
VMS

digital VAX Text Processing Utility Manual: Part II

Order Number: AA-PBTNA-TE

)

VAX Text Processing Utility
Manual: Part II

Order Number: AA-PBTNA-TE

June 1990

This manual describes the elements of the VAX Text Processing Utility
(VAXTPU). It is intended as a reference manual for experienced programmers.

Revision/Update Information: This document supersedes the VAX Text
Processing Utility Manual for VMS Version
5.2.

Software Version:

digital equipment corporatiqn
maynard, massachusetts

VMS Version 5.4

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS LiveLink UNIBUS XUI
DECwindows LN03 VAX

mnmanma™ DECwriter MASS BUS VAXcluster

The following is a third-party trademark:

Postscript is a registered trademark of Adobe Systems Incorporated.

ZK4350

Production Note

)

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and· index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xx iii

VAXTPU TUTORIAL SECTION

CHAPTER 1 OVERVIEW OF THE VAX TEXT PROCESSING UTILITY 1-1

1.1 WHAT IS VAXTPU? 1-1

1.2 WHAT IS DECWINDOWS VAXTPU? 1-2
1.2.1 DECwindows VAXTPU and DECwindows Features 1-2
1.2.2 DECwindows VAXTPU and the DECwindows User Interface

1
Language 1-4

/

1.3 WHAT IS EVE? 1-4

1.4 THE VAXTPU LANGUAGE 1-5
1.4.1 VAXTPU Data Types 1-6
1.4.2 VAXTPU Language Declarations 1-7
1.4.3 VAXTPU Language Statements 1-7
1.4.4 VAXTPU Built-In Procedures 1-7
1.4.5 User-Written Procedures 1-8

1.5 TERMINALS SUPPORTED BY VAXTPU 1-8

1.6 INVOKING VAXTPU 1-9
1.6.1 Using EDIT/TPU Command Qualifiers 1-9
1.6.2 Using Startup Files 1-10

1.7 USING JOURNAL FILES 1-11
1.7.1 Buffer Change Journal File Naming Algorithm 1-12

v

Contents

1.8 LEARNING MORE ABOUT VAXTPU 1-13

CHAPTER2 VAXTPU DATA TYPES 2-1

2.1 ARRAY 2-2

2.2 BUFFER 2-3

2.3 INTEGER 2-5

2.4 KEYWORD 2-5

2.5 LEARN 2-7

2.6 MARKER 2-8

2.7 PATTERN 2-11
2.7.1 Pattern Built-In Procedures 2-13
2.7.2 Keywords That Can Be Used to Build Patterns 2-14
2.7.3 Pattern Operators 2-15
2.7.3.1 + (Pattern Concatenation Operator) • 2-15
2.7.3.2 & (Pattern Linking Operator) • 2-15
2.7.3.3 I (Pattern Alternation Operator) • 2-16
2.7.3.4 @ (Partial Pattern Assignment Operator) • 2-17
2.7.3.5 Relational Operators • 2-18
2.7.4 Pattern Compilation and Execution 2-18
2.7.5 Searching 2-18
2.7.6 Anchoring a Search 2-19

2.8 PROCESS 2-20

2.9 PROGRAM 2-21

2.10 RANGE 2-21

vi

Contents

' I
/

2.11 STRING 2-23

2.12 UNSPECIFIED 2-24

2.13 WIDGET 2-24

2.14 WINDOW 2-25
2.14.1 Window Dimensions 2-25
2.14.2 Creating Windows 2-26
2.14.3 Window Values 2-27
2.14.4 Mapping Windows 2-27
2.14.5 R.emoving Windows 2-28
2.14.6 Screen Manager 2-28
2.14.7 Getting Information on Windows 2-29
2.14.8 Terminals That Do Not Support Windows 2-29

)
CHAPTER3 LEXICAL ELEMENTS OF THE VAXTPU LANGUAGE 3-1

3.1 OVERVIEW 3-1

3.2 CHARACTER SET 3-1
3.2.1 Entering Control Characters 3-2
3.2.2 VAXTPU Symbols 3-3

3.3 IDENTIFIERS 3-4

3.4 VARIABLES 3-4

3.5 CONSTANTS 3-5

3.6 OPERATORS 3-6

3.7 EXPRESSIONS 3-8
3.7.1 Arithmetic Expressions 3-9
3.7.2 Relational Expressions 3-10
3.7.3 Pattern Expressions 3-11
3.7.4 Boolean Expressions 3-11

vii

Contents

3.8 RESERVED WORDS
3.8.1 Keywords
3.8.2 Built-In Procedure Names
3.8.3 Predefined Constants
3.8.4 Declarations and Statements
3.8.4.1 The Module Declaration • 3-14
3.8.4.2 The Procedure Declaration • 3-15

3.8.4.2.1 Procedure Names • 3-16
3.8.4.2.2 Procedure Parameters • 3-16
3.8.4.2.3 Procedures That Return a Result • 3-19
3.8.4.2.4 Recursive Procedures • 3-19
3.8.4.2.5 Local Variables • 3-20
3.8.4.2.6 Constants • 3-20
3.8.4.2.7 ON_ERROR Statements • 3-21

3.8.4.3 The Assignment Statement • 3-21
3.8.4.4 The Repetitive Statement • 3-21
3;8.4.5 The Conditional Statement • 3-22
3.8.4.6 The Case Statement • 3-23
3.8.4.7 Error Handling • 3-25

3.8.4.7.1 Procedural Error Handlers • 3-26
3.8.4.7.2 Case-Style Error Handlers • 3-28
3.8.4.7.3 CTRUC Handling • 3-31

3.8.4.8 The RETURN Statement• 3-31
3.8.4.9 The ABORT Statement• 3-33
3.8.4.10 Miscellaneous Declarations • 3-33

3.8.4.10.1 EQUIVALENCE Statement • 3-33
3.8.4.10.2 LOCAL• 3-34
3.8.4.10.3 CONSTANT• 3-35
3.8.4.10.4 VARIABLE• 3-36

3.9 LEXICAL KEYWORDS
3.9.1 Conditional Compilation
3.9.2 Specifying the Radix of Numeric Constants

CHAPTER 4 VAXTPU PROGRAM DEVELOPMENT

viii

4.1
4.1.1
4.1.2
4.1.3

CREATING VAXTPU PROGRAMS
Simple Programs
Complex Programs
Program Syntax

3-12
3-12
3-12
3-13
3-13

3-36
3-36
3-37

4-1

4-1
4-2
4-2
4-3

Contents

4.2 PROGRAMMING IN DECWINDOWS VAXTPU 4-5
4.2.1 Widgets Supported by DECwindows VAXTPU 4-5
4.2.2 Input Focus Support in DECwindows VAXTPU 4-5
4.2.3 Global Selection Support in DECwindows VAXTPU 4-6
4.2.3.1 Difference Between Global Selection and Clipboard • 4-6
4.2.3.2 Handling of Multiple Global Selections • 4-6
4.2.3.3 Relation of Global Selection to Input Focus in DECwindows

VAXTPU • 4-7
4.2.3.4 DECwindows VAXTPU's Response to Requests for Information

About the Global Selection • 4-7
4.2.4 Using Callbacks in DECwindows VAXTPU 4-8
4.2.4.1 Background on DECwindows Callbacks • 4-8
4.2.4.2 Understanding the Difference Between VAXTPU's

Internally-Defined Callback Routines and a Layered Application's
Callback Routines• 4-9

4.2.4.3 Using Internally-Defined VAXTPU Callback Routines with
UIL • 4-9

4.2.4.4 Using Internally-Defined VAXTPU Callback Routines with Widgets
Not Defined by UIL • 4-10

4.2.4.5 Using Application-Level Callback Action Routines• 4-10
\ 4.2.4.6 Callable Interface-Level Callback Routines • 4-10
) 4.2.5 Using Closures in DECwindows VAXTPU 4-11

4.2.6 Specifying Values for Widget Resources in DECwindows
VAXTPU 4-12

4.2.6.1 VAXTPU Data Types for Specifying Resource Values • 4-12
4.2.6.2 Specifying a List as a Resource Value • 4-13

4.3 WRITING CODE COMPATIBLE WITH DECWINDOWS EVE 4-14
4.3.1 Screen Objects in Applications Layered on DECwindows

VAXTPU 4-14
4.3.2 Select Ranges in DECwindows EVE 4-16
4.3.2.1 Dynamic Selection • 4-17
4.3.2.2 Static Selection • 4-17
4.3.2.3 Found Range Selection • 4-18
4.3.2.4 Relation of EVE Selection to DECwindows Global

Selection • 4-18

4.4 COMPILING VAXTPU PROGRAMS 4-18
4.4.1 Compiling on the EVE Command Line 4-19
4.4.2 Compiling in a VAXTPU Buffer 4-19

ix

Contents

4.5 EXECUTING VAXTPU PROGRAMS
4.5.1 Interrupting Execution with CTRL/C
4.5.2 Procedure Execution

4.6 VAXTPU STARTUP FILES
4.6.1 Sequence in Which VAXTPU Processes Startup Files
4.6.2 Section Files
4.6.2.1 Creating and Processing a New Section File • 4-23
4.6.2.2 Extending an Existing Section File • 4-24
4.6.2.3 A Sample Section File• 4-25
4.6.2.4 Recommended Conventions for Section Files • 4-28

4.6.2.4.1 TPU$1NIT _PROCEDURE • 4-28
4.6.2.4.2 TPU$LOCAL_INIT • 4-29
4.6.2.4.3 Special Variables • 4-29

4.6.3 Command Files
4.6.4 EVE Initialization Files
4.6.4.1 Using an EVE Initialization File at Startup • 4-31
4.6.4.2 Using an EVE Initialization File During an Editing Session • 4-32
4.6.4.3 How an EVE Initialization File Affects Buffer Settings • 4-32

4.7 DEBUGGING VAXTPU PROGRAMS
4.7.1 Invoking the VAXTPU Debugger
4.7.1.1 Section Files • 4-34
4.7.1.2 Command Files • 4-34
4.7.1.3 Other VAXTPU Source Code • 4-35
4.7.2 Getting Started with the VAXTPU Debugger
4.7.3 VAXTPU Debugger Commands

4.8 ERROR HANDLING

CHAPTER 5 INVOKING VAXTPU

x

5.1

5.2
5.2.1
5.2.2

AVOIDING ERRORS RELATED TO VIRTUAL ADDRESS SPACE

INVOKING VAXTPU FROM A DCL COMMAND PROCEDURE

Setting Up a Special Editing Environment
Creating a Noninteractive Application

4-19
4-20
4-21

4-21
4-22
4-23

4-29
4-31

4-33
4-33

4-35
4-36

4-38

5-1

5-1

5-2
5-2
5-3

5.3 INVOKING VAXTPU FROM A BATCH JOB

5.4 QUALIFIERS TO THE DCL COMMAND EDIT/TPU
5.4.1 /COMMAND
5.4.2 /CREATE

5.4.3 /DEBUG
5.4.4 /DISPLAY

5.4.5 /INITIALIZATION

5.4.6 /INTERFACE
5.4.7 /JOURNAL

5.4.8 /MODIFY
5.4.9 /OUTPUT
5.4.10 /READ_ONLY
5.4.11 /RECOVER
5.4.12 /SECTION
5.4.13 /START _POSITION
5.4.14 /WRITE

5.5 HOW EVE USES /MODIFY, /OUTPUT, /READ_ONLY, AND /WRITE

5.6 SPECIFYING A PARAMETER TO EDIT/TPU

CHAPTER 6 VAXTPU SCREEN MANAGEMENT

6.1

6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.5
6.1.2.6

6.1.2.7
6.1.2.8
6.1.2.9

HOW THE SCREEN MANAGER HANDLES WINDOWS AND
BUFFERS

Buffer Changes
Window Changes

Making a Window Current • 6-2
Mapping a Window• 6-3
Shifting a Window • 6-3
Deleting a Window• 6-4
How VAXTPU Window Size Affects a Terminal Emulator • 6-4
How VAXTPU Window Size Affects the Display on a
Terminal • 6-4
How a Window Displays Insertion of Records into a Buffer • 6-5
How a Window Displays Deletion of Records from a Buffer• 6-5
How a Window Displays Changes to a Record in a Buffer• 6-6

Contents

5-5

5-5
5-6
5-7
5-8
5-8
5-9

5-10
5-10
5-12
5-12
5-13
5-14
5-16
5-17
5-17

5-18

5-19

6-1

6-1
6-1
6-2

xi

Contents

6.2 INVOKING THE SCREEN MANAGER
6.2.1 Enabling Screen Updates
6.2.2 Automatic Updates
6.2.3 Updating Windows
6.2.4 Updating the Whole Screen
6.2.5 The REFRESH Built-In
6.2.6 The SCROLL Built-In

6.3 CURSOR POSITION COMPARED TO EDITING POINT

6.4 BUILT-IN PADDING

VAXTPU REFERENCE SECTION

CHAPTER 7 VAXTPU BUILT-IN PROCEDURES

xii

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11

7.2

BUILT-IN PROCEDURES GROUPED ACCORDING TO FUNCTION
Screen Layout
Cursor Movement
Moving the Editing Position
Text Manipulation
Pattern Matching
Status of the Editing Context
Defining Keys
Multiple Processing
Program Execution
DECwindows VAXTPU-Specific
Miscellaneous

DESCRIPTIONS OF THE BUILT-IN PROCEDURES

ABORT

ADD_KEY_MAP

ADJUST_WINDOW

ANCHOR

ANY

APPEND_LINE

ARB

ASCII

7-16
7-17
7-19
7-24
7-26
7-28
7-30
7-32

6-6
6-6
6-7
6-8
6-9

6-10
6-10

6-10

6-11

7-1

7-1
7-1
7-2
7-3
7-3
7-5
7-6
7-8
7-9

7-10
7-10
7-13

7-15

Contents

1
I

ATTACH 7-35
BEGINNING_OF 7-37
BREAK 7-39
CALL_USER 7-40
CHANGE_CASE 7-44
COMPILE 7-47
CONVERT 7-50
COPY_TEXT 7-53
CREATE_ARRAY 7-55
CREATE_BUFFER 7-58
CREATE_KEY_MAP 7-63
CREATE_KEY_MAP _LIST 7-65
CREATE_PROCESS 7-67
CREATE_RANGE 7-69
CREATE_WIDGET 7-72
CREATE_WINDOW 7-77
CURRENT _BUFFER 7-80
CURRENT_CHARACTER 7-81

~
CURRENT_ COLUMN 7-83

) CURRENT _DIRECTION 7-85
CURRENT_LINE 7-86
CURRENT_ OFFSET 7-88
CURRENT_ROW 7-90
CURRENT_WINDOW 7-92
CURSOR_HORIZONTAL 7-94
CURSOR_ VERTICAL 7-96
DEBUG_LINE 7-99
DEFINE_KEY 7-100
DEFINE_WIDGET_CLASS 7-105
DELETE 7-107
EDIT 7-111
END_OF 7-115
ERASE 7-117
ERASE_ CHARACTER 7-119
ERASE_LINE 7-121
ERROR 7-123
ERROR_LINE 7-125
ERROR_ TEXT 7-127
EXECUTE 7-129

\ EXIT 7-133
)

EXPAND_NAME 7-135
FAO 7-138

xiii

Contents

FILE_PARSE 7-140
FILE_SEARCH 7-143
FILL 7-146
GET_CLIPBOARD 7-149
GET_DEFAULT 7-151
GET_GLOBAL_SELECT 7-153
GET_INFO 7-156

GET_INFO {ANY_KEYNAME) 7-162
GET_INFO {ANY_KEYWORD) 7-164
GET_INFO {ANY_VARIABLE) 7-165
GET_INFO {ARRAY) 7-166
GET_INFO {ARRAY_VARIABLE) 7-167
GET_INFO {BUFFER) 7-169
GET _INFO {BUFFER_ VARIABLE) 7-170
GET_INFO {COMMAND_LINE) 7-176
GET _INFO {DEBUG) 7-179
GET _INFO {DEFINED _KEY) 7-181
GET_INFO {INTEGER_VARIABLE) 7-182
GET_INFO {KEY_MAP) 7-183
GET _INFO {KEY _MAP _LIST) 7-184
GET _INFO (MARKER_ VARIABLE) 7-185
GET_INFO {MOUSE_EVENT_KEYWORD) 7-188
GET_INFO (PROCEDURES) 7-190
GET _INFO (PROCESS) 7-191
GET_INFO (PROCESS_VARIABLE) 7-192
GET_INFO (RANGE_ VARIABLE) 7-193
GET_INFO {SCREEN) 7-194
GET_INFO {STRING_ VARIABLE) 7-204
GET _INFO (SYSTEM) 7-206
GET_INFO (WIDGET) 7-210
GET_INFO {WIDGET_ VARIABLE) 7-215
GET_INFO {WINDOW) 7-219
GET_INFO {WINDOW_ VARIABLE) 7-220

HELP_TEXT 7-229
INDEX 7-231
INT 7-233
JOURNAL_CLOSE 7-235
JOURNAL_OPEN 7-236
KEY_NAME 7-239
LAST_KEY 7-243
LEARN_ABORT 7-244
LEARN_BEGIN AND LEARN_END 7-245
LENGTH 7-248
LINE_BEGIN 7-250

xiv

Contents

)

LINE_END 7-252
LOCATE_MOUSE 7-253
LOOKUP_KEY 7-255
MANAGE_WIDGET 7-259
MAP 7-260
MARK 7-262
MATCH 7-265
MESSAGE 7-267
MESSAGE_TEXT 7-271
MODIFY_RANGE 7-274
MOVE_HORIZONTAL 7-279
MOVE_ TEXT 7-281
MOVE_ VERTICAL 7-283
NOTANY 7-285
PAGE_BREAK 7-287
POSITION 7-288
QUIT 7-292
READ_CHAR 7-294

\
READ_ CLIPBOARD 7-296

) READ_FILE 7-298
READ_GLOBAL_SELECT 7-300
READ_KEY 7-302
READ_LINE 7-304
REALIZE_ WIDGET 7-307
RECOVER_BUFFER 7-308
REFRESH 7-311

\. REMAIN 7-313
REMOVE_KEV_MAP 7-314
RETURN 7-316
SAVE 7-317
SCAN 7-320
SCANL 7-323
SCROLL 7-325
SEARCH 7-328
SEARCH_QUIETLY 7-333
SELECT 7-338
SELECT_RANGE 7-341
SEND 7-343
SEND_CLIENT_MESSAGE 7-345

1 SEND_EOF 7-347
/

SET 7-348
SET (ACTIVE_AREA) 7-351

xv

Contents

SET (AUTO _REPEAT) 7-354
SET (BELL) 7-356
SET (CLIENT_MESSAGE) 7-358
SET (COLUMN_MOVE_ VERTICAL) 7-360
SET (CROSS_WINDOW_BOUNDS) 7-362
SET (DEBUG) 7-363
SET (DEFAULT_DIRECTORV) 7-367
SET (DETACHED_ACTION) 7-368
SET (DISPLAY_ VALUE) 7-371
SET (DRM_HIERARCHV) 7-372
SET (ENABLE_RESIZE) 7-373
SET (EOB_ TEXT) 7-375
SET (ERASE_ UNMODIFIABLE) 7-376
SET (FACILITY _NAME) 7-379
SET (FORWARD) 7-380
SET (GLOBAL_SELECT) 7-381
SET(GLOBAL_SELECT_GRAB) 7-383
SET(GLOBAL_SELECT_READ) 7-386
SET (GLOBAL_SELECT_TIME) 7-388
SET (GLOBAL_SELECT_UNGRAB) 7-390
SET (HEIGHT) 7-392
SET (ICON_NAME) 7-393
SET (ICON_PIXMAP) 7-394
SET (ICONIFV _PIXMAP) 7-396
SET (INFORMATIONAL) 7-398
SET (INPUT _FOCUS) 7-399
SET (INPUT_FOCUS_GRAB) 7-401
SET (INPUT _FOCUS_UNGRAB) 7-403
SET (INSERT) 7-405
SET (JOURNALING) 7-406
SET(KEVSTROKE_RECOVERV) 7-409
SET (KEV _MAP _LIST) 7-411
SET (LEFT_MARGIN) 7-413
SET (LEFT _MARGIN_ACTION) 7-415
SET (LINE_NUMBER) 7-417
SET(MAPPED_WHEN_MANAGED) 7-419
SET (MARGINS) 7-420
SET (MAX_LINES) 7-422
SET (MENU_POSITION) 7-423
SET (MESSAGE_ACTION_LEVEL) 7-425
SET (MESSAGE_ACTION_ TVPE) 7-427
SET (MESSAGE_FLAGS) 7-428

xvi

Contents

SET (MODIFIABLE) 7-430
SET (MODIFIED) 7-432
SET (MOUSE) 7-433
SET (NO_ WRITE) 7-435
SET (OUTPUT _FILE) 7-436
SET (OVERSTRIKE) 7-437
SET (PAD) 7-438
SET(PAD_OVERSTRUCK_TABS) 7-440
SET (PERMANENT) 7-442
SET (POST_KEY_PROCEDURE) 7-443
SET(PRE_KEY_PROCEDURE) 7-445
SET (PROMPT_AREA) 7-447
SET (RECORD_ATTRIBUTE) 7-449
SET (RESIZE_ACTION) 7-452
SET (REVERSE) 7-454
SET (RIGHT _MARGIN) 7-455
SET (RIGHT_MARGIN_ACTION) 7-457
SET (SCREEN_LIMITS) 7-459

) SET(SCREEN_UPDATE) 7-461
SET (SCROLL_BAR) 7-463
SET(SC~OLL_BAR_AUTO_THUMB) 7-466
SET (SCROLLING) 7-468
SET (SELF _INSERT) 7-471
SET (SHIFT _KEY) 7-473
SET (SPECIAL_ERROR_SYMBOL) 7-475
SET (STATUS_LINE) 7-477
SET (SUCCESS) 7-480
SET (SYSTEM) 7-481
SET (TAB_STOPS) 7-482
SET (TEXT) 7-484
SET (TIMER) 7-487
SET (TRACEBACK) 7-489
SET (UNDEFINED _KEY) 7-491
SET (VIDEO) 7-493
SET (WIDGET) 7-495
SET (WIDGET_CALL_DATA) 7-497
SET (WIDGET_CALLBACK) 7-500
SET (WIDTH) 7-502
SHIFT 7-504
SHOW 7-506
SLEEP 7-509
SPAN 7-511

xvii

Contents

SPANL

SPAWN

SPLIT_LINE

STR

SUBSTR

TRANSLATE

UNANCHOR

UNDEFINE_KEY

UNMANAGE_WIDGET

UNMAP

UPDATE

WRITE_CLIPBOARD

WRITE_ FILE

WRITE_GLOBAL_SELECT

APPENDIX A SAMPLE VAXTPU PROCEDURES

A.1

A.2

A.3

A.4

LINE-MODE EDITOR

TRANSLATION OF CONTROL CHARACTERS

RESTORING TERMINAL WIDTH BEFORE EXITING FROM
VAXTPU

RUNNING VAXTPU FROM A SUBPROCESS

APPENDIX B SAMPLE DECWINDOWS VAXTPU PROCEDURES

B.1 USING DECWINDOWS VAXTPU BUILT-INS

B.2 DISPLAYING A DIALOG BOX

B.3 CREATING A "MOUSE PAD"

xviii

7-513
7-516
7-519
7-521
7-524
7-527
7-531
7-533
7-535
7-537
7-539
7-541
7-544
7-547

A-1

A-1

A-2

A-5

A-5

B-1

B-1

B-1

B-4

Contents

B.4 IMPLEMENTING AN EDT-STYLE APPEND COMMAND B-11

B.5 TESTING AND RETURNING A SELECT RANGE B-13

B.6 RESIZING WINDOWS B-16

B.7 UNMAPPING SAVED WINDOWS B-19

B.8 MAPPING SAVED WINDOWS B-22

B.9 HANDLING CALLBACKS FROM A SCROLL BAR WIDGET B-25

B.10 IMPLEMENTING THE COPY SELECTION OPERATION B-28

B.11 REACTIVATING A SELECT RANGE B-30

1
B.12 COPYING SELECTED MATERIAL FROM EVE TO ANOTHER DECWINDOWS

APPLICATION B-31

APPENDIX C VAXTPU TERMINAL SUPPORT C-1

C.1 SCREEN-ORIENTED EDITING ON SUPPORTED TERMINALS C-1
C.1.1 Terminal Settings That Affect VAXTPU C-1
C.1.2 The DCL Command SET TERMINAL C-3

C.2 LINE-MODE EDITING ON UNSUPPORTED TERMINALS C-3

C.3 TERMINAL WRAP C-4

APPENDIX D VAXTPU MESSAGES D-1

xix

Contents

APPENDIX E DEC MULTINATIONAL CHARACTER SET E-1

APPENDIX F VAXTPU FILE SUPPORT F-1

APPENDIX G EVE$BUILD MODULE G-1

G.1 HOW TO PREPARE CODE FOR USE WITH EVE$BUILD G-1
G.1.1 Module Identifiers G-2
G.1.2 Parsers G-3
G.1.3 Initialization G-4
G.1.4 Command Synonyms G-5
G.1.5 Status Line Fields G-7
G.1.6 Exit and Quit Handlers G-8
G.1.7 How to Invoke EVE$BUILD G-10

G.2 WHAT HAPPENS WHEN YOU USE EVE$BUILD G-11

INDEX

EXAMPLES
1-1 Sample User-Written Procedure 1-8

2-1 Suppressing the Addition of Padding Blanks 2-11

3-1 Global and Local Variable Declarations 3-5

3-2 Global and Local Constant Declarations 3-6

3-3 A Procedure Using Relational Operators on Markers 3-11

3-4 Simple Procedure with Parameters 3-17

3-5 Complex Procedure with Optional Parameters 3-18

3-6 Procedure That Returns a Result 3-19

3-7 Procedure Within Another Procedure 3-19

3-8 Recursive Procedure 3-20

3-9 Procedure Using the CASE Statement 3-24

3-10 Procedure Using the ON_ERROR Statement 3-27

3-11 Procedure with a Case-Style Error Handler 3-29

3-12 Procedure That Returns a Value 3-32

3-13 Procedure Returning a Status 3-32

3-14 Using RETURN in an ON_ERROR Section 3-33

xx

'1
;

~
I

\

3-15

4-1

4-2

4-3

4-4

4-5

4-6

4-7

5-1

5-2

5-3

5-4

7-1

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10

B-11

C-1

FIGURES
1-1

1-2

4-1

7-1

7-2

Simple Error Handler

SHOW (SUMMARY) Display

Syntax of a VAXTPU Program

Sample VAXTPU Programs

Sample Program for a Section File

Source Code for Minimal Interface

Command File for Go to Text Marker

SHOW DEFAULTS BUFFER Display

DCL Command Procedure FILENAME.COM

DCL Command Procedure FORTRAN_ TS.COM

DCL Command Procedure INVISIBLE_ TPU.COM

VAXTPU Command File GSR.TPU

Initialization Procedure Using Variants of the SET Built-In

EVE Procedure That Displays a Selection Dialog Box

Procedure That Creates a "Mouse Pad"

EVE Procedure That Implements a Variant of the EDT
APPEND Command

EVE Procedure That Returns a Select Range

Procedure That Resizes Windows

EVE Procedure That Unmaps Saved Windows

Procedure That Maps Saved Windows

EVE Procedure That Handles Callbacks from a Scroll Bar
Widget

EVE Procedure That Implements the COPY SELECTION
Operation

EVE Procedure That Reactivates a Select Range

EVE Procedure That Implements COPY SELECTION

DCL Command Procedure for SET TERM/NOWRAP

VAXTPU as a Base for EVE

VAXTPU as a Base for User-Written Interfaces

Nomenclature of DECwindows VAXTPU Screen Objects

Screen Layout Before Using ADJUST_ WINDOW

Screen Layout After Using ADJUST_ WINDOW

Contents

3-33

4-2

4-3

4-4

4-25

4-26

4-30

4-33

5-3

5-3

5-4

5-4

7-385

B-2

B-4

B-12

B-14

B-17

B-20

B-23

B-26

B-29

B-30

B-32

C-4

1-2

1-5

4-15

7-21

7-22

xxi

Contents

TABLES
1-1 Qualifiers to the DCL Command EDIT/TPU 1-9

1-2 Journaling Behavior Established by EVE 1-12

2-1 Keywords Used for Key Names 2-6

3-1 VAXTPU Symbols 3-3

3-2 VAXTPU Operators 3-6

3-3 Operator Precedence 3-7

4-1 Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types 4-12

4-2 Special VAXTPU Variables Requiring a Value from a Layered
Application 4-29

5-1 Summary of How VAXTPU and the Application Layered on
VAXTPU Relate to the Qualifiers to EDIT/TPU 5-5

7-1 CREATE_RANGE Keyword Parameters 7-69

7-2 GET _INFO Built-in Procedures by First Parameter 7-158

7-3 VAXTPU Keywords Representing Mouse Events 7-188

7-4 Detached Cursor Flag Constants 7-198

7-5 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", "Top", or
"Width" 7-222

7-6 Message Flag Values 7-268

7-7 Message Flag Values 7-271

7-8 MODIFY _RANGE Keyword Parameters 7-274

7-9 VAXTPU Keywords Representing Mouse Events 7-352

7-10 Selected Built-in Actions When ERASE_UNMODIFIABLE is
Turned Off 7-377

7-11 Message Codes for $PUTMSG System Service 7-428

7-12 Message Flag Values 7-428

C-1 Terminal Behavior That Affects VAXTPU's Performance C-1

D-1 VAXTPU Messages and Their Severity Levels D-1

E-1 DEC Multinational Character Set E-1

F-1 VAXTPU Support of File Attributes F-1

xx ii

Preface

Intended Audience
This manual is intended for experienced programmers who know at least
one computer language. Some features of VAXTPU, for example, the
callable interface and the built-in procedure FILE_PARSE, are intended
for system programmers who have a good understanding of VMS system
concepts. Relevant documents about the VMS operating system are listed
under Associated Documents.

Document Structure
This manual consists of six expository chapters, a reference section, and
seven appendixes. The six chapters discuss the following topics:

• Chapter 1 contains an overview of VAXTPU.

• Chapter 2 provides detailed information on VAXTPU data types.

• Chapter 3 discusses the lexical elements ofVAXTPU. These include
the character set, identifiers, variables, constants, and reserved words,
such as VAXTPU language statements.

• Chapter 4 describes VAXTPU program development.

• Chapter 5 describes how to invoke VAXTPU.

• Chapter 6 discusses the VAXTPU screen manager and screen
management issues.

The VAXTPU Reference Section (Chapter 7) provides detailed descriptions
of the VAXTPU built-in procedures.

The seven appendixes are organized as follows:

• Appendix A contains sample procedures written in VAXTPU.

• Appendix B contains sample procedures written in DECwindows
VAXTPU.

• Appendix C describes terminals supported by VAXTPU.

• Appendix D lists each VAXTPU message, its abbreviation, and its
severity level.

• Appendix E contains the DEC Multinational Character Set.

• Appendix F lists the file types that VAXTPU supports.

• Appendix G discusses EVE$BUILD, a tool that enables you to layer
applications onto EVE or build new VAXTPU applications.

xx iii

Preface

Associated Documents

Conventions

xx iv

To learn how to use the Extensible VAX Editor (EVE), see the Guide to
VMS Text Processing. For reference information on EVE commands, see
VMS EVE Reference Manual.

The VMS Utility Routines Manual contains a chapter presenting the
VAXTPU callable interface.

The VMS System Messages and Recovery Procedures Reference Manual
contains the VAXTPU messages, as well as an explanation and suggested
user action for each message. The messages are listed alphabetically by
the abbreviation for the message text.

The Overview of VMS Documentation briefly describes all VMS system
documentation, defining the intended audience for each manual and
providing a synopsis of each manual's contents.

The VMS DCL Dictionary describes the VMS DCL commands that help
you create, copy, and print files containing VAXTPU programs.

The VMS System Services Volume describes system services.

The Introduction to VMS System Routines and VMS Utility Routines
Manual describe utility routines.

The VMS Run-Time Library Routines Volume describes routines of the
run-time library.

The VMS Record Management Services Manual describes VMS RMS
services.

The following conventions are used in this document:

mouse

MB1, MB2, MB3

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

In examples, a key name (usually abbreviated) shown
within a box indicates that you press a key on the
keyboard; in text, a key name is not enclosed in a
box. In this example, the key is the Return key. (Note
that the Return key is not usually shown in syntax
statements or in all examples; however, assume
that you must press the Return key after entering a
command or responding to a prompt.)

CTR UC

red ink

{}

[]

[, ...]

[1

quotation marks
apostrophes

UPPERCASE letters
and special symbols

Preface

A key combination, shown in uppercase with a slash
separating two key names, indicates that you hold
down the first key while you press the second key.
For example, the key combination CTRUC indicates
that you hold down the key labeled CTRL while
you press the key labeled C. In examples, a key
combination is enclosed in a box.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

In examples, a vertical series of periods, or ellipsis,
means either that not all the data that the system
would display in response to a command is shown or
that not all the data a user would enter is shown.

Braces enclose a mandatory portion of the format of
a built-in procedure or lexical element. When braces
enclose a stacked list of items, you must choose one

. { string } of the items. For example:
range

Double brackets in examples show an optional portion
of the format of a built-in procedure or lexical element.
When double brackets enclose an item or series of
items, you can select one of the items. For example:

[
string]
range

Double brackets enclosing a comma and horizontal
ellipsis mean that you can repeat the preceding item
one or more times, separating two or more items with
commas. For example:

parameter [[, ...]]

Delimits a case label. Single brackets do not indicate
optional parameters in this manual.

The term quotation marks is used to refer to double
quotation marks ("). The term apostrophe (') is used
to refer to a single quotation mark.

Uppercase letters and special symbols in syntax
descriptions and sample procedures indicate VAXTPU
reserved words and predeclared identifiers, and other
user input that must be typed exactly as shown. For
example:

PROCEDURE
UNDERLINE

String constants are shown in lowercase to emphasize
that they are strings. However, they, too, must be
typed exactly as shown.

xxv

Preface

lowercase letters

user_

filespec

xx vi

Lowercase letters in syntax descriptions and sample
procedures represent elements that you must replace
according to the description in the text. For example,
when a data type, such as buffer, is used in a syntax
example, replace it with the variable name assigned
to the data item when it was created. In the following
assignment statement, my_buffer_variable is the
variable name assigned to the buffer you are creating:

my_buffer_variable :=

CREATE_BUFFER ('my_buf_name', 'my_file_name')

To specify a buffer as a parameter for a VAXTPU
built-in procedure, use the variable for the buffer. For
example, to erase the contents of the buffer created
in the preceding statement, enter the following:

ERASE (my_buffer_variable)

Many of the sample procedures in this manual have
the prefix user_ as a part of the procedure name.
Digital suggests that you replace the prefix user with
your initials. This or some other convention helps
to ensure that the variables and procedure names
that you create do not conflict with either VAXTPU
built-in procedure names, or the procedure names
and variables of your editing interface.

Mnemonic for file specification.

'i
)

VAXTPU Reference Section
This section contains detailed descriptions of the built-in procedures provided
by the VAX Text Processing Utility.

7 VAXTPU Built-In Procedures

This chapter describes each of the VAX.TPU built-in procedures. The
chapter is divided into two sections.

In Section 7.1, the built-in procedures are grouped according to the
functions that they perform so you can see at a glance which built-in
is related to what task. In Section 7.2, the built-in procedures are listed
alphabetically. Each built-in is described in detail.

Some built-in procedures do not return useful values. The descriptions of
these built-ins do not show a return value in the format section. However,
these built-ins return 0 when used on the right-hand side of an assignment
statement.

Some entries in this chapter describe language elements or keywords that
are not built-in procedures. These elements and keywords are included in
this chapter because they are used in the same way built-ins are used.

7.1 Built-In Procedures Grouped According to Function

7.1.1 Screen Layout

When you want to perform editing tasks, use the following lists to help
you identify which built-in procedures are related to a particular task. For
more information about a built-in procedure, see its individual description
in Section 7 .2.

•

•

•

•
•
•

•

•

ADJUST_ WINDOW (window, integerl, integer2)

CREATE_ WINDOW (integerl, integer2, { : g~F }i
MAP ({ ~ndow, buffer })

widget

REFRESH

SET (DISPLAY_ VALUE,window,display _ value_integer)

SET (HEIGHT, SCREEN, length)

SET (PAD, window { : g~ } l

I :~g~ l SET (PROMPT_AREA, integerl, integer2 . , BLINK)
, REVERSE
, UNDERLINE

7-1

7.1.2

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SET (SCREEN_UPDATE { : g:F })
• SET (SCROLLING, window {: g:F } integer!, integer2,

integer3)

• SET (STATUS_LINE, window

, string)

,NONE
,BOLD
, BLINK
, REVERSE
, SPECIAL_GRAPHICS
, UNDERLINE

{

widget, s{tri;tANK TABS
• SET (TEXT, window, GRAPHIC_TABS

NO_TRANSLATE

• SET (VIDEO, window l J~!! l)
, REVERSE
, UNDERLINE

{
window }

• SET (WIDTH, ALL , width_int)
SCREEN

• SHIFT (window, integerl)

• UNMAP ({ ~dget })
wmdow

• UPDATE ({ ~L })
wmdow

Cursor Movement

• CURSOR_HORIZONTAL (integerl)

• CURSOR_ VERTICAL (integerl)

• SCROLL (window [,integerl])

• SET (COLUMN_MOVE_VERTICAL {: g:F })
• SET (CROSS_WINDOW_BOUNDS {: g~ })
• SET (DETACHED_ACTION, SCREEN [, l ~=:m l]) range

string

7-2

7.1.3

7.1.4

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

Moving the Editing Position

• MOVE_HORIZONTAL (integer)

• MOVE_ VERTICAL (integer)

buffer
BUFFER_BEGIN
BUFFER_END
integer

• POSITION (

Text Manipulation

LINE_BEGIN
LINE_END
marker
MOUSE
range
window

• APPEND_LINE

• BEGINNING OF ({ buffer })
- range

{

buffer
• CHANGE_CASE (· range

string

[
,IN PLACE]
' NOT_IN_PLACE)

{

buffer }
• COPY_TEXT (rangel)

string

}·

)

{
INVERT }
LOWER
UPPER

• CREATE_BUFFER (stringl [,string2 [,bufferl] [,string3]])

{
markerl } • CREATE RANGE (d 1. .t. k d , - e im1 mg_ eywor

{
marker2 }
delimiting_keyword

[, attribute_keyword])

• EDIT ({ ~;: } , keywordl[, ...] [,keyword2] [,keyword3])
strmg

• END OF ({ buffer })
- range

• ERASE ({ buffer })
range

• ERASE_CHARACTER (integer)

• ERASE_LINE

7-3

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7-4

• FILE_PARSE (filespec [,stringl [,string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[, TYPE] [, VERSION]]])

• FILE_SEARCH (filespec [, stringl [, string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[,TYPE][, VERSION]]])

• FILL ({ buffer } [, string[, integer! [, integer2 [, integer3]]]])
range

BLINK
BOLD
NONE

• MARK (FREE_CURSOR
REVERSE
UNDERLINE

• MESSAGE TEXT ({ integer! } [, integer2 [,FAQ-parameter]])
- ke)7W'ord

• { marker! } MODIFY RANGE (range, d 1. 't' k d , - e1m1 ing_ e)7W'or

{
marker2 }
delimiting_ke)7W'ord

[, attribute_ke)7W'ord])

{

buffer }
• MOVE_TEXT (rangel)

string

• READ_FILE (string!)

ANCHOR
LINE_BEGIN
LINE_END

• SEARCH (PAGE_BREAK
pattern
REMAIN
string
UN ANCHOR

{
,FORWARD}
, REVERSE

[, NO_EXACT [: ~::;:1]]) {
,EXACT } { }

, integer

ANCHOR
LINE_BEGIN
LINE_END

• SEARCH_QUIETLY (PAGE_BREAK { , FORWARD }
pattern , REVERSE
REMAIN
string
UN ANCHOR

{

,EXACT
[, NO_EXACT

, integer }
[{ , buffer }]])

, rangel

7.1.5 Pattern Matching

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SELECT ((!gi))
REVERSE
UNDERLINE

• SELECT_RANGE

• SET (ERASE_UNMODIFIABLE,,buffer, { g~F })

• SET (MODIFIABLE, buffer { : g~F })
• SET (MODIFIED, buffer, { g~F })

• SPLIT_LINE

• TRANSLATE ({ ;:;: } , string2, string3
stnng

[' { ~o{~~LACE }])

• WRITE FILE ({ buffer }, string!)
- range

• ANCHOR

{

buffer
• ANY (range

string
} , integerl)

• ARB (integer)

• LINE_BEGIN

• LINE_END

{

buffer }
• MATCH (range)

string

{

buffer }
• NOTANY (range , integer!)

string

• PAGE_BREAK

• REMAIN

{

buffer }
• SCAN (range [, { ~~:'::~ }])

string

7-5

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

{
buffer } {FORWARD }

• SCANL (ra~ge [, REVERSE])
stnng

{
buffer } { FORWARD }

• SPAN (ra~ge [, REVERSE])
stnng

• SPANL (range [, { ~~:r= }]) {

buffer }

string

• UNANCHOR

7.1.6 Status of the Editing Context

• CURRENT_BUFFER

• CURRENT_CHARACTER

• CURRENT_COLUMN

• CURRENT_DIRECTION

• CURRENT_LINE

• CURRENT_OFFSET

• CURRENT_ROW

• CURRENT_ WINDOW

• DEBUG_LINE

• ERROR

• ERROR_LINE

• ERROR_TEXT

• GET_INFO (parameterl, parameter2 [, ...])

• RECOVER BUFFER (old buffer name ['journal_file_name])
- - - , template_buffer

• LOCATE_MOUSE (window, x_integer, y_integer)

• SET (AUTO_REPEAT {: g~ }i
• SET (BELL { : ~~ADCAST } { : g~ })
• SET (DEFAULT_DIRECTORY, new_default_string)

[
,ON]

• SET (DEBUG , OFF
,PROGRAM [

,ALL] , buffer
, program [,value])
, range
, string

• SET (FACILITY_NAME, string)

7-6

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SET (FORWARD, buffer)

• SET (INFORMATIONAL { : g~ })
• SET (INSERT, buffer)

• SET (JOURNALING, buffer { g~F } [,file_name_string])

or

SET (JOURNALING, integer)

• SET (KEYSTROKE_RECOVERY { g~F })

• SET (LEFT_MARGIN, buffer, integer)

[

: fe::~equence]
• SET (LEFT_MARGIN_ACTION, bufferl , program)

, range
, string

• SET (LINE_ NUMBER { : g~ })
• SET (MARGINS, buffer, integer!, integer2)

• SET (MAX._LINES, buffer, integer)

• SET (MESSAGE ACTION LEVEL {integer })
- - ' keyword

{
NONE }

• SET (MESSAGE_ACTION_TYPE, BELL)
REVERSE

• SET (MESSAGE_FLAGS, integer)

• SET (MOUSE1 { g~F })

• SET (NO_ WRITE, buffer [: g~])
• SET (OUTPUT_FILE, buffer, string)

• SET (OVERSTRIKE, buffer)

• SET (PAD_OVERSTRUCK_TABS {: g~ })

• SET(RECORD_ATTIUBUTE, { =~ }, { ~i~~~~ }•
{

display _setting_integer })
margin_setting_integer

or

[

marker,]
SET (RECORD_ATTRIBUTE, range, MODIFIABLE, { g~F })

buffer,

7-7

7.1.7

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

Defining Keys

7-8

• SET (PERMANENT, buffer)

• SET (REVERSE, buffer)

• SET (RIGHT_MARGIN, buffer, integer)

, learn_sequence

[

, buffer2]

• SET (RIGHT_MARGIN_ACTION, bufferl , program)

• SET (SPECIAL_ERROR_SYMBOL, string)

• SET (SUCCESS { 'ON })
, OFF

• SET (SYSTEM, buffer)

• SET (TAB STOPS buffer { 'int~ger })
- ' , stnng

• SET (TIMER {: g;F } [,string])

• SET (TRACEBACK { : g;F })
BUFFER[SJ
KEY_MAP_LIST[S]
KEY_MAP[S]
KEYWORDS
PROCEDURES

• SHOW(SCREEN
SUMMARY
VARIABLES
WINDOW[S]
buffer
string
window

, range
, string

. { , "first" } • ADD_KEY_MAP (key-map-hst-name , "last" ,

key-map-name [, ...])

• CREATE_KEY_MAP (stringl)

• CREATE_KEY_MAP _LIST (stringl, string2 [, ...])

(

buffer
learn sequence

• DEFINE_KEY (program
range
string!

[,string3]])

l' key-name [, string2

7.1.8

VAXTPU Built-In Procedures
7 .1 Built-In Procedures Grouped According to Function

• KEY_NAME ({ ~~~-:-me }
stnng

l : ~~~~-~i)IFIED)
[, ALT_MODIFIED [, ...]]

, CTRL_MODIFIED
, HELP _MODIFIED

[
,FUNCTION])
, KEYPAD

• LAST_KEY

{

,COMMENT }
• LOOKUP _KEY (key-name , KEY_MAP

,PROGRAM

[
, st~gl])
, stnng2

• REMOVE_KEY_MAP (stringl, string2 [, ALL])

• SET (KEY_MAP _LIST, string [, buffer, window])

, learn_sequence
• SET (POST_KEY_PROCEDURE, stringl , program

[

,buffer

, range
, string2

[

: ~~:~sequence
• SET (PRE_KEY_PROCEDURE, stringl , program

, range
, string2

• SET (SELF JNSERT, string, { : g~ })
• SET (SHIFT_KEY, keyword [,string])

[

: ~=~sequence]
• SET (UNDEFINED_KEY, stringl , program)

, range
, string2

• UNDEFINE KEY (ke ord [' key-map-list-name])
- yw , key-map-name

Multiple Processing

• ATTACH [({ int~ger })]
stnng

• CREATE_PROCESS (buffer [, string])

7-9

7.1.9

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SEND ({ ~~:: } , process)
stnng

• SEND_EOF (process)

• SPAWN [(string [: g~F])]

Program Execution

• ABORT

• BREAK

• COMPILE (range)
{

buffer }

string

buffer
k [,key-map-list-name]

ey-name , key-map-name
• EXECUTE (learn_sequence

program
range
string

• RETURN

• SAVE (stringl [,"NO_DEBUG_NAMES"]
[,"NO_PROCEDURE_NAMES"]
[,"IDENT", string2])

7.1.10 DECwindows VAXTPU-Specific

7-10

• CREATE WIDGET (widget class widget name { parent_ widget }
- - ' - ' SCREEN

(

~~::r sequence)
[, program [, closure

range
string

[, widget_args. ..]]])

• CREATE_ WIDGET (resource_manager_name, hierarchy _id,

{
parent_ widget }
SCREEN

(

~~::~sequence)
[, program

range
string

[,closure
[, widget_args...]]])

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• DEFINE_ WIDGET_CLASS (class_name
[, creation_routine_name

[, creation_routine_image_name]])

• DELETE (widget)

• GET_CLIPBOARD

• GET_DEFAULT (stringl, string2)

{
PRIMARY }' • GET_GLOBAL_SELECT (SECONDARY
selection_name

selection_property _name)

• MANAGE_ WIDGET (widget[, widget ...])

• READ_CLIPBOARD

{
PRIMARY }

• READ_GLOBAL_SELECT (SECONDARY ,
selection_name

selection_property _name)

• REALIZE_ WIDGET (widget)

• SEND CLIENT MESSAGE ({ STUFF _SELECTION })
- - KILL_SELECTION

• SET (ACTIVE_AREA, window, column, row [, width, height])

learn sequence l buffer l
• SET (CLIENT_MESSAGE,SCREEN, program)

range
string

• SET (DRM_HIERARCHY, filespec [, filespec ...])

• SET (ENABLE_RESIZE, { g~F })

{
PRIMARY }

• SET (GLOBAL_SELECT, SCREEN, SECONDARY)
selection_name

• SET (GLOBAL_SELECT_GRAB, SCREEN

[,

buffer
learn_sequence
program
range
string
NONE

])

• SET (GLOBAL SELECT READ { bufferl }
- - ' SCREEN

buffer2
learn_sequence

[, program])
range
string
NONE

7-11

VAXTPU Built-In Procedures
7 .1 Built-In Procedures Grouped According to Function

7-12

• SET (GLOBAL SELECT TIME SCREEN { int~ger })
- - ' ' stnng

• SET (GLOBAL_SELECT_UNGRAB, SCREEN
buffer
learn_sequence

[, program])
range
string
NONE

• SET (ICON_NAME, string)

• SET (ICON_PIXMAP,integer,icon_pixmap [,widget])

or

SET (ICON_PIXMAP,bitmap_file_name [,widget])

• SET (ICONIFY_PIXMAP,integer,icon_pixmap [,widget])

or

SET (ICONIFY_PIXMAP,bitmap_file_name [,widget])

• SET (INPUT FOCUS [' S?REEN])
- , widget

buffer
learn_sequence

• SET (INPUT_FOCUS_GRAB, SCREEN [, program])
range
string
NONE

buffer
learn_sequence

• SET (INPUT_FOCUS_UNGRAB, SCREEN [, program
range
string
NONE

• SET (MAPPED_WHEN_MANAGED,widget, { g~F })

{
widget }

• SET (MENU_POSITION, mouse_down_button, array)

• SET (RESIZE_ACTION

buffer
learn_sequence
program
range
string
NONE

• SET (SCREEN_LIMITS, array)

NONE

)

])

7 .1.11 Mi see I laneous

)

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SET (SCROLL_BAR, window, { ~::g~:1'' } { g~F })

• SET (SCROLL BAR AUTO THUMB window { HORIZONTAL }
- - - ' ' VERTICAL '

{ g~F })
• SET (WIDGET, widget,

{ widget_args [, widget_args...] })

• SET (WIDGET_CALL_DATA, widget, reason_code, request_string,
keyword[, request_string, keyword ...])

• SET (WIDGET_CALLBACK, widget,

(

fe::~sequence,)
program, closure)
range,
string,

• UNMANAGE_ WIDGET (widget [, widget ...])

{

buffer }
• WRITE_CLIPBOARD (clipboard_label, range)

string

• WRITE GLOBAL SELECT (l ~at~)) - - snng
integer
NONE

• ASCII ({ ~:~~~~ })
stringl

• CALL_ USER (integer, stringl)

{
DECW_ROOT_WINDOW } {CHARACTERS, }

• CONVERT (SCREEN ' COORDINATES,
window

from_x_integer, from_y _integer,

{
DECW_ROOT_WINDOW } {CHARACTERS, }
SCREEN ' COORDINATES,
window

to_x_integer, to_y _integer)
• CREATE_ARRAY [(integerl [, integer2])]

7-13

VAXTPU Built-In Procedures
7 .1 Built-In Procedures Grouped According to Function

7-14

array
buffer
integer
keyword
learn_sequence
marker

• DELETE (pattern

• EXIT

process
program
range
string
unspecified
window

• EXPAND_NAME (stringl { : ~~E°n~s })
, VARIABLES

• FAO (strin 1 [{ int~gerl } [. . . { int~ger_n }]])
g ' stnng3 ' stnng_n

• HELP _TEXT (library-file, topic {: g~ }. buffer)

• INDEX (string, substring)

• INT ({ ~~~:~~ })
stnng

• JOURNAL_CLOSE

• JOURNAL_OPEN (file-name)

• LEARN_ABORT

• {EXACT } LEARN_BEGIN (NO_EXACT)

• LEARN_END

{

buffer }
• LENGTH (range)

string

• MESSAGE (buffer, range[, integerl])

• MESSAGE ({ :~:~ }[, integer3 [, FAQ-parameter]])
stnng

• QUIT [({ g~F } [, severity])]

• READ_CHAR

• READ_KEY

• READ_LINE [(stringl [,integer])]

• SET (EOB_TEXT, buffer, string)

VAXTPU Built-In Procedures
7 .1 Built-In Procedures Grouped According to Function

• SLEEP ({ int~ger })
stnng

• STR (integer)

• STR ({ buffer }[,string2])
range

• STR ({ { ~::;: } [, string2] [: g~F] })
string!

• SUBSTR ({ ;:!:: } , integer! [, integer2])
string!

7 .2 Descriptions of the Built-In Procedures
The discussion of each built-in procedure in this section is divided, as
applicable, into the following parts:

• A short functional definition

• Format

• Parameters

• Description

• Signaled Errors listing the warnings and errors signaled, if applicable

• Examples

The built-in procedures are presented in alphabetical order.

7-15

VAXTPU Built-In Procedures
ABORT

ABORT

Stops any executing procedures and causes VAXTPU to wait for the next key
press.

FORMAT ABORT

PARAMETERS None.

DESCRIPTION ABORT returns control to VAXTPU'S main control loop. It causes an
immediate exit from all invoked procedures.

SIGNALED
ERRORS
EXAMPLE
ON ERROR

Although ABORT behaves much like a built-in, it is actually a VAXTPU
language element.

ABORT is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

ABORT is a language element and has no completion codes.

MESSAGE ("Aborting command because of error.");
ABORT;

ENDON_ERROR;

7-16

This error handler does not try to recover from an error. Rather, it stops
execution of the current procedure and returns to VAXTPU'S main loop.

~
I

)

VAXTPU Built-In Procedures
ADD_KEY_MAP

ADD KEY MAP

FORMAT

PARAMETERS

Adds one or more key maps to a key map list.

{
"first", } ADD_KEV_MAP (key-map-list-name, "last", key-map-name ff, ...]/)

key-map-list-name
A string that specifies the name of the key map list.

"first"
A string directing VAXTPU to add the key map to the beginning of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

"last"
A string directing VAXTPU to add the key map to the end of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

key-map-name
A string that specifies the name of the key map to be added to the key
map list. You can specify more than one key map. Key maps are added to
the key map list in the order specified. The order of a key map in a key
map list determines precedence among any conflicting key definitions.

DESCRIPTION The built-in procedure ADD_KEY_MAP adds key maps to key map lists.
Key maps are added, in the order specified, to either the top or the bottom
of the key map list. Key map precedence in a key map list is used to
resolve any conflicts between key definitions. The key definition in a
preceding key map overrides any conflicting key definitions in key maps
that follow in the key map list.

See the descriptions of the built-in procedures DEFINE_KEY, CREATE_
KEY_MAP, and CREATE_KEY_MAP _LIST for more information on
key definitions, key maps, and key map lists, respectively. Also see the
description of the built-in procedure REMOVE_KEY_MAP for information
on removing key maps from a key map list.

7-17

VAXTPU Built-In Procedures
ADD_KEY_MAP

SIGNALED
WARNING Third argument is not a defined

ERRORS
TPU$_NOKEYMAP

key map.

TPU$_KEYMAPNTFND WARNING The key map listed in the third
argument is not found.

TPU$_ TOOFEW ERROR Too few arguments passed to the
ADD_KEY _MAP built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the ADD_KEY _MAP built-in.

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
ADD_KEY _MAP built-in.

TPU$_1LLREQUEST WARNING The position string must be either
"first" or "last".

TPU$_BADREQUEST WARNING The position string must be either
"first" or "last".

EXAMPLES

D ADD KEY MAP ("TPU$KEY_MAP_LIST", "last", "TPU$KEY_MAP");

This statement adds the default key map TPU$KEY_MAP to the default
key map list, TPU$KEY_MAP _LIST. Normally (except in the EVE editor)
TPU$KEY_MAP is a member of the default key map list.

~ help_keys := CREATE_KEY_MAP ("help_keys");

7-18

ADD KEY MAP ("TPU$KEY_MAP_LIST", "first", help_keys);

These statements create a key map called HELP _KEYS and add it to
the beginning of the default key map list, TPU$KEY_MAP _LIST. Key
definitions in the new key map are invoked over definitions in the key
maps already in the list.

VAXTPU Built-In Procedures
ADJUST_ WINDOW

ADJUST WINDOW

Changes the size and/or screen location of a window and makes the window
that you specify the current window.

FORMAT ADJUST_WINDOW (window, integer1, integer2)

PARAMETERS window
The window whose size or location you want to change. The window that
you specify becomes the current window, and the buffer mapped to that
window becomes the current buffer.

integer1
The signed integer value that you add to the screen line number at the top
of the window.

integer2
The signed integer value that you add to the screen line number at the
bottom of the window.

DESCRIPTION If you want to check the visible size and/or location of a window before
making an adjustment to it, use any of the following statements:

SHOW (WINDOW);

SHOW (WINDOWS);

top := GET_INFO (window, "top", VISIBLE_WINDOW);
MESSAGE (STR (top));

bottom := GET_INFO (window, "bottom", VISIBLE_WINDOW);
MESSAGE (STR (bottom));

There are screen line numbers at both the top and the bottom of the
visible window. Adjust the size of a visible window by changing either or
both of these screen line numbers. Make these changes by adding to or
subtracting from the current screen line number, not by specifying the
screen line number itself.

You can enlarge a window by decreasing the screen line number at the
top of the window. (Specify a negative value for integer 1.) You can also
enlarge a window by increasing the screen line number at the bottom of
the window. (Specify a positive value for integer2.) The following example
adds four lines to the current window, provided that the values fall within
the screen boundaries:

ADJUST WINDOW (CURRENT_WINDOW, -2, +2)

7-19

VAXTPU Built-In Procedures
ADJUST_ WINDOW

7-20

If you specify integers that attempt to set the screen line number beyond
the screen boundaries, VAXTPU issues a warning message. VAXTPU then
sets the window boundary at the edge (top or bottom, as appropriate) of
the screen.

You can reduce a window by increasing the screen line number at the top
of the window. (Specify a positive value for integerl.) You can also reduce
a window by decreasing the screen line number at the bottom of the
window. (Specify a negative value for integer2.) If you attempt to make
the size of the window smaller than one line (two lines if the window has
a status line, three lines if the window has a status line and a horizontal
scroll bar), VAXTPU issues an error message and no adjustment occurs.
The following example reduces the current window by four lines:

ADJUST_WINDOW (CURRENT_WINDOW, +2, -2)

You can also use ADJUST_ WINDOW to change the position of the window
on the screen without changing the size of the window. The following
command simply moves the current window two lines higher on the
screen, provided that the values fall within the screen boundaries:

ADJUST_WINDOW (CURRENT_WINDOW, -2, -2)

Figure 7-1 shows a screen layout when you invoke VAXTPU with EVE
and a user-written command file. In this case, the user-written command
file divides the screen into two windows. The top window has 15 text
lines (including the end-of-buffer message) and a status line. The bottom
window has five text lines and a status line. The two bottom lines of the
screen are the command window and message window, each consisting of
one line.

•\

)

VAXTPU Built-In Procedures
ADJUST_ WINDOW

Figure 7-1 Screen Layout Before Using ADJUST_ WINDOW

lirst line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line
Eleventh line
Twelfth line
Thirteenth line
Fourteenth line
[End of File]

First line
Second line
Third line
Fourth line
Fifth line

ZK-4047-GE

The user-written command file uses the variable second_window to identify
the bottom window. Figure 7-2 shows the screen layout after the user
enters ADJUST_ WINDOW (second_window, -5, 0) after the appropriate
prompt from EVE. Both the top and bottom windows now contain 10 lines
of text and a status line. Note that the cursor is now located in the bottom
window. The command and message windows still contain one line each.

ADJUST_ WINDOW adds(+/-) integerl to the "visible_top" and(+/-)
integer2 to the "visible_bottom" of a window. The mapping of the window
to its buffer is not changed. The new values for the screen line numbers
become the values for the original top and original bottom. (See Chapter 2
for more information on window dimensions and window values.)

7-21

VAXTPU Built-In Procedures
ADJUST_WINDOW

7-22

Figure 7-2 Screen Layout After Using ADJUST_WINDOW

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line

Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line

ZK-4048-GE

Using ADJUST_ WINDOW on a window makes it the current window; that
is, VAXTPU puts the cursor in that window if the cursor was not already
there, and VAXTPU marks that window as current in VAXTPU's internal
tracking system. VAXTPU may scroll or adjust the text in the window to
keep the current position visible after the adjustment occurs.

Note that both ADJUST_ WINDOW and MAP may split or occlude other
windows.

If you execute ADJUST_ WINDOW within a procedure, the screen is not
immediately updated to reflect the adjustment. The adjustment is made
after the entire procedure is finished executing and control returns to
the screen manager. If you want the screen to reflect the adjustment to
the window before the entire procedure is executed, you can force the
immediate update of a window by adding an UPDATE statement to the
procedure. See the built-in procedure UPDATE for more information.

If you have defined a top or bottom scroll margin, and the window is
adjusted so that the scroll margins no longer fit, TPU$_ADJSCROLLREG
is signaled and the scroll margins shrink proportionally. For example, if
you have a ten-line window, with an eight-line top scroll margin, shrinking
the window to a five-line window also reduces the top scroll margin to four
lines.

\

)

VAXTPU Built-In Procedures
ADJUST_ WINDOW

SIGNALED
TPU$_ADJSCROLLREG INFO The window's scrolling region

ERRORS has been adjusted to fit the new
window.

TPU$_BOTLINETRUNC INFO Bottom line cannot exceed bottom
of screen.

TPU$_ TOPLINETRUNC INFO Top line cannot exceed top of
screen.

TPU$_WINDNOTMAPPED WARNING Cannot adjust a window that is
not mapped.

TPU$_BADWINDADJUST WARNING Cannot adjust window to less than
the minimum number of lines.

TPU$_WINDNOTVIS WARNING No adjustment if window is not
visible.

TPU$_ TOOFEW ERROR You specified less than three
parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

EXAMPLES

D ADJUST WINDOW (CURRENT_WINDOW, +5, 0)

This statement reduces the current window by removing five lines from the
top of the window. If the top line of the window is screen line number 11,
this statement changes the top line of the window to screen line number
16. (If the bottom line of the window is less than screen line number 16,
VAXTPU signals an error.)

PROCEDURE user display help
top_of_window := GET_INFO (CURRENT_WINDOW, "VISIBLE_TOP");

!
! Remove the top five lines from the current window
! and replace them with a help window
!

ADJUST_WINDOW (CURRENT_WINDOW, +5, 0);
example_window := CREATE_WINDOW (top_of_window, 5, ON);
example_buffer := CREATE_BUFFER ("EXAMPLE",

"sys$login:template.txt");
MAP (example_window, example_buffer);

ENDPROCEDURE;

This procedure removes five lines from the top of a window and puts a
help window in their place.

7-23

VAXTPU Built-In Procedures
ANCHOR

ANCHOR

Forces the next pattern element either to match immediately or else to fail.

FORMAT ANCHOR

PARAMETERS None.

DESCRIPTION Normally, when SEARCH fails to find a match for a pattern, it retries the
search. To try again, the SEARCH built-in moves the starting position
one character forward or backward, depending upon the direction of the
search. SEARCH continues this operation until it either finds a match

SIGNALED
ERRORS

EXAMPLES

for the pattern or reaches the end or beginning of the buffer or range
being searched. If ANCHOR appears as the first element of a complex
pattern, the search does not move the starting position. Instead, the
search examines the next (or previous) character to determine ifit matches
the next character or element in the complex pattern. If the pattern does
not match starting in the original position, the search fails. SEARCH does
not move the starting position and retry the search.

When you build complex patterns using the+ operator rather than the &
operator, ANCHOR is useful only as the first element of a complex pattern.
It is legal elsewhere in a pattern but has no effect.

Although ANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or modes of pattern searching, see
Chapter 2.

ANCHOR is a keyword and has no completion codes.

D patl := ANCHOR + "a123";

7-24

This assignment statement creates a pattern that matches the string a123.
Because ANCHOR appears as the first element of the pattern, SEARCH
will find a123 only if the string appears at the starting position for the
search.

)

VAXTPU Built-In Procedures
ANCHOR

PROCEDURE user remove comments - -
LOCAL patl,

number_removed,
end_mark;

patl :=ANCHOR+"!";
number_removed := 0;
end mark:= END_OF (CURRENT_BUFFER);

POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

EXITIF MARK (NONE) = end_mark;
rl := SEARCH_QUIETLY (patl, FORWARD);
IF rl <> 0

THEN ! comment found so erase it
ERASE_LINE;
number removed .- number_removed + 1;

ENDIF;
MOVE_VERTICAL (1); ! move to the next line

ENDLOOP;
MESSAGE (FAO ("!ZL comment!%S removed.", number_removed));

ENDPROCEDURE;

This procedure starts at the beginning of a buffer and searches forward,
removing all comments that begin in column 1. The keyword ANCHOR
in this example ties the search to the first character of a line (the current
character). This prevents the search function from finding and removing
exclamation points in the middle of a line (for example, in the FAO
directive, !AS).

7-25

VAXTPU Built-In Procedures
ANY

ANY

FORMAT

PARAMETERS

Returns a pattern that matches one or more characters from the set specified.

{

buffer }
pattern == ANY (ra~ge ff, integer1 J)

strmg

buffer
An expression that evaluates to a buffer. ANY matches any of the
characters in the resulting buffer.

range
An expression which evaluates to a range. ANY matches any of the
characters in the resulting range.

string
An expression that evaluates to a string. ANY matches any of the
characters in the resulting string.

integer1
This integer value indicates how many contiguous characters ANY
matches. The default value for this integer is 1.

return value A pattern matching one or more characters that appear in the string,
buffer, or range passed as the first parameter to ANY.

DESCRIPTION ANY is used to construct patterns.

SIGNALED
ERRORS

7-26

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

ANY must appear in the right-hand
side of an assignment statement.

ANY requires at least one
argument.

ANY accepts no more than two
arguments.

The argument you passed to the
ANY built-in was of the wrong
type.

TPU$_1NVPARAM

TPU$_MINVALUE

TPU$_CONTROLC

EXAMPLES

D patl := ANY ("hijkl")

VAXTPU Built-In Procedures
ANY

ERROR The argument you passed to the
ANY built-in was of the wrong
type.

WARNING The argument you passed to the
ANY built-in was less than the
minimum accepted value.

ERROR You pressed CTRUC during the
execution of the ANY built-in.

This assignment statement creates a pattern that matches any one of the
characters h, i, j, k, and l.

~ patl :=any ("xy", 2);

This assignment statement creates a pattern that matches any of the
following two-letter combinations: xx, xy, yx, and yy.

I] a_buf : =· CREATE_BUFFER ("new buffer");
POSITION (a_buf);
COPY_TEXT ("xy");
SPLIT_LINE;
COPY_TEXT ("abc");
patl :=ANY (a_buf);

These statements create a pattern that matches any one of the characters
a, b, c, x, and y.

m PROCEDURE user_find_endprocedure
LOCAL endprocedure_pattern,

search_range;
endprocedure_pattern := (LINE_BEGIN + "ENDPROCEDURE") +

(LINE_END I ANY ("; ! "+ASCII (9)));
search_range := SEARCH_QUIETLY (endprocedure_pattern, FORWARD);
IF search_range = 0

THEN
MESSAGE ("Endprocedure statement not found");

ELSE
POSITION (END_OF (search_range));

ENDIF;
ENDPROCEDURE;

This procedure finds an ENDPROCEDURE statement that starts in
column 1 and moves the editing point to the end of the statement.

7-27

VAXTPU Built-In Procedures
APPEND LINE

APPEND LINE

Places the current line at the end of the previous line.

FORMAT APPEND_LINE

PARAMETERS None.

DESCRIPTION You can use APPEND_LINE to delete line terminators.

SIGNALED
ERRORS

EXAMPLES
D APPEND LINE

7-28

The editing point in the line that was the current line before APPEND_
LINE was executed becomes the editing point.

Using APPEND_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. APPEND_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

TPU$_NOCURRENTBUF

TPU$_NOCACHE

TPU$_ TOOMANY

TPU$_NOTMODIFIABLE

TPU$_LINETOOLONG

WARNING You are not positioned in a buffer.

ERROR There is not enough memory to
allocate a new cache.

ERROR APPEND_LINE does not accept
arguments.

WARNING You cannot modify an unmodifiable
buffer.

WARNING VAXTPU cannot append the line
because the length of the resulting
line would exceed VAXTPU's

·maximum line length.

This statement adds the current line to the end of the previous line.

\
)

VAXTPU Built-In Procedures
APPEND LINE

The following procedure deletes the character
to the left of the cursor. If the cursor is at the
beginning of a line, it appends the current line
to the end of the previous line.

PROCEDURE user delete char
- -

IF CURRENT OFFSET = 0
THEN

APPEND_LINE;
ELSE

ERASE CHARACTER (-1);
ENDIF;

ENDPROCEDURE;

This procedure deletes the character to the left of the cursor. If you are at
the beginning of a line, the procedure appends the current line to the end
of the previous line. The procedure works correctly even if the window is
shifted.

You can bind this procedure to the DELETE key with the following
statement:

DEFINE KEY ("user_delete_char", DEL_KEY);

7-29

VAXTPU Built-In Procedures
ARB

ARB
Returns a pattern that matches an arbitrary sequence of characters starting at
the editing point and extending for the length you specify.

FORMAT pattern:= ARB (integer)

PARAMETER integer
The number of characters in the pattern. This integer must be positive.

return value A pattern that matches an arbitrary sequence of characters starting at the
editing point and extending for the length you specify.

DESCRIPTION ARB can be used for wildcard matches of fixed length.

SIGNALED
ERRORS

EXAMPLES
D patl : = ARB (5)

For more information on patterns, see Chapter 2.

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_MINVALUE

ERROR ARB must appear in the right-hand
side of an assignment statement.

ERROR ARB requires at least one
argument.

ERROR ARB accepts no more than one
argument.

ERROR The argument to ARB must be an
integer.

WARNING The argument to ARB must be
positive.

This assignment statement creates a pattern that matches the next five
characters starting at the editing point. The characters themselves are
arbitrary; it is the number of characters that is important for a pattern
created with ARB.

~ pat2 := "J" & ARB (2)

7-30

This assignment statement creates a pattern that matches a string
beginning with a J and followed by any two other characters. Names
such as "Jim," "Jan," and "Joe" matchpat2.

VAXTPU Built-In Procedures
ARB

I PROCEDURE user_replace_prefix
LOCAL cur_mode,

here,
patl,

found_range;

patl := (LINE_BEGIN NOTANY ("ABCDEFGHIJKLMNOPQRSTUVWXYZ_$"))
+ ((ARB (3) + " ") @ found_range);

here :=MARK (NONE);
cur mode := GET_INFO (current_buffer, "mode");

POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

found_range := 0;
SEARCH_QUIETLY (patl, FORWARD);
EXITIF found_range = O;
ERASE (found_range);
POSITION (END_OF (found_range));
COPY_TEXT ("user_");

ENDLOOP;
POSITION (here);
SET (cur_mode, current_buffer);

ENDPROCEDURE;

This procedure replaces a prefix of any three characters followed by an
underscore (xxx_) in the current buffer· with the string "user_". It does not
change the current position.

7-31

VAXTPU Built-In Procedures
ASCII

ASCII

FORMAT

PARAMETERS

Returns the ASCII value of a character or the character that has the specified
ASCII value.

{
integer2 } { integert }
t . 2 := ASCII (keyword)

s rmg stringt

integer1
The decimal value of a character in the DEC Multinational Character Set.

keyword
This keyword must be a key name. If the key name is the name of a
key that produces a printing character, ASCII returns that character.
Otherwise it returns the character whose ASCII value is 0.

string1
The character whose ASCII value you want. If the string has a length
greater than 1, the ASCII built-in returns the ASCII value of the first
character in the string.

return value The character with the specified ASCII value (if you specify an integer or
keyword parameter).

The ASCII value of the string you specify (if you specify a string
parameter).

DESCRIPTION The result of this built-in depends upon its argument. If the argument is
an integer then it returns a string of length 1 that represents the character
of the DEC Multinational Character Set corresponding to the integer you
specify. If the argument is a string then it takes the first character of the
string and returns the integer corresponding to the ASCII value of that
character.

7-32

If the argument to ASCII is a keyword, that keyword must be a key name.
The VAXTPU built-in KEY_NAME produces key names. In addition, there
are several predefined keywords that are key names. See Table 2-1 for a
list of these keywords. If the keyword is a key name and the key produces
a printing character, ASCII returns that character; otherwise, it returns
the character whose ASCII value is 0.

SIGNALED
ERRORS

EXAMPLES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_NULLSTRING

VAXTPU Built-In Procedures
ASCII

ERROR

ERROR

ERROR

ERROR

ASCII must be on the right-hand
side of an assignment statement.

ASCII requires one argument.

ASCII accepts only one argument.

The parameter you passed to
ASCII is of the wrong type.

WARNING You passed a string of length 0 to
ASCII.

D my_character := ASCII(12)

This assignment statement assigns a string of length 1 to the variable
my_character. This string contains the form feed character because that
character has the ASCII value 12.

~ MESSAGE (ASCII (80))

This statement combines two built-in procedures and prints the ASCII
character numbered 80 (whose value is P) in the message area. In this
case, uppercase P is displayed.

i ! This procedure puts a tab character in your text

PROCEDURE user tab
COPY_TEXT (ASCII (9));

ENDPROCEDURE;

This procedure includes a tab character in the current buffer.

II ascii value : = ASCII (11 a 11
) ;

This assignment statement assigns the integer value 97 to the variable
ascii_value. Note that a is specified in quotation marks because it is a
parameter of type string. For more information on specifying strings, see
Chapter 2.

7-33

VAXTPU Built-In Procedures
ASCII

~ PROCEDURE user_test_key
LOCAL key_struck,

7-34

key_value;

MESSAGE ("Press a key");
key_struck := READ_KEY;
key_value :=ASCII (key_struck);

IF key_value = ASCII (0)
THEN

MESSAGE ("That is not a typing key");
ELSE

MESSAGE (FAO ("That key produces the letter "!AS".", key_value));
ENDIF;

ENDPROCEDURE;

This procedure prompts the user to press a key. When the user does
so, the procedure reads the key. If the key is associated with a printing
character, ASCII tells the user what character is produced. If the key is
not associated with a printable character, ASCII informs the user of this.

ATTACH

FORMAT

VAXTPU Built-In Procedures
ATTACH

Enables you to switch control from your current process to another process
that you have previously created.

ATTACH fl ({ int~ger }) ll
strmg

PARAMETERS integer
This integer is the process identification (PID) of the process to which
terminal control is to be switched. You must use decimal numbers to
specify the PID to VAXTPU.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string that VAXTPU interprets as a process
name.

DESCRIPTION To use the built-in procedure ATTACH, you must have previously created
a subprocess. If the process you specify is not part of the current job or
does not exist, an error message is displayed. For information on creating
subprocesses, see the description of SPAWN in this section.

ATTACH suspends the current VAXTPU process and switches context to
the process you use as a parameter. If you do not specify a parameter
for ATTACH, VAXTPU switches control to the parent or owner process.
A subsequent use of the DCL command ATTACH (or a logout from any
process except the parent process) resumes the execution of the suspended
VAXTPU process.

In all cases, VAXTPU first deassigns the terminal. If a VAXTPU process
is resumed following a SPAWN or ATTACH command, VAXTPU reassigns
the terminal and refreshes the screen.

If the current buffer is mapped to a visible window, the ATTACH built-in
causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the file.

ATTACH is not a valid built-in in DECwindows VAXTPU. However, if
you are running non-DECwindows VAXTPU in a DECwindows terminal
emulator, ATTACH works as described in this section.

7-35

VAXTPU Built-In Procedures
ATTACH

SIGNALED
ERRORS

EXAMPLES
D ATTACH

~ ATTACH (97899)

TPU$_NOPARENT WARNING There is no parent process to
which you can attach - your
current process is the top-level
process.

TPU$_ TOOMANY ERROR Too many arguments passed to
the ATTACH built-in.

TPU$_SYSERROR ERROR Error requesting information about
the process being attached to.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
ATTACH built-in. Only process
name strings and process IDs are
allowed.

TPU$_ CREATEFAIL WARNING Unable to attach to the process.

TPU$_REQUIRESTERM ERROR Feature requires a terminal.

This statement causes VAXTPU to attach to the parent process.

This statement causes VAXTPU to attach to the subprocess with the PID
97899.

i] ATTACH ("JONES_2")

This statement switches the terminal's control to the process JONES_2.

7-36

VAXTPU Built-In Procedures
BEGINNING_ OF

BEGINNING OF

FORMAT

PARAMETERS

return value

Returns a marker that points to the first position of a buffer or a range.

marker:= BEGINNING_OF ({ buffer })
range

buffer
The buffer whose beginning you want to mark.

range
The range whose beginning you want to mark.

A marker pointing to the first character position of the specified buffer or
range.

DESCRIPTION If you use the marker returned by this built-in procedure as a parameter
for the built-in procedure POSITION, the editing point moves to the
marker.

SIGNALED
ERRORS

EXAMPLES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

BEGINNING_OF must appear
in the right-hand side of an
assignment statement.

BEGINNING_OF requires one
argument.

BEGINNING_OF accepts only one
argument.

You passed something other
than a range or a buffer to
BEGINNING_ OF.

D beg_main := BEGINNING_OF (main_buffer)

This assignment statement stores the marker that points to the beginning
of the main buffer in the variable beg_main.

m POSITION (BEGINNING_OF (my_range))

This statement uses two built-in procedures to move your current
character position to the beginning of my_range. If my_range is in a
visible buffer in which the cursor is located, the cursor position is also
moved to the beginning of my _range.

7-37

VAXTPU Built-In Procedures
BEGINNING_ OF

I] PROCEDURE user_tbp

7-38

IF MARK (NONE) = BEGINNING_OF (CURRENT_BUFFER)
THEN

MESSAGE ("Already at top");
ELSE

POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDIF;

ENDPROCEDURE;

This procedure places the cursor at the beginning of the current buffer. If
you are already at the beginning of the buffer, the message "Already at
top" is displayed in the message area.

PROCEDURE user include file - -
Create scratch buff er
bl := CREATE_BUFFER ("Scratch Buffer");

Map scratch buff er to main window
MAP (main_window, bl);

Read in file name given
RE'AD_FILE (READ_LINE ("File to Include:"));

Go to top of file
POSITION (BEGINNING_OF (bl));

ENDPROCEDURE;

This procedure creates a new buffer, associates the buffer with the main
window, and maps the main window to the screen. It positions to the top
of the buffer, prompts the user for the name of a file to include, and reads
the file into the buffer.

BREAK

VAXTPU Built-In Procedures
BREAK

Activates the debugger if VAXTPU was invoked with the /DEBUG qualifier.

FORMAT BREAK

PARAMETERS None.

DESCRIPTION If VAXTPU was invoked with the /DEBUG qualifier, then execution of the
BREAK statement activates the debugger. If there is no debugger, BREAK
causes the following message to be displayed in the message window:

SIGNALED
ERROR
EXAMPLE

Breakpoint at line xxx

It has no other effect. Although BREAK behaves much like a built-in, it is
actually a VAXTPU language element.

BREAK is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

BREAK is a language element and has no completion codes.

PROCEDURE user_not_quite_working

BREAK;

ENDPROCEDURE;

This procedure contains a break statement. If the statement is executed,
VAXTPU'S debugger is activated, allowing the user to debug that section
of the code.

7-39

VAXTPU Built-In Procedures
CALL_ USER

CALL USER

Calls a program written in another language from within VAXTPU. The CALL_
USER parameters are passed to the external routine exactly as you enter
them; VAXTPU does not process the parameters in any way. The integer is
passed by reference, and string1 is passed by descriptor. String2 is the value
returned by the external program.

FORMAT string2 := CALL_USER (integer, string1)

PARAMETERS integer
The integer that is passed to the user-written program by reference.

string1
The string that is passed to the user-written program by descriptor.

return value The value returned by the called program.

DESCRIPTION In addition to returning the value string2 to CALL_USER, the external
program returns a status code that tells whether the program executed
successfully. You can trap this status code in an ON_ERROR statement.
An even-numbered status code (low bit in RO clear) causes the ON_ERROR
statement to be executed. The ERROR lexical element returns the status
value from the program in the form of a keyword.

7-40

To use the built-in procedure CALL_USER, follow these steps:

• Write a program in whatever language you choose. The program must
be a global routine called TPU$CALLUSER.

• Compile the program.

• Link the program with an options file to create a shareable image.

• Define the logical name TPU$CALLUSER to point to the file
containing your routine.

• Invoke VAXTPU.

• From within a VAXTPU session, call your external program to perform
its function by specifying the built-in procedure CALL_USER with the
appropriate parameters. If you link your program properly, and if you
define the logical name TPU$CALLUSER to point to your program,
the built-in procedure CALL_USER passes the parameters you give it
to the proper routine.

\
.I

I

\
I

SIGNALED
ERRORS

EXAMPLES

D ret value :=

VAXTPU Built-In Procedures
CALL USER

The CALL_USER parameters are input parameters for the external
program you are calling. VAXTPU does not process the parameters in
any way but passes them to the external procedure exactly as you enter
them. You must supply both parameters even if the routine you are calling
does not require that information be passed to it. Enter the following null
parameters to indicate that you are not passing any actual values:

CALL_USER (0, 1111
)

For information on the VAXTPU callable interface, see the VMS Utility
Routines Manual.

TPU$_BADUSERDESC ERROR User-written routine incorrectly
filled in the return descriptor.

TPU$_NOCALLUSER ERROR Could not find a routine to invoke.

TPU$_ TOOFEW ERROR Too few arguments passed to
CALL_ USER.

TPU$_ TOOMANY ERROR Too many arguments passed to
CALL_ USER.

TPU$_NEEDTOASSIGN ERROR The call to CALL_USER must
be on the right-hand side of the
assignment statement.

TPU$_1NVPARAM ERROR Wrong type of data sent to CALL_
USER.

TPU$_ARGMISMATCH ERROR Parameter is of the wrong data
type.

TPU$_CALLUSERFAIL WARNING CALL_USER routine failed with
status %X'status'. The value
returned by ERROR after this type
of error will be the status value
reported by this message.

CALL_USER (6, "ABC")

This statement calls a program that the user wrote. Before invoking
VAXTPU,the user created a logical name, TPU$CALLUSER, that points
to the file containing the program the user wants called by CALL_ USER.
VAXTPU passes the first parameter (6) by reference, and the second
parameter ("ABC") by descriptor. If, for example, the user program uses
an integer and a string as input values, the program processes the integer
"6" and the string 11 ABC. 11 If the program is designed to return a result,
the result is returned in the variable ret_value.

7-41

VAXTPU Built-In Procedures
CALL_ USER

~ Step-by-Step Example of Using CALL_USER

The following example shows the steps required to use the built-in
procedure CALL_USER. The routine that is called to do floating-point
arithmetic is written in BASIC.

1 Write a program in BASIC that does floating-point arithmetic on the
values passed to it.

Filename:FLOATARITH.BAS

1 sub TPU$CALLUSER (some_integer% , input_string$, return_string$

10 don't check some_integer% because this function only does
floating-point arithmetic

20 parse the input string
find and extract the operation

comma_location = pos (input_string$, ",", 1%)
if comma location = 0 then go to all done
end if - -

operation$= seg$(input_string$, 1%, comma_location - 1%)

! find and extract the 1st operand
operandl_location = pos (input_string$, ",", comma location +1)
if operandl location = 0 then go to all done
end if - -

operand1$ = seg$(input_string$, comma_location + 1%, &
operandl_location -1)

! find and extract the 2nd operand
operand2_location = pos (input_string$, ",", operandl_location +1)
if operand2_location = 0 then

operand2_location = len(input_string$) + 1
end if

operand2$ = seg$(input_string$, operandl location+ 1%, &
operand2_location -1

select operation$! do the operation
case "+"

result$ sum$(operand1$, operand2$

case "-"
result$ dif$(operandl$, operand2$)

case "*"
result$ num1$(Val(operand1$ *Val(operand2$

case "/"
result$ num1$(Val(operand1$) I Val(operand2$))

case else
result$ "unknown operation."

end select

return_string$ = result$

999 all done: end sub

2 Compile the program with the following statement:

$ BASIC/LIST floatarith

7-42

)

!+

!-

VAXTPU Built-In Procedures
CALL_ USER

3 Create an options file to be used by the linker when you link the
BASIC program.

File: FLOATARITH.OPT

Options file to link floatarith BASIC program with VAXTPU

floatarith.obj
UNIVERSAL=TPU$CALLUSER

4 Link the program (using the options file) to create a shareable image.

$ LINK floatarith/SHARE/OPT/MAP/FULL

5 Define the logical name TPU$CALL USER to point to the executable
image of the BASIC program.

$ DEFINE TPU$CALLUSER device: [directory]floatarith.EXE

6 Invoke VAXTPU.

7 Write and compile the following VAXTPU procedure:

PROCEDURE my_call_user

test the built-in procedure call user

LOCAL output,
input;

input := READ LINE ("Call user >");
output := CALL_USER (0, input);
MESSAGE (output);

ENDPROCEDURE;

Provide a parameter for routine
Value this routine returns

8 When you call the procedure my_call_user, you are prompted for
parameters to pass to the BASIC routine. The order of the parameters
is operator, number, number. For example, if you enter"+, 3.33, 4.44"
after the prompt, the result 7.77 is displayed in the message area.

7-43

VAXTPU Built-In Procedures
CHANGE_ CASE

CHANGE CASE

FORMAT

Changes the case of all alphabetic characters in a buffer, range, or string,
according to the keyword that you specify. Optionally, CHANGE_CASE
returns a string, range, or buffer containing the changed text.

{

returned buffer }
returned_range :: CHANGE_CASE
returned_ string {

buffer } { INVERT }
(range , LOWER

string UPPER

[
,IN PLACE]
' NOT_/N_PLACE)

PARAMETERS buffer

7-44

The buffer in which you want VAXTPU to change the case. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a buffer for the
first parameter.

range
The range in which you want VAXTPU to change the case. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a range for the
first parameter.

string
The string in which you want VAXTPU to change the case. If you specify
IN_PLACE for the third parameter, CHANGE_CASE makes the specified
change to the string specified in the first parameter. Note that if string is
a constant, IN_PLACE has no effect.

LOWER
A keyword directing VAXTPU to change letters to all lowercase.

UPPER
A keyword directing VAXTPU to change letters to all uppercase.

INVERT
A keyword directing VAXTPU to change uppercase letters to lowercase and
lowercase letters to uppercase.

IN_PLACE
A keyword directing VAXTPU to make the indicated change in the buffer,
range, or string specified. This is the default.

NOT IN PLACE
A keyworddirecting VAXTPU to leave the specified string unchanged
and return a string that is the result of the specified change in case. You
cannot use NOT_IN_PLACE if the first parameter is specified as a range
or buffer. To use NOT_IN_PLACE, you must specify a return value for
CHANGE_ CASE.

\
I

\
I

J

return values

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

returned_buffer

VAXTPU Built-In Procedures
CHANGE_ CASE

A variable of type buffer pointing to the buffer containing the modified
text, if you specify a buffer for the first parameter. The variable returned_
buffer points to the same buffer pointed to by the buffer variable specified
as the first parameter.

returned_range
A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified
as a parameter, but they are two separate ranges. If you subsequently
change or delete one of the ranges, this has no effect on the other range.

returned_string
A string containing the modified text, if you specify a string for the first
parameter. CHANGE_ CASE can return a string even if you specify IN_
PLACE.

CHANGE_CASE modifies the case of all the alphabetic characters in the
specified unit of text according to the keyword that you supply.

TPU$_ TOOFEW ERROR CHANGE_CASE requires two
parameters.

TPU$_ TOOMANY ERROR CHANGE_CASE accepts only two
parameters.

TPU$_ARGMISMATCH ERROR One of the parameters to
CHANGE_CASE is of the wrong
data type.

TPU$_1NVPARAM ERROR One of the parameters to
CHANGE_CASE is of the wrong
data type.

TPU$_BADKEY WARNING You gave the wrong keyword to
CHANGE_ CASE.

TPU$_NOTMODIFIABLE WARNING You cannot change the case of
text in an unmodifiable buffer.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of CHANGE_CASE.

D CHANGE CASE (CURRENT_BUFFER, UPPER)

This statement makes all the characters in the current buffer uppercase.
If you enter this statement on the command line of your interface, you see
the effects immediately. If you use this statement within a procedure, you
see the effect of the statement at the next screen update.

7-45

VAXTPU Built-In Procedures
CHANGE_CASE

~ CHANGE CASE (my_range, LOWER)

This statement makes all the characters in my _range lowercase. If my_
range is part of a buffer that is mapped to a window, you see the command
take effect immediately.

i PROCEDURE user lowercase line
LOCAL this_line;

this_line := ERASE_LINE;
CHANGE_CASE (this_line, LOWER);
SPLIT_LINE;
MOVE_VERTICAL (-1);
COPY_TEXT (this_line);

ENDPROCEDURE;

This procedure changes the current line to lowercase.

9 PROCEDURE user_upcase_item
ON ERROR
! In case no string is found during search

MESSAGE ("No current item.");
RETURN;

ENDON_ERROR;

delimiters ·=" "+ ASCII(9);
current item:= ANCHOR & SCAN (delimiters);
item_range :=SEARCH (current_item, FORWARD, NO_EXACT);
CHANGE CASE (item_range, UPPER);

ENDPROCEDURE;

This procedure puts the current text object in uppercase.

~ returned value := CHANGE_CASE (CURRENT_BUFFER, LOWER, IN_PLACE);

This statement makes all characters in the current buffer lowercase. The
variable returned_value contains the newly modified current buffer.

~ returned value := CHANGE_CASE (the_string, INVERT, NOT_IN_PLACE);

7-46

This statement inverts the case of all characters in the string pointed to by
the_string and returns the modified string in the variable returned_value.
It does not change the_string in any way.

COMPILE

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
COMPILE

Converts VAXTPU procedures and statements into an internal, compiled
format. Valid items for compilation can be represented by a string, a range, or
a buffer. COMPILE optionally returns a program.

{

buffer }
[program ==] COMPILE (ra~ge)

strmg

buffer
A buffer that contains only valid VAXTPU declarations and statements.

range
A range that contains only valid VAXTPU declarations and statements.

string
A string that contains only valid VAXTPU declarations and statements.

return value The program created by compiling the declarations and statements in the
string, range, or buffer. If the program failed to compile, an integer zero is
returned.

DESCRIPTION The program that COMPILE optionally returns is the compiled form
of valid VAXTPU procedures, statements, or both. You can assign
the compiled version of VAXTPU code to a variable name. VAXTPU
statements, as well as procedure definitions, can be stored in the program
returned by COMPILE. Later in your editing session, you can execute the
VAXTPU code that you compiled by using the program as a parameter
for the built-in procedure EXECUTE. You can also use the program as
a parameter for the built-in procedure DEFINE_KEY to define a key to
execute the program. Then you can execute the program by pressing that
key.

COMPILE returns a program variable only if the compilation generates
executable statements. COMPILE does not return a program variable if
you compile any of the following:

• Null strings or buffers

• Procedure definitions that do not have any executable statements
following them

• Programs with syntax errors

VAXTPU cannot compile a string, range, or line of text in a buffer longer
than 256 characters. If VAXTPU encounters a longer string, range, or line,
VAXTPU truncates characters after the 256th character and attempts to
compile the truncated string, buffer, or range.

7-47

VAXTPU Built-In Procedures
COMPILE

SIGNALED
ERRORS

EXAMPLES

If necessary, use the built-in procedure SET (INFORMATIONAL, ON)
before compiling a procedure interactively to see the compiler messages.

To check the results of a compilation to determine whether execution is
possible, use the following statement in a program:

x :=COMPILE (my range);
!if the program Is nonzero, continue
IF x <> 0
THEN

ENDIF;

If x = 0, no program was generated because of compilation errors or
because there were no executable statements. The statement "IF x <>
0 THEN" allows your program to continue as long as a program was
generated.

You can also use an ON_ERROR statement to check the result of a
compilation. This statement tells you whether the compilation completed
successfully; it does not tell you whether execution is possible. You can use
an ON_ERROR statement when compiling code consisting of procedure
definitions without following executable statements. For more information
on using ON_ERROR statements, see Section 3.8.4.7.

TPU$_ COMPILEFAIL

TPU$_ARGMISMATCH

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR

ERROR

ERROR

ERROR

Compilation aborted because of
syntax errors.

The data type of a parameter
passed to the COMPILE built-in is
unsupported.

Too few arguments.

Too many arguments.

I dwn := COMPILE ("MOVE_VERTICAL (1) ")

7-48

This assignment statement associates the MOVE_ VERTICAL (1) function
with the variable dwn. You can use the variable dwn with the built-in
procedure EXECUTE to move the editing point down one line.

\

)

I user_program ·= COMPILE (main_buffer)

VAXTPU Built-In Procedures
COMPILE

This assignment statement compiles the contents of the main buffer. If
the buffer contains executable statements, VAXTPU returns a program
that stores these executable commands. If the buffer contains procedure
definitions, VAXTPU compiles the procedures and lists them in the
procedure definition table so that you can call them in one of the following
ways:

• Enter the name of the procedure after the appropriate prompt from
the interface you are using.

• Call the procedure from within other procedures.

7-49

VAXTPU Built-In Procedures
CONVERT

CONVERT

FORMAT

Given the coordinates of a point in one coordinate system, returns the
corresponding coordinates for the point in the coordinate system you specify.

{
DECW_ROOT_WINDOW } { CHARACTERS }

CONVERT (S~REEN , COORDINATES
~~w ,

from_x_integer, from_y_integer,

{
DECW_ROOT_WINDOW } {CHARACTERS, }
SCREEN ' COORDINATES
window '

to_x_integer, to_y_integer)

PARAMETERS DECW ROOT WINDOW

7-50

Specifies the coordinate system to be that used by the root window of the
screen on which VAXTPU is running.

SCREEN
Specifies the coordinate system to be that used by the DECwindows
window associated with VAXTPU's top-level widget.

window
Specifies the coordinate system to be that used by the VAXTPU window.

CHARACTERS
Specifies a system that measures screen distances in rows and columns, as
a character-cell terminal does. In a character-cell-based system, the cell in
the top row and the leftmost column has the coordinates (1,1).

COORDINATES
Specifies a DECwindows coordinate system in which coordinate units
correspond to pixels. The pixel in the upper left corner has the coordinates
(0, 0).

from_x_integer
from_y_integer
Integer values representing a point in the original coordinate system and
units.

to_x_integer
to_y_integer
Variables of type integer representing a point in the specified coordinate
system and units. Note that the previous contents of the parameters are
deleted when VAXTPU places the resulting values in them. You must
specify VAXTPU variables for the parameters to_x_integer and to_y_
integer. Passing a constant integer, string or keyword value causes an

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
CONVERT

error. (This requirement does not apply to the parameters from_x_integer
and from_y _integer.)

The converted coordinates are returned using the to_x_integer and to_y_
integer parameters. Note that coordinate systems are distinguished both
by units employed and where each places its origin.

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by
CONVERT.

TPU$_BADDELETE ERROR You are attempting to modify
an integer, keyword, or string
constant.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_ TOOFEW ERROR Too few arguments passed to
CONVERT.

TPU$_ TOOMANY ERROR Too many arguments passed to
CONVERT.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_WINDNOTVIS WARNING CONVERT cannot operate on an
invisible window.

PROCEDURE user convert

LOCAL source...:....x,
source_y,
dest __ x,
dest_y;

source_x := 1;
source_y := 1;
dest_x := 0;
dest_y := O;

CONVERT (CURRENT_WINDOW, COORDINATES, source_x, source_y,
SCREEN, COORDINATES, dest_x, dest_y);

ENDPROCEDURE;

This example converts a point's location from the current window's
coordinate system (with the origin in the upper left-hand corner of the
window) to the VAXTPU screen's coordinate system (with the origin in
the upper left-hand corner of the VAXTPU screen). For more information
about the difference between a VAXTPU window and the VAXTPU screen,

7-51

VAXTPU Built-In Procedures
CONVERT

7-52

see Chapter 4. If the current window is not the top window, CONVERT
changes the value of the y-coordinate to reflect the difference in the
VAXTPU screen's coordinate system. For another example of a procedure
using the CONVERT built-in, see Example B-1.

VAXTPU Built-In Procedures
COPV_TEXT

COPY TEXT

Makes a copy of the text you specify and places it in the current buffer.

FORMAT
{

buffer }
(range2 := I COPY_ TEXT (ra~ge 1)

strmg

PARAMETERS buffer
The buffer containing the text you want to copy.

range1
The range containing the text you want to copy.

string
A string, a variable name representing a string constant, or an expression
that evaluates to a string, representing the text you want to copy.

return value The range where the copied text has been placed.

DESCRIPTION If the current buffer is in insert mode, the text you specify is inserted
before the current position in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

Note: You cannot add a buffer or a range to itself. If you try to add
a buffer to itself, VAXTPU issues an error message. If you try
to insert a range into itself, part of the range is copied before
VAXTPU signals an error. If you try to overstrike a range into
itself, VAXTPU may or may not signal an error.

Using COPY_TEXT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. COPY_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

7-53

VAXTPU Built-In Procedures
COPY_TEXT

SIGNALED
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

ERRORS
TPU$_NOCOPYBUF WARNING Trying to copy a buffer to itself is

not allowed.

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_0VERLAPRANGE ERROR You tried to put the contents of a
range into that same range instead
of into another structure.

TPU$_ TOOFEW ERROR COPY_ TEXT requires one
argument.

TPU$_ TOOMANY ERROR COPY_ TEXT accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to COPY_ TEXT
must be a string, range, or buffer.

TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.

TPU$_LIN ETOOLONG WARNING The line exceeds VAXTPU's
maximum line length.

TPU$_ TRUNCATE WARNING Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.

EXAMPLES

D COPY TEXT ("Perseus is near Andromeda")

When the buffer is set to insert mode, this statement causes the string
11 Perseus is near Andromeda" to be placed just before the current position
in the current buffer.

I COPY TEXT (ASCII (10))

When the buffer is set to overstrike mode, this statement causes the
ASCII character for line feed to replace the current character in the
current buffer.

! PROCEDURE user_simple_insert

7-54

IF BEGINNING_OF (paste_buffer) = END OF (paste_buffer)
THEN

MESSAGE ("Nothing to INSERT");
ELSE

COPY TEXT (paste_buffer);
ENDIF;

ENDPROCEDURE;

This procedure implements a simple INSERT HERE function. It assumes
that there is a paste buffer and that this buffer contains the most recently
deleted text. The procedure copies the text from that buffer into the
current buffer.

\
)

~,

)

VAXTPU Built-In Procedures
CREATE_ARRAY

CREATE ARRAY

Creates an array.

FORMAT I array == I
CREATE_ARRAY /[(integer1 /[, integer2]/) JI

PARAMETERS integer1

return value

DESCRIPTION

The number of integer-indexed elements to be created when the array
is created. VAXTPU processes elements specified by this parameter
more quickly than elements created dynamically. You can add integer­
indexed elements dynamically, but they are not processed as quickly as
predeclared, integer-indexed elements.

integer2
The first predeclared integer index of the array. The predeclared integer
indexes of the array extend from this integer through to integer2 + integer 1
- 1. This parameter defaults to 1.

The variable that is to contain the newly created array.

This built-in creates an array.

In VAXTPU, an array is a one-dimensional collection of data values that
can be considered or manipulated as a unit.

To create an array variable called bat, use the CREATE_ARRAY built-in
as follows:

bat := CREATE_ARRAY;

VAXTPU arrays can have a static portion, a dynamic portion, or both. A
static array or portion of an array contains predeclared, integer-indexed
elements. These elements are allocated contiguous memory locations to
support quick processing. To create an array with a static portion, specify
the number of contiguous, integer-indexed elements when you create the
array. You also have the option of specifying a beginning index number
other than 1. For example, the following statement creates an array with
100 predeclared integer-indexed elements starting at 15:

bat := CREATE_ARRAY (100, 15);

All static elements of a newly created array are initialized to the data type
unspecified.

A dynamic portion of an array contains elements indexed with expressions
evaluating to any V AXTPU data type except unspecified, learn, pattern, or
program. Dynamic array elements are dynamically created and deleted as
needed. To create a dynamic array element, assign a value to an element
of an existing array. For example, the following statement creates a

7-55

VAXTPU Built-In Procedures
CREATE_ARRAY

7-56

dynamic element in the array bat indexed by the string "bar" and assigns
the integer value 10 to the element:

bat{"bar"} := 10;

To create an array with both static and dynamic elements, first create
the static portion of the array. Then use assignment statements to create
as many dynamic elements as you wish. For example, the following code
fragment creates an array stored in the variable small_array. The array
has 15 static elements and one dynamic element. The first static element
is given the value 10. The dynamic element is indexed by the string "fred"
and contains the value 100.

small_array := CREATE_ARRAY (15);
small_array{l} := 10;
small_array{ "fred"} := 100;

To delete a dynamic array element, assign to it the constant TPU$K_
UNSPECIFIED, which is of type unspecified.

One array can contain elements indexed with several data types. For
example, you can create an array containing elements indexed with
integers, buffers, windows, markers, and strings. An array element can be
of any data type. All array elements of a newly created array are of type
unspecified.

If the same array has been assigned to more than one variable, VAXTPU
does not create multiple copies of the array. Instead, each variable points
to the array that has been assigned to it. VAXTPU arrays are reference
counted, meaning that each array has a counter keeping track of how
many variables point to it. VAXTPU arrays are autodelete data types,
meaning that when no variables point to an array, the array is deleted
automatically. You can also delete an array explicitly using the DELETE
built-in. For example, the following statement deletes the array bat:

DELETE (bat);

If you delete an array that still has variables pointing to it, the variables
receive the data type unspecified after the deletion. ·

If you modify an array pointed to by more than one variable, modifications
made using one variable show up when another variable references the
modified element. To duplicate an array, you must write a procedure
creating a new array and copying the old array's elements to the new
array.

To refer to an array element, use the array variable name followed by an
index expression enclosed in braces or parentheses. For example, if bar
were a variable of type marker, the following statement would assign the
integer value 10 to the element indexed by bar:

bat{bar} := 10;

You can perform the same operations on array elements that you can on
other VAXTPU variables, with one exception-you cannot make partial
pattern assignments to array elements.

See Chapter 2 for additional information about arrays.

SIGNALED
TPU$_ TOOMANY

ERRORS
TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_MINVALUE

TPU$_MAXVALUE

TPU$_GETMEM

EXAMPLES

VAXTPU Built-In Procedures
CREATE_ARRAY

ERROR CREATE_ARRAY accepts no
more than two arguments.

ERROR CREATE_ARRAY must appear
on the right-hand side of an
assignment statement.

ERROR The arguments to CREATE_
ARRAY must be integers.

WARNING The first argument to CREATE_
ARRAY must be 1 or greater.

WARNING The first argument to CREATE_
ARRAY must be no greater than
65,535.

ERROR VAXTPU could not create the
array because VAXTPU did not
have enough memory.

D arrayl := CREATE_ARRAY;

This assignment statement above creates an array and assigns it to the
variable array 1.

~ array2 := CREATE_ ARRAY (10) ;

This assignment statement also creates an array. This array has ten
predeclared integer-indexed elements that can be processed quickly by
VAXTPU. It can also be indexed by any other VAXTPU data type except
pattern, program, learn, and unspecified.

iJ array3 := CREATE_ARRAY (11, -5) ;

This assignment statement creates an array that can be indexed by the
integers -5 through 5. It can also be indexed by any other VAXTPU data
type other than patterns and learn sequences.

7-57

VAXTPU Built-In Procedures
CREATE BUFFER

CREATE BUFFER

Defines a new work space for editing text. You can create an empty buffer
or you can associate an input file name with the buffer. CREATE_BUFFER
optionally returns a buffer.

FORMAT (buffer2 == I CREATE_BUFFER (string1 /[,string2 /[,buffer1J /[,string3J J)

PARAMETERS string1

7-58

A string representing the name of the buffer you want to create.

string2
A string representing the file specification of an input file that is read into
the buffer.

buffer1
The buffer that you want to use as a template for the buffer to be created.
The information copied from the template buffer includes the following:

• End-of-buffer text

• Direction (FORWARD/REVERSE)

• Text entry mode (INSERT/OVERSTRIKE)

• Margins (right and left)

• Margin action routines

• Maximum number of lines

• Write-on-exit status (NO_ WRITE)

• Modifiable status

• Tab stops

• Key map list

VAXTPU does not copy the following attributes of the template buffer to
the new buffer:

• Buffer contents

• Marks or ranges

• Input file name

• Mapping to windows

• Cursor position

• Editing point

• Associated subprocesses

• Buffer name

• Permanent status, if that is an attribute of the template buffer

VAXTPU Built-In Procedures
CREATE_BUFFER

• System status, if that is an attribute of the template buffer

string3
The name of the journal file to be used with the buffer. Note that VAXTPU
does not copy the journal file name from the template buffer. Instead,
CREATE_BUFFER uses string3 as the new journal file name. If you do
not specify string3, VAXTPU names the journal file using its journal file
naming algorithm. For more information on the naming algorithm, see
Section 1.7.1 in Chapter 1.

EVE turns on buffer change journaling by default for each new buffer.
However, the CREATE_BUFFER built-in does not automatically turn on
journaling; if you are layering directly on VAXTPU, your application must
use SET (JOURNALING) to turn journaling on.

Caution: Journal files contain a record of all information being edited.

return value

DESCRIPTION

Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

The buffer created by CREATE_BUFFER.

Although you do not have to assign the buffer that you create to a variable,
you need to make a variable assignment if you want to refer to the buffer
for future use. The buffer variable on the left-hand side of an assignment
statement is the item that you must use when you specify a buffer as a
parameter for other VAXTPU built-in procedures. For example, to move to
a buffer for editing, enter the buffer variable after the built-in procedure
POSITION:

my_buffer_variable := CREATE_BUFFER ("my_buffer_name", "my_file_name");

POSITION (my_buffer_variable);

The buffer name that you specify as the first parameter for the built-in
procedure CREATE_BUFFER (for example, "my _buffer_name" is used by
VAXTPU to identify the buffer on the status line). You can change the
status line with the built-in procedure SET (STATUS_LINE).

If you want to skip an optional parameter and specify a subsequent
optional parameter, you must use a comma as a placeholder for the
skipped parameter.

You can create multiple buffers. Buffers can be empty or they can contain
text. The current buffer is the buffer in which any VAXTPU commands
that you execute take effect (unless you specify another buffer). Only one
buffer can be the current buffer. See the built-in procedure CURRENT_
BUFFER for more information.

A buffer is visible when it is associated with a window that is mapped to
the screen. A buffer can be associated with multiple windows, in which
case any edits that you make to the buffer are reflected in all of the
windows in which the buffer is visible. To get a list of all the buffers in
your editing context, use the built-in procedure SHOW (BUFFERS).

7-59

VAXTPU Built-In Procedures
CREATE_BUFFER

7-60

The following keywords used with the built-in procedure SET allow you
to establish attributes for buffers. The text describes the default for the
attributes:

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•
•
•

•

•

SET (EOB_TEXT, buffer, string) -The default end-of-buffer text is
[EOB].

SET (ERASE_ UNMODIFIABLE, buffer, { g~F }) - By default,

unmodifiable records can be deleted from buffers by built-ins such as
ERASE_LINE.
SET (FORWARD, buffer)-The def~ult direction is forward .

SET (INSERT, buffer) -The default mode of text entry is insert .

SET (JOURNALING, buffer, { g~F }) - By default, buffer change

journaling is turned off.

SET (LEFT_MARGIN, buffer, integer)-The default left margin is 1
(that is, the left margin is set in column 1). ·

SET (LEFT_MARGIN_ACTION, buffer, program_source)- By default,
buffers do not have left margin action routines.

SET (MARGINS, buffer, integerl, integer2) - The default left margin
is 1 and the default right margin is 80.

SET (MAX_LINES, buffer, integer) - The default maximum number
of lines is 0 (in other words, this feature is turned off).

SET (MODIFIABLE, buffer, { g~F }) - By default, a buffer can be

modified. Using the OFF keyword makes a buffer unmodifiable.

SET (MODIFIED, buffer, { g~F }) - Turns on or turns off the bit

indicating that the specified buffer has been modified.

SET (NO_ WRITE, buffer [,keyword]) - By default, when you exit
from VAXTPU, the buffer is written if it has been modified.

SET (OUTPUT_FILE, buffer, string) -The default output file is the
input file specification with the highest existing version number for
that file plus 1.

SET (OVERSTRIKE, buffer) - The default mode of text entry is
insert.

SET (PERMANENT, buffer) - By default, the buffer can be deleted .

SET (RECORD_ATTRIBUTE, marker, range, buffer)

SET (REVERSE, buffer) -The default direction is forward .

SET (RIGHT_MARGIN, buffer, integer) -The default right margin is
80.

SET (RIGHT_MARGIN_ACTION, buffer, program_source) - By
default, buffers do not have right margin action routines.

SET (SYSTEM, buffer) - By default, the buffer is a user buffer .

SIGNALED
ERRORS

EXAMPLES

•

VAXTPU Built-In Procedures
CREATE_BUFFER

SET (TAB STOPS, buffer, { ~tnt'ng }) -The default tab stops are
- m eger

set every eight character positions.

See the built-in procedure SET for more information on these keywords.

TPU$_DUPBUFNAME WARNING First argument to the CREATE_
BUFFER built-in must be a unique
string.

TPU$_ TRUNCATE WARNING A record was truncated to the
maximum record length.

TPU$_ TOOMANY ERROR The CREATE_BUFFER built-
in takes a maximum of two
arguments.

TPU$_ TOOFEW ERROR The CREATE_BUFFER built-in
requires at least one argument.

TPU$_1NVPARAM ERROR The CREATE_BUFFER built-in
accepts parameters of type string
or buffer only.

TPU$_GETMEM ERROR VAXTPU ran out of virtual memory
trying to create the buffer.

TPU$_0PENIN ERROR CREATE_BUFFER did not open
the specified input file.

D nb :=CREATE BUFFER ("new_buffer", "login.com")

This statement creates a buffer called NEW _BUFFER and stores a pointer
to the buffer in the variable nb. Use the variable nb when you want to
specify this buffer as a parameter for VAXTPU built-in procedures. The
file specification 11 LOGIN.COM 11 is the input file for NEW _BUFFER.

m default_buffer := CREATE_BTJFFER ("defaults");
SET (REVERSE, default_buffer);
b : = CREATE_BUFFER ("buffer", '"', default_buffer);

The first statement in this example creates a buffer called DEFAULTS
and stores a pointer to the buffer in the variable default_buffer. The
second statement sets the direction of default_buffer to reverse. The third
statement creates a buffer called BUFFER and stores a pointer to the
buffer in the variable b. This statement takes default. information from
default_buffer. Note that buffer b does not receive any text, marks, or
ranges from the buffer default_buffer.

7-61

VAXTPU Built-In Procedures
CREATE_BUFFER

~ PROCEDURE user_help_buffer
help_buf := CREATE_BUFFER("help_buf");
SET (EOB_TEXT, help_buf, "[End of HELP]");
SET (NO_WRITE, help_buf);
SET (SYSTEM, help_buf);

ENDPROCEDURE;

This procedure creates the help buffer.

El bufl ·= CREATE_BUFFER ("Scratch",,,"Scratch_jl.jl");

This statement creates a buffer named Scratch and directs VAXTPU to
name the associated buffer change journal file Scratch.Jl.jl. Note that
you must use commas as placeholders for the two unspecified optional
parameters. Note, too, that by default VAXTPU puts journal files in
the directory defined by the logical name TPU$JOURNAL. By default,
TPU$JOURNAL points to the same directory that SYS$SCRATCH points
to. You can reassign TPU$JOURNAL to point to a different directory.

!fJ defaults buffer := CREATE_BUFFER ("Defaults");

7-62

SET (EOB_TEXT, defaults_buffer, "[That's all, folks!]");

user buffer := CREATE_BUFFER ("Userl.txt", "", defaults_buffer);

This code fragment creates a template buffer called Defaults, changes
the end-of-buffer text for the template buffer, and then creates a user
buffer. The user buffer is created with the same end-of-buffer text that the
defaults buffer has.

\
I

)

VAXTPU Built-In Procedures
CREATE_KEY _MAP

CREATE KEY MAP

FORMAT

PARAMETER

return value

Creates and names a key map. CREATE_KEY_MAP optionally returns a
string that is the name of the key map created.

[string2 :=] CREATE_KEV _MAP (string1)

string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map you create.

A string that is the name of the key map created.

DESCRIPTION A key map is a set of key definitions. Key maps allow you to manipulate
key definitions as a group. Key maps and their key definitions are saved
in section files. The default key map for VAXTPU is TPU$KEY_MAP,
contained in the default key map list TPU$KEY_MAP _LIST. See the
description on key map lists.

SIGNALED
ERRORS

The EVE editor does not use the default key map, TPU$KEY_MAP.
In EVE, the name of a key map is not the same as the variable that
contains the key map. For example, the EVE variable EVE$X_USER_
KEYS contains the key map named EVE$USER_KEYS, which stores the
user's key definitions. EVE stores all its key maps in the default key map
list, TPU$KEY_MAP_LIST. However, the default key map, TPU$KEY_
MAP, is removed from the default key map list by the standard EVE
section file.

When you create a key map, its keys are undefined. Each key map can
hold definitions for all characters in the DEC Multinational Character Set,
and all the keypad keys and the function keys, in both their shifted and
unshifted forms. Each key map has its own name (a string). This name
cannot be the same as that of either another key map or a key map list.

TPU$_DUPKEYMAP

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

WARNING A key map with this name already
exists.

ERROR

ERROR

ERROR

Too few arguments passed to the
CREATE_KEY _MAP built-in.

Too many arguments passed to
the CREATE_KEY _MAP built-in.

Wrong type of data sent to the
CREATE_KEY _MAP built-in.

7-63

VAXTPU Built-In Procedures
CREATE_ KEY _MAP

EXAMPLE
PROCEDURE init_sample_key_map

sample_key_map := CREATE_KEY_MAP ("sample_key_map");

DEFINE_KEY ("EXIT", CTRL_Z_KEY, "Exit application", sample_key_map);
DEFINE_KEY ("COPY_TEXT ('XYZZY')", CTRL_B_KEY, "Magic Word", sample_key_map);

ENDPROCEDURE;

7-64

This procedure creates a key map and defines two keys in the key map.
The name of the key map is stored in the variable sample_key_map.

CREATE KEV MAP LIST

VAXTPU Built-In Procedures
CREATE_KEY_MAP _LIST

Creates and names a key map list, and also specifies the initial key maps
in the key map list it creates. CREATE_ KEY _MAP _LIST optionally returns a
string that is the name of the key map list created.

FORMAT fstring3 := B
CREATE_KEY_MAP _LIST (string1, string2 /[, ...])

PARAMETERS string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map list that you create.

string2
Strings that specify the names of the initial key maps within the key map
list you create.

return value A string that is the name of the key map list created.

DESCRIPTION A key map list is an ordered set of key maps. Key map lists allow you to
change the procedures bound to your keys. To find the definition of a given
key, VAXTPU searches through the key maps in the specified or default
key map list until VAXTPU either finds a definition for the key or reaches
the end of the last key map in the list.

VAXTPU provides the default key map list, TPU$KEY_MAP _LIST,
containing the default key map, TPU$KEY_MAP. (See the description
of the built-in procedure CREATE_KEY_MAP for more information on key
maps.)

The built-in procedure CREATE_KEY_MAP _LIST creates a new key map
list, names the key map list, and specifies the initial key maps contained
in the list.

Key map lists store directions on what VAXTPU is to do when the user
presses an undefined key associated with a printable character. By
default, a key map list directs VAXTPU to insert undefined printable
characters into the current buffer. To change the default, use the built-in
procedure SET (SELF _INSERT).

A newly created key map list is not bound to any buffer. To bind a key
map list to a buffer, use the built-in procedure SET (KEY_MAP _LIST).
When you use the POSITION built-in to select a current buffer, the key
map list that is bound to the buffer is automatically activated.

A newly created key map list has no procedure defined to be called when
an undefined key is referenced. You can define such a procedure with the
built-in procedure SET (UNDEFINED_KEY). The default is to display the
message "key has no definition."

7-65

VAXTPU Built-In Procedures
CREATE_KEY _MAP _LIST

Key map lists are saved in section files, along with any undefined key
procedures and the SELF _INSERT settings.

SIGNALED
ERRORS

TPU$_DUPKEYMAP WARNING The string argument is already
defined as a key map.

TPU$_DUPKEYMAPLIST WARNING The string argument is already
defined as a key map list.

TPU$_NOKEYMAP WARNING The string argument is not a
defined key map.

TPU$_ TOOFEW ERROR Too few arguments passed to the
CREATE_KEY _MAP _LIST built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the CREATE_KEY _MAP _LIST
built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
CREATE_KEY _MAP _LIST built-in.

EXAMPLE
PROCEDURE init_help_key_map_list

help user keys :=CREATE KEY MAP ("help user keys");
help-keys-:= CREATE KEY MAP ("help keys"il); -
help=key_list := CREATE=KEY_MAP_LIST ("help_key_list", help_user_keys,

help_keys);
ENDPROCEDURE;

This procedure creates two key maps and groups them into a key map list.

7-66

VAXTPU Built-In Procedures
CREATE_PROCESS

CREATE PROCESS

Starts a subprocess and associates a buffer with it. You can optionally specify
an initial command to send to the subprocess. CREATE_PROCESS returns a
process.

FORMAT process == CREATE_PROCESS (buffer {,string])

PARAMETERS buffer
The buffer in which VAXTPU stores output from the subprocess.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that represents the first command
that you want to send to the subprocess. If you do not want to include the
first command when you use the built-in procedure CREATE_PROCESS,
see the built-in procedure SEND for a description of how to send the first
or subsequent commands to a subprocess.

return value The process created.

DESCRIPTION You can create multiple subprocesses. When you exit from VAXTPU, any
subprocesses you have created with CREATE_PROCESS are deleted. If
you want to remove a subprocess before exiting, use the built-in procedure
DELETE with the process as a parameter (DELETE (pl)), or set the
variable to integer zero as follows:

SIGNALED
ERRORS

procl := 0

CREATE_PROCESS creates a subprocess of a VAXTPU session and all of
the output from the subprocess goes into a VAXTPU buffer. You cannot
run a program or utility that takes over control of the screen from a
process created with this built-in procedure. (See Chapter 2 for a list
of subprocess restrictions.) You can, however, use the built-in procedure
SPAWN to create a subprocess that suspends your VAXTPU process and
places you directly at DCL level. You can then run programs such as FMS
or PHONE that control the whole screen.

