

VAX Text Processing Utility
Manual: Part i

Order Number: AA-PBTNA-TE

June 1990

This manual describes the elements of the VAX Text Processing Utility
(VAXTPU). ltis intended as a reference manual for experienced programmers.

Revision/Update Information: This document supersedes the VAX Text
Processing Utility Manual for VMS Version
5.2.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (¢)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.
All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop~-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm Glal ReGIS VMS
DECnet HSC ULTRIX VT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX "
DECwriter MASSBUS VAXcluster Enaﬂan

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4350

—

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

P

N

~_

Contents

PREFACE xxiii

VAXTPU TUTORIAL SECTION

CHAPTER 1 OVERVIEW OF THE VAX TEXT PROCESSING UTILITY 1-1
1.1 WHAT IS VAXTPU? 1-1
1.2 WHAT IS DECWINDOWS VAXTPU? 1-2
1.2.1 DECwindows VAXTPU and DECwindows Features 1-2
1.2.2 DECwindows VAXTPU and the DECwindows User Interface

Language 1-4
1.3 WHAT IS EVE? 14
1.4 THE VAXTPU LANGUAGE 1-5
1.4.1 VAXTPU Data Types 1-6
14.2 VAXTPU Language Declarations 1-7
143 VAXTPU Language Statements 1-7
144 VAXTPU Built-in Procedures 1-7
1.4.5 User-Written Procedures 1-8
1.5 TERMINALS SUPPORTED BY VAXTPU 1-8
1.6 INVOKING VAXTPU 1-9
1.6.1 Using EDIT/TPU Command Qualifiers 1-9
1.6.2 Using Startup Files 1-10
1.7 USING JOURNAL FILES 1-1

1.7.1 Buffer Change Journal File Naming Algorithm 1-12

Contents

1.8 LEARNING MORE ABOUT VAXTPU 1-13
CHAPTER 2 VAXTPU DATA TYPES 2-1
21 ARRAY 2-2
22 BUFFER 2-3
23 INTEGER 2-5
24 KEYWORD 2-5
25 LEARN 2-7
26 MARKER 2-8
27 PATTERN 2-1
2.7.1 Pattern Built-In Procedures 2-13
2.7.2 Keywords That Can Be Used to Build Patterns 2-14
2.7.3 Pattern Operators 2-15
2.7.3.1 + (Pattern Concatenation Operator) » 2-15
2.7.3.2 & (Pattern Linking Operator) * 2-15
2733 | (Pattern Alternation Operator) « 2-16
2.7.3.4 @ (Partial Pattern Assignment Operator) * 2-17
2.7.35 Relational Operators « 2—18
2.7.4 Pattern Compilation and Execution 2-18
275 Searching 2-18
2.7.6 Anchoring a Search 2-19
28 PROCESS 2-20
29 PROGRAM 2-21
2.10 RANGE 2-21

vi

N

N~

Contents

2.1 STRING 2-23
212 UNSPECIFIED 2-24
213 WIDGET 2-24
214 WINDOW 2-25
2.14.1 Window Dimensions 2-25
2.14.2 Creating Windows 2-26
2.14.3 Window Values 2-27
2.14.4 Mapping Windows 2-27
2.14.5 Removing Windows 2-28
2.14.6 Screen Manager 2-28
2147 Getting Information on Windows 2-29
2.14.8 Terminals That Do Not Support Windows 2-29
CHAPTER 3 LEXICAL ELEMENTS OF THE VAXTPU LANGUAGE 3-1
3.1 OVERVIEW 3-1
3.2 CHARACTER SET 3-1
3.2.1 Entering Control Characters 3-2
3.22 VAXTPU Symbols 3-3
3.3 IDENTIFIERS 3-4
34 VARIABLES 34
35 CONSTANTS 3-5
3.6 OPERATORS 3-6
3.7 EXPRESSIONS 3-8
3.71 Arithmetic Expressions 3-9
3.7.2 Relational Expressions 3-10
3.7.3 Pattern Expressions 3-11
3.7.4 Boolean Expressions 3-11

vii

Contents

3.8 RESERVED WORDS 3-12
3.8.1 Keywords 3-12
3.8.2 Built-In Procedure Names 3-12
3.8.3 Predefined Constants 3-13
3.84 Declarations and Statements 3-13
3.8.4.1 The Module Declaration » 3—14
3.84.2 The Procedure Declaration « 3—15

3.8.4.2.1 Procedure Names * 3—-16

3.8.4.22 Procedure Parameters ¢« 3—16

3.8.4.2.3 Procedures That Return a Resuilt « 3—19

3.8.4.24 Recursive Procedures « 3-19

3.8.4.25 Local Variables « 3-20

3.8.4.2.6 Constants « 3-20

3.8.4.2.7 ON_ERROR Statements « 3—21
3.8.4.3 The Assignment Statement « 3-21
3.8.4.4 The Repetitive Statement « 3-21
3:8.4.5 The Conditional Statement « 3—22
3.8.4.6 The Case Statement « 3-23
3.8.4.7 Error Handling « 3-25

3.8.4.7.1 Procedural Error Handlers « 3-26

3.8.47.2 Case-Style Error Handlers « 3-28

3.8.4.7.3 CTRL/C Handling « 3—-31
3.8.4.8 The RETURN Statement 3-31
3.8.4.9 The ABORT Statement ¢« 3-33
3.8.4.10 Miscellaneous Declarations « 3—-33

3.8.4.10.1 EQUIVALENCE Statement « 3-33

3.8.4.10.2 LOCAL « 3-34

3.8.4.10.3 CONSTANT « 3-35

3.8.4.10.4 VARIABLE - 3-36
3.9 LEXICAL KEYWORDS 3-36
3.9.1 Conditional Compilation 3-36
3.9.2 Specifying the Radix of Numeric Constants 3-37

CHAPTER 4 VAXTPU PROGRAM DEVELOPMENT 4-1

4.1 CREATING VAXTPU PROGRAMS 4-1
411 Simple Programs 4-2
4.1.2 Complex Programs 4-2
413 Program Syntax 4-3

viii

N~

Contents

4.2 PROGRAMMING IN DECWINDOWS VAXTPU 4-5
4.2.1 Widgets Supported by DECwindows VAXTPU 4-5
422 Input Focus Support in DECwindows VAXTPU 4-5
423 Global Selection Support in DECwindows VAXTPU 4-6
4.2.3.1 Difference Between Global Selection and Clipboard « 4-6
4232 Handling of Multiple Global Selections « 4-6
4.2.3.3 Relation of Global Selection to Input Focus in DECwindows

VAXTPU « 4-7
4234 DECwindows VAXTPU's Response to Requests for Information

About the Global Selection « 4-7
4.2.4 Using Callbacks in DECwindows VAXTPU 4-8
4.2.4.1 Background on DECwindows Callbacks « 4-8
4242 Understanding the Difference Between VAXTPU’s

Internally-Defined Caliback Routines and a Layered Application’s

Callback Routines « 4-9
4243 Using Internally-Defined VAXTPU Callback Routines with

UIL - 4-9
4244 Using Internally-Defined VAXTPU Callback Routines with Widgets

Not Defined by UIL « 4-10
4245 Using Application-Level Callback Action Routines « 4-10
4246 Callable Interface-Level Callback Routines * 4-10
4.25 Using Closures in DECwindows VAXTPU 4-11
4.2.6 Specifying Values for Widget Resources in DECwindows

VAXTPU 4-12
4.2.6.1 VAXTPU Data Types for Specifying Resource Values « 4-12
4.2.6.2 Specifying a List as a Resource Value * 4-13
4.3 WRITING CODE COMPATIBLE WITH DECWINDOWS EVE 4-14
4.3.1 Screen Objects in Applications Layered on DECwindows
VAXTPU 4-14

4.3.2 Select Ranges in DECwindows EVE 4-16
4.3.2.1 Dynamic Selection « 4-17
4322 Static Selection « 4-17
43.23 Found Range Selection « 4-18
4324 Relation of EVE Selection to DECwindows Global

Selection « 4-18
4.4 COMPILING VAXTPU PROGRAMS 4-18
441 Compiling on the EVE Command Line 4-19
442 Compiling in a VAXTPU Buffer 4-19

ix

Contents

4.5 EXECUTING VAXTPU PROGRAMS 4-19
4.5.1 Interrupting Execution with CTRL/C 4-20
4.5.2 Procedure Execution 4-21
4.6 VAXTPU STARTUP FILES 4-21
4.6.1 Sequence in Which VAXTPU Processes Startup Files 4-22
4.6.2 Section Files 4-23
4.6.2.1 Creating and Processing a New Section File * 4-23
46.2.2 Extending an Existing Section File « 4-24
4.6.2.3 A Sample Section File « 4-25
46.2.4 Recommended Conventions for Section Files « 4-28

4.6.2.4.1 TPUSINIT_PROCEDURE + 4-28

4.6.2.4.2 TPUSLOCAL_INIT - 4-29

4.6.2.4.3 Special Variables » 4-29
4.6.3 Command Files 4-29
46.4 EVE Initialization Files 4-31
4.6.4.1 Using an EVE Initialization File at Startup « 4-31
4.6.4.2 Using an EVE Initialization File During an Editing Session « 4-32
4.6.4.3 How an EVE Initialization File Affects Buifer Settings « 4-32
4.7 DEBUGGING VAXTPU PROGRAMS 4-33
4.71 Invoking the VAXTPU Debugger 4-33
4711 Section Files + 4-34
47.1.2 Command Files « 4-34
471.3 Other VAXTPU Source Code « 4-35
47.2 Getting Started with the VAXTPU Debugger 4-35
4.7.3 VAXTPU Debugger Commands 4-36
4.8 ERROR HANDLING 4-38

CHAPTER 5 INVOKING VAXTPU 5-1

5.1 AVOIDING ERRORS RELATED TO VIRTUAL ADDRESS SPACE 5-1
5.2 INVOKING VAXTPU FROM A DCL COMMAND PROCEDURE 5-2
5.2.1 Setting Up a Special Editing Environment §5-2
5.2.2 Creating a Noninteractive Application 5-3

S~

Contents

5.3 INVOKING VAXTPU FROM A BATCH JOB 5-5

5.4 QUALIFIERS TO THE DCL COMMAND EDIT/TPU 5-5

5.4.1 /COMMAND 5-6

54.2 /ICREATE 5-7

54.3 /DEBUG 5-8

54.4 /DISPLAY 5-8

5.4.5 /INITIALIZATION 5-9

5.4.6 /INTERFACE 5-10

5.4.7 /JOURNAL 5-10

54.8 /MODIFY 5-12

5.4.9 /OUTPUT 5-12

5.4.10 /READ_ONLY 5-13

5.4.11 /RECOVER 5-14

5.4.12 /SECTION 5-16

5.4.13 /START_POSITION 5-17

5.4.14 /WRITE 5-17

5.5 HOW EVE USES /MODIFY, /OUTPUT, /READ_ONLY, AND /WRITE 5-18

5.6 SPECIFYING A PARAMETER TO EDIT/TPU 5-19
CHAPTER 6 VAXTPU SCREEN MANAGEMENT 6-1

6.1 HOW THE SCREEN MANAGER HANDLES WINDOWS AND

BUFFERS 6-1

6.1.1 Buffer Changes 6-1

6.1.2 Window Changes 6-2

6.1.2.1 Making a Window Current « 6-2

6.1.2.2 Mapping a Window « 6-3

6.1.2.3 Shifting a Window + 6-3

6.1.2.4 Deleting a Window * 64

6.1.2.5 How VAXTPU Window Size Affects a Terminal Emulator « 6—4

6.1.2.6 How VAXTPU Window Size Affects the Display on a

Terminal - 64

6.1.2.7 How a Window Displays Insertion of Records into a Buffer » 6-5

6.1.2.8 How a Window Displays Deletion of Records from a Buffer « 6-5

6.1.2.9 How a Window Displays Changes to a Record in a Buffer » 6-6

Xi

Contents

6.2 INVOKING THE SCREEN MANAGER 6-6
6.2.1 Enabling Screen Updates 6-6
6.2.2 Automatic Updates 6-7
6.2.3 Updating Windows 6-8
6.2.4 Updating the Whole Screen 6-9
6.2.5 The REFRESH Built-In 6-10
6.2.6 The SCROLL Built-In 6-10
6.3 CURSOR POSITION COMPARED TO EDITING POINT 6-10
6.4 BUILT-IN PADDING 6-11
VAXTPU REFERENCE SECTION
CHAPTER 7 VAXTPU BUILT-IN PROCEDURES 7-1
741 BUILT-IN PROCEDURES GROUPED ACCORDING TO FUNCTION 7-1
7.1.1 Screen Layout 7-1
7.1.2 Cursor Movement 7-2
7.13 Moving the Editing Position 7-3
7.1.4 Text Manipulation 7-3
7.1.5 Pattern Matching 7-5
7.1.6 Status of the Editing Context 7-6
71.7 Defining Keys 7-8
7.1.8 Multiple Processing 7-9
7.1.9 Program Execution 7-10
7.1.10 DECwindows VAXTPU-Specific 7-10
7.1.11 Miscellaneous 7-13
7.2 DESCRIPTIONS OF THE BUILT-IN PROCEDURES 7-15

xii

ABORT
ADD_KEY_MAP
ADJUST_WINDOW
ANCHOR

ANY
APPEND_LINE
ARB

ASCII

7-16
7-17
7-19
7-24
7-26
7-28
7-30
7-32

——

~_

N~

ATTACH
BEGINNING_OF
BREAK

CALL_USER
CHANGE_CASE
COMPILE

CONVERT
COPY_TEXT
CREATE_ARRAY
CREATE_BUFFER
CREATE_KEY_MAP
CREATE_KEY_MAP_LIST
CREATE_PROCESS
CREATE_RANGE
CREATE_WIDGET
CREATE_WINDOW
CURRENT_BUFFER
CURRENT_CHARACTER
CURRENT_COLUMN
CURRENT_DIRECTION
CURRENT_LINE
CURRENT_OFFSET
CURRENT_ROW
CURRENT_WINDOW
CURSOR_HORIZONTAL
CURSOR_VERTICAL
DEBUG_LINE
DEFINE_KEY
DEFINE_WIDGET_CLASS
DELETE

EDIT

END_OF

ERASE
ERASE_CHARACTER
ERASE_LINE

ERROR

ERROR_LINE
ERROR_TEXT
EXECUTE

EXIT

EXPAND_NAME

FAO

7-35
7-37
7-39
7-40
7-44
7-47
7-50
7-53
7-55
7-58
7-63
7-65
7-67
7-69
7-72
7-77
7-80
7-81
7-83
7-85
7-86
7-88
7-90
7-92
7-94
7-96
7-99
7-100
7-105
7-107
7-111
7-115
7-117
7-119
7-121
7-123
7-125
7-127
7-129
7-133
7-135
7-138

Contents

xiil

Contents

xiv

FILE_PARSE

FILE_SEARCH

FILL

GET_CLIPBOARD

GET_DEFAULT

GET_GLOBAL_SELECT

GET_INFO
GET_INFO (ANY_KEYNAME)
GET_INFO (ANY_KEYWORD)
GET_INFO (ANY_VARIABLE)
GET_INFO (ARRAY)
GET_INFO (ARRAY_VARIABLE)
GET_INFO (BUFFER)
GET_INFO (BUFFER_VARIABLE)
GET_INFO (COMMAND_LINE)
GET_INFO (DEBUG)
GET_INFO (DEFINED_KEY)
GET_INFO (INTEGER_VARIABLE)
GET_INFO (KEY_MAP)
GET_INFO (KEY_MAP_LIST)
GET_INFO (MARKER_VARIABLE)
GET_INFO (MOUSE_EVENT_KEYWORD)
GET_INFO (PROCEDURES)
GET_INFO (PROCESS)
GET_INFO (PROCESS_VARIABLE)
GET_INFO (RANGE_VARIABLE)
GET_INFO (SCREEN)
GET_INFO (STRING_VARIABLE)
GET_INFO (SYSTEM)
GET_INFO (WIDGET)
GET_INFO (WIDGET_VARIABLE)
GET_INFO (WINDOW)
GET_INFO (WINDOW_VARIABLE)

HELP_TEXT

INDEX

INT

JOURNAL_CLOSE

JOURNAL_OPEN

KEY_NAME

LAST_KEY

LEARN_ABORT

LEARN_BEGIN AND LEARN_END

LENGTH

LINE_BEGIN

7-140
7-143
7-146
7-149
7-151
7-153
7-156
7-162
7-164
7-165
7-166
7-167
7-169
7-170
7-176
7-179
7-181
7-182
7-183
7-184
7-185
7-188
7-190
7-191
7-192
7-193
7-194
7-204
7-206
7-210
7-215
7-219
7-220
7-229
7-231
7-233
7-235
7-236
7-239
7-243
7-244
7-245
7-248
7-250

~_r

S

N

LINE_END
LOCATE_MOUSE
LOOKUP_KEY
MANAGE_WIDGET
MAP

MARK

MATCH

MESSAGE
MESSAGE_TEXT
MODIFY_RANGE
MOVE_HORIZONTAL
MOVE_TEXT
MOVE_VERTICAL
NOTANY
PAGE_BREAK
POSITION

QuIT

READ_CHAR
READ_CLIPBOARD
READ_FILE
READ_GLOBAL_SELECT
READ_KEY
READ_LINE
REALIZE_WIDGET
RECOVER_BUFFER
REFRESH

REMAIN
REMOVE_KEY_MAP
RETURN

SAVE

SCAN

SCANL

SCROLL

SEARCH
SEARCH_QUIETLY
SELECT
SELECT_RANGE
SEND
SEND_CLIENT_MESSAGE
SEND_EOF

SET

SET (ACTIVE_AREA)

7-252
7-253
7-255
7-259
7-260
7-262
7-265
7-267
7-271
7-274
7-279
7-281
7-283
7-285
7-287
7-288
7-292
7-294
7-296
7-298
7-300
7-302
7-304
7-307
7-308
7-311
7-313
7-314
7-316
7-317
7-320
7-323
7-325
7-328
7-333
7-338
7-341
7-343
7-345
7-347
7-348
7-351

Contents

Xv

Contents

xvi

SET (AUTO_REPEAT)
SET (BELL)

SET (CLIENT_MESSAGE)

SET (COLUMN_MOVE_VERTICAL)
SET (CROSS_WINDOW_BOUNDS)
SET (DEBUG)

SET (DEFAULT_DIRECTORY)

SET (DETACHED_ACTION)

SET (DISPLAY_VALUE)

SET (DRM_HIERARCHY)

SET (ENABLE_RESIZE)

SET (EOB_TEXT)

SET (ERASE_UNMODIFIABLE)
SET (FACILITY_NAME)

SET (FORWARD)

SET (GLOBAL_SELECT)

SET (GLOBAL_SELECT GRAB)
SET (GLOBAL_SELECT_READ)
SET (GLOBAL_SELECT_TIME)
SET (GLOBAL_SELECT_UNGRAB)
SET (HEIGHT)

SET (ICON_NAME)

SET (ICON_PIXMAP)

SET (ICONIFY_PIXMAP)

SET (INFORMATIONAL)

SET (INPUT_FOCUS)

SET (INPUT_FOCUS_GRAB)

SET (INPUT_FOCUS_UNGRAB)
SET (INSERT)

SET (JOURNALING)

SET (KEYSTROKE_RECOVERY)
SET (KEY_MAP_LIST)

SET (LEFT_MARGIN)

SET (LEFT_MARGIN_ACTION)
SET (LINE_NUMBER)

SET (MAPPED_WHEN_MANAGED)
SET (MARGINS)

SET (MAX_LINES)

SET (MENU_POSITION)

SET (MESSAGE_ACTION_LEVEL)
SET (MESSAGE_ACTION_TYPE)
SET (MESSAGE_FLAGS)

7-354
7-356
7-358
7-360
7-362
7-363
7-367
7-368
7-371
7-372
7-373
7-375
7-376
7-379
7-380
7-381
7-383
7-386
7-388
7-390
7-392
7-393
7-394
7-396
7-398
7-399
7-401
7-403
7~405
7-406
7-409
7-411
7-413
7-415
7-417
7-419
7-420
7-422
7-423
7-425
7-427
7-428

SET (MODIFIABLE)
SET (MODIFIED)

SET (MOUSE)

SET (NO_WRITE)

SET (OUTPUT_FILE)

SET (OVERSTRIKE)

SET (PAD)

SET (PAD_OVERSTRUCK_TABS)
SET (PERMANENT)

SET (POST_KEY_PROCEDURE)
SET (PRE_KEY_PROCEDURE)
SET (PROMPT_AREA)

SET (RECORD_ATTRIBUTE)
SET (RESIZE_ACTION)

SET (REVERSE)

SET (RIGHT_MARGIN)

SET (RIGHT_MARGIN_ACTION)
SET (SCREEN_LIMITS)

SET (SCREEN_UPDATE)

SET (SCROLL_BAR)

SET (SCROLL_BAR_AUTO_THUMB)
SET (SCROLLING)

SET (SELF_INSERT)

SET (SHIFT_KEY)

SET (SPECIAL_ERROR_SYMBOL)
SET (STATUS_LINE)

SET (SUCCESS)

SET (SYSTEM)

SET (TAB_STOPS)

SET (TEXT)

SET (TIMER)

SET (TRACEBACK)

SET (UNDEFINED_KEY)

SET (VIDEO)

SET (WIDGET)

SET (WIDGET_CALL_DATA)
SET (WIDGET_CALLBACK)
SET (WIDTH)

SHIFT

SHOW

SLEEP

SPAN

7-430
7-432
7-433
7-435
7-436
7-437
7-438
7-440
7-442
7-443
7-445
7-447
7-449
7-452
7-454
7-455
7-457
7-459
7-461
7-463
7-466
7-468
7-471
7-473
7-475
7-477
7-480
7-481
7-482
7-484
7-487
7-489
7-491
7-493
7-495
7-497
7-500
7-502
7-504
7-506
7-509
7-511

Contents

xvii

Contents

SPANL

SPAWN

SPLIT_LINE

STR

SUBSTR
TRANSLATE
UNANCHOR
UNDEFINE_KEY
UNMANAGE_WIDGET
UNMAP

UPDATE
WRITE_CLIPBOARD
WRITE_FILE
WRITE_GLOBAL_SELECT

7-513
7-516
7-519
7-521
7-524
7-527
7-531
7-533
7-535
7-537
7-539
7-541
7-544
7-547

APPENDIX A SAMPLE VAXTPU PROCEDURES A-1
A1 LINE-MODE EDITOR A-1
A2 TRANSLATION OF CONTROL CHARACTERS A-2

A3 RESTORING TERMINAL WIDTH BEFORE EXITING FROM
VAXTPU A=5
A4 RUNNING VAXTPU FROM A SUBPROCESS A-5
APPENDIX B SAMPLE DECWINDOWS VAXTPU PROCEDURES B-1
B.1 USING DECWINDOWS VAXTPU BUILT-INS B-1
B.2 DISPLAYING A DIALOG BOX B-1
B.3 CREATING A “MOUSE PAD” B—4

xviii

e

Contents

B.4 IMPLEMENTING AN EDT-STYLE APPEND COMMAND B-11
B.5 TESTING AND RETURNING A SELECT RANGE B-13
B.6 RESIZING WINDOWS B-16
B.7 UNMAPPING SAVED WINDOWS B-19
B.8 MAPPING SAVED WINDOWS B-22
B.9 HANDLING CALLBACKS FROM A SCROLL BAR WIDGET B-25
B.10 IMPLEMENTING THE COPY SELECTION OPERATION B-28
B.11 REACTIVATING A SELECT RANGE B-30
B.12 COPYING SELECTED MATERIAL FROM EVE TO ANOTHER DECWINDOWS
APPLICATION B-31
APPENDIX C VAXTPU TERMINAL SUPPORT c-1
C.1 SCREEN-ORIENTED EDITING ON SUPPORTED TERMINALS Cc-1
C.1.1 Terminal Settings That Affect VAXTPU C-1
C.1.2 The DCL Command SET TERMINAL c-3
C.2 LINE-MODE EDITING ON UNSUPPORTED TERMINALS Cc-3
C.3 TERMINAL WRAP Cc4

APPENDIX D VAXTPU MESSAGES D-1

Xix

Contents

E-1

APPENDIX E DEC MULTINATIONAL CHARACTER SET

APPENDIX F VAXTPU FILE SUPPORT F-1

APPENDIX G EVE$BUILD MODULE G-1
G.1 HOW TO PREPARE CODE FOR USE WITH EVE$BUILD G-1
G.1.1 Module Identifiers G-2
G.1.2 Parsers G-3
G.1.3 Initialization G4
G.1.4 Command Synonyms G-5
G.1.5 Status Line Fields G-7
G.1.6 Exit and Quit Handlers G-8
G.1.7 How to Invoke EVE$BUILD G-10
G.2 WHAT HAPPENS WHEN YOU USE EVE$BUILD G-11

INDEX

EXAMPLES
1-1 Sample User-Written Procedure 1-8
2-1 Suppressing the Addition of Padding Blanks 2-11
3-1 Global and Local Variable Declarations 3-5
3~2 Global and Local Constant Declarations 3-6
3-3 A Procedure Using Relational Operators on Markers 3~11
3-4 Simple Procedure with Parameters 3-17
3-5 Complex Procedure with Optional Parameters 3-18
3-6 Procedure That Returns a Result 3-19
3-7 Procedure Within Another Procedure 3-19
3-8 Recursive Procedure 3-20
3-9 Procedure Using the CASE Statement 3-24
3-10 Procedure Using the ON_ERROR Statement 3-27
3-11 Procedure with a Case-Style Error Handler 3-29
3-12 Procedure That Returns a Value 3-32
3-13 Procedure Returning a Status 3-32
3-14 Using RETURN in an ON_ERROR Section 3-33

XX

Contents

3-15 Simple Error Handler 3-33
4-1 SHOW (SUMMARY) Display 4-2
4-2 Syntax of a VAXTPU Program 4-3
4-3 Sample VAXTPU Programs 44
44 Sample Program for a Section File 4-25
4-5 Source Code for Minimal Interface 4-26
4-6 Command File for Go to Text Marker 4-30
4-7 SHOW DEFAULTS BUFFER Display 4-33
51 DCL Command Procedure FILENAME.COM 5-3
5-2 DCL Command Procedure FORTRAN_TS.COM ___ 5-3
5-3 DCL Command Procedure INVISIBLE_TPU.COM ____ 5-4
5-4 VAXTPU Command File GSR.TPU 5-4
7-1 Initialization Procedure Using Variants of the SET Built-In _ 7-385
B-1 EVE Procedure That Displays a Selection Dialog Box B-2
B-2 Procedure That Creates a “Mouse Pad” B-4
B-3 EVE Procedure That Implements a Variant of the EDT

APPEND Command B-12
B-4 EVE Procedure That Returns a Select Range B-14
B-5 Procedure That Resizes Windows B-17
B-6 EVE Procedure That Unmaps Saved Windows B-20
B-7 Procedure That Maps Saved Windows B-23
B-8 EVE Procedure That Handles Callbacks from a Scroll Bar

Widget B-26
B-9 EVE Procedure That Implements the COPY SELECTION

Operation B-29
B-10 EVE Procedure That Reactivates a Select Range B-30
B-11 EVE Procedure That Implements COPY SELECTION B-32
C-1 DCL Command Procedure for SET TERM/NOWRAP ____ Cc-4

FIGURES

1-1 VAXTPU as a Base for EVE 1-2
1-2 VAXTPU as a Base for User-Written Interfaces 1-5
4-1 Nomenclature of DECwindows VAXTPU Screen Objects 4-15
7-1 Screen Layout Before Using ADJUST _WINDOW ___ 7-21
7-2 Screen Layout After Using ADJUST _ WINDOW ___ 7-22

xxi

Contents

TABLES
1-1
1-2
2-1
3-1
3-2
3-3
4-1

4-2
5-1

7-1
7-2
7-3
7-4
7-5

7-6
-7
7-8
7-9
7-10

7-11
7-12
c-1

E-1
F—1

xxii

Qualifiers to the DCL Command EDIT/TPU

Journaling Behavior Established by EVE

Keywords Used for Key Names

VAXTPU Symbols
VAXTPU Operators

Operator Precedence

Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types

Special VAXTPU Variables Requiring a Value from a Layered

Application

Summary of How VAXTPU and the Application Layered on
VAXTPU Relate to the Qualifiers to EDIT/TPU

CREATE_RANGE Keyword Parameters

GET_INFO Built-in Procedures by First Parameter
VAXTPU Keywords Representing Mouse Events
Detached Cursor Flag Constants

Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", "Top", or
"Width"

Message Flag Values

Message Flag Values
MODIFY_RANGE Keyword Parameters

VAXTPU Keywords Representing Mouse Events

Selected Built-in Actions When ERASE_UNMODIFIABLE is
Turned Off

Message Codes for $PUTMSG System Service
Message Flag Values

Terminal Behavior That Affects VAXTPU’s Performance

VAXTPU Messages and Their Severity Levels
DEC Multinational Character Set

VAXTPU Support of File Attributes

1-9
1-12
2-6
3-3
3-6
3-7

4-12

4-29

5-5
7-69
7-158
7-188
7-198

~_

Preface

Intended Audience

This manual is intended for experienced programmers who know at least
one computer language. Some features of VAXTPU, for example, the
callable interface and the built-in procedure FILE_PARSE, are intended
for system programmers who have a good understanding of VMS system
concepts. Relevant documents about the VMS operating system are listed
under Associated Documents.

Document Structure

This manual consists of six expository chapters, a reference section, and
seven appendixes. The six chapters discuss the following topics:

¢ Chapter 1 contains an overview of VAXTPU.
¢ Chapter 2 provides detailed information on VAXTPU data types.

¢ Chapter 3 discusses the lexical elements of VAXTPU. These include
the character set, identifiers, variables, constants, and reserved words,
such as VAXTPU language statements.

¢ Chapter 4 describes VAXTPU program development.
* Chapter 5 describes how to invoke VAXTPU.,

* Chapter 6 discusses the VAXTPU screen manager and screen
management issues.

The VAXTPU Reference Section (Chapter 7) provides detailed descriptions
of the VAXTPU built-in procedures.

The seven appendixes are organized as follows:
* Appendix A contains sample procedures written in VAXTPU.

* Appendix B contains sample procedures written in DECwindows
VAXTPU.

* Appendix C describes terminals supported by VAXTPU.

¢ Appendix D lists each VAXTPU message, its abbreviation, and its
severity level.

¢ Appendix E contains the DEC Multinational Character Set.
* Appendix F lists the file types that VAXTPU supports.

* Appendix G discusses EVE$BUILD, a tool that enables you to layer
applications onto EVE or build new VAXTPU applications.

xxiii

Preface

Associated Documents

To learn how to use the Extensible VAX Editor (EVE), see the Guide to
VMS Text Processing. For reference information on EVE commands, see
VMS EVE Reference Manual.

The VMS Utility Routines Manual contains a chapter presenting the
VAXTPU callable interface.

The VMS System Messages and Recovery Procedures Reference Manual
contains the VAXTPU messages, as well as an explanation and suggested
user action for each message. The messages are listed alphabetically by
the abbreviation for the message text.

The Qverview of VMS Documentation briefly describes all VMS system
documentation, defining the intended audience for each manual and
providing a synopsis of each manual’s contents.

The VMS DCL Dictionary describes the VMS DCL commands that help
you create, copy, and print files containing VAXTPU programs.

The VMS System Services Volume describes system services.

The Introduction to VMS System Routines and VMS Utility Routines
Manual describe utility routines.

The VMS Run-Time Library Routines Volume describes routines of the
run-time library.

The VMS Record Management Services Manual describes VMS RMS
services.

Conventions

xXiv

The following conventions are used in this document:

mouse The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.
MB1, MB2, MB3 MB1 indicates the left mouse button, MB2 indicates

the middle mouse button, and MBS indicates the right
mouse button. (The buttons can be redefined by the
user.)

In examples, a key name (usually abbreviated) shown
within a box indicates that you press a key on the
keyboard; in text, a key name is not enclosed in a
box. In this example, the key is the Return key. (Note
that the Return key is not usually shown in syntax
statements or in all examples; however, assume
that you must press the Return key after entering a
command or responding to a prompt.)

e

RN

CTRL/C

red ink

{}

[l

(]

quotation marks
apostrophes

UPPERCASE letters
and special symbols

Preface

A key combination, shown in uppercase with a slash
separating two key names, indicates that you hold
down the first key while you press the second key.
For example, the key combination CTRL/C indicates
that you hold down the key labeled CTRL while
you press the key labeled C. In examples, a key
combination is enclosed in a box.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

In examples, a vertical series of periods, or ellipsis,
means either that not all the data that the system
would display in response to a command is shown or
that not all the data a user would enter is shown.

Braces enclose a mandatory portion of the format of
a built-in procedure or lexical element. When braces
enclose a stacked list of items, you must choose one
string }

of the items. For example: { range

Double brackets in examples show an optional portion
of the format of a built-in procedure or lexical element.
When double brackets enclose an item or series of
items, you can select one of the items. For example:
[[string

range

Double brackets enclosing a comma and horizontal
ellipsis mean that you can repeat the preceding item
one or more times, separating two or more items with
commas. For example:

parameter [[,...]]

Delimits a case label. Single brackets do not indicate
optional parameters in this manual.

The term quotation marks is used to refer to double
quotation marks ("). The term apostrophe (’) is used
to refer to a single quotation mark.

Uppercase letters and special symbols in syntax
descriptions and sample procedures indicate VAXTPU
reserved words and predeclared identifiers, and other
user input that must be typed exactly as shown. For
example:

PROCEDURE
UNDERLINE

String constants are shown in lowercase to emphasize
that they are strings. However, they, too, must be
typed exactly as shown.

XXV

Preface

XXVi

lowercase letters

user_

filespec

Lowercase letters in syntax descriptions and sample
procedures represent elements that you must replace
according to the description in the text. For example,
when a data type, such as buffer, is used in a syntax
example, replace it with the variable name assigned
to the data item when it was created. In the following
assignment statement, my_buffer_variable is the

variable name assigned to the buffer you are creating:

my_buffer variable :=
CREATE_BUFFER ('my_buf name’, ‘my_ file name’)

To specify a buffer as a parameter for a VAXTPU
built-in procedure, use the variable for the buffer. For
example, to erase the contents of the buffer created
in the preceding statement, enter the following:

ERASE (my_buffer variable)

Many of the sample procedures in this manual have
the prefix user_ as a part of the procedure name.
Digital suggests that you replace the prefix user with
your initials. This or some other convention helps
to ensure that the variables and procedure names
that you create do not conflict with either VAXTPU
built-in procedure names, or the procedure names
and variables of your editing interface.

Mnemonic for file specification.

—

VAXTPU Reference Section

This section contains detailed descriptions of the built-in procedures provided
by the VAX Text Processing Utility.

T~

~

7

7.1

7.1.1

VAXTPU Built-In Procedures

This chapter describes each of the VAXTPU built-in procedures. The
chapter is divided into two sections.

In Section 7.1, the built-in procedures are grouped according to the
functions that they perform so you can see at a glance which built-in

is related to what task. In Section 7.2, the built-in procedures are listed
alphabetically. Each built-in is described in detail.

Some built-in procedures do not return useful values. The descriptions of

these built-ins do not show a return value in the format section. However,
these built-ins return 0 when used on the right-hand side of an assignment
statement.

Some entries in this chapter describe language elements or keywords that
are not built-in procedures. These elements and keywords are included in
this chapter because they are used in the same way built-ins are used.

Built-In Procedures Grouped According to Function

When you want to perform editing tasks, use the following lists to help
you identify which built-in procedures are related to a particular task. For
more information about a built-in procedure, see its individual description
in Section 7.2.

Screen Layout

¢ ADJUST WINDOW (window, integerl, integer2)

 CREATE_WINDOW (integerl, integer2, { , 81;1«‘ })

e MAP({ ;vn}ggg:v, buffer })

¢ REFRESH

¢ SET (DISPLAY_VALUE,window,display_value_integer)
e SET (HEIGHT, SCREEN, length)

« SET (PAD, window{’ON })

, OFF
, NONE
, BOLD
¢ SET (PROMPT_AREA, integerl, integer2 { , BLINK)
| , REVERSE
, UNDERLINE

7-1

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

. , ON
SET (SCREEN_UPDATE { ' OFF })

e SET (SCROLLING, window { ’8};1:15‘ }integerl, integer2,

integer3)

, NONE

, BOLD

, BLINK

, REVERSE

, SPECIAL_GRAPHICS
, UNDERLINE

e SET (STATUS_LINE, window

, string)

widget, string
BLANK_TABS
* SET(TEXT, | indow, { GRAPHIC_TABS })
NO_TRANSLATE

, NONE
, BOLD
e SET (VIDEO, window ¢ , BLINK)
, REVERSE
, UNDERLINE
window
e SET (WIDTH, { ALL }, width_int)
SCREEN

¢ SHIFT (window, integerl)

g el

« UPDATE ({ @E:low b

7.1.2 Cursor Movement

o CURSOR_HORIZONTAL (integerl)
* CURSOR_VERTICAL (integerl)
¢ SCROLL (window [,integerl I)

 SET (COLUMN_MOVE_VERTICAL { ’8?1«" })

¢ SET (CROSS_WINDOW_BOUNDS { ’ (())EF })
e SET (DETACHED_ACTION, SCREEN
buffer
learn
[, { program D
range
string

7-2

—

7.1.3

714

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

Moving the Editing Position

MOVE_HORIZONTAL (integer)

MOVE_VERTICAL (integer)

buffer)

BUFFER_BEGIN

BUFFER_END

integer
LINE_BEGIN

POSITION (| LINE BND)

marker

MOUSE

range

window)

Text Manipulation

APPEND_LINE

BEGINNING_OF ({ buffer })

range

buffer INVERT
CHANGE_CASE (< range , { LOWER }
string UPPER

, IN_PLACE)
, NOT_IN_PLACE

buffer
COPY_TEXT ({ rangel)
string
CREATE_BUFFER (stringl [,string2 [,bufferl] [,string3] 1)

markerl
CREATE_RANGE ({ delimiting_keyword }’
marker2
delimiting_keyword
[, attribute_keyword 1)
buffer

EDIT ({ range ;, keywordl[,...] [,keyword2] [,keyword3])
string

END_OF ({ buffer })

range

ERASE ({ buffer })

range
ERASE_CHARACTER (integer)
ERASE_LINE

7-3

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

¢ FILE_PARSE (filespec [,stringl [,string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[, TYPE] [, VERSION] ID)

e FILE_SEARCH (filespec [, stringl [, string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[, TYPE] [, VERSIONT] 1)

buffer
range

BLINK

BOLD

NONE
FREE_CURSOR
REVERSE
UNDERLINE

e FILL ({ } [, string {, integerl [, integer2 [, integer3 11 11)

¢ MARK()

« MESSAGE_TEXT ({ ;{‘;t;v%f;}i } [, integer2 [,FAO-parameter])

markerl
¢ MODIFY_RANGE (range, { delimiting_keyword },
marker2
delimiting_keyword
f[, attribute_keyword 1)
buffer
e MOVE_TEXT ({ rangel ;)
string
e READ_FILE (stringl)

ANCHOR W
LINE_BEGIN
LINE_END L
o PAGE_BREAK , FORWARD
SEARCH () Lattern {,REVERSE }
REMAIN
string
\ UNANCHOR
{ » EXACT } buffer
[{,NO_EXACT ;I { ’ }]l]])
. , rangel
, integer
(ANCHOR)
LINE_BEGIN
LINE_END
. PAGE_BREAK , FORWARD
SEARCH_QUIETLY (4 pattern { , REVERSE }
REMAIN
string
| UNANCHOR
{ » BEXACT } buffer
[{ . NO_EXACT b1 { b }]111)
. , rangel
, integer

7-4

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

BLINK
BOLD

e SELECT ({ NONE)
REVERSE
UNDERLINE

* SELECT_RANGE

 SET (ERASE_UNMODIFIABLE, buffer, { 8?5, })

. , ON
SET (MODIFIABLE, buffer { ’ OFF })

« SET (MODIFIED, buffer, { ggF })

e SPLIT _LINE
buffer

¢ TRANSLATE ({ range ;, string2, string3
string

IN_PLACE)
> | NOT_IN_PLACE

buffer

¢ WRITE_FILE ({ range

}, stringl)

7.1.5 Pattern Matching

¢ ANCHOR

buffer
e ANY ({ range }, integerl)
string

¢ ARB (integer)

e LINE_BEGIN

e LINE_END
buffer

e MATCH ({ range })
string

buffer
e NOTANY ({ range ;,integerl)
string

¢ PAGE_BREAK
¢ REMAIN

buffer
‘ FORWARD
e SCAN ({ range ; [, D
{ string } {REVERSE }

7-5

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

buffer |
FORWARD
¢ SCANL ({ range I, D
{ string } { REVERSE }

buffer
FORWARD
e SPAN ({ range [, D
{ string } { REVERSE }

buffer
FORWARD
e SPANL ({ range [, D
{string } {REVERSE }

¢ TUNANCHOR

7.1.6 Status of the Editing Context

¢ CURRENT_BUFFER

¢ CURRENT_CHARACTER
¢ CURRENT_COLUMN

¢ CURRENT_DIRECTION
¢ CURRENT_LINE

¢ CURRENT_OFFSET

e CURRENT_ROW

¢ CURRENT_WINDOW

¢ DEBUG_LINE

e ERROR

¢ ERROR_LINE

* ERROR_TEXT

e GET_INFO (parameterl, parameter2 [, ...)

