cl<", · kern•l. . 
KRNLSTAKNV bugcheck·, :89 .· ........ . 
KRP. .}~k..~~.id•t:H·~t I 194 

-L-

~r,a~;·· f~at ~-packet· loo~~-~de 
list .,. . .. . . -.. ··~ · 

·see· Liff'. · · .. ;de . l.tatf., .. 
Lookast· 

LRP· 

.• sn~J~:~·d'·• · s•· SIP leokaside list 
Lookaside list 

IRP ~~-- ..... 
see. IRP;,~pokaside:~list "KRP - .. ._ ~- ·- ............. ,., . . 

~ · s~e 'i(Rp i_ooka~id~·· list 
I.RP lookasidcf list, 216 

-M-

Page Index-3 
14 August 1985 

Machine check 
VAX-11/780, 101 
VAX-11/785, 101 

MACHINECHK bugcheck, 98 
Message section 

per-process, 186 
system 

See SYSMSG.EXE 
Microcode not supposed to be here 

VAX-11/780 and VAX-11/785, 107 
to 108 

Microfiche organization, 196 
MicroVAX I 

console single step, 71 
MicroVAX II 

console single step, 72 
MP.EXE, 212 
MSCP server 

See MSCP.EXE 
MSCP.EXE, 209 
Mutex 

global name, 119 
MNAIT state, 117 

-N-

Nonpaged pool variable list, 210 
~Sl\WCS bugcheck, 141 
Null Job 

kernel stack, 87 

-0-

OPERA'IOR bugcheck, 13 
oororsmc.bugcheck, 51, 144 

-P-

Pi pointer page, 195 
PADRIVER bugcheck 

CI port local store, 216 
Paqed pool, 210 
PPN data base, 209 
PGFIPLHI qugcheck, 113 
Process 

MNAIT, 117 
resource wait, 117 

Process allocation region, 188 
Process header 

access with online SDA, 6 
location, 219 
Pl window, 189 



Process I/O segment, 187 
Processor status longword 

layout, 116 
PSL 

See Processor status longword 

-R-

RDS error 
VAX-11/780 and VAX-11/785, 17, 

102 to 104 
Read data substitute 

See RDS error 
Read timeout error 

VAX-11/780 and VAX-11/785, 108 
to 111 

Reserved addressing mode fault, 
30 

Reserved opcode fault, 30 
Reserved operand exception, 31 
Resource wait, 117 

RWAST, 120 
RWBRK, 126 
RWCLU, 133 
RWIMG, 129 
RNLCK, 129 
RWMBX, 123 
RWMPB, 132 
RWMPE, 131 
RWNPG, 124 
RWPAG, 126 
RWPFF, 126 
RtQX>, 129 
RWSCS, 132 
RWSWP, 130 

RESTAR.CMD i~?~= 
editing, 59 .. ~ .. 

Restart parameter block 
contents, 209 
use during restart, 135 
use during VAX-11/780 restart, 

58 ',,· ~· 
use during VAX-11/785 restart, 

58 .. ' 
virtual location, a09 

RMS . ,:--
directory cache, l~l 
image I/O segment, · 185 
location, 208 
per-process statistics, 190 
process context area, 190 
process I/O segment, 187 
process permanent IFAB/I:RAB 

table, 191 

RMS (Cont.) 
tracepoint page, i l~t.r:· 

RNS$ IACLOCK, 129 .. ~ .. ;. 
RPB - " 'tS . : 

See Restart.pa~~tet block 
RSN$ AS'IWAIT, -1i~·i~,, . .. 
RSN$=BRKTHRU, 12~:, ... r 

RSN$ CLUSTRAN, 133 
RSN$-JQUOTA, 129 
RSN$-LOCKID, 129 
RSN$-MAILBOX, 123 
RSN$-MPLEMPTY, 131 
RSN$-MPWBUSY, 132 
RSN$-NPOYNMEM, 124" .. 
RSN$-PGDYNMEM, 126 
RSN$-PGFILE, 126 ·:·z~r 

RSN$-SCS, 132 .•.... ~:· ~=.·-··; ... 
RSN$-SWPFILE,. ;130. ~'·'"t. ~~ 
RW*** code ~,_ ..... >··HJ. '"l.J. 