TPU$_DUPBUFNAME

TPU$_CREATEFAIL

TPU$_ TOOFEW

WARNING

WARNING

ERROR

First argument must be a unique
string.

Unable to activate the subprocess.

Too few arguments passed to the
CREATE_PROCESS built-in.

7-67

VAXTPU Built-In Procedures
CREATE_PROCESS

TPU$_ TOOMANY ERROR Too many arguments passed to
the CREATE_PROCESS built-in.

TPU$_NEEDTOASSIGN ERROR The CREATE_PROCESS built-in
call must be on the right-hand side
of an assignment statement.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
CREATE_PROCESS built-in.

TPU$_ CAPTIVE WARNING Unable to create a subprocess in
a captive account.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable
buffer. You can only write the
output of the subprocess to a
modifiable buffer.

TPU$_NOPROCESS WARNING No subprocess to interact with.
The process was deleted between
the time that it was created and
when VAXTPU attempted to send
information to it.

TPU$_SENDFAIL WARNING Unable to send data to the
subprocess.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

EXAMPLES

D my_mail_process := CREATE_PROCESS (second_buffer, "mail")

This assignment statement creates a subprocess and specifies SECOND_
BUFFER as the buffer in which the output from the subprocess is
stored. It also sends the DCL MAIL command as the first command to
be executed.

~ ! Create a buff er to hold the output from the DCL commands
! "SET NOON" and "DIRECTORY".

7-68

PROCEDURE user_dcl_process
dcl buffer :=CREATE BUFFER ("dcl buffer");
MAP (main_window, dcl_buffer); -
my dcl process :=CREATE PROCESS (dcl buffer, "SET NOON");
MESSAGE ("Creating DCL subprocess ... 11

);

SEND ("DIRECTORY", my_dcl_process);
ENDPROCEDURE; .

This procedure creates a buffer to hold the output from the DCL
commands executed by the subprocess.

VAXTPU Built-In Procedures
CREATE_RANGE

CREATE RANGE

FORMAT

PARAMETERS

return value

Returns a range that includes two delimiters and all the characters between
them, and sets the video attributes for displaying the characters when they
are visible on the screen. A range delimiter can be a marker, the beginning or
end of a line, or the beginning or end of a buffer. The beginning and ending
delimiters do not have to be of the same type but must be in the same buffer.

{
marker1 } { marker2 }

range := CREATE_RANGE (keywordt , keywordt

f, keyword2 J)

marker1
The marker indicating the point in the buffer where the range begins.

marker2
The marker indicating the point in the buffer where the range ends.

keyword1
A keyword indicating the point in the buffer where you want the range to
begin or end. Table 7-1 shows the valid keywords and their meanings.

Table 7-1 CREATE_RANGE Keyword Parameters

Keyword Meaning

LINE_BEGIN The beginning of the current buffer's current line.

LINE_END The end of the current buffer's current line.

BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the first position
where a character could be inserted, regardless of whether there
is a character there. This is the same as the point referred to by
BEG INN ING_ OF (CURRENT _BUFFER).

BUFFER_END The last position in the buffer where a character could be inserted.

keyword2

This is the same as.the point referred to by END_OF (CURRENT_
BUFFER).

The video attribute for the range: BLINK, BOLD, NONE, REVERSE, or
UNDERLINE. If you omit the parameter, the default is NONE.

The range created by CREATE_RANGE.

7-69

VAXTPU Built-In Procedures
CREATE_ RANGE

DESCRIPTION CREATE_RANGE establishes a range that is delimited by the markers
you specify. You can create multiple ranges in a buffer. When you apply
video attributes to a range, you can see the range if it is in a visible buffer.
A range may overlap another range.

SIGNALED
ERRORS

EXAMPLES

If you clear the contents of a range with the built-in procedure ERASE,
the range structure still exists. The range and its video attributes, if any,
move to the next character or position beyond where the range ended
before the range was erased.

To remove the range structure, use the built-in procedure DELETE or set
the variable to which the range is assigned to zero (rl := 0).

In portions of a range that either are associated with nonprintable
characters or are not associated with characters at all, VAXTPU does
not display any of the video attributes of the range. However, if you insert
new characters into portions of a range where the video attributes have
not been displayed, the new characters do display the video attributes that
apply to the range.

CREATE_RANGE checks whether the markers you specify as parameters
are free markers. A free marker is a marker not bound to a character.
For more information on free markers, see the description of the MARK
built-in.

If a marker defining a range is a free marker, VAXTPU ties the range
to the character or end-of-line nearest to the free marker, to use as the
range delimiter. Note that an end-of-line is not a character but is a point
to which a marker can be bound.

TPU$_NOTSAMEBUF WARNING First and second marker are in
different buffers.

TPU$_ TOOFEW ERROR CREATE_RANGE requires three
parameters.

TPU$_ TOOMANY ERROR CREATE_RANGE accepts no
more than three parameters.

TPU$_NEEDTOASSIGN ERROR CREATE_RANGE must appear
on the right-hand side of an
assignment statement.

TPU$_1NVPARAM ERROR One of your arguments to
CREATE_RANGE is of the wrong
type.

TPU$_BADKEY WARNING You specified an illegal keyword.

D my_range := CREATE RANGE (start_mark, end_mark, BOLD)

7-70

This assignment statement creates a range starting at start_mark and
ending at end_mark. When this range is visible on the screen, the
characters in the range are bolded.

PROCEDURE user erase to eob - - -
LOCAL start_of _range,

here_to_eob;

start_of_range :=MARK (NONE);

VAXTPU Built-In Procedures
CREATE_RANGE

here to EOB := CREATE RANGE (start_of_range,

ERASE (here_to_eob);
ENDPROCEDURE;

END_OF (CURRENT_BUFFER),
NONE);

This procedure erases the text in the current buffer, starting at the editing
point, and erasing text until the end of the buffer is reached.

I the_range := CREATE_RANGE (BUFFER_BEGIN, mark2, REVERSE);

This statement creates a range starting at the first point in the buffer
where a character can be inserted and ending at the point marked by
mark2. If the range is visible on the screen, the characters in it are
highlighted with the reverse video attribute.

7-71

VAXTPU Built-In Procedures
CREATE_WIDGET

CREATE WIDGET

FORMAT

Creates a widget instance. The CREATE_WIDGET built-in has two variants
with separate syntaxes. One variant creates and returns a widget using the
intrinsics or a XUI Toolkit low-level creation routine. The other variant creates
an entire hierarchy of widgets (as defined in an XUI Resource Manager
database) and returns the topmost widget.

widget:= CREATE_WIDGET (widget_class, widget_name,

{
parent_ widget }
SCREEN

l :~~~sequence l [, program
range
string

[, closure

[, widget_args ... 111)

DESCRIPTION Creates the widget instance you specify, using the intrinsics or an XUI
Toolkit low-level creation routine. Although it has been created, the
returned widget is not managed and therefore not visible. The application
must call the MANAGE_ WIDGET built-in to make the widget visible.

FORMAT widget := CREATE_WIDGET (resource_manager_name, hierarchy_id,

{
parent_ widget }
SCREEN

l ~~~~~sequence l [, program
range
string

[, closure

[, widget_args ... 111)

DESCRIPTION Creates and returns an entire hierarchy of widgets (as defined in an XUI
Resource Manager database) and returns the topmost widget. All children
of the returned widget are also created and managed. The topmost widget
is not managed, so none of the widgets created is visible.

7-72

If you specify one or more callback arguments in your User Interface
Language (UIL) file, specify either the routine TPU$WIDGET_INTEGER_
CALLBACK or the routine TPU$WIDGET_STRING_CALLBACK
For more information about specifying callbacks, see Chapter 4. For
more information about UIL files, see the VMS DECwindows Guide to
Application Programming.

VAXTPU Built-In Procedures
CREATE_ WIDGET

When you use CREATE_ WIDGET to create a widget or hierarchy of
widgets organized by the XUI Resource Manager, CREATE_ WIDGET uses
the XUI Toolkit routine FETCH WIDGET.

PARAMETERS widget_class
The integer returned by DEFINE_WIDGET_CLASS that specifies the
class of widget to be created.

widget_ name
A string that is the name to be given to the widget.

parent_ widget
The widget that is to be the parent of the newly created widget.

SCREEN
A keyword indicating that the newly created widget is to be the child of
VAXTPU's main window widget.

buffer
The buffer containing the interface callback routine. This code is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

learn_ sequence
The learn sequence that is the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

program
The program that is the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

range
The range containing the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

string
The string containing the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

7-73

VAXTPU Built-In Procedures
CREATE_ WIDGET

closure
A string or integer. VAXTPU passes the value to the application when the
widget performs a callback to VAXTPU. For more information about using
closures, see Chapter 4.

If you do not specify this parameter, VAXTPU passes the closure value (if
any) given to the widget in the UIL file defining the widget. If you specify
the closure value with CREATE_ WIDGET instead of in the UIL file, all
widgets created with the same CREATE_ WIDGET call have the same
closure value.

widget_args
One or more pairs of resource names and resource values. You can
specify a pair in an array or as a pair of separate parameters. If you
use an array, you index the array with a string that is the name of the
resource you want to set. Note that resource names are case-sensitive.
The corresponding array element contains the value you want to assign to
that resource. The array can contain any number of elements. If you use
a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index
and its corresponding element value, or each string and its corresponding
value, must be valid widget arguments for the class of widget you are
creating.

resource_manager_name
A case-sensitive string that is the name assigned to the widget in the UIL
file defining the widget.

hierarchy_id
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built­
in. This identifier is passed to the XUI Resource Manager, which uses the
identifier to find the resource name in the database.

return value The newly created widget instance.

DESCRIPTION The case of a widget's name in the User Interface Definition (UID) file
must match the case of the widget's name that you specify as a parameter
to CREATE_ WIDGET. If you specify case sensitive widget names in

7-74

your UIL file, you must use the same widget name case with CREATE_
WIDGET as you used in the UIL file. If you specify case insensitive widget
names in your UIL file, the UIL compiler translates all widget names to
uppercase, so in this instance you must use uppercase widget names with
CREATE_ WIDGET. The example in the following subsection specifies case
insensitive widget names in the UIL file and specifies an uppercase name
for the widget with the CREATE_ WIDGET built-in.

SIGNALED
TPU$_BADKEY

ERRORS
TPU$_UNDWIDCLA

TPU$_1NVPARAM

TPU$_NEEDTOASSIGN

VAXTPU Built-In Procedures
CREATE_ WIDGET

WARNING You specified an invalid keyword
as a parameter.

WARNING You have specified a widget
class integer that is not known to
VAXTPU.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR CREATE_WIDGET must return a
value.

TPU$_REQUIRESDECW ERROR You can use CREATE_WIDGET

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_WIDMISMATCH

TPU$_ARGMISMATCH

TPU$_COMPILEFAIL

TPU$_NONAMES

EXAMPLES

D PROCEDURE eve_display_example

LOCAL example widget,
example=widget_name,

example_hierarchy;

ON ERROR
[OTHERWISE] :

ENDON_ERROR;

only if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to
CREATE_ WIDGET.

ERROR Too many arguments passed to
CREATE_ WIDGET.

ERROR You have specified a widget whose
class is not supported.

ERROR A widget argument was not an
array or a string/value pair.

WARNING Compilation of the widget interface
callback routine failed due to
syntax errors.

WARNING A widget argument is not
supported by the specified widget.

Variable assigned to the created widget.
The name of the widget assigned
to this variable must be uppercase
if you specified case insensitive
widget names in the UIL file.

XUI Resource Manager
hierarchy for this example.

Traps errors.

! Set the widget hierarchy. The default file spec is "SYS$LIBRARY: .UID"

example_hierarchy :=SET (DRM_HIERARCHY, "mynode$dua0: [smith]example");

! The VAXTPU CREATE WIDGET built-in needs the name of the widget
! defined in the UIL file.

example_widget_name := "EXAMPLE_BOX"; The widget EXAMPLE_BOX is
defined in the file EXAMPLE.UIL.

Create the widget if it has not already been created.

7-75

VAXTPU Built-In Procedures
CREATE_ WIDGET

IF GET_INFO (example_widget, "type") <> WIDGET
THEN

example widget := CREATE WIDGET (example widget name, example hierarchy,
- - SCREEN; eve$kt_callback_routine);

! EVE defines eve$callback dispatch to be EVE's callback routine.
! You do not need to define it again if you are extending EVE.

ENDIF;

! Map "example_widget" to the screen using MANAGE_WIDGET.

MANAGE_WIDGET (example_widget);

RETURN (TRUE);

ENDPROCEDURE;

This procedure, eve_display_example, creates a modal dialog box widget
and maps the widget to the VAXTPU screen.

The procedure shows how to use the variant of CREATE_ WIDGET that
returns an entire widget hierarchy. To create a widget or widget hierarchy
using this variant, you must have available the compiled form of a User
Interface Language (UIL) file specifying the characteristics of the widgets
you want to create. Digital recommends that you use one or more UIL files
and the corresponding variant of CREATE_ WIDGET whenever possible,
because UIL is more efficient and because UIL files make it easier to
translate your application into other languages. For more information
about compiling and using UIL files, see the VMS DECwindows Guide to
Application Programming.

f! MODULE example

7-76

VERSION 'V00-000'

! This is a sample UIL file that creates a message box containing
! the message "Hello World".

NAMES case insensitive

VALUE
example_message 'Hello World';

OBJECT
example_box : message_box {·

arguments {
default_position = true; puts box in center work area
ok_label = example_button_label;
label_label example_message;

} ;
} ;

END MODULE;

This example shows a sample UIL file describing the modal dialog box
called example_box. The UIL file specifies where the widget appears on
the screen, what label appears on the box's button, and what message the
widget displays.

For an example showing how to use the variant of CREATE_ WIDGET that
calls the XUI Toolkit low-level creation routine, see Example B-2.

VAXTPU Built-In Procedures
CREATE_ WINDOW

CREATE WINDOW

Defines a screen area called a window. You must specify the screen line
number at which the window starts, the length of the window, and whether the
status line is to be displayed. CREATE_WINDOW optionally returns the newly
created window.

FORMAT (window := I
CREATE_WINDOW (integer1, integer2,

{ g~F }J

PARAMETERS integer1
The screen line number at which the window starts.

integer2
The number of rows in the window.

ON
A keyword directing VAXTPU to display a status line in the new window.
The status line occupies the last row of a window. By default, the status
line is displayed in reverse video and contains the following information
about the buffer that is currently mapped to the window:

• The name of the buffer that is associated with the window

• The name of the file that is associated with the buffer, if one exists

See SET (STATUS_LINE) for information on changing the video attributes
of the status line and/or the information displayed on the status line.

OFF
Suppresses the display of the status line.

return value The window created by CREATE_ WINDOW.

DESCRIPTION CREATE_ WINDOW optionally returns the new window. If you want to
use the window that you create as a parameter for any other built-in
procedure, then you should specify a variable into which the window is
returned.

You can create multiple windows on the screen, but only one window can
be the current window. The cursor is positioned in the current window.
The current window and the current buffer are not necessarily the same.

To make a window visible, you must associate a buffer with the window
and map the window to the screen. The following command maps main_
window to the screen:

MAP (main_window, main_buffer)

7-77

VAXTPU Built-In Procedures
CREATE_ WINDOW

SIGNALED
ERRORS

7-78

See the built-in procedure MAP for further information.

The following keywords used with the built-in procedure SET allow you
to establish attributes for windows. This list shows the defaults for the
attributes:

• SET (PAD, window, keyword) - By default, there is no blank padding
on the right.

• SET (SCROLL_BAR) - By default, VAXTPU does not create
vertical and horizontal scroll bars for a window in the DECwindows
environment.

• SET (SCROLL_BAR_AUTO_THUMB) - By default, VAXTPU controls
the slider in any scroll bars in a window.

• SET (SCROLLING, window, keyword, integerl, integer2, integer3) -
The default cursor limit for scrolling at the top of the screen is the first
line of the window; the default cursor limit for scrolling at the bottom
of the screen is the bottom line of the window. If the terminal type
you are using does not allow you to set scrolling regions, the window is
repainted.

• SET (STATUS_LINE, window, keyword, string) - The status line
may be ON or OFF according to the keyword specified for the built-in
procedure CREATE_ WINDOW. See the preceding description of the
keyword ON for information about the default attributes of a status
line.

• SET (TEXT, window, keyword) - By default, the text is set to
BLANK_TABS (tabs are displayed as blank spaces).

• SET (VIDEO, window, keyword) -There are no video attributes by
default.

• SET (WIDTH, window, integer) - By default, the width is the same as
the physical width of the terminal screen when the window is created.

See the built-in procedure SET for more information on these keywords.

Using the SHIFT built-in, you can display text that lies to the right of the
window's right edge in an unshifted window. For information on using
SHIFT, see the description of the built-in in this chapter.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_BADKEY ERROR

The CREATE_WINDOW built-in
requires exactly three parameters.

The CREATE_WINDOW built-in
accepts exactly three parameters.

The keyword must be either ON or
OFF.

EXAMPLES

TPU$_1NVPARAM

TPU$_BADWINDLEN

TPU$_BADFIRSTLINE

VAXTPU Built-In Procedures
CREATE_ WINDOW

ERROR One or more of the specified
parameters have the wrong type.

WARNING Invalid window length.

WARNING Invalid first line for window.

D new window .- CREATE_WINDOW (11, 10, ON)

This assignment statement creates a window that starts at screen line 11
and is 10 rows long, and assigns it to the variable new_window. A status
line is displayed as the last line of the window. To make this window
visible, you must associate an existing buffer with it and map the window
to the screen with the following command:

MAP (new_window, buffer_variable)

! PROCEDURE user make window
new window:= CREATE WINDOW(l, 21, OFF);
SET-(TEXT, new_window, GRAPHIC_TABS);
new_buffer := CREATE_BUFFER ("user_buffer_name");
SET (NO WRITE, new buffer);
MAP (new_window, new_buffer);

ENDPROCEDURE;

This procedure creates a window called new _window that starts at screen
line 1 and is 21 lines long. No status line is displayed. Tabs are displayed
as special graphic characters. The buffer new_buffer, which is set to NO_
WRITE, is associated with the window and the window is mapped to the
screen.

7-79

VAXTPU Built-In Procedures
CURRENT _BUFFER

CURRENT BUFFER

Returns the buffer in which you are currently positioned.

FORMAT buffer:= CURRENT_BUFFER

PARAMETERS None.

return value The buffer in which you are currently positioned.

DESCRIPTION The current buffer is the work space in which any VAXTPU statements
you execute take effect. The editing point is in the current buffer. Note
that the editing point is not necessarily the same as the cursor position.

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

D my_cur_buf := CURRENT BUFFER

ERROR

ERROR

CURRENT _BUFFER takes no
parameters.

The CURRENT_BUFFER built-in
must be on the right-hand side of
an assignment statement.

WARNING You are not positioned in a buffer.

This assignment statement stores a pointer to the current buffer in the
variable my _cur _buf.

[I SHOW (CURRENT_ BUFFER)

This statement returns the buffer in which you are currently positioned
and uses that buffer as the parameter for the built-in procedure SHOW.

I PROCEDURE user_toggle_direction

7-80

IF CURRENT DIRECTION = FORWARD
THEN

SET (REVERSE, CURRENT_BUFFER);
ELSE

SET (FORWARD, CURRENT_BUFFER);
ENDIF;

ENDPROCEDURE;

This procedure reverses the direction of the current buffer.

VAXTPU Built-In Procedures
CURRENT_CHARACTER

CURRENT CHARACTER
Returns the character at the editing point in the current buffer.

FORMAT string := CURRENT_CHARACTER

PARAMETERS None.

return value A string consisting of the character at the editing point in the current
buffer.

DESCRIPTION The editing point is the character position in the current buffer at which
most editing operations are carried out. Each buffer maintains its own
editing point, but only the editing point in the current buffer is the active
editing point. An editing point, which always refers to a character position
in a buffer, is not necessarily the same as the cursor position, which always
refers to a location in a window. For more information on the distinction
between the editing point and the cursor position, see Chapter 6.

SIGNALED
ERRORS

If the editing point is at the end of a line, CURRENT_CHARACTER
returns a null string. If the editing point is at the end of a buffer,
CURRENT_CHARACTER returns a null string and also signals a
warning.

Using CURRENT_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the buffer. CURRENT_CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mappeg to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, ifthe cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

TPU$_NOEOBSTR

ERROR

ERROR

CURRENT_ CHARACTER takes
no parameters.

The CURRENT~CHARACTER
built-in must be on the right-hand
side of an assignment statement.

WARNING You are not positioned in a buffer.

WARNING You are positioned at the EOB
(end-of-buffer) mark.

7-81

VAXTPU Built-In Procedures
CURRENT_CHARACTER

EXAMPLES
I my_cur_char := CURRENT CHARACTER

This assignment statement stores the string that represents the editing
point in the variable my _cur _char.

I MESSAGE (CURRENT_CHARACTER)

This statement returns the string that represents the editing point and
uses this string as the parameter for the built-in procedure MESSAGE.

i PROCEDURE user_display_current_character

7-82

This procedure returns the ASCII character in the editing point.

ascii char := CURRENT_CHARACTER;
IF ascii char <> ""

THEN
MESSAGE ("The current character is'"+ ascii char+"'");

ELSE
MESSAGE ("There is no current character.");

ENDIF;
ENDPROCEDURE;

This procedure writes the character that is at the current character
position into the message area.

CURRENT COLUMN

VAXTPU Built-In Procedures
CURRENT_COLUMN

Returns an integer that is the current column number of the cursor position on
the screen.

FORMAT integer := CURRENT_COLUMN

PARAMETERS None.

return value An integer that is the column number of the current cursor position on the
screen.

DESCRIPTION The current column is the column at which the cursor is positioned on
the screen. The column numbers range from 1 on the extreme left of the
screen to the maximum value allowed for the terminal type you are using
on the extreme right of the screen.

The value returned by the built-in procedure CURRENT_COLUMN
and the value returned by GET_INFO (SCREEN, "current_column") are
equivalent.

When used in a procedure, CURRENT_COLUMN does not necessarily
return the position where the cursor has been placed by other statements
in the procedure. VAXTPU generally does not update the screen until all
statements in a procedure are executed. If you want the cursor position
to reflect the actual editing location, put an UPDATE statement in your
procedure immediately before any statements containing CURRENT_
COLUMN, as follows:

UPDATE (CURRENT_WINDOW);

If you do not want to update a window to get the current value for
CURRENT_COLUMN, you can use the built-in GET_INFO (buffer_
variable, "offset_column"). This built-in returns the column number that
the current offset in the buffer would have if it were mapped to a window,
and if you were to force a screen update. Note, however, that this built-in
returns an accurate value only if both of the following conditions are true:

• You are using bound cursor movement (MOVE_ VERTICAL,
MOVE_HORIZONTAL) or other built-in procedures that cause cursor
movement because of character movement within a buffer.

• The window is not shifted.

The built-in GET_INFO (window_variable, "current_column") does not
necessarily return the column number that the cursor would occupy if you
caused an explicit screen update.

7-83

VAXTPU Built-In Procedures
CURRENT_COLUMN

If a window is shifted, CURRENT_COLUMN still returns the current
column number of the cursor on the screen. However, the value returned
by x := GET_INFO (buffer, 11 offset_column 11

) includes the number of
columns by which the window is shifted. For example, if a window is
shifted to the left by 8 columns, CURRENT_COLUMN returns the value
1, while x := GET_INFO (buffer, 11 offset_column") returns the value 9.

SIGNALED
ERRORS

TPU$_ TOOMANY ERROR CURRENT_COLUMN takes no
parameters.

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

ERROR The CURRENT _COLUMN built-in
must be on the right-hand side of
an assignment statement.

WARNING You are not positioned in a buffer.

EXAMPLES

D my_cur_col := CURRENT COLUMN

This assignment statement stores the column position of the cursor in the
variable my _cur _col.

I MESSAGE (STR (CURRENT_ COLUMN))

7-84

This statement combines three VAXTPU built-in procedures. CURRENT_
COLUMN returns the integer that is the current column position, STR
converts the integer to a string, and MESSAGE writes this string to the
message buffer.

PROCEDURE user split line
LOCAL old_position, new_position;

SPLIT_LINE;
IF (CURRENT_ROW = 1) AND (CURRENT_COLUMN = 1)
THEN

old_position :=MARK (NONE);
SCROLL (CURRENT WINDOW, -1);
new_position :=-MARK (NONE);
!Make sure we scrolled before doing CURSOR VERTICAL

IF new_position <> old_position -
THEN

CURSOR VERTICAL (1);
ENDIF;

ENDIF;
ENDPROCEDURE;

This procedure splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

CURRENT DIRECTION

VAXTPU Built-In Procedures
CURRENT _DIRECTION

Returns a keyword (FORWARD or REVERSE) that indicates the current
direction of the current buffer. See also the descriptions of the built-in
procedures SET (FORWARD) and SET (REVERSE).

FORMAT keyword:= CURRENT_DIRECTION

PARAMETERS None.

return value A keyword (FORWARD or REVERSE) indicating the current direction of
the current buffer.

DESCRIPTION If the keyword. FORWARD is returned, the current direction is toward
the end of the buffer. If the keyword REVERSE is returned, the current
direction is toward the beginning of the buffer.

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

I my_cur_dir := CURRENT DIRECTION

ERROR

ERROR

CURRENT_DIRECTION takes no
parameters.

The CURRENT _DIRECTION built­
in must be on the right-hand side
of an assignment statement.

WARNING You are not positioned in a buffer.

This assignment statement stores in the variable my _cur _dir the keyword
that indicates whether the current direction setting for the buffer is
FORWARD or REVERSE.

PROCEDURE user show direction - -
IF CURRENT DIRECTION = FORWARD
THEN

my_messagel :=MESSAGE ("Forward");
ELSE

my_message2 :=MESSAGE ("Reverse");
ENDIF;

ENDPROCEDURE;

This procedure writes to the message buffer a message indicating the
current direction of character movement in the buffer.

7-85

VAXTPU Built-In Procedures
CURRENT_LINE

CURRENT LINE

Returns a string that represents the current line. The current line is the line
that contains the editing point.

FORMAT string == CURRENT_LINE

PARAMETERS None.

return value A string representing the current line.

DESCRIPTION If you are positioned on a line that has a length of 0, CURRENT_LINE
returns a null string. If you are positioned at the end of the buffer,
CURRENT_LINE returns a null string and also signals a warning.

SIGNALED
ERRORS

EXAMPLES

Using CURRENT_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. CURRENT_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

TPU$_NOEOBSTR

ERROR

ERROR

CURRENT _LINE takes no
parameters.

The CURRENT_LINE built-in must
be on the right-hand side of an
assignment statement.

WARNING You are not positioned in a buffer.

WARNING You are positioned at or beyond
the EOB (end-of-buffer) mark.

D my_cur_lin := CURRENT LINE

7-86

This assignment statement stores in the variable my _cur _lin the string
that represents the current line. The current line is the line in the current
buffer that contains the editing point.

VAXTPU Built-In Procedures
CURRENT_LINE

PROCEDURE user runoff line - -
IF LENGTH (CURRENT_LINE) < 2
THEN

user_runoff_line := O;
ELSE

IF CURRENT CHARACTER <> II II

THEN
user_runoff_line := 0;

ELSE
MOVE_HORIZONTAL (1);
IF INDEX

(
11 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!; 11

,

CURRENT_CHARACTER) = 0
THEN

user_runoff_line := 0;
ELSE

user_runoff_line := 1;
ENDIF;
MOVE HORIZONTAL (-1);

ENDIF;
ENDIF;
ENDPROCEDURE;

This procedure returns true if the current line has the format of a DSR
command (starts with a period followed by an alphabetic character, a
semicolon, or an exclamation point). If not, the procedure returns false.
The procedure assumes that the cursor was at the beginning of the line,
and moves it back to the beginning of the line when done.

7-87

VAXTPU Built-In Procedures
CURRENT_ OFFSET

CURRENT OFFSET

Returns an integer for the offset of the editing point within the current line.

FORMAT integer:= CURRENT_OFFSET

PARAMETERS None.

return value An integer that is the offset of the editing point within the current line.

DESCRIPTION The current offset is the number of positions a character is located from
the first character position in the current line (offset 0). In VAXTPU, the
leftmost character position is offset 0, and this offset is increased by 1
for each character position (including the TAB character) to the right.
VAXTPU numbers columns starting with the leftmost position on the
screen where a character could be placed, regardless of where the margin
is. This leftmost position is numbered 1.

7-88

Note: The current offset value is not the same as the position of the
cursor on the screen. See the CURRENT_COLUMN built-in if you
want to determine where the cursor is. For example, if you have
a line with a left margin of 10 and if the cursor is on the first
character in that line, then CURRENT_OFFSET returns O, while
CURRENT_COLUMN returns 10.

Using CURRENT_OFFSET may cause VAXTPU to insert padding
spaces or blank lines in the buffer. CURRENT_OFFSET causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

If you are using an interface with free cursor motion, when you move
beyond the end of a line CURRENT_OFFSET makes the current cursor
position the new end-of-line.

If the current offset equals the length of the current line, you are
positioned at the end of the line.

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

VAXTPU Built-In Procedures
CURRENT_OFFSET

ERROR

ERROR

CURRENT_OFFSET takes no
parameters.

The CURRENT_OFFSET built-in
must be on the right-hand side of
an assignment statement.

WARNING You are not positioned in a buffer.

D rny_cur_off := CURRENT OFFSET

This assignment statement stores the integer that is the offset position of
the current character in the variable my _cur _off.

I PROCEDURE user delete

IF CURRENT OFFSET = 0
THEN

APPEND_LINE;
ELSE

ERASE CHARACTER (-1);
ENDIF;

ENDPROCEDURE;

This procedure uses the built-in procedure CURRENT_OFFSET to
determine whether the editing position is at the beginning of a line. (For
more information on the difference between the editing position and the
current cursor position, see Chapter 6.) If the position is at the beginning,
the procedure appends the current line to the previous line; otherwise, it
deletes the previous character. Compare this procedure with the procedure
used as an example for the built-in procedure APPEND_LINE.

7-89

VAXTPU Built-In Procedures
CURRENT_ROW

CURRENT ROW

Returns an integer that is the screen line on which the cursor is located.

FORMAT integer == CURRENT_ROW

PARAMETERS None.

return value An integer representing the screen line on which the cursor is located.

DESCRIPTION The current row is the screen line on which the cursor is located. The
screen lines are numbered from 1 at the top of the screen to the maxi.mum
number of lines available on the terminal. You can get the value of

SIGNALED
ERRORS

EXAMPLES

the current row by using the built-in procedure GET_INFO (SCREEN,
"current_row").

When used in a procedure, CURRENT_ROW does not necessarily return
the position where the cursor has been placed by other statements in
the procedure. The reason that the value returned by CURRENT_ROW
may not be the current value is that VAXTPU generally does not update
the screen until all statements in a procedure are executed. If you want
the cursor position to reflect the actual editing location, put an UPDATE
statement in your procedure immediately before any statements containing
CURRENT_ROW, as follows:

UPDATE (CURRENT_WINDOW);

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY

ERROR

ERROR

The CURRENT_ROW built-in
must be on the right-hand side of
an assignment statement.

CURRENT _ROW takes no
parameters.

D my_cur_row := CURRENT ROW

7-90

This assignment statement stores in the variable my _cur _row the integer
that is the screen line number on which the cursor is located.

VAXTPU Built-In Procedures
CURRENT_ROW

~ PROCEDURE user_go_up
IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_top")
THEN

SCROLL (CURRENT_WINDOW, -1);
ELSE

CURSOR VERTICAL (-1);
ENDIF;

ENDPROCEDURE;

! PROCEDURE user_go_down
IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_bottom")
THEN

SCROLL (CURRENT_WINDOW, 1);
ELSE

CURSOR VERTICAL (1);
ENDIF; -

ENDPROCEDURE;

These procedures cause the cursor to move up or down the screen. Because
CURSOR_ VERTICAL crosses window boundaries, you must use the built­
in procedure SCROLL to keep the cursor motion within a single window
if you are using free cursor motion. (See CURSOR_HORIZONTAL and
CURSOR_ VERTICAL.) If the movement of the cursor would take it
outside the window, the preceding procedures scroll text into the window
to keep the cursor visible. You can bind these procedures to a key so that
the cursor motion can be accomplished with a single keystroke.

7-91

VAXTPU Built-In Procedures
CURRENT_ WINDOW

CURRENT WINDOW

Returns the window in which the cursor is visible.

FORMAT window== CURRENT_WINDOW

PARAMETERS None.

return value The window in which the cursor is visible.

DESCRIPTION The current window is the window on which you have most recently
performed one of the following operations:

SIGNALED
ERRORS

EXAMPLES

• Selection using the POSITION built-in

• Mapping to the screen using the MAP built-in

• Adjustment using the ADJUST_ WINDOW built-in

The current window contains the cursor at the screen coordinates current_
row and current_column. The current buffer is not necessarily associated
with the current window.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_WINDNOTMAPPED

ERROR CURRENT _WINDOW takes no
parameters.

ERROR The CURRENT _WINDOW built-in
must be on the right-hand side of
an assignment statement.

WARNING No windows are mapped to the
screen.

D my_cur_win := CURRENT WINDOW

7-92

This assignment statement stores the window that holds the cursor in the
variable my _cur _win.

PROCEDURE user next screen - -
LOCAL how_much_scroll;

VAXTPU Built-In Procedures
CURRENT_ WINDOW

how_much_scroll := GET_INFO (CURRENT_WINDOW, "visible_length");

SCROLL (CURRENT_WINDOW, how_much_scroll);
ENDPROCEDURE;

This procedure determines the length of the current window and then uses
that value as a parameter for the built-in procedure SCROLL.

7-93

VAXTPU Built-In Procedures
CURSOR_ HORIZONTAL

CURSOR HORIZONTAL

Moves the cursor position across the screen and optionally returns the cursor
movement status.

FORMAT I integer2 ==I CURSOR_HORIZONTAL (integert)

PARAMETER integer1
The signed plus or minus integer value that specifies the number of screen
columns to move the cursor position. A positive value directs VAXTPU to
move the cursor to the right; a negative value directs VAXTPU to move
the cursor to the left. The value 0 causes VAXTPU merely to synchronize
the active editing point with the cursor position.

return value An integer representing the number of columns the cursor moved. If
VAXTPU cannot move the cursor as many columns as specified by integerl,
VAXTPU moves the cursor as many columns as possible. VAXTPU allows
the return value to be negative. This notation is reserved for future
versions of VAXTPU. A negative return value does not denote that the
cursor moved to the left. Rather, the integer shows the number of spaces
that the cursor moved right or left. If the cursor did not move, integer2
has the value 0. If the CURSOR_HORIZONTAL built-in produces an
error, the value of integer2 is indeterminate.

DESCRIPTION The CURSOR_HORIZONTAL built-in procedure can be used to provide
free cursor movement in a horizontal direction. Free cursor movement
means that the cursor is not tied to text, but can move across all available
columns in a screen line.

7-94

If you move before the beginning of a line, after the end of a line, in the
middle of a tab, or beyond the end-of-file mark, other built-ins may cause
padding lines or spaces to be added to the buffer.

If you use the CURSOR_HORIZONTAL built-in within a procedure, screen
updating occurs as follows:

• When you execute a built-in that modifies the buffer or the editing
point before you issue the call to CURSOR_HORIZONTAL, the screen
is updated before CURSOR_HORIZONTAL is executed. This action
ensures that the horizontal movement of the cursor starts at the
correct character position.

• Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_HORIZONTAL does not move the cursor beyond the left or right
edge of the window in which it is located. You cannot move the cursor
outside the bounds of a window.

VAXTPU Built-In Procedures
CURSOR_HORIZONTAL

CURSOR_HORIZONTAL has no effect if you use any input device other
than a video terminal supported by VAXTPU.

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

D int x := CURSOR HORIZONTAL (1)

ERROR

ERROR

ERROR

CURSOR_HORIZONTAL requires
one parameter.

CURSOR_HORIZONTAL accepts
only one parameter.

One or more of the specified
parameters have the wrong type.

This statement moves the cursor position one screen column to the right.

PROCEDURE user_free_cursor_right
move_right :=CURSOR HORIZONTAL (l);

ENDPROCEDURE;

PROCEDURE user free cursor left - - -
move_left := CURSOR_HORIZONTAL (-1);

ENDPROCEDURE;

These procedures provide for free cursor motion to the right and to the
left. These procedures can be bound to keys (for example, the arrow keys)
so that the movement can be accomplished with a single keystroke.

7-95

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

CURSOR VERTICAL

FORMAT

PARAMETER

return value

Moves the cursor position up or down the screen and optionally returns the
cursor movement status.

(integer2 ::) CURSOR_ VERTICAL (integer1)

integer1
The signed integer value that specifies how many screen lines to move the
cursor position. A positive value for integer 1 moves the cursor position
down. A negative integer moves the cursor position up.

An integer representing the number of rows that the cursor moved up or
down. IfVAXTPU could not move the cursor as many rows as specified by
integer 1, VAXTPU moves the cursor as many rows as possible.

If CROSS_ WINDOW _BOUNDS is set to ON, CURSOR_ VERTICAL may
position the cursor to another window. In this case, CURSOR_ VERTICAL
returns the negative of the number of rows the cursor moved. A negative
return value does not denote that the cursor moved upward.

If the cursor did not move, integer2 has the value 0. If the CURSOR_
VERTICAL built-in produced an error, the value of integer2 is
indeterminate.

DESCRIPTION CURSOR_ VERTICAL can be used to provide free cursor movement in a
vertical direction. Free cursor movement means that the cursor is not tied
to text, but that it can move up and down to all lines on the screen that
can be edited, whether or not there is text at that column in the new line.

7-96

The cursor does not move beyond the top or the bottom edges of the screen.
However, CURSOR_ VERTICAL can cross window boundaries, depending
upon the current setting of the CROSS_ WINDOW _BOUNDS flag. See
SET (CROSS_WINDOW_BOUNDS) for information on how to set this flag.
(Use the POSITION built-in to move the cursor to a different window on
the screen.)

When CROSS_WINDOW_BOUNDS is set to ON, CURSOR_ VERTICAL
can move the cursor position to a new window. The new window in which
the cursor is positioned becomes the current window. The column position
of the cursor remains unchanged unless vertical movement would position
the cursor outside the bounds of a window narrower than the previous
window. In this instance, the cursor moves to the left until it is positioned
within the right boundary of the narrower window.

When CROSS_ WINDOW _BOUNDS is set to OFF, CURSOR_ VERTICAL
does not move the cursor outside the current window. If the SET
(SCROLLING) built-in has been used to set scrolling margins, CURSOR_
VERTICAL also attempts to keep the cursor within the scroll margins.

)

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

CURSOR_ VERTICAL positions the cursor only in screen areas in which
editing can occur. For example, CURSOR_ VERTICAL does not position
the cursor on the status line of a window, in the prompt area, or in an
area of the screen that is not part of a window. The blank portion of a
segmented window is not considered part of a window for this purpose.

If you use CURSOR_ VERTICAL within a procedure, screen updating
occurs as follows:

• When you execute a built-in that modifies the buffer or the current
character position before you issue the call to CURSOR_ VERTICAL,
the screen is updated before CURSOR_ VERTICAL is executed. This
action ensures that the vertical movement of the cursor starts at the
correct character position.

• Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_ VERTICAL has no effect if you use an input device other than a
video terminal supported by VAXTPU.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

CURSOR_ VERTICAL requires at
least one parameter.

CURSOR_ VERTICAL accepts at
most one parameter.

You did not specify an integer as
the parameter.

D int_y := CURSOR VERTICAL (5)

This statement moves the cursor position five lines toward the bottom of
the screen.

I ! Free cursor motion procedures

PROCEDURE user_free_cursor_up

IF GET_INFO (CURRENT_WINDOW, "CURRENT_ROW") =
GET_INFO (CURRENT_WINDOW, "VISIBLE_TOP")

THEN
SCROLL (CURRENT_WINDOW, -1);

ELSE
left_y :=CURSOR VERTICAL (-1);

ENDIF;
ENDPROCEDURE;

7-97

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

m PROCEDURE user_free_cursor_down

7-98

IF GET_INFO (CURRENT_WINDOW, "CURRENT_ROW") =
GET_INFO (CURRENT_WINDOW, "VISIBLE_BOTTOM")

THEN
SCROLL (CURRENT_WINDOW, 1);

ELSE
right_x :=CURSOR VERTICAL (1);

ENDIF;
ENDPROCEDURE;

These procedures provide for free cursor motion up and down the screen.
These procedures can be bound to keys (for example, the arrow keys) so
that the movement can be accomplished with a single keystroke.

These examples work regardless of the setting of CROSS_ WINDOW_
BOUNDS, because the built-in procedure SCROLL keeps the cursor
motion within a single window.

VAXTPU Built-In Procedures
DEBUG_LINE

DEBUG LINE

Returns the line number of the current breakpoint.

FORMAT integer := DEBUG_LINE

PARAMETERS None.

return value An integer representing the line number of the current breakpoint.

DESCRIPTION The DEBUG_LINE built-in procedure returns the line number of the
current breakpoint. Use DEBUG_LINE when writing your own VAXTPU
debugger.

SIGNALED
ERROR

EXAMPLE

Digital recommends that you use the debugger provided in
SYS$SHARE:TPU$DEBUG.TPU.

TPU$_NEEDTOASSIGN ERROR The DEBUG_LINE built-in must
appear on the right-hand side of
an assignment statement.

the line :=GET INFO (DEBUG, "line number");
IF the line = 0- -

THEN the line := DEBUG_LINE;
ENDIF;

This code fragment first uses GET_INFO to request the line number of
the breakpoint in the current procedure. If the line number is 0, meaning
that the breakpoint is not in a procedure, the code uses DEBUG_LINE to
determine the breakpoint's line number relative to the buffer.

7-99

VAXTPU Built-In Procedures
DEFINE KEY

DEFINE KEY

FORMAT

Associates executable VAXTPU code with a key or a combination of keys.

DEFINE_KEY (I :::m l, key-name
range
string1

f ,string2 f ,string3J J)

PARAMETERS buffer

7-100

A buffer that contains the VAXTPU statements to be associated with a
key.

learn
A learn sequence that specifies the executable code associated with a key.

program
A program that contains the executable code to be associated with a key.

range
A range that contains the VAXTPU statements to be associated with a key.

string1
A string that specifies the VAXTPU statements to be associated with a key.

key-name
A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VT300, VT200, and VTlOO series
of keyboards. You can also display all the VAXTPU keywords with the
built-in procedure SHOW (KEYWORDS).

See the Description section of this built-in procedure for information on
keys that you cannot define.

To define a key for which there is no VAXTPU key name, use the built-in
procedure KEY_NAME to create your own key name for the key. For
example, KEY_NAME (11A11

, SHIFT_KEY) creates a key name for the
combination of PFl, the default shift key for VAXTPU, and the keyboard
character A. For more information, see the description of the built-in
procedure KEY_NAME.

string2
An optional string associated with a key that you define. The string is
treated as a comment that can be retrieved with the built-in procedure
LOOKUP _KEY. You might want to use the comment if you are creating a
help procedure for keys that you have defined.

VAXTPU Built-In Procedures
DEFINE_KEY

string3
A key map or a key map list in which the key is to be defined. If a key
map list is specified, the key is defined in the first key map in the key map
list. If neither a key map nor a key map list is specified, the key is defined
in the first key map in the key map list bound to the current buffer. See
the descriptions of the built-in procedures CREATE_KEY _MAP, CREATE_
KEY_MAP _LIST, and SET (KEY_MAP _LIST) for more information on key
maps and key map lists.

DESCRIPTION The built-in procedure DEFINE_KEY compiles the first parameter if it is
a string, buffer, or range.

If you use DEFINE_KEY to change the definition of a key that was
previously defined, VAXTPU does not save the previous definition.

You can define all the keys on the VT300, VT200, and VTlOO keyboards
and keypads with the following exceptions:

• The COMPOSE CHARACTER key on VT300 and VT200 keyboards

• The SHIFT keys

There are some keys that you can define but that Digital strongly
recommends you avoid defining. VAXTPU does not signal an error
when you use them as keyword parameters. However, in some cases
the definitions you assign to these key combinations are not executed
unless you set your terminal in special ways at the DCL level:

• CTRUC, CTRUO, CTRL/X, and F6 - To execute programs that
you bind to these keys, you must first enter the DCL command SET
TERMINAUPASTHRU.

• CTRL!r, CTRUY - To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAUPASTHRU
and/or the DCL command SET NOCONTROL.

• CTRUS, CTRUQ - To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAUNOTTSYNC.

• The PFl key - This is the default shift key for the editor. You cannot
define PFl unless you use the built-in procedure SET (SHIFT_KEY,
keyword) to define a different key as the shift key for the editor.

• The ESCAPE key

• The keys Fl through F5

Digital recommends that you do not use the special terminal settings
mentioned above. The settings may cause unpredictable results if you do
not understand all the implications of changing the de(ault settings.

Whenever you extend EVE by writing a procedure that can be bound to
a key, the procedure must return true and false as needed to indicate
whether execution of the procedure completed successfully. EVE's
REPEAT command relies on this return value to determine whether to
halt repetition of a command, a procedure bound to a key, or a learn
sequence.

7-101

VAXTPU Built-In Procedures
DEFINE_ KEV

SIGNALED
ERRORS

EXAMPLES

TPU$_NOTDEFINABLE

TPU$_RECURLEARN

TPU$_NOKEYMAP

TPU$_NOKEYMAPLIST

TPU$_KEYMAPNTFND

TPU$_EMPTYKMLIST

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_COMPILEFAIL

TPU$_UNKKEYWORD

TPU$_BADKEY

TPU$_KEYSUPERSEDED

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

WARNING

ERROR

ERROR

INFORMATIONAL

II DEFINE KEY ("POSITION (main_ window)", CTRL_B_KEY)

Second argument is not
a valid reference to a
key.

This key definition was
used as a part of a learn
sequence. You cannot
use it in this context.

Fourth argument is not
a defined key map.

Fourth argument is not
a defined key map list.

The key map listed in
the fourth argument is
not found.

The key map list
specified in the fourth
argument contains no
key maps.

Too few arguments
passed to the DEFINE_
KEY built-in.

Too many arguments
passed to the DEFINE_
KEY built-in.

Wrong type of data sent
to the DEFINE_KEY
built-in.

Compilation aborted.

An unknown keyword
has been used as an
argument.

An unknown keyword
has been used as an
argument.

Key definition
superseded.

This statement associates the VAXTPU statement POSITION (main_
window) with the key combination CTRUB. Note that you must use
quotation marks around the VAXTPU statement.

7-102

VAXTPU Built-In Procedures
DEFINE_KEY

m DEFINE KEY (main_buffer, KEY_NAME (PF4, SHIFT_KEY), "mainbuf")

This statement causes VAXTPU to compile the main buffer (containing
VAXTPU statements). If there are no errors in the compilation, VAXTPU
binds the executable code to the combination of the editor's shift key (PFl
by default) and PF4 on the keypad. The final string in the statement
"mainbuf' is a comment that is associated with the key combination.

I] DEFINE KEY ('COPY_TEXT ("Extendable") ', KEY_NAME ("z", SHIFT_KEY))

This statement causes VAXTPU to make a copy of the word "Extendable"
at the current character location in the current buffer when you press
the key combination PFl (VAXTPU's default shift key) and z. Notice that
the inner set of quotation marks must be of a different kind from the
outer set in the first parameter. Also notice that you must place quotation
marks around the keyboard character that you use in combination with
the editor's shift key.

I PROCEDURE user_define_key

def := READ_LINE ("Definition: ");
key := READ_LINE ("Press key to define.",1);

IF LENGTH (key) > 0
THEN

key .- KEY NAME (key)
ELSE

key := LAST_KEY;
ENDIF;

DEFINE KEY (def,key);
ENDPROCEDURE;

This procedure prompts the user for the VAXTPU statements to be bound
to the key that the user specifies.

~ PROCEDURE user_change_mode

Toggle mode between insert and overstrike

IF GET_INFO (CURRENT_BUFFER, "mode") = OVERSTRIKE
THEN

SET (INSERT, CURRENT_BUFFER);
ELSE

SET (OVERSTRIKE, CURRENT_BUFFER);
ENDIF;

ENDPROCEDURE;

The following statement binds this procedure to the
key combination CTRL/A. This emulates the VMS key binding
that toggles between insert and overstrike for text entry
in cormnand line editing.

DEFINE KEY ("user_change_mode", CTRL_A_KEY);

This procedure changes the mode of text entry from insert to overstrike, or
from overstrike to insert.

[fl DEFINE KEY ('MESSAGE ("Hello VAXTPU user")', CTRL_A_KEY, "Greeting", "TPU$KEY_MAP"

This example defines a key in a key map. The DEFINE_KEY statement
defines CTRUA in the key map TPU$KEY_MAP such that VAXTPU
displays the message 11 Hello VAXTPU user" when CTRUA is pressed.

7-103

VAXTPU Built-In Procedures
DEFINE_KEV

i DEFINE KEY ("POSITION (MESSAGE_WINDOW)", F20,"", "movement_map")

7-104

This example uses a key map ("movement_map") but does not include a
comment in the optional third parameter. Note the null string after the
keyword F20 in the second parameter.

VAXTPU Built-In Procedures
DEFINE_ WIDGET _CLASS

DEFINE WIDGET CLASS

FORMAT

Defines a widget class and optional creation routine for later use in creating
widgets of that class using the DECwindows intrinsics or the XUI Toolkit
low-level creation routines.

integer:= DEFINE_W/DGET_CLASS (class_name

ff, creation_routine_name

ff, creation_routine_image_name 11)

PARAMETERS class name
A stringthat is the name of a universal symbol pointing to the desired
widget class record. A universal symbol is a symbol in a sharable image
that can be referred to in an image other than the one in which the symbol
is defined.

creation routine name
A string that is the na~ of the low-level widget creation routine for this
widget class. Specify the case of the string correctly. To determine the
correct case of the string, consult the documentation for the widget whose
class you are defining. The current version of VAXTPU, which is bundled
with the VMS operating system, ignores the case of the string. However,
future versions ofVAXTPU may treat the string as case sensitive.

If you do not specify this parameter, VAXTPU uses the X Toolkit CREATE
WIDGET routine to create the widget instead of using a low-level widget
creation routine. The routine must have the same calling sequence as the
XUI Toolkit low-level widget creation routines.

In the current version ofVAXTPU, you must specify the VMS binding of
the creation routine name.

creation_routine_image_name
A string that is the name of the shareable image in which the class
record can be found. If you specify a low-level creation routine, DEFINE_
WIDGET_CLASS also looks for the routine in the program image. If
you do not specify an image, VAXTPU assumes the widget is defined in
SYS$LIBRARY:DECW$DWTLIBSHR.EXE.

return value An integer used by the CREATE_ WIDGET built-in to identify the class of
widget to be created.

DESCRIPTION Returns a class integer, which you use to specify the class of a widget
when you create it.

7-105

VAXTPU Built-In Procedures
DEFINE_ WIDGET_ CLASS

SIGNALED
ERRORS

EXAMPLE

7-106

Defining a class that is already defined returns the existing class integer.
Defining a new class also defines the widget creation routine as the
second parameter, if specified, or the X toolkit CREATE_ WIDGET routine.
VAXTPU searches for a new class record in the third parameter, if
specified, or in SYS$LIBRARY:DECW$DWTLIBSHR.EXE.

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by
DEFINE_WIDGET_CLASS.

TPU$_NEEDTOASSIGN ERROR DEFINE_WIDGET_CLASS must
return a value.

TPU$_ TOOFEW ERROR Too few arguments passed to
DEFINE_ WIDGET _CLASS.

TPU$_ TOOMANY ERROR Too many arguments passed to
DEFINE_WIDGET_CLASS .

TPU$_REQUIRESDECW ERROR You can use DEFINE_WIDGET _
CLASS only if you are using
DECwindows VAXTPU.

TPU$_SYSERROR ERROR Could not find class record or
creation routine in shareable
image.

For a sample procedure using the DEFINE_WIDGET_CLASS built-in, see
Example B-2.

DELETE

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
DELETE

Removes VAXTPU structures from your editing context. When you delete a
structure (for example, a range) all variables that refer to that structure are
reset to unspecified. If the deleted structure had any associated resources,
these resources are returned to the editor. When a buffer is deleted, the
associated journal file (if any) is closed and deleted.

DELETE (

array

array
buffer
integer
keyword
learn
marker
pattern
process
program
range
string
unspecified
widget
window

)

The array you want to delete. The memory used by the array is freed for
later use. If some other data structure, such as a pattern, is referenced
only in the array, then that data structure is deleted when the array is
deleted.

buffer
The buffer you want to delete. Any ranges or markers that point to this
buffer, any subprocess that is associated with this buffer, the memory for
the buffer control structure, the pages for storing text, and the memory
for ranges and markers associated with the buffer are deleted also. If
the buffer is associated with a window that is mapped to the screen, the
window is unmapped. Any associated buffer change journal file is also
closed and deleted.

integer
The integer to delete. Integers use no internal structures or resources so
deleting a variable of type integer simply changes that variable to type
unspecified.

keyword
The keyword to delete. Keywords use no internal structures or resources
so deleting a variable of type keyword simply assigns to that variable the
type unspecified.

7-107

VAXTPU Built-In Procedures
DELETE

7-108

learn
The learn sequence you wish to delete. The memory used by the learn
sequence is freed for later use.

marker
The marker you want to delete. The memory for the marker control
structure is deleted also.

pattern
The pattern you wish to delete. The memory used by the pattern is freed
for later use. If the pattern includes a reference to another pattern and
there are no other references to that pattern, then that pattern is deleted
as well.

process
The process you want to delete. The memory for the process control
structure and the subprocess is deleted also.

program
The program you want to delete. The memory for the program control
structure and the memory for the program code are deleted also.

range
The range that you want to delete. The memory for the range control
structure is deleted also. The text in a range does not belong to the range.
Rather, it belongs to the buffer in which it is located. A range is merely
a way of manipulating sections of text within a buffer. When you delete
a range, the text delimited by the range is not deleted. See the built-in
procedure ERASE for a description of how to remove the text in a range.

string
The string you wish to delete. The memory used by the string is freed for
later use.

unspecified
Deleting a variable of type unspecified is allowed but does nothing.

widget
The widget to be deleted. When you use the DELETE (widget) built­
in, all variables and array elements that refer to the widget are set to
unspecified. If an array element is indexed by the deleted widget, the
array element is deleted as well.

window
The window you want to delete. Along with the window, the memory for
the window control structure and the record history associated with the
window are deleted. If you delete a window that is mapped to the screen,
VAXTPU unmaps the window before deleting it. The screen appears just
as it does when you use the built-in procedure UNMAP.

~

I
I

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
DELETE

Depending upon how many variables are referencing an entity, or how
many other entities are associated with the entity you are deleting,
processing the built-in procedure DELETE can be time consuming.
DELETE cannot be terminated by a CTRL/C.

Any variables that reference the deleted entity are set to unspecified
and all other entities that are associated with the deleted entity are also
deleted. Use the built-in procedure DELETE with caution.

TPU$_ TOOFEW ERROR DELETE requires one argument.

TPU$_ TOOMANY ERROR DELETE accepts only one
argument.

TPU$_BADDELETE ERROR You attempted to delete a
constant.

TPU$_DELETEFAIL WARNING DELETE could not delete the
process.

TPU$_1NVBUFDELETE WARNING You cannot delete a permanent
buffer.

D DELETE (main_buffer)

This statement deletes the main buffer and any associated resources that
VAXTPU allocated for the main buffer. As a result of this command, the
SHOW (BUFFERS) command does not list MAIN_BUFFER as one of the
buffers in your editing context.

PROCEDURE user delete extra - -

WRITE FILE (extra buf);
DELETE (extra_window);
DELETE (extra_buf);

Return the 11 lines from extra window to the main window
ADJUST_WINDOW (main_window, -11, 0);

ENDPROCEDURE;

This procedure writes the contents of EXTRA_BUF to a file (because you
do not specify a file name, the associated file for the buffer is used) and
then removes the extra window and buffer from your editing context. You
must have previously created these structures and added them to your
editing context in order for this procedure to execute successfully.

7-109

VAXTPU Built-In Procedures
DELETE

I PROCEDURE sample_create_and_delete

LOCAL example widget,
example-widget name,
example=hierarchy;

example hierarchy :=SET (DRM HIERARCHY, "mynode$dua0: [smith]example.uid");
example-widget name := "EXAMPLE BOX";
example-widget-:= CREATE WIDGET-(example widget name,

- - example-hierarchy, SCREEN,
"user_callback_dispatch_routine");

DELETE (example_widget);

ENDPROCEDURE;

7-110

This code fragment creates a modal dialog box widget and later deletes
it. For purposes of this example, the procedure user _callback_dispatch_
routine is assumed to be a user-written procedure that handles widget
callbacks. For a sample DECwindows User Interface Language (UIL) file
to be used with VAXTPU code creating a modal dialog box widget, see the
example in the description of the CREATE_ WIDGET built-in.

EDIT

FORMAT

PARAMETERS

)

VAXTPU Built-In Procedures
EDIT

Modifies a string according to the keywords you specify. EDIT is similar
although not identical to the DCL lexical function F$EDIT. Differences between
the built-in procedure and the lexical function are noted in the Description
section.

{ ~:~e;~ } := EDIT ({ ::;~ } , keyword1 ff, ... J ff,keyword2J
string1 strmg2

ff,keyword3J)

buffer2
The buffer in which you want VAXTPU to edit text. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a buffer for the first
parameter.

range2
The range in which you want VAXTPU to edit text. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a range for the first
parameter.

string2
The string you want to modify. If you specify a return value, the returned
string consists of the string you specify for the first parameter, modified
in the way you specify in the second and subsequent parameters. If you
specify IN_PLACE for the third parameter, EDIT makes the specified
change to the string specified in the first parameter. Note that if string2 is
a constant, IN_PLACE has no effect.

keyword1
A keyword specifying the editing operation you want to perform on the
string. Valid keywords and their meaning are as follows:

Keyword

COLLAPSE

COMPRESS

TRIM

TRIM_LEADING

TRIM_ TRAILING

LOWER

UPPER

INVERT

Meaning

Removes all spaces and tabs.

Replaces multiple spaces and tabs with a single space.

Removes leading and trailing spaces and tabs.

Removes leading spaces and tabs.

Removes trailing spaces and tabs.

Converts all uppercase characters to lowercase.

Converts all lowercase characters to uppercase.

Changes the current case of the specified characters;
uppercase characters become lowercase and lowercase
characters become uppercase.

7-111

VAXTPU Built-In Procedures
EDIT

return values

keyword2
A keyword specifying whether VAXTPU quote characters are used as
quote characters or as regular text. The valid keywords are ON or OFF.
The default is ON.

keyword3
A keyword indicating where VAXTPU is to make the indicated change.
The valid keywords and their meanings are as follows:

Keyword

IN_PLACE

NOT _IN_PLACE

Meaning

Makes the indicated change in place. This is the default.

Leaves the specified string unchanged and returns a string
that is the result of the specified editing. You cannot use
NOT _IN_PLACE if the first parameter is specified as a range
or buffer. To use NOT _IN_PLACE, you must specify a return
value for EDIT.

Note that this keyword is ignored if string2 is a string constant. EDIT
never edits string constants in place. It does return the edited string.

buffer1
A variable of type buffer pointing to the buffer containing the modified
text, if you specify a buffer for the first parameter. The variable
"returned_buffer" points to the same buffer pointed to by the buffer
variable specified as the first parameter.

range1
A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified
as a parameter, but they are two separate ranges. If you subsequently
change or delete one of the ranges, this has no effect on the other range.

string1
A string containing the modified text, when you specify a string for the
first parameter. EDIT can return a string even if you specify IN_PLACE.

DESCRIPTION VAXTPU modifies the first parameter of the EDIT built-in in place. EDIT
does not modify a literal string.

7-112

By default, EDIT does not modify quoted text that occurs within a string.
For example, the following code does not change the case of WELL:

string to change : = 'HE SANG "WELL'";
edit (strTng_to_change, LOWER);

The variable string_to_change has the value he sang 11 WELL 11
•

If you specify mote than one of the TRIM keywords (TRIM, TRIM_
LEADING, TRIM_TRAILING), all of the TRIM operations you specify
are performed.

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
EDIT

If you specify more than one of the case conversion keywords (UPPER,
LOWER, INVERT), the last keyword that you specify determines how the
characters in the string are modified.

If you specify both of the quote recognition keywords (ON, OFF), the last
keyword you specify determines whether or not EDIT modifies quoted text.

If you specify no keywords, EDIT does nothing to the passed string.

You can disable the recognition of quotation marks and apostrophes as
VAXTPU quote characters by using the keyword OFF as a parameter for
EDIT. When you use the keyword OFF, VAXTPU preserves any quotation
marks and apostrophes in the edited text and performs the editing tasks
you specify on the text within the quotation marks and apostrophes.
OFF may appear anywhere in the keyword list. It need not be the final
parameter.

If the string you specify has opening quotation marks but not closing
quotation marks, the status TPU$_MISSINGQUOTE is returned. All text
starting at the unclosed opening quotation mark and continuing to the
end of the string is considered to be part of the quoted string and is not
modified.

EDIT is similar to the DCL lexical function F$EDIT. However, you should
note the following differences:

• EDIT modifies the characters in place while F$EDIT returns a result.

• EDIT takes keywords as parameters while F$EDIT requires that the
edit commands be specified by a string.

TPU$_MISSINGQUOTE ERROR Character string is missing
terminating quotation marks.

TPU$_ TOOFEW ERROR EDIT requires at least one
parameter.

TPU$_ TOOMANY ERROR You supplied keywords that are
duplicative or contradictory.

TPU$_ARGMISMATCH ERROR One of the parameters to EDIT is
of the wrong data type.

TPU$_1NVPARAM ERROR One of the parameters to EDIT is
of the wrong data type.

TPU$_BADKEY WARNING You gave the wrong keyword to
EDIT.

D pn := "PRODUCT NAME";
EDIT (pn, LOWER);
MESSAGE (pn);

These statements edit the string 11 PRODUCT NAME 11 by changing it to
lowercase, and display the edited string in the message window.

7-113

VAXTPU Built-In Procedures
EDIT

I PROCEDURE user_edit_string (input_string)

is := input_string;

EDIT (is, LOWER);
MESSAGE (is);

ENDPROCEDURE;

This procedure shows a generalized way of changing any input string to
lowercase.

After compiling the preceding procedure, you can direct VAXTPU to print
the lowercase word "zephyr'' in the message area by entering the following
command:

user_edit_string ("ZEPHYR")

m returned value :=EDIT (the_string, COLLAPSE, OFF, NOT_IN_PLACE);

7-114

This statement removes all spaces and tabs from the string pointed to by
the_string and does not treat quotation marks or apostrophes as quote
characters. Returns the modified string in the variable returned_value,
but does not change the string in the variable the_string.

END OF

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
END_OF

Returns a marker that points to the last character position in a buffer or a
range.

marker := END_ OF ({ buffer })
range

buffer
The buffer whose last character position you want to mark.

range
The range whose last character position you want to mark.

return value A marker pointing to the last character position in a buffer or range.

DESCRIPTION If you use the marker returned by the END_OF built-in as a parameter for
the built-in procedure POSITION, the editing point moves to this marker.

SIGNALED
ERRORS

EXAMPLES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

END_OF must appear in the
right-hand side of an assignment
statement.

END_OF requires one argument.

END_OF accepts only one
argument.

You passed something other than
a range or a buffer to END_OF.

D the end : = END OF (CURRENT_BUFFER)

This assignment statement stores the last position in the current buffer in
the variable the_end.

I POSITION (END_OF (delete_range))

This statement uses two built-in procedures to move your current
character position to the end of delete_range. If delete_range is in a visible
buffer in which the cursor is located, the cursor position also moves to the
end of delete_range.

7-115

VAXTPU Built-In Procedures
END_OF

m PROCEDURE user_paste

LOCAL paste_text;

IF (BEGINNING_OF (paste_buffer) <>END OF (paste_buffer))
THEN

COPY TEXT (paste_buffer);
ENDIF;

ENDPROCEDURE;

7-116

This procedure implements a simple INSERT HERE function. The
variable paste_buffer points to a buffer that holds previously cut text.

ERASE

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
ERASE

Removes the contents of the range or buffer that you specify.

ERASE ({ buffer })
range

buffer
The buffer whose contents you want to remove.

range
The range whose contents you want to remove.

DESCRIPTION When you erase a buffer, the contents of the buffer are removed. However,
the buffer structure still remains a part of your editing context and the
editing point remains in the buffer even if you remove the contents of

SIGNALED
ERRORS

the buffer. The space that was occupied by the contents of the buffer is
returned to the system and is available for reuse. Only the end-of-buffer
line remains.

When you erase a range, the contents of the range are removed from the
buffer. The range structure is still a part of your editing context. You can
use the range structure later in your editing session to delimit an area of
text within a buffer.

Note that text does not belong to a range; it belongs to a buffer. Ranges
are merely a way of manipulating portions of text within a buffer. For
more information on ranges, see Chapter 2.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_NOTMODIFIABLE

ERROR

ERROR

ERROR

ERASE requires one argument.

ERASE accepts only one
argument.

The argument to ERASE is of the
wrong type.

WARNING You cannot erase text in an
unmodifiable buffer.

7-117

VAXTPU Built-In Procedures
ERASE

EXAMPLES
I ERASE {main_buffer)

This statement erases all the text in the buffer referenced by main_buffer.
Since the buffer still exists, you can select the buffer using the POSITION
built-in or map the buffer to a window. The procedure simply removes all
text from the buffer. All markers in the buffer now mark the end of the
buffer.

PROCEDURE user remove crlfs - -
LOCAL crlf,

here,
er_ range;

crlf :=ASCII {13) +ASCII {10);
here :=MARK {NONE);
POSITION {BEGINNING_OF {CURRENT_BUFFER));

LOOP
cr_range := SEARCH_QUIETLY {crlf, FORWARD, EXACT);
EXITIF cr_range = O;
ERASE {cr_range);
POSITION {cr_range);

ENDLOOP;

POSITION {here);
ENDPROCEDURE;

This procedure gets rid of embedded carriage-return/line-feed pairs.

7-118

VAXTPU Built-In Procedures
ERASE_ CHARACTER

ERASE CHARACTER

Deletes the number of characters you specify and optionally returns a string
that represents the characters you deleted.

FORMAT (string :=I ERASE_CHARACTER (integer)

PARAMETER integer
An expression that evaluates to an integer, which may be signed. The
value indicates which characters, and how many of them, are to be erased.

return value A string representing·the characters deleted by ERASE_CHARACTER.

DESCRIPTION ERASE_CHARACTER deletes up to the specified number of characters
from the current line. If the argument to ERASE_CHARACTER is a
positive integer, ERASE_ CHARACTER deletes that many characters,
starting at the current position and continuing toward the end of the line.
If the argument is negative, ERASE_CHARACTER deletes characters

SIGNALED
ERRORS

to the left of the current character. It uses the absolute value of the
parameter to determine the number of characters to delete. ERASE_
CHARACTER stops deleting characters if it reaches the beginning or the
end of the line before deleting the specified number of characters.

Using ERASE_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the buffer. ERASE_ CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

ERASE_CHARACTER optionally returns a string containing the
characters that it deleted.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

ERASE_CHARACTER requires
one argument.

ERASE_CHARACTER accepts
only one argument.

The argument to ERASE_
CHARACTER must be an integer.

7-119

VAXTPU Built-In Procedures
ERASE_ CHARACTER

TPU$_NOCURRENTBUF

TPU$_NOTMODIFIABLE

WARNING There is no current buffer to erase
characters from.

WARNING You cannot modify an unmodifiable
buffer.

EXAMPLES

D take out chars := ERASE_CHARACTER (10)

This assignment statement removes the current character and the nine
characters following it and copies them in the string variable take_out_
chars. If there are only five characters following the current character,
then this statement deletes only the current character and the five
following it. It does not delete characters on the next line as well.

fl prev_chars := ERASE_CHARACTER (-5)

This assignment statement removes the five characters preceding the
current character and copies them in the string variable prev_chars.

I This procedure deletes the character to the
left of the current character. If at the
beginning of a line, it appends the current
line to the previous line.

PROCEDURE user_delete_key

LOCAL deleted_char;

deleted_char := ERASE_CHARACTER (-1);

IF deleted char = ""
THEN

APPEND_LINE;
ENDIF;

! nothing deleted

ENDPROCEDURE;

7-120

This procedure deletes the character to the left of the editing point. If
the editing point is at the beginning of a line, the procedure appends the
current line to the previous line.

ERASE LINE

VAXTPU Built-In Procedures
ERASE_LINE

Removes the current line from the current buffer.

ERASE_LINE optionally returns a string containing the text of the deleted line.

FORMAT (string == I ERASE_LINE

PARAMETERS None.

return value A string containing the text of the deleted line.

DESCRIPTION ERASE_LINE deletes the current line, optionally storing the deleted
text in a string before doing so. The current position moves to the first
character of the line following the deleted line.

SIGNALED
ERRORS

Using ERASE_LINE may cause VAXTPU to insert padding spaces or blank
lines in the buffer. ERASE_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end .of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

If the screen manager inserts padding spaces, ERASE_LINE deletes these
spaces when it deletes the line. The spaces appear in the returned string.
If the screen manager inserts padding lines into the buffer, ERASE_LINE
deletes only the last of these lines.

TPU$_ TOOMANY

TPU$_NOTMODIFIABLE

TPU$_NOCURRENTBUF

ERROR ERASE_LINE accepts no
arguments.

WARNING You cannot erase a line in an
unmodifiable buffer.

ERROR You must select a buffer before
erasing a line.

7-121

VAXTPU Built-In Procedures
ERASE_LINE

EXAMPLES
D ERASE LINE

This statement removes the current line from the current buffer.

~ take out line := ERASE LINE

7-122

This statement removes the current line from the current buffer and stores
the string of charact~rs representing that line in the variable take_out_
line.

VAXTPU Built-In Procedures
ERROR

ERROR

Returns a keyword for the latest error.

FORMAT keyword == ERROR

PARAMETERS None.

return value A keyword representing the most recent error.

DESCRIPTION The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Manual includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

SIGNALED
ERROR
EXAMPLE

The value returned by ERROR is only meaningful inside an error handler,
after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR behaves much like a built-in, it is actually a VAXTPU
language element.

ERROR is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

ERROR is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range;

ON ERROR
IF ERROR = TPU$_STRNOTFOUND
THEN

RETURN;
ELSE

MESSAGE (ERROR_TEXT);
ABORT;

ENDIF;
ENDON_ERROR;

7-123

VAXTPU Built-In Procedures
ERROR

blank_chars :=ASCII (32) +ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (BEGINNING_OF (blank_range));
ERASE (blank_range);

ENDLOOP;
ENDPROCEDURE;

7-124

This procedure uses the ERROR language element to determine the error
that invoked the error handler. If the error was that SEARCH could
not find the specified string, then the procedure returns normally. (For
more information on error handlers, see Chapter 3 and the descriptions of
ABORT and RETURN in this chapter.) If the error was something else,
then the text of the error message is written to the MESSAGES buffer and
any executing procedures are terminated.

\
I

\
\

VAXTPU Built-In Procedures
ERROR_LINE

ERROR LINE

FORMAT

PARAMETERS

return value

DESCRIPTION

SIGNALED
ERROR
EXAMPLE

Returns the line number for the latest error.

integer :: ERROR_LINE

None.

An integer representing the line number of the most recent error.

ERROR_LINE returns the line number at which the error or warning
occurs. If a procedure was compiled from a buffer or range, ERROR_LINE
returns the line number within the buffer. This may be different from the
line number within the procedure. If the procedure was compiled from a
string, ERROR_LINE returns 1.

The value returned by ERROR_LINE is only meaningful inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_LINE behaves much like a built-in, it is actually a
VAXTPU language element.

ERROR_LINE is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

ERROR is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range;

ON ERROR
MESSAGE (ERROR_TEXT);
MESSAGE ("Error on line"+ STR (ERROR_LINE));
RETURN;

ENDON_ERROR;

blank_chars :=ASCII (32) +ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

7-125

VAXTPU Built-In Procedures
ERROR_LINE

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (blank_range);
ERASE (blank_range);

ENDLOOP;
ENDPROCEDURE;

7-126

This procedure uses the ERROR_LINE built-in procedure to report the
line in which the error occurred.

VAXTPU Built-In Procedures
ERROR_ TEXT

ERROR TEXT

Returns the text of the latest error message.

FORMAT string == ERROR_TEXT

PARAMETERS None.

return value A string containing the text of the most recent error message.

DESCRIPTION ERROR_TEXT returns the text for the most recent error or warning.

SIGNALED
ERROR
EXAMPLE

The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Manual includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

The value returned by ERROR_TEXT is meaningful only inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_TEXT behaves much like a built-in, it is actually a
VAX.TPU language element.

ERROR_TEXT is evaluated for correct syntax at compile time. In contrast,
VAX.TPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

ERROR_TEXT is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range;

ON ERROR
MESSAGE (ERROR_TEXT);
MESSAGE ("Error on line"+ STR {ERROR_LINE));
RETURN;

ENDON_ERROR;

blank_chars :=ASCII {32) +ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

7-127

VAXTPU Built-In Procedures
ERROR_ TEXT

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (BEGINNING_OF (blank_range));
ERASE (blank_range);

ENDLOOP;
ENDPROCEDURE;

7-128

This procedure uses the built-in procedure ERROR_TEXT to report what
happened and where.

EXECUTE

FORMAT

Does one of the following:

VAXTPU Built-In Procedures
EXECUTE

• Executes programs that you have previously compiled

• Compiles and then executes any executable statements in a buffer, a
range, or a string

• Replays a learn sequence

• Executes a program bound to a key

buffer
k [, key-map-list-name]
ey-name , key-map-name

EXECUTE (kam)
program
range
string

PARAMETERS buffer
The buffer that you want to execute.

key-name
The VAXTPU key name for a key or a combination of keys. VAXTPU
locates and executes the definition bound to the key.

key-map-list-name
The name of the key map list in which the key is defined. This optional
parameter is only valid when the first parameter is a key name. If you
specify a key map list as the second parameter, VAXTPU uses the first
definition of the key specified by key _name found in any of the key maps
specified by the key map list. If you do not specify any value for the second
parameter, VAXTPU uses the first definition of the key specified by key_
name found in the key map list bound to the current buffer.

key-map-name
The name of the key map in which the key is defined. This optional
parameter is valid only when the first parameter is a key name. Use this
parameter only if the key specified by the first parameter is defined in
the key map specified as the second parameter. If you do not specify any
value for the second parameter, VAXTPU uses the first definition of the
key specified by key _name found in the key map list bound to the current
buffer.

learn
The learn sequence that you want to replay.

program
The program that you want to execute.

7-129

VAXTPU Built-In Procedures
EXECUTE

DESCRIPTION

SIGNALED
ERRORS

7-130

range
The range that you want to execute.

string
The string that you want to execute.

EXECUTE performs different actions depending upon the data type of the
parameter.

If the parameter is a string or the contents of a buffer or range, it must
contain only valid VAXTPU statements. Otherwise, you get an error
message and no action is taken. See the description of the built-in
procedure COMPILE for restrictions and other information on compiling
strings or the contents of a buffer or range. When you pass a string to
EXECUTE, the string cannot be longer than 256 characters.

Procedures are usually executed by entering the name of a compiled
procedure at the appropriate prompt from your editing interface, or by
calling the procedure from within another procedure. However, it is
possible to execute procedures with the built-in procedure EXECUTE if
the procedure returns a data type that is a valid parameter.

In the following example, the procedure test returns a program data type.
If you execute a buffer or range that contains the following code, VAXTPU
compiles and executes the procedure test, a program data type is returned,
the program is then used as the parameter for the built-in procedure
EXECUTE, and the string 11 abc 11 is written to the message area.

PROCEDURE test

After compiling the string 'MESSAGE ("abc")',
VAXTPU returns a program that is the compiled
form of the string.

RETURN COMPILE ('MESSAGE ("abc")');
ENDPROCEDURE;

! The built-in procedure EXECUTE executes the
! program returned by the procedure "test."

EXECUTE (test);

TPU$_NODEFINITION

TPU$_REPLAYWARNING

TPU$_REPLAYFAIL

TPU$_RECURLEARN

WARNING There is no definition for this key.

WARNING Inconsistency during the execution
of a learn sequence . . . sequence
is proceeding.

WARNING Inconsistency during the execution
of a learn sequence ... execution
stopped.

ERROR You cannot execute learn
sequences recursively.

)

EXAMPLES

TPU$_CONTROLC

TPU$_EXECUTEFAIL

TPU$_COMPILEFAIL

TPU$_ARGMISMATCH

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_NOTDEFINABLE

TPU$_NOCURRENTBUF

TPU$_NOKEYMAP

TPU$_NOTMODIFIABLE

TPU$_NODEFINITION

VAXTPU Built-In Procedures
EXECUTE

ERROR The execution of the command
terminated because you pressed
CTR UC.

WARNING Execution of the indicated item
has halted because it contains an
error.

WARNING Compilation aborted because of
syntax errors.

ERROR A parameter's data type is
unsupported.

ERROR Too few arguments.

ERROR Too many arguments.

WARNING Key cannot be defined.

WARNING Key map or key map list not
specified, and there is no current
buffer.

WARNING Key map or key map list not
defined.

WARNING You cannot copy text into an
unmodifiable buffer.

WARNING Key not defined.

I EXECUTE (user__program)

This statement executes the executable statements in the program named
user JJrogram.

I EXECUTE (main_buffer)

This statement first compiles the contents of main_buffer and then
executes any executable statements. If you have any text in the main
buffer other than VAXTPU statements, you get an error message. If there
are procedure definitions in main_buffer, they are compiled, but they are
not executed until you run the procedure (either by entering the procedure
name after the appropriate prompt from your interface or by calling the
procedure from within another procedure).

I] EXECUTE (RET_KEY, "TPU$KEY_MAP_LIST");

This statement first finds the program bound to the return key in the
default VAXTPU key map list, and then executes the code or learn
sequence found.

I PROCEDURE user_ do

command string:= READ LINE ("Enter VAXTPU command to execute: ");
EXECUTE-(command_string);

ENDPROCEDURE;

This procedure prompts the user for a VAXTPU command to execute and
then executes the command.

7-131

VAXTPU Built-In Procedures
EXECUTE

m PROCEDURE user_tpu (TPU_COMMAND)

SET (INFORMATIONAL, ON);
EXECUTE (TPU_COMMAND);
SET (INFORMATIONAL, OFF);

ENDPROCEDURE;

7-132

This procedure executes a command with informational messages turned
on, and then turns the informational messages off after the command is
executed. You must replace the parameter TPU_COMMAND with the
desired VAXTPU statement.

EXIT

VAXTPU Built-In Procedures
EXIT

Terminates the editing session and writes out any modified buffers that have
associated files. VAXTPU queries you for a file name for any buffer that you
have modified that does not already have an associated file.

Buffers that have the NO_WRITE attribute are not written out. See SET (NO_
WRITE, buffer).

FORMAT EXIT

PARAMETERS None.

DESCRIPTION If you do not modify a buffer, VAXTPU does not write out the next version
of the file associated with the buffer when you use the built-in procedure
EXIT to exit from VAXTPU.

SIGNALED
ERRORS

If you modify a buffer that does not have an associated file name, (because
you did not specify a file name for the second parameter of
CREATE_BUFFER), VAXTPU asks you to specify a file name if you want
to write the buffer. If you press the RETURN key rather than entering a
file name, the modified buffer is discarded. VAXTPU queries you about all
modified buffers that do not have associated file names. The order of the
query is the order in which the buffers were created.

Journal files (if any) are deleted upon exiting.

If an error occurs while you are trying to exit, the exit halts and control
returns to the editor.

TPU$_EXITFAIL

TPU$_ TOOMANY

WARNING The EXIT did not complete
successfully because of problems
writing modified buffers.

ERROR EXIT takes no arguments.

7-133

VAXTPU Built-In Procedures
EXIT

EXAMPLE
EXIT

7-134

This ends the editing session and writes out any modified buffers that
have associated file names. If you have modified a buffer that does not
have an associated file name, VAXTPU queries you with the following
prompt:

Enter a file name to write buffer "buffer_name"; else press RETURN:

Enter a file name such as TEXT_FILE.LIS if you want the contents of the
buffer written to a file. Press the RETURN key if you do not want to write
the contents of the buffer to a file.

VAXTPU Built-In Procedures
EXPAND_NAME

EXPAND NAME

FORMAT

PARAMETERS

Returns a string that contains the names of any VAXTPU global variables,
keywords, or procedures (built-in or user-written) that begin with the string
that you specify. VAXTPU searches its internal symbol tables to find a match,
using your input string as the directive for the match.

{

, ALL }
string2 :: EXPAND_NAME (string1 : ~~b~~;e~ES)

, VARIABLES

string1
An expression that evaluates to a string. If the string contains one or
more asterisks (*)or percent signs(%), then the string is a wildcard
specification of the VAXTPU names to match. An asterisk matches zero or
more characters and a percent sign matches exactly one character. If the
string does not contain any asterisks or percent signs, then the string is
the initial substring of a VAXTPU name.

ALL
A keyword specifying that you want VAXTPU to match all names.

KEYWORDS
A keyword specifying that you want VAXTPU to match only keyword
names.

PROCEDURES
A keyword specifying that you want VAXTPU to match only procedure
names.

VARIABLES
A keyword specifying that you want VAXTPU to match only global variable
names. EXPAND_NAME does not expand the names oflocal variables.

DESCRIPTION If there are no matches for the substring you specify, a null string is
returned and a warning (TPU$_NONAMES) is signaled. If only one
VAXTPU name matches the substring you specify, the name is returned
with no trailing space. If more than one VAXTPU name matches your
substring, all of the matching names are returned. The matching names
are returned as a concatenated string with words separated by a single
space. Multiple names signal a warning (TPU$_MULTIPLENAMES).

Use EXPAND_NAME in procedures that perform command completion or
that interpret abbreviated names.

EXPAND _NAME does not expand the names of local variables.

7-135

VAXTPU Built-In Procedures
EXPAND_NAME

SIGNALED
TPU$_NONAMES

ERRORS
TPU$_MULTIPLENAMES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLES

D full name := EXPAND_NAME ("MOVE", ALL)

WARNING No names were found matching
the one requested.

WARNING More than one name matching the
one requested was found.

ERROR EXPAND_NAME must appear
on the right-hand side of an
assignment statement.

ERROR EXPAND_NAME requires two
arguments.

ERROR EXPAND_NAME accepts no more
than two arguments.

ERROR One of the arguments you passed
to EXPAND_NAME has the wrong
data type.

WARNING You specified an invalid keyword
as the second argument.

This assignment statement returns the following VAXTPU names in the
string full_name:

MOVE HORIZONTAL MOVE VERTICAL MOVE TEXT - - -

I full name := EXPAND_NAME ("*EXACT", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string {ull_name:

EXACT NO EXACT

I] full name := EXPAND_NAME ("%%", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string full_name:

ON UP DO ES F6 E4 F7 E6 El E3 E2 F8 F9

These are all the keywords whose names are two characters long.

I PROCEDURE user_quick_parse (abbreviated_name)

ON ERROR

7-136

IF ERROR = TPU$_NONAMES
THEN

MESSAGE ("No such procedure.");
ELSE

IF ERROR = TPU$_MULTIPLENAMES
THEN

MESSAGE ("Ambiguous abbreviation.");
ENDIF;

ENDIF;
RETURN;

ENDON_ERROR;

VAXTPU Built-In Procedures
EXPAND_NAME

expanded_name :=EXPAND NAME (abbreviated_name, PROCEDURES);
MESSAGE ("The procedure-is"+ expanded_name + ".");

ENDPROCEDURE;

This procedure uses the string that you enter as the parameter, and puts
the expanded form of a valid VAXTPU procedure name that matches
the string in the message area. If the initial string matches multiple
procedure names, or if it is not a valid VAXTPU procedure name, an
explanatory message is written to the message area.

7-137

VAXTPU Built-In Procedures
FAQ

FAQ

FORMAT

PARAMETERS

7-138

Invokes the Formatted ASCII Output ($FAQ) system service to convert a
control string to a formatted ASCII output string. By specifying arguments for
FAQ directives in the control string, you can control the processing performed
by the $FAQ system service. The built-in procedure FAQ returns a string that
contains the formatted ASCII output.

For complete information on the $FAQ system service, see the VMS System
Services Reference Manual.

. . { integer1 } { integer n }
strmg2 := FAO (strmgt f, string3 f, ... string_n 11)

string1
A string, a variable name representing a string constant, or an expression
that evaluates to a string, that consists of the fixed text of the output
string and FAO directives.

Some FAO directives that you can use as part of the string are the
following:

!AS Inserts a string as is

!OL Converts a longword to octal notation

!XL Converts a longword to hexadecimal notation

!ZL Converts a longword to decimal notation

!UL Converts a longword to decimal notation without adjusting for negative
number

!SL Converts a longword to decimal notation with negative numbers
converted properly

!/ Inserts a new line (carriage return/line feed)

!_ Inserts a tab

!} Inserts a form feed

!! Inserts an exclamation mark

!%S Inserts an s if the most recently converted number is not 1

!% T Inserts the current time if you enter 0 as the parameter {you cannot pass
a specific time because VAXTPU does not use quadwords)

!%0 Inserts the current date and time if you enter O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

integer1 ... integer_n
An expression that evaluates to an integer. $FAO uses these integers as
arguments to the FAO directives in string2 to form stringl.

string3 ... string_n
An expression that evaluates to a string. $FAO uses these strings as
arguments to the FAO directives in string2 to form string 1.

l
I

return value

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
FAQ

A string containing the output you specify in ASCII format.

FAO returns a formatted string, constructed according to the rules of the
$FAO system service. The control string directs the formatting process,
and the optional arguments are values to be substituted into the control
string.

To ensure that you get meaningful results, you should use the !AS directive
for strings and the !OL, !XL, !ZL, !UL, or !SL directive for integers.

TPU$_1NVFAOPARAM

TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_ TOOFEW

WARNING Argument was not a string or an
integer.

ERROR FAQ must appear on the right­
hand side of an assignment
statement.

ERROR The first argument to FAQ must be
a string.

ERROR FAQ requires at least one
parameter.

D date and time := FAO (" ! %D", 0)

This assignment statement stores the current date and time in the
variable date_and_time.

~ PROCEDURE user_fao_conversion (count)

report := FAO ("number of forms= !SL", count);
MESSAGE (report);

ENDPROCEDURE;

This procedure uses the FAO directive !SL in a control string to convert
the number equated to the variable count to a string. The converted string
is stored in the variable report and then written to the message area.

E PROCEDURE user_error_message (strng, line, col)

error_count := error_count + 1;
MESSAGE (FAO ("!AS at line !UL column !UL", strng, line, col));

ENDPROCEDURE;

This procedure formats the message that is being written to the message
area. The message tells the user the line and column at which an error
occurred.

7-139

VAXTPU Built-In Procedures
FILE_PARSE

FILE PARSE

FORMAT

Performs the equivalent of the DCL F$PARSE lexical function. That is, it calls
the RMS service $PARSE to parse a file specification and to return either an
expanded file specification or the file specification field that you request.

FILE_PARSE returns a string that contains the expanded file specification or
the field you specify. If you do not provide a complete file specification, FILE_
PARSE supplies defaults in the return string, as described in the Description
section.

If an error occurs during the parse, FILE_PARSE returns a null string.

string3 := FILE_PARSE (filespec [, string1

[, string2 ff, NODE J
[,DEVICE J
ff, DIRECTORY J
[, NAME] ff, TYPE 1
ff, VERSION J JJ)

PARAMETERS filespec

7-140

The file specification to be parsed.

string1
A default file specification. Any field of the file specification that you
provide with this parameter is substituted in the output string if that field
is missing in the files pee.

string2
A related file specification. Some of the fields in the related file
specification are substituted in the output string if a field is missing
from both the filespec and the string 1 parameters.

NODE
Keyword specifying that FILE_PARSE should return a file specification
including the node. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DEVICE
Keyword specifying that FILE_PARSE should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DIRECTORY
Keyword specifying that FILE_PARSE should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_PARSE, see the Description section.

VAXTPU Built-In Procedures
FILE_PARSE

NAME
Keyword specifying that FILE_PARSE should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

TYPE
Keyword specifying that FILE_PARSE should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

VERSION
Keyword specifying that FILE_PARSE should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

return value A string containing an expanded file specification or the file specification
field you specify.

DESCRIPTION The built-in procedure FILE_PARSE allows you to parse file specifications
using the RMS service $PARSE. For more information on the $PARSE
service, see the VMS Record Management Services Manual.

If you do not supply any of the optional parameters, FILE_PARSE returns
the device, directory, file name, and type of the file specified in filespec.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keywords for field names as you wish. If
one or more of these keywords are present, FILE_PARSE returns a string
containing only those fields requested. The fields are returned in norm.al
file specification order. The norm.al delimiters are included, but there are
no other characters separating the fields. For example, suppose you direct
VAXTPU to execute the following statements:

result := FILE_PARSE ("junk.txt", "","",NODE, DEVICE, TYPE);
MESSAGE (result);

Suppose, too, that the node is WORK and the device is DISKl. When the
statements execute, VAXTPU displays the following string:

work::diskl:.txt

If you omit the file name, type, or version number, FILE_PARSE supplies
defaults, first from string 1 and then from string2. If you do not provide
these parameters, FILE_PARSE returns a null specification for these
fields.

The FILE_PARSE built-in procedure does not check that the file exists. It
merely parses the file specification provided, and returns the portions of
the resultant file specification requested.

You can use wildcard directives in supplying file specifications.

7-141

VAXTPU Built-In Procedures
FILE_PARSE

SIGNALED
ERRORS

TPU$_PARSEFAIL WARNING RMS detected an error while
parsing the file specification.

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_1NVPARAM

TPU$_BADKEY

ERROR FILE_PARSE must appear on the
right-hand side of an assignment
statement.

ERROR FILE_PARSE requires at least one
argument.

ERROR One of the parameters to FILE_
PARSE has the wrong data type.

ERROR You specified an invalid keyword
to FILE_PARSE.

EXAMPLES
I spec := FILE_PARSE ("program.pass", "[abbott]")

This assignment statement calls RMS to parse and return a full file
specification for the file PROGRAM.PAS. The second parameter provides
the name of the directory in which the file can be found.

I PROCEDURE user_start_journal

Default journal name
Auxiliary journal name derived from file name

LOCAL default journal name,
aux_journal_name;

IF (GET_INFO (COMMAND_LINE, "journal") = 1)
AND

THEN
(GET_INFO (COMMAND_LINE, "read_only") <> 1)

aux journal name :=GET INFO (CURRENT BUFFER, "file_name");
IF aux_journal_name =-"" -
THEN

aux_journal_name :=GET INFO (CURRENT_BUFFER, "output_file");
ENDIF;
IF aux_journal_name = 0
THEN

aux_journal_name := "";
ENDIF;
IF aux_journal_name = ""
THEN

default_journal_name := "user.TJL";
ELSE

default_journal_name := ".TJL";
ENDIF;
journal file :=GET INFO (COMMAND LINE, "journal file");
journal=file := FILE PARSE (journal file, default journal name,

- aux journal name); - -
JOURNAL OPEN (journal_file); - -

ENDIF;
ENDPROCEDURE;

7-142

This procedure starts journaling. It is called from the TPU$INIT_
PROCEDURE after a file is read into the current buffer. FILE_PARSE
is used to return the full file specification for the journal file.

VAXTPU Built-In Procedures
FILE_SEARCH

FILE SEARCH

FORMAT

Calls the RMS service $SEARCH to search a directory and return the partial
or full file specification for the file that you specify.

FILE_SEARCH returns a string containing the resulting file specification or a
null string if no file is found.

string3 :: FILE_SEARCH (filespec

ff, stringt

ff, string2

ff, NODE J
ff, DEVICE J
ff, DIRECTORY J
f, NAME J f, TYPE J
ff, VERSION]]])

PARAMETERS filespec
The file specification you want to find. If you omit the device or directory
names, FILE_SEARCH supplies defaults from the optional parameters
or from your current default device and directory if you do not supply
optional parameters.

string1
A default file specification. If you fail to specify a field in filespec and that
field is present in the default file specification, VAXTPU uses the field from
string 1 when searching for the file.

string2
A related file specification. If you fail to specify a field in filespec and
string 1 and that field is present in the related file specification, VAXTPU
uses the field from string2 when searching for the file.

NODE
Keyword specifying that FILE_SEARCH should return a file specification
including the node. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DEVICE
Keyword specifying that FILE_SEARCH should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DIRECTORY
Keyword specifying that FILE_SEARCH should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_SEARCH, see the Description section.

7-143

VAXTPU Built-In Procedures
FILE_SEARCH

return value

DESCRIPTION

7-144

NAME
Keyword specifying that FILE_SEARCH should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

TYPE
Keyword specifying that FILE_SEARCH should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

VERSION
Keyword specifying that FILE_SEARCH should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

A string containing the partial or full file specification you request from
$SEARCH.

The built-in procedure FILE_SEARCH allows you to search for files
in a directory using the $SEARCH routine. You must use this built-
in procedure multiple times with the same parameter to get all of the
occurrences of a file name in a directory. See the VMS Record Management
Services Manual for more information on $SEARCH.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keyword parameters (such as NODE or
DEVICE) as you wish. If one or more of these keywords are present,
FILE_SEARCH returns only those fields requested in the keyword list, not
the full file specification. The fields appear in the same order as they do in
a full file specification. There is no separator between fields.

If you omit all the optional parameters, FILE_SEARCH returns the device,
directory, file name, type, and version.

Unlike the FILE_PARSE built-in, FILE_SEARCH verifies that the file you
specify exists.

If FILE_SEARCH does not find a matching file, or if the built-in finds one
or more matches but is invoked again and does not find another match,
FILE SEARCH returns a null string but not an error status. Thus, the
null string can act as an "end of matching files" indicator. When FILE_
SEARCH returns the status TPU$_SEARCHFAIL, look in the message
buffer to see why the search was unsuccessful.

SIGNALED
ERRORS

EXAMPLES

TPU$_SEARCHFAIL

TPU$_ TOOFEW

TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_BADKEY

VAXTPU Built-In Procedures
FILE_SEARCH

WARNING RMS detected an error while
searching for the file.

ERROR FILE_SEARCH requires at least
one parameter.

ERROR FILE_SEARCH must be on the
right-hand side of an assignment
statement.

ERROR One of the arguments you passed
to FILE_SEARCH has the wrong
type.

WARNING One of the keyword arguments
you specified is not one of those
FILE_SEARCH accepts.

D fil := FILE_SEARCH ("SYS$SYSTEM:*.EXE")

Each time this assignment statement is executed, it returns a string
containing the resulting file specification of an EXE file in SYS$SYSTEM.
Because no version number is specified, only the latest version is returned.
When you get a null string, it means there are no more EXE files in the
directory.

PROCEDURE user collect rnos - -
LOCAL filename;

filename :=FILE SEARCH ("");

LOOP
filename :=FILE SEARCH ("*.RNO", "",
EXITIF filespec ~ "";
CREATE_BUFFER (filename, filename);

ENDLOOP;
ENDPROCEDURE;

"" , NAME, TYPE) ;

This procedure is similar to the previous procedure. It makes use of the
fact that you are looking for files in the current directory and that FILE_
SEARCH can return parts of the file specification to eliminate the call to
FILE_PARSE.

7-145

VAXTPU Built-In Procedures
FILL

FILL

FORMAT

PARAMETERS

Reformats the text in the specified buffer or range so that the lines of text are
approximately the same length.

FILL ({ buffer }ff, string ff, integer1 ff, integer2
range

ff, integer3 J J J J)

buffer
The buffer whose text you want to fill.

range
The range whose text you want to fill.

string
The list of additional word separators. The space character is always a
word separator.

integer1
The value for the left margin. The left margin value must be at least 1
and must be less than the right margin value. Defaults to the buffer's left
margin.

integer2
The value for the right margin. This value defaults to the same value as
the buffer's right margin. Integer2 must be greater than the left margin
and cannot exceed the maximum record size for the buffer.

integer3
The value for the first line indent. This value modifies the left margin of
the first filled line. It may be positive or negative. The result of adding
the first line indent to the left margin must be greater than 1 and less
than the right margin. Defaults to 0.

DESCRIPTION FILL recognizes two classes of characters, text characters and word
separators. Any character may be a word separator and any character
other than the space character may be a text character. The space
character is always a word separator, even if it is not present in the
second parameter passed to FILL.

7-146

A word is a contiguous sequence of text characters, all of which are
included on the same line, immediately preceded by a word separator or
a line break, and immediately followed by a word separator or line break.
If the first or last character in the specified range is a text character,
that character marks the beginning or end of a word, regardless of any
characters outside the range. Filling a range that starts or ends in the
middle of a word may result in the insertion of a line break between that

VAXTPU Built-In Procedures
FILL

part of the word inside the filled range and that part of the word outside
the range.

When filling a range or buffer, FILL does the following to each line:

• Removes any spaces at the beginning of the line

• Sets the left margin of the line

• Moves text up to the previous line if it fits

• Deletes the•line if it contains no text

• Splits the line if it is too long

FILL sets the line's left margin to the fill left margin unless that line is
the first line of the buffer or range being filled. In this case, FILL sets the
line's left margin to the fill left margin plus the first line indent. However,
if you are filling a range and the range does not start at the beginning of a
line, FILL does not change the left margin of that line.

FILL moves a word up to the previous line if the previous line is in
the range to be filled and if the word fits on the previous line without
extending beyond the fill right margin. Before moving the word up, FILL
appends a space to the end of the previous line if that line ends in a space
or a text character. It does not append a space if the previous line ends in
a word separator other than the space character.

When moving a word up, FILL also moves up any word separators that
follow the word, even if these word separators extend beyond the fill right
margin. Fill does not move up any word separator that would cause the
length of the previous line to exceed the buffer's maximum record size. If
the previous line now ends in a space, FILL deletes that space. FILL does
not delete more than one such space.

FILL moves any word separators at the beginning of a line up to the
previous line. It does this even if the word separators will extend beyond
the fill right margin.

FILL splits a line into two lines whenever the line contains two or
more words and one of the words extends beyond the fill right margin.
FILL ~plits the line at the first character of the· first word that contains
characters to the right of the fill right margin, unless that word starts at
the beginning of the line. In this case, FILL does not split the line.

When operating on a range that does not begin at the first character of a
line but does begin left of the fill left margin, FILL splits the line at the
first character of the range.

FILL places the cursor at the end of the filled text after completing the
tasks described above.

7-147

VAXTPU Built-In Procedures
FILL

SIGNALED
TPU$_1NVRANGE WARNING You specified an invalid range

ERRORS enclosure.

TPU$_ TOOFEW ERROR FILL requires at least one
argument.

TPU$_ TOOMANY ERROR FILL accepts no more than five
arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to FILL is
of the wrong type.

TPU$_BADMARGINS WARNING You specified one of the fill
margins incorrectly.

TPU$_1NVPARAM ERROR One of the parameters to FILL is
of the wrong type.

TPU$_NOTMODIFIABLE WARNING You cannot fill text in an
unmodifiable buffer.

TPU$_NOCACHE ERROR FILL could not create a new line
because there was no memory
allocated for it.

TPU$_CONTROLC ERROR FILL terminated because you
pressed CTRUC.

EXAMPLES
D FILL (current_buffer)

This statement fills the current buffer. It uses the buffer's left and right
margins for the fill left and right margins. The space character is the only
word separator. Upon completion, the current buffer contains no blank
lines. All lines begin with a word. Unless the buffer contains a word
too long to fit between the left and right margins, all text is between the
buffer's left and right margins. Spaces may appear beyond the buffer's
right margin.

fl FILL (paragraph_range, "-", 5, 65, 5)

If paragraph_range references a range that contains a paragraph, this
statement fills a paragraph. FILL uses a left margin of 5 and a right
margin of 65. It indents the first line of the paragraph an additional
five characters. The space character and the hyphen are the two word
separators. If the paragraph contains a hyphenated word, FILL breaks
the word after the hyphen if necessary.

I] FILL (paragraph_ range, "-", 10, 65, -3)

7-148

This example is like the previous one except that FILL unindents the
first line of the paragraph by three characters. This is useful for filling
numbered paragraphs.

VAXTPU Built-In Procedures
GET_CLIPBOARD

GET CLIPBOARD

Reads STRING format data from the clipboard and returns a string containing
this data.

FORMAT string := GET_CLIPBOARD

return value A string consisting of the data read from the clipboard. Line breaks are
indicated by a line-feed character (ASCII (10)).

DESCRIPTION DECwindows provides a clipboard that allows you to move data between
applications. Applications can write to the clipboard to replace previous
data, and can read from the clipboard to get a copy of existing data. The
data in the clipboard may be in multiple formats, but all the information
in the clipboard must be written at the same time.

SIGNALED
ERRORS

VAXTPU provides no clipboard support for applications not written for
DECwindows.

TPU$_NEEDTOASSIGN ERROR GET_CLIPBOARD must return a
value.

TPU$_ TOOMANY ERROR Too many arguments passed to
GET_CLIPBOARD.

TPU$_CLIPBOARDFAIL WARNING The clipboard has not returned
any data.

TPU$_CLIPBOARDLOCKED WARNING VAXTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPU$_TRUNCATE WARNING Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65,535
characters.

TPU$_REQUIRESDECW ERROR You can use GET_CLIPBOARD
only if you are using DECwindows
VAXTPU.

7-149

VAXTPU Built-In Procedures
GET_CLIPBOARD

EXAMPLE
new_string := GET_CLIPBOARD;

7-150

This statement reads what is currently in the clipboard and assigns it to
new _string.

VAXTPU Built-In Procedures
GET_DEFAULT

GET DEFAULT

FORMAT

PARAMETERS

Returns the value of an X resource from the X resources database.

{ ~ttringa } :: GET DEFAULT (string1, string2)
m eger -

string1
The name of the resource whose value you want GET_DEFAULT to fetch.
Note that resource names are case sensitive.

string2
The class of the resource. Note that resource class names are case
sensitive.

return value The string equivalent of the resource value or 0 if the specified resource
is not defined. Note that, if necessary, the application must convert the
string to the data type appropriate to the resource.

DESCRIPTION GET_DEFAULT is useful for initializing a layered application that uses
an X defaults file. You can use GET_DEFAULT only in the DECwindows
environment.

SIGNALED
ERRORS

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_ TOOFEW ERROR Too few arguments passed to
GET _DEFAULT.

TPU$_ TOOMANY ERROR Too many arguments passed to
GET _DEFAULT.

TPU$_NEEDTOASSIGN ERROR GET _DEFAULT must return a
value.

TPU$_REQUIRESDECW ERROR You can use GET_DEFAULT only
if you are using DECwindows
VAXTPU.

7-151

VAXTPU Built-In Procedures
GET_DEFAULT

EXAMPLE
PROCEDURE application_module_init

LOCAL
keypad_name;

keypad_name :=GET DEFAULT ("user.keypad", "User.Keypad");

EDIT (keypad_name, UPPER); ! Convert the returned string to uppercase.

IF keypad_name <> '0'
THEN

CASE keypad_name

eve_set_keypad_edt ();
eve_set_keypad_noedt ();
eve_set_keypad_wps ();
eve_set_keypad_nowps ();
eve_set_keypad_numeric ();
eve_set_keypad_vtlOO ();

"EDT"
"NOEDT"
"WPS"
"NOWPS"
"NUMERIC"
"VT100"
[INRANGE, OUTRANGE] eve_set_keypad_numeric; If user has

ENDCASE;

ENDIF;

ENDPROCEDURE;

User.Keypad EDT

7-152

used invalid value,
set the keypad to
NUMERIC setting.

This code fragment shows the portion of a module_init procedure directing
VAXTPU to fetch the value of a resource from the X resources database.
For more information on module_init procedures, see Appendix G.

If you want to create an extension of EVE that enables use of an X defaults
file to choose a keypad setting, you can use a GET_DEFAULT statement
in a module_init procedure.

To provide a value for the GET_DEFAULT statement to fetch, an X
defaults file would contain an entry similar to the following:

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

GET GLOBAL SELECT - -

FORMAT

Supplies information about a global selection.

{

un~pecified } - { PRIMARY } string ._
integer ·- GET_GLOBAL_SELECT (SECONDARY ,

selection_name array
selection_property_name)

PARAMETERS PRIMARY

return value

A keyword indicating that the layered application is requesting
information about a property of the primary global selection.

SECONDARY
A keyword indicating that the layered application is requesting
information about a property of the secondary global selection.

selection name
A string identifying the global selection whose property is the subject of
the layered application's information request. Specify the selection name
as a string if the layered application needs information about a selection
other than the primary or secondary global selection.

selection_property _name
A string specifying the property whose value the layered application is
requesting.

unspecified

string

integer

array

A data type indicating that the information requested by the
layered application was not available.

The value of the specified global selection property. The
return value is of type string if the value of the specified
global selection property is of type string.

The value of the specified global selection property. The
return value is of type integer if the value of the specified
global selection property is of type integer.

An array passing information about a global selection
whose contents describe information that is not of a data
type supported by VAXTPU.

VAXTPU does not use or alter the information in the array;
the application layered on VAXTPU is responsible for
determining how the information is used, if at all. Since the
array is used to receive information from other DECwindows
applications, all applications that exchange information
whose data type is not supported by VAXTPU must adopt a
convention on how the information is to be used.

7-153

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

The element array {OJ contains a string naming the data
type of the information being passed. For example, if the
information being passed is a span, the element contains
the string "SPAN". The element array {1 J contains either
the integer 8, indicating that the information is passed as
a series of bytes, or the integer 32, indicating that the
information is passed as a series of longwords. If array {1 J
contains the value 8, the element array {2J contains a
string and there are no array elements after array {2J. The
string does not name anything, but rather is a series of
bytes of information. As mentioned, the meaning and use
of the information is agreed upon by convention among
the DECwindows applications. To interpret this string, the
application can use the SUBSTR built-in to obtain substrings
one at a time, and the ASCII built-in to convert the data to
integer format if necessary. For more information about
using these VAXTPU elements, see the description of the
SUBSTR and ASCII built-in procedures.

If array {1 J contains the value 32, the element array (2J and
any subsequent elements contain integers. The number of
integers in the array is determined by the application which
responded to the request for information about the global
selection. The interpretation of the data is a convention
that must be agreed upon by the cooperating application.
To determine how many longwords are being passed,
an application can determine the length of the array and
subtract 2 to allow for elements array (OJ and array {1 J.

DESCRIPTION If an owner for the global selection exists, and if the owner provides the
information requested in a format that VAXTPU can recognize, GET_
GLOBAL_SELECT returns the information.

SIGNALED
ERRORS

TPU$_ARGMISMATCH ERROR Wrong type of data sent to
GLOBAL_ SELECT.

TPU$_NEEDTOASSIGN ERROR GLOBAL_SELECT must return a
value.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQUIRESDECW ERROR You can use GLOBAL_SELECT
only if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to
GLOBAL_ SELECT.

TPU$_ TOOMANY ERROR Too many arguments passed to
GLOBAL_ SELECT.

TPU$_GBLSELOWNER WARNING VAXTPU owns the global
selection.

7-154

TPU$_BADKEY

TPU$_1NVGBLSELDATA

TPU$_NOGBLSELDATA

TPU$_NOGBLSELOWNER

TPU$_ TIMEOUT

EXAMPLE

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

WARNING You specified an invalid keyword
as a parameter.

WARNING The global selection owner
provided data that VAXTPU cannot
process.

WARNING The global selection owner has
indicated that it cannot provide the
information requested.

WARNING You have requested information
about an unowned global
selection.

WARNING The global selection owner did not
respond before the timeout period
expired.

string_to_paste := GET_GLOBAL_SELECT (PRIMARY, "STRING");

This statement fetches the text in the primary global selection and assigns
it to the variable string_to_J)aste.

For another example of how to use the GET_GLOBAL_SELECT built-in,
see Example B-4.

7-155

VAXTPU Built-In Procedures
GET_INFO

GET INFO

Returns information about the current status of the editor.

For information on how to get a screen display of the status of your editor, see
the description of the built-in procedure SHOW.

DESCRIPTION This description provides general information on the GET_INFO built­
ins. In this part, you can also find descriptions of individual GET_INFO
built-ins. The individual GET_INFO built-ins are grouped according to
the value of their first parameter. For a list of the groups of GET_INFO
built-ins, see Table 7-2.

7-156

All GET_INFO built-in procedures have the following two characteristics
in common:

• They return a value that is the piece of information you have
requested.

• They consist of the GET_INFO statement followed by at least two
parameters, as follows:

The first parameter specifies the general topic about which you
want information. If you want the GET_INFO built-in to return
information on a given variable, use that variable as the first
parameter. For example, if you want to know what row contains
the cursor in a window stored in the variable command_window,
you would specify the variable command_window as the first
parameter. Thus, you would use use the following statement:

the_row := GET_INFO (cornmand_window, "current_row");

Otherwise, the first parameter is a keyword specifying the general
subject about which GET_INFO is to return information. The valid
keywords for the first parameter are as follows:

ARRAY
BUFFER
COMMAND_LINE
DEBUG
DEFINED_KEY
KEY_MAP
KEY_MAP _LIST
mouse_event_keyword
PROCEDURES
PROCESS
SCREEN
SYSTEM
WINDOW
WIDGET

For a list of valid mouse event keywords, see Table 7-3.

VAXTPU Built-In Procedures
GET_INFO

Do not confuse a GET_INFO built-in whose first parameter is
a keyword (such as ARRAY) with a GET_INFO built-in whose
first parameter is a variable of a given data type, such as array_
variable. For example, the built-in GET_INFO (array_variable)
shows what string constants can be used when the first parameter
is an array variable, while the built-in GET_INFO (ARRAY) shows
what can be used when the first parameter is the keyword ARRAY.

The second parameter (a VAXTPU string) specifies the exact piece
of information you want.

The third and subsequent parameters, if necessary, provide
additional information that VAXTPU uses to identify and return
the requested value or structure.

Each GET_INFO built-in in this section shows the possible return values
for a given combination of the first and second parameters. For example,
the built-in GET_INFO (any_ variable) shows that when you use any
variable as the first parameter and the string "type" as the second
parameter, GET_INFO returns a keyword for the data type of the variable.

Depending upon the kind of information requested, GET_INFO returns
any one of the following:

• An array

• A buffer

• An integer

• A keyword

• Amarker

• A process

• Arange

• A string

• A window

VAXTPU maintains internal lists of the following items:

• Arrays

• Array elements

• Breakpoints

• Buffers

• Defined keys

• Key maps

• Key map lists

• Processes

• Windows

7-157

VAXTPU Built-In Procedures
GET_INFO

You can step through an internally-maintained list by using "first", "next",
''previous", or "last" as the second parameter to GET_INFO. Note that
the order in which VAXTPU maintains these lists is private and may
change in a future version. Do not write code that depends on a list
being maintained in a particular order. When you write code to search a
list, remember that VAXTPU keeps only one pointer for each list. If you
create nested loops that attempt to search the same list, the results are
unpredictable. For example, suppose that a program intended to search
two key map lists for common key maps sets up a loop within a loop. The
outer loop might contain the following statement:

GET_INFO (KEY_MAP, "previous", name_of_second_key_map)

The inner loop might contain the following statement:

GET_INFO (KEY_MAP, "next", name_of_first_key_map)

In VAXTPU, the behavior of such a nested loop is unpredictable.

Unless documented otherwise, the order of the internal list is not defined.

The syntax of GET_INFO depends on the kind of information you are
trying to get. For more information on specific GET_INFO built-ins, see
the descriptions in this section. GET_INFO built-ins whose first parameter
is a keyword are grouped separately from GET_INFO built-ins whose first
parameter is a variable.

Table 7-2 GET_INFO Built-in Procedures by First Parameter

Variable

GET_INFO (any_variable)

GET _INFO (array_variable)

GET_INFO (buffer_variable)

GET_INFO (integer_variable)

GET_INFO (marker_variable)

GET_INFO (process_variable}

GET_INFO (range_variable)

GET_INFO (string_variable)

GET_INFO (widget_variable)

GET_INFO (window_variable}

7-158

Keyword

GET_INFO (ARRAY)

GET _INFO (BUFFER)

GET_INFO (COMMAND_LINE)

GET_INFO (DEBUG)

GET_INFO (DEFINED_KEY)

GET_INFO (KEY_MAP)

GET_INFO (KEY_MAP _LIST}

GET_INFO (mouse_event_keyword)

GET _INFO (PROCEDURES)

GET _INFO (PROCESS}

GET_INFO (SCREEN)

GET_INFO (SYSTEM)

GET_INFO (WIDGET)

GET_INFO (WINDOW)

Any Keyword or Key Name

GET _INFO (any_keyname)

GET _INFO (any_keyword}

\
)

SIGNALED
ERRORS

EXAMPLES

D my_buffer

TPU$_BADREQUEST

TPU$_BADKEY

TPU$_NOCURRENTBUF

TPU$_NOKEYMAP

TPU$_NOKEYMAPLIST

TPU$_1NVPARAM

TPU$_NEEDTOASSIGN

TPU$_NOBREAKPOINT

TPU$_NONAMES

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_UNKKEYWORD

:= GET_INFO (BUFFERS, "current");

VAXTPU Built-In Procedures
GET_INFO

WARNING Request represented by second
argument is not understood for
data type of first argument.

WARNING Bad keyword value or
unrecognized data type is passed
as the first argument.

WARNING Current buffer is not defined.

WARNING Key map is not defined.

WARNING Key map list is not defined.

ERROR One or more of the specified
parameters have the wrong data
type.

ERROR The GET_INFO built-in can only
be used on the right-hand side of
an assignment statement.

WARNING This string constant is valid only
after a breakpoint.

WARNING There are no names matching the
one requested.

ERROR Too few arguments passed to the
GET _INFO built-in.

ERROR Too many arguments passed to
the GET_INFO built-in.

ERROR An unknown keyword has been
used as an argument.

This assignment statement stores the pointer to the current buffer in the
variable my _buffer.

fd my_string := GET_INFO (my_buffer, "file_name");

This assignment statement stores the name of the input file for my _buffer
in the variable my_string.

Ii] my_buffer := GET_INFO (BUFFERS, "current");

This assignment statement stores a reference to the current buffer in the
variable my _buffer.

7-159

VAXTPU Built-In Procedures
GET_INFO

II my_string := GET_INFO (CURRENT_BUFFER, "file_name");

This statement calls the CURRENT_BUFFER built-in, which returns the
current buffer. The GET_INFO built-in determines the name of the input
file associated with the current buffer. The input filename is assigned to
the variable my _string.

[iJ is buf mod := GET_INFO (CURRENT_BUFFER, "modified");

This assignment statement stores the integer 1 or 0 in the variable is_buf _
mod. A value of 1 means the current buffer has been modified. A value of
0 means the current buffer has not been modified.

my window:= GET INFO (WINDOWS, "current");
length integer::: GET INFO (my window, "length", visible_window);
width_integer := GET_INFO (my_;indow, "width");

These assignment statements store the size of the current window in the
variables length_integer and width_integer.

I PROCEDURE user_getinfo

top_of_window := GET_INFO (CURRENT_WINDOW, "top", visible_window);

! Remove the top five lines from the main window
ADJUST_WINDOW (CURRENT_WINDOW, +5, 0);

! Replace removed lines with an example window
example_window := CREATE_WINDOW (top_of_window, 5, ON);
example buffer := CREATE BUFFER ("EXAMPLE",

- - "sys$login:template.txt");
MAP (example_window, example_buffer);

ENDPROCEDURE;

This procedure uses GET_INFO to find the top of the current window.
It then removes the top five lines and replaces them with an example
window.

~ PROCEDURE user_display_key_map_list

current key map list := GET INFO (CURRENT_BUFFER,
- - - "key map list");

MESSAGE (current_key_map_list); -
ENDPROCEDURE;

This procedure retrieves and displays the name of the key map list in the
current buffer.

I PROCEDURE show_key_map_lists

LOCAL key_map_list_name;

key_map_list_name := GET_INFO (KEY_MAP_LIST, "first");
LOOP

EXITIF key_map_list_name = 0;
SPLIT LINE;
COPY_TEXT (key_map_list_name);
key_map_list_name := GET_INFO (KEY_MAP LIST, "next");

ENDLOOP;
ENDPROCEDURE;

This procedure displays all the key map lists.

7-160

'\
)

VAXTPU Built-In Procedures
GET_INFO

PROCEDURE show self insert - -
LOCAL key_map_list_name;

key_map_list_name := GET_INFO (CURRENT_BUFFER, "key_map_list");

IF GET_INFO (key_map_list_name, "self_insert")
THEN

MESSAGE ("Undefined printable characters will be inserted");
ELSE

MESSAGE ("Undefined printable characters will cause an error");
ENDIF;

ENDPROCEDURE;

This procedure shows whether the key map list associated with the current
buffer inserts undefined printable characters.

11 PROCEDURE show_key_maps_in_list (key_map_list_name)

LOCAL key_map_name;

key_map_name := GET_INFO (KEY_MAP, "first", key_map_list_name);
LOOP

EXITIF key_map_name = 0;
SPLIT_LINE;
COPY_TEXT (key_map_name);
key_map_name ·= GET_INFO (KEY_MAP, "next", key_map_list_name);

ENDLOOP;
ENDPROCEDURE;

This procedure displays the key maps in the key map list
key _map _list_name.

7-161

GET_INFO Built-Ins Grouped by First Parameter

GET_INFO {any_keyname)

FORMAT

Returns a keyword describing the type of key named by any_keyname.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~eyword } :: GET INFO
mteger - {

"key_ modifiers" }
(any_keyname, "key=type")

PARAMETERS "key_modifiers"
Returns a bit-encoded integer indicating what key modifier or modifiers
were used to create the VAXTPU key name specified by the parameter
any _keyname. For more information about the meaning and possible
values of key modifiers, see the description of the KEY_NAME built-in.