« RECOVER_BUFFER (old_buffer name || » Jo0rnal file_name
, template_buffer

* LOCATE_MOUSE (window, x_integer, y_integer)
« SET (AUTO_REPEAT { , ON })

, OFF
, ALL , ON
* SET (BELL { " BROADCAST } { . OFF })
e SET (DEFAULT_DIRECTORY, new_default_string)
, ALL
, ON , buffer
e SET (DEBUG l[, OFF]I , program [,value I)
, PROGRAM , range
, string

¢ SET (FACILITY_NAME, string)

7-6

VAXTPU Built-in Procedures
7.1 Built-In Procedures Grouped According to Function

SET (FORWARD, buffer)

, ON
SET (INFORMATIONAL{ | OFF })

SET (INSERT, buffer)

SET (JOURNALING, buffer { 831*15‘ } Lfile_name_string I)

or

SET (JOURNALING, integer)

ON
SET (KEYSTROKE_RECOVERY { OFF })
SET (LEFT_MARGIN, buffer, integer)

, buffer2

, learn_sequence
SET (LEFT_MARGIN_ACTION, bufferl || , program)

, range

, string

, OFF
SET (MARGINS, buffer, integerl, integer2)
SET (MAX_LINES, buffer, integer)

SET (LINE_NUMBER { , ON })

SET (MESSAGE_ACTION_LEVEL, { infeger 1,
keyword

NONE
SET (MESSAGE_ACTION_TYPE, ¢ BELL)

REVERSE
SET (MESSAGE_FLAGS, integer)

ON
SET (MOUSE, { ong })

. OFF
SET (OUTPUT_FILE, buffer, string)
SET (OVERSTRIKE, buffer)

SET (NO_WRITE, buffer [[» ON]])

SET (PAD_OVERSTRUCK_TABS { ’8};} })

mark
SET (RECORD_ATTRIBUTE, { range } {Eé%PTLﬁé%gE }

buffer
display_setting_integer
margin_setting_integer

or

marker, ON
SET (RECORD_ATTRIBUTE, | range, MODIFIABLE, { })
buffer, OFF

-7

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

e SET (PERMANENT, buffer)
¢ SET (REVERSE, buffer)

e SET (RIGHT _MARGIN, buffer, integer)

, buffer2

, learn_sequence
e SET (RIGHT _MARGIN_ACTION, bufferl || , program

, range

, string

¢ SET (SPECIAL_ERROR_SYMBOL, string)

e SET (SUCCESS { ’8§F })

* SET (SYSTEM, buffer)

e SET (TAB_STOPS, buffer { » Integer })
, string

e SET (TIMER { ’8§F }[[, stringl)

o , ON

SET (TRACEBACK { | OFF })
(BUFFERIS] W
KEY_MAP_LISTIS]
KEY_MAP[S]
KEYWORDS
PROCEDURES
R SCREEN

SHOW (SUMMARY »)

VARIABLES
WINDOWISI
buffer
string
window)

Vv

7.1.7 Defining Keys

e ADD_KEY_MAP (key-map-list-name { ’ ..ﬁi ﬁt },

key-map-name [,...])
¢ CREATE_KEY_MAP (stringl)

e CREATE_KEY_MAP_LIST (stringl, string2 [, ... ID
buffer

learn_sequence
e DEFINE_KEY ({ program , key-name [, string2
range
stringl
[,string311)

7-8

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

integer
¢ KEY_NAME ({ key-name }
string
, SHIFT_KEY
, SHIFT_MODIFIED
I[<{ ,ALT MODIFIED L.J1
, CTRL_MODIFIED
, HELP_MODIFIED
, FUNCTION)
, KEYPAD

e LAST_KEY

, COMMENT
* LOOKUP_KEY (key-name { , KEY_MAP }

, PROGRAM
, stringl)
, string2

¢ REMOVE_KEY_MAP (stringl, string2 [, ALLI)

e SET (KEY_MAP_LIST, string [, buffer, window])

, buffer
, learn_sequence
e SET (POST_KEY_PROCEDURE, stringl || , program)
, range
, string2
, buffer
, learn_sequence
e SET (PRE_KEY_PROCEDURE, stringl || , program)
, range
, string2

« SET (SELF_INSERT, string, { , 8§F })

¢ SET (SHIFT_KEY, keyword [,string 1)

, buffer
, learn_sequence
e SET (UNDEFINED_KEY, stringl || , program)
, range
, string2

+ UNDEFINE_KEY (keyword H,key-map-hst-name]])
, key-map-name

7.1.8 Multiple Processing

e ATTACH [({ ;f:iefger })11

¢ CREATE_PROCESS (buffer [, stringl)

7-9

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

buffer

SEND ({ range }, process)

string
SEND_EOF (process)

SPAWN [(string [[

7.1.9 Program Execution

ABORT
BREAK

ON
" OFF]])]]

buffer
COMPILE ({ range })

string

¢ buffer

key-name H

, key-map-list-name
, key-map-name

EXECUTE ({ learn_sequence

program
t range
string

RETURN

SAVE (stringl [,"NO_DEBUG_NAMES"]
[,'NO_PROCEDURE_NAMES"]
[,"IDENT", string2])

7.1.10 DECwindows VAXTPU-Specific

7-10

e CREATE_WIDGET (widget_class, widget_name, {

L,

[, widget_args... 11 1)

CREATE_WIDGET (resource_manager_name, hierarchy_id,

{ parent_widget }
SCREEN
buffer
learn_sequence
[, { program
range
string

buffer

learn_sequence

program [, closure
range

string

[, closure

[, widget_args... 11 1)

\

parent_widget
SCREEN

}

VAXTPU Built-In Procedures
7.1 Built-in Procedures Grouped According to Function

DEFINE_WIDGET CLASS (class_name
[, creation_routine_name
[, creation_routine_image_name] 1)

DELETE (widget)
GET_CLIPBOARD

GET_DEFAULT (stringl, string2) \
PRIMARY '

GET_GLOBAL_SELECT ({ SECONDARY },
selection_name

selection_property_name)

MANAGE_WIDGET (widget [, widget...)

READ_CLIPBOARD

PRIMARY
READ_GLOBAL_SELECT ({ SECONDARY },

selection_name
selection_property_name)

REALIZE_WIDGET (widget)

SEND_CLIENT MESSAGE ({ STUFF_SELECTION })

KILL_SELECTION
SET (ACTIVE_AREA, window, column, row [, width, height 1)

buffer
learn_sequence
SET (CLIENT _MESSAGE,SCREEN, { program)
‘ range
string

SET (DRM_HIERARCHY, filespec [, filespec... 1)

SET (ENABLE_RESIZE, { 81151? })

PRIMARY
SET (GLOBAL_SELECT, SCREEN, { SECONDARY })

selection_name

SET (GLOBAL_SELECT_GRAB, SCREEN
(buffer
learn_sequence
[, { Prosram)
range
string
. NONE)

bufferl
SET (GLOBAL_SELECT_READ, { SCREEN }
(buffer2

learn_sequence

[, { Program)
range

string

NONE

7-11

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7-12

SET (GLOBAL_SELECT TIME, SCREEN, | nteger |,
string

SET (GLOBAL_SELECT_UNGRAB, SCREEN
buffer

learn_sequence
[, § Program)
range
string
NONE
SET (ICON_NAME, string)

SET (ICON_PIXMAP,integer,icon_pixmap [,widget])
or

SET (ICON_PIXMAP,bitmap_file_name [,widget])
SET (ICONIFY_PIXMAP,integer,icon_pixmap [,widget]))

or

SET (ICONIFY_PIXMAPbitmap_file_name [,widget])

SET (INPUT_FOCUS H » SCREEN]])
, widget
buffer
learn_sequence
SET (INPUT_FOCUS_GRAB, SCREEN [, f;gg‘;am D
string
NONE
buffer
learn_sequence
SET (INPUT_FOCUS_UNGRAB, SCREEN [, f;;’é‘;am)
string
NONE
SET (MAPPED_WHEN_MANAGED,widget, { ON_ })
OFF
widget
SET (MENU_POSITION, mouse_down_button, { array)
NONE
buffer
learn_sequence
SET (RESIZE_ACTION || , { Prosram)
range
string
NONE

SET (SCREEN_LIMITS, array)

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

, HORIZONTAL, ON
o SET (SCROLL_BAR, window, { VERTICAL, }{OFF })

. . HORIZONTAL
SET (SCROLL_BAR_AUTO_THUMB, window, { VERTICAL }’
{ ON })
OFF

e SET (WIDGET, widget,
{ widget_args [, widget_args...] })

e SET (WIDGET_CALL_DATA, widget, reason_code, request_string,
keyword [, request_string, keyword...])

e SET (WIDGET _CALLBACK, widget,
buffer,
learn_sequence,
program, closure)
range,
string,

¢ TUNMANAGE_WIDGET (widget [, widget... 1)

buffer
e WRITE_CLIPBOARD (clipboard_label, { range ;)
string

array
buffer
range
string
integer
NONE

¢ WRITE_GLOBAL_SELECT (

7.1.11 Miscellaneous

integerl

e ASCII ({ keyword })
stringl

¢ CALL_USER (integer, stringl)

DECW_ROOT_WINDOW } {CHARACTERS, }

¢ CONVERT ({ SCREEN COORDINATES
window ’

from_x_integer, from_y_integer,

{DECW_ROOT_WINDOW {CHARACTERS, }

SCREEN COORDINATES,
window

to_x_integer, to_y_integer)
e CREATE_ARRAY [(integerl [, integer2 II) 1

7-13

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

. array
buffer

integer
keyword
learn_sequence
marker

e DELETE ({ pattern)
process
program
range
string
unspecified
\ window)

e EXIT

, ALL

, KEYWORDS

, PROCEDURES
, VARIABLES

* FAO (stringl [, { et }l[, o {;Itl,tffgerﬁn }]”D

e EXPAND_NAME (stringl)

, ON

¢ HELP_TEXT (library-file, topic{ OFF

}, buffer)

¢ INDEX (string, substring)
integerl
e INT({ keyword })
string
¢ JOURNAL_CLOSE
¢ JOURNAL_OPEN (file-name)
e LEARN_ABORT

. EXACT
LEARN_BEGIN ({ NO, EXACT })

e LEARN_END
buffer

e LENGTH(({ range ;)
string

¢ MESSAGE (buffer, range [, integerl]l)

integer2
¢ MESSAGE ({ keyword }I[, integer3 [, FAO-parameter]])
string

e QUITI[({ SIF\‘IF }l[, severityl) 1

¢ READ_CHAR

* READ_KEY

e READ_LINE [(stringl [, integer])]
e SET (EOB_TEXT, buffer, string)

7-14

e

VAXTPU Built-in Procedures
7.1 Built-In Procedures Grouped According to Function

SLEEP ({ integer })
string
STR (integer)

STR (buffer
range

buffer . , ON
STR ({ { range } L, string2 1 H, OFF]] })

stringl

} [,string21)

buffer
SUBSTR ({ range , integerl [, integer2 1)
stringl

7.2 Descriptions of the Built-ln Procedures

The discussion of each built-in procedure in this section is divided, as
applicable, into the following parts:

A short functional definition

Format

Parameters

Description

Signaled Errors listing the warnings and errors signaled, if applicable

Examples

The built-in procedures are presented in alphabetical order.

7-15

VAXTPU Built-In Procedures
ABORT

ABORT

Stops any executing procedures and causes VAXTPU to wait for the next key
press.

FORMAT ABORT

PARAMETERS None.

DESCRIPTION ABORT returns control to VAXTPU’S main control loop. It causes an
immediate exit from all invoked procedures.

Although ABORT behaves much like a built-in, it is actually a VAXTPU
language element.

ABORT is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

SIGNALED ABORT is a language element and has no completion codes.
ERRORS

EXAMPLE

ON_ERROR
MESSAGE ("Aborting command because of error.");
ABORT;

ENDON_ERROR;

This error handler does not try to recover from an error. Rather, it stops
execution of the current procedure and returns to VAXTPU’S main loop.

7-16

N

VAXTPU Built-In Procedures
ADD KEY MAP

ADD _KEY MAP

Adds one or more key maps to a key map list.

FORMAT

ADD_KEY_MAP (key-map-list-name, { ':Zg," } key-map-name [, ...])

PARAMETERS

DESCRIPTION

key-map-list-name
A string that specifies the name of the key map list.

"first"”

A string directing VAXTPU to add the key map to the beginning of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

"last”

A string directing VAXTPU to add the key map to the end of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

key-map-name

A string that specifies the name of the key map to be added to the key
map list. You can specify more than one key map. Key maps are added to
the key map list in the order specified. The order of a key map in a key
map list determines precedence among any conflicting key definitions.

The built-in procedure ADD_KEY_MAP adds key maps to key map lists.
Key maps are added, in the order specified, to either the top or the bottom
of the key map list. Key map precedence in a key map list is used to
resolve any conflicts between key definitions. The key definition in a
preceding key map overrides any conflicting key definitions in key maps
that follow in the key map list.

See the descriptions of the built-in procedures DEFINE_KEY, CREATE_
KEY_MAP, and CREATE_KEY_MAP_LIST for more information on

key definitions, key maps, and key map lists, respectively. Also see the
description of the built-in procedure REMOVE_KEY_MAP for information
on removing key maps from a key map list.

7-17

VAXTPU Built-In Procedures

ADD_KEY_MAP
SIGNALED , , ,
TPU$_NOKEYMAP WARNING Third argument is not a defined
ERRORS key map.
TPU$_KEYMAPNTFND WARNING The key map listed in the third
argument is not found.
TPU$_TOOFEW ERROR Too few arguments passed to the
ADD_KEY_MAP built-in.
TPU$_TOOMANY ERROR Too many arguments passed to
the ADD_KEY_MAP built-in.
TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.
TPUS$_INVPARAM ERROR Wrong type of data sent to the
ADD_KEY_MAP built-in.
TPU$_ILLREQUEST WARNING The position string must be either
“first" or "last".
TPU$_BADREQUEST WARNING The position string must be either
"first" or "last".
EXAMPLES

ADD_KEY MAP ("TPUSKEY MAP LIST", "last", "TPUSKEY MAP");

This statement adds the default key map TPUSKEY_MAP to the default
key map list, TPUSKEY_MAP_LIST. Normally (except in the EVE editor)
TPUSKEY_MAP is a member of the default key map list.

B help keys := CREATE_KEY MAP ("help keys"):;

ADD_KEY MAP ("TPUSKEY MAP_LIST", "first", help keys);

These statements create a key map called HELP_KEYS and add it to
the beginning of the default key map list, TPUSKEY_MAP_LIST. Key
definitions in the new key map are invoked over definitions in the key
maps already in the list.

7-18

~_

S~

VAXTPU Built-In Procedures
ADJUST _WINDOW

ADJUST WINDOW

Changes the size and/or screen location of a window and makes the window
that you specify the current window.

FORMAT

ADJUST_WINDOW (window, integer1, integer2)

PARAMETERS

DESCRIPTION

window

The window whose size or location you want to change. The window that
you specify becomes the current window, and the buffer mapped to that
window becomes the current buffer.

integer1
The signed integer value that you add to the screen line number at the top
of the window.

integer2
The signed integer value that you add to the screen line number at the
bottom of the window.

R
If you want to check the visible size and/or location of a window before
making an adjustment to it, use any of the following statements:

SHOW (WINDOW);
SHOW (WINDOWS);

top := GET_INFO (window, "top", VISIBLE_WINDOW);
MESSAGE (STR (top));

bottom := GET_INFO (window, "bottom", VISIBLE_WINDOW);
MESSAGE (STR (bottom));

There are screen line numbers at both the top and the bottom of the
visible window. Adjust the size of a visible window by changing either or
both of these screen line numbers. Make these changes by adding to or
subtracting from the current screen line number, not by specifying the
screen line number itself.

You can enlarge a window by decreasing the screen line number at the
top of the window. (Specify a negative value for infegerl.) You can also
enlarge a window by increasing the screen line number at the bottom of
the window. (Specify a positive value for integer2.) The following example
adds four lines to the current window, provided that the values fall within
the screen boundaries:

ADJUST WINDOW (CURRENT WINDOW, -2, +2)

7-19

VAXTPU Built-In Procedures

ADJUST_WINDOW

7-20

If you specify integers that attempt to set the screen line number beyond
the screen boundaries, VAXTPU issues a warning message. VAXTPU then
sets the window boundary at the edge (top or bottom, as appropriate) of
the screen.

You can reduce a window by increasing the screen line number at the top
of the window. (Specify a positive value for integerl.) You can also reduce
a window by decreasing the screen line number at the bottom of the
window. (Specify a negative value for integer2.) If you attempt to make
the size of the window smaller than one line (two lines if the window has
a status line, three lines if the window has a status line and a horizontal
scroll bar), VAXTPU issues an error message and no adjustment occurs.
The following example reduces the current window by four lines:

ADJUST WINDOW (CURRENT WINDOW, +2, -2)

You can also use ADJUST_WINDOW to change the position of the window
on the screen without changing the size of the window. The following
command simply moves the current window two lines higher on the
screen, provided that the values fall within the screen boundaries:

ADJUST WINDOW (CURRENT WINDOW, -2, =-2)

Figure 7-1 shows a screen layout when you invoke VAXTPU with EVE
and a user-written command file. In this case, the user-written command
file divides the screen into two windows. The top window has 15 text
lines (including the end-of-buffer message) and a status line. The bottom
window has five text lines and a status line. The two bottom lines of the
screen are the command window and message window, each consisting of
one line.

N

VAXTPU Built-In Procedures
ADJUST_WINDOW

Figure 7-1 Screen Layout Before Using ADJUST_WINDOW

irst line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line

Tenth line
Eleventh line
Twelfth line
Thirteenth line
Fourteenth line

[End of File]

First line !
Second line
Third line
Fourth line
Fifth line

TEor
LLIen

ZK-4047-GE

The user-written command file uses the variable second_window to identify
the bottom window. Figure 7-2 shows the screen layout after the user
enters ADJUST WINDOW (second_window, -5, 0) after the appropriate
prompt from EVE. Both the top and bottom windows now contain 10 lines
of text and a status line. Note that the cursor is now located in the bottom
window. The command and message windows still contain one line each.

ADJUST WINDOW adds (+/-) integerl to the “visible_top” and (+/-)
integer2 to the “visible_bottom” of a window. The mapping of the window
to its buffer is not changed. The new values for the screen line numbers
become the values for the original top and original bottom. (See Chapter 2
for more information on window dimensions and window values.)

7-21

VAXTPU Built-In Procedures

ADJUST_WINDOW

7-22

Figure 7-2 Screen Layout After Using ADJUST_WINDOW

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line

Iirst line

Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line

ZK-4048-GE

Using ADJUST_WINDOW on a window makes it the current window; that
is, VAXTPU puts the cursor in that window if the cursor was not already
there, and VAXTPU marks that window as current in VAXTPU’s internal
tracking system. VAXTPU may scroll or adjust the text in the window to
keep the current position visible after the adjustment occurs.

Note that both ADJUST WINDOW and MAP may split or occlude other
windows.

If you execute ADJUST_WINDOW within a procedure, the screen is not
immediately updated to reflect the adjustment. The adjustment is made
after the entire procedure is finished executing and control returns to
the screen manager. If you want the screen to reflect the adjustment to
the window before the entire procedure is executed, you can force the
immediate update of a window by adding an UPDATE statement to the
procedure. See the built-in procedure UPDATE for more information.

If you have defined a top or bottom scroll margin, and the window is
adjusted so that the scroll margins no longer fit, TPU$_ADJSCROLLREG
is signaled and the scroll margins shrink proportionally. For example, if
you have a ten-line window, with an eight-line top scroll margin, shrinking
the window to a five-line window also reduces the top scroll margin to four
lines.

TN

/
\

VAXTPU Built-In Procedures
ADJUST_WINDOW

SIGNALED o . .
ERR ORS TPU$_ADJSCROLLREG INFO The window’s scrolling region

has been adjusted to fit the new
window.

TPU$_BOTLINETRUNC INFO Bottom line cannot exceed bottom
of screen.

TPU$_TOPLINETRUNC INFO Top line cannot exceed top of
screen.

TPU$_WINDNOTMAPPED WARNING Cannot adjust a window that is
not mapped.

TPU$_BADWINDADJUST WARNING Cannot adjust window to less than
the minimum number of lines.

TPU$_WINDNOTVIS WARNING No adjustment if window is not
visible.

TPU$_TOOFEW ERROR You specified less than three
parameters.

TPU$_TOOMANY ERROR You specified more than three
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

3
EXAMPLES

ﬂ ADJUST_WINDOW (CURRENT WINDOW, +5, 0)

This statement reduces the current window by removing five lines from the
top of the window. If the top line of the window is screen line number 11,
this statement changes the top line of the window to screen line number
16. (If the bottom line of the window is less than screen line number 16,
VAXTPU signals an error.)

B PROCEDURE user_display help
top_of_window := GET_ INFO (CURRENT WINDOW, "VISIBLE_TOP");
1
! Remove the top five lines from the current window
! and replace them with a help window
1
ADJUST WINDOW (CURRENT WINDOW, +5, 0);
example_window CREATE_WINDOW (top_of window, 5, ON);
example_buffer CREATE_BUFFER - ("EXAMPLE",
"sys$Slogin:template.txt");
MAP (example_window, example_buffer);
ENDPROCEDURE;

non

This procedure removes five lines from the top of a window and puts a
help window in their place.

e

7-23

VAXTPU Built-In Procedures
ANCHOR

ANCHOR

Forces the next pattern element either to match immediately or else to fail.

FORMAT ANCHOR

PARAMETERS Nore.

DESCRIPTION Normally, when SEARCH fails to find a match for a pattern, it retries the
search. To try again, the SEARCH built-in moves the starting position
one character forward or backward, depending upon the direction of the
search. SEARCH continues this operation until it either finds a match
for the pattern or reaches the end or beginning of the buffer or range
being searched. If ANCHOR appears as the first element of a complex
pattern, the search does not move the starting position. Instead, the
search examines the next (or previous) character to determine if it matches
the next character or element in the complex pattern. If the pattern does
not match starting in the original position, the search fails. SEARCH does
not move the starting position and retry the search.

When you build complex patterns using the + operator rather than the &
operator, ANCHOR is useful only as the first element of a complex pattern.
It is legal elsewhere in a pattern but has no effect.

Although ANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or modes of pattern searching, see

Chapter 2.
SIGNALED ANCHOR is a keyword and has no completion codes.
ERRORS
EXAMPLES

patl := ANCHOR + "al23";

This assignment statement creates a pattern that matches the string a123.
Because ANCHOR appears as the first element of the pattern, SEARCH
will find a123 only if the string appears at the starting position for the
search.

7-24

~——

VAXTPU Built-In

B PROCEDURE user_remove_comments

LOCAL patl,
number_removed,
end_mark;

patl := ANCHOR + "!";

number_ removed := 0;

end_mark := END OF (CURRENT BUFFER);

POSITION (BEGINNING OF (CURRENT_ BUFFER));
LOOP
EXITIF MARK (NONE) = end mark;
rl := SEARCH QUIETLY (patl, FORWARD);
IF rl <> 0
THEN ! comment found so erase it
ERASE_LINE;
number_ removed := number_ removed + 1;
ENDIF;
MOVE_VERTICAL (1); ! move to the next line
ENDLOOCP;
MESSAGE (FAO ("!ZL comment!$%$S removed.", number_ removed)):
ENDPROCEDURE;

Procedures
ANCHOR

This procedure starts at the beginning of a buffer and searches forward,
removing all comments that begin in column 1. The keyword ANCHOR
in this example ties the search to the first character of a line (the current
character). This prevents the search function from finding and removing
exclamation points in the middle of a line (for example, in the FAO

j directive, !AS).

7-25

VAXTPU Built-In Procedures
ANY

ANY

Returns a pattern that matches one or more characters from the set specified.

FORMAT buffer
pattern := ANY (¢ range ; [, integert])
string

PARAMETERS buffer
An expression that evaluates to a buffer. ANY matches any of the
characters in the resulting buffer.

range v
An expression which evaluates to a range. ANY matches any of the
characters in the resulting range.

string
An expression that evaluates to a string. ANY matches any of the
characters in the resulting string.

integert
This integer value indicates how many contiguous characters ANY
matches. The default value for this integer is 1.

return value A pattern matching one or more characters that appear in the string,
buffer, or range passed as the first parameter to ANY.

DESCRIPTION ANY is used to construct patterns.

SIGNALED TPU$_NEEDTOASSIGN ERROR ANY must in the right-hand
_ must appear in the right-han
ERRORS side of an assignment statement.

TPU$_TOOFEW ERROR ANY requires at least one
argument.

TPU$_TOOMANY ERROR ANY accepts no more than two
arguments.

TPU$_ARGMISMATCH ERROR The argument you passed tfo the
ANY built-in was of the wrong

type.

7-26

VAXTPU Built-in Procedures

ANY
TPUS$_INVPARAM ERROR The argument you passed to the
ANY built-in was of the wrong
type.
TPU$_MINVALUE WARNING The argument you passed to the

ANY built-in was less than the
minimum accepted value.

TPU$_CONTROLC ERROR You pressed CTRL/C during the
execution of the ANY built-in.

EXAMPLES

patl := ANY ("hijkl")

This assignment statement creates a pattern that matches any one of the
characters 4, i, j, k, and L.

i

patl := any ("xy", 2);

This assignment statement creates a pattern that matches any of the
following two-letter combinations: xx, xy, yx, and yy.

a_buf := CREATE_BUFFER ("new buffer"):;
POSITION (a_buf);

COPY_TEXT ("xy"):

SPLIT_LINE;

COPY_TEXT ("abc™");

patl := ANY (a_buf);

These statements create a pattern that matches any one of the characters
a, b, c, x, and y.

PROCEDURE user_find_endprocedure
LOCAL endprocedure pattern,
search_range;

endprocedure_pattern := (LINE_BEGIN + "ENDPROCEDURE") +
(LINE_END | ANY (";! " + ASCII (9))):;
search range := SEARCH QUIETLY (endprocedure_pattern, FORWARD);
IF search_range = 0
THEN
MESSAGE ("Endprocedure statement not found"):;
ELSE
POSITION (END_OF (search range)):;
ENDIF;
ENDPROCEDURE;

This procedure finds an ENDPROCEDURE statement that starts in
column 1 and moves the editing point to the end of the statement.

7-27

VAXTPU Built-In Procedures
APPEND_LINE

APPEND_LINE

Places the current line at the end of the previous line.

FORMAT APPEND_LINE

PARAMETERS Nore.

DESCRIPTION You can use APPEND_LINE to delete line terminators.

The editing point in the line that was the current line before APPEND_
LINE was executed becomes the editing point.

Using APPEND_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. APPEND_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the

nearest text.

You are not positioned in a buffer.

There is not enough memory to
allocate a new cache.
APPEND_LINE does not accept
arguments.

You cannot modify an unmodifiable
buffer.

VAXTPU cannot append the line

because the length of the resulting
line would exceed VAXTPU’s

-maximum line length.

SIGNALED TPU$_NOCURRENTBUF WARNING
ERRORS TPU$_NOCACHE ERROR
TPU$_TOOMANY ERROR
TPU$_NOTMODIFIABLE WARNING
TPU$_LINETOOLONG WARNING
EXAMPLES

APPEND_LINE

This statement adds the current line to the end of the previous line.

7-28

VAXTPU Built-In Procedures
APPEND_LINE

! The following procedure deletes the character

! to the left of the cursor. If the cursor is at the
! beginning of a line, it appends the current line

! to the end of the previous line.

1

PROCEDURE user delete_char
IF CURRENT OFFSET = 0

THEN
APPEND LINE;
ELSE
ERASE_CHARACTER (-1);
ENDIF;
ENDPROCEDURE;

This procedure deletes the character to the left of the cursor. If you are at
the beginning of a line, the procedure appends the current line to the end
of the previous line. The procedure works correctly even if the window is

shifted.

You can bind this procedure to the DELETE key with the following
statement:

DEFINE_KEY ("user_delete_char", DEL KEY);

7-29

VAXTPU Built-In Procedures
ARB

ARB

Returns a pattern that matches an arbitrary sequence of characters starting at
the editing point and extending for the length you specify.

FORMAT pattern := ARB (integer)

PARAMETER integer

The number of characters in the pattern. This integer must be positive.

return value A pattern that matches an arbitrary sequence of characters starting at the
editing point and extending for the length you specify.

DESCRIPTION ARB can be used for wildcard matches of fixed length.

For more information on patterns, see Chapter 2.

SIGNALED TPU$_NEEDTOASSIGN ERROR ARB t in the right-hand
| must appear in the right-han
ERRORS side of an assignment statement.
TPU$_TOOFEW ERROR ARB requires at least one
argument.
TPU$_TOOMANY ERROR ARB accepts no more than one
argument.
TPUS$_INVPARAM ERROR The argument to ARB must be an
integer.
TPUS_MINVALUE WARNING The argument to ARB must be
positive.
B
EXAMPLES
patl := ARB (5)
This assignment statement creates a pattern that matches the next five
characters starting at the editing point. The characters themselves are
arbitrary; it is the number of characters that is important for a pattern
created with ARB.
pat2 := "J" & ARB (2)

This assignment statement creates a pattern that matches a string
beginning with a J and followed by any two other characters. Names
such as “Jim,” “Jan,” and “Joe” match pat2.

7-30

VAXTPU Built-In Procedures

PROCEDURE user_ replace prefix
LOCAL cur_mode,

here,
patl,
found_range;
patl := (LINE_BEGIN | NOTANY ("ABCDEFGHIJKLMNOPQRSTUVWXYZ_ S$"))
+ ((ARB (3) + "_") @ found_range);
here := MARK (NONE);
cur_mode := GET_INFO (current_buffer, "mode");

POSITION (BEGINNING OF (CURRENT_BUFFER)) :;
LOOP
found_range := 0;
SEARCH_QUIETLY (patl, FORWARD) ;
EXITIF found_range = 0;
ERASE (found_range);
POSITION (END_OF (found_ range));
COPY_TEXT ("user_");
ENDLOOP;
POSITION (here);
SET (cur_mode, current buffer);
ENDPROCEDURE;

ARB

This procedure replaces a prefix of any three characters followed by an
underscore (xxx_) in the current buffer with the string "user_r. It does not

change the current position.

7-31

VAXTPU Built-In Procedures

ASCII

ASCII

Returns the ASCII value of a character or the character that has the specified
ASCII value.

FORMAT . integer1
{ :'t':fif'e;z }:: ASCll ({ keyword %)
9 string1
PARAMETERS integer1
The decimal value of a character in the DEC Multinational Character Set.
keyword

return value

This keyword must be a key name. If the key name is the name of a
key that produces a printing character, ASCII returns that character.
Otherwise it returns the character whose ASCII value is 0.

string1

The character whose ASCII value you want. If the string has a length
greater than 1, the ASCII built-in returns the ASCII value of the first
character in the string.

The character with the specified ASCII value (if you specify an integer or
keyword parameter).

The ASCII value of the string you specify (if you specify a string
parameter).

DESCRIPTION

7-32

The result of this built-in depends upon its argument. If the argument is
an integer then it returns a string of length 1 that represents the character
of the DEC Multinational Character Set corresponding to the integer you
specify. If the argument is a string then it takes the first character of the
string and returns the integer corresponding to the ASCII value of that
character.

If the argument to ASCII is a keyword, that keyword must be a key name.
The VAXTPU built-in KEY_NAME produces key names. In addition, there
are several predefined keywords that are key names. See Table 2-1 for a
list of these keywords. If the keyword is a key name and the key produces
a printing character, ASCII returns that character; otherwise, it returns
the character whose ASCII value is 0.

VAXTPU Built-In Procedures

ASCII
SIGNALED
E TPU$_NEEDTOASSIGN ERROR ASCIl must be on the right-hand
RRORS side of an assignment statement.
TPU$_TOOFEW ERROR ASCII requires one argument.
TPU$_TOOMANY ERROR ASCII accepts only one argument.
TPU$_ARGMISMATCH ERROR The parameter you passed to
ASCII is of the wrong type.
TPU$_NULLSTRING WARNING You passed a string of length 0 to
ASCII.
EXAMPLES

1] my character := ASCII(12)

This assignment statement assigns a string of length 1 to the variable
my_character. This string contains the form feed character because that
character has the ASCII value 12.

MESSAGE (ASCII (80))

This statement combines two built-in procedures and prints the ASCII
character numbered 80 (whose value is P) in the message area. In this
case, uppercase P is displayed.

B ! This procedure puts a tab character in your text
i

PROCEDURE user_tab
COPY_TEXT (ASCII (9));
ENDPROCEDURE;

This procedure includes a tab character in the current buffer.
B ascii_value := ASCII ("a");

This assignment statement assigns the integer value 97 to the variable
ascii_value. Note that a is specified in quotation marks because it is a
parameter of type string. For more information on specifying strings, see
Chapter 2.

7-33

VAXTPU Built-In Procedures
ASCII

H PROCEDURE user_test_key
LOCAL key_struck,
key value;

MESSAGE ("Press a key");
key_struck := READ_KEY;
key_value := ASCII (key_struck);

IF key_value = ASCII (0)
THEN

MESSAGE ("That is not a typing key"):
ELSE

MESSAGE (FAO ("That key produces the letter "!AS".", key value));
ENDIF;
ENDPROCEDURE;

This procedure prompts the user to press a key. When the user does

80, the procedure reads the key. If the key is associated with a printing
character, ASCII tells the user what character is produced. If the key is
not associated with a printable character, ASCII informs the user of this.

7-34

VAXTPU Built-In Procedures
ATTACH

ATTACH

Enables you to switch control from your current process to another process
that you have previously created.

FORMAT integer
ATTACH [({ string)1

PARAMETERS integer
This integer is the process identification (PID) of the process to which
terminal control is to be switched. You must use decimal numbers to
specify the PID to VAXTPU.
string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string that VAXTPU interprets as a process
name.

DESCRIPTION To use the built-in procedure ATTACH, you must have previously created

a subprocess. If the process you specify is not part of the current job or
does not exist, an error message is displayed. For information on creating
subprocesses, see the description of SPAWN in this section.

ATTACH suspends the current VAXTPU process and switches context to
the process you use as a parameter. If you do not specify a parameter

for ATTACH, VAXTPU switches control to the parent or owner process.

A subsequent use of the DCL command ATTACH (or a logout from any
process except the parent process) resumes the execution of the suspended
VAXTPU process.

In all cases, VAXTPU first deassigns the terminal. If a VAXTPU process
is resumed following a SPAWN or ATTACH command, VAXTPU reassigns
the terminal and refreshes the screen.

If the current buffer is mapped to a visible window, the ATTACH built-in
causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the file.

ATTACH is not a valid built-in in DECwindows VAXTPU. However, if
you are running non-DECwindows VAXTPU in a DECwindows terminal
emulator, ATTACH works as described in this section.

VAXTPU Built-In Procedures

ATTACH

SIGNALED
ERRORS

TPU$_NOPARENT

TPU$_TOOMANY
TPU$_SYSERROR

TPU$_ARGMISMATCH

TPU$_CREATEFAIL
TPU$_REQUIRESTERM

WARNING

ERROR

ERROR

ERROR

WARNING
ERROR

There is no parent process to

which you can attach — your

current process is the top-level
process.

Too many arguments passed to
the ATTACH built-in.

Error requesting information about
the process being attached to.

Wrong type of data sent to the
ATTACH built-in. Only process
name strings and process IDs are
allowed.

Unable to attach to the process.
Feature requires a terminal.

EXAMPLES

ATTACH

ATTACH (97899)

ATTACH ("JONES_2")

7-36

This statement causes VAXTPU to attach to the parent process.

This statement causes VAXTPU to attach to the subprocess with the PID
97899.

This statement switches the terminal’s control to the process JONES_2.

VAXTPU Built-In Procedures
BEGINNING_OF

BEGINNING OF

Returns a marker that points to the first position of a buffer or a range.

FORMAT

marker := BEGINNING_OF ({ ‘r’;’;;e; })

PARAMETERS

return value

buffer

The buffer whose beginning you want to mark.

range
The range whose beginning you want to mark.

A marker pointing to the first character position of the specified buffer or
range.

DESCRIPTION If you use the marker returned by this built-in procedure as a parameter
for the built-in procedure POSITION, the editing point moves to the
marker.

SIGNALED TPU$_NEEDTOASSIGN ERROR BEGINNING_OF t

| _OF must appear
ERRORS in the right-hand side of an
assignment statement.
TPU$_TOOFEW ERROR BEGINNING_OF requires one
argument.
TPU$_TOOMANY ERROR BEGINNING_OF accepts only one
argument.
TPU$_ARGMISMATCH ERROR You passed something other
than a range or a buffer to
BEGINNING_OF.