see Resource wii t~ " lx!. 
· .. '.· -,; J ~ \ -~ ~·7·: 

., .. 'f~"--.. c.··~ . r)"· . ~·-· SBI alert . · · . • · .~~--~.\t:'···~ " · ~ 

VAX-11/iao' -~i1cf~1~t?Ks, 10.· 
SBI fault . .. : . ~ -- 0

• o· 

VAX-11/780 and w&:-11!/185, 19 
SBI silo compare 

VAX-11/780 and VAX-11/785, 17 
SCB 

See System contr"d131ifbck 
SCBRDERR bugcheck, ~~4 4 
SCS .:J(L ·:· 

See System ~~~~~f~n. · 
service1· ... - \ ""' ;;.'.1~ · · 

SCSLOl\. EXE 213;"' ~.:.:. t~;)~ Vi D~l:P · .. : .. :'· :> 
Security a~dit t.:cfaltitpa~ :·119z ;,~\ 
SHON ERROR. output . 

cpu, 98 
of.' ~~7'.l.~/780 aJld ~-1~/?8-.51 19 '"'iiieDfC)ry.,. . . .. ... . f .J'c.S .. 1.Jp~" ·.;}. r: . .• 

: :f "' ~ 

VAX-11/780 -~···~~11/185, 18, -103 .. ).\,,.· . .!< 

Single step ·t~ l.:7 ., 
CI sanity timer, 8i,. ·_ 
MicroVAX I console dbnmands, 71 
MicroVAX II console, .conmands, 72 ' \ ., .. 

VAX 8600 console ccmUands ~- ::·10 
VAX-11(7,30 t;:O~Qle~c;;~ds, 71 
VAX-117750 consSie comm.ands, 70 
VAX-11/780 cc;>nsole c;P,lllDaJlds, 70 
VAX-11/785 ~pnso~! ~~s;t- 70 



.VAX/VMS Troubleshooting *INTERNAL USE C!n.Y* Page Index-5 
14 August 1985 

Small request packet lookaside 
list 

See;SRP lookaside list 
SRP lookaside list, 217 
SSRVEXCEPT bugcheck, 146 
Stack 

exec, 152 to 155, 194 
Files-11 XQP, 87 
interrupt, 156 to 160, 218 
kernel, 87, 161to165, 194 
- invalid, 89 

location, 87 
NUll Job, 87 
supervisor, 194 
swapper, 87 
user, 185 

extra pages, 185 
STATENTSVD bugcheck, 135 
swapper 

kernel stack, 87 
SYS.EXE, 205 
SYSLOi\xxx.EXE, 214 
SYSMSG.EXE, 208 
System coaaunication services 

See SCSLC».. EXE 
System control block, 218 
System header, 219 
System i•ge 

See SYS.EXE 
System message file 

See SYSMSG.EXE 
System page table, 219 
System service 

name, 166 
vector, 166 to 169 

-T-

Terminal class driver 
Bee 'l'l'DRIVER~BXB 

Translation buffer parity error 
VAX-11/780 and ~11/785 I 104 

to; 101:.;. ,• •'. 
'1'1UUVll(, .• ~:p21f ·•, 

;.--;/:: 
·~. 4i:~-::·; 

.:.<·}i 

-u-
UNRRSTRT bugcheck, 51, 59, 136 
UNXINTEXC bugcheck, 17 
UNXSIGNAL bugcheck, 170 
User mode data page, 192 

-v-
VAX 8600 

console single step, 70 
VAX-11/730 

console single step, 71 
VAX-11/750 

%%, 66 
console single step, 70 

VAX-11/780 
auto restart, 57 
console halt message, 47 
console single step, 70 
Cpu-specific interrupt, 17 to 

20 
Halt, 46 
machinecheck, 101 

VAX-11/782 support 
See MP.EXE 

VAX-11/785 
auto restart, 57 
console halt message, 47 
console single step, 70 
Cpu-specific interrupt, 17 to 

20 
Halt, 46 
machine check, 101 

VAX!'.MUL.EXE, 212 
Virtual address, 174 

PO space, 176 to 177 
Pl Space, 178 to 196 
system space, 196 to 220 

-x-
XQP 

see Files-11 XQP 