7-162

VAXTPU defines four constants to be used when referring to or testing
the numerical value of key modifiers. The correspondence between key
modifiers, defined constants, and bit-encoded integers is as follows:

Key Modifier Constant Bit-Encoded Integer

SHIFT_MODIFIED TPU$K_SHIFT _MODIFIED

CTRL_MODIFIED TPU$K_CTRL_MODIFIED 2

HELP _MODIFIED TPU$K_HELP _MODIFIED 4

ALT_MODIFIED TPU$K_ALT _MODIFIED 8

Note that the keyword SHIFT_KEY may have been used to create a
VAXTPU key name. SHIFT_KEY is not a modifier, it is a prefix. The
SHIFT key, also called the GOLD key by the EVE editor, is pressed and
released before any other key is pressed. In DECwindows, modifying keys
such as the CTRL key are pressed and held down while the modified key
is pressed.

Note, too, that if more than one key modifier was used with the KEY_
NAME built-in, the value of the returned integer is the sum of the integer
representations of the key modifiers. For example, if you create a key
name using the modifiers HELP _MODIFIED and ALT_MODIFIED, the
built-in GET_INFO (key_name, "key_modifiers") returns the integer 12.

"key_type"
Returns a keyword describing the type of key named by any _keyname. The
keywords that can be returned are PRINTING, KEYPAD, FUNCTION,
SHIFT_KEY, KEYPAD, SHIFT_FUNCTION, and SHIFT_CONTROL.
Returns 0 if parameter 1 is not a valid key name. Note that there are
cases in which GET_INFO (any_keyname, "name") returns the keyword
PRINTING but the key described by the keyname is not associated with
a printable character. For example, if you use the KEY_NAME built-in
to define a key name as the combination of the character A and the ALT
modifier, and if you then use GET_INFO (any_keyname, "name") to find
out how VAXTPU classifies the key, the GET_INFO built-in returns the

)

EXAMPLE

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {any_keyname)

keyword PRINTING. However, if you use the ASCII built-in to obtain the
string representation of the key, the ASCII built-in returns a null string
because ALT/ A is not printable.

new key :=KEY NAME (KP4, SHIFT MODIFIED, CTRL MODIFIED);
modifier value-:= GET INFO (new-key, "key modifiers");
MESSAGE (STR (modifier_value));- -
IF GET_INFO (new_key, "key_modifiers")
THEN

the_name := GET_INFO (new_key, "name")
MESSAGE (STR (the_name));

ENDIF;

The first statement in the preceding code creates a VAXTPU key name
for the key sequence produced by pressing the CTRL key, the SHIFT
key, and the 4 key on the keypad all at once. The new key name is
assigned to the variable new _key. The second statement fetches the
integer equivalent of this combination of key modifiers. The third
statement displays the integer 3 in the message buffer. The IF clause
of the fourth statement shows how to test whether a key name was
created using a modifier. (Note, however, that this statement does not
detect whether a key name was created using the keyword SIDFT_
KEY.) The THEN clause shows how to fetch the key modifier keyword
or keywords used to create a key name. The final statement displays the
string KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED) in the
message buffer.

7-163

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (any_keyword)

GET_INFO (any_keyword)

FORMAT

Returns the string representation of the keyword specified in the first
parameter to GET_INFO.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO. See also the description of GET _INFO (integer_
variable).

string := GET _INFO (keyword, "name'?

PARAMETERS keyword
Returns a VAXTPU keyword whose string equivalent you want GET_INFO
to return.

7-164

You can use GET_INFO (keyword, "name") to obtain the string equivalent
of a key name. This is useful for displaying screen messages about keys.
For example, to obtain the string equivalent of the key name PFl, you
could use the following statement:

the_string := GET_INFO (PFl, "name");

If a key name is created using several key modifiers, the built-in returns
the string representations of all the keywords used to create the key name.
For more information on creating key names, see the description of the
KEY_NAME built-in.

The following code fragment shows one possible use of GET_INFO
(keyword_ variable, "name"):

new_key :=KEY NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
!

IF GET_INFO (new_key, "key_modifiers") <> 0
THEN

the name := GET_INFO (new_key, "name")
ENDIF;
MESSAGE (STR (the_name));

The first statement creates a VAXTPU key name for the key sequence
produced by pressing the CTRL key, the SHIFT key, and the 4 key on
the keypad all at once. The new key name is assigned to the variable
key _name. The IF clause of the statement shows how to test whether
a key name was created using one or more key modifier keywords.
(Note, however, that this statement does not detect whether a key
name was created using the keyword SHIFT_KEY. The built-in GET_
INFO (key_name, "key_modifiers") returns 0 even if the key name was
created using SHIFT_KEY.) The THEN clause shows how to fetch the
key modifier keyword or keywords used to create a key name. The final
statement displays the string KEY_NAME (KP4, SHIFT_MODIFIED,
ALT_MODIFIED) in the message buffer.

"name"
Returns the string equivalent of the specified keyword.

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (any_variable)

GET_INFO (any_variable)

FORMAT

Returns a keyword specifying the data type of the variable.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

keyword := GET_INFO (any_variable, "type'~

PARAMETERS "type"
Returns a keyword that is the data type of the variable specified in any_
variable.

EXAMPLE
IF GET_INFO (select_popup, "type") <> WIDGET

THEN

ENDIF;
MESSAGE ("Select_popup widget not created.")

The preceding code tests whether the variable select_JJopup has been
assigned a widget instance. If not, the code causes a message to be
displayed on the screen.

7-165

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {ARRAY)

GET_INFO (ARRAY)

FORMAT

Returns an array in VAXTPU's internal list of arrays.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

I
"current")
"first"

array := GET _INFO (ARRAY, "last")
"next"
''previous"

PARAMETERS "current"

7-166

Returns the current array in VAX.TPU's internal list of arrays. You must
use either GET_INFO (ARRAY, "first") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "current"). If you use these built­
ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "current") returns 0.

"first"
Returns the first array in the VAX.TPU internal list of arrays. Returns 0 if
no arrays are defined.

"last"
Returns the last array in the VAX.TPU internal list of arrays. Returns 0 if
no arrays are defined.

"next"
Returns the next array in VAX.TPU's internal list of arrays. You must
use GET_INFO (ARRAY, "first") before you can use GET_INFO (ARRAY,
"next"). Returns 0 if no arrays are defined.

''previous"
Returns the previous array in VAX.TPU's internal list of arrays. You must
use either GET_INFO (ARRAY, "current") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "previous"). If you use these
built-ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "previous") returns 0.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (array_variable)

GET_INFO {array_variable)

FORMAT

Returns information about a specified array.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

array
buffer
integer
keyword
marker
process
range
string
widget
window
unspecified

"current"
"first"
"high_index"

:= GET_INFO (array_variable, "last")
"low_index"
"next"
''previous"

PARAMETERS "current"
Returns the index value of the current element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no current element.

You must use either GET_INFO (array_ variable, "first") or GET_INFO
(array_variable, "last") before you can use GET_INFO (array_variable,
"current").

"first"
Returns the index value of the first element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no first
element.

"high_index"
Returns an integer that is the highest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

"last"
Returns the index value of the last element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no last
element.

"low index"
Returns an integer that is the lowest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

7-167

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (array_variable)

7-168

"next"
Returns the index value of the next element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no next
element.

You must use GET_INFO (array_variable, 11first 11
) before you can use

GET_INFO (array_variable, "next").

''previous"
Returns the index value of the previous element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no previous element.

You must use either GET_INFO (array_variable, 11 current 11
) or GET_INFO

(array_variable, 11last 11
) before you can use GET_INFO (array_variable,

"previous").

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (BUFFER)

GET _INFO {BUFFER)

FORMAT

Returns a buffer in VAXTPU's internal list of buffers.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

"current"
"erase_unmodifiable"
"find_buffer", buffer_name

buffer :: GET _INFO (BUFFER[SJ "first")
"last"
"next"
''previous"

PARAMETERS "current"
Returns the current buffer in VAXTPU's internal list of buffers. Returns 0
if there is no current buffer.

GET_INFO (BUFFER[S], "current") always returns the current
buffer, regardless of whether or you have first used GET_INFO
(BUFFER[S], "first") or GET_INFO (BUFFER[S], "last"). Thus, GET_
INFO (BUFFER[S], "current") is equivalent to the built-in CURRENT_
BUFFER.

"erase unmodifiable"
Returns lif unmodifiable records can be erased from the specified buffer
and returns 0 if the records cannot be erased.

"find _buffer"
Returns the buffer whose name you specify (as a string) as the third
parameter. Returns 0 if no buffer with the name you specify is found.

"first"
Returns the first buffer in VAXTPU's internal list of buffers. Returns 0 if
there is none.

"last"
Returns the last buffer in VAXTPU's internal list of buffers. Returns 0 if
there is none.

"next"
The next buffer in VAXTPU's internal list of buffers. Returns 0 if there
are no more.

''previous"
Returns the preceding buffer in VAXTPU's internal list of buffers. Returns
0 if there is none.

7-169

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

GET_INFO {buffer_variable)

FORMAT

7-170

Returns information about a specified buffer.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

integer
keyword
learn_sequence
marker := GET _INFO (buffer_ variable,
program
range
string

"before_bol"
"beyond_eob"
"beyond_eol"
"bound"
"character"
"direction"
"eob_text"
"erase_unmodifiable"
"file_name"
"first_ marker"
"first_ range"
'Journaling"
'JournaLfile"
''iournaLname"
"key_map_list"
"left_ margin"
"left_margin_action"
"line"
"map_count"
"max_lines"
"middle_ot_tab"
"mode"
"modifiable"
"modified"
"name"
"next_marker"
"next_ range"
"no_write"
"offset"
"offset_ column"
"output_ file"

\
I

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

''permanent"
"read_routine", GLOBAL_SELECT
"record_count"
"record_number"
"record_size"
"righLmargin"
"righLmargin_action"
"safe_for_journaling"
"system"
"tab_stops"
"unmodifiab/e_records"

PARAMETERS "before bol"

)

Returns aninteger (1 or 0) that indicates whether the editing point is
located before the beginning of a line.

"beyond_eob"
Returns an integer (1 or 0) that indicates whether the editing point is
located beyond the end of a buffer.

"beyond_eol"
Returns an integer (1 or 0) that indicates whether the editing point is
located beyond the end of a line.

"bound"
Returns an integer (1 or 0) that indicates whether or not the marker
that is the specified buffer's editing point is bound to text. For more
information about bound markers, see Chapter 2.

"character"
Returns a string that is the character at the editing point for the buffer.

"direction"
Returns the keyword FORWARD or REVERSE. This parameter is
established or changed with the built-in procedures SET (FORWARD)
and SET (REVERSE).

"eob text"
Return-; a string representing the end-of-buffer text. This parameter is
established or changed with the built-in procedure SET (EOB_TEXT).

"erase unmodifiable"
Returns l if unmodifiable records can be erased from the specified buffer
and returns 0 if the records cannot be erased.

"file name"
Returns a string that is the name of a file given as the second parameter
to CREATE_BUFFER; null if none was specified.

"first marker"
Return-; the first marker in VAXTPU's internal list of markers for the
buffer. Returns 0 if there is none. You must use GET_INFO (buffer_
variable, 11first_marker") before the first use of GET_INFO (buffer_

7-171

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {buffer_variable)

7-172

variable, "next_marker"). If you do not follow this rule, GET_INFO
(buffer_variable, "next_marker") returns 0.

Note that there is no corresponding 11last_marker" or "prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"first_ range"
Returns the first range in VAXTPU's internal list of ranges for the buffer.
Returns 0 if there are none. You must use GET_INFO (buffer_ variable,
11first_range 11

) before you use GET_INFO (buffer_variable, 11 next_range 11
)

or the "next_range" built-in returns 0.

Note that there is no corresponding "last_range" or "prev_range"
parameter.

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

'1ournaling"
Returns 1 if the specified buffer is being journaled or returns 0 if it is not.

'1ournal_file"
Returns a string that is the name of the journal file for the specified buffer.
If the buffer is not being journaled, the call returns 0.

'1ournal_name"
Converts a buffer's name to a journal file name using the VAXTPU default
journal file name algorithm. VAXTPU converts the buffer name to a
journal file name regardless of journaling status. The GET_INFO call does
not require journaling to be turned on for the specified buffer. For more
information on this algorithm, see Section 1. 7 .1.

"key _map_list"
Returns a string that is the key map list bound to the buffer. This
parameter is established or changed with the built-in procedure SET.

"left_ margin"
Returns an integer that is the current left margin setting. This parameter
is established or changed with the built-in procedure SET (LEFT_
MARGIN).

"left_margin_action"
Returns a program or learn sequence specifying what VAXTPU should
do if the user tries to insert text to the left of the left margin. Returns
UNSPECIFIED if no left margin action routine has been set. This
parameter is established or changed with the built-in procedure SET
(LEFT_MARGIN_ACTION).

"line"
Returns a string that is the line of text at the editing point for the buffer.

\
!

/

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

"map_ count"
Returns an integer that is the number of windows associated with the
buffer.

"max lines"
Returns an integer that is the maximum number of records (lines) in
the buffer. This parameter is established or changed with the built-in
procedure SET.

"middle_of_tab"
Returns an integer (1 or 0) that indicates whether the editing point is
located in the white space within a tab.

"mode"
Returns the keyword INSERT or OVERSTRIKE. This parameter is
established or changed with the built-in procedures SET (INSERT) and
SET (OVERSTRIKE).

"modifiable"
Returns an integer (1or0) that indicates whether the buffer is modifiable.

"modified"
Returns an integer (1 or 0) that indicates whether the buffer has been
modified.

"name"
Returns a string that is the name given to the buffer when it was created.

"next marker"
Return;ihe next marker in VAXTPU's internal list of markers for the
buffer. Returns 0 ifthere are no more. You must use GET_INFO (buffer_
variable, "first_marker") before you use GET_INFO (buffer_variable,
"next_markern) or the "next_marker" built-in returns 0.

Note that there is no corresponding "last_marker" or "prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"next_ range"
Returns the next range in VAXTPU's internal list of ranges for the buffer.
Returns 0 if there are no more. You must use GET_INFO (buffer_ variable,
11first_range 11

) before you use GET_INFO (buffer_variable, 11next_range 11
)

or the "next_range" built-in returns 0.

Note that there is no corresponding "last_range" or "prev_range"
parameter.

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

7-173

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {buffer_variable)

7-174

"no write"
Returns an integer (1 or 0) that indicates whether the buffer should be
written to a file at exit time. Note that VAXTPU writes the buffer to a
file only if the buffer has been modified during the editing session. This
parameter is established or changed with the built-in procedure SET (NO_
WRITE).

"offset"
Returns an integer that is the number of characters between the left
margin and the editing point. The left margin is counted as character
0. A tab is counted as one character, regardless of width. Window shifts
have no effect on the value returned when you use 11offset 11

• The value
returned has no relation to the visible screen column in which a character
is displayed.

"offset column"
Returns ~ integer that is the screen column in which VAXTPU displays
the character at the editing point. When calculating this value, VAXTPU
does not take window shifts into account; VAXTPU assumes that any
window mapped to the current buffer is not shifted. The value returned
when you use "offset_column" reflects the location of the left margin
and the width of tabs preceding the editing point. In contrast, the value
returned when you use "offset" is not affected by the location of the left
margin or the width of tabs.

"output_ file"
Returns a string that is the name of the file used with the built-in
procedure SET (OUTPUT_FILE). Returns 0 if there is no output file
associated with the specified buffer. This parameter is established or
changed with the built-in procedure SET (OUTPUT_FILE).

''permanent"
Returns an integer (1 or 0) that indicates whether the buffer is permanent
or can be deleted. This parameter is established or changed with the
built-in procedure SET (PERMANENT).

"read routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

GLOBAL_SELECT is a keyword indicating that the built-in is to return
the global selection read routine. When you use "read_routine" as the
second parameter to this built-in, you must use the keyword GLOBAL_
SELECT as the third parameter, as follows:

GET_INFO (buffer_variable, "read_routine", GLOBAL_SELECT)

"record count"
Returns aninteger that is the number of records (lines) in the buffer.
Note that GET_INFO (buffer, "record_count") does not count the end-of­
buffer text as a record, but GET_INFO (marker, "record_number") does
if the specified marker is on the end-of-buffer text. Thus, the maximum
value returned by GET_INFO (buffer, "record_count") is one less than the

(

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

maximum value returned by GET_INFO (marker, "record_number") if the
specified marker is on the end-of-buffer text.

"record_number"
Returns the record number of the editing point.

"record size"
Returns an integer that is the maximum length for records (lines) in the
buffer.

"right_ margin"
Returns an integer that is the current right margin setting. This
parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN).

"right_margin_action"
Returns a program or learn sequence specifying what VAXTPU should do
if the user tries to insert text to the right of the right margin. Returns
TPU$K_ UNSPECIFIED if the buffer does not have a right margin action.

This parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN_ACTION).

"safe_ for Journaling"
Returns 1 if the specified buffer is safe for journaling or returns 0 if it
is not. "Safe_forjournaling" means that journaling can be turned on by
using the SET (JOURNALING) built-in procedure. A buffer is safe for
journaling if it is empty, has never been modified, or has not been modified
since the last time it was written to a file.

"system"
Returns an integer (1 or 0) that indicates whether the buffer is a system
buffer. This parameter is established or changed with the built-in
procedure SET (SYSTEM).

"tab_stops"
Returns either an integer or a string. Use the built-in SET (TAB_STOPS)
to determine the data type of the return value. If you specify a return
value of type string, the built-in GET_INFO (buffer_ variable, 11tab_stops 11

)

returns a string representation of all the column numbers where tab stops
are set. The column numbers are separated by spaces. If you specify a
return value of type integer, the return value is the number of columns
between tab stops.

"unmodifiable records"
Returns 1 if the specified buffer contains one or more unmodifiable records.
The call returns 0 if no unmodifiable records are present in the specified
buffer.

7-175

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

GET _INFO (COMM,AND _LINE)

FORMAT

Returns information about t~e command line used to invoke VAXTPU.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

{ integer }:= GET_INFO (COMMAND_LINE,
string

"character"
"command"
"command_ file"
"create"
"display"
"file_name"
"initialization"
"init_file"
"initialization_ file"
'Journal"
'JournaLfile"
"line"
"modify"
"no modify"
"output"
"output_ file"
"read_only"
"recover"
"start_ character"
"start_ record"
"section"
"section_file"
"work_ file"
"write"

PARAMETERS "character"

7-176

Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START_POSITION qualifier is not
specified. This parameter is the same as the "start_character" parameter.

"command"
Returns an integer (1 or 0) that indicates whether /COMMAND was
specified when you invoked VAXTPU.

"command_file"
Returns a string that is the command file specification.

\
)

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {COMMAND_LINE)

"create"
Returns an integer (1 or 0) that indicates whether /CREATE is active
(either by default or because /CREATE was specified when VAXTPU was
invoked).

"display"
Returns an integer (1 or 0) that indicates whether /DISPLAY or
/INTERFACE is active (either by default, or because /DISPLAY or
/INTERFACE was specified when VAXTPU was invoked).

"file name"
Retuii's a string that is a file specification used as a parameter when the
user invokes VAXTPU.

"initialization"
Returns an integer (1 or 0) that indicates whether /INITIALIZATION is
active (either by default or because /INITIALIZATION was specified when
VAXTPU was invoked).

"in it file"
Returrui a string that is a file specification for /INITIALIZATION. This is a
synonym for GET_INFO (COMMAND_LINE, "initialization_file").

"initialization file"
Returns a string that is the initialization file specification for
/INITIALIZATION.

'1ournal"
Returns an integer (1or0) that indicates whether /JOURNAL is active
(either by default or because /JOURNAL was specified when VAXTPU was
invoked).

'1ournal_ file"
Returns a string that is the journal file specification for /JOURNAL.

"line"
Returns an integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START_POSITION qualifier is not specified.
This parameter is the same as the 11start_record11 parameter.

"modify"
Returns an integer (1or0) that indicates whether the qualifier /MODIFY
was specified when VAXTPU was invoked by the user or by another
program.

"nomodify"
Returns an integer (1 or 0) that indicates whether the qualifier
/NOMODIFY was specified when VAXTPU was invoked by the user or
by another program.

"output"
Returns an integer (1 or O) that indicates whether /OUTPUT is active
(either by default or because /OUTPUT was specified when VAXTPU was
invoked).

7-177

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

7-178

"output_ file"
Returns a string that is the output file specification for /OUTPUT.

"read_only"
Returns an integer (1 or 0) that indicates whether /READ_ONLY was
specified when VAXTPU was invoked. For more information on this call,
see Chapter 5.

"recover"
Returns an integer (1 or 0) that indicates whether /RECOVER was
specified when VAXTPU was invoked.

"start_ character"
Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START_POSITION qualifier is not
specified.

This parameter is a synonym for "character".

"start record"
Returnsan integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START_POSITION qualifier is not specified.
This parameter is a synonym for "line".

"section"
Returns an integer (1 or 0) that indicates whether /SECTION is active
(either by default or because /SECTION was specified when VAXTPU was
invoked).

"section file"
Returns a string that is the section file specification for /SECTION.

"work_ file"
Returns a string that is the work file specification for /WORK.

"write"
Returns an integer (1 or 0) that indicates whether /WRITE was specified
when VAXTPU was invoked. For more information on this statement, see
Chapter 5.

\
)

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {DEBUG)

GET _INFO {DEBUG)

FORMAT

Returns information about the status of a debugging session using the
VAXTPU Debugger.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

string
contents
integer :: GET _INFO (DEBUG,
parameter
string
variable

"breakpoint"
"examine", variable_name
"line_number"
"local"
"next"
''parameter"
''previous"
''procedure"

)

PARAMETERS "breakpoint"
Returns a string that is the name of the first breakpoint. This establishes
a breakpoint context for the "next" and ''previous" parameters. TPU$_
NO NAMES is returned if there are no breakpoints.

"examine"
Returns the contents of the specified variable. TPU$_NONAMES is
returned if the specified variable cannot be found.

You must speeify a string containing the name of the variable as the third
parameter to GET_1NFO (DEBUG, "examine").

"line number"
Returns an integer that is the line number of the breakpoint within the
procedure. If the procedure is unnamed, 0 is returned.

"local"
Returns the first local variable in the procedure. This establishes a context
for the "next'' and ''previous" parameters. TPU$_NONAMES is returned if
there are no local variables.

7-179

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO (DEBUG)

7-180

"next"
Returns the next parameter, local variable, or breakpoint. Before using
GET_INFO (DEBUG, "next"), you must first use one of the following
built-ins:

• GET_INFO (DEBUG, "local")

• GET_INFO (DEBUG, "breakpoint")

• GET_INFO (DEBUG, "parameter")

TPU$_NONAMES is returned if there are no m~re.

''parameter"
Returns the first parameter of the procedure. GET_INFO (DEBUG,
"parameter") causes the VAXTPU Debugger to construct a list of all the
formal parameters of the procedure you are debugging. Once this list is
constructed, you can use GET_INFO (DEBUG, "next") and GET_INFO
(DEBUG, "previous"). VAXTPU signals TPU$_NONAMES if the procedure
you are debugging does not have any parameters.

''previous"
Returns the previous parameter, local variable, or breakpoint. TPU$_
NONAMES is returned ifthere are no more.

''procedure"
Returns a string that is the name of the procedure containing the
breakpoint. The null string is returned if the procedure has no name.

""')

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {DEFINED_KEY)

GET _INFO {DEFINED _KEY)

FORMAT

Returns a keyword that is the key name of a specified key. GET_INFO
(DEFINED_KEY) takes a string as a third parameter. The string specifies the
name of either the key map or key map list to be searched.

Note that "current" is not valid when the first parameter is DEFINED_KEY or
KEY _MAP, although it is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

keyword :: GET _INFO
{

"first" }
"last"

(DEFINED_KEY, "next" , name_string)

''previous"

PARAMETERS "first"
Returns a keyword that is the key name of the first key in the specified
key map or key map list.

"last"
Returns a keyword that is the key name of the last key in the specified
key map or key map list.

"next"
Returns a keyword that is the key name of the next key in the specified
key map or key map list. Returns 0 if last. Use string constant "first"
before using "next."

''previous"
Returns a keyword that is the key name of the previous key in the
specified key map or key map list. Returns 0 if first. Use "last" before
using ''previous."

7-181

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {integer_variable)

GET_INFO (integer_variable)

FORMAT

Returns the string representation of any. integer that is an equivalent of a
keyword.

For general information about using all forms of GET _INFO built-ins, see
the description of GET_INFO. See also the description of GET_INFO (any_
keyword).

string == GET _INFO (integer, "name'?

PARAMETERS integer

7-182

Returns an integer that is the equivalent of a VAX.TPU keyword. When
you use GET_INFO (integer, "name"), the built-in returns the string
representation of the keyword that is equivalent to the specified integer.

For example, the following statement assigns the string object to the
variable equiv _string:

equiv_string := GET_INFO (10, "name");

(The value 14 is the integer equivalent of the keyword PROCESS.)

Note that you should not use the integer equivalents of keywords in
VAX.TPU code. Digital does not guarantee that the existing equivalences
between integers and keywords will always remain the same.

"name"
Returns the string equivalent of the specified integer or keyword.

(

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (KEY_MAP)

GET_INFO {KEV_MAP)

FORMAT

Returns information about a key map in a specified key map list. GET _INFO
(KEY _MAP) takes a string as a third parameter. The string specifies the name
of the key map list to be searched.

Note that "current" is not valid when the first parameter is DEFINED_KEY or
KEY _MAP, although it .is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~tring } :: GET INFO
mteger - {

"first" }
"last"

(KEY_MAP, "next" , name_string)

''previous"

PARAMETERS "first"
Returns a string that is the name of the first key map in the key map list.
Returns 0 if there is none.

"last"
Returns a string that is the name of the last key map in the key map list.
Returns 0 if there is none.

"next"
Returns a string that is the name of the next key map in the key map list.
Returns 0 if there is none. Use string constant "first" before using "next."

''previous"
Returns a string that is the name of the previous key map in the key map
list. Returns 0 if there is none. Use "last" before using ''previous."

7-183

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (KEY_MAP _LIST)

GET _INFO {KEV _MAP _LIST)

FORMAT

Returns information about a key map list.

Note that "current" is not valid when the first parameter is DEFINED_KEY or
KEY _MAP, although it is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~tring } :: GET INFO
mteger - !

"current"
"first"

(KEY_MAP _L/ST, "last"
"next"
''previous"

PARAMETERS "current"

7-184

Returns a string that is the name of the current key map list. Returns 0 if
there is none.

"first"
Returns a string that is the name of the first key map list. Returns 0 if
there is none.

"last"
Returns a string that is the name of the last key map list. Returns 0 if
there is none.

"next"
Returns a string that.is the name of the next key map list. Returns 0 if
there is none. Use string constants "current" or "first" before using "next."

"previous"
Returns a string that is the name of the previous key map list. Returns 0
if there is none. Use "current" or ''last" before using ''previous."

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

GET_INFO {marker_variable)

FORMAT

Returns information about a specified marker.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ::::~r } :: GET _INFO
keyword

"before_bol"
"beyond_eob"
"beyond_eol"
"bound"
"buffer"
"display_ value"
"left_ margin"

(marker_ variable,

"middle_ot_tab")
"offset"
"offset_ column"
"record_number"
"right_ margin"
"unmodifiable_records"
"video"
"within_range", range

PARAMETERS "before bol"
Returns 1 if the specified marker is located before the beginning of a line;
returns 0 if it is not.

"beyond_eob"
Returns 1 if the specified marker is located beyond the end of a buffer;
returns 0 if it is not.

"beyond_ ea/"
Returns 1 if the specified marker is located beyond the end of a line;
returns 0 if it is not.

"bound"
Returns 1 if the specified marker is attached to a character; returns 0 if
the marker is free. For more information on bound and free markers, see
Section 2.6.

"buffer"
Returns the buffer in which the marker is located.

7-185

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

7-186

"display_valu~"
Returns the display value of the record in which the specified marker is
located. For more information about display values, see the descriptions of
the SET (DISPLAY_ VALUE) and SET (RECORD_ATTRIBUTES) built-in
procedures.

"left_ margin"
Returns an integer that is the current left margin setting of the line
containing the lllarker.

"middle of tab"
Returns an integer'cl or 0) that indicates whether the marker is located in
the white space create4 by a tab.

"offset"
Returns an integer that is the number of characters between the left
margin and the marker. The left margin is counted as character 0. A tab
is counted as one char~cter, regardless of width. Window shifts have no
effect on the value returned when you use "offset." The value returned has
no relation to the visible screen column in which the character bound to
the marker is displayed.

"offset column"
Returns an integer that is the screen column in which VAXTPU displays
the character to which the lllarker is bound. When calculating this value,
VAXTPU does not t~e window shifts into account; VAXTPU assumes
that any window mapped to the ~urrent buffer is not shifted. The value
returned when yoµ use "offset_column" does reflect the location of the left
margin and the width of tabs preceding the editing point. In contrast, the
value returned when yol,l use "o{f$et" is not affected by the location of the
left margin or the width of ta)>s.

"record number''
Returns an integert.h~t is the n~ber associated with the record (line)
containing the s,pecifi.ed m_ark~r.

A record number indicates the location of a record in a buffer. Record
numbers are. dyn.amici as ·you add or delete records, VAXTPU changes
the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible
in a window or w}lether the record contains text. Note that GET_INFO
(marker, "record_number") c.ol,lllts the end-of-buffer text as a record if
the specified 11-1arker is on ~he end-of-buffer text, but GET_INFO (buffer,
"record_count") nev~r counts the end-of-buffer text as a record. Thus, it
is possible for the value returned by GET_INFO (buffer, "record_count")
to be one less than the maximum value returned by GET_INFO (marker,
"record_number").

"right_m$rgin"
Returns an integ~r that is the current right margin setting of the line
containing the marker.

"unmodifiable records"
Returns 1 ff th,e .re~ord .contaiining the specified marker is unmodifiable.
The call return.s 0 if the record is modifiable.

" I
/

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

"video"
Returns a keyword that is the video attribute of the marker. Returns 0 if
the marker is a free marker.

"within_range"
Returns an integer (1 or 0) that indicates whether the marker is in the
range specified by the third parameter.

7-187

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (mouse_event_keyword}

GET_INFO {mouse_event_keyword)

FORMAT

Returns information about a mouse event. A mouse_event_keyword is a
keyword representing a single click, multiple click, upstroke, downstroke, or
drag of a mouse button. For a list of the valid mouse event keywords that you
can ·use for the first parameter, see Table 7-3.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ in~eger } := GET INFO (mouse_event_keyword,
wmdow -

{ "mouse_button" }J
"window"

PARAMETERS "mouse button"

7-188

Returns an integer that is the number of the mouse button specified with
a mouse event keyword.

Table 7-3 lists the valid keywords for the first parameter when you use
"mouse_button" as the second parameter.

Table 7-3 VAXTPU Keywords Representing Mouse Events

M1UP M2UP M3UP M4UP M5UP

M1DOWN M2DOWN M3DOWN M4DOWN M5DOWN

M1DRAG M2DRAG M3DRAG M4DRAG M5DRAG

M1CLICK M2CLICK M3CLICK M4CLICK M5CLICK

M1CLICK2 M2CLICK2 M3CLICK2 M4CLICK2 M5CLICK2

M1CLICK3 M2CLICK3 M3CLICK3 M4CLICK3 M5CLICK3

M1CLICK4 M2CLICK4 M3CLICK4 M4CLICK4 M5CLICK4

M1CLICK5 M2CLICK5 M3CLICK5 M4CLICK5 M5CLICK5

"window"
Returns the window in which the down stroke occurred that started the
current drag operation. Returns 0 if no drag operation is in progress for
the specified mouse button when the built-in is executed.

The valid keywords for the first parameter when you use "window" as the
second parameter are MlDOWN, M2DOWN, M3DOWN, M4DOWN, and
M5DOWN.

'·
)

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (mouse_event_keyword)

EXAMPLES
I x := GET INFO (M3CLICK2, "mouse_button");

This statement causes VAXTPU to assign the value 3 to the variable x.

I the_key := READ_KEY;
IF GET_INFO (the_key, "mouse_button") = 3
THEN

MESSAGE ("MB3 has no effect in this context.");

These statements test whether you have pressed MB3 and, if so, display a
message in the message window.

I PROCEDURE sample_ml_drag

LOCAL the window,
new:=window,
column,
row,
temp;

the window :=GET INFO (MlDOWN, "window");
IF the window = 0-
THEN

RETURN (FALSE)
ENDIF;

LOCATE_MOUSE (new_window, column, row);

IF the window <> new window - -
THEN

MESSAGE ("Invalid drag of pointer across window boundaries.");
ENDIF;
ENDPROCEDURE;

This procedure, when bound to MlDRAG, responds to a drag event by
checking whether you have dragged the mouse across window boundaries.
If you have, the procedure displays a message. If not, the procedure
creates a select range.

7-189

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (PROCEDURES)

GET_INFO {PROCEDURES)

FORMAT

Returns information about a specified procedure. GET _INFO
(PROCEDURES) takes a string as a third parameter. The string specifies
the name of the procedure about which you are requesting information.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{

"defined" }
integer := GET _INFO (PROCEDURES, "minimum_parameters" ,

"maximum_parameters"
string)

PARAMETERS "defined"

7-190

Returns an integer (1 or 0) that indicates whether the specified procedure
is user defined.

"minimum_parameters"
Returns an integer that is the minimum number of parameters required
for the specified user-defined procedure.

"maximum_parameters"
Returns an integer that is the maximum number of parameters required
for the specified user-defined procedure.

string
A string that is the name of the procedure about which you want
information.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (PROCESS)

GET _INFO (PROCESS)

FORMAT

Returns a specified process in VAXTPU's internal list of processes.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

process :: GET _INFO (PROCESS,!

"current" I
"first"
"last")
"next"
''previous"

PARAMETERS "current"
Returns the current process in VAXTPU's internal list of processes. You
can only use GET_INFO (PROCESS, "current") after you have used GET_
INFO (PROCESS, "first") or GET_INFO (PROCESS, "last"). The built-in
returns 0 if you do not use these GET_INFO built-ins in the correct order.

"first"
Returns the first process in VAXTPU's internal list of processes. Returns 0
if there is none.

"last"
Returns the last process in VAXTPU's internal list of processes. Returns 0
if there is none.

"next"
Returns the next process in VAXTPU's internal list of processes. Returns
0 if there are no more processes. Use ''first" before using "next".

''previous"
Returns the preceding process in VAXTPU's internal list of processes.
Returns 0 if there is no previous process. Use "last" before using
''previous".

7-191

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {process_variable)

GET_INFO {process_variable)

FORMAT

Returns information about a specified process.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~uffer } :: GET INFO
mteger - {

"buffer" }
(process_ variable, ''pid")

PARAMETERS "buffer"
Returns the buffer associated with the process.

"pid"
Returns an integer that is the process identification number.

7-192

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO {range_variable)

GET_INFO {range_variable)

FORMAT

Returns information about a specified range.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ buffer } := GET INFO (range_ variable,
keyword -

{
"buffer" }
"unmodifiable_records")
"video"

PARAMETERS "buffer"
Returns the buffer in which the range is located.

"unmodifiable records"
Returns 1 if the specified range contains one or more unmodifiable records.
The call returns 0 if no unmodifiable records are present in the specified
range.

"video"
Returns a keyword that is the video attribute of the range.

7-193

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

GET _INFO {SCREEN)

FORMAT

7-194

Returns information about the screen.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

array
integer
keyword
learn_sequence
PRIMARY := GET _INFO (SCREEN,
program
SECONDARY
selection_name
string

"active_area"
"ansi_crt"
"auto_repeat"
"avo"
"client_ message"
"client_message_routine"
"cross_window_bounds"
"current_ column"
"current_ row"
"dec_crt"
"dec_crt2"
"decwindows"
"detached_action"
"detached_reason"
"edit_ mode"
"eightbit"
"event", GLOBAL SELECT

{

-PRIMARY }
''globa/_select'~ SECONDARY

selection_name

''grab routine" { GLOBAL_SELECT }
- I INPUT_FOCUS

"icon_name"
"input_ focus"
"length"
"line_editing"

(
'"

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

"mouse"
"new_length"
"new_ width"
"old_length"
"old~width"
"originaUength"
"originaLwidth"
''prompt_ length"
''prompt_ row"
"read_routine", GLOBAL_SELECT
"screen_limits"
"screen_update"
"scroll"
"time'~ GLOBAL_SELECT

,, b t' ,, { GLOBAL SELECT }
ungra _rou me ' INPUT_FOCUS

"visible_length"
"vk100"
"vt100"
"vt200"
"vt300"
"width"

PARAMETERS "active area"
Returns an array containing information on the location and dimensions
of the application's active area. Returns the integer 0 if there is no active
area. The active area is the region in a window in which VAXTPU ignores
movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, VAXTPU interprets
the event as a click if the upstroke occurs in the active area with the
downstroke. If the upstroke occurs outside the active area, VAXTPU
interprets the event as a drag operation.

A VAXTPU layered application can have only one active area at a time,
even if the application has more than one window visible on the screen.
An active area is only valid if you are pressing a mouse button. The
default active area occupies one character cell. By default, the active area
is located on the character cell pointed to by the pointer cursor.

For information on mouse button clicks, which are related to the concept
of an active area, see the XUI Style Guide.

GET_INFO (SCREEN, "active_area")r,returns five pieces of information
about the active area in integer-indexed elements of the returned array.
You need not µse the CREATE_ARRAY built-in before using GET_INFO
(SCREEN, "active_area"); VAXTPU assigns a properly structured array to
the return variable you specify. The structure of the array is as follows:

Array Element

array {1}

array {2}

Contents

The window containing the active area

The column forming the leftmost edge of the active area

7-195

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-196

Array Element

array {3}

array {4}

array {5}

"ansi crt"

Contents

The row forming the top edge of the active area

The width of the active area, expressed in columns

The height of the active area, expressed in rows

Returnsan integer (1 or 0) that indicates whether the terminal is an
ANSI_ CRT.

"auto_ repeat"
Returns an integer (1 or 0) that indicates whether the terminal's
autorepeat feature is on.

"avo"
Returns an integer (1 or 0) that indicates whether the ADVANCED_
VIDEO attribute has been set for the terminal.

"client_ message"
Returns a key-Word indicating whether VAX.TPU has received a KILL_
SELECTION client message or a STUFF _SELECTION client message. If
the call is used when there is no current client message, the integer 0 is
returned.

GET_INFO (SCREEN, "client_message") is used in a VAXTPU-layered or
EVE-layered application's client message routine. This routine provides
the application's response to a client message received from another
application.

GET_INFO (SCREEN, "client_message") returns the keyword KILL_
SELECTION when the user is copying from an application layered on
VAXTPU or on EVE that owns the input focus to another application.
To do so, the user selects text in the VAXTPU/EVE-layered application.
This designates the text to be placed in the primary global selection when
another application asks to read the selection. Next, the user clicks the
MB3 button in the other application. This causes the text in the primary
global selection to be copied at the location indicated by the pointer when
the user clicked on MB3. If the user uses CTRUMB3 to copy the selection
into the other application, this means that after the selection is copied
into the other application, it is deleted from the VAXTPU/EVE-layered
application. In this case, after the other application inserts the text from
the primary global selection, that application sends a KILL_SELECTION
client message to the VAXTPU/EVE-layered application. When the
VAXTPU/EVE-layered application detects that a client message has been
received, it executes its client message routine. This routine contains a
statement using GET_INFO (SCREEN, "client_message"). In the case
described here, the return value is the keyword KILL_SELECTION. The
VAXTPU/EVE-layered application then deletes the selected text.

GET_HiFO (SCREEN, "client_message") returns the keyword STUFF_
SELECTION when the user is copying from some application into the
VAXTPU/EVE-layered application that owns the input focus. The user
performs a drag operation using the MB3 button to select the text in
the other application. The application grabs ownership of the secondary
global selection and assigns to it the selected text. The application then
sends a STUFF_SELECTION client message to the VAXTPU/EVE-layered
application. When the VAXTPU$VE-layered application detects that a

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

client message has been received, it executes its client message routine.
This routine contains a statement using GET_INFO (SCREEN, "client_
message"). In the case described here, the return value is the keyword
STUFF _SELECTION. The VAXTPU/EVE-layered application then inserts
the text from the secondary global·selection at the VAXTPU/EVE-layered
application's editing point.

"client_message_routine"
Returns the program or learn sequence designated as an application's
client message action routine. Returns 0 if none is designated.

"cross window bounds"
Returns m integer (l~r 0) that indicates whether the CURSOR_
VERTICAL built-in causes the cursor to cross a window boundary if
the cursor is at the top or bottom of the window.

"current_ column"
Returns an integer that is the number of the current column.

"current row"
Returns an integer that is the number of the current row.

"dee crt"
Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

"dee crt2"
Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT2. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

"decwindows"
Returns 1 if your system is running the DECwindows version ofVAXTPU,
otherwise returns 0. For more information about the DECwindows version
ofVAXTPU, see Chapter 1.

"detached_action"
Returns the current detached action routine. If no such routine is
designated, returns the type UNSPECIFIED.

"detached reason"
Returns a bit-encoded integer indicating which of the five possible
detached states the cursor is in.

Digital recommends that you use the VAXTPU predefined constants rather
than the actual integers to refer to the reasons for detachment. Table 7-4
shows the correspondence of constants, integers, and reasons.

7-197

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-198

Table 7-4 Detached Cursor Flag Constants

Constant Value

TPU$K_ OFF _LEFT

TPU$K_OFF _RIGHT 2

TPU$K_INVISIBLE 4

TPU$K_DISJOINT 8

TPU$K_UNMAPPED 16

Reason

The editing point is off the left side of the current
window.

The editing point is off the right side of the current
window.

The editing point is on a record that is invisible in
the current window.

The current buffer is not mapped to the current
window.

No current window exists.

Note that it is possible for TPU$K_INVISIBLE to be set in combination
with either the TPU$K_OFF_LEFT or TPU$K_OFF_RIGHT flags.

"edit mode"
Returns an integer (1or0) that indicates whether the terminal is set to
edit mode.

"eightbit"
Returns an integer (1or0) that indicates whether the terminal uses 8-bit
characters.

"event"
This parameter is used with DECwindows only.

When you use "event" as the second parameter, you must specify the
keyword GLOBAL_SELECT as the third parameter. GLOBAL_SELECT
indicates that GET_INFO is to supply information about a global selection.

If called from within a global selection grab or ungrab routine, GET_INFO
(SCREEN, "event", GLOBAL_SELECT) identifies the global selection that
was grabbed or lost. GET_INFO (SCREEN, "event", GLOBAL_SELECT)
returns a keyword if the global selection was the primary or secondary
selection. The built-in returns a string naming the global selection if
the grab or ungrab involves a global selection other than the primary or
secondary selection.

If called from within a routine that responds to requests for information
about a global selection, GET_INFO (SCREEN, "event", GLOBAL_
SELECT) returns an array. The array contains the information an
application needs to respond to the request for information about the
global selection. The array contains the following information:

array {1} The keyword PRIMARY, the keyword SECONDARY, or a string. This
element identifies the global selection about which information was
requested.

array {2} A string. This element identifies the global selection property about
which information has been requested.

The GET_INFO (SCREEN, "event") built-in returns 0 if the built-in is not
responding to a grab, an ungrab, or a selection information request.

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"global_ select"
This parameter is used with DECwindows only.

Returns the integer 1 if VAXTPU currently owns the specified global
selection; 0 if it does not.

You must specify one of the following parameters as a third parameter to
GET_INFO (SCREEN, "global_select"):

PRIMARY A keyword directing VAXTPU to get information on the
primary global selection.

SECONDARY A keyword directing VAXTPU to get information on the
secondary global selection.

selection_name A string identifying the global selection about which
VAXTPU is to get information.

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"grab_routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence designated as the application's
global selection or input focus grab routine. Returns the integer 0 if the
requested grab routine is not present.

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "grab_routine"):

GLOBAL_SELECT A keyword indicating that GET_INFO is to return the global
selection grab routine.

INPUT_FOCUS A keyword indicating that GET_INFO is to return the input
focus grab routine.

"icon name"
This pa;:-ameter is used with DECwindows only.

Returns the string used as the layered application's name in the
DECwindows icon box.

"input_ focus"
This parameter is used with DECwindows only.

Returns an integer (1or0) indicating whether VAXTPU currently owns
the input focus. Input focus is the ability to process user input from the
keyboard.

"length"
Returns an integer that is the current length of the screen (in rows).

"line_editing"
Returns an integer (1 or 0) indicating whether the line-editing terminal
attribute is turned on. On a character-cell terminal, returns 1 if the
line-editing terminal attribute is turned on, otherwise returns 0. In
DECwindows VAXTPU, this parameter always returns 0.

7-199

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-200

"mouse"
Returns an integer (1 or 0) that indicates whether VAXTPU's mouse
support capability is turned on.

"new_length"
This parameter is used with DECwindows only.

Returns an integer that is the length (in rows) of the screen after the
resize action routine is executed.

Resize action routines should use the length returned by GET_INFO
(SCREEN, "new _length") to determine the length of their windows. If it is
used outside a resize action routine, this length is the same as the current
length of the screen.

"new width"
This parameter is used with DECwindows only.

Returns an integer that is the width (in columns) of the screen after the
resize action routine is executed.

Resize action routines should use the length returned by GET_INFO
(SCREEN, "new_width") to determine the width of their windows. lfit is
used outside a resize action routine, this width is the same as the current
width of the screen.

"old_length"
This parameter is used with DECwindows only.

Returns an integer that is the length (in rows) of the screen before the
most recent resize event.

The "old_length" value is initially set to the length of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"old_ width"
This parameter is used with DECwindows only.

Returns the width (in columns) of the screen before the most recent resize
event.

The "old_width" value is initially set to the width of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"original_ length"
Returns an integer that is the number of lines the screen had when
VAXTPU was invoked.

"original_ width"
Returns an integer that is the width of the screen when VAXTPU was
invoked.

''prompt_ length"
Returns an integer that is the number of lines in the prompt area.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

"prompt_ row"
Returns an integer that is the screen line number at which the prompt
area begins.

"read routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

You must specify the keyword GLOBAL_SELECT as the third parameter
to GET_INFO (SCREEN, "read_routine"). GLOBAL_SELECT indicates
that GET_INFO is to return the global selection read routine.

"screen limits"
Returns an integer-indexed array specifying the minimum and maximum
screen length and width.

An integer-indexed array uses four elements to specify the minimum and
maximum screen width and length. The array indices and the contents of
their corresponding elements are as follows.

Array
Element

array {1}

array {2}

array {3}

array {4}

Contents

The minimum screen width, in columns. This value must be at least
o and less than or equal to the maximum screen width. The default
value is 0.

The minimum screen length, in lines. This value must be at least 0
and less than or equal to the maximum screen length. The default
value is 0.

The maximum screen width, in columns. This value must be greater
than or equal to the minimum screen width and less than or equal to
255. The default value is 255.

The maximum screen length, in lines. This value must be greater
than or equal to the minimum screen length and less than or equal
to 255. The default value is 255.

"screen_ update"
Returns an integer (1 or 0) that indicates whether screen updating is
turned on.

"scroll"
Returns an integer (1 or 0) that indicates whether the terminal has
scrolling regions. For more information on scrolling regions, see the
description of the built-in SET (SCROLLING).

7-201

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-202

"time"
This parameter is used with DECwindows only.

Returns a string in VMS delta time format indicating the amount of time
after requesting global selection information that VAXTPU waits for a
reply. When the time has expired, VAXTPU assumes the request will not
be answered.

You must specify the keyword GLOBAL_SELECT as the third parameter
to GET_INFO (SCREEN, "time").

"ungrab _routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
loses ownership of a global selection or of the input focus. Returns 0 if the
requested ungrab routine is not present.

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "ungrab_routine"):

GLOBAL_ SELECT

INPUT_FOCUS

A keyword indicating that GET_INFO is to return the global
selection ungrab routine

A keyword indicating that GET_INFO is to return the input
focus ungrab routine

"visible_ length"
Returns an integer that is the page length of the terminal.

"vk100"
Returns an integer (1 or 0) that indicates whether the terminal is a
GIGI.TM

"vt100"
·Returns an integer (1 or 0) that indicates whether the terminal is in the
VTlOO series.

"vt200"
Returns an integer (1 or 0) that indicates whether the terminal is in the
VT200 series.

"vt300"
Returns an integer (1 or 0) that indicates whether the terminal is in the
VT300 series.

"width"
Returns an integer that is the current physical width of the screen.

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (string_variable}

GET_INFO (string_variable)

FORMAT

Returns information about the specified string. The string must be the name
of a keymap or keymap list.

For general information about using all forms of GET _INFO built-ins, see the
description of GEt _INi=O.

{

integet }
keyword :: GET _INFO
program

(string_ variable,

'Journal"
''pre_key_procedure"
''posLkey _procedure"
"self_ insert"
"shift_ key"
"undefined_key"

)

PARAMETERS '1ournal"
Returns an array containing information about the buffer change journal
file whose name you specify with the string parameter. If the specified file
is not a journal file, the integer 0 is returned.

The array indices and the contents of the corresponding elements of the
returned array are as follows:

Index Contents of Element

2

3

4

5

6

7

The name of the buffer whose contents were journaled.

The date and time the journal file was created.

The date and time the edit session started.

The name of the source file. A source file is a file to which the buffer
has been written. The journal file maintains a pointer to the source
file. This enables the journal file to retrieve from the source file the
buffer contents as they were after the last write operation. If the
buffer has not been written out or if none of the source files will be
available during recovery, this element contains a null string.

The name of the output file associated with the buffer. This is the file
name specified with the SET (OUTPUT) built-in.

The narne of the original input file associated with the buffer by the
CREATE_BUFFER built-in. If there is no associated input file or if
the input file will not be available during a recovery, this element
contains a null string.

Tha identification string for the version of VAXTPU that wrote the
journal file.

Note that all elements are of type string.

7-203

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (string_variable)

7-204

''pre_key_procedure"
Returns the program, stored in the specified keymap or keymap list, that
is called before execution of code bound to keys. Returns 0 if no procedure
was defined by SET (PRE_KEY_PROCEDURE).

''post_ key _procedure"
Returns the program, stored in the specified keymap or keymap list, that
is called before execution of code bound to keys. Returns 0 if no procedure
was defined by SET (POST_KEY_PROCEDURE).

"self_ insert"
Returns an integer (1 or 0) that indicates whether printable characters are
to be inserted into the buffer if they are not defined. This parameter is
established or changed with the built-in procedure SET (SELF _INSERT).

"shift_ key"
Returns a keyword that is the key name for the key currently used as
the shift key. This parameter is established or changed with the built-in
procedure SET (SHIFT_KEY).

"undefined_key"
Returns the program that is called when an undefined character is
entered. Returns 0 if the program issues the default message. This
parameter is established or changed with the built-in procedure SET
(UNDEFINED_KEY).

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM}

GET_INFO (SYSTEM)

FORMAT

Returns information about the system.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

(=~~uence l :: GET_INFO
program
string

"bell"
"column_move_ vertical"
"display"
"default_ directory"
"enable_resize"
"facility _name"
"informational"
'1ournaling_frequency"
'1ournaLfile"
"line_number"
"message_action_level"
"message_action_type"

(SYSTEM, "message_f/ags")
''pad_overstruck_tabs"
"recover"
"resize_action"
"section_file"
"shift_key"
"success"
"timed_ message"
"timer"
"traceback"
"update"
"version"
"work_file"

PARAMETERS "bell"
Returns the keyword ALL if the bell is on for all messages. Returns
the keyword BROADCAST if the bell is on for broadcast messages only.
Returns 0 if the SET (BELL) feature is off. This parameter is established
or changed with the built-in procedure SET.

"column move vertical"
Returns 1 if the MOVE_ VERTICAL built-in is set to keep the cursor in
the same column as the cursor moves from line to line. Returns 0 if the
MOVE_ VERTICAL built-in preserves the offset, rather than the column

7-205

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

7-206

position, from line to line. This parameter is established or changed with
the built-in procedure SET (COLUMN_MOVE_ VERTICAL).

"display"
Returns 1 if the /DISPLAY qualifier has been specified by the user or by
default; otherwise, returns 0.

"default_ directory"
Returns the name of the current default directory.

"enable resize"
Returns 1 if resize operations are enabled, otherwise returns 0. By default,
resize operations are not enabled. You can tum resizing on or off with the
built-in SET (ENABLE_RESIZE).

"facility_ name"
Returns a string that is the current facility name. This parameter is
established or changed with the built-in procedure SET (FACILITY_
NAME).

"informational"
Returns an integer (1or0) that indicates whether informational messages
are displayed. This parameter is established or changed with the built-in
procedure SET (INFORMATIONAL).

'1ournaling_frequency"
Returns an integer that indicates how frequently records are written to
the journal file. This parameter is established or changed with the built-in
procedure SET (JOURNALING).

'1ourna/_file"
Returns a string that is the name of the journal file.

"line number"
Returns an integer (1or0) that indicates whether VAXTPU displays the
line number at which an error occurred. This parameter is established or
changed with the built-in procedure SET (LINE_NUMBER).

"message_action_level"
Returns an integer that is the completion status severity level at which
VAXTPU performs the message action you specify. The valid values, in
ascending order of severity, are as follows: 1 (success), 3 (informational),
0 (warning), and 2 (error). This parameter is established or changed with
the built-in procedure SET (MESSAGE_ACTION_LEVEL).

"message _action_ type"
Returns a keyword describing the action to be taken when VAXTPU
signals an error, warning, or message whose severity level is greater than
or equal to the level set with SET (MESSAGE_ACTION_LEVEL). The
possible keywords are NONE, BELL, and REVERSE. This parameter
is established or changed with the built-in procedure SET (MESSAGE_
ACTION_TYPE).

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

"message _flags"
Returns an integer that is the current value of the message flag setting.
This parameter is established or changed with the built-in procedure SET
(MESSAGE_FLAGS).

''pad_ overstruck_tabs"
Returns an integer (1or0) that indicates whether VAXTPU preserves the
white space created by a tab character. This parameter is established or
changed with the built-in procedure SET (PAD_OVERSTRUCK_TABS).

"recover"
Returns an integer (1 or 0) that indicates whether a recovery using a
keystroke journal file is currently in progress. Be careful when using
this built-in-specifying different VAXTPU actions during a recovery
than during an ordinary editing session may cause VAXTPU keystroke
journaling to fail.

"resize_ action"
Returns the program or learn sequence designated as the application's
resize action routine. Returns 0 if the requested resize action routine
is not present. You can designate a resize action routine using the SET
(RESIZE_ACTION) built-in.

"section_file"
Returns a string that is the name of the section file used when the user
invoked VAXTPU.

"shift_ key"
Returns a keyword that is the value of the current shift key set with SET
(SHIFT_KEY) for the current buffer.

"success"
Returns an integer (1 or 0) that indicates whether success messages are
displayed. This parameter is established or changed with the built-in
procedure SET (SUCCESS).

"timed_message"
Returns a string of text that VAXTPU displays at 1-second intervals in the
prompt area if the SET (TIMER) feature is on.

"timer"
Returns the integer 1 if SET (TIMER) has been enabled, otherwise returns
0.

"traceback"
Returns an integer (1or0) that indicates whether VAXTPU displays the
call stack for VAXTPU procedures when an error occurs. This parameter
is established or changed with the built-in procedure SET (TRACEBACK).

7-207

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

"update"
Returns an integer that is the update number of this version ofVAXTPU.

"version"
Returns an integer that is the version number ofVAXTPU.

"work file"
Returns a string that is the name of the work file opened during startup.

7-208

\

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

GET _INFO (WIDGET)

FORMAT

Returns information about VAXTPU widgets in general or about a specific
widget whose name you do not know at the time you use the built-in.

The GET _INFO (WIDGET) built-in is used with DECwindows only.

For general information about using all forms of GET _INFO built-ins, see the
description of GET_INFO.

{
::::: } :: GET INFO (WIDGET.
array - '
NONE

"callback_parameters", array

"childrPn" { widget } array
v ' SCREEN '

"menu_position", mouse_down_button)

"wid t id" { parenLwidget }
ge - ' SCREEN, widgeLname

PARAMETERS "callback_parameters"
Returns the widget instance performing the callback, the closure value
associated with the widget instance, and the reason for the callback. Note
that in DECwindows documentation, the closure is called the tag.

array An array used to return values for the callback, the closure, and the
reason. The array has the following indices of type string: "widget",
"closure", and "reason_code". GET _INFO (WIDGET, "callback_
parameters") places the corresponding values in the array elements.
VAXTPU automatically creates the array in which the return values
are placed.

To use this parameter, specify a variable that has been declared
or initialized before you use it. The initial type and value of the
variable are unimportant. When GET_INFO (WIDGET, "callback_
parameters") places the return values in the array, the initial values
are lost.

Note that the integer on the left side of the assignment operator
indicates whether GET _INFO was used correctly.

GET _INFO (WIDGET, "callback_parameters") should be used in a
widget callback procedure. If you use this built-in outside a widget
callback procedure, the value returned is indeterminate. If you
use the built-in inside a widget callback procedure and callback
information is available, the built-in returns 1.

For more information about callbacks and closure values in
DECwindows VAXTPU, see Chapter 4. For general information
about using callbacks and closure values, see the VMS DECwindows
Guide to Application Programming.

7-209

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

7-210

"children"
Returns the number of widget children controlled by the specified widget.
The array parameter returns the children themselves. If the keyword
SCREEN is specified in~tead of a widget, the built-in returns the number
of children controlled by the VAXTPU main window widget.

"menu_posit/on"
Returns information. about any pop-up widgets that are set for menu
positioning when you press the specified mouse button. If no pop-up
widgets are set, returns the keyword NONE; otherwise, returns an
integer-indexed array of all pop-ups set for menu positioning.

mouse_down_button

"widget_ id"

This keyword (M1 DOWN, M2DOWN, M3DOWN,
M400WN, or MSDOWN) indicates the mouse button
associated with the pop-up menus.

Returns the widget instance whose name matches the specified widget
name. The remaining parameters are as follows:

parent_ widget

SCREEN

widget_ name

The widget that is an ancestor of the widget instance
returned by the GET _INFO (WIDGET) built-in.

A keyword indicating that VAXTPU's main window widget
is the ancestor of the widget instance that you want the
G.ET_INFO (WIDGET) built-in to return.

A string that is the fully qualified name of the widget
you want the built-in to return. To specify this parameter
correctly, start the string with the name of the widget's
pt;irent. Use the same name you used to specify the parent_
wi(iget parameter. If you used the SCREEN parameter
instea<;t of the parent_ widget parameter, start the string with
the widget name tpu$mainwindow.

Next, specify the names of the ancestors, if any, that occur
in the widget hierarchy between the parent and the widget
itself. Start with the ancestor just below the parent and
progressively specify more immediate ancestors. Finally,
speQify the name of the widget you want the GET_INFO
(WIDGl:T) built-in to return. Separate all widget names with
perio(:ls.

The fully qualified widget name is case sensitive.

GET_INFO (WIDGET, "widget_id") calls the X Toolkit routine NAME TO
WIDGE~ .

For more information on DECwindows concepts such as parent widgets,
ancestor widgets, and the distinction between widget classes and widget
instances, see tP,e V/y[S])1$Cwindows Guide to Application Programming.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

EXAMPLES

n PROCEDURE eve$callback_dispatch

LOCAL the_program,
status,
temp_array;

ON ERROR
- [TPU$ CONTROLC] :

e~e$$x state array {eve$$k_command_line_flag} := eve$k_invoked_by_key;
eve$learn_abort;
ABORT;

[OTHERWISE] :
eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;

ENDON ERROR

IF NOT eve$x_decwindows active
THEN

RETURN (FALSE);
ENDIF;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_menu;

status :=
GET INFO (WIDGET, "callback_parameters", temp_array); This statement using

GET INFO (WIDGET)
returns the calling
widget, the closure,
and the reason code.

! The following statements make the contents of "temp array"
! available to all the eve$$widget_xxx procedures -

eve$x_widget ·= temp_array {"widget"};
! This array element contains the widget
! that called back.

eve$x_widget_tag := temp_array {"closure"};
! This array element contains the widget tag
! that is assigned to the widget in the UIL file.

eve$x widget reason := temp_array {"reason_code"};
- - ! This array element contains callback reason code.

! The next line gets the callback routine from the array indexed
! by closure values.

the_program := eve$$x_widget_array {eve$x_widget_tag};

IF the_program <> 0
THEN

EXECUTE (the_program);
ENDIF;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;
RETURN;

ENDPROCEDURE;

This procedure shows one possible way that a layered application can use
GET_INFO (WIDGET, "callback_parameters", array). The procedure is a
simplified version of the EVE procedure EVE$CALLBACK_DISPATCH.
You can find the original version in SYS$EXAMPLES:EVE$MENUS. TPU.

7-211

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

(For more information about using the files in SYS$EXAMPLES as
examples, see Section B.1.)

This version of EVE$CALLBACK_DISPATCH handles callbacks from EVE
widgets. The statement GET_INFO (WIDGET, "callback_parameters",
temp_array) copies the following three items into elements of the array
temp_array:

• The widget that is calling back

• The widget's integer closure

• The reason why the widget is calling back

The array eve$$x_widget_array contains pointers to all of EVE's callback
routines in elements indexed by the appropriate integer closure values.
This procedure locates the correct index in the array and executes the
corresponding callback routine.

Warning: this simplified version of EVE$CALLBACK_DISPATCH does
not. ,completely replace the versiOn in existing EVE code.
Furthermore, Digital does not guarantee that this example will
work successfully with future versions of EVE. This example
is presented solely to illustrate how EVE uses the built-in
GET_INFO (WIDGET, "callback_parameters", array) in a callback
handi.ing procedure.

I the_text_widget := GET_INFO (WIDGET, "widget_id", new_dialog,
"NEW_DIALOG.NEW_TEXT");

I

This statement assigns to the variable the_text_widget the widget instance
named by the string NEW _DIALOG.NEW _TEXT. The widget instance is
the child of the widget instance assigned to the variable new_dialog.

PROCEDURE eve_show_widgets

local
loop_index,
num topmost,
widget_array;

widget_array := 0;

! Display the widget hierarchy

num_topmost := GET_INFO (WIDGET, "children", SCREEN, widget_array);

IF num_topmost > 0
THEN

loop_index := 1;
LOOP

EXITIF loop index > num topmost;
show widget-tree (widget array, "");
loop=index == loop_index-+ 1;

ENDLOOP;
ENDIF;

ENDPROCEDURE;

PROCEDURE show widget tree
(the_array~ the_string)

Recursively display the widget tree

7-212

)

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

LOCAL
child_array,
highest,
loop_index,
num_children;

child array := O;
loop_Tndex := 1;
highest := get_info (the_array, "high_index");
LOOP

EXITIF loop index > highest;
MESSAGE (the_string + GET_INFO (the_array {loop_index}, "name")

+ ASCII (%011)
+GET INFO (the array {loop index}, "class"));

num children ::: GET INFO-(WIDGET, "children",
- the_array {loop_index}, child_array);

IF num children > 0
THEN

show_widget_tree (child_array, the_string +" ");
ENDIF;
loop_index := loop_index + 1;

ENDLOOP;

ENDPROCEDURE;

This procedure shows how to use GET_INFO (WIDGET, "children") to
display the entire hierarchy of widgets known to a VAXTPU session.

7-213

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO (widget_ variable)

GET_INFO (widget_variable)

FORMAT

Returns information about a specified widget variable.

The GET_INFO (widget_variable) built-in is used with DECwindows only.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ :~!~~:~equence } := GET INFO
program . -
string

(widget_ variable,

"callback_routine"
"class"
"is_managed"
"is_subclass': widget_class
"name"
''parent"
"resources"
"text"
,, '"' t . s ,, { array }
wiuge _in,o ' arg_pair {, arg_pair... J

)

PARAMETERS "callback routine"

7-214

Returns the program or learn sequence designated as the application's
callback routine for the specified widget. This is the program or learn
sequence that VAXTPU should execute when a widget callback occurs for
the specified widget instance. For more information about callbacks, see
Chapter 4.

"class"
Returns the name of the. class to which the specified widget instance
belongs.

"is_managed"
Returns 1 (TRUE) if the specified widget is managed; otherwise, it
returns 0 (FALSE). This built-in calls the DECwindows Toolkit routine
IS MANAGED.

"is_subclass"
Returns 1 (TRUE) if the specified widget belongs to the class referred to by
the specified integer or belongs to a subclass of that class. A TRUE value
indicates only that the widget is equal to or is a subclass of the specified
class; the value does not indicate how far down the class hierarchy the
widget's class or subclass is. If the widget is not in the class, or one of its
subclasses, this GET_INFO call returns 0 (FALSE).

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (widget_variable)

widget_ class

"name"

The integer specifying the widget class to use in the subclass
test. This value is returned from the DEFINE_WIDGET_CLASS
built-in procedure.

Returns a string that is the name of the specified widget instance.

"parent"
Returns the parent of the specified widget instance. If the widget has no
parent, the call returns 0.

"resources"
Returns a string-indexed array in which each index is a valid resource
name for the specified widget. The corresponding array element is a string
containing the resource's data type and class, separated by a line feed
(ASCII (10)).

"text"
Returns a string that is the value of the specified simple text widget. (The
value of a text widget is the text entered into the text widget by the user
in response to a prompt in a dialog box.) GET_INFO (widget_ variable,
"text") is equivalent to the XUI Toolkit routine dwt$s_text_get_string.

If the specified widget is not of class SText, VAXTPU signals the status
TPU$_ WIDMISMATCH.

"widget_ info"
Returns the current values for one or more resources of the specified
widget.

Note that the values are returned in the array or series of argument pairs
that is passed as the third parameter. The integer on the left side of the
assignment operator indicates whether the built-in executed successfully.

The third parameter is either an array or a series of paired arguments,
specified as follows:

array

arg_pair

Each array index must be a string naming a valid resource
for the specified widget. Note that resource names are case
sensitive. The corresponding array element contains the
value of the resource. The array can contain any number of
elements.

A string naming a valid resource for the widget followed by
a variable to store the value of the resource. Separate the
resource name string from the variable with a comma and a
space, as follows:

resource_name_string, resource_value

You can fetch as many resources as you want by using
multiple pairs of arguments.

GET_INFO (widget_ variable, "widget_info", array, arg_pair) is functionally
equivalent to the X Toolkit routine GET VALUES.

If you specify the name of a resource that the widget does not support,
VAXTPU signals the error TPU$_ARGMISMATCH.

7-215

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (widget_variable)

If the requested resource is a list of items and the list contains no entries,
the GET_INFO call ~ses either the element of the array parameter or uses
the value parameter to return an array containing no elements.

For more information about specifying resources, see Chapter 4.

EXAMPLES

D EXECUTE (GET_INFO (eve$x replace dialog,
"callback_routine"));

This statement executes the callback routine for the widget eve$x_replace_
dialog. Note that this statement is valid only after the Replace dialog box
has been used at least once, because EVE does not create any dialog box
until you have invoked it.

I PROCEDURE sample_return_name

LOCAL status;

status := GET INFO (eve$x_replace_dialog,
"name");

MESSAGE ("The data type of status is: ");
MESSAGE (STR (GET_INFO(status, "type")));
MESSAGE ("The value of status is: ");
MESSAGE (STR (status));

ENDPROCEDURE;

This procedure displays the name of the widget instarice specified by the
variable eve$x_replace_dialog. To confirm that the widget has been created
as expected, the procedure also displays a message identifying the data
type of the variable's contents. Note that the procedure is valid only after
the Replace dialog box has been used at least once, because EVE does not
create any dialog box until you have invoked it.

A statement containing the built-in GET_INFO (widget, "name") can
be useful in code implementing a debugging command that evaluates
VAXTPU statements, expressions, and variables.

I] eve$x_needfilename_dialog := CREATE WIDGET ("NEEDFILENAME DIALOG",
eve$k_widget.=hierarchy,
SCREEN,
eve$kt_callback_routine);

the value := "Type filename for writing buffer " +
get_info (the_buffer, "name");

child of box := get_info (WIDGET, "widget id",
eve$x_needfilename_dialog,
"NEEDFILENAME_DIALOG.NEEDFILENAME_LABEL");

status :=set (WIDGET, child_of_box, evedwtc_nlabel, the_value);

7-216

This code fragment creates an EVE file name dialog box widget and
assigns the widget to the variable eve$x_needfilename_dialog. Next, the
fragment assigns to the variable the_value a string prompting you for
the :hame of a file to which the buffer's contents should be written. The
fragment uses the built-in GET_INFO (WIDGET, "widget_id") to assign

)

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (widget_variable}

the dialog box's label widget to the variable child_of_box. Finally, the
fragment assigns to the label widget's evedwtc_nlabel resource the
string contained in the_value.

m PROCEDURE user_widget_replace_all

CONSTANT
user_k_widget_name := "REPLACE_DIALOG.REPLACE_ALL";

LOCAL the value,
parent_widget,
replace_all_button;

parent_widget := eve$x_replace_dialog;

replace_all_button := GET INFO (WIDGET, "widget_id",
parent_widget,
user_k_widget_name);

This statement uses GET' INFO (replace all button,
"widget=info", evedwtc_nvalue,
the_value);

GET_INFO (widget, "widget_info")
to fetch the value of the
dwt$c_nvalue resource.

IF the value
THEN

MESSAGE ("All instances will be replaced.");
ELSE

MESSAGE ("Not all instances will be replaced.");
ENDIF;

END PROCEDURE;

This procedure, user _widget_replace_all, shows one possible way
that a layered application can use GET_INFO (widget, "widget_
info"). The procedure is a modified version of the EVE procedure
EVE$$WIDGET_REPLACE_ALL. You can find the current version in
SYS$EXAMPLES:EVE$MENUS.TPU. (For more information about using
the files in SYS$EXAMPLES as examples, see Section B.1.)

Procedure user _widget_replace_all determines what user message to
display in response to the EVE command REPLACE. The procedure uses
GET_INFO (widget, "widget_info") to fetch the value of the resource
dwt$c_nvalue. A value of 0 means the Replace All toggle button appears
unshaded while a value of 1 means the toggle button appears solid.

I temp_array := create array;
temp_array {"selecteditems" + ascii (10) + "selecteditemsCount"} := O;
status := get_info (the_widget_id, "widget_info", temp_array);

If the_widget_id is a variable containing a list box widget that has no
items selected, then
temp_array{"selectedltems" + ascii (10) + "selectedltemsCount'} contains
an empty array when the built-in returns.

7-217

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO {WINDOW)

GET _INFO {WINDOW)

FORMAT

Returns a window from VAXTPU's internal list of windows or the current
window on the screen.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

(WINDOW[SJ, I "current"

l)
"first"

window:: GET_INFO "last"
"next"
''previous"

PARAMETERS "current"

7-218

Returns the current window on the screen. Returns 0 if there is none.
GET_INFO (WINDOW[S], "current") always returns the current window,
regardless of whether or you have first used GET_INFO (WINDOW[S],
"first") or GET_INFO (WINDOW[S], "last").

"first"
Returns the first window in VAXTPU's internal list of windows. Returns 0
if there is none.

"last"
Returns the last window in VAXTPU's internal list of windows. Returns 0
if there is none.

"next"
Returns the next window in VAXTPU's internal list of windows. Returns 0
if there are no more windows in the list. Use string constants "current" or
"first" before using "next".

''previous"
Returns the preceding window in VAXTPU's internal list of windows.
Returns 0 if there are no previous windows in the list. Use string
constants "current" or "last" before using ''previous".

)

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

GET_INFO (window_variable)

FORMAT

Returns information about a specified window.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

integer
buffer
keyword
string
window
widget

== GET_INFO (window_variable,

"before_bol"
"beyond_eob"
"beyond_eol"
''blink_ status"
"blink_video"
"bold_status"
"bold_ video"
"bound"

"b tt II , TEXT
[

,WINDOW]

o om , VISIBLE_WINDOW
, VISIBLE_ TEXT

''buffer"
"current_ column"
"current_ row"
"display_ value"
"key_map_list"

[

,WINDOW]
"l ft" , TEXT
e , VISIBLE_WINDOW

, VISIBLE_ TEXT

"l th" , TEXT
[

,WINDOW]

eng , VISIBLE_ WINDOW
, VISIBLE_ TEXT

"middle_of_tab"
"next"
"no_video"
"no_ video_status"
"originaLbottom"
"originaUength"
"originaLtop"

7-21!

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable)

''pad"
''previous"
"reverse_status"
"reverse_ video"

".ht" I TEXT
[

,WINDOW]

ng , VISIBLE_ WINDOW
, VISIBLE_ TEXT

"scroll"
"scrolLamount"
"scroll bar" { HORIZONTAL }

- ' VERTICAL
"scroll bar auto thumb" { HORIZONTAL }

- - - I VERTICAL
"scrolLbottom"
"scrolLtop"
"shift_ amount"
"speciaLgraphics_status"
"status_line"
"status_ video"
"text"

[

,WINDOW]
,, ,, , TEXT
top , VISIBLE_WINDOW

, VISIBLE TEXT
"underline_status"
"underline_ video"
"video"
"visible"
"visible_bottom"
"visible _length"
"visible_top"

[

,WINDOW]
,, . ,, , TEXT
width , VISIBLE_ WINDOW

, VISIBLE_ TEXT

PARAMETERS "before bol''

7-220

Returns aninteger (1 or 0) that indicates whether the cursor is to the
left of the current line's left margin. The return value has no meaning if
"beyond_eob" is true. This call returns 0 if the window you specified is not
mapped.

"beyond_ eob"
Returns an integer (1 or 0) that indicates whether the cursor is below the
bottom of the buffer. This call returns 0 if the window you specified is not
mapped.

"beyond_ ea/"
Returns an integer (1 or 0) that indicates whether the cursor is beyond the
end of the current line. The return value has no meaning if "beyond_eob"is
true. This call returns 0 if the window you specified is not mapped.

)

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable}

"blink status"
Returns an integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS_LINE).

"blink video"
Returns -;n integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bold status"
Return~n integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS).

"bold video"
Return~n integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bound"
Returns an integer (1 or 0) that indicates whether the cursor is located on
a character.

"bottom"
Returns an integer that is the number of the last row or last visible row
of the specified window, or the specified window's text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are as follows:

Table 7-5 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", ''Top", or
"Width"

Keyword

TEXT

VISIBLE_ TEXT

Definition

A keyword directing the built-in to return the specified {left,
right, top, or bottom) window row or column or the number
of window rows or columns on which text can be displayed.
By specifying TEXT instead of VISIBLE_ TEXT, you obtain
information about a window's rows and columns even if the}
are invisible because the window is occluded. If the windo'h
is not occluded, the value returned is the same as the value
returned with VISIBLE_ TEXT.

A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns on which text
can be displayed. When VAXTPU determines a window's
last visible text row, VAXTPU does not consider the status
line or the bottom scroll· bar to be a text row.

(continued on next page

7-221

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable)

7-222

Table 7-5 (Cont.) Valid Keywords for the Third Parameter When the
Second Parameter is "Bottom", "Left", "Length",
"Right", "Top", or "Width"

Keyword

VISIBLE_ WIN DOW

WINDOW

Definition

A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns in the window.

A keyword directing the built-in to return the specified (left,
right, top, or bottom) window row or column or the number
of window rows or columns in the window. By specifying
WINDOW instead of TEXT, you obtain the window's last
row or column, even if it cannot contain text because it
contains a scroll bar or status line. By specifying WINDOW
instead of VISIBLE_WINDOW, you obtain information about
a window's rows and columns even if they are invisible
because the window is occluded. If the window is not
occluded, the value returned is the same as the value
returned with VISIBLE_WINDOW.

GET_INFO (window_ variable, "bottom", TEXT) is a synonym for GET_
INFO (window_ variable, "original_bottom"). Th~ call GET_INFO (window_
variable, "bottom", VISIBLE_TEXT) is a synonym for GET_INFO
(window_ variable, "visible_bottom").

"buffer"
Returns the buffer that is associated with the window. Returns 0 if there
is none.

"current_ column"
Returns an integer that is the column in which the cursor was most
recently located.

"current_ row"
Returns an integer that is the row in which the cursor was most recently
located.

"display_value"
Returns the display value of the specified window.

"key_map_list"
Returns the string that is the name of the key map list associated with the
window you specify.

"left"
Returns an integer that is the number of the leftmost column or leftmost
visible column of the specified window, or the specified window's text
area. The column whose number is returned depends on the keyword you
specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-5.

\
)

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable)

"length"
Returns an integer that is the number of rows or visible rows in the
specified window or the specified window's text area. The number of rows
returned depends on the keyword you specify as the third parameter. If
you do not specify a keyword, the default is TEXT. Valid keywords are
shown in Table 7-5.

"middle_of_tab"
Returns an integer (1 or 0) that indicates whether the cursor is in the
middle of a tab. The return value has no meaning if "beyond_eob" is true.
This call returns 0 if the window you specified is not mapped.

"next"
Returns the next window in VAXTPU's internal list of windows. Returns 0
if there are no more windows in the list.

"no video"
Returns an integer (1 or 0) that indicates whether the video attribute of
the window is NONE. This parameter is established or changed with the
built-in procedure SET MDEO).

"no_ video_ status"
Returns an integer (1 or 0) that indicates whether the video attribute
of the window's status line is NONE. This parameter is established or
changed with the built-in procedure SET (STATUS).

"original_ bottom"
Returns an integer that is the screen line number of the bottom of the
window when it was created or last adjusted (does not include status line
or scroll bar). Digital recommends that you retrieve this information usin~
GET_INFO (window, "bottom", text).

"origina/_length"
Returns an integer that is the number of lines in the window when it was
created. The value returned includes the status line.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", window).

"original_ top"
Returns an integer that is the screen line number of the top of the windov
when it was created.

"pad"
Returns an integer (1 or 0) that indicates whether padding blanks have
been displayed from column 1 to the left margin (if the left margin is
greater than 1) and from the ends of lines to the right margin. This
parameter is established or changed with the built-in procedure SET
(PAD).

''previous"
Returns the previous window in VAXTPU's internal list of windows.
Returns 0 if there are no previous windows in the list.

7-22

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable)

7-224

"reverse status"
Returns an integer (1 or 0) that indicates whether REVERSE is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS).

"reverse video"
Returns an integer (1 or 0) that indicates whether REVERSE is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"right"
Returns an integer that is the number of the last column or last visible
column of the specified window or the specified window's text area. The
window column whose number is returned depends on the keyword you
specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-5.

"scroll"
Returns an integer (1 or 0) that indicates whether scrolling is enabled for
the window. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"scroll amount"
Returns an integer that is the number of lines to scroll. This parameter is
established or changed with the built-in procedure SET.

"scroll_ bar"
This parameter is used with DECwindows only.

Returns the specified scroll bar widget instance implementing the scroll
bar associated with a window if it exists, otherwise returns 0.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar"). HORIZONTAL
directs VAXTPU to return the window's horizontal scroll bar; VERTICAL
directs VAXTPU to return the window's vertical scroll bar.

"scroll bar auto thumb"
This parameter is used ~th DECwindows only.

Returns an integer (1 or 0) indicating whether automatic adjustment of the
specified scroll bar slider is enabled. Returns 1 if automatic adjustment is
enabled, 0 if it is disabled.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar_auto_thumb").
HORIZONTAL directs VAXTPU to return information about the window's
horizontal scroll bar; VERTICAL directs VAXTPU to return information
about the window's vertical scroll bar.

"scroll bottom"
Returns an integer that is the bottom of the scrolling area, an offset from
the bottom screen line. This parameter is established or changed with the
built-in procedure SET (SCROLLING).

\
/

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {window_variable)

"scroll_ top"
Returns an integer that is the top of the scrolling area, an offset from the
top screen line. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"shift_ amount"
Returns an integer that is the number of columns the window is shifted to
the left.

"specia/_graphics_ status"
Returns an integer (1or0) that indicates whether SPECIAL_GRAPHICS
is one of the video attributes of the window's status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

"status_line"
Returns a string that is the text of the status line. Returns 0 if there is
none. This parameter is established or changed with the built-in procedure
SET (STATUS_LINE).

"status_ video"
If there is no video attribute or only one video attribute for the window's
status line, the appropriate video keyword (NONE, BLINK, BOLD,
REVERSE, UNDERLINE or SPECIAL_GRAPHICS) is returned. If there
are multiple video attributes for the window's status line, the integer
1 is returned. If there is no status line for the window, the integer 0
is returned. This parameter is established or changed with the built-in
procedure SET (STATUS_LINE).

"text"
Returns a keyword that indicates which keyword was used with SET
(TEXT). SET (TEXT) controls text display in a window. SET (TEXT)
returns any of the following keywords: BLANK_TABS, GRAPHIC_TABS,
or NO_TRANSLATE.

"top"
Returns an integer that is the number of the first row or first visible row
of the specified window or the specified window's text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-5.

"underline status"
Returns an integer (1 or 0) that indicates whether UNDERLINE is one
of the video attributes of the window's status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

"underline video"
Returns an integer (1 or 0) that indicates whether UNDERLINE is one
of the video attributes of the window. This parameter is established or
changed with the built-in procedure SET (VIDEO).

"video"
If there is no video attribute or only one video attribute for the window,
the appropriate video keyword (NONE, BLINK~ BOLD, REVERSE, or
UNDERLINE) is returned. If there are multiple video attributes for the
window, the integer 1 is returned. If you get the return value 1 and you

7-225

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

EXAMPLES

want to know more about the window's video attributes, use the specific
parameters such as "underline_video" and "reverse_video".

This parameter is established or changed with the built-in procedure SET
(VIDEO).

"visible"
Returns an integer (1 or 0) that indicates whether or not the window is
mapped to the screen and whether it is occluded.

"visible bottom"
Returns an integer that is the screen line number of the visible bottom
of the window (does not include status line). This value can be changed
using the ADJUST_ WINDOW built-in, by creating other windows, or by
mapping a window.

Digital recommends that you retrieve this information using GET_INFO
(window, "bottom", visible_text).

"visible_ length"
Returns an integer that is the visible length of the window (includes status
line). This value differs from the value returned by GET_INFO (window_
variable, "original_length") in that the value returned by "visible_length"
is the original length minus the number of window lines (if any) hidden
by occluding windows. This value can be changed using the ADJUST_
WINDOW built-in, by creating other windows, or by mapping a window.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", visible_window).

"visible_ top"
Returns an integer that is the screen line number of the visible top of the
window. This value can be changed using the ADJUST_ WINDOW built-in,
by creating other windows, or by mapping a window on top of the current
window.

Digital recommends that you retrieve this information using GET_INFO
(window, "top", visible_window).

"width"
Returns an integer that is the number of columns or the number of visible
columns in the specified window or the specified window's text area. The
number of columns returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-5.

This parameter is established or changed with the built-in procedure SET.

D last line := GET_INFO (bottom_ window, "bottom", WINDOW);

7-226

This statement returns the last line of the window bottom_window.
The value returned is the line containing the status line or scroll bar,
whichever comes last, if the window has a status line or scroll bar. For
another example of code using GET_INFO (window_ variable, "bottom",
WINDOW) see Example B-5.

\
)

I

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable}

! current list := GET_INFO (CURRENT_WINDOW, "key_map_list");

This statement returns the key map list associated with the current
window. For an example of code using GET_INFO (window_variable,
"key_map_list", WINDOW) see Example B-6.

I] first column := GET_INFO (CURRENT_WINDOW, "left", TEXT);

This statement returns the leftmost column where text can be displayed
in the current window. Note that changing the left margin setting has no
effect on the value returned.

II the_length := the_length + GET_INFO (the_window, "length", WINDOW);

This statement adds the length of the window (the value in the_window)
to the value in the_length. Note that the length of the window includes
the length added by the scroll bar and status line, if the window has them.
For another example of code using GET_INFO (window_ variable, "length",
WINDOW) see Example B-5.

[ii last column := GET_INFO (CURRENT_WINDOW, "right", WINDOW);

This statement returns the number of the rightmost column in the current
window. Note that the column whose number is returned can be occupied
by a vertical scroll bar if one is present. Note, too, that the returned value
changes if you widen the window, but not if you move the window without
widening it.

IJ first row := GET_INFO (CURRENT_ WINDOW, "top" 1 WINDOW);

This statement returns the number of the first row in the current window.
Note that the row number returned is relative to the top of the VAXTPU
screen. Thus, if the current window is not the top window on the VAXTPU
screen, the row number returned is not 1. For another example of code
using GET_INFO (window_variable, "top", WINDOW) see Example B-5.

I the width : = GET_ INFO (CURRENT_ WINDOW, "width", WINDOW) ;

This statement returns the number of columns in the current window.
For an example of code using GET_INFO (window_variable, "width",
WINDOW) see Example B-6.

I] the bar := GET_INFO (CURRENT_WINDOW, "scroll_bar" I VERTICAL);

This statement returns the vertical scroll bar widget associated with the
current window. For another example of code using GET_INFO (window_
variable, "scroll_bar") see Example B-6.

I status := GET_INFO (CURRENT_WINDOW,
"scroll_bar_auto_thumb", VERTICAL);

This statement returns an integer indicating whether automatic
adjustment is enabled for the vertical scroll bar slider associated with
the current window. For another example of code using GET_INFO
(window_ variable, "scroll_bar_auto_thumb", WINDOW) see Example B-6.

7-227

VAXTPU Built-In Procedures
HELP_TEXT

HELP TEXT

FORMAT

PARAMETERS

Invokes the VMS Help Utility. You must specify the help library to be used
for help information, the initial library topic, the prompting mode for the Help
Utility, and the buffer to which the help information is to be written.

HELP_ TEXT (library-tile, topic, { g~F } ,buffer)

library-file
A string that is the file specification of the help library.

topic
A string that is the initial library topic. If this string is empty, the top
level of help is displayed.

ON
A keyword specifying that the Help Utility should prompt the user for
input.

OFF
Specifies that the prompting mode of the Help Utility should be turned off.

buffer
The buffer to which the help information is written.

DESCRIPTION You can enter a complete file specification for the help library as the
first parameter. However, if you enter only a file name, the Help Utility
provides a default device (SYS$HELP) and default file type (HLB).

7-228

If you do not specify an initial topic as the second parameter, you must
enter a null string as a place holder. The Help Utility then displays the
top level of help available in the specified library.

When the prompting mode is ON for the built-in procedure HELP _TEXT,
the following prompt appears if the help text contains more than one
window of information:

Press RETURN to continue ...

Before VAXTPU invokes the Help Utility, VAXTPU erases the buffer
specified as the help buffer. (In EVE the buffer to which the help
information is written is represented by the variable help_buffer.) If
the help buffer is associated with a window that is mapped to the screen,
the window is updated each time VAXTPU prompts the user for input. If
you set the prompting mode to OFF, then the window is not updated by
the built-in procedure HELP _TEXT.

If help_buffer is not associated with a window that is mapped to the
screen, the information from the Help Utility is not visible.

)

\
)

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_NOTMODIFIABLE

TPU$_SYSERROR

TPU$_0PENIN

EXAMPLES

VAXTPU Built-In Procedures
HELP_TEXT

ERROR The HELP_ TEXT built-in requires
four parameters.

ERROR You specified more than four
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR Only ON and OFF are allowed.

WARNING The output buffer is currently
unmodifiable.

ERROR Error activating the help librarian.

ERROR Error opening help library.

D HELP TEXT ("tpuhelp", "", OFF , help _buffer)

This statement causes the top level of help information from the
SYS$HELP:TPUHELP.HLB library to be written to the help buffer. The
Help Utility prompting mode is not turned on.

HELP TEXT ("tpuhelp", (READ_LINE ("Topic:")), OFF, second_buffer)

This statement prompts the user to provide the topic for the Help Utility.
The information on that topic that is in the VAXTPU help library is
written to second_buffer.

! ! Interactive HELP

PROCEDURE user_help

SET (STATUS LINE, info window, UNDERLINE,
"Press CTRL/Z to leave prompts then CTRL/F to resume editing");

MAP (info window, help buffer);
HELP_TEXT-("USERHELP",-READ_LINE ("Topic: "), ON, help_buffer);

ENDPROCEDURE;

This procedure displays information about getting out of help mode on
the status line, prompts the user for input, and maps help_buffer to the
screen.

7-229

VAXTPU Built-In Procedures
INDEX

INDEX

Locates a character or a substring within a string and returns its location
within the string.

FORMAT integer := INDEX (string, substring)

PARAMETERS string
The string within which you want to find a character or a substring.

substring
A character or a substring whose leftmost character location you want to
find within string 1.

return value An integer showing the character position within a string of the substring
you specify.

DESCRIPTION The built-in procedure INDEX finds the leftmost occurrence of substring
within string. It returns an integer that indicates the character position
in string at which substring was found. If string is not found, VAXTPU
returns a 0. The character positions within string start at the left with 1.

SIGNALED
ERRORS

EXAMPLES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

ERROR

INDEX must be on the right-hand
side of an assignment statement.

INDEX requires two arguments.

INDEX accepts only two
arguments.

The arguments to INDEX must be
strings.

D loc :=INDEX ("1234567","67")

7-230

This assignment statement stores an integer value of 6 in the variable Zoe,
because the substring "67" is found starting at character position 6 within
the string "1234567".

VAXTPU Built-In Procedures
INDEX

rl PROCEDURE user_is_character (c)

LOCAL syrnbol_characters;

syrnbol_characters :=
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

RETURN INDEX(syrnbol_characters, c) > O;

ENDPROCEDURE;

This procedure uses the built-in procedure INDEX to return true if a given
item is an alphanumeric character; otherwise, it returns false. (The list of
characters in this example does not include characters that are not in the
ASCII range of the DEC Multinational Character Set. However, you can
write a procedure using such characters, because VAXTPU supports the
DEC Multinational Character Set.) The parameter that is passed to this
procedure is assumed to be a single character.

7-231

VAXTPU Built-In Procedures
INT

INT

FORMAT

PARAMETERS

Converts keyword or a string that consists of numeric characters into an
integer.

integer3 == INT (keyword)
{

integer1 }

string f, integer2 J

integer1
Any integer value. INT accepts a parameter of type integer so you need
not check the type of the parameter you supply.

keyword
A keyword whose internal value you want.

string
A string that consists of numeric characters.

integer2
An integer specifying the radix (base) of the string being converted. The
default radix is 10. The other allowable values are 8 and 16.

return value The integer equivalent of the parameter you specify.

DESCRIPTION You can use INT to store an integer value for a keyword or a string of
numeric characters in a variable. You can then use the variable name in
operations that require integer data types.

INT signals a warning and returns 0 if the string is not a number.

SIGNALED
ERRORS

TPU$~NEEDTOASSIGN ERROR INT returns a value that must be
used.

TPU$_ TOOFEW ERROR INT requires one parameter.

TPU$_ TOOMANY ERROR INT accepts only one parameter.

TPU$_ARGMISMATCH ERROR The parameter to INT was not a
keyword or string.

TPU$_1NVNUMSTR WARNING The string you passed to INT was
not a number.

TPU$_NULLSTRING WARNING You passed a string of length 0 to
INT.

7-232

VAXTPU Built-In Procedures
INT

TPU$_BADVALUE ERROR You specified a value other than 8,
10, or 16 for the radix parameter.

EXAMPLES
D user int ·= INT ("12345")

This assignment statement converts the string "12345" into an integer
value and stores it in the variable user _int.

~ Parameters:

new number
prompt_string
no_value_message

New integer value - output
Text of prompt - input
Message printed if user presses the
RETURN key to get out of the command - input

PROCEDURE user_prompt_number (new_number, prompt_string,

LOCAL read_line_string;

ON ERROR

no_value_message)

IF ERROR = TPU$_NULLSTRING
THEN

MESSAGE (no_value_message);
ELSE

IF ERROR = TPU$_INVNUMSTR
THEN

MESSAGE (FAO ("Don't understand !AS",
read_line_string));

ELSE
MESSAGE (ERROR_TEXT);

ENDIF;
ENDIF;
user_prompt_number := 0;

ENDON_ERROR;

user prompt number := 1;
read=line_string := READ_LINE (prompt_string);

EDIT (read line string, TRIM);
TRANSLATE (read=line_string, "1", "l");

new number :=INT (read_line_string);
ENDPROCEDURE;

This procedure is used by commands that prompt for integers. The
procedure returns true if prompting worked or was not needed; it returns
false otherwise. The number that is returned is returned in the output
parameter.

7-233

VAXTPU Built-In Procedures
JOURNAL_ CLOSE

JOURNAL CLOSE

Closes an open keystroke journal file (if one exists for your session) and
saves the journal file. Note that JOURNAL_CLOSE applies only to keystroke
journaling.

FORMAT JOURNAL_CLOSE

PARAMETERS None.

DESCRIPTION Once you specify JOURNAL_CLOSE, VAXTPU does not keep a keystroke
journal of your work until you specify JOURNAL_OPEN. Calling the built­
in procedure JOURNAL_OPEN causes VAXTPU to open a new keystroke
journal file for your session.

To turn off buffer change journaling, see the description of the SET
(JOURNALING) built-in procedure.

Caution: Journal files contain a record of all information being edited.

SIGNALED
ERROR

EXAMPLE
JOURNAL CLOSE

7-234

Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

TPU$_TOOMANY ERROR JOURNAL_CLOSE accepts no
arguments.

This statement causes VAXTPU to close the keystroke journal file, if one
exists for your editing session.

)

VAXTPU Built-In Procedures
JOURNAL_ OPEN

JOURNAL OPEN

FORMAT

PARAMETER

return value

Opens a keystroke journal file and starts making a copy of your editing
session by recording every keystroke you make. If you invoked VAXTPU with
the /RECOVER qualifier, then VAXTPU recovers the previous aborted section
before recording new keystrokes. JOURNAL_OPEN optionally returns a string
containing the file specification of the file journaled. Note that JOURNAL_
OPEN applies only to keystroke journaling.

(string::) JOURNAL_OPEN (file-name)

file-name
A string that is the name of the keystroke journal file created for your
editing session.

The file specification of the file journaled.

DESCRIPTION VAXTPU saves the keystrokes of your editing session by storing them in
a buffer. VAXTPU writes the contents of this buffer to the file that you
specify as a journal file. If for some reason VAXTPU should terminate
unexpectedly, you can recover your editing session by using this journal
file. To do this, invoke VAXTPU with the /RECOVER qualifier. See
Chapter 5 for information on recovering files.

To turn on buffer change journaling, see the description of the SET
(JOURNALING) built-in procedure.

By default, VAXTPU writes keystrokes to the journal file whenever the
journal buffer contains 500 bytes of data. VAXTPU also tries to write
keystrokes to the journal file when it aborts.

When you recover a VAXTPU session, your terminal characteristics should
be the same as they were when the journal file was created. If they are
not the same, VAXTPU informs you what characteristics are different
and asks whether you want to continue recovering. If you answer yes,
VAXTPU tries to recover; however, the different terminal settings may
cause differences between the recovered session and the original session.

JOURNAL_ OPEN succeeds if used in batch mode (NODISPLAY) but
nothing is journaled as there are no keystrokes in batch mode.

Caution: Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

7-235

VAXTPU Built-In Procedures
JOURNAL_ OPEN

SIGNALED
TPU$_BADJOUFILE

ERRORS
TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ASYNCACTIVE

TPU$_JNLOPEN

EXAMPLES

D JOURNAL OPEN ("test.fil")

ERROR JOURNAL_OPEN could not open
the journal file.

ERROR JOURNAL_ OPEN requires one
argument.

ERROR JOURNAL_OPEN accepts only
one argument.

ERROR The parameter to JOURNAL_
OPEN must be a string.

WARNING You cannot journal with
asynchronous handlers declared.

ERROR A journal file is already open.

This statement causes VAXTPU to open a file named TEST.FIL as the
journal file for your editing session. VAXTPU uses your current default
device and directory to complete the file specification.

m PROCEDURE user_start_journal

Default journal name

7-236

Auxiliary journal name derived from file name

LOCAL default journal name,
aux_journal_name;

IF (GET_INFO (COMMAND_LINE, "journal") = 1)
AND

(GET_INFO (COMMAND_LINE, "read_only") <> 1)
THEN

aux_journal_name :=GET INFO (CURRENT_BUFFER, "file_name");

IF aux_journal_name = ""
THEN

aux_journal_name :=GET INFO (CURRENT_BUFFER, "output_file");
ENDIF;

IF aux_journal_name = 0
THEN

aux_journal_name := "";
ENDIF;

I

)

VAXTPU Built-In Procedures
JOURNAL_OPEN

IF aux_journal_name = ""
THEN

default_journal_name .- "user.TJL";
ELSE

default_journal_name := ".TJL";
ENDIF;

journal_file :=GET INFO (COMMAND LINE, "journal file");
journal_file := FILE PARSE (journal file, default journal name,

- aux journal name); - -
JOURNAL OPEN (journal_file); - -

ENDIF;
ENDPROCEDURE;

This procedure starts journaling. It is called from the TPU$INIT_
PROCEDURE after a file is read into the current buffer.

7-237

VAXTPU Built-In Procedures
KEY_NAME

KEY NAME

FORMAT

Returns a VAXTPU keyword for a key or a combination of keys, or creates a
keyword used as a key name by VAXTPU.

keyword2 == KEY _NAME
{

integer }
(keJ;_name

strmg

(

SHIFT KEY
SHIFT_MODIFIED

ff, ALT_MODIFIED
CTRL_MODIFIED
HELP_MODIFIED

[
, FUNCTION])
, KEYPAD

) [, .. .] J.

PARAMETERS integer
An integer that is either the integer representation of a keyword for a key,
or is a value between 0 and 255 that VAXTPU interprets as the value of a
character in the DEC Multinational Character Set.

7-238

key_name
A keyword that is the VAXTPU name for a key.

string
A string that is the value of a key from the main keyboard.

SHIFT KEY
A keyword specifying that the key name created includes one or more
shift keys. The keyword SHIFT_KEY specifies the VAXTPU shift.key, not
the key on the keyboard marked SHIFr. The shift key is also referred to
as the GOLD key in EVE. (See the description of the SET (SHIFT_KEY)
built-in in the VAX Text Processing Utility Manual.)

SHIFT MODIFIED
A keyword specifying that the key name created by the built-in includes
the key marked SHIFT on the keyboard. The keyword SHIFT_MODIFIED
specifies the key that toggles between uppercase and lowercase, not the
key known as the GOLD key.

SHIFT_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non­
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

ALT MODIFIED
A keyword specifyingthat the key name created by the built-in includes
the ALT key. Note that on most Digital keyboards the ALT key is labeled
Compose Character.

VAXTPU Built-In Procedures
KEY_NAME

ALT_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non­
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

CTRL_MODIFIED
A keyword specifying that the key name created by the built-in includes
the CTRL key.

CTRL_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non­
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

HELP MODIFIED
A keyword specifying that the key name created by the built-in includes
the HELP key.

HELP _MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non­
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

FUNCTION
A parameter that specifies that the resulting key name is to be that of a
function key.

KEYPAD
A parameter that specifies that the resulting key name is to be that of a
keypad key.

return value A VAXTPU keyword to be used as the name of a key.

DESCRIPTION Using the KEY_NAME built-in, you can create key names that are
modified by more than one key. For example, it is possible to create a
name for a key sequence consisting of the GOLD key, the CTRL key, and
an alphanumeric or keypad key.

The built-in GET_INFO (key_name, "key_modifiers") returns a bit-encoded
integer whose value represents the key modifier or combination of key
modifiers used to create a given key name. For more information about
interpreting the integer returned, see the description of GET_INFO (key_
name, "key _modifiers").

The built-in GET_INFO (keyword, "name") has been extended to return a
string including all the key modifier keywords used to create a key name.
For more information about fetching the string equivalent of a key name,
see the description of GET_INFO (keyword, "name").

7-239

VAXTPU Built-In Procedures
KEY_NAME

SIGNALED
TPU$_1NCKWDCOM

ERRORS
TPU$_MUSTBEONE

TPU$_NOTDEFINABLE

TPU$_NEEDTOASSIGN

TPU$_ARGMISMATCH

TPU$_BADKEY

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLES

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

ERROR

D new key :=KEY NAME (KP4, CTRL MODIFIED, SHIFT_KEY);
DEFINE_KEY ("e;e_fill", new_key);

Inconsistent keyword combination.

String must be one character long.

Second argument is not a valid
refe.rence to a key.

KEY _NAME call must be on the
right-hand side of an assignment
statement.

Wrong type of data sent to the
KEY _NAME built-in.

KEY_NAME accepts SHIFT_KEY,
FUNCTION, or KEYPAD as a
keyword argument.

Too few arguments passed to the
KEY _NAME built-in.

Too many arguments passed to
the KEY _NAME built-in.

These statements create a name for the key sequence GOLD/CTRUKP4
and bind the EVE command FILL to the resulting key sequence.

~ keyl := KEY_NAME ("Z")

This assignment statement creates the key name key 1 for the keyboard
keyZ.

i] key2 := KEY_NAME (KP5, SHIFT_KEY)

This example uses KEY_NAME to create a key name for a combination of
keys.

11 key3 := KEY_NAME (ASCII (10))

This assignment statement creates the key name key3 for the line-feed
character.

I Procedure to define keys to emulate EDT

PROCEDURE user_define_edtkey

Bind the EDT Fndnxt function to PF3

DEFINE_KEY ("edt$search_next", PF3);

Bind the EDT Find function to SHIFT PF3

DEFINE_KEY ("edt$search", KEY_NAME (PF3, SHIFT_KEY));
ENDPROCEDURE;

7-240

This example shows a portion of a command file that defines the keys for
an editing interface that emulates EDT.

[I key4 := KEY_NAME (90)

VAXTPU Built-In Procedures
KEY_NAME

This assignment statement creates the key name key4 for the keyboard
key Z. The key name is identical to keyl in the first example, because 90 is
the ASCII code for Z.

i key5 := KEY_NAME ("A", KEYPAD)

This assignment statement creates the key name key5 for the keypad key
that is terminated by an A in the code that represents key names. This
is identical to the key name UP, which VAXTPU uses to refer to the up
arrow key.

VAXTPU defines a keypad key as a control sequence consisting of the code
883 followed by a character. The control sequence 883 can be represented
as follows:

Esc O

For more information on the representation of keys, see the manual for
your terminal.

ri] key6 := KEY_NAME (29, FUNCTION)

This assignment statement creates the key name key6 for the function
key whose representation contains the number 29. This is identical to the
VAXTPU keyword DO, which VAXTPU uses to identify the Do key.

VAXTPU defines a function key as a control sequence with the following
format:

CSI decimal-number -

The element CSI can be represented as follows:

ESC [

In this representation, the decimal number must be in the range 0 to 255.
For more information on the representation of keys, see the manual for
your terminal.

7-241

VAXTPU Built-In Procedures
LAST_KEY

LAST KEY

Returns a VAXTPU keyword for the last key that was entered, read, or
executed.

FORMAT keyword := LAST_KEY

PARAMETERS None.

DESCRIPTION When VAXTPU is replaying a learn sequence or executing the program
bound to a key, LAST_KEY returns the last key replayed or processed
so far, not the last key that was pressed to invoke the learn sequence or
program.

When you invoke VAXTPU with the /NODISPLAY qualifier, the value 0
is returned for LAST_KEY, except in the following case. If you precede
the LAST_KEY statement with a READ_LINE statement, LAST_KEY
can return a key name representing the last key read by READ_LINE,
CTRUZ, or the RETURN key. See the description of READ_LINE for
more information on the values that LAST_KEY can return when you use
LAST_KEY while running VAXTPU in /NO_DISPLAY mode.

SIGNALED
ERROR

EXAMPLE

TPU$_ TOOMANY

PROCEDURE user_define_key

def :=READ LINE ("Definition: ");
key := READ=LINE ("Press key to define.",1);
IF LENGTH (key) > 0
THEN

key := KEY_NAME (key)
ELSE

key := LAST_KEY;
ENDIF;
DEFINE KEY (def, key);

ENDPROCEDURE;

ERROR Too many arguments passed to
the LAST _KEY built-in.

This procedure prompts the user for input for key definitions.

7-242

VAXTPU Built-In Procedures
LEARN_ABORT

LEARN ABORT

Causes a learn sequence being replayed to be terminated whether or not the
learn sequence has completed.

FORMAT (Integer == I LEARN_ABORT

PARAMETERS None.

return value An integer indicating whether a learn sequence was actually replaying at
the time the LEARN_ABORT statement was encountered. The value 1 is
returned if a learn sequence was being replayed, 0, otherwise.

DESCRIPTION LEARN_ABORT aborts a learn sequence that is being replayed. Only the
currently executing learn sequence is aborted.

Whenever you write a procedure that can be bound to a key, the procedure
\
1

should invoke the LEARN_ABORT built-in in case of error. Using
1 LEARN_ABORT prevents a learn sequence from finishing if the learn

sequence calls the user-written procedure and the procedure is not
executed successfully.

)

SIGNALED
ERROR

EXAMPLE
ON ERROR

TPU$_ TOOMANY ERROR The LEARN_ABORT built-in takes
no parameters.

MESSAGE ("Aborting command because of error."};
LEARN_ABORT;
ABORT;

ENDON_ERROR

In this error handler, if an error occurs any executing learn sequence is
aborted.

7-243

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

LEARN BEGIN and LEARN END

FORMAT

- -
Saves all keystrokes typed between LEARN_BEGIN and LEARN_END.
LEARN_BEGIN starts saving all keystrokes that you type. LEARN_END stops
the "learn mode" of VAXTPU and returns a learn sequence consisting of all
the keystrokes that you entered.

LEARN_BEGIN ({~~~ACT }J

learn :: LEARN_END

PARAMETERS EXACT
Causes VAXTPU to use the input that was entered for each READ_LINE,
READ_KEY, or READ_CHAR built-in procedure when the learn sequence
was created as the input for these built-in procedures when the learn
seque:q.ce is replayed.

NO_EXACT
Causes VAXTPU to prompt for new input each time a READ_LINE,
READ_KEY, or READ_CHAR built-in procedure is replayed within a learn
sequence.

return value A variable of type learn storing the keystrokes you specify.

DESCRIPTION You can use the variable name that you assign to a learn sequence as
the parameter for the built-in procedure EXECUTE to replay a learn
sequence. You can also use the variable name with the built-in procedure
DEFINE_KEY to bind the sequence to a key so that the learn sequence is
executed when you press a key.

7-244

Learn sequences are different from other VAXTPU programs in that
they are created with keystrokes rather than with VAXTPU statements.
You create the learn sequence as you are entering text and executing
VAXTPU commands. Because learn sequences make it easy to collect
and execute a sequence of VAXTPU commands, they are convenient for
creating temporary "programs." You can replay these learn sequences
during the editing session in which you create them.

Learn sequences, created by collecting keystrokes, are not :flexible enough
to use for writing general programs. Learn sequences are best suited to
saving a series of editing actions that you perform many times during a
single editing session.

)

SIGNALED
ERRORS

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

It is possible to save learn sequences from session to session so that you
can replay them in an editing session other than the one in which you
created them. To save a learn sequence, bind it to a key; before ending
your editing session, use the built-in procedure SAVE to do an incremental
save to the section file you are using. Using the built-in procedure SAVE
causes the new definitions from the current session to be added to the
section file with which you invoked VAXTPU. For more information, see
the built-in procedure SAVE.

VAXTPU key definitions may change in future versions. You may lose
learn sequences that you have saved when you run a new version of
VAXTPU.

Note: You should not use built-in procedures that can return WARNING
or ERROR messages as a part of a learn sequence because learn
sequences do not stop on error conditions. Because the learn
sequence continues executing after an error or warning condition,
the editing actions that are executed after an error or a warning
may not take effect at the character position you desire.

If, for example, a built-in procedure SEARCH that you use as a
part of a learn sequence fails to find the string you specify and
issues a warning, the learn sequence does not stop executing. This
can cause the rest of the learn sequence to take inappropriate
editing actions.

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey procedure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU executes the code bound to the key itself.

c. VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

TPU$_NOTLEARNING

TPU$_0NELEARN

WARNING LEARN_BEGIN was not used
since the last call to LEARN_END.

WARNING A learn sequence is already in
progress.

7-245

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

EXAMPLE
LEARN BEGIN (EXACT)

ERROR

ERROR

ERROR

LEARN_BEGIN requires one
argument.

LEARN_BEGIN accepts only one
argument.

The specified parameter has the
wrong type.

This represents a typical editing session,
in which you perform commands that are
bound to keys.

do_again := LEARN END

7-246

This example shows how to combine LEARN_BEGIN and LEARN_END
so that all of the keystrokes that you enter between them are saved. The
keyword (EXACT) specifies that if you use READ_LINE, READ_CHAR,
or READ _KEY within the learn sequence, any input that you enter for
these built-in procedures is repeated exactly when you replay the learn
sequence.

LENGTH

FORMAT

PARAMETERS

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
LENGTH

Returns an integer that is the number of character positions in a buffer, range,
or string.

{

buffer }
Integer== LENGTH (ra~ge)

strmg

buffer
The buffer whose length you want to determine. If you specify a buffer,
line terminators are not counted as character positions.

range
The range whose length you want to determine. If you specify a range,
line terminators are not counted as character positions.

string
The string whose length you want to determine.

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_CONTROLC

ERROR

ERROR

ERROR

ERROR

ERROR

LENGTH must be on the right­
hand side of an assignment
statement.

LENGTH requires one argument.

LENGTH accepts only one
argument.

The argument to LENGTH must
be a string or a range.

You pressed CTRUC while
LENGTH was executing.

I str_len : = LENGTH ("Don Quixote")

This assignment statement stores the number of characters in the string
"Don Quixote" in the variable str _Zen. In this example, the integer value is
11.

I user_how_long := LENGTH (my_range)

This assignment statement stores the number of character positions
) (excluding line terminators) in my_range in the variable user _how_long.

7-247

VAXTPU Built-In Procedures
LENGTH

I Parameters:

mark parameter is user-supplied string,
which is used as a mark name

PROCEDURE user_mark_ (mark_parameter)

Local copy of mark_parameter

LOCAL mark_name;

ON ERROR
MESSAGE (FAO ("Cannot use !AS as a mark name", mark_name));
RETURN;

ENDON_ERROR;

132 - length ("user_mark_")

IF LENGTH {mark_parameter) > 122
THEN

mark name := SUBSTR {mark_name, 1, 122);
ELSE

mark_name := mark_parameter;
ENDIF;

EXECUTE {"user mark"+ mark name+" :=MARK {NONE)");
MESSAGE {FAO <"current position marked as !AS", mark_name));

ENDPROCEDURE;

7-248

This procedure puts a marker without any video attributes at the current
position. The marker is assigned to a variable that begins with user_
mark_ and ends with the string you pass as a parameter. The procedure
writes a message to the message area verifying the mark name that comes
from the input parameter.

)

LINE BEGIN

Matches the beginning of a line.

FORMAT LINE_BEGIN

PARAMETERS None.

VAXTPU Built-In Procedures
LINE_BEGIN

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_BEGIN matches the start of a line.

SIGNALED
ERROR
EXAMPLES

Although LINE_BEGIN behaves much like a built-in, it is actually a
keyword.

LINE_BEGIN lets you search for complex strings by creating patterns that
match certain conditions. For example, if you want to find all occurrences
of the exclamation point (!) when it is the first character in the line, use
LINE_BEGIN to create the following pattern:

pat1 := LINE_BEGIN + "!";

For more information on patterns, see Chapter ~.

LINE_END is a keyword and has no completion codes.

I patl : = LINE_BEGIN

This assignment statement stores the beginning-of-line condition in the
variable patl.

POSITION (SEARCH (LINE_BEGIN, REVERSE));

This VAXTPU statement positions you at the beginning of the current line.

PROCEDURE user remove dsrlines

LOCAL sl,
patl;

- -

patl := LINE_BEGIN +

LOOP

" "· . ,

sl := SEARCH_QUIETLY (patl, FORWARD);
EXITIF sl = 0;
POSITION (sl);
ERASE_LINE;

ENDLOOP;
ENDPROCEDURE;

7-249

VAXTPU Built-In Procedures
LINE_BEGIN

7-250

This procedure removes all DSR commands from a file by searching for a
pattern that has a period (.) at the beginning of a line and then removing
the lines that match this condition.

\
I

'

VAXTPU Built-In Procedures
LINE_END

LINE END

Matches the end of a line.

FORMAT LINE_END

PARAMETERS None.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_END matches the end of a line.

Although LINE_END behaves much like a built-in, it is actually a
keyword.

The end-of-line condition is one character position to the right of the last
character on a line.

SIGNALED
ERROR

EXAMPLES
D patl := LINE END

For more information on patterns, see Chapter 2.

LINE_END is a keyword and has no completion codes.

This assignment statement stores the keyword LINE_END in the variable
patl. Patl can be used as an argument to the SEARCH built-in or as part
of a complex pattern.

PROCEDURE user end of line - - -
LOCAL eol_range;

eol_range := SEARCH_QUIETLY (LINE_END, FORWARD);

IF eol_range <> 0
THEN

POSITION (eol_range);
ENDIF;

ENDPROCEDURE;

If you are not already at the end of the current line, the preceding
procedure moves the editing point to the end of the line.

7-251

VAXTPU Built-In Procedures
LOCATE_MOUSE

LOCATE MOUSE

FORMAT

Locates the window position of the pointer at the time LOCATE_MOUSE is
invoked. LOCATE_MOUSE returns the window name and the window position
of the pointer and optionally returns a status indicating whether the pointer
was found in a window.

I integer:= I LOCATE_MOUSE (window, x_integer, y_integer)

PARAMETERS window
Returns the window in which the pointer is located. You can pass any data
type except a constant in this parameter. If the pointer is not found, an
unspecified data type is returned.

x_integer
Returns the column position of the pointer. You can pass any data
type except a constant in this parameter. If the pointer is not found,
an unspecified data type is returned.

y_integer
Returns the row position of the pointer. You can pass any data type except
a constant in this parameter. If the pointer is not found, an unspecified
data type is returned. This parameter returns 0 if the pointer is in the
status line for a window.

return value An integer indicating whether the pointer was found in a window. The
value is 1 ifVAXTPU finds a window position, 0, otherwise.

DESCRIPTION When the user presses a mouse button, VAXTPU determines the location
of the mouse pointer and makes that information available while the code
bound to the mouse button is being processed. Mouse pointer location
information is not available at any other time.

7-252

In DECwindows VAXTPU, you can use the built-in LOCATE_MOUSE
anytime after the first keyboard or mouse-button event. The built-in
returns the location occupied by the pointer cursor at the time of the most
recent keyboard or mouse button event.

If there is no mouse information available (because no mouse button has
been pressed or if the mouse has been disabled using SET (MOUSE)),
LOCATE_MOUSE signals the status TPU$_MOUSEINv.

SIGNALED
ERRORS

EXAMPLES

TPU$_MOUSEINV

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_BADDELETE

VAXTPU Built-In Procedures
LOCATE_MOUSE

WARNING The mouse position is not currently
valid.

ERROR LOCATE_MOUSE requires three
parameters.

ERROR LOCATE_MOUSE accepts at most
three parameters.

ERROR You have specified a constant as
one or more of the parameters.

D LOCATE MOUSE (abc_window, x_l, Yl);

The example returns the window and coordinate position of the pointer.

I PROCEDURE user_move_to_mouse

LOCAL my_window,
x_l,
yl;

my_window := O;
x_l := 0;
yl := 0;

IF (LOCATE_MOUSE (my_window, x_l, Yl) <> 0)
THEN

IF (CURRENT_WINDOW <> my_window)
THEN

POSITION (my window);
UPDATE (my_window);

ENDIF;
CURSOR_VERTICAL (yl - (CURRENT_ROW - GET_INFO

(my_window,"visible_top") + 1));
CURSOR_HORIZONTAL (CURRENT_COLUMN - x_l);

ENDIF;
ENDPROCEDURE;

Binding the user _move_to_mouse procedure to a mouse button moves
the cursor to the mouse location. The user _move_to_mouse procedure is
essentially equivalent to POSITION (MOUSE).

Note that CURRENT_ROW and CURRENT_COLUMN return screen­
relative location information, while LOCATE_MOUSE returns window­
relative location information.

I status := LOCATE_MOUSE (new_window, x_value, y_value);

The previous statement returns an integer in the variable status indicating
whether the pointer cursor was found in a window, the window in the
parameter new _window where the mouse was found, an integer in the
parameter x_value specifying the pointer cursor's location in the horizontal
dimension, and an integer in the parameter y _value specifying the pointer
cursor's location in the vertical dimension.

7-253

VAXTPU Built-In Procedures
LOOKUP_KEY

LOOKUP KEV

FORMAT

Returns the executable code or the comment that is associated with the key
you specify. The code can be returned as a program or as a learn sequence.
The comment is returned as a string.

{

integer }
learn_sequence == LOOKUP KEY
program -
string3

{
COMMENT } [{ .

(key-name, KEY_MAP ' :~~~~
PROGRAM '

PARAMETERS key-name

7-254

A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VT300-series, VT200-series, and
VTlOO-series keyboards.

COMMENT
A keyword specifying that the LOOKUP _KEY built-in is to return the
comment supplied when the key was defined. If no comment was supplied,
the LOOKUP _KEY built-in returns the integer zero.

KEY MAP
A keyword specifying that the LOOKUP _KEY built-in is to return the key
map in which the key's definition is stored. If you specify a key that is not
defined in any key map, LOOKUP _KEY returns a null string.

PROGRAM
A keyword specifying that the LOOKUP _KEY built-in is to return the
program or learn sequence bound to the key specified. If the key is not
defined, the LOOKUP _KEY built-in returns the integer 0.

string1
The name of the key map from which the LOOKUP_KEY built-in is to
obtain the key definition. Use this optional parameter if the key is defined
in more than one key map. If you do not specify a key map or a key map
list for the third parameter, the first definition found for the specified key
in the key map list bound to the current buffer is returned.

string2
The name of the key map list from which the LOOKUP _KEY built-in is to
obtain the key definition. Use this optional parameter if the key is defined
in more than one key map list. If you do not specify a key map or a key
map list for the third parameter, the first definition found for the specified
key in the key map list bound to the current buffer is returned.

return value

VAXTPU Built-In Procedures
LOOKUP_KEY

• integer -The integer 0. This value is returned if the key specified as
a parameter has no definition.

• learn_sequence - The learn sequence bound to the key specified as
a parameter.

• program - The program bound to the key specified as a parameter.