L R

EXAMPLES

beg_main := BEGINNING OF (main buffer)

This assignment statement stores the marker that points to the beginning
of the main buffer in the variable beg_main.

POSITION (BEGINNING OF (my_ range))

This statement uses two built-in procedures to move your current
character position to the beginning of my_range. If my_range is in a
visible buffer in which the cursor is located, the cursor position is also
moved to the beginning of my_range.

7-37

VAXTPU Built-In Procedures
BEGINNING_OF

7-38

PROCEDURE user_top

IF MARK (NONE) = BEGINNING_OF (CURRENT_ BUFFER)
THEN

MESSAGE ("Already at top"):
ELSE

POSITION (BEGINNING_OF (CURRENT_ BUFFER)) ;
ENDIF;
ENDPROCEDURE;

This procedure places the cursor at the beginning of the current buffer. If
you are already at the beginning of the buffer, the message "Already at
top" is displayed in the message area.

PROCEDURE user_include file
! Create scratch buffer
bl := CREATE BUFFER ("Scratch Buffer");

! Map scratch buffer to main window
MAP (main_window, bl);

! Read in file name given
READ_FILE (READ_LINE ("File to Include:")):

! Go to top of file
POSITION (BEGINNING OF (bl)):
ENDPROCEDURE;

This procedure creates a new buffer, associates the buffer with the main
window, and maps the main window to the screen. It positions to the top
of the buffer, prompts the user for the name of a file to include, and reads
the file into the buffer.

s

VAXTPU Built-in Procedures
BREAK

BREAK

Activates the debugger if VAXTPU was invoked with the /DEBUG qualifier.

FORMAT BREAK

PARAMETERS Nore.

DESCRIPTION If VAXTPU was invoked with the /DEBUG qualifier, then execution of the
BREAK statement activates the debugger. If there is no debugger, BREAK
causes the following message to be displayed in the message window:
Breakpoint at line xxx
It has no other effect. Although BREAK behaves much like a built-in, it is
actually a VAXTPU language element.

BREAK is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

SIGNALED BREAK is a language element and has no completion codes.

ERROR _

EXAMPLE

PROCEDURE user_not_ quite_working

BREAK;

ENDPROCEDURE;

This procedure contains a break statement. If the statement is executed,
VAXTPU’S debugger is activated, allowing the user to debug that section
of the code.

7-39

VAXTPU Built-In Procedures

CALL_USER

CALL_USER

Calls a program written in another language from within VAXTPU. The CALL_
USER parameters are passed to the external routine exactly as you enter
them; VAXTPU does not process the parameters in any way. The integer is
passed by reference, and string1 is passed by descriptor. String2 is the value
returned by the external program.

FORMAT string2 := CALL_USER (integer, string1)

PARAMETERS integer
The integer that is passed to the user-written program by reference.
string1

return value

The string that is passed to the user-written program by descriptor.

The value returned by the called program.

DESCRIPTION

7-40

In addition to returning the value string2 to CALL_USER, the external
program returns a status code that tells whether the program executed
successfully. You can trap this status code in an ON_ERROR statement.
An even-numbered status code (low bit in RO clear) causes the ON_ERROR
statement to be executed. The ERROR lexical element returns the status
value from the program in the form of a keyword.

To use the built-in procedure CALL_USER, follow these steps:

¢ Write a program in whatever language you choose. The program must
be a global routine called TPU$CALLUSER.

¢ Compile the program.
¢ Link the program with an options file to create a shareable image.

* Define the logical name TPU$CALLUSER to point to the file
containing your routine.

* Invoke VAXTPU.

* From within a VAXTPU session, call your external program to perform
its function by specifying the built-in procedure CALL_USER with the
appropriate parameters. If you link your program properly, and if you
define the logical name TPU$CALLUSER to point to your program,
the built-in procedure CALL_USER passes the parameters you give it
to the proper routine.

VAXTPU Built-In Procedures

CALL_USER

The CALL_USER parameters are input parameters for the external
program you are calling. VAXTPU does not process the parameters in
any way but passes them to the external procedure exactly as you enter
them. You must supply both parameters even if the routine you are calling
does not require that information be passed to it. Enter the following null
parameters to indicate that you are not passing any actual values:

CALL_USER (0,"")

For information on the VAXTPU callable interface, see the VMS Utility

Routines Manual.

SIGNALED

ERRORS TPU$_BADUSERDESC

TPU$_NOCALLUSER
TPU$_TOOFEW

TPU$_TOOMANY

TPU$_NEEDTOASSIGN

TPU$_INVPARAM
TPU$_ARGMISMATCH

TPU$_CALLUSERFAIL

ERROR

ERROR
ERROR

ERROR

ERROR

ERROR

ERROR

WARNING

User-written routine incorrectly
filled in the return descriptor.

Could not find a routine to invoke.

Too few arguments passed to
CALL_USER.

Too many arguments passed to
CALL_USER.

The call to CALL_USER must

be on the right-hand side of the
assignment statement.

Wrong type of data sent to CALL_
USER.

Parameter is of the wrong data
type.

CALL_USER routine failed with
status %X’status’. The value
returned by ERROR after this type
of error will be the status value
reported by this message.

EXAMPLES

ret_value := CALL USER (6, "ABC")

This statement calls a program that the user wrote. Before invoking
VAXTPU,the user created a logical name, TPU$CALLUSER, that points
to the file containing the program the user wants called by CALL_USER.
VAXTPU passes the first parameter (6) by reference, and the second
parameter (“ABC”) by descriptor. If, for example, the user program uses
an integer and a string as input values, the program processes the integer
“6” and the string "ABC." If the program is designed to return a result,
the result is returned in the variable ret_value.

-41

VAXTPU Built-In Procedures
CALL_USER

P

E Step-by-Step Example of'Using CALL_USER

The following example shows the steps required to use the built-in
procedure CALL_USER. The routine that is called to do floating-point
arithmetic is written in BASIC.

1 Write a program in BASIC that does floating-point arithmetic on the
values passed to it.

! Filename:FLOATARITH.BAS
1 sub TPUSCALLUSER (some_integer% , input_string$, return_string$)

10 ! don’t check some_integer% because this function only does
! floating—-peoint arithmetic

20 ! parse the input string
! find and extract the operation
comma_location = pos (input_string$, ",", 1%)
if comma_location = 0 then go to all_done
end if

operation$ = seg$(input_string$, 1%, comma_location - 1%)

! find and extract the 1lst operand

operandl_location = pos (input_string$, ",", comma_location +1)
if operandl location = 0 then go to all_done

end if

operandl$ = seg$(input_string$, comma_location + 1% , &
operandl location -1)

! find and extract the 2nd operand
operand2_location = pos (input_string$, ",", operandl_ location +1)
if operand2 location = 0 then
operand2_location = len{ input_string$) + 1
end if

operand2$ = seg$(input string$, operandl location + 1% , &
operand2_location -1)

select operation$! do the operation

case "+" ,
result$ = sum$(operandl$, operand2$) ! \
case "-"
result$ = dif$(operandl$, operand2$) !
case "*"
result$ = numl$(Val(operandl$) * val(operand2$))
case "/"
result$ = numl$(Val(operandl$) / Val(operand2$))

case else
result$ = "unknown operation."
end select

return_string$ = results$

999 all_done: end sub
2 Compile the program with the following statement:

$ BASIC/LIST floatarith

7-42

S

VAXTPU Built-In Procedures
CALL_USER

3 Create an options file to be used by the linker when you link the
BASIC program.

'+

! File: FLOATARITH.OPT

|

! Options file to link floatarith BASIC program with VAXTPU
|

| -

floatarith.obj
UNIVERSAL=TPUS$CALLUSER

4 Link the program (using the options file) to create a shareable image.

$ LINK floatarith/SHARE/OPT/MAP/FULL

5 Define the logical name TPU$CALLUSER to point to the executable
image of the BASIC program.

$ DEFINE TPUSCALLUSER device: [directorylfloatarith.EXE

6 Invoke VAXTPU.

7 Write and compile the following VAXTPU procedure:
PROCEDURE my_call user
! test the built-in procedure call user

LOCAL output,

input;
input := READ LINE ("Call user >"); ! Provide a parameter for routine
output := CALL USER (0, input):; ! Value this routine returns
MESSAGE (output):;
ENDPROCEDURE;

8 When you call the procedure my_call_user, you are prompted for
parameters to pass to the BASIC routine. The order of the parameters
is operator, number, number. For example, if you enter “+, 3.33, 4.44”
after the prompt, the result 7.77 is displayed in the message area.

7-43

VAXTPU Built-In Procedures

CHANGE_CASE

CHANGE_CASE

Changes the case of all alphabetic characters in a buffer, range, or string,
according to the keyword that you specify. Optionally, CHANGE_CASE
returns a string, range, or buffer containing the changed text.

FORMAT returned_buffer buffer INVERT
returned_range ;:= CHANGE_CASE ({ range ,{LOWER }
returned_string string UPPER

, IN_PLACE)
, NOT_IN_PLACE
PARAMETERS buffer

7-44

The buffer in which you want VAXTPU to change the case. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a buffer for the
first parameter.

range

The range in which you want VAXTPU to change the case. Note that you
cannot use the keyword NOT_IN_PLACE if you specify a range for the (
first parameter.

string
The string in which you want VAXTPU to change the case. If you specify
IN_PLACE for the third parameter, CHANGE_CASE makes the specified

change to the string specified in the first parameter. Note that if string is
a constant, IN_PLACE has no effect.

LOWER
A keyword directing VAXTPU to change letters to all lowercase. (

UPPER

A keyword directing VAXTPU to change letters to all uppercase.

INVERT

A keyword directing VAXTPU to change uppercase letters to lowercase and
lowercase letters to uppercase.

IN_PLACE
A keyword directing VAXTPU to make the indicated change in the buffer,
range, or string specified. This is the default.

NOT IN_PLACE

A keyword directing VAXTPU to leave the specified string unchanged

and return a string that is the result of the specified change in case. You
cannot use NOT_IN_PLACE if the first parameter is specified as a range

or buffer. To use NOT_IN_PLACE, you must specify a return value for (
CHANGE_CASE.

return values

VAXTPU Built-In Procedures
CHANGE_CASE

returned_buffer

A variable of type buffer pointing to the buffer containing the modified
text, if you specify a buffer for the first parameter. The variable returned_
buffer points to the same buffer pointed to by the buffer variable specified
as the first parameter.

returned_range

A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified
as a parameter, but they are two separate ranges. If you subsequently
change or delete one of the ranges, this has no effect on the other range.

returned_string

A string containing the modified text, if you specify a string for the first
parameter. CHANGE_CASE can return a string even if you specify IN_
PLACE.

DESCRIPTION CHANGE_CASE modifies the case of all the alphabetic characters in the
specified unit of text according to the keyword that you supply.
> SIGNALED TPU$_TOOFEW ERROR CHANGE_CASE ires tw
_ ! requires two
ERRORS parameters.
TPU$_TOOMANY ERROR CHANGE_CASE accepts only two
- parameters.
TPU$_ARGMISMATCH ERROR One of the parameters to
CHANGE_CASE is of the wrong
. data type.
TPU$_INVPARAM ERROR One of the parameters to
\ CHANGE_CASE is of the wrong
‘ data type.
TPU$_BADKEY WARNING You gave the wrong keyword to
CHANGE_CASE.
TPU$_NOTMODIFIABLE WARNING You cannot change the case of
text in an unmodifiable buffer.
TPU$_CONTROLC ERROR You pressed CTRL/C during the
execution of CHANGE_CASE.
EXAMPLES

CHANGE_CASE (CURRENT_BUFFER, UPPER)

~.

This statement makes all the characters in the current buffer uppercase.
If you enter this statement on the command line of your interface, you see
the effects immediately. If you use this statement within a procedure, you
see the effect of the statement at the next screen update.

7-45

VAXTPU Built-In Procedures
CHANGE_CASE

E CHANGE_ CASE (my_range, LOWER)

This statement makes all the characters in my_range lowercase. If my_
range is part of a buffer that is mapped to a window, you see the command
take effect immediately.

B PROCEDURE user lowercase line
LOCAL this_line;

this_line := ERASE_LINE;

CHANGE_CASE (this_line, LOWER);

SPLIT_LINE;

MOVE_VERTICAL (-1);

COPY_TEXT (this_line);
ENDPROCEDURE;

This procedure changes the current line to lowercase.

PROCEDURE user upcase_item
ON_ERROR
! In case no string is found during search
MESSAGE ("No current item.");
RETURN;
ENDON_ERROR;

delimiters := " " 4+ ASCII(9);
current_item := ANCHOR & SCAN (delimiters);
item range := SEARCH (current_item, FORWARD, NO_EXACT);
CHANGE_CASE (item range, UPPER);
ENDPROCEDURE;

This procedure puts the current text object in uppercase.
returned value := CHANGE_CASE (CURRENT BUFFER, LOWER, IN_PLACE);

This statement makes all characters in the current buffer lowercase. The
variable returned_value contains the newly modified current buffer.

B returned value := CHANGE_CASE (the string, INVERT, NOT IN_PLACE);

This statement inverts the case of all characters in the string pointed to by
the_string and returns the modified string in the variable returned_value.
It does not change the_string in any way.

7-46

VAXTPU Built-In Procedures
COMPILE

COMPILE

Converts VAXTPU procedures and statements into an internal, compiled
format. Valid items for compilation can be represented by a string, a range, or
a buffer. COMPILE optionally returns a program.

FORMAT buffer
[program := | COMPILE ({ range ;)
string
PARAMETERS buffer
A buffer that contains only valid VAXTPU declarations and statements.
range
A range that contains only valid VAXTPU declarations and statements.
string

return value

A string that contains only valid VAXTPU declarations and statements.

The program created by compiling the declarations and statements in the
string, range, or buffer. If the program failed to compile, an integer zero is
returned.

DESCRIPTION

The program that COMPILE optionally returns is the compiled form

of valid VAXTPU procedures, statements, or both. You can assign

the compiled version of VAXTPU code to a variable name. VAXTPU
statements, as well as procedure definitions, can be stored in the program
returned by COMPILE. Later in your editing session, you can execute the
VAXTPU code that you compiled by using the program as a parameter
for the built-in procedure EXECUTE. You can also use the program as

a parameter for the built-in procedure DEFINE_KEY to define a key to
execute the program. Then you can execute the program by pressing that
key.

COMPILE returns a program variable only if the compilation generates
executable statements. COMPILE does not return a program variable if
you compile any of the following:

¢ Null strings or buffers

¢ Procedure definitions that do not have any executable statements
following them

* Programs with syntax errors

VAXTPU cannot compile a string, range, or line of text in a buffer longer
than 256 characters. If VAXTPU encounters a longer string, range, or line,
VAXTPU truncates characters after the 256th character and attempts to
compile the truncated string, buffer, or range.

7-47

VAXTPU BUiIt-In Procedures

COMPILE

SIGNALED
ERRORS

EXAMPLES

If necessary, use the built-in procedure SET (INFORMATIONAL, ON)
before compiling a procedure interactively to see the compiler messages.

To check the results of a compilation to determine whether execution is
possible, use the following statement in a program:

x := COMPILE (my_range);

!if the program is nonzero, continue
IF x <> 0

THEN

ENDIF;

If x = 0, no program was generated because of compilation errors or
because there were no executable statements. The statement “IF x <>
0 THEN” allows your program to continue as long as a program was
generated.

You can also use an ON_ERROR statement to check the result of a
compilation. This statement tells you whether the compilation completed
successfully; it does not tell you whether execution is possible. You can use
an ON_ERROR statement when compiling code consisting of procedure
definitions without following executable statements. For more information
on using ON_ERROR statements, see Section 3.8.4.7.

TPU$_COMPILEFAIL ERROR Compilation aborted because of
syntax errors.

TPU$_ARGMISMATCH ERROR The data type of a parameter
passed to the COMPILE built-in is
unsupported.

TPU$_TOOFEW ERROR Too few arguments.
TPU$_TOOMANY ERROR Too many arguments.

dwn := COMPILE ("MOVE_VERTICAL (1)")

7-48

This assignment statement associates the MOVE_VERTICAL (1) function
with the variable dwn. You can use the variable dwn with the built-in
procedure EXECUTE to move the editing point down one line.

VAXTPU Built-In Procedures
COMPILE

user_program := COMPILE (main_buffer)

This assignment statement compiles the contents of the main buffer. If
the buffer contains executable statements, VAXTPU returns a program
that stores these executable commands. If the buffer contains procedure
definitions, VAXTPU compiles the procedures and lists them in the
procedure definition table so that you can call them in one of the following
ways:

e Enter the name of the procedure after the appropriate prompt from
the interface you are using.

e (Call the procedure from within other procedures.

7-49

VAXTPU Built-In Procedures

CONVERT

CONVERT

Given the coordinates of a point in one coordinate system, returns the
corresponding coordinates for the point in the coordinate system you specify.

FORMAT DECW_ROOT_WINDOW CHARACTERS
CONVERT (| SCREEN ‘ { COORDINATES }
window '
from_x_integer, from_y_integer,
DECW_ROOT_WINDOW CHARACTERS,
SCREEN ’ { COORDINATES, }
window
to_x_integer, to_y_integer)
PARAMETERS DECW_ROOT _WINDOW

7-50

Specifies the coordinate system to be that used by the root window of the
screen on which VAXTPU is running.

SCREEN

Specifies the coordinate system to be that used by the DECwindows
window associated with VAXTPU’s top-level widget.

window
Specifies the coordinate system to be that used by the VAXTPU window.

CHARACTERS

Specifies a system that measures screen distances in rows and columns, as
a character-cell terminal does. In a character-cell-based system, the cell in
the top row and the leftmost column has the coordinates (1,1).

COORDINATES

Specifies a DECwindows coordinate system in which coordinate units
correspond to pixels. The pixel in the upper left corner has the coordinates
(0, 0).

from_x_integer
from_y_integer

Integer values representing a point in the original coordinate system and
units.

to_x_mteger

to_y integer

Variables of type integer representing a point in the specified coordinate
system and units. Note that the previous contents of the parameters are
deleted when VAXTPU places the resulting values in them. You must
specify VAXTPU variables for the parameters to_x_integer and to_y_
integer. Passing a constant integer, string or keyword value causes an

VAXTPU Built-ln Procedures

CONVERT

error. (This requirement does not apply to the parameters from_x_integer

and from_y_integer.)

DESCRIPTION The converted coordinates are returned using the to_x_integer and to_y_
integer parameters. Note that coordinate systems are distinguished both
by units employed and where each places its origin.

The data type of the indicated
parameter is not supported by
CONVERT.

You are attempting to modify
an integer, keyword, or string
constant.

One of the parameters was
specified with data of the wrong
type.

Too few arguments passed to
CONVERT.

Too many arguments passed to
CONVERT.

You specified an invalid keyword
as a parameter.

CONVERT cannot operate on an
invisible window.

SIGNALED TPU$_ARGMISMATCH ERROR

ERRORS -
TPUS$_BADDELETE ERROR
TPU$_INVPARAM ERROR
TPU$_TOOFEW ERROR
TPU$_TOOMANY ERROR
TPUS$_BADKEY WARNING
TPU$_WINDNOTVIS WARNING

EXAMPLE

PROCEDURE user_convert

LOCAL source_ X,
source_y,
dest_x,
dest_y;

1;
1;

source x :
source y :
dest_x :
dest_y :

’

ool I

’

CONVERT (CURRENT_WINDOW, COORDINATES, source_x, source_y,
SCREEN, COORDINATES, dest_x, dest_y);

ENDPROCEDURE;

This example converts a point’s location from the current window’s
coordinate system (with the origin in the upper left-hand corner of the
window) to the VAXTPU screen’s coordinate system (with the origin in
the upper left-hand corner of the VAXTPU screen). For more information
about the difference between a VAXTPU window and the VAXTPU screen,

7-51

VAXTPU Built-In Procedures
CONVERT ‘

see Chapter 4. If the current window is not the top window, CONVERT
changes the value of the y-coordinate to reflect the difference in the
VAXTPU screen’s coordinate system. For another example of a procedure
using the CONVERT built-in, see Example B-1.

7-52

VAXTPU Built-In Procedures
COPY_TEXT

COPY_TEXT

Makes a copy of the text you specify and places it in the current buffer.

FORMAT buffer
[range2 :=] COPY_TEXT (< rangel })
: string
PARAMETERS buffer
The buffer containing the text you want to copy.
rangeft

return value

The range containing the text you want to copy.

string
A string, a variable name representing a string constant, or an expression
that evaluates to a string, representing the text you want to copy.

The range where the copied text has been placed.

DESCRIPTION

Note:

If the current buffer is in insert mode, the text you specify is inserted
before the current position in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

You cannot add a buffer or a range to itself. If you try to add
a buffer to itself, VAXTPU issues an error message. If you try
to insert a range into itself, part of the range is copied before
VAXTPU signals an error. If you try to overstrike a range into
itself, VAXTPU may or may not signal an error.

Using COPY_TEXT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. COPY_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

7-53

VAXTPU Built-In Procedures

COPY_TEXT
SIGNALED
ERRORS TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOCOPYBUF WARNING Trying to copy a buffer to itself is
not allowed.
TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.
TPU$_OVERLAPRANGE ERROR You tried to put the contents of a
range into that same range instead
of into another structure.
TPU$_TOOFEW ERROR COPY_TEXT requires one
argument.
TPU$_TOOMANY ERROR COPY_TEXT accepts only one
argument.
TPU$_ARGMISMATCH ERROR The argument to COPY_TEXT
must be a string, range, or buffer.
TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.
TPUS$_LINETOOLONG WARNING The line exceeds VAXTPU's
maximum line length.
TPU$_TRUNCATE WARNING Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.
EXAMPLES
i COPY TEXT ("Perseus is near Andromeda")

7-54

When the buffer is set to insert mode, this statement causes the string
"Perseus is near Andromeda" to be placed just before the current position
in the current buffer.

COPY_TEXT (ASCII (10))

When the buffer is set to overstrike mode, this statement causes the
ASCII character for line feed to replace the current character in the
current buffer.

PROCEDURE user_simple_insert
IF BEGINNING_OF (paste buffer) = END_OF (paste_buffer)

THEN
MESSAGE ("Nothing to INSERT");
ELSE
COPY_TEXT (paste_buffer);
ENDIF;
ENDPROCEDURE;

This procedure implements a simple INSERT HERE function. It assumes
that there is a paste buffer and that this buffer contains the most recently
deleted text. The procedure copies the text from that buffer into the
current buffer.

-

VAXTPU Built-in Procedures
CREATE_ARRAY

CREATE_ARRAY

Creates an array.

FORMAT [array :=]
CREATE_ARRAY [(integer1 [, integer2])]
PARAMETERS integert

return value

The number of integer-indexed elements to be created when the array
is created. VAXTPU processes elements specified by this parameter
more quickly than elements created dynamically. You can add integer-
indexed elements dynamically, but they are not processed as quickly as
predeclared, integer-indexed elements.

integer2

The first predeclared integer index of the array. The predeclared integer
indexes of the array extend from this integer through to integer2 + integerl
— 1. This parameter defaults to 1.

The variable that is to contain the newly created array.

DESCRIPTION

I L]
This built-in creates an array.

In VAXTPU, an array is a one-dimensional collection of data values that
can be considered or manipulated as a unit.

To create an array variable called bat, use the CREATE_ARRAY built-in
as follows:

bat := CREATE_ ARRAY;

VAXTPU arrays can have a static portion, a dynamic portion, or both. A
static array or portion of an array contains predeclared, integer-indexed
elements. These elements are allocated contiguous memory locations to
support quick processing. To create an array with a static portion, specify
the number of contiguous, integer-indexed elements when you create the
array. You also have the option of specifying a beginning index number
other than 1. For example, the following statement creates an array with
100 predeclared integer-indexed elements starting at 15:

bat := CREATE_ARRAY (100, 15);

All static elements of a newly created array are initialized to the data type
unspecified.

A dynamic portion of an array contains elements indexed with expressions
evaluating to any VAXTPU data type except unspecified, learn, pattern, or
program. Dynamic array elements are dynamically created and deleted as
needed. To create a dynamic array element, assign a value to an element
of an existing array. For example, the following statement creates a

7-55

VAXTPU Built-In Procedures

CREATE_ARRAY

7-56

dynamic element in the array bat indexed by the string "bar" and assigns
the integer value 10 to the element:

bat{"bar"} := 10;

To create an array with both static and dynamic elements, first create
the static portion of the array. Then use assignment statements to create
as many dynamic elements as you wish. For example, the following code
fragment creates an array stored in the variable small_array. The array
has 15 static elements and one dynamic element. The first static element
is given the value 10. The dynamic element is indexed by the string "fred"
and contains the value 100.

small_array := CREATE_ARRAY (15);
small array{l} := 10;
small array{"fred"} := 100;

To delete a dynamic array element, assign to it the constant TPU$K _
UNSPECIFIED, which is of type unspecified.

One array can contain elements indexed with several data types. For
example, you can create an array containing elements indexed with
integers, buffers, windows, markers, and strings. An array element can be
of any data type. All array elements of a newly created array are of type
unspecified.

If the same array has been assigned to more than one variable, VAXTPU
does not create multiple copies of the array. Instead, each variable points
to the array that has been assigned to it. VAXTPU arrays are reference
counted, meaning that each array has a counter keeping track of how
many variables point to it. VAXTPU arrays are autodelete data types,
meaning that when no variables point to an array, the array is deleted
automatically. You can also delete an array explicitly using the DELETE
built-in. For example, the following statement deletes the array bat:

DELETE (bat):;

If you delete an array that still has variables pointing to it, the variables
receive the data type unspecified after the deletion.

If you modify an array pointed to by more than one variable, modifications
made using one variable show up when another variable references the
modified element. To duplicate an array, you must write a procedure
creating a new array and copying the old array’s elements to the new
array.

To refer to an array element, use the array variable name followed by an
index expression enclosed in braces or parentheses. For example, if bar
were a variable of type marker, the following statement would assign the
integer value 10 to the element indexed by bar:

bat {bar} := 10;

You can perform the same operations on array elements that you can on
other VAXTPU variables, with one exception—you cannot make partial
pattern assignments to array elements.

See Chapter 2 for additional information about arrays.

P

~

VAXTPU Built-In Procedures

CREATE_ARRAY

ERROR

ERROR

ERROR

WARNING

WARNING

ERROR

CREATE_ARRAY accepts no
more than two arguments.
CREATE_ARRAY must appear
on the right-hand side of an
assignment statement.

The arguments to CREATE_
ARRAY must be integers.

The first argument to CREATE_
ARRAY must be 1 or greater.
The first argument to CREATE_

ARRAY must be no greater than
65,535.

VAXTPU could not create the
array because VAXTPU did not
have enough memory.

SIGNALED

ERRORS TPU$_TOOMANY
TPU$_NEEDTOASSIGN
TPUS$_INVPARAM
TPU$_MINVALUE
TPU$_MAXVALUE
TPU$_GETMEM

EXAMPLES

arrayl := CREATE_ARRAY;

This assignment statement above creates an array and assigns it to the

variable arrayl.

array2 := CREATE_ARRAY(10);

This assignment statement also creates an array. This array has ten
predeclared integer-indexed elements that can be processed quickly by
VAXTPU. It can also be indexed by any other VAXTPU data type except
pattern, program, learn, and unspecified.

array3 := CREATE ARRAY(11, -5);

This assignment statement creates an array that can be indexed by the
integers —5 through 5. It can also be indexed by any other VAXTPU data
type other than patterns and learn sequences.

7-57

VAXTPU Built-In Procedures

CREATE_BUFFER

CREATE_BUFFER

Defines a new work space for editing text. You can create an empty buffer
or you can associate an input file name with the buffer. CREATE_BUFFER
optionally returns a buffer.

FORMAT [buffer2 :=] CREATE_BUFFER (string1 [,string2 [.buffer1] [,string3] J)
PARAMETERS string1
A string representing the name of the buffer you want to create.
string2

7-58

A string representing the file specification of an input file that is read into
the buffer.

buffer1

The buffer that you want to use as a template for the buffer to be created.
The information copied from the template buffer includes the following:

¢ End-of-buffer text

* Direction (FORWARD/REVERSE)

¢ Text entry mode INSERT/OVERSTRIKE)
¢ Margins (right and left)

¢ DMargin action routines

¢ Maximum number of lines

* Write-on-exit status (NO_WRITE)

* Modifiable status

¢ Tab stops

* Key map list

VAXTPU does not copy the following attributes of the template buffer to
the new buffer:

¢ Buffer contents

¢ Marks or ranges

¢ Input file name

¢ Mapping to windows

¢ Cursor position

¢ Editing point

o Aséociated subprocesses
¢ Buffer name

¢ Permanent status, if that is an attribute of the template buffer

Caution:

return value

VAXTPU Built-In Procedures
CREATE_BUFFER

* System status, if that is an attribute of the template buffer

string3

The name of the journal file to be used with the buffer. Note that VAXTPU
does not copy the journal file name from the template buffer. Instead,
CREATE_BUFFER uses string3 as the new journal file name. If you do
not specify string3, VAXTPU names the journal file using its journal file
naming algorithm. For more information on the naming algorithm, see
Section 1.7.1 in Chapter 1.

EVE turns on buffer change journaling by default for each new buffer.
However, the CREATE_BUFFER built-in does not automatically turn on
journaling; if you are layering directly on VAXTPU, your application must
use SET (JOURNALING) to turn journaling on.

Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

The buffer created by CREATE_BUFFER.

DESCRIPTION

Although you do not have to assign the buffer that you create to a variable,
you need to make a variable assignment if you want to refer to the buffer
for future use. The buffer variable on the left-hand side of an assignment
statement is the item that you must use when you specify a buffer as a
parameter for other VAXTPU built-in procedures. For example, to move to
a buffer for editing, enter the buffer variable after the built-in procedure
POSITION:

my_buffer_variable := CREATE_BUFFER ("my_buffer name", "my_file_name");

POSITION (my_buffer variable):;

The buffer name that you specify as the first parameter for the built-in
procedure CREATE_BUFFER (for example, “my_buffer_name” is used by
VAXTPU to identify the buffer on the status line). You can change the
status line with the built-in procedure SET (STATUS_LINE).

If you want to skip an optional parameter and specify a subsequent
optional parameter, you must use a comma as a placeholder for the
skipped parameter.

You can create multiple buffers. Buffers can be empty or they can contain
text. The current buffer is the buffer in which any VAXTPU commands
that you execute take effect (unless you specify another buffer). Only one
buffer can be the current buffer. See the built-in procedure CURRENT _
BUFFER for more information.

A buffer is visible when it is associated with a window that is mapped to
the screen. A buffer can be associated with multiple windows, in which
case any edits that you make to the buffer are reflected in all of the
windows in which the buffer is visible. To get a list of all the buffers in
your editing context, use the built-in procedure SHOW (BUFFERS).

7-59

VAXTPU Built-In Procedures

CREATE_BUFFER

7-60

The following keywords used with the built-in procedure SET allow you
to establish attributes for buffers. The text describes the default for the
attributes:

SET (EOB_TEXT, buffer, string) — The default end-of-buffer text is
[EOB].

SET (ERASE_UNMODIFIABLE, buffer, { 8§F }) — By default,

unmodifiable records can be deleted from buffers by built-ins such as
ERASE_LINE.

SET (FORWARD, buffer) — The default direction is forward.
SET (INSERT, buffer) — The default mode of text entry is insert.

SET (JOURNALING, buffer, { 8I;F }) — By default, buffer change

journaling is turned off.
SET (LEFT_MARGIN, buffer, integer) — The default left margin is 1
(that is, the left margin is set in column 1).

SET (LEFT_MARGIN_ACTION, buffer, program_source) — By default,
buffers do not have left margin action routines.

SET (MARGINS, buffer, integerl, integer2) — The default left margin
is 1 and the default right margin is 80.

SET (MAX_LINES, buffer, integer) — The default maximum number
of lines is 0 (in other words, this feature is turned off).

SET (MODIFIABLE, buffer, { 8§F }) — By default, a buffer can be
modified. Using the OFF keyword makes a buffer unmodifiable.

SET (MODIFIED, buffer, { 81;]? }) — Turns on or turns off the bit
indicating that the specified buffer has been modified.

SET (NO_WRITE, buffer [,keyword])) — By default, when you exit
from VAXTPU, the buffer is written if it has been modified.

SET (OUTPUT_FILE, buffer, string) — The default output file is the
input file specification with the highest existing version number for
that file plus 1.

SET (OVERSTRIKE, buffer) — The default mode of text entry is
insert.

SET (PERMANENT, buffer) — By default, the buffer can be deleted.
SET (RECORD_ATTRIBUTE, marker, range, buffer)
SET (REVERSE, buffer) — The default direction is forward.

SET (RIGHT_MARGIN, buffer, integer) — The default right margin is
80.

SET (RIGHT_MARGIN_ACTION, buffer, program_source) — By
default, buffers do not have right margin action routines.

SET (SYSTEM, buffer) — By default, the buffer is a user buffer.

VAXTPU Built-In Procedures
CREATE_BUFFER

e SET (TAB_STOPS, buffer, { gtnng }) — The default tab stops are
integer

set every eight character positions.

See the built-in procedure SET for more information on these keywords.

—

SIGNALED _

ERRORS TPU$_DUPBUFNAME WARNING First argument to the CREATE_
BUFFER built-in must be a unique
string.

TPU$_TRUNCATE WARNING A record was truncated to the
maximum record length.

TPU$_TOOMANY ERROR The CREATE_BUFFER built-
in takes a maximum of two
arguments.

TPU$_TOOFEW ERROR The CREATE_BUFFER built-in
requires at least one argument.

TPU$_INVPARAM ERROR The CREATE_BUFFER built-in
accepts parameters of type string
or buffer only.

TPU$ _GETMEM ERROR VAXTPU ran out of virtual memory
trying to create the buffer.

TPU$_OPENIN ERROR CREATE_BUFFER did not open
the specified input file.

R

EXAMPLES

nb := CREATE BUFFER ("new buffer", "login.com")

This statement creates a buffer called NEW_BUFFER and stores a pointer
to the buffer in the variable nb. Use the variable nb when you want to
specify this buffer as a parameter for VAXTPU built-in procedures. The
file specification "LOGIN.COMr" is the input file for NEW_BUFFER.

B default buffer := CREATE_ BUFFER ("defaults"):;

SET (REVERSE, default buffer);
b := CREATE_BUFFER ("buffer", "", default_buffer);

The first statement in this example creates a buffer called DEFAULTS
and stores a pointer to the buffer in the variable default_buffer. The
second statement sets the direction of default_buffer to reverse. The third
statement creates a buffer called BUFFER and stores a pointer to the
buffer in the variable 4. This statement takes default information from
default_buffer. Note that buffer b does not receive any text, marks, or
ranges from the buffer default_buffer.

7-61

VAXTPU Built-In Procedures
CREATE_BUFFER

7-62

PROCEDURE user_help buffer
help buf := CREATE BUFFER("help_ buf"):
SET (EOB_TEXT, help buf, "[End of HELP]");
SET (NO_WRITE, help buf);
SET (SYSTEM, help buf):
ENDPROCEDURE;

This procedure creates the help buffer.
bufl := CREATE_BUFFER ("Scratch",,,"Scratch_jl.jl");

This statement creates a buffer named Scratch and directs VAXTPU to
name the associated buffer change journal file Scratch_jl.jl. Note that
you must use commas as placeholders for the two unspecified optional
parameters. Note, too, that by default VAXTPU puts journal files in

the directory defined by the logical name TPU$JOURNAL. By default,
TPU$JOURNAL points to the same directory that SYS$SCRATCH points
to. You can reassign TPU$JOURNAL to point to a different directory.

defaults buffer := CREATE_BUFFER ("Defaults"):

SET (EOB_TEXT, defaults_buffer, "[That’s all, folks!]"):;

user_buffer := CREATE_BUFFER ("Userl.txt", "", defaults buffer);
This code fragment creates a template buffer called Defaults, changes
the end-of-buffer text for the template buffer, and then creates a user

buffer. The user buffer is created with the same end-of-buffer text that the
defaults buffer has.

(

VAXTPU Built-ln Procedures
CREATE_KEY_MAP

CREATE_KEY_ MAP

Creates and names a key map. CREATE_KEY_MAP optionally returns a
string that is the name of the key map created.

FORMAT

[string2 :=] CREATE_KEY_MAP (string1)

PARAMETER

return value

string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map you create.

A string that is the name of the key map created.

DESCRIPTION

A key map is a set of key definitions. Key maps allow you to manipulate
key definitions as a group. Key maps and their key definitions are saved
in section files. The default key map for VAXTPU is TPU$KEY_MAP,
contained in the default key map list TPUSKEY_MAP_LIST. See the
description on key map lists.

The EVE editor does not use the default key map, TPU$KEY_MAP.

In EVE, the name of a key map is not the same as the variable that
contains the key map. For example, the EVE variable EVE$X_USER_
KEYS contains the key map named EVE$USER_KEYS, which stores the
user’s key definitions. EVE stores all its key maps in the default key map
list, TPU$KEY_MAP_LIST. However, the default key map, TPUSKEY_
MAP, is removed from the default key map list by the standard EVE
section file.

When you create a key map, its keys are undefined. Each key map can
hold definitions for all characters in the DEC Multinational Character Set,
and all the keypad keys and the function keys, in both their shifted and
unshifted forms. Each key map has its own name (a string). This name
cannot be the same as that of either another key map or a key map list.

SIGNALED
ERRORS

TPUS$_DUPKEYMAP WARNING A key map with this name already
exists.

TPUS$_TOOFEW ERROR Too few arguments passed to the
CREATE_KEY_MAP built-in.

TPUS_TOOMANY ERROR Too many arguments passed to
the CREATE_KEY_MAP built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the

CREATE_KEY_MAP built-in.

7-63

VAXTPU Built-In Procedures
CREATE_KEY_MAP

EXAMPLE

PROCEDURE init_sample key map
sample_key map := CREATE_KEY MAP ("sample_key map");

DEFINE KEY ("EXIT", CTRL_Z KEY, "Exit application"”, sample_ key map);
DEFINE KEY ("COPY_TEXT (’'XYZZY’)", CTRL_B KEY, "Magic Word", sample_key_map);

ENDPROCEDURE;

This procedure creates a key map and defines two keys in the key map.
The name of the key map is stored in the variable sample_key_map.

7-64

VAXTPU Built-In Procedures
CREATE_KEY MAP_LIST

CREATE_KEY MAP_LIST

Creates and names a key map list, and also specifies the initial key maps
in the key map list it creates. CREATE_KEY_MAP_LIST optionally returns a
string that is the name of the key map list created.

FORMAT [string3 :=]
CREATE_KEY_MAP_LIST (string1, string2 [,...])
PARAMETERS string1

return value

A quoted string, or a variable name representing a string constant, that
specifies the name of the key map list that you create.

string2
Strings that specify the names of the initial key maps within the key map
list you create.

A string that is the name of the key map list created.