• string3 - If you specified COMMENT as the second parameter,
string3 is the comment bound to the key specified as the first
parameter. If you specified KEY_MAP as the second parameter,
string3 is the string naming the key map in which the key definition
was found.

DESCRIPTION The LOOKUP _KEY built-in procedure can return a program, a learn
sequence, a string, or the integer 0 (0 means that the key has no
definition).

SIGNALED
ERRORS

LOOKUP _KEY is useful when you are defining keys temporarily during
an editing session and you want to check the existing definitions of a key.

TPU$_NOTDEFINABLE WARNING Argument is not a valid reference
to a key.

TPU$_NOKEYMAP WARNING Argument is not a defined key
map.

TPU$_NOKEYMAPLIST WARNING Argument is not a defined key map
list.

TPU$_KEYMAPNTFND WARNING The specified key map is not
found.

TPU$_EMPTYKMLIST WARNING The specified key map list contains
no key maps.

TPU$_ TOOFEW ERROR Too few arguments passed to the
LOOKUP _KEY built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the LOOKUP _KEY built-in.

TPU$_NEEDTOASSIGN ERROR LOOKUP _KEY must be on the
right-hand side of an assignment
statement.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
LOOKUP _KEY built-in.

TPU$_BADKEY ERROR An unknown keyword has been
used as an argument. Only
PROGRAM, COMMENT, and
KEY _MAP are valid keywords.

7-255

VAXTPU Built-In Procedures
LOOKUP_KEV

EXAMPLES
D programx := LOOKUP_KEY (keyl, PROGRAM)

This assignment statement returns the executable code that is associated
with keyl. The second keyword, PROGRAM, indicates that the result is
returned to a variable of type program or learn.

PROCEDURE user what is comment - - -MESSAGE (LOOKUP_KEY (LAST_KEY, COMMENT));
ENDPROCEDURE;

This procedure displays in the message area the comment that you
included with your key definition for the last key that you typed.

PROCEDURE user get key info
LOCAL key to interpret,

key~)nfo;

MESSAGE ("Press the key you want information on: ");

key to interpret := READ KEY;
key=info := LOOKUP_KEY (key_to_interpret, COMMENT);

IF key_info <> ""
THEN

MESSAGE ("Comment: "+ key_info);
ELSE

MESSAGE ("No comment is associated with that key.");
ENDIF;

ENDPROCEDURE;

This procedure returns the comment associated with a particular key.

II key_map_name := LOOKUP_KEY (RET KEY, KEY MAP, "tpu$key_map_list");
IF LENGTH (key_map_name) = 0
THEN

MESSAGE ("RET_KEY is undefined");
ELSE

MESSAGE ("RET_KEY is defined in key map"+ key_map_name);
ENDIF;

This procedure returns the key map within the key map list TPU$KEY_
MAP _LIST in which the RETURN key is defined.

I PROCEDURE shift_key_handler (key_map_list_name);

LOCAL bound_program;

bound_program := LOOKUP_KEY (READ_KEY, PROGRAM, "key_map_list_name");

IF bound_program <> 0
THEN

EXECUTE (bound_program);
ELSE

MESSAGE ("Attempt to execute undefined key");
ENDIF;

ENDPROCEDURE;

)

\
)

VAXTPU Built-In Procedures
LOOKUP_KEY

red_keys := CREATE_KEY_MAP ("red_keys");

red_key_map_list := CREATE_KEY_MAP_LIST ("red_key_map_list",
red_keys);

DEFINE KEY ("shift key handler (red key map list)", PF3,
"RED shift key"); - - -

This procedure implements multiple shift keys.

7-257

VAXTPU Built-In Procedures
MANAGE_ WIDGET

MANAGE WIDGET

Makes the specified widget instances visible, provided that the specified
widgets' parent is also visible.

FORMAT MANAGE_WIDGET (widget f, widget ... J)

PARAMETERS widget
The widget instance to be managed.

DESCRIPTION This built-in performs the same functions as the X Toolkit MANAGE
CHILD and MANAGE CHILDREN routines.

SIGNALED
ERRORS

EXAMPLE

7-258

If you have multiple children of a single widget that you want to manage,
include them in a single call to MANAGE_ WIDGET. Managing several
widgets at once is more efficient than managing one widget at a time.

All widgets passed in the same MANAGE_ WIDGET operation must have
the same parent.

TPU$_1NVPARAM ERROR You specified a parameter of the
wrong type.

TPU$_ TOOFEW ERROR Too few arguments passed to the
MANAGE_WIDGET bulit-in.

TPU$_NORETURNVALUE ERROR MANAGE_WIDGET cannot return
a value.

TPU$_REQUIRESDECW ERROR You can use the MANAGE_
WIDGET built-in only if you are
using DECwindows VAXTPU.

TPU$_WIDMISMATCH ERROR You have specified a widget whose
class is not supported.

For a sample procedure using the MANAGE_ WIDGET built-in, see
Example B-2.

MAP

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
MAP

Associates a buffer with a window and causes the window or widget to
become visible on the screen. Before using MAP, you must already have
created the widget, buffer, and window that you specify as parameters. See
CREATE_WIDGET, CREATE_BUFFER, and CREATE_WINDOW.

MAP ({ w~ndow, buffer })
widget

window
The window you want to map to the screen.

buffer
The buffer you want to associate with the window.

widget
The widget instance you want to make visible.

DESCRIPTION The window and buffer that you use as parameters become the current
window and the current buffer, respectively. The map operation
synchronizes the cursor position with the editing point in the buffer.
If the window is not already mapped to the buffer when you use MAP,
VAXTPU puts the cursor back in the last position the cursor occupied the
last time the window was the current window.

MAP may cause other windows that are mapped to the screen to be
partially or completely occluded. If MAP causes the new window to
segment another window into two pieces, only the upper part of the
segmented window remains visible and continues to be updated. The
lower part of the segmented window is erased on the next screen update.
If you remove the window that is segmenting another window, VAXTPU
repaints the screen so that the window that was segmented regains its
original size and position on the screen.

In DECwindows, MAP also maps the VAXTPU main widget if it has not
already been mapped.

Note that if you execute MAP within a procedure, the screen is not
updated to reflect such operations as window repainting, line erasure,
or new mapping until the procedure has finished executing and control
has returned to the screen manager. If you want the screen to reflect
the changes before the entire program is executed, you can force the
immediate update of a window by including the following statement in the
procedure before any statements containing the MAP built-in:

UPDATE (WINDOW) ;

7-259

VAXTPU Built-In Procedures
MAP

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR MAP requires at least two
parameters.

I

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_MAXMAPPEDBUF

ERROR You specified more than two
parameters.

ERROR One or more of the specified
parameters have the wrong type.

WARNING The buffer is already mapped to
the maximum number of windows
allowed by VAXTPU.

EXAMPLES

D MAP (main_window, main_buffer)

This statement associates the main buffer with the main window and
maps the main window to the screen. You must have established the
main buffer and the main window with CREATE_BUFFER and CREATE_
WINDOW before you can use them as parameters for MAP.

I PROCEDURE user_message_window

message_buffer := CREATE_BUFFER ("message");
SET (EOB TEXT, message buffer, "");
SET (NO_WRITE, message=buffer);
SET (SYSTEM, message_buffer);

message window :=CREATE WINDOW (23, 2, OFF);
SET (VIDEO, message window, NONE);
MAP (message_window; message_buffer);

ENDPROCEDURE;

This procedure creates a message buffer and a message window. It then
associates the message buffer with the message window and maps the
message window to the screen.

I MAP (example_widget);

7-260

Thi·s statement causes the widget assigned to the variable example_widget
to become visible if the widget has been created and managed but not
mapped. For more information on how to map widgets without managing
them, see the description of the SET (MAPPED_ WHEN_MANAGED)
built-in.

)

)

MARK

FORMAT

VAXTPU Built-In Procedures
MARK

Returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse
video, bolded, blinking, or underlined).

marker := MARK (

BLINK
BOLD
FREE_ CURSOR
NONE
REVERSE
UNDERLINE

)

PARAMETERS BLINK
A keyword directing VAXTPU to display the marker in blinking rendition.

BOLD
A keyword directing VAXTPU to display the marker in bold rendition.

FREE CURSOR
A keyword directing VAXTPU to create a free marker (that is, a marker
not bound to a character). Specifying the parameter FREE_CURSOR does
not create a free marker unless the editing point is before the beginning of
a line, after the end of a line, in the middle of a tab, or below the bottom of
a buffer when the statement MARK (FREE_CURSOR) is executed. If the
editing point is on a character when the statement is executed, the marker
is bound. A free marker has no video attribute.

NONE
A keyword directing VAXTPU to apply no video attributes to the marker.

REVERSE
A keyword directing VAXTPU to display the marker in reverse video.

UNDERLINE
A keyword directing VAXTPU to underline the marker.

DESCRIPTION This built-in procedure can be used to establish place holders, or
''bookmarks."

A marker can be either bound or free. For more information on how
these markers differ, see Chapter 2.

To create a bound marker, use the MARK built-in with any of its
parameters except FREE_ CURSOR. This operation creates a bound
marker even if the editing point is beyond the end of a line, before the
beginning of a line, in the middle of a tab, or beyond the end of a buffer. To
create a bound cursor in a location where there is no character, VAXTPU
fills the space between the marker and the nearest character with padding
space characters.

7-261

VAXTPU Built-In Procedures
MARK

SIGNALED
ERRORS

7-262

A bound marker is tied to the character at which it is created. If the
character tied to the marker moves, the marker moves also. If the
character tied to the marker is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the
following way:

1 If there is a character position on: t~e same line and to the right, the
marker moves to this position, even if the position is at the end of the
line.

2 If the line on which the marker is located is deleted, the marker moves
to the first position on the following line.

You can move one column past the last character in a line and place a
marker there. However, the video attribute for the marker is not visible
unless a subsequent operation puts a character under the marker.

If you use a marker at the end of a line as part of a range, it is included in
the range even though the marker is not positioned on a character.

A marker is free if the following conditions are true:

• You used the statement marker _variable := MARK(FREE_CURSOR) to
create the marker.

• There was no character in the position marked by the editing point at
the time you created the marker.

VAXTPU keeps track of the location of a free marker by measuring the
distance between the marker and the character nearest to the marker.
If you move the character from which VAXTPU measures distance to
a free marker, the marker moves too. VAXTPU preserves a uniform
distance between the character and the marker. If you collapse white
space containing one or more free markers (for example, if you delete a tab
or use the APPEND_LINE built-in), VAXTPU preserves the markers and
binds them to the nearest character.

If the current buffer is mapped to a visible window, the MARK built-in
causes the screen manager to synchronize the editing point, which is
a buffer location, with the cursor position, which is a window location.
Unless you specify the parameter FREE_CURSOR, using the MARK built­
in may result in the insertion of padding spaces or lines into the buffer if
the cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in .the buffer.

TPU$_TOOFEW

TPU$_TOOMANY

TPU$_NEEDTOASSIGN

ERROR

ERROR

ERROR

MARK requires one parameter.

MARK accepts only one
parameter.

The MARK built-in must be on the
right-hand side of an assignment
statement.

)

)

TPU$_NOCURRENTBUF

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

TPU$_1NSVIRMEM

VAXTPU Built-In Procedures
MARK

WARNING You must be positioned in a buffer
to set a marker.

ERROR One or more of the specified
parameters have the wrong type.

ERROR The keyword must be NONE,
BOLD, BLINK, REVERSE,
UNDERLINE, or FREE_CURSOR.

ERROR You have specified an unknown
keyword.

FATAL There is not enough memory to
create the marker.

EXAMPLES
I user_mark := MARK (NONE)

I

I

This assignment statement places a marker at the editing point. There
are no video attributes applied to the marker.

user_mark_under := MARK (UNDERLINE)

This assignment statement places a marker at the row and column
position that corresponds to the editing point. The character tied to
the marker is underlined.

my_markl :=MARK (UNDERLINE);
my_mark2 :=MARK (BLINK);

These assignment statements place a marker at the row and column
position that corresponds to the editing point. The character tied to the
marker is underlined and blinks.

I PROCEDURE user_Paste

temp_POS :=MARK (NONE);

POSITION (END_OF (paste_buffer));
MOVE_HORIZONTAL (-2);

paste text :=CREATE RANGE (BEGINNING OF (paste_buffer),
- MARK (NONE), NONE); -

POSITION (temp_POS);
COPY_TEXT (paste_text);

ENDPROCEDURE;

This procedure marks a temporary position at the current character
position, and then goes to the paste buffer and creates a range of the
contents of the paste buffer. VAXTPU then goes to temp_pos and copies
the text from the paste buffer at the temporary position.

7-263

VAXTPU Built-In Procedures
MATCH

MATCH

FORMAT

PARAMETERS

MATCH returns a pattern that matches from the editing point up to and
including the sequence of characters specified in the parameter.

{

buffer }
pattern :: MATCH (ra~ge)

strmg

buffer
An expression that evaluates to a buffer. MATCH forms a string from
the contents of the buffer and stops matching when it finds the resulting
string.

range
An expression that evaluates to a range. MATCH forms a string from
the contents of the range and stops matching when it finds the resulting
string.

string
An expression that evaluates to a string. MATCH stops matching when it
finds this string.

return value A variable of type pattern that matches text from the editing point up to
and including the characters specified in the parameter.

DESCRIPTION MATCH returns a pattern that matches any string ending in the
specified sequence of characters. The matched string does not contain
line terminators.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR MATCH must appear in the right-
hand side of an assignment
statement.

TPU$_ TOOFEW ERROR MATCH requires at least one
argument.

TPU$_ TOOMANY ERROR MATCH requires no more than
one argument.

TPU$_ARGMISMATCH ERROR Argument to MATCH has the
wrong type.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of MATCH.

7-264

\
\

J

\
)

EXAMPLES
I patl := MATCH ("abc")

VAXTPU Built-In Procedures
MATCH

This assignment statement stores inpatl a pattern that matches a string
of characters starting with the editing point up to and including the
characters "abc".

~ PROCEDURE user_double_parens

paren_text
found_range

: = II ((I + MATCH (I)) II);

:= SEARCH_QUIETLY (paren_text, FORWARD, NO_EXACT);

IF found_range = 0
THEN

! No match

MESSAGE ("No match found.");
ELSE

POSITION (found_range);
ENDIF;

ENDPROCEDURE;

This procedure finds text within double parentheses. It moves the editing
point to the beginning of the parenthesized text, if it is found.

7-265

VAXTPU Built-In Procedures
MESSAGE

MESSAGE

FORMATS

Depending on the format you choose, either puts the characters that you
specify into the message buffer, or else fetches text associated with a
message code, formats the text using FAQ directives, and puts it in the
message buffer.

If you use the first format, MESSAGE inserts the characters in the string,
range, or buffer that you specify into the message buffer, if one exists.
(By default, VAXTPU looks for a buffer variable that is named MESSAGE_
BUFFER.) If there is no message buffer, VAXTPU displays the message at
the current location on the device pointed to by SYS$QUTPUT (usually your
terminal).

If you use the second format, MESSAGE fetches the text associated with
a message code, formats the text using FAQ directives, and displays the
formatted message in the message buffer. (If there is no message buffer,
VAXTPU displays the message on SYS$QUTPUT.)

MESSAGE ({ i:::;; } f, integert J)

MESSAGE
{

integer2 }
(ke~word l integer3

strmg '
buffer

f, FAQ-parameter f, FAQ-parameters ... 111)

PARAMETERS buffer

7-266

The buffer containing the text that you want to include in the message
buffer.

range
The range containing the text that you want to include in the message
buffer.

integer1
An integer indicating the severity of the message placed in the message
buffer. If you do not specify this parameter, no severity code is associated
with the message. The allowable integer values and their meanings are as
follows:

Integer Meaning

0 Warning

Success

)

DESCRIPTION

)

Integer Meaning

2 Error

3 Informational

integer2

VAXTPU Built-In Procedures
MESSAGE

The integer representing the message code associated with the text to be
fetched.

keyword
The VAX.TPU keyword representing the message code associated with the
text to be fetched. VAX.TPU provides keywords for all of the message codes
used by VAX.TPU and EVE.

string
Either a quoted string or a variable representing the text you want to
include in the message buffer.

integer3
A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is zero, then
the message flags set by the SET (MESSAGE_FLAGS) built-in procedure
are used.

Table 7-6 shows the message flags:

Table 7-6 Message Flag Values

Bit Constant

0 TPU$K_MESSAGE_TEXT

1 TPU$K_MESSAGE_ID

2 TPU$K_MESSAGE_SEVERITY

3 TPU$K_MESSAGE_FACILITY

FAD-parameter

Meaning

Include text of message.

Include message identifier.

Include severity level indicator.

Include facility name.

One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAQ system service, substituting the values into the
text associated with the message code to form the resultant string.

The FAQ directives are listed in the description of $FAQ in the VMS
System Services Reference Manual.

If you use the first format shown above, the MESSAGE built-in provides
the user who is writing an editing interface with a method of displaying
messages in a way that is consistent with the VAXTPU language.

If you have associated a message buffer with a message window, and if the
message window is mapped to the screen, the range you specify appears
immediately in the message window on the screen.

7-267

VAXTPU Built-In Procedures
MESSAGE

SIGNALED
ERRORS

7-268

If you have not associated a message buffer with a message window,
messages are written to the buffer, but do not appear on the screen.

If you use the second format shown above, the MESSAGE built-in places a
formatted string in the message buffer. The difference between MESSAGE
and MESSAGE_TEXT is that MESSAGE_TEXT simply returns the
resulting string while MESSAGE places the resulting string in the
message buffer. The string is specified by the message code passed as
the first parameter and constructed according to the rules of the $FAQ
system service. The control string associated with the message code
directs the formatting process, and the optional arguments are values to
be substituted into the control string.

MESSAGE capitalizes the first character of the string placed in the
message buffer. The MESSAGE_TEXT built-in, on the other hand, does
not capitalize the first character of the returned string.

Some FAQ directives you can include as part of the message text are the
following:

!AS Inserts a string as is

!OL Converts an integer to octal notation

!XL Converts an integer to hexadecimal notation

!ZL Converts an integer to decimal notation

!UL Converts an integer to decimal notation without adjusting for negative
number

!SL Converts an integer to decimal notation with negative numbers converted
properly

!/ Inserts a new line character (carriage return/line feed)

!_ Inserts a tab

!} Inserts a form feed

! ! Inserts an exclamation point

1%S Inserts an s if the most recently converted number is not 1

!% T Inserts the current time if you enter O as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

!%0 Inserts the current date and time if you enter O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_1NVFAOPARAM

ERROR

ERROR

ERROR

WARNING

MESSAGE requires at least
one argument.

MESSAGE cannot accept
as many arguments as you
have specified.

You have specified an
argument of the wrong type.

Argument was not a string
or integer.

)

VAXTPU Built-In Procedures
MESSAGE

TPU$_1NVPARAM ERROR You have specified an
argument of the wrong type.

TPU$_FLAGTRUNC INFORMATIONAL Message flag truncated to 4
bits.

TPU$_SYSERROR ERROR Error fetching the message
text.

TPU$_1LLSEVERITY WARNING Illegal severity specified;
VAXTPU used the severity
"error."

TPU$_MSGNOTFND WARNING Message not found.
VAXTPU returned default
message.

EXAMPLES
D MESSAGE ("Hello")

This statement writes the text "Hello" in the message area.

I PROCEDURE user on eol

test if at eol, return true or false

MOVE_HORIZONTAL (1);
IF CURRENT OFFSET = 0
THEN

! then we are on eol

user_on_end_of_line := 1; return true
MESSAGE ("Cursor at end of line");

ELSE
user_on_end_of_line := O; .! return false
MESSAGE ("Cursor is not at the end of line");

ENDIF;
MOVE HORIZONTAL (-1)'; ! move back

ENDPROCEDURE;

This procedure determines whether the cursor is at the end of the line. It
sends a text message to the message area on the screen about the position
of the cursor.

IJ MESSAGE (TPU$_0PENIN, TPU$K_MESSAGE_TEXT, "bat .bar");

The code fragment above fetches the text associated with the message code
TPU$_0PENIN and substitutes the string "BAT.BAR" into the message.
All of the text of the message is fetched. The following string is displayed
in the message buffer:

Error opening BAT.BAR as input

7-269

VAXTPU Built-In Procedures
MESSAGE_ TEXT

MESSAGE TEXT

FORMAT

PARAMETERS

7-270

The MESSAGE_ TEXT built-in procedure lets you do the following:

• Fetch the text associated with a message code

• Use FAQ directives to specify how strings and integers should be
substituted into the text

For complete information on the $FAQ and $GETMSG system services, see
the VMS System Services Reference Manual.

string :: MESSAGE_TEXT ({ ~~:e:~ } [, integer2 [. FAQ-parameter

[, FAO-parameters ...]]])

integer1
The integer for the message code associated with the text that is to be
fetched.

keyword
The keyword for the message code associated with the text that is to be
fetched. VAXTPU pro'vides keywords for all of the message codes used by
VAXTPU and the EVE editor.

integer2
A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is 0, then the
message flags set by the SET (MESSAGE_FLAGS) built-in procedure are
used.

Table 7-7 shows the message flags:

Table 7-7 Message Flag Values

Bit Constant

0 TPU$K_MESSAGE_TEXT

1 TPU$K_MESSAGE_ID

2 TPU$K_MESSAGE_SEVERITY

3 TPU$K_MESSAGE_FACILITY

FAD-parameter

Meaning

Include text of message.

Include message identifier.

Include severity level indicator.

Include facility name.

One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAQ system service, and substitutes the resultant
values into the text associated with the message code to form the returned
string.

\
J

\

)

VAXTPU Built-In Procedures
MESSAGE_ TEXT

return value The text associated with a message code that is fetched and formatted by
MESSAGE_ TEXT.

DESCRIPTION MESSAGE_TEXT returns a formatted string, specified by the message
code passed as the first parameter, and constructed according to the
rules of the $FAQ system service. The control string associated with the
message code directs the formatting process, and the optional arguments
are values to be substituted into the control string.

SIGNALED
ERRORS

MESSAGE_TEXT does not capitalize the first character of the returned
string. The MESSAGE built-in, .on the other hand, does capitalize the first
character.

Some FAQ directives you can include as part of the message text are the
following:

IAS Inserts a string as is

IOL Converts an integer to octal notation

IXL Conv~rts an integer to hexadecimal notation

IZL Converts an integer to decimal notation

IUL

ISL

Converts an integer to decimal notation without adjusting for negative
number

Converts an integer to decimal notation with negative numbers converted
properly

I/ Inserts a new line character (carriage return/line feed)

I_ Inserts a tab

I} Inserts a form feed

II Inserts an exclamation point

1%S Inserts an s if the most recently converted number is not 1

1%T Inserts the current time if you enter 0 as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

1%0 Inserts the current date and time if you enter O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

TPU$_1NVFAOPARAM WARNING Argument was not a string or
integer.

TPU$_ ERROR MESSAGE_ TEXT must
NEEDTOASSIGN appear on the right-hand side

of an assignment statement.

TPU$_1NVPARAM ERROR You have specified an
argument of the wrong type.

TPU$_TOOFEW ERROR MESSAGE_ TEXT requires at
least one parameter.

TPU$_ TOOMANY ERROR MESSAGE_ TEXT accepts up
to 20 FAQ directives.

7-27

VAXTPU Built-In Procedures
MESSAGE_ TEXT

TPU$_FLAGTRUNC

TPU$_SYSERROR

EXAMPLE

INFORMATIONAL

ERROR

all_message_flags := TPU$K MESSAGE TEXT OR
TPU$K-MESSAGE-ID OR
TPU$K-MESSAGE-SEVERITY OR
TPU$K-MESSAGE-FACILITY;

openin_text := MESSAGE_TEXT (TPU$_0PENIN, all_message_flags,
"bat. bar");

Message flag truncated to 4
bits.

Error fetching the message
text.

This code fragment fetches the text associated with the message code
TPU$_0PENIN and substitutes the string "BAT.BAR" into the message.
All of the text of the message is fetched. The following string is stored in
the variable openin_text:

%TPU-E-OPENIN, error opening BAT.BAR as input

7-272

)

\
)

)

VAXTPU Built-In Procedures
MODIFY _RANGE

MODIFY RANGE

Dynamically modifies a range.

FORMAT
{

marker1
MODIFY _RANGE (range, keywordt } {

marker2 }
' keyword1

/[, keyword2 J)

PARAMETERS range
The range to be modified.

marker1
The starting mark for the range.

marker2
The ending mark for the range.

keyword1
A keyword indicating the point in the buffer where you want the range
to begin or end. Table 7-8 shows the valid keywords and their meanings.
Use of the delimiting keywords is more efficient than the BEGINNING_OF
and END_OF built-ins.

Table 7-8 MODIFY _RANGE Keyword Parameters

Keyword

LINE_BEGIN

LINE_END

BUFFER_
BEGIN

Meaning

The beginning of the current buffer's current line.

The end of the current buffer's current line.

Line 1, offset O in the current buffer. This is the first position
where a character could be inserted, regardless of whether there
is a character there. This is the same as the point referred to by
BEGINNING_OF (CURRENT _BUFFER}.

BUFFER_END The last position in the buffer where a character could be inserted,
regardless of whether there is a character there. This is the same
as the point referred to by END_OF (CURRENT_BUFFER}.

keyword2
A keyword specifying the new video attribute for the range. By default,
the attribute is not modified. You can use the keywords NONE,
REVERSE, UNDERLINE, BLINK, or BOLD to specify this parameter.

7-273

VAXTPU Built-In Procedures
MODIFY _RANGE

DESCRIPTION You can use MODIFY_RANGE to specify a new starting mark and ending
mark for an existing range.

SIGNALED
ERRORS

EXAMPLES

MODIFY_RANGE can also change the characteristics of the range without
deleting, re-creating, and repainting all the characters in the range. Using
MODIFY_RANGE, you can direct VAXTPU to apply or remove the range's
video attribute to or from characters as you select and unselect text.

Ranges are limited to one video attribute at a time. Specifying a video
attribute different from the present attribute causes VAXTPU to apply the
new attribute to the entire visible portion of the range.

If the video attribute stays the same and only the markers move, the only
characters that are refreshed are those visible characters newly added to
the range and those visible characters that are no longer part of the range.

TPU$_NOTSAMEBUF WARNING The first and second marker are in
different buffers.

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by the
MODIFY _RANGE built-in.

TPU$_BADKEY WARNING You specified an illegal keyword.

TPU$_1NVPARAM ERROR You specified a parameter of the
wrong type.

TPU$_MODRANGEMARKS ERROR MODIFY _RANGE requires either
two marker parameters or none.

TPU$_ TOOFEW ERROR Too few arguments passed to the
MODIFY _RANGE built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the MODIFY .._RANGE built-in.

TPU$_NORETURNVALUE ERROR MODIFY _RANGE cannot return a
value.

I begin_mark : = MARK (BOLD) ;
POSITION (MOUSE);
finish mark :=MARK (BOLD);
this_range := CREATE_RANGE (begin_mark, finish_mark, BOLD);
!

(User may have moved mouse)

POSITION (MOUSE);
new_mark :=MARK (BOLD);
IF new mark <> finish mark - -THEN

MODIFY_RANGE (this_range, begin_mark, new_mark, BOLD);
ENDIF;

7-274

This code fragment creates a range between the editing point and the
pointer cursor location. At a point in the program after you might have

)

I
I

\
)

VAXTPU Built-In Procedures
MODIFY _RANGE

moved the pointer cursor, the code fragment modifies the range to reflect
the new pointer cursor location.

I MODIFY RANGE (this_range, , ,BLINK);

This statement sets the video attribute of the range this_range to BLINK.

I PROCEDURE move_mark (place_to_start, direction);

POSITION (place_to_start);

IF direction = 1
THEN

MOVE HORIZONTAL (1);
ELSE

MOVE_HORIZONTAL (-1);
ENDIF;

RETURN MARK (NONE);

ENDPROCEDURE;

PROCEDURE user_shrink_and_enlarge_range

LOCAL start_mark,
end mark,
direction,
dynamic range,
rendition,
remembered_range;

POSITION (LINE_BEGIN);
start_mark :=MARK (NONE);
POSITION (LINE END);
end mark :=MARK (NONE);
rendition := REVERSE;

The following lines
create a range that
shrinks and grows and
a range that defines
the limits of the dynamic
range.

remembered range :=CREATE RANGE (start mark, end mark, NONE);
dynamic_range := CREATE_RANGE (start_mark, end_mark, rendition);

The following lines
shrink and enlarge
the dynamic range.

direction := 1;

LOOP
UPDATE (CURRENT_WINDOW);

start mark:= move mark (BEGINNING OF (dynamic range), direction);
end_mark := move_mark (END_OF (dynamic_range),-1 - direction);

MODIFY_RANGE (dynamic_range, start_mark, end_mark);

7-275

VA.XTPU Built-In Procedures
MODIFY _RANGE

IF start mark > end mark
THEN

- -
EXITIF READ KEY = CTRL Z KEY;
direction :~ 0; - -
IF rendition = REVERSE
THEN

rendition := BOLD;
ELSE

rendition := REVERSE;
ENDIF;
MODIFY RANGE (dynamic_range, , , rendition);

ENDIF;

IF (start_mark = BEGINNING_OF (remembered_range)) OR
(end_mark = END_OF (remembered_range))

THEN
direction := 1;

ENDIF;
ENDLOOP;

ENDPROCEDURE;

These procedures cause the range dynamicJange to shrink to one
character, then grow until it becomes as large as the range remembered_
range.

m PROCEDURE line_up characters (text_range, lined_chars_pat)

LOCAL
range_start,
range_end,
temp_range,
max_cols;

range_end :=END OF (text_range);

range_start :=BEGINNING OF (text_range);

max_cols := O;
LOOP

These statements store
the ends of the range
containing the text operated on.

The following statements
locate the portions of
text that match the pattern
and determine which is
furthest to the right.

temp_range := SEARCH_QUIETLY (lined_chars_pat, REVERSE, EXACT, text_range);
EXITIF temp_range = O;
POSITION (temp_range);
IF GET_INFO (MARK (NONE), "offset_column") > max_cols
THEN

max cols :=GET INFO (MARK (NONE), "offset_column");
ENDIF;
MOVE_HORIZONTAL (-1);
MODIFY RANGE (text_range, BEGINNING OF (text_range), MARK (NONE));

ENDLOOP;

7-276

)

VAXTPU Built-In Procedures
MODIFY _RANGE

text_range :=CREATE RANGE (range_start, range_end);

The following lines
locate matches to the
pattern and align them
with the rightmost
piece of matching text.

LOOP
temp_range := SEARCH_QUIETLY (lined_chars_pat, FORWARD, EXACT, text_range);
EXITIF temp_range = 0;
POSITION (temp_range);
IF GET_INFO (MARK (NONE), "offset_column") < max_cols
THEN

COPY_TEXT (" "* (max_cols - GET INFO (MARK (NONE), "offset_column")));
ENDIF;
MOVE_HORIZONTAL (1);
MODIFY RANGE (text_range, END OF (text_range), MARK (NONE));

ENDLOOP;

! Restore the range to its original state, plus a reverse attribute.

text_range :=CREATE RANGE (range_start, range_end, REVERSE); This line
restores the
range to its
original state
and displays
the contents

ENDPROCEDURE;

in reverse video.

This procedure aligns text that conforms to the pattern specified in the
second parameter. For example, if you want to align all comments in a
piece ofVAXTPU code, you would pass as the second parameter a pattern
defined as an exclamation point followed by an arbitrary amount of text or
whitespace and terminated by a line end.

The procedure is passed a range of text. As the procedure searches the
range to identify the rightmost piece of text that matches the pattern,
the procedure modifies the range to exclude any matching text. Next, the
procedure searches the original range again and inserts padding spaces
in front of each instance of matching text, making the text align with the
rightmost instance of matching text.

7-277

VAXTPU Built-In Procedures
MOVE_ HORIZONTAL

MOVE HORIZONTAL

Changes the editing point in the current buffer by the number of characters
you specify.

FORMAT MOVE_HORIZONTAL (integer)

PARAMETERS integer
The signed integer value that indicates the number of characters the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

VAXTPU does not count the column where the editing point is located
when determining where to establish the new editing point. VAXTPU does
count the end-of-line (the column after the last text character on the line)
when determining where to establish the new editing point.

DESCRIPTION The horizontal adjustment of the edjting point is tied to text. MOVE_
HORIZONTAL crosses line boundaries to adjust the current character
position.

SIGNALED
ERRORS

7-278

You cannot see the adjustment caused by MOVE_HORIZONTAL unless
the current buffer is mapped to a visible window. If it is, VAXTPU scrolls
text in the window, if necessary, so that the editing point you establish
with MOVE_HORIZONTAL is within the scrolling limits set for the
window.

If you try to move past the beginning or the end of a buffer, VAXTPU
displays a warning message.

Using MOVE_HORIZONTAL may cause VAXTPU to insert padding
spaces or blank lines in the buffer. MOVE_HORIZONTAL causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, ifthe cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR

ERROR

MOVE_HORIZONTAL requires
one parameter.

You specified more than one
parameter.

)

EXAMPLES
D MOVE_HORIZONTAL (+5)

TPU$_1NVPARAM

TPU$_NOCURRENTBUF

TPU$_ENDOFBUF

TPU$_BEGOFBUF

VAXTPU Built-In Procedures
MOVE_HORIZONTAL

ERROR

WARNING

WARNING

WARNING

The specified parameter has the
wrong type.

You are not positioned in a buffer.

You are trying to move forward
past the last character of the
buffer.

You are trying to move in reverse
past the first character of the
buffer.

This statement moves the editing point five characters toward the end of
the current buffer.

I PROCEDURE user_move_by_lines

IF CURRENT DIRECTION = FORWARD
THEN

MOVE_VERTICAL (8)
ELSE

MOVE_VERTICAL (- 8)
ENDIF;
MOVE HORIZONTAL (-CURRENT_OFFSET);

ENDPROCEDURE;

This procedure moves the editing point by sections that are eight lines
long, and uses MOVE_HORIZONTAL to put the editing point at the
beginning of the line.

7-279

VAXTPU Built-In Procedures
MOVE_ TEXT

MOVE TEXT

FORMAT

PARAMETERS

Depending on the mode of the current buffer, moves the text you specify and
inserts or overwrites it in the current buffer. When you move text with range
and buffer parameters, you remove it from its original location. For information
on how to copy text instead of removing it, see the description of the COPY_
TEXT built-in.

{

buffer }
(range2 ::)MOVE_ TEXT (ra~ge 1)

strmg

buffer
The buffer from which text is moved.

range1
The range from which text is moved.

string
A string representing the text you want to move. Text is not removed from
its original location with this argument.

return value The range where the copied text has been placed.

DESCRIPTION If the current buffer is in insert mode, the text you specify is inserted
before the editing point in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

7-280

Markers and ranges are not moved with the text. If the text of a marker
or a range is moved, the marker or range structure and any video attribute
that you specified for the marker or range are moved to the next closest
character, which is always the character following the marker or range. To
remove the marker or range structure, use the built-in procedure DELETE
or set the variable to which the range is assigned to 0.

MOVE_TEXT is similar to COPY_TEXT. However, MOVE_TEXT erases
the text from its original string, range, or buffer, while COPY_TEXT just
makes a copy of the text and places the copy at the new location.

You cannot add a buffer or a range to itself. If you try to do so, VAXTPU
issues an error message. If you try to insert a range into itself, part of the
range is copied before VAXTPU signals an error. If you try to overstrike a
range into itself, VAXTPU may or may not signal an error.

'1
)

\
',

)

\
)

VAXTPU Built-In Procedures
MOVE_ TEXT

Using MOVE_TEXT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. MOVE_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

SIGNALED
ERRORS

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_ TOOFEW ERROR MOVE_ TEXT requires one
argument.

TPU$_ TOOMANY ERROR MOVE_ TEXT accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to MOVE_ TEXT
must be a buffer, range, or string.

TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.

TPU$_MOVETOCOPY WARNING MOVE_ TEXT was able to copy
the text into the current buffer but
could not delete it from the source
buffer because the source buffer is
unmodifiable.

EXAMPLES

I MOVE TEXT (main_buffer)

If you are using insert mode for text entry, this statement causes the
text from main_buffer to be placed in front of the current position in the
current buffer. The text is removed from main_buffer.

PROCEDURE user move text - -
LOCAL this_mode;

Save mode of current buff er in this mode
this_mode := GET_INFO (CURRENT_BUFFER, "mode");

Set current buff er to insert mode
SET (INSERT, CURRENT_BUFFER);

Move the scratch buff er text to the current buff er
MOVE_TEXT (scratch_buffer);

Reset current buff er to original mode
SET (this_mode, CURRENT_BUFFER);

ENDPROCEDURE;

This procedure puts the text from the scratch buffer before the editing
point in the main buffer. The text in the scratch buffer is removed; no
copy of it is left there.

7-281

VAXTPU Built-In Procedures
MOVE_ VERTICAL

MOVE VERTICAL

Modifies the editing point in the current buffer by the number of lines you
specify.

FORMAT MOVE_VERTICAL (integer)

PARAMETERS integer
The signed integer value that indicates the number of lines that the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

DESCRIPTION The adjustment that MOVE_ VERTICAL makes is tied to text. VAXTPU
tries to retain the same character offset relative to the beginning of the
line when moving vertically. However, if there are tabs in the lines, or the
lines have different margins, the editing point does not necessarily retain
the same column position on the screen.

7-282

By default, VAX.TPU keeps the cursor at the same offset on each line.
However, since VAXTPU counts a tab as one character regardless of how
wide the tab is, the cursor's column position may vary greatly even though
the offset is the same.

To keep the cursor in approximately the same column on each line, use the
following statement:

SET (COLUMN_MOVE_VERTICAL, ON)

This statement directs VAXTPU to keep the cursor in the same column
unless a tab character makes this impossible. If a tab occupies the column
position, VAXTPU moves the cursor to the beginning of the tab.

You cannot see the adjustment caused by MOVE_ VERTICAL unless the
current buffer is mapped to a visible window. If it is, VAXTPU scrolls text
in the window, if necessary, so that the editing point you establish with
MOVE_ VERTICAL is within the scrolling limits set for the window.

Using MOVE_ VERTICAL may cause VAXTPU to insert padding spaces or
blank lines in the buffer. MOVE_ VERTICAL causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

If you try to move past the beginning or end of a buffer, VAXTPU displays
a warning message.

)

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BEGOFBUF

TPU$_ENDOFBUF

TPU$_NOCURRENTBUF

EXAMPLES
I MOVE VERTICAL (+5)

VAXTPU Built-In Procedures
MOVE_ VERTICAL

ERROR MOVE_ VERTICAL requires at
least one parameter.

ERROR You specified more than one
parameter.

ERROR One or more of the specified
parameters have the wrong type.

WARNING You are trying to move backward
past the first character of the
buffer.

WARNING You are trying to move forward
past the last character of the
buffer.

WARNING You are not positioned in a buffer.

This statement moves the editing point in the current buffer down five
lines toward the end of the buffer.

I PROCEDURE user_rnove_8_lines

IF CURRENT_DIRECTION = FORWARD
THEN

MOVE VERTICAL (8);
ELSE

MOVE_VERTICAL (- 8);
ENDIF;
MOVE_HORIZONTAL(- CURRENT_OFFSET);

ENDPROCEDURE;

This procedure moves the editing point by sections that are eight lines
long.

7-283

VAXTPU Built-In Procedures
NOTANY

NOTANV

FORMAT

PARAMETERS

Returns a pattern that matches a specific number of characters not in the
string, buffer, or range that is used as a parameter.

{

buffer }
pattern := NOTANV (ra~ge ff, integer1 J)

strmg

buffer
An expression that evaluates to a buffer. NOTANY matches any character
not in the resulting buffer.

range
An expression that evaluates to a range. NOTANY matches any character
not in the resulting range.

string
An expre~sion that evaluates to a string. NOTANY matches any character
not in the resulting string.

integer1
This integer value indicates how many contiguous characters NOTANY
matches. The default value for this integer is 1.

return value A pattern that matches characters not in the string, buffer, or range used
as a parameter.

DESCRIPTION NOTANY returns a pattern that matches one or more contiguous
characters. NOTANY only matches characters that do not appear in the
string, range, or buffer used as the first parameter. The second parameter
determines the number of characters NOTANY must match. NOTANY
does not match across line breaks.

SIGNALED
ERRORS

7-284

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

NOTANY must appear in the
right-hand side of an assignment
statement.

NOTANY requires at least one
argument.

NOTANY accepts no more than
two arguments.

NOTANY was given an argument
of the wrong type.

TPU$_1NVPARAM

TPU$_MINVALUE

TPU$_CONTROLC

VAXTPU Built-In Procedures
NOTANV

ERROR

WARNING

ERROR

NOTANY was given an argument
of the wrong type.

NOTANY was given an argument
less than the minimum value.

You pressed CTRUC during the
execution of NOTANY.

EXAMPLES
D patl := NOTANY ("XYZ")

This assignment statement creates a pattern that matches the first
character that is not an X, a Y, or a Z. The match fails if no character
other than X, Y, or Z is found.

patl := notany ("ABC", 2)

This assignment statement creates a pattern that matches two characters,
neither of which can be an A, a B, or a C.

fj] a_buf := CREATE_BUFFER ("new buffer");
POSITION (a_buf);

II

COPY_TEXT ("xy");
SPLIT_LINE;
COPY_TEXT ("abc");
patl := NOTANY (a_buf);

These VAXTPU statements create a pattern that matches any single
character other than one of the characters a, b, c, x, and y.

The following procedure returns a marker pointing to
the next nonalphabetic character or the integer zero
if there are no more nonalphabetic characters. You
call the procedure in the following way:

non_alpha_marker := user_search_for_nonalpha;

PROCEDURE user_search_for_nonalpha

LOCAL pat,
first_non_alpha;

pat := NOTANY ("abcdefghijklmnopqrstuvwxyz");

first_non_alpha := SEARCH_QUIETLY (pat, FORWARD, NO_EXACT);

IF first_non_alpha <> 0
THEN

first_non_alpha := BEGINNING_OF (first_non_alpha);
ENDIF;

RETURN f irst_non_alpha;
ENDPROCEDURE;

This procedure starts at the current location and looks for the first
nonalphabetic, nonlowercase character. The variable non_alpha_range
stores the character that matches these conditions.

7-285

VAXTPU Built-In Procedures
PAGE_BREAK

PAGE BREAK

Specifies the form-feed character, ASCll(12), as a portion of a pattern to be
matched.

FORMAT PAGE_BREAK

PARAMETERS None.

DESCRIPTION PAGE_BREAK matches the next form-feed character. This character has
an ASCII value of 12.

SIGNALED
ERROR
EXAMPLE

Although PAGE_BREAK behaves much like a built-in, it is actually a
keyword.

If the form-feed character is the only character on a line, PAGE_BREAK
matches the whole line. If the form-feed character is not the only character
on a line, PAGE_BREAK matches only the form-feed character.

PAGE_BREAK is a keyword and has no completion codes.

PROCEDURE user_next_page

LOCAL next_page;

next_page := SEARCH_QUIETLY (PAGE_BREAK, FORWARD);
IF next_page <> 0
THEN

POSITION (next_page);
ELSE

POSITION (end_of (current_buffer));
ENDIF;

ENDPROCEDURE;

7-286

This procedure places the cursor on the next page in the current buffer. If
you are already on the last page of a document, it places the cursor at the
end of that document.

POSITION

FORMAT

VAXTPU Built-In Procedures
POSITION

Ties the editing point to a specific character in a specific buffer, and moves
the editing point to a specified record in the current buffer. The character
and buffer in which POSITION establishes the editing point depend on which
parameter you pass to POSITION.

POSITION

buffer
BUFFER_BEGIN
BUFFER_END
integer
LINE_BEGIN
LINE_END
marker
MOUSE
range
TEXT
window

PARAMETERS buffer
The buffer in which you want to establish the editing. point.

VAXTPU maintains an editing point in each buffer even when the buffer
is not the current buffer. When you position to a buffer, the editing point
that VAX.TPU maintains becomes the active editing point. The location at
which POSITION establishes the editing point is the last character that
the cursor was on when the buffer was most recently current.

BUFFER BEGIN
A keyword directing VAXTPU to establish the editing point at the
beginning of the current buffer. Note that this is more efficient than
using POSITION (BEGINNING_OF (CURRENT_BUFFER)).

BUFFER END
A keyword directing VAXTPU to establish the editing point at the
end of the current buffer. Note that this is more efficient than using
POSITION (END_OF (CURRENT_BUFFER)).

integer
The number of the record where you want VAXTPU to position the editing
point.

A record number indicates the location of a record in a buffer. Record
numbers are dynamic; as you add or delete records, VAXTPU changes
the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible in a
window, or whether the record contains text.

7-287

VAXTPU Built-In Procedures
POSITION

7-288

To position the editing point to a given record, specify the record number.
The number can be in the range from 1 to the number of records in the
buffer plus 1. For example, the following statement positions the editing
point to record number 8 in the current buffer:

POSITION (8);

VAXTPU places the editing point on the first character of the record.

Specifying a value of 0 has no effect. Specifying a negative number or a
number greater than the number of records in the buffer plus 1 causes
VAXTPU to signal an error.

LINE BEGIN
A keyword directing VAXTPU to establish the editing point at the
beginning of the current line.

LINE END
A keyword directing VAXTPU to establish the editing point at the end of
the current line.

marker
The marker to which you want to tie the editing point. You can position
either to a bound marker or a free marker. (For more information on the
distinction between bound and free markers, see Chapter 2.) Positioning
to a free marker does not cause VAXTPU to insert padding blanks between
the nearest text and the free marker; such positioning establishes the
editing point as free. (For more information on the distinction between
free and detached editing points, see Chapter 6.)

MOUSE
A keyword directing VAXTPU to associate the editing point with the
location of the pointer cursor.

In DECwindows VAXTPU, you can use the statement POSITION
(MOUSE) at any point after the first keyboard or mouse button event.
The statement positions the editing point to the location occupied by the
pointer cursor at the time of the most recent keyboard or mouse-button
event.

If the pointer cursor is on a window's status line when POSITION
(MOUSE) is executed, VAXTPU positions the editing point at the line
just above the status line.

If the pointer cursor is not located in a VAXTPU window at the time of
the most recent keyboard or mouse-button event, POSITION (MOUSE)
returns the status TPU$_NOWINDOW.

In non-DECwindows VAXTPU, POSITION (MOUSE) is only valid during
a procedure that is executed as the result of a mouse click. At all other
times, the mouse position is not updated.

The statement POSITION (MOUSE) makes the window in which the
pointer cursor is located the current window, and the buffer in which the
pointer cursor is located the current buffer.

range
The range in which you want to place the editing point. The editing point
is established at the beginning of the range. To establish the editing point
at the end of the range, use the statement POSITION (END_OF (range)).

DESCRIPTION

TEXT

VAXTPU Built-In Procedures
POSITION

A keyword indicating that if the editing point is at a free-cursor location
(a portion of the screen where there is no text), the POSITION built-in
is to establish the editing point at the nearest location that has a text
character in it. The character may be a space or an end of line. If you use
POSITION (TEXT) when the editing point is already bound to a character,
the built-in has no effect.

window
The window in which you want to establish the editing point. The window
must be mapped to the screen.

The location at which POSITION establishes the editing point is the last
character that the cursor was on when the window was most recently
current. If that character has been deleted, the editing point is the
character closest to the last character that the cursor was on when the
window was current.

Positioning to a window causes the buffer associated with the window
to become the current buffer. This is true whether you directly position
to a window, or a new window is mapped as the result of a POSITION
(MOUSE) statement.

The editing point is the location in the current buffer where most editing
operations are carried out. VAXTPU maintains a marker pointing to an
editing point in each buffer, but only the editing point in the current buffer
is active. An editing point, whose location is always tied to a character
in a buffer, is not necessarily the same as the cursor position, whose
location is always tied to a position in a window. For more information
on the distinction between the editing point and the cursor position, see
Chapter 6.

The POSITION built-in synchronizes the editing point and the cursor
position if the current buffer is mapped to a visible window. POSITION
also moves the editing point to the the specified record in the current
buffer.

When you pass the keyword MOUSE to POSITION, the built-in
establishes the mouse pointer's location as the cursor position. POSITION
also establishes the window in which the mouse pointer is located as the
current window, and establishes the buffer mapped to that window as the
current buffer.

Positioning to a buffer, a marker, or a range does not necessarily move
the cursor. VAXTPU does not change the cursor position unless the cursor
is in a window that is mapped to the buffer specified or implied by the
POSITION parameter. For example, if you use POSITION to establish
the editing point in a buffer that is not mapped to a window, the cursor is
unaffected by the POSITION operation. If you want to do visible editing,
you should position to a window rather than a buffer.

If you try to position to an invisible window, VAXTPU issues a warning
message.

For more information on the relationship between the editing point and
the cursor position, see Chapter 6.

7-289

VAXTPU Built-In Procedures
POSITION

SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ARGMISMATCH

TPU$_BADKEY

TPU$_UNKKEYWORD

TPU$_BADVALUE

TPU$_MOUSEINV

TPU$_NOWINDOW

TPU$_WINDNOTMAPPED

TPU$_WINDNOTVIS

EXAMPLES

D POSITION (message_window)

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

ERROR

WARNING

WARNING

POSITION requires one
parameter.

You specified more than one
parameter.

One or more of the specified
parameters have the wrong type.

Wrong type of data sent to the
built-in.

You have specified an invalid
keyword.

You specified an unknown
keyword.

You specified a record number
less than O or greater than the
length of the buffer plus 1.

The mouse position is not currently
valid.

The pointer cursor was not located
in a VAXTPU window at the time
of the most recent keyboard or
mouse-button event.

WARNING Window is not mapped to the
screen.

WARNING Window is totally occluded.

This statement establishes the editing point in the message window. Your
position in the window is the same character position you occupied when
you were last positioned in the window.

I user mark := MARK(NONE);
POSITION (user_mark)

These statements establish the editing point at the marker associated with
the variable user _mark.

I PROCEDURE user_change_windows

IF CURRENT_WINDOW = main_window
THEN

POSITION (extra_window);
ELSE

POSITION (main_window);
ENDIF;

ENDPROCEDURE;

This procedure toggles the active editing point between two windows.

7-290

QUIT

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
QUIT

Leaves the editor without writing to a file.

QUIT [({ g~F } [, severity J)J

ON
A keyword indicating that VAXTPU should prompt to find out if the user
really wants to quit with modified buffers. This is the default value.

OFF
A keyword indicating that VAXTPU should quit without asking the user
whether to quit with modified buffers.

severity
If present, the least significant two bits of this integer are used as the
severity of the status VAXTPU returns to whatever invoked it.

Value Severity

0 Warning

1 Success

2 Error

3 Informational

It is not possible to force VAXTPU to return a fatal severity status.

DESCRIPTION If you modify any buffers that are not set to NO_ WRITE and you do
not specify OFF as the first parameter to the QUIT built-in procedure,
VAXTPU tells you that you have modified buffers and asks whether you
want to quit. Enter Y (Yes) if you want to quit without writing out any
modified buffers. Enter N (No) if you want to retain the modifications
you have made and return to the editor. If you specify OFF as the first
parameter to QUIT, VAXTPU quits without informing you that you have
modified buffers. All modifications are lost because VAXTPU does not
write out buffers when quitting.

Journal files (if any) are deleted upon quitting.

Use the EXIT built-in procedure when you have made changes and want
to save them when you leave the editor. (For more information, see the
description of EXIT.)

Normally, when VAXTPU quits it returns a status of TPU$_QUITTING to
whatever invoked it. This is a success status.

7-291

VAXTPU Built-In Procedures
QUIT

SIGNALED
ERRORS

EXAMPLES

D QUIT;

This feature is useful if you are using VAXTPU to create an application
in which quitting, especially before the end of a series of statements
executing in batch mode, is an error.

A special use of the built-in procedure QUIT is at the end of your section
file when you are compiling it for the first time. See Chapter 4 for
information on creating section files.

TPU$_CANCELQUIT

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

WARNING "NO" response was received
from" . . . continue quitting?"
prompt.

ERROR QUIT accepts no more than two
arguments.

ERROR One of the arguments to QUIT has
the wrong data type.

WARNING QUIT accepts only the keywords
ON and OFF.

This returns control of execution from an editor layered on VAXTPU to
the program, application, or operating system that called VAXTPU. If you
have modified any buffers, you see the following prompt:

Buffer modifications will not be saved, continue quitting (Y or N)?

Enter Yes if you want to quit and not save the modifications. Enter No if
you want to return to the editor.

fl QUIT (OFF)

This returns control of execution from an editor layered on VAXTPU to the
program, application, or operating system that called VAXTPU. VAXTPU
does not alert you if you have modified buffers. All modifications since the
last time you wrote out the buffer are discarded.

I PROCEDURE user_ quit

SET (SUCCESS, OFF);
QUIT;

Turn message back on in case user answers "No" to the
prompt "Buff er modifications will not be saved, continue
quitting (Y or N)?"

SET (SUCCESS, ON);
ENDPROCEDURE;

7-292

This procedure turns off the display of the success message, "Editor
successfully quitting'', when you use the built-in procedure QUIT to leave
an editing interface.

READ CHAR

VAXTPU Built-In Procedures
READ_CHAR

Stores the next character entered from the keyboard in a string variable.

FORMAT string := READ_CHAR

PARAMETERS None.

return value A variable of type string containing a character entered from the keyboard.

DESCRIPTION The character read by READ_CHAR is not echoed on the screen; therefore,
the cursor position does not move.

SIGNALED
ERRORS

EXAMPLES

READ_CHAR does not process escape sequences. If a VAX.TPU procedure
uses READ_CHAR for an escape sequence, only part of the escape
sequence is read. The remaining part of the escape sequence is treated
as text characters. If control then returns to VAX.TPU, or a READ_
KEY or READ_LINE built-in procedure is executed, the results may be
unpredictable.

In DECwindows VAXTPU, READ_CHAR maps the main window if it is
not already mapped.

In the DECwindows environment, READ_CHAR cannot read a keypad or
function key. If a VAX.TPU procedure uses READ_CHAR and you press a
keypad or function key, READ _CHAR returns a null string and signals the
warning TPU$_NOCHARREAD.

If you invoke VAX.TPU with the /NODISPLAY qualifier, do not use READ_
CHAR during the session. READ_CHAR causes VAX.TPU to abort when
VAXTPU is running in NODISPLAY mode.

TPU$_NOCHARREAD

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY

WARNING READ_CHAR did not read a
character.

ERROR

ERROR

READ_CHAR must be on the
right-hand side of an assignment
statement.

READ_ CHAR takes no arguments.

D new char := READ CHAR

This assignment statement stores the next character that is entered on
the keyboard in the string new _char.

7-293

VAXTPU Built-In Procedures
READ_CHAR

I PROCEDURE user_quote
COPY_TEXT (READ_CHAR);

ENDPROCEDURE;

7-294

This procedure enters the next character that is entered from the keyboard
in the current buffer. If a key that sends an escape sequence is pressed,
the first character of the escape sequence is copied into the buffer.
Subsequent keystrokes are interpreted as self-inserting characters, defined
keys, or undefined keys, as appropriate.

VAXTPU Built-In Procedures
READ _CLIPBOARD

READ CLIPBOARD - .

FORMAT

return value

DESCRIPTION

SIGNALED
ERRORS

Reads string format data from the clipboard and copies it into the current
buffer, at the editing point, using the buffer's current text mode (insert or
overstrike).

[
range] .
UNSPECIFIED ·= READ_CLIPBOARD

A range containing the text copied into the current buffer, or an
unspecified data type indicating that no data was obtained from the
clipboard.

IfVAXTPU finds a line-feed character in the data, it removes the line feed
and any adjacent carriage returns and puts the data after the line feed on
the next line of the buffer. If VAXTPU must truncate the data from the
clipboard, V.AXTPU copies the truncated text into the current buffer.

All text read from the clipboard is copied into the buffer starting at the
editing point. IfV.AXTPU must start a new line to fit all the text into the
buffer, the new line starts at column 1, even if the current left margin is
not set at column 1.

TPU$_CLIPBOARDLOCKED WARNING VAXTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPU$_CLIPBOARDFAIL WARNING The clipboard has not returned
any data.

TPU$_REQUIRESDECW ERROR You can use the READ_
CLIPBOARD built-in only if you
are using DECwindows TPU.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65,535
characters.

TPU$_ TOOMANY ERROR Too many arguments passed to
the READ_CLIPBOARD built-in.

7-295

VAXTPU Built-In Procedures
READ_ CLIPBOARD

EXAMPLE
PROCEDURE eve$$insert_clipboard

ON ERROR
- [TPU$ CLIPBOARDNODATA] :

eve$message (EVE$ NOINSUSESEL);
eve$learn_abort; -
RETURN (FALSE);

[TPU$ CLIPBOARDLOCKED]:
eve$message (EVE$ CLIPBDREADLOCK);
eve$learn_abort; -
RETURN (FALSE);

[TPU$_TRUNCATE]:
[OTHERWISE] :

eve$learn_abort;
ENDON_ERROR;

IF eve$test_if_modifiable (CURRENT_BUFFER)
THEN

READ_CLIPBOARD;

RETURN (TRUE) ;
ENDIF;

eve$learn_abort;
RETURN (FALSE) ;

ENDPROCEDURE;

This statement using
READ CLIPBOARD reads
data-from the clipboard
and copies it into the
current buffer.

This procedure shows one possible way that an application can use the
READ_CLIPBOARD built-in. This procedure is a modified version of the
EVE procedure EVE$$1NSERT_CLIPBOARD. You can find the original
version in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

7-296

Procedure EVE$$INSERT_CLIPBOARD fetches the contents of the
clipboard and places them in the current buffer.

READ FILE

VAXTPU Built-In Procedures
READ_FILE

Reads a file and inserts the contents of the file immediately before the current
line in the current buffer. READ_FILE optionally returns a string containing the
file specification of the file read.

FORMAT (string2 :=I READ_FILE (string1)

PARAMETER string1
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the name of the file you want
to read and include in the current buffer.

return value A string that is the specification of the file read.

DESCRIPTION If the current buffer is mapped to a visible window, the READ_FILE built­
in causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

SIGNALED
ERRORS

VAXTPU writes a message indicating how many records (lines) were read.

If you try to read a file containing lines longer than 32767 characters,
VAXTPU truncates the line to the first 32767 characters and issues a
warning.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

TPU$_CONTROLC ERROR The execution of the read
terminated because you pressed
CTR UC.

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_ TOOFEW ERROR READ_FILE requires at least one
parameter.

TPU$_ TOOMANY ERROR READ_FILE accepts no more than
one parameter.

TPU$_1NVPARAM ERROR The parameter to READ _FILE
must be a string.

TPU$_ TRUNCATE WARNING One of the lines in the file was too
long to fit in a VAXTPU buffer.

7-297

VAXTPU Built-In Procedures
READ_FILE

The following errors, warnings, and messages can be signaled by
VAXTPU's file 1/0 routine. You can provide your own file 1/0 routine
by using VAXTPU's callable interface. If you do so, READ_FILE's
signaled errors, warnings, and messages depend upon what status you
signaled in your file 1/0 routine.

TPU$_0PENIN ERROR

TPU$_READERR ERROR

TPU$_CLOSEIN ERROR

READ_FILE could not open the
file you specified.

READ_FILE did not finish reading
the file because it encountered a
file system error.

READ_FILE did not finish closing
the file because it encountered a
file system error.

EXAMPLES

I READ FILE ("login.com")

This statement read~ the file LOGIN.COM and adds it to your current
buffer.

I PROCEDURE user two wjndows

w :=CREATE WINDOW (1, 10, ON);
b :=CREATE BUFFER ("buf2");

MAP (w, b);

READ FILE (READ_LINE ("Enter file name for 2nd window "));

POSITION (BEGINNING_OF (b));

DEFINE KEY ("POSITION (w)", KEY_NAME ("W", SHIFT_KEY));
ENDPROCEDURE;

7-298

This procedure creates a second window and a second buffer and maps
the window to the screen. The procedure also prompts the user for a file
name to include in the buffer and defines the key sequence SHIFT/W as
the sequence with which to move to the second window. (The default shift
key is PFl.)

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

READ GLOBAL SELECT - -

FORMAT

PARAMETERS

return value

Requests information about the specified global selection from the owner of
the global selection. If the owner provides the information, READ_GLOBAL_
SELECT reads it and copies it into the current buffer at the editing point, using
the buffer's current text mode (insert or overstrike). The READ_GLOBAL_
SELECT built-in also puts line breaks in the text copied into the buffer.

{
PRIMARY }

I {unspecified } := J READ_GLOBAL_SELECT (SECONDARY ,
range selection name

selection_property_name) -

PRIMARY
A keyword indicating that the application is requesting information about
a property of the primary global selection.

SECONDARY
A keyword indicating that the application is requesting information about
a property of the secondary global selection.

selection name
A string identifying the global selection whose property is the subject of
the application's information request. Specify the selection name as a
string if the layered application needs information about a selection other
than the primary or secondary global selection.

selection_property _name
A string specifying the property whose value the application is requesting.

unspecified

range

A data type indicating that the information requested by the
application was not available.

A range containing the text copied into the current buffer.

DESCRIPTION Use READ_GLOBAL_SELECT to ask the application that owns the
specified global selection for information about a property of the global
selection. For example, you can ask about the global selection's font, the
number of lines it contains, or the string-formatted data it contains, if any.

All text read from the global selection is copied into the current buffer
starting at the editing point. IfVAXTPU must start a new line to fit all
the text into the buffer, the new line starts at column 1, even if the current
left margin is not set at column 1.

7-299

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

SIGNALED
ERRORS

EXAMPLE

If the global selection information requested is an integer, the built-in
converts the integer into a string before copying it into the current buffer.
If the information requested is a string, the built-in copies the string into
the buffer, replacing any line feeds with line breaks. Carriage returns
adjacent to line feeds are not copied into the buffer.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_GBLSELOWNER WARNING VAXTPU owns the global
selection.

TPU$_1NVGBLSELDATA WARNING The global selection owner
provided data that VAXTPU cannot
process.

TPU$_NOGBLSELDATA WARNING The global selection owner has
indicated that it cannot provide the
information requested.

TPU$_NOGBLSELOWNER WARNING You have requested information
about an unowned global
selection.

TPU$_ TIMEOUT WARNING The global selection owner did not
respond before the timeout period
expired.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
READ_GLOBAL_SELECT built-in.

TPU$_REQUIRESDECW ERROR You can use the READ_GLOBAL_
SELECT built-in only if you are
using DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
READ_GLOBAL_SELECT built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the READ_ GLOBAL_SELECT
built-in.

READ_GLOBAL_SELECTION (PRIMARY, "STRING");

7-300

This statement reads the string-formatted contents of the primary global
selection and copies it into the current buffer at the current location.

For another example of code using the READ_GLOBAL_SELECT built-in,
see Example B-9.

READ KEY

VAXTPU Built-In Procedures
READ_KEY

Waits for you to press a key and then returns the key name for that key.

FORMAT keyword == READ_KEV

PARAMETERS None.

return value A key name for the key just pressed.

DESCRIPTION The READ_KEY built-in procedure should be used rather than READ_
CHAR when you are entering escape sequences, control characters, or
any characters other than text characters. READ_KEY processes escape
sequences and VAXTPU's shift key (PFl by default).

SIGNALED
ERRORS

EXAMPLES

The key that is read by READ_KEY is not echoed on the terminal screen.

In DECwindows VAXTPU, READ_KEY maps the main window if it is not
already mapped.

If you invoke VAXTPU with the /NODISPLAY qualifier, do not use READ_
KEY during the session. READ_KEY causes VAXTPU to abort when
VAXTPU is running in NODISPLAY mode.

TPU$_NEEDTOASSIGN ERROR

TPU$_ TOOMANY ERROR

TPU$_CONTROLC ERROR

TPU$_REQUIRESTERM ERROR

READ_KEY must be on the
right-hand side of an assignment
statement.

READ_KEY accepts no
arguments.

You pressed CTRUC during the
execution of READ_KEY.

You cannot use READ_KEY when
VAXTPU is in NODISPLAY mode.

I my_key := READ KEY

This assignment statement reads the next key that is entered and stores
the keyword for that key in the variable my _key.

7-301

VAXTPU Built-In Procedures
READ_KEY

I PROCEDURE user_help_on_key

LOCAL key_pressed,
key_cornment;

MESSAGE ("Press the key you want help on.");

key_pressed := READ_KEY;
key_comment := LOOKUP_KEY (key_pressed, COMMENT);

IF key_comment = 0
THEN

MESSAGE ("That key is not defined.");
ELSE

IF key_comment = ""
THEN

MESSAGE ("There is no comment for that key.");
ELSE

MESSAGE (key_comment);
ENDIF;

ENDIF;
ENDPROCEDURE;

7-302

This procedure looks in the current key map list for the next key pressed.
If the key is found, any comment associated with that key is put into the
message buffer.

READ LINE

FORMAT

VAXTPU Built-In Procedures
READ_LINE

Displays the text that you specify as a prompt for input and reads the
information entered in response to the prompt. You can optionally specify
the maximum number of characters to be read. READ_LINE returns a string
that holds the data that is entered in response to the prompt.

string2 := READ_LINE l (string1 [,integer J) J

PARAMETERS string1
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the text used as a prompt for
input. This parameter is optional.

integer
The integer value that indicates how many characters to read from the
input entered in response to the prompt. The maximum number is 132.
This parameter is optional. If not present, control of execution passes from
READ_LINE to VAXTPU's main loop when the user presses RETURN,
CTRUZ, or the one hundred thirty-second character.

return value A string storing the user's response to a prompt.

DESCRIPTION The terminators for READ_LINE are the standard VMS terminators
such as CTRUZ and RETURN. READ_LINE is not affected by VAX.TPU
key definitions; the built-in takes literally all keys except standard VMS
terminators.

By default, the text you specify as a prompt is written in the prompt area
on the screen. The prompt area is established with the built-in procedure
SET (PROMPT_AREA). See SET (PROMPT_AREA) for more information.
If no prompt area is defined, the text specified as a prompt is displayed at
the current location on the device pointed to by SYS$0UTPUT (usually
your terminal).

If READ _LINE terminates because it reaches the limit of characters
specified as the second parameter, the last character read becomes the
last key. Example 2 is a procedure that tests for the last key entered in a
prompt string.

In DECwindows VAXTPU, READ_LINE maps the main widget if it is not
already mapped.

When you invoke VAXTPU with the /NODISPLAY qualifier, terminal
functions such as screen display and key definitions are not used. The
built-in procedure READ_LINE calls the LIB$GET_INPUT routine to
issue a prompt to SYS$INPUT and accept input from the user. A read
done this way does not terminate when the number of keys you specified
as the second parameter (integer) are entered. However, string2 contains

7-303

VAXTPU Built-In Procedures
READ_LINE

the number of characters specified by the integer parameter and LAST_
KEY contains the value of the key that corresponds to the integer specified
as the last key to be read, except in the following cases. If the read is
terminated by CTRUZ, LAST_KEY has the value CTRUZ. If the read
is terminated by a carriage return before the specified integer limit is
reached, LAST_KEY has the value of the RETURN key.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR READ_LINE must appear on the
right-hand side of an assignment
statement.

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

READ_LINE accepts no more than
two arguments.

One of the arguments to READ_
LINE has the wrong data type.

EXAMPLES

D my_prompt := READ_LINE ("Enter key definition:", 1)

This assignment statement displays the text "Enter key definition:" in the
prompt area, and stores the first character of the user's response in the
variable my_prompt.

I PROCEDURE user_test_lastkey

LOCAL my_key,
k;

my_input · := READ_LINE ("Enter 3 characters:", 3);

Press the keys "ABC"

my_key := LAST_KEY;
IF my_key KEY NAME (11 C11

)

THEN
MESSAGE (" C key 11

);

ELSE
MESSAGE (11 Error 11

) ;

ENDIF;
ENDPROCEDURE;

This procedure prompts for three characters and stores them in the
variable my_input. It then tests for the last key entered.

Parameters:

old number
new number
prompt_string
no_value_message

Old integer value - input
New integer value - output
Text of prompt - input
Message printed if user hits RETURN to
get out of the command - input

PROCEDURE user_prompt_number (old_number, new_number,

7-304

String read after prompt

LOCAL read_line_string;

prompt_string, no_value_message)

VAXTPU Built-In Procedures
READ_LINE

new number := old_number;
IF old number < 0

THEN
read line string :=READ LINE (prompt string);
EDIT-(read line string, TRIM); -
IF read_line_st-;ing = "
THEN

ELSE

MESSAGE (no_value_message);
new number := 0;
RETURN (0);

Change lowercase 1 to #1
TRANSLATE (read line string, "1", "l");
new_number :=INT (read_line_string);

IF (new_number = 0) and (read_line_string <> "0")
THEN

MESSAGE (FAO ("Don't understand !AS",
read_line_string));

RETURN (0);
ELSE

RETURN (1);
ENDIF;

ENDIF;
ELSE

RETURN (1);
ENDIF;

ENDPROCEDURE;

This procedure is used by commands that prompt for integers. The
procedure returns true if prompting worked or -was not needed; it
returns false otherwise. The returned value is passed back as an output
parameter.

7-305

VAXTPU Built-In Procedures
REALIZE_ WIDGET

REALIZE WIDGET

Creates a window for the specified widget instance and maps the window to
the display.

FORMAT REALIZE_WIDGET (widget)

PARAMETER widget
The widget instance you want VAXTPU to realize.

DESCRIPTION Note that you can realize a widget only once during the widget's lifetime.

SIGNALED
ERRORS

EXAMPLE

For more information on realizing widgets, see the VMS DECwindows
Guide to Application Programming and the VMS DECwindows Toolkit
Routines Reference Ma.nual.

TPU$_NEEDTOASSIGN ERROR REALIZE_WIDGET must return a
value.

TPU$_ TOOMANY ERROR Too many arguments specified.

TPU$_TOOFEW ERROR Too few arguments specified.

TPU$_1NVPARAM ERROR The argument to REALIZE_
WIDGET has the wrong data
type.

TPU$_REQUIRESDECW ERROR Requires the VAXTPU
DECwindows screen updater.

REALIZE_WIDGET (example_widget);

This statement realizes the widget stored in example_widget.

7-306

VAXTPU Built-In Procedures
RECOVER_BUFFER

RECOVER BUFFER

FORMAT

PARAMETERS

Reconstructs the work done in the buffer whose name you specify. VAXTPU
creates a new buffer using the specified buffer name and, using the
information in the original buffer's journal file, recovers all the changes made
to records in the original file. The resulting recovery is written to the newly
created buffer.

buffer1 :: RECOVER_BUFFER (string1 { f,string2 J })
f,buffer2 J

string1
The name of the buffer you are trying to recover.

string2
The name of the journal file you want VAXTPU to use to recover your
buffer. If you did not set a journal file name using SET (JOURNALING),
in most cases VAXTPU will have created the journal file using its default
journal file naming algorithm. If the journal file was named by default,
you need not specify a journal file name with RECOVER_BUFFER. If you
specified a journal file name using SET (JOURNALING), use the same
name with RECOVER_BUFFER.

Do not specify any directory name in this string. Specify only the buffer
name and the extension, if any.

buffer2
The buffer whose attributes you want applied to the newly created buffer.
For more information on using a buffer as a template, see the description
of the CREATE_BUFFER built-in.

return value The buffer containing the recovered text. If the recovery failed, an integer
0 is returned.

DESCRIPTION Do not confuse the RECOVER_BUFFER built-in with the /RECOVER
command qualifier in DCL. /RECOVER is used when invoking VAXTPU
to recover a session or buffer. RECOVER_BUFFER, on the other hand, is
used after VAXTPU has been invoked. It uses a buffer change journal file
to recover the changes made to a specified buffer.

Note that RECOVER_BUFFER works on with buffer change journaling;
you cannot recover a keystroke journal file with RECOVER_BUFFER.

Only the first parameter (the old buffer name) is required. If you want to
specify the third parameter but not the second, you must use a comma as
a placeholder, as follows:

RECOVER_BUFFER ("junk.txt", , template_buffer);

The third parameter is optional.

7-307

VAXTPU Built-In Procedures
RECOVER_ BUFFER

7-308

If VAXTPU returns a message that it cannot find the journal file and if the
buffer you are trying to recover is small, the reason for the message might
be that changes to the buffer were never written to the journal file because
there were not enough changes to trigger the first write operation to the
journal file. Similarly, if some text is missing after recovery, the reason
might be that the last few changes did not trigger a write operation. For
more information on how VAXTPU manages write operations to a journal
file, see the description of the SET (JOURNALING) built-in.

Buffer change journaling does not journal changes in buffer attributes
(such as modifiability of the buffer or visibility of tabs). Buffer change
journaling only tracks changes to records in the buffer, such as addition,
deletion, or modification of a record or changes in a record's attributes.

If you press CTRL/C during a recovery, VAXTPU terminates the recovery,
closes the journal file, and deletes the newly created buffer.

If possible, after a successful recovery, VAXTPU continues journaling new
changes into the journal file that was used during the recovery. However,
it is likely that the journal file contains partial records at the end. In this
case, VAXTPU cannot continue journaling to the same file. VAXTPU closes
the journal file, marks the buffer unsafe for journaling, and signals an
error.

If you have journal files created with the default naming algorithm as
a result of editing multiple buffers with the same or similar names,
RECOVER_BUFFER might not recover the buffer you intend. For more
information on the default journal file naming algorithm, see Section 1. 7 .1.
For example, suppose you were editing two buffers, one called TEST! and
the other called TEST?. The default journal file naming algorithm creates
for each buffer a journal file named TEST_.TPU$JOURNAL. The journal
file for the buffer created first has the lower version number. If there
were a system interruption while you were editing both buffers, and if the
journal file for TEST! had the lower version number, then RECOVER_
BUFFER would recover the journal file created for the buffer TEST?.

When you write the contents of a buffer to a file,,VAXTPU erases the
journal file. If you write the contents of the buffer to a file other than the
default output file, the journal file contains a pointer to the file to which
you last wrote the buffer. For example, if the buffer is called MAIN but
you write the contents of the buffer to a file called OPUS.TXT, the journal
file contains a pointer to the file OPUS.TXT. OPUS.TXT is known as the
"source file" because, during a recovery VAXTPU uses OPUS.TXT as the
source for the contents of the buffer as they were when the write operation
was performed.

Caution: Since journal files often point to a source file that is not the same
as the file originally read into the buffer, if you delete the source
file, the buffer will be unrecoverable.

Similarly, if you have changed the name of the original file
required for a recovery, the buffer will be unrecoverable. VAXTPU
prompts for a new file name if it cannot find the original file. Be
careful to specify the correct file name in this case.

SIGNALED
ERRORS

TPU$_JRNLNOTSAFE

TPU$_NOT JOURNAL

TPU$_RECOVERABORT

TPU$_RECOVERFAIL

TPU$_RECOVERQUIT

EXAMPLES

VAXTPU Built-In Procedures
RECOVER_BUFFER

WARNING The buffer is not safe for
journaling.

ERROR The file specified is not a valid
journal file.

WARNING An inconsistency was found
between the journal file and the
currently executing procedure.
Recovery is aborted and the
journal file closed.

ERROR Recovery was terminated
abnormally due to journal file
inconsistency.

WARNING You did not specify a valid source
file name.

D RECOVER BUFFER ("junk. txt") ;

This statement directs VAXTPU to find the buffer change journal file
associated with the origin2l buffer JUNK. TXT, to create a new buffer
called JUNK. TXT, and, using the information from the journal file, to
recover the changes made in the original JUNK. TXT buffer. The results of
the recovery are placed in the new JUNK.TXT buffer.

II defaults buffer := CREATE_BUFFER ("Defaults");

SET (EOB_TEST, defaults_buffer, "[That's all, folks!]");

user_buffer := CREATE_BUFFER ("Userl.txt", "", defaults_buffer);

SET (JOURNALING, user_buffer, ON, "userl_journal.tpu$journal");

RECOVER BUFFER ("Userl.txt", "userl journal.tpu$journal",
defaults_buffer); -

This code fragment creates a defaults buffer, changes an attribute of the
defaults buffer, and creates a user buffer. The fourth statement turns
on buffer change journaling and designates the file named USERl_
JOURNAL.TPU$JOURNAL as the journaling file. At some later point
in the session (represented by the ellipses) the RECOVER_BUFFER
statement is used to recover the contents of the old USERl. TXT by using
the journal file USER1_JOURNAL.TPU$JOURNAL. The attributes of the
defaults buffer are applied to the newly created buffer USERl. TXT. In this
case, the new buffer has the end-of-buffer text "[That's all, folks!]".

7-309

VAXTPU Built-In Procedures
REFRESH

REFRESH

Repaints the whole screen. REFRESH erases any extraneous characters,
such as those caused by noise on a communication line, and repositions the
text so that the screen represents the last known state of the editing context.

FORMAT REFRESH

PARAMETERS None.

DESCRIPTION REFRESH causes a redrawing of every line of every window that is
mapped to the screen. The prompt area is erased. This built-in procedure
causes the screen to change immediately. Even if REFRESH is issued from
within a procedure, the action takes place immediately; VAXTPU does not
wait until the entire procedure is completed to execute REFRESH.

SIGNALED
ERROR

7-310

If screen updating is disabled when VAXTPU executes the REFRESH
command, VAXTPU performs the refresh operation when updating is
enabled again.

VAXTPU reissues escape sequences as appropriate to do any of the
following:

• To set the width of the terminal

• To set the scrolling region

• To set the keypad to applications mode

• To set the video attributes to a known state

• To clear the screen of a DIGITAL-supported terminal

• To reset the nonalphanumeric character sets

REFRESH repaints the whole screen. See UPDATE for a description of
how to update a single window to make it reflect the current state of its
associated buffer. If you want to update every visible window without
erasing the screen, use the UPDATE (ALL) built-in.

See Chapter 6 for an explanation of how the screen is updated under
various circumstances.

TPU$_ TOOMANY ERROR REFRESH takes no parameters.

EXAMPLES
D REFRESH

VAXTPU Built-In Procedures
REFRESH

This statement causes the screen manager to repaint the whole screen so
that it reflects the current internal state of the editor.

I PROCEDURE user_repaint
ERASE (message_buffer);
REFRESH;

ENDPROCEDURE;

This procedure removes the contents of the message buffer and then
repaints the whole screen.

7-311

VAXTPU Built-In Procedures
REMAIN

REMAIN

Specifies that all characters from the current position to the end of the line
should be included in a pattern.

FORMAT REMAIN

PARAMETERS None.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
REMAIN matches the rest of the characters on a line. REMAIN matches
successfully even if there are no more characters on the line.

Although REMAIN behaves much like a built-in, it is actually a keyword.

SIGNALED
ERROR

REMAIN is a keyword and has no completion codes.

EXAMPLES

I patl : = LINE_BEGIN + 11 ! 11 + REMAIN

This assignment statement stores in the variable patl a pattern that
matches all lines that have an exclamation point at the beginning of the
line.

I PROCEDURE remove_comments

LOCAL patl,
here,
comment_range;

here :=MARK (NONE); ! Remember our location
patl := 11 ! 11 +REMAIN;

POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

comment_range := SEARCH_QUIETLY (patl, FORWARD);
EXITIF comment_range = 0;

ERASE (comment_range);
POSITION (comment_range);

ENDLOOP;

POSITION (here);
ENDPROCEDURE;

7-312

This procedure removes all comments from the current buffer. It does not
correctly handle quoted strings containing exclamation points.

VAXTPU Built-In Procedures
REMOVE_KEY _MAP

REMOVE KEV MAP

Removes key maps from key map lists.

FORMAT REMOVE_KEY_MAP (string1, string2 [,ALL J)

PARAMETERS string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map list containing the key map to be
removed.

string2
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map to be removed from the key map list.

ALL
This keyword is an optional argument. It specifies that all the key maps
with the name specified by string2 in the key map list are to be removed.

DESCRIPTION This built-in procedure removes one or more key maps from a key map
list. If the optional keyword ALL is specified, all of the key maps with the
specified name in the key map list are removed from the list. Otherwise,
only the first entry with the specified name is removed.

SIGNALED
ERRORS

TPU$_NOKEYMAP WARNING You specified an argument that is
not a defined key map.

TPU$_NOKEYMAPLIST WARNING You specified an argument that is
not a defined key map list.

TPU$_KEYMAPNOTFND WARNING The key map you specified is not
found.

TPU$_EMPTYKMUST WARNING The key map list you specified
contains no key maps.

TPU$_ TOOFEW ERROR Too few arguments passed to the
REMOVE_KEY _MAP built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the REMOVE_KEY _MAP built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
REMOVE_KEY _MAP built-in.

7-313

VAXTPU Built-In Procedures
REMOVE_ KEY _MAP

TPU$_UNKKEYWORD

TPU$_BADKEY

EXAMPLE
user$keymap_l := CREATE_KEY_MAP ("keymap_l");

user$keymap_2 := CREATE_KEY_MAP ("keymap_2");

ERROR

ERROR

An unknown keyword has been
used as an argument. Only the
keyword ALL is allowed.

An unknown keyword has been
used as an argument. Only the
keyword ALL is allowed.

user$keymap list :=CREATE KEY MAP LIST ("keymap list", user$keymap 1,
- - - - user$keymap_2); -

ADD KEY MAP (user$keymap_list, "last", user$keymap_l);

SHOW (KEY_MAP_LISTS);

REMOVE KEY MAP (user$keymap_list, user$keymap_l, ALL);

SHOW (KEY_MAP_LISTS);

7-314

In this example, a key map list named KEYMAP _LIST is created. The call
to SHOW (KEY_MAP_LISTS) shows that the key map list contains three
key maps: KEYMAP _1, KEYMAP _2, and KEYMAP _1 again. After the call
to REMOVE_KEY_MAP, the call to SHOW (KEY_MAP_LISTS) shows that
the key map list contains only KEYMAP _2.

)

RETURN

FORMAT

VAXTPU Built-In Procedures
RETURN

A VAXTPU language element. It returns control from the current procedure to
its caller, optionally specifying the value the current procedure returns to the
caller.

RETURN l expression J
RETURN is a VAXTPU language element. It does not take parameters.
However, it is optionally followed by a VAXTPU expression.

·PARAMETERS expression
This expression may be any VAXTPU expression, variable, or built-in. It
specifies what the current procedure should return to its caller.

DESCRIPTION The RETURN statement returns control from the current procedure to its
caller. It also provides a value for the current routine.

RETURN is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

SIGNALED RETURN is a language element and signals no errors or warnings.

ERROR

EXAMPLES
D PROCEDURE user_erase_message_buffer

IF CURRENT_BUFFER = message_buffer
THEN

RETURN;
ENDIF;

ERASE (message_buffer);
ENDPROCEDURE;

This procedure erases the message buffer. If the current buffer is the
message buffer, it returns without erasing it.

I PROCEDURE user_find_string (look_for)
ON ERROR

RETURN "String not found";
ENDON_ERROR;

RETURN SEARCH (look for, FORWARD);
ENDPROCEDURE; -

This procedure searches for a string. If it does not find the string, it
returns the string String not found. Otherwise, it returns the range
containing the found string.

7-315

VAXTPU Built-In Procedures
SAVE

SAVE

FORMAT

Writes the binary forms of all currently defined procedures, variables, key
definitions, key maps, and key map lists to the section file you specify.

SAVE (string1 [, "NO_DEBUG_NAMES"J

f, "NO_PROCEDURE_NAMES'1

[,"/DENT", string2J)

PARAMETERS string1
A string that is a valid VMS file specification. If you supply only a file
name, VAXTPU uses the current device and directory, not necessarily the
SYS$LOGIN device and directory, in the file specification.

"NO DEBUG NAMES"
A string that prevents VAXTPU from writing debugging information to
the section file. When you use "NO_DEBUG_NAMES", VAXTPU does not
write procedure parameter names or local variable names. You can reduce
the size of the section file by specifying this string. Do not specify this
string if you intend to use the VAXTPU debugger on the section file.

"NO_PROCEDURE_NAMES"
A string, or a variable or constant name representing this string, that
prevents VAXTPU from writing procedure names to the section file. You
can reduce the size of the section file by specifying this string. However,
the procedure names are required to display a meaningful traceback when
an error occurs. Therefore, do not specify this ·string if you want to use
the application created by the section file with the TRACEBACK or LINE_
NUMBER function set to ON.

"/DENT"
A string specifying that you want to assign an identifying string, such as a
version number, to the section file.

string2
The string (usually a version number) that you want to assign to the
section file.

DESCRIPTION SAVE is used to create VAXTPU section files. If you are adding to an
existing section file, the new section file contains ~11 of the items from the
original section file and the new items from the current editing session.
Section files enable VAXTPU interfaces to start up quickly because they
contain the following items in binary form:

7-316

• All compiled PROCEDURE ... ENDPROCEDURE statements

• Every variable created (only the variable's name is saved, not its
contents)

SIGNALED
ERRORS

VAXTPU Built-In Procedures
SAVE

• Every key definition that binds a statement, procedure, program, or
learn sequence to a key, including the comments that you add to key
definitions

• Every key map and key map list created

• All defined constants

When you use the built-in procedure SAVE during an editing session to
add items to an existing section file, SAVE does not keep items that were
established interactively with the built-in procedure SET (for example,
margin settings for buffers, or setting the editor's shift key to something
other than the PFl key).

If you do not specify a device and directory in the string parameter,
VAXTPU uses your current device and directory.

The default file type is TPU$SECTION.

When you use the built-in procedure SAVE, informational messages are
generated for any undefined procedures or ambiguous symbols as they are
written to the section file. If the display of informational messages has
been disabled, these messages are not displayed.

TPU$_SAVEERROR ERROR

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_SECTUNDEFPROC WARNING

TPU$_BADSYMTAB ERROR

TPU$_SAVEUNDEFPROC INFORMATIONAL

TPU$_SAVEAMBIGSYM INFORMATIONAL

The section cannot be
created because of
errors in the context
being saved.

Too few arguments
passed to the SAVE
built-in.

Too many arguments
passed to the SAVE
built-in.

Wrong type of data sent
to the SAVE built-in.

Undefined procedures
or ambiguous symbols
were found while the
section file was being
written.

VAXTPU's symbol
tables are inconsistent.

An undefined procedure
is being written to the
section file.

An ambiguous symbol
is being written to the
section file.

7-317

VAXTPU Built-In Procedures
SAVE

EXAMPLES

11 SAVE ("SYS$LOGIN:mysection.TPU$SECTION")

This statement, issued just before exiting from the editor, adds all of the
procedure definitions, key definitions, and variables from your current
editing session to the section file with which you invoked VAXTPU. The
new file that you specify, SYS$LOGIN:mysection.TPU$SECTION, contains
initialization items from the original section file and from your editing
session.

To invoke VAXTPU with the new section file, enter the following command
at the DCL level:

$ EDIT/TPU/SECTION=sys$login:mysection

~ PROCEDURE eve_next_paragraph

LOCAL patl,
the_range;

patl :=LINE BEGIN+ LINE BEGIN+ ARB (1);
the_range :=-SEARCH_QUIETLY (patl, FORWARD, EXACT);

IF the_range <> 0
THEN

POSITION (END_OF (the_range));
ENDIF;

ENDPROCEDURE;

I] PROCEDURE tpu$local_init
SET (SHIFT_KEY, KPO);
DEFINE_KEY ("eve_next_paragraph", PERIOD, "Next Para");

ENDPROCEDURE;

SAVE ("my_section", "ident", "Vl.5");
QUIT;

7-318

These procedures and statements show how SAVE can be used in a
command file to extend an application. The first procedure moves the
cursor to the beginning of the next paragraph. The second procedure
defines a shift key and binds the procedure eve_next_paragraph to the
period key on the keypad. The SAVE statement directs VAXTPU to
write the binary form of eve_next_paragraph and the key definition to a
section file called MY_SECTION.TPU$SECTION. The second and third
parameters to the SAVE statement direct VAXTPU to assign the string
"Vl.5" to the section file. The QUIT statement terminates the VAXTPU
session.

SCAN

FORMAT

PARAMETERS

return value

VAXTPU Built-In Procedures
SCAN

Returns a pattern that matches only characters that do not appear in the
string, buffer, or range used as its parameter. SCAN matches as many
characters as possible.

{
buffer } { FORWARD }

pattern:: SCAN (ra~ge (, REVERSE J)
strmg

buffer
An expression that evaluates to a buffer. SCAN does not match any of the
characters that appear in the buffer.

range
An expression that evaluates to a range. SCAN. does not match any of the
characters that appear in the range.

string
An expression that evaluates to a string. SCAN does not match any of the
characters that appear in the string.

FORWARD
A keyword directing VAXTPU to match characters in the forward direction.
This is the default.

REVERSE
A keyword directing VAXTPU to match characters as follows: first, match
characters in the forward direction until VAXTPU finds a character that
is a member of the set of characters. Next, return to the first character
matched and start matching characters in the reverse direction until
VAXTPU finds a character that is in the set.

You can specify REVERSE only if you are using SCAN in the first
element of a pattern being used in a reverse search. In all other contexts,
specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse
search. By default, a reverse search stops as soon as a successful match
occurs, even if there might have been a longer successful match in the
reverse direction. By specifying REVERSE, you direct VAXTPU not to stop
matching in either direction until it has matched as many characters as
possible.

A pattern matching only characters that do not appear in the buffer,
range, or string used as the parameter.

7-319

VAXTPU Built-In Procedures
SCAN

DESCRIPTION SCAN matches one or more characters, none of which appear in the
string, buffer, or range passed as its parameter. SCAN matches as many
characters as possible, stopping only if it finds a character that is present
in its parameter or if it reaches the end of a line. If SCAN is part of a
larger pattern, SCAN does not match a character if doing so prevents the
rest of the pattern from matching.

SCAN does not cross line boundaries. To match a string of characters that
may cross one or more line boundaries, use SCANL.

SIGNALED
TPU$_NEEDTOASSIGN SCAN must appear in the right-

ERRORS
ERROR

hand side of an assignment
statement.

TPU$_ TOOFEW ERROR SCAN requires at least one
argument.

TPU$_ TOOMANY ERROR SCAN accepts no more than one
argument.

TPU$_ARGMISMATCH ERROR SCAN was given an argument of
the wrong type.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of SCAN.

EXAMPLES
D patl := SCAN ("abc")

This assignment statement stores a pattern that matches the longest
string of characters that does not contain a, b, or c in patl.

~ PROCEDURE user_find_parens

paren_text :=ANY("(') +SCAN (')");
found_range :=SEARCH (paren_text, FORWARD, NO_EXACT);

IF found_range = 0
THEN

! No parentheses.

MESSAGE ("No parentheses found.");
ELSE

POSITION (found_range);
ENDIF;

ENDPROCEDURE;

7-320

This procedure identifies parenthesized text within a single line. It moves
the editing point to the beginning of the parenthesized text, if it is found.

VAXTPU Built-In Procedures
SCAN

PROCEDURE user remove odd characters - - -
LOCAL patl,

odd_text;

patl :=SCAN ("abcdefghijklmnopqrstuvwxyz 0123456789"};
POSITION (BEGINNING_OF (CURRENT_BUFFER}};
LOOP

odd_text := SEARCH_QUIETLY (patl, FORWARD};
EXITIF odd_text = 0;
ERASE (odd_text};
POSITION (odd_text};

ENDLOOP;
POSITION (END_OF (CURRENT_BUFFER}};

ENDPROCEDURE;

This procedure goes through the current file, deleting all characters that
are not numbers, letters, or spaces.

!I word : = SCAN (' ', REVERSE};

This statement defines the variable word to mean the longest consecutive
string of characters that does not include a space character. Suppose you
are searching the text Xanadu, the cursor is on the n, and you use the
following statement:

the_range :=SEARCH (word, REVERSE};

The variable the_range contains the word Xanadu. The reason for this
is when you use SCAN with REVERSE as the first element of a pattern,
and then use that pattern in a reverse search, SCAN matches as many
characters as possible in both the forward and reverse directions.

Suppose that the cursor is on the n of Xanadu, as before, but you define
the variable word without the REVERSE keyword, as follows:

word:= SCAN (' '};

If you do a reverse search, the_range contains the characters nadu.

7-321

VAXTPU Built-In Procedures
SCANL

SCANL

FORMAT

PARAMETERS

return value

7-322

Returns a pattern matching a string of characters, including line breaks, none
of which appear in the buffer, range, or string used as its parameter. The
returned pattern contains as many characters and line breaks as possible.

{
buffer } { FORWARD }

pattern :: SCANL (ra~ge [, REVERSE J)
strmg

buffer
An expression that evaluates to a buffer. SCANL does not match any of
the characters that appear in the buffer.

range
An expression that evaluates to a range. SCANL does not match any of
the characters that appear in the range.

string
An expression that evaluates to a string. SCANL does not match any of
the characters that appear in the string.

FORWARD
A keyword directing VAXTPU to match characters in the forward direction.
This is the default.

REVERSE
A keyword directing VAXTPU to match characters as follows: first, match
characters in the forward direction until VAXTPU finds a character that
is a member of the set of characters. Next, return to the first character
matched and start matching characters in the reverse direction until
VAXTPU finds a character that is in the set.

You can specify REVERSE only if you are using SCANL in the first
element of a pattern being used in a reverse search. In all other contexts,
specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse
search. By default, a reverse search stops as soon as a successful match
occurs, even if there might have been a longer successful match in the
reverse direction. By specifying REVERSE, you direct VAXTPU not to stop
matching in either direction until it has matched as many characters as
possible.

A pattern that may contain line breaks and that matches only characters
that do not appear in the buffer, range, or string used as the parameter.

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SCA NL

SCANL is similar to SCAN in that it matches one or more characters that
do not appear in the string, buffer, or range used as its parameter. Unlike
SCAN, however, SCANL does not stop matching when it reaches the end
of a line. Rather, it successfully matches the line end and continues trying
to match characters on the next line. If SCANL is part of a larger pattern,
it does not match a character or line boundary if doing so prevents the rest
of the pattern from matching.

SCANL must match at least one character.

TPU$_NEEDTOASSIGN ERROR SCANL must appear in the right-
hand side of an assignment
statement.

TPU$_ TOOFEW ERROR SCANL requires at least one
argument.

TPU$_ TOOMANY ERROR SCANL requires no more than one
argument.

TPU$_ARGMISMATCH ERROR Argument to SCANL has the
wrong type.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of SCANL.

I sentence_pattern := any ("ABCDEFGHIJKLMNOPQRSTUVWXYZ") + scanl (". ! ?) ;

This assignment statement creates a pattern that matches a sentence. It
assumes that a sentence ends in one of the following characters: a period
(.), an exclamation point (!), or a question mark (?). The matched text
does not include the punctuation mark ending the sentence.

I PROCEDURE user_remove_non_numbers
LOCAL patl,

non_number_region;

patl := SCANL ("0123456789");

POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
non number region :=SEARCH QUIETLY (patl, FORWARD);
EXITIF non=number_region = 0;
ERASE (non number region);
POSITION (non_number_region);

ENDLOOP;

POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDPROCEDURE;

This procedure goes through the current buffer erasing anything that is
not a number. The only line breaks it leaves in the file are those between
a line ending with a number and one beginning with a number.

7-323

VAXTPU Built-In Procedures
SCROLL

SCROLL

Moves the lines of text in the buffer up or down on the screen by the number
of lines you specify.

FORMAT (integer2 :=)SCROLL (window f,integer1])

PARAMETERS window
The window associated with the buffer whose text you want to scroll.

integer1
The signed integer value that indicates how many lines you want the text
to scroll. If you supply a negative value for the second parameter, the
lines of text scroll off the top of the screen, leaving the cursor closer to
the beginning of the buffer. If you supply a positive value for the second
parameter, the lines of text scroll off the bottom of the screen, leaving the
cursor closer to the end of the buffer. If you specify 0 as the integer value,
no scrolling occurs.

This parameter is optional. If you omit the second parameter, the text
scrolls continuously until it reaches a buffer boundary or until you press
a key. If the current direction of the buffer is forward, the text scrolls
to the end of the buffer. If the current direction of the buffer is reverse,
the text scrolls to the beginning of the buffer. If you press a key that
has commands bound to it, the scrolling stops and VAXTPU executes the
commands bound to the key.

return value An integer indicating the number and direction of lines actually scrolled
as a result of using SCROLL.

DESCRIPTION You can scroll text only in a visible window. If the window is not currently
visible on the screen, VAXTPU issues an error message.

7-324

During scrolling, the cursor does not move but stays positioned at the
same relative screen location. The current editing point is different from
the editing point that was current before you issued the SCROLL built-in.

SCROLL optionally returns an integer that incijcates the number and
direction of lines actually scrolled. If you supply a negative value for the
second parameter, the lines of text scroll off the bottom of the screen,
leaving the cursor closer to the beginning of the buffer. If you supply a
positive value for the second parameter, the lines of text scroll off the top
of the screen, leaving the cursor closer to the end of the buffer. The value
of integer2 may differ from what was specified in integer 1.

Note that SCROLL causes the screen to scroll immediately. It does not
wait to take effect for the completion of a procedure.

If the buffer has been modified or the window display has altered since the
last update, the window is updated before the scrolling operation begins.

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SCROLL

SCROLL does not work in the following cases:

• If you have turned off the screen update flag with SET (SCREEN_
UPDATE, OFF)

• If you used the /NODISPLAY qualifier when invoking VAXTPU on an
unsupported device

• If the window that you specify is not visible on the screen

When the scrolling is complete, the editing point (record and offset) is set
to match the cursor position (screen line and column position).

After the scrolling stops, the cursor may be located to the right of the
last character in the new current record, to the left of the left margin, or
in the middle of a tab. In this instance, any VAXTPU built-in procedure
that requires a record offset (for example, CURRENT_OFFSET, MOVE_
HORIZONTAL, MOVE_ VERTICAL, MARK, and so on) causes the record
to be blank-padded to the cursor location.

If the screen you are using does not have hardware scrolling regions,
the window being scrolled is repainted for each scroll that would have
occurred. For instance, the statement SCROLL (my_ window,3) repaints
the window three times.

If you use SCROLL while positioned after the end of the buffer, SCROLL
completes successfully and returns 0 as the amount scrolled.

TPU$_CONTROLC

TPU$_WINDNOTMAPPED

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR You pressed CTRUC to stop
scrolling.

WARNING You are trying to scroll an
unmapped window.

ERROR SCROLL requires at least one
parameter.

ERROR You specified more than two
parameters.

ERROR One or more of the specified
parameters have the wrong type.

D SCROLL (main_ window, +10)

This statement causes the text of the buffer that is mapped to the main
window to scroll forward 10 lines.

I SCROLL (my_window)

This statement causes the text in the buffer that is mapped to my _window
to scroll in the direction that the buffer is set to until it reaches a buffer
boundary or the user presses any key.

7-325

VAXTPU Built-In Procedures
SCROLL

PROCEDURE user scroll buff er - -
LOCAL scrolled_lines;

MESSAGE ("Press any key to stop scrolling ... ");
scrolled_lines :=SCROLL (main_window);
dummy key := READ KEY;
RETURN scrolled_lines;

ENDPROCEDURE;

7-326

This procedure scrolls the main buffer until the user presses a key. The
procedure returns the number of lines scrolled.

SEARCH

FORMAT

VAXTPU Built-In Procedures
SEARCH

Looks for a particular arrangement of characters in a buffer or range and
returns a range that contains those characters.

ANCHOR
BUFFER_BEGIN
BUFFER_END
LINE_BEGIN

(range2 :=)SEARCH (LINE_ END
PAGE_ BREAK
pattern
REMAIN

{
FORWARD

' REVERSE

string
UNANCHOR

{
EXACT } { buffer

} ff, t:JO_EXACT f, ranget
mteger

PARAMETERS ANCHOR
A keyword directing SEARCH to start a search at the current character
position. Use this keyword as part of a complex pattern.

BUFFER_BEGIN
A keyword used to match the beginning of a buffer.

BUFFER_END
A keyword used to match the end of a buffer.

LINE BEGIN
A keyword used to match the beginning of a line.

LINE END
A keyword used to match the end of a line.

PAGE BREAK
A keyword used to match a form-feed character.

pattern
The pattern that you want to match.

REMAIN
A keyword specifying a match starting at the current character and
continuing to the end of the current line.

string
The string that you want to match.

7-327

VAXTPU Built-In Procedures
SEARCH

7-328

UNANCHOR
A keyword specifying that the next pattern element can match anywhere
after the previous pattern element. Use this keyword as part of a complex
pattern.

For more information on these keywords, refer to the individual
descriptions of them in this chapter.

FORWARD
Indicates a search in the forward direction.

REVERSE
Indicates a search in the reverse direction.

EXACT
Indicates that the characters SEARCH is trying to match must be the
same case and have the same diacritical markings as those in the string
or pattern used as the first parameter to SEARCH.

NO EXACT
IndiCites that the characters SEARCH is trying to match need not be the
same case nor have the same diacritical markings as those in the string or
pattern used as the first parameter to SEARCH. NO_EXACT is the default
value for the optional third parameter.

integer
Specifies how SEARCH should handle case and diacritical information
if you want to match one attribute and ignore the other. DIGITAL
recommends that you use the defined constants available for specifying
this integer. The defined constants are as follows:

• TPU$K_SEARCH_CASE - Equivalent to the integer 1. This specifies
that the search should match the case of the first parameter but be
insensitive to the diacritical markings of the first parameter.

• TPU$K_SEARCH_DIACRITICAL - Equivalent to the integer 2. This
specifies that the search should match the diacritical markings of the
first parameter but be insensitive to the case of the first parameter.

buffer
The buffer in which to search. SEARCH starts at the beginning of the
buffer when doing a forward search and at the end of the buffer when
doing a reverse search.

range1
The range in which to search. SEARCH starts at the beginning of the
range. when doing a forward search and at the end of the range when
doing a reverse search.

To search a range for all occurrences of a pattern, you must define the
range dynamically after each successful match. Otherwise, SEARCH
positions to the beginning of the range and finds the same occurrence over
and over. See the example section for a procedure that searches for all
occurrences of a pattern in a range.

I

/

VAXTPU Built-In Procedures
SEARCH

return value The range containing characters that match the pattern or string specified
as a parameter.

DESCRIPTION SEARCH looks for text that matches the string, pattern, or keyword
specified as its first parameter. If it finds such text, it creates a range
containing this text and returns it. If SEARCH does not find a match,
SEARCH returns 0 and signals the error TPU$_STRNOTFOUND. To
perform a search that does not signal an error when there is no match, use
the SEARCH_QUIETLY built-in.

SIGNALED
ERRORS

The starting position for the search depends on the optional fourth
parameter and the search direction. If you do not specify the fourth
parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the
beginning of the range for a forward search, or the end of the range for
a reverse search. When searching a range, SEARCH matches only text
inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the
beginning of the buffer for a forward search, or the end of the buffer for a
reverse search.

To determine whether the searched text contains a match, SEARCH
examines the character at the starting position and attempts to match the
character against the pattern, text, or keyword specified. By default, the
search is unanchored. This allows SEARCH to move one character in the
direction of the search if the character at the start position does not match.
SEARCH continues in this manner until it finds a match or reaches the
bounds of the buffer or range.

To prevent SEARCH from moving the starting position in the direction of
the search, use the ANCHOR keyword when you define the pattern to be
matched.

SEARCH does not change the current buffer or the editing point in that
buffer.

For more information about searching, see Chapter 2.

TPU$_STRNOTFOUND WARNING Search for a string or pattern was
unsuccessful.

TPU$_ TOOFEW ERROR SEARCH requires at least two
arguments.

TPU$_ TOOMANY ERROR SEARCH accepts no more than
four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH is of the wrong type.

TPU$_1NVPARAM ERROR One of the parameters to
SEARCH is of the wrong type.

7-329

VAXTPU Built-In Procedures
SEARCH

TPU$_BADKEY WARNING You specified an incorrect keyword
to SEARCH.

TPU$_MINVALUE WARNING The integer parameter to SEARCH
must be greater than or equal to
-1.

TPU$_MAXVALUE WARNING The integer parameter to SEARCH
must be less than or equal to 3.

TPU$_NOCURRENTBUF ERROR If you do not specify a buffer or
range to search, you must position
to a buffer before searching.

TPU$_CONTROLC ERROR You pressed CTRUC while
SEARCH was executing.

TPU$_1LLPATAS ERROR The pattern to SEARCH contained
a partial pattern assignment to a
variable not defined in the current
context.

EXAMPLES

D user_range := SEARCH ("Reflections of MONET", FORWARD, NO_EXACT)

If you search a buffer in which the string "Reflections of Monet" appears,
this assignment statement stores the characters "Reflections of Monet" in
the range user _range. The search finds a successful match even though
the characters in the word "Monet" do not match in case, because you
specified NO_EXACT.

~ PROCEDURE user_find_chap
LOCAL chap,

found_range;
ON ERROR

- IF ERROR = TPU$_STRNOTFOUND
THEN

MESSAGE ("CHAPTER not found.");
ELSE

MESSAGE (MESSAGE_TEXT (ERROR));
ENDIF;

ENDON_ERROR;

chap := LINE_BEGIN + "CHAPTER";
found_range :=SEARCH (chap, FORWARD, NO_EXACT);

IF found_range <> 0
THEN

! No match found.

POSITION (found_range);
ENDIF;

ENDPROCEDURE;

7-330

This procedure searches for the word "CHAPTER" appearing at the
beginning of a line. If SEARCH finds the word, the built-in positions
to the beginning of the string. If SEARCH does not find the word, the
built-in writes an appropriate message in the message buffer.

VAXTPU Built-In Procedures
SEARCH

I PROCEDURE user_search_range

LOCAL found_count;

ON ERROR
[TPU$_STRNOTFOUND, TPU$_CONTROLC]:

MESSAGE (FAO ("Found !SL occurrences.", found_count));
RETURN;

[OTHERWISE] :ABORT;
ENDON_ERROR;

found_count := 0;
the_pattern := "blue skies";
the_range ·= CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),

END_OF (CURRENT_BUFFER),
NONE);

found_range .- CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
BEGINNING OF (CURRENT_BUFFER),
NONE);

LOOP
the_range :=CREATE RANGE (END OF (found_range),

END_OF (the_range), NONE);
found_range ·= SEARCH (the_pattern, FORWARD, NO_EXACT,

the_range);

found count := found count + 1;
ENDLOOP;

ENDPROCEDURE;

This procedure searches the range the_range for all occurrences of
the pattern "blue skies". If SEARCH finds the pattern, the procedure
redefines the_range to begin after the end of the pattern just found. If
the procedure did not redefine the range, SEARCH would keep finding
the first occurrence over and over. The procedure reports the number. of
occurrences of the pattern.

7-331

VAXTPU Built-In Procedures
SEARCH_ QUIETLY

SEARCH_ QUIETLY

FORMAT

Looks for a particular arrangement of characters in a buffer or range and
returns a range that contains those characters. Unlike the SEARCH built-in,
SEARCH_QUIETLY does not signal TPU$_STRNOTFOUND when it fails to
find a string.

I range2 :=I SEARCH_QUIETLY (

ANCHOR
BUFFER_ BEGIN
BUFFER:_ END
LINE_ BEGIN
LINE_END
PAGE_BREAK
pattern
REMAIN
string
UNANCHOR

{
FORWARD

' REVERSE } f, { ~~~~CT } [, { ~:::1 }1 J)
mteger

PARAMETERS ANCHOR

7-332

A keyword directing SEARCH_QUIETLY to start a search at the current
character position.

BUFFER_BEGIN
A keyword used to match the beginning of a buffer.

BUFFER_END
A keyword used to match the end of a buffer.

LINE BEGIN
A keyword used to match the beginning of a line.

LINE END
A keyword used to match the end of a line.

PAGE_BREAK
A keyword used to match a form-feed character.

pattern
The pattern that you want to match.

REMAIN
A keyword specifying a match starting at the current character and
continuing to the end of the current line.

string
The string that you want to match.

1
)

VAXTPU Built-In Procedures
SEARCH_ QUIETLY

UNANCHOR
A keyword specifying that the next pattern element can match anywhere
after the previous pattern element. Use this keyword as part of a complex
pattern.

For more information on these keywords, refer to the individual
descriptions of them in this chapter.

FORWARD
Indicates a search in the forward direction.

REVERSE
Indicates a search in the reverse direction.

EXACT
Indicates that the characters SEARCH_QUIETLY is trying to match must
be the same case and have the same diacritical markings as those in the
string or pattern used as the first parameter to SEARCH_QUIETLY.

NO_EXACT
Indicates that the characters SEARCH_QUIETLY is trying to match need
not be the same case nor have the same diacritical markings as those in
the string or pattern used as the first parameter to SEARCH_QUIETLY.
NO_EXACT is the default value for the optional third parameter.

integer
Specifies how SEARCH_QUIETLY should handle case and diacritical
information if you want to match one attribute and ignore the other.
Digital recommends that you use the defined constants available for
specifying this integer. The defined constants are as follows:

• TPU$K_SEARCH_ CASE - Equivalent to the integer 1. This specifies
that the search should match the case of the first parameter but be
insensitive to the diacritical markings of the first parameter.

• TPU$K_SEARCH_DIACRITICAL - Equivalent to the integer 2. This
specifies that the search should match the diacritical markings of the
first parameter but be insensitive to the case of the first parameter.

buffer
The buffer in which to search. SEARCH_QUIETLY starts at the beginning
of the buffer when doing a forward search and at the end of the buffer
when doing a reverse search.

range1
The range in which to search. SEARCH_QUIETLY starts at the beginning
of the range when doing a forward search and at the end of the range
when doing a reverse search.

To search a range for all occurrences of a pattern, you must define the
range dynamically after each successful match. Otherwise, SEARCH_
QUIETLY positions to the beginning of the range and finds the same
occurrence over and over. See the example section for a procedure that
searches for all occurrences of a pattern in a range.

7-333

VAXTPU Built-In Procedures
SEARCH_ QUIETL V

return value The range containing characters that match the pattern or string specified
as a parameter.

DESCRIPTION SEARCH_QUIETLY looks for text that matches the string, pattern, or
keyword specified as its first parameter. If it finds such text, it creates a
range containing this text and returns it. If SEARCH_QUIETLY does not
find a match, the built-in returns 0.

SIGNALED
ERRORS

7-334

The starting position for the search depends on the optional fourth
parameter and the search direction. If you do not specify the fourth
parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the
beginning of the range for a forward search, or the end of the range for
a reverse search. When searching a range, SEARCH_QIBETLY matches
only text inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the
beginning of the buffer for a forward search, or the end of the buffer for a
reverse search.

To determine whether the searched text contains a match, SEARCH_
QUIETLY examines the character at the starting position and attempts
to match the character against the pattern, text, or keyword specified.
By default, the search is unanchored. This allows SEARCH_QUIETLY
to move one character in the direction of the search if the character at
the start position does not match. SEARCH_QUIETLY continues in this
manner until it finds a match or reaches the bounds of the buffer or range.

To prevent SEARCH_QUIETLY from moving the starting position in the
direction of the search, use the ANCHOR keyword when you define the
pattern to be matched.

SEARCH_QUIETLY does not change the current buffer or the editing
point in that buffer.

For more information about searching, see Chapter 2.

TPU$_ TOOFEW ERROR SEARCH_QUIETLY requires at
least two arguments.

TPU$_ TOOMANY ERROR SEARCH_QUIETLY accepts no
more than four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_1NVPARAM ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_BADKEY WARNING You specified an incorrect keyword
to SEARCH_QUIETLY.

'\
)

TPU$_MINVALUE

TPU$_MAXVALUE

TPU$_NOCURRENTBUF

TPU$_CONTROLC

TPU$_1LLPATAS

EXAMPLES

VAXTPU Built-In Procedures
SEARCH_ QUIETLY

WARNING The integer parameter to
SEARCH_QUIETLY must be
greater than or equal to -1.

WARNING The integer parameter to
SEARCH_QUIETLY must be
less than or equal to 3.

ERROR If you do not specify a buffer or
range to search, you must position
to a buffer before searching.

ERROR You pressed CTRUC while
SEARCH_QUIETLY was
executing.

ERROR The pattern to SEARCH_QUIETLY
contained a partial pattern
assignment to a variable not
defined in the current context.

D user_range := SEARCH_QUIETLY ("Reflections of MONET", FORWARD, NO_EXACT)

If you are searching a buffer in which the string "Reflections of Monet"
appears, this assignment statement stores the characters "Reflections of
Monet" in the range user _range. The search finds a successful match even
though the characters in the word "Monet" do not match in case, because
you specified NO_EXACT.

If the string "Reflections of Monet" does not appear in the buffer,
SEARCH_ QUIETLY assigns the value 0 to the variable user _range. It
does not signal the TPU$_STRNOTFOUND error.

I PROCEDURE user_find_chap

LOCAL chap,
found_range;

chap := LINE_BEGIN + "CHAPTER";
found_range := SEARCH_QUIETLY (chap, FORWARD, NO_EXACT);

IF found_range = 0
THEN

MESSAGE ("Chapter not found.");
ELSE

POSITION (found_range);
ENDIF;

ENDPROCEDURE;

This procedure searches for the word "CHAPTER" appearing at the
beginning of a line. If the procedure finds the word, the procedure
positions to the beginning of the string. If the procedure does not find
the word, the procedure writes an appropriate message in the message
buffer. Compare this example procedure to the corresponding procedure in
the description of SEARCH.

7-335

VAXTPU Built-In Procedures
SEARCH_ QUIETLY

m PROCEDURE user_search_range
LOCAL found_count;

ON ERROR
(TPU$_CONTROLC]:

MESSAGE (FAO ("Found !SL occurrences.", found_count));
RETURN;

[OTHERWISE] :
ABORT;

ENDON_ERROR;

found count := O;
the_pattern := "blue skies";
the_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),

END_OF (CURRENT_BUFFER), NONE);

found_range :=CREATE RANGE (BEGINNING_OF (CURRENT_BUFFER),
BEGINNING_OF (CURRENT_BUFFER), NONE);

LOOP
the_range := CREATE_RANGE (END_OF (found_range),

END_OF (the_range), NONE);

found_range ·= SEARCH_QUIETLY (the_pattern, FORWARD,
NO_EXACT, the_range);

found count := found count + 1;
ENDLOOP;

ENDPROCEDURE;

7-336

This procedure searches the range the_range for all occurrences of
the pattern "blue skies". If SEARCH_QUIETLY finds the pattern, the
procedure redefines the_range to begin after the end of the pattern just
found. If the procedure did not redefine the range, SEARCH_ QUIETLY
would keep finding the first occurrence over and over. The procedure
reports the number of occurrences of the pattern. Notice that a procedure
using SEARCH_QUIETLY does not trap the TPU$_STRNOTFOUND error,
because SEARCH_QUIETLY does not signal this error.

SELECT

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SELECT

Returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse
video, balded, blinking, or underlined).

The marker returned by SELECT indicates the first character position in a
select range. The video attribute that you specify for the marker applies to all
the characters in a select range. For information on creating a select range,
see SELECT _RANGE.

BOLD

(

BLINK l
marker :: SELECT (NONE)

BLINK

REVERSE
UNDERLINE

Specifies that the selected characters are to blink.

BOLD
Specifies that the selected characters are to be bolded.

NONE
Applies no video attributes to selected characters.

REVERSE
Specifies that the selected characters are to be displayed in reverse video.

UNDERLINE
Specifies that the selected characters are to be underlined.

return value A marker for the editing point in the current buffer.

DESCRIPTION SELECT returns a special marker that establishes the beginning of a
select range. The marker is positioned at the character position that is
the editing point when the built-in procedure SELECT is executed. (The
marker is actually positioned between character positions, rather than on
a character position.) A select range includes all the characters between
the select marker and the current position, but not the character at the
current position.

Using SELECT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. SELECT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a

7-337

VAXTPU Built-In Procedures
SELECT

SIGNALED
ERRORS

7-338

line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

Only one select marker for a buffer can be active at any one time. If a
buffer is associated with more than one visible window, the select range is
displayed in only one window (the current or most recent window).

If the buffer in which you are selecting text is associated with the current
window, as you move from the select marker to another character position
in the same buffer, all the characters over which you move the cursor are
included in the select range, and the video attribute that you specify for
the select marker is applied to the characters in the range. The video
attribute of a selected character is not visible when you are positioned on
the character, but once you move beyond the character, the character is
displayed with the attribute you specify.

If two or more windows are mapped to the same buffer and one of the
windows is the current window, only the current window displays the
select area. If two or more windows are mapped to different buffers, it
is possible to have more than one visible select area on the screen at the
same time. If none of the windows on the screen is the current window,
the visible window that was most recently current displays the select area.

If the current character is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the
following way:

1 If there is a character position on the same line to the right, the
marker moves to this position, even if the position is at the end of the
line.

2 If the line on which the marker is located is deleted, the marker moves
to the first position on the following line.

If you are positioned at the select marker and you insert text, the select
marker moves to the first character of the inserted text. You can move
one column past the last character in a line. (With free cursor motion, you
can move even further beyond the last character of a line.) However, if
you establish a select marker beyond the last character in a line, no video
attribute is visible for the marker.

TPU$_0NESELECT

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

WARNING SELECT is already active in the
current buffer.

ERROR SELECT requires one argument.

ERROR SELECT accepts only one
argument.

ERROR SELECT must be on the right­
hand side of an assignment
statement.

)

TPU$_NOCURRENTBUF

TPU$_BADKEY

TPU$_1NVPARAM

EXAMPLES

VAXTPU Built-In Procedures
SELECT

ERROR You must position to a buffer
before using SELECT.

WARNING You specified the wrong keyword
to SELECT.

ERROR SELECT's parameter is not a
keyword.

8 select mark := SELECT (NONE)

This assignment statement places a marker at the editing point. Because
NONE is specified, no video attributes are applied to a select range that
has this marker as its beginning.

~ select_mark_under := SELECT (UNDERLINE)

This assignment statement places a marker at the editing point. Any
characters included in a select range that has this marker as its beginning
are underlined.

I Bold selected text

PROCEDURE user_start_select

user_v_beginning_of_select :=SELECT (BOLD);

ENDPROCEDURE;

This procedure creates a bold marker that is used as the beginning of a
select region. As you move the cursor, the characters that you select are
bolded. To turn off the selection of characters, set the variable user _u _
beginning_of _select to 0.

7-339

VAXTPU Built-In Procedures
SELECT_RANGE

SELECT RANGE

Returns a range that contains all the characters between the marker
established with the built-in procedure SELECT and the editing point.
SELECT _RANGE does not include the current character.

FORMAT range := SELECT_RANGE

PARAMETERS None.

return value A range containing all the characters between the marker established with
SELECT and the editing point.

DESCRIPTION If you select text in a forward direction, the select range includes the
marked character and all characters up to but not including the current
character. If you select text in a reverse direction from the marker, the
select range includes the current character and all characters up to but
not including the marked character.

7-340

SELECT_RANGE is used in conjunction with SELECT to allow the user
to mark a section of text for treatment as an entity.

The procedure for selecting a section of text is the following:

1 Use the built-in procedure SELECT to place a marker at the beginning
of the section you want to select. The following example illustrates:

ml :=SELECT (NONE);

2 Mark the characters that you want in the select region by moving from
character to character with the cursor.

3 When all of the text is selected, create a range that contains the
selected text. The following example illustrates:

rl := SELECT_RANGE;

4 Stop the selection of characters by setting the marker that marks the
beginning of the range to 0. The following example illustrates:

ml : = 0;

Using SELECT_RANGE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. SELECT_RANGE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank

VAXTPU Built-In Procedures
SELECT_RANGE

lines into the buffer to fill the space between the cursor position and the
nearest text.

SIGNALED
TPU$_NOSELECT

ERRORS
TPU$_SELRANGEZERO

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY

TPU$_NOCURRENTBUF

EXAMPLES

D select 1 := SELECT RANGE

WARNING

WARNING

ERROR

ERROR

WARNING

There is no active select range in
the current buffer.

The select range contains no
selected characters.

SELECT _RANGE must be on the
right-hand side of an assignment
statement.

SELECT _RANGE takes no
arguments.

There is no current buffer.

This assignment statement puts the range for the currently selected
characters in the variable select_l.

I PROCEDURE user select

Start a select region

user_select_position :=SELECT (REVERSE);
MESSAGE ("Selection started.");

Move 5 lines and create a select region

MOVE_VERTICAL (5);
SRl := SELECT_RANGE;

Move 5 lines and create another select region

MOVE VERTICAL (5);
SR2 == SELECT_RANGE;

Stop the selection by setting the select marker to 0.

user_select_position := 0;

ENDPROCEDURE;

This procedure shows the use of SELECT_RANGE multiple times in the
same procedure.

7-341

VAXTPU Built-In Procedures
SEND

SEND

Passes data to a subprocess.

FORMAT
{

buffer }
SEND (ra~ge , process)

strmg

PARAMETERS buffer
The buffer whose contents you want to send to the subprocess.

range
The range whose contents you want to send to the subprocess.

string
The string that you want to send to the subprocess.

process
The process to which you want to send data.

DESCRIPTION All output from the process is stored in the buffer that was associated with
the process when you created it. See the CREATE_PROCESS built-in.
Your editing stops until the process responds to what is sent.

SIGNALED
ERRORS

7-342

If you specify a buffer or a range as the data to pass to a process, the lines
of the buffer or range are sent as separate records.

TPU$_NOPROCESS WARNING Subprocess that you tried to send
to has already terminated.

TPU$_SENDFAIL WARNING Unable to send input to a
subprocess.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SEND built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SEND built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SEND built-in.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable
buffer. The buffer to which a
subprocess writes output must be
modifiable.

\
/

TPU$_DELETEFAIL

TPU$_NOSENDBUF

TPU$_CONTROLC

EXAMPLES

D SEND ("directory", user_process)

VAXTPU Built-In Procedures
SEND

WARNING Unable to terminate the
subprocess.

WARNING Input buffer is the same as the
output buffer.

ERROR The execution of the command
you sent terminated because you
pressed CTRUC.

This statement sends the DCL command DIRECTORY to the process
named user _process. The process must already be created with the built-in
procedure CREATE_PROCESS so that the output can be stored in the
buffer associated with the process.

~ PROCEDURE mail_subp

Create a buffer and a window that a subprocess can run in

v mail buffer :=CREATE BUFFER ("main buffer");
v=mail=window := CREATE=WINDOW (1, 22: ON);

Map the mail window to the screen

UNMAP (MAIN WINDOW);
MAP (v_mail=window, v_mail_buffer);

Create a subprocess and send "mail" as the first command

pl := CREATE_PROCESS (v_mail_buffer, "MAIL");

Position to the subprocess and use read_line for next command

POSITION (v mail window);
sl := READ_LINE (11 mail_subp> ", 20);
SEND (sl, pl);

ENDPROCEDURE;

This procedure uses the built-in procedure SEND to pass a command to a
process in which the Mail Utility is running. The command to be sent to
the process is obtained with the built-in procedure READ_LINE.

7-343

VAXTPU Built-In Procedures
SEND_CLIENT_MESSAGE

SEND CLIENT MESSAGE - -

FORMAT

PARAMETERS

Sends either of two client messages-STUFF _SELECTION or KILL_
SELECTION-to other DECwindows applications.

SEND_CLIENT_MESSAGE ({ STUFF_SELECTION })
KILL_ SELECTION

KILL SELECTION
A keyword indicating that the client message to be sent is the KILL_
SELECTION client message.

SEND_CLIENT_MESSAGE (KILL_SELECTION) is used when the user
wants to copy something from another application that owns the input
focus to the VAXTPU/EVE-layered application without input focus. It also
removes the text from that other application.

The user selects the text in the application that owns the input focus. The
user positions the pointer cursor to the desired location in the VAXTPU
/EVE-layered application and then presses the CTRL key and clicks on
the MB3 mouse button. In this cir~umstance, the VAXTPU/EVE-layered
application inserts the selected text and uses SEND_CLIENT_MESSAGE
(KILL_SELECTION) to send a message directing the application that
owns the input focus to delete the selected text.

STUFF SELECTION
A keyword indicating that the client message to be sent is the STUFF_
SELECTION client message.

SEND_CLIENT_MESSAGE (STUFF_SELECTION) is used when the user
wants to copy something from an application layered on VAXTPU or EVE
into some DECwindows application that owns the input focus.

To select the text to be copied, the user does an MB3DRAG operation
in the VAXTPU/EVE-layered application. The VAXTPU/EVE-layered
application grabs ownership of the secondary global selection. The selected
text is the secondary global selection.

The VAXTPU/EVE-layered application then uses SEND_CLIENT_
MESSAGE (STUFF _SELECTION) to send a STUFF _SELECTION client
message to the application that owns the input focus. In response, the
application requests to read the secondary global selection. This causes
the VAXTPU/EVE-layered application to write to the secondary global
selection, which is then received by the other application.

Note that ifthe user uses CTRI.JMB3DRAG instead ofMB3DRAG, the last
step is that the text in the secondary global selection is deleted from the
VAXTPU/EVE-based application.

DESCRIPTION Note that the VAXTPU/EVE-layered application cannot designate the
application that is to receive the client message. VAXTPU handles sending
the message to the correct DECwindows application.

7-344

SIGNALED
TPU$_NORETURNVALUE

ERRORS
TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NOGBLSELDATA

TPU$_NOFOCUSOWNER

VAXTPU Built-In Procedures
SEND_ CLIENT _MESSAGE

ERROR Does not return a value.

ERROR SEND_CLIENT _MESSAGE
requires one argument.

ERROR SEND_CLIENT_MESSAGE
accepts only one argument.

WARNING Keyword must be either KILL_
SELECTION or STUFF_
SELECTION.

ERROR The parameter must be a keyword.

WARNING There is no owner of the
PRIMARY global selection to
send a client message to.

WARNING There is no owner of the input
focus to send a client message to.

7-345

VAXTPU Built-In Procedures
SEND_EOF

SEND EOF

Uses features of the VMS mailbox driver to send an end-of-file message
(10$_WRITEOF) to a process.

FORMAT SEND_EOF (process)

PARAMETERS process
The process to which the end-of-file message is being sent.

DESCRIPTION The end-of-file message causes a pending read from a subprocess to be
completed with an SS$_ENDOFFILE status. See the VMS I I 0 User's
Reference Volume for more information on the Write End-of-File message.

SIGNALED
ERRORS

TPU$_SENDFAIL WARNING Unable to send input to a
subprocess.

TPU$_NOPROCESS WARNING No subprocess to send to.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SEND_EOF built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SEND_EOF built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SEND_EOF built-in.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable
buffer. The buffer to which a
subprocess writes output must be
modifiable.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

EXAMPLE
SEND EOF (sub_procl)

This statement sends an end-of-file to sub_procl.

7-346

SET

VAXTPU Built-In Procedures
SET

Lets you establish or change certain features of a VAXTPU session. SET
requires a keyword as its first parameter. The keyword indicates which feature
of the editor is being set. You can set the mode for entering text, the text that
is to be displayed on certain parts of the screen, the direction of a buffer, the
status of a buffer, and so on.

FORMAT SET (keyword, parameter ff, ...]/)

PARAMETERS keyword
The keyword used as the first parameter specifies which feature is being
established or changed. Following are the valid keywords for SET:

ACTIVE_AREA
AUTO_REPEAT
BELL
CLIENT_MESSAGE
COLUMN_MOVE_ VERTICAL
CROSS_ WINDOW _BOUNDS
DEBUG
DEFAULT_DIRECTORY
DETACHED_ACTION
DISPLAY_ VALUE
DRM_HIERARCHY
ENABLE_RESIZE
EOB_TEXT
ERASE_ UNMODIFIABLE
FACILITY_NAME
FORWARD
GLOBAL_SELECT
GLOBAL_SELECT_GRAB
GLOBAL_SELECT_READ
GLOBAL_SELECT_TIME
GLOBAL_SELECT_UNGRAB
HEIGHT
ICON_NAME
ICON_PIXMAP
ICONIFY_PIXMAP
INFORMATIONAL
INPUT_FOCUS
INPUT_FOCUS_GRAB
INPUT_FOCUS_UNGRAB
INSERT
JOURNALING
KEY_MAP _LIST
KEYSTROKE_RECOVERY
LEFT_MARGIN
LEFT_MARGIN_ACTION
LINE_NUMBER
MAPPED_WHEN_MANAGED
MARGINS

7-347

VAXTPU Built-In Procedures
SET

7-348

MAX_LINES
MENU_POSITION
MESSAGE_ACTION_LEVEL
MESSAGE_ACTION_TYPE
MESSAGE_FLAGS
MODIFIABLE
MODIFIED
MOUSE
NO_ WRITE
OUTPUT_FILE
OVERSTRIKE
PAD
PAD_OVERSTRUCK_TABS
PERMANENT
POST_KEY_PROCEDURE
PRE_KEY_PROCEDURE
PROMPT_AREA
RECORD_ATTRIBUTE
RESIZE_ACTION
REVERSE
RIGHT_MARGIN
RIGHT_MARGIN_ACTION
SCREEN_LIMITS
SCREEN_UPDATE
SCROLL_BAR
SCROLL_BAR_AUTO_THUMB
SCROLLING
SELF _INSERT
SHIFT_KEY
SPECIAL_ERROR_SYMBOL
STATUS_LINE
SUCCESS
SYSTEM
TAB_STOPS
TEXT
TIMER
TRACEBACK
UNDEFINED_KEY
VIDEO
WIDGET
WIDGET_CALL_DATA
WIDGET_CALLBACK
WIDTH

These keywords and the parameters that follow them are described on
the following pages. The descriptions of the keywords are organized
alphabetically.

parameter f, ... J
The number of parameters following the first parameter varies according
to the keyword you use. The parameters are listed in the format section of
the applicable keyword description.

VAXTPU Built-In Procedures
SET

DESCRIPTION The built-in procedure SET can be used by both the programmer creating
an editing interface and the person using the interface. The programmer
can establish certain default behavior and screen displays for an editing
interface. The user can change the default behavior and do some simple
customizing of an existing VAXTPU interface with the built-in procedure
SET.

7-349

VAXTPU Built-In Procedures
SET {ACTIVE_AREA)

SET {ACTIVE_AREA)

Designates the specified area as the active area in a VAXTPU window. An
active area is an area within which VAXTPU ignores movements of the pointer
cursor.

FORMAT SET (ACTIVE_AREA, window, column, row/[, width, height J)

PARAMETERS ACTIVE AREA
A keyword directing VAXTPU to set an attribute of the active area.

window
The window in which you want to define the active region.

column
An integer specifying the leftmost column of the active region.

row
An integer specifying the topmost row of the active region. If you use 0,
the active row is the status line.

width
An integer specifying the width in columns of the active region. Defaults
to 1.

height
An integer specifying the height in rows of the active region. Defaults
to 1.

DESCRIPTION The active area is the region in a window in which VAXTPU ignores
movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, VAXTPU interprets
the event as a click if the upstroke occurs in the active area with the
downstroke. If the upstroke occurs outside the active area, VAXTPU
interprets the event as a drag operation.

7-350

A VAXTPU layered application can have only one active area at a time,
even if the application has more than one window visible on the screen.
An active area is only valid if you are pressing a mouse button. The
default active area occupies one character cell. By default, the active area
is located on the character cell pointed to by the pointer cursor.

For information on mouse button clicks, see the XU! Style Guide.

Table 7-9 lists the keywords for referring to click and drag operations.

VAXTPU Built-In Procedures
SET (ACTIVE_AREA}

Table 7-9 VAXTPU Keywords Representing Mouse Events

SIGNALED
ERRORS

EXAMPLE

PROCEDURE eve$$mldown

LOCAL the_window,
the_column,
the row,
the=width;

ON ERROR
[OTHERWISE] :

ENDON_ERROR;

M1UP M2UP

M1DOWN M2DOWN

M1DRAG M2DRAG

M1CLICK M2CLICK

M1CLICK2 M2CLICK2

M1CLICK3 M2CLICK3

M1CLICK4 M2CLICK4

M1CLICK5 M2CLICK5

TPU$_8ADVALUE

TPU$_EXTRANEOUSARGS

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

eve$$x_pre_mbl_mark :=MARK (FREE_CURSOR);

M3UP

M3DOWN

M3DRAG

M3CLICK

M3CLICK2

M3CLICK3

M3CLICK4

M3CLICK5

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

M4UP M5UP

M4DOWN M5DOWN

M4DRAG M5DRAG

M4CLICK M5CLICK

M4CLICK2 M5CLICK2

M4CLICK3 M5CLICK3

M4CLICK4 M5CLICK4

M4CLICK5 M5CLICK5

An integer parameter was
specified with a value outside
the valid range.

One or more extraneous
arguments has been specified
for a DECwindows built-in.

One of the parameters was
specified with data of the wrong
type.

SET (ACTIVE_AREA) cannot
return a value.

You can use the SET (ACTIVE_
AREA) built-in only if you are using
DECwindows VAXTPU.

Too few arguments passed to the
SET (ACTIVE_AREA) built-in.

Too many arguments passed to
the SET (ACTIVE_AREA) built-in.

7-351

VAXTPU Built-In Procedures
SET (ACTIVE_AREA)

IF LOCATE_MOUSE (the_window, the_column, the_row)
THEN

eve$x_mbl_in_progress := 1;
IF the row = 0
THEN

ELSE

IF eve$current_indicator (the_window,

THEN

the column,
the=width) <> 0

IF eve$x_decwindows_active
THEN

SET (ACTIVE_AREA,
the window, the column,
0, the_width, 1);

ENDIF;
ELSE

RETURN (FALSE);
ENDIF;

IF the_window = eve$choice_window
THEN

This statement sets
the active area.

IF eve$$current_choice (the_column, eve$$x_chosen_range)
THEN

else

IF eve$x_decwindows_active
THEN

SET (ACTIVE AREA, the window, the column, the_row,
eve$$x=choices_column_width, 1);

ENDIF;
ENDIF;

POSITION (MOUSE);
eve$$x_mbl_down_free :=MARK (FREE_CURSOR);
POSITION (TEXT) ;
eve$clear_select_position;
eve$clear message;
eve$$x mbl down bound:= MARK (NONE);
POSITION (eve$$i_mbl_down_free);

ENDIF;
ENDIF;
RETURN (TRUE);

ELSE
RETURN (FALSE) ;

ENDIF;

ENDPROCEDURE;

7-352

This procedure shows one possible way that an application can use
SET (ACTIVE_AREA). The procedure is a modified version of the
EVE procedure EVE$$M1DOWN. You can find the original version in
SYS$EXAMPLES:EVE$MOUSE.TPU.

Procedure EVE$$M1DOWN, when bound to MlDOWN, sets an active area
when you press MBl.

VAXTPU Built-In Procedures
SET(AUTO_REPEAT)

SET {AUTO_REPEAT)

FORMAT

PARAMETERS

SET (AUTO_REPEAT, { g~F })

AUTO REPEAT
A keyword indicating that SET is to control whether VAXTPU repeats
keystrokes as long as you hold down a key.

By default, AUTO_REPEAT is set ON.

ON
Specifies that a key press should continue to generate characters until the
key is released.

OFF
Requires a separate keystroke for each character generated.

DESCRIPTION VAXTPU sends an escape sequence to the terminal to set AUTO_REPEAT
on or off.

The autorepeat feature affects all keyboard keys on the VTlOO series of
terminals except the following:

• The SET-UP key

• The ESC key

• The NO SCROLL key

• The TAB key

• The RETURN key

• The CTRL key and another key

The autorepeat feature affects all keyboard keys on the VT300 series and
VT200 series of terminals except the following:

• The keys Fl, F2, F3, F4, F5

• The RETURN key

If you want to slow down the movement of the cursor, you can use SET
(AUTO _REPEAT) within a procedure that causes cursor motion. Because
of the time the terminal requires to process the escape sequence that
VAXTPU sends, if you tum autorepeat off before moving the cursor and
on after the movement, you slow down the cursor movement. You may
find it useful to slow the cursor motion at the top or bottom of a window.
The sample procedure in the Example section shows how to do this. See
Example 2.

SET (AUTO_REPEAT) has no effect if you use it in DECwindows
VAXTPU.

7-353

VAXTPU Built-In Procedures
SET {AUTO_REPEAT}

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

EXAMPLES
D SET (AUTO_REPEAT, OFF)

ERROR

ERROR

ERROR

ERROR

ERROR

This statement turns autorepeat off.

~ Two procedures that slow the scrolling action

PROCEDURE user_slow_up_arrow
SET (AUTO_REPEAT, OFF);
MOVE_VERTICAL (-1);
SET (AUTO_REPEAT, ON);

ENDPROCEDURE;

PROCEDURE user_slow_down_arrow
SET (AUTO_REPEAT, OFF);
MOVE_VERTICAL (1);
SET (AUTO_REPEAT, ON);

ENDPROCEDURE;

SET (AUTO_REPEAT) requires
two parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be either ON or
OFF.

You specified an unknown
keyword.

These procedures show how to turn AUTO_REPEAT off and on to slow the
cursor movement.

7-354

)

SET (BELL)

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SET (BELL)

{ ALL } { ON }
SET (BELL, BROADCAST ' OFF)

BELL
The terminal bell.

ALL
Indicates that the second parameter (ON or OFF) applies to all messages.

BROADCAST
Indicates that the second parameter applies to broadcast messages only.

ON
Causes the terminal bell to ring when a message is written to the message
window.

OFF
Turns off the audible signal of the terminal bell.

DESCRIPTION When the bell is on, the terminal bell rings to signal the fact that
a message is being written to the message window. When you use
ALL, internal VAXTPU messages as well as broadcast messages cause
the terminal bell to ring. To cause VAXTPU messages of success and
informational severity level to be written to the message buffer, you must
have used the built-in procedure SET ({INFORMATIONAL I SUCCESS},
ON). When you use BROADCAST, only broadcast messages such as mail
notifications and REPLY messages cause the bell to ring.

SET (BELL, ALL, {ON I OFF}) affects the setting of SET (BELL,
BROADCAST, {ON I OFF}). If you want the behavior of broadcast
messages to be different from other messages, use the built-in procedure
SET (BELL, BROADCAST, {ON I OFF}) after using SET (BELL, ALL,
{ON I OFF}).

Note that VAXTPU causes the bell to ring as a signal that a message is
being written to the message window, not as an interpretation of a bell
character in the message text. Bell characters in the message text are not
interpreted, they are displayed. Positioning to the message window and
moving the cursor to a bell character in the message text do not cause the
terminal bell to ring.

You can also use DCL commands to affect the display of broadcast
messages within VAXTPU. If you use the command SET TERMINAL
/NOBROADCAST at the DCL level, no broadcast messages are sent to
your terminal. The DCL command SET BROADCAST allows you to
enable or disable certain classifications of broadcast messages.

The bell is off by default.

7-355

VAXTPU Built-In Procedures
SET (BELL)

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

D SET (BELL, BROADCAST, ON)

ERROR

ERROR

ERROR

ERROR

SET (BELL) requires three
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

This statement causes the terminal bell to ring when a broadcast message
is written to the message window.

I PROCEDURE user_ring_bell (msg_string)

SET (BELL, ALL, ON);
MESSAGE (msg_string);
SET (BELL, ALL, OFF);

Turn bell on
Write message text to message buffer
Turn bell off

SET (BELL, BROADCAST,ON);
ENDPROCEDURE;

Turn bell on for broadcast messages

7-356

This procedure uses SET (BELL, ALL, ON) to cause the bell to ring for the
message that is being sent in the second statement. After the message is
written, the bell is turned off. SET (BELL, BROADCAST, ON) is used to
cause broadcast messages to ring the terminal bell.

VAXTPU Built-In Procedures
SET (CLIENT_MESSAGE)

SET (CLIENT_MESSAGE)

FORMAT

PARAMETERS

Designates the action routine to be executed when DECwindows VAXTPU
receives a client message from another DECwindows application.

learn sequence l buffer l
SET (CLIENT_MESSAGE,SCREEN, program)

range
string

CLIENT MESSAGE
A keyword indicating that SET is being used to designate a client message
action routine.

SCREEN
A keyword used to preserve compatibility with future versions of VAXTPU.

buffer
The buffer containing the code to be executed when VAXTPU receives a
client message.

learn_sequence
The learn sequence to be executed when VAXTPU receives a client
message.

program
The program to be executed when VAXTPU receives a client message.

range
The range containing the code to be executed when VAXTPU receives a
client message.

string
The string containing the code to be executed when VAXTPU receives a
client message.

DESCRIPTION A client message is a communication from one DECwindows application
to another. The message enables the sending application to generate an
event on the queue of the receiving application.

SIGNALED
ERRORS

TPU$_COMPILEFAIL

TPU$_ TOOFEW

WARNING Compilation failed.

ERROR You specified too few parameters.

7-357

VAXTPU Built-In Procedures
SET (CLIENT_MESSAGE)

7-358

TPU$_ TOOMANY

TPU$_BADKEY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

You specified too many
parameters.

You specified an invalid keyword.

Argument has the wrong type.

VAXTPU Built-In Procedures
SET {COLUMN_MOVE_ VERTICAL)

SET (COLUMN_MOVE_ VERTICAL)

FORMAT

PARAMETERS

SET (COLUMN_MOVE_ VERTICAL, { g~F })

COLUMN MOVE VERTICAL
Specifies thafYou want to use SET to control how the MOVE_ VERTICAL
built-in moves the cursor.

ON
Directs the MOVE_ VERTICAL built-in to place the cursor in the same
column on each new line unless doing so would put the cursor in the
middle of a tab. If the cursor would be placed in a tab, MOVE_ VERTICAL
places the cursor at the beginning of the tab.

OFF
Directs the MOVE_ VERTICAL built-in to place the cursor at the same
offset in each new record to which the cursor moves. This behavior is the
default for SET (COLUMN_MOVE_ VERTICAL). Since VAXTPU counts
a tab as one character when determining the offset, the cursor's column
location can change dramatically after you use MOVE_ VERTICAL.

DESCRIPTION When SET (COLUMN_MOVE_VERTICAL) is set to ON, you can get
a different result from using MOVE_ VERTICAL (n) than from using
MOVE_ VERTICAL (1) n times. When you use MOVE_ VERTICAL (3), for
example, the built-in tries to keep the cursor in the column the cursor
occupied just before execution of MOVE_ VERTICAL (3). When you use
MOVE_ VERTICAL (1) three times, the built-in resets the column where
VAXTPU is trying to keep the cursor. Thus, ifthe first MOVE_ VERTICAL
(1) moves the cursor leftward to the beginning of a tab, the second MOVE_
VERTICAL (1) does not move the cursor rightward again.

When SET (COLUMN_MOVE_VERTICAL) is set to OFF, MOVE_
VERTICAL (n) produces the same results as MOVE_ VERTICAL (1) n
times.

To determine whether COLUMN_MOVE_ VERTICAL is set to ON or OFF,
use the following statement:

boolean := GET_INFO (SYSTEM, "COLUMN_MOVE_VERTICAL")

This GET_INFO call returns 1 if COLUMN_MOVE_ VERTICAL is set to
ON, 0 if it is set to OFF.

If you have previously written extensions to EVE and want to layer the
extensions on EVE, you may have to rewrite some procedures because EVE
sets COLUMN_MOVE_ VERTICAL to ON. For instance, if your extension
contains the following code and if the first line has a left margin further to
the right than the second line, the code may not work as intended:

MOVE_HORIZONTAL (-CURRENT_OFFSET); ! Go to beginning of line
MOVE_VERTICAL (1); ! Move down a line

7-359

VAXTPU Built-In Procedures
SET {COLUMN_MOVE_ VERTICAL)

SIGNALED
ERRORS

EXAMPLES

7-360

To compensate for the fact that EVE sets COLUMN_MOVE_ VERTICAL to
ON, you can substitute the following code for the code shown above:

POSITION (LINE_END);
MOVE_HORIZONTAL (1);

Go to end of existing line
Advance to start of next line

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_BADKEY ERROR

SET(COLUMN_MOVE_
VERTICAL) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be either ON or
OFF.

In the following example, the symbol">" represents a tab character. The
underscore shows the cursor location.

Suppose you have the following two lines of text in a buffer, with the
cursor on the "c" in the first line:

ab_£def g

a> bcdefg

If you use the following code, the cursor ends up pointing to the "b" on the
second line:

SET (COLUMN_MOVE_VERTICAL, OFF);
MOVE_VERTICAL (1);

After the MOVE_ VERTICAL (1) statement, the cursor location is as
follows:

abcdef g

a> £cdefg

On the other hand, suppose you have the same text, as follows:

ab_£def g

a>•. bcdefg

If you use the following code, the cursor ends up pointing to the beginning
of the tab on the second line:

SET (COLUMN_MOVE_VERTICAL, ON);
MOVE_VERTICAL (1);

After the MOVE_ VERTICAL (1) statement, the cursor location is as
follows:

abcdef g

a~ bcdefg

VAXTPU Built-In Procedures
SET (CROSS_WINDOW_BOUNDS)

SET (CROSS_WINDOW_BOUNDS)

FORMAT

PARAMETERS

SIGNALED
ERRORS

EXAMPLE

SET (CROSS_WINDOW_BOUNDS, { g~F }J

CROSS WINDOW BOUNDS
A keywordspecifying thatSET is to control the way the CURSOR_
VERTICAL built-in procedure behaves at a window boundary.

The default setting for CROSS_ WINDOW _BOUNDS is ON (preserving the
behavior from previous versions ofVAXTPU).

ON
Causes the CURSOR_VERTICAL built-in procedure to cross window
boundaries and to ignore scrolling regions. However, even when crossing
of window bounds is enabled, the CURSOR_ VERTICAL built-in procedure
still obeys screen boundaries. That is, if CURSOR_ VERTICAL brings the
cursor to the edge of the screen, VAXTPU scrolls text into the window
rather than making the cursor invisible.

OFF
Prevents the CURSOR_ VERTICAL built-in procedure from crossing
window boundaries and causes CURSOR_ VERTICAL to obey scrolling
regions.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_BADKEY ERROR

SET (CROSS_WINDOW_
BOUNDS) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (CROSS_WINDOW_BOUNDS, OFF)

This statement prevents subsequent invocations of the CURSOR_
VERTICAL built-in procedure from crossing window boundaries and
causes the screen to scroll if the cursor moves into a scrolling region. This
is the setting that the EVE editor now uses.

7-361

VAXTPU Built-In Procedures
SET (DEBUG)

SET (DEBUG)

FORMAT

PARAMETERS

7-362

Controls various attributes of a debugging program that helps locate VAXTPU
programming errors.

Note that this built-in has five valid syntax permutations. You cannot use any
combinations of parameters not shown in this description.

SET 1DEBUG PROGRAM program)
{

buffer }

'' , , range
stringt

DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

PROGRAM
A keyword indicating that VAXTPU is to use a user-written debugger.

buffer
An expression evaluating to a buffer that contains a procedure or program.

The statement SET (DEBUG, PROGRAM, buffer) directs VAXTPU to use
the user-written debugger contained in the specified buffer during the
current debugging session.

program
A variable of type program.

The statement SET (DEBUG, PROGRAM, program) directs VAXTPU to
use the user-written debugger contained in the specified program during
the current debugging session.

range
An expression evaluating to a range that contains a procedure or program.

The statement SET (DEBUG, PROGRAM, range) directs VAXTPU to use
the user-written debugger contained in the specified range during the
current debugging session.

string1
A string containing executable VAXTPU statements.

The statement SET (DEBUG, PROGRAM, stringl) directs VAXTPU to
use the VAXTPU statements in the specified string during the current
debugging session.

VAXTPU Built-In Procedures
SET (DEBUG)

FORMAT {ON } SET (DEBUG, OFF)

PARAMETERS DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

ON
A keyword that enables single-stepping.

The statement SET (DEBUG, ON) directs VAXTPU to execute just one
line of code and then return control to the debugger.

OFF
A keyword that disables single-stepping.

The statement SET (DEBUG, OFF) disables single-step execution. Since
single-stepping is off by default, this format is useful only to turn off
single-stepping after single-stepping has been turned on.

FORMAT {ON } SET (DEBUG, OFF , string2)

PARAMETERS DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

ON
A keyword that sets a breakpoint.

The statement SET (DEBUG, ON, string2) directs VAXTPU to set a
breakpoint at the procedure named by string2.

OFF
A keyword that cancels one or more breakpoints.

The statement SET (DEBUG, OFF, string2) cancels a breakpoint
previously set at the procedure named by string2.

string2
The name of a procedure.

The format SET (DEBUG, ON, string2) or SET (DEBUG, OFF, string2)
sets or cancels a breakpoint at the procedure specified by string2.

7-363

VAXTPU Built-In Procedures
SET (DEBUG)

FORMAT SET (DEBUG, OFF, ALL)

PARAMETERS DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

OFF
A keyword that cancels breakpoints.

The statement SET (DEBUG, OFF, ALL) cancels all breakpoints set during
the debugging session.

ALL
A keyword indicating that all breakpoints are to be canceled.

The statement SET (DEBUG, OFF, ALL) clears all breakpoints.

FORMAT SET (DEBUG, string3, value)

PARAMETERS DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

string3
The name of a global variable, local variable, or parameter. When you
use string3 to specify a local variable or a parameter, the variable or
parameter must be in the procedure you are currently debugging.

The statement SET (DEBUG, string3, value) deposits the specified value
in the variable or parameter specified by string3.

value
A value of any data type in VAXTPU.

The statement SET (DEBUG, string, value) deposits the specified value in
the global variable, local variable, or parameter named by the string.

DESCRIPTION You use the SET (DEBUG) built-in when you are writing or using user­
written debuggers. You cannot freely mix parameters when using SET
(DEBUG). The only valid usages are those shown in the format sections of
this description.

7-364

SIGNALED
ERRORS

EXAMPLES

TPU$_NOCURRENTBUF

TPU$_NONAMES

TPU$_BADKEY

TPU$_ARGMISMATCH

VAXTPU Built-In Procedures
SET {DEBUG)

WARNING There is no current buffer.

WARNING No names match the one
requested.

ERROR An unknown keyword has been
used as an argument.

ERROR You have specified an
unsupported data type.

D SET (DEBUG, ON, "user_remove")

This statement causes the debugger to be invoked each time the procedure
"user_remove" is called.

~ SET (DEBUG, PROGRAM, "user_debugger")

This statement causes the user-written program "user_debugger" to be
called as the program to help locate programming errors.

I PROCEDURE debugon

SET (DEBUG, PROGRAM, "tpu$$debug");
BREAK;
ENDPROCEDURE;

debugon;

This procedure and statement from the VAXTPU debugger are compiled
and executed when the user specifies /DEBUG on the DCL command line.
The BREAK statement suspends execution of the debugger program and
directs the debugger to wait for a debugging command from the user.

El SET (DEBUG, "user_x_count", 42);

This statement sets the value of the variable user _x_count to 42.

7-365

VAXTPU Built-In Procedures
SET (DEFAULT_DIRECTORY)

SET (DEFAULT_DIRECTORV)

Determines the directory that will be used as the default.

FORMAT (old_default_string := D SET (DEFAULT_DIRECTORY, new_default_string)

PARAMETERS DEFAULT DIRECTORY
A keyword indicating that the SET built-in is being used to control which
directory is used as the default.

new_ default_ string
A string naming the directory to which you want the default changed.

DESCRIPTION When the user exits from VAXTPU, the default directory is not restored to
the default that was set when the user invoked VAXTPU.

SIGNALED
ERRORS

EXAMPLE

Note that when the user issues the EVE command DCL SHOW DEFAULT,
the default shown is not always the new default directory, even though the
setting has actually been changed. To update DCL tracking of the current
default directory, use the EVE command DCL SET DEFAULT instead of
calling this built-in procedure directly.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_ TOOFEW ERROR SET {DEFAULT_DIRECTORY)
requires two parameters.

TPU$_SYSERROR ERROR One of the system routines used
has failed. The system routine's
error message will be in the
message buffer.

TPU$_1NVPARAM ERROR The second parameter must be a
string.

TPU$_PARSEFAIL WARNING Parameter is not a valid RMS file
specification.

prev_dir :=SET (DEFAULT_DIRECTORY, "DISKl: [WALSH.PINK]");

7-366

This statement sets the default directory to [WALSH.PINK] on the device
DISKl. The variable prev _dir contains the string naming the previous
default directory.

VAXTPU Built-In Procedures
SET (DETACHED_ACTION)

SET (DETACHED_ACTION)

FORMAT

Specifies the code to be executed when the VAXTPU main input loop detects
that the current cursor position is detached (that is, that the cursor position
cannot accurately represent the editing point in the current window).

SET (DETACHED_ACTION, SCREEN

/[, (!f ;:m) JI)
range
string

PARAMETERS DETACHED ACTION
A keyword indicating that the SET built-in is being used to designate the
detached cursor action routine.

SCREEN
A keyword indicating that the detached action routine is being set for all
buffers and windows used during the session.

buffer
The buffer containing the detached cursor action routine.

learn
The learn sequence that is executed as the detached cursor action routine.

program
The program containing the detached cursor action routine.

range
The range containing the detached cursor action routine.

string
The string containing the detached cursor action routine.

DESCRIPTION If VAXTPU determines that the current editing point is on a record that
is not visible in the current window, the screen updater positions the
cursor on the next visible record, placing the cursor in the comparable
screen column. This condition is known as a "detached cursor." Use
SET (DETACHED_ACTION) to designate code to be executed when the
cursor is detached.

There are five reasons for a detached cursor. The following table shows
these reasons, along with their constants and integers.

7-367

VAXTPU Built-In Procedures
SET {DETACHED_ACTION)

SIGNALED
ERRORS

7-368

Constant

TPU$K_OFF _LEFT

TPU$K_OFF _RIGHT

TPU$K_INVISIBLE

TPU$K_DISJOINT

TPU$K_UNMAPPED

Value Reason

The editing point is off the left side of the current
window.

2 The editing point is off the right side of the current
window.

4 The editing point is on a record that is invisible in
the current window.

8 The current buffer is not mapped to the current
window.

16 No current window exists.

If you do not specify the optional third parameter,
SET (DETACHED_ACTION) deletes the current detached action routine.

To fetch the current detached action routine, use GET_INFO (SCREEN,
"detached_action"). To find out which of the five possible detached states
the cursor is in, use GET_INFO (SCREEN, "detached_reason").

TPU$_ TOOMANY ERROR You specified too many
parameters.

TPU$_ TOOFEW ERROR You specified too few parameters.

TPU$_1NVPARAM ERROR The second parameter must be a
keyword.

TPU$_ARGMISMATCH ERROR The third parameter must be a
program or a learn key sequence.

TPU$_BADKEY WARNING The second parameter must be
SCREEN.

TPU$_COMPILEFAIL WARNING The third parameter did not
compile successfully.

TPU$_COMPILED SUCCESS The third parameter successfully
compiled.

VAXTPU Built-In Procedures
SET {DETACHED_ACTION)

EXAMPLE
PROCEDURE detached routine

LOCAL rightmost_colurnn,
the_offset;

IF GET_INFO (SCREEN, "detached_reason") < > tpu$k_off_right

THEN RETURN;

ENDIF;

rightmost_colurnn := GET_INFO (CURRENT_WINDOW, "right", VISIBLE_TEXT);

the offset := GET_INFO (CURRENT_BUFFER, "offset_colurnn");

IF the off set > rightmost_colurnn

THEN SHIFT (CURRENT_WINDOW, the offset - rightmost_colurnn + 2)

ENDIF;

UPDATE (CURRENT_WINDOW);

ENDPROCEDURE;

Given this definition of the procedure "detached_routine", the following
statement designates this procedure as an application's detached action
routine:

SET (DETACHED_ACTION, SCREEN, "detached_routine");

This detached action routine shifts the current window to the right if the
editing point is to the right of the last displayed column.

7-369

VAXTPU Built-In Procedures
SET (DISPLAV_VALUE)

SET (DISPLAY_VALUE)

Sets the display value of the specified window.

FORMAT SET (DISPLAY~ VALUE,window,display_value_integer)

PARAMETERS DISPLAY VALUE
A keyword indicating that the SET built-in is being used to set the display
value for a window.

window
The window whose display value you want to set.

display_ value_integer
An integer from -127 to + 127.

DESCRIPTION VAXTPU uses a window's display value, which is an integer value, to
determine if a given record in a buffer should be made visible in the
window mapped to the buffer. If the record's display value is greater than
or equal to the window's setting, VAXTPU makes the record visible in that
window; otherwise, VAXTPU makes the record invisible.

SIGNALED
ERRORS

EXAMPLE

The record's display values are set by using the
SET (RECORD_ATTRIBUTES) built-in procedure.

TPU$_ TOOMANY

TPU$_ TOOFEW

TPU$_1NVPARAM

TPU$_BADDISPVAL

ERROR

ERROR

You specified too many
parameters.

You specified too few parameters.

ERROR The second parameter must be a
window.

WARNING Display values must be between
-127 and +127.

SET (DISPLAY_VALUE, CURRENT_WINDOW, 10);

7-370

This statement gives the current window a display value of 10. This
means that any record whose display value is less than 10 is invisible in
the specified window.

VAXTPU Built-In Procedures
SET (DRM_HIERARCHY)

SET (DRM_HIERARCHY)

Sets the User Interface Definition (UID) file or files to be used with VAXTPU.

FORMAT integer :: SET (DRM_HIERARCHY, filespec

[, filespec... J)

PARAMETERS filespec
A string specifying the UID file to be used. VAXTPU applies the VMS
default file specification "SYS$LIBRARY: .UID" to the string you pass to
SET (DRM_HIERARCHY). You must specify at least one file name.

return value An integer that is the identification number for the XUI Resource Manager
hierarchy.

DESCRIPTION Using UID files to specify hierarchies makes it easy to translate the
product into other languages and to modify an application's interface
without recompiling all the code implementing the application.

SIGNALED
ERRORS

EXAMPLE

For more information about UID files, see the VMS DECwindows Guide to
Application Programming.

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by the
SET (DRM_HIERARCHY) built-in.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (DRM_HIERARCHY) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (DRM_HIERARCHY)
built-in.

TPU$_FAILURE_STATUS ERROR The Digital Resource Manager
returned an error status.

TPU$_1NVPARAM ERROR You specified an invalid parameter.

TPU$_REOUIRESDECW ERROR Requires the VAXTPU
DECwindows screen updater.

The following statement designates the User Interface Definition (UID)
file MYNODE$DUAO:[SMITH]EXAMPLE.UID as a file to be used with
VAXTPU to create widgets needed by the layered application:

example_hierarchy :=SET (DRM_HIERARCHY, "mynode$dua0: [smith]example.uid");

For examples of how the SET (DRM_HIERARCHY) built-in is used in
procedures, see Example B-1 and Example B-2.

7-371

VAXTPU Built-In Procedures
SET (ENABLE_RESIZE}

SET (ENABLE_RESIZE)

Enables or disables resizing of the VAXTPU screen.

FORMAT SET (ENABLE_RESIZE, { g~F })

PARAMETERS ENABLE RESIZE
A keyword directing VAXTPU to enable or disable screen resizing.

ON
A keyword enabling screen resizing.

OFF
A keyword disabling screen resizing.

DESCRIPTION If you specify the ON keyword, VAXTPU gives the DECwindows window
manager hints (parameters that the window manager is free to use or
ignore) on the allowable maximum and minimum sizes for the VAXTPU
screen. The hints are set by the SET (SCREEN_LIMITS, array) built-in.
If you specify the OFF keyword, VAXTPU uses the screen's current width
and length as the maximum and minimum size.

SIGNALED
ERRORS

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET {ENABLE_RESIZE) cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the SET {ENABLE_
RESIZE) built-in only if you are
using DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET {ENABLE_RESIZE) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed
to the SET {ENABLE_RESIZE)
built-in.

7-372

EXAMPLE

VAXTPU Built-In Procedures
SET {ENABLE_RESIZE)

SET (ENABLE_RESIZE, ON);

This statement enables screen resizing. To see this statement used in
an initializing procedure, see the example in the description of the SET
(SCREEN_LIMITS) built-in.

7-373

VAXTPU Built-In Procedures
SET (EOB_TEXT)

SET {EOB_TEXT)

FORMAT SET (EOB_ TEXT, buffer, string)

PARAMETERS EOB TEXT
A keyword indicating that SET is to determine the text displayed at the
end of a buffer. This text is merely a visual marker in a buffer and does
not become part of the file that is written when a buffer is saved.

The default end-of-buffer text is "[EOB]."

buffer
The buffer in which the text for the end-of-buffer is being set.

string
The text that is displayed to indicate the end-of-buffer.

DESCRIPTION You may specify ranges that include the end-of-buffer text, but you cannot
set the record_attributes of the end-of-buffer "record." Therefore, the end­
of-buffer text is always visible, is left-justified on the screen, and cannot be
modified using normal editing operations.

SIGNALED
ERRORS

EXAMPLE

Setting a blank EOB_TEXT is the only way to "remove" the end-of-buffer
text. Note, however, that a blank line will still remain.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_FAILURE FATAL

This SET built-in requires three
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

VAXTPU could not create the
record for the EOB text.

SET (EOB_TEXT, main_buffer, "[END OF MAIN EDITING BUFFER]")

7-374

This statement causes [END OF MAIN EDITING BUFFER] to be
displayed as the end-of-buffer text for the main buffer.

VAXTPU Built-In Procedures
SET (ERASE_UNMODIFIABLE}

SET (ERASE_UNMODIFIABLE)

FORMAT

PARAMETERS

Controls whether VAXTPU erases unmodifiable records in response to built­
ins that delete lines from a buffer.

{ ON } . { ON } OFF ·= SET (ERASE_ UNMODIFIABLE, buffer OFF)

ERASE UNMODIFIABLE
A keyword indicating that the SET built-in is being used to control
whether unmodifiable records are deleted in response to built-ins that
erase lines in a buffer.

buffer
The buffer for which you want to turn on or turn off erasing of
unmodifiable records.

ON
A keyword enabling erasing of unmodifiable records.

OFF
A keyword disabling erasing of unmodifiable records.

return value The keyword ON or OFF, indicating the previous setting of ERASE_
UNMODIFIABLE.

DESCRIPTION By default, unmodifiable records can be deleted from buffers by built­
ins such as ERASE_LINE. For example, ERASE_LINE deletes an
unmodifiable record only if ERASE_ UNMODIFIABLE is turned on. If
ERASE_UNMODIFIABLE is turned off when ERASE_LINE or a similar
built-in encounters an unmodifiable record, the built-in returns an error
and does not delete the record.

However, some built-ins delete records as a side effect of their normal
action. Table 7-10 shows the built-ins that can delete records as
a side effect and shows what these built-ins do instead when the
ERASE_UNMODIFIABLE setting is turned off. The SET (ERASE_
UNMODIFIABLE) built-in prevents these built-ins from unintentionally
deleting unmodifiable records.

7-375

VAXTPU Built-In Procedures
SET (ERASE_UNMODIFIABLE)

Table 7-10 Selected Built-in Actions When ERASE_UNMODIFIABLE is
Turned Off

7-376

Built-in

APPEND_LINE

CHANGE_ CASE

COPY_TEXT

EDIT

ERASE {buffer)

ERASE {range)

ERASE_
CHARACTER

ERASE_LINE

FILL

MOVE_ TEXT

SPLIT_LINE

Action

Signals a warning if an attempt is made to append to an
unmodifiable line.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

Copies all records, preserving modifiability attribute while in
insert mode.

Signals a warning if the current editing position is in an
unmodifiable line.

Signals a warning if in overstrike mode and any of the lines
to be overstruck are unmodifiable.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

Signals a warning if any line in the buffer is unmodifiable.

Signals a warning if the start or the end of the range is in the
middle of an unmodifiable line.

Signals a warning if any of the lines in the range are
unmodifiable.

Signals a warning if the current character is unmodifiable.

Signals a warning if the current line is unmodifiable.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

Moves all records, preserving modifiability attribute while in
insert mode.

Signals a warning if the current editing point is in an
unmodifiable line.

Signals a warning if in overstrike mode and any of the lines
to be overstruck are unmodifiable.

If the start or the end of the range is in the middle of an
unmodifiable line, the MOVE_ TEXT is turned into a COPY_
TEXT and a warning is issued.

If any of the lines in the buffer or range are unmodifiable, the
MOVE_ TEXT is turned into a COPY_ TEXT and a warning is
issued.

Signals a warning if the current editing position is in the
middle of an unmodifiable line.

If the current editing position is at the beginning of an
unmodifiable line, a new modifiable line is created before it.

If the current editing position is at the end of an unmodifiable
line, a new modifiable line is created after it.

(continued on next page)

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
SET (ERASE_UNMODIFIABLE)

Table 7-10 {Cont.) Selected Built-in Actions When ERASE_
UNMODIFIABLE is Turned Off

Built-in

TRANSLATE

Action

If the current editing position is on an empty unmodifiable
line, then a new modifiable line is created after it.

Signals a warning if any of the lines in the range or buffer are
unmodifiable.

SET (ERASE_UNMODIFIABLE) optionally returns an integer (0 or 1)
indicating whether ERASE_UNMODIFIABLE was turned on before the
current call was executed. This makes it easier to return to the previous
setting later in the program.

TPU$_ TOOMANY

TPU$_ TOOFEW

TPU$_1NVPARAM

TPU$_BADKEY

ERROR

ERROR

You specified too many
parameters.

You specified too few parameters.

ERROR One or more of the specified
parameters have the wrong type.

WARNING The third parameter must be ON
or OFF.

old_setting :=SET (ERASE_UNMODIFIABLE, CURRENT_BUFFER, OFF);

This statement turns off erasing of unmodifiable records in the current
buffer and returns the previous setting ofERASE_UNMODIFIABLE.

7-377

VAXTPU Built-In Procedures
SET {FACILITY_NAME)

SET {FACILITY _NAME)

FORMAT SET (FACILITY_NAME, string)

PARAMETERS FACILITY NAME
The facility name that is the first item in a message generated by
VAXTPU.

SIGNALED
ERRORS

EXAMPLE

string
The string that you specify as the facility name for messages. The
maximum length of this name is 10 characters.

TPU$_FACTOOLONG

TPU$_MINVALUE

TPU$_ARGMISMATCH

TPU$_1NVPARAM

WARNING Name specified is longer than
maximum allowed.

WARNING Argument specified is less than
the minimum allowed.

ERROR

ERROR

The second parameter must be a
string.

One or more of the specified
parameters have the wrong type.

SET (FACILITY_NAME, "new_editor")

7-378

This statement causes "new _editor" to be used as the facility name in
messages.

VAXTPU Built-In Procedures
SET {FORWARD)

SET {FORWARD)

FORMAT SET (FORWARD, buffer)

PARAMETERS FORWARD
A keyword specifying the direction of the buffer. FORWARD means to go
toward the end of the buffer.

The default direction for a buffer is forward.

buffer
The buffer whose direction you want to set.

DESCRIPTION The editor uses this feature to keep track of direction for searching or
movement.

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR SET (FORWARD) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

EXAMPLE
SET (FORWARD, my_buffer)

This statement causes the direction of the buffer to be toward the end of
the buffer.

7-379

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT)

SET {GLOBAL_SELECT)

FORMAT

PARAMETERS

Requests ownership of the specified global selection property.

{

PRIMARY }
I integer:=] SET (GLOBAL_SELECT, SCREEN, SECONDARY)

selection_name

GLOBAL SELECT
A keyword indicating that the subject of the information request is a
global selection.

SCREEN
A keyword used to preserve compatibility with future versions of VAXTPU.

PRIMARY
A keyword directing VAXTPU to request ownership of the primary global
selection.

SECONDARY
A keyword directing VAXTPU to request ownership of the secondary global
selection.

selection name
A string naming the global selection whose ownership VAXTPU is to
request.

return value The value 1 if the global selection ownership request was granted; 0
otherwise.

DESCRIPTION SET (GLOBAL_SELECT) returns the integer 1 if the request for
ownership of a global selection was granted; otherwise 0.

7-380

The last parameter identifies the global selection of which VAXTPU is to
grab ownership.

VAXTPU is notified immediately if its request is granted. Therefore,
VAXTPU does not automatically execute the global selection grab routine
when it encounters SET (GLOBAL_SELECT). VAXTPU executes the
routine only when it automatically grabs the primary selection after it
receives input focus.

For more information about the concept of global selection, see the XUI
Style Guide.

SIGNALED
ERRORS

EXAMPLE

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR You can use the SET (GLOBAL_
SELECT) built-in only if you are
using DECwindows VAXTPU.

ERROR Too few arguments passed to the
SET (GLOBAL_SELECT) built-in.

ERROR Too many arguments passed to
the SET (GLOBAL_SELECT)
built-in.

SET (GLOBAL_SELECT, SCREEN, PRIMARY);

This statement requests ownership of the primary global selection. For
another example of code using the SET (GLOBAL_SELECT) built-in, see
Example B-10.

7-381

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_GRAB)

SET{GLOBAL_SELECT_GRAB)

FORMAT

Specifies the program or learn sequence VAXTPU should execute whenever it
automatically grabs ownership of the primary selection.

SET (GLOBAL_SELECT_GRAB, SCREEN
buffer
learn_sequence

f, program J)
range
string
NONE

PARAMETERS GLOBAL SELECT GRAB
A keyword indicating thatthe subject of the information request is a
global select grab routine.

SCREEN
A keyword used to preserve compatibility with future versions ofVAX.TPU.

buffer
The buffer that contains the grab routine.

learn_sequence
The learn sequence specifying the grab routine.

program
The program specifying the grab routine.

range
The range that contains the grab routine.

string
The string that contains the grab routine.

NONE
A keyword directing VAX.TPU to delete the current global selection
grab routine. This is the default if you do not specify the optional third
parameter.

DESCRIPTION For more information about VAX.TPU global selection support, see
Chapter 4.

7-382

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection grab routine. When no global selection grab routine is defined,
your application is not informed when VAX.TPU grabs the primary global
selection.

SIGNALED
TPU$_BADKEY

ERRORS
TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET{GLOBAL_SELECT_GRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (GLOBAL_SELECT_GRAB)
cannot return a value.

ERROR You can use the SET (GLOBAL_
SELECT _GRAB) built-in only
if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to the
SET (GLOBAL_SELECT_GRAB)
built-in.

ERROR Too many arguments passed to
the SET (GLOBAL_SELECT _
GRAB) built-in.

SET (GLOBAL_SELECT_GRAB, SCREEN, "user_grab_global");

This statement designates the procedure user _grab_global as a global
selection read routine.

For another example of code using the SET (GLOBAL_SELECT_GRAB)
built-in, see Example 7-1.

Sample Code Setting Various Global Selection and Input Focus Routines

Example 7-1 shows possible ways that a layered application can use
statements setting global selection and input focus routines. The example
contains portions of the procedure eve$mouse_module_init. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

The statements in Example 7-1 designate EVE's global selection read
routine, global selection grab routine, global selection ungrab routine,
input focus grab routine, and input focus ungrab routine.

7-383

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_GRAB)

Example 7-1 Initialization Procedure Using Variants of the SET Built-In

PROCEDURE eve$mouse_module_init

IF GET_INFO (SCREEN, "decwindows")
THEN

SET (GLOBAL SELECT READ, SCREEN, "eve$write global select");
SET (GLOBAL-SELECT-UNGRAB, SCREEN, "eve$global select ungrab");
SET (GLOBA()ELECT=GRAB, SCREEN, "eve$global_select_grab");
SET (INPUT FOCUS GRAB, SCREEN, "eve$input focus grab");
SET (INPUT=Focu(~UNGRAB, SCREEN, "eve$input_focus_ungrab");

ENDIF;

ENDPROCEDURE;

7-384

VAXTPU Built-In Procedures
SET(GLOBAL_SELECT_READ)

SET{GLOBAL_SELECT_READ)

FORMAT

Specifies the program or learn sequence VAXTPU should execute whenever it
receives a selection request event on a global selection it owns.

C { buffer1 } SET (GLOBAL_SELE T_READ, SCREEN

buffer2
learn_sequence

f, program J)
range
string
NONE

PARAMETERS GLOBAL SELECT READ
A keyword indicating thatthe subject of the information request is a
global select read routine.

buffer1
The buffer with which the global selection read routine is to be associated.

SCREEN
A keyword indicating that the specified routine is to be the application's
default global selection read routine.

buffer2
The buffer that contains the global selection read routine.

learn_ sequence
The learn sequence that specifies the global selection read routine.

program
The program that specifies the global selection read routine.

range
The range that contains the global selection read routine.

string
The string that contains the global selection read routine.

NONE
A keyword indicating that the global selection read routine should be
deleted.

If you do not specify the optional third parameter, NONE is the default.

7-385

VAXTPU Built-In Procedures
SET(GLOBAL_SELECT_READ)

DESCRIPTION To specify a buffer-specific global selection read routine, use the bufferl
parameter. To specify a global selection read routine for the entire
application, use the SCREEN keyword.

SIGNALED
ERRORS

EXAMPLE

When VAXTPU receives a request for information about a global selection
it owns, it checks to see if the current buffer has a global selection read
routine. If so, it executes that routine. If not, it checks to see if there is
an application-wide global selection read routine. If so, it executes that
routine. If not, it tries to respond to the request itself.

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection read routine.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET(GLOBAL_SELECT_READ)
cannot return a value.

TPU$_REQUIRESDECW ERROR You can use the SET (GLOBAL_
SELECT _READ) built-in only
if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET(GLOBAL_SELECT_READ)
built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (GLOBAL_SELECT _
READ) built-in.

SET (GLOBAL_SELECT_READ, SCREEN, "user_read_global");

7-386

The following statement designates the procedure user _read_global as a
global selection read routine. For another example of code using the SET
(GLOBAL_SELECT_READ) built-in, see Example 7-1.

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_TIME)

SET (GLOBAL_SELECT _TIME)

FORMAT

PARAMETERS

Specifies how long VAXTPU should wait before it assumes that a request for
information about a global selection will not be satisfied.

SET (GLOBAL_SELECT_T/ME, SCREEN, { :~i:r }J

GLOBAL SELECT TIME
A keyword directing VAXTPU to set the expiration time for a global
selection information request.

SCREEN
A keyword used to maintain compatibility with future versions of
VAXTPU.

integer
The number of seconds that VAXTPU should wait.

string
A string in VMS delta time format indicating how long VAXTPU should
wait.

DESCRIPTION The default waiting time is set by DECwindows. The maximum waiting
time you can set is 24 days, 20 hours.

SIGNALED
You specified an invalid keyword

ERRORS
TPU$_BADKEY WARNING

as a parameter.

TPU$_1NVTIME WARNING You specified an invalid time
interval.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR The SET (GLOBAL_SELECT_
TIME) built-in cannot return a
value.

TPU$_REQUIRESDECW ERROR You can use the SET (GLOBAL_
SELECT_TIME) built-in only if you
are using DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (GLOBAL_SELECT_TIME)
built-in.

7-387

VAXTPU Built-In Procedures
SET {GLOBAL_SELECT_TIME)

TPU$_ TOOMANY

EXAMPLE
SET (GLOBAL_SELECT_TIME, SCREEN, 3);

ERROR Too many arguments passed to
the SET (GLOBAL_SELECT _
TIME) built-in.

This statement sets the waiting time for a global selection response to 3
seconds.

7-388

VAXTPU Built-In Procedures
SET(GLOBAL_SELECT_UNGRAB}

SET{GLOBAL_SELECT_UNGRAB)

FORMAT

Specifies the program or learn sequence VAXTPU should execute whenever it
loses ownership of a selection.

SET (GLOBAL_SELECT_UNGRAB, SCREEN
buffer
learn_sequence

ff, program J)
range
string
NONE

PARAMETERS GLOBAL SELECT UNGRAB
A keyword indicating thatthe subject of the information request is a
global select ungrab routine.

SCREEN
A keyword used to preserve compatibility with future versions ofVAXTPU.

buffer
The buffer that contains the global selection ungrab routine.

learn_ sequence
The learn sequence that specifies the global selection ungrab routine.

program
The program that specifies the global selection ungrab routine.

range
The range that contains the global selection ungrab routine.

string
The string that contains the global selection ungrab routine.

NONE
A keyword directing VAXTPU to delete the current global selection
ungrab routine. This is the default if you do not specify the optional
third parameter.

DESCRIPTION For more information about VAXTPU global selection support, see
Chapter 4.

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection ungrab routine. When no global selection ungrab routine is
defined, your application is not informed when VAXTPU loses ownership
of the primary global selection.

7-389

VAXTPU Built-In Procedures
SET(GLOBAL_SELECT_UNGRAB)

SIGNALED
TPU$_BADKEY WARNING You specified an invalid keyword

ERRORS as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET(GLOBAL_SELECT_
UNGRAB) cannot return a value.

TPU$_REQUIRESDECW ERROR You can use the SET (GLOBAL_
SELECT_UNGRAB) built-in only
if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to
the SET (GLOBAL_SELECT_
UNGRAB) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (GLOBAL_SELECT _
UNGRAB) built-in.

EXAMPLE
SET (GLOBAL_SELECT_UNGRAB, SCREEN, "user_ungrab_global");

7-390

This statement designates the procedure user _ungrab _global as a global
selection ungrab routine. For another example of code using the SET
(GLOBAL_SELECT_UNGRAB) built-in, see Example 7-1, following the
description of the SET (GLOBAL_SELECT_GRAB) built-in.

VAXTPU Built-In Procedures
SET (HEIGHT)

SET {HEIGHT)

Sets the height of the VAXTPU screen without modifying the height or location
of any VAXTPU window.

FORMAT SET (HEIGHT, SCREEN, length)

PARAMETERS HEIGHT
A keyword indicating that the vertical dimension is being set.

SCREEN
A keyword indicating that the screen is being resized.

length
The length (in lines) that you want the screen to have. The value must be
an integer between 1 and 255.

DESCRIPTION Although SET (HEIGHT) does not alter any VAXTPU windows, the default
EVE behavior when the screen is made smaller is to unmap windows from
the screen, starting with the bottom-most window and working upward,
until there is room on the screen for the remaining windows. If the screen
is subsequently made larger, the unmapped windows are not remapped by
default.

SIGNALED
ERRORS

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_ TOOFEW ERROR SET (HEIGHT) requires three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY WARNING The second parameter must be
SCREEN.

TPU$_ WARNING The terminal's characteristics will
BADLENGTHCHANGE not allow the height of the screen

to change.

TPU$_BADVALUE ERROR The terminal cannot be set to the
requested height.

EXAMPLE
SET (HEIGHT, SCREEN, 20);

This statement causes the screen to have a height of 20 lines.

7-391

VAXTPU Built-In Procedures
SET {ICON_NAME)

SET (ICON_NAME)

Designates the string used as the layered application's name in the
DECwindows icon box.

FORMAT SET (ICON_NAME, string)

PARAMETERS ICON NAME
A keyword instructing VAXTPU to set the text of an icon.

string
The text you want to appear in the icon.

SIGNALED
TPU$_1NVPARAM ERROR One of the parameters was

ERRORS specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (ICON_NAME) cannot return
a value.

TPU$_REQUIRESDECW ERROR You can use the SET (ICON_
NAME) built-in only if you are
using DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (ICON_NAME) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (ICON_NAME) built-in.

EXAMPLE
SET (ICON_NAME, "WordMonger");

7-392

This statement sets the text naming the layered application to be the
string WordMonger.

VAXTPU Built-In Procedures
SET (ICON_PIXMAP)

SET (ICON_PIXMAP)

FORMATS

Determines the pixmap the application uses to create its icon in the
DECwindows icon box if the user has selected the Large Window Manager
Icon Style.

SET (ICON_PIXMAP,integer,icon_pixmap [,widget])

or

SET (ICON_P/XMAP,bitmap_file_name [,widget])

PARAMETERS ICON PIXMAP
A keyword indicating that the SET built-in is being used to determine the
pixmap the application uses to create its icon in the DECwindows icon box
if the user has selected the Large Window Manager Icon Style.

integer
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built­
in. This identifier is passed to the XUI Resource Manager, which uses the
identifier to find the hierarchy's resource name in the resource database.

icon_pixmap
A case-sensitive string that is the name assigned to the icon in the UIL
file defining the icon pixmap. The icon must be declared EXPORTED in
the UIL file.

widget
The widget whose icon pixmap is to be set. By default, VAXTPU sets the
icon pixmap of its top-level widget.

bitmap_file_name
The file specification of a bitmap file. SET (ICON_PIXMAP) requires these
files to be in the format created by the Xlib routine WRITE BITMAP
FILE. To create a file with the correct format, you can use the program
SYS$SYSTEM:DECW$PAINT.EXE (the DECpaint application) or the
program DECW$EXAMPLES:BITMAP.EXE. If you use DECpaint, use the
Customize Picture Size option to set the picture size to nonstandard, the
width to 32 pixels, and the height to 32 pixels. Use the Zoom option to
manipulate this small image. Choose the Xll format when you save the
file.

DESCRIPTION To specify an icon pixmap defined in a UIL file, use the first format variant
shown in the Format section. To specify an icon created in a bitmap file,
use the second format variant shown in the Format section.

7-393

VAXTPU Built-In Procedures
SET {ICON_PIXMAP)

SIGNALED
ERRORS

EXAMPLE

If an application uses SET (ICON_PIXMAP) so a large icon can be
displayed, in most cases the application ~hould also use SET (ICONIFY_
PIXMAP) to create an iconify button in the title bar. An application also
needs to use SET (ICONIFY_PIXMAP) so a small icon can be displayed if
the user selects the Small Window Manager Icon Style from the Session
Manager's Customize Window dialog box.

TPU$_FAILURE_STATUS ERROR The Digital Resource Manager
returned an error status.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR Built-in does not return a value.

TPU$_REQUIRESDECW ERROR Requires the VAXTPU
DECwindows screen updater.

TPU$_ TOOFEW ERROR You specified too few parameters.

TPU$_ TOOMANY ERROR You specified too many
parameters.

SET (ICON_PIXMAP, "DISKl: [SMITH]ICON_FLAMINGO.Xll")

7-394

This statement causes the icon pixmap stored in the file ICON_
FLAMINGO.XU to be displayed in the application's icon if the Large
Window Manager Icon Style has been selected.

VAXTPU Built-In Procedures
SET (ICONIFY_PIXMAP)

SET (ICONIFY _PIXMAP)

FORMATS

Determines the pixmap the application uses to create its icon in the
DECwindows icon box if the user has selected the Small Window Manager
Icon Style. When you use SET (ICONIFY_PIXMAP), VAXTPU also
automatically places the specified pixmap in the application's iconify button, in
the title bar.

SET (/CONIFY_P/XMAP,integer,icon_pixmap f, widget])

or

SET (ICONIFY_P/XMAP,bitmap_file_name ff, widget])

PARAMETERS ICON/FY PIXMAP
A keyword indicating that the SET built-in is being used to determine the
pixmap the application uses to create its icon in the DECwindows icon box
if the user has selected the Small Window Manager Icon Style.

integer
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built­
in. This identifier is passed to the XUI Resource Manager, which uses the
identifier to find the hierarchy's resource name in the resource database.

icon_pixmap
A case-sensitive string that is the name assigned to the icon in the UIL
file defining the iconify pixmap. The icon must be declared EXPORTED in
the UIL file.

widget
The widget whose iconify pixmap is to be set. By default, VAXTPU sets
the iconify pixmap of its top-level widget.

bitmap_file_name
The file specification of a bitmap file. SET (ICONIFY_PIXMAP) requires
these files to be in the format created by the Xlib routine WRITE BITMAP
FILE. To create a file with the correct format, you can use the program
SYS$SYSTEM:DECW$PAINT.EXE (the DECpaint application) or the
program DECW$EXAMPLES:BITMAP.EXE. If you use DECpaint, use the
Customize Picture Size option to set the picture size to non-standard, the
width to 16 pixels, and the height to 16 pixels. Use the Zoom option to
manipulate this small image. Choose the Xll format when you save the
file.

7-395

VAXTPU Built-In Procedures
SET {ICONIFV _PIXMAP)

DESCRIPTION To specify an iconify pixmap defined in a UIL file, use the first format
variant shown in the Format section. To specify an icon created in a
bitmap file, use the second format variant shown in the Format section.

SIGNALED
ERRORS

EXAMPLE

If an application uses SET (ICONIFY_PIXMAP) so a small icon can be
displayed, in most cases the application should also use SET (ICON_
PIXMAP) so a large icon can be displayed if the user selects the Large
Window Manager Icon Style.

Note that the user selects the Large or Small Window Manager Icon Style
using the Session Manager's Customize Window dialog box.

TPU$_FAILURE_STATUS ERROR The Digital Resource Manager
returned an error status.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR Built-in does not return a value.

TPU$_REQUIRESDECW ERROR Requires the VAXTPU
DECwindows screen updater.

TPU$_ TOOFEW ERROR You specified too few parameters.

TPU$_ TOOMANY ERROR You specified too many
parameters.

SET (ICONIFY_PIXMAP, "DISKl: [SMITH]ICONIFY_FLAMINGO.Xll")

7-396

This statement causes the iconify pixmap stored in the file ICONIFY_
FLAMINGO.XU to be displayed in the application's iconify button and in
the application's icon if the small Window Manager Icon Style has been
selected.

VAXTPU Built-In Procedures
SET {INFORMATIONAL)

SET (INFORMATIONAL)

FORMAT SET (INFORMATIONAL, { g~F })

PARAMETERS INFORMATIONAL
Informational messages that VAXTPU writes.

ON
Causes the informational messages to be displayed.

OFF
Suppresses the display of informational messages.

DESCRIPTION If you specify a section file when invoking VAXTPU (either by default, or
by using the qualifier /SECTION), VAXTPU may not display informational
messages. You can cause informational messages to be written by using
SET (INFORMATIONAL, ON).

SIGNALED
ERRORS

EXAMPLE

If you use the qualifier /NOSECTION when invoking VAXTPU,
informational messages are written by default.

When you are developing VAXTPU programs, the informational messages
help you find errors in your program, so it is a good idea to use the built-in
procedure SET (INFORMATIONAL) to cause the messages to be displayed.

See Appendix D for a list of the VAXTPU informational messages.

TPU$_ TOOFEW ERROR SET (INFORMATIONAL) requires
two parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (INFORMATIONAL, OFF)

This statement causes the display ·of informational messages to be turned
off.

7-397

VAXTPU Built-In Procedures
SET (INPUT_FOCUS)

SET {INPUT _FOCUS)

FORMAT

PARAMETERS

Requests ownership of the input focus. Ownership of the input focus
determines which application or widget processes user input from the
keyboard.

SET (INPUT FOCUS [' Sf?REEN])
- , widget

INPUT FOCUS
A keyword directing VAXTPU to assign the input focus.

SCREEN
An optional keyword indicating that the top-level widget associated with
VAXTPU's screen is to receive the input focus. This keyword is the default.

widget
The widget that is to receive the input focus. Note that if you specify a
widget for this parameter, the VAXTPU key bindings are not available to
process keyboard input into the specified widget.

DESCRIPTION This built-in requests that input focus be given to VAXTPU or to a widget
that is part of an application layered on VAXTPU. It does not guarantee
that VAXTPU or the widget gets the input focus. IfVAXTPU or the widget
receives the input focus, it gets a focus-in event. When VAXTPU gets this
event, it calls the input focus grab routine. For more information about
the role of events in DECwindows applications, see the VMS DECwindows
Guide to Application Programming.

SIGNALED
ERRORS

7-398

When the top-level widget for VAXTPU's screen has the input focus,
VAXTPU processes keystrokes normally. That is, undefined printable keys
insert characters in the current buffer, and defined keys execute the code
bound to them.

If a child widget in the widget hierarchy has the input focus, keystrokes
are processed by that widget. For example, when a text widget in EVE's
replace dialog box has the input focus, keystrokes are processed by the
text widget, not by VAXTPU. No VAXTPU key bindings are in effect.

TPU$_BADKEY

TPU$_1NVPARAM

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

VAXTPU Built-In Procedures
SET (INPUT_FOCUS)

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE
PROCEDURE eve$$widget_replace_ok

LOCAL new string,
old-string,
old=str_text_widget,
new_str_text_widget;

ERROR

ERROR

ERROR

ERROR

SET (INPUT_FOCUS); This statement grabs input focus
so CTRL/C events will be detected.

SET (INPUT_FOCUS) cannot
return a value.

You can use the SET (INPUT_
FOCUS) built-in only if you are
using DECwindows VAXTPU.

Too few arguments passed to the
SET (INPUT_FOCUS) built-in.

Too many arguments passed to
the SET (INPUT_FOCUS) built-in.

! Get the replace strings from the eve$$k_replace_new_[old]text widgets.

old_str_text_widget := GET_INFO (WIDGET, "widget_id", eve$x_replace_dialog,
"REPLACE_DIALOG.REPLACE_OLD_TEXT")

old_string := GET_INFO (old_str_text_widget, "text");

! Test only the old string.
IF old_string = ""
THEN

eve$message (EVE$_NOREPLSTR);
RETURN;

ENDIF;

new_str_text_widget := GET_INFO (WIDGET, "widget_id", eve$x_replace_dialog,
"REPLACE_DIALOG.REPLACE_NEW_TEXT")

new_string :=GET INFO (new_str_text_widget, "text");

IF new_string = ""
THEN

eve$$replacel (old_string, new_string, 1);
ELSE

eve$$replacel (old_string, new_string);
ENDIF;

ENDPROCEDURE;

This procedure shows one possible way that a layered application can use
the SET (INPUT_FOCUS) built-in. The procedure is a modified version
of the EVE procedure EVE$$WIDGET_REPLACE_OKAY. You can find
the original version in SYS$EXAMPLES:EVE$MENUS.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

Procedure EVE$$WIDGET_REPLACE_OK fetches and tests the user's
responses to prompts for old and new replace strings.

7-399

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_GRAB)

SET {INPUT _FOCUS_GRAB)

FORMAT

Specifies the program or learn sequence that VAXTPU should execute
whenever it processes a focus-in event.

SET (INPUT_FOCUS_GRAB, SCREEN ff,

buffer
learn_sequence
program 1)
range
string
NONE

PARAMETERS INPUT FOCUS GRAB
A keyword directing VAXTPU to set an attribute related to an input focus
grab routine.

SCREEN
An keyword used for compatibility with future versions ofVAXTPU.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

learn_ sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it processes a focus-in event.

program
The program that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

range
The range that specifies the actions that VAXTPU should take whenever it
processes a focus-in event.

string
The string that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

NONE
A keyword directing VAXTPU to delete the input focus grab routine. If you
specify this keyword or do not specify the parameter at all, the application
is not notified when input focus is received.

DESCRIPTION For more information about VAXTPU input focus support, see Chapter 4.

7-400

SIGNALED
TPU$_BADKEY

ERRORS
TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_GRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (INPUT_FOCUS_GRAB)
cannot return a value.

ERROR You can use the SET (INPUT_
FOCUS_GRAB) built-in only if you
are using DECwindows VAXTPU.

ERROR Too few arguments passed to
the SET (INPUT_FOCUS_GRAB)
built-in.

ERROR Too many arguments passed to
the SET (INPUT_FOCUS_GRAB)
built-in.

SET (INPUT_FOCUS_GRAB, SCREEN, "user_grab_focus");

This statement designates the procedure user _grab Jocus as an input
focus grab routine. For another example of code using the SET (INPUT_
FOCUS_GRAB) built-in, see Example 7-1.

7-401

VAXTPU Built-In Procedures
SET {INPUT_FOCUS_UNGRAB)

SET (INPUT _FOCUS_UNGRAB)

FORMAT

Specifies the program or learn sequence that VAXTPU should execute
whenever it processes a focus-out event.

SET (INPUT_FOCUS_UNGRAB, SCREEN ff,

buffer
learn_sequence
program
range
string
NONE

J)

PARAMETERS INPUT FOCUS UNGRAB
A keyword directing VAXTPU to set an attribute related to an input focus
ungrab routine.

SCREEN
A keyword used for compatibility with future versions ofVAXTPU.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

learn_ sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it processes a focus-out event.

program
The program that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

range
The range that specifies the actions that VAXTPU should take whenever it
processes a focus-out event.

string
The string that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

NONE
A keyword directing VAXTPU to delete the input focus ungrab routine.
If you specify this keyword or do not specify the parameter at all, the
application is not notified when input focus is lost.

DESCRIPTION For more information about VAXTPU input focus support, see' Chapter 4.

7-402

SIGNALED
TPU$_BADKEY

ERRORS
TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_UNGRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (INPUT _FOCUS_UNGRAB)
cannot return a value.

ERROR You can use the SET (INPUT_
FOCUS_UNGRAB) built-in only
if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to the
SET (INPUT_FOCUS_UNGRAB)
built-in.

ERROR Too many arguments passed
to the SET (INPUT_FOCUS_
UNGRAB) built-in.

SET (INPUT_FOCUS_UNGRAB, SCREEN, "user_ungrab_focus");

This statement designates the procedure user _ungrab Jocus as an input
focus ungrab routine. For another example of code using the SET (INPUT_
FOCUS_UNGRAB) built-in, see Example 7-1.

7-403

VAXTPU Built-In Procedures
SET {INSERT)

SET {INSERT)

FORMAT SET (INSERT, buffer)

PARAMETERS INSERT

SIGNALED
ERRORS

EXAMPLE

A keyword specifying the mode of entering text. INSERT means that
characters are added to the buffer immediately before the editing point.
See also the description of the built-in procedure SET (OVERSTRIKE).

The default mode for text entry is insert.

buffer
The buffer whose mode of text entry you want to set.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

SET {INSERT) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

SET (INSERT, my_buffer)

7-404

This statement causes the characters that you add to the buffer to be
added immediately before the editing point.

VAXTPU Built-In Procedures
SET (JOURNALING)

SET {JOURNALING)

FORMATS

Turns buffer change journaling on or off, sets the journaling frequency, and
specifies a journal file name.

SET (JOURNALING, buffer { g~F } , integer f,file_name_string J)

or

SET (JOURNALING, integer)

PARAMETERS JOURNALING
A keyword indicating that the SET built-in is being used to enable or
disable buffer change journaling, or set the frequency of journaling.

buffer
The buffer for which. you want to enable or disable buffer change
journaling.

ON
A keyword turning on buffer change journaling.

OFF
A keyword turning off buffer change journaling.

file_name_string
The string naming the file you want to use as the buffer's journal file.
If the file does not exist, VAXTPU automatically creates it. You cannot
specify this parameter if you have specified the keyword OFF for the third
parameter. If you do not specify any file name when you turn journaling
on, VAXTPU creates a journal file for you and names the file using the
default naming algorithm. For more information on this algorithm, see
Section 1. 7 .1.

integer
The integer that you specify that determines how frequently records are
written to the journal file. The value of this integer must be between 1
and 10.

DESCRIPTION Journaling can be turned on only ifthe buffer is safe for journaling. For
a buffer to be safe for journaling, it must either be empty, have never
been modified, or be unmodified since the last time it was written to a
file. (Whether the buffer has been modified is not the same as whether the
buffer is marked as modified. The modified flag can be set or cleared by
the application or by the user.)

7-405

VAXTPU Built-In Procedures
SET {JOURNALING)

7-406

Once a buffer that is being journaled is written to a file, the journal file
is closed and deleted, and a new journal file is started that references the
newly created file. Similarly, reading a file into an empty buffer does not
copy the file into the journal-it simply inserts a reference to the file in
the journal. Note that this behavior must be taken into account when
you perform operations that use temporary files. For example, writing a
buffer to a temporary file (which is modified by an external program), then
erasing the buffer and re-reading a (modified) temporary file will point the
journal file at the temporary file. If you then delete the temporary file, the
buffer will be unrecoverable.

A journal file name can be supplied only if journaling is being turned on.
If a journal file name is supplied, VAXTPU creates a journal file using
the name you specified. If this parameter is omitted, VAXTPU creates a
journal file name based on the buffer's name using the algorithm outlined
in Section 1. 7 .1.

If journaling is being turned off for the specified buffer, VAXTPU closes the
journal file but does not delete it.

VAXTPU signals a warning or error if any of the following conditions
apply:

• Journaling is being turned on and one or more of the following is also
true:

The specified buffer is not safe for journaling.

The specified buffer is already being journaled.

An RMS error was returned when VAXTPU tried to create the
journal file.

• Journaling is being turned off and a journal file name is specified in
the built-in call.

Caution: Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

The integer parameter specifies the journaling frequency. VAXTPU
provides a 500-byte buffer for journaling keystrokes. If journaling is
enabled, a write to the journal file occurs when the buffer is full. This
built-in procedure lets you determine the frequency with which records are
written to the journal file; the lower the integer you specify, the more often
journal records are written to disk.

A value of 1 causes a record to be written for approximately every 10 keys
pressed. A value of 10 causes a record to be written for approximately
every 125 keys. If you are entering only text (rather than procedures
that are bound to keys), the number of keystrokes included in a record is
greater-for a value of 1, a record is written for approximately every 30
to 35 keystrokes; for· a value of 10, a record is written for approximately
every 400 keystrokes.

SIGNALED
ERRORS

TPU$_MINVALUE

TPU$_MAXVALUE

TPU$_ TOOMANY

TPU$_ TOOFEW

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_JRNLOPEN

EXAMPLES

VAXTPU Built-In Procedures
SET {JOURNALING)

WARNING Argument is less than minimum
allowed.

WARNING Argument is greater than
maximum allowed.

ERROR You specified too many
parameters.

ERROR You specified too few parameters.

ERROR You specified a parameter with the
wrong data type.

ERROR You specified an invalid keyword.

ERROR A journal file for this buffer is
already open.

D SET (JOURNALING, CURRENT_BUFFER, ON, "diskl: [jones] journal. jnl");

This statement turns on buffer change journaling for the current buffer
and directs VAXTPU to use the file JOURNAL.JNL in the directory
[JONES] as the journal file.

~ SET (JOURNALING, 1)

This statement causes a record to be written from the buffer to a journal
file at intervals of approximately 10 user keystrokes. If all or most of the
keys pressed have procedures bound to them, VAXTPU may write out
the contents of the buffer after fewer than 10 keystrokes. The journaling
interval shown in this statement is the shortest that you can specify.

7-407

VAXTPU Built-In Procedures
SET {KEVSTROKE_RECOVERV)

SET(KEYSTROKE_RECOVERY)

FORMAT

PARAMETERS

Turns keystroke journal recovery on or off.

SET (KEYSTROKE_RECOVERY { g~F })

KEYSTROKE RECOVERY
A keyword directing VAXTPU to enable or disable keystroke recovery,
depending on whether /RECOVER or /NORECOVER was specified on the
command line.

ON
A keyword enabling keystroke recovery. (This has the same effect as
specifying the /RECOVER qualifier.)

OFF
A keyword disabling keystroke recovery. (This has the same effect as
specifying the /NORECOVER qualifier.)

DESCRIPTION If the /RECOVER qualifier is specified on the DCL command line, VAXTPU
checks whether the application calls the JOURNAL_OPEN built-in to open
a keystroke journal file. If the application does not call the JOURNAL_
OPEN built-in, by default VAXTPU signals an error when the application
starts accepting keyboard input.

7-408

In some circumstances, you may want your application to accept the
/RECOVER qualifier without error, even though the application does not
call the JOURNAL_ OPEN built-in. For example, if your application uses
only buffer-change journaling, the /RECOVER qualifier can be used when
VAXTPU is invoked, but the JOURNAL_OPEN built-in is not used.

To disable the error caused by the lack of a call to JOURNAL-OPEN and
concurrently to prevent VAXTPU from performing keystroke recovery
(even if /RECOVER is specified and you use JOURNAL_OPEN) use SET
(KEYSTROKE_RECOVERY, OFF). Conversely, to direct VAXTPU to
perform keystroke recovery (even if /NORECOVER is specified and you
use JOURNAL_OPEN), use SET (KEYSTROKE_RECOVERY, ON).

Note that SET (KEYSTROKE_RECOVERY) signals an error if the
application code or the user calls the built-in after VAXTPU has started
accepting keyboard input.

To determine whether a recovery using a keystroke journal file is currently
in progress, use GET_INFO (SYSTEM, "recover"). This GET_INFO call
returns FALSE (0) if no keystroke recovery is currently in progress, and
returns TRUE (1) if a keystroke recovery is currently in progress. Note
that SET (KEYSTROKE_RECOVERY) can determine the value returned
by GET_INFO (SYSTEM, "recover") but cannot affect the value returned
by GET_INFO (COMMAND_LINE, "recover"). GET_INFO (COMMAND_

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
SET(KEYSTROKE_RECOVERY}

LINE, "recover") returns a value indicating whether /RECOVER was
specified when VAXTPU was invoked.

TPU$_JNLNOTOPEN ERROR No keystroke journal file is open
from which to recover.

TPU$_RECJNLOPEN ERROR A keystroke journal file is already
open.

TPU$_ TOOFEW ERROR You specified too few parameters.

TPU$_ TOOMANY ERROR You specified too many
parameters.

TPU$_1NVPARAM ERROR You specified a parameter with the
wrong data type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (KEYSTROKE_RECOVERY, ON)

This statement directs VAXTPU to do keystroke journal recovery even if
/NORECOVER was specified on the command line.

7-409

VAXTPU Built-In Procedures
SET {KEV _MAP _LIST)

SET (KEY _MAP _LIST)

FORMAT

PARAMETERS

SET 1KEY MAP LIST. string { ff, ~utter 1 })
'' - - ' , wmdow

KEY MAP LIST
The key map list that you bind to a buffer or window.

The default key map list is TPU$KEY_MAP _LIST.

string
A quoted string, or a variable name representing a string constant, that
specifies the key map list that you bind to a buffer or window.

buffer
Buffer to which you bind the specified key map list. The default is the
buffer to which you are positioned.

window
The window with which you want to associate the key map list.

The key map list manipulated by SET (KEY_MAP _LIST) is used only to
process mouse events in the specified window. Keystrokes are processed
using the key map list associated with the buffer.

DESCRIPTION The SET (KEY_MAP _LIST) built-in procedure binds a specified key map
list to a buffer or window. If the buffer or window is not specified, the
default is to bind the key map list to the current buffer. A buffer or
window can be associated with only one key map list at a time. A key map
list can be associated with many buffers or windows simultaneously.

SIGNALED
ERRORS

7-410

TPU$_NOKEYMAPLIST

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_NOCURRENTBUF

TPU$_1NVPARAM

WARNING

ERROR

ERROR

ERROR

ERROR

Attempt to access an undefined
key map list.

Too few arguments passed to the
SET (KEY _MAP _LIST) built-in.

Too many arguments passed to
the SET (KEY _MAP _LIST) built-in.

You are not positioned in a buffer.

Wrong type of data sent to the
SET (KEY _MAP _LIST) built-in.

VAXTPU Built-In Procedures
SET (KEV_MAP _LIST)

EXAMPLE
SET (KEY_MAP_LIST, "tpu$_key_map_list")

This statement binds the key map list called TPU$_KEY_MAP _LIST to
the current buffer.

PROCEDURE user scratch window

LOCAL scratch_window,
scratch_buffer,
scratch map,
scratch =)ist;

scratch window:= CREATE WINDOW (20, 3, ON);
scratch_buffer := CREAT()UFFER ("test", "junk.txt");
scratch map :=CREATE KEY MAP ("user scratch map");
DEFINE_KEY (eve$$kt_r;turn + "sample=Ml_DRAG11, MlDRAG, "mouse_button_l",

"user_scratch_map");
scratch list := CREATE KEY MAP LIST ("user scratch list", "user_scratch_map",

- - - - eve$x_mouse_keys);
SET (KEY MAP LIST, "user scratch list", scratch window);
MAP (scratch=window, scratch_buffer); -

ENDPROCEDURE;

This procedure creates a small "scratch pad" window and maps it to
a scratch buffer calledjunkl.txt. The procedure defines a key map
list consisting of a user-defined key map redefining MlDRAG plus the
standard EVE mouse key map. By setting the scratch window's key map
list to be user _scratch_list, the procedure invokes sample_ml_drag when
the user drags the mouse in the scratch window.

7-411

VAXTPU Built-In Procedures
SET {LEFT_MARGIN)

SET (LEFT _MARGIN)

FORMAT SET (LEFT_MARGIN, buffer, integer)

PARAMETERS LEFT MARGIN
The leftmargin of a buffer.

buffer
The buffer in which the left margin is being set.

integer
The column at which the left margin is set.

DESCRIPTION The SET (LEFT_MARGIN) built-in procedure allows you to change only
the left margin of a buffer.

SIGNALED
ERRORS

7-412

Newly created buffers receive a left margin of 1 (that is, the margin is
set in column 1) if a template buffer is not specified in the call to the
CREATE_BUFFER built-in procedure. If a template buffer is used, that
buffer sets the left margin for all newly created buffers.

Use SET (LEFT_MARGIN) to override the default left margin. ,

The buffer margin settings are independent of the terminal width or
window width settings.

The built-in procedure FILL uses these margin settings when it fills the
text of a buffer.

When VAXTPU creates a new line, the line obtains its left margin value
from the left margin of the current buffer setting. However, changing the
left margin setting for the buffer does not change the left margin for any
existing lines.

The value of the left margin must be at least 1 and less than the right
margin value.

If you want to use the margin settings of an existing buffer in a user­
written procedure, GET_INFO (buffer, "left_margin") and GET_INFO
(buffer, "right_margin") return the values of the margin settings in the
specified buffer.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

The SET (LEFT _MARGIN) built-in
requires three parameters.

You specified more than three
parameters.

TPU$_1NVPARAM

TPU$_BADMARGINS

EXAMPLES

VAXTPU Built-In Procedures
SET (LEFT_MARGIN)

ERROR One or more of the specified
parameters have the wrong type.

WARNING The left margin setting must be
less than the right; both must be
greater than zero.

D SET (LEFT_MARGIN, my_buffer, 1)

This statement causes the left margin of the buffer represented by the
variable my _buffer to be changed. The left margin of the buffer is set to 1.
The right margin is unchanged.

I SET (LEFT_MARGIN, CURRENT_BUFFER, 10)

This statement causes the left margin of the current buffer to be changed
to 10. As above, the right margin is unchanged.

7-413

VAXTPU Built-In Procedures
SET {LEFT_MARGIN_ACTION)

SET (LEFT _MARGIN_ACTION)

FORMAT

PARAMETERS

, learn sequence
SET (LEFT_MARGIN_ACT/ON, buffer1 , program) [I , buffer2 l]

, range
, string

LEFT MARGIN ACTION
Refers to the action taken when the user presses a self-inserting key while
the cursor is to the left of a line's left margin. A self-inserting key is one
that is associated with a printable ·character.

buffer1
The buffer in which the left margin action routine is being set.

buffer2
A buffer containing the VAXTPU statements to be executed when the user
presses a self-inserting key while the cursor is to the left of a buffer's left
margin.

learn_ sequence
A learn sequence that is to be replayed when the user presses a self­
inserting key while the cursor is to the left of a buffer's left margin.

program
A program that is to be executed when the user presses a self-inserting
key while the cursor is to the left of a buffer's left margin.

range
A range that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the left of a
buffer's left margin.

string
A string that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the left of a
buffer's left margin.

DESCRIPTION The SET (LEFT_MARGIN_ACTION) built-in procedure allows you to
specify an action to be taken when the user attempts to insert text to the
left of the left margin of a line. If the third parameter is not specified, the
left margin action routine is deleted. If no left margin action routine has
been specified, the text is simply inserted at the current position before
any necessary padding spaces, and the left margin of the line becomes the
current position.

7-414

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SET (LEFT_MARGIN_ACTION)

Newly created buffers do not receive a left margin action routine if a
template buffer is not specified on the call to the CREATE_BUFFER
built-in procedure. If a template buffer is specified, the left margin action
routine of the template buffer is used.

The left margin action routine only affects text entered from the keyboard
or a learn sequence. Inserting text into a buffer to the left of the left
margin using the COPY_TEXT or MOVE_TEXT built-in procedure does
not trigger the left margin action routine.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_COMPILEFAIL ERROR

The SET {LEFT _MARGIN_
ACTION) built-in requires at least
two parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

Compilation aborted because of
syntax errors.

D SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER, "push_to_left_margin")

This statement causes the procedure PUSH_TO_LEFT_MARGIN to be
executed when the user attempts to type a character to the left of the left
margin of the current line. A typical left margin action routine moves
the editing point to the left margin and inserts an appropriate number of
spaces starting at the left margin.

~ SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER)

This statement deletes any left margin action routine that may be defined
for the current buffer. When there is no user-defined left margin action
routine, if the user types a character to the left of the current line's left
margin, the text is inserted with spaces padding the text to the old left
margin. The leftmost character on the line establishes the line's new left
margin.

7-415

VAXTPU Built-In Procedures
SET (LINE_NUMBER)

SET {LINE_NUMBER)

FORMAT SET (LINE_NUMBER, { g~F })

PARAMETERS LINE NUMBER
Refers to the VAXTPU display of the procedure and line number at which
an error occurred.

ON
Turns on display of the line number and procedure at which an error
occurred.

OFF
Turns off display of the line number and procedure at which an error
occurred.

DESCRIPTION Line numbers are useful for programmers debugging VAXTPU programs,
hut they do not have much meaning to users who do not have the source
code available to them.

7-416

After a compilation, the line numbers displayed for procedures are relative
to the beginning of the procedure. For VAXTPU statements compiled
outside a procedure, the line numbers displayed are relative to the
beginning of the buffer, range, or string being compiled. If there are no
procedure declarations before the executable statements, line numbering
starts at the beginning of the buffer or range that is being compiled. For
strings, the line number is always 1.

Line numbers may be changed when you use the SAVE built-in to write a
section file. If you specify the parameter NO_PROCEDURE_NAMES, the
line numbers displayed are relative to the beginning of the buffer or range
that was compiled, not relative to the beginning of a procedure.

The default setting for LINE_NUMBER depends on whether a section file
was loaded by VAXTPU. If a section file was loaded, the default is OFF. If
a section file was not loaded, the default is ON.

Note that SET (LINE_NUMBER) is related to SET (TRACEBACK). SET
(TRACEBACK, ON) turns on both traceback and line numbers. SET
(LINE_NUMBER, OFF) turns off both traceback and line numbers. It is
also possible to set traceback off and line numbers on.

SIGNALED
ERRORS

EXAMPLE

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

PROCEDURE line_number_example
SET (LINE_NUMBER, ON);
SET (LINE_NUMBER, BELL);

ENDPROCEDURE;

VAXTPU Built-In Procedures
SET (LINE_NUMBER}

ERROR

ERROR

ERROR

ERROR

The SET (LINE_NUMBER) built-in
requires two parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

Only the keywords ON and OFF
are allowed.

This procedure displays the line number at which the error occurred.
Executing this procedure displays the following in the message buffer:

BELL is an invalid keyword
At line 4

7-417

VAXTPU Built-In Procedures
SET{MAPPED_WHEN_MANAGED)

SET{MAPPED_WHEN_MANAGED)
Controls whether a widget instance is mapped to the screen when it is
managed.

FORMAT SET (MAPPED_WHEN_MANAGED,widget, { g~F };

PARAMETERS MAPPED WHEN MANAGED
A keyword indicating that SET is being used to control whether the
specified widget instance should become visible when it is managed.

widget
The widget instance whose mapped status you want to set.

ON
A keyword directing VAXTPU to make the specified widget visible when it
is managed. This is the default value.

OFF
A keyword directing VAXTPU not to make the specified widget visible
when it is managed.

DESCRIPTION For more information on managing widgets, see the VMS DECwindows
Guide to Application Programming and the VMS DECwindows Toolkit
Routines Reference Manual.

SIGNALED
ERRORS

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR Built-in does not return a value.

TPU$_REQUIRESDECW ERROR Requires the VAXTPU
DECwindows screen updater.

TPU$_ TOOFEW ERROR You specified too few parameters.

TPU$_ TOOMANY ERROR You specified too many
parameters.

EXAMPLE

SET (MAPPED_WHEN_MANAGED, example_widget, OFF);

7-418

This statement directs VAXTPU to make the widget contained in example_
widget invisible when the widget is managed.

VAXTPU Built-In Procedures
SET (MARGINS)

SET (MARGINS)

FORMAT SET (MARGINS, buffer, integer1, integer2)

PARAMETERS MARGINS
A keyword indicating that SET is to determine the left and right margins
of a buffer.

The default left margin is 1 and the default right margin is 80.

buffer
The buffer in which the margins are being set.

integer1
The column at which the left margin is set.

integer2
The column at which the right margin is set.

DESCRIPTION The SET (MARGINS) built-in procedure allows you to change the left and
right margins of a buffer. The default margins for a buffer are set to 1 for
the left margin and 80 for the right margin when you use the CREATE_
BUFFER built-in. The built-in procedure FILL uses these margin settings
when it fills the text of a buffer.

SIGNALED
ERRORS

This built-in procedure controls the buffer margin settings even if the
terminal width or window width is set to something else.

The value of the left margin must be at least 1 and less than the right
margin value. The value of the right margin must be less than the
maximum record size for the buffer. You can use the built-in procedure
GET_INFO (buffer, "record_size") to find out the maximum record size of a
buffer.

If you want to use the margin settings of an existing buffer in a user­
written procedure, the statements GET_INFO (buffer, "left_margin")
and GET_INFO (buffer, "right_margin") return the values of the margin
settings.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

The SET (MARGINS) built-in
requires five parameters.

You specified more than four
parameters.

One or more of the specified
parameters have the wrong type.

7-419

VAXTPU Built-In Procedures
SET (MARGINS)

TPU$_BADMARGINS

EXAMPLES

WARNING Left margin must be smaller than
right; both must be greater than
zero.

D SET (MARGINS, my_buffer, 1, 132)

This statement causes the margins of the buffer represented by the
variable my _buffer to be changed. The left margin of the buffer is set to 1
and the right margin is set to 132.

i SET (MARGINS, CURRENT_BUFFER, 10, 70)

7-420

This statement causes the margins of the current buffer to be changed to
left margin 10 and right margin 70.

VAXTPU Built-In Procedures
SET (MAX_LINES)

SET (MAX_LINES)

FORMAT SET (MAX_LINES, buffer, integer)

PARAMETERS MAX LINES
The mruomum number of lines a buffer can contain.

buffer
The buffer for which you are setting the maximum number of lines.

integer
The maximum number of lines for the buffer. The valid values are 0, 2, or
an integer greater than 2. The maximum value depends on the memory
capacity of your system.

The default maximum number of lines is 0 (in other words, this feature is
turned oft).

DESCRIPTION If you exceed the maximum number of lines for a buffer, VAXTPU deletes
lines from the beginning of the buffer to make room for any lines that
exceed the maximum.

SIGNALED
ERRORS

EXAMPLE
SET (MAX_LINES,

Note that SET (MAX_LINES) does not consider the end-of-buffer text to
be a record. For example, if you set the maximum number of lines to be
1000, the buffer can contain 1000 records plus the end-of-buffer text.

If you specify a value of 0 for integer, this feature is turned off and
VAXTPU does not check for the maximum number of lines.

TPU$_MINVALUE WARNING Argument less than minimum
allowed.

TPU$_MAXVALUE WARNING Argument greater than maximum
allowed.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_ TOOMANY ERROR SET (MAX_LINES) accepts only
three parameters.

TPU$_ TOOFEW ERROR SET (MAX_LINES) requires three
parameters.

message_buffer, 20)

This statement causes the maximum number of lines for the message
buffer to be 20. Only the most recent lines of messages are kept.

7-421

VAXTPU Built-In Procedures
SET (MENU_POSITION)

SET {MENU_POSITION)

Sets menu positioning for one or more pop-up widgets.

FORMAT { ::~J~ }:=SET (MENU_POSITION, mouse_down_button,

{ ~;;~~ })
widget

PARAMETERS MENU POSITION

return values

A keyword indicating that the SET built-in is being used to set the menu
position of a pop-up widget or widgets.

mouse down button
This keyword (MlDOWN, M2DOWN, M3DOWN, M4DOWN, or M5DOWN)
indicates the mouse button associated with the pop-up menus.

array2
An integer-indexed array of pop-up menu widgets to be set for automatic
menu positioning.

NONE
This keyword requests that VAXTPU stop automatic positioning of pop-up
menu widgets for the specified mouse button.

widget
The pop-up menu widget to be set for automatic menu positioning.

array1
An integer-indexed array of all pop-up menu widgets that were set for
automatic positioning for the specified mouse button prior to this built-in
call.

NONE
A keyword indicating that no pop-up menu widgets were set for the
specified mouse button prior to this built-in call.

DESCRIPTION When the specified mouse button is pressed and the application manages a
pop-up widget, VAXTPU positions the pop-up widget so that the last menu
item chosen is at the mouse pointer. If no menu item has been chosen,
VAXTPU positions the pop-up widget so that the mouse pointer is at the
upper left corner of the widget.

7-422

\
)

SIGNALED
TPU$_1NVPARAM

ERRORS

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_BADKEY

TPU$_NEEDTOASSIGN

TPU$_EXTRANEOUSARGS

TPU$_REQARGSMISSING

VAXTPU Built-In Procedures
SET (MENU_POSITION)

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR Requires the VAXTPU
DECwindows screen updater.

ERROR You specified too few parameters.

ERROR You specified too many
parameters.

WARNING You specified an invalid keyword.

ERROR Built-in must return a value.

ERROR The array of widgets parameter
had a non-widget element.

ERROR The array of widgets parameter
was empty.

7-423

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_LEVEL}

SET (MESSAGE_ACTION_LEVEL)

FORMAT

PARAMETERS

SET 'MESSAGE ACTION LEVEL { integer })
'' - - ' keyword

MESSAGE ACTION LEVEL
A keyword indicating that SET is to determine the severity level at which
VAXTPU sounds the terminal bell or highlights a message.

integer
A value between 0 and 3 specifying the severity level at which VAXTPU
is to take the action you designate. The default value is 2. The severity
levels and corresponding values, in ascending order of severity, are as
follows:

1 Success

3 Informational

0 Warning

2 Error

VAXTPU performs the action you specify on all completion messages at
the severity level you designate and on all messages of greater severity.

keyword
Th~ keyword associated with a VAXTPU completion message. VAXTPU
uses the keyword to determine the severity level of the associated
completion message and performs the action you specify on all completion
messages of that severity level or greater.

DESCRIPTION To set the action that is taken when VAXTPU returns a completion status
of the specified severity, use the SET (MESSAGE_ACTION_TYPE) built-in.

SIGNALED
ERRORS

7-424

The action you specify using SET (MESSAGE_ACTION_TYPE) is taken
for all completion messages of the specified severity or greater severity.

TPU$_ TOOFEW ERROR SET (MESSAGE_ACTION_
LEVEL) requires two parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_8ADKEY ERROR You specified an invalid keyword.

TPU$_1LLSEVERITY WARNING Illegal severity specified; VAXTPU
used the severity "error."

\
)

EXAMPLES

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_LEVEL)

D SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

These statements direct VAXTPU to display informational, warning, and
error messages in reverse video for 1/2 second, then in ordinary video.

SET (MESSAGE ACTION TYPE, BELL);
SET (MESSAGE=ACTION=LEVEL, TPU$_SUCCESS);

These statements direct VAXTPU to ring the terminal's bell whenever
a completion status occurs with a severity equal to or greater than the
severity of TPU$_SUCCESS.

7-425

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_ TVPE)

SET {MESSAGE_ACTION_TYPE)

FORMAT

PARAMETERS

{
NONE }

SET (MESSAGE_ACT/ON_ TYPE, BELL)
REVERSE

MESSAGE ACTION TYPE
A keyword indicating the action to be taken when VAXTPU generates a
completion status of the severity you specify.

NONE
A keyword directing VAXTPU to take no action. This is the default.

BELL
A keyword directing VAXTPU to ring the terminal's bell when a completion
status of the specified severity is returned.

REVERSE
A keyword directing VAXTPU to display the completion status in reverse
video for 1/2 second, then display the status in ordinary video.

DESCRIPTION To set the severity at which the action is taken, use the SET (MESSAGE_
ACTION_LEVEL) built-in. The action you specify using SET (MESSAGE_
ACTION_TYPE) is taken for all completion messages of the specified
severity or greater severity.

SIGNALED
ERRORS

EXAMPLE

TPU$_ TOOFEW

·· TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

ERROR

ERROR

ERROR

ERROR

SET (MESSAGE_ACTION_ TYPE)
requires two parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

These statements direct VAXTPU to display informational, warning, and
error messages in reverse video for 1/2 second, then in ordinary video.

7-426

VAXTPU Built-In Procedures
SET (MESSAGE_FLAGS)

SET {MESSAGE_FLAGS)

FORMAT SET (MESSAGE_FLAGS, integer)

PARAMETERS MESSAGE FLAGS
The message flags in the $PUTMSG system service.

integer
The value specified for the $PUTMSG message codes. Table 7-11 lists the
message codes.

DESCRIPTION The following table shows the message codes for $PUTMSG:

Table 7-11 Message Codes for $PUTMSG System Service

Bit Value Meaning

0 1 Include text of message.
0 Do not include text of message.

1 Include message identifier.
0 Do not include message identifier.

2 1 Include severity level indicator.
0 Do not include severity level indicator.

3 1 Include facility name.
0 Do not include facility name.

If you do not set a value for the message flags, the default message flags
for your process are used. Setting the message flags to 0 does not turn
off the message text; it causes VAXTPU to use the default message flags
for your process. In addition to setting the message flags from within
VAXTPU, you can set them at the DCL level with the command SET
MESSAGE. The DCL command SET MESSAGE is the only way you can
turn off all message text. See the VMS DCL Dictionary for information on
the DCL command SET MESSAGE.

Table 7-12 shows the predefined constants available for use with SET
(MESSAGE_FLAGS).

Table 7-12 Message Flag Values

Bit Constant

0 TPU$K_MESSAGE_TEXT

1 TPU$K_MESSAGE_ID

2 TPU$K_MESSAGE_SEVERITY

3 TPU$K_MESSAGE_FACILITY

Meaning

Include text of message.

Include message identifier.

Include severity level indicator.

Include facility name.

7-427

VAXTPU Built-In Procedures
SET {MESSAGE_FLAGS)

SIGNALED
ERRORS

EXAMPLES

TPU$_FLAGTRUNC

TPU$_1NVPARAM

TPU$_ TOOFEW

TPU$_ TOOMANY

WARNING Message flag values must be less
than or equal to 15.

ERROR

ERROR

ERROR

One or more of the specified
parameters have the wrong type.

SET (MESSAGE_FLAGS) requires
at least two parameters.

SET (MESSAGE_FLAGS) accepts
no more than two parameters.

D SET (MESSAGE_FLAGS, 2)

This statement causes the message identifier to be the only item included
in VAXTPU messages. The integer 2 sets bit 1.

~ SET (MESSAGE_FLAGS, 5)

This statement causes the message text and the severity level indicator to
be included in VAXTPU messages. The integer 5 is a bit-encoded integer
setting both bit 2 and bit 0 to 1.

SET (MESSAGE FLAGS, TPU$K MESSAGE SEVERITY);
MESSAGE (TPU$_TOOFEW); - -

In this code fragment, the SET (MESSAGE_FLAGS) statement directs
VAXTPU to include only the message severity level in messages identified
by keywords or integers. Since TPU$_TOOFEW is an error-level message,
the MESSAGE statement above causes VAXTPU to display "%E" in the
message buffer. VAXTPU does not display the text associated with the
keyword TPU$_TOOFEW because the statement does not contain an
integer or constant directing VAXTPU to display the text. For more
information on using constants to specify message format, see the
description of the MESSAGE_TEXT built-in.

SET (MESSAGE FLAGS, TPU$K MESSAGE ID+ TPU$K MESSAGE TEXT);
MESSAGE (TPU$_TOOFEW); - - - -

7-428

In this code fragment, the integer parameter to SET (MESSAGE_
FLAGS) is specified as two constants representing encoded bits. This
message flag setting turns on the display of both message identifier
and message text. Therefore, when the MESSAGE statement in this
code fragment is compiled and executed, VAXTPU displays the words
"%TOOFEW, Too few arguments" in the message buffer.

VAXTPU Built-In Procedures
SET (MODIFIABLE)

SET (MODIFIABLE)

FORMAT SET (MODIFIABLE, buffer, { g~F })

PARAMETERS MODIFIABLE
The ability to modify a buffer.

buffer
The buffer that will either be unmodifiable or able to be edited.

ON
Makes the buffer modifiable.

OFF
Makes the buffer unmodifiable, allowing only deletion of the buffer and
setting of marks and ranges. Any attempt to change the buffer will result
in a warning message.

DESCRIPTION When a buffer is not modifiable, any attempt to insert, delete, or otherwise
modify the contents of the buffer results in a warning message. This only
affects the text within the buffer. The buffer can still be deleted, and
marks and ranges can still be created or deleted in the text within the
buffer.

SIGNALED
ERRORS

Newly created buffers are modifiable by default if a template buffer was
not used on the call to the CREATE_BUFFER procedure. The modifiability
status is taken from the template buffer if one was specified.

You cannot make the messages buffer unmodifiable.

TPU$_ TOOFEW ERROR The SET (MODIFIABLE) built-in
requires three parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_MSGBUFSET ERROR You cannot force the message
buffer to be nonmodifiable.

TPU$_BADKEY ERROR Only the ON and OFF keywords
are valid.

7-429

VAXTPU Built-In Procedures
SET (MODIFIABLE}

EXAMPLE
SET (MODIFIABLE, CURRENT_BUFFER, OFF)

7-430

This statement makes the current buffer unmodifiable. Any attempt to
change the buffer fails with a warning message.

VAXTPU Built-In Procedures
SET {MODIFIED)

SET (MODIFIED)

FORMAT

PARAMETERS

Turns on or turns off the flag indicating that the specified buffer has been
modified.

SET (MODIFIED, buffer, { g~F })

MODIFIED
A keyword directing VAXTPU to turn on or turn off the indicator
designating a buffer as modified.

buffer
The buffer whose indicator you want to control.

ON
A keyword directing VAXTPU to mark a buffer as modified.

OFF
A keyword directing VAXTPU to mark a buffer as unmodified.

DESCRIPTION Use SET (MODIFIED) with caution. When you turn off the flag indicating
that the buffer is modified, it is possible to exit from an application layered
on VAXTPU without writing out the contents of a modified buffer. Be sure
your extension or layered application handles this possibility.

SIGNALED
ERRORS

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (MODIFIED) cannot return a
value.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (MODIFIED) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (MODIFIED) built-in.

EXAMPLE
SET (MODIFIED, CURRENT_BUFFER, ON);

This statement marks the current buffer as modified.

7-431

VAXTPU Built-In Procedures
SET (MOUSE)

SET {MOUSE)

FORMAT

PARAMETERS

{ ON } . { ON } I OFF .= I SET (MOUSE, OFF)

MOUSE
Indicates that you are using SET to enable or disable VAXTPU's mouse
support.

The default mouse setting depends on the terminal you are using. If the
VAXTPU statement GET_INFO (SCREEN, "dec_crt2") returns true on
your terminal, mouse support is turned on by default. Otherwise, mouse
support is turned off by default.

ON
Causes VAXTPU to recognize mouse buttons when they are pressed, and
allows you to bind programs or procedures to mouse buttons. Enables the
LOCATE_MOUSE and POSITION (MOUSE) built-ins.

OFF
Disables VAXTPU mouse support. Pressing a mouse button when the
mouse is set to OFF has no effect.

DESCRIPTION Since VAXTPU mouse support disables the terminal emulator's cut and
paste feature in non-DECwindows VAXTPU, you must turn off VAXTPU
mouse support to use the non-VAXTPU cut and paste capability while
VAXTPU is running.

SIGNALED
ERRORS

7-432

The optional return value specifies whether VAXTPU mouse support was
enabled or disabled before the current SET (MOUSE) statement was
executed. This allows you to enable or disable mouse support and then
reset the support to its previous setting without having to make a separate
call.

TPU$_BADKEY WARNING The keyword must be either ON or
OFF.

TPU$_MOUSEINV WARNING You have tried to enable mouse
support on an incompatible
terminal.

TPU$_ TOOFEW ERROR SET (MOUSE) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

EXAMPLE
SET (MOUSE, OFF)

VAXTPU Built-In Procedures
SET (MOUSE)

This statement turns off mouse support.

7-433

VAXTPU Built-In Procedures
SET {NO_ WRITE)

SET {NO_ WRITE)

FORMAT

PARAMETERS

SIGNALED
ERRORS

EXAMPLES

SET (NO_WRITE, buffer [{: g~F }]J

NO WRITE
Specifies that VAXTPU should not create an output file from the contents
of a buffer after execution of a QUIT or EXIT statement even if the
contents of the buffer have been modified.

By default, a buffer is written out if it has been modified.

buffer
The buffer whose contents you do not want written out.

ON
Causes the buffer you name not to be written out.

OFF
Lets you change a buffer from the no-write state to the default state. By
default, any modified buffers are written out after execution of a QUIT or
EXIT statement.

TPU$_ TOOFEW ERROR SET (NO_WRITE) requires three
parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

D SET (NO_WRITE, my_buffer)

This statement causes my _buffer not to be saved in a file after execution of
a QUIT or EXIT statement.

I SET (NO_WRITE, my_buffer, OFF)

7-434

This statement turns off the no-write state of my_buffer. The contents of
the buffer are written out after execution of a QUIT or EXIT statement if
the buffer has been modified.

\
)

VAXTPU Built-In Procedures
SET (OUTPUT_FILE)

SET {OUTPUT_FILE)

FORMAT SET (OUTPUT_FILE, buffer, string)

PARAMETERS OUTPUT FILE
A keyword indicating that SET is to control creation of an output file for
the contents of a buffer after execution of a QUIT or EXIT statement.

buffer
The buffer whose contents are written to the specified file.

string
The file specification for the file being written out.

The default output file is the input file name and the highest existing
version number for that file plus 1.

DESCRIPTION VAXTPU does not write out the contents of a buffer after execution of a
QUIT or EXIT statement if the buffer has not been modified.

SIGNALED
ERRORS

EXAMPLE

If a buffer is set to NO_ WRITE, a file is not written out after execution of
a QUIT or EXIT statement even though you specified a file specification
for the contents of the buffer with the built-in procedure SET (OUTPUT_
FILE).

TPU$_ TOOFEW ERROR SET (OUTPUT _FILE) requires
three parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (OUTPUT_FILE, paste_buffer, "newfile.txt")

This statement causes the output file for paste_buffer to be
NEWFILE.TXT.

7-435

VAXTPU Built-In Procedures
SET (OVERSTRIKE)

SET (OVERSTRIKE)

FORMAT SET (OVERSTRIKE, buffer)

PARAMETERS OVERSTRIKE

SIGNALED
ERRORS

EXAMPLE

A keyword specifying that SET is to control the mode of text entry.
OVERSTRIKE means that the characters that you add to the buffer
replace the characters in the buffer starting at the editing point and
continuing for the length of the text that you enter.

The default mode of text entry is INSERT.

See also the description of the built-in procedure SET (INSERT). For
information on how to control overstrike behavior in tabs, see SET (PAD_
OVERSTRUCK_TABS).

buffer
The buffer whose mode of text entry you want to set.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_BADKEY ERROR

SET (OVERSTRIKE) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (OVERSTRIKE, my_buffer)

7-436

This statement sets the mode for text entry in my _buffer to overstrike.
Characters that you enter replace characters already in the buffer, starting
at the editing point and continuing for the length of the text that you
enter.

SET (PAD)

VAXTPU Built-In Procedures
SET (PAD)

FORMAT {ON } SET (PAD, window, OFF)

PARAMETERS PAD
A keyword indicating that SET is to control whether screen lines are
padded with blanks. This keyword determines whether SET pads out
the left and right ends of lines, beyond the text on the line. When video
attributes are applied to a padded window, the window has an even or
"boxed" appearance.

window
The window in which lines are padded.

ON
Causes VAXTPU to display blanks after the last character of a record so
that the screen line extends to the right side of the window. If there are
not enough lines in a buffer to fill an entire window, VAXTPU displays
blank lines (according to the video setting of the window) from the end-of­
buffer line to the end of the window.

OFF
Causes the display of lines on the screen to stop at the last character of a
record. When video attributes are applied to the window, the window has
a ragged appearance on the sides.

DESCRIPTION By default, VAXTPU ends a line on the screen at the end of a record,
without adding padding blanks. The default behavior of not padding the
screen gives maximum editing performance. You can change the default
with SET (PAD) for special visual effects. The records in the buffer are not
padded; only the display lines have the padding.

SIGNALED
ERRORS TPU$_ TOOFEW ERROR SET (PAD) requires three

parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_8ADKEY ERROR The keyword must be ON or OFF.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

7-437

VAXTPU Built-In Procedures
SET (PAD)

EXAMPLE
SET (PAD, second_window, ON);
SET (VIDEO, second_window, REVERSE);

7-438

The first statement causes second_window to be blank padded. The second
statement causes second_window to be displayed in reverse video. The
window has an even right and left margin when displayed.

VAXTPU Built-In Procedures
SET{PAD_OVERSTRUCK_TABS)

SET(PAD_OVERSTRUCK_TABS)

FORMAT

PARAMETERS

SET (PAD_OVERSTRUCK_TABS, { g~F }J

PAD OVERSTRUCK TABS
How tabs are handled in overstrike mode.

ON
Causes the insertion of one or more characters on top of a tab in overstrike
mode, as if the text insertion mode were INSERT instead of OVERSTRIKE
for the width of the tab.

OFF
Causes overstruck tabs to be replaced by the first character that is
inserted in the buffer in overstrike mode on top of a tab. This is the
default setting.

DESCRIPTION PAD_OVERSTRUCK_TABS controls how VAXTPU handles tabs in
overstrike mode. When earlier versions of VAXTPU overstruck a tab,
VAXTPU inserted spaces if necessary to preserve the cursor position
within the tab, and then replaced the tab with the character that was
being entered. This behavior is preserved when PAD_OVERSTRUCK_
TABS is set OFF.

SIGNALED
ERRORS

When PAD_OVERSTRUCK_TABS is set ON, VAXTPU inserts spaces
as necessary to preserve the cursor position within the tab of the first
character of the text, and then inserts the text. The tab is only replaced
when it occupies a single column.

TPU$_ TOOFEW ERROR The SET (PAD_OVERSTRUCK_
TABS) built-in requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY WARNING Only ON and OFF are allowed.

7-439

VAXTPU Built-In Procedures
SET(PAD_OVERSTRUCK_TABS)

EXAMPLES

7-440

The following examples show what happens when PAD_OVERSTRUCK_
TABS is set to OFF. In these examples, the character">" represents
the tab, the character "." represents one column of white space, and an
underscore (_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle
of white space created by a tab:

abc> def

Suppose the user inserts the character"*" while PAD_OVERSTRUCK_
TABS is set to OFF. The white space to the left of the * is preserved.
The tab character is removed, and the white space to the right of the * is
not preserved. The text to the right of the collapsed white space moves
leftward. The result is as follows:

abc .. *def

Note that the cursor is on the "d" character. Suppose, given the same
initial text, the user types the string "xyzzy" while PAD_OVERSTRUCK_
TABS is set to OFF. The tab is removed. The text to the right of the tab
moves leftward. The user's new string, "xyzzy", is written over the old
text. The result is as follows:

abc .. xyzzy

When PAD_OVERSTRUCK_TABS is set to ON, the text to the right of the
tab does not move to the left when text is inserted within the tab. Instead
of removing the tab, VAXTPU places the tab to the right of the inserted
text if the inserted text is shorter than the length of the tab. The newly
placed tab creates only enough white space to preserve the original column
position of the text to the right of the tab.

The following examples show what happens when PAD_OVERSTRUCK_
TABS is set to ON. In these examples, the character">" represents the tab,
the character "." represents one column of white space, and the underscore
(_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle
of white space created by a tab:

abc> def

Suppose the user inserts the character"*" while PAD_OVERSTRUCK_
TABS is set to ON. The white space to the left of the * is preserved. The
tab is inserted after the * character. The result is as follows:

abc .. *>.def

Suppose, given the same initial text, the user inserts the string "xyzzy"
while PAD_OVERSTRUCK_TABS is set to ON. To preserve the original
position of the text to the right of the tab, VAXTPU fills the white space
created by the tab with characters from the new string. When the white
space is filled, VAXTPU writes the new characters over the old characters.
Thus, the old text does not move left or right, but rather is overwritten by
the new text. The result is as follows:

abc .. xyzzyf

VAXTPU Built-In Procedures
SET (PERMANENT)

SET (PERMANENT)

FORMAT SET (PERMANENT, buffer)

PARAMETERS PERMANENT
Specifies that a buffer cannot be deleted. By default, buffers can be
deleted; they are not permanent.

buffer
The buffer that is not to be deleted.