DESCRIPTION

A key map list is an ordered set of key maps. Key map lists allow you to
change the procedures bound to your keys. To find the definition of a given
key, VAXTPU searches through the key maps in the specified or default
key map list until VAXTPU either finds a definition for the key or reaches
the end of the last key map in the list.

VAXTPU provides the default key map list, TPUSKEY_MAP_LIST,
containing the default key map, TPUSKEY_MAP. (See the description

of the built-in procedure CREATE_KEY_MAP for more information on key
maps.)

The built-in procedure CREATE_KEY_MAP_LIST creates a new key map
list, names the key map list, and specifies the initial key maps contained
in the list.

Key map lists store directions on what VAXTPU is to do when the user
presses an undefined key associated with a printable character. By
default, a key map list directs VAXTPU to insert undefined printable
characters into the current buffer. To change the default, use the built-in
procedure SET (SELF_INSERT).

A newly created key map list is not bound to any buffer. To bind a key
map list to a buffer, use the built-in procedure SET (KEY_MAP_LIST).

When you use the POSITION built-in to select a current buffer, the key
map list that is bound to the buffer is automatically activated.

A newly created key map list has no procedure defined to be called when

an undefined key is referenced. You can define such a procedure with the
built-in procedure SET (UNDEFINED_KEY). The default is to display the
message “key has no definition.”

7-65

VAXTPU Built-In Procedures
CREATE_KEY_MAP_LIST

Key map lists are saved in section files, along with any undefined key
procedures and the SELF_INSERT settings.

SIGNALED
TPU$_DUPKEYMAP WARNING The string argument is already
ERRORS defined as a key map.
TPU$_DUPKEYMAPLIST WARNING The string argument is already
defined as a key map list.
TPU$_NOKEYMAP WARNING The string argument is not a
defined key map.
TPU$_TOOFEW ERROR Too few arguments passed to the
CREATE_KEY_MAP_LIST built-in.
TPU$_TOOMANY ERROR Too many arguments passed to
the CREATE_KEY_MAP_LIST
built-in.
TPU$_INVPARAM ERROR Wrong type of data sent to the
CREATE_KEY_MAP_LIST built-in.
EXAMPLE

PROCEDURE init_ help key map list
help user_keys := CREATE_KEY MAP ("help_ user_keys"):;

help_keys := CREATE KEY MAP ("help keys");

help key list := CREATE KEY MAP_LIST ("help key list", help_ user keys,
help_keys):

ENDPROCEDURE;

This procedure creates two key maps and groups them into a key map list.

7-66

VAXTPU Built-In Procedures
CREATE_PROCESS

CREATE_PROCESS

Starts a subprocess and associates a buffer with it. You can optionally specify
an initial command to send to the subprocess. CREATE_PROCESS returns a
process.

FORMAT pfocess := CREATE_PROCESS (buffer [,string])
PARAMETERS Dbuffer
The buffer in which VAXTPU stores output from the subprocess.
string

return value

A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that represents the first command
that you want to send to the subprocess. If you do not want to include the
first command when you use the built-in procedure CREATE_PROCESS,
see the built-in procedure SEND for a description of how to send the first
or subsequent commands to a subprocess.

The process created.

DESCRIPTION

You can create multiple subprocesses. When you exit from VAXTPU, any
subprocesses you have created with CREATE_PROCESS are deleted. If
you want to remove a subprocess before exiting, use the built-in procedure
DELETE with the process as a parameter (DELETE (p1)), or set the
variable to integer zero as follows:

procl := 0

CREATE_PROCESS creates a subprocess of a VAXTPU session and all of
the output from the subprocess goes into a VAXTPU buffer. You cannot
run a program or utility that takes over control of the screen from a
process created with this built-in procedure. (See Chapter 2 for a list

of subprocess restrictions.) You can, however, use the built-in procedure
SPAWN to create a subprocess that suspends your VAXTPU process and
places you directly at DCL level. You can then run programs such as FMS
or PHONE that control the whole screen.

SIGNALED
ERRORS

TPU$_DUPBUFNAME WARNING First argument must be a unique
string.

TPU$_CREATEFAIL WARNING Unable to activate the subprocess.

TPU$_TOOFEW ERROR Too few arguments passed to the

CREATE_PROCESS buiilt-in.

7-67

VAXTPU Built-In Procedures
CREATE_PROCESS

TPU$_TOOMANY ERROR Too many arguments passed to
the CREATE_PROCESS built-in.
TPU$_NEEDTOASSIGN ERROR The CREATE_PROCESS built-in

call must be on the right-hand side
of an assignment statement.

TPUS$_INVPARAM ERROR Wrong type of data sent to the
CREATE_PROCESS built-in.

TPU$_CAPTIVE WARNING Unable to create a subprocess in
a captive account.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable

buffer. You can only write the
output of the subprocess to a
modifiable buffer.

TPU$_NOPROCESS WARNING No subprocess to interact with.
The process was deleted between
the time that it was created and
when VAXTPU attempted to send
information to it.

TPU$_SENDFAIL WARNING Unable to send data to the
subprocess.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

EXAMPLES

7-68

my_mail_process := CREATE_PROCESS (second_buffer, "mail")

This assignment statement creates a subprocess and specifies SECOND_
BUFFER as the buffer in which the output from the subprocess is
stored. It also sends the DCL MAIL command as the first command to
be executed.

! Create a buffer to hold the output from the DCL commands
! "SET NOON" and "DIRECTORY".

PROCEDURE user_dcl_process
dcl_buffer := CREATE_BUFFER ("dcl_buffer");
MAP (main window, dcl buffer);

my_dcl_process := CREATE_PROCESS (dcl buffer, "SET NOON"):;
MESSAGE ("Creating DCL subprocess...");
SEND ("DIRECTORY", my_ dcl_process);

ENDPROCEDURE; :

This procedure creates a buffer to hold the output from the DCL
commands executed by the subprocess.

VAXTPU Built-In Procedures
CREATE_RANGE

CREATE_RANGE

Returns a range that includes two delimiters and all the characters between
them, and sets the video attributes for displaying the characters when they
are visible on the screen. A range delimiter can be a marker, the beginning or
end of a line, or the beginning or end of a buffer. The beginning and ending
delimiters do not have to be of the same type but must be in the same buffer.

FORMAT . v marker1 marker2
range := CREATE_RANGE ({ keyword1 }, { keyword?1 }

[keyword2)

PARAMETERS marker1
The marker indicating the point in the buffer where the range begins.

marker2
The marker indicating the point in the buffer where the range ends.

keyword1
A keyword indicating the point in the buffer where you want the range to
begin or end. Table 7—1 shows the valid keywords and their meanings.

Table 7-1 CREATE_RANGE Keyword Parameters

Keyword Meaning
LINE_BEGIN The beginning of the current buffer’s current line.
LINE_END The end of the current buffer’s current line.

BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the first position
where a character could be inserted, regardless of whether there
is a character there. This is the same as the point referred to by
BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a character could be inserted.
This is the same as the point referred to by END_OF (CURRENT_
BUFFER).

keyword2
The video attribute for the range: BLINK, BOLD, NONE, REVERSE, or
UNDERLINE. If you omit the parameter, the default is NONE.

return value The range created by CREATE_RANGE.

7-69

VAXTPU Built-In Procedures

CREATE_RANGE

DESCRIPTION

SIGNALED
ERRORS

CREATE_RANGE establishes a range that is delimited by the markers
you specify. You can create multiple ranges in a buffer. When you apply
video attributes to a range, you can see the range if it is in a visible buffer.
A range may overlap another range.

If you clear the contents of a range with the built-in procedure ERASE,
the range structure still exists. The range and its video attributes, if any,
move to the next character or position beyond where the range ended
before the range was erased.

To remove the range structure, use the built-in procedure DELETE or set
the variable to which the range is assigned to zero (rl := 0).

In portions of a range that either are associated with nonprintable
characters or are not associated with characters at all, VAXTPU does

not display any of the video attributes of the range. However, if you insert
new characters into portions of a range where the video attributes have
not been displayed, the new characters do display the video attributes that
apply to the range.

CREATE_RANGE checks whether the markers you specify as parameters
are free markers. A free marker is a marker not bound to a character.
For more information on free markers, see the description of the MARK
built-in.

If a marker defining a range is a free marker, VAXTPU ties the range
to the character or end-of-line nearest to the free marker, to use as the
range delimiter. Note that an end-of-line is not a character but is a point
to which a marker can be bound.

TPU$_NOTSAMEBUF WARNING First and second marker are in
different buffers.

TPU$_TOOFEW ERROR CREATE_RANGE requires three
parameters.

TPU$_TOOMANY ERROR CREATE_RANGE accepts no
more than three parameters.

TPU$_NEEDTOASSIGN ERROR CREATE_RANGE must appear

on the right-hand side of an
assignment statement.

TPUS$_INVPARAM ERROR One of your arguments to
CREATE_RANGE is of the wrong
‘ type.
TPU$_BADKEY WARNING You specified an illegal keyword.

EXAMPLES

my range := CREATE_RANGE (start mark, end_mark, BOLD)

7-70

This assignment statement creates a range starting at start_mark and
ending at end_mark. When this range is visible on the screen, the
characters in the range are bolded.

VAXTPU Built-In Procedures
CREATE_RANGE

B PROCEDURE user_erase_to_eob

LOCAL start_of_range,
here_to_eob;

start_of_ range := MARK (NONE);
here_to_ EOB = CREATE_RANGE (start_of range,
END_OF (CURRENT_ BUFFER),
NONE) ;
ERASE (here_to_eob);
ENDPROCEDURE ;

This procedure erases the text in the current buffer, starting at the editing
point, and erasing text until the end of the buffer is reached.

E the_range := CREATE RANGE (BUFFER_BEGIN, mark2, REVERSE);

This statement creates a range starting at the first point in the buffer
where a character can be inserted and ending at the point marked by
mark2. If the range is visible on the screen, the characters in it are
highlighted with the reverse video attribute.

7-7

VAXTPU Built-In Procedures

CREATE_WIDGET

CREATE_WIDGET

Creates a widget instance. The CREATE_WIDGET built-in has two variants
with separate syntaxes. One variant creates and returns a widget using the
intrinsics or a XUl Toolkit low-level creation routine. The other variant creates
an entire hierarchy of widgets (as defined in an XUl Resource Manager
database) and returns the topmost widget.

FORMAT widget := CREATE_WIDGET (widget class, widget_name,
{ parent_widget }
SCREEN
buffer
learn_sequence
I, { program
range
string
[, closure
[, widget args... J11)
DESCRIPTION Creates the widget instance you specify, using the intrinsics or an XUI
Toolkit low-level creation routine. Although it has been created, the
returned widget is not managed and therefore not visible. The application
must call the MANAGE_WIDGET built-in to make the widget visible.
FORMAT widget := CREATE_WIDGET (resource_manager_name, hierarchy_id,
{ parent_widget }
SCREEN
buffer
learn_sequence
I, { program
range
string
[, closure
[, widget _args... J11)
DESCRIPTION Creates and returns an entire hierarchy of widgets (as defined in an XUI

7-72

Resource Manager database) and returns the topmost widget. All children
of the returned widget are also created and managed. The topmost widget
is not managed, so none of the widgets created is visible.

If you specify one or more callback arguments in your User Interface
Language (UIL) file, specify either the routine TPU$WIDGET_INTEGER_
CALLBACK or the routine TPU$WIDGET_STRING_CALLBACK.

For more information about specifying callbacks, see Chapter 4. For
more information about UIL files, see the VMS DECwindows Guide to
Application Programming.

PARAMETERS

VAXTPU Built-In Procedures
CREATE_WIDGET

When you use CREATE_WIDGET to create a widget or hierarchy of
widgets organized by the XUI Resource Manager, CREATE_WIDGET uses
the XUI Toolkit routine FETCH WIDGET.

widget_class
The integer returned by DEFINE_WIDGET_CLASS that specifies the
class of widget to be created.

widget_name
A string that is the name to be given to the widget.

parent_widget
The widget that is to be the parent of the newly created widget.

SCREEN

A keyword indicating that the newly created widget is to be the child of
VAXTPU’s main window widget.

buffer

The buffer containing the interface callback routine. This code is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

learn_sequence

The learn sequence that is the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

program

The program that is the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

range

The range containing the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

str ing

The string containing the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

7-73

VAXTPU Built-In Procedures

CREATE_WIDGET

return value

closure

A string or integer. VAXTPU passes the value to the application when the
widget performs a callback to VAXTPU. For more information about using
closures, see Chapter 4.

If you do not specify this parameter, VAXTPU passes the closure value (if
any) given to the widget in the UIL file defining the widget. If you specify
the closure value with CREATE_WIDGET instead of in the UIL file, all
widgets created with the same CREATE_WIDGET call have the same
closure value.

widget_args

One or more pairs of resource names and resource values. You can
specify a pair in an array or as a pair of separate parameters. If you
use an array, you index the array with a string that is the name of the
resource you want to set. Note that resource names are case-sensitive.
The corresponding array element contains the value you want to assign to
that resource. The array can contain any number of elements. If you use
a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index
and its corresponding element value, or each string and its corresponding
value, must be valid widget arguments for the class of widget you are
creating.

resource_manager_name
A case-sensitive string that is the name assigned to the widget in the UIL
file defining the widget.

hierarchy_id

The hierarchy identifier returned by the SET (DRM_HIERARCHY) built-
in. This identifier is passed to the XUI Resource Manager, which uses the
identifier to find the resource name in the database.

The newly created widget instance.

DESCRIPTION

7-74

The case of a widget’s name in the User Interface Definition (UID) file
must match the case of the widget’s name that you specify as a parameter
to CREATE_WIDGET. If you specify case sensitive widget names in

your UIL file, you must use the same widget name case with CREATE_
WIDGET as you used in the UIL file. If you specify case insensitive widget
names in your UIL file, the UIL compiler translates all widget names to
uppercase, so in this instance you must use uppercase widget names with
CREATE_WIDGET. The example in the following subsection specifies case
insensitive widget names in the UIL file and specifies an uppercase name
for the widget with the CREATE_WIDGET built-in.

VAXTPU Built-In Procedures
CREATE_WIDGET

SIGNALED TPU$_BADKEY WARNING You specified an invalid keyword
u i
ERRORS - ’ y

as a parameter.

TPU$_UNDWIDCLA WARNING You have specified a widget
class integer that is not known to
VAXTPU.

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NEEDTOASSIGN ERROR CREATE_WIDGET must return a
value.

TPU$_REQUIRESDECW ERROR You can use CREATE_WIDGET
only if you are using DECwindows
VAXTPU.

TPU$_TOOFEW ERROR Too few arguments passed to
CREATE_WIDGET.

TPU$_TOOMANY ERROR Too many arguments passed to
CREATE_WIDGET.

TPU$_WIDMISMATCH ERROR You have specified a widget whose
class is not supported.

TPU$_ARGMISMATCH ERROR A widget argument was not an
array or a string/value pair.

TPU$_COMPILEFAIL WARNING Compilation of the widget interface
callback routine failed due to
syntax errors.

TPU$_NONAMES WARNING A widget argument is not
supported by the specified widget.

EXAMPLES

PROCEDURE eve_display example

LOCAL example_widget,
example_widget_name,

! Variable assigned to the created widget.
! The name of the widget assigned

! to this variable must be uppercase

! if you specified case insensitive

! widget names in the UIL file.

example_hierarchy; ! XUI Resource Manager
! hierarchy for this example.
ON_ERROR
[OTHERWISE] : ! Traps errors.

ENDON_ERROR;
! Set the widget hierarchy. The default file spec is "SYSSLIBRARY: .UID"
example_hierarchy := SET (DRM_HIERARCHY, "mynodeS$dual:[smith]example");

! The VAXTPU CREATE_WIDGET built-in needs the name of the widget
! defined in the UIL file.

example_widget_name := "EXAMPLE_ BOX"; ! The widget EXAMPLE BOX is
! defined in the file EXAMPLE.UIL.

! Create the widget if it has not already been created.

7-75

VAXTPU Built-In Procedures
CREATE_WIDGET

IF GET_INFO (example widget, "type") <> WIDGET
THEN
example_widget := CREATE_WIDGET (example_widget_ name, example_hierarchy,
SCREEN, eve$kt_callback_routine);

! EVE defines eve$callback_dispatch to be EVE'’s callback routine.
! You do not need to define it again if you are extending EVE.

ENDIF;

! Map "example_widget" to the screen using MANAGE WIDGET.
MANAGE_WIDGET (example_ widget);

RETURN (TRUE) ;

ENDPROCEDURE;

This procedure, eve_display_example, creates a modal dialog box widget
and maps the widget to the VAXTPU screen.

The procedure shows how to use the variant of CREATE_WIDGET that
returns an entire widget hierarchy. To create a widget or widget hierarchy
using this variant, you must have available the compiled form of a User
Interface Language (UIL) file specifying the characteristics of the widgets
you want to create. Digital recommends that you use one or more UIL files
and the corresponding variant of CREATE_WIDGET whenever possible,
because UIL is more efficient and because UIL files make it easier to
translate your application into other languages. For more information
about compiling and using UIL files, see the VMS DECwindows Guide to
Application Programming.

MODULE example
VERSION = ’'VvV00-000’

! This is a sample UIL file that creates a message box containing
! the message "Hello World".

NAMES = case_insensitive

VALUE
example_message : 'Hello World’;
OBJECT
example box : message_box {
arguments {
default_position = true; ! puts box in center work area
ok_label = example button_ label;
label label = example_message;
}i
}i
END MODULE;

This example shows a sample UIL file describing the modal dialog box
called example_box. The UIL file specifies where the widget appears on
the screen, what label appears on the box’s button, and what message the
widget displays.

For an example showing how to use the variant of CREATE_WIDGET that
calls the XUI Toolkit low-level creation routine, see Example B-2.

7-76

VAXTPU Built-In Procedures
CREATE_WINDOW

CREATE_WINDOW

Defines a screen area called a window. You must specify the screen line
number at which the window starts, the length of the window, and whether the
status line is to be displayed. CREATE_WINDOW optionally returns the newly
created window.

FORMAT [window :=]
CREATE_WINDOW (integer1, integer2,
{ ON })
OFF
PARAMETERS integer1
The screen line number at which the window starts.
integer2
The number of rows in the window.
ON

return value

A keyword directing VAXTPU to display a status line in the new window.
The status line occupies the last row of a window. By default, the status
line is displayed in reverse video and contains the following information

about the buffer that is currently mapped to the window:

¢ The name of the buffer that is associated with the window

¢ The name of the file that is associated with the buffer, if one exists

See SET (STATUS_LINE) for information on changing the video attributes
of the status line and/or the information displayed on the status line.

OFF
Suppresses the display of the status line.

The window created by CREATE_WINDOW.

DESCRIPTION

CREATE_WINDOW optionally returns the new window. If you want to
use the window that you create as a parameter for any other built-in
procedure, then you should specify a variable into which the window is
returned.

You can create multiple windows on the screen, but only one window can
be the current window. The cursor is positioned in the current window.
The current window and the current buffer are not necessarily the same.

To make a window visible, you must associate a buffer with the window
and map the window to the screen. The following command maps main_
window to the screen:

MAP (main_window, main_buffer)

7-77

VAXTPU Built-In Procedures

CREATE_WINDOW

See the built-in procedure MAP for further information.

The following keywords used with the built-in procedure SET allow you
to establish attributes for windows. This list shows the defaults for the
attributes:

SET (PAD, window, keyword) — By default, there is no blank padding
on the right.

SET (SCROLL_BAR) — By default, VAXTPU does not create
vertical and horizontal scroll bars for a window in the DECwindows
environment.

SET (SCROLL_BAR_AUTO_THUMB) — By default, VAXTPU controls
the slider in any scroll bars in a window.

SET (SCROLLING, window, keyword, integerl, integer2, integer3) —
The default cursor limit for scrolling at the top of the screen is the first
line of the window; the default cursor limit for scrolling at the bottom
of the screen is the bottom line of the window. If the terminal type
you are using does not allow you to set scrolling regions, the window is
repainted.

SET (STATUS_LINE, window, keyword, string) — The status line
may be ON or OFF according to the keyword specified for the built-in
procedure CREATE_WINDOW. See the preceding description of the
keyword ON for information about the default attributes of a status
line.

SET (TEXT, window, keyword) — By default, the text is set to
BLANK _TABS (tabs are displayed as blank spaces).

SET (VIDEO, window, keyword) — There are no video attributes by
default.

SET (WIDTH, window, integer) — By default, the width is the same as
the physical width of the terminal screen when the window is created.

See the built-in procedure SET for more information on these keywords.

Using the SHIFT built-in, you can display text that lies to the right of the
window’s right edge in an unshifted window. For information on using
SHIFT, see the description of the built-in in this chapter.

SIGNALED
ERRORS

7-78

TPU$_TOOFEW ERROR The CREATE_WINDOW built-in
requires exactly three parameters.

TPU$_TOOMANY ERROR The CREATE_WINDOW built-in
accepts exactly three parameters.

TPU$_BADKEY ERROR The keyword must be either ON or
OFF.

~

VAXTPU Built-In Procedures
CREATE_WINDOW

TPUS$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADWINDLEN WARNING Invalid window length.

TPU$_BADFIRSTLINE WARNING Invalid first line for window.

EXAMPLES

new_window := CREATE_WINDOW (11, 10, ON)

This assignment statement creates a window that starts at screen line 11
and is 10 rows long, and assigns it to the variable new_window. A status
line is displayed as the last line of the window. To make this window
visible, you must associate an existing buffer with it and map the window
to the screen with the following command:

MAP (new_window, buffer variable)

B PROCEDURE user_make window
new_window := CREATE_WINDOW(1l, 21, OFF);
SET (TEXT, new_window, GRAPHIC_ TABS);
new_buffer := CREATE_BUFFER ("user_ buffer name");
SET (NO_WRITE, new_buffer);
MAP (new_window, new buffer);
ENDPROCEDURE;

This procedure creates a window called new_window that starts at screen
line 1 and is 21 lines long. No status line is displayed. Tabs are displayed
as special graphic characters. The buffer new_buffer, which is set to NO_
WRITE, is associated with the window and the window is mapped to the
screen.,

7-79

VAXTPU Built-In Procedures
CURRENT_BUFFER

CURRENT_BUFFER

Returns the buffer in which you are currently positioned.

FORMAT buffer := CURRENT_BUFFER

PARAMETERS Nore.

return value The buffer in which you are currently positioned.

DESCRIPTION The current buffer is the work space in which any VAXTPU statements
you execute take effect. The editing point is in the current buffer. Note
that the editing point is not necessarily the same as the cursor position.

SIGNALED TPU$_TOOMANY ERROR CURRENT_BUFFER tak
_ _ akes no
ERRORS parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_BUFFER built-in
must be on the right-hand side of
an assignment statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
]
EXAMPLES
my cur_buf := CURRENT_BUFFER

This assignment statement stores a pointer to the current buffer in the
variable my_cur_buf.

SHOW (CURRENT_ BUFFER)

This statement returns the buffer in which you are currently positioned
and uses that buffer as the parameter for the built-in procedure SHOW.

PROCEDURE user_toggle_direction
IF CURRENT DIRECTION = FORWARD
THEN
SET (REVERSE, CURRENT_ BUFFER) ;
ELSE
SET (FORWARD, CURRENT_BUFFER) ;
ENDIF;
ENDPROCEDURE;

This procedure reverses the direction of the current buffer.

7-80

VAXTPU Built-In Procedures
CURRENT_CHARACTER

CURRENT_CHARACTER

Returns the character at the editing point in the current buffer.

FORMAT string := CURRENT_CHARACTER

PARAMETERS Nore.

return value A string consisting of the character at the editing point in the current
buffer.

DESCRIPTION The editing point is the character position in the current buffer at which
most editing operations are carried out. Each buffer maintains its own
editing point, but only the editing point in the current buffer is the active
editing point. An editing point, which always refers to a character position
in a buffer, is not necessarily the same as the cursor position, which always
refers to a location in a window. For more information on the distinction
between the editing point and the cursor position, see Chapter 6.

If the editing point is at the end of a line, CURRENT_CHARACTER
returns a null string. If the editing point is at the end of a buffer,
CURRENT_CHARACTER returns a null string and also signals a
warning.

Using CURRENT_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the bufferr CURRENT_CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

L
SIGNALED
ERRORS TPU$_TOOMANY ERROR CURRENT_CHARACTER takes
no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_CHARACTER

built-in must be on the right-hand
side of an assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

TPU$_NOEOBSTR WARNING You are positioned at the EOB
(end-of-buffer) mark.

7-81

VAXTPU Built-In Procedures
CURRENT_CHARACTER

EXAMPLES

my_cur_char := CURRENT CHARACTER
This assignment statement stores the string that represents the editing
point in the variable my_cur_char.

MESSAGE (CURRENT_CHARACTER)

7-82

This statement returns the string that represents the editing point and
uses this string as the parameter for the built-in procedure MESSAGE.

PROCEDURE user_display current_character
! This procedure returns the ASCII character in the editing point.

ascii_char 1= CURRENT_CHARACTER;
IF ascii_char <> "
THEN
MESSAGE ("The current character is ‘" + ascii_char + "'");
ELSE
MESSAGE ("There is no current character."):;
ENDIF;
ENDPROCEDURE;

This procedure writes the character that is at the current character
position into the message area.

VAXTPU Built-In Procedures
CURRENT_COLUMN

CURRENT_COLUMN

Returns an integer that is the current column number of the cursor position on
the screen.

FORMAT integer := CURRENT_COLUMN
PARAMETERS Nore.

return value

An integer that is the column number of the current cursor position on the
screen.

DESCRIPTION

The current column is the column at which the cursor is positioned on
the screen. The column numbers range from 1 on the extreme left of the
screen to the maximum value allowed for the terminal type you are using
on the extreme right of the screen.

The value returned by the built-in procedure CURRENT _COLUMN
and the value returned by GET_INFO (SCREEN, “current_column”) are
equivalent.

When used in a procedure, CURRENT_COLUMN does not necessarily
return the position where the cursor has been placed by other statements
in the procedure. VAXTPU generally does not update the screen until all
statements in a procedure are executed. If you want the cursor position
to reflect the actual editing location, put an UPDATE statement in your
procedure immediately before any statements containing CURRENT_
COLUMN, as follows:

UPDATE (CURRENT_ WINDOW) ;

If you do not want to update a window to get the current value for
CURRENT_COLUMN, you can use the built-in GET_INFO (buffer_
variable, “offset_column”). This built-in returns the column number that
the current offset in the buffer would have if it were mapped to a window,
and if you were to force a screen update. Note, however, that this built-in
returns an accurate value only if both of the following conditions are true:

* You are using bound cursor movement (MOVE_VERTICAL,
MOVE_HORIZONTAL) or other built-in procedures that cause cursor
movement because of character movement within a buffer.

¢ The window is not shifted.

The built-in GET_INFO (window_variable, “current_column”) does not
necessarily return the column number that the cursor would occupy if you
caused an explicit screen update.

7-83

VAXTPU Built-In Procedures
CURRENT_COLUMN

If a window is shifted, CURRENT_COLUMN still returns the current
column number of the cursor on the screen. However, the value returned
by x := GET_INFO (buffer, "offset_column") includes the number of
columns by which the window is shifted. For example, if a window is
shifted to the left by 8 columns, CURRENT_COLUMN returns the value
1, while x := GET_INFO (buffer, "offset_column") returns the value 9.

SIGNALED TPU$_TOOMANY ERROR CURRENT_COLUMN takes n
— _)
ERRORS parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_COLUMN built-in
must be on the right-hand side of
an assignment statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
EXAMPLES
my_cur_col := CURRENT_COLUMN
This assignment statement stores the column position of the cursor in the
variable my_cur_col.
MESSAGE (STR (CURRENT COLUMN))

7-84

This statement combines three VAXTPU built-in procedures. CURRENT_
COLUMN returns the integer that is the current column position, STR
converts the integer to a string, and MESSAGE writes this string to the
message buffer.

PROCEDURE user_split_line
LOCAL old position, new_position;

SPLIT_LINE; .
IF (CURRENT ROW = 1) AND (CURRENT COLUMN = 1)
THEN
old position := MARK (NONE);
SCROLL (CURRENT_WINDOW, -1):;
new_position := MARK (NONE);
!Make sure we scrolled before doing CURSOR_VERTICAL
IF new_position <> old position
THEN
CURSOR_VERTICAL (1)
ENDIF;
ENDIF;
ENDPROCEDURE;

This procedure splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

VAXTPU Built-In Procedures
CURRENT_DIRECTION

CURRENT_DIRECTION

Returns a keyword (FORWARD or REVERSE) that indicates the current
direction of the current buffer. See also the descriptions of the built-in
procedures SET (FORWARD) and SET (REVERSE).

FORMAT keyword := CURRENT_DIRECTION

PARAMETERS Nore.

return value A keyword (FORWARD or REVERSE) indicating the current direction of
the current buffer.

DESCRIPTION If the keyword FORWARD is returned, the current direction is toward
the end of the buffer. If the keyword REVERSE is returned, the current
direction is toward the beginning of the buffer.

SIGNALED
ERRORS TPU$_TOOMANY ERROR CURRENT_DIRECTION takes no
parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_DIRECTION built-
in must be on the right-hand side
of an assignment statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
L
EXAMPLES

my_cur_dir := CURRENT_DIRECTION

This assignment statement stores in the variable my_cur_dir the keyword
that indicates whether the current direction setting for the buffer is
FORWARD or REVERSE.
B PROCEDURE user_show_direction
IF CURRENT DIRECTION = FORWARD

THEN
my_messagel := MESSAGE ("Forward");
ELSE
my message2 := MESSAGE ("Reverse"):;
ENDIF;
ENDPROCEDURE;

This procedure writes to the message buffer a message indicating the
current direction of character movement in the buffer.

7-85

VAXTPU Built-In Procedures
CURRENT_LINE

CURRENT_LINE

Returns a string that represents the current line. The current line is the line
that contains the editing point.

FORMAT string := CURRENT_LINE

PARAMETERS Nore.

return value A string representing the current line.

DESCRIPTION If you are positioned on a line that has a length of 0, CURRENT_LINE
returns a null string. If you are positioned at the end of the buffer,
CURRENT_LINE returns a null string and also signals a warning.

Using CURRENT_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. CURRENT_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

I]
SIGNALED TPU$_TOOMANY ERROR CURRENT_LINE take
— | S NO
ERRORS parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_LINE built-in must
be on the right-hand side of an
assignment statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOEOBSTR WARNING You are positioned at or beyond
the EOB (end-of-buffer) mark.
EXAMPLES

my_cur_lin := CURRENT_ LINE

This assignment statement stores in the variable my_cur_lin the string
that represents the current line. The current line is the line in the current
buffer that contains the editing point.

7-86

~—

VAXTPU Built-In Procedures
CURRENT_LINE

PROCEDURE user_runoff_line

IF LENGTH (CURRENT_LINE) < 2
THEN
user_runoff line := 0;
ELSE
IF CURRENT_CHARACTER <> "."
THEN
user_runoff line := 0;
ELSE
MOVE_HORIZONTAL (1);
IF INDEX
("abcdefghi jklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ! ; ",
CURRENT CHARACTER) = 0
THEN
user_runoff line := 0;
ELSE
user_runoff line := 1;
ENDIF;
MOVE_HORIZONTAL (-1);
ENDIF;
ENDIF;
ENDPROCEDURE;

This procedure returns true if the current line has the format of a DSR
command (starts with a period followed by an alphabetic character, a
semicolon, or an exclamation point). If not, the procedure returns false.
The procedure assumes that the cursor was at the beginning of the line,
and moves it back to the beginning of the line when done.

7-87

VAXTPU Built-In Procedures
CURRENT_OFFSET

CURRENT_OFFSET

Returns an integeér for the offset of the editing point within the current line.

FORMAT

integer := CURRENT_OFFSET

PARAMETERS Nore.

return value

An integer that is the offset of the editing point within the current line.

DESCRIPTION

7-88

Note:

The current offset is the number of positions a character is located from
the first character position in the current line (offset 0). In VAXTPU, the
leftmost character position is offset 0, and this offset is increased by 1
for each character position (including the TAB character) to the right.
VAXTPU numbers columns starting with the leftmost position on the
screen where a character could be placed, regardless of where the margin
is. This leftmost position is numbered 1.

The current offset value is not the same as the position of the
cursor on the screen. See the CURRENT_COLUMN built-in if you
want to determine where the cursor is. For example, if you have
a line with a left margin of 10 and if the cursor is on the first
character in that line, then CURRENT_OFFSET returns 0, while
CURRENT_COLUMN returns 10.

Using CURRENT_OFFSET may cause VAXTPU to insert padding

spaces or blank lines in the bufferr. CURRENT_OFFSET causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

If you are using an interface with free cursor motion, when you move
beyond the end of a line CURRENT_OFFSET makes the current cursor
position the new end-of-line.

If the current offset equals the length of the current line, you are
positioned at the end of the line.

VAXTPU Built-In | Procedures
CURRENT_OFFSET

_ - A
SIGNALED
ERRORS TPU$_TOOMANY ERROR CURRENT_OFFSET takes no
parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_OFFSET built-in
must be on the right-hand side of
an assignment statement.
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
EXAMPLES

my cur off :=

CURRENT_OFFSET

This assignment statement stores the integer that is the offset position of
the current character in the variable my_cur_off.

PROCEDURE user_delete

IF CURRENT_OFFSET = 0

THEN

APPEND LINE;

ELSE

ERASE CHARACTER (-1);

ENDIF;
ENDPROCEDURE;

This procedure uses the built-in procedure CURRENT_OFFSET to
determine whether the editing position is at the beginning of a line. (For
more information on the difference between the editing position and the
current cursor position, see Chapter 6.) If the position is at the beginning,
the procedure appends the current line to the previous line; otherwise, it
deletes the previous character. Compare this procedure with the procedure
used as an example for the built-in procedure APPEND_LINE.

7-89

VAXTPU Built-In Procedures
CURRENT_ROW

CURRENT_ROW

Returns an integer that is the screen line on which the cursor is located.

FORMAT

integer := CURRENT_ROW

PARAMETERS Nore.

return value

An integer representing the screen line on which the cursor is located.

DESCRIPTION The current row is the screen line on which the cursor is located. The

screen lines are numbered from 1 at the top of the screen to the maximum
number of lines available on the terminal. You can get the value of

the current row by using the built-in procedure GET_INFO (SCREEN,
“current_row”).

When used in a procedure, CURRENT_ROW does not necessarily return
the position where the cursor has been placed by other statements in

the procedure. The reason that the value returned by CURRENT_ROW
may not be the current value is that VAXTPU generally does not update
the screen until all statements in a procedure are executed. If you want
the cursor position to reflect the actual editing location, put an UPDATE
statement in your procedure immediately before any statements containing
CURRENT_ROW, as follows:

UPDATE (CURRENT WINDOW) ;

N

SIGNALED o

ERRORS TPU$_NEEDTOASSIGN ERROR The CURRENT_ROW built-in
must be on the right-hand side of
an assignment statement.

TPU$_TOOMANY ERROR CURRENT_ROW takes no
parameters.
IR
EXAMPLES
my cur_row := CURRENT ROW

7-90

This assignment statement stores in the variable my_cur_row the integer
that is the screen line number on which the cursor is located.

~

VAXTPU Built-In Procedures
CURRENT_ROW

PROCEDURE user_go_up
IF CURRENT ROW = GET INFO (CURRENT_ WINDOW, "visible top")

THEN
SCROLL (CURRENT_WINDOW, =-1);
ELSE
CURSOR_VERTICAL (-1);
ENDIF;
ENDPROCEDURE;

PROCEDURE user_go_down
IF CURRENT ROW = GET_INFO (CURRENT WINDOW, "visible_bottom")

THEN
SCROLL (CURRENT_WINDOW, 1);
ELSE
CURSOR_VERTICAL (1):
ENDIF;
ENDPROCEDURE;

These procedures cause the cursor to move up or down the screen. Because
CURSOR_VERTICAL crosses window boundaries, you must use the built-
in procedure SCROLL to keep the cursor motion within a single window
if you are using free cursor motion. (See CURSOR_HORIZONTAL and
CURSOR_VERTICAL.) If the movement of the cursor would take it
outside the window, the preceding procedures scroll text into the window
to keep the cursor visible. You can bind these procedures to a key so that
the cursor motion can be accomplished with a single keystroke.

7-91

VAXTPU Built-In Procedures
CURRENT_WINDOW

CURRENT_WINDOW

Returns the window in which the cursor is visible.

FORMAT window := CURRENT_WINDOW

PARAMETERS Nore.

return value The window in which the cursor is visible.

DESCRIPTION The current window is the window on which you have most recently
performed one of the following operations:

® Selection using the POSITION built-in

* Mapping to the screen using the MAP built-in

* Adjustment using the ADJUST _WINDOW built-in

The current window contains the cursor at the screen coordinates current_

row and current_column. The current buffer is not necessarily associated
with the current window.

SIGNALED TPU$ TOOMANY ERROR CURRENT_WINDOW tak
axKes no
ERRORS - 3

parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_WINDOW built-in
must be on the right-hand side of
an assignment statement.

TPU$_WINDNOTMAPPED WARNING No windows are mapped to the
screen.

EXAMPLES

my_cur_win := CURRENT_WINDOW

This assignment statement stores the window that holds the cursor in the
variable my_cur_win.

7-92

VAXTPU Built-In Procedures
CURRENT_WINDOW

PROCEDURE user_next_screen
LOCAL how_much_scroll;
how_much_scroll := GET_INFO (CURRENT WINDOW, "visible_length");

SCROLL (CURRENT_WINDOW, how _much_scroll);
ENDPROCEDURE;

This procedure determines the length of the current window and then uses
that value as a parameter for the built-in procedure SCROLL.

7-93

VAXTPU Built-In Procedures
CURSOR_HORIZONTAL

CURSOR_HORIZONTAL

Moves the cursor position across the screen and optionally returns the cursor
movement status.

FORMAT

PARAMETER

return value

[integer2 :=] CURSOR_HORIZONTAL (integer1)

integer1

The signed plus or minus integer value that specifies the number of screen
columns to move the cursor position. A positive value directs VAXTPU to
move the cursor to the right; a negative value directs VAXTPU to move
the cursor to the left. The value 0 causes VAXTPU merely to synchronize
the active editing point with the cursor position.

An integer representing the number of columns the cursor moved. If
VAXTPU cannot move the cursor as many columns as specified by integerl,
VAXTPU moves the cursor as many columns as possible. VAXTPU allows
the return value to be negative. This notation is reserved for future
versions of VAXTPU. A negative return value does not denote that the
cursor moved to the left. Rather, the integer shows the number of spaces
that the cursor moved right or left. If the cursor did not move, integer2
has the value 0. If the CURSOR_HORIZONTAL built-in produces an
error, the value of integer2 is indeterminate.

DESCRIPTION

7-94

The CURSOR_HORIZONTAL built-in procedure can be used to provide
free cursor movement in a horizontal direction. Free cursor movement
means that the cursor is not tied to text, but can move across all available
columns in a screen line.

If you move before the beginning of a line, after the end of a line, in the
middle of a tab, or beyond the end-of-file mark, other built-ins may cause
padding lines or spaces to be added to the buffer.

If you use the CURSOR_HORIZONTAL built-in within a procedure, screen
updating occurs as follows:

* When you execute a built-in that modifies the buffer or the editing
point before you issue the call to CURSOR_HORIZONTAL, the screen
is updated before CURSOR_HORIZONTAL is executed. This action
ensures that the horizontal movement of the cursor starts at the
correct character position.

* Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_HORIZONTAL does not move the cursor beyond the left or right
edge of the window in which it is located. You cannot move the cursor
outside the bounds of a window.

VAXTPU Built-In Procedures
CURSOR_HORIZONTAL

CURSOR_HORIZONTAL has no effect if you use any input device other
than a video terminal supported by VAXTPU.

RS

SIGNALED TPU$_TOOFEW ERROR CURSOR_HORIZONTAL i
_ _ requires
ERRORS one parameter.

TPU$_TOOMANY ERROR CURSOR_HORIZONTAL accepts
only one parameter.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

EXAMPLES

int_x := CURSOR_HORIZONTAL (1)
This statement moves the cursor position one screen column to the right.

PROCEDURE user_free cursor_right
move_right := CURSOR_HORIZONTAL (1);
ENDPROCEDURE;

PROCEDURE user_free_cursor_ left
move_left := CURSOR_HORIZONTAL (-1);
ENDPROCEDURE;

These procedures provide for free cursor motion to the right and to the
left. These procedures can be bound to keys (for example, the arrow keys)
so that the movement can be accomplished with a single keystroke.

7-95

VAXTPU Built-In Procedures
CURSOR_VERTICAL

CURSOR_VERTICAL

FORMAT

Moves the cursor position up or down the screen and optionally returns the
cursor movement status.

finteger2 :=] CURSOR_VERTICAL (integer1)

PARAMETER

return value

DESCRIPTION

7-96

integer1

The signed integer value that specifies how many screen lines to move the
cursor position. A positive value for integer! moves the cursor position
down. A negative integer moves the cursor position up.

An integer representing the number of rows that the cursor moved up or
down. If VAXTPU could not move the cursor as many rows as specified by
integerl, VAXTPU moves the cursor as many rows as possible.

If CROSS_WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL may
position the cursor to another window. In this case, CURSOR_VERTICAL
returns the negative of the number of rows the cursor moved. A negative
return value does not denote that the cursor moved upward.

If the cursor did not move, integer2 has the value 0. If the CURSOR_
VERTICAL built-in produced an error, the value of integer2 is
indeterminate.

CURSOR_VERTICAL can be used to provide free cursor movement in a
vertical direction. Free cursor movement means that the cursor is not tied
to text, but that it can move up and down to all lines on the screen that
can be edited, whether or not there is text at that column in the new line.

The cursor does not move beyond the top or the bottom edges of the screen.
However, CURSOR_VERTICAL can cross window boundaries, depending
upon the current setting of the CROSS_WINDOW_BOUNDS flag. See
SET (CROSS_WINDOW_BOUNDS) for information on how to set this flag.
(Use the POSITION built-in to move the cursor to a different window on
the screen.)

When CROSS_WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL
can move the cursor position to a new window. The new window in which
the cursor is positioned becomes the current window. The column position
of the cursor remains unchanged unless vertical movement would position
the cursor outside the bounds of a window narrower than the previous
window. In this instance, the cursor moves to the left until it is positioned
within the right boundary of the narrower window.

When CROSS_WINDOW_BOUNDS is set to OFF, CURSOR_VERTICAL
does not move the cursor outside the current window. If the SET
(SCROLLING) built-in has been used to set scrolling margins, CURSOR_
VERTICAL also attempts to keep the cursor within the scroll margins.

~—

VAXTPU Built-in Procedures
CURSOR_VERTICAL

CURSOR_VERTICAL positions the cursor only in screen areas in which
editing can occur. For example, CURSOR_VERTICAL does not position
the cursor on the status line of a window, in the prompt area, or in an
area of the screen that is not part of a window. The blank portion of a
segmented window is not considered part of a window for this purpose.

If you use CURSOR_VERTICAL within a procedure, screen updating
occurs as follows:

* When you execute a built-in that modifies the buffer or the current
character position before you issue the call to CURSOR_VERTICAL,
the screen is updated before CURSOR_VERTICAL is executed. This
action ensures that the vertical movement of the cursor starts at the
correct character position.

¢ Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_VERTICAL has no effect if you use an input device other than a
video terminal supported by VAXTPU.

SIGNALED TPU$_TOOFEW ERROR CURSOR_VERTICAL i t
_ | requires a
ERRORS least one parameter.
TPU$_TOOMANY ERROR CURSOR_VERTICAL accepts at
most one parameter.
TPU$_INVPARAM ERROR You did not specify an integer as
the parameter.
EXAMPLES
int_y := CURSOR_VERTICAL (5)

™

This statement moves the cursor position five lines toward the bottom of
the screen.

! Free cursor motion procedures

PROCEDURE user_ free cursor up

IF GET_INFO (CURRENT WINDOW, "CURRENT_ ROW") =
GET_INFO (CURRENT WINDOW, "VISIBLE TOP")

THEN
SCROLL (CURRENT WINDOW, -1);
ELSE
left_y := CURSOR_VERTICAL (-1);
ENDIF;
ENDPROCEDURE ;

7-97

VAXTPU Built-In Procedures
CURSOR_VERTICAL

PROCEDURE user_free cursor_down

IF GET_INFO (CURRENT_WINDOW, "CURRENT_ROW") =
GET_INFO (CURRENT_WINDOW, "VISIBLE BOTTOM")

THEN
SCROLL (CURRENT WINDOW, 1):;
ELSE
right_x := CURSOR_VERTICAL (1);
ENDIF;
ENDPROCEDURE;

These procedures provide for free cursor motion up and down the screen.
These procedures can be bound to keys (for example, the arrow keys) so
that the movement can be accomplished with a single keystroke.

These examples work regardless of the setting of CROSS_WINDOW_
BOUNDS, because the built-in procedure SCROLL keeps the cursor
motion within a single window.

TN

7-98

VAXTPU Buiit-In Procedures

DEBUG_LINE
Returns the line number of the current breakpoint.
FORMAT integer := DEBUG_LINE
PARAMETERS Nore.
return value An integer representing the line number of the current breakpoint.

DESCRIPTION The DEBUG_LINE built-in procedure returns the line number of the
current breakpoint. Use DEBUG_LINE when writing your own VAXTPU

debugger.
Digital recommends that you use the debugger provided in
SYS$SHARE:TPU$DEBUG.TPU.
SIGNALED o
ERROR TPU$_NEEDTOASSIGN ERROR The DEBUG_LINE built-in must
appear on the right-hand side of
an assignment statement.
EXAMPLE

the_line := GET_INFO (DEBUG, "line_ number");
IF the_line = 0

THEN the_line := DEBUG_LINE;
ENDIF;

This code fragment first uses GET_INFO to request the line number of
the breakpoint in the current procedure. If the line number is 0, meaning
that the breakpoint is not in a procedure, the code uses DEBUG_LINE to
determine the breakpoint’s line number relative to the buffer.

VAXTPU Built-In Procedures

DEFINE_KEY

DEFINE_KEY

Associates executable VAXTPU code with a key or a combination of keys.

FORMAT buffer
learn
DEFINE_KEY (< program }, key-name
range
string1
[,string2 [,string3] [)
PARAMETERS buffer

7-100

A buffer that contains the VAXTPU statements to be associated with a
key.

learn
A learn sequence that specifies the executable code associated with a key.

program

A program that contains the executable code to be associated with a key.

range
A range that contains the VAXTPU statements to be associated with a key.

string1
A string that specifies the VAXTPU statements to be associated with a key.

key-name

A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VIT300, VT200, and VT100 series
of keyboards. You can also display all the VAXTPU keywords with the
built-in procedure SHOW (KEYWORDS).

See the Description section of this built-in procedure for information on
keys that you cannot define.

To define a key for which there is no VAXTPU key name, use the built-in
procedure KEY_NAME to create your own key name for the key. For
example, KEY_NAME (A", SHIFT_KEY) creates a key name for the
combination of PF1, the default shift key for VAXTPU, and the keyboard
character A. For more information, see the description of the built-in
procedure KEY _NAME.

string2

An optional string associated with a key that you define. The string is
treated as a comment that can be retrieved with the built-in procedure
LOOKUP_KEY. You might want to use the comment if you are creating a
help procedure for keys that you have defined.

VAXTPU Built-In Procedures
DEFINE_KEY

string3

A key map or a key map list in which the key is to be defined. If a key
map list is specified, the key is defined in the first key map in the key map
list. If neither a key map nor a key map list is specified, the key is defined
in the first key map in the key map list bound to the current buffer. See
the descriptions of the built-in procedures CREATE_KEY_MAP, CREATE_
KEY_MAP_LIST, and SET (KEY_MAP_LIST) for more information on key
maps and key map lists.

DESCRIPTION

The built-in procedure DEFINE_KEY compiles the first parameter if it is
a string, buffer, or range.

If you use DEFINE_KEY to change the definition of a key that was
previously defined, VAXTPU does not save the previous definition.

You can define all the keys on the VI300, VT200, and VT100 keyboards
and keypads with the following exceptions:

e The COMPOSE CHARACTER key on VT300 and VT200 keyboards
¢ The SHIFT keys

There are some keys that you can define but that Digital strongly
recommends you avoid defining. VAXTPU does not signal an error
when you use them as keyword parameters. However, in some cases
the definitions you assign to these key combinations are not executed
unless you set your terminal in special ways at the DCL level:

e CTRL/C, CTRL/O, CTRL/X, and F6 — To execute programs that
you bind to these keys, you must first enter the DCL: command SET
TERMINAL/PASTHRU.

e CTRL/T, CTRL/Y — To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAL/PASTHRU
and/or the DCL command SET NOCONTROL.

e CTRL/S, CTRL/Q — To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAL/NOTTSYNC.

¢ The PF1 key — This is the default shift key for the editor. You cannot
define PF1 unless you use the built-in procedure SET (SHIFT_KEY,
keyword) to define a different key as the shift key for the editor.

¢ The ESCAPE key
* The keys F1 through F5

Digital recommends that you do not use the special terminal settings
mentioned above. The settings may cause unpredictable results if you do
not understand all the implications of changing the default settings.

Whenever you extend EVE by writing a procedure that can be bound to
a key, the procedure must return true and false as needed to indicate
whether execution of the procedure completed successfully,. EVE’s
REPEAT command relies on this return value to determine whether to
halt repetition of a command, a procedure bound to a key, or a learn
sequence.

7-101

VAXTPU Built-In Procedures
DEFINE_KEY

SIGNALED

TPU$_NOTDEFINABLE WARNING Second argument is not
ERRORS a valid reference to a
key.
TPU$_RECURLEARN WARNING This key definition was
used as a part of a learn
sequence. You cannot
use it in this context.

TPU$_NOKEYMAP WARNING Fourth argument is not
a defined key map.
TPU$_NOKEYMAPLIST WARNING Fourth argument is not
a defined key map list.
TPU$_KEYMAPNTFND WARNING The key map listed in
the fourth argument is
not found.
TPU$_EMPTYKMLIST WARNING The key map list
specified in the fourth
argument contains no
key maps.
TPU$_TOOFEW ERROR Too few arguments
passed to the DEFINE_
KEY built-in.
TPU$_TOOMANY ERROR Too many arguments
passed to the DEFINE_
KEY built-in.
TPU$_INVPARAM ERROR Wrong type of data sent
to the DEFINE_KEY
built-in.
TPU$_COMPILEFAIL WARNING Compilation aborted.

TPU$_UNKKEYWORD ERROR An unknown keyword
has been used as an
argument.

TPU$_BADKEY ERROR An unknown keyword
has been used as an
argument.

TPU$_KEYSUPERSEDED INFORMATIONAL Key definition
superseded.

EXAMPLES

DEFINE_KEY ("POSITION (main_window)", CTRL_B_KEY)

This statement associates the VAXTPU statement POSITION (main_
window) with the key combination CTRL/B. Note that you must use
quotation marks around the VAXTPU statement.

7-102

~—

(O]

VAXTPU Built-In Procedures
DEFINE_KEY

DEFINE_KEY (main_buffer, KEY NAME (PF4, SHIFT_KEY), "mainbuf")

This statement causes VAXTPU to compile the main buffer (containing
VAXTPU statements). If there are no errors in the compilation, VAXTPU
binds the executable code to the combination of the editor’s shift key (PF1
by default) and PF4 on the keypad. The final string in the statement
“mainbuf” is a comment that is associated with the key combination.

DEFINE_KEY (’COPY_TEXT ("Extendable")’, KEY NAME ("z", SHIFT KEY))

This statement causes VAXTPU to make a copy of the word “Extendable”
at the current character location in the current buffer when you press
the key combination PF1 (VAXTPU’s default shift key) and z. Notice that
the inner set of quotation marks must be of a different kind from the
outer set in the first parameter. Also notice that you must place quotation

marks around the keyboard character that you use in combination with
the editor’s shift key.

PROCEDURE user_define key

def := READ LINE ("Definition: ");
key := READ LINE ("Press key to define.",1);
IF LENGTH (key) > O
THEN
key := KEY_NAME (key)
ELSE
key := LAST KEY;
ENDIF;

DEFINE KEY (def,key);

ENDPROCEDURE;

This procedure prompts the user for the VAXTPU statements to be bound
to the key that the user specifies.

PROCEDURE user_change_mode

Toggle mode between insert and overstrike

IF GET INFO (CURRENT_ BUFFER, "mode") = OVERSTRIKE
THEN
SET (INSERT, CURRENT BUFFER);
ELSE
SET (OVERSTRIKE, CURRENT_ BUFFER);
ENDIF;

ENDPROCEDURE;

The following statement binds this procedure to the

key combination CTRL/A. This emulates the VMS key binding
that toggles between insert and overstrike for text entry
in command line editing.

DEFINE_KEY ("user_change_mode", CTRL_A KEY);

This procedure changes the mode of text entry from insert to overstrike, or
from overstrike to insert.

DEFINE KEY (/MESSAGE ("Hello VAXTPU user")’, CTRL_A KEY, "Greeting", "TPUSKEY MAP"

This example defines a key in a key map. The DEFINE_KEY statement
defines CTRL/A in the key map TPUSKEY_MAP such that VAXTPU
displays the message "Hello VAXTPU user" when CTRL/A is pressed.

7-103

VAXTPU Built-In Procedures
DEFINE_KEY

DEFINE KEY ("POSITION (MESSAGE_WINDOW)", F20,"", "movement_map")

This example uses a key map (“movement_map”) but does not include a
comment in the optional third parameter. Note the null string after the
keyword F20 in the second parameter.

7-104

e

VAXTPU Built-In Procedures
DEFINE_WIDGET_CLASS

DEFINE_WIDGET_CLASS

Defines a widget class and optional creation routine for later use in creating
widgets of that class using the DECwindows intrinsics or the XUl Toolkit
low-level creation routines.

FORMAT integer := DEFINE_WIDGET_CLASS (class_name
[creation_routine_name
[, creation_routine_image_name J J)
PARAMETERS class_name

return value

A string that is the name of a universal symbol pointing to the desired
widget class record. A universal symbol is a symbol in a sharable image
that can be referred to in an image other than the one in which the symbol
is defined.

creation_routine_name

A string that is the name of the low-level widget creation routine for this
widget class. Specify the case of the string correctly. To determine the
correct case of the string, consult the documentation for the widget whose
class you are defining. The current version of VAXTPU, which is bundled
with the VMS operating system, ignores the case of the string. However,
future versions of VAXTPU may treat the string as case sensitive.

If you do not specify this parameter, VAXTPU uses the X Toolkit CREATE
WIDGET routine to create the widget instead of using a low-level widget
creation routine. The routine must have the same calling sequence as the
XUI Toolkit low-level widget creation routines.

In the current version of VAXTPU, you must specify the VMS binding of
the creation routine name.

creation_routine_image_name

A string that is the name of the shareable image in which the class
record can be found. If you specify a low-level creation routine, DEFINE_
WIDGET_CLASS also looks for the routine in the program image. If
you do not specify an image, VAXTPU assumes the widget is defined in
SYS$LIBRARY:DECW$DWTLIBSHR.EXE.

An integer used by the CREATE_WIDGET built-in to identify the class of
widget to be created.

DESCRIPTION

Returns a class integer, which you use to specify the class of a widget
when you create it.

7-105

VAXTPU Built-In Procedures
DEFINE_WIDGET CLASS

Defining a class that is already defined returns the existing class integer.
Defining a new class also defines the widget creation routine as the
second parameter, if specified, or the X toolkit CREATE_WIDGET routine.
VAXTPU searches for a new class record in the third parameter, if
specified, or in SYS$LIBRARY:DECW$DWTLIBSHR.EXE.

SIGNALED TPU$_ARGMISMATCH ERROR The data t f the indicated
. e data type of the indicate
ERRORS parameter is not supported by
DEFINE_WIDGET_CLASS.
TPU$_NEEDTOASSIGN ERROR DEFINE_WIDGET_CLASS must
return a value.
TPU$_TOOFEW ERROR Too few arguments passed to
DEFINE_WIDGET_CLASS.
TPU$_TOOMANY ERROR Too many arguments passed to
DEFINE_WIDGET_CLASS .
TPU$_REQUIRESDECW ERROR You can use DEFINE_WIDGET_
CLASS only if you are using
DECwindows VAXTPU.
TPU$_SYSERROR ERROR Could not find class record or
creation routine in shareable
image.
EXAMPLE For a sample procedure using the DEFINE_WIDGET_CLASS built-in, see
Example B-2.

7-106

VAXTPU Built-In Procedures
DELETE

DELETE

Removes VAXTPU structures from your editing context. When you delete a
structure (for example, a range) all variables that refer to that structure are
reset to unspecified. If the deleted structure had any associated resources,
these resources are returned to the editor. When a buffer is deleted, the
associated journal file (if any) is closed and deleted.

FORMAT

e

PARAMETERS

(array)
buffer
integer
keyword
learn
marker
pattern
DELETE ({ Pocess [/
program
range
string
unspecified
widget
(window)

array

The array you want to delete. The memory used by the array is freed for
later use. If some other data structure, such as a pattern, is referenced
only in the array, then that data structure is deleted when the array is
deleted.

buffer

The buffer you want to delete. Any ranges or markers that point to this
buffer, any subprocess that is associated with this buffer, the memory for
the buffer control structure, the pages for storing text, and the memory
for ranges and markers associated with the buffer are deleted also. If
the buffer is associated with a window that is mapped to the screen, the
window is unmapped. Any associated buffer change journal file is also
closed and deleted.

lnteger

The integer to delete. Integers use no internal structures or resources so
deleting a variable of type integer simply changes that variable to type
unspecified.

keyword

The keyword to delete. Keywords use no internal structures or resources
so deleting a variable of type keyword simply assigns to that variable the
type unspecified.

7-107

VAXTPU Built-In Procedures

DELETE

7-108

learn

The learn sequence you wish to delete. The memory used by the learn
sequence is freed for later use.

marker

The marker you want to delete. The memory for the marker control
structure is deleted also.

pat tern

The pattern you wish to delete. The memory used by the pattern is freed
for later use. If the pattern includes a reference to another pattern and
there are no other references to that pattern, then that pattern is deleted
as well.

process

The process you want to delete. The memory for the process control
structure and the subprocess is deleted also.

program
The program you want to delete. The memory for the program control
structure and the memory for the program code are deleted also.

range

The range that you want to delete. The memory for the range control
structure is deleted also. The text in a range does not belong to the range.
Rather, it belongs to the buffer in which it is located. A range is merely

a way of manipulating sections of text within a buffer. When you delete

a range, the text delimited by the range is not deleted. See the built-in
procedure ERASE for a description of how to remove the text in a range.

string
The string you wish to delete. The memory used by the string is freed for
later use.

unspecified
Deleting a variable of type unspecified is allowed but does nothing.

widget

The widget to be deleted. When you use the DELETE (widget) built-
in, all variables and array elements that refer to the widget are set to
unspecified. If an array element is indexed by the deleted widget, the
array element is deleted as well.

window

The window you want to delete. Along with the window, the memory for
the window control structure and the record history associated with the
window are deleted. If you delete a window that is mapped to the screen,
VAXTPU unmaps the window before deleting it. The screen appears just
as it does when you use the built-in procedure UNMAP.

VAXTPU Built-In Procedures
DELETE

DESCRIPTION

Depending upon how many variables are referencing an entity, or how
many other entities are associated with the entity you are deleting,
processing the built-in procedure DELETE can be time consuming.
DELETE cannot be terminated by a CTRL/C.

Any variables that reference the deleted entity are set to unspecified
and all other entities that are associated with the deleted entity are also
deleted. Use the built-in procedure DELETE with caution.

SIGNALED
ERRORS

TPU$_TOOFEW ERROR DELETE requires one argument.

TPU$_TOOMANY ERROR DELETE accepts only one
argument.

TPU$_BADDELETE ERROR You attempted to delete a
constant.

TPUS$_DELETEFAIL WARNING DELETE could not delete the
process.

TPUS_INVBUFDELETE WARNING You cannot delete a permanent
buffer.

EXAMPLES

DELETE (main buffer)

This statement deletes the main buffer and any associated resources that
VAXTPU allocated for the main buffer. As a result of this command, the
SHOW (BUFFERS) command does not list MAIN_BUFFER as one of the
buffers in your editing context.

PROCEDURE user_delete extra

WRITE FILE (extra_buf);
DELETE (extra_window) ;
DELETE (extra buf);

! Return the 11 lines from extra_window to the main window
ADJUST WINDOW (main_window, =11, 0);

ENDPROCEDURE ;

This procedure writes the contents of EXTRA_BUF to a file (because you
do not specify a file name, the associated file for the buffer is used) and
then removes the extra window and buffer from your editing context. You
must have previously created these structures and added them to your
editing context in order for this procedure to execute successfully.

7-109

VAXTPU Built-In Procedures
DELETE

7-110

PROCEDURE sample_ create_and_delete

LOCAL example_ widget,
example widget_ name,
example hierarchy;

example hierarchy := SET (DRM_HIERARCHY,

example_widget_name := "EXAMPLE BOX";

example widget := CREATE_WIDGET (example_ widget_name,
example_hierarchy, SCREEN,
"user_callback_dispatch_routine");

!

]

!

"mynode$dual: [smith]example.uid") ;

DELETE (example widget);
ENDPROCEDURE;

This code fragment creates a modal dialog box widget and later deletes
it. For purposes of this example, the procedure user_callback_dispatch_
routine is assumed to be a user-written procedure that handles widget
callbacks. For a sample DECwindows User Interface Language (UIL) file
to be used with VAXTPU code creating a modal dialog box widget, see the
example in the description of the CREATE_WIDGET built-in.

e

VAXTPU Built-In Procedures
EDIT

EDIT

Modifies a string according to the keywords you specify. EDIT is similar
although not identical to the DCL lexical function F$EDIT. Differences between
the built-in procedure and the lexical function are noted in the Description
section.

FORMAT { buffer1 } { buffer2 }
rangel :=EDIT (< range2 ;, keywordi],...] [,keyword2]
string1 string2
[.keyword3])
PARAMETERS buffer2

The buffer in which you want VAXTPU to edit text. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a buffer for the first
parameter.

range2

The range in which you want VAXTPU to edit text. Note that you cannot
use the keyword NOT_IN_PLACE if you specify a range for the first
parameter.

string2

The string you want to modify. If you specify a return value, the returned
string consists of the string you specify for the first parameter, modified
in the way you specify in the second and subsequent parameters. If you
specify IN_PLACE for the third parameter, EDIT makes the specified
change to the string specified in the first parameter. Note that if séring2 is
a constant, IN_PLACE has no effect.

keyword1
A keyword specifying the editing operation you want to perform on the
string. Valid keywords and their meaning are as follows:

Keyword Meaning

COLLAPSE Removes all spaces and tabs.

COMPRESS Replaces multiple spaces and tabs with a single space.
TRIM Removes leading and trailing spaces and tabs.
TRIM_LEADING Removes leading spaces and tabs.

TRIM_TRAILING Removes trailing spaces and tabs.

LOWER Converts all uppercase characters to lowercase.
UPPER Converts all lowercase characters to uppercase.
INVERT Changes the current case of the specified characters;

uppercase characters become lowercase and lowercase
characters become uppercase.

7-111

VAXTPU Built-In Procedures

EDIT

return values

keyword2

A keyword specifying whether VAXTPU quote characters are used as
quote characters or as regular text. The valid keywords are ON or OFF.
The default is ON.

keyword3

A keyword indicating where VAXTPU is to make the indicated change.
The valid keywords and their meanings are as follows:

Keyword Meaning
IN_PLACE Makes the indicated change in place. This is the defauit.
NOT_IN_PLACE Leaves the specified string unchanged and returns a string

that is the result of the specified editing. You cannot use
NOT_IN_PLACE if the first parameter is specified as a range
or buffer. To use NOT_IN_PLACE, you must specify a return
value for EDIT.

Note that this keyword is ignored if séring2 is a string constant. EDIT
never edits string constants in place. It does return the edited string.

buffer1

A variable of type buffer pointing to the buffer containing the modified
text, if you specify a buffer for the first parameter. The variable
rreturned_buffer" points to the same buffer pointed to by the buffer
variable specified as the first parameter.

ranget

A range containing the modified text, if you specify a range for the first
parameter. The returned range spans the same text as the range specified
as a parameter, but they are two separate ranges. If you subsequently
change or delete one of the ranges, this has no effect on the other range.

string1 |
A string containing the modified text, when you specify a string for the
first parameter. EDIT can return a string even if you specify IN_PLACE.

DESCRIPTION

7-112

VAXTPU modifies the first parameter of the EDIT built-in in place. EDIT
does not modify a literal string.

By default, EDIT does not modify quoted text that occurs within a string.
For example, the following code does not change the case of WELL:

string to_change := ‘HE SANG "WELL"’;
edit (string to_change, LOWER);

The variable string_to_change has the value he sang "WELL".

If you specify more than one of the TRIM keywords (TRIM, TRIM_
LEADING, TRIM_TRAILING), all of the TRIM operations you specify
are performed.

e

~——

VAXTPU Built-In Procedures
EDIT

If you specify more than one of the case conversion keywords (UPPER,
LOWER, INVERT), the last keyword that you specify determines how the
characters in the string are modified.

If you specify both of the quote recognition keywords (ON, OFF), the last
keyword you specify determines whether or not EDIT modifies quoted text.

If you specify no keywords, EDIT does nothing to the passed string.

You can disable the recognition of quotation marks and apostrophes as
VAXTPU quote characters by using the keyword OFF as a parameter for
EDIT. When you use the keyword OFF, VAXTPU preserves any quotation
marks and apostrophes in the edited text and performs the editing tasks
you specify on the text within the quotation marks and apostrophes.
OFF may appear anywhere in the keyword list. It need not be the final
parameter.

If the string you specify has opening quotation marks but not closing
quotation marks, the status TPU$_MISSINGQUOTE is returned. All text
starting at the unclosed opening quotation mark and continuing to the
end of the string is considered to be part of the quoted string and is not
modified.

EDIT is similar to the DCL lexical function F$EDIT. However, you should
note the following differences:

e EDIT modifies the characters in place while FSEDIT returns a result.

¢ EDIT takes keywords as parameters while FSEDIT requires that the
edit commands be specified by a string.

-
SIGNALED o
ERRORS TPU$_MISSINGQUOTE ERROR Character string is missing
terminating quotation marks.
TPU$_TOOFEW ERROR EDIT requires at least one
parameter.
TPU$_TOOMANY ERROR You supplied keywords that are
duplicative or contradictory.
TPU$_ARGMISMATCH ERROR One of the parameters to EDIT is
of the wrong data type.
TPUS$_INVPARAM ERROR One of the parameters to EDIT is
of the wrong data type.
TPU$_BADKEY WARNING You gave the wrong keyword to
EDIT.
EXAMPLES
pn := "PRODUCT NAME";

EDIT (pn, LOWER):
MESSAGE (pn);

These statements edit the string "PRODUCT NAME" by changing it to
lowercase, and display the edited string in the message window.

7-113

VAXTPU Built-In Procedures
EDIT

PROCEDURE user_edit_string (input_string)
is := input_string;

EDIT (is, LOWER);
MESSAGE (is);
ENDPROCEDURE ;

This procedure shows a generalized way of changing any input string to
lowercase.

After compiling the preceding procedure, you can direct VAXTPU to print
the lowercase word “zephyr” in the message area by entering the following
command:

user_edit_string ("ZEPHYR")
returned_value := EDIT (the_ string, COLLAPSE, OFF, NOT_IN_PLACE);

This statement removes all spaces and tabs from the string pointed to by
the_string and does not treat quotation marks or apostrophes as quote
characters. Returns the modified string in the variable returned_value,
but does not change the string in the variable the_string.

7-114

N

VAXTPU Built-In Procedures
END_OF

END_OF

Returns a marker that points to the last character position in a buffer or a
range.

FORMAT marker := END_OF ({ butfer })
range
PARAMETERS buffer
The buffer whose last character position you want to mark.
range

return value

The range whose last character position you want to mark.

A marker pointing to the last character position in a buffer or range.

DESCRIPTION Ifyou use the marker returned by the END_OF built-in as a parameter for
the built-in procedure POSITION, the editing point moves to this marker.
SIGNALED ,
ERRORS TPU$_NEEDTOASSIGN ERROR END_OF must appear in the
right-hand side of an assignment
statement.
TPU$_TOOFEW ERROR END_OF requires one argument.
TPU$_TOOMANY ERROR END_OF accepts only one
argument.
TPU$_ARGMISMATCH ERROR You passed something other than
a range or a buffer to END_OF.
EXAMPLES

the_end := END_OF (CURRENT BUFFER)

This assignment statement stores the last position in the current buffer in
the variable the_end.

POSITION (END_OF (delete_range))

This statement uses two built-in procedures to move your current
character position to the end of delete_range. If delete_range is in a visible
buffer in which the cursor is located, the cursor position also moves to the
end of delete_range.

7-115

VAXTPU Built-In Procedures
END_OF

PROCEDURE user_ paste
LOCAL paste_text;

IF (BEGINNING OF (paste_buffer) <> END_OF (paste_buffer))
THEN
COPY_TEXT (paste buffer);
ENDIF;
ENDPROCEDURE;

This procedure implements a simple INSERT HERE function. The
variable paste_buffer points to a buffer that holds previously cut text.

7-116

S~

VAXTPU Built-In Procedures
ERASE

ERASE

Removes the contents of the range or buffer that you specify.

FORMAT

buffer })

ERASE ({ range

PARAMETERS

buffer

The buffer whose contents you want to remove.

range
The range whose contents you want to remove.

DESCRIPTION

When you erase a buffer, the contents of the buffer are removed. However,
the buffer structure still remains a part of your editing context and the
editing point remains in the buffer even if you remove the contents of
the buffer. The space that was occupied by the contents of the buffer is
returned to the system and is available for reuse. Only the end-of-buffer
line remains.

When you erase a range, the contents of the range are removed from the
buffer. The range structure is still a part of your editing context. You can
use the range structure later in your editing session to delimit an area of
text within a buffer.

Note that text does not belong to a range; it belongs to a buffer. Ranges
are merely a way of manipulating portions of text within a buffer. For
more information on ranges, see Chapter 2.

SIGNALED
ERRORS

TPU$_TOOFEW ERROR ERASE requires one argument.

TPU$_TOOMANY ERROR ERASE accepts only one
argument.

TPU$_INVPARAM ERROR The argument to ERASE is of the
wrong type.

TPU$_NOTMODIFIABLE WARNING You cannot erase text in an
unmodifiable buffer.

7-117

VAXTPU Built-In Procedures
ERASE

EXAMPLES

ERASE (main_buffer)

This statement erases all the text in the buffer referenced by main_buffer.
Since the buffer still exists, you can select the buffer using the POSITION
built-in or map the buffer to a window. The procedure simply removes all
text from the buffer. All markers in the buffer now mark the end of the
buffer.

B PROCEDURE user_remove crlfs

LOCAL crlf,
here,
cr_range;

crlf := ASCII (13) + ASCII (10):
here := MARK (NONE);
POSITION (BEGINNING_OF (CURRENT_BUFFER)) ;

LOOP
cr_range := SEARCH QUIETLY (crlf, FORWARD, EXACT);
EXITIF cr_range = 0;
ERASE (cr_range);
POSITION (cr_range);
ENDLOOP ;

POSITION (here):;

ENDPROCEDURE;

7-118

This procedure gets rid of embedded carriage-return/line-feed pairs.

VAXTPU Built-in Procedures
ERASE_CHARACTER

ERASE_CHARACTER

Deletes the number of characters you specify and optionally returns a string
that represents the characters you deleted.

FORMAT Istring := } ERASE_CHARACTER (integer)

PARAMETER integer

An expression that evaluates to an integer, which may be signed. The
value indicates which characters, and how many of them, are to be erased.

return value A string representing the characters deleted by ERASE_CHARACTER.

DESCRIPTION ERASE_CHARACTER deletes up to the specified number of characters
from the current line. If the argument to ERASE_CHARACTER is a
positive integer, ERASE_CHARACTER deletes that many characters,
starting at the current position and continuing toward the end of the line.
If the argument is negative, ERASE_CHARACTER deletes characters
to the left of the current character. It uses the absolute value of the
parameter to determine the number of characters to delete. ERASE_
CHARACTER stops deleting characters if it reaches the beginning or the
end of the line before deleting the specified number of characters.

Using ERASE_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the buffer. ERASE_CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

ERASE_CHARACTER optionally returns a string containing the
characters that it deleted.

SIGNALED
ERRORS TPU$_TOOFEW ERROR ERASE_CHARACTER requires
(o) one argument,
TPU$_TOOMANY ERROR ERASE_CHARACTER accepts
only one argument.
TPU$_INVPARAM ERROR The argument to ERASE_

CHARACTER must be an integer.

7-119

VAXTPU Built-In Procedures
ERASE_CHARACTER

TPU$_NOCURRENTBUF WARNING There is no current buffer to erase
characters from.

TPU$_NOTMODIFIABLE WARNING You cannot modify an unmodifiable
buffer.

EXAMPLES

take_out_chars := ERASE_CHARACTER (10)

This assignment statement removes the current character and the nine
characters following it and copies them in the string variable take_out_
chars. If there are only five characters following the current character,
then this statement deletes only the current character and the five
following it. It does not delete characters on the next line as well.

B prev_chars := ERASE CHARACTER (-5)

This assignment statement removes the five characters preceding the
current character and copies them in the string variable prev_chars.

This procedure deletes the character to the
left of the current character. If at the
beginning of a line, it appends the current
line to the previous line.

PROCEDURE user_delete_key

LOCAL deleted_char;
deleted char := ERASE_CHARACTER (-1);

IF deleted_char = "" ! nothing deleted
THEN

APPEND_LINE;
ENDIF;

ENDPROCEDURE;

7-120

This procedure deletes the character to the left of the editing point. If
the editing point is at the beginning of a line, the procedure appends the
current line to the previous line.

VAXTPU Built-In Procedures
ERASE_LINE

ERASE_LINE

Removes the current line from the current buffer.
ERASE_LINE optionally returns a string containing the text of the deleted line.

A O

FORMAT Estring := | ERASE_LINE

PARAMETERS Nore.

return value A string containing the text of the deleted line.

DESCRIPTION ERASE_LINE deletes the current line, optionally storing the deleted
text in a string before doing so. The current position moves to the first
character of the line following the deleted line.

Using ERASE_LINE may cause VAXTPU to insert padding spaces or blank
lines in the buffer. ERASE_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

If the screen manager inserts padding spaces, ERASE_LINE deletes these
spaces when it deletes the line. The spaces appear in the returned string.
If the screen manager inserts padding lines into the buffer, ERASE_LINE
deletes only the last of these lines.

SIGNALED TPU$_TOOMANY ERROR ERASE_LINE t
_ - accepts no
ERRORS arguments.
TPU$_NOTMODIFIABLE WARNING You cannot erase a line in an

unmodifiable buffer.

TPU$_NOCURRENTBUF ERROR You must select a buffer before
erasing a line.

7-121

VAXTPU Built-in Procedures
ERASE LINE

EXAMPLES

ERASE_LINE
This statement removes the current line from the current buffer.
take_out_line := ERASE_LINE

This statement removes the current line from the current buffer and stores
the string of characters representing that line in the variable take_out_
line.

7-122

VAXTPU Built-In Procedures
ERROR

ERROR

Returns a keyword for the latest error.

FORMAT keyword := ERROR

I —

PARAMETERS Nore.

return value A keyword representing the most recent error.

DESCRIPTION The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Manual includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

The value returned by ERROR is only meaningful inside an error handler,
after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR behaves much like a built-in, it is actually a VAXTPU
language element.

ERROR is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

SIGNALED ERROR is a language element and has no completion codes.
ERROR
EXAMPLE

PROCEDURE strip_blanks

! Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank range;

ON_ERROR

IF ERROR = TPUS$_STRNOTFOUND

THEN
RETURN;

ELSE
MESSAGE (ERROR_TEXT) ;
ABORT;

ENDIF;

ENDON_ERROR;

7-123

VAXTPU Built-In Procedures
ERROR

blank_chars := ASCII (32) + ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank range) + LINE END;

LOOP
SEARCH (blank_pattern, FORWARD) ;
POSITION (BEGINNING OF (blank_range));
ERASE (blank_range);
ENDLOOP;
ENDPROCEDURE;

This procedure uses the ERROR language element to determine the error
that invoked the error handler. If the error was that SEARCH could

not find the specified string, then the procedure returns normally. (For
more information on error handlers, see Chapter 3 and the descriptions of
ABORT and RETURN in this chapter.) If the error was something else,
then the text of the error message is written to the MESSAGES buffer and
any executing procedures are terminated.

7-124

e

VAXTPU Built-In Procedures
ERROR_LINE

ERROR_LINE

Returns the line number for the latest error.

FORMAT integer := ERROR_LINE

PARAMETERS Nore.

return value An integer representing the line number of the most recent error.

DESCRIPTION ERROR_LINE returns the line number at which the error or warning
occurs. If a procedure was compiled from a buffer or range, ERROR_LINE
returns the line number within the buffer. This may be different from the
line number within the procedure. If the procedure was compiled from a
string, ERROR_LINE returns 1.

The value returned by ERROR_LINE is only meaningful inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_LINE behaves much like a built-in, it is actually a
VAXTPU language element.

ERROR_LINE is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

SIGNALED ERROR is a language element and has no completion codes.
ERROR

EXAMPLE

PROCEDURE strip_blanks
! Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank range;

ON_ERROR
MESSAGE (ERROR_TEXT) ;
MESSAGE ("Error on line " + STR (ERROR_LINE));
RETURN;

ENDON_ERROR;

blank chars := ASCII (32) + ASCII (9):
blank _pattern := (SPAN (blank chars) @ blank_range) + LINE END;

7-125

VAXTPU Built-In Procedures
ERROR_LINE

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (blank range);
ERASE (blank_ range);
ENDLOOP;
ENDPROCEDURE;

This procedure uses the ERROR_LINE built-in procedure to report the
line in which the error occurred.