DESCRIPTION Once you use SET (PERMANENT, buffer) to make a buffer permanent,
you cannot reset the buffer so that it can be deleted.

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR SET (PERMANENT) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

EXAMPLE
SET (PERMANENT, master_ buffer)

This statement causes master _buffer to become a permanent buffer.

7-441

VAXTPU Built-In Procedures
SET(POST_KEV_PROCEDURE)

SET(POST_KEV_PROCEDURE)

FORMAT

PARAMETERS

7-442

, learn_sequence
SET (POST_KEY_PROCEDURE, stringt , program)

[(

, buffer)]

, range
, string2

POST KEY PROCEDURE
The action taken after the code or learn sequence bound to a key is
executed.

string1
A quoted string, or a variable name representing a string constant, that
specifies the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the buffer and
stores the resulting program in the specified key map list.

learn_ sequence
The learn sequence specifying the action to be taken after the code or
learn sequence bound to a key is executed. The contents of a variable of
type learn do not require compilation. SET (POST_KEY_PROCEDURE)
stores the learn sequence in the specified key map list.

program
The program specifying the action to be taken after the code or learn
sequence bound to a key is executed. The contents of a variable of type
program do not require compilation. SET (POST_KEY_PROCEDURE)
stores the program in the specified key map list.

range
The range containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the range and
stores the resulting program in the specified key map list.

string2
The string containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the string and
stores the resulting program in the specified key map list.

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
SET{POST_KEV_PROCEDURE)

Postkey procedures allow an editor to perform some specified action before
and after execution of code bound to a key. If you do not specify the third
parameter, the postkey procedure for the specified key map list is deleted.

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey procedure has been set.

2 For each key in the learn sequence, VAX.TPU executes procedures or
programs in the following order:

a. VAX.TPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAX.TPU executes the code bound to the key itself.

c. VAX.TPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

The pre- and postkey procedures bound to a key map list can be found by
using the following calls to the GET_INFO built-in procedure:

GET_INFO (key_map_list_name, "pre_key_procedure")
GET_INFO (key_map_list_name, "post_key_procedure")

By default, newly created key map lists do not have postkey procedures.

TPU$_ TOOFEW ERROR The SET (POST _KEY_
PROCEDURE) built-in requires
at least two parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_COMPILEFAIL ERROR Compilation aborted because of
syntax errors.

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.

SET (POST_KEY_PROCEDURE, "tpu$key_map_list",
'MESSAGE ("Key"+ GET_INFO (LAST_KEY, "name") +"Executed")');

This code displays a message after the code bound to a key is executed.

7-443

VAXTPU Built-In Procedures
SET (PRE_KEY_PROCEDURE)

SET{PRE_KEV_PROCEDURE)

FORMAT

PARAMETERS

7-444

, learn_sequence
SET (PRE_KEY_PROCEDURE, string1 , program)

[(

, buffer)]

, range
, string2

PRE KEY PROCEDURE
The action taken before the code or learn sequence bound to a key is
executed.

string1
A quoted string, or a variable name representing a string constant, that
specifies the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the buffer and
stores the resulting program in the specified key map list.

learn_ sequence
The learn sequence specifying the action to be taken before the code or
learn sequence bound to a key is executed. The contents of a variable of
type learn do not require compilation. SET (PRE_KEY_PROCEDURE)
stores the learn sequence in the specified key map list.

program
The program specifying the action to be taken before the code or learn
sequence bound to a key is executed. The contents of a variable of type
program do not require compilation. SET (PRE_KEY_PROCEDURE)
stores the program in the specified key map list.

range
The range containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the range and
stores the resulting program in the specified key map list.

string2
The string containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the string and
stores the resulting program in the specified key map list.

VAXTPU Built-In Procedures
SET {PRE_KEY _PROCEDURE)

DESCRIPTION Prekey procedure allows an editor to perform some specified action before
the execution of code bound to a key. If you do not specify the third
parameter, the prekey procedure for the specified key map list is deleted.

SIGNALED
ERRORS

EXAMPLE

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey procedure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU executes the code bound to the key itself.

c. VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

The prekey procedure or postkey procedure bound to a key map list can be
found by using the following calls to the GET_INFO built-in procedure:

GET INFO (key map list name, "pre key procedure");
GET=INFO (key=map:=lis<~name, "post_key_procedure");

By default, newly created key map lists do not have prekey procedures.

TPU$_ TOOFEW ERROR The SET (PRE_KEY _
PROCEDURE) built-in requires
at least two parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_COMPILEFAIL ERROR Compilation aborted because of
syntax errors.

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.

SET (PRE KEY PROCEDURE, "tpu$key map list",
- 'MESSAGE ("Working ... ") '> ; -

This code displays a message before the code bound to a key is executed.

7-445

VAXTPU Built-In Procedures
SET (PROMPT_AREA)

SET {PROMPT _AREA)

FORMAT

PARAMETERS

BOLD
SET (PROMPT_ AREA, integer1, integer2, BLINK)

(

NONE l
PROMPT AREA

REVERSE
UNDERLINE

An area on the screen in which the prompts generated by the built-in
procedure READ _LINE are displayed.

By default, there is no prompt area.

integer1
The screen line number at which the prompt area starts.

integer2
The number of screen lines in the prompt area.

NONE
Applies no video attributes to the characters in the prompt area.

BOLD
Causes the characters in the prompt area to be bolded.

BLINK
Causes the characters in the prompt area to blink.

REVERSE
Causes the characters in the prompt area to be displayed in reverse video.

UNDERLINE
Causes the characters in the prompt area to be underlined.

DESCRIPTION If the prompt area overlaps a line of a window that is visible on the screen,
the line is erased when the built-in procedure READ _LINE is executed.
When the execution of READ_LINE is completed, the line is restored. If
the prompt area does not overlap any windows, the prompt area continues
to display the READ_LINE prompt and your input until new information
is sent to the prompt area.

7-446

If you have a multiple-line prompt area and your terminal has hardware
scrolling capabilities, the first prompt appears on the last line of the
prompt area and as subsequent prompts are issued, the previous prompts
scroll up to make room for new ones. If there are more prompts than there
are prompt-area lines, the extra prompts are scrolled out of the window.

SIGNALED
ERRORS

EXAMPLE
SET (PROMPT_ AREA,

VAXTPU Built-In Procedures
SET {PROMPT_AREA)

If your terminal does not have hardware scrolling capabilities, prompts are
displayed starting at the first line in the prompt area. When the prompt
area is filled, display starts again at the first line in the prompt area.

TPU$_ TOOFEW ERROR SET (PROMPT _AREA) requires
four parameters.

TPU$_ TOOMANY ERROR You specified more than four
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be NONE,
BOLD, BLINK, REVERSE, or
UNDERLINE.

TPU$_UNKKEYWORD ERROR You have specified an unknown
keyword.

TPU$_BADFIRSTLINE WARNING Prompt area must not start off
screen, or be less than one line
long.

TPU$_BADPROMPTLEN WARNING Prompt area must not extend off
screen.

24, 1, REVERSE)

This statement causes the prompt area to be screen line number 24. It is
one line and is displayed in reverse video.

7-447

VAXTPU Built-In Procedures
SET (RECORD_ATIRIBUTE)

SET (RECORD _ATTRIBUTE)

FORMATS

Sets or alters any of three possible attributes for the specified record or
records. The attributes you can set for a record are its left margin, its
modifiability, and its visibility.

SET (RECORD_ATTRIBUTE, range DISPLAY_ VALUE
{

mark } { }
buffer ' LEFT_MARGIN '

{
display_setting_integer })
margin_setting_integer

or

{
marker, }

SET (RECORD_ATTRIBUTE, range, MODIFIABLE, { g~F })
buffer,

PARAMETERS RECORD ATTRIBUTE

7-448

A keyword indicating that the SET built-in is being used to specify or
change a record attribute.

marker
The marker indicating the record whose attribute you want to set.

range
The range containing the records whose attribute you want to set. The
record attribute is applied to all records in the range. Records that are
partially within the range will be modified.

buffer
The buffer containing the records for which you want to set an attribute.
The record attribute is applied to all records in the buffer.

DISPLAY VALUE
A keyword indicating that you want to affect the visibility of the records.
If you specify the DISPLAY_ VALUE keyword as the third parameter,
you must specify for the fourth parameter an integer providing a display
setting.

LEFT_ MARGIN
A keyword indicating that you want to specify the left margin for the
specified records. If you specify the LEFT_MARGIN keyword as the third
parameter, you must specify for the fourth parameter an integer providing
a left margin value.

display_setting_integer
An integer value from -127 to + 127. This is the display setting. To
determine whether a record is to be visible or invisible in a given window,
VAXTPU compares the record's display setting to the window's display

VAXTPU Built-In Procedures
SET (RECORD_ATTRIBUTE}

setting. (A window's display setting is specified with SET (DISPLAY_
VALUE).) If the record's setting is greater than or equal to the window's
setting, VAXTPU makes the record visible in that window; otherwise,
VAXTPU makes the record invisible.

margin_ setting_integer
An integer that is the column at which the left margin should be set. The
value must be between 1 and the value of the right margin minus 1. (The
maximum valid value for the right margin is 32767 .)

MODIFIABLE
A keyword indicating that you want to determine whether the specified
records are modifiable. If you specify the MODIFIABLE keyword as
the third parameter, you must specify either ON or OFF as the fourth
parameter.

ON
A keyword making records modifiable. Note, if a buffer is modifiable,
you can use SET (RECORD_ATTRIBUTE) to make a record in the buffer
unmodifiable (with keyword OFF). If a buffer is unmodifiable and you use
SET (RECORD_ATTRIBUTE) to make a record in the buffer modifiable
(with keyword ON), VAXTPU marks the record as modifiable but does not
allow modifications to the record until the buffer is made modifiable.

OFF
A keyword making records unmodifiable.

DESCRIPTION With each call to SET (RECORD_ATTRIBUTE), you can set only one
attribute. For example, you cannot change visibility and modifiability
using just one call. To set more than one record attribute, use multiple
calls to SET (RECORD_ATTRIBUTE).

SIGNALED
ERRORS

When you set an attribute for multiple records, each record gets the same
value. For example, if you specify a range of records and a value for the
left margin attribute, all records in the range receive the same left margin
value.

You cannot change the left margin of an unmodifiable record. You can
change the display value of a record at any time.

TPU$_ TOOMANY

TPU$_ TOOFEW

TPU$_1NVPARAM

TPU$_ARGMISMATCH

TPU$_BADKEY

ERROR

ERROR

ERROR

ERROR

WARNING

You specified too many
parameters.

You specified too few parameters.

The third parameter must be a
keyword.

The second or fourth parameter
has an incorrect type.

You have specified an invalid
keyword.

7-449

VAXTPU Built-In Procedures
SET (RECORD_ATTRIBUTE)

TPU$_BADDISPVAL

TPU$_BADMARGINS

EXAMPLES

WARNING Display values must be between
-127 and +127.

WARNING You have specified an illegal left
margin value.

D SET (MODIFIABLE, bufl, OFF);
rl:= CREATE_RANGE (BEGINNING_OF(bufl), END_OF(bufl), REVERSE);
SET (RECORD_ATTRIBUTE, rl, MODIFIABLE, OFF);
SET (RECORD_ATTRIBUTE, rl, MODIFIABLE, ON);
SET (gODIFIABLE, bufl, ON);

This code fragment uses statements that change buffer modifiability
and record modifiability independently. Note that you can turn on
the modifiability of a record or range of records even when the buffer's
modifiability is turned off.

~ SET (RECORD_ATTRIBUTE, CURRENT_BUFFER, LEFT_MARGIN, 3);

This statement sets the left margin of all records in the current buffer to
column 3.

! SET (DISPLAY_VALUE, CURRENT_WINDOW, 0);
SET (RECORD_ATTRIBUTE, SELECT_RANGE, -1);

These statements make the records in the range select_range invisible in
the current window.

I SET (RECORD_ATTRIBUTE, MARK (FREE CURSOR), MODIFIABLE, OFF);

This statement makes the current record unmodifiable.

7-450

\
)

VAXTPU Built-In Procedures
SET (RESIZE_ACTION)

SET {RESIZE_ACTION)

FORMAT

Specifies code to be executed when a resize event has occurred. Specifying
a resize action routine overrides any previous resize action routines that have
been defined.

SET (RESIZE_ACT/ON

buffer
learn_sequence
program
range
string
NONE

)

PARAMETERS RESIZE ACTION
A keyworddirecting VAXTPU to set an attribute related to a resize action
routine.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it is notified of a resize event.

learn_ sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it is notified of a resize event.

program
The program that specifies the actions that VAXTPU should take whenever
it is notified of a resize event.

range
The range that specifies the actions that VAXTPU should take whenever it
is notified of a resize event.

string
The string that specifies the actions that VAXTPU should take whenever
it is notified of a resize event.

NONE
A keyword directing VAXTPU to delete the resize action routine. If you
specify this keyword or do not specify the parameter at all, the application
is not notified when a resize event occurs.

7-451

VAXTPU Built-In Procedures
SET (RESIZE_ACTION)

SIGNALED
TPU$_1NVPARAM

ERRORS

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

SET (RESIZE_ACTION, "eve$$resize_action");

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (RESIZE_ACTION) cannot
return a value.

ERROR You can use the SET (RESIZE_
ACTION) built-in only if you are
using DECwindows VAXTPU.

ERROR Too few arguments passed to the
SET (RESIZE_ACTION) built-in.

ERROR Too many arguments passed
to the SET (RESIZE_ACTION)
built-in.

This statement specifies the procedure EVE$$RESIZE_ACTION as the
resize routine. To see this statement used in an initializing procedure, see
the example in the description of the SET (SCREEN_LIMITS) built-in.

7-452

\
)

VAXTPU Built-In Procedures
SET {REVERSE)

SET {REVERSE)

FORMAT SET (REVERSE, buffer)

PARAMETERS REVERSE
The direction of the buffer. REVERSE means to go toward the beginning
of the buffer.

The default direction for a buffer is forward.

buffer
The buffer whose direction you want to set.

DESCRIPTION Interfaces use this feature to keep track of direction for searching or
movement.

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR SET (REVERSE) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

EXAMPLE
SET (REVERSE, my_buffer)

This statement causes the direction of the buffer to be toward the
beginning of the buffer.

7-453

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN)

SET {RIGHT _MARGIN)

FORMAT SET (RIGHT_MARGIN, buffer, integer)

PARAMETERS RIGHT MARGIN
The right-margin of a buffer.

buffer
The buffer in which the right margin is being set.

integer
The column at which the right margin is set.

DESCRIPTION The SET (RIGHT_MARGIN) built-in procedure allows you to change only
the right margin of a buffer.

SIGNALED
ERRORS

7-454

Newly created buffers receive a right margin of 80 if a template buffer is
not specified on the call to the CREATE_BUFFER built-in procedure. If
a template buffer is specified, the right margin of the template buffer is
used.

Use SET (RIGHT_MARGIN) to override the default right margin.

The buffer margin settings are independent of the terminal width or
window width settings.

The built-in procedure FILL uses these margin settings when it fills the
text of a buffer.

The SET (RIGHT_MARGIN) built-in procedure controls the buffer margin
setting even if the terminal width or window width is set to something
else.

The value of the right margin must be less than the maximum record
size for the buffer, and greater than the left margin value. You can use
the built-in procedure GET_INFO (buffer, "record_size") to find out the
maximum record size of a buffer.

If you want to use the margin settings of an existing buffer in a user­
written procedure, the statements GET_INFO (buffer, ''left_margin")
and GET_INFO (buffer, "right_margin") return the values of the margin
settings in the specified buffer.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

The SET (RIGHT _MARGIN)
built-in requires three parameters.

You specified more than three
parameters.

(

TPU$_1NVPARAM

TPU$_BADMARGINS

EXAMPLES

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN)

ERROR One or more of the specified
parameters have the wrong type.

WARNING Right must be greater than left;
both must be greater than zero.

D SET (RIGHT_MARGIN, my_buffer, 132)

This statement causes the right margin of the buffer represented by the
variable my _buffer to be changed. The right margin of the buffer is set to
132. The left margin is unchanged.

~ SET (RIGHT_MARGIN, CURRENT_BUFFER, 70)

This statement causes the right margin of the current buffer to be changed
to 70. As above, the left margin is unchanged.

7-455

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN_ACTION)

SET (RIGHT _MARGIN_ACTION)

FORMAT

PARAMETERS

learn sequence
SET (R/GHT_MARGIN_ACT/ON, buffer1 , program) [I buffer2 l]

range
string

RIGHT MARGIN ACTION
Refers to the action taken when the user presses a self-inserting key while
the cursor is to the right of a buffer's right margin. A self-inserting key is
one that is associated with a printable character.

buffer1
The buffer in which the right margin action routine is being set.

buffer2
A buffer containing the VAXTPU statements to be executed when the user
presses a self-inserting key while the cursor is to the right of a buffer's
right margin.

learn_ sequence
A learn sequence that is to be replayed when the user presses a self­
inserting key while the cursor is to the right of a buffer's right margin.

program
A program that is to be executed when the user presses a self-inserting
key while the cursor is to the right of a buffer's right margin.

range
A range that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the right of a
buffer's right margin.

string
A string that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the right of a
buffer's right margin.

DESCRIPTION The SET (RIGHT_MARGIN_ACTION) built-in procedure allows you to
specify an action to be taken when the user attempts to insert text to

7-456

the right of the right margin of a line. If the third parameter is not
specified, the right margin action routine is deleted. If no right margin
action routine has been specified, the text is simply inserted at the current
position after any necessary padding spaces.

Newly created buffers do not receive a right margin action routine if a
template buffer is not specified on the call to the CREATE_BUFFER built­
in procedure. If a template buffer is specified, the right margin action
routine of the template buffer is used.

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN_ACTION}

The right margin action routine only affects text entered from the
keyboard or a learn sequence. Inserting text into a buffer to the right
of the right margin using the COPY_TEXT or MOVE_ TEXT built-in
procedures does not trigger the right margin action routine.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_ COMPILEFAIL ERROR

The SET (RIGHT_MARGIN_
ACTION) built-in requires at least
two parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

Compilation aborted because of
syntax errors.

D SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER, "fill_current_line")

This statement causes the procedure FILL_ CURRENT _LINE to be
executed when the user attempts to type a character to the right of
the right margin of the current line. A typical right margin action routine
invokes the FILL built-in to fill the current line and force text to the right
of the right margin to a new line.

~ SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER)

This statement deletes any right margin action routine that may be
defined for the current buffer. If the user attempts to type a character to
the right of the right margin of the current line, the text is inserted with
spaces padding the text from the end of the line.

7-457

VAXTPU Built-In Procedures
SET {SCREEN_LIMITS)

SET (SCREEN_LIMITS)

Specifies the minimum and maximum allowable sizes for the VAXTPU screen
during resize operations. VAXTPU passes these limits to the DECwindows
window manager, which is free to use or ignore the limits.

FORMAT SET (SCREEN_LIMITS, array)

PARAMETERS SCREEN LIMITS

SIGNALED
ERRORS

7-458

A keyword directing VAXTPU to pass hints to the DECwindows window
manager about screen size.

array
An integer-indexed array using four elements to specify hints for the
minimum and maximum screen width and length. The array indices and
their corresponding elements are as follows:

1 The minimum screen width, in columns. This value must be at least
0 and less than or equal to the maximum screen width. The default
value is 0.

2 The minimum screen length, in lines. This value must be at least 0
and less than or equal to the maximum screen length. The default
value is 0.

3 The maximum screen width, in columns. This value must be greater
than or equal to the minimum screen width and less than or equal to
255. The default value is 255.

4 The maximum screen length, in lines. This value must be greater than
or equal to the minimum screen length and less than or equal to 255.
The default value is 255.

TPU$_BADVALUE WARNING An integer parameter was
specified with a value outside
the valid range.

TPU$_MAXVALUE WARNING You specified a value higher than
the maximum allowable value.

TPU$_MINVALUE WARNING You specified a value lower than
the minimum allowable value.

TPU$_EXTRANEOUSARGS ERROR One or more extraneous
arguments have been specified
for a DECwindows built-in.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

)

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_REQARGSMISSING

EXAMPLE

VAXTPU Built-In Procedures
SET (SCREEN_LIMITS)

ERROR SET (SCREEN_LIMITS) cannot
return a value.

ERROR You can use the SET (SCREEN_
LIMITS) built-in only if you are
using DECwindows VAXTPU.

ERROR Too few arguments passed to the
SET (SCREEN_LIMITS) built-in.

ERROR Too many arguments passed
to the SET (SCREEN_LIMITS)
built-in.

ERROR One or more required arguments
are missing.

PROCEDURE eve$$decwindows_init Module Initialization

LOCAL temp_array;

eve$x_decwindows active ·=GET INFO (SCREEN, "decwindows");

IF NOT eve$x_decwindows_active
THEN

RETURN (FALSE)
ENDIF;

! The following statements set the package up to handle resize actions.

temp_array :=CREATE ARRAY (4);
temp_array {1} ·= 20; Minimum width.
temp_array {2} ·= 6; Minimum height.
temp_array {3} := 250; ! Maximum width.
temp_array {4} := 100; ! Maximum height.

SET (SCREEN_LIMITS, temp_array);
SET (RESIZE_ACTION, "eve$$resize_action");
SET (ENABLE_RESIZE, ON);

ENDPROCEDURE;

These statements show one possible way that a layered application can
use the SET (SCREEN_LIMITS) built-in. The statements are a portion of
the EVE procedure EVE$$DECWINDOWS_INIT. You can find the original
version in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

The procedure EVE$$DECWINDOWS_INIT is the module initialization
procedure for the package EVE$DECWINDOWS.

7-459

VAXTPU Built-In Procedures
SET (SCREEN_UPDATE)

SET{SCREEN_UPDATE)

FORMAT

PARAMETERS

Turns on or turns off support for screen updating. For more information on
screen updating, see Section 6.2.

{ ON } . { ON } I OFF .= D SET (SCREEN_UPDATE, OFF)

SCREEN UPDATE
A keyword directing VAXTPU to set an attribute of screen updating.

ON
A keyword indicating that screen updating is enabled.

OFF
A keyword indicating that screen updating is disabled.

return value A variable containing the keyword value ON or OFF. The keyword specifies
whether VAXTPU screen updating support was enabled or disabled before
the current SET (SCREEN_ UPDATE) statement was executed. Using the
returned variable, you can enable or disable screen updating and then
reset the support to its previous setting without having to make a separate
call to fetch the previous setting.

DESCRIPTION When you set SCREEN_UPDATE on, the screen manager is immediately
called to update the screen. The extent of the update depends on the
built-ins that have been used since the last screen update. The update
may range from a complete screen refresh to an updating of the existing
text on the screen.

SIGNALED
ERRORS

7-460

For more information on screen updating, see Section 6.2.

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_UNKKEYWORD

WARNING

ERROR

ERROR

ERROR

ERROR

The keyword must be ON or OFF.

One or more of the specified
parameters have the wrong type.

SET (SCREEN_UPDATE) requires
two parameters.

You specified more than two
parameters.

You have specified an unknown
keyword.

EXAMPLE

VAXTPU Built-In Procedures
SET(SCREEN_UPDATE}

SET (SCREEN_UPDATE, OFF)

This statement causes screen updating to be turned off. When you design
an editing interface, you may want to use this statement to prevent some
intermediate processing steps from appearing on the screen.

7-461

VAXTPU Built-In Procedures
SET {SCROLL_BAR)

SET {SCROLL_BAR)

FORMAT

PARAMETERS

return value

Enables a horizontal or vertical scroll bar for the specified window.

I { in~eger } := J SET (SCROLL BAR window. { HORIZONTAL }
widget - ' ' VERTICAL '

{ g~F })

SCROLL BAR
A keyword directing VAXTPU to enable or disable a scroll bar in a
VAXTPU window.

window
The window in which the scroll bar does or does not appear.

HORIZONTAL
A keyword directing VAXTPU to enable or disable a horizontal scroll bar.

VERTICAL
A keyword directing VAXTPU to enable or disable a vertical scroll bar.

ON
A keyword indicating that the scroll bar is to be visible in the specified
window.

OFF
A keyword indicating that the scroll bar is not to be visible in the specified
window.

integer

widget

The value 0 if an error prevents VAXTPU from associating a
widget with the window.

The widget instance implementing the vertical or horizontal
scroll bar associated with a window.

DESCRIPTION Scroll bars represent the location of the editing point in the buffer. By
dragging the scroll bar's slider, the user can reposition the editing point in
the buffer mapped to the window. Scroll bars are unique among VAXTPU
widgets in the following respects:

7-462

• Each scroll bar widget is associated with a specific VAXTPU window.

• Instead of handling scroll widgets at the application level, you can
direct VAXTPU to handle resizing and repositioning of the scroll bar
slider. VAXTPU always handles sizing and positioning of the scroll bar
itself.

SIGNALED
ERRORS

VAXTPU Built-In Procedures
SET {SCROLL_BAR)

Note that windows having fewer than four lines of text cannot display a
vertical scroll bar. Similarly, a window less than four columns wide cannot
display a horizontal scroll bar.

SET (SCROLL_BAR) returns the scroll bar widget, or 0 if an error
prevents VAXTPU from associating a widget with the window.

By default, VAXTPU creates its windows without any scroll bars; using
SET (SCROLL_BAR) with the keyword ON overrides the default. To make
a scroll bar invisible after it has been placed in a window (for example,
to allow the user of a layered application to turn off scroll bars), use SET
(SCROLL_BAR) with the keyword OFF.

When the size of a VAXTPU window changes, VAXTPU automatically
adjusts the scroll bar to fit the new window size. If a window becomes too
small to support a scroll bar, VAXTPU turns off the scroll bar. However,
if the window subsequently becomes larger, VAXTPU automatically turns
the scroll bar back on.

The height of a vertical scroll bar represents the total number of lines in
the buffer mapped to the window.

The width of a horizontal scroll bar represents the greater of the following:

• The width of the widest line in the set of lines visible in the window.
"Width" means the distance from the first character on the line to the
last character, regardless of whether all characters on the line are
visible.

• In a case where none of the lines in the set of lines visible in the
window has text extending all the way to the rightmost window
column, the width of the widest line from the first character on the
line to the rightmost window column.

Note that the horizontal scroll bar represents only the lines that are
visible in the window, not all the lines in the buffer mapped to the window.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQUIRESDECW ERROR You can use the SET (SCROLL_
BAR) built-in only if you are using
DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (SCROLL_BAR) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (SCROLL_BAR) built-in.

7-463

VAXTPU Built-In Procedures
. SET {SCROLL_BAR)

EXAMPLE
vertical bar :=SET (SCROLL_BAR, CURRENT_WINDOW, VERTICAL, ON);

This statement turns on a vertical scroll bar in the current window.

For sample code using the SET (SCROLL_BAR) built-in, see Example B-7.

7-464

VAXTPU Built-In Procedures
SET (SCROLL_BAR_AUTO _THUMB)

SET(SCROLL_BAR_AUTO_THUMB)
Enables or disables automatic adjustment of the scroll bar slider.

FORMAT SET (SCROLL BAR AUTO THUMB window. { HORIZONTAL }
- - - ' ' VERTICAL '

{ g~F }J

PARAMETERS SCROLL BAR AUTO THUMB
A keyword directing VAXTPU to enable or disable automatic adjustment
of the scroll bar slider in a VAXTPU window.

window
The window whose scroll bar slider you want VAXTPU to adjust.

HORIZONTAL
A keyword directing VAXTPU to set the slider on a horizontal scroll bar.

VERTICAL
A keyword directing VAXTPU to set the slider on a vertical scroll bar.

ON
A keyword directing VAXTPU to enable automatic adjustment of the scroll
bar slider.

OFF
A keyword directing VAXTPU to disable automatic adjustment of the scroll
bar slider.

DESCRIPTION By default, SET (SCROLL_BAR_AUTO_THUMB) is set to ON and
VAXTPU automatically manages a window's scroll bar slider in the
following ways:

• Adjusts the size of the slider as the user adds, deletes, or moves text,
so that the slider size represents the amount of visible text in relation
to the total amount of text

• Adjusts the size of the slider whenever the size of the window and
the size of the scroll bar change, so that the slider size. remains
proportional to the scroll bar size

• Adjusts the position of the slider as the user adds, deletes, or moves
text, so that the slider shows whether the current buffer or line
contains text not visible on the screen and, if so, where the invisible
text is in relation to the visible text

7-465

VAXTPU Built-In Procedures
SET(SCROLL_BAR_AUTO_THUMB)

SIGNALED
ERRORS

EXAMPLE

When the scroll bar slider is adjusted automatically, the width of the slider
in a horizontal scroll bar represents the width of the window. For example,
the size of the slider changes when the window width is changed from 80
to 132 columns or the reverse. The position of the slider changes when the
window is shifted left or right. The height of the slider in a vertical scroll
bar represents the height of the window.

If you do not want VAXTPU to adjust the scroll bar slider automatically
or if you want to change the size or position of the slider, specify the OFF
keyword. For more information about calculating the size and position of
the slider, see the description of the SET (SCROLL_BAR) built-in.

Note that you cannot disable VAXTPU's automatic adjustment of the scroll
bar itself. VAXTPU always adjusts the scroll bar to the size of the window.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET(SCROLL_BAR_AUTO_
THUMB) cannot return a value.

TPU$_REQUIRESDECW ERROR You can use the SET (SCROLL_
BAR_AUTO_ THUMB) built-in only
if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to
the SET (SCROLL_BAR_AUTO_
THUMB) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (SCROLL_BAR_AUTO _
THUMB) built-in.

vertical bar :=SET (SCROLL_BAR_AUTO_THUMB, CURRENT_WINDOW, VERTICAL, ON);

7-466

This statement turns on automatic adjustment of the vertical scroll bar's
slider in the current window.

For sample code using the SET (SCROLL_BAR_AUTO_THUMB) built-in,
see Example B-7.

VAXTPU Built-In Procedures
SET (SCROLLING)

SET (SCROLLING)

FORMAT

PARAMETERS

SET (SCROLLING, window, { g~F }, integer1, integer2, integer3)

SCROLLING
This keyword refers to the upward or downward movement of existing
lines in a window to make room for new lines at the bottom or top of the
window. When a window is scrolled, the cursor position remains in the
same column, but the screen line that the cursor is on may change.

window
The window in which the scrolling limits are being set.

ON
Causes scrolling of the text in a window to be turned on. This is the
default value for the third parameter if the terminal supports scrolling.

OFF
Causes scrolling of the text in a window to be turned off. The screen is
completely repainted each time a scroll would otherwise take place. This is
the default value for the third parameter if the terminal does not support
scrolling.

integer1
The offset from the top screen line of a window. The offset identifies the
top limit of an area in which the cursor can move as it tracks the editing
point. If the cursor is forced to move above this screen line to track the
editing point, lines in the window move downward so that the cursor stays
within the limits of the scroll margins. If you reach the beginning of the
buffer, the text is no longer scrolled.

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

integer2
The offset from the bottom screen line of a window. The offset identifies
the bottom limit of an area in which the cursor can move as it tracks the
editing point. If the cursor is forced to move below this screen line to track
the editing point, lines in the window move upward so that the cursor
stays within the limits of the scroll margins. If you reach the end of the
buffer, the text is no longer scrolled.

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

integer3
The number indicating how many lines from the top or the bottom scroll
margin the cursor should be positioned after a window is scrolled. For
example, if the bottom scroll margin is screen line 14 and integer3 has a
value of 0, the cursor is positioned on screen line 14 after text is scrolled
upward. However, if integer3 has a value of 3, the cursor is positioned on
screen line 11.

7-467

VAXTPU Built-In Procedures
SET (SCROLLING}

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

You cannot specify a value that would position the cursor outside the
window. That is, integer 1 + integer3 or integer2 + integer3 must be less
than the height of the window. For example, if the window is 10 lines
long and integer 1 is set at 3, you cannot specify a value of 7 or more for
integer3. Such a specification would place the cursor outside the window.

Note that if you use the SET (SCROLLING) built-in from within EVE by
way of the TPU command, EVE may override the value you specify for this
parameter.

DESCRIPTION This built-in procedure is used to modify the scrolling action of a window.

7-468

If the terminal on which you are running VAXTPU supports scrolling, you
can use the SET (SCROLLING) built-in to tum scrolling on or off. If the
terminal does not support scrolling, scrolling will always be off. If scrolling
is off, the window is repainted every time a scroll would otherwise occur.

The SET (SCROLLING) built-in also defines scroll margins using integerl
and integer2. If the cursor is moved above the top scroll margin or
below the bottom scroll margin using CURSOR_ VERTICAL, MOVE_
HORIZONTAL, MOVE_ VERTICAL, POSITION, or a text manipulation
built-in, then SET (SCROLLING) moves the cursor by the number of lines
specified in integer3.

You must provide values for integer 1 and integer2 that leave at least one
line in the window unaffected by either scroll margin. That is, integer 1 +
integer2 must be less than the height of the window. For example, if you
have a window that is ten lines tall, you cannot specify a value of 5 for
the top scroll margin and a value of 5 for the bottom scroll margin. Such
a specification leaves no area of the window that is not within a scroll
margin.

You can move the cursor above or below a scroll margin under certain
circumstances. If CROSS_ WINDOW _BOUNDS is set to off, CURSOR_
VERTICAL does not cause scrolling when the cursor reaches a scroll
margin. If you are moving backward through the file and the top line of
the buffer is already visible on the screen, the top scroll margin is ignored.
If you are moving forward through the file and the bottom line of the
buffer is already visible on the screen, the bottom scroll margin is ignored.

If using the ADJUST_ WINDOW built-in makes the window so much
smaller that the scroll margins overlap, VAXTPU automatically reduces
the scroll margins proportionally to fit the new window. If you use
ADJUST_ WINDOW to make a window larger, VAXTPU does not adjust
the scroll margins.

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_UNKKEYWORD

TPU$_8ADKEY

TPU$_BADMARGINS

TPU$_8ADVALUE

EXAMPLES

VAXTPU Built-In Procedures
SET (SCROLLING)

ERROR SET (SCROLLING) requires at
least six parameters.

ERROR You specified more than six
parameters.

ERROR One or more of the specified
parameters has the wrong type.

ERROR You have specified an unknown
keyword.

ERROR Keyword must be either ON or
OFF.

ERROR You have specified values for the
top margin, bottom margin, and
cursor movement that exceed the
dimensions of the window.

ERROR Integer values must be from Oto
255.

D SET (SCROLLING, new_window, ON, O, O, 2)

This statement turns on scrolling in the window new _window. The
statement sets the top and bottom scroll margins to 0. This means that
the cursor can be moved all the way to the top or bottom of the window
before new text is scrolled into the window. Finally, the statement causes
VAXTPU to place the cursor two lines down from the top or up from the
bottom of the window when scrolling is completed.

~ SET (SCROLLING, new_window, ON, 0, 0, 20)

This statement demonstrates how to set scrolling if you want VAXTPU
to present an entire window of new text each time a scroll occurs. If the
variable new_window is 21 lines long, this statement causes VAXTPU to
scroll all the text in the window off the top or bottom of the screen when
you move the cursor to the top or bottom of the screen. This statement
scrolls 20 new lines of text into the window.

Note that this statement does not produce a new window of text if you
issue the statement from within EVE using the TPU command and move
the cursor using the up arrow key or the down arrow key.

7-469

VAXTPU Built-In Procedures
SET (SELF _INSERT)

SET (SELF _INSERT)

FORMAT

PARAMETERS

SET (SELF_INSERT, string, { g~F }J

SELF INSERT
A keyword specifying whether a character is inserted into the buffer when
the user presses a key with the following characteristics:

• Associated with a printable character

• Not bound to a procedure or program

string
A string specifying the key map list in which the behavior of undefined
keys associated with printing characters is to be set.

ON
Causes the printable characters to be inserted when no procedures are
bound to them, while the specified key map list is active. This is the
default.

OFF
Causes the UNDEFINED_KEY procedure to be called when these
characters are entered. If an undefined key procedure has not been
specified, VAXTPU merely displays a warning message when the user
presses an undefined, printable key. You can specify an undefined key
procedure using the SET (UNDEFINED_KEY) built-in.

DESCRIPTION SET (SELF_INSERT) lets you control what happens when the user presses
an undefined key associated with a printable character. If SELF _INSERT
is set ON and the user presses an undefined key associated with a
printable character, the character is inserted into the current buffer at
the current cursor position. If SELF _INSERT is turned off, printable
characters whose keys are not defined in any key maps in the key map
list bound to the current buffer are considered undefined. These undefined
keys cause either the message "key has no definition" to be displayed, or
some user-defined action to occur.

7-470

The default result for pressing an undefined key associated with a
printable character procedure is that the character is inserted. The
default condition for SET (SELF _INSERT) is ON. The default behavior, if
SET (SELF_INSERT) is OFF, is to call the UNDEFINED_KEY procedure.
See the description of the built-in procedure SET (UNDEFINED_KEY).

For more information on how to define what happens when SET (SELF_
INSERT) is turned off, see the description of the built-in procedure SET
(UNDEFINED_KEY) in this chapter.

\
)

SIGNALED
ERRORS

TPU$_NOKEYMAPLIST

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_8ADKEY

EXAMPLE
PROCEDURE toggle_self _insert

LOCAL current_key_map_list;

VAXTPU Built-In Procedures
SET (SELF _INSERT)

WARNING You attempted to access an
undefined key map list.

ERROR SET (SELF _INSERT) requires
three parameters.

ERROR You specified more than three
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an invalid keyword.

current_key_map_list := GET_INFO (CURRENT_BUFFER, "key_map_list");

IF GET_INFO (current_key_map_list, "self_insert")
THEN

SET (SELF_INSERT, current_key_map_list, OFF)
ELSE

SET (SELF_INSERT, current_key_map_list, ON)
ENDIF;

ENDPROCEDURE;

This procedure toggles the ON and OFF setting of SELF _INSERT for the
key map list bound to the current buffer.

7-471

VAXTPU Built-In Procedures
SET (SHIFT_KEY)

SET (SHIFT _KEY)

FORMAT SET (SH/FT_KEY, keyword/[, string)/)

PARAMETERS SHIFT KEY
This keyword refers to VAXTPU's shift key (by default PFl), not the key
marked SHIFT on the keyboard.

keyword
A VAXTPU key name for a key.

string
A string that is a key map list name. This optional argument specifies
the key map list in which the shift key is used. If the key map list is not
specified, the key map list associated with the current buffer is used.

DESCRIPTION The VAXTPU shift key is similar to the GOLD key in the EDT editor. This
shift key allows you to assign two commands to one key: one is used when
the key is pressed by itself, and the other is used when the key is pressed
after the defined shift key.

7-472

Only one VAXTPU shift key can be active at a time. The VAXTPU shift
key can be any key other than the following:

• The SHIFT key

• The ESCAPE key

• The SCROLL key on the VTlOO keyboard

• The Fl, F2, F3, F4, and F5 keys on the VT300 or VT200 keyboard

• The Com pose Character key on the VT300 or VT200 keyboard

By default, PFl is the VAXTPU shift key.

You cannot make V AXTPU execute a procedure or learn sequence bound
to the shift key. However, designating a defined key as the shift key does
not undefine the key; it merely disables the definition so long as the key
is designated as the shift key. If you define another key as the shift key,
VAXTPU reenables the first key's definition.

If you want to use PFl for another purpose, use SET (SHIFT_KEY) to
define a key other than PFl as VAXTPU's shift key.

If you use SET (SHIFT_KEY) to define a GOLD key in EVE, EVE does not
undefine the GOLD key correctly. When you use the EVE command SET
NOGOLD or SET NOSHIFT, EVE returns the error message "There is no
user GOLD key currently set." Although this message appears to say that
the GOLD key has successfully been undefined, what it really means is
that EVE does not recognize that a GOLD key was ever defined.

\
)

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SET (SHIFT_KEY)

To redefine a GOLD key in these circumstances, you can use either of the
following approaches:

• Use the EVE command SET GOLD KEY or SET SHIFT KEY.

• Undefine the GOLD key using the VAXTPU statement
SET (SHIFT_KEY, KEY_NAME (PFl, SHIFT_KEY)). Then set the
GOLD key using the SET GOLD KEY or SET SHIFT KEY command.

TPU$_ TOOFEW ERROR SET (SHIFT_KEY) requires at
least two parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

TPU$_NOKEYMAPLIST WARNING You specified an undefined key
map list.

D SET (SHIFT_KEY, PF4, "tpu$key_rnap_list")

This statement causes the keypad key PF4 to be defined as the shift
key for the editor. The definition is stored in the default key map list,
TPU$KEY_MAP _LIST. PF4 operates as the shift key only in buffers to
which TPU$KEY_MAP _LIST is bound.

~ SET (SHIFT_KEY, KEY_NAME (PFl, SHIFT_KEY))

This statement disables the shift key by making the shift key itself a
shifted key. Note that you can substitute the key name of whatever key
is the SHIFT key. This technique works regardless of what key is defined
as the SHIFT key. You might want to use such a statement if you are
creating an editor that does not support user-defined shift key sequences.

7-473

VAXTPU Built-In Procedures
SET {SPECIAL_ERROR_SYMBOL)

SET (SPECIAL_ERROR_SYMBOL)

FORMAT SET (SPECIAL_ERROR_SYMBOL, string)

PARAMETERS SPECIAL ERROR SYMBOL
A keyword specifying that you want to use SET to designate a global
variable to be set to 0 when a case-style error handler does not return
from a CTRLJC or other error.

string
The name of the global variable that you want VAXTPU to set to 0.

DESCRIPTION Once you designate the variable that is to be the special error symbol,
VAXTPU sets the variable to 0 if any of the following events occurs:

SIGNALED
ERRORS

7-474

• VAXTPU executes the TPU$_CONTROLC selector in a case-style error
handler and does not encounter a RETURN statement

• VAXTPU executes the OTHERWISE clause in a case-style error
handler and does not encounter a RETURN statement

• VAXTPU generates an error that is not handled by any clause in a
case-style error handler

You can only use SET (SPECIAL_ERROR_SYMBOL) once in a program.
This built-in is usually used during initialization. You must declare or
create the variable before you use it in the SET statement. VAXTPU does
not clear the variable in response to non-case-style error handlers.

The variable specified by SET (SPECIAL_ERROR_SYMBOL) can be used
to determine whether VAXTPU has exited from current procedures and
returned to the main loop to wait for a new keystroke.

TPU$_ERRSYMACTIVE ERROR

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

A special error symbol has already
been declared.

SET (SPECIAL_ERROR_
SYMBOL) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

EXAMPLE

VAXTPU Built-In Procedures
SET (SPECIAL_ERROR_SYMBOL)

SET (SPECIAL_ERROR_SYMBOL "back_to_main")

This statement designates the global variable back_to_main as the
variable to be cleared if a procedure or program with a case-style error
handler fails to handle a CTRL/C error or other error.

7-475

VAXTPU Built-In Procedures
SET {STATUS_LINE)

SET (STATUS_LINE)

FORMAT

SET (STATUS_LINE, window,

NONE
BOLD
BLINK
REVERSE
SPECIAL_ GRAPHICS
UNDERLINE

, string)

PARAMETERS STATUS LINE
The last linein a window. You can use the status line to display regular
text or you can use it to display status information about the window.

window
The window whose status line you want to modify.

NONE
Applies no video attributes to the characters on the status line.

BOLD
Causes the characters on the status line to be bolded.

BLINK
Causes the characters on the status line to blink.

REVERSE
Causes the characters on the status line to be displayed in reverse video.

SPECIAL GRAPHICS
Causes the characters on the status line to display graphic characters,
such as a solid line. These characters are from the DEC Special Graphics
Set (also known as the VTl 00 Line Drawing Character Set). For more
information on the special graphics that are available, see the appropriate
programming manual for your video terminal.

UNDERLINE
Causes the characters on the status line to be underlined.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the text to be displayed on
the status line. To remove a status line, use a null string ("") for this
parameter.

DESCRIPTION To have a status line, a window must be at least two lines high. You can
establish a status line for a window when you create a window. CREATE_
WINDOW requires you to specify whether the status line is ON (used for
status information) or OFF (used as a regular text line). When you specify
ON, the default status line is displayed in reverse video.

7-476

SIGNALED
ERRORS

VAXTPU Built-In Procedures
SET (STATUS_LINE)

The algorithm for determining whether a window is tall enough to be
given a status line depends on whether the window is visible or invisible.

If the window to which you want to add a status line is visible, VAXTPU
checks the length of the visible portion of the window. A visible window
can have an invisible portion if the window is partially occluded by another
window. The visible portion of the visible window must have at least one
text line; that is, at least one line not occupied by a scroll bar.

If the window is invisible, VAXTPU checks the full length of the window.
The window must have at least one text line.

If the window that you use as a parameter for SET (STATUS_LINE)
already has a status line, either because you specified ON for the status
line parameter in the built-in procedure CREATE_ WINDOW, or because
you used a previous SET (STATUS_LINE) for the window, the video
attribute that you specify is added to the video attribute of the existing
status line unless you specify NONE. NONE overrides the other video
keywords and specifies that there are to be no video attributes for the
status line. The string you specify as the last parameter replaces the text
of an existing status line. Adding a status line to a window that already
has a status line does not cause an error.

If there is no status line for a window, the built-in procedure SET
(STATUS_LINE) establishes a status line on the last visible screen line
of the window. The status line has the video attribute and the text you
specify. Adding a status line reduces the number of screen lines available
for text by one line.

To remove a status line, use a null string("") as the last parameter. The
status line is removed even if the window is not two lines high at that
time.

The default setting for the status line (ON or OFF) is determined by the
built-in procedure CREATE_ WINDOW.

If a window has a status line, by default the status line contains the
name of the buffer associated with the window and the name of the file
associated with the buffer, if there is one.

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_1NVPARAM ERROR

TPU$_BADKEY ERROR

TPU$_UNKKEYWORD ERROR

SET (STATUS_LINE) requires four
parameters.

You specified more than four
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be NONE,
BOLD, BLINK, REVERSE,
UNDERLINE, or SPECIAL_
GRAPHICS.

You specified an unknown
keyword.

7-477

VAXTPU Built-In Procedures
SET (STATUS_LINE)

TPU$_STATOOLONG

TPU$_BADWINDLEN

EXAMPLES

INFO

ERROR

The status line is truncated to the
screen width.

The window must be at least two
lines long.

D SET (STATUS_LINE, my_window, REVERSE, "MAIN BUFFER, newfile.txt");

This statement displays the status line in my _window in reverse video
with the buffer specified as MAIN BUFFER and the file specified as
NEWFILE.TXT.

i SET (STATUS_LINE, my_window, NONE, "");

This statement removes the status line in my _window by setting the final
parameter to a null string.

rf] line_text := "qqq" +
"qqqqqqqqqqqqqqqqqqqqq";

line_window := CREATE_WINDOW (1, 20, OFF);
MAP (line window, current buffer);
SET (STATUS_LINE, line_window, SPECIAL_GRAPHICS, line_text);

7-478

This code fragment creates a window with a status line displayed
in special graphics rendition. Since the glyph (member of the DEC
Multinational Character Set occupying one column width) having the
same value as the character "q" is a full-width line, the status line appears
as a solid line across the screen.

VAXTPU Built-In Procedures
SET (SUCCESS)

SET (SUCCESS)

FORMAT SET (SUCCESS, { g~F })

PARAMETERS SUCCESS
Controls whether VAXTPU writes success messages to the message buffer.

ON
Causes the success messages to be written.

OFF
Suppresses the display of success messages.

DESCRIPTION By default, VAXTPU writes success messages to the message buffer. If you
want to suppress the display of these messages, you can use this built-in
procedure.

SIGNALED
ERRORS

EXAMPLE
SET (SUCCESS, OFF)

See Appendix D for a table of the VAXTPU messages and their severity
levels.

TPU$_ TOOFEW ERROR SET (SUCCESS) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_8ADKEY ERROR You specified an invalid keyword.

This statement turns off the display of success messages.

7-479

VAXTPU Built-In Procedures
SET (SYSTEM)

SET(SYSTEM)

FORMAT SET (SYSTEM, buffer)

PARAMETERS SYSTEM
The status of a buffer. SYSTEM means that it is a system buffer rather
than a user buffer.

By default, newly created buffers are user buffers.

buffer
The buffer that is being set as a system buffer.

DESCRIPTION Once you make a buffer a system buffer, you cannot reset the buffer to be
a user buffer.

SIGNALED
ERRORS

EXAMPLE

The SET (SYSTEM) built-in procedure allows programmers who are
building an editing interface to distinguish their system buffers from
buffers that the user creates. VAXTPU does not handle system buffers
differently from user buffers. Any distinction between the two kinds of
buffers must be implemented by the application programmer.

TPU$_ TOOFEW ERROR SET (SYSTEM) requires two
parameters.

TPU$.;_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (SYSTEM, message_buffer)

This statement makes the message buffer a system buffer.

7-480

VAXTPU Built-In Procedures
SET (TAB_STOPS)

SET (TAB_STOPS)

FORMAT

PARAMETERS

SET (TAB STOPS buffer. { int~ger })
- ' ' strmg

TAB STOPS
A keyword indicating that SET is to control placement of tab stops in a ·
buffer.

buffer
The buffer in which the tab stops are being set.

integer
An integer specifying the interval between tab stops, measured in column
widths. The minimum value for the integer is 1. The maximum value is
65,535.

string
A string of numbers that specifies the tab stops. The string represents
column numbers at which the tab stops are placed. The minimum value
for a tab stop is 1. The maximum value is 65,535. The maximum number
of tab stops that you can include in the string is 100. The quoted string
must list tab stops in ascending order, separating values with a single
space: ("3 6 9 12. ")

DESCRIPTION When a buffer is created, the tabs are set at every eight columns, unless,
when the buffer is created, a template buffer with different tab settings is
specified.

The SET (TAB_STOPS) built-in enables you to set the tab stops at
positions you specify or to establish equal intervals other than the default
eight.

Tab stops are not saved when you write a file. When you create a buffer,
the tabs are set to the default, unless, when you create the buffer, you
specify a template buffer with different tab settings.

SET (TAB_STOPS) does not affect the hardware tab settings of your
terminal. On any terminals or printers that have tab settings different
from those you specify with this built-in, the file does not appear the
same as it does when viewed using VAXTPU. In addition, if you invoke
VAXTPU with the /NODISPLAY qualifier, any values you enter for SET
(TAB_STOPS) are ignored, and a SHOW (BUFFER) command will return
tabs every 0 columns.

7-481

VAXTPU Built-In Procedures
SET (TAB_STOPS)

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_UNKKEYWORD

TPU$_ARGMISMATCH

TPU$_1NVTABSPEC

EXAMPLES
D SET (TAB_STOPS, CURRENT_BUFFER, 4);

ERROR SET (TAB_STOPS) requires at
least three parameters.

ERROR You specified more than three
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an unknown
keyword.

ERROR The third parameter must be a
string or an integer.

WARNING You specified a bad third
argument.

This statement causes the tab stops in the current buffer to be set at
intervals of 4 columns.

~ SET (TAB_STOPS, CURRENT_BUFFER, "4 8 12 16");

7-482

This statement causes the tab stops in the current buffer to be set at 4, 8,
12, and 16 columns.

SET (TEXT)

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SET (TEXT)

{

widget, string }
BLANK TABS

SET (TEXT, window, { GRAPHtC_TABS })
NO_ TRANSLATE

TEXT
A keyword indicating that SET is to control the way text is displayed in a
window or to determine the text that is to appear in a widget.

widget
The widget instance whose text you want to set. SET (TEXT, widget,
string) is equivalent to the XUI Toolkit routine S TEXT SET STRING.

You can only use widget as the second parameter if you are using
DECwindows VAXTPU.

string
The text you want to assign to the simple text widget.

window
The window in which the mode of display is being set.

BLANK TABS
Displays tabs as blank spaces. This is the default keyword.

GRAPHIC TABS
Displays tabs ~s special graphic characters so that the width of each tab is
visible.

NO_ TRANSLATE
Sends every keystroke from the keyboard to the terminal without any
translation. In this mode, the terminal settings, not VAXTPU, determine
the effect of characters typed from the keyboard.

Digital recommends that you use this mode for sending directives to
the terminal but not for editing. VAXTPU does not manage margins or
window shifts while NO_TRANSLATE mode is enabled. Furthermore,
VAXTPU does not necessarily update lines of text in the order in which
they appear while NO_TRANSLATE mode is enabled.

To send escape sequences from within a VAXTPU procedure, you can use
SET (TEXT) with the NO_TRANSLATE keyword followed by statements
using the MESSAGE and UPDATE built-ins. See the example in this
built-in description for more information on this technique.

For more information on the effect of using various characters and
sequences in NO_TRANSLATE mode, see your terminal manual.

7-483

VAXTPU Built-In Procedures
SET {TEXT)

SIGNALED
ERRORS

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (TEXT) cannot return a value.

TPU$_REQUIRESDECW ERROR You have specified widget as the
second parameter to SET (TEXT)
while using non-DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (TEXT) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (TEXT) built-in.

TPU$_WIDMtSMATCH ERROR The specified widget is not of class
ST ext.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

EXAMPLES

D SET (TEXT, user_text_widget, "No default string available.");

Assuming that the variable user _text_widget has been assigned a text
widget instance, this statement causes the widget to display the text No
def a ult string available.

wildcard_dialog_box := GET INFO (WIDGET, "widget id",
eve$x_wildcard_find_dialog,
"WILDCARD_FIND_DIALOG.WILDCARD_FIND_TEXT");

status :=SET (TEXT, wildcard_dialog_box, eve$x_target);

These statements show one possible way that a layered application can
use the SET (TEXT) widget. The variable eve$x_target stores the string
(if one exists) that the user specified as the wildcard search string the
last time the user invoked the wildcard find dialog box. The SET (TEXT)
statement directs EVE's wildcard find dialog box widget to display the
string assigned to eve$x_target.

~ SET (TEXT, CURRENT_WINDOW, GRAPHIC_TABS)

7-484

This statement causes the text in the main window to be displayed with
special characters indicating tab characters.

VAXTPU Built-In Procedures
SET {TEXT)

m If your terminal has a printer hooked up to the printer port,
the following procedure allows you to perform a PRINT SCREEN
function.

PROCEDURE user_print

Set window to NO_TRANSLATE to allow the escape sequence
to pass to the printer. Note that this procedure does not send
a form feed.

SET (TEXT, message window, NO TRANSLATE);
MESSAGE (ASCII (27) + "[i"); -
UPDATE (message_window);

Put back the window the way it was.

SET (TEXT, message_window, BLANK_TABS);
ERASE (message_buffer);

ENDPROCEDURE;

This procedure uses the NO_TRANSLATE keyword. Notice that the
window is set to this state temporarily, and that the default setting for
the window is reset as soon as the function for which NO_TRANSLATE is
used is finished executing.

7-485

VAXTPU Built-In Procedures
SET (TIMER)

SET (TIMER)

FORMAT

PARAMETERS

SET (TIMER, { g~F } ff, string J)

TIMER
Controls attributes of messages displayed in the prompt area.

ON
Causes the message that you specify to be written to the prompt area and
displayed at 1-second intervals. By default, the timed message is turned
on.

OFF
Turns off the display of timed messages in the prompt area.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is displayed in the prompt area.
The maximum length of the message is 15 characters. If you specify a
string longer than 15 characters, VAXTPU truncates the string but does
not signal an error. The message is displayed in the last 15 character
positions of the prompt area. If ON is specified and a string was never
specified for the last argument, the timer puts out the message "working''.
If ON is specified and a string was specified previously, the saved string is
used as the default.

DESCRIPTION When SET (TIMER) is set to ON, the timer puts out messages at 1-second
intervals while you are executing procedures or editing actions that are
bound to a key. The message is written out to the prompt area and then
erased to clear the prompt area for the next message.

SIGNALED
ERRORS TPU$_ TOOFEW ERROR SET (TIMER) requires at least two

parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be ON or OFF.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

7-486

EXAMPLE

VAXTPU Built-In Procedures
SET (TIMER)

SET (TIMER, ON, "Executing")

This statement causes the message "Executing" to be written to the prompt
area at 1-second intervals while you are executing a VAXTPU procedure.

7-487

VAXTPU Built-In Procedures
SET (TRACEBACK)

SET (TRACEBACK)

FORMAT

PARAMETERS

SET (TRACEBACK, { g~F })

TRACEBACK
Whether VAXTPU displays the sequence of procedures called after an
error occurs.

ON
Causes VAXTPU to display the procedure calling sequence after an error
occurs.

OFF
Prevents VAXTPU from displaying the procedure calling sequence after an
error occurs.

DESCRIPTION Traceback information provides the context in which an error occurs.

SIGNALED
ERRORS

7-488

Turning on the traceback setting can be helpful to a programmer
debugging a VAXTPU program. The traceback setting is usually turned off
during normal editing, because end users of editors do not usually use the
traceback information.

The default setting for TRACEBACK depends on whether a section file
was loaded by VAXTPU. If a section file was loaded, the default is OFF. If
a section file was not loaded, the default is ON.

Note that SET (TRACEBACK) is related to SET (LINE_NUMBER). SET
(TRACEBACK, ON) turns on both traceback and line numbers because
both are needed for debugging. SET (LINE_NUMBER, OFF) turns off
both traceback and line numbers because one feature is not useful without
the other.

Allowable settings are as follows:

• Both off

• Both on

• Traceback off

• Line number on

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

The SET (TRACEBACK). built-in
requires two parameters.

You specified more than two
parameters.

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLES

VAXTPU Built-In Procedures
SET (TRACEBACK)

ERROR

WARNING

One or more of the specified
parameters have the wrong type.

Only ON and OFF are allowed.

D SET (TRACEBACK, OFF)

This statement prevents VAXTPU from displaying the procedure calling
sequence after an error occurs.

S PROCEDURE traceback_example
SET (TRACEBACK, ON);
SET (TRACEBACK, BELL);
RETURN 5;

ENDPROCEDURE;

PROCEDURE call_example
traceback_example;

ENDPROCEDURE;

This procedure results in a traceback display when the procedure is
executed and traceback is enabled.

Invoking the procedure CALL_EXAMPLE results in the following
traceback:

BELL is an invalid keyword
Occurred in builtin SET
At line 2
Called from builtin EXECUTE
Called from line 22 of procedure EVE TPU
Called from line 1
Called from builtin EXECUTE
Called from line 96 of procedure EVE$PROCESS COMMAND
Called from line 3 of procedure EVE$PARSER DISPATCH
Called from line 97 of procedure EVE$$EXIT-COMMAND WINDOW
Called from line 2 - -

7-489

VAXTPU Built-In Procedures
SET (UNDEFINED_KEY)

SET (UNDEFINED_KEV)

FORMAT

PARAMETERS

learn_sequence
SET (UNDEFINED_KEY, string1 , program) [l buffer)]

range
string2

UNDEFINED KEY
A keyword specifying that SET is to determine the action taken when an
undefined key is input.

string1
A string specifying the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be
bken if the user presses an undefined key. SET (UNDEFINED _KEY)
compiles the statements in the buffer and stores the resulting program in
the specified key map list.

learn_ sequence
The learn sequence specifying the action to be taken if the user presses
an undefined key. The contents of a variable of type learn do not require
compilation. SET (UNDEFINED_KEY) stores the learn sequence in the
specified key map list.

program
The program specifying the action to be taken if the user presses an
undefined key. The contents of a variable of type program do not require
compilation. SET (UNDEFINED_KEY) stores the program in the specified
key map list.

range
The range containing VAXTPU statements specifying the action to be
taken if the user presses an undefined key. SET (UNDEFINED_KEY)
compiles the statements in the range and stores the resulting program in
the specified key map list.

string2
The string containing VAXTPU statements specifying the action to be
taken if the user presses an undefined key. SET (UNDEFINED_KEY)
compiles the statements in the string and stores the resulting program in
the specified key map list.

DESCRIPTION SET (UNDEFINED_KEY) determines the action taken when an undefined
key is pressed.

7-490

If the third parameter is not specified, VAXTPU displays the message "key
has no definition" when the user presses an undefined key.

\

)

SIGNALED
TPU$_NOKEYMAPLIST

ERRORS
TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ARGMISMATCH

EXAMPLE

VAXTPU Built-In Procedures
SET (UNDEFINED_KEY)

WARNING You attempted to access an
undefined key map list.

ERROR SET (UNDEFINED_KEY) requires
at least two parameters.

ERROR SET (UNDEFINED_KEY) accepts
no more than three parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR The second parameter must be a
string.

IF GET_INFO ("tpu$key_map_list", "undefined_key") <> 0
THEN

SET (UNDEFINED_KEY, "tpu$key_map_list");
ENDIF;

This code causes the default undefined key message to be displayed when
an undefined key is entered.

7-491

VAXTPU Built-In Procedures
SET (VIDEO)

SET (VIDEO)

FORMAT

PARAMETERS

BOLD
SET (VIDEO, window, BLINK) I NONE l
VIDEO

REVERSE
UNDERLINE

The video attributes of a window.

window
The window in which a video attribute is being set.

NONE
Applies no video attributes to the characters in the window. This is the
default.

BOLD
Causes the characters in the window to be bolded.

BLINK
Causes the characters in the window to blink.

REVERSE
Causes the characters in the window to be displayed in reverse video.

UNDERLINE
Causes the characters in the window to be underlined.

DESCRIPTION Video attributes for a window are cumulative. The window assumes the
video attribute of each video keyword that you use with SET (VIDEO)
during an editing session. If you want to change the video attribute of a
window, and you do not want the cumulative effect of previous attributes,
use SET (VIDEO, window, NONE) before specifying the new attribute.
SET (VIDEO, window, NONE) turns off all video attributes for a window.

7-492

The video attribute is applied during the next screen update. The screen
manager repaints the window to apply the video attributes, even if the
cumulative effect of your changes has been to leave the video attributes
the same.

Note that the built-in procedure SET (VIDEO) does not affect the status
line of a window. You can specify a video attribute for a status line
either with CREATE_ WINDOW or with the built-in procedure SET
(STATUS_LINE). When the window and the status line have different
video attributes, the status line can be used to separate multiple windows
on the screen, or to highlight status information.

SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

EXAMPLE
SET (VIDEO, CURRENT_WINDOW, REVERSE);
SET (VIDEO, CURRENT_WINDOW, UNDERLINE);

VAXTPU Built-In Procedures
SET (VIDEO)

ERROR SET (VIDEO) requires three
parameters.

ERROR SET (VIDEO) accepts no more
than three parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an invalid keyword.

ERROR You specified an unknown
keyword.

These statements cause the current window to be displayed in reverse
video and with underlining.

7-493

VAXTPU Built-In Procedures
SET (WIDGET)

SET (WIDGET)

FORMAT

PARAMETERS

Allows you to assign values to various resources of a widget.

SET (WIDGET, widget,

{ widget_args ff, widget_args ... II })

WIDGET
A keyword directing VAXTPU to set an attribute of a widget.

widget
The widget instance whose values you want to set.

widget_args
One or more pairs of resource names and resource values. You can
specify a pair in an array or as a pair of separate parameters. If you
use an array, you index the array with a string that is the name of the
resource you want to set. Note that resource names are case sensitive.
The corresponding array element contains the value you want to assign to
that resource. The array can contain any number of elements. If you use
a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index
and its corresponding element value, or each string and its corresponding
value, must be valid widget arguments for the class of widget whose
resources you are setting.

DESCRIPTION This built-in is functionally equivalent to the X Toolkit routine SET
VALUES.

SIGNALED
ERRORS

7-494

If you specify the name of a resource that the widget does not support,
VAXTPU signals the error TPU$_ARGMISMATCH.

For more information about specifying resources, see Chapter 4.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_ARGMISMATCH ERROR You specified a value whose data
type is not supported.

TPU$_NONAMES WARNING You specified an invalid widget
resource name.

TPU$_NORETURNVALUE ERROR SET (WIDGET) cannot return a
value.

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_WIDMISMATCH

EXAMPLE

VAXTPU Built-In Procedures
SET (WIDGET)

ERROR You can use the SET (WIDGET)
built-in only if you are using
DECwindows VAXTPU.

ERROR Too few arguments passed to the
SET (WIDGET) built-in.

ERROR Too many arguments passed to
the SET (WIDGET) built-in.

ERROR You have specified a widget whose
class is not supported.

scroll bar widget :=SET (SCROLL BAR, CURRENT WINDOW, VERTICAL, ON);
SET (WIDGET, scroll_bar_widget, evedwtc_nvalue, 100);

These statements set the Nvalue resource of the current window's scroll
bar widget to 100. This causes the scroll bar slider to be displayed as far
toward the bottom of the scroll bar widget as possible.

For an example of a procedure using the SET (WIDGET) built-in, see
Example B-8.

7-495

VAXTPU Built-In Procedures
SET (WIDGET_CALL_DATA)

SET (WIDGET_CALL_DATA)

FORMAT

Allows you to create a template telling VAXTPU how to interpret the
information in the fields of a widget's callback data structure.

SET (WIDGET_CALL_DATA, widget, reason_code, request_string, keyword

/[, request_string, keyword ...])

PARAMETERS WIDGET CALL DATA

7-496

A keyword indicating that the SET built-in is being used to control how
VAXTPU interprets information in a widget's callback data structure.

widget
The specific widget instance for which you want to determine how the
callback data are interpreted.

reason code
The identifier for the reason code with which the callback data structure
is associated. For example, if you are using SET (WIDGET_CALL_DATA)
to set the format of the callback structure associated with the Help
Requested reason code of the File Selection widget and if your program
defines the VAX reason code bindings as constants, you could refer to the
Help Requested reason code by using the constant DWT$C_CRHELP _
REQUESTED.

request_ string
One of the six valid strings describing the data type of a given field in a
callback data structure. The valid strings are as follows:

"char"

"int"

"void"

keyword

"compound_string"

"short"

"widget"

One of the four valid keywords indicating the VAXTPU data type to
which VAXTPU should convert the data in a given field of a callback data
structure. The valid keywords are as follows:

INTEGER

UNSPECIFIED

STRING

WIDGET

Use the request_string parameter with the keyword parameter to inform
VAXTPU, for each field of the structure, what data type the field had
originally and what VAXTPU data type corresponds to the original data
type. The valid keywords corresponding to each request string are as
follows:

~\

I
I

Request string

"widget"

"short"

"int"

"compound_string"

"char"

"void"

VAXTPU Built-In Procedures
SET (WIDGET_CALL_DATA)

Associated keyword(s)

WIDGET or UNSPECIFIED

INTEGER or UNSPECIFIED

INTEGER or UNSPECIFIED

STRING or UNSPECIFIED

STRING or UNSPECIFIED

UNSPECIFIED

DESCRIPTION You use SET (WIDGET~CALL_DATA) to tell VAXTPU what data type to
assign to each field in a callback data structure. You must specify the
widget and the callback reason whose data structure you want VAXTPU
to process. During a callback generated by the specified widget for the
specified reason, VAXTPU interprets the data in the callback structure
according to the description you create.

In an application layered on VAXTPU, you can obtain the interpreted
callback data by using the built-in GET_INFO (WIDGET, "callback_
parameters").

You can create a different template for each of the reason codes associated
with a given widget. To do so, make a separate call to the SET (WIDGET_
CALL_DATA) built-in for each reason code. If you specify the same widget
and reason code in more than one call, VAXTPU uses the most recently
specified format.

In all callback data structures defined by the DECwindows Toolkit, the
first field is the reason code field and the second field is the event field.
For more information on the fields in each widget's callback structures,
see the VMS DECwindows Toolkit Routines Reference Manual. If your
application creates or uses a new kind of widget, the widget's callback
structure must follow this convention.

Do not specify any request string or keyword for the reason field. In
almost all cases, you specify the event field with the request string "void"
and the keyword UNSPECIFIED. Specify all subsequent fields, if the
callback structure has such fields, up to and including the last field you
want to specify. Note that the VAX longword data type corresponds to the
"int" request string and the INTEGER data type in VAXTPU.

Although you can skip trailing fields, you cannot skip intermediate fields
even if they are unimportant to your application. To direct VAXTPU to
ignore the information in a given field, use the request string "void" and
the keyword UNSPECIFIED when specifying that field.

If you specify an invalid request string, VAXTPU signals TPU$_
ILLREQUEST. If you specify an invalid keyword, VAXTPU signals TPU$_
BADKEY. If you use valid parameters but assign the wrong data type to
a field and if VAXTPU detects the error, VAXTPU assigns the data type
UNSPECIFIED to that field during processing of a callback.

7-497

VAXTPU Built-In Procedures
SET (WIDGET_CALL_DATA}

SIGNALED
ERRORS

EXAMPLE

An application should use this built-in only if it needs access to callback
information other than the reason code. For more information on how
SET (WIDGET_CALL_DATA) affects GET_INFO (WIDGET, "callback_
parameters"), see the online HELP topic GET_INFO(WIDGET).

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_NORETURNVALUE ERROR Built-in does not return a value.

TPU$_REQUIRESDECW ERROR You can use this built-in only if you
are using DECwindows VAXTPU.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_ TOOFEW ERROR Too few arguments passed to
the SET (WIDGET-CALL_DATA)
built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (WIDGET-CALL_DATA)
built-in.

CONSTANT DWT$C_CRSINGLE := 20;

SET (WIDGET_CALL_DATA, initial_list_box, DWT$C_CRSINGLE,
"void", UNSPECIFIED, event
"compound string", STRING, item
"int", - INTEGER, ! item length
"int", INTEGER) ; ! item number

7-498

This code fragment begins by defining the constant DWT$C_
CRSINGLE to be the integer value 20, which is the integer associated
with the reason "user selected a single item." Note that the file
SYS$LIBRARY:DECW$DWTSTRUCT.H contains constants defined for
reason code. If you layer an application, the values you assign to the
reason code constants must match the values in this file. The next
statement tells VAXTPU how to interpret the fields of the callback data
structure associated with a List Box widget assigned to the variable
"initial_list_box". The statement directs VAXTPU to ignore the data in the
"event" field and to treat the data in the item field as type STRING, in the
"item length" field as type INTEGER, and the "item number" field as type
INTEGER.

VAXTPU Built-In Procedures
SET (WIDGET_CALLBACK)

SET (WIDGET_CALLBACK)

FORMAT

PARAMETERS

Specifies the VAXTPU program or learn sequence to be called by VAXTPU
when a widget callback occurs for the widget instance.

I buff er l learn_sequence
SET (WIDGET_ CALLBACK, widget, program , closure)

range
string

WIDGET CALLBACK
A keyword directing VAXTPU to set the application-level widget callback.

widget
The widget instance whose callback you want to set.

buffer
The buffer that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

learn_sequence
The learn sequence that specifies the application-level callback routine.
This code is executed when the widget performs a callback to VAXTPU.

program
The program that specifies the application-level callback routine. This
code is executed when the widget performs a callback to VAXTPU.

range
The range that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

string
The string that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

closure
A string or integer. VAXTPU passes the value to the application when
the widget performs a callback to VAXTPU. Note that DECwindows
documentation refers to closures as tags. For more information about
using closures, see Chapter 4.

7-499

VAXTPU Built-In Procedures
SET (WIDGET_CALLBACK)

SIGNALED
TPU$_ARGMISMATCH ERROR The data type of the indicated

ERRORS parameter is not supported by
the SET (WIDGET_CALLBACK)
built-in.

TPU$_BADDELETE ERROR You are attempting to modify an
integer, a keyword, or a string
constant.

TPU$_ TOOFEW ERROR Too few arguments passed to
the SET (WIDGET_CALLBACK)
built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (WIDGET_CALLBACK)
built-in.

TPU$_COMPILEFAIL WARNING Program compilation has been
terminated because of a syntax
error.

TPU$_REQUIRESDECW ERROR You can use SET (WIDGET_
CALLBACK) only if you are using
DECwindows VAXTPU.

EXAMPLE

SET (WIDGET_CALLBACK, scroll_bar_widget, "eve$scroll_dispatch", 'h');

7-500

This statement designates the EVE procedure EVE$SCROLL_DISPATCH
as the callback routine for the widget scroll_bar _widget and assigns to the
callback the closure value 'h'.

For a procedure using this statement to map windows see Example B-7.

SET {WIDTH)

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SET (WIDTH)

Sets the width of a window or the VAXTPU screen.

{

window }
SET (WIDTH, ALL , integer)

SCREEN

WIDTH
A keyword indicating that the horizontal dimension is being set.

window
The window for which you want to set or change the width.

ALL
A keyword indicating that VAXTPU should set the screen and all windows,
visible and invisible, to the specified width.

SCREEN
A keyword indicating that VAXTPU should set the screen to the specified
width without altering the size of any VAXTPU windows. Note, however,
that by default EVE resizes the windows to match the width of the screen.
Note, too, that you cannot set the screen to be narrower than the widest
VAXTPU window.

integer
The width of the window in columns. You can specify any integer between
1 and 255. In non-DECwindows VAXTPU, a value of 80 causes VAXTPU
to repaint the screen and depict the text in normal-width font, if the text
is not already so depicted. A value of 132 causes VAXTPU to repaint
the screen and depict the text in narrow font, if the text is not already
so depicted. Other values do not affect the font. By default, the width
of a window is the same as the physical width of the terminal when the
window is created.

DESCRIPTION When you call SET (WIDTH), VAXTPU determines the width of the widest
visible window. If this width has changed, the effect of SET (WIDTH)
depends on your terminal.

If you are using VAXTPU with a VWS or DECwindows terminal emulator,
the terminal emulator is resized to match the width of the widest visible
window. You can specify any width between 1 column and 255 columns.

If you are using VAXTPU on a VT300-series, VT200-series, or VTlOO-series
terminal, setting the width of a window only causes a change if the widest
visible window is 80 or 132 columns wide. When the new width is one of
these numbers, VAXTPU causes the terminal to switch from 80-column
mode to 132-column mode, or the reverse.

7-501

VAXTPU Built-In Procedures
SET (WIDTH)

SIGNALED
ERRORS

EXAMPLES

If you are using DECwindows VAXTPU (that is, not in a DECterm
window), changing the width of the screen does not affect the font of
the characters displayed. (There are no 80-column or 132-column modes.)

If the width of the widest visible window has changed, VAXTPU redisplays
all windows.

By default, the width of a window is the same as the number of columns
on the screen of the terminal on which you are running VAXTPU. If you
exceed the value set for the width of the window when entering text,
VAXTPU displays a diamond symbol in the rightmost column of the screen
to indicate that there is text beyond the diamond symbol that is not visible
on the screen. You cannot force VAXTPU to use multiple lines to display a
line that is longer than the width of a window.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADVALUE

ERROR

ERROR

ERROR

ERROR

SET (WIDTH) requires three
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

Arguments are out of minimum or
maximum bounds.

D SET (WIDTH, main_ window, 132);

This statement sets the width of the main window to 132 columns and
changes the font from standard to narrow.

~ SET (WIDTH, ALL, 40);

7-502

This statement sets the width of the screen and all windows, visible and
invisible, to 40 columns. The statement does not affect the font.

SHIFT

VAXTPU Built-In Procedures
SHIFT

For a buffer whose lines are too long to be displayed all at once, moves the
window so the unseen parts of the lines can be viewed. SHIFT can move the
window right to display text past the right edge of the window, or left (for a
previously shifted window). SHIFT optionally returns an integer specifying the
number of columns in the buffer lying to the left of the left edge of the shifted
window.

FORMAT (integer2 :=I SHIFT (window, integer1)

PARAMETERS window
The window that is shifted.

integer1
The signed integer that specifies how many columns to shift the window.
A positive integer causes the window to shift to the right so that you can
see text that was previously beyond the right edge of the window.

A negative integer causes the window to shift to the left so that you can
see text that was previously beyond the left edge of the window. If the first
character in the line of text is already in column 1, then using a negative
integer has no effect.

If you specify 0 as the value, no shift takes place. Furthermore, 0 as the
value does not cause the window to be repainted.

By default, windows are not shifted.

return value An integer representing the amount by which the window has been shifted
to the right.

DESCRIPTION Use the built-in procedure SHIFT when one or more lines of text in a
buffer are too long to fit in the window (indicated by the diamond symbol
in the rightmost column). By shifting the window from left to right, you
can view text that was beyond the right edge of the window.

Because SHIFT commands are cumulative during an editing session, this
built-in procedure optionally returns a value in integer2. This positive
integer represents the absolute shift value.

The shift applies to any buffer associated with the window that you
specify. For example, if you shift a window and then map another buffer
to that window, you see the text of the newly mapped buffer in the shifted
position. You must specify another shift to return the window to its
unshifted position.

7-503

VAXTPU Built-In Procedures
SHIFT

SIGNALED
ERRORS

EXAMPLES

If you specify an integer value of 0, the window is not left-shifted.
Furthermore, when you attempt to left-shift, the window is not repainted.
Otherwise, SHIFT causes the entire window to be repainted. If you
execute the built-in procedure SHIFT within a procedure, the screen is
not updated to reflect the shift until the procedure has finished executing
and control has returned to the screen manager. If you want the screen
to reflect changes before the entire program is executed, you can force the
immediate update of a window by adding an UPDATE statement to the
procedure.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

SHIFT requires two parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

D SHIFT (user_window, +5)

This statement shifts the window user _window five columns to the right.

fl SHIFT (CURRENT_WINDOW, -5)

This statement shifts the current window five columns to the left. (If the
window was not previously shifted, this statement has no effect.)

~ SHIFT (CURRENT_WINDOW, -SHIFT (CURRENT_WINDOW, 0))

This statement always returns the current window to an unshifted state.

7-504

SHOW

FORMAT

VAXTPU Built-In Procedures
SHOW

Displays information about VAXTPU data types and the current settings of
attributes that can be applied to certain data types. See also the description
of the built-in procedure GET _INFO.

SHOW

BUFFER[S]
KEY_MAP_LIST[S]
KEY_MAP[S]
KEYWORDS
PROCEDURES
SCREEN
SUMMARY
VARIABLES
WINDOW[S]
buffer
string
window

PARAMETERS BUFFERfSJ
Displays information about all buffers available to the editor. BUFFER is
a synonym for BUFFERS.

KEY_MAP_L/STfS l
Displays the names of all defined key map lists, their key maps, and the
number of keys defined in each key map. KEY_MAP _LIST is a synonym
for KEY_MAP _LISTS.

KEY_MAPfSJ
Displays the names of all defined key maps. KEY _MAP is a synonym for
KEY_MAPS.

KEYWORDS
Displays the contents of the internal keyword table.

PROCEDURES
Displays the names of all defined procedures.

SCREEN
Displays information about the terminal.

SUMMARY
Displays statistics about VAXTPU, including the current version number.

VARIABLES
Displays the names of all defined variables.

WINDOWfSJ
Displays information about all windows available to the editor. WINDOW
is a synonym for WINDOWS.

7-505

VAXTPU Built-In Procedures
SHOW

buffer
Shows information about the buffer variable you specify.

string
Shows information about the string variable you specify.

window
Shows information about the window variable you specify.

DESCRIPTION VAXTPU looks for the variable show_buffer and checks to see ifit refers
to a buffer. VAXTPU also looks for the variable info_window and checks
to see if it refers to a window. If these two items exist when you call the
built-in procedure SHOW, VAXTPU writes information to show _buffer and
displays the information on the screen in the window called info_window.

SIGNALED
ERRORS

EXAMPLES

You, or the interface you are using, must create the buffer variable
show _buffer when you initialize the interface to ensure that the built-in
procedure SHOW works as expected.

If you create a window called info_window, VAXTPU associates show_
buffer with info_window and maps this window to the screen when there
is information to be displayed. You can optionally create a different
window in which to display the information from show _buffer. In this
case, you must associate show _buffer with the window that you create and
map the window to the screen when there is information to be displayed.

Because this built-in procedure maps INFO_ WINDOW to the screen, any
interfaces layered on VAXTPU should provide a mechanism for unmapping
INFO_ WINDOW and returning the user to the editing position that was
current before the built-in procedure SHOW was invoked.

VAXTPU always deletes the current text in the show buffer before
inserting the new information.

TPU$_NOSHOWBUF

TPU$_ TOOMANY

TPU$_1NVPARAM

WARNING The requested information cannot
be stored because the buffer
variable show_buffer does not
exist.

ERROR

ERROR

SHOW accepts only one
parameter.

One or more of the specified
parameters have the wrong type.

D SHOW (PROCEDURES)

7-506

This statement displays on the screen a list of all the VAXTPU built-in
procedures and the user-written procedures that are available to your
editing interface.

~ SHOW (KEY_MAP_LISTS)

VAXTPU Built-In Procedures
SHOW

This statement displays the names of all defined key map lists, their key
maps, and the number of keys defined in each key map. When you use the
default interface, EVE, the VAXTPU command SHOW (KEY_MAP _LISTS)
displays information similar to the following:

Defined key map lists:
TPU$KEY MAP LIST contains

EVE$USER KEYS
EVE$VT200_KEYS
EVE$STANDARD KEYS

the following key maps:

Total of 1 key map list defined

(0 keys defined)
(14 keys defined)
(29 keys defined)

7-507

VAXTPU Built-In Procedures
SLEEP

SLEEP

FORMAT

PARAMETERS

Causes VAXTPU to pause for the amount of time you specify or until input is
available.

SLEEP ({ int~ger };
strmg

integer
The number of seconds to sleep.

string
An absolute or a delta time string indicating how long to sleep. See the
documentation on the system service $BINTIM for the format of this
string.

DESCRIPTION This built-in suspends VAXTPU for the specified amount of time. This
built-in is useful if you wish to display something for only a short period
of time. SLEEP ends immediately when input becomes available from the
terminal.

SIGNALED
ERRORS

EXAMPLES
D SLEEP (2);

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_1NVTIME

ERROR

ERROR

ERROR

ERROR

SLEEP requires one argument.

SLEEP accepts only one
argument.

The argument to SLEEP must be
an integer or string.

The argument to SLEEP was an
invalid sleep time.

This statement suspends VAXTPU for two seconds.

~ SLEEP ("0 0:0:1.50");

This statement suspends VAXTPU for one and one-half seconds.

7-508

VAXTPU Built-In Procedures
SLEEP

I PROCEDURE user_emphasize_message (user_message)
LOCAL here,

start_mark,
the_range;

here :=MARK (NONE);

POSITION (END_OF (message_buffer));
COPY_TEXT (user_message);
MOVE_HORIZONTAL (-CURRENT_OFFSET);
start_mark :=MARK (NONE);
MOVE_VERTICAL (1);
MOVE_HORIZONTAL (-1);

the range :=CREATE RANGE (start_mark, MARK (NONE), REVERSE);
UPDATE (message_window);
SLEEP ("0 00:00:00.33");
the_range := 0;
UPDATE (message_window);

POSITION (here);
ENDPROCEDURE;

This procedure takes a string and puts it into the message buffer. The
procedure displays the string in reverse video rendition for a third of a
second. After a third of a second, the reverse video rendition is canceled
and the string is displayed in ordinary rendition.

7-509

VAXTPU Built-In Procedures
SPAN

SPAN

FORMAT

PARAMETERS

return value

7-510

Returns a pattern that matches a string of characters, each of which appears
in the buffer, range, or string used as its parameter. SPAN matches as many
characters as possible.

{
buffer } FORWARD

pattern :: SPAN (ra~ge /[, { REVERSE } J)
strmg

buffer
An expression that evaluates to a buffer. SPAN matches only those
characters that appear in the buffer.

range
An expression that evaluates to a range. SPAN matches only those
characters that appear in the range.

string
An expression that evaluates to a string. SPAN matches only those
characters that appear in the string.

FORWARD
A keyword directing VAXTPU to match characters in the forward direction.
This is the default.

REVERSE
A keyword directing VAXTPU to match characters as follows: first, match
characters in the forward direction until VAXTPU finds a character that
is not a member of the set of characters in the specified buffer, range, or
string. Next, return to the first character matched and start matching
characters in the reverse direction until VAXTPU finds a character that is
not in the specified buffer, range, or string.

You can specify REVERSE only if you are using SPAN in the first
element of a pattern being used in a reverse search. In all other contexts,
specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse
search. By default, a reverse search stops as soon as a successful match
occurs, even if there might have been a longer successful match in the
reverse direction. By specifying REVERSE, you direct VAXTPU not to stop
matching in either direction until it has matched as many characters as
possible.

A pattern that matches a sequence of characters, each of which appears in
the buffer, range, or string used in the parameter to SPAN.

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SPAN

SPAN matches one or more characters, each of which must appear in the
string, buffer, or range passed as its parameter. SPAN matches as many
characters as possible, stopping only if it finds a character not present in
its parameter or if it reaches the end of a line. If SPAN is part of a larger
pattern, SPAN does not match a character if doing so prevents the rest of
the pattern from matching.

SPAN does not cross line boundaries. To match a string of characters that
may cross one or more line boundaries, use SPANL.

TPU$_NEEDTOASSIGN ERROR SPAN must appear in the right-
hand side of an assignment
statement.

TPU$_ TOOFEW ERROR SPAN requires at least one
argument.

TPU$_ TOOMANY ERROR SPAN accepts no more than one
argument.

TPU$_ARGMISMATCH ERROR Argument passed to SPAN is of
the wrong type.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of SPAN.

D patl := SPAN ("0123456789")

This assignment statement creates a pattern that matches any sequence
of numbers.

patl := span ("abcdefghijklmnopqrstuvwxyz") + "s";

This assignment statement creates a pattern that matches any word of
two or more letters ending in the letters. Given the word dogs, the SPAN
part of the pattern matches dog. It does not match the s as well as this
would prevent the rest of the pattern from matching.

~ PROCEDURE user_remove_xyz
LOCAL patl,

xyz_line;

patl := LINE_BEGIN + SPAN ("xyz") + LINE_END;

LOOP
xyz_line := SEARCH_QUIETLY (patl, FORWARD);
EXITIF xyz_line = 0;
POSITION (xyz_line);
ERASE_LINE;

ENDLOOP;
ENDPROCEDURE;

This procedure removes all lines that contain only the letters x, y, and z.

7-511

VAXTPU Built-In Procedures
SPANL

SPANL

FORMAT

PARAMETER

return value

7-512

Returns a pattern that matches a string of characters and line breaks, each
of which appears in the buffer, range, or string used as its parameter. The
pattern matches as many characters and line breaks as possible.

{
buffer } FORWARD

pattern :: SPANL (ra~ge f, { REVERSE } JJ
strmg

buffer
An expression that evaluates to a buffer. SPANL matches only those
characters that appear in the buffer.

range
An expression that evaluates to a range. SPANL matches only those
characters that appear in the range.

string
An expression that evaluates to a string. SPANL matches only those
characters that appear in the string.

FORWARD
A keyword directing VAXTPU to match characters in the forward direction.
This is the default.

REVERSE
A keyword directing VAXTPU to match characters as follows: first, match
characters in the forward direction until VAXTPU finds a character that
is not a member of the set of characters in the specified buffer, range, or
string. Next, return to the first character matched and start matching
characters in the reverse direction until VAXTPU finds a character that is
not in the specified buffer, range, or string.

You can specify REVERSE only if you are using SPANL in the first
element of a pattern being used in a reverse search. In all other contexts,
specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse
search. By default, a reverse search stops as soon as a successful match
occurs, even if there might have been a longer successful match in the
reverse direction. By specifying REVERSE, you direct VAXTPU not to stop
matching in either direction until it has matched as many characters as
possible.

A pattern matching a sequence of characters and line breaks.

)

VAXTPU Built-In Procedures
SPANL

DESCRIPTION SPANL is similar to SPAN in that it matches one or more characters, each
of which must appear in the string, buffer, or range used as a parameter.
However, unlike SPAN, SPANL does not stop matching when it reaches
the end of a line. It successfully matches the end of the line and continues
trying to match characters on the next line. If SPANL is part of a larger
pattern, it does not match a character or line boundary if doing so prevents
the rest of the pattern from matching.

SIGNALED
ERRORS

EXAMPLES

Normally, SPANL must match at least one character. However, if the
argument to SPANL contains no characters, then SPANL matches one or
more line breaks.

TPU$_NEEDTOASSIGN ERROR SPANL must appear in the right-
hand side of an assignment
statement.

TPU$_ TOOFEW ERROR SPANL requires at least one
argument.

TPU$_ TOOMANY ERROR SPANL accepts no more than one
arguments.

TPU$_ARGMtSMATCH ERROR Argument passed to SPANL is of
the wrong type.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of SPANL.

D patl := SPANL (" ")

I pat2 := SPANL

I pat3 := SPANL

This assignment statement stores a pattern in patl that matches the
longest sequence of blank characters starting at the editing point and
continuing until the search encounters a nonmatching character or the
end of the buffer, range, or string.

("0123456789")

This assignment statement stores in pat2 a pattern that matches the
longest sequence of digits starting at the editing point and continuing
until the search encounters a nonmatching character or the beginning or
end of the buffer, range, or string.

("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

This assignment statement stores in pat3 a pattern that matches the
longest sequence of the alphabetic characters listed in the parameter. If
you use this pattern with the built-in procedure SEARCH, the search
starts at the current character position and continues to an end-of­
search condition. If you specify an EXACT search, the characters must
be uppercase for a successful match.

7-513

VAXTPU Built-In Procedures
SPANL

m PROCEDURE user remove numbers
LOCAL patl,

number_region;

patl := SPANL ("0123456789");

POSITION (BEGINNING OF (CURRENT_BUFFER));

LOOP
number_region := SEARCH_QUIETLY (patl, FORWARD);
EXITIF nurnber_region = 0;
ERASE (nurnber_region);
POSITION (nurnber_region);

ENDLOOP;
POSITION (BEGINNING_OF (CURRENT_BUFFER));

ENDPROCEDURE;

This procedure removes all parts of a document that contain only numbers.

PROCEDURE user remove blank lines - - -
LOCAL patl,

blank_lines;

patl := LINE_END + (SPANL ("") @ blank_lines)
+ LINE_BEGIN;

POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
blank_lines := O;
SEARCH_QUIETLY (patl, FORWARD);
EXITIF blank_lines = 0;
ERASE (blank_lines);
POSITION (blank_lines);

ENDLOOP;
POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDPROCEDURE;

This procedure removes all empty lines from the current buffer. A line
that contains only spaces or tabs is not empty.

I PROCEDURE user find mark twain

LOCAL patl,
mark_twain;

patl := "Mark" + (SPANL (" " + ASCII (9)) I SPANL (""))
+ "Twain";

mark twain :=SEARCH QUIETLY (patl, FORWARD, NOEXACT);
IF mark twain = 0 -
THEN

MESSAGE ("String not found");
ELSE

POSITION (mark_twain);
ENDIF;

ENDPROCEDURE;

7-514

This procedure positions you to the next occurrence of the text Mark
Twain, where Mark and Twain may be separated by any number of spaces,
tabs, or line breaks.

SPAWN

FORMAT

VAXTPU Built-In Procedures
SPAWN

Creates a subprocess running the command line interpreter.

SPAWN l (string, [g~F]JJ

PARAMETERS string
The command string that you want to be executed in the context of the
subprocess that is created with SPAWN.

ON
A keyword indicating that control is to be returned to VAXTPU after the
command has been executed. This is the default unless the value specified
for the first parameter is the null string.

OFF
A keyword indicating that the user is to be prompted for additional
operating system commands after the specified command has been
executed. If the value specified for the first parameter is the null string,
the default value for the second parameter is OFF.

DESCRIPTION SPAWN suspends your VAXTPU process and spawns a VMS subprocess.
This built-in procedure is especially useful for running programs and
utilities that take control of the screen (these programs cannot be run in a
subprocess created with the built-in procedure CREATE_PROCESS). See
Chapter 2 for a list of restrictions for subprocesses.

If you are using DCL, you can return to your VAXTPU session after
finishing in a subprocess by using either the DCL command ATTACH or
the DCL command LOGOUT. If you use the DCL command ATTACH,
the subprocess is available for future use. If you use the DCL command
LOGOUT, the subprocess is deleted. When you return to the VAXTPU
session, the screen is repainted.

If you specify a DCL command as the parameter for SPAWN, the command
is executed after the subprocess is created. When the command completes,
the subprocess terminates, and control is returned to the VAXTPU process.
If you want to remain in DCL, add the keyword OFF as the second
parameter.

SPAWN was designed to allow you to leave a VAXTPU session, do other
work in a VMS subprocess, and return to the VAXTPU session that you
interrupted. Subprocesses created with SPAWN give you direct access to
the command line interpreter. These subprocesses are different from the
subprocesses created with the built-in procedure CREATE_PROCESS.
CREATE_PROCESS creates a subprocess within a VAXTPU session, and
all of the output from the subprocess goes into a buffer.

7-515

VAXTPU Built-In Procedures
SPAWN

SIGNALED
ERRORS

EXAMPLES
D SPAWN

SPAWN is not a valid built-in in DECwindows VAXTPU. However, if
you are running non-DECwindows VAXTPU in a DECwindows terminal
emulator, SPAWN works as described in this section.

Note that SPAWN fails if you are running in an account with the
CAPTIVE flag set in the authorization file.

See the description of the built-in procedure ATTACH in this section for
information on moving control from one subprocess to another. See the
VMS DCL Dictionary for more information on the characteristics of a
spawned subprocess.

If the current buffer is mapped to a visible window, the SPAWN built-in
causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SPAWN built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SPAWN built-in.

TPU$_REQUIRESTERM ERROR SPAWN is not a valid built-in in
DECwindows VAXTPU.

TPU$_UNKKEYWORD ERROR An unknown keyword has been
used as an argument. Only ON or
OFF is allowed.

TPU$_BADKEY ERROR An unknown keyword has been
used as an argument. Only ON or
OFF is allowed.

TPU$_CAPTIVE WARNING Unable to create a subprocess in
a captive account.

TPU$_ CREATEFAIL WARNING Unable to activate the subprocess.

This spawns a VMS subprocess and suspends VAXTPU process. After
completing work in the subprocess, you can return to your VAXTPU
session by using the DCL command ATTACH or the DCL command
LOGOUT.

I SPAWN ("DIRECTORY")

7-516

This spawns a VMS subprocess and executes the DCL command
DIRECTORY. When the command completes, you are returned to your
VAXTPU session.

r!] SPAWN ("SHOW LOGICAL SYS$LOGIN", OFF)

VAXTPU Built-In Procedures
SPAWN

This spawns a VMS subprocess and puts your VAXTPU process on hold.
The DCL command is executed in the subprocess to show the translation
of the logical name SYS$LOGIN, and you are left at the DCL prompt.
After completing work in the subprocess, you can return to your VAXTPU
session by using the DCL command ATTACH or the DCL command
LOGOUT.

7-517

VAXTPU Built-In Procedures
SPLIT_LINE

SPLIT LINE

Breaks the current line before the editing point and creates two lines.

FORMAT SPLIT_LINE

PARAMETERS None.

DESCRIPTION SPLIT_LINE breaks the current line into two lines. The relative screen
position of the line you are splitting may change as a result of this
procedure. The first line contains any characters to the left of the editing
point. The second line contains the rest of the characters. The new line
that is created is inserted directly after the former current line.

7-518

When you use SPLIT_LINE, the editing point remains on the same
character, but that character is now the first character on the newly
created line.

If the editing point is not the first character in the line being split, the left
margin of the old line is not changed. The new line, which contains the
editing point and the characters to the right of the editing point, takes the
buffer's left margin as its own left margin.

If the editing point is the first character of a line, SPLIT_LINE creates a
blank line where the original line was. The left margin of this blank line
is the buffer's left margin. SPLIT_LINE moves the original line, including
the editing point, to the line below the blank line. If the original line had
a left margin different from the buffer's current left margin, SPLIT_LINE
preserves the original line's left margin when it moves the line down.

If the editing point is on a blank line, SPLIT_LINE creates a new blank
line below the existing line. The editing point moves to the new blank line.
The new blank line receives the buffer's left margin value. If the original
blank line had a left margin different from the buffer's current left margin,
the original blank line retains its margin.

Using SPLIT_LINE may cause VAXTPU to insert padding spaces or blank
lines in the buffer. SPLIT_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

)

SIGNALED
ERRORS

EXAMPLES
I SPLIT LINE

TPU$_NOCURRENTBUF

TPU$_NOCACHE

TPU$_NOTMODIFIABLE

TPU$_ TOOMANY

VAXTPU Built-In Procedures
SPLIT_LINE

WARNING You are not positioned in a buffer.

ERROR There is not enough memory to
allocate a new cache.

WARNING You cannot modify an unmodifiable
buffer.

ERROR SPLIT_LINE takes no arguments.

This statement breaks the current line at the editing point and creates a
new line.

I PROCEDURE user_split_line

LOCAL old_position,
new_position;

SPLIT_LINE;
IF (CURRENT_ROW = 1) AND (CURRENT_COLUMN = 1)
THEN

old_position :=MARK (NONE);
SCROLL (CURRENT_WINDOW, -1);
new_position :=MARK (NONE);
!Make sure we scrolled before doing CURSOR VERTICAL

IF new_position <> old_position
THEN

CURSOR VERTICAL (l);
ENDIF;

ENDIF;
ENDPROCEDURE;

This procedure splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

7-519

VAXTPU Built-In Procedures
STR

STR

FORMAT

FORMAT

Returns a string equivalent for an integer, a keyword, a string, or the contents
of a range or buffer.

string3 := STR ({ ~~';!~~ I ,integer2] })

string3 := STR

PARAMETERS integer1

7-520

The integer you want converted to a string.

integer2
The radix (base) you want VAXTPU to use when converting the first
integer parameter to a string. The default radix is 10. The other allowable
values are 8 and 16.

keyword
The keyword whose string representation you want.

buffer
The buffer whose contents you want returned as a string.

range
The range whose contents you want returned as a string.

string1
Any string. STR now accepts a parameter of type string, so you need not
check the type of the parameter you supply to the built-in.

string2
A string specifying how you want line ends represented. The default is the
null string. You can only use string2 if you specify a range or buffer as the
first parameter. If you want to specify the keyword ON or OFF but do not
want to specify string2, you must use a comma before the keyword as a
placeholder, as follows:

new_string := STR (old_buffer, , ON);

ON
A keyword directing VAXTPU to insert spaces preserving the white space
created by the left margin of each record in the specified buffer or range.
Specifically, if you specify a buffer or range with a left margin greater than

return value

DESCRIPTION

SIGNALED
ERRORS

\
1
)

/

VAXTPU Built-In Procedures
STR

1, the keyword ON directs VAXTPU to insert a corresponding number of
spaces after the line ends in the resulting string. For example, if the left
margin of the specified lines is 10 and you use the keyword ON, VAXTPU
inserts 9 spaces after each line end in the resulting string. VAXTPU does
not insert any spaces after line beginnings of lines that do not contain
characters. If the first line of a buffer or range starts at the left margin,
VAXTPU inserts spaces before the text in the first line.

Note that you can only use this keyword if you specify a buffer or range as
a parameter.

OFF
A keyword directing VAXTPU to ignore the left margin setting of the
records in the specified buffer or range. This is the default. For example,
ifthe left margin of the specified lines is 10 and you use the keyword OFF,
VAXTPU does not insert any spaces after the line ends in the resulting
string.

Note that you can only use this keyword if you specify a buffer or range as
a parameter.

string3 The string equivalent of the parameter you specify.

If you use the first format shown above, STR returns a string
representation of an integer or a keyword. You can then use the variable
containing the returned string in operations that require string data types.
For another method of generating a string representation of an integer,
see the description of the built-in procedure FAO.

If you use the second format shown above, STR returns a string equivalent
for any string or for the contents of a range or buffer.

TPU$_ TRUNCATE WARNING You specified a buffer or range
so large that converting it would
exceed the maximum length for
a string. VAXTPU has truncated
characters from the returned
string.

TPU$_NEEDTOASSIGN ERROR STR must appear on the right-
hand side of an assignment
statement.

TPU$_ TOOFEW ERROR STR requires at least one
argument.

TPU$_ TOOMANY ERROR STR accepts only two arguments.

TPU$_1NVPARAM ERROR The argument to STR must be an
integer, buffer, string, or range.

TPU$_8ADVALUE ERROR You specified a value other than 8,
10, or 16 for the radix parameter.

7-521

VAXTPU Built-In Procedures
STR

EXAMPLES

D return_string := STR (SELECT_RANGE, "<CRLF>", ON);

This statement creates a string using the text in the select range. Line
breaks are marked with the string CRLF. The white space created by the
margin is preserved by inserting spaces after the line breaks.

~ still_a_string := STR ("confetti");

This statement assigns the string confetti to the variable still_a_string.

I] new numbers := STR (123)

This assignment statement stores the string "123" in the variable new_
numbers.

El the_string := STR (32, 16)

This assignment statement assigns the string "00000020" to the variable
the_string.

[i the_string := STR (32, 10)

This assignment statement assigns the string "32" to the variable the_
string.

~ PROCEDURE user_display_position

vl := GET_INFO (second_window, "current_column");
MESSAGE ("Column: "+ STR (vl));

v2 :=GET INFO (second_window, "current_row");
MESSAGE ("Row: "+ STR (v2));

ENDPROCEDURE;

This procedure uses the built-in procedure STR to convert the integer
variables vl and v2 to strings so that your row and column position can be
displayed in the message area.

ti this_string : = STR (this_range, "EOL")

7-522

This statement forms a string using the text in the range "this_range." In
the string, each end-of-line is represented by the letters EOL. For example,
suppose the text in "this_range" is as follows:

Sufficient unto the day
are the cares thereof

Given this text in "this_range", "this_string" contains the following:

Sufficient unto the dayEOLare the cares thereof

If "this_range" extends to the character after the "f' in "thereof', "this_
string" contains the following:

Sufficient unto the dayEOLare the cares thereofEOL

SUBSTR

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SUBSTR

Returns a string that represents a substring of a buffer, range, or string.

{

buffer }
string2 := SUBSTR (ra~ge , integer1 ff, integer2 J)

strmg

buffer
The buffer that contains the substring.

range
The range that contains the substring.

string
The string that contains the substring.

integer1
The character position at which the substring starts. The first character
position is 1.

integer2
The number of characters to include in the substring. If you do not specify
this parameter, VAXTPU sets the returned string's end point to the end of
the first parameter.

return value A string representing a substring of a string or range.

DESCRIPTION If you specify a larger number of characters for integer2 than are present
in the substring, only the characters present are returned in string2. No
error is signaled.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

ERROR

SUBSTR must appear on the
right-hand side of an assignment
statement.

SUBSTR requires three
arguments.

SUBSTR accepts only three
arguments.

One of the arguments to SUBSTR
is of the wrong type.

One of the arguments to SUBSTR
is of the wrong type.

7-523

VAXTPU Built-In Procedures
SUBSTR

TPU$_ TRUNCATE

EXAMPLES
I file_type := SUBSTR ("login.com", 7, 3)

WARNING You specified a buffer or range so
large that returning the requested
substring would exceed the
maximum length for a string.
VAXTPU has truncated characters
from the returned string.

This assignment statement returns the string "com" in the variable file_
type. The substring starts at the seventh character position ("c") and
contains three characters ("com"). If you use a larger number for integer2,
for example, 7, the variable file_type still contains "com" and no error is
signaled.

~ ! Capitalize the first letter in a string.
!
PROCEDURE user_initial_cap (my_string)

LOCAL
first_part of string,
rest of string,
first_letter,
cur_loc;

cur loc := l;
first_part_of_string ·= "";
rest_of_string := "";

LOOP
first letter := SUBSTR (my string, cur loc, l);
EXITIF first letter = ""; - -
EXITIF (first letter>= "a") AND (first letter<= "z");
EXITIF (firs<)etter >= "A") AND (firs<)etter <= "Z");
cur loc := cur loc + l;

ENDLOOP;

CHANGE CASE (first letter, UPPER);
first part of string:= SUBSTR (my string, 1, cur loc - l);
rest of string := SUBSTR (my string, cur loc + 1,

- - LENGTH (my_string) - cur_loc);

my string := first part of string + first letter
- + rest_of _string;

ENDPROCEDURE;

7-524

This procedure capitalizes the first character in a string. It does not affect
any other characters in the string. It makes use of the fact that SUBSTR
returns a null string if the second parameter points past the end of the
string.

VAXTPU Built-In Procedures
SUBSTR

I first_ten_characters := SUBSTR (CURRENT_BUFFER, 1, 10);
buffer_range := CREATE_RANGE (BUFFER_BEGIN, BUFFER_END, NONE);
same_ten_characters := SUBSTR (rl, 1, 10);

! Leaving the last parameter off means "go to the end".

a string := "abcdefghijk";
IF SUBSTR (a_string, 5, length (a_string)) <> SUBSTR (a_string, 5)
THEN

MESSAGE ('This message will never be displayed.');
ELSE

MESSAGE ('This message is always displayed.');
ENDIF;

These two calls to SUBSTR return the same value.

7-525

VAXTPU Built-In Procedures
TRANSLATE

TRANSLATE

FORMAT

Substitutes one set of specified characters for another set. TRANSLATE
returns a value for the translated range or buffer or for the string
representation of the translated text. TRANSLATE is based on the Run­
Time Library (RTL) routine STR$TRANSLATE. For complete information on
STR$TRANSLATE, see the VMS RTL String Manipulation (STR$) Manual.

{

buffer1 }
range1 :: TRANSLATE
string1 {

buffer2 }
(range2 , string3, string4

string2

[{
IN PLACE }]

I NOT_IN_PLACE)

PARAMETERS buffer2

7-526

A buffer in which one or more characters are to be replaced. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a buffer for the
first parameter.

range2
A range in which one or more characters are to be replaced. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a range for the
first parameter.

string2
A string in which one or more characters are to be replaced. If a return
value is specified, the substitution is performed in the returned string. If
you specify IN_PLACE for the third parameter, TRANSLATE makes the
specified change to the string specified in the first parameter. Note that if
string2 is a constant, IN_PLACE has no effect.

string3
The string of replacement characters.

string4
The literal characters within the text specified by parameter! that are to
be replaced.

IN PLACE
A keyword directing VAXTPU to make the indicated change in the buffer,
range, or string specified. This is the default.

NOT IN PLACE
A keyword directing VAXTPU to leave the specified string unchanged
and return a string that is the result of the specified translation. You
cannot use NOT_IN_PLACE if the first parameter is specified as a range
or buffer. To use NOT_IN_PLACE, you must specify a return value for
TRANSLATE.

)

return values
buffer1

VAXTPU Built-In Procedures
TRANSLATE

A variable of type buffer pointing to the buffer containing the modified
text, if you specify a buffer for the first parameter. The variable "returned_
buffer" points to the same buffer pointed to by the buffer variable specified
as the first parameter. ·

range1
A range containing the modified text, if you specify a range for first
parameter. The returned range spans the same text as the range specified
as a parameter, but they are two separate ranges. If you subsequently
change or delete one of the ranges, this has no effect on the other range.

string1
A string containing the modified text, when you specify a string for the
first parameter. TRANSLATE can return a string even if you specify IN_
PLACE.

DESCRIPTION The TRANSLATE built-in searches the text specified by the first
parameter for the characters contained in the third parameter. When
VAXTPU finds the sequence specified by string3, VAXTPU substitutes the
first character in string2 for the first character in string3, and so forth.

SIGNALED
ERRORS

If the translate string, string2, is shorter than the match string, string3,
and the number of matched character positions is greater than the number
of character positions in the translate string, the translation character is a
space.

The IN_PLACE and NOT_IN_PLACE keywords specify whether the
source is to be changed. IN_PLACE means that the source is modified,
while NOT_IN_PLACE indicates that the source is not changed.

TPU$_ TOOFEW ERROR TRANSLATE requires three
arguments.

TPU$_ TOOMANY ERROR TRANSLATE accepts no more
than three arguments.

TPU$_ARGMISMATCH ERROR One of your arguments to
TRANSLATE is of the wrong
data type.

TPU$_1NVPARAM ERROR One of your arguments to
TRANSLATE is of the wrong
data type.

TPU$_NOTMODIFIABLE WARNING You cannot translate text in an
unmodifiable buffer.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of TRANSLATE.

7-527

VAXTPU Built-In Procedures
TRANSLATE

EXAMPLES

D TRANSLATE (second_buffer, "I","i")

This statement replaces any lowercase "i" in second_buffer with an
uppercase "I".

~ ! Procedure to translate characters to decipher scrambled text.
! Characters are shifted 13 places for encryption.

PROCEDURE user_trans_text (text_to_translate)

TRANSLATE (text to translate,
"NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");

ENDPROCEDURE;

This procedure translates the text you specify as "text_to_translate"
according to the following pattern: any "A" is converted to an "N"; any "B"
is converted to an "0"; and so on.

I PROCEDURE user_strip_eighth

LOCAL i,
seven,
eight;

Loop counter
! ASCII (0) through ASCII (127)
! ASCII (128) through ASCII (255)

Build translate strings

seven := "";
eight := "";
i := 0;
LOOP

seven :=seven+ ASCII (i);
eight :=eight+ ASCII (i + 128);
i := i + 1;
EXITIF i = 128;

ENDLOOP;

TRANSLATE (CURRENT_BUFFER, seven, eight);

ENDPROCEDURE;

7-528

This procedure strips the eighth bit from all characters in the current
buffer. A procedure like this is useful for reading files from systems
like TOPS-20 on which the eighth bit is set without using the DEC
Multinational Character Set.

The following statements show how the asterisk (*) character can replace
the character r during an interactive session. Suppose the following text is
written in a buffer and that the variable "the_range" spans this text:

This darned wind is a darned nuisance, darn it!

The following statement assigns to "the_string" the characters in "the_
range":

the_string := STR (the_range)

VAXTPU Built-In Procedures
TRANSLATE

The following statement assigns to translated_string the text that results
when an asterisk is substituted for each "r":

translated_string := TRANSLATE (the_string, "*", "r", NOT_IN_PLACE)

The variable "translated_string" then contains the following text:

This da*ned wind is a da*ned nuisance, da*n it!

Note that if the text contained other r's, they would also be replaced by
asterisks.

7-529

VAXTPU Built-In Procedures
UNANCHOR

UNANCHOR

Specifies that the next pattern element may match anywhere after the
previous pattern element.

FORMAT UNANCHOR

PARAMETERS None.

DESCRIPTION Normally, when a pattern contains several concatenated or linked pattern
elements, the pattern matches only when the text that matches one
particular pattern element immediately follows the text that matches the
previous pattern element. If UNANCHOR appears between two pattern
elements, the text that matches the second pattern element may appear
anywhere after the text that matches the first pattern element.

SIGNALED
ERRORS

EXAMPLES

Although UNANCHOR behaves much like a built-in, it is actually a
keyword.

For more information on patterns or pattern searching, see Chapter 2.

UNANCHOR is a keyword and has no completion codes.

D patl := "a" + UNANCHOR + "123"

This assignment statement creates a pattern that matches any text
beginning with the letter a and ending with the digits 123. Any amount of
text may appear between the a and the 123.

& patl := UNANCHOR + "a123";

7-530

This assignment statement creates a pattern that matches from the search
start position (the current position if searching the current buffer) through
to and including the first occurrence of the string a123.

)

VAXTPU Built-In Procedures
UNANCHOR

! PROCEDURE user_remove_paren_text (paren_buffer)

LOCAL patl,
paren_text,
searched_text;

patl := "(" + UNANCHOR + ")";
searched text := paren_buffer;
LOOP

paren_text ·= SEARCH_QUIETLY (patl, FORWARD, EXACT,
searched_text);

EXITIF paren_text = 0;
ERASE (paren_text);
searched_text := CREATE_RANGE (END_OF (paren_text),

ENDLOOP;
ENDPROCEDURE;

END OF (paren_buffer), NONE);

This procedure removes all parenthesized text from a buffer. The text may
span several lines. It does not handle multiple levels of parentheses.

7-531

VAXTPU Built-In Procedures
UNDEFINE KEV

UNDEFINE KEY

FORMAT

PARAMETERS

Removes the current binding from the key that you specify.

UNDEFINE_KEY 1ke ord [{ key-map-list-name }])
1' yw ' key-map-name

keyword
The name of a key or key combination that VAXTPU allows you to define.
See Table 2-1 for a list of the valid VAXTPU key names.

key-map-list-name
Specifies a key map list in which the key is defined. The first definition
of the key in the key maps that make up the key map list is deleted. If
neither a key map nor a key map list is specified, the key map list bound
to the current buffer is used.

key-map-name
Specifies a key map in which the key is defined. The first definition of the
key in the key map is deleted. If neither a key map nor a key map list is
specified, the key map list bound to the current buffer is used.

DESCRIPTION After you use UNDEFINE_KEY, the key you specify is no longer defined.

SIGNALED
ERRORS

7-532

VAXTPU does not save any previous definitions that you may have
associated with the key. However, any definitions of the specified key
in key maps or key map lists other than the ones you specified are not
removed.

VAXTPU writes a message to the message buffer telling you that the key
is undefined if you try to use it after you have undefined it.

TPU$_NODEFINITION WARNING There is no definition for this key.

TPU$_NOTDEFINABLE WARNING First argument is not a valid
reference to a key.

TPU$_NOKEYMAP WARNING Second argument is not a defined
key map.

TPU$_NOKEYMAPLIST WARNING Second argument is not a defined
key map list.

TPU$_KEYMAPNTFND WARNING The key map listed in the second
argument is not found.

TPU$_EMPTYKMLIST WARNING The key map list specified in the
second argument contains no key
maps.

)

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

EXAMPLES
D UNDEFINE KEY (CTRL_Z_KEY)

VAXTPU Built-In Procedures
UNDEFINE_KEY

ERROR

ERROR

ERROR

Too few arguments passed to the
UNDEFINE_KEY built-in.

Too many arguments passed to
the UNDEFINE_KEY built-in.

Wrong type of data sent to the
UNDEFINE_KEY built-in.

This statement removes the association between the key combination
CTRUZ and the code that it previously executed.

~ Parameters:

Name Function

which_key Keyword for key to clear

PROCEDURE user_clear_key (which_key)

IF (LOOKUP_KEY (which_key, PROGRAM) <> 0)
THEN

UNDEFINE_KEY (which_key);
ELSE

MESSAGE ("Key not defined");
ENDIF;

ENDPROCEDURE;

Input or Output?

input

This procedure undefines a key. A procedure like this can be used by
keypad initialization procedures.

m PROCEDURE delete all definitions

LOCAL key;

LOOP
key := GET_INFO (DEFINED_KEY, "first", "tpu$key_map");
EXITIF key = 0;
UNDEFINE KEY (key, "tpu$key_map");

ENDLOOP;
ENDPROCEDURE;

This procedure deletes all of the key definitions in the key map TPU$KEY_
MAP.

7-533

VAXTPU Built-In Procedures
UNMANAGE_ WIDGET

UNMANAGE WIDGET

Makes the specified widget and all of its children invisible.

For more information about managing widgets, see the VMS DECwindows
Toolkit Routines Reference Manual.

FORMAT UNMANAGE_WIDGET (widget f, widget ...])

PARAMETERS widget
The widget instance to be unmanaged.

DESCRIPTION If you want to unmanage several widgets that are children of the same
parent, but you do not want to unmanage the parent, include all the
children in a single call to UNMANAGE_ WIDGET. Unmanaging several
widgets at once is more efficient than unmanaging one widget at a time.

The UNMANAGE_WIDGET built-in is equivalent to the X Toolkit
UNMANAGE CHILD and UNMANAGE CHILDREN routines.

SIGNALED
ERRORS

TPU$_1NVPARAM

TPU$_ TOOFEW

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_WIDMISMATCH

EXAMPLE

PROCEDURE eve$$replace_clean_up

ON ERROR
- [TPU$_CONTROLC]:

eve$learn_abort;
abort;

[OTHERWISE] :
eve$$replace_error_handler;

ENDON_ERROR;

ERROR

ERROR

ERROR

ERROR

ERROR

IF NOT eve$$x_replace_array {eve$$k_replace_asking}

THEN If all occurrences were replaced, the editing
! point is positioned to the last saved mark.

7-534

You specified a parameter of the
wrong type.

Too few arguments passed to the
UNMANAGE_WIDGET built-in.

UNMANAGE_WIDGET cannot
return a value.

You can use the UNMANAGE_
WIDGET built-in only if you are
using DECwindows VAXTPU.

You have specified a widget whose
class is not supported.

VAXTPU Built-In Procedures
UNMANAGE_WIDGET

POSITION (eve$$x_replace_array {eve$$k_replace_saved_mark});
ENDIF;

! Restore the buffer's original direction and mode.

SET (eve$$x replace array {eve$$k_replace_saved_direction},
eve$$x-replace-array {eve$$k replace this buffer});

SET (eve$$x-replace-array {eve$$k-replace-saved mode},
eve$$x=replace=array {eve$$k=replace=this_buffer});

SET (SCREEN UPDATE, ON);
eve$message-(EVE$ REPLCOUNT, 0,

eve$$x_replace_array {eve$$k_replace_occurrences});

IF (eve$$x_state_array {eve$$k_command_line_flag} = eve$k_invoked_by_menu)
AND (eve$$x_state_array {eve$$k_dialog_box})

THEN
IF eve$x_decwindows_active
THEN

IF GET_INFO (eve$x_replace_each_dialog, "type") = WIDGET
THEN

UNMANAGE WIDGET (eve$x_replace_each_dialog);

ENDIF;
ENDIF;

ENDIF;

ENDPROCEDURE;

This statement
unmanages the
replace dialog
box.

This procedure shows one possible way that a layered application can use
the UNMANAGE_ WIDGET built-in. The procedure is a modified version
of the EVE procedure EVE$$REPLACE_CLEAN_UP. You can find the
original version in SYS$EXAMPLES:EVE$EDIT.TPU.

The procedure performs screen cleanup operations after the user has used
the EVE command REPLACE. It restores the direction and mode to which
the buffer was set before the replace operation began, then tests whether
the replace dialog box is present and, if so, makes it invisible.

7-535

VAXTPU Built-In Procedures
UN MAP

UN MAP

FORMAT

PARAMETERS

Disassociates a window from its buffer and removes the window or widget
from the screen.

UNMAP ({ w~ndow })
widget

window
The window you want to remove from the screen.

widget
The widget instance you want to make invisible.

DESCRIPTION If you unmap the current window, VAXTPU tries to move the cursor
position to the window that was most recently the current window. The
window in which VAXTPU positions the cursor becomes the current
window, and the buffer that is associated with this window becomes the
current buffer.