7-126

VAXTPU Built-In Procedures

ERROR_TEXT
Returns the text of the latest error message.
FORMAT string := ERROR_TEXT
PARAMETERS Nore.
return value A string containing the text of the most recent error message.

DESCRIPTION ERROR_TEXT returns the text for the most recent error or warning.

The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Manual includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

The value returned by ERROR_TEXT is meaningful only inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_TEXT behaves much like a built-in, it is actually a
VAXTPU language element.

ERROR_TEXT is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

SIGNALED ERROR_TEXT is a language element and has no completion codes.
ERROR

EXAMPLE

PROCEDURE strip blanks

! Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank pattern,
blank_range;

ON_ERROR
MESSAGE (ERROR_TEXT) ;
MESSAGE ("Error on line " + STR (ERROR_LINE));
RETURN;

ENDON_ERROR;

blank_chars := ASCII (32) + ASCII (9):
blank pattern := (SPAN (blank_ chars) @ blank_range) + LINE END;

7-127

VAXTPU Built-In Procedures
ERROR_TEXT

LOOP
SEARCH (blank pattern, FORWARD) ;
POSITION (BEGINNING OF (blank_range));
ERASE (blank_range);
ENDLOOP;
ENDPROCEDURE;

This procedure uses the built-in procedure ERROR_TEXT to report what
happened and where.

7-128

~

VAXTPU Built-In Procedures
EXECUTE

EXECUTE

Does one of the following:
« Executes programs that you have previously compiled

« Compiles and then executes any executable statements in a buffer, a
range, or a string

* Replays a learn sequence
» Executes a program bound to a key

FORMAT ¢ buffer \

) , key-map-list-name
key-name |I , key-map-name]]

EXECUTE (J learn)
program
range

\ string)

PARAMETERS Dbuffer
The buffer that you want to execute.

key-name
The VAXTPU key name for a key or a combination of keys. VAXTPU
locates and executes the definition bound to the key.

key-map-list-name

The name of the key map list in which the key is defined. This optional
parameter is only valid when the first parameter is a key name. If you
specify a key map list as the second parameter, VAXTPU uses the first
definition of the key specified by key_name found in any of the key maps
specified by the key map list. If you do not specify any value for the second
parameter, VAXTPU uses the first definition of the key specified by key_
name found in the key map list bound to the current buffer.

key-map-name

The name of the key map in which the key is defined. This optional
parameter is valid only when the first parameter is a key name. Use this
parameter only if the key specified by the first parameter is defined in
the key map specified as the second parameter. If you do not specify any
value for the second parameter, VAXTPU uses the first definition of the
key specified by key_name found in the key map list bound to the current
buffer.

learn

The learn sequence that you want to replay.

program

The program that you want to execute.

7-129

VAXTPU Built-In Procedures

EXECUTE
range
The range that you want to execute.
string
The string that you want to execute.
DESCRIPTION EXECUTE performs different actions depending upon the data type of the
parameter.
If the parameter is a string or the contents of a buffer or range, it must
contain only valid VAXTPU statements. Otherwise, you get an error
message and no action is taken. See the description of the built-in
procedure COMPILE for restrictions and other information on compiling
strings or the contents of a buffer or range. When you pass a string to
EXECUTE, the string cannot be longer than 256 characters.
Procedures are usually executed by entering the name of a compiled
procedure at the appropriate prompt from your editing interface, or by
calling the procedure from within another procedure. However, it is
possible to execute procedures with the built-in procedure EXECUTE if
the procedure returns a data type that is a valid parameter.
In the following example, the procedure test returns a program data type.
If you execute a buffer or range that contains the following code, VAXTPU
compiles and executes the procedure test, a program data type is returned,
the program is then used as the parameter for the built-in procedure
EXECUTE, and the string "abc" is written to the message area.
PROCEDURE test
! After compiling the string 'MESSAGE ("abc")’,
! VAXTPU returns a program that is the compiled
! form of the string.
RETURN COMPILE (’/MESSAGE ("abc")’);
ENDPROCEDURE ;
! The built-in procedure EXECUTE executes the
! program returned by the procedure "test."
EXECUTE (test);
SIGNALED TPU$_NODEFINITION WARNING There i definition for this k
ere is no definition for this key.
ERRORS - !

7-130

TPU$_REPLAYWARNING WARNING Inconsistency during the execution
of a learn sequence . .. sequence

is proceeding.
TPU$_REPLAYFAIL WARNING Inconsistency during the execution
of a learn sequence . . . execution
stopped.
TPU$_RECURLEARN ERROR You cannot execute learn

sequences recursively.

~

P

VAXTPU Built-In Procedures

EXECUTE

TPU$_CONTROLC ERROR The execution of the command
terminated because you pressed
CTRL/C.

TPU$_EXECUTEFAIL WARNING Execution of the indicated item
has halted because it contains an
error.

TPU$_COMPILEFAIL WARNING Compilation aborted because of
syntax errors.

TPU$_ARGMISMATCH ERROR A parameter’s data type is
unsupported.

TPU$_TOOFEW ERROR Too few arguments.

TPU$_TOOMANY ERROR Too many arguments.

TPU$_NOTDEFINABLE WARNING Key cannot be defined.

TPU$_NOCURRENTBUF WARNING Key map or key map list not
specified, and there is no current

buffer.
TPU$_NOKEYMAP WARNING Key map or key map list not
defined.
TPU$_NOTMODIFIABLE WARNING You cannot copy text into an
unmodifiable buffer.
TPU$_NODEFINITION WARNING Key not defined.
R _
EXAMPLES
1] EXECUTE (user_program)

(O]

This statement executes the executable statements in the program named
user_program.

EXECUTE (main_buffer)

This statement first compiles the contents of main_buffer and then
executes any executable statements. If you have any text in the main
buffer other than VAXTPU statements, you get an error message. If there
are procedure definitions in main_buffer, they are compiled, but they are
not executed until you run the procedure (either by entering the procedure
name after the appropriate prompt from your interface or by calling the
procedure from within another procedure).

EXECUTE (RET_KEY, "TPUSKEY MAP_ LIST");

This statement first finds the program bound to the return key in the
default VAXTPU key map list, and then executes the code or learn
sequence found.

PROCEDURE user_do

command_string := READ_LINE ("Enter VAXTPU command to execute: ");
EXECUTE (command_ string);
ENDPROCEDURE;

This procedure prompts the user for a VAXTPU command to execute and
then executes the command.

7-131

VAXTPU Built-In Procedures

EXECUTE

PROCEDURE user_tpu (TPU_COMMAND)

SET (INFORMATIONAL, ON):;
EXECUTE (TPU_COMMAND) ;
SET (INFORMATIONAL, OFF);

ENDPROCEDURE;

7-132

This procedure executes a command with informational messages turned
on, and then turns the informational messages off after the command is
executed. You must replace the parameter TPU_COMMAND with the
desired VAXTPU statement.

VAXTPU Built-In Procedures
EXIT

EXIT

Terminates the editing session and writes out any modified buffers that have
associated files. VAXTPU queries you for a file name for any buffer that you
have modified that does not already have an associated file.

Buffers that have the NO_WRITE attribute are not written out. See SET (NO_
WRITE, buffer).

FORMAT

EXIT

PARAMETERS Nore.

DESCRIPTION

SIGNALED
ERRORS

If you do not modify a buffer, VAXTPU does not write out the next version
of the file associated with the buffer when you use the built-in procedure
EXIT to exit from VAXTPU.

If you modify a buffer that does not have an associated file name, (because
you did not specify a file name for the second parameter of
CREATE_BUFFER), VAXTPU asks you to specify a file name if you want
to write the buffer. If you press the RETURN key rather than entering a
file name, the modified buffer is discarded. VAXTPU queries you about all
modified buffers that do not have associated file names. The order of the
query is the order in which the buffers were created.

Journal files (if any) are deleted upon exiting.

If an error occurs while you are trying to exit, the exit halts and control
returns to the editor.

TPU$_EXITFAIL WARNING The EXIT did not complete
successfully because of problems
writing modified buffers.

TPU$_TOOMANY ERROR EXIT takes no arguments.

7-133

VAXTPU Built-ln Procedures

EXIT

EXAMPLE

EXIT

7-134

This ends the editing session and writes out any modified buffers that

have associated file names. If you have modified a buffer that does not
have an associated file name, VAXTPU queries you with the following

prompt:

Enter a file name to write buffer "buffer name"; else press RETURN:

Enter a file name such as TEXT FILE.LIS if you want the contents of the
buffer written to a file. Press the RETURN key if you do not want to write
the contents of the buffer to a file.

VAXTPU Built-In Procedures
EXPAND NAME

EXPAND_NAME

Returns a string that contains the names of any VAXTPU global variables,
keywords, or procedures (built-in or user-written) that begin with the string
that you specify. VAXTPU searches its internal symbol tables to find a match,
using your input string as the directive for the match.

FORMAT

, ALL

, KEYWORDS)
, PROCEDURES

, VARIABLES

string2 := EXPAND_NAME (string1

PARAMETERS

string1

An expression that evaluates to a string. If the string contains one or
more asterisks (*) or percent signs (%), then the string is a wildcard
specification of the VAXTPU names to match. An asterisk matches zero or
more characters and a percent sign matches exactly one character. If the
string does not contain any asterisks or percent signs, then the string is
the initial substring of a VAXTPU name.

ALL
A keyword specifying that you want VAXTPU to match all names.

KEYWORDS
A keyword specifying that you want VAXTPU to match only keyword
names.

PROCEDURES
A keyword specifying that you want VAXTPU to match only procedure
names.

VARIABLES

A keyword specifying that you want VAXTPU to match only global variable
names. EXPAND_NAME does not expand the names of local variables.

DESCRIPTION

If there are no matches for the substring you specify, a null string is
returned and a warning (TPU$_NONAMES) is signaled. If only one
VAXTPU name matches the substring you specify, the name is returned
with no trailing space. If more than one VAXTPU name matches your
substring, all of the matching names are returned. The matching names
are returned as a concatenated string with words separated by a single
space. Multiple names signal a warning (TPU$_MULTIPLENAMES).

Use EXPAND_NAME in procedures that perform command completion or
that interpret abbreviated names.

EXPAND_NAME does not expand the names of local variables.

7-135

VAXTPU Built-In Procedures
EXPAND NAME

SIGNALED :
ERRORS TPU$_NONAMES WARNING No names were found matching
the one requested.
TPU$_MULTIPLENAMES WARNING More than one name matching the
one requested was found.
TPU$_NEEDTOASSIGN ERROR EXPAND_NAME must appear
on the right-hand side of an
assignment statement.
TPU$_TOOFEW ERROR EXPAND_NAME requires two
arguments.
TPU$_TOOMANY ERROR EXPAND_NAME accepts no more
than two arguments.
TPU$_INVPARAM ERROR One of the arguments you passed
to EXPAND_NAME has the wrong
data type.
TPU$_BADKEY WARNING You specified an invalid keyword
as the second argument.
—— L
EXAMPLES

1] full name :

EXPAND NAME ("MOVE", ALL)

This assignment statement returns the following VAXTPU names in the
string full_name:

MOVE_HORIZONTAL MOVE_VERTICAL MOVE_TEXT

full name := EXPAND NAME ("*EXACT", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string full_name:

EXACT NO_EXACT

B full name :

EXPAND_NAME ("%%", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string full_name:

ON UP DO E5 F6 E4 F7 E6 E1 E3 E2 F8 F9

These are all the keywords whose names are two characters long.

4] PROCEDURE user_quick_parse (abbreviated_name)

ON_ERROR
IF ERROR = TPUS_NONAMES
THEN
MESSAGE ("No such procedure.");
ELSE
IF ERROR = TPU$_MULTIPLENAMES
THEN
MESSAGE ("Ambiguous abbreviation.");
ENDIF;
ENDIF;
RETURN;
ENDON_ERROR;

7-136

~—

—

VAXTPU Built-In Procedures
EXPAND NAME

expanded_name := EXPAND NAME (abbreviated_name, PROCEDURES) ;
MESSAGE ("The procedure is " + expanded name + ".");
ENDPROCEDURE;

This procedure uses the string that you enter as the parameter, and puts
the expanded form of a valid VAXTPU procedure name that matches
the string in the message area. If the initial string matches multiple
procedure names, or if it is not a valid VAXTPU procedure name, an
explanatory message is written to the message area.

7-137

VAXTPU Built-In Procedures
FAO

FAO

Invokes the Formatted ASCII Output ($FAO) system service to convert a
control string to a formatted ASCII output string. By specifying arguments for
FAO directives in the control string, you can control the processing performed
by the $FAO system service. The built-in procedure FAQ returns a string that
contains the formatted ASCII output.

For complete information on the $FAO system service, see the VMS System
Services Reference Manual.

FORMAT string2 := FAO (string? [, { gﬁ;’%e;’ }[, { ;’gf;g*’;” }]])

PARAMETERS string1

A string, a variable name representing a string constant, or an expression
that evaluates to a string, that consists of the fixed text of the output
string and FAO directives.

Some FAO directives that you can use as part of the string are the

following:

IAS Inserts a string as is

1oL Converts a longword to octal notation

IXL Converts a longword to hexadecimal notation

1ZL Converts a longword to decimal notation

UL Converts a longword to decimal notation without adjusting for negative
number

ISL Converts a longword to decimal notation with negative numbers
converted properly

I/ Inserts a new line (carriage return/line feed)

L Inserts a tab

1} Inserts a form feed

1l Inserts an exclamation mark

1%S Inserts an s if the most recently converted number is not 1

1%T Inserts the current time if you enter 0 as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

1%D Inserts the current date and time if you enter 0 as the parameter (you

cannot pass a specific date because VAXTPU does not use quadwords)

integer1 ... integer_n
An expression that evaluates to an integer. $FAO uses these integers as
arguments to the FAO directives in string2 to form stringl.

string3... string_n
An expression that evaluates to a string. $FAO uses these strings as
arguments to the FAO directives in string2 to form siringl.

7-138

R

VAXTPU Built-In Procedures
FAO

return value A string containing the output you specify in ASCII format.

R
DESCRIPTION FAO returns a formatted string, constructed according to the rules of the

$FAO system service. The control string directs the formatting process,
and the optional arguments are values to be substituted into the control
string.

To ensure that you get meaningful results, you should use the !AS directive
for strings and the !OL, XL, !ZL, UL, or !SL directive for integers.

—
SIGNALED ,

TPU$_INVFAOPARAM WARNING Argument was not a string or an

ERRORS integer.

TPU$_NEEDTOASSIGN ERROR FAO must appear on the right-
hand side of an assignment
statement.

TPU$_INVPARAM ERROR The first argument to FAO must be
a string.

TPU$_TOOFEW ERROR FAO requires at least one
parameter.

EXAMPLES

date and time := FAO ("!%D",0)
This assignment statement stores the current date and time in the
variable date_and_time.

B PROCEDURE user_ fao_conversion (count)

=

report := FAO ("number of forms = !SL", count);
MESSAGE (report):
ENDPROCEDURE;

This procedure uses the FAQ directive !SL in a control string to convert
the number equated to the variable count to a string. The converted string
is stored in the variable report and then written to the message area.

PROCEDURE user_error_message (strng, line, col)

error_count := error_count + 1;
MESSAGE (FAO ("!AS at line !UL column !UL", strng, line, col));
ENDPROCEDURE;

This procedure formats the message that is being written to the message
area. The message tells the user the line and column at which an error
occurred.

7-139

VAXTPU Built-In
FILE_PARSE

Procedures

FILE_PARSE

Performs the equivalent of the DCL F$PARSE lexical function. That is, it calls
the RMS service $PARSE to parse a file specification and to return either an
expanded file specification or the file specification field that you request.

FILE_PARSE returns a string that contains the expanded file specification or
the field you specify. If you do not provide a complete file specification, FILE_
PARSE supplies defaults in the return string, as described in the Description
section.

If an error occurs during the parse, FILE_PARSE returns a null string.

FORMAT

string3 := FILE_PARSE (filespec [, string1
[, string2 [, NODE]
[, DEVICE |}
I, DIRECTORY |
I, NAME J [, TYPE]
[, VERSION] [

PARAMETERS

7-140

filespec
The file specification to be parsed.

string1

A default file specification. Any field of the file specification that you
provide with this parameter is substituted in the output string if that field
is missing in the filespec.

string2

A related file specification. Some of the fields in the related file
specification are substituted in the output string if a field is missing
from both the filespec and the stringl parameters.

NODE
Keyword specifying that FILE_PARSE should return a file specification

including the node. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DEVICE

Keyword specifying that FILE_PARSE should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DIRECTORY

Keyword specifying that FILE_PARSE should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_PARSE, see the Description section.

return value

DESCRIPTION

VAXTPU Built-In Procedures
FILE_PARSE

NAME

Keyword specifying that FILE_PARSE should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

TYPE

Keyword specifying that FILE_PARSE should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

VERSION

Keyword specifying that FILE_PARSE should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

A string containing an expanded file specification or the file specification
field you specify.

The built-in procedure FILE_PARSE allows you to parse file specifications
using the RMS service $PARSE. For more information on the $PARSE
service, see the VMS Record Management Services Manual.

If you do not supply any of the optional parameters, FILE_PARSE returns
the device, directory, file name, and type of the file specified in filespec.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keywords for field names as you wish. If
one or more of these keywords are present, FILE_PARSE returns a string
containing only those fields requested. The fields are returned in normal
file specification order. The normal delimiters are included, but there are
no other characters separating the fields. For example, suppose you direct
VAXTPU to execute the following statements:

result := FILE_PARSE ("junk.txt","","",NODE, DEVICE, TYPE);
MESSAGE (result);

Suppose, too, that the node is WORK and the device is DISK1. When the
statements execute, VAXTPU displays the following string:

work::diskl:.txt

If you omit the file name, type, or version number, FILE_PARSE supplies
defaults, first from stringl and then from string2. If you do not provide
these parameters, FILE_PARSE returns a null specification for these
fields.

The FILE_PARSE built-in procedure does not check that the file exists. It
merely parses the file specification provided, and returns the portions of
the resultant file specification requested.

You can use wildcard directives in supplying file specifications.

7-141

VAXTPU Built-In Procedures

FILE_PARSE
SIGNALED
E TPU$_PARSEFAIL WARNING RMS detected an error while
RRORS parsing the file specification.
TPU$_NEEDTOASSIGN ERROR FILE_PARSE must appear on the
right-hand side of an assignment
statement.
TPU$_TOOFEW ERROR FILE_PARSE requires at least one
argument.
TPU$_INVPARAM ERROR One of the parameters to FILE_
PARSE has the wrong data type.
TPU$_BADKEY ERROR You specified an invalid keyword
to FILE_PARSE.
EXAMPLES
ﬂ spec := FILE PARSE ("program.pass", "[abbott]")

This assignment statement calls RMS to parse and return a full file
specification for the file PROGRAM.PAS. The second parameter provides
the name of the directory in which the file can be found.

PROCEDURE user_start_journal

! Default journal name
! Auxiliary journal name derived from file name

LOCAL default_journal name,
aux_journal_name;

IF (GET_INFO (COMMAND LINE, "journal") = 1)
AND
(GET_INFO (COMMAND_LINE, "read_ only") <> 1)
THEN
aux_journal name := GET_INFO (CURRENT BUFFER, "file name");
IF aux_journal_name = ""

THEN

aux_journal_name := GET INFO (CURRENT BUFFER, "output file");
ENDIF;
IF aux_journal name = 0
THEN

aux_journal name := "";
ENDIF;
IF aux_journal name = ""
THEN

default_journal name := "user.TJL";
ELSE

default_journal name := ".TJL";
ENDIF;

journal file
journal_ file :

GET _INFO (COMMAND LINE, "journal file");
FILE_PARSE (journal_ file, default_journal_ name,
aux_journal_name);
JOURNAL_OPEN (journal_file);
ENDIF;
ENDPROCEDURE;

This procedure starts journaling. It is called from the TPUSINIT
PROCEDURE after a file is read into the current buffer. FILE_PARSE
is used to return the full file specification for the journal file.

7-142

VAXTPU Built-In Procedures
FILE_SEARCH

FILE_SEARCH

FORMAT

Calls the RMS service $SEARCH to search a directory and return the partial
or full file specification for the file that you specify.

FILE_SEARCH returns a string containing the resulting file specification or a
null string if no file is found.

string3 := FILE_SEARCH (filespec
[, string1
[, string2
[, NODE J
[, DEVICE]
I, DIRECTORY |
I NAME J [, TYPE]
I, VERSION] JI)

PARAMETERS

filespec

The file specification you want to find. If you omit the device or directory
names, FILE_SEARCH supplies defaults from the optional parameters
or from your current default device and directory if you do not supply
optional parameters.

string1

A default file specification. If you fail to specify a field in filespec and that
field is present in the default file specification, VAXTPU uses the field from
stringl when searching for the file.

string2

A related file specification. If you fail to specify a field in filespec and
stringl and that field is present in the related file specification, VAXTPU
uses the field from string2 when searching for the file.

NODE

Keyword specifying that FILE_SEARCH should return a file specification
including the node. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DEVICE

Keyword specifying that FILE_SEARCH should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DIRECTORY

Keyword specifying that FILE_SEARCH should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_SEARCH, see the Description section.

7-143

VAXTPU Built-In Procedures

FILE_SEARCH

return value

NAME

Keyword specifying that FILE_SEARCH should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

TYPE

Keyword specifying that FILE_SEARCH should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

VERSION

Keyword specifying that FILE_SEARCH should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

A string containing the partial or full file specification you request from
$SEARCH.

DESCRIPTION

7-144

The built-in procedure FILE_SEARCH allows you to search for files

in a directory using the $SEARCH routine. You must use this built-

in procedure multiple times with the same parameter to get all of the
occurrences of a file name in a directory. See the VMS Record Management
Services Manual for more information on $SEARCH.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keyword parameters (such as NODE or
DEVICE) as you wish. If one or more of these keywords are present,
FILE_SEARCH returns only those fields requested in the keyword list, not
the full file specification. The fields appear in the same order as they do in
a full file specification. There is no separator between fields.

If you omit all the optional parameters, FILE_SEARCH returns the device,
directory, file name, type, and version.

Unlike the FILE_PARSE built-in, FILE_SEARCH verifies that the file you
specify exists.

If FILE_SEARCH does not find a matching file, or if the built-in finds one
or more matches but is invoked again and does not find another match,
FILE SEARCH returns a null string but not an error status. Thus, the
null string can act as an “end of matching files” indicator. When FILE_
SEARCH returns the status TPU$_SEARCHFAIL, look in the message
buffer to see why the search was unsuccessful.

VAXTPU Built-ln Procedures
FILE_SEARCH

SIGNALED ,
TPU$_SEARCHFAIL WARNING RMS detected an error while
ERRORS searching for the file.

TPU$_TOOFEW ERROR FILE_SEARCH requires at least
one parameter.

TPU$_NEEDTOASSIGN ERROR FILE_SEARCH must be on the
right-hand side of an assignment
statement.

TPUS$_INVPARAM ERROR One of the arguments you passed
to FILE_SEARCH has the wrong
type.

TPU$_BADKEY WARNING One of the keyword arguments

you specified is not one of those
FILE_SEARCH accepts.

EXAMPLES

1] fil := FILE_SEARCH ("SYS$SYSTEM:*.EXE")

Each time this assignment statement is executed, it returns a string
containing the resulting file specification of an EXE file in SYS$SYSTEM.
Because no version number is specified, only the latest version is returned.
When you get a null string, it means there are no more EXE files in the
directory.

PROCEDURE user_ collect_rnos
LOCAL filename;

filename := FILE_SEARCH ("");
LOOP
filename := FILE SEARCH ("*.RNO", "", "", NAME, TYPE);

EXITIF filespec = "";
CREATE_BUFFER (filename, filename);
ENDLOOCP;
ENDPROCEDURE;

This procedure is similar to the previous procedure. It makes use of the
fact that you are looking for files in the current directory and that FILE_
SEARCH can return parts of the file specification to eliminate the call to
FILE_PARSE.

7-145

VAXTPU Built-In Procedures

FILL

FILL

Reformats the text in the specified buffer or range so that the lines of text are
approximately the same length.

FORMAT FILL ({ ?:;;e; }[, string [, integer1 [, integer2
[, integer3 JJ111)

PARAMETERS buffer
The buffer whose text you want to fill.
range
The range whose text you want to fill.
string
The list of additional word separators. The space character is always a
word separator.
integert
The value for the left margin. The left margin value must be at least 1
and must be less than the right margin value. Defaults to the buffer’s left
margin.
integer2
The value for the right margin. This value defaults to the same value as
the buffer’s right margin. Integer2 must be greater than the left margin
and cannot exceed the maximum record size for the buffer.
integer3
The value for the first line indent. This value modifies the left margin of
the first filled line. It may be positive or negative. The result of adding
the first line indent to the left margin must be greater than 1 and less
than the right margin. Defaults to 0.

DESCRIPTION FILL recognizes two classes of characters, text characters and word

7-146

separators. Any character may be a word separator and any character
other than the space character may be a text character. The space
character is always a word separator, even if it is not present in the
second parameter passed to FILL.

A word is a contiguous sequence of text characters, all of which are
included on the same line, immediately preceded by a word separator or
a line break, and immediately followed by a word separator or line break.
If the first or last character in the specified range is a text character,
that character marks the beginning or end of a word, regardless of any
characters outside the range. Filling a range that starts or ends in the
middle of a word may result in the insertion of a line break between that

VAXTPU Built-ln Procedures
FILL

part of the word inside the filled range and that part of the word outside
the range.

When filling a range or buffer, FILL does the following to each line:
* Removes any spaces at the beginning of the line

¢ Sets the left margin of the line

* Moves text up to the previous line if it fits

¢ Deletes the'line if it contains no text

¢ Splits the line if it is too long

FILL sets the line’s left margin to the fill left margin unless that line is
the first line of the buffer or range being filled. In this case, FILL sets the
line’s left margin to the fill left margin plus the first line indent. However,
if you are filling a range and the range does not start at the beginning of a
line, FILL does not change the left margin of that line.

FILL moves a word up to the previous line if the previous line is in

the range to be filled and if the word fits on the previous line without
extending beyond the fill right margin. Before moving the word up, FILL
appends a space to the end of the previous line if that line ends in a space
or a text character. It does not append a space if the previous line ends in
a word separator other than the space character.

When moving a word up, FILL also moves up any word separators that
follow the word, even if these word separators extend beyond the fill right
margin. Fill does not move up any word separator that would cause the
length of the previous line to exceed the buffer’s maximum record size. If
the previous line now ends in a space, FILL deletes that space. FILL does
not delete more than one such space.

FILL moves any word separators at the beginning of a line up to the
previous line. It does this even if the word separators will extend beyond
the fill right margin.

FILL splits a line into two lines whenever the line contains two or
more words and one of the words extends beyond the fill right margin.
FILL splits the line at the first character of the first word that contains
characters to the right of the fill right margin, unless that word starts at
the beginning of the line. In this case, FILL does not split the line.

When operating on a range that does not begin at the first character of a
line but does begin left of the fill left margin, FILL splits the line at the
first character of the range.

FILL places the cursor at the end of the filled text after completing the
tasks described above.

7-147

VAXTPU Built-In Procedures

FILL
SIGNALED
ERRORS TPU$_INVRANGE WARNING You specified an invalid range
enclosure.
TPU$_TOOFEW ERROR FILL requires at least one
argument.
TPU$_TOOMANY ERROR FILL accepts no more than five
arguments.
TPU$_ARGMISMATCH ERROR One of the parameters to FILL is
of the wrong type.
TPU$_BADMARGINS WARNING You specified one of the fill
margins incorrectly.
TPU$_INVPARAM ERROR One of the parameters to FILL is
of the wrong type.
TPU$_NOTMODIFIABLE WARNING You cannot fill text in an
unmodifiable buffer.
TPU$_NOCACHE ERROR FILL could not create a new line
because there was no memory
allocated for it.
TPU$_CONTROLC ERROR FILL terminated because you
pressed CTRL/C.
EXAMPLES
FILL (current buffer)
This statement fills the current buffer. It uses the buffer’s left and right
margins for the fill left and right margins. The space character is the only
word separator. Upon completion, the current buffer contains no blank
lines. All lines begin with a word. Unless the buffer contains a word
too long to fit between the left and right margins, all text is between the
buffer’s left and right margins. Spaces may appear beyond the buffer’s
right margin.
FILL (paragraph_range, "-", 5, 65, 5)
If paragraph_range references a range that contains a paragraph, this
statement fills a paragraph. FILL uses a left margin of 5 and a right
margin of 65. It indents the first line of the paragraph an additional
five characters. The space character and the hyphen are the two word
separators. If the paragraph contains a hyphenated word, FILL breaks
the word after the hyphen if necessary.
FILL (paragraph_range, "-", 10, 65, -3)

This example is like the previous one except that FILL unindents the
first line of the paragraph by three characters. This is useful for filling
numbered paragraphs.

7-148

VAXTPU Built-In Procedures
GET_CLIPBOARD

GET_CLIPBOARD

Reads STRING format data from the clipboard and returns a string containing
this data.

FORMAT

return value

string := GET_CLIPBOARD

A string consisting of the data read from the clipboard. Line breaks are
indicated by a line-feed character (ASCII (10)).

DESCRIPTION

DECwindows provides a clipboard that allows you to move data between
applications. Applications can write to the clipboard to replace previous
data, and can read from the clipboard to get a copy of existing data. The
data in the clipboard may be in multiple formats, but all the information
in the clipboard must be written at the same time.

VAXTPU provides no clipboard support for applications not written for
DECwindows.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR GET_CLIPBOARD must return a
value.

TPU$_TOOMANY ERROR Too many arguments passed to
GET_CLIPBOARD.

TPU$_CLIPBOARDFAIL WARNING The clipboard has not returned
any data.

TPU$_CLIPBOARDLOCKED WARNING VAXTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPUS$_TRUNCATE WARNING Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65,535
characters.

TPU$_REQUIRESDECW ERROR You can use GET_CLIPBOARD
only if you are using DECwindows
VAXTPU.

7-149

VAXTPU Built-In Procedures
GET_CLIPBOARD

EXAMPLE

new_string := GET_CLIPBOARD;

This statement reads what is currently in the clipboard and assigns it to
new_string.

7-150

VAXTPU Built-In Procedures
GET_DEFAULT

GET_DEFAULT

Returns the value of an X resource from the X resources database.

FORMAT string3 | _ . .
integer [= GET_DEFAULT (string1, string2)

PARAMETERS string1
The name of the resource whose value you want GET_DEFAULT to fetch.
Note that resource names are case sensitive.

string2
The class of the resource. Note that resource class names are case
sensitive.

return value The string equivalent of the resource value or 0 if the specified resource
is not defined. Note that, if necessary, the application must convert the
string to the data type appropriate to the resource.

DESCRIPTION GET_DEFAULT is useful for initializing a layered application that uses
an X defaults file. You can use GET_DEFAULT only in the DECwindows

environment.
SIGNALED
ERRORS TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.
TPU$_TOOFEW ERROR Too few arguments passed to
GET_DEFAULT.
TPU$_TOOMANY ERROR Too many arguments passed to
GET_DEFAULT.
TPU$_NEEDTOASSIGN ERROR GET_DEFAULT must return a
value.

TPU$_REQUIRESDECW ERROR You can use GET_DEFAULT only
if you are using DECwindows
VAXTPU.

7-151

VAXTPU Built-In Procedures
GET_DEFAULT

EXAMPLE

PROCEDURE application _module_init

LOCAL
keypad_name;

keypad _name := GET_DEFAULT ("user.keypad", "User.Keypad"):

EDIT (keypad name, UPPER); ! Convert the returned string to uppercase.

IF keypad name <> 0/
THEN

CASE keypad_ name

"EDT" : eve_set_keypad edt (};
"NOEDT" : eve_set_keypad_noedt ();
"Wps" : eve_set_keypad wps ();
"NOWPS" : eve_set_keypad nowps ();
"NUMERIC" : eve_set_keypad numeric ();
"VT100" : eve_set_keypad vt100 ();
[INRANGE, OUTRANGE] : eve_set_keypad numeric; ! If user has
! used invalid value,
! set the keypad to
! NUMERIC setting.
ENDCASE;
ENDIF;
ENDPROCEDURE;

This code fragment shows the portion of a module_init procedure directing
VAXTPU to fetch the value of a resource from the X resources database.
For more information on module_init procedures, see Appendix G.

If you want to create an extension of EVE that enables use of an X defaults
file to choose a keypad setting, you can use a GET_DEFAULT statement
in a module_init procedure.

To provide a value for the GET_DEFAULT statement to fetch, an X
defaults file would contain an entry similar to the following:

User.Keypad : EDT

7-152

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

GET_GLOBAL_SELECT

Supplies information about a global selection.

FORMAT :::-?:emﬂed —
inte %r = GET_GLOBAL_SELECT ({ SECONDARY } ,
arra?/ selection_name

selection_property_name)

PARAMETERS PRIMARY

A keyword indicating that the layered application is requesting
information about a property of the primary global selection.

SECONDARY

A keyword indicating that the layered application is requesting
information about a property of the secondary global selection.

selection _name

A string identifying the global selection whose property is the subject of
the layered application’s information request. Specify the selection name
as a string if the layered application needs information about a selection
other than the primary or secondary global selection.

selection_property _name
A string specifying the property whose value the layered application is

requesting.
return value
unspecified A data type indicating that the information requested by the
layered application was not available.
string The value of the specified global selection property. The

return value is of type string if the value of the specified
global selection property is of type string.

integer The value of the specified global selection property. The
return value is of type integer if the value of the specified
global selection property is of type integer.

array An array passing information about a global selection
whose contents describe information that is not of a data
type supported by VAXTPU.

VAXTPU does not use or alter the information in the array;
the application layered on VAXTPU is responsible for
determining how the information is used, if at all. Since the
array is used to receive information from other DECwindows
applications, all applications that exchange information
whose data type is not supported by VAXTPU must adopt a
convention on how the information is to be used.

7-153

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

The element array {0} contains a string naming the data
type of the information being passed. For example, if the
information being passed is a span, the element contains
the string "SPAN". The element array {1} contains either
the integer 8, indicating that the information is passed as
a series of bytes, or the integer 32, indicating that the
information is passed as a series of longwords. If array {1}
contains the value 8, the element array {2} contains a
string and there are no array elements after array {2). The
string does not name anything, but rather is a series of
bytes of information. As mentioned, the meaning and use
of the information is agreed upon by convention among
the DECwindows applications. To interpret this string, the
application can use the SUBSTR built-in to obtain substrings
one at a time, and the ASCII built-in to convert the data to
integer format if necessary. For more information about
using these VAXTPU elements, see the description of the
SUBSTR and ASCII built-in procedures.

If array {1} contains the value 32, the element array {2} and
any subsequent elements contain integers. The number of
integers in the array is determined by the application which
responded to the request for information about the global
selection. The interpretation of the data is a convention
that must be agreed upon by the cooperating application.
To determine how many longwords are being passed,

an application can determine the length of the array and
subtract 2 to allow for elements array {0} and array {1}.

DESCRIPTION If an owner for the global selection exists, and if the owner provides the
information requested in a format that VAXTPU can recognize, GET _
GLOBAL_SELECT returns the information.

SIGNALED TPU$_ARGMISMATCH ERROR Wrong type of data sent t
(]
ERRORS - AL

GLOBAL_SELECT.

TPU$_NEEDTOASSIGN ERROR GLOBAL_SELECT must return a
value.

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQUIRESDECW ERROR You can use GLOBAL_SELECT
only if you are using DECwindows
VAXTPU.

TPU$_TOOFEW ERROR Too few arguments passed to
GLOBAL_SELECT.

TPU$_TOOMANY ERROR Too many arguments passed to
GLOBAL_SELECT.

TPU$_GBLSELOWNER WARNING VAXTPU owns the global
selection.

7-154

TPU$_BADKEY

TPUS_INVGBLSELDATA

TPU$_NOGBLSELDATA

TPU$_NOGBLSELOWNER

TPU$_TIMEOUT

VAXTPU Built-In Procedures

WARNING

WARNING

WARNING

WARNING

WARNING

GET_GLOBAL_SELECT

You specified an invalid keyword
as a parameter.

The global selection owner
provided data that VAXTPU cannot
process.

The global selection owner has
indicated that it cannot provide the
information requested.

You have requested information
about an unowned global
selection.

The global selection owner did not
respond before the timeout period
expired.

EXAMPLE

string to_paste := GET_GLOBAL_SELECT (PRIMARY,

"STRING") ;

This statement fetches the text in the primary global selection and assigns
it to the variable string_to_paste.

For another example of how to use the GET _GLOBAL_SELECT built-in,

see Example B—4.

7-155

VAXTPU Built-In Procedures
GET_INFO

GET _INFO

Returns information about the current status of the editor.

For information on how to get a screen display of the status of your editor, see
the description of the built-in procedure SHOW.

DESCRIPTION This description provides general information on the GET_INFO built-
ins. In this part, you can also find descriptions of individual GET_INFO
built-ins. The individual GET_INFO built-ins are grouped according to
the value of their first parameter. For a list of the groups of GET_INFO
built-ins, see Table 7-2.

All GET_INFO built-in procedures have the following two characteristics
in common:

* They return a value that is the piece of information you have
requested.

* They consist of the GET_INFO statement followed by at least two
parameters, as follows:

— The first parameter specifies the general topic about which you
want information. If you want the GET_INFO built-in to return
information on a given variable, use that variable as the first
parameter. For example, if you want to know what row contains
the cursor in a window stored in the variable command_window,
you would specify the variable command_window as the first
parameter. Thus, you would use use the following statement:

the_row := GET_INFO (command window, "current_row"):;

Otherwise, the first parameter is a keyword specifying the general
subject about which GET_INFO is to return information. The valid
keywords for the first parameter are as follows:

ARRAY

BUFFER
COMMAND_LINE
DEBUG
DEFINED_KEY
KEY_MAP
KEY_MAP_LIST
mouse_event_keyword
PROCEDURES
PROCESS
SCREEN
SYSTEM
WINDOW
WIDGET

For a list of valid mouse event keywords, see Table 7-3.

7-156

VAXTPU Built-In Procedures
GET_INFO

Do not confuse a GET_INFO built-in whose first parameter is

a keyword (such as ARRAY) with a GET_INFO built-in whose
first parameter is a variable of a given data type, such as array_
variable. For example, the built-in GET_INFO (array_variable)
shows what string constants can be used when the first parameter
is an array variable, while the built-in GET_INFO (ARRAY) shows
what can be used when the first parameter is the keyword ARRAY.

— The second parameter (a VAXTPU string) specifies the exact piece
of information you want.

— The third and subsequent parameters, if necessary, provide
additional information that VAXTPU uses to identify and return
the requested value or structure.

Each GET_INFO built-in in this section shows the possible return values
for a given combination of the first and second parameters. For example,
the built-in GET_INFO (any_variable) shows that when you use any
variable as the first parameter and the string "type" as the second
parameter, GET_INFO returns a keyword for the data type of the variable.

Depending upon the kind of information requested, GET_INFO returns
any one of the following:

* An array

¢ A buffer

¢ An integer
e A keyword

* A marker

* A process

¢ Arange

e A string

* A window

VAXTPU maintains internal lists of the following items:
e Arrays

* Array elements

¢ Breakpoints

¢ Buffers
¢ Defined keys
¢ Key maps

¢ Key map lists
* Processes

¢ Windows

7-157

VAXTPU Built-In Procedures

GET_INFO

" n

You can step through an internally-maintained list by using "first”, "next”,
"previous”, or "last” as the second parameter to GET_INFO. Note that
the order in which VAXTPU maintains these lists is private and may
change in a future version. Do not write code that depends on a list
being maintained in a particular order. When you write code to search a
list, remember that VAXTPU keeps only one pointer for each list. If you
create nested loops that attempt to search the same list, the results are
unpredictable. For example, suppose that a program intended to search
two key map lists for common key maps sets up a loop within a loop. The
outer loop might contain the following statement:

GET_INFO (KEY_MAP,

"previous", name_of_second_key_map)

The inner loop might contain the following statement:

GET_INFO (KEY_MAP, "next", name_of_ first key map)
In VAXTPU, the behavior of such a nested loop is unpredictable.
Unless documented otherwise, the order of the internal list is not defined.

The syntax of GET_INFO depends on the kind of information you are
trying to get. For more information on specific GET_INFO built-ins, see
the descriptions in this section. GET_INFO built-ins whose first parameter
is a keyword are grouped separately from GET_INFO built-ins whose first
parameter is a variable.

Table 7-2 GET_INFO Built-in Procedures by First Parameter

Variable

Keyword

Any Keyword or Key Name

GET_INFO (any_variable)
GET_INFO (array_variable)
GET_INFO (buffer_variable)
GET_INFO (integer_variable)
GET_INFO (marker_variable)
GET_INFO (process_variable)
GET_INFO (range_variable)
GET_INFO (string_variable)
GET_INFO (widget_variable)
GET_INFO (window_variable)

GET_INFO (ARRAY)
GET_INFO (BUFFER)
GET_INFO (COMMAND_LINE)
GET_INFO (DEBUG)
GET_INFO (DEFINED_KEY)
GET_INFO (KEY_MAP)
GET_INFO (KEY_MAP_LIST)
GET_INFO
GET_INFO (PROCEDURES)
GET_INFO (PROCESS)
GET_INFO (SCREEN)
GET_INFO (SYSTEM)
GET_INFO (WIDGET)
GET_INFO (WINDOW)

o~ e o~

mouse_event_keyword)

GET_INFO (any_keyname)
GET_INFO (any_keyword)

7-158

VAXTPU Built-In Procedures

GET_INFO
B M
SIGNALED
ERRORS TPU$_BADREQUEST WARNING Request represented by second
argument is not understood for
data type of first argument.

TPU$_BADKEY WARNING Bad keyword value or
unrecognized data type is passed
as the first argument.

TPU$_NOCURRENTBUF WARNING Current buffer is not defined.

TPU$_NOKEYMAP WARNING Key map is not defined.

TPU$_NOKEYMAPLIST WARNING Key map list is not defined.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong data
type.

TPU$_NEEDTOASSIGN ERROR The GET_INFO built-in can only
be used on the right-hand side of
an assignment statement.

TPU$_NOBREAKPOINT WARNING This string constant is valid only
after a breakpoint.

TPU$_NONAMES WARNING There are no names matching the
one requested.

TPU$_TOOFEW ERROR Too few arguments passed to the
GET_INFO built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the GET_INFO built-in.

TPU$_UNKKEYWORD ERROR An unknown keyword has been
used as an argument.

EXAMPLES

I my buffer := GET_INFC (BUFFERS, “current");
This assignment statement stores the pointer to the current buffer in the
variable my_buffer.

B my string := GET_INFO (my buffer, "file name");

my_ buffer :

This assignment statement stores the name of the input file for my_buffer

in the variable my_string.

GET_INFO (BUFFERS,

"current");

This assignment statement stores a reference to the current buffer in the

variable my_buffer.

7-159

VAXTPU Built-In Procedures
GET_INFO

my_string := GET_INFO (CURRENT BUFFER, "file_ name");

This statement calls the CURRENT_BUFFER built-in, which returns the
current buffer. The GET_INFO built-in determines the name of the input
file associated with the current buffer. The input filename is assigned to
the variable my_string.

is_buf _mod := GET_INFO (CURRENT BUFFER, "modified");

This assignment statement stores the integer 1 or 0 in the variable is_buf_
mod. A value of 1 means the current buffer has been modified. A value of
0 means the current buffer has not been modified.

B my_window := GET_INFO (WINDOWS, "current");
length integer := GET_INFO (my window, "length", visible window);
width_integer := GET_INFO (my window, "width");

These assignment statements store the size of the current window in the
variables length_integer and width_integer.

7] PROCEDURE user_getinfo
top_of window := GET_INFO (CURRENT WINDOW, "top", visible window);

! Remove the top five lines from the main window
ADJUST WINDOW (CURRENT WINDOW, +5, 0);

! Replace removed lines with an example window
example window := CREATE_WINDOW (top_of_window, 5, ON);
example buffer := CREATE BUFFER ("EXAMPLE",
"sys$login:template.txt");
MAP (example window, example buffer);
ENDPROCEDURE;

This procedure uses GET_INFO to find the top of the current window.
It then removes the top five lines and replaces them with an example
window.

B PROCEDURE user_display key map list

current_key map list := GET_INFO (CURRENT_BUFFER,
"key map list");
MESSAGE (current_key map_list):
ENDPROCEDURE;

This procedure retrieves and displays the name of the key map list in the
current buffer.

PROCEDURE show_key map lists
LOCAL key_map_list_name;

key map list_name := GET_INFO (KEY MAP_LIST, "first");
LOop
EXITIF key map list_name = 0;
SPLIT_LINE; v
COPY_TEXT (key_map_list_name);
key_map_list name := GET_INFO (KEY MAP_LIST, "next");
ENDLOOP;
ENDPROCEDURE

This procedure displays all the key map lists.

7-160

N

VAXTPU Built-In Procedures
GET_INFO

PROCEDURE show_self_ insert
LOCAL key map_list_name;
key_map_list_name := GET_INFO (CURRENT BUFFER, "key map_list"):

IF GET_INFO (key _map_list_name, "self insert")
THEN
MESSAGE ("Undefined printable characters will be inserted");
ELSE
MESSAGE ("Undefined printable characters will cause an errox");
ENDIF;
ENDPROCEDURE;

This procedure shows whether the key map list associated with the current
buffer inserts undefined printable characters.

PROCEDURE show_key maps_in list (key_map list_name)
LOCAL key_map_name;

key_map name := GET_INFO (KEY_MAP, "first", key map_list_name);
LOCP

EXITIF key_map name = 0;

SPLIT_LINE;

COPY_TEXT (key map_name) ;

key map name := GET_INFO (KEY MAP, "next", key_map_ list_name);
ENDLOOP;

ENDPROCEDURE;

This procedure displays the key maps in the key map list
key_map_list_name.

7-161

GET_INFO Built-lns Grouped by First Parameter

GET _INFO (any_keyname)

Returns a keyword describing the type of key named by any_keyname.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

integer

FORMAT { keyword
"key_type"

} := GET_INFO (any_keyname, { "key_modifiers" })

PARAMETERS ‘"key_modifiers”

Returns a bit-encoded integer indicating what key modifier or modifiers
were used to create the VAXTPU key name specified by the parameter
any_keyname. For more information about the meaning and possible
values of key modifiers, see the description of the KEY_NAME built-in.

VAXTPU defines four constants to be used when referring to or testing
the numerical value of key modifiers. The correspondence between key
modifiers, defined constants, and bit-encoded integers is as follows:

Key Modifier Constant Bit-Encoded Integer
SHIFT_MODIFIED TPUS$K_SHIFT_MODIFIED 1
CTRL_MODIFIED TPU$K_CTRL_MODIFIED 2
HELP_MODIFIED TPU$K_HELP_MODIFIED 4
ALT_MODIFIED TPU$K_ALT_MODIFIED 8

Note that the keyword SHIFT _KEY may have been used to create a
VAXTPU key name. SHIFT _KEY is not a modifier, it is a prefix. The
SHIFT key, also called the GOLD key by the EVE editor, is pressed and
released before any other key is pressed. In DECwindows, modifying keys
such as the CTRL key are pressed and held down while the modified key
is pressed.

Note, too, that if more than one key modifier was used with the KEY_
NAME built-in, the value of the returned integer is the sum of the integer
representations of the key modifiers. For example, if you create a key
name using the modifiers HELP_MODIFIED and ALT_MODIFIED, the
built-in GET_INFO (key_name, "key_modifiers") returns the integer 12.

"key—type"

Returns a keyword describing the type of key named by any_keyname. The
keywords that can be returned are PRINTING, KEYPAD, FUNCTION,
SHIFT_KEY, KEYPAD, SHIFT FUNCTION, and SHIFT_CONTROL.
Returns 0 if parameterl is not a valid key name. Note that there are
cases in which GET_INFO (any_keyname, "name") returns the keyword
PRINTING but the key described by the keyname is not associated with
a printable character. For example, if you use the KEY_NAME built-in
to define a key name as the combination of the character A and the ALT
modifier, and if you then use GET_INFO (any_keyname, "name") to find
out how VAXTPU classifies the key, the GET_INFO built-in returns the

7-162

P

GET_INFO Built-ins Grouped by First Parameter
GET _INFO (any_keyname)

keyword PRINTING. However, if you use the ASCII built-in to obtain the
string representation of the key, the ASCII built-in returns a null string
because ALT/A is not printable.

new_key := KEY NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
modifier value := GET_INFO (new_key, "key modifiers");

MESSAGE (STR (modifier value));
IF GET_INFO (new_key, "key modifiers")

THEN
the_name := GET_ INFO (new_key, "name")
MESSAGE (STR (the_name));

ENDIF;

The first statement in the preceding code creates a VAXTPU key name
for the key sequence produced by pressing the CTRL key, the SHIFT
key, and the 4 key on the keypad all at once. The new key name is
assigned to the variable new_key. The second statement fetches the
integer equivalent of this combination of key modifiers. The third
statement displays the integer 3 in the message buffer. The IF clause
of the fourth statement shows how to test whether a key name was
created using a modifier. (Note, however, that this statement does not
detect whether a key name was created using the keyword SHIFT_
KEY.) The THEN clause shows how to fetch the key modifier keyword
or keywords used to create a key name. The final statement displays the
string KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED) in the
message buffer.

7-163

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (any_keyword)

GET_INFO (any_keyword)

Returns the string representation of the keyword specified in the first
parameter to GET_INFO.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO. See also the description of GET_INFO (integer_
variable).

FORMAT

string := GET_INFO (keyword, "name”)

PARAMETERS

7-164

keyword
Returns a VAXTPU keyword whose string equivalent you want GET_INFO
to return.

You can use GET_INFO (keyword, "name") to obtain the string equivalent
of a key name. This is useful for displaying screen messages about keys.
For example, to obtain the string equivalent of the key name PF1, you
could use the following statement:

the_string := GET_INFO (PFl, "name");

If a key name is created using several key modifiers, the built-in returns
the string representations of all the keywords used to create the key name.
For more information on creating key names, see the description of the
KEY_NAME built-in.

The following code fragment shows one possible use of GET_INFO
(keyword_variable, "name"):

new_key := KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
!
!
! .
IF GET_INFO (new_key, "key modifiers") <> 0
THEN
the_name := GET_INFO (new_key, "name")
ENDIF;
MESSAGE (STR (the_name)):;

The first statement creates a VAXTPU key name for the key sequence
produced by pressing the CTRL key, the SHIFT key, and the 4 key on
the keypad all at once. The new key name is assigned to the variable
key_name. The IF clause of the statement shows how to test whether
a key name was created using one or more key modifier keywords.
(Note, however, that this statement does not detect whether a key
name was created using the keyword SHIFT_KEY. The built-in GET_
INFO (key_name, "key_modifiers") returns 0 even if the key name was
created using SHIFT_KEY.) The THEN clause shows how to fetch the
key modifier keyword or keywords used to create a key name. The final
statement displays the string KEY_NAME (KP4, SHIFT _MODIFIED,
ALT_MODIFIED) in the message buffer.

"name”
Returns the string equivalent of the specified keyword.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (any_variable)

GET_INFO (any_variable)

Returns a keyword specifying the data type of the variable.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT keyword := GET_INFO (any_variable, "type")

PARAMETERS "type”

Returns a keyword that is the data type of the variable specified in any_

variable.
IF GET_INFO (select_popup, "type") <> WIDGET
THEN
MESSAGE ("Select_ popup widget not created.")
ENDIF;

The preceding code tests whether the variable select_popup has been
assigned a widget instance. If not, the code causes a message to be
displayed on the screen.

7-165

GET_INFO Built-lns Grouped by First Parameter
GET_INFO (ARRAY)

GET_INFO (ARRAY)

Returns an array in VAXTPU'’s internal list of arrays.

For general information about using all forms of GET_INFO buiit-ins, see the
description of GET_INFO.

FORMAT "current”

"first"

array := GET_INFO (ARRAY, { "last")
"ne "
"previous"

PARAMETERS ’current”

Returns the current array in VAXTPU’s internal list of arrays. You must
use either GET_INFO (ARRAY, "first") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "current”). If you use these built-
ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "current") returns 0.

"first”
Returns the first array in the VAXTPU internal list of arrays. Returns 0 if
no arrays are defined.

“last”
Returns the last array in the VAXTPU internal list of arrays. Returns 0 if
no arrays are defined.

“next"”

Returns the next array in VAXTPU’s internal list of arrays. You must
use GET_INFO (ARRAY, "first") before you can use GET_INFO (ARRAY,
"next"). Returns 0 if no arrays are defined.

"previous”

Returns the previous array in VAXTPU’s internal list of arrays. You must
use either GET_INFO (ARRAY, "current") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "previous"). If you use these
built-ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "previous") returns 0.

7-166

P

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (array_variable)

GET_INFO (array_variable)

Returns information about a specified array.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT (array
buffer
integer ("current” \
keyword "first"
marker "high_index"

) process b := GET_INFO (array_variable, { "last" L)
range "low_index"
string "next”
widget \ "previous” J
window

. unspecified)

PARAMETERS ‘'"current”

Returns the index value of the current element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no current element.

You must use either GET_INFO (array_variable, "first") or GET_INFO
(array_variable, "last") before you can use GET_INFO (array_variable,
"current").

"first" |

Returns the index value of the first element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no first
element.

"high_index"

Returns an integer that is the highest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

"Ia st"

Returns the index value of the last element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no last
element.

"low_index"

Returns an integer that is the lowest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

7-167

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (array_variable)

7-168

"next”

Returns the index value of the next element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no next
element.

You must use GET_INFO (array_variable, "first") before you can use
GET_INFO (array_variable, "next").

"previous"”

Returns the index value of the previous element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no previous element.

You must use either GET_INFO (array_variable, "current") or GET_INFO
(array_variable, "last") before you can use GET_INFO (array_variable,
"previous").

GET_INFO Built-Iins Grouped by First Parameter
GET_INFO (BUFFER)

GET_INFO (BUFFER)

Returns a buffer in VAXTPU’s internal list of buffers.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT ¢ "current” W

"erase_unmodifiable”

"find_buffer”, buffer_name
buffer := GET_INFO (BUFFER[S] { "first")
"last”
"next”
\ "previous"”)

PARAMETERS ‘current”)
Returns the current buffer in VAXTPU’s internal list of buffers. Returns 0
if there is no current buffer.

GET_INFO (BUFFERISI, "current") always returns the current
buffer, regardless of whether or you have first used GET_INFO
(BUFFER[S], "first") or GET_INFO (BUFFER[S], "ast"). Thus, GET_
INFO (BUFFERIS], "current") is equivalent to the built-in CURRENT _
BUFFER.

"erase_unmodifiable"”
Returns 1 if unmodifiable records can be erased from the specified buffer
and returns 0 if the records cannot be erased.

"find_buffer"”

Returns the buffer whose name you specify (as a string) as the third
parameter. Returns 0 if no buffer with the name you specify is found.

"first" ,
Returns the first buffer in VAXTPU’s internal list of buffers. Returns 0 if
there is none.

"Ia stl'
Returns the last buffer in VAXTPU’s internal list of buffers. Returns 0 if
there is none.

"n ex ”
The next buffer in VAXTPU’s internal list of buffers. Returns 0 if there
are no more.

"previous"”
Returns the preceding buffer in VAXTPU’s internal list of buffers. Returns
0 if there is none.

7-169

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (buffer_variable)

GET_INFO (buffer variable)

Returns information about a specified buffer.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT (integer)
keyword
learn_sequence
{ marker , := GET_INFO (buffer_variable,
program
range
[string)

("before_bol")
"beyond_eob”
"beyond_eol"

"bound"

"character”
"direction”
"eob_text"
"erase_unmodifiable"
"file_name"

"first_marker"
"first_range"
"journaling"
“journal_file"
"journal_name"
"key_map_list"
< "left_margin"
"left_margin_action”
"line"
"map_count"
"max_lines"
"middle_of_tab"
"mode"
"modifiable”
"modified”
"name”

| "next_marker"
"next_range"
"no_write"”
"offset”
"offset_column"
L"output_ file" J

7-170

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (buffer_variable)

("permanent”)
"read_routine", GLOBAL_SELECT
"record_count”

"record_number”

"record_size"

) "right_margin" >)
"right_margin_action"
"safe_for_journaling”
"system”

"tab_stops"

(| "unmodifiable_records” J

PARAMETERS 'before_ bol"”
Returns an integer (1 or 0) that indicates whether the editing point is

located before the beginning of a line.

"beyond_eob"
Returns an integer (1 or 0) that indicates whether the editing point is
located beyond the end of a buffer.

"beyond_eol"”
Returns an integer (1 or 0) that indicates whether the editing point is
located beyond the end of a line.

"bound”

Returns an integer (1 or 0) that indicates whether or not the marker
that is the specified buffer’s editing point is bound to text. For more
information about bound markers, see Chapter 2.

"character”
Returns a string that is the character at the editing point for the buffer.

"direction”

Returns the keyword FORWARD or REVERSE. This parameter is
established or changed with the built-in procedures SET (FORWARD)
and SET (REVERSE).

"eob text"”
Returns a string representing the end-of-buffer text. This parameter is
established or changed with the built-in procedure SET (EOB_TEXT).

"erase_unmodifiable"”

Returns 1 if unmodifiable records can be erased from the specified buffer
and returns 0 if the records cannot be erased.

"file_name"
Returns a string that is the name of a file given as the second parameter
to CREATE_BUFFER,; null if none was specified.

"first_marker”

Returns the first marker in VAXTPU’s internal list of markers for the
buffer. Returns 0 if there is none. You must use GET_INFO (buffer_
variable, "first_marker") before the first use of GET_INFO (buffer_

7-171

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

7-172

variable, "next_marker"). If you do not follow this rule, GET_INFO
(buffer_variable, "next_marker") returns 0.

Note that there is no corresponding "last_marker" or "prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"first_range"

Returns the first range in VAXTPU’s internal list of ranges for the buffer.
Returns 0 if there are none. You must use GET_INFO (buffer_variable,
*first_range") before you use GET_INFO (buffer_variable, "next_range")
or the "next_range" built-in returns 0.

Note that there is no corresponding "last_range" or "prev_range"
parameter.

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"journaling”
Returns 1 if the specified buffer is being journaled or returns 0 if it is not.

"journal_file"
Returns a string that is the name of the journal file for the specified buffer.
If the buffer is not being journaled, the call returns 0.

"journal_name"

Converts a buffer’s name to a journal file name using the VAXTPU default
journal file name algorithm. VAXTPU converts the buffer name to a
journal file name regardless of journaling status. The GET_INFO call does
not require journaling to be turned on for the specified buffer. For more
information on this algorithm, see Section 1.7.1.

"key_map_list”
Returns a string that is the key map list bound to the buffer. This
parameter is established or changed with the built-in procedure SET.

"left_margin"”

Returns an integer that is the current left margin setting. This parameter
is established or changed with the built-in procedure SET (LEFT._
MARGIN).

"left_margin_action"”

Returns a program or learn sequence specifying what VAXTPU should
do if the user tries to insert text to the left of the left margin. Returns
UNSPECIFIED if no left margin action routine has been set. This
parameter is established or changed with the built-in procedure SET
(LEFT_MARGIN_ACTION).

’ 'I i n e "
Returns a string that is the line of text at the editing point for the buffer.

.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

“"map_count”
Returns an integer that is the number of windows associated with the
buffer.

“"max_lines"

Returns an integer that is the maximum number of records (lines) in
the buffer. This parameter is established or changed with the built-in
procedure SET.

"middle_of tab"

Returns an integer (1 or 0) that indicates whether the editing point is
located in the white space within a tab.

"mode”

Returns the keyword INSERT or OVERSTRIKE. This parameter is
established or changed with the built-in procedures SET (INSERT) and
SET (OVERSTRIKE).

"modifiable”
Returns an integer (1 or 0) that indicates whether the buffer is modifiable.

"modified"”

Returns an integer (1 or 0) that indicates whether the buffer has been
modified.

"name"

Returns a string that is the name given to the buffer when it was created.

"next_marker"

Returns the next marker in VAXTPU’s internal list of markers for the
buffer, Returns 0 if there are no more. You must use GET_INFO (buffer_
variable, "first_marker") before you use GET_INFO (buffer_variable,
"next_marker") or the "next_marker" built-in returns 0.

Note that there is no corresponding "last_marker" or "prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"next_range"”

Returns the next range in VAXTPU’s internal list of ranges for the buffer.
Returns 0 if there are no more. You must use GET_INFO (buffer_variable,
*first_range") before you use GET_INFO (buffer_variable, "next_range")
or the "next_range" built-in returns 0.

Note that there is no corresponding "last_range" or "prev_range"
parameter.

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

7-173

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (buffer_variable)

7-174

"no_write"”

Returns an integer (1 or 0) that indicates whether the buffer should be
written to a file at exit time. Note that VAXTPU writes the buffer to a
file only if the buffer has been modified during the editing session. This

parameter is established or changed with the built-in procedure SET (NO_
WRITE).

"offset"”

Returns an integer that is the number of characters between the left
margin and the editing point. The left margin is counted as character

0. A tab is counted as one character, regardless of width. Window shifts
have no effect on the value returned when you use "offset". The value
returned has no relation to the visible screen column in which a character
is displayed.

"offset_column"

Returns an integer that is the screen column in which VAXTPU displays
the character at the editing point. When calculating this value, VAXTPU
does not take window shifts into account; VAXTPU assumes that any
window mapped to the current buffer is not shifted. The value returned
when you use "offset_column" reflects the location of the left margin
and the width of tabs preceding the editing point. In contrast, the value
returned when you use “offset” is not affected by the location of the left
margin or the width of tabs.

"output_file"”
Returns a string that is the name of the file used with the built-in
procedure SET (OUTPUT_FILE). Returns 0 if there is no output file

associated with the specified buffer. This parameter is established or
changed with the built-in procedure SET (OUTPUT_FILE).

"permanent”
Returns an integer (1 or 0) that indicates whether the buffer is permanent

or can be deleted. This parameter is established or changed with the
built-in procedure SET (PERMANENT).

"read_routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

GLOBAL_SELECT is a keyword indicating that the built-in is to return
the global selection read routine. When you use "read_routine" as the
second parameter to this built-in, you must use the keyword GLOBAL_
SELECT as the third parameter, as follows:

GET_INFO (buffer_variable, "read_routine”, GLOBAL_SELECT)

"record_count"”

Returns an integer that is the number of records (lines) in the buffer.
Note that GET_INFO (buffer, "record_count") does not count the end-of-
buffer text as a record, but GET_INFO (marker, "record_number") does
if the specified marker is on the end-of-buffer text. Thus, the maximum
value returned by GET_INFO (buffer, "record_count") is one less than the

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (buffer_variable)

maximum value returned by GET_INFO (marker, "record_number") if the
specified marker is on the end-of-buffer text.

"record_number"”’
Returns the record number of the editing point.

“"record_size"
Returns an integer that is the maximum length for records (lines) in the
buffer.

"right_margin"

Returns an integer that is the current right margin setting. This
parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN).

“right_margin_action"”

Returns a program or learn sequence specifying what VAXTPU should do
if the user tries to insert text to the right of the right margin. Returns
TPUSK_UNSPECIFIED if the buffer does not have a right margin action.

This parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN_ACTION).

"safe_for_journaling”

Returns 1 if the specified buffer is safe for journaling or returns 0 if it

is not. “Safe_for_journaling” means that journaling can be turned on by
using the SET (JOURNALING) built-in procedure. A buffer is safe for
journaling if it is empty, has never been modified, or has not been modified
since the last time it was written to a file.

"system"

Returns an integer (1 or 0) that indicates whether the buffer is a system
buffer. This parameter is established or changed with the built-in
procedure SET (SYSTEM).

"tab_stops"”

Returns either an integer or a string. Use the built-in SET (TAB_STOPS)
to determine the data type of the return value. If you specify a return
value of type string, the built-in GET_INFO (buffer_variable, "tab_stops")
returns a string representation of all the column numbers where tab stops
are set. The column numbers are separated by spaces. If you specify a
return value of type integer, the return value is the number of columns
between tab stops.

"unmodifiable_records"”

Returns 1 if the specified buffer contains one or more unmodifiable records.
The call returns 0 if no unmodifiable records are present in the specified
buffer.

7-175

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

GET_INFO (COMMAND_LINE)

Returns information about the command line used to invoke VAXTPU.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT {'s';:‘i’rf’ge’ }:: GET_INFO (COMMAND_LINE,
("character” W

"command”
"command_file"
"create”

"display"
"file_name”
"initialization"
"init_file"
"initialization_file"
"journal"
"ournal_file"

"line" |
\ "modify”

"nomodify”
"output”
"output_file"
"read_only"
“recover”
"start_character"
"start_record"
"section”
"section_file"
"work_file"

\ "write" J

PARAMETERS '"character”

Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START_POSITION qualifier is not
specified. This parameter is the same as the "start_character" parameter.

"command"”

Returns an integer (1 or 0) that indicates whether /COMMAND was
specified when you invoked VAXTPU.

"command _file"”
Returns a string that is the command file specification.

7-176

~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

"create”

Returns an integer (1 or 0) that indicates whether /CREATE is active
(either by default or because /CREATE was specified when VAXTPU was
invoked).

"display"”

Returns an integer (1 or 0) that indicates whether /DISPLAY or
/INTERFACE is active (either by default, or because /DISPLAY or
/INTERFACE was specified when VAXTPU was invoked).

"file_name"
Returns a string that is a file specification used as a parameter when the
user invokes VAXTPU.

"initialization"”

Returns an integer (1 or 0) that indicates whether /INITIALIZATION is
active (either by default or because /INITIALIZATION was specified when
VAXTPU was invoked).

"init_file"
Returns a string that is a file specification for /INITIALIZATION. This is a
synonym for GET_INFO (COMMAND_LINE, "initialization_file").

“initialization_file"”
Returns a string that is the initialization file specification for
/INITIALIZATION.

"journal”

Returns an integer (1 or 0) that indicates whether /JOURNAL is active
(either by default or because /JJOURNAL was specified when VAXTPU was
invoked).

"journal_file”
Returns a string that is the journal file specification for /ZJOURNAL.

“line"”

Returns an integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START_POSITION qualifier is not specified.
This parameter is the same as the "start_record" parameter.

"modify"

Returns an integer (1 or 0) that indicates whether the qualifier /MODIFY
was specified when VAXTPU was invoked by the user or by another
program.

"nomodify"”

Returns an integer (1 or 0) that indicates whether the qualifier
/NOMODIFY was specified when VAXTPU was invoked by the user or
by another program.

"output”

Returns an integer (1 or 0) that indicates whether /QUTPUT is active
(either by default or because /OUTPUT was specified when VAXTPU was
invoked).

7-177

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

7-178

"output_file"”
Returns a string that is the output file specification for /OUTPUT.

"read_only”

Returns an integer (1 or 0) that indicates whether /READ_ONLY was
specified when VAXTPU was invoked. For more information on this call,
see Chapter 5.

"recover”
Returns an integer (1 or 0) that indicates whether /RECOVER was
specified when VAXTPU was invoked.

"start_character”

Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START POSITION qualifier is not
specified.

This parameter is a synonym for "character".

"start_record” |

Returns an integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START _POSITION qualifier is not specified.
This parameter is a synonym for "line".

"section”

Returns an integer (1 or 0) that indicates whether /SECTION is active
(either by default or because /SECTION was specified when VAXTPU was
invoked).

"section_file"
Returns a string that is the section file specification for /SECTION.

"work_file"”
Returns a string that is the work file specification for /WORK.

"write"

Returns an integer (1 or 0) that indicates whether /WRITE was specified
when VAXTPU was invoked. For more information on this statement, see
Chapter 5.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (DEBUG)

GET_INFO (DEBUG)

Returns information about the status of a debugging session using the
VAXTPU Debugger.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT

string
contents
integer .
parameter (= GET_INFO (DEBUG,
string
variable
("breakpoint”
"examine”, variable_name
"line_number"
"local”
\ "next”

"parameter”

"previous”
L "procedure" J

)

PARAMETERS

"breakpoint”

Returns a string that is the name of the first breakpoint. This establishes
a breakpoint context for the “next” and “previous” parameters. TPU$_
NONAMES is returned if there are no breakpoints.

"examine"”
Returns the contents of the specified variable. TPU$_NONAMES is
returned if the specified variable cannot be found.

You must specify a string containing the name of the variable as the third
parameter to GET_INFO (DEBUG, "examine").

"line_number"
Returns an integer that is the line number of the breakpoint within the
procedure. If the procedure is unnamed, 0 is returned.

"local”

Returns the first local variable in the procedure. This establishes a context
for the “next” and “previous” parameters. TPU$_NONAMES is returned if
there are no local variables.

7-179

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (DEBUG)

7-180

"next"”

Returns the next parameter, local variable, or breakpoint. Before using
GET_INFO (DEBUG, "next"), you must first use one of the following
built-ins:

e GET_INFO (DEBUG, "local")
¢ GET_INFO (DEBUG, "breakpoint")
¢ GET_INFO (DEBUG, "parameter")

TPU$_NONAMES is returned if there are no more.

"parameter”

Returns the first parameter of the procedure. GET_INFO (DEBUG,
"parameter”) causes the VAXTPU Debugger to construct a list of all the
formal parameters of the procedure you are debugging. Once this list is
constructed, you can use GET_INFO (DEBUG, "next") and GET_INFO
(DEBUG, "previous"). VAXTPU signals TPU$_NONAMES if the procedure
you are debugging does not have any parameters.

"previous”
Returns the previous parameter, local variable, or breakpoint. TPU$_
NONAMES is returned if there are no more.

"procedure”

Returns a string that is the name of the procedure containing the
breakpoint. The null string is returned if the procedure has no name.

7

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (DEFINED_KEY)

GET _INFO (DEFINED_KEY)

Returns a keyword that is the key name of a specified key. GET_INFO
(DEFINED_KEY) takes a string as a third parameter. The string specifies the
name of either the key map or key map list to be searched.

Note that “current” is not valid when the first parameter is DEFINED_KEY or
KEY_MARP, although it is valid when the first parameter is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT irst”
keyword := GET_INFO (DEFINED_KEY, "?:;t" , hame_string)
"previous"
PARAMETERS 'first”

Returns a keyword that is the key name of the first key in the specified
key map or key map list.

"Iast"

Returns a keyword that is the key name of the last key in the specified
key map or key map list.

l'n ex ”

Returns a keyword that is the key name of the next key in the specified
key map or key map list. Returns 0 if last. Use string constant “first”
before using “next.”

"previous"”

Returns a keyword that is the key name of the previous key in the
specified key map or key map list. Returns 0 if first. Use “last” before
using “previous.”

7-181

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (integer_variable)

GET _INFO (integer_variable)

Returns the string representation of any integer that is an equivalent of a
keyword.

For general information about using all forms of GET_INFO built-ins, see
the description of GET_INFO. See also the description of GET_INFO (any_
keyword).

- FORMAT

string := GET_INFO (integer, "name")

PARAMETERS

7-182

integer

Returns an integer that is the equivalent of a VAXTPU keyword. When
you use GET_INFO (integer, "name"), the built-in returns the string
representation of the keyword that is equivalent to the specified integer.

For example, the following statement assigns the string object to the
variable equiv_string:

equiv_string := GET_INFO (10, "name");
(The value 14 is the integer equivalent of the keyword PROCESS.)

Note that you should not use the integer equivalents of keywords in
VAXTPU code. Digital does not guarantee that the existing equivalences
between integers and keywords will always remain the same.

"name”’
Returns the string equivalent of the specified integer or keyword.

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (KEY_MAP)

GET_INFO (KEY_MAP)

Returns information about a key map in a specified key map list. GET_INFO
(KEY_MAP) takes a string as a third parameter. The string specifies the name
of the key map list to be searched.

Note that “current” is not valid when the first parameter is DEFINED_KEY or
KEY_MAP, although it is valid when the first parameter is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT i ;‘Irstt
string — "ast")
{ integer } := GET_INFO (KEY_MAR, "mext” , hame_string)
"previous”

PARAMETERS 'first”

Returns a string that is the name of the first key map in the key map list.
Returns 0 if there is none.

"last”

Returns a string that is the name of the last key map in the key map list.
Returns 0 if there is none.

"next"”
Returns a string that is the name of the next key map in the key map list.
Returns O if there is none. Use string constant “first” before using “next.”

"previous”
Returns a string that is the name of the previous key map in the key map
list. Returns 0 if there is none. Use “last” before using “previous.”

7-183

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (KEY_MAP_LIST)

GET_INFO (KEY_MAP_LIST)

Returns information about a key map list.

Note that “current” is not valid when the first parameter is DEFINED_KEY or
KEY_MAP, although it is valid when the first parameter is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT "current”
. l'ﬁrst”
{ f‘""g } := GET_INFO (KEY_MAP_LIST, { "last")
nteger " "
next
"previous”
PARAMETERS '"current”

7-184

Returns a string that is the name of the current key map list. Returns 0 if
there is none.

"first"

Returns a string that is the name of the first key map list. Returns 0 if
there is none.

"last”

Returns a string that is the name of the last key map list. Returns 0 if
there is none.

"nex ”

Returns a string that.is the name of the next key map list. Returns 0 if
there is none. Use string constants “current” or “first” before using “next.”

"previous"”
Returns a string that is the name of the previous key map list. Returns 0
if there is none. Use “current” or “last” before using “previous.”

o

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (marker_variable)

GET_INFO (marker_variable)

Returns information about a specified marker.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT

buffer
integer
keyword
("before_bol" l
"beyond_eob"
"beyond_eol"
"bound"
"buffer”
"display_value"
"left_margin”
{ "middle_of_tab" >)
"offset"
"offset_column"
"record_number"
"right_margin"
"unmodifiable_records"
"video"
"within_range", range)

}:: GET_INFO (marker_variable,

p—

PARAMETERS

“"before_bol"”]

Returns 1 if the specified marker is located before the beginning of a line;
returns 0 if it is not.

"beyond_eob"
Returns 1 if the specified marker is located beyond the end of a buffer;
returns 0 if it is not.

"beyond_eol"
Returns 1 if the specified marker is located beyond the end of a line;
returns 0 if it is not.

"bound"”

Returns 1 if the specified marker is attached to a character; returns 0 if
the marker is free. For more information on bound and free markers, see
Section 2.6.

"buffer"”
Returns the buffer in which the marker is located.

7-185

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

7-186

"display_value"

Returns the display value of the record in which the specified marker is
located. For more information about display values, see the descriptions of
the SET (DISPLAY_VALUE) and SET (RECORD_ATTRIBUTES) built-in
procedures.

"left_margin"
Returns an integer that is the current left margin setting of the line
containing the marker.

"middle_of_tab"

Returns an integer (1 or 0) that indicates whether the marker is located in
the white space created by a tab.

"offset”

Returns an integer that is the number of characters between the left
margin and the marker. The left margin is counted as character 0. A tab
is counted as one character, regardless of width. Window shifts have no
effect on the value returned when you use “offset.” The value returned has
no relation to the visible screen column in which the character bound to
the marker is displayed.

"offset_column"”

Returns an integer that is the screen column in which VAXTPU displays
the character to which the marker is bound. When calculating this value,
VAXTPU does not take window shifts into account; VAXTPU assumes
that any window mapped to the current buffer is not shifted. The value
returned when you use “offset_column” does reflect the location of the left
margin and the width of tabs preceding the editing point. In contrast, the
value returned when you use “offset” is not affected by the location of the
left margin or the width of tabs.

"record_number”
Returns an integer that is the number associated with the record (line)
containing the specified marker.

A record number indicates the location of a record in a buffer. Record
numbers are dynamic; as you add or delete records, VAXTPU changes
the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible
in a window or whether the record contains text. Note that GET_INFO
(marker, "record_number") counts the end-of-buffer text as a record if
the specified marker is on the end-of-buffer text, but GET_INFO (buffer,
"record_count") never counts the end-of-buffer text as a record. Thus, it
is possible for the value returned by GET_INFO (buffer, "record_count")
to be one less than the maximum value returned by GET_INFO (marker,
"record_number").

"right_margin"
Returns an integer that is the current right margin setting of the line
containing the marker.

"unmodifiable_records"”
Returns 1 if the record containing the specified marker is unmodifiable.
The call returns 0 if the record is modifiable.

P

S~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

"video”

Returns a keyword that is the video attribute of the marker. Returns 0 if
the marker is a free marker.

"within_range"

Returns an integer (1 or 0) that indicates whether the marker is in the
range specified by the third parameter.

7-187

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (mouse_event_keyword)

GET_INFO (mouse_event_keyword)

Returns information about a mouse event. A mouse_event_keyword is a
keyword representing a single click, multiple click, upstroke, downstroke, or
drag of a mouse button. For a list of the valid mouse event keywords that you
can use for the first parameter, see Table 7-3.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT { integer }:: GET_INFO (mouse_event_keyword,
window
{ "mouse_button" })
"window"

PARAMETERS '"mouse button”

Returns an integer that is the number of the mouse button specified with
a mouse event keyword.

Table 7-3 lists the valid keywords for the first parameter when you use
"mouse_button” as the second parameter.

Table 7-3 VAXTPU Keywords Representing Mouse Events

M1UP maup M3UP M4UP M5UP
M1DOWN M2DOWN M3DOWN M4DOWN MSDOWN
M1DRAG M2DRAG M3DRAG M4DRAG MSDRAG
M1CLICK M2CLICK M3CLICK M4CLICK M5CLICK

M1CLICK2 M2CLICK2 M3CLICK2 M4CLICK2 M5CLICK2
M1CLICK3 M2CLICK3 M3CLICK3 M4CLICK3 M5CLICK3
M1CLICK4 M2CLICK4 M3CLICK4 M4CLICK4 M5CLICK4
M1CLICK5 M2CLICKS M3CLICK5 M4CLICK5 MSCLICKS

"window" |

Returns the window in which the down stroke occurred that started the
current drag operation. Returns 0 if no drag operation is in progress for
the specified mouse button when the built-in is executed.