SIGNALED
ERRORS

7-536

The screen area of the window you unmap is either erased or returned to
any windows that were occluded by the window you unmapped. VAXTPU
returns lines to adjacent windows if the size of the windows requires the
lines that were used for the window you unmap. The size of a window is
determined by the values you specified for the built-in procedure CREATE_
WINDOW when you created the window, or by the values you specified for
the built-in procedure ADJUST_ WINDOW if you changed the size of the
window. If adjacent windows do not require the lines that were used by
the window you unmap, the lines that the window occupied on the screen
remain blank.

The window that you unmap is not deleted from the list of available
windows. You can cause the window to appear on the screen again with
MAP. UNMAP does not have any effect on the buffer that was associated
with the window being unmapped.

Note that unmapping a widget does not delete the widget. Future MAP
operations will make the widget visible again.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

UNMAP requires one parameter.

UNMAP accepts only one
parameter.

One or more of the specified
parameters have the wrong type.

VAXTPU Built-In Procedures
UN MAP

TPU$_WINDNOTMAPPED WARNING Window is not mapped to a buffer.

EXAMPLES

D UNMAP (main_window)

This statement removes the main window from the screen and
disassociates from the main window the buffer that was mapped to it.

PROCEDURE user one window to two - - - -
LOCAL wind length,

wind=half,
first_line,

last_line;

cur_wind := CURRENT_WINDOW;

If it exists
IF (cur_wind <> 0)
THEN

ELSE

first line :=GET INFO (cur wind, "visible top");
last_line := GET_INFO (cur_\;;ind, "visible_bottom");
wind buf :=GET INFO (cur_wind, "buffer");
UNMAP (cur_wind);

If there is no current window then create an empty buffer

first line := 1;
last_line := GET_INFO (SCREEN, "visible_length");
wind_buf := CREATE_BUFFER ("Empty Buffer");

ENDIF;

wind length := (last line - first line) + 1;
wind-half := wind le~gth/2; -
new_\;;indow_l := CREATE_WINDOW (first_line, wind_half, OFF);

SET (VIDEO, new window 1, UNDERLINE);
new window 2 :=-CREATE-WINDOW (wind half+l,

- - last_line-wind_half~ OFF);

Associate the same buff er with both windows
and map the windows to the screen

MAP (new window 1, wind_buf);
MAP (new=window=2, wind_buf);

ENDPROCEDURE;

This procedure unmaps the current window and puts two new windows in
its place. (Note that if the window that you are replacing has a status line,
this line is not included in the screen area used by the two new windows.
This is because GET_INFO (window, "visible_bottom") does not take the
status line into account.)

UNMAP (example_widget);

This statement causes the widget assigned to the variable example_widget
to become invisible.

7-537

VAXTPU Built-In Procedures
UPDATE

UPDATE

Causes the screen manager to make a window reflect the current internal
state of the buffer that is associated with the window. One important task that
UPDATE performs is to move the cursor to the editing point if the cursor and
the editing point are not synchronized when the UPDATE built-in is executed.

FORMAT UPDATE ({ A~L }J
wmdow

PARAMETERS ALL
A keyword directing VAXTPU to make all visible windows reflect the
current state of the buffers mapped to them.

window
The window that you want updated. The window must be mapped to the
screen for the update to occur.

DESCRIPTION The screen manager updates windows after each keystroke. However, if a
key has a procedure bound to it, VAXTPU may execute many statements
when that key is pressed. By default, UPDATE does not reflect the result
of any statement in a procedure bound to a key until all the statements in
the procedure have been executed. As a result, the screen may not reflect
the current state of the buffer during execution of a procedure bound to a
key. If you want the screen to reflect changes before the entire procedure
is executed, you can force an immediate update by adding an UPDATE
statement to the procedure.

7-538

UPDATE (window) affects a single window that is visible on the screen. If
the buffer associated with the window you use as a parameter is associated
with other windows that are mapped to the screen, all of these windows
may be updated.

UPDATE (ALL) updates all visible windows. The difference between the
UPDATE (ALL) built-in and the REFRESH built-in is that UPDATE
(ALL) makes whatever changes are necessary on a window-by-window
basis. REFRESH clears the screen and repaints everything from scratch,
as well as reinitializing scrolling regions and other terminal-dependent
settings.

For more information on the results of the REFRESH built-in, see the
description of REFRESH in this chapter. For more information on how
the VAXTPU screen manager uses the UPDATE built-in in various
circumstances, see Chapter 6.

~
I

/

VAXTPU Built-In Procedures
UPDATE

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR UPDATE requires one parameter.

TPU$_ TOOMANY ERROR You specified more than one
parameter.

TPU$_1NVPCARAM ERROR The specified parameter has the
wrong type.

TPU$_BADKEY ERROR The keyword must be ALL.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

TPU$_WINDNOTMAPPED WARNING You cannot update a window that
is not on the screen.

EXAMPLES

D UPDATE (new_window)

This statement causes the screen manager to make new _window reflect
the current internal state of the buffer associated with new_window.

PROCEDURE user show first line - - -
LOCAL old_position,

new_position;

UPDATE (CURRENT_WINDOW);

Marker of position before scroll
Marker of position after scroll

IF (GET_INFO (CURRENT_WINDOW, "current_row")
GET_INFO (CURRENT_WINDOW, "visible_top"))
AND

THEN
(CURRENT_COLUMN = 1)

old_position :=MARK (NONE);
SCROLL (CURRENT WINDOW, -1);
new_position :=-MARK (NONE);

Make sure we scrolled before doing the CURSOR VERTICAL

IF new_position <> old_position
THEN

CURSOR VERTICAL (1);
ENDIF;

ENDIF;
ENDPROCEDURE;

This procedure updates the screen to display the new line of text that you
are inserting before the top line of the window. (When you insert text in
front of the top of a window, the included text is not visible on the screen
unless you use a procedure such as this one to ensure that the text is
displayed.)

7-539

VAXTPU Built-In Procedures
WRITE_ CLIPBOARD

WRITE CLIPBOARD

FORMAT

PARAMETERS

Writes string format data to the clipboard.

WRITE_CLIPBOARD (clipboard_/abel, { ~~;; })
strmg

clipboard_label
The label for multiple entries in the clipboard. Since the clipboard does
not currently support multiple labels, use any string, including the null
string, to specify this parameter.

buffer
The buffer containing text to be written to the clipboard. VAXTPU
represents line breaks by a line-feed character (ASCII (10)). If you specify
a buffer, VAXTPU converts the buffer to a string, replacing line breaks
with line feeds, and replacing the white space before the left margin with
padding blanks.

The buffer must contain at least one character or line break. If it does not,
VAXTPU signals TPU$_CLIPBOARDZERO.

range
The range containing text to be written to the clipboard. VAXTPU
represents line breaks by a line-feed character (ASCII (10)). If you specify
a range, VAXTPU converts the range to a string, replacing line breaks
with line feeds, and replacing the white space before the left margin with
padding blanks.

The range must contain at least one character or line break. If it does not,
VAXTPU signals TPU$_CLIPBOARDZERO.

string
The string containing text to be written to the clipboard. The string must
contain at least one character. If it does not, VAXTPU signals TPU$_
CLIPBOARDZERO.

DESCRIPTION The clipboard_label parameter provides support for multiple entries on
the clipboard; at present, however, the clipboard does not support multiple
entries.

7-540

\
)

SIGNALED
TPU$_ CLIPBOARDLOCKED

ERRORS
TPU$_CLIPBOARDZERO

TPU$_ TRUNCATE

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQUIRESDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLES

D WRITE CLIPBOARD ("", this_range);

VAXTPU Built-In Procedures
WRITE_CLIPBOARD

WARNING The clipboard is locked by another
process.

WARNING The data to be written to the
clipboard have zero length.

WARNING VAXTPU has truncated characters
from the data written because
you specified a buffer or range
containing more than 65,535
characters.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR WRITE_CLIPBOARD cannot
return a value.

ERROR You can use the WRITE_
CLIPBOARD built-in only if you
are using DECwindows VAXTPU.

ERROR Too few arguments passed to the
WRITE_CLIPBOARD built-in.

ERROR Too many arguments passed to
the WRITE_CLIPBOARD built-in.

This statement writes the contents of the range this_range to the
clipboard.

~ PROCEDURE eve$$cut_copy (delete_range)

LOCAL remove_range, Local copy of the currently
selected range.

done_message; Success message.

ON ERROR
- [TPU$ CLIPBOARDLOCKED] :

e;e$message (EVE$ CLIPBDWRITLOCK);
eve$learn_abort; -
RETURN (FALSE);

[OTHERWISE] :
eve$learn_abort;

ENDON_ERROR;

remove_range := eve$selection (TRUE);
IF remove_range <> 0
THEN

WRITE CLIPBOARD ("", remove_range); This statement writes a copy
of the selected range to the
clipboard.

7-541

VAXTPU Built-In Procedures
WRITE_ CLIPBOARD

IF delete_range
THEN

ELSE

done_message := EVE$_REMCOMPL;
ERASE (remove_range);

done_message := EVE$_COPYCOMPL;
ENDIF;
remove_range := O;
eve$message (done_message);
RETURN (TRUE);

ENDIF;

eve$learn_abort;
RETURN (FALSE);

ENDPROCEDURE;

7-542

This procedure shows one possible way that a layered application can
use the WRITE_ CLIPBOARD built-in. This procedure is a copy of
the EVE procedure EVE$$CUT_COPY. You can find this procedure in
SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

The procedure checks whether a selection is active and, if so, writes the
contents of the selected range to the clipboard. If the user has directed
EVE to cut the selected text, the procedure erases the selected range.

WRITE FILE

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
WRITE_FILE

Writes data to the file that you specify. WRITE_FILE optionally returns a string
that is the file specification of the file created.

(string2 := I WRITE FILE ({ buffer } [,string1 J)
- range

buffer
The buffer whose contents you want to write to a file.

range
The range whose contents you want to write to a file.

If you use WRITE_FILE on a range that does not start at the left margin
of a line, VAXTPU does the following:

• Determines the left margin of the line in which the range starts

• Writes the range to the output file starting at the same left margin as
the margin of the line where the range starts

For example, if you write a range that starts in column 30 of a line whose
left margin is 10, WRITE_FILE writes the range in the output file starting
at column 10.

string1
A string specifying the file to which the contents of the buffer are to be
written. If you do not specify a full file specification, VAXTPU determines
the output file specification using the current device and directory as
defaults.

This parameter is optional. If you omit it, VAXTPU uses the associated
output file name for the buffer. If there is no associated file name,
VAXTPU prompts you for one. If you do not give a file name at the
prompt, VAXTPU does not write to a file. In that case, the optional string2
that is returned is a null string.

return value A string representing the file specification of the file created.

DESCRIPTION If you specify a result, WRITE_FILE returns a string that is the file
specification of the file to which the data was written.

VAXTPU uses a flag to mark a buffer as modified or not modified. When
you write data from a buffer to an external file, VAXTPU clears the
modified flag for that buffer. If you do not make any further modifications
to that buffer, VAXTPU does not consider the buffer as being modified and
does not write out the file by default when you exit. If an error occurs
while VAXTPU is writing a file, VAXTPU does not clear the modified flag.

7-543

VAXTPU Built-In Procedures
WRITE_FILE

SIGNALED
ERRORS

EXAMPLES

When the contents of a buffer are written to a file, the associated journal
file (if any) is closed and deleted and a new journal file is created. The
new file contains the name of the file to which the buffer was written.

Note that deleting the file that has been written out invalidates the buffer
change journal.

See Appendix F for a list of the file types that VAXTPU supports.

TPU$_CONTROLC ERROR

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

TPU$_ARGMISMATCH ERROR

The execution of the write
operation terminated because
you pressed CTRUC.

WRITE_FILE requires at least one
parameter.

WRITE_FILE accepts no more
than two parameters.

One of the parameters to WRITE_
FILE is of the wrong type.

TPU$_1NVPARAM ERROR One of the parameters to WRITE_
FILE is of the wrong type.

The following completion codes can be signaled by VAXTPU's file
1/0 routine. You can provide your own file 1/0 routine by using the
VAXTPU callable interface. If you do so, WRITE_FILE's completion
status depends upon what status you signaled in your file 1/0 routine.

TPU$_0PENOUT ERROR

TPU$_NOFILEACCESS ERROR

TPU$_WRITEERR ERROR

TPU$_CLOSEOUT ERROR

WRITE_FILE could not create the
output file.

WRITE_FILE could not connect to
the newly created output file.

WRITE_FILE could not write
the text to the file because it
encountered a file system error
during the operation.

WRITE_FILE encountered a file
system error closing the file.

I WRITE FILE (paste_buffer, "myfile.txt")

This statement writes the contents of the paste buffer to the file named
MYFILE.TXT.

i my_file := WRITE_FILE (select_range, "myfile.txt")

7-544

This assignment statement puts the file name to which the select_range is
written in the string my_file.

PROCEDURE user write file - -
WRITE FILE (extra buf);
DELETE (extra_window);
DELETE (extra_buf);

VAXTPU Built-In Procedures
WRITE_FILE

Return the lines from extra window to the main window

ADJUST WINDOW (main_window, -11, 0);

ENDPROCEDURE;

This procedure writes the contents of a buffer called extra_buf to a file
(because you do not specify a file name, the associated file for the buffer is
used). The procedure then removes the extra window and buffer from your
editing context.

7-545

VAXTPU Built-In Procedures
WRITE_ GLOBAL_SELECT

WRITE GLOBAL SELECT

FORMAT

Sends requested information about a global selection from the VAXTPU
layered application to the application that issued the information request.

WRITE_GLOBAL_SELECT (

array
buffer
range
string
integer
NONE

)

PARAMETERS array

7-546

An array that passes information about a global selection whose contents
describe information that is not of a data type supported by VAXTPU. For
example, the array could pass information about a pixmap, an icon, or a
span.

VAXTPU does not use or alter the information in the array; the application
layered on VAXTPU is responsible for determining how the information
is used, if at all. Since the array is used to pass information to and from
other DECwindows applications, all applications that send or receive
information whose data type is not supported by VAXTPU must agree on
how the information is to be sent and used.

The application sending the information is responsible for creating the
array and giving it the proper structure. The array's structure is as
follows:

• The element array (OJ contains a string naming the data type of
the information being passed. For example, if the information being
passed is a span, the element contains the string "SPAN".

• The element array (lJ contains either the integer 8, indicating that the
information is passed as a series of bytes, or the integer 32, indicating
that the information is passed as a series of longwords.

• If array (1) contains the value 8, the element array (2J contains a
string and there are no array elements after array (2J. The string
does not name anything, but rather is a series of bytes. As mentioned,
the meaning and use of the information is agreed upon by convention
among the DECwindows applications.

• If array (lJ contains the value 32, the remaining elements of the
array contain integer data. In this case, the array can have any
number of elements after array (2J. These elements must be numbered
sequentially, starting at array (3J. All the elements contain integers.
Each integer represents a longword of data. To determine how many
longwords are being passed, an application can determine the length of
the array and subtract 2 to allow for elements array (OJ and array (lJ.

buffer

VAXTPU Built-In Procedures
WRITE_GLOBAL_SELECT

The buffer containing the information to be sent to the requesting
application as the response to the global selection information request.
If you specify a buffer, VAXTPU converts the buffer to a string, converts
line breaks to line feeds, and inserts padding blanks before text to fill any
unoccupied space before the left margin.

range
The range containing the information to be sent to the requesting
application as the response to the global selection information request.
If you specify a range, VAXTPU converts the buffer to a string, converts
line breaks to line feeds, and inserts padding blanks before and after text
to fill any unoccupied space before the left margin.

string
The string containing the information to be sent to the requesting
application as the response to the global selection information request.
VAXTPU sends the information in string format.

integer
An integer whose value is to be sent to the requesting application as the
response to the global selection information request. VAXTPU sends the
information in integer format.

NONE
A keyword indicating that no information about the global selection is
available.

DESCRIPTION WRITE_GLOBAL_SELECT is valid only inside a routine that responds to
requests for information about a global selection.

SIGNALED
ERRORS

The parameter specifies the data to supply to the requesting application.
If you specify NONE, VAXTPU informs the requesting application that
no information is available. Note, however, that for any case in which a
routine omits a WRITE_GLOBAL_SELECT statement, by default VAXTPU
informs the requesting application that no information is available.

Call WRITE_GLOBAL_SELECT no more than once during the execution
of a global selection read routine. VAXTPU signals TPU$_INVBUILTIN if
you attempt to call this routine more than once.

TPU$_BUILTININV

TPU$_ TRUNCATE

WARNING WRITE_GLOBAL_SELECT has
been used more than once in the
same routine.

WARNING VAXTPU has truncated characters
from the data written because
you specified a buffer or range
containing more than 65,535
characters.

7-547

VAXTPU Built-In Procedures
WRITE_ GLOBAL_SELECT

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR WRITE_ GLOBAL_SELECT cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the WRITE_
GLOBAL_SELECT built-in only
if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to
the WRITE_GLOBAL_SELECT
built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the WRITE_GLOBAL_SELECT
built-in.

EXAMPLE
WRITE_GLOBAL_SELECT (this_range);

7-548

This statement sends the contents of the range this_range to the
requesting application.

For an example of a procedure using the WRITE_GLOBAL_SELECT
built-in, see Example B-11.

A Sample VAXTPU Procedures

The following VAXTPU procedures are included as samples of how to use
VAXTPU to perform certain tasks. These procedures merely show one way
of using VAXTPU; there may be other, more efficient ways to perform the
same task. Make changes to these procedures to accommodate your style
of editing.

For these procedures to compile and execute correctly, you must make
sure that there are no conflicts between these sample procedures and
your interface. The following types of procedures are contained in this
appendix:

1 Line-mode editor

2 Translation of control characters

3 Restoring terminal width before exiting from VAXTPU

4 DCL command procedure to run VAXTPU from a subprocess

A.1 Line-Mode Editor
The following example shows a portion of an editing interface that uses
line mode rather than screen displays for editing tasks. This mode of
editing can be used for batch jobs, or for running VAXTPU on terminals
that do not support screen-oriented editing.

Portion of a line mode editor for VAXTPU
Invoked from DCL with: EDIT/TPU/NODISPLAY/NOSECTION/COM=linemode.tpu file

input file :=GET INFO (COMMAND LINE, "file name");
main buffer:= CREATE BUFFER ("MAIN", input-file);
POSITION (BEGINNING_OF (main_buffer)); -

LOOP ! Continuously loop until QUIT
cmd :=READ LINE ("*");
IF cmd = ""
THEN

cmd char := "N";
ELSE

Set up main
buff er from input
file

cmd char := SUBSTR (cmd, 1, 1); CHANGE_CASE (cmd_char, UPPER);
ENDIF;

CASE cmd char FROM "I" TO "T" ! Only accepting I,L,N,Q,T

A-1

Sample VAXTPU Procedures
A.1 Line-Mode Editor

!Top of buffer command
["T"]:

POSITION (BEGINNING_OF (CURRENT_BUFFER));
MESSAGE (CURRENT_LINE);

!Next line command
["N"]:

MOVE_HORIZONTAL (-CURRENT_OFFSET);
MOVE_VERTICAL (1);
MESSAGE (CURRENT_LINE);

!Insert text command
["I"]:

SPLIT_LINE;
COPY_TEXT (SUBSTR (cmd, 2, 999));
MESSAGE (CURRENT_LINE);

!List from here to end of file command
["L"]:

!QUIT
["Q"]:

ENDCASE;
ENDLOOP;

ml :=MARK (NONE);
LOOP
MESSAGE (CURRENT_LINE);
MOVE_VERTICAL (1);
EXITIF MARK (NONE) END OF (CURRENT_BUFFER);
ENDLOOP;
POSITION (ml);

QUIT;
[INRANGE,OUTRANGE]:

MESSAGE ("Unrecognized command - enter I,L,N,Q or T");

A.2 Translation of Control Characters
The following procedures are examples of how to display control characters
in a meaningful way. This is accomplished by translating the buffer to a
different visual format and mapping this new form to a window. On the
VT300 series and VT200 series of terminals, control characters are shown
as reverse question marks. On the VTlOO series of terminals, they are
shown as rectangles.

! This procedure performs the substitution of meaningful characters
! for the escape or control characters.

PROCEDURE translate controls (char_range)

LOCAL
replace_text;

If the translation array is not yet set up, then do it now. The elements
that we do not initialize will contain the value TPUK UNSPECIFIED. They are
characters that TPU will display meaningfully.

A-2

IF translate_array
THEN

TPU$K_UNSPECIFIED

\

Sample VAXTPU Procedures
A.2 Translation of Control Characters

translate _array ·= CREATE ARRAY (32,
translate _array { 1} ·= '<SOH>';
translate _array {2} ·= I <STX>';
translate _array { 3} := I <ETX>';
translate _array { 4} := I <EOT>';
translate _array { 5} := '<ENQ>';
translate _array { 6} ·= I <ACK>';
translate _array { 7} ·= I <BEL>';
translate _array {8} ·= I <BS>';
translate _array {14} ·= I <SO>' ;
translate _array {15} := I <SI>' ;
translate _array {16} := '<DLE>';
translate _array {17} ·= I <DCl>';
translate _array {18} := '<DC2>';
translate _array {19} := '<DC3>';
translate _array {20} := I <DC4>';
translate _array {21} := I <NAK>';
translate _array {22} := I <SYN>';
translate _array {23} := I <ETB>';
translate _array {24} ·= I <CAN>';
translate _array {25} := I ' ;
translate _array {26} := I <SUB>';
translate _array {27} := I <ESC>';
translate _array {28} ·= I <FS>';
translate _array {29} := I <GS>';
translate_array {30} := '<RS>';
translate _array {31} ·= I <US>';

ENDIF;

The range *must* be a single character long

IF LENGTH (char_range) <> 1
THEN

RETURN 0;
ENDIF;

Find the character

0) ;

replace_text := translate_array {ASCII (STR (char_range)) };

If we got back a value of TPU$K_UNSPECIFIED, TPU will display the character
meaningfully

IF replace_text
THEN

RETURN 0;
ENDIF;

TPU$K_UNSPECIFIED

Erase the range and insert the new text

ERASE (char_range);
COPY_TEXT (replace_text);

RETURN 1;

ENDPROCEDURE;

This procedure controls the outer loop search for the special
control characters that we want to view.

PROCEDURE view controls (source_buffer)

A-3

Sample VAXTPU Procedures
A.2 Translation of Control Characters

CONSTANT
ctrl char str := - -

ASCII (0) + ASCII (1) + ASCII (2) + ASCII
ASCII (4) + ASCII (5) + ASCII (6) + ASCII
ASCII (8) + ASCII (9) + ASCII (10) + ASCII
ASCII (12) + ASCII (13) + ASCII (14) + ASCII
ASCII (16) + ASCII (17) + ASCII (18) + ASCII
ASCII (20) + ASCII (21) + ASCII (22) + ASCII
ASCII (24) + ASCII (25) + ASCII (26) + ASCII
ASCII (28) + ASCII (29) + ASCII (30) + ASCII

LOCAL
ctrl_char_pattern,
ctrl_char_range;

Create the translation buffer and window, if necessary

IF translate_buffer = TPU$K_UNSPECIFIED
THEN

translate_buffer := CREATE_BUFFER ("translation");
SET (NO_WRITE, translate_buffer);

ENDIF;

IF translate_window = TPU$K_UNSPECIFIED
THEN

translate window ·=CREATE WINDOW (1, 10, ON);
ENDIF;

Make a copy of the buff er we are translating

ERASE (translate_buffer);
POSITION (translate_buffer);
COPY_TEXT (source_buffer);

(3) +
(7) +

(11) +
(15) +
(19) +
(23) +
(27) +
(31);

Search for any control characters and translate them. If a control character
is not found, SEARCH_QUIETLY will return a 0.

ctrl_char_pattern :=ANY (ctrl_char_str);
POSITION (BEGINNING_OF (translate_buffer));

LOOP
ctrl_char range := SEARCH_QUIETLY (ctrl_char_pattern, FORWARD);
EXITIF ctrl_char_range = 0;
POSITION (ctrl_char_range);
!
! If we did not translate the character, move past it

IF NOT translate controls (ctrl_char_range)
THEN

MOVE HORIZONTAL (1);
ENDIF;

ENDLOOP;

Now display what we have done

POSITION (BEGINNING OF (translate_buffer));
MAP (translate_wind;w, translate_buffer);

ENDPROCEDURE;

A-4

/

Sample VAXTPU Procedures
A.3 Restoring Terminal Width Before Exiting from VAXTPU

A.3 Restoring Terminal Width Before Exiting from VAXTPU
The following procedure compares the current width of the screen with
the original width. If the current width differs from the original width,
the procedure restores each window to its original width. The screen is
refreshed so that information is visible on the screen after you exit from
VAXTPU. When all of the window widths are the same, the physical screen
width is changed.

PROCEDURE user_restore_screen

LOCAL
original_screen_width,
temp_w;

original_screen_width := GET_INFO (SCREEN, "original_width");

IF original_screen_width <> GET_INFO (SCREEN, "width")
THEN

temp_w := get_info(windows,"first");

LOOP
EXITIF temp_w = O;

SET (WIDTH, temp_w, original_screen_width);

temp_w :=GET INFO (WINDOWS, "next");
ENDLOOP;

REFRESH;
ENDIF;

ENDPROCEDURE;

Define the key combination CTRL/E to do an exit which
restores the screen to its original width, repaints
the screen, and then exits.

DEFINE KEY ("user_restore_screen;EXIT", CTRL_E_KEY);

A.4 Running VAXTPU from a Subprocess
The following DCL command procedure shows one way of running
VAXTPU from a subprocess. It also shows how to move to or from the
subprocess.

!DCL command procedure to run VAXTPU from subprocess

!Put $ e = "@keptedit"
!in your login.com. This spawns the editor the first time
!and attaches to it after that. I have defined a key to be
!"attach" so it always goes back to the parent.

A-5

Sample VAXTPU Procedures
A.4 Running VAXTPU from a Subprocess

$ tt = f$getdvi ("sys$command", "devnam") - " " - " " - ":"
$ edit name "Edit 11 + tt -
$ priv~)ist = f$setprv("NOWORLD, NOGROUP")
$ pid = 0
10:
$ proc = f$getjpi(f$pid(pid), "PRCNAM")
$ if proc .eqs. edit name then goto attach
$ if pid .ne. 0 then-goto 10$
$spawn:
$ priv list = f$setprv(priv list)
$write sys$error "[Spawning a new Kept Editor]"
$ define/nolog sys$input sys$command:
$ tl = f$edit(pl + II II + p2 + II II + p3 +II II+ p4 + II II

+ p5 +II II+ p6 +II "+ p7 +II II+ p8,"COLLAPSE")
$ spawn/process="''edit_name'" /nolog edit/tpu 'tl'

$write sys$error "[Attached to DCL in directory ''f$env("DEFAULT")']"
$ exit
$attach:
$ priv list = f$setprv(priv list)
$write sys$error "[Attaching to Kept Editor]"
$ define/nolog sys$input sys$command:
$attach "''edit name'"
$write sys$error "[Attached to DCL in directory ''f$env("DEFAULT")']"
$ exit

A-6

B Sample DECwindows VAXTPU Procedures

B.1 Using DECwindows VAXTPU Built-ins
You can use the DECwindows VAXTPU built-in procedures in many ways.
However, you may find it useful to look at sample procedures showing
how other programmers have used some of the DECwindows VAXTPU
built-ins. Therefore, this appendix presents a number of procedures using
DECwindows built-ins.

The following example procedures are contained in this appendix:

1 Displaying a Dialog Box

2 Creating a "Mouse Pad"

3 Implementing an EDT-Style APPEND Command

4 Testing and Returning a Select Range

Resizing Windows

Unmapping Saved Windows

7 Mapping Saved Windows

5

6

8

9

Handling Callbacks from a Scroll Bar Widget

Implementing the COPY SELECTION Operation

10 Reactivating a Select Range

11 Implementing the DECwindows COPY SELECTION Operation from
EVE to Another Application

Most of the procedures are drawn from the code implementing the
Extensible VAX Editor (EVE). Some have been modified to make them
easier to understand.

You can see all the code used to implement EVE by looking at the files in
the directory pointed to by the logical name SYS$EXAMPLES. To see a
directory of the files available, type the following command from the DCL
command line:

$ DIR SYS$EXAMPLES:EVE$*.*

These files contain procedures using many of the VAXTPU built-ins.

B.2 Displaying a Dialog Box
Example B-1 illustrates one of the ways a layered application can use
the CONVERT built-in. This procedure is a modified version of the
EVE procedure eve$$mb2_dispatch. You can find the original version
in SYS$EXAMPLES:EVE$MOUSE.TPU. For more information about
using the files in SYS$EXAMPLES as examples, see Section B.1.

B-1

Sample DECwindows VAXTPU Procedures
8.2 Displaying a Dialog Box

The procedure displays EVE's selection pop-up menu on the screen if the
procedure is called while a select range or found range is active.

This example uses the following global variables and procedures:

• EVE$CALLBACK_DISPATCH - The procedure that EVE uses to
dispatch all widget callbacks.

• EVE$X_FOUND_RANGE - A global variable that holds the range for
the last text found. If there is not currently a found range, it is set to
zero.

• EVE$X_SELECT_POPUP - A global variable that holds the pop-up
menu widget used when a selection is present.

• EVE$X_SELECT_POPUP _HEIGHT - A global variable that holds
the height of the selection pop-up menu.

• EVE$X_SELECT_POPUP _WIDTH - A global variable that holds the
width of the selection pop-up menu.

• EVE$X_SELECT_POSITION -A global variable that holds the start
marker for the select range. If there is not currently a selection, it is
set to zero.

Example B-1 EVE Procedure That Displays a Selection Dialog Box

PROCEDURE eve$$mb2_dispatch

local status,
the_window,
temp array,
the_widget,
x_l,
X2,
widget_hierarchy,
y_l,
y_2;

ttIF (LOCATE_MOUSE (the_window, x_l, y_l) <> 0)
THEN

ft CONVERT (the_window, CHARACTERS, x_l, y_l,
DECW ROOT WINDOW, COORDINATES,
X2, y_2); -

IF (eve$x_select_position <> 0) OR
(eve$x_found_range <> 0)

THEN

A selection exists
A found range exists

IF GET_INFO (eve$x_select_popup, "type") <> WIDGET

THEN
widget_hierarchy :=SET (DRM_HIERARCHY, "EVE$WIDGETS");

B-2

(continued on next page)

• •

Sample DECwindows VAXTPU Procedures
B.2 Displaying a Dialog Box

Example B-1 (Cont.) EVE Procedure That Displays a Selection Dialog Box

eve$x_select_popup := CREATE WIDGET ("SELECT_POPUP",
widget_hierarchy,

ENDIF;

SCREEN,
"eve$callback_dispatch");

! Get width and height of this pop-up menu if needed

temp array := CREATE ARRAY;
temp array {evedwtc width} := O;
temp-array {evedwtc-height} := 0;
status := GET_INFO (eve$x_select_popup, "WIDGET_INFO", temp_array);
eve$x_select_popup_width := temp_array {evedwtc_width};
eve$x_select_popup_height := temp_array {evedwtc_height};

Calculate position for upper left corner of
dialog box and set the appropriate resources of the widget

temp array := CREATE ARRAY;
temp-array {evedwtc nx} := X2 - (eve$x select popup width/2);
IF temp_array {evedwtc_nx} < 1 - - -
THEN

temp_array {evedwtc_nx} := 1;
ENDIF;
temp array {evedwtc ny} := y 2 - (eve$x_select_popup_height/2);
IF temp_array {evedwtc_ny} <-1
THEN

temp_array {evedwtc_ny} := 1;
ENDIF;

SET (WIDGET, eve$x_select_popup, temp_array);
MANAGE_WIDGET (eve$x_select_popup);

ENDIF;
ENDIF;
RETURN (TRUE) ;

ENDPROCEDURE;

8 The return value from the LOCATE_MOUSE built-in procedure
indicates whether the pointer cursor is in the window. LOCATE_
MOUSE also returns the row, column and window where the pointer
cursor is located. The coordinates returned refer to a system whose
origin is in the upper left corner of the VAXTU window.

8 This clause converts the pointer cursor location from a system whose
origin is at the upper left corner of the VAXTPU window to a system.
whose origin is at the upper left corner of the DECwindows root
window. For more information about the difference between VAXTPU
windows and DECwindows windows, see Chapter 4.

e SET (DRM_HIERARCHY, file_spec) allows you to tell VAXTPU which
XUI Resource Manager hierarchy to use. An XUI Resource Manager
hierarchy is a set of widgets implementing a user interface. For
example, EVE's menu bar and menu widgets compose an XUI Resource
Manager hierarchy.

B-3

Sample DECwindows VAXTPU Procedures
B.2 Displaying a Dialog Box

EVE uses the XUI Resource Manager hierarchy stored in the file
EVE$WIDGETS.UID. If you are extending EVE, you need not set the
hierarchy again.

VAXTPU allows you to use multiple XUI Resource Manager
hierarchies. If you want to use a second hierarchy (defined in a file
other than EVE$WIDGETS.UID), use the SET (DRM_HIERARCHY)
statement before using the CREATE_ WIDGET statement.

8 GET_INFO (widget, "widget_info", array) allows you to fetch
information about a widget. The index of each element of the array
must be a string naming the resource whose value you want to fetch.
For more information about what resources a given widget supports,
see the VMS DECwindows Toolkit Routines .Reference Manual.

8 SET (WIDGET, widget, array) allows you to set a widget's resource
values. The index of each element of the array must be a string
naming the resource whose values you want to set. For more
information about what resources a given widget supports, see the
VMS DECwindows Toolkit Routines Reference Manual.

8 MANAGE_ WIDGET realizes the widget and makes it visible on the
screen.

B.3 Creating a "Mouse Pad"
Example B-2 shows how to use the variant of CREATE_ WIDGET
that calls the XUI Toolkit low-level creation routine. The module in
Example B-2 creates a screen representation of a keypad. Instead of
pressing a keypad key, a user can click on the widget representing the
key.

Example B-2 Procedure That Creates a "Mouse Pad"

SAMPLE.TPU

++

B-4

Table of Contents

SAMPLE.TPU

Procedure name Description

sample sample module ident
sample=sample=module=init
eve_mouse_pad
sample_key_def
sample key dispatch
sample=row=to_pix
sample_col_to_pix
sample key height
sample=key=width

Ident.
Initializes the module.
Implements the user command DISPLAY MOUSE PAD.
Creates a mouse pad "key" push button.
Handles push button widget callbacks.
Converts a row number to pixels.
Converts a column number to pixels.
Converts y dimension from rows to pixels.
Converts x dimension from columns to pixels.

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

This module layers a "mouse pad" on top of VAXTPU. The mouse pad
is implemented by creating a dialog box widget that is the parent of a group
of push button widgets depicting keypad keys. The resulting
"mouse pad" is a screen representation of a keypad. The user can
click on a push button to execute the same function that would be
executed by pressing the corresponding keypad key. The module uses
the key map list _mapped to the current buff er to determine what
code to execute when the user clicks on a given push button. To
use a different key map, substitute a string naming the desired
key map for the null string assigned to "sample k keymap".
This module can be used with the EVE section file-
or with a non-EVE section file.

This module uses the variant of CREATE WIDGET that calls the XUI
Toolkit low-level creation routine.

PROCEDURE sample_sample_module_ident
RETURN "VOl-001";
ENDPROCEDURE;

This procedure returns
the Ident.

PROCEDURE sample_sample_module_init
ENDPROCEDURE;

Module initialization.

VAXTPU Declarations for XUI Toolkit constants

CONSTANT

Use these constants as arguments to the DEFINE WIDGET built-in.
The strings are the symbols that evaluate to the
widget class records for the DECwindows widgets.

sample k labelwidgetclass := "labelwidgetclassrec",
sample-k-dialogwidgetclass := "dialogwidgetclassrec",
sample ~)=pushbuttonwidgetclass : = "pushbuttonwidgetclassrec";

CONSTANT

Use these constants, which are XUI Toolkit
resource name strings, as callback reasons, resource values, or
arguments to the CREATE_WIDGET built-in.

sample_k_cstyle := "style",
sample k modeless := 2,
sample=k=nunits := "units",
sample k pixelunits := 1,
sample=k=ntitle := "title",
sample_k_nx := "x",
sample_k_ny := "y",
sample k nheight := "height",
sample=k=nwidth := "width",
sample k nlabel := "label",
sample-kt nactivate callback := "activateCallback",
sample=kt=nborderwidth := "borderWidth",
sample kt nconformToText := "conformToText",
sample=k_cractivate := 10;

(continued on next page)

B-5

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

! These constants are intended for use only in this sample module
! because their values are specific to the mouse pad application.

CONSTANT
sample_k_x_pos := 500,
sample_k_x_pos := 500,

Screen position for mouse pad.

sample k keypad border := 5,
sample=k=key_height := 30,
sample_k_key_width := 60,
sample_k_button_border_frac := 3,

Width of border between keys and edge.
Key dimensions.

Determines spacing between keys.

sample_k_overall_height := (sample k key height * 5)
+ ((sample k-key height

I sample=k_button_border_frac)
+ sample_k_keypad_border,

* 5)

sample_k_overall_width := (sample k key width * 4)
+ ((sample k -key width

sample_k_keymap := ''

I sample=k_button_border_frac)
+ sample_k_keypad_border,

* 4)

If this constant has a null string
as its value, the program uses the
current key map list to determine what
code to execute when the user
clicks on a given push button.

sample_k_pad_title := "Sample mouse pad",
sample_k_closure := '';

Title of the mouse pad.
Not currently used.

PROCEDURE eve_mouse_pad
ON ERROR

Implements a user-created command MOUSE PAD
that the user can invoke from within EVE.

- [TPU$ CONTROLC]:
eve$learn_abort;
ABORT;

ENDON_ERROR

Checks whether the dialog box widget class has already been defined.
If not, defines the dialog box widget class and creates a widget
instance to be used as the "container" for the mouse pad.

IF GET_INFO (sample_x_dialog_class, 'type') <>INTEGER
THEN

sample_x_dialog_class
tt ·= DEFINE_WIDGET_CLASS (sample k dialogwidgetclass,

"dwt$dialog_box_popup_create");
ENDIF;

B-6

(continued on next page)

Sample DECwindows VAXTPU Procedures
8.3 Creating a "Mouse Pad"

Example B-2 {Cont.) Procedure That Creates a "Mouse Pad"

• sample_x_keypad := CREATE WIDGET (sample x dialog class, "Keypad", SCREEN,
"MESSAGE (1 CALLBACK activated') ",
"sample_k_closure ",
sample k cstyle, sample k modeless,
sample=k=nunits, sample=k=1>ixelunits,
sample_k_ntitle, sample_k__pad_title,
sample k nheight, sample k overall height,
sample=k=nwidth, sample_k_overall_;idth,
sample_k_nx, sample_k_x__pos,
sample_k_ny, sample_k_y__pos);

! Checks whether the push button widget class has already been defined
! and, if not, defines the class.

IF GET_INFO (sample_x__pushbutton_class, 'type') <>INTEGER
THEN

sample_x__pushbutton_class

ENDIF;

:= DEFINE_WIDGET_CLASS (sample_k__pushbuttonwidgetclass,
"dwt$push_button_create");

This statement
using the built_in
DEFINE WIDGET CLASS
defines the -

! Initializes the array that the program passes repeatedly
! to the procedure "sample_key_def".

sample x attributes := CREATE ARRAY;
sample-x-attributes {sample k-nactivate callback} := 0;
sample=x=attributes {sample=k=nborderwidth} := 2;
sample_x__pad__program :=COMPILE ("sample_key_dispatch");

class of the
push button
widgets.

Creates and manages all the "keys" in the mouse pad. The procedure
! "sample key def" returns a variable of type widget, so you can use the
! returned value as an argument to the built-in MANAGE_WIDGET.

0MANAGE_WIDGET (sample_key_def ("PFl", O, O, 1, 1, sample_x__pad__program),
sample_key_def ("PF2", 1, O, 1, 1, sample x pad program),
sample_key_def ("PF3", 2, 0, 1, 1, sample=xyadyrogram),
sample_key_def ("PF4", 3, O, 1, 1, sample_x__pad_program),
sample_key_def ("KP7", 0, 1, 1, 1, sample_x_pad__program),
sample_key_def ("KP8", 1, 1, 1, 1, sample_x__pad__program),
sample_key_def ("KP9", 2, 1, 1, 1, sample x pad program),
sample_key_def ("-", 3, 1, 1, 1, sample_xyad_program, "minus"),
sample_key_def ("KP4", O, 2, 1, 1, sample_x__pad__program),
sample_key_def ("KPS", 1, 2, 1, 1, sample_x__pad_program),
sample_key_def (1'KP6", 2, 2, 1, 1, sample_x__pad__program),
sample_key_def (",", 3, 2, 1, 1, sample_x__pad_program, "comma"),
sample_key_def ("KPl", O, 3, 1, 1, sample_x__pad__program),
sample_key_def ("KP2", 1, 3, 1, 1, sample_x__pad_program),
sample_key_def ("KP3", 2, 3, 1, 1, sample_x__pad__program),
sample_key_def ("Enter", 3, 3, 2, 1, sample_x__pad__program,

"enter"),
sample_key_def ("KPO", O, 4, 1, 2, sample_x__pad__program),
sample_key_def (".", 2, 4, 1, 1, sample_x__pad__program,

"period"));

sample_x_shift_was_last := FALSE; The program starts out assuming that
! no GOLD key has been pressed.

(continued on next page)

B-7

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

8 MANAGE_WIDGET (sample_x_keypad); This statement displays the
resulting mouse pad.

RETURN (TRUE) ;
ENDPROCEDURE; ! End of procedure eve_mouse_pad.

PROCEDURE sample_key_def ! Creates a mouse pad "key" push button
! widget.

(the_legend,

the_row, the_col,

the_width, the_height,

the_pgm;

the_string);

What characters to show on the push button label.

Location of the key in relation to the parent
widget's upper left corner.

Dimensions of the key.

Program to use as the callback routine; used
as a parameter to the CREATE WIDGET built-in.

The string representation of the name
of a key if the key name is not going
to be the same as the legend (as in
the case of the comma) . Specify the null
string if the key name and the legend are
the same.

IF GET_INFO (the_string, 'type')
THEN

UNSPECIFIED

the_string := the_legend; Determines whether the optional parameter
the_string is provided.

ENDIF;

RETURN CREATE WIDGET (sample_k_pushbutton_class, "Key", sample_x_keypad,
the_pgm,
(sample_k_keymap +' ' + the_string),
sample_x_attributes,
sample_kt_nconformToText, O,
sample k nlabel, the legend,
sample-k-nheight, sample key height (the width),
sample=k=nwidth, sample_key_width (the_height),
sample_k_nx, sample_col_to_pix (the_row),
sample_k_nx, sample_row_to_pix (the_col));

ENDPROCEDURE; End of the procedure "sample_key_def".

PROCEDURE sample_key_dispatch

LOCAL

B-8

status,

blank_index,

temp_array,

a_shift_key,

the_ key,

gold_key;

Handles push button widget callbacks.

Variable to contain the return value from
GET INFO (WIDGET, "callback_parameters",).

Position of the blank space in the tag string.

Holds callback parameters.

The SHIFT key in the current key map list.

A string naming a key.

Name of the GOLD key.

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

ON ERROR
[TPU$ _ CONTROLC] :

eve$learn_abort;
ABORT;

ENDON ERROR

8 status := GET_ INFO (widget, "callback_parameters", temp_array);
$widget := temp_array {'widget'};
$widget tag :=temp array {'closure'};
$widget=reason := temp_array {'reason_code'};

8the_key :=EXECUTE ("RETURN(KEY_NAME (" + $widget_tag + ")) ");
gold_key := GET_INFO (eve$current_key_map_list, "shift_key");
IF the_key = gold_key
THEN

ELSE

sample_shift_was_last := TRUE;

IF sample_shift_was_last
THEN

User pressed Gold Key

the_key := KEY_NAME (the_key, SHIFT_KEY);

ENDIF;
CASE $widget reason

[sample_kt_cractivate]:
EXECUTE (the_key);

[OTHERWISE] :
eve_show_key (the_key)

ENDCASE;
sample_shift_was_last := FALSE;

ENDIF;
RETURN;
ENDPROCEDURE; ! End of the procedure "sample_key_dispatch".

! These procedures implement position and
! size calculations for the push button widgets.

PROCEDURE sample_row_to_pix (row)

RETURN sample_k_keypad_border +

Converts a row number to the
! pixel-based measuring system~

(row * (sample_k_key_height + (sample k key height
I sample k button border frac)));

ENDPROCEDURE; ! End of the procedure "sample=row_to_pix11
• -

PROCEDURE sample_col_to_pix (col) Converts a column number to the
pixel-based measuring system.

RETURN sample k keypad border +
(col* ((sample_kt=key_width +sample kt key width)

I sample_kt_button_border_frac)) ;

ENDPROCEDURE; ! End of the procedure "sample_col_to_pix".

(continued on next page)

B-9

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

PROCEDURE sample_key_height (given_height) Converts the y dimension
from rows to pixels.

IF given_height = 1
THEN

ELSE
RETURN sample_k_key_height;

RETURN ((sample k key height* given height)
+ (sample-k key height I sample_k_button_border_frac)
* (given_height-- 1));

ENDIF;
ENDPROCEDURE; ! End of the procedure "sample_key_height".

PROCEDURE sample_key_width (given_width) Converts the x dimension
from rows to pixels.

IF given_width = 1
THEN

RETURN sample_k_key_width;
ELSE

RETURN ((sample k key width* given width)
+ (sample-k key width I sample_k_button_border_frac)
* (given_;idth = 1));

ENDIF;
ENDPROCEDURE;

B-10

End of the procedure "sample_key_width".

0 When you create widgets directly in VAXTPU (that is, without using
the XUI Resource Manager to manipulate widgets defined in a UIL
file) you must define each class of widget. For example, a widget can
belong to the push button, dialog box, menu, or another similar class
of widget. The DEFINE_ WIDGET_ CLASS built-in procedure tells
VAXTPU the widget class name and creation entry point for the class
of widget. DEFINE_WIDGET_CLASS also returns a widget ID for
that widget class. Define a widget class for each widget only once in a
VAXTPU session.

• The CREATE_ WIDGET built-in allows you to create an instance of a
widget for which you have a widget ID. An instance is one occurrence
of a widget of a given class. For example, EVE has many menu
widgets, each of which is an instance of a menu widget.

This example creates a dialog box widget to contain the mouse pad.

• Each of the keys of the mouse pad is managed. However, they do not
become visible until their parent, the dialog box widget in variable
SAMPLE_X_KEYPAD, is managed.

8 Managing a widget whose parent is visible causes that widget and all
its managed children to become visible.

e GET_INFO (WIDGET, "callback_parameters", array) returns the
callback information in the array parameter. For more information
about using this built-in, see the built-in's description in the VAXTPU
Reference Section.

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

e When each key widget of the mouse pad is created, the closure value
for the widget is set to the string corresponding to the name of the
key that the widget represents. This statement uses the EXECUTE
built-in to translate the string into a key name.

B.4 Implementing an EDT-Style APPEND Command
Example B-3 shows one of the ways an application can use the GET_
CLIPBOARD built-in. This procedure is a modified version of the EVE
procedure EVE$EDT_APPEND. You can find the original version in
SYS$EXAMPLES:EVE$EDT.TPU. For more information about using the
files in SYS$EXAMPLES as examples, see Section B.1.

The procedure EVE$EDT_APPEND appends the currently selected text
to the contents of the clipboard if the user has activated the clipboard;
otherwise, the procedure appends the current selection to the contents of
the Insert Here buffer.

This example uses the following global variables and procedures from
EVE:

• EVE$MESSAGE - A procedure that translates the specified message
code into text and displays the text in the Messages buffer.

• EVE$$RESTORE_POSITION - A procedure that repositions the
editing point to the location indicated by the specified window and
marker. This procedure is for EVE internal use only. Do not call this
procedure in a user-written procedure.

• EVE$LEARN_ABORT - A procedure that aborts a learn sequence.

• EVE$SELECTION - A procedure that returns a range containing the
current selection. This can be the select range, the found range, or the
text of the global selection.

• EVE$$TEST_IF _MODIFIABLE - A procedure that checks whether
a buffer can be modified. This procedure is for EVE internal use only.
Do not call this procedure in a user-written procedure.

• EVE$X_DECWINDOWS_ACTIVE - A Boolean global variable that
is true ifVAXTPU is using DECwindows. IfVAX.TPU is not using
DECwindows, the DECwindows features are not available.

• EVE$$X_STATE_ARRAY - A global variable of type array describing
various EVE flags and data. This variable is private to EVE and
should not be used by user routines.

• EVE$$EDT_APPEND_PASTE - Procedure that appends text to the
Insert Here buffer. This procedure is for EVE internal use only. Do
not call this procedure in a user-written procedure.

B-11

0

•

Sample DECwindows VAXTPU Procedures
8.4 Implementing an EDT-Style APPEND Command

Example B-3 EVE Procedure That Implements a Variant of the EDT APPEND Command

PROCEDURE eve$edt_append

LOCAL saved_mark,

Implements EVE's version of
the EDT APPEND command.

Marks the editing point at the
beginning of the procedure.

Stores the currently selected text. remove_range,

old_string,

new_string,

Stores the text that was in the clipboard.

Stores the old contents of the clipboard
plus the currently selected text.

remove_status; Indicates whether the selected text
should be removed.

ON ERROR
[TPU$ CLIPBOARDNODATA] :

eve$message (EVE$ NOINSUSESEL);
eve$$restore_position (saved_mark);
eve$learn_abort;
RETURN (FALSE);

[TPU$ CLIPBOARDLOCKED] :
eve$message (EVE$ CLIPBDREADLOCK);
eve$$restore_position (saved_mark);
eve$learn_abort;
RETURN (FALSE);

[TPU$ CONTROLC] :
eve$$restore position (saved_mark);
eve$learn_abort;
ABORT;

[OTHERWISE]: eve$$restore position (saved_mark);
eve$learn_abort;

ENDON_ERROR;

remove range := eve$selection (TRUE);
IF remove_range <> 0
THEN

saved mark :=MARK (NONE);
remove status := eve$test if modifiable (GET_INFO (saved_mark, "buffer"));
IF eve$x_decwindows_active -
THEN

B-12

IF eve$$x_state_array {eve$$k_clipboard}
THEN

old string := GET CLIPBOARD;
string_range := old_string + str (remove_range);
WRITE CLIPBOARD ("", n-ew_string);

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.4 Implementing an EDT-Style APPEND Command

Example B-3 (Cont.) EVE Procedure That Implements a Variant of the EDT APPEND Command

ELSE

ELSE

IF remove status
THEN

ERASE (remove range);
eve$message (EVE$_REMCLIPBOARD);

ENDIF;

eve$$edt_append_paste (remove_range, remove_status);
ENDIF;

eve$$edt_append_paste (remove_range, remove_status);
ENDIF;

POSITION (saved_mark);
remove_range := O;
RETURN (TRUE);

ENDIF;

eve$learn_abort;
RETURN (FALSE);

ENDPROCEDURE;

8 The GET_CLIPBOARD built-in procedure returns a copy of the text
stored in the clipboard. Only data of type string can be retrieved from
the clipboard. Any other data type causes VAXTPU to signal an error.

8 The WRITE_CLIPBOARD built-in procedure stores data in the
clipboard. The first parameter allows you to specify the label for
this data. However, the clipboard currently supports only one entry at
a time, so you can use any string for the first parameter.

B.5 Testing and Returning a Select Range
The code fragment in Example B-4 shows how a layered application
can use GET_GLOBAL_SELECT. This code fragment is a portion of the
EVE procedure EVE$SELECTION. You can find the original version in
SYS$EXAMPLES:EVE$CORE.TPU. For more information about using the
files in SYS$EXAMPLES as examples, see Section B.1.

The procedure EVE$SELECTION returns a select range, found range, or
global selection for use with EVE commands that operate on the select
range.

This example uses the following global variables and procedures from
EVE:

• EVE$MESSAGE - A procedure that translates the specified message
code into text and displays the text in the message buffer.

• EVE$LEARN_ABORT - A procedure that aborts a learn sequence.

B-13

Sample DECwindows VAXTPU Procedures
B.5 Testing and Returning a Select Range

• EVE$X_DECWINDOWS_ACTIVE - A Boolean global variable that
is true ifVAXTPU is using DECwindows. IfVAXTPU is not using
DECwindows, the DECwindows features are not available.

Example B-4 EVE Procedure That Returns a Select Range

PROCEDURE eve$selection
do_messages;
found_range_arg,
global_arg,
null_range_arg,
cancel_arg)

Display error messages?

Return Values: range
0
NONE

string

LOCAL possible_selection,
use_found_range,
use_global,
extend_null_range,
cancel_range;

ON ERROR
[TPU$ SELRANGEZERO] :
[TPU$-GBLSELOWNER]:

Use found range? (D=TRUE) .
Use global select? (D=FALSE).
Extend null ranges? (D=TRUE) .
Cancel selection? (D=TRUE).

The selected range.
There was no select range.
There was a null range and
null range arg is FALSE.

Text of the-global selection
if "global_arg" is TRUE.

eve$message (EVE$ NOSELECT);
eve$learn_abort; -
RETURN (FALSE);

[OTHERWISE] :
ENDON_ERROR;

The procedure first tests whether it
has received a parameter directing
it to return a found range or global
selection if no select range has been
created by the user.

IF GET_INFO (found_range_arg, "type") = INTEGER
THEN

use_found_range := found_range_arg;
ELSE

use_found_range := TRUE;
ENDIF;

IF GET_INFO (global_arg, "type")
THEN

use_global := global_arg;
ELSE

use_global := FALSE;
ENDIF;

B-14

INTEGER

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.5 Testing and Returning a Select Range

Example B-4 (Cont.) EVE Procedure That Returns a Select Range

In the code omitted from this example,
eve$selection returns the appropriate
range if the calling procedure has
requested the user's select range
or a found range.

If there is no found range or select
range, the procedure returns
the primary global selection
if it exists.

IF use_global and eve$x_decwindows_active
THEN

8 possible_selection := GET_GLOBAL_SELECT (PRIMARY,
"STRING");

IF GET_INFO (possible_selection, "type") = STRING
THEN

RETURN (possible_selection);
ENDIF;

ENDIF;

RETURN (0);

ENDPROCEDURE;

Indicates failure.

8 DECwindows allows you to designate more than one global selection.
The two most common global selections are the primary and secondary
selections. A global selection can be owned by only one DECwindows
application at a time.

The GET_GLOBAL_SELECT built-in returns the data for the
requested selection in the requested format. If the requested selection
is not currently owned by any application, or if the owner cannot
return it in the requested format, then GET_GLOBAL_SELECT
returns unspecified.

If the selected information contains multiple records, the records are
separated by the line-feed character (ASCII (10)).

B-15

Sample DECwindows VAXTPU Procedures
B.6 Resizing Windows

B.6 Resizing Windows

B-16

Example B-5 shows the procedure SAMPLE_NEW _SCREEN_SIZE, which
manipulates visible windows when the user makes the screen smaller.
It removes visible VAXTPU windows from the screen, starting at the
bottom of the VAXTPU screen, until the combined length of the remaining
windows is less than or equal to the new smaller screen size or until
there is only one window left. (For more information about the difference
between VAXTPU windows and DECwindows windows, see Chapter 4.)
If only one window remains, the procedure adjusts the window to fit the
screen. If two or more windows remain, the procedure adjusts the current
window and the bottom window.

The procedure uses the following variants of the built-in GET_INFO
(window_ variable):

• GET_INFO (window_variable, "bottom")

• GET_INFO (window_variable, "length")

• GET_INFO (window_variable, "top")

This example uses the following global variables and procedure from EVE:

• EVE$GET_ WINDOW - A procedure that returns the window
associated with a number. The windows are numbered sequentially,
from top to bottom.

• EVE$X_NUMBER_OF_WINDOWS-A global variable that holds the
count of the visible windows.

• EVE$$GET_WINDOW_NUMBER -A procedure that returns a
number for the current window. EVE associates a value with each
window so EVE can save information about specific windows. This
procedure is for EVE internal use only. Do not call this procedure in a
user-written procedure.

• EVE$$REMOVE_ WINDOW - A procedure that removes a window
from the screen. This procedure is for EVE internal use only. Do not
call this procedure in a user-written procedure.

Sample DECwindows VAXTPU Procedures
B.6 Resizing Windows

Example B-5 Procedure That Resizes Windows

PROCEDURE sample_new_screen_size

LOCAL overhead,
new_screen_length,
number,
the_count,
total length,
some_;indow,
a_ window,
new_top,
a_length,
top_adjust,
bottom_window,
bottom_adjust;

overhead := 2; This provides lines for the command window and message
window, assuming each window has a length of 1.

0 new_screen_length := get_info (SCREEN, "new_length");

number := eve$$get_window_number; This sets "number" to be

the count := eve$x_number_of _windows;

the number of the current window.

This sets "the count" to
be the total number of
visible windows.

The following lines determine the combined lengths of all
user-created windows visible on the screen, plus the lengths of the
command window and message window.

total_length := overhead;
the count := eve$x_number_of windows;
LOOP

EXITIF the_count < 1;
some_window := eve$get_window (the_count);

! "Some window" is the bottommost window not yet measured.

total_length := total_length +
8 GET INFO (some_window, "length", WINDOW);

the count := the count - 1;

ENDLOOP;

The following statements delete windows from the screen, starting
with the bottommost window, until the sum of the lengths
of all remaining windows is less than or equal to the new screen
length.

the count := eve$x_number_of_windows;
LOOP

EXITIF the count <= 1;
a_window :~ eve$get_window (the_count); This statement sets "a_window" to

be the bottommost
window not yet examined
in this loop.

(continued on next page)

B-17

Sample DECwindows VAXTPU Procedures
B.6 Resizing Windows

Example B-5 (Cont.) Procedure That Resizes Windows

• IF number > the count

THEN
new_top :=GET INFO (a_window, "top", WINDOW);

ENDIF;

IF number <> the count If the current window is still
above the window to which you're
comparing it

THEN
a_length :=GET INFO (a_window, "length", WINDOW);

The following clause prevents the loop from deleting
the bottom window if the new screen length
is greater than or equal to the old screen length.

IF new_screen_length > total_length

The following statement decreases "total_length" by the length
of the window being examined.

THEN
total_length := total_length - a_length;

! The following statement removes the window
! being examined.

eve$$remove_window (the_count);

ENDIF;

EXITIF total_length <= new_screen_length;

ENDIF;

the count := the count - 1; Next time through the loop, the window
being examined will be the window
just above the window examined this time.

ENDLOOP;

IF eve$x_number_of _windows = 1
THEN

adjust_window (CURRENT WINDOW,
1 - get=info (CURRENT_WINDOW, "top", WINDOW),
new_screen_length - overhead

• -get_info (CURRENT_WINDOW, "bottom", WINDOW));
ELSE

B-18

The following statements adjust the top of the current
window and the bottom of the bottom window, if needed,
to occupy the space left by deleting windows.

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.6 Resizing Windows

Example B-5 (Cont.) Procedure That Resizes Windows

IF new_top <> 0
THEN

top_adjust := new_top - GET_INFO (CURRENT_WINDOW,
"top", WINDOW);

ADJUST_WINDOW (CURRENT_WINDOW, top_adjust, 0);
ENDIF;

bottom window:= eve$get_window (eve$x_number_of_windows);
bottom_adjust := new_screen_length -

overhead -
GET INFO (bottom_window,

"bottom", WINDOW);
This statement using
GET_INFO (window, "bottom")
calculates the amount
by which to adjust the
bottom of the bottom
window.

ADJUST WINDOW (bottom_window, 0, bottom_adjust);
ENDIF;

ENDPROCEDURE;

0 GET_INFO (SCREEN "new_length") returns the size of the screen
after a resize occurs.

8 GET_INFO (window, "length", WINDOW) returns the length of the
window.

8 Number is greater than the_count only when the current window is
below the window to which you are comparing it.

8 GET_INFO (window, "top", WINDOW) returns the top line of the
window.

9 GET_INFO (window, "bottom", WINDOW) returns the line number of
the last line in the window.

B.7 Unmapping Saved Windows
Example B-6 shows the procedure SAMPLE_SAVE_WINDOW_INFO_
AND_UNMAP, which saves information about all visible VAXTPU windows
in the array window_array and then unmaps all visible VAXTPU windows.
The windows can be reconstructed later using the information in window_
array.

The procedure uses the following variants of the built-in GET_INFO
(window_ variable):

• GET_INFO (window_ variable, "width")

• GET_INFO (window_ variable, "key_map_list")

B-19

Sample DECwindows VAXTPU Procedures
B.7 Unmapping Saved Windows

• GET_INFO (window_variable, "scroll_bar", VERTICAL)

• GET_INFO (window_variable, "scroll_bar_auto_thumb", VERTICAL)

Warning: Digital does not guarantee that this example will work successfully
with future versions.

Example B-6 EVE Procedure That Unmaps Saved Windows

PROCEDURE sample_save_window_info_and_unmap (; window_array)

LOCAL the count,
the=:window,
saved_buffer,
the_row,
temp;

ON ERROR
- [TPU$_CONTROLC]:

IF GET_INFO (saved_buffer, "type") = BUFFER
THEN

eve$message (EVE$ REBLDWINDOWS);
eve$setup windows-(saved buffer);
eve$message (EVE$_WINDOWSREBLT);
UPDATE (ALL);

ENDIF;
eve$learn_abort;
ABORT;

[OTHERWISE] :
ENDON_ERROR;

the count := O;
the=:window := GET_INFO (WINDOWS, "first");
LOOP

EXITIF the_window = O;
IF GET_INFO (the_window, "buffer") <> 0
THEN

the count := the_count + 1;
ENDIF;
the window := GET_INFO (WINDOWS, "next");

ENDLOOP;
window array :=CREATE ARRAY (the count+ 1, 0);
window-array {0} := eve$x number of windows;
the window := eve$main window; - -
IF GET_INFO (the_windo;, "type") = WINDOW
THEN

saved buffer :=GET INFO (the_window, "buffer");
ENDIF;

B-20

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.7 Unmapping Saved Windows

Example B-6 (Cont.) EVE Procedure That Unmaps Saved Windows

LOOP
EXITIF the count = 0;
the window-:= CURRENT WINDOW;
EXITIF the_window = o;
temp:= CREATE ARRAY (29);
temp {1} := the window;
temp {2} .- GET-INFO (the window, "buffer");
temp {3} .- GET-INFO (the=window, "top", WINDOW);
temp {4} := GET INFO (the_window, "length", WINDOW);
temp {8} := get=info (the_window, "status_line");
IF temp {8} <> 0
THEN

temp { 5 } : = ON;
ELSE

temp {5} := OFF;
ENDIF;
POSITION (the_window);
temp {6} :=MARK (FREE_CURSOR);
the row :=GET INFO (the_window, "current_row");
IF the row = 0-
THEN

the row :=temp {3};
ENDIF;
temp {7} := the row + 1 - temp {3};
temp {9} := GET_INFO (the_window, "width"); This statement uses

GET INFO (window, "width").

temp {10} := GET INFO (the_window, "scroll_top");
temp { 11} := GET INFO (the_window, "scroll_bottom");
temp {12} := GET INFO (the_window, "scroll amount"); -temp {13} := GET INFO (the window, "text");
temp {14} := GET - INFO (the=window, "blink video");
temp {15} ·= GET INFO (the_window, "blink-status");
temp {16} := GET - INFO (the_window, "bold_video");
temp {17} ·= GET INFO (the_window, "bold status");
temp {18} := GET -INFO (the window, "reverse_video");
temp {19} := GET INFO (the-window, "reverse status");
temp {20} := GET - INFO (the=window, "underline_video");
temp {21} := GET INFO (the_window, "underline status");
temp {22} := GET INFO (the_window, "special_graphics_status");
IF GET INFO (the_window, "pad") -
THEN

temp {23} := ON;
ELSE

temp {23} := OFF;
ENDIF;
temp {24} := GET - INFO (the_window,

"shift _amount");
temp {25} := GET - INFO (the_window, This statement uses

"key_map_ list"); GET INFO (window, "key_map_list").

(continued on next page)

B-21

Sample DECwindows VAXTPU Procedures
B.7 Unmapping Saved Windows

Example B-6 {Cont.) EVE Procedure That Unmaps Saved Windows

IF GET_INFO (SCREEN, "decwindows")
THEN

ELSE

temp {26} := (GET_INFO (the_window, ! This statement uses
"scroll_bar", ! GET_INFO (window, "scroll_bar").
VERTICAL) <> 0);

IF temp {26}
THEN

ELSE

temp {27} := GET INFO (the_window,
"scroll_bar_auto thumb",
VERTICAL);

temp {27} := FALSE;
ENDIF;

If the vertical
scroll bar is
on, save the
information.

This statement uses
the GET INFO
("scroll bar auto thumb)
built-in~ - -

temp {28} := (GET_INFO (the_window, "scroll_bar", HORIZONTAL) <> 0);
IF temp {28}
THEN

ELSE

temp {29} := GET INFO (the_window, "scroll_bar_auto_thumb",
HORIZONTAL);

temp {29} ·= FALSE;
ENDIF;

temp {26} := FALSE;
temp {27} := FALSE;
temp {28} := FALSE;
temp {29} := FALSE;

ENDIF;
window_array {the_count} := temp;
UNMAP (the_window);
the_count := the_count - 1;

ENDLOOP;
eve$x_number_of_windows ·= 0;

ENDPROCEDURE;

B.8 Mapping Saved Windows

B-22

Example B-7 shows the procedure SAMPLE_MAP_SAVED_WINDOWS,
which maps windows whose descriptions have been saved previously.
SAMPLE_MAP _SAVED_ WINDOWS is passed the array window _array
containing information about windows that have previously been saved
and then unmapped. You can see an example of how such an array is
created in Example B-6. The procedure maps the windows to buffers,
giving the windows the same characteristics they had before they were
unmapped.

The procedure includes the following built-ins:

• SET (SCROLL_BAR)

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

• SET (SCROLL_BAR_AUTO_THUMB)

• SET (WIDGET)

• SET (WIDGET_CALLBACK)

Warning: Digital does not guarantee that this example will work successfully
with future versions.

Example B-7 Procedure That Maps Saved Windows

PROCEDURE sample_map_saved_windows (window_array)

LOCAL temp,
the length,
length_remaining,
the_top,
the_count,
scroll_bar_widget,
screen_length;

ON ERROR
[TPU$ CONTROLC] :

eve$message (EVE$ RESETUPWINDOWS);
eve$setup_windows-(window_array);
UPDATE (ALL);
eve$learn_abort;
ABORT;

[OTHERWISE] :
endon_error;

screen_length := eve$get_screen_height;

eve$$unmap_all_windows;

eve$x_number_of_windows := window_array {0};
the_count := 1;
LOOP

EXITIF the count> GET INFO (window array, "high index");
temp :=window array {the count}; - -
eve$$map_windo; (temp {1}~ temp {2}, temp {3}, temp {4}, temp {5},

temp {6}, temp {7});
IF temp {5} = ON
THEN

SET (STATUS_LINE, temp {1}, NONE, temp {8});
IF temp {15}
THEN

SET (STATUS_LINE, temp { 1}, BLINK, temp { 8}) i
ENDIF;
IF temp {17}
THEN

SET (STATUS_LINE, temp { 1}, BOLD, temp {8});
ENDIF;
IF temp {19}
THEN

SET (STATUS_LINE, temp { 1} , REVERSE, temp {8});
ENDIF;
IF temp {21}
THEN

SET (STATUS_LINE, temp { 1}, UNDERLINE, temp {8}};
ENDIF;

(continued on next page)

B-23

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

Example B-7 (Cont.) Procedure That Maps Saved Windows

B-24

IF temp {22}
THEN

SET (STATUS_LINE, temp {1}, SPECIAL_GRAPHICS, temp {8});
ENDIF;

ENDIF;
SET (WIDTH, temp {1}, temp {9});
SET (TEXT, temp {1}, temp {13});
IF temp {14}
THEN

SET (VIDEO, temp {1}, BLINK);
ENDIF;
IF temp {16}
THEN

SET (VIDEO, temp {1}, BOLD);
ENDIF;
IF temp {18}
THEN

SET (VIDEO, temp {1}, REVERSE);
ENDIF;
IF temp {20}
THEN

SET (VIDEO, temp {1}, UNDERLINE);
ENDIF;
SET (PAD, temp {1}, temp {23});
SHIFT (temp {1}, temp {24});
the_count := the_count + 1;

ENDLOOP;
IF GET_INFO (temp {25}, "type") = STRING
THEN

SET (KEY_MAP_LIST, temp {25}, temp {1});
ENDIF;
IF GET INFO (SCREEN, "decwindows")
THEN

IF temp {26}
THEN

scroll_bar_widget := SET (SCROLL_BAR,
temp {1},
VERTICAL, ON);

This statement
uses the
SET (SCROLL BAR)
built-in. -

SET (WIDGET CALLBACK,
scroll-bar widget,
"eve$scroll_dispatch",
, v');

SET (WIDGET,
scroll bar widget,
eve$$scroll_bar_callbacks);

This statement uses the
SET (WIDGET CALLBACKS)
built-in. -

This statement uses
the SET (WIDGET)
built-in.

eve$$scroll_bar_window (scroll_bar_widget) :=temp {1};
IF temp {27}

THEN

SET (SCROLL BAR AUTO THUMB,
temp {l}, VERTICAL, ON);

ENDIF;

This statement uses the
SET (SCROLL BAR AUTO THUMB)
built-in. - - -

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

Example B-7 (Cont.) Procedure That Maps Saved Windows

ENDIF;
IF temp {28}
THEN

scroll_bar_widget := SET (SCROLL_BAR, temp {1}, HORIZONTAL,
ON);

SET (WIDGET_CALLBACK, scroll_bar_widget, "eve$scroll_dispatch",
, h,) ;

SET (WIDGET, scroll bar widget, eve$$scroll bar callbacks);
eve$$scroll bar window (scroll bar widget) 7= temp {1};
IF temp {29} - - -
THEN

SET (SCROLL_BAR_AUTO_THUMB, temp {1}, HORIZONTAL, ON);
ENDIF;

ENDIF;
ENDIF;
UPDATE (ALL) ;
the_count := 1;
LOOP

EXITIF the count> GET INFO (window array, "high index");
temp := window_array {the_count}; - -
SET (SCROLLING, temp {1}, ON, temp {10}, temp {11}, temp {12});
the_count := the_count + 1;

ENDLOOP;
SET (PROMPT_AREA, screen_length - 1, 1, REVERSE);

ENDPROCEDURE;

B.9 Handling Callbacks from a Scroll Bar Widget
Example B-8 shows one of the ways an application can use the statements
POSITION (integer) and SET (WIDGET). The procedure is a portion of the
EVE procedure eve$scroll_dispatch. You can find the original version in
SYS$EXAMPLES:EVE$DECWINDOWS.TPU. For more information about
using the files in SYS$EXAMPLES as examples, see Section B.1.

The procedure eve$scroll_dispatch is the callback routine handling
callbacks from scroll bar widgets. The portion of the procedure shown
here determines where to position the editing point based on how the user
has changed the scroll bar slider. The procedure fetches the position of
the slider with the built-in GET_INFO (widget_ variable, "widget_info")
and positions the editing point to the line in the buffer equivalent to
the slider's position in the scroll bar. Finally, the procedure updates the
scroll bar's resource values. For more information about the resource
names used with the scroll bar widget, see the VMS DECwindows Toolkit
Routines Reference Manual.

EVE uses the following constants in this procedure:

• EVEDWTC_NINC - A constant for the string "inc". This is the
resource name for the amount that the scroll bar slider position is to
be incremented or decremented when a scroll bar button is pressed.

B-25

Sample DECwindows VAXTPU Procedures
B.9 Handling Callbacks from a Scroll Bar Widget

• EVEDWTC_NPAGE_INC -A constant for the string "pagelnc".
This is the resource name for the amount that the scroll bar slider
position is to be incremented or decremented when a click occurs
within the scroll bar above or below the slider.

• EVEDWTC_NMAX_ VALUE - A constant for the string "max Value".
This is the resource name for the maximum value of the scroll bar
slider position.

• EVEDWTC_NMIN_VALUE -A constant for the string "minValue".
This is the resource name for the minimum value of the scroll bar
slider position.

• EVEDWTC_NVALUE - A constant· for the string "value". This is
the resource name for the top of the scroll bar slider position.

• EVEDWTC_NSHOWN -A constant for the string "shown". This is
the resource name for the size of the slider.

• EVEDWTC_CRVALUE_CHANGE_CALLBACK - A constant for the
callback reason code DWT$C_CR_ VALUE_CHANGED. This reason
code indicates that the user changed the value of the scroll bar slider.

• EVE$K_CLOSURE - A constant for the string "closure", used as
an index for the array returned by GET_INFO (WIDGET, "callback_
parameters", array).

• EVE$K_REASON_CODE -A constant for the string "reason_code",
used as an index for the array returned by GET_INFO (WIDGET,
"callback_parameters", array).

• EVE$K_WIDGET -A constant for the string "widget", used as an
index for the array returned by GET_INFO (WIDGET, "callback_
parameters", array).

Example B-8 EVE Procedure That Handles Callbacks from a Scroll Bar Widget

PROCEDURE eve$scroll_dispatch
LOCAL status,

widget called,
widget-tag,
widget:=reason,
scroll bar values,
linenum, -
temp_array,

ON ERROR
- [TPU$_CONTROLC]:

eve$learn_abort;
ABORT;

ENDON ERROR

0 status := GET INFO (WIDGET, "callback_parameters", temp_array);

B-26

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.9 Handling Callbacks from a Scroll Bar Widget

Example B-8 (Cont.) EVE Procedure That Handles Callbacks from a Scroll Bar Widget

widget_called := temp_array {eve$k_widget};
widget tag := temp_array {eve$k_closure};
widget=reason := temp_array {eve$k_reason_code};

POSITION (eve$$scroll_bar_window {widget_called});

scroll bar values
scroll bar values
scroll bar values
scroll bar values
scroll bar values
scroll bar values
scroll bar values

:= CREATE ARRAY;
{evedwtc nine} := O;
{evedwtc-npage inc} := O;
{evedwtc-nmax ;alue} := 0;
{evedwtc-nmin-value} := 0;
{evedwtc-nvalue} := O;
{evedwtc=nshown} := O;

8 status : = GET_INFO (widget_called, "widget_info", scroll bar values);

•

The deleted statements scroll the window as dictated
by the callback reason.

CASE widget_reason

[evedwtc_crvalue_change_callback]:

IF (scroll bar values {evedwtc nvalue}
scroll=bar=values {evedwtc=nmin_value})

THEN
POSITION (beginning_of (current_buffer));

ELSE
POSITION (scroll_bar_values {evedwtc_nvalue});

ENDIF;

scroll bar values {evedwtc nine} := 1;
scroll bar values {evedwtc=npage_inc} := scroll bar values {evedwtc_nshown}

- 1;

t»sET (WIDGET, widget_called, scroll_bar_values);

ENDPROCEDURE;

0 GET_INFO (WIDGET, "callback_parameters", array) returns an array
containing the values for the current callback. The array elements
are indexed by the strings "widget", "closure", and "reason_code" that

B-27

B.10

Sample DECwindows VAXTPU Procedures
B.9 Handling Callbacks from a Scroll Bar Widget

reference the widget that is calling back, the widget's closure value,
and the reason code for the callback.

8 GET_INFO (WIDGET, "widget_info", array) allows you to fetch
information from a widget. The array parameter is indexed by
the resource names associated with the specified widget. Note that
resource names are case sensitive. Note, too, that the set of supported
resources varies from one widget type to another. When you use GET_
INFO (widget, "widget_info", array), VAXTPU queries the widget for
the requested information and puts the returned informaion in the
array elements. Any previous values in the array are lost.

• POSITION (integer) allows you to move the editing point to the record
specified by the parameter integer. VAXTPU interprets this parameter
as a record number.

8 SET (WIDGET, widget_variable, array) allows you to set resource
values for the specified widget. The array parameter is indexed by
the resource names associated with the specified widget. Note that
resource names are case sensitive. Note, too, that the set of supported
resources varies from one widget type to another.

Implementing the COPY SELECTION Operation

B-28

Example B-9 shows one of the ways an application can use the READ_
GLOBAL_SELECT built-in. The procedure is a modified version of the
EVE procedure EVE$STUFF _GLOBAL_SELECTION. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.l.

The procedure performs the following tasks:

• Saves the location of the editing point and the buffer's current mode.

• Checks that DECwindows EVE is enabled and that EVE does not have
input focus.

• Obtains the location of the pointer cursor and positions the editing
point at that location.

• Sets the text mode to insert.

• Reads the string-formatted contents of the primary global selection.
(In this context, the parameter "STRING" means that the calling
application is asking the application that owns the global selection for
the string-formatted information in the specified global selection.)

• Restores the editing point location and text mode to their previous
values.

EVE binds this procedure to the MB3 key. Thus, using MB3, the user
can direct EVE to copy selected material from a non-EVE DECwindows
application to a DECwindows EVE buffer. In DECwindows documentation,
this operation is called COPY SELECTION.

Sample DECwindows VAXTPU Procedures
B.10 Implementing the COPY SELECTION Operation

Example B-9 EVE Procedure That Implements the COPY SELECTION Operation

PROCEDURE eve$stuff _global_selection

LOCAL saved_position,
saved_mode,
this buffer,
the_window,
the_column,
the_row;

ON ERROR
[TPU$_CONTROLC]:

IF saved mode = OVERSTRIKE
THEN

SET (saved_mode, this_buffer);
ENDIF;
eve$$restore position (saved_position);
eve$learn_abort;
ABORT;

[OTHERWISE] :
IF saved_mooe = OVERSTRIKE
THEN

SET (saved_mode, this_buffer);
ENDIF;
eve$$restore_position (saved_position);

ENDON_ERROR;

this buffer := current_buffer;
saved_position :=MARK (FREE_CURSOR);
saved_mode := GET_INFO (this_buffer, "mode");

IF eve$x_decwindows_active
THEN

IF not GET_INFO (SCREEN, "input_focus")
THEN

IF LOCATE MOUSE (the_window,
the_column, the_row)

THEN
IF the row <> 0

IF-the window <> eve$choice_window
THEN

POSITION (MOUSE);
SET (INSERT, this_buffer);

This statement uses
the LOCATE MOUSE built-in.

READ_GLOBAL_SELECT (PRIMARY, "STRING"); This statement
using READ GLOBAL SELECT
reads the string-­
formatted contents
of the primary
global selection.

(continued on next page)

B-29

B.11

Sample DECwindows VAXTPU Procedures
B.10 Implementing the COPY SELECTION Operation

Example B-9 {Cont.) EVE Procedure That Implements the COPY SELECTION Operation

eve$$restore_position (saved_position);
SET (saved mode, this buffer);
UPDATE (CURRENT_WINDOW) ;
RETURN (TRUE);

ENDIF;
ENDIF;

ENDIF;
ENDIF;

ENDIF;

RETURN (FALSE);

ENDPROCEDURE;

Reactivating a Select Range
Example B-10 shows one of the ways an application can use the SET
(GLOBAL_SELECT) built-in. The procedure is a modified version of the
EVE procedure EVE$RESTORE_PRIMARY_SELECTION. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B. l.

The procedure eve$restore_primary _selection reactivates EVE's select range
when EVE regains input focus.

Example B-10 EVE Procedure That Reactivates a Select Range

PROCEDURE eve$restore_primary_selection

LOCAL saved_position;

ON ERROR
- [TPU$ CONTROLC] :

e:;e$$restore position (saved_position);
eve$learn_abort;
ABORT;

[OTHERWISE] :
eve$$restore_position (saved_position);

ENDON_ERROR;

IF NOT eve$x_decwindows_active
THEN

RETURN (FALSE);
ENDIF;

saved_position :=MARK (FREE_CURSOR);

B-30

(continued on next page)

B.12

Sample DECwindows VAXTPU Procedures
B.11 Reactivating a Select Range

Example B-10 (Cont.) EVE Procedure That Reactivates a Select Range

IF GET_INFO (eve$$x_save_select_array, "type") = ARRAY
THEN

CASE eve$$x_save_select_array {"type"}
[RANGE]:

eve$select_a_range (eve$$x save select array {"start"},
eve$$x-save-select-array {"end"});

eve$$x_state_array {eve$$k-select all active} :=
- - - eve$$x_save_select_array

{"select_all"};
POSITION (eve$$x save select array {"current"});
eve$start_pending_delete; -

[MARKER]:
POSITION (eve$$x save select array {"start"});
eve$x select position-:= select (eve$x highlighting);
POSITION (eve$$x save select array {"end"});
eve$start pending delete; -

[OTHERWISE]: - -
RETURN (FALSE);

ENDCASE;

eve$$restore position (saved position);
eve$$found_post_filter; - ! This is necessary if the

! cursor is outside the selection.

eve$$x_save_select_array {"type"} := O;
UPDATE (current window);
IF eve$x_decwindows_active
THEN

SET (GLOBAL_SELECT, SCREEN, PRIMARY);

ENDIF;
RETURN (TRUE);

ENDIF;
RETURN (FALSE);

ENDPROCEDURE;

This statement using
SET (GLOBAL_SELECT)
requests ownership of
the primary global selection.

Copying Selected Material from EVE to Another DECwindows
Application

Example B-11 shows one of the ways a layered application can use the
WRITE_GLOBAL_SELECT built-in. The procedure is a modified version
of the EVE procedure EVE$WRITE_GLOBAL_SELECT. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

The procedure implements the operation of copying selected material from
DECwindows EVE to another DECwindows application. in DECwindows
documentation, this operation is called COPY SELECTION.

B-31

Sample DECwindows VAXTPU Procedures
B.12 Copying Selected Material from EVE to Another DECwindows Application

The procedure determines what property of the primary global selection
is being requested, obtains the value of the appropriate property using a
GET_INFO statement or an EVE procedure, and sends the information to
the requesting application.

Example B-11 EVE Procedure That Implements COPY SELECTION

PROCEDURE eve$write_global_select

LOCAL saved_position,
the_data,
temp array,
total lines,
the_line,
status,
eob_flag,
percent;

ON ERROR
[OTHERWISE] :

EVE uses this procedure
to respond to requests
for information about
selections.

eve$$restore_position (saved position);
ENDON_ERROR;

saved_position :=MARK (FREE_CURSOR);

IF NOT eve$x_decwindows_active

THEN
RETURN (FALSE);

ENDIF;

the data := "";
temp_array := GET_INFO (SCREEN, "event", GLOBAL_SELECT);

Finds out which global selection and which property
of the global selection are the subject of the
information request.

CASE temp_array {2}

["STRING", "TEXT"]:

Determines the property requested by the other application.

If one of these strings is requested, the

B-32

procedure sends the text in the global
selection to the requesting application.

CASE temp_array {1} ! Checks which global selection was specified.
[PRIMARY]:

IF eve$x_select_position <> 0
THEN

POSITION (GET_INFO (eve$x_select_position, "buffer"));

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.12 Copying Selected Material from EVE to Another DECwindows Application

Example B-11 (Cont.) EVE Procedure That Implements COPY SELECTION

IF GET_INFO (eve$x_select_position, "type") = RANGE
THEN

the data := STR (eve$x_select_position);
ELSE

IF GET INFO (eve$x_select_position, "type") = MARKER
THEN

the data := STR (eve$select_a_range (eve$x_select_position,
MARK (FREE_CURSOR)));

ELSE
the data := NONE;

ENDIF;
ENDIF;
eve$$restore_position (saved_position);

ENDIF;
[OTHERWISE] :

the data := NONE;
ENDCASE;

[OTHERWISE] :
the data := NONE;

ENDCASE;

WRITE_GLOBAL_SELECT (the_data);

ENDPROCEDURE;

The procedure does not send data if
the requesting application has asked
for something other than the text,
the file name, or the line number.

This statement sends the
requested information to
the requesting application.

B-33

C VAXTPU Terminal Support

This appendix lists the terminals that support screen-oriented editing
and describes how differences among these terminals affect the way
VAXTPU performs. This appendix also describes how VAXTPU can be
run on terminals that do not support screen-oriented editing. Finally, this
appendix tells you how VAXTPU manages wrapping and how you can
modify that.

C.1 Screen-Oriented Editing on Supported Terminals

C.1.1

VAXTPU supports screen-oriented editing only on terminals that
respond to ANSI control functions and that operate in ANSI mode. By
default, your VAXTPU session runs with the screen management file
TPU$CCTSHR.EXE. To check your terminal setting, enter the command
SHOW TERMINAL at the DCL level.

VAXTPU screen-oriented editing is designed to optimize the features
available with the Digital VT300 and VT200 families of terminals and
the Digital VTlOO family of terminals. VAXTPU does not support screen­
oriented editing on Digital VT52-compatible terminals. Optimum VAXTPU
performance is achieved on the VT300-series, VT200-series, and VTlOO­
series terminals. Some of the high-performance characteristics of VAXTPU
may not be apparent on the terminals listed in Table C-1 for the reasons
stated.

Table C-1 Terminal Behavior That Affects VAXTPU's Performance

Terminal

VT102

VT240

GIGI

Characteristic

Slow autorepeat rate

Slow autorepeat rate
Slower scrolling region setup time than the VT220.

One form of scrolling region (VAXTPU repaints screen, rather than use
this scrolling mechanism)
Variable autorepeat rate (cursor keys pick up speed when used
repeatedly)

Terminal Settings That Affect VAXTPU
The following settings may affect the behavior ofVAXTPU, depending on
the terminal that you use.

C-1

VAXTPU Terminal Support
C.1 Screen-Oriented Editing on Supported Terminals

C-2

132-Column Mode

Only terminals that set the DEC_CRT mode bit and the advanced video
mode bit can alter their physical width from 80 columns to 132 and back.
All other terminals keep the physical width that is set when you enter the
editor.

For the VAX.TPU screen manager to behave predictably on GIGI terminals,
you should report the terminal width as 84 to VMS. Use the DCL
command SET TERMINAUDEVICE=VKlOO to set the proper terminal
width.

Autorepeat ON/OFF and Auxiliary Keypad Enabling

To take advantage of the built-in procedure SET (AUTO_REPEAT) or
to enable the auxiliary keypad for applications mode, the terminal must
be set to DEC_CRT3, DEC_CRT2, DEC_CRT, or VK100. Use the DCL
command SET TERMINAUDEVICE=characteristic to set the terminal.

Control Sequence Introducer

A feature of VAX.TPU is that it can use one 8-bit control sequence
introducer (CSI) to introduce a terminal control sequence. (Normally,
the 2-character combination of the ESCAPE key and the left bracket ([)
is used.) To take advantage of this feature, set your terminal to DEC_
CRT2 mode. The Digital VT300-series and VT220 and VT240 terminals
currently support this feature.

Cursor Positioning

If your terminal sets the DEC_CRT mode bit, VAXTPU assumes that when
control sequences that position the cursor to row 1 or column 1 are sent
to the terminal, the 1 can be omitted. If your terminal does not behave
correctly when it receives these control sequences, you must turn off the
DEC_CRT mode bit. Some foreign terminals may not be fully compatible
with VAX.TPU and may exhibit this behavior.

Edit Mode

Terminals that are operating in edit mode allow the editor to take
advantage of special edit-mode control sequences during deletion and
insertion of text for optimization purposes. Some current Digital terminals
that support edit mode include the VT102, the VT220, the VT240, the
VT241, and VT300-series terminals.

8-Bit Characters

ANSI terminals operating in 8-bit mode have the ability to use the
supplemental characters and control sequences in the DEC Multinational
Character Set. The Digital VT300 series and the VT220 and VT240
terminals currently support 8-bit character mode. If you have the 8-
bit mode bit set, VAXTPU designates the DEC Multinational Character
Set into G2 and invokes it into GR. For more information on how your
terminal interacts with the DEC Multinational Character Set, refer to the
programming manual for your specific terminal.

C.1.2

VAXTPU Terminal Support
C.1 Screen-Oriented Editing on Supported Terminals

Scrolling

Scrolling regions are only used for terminals that have the DEC_CRT
mode bit set. On other terminals, VAXTPU repaints the window when
a scroll would have been used (for example, when a line is deleted or
inserted).

Video Attributes

When you set the video attributes of windows, markers, or ranges, only
those attributes supported by your terminal type give predictable results.
Most ANSI CRTs support reverse video. However, only terminals that
support DEC_CRT mode with the advanced video option (AVO) have the
full range of video attributes (reverse, bold, blink, underline) that VAXTPU
supports.

The DCL Command SET TERMINAL
When you use the DCL command SET TERMINAL to specify
characteristics for your terminal, make sure to set only those
characteristics that are supported by your terminal. If you set
characteristics that the terminal does not support, the screen-oriented
functions of VAXTPU may behave unpredictably. For example, if you run
VAXTPU on a VTlOO terminal and you set the DEC_CRT2 characteristic
that VTlOOs do not support, VAXTPU tries to use 8-bit CSI controls.
This could cause ";7m" to appear on the screen where the reverse video
attribute should be set.

Most users do not knowingly set characteristics that are not supported
by their terminals. However, if you temporarily move to a different type
of terminal, your LOGIN.COM file may have characteristics set for your
usual terminal that do not apply to the current terminal. This problem
may also occur if, before running VAXTPU, you run a program that
modifies your terminal characteristics without your knowledge.

If you see unexpected video attributes or extraneous characters on the
screen, exit from VAXTPU and check your terminal characteristics with
the DCL command SHOW TERMINAL.

Recover your files using the same terminal characteristics with which
your files were created. Otherwise, a journal file inconsistency may occur,
depending on how your interface is written.

C.2 Line-Mode Editing on Unsupported Terminals
If you want to run VAXTPU from an unsupported terminal, you must
inform VAXTPU that you do not want to use screen capabilities. To invoke
VAXTPU on an unsupported terminal, use the qualifier /NODISPLAY
after the command EDITtrPU. See Chapter 5 for more information on
this qualifier. While in no-display mode, VAXTPU uses the RTL generic
LIB$PUT_OUTPUT routine to display prompts and messages at the
current location in SYS$0UTPUT. By using a combination of the built-in
procedures READ_LINE and MESSAGE, you can devise your own line­
mode editing functions or perform editing tasks from a batch job. See the
sample line-mode editor in Appendix A.

C-3

VAXTPU Terminal Support
C.3 Terminal Wrap

C.3 Terminal Wrap

C-4

If you have enabled an automatic wrap setting on your terminal, VAXTPU
disables this setting in order to manage the screen more efficiently. When
you exit from VAXTPU, VAXTPU restores all terminal characteristics
to the setting of the DCL command SET TERMINAL before invoking
VAXTPU. If the DCL command SET TERM/NOWRAP is active, VAXTPU
leaves the hardware wrap off. However, if the DCL command SET TERM
/WRAP is active, VAXTPU assumes that you want hardware wrap on, so it
turns it on when you exit from VAXTPU.

If you do not want this behavior of VAXTPU, you can prevent VAXTPU
from turning on hardware wrap by specifying SET TERM/NOWRAP before
invoking VAXTPU. You can enter the command interactively, or you can
write a DCL command procedure that makes this setting part of your
VAXTPU environment. Example C-1 shows a DCL command procedure
that is used to control this terminal setting before and after a VAXTPU
session.

Example C-1 DCL Command Procedure for SET TERM/NOWRAP

$ SET TERM/NOWRAP
$ ASSIGN/USER SYS$COMMAND SYS$INPUT
$ EDIT/TPU/SECTION = EDTSECINI
$ SET TERM/WRAP

D VAXTPU Messages

This appendix presents the messages produced by VAXTPU. The messages
are listed alphabetically by their abbreviations in Table D-1. The text of
the message and its severity level appears with each abbreviation. For
an explanation of the severity levels for messages, see the VMS System
Messages and Recovery Procedures Reference Manual.

The VMS System Messages and Recovery Procedures Reference Manual
also contains the VAXTPU messages, including the appropriate
explanations of the messages and the suggested actions to recover from
the errors which provoke the messages.

Table D-1 VAXTPU Messages and Their Severity Levels

Abbreviation

ACCVIO

ADJSCROLLREG

AMBIGSYMUSED

ARGMISMATCH

ASYNCACTIVE

ATLINE

ATPROCLINE

BAD ASSIGN

BADBUFWRITE

BADCASELIMIT

BADCASERANGE

BAD CHAR

BAD DELETE

BADDISPVAL

BADEXITIF

BADFIRSTLINE

BADJOUCHAR

BADJOUCOM

BADJOUCPOS

BADJOUEDIT

Message

Access violation, reason mask= ' xx' , virtual
address='xxxxxxxx', PC='xxxxxxxx', PSL='xxxxxxxx'

Scrolling parameters altered to top: 'top', bottom: 'bottom',
amount: 'amount'

Ambiguous symbol 'name' used as procedure parameter

Parameter 'number"s data type, 'type', unsupported

Journal file prohibited with asynchronous handlers declared

At line 'integer'

At line 'integer' of procedure 'name'

Target of the assignment cannot be a function/keyword

Error occurred writing buffer 'buffer name'

CASE constant outside CASE limits

Invalid CASE range

Unrecognized character in input

Cannot modify constant integer, keyword, or string

display value = 'integer', must be between 'integer' and
'integer'

EXITIF occurs outside a LOOP

First line = 'integer', must be between 'integer' and 'integer'

Expected character in journal file

Journaled command file was 'string', recovering with 'string'

Journaled starting character was 'integer', recovering with
'integer'

Journaled edit mode was 'string', recovering with 'string'

Severity Level

FATAL

INFORMATIONAL

INFORMATIONAL

ERROR

WARNING

INFORMATIONAL

INFORMATIONAL

ERROR

WARNING

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

WARNING

WARNING

ERROR

ERROR

ERROR

(continued on next page)

D-1

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

BADJOUEIGHT

BADJOUFILE

BADJOUINIT

BADJOUINPUT

BADJOUKEY

BADJOULINE

BADJOULPOS

BADJOUPAGE

BADJOUSEC

BADJOUSTR

BADJOUTERM

BADJOUWIDTH

BAD KEY

BAD LENGTH CHANGE

BADLOGIC

BADMARGINS

BADPROCNAME

BADPROMPTLEN

BAD READ

BADREFCNT

BADREQUEST

BADSCREENWIDTH

BADSECTION

BADSTATUS

BADSTRCNT

BADSYMTAB

BADUSERDESC

BADVALUE

BADWIDTHCHANGE

BADWINDADJUST

BADWINDLEN

D-2

Message

Journaled eightbit was 'string', recovering with 'string'

Operation terminated due to error in journal file access

Journaled init file was 'string', recovering with 'string'

Journaled input file was 'string', recovering with 'string'

Expected key in journal file

Journaled line editing was 'string', recovering with 'string'

Journaled starting line was 'integer', recovering with
'integer'

Journaled page length was 'integer', recovering with
'integer'

Journaled section file was 'string', recovering with 'string'

Expected string in journal file

Journaled terminal type was 'string', recovering with 'string'

Journaled width was 'integer', recovering with 'integer'

'keyword' is an invalid keyword

Terminal will not support change of length

Internal logic error detected

Margins specified incorrectly

Variable used as a procedure

Prompt area length = 'integer', must be between 'integer'
and 'integer'

Read next or read prev with current record of 0, dscb:
'address'

Ref count: 'ccc', zap count: 'zzz', address: 'xxxxxxxx'

Request "'name"' of 'name' is not understood

Terminal must be wider than widest window, 'integer'
columns

Bad section file

Return status 'xxxxxxxx' different from last signal 'xxxxxxxx'

Invalid string count found in journal file

Bad symbol table

Descriptor from user routine invalid or memory inaccessible

Integer value 'integer' is outside specified limits

Terminal will not support change of width

Attempt to make window less than 1 line long, no
adjustment

Window length = 'integer', must be between 'integer' and
'integer'

Severity Level

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

ERROR

WARNING

WARNING

FATAL

WARNING

ERROR

WARNING

FATAL

FATAL

WARNING

WARNING

ERROR

FATAL

WARNING

ERROR

ERROR

ERROR

WARNING

WARNING

WARNING

(continued on next page)

VAXTPU Messages

Table D-1 {Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

BEGOFBUF

BINARYOPER

BOTLINETRUNC

BUILTININV

CALLUSERFAIL

CANCELQUIT

CANNOTUNSEL

CAPTIVE

CLIPBOARDFAIL

CLIPBOARDLOCKED

CLIPBOARDNODATA

CLIPBOARDZERO

CLOSED IC

CLOSE IN

CLOSEOUT

CNVERR

COMPILED

COMPILEFAIL

CONSTRTOOLARGE

CONTRADEF

CONTROLC

CREATED

CREATE FAIL

DDIFIN

DD I FOUT

DEBUG

DELETEFAIL

DICADD

DICDEL

DICUPDERR

DIVBYZERO

DUPBUFNAME

DUPKEYMAPLIST

DUPKEYMAP

EMPTYKMLIST

Message

Attempt to move past the beginning of buffer 'buffer name'

Operand combination 'type' 'oper' 'type' unsupported

Calculated new last line 'integer', changed to 'integer'

Builtin is invalid at this time

CALL_USER routine failed with status %X'status'

QUIT canceled by request

Cannot unselect item from unselect action routine

Unable to create a subprocess in a captive account

Unexpected clipboard failure

Clipboard is locked by another process

Clipboard does not contain the requested data

Clipboard data has O length

Error closing the dictionary file

Error closing input file 'file-spec'

Error closing output file 'file-spec'

Error occurred in the conversion routine

Compilation completed without errors

Compilation aborted

Constant string too large

Contradictory definition for variable or constant 'name'

Operation aborted by CTRLJC

'file-spec' created

Unable to activate subprocess

'count' line(s), 'count' frame(s) read from file 'name'

'count' line(s), 'count' frame(s) written to file 'name'

Breakpoint at line 'integer'

Unable to terminate subprocess

'word' has been added to a dictionary as 'word'

'word' has been removed from 'word' of a dictionary

Error updating dictionary file

Divide by zero

Buffer 'name' already exists

Attempt to define a duplicate key-map list 'key-map-list­
name'

Attempt to define a duplicate key map 'key-map-name'

Key-map list 'key-map-list-name' does not contain any key
maps

Severity Level

WARNING

WARNING

INFORMATIONAL

ERROR

WARNING

WARNING

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

SUCCESS

WARNING

ERROR

ERROR

ERROR

SUCCESS

WARNING

SUCCESS

SUCCESS

SUCCESS

WARNING

SUCCESS

SUCCESS

ERROR

ERROR

WARNING

WARNING

WARNING

WARNING

(continued on next page)

D-3

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

ENDOFBUF

ENDOFLINE

ERRSYMACTIVE

EXECUTEFAIL

EXITFAIL

EXITING

EXPCLA

EXPCOMPLEX

EXPECTED

EXTNOTFOUND

EXTRANEOUSARGS

FACTOOLONG

FAILURE

FAILURE_ STATUS

FENCEPOST

FILECONVERTED

FILEIN

Fl LEO UT

FLAGTRUNC

FREEMEM

FROMBUILTIN

FROM LINE

FROMPROCLINE

GBLSELOWNER

GETMEM

HIDDEN

IDMISMATCH

ILLCONDIT

ILLEGAL TYPE

ILLPATAS

ILLREQUEST

ILLSEVERITY

INBUILTIN

INCKWDCOM

INDEXTYPE

D-4

Message

Attempt to move past the. end of buffer 'buffer name'

Returning a range of text with an end of line

Special error symbol already active

Execution aborted

Attempt to EXIT was unsuccessful

Editor exiting

The current clause has been expanded

Expression too complex

One of the following symbols was expected:

Extension 'name' not found

One or more extraneous arguments specified

Facility name, 'name', exceeds maximum length 'integer'

Internal VAXTPU failure detected at PC 'number'

Facility 'name' returned failure status of 'xxxxxxxx'

No visible record found in specified range

File format is being converted to a supported type

'count' line(s) read from file 'name'

'count' line(s) written to file 'name'

Value of message flags exceeds maximum value 15,
truncated

Memory deallocation failure

Called from builtin 'name'

Called from line 'integer'

Called from line 'integer,. of procedure 'name'

You are the global selection owner

Memory allocation failure (Insufficient virtual memory)

Global variable 'name' by declaration

Section NOT restored, section file must be rebuilt

Illegal compilation conditional

Illegal data type

Pattern assignment target only valid in procedure 'name'

Request "'name"' is invalid

Illegal severity of 'value' specified, error severity used

Occurred in builtin 'name'

Inconsistent keyword combination

Array index data type, 'type', unsupported

Severity Level

WARNING

SUCCESS

WARNING

WARNING

WARNING

SUCCESS

INFORMATIONAL

ERROR

INFORMATIONAL

ERROR

ERROR

WARNING

FATAL

ERROR

WARNING

ERROR

SUCCESS

SUCCESS

WARNING

FATAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

WARNING

ERROR

INFORMATIONAL

FATAL

ERROR

ERROR

ERROR

WARNING

WARNING

INFORMATIONAL

WARNING

WARNING

(continued on next page)

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

INPUT _CANCELED

INSVIRMEM

INVACCESS

INVBUFDELETE

INVDEVTYPE

INVFAOPARAM

INVGBLSELDATA

INVIOCODE

INVITEMCODE

INVNUMSTR

INVPARAM

I NV RANGE

INVTABSPEC

INVTIME

JNLACTIVE

JNLNOTOPEN

JN LOP EN

JOURNALBEG

JOURNALCLOSE

JOURNALEOF

JRNLBUFBEG

JRNLNOTSAFE

JRNLOPEN

KEYMAPNOTFND

KEYSUPERSEDED

KEYWORDPARAM

LINENOTMOD

LINETOOLONG

MAXMAPPEDBUF

MAXVALUE

MINVALUE

MISSINGQUOTE

MISSYMTAB

MIXEDTYPES

MODRANGEMARKS

Message

Input request canceled

Insufficient virtual memory

Invalid file access specified

Cannot delete a permanent buffer

Invalid device type

FAQ parameter 'integer' must be string or integer

The selected data cannot be processed

Invalid Operation Code passed to an 1/0 operation

Invalid item code specified in list

Invalid numeric string

Parameter 'number"s data type, 'type', illegal; expected
'type'

Invalid range enclosure specified

Tabs specification incorrect, not changed

Invalid time interval

Asynchronous actions prohibited when journal file open

Journal file not open, recovery aborted

Journal file already open

Journal of edit session started

Journal file successfully closed, journaling stopped

End of journal file found unexpectedly

Journaling started for buffer 'buffer name'

Buffer 'buffer name' is not safe for journaling

Journal file already open for buffer 'buffer name'

Key map 'key-map-name' not found in key-map list 'key­
map-list-name'

Definition of key 'name' superseded

Keyword 'name' used as procedure/variable/constant

Attempt to change unmodifiable line(s)

Line is maximum length, cannot add text to it

A single buffer can be mapped to at most 'count' window(s)

Maximum value is 'integer'

Minimum value is 'integer'

Missing quote

Missing symbol table

Operator with mixed or unsupported data types

MODIFY _RANGE requires either two marks or none

Severity Level

WARNING

FATAL

FATAL

WARNING

FATAL

WARNING

WARNING

ERROR

FATAL

WARNING

ERROR

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

INFORMATIONAL

SUCCESS

WARNING

INFORMATIONAL

WARNING

WARNING

WARNING

INFORMATIONAL

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

(continued on next page)

D-5

VAXTPU Messages

Table D-1 {Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

MOUSE I NV

MOVETOCOPYTEXT

MOVETOCOPY

MSGBUFSET

MSGNOTFND

MULTIDEF

MULTIPLENAMES

MULTISELECT

MUSTBECONST

MUSTBEONE

NEEDFILENAME

NEEDTOASSIGN

NOASSIGNMENT

NOBREAKPOINT

NOCACHE

NOCALLUSER

NOCHARREAD

NOC LA

NOCOPYBUF

NOCURRENTBUF

NODEFINITION

NOD IC ENT

NOD ICU PD

NODIC

NOENDOFLINE

NOEOBSTR

NOFILEACCESS

NOFILEROUTINE

NOFOCUSOWNER

NOGBLSELDATA

NOGBLSELOWNER

NOJOURNAL

NOKEYMAPLIST

D-6

Message

Mouse location information is invalid

Moving unmodifiable line(s) from buffer 'string' changed to
copy

Move from unmodifiable buffer 'string' changed to copy

Attempt to change modifiable setting of message buffer

Message was not found; the default message has been
returned

Parameter/local/constant 'name' multiply defined

There is more than one name matching, all are returned

Multiple identical CASE selectors

Expression must be a compile-time constant

String must be 1 character long

Type filename for buffer 'name' (press RETURN to not
write it):

Built-in must return a value

Expression without assignment

No breakpoint is active

Insufficient virtual memory to allocate a new cache

Could not find a routine for CALL~USER to invoke

No character was read by the READ_CHAR builtin

No conversion source has been specified yet

Cannot COPY a buffer to itself

No buffer has been selected as default

Key 'keyname' currently has no definition

No entry found in a dictionary

The dictionary is restricted updating

No dictionary available in this editing session

Returning a range of text with no end of line

Cannot return a string at end of buffer

Unable to access file 'name'

No routine specified to perform FILE 1/0

There is no input focus owner

No global selection data

There is no global selection owner

Editing session is not being journaled

Attempt to access an undefined key-map list 'key-map-list­
name'

Severity Level

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

WARNING

ERROR

ERROR

WARNING

SUCCESS

ERROR

ERROR

WARNING

ERROR

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

SUCCESS

WARNING

ERROR

FATAL

WARNING

WARNING

WARNING

WARNING

WARNING

(continued on next page)

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

NOKEYMAP

NONAMES

NONANSICRT

NOPARENT

NOPROCESS

NOREDEFINE

NORETURNVALUE

NOS ELECT

NOSHOWBUF

NOTARRAY

NOTDEFINABLE

NOTERRORKEYWORD

NOTIMPLEMENTED

NOT JOURNAL

NOTLEARNING

NOTMODIFIABLE

NOTSAMEBUF

NOTSUBCLASS

NO TY ET

NOWINDOW

NO

NULLSTRING

OCCLUDED

ONDELRECLIST

ONELEARN

ONESELECT

OPEN DIC

OPEN IN

OPEN OUT

OVERLAPRANGE

PARSEFAIL

PARSEOVER

PREMATUREEOF

PRESSRET

PROCESS BEG

Message

Attempt to access an undefined key map 'key-map-name'

There are no names matching the one requested

SYS$1NPUT must be supported CRT

There is no parent process to attach to

No subprocess to interact with

Built-in procedure 'name' cannot be redefined

Built-in does not return a value

No select active

Variable SHOW_BUFFER does not exist or is not a buffer

Indexed variable is not an array

That key is not definable

Error handler selector is not an error keyword

Builtin compiled by 'name' is not implemented by 'name'

'file' is not a journal file

You have not begun a learn sequence

Attempt to change unmodifiable buffer 'string'

The markers are not in the same buffer

Object is not a subclass of WindowObjClass

Not yet implemented

Attempt to position the cursor outside all of the mapped
windows

NO

Null string used

Builtin/keyword 'name' occluded by declaration

Attempt to access a record on the deleted list

Cannot start a learn sequence while one is active

Select already active, maximum 1 per buffer

Error opening the dictionary file

Error opening 'input-file' as input

Error opening 'output-file' as output

Overlapping ranges, operation terminated

Error parsing 'file-spec'

Parser stack overflow

Premature end-of-file detected

Press RETURN to continue ...

Subprocess activated

Severity Level

WARNING

WARNING

ERROR

WARNING

WARNING

ERROR

ERROR

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

INFORMATIONAL

WARNING

INFORMATIONAL

FATAL

WARNING

WARNING

ERROR

ERROR

ERROR

WARNING

WARNING

ERROR

ERROR

SUCCESS

SUCCESS

(continued on next page)

D-7

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

PROCESS END

PROCSUPERSEDED

QUITTING

READABORTED

READERR

READQUEHEADER

READZERO

REALLYQUIT

REALL YRECOVER

RECJNLOPEN

RECOVERABORT

RECOVERBEG

RECOVERBUFBEG

RECOVERBUFEND

RECOVERBUFFILE1

RECOVERBUFFILE2

RECOVEREND

RECOVER FAIL

RECOVERQUIT

RECURLEARN

RECURREAD

REFRESH_NEEDED

REGWIDDUP

REPLAYFAIL

REPLAYWARNING

REQARGSMISSING

REQUIRESDECW

REQUIRESTERM

RESTORE FAIL

REVERSECASE

ROUND

SAVEAMBIGSYM

D-8

Message

Subprocess terminated

Definition of procedure 'name' superseded

Editor quitting

READ_CHAR, READ_KEY, or READ_LINE builtin was
aborted

Error reading 'input-file-spec'

Attempt to read queue header of dscb: 'address'

Read of record id 0, dscb: 'address'

Buffer modifications will not be saved, continue quitting (Y
or N)?

Continue recovering (Y or N)?

Journal file open, recovery status unchanged

Recovery aborted by journal file inconsistency, journal file
closed

Recovery started

Recovery started for buffer 'buffer name'

Recovery complete for buffer 'buffer name'

Can not recover from file 'file name'

Please type in a new file specification:

Recovery complete

Recovery terminated abnormally, journal file inconsistency

No file name specified, nothing recovered

Learn sequence replay halted due to recursion

READ_LINE cannot be part of user defined READ_LINE
procedure

Screen refresh needed

Registration string already associated with a different
widget

An inconsistency has been discovered, halting execution

An inconsistency has been discovered, continuing
execution

One or more required arguments missing

Feature requires the VAXTPU DECwindows screen updater

Feature requires a terminal

Error during RESTORE operation

CASE limits were reversed

FORWARD was rounded to the top

Saving ambiguous symbol 'name'

Severity Level

SUCCESS

INFORMATIONAL

SUCCESS

WARNING

ERROR

FATAL

FATAL

SUCCESS

SUCCESS

ERROR

WARNING

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

(continued on next page)

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

SAVE ERROR

SAVEUNDEFPROC

SCANADVANCE

SEARCH FAIL

SECTRESTORED

SECTSAVED

SECTUNDEFPROC

SELRANGEZERO

SENDFAIL

SHRCLA

SOURCELINE

STACK OVER

STATOOLONG

STRNOTFOUND

STRTOOLARGE

STRTOOLNG

SUCCESS

SYMDELETE

SYMINSERT

SYMREPLACE

SYMTBLFUL

SYNTAXERROR

SYS ERROR

TEXT

TIMEOUT

TOO FEW

TOOMANYCLA

TOOMANYPARAM

TOOMANYRECS

TOOMANY

TOPLINETRUNC

TRUNCATE

UKNFACILITY

UNARYOPER

Message

Error during SAVE operation

Saving undefined procedure 'name'

*** Scanner advanced to "'name"' ***

Error searching for 'file-spec'

'count' procedure(s), 'count' variable(s), 'count' key(s)
restored

'count' procedure(s), 'count' variable(s), 'count' key(s)
saved

Saved 'count' undefined procedure(s), 'count' ambiguous
symbol(s)

Select range has O length

Unable to send to subprocess

The current clause has been shrunk

At source line 'integer'

Stack overflow during compilation

Truncating status line to 'count' characters

String not found

String greater than 65535 characters

String is too long for a conversion source

Successful completion

*** Error symbol deleted ***

*** "'name"' inserted before error symbol ***

*** Error symbol replaced by "'name"' ***

All symbol tables are full

Syntax error

System service error

'message'

Builtin timed out

Too few arguments

Too many clauses are found while converting

Too many formal parameters/local variables

Too many records

Too many arguments

Calculated new first line 'integer', changed to 1

Line truncated to 'count' characters

Unknown facility code specified

Operand combination 'oper' 'type' unsupported

Severity Level

ERROR

INFORMATIONAL

ERROR

WARNING

INFORMATIONAL

SUCCESS

WARNING

WARNING

WARNING

INFORMATIONAL

INFORMATIONAL

ERROR

INFORMATIONAL.

WARNING

ERROR

ERROR

SUCCESS

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

INFORMATIONAL

WARNING

ERROR

WARNING

ERROR

ERROR

ERROR

INFORMATIONAL

WARNING

WARNING

WARNING

(continued on next page)

D-9

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

UNDEFINEDPROC Undefined procedure call 'name' ERROR

UNDWIDCLA Undefined widget class specified WARNING

UNKESCAPE Unknown escape sequence read WARNING

UNKKEYWORD An unknown keyword has been used as an argument ERROR

UNKLEXICAL Unknown lexical element ERROR

UNKOPCODE Unknown opcode 'value' ERROR

UNKTYPE Unknown data type 'value' ERROR

UNKWNDESC Unknown descriptor type ERROR

UNREACHABLE Unreachable code INFORMATIONAL

WIDMISMATCH Parameter 'number"s class, 'class', unsupported ERROR

WINDNOTMAPPED The window is not mapped to a buffer WARNING

WINDNOTVIS Built-in cannot operate on an invisible window WARNING

WRITE ERR Error writing 'output-file-spec' ERROR

YES YES INFORMATIONAL

D-10

E DEC Multinational Character Set

This appendix presents the DEC multinational character set. In Table E-1
the control characters are shown as reverse question marks, which is how
they appear on the VT300 series and VT200 series of terminals. On the
VTlOO series of terminals, control characters appear as rectangles.

Table E-1 DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 0 NUL null character

? SOH start of heading

? 2 STX start of text

? 3 ETX end of text

? 4 EOT end of transmission

? 5 ENQ enquiry

? 6 ACK acknowledge

? 7 BEL bell

? 8 BS backspace

~ 9 HT horizontal tabulation

~ 10 LF line feed

"r 11 VT vertical tabulation

FF 12 FF form feed

~ 13 CR carriage return

? 14 so shift out

? 15 SI shift in

? 16 OLE data link escape

? 17 DC1 device control 1

? 18 DC2 device control 2

? 19 DC3 device control 3

? 20 DC4 device control 4

? 21 NAK negative acknowledge

? 22 SYN synchronous idle

? 23 ETB end of transmission block

? 24 CAN cancel

? 25 EM end of medium

\ ? 26 SUB substitute
I

)

(continued on next page)

E-1

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 27 ESC escape

? 28 FS file separator

? 29 GS group separator

? 30 RS record separator

? 31 us unit separator

? 32 SP space

33 exclamation point

34 quotation marks (double quote)

35 # number sign

$ 36 $ dollar sign

% 37 % percent sign

& 38 & ampersand

39 apostrophe (single quote)

40 opening parenthesis

41 closing parenthesis

42 * asterisk

+ 43 + plus

44 comma

45 hyphen or minus

46 period or decimal point

I 47 I slash

0 48 0 zero

49 one

2 50 2 two

3 51 3 three

4 52 4 four

5 53 5 five

6 54 6 six

7 55 7 seven

8 56 8 eight

9 57 9 nine

58 colon

59 semicolon

< 60 < less than

61 equals

(continued on next page)

E-2

DEC Multinational Character Set

Table E-1 {Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

> 62 > greater than

? 63 ? question mark

@ 64 @ commercial at

A 65 A uppercase A

B 66 B uppercase B

c 67 c uppercase C

D 68 D uppercase D

E 69 E uppercase E

F 70 F uppercase F

G 71 G uppercase G

H 72 H uppercase H

73 I uppercase I

J 74 J uppercase J

K 75 K uppercase K

L 76 L uppercase L

M 77 M uppercase M

N 78 N uppercase N

0 79 0 uppercase 0

p 80 p uppercase P

a 81 a uppercase a
R 82 R uppercase R

s 83 s uppercase S

T 84 T uppercase T

u 85 u uppercase U

v 86 v uppercase V

w 87 w uppercase W

x 88 x uppercase X

y 89 y uppercase Y

z 90 z uppercase Z

91 opening bracket

\ 92 back slash

] 93 closing bracket
/\ 94 /\ circumflex

95 underline (underscore)

96 grave accent
h

(continued on next page) \

/

E-3

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

a 97 a lowercase a

b 98 b lowercase b

c 99 c lowercase c

d 100 d lowercased

e 101 e lowercase e

f 102 lowercase f

g 103 g lowercase g

h 104 h lowercase h

105 lowercase i

106 lowercase j

k 107 k lowercase k

108 lowercase I

m 109 m lowercase m

n 110 n lowercase n

0 111 0 lowercase o

p 112 p lowercase p

q 113 q lowercase q

r 114 r lowercase r

s 115 s lowercases

116 lowercase t

u 117 u lowercase u

v 118 v lowercase v

w 119 w lowercase w

x 120 x lowercase x

y 121 y lowercase y

z 122 z lowercase z

{ 123 { opening brace

I 124 I vertical line

} 125 } closing brace

126 tilde

DEL 127 DEL delete, rubout

? 128 [reserved]

? 129 [reserved]

? 130 [reserved]

? 131 [reserved]

(continued on next page)

E-4

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 132 IND index

? 133 NEL next line

? 134 SSA start of selected area

? 135 ESA end of selected area

? 136 HTS horizontal tab set

? 137 HTJ horizontal tab set with justification

? 138 VTS vertical tab set

? 139 PLO partial line down

? 140 PLU partial line up

? 141 RI reverse index

? 142 SS2 single shift 2

? 143 SS3 single shift 3

? 144 DCS device control string

? 145 PU1 private use 1

? 146 PU2 private use 2

? 147 STS set transmit state

? 148 CCH cancel character

? 149 MW message waiting

? 150 SPA start of protected area

? 151 EPA end of protected area

? 152 [reserved]

? 153 [reserved]

? 154 [reserved]

? 155 CSI control sequence introducer

? 156 ST string terminator

? 157 osc operating system command

? 158 PM privacy message

? 159 APC application program command

? 160 [reserved]

161 inverted exclamation mark

¢ 162 ¢ cent sign

£ 163 £ pound sign

? 164 [reserved]

¥ 165 ¥ yen sign

? 166 [reserved]

(continued on next page)

E-5

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

§ 167 § section sign

Cl 168 Cl general currency sign

© 169 © copyright sign
il 170 il feminine ordinal indicator

« 171 « angle quotation mark left

? 172 [reserved]

? 173 [reserved]

? 174 [reserved]

? 175 [reserved]
0 176 0 degree sign

± 177 ± plus/minus sign
2 178 2 superscript 2
3 179 3 superscript 3

? 180 [reserved]

µ 181 µ micro sign

1I 182 11 paragraph sign, pilcrow

183 middle dot

? 184 [reserved]

185 superscript 1
Q 186 Q masculine ordinal indicator

)) 187)) angle quotation mark right

~ 188 1A fraction one quarter

Y2 189 Y2 fraction one half

? 190 [reserved]

l 191 l inverted question mark

A 192 A uppercase A with grave accent

A 193 A uppercase A with acute accent

A 194 A uppercase A with circumflex

A 195 A uppercase A with tilde

A 196 A uppercase A with umlaut, (diaeresis)

A 197 A uppercase A with ring

If:. 198 If:. uppercase AE diphthong

Q 199 Q uppercase C with cedilla

E 200 E uppercase E with grave accent

E 201 E uppercase E with acute accent

(continued on next page)

E-6

DEC Multinational Character Set

Table E-1 {Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

E 202 E uppercase E with circumflex

E 203 E uppercase E with umlaut, (diaeresis)

l 204 l uppercase I with grave accent

r 205 r uppercase I with acute accent

206 uppercase I with circumflex

207 uppercase I with umlaut, (diaeresis)

? 208 [reserved]

N 209 N uppercase N with tilde

6 210 6 uppercase 0 with grave accent

6 211 6 uppercase 0 with acute accent

6 212 6 uppercase 0 with circumflex

6 213 6 uppercase 0 with tilde

6 214 6 uppercase 0 with umlaut, (diaeresis)

CE 215 CE uppercase OE ligature

0 216 0 uppercase 0 with slash

u 217 u uppercase U with grave accent

(J 218 (J uppercase U with acute accent

0 219 0 uppercase U with circumflex

0 220 0 uppercase U with umlaut, (diaeresis)
y 221 y uppercase Y with umlaut, (diaeresis)

? 222 [reserved]

B 223 B German lowercase sharp s

a 224 a lowercase a with grave accent

a 225 a lowercase a with acute accent

a 226 a lowercase a with circumflex

a 227 a lowercase a with tilde

a 228 a lowercase a with umlaut, (diaeresis)

a 229 a lowercase a with ring

Ee 230 Ee lowercase ae diphthong

<; 231 <; lowercase c with cedilla

e 232 e lowercase e with grave accent

e 233 e lowercase e with acute accent

e 234 e lowercase e with circumflex

e 235 e lowercase e with umlaut, (diaeresis)

236 lowercase i with grave accent

(continued on next page)

E-7

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

237 lowercase i with acute accent

238 lowercase i with circumflex

"i 239 "i lowercase i with umlaut, (diaeresis)

? 240 [reserved]

ft 241 ft lowercase n with tilde

0 242 0 lowercase o with grave accent

6 243 6 lowercase o with acute accent

0 244 0 lowercase o with circumflex

0 245 0 lowercase o with tilde

0 246 0 lowercase o with umlaut, (diaeresis)

re 247 re lowercase oe ligature

0 248 0 lowercase o with slash

u 249 u lowercase u with grave accent

u 250 u lowercase u with acute accent

a 251 a lowercase u with circumflex

0 252 0 lowercase u with umlaut, (diaeresis)

y 253 y lowercase y with umlaut, (diaeresis)

? 254 [reserved]

? 255 [reserved]

E-8

f VAXTPU File Support

When you edit with VAXTPU, some file attributes may be changed.
VAXTPU supports some file attributes in that it preserves the particular
file attribute. VAXTPU does not support other file attributes; it converts
the file attributes to VAXTPU's default attribute. For more information
on file attributes, see the VMS Record Management Services Manual.
Table F-1 shows the file attributes that VAXTPU supports. It also lists
the default file attributes for VAXTPU.

Table F-1 VAXTPU Support of File Attributes

File Organization

Index

Relative

Sequential

Record Format

Fixed length

Stream

Stream-CR

Stream-LF

Undefined

Variable length

VFC

Record Attribute

Block

Carriage return

FORTRAN

None

Print

Status as Supported or Unsupported

Unsupported

Unsupported

Supported (default)

Unsupported

Supported

Supported

Supported

Supported

Supported (default)

Unsupported

Supported

Supported (default)

Unsupported

Supported

Unsupported

F-1

G EVE$BUILD Module

VAXTPU includes a module, EVE$BUILD, for building applications on
EVE.

EVE$BUILD is a tool for modifying EVE or layering other products on
EVE. EVE$BUILD compiles VAXTPU code with an existing EVE section
file to produce a new section file. This new file can define either a new
version of EVE or a new product. Both customers and Digital developers
can use EVE$BUILD.

In using these instructions, type uppercase strings exactly as they appear
here. Replace lowercase strings with appropriate values. For example,
in the expression product_MASTER.FILE, the string "product" indicates
that you should substitute the product name of your choice. The string
"MASTER.FILE" must be appended to the product name exactly as it
appears in these comments.

These instructions cover the following:

• How to prepare code for use with EVE$BUILD

• How to invoke EVE$BUILD

• What happens when you use EVE$BUILD

G.1 How to Prepare Code for Use with EVE$BUILD
For purposes of this section, it is assumed you have VAXTPU code that
modifies EVE or layers another product on EVE. To turn this code into a
section file using EVE$BUILD, follow the guidelines in this section.

There are seven areas in which you must observe special coding
conventions:

• Module identifiers

• Parsers

• Initialization

• Command synonyms

• Status line fields

• Exit handlers

• Quit handlers

G-1

G.1.1

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Module Identifiers

G-2

Organize the VAXTPU code into one or more modules. (This section
defines "module" in more detail below.) Once you set up one or more
modules, EVE$BUILD provides an audit trail showing what version of
each module was used to build each new section file. Digital recommends
that you put into one or more modules all the code to be used with
EVE$BUILD.

To define a module, create a file containing one or more VAXTPU
procedures and (if appropriate) one or more executable statements. All
procedures and statements in a module should be related to the same
task or subject. Then insert a new procedure at the beginning of the
module. This procedure will return an "ident," or module identifier, which
EVE$BUILD tracks during the build process. Use the following format for
this procedure:

PROCEDURE facility_MODULE_IDENT

RETURN "version-number";

ENDPROCEDURE;

In place of "facility," use a unique module identifier of up to 15 characters.
If the VAXTPU code in the module is part of a Digital product, begin the
identifier with the registered product facility code such as EVE or NOTES,
followed by a dollar sign and the specific module name. For example, the
facility used in the major EVE module is EVE$CORE. As a result, the
module containing EVE$CORE has the identifier EVE$CORE_MODULE_
ID ENT.

If the code is not part of a Digital product, do not use a dollar sign in the
module identifier.

In place of "version-number," use any string of up to 15 characters
· identifying the version number of the module.

EVE$BUILD keeps a list showing the ident of each module it uses in a
build. The list is kept in a file referred to as the .LIST file. This file is
discussed in Section G.2. In EVE, the format used for the version number
string is Vnn-mmm. The characters "nn" represent the major version
number of EVE to which the module belongs. The characters "mmm"
represent the edit number.

The following code is the _MODULE_IDENT procedure used by the
module EVE$CORE.TPU:

PROCEDURE eve$core_rnodule_ident

RETURN "V02-242";

ENDPROCEDURE;

G.1.2 Parsers

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

EVE$BUILD can accommodate one or more user-written parsing routines
in addition to the parser included in EVE. If you choose to include a parser
in your product, the parser can either supplement or replace EVE's parser.

If you include one or more parsers in your product, the module containing
the parser should define a variable of the following form:

EVE$X_ENABLE_PARSER_f acility

Replace the term "facility" with the name of the module in which the
parsing routine appears. For example, if the parser occurs in the module
SCHEDULER, the variable is as follows:

EVE$X_ENABLE_PARSER_SCHEDULER

Next, name the procedure implementing the parser. If the product is not a
Digital product, use the following format:

facility_PROCESS_COMMAND

Replace the term "facility" with the name of the module in which the
parsing routine appears. For example, if the parser occurs in the module
with the ident SCHEDULER_MODULE_IDENT, the procedure has the
following name:

SCHEDULER_PROCESS_COMMAND

If the product is a Digital product, name the procedure using the following
format:

facility$PROCESS_COMMAND

EVE has a procedure named EVE$PARSER_DISPATCH that defaults to
the following code:

PROCEDURE EVE$PARSER_DISPATCH (the_command)

EVE$PROCESS_COMMAND (the_command);

ENDPROCEDURE;

If you do not define a parser-related variable, then the default
EVE$PARSER_DISPATCH is put into the .INIT file.

If you do define one or more parser-related variables, EVE$BUILD verifies
that a corresponding.facility_PROCESS_COMMAND procedure exists
for each variable. If not, the build fails. If the corresponding procedure
does exist, EVE$BUILD then adds the following code to EVE$PARSER_
DISPATCH just before the call to EVE$PROCESS_COMMAND:

IF EVE$X_ENABLE_PARSER_facility
THEN

IF (facility_PROCESS_COMMAND (THE_COMMAND))
THEN

RETURN;
ENDIF;

ENDIF;

G-3

G.1.3

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Initialization

G-4

If you want a particular module's parser to supersede EVE's parser, your
parser should return a true status whether or not it can parse a command.
If you want your parser to supplement EVE's parser, your parser should
return a false status if it cannot parse a command. The false status allows
the parsers in other modules, and finally EVE's parser, to try to parse the
command. The parsers are called in the order in which they appear in the
master file. (The master file is discussed in Section G.2.)

EVE$BUILD allows module-specific initialization. To perform
initialization in a module, put an initializing procedure in the module
and name the procedure using the following format:

facility_MODULE_INIT

Replace the term "facility'' with the name of the module in which the
procedure appears. For example, ifit occurs in the module SCHEDULER_
MODULE_IDENT, the procedure is named as follows:

SCHEDULER MODULE INIT - -
The EVE module EVE$CORE.TPU contains a null procedure called
EVE$INIT_MODULES. EVE$BUILD replaces EVE$INIT_MODULES
with a procedure that calls each procedure whose name ends with
_MODULE_INIT. The initialization procedures are called in the order in
which they are found in the master file. (The master file is discussed in
Section G.2.)

EVE performs initialization in the following order:

1 Processing of the procedure TPU$INIT_PROCEDURE

VAXTPU executes the procedure TPU$1NIT_PROCEDURE
immediately after processing the /DEBUG qualifier. TPU$INIT_
PROCEDURE performs the following tasks:

• Initialization of EVE's variables and settings

• Package preinitialization

• Initialization of EVE's buffers, windows, and files

• Initialization of user-written modules

• Call to the end user's initialization file, TPU$LOCAL_INIT

2 Processing of the /COMMAND qualifier if it is present on the DCL
command line

3 Processing of the procedure TPU$INIT_POSTPROCEDURE

VAXTPU executes the procedure TPU$1NIT_POSTPROCEDURE after
processing the /COMMAND qualifier. TPU$INIT_POSTPROCEDURE
performs the following tasks:

• Execution of EVE commands in the initialization file

G.1.4

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

• Creation and initialization of the $DEFAULTS$ buffer. This buffer
is a template for all buffers created during an editing session. New
buffers obtain settings from the $DEFAULTS$ buffer for attributes
such as margin settings, direction, mode, and so on.

During the "preinitialization" phase, you can redefine EVE's variables and
settings to be compatible with your product.

Do not redefine any EVE variable or setting unless you are sure you
understand all the possible side effects on EVE and on your product. Use
of this option is recommended only for experienced EVE programmers.

To use preinitialization, put an initializing procedure in a module and
name the procedure using the following format:

facility_MODULE_PRE_INIT

Replace the term "facility" with the name of the module in which the
initializing procedure appears. For example, if it occurs in the module
SCHEDULER_MODULE_IDENT, the procedure is named as follows:

SCHEDULER MODULE PRE INIT - - -
The EVE module EVE$CORE.TPU contains a null procedure called
EVE$PRE_INIT_MODULES. EVE$BUILD replaces EVE$PRE_INIT_
MODULES with a procedure that calls each procedure whose name ends
with _MODULE_PRE_INIT. The initialization procedures are called in
the order in which they are found in the master file. (The master file is
discussed in Section G.2.)

Most programmers who are layering a product onto EVE should initialize
modules by using procedures of the type facility _MODULE_INIT. Use of
TPU$LOCAL_INIT should be reserved for the end user. Use of procedures
of the type facility _MODULE_PRE_INIT should be reserved for very
experienced EVE programmers.

Command Synonyms
A command synonym is a string that produces exactly the same effect as
an EVE command or phrase. Command synonyms are useful for creating
foreign-language versions of EVE or a product layered onto EVE. For
example, you could designate the Swedish string "naasta_bild" to have the
same effect as the EVE command NEXT SCREEN.

EVE$BUILD allows you to create synonyms both for EVE commands
and for user-written commands. This discussion assumes that when
you create a command synonym, you first choose a root command (the
EVE command or user-written command for which you want to create a
synonym), and then equate to the root command a synonym (the string
that is to produce the same effect as the root command does).

You can create synonyms in each module of your product. To create
synonyms in a module, you perform two steps:

1 Create an initializing procedure

2 Place synonym declaration statements in the initializing procedure

G-5

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

G-6

Name the initializing procedure using the following format:

facility_DECLARE_SYNONYM

Replace the term "facility'' with the name of the module in which the
procedure appears. For example, if you create the procedure in the module
SCHEDULER, you would name the procedure as follows:

SCHEDULER DECLARE SYNONYM - -
To declare a synonym, use the EVE$BillLD_SYNONYM statement
in the DECLARE_SYNONYM procedure. This command enters the
root command and the synonym into EVE'S data structure associating
synonyms with root commands. Use one EVE$BillLD_SYNONYM
statement for each synonym you want to declare. The statement has
the following format:

EVE$BUILD_SYNONYM ("root_command", "synonym", integer)

The parameters are as follows:

root-command - A quoted string naming the command for which
you want to declare a synonym. The string must not contain spaces.
If the command contains more than one word, place an underscore
between the words.

synonym - A quoted string naming the synonym you want to
associate with the root command. The string must not contain
spaces. If the command usually contains more than one word, place an
underscore between the words.

integer - Either 0, 1, or 2.

The value 0 tells EVE$BUILD that the programmer, not EVE$BillLD,
will create the procedure and parameters implementing the synonym.
This value instructs EVE$BUILD simply to verify that the root
command exists and to associate the root command with the synonym.

The value 1 causes EVE$BillLD to perform the following tasks:

• Verify that the root command exists.

• Associate the root command with the synonym.

• Create a new procedure giving the synonym the same effect as the
root command.

• Declare how many parameters are expected by the procedure
implementing the synonym. (That is, if the procedure
implementing the root command requires two parameters, then
the procedure implementing the synonym also requires two
parameters.)

• Initialize the parameters of the synonym procedure so they equal
the parameters of the corresponding root procedure.

The value 2 causes EVE$BillLD simply to associate the root with the
synonym. Use this value if you are creating a synonym for a phrase
rather than a command synonym.

G.1.5

Example

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

The following statement creates a Spanish synonym for the ONE
WINDOW command and instructs EVE$BUILD to create the necessary
structures for the synonym:

EVE$BUILD_SYNONYM ("one_window", "una_ventana", 1)

You can declare a synonym to be a terminator. A terminator is a command
that, if bound to a key and executed with a keystroke, tells an EVE
prompt to stop prompting. For example, when the DO command is bound
to the DO key, pressing the DO key terminates the prompts resulting from
several commands, including DEFINE KEY and FIND.

To make a synonym a terminator, use a EVE$MAKE_SYNONYM_A_
TERMINATOR statement in the facility _MODULE_INIT procedure. For
example, if you wanted to make the string "Haga" a synonym for "DO" and
to declare "Haga" as a terminator, you would place the following statement
in the facility _MODULE_INIT procedure for the module:

EVE$MAKE_SYNONYM_A_TERMINATOR ("DO", "Haga");

Status Line Fields
Using EVE$BUILD, you can create new areas for displaying information
in the status line that EVE displays under each window. These areas are
called "fields." By default, the EVE status line contains fields to display
the following information:

• The buffer mapped to the window

• The text entry mode

• The direction of the buffer

A field can display more than one message. For example, the direction
field in the default EVE status line can display either the string "Forward"
or the string "Reverse."

To add a field to the status line, write a procedure creating the field and
include the procedure in the appropriate module. The following sample
procedure creates a field indicating whether a buffer is a read-only buffer:

! Procedure to put up the "Read-Only" i'ndicator on NO WRITE buffers

PROCEDURE eve$nowrite_status_field (the_length, ! Status line indicator
the_format)

ON ERROR
[OTHERWISE] :

ENDON_ERROR;

IF GET_INFO (CURRENT_BUFFER, "no_write")
THEN

RETURN FAO (the_format, eve$x_read_only);
ELSE

RETURN
ENDIF;

ENDPROCEDURE;

""· ,

G-7

G.1.6

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

You will find it helpful to observe the following conventions:

• Use the following format for the procedure name:

field name STATUS FIELD - - -
For example, if you are adding a field to display the current line
number and if your facility is called SCHEDULER, the first line of the
procedure appears as follows:

PROCEDURE SCHEDULER LINE NUMBER STATUS FIELD - - - -
• Give the procedure the following input parameters:

max_size - The number of unused column spaces in the status
line before the new field is added to the line. Use this parameter
to ensure that all messages fit on the status line.

the_format - The FAO directive to be used to format the field.

The module EVE$CORE.TPU contains a procedure called EVE$GET_
STATUS_FIELDS that simply returns the null string. EVE$BUILD
replaces EVE$GET_STATUS_FIELDS with the following procedure:

PROCEDURE EVE$GET_STATUS_FIELDS (the_length, the_format)

LOCAL remaining,
the_fields,
the_field;

the fields := "";
remaining := the_length;

RETURN the fields

ENDPROCEDURE;

For each _STATUS_FIELD procedure you put in a module, EVE$BUILD
inserts the following code just before the "RETURN the_fields" statement:

the field:= field name STATUS FIELD (remaining, the_format);
IF LENGTH (the_field) <~ remaining
THEN

the fields := the field + the fields;
remaining :=remaining - LENGTH (the_field);

ENDIF;

Exit and Quit Handlers

G-8

When you create a new or layered product, you can provide one or more
user-written exit handlers, one or more user-written quit handlers,
or one or more of both. Depending on how you write the handlers,
EVE$BUILD uses your exit or quit handlers either in addition to or
instead of those provided by EVE. This section contains pointers on
writing both supplementary and replacement handlers.

When you write an exit handling procedure, name the procedure using the
following format for a non-Digital product:

facility_EXIT_HANDLER

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Use the following format for a non-Digital quit handler:

facility_QUIT_HANDLER

Replace the term "facility'' with the name of the module in which the
handler appears. For example, if the handler occurs in the module with
the ident SCHEDULER_MODULE_IDENT, you name an exit handling
procedure as follows:

SCHEDULER EXIT HANDLER - -
/

You would name a quit handling procedure as follows:

SCHEDULER_QUIT_HANDLER

If the product is a Digital product, name the procedure using the following
format for an exit handler:

facility$EXIT_HANDLER

Use the following format for a quit handler:

facility$QUIT_HANDLER

EVE has procedures named EVE$EXIT_DISPATCH and EVE$QUIT_
DISPATCH. By default, EVE$EXIT_DISPATCH contains the following
code:

PROCEDURE EVE$EXIT_DISPATCH (the_command)

EVE$EXIT;

ENDPROCEDURE;

By default, EVE$QUIT_DISPATCH contains the following code:

PROCEDURE EVE$QUIT_DISPATCH (the_command)

EVE$QUIT;

ENDPROCEDURE;

If you do not create an exit or quit handling procedure, EVE$BUILD
puts the default versions of EVE$EXIT_DISPATCH and EVE$QUIT_
DISPATCH into the .INIT file. If you create an exit handling procedure,
EVE$BUILD adds the following code to EVE$EXIT_DISPATCH just before
the call to EVE$EXIT:

IF facility_EXIT_HANDLER
THEN

RETURN;
ENDIF;

If you create a quit handling procedure, EVE$BUILD adds the following
code to EVE$QUIT_DISPATCH just before the call to EVE$QUIT:

IF facility_QUIT_HANDLER
THEN

RETURN;
ENDIF;

If you want a particular module's exit or quit handler to supersede EVE's
handler, your handler should return a true status. If you want your
handler to supplement EVE's handler, your handler should return a false

G-9

G.1.7

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

status. The false status allows EVE$BUILD to call the handlers in other
modules and in EVE.

How to Invoke EVE$BUILD

G-10

To prepare to use EVE$BUILD, define the following foreign command:

$ BUILD == "EDIT/TPU/NODISPLAY/SECTION=EVE$SECTION-
_$ /COMMAND=device: [dir]EVE$BUILD/NOINITIALIZATION

If you specify /SECTION=EVE$SECTION, EVE$BUILD builds your
product on top of the standard EVE section file. To build your product
with a different version of EVE, specify a different section file with the
/SECTION qualifier.

In most circumstances, you specify either the standard EVE section file
or your own enhanced EVE section file. No matter which section file you
specify, you must use the /NODISPLAY qualifier if you use the /SECTION
qualifier.

If for some reason you want to rebuild EVE from scratch, you build it
/NOSECTION and use the EVE$MASTER.FILE that comes with the EVE
sources.

After defining the foreign command, create a master file. This file tells
EVE$BUILD what modules to compile. If your ·product is not a Digital
product, name your master file using the followi...ll.g format:

facility_MASTER.FILE

For example, a valid name for a non-Digital product's master file might be
as follows:

SCHEDULER MASTER.FILE

If your product is a Digital product, name your master file using the
following format:

facility$MASTER.FILE

Replace "facility" with the name of your product. For example, a valid
name for a Digital product's master file might be as follows:

NOTES$MASTER.FILE

When you have created and named the master file, type into it the name of
each file whose contents you want to compile. Usually this means you type
in the name of each file containing a module that is part of your product.
If the files containing the modules are not in the same directory as the
master file, then you must specify the directory name of each module file.

If one or more of your modules declare synonyms, enter the names of those
modules at the end of the file. This ensures that all root commands have
been created before synonyms for root commands are declared.

EVE$BUILD processes the modules in the order in which they appear in
the master file. For example, EVE$BUILD calls exit and quit handlers in
the same order that they occur in the master file.

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Once you have completed the master file, create a version file in the same
directory that contains the master file. If your product is not a Digital
product, name the version file as follows:

facility_ VERSION.DAT

If your product is a Digital product, name the version file using the
following format:

facility$VERSION.DAT

The version file is a text file containing only the version number for the
product. This version number is built into the section file as part of the
value of the procedure EVE$VERSION.

When you have a foreign command, a master file, and a version file, you
can invoke EVE$BUILD with the following command:

$ BUILD facility

For example, if the name of your product was SCHEDULER, you would
build it by typing the following:

$ BUILD SCHEDULER

You can use the /OUTPUT qualifier to specify the name of the section file
to create. If you do not use the qualifier, EVE$BUILD prompts for a file
name. If you respond with a null file name, EVE$BUILD gives the output
file the same name as the product.

EVE$BUILD does not produce a log file if /NODISPLAY is used on the
DCL command line. In addition, EVE$BUILD does not produce a log file
if /DISPLAY is used on the DCL command line and the build produces
errors.

G.2 What Happens When You Use EVE$BUILD
Each file specified in the master file is read in and compiled. If there are
any executable statements after the procedure definitions, the statements
are compiled and executed. Any SAVE or QUIT statements or calls to
DEBUGON (this procedure is defined in TPU$DEBUG.TPU) are removed
before execution.

EVE$BUILD creates the following three output files:

• The new section file, with a file type of .TPU$SECTION

• A file preserving the dynamically generated code, with a file type of
.INIT

• A file tracking what happened during the build, with a file type of
.LIST

All three files have the same device, directory, and file name.

The .INIT file contains the following:

• EVE$DYNAMIC_MODULE_IDENT

• EVE$PARSER_DISPATCH

G-11

EVE$BUILD Module
G.2 What Happens When You Use EVE$BUILD

G-12

• EVE$MODULE_PRE_INIT

• EVE$MODULE_INIT

• EVE$GET_HELP _LIBRARY_TOPIC

• EVE$VERSION

The .LIST file contains the following:

• The date and time of the build

• The version of EVE used

• The full file specifications of the master file, section file, version file,
and .!NIT file

• A synopsis on each source module, including the module ident, the
number of lines in the module, and the full file specification of the file
containing the module

• A list of all global variables used in the build

• A list of all procedures used in the build

Index

A
@ command • 4-32
Abort

resulting from exceeding virtual address space •
5-1

ABORT statement• 3-26, 3-33, 7-16
Action routine

designating for client messages• 7-357
detached cursor

defining• 7-367
fetching• 7-197

for handling client messages
fetching• 7-197

Active area • 7-350
determining location of• 7-196

Active editing point • 2-4
ADD_KEY_MAP built-in procedure• 7-17 to 7-18
ADJUST_WINDOW built-in procedure• 7-19 to 7-23
Algorithm

for naming buffer change journal file • 1-12
ALL keyword

with EXPAND_NAME • 7-135
with REMOVE_KEY_MAP • 7-313
with SET (BELL) • 7-355
with SET (DEBUG) • 7-364
with UPDATE • 7-538

Alternation
pattern (I) • 2-16

Anchored search • 7-24
ANCHOR keyword• 7-24 to 7-25

with SEARCH • 7-327, 7-328
with SEARCH_QUIETLY • 7-332

AND operator• 3-7
"Ansi_crt" string constant parameter to GET_INFO •

7-196
ANY built-in procedure• 7-26 to 7-27
APPEND_LINE built-in procedure• 7-28 to 7-29
Application

use of DECwindows VAXTPU built-in procedures
in• B-1 to 8-33

ARB built-in procedure• 7-30 to 7-31
Arithmetic expression • 3-9
ARRAY data type• 2-2 to 2-3

See also CREATE_ARRAY built-in procedure
ASCII built-in procedure• 7-32 to 7-34

Assignment statement • 3-21
ATTACH built-in procedure• 7-35 to 7-36
Attribute

buffer•7-60
window• 7-78

Attribute for TPU
setting r.ecords • 7-448

AUTO_REPEAT keyword • 7-353
"Auto_repeat" string constant parameter to GET_

INF0•7-196

B
Base

of numeric constant
specifying • 3-37

Batch job • 5-5
Batch-like editing • 5-3
BEGINNING_ OF built-in procedure• 7-37 to 7-38
BELL keyword• 7-355

with SET (MESSAGE_ACTION_ TYPE)• 7-426
"Bell" string constant parameter to GET_INFO •

7-205
"Beyond_eob" string constant parameter to GET_

INF0•7-185
"Beyond_eol" string constant parameter to GET_

INFO• 7-185, 7-220
BLANK_ TABS keyword• 7-483
BLINK keyword

with MARK• 7-261
with SELECT• 7-337
with SET (PROMPT _AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO)• 7-492

"Blink_status" string constant parameter to GET_
INF0•7-221

"Blink_video" string constant parameter to GET_
INF0•7-221

BOLD keyword
with MARK• 7-261
with SELECT• 7-337
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Bold_status" string constant parameter to GET_
INF0•7-221

lndex-1

Index

"Bold_video" string constant parameter to GET_
INF0•7-221

Boolean expression • 3-11
Bound marker • 2-9 to 2-1 O
"Bound" string constant parameter to GET_INFO •

7-171, 7-185, 7-221
BREAK built-in procedure• 7-39
"Breakpoint" string constant parameter to GET_

INF0•7-179
BROADCAST keyword

with SET (BELL) • 7-355
Buffer

attributes • 7-60
controlling modification indicator• 7-431
converting contents of to string format using STR •

7-520
converting name to journal file name • 7-172
current• 7-59
deleting• 7-107
determining if unmodifiable records are present

in• 7-175
direction

current• 7-85
setting• 7-379

erasing • 2-4, 7-117
erasing unmodifiable records from

preventing or allowing• 7-375
getting file name of journal • 7-172
journal file • 1-11
margin action settings• 7-414, 7-456
margin settings• 7-412, 7-419, 7-454
multiple• 7-59
recovering contents of• 7-307
sensing safe journaling• 7-175
sensing unmodifiable records erasable state •

7-169
tab stops • 7-481
variables • 2-4
visible • 7-59

Buffer, multiple • 2-4
Buffer change journaling • 1-11

and keystroke journaling • 7-307
converting buffer to journal file name• 7-172
default file naming • 1-12
enabling• 7-405
getting file name of journal• 7-172
getting information on journal file• 7-203
recovery • 7-307
sensing safe state• 7-175
sensing the enable• 1-12, 5-10
specifying fil~ name• 7-405

lndex-2

BUFFER command

for message buffer • 4-18
BUFFER data type • 2-3 to 2-4
Buffer names • 2-4
"Buffer" string constant parameter to GET_INFO •

7-185, 7-193, 7-222
BUFFER_BEGIN keyword• 7-69, 7-273

with POSITION• 7-287
with SEARCH• 7-327
with SEARCH_QUIETLY • 7-332

BUFFER_END keyword• 7-69, 7-273
with POSITION• 7-287
with SEARCH• 7-327
with SEARCH_QUIETLY • 7-332

Building applications on EVE• G-1 to G-12
Built-in procedure

descriptions• 7-15 to 7-548
functions listed• 7-1 to 7-15
name of as reserved word • 3-12
occluded • 3-12

c
Callable interface• 4-1, 7-41
Callback data structure

of widget
using in VAXTPU • 7-496

Callback routines
levels of • 4-9

Callbacks •4-8 to 4-10
handling in EVE • 4-11

CALL_USER built-in procedure• 7-40 to 7-43
Case sensitivity

of widget names• 7-74
CASE statement• 3-23 to 3-25
Case-style error handler• 3-28 to 3-31
CHANGE_ CASE built-in procedure• 7-44 to 7-46
Character-cell measuring system

converting to coordinate system• 7-50
Character set • 3-1
"Character" string constant parameter to GET _INFO•

7-171
Character_cell display • 5-8
Child

of widget
fetching in VAXTPU • 7-210

Children
of widget

fetching in VAXTPU • 7-210

"children" string constant parameter to GET _INFO•
7-210

Class
of widget

fetching in VAXTPU • 7-214
of widget resource

fetching in VAXTPU • 7-215
"class" string constant parameter to GET_INFO •

7-214
Client message

designating routine to handle• 7-357
fetching action routine for handling• 7-197
finding out type of• 7-197
sending from VAXTPU • 7-344

CLIENT _MESSAGE
keyword parameter to SET built-in procedure •

7-357
"client_message" string constant parameter to GET_

INFO •7-197
"client_message_routine" string constant parameter

to GET_INF0•7-197
Clipboard

fetching data from• 7-149
overview of• 7-149
reading data from• 7-295
writing data to• 7-540

Closures • 4-11
COLUMN_MOVE_ VERTICAL keyword • 7-359
"Column_move_vertical" string constant parameter to

GET_INFO • 7-206
Command files • 4-29 to 4-31

debugging • 4-34
default • 4-21
definition • 1-1 O
sample • 4-30

Command line
DCL

determining whether /RECOVER specified
on• 7-408

fetching values from • 7-176, 7-177
/JOU ANAL command qualifier • 1-11, 1-12
/NOJOURNAL command qualifier• 1-12
/RECOVER command qualifier• 1-11, 7-307

Command parameter

See EDIT/TPU command parameter
/COMMAND qualifier• 4-25, 5-3 to 5-4, 5-6 to 5-7
Command qualifiers

See EDIT/TPU command qualifiers
"Command" string constant parameter to GET_

INF0•7-176
Command synonyms • G-5 to G-7

Command window

in EVE• 4-16

Index

"Command_file" string constant parameter to GET_
INF0•7-176

Comment character • 1-5
COMMENT keyword

with LOOK_UP _KEY• 7-254
Compilation

conditional • 3-36
COMPILE built-in procedure• 4-19, 7-47 to 7-49
Compiler limits• 7-47
Compiling

in a VAXTPU buffer• 4-19
in EVE• 4-19
programs • 4-18 to 4-19
to create section file • 4-24

Concatenation
pattern (+) • 2-15
string• 3-4

Conditional compilation • 3-36
Conditional statements • 3-22 to 3-23
Constant

specifying radix of • 3-37
TPU$K_DISJOINT • 7-198, 7-368
TPU$K_INVISIBLE • 7-198, 7-368
TPU$K_OFF_LEFT•7-198, 7-368
TPU$K_OFF _RIGHT• 7-198, 7-368
TPU$K_UNMAPPED • 7-i 98, 7-368

CONSTANT declaration • 3-35
Constants • 3-5 to 3-6

local •3-20
predefined • 3-13

Control character
entering • 3-2
translation

example • A-2
Control code

function key• 7-241
Control sequence

function key• 7-241
Conventions • xxiv
CONVERT built-in procedure • 7-50

example of use• B-1 to B-4
Coordinate measuring system

converting to character-cell system• 7-50
COPY_ TEXT built-in procedure • 7-53 to 7-54
/CREATE qualifier• 5-7
"Create" string constant parameter to GET_INFO •

7-177
CREATE_ARRAY built-in procedure• 7-55 to 7-57
CREATE_BUFFER built-in procedure • 7-58 to 7-62,

7-203

lndex-3

Index

CREATE_KEY _MAP built-in procedure• 7-63 to
7-64

CREATE_KEY _MAP _LIST built-in procedure• 7-65
to 7-66

CREATE_PROCESS built-in procedure• 7-67 to
7-68

CREATE_RANGE built-in procedure• 7-69 to 7-71
CREATE_ WIDGET built-in procedure• 7-72

example of use • B-4 to B-11
using to specify callback routine • 4-9
using to specify resource values• 4-12

CREATE_WINDOW built-in procedure• 2-26, 7-77
to 7-79

CROSS_WINDOW_BOUNDS keyword• 7-361
"Cross_window_bounds" string constant parameter

to GET_INFO • 7-197
CTRUC•4-20

with case-style error handler • 3-29, 3-30
with procedural error handler• 3-27, 3-28

Current buffer• 7-59
active editing point• 2-4
definition • 7-80

Current buffer direction • 7-85
Current date• 7-138, 7-268, 7-271
Current pointer position• 7-252
"Current" string constant parameter to GET_INFO •

7-166, 7-167, 7-169, 7-184, 7-191, 7-218
Current time• 7-138, 7-268, 7-271
Current window· 2-27, 7-77
CURRENT_BUFFER built-in procedure• 7-80
CURRENT_CHARACTER built-in procedure• 7-81

to 7-82
CURRENT_COLUMN built-in procedure• 7-83 to

7-84
"Current_column" string constant parameter to GET_

INFO• 7-197, 7-222
CURRENT _DIRECTION built-in procedure• 7-85
CURRENT_LINE built-in procedure• 7-86 to 7-87
CURRENT_OFFSET built-in procedure• 7-88 to

7-89
CURRENT_ROW built-in procedure• 7-90 to 7-91
"Current_row" string constant parameter to GET_

INFO• 7-197, 7-222
CURRENT _WINDOW built-in procedure• 7-92 to

7-93
Cursor

detached
defining routine to handle• 7-367
fetching action routine to handle• 7-197
fetching reason for• 7-198

Cursor movement• 7-94, 7-96
free• 7-95

lndex-4

Cursor position
compared to editing point • 6-1 O
effect of scrolling on • 7-324
padding effects • 6-11 to 6-12

CURSOR_HORIZONTAL built-in procedure• 7-94
CURSOR_ VERTICAL built-in procedure• 7-96 to

7-98

D
Data type

checking• 4-12, 7-432
definition • 2-1
keywords

ARRAY• 2-2 to 2-3
BUFFER• 2-3 to 2-4
INTEGER • 2-5
KEYWORD • 2-5 to 2-7
LEARN • 2-7 to 2-8
MARK• 2-8 to 2-10
PATTERN• 2-11 to 2-20
PROCESS • 2-20 to 2-21
PROGRAM • 2-21
RANGE• 2-21 to 2-22
STRING • 2-23 to 2-24
UNSPECIFIED• 2-24
WIDGET• 2-24 to 2-25
WINDOW•2-25 to 2-29

Data types• 1-6 to 1-7
Date

inserting with FAQ• 7-138
inserting with MESSAGE• 7-268
inserting with MESSAGE_ TEXT• 7-271

DCL command line
overriding /RECOVER qualifiers on• 7-408

DCL command procedure
example • A-5

$DEBUG$1NI$ buffer• 4-22
DEBUG command • 4-35
Debugger

invoking • 4-33
Debugging • 4-33 to 4-37

ATTACH command • 4-36
CANCEL BREAKPOINT command • 4-36
command files • 4-34
DEPOSIT command • 4-36
DISPLAY SOURCE command• 4-36
EXAMINE command• 4-36
GO command • 4-34, 4-36
HELP command • 4-36

Debugging (Cont.)

program • 4-35
QUIT command • 4-36
SCROLL command • 4-37
section files • 4-34
SET BREAK POINT command • 4-34, 4-37
SET WINDOW command •4-37
SHIFT command• 4-37
SHOW BREAKPOINTS command • 4-37
source code • 4-35
SPAWN command • 4-37
STEP command • 4-35, 4-37
to examine contents of local variable• 4-36
TPU command • 4-37

DEBUG keyword • 7-362, 7-363, 7-364
DEBUGON procedure • 4-35
/DEBUG qualifier• 4-33, 5-8
DEBUG_LINE built-in procedure• 7-99
DEC Multinational Character Set• 3-1 to 3-2, E-1

to E-8
DECwindows

version of VAXTPU
sample uses of built-ins • B-1 to B-33

DECwindows VAXTPU
determining if present• 7-197
invoking with /DISPLAY• 5-8

DEC_CRT2 mode• C-3
"Dec_crt2" string constant parameter to GET_INFO •

7-197
DEC_ CRT mode• C-2
"Dec_crt" string constant parameter to GET_INFO •

7-197
Default directory

fetching in VAXTPU • 7-206
setting in VAXTPU • 7-366

Default file naming algorithm
buffer change journal • 1-12

$DEFAULTS$ buffer• 4-32
DEFAULT_DIRECTORY parameter to SET built-in

procedure• 7-366
"default_directory" string constant parameter to

GET_INFO • 7-206
"Defined" string constant parameter to GET_INFO •

7-190
DEFINE_KEY built-in procedure• 7-100 to 7-104
DEFINE_WIDGET_CLASS built-in procedure• 7-105

example of use • 8-4 to B-11
DELETE built-in procedure• 7-107 to 7-110
Deleting records • 6-5
Deletion

buffer•2-4
line terminator• 7-28

Deletion (Cont.)

marker • 2-1 O
range• 2-22, 7-70
subprocess • 7-67
VAXTPU structure• 7-109
window • 2-28

Detached cursor
defining routine to handle• 7-367
fetching action routine to handle• 7-197
fetching reason for• 7-198

Index

DETACHED_ACTION parameter to SET built-in•
7-367

"detached_action" string constant parameter to GET_
INF0•7-197

"detached_reason" string constant parameter to
GET_INFO • 7-198

DEVICE keyword
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

Direction
of buffer • 7-85

setting • 7-379
"Direction" string constant parameter to GET_INFO •

7-171
Directory

default
fetching in VAXTPU • 7-206
setting in VAXTPU • 7-366

DIRECTORY keyword
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

Display
definition of in VAXTPU • 4-16

Displaying version number• 4-2
/DISPLAY qualifier• 5-8

See also /NODISPLAY
"Display" string constant parameter to GET _INFO •

7-177, 7-206
Display value

fetching• 7-222
setting for window• 7-370
setting records• 7-448

DISPLAY_ VALUE parameter to SET built-in
procedure• 7-370

"display_value" string constant parameter to GET_
INFO• 7-186, 7-222

Drag operation
determining where started• 7-188

Dynamic selection
in EVE• 4-16 to 4-17

lndex-5

Index

E
EDIT built-in procedure• 7-111 to 7-114
Editing context status

built-in procedures
CURRENT_BUFFER•7-80
CURRENT_CHARACTER • 7-81
CURRENT_COLUMN • 7-83
CURRENT_DIRECTION • 7-85
CURRENT_LINE • 7-86
CURRENT_OFFSET • 7-88
CURRENT_ROW • 7-90
CURRENT_WINDOW • 7-92
DEBUG_LINE • 7-99
ERROR• 7-123
ERROR_LINE • 7-125
ERROR_ TEXT• 7-127

built-in procedures for defining
SET•7-347
SHOW•7-505

Editing interface

See EVE
Editing point

built-in procedures for moving
MARK•7-261
MOVE_HORIZONTAL • 7-278
MOVE_ VERTICAL • 7-282
POSITION • 7-287

compared to cursor position • 6-1 O
effect of scrolling on• 7-324

EDIT/TPU command• 1-9, 5-1 to 5-20
parameter• 5-19
qualifiers • 5-5 to 5-20

/COMMAND• 5-6 to 5-7
/CREATE • 5-7
/DEBUG • 4-33, 5-8
/DISPLAY• 5-8
/INITIALIZATION • 5-9 to 5-10
/INTERFACE• 5-10
/JOURNAL• 5-10
/MODIFY• 5-12
/OUTPUT• 5-12
/READ_ONLY • 5-13
/RECOVER• 5-14, 7-408
/SECTION •5-16
/START _POSITION • 5-17
/WRITE • 5-17

EDIT/TPU command qualifiers• 1-9 to 1-10
"Edit_mode" string constant parameter to GET_

INF0•7-198

lndex-6

"Eightbit" string constant parameter to GET _INFO•
7-198

ELSE clause • 3-22
%ELSE lexical keyword • 3-36
%ENDIF lexical keyword• 3-36
ENDIF statement• 3-22 to 3-23
ENDLOOP statement• 3-21 to 3-22
ENDMODULE statement• 3-14 to 3-15
ENDON_ERROR statement• 3-25 to 3-31
END PROCEDURE statement • 3-15 to 3-21
END_OF built-in procedure• 7-115 to 7-116
Entering control characters • 3-2
EOB_TEXT keyword• 7-374
"Eob_text" string constant parameter to GET_INFO •

7-171
EQUIVALENCE statement• 3-33 to 3-34
ERASE built-in procedure • 7-117 to 7--118
ERASE_CHARACTER built-in procedure• 7-119 to

7-120
ERASE_LINE built-in procedure• 7-121 to 7-122
ERASE_ UNMODIFIABLE

keyword parameter to SET built-in procedure •
7-375

ERASE_UNMODIFIABLE mode
and APPEND_LINE • 7-376
and CHANGE_ CASE• 7-376
and COPY_ TEXT• 7-376
and EDIT• 7-376
and ERASE (buffer)• 7-376
and ERASE (range)• 7-376
and ERASE_CHARACTER • 7-376
and ERASE_LINE • 7-376
and FILL• 7-376
and MOVE_ TEXT• 7-376
and SPLIT _LINE • 7-376
and TRANSLATE• 7-377

"erase_unmodifiable" string constant parameter
GET_INFO built-in• 7-169

"Erase_unmodifiable" string constant parameter to
GET_INFO • 7-171

Erasing unmodifiable records• 7-375
Error

resulting from exceeding virtual address space•
5-1

Error handler
case-style • 3-28 to 3-31
procedural • 3-26 to 3-28

Error handling • 3-25 to 3-31, 4-38
ERROR lexical element• 3-25
ERROR statement• 7-123 to 7-124
ERROR_LIN E lexical element• 3-26
ERROR_LINE statement• 7-125 to 7-126

ERROR_ TEXT lexical element • 3-26
ERROR_ TEXT statement • 7-127 to 7-128
EVE

building applications on • G-1 to G-12
command window• 4-16
$DE FAUL TS$ buffer • 4-32
initialization files• 4-31 to 4-33

during a session • 4-32
effects on buffer settings • 4-32

Initialization files • 5-1 O
input files • 5-20
message buffer • 4-18
message window• 4-16
order of initialization • G-4
output file • 5-13, 5-20
restriction on defining GOLD key• 7-472
sample procedures• B-1 to 8-33
source files • 4-3
status line• G-7
use of EDIT/TPU command qualifiers• 5-18
user window• 4-16
wildcard characters in file specifications • 5-20
wildcards in file names • 5-20

EVE$BUILD • G-1 to G-12
exit and quit handlers • G-8
initialization modules • G-4 to G-5
invoking • G-1 O to G-11
output• G-11 to G-12
status line field • G-7 to G-8
synonym creation • G-5 to G-7
using parsing routines with • G-3 to G-4

EVE$GET_STATUS_FIELDS procedure• G-8
EVE$1NIT logical name• 4-31
EVE$PARSER_DISPATCH procedure • G-3
EVE$SELECTION procedure

using to obtain EVE's current selection • 4-17
EVE default settings • 4-32 to 4-33
EVE source files• 1-11
EXACT keyword

with LEARN_BEGIN • 7-244
with SEARCH • 7-328
with SEARCH_QUIETLY • 7-333

"Examine" string constant parameter to GET INFO•
7-179 -

Examples of DECwindows VAXTPU built-in
procedures• B-1 to B-33

Examples of VAXTPU procedures
ADJUST_HELP•7-23
ANCHOR• 7-25
ANY•7-27
APPEND_LINE • 7-29

Examples of VAXTPU procedures (Cont.)

ARB•7-31
ASCII • 7-33, 7-34
BEGINNING_OF • 7-38
BREAK•7-39
CALL_USER • 7-42
CHANGE_ CASE• 7-46
COPY_ TEXT• 7-54
CREATE BUFFER• 7-62
CREATE_KEY _MAP • 7-64
CREATE_KEY _MAP _LIST• 7-66
CREATE_PROCESS • 7-68
CREATE_RANGE • 7-71
CREATE_ WINDOW• 7-79
CURRENT _BUFFER• 7-80
CURRENT_CHARCTER•7-82
CURRENT _COLUMN • 7-84
CURRENT _DIRECTION • 7-85
CURRENT_LINE • 7-87
CURRENT_OFFSET • 7-89
CURRENT_ROW • 7-91
CURRENT_WINDOW • 7-93
CURRSOR_HORIZONTAL • 7-95
CURSOR_ VERTICAL• 7-98
DEFINE_KEY • 7-103
DELETE• 7-109
EDIT• 7-114
END_OF • 7-116
ERASE• 7-118
ERASE_ CHARACTER• 7-120
ERROR• 7-124
ERROR_LINE • 7-126
ERROR_ TEXT• 7-128
EXECUTE •7-131, 7-132
EXPAND_NAME • 7-137
FAO• 7-139
FILE_PARSE • 7-142
FILE_SEARCH • 7-145
GET _INFO• 7-160 to 7-161
HELP _TEXT• 7-229
INDEX• 7-231
INT•7-233
KEY _NAME• 7-240
LENGTH • 7-248
LINE_BEGIN • 7-250
LINE_END • 7-251
LOCATE_MOUSE • 7-253
LOOKUP _KEY• 7-256 to 7-257
MAP•7-260
MARK•7-263
MATCH • 7-265
MESSAGE • 7-269

Index

lndex-7

Index

Examples of VAXTPU procedures {Cont.)

MOVE_HORIZONTAL • 7-279
MOVE_ TEXT• 7-281
MOVE_ VERTICAL• 7-283
NOTANY • 7-285
PAGE_BREAK • 7-286
POSITION • 7-290
QUIT•7-292
READ_CHAR • 7-294
READ_FILE • 7-298
READ _KEY• 7-302
REFRESH• 7-311
REMAIN • 7-312
RETURN • 7-315
SAVE •7-318
SCAN • 7-320 to 7-321
SCANL • 7-323
SCROLL• 7-326
SEARCH • 7-330 to 7-331
SEARCH_QUIETLY • 7-335 to 7-336
SELECT• 7-339
SELECT_RANGE • 7-341
SEND•7-343
SET (AUTO_REPEAT) • 7-354
SET (BELL) • 7-356
SET (DEBUG) • 7-365
SET (LINE_NUMBER) • 7-417
SET (SELF _INSERT) • 7-471
SET (TEXT) • 7-485
SET (TRACEBACK)• 7-489
SLEEP• 7-509
SPANL • 7-514
SPLIT_LINE • 7-519
STR•7-522
SUBSTR • 7-524
TRANSLATE• 7-528
UNANCHOR • 7-531
UNDEFINE_KEY • 7-533
UNMAP • 7-537
UPDATE• 7-539
WRITE_FILE • 7-545

EXECUTE built-in procedure• 4-19
EXIT built-in procedure• 7-133 to 7-134
EXITIF statement• 3-21 to 3-22
EXPAND_NAME built-in procedure• 7-135 to 7-137
Expressions • 3-8 to 3-12

arithmetic • 3-9
Boolean • 3-11
evaluation by compiler • 3-9
pattern • 3-11
relational • 3-1 O

lndex-8

Expressions (Cont.)

types of • 3-9
Extensible VAX Editor

See EVE

F
FACILITY _NAME keyword • 7-378
"Facility_name" string constant parameter to GET_

INF0•7-206
FAQ built-in procedure• 7-138 to 7-139
FAQ directives

with MESSAGE• 7-267
with MESSAGE_ TEXT• 7-270

Fatal internal error
resulting from exceeding virtual address space •

5-1
File

default name for journaling • 1-12
File organization• F-1
"File_name" string constant parameter to GET_

INF0•7-171, 7-177
FILE_PARSE built-in procedure• 7-140 to 7-142
FILE_SEARCH built-in procedure• 7-143 to 7-145
FILL built-in procedure• 7-146 to 7-148
"Find_buffer" string constant parameter to GET_

INF0•7-169
"first" string parameter to ADD_KEY _MAP• 7-17
"First" string constant parameter to GET _INFO •

7-166, 7-167, 7-169, 7-181, 7-183, 7-184,
7-191, 7-218

"First_marker" string constant parameter to GET_
INF0•7-172

"First_range" string constant parameter to GET_
INF0•7-172

FORWARD keyword• 7-85, 7-379
with SEARCH• 7-328
with SEARCH_QUIETLY • 7-333

Found range selection
in EVE• 4-18

Free cursor movement• 7-95, 7-96
Free marker • 2-9 to 2-1 O
Free markers• 7-70
FREE_CURSOR keyword

with MARK• 7-261
Function key

control code • 7-241
control sequence• 7-241

Function procedures• 3-19

G
Gadget • 2-25
GET_CLIPBOARD built-in procedure• 7-149

example of use • B-11 to 8-13
GET_DEFAULT built-in procedure• 7-151
GET_GLOBAL_SELECT built-in procedure• 7-153

example of use • 8-13 to B-15
GET_INFO built-in procedure• 7-156 to 7-161

buffer variable parameter
"read_routine" • 7-174, 7-201

COMMAND_LINE keyword parameter
"line"• 7-176, 7-177

key _name parameter
"key_modifiers" • 7-162

marker_variable parameter
"record_number" • 7-186

mouse_event_keyword parameter
"mouse_button" • 7-188
"window"• 7-188

SCREEN keyword parameter
"active_area" • 7-196
"decwindows" • 7-197
"event"• 7-199
"global_select" • 7-199
"grab_routine" • 7-199
"icon_name" • 7-199
"input_focus" • 7-199
"length"• 7-199
"new_length" • 7-200
"new_width" • 7-200
"old_length" • 7-200
"old_width" • 7-200
"original_length" • 7-200
"read_routine" • 7-201
"screen_limits" • 7-201
"time"• 7-202
"ungrab_routine" • 7-202

string constant parameter
"active_area" • 7-196
"Ansi_crt" • 7-196
"auto_repeat" • 7-196
"bell"• 7-205
"beyond_eob" • 7-185
"beyond_eol" • 7-185, 7-220
"blink_status" • 7-221
"blink_video" • 7-221
"bold_status" • 7-221
"bold_video" • 7-221
"bottom"• 7-222

GET _INFO built-in procedure
string constant parameter (Cont.)

"bound" •7-171, 7-185, 7-221
"breakpoint"• 7-179
"buffer"• 7-185, 7-193, 7-222
"callback_parameters" • 7-209
"callback_routine" • 7-214
"character"• 7-171
"children" • 7-210
"class"• 7-214
"client_message" • 7-197
"client_message_routine" • 7-197
"column_move_vertical" • 7-206
"command"• 7-176
"command_file" • 7-176

Index

"create"• 7-177
"cross_window_bounds" • 7-197
"current" •7-166, 7-167, 7-169, 7-184,

7-191, 7-218
"current_column" • 7-197, 7-222
"current_row" • 7-197, 7-222
"decwindows" • 7-197
"dec_crt2" • 7-197
"dec_crt" • 7-197
"default_directory" • 7-206
"defined" • 7-190
"detached_action" • 7-197
"detached_reason" • 7-198
"direction"• 7-171
"display"• 7-177, 7-206
"display_value" • 7-186, 7-222
"edit_mode" • 7-198
"eightbit" • 7-198
"enable_resize" • 7-206
"eob_text" • 7-171
"erase_unmodifiable" • 7-169, 7-171
"event"• 7-199
"examine"• 7-179
"facility_name" • 7-206
"file_name"•7-171, 7-177
"find_buffer" • 7-169
"first"• 7-166, 7-167, 7-169, 7-181, 7-183,

7-184, 7-191, 7-218
"first_marker" • 7-172
"first_range" • 7-172
"global_select" • 7-199
"grab_routine" • 7-199
"high_index" • 7-167
"icon_name" • 7-199
"informational"• 7-206
"initialization"• 7-177
"initialization_file" • 7-177

lndex-9

Index

GET _INFO built-in procedure
string constant parameter (Cont.)

"init_file" • 7-177
"input_focus" • 7-199
"is_managed" • 7-214
"is_subclass" • 7-214
"journaling"• 1-12, 5-10, 7-172
"journaling_frequency" • 7-206
"journal"• 7-177, 7-203
"journal_file" • 1-12, 5-11, 7-172, 7-177,

7-206
"journal_name" • 7-172
"key_map_list" • 7-222
"key_map_list" • 7-172
"key_modifiers" • 7-162
"key_type" • 7-162
"last"• 7-166, 7-167, 7-169, 7-181, 7-183,

7-184, 7-191, 7-218
"left" • 7-222
"left_margin" • 7-172, 7-186
"left_margin_action" • 7-172
"length"• 7-199, 7-223
"line"• 7-176, 7-177
"line"• 7-172
"line_editing" • 7-199
"line_number" • 7-179, 7-206
"local"• 7-179
"map_count" • 7-173
"maximum_parameters" • 7-190
"max_lines" • 7-173
"menu_position" • 7-210
"message_action_level" • 7-206
"message_action_type" • 7-206
"message_flags" • 7-207
"middle_of_tab" • 7-223
"minimum_parameters" • 7-190
"mode"• 7-173
"modifiable"• 7-173
"modified"• 7-173
"modify"• 7-177
"mouse" • 7-200
"mouse_button" • 7-188
"name" • 7-215
"name"• 7-164, 7-173, 7-182
"new_length" • 7-200
"new_width" • 7-200
"next"• 7-166, 7-168, 7-169, 7-180, 7-181,

7-183, 7-184, 7-191, 7-218, 7-223
"next_marker" • 7-173
"next_range" • 7-173
"nomodify" • 7-177
"no_ video"• 7-223

lndex-10

GET _INFO built-in procedure
string constant parameter (Cont.)

"no_video_status" • 7-223
"no_write" • 7-174
"offset"• 7-174, 7-186
"offset_column" • 7-174, 7-186
"old_length" • 7-200
"old_width" • 7-200
"original_bottom" • 7-223
"original_length" • 7-200
"original_length" • 7-223
"original_top" • 7-223
"original_width" • 7-200
"output" • 7-177
"output_file" • 7-174, 7-178
"pad"• 7-223
"pad_overstruck_tabs" • 7-207
"parameter" • 7-180
"parent" • 7-215
"permanent"• 7-174
"pid". 7-192
"post_key_procedure" • 7-204
"previous"• 7-166, 7-168, 7-169, 7-180,

7-181, 7-183, 7-184, 7-191, 7-218,
7-223

"pre_key_procedure" • 7-204
"procedure"• 7-180
"prompt_length" • 7-200
"prompt_row" • 7-201
"read_only" • 7-178
"read_routine" • 7-174, 7-201
"record_count" • 7-175
"record_number" • 7-186
"record_number" • 7-175
"record_size" • 7-175
"recover" • 7-207
"recover" • 7-178
"resize_action" • 7-207
"resources"• 7-215
"reverse_status" • 7-224
"reverse_video" • 7-224
"right"• 7-224
"right_margin" • 7-175, 7-186
"right_margin_action" • 7-175
"safe_forjournaling" • 7-175
"screen_limits" • 7-201
"screen_update" • 7-201
"scroll"• 7-201, 7-224
"scroll_amount" • 7-224
"scroll_bar" • 7-224
"scroll_bar_auto_thumb" • 7-224
"scroll_bottom" • 7-224

GET_INFO built-in procedure
string constant parameter (Cont.)

"scroll_top" • 7-225
"section" • 7-178
"section_file" • 7-178, 7-207
"self_insert" • 7-204
"shitt_amount" • 7-225
"shitt_key" • 7-204, 7-207
"special_graphics_status" • 7-225
"start_character" • 7-178
"start_record" • 7-178
"status_line" • 7-225
"status_ video"• 7-225
"success"• 7-207
"system"• 7-175
"tab_stops" • 7-175
"text"• 7-215
"text" • 7-225
"time" • 7-202
"timed_message" • 7-207
"timer" • 7-207
"top" • 7-225
"traceback" • 7-207
"type"• 7-165
"undefined_key" • 7-204
"underline_status" • 7-225
"underline_video" • 7-225
"ungrab_routine" • 7-202
"unmodifiable_records" • 7-175, 7-186,

7-193
"update" • 7-208
"version"• 7-208
"video"• 7-187, 7-193, 7-226
"visible"• 7-226
"visible_bottom" • 7-226
"visible_length" • 7-202, 7-226
"visible_top" • 7-226
"vk 100" • 7-202
"vt100" • 7-202
"vt200" • 7-202
"vt300" • 7-202
"widget_id" • 7-209
"widget_info" • 7-216
"width"• 7-226
"width"• 7-202
"window"• 7-188
"within_range" • 7-187
"write"• 7-178

SYSTEM keyword parameter
"enable_resize" • 7-206
"recover"• 7-207
"resize_action" • 7-207

GET_INFO built-in procedure
SYSTEM keyword parameter (Cont.)

"timer"• 7-207
WIDGET keyword parameter

"callback_parameters" • 4-11, 7-209
"widget_id" • 7-209

widget variable parameter
"name"• 7-215
"text"• 7-215
"widget_info" • 7-216

widget_ variable parameter
"callback_routine" • 7-214

window variable parameter
"left" • 7-222
"length"• 7-223
"right"• 7-224
"scroll_bar" • 7-224
"scroll_bar_auto_thumb" • 7-224
"top" • 7-225
"width"• 7-226

window_variable parameter
"bottom"• 7-222

Index

example of use• 8-16 to B-19, B-19 to
8-22

"key_map_list" • 7-222
Global selection

determining ownership of• 7-199
fetching grab routine for• 7-199
fetching information about• 7-153
fetching read request for• 7-199
fetching read routine for• 7-174, 7-201
fetching ungrab routine for• 7-202
fetching wait time for• 7-202
obtaining data from• 7-300
reading information about• 7-299
requesting ownership of• 7-380
sending information about to an application•

7-546
specifying expiration period for• 7-387
specifying grab routine for• 7-382
specifying read routine for• 7-385
specifying ungrab routine for• 7-389
support for • 4-6 to 4-8

Global variable • 3-4
GOLD key

restriction on defining in EVE• 7-472
Grab routine

fetching event in • 7-199
global selection

fetching• 7-199
specifying• 7-382

input focus• 7-398

lndex-11

Index

Grab routine
input focus (Cont.)

fetching• 7-199
specifying • 7-400

GRAPHIC_ TABS keyword• 7-483

H
HEIGHT parameter to SET built-in procedure• 7-391
HELP _TEXT built-in procedure• 7-228 to 7-229
"High_index" string constant parameter to GET

INFO• 7-167 -

I
Icon

fetching text of• 7-199
implementing in DECwindows VAXTPU • 7-393,

7-395
specifying text for• 7-392

ICONIFY _PIXMAP parameter to SET built-in• 7-395
ICON_PIXMAP parameter to SET built-in• 7-393
Identifier • 3-4
ldent produced by EVE$BUILD • G-2
IDENT statement• 3-14 to 3-15
%1FDEF lexical keyword• 3-36
%IF lexical keyword• 3-36
IF statement • 3-22 to 3-23
INDEX built-in procedure• 7-230 to 7-231
INFORMATIONAL keyword• 7-397
"Informational" string constant parameter to GET

INFO• 7-206 -
INFO_ WINDOW identifier• 7-506
INFO_WINDOW variable• 4-29
Initialization files

default handling • 4-22
definition • 1-11
during a session • 4-32
effects on buffer settings• 4-32
EVE• 4-31 to 4-33

/INITIALIZATION qualifier• 5-9 to 5-10
"Initialization" string constant parameter to GET

INFO• 7-177 -
"lnitialization_file" string constant parameter to GET_

INF0•7-177
Initializing variables • 2-24
"lnit_file" string constant parameter to GET INFO•

7-177 -

lndex-12

Input files• 1-9, 5-19
Input focus

determining ownership of• 7-199
fetching grab routine for • 7-199
fetching ungrab routine for• 7-202
requesting• 7-398
specifying grab routine for• 7-400
specifying ungrab routine for• 7-402
support for • 4-5 to 4-6

INRANGE case constant• 3-24
Inserted records• 6-5
Inserting date• 7-138, 7-268, 7-271
Inserting time• 7-138, 7-268, 7-271
INSERT keyword• 7-404
Insert mode

COPY_ TEXT• 7-53
MOVE_ TEXT• 7-280

INT built-in procedure• 7-232 to 7-233
Integer constants• 3-5
INTEGER data type • 2-5
/INTERFACE qualifier • 5-10
Interruption of program• 4-20
Invisible record • 7-448
Invoking• 1-9
Invoking VAXTPU • 5-1

from a batch job • 5-5
from DCL command procedure • 5-2
interactively• 5-1
restriction to consider before • 5-1

"is_managed" string constant parameter to GET_
INF0•7-214

"is_subclass" string constant parameter to GET_
INF0•7-214

J
/JOU ANAL command qualifier• 1-11, 1-12
Journal file• 7-307

default name• 1-12
getting characteristics of• 7-203
getting name of • 1-12, 5-11
recovering buffer contents• 7-307
security caution• 1-12, 7-59, 7-234, 7-235,

7-406
Journaling

buffer change • 1-11
converting buffer to journal file name• 7-172
default file name• 1-12
EVE default behavior • 1-12
getting file name of buffer change journal• 7-172

Journaling (Cont.}

getting journal file information• 7-203
keystroke

enabling and disabling • 7-408
layered application control • 1-12
recovery of buffer contents • 7-307
role of source file• 7-308
sensing a safe buffer• 7-175
sensing the enable of buffer change journaling •

1-12,5-10
sensing the enable of keystroke journaling• 1-12,

5-11
using both keystroke and buffer change journaling

• 1-12
JOURNALING keyword• 7-405
JOURNALING parameter

SET built-in procedure• 7-405
"journaling" string constant parameter

GET_INFO built-in• 1-12, 5-10
"Journaling" string constant parameter to GET

INFO• 7-172 -
"Journaling_frequency" string constant parameter to

GET_INFO • 7-206
/JOURNAL qualifier• 5-10
"journal" string constant parameter

GET _INFO built-in • 7-203
"Journal" string constant parameter to GET INFO•

7-177 -

JOURNAL_ CLOSE built-in procedure• 7-234
"Journal_file" GET_INFO request_string • 7-177
"journal_file" string constant parameter

GET_INFO built-in• 1-12, 5-11, 7-172
"Journal_file" string constant parameter to GET

INFO• 7-206 -
"journal_name" string constant parameter

GET_INFO built-in• 7-172
JOURNAL_OPEN built-in procedure• 1-12, 5-11,

7-235 to 7-237
controlling errors related to • 7-408

K
Key

See also Key map
built-in procedures for defining

DEFINE_KEY • 7-100
LAST _KEY• 7-242
LOOKUP _KEY• 7-254
SET (POST_KEY_PROCEDURE} • 7-442
SET (PRE_KEY _PROCEDURE}• 7-444

Key
built-in procedures for defining (Cont.}

SET (SELF _INSERT} • 7-470
SET (UNDEFINED_KEY} • 7-490
UNDEFINE_KEY • 7-532

creating a name for• 7-238
Key map

built-in procedures
ADD_KEY_MAP • 7-17
CREATE_KEY _MAP • 7-63
REMOVE_KEY _MAP• 7-313
SHOW (KEY _MAP} • 7-505
SHOW (KEY _MAPS} • 7-505

Key map list

See also Key
built-in procedures

CREATE_KEY _MAP _LIST• 7-65
SET (KEY _MAP _LIST} • 7-410
SHOW (KEY_MAP _LIST}• 7-505
SHOW (KEY _MAP _LISTS} • 7-505

example of fetching • 8-19 to B-22
Key name

table •2-6
Keystroke journaling

Index

and buffer change journaling • 7-307
comparative to buffer change journaling • 1-11
enabling and disabling• 7-408
sensing the enable• 1-12, 5-11

KEYSTROKE_RECOVERY keyword• 7-408
KEYSTROKE_RECOVERY parameter

SET built-in procedure • 7-408
Keyword • 3-12

ALL
with EXPAND_NAME • 7-135
with REMOVE_KEY _MAP• 7-313
with SET (BELL} • 7-355
with SET (DEBUG) • 7-364
with UPDATE• 7-538

ANCHOR• 7-24 to 7-25
with SEARCH • 7-327, 7-328
with SEARCH_QUIETLY • 7-332

BELL•7-355
with SET (MESSAGE_ACTION_ TYPE) •

7-426
BLANK_ TABS • 7-483
BLINK

with S~LECT • 7-337
with SET (PROMPT _AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

BOLD
with SELECT• 7-337

lndex-13

Index

Keyword
BOLD (Cont.)

with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

BROADCAST
with SET (BELL) • 7-355

BUFFER_BEGIN
with POSITION •-7-287
with SEARCH• 7-327
with SEARCH_QUIETLY • 7-332

BUFFER_END
with POSITION• 7-287
with SEARCH • 7-327
with SEARCH_QUIETLY • 7-332

COMMENT
with LOOK_UP _KEY• 7-254

CROSS_WINDOW_BOUNDS • 7-361
DEBUG• 7-362, 7-363, 7-364
DEVICE

with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

DIRECTORY
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

EOB_ TEXT• 7-374
EXACT

with LEARN_BEGIN • 7-244
with SEARCH• 7-328
with SEARCH_QUIETLY • 7-333

FACILITY _NAME• 7-378
FORWARD• 7-85, 7-379

with SEARCH • 7-328
with SEARCH_QUIETLY • 7-333

GRAPHIC_ TABS• 7-483
INFORMATIONAL• 7-397
INSERT • 7-404
JOURNALING• 7-405
key name • 2-6
KEYSTROKE_RECOVERY•7-408
KEYWORDS

with EXPAND_NAME • 7-135
KEY_MAP

with LOOK_UP _KEY• 7-254
KEY _MAP _LIST• 7-410
LEFT_MARGIN • 7-412
LEFT_MARGIN_ACTION • 7-414
LINE_BEGIN • 7-249 to 7-250

with POSITION • 7-288
with SEARCH • 7-327
with SEARCH_QUIETLY • 7-332

lndex-14

Keyword (Cont.)

LINE_END • 7-251
with POSITION• 7-288
with SEARCH • 7-327
with SEARCH_QUIETLY • 7-332

LINE_NUMBER • 7-416
MARGINS• 7-419
MAX_LINES • 7-421
MESSAGE_FLAGS • 7-427
MODIFIABLE• 7-429
MOUSE

with POSITION • 7-288, 7-289
NAME

with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

NODE
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

NONE
with SELECT• 7-337
with SET (MESSAGE_ACTION_ TYPE) •

7-426
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO)• 7-492

NO_EXACT
with LEARN_BEGIN • 7-244
with SEARCH • 7-328
with SEARCH_QUIETLY • 7-333

NO_ TRANSLATE• 7-483
NO_WRITE • 7-434
occluded• 3-12
OFF

with CREATE_ WINDOW• 7-77
with HELP _TEXT• 7-228
with QUIT• 7-291
with SET (AUTO_REPEAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE_ VERTICAL) •

7-359
with SET (CROSS_WINDOW_BOUNDS) •

7-361
with SET (DEBUG) • 7-363, 7-364
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MODIFIABLE)• 7-429
with SET (MOUSE) • 7-432
with SET (NO_WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK_TABS) •

7-439
with SET (SCREEN_UPDATE) • 7-460

Keyword
OFF (Cont.)

ON

with SET (SCROLLING)• 7-467
with SET (SELF _INSERT) • 7-470
with SET (SUCCESS)• 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK) • 7-488
with SPAWN• 7-515

with CREATE WINDOW• 7-77
with CREATE_WINDOW • 7-77
with HELP_ TEXT• 7-228
with QUIT• 7-291
with SET (AUTO_REPEAT) • 7-353
with SET (BELL)• 7-355
with SET (COLUMN_MOVE_ VERTICAL) •

7-359
with SET (CROSS_WINDOW_BOUNDS) •

7-361
with SET (DEBUG) • 7-363
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MODIFIABLE)• 7-429
with SET (MOUSE) • 7-432
with SET (NO_WRITE) • 7-434
with SET (PAD)• 7-437
with SET (PAD_OVERSTRUCK_TABS) •

7-439
with SET (SCREEN_ UPDATE)• 7-460
with SET (SCROLLING) • 7-467
with SET (SELF _INSERT)• 7-470
with SET (SUCCESS)• 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK)• 7-488
with SPAWN• 7-515

OUTPUT _FILE• 7-435
OVERSTRIKE• 7-436
PAD•7-437
PAD_OVERSTRUCK_ TABS• 7-439
PAGE BREAK• 7-286
PAGE_BREAK

with SEARCH• 7-327
with SEARCH_QUIETLY • 7-332

PERMANENT• 7-441
POST _KEY _PROCEDURE• 7-442
PROCEDURES

with EXPAND_NAME • 7-135
PROGRAM • 7-362

with LOOK_ UP _KEY• 7-254
PROMPT_AREA • 7-446
REMAIN• 7-312

with SEARCH • 7-327

Index

Keyword
REMAIN (Cont.)

with SEARCH_QU.IETLY • 7-332
returned by CURRENT_DIRECTION • 7-85
returned by READ_KEY • 7-301
REVERSE• 7-85, 7-453

with SEARCH • 7-328
with SEARCH_QUIETLY • 7-333
with SELECT• 7-337
with SET (MESSAGE_ACTION_ TYPE) •

7-426
with SET (PROMPT _AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

RIGHT _MARGIN • 7-454
RIGHT_MARGIN_ACTION • 7-456
SCREEN_UPDATE•7-460
SCROLLING • 7-467
SELF _INSERT• 7-470
SHIFT_KEY • 7-472
SPECIAL_ GRAPHICS

with SET (STATUS_LINE) • 7-476
STATUS_LINE • 7-476
SUCCESS• 7-479
SYSTEM • 7-480
TEXT•7-483
TIMER• 7-486
TRACEBACK• 7-488
TYPE

with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

UNANCHOR • 7-530 to 7-531
with SEARCH_QUIETLY • 7-333

UNDEFINED_KEY • 7-490
UNDERLINE

with SELECT• 7-337
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO)• 7-492

VARIABLES
with EXPAND_NAME • 7-135

VERSION
with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

VIDEO• 7-492
with SET• 7-347 to 7-348
with SHOW• 7-505 to 7-506

Keyword constants • 3-5
KEYWORD data type • 2-5 to 2-7
Keywords

lexical • 3-36

lndex-15

Index

KEYWORDS keyword

with EXPAND_NAME • 7-135
KEY _MAP keyword

with LOOK_UP _KEY• 7-254
KEY MAP LIST keyword • 7-410
"Key-=:_map=list" string constant parameter to GET_

INFO• 7-172
KEY NAME built-in procedure• 7-238 to 7-241
"Key-=:_type" string constant parameter to GET _INFO•

7-162
KILL_SELECTION client message• 7-344

L
"last" string parameter to ADD_KEY_MAP • 7-17
"Last" string constant parameter to GET_INFO •

7-166, 7-167, 7-169, 7-181, 7-183, 7-184,
7-191, 7-218

LAST_KEY built-in procedure• 7-242
LEARN data type • 2-7 to 2-8
LEARN ABORT built-in procedure• 7-243
LEARN - BEGIN built-in procedure • 7-244 to 7-246
LEARN=END built-in procedure• 7-244 to 7-246
Left margin

setting records • 7-448
LEFT MARGIN keyword• 7-412
"Left_-;,,argin" string constant parameter to GET_

INFO• 7-172, 7-186
LEFT MARGIN ACTION keyword• 7-414
"Left~margin_adion" string constant parameter to

GET_INFO • 7-172
LENGTH built-in procedure• 7-247 to 7-248
Lexical element • 3-1
Lexical keywords • 3-36 to 3-38
Line break

in data from global selection• 7-300
LINE command• 4-18
Line mode editing • C-3
Line-mode editor

example • A-1
"Line" string constant parameter to GET _INFO•

7-172
Line terminator

deleting• 7-28
LINE_BEGIN keyword• 7-69, 7-249 to 7-250,

7-273
with POSITION• 7-288
with SEARCH• 7-327
with SEARCH_ QUIETLY• 7-332

lndex-16

"Line_editing" string constant parameter to GET_
INF0•7-199

LINE_END keyword• 7-69, 7-251, 7-273
with POSITION • 7-288
with SEARCH • 7-327
with SEARCH_QUIETLY • 7-332

LINE NUMBER keyword • 7-416
"Line=.number" string constant parameter to GET_

INFO• 7-179, 7-206
List

specifying as a resource value• 4-13
$LOCAL$1NI$ buffer• 4-22
LOCAL declaration • 3-34 to 3-35
"Local" string constant parameter to GET _INFO •

7-179
Local variable • 3-4, 3-20
Local variables • 3-34
LOCATE_MOUSE built-in procedure• 7-252 to

7-253
Logical names

EVE$1NIT • 4-31
TPU$COMMAND • 5-6
TPU$DEBUG • 5-8
TPU$SECTION •5-16

Logical operators
AND operator• 3-7
NOT operator• 3-7
OR operator• 3-7
XOR operator• 3-7

Longword
to convert with FAO • 7-138
to convert with MESSAGE• 7-268
to convert with MESSAGE_ TEXT• 7-271

LOOKUP _KEY built-in procedure• 7-254 to 7-257
LOOP statement• 3-21 to 3-22
"Low_index" string constant parameter to GET_

INF0•7-167

M
Main window widget• 4-16
MANAGE CHILDREN routine

See MANAGE_WIDGET built-in procedure
MANAGE CHILD routine

See MANAGE WIDGET built-in procedure
MANAGE_WIDGET built-in procedure• 7-258

example of use • B-4 to B-11
Managing

of widget
controlling whether causes mapping• 7-418

MAP built-in procedure• 7-259 to 7-260
MAPPED_WHEN_MANAGED parameter to SET

built-in procedure • 7-418
Mapping

of widget
controlling whether performed during

managing• 7-418
"Map_count" string constant parameter to GET_

INF0•7-173
Margin

default• 7-412, 7-419, 7-454
left

setting records• 7-448
setting• 7-412, 7-419, 7-454

margin action
setting • 7-414

Margin action
default• 7-414

Margin Action
default • 7-456
setting • 7-456

MARGINS keyword• 7-419
MARK built-in procedure• 7-261 to 7-263
MARK data type • 2-8 to 2-1 O
Marker

deleting • 2-1 O, 7-108
determining if record containing is unmodifiable •

7-186
fetching display value of record containing• 7-186
padding effects • 2-1 O
video attributes• 2-9, 7-261

MATCH built-in procedure• 7-264 to 7-265
"Maximum_parameters" string constant parameter to

GET_INFO • 7-190
MAX_LINES keyword • 7-421
"Max_lines" string constant parameter to GET_

INF0•7-173
Measurement

converting units of• 7-50
Memory

error resulting from exceeding • 5-1
Menu bar widget • 4-16
Menu position

of widget
fetching in VAXTPU • 7-210

setting in VAXTPU • 7-422
MENU_POSITION parameter to SET built-in

procedure• 7-422
"menu_position" string constant parameter to GET_

INFO• 7-210
Message buffer • 4-18
MESSAGE built-in procedure• 7-266 to 7-269

Index

Messages • D-1 to D-1 O
Message window

in EVE• 4-16
MESSAGE_ACTION_LEVEL keyword • 7-424
"Message_action_level" string c;onstant parameter to

GET _INFO• 7-206
MESSAGE_ACTION_TYPE keyword• 7-426
MESSAGE_BUFFER identifier• 7-266
MESSAGE_BUFFER variable • 4-29
MESSAGE_FLAGS keyword• 7-427
"Message_flags" string constant parameter to GET_

INF0•7-207
MESSAGE_ TEXT built-in procedure• 7-270 to

7-272
"Middle_of_tab" string constant parameter to GET_

INF0•7-223
Minimal interface example • 4-26
"Minimum_parameters" string constant parameter to

GET_INFO • 7-190
"Mode" string constant parameter to GET _INFO •

7-173
Modifiability

setting records• 7-448
MODIFIABLE keyword• 7-429
"Modifiable" string constant parameter to GET_

INF0•7-173
"Modified" string constant parameter to GET _INFO•

7-173
/MODIFY qualifier• 5-12
"Modify" string constant parameter to GET INFO•

7-177 -

MODIFY _RANGE built-in procedure• 7-273 to
7-277

Module declaration
syntax • 3-15

MODULE statement • 3-14 to 3-15
Modules used with EVE$BUILD • G-2
Mouse

determining support for• 7-432
determining where drag operation originated •

7-188
Mouse button

fetching information about • 7-188
MOUSE keyword• 7-432

with POSITION• 7-288, 7-289
Mouse pad

implementing • B-4
"Mouse" string constant parameter to GET _INFO •

7-200
MOVE_HORIZONTAL built-in procedure • 7-278 to

7-279
MOVE_ TEXT built-in procedure• 7-280 to 7-281

lndex-17

Index

MOVE_ VERTICAL built-in procedure • 7-282 to
7-283

Multinational Character Set
See DEC Multinational Character Set

Multiple buffers• 7-59

N
Name

widget
case sensitivity of• 7-74

NAME keyword
with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

Names for procedures • 3-16
"Name" string constant parameter to GET_INFO •

7-164, 7-173, 7-182
"Next" string constant parameter to GET_INFO •

7-166, 7-168, 7-169, 7-180, 7-181, 7-183,
7-184, 7-191, 7-218, 7-223

"Next_marker" string constant parameter to GET_
INF0•7-173

"Next_range" string constant parameter to GET_
INF0•7-173

NODE keyword
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

/NODISPLAY qualifier
effect on LAST_KEY • 7-242
to disable screen manager • 6-1
with EVE$BUILD • G-10

/NOJOURNAL command qualifier• 1-12
"Nomodify" string constant parameter to GET_INFO •

7-177
NONE keyword

with MARK• 7-261
with SELECT• 7-337
with SET (MESSAGE_ACTION_ TYPE) • 7-426
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO)• 7-492

NOTANY built-in procedure• 7-284 to 7-285
NOT operator• 3-7
NO_EXACT keyword

with LEARN_BEGIN • 7-244
with SEARCH • 7-328
with SEARCH_QUIETLY • 7-333

NO_ TRANSLATE keyword • 7-483
"No_video" string constant parameter to GET_INFO •

7-223

lndex-18

"No_video_status" string constant parameter to
GET _INFO• 7-223

"No_write" GET_INFO request_string • 7-174
NO_ WRITE keyword• 7-434
Null parameters• 3-18
Numeric constant

specifying radix of • 3-37

0
OFF keyword

with CREATE_WINDOW • 7-77
with HELP_ TEXT• 7-228
with QUIT• 7-291
with SET (AUTO_REPEAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE_ VERTICAL) • 7-359
with SET (CROSS_WINDOW_BOUNDS) • 7-361
with SET (DEBUG) • 7-363, 7-364
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MODIFIABLE) • 7-429
with SET (MOUSE) • 7-432
with SET (NO_ WRITE)• 7-434
with SET (PAD)• 7-437
with SET (PAD_OVERSTRUCK_TABS) • 7-439
with SET (SCREEN_UPDATE) • 7-460
with SET (SCROLLING) • 7-467
with SET (SELF _INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER)• 7-486
with SET (TRACEBACK) • 7-488
with SPAWN• 7-515

"Offset" string constant parameter to GET _INFO•
7-174, 7-186

"Offset_column" string constant parameter to GET_
INFO• 7-174, 7-186

ON keyword
with CREATE_WINDOW • 7-77
with HELP_ TEXT• 7-228
with QUIT• 7-291
with SET (AUTO_REPEAT) • 7-353
with SET (BELL)• 7-355
with SET (COLUMN_MOVE_ VERTICAL) • 7-359
with SET (CROSS_WINDOW_BOUNDS) • 7-361
with SET (DEBUG)• 7-363
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MOD.IFIABLE) • 7-429
with SET (MOUSE)• 7-432

ON keyword (Cont.)

with SET (NO_WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK_TABS) • 7-439
with SET (SCREEN_UPDATE) • 7-460
with SET (SCROLLING) • 7-467
with SET (SELF _INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK)• 7-488
with SPAWN• 7-515

ON_ERROR statement• 3-25 to 3-31
location • 3-25

ON_ERROR Statement• 3-21
Operators • 3-6 to 3-8

partial pattern assignment(@)• 2-17
pattern alternation (I) • 2-16
pattern concatenation (+) • 2-15
pattern linking (&) • 2-15
precedence • 3-7
relational • 2-18

"Original_bottom" string constant parameter to GET_
INF0•7-223

"Original_length" string constant parameter to GET_
INF0•7-223

"Original_top" string constant parameter to GET_
INF0•7-223

"Original_width" string constant parameter to GET_
INF0•7-200

OR operator• 3-7
Output file • 5-12
OUTPUT parameter

SET built-in procedure • 7-203
/OUTPUT qualifier • 5-12
"Output" string constant parameter to GET_INFO •

7-177
OUTPUT _FILE keyword • 7-435
"Output_file" string constant parameter to GET_

INFO• 7-174, 7-178
OUTRANGE case constant• 3-24
OVERSTRIKE keyword• 7-436
Overstrike mode

COPY_ TEXT• 7-53
MOVE_ TEXT• 7-280

Ownership
global selection

determining• 7-199
losing• 7-202
requesting• 7-380

input focus
determining• 7-199
losing• 7-202

Ownership
input focus (Cont.)

requesting• 7-398

p
Padding effects • 6-11 to 6-12

version differences • 7-439
with APPEND_LINE • 7-28
with ATIACH • 7-35
with COPY_ TEXT• 7-53
with CURRENT _CHARACTER• 7-81
with CURRENT_LINE • 7-86
with CURRENT_OFFSET • 7-88
with ERASE_CHARACTER • 7-119
with ERASE_LINE • 7-121
with MARK• 7-262
with MOVE_HORIZONTAL • 7-278
with MOVE_ TEXT• 7-281
with MOVE_ VERTICAL• 7-282
with READ_FILE • 7-297
with SELECT• 7-338
with SELECT_RANGE • 7-341
with SET (PAD)• 7-437
with SPAWN• 7-516
with SPLIT_LINE • 7-518

PAD keyword • 7-437

Index

"Pad" string constant parameter to GET _INFO•
7-223

PAD_OVERSTRUCK_ TABS keyword• 7-439
"Pad_overstruck_tabs" string constant parameter to

GET~_INFO • 7-207
PAGE_BREAK keyword• 7-286

with SEARCH• 7-327
with SEARCH_ QUIETLY• 7-332

Parameters
for procedures • 3-16 to 3-19

"Parameter" string constant parameter to GET_
INF0•7-180

Parent
of widget

fetching in VAXTPU • 7-215
'"'parent"" string constant parameter to GET _INFO•

7-215
Parentheses

in expressions • 3-7
Parser

maximum stack depth of • 4-2
Parsers with EVE$BUILD • G-3 to G-4
Partial pattern assignment(@)• 2-17

lndex-19

Index

Pattern
alternation (I) • 2-16
anchoring• 7-24
built-in procedures• 2-13
compilation • 2-18
concatenation (+) • 2-15
execution • 2-18
expression • 3-11
linking (&) • 2-15
operators • 2-15
searching• 2-11

Pattern assignment
partial (@) • 2-17

PATTERN data type • 2-11 to 2-20
Pattern matching

built-in procedures
ANCHOR• 7-24
ANY•7-26
ARB• 7-30
LINE_BEGIN • 7-249
LINE_END • 7-251
MATCH • 7-264
NOTANY • 7-284
PAGE_BREAK • 7-286
REMAIN • 7-312
SCAN• 7-319
SCANL • 7-322
SPAN •7-510
SPANL • 7-512
UNANCHOR • 7-530

PERMANENT keyword• 7--441
"Permanent" string constant parameter to GET_

INFO• 7-174
"Pid" string constant parameter to GET _INFO•

7-192
Pixmap

use of to implent icon in DECwindows VAXTPU •
7-393, 7-395

Pointer position• 7-252
POSITION built-in procedure• 7-287 to 7-290

example of use • B-25 to B-27
POST _KEY _PROCEDURE keyword • 7--442
"Post_key_procedure" string constant parameter to

GET_INFO • 7-204
Predefined constants

names• 3-13
"Previous" string constant parameter to GET_INFO •

7-166, 7-168, 7-169, 7-180, 7-181, 7-183,
7-184, 7-191, 7-218, 7-223

PRE_KEY _PROCEDURE keyword• 7--444
"Pre_key_procedure" string constant parameter to

GET _INFO• 7-204

lndex-20

Procedural error handler • 3-26 to 3-28
Procedure

executing• 4-21
name• 3-16
parameter • 3-16 to 3-19
recommended naming conventions• 4-31
recommended size for • 4-2
recursive • 3-19
returning result• 2-8, 3-19, 7-101
using LEARN_ABORT in • 7-243

Procedures
samples using EVE • B-1 to B-33

PROCEDURES keyword
with EXPAND_NAME • 7-135

PROCEDURE statement• 3-15 to 3-21
"Procedure" string constant parameter to GET_

INF0•7-180
Process

deleting • 7-1 08
multiple

built-in procedur~s
ATTACH• 7-35
CREATE_PROCESS • 7-67
RECOVER_BUFFER•7-307
SEND•7-342
SEND_EOF • 7-346
SPAWN • 7-515

PROCESS data type• 2-20 to 2-21
Program

add to section file • 4-25
calling VAXTPU from •4-1, 7--41
compiling• 4-18 to 4-19
complex • 4-2
debugging • 4-33 to 4-37
deleting• 7-108
executing• 4-19 to 4-21
interrupting • 4-20
order •4-3
simple •4-2
syntax• 4-3

example • 4--4
writing• 4-1 to 4-14

PROGRAM data type• 2-21
Program execution

built-in procedures
COMPILE• 7--47
SAVE•7-316

PROGRAM keyword• 7-362
with LOOK_UP _KEY• 7-254

PROMPT_AREA
video attributes • 7--446

PROMPT _AREA keyword • 7-446
"Prompt_length" string constant parameter to GET_

INF0•7-200
"Prompt_row" string constant parameter to GET_

INF0•7-201

Q
Qualifier, command

See EDIT/TPU command qualifiers
QUIT built-in procedure• 7-291 to 7-292
Quote characters• 7-112, 7-113

R
Radix

of numeric constant
specifying • 3-37

Range
converting contents of to string format using STR •

7-520
deleting• 2-22, 7-70, 7-108
determining if unmodifiable records are present

in•7-193
erasing• 2-22, 7-70, 7-117
moving delimiters of• 7-273
video attributes • 2-22

RANGE data type• 2-21 to 2-22
Read request

fetching• 7-199
Read routine

fetching• 7-174, 7-201
specifying• 7-385

READ_CHAR built-in procedure• 7-293 to 7-294
READ_CLIP80ARD built-in procedure• 7-295
READ_FILE built-in procedure• 7-297 to 7-298
READ_GL08AL_SELECT built-in procedure• 7-299

example of use• 8-28 to 8-30, 8-30 to B-31
READ_KEY built-in procedure• 7-301 to 7-302
READ_LINE built-in procedure• 7-303 to 7-305
/READ_ONLY qualifier• 5-13
"Read_only" string constant parameter to GET_

INF0•7-178
REALIZE_ WIDGET built-in procedure• 7-306
Realizing

widgets in VAXTPU • 7-306

Index

Record

determining if unmodifiable is present• 7-175,
7-186, 7-193

erasing unmodifiable
preventing or allowing• 7-375

fetching display value of• 7-186
sensing unmodifiable erasable state• 7-169
setting attribute• 7-448

Record attribute • F-1
Record deleting • 6-5
Record format • F-1
Record insertion • 6-5
RECORD_ATIRIBUTE parameter to SET built-in

procedure• 7-448
"Record_count" string constant parameter to GET_

INF0•7-175
"Record_number" string constant parameter to GET_

INF0•7-175
"Record_size" string constant parameter to GET_

INF0•7-175
/RECOVER command qualifier• 1-11, 7-307
"Recover" GET_INFO request_string • 7-178
/RECOVER qualifier• 5-11, 5-14

controlling errors related to• 7-408
Recovery

of buffer contents • 1-11, 7-307
role of source file• 7-308
using buffer change journaling• 7-307
using keystroke journal file

enabling and disabling• 7-408
RECOVER_BUFFER built-in procedure• 7-307 to

7-309
Recursive procedure • 3-19
REFRESH built-in procedure• 6-1 O, 7-31 O to 7-311

compared with UPDATE (ALL)• 7-538
Relational expression • 3-1 O
Relational operators • 2-18
REMAIN keyword• 7-312

with SEARCH• 7-327
with SEARGH_QUIETLY • 7-332

Removal of key map
built-in procedures

REMOVE_KEY _MAP• 7-313
Removal of window• 2-28
REMOVE_KEY _MAP built-in procedure• 7-313 to

7-314
Repetitive statements• 3-21 to 3-22
Reserved word

built-in procedures • 3-12
keywords • 3-12
language elements • 3-13 to 3-14
predefined constants • 3-13

lndex-21

Index

Resizing
of screen in VAXTPU • 7-391, 7-501

Resource
of widget

fetching class and data type of• 7-215
supported data types for • 4-12

"resources" string constant parameter to GET _INFO•
7-215

Restoring terminal width
example • A-5

Restriction
VAXTPU

virtual address space • 5-1
Restrictions

for subprocess • 2-20
RETURN statement• 3-26, 3-31 to 3-33, 7-315
REVERSE keyword• 7-85, 7-453

with MARK • 7-261
with SEARCH• 7-328
with SEARCH_QUIETLY • 7-333
with SELECT• 7-337
with SET (MESSAGE_ACTION_ TYPE) • 7-426
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Reverse_status" string constant parameter to GET_
INF0•7-224

"Reverse_video" string constant parameter to GET_
INF0•7-224

RIGHT_MARGIN keyword• 7-454
"Right_margin" string constant parameter to GET_

INFO• 7-175, 7-186
RIGHT _MARGIN_ACTION keyword• 7-456
"Right_margin_action" string constant parameter to

GET_INFO • 7-175
Running VAXTPU from subprocess

example • A-5

s
"safe_forjournaling" string constant parameter

GET_INFO built-in• 7-175
Sample procedures using DECwindows VAXTPU

built-in procedures• B-1 to 8-33
Sample VAXTPU procedures

debugon • 7-365
delete_all_definitions • 7-533
init_help_key_map_list • 7-66
init_sample_key_map • 7-64
line_number_example • 7-417

lndex-22

Sample VAXTPU procedures (Cont.)

mail_sub • 7-343
my_call_user • 7-43
remove_comments • 7-312
SAVE•7-318
shift_key_handler • 7-257
show_key_maps_in_list • 7-161
show_key_map_lists • 7-160
show_self_insert • 7-161
strip_blanks • 7-124, 7-126, 7-128
strip_eight • 7-528
toggle_self_insert • 7-471
traceback_example • 7-489
user_change_mode • 7-103
user_change_windows • 7-290
user_clear_key • 7-533
user_collect_rnos • 7-145
user_dcl__process • 7-68
user_define_edtkey • 7-240
user_define_key • 7-103
user_delete • 7-89
user_delete_char • 7-29
user_delete_extra • 7-109
user_delete_key • 7-120
user _display _current_ character • 7-82
user_display_help • 7-23
user_display_key_map_list • 7-160
user_display__position • 7-522
user_do • 7-131
user_double__parens • 7-265
user_edit_string • 7-114
user_emphasize_message • 7-509
user_end_of_line • 7-251
user_erase_message_buffer • 7-315
user_erase_to_eob • 7-71
user_error_messsage • 7-139
user_fao_conversion • 7-139
user_find_chap • 7-330, 7-335
user_find_mark_twain • 7-514
user_find__parens • 7-320
user_find__procedure • 7-27
user_find_string • 7-315
user_free-cursor_up • 7-98
user_free_cursor_down • 7-98
user_free_cursor_left • 7-95
user_free_cursor_right • 7-95
user_get_info • 7-160
user_get_key_info • 7-256
user_go_down • 7-91
user_go_up • 7-91
user_help • 7-229

Sample VAXTPU procedures (Cont.)

user_help_buffer • 7-62
user_help_on_key • 7-302
user_include_file • 7-38
user_initial_cap • 7-524
user_is_character • 7-231
user_lowercase_line • 7-46
user_make_window • 7-79
user_tnark • 7-248
user_message_window • 7-260
user_move_8_1ines • 7-283
user_move_by_lines • 7-279
user_move_text • 7-281
user_move_to_mouse • 7-253
user_next_page • 7-286
user_next_screen • 7-93
user_not_quite_working • 7-39
user_one_window_to_two • 7-537
user_on_eol•7-269
user _paste • 7-116, 7-263
user_print • 7-485
user_prompt_number • 7-233, 7-305
user_quick_parse • 7-137
user_quit • 7-292
user_quote • 7-294
user_remove_blank_lines • 7-514
user_remove_comments • 7-25
user_remove_crlfs • 7-118
user_remove_dsrlines • 7-250
user_remove_non_numbers • 7-323
user_remove_numbers • 7-514
user_remove_odd_characters • 7-321
user_remove_paren_text • 7-531
user_repaint • 7-311
user_replace_prefix • 7-31
user_ring_bell • 7-356
user_runoff_line • 7-87
user_scroll_buffer • 7-326
user_search_for_nonalpha • 7-285
user_search_range • 7-331, 7-336
user_select • 7-341
user_show_direction • 7-85
user_show_first_line • 7-539
user_simple_insert • 7-54
user_slow_down_arrow • 7-354
user_slow_up_arrow • 7-354
user_split_line • 7-84, 7-519
user_startjournal • 7-142
user_start_select • 7-339
user_tab • 7-33
user_test_key • 7-34

Sample VAXTPU procedures (Cont.)

user_toggle_direction • 7-80
user_top • 7-38
user_tpu • 7-132
user_trans_text•7-528
user_two_window • 7-298
user_upcase_item • 7-46
user_what_is_comment • 7-256
user_write_file • 7-545

SAVE built-in procedure• 7-316 to 7-318
SCAN built-in procedure• 7-319 to 7-321
SCANL built-in procedure• 7-322 to 7-323
Screen

enabling resizing of• 7-372
resizing• 7-391, 7-501
specifying size of• 7-458
updating

controlling support for• 7-460
SCREEN keyword

Index

using with widget-related built-in procedures• 4-16
Screen layout

built-in procedures
ADJUST_WINDOW • 7-19
CREATE_ WINDOW• 7-77
MAP•7-259
REFRESH • 7-310
SHIFT• 7-503
UNMAP • 7-536
UPDATE• 7-538

Screen manager • 2-28, 6-1 to 6-12
automatic update• 6-7
line changes • 6-6
partial update • 6-8
specific window update• 6-8
suppressing updates • 6-6
update all windows • 6-9
update order• 6-7
updates • 6-6
update with ADJUST_WINDOW • 7-22
update with CURSOR_HORIZONTAL • 7-94
update with CURSOR_ VERTICAL• 7-97

Screen object
in VAXTPU • 4-14

Screen update

See Screen manager
SCREEN_ UPDATE keyword• 7-460
"Screen_update" string constant parameter to GET_

INF0•7-201
Scroll bar

disabling• 7-462
enabling • 7-462

lndex-23

Index

Scroll bar slider
adjusting automatically• 7-224

Scroll bar widget
example of fetching• B-19 to B-22

SCROLL built-in procedure• 6-10, 7-324 to 7-326
Scrolling

effect of on cursor position • 7-324
effect of on editing point• 7-324
with records deleted • 6-5
with records inserted• 6-5

SCROLLING keyword• 7-467
"Scroll" string constant parameter to GET INFO•

7-201, 7-224 -
"Scroll_amount" string constant parameter to GET

INFO• 7-224 -
"Scroll_bottom" string constant parameter to GET

INFO• 7-224 -
"Scroll_top" string constant parameter to GET

INFO• 7-225 -
Search

anchored • 7-24
anchoring a pattern • 2-19
for pattern • 2-11
unanchoring pattern elements • 2-19 to 2-20

SEARCH built-in procedure• 7-327 to 7-331
SEARCH_QUIETLY built-in procedure• 7-332 to

7-336
Section files • 5-16

created with EVE$BUILD • G-10 to G-11
creating• 4-23
debugging • 4-34
default• 4-21
definition • 1-10
extending • 4-24
processing • 4-24, 4-25
recommended conventions • 4-28

/SECTION qualifier• 4-25, 5-16
"Section" string constant parameter to GET INFO.

~1n -
"Section_file" string constant parameter to GET

INFO• 7-178, 7-207 -
Security considerations• 1-12, 7-59, 7-234, 7-235,

7-406
SELECT built-in procedure• 7-337 to 7-339
Selection • 4-16

dynamic• 4-17
found range • 4-18
static • 4-17
using MODIFY _RANGE built-in to alter• 7-273

Select range
in EVE• 4-16

lndex-24

SELECT_RANGE built-in procedure• 7-340 to
7-341

SELF _INSERT keyword• 7-470
"Self_insert" string constant parameter to GET

INFO• 7-204 -
Semicolon

as statement separator • 1-8, 3-4, 3-15, 3-16,
3-17,4-3

SEND built-in procedure• 7-342 to 7-343
SEND_CLIENT_MESSAGE built-in procedure•

7-344 to 7-345
SEND_EOF built-in procedure• 7-346
Separator

semicolon used as• 1-8, 3-4, 3-15, 3-16, 3-17,
4-3

SET (ACTIVE_AREA) built-in procedure• 7-350
SET (AUTO_REPEAT) built-in procedure• 7-353 to

7-354
SET (BELL) built-in procedure• 7-355 to 7-356
SET (CLIENT_MESSAGE) built-in procedure• 7-357

to 7-358
SET (COLUMN_MOVE_ VERTICAL) built-in

procedure• 7-359 to 7-360
SET (CROSS_WINDOW_BOUNDS) built-in

procedure• 7-361
SET (DEBUG) built-in procedure• 7-362 to 7-365
SET (DEFAULT _DIRECTORY) built-in procedure •

7-366
SET (DETACHED_ACTION) built-in procedure•

7-367 to 7-369
SET (DISPLAY_ VALUI;.:) built-in procedure• 7-370
SET (DRM_HIERARCHY) built-in procedure• 7-371
SET (ENABLE_RESIZE) built-in procedure• 7-372
SET (EOB_TEXT) built-in procedure• 7-374
SET (ERASE_UNMODIFIABLE) built-in procedure•

7-375 to 7-377
SET (FACILITY _NAME) -built-in procedure• 7-378
SET (FORWARD) built-in procedure• 7-379
SET (GLOBAL_SELECT) built-in procedure• 7-380
SET (GLOBAL_SELECT_GRAB) built-in procedure•

7-382
SET (GLOBAL_SELECT_READ) built-in procedure•

7-385
SET (GLOBAL_SELECT_TIME) built-in procedure•

7-387
SET (GLOBAL_SELECT_UNGRAB) built-in

procedure • 7-389
SET (HEIGHT) built-in procedure• 7-391
SET (ICONIFY _PIXMAP) built-in procedure• 7-395

to 7-396
SET (ICON_NAME) built-in procedure• 7-392
SET (ICON_PIXMAP) built-in procedure• 7-393 to

7-394

SET (INFORMATIONAL) built-in procedure• 7-397
SET (INPUT_FOCUS) built-in procedure• 7-398
SET (INPUT_FOCUS_GRAB) built-in procedure•

7-400
SET (INPUT_FOCUS_UNGRAB) built-in procedure•

7-402
SET (INSERT) built-in procedure• 7-404
SET (JOURNALING) built-in procedure• 7-405 to

7-407
SET (KEYSTROKE_RECOVERY) built-in procedure •

7-408 to 7-409
SET (KEY _MAP _LIST) built-in procedure• 7-410 to

7-411
SET (LEFT _MARGIN) built-in procedure• 7-412 to

7-413
SET (LEFT_MARGIN_ACTION) built-in procedure•

7-414 to 7-415
SET (LINE_NUMBER) built-in procedure• 7-416 to

7-417
SET (MAPPED_WHEN_MANAGED) built-in

procedure• 7-418
SET (MARGINS) built-in procedure• 7-419 to 7-420
SET (MAX_LINES) built-in procedure• 7-421
SET (MENU_POSITION) built-in procedure• 7-422

to 7-423
SET (MESSAGE_ACTION_LEVEL) built-in procedure

• 7-424 to 7-425
SET (MESSAGE_ACTION_ TYPE) built-in procedure•

7-426
SET (MESSAGE_FLAGS) built-in procedure• 7-427

to 7-428
SET (MODIFIABLE) built-in procedure• 7-429 to

7-430
SET (MODIFIED) built-in procedure• 7-431
SET (MOUSE) built-in procedure• 7-432 to 7-433
SET (NO_ WRITE) built-in procedure• 7-434
SET (OUTPUT) built-in procedure• 7-203
SET (OUTPUT _FILE) built-in procedure• 7-435
SET (OVERSTRIKE) built-in procedure• 7-436 ·
SET (PAD) built-in procedure• 7-437 to 7-438
SET (PAD_OVERSTRUCK_ TABS) built-in procedure

• 7-439 to 7-440
SET (PERMANENT) built-in procedure• 7-441
SET (POST _KEY _PROCEDURE) built-in procedure •

7-442 to 7-443
SET (PRE_KEY _PROCEDURE) built-in procedure•

7-444 to 7-445
SET (PROMPT_AREA) built-in procedure• 7-446 to

7-447
SET (RECORD_ATTRIBUTE) built-in procedure•

7-448 to 7-450
SET (RESIZE_ACTION) built-in procedure• 7-451
SET (REVERSE) built-in procedure• 7-453

Index

SET (RIGHT_MARGIN) built-in procedure• 7-454 to
7-455

SET (RIGHT _MARGIN_ACTION) built-in procedure•
7-456 to 7-457

SET (SCREEN_LIMITS) built-in procedure• 7-458
SET (SCREEN_UPDATE) built-in procedure• 7-460

to 7-461
SET (SCROLLING) built-in procedure• 7-467 to

7-469
SET (SCROLL_BAR) built-in procedure• 7-462

example of use • B-22 to B-25
SET (SCROLL_BAR_AUTO_ THUMB) built-in

procedure • 7-465
example of use • B-22 to B-25

SET (SELF _INSERT) built-in procedure• 7-470 to
7-471

SET (SHIFT _KEY) built-in procedure• 7-472 to
7-473

SET (SPECIAL_ERROR_SYMBOL) built-in
procedure• 7-474 to 7-475

SET (STATUS_LINE) built-in procedure• 7-476 to
7-478

SET (SUCCESS) built-in procedure• 7-479
SET (SYSTEM) built-in procedure• 7-480
SET (TAB_STOPS) built-in procedure• 7-481 to

7-482
SET (TEXT) built-in procedure• 7-483 to 7-485
SET (TIMER) built-in procedure• 7-486 to 7-487
SET (TRACEBACK) built-in procedure• 7-488 to

7-489
SET (UNDEFINED_KEY) built-in procedure• 7-490

to 7-491
SET (VIDEO) built-in procedure• 7-492 to 7-493
SET (WIDGET) built-in procedure• 7-494

example of use • B-22 to B-25, B-25 to B-27
using to specify resource values• 4-12

SET (WIDGET_CALLBACK) built-in procedure•
7-499

example of use • B-22 to B-25
using to specify callback routine • 4-9

SET (WIDGET_CALL_DATA) built-in procedure•
7-496 to 7-498

SET (WIDTH) built-in procedure• 7-501 to 7-502
SET built-in procedure • 7-347 to 7-349

WIDGET• 4-10
SHIFT built-in procedure• 7-503 to 7-504
SHIFT key

restriction on defining in EVE• 7-472
"Shift_amount" string constant parameter to GET_

INF0•7-225
SHIFT_KEY keyword• 7-472

lndex-25

Index

"Shift_key" string constant parameter to GET_INFO •
7-204, 7-207

SHOW {KEYWORDS) built-in procedure • 2-5
SHOW built-in procedure• 7-505 to 7-507
SHOW DEFAULTS BUFFER command• 4-32
Showing version number• 4-2
SHOW_BUFFER identifier• 7-506
SHOW_BUFFER variable• 4-29
SLEEP built-in procedure• 7-508 to 7-509
Slider•7-224

example of fetching • B-19 to B-22
Source file

defined • 7-308
Source files for EVE • 1-11
SPAN built-in procedure• 7-510 to 7-511
SPANL built-in procedure• 7-512 to 7-514
SPAWN built-in procedure• 7-515 to 7-517
SPECIAL_GRAPHICS keyword

with SET {STATUS_LINE) • 7-476
"Special_graphics_status" string constant parameter

to GET _INFO• 7-225
SPLIT_LINE built-in procedure• 7-518 to 7-519
Startup files • 1-1 O to 1-11, 4-21 to 4-33

command file • 1-1 O
definition• 1-10
initialization file • 1-1 O
order of execution • 4-22
section file • 1-1 O

"Start_character" string constant parameter to GET_
INF0•7-178

/START_POSITION qualifier• 5-17
"Start_record" string constant parameter to GET_

INF0•7-178
Statement

separator for • 4-3
Static selection • 4-17
Status line

default information• 7-77
fields added with EVE$BUILD • G-7 to G-8
video attributes• 7-476

STATUS_LINE keyword• 7-476
"Status_line" string constant parameter to GET_

INFO• 7-225
"Status_video" string constant parameter to GET_

INF0•7-225
STR built-in procedure• 7-520 to 7-522
String

concatenating • 3-4
converting contents of butter to using STR • 7-520
converting contents of range to using STR • 7-520
to insert with FAO • 7-138
to insert with MESSAGE• 7-268

lndex-26

String {Cont.)

to insert with MESSAGE_ TEXT• 7-271
String constants • 3-5
STRING data type • 2-23 to 2-24
STUFF _SELECTION client message• 7-344
Subclass

finding out if a widget is a member of• 7-214
Subprocess

at DCL level• 7-67
built-in procedures

ATTACH • 7-35
CREATE_PROCESS • 7-67
RECOVER_BUFFER•7-307
SEND •7-342
SEND_EOF • 7-346

built-in procedures for defining
SPAWN • 7-515

deleting • 7-67
restrictions • 2-20
running VAXTPU from • A-5
within VAXTPU • 7-67

SUBSTR built-in procedure• 7-523 to 7-525
SUCCESS keyword • 7-479
"Success" string constant parameter to GET_INFO •

7-207
Supported terminals • 1-8
Symbols • 3-3 to 3-4
Synonyms for commands• G-5 to G-7
Syntax •4-3
SYSTEM keyword • 7-480
"System" string constant parameter to GET _INFO•

7-175

T
TAB_STOPS keyword

used with SET• 7-481
"Tab_stops" string constant parameter to GET_

INF0•7-175
Terminal

behavior • C-1
DEC_CRT2 • C-3
restoring width • A-5
setting• C-1 to C-3

AUTO_REPEAT • C-2
auxiliary keypad • C-2
132 columns • C-2
control sequence introducer • C-2
CSl•C-2
cursor• C-2

Terminal
setting (Cont.)

DEC_CRT•C-2
edit mode • C-2
eightbit characters • C-2
scrolling • C-3
video attributes • C-3
wrap•C-4

support • C-1
width

restoring • A-5
Terminal emulator• 6-4
Terminal support • 1-8
TEXT keyword • 7-483
Text manipulation

built-in procedures
APPEND_LINE • 7-28
BEGINNING_OF • 7-37
CHANGE_ CASE• 7-44
COPY _TEXT• 7-53
CREATE_BUFFER•7-58
EDIT• 7-111
END_OF • 7-115
ERASE• 7-117
ERASE_CHARACTER • 7-119
ERASE_LINE • 7-121
FILE_PARSE • 7-140
FILE_SEARCH • 7-143
FILL• 7-146
MOVE_ TEXT• 7-280
READ_FILE • 7-297
SEARCH• 7-327
SEARCH_QUIETLY • 7-332
SELECT• 7-337
SELECT _RANGE • 7-340
SPLIT_LINE • 7-518
TRANSLATE• 7-526
WRITE_FILE • 7-543

"Text" string constant parameter to GET_INFO •
7-225

%THEN lexical keyword• 3-36
Time

inserting with FAQ• 7-138
inserting with MESSAGE• 7-268
inserting with MESSAGE_ TEXT• 7-271

"Timed_message" string constant parameter to GET_
INF0•7-207

TIMER keyword• 7-486
Title bar widget • 4-16
TPU$COMMAND logical name • 4-21, 5-6
TPU$DEBUG logical name • 5-8
TPU$1NIT_PROCEDURE procedure• 4-22, 4-28

Index

TPU$K_DISJOINT constant• 7-198, 7-368
TPU$K_INVISIBLE constant• 7-198, 7-368
TPU$K_OFF _LEFT constant• 7-198, 7-368
TPU$K_OFF _RIGHT constant• 7-198, 7-368
TPU$K_UNMAPPED constant• 7-198, 7-368
TPU$LOCAL_INIT procedure• 4-29
TPU$LOCAL_INIT_PROCEDURE procedure• 4-23
TPU$SECTION logical name• 4-21, 4-27, 5-16
TPU$STACKOVER status

correcting• 4-2
TPU$WIDGET_INTEGER_CALLBACK callback

routine • 4-9, 4-10
TPU$WIDGET_STRING_CALLBACK callback routine

• 4-9, 4-10
TPU$X_MESSAGE_BUFFER variable• 4-29
TPU$X_SHOW_BUFFER variable• 4-29
TPU$X_SHOW_WINDOW variable• 4-29
TPU$_UNKLEXICAL error message• 3-38
TPU command •4-19
TPU debugger• 4-33 to 4-37

ATTACH command• 4-36
CANCEL BREAKPOINT command • 4-36
DEBUGON procedure • 4-35
DEPOSIT command • 4-36
DISPLAY SOURCE command• 4-36
EXAMINE command• 4-36
GO command • 4-34, 4-36
HELP command• 4-36
invoking • 4-33
au IT command • 4-36
SCROLL command • 4-37
SET BREAKPOINT command • 4-34, 4-37
SET WINDOW command• 4-37
SHIFT command •4-37
SHOW BREAKPOINTS command • 4-37
SPAWN command • 4-37
STEP command • 4-35, 4-37
TPU command • 4-37

TRACEBACK keyword• 7-488
"Traceback" string constant parameter to GET_

INF0•7-207
TRANSLATE built-in procedure• 7-526 to 7-529
"Type" GET_INFO request_string • 7-165
TYPE keyword

with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

u
UNANCHOR keyword• 7-530 to 7-531

lndex-27

Index

UNANCHOR keyword (Cont.)

with SEARCH_QUIETLY • 7-333
Unbound code

use of local variables in • 3-34
UNDEFINED_KEY keyword• 7-490
"Undefined_key" string constant parameter to GET_

INFO• 7-204
UNDEFINE_KEY built-in procedure• 7-532 to 7-533
UNDERLINE keyword

with MARK• 7-261
with SELECT• 7-337
with SET (PROMPT_AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Underline_status" string constant parameter to
GET _INFO• 7-225

"Underline_video" string constant parameter to GET_
INFO• 7-225

Ungrab routine
global selection

fetching• 7-202
specifying• 7-389

input focus
fetching• 7-202
specifying• 7-402

UNMANAGE_WIDGET built-in procedure• 7-534
UNMAP built-in procedure• 7-536 to 7-537
Unmodifiable record• 7-448

determining if present•?-175, 7-186, 7-193
preventing or allowing erasing of• 7-375
sensing erasable state • 7-169

"Unmodifiable_records" string constant parameter to
GET_INFO • 7-175, 7-186, 7-193

UNSPECIFIED data type• 2-24
Unsupported terminals • 2-29
UPDATE built-in procedure• 6-9, 7-538 to 7-539

compared with REFRESH • 7-538
"Update" string constant parameter to GET_INFO •

7-208
Updating windows • 2-29
User window

in EVE• 4-16
Utility routines

forming the VAXTPU callable interface• 4-1, 7-41

v
Value(s)

assigning to widget resources• 4-10, 7-494

lndex-28

Variable

buffer•2-4
global •3-4
initializing • 2-24
local• 3-4, 3-20, 3-34

VARIABLE declaration• 3-36
Variables

recommended naming conventions• 4-31
VARIABLES keyword

with EXPAND_NAME • 7-135
VAXTPU

built-in procedures • 1-2
DECwindows • 1-2
journaling methods • 1-11
relationship with DECwindows features• 1-2
used with UIL • 1-4

VERSION keyword• 7-141
with FILE_SEARCH • 7-144

Version number • 4-2
"Version" string constant parameter to GET _INFO•

7-208
Video attribute

marker• 2-9, 7-261
PROMPT_AREA • 7-446
range •2-22
SET (VIDEO) built-in procedure• 7-492
with STATUS_LINE • 7-476

VIDEO keyword• 7-492
"Video" string constant parameter to GET _INFO•

7-187, 7-193, 7-226
Virtual address space

VAXTPU restriction concerning• 5-1
Visibility

fetching display value of record or window• 7-186,
7-222

of record
using display value to determine• 7-370

setting record • 7-448
"Visible" string constant parameter to GET_INFO •

7-226
"Visible_bottom" string constant parameter to GET_

INF0•7-226
"Visible_length" string constant parameter to GET_

INFO• 7-202, 7-226
"Visible_top" string constant parameter to GET_

INF0•7-226
"Vk100" string constant parameter to GET_INFO •

7-202
"Vt100" string constant parameter to GET _INFO•

7-202
"Vt200" string constant parameter to GET_INFO •

7-202

"Vt300" string constant parameter to GET_INFO •
7-202

w
Widget

callback__parameters • 7-209
case sensitivity of name • 7-7 4
creating • 7-72
defining a class of• 7-105
deleting• 7-108
fetching callback routine for• 7-214
fetching children of in VAXTPU • 7-21 O
fetching class of in VAXTPU • 7-214
fetching name of• 7-215
finding out if managed in VAXTPU • 7-214
getting information about• 7-216
listing of • 4-5
main window • 4-16
managing • 7-258
mapped status

controlling in VAXTPU • 7-418
membership in subclass

finding out in VAXTPU • 7-214
menu bar

in VAXTPU • 4-16
menu position of in VAXTPU • 7-210
parent of

fetching in VAXTPU • 7-215
realizing in VAXTPU • 7-306
resource

fetching class and data type of in VAXTPU •
7-215

scroll bar• 7-224, 7-462
scroll bar slider • 7-224
setting resource values of• 7-494
title bar • 4-16
unmanaging • 7-534
using callback data structure in VAXTPU • 7-496
widget_id • 7-209

Widget children
managing• 7-258
unmanaging • 7-534

WIDGET data type• 2-24 to 2-25
Widget resources

data types of • 4-12
specifying • 4-12

WIDGET_CALL_DATA parameter to SET built-in
procedure• 7-496

WIDTH parameter to SET built-in procedure• 7-501

Index

"Width" string constant parameter to GET_INFO •
7-202

Wildcard characters
in file names • 5-20

Window
adjusting size• 7-19
attributes • 7-78
bottom

example of fetching• 8-16 to 8-19
changing position• 7-20
command

in EVE• 4-16
creating• 2-26
current• 2-27, 7-77
definition • 2-25
deleting• 6-4, 7-108
determining bottom of• 7-222
determining boundaries and size of• 7-222
determining last column of• 7-224
determining leftmost column of• 7-222
determining length of• 7-223
determining top of• 7-225
determining width of• 7-226
dimensions • 2-25
enlarging• 7-19
fetching display value of• 7-222
function of

in VAXTPU compared with DECwindows •
4-16

getting information • 2-29
key map list

example of fetching • 8-19 to 8-22
length • 2-26

example of fetching • 8-16 to B-19
making current • 6-2
mapping • 2-27, 6-3
message

in EVE• 4-16
reducing• 7-20
removing • 2-28
screen management • 6-2 to 6-4
screen updates• 6-7
scroll bar in• 7-224, 7-462
scroll bar slider in• 7-224
setting display value of• 7-370
size

top

with terminal display • 6-4
with terminal emulator• 6-4

example of fetching• 8-16 to 8-19
unmapping • 2-28

lndex-29

Index

Window (Cont.)

unsupported terminals • 2-29
updating • 2-29
user

in EVE •4-16
values • 2-27
width• 2-26

example of fetching • 8-19 to 8-22
window width • 6-4

WINDOW data type• 2-25 to 2-29
"Within_range" string constant parameter to GET_

INF0•7-187
Word separators• 7-146
/WRITE qualifier • 5-17

lndex-30

"Write" string constant parameter to GET_INFO •
7-178

WRITE_CLIP80ARD built-in procedure• 7-540
example of use • B-11 to 8-13

WRITE_FILE built-in procedure• 7-543 to 7-545
WRITE_GL08AL_SELECT built-in procedure• 7-546

example of use• 8-31 to B-33

x
XOR operator• 3-7
X resource

fetching value of• 7-151

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX Text Processing Utility
Manual: Part II
AA-PBTNA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-;;~t;;~:d Here and Ta~ ------------------~lnr-------;~~y~---
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

I I I 11111II1II1111II1111I1II1I11Irl11I11I1I111I1II11 I

- Do Not Tear - Fold Here --

I
I
I
I
I