The valid keywords for the first parameter when you use "window"” as the
second parameter are MIDOWN, M2DOWN, M3DOWN, M4DOWN, and
M5DOWN.

7-188

N

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (mouse_event_keyword)

EXAMPLES

x := GET_INFO (M3CLICK2, “mouse_button");

This statement causes VAXTPU to assign the value 3 to the variable x.

the_key := READ_KEY;
IF GET_INFO (the_key, "mouse_ button") = 3
THEN

MESSAGE ("MB3 has no effect in this context."):;

These statements test whether you have pressed MB3 and, if so, display a
message in the message window.

3 PROCEDURE samplé ml_drag

LOCAL the_window,
new_window,
columnn,
row,
temp;

the window := GET INFO (M1DOWN, "window"):;
IF the_window = 0
THEN
RETURN (FALSE)
ENDIF;

LOCATE_MOUSE (new_window, column, row);

IF the_window <> new_window
THEN
MESSAGE ("Invalid drag of pointer across window boundaries.");
ENDIF;
ENDPROCEDURE;

This procedure, when bound to M1DRAG, responds to a drag event by
checking whether you have dragged the mouse across window boundaries.
If you have, the procedure displays a message. If not, the procedure
creates a select range. :

7-189

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (PROCEDURES)

GET_INFO (PROCEDURES)

Returns information about a specified procedure. GET_INFO
(PROCEDURES) takes a string as a third parameter. The string specifies
the name of the procedure about which you are requesting information.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT "defined"”
integer := GET_INFO (PROCEDURES, { "minimum_parameters” ;,
"maximum_parameters"”
string)
PARAMETERS 'defined”

7-190

Returns an integer (1 or 0) that indicates whether the specified procedure
is user defined.

"minimum_parameters"

Returns an integer that is the minimum number of parameters required
for the specified user-defined procedure.

"maximum_parameters"”
Returns an integer that is the maximum number of parameters required
for the specified user-defined procedure.

string
A string that is the name of the procedure about which you want
information.

—

GET_INFO Built-lns Grouped by First Parameter
GET_INFO (PROCESS)

GET_INFO (PROCESS)

FORMAT

Returns a specified process in VAXTPU's internal list of processes.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

"current”
"first”
process := GET_INFO (PROCESS, { "last")
"next"
"previous”

PARAMETERS

"current”

Returns the current process in VAXTPU’s internal list of processes. You
can only use GET_INFO (PROCESS, "current") after you have used GET_
INFO (PROCESS, "first") or GET_INFO (PROCESS, "last"). The built-in
returns 0 if you do not use these GET_INFO built-ins in the correct order.

"first”

Returns the first process in VAXTPU’s internal list of processes. Returns 0
if there is none.

"last"”
Returns the last process in VAXTPU’s internal list of processes. Returns 0
if there is none.

“next"”
Returns the next process in VAXTPU’s internal list of processes. Returns
0 if there are no more processes. Use "first” before using "next”.

"previous”

Returns the preceding process in VAXTPU'’s internal list of processes.
Returns O if there is no previous process. Use "last” before using
"previous”.

7-191

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (process_variable)

GET_INFO (process_variable)

Returns information about a specified process.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT { buffer

= ; "buffer”
integer } = GET_INFO (process_variable, { })

”pid"

PARAMETERS '"buffer”

Returns the buffer associated with the process.

"pidll

Returns an integer that is the process identification number.

7-192

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (range_variable)

GET _INFO (range variable)

Returns information about a specified range.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT { ::;f;;r ’ } := GET_INFO (range_variable,
"buffer”
{ "unmodifiable_records" })
"video"
PARAMETERS 'buffer”

Returns the buffer in which the range is located.

"unmodifiable_records"

Returns 1 if the specified range contains one or more unmodifiable records.
The call returns 0 if no unmodifiable records are present in the specified
range.

"video"
Returns a keyword that is the video attribute of the range.

7-193

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (SCREEN)

GET_INFO (SCREEN)

Returns information about the screen.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT (amray ‘
integer
keyword
learn_sequence
PRIMARY » := GET_INFO (SCREEN,
program
SECONDARY
selection_name
\ string)
¢« "active_area” 1
"ansi_crt"
"auto_repeat”
"avo"

"client_message"

"client_message_routine"

"cross_window _bounds"

"current_column”

“current_row"

"dec_crt"

"dec_crt2"

"decwindows"”

"detached_action" L

\ "detached_reason"

"edit_mode"

"eightbit”

"event", GLOBAL_SELECT
PRIMARY

"global_select", { SECONDARY }
selection_name

" .. | GLOBAL _SELECT
grab_routine”, { INPUT_FOCUS }
"icon_name"
"input_focus"

"length”
L "line_editing" J

7-194

PARAMETERS

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

("mouse”)
"new_length”

"new_width"

"old_length"

"old"_width"

"original_length"

"original_width"

"prompt_length"

"prompt_row"

"read_routine", GLOBAL_SELECT

) "screen_limits"

"screen_update"”

"scroll”

"time", GLOBAL_SELECT

" .. | GLOBAL_SELECT
ungrab_routine”, { INPUT_FOCUS }
"visible_length"

"vk100"

Ilvt-’oo”

"vt200"

"vi300"

\ "width" J

"active_area"

Returns an array containing information on the location and dimensions
of the application’s active area. Returns the integer 0 if there is no active
area. The active area is the region in a window in which VAXTPU ignores
movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, VAXTPU interprets
the event as a click if the upstroke occurs in the active area with the
downstroke. If the upstroke occurs outside the active area, VAXTPU
interprets the event as a drag operation.

A VAXTPU layered application can have only one active area at a time,
even if the application has more than one window visible on the screen.
An active area is only valid if you are pressing a mouse button. The
default active area occupies one character cell. By default, the active area
is located on the character cell pointed to by the pointer cursor.

For information on mouse button clicks, which are related to the concept
of an active area, see the XUI Style Guide.

GET_INFO (SCREEN, "active_area").returns five pieces of information
about the active area in integer-indexed elements of the returned array.
You need not use the CREATE_ARRAY built-in before using GET_INFO
(SCREEN, "active_area"); VAXTPU assigns a properly structured array to
the return variable you specify. The structure of the array is as follows:

Array Element Contents
array {1} The window containing the active area
array {2} The column forming the leftmost edge of the active area

7-195

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-196

Array Element Contents

array {3} The row forming the top edge of the active area
array {4} The width of the active area, expressed in columns
array {5} The height of the active area, expressed in rows

"ansi_crt"”
Returns an integer (1 or 0) that indicates whether the terminal is an
ANSI_CRT.

"auto_repeat"”

Returns an integer (1 or 0) that indicates whether the terminal’s
autorepeat feature is on.

[4)

avo
Returns an integer (1 or 0) that indicates whether the ADVANCED_
VIDEO attribute has been set for the terminal.

"client_message"

Returns a keyword indicating whether VAXTPU has received a KILL_
SELECTION client message or a STUFF_SELECTION client message. If
the call is used when there is no current client message, the integer 0 is
returned.

GET_INFO (SCREEN, "client_message") is used in a VAXTPU-layered or
EVE-layered application’s client message routine. This routine provides
the application’s response to a client message received from another
application.

GET _INFO (SCREEN, "client_message") returns the keyword KILL_
SELECTION when the user is copying from an application layered on
VAXTPU or on EVE that owns the input focus to another application.

To do so, the user selects text in the VAXTPU/EVE-layered application.
This designates the text to be placed in the primary global selection when
another application asks to read the selection. Next, the user clicks the
MBS3 button in the other application. This causes the text in the primary
global selection to be copied at the location indicated by the pointer when
the user clicked on MB3. If the user uses CTRL/MB3 to copy the selection
into the other application, this means that after the selection is copied
into the other application, it is deleted from the VAXTPU/EVE-layered
application. In this case, after the other application inserts the text from
the primary global selection, that application sends a KILL,_SELECTION
client message to the VAXTPU/EVE-layered application. When the
VAXTPU/EVE-layered application detects that a client message has been
received, it executes its client message routine. This routine contains a
statement using GET_INFO (SCREEN, "client_message"). In the case
described here, the return value is the keyword KILL_SELECTION. The
VAXTPU/EVE-layered application then deletes the selected text.

GET_INFO (SCREEN, "client_message") returns the keyword STUFF_
SELECTION when the user is copying from some application into the
VAXTPU/EVE-layered application that owns the input focus. The user
performs a drag operation using the MB3 button to select the text in

the other application. The application grabs ownership of the secondary
global selection and assigns to it the selected text. The application then
sends a STUFF_SELECTION client message to the VAXTPU/EVE-layered
application. When the VAXTPU/EVE-layered application detects that a

~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

client message has been received, it executes its client message routine.
This routine contains a statement using GET_INFO (SCREEN, "client_
message”). In the case described here, the return value is the keyword
STUFF_SELECTION. The VAXTPU/EVE-layered application then inserts
the text from the secondary global selection at the VAXTPU/EVE-layered
application’s editing point.

"client_message _routine"”
Returns the program or learn sequence designated as an application’s
client message action routine. Returns 0 if none is designated.

“cross_window_bounds”

Returns an integer (1 or 0) that indicates whether the CURSOR_
VERTICAL built-in causes the cursor to cross a window boundary if
the cursor is at the top or bottom of the window.

“"current_column”

Returns an integer that is the number of the current column.

"current_row”

Returns an integer that is the number of the current row.

"dec_crt"”

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

"dec_crt2"”

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT2. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

"decwindows"

Returns 1 if your system is running the DECwindows version of VAXTPU,
otherwise returns 0. For more information about the DECwindows version
of VAXTPU, see Chapter 1.

"detached_action”
Returns the current detached action routine. If no such routine is
designated, returns the type UNSPECIFIED.

"detached_reason"
Returns a bit-encoded integer indicating which of the five possible
detached states the cursor is in.

Digital recommends that you use the VAXTPU predefined constants rather
than the actual integers to refer to the reasons for detachment. Table 7—4
shows the correspondence of constants, integers, and reasons.

7-197

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-198

Table 7-4 Detached Cursor Flag Constants

Constant Value Reason

TPUSK_OFF_LEFT 1 The editing point is off the left side of the current
window.

TPUSK_OFF_RIGHT 2 The editing point is off the right side of the current
window.

TPUSK_INVISIBLE 4 The editing point is on a record that is invisible in
the current window.

TPUSK_DISJOINT 8 The current buffer is not mapped to the current
window.

TPUS$K_UNMAPPED 16 No current window exists.

Note that it is possible for TPU$K_INVISIBLE to be set in combination
with either the TPU$K_OFF_LEFT or TPU$K_OFF_RIGHT flags.

"edit_mode"

Returns an integer (1 or 0) that indicates whether the terminal is set to
edit mode.

"eightbit"”
Returns an integer (1 or 0) that indicates whether the terminal uses 8-bit
characters.

"event”
This parameter is used with DECwindows only.

When you use "event” as the second parameter, you must specify the
keyword GLOBAL_SELECT as the third parameter. GLOBAL_SELECT
indicates that GET_INFO is to supply information about a global selection.

If called from within a global selection grab or ungrab routine, GET_INFO
(SCREEN, "event", GLOBAL_SELECT) identifies the global selection that
was grabbed or lost. GET_INFO (SCREEN, "event", GLOBAL_SELECT)
returns a keyword if the global selection was the primary or secondary
selection. The built-in returns a string naming the global selection if

the grab or ungrab involves a global selection other than the primary or
secondary selection.

If called from within a routine that responds to requests for information
about a global selection, GET_INFO (SCREEN, "event", GLOBAL_
SELECT) returns an array. The array contains the information an
application needs to respond to the request for information about the
global selection. The array contains the following information:

array {1} The keyword PRIMARY, the keyword SECONDARY, or a string. This
element identifies the global selection about which information was
requested.

array {2} A string. This element identifies the global selection property about

which information has been requested.

The GET_INFO (SCREEN, "event") built-in returns 0 if the built-in is not
responding to a grab, an ungrab, or a selection information request.

GET_INFO Built-Iins Grouped by First Parameter
GET_INFO (SCREEN)

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"global_select"
This parameter is used with DECwindows only.

Returns the integer 1 if VAXTPU currently owns the specified global
selection; 0 if it does not.

You must specify one of the following parameters as a third parameter to
GET_INFO (SCREEN, "global_select"):

PRIMARY A keyword directing VAXTPU to get information on the
primary global selection.

SECONDARY A keyword directing VAXTPU to get information on the
secondary global selection.

selection_name A string identifying the global selection about which

VAXTPU is to get information.

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"grab_routine"”
This parameter is used with DECwindows only.

Returns the program or learn sequence designated as the application’s
global selection or input focus grab routine. Returns the integer 0 if the
requested grab routine is not present.

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "grab_routine"):

GLOBAL_SELECT A keyword indicating that GET_INFO is to return the global
selection grab routine.
INPUT_FOCUS A keyword indicating that GET_INFO is to return the input

focus grab routine.

"icon_name"
This parameter is used with DECwindows only.

Returns the string used as the layered application’s name in the
DECwindows icon box.

"input_focus”
This parameter is used with DECwindows only.

Returns an integer (1 or 0) indicating whether VAXTPU currently owns
the input focus. Input focus is the ability to process user input from the
keyboard.

"length"

Returns an integer that is the current length of the screen (in rows).

"line_editing"

Returns an integer (1 or 0) indicating whether the line-editing terminal
attribute is turned on. On a character-cell terminal, returns 1 if the
line-editing terminal attribute is turned on, otherwise returns 0. In
DECwindows VAXTPU, this parameter always returns 0.

7-199

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

7-200

"mouse”’
Returns an integer (1 or 0) that indicates whether VAXTPU’s mouse
support capability is turned on.

"new_length"
This parameter is used with DECwindows only.

Returns an integer that is the length (in rows) of the screen after the
resize action routine is executed.

Resize action routines should use the length returned by GET_INFO
(SCREEN, "new_length") to determine the length of their windows. If it is
used outside a resize action routine, this length is the same as the current
length of the screen.

"new_width"
This parameter is used with DECwindows only.

Returns an integer that is the width (in columns) of the screen after the
resize action routine is executed.

Resize action routines should use the length returned by GET_INFO
(SCREEN, "new_width") to determine the width of their windows. If it is
used outside a resize action routine, this width is the same as the current
width of the screen.

"old_length"
This parameter is used with DECwindows only.

Returns an integer that is the length (in rows) of the screen before the
most recent resize event.

The "old_length" value is initially set to the length of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"old_width"
This parameter is used with DECwindows only.

Returns the width (in columns) of the screen before the most recent resize
event.

The "old_width" value is initially set to the width of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"original_length"”
Returns an integer that is the number of lines the screen had when
VAXTPU was invoked. '

"original_width"
Returns an integer that is the width of the screen when VAXTPU was
invoked.

"prompt_length"

Returns an integer that is the number of lines in the prompt area.

S~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SCREEN)

"prompt_row"”
Returns an integer that is the screen line number at which the prompt
area begins.

"read_routine"”
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

You must specify the keyword GLOBAL_SELECT as the third parameter
to GET_INFO (SCREEN, "read_routine"). GLOBAL_SELECT indicates
that GET_INFO is to return the global selection read routine.

"screen_limits"
Returns an integer-indexed array specifying the minimum and maximum
screen length and width.

An integer-indexed array uses four elements to specify the minimum and
maximum screen width and length. The array indices and the contents of
their corresponding elements are as follows.

Array

Element Contents

array {1} The minimum screen width, in columns. This value must be at least
0 and less than or equal to the maximum screen width. The default
value is 0.

array {2} The minimum screen length, in lines. This value must be at least 0
and less than or equal to the maximum screen length. The default
value is 0.

array {3} The maximum screen width, in columns. This value must be greater

than or equal to the minimum screen width and less than or equal to
255, The default value is 255.

array {4} The maximum screen iength, in lines. This value must be greater
than or equal to the minimum screen length and less than or equal
to 255. The default value is 255.

"screen_update”
Returns an integer (1 or 0) that indicates whether screen updating is
turned on.

"scroll”

Returns an integer (1 or 0) that indicates whether the terminal has
scrolling regions. For more information on scrolling regions, see the
description of the built-in SET (SCROLLING).

7-201

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (SCREEN)

7-202

"tim e "
This parameter is used with DECwindows only.

Returns a string in VMS delta time format indicating the amount of time
after requesting global selection information that VAXTPU waits for a
reply. When the time has expired, VAXTPU assumes the request will not
be answered.

You must specify the keyword GLOBAL_SELECT as the third parameter
to GET_INFO (SCREEN, "time").

"ungrab_routine”
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
loses ownership of a global selection or of the input focus. Returns 0 if the
requested ungrab routine is not present.

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "ungrab_routine"):

GLOBAL_SELECT A keyword indicating that GET_INFO is to return the global
selection ungrab routine
INPUT_FOCUS A keyword indicating that GET_INFO is to return the input

focus ungrab routine

"visible_length"
Returns an integer that is the page length of the terminal.

"vk100”

Returns an integer (1 or 0) that indicates whether the terminal is a
GIGL.™

"Vt1a ”

‘Returns an integer (1 or 0) that indicates whether the terminal is in the

VT100 series.
"vt200"

Returns an integer (1 or 0) that indicates whether the terminal is in the
VT200 series.

"vt300”

Returns an integer (1 or 0) that indicates whether the terminal is in the
VT300 series.

"width"
Returns an integer that is the current physical width of the screen.

——

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (string_variable)

GET _INFO (string_variable)

Returns information about the specified string. The string must be the name
of a keymap or keymap list.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT integer ‘
keyword := GET_INFO (string_variable,
program

"journal”
"pre_key_procedure”
"post_key_procedure”
"self_insert"
"Shift_key”
"undefined_key"

)

PARAMETERS 'journal”

Returns an array containing information about the buffer change journal
file whose name you specify with the string parameter. If the specified file
is not a journal file, the integer 0 is returned.

The array indices and the contents of the corresponding elements of the
returned array are as follows:

Index Contents of Element

1 The name of the buffer whose contents were journaled.

2 The date and time the journal file was created.

3 The date and time the edit session started.

4 The name of the source file. A source file is a file to which the buffer

has been written. The journal file maintains a pointer to the source
file. This enables the journal file to retrieve from the source file the
buffer contents as they were after the last write operation. If the
buffer has not been written out or if none of the source files will be
available during recovery, this element contains a null string.

5 The name of the output file associated with the buffer. This is the file
’ nathe specified with the SET (OUTPUT) built-in.
6 The name of the original input file associated with the buffer by the

CREATE_BUFFER built-in. If there is no associated input file or if
the input file will not be available during a recovery, this element
contains a null string.

7 The identification string for the version of VAXTPU that wrote the
journal file.

Note that all elements are of type string.

7-203

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (string_variable)

7-204

"pre_key_ procedure”

Returns the program, stored in the specified keymap or keymap list, that
is called before execution of code bound to keys. Returns 0 if no procedure
was defined by SET (PRE_KEY_PROCEDURE).

"post_key procedure”

Returns the program, stored in the specified keymap or keymap list, that
is called before execution of code bound to keys. Returns 0 if no procedure
was defined by SET (POST_KEY_PROCEDURE).

"self _insert"”

Returns an integer (1 or 0) that indicates whether printable characters are
to be inserted into the buffer if they are not defined. This parameter is
established or changed with the built-in procedure SET (SELF_INSERT).

"shift_key"

Returns a keyword that is the key name for the key currently used as
the shift key. This parameter is established or changed with the built-in
procedure SET (SHIFT_KEY).

"undefined_key"

Returns the program that is called when an undefined character is
entered. Returns 0 if the program issues the default message. This
parameter is established or changed with the built-in procedure SET
(UNDEFINED_KEY).

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (SYSTEM)

GET_INFO (SYSTEM)

Returns information about the system.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT integer
keyword

learn_sequence ; := GET_INFO
program

string

¢ "be”" EN
“column_move_vertical"
"display”
"default_directory”
"enable_resize"
"facility_name"
"informational”
"journaling_frequency"”
"journal_file"
"line_number"”
"message_action_level”
"message_action_type"
(SYSTEM, { "message_flags"
"pad_overstruck_tabs"
"recover”
"resize_action"
"section_file"

"shift_key"

"success"
"timed_message"
"timer"

"traceback”

"update”

"version"

\ "work_file")

 —
N

PARAMETERS '"bell”
Returns the keyword ALL if the bell is on for all messages. Returns

the keyword BROADCAST if the bell is on for broadcast messages only.
Returns 0 if the SET (BELL) feature is off. This parameter is established
or changed with the built-in procedure SET.

"column_move_vertical”
Returns 1 if the MOVE_VERTICAL built-in is set to keep the cursor in

the same column as the cursor moves from line to line. Returns 0 if the
MOVE_VERTICAL built-in preserves the offset, rather than the column

7-205

GET_INFO Built-lns Grouped by First Parameter
GET_INFO (SYSTEM)

7-206

position, from line to line. This parameter is established or changed with
the built-in procedure SET (COLUMN_MOVE_VERTICAL).

"display”
Returns 1 if the /DISPLAY qualifier has been specified by the user or by
default; otherwise, returns 0.

"default_directory”

Returns the name of the current default directory.

"enable_resize"

Returns 1 if resize operations are enabled, otherwise returns 0. By default,
resize operations are not enabled. You can turn resizing on or off with the
built-in SET (ENABLE_RESIZE).

"facility_name"

Returns a string that is the current facility name. This parameter is
established or changed with the built-in procedure SET (FACILITY_
NAME).

“informational”
Returns an integer (1 or 0) that indicates whether informational messages

are displayed. This parameter is established or changed with the built-in
procedure SET (INFORMATIONAL).

"journaling_frequency”

Returns an integer that indicates how frequently records are written to
the journal file. This parameter is established or changed with the built-in
procedure SET (JOURNALING).

"journal_file"”
Returns a string that is the name of the journal file.

"line_number"’
Returns an integer (1 or 0) that indicates whether VAXTPU displays the

line number at which an error occurred. This parameter is established or
changed with the built-in procedure SET (LINE_NUMBER).

"message_action_level”

Returns an integer that is the completion status severity level at which
VAXTPU performs the message action you specify. The valid values, in
ascending order of severity, are as follows: 1 (success), 3 (informational),
0 (warning), and 2 (error). This parameter is established or changed with
the built-in procedure SET (MESSAGE_ACTION_LEVEL).

"message_action_type"

Returns a keyword describing the action to be taken when VAXTPU
signals an error, warning, or message whose severity level is greater than
or equal to the level set with SET (MESSAGE_ACTION_LEVEL). The
possible keywords are NONE, BELL, and REVERSE. This parameter

is established or changed with the built-in procedure SET (MESSAGE_
ACTION_TYPE).

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (SYSTEM)

"message _flags"
Returns an integer that is the current value of the message flag setting.

This parameter is established or changed with the built-in procedure SET
(MESSAGE_FLAGS).

"pad_overstruck _tabs"
Returns an integer (1 or 0) that indicates whether VAXTPU preserves the

white space created by a tab character. This parameter is established or
changed with the built-in procedure SET (PAD_OVERSTRUCK_TABS).

“recover”

Returns an integer (1 or 0) that indicates whether a recovery using a
keystroke journal file is currently in progress. Be careful when using
this built-in—specifying different VAXTPU actions during a recovery
than during an ordinary editing session may cause VAXTPU keystroke
journaling to fail.

"resize_action”
Returns the program or learn sequence designated as the application’s
resize action routine. Returns 0 if the requested resize action routine

is not present. You can designate a resize action routine using the SET
(RESIZE_ACTION) built-in.

"section_file"
Returns a string that is the name of the section file used when the user
invoked VAXTPU.

"shift_key"
Returns a keyword that is the value of the current shift key set with SET
(SHIFT_KEY) for the current buffer.

"success”

Returns an integer (1 or 0) that indicates whether success messages are
displayed. This parameter is established or changed with the built-in
procedure SET (SUCCESS).

“"timed_message"
Returns a string of text that VAXTPU displays at 1-second intervals in the
prompt area if the SET (TIMER) feature is on.

"timer"
Returns the integer 1 if SET (TIMER) has been enabled, otherwise returns
0.

"traceback"

Returns an integer (1 or 0) that indicates whether VAXTPU displays the
call stack for VAXTPU procedures when an error occurs. This parameter
is established or changed with the built-in procedure SET (TRACEBACK).

7-207

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

"update”’
Returns an integer that is the update number of this version of VAXTPU.

"version”
Returns an integer that is the version number of VAXTPU.

"work_file"
Returns a string that is the name of the work file opened during startup.

7-208

N~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

GET_INFO (WIDGET)

Returns information about VAXTPU widgets in general or about a specific
widget whose name you do not know at the time you use the built-in.

The GET_INFO (WIDGET) built-in is used with DECwindows only.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT

integer
widget .. GET INFO (WIDGET,
array

NONE
"callback_parameters”, array

I » [widget
‘children", { SCREEN } array
"menu_position", mouse_down_button)

. . .. | parent_widget
widget_id", { SCREEN, widget _name }

PARAMETERS

"callback_parameters”

Returns the widget instance performing the callback, the closure value
associated with the widget instance, and the reason for the callback. Note
that in DECwindows documentation, the closure is called the tag.

array An array used to return values for the callback, the closure, and the
reason. The array has the following indices of type string: "widget",
“closure”, and "reason_code". GET_INFO (WIDGET, "callback_
parameters") places the corresponding vaiues in the array elements.
VAXTPU automatically creates the array in which the return values
are placed.

To use this parameter, specify a variable that has been declared
or initialized before you use it. The initial type and value of the
variable are unimportant. When GET_INFO (WIDGET, "callback_
parameters"”) places the return values in the array, the initial values
are lost.

Note that the integer on the left side of the assignment operator
indicates whether GET_INFO was used correctly.

GET_INFO (WIDGET, "callback_parameters") should be used in a
widget callback procedure. If you use this built-in outside a widget
callback procedure, the value returned is indeterminate. If you
use the built-in inside a widget callback procedure and callback
information is available, the built-in returns 1.

For more information about callbacks and closure values in
DECwindows VAXTPU, see Chapter 4. For general information
about using callbacks and closure values, see the VMS DECwindows
Guide to Application Programming.

7-209

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

7-210

"children"

Returns the number of widget children controlled by the specified widget.
The array parameter returns the children themselves. If the keyword
SCREEN is specified instead of a widget, the built-in returns the number
of children controlled by the VAXTPU main window widget.

"menu_position"”

Returns information about any pop-up widgets that are set for menu
positioning when you press the specified mouse button. If no pop-up
widgets are set, returns the keyword NONE; otherwise, returns an
integer-indexed array of all pop-ups set for menu positioning.

mouse_down_button This keyword (M1DOWN, M2DOWN, M3DOWN,
M4DOWN, or M5DOWN) indicates the mouse button
associated with the pop-up menus.

"widget _id"
Returns the widget instance whose name matches the specified widget
name. The remaining parameters are as follows:

parent_widget The widget that is an ancestor of the widget instance
returned by the GET_INFO (WIDGET) built-in.
SCREEN A keyword indicating that VAXTPU'’s main window widget

is the ancestor of the widget instance that you want the
GET_INFO (WIDGET) built-in to return.

widget_name A string that is the fully qualified name of the widget
you want the built-in to return. To specify this parameter
correctly, start the string with the name of the widget's
parent. Use the same name you used to specify the parent_
widget parameter. If you used the SCREEN parameter
instead of the parent_widget parameter, start the string with
the widget name fpu$mainwindow.

Next, specify the names of the ancestors, if any, that occur
in the widget hierarchy between the parent and the widget
itself. Start with the ancestor just below the parent and
progressively specify more immediate ancestors. Finally,
specify the name of the widget you want the GET_INFO
(WIDGET) built-in to return. Separate all widget names with
periods.

The fully qualified widget name is case sensitive.

GET_INFO (WIDGET, "widget_id") calls the X Toolkit routine NAME TO
WIDGET.

For more information on DECwindows concepts such as parent widgets,
ancestor widgets, and the distinction between widget classes and widget
instances, see the VMS DECwindows Guide to Application Programming.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

EXAMPLES

PROCEDURE eve$callback_dispatch

LOCAL the_program,
status,
temp_array:;

ON_ERROR
[TPU$_CONTROLC] :
eve$$x_state_array {eve$$k_command line flag}
eve$learn_abort;
ABORT;
[OTHERWISE] :
eve$$x state_array {eve$$k command line flag}
ENDON_ERROR

eve$k _invoked by_key:

eve$Sk_invoked by_key;

IF NOT eve$x decwindows_active

THEN
RETURN (FALSE) ;
ENDIF;
eve$$x state_array {eve$$k_command line flag} := eve$k invoked by menu;
status :=

GET_INFO (WIDGET, "callback_parameters", temp_array):; This statement using
GET_INFO (WIDGET)
returns the calling
widget, the closure,

and the reason code.

— v =

! The following statements make the contents of "temp_array"
! available to all the eve$Swidget_ xxx procedures

eve$x_widget := temp_array {"widget"};

! This array element contains the widget

! that called back.
eveSx widget_tag := temp_array {"closure"};

! This array element contains the widget tag

! that is assigned to the widget in the UIL file.
eve$x_widget reason := temp_ array {"reason_code"};

! This array element contains callback reason code.

! The next line gets the callback routine from the array indexed
! by closure values.

the_program := eve$$x_widget array {eve$x widget_tag};
IF the_program <> 0
THEN
EXECUTE (the_ program);
ENDIF;
eve$$x_state_array {eve$$k_command line_flag} := eve$k_invoked by key;
RETURN;
ENDPROCEDURE;

This procedure shows one possible way that a layered application can use
GET_INFO (WIDGET, "callback_parameters”, array). The procedure is a
simplified version of the EVE procedure EVE§CALLBACK_DISPATCH.
You can find the original version in SYSSEXAMPLES:EVE$MENUS.TPU.

7-211

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

(For more information about using the files in SYSSEXAMPLES as
examples, see Section B.1.)

This version of EVE$CALLBACK_DISPATCH handles callbacks from EVE
widgets. The statement GET_INFO (WIDGET, "callback_parameters",
temp_array) copies the following three items into elements of the array
temp_array:

e The widget that is calling back
* The widget’s integer closure

® The reason why the widget is calling back

The array eve$$x_widget_array contains pointers to all of EVE’s callback
routines in elements indexed by the appropriate integer closure values.
This procedure locates the correct index in the array and executes the
corresponding callback routine.

Warning: This simplified version of EVE$CALLBACK_DISPATCH does
not completely replace the version in existing EVE code.
Furthermore, Digital does not guarantee that this example will
work successfully with future versions of EVE. This example
is presented solely to illustrate how EVE uses the built-in
GET_INFO (WIDGET, "callback_parameters", array) in a callback
handling procedure.

the_text widget := GET_INFO (WIDGET, "widget_id", new_dialog,
"NEW_DIALOG.NEW_TEXT") ;

This statement assigns to the variable the_text_widget the widget instance
named by the string NEW_DIALOG.NEW_TEXT. The widget instance is
the child of the widget instance assigned to the variable new_dialog.

B PROCEDURE eve_ show_widgets ! Display the widget hierarchy

local
loop_index,
num_topmost,
widget_array;

widget_array := 0;
num_topmost := GET_INFO (WIDGET, "children", SCREEN, widget_array);

IF num _topmost > 0

THEN
loop_index := 1;
LOOP
EXITIF loop_index > num topmost;
show_widget_tree (widget_array, "");
loop_index := loop_index + 1;
ENDLOOP;
ENDIF;
ENDPROCEDURE;
PROCEDURE show_widget_tree ! Recursively display the widget tree

(the_array, the_string)

7-212

SN

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WIDGET)

LOCAL
child_array,
highest,
loop_index,
num_children;
child _array := 0;
loop_index := 1;
highest := get_info (the array, "high index");

EXITIF loop_index > highest;
MESSAGE (the_string + GET_INFO (the array {loop index}, "name")
+ ASCII (%o0ll)
+ GET_INFO (the_array {loop_index}, "class"));
num children := GET_INFO (WIDGET, "children",
the array {loop_index}, child array);
IF num_children > 0

THEN
show_widget_tree (child array, the string + " ") ;
ENDIF;
loop_index := loop_index + 1;
ENDLOOQOP;
ENDPROCEDURE;

This procedure shows how to use GET_INFO (WIDGET, "children") to
display the entire hierarchy of widgets known to a VAXTPU session.

7-213

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (widget_variable)

GET_INFO (widget_variable)

Returns information about a specified widget variable.
The GET_INFO (widget_variable) built-in is used with DECwindows only.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT :nteger
earn_sequence | _ , ,
program (= GET_INFO (widget_variable,
string
("callback_routine"”)
"class"
"is_managed"
"is_subclass", widget class
"name” ,)
"parent”
"resources”
text” array
"widget_info", , ,
L geL { arg_pair [, arg_pair... J })
PARAMETERS ‘'callback_routine"”

7-214

Returns the program or learn sequence designated as the application’s
callback routine for the specified widget. This is the program or learn
sequence that VAXTPU should execute when a widget callback occurs for
the specified widget instance. For more information about callbacks, see
Chapter 4.

"class"

Returns the name of the class to which the specified widget instance
belongs.

"is_managed"

Returns 1 (TRUE) if the specified widget is managed; otherwise, it
returns 0 (FALSE). This built-in calls the DECwindows Toolkit routine
IS MANAGED.

"Iis_subclass”

Returns 1 (TRUE) if the specified widget belongs to the class referred to by
the specified integer or belongs to a subclass of that class. A TRUE value
indicates only that the widget is equal to or is a subclass of the specified
class; the value does not indicate how far down the class hierarchy the

widget’s class or subclass is. If the widget is not in the class, or one of its
subclasses, this GET_INFO call returns 0 (FALSE).

e

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (widget_variable)

widget_class The integer specifying the widget class to use in the subclass
test. This value is returned from the DEFINE_WIDGET_CLASS
built-in procedure.

"name”
Returns a string that is the name of the specified widget instance.

"parent”

Returns the parent of the specified widget instance. If the widget has no
parent, the call returns 0.

"resources”
Returns a string-indexed array in which each index is a valid resource
name for the specified widget. The corresponding array element is a string

containing the resource’s data type and class, separated by a line feed
(ASCII (10)).

"text"”

Returns a string that is the value of the specified simple text widget. (The
value of a text widget is the text entered into the text widget by the user
in response to a prompt in a dialog box.) GET_INFO (widget_variable,
"text") is equivalent to the XUI Toolkit routine dwi$s_text_get_string.

If the specified widget is not of class SText, VAXTPU signals the status
TPU$_WIDMISMATCH.

"widget_info"
Returns the current values for one or more resources of the specified
widget.

Note that the values are returned in the array or series of argument pairs
that is passed as the third parameter. The integer on the left side of the
assignment operator indicates whether the built-in executed successfully.

The third parameter is either an array or a series of paired arguments,
specified as follows:

array Each array index must be a string naming a valid resource
for the specified widget. Note that resource names are case
sensitive. The corresponding array element contains the
value of the resource. The array can contain any number of
elements.

arg_pair A string naming a valid resource for the widget followed by
a variable to store the value of the resource. Separate the
resource name string from the variable with a comma and a
space, as follows:

resource_name_string, resource_value
You can fetch as many resources as you want by using
multiple pairs of arguments.

GET_INFO (widget_variable, "widget_info", array, arg_pair) is functionally
equivalent to the X Toolkit routine GET VALUES.

If you specify the name of a resource that the widget does not support,
VAXTPU signals the error TPU$_ARGMISMATCH.

7-215

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (widget_variable)

If the requested resource is a list of items and the list contains no entries,
the GET_INFO call uses either the element of the array parameter or uses
the value parameter to return an array containing no elements.

For more information about specifying resources, see Chapter 4.

EXAMPLES

EXECUTE (GET_INFO (eve$x replace dialog,
"callback routine"));

This statement executes the callback routine for the widget eve$x_replace_
dialog. Note that this statement is valid only after the Replace dialog box
has been used at least once, because EVE does not create any dialog box
until you have invoked it.

B PROCEDURE sample_return_name

LOCAL status;

status := GET_INFO (eve$x_ replace_dialog,
uname") ;

MESSAGE ("The data type of status is: "):

MESSAGE (STR (GET_INFO(status, "type")));

MESSAGE ("The value of status is: ");

MESSAGE (STR (status)); (
ENDPROCEDURE ;

This procedure displays the name of the widget instarice specified by the
variable eve$x_replace_dialog. To confirm that the widget has been created
as expected, the procedure also displays a message identifying the data
type of the variable’s contents. Note that the procedure is valid only after
the Replace dialog box has been used at least once, because EVE does not
create any dialog box until you have invoked it.

A statement containing the built-in GET_INFO (widget, "name") can {
be useful in code implementing a debugging command that evaluates
VAXTPU statements, expressions, and variables.

3] eve$x_needfilename_dialog := CREATE_WIDGET ("NEEDFILENAME DIALOG",
eve$k widget_hierarchy,
SCREEN,
eve$kt_callback_routine);
the_value := "Type filename for writing buffer " +
get_info (the_buffer, "name");

child of box := get_info (WIDGET, "widget_id",
eve$x needfilename_dialog,
"NEEDFILENAME DIALOG.NEEDFILENAME_ LABEL");

status := set (WIDGET, child_of box, evedwtc_nlabel, the_value);

This code fragment creates an EVE file name dialog box widget and

assigns the widget to the variable eve$x_needfilename_dialog. Next, the (
fragment assigns to the variable the_value a string prompting you for
the name of a file to which the buffer’s contents should be written. The
fragment uses the built-in GET_INFO (WIDGET, "widget_id") to assign

7-216

N~

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (widget_variable)

the dialog box’s label widget to the variable child_of _box. Finally, the
fragment assigns to the label widget’s evedwtc_nlabel resource the
string contained in the_value.

PROCEDURE user_widget_replace_all

CONSTANT
user_k_widget_name := "REPLACE_DIALOG.REPLACE_ALL";

LOCAL the value,
parent_widget,
replace_all button;

parent_widget := eve$x_replace_dialog;

replace_all button := GET_INFO (WIDGET, "widget_id",
parent_widget,
user_k_widget_name);

GET INFO (replace_all button, ! This statement uses
"widget_info", evedwtc_nvalue, ! GET_INFO (widget, "widget_info")
the_value); ! to fetch the value of the

! dwt$c_nvalue resource.

IF the_value
THEN

MESSAGE ("All instances will be replaced.");
ELSE

MESSAGE ("Not all instances will be replaced.");
ENDIF;

ENDPROCEDURE;

This procedure, user_widget_replace_all, shows one possible way

that a layered application can use GET_INFO (widget, "widget_

info"). The procedure is a modified version of the EVE procedure
EVE$$WIDGET_REPLACE_ALL. You can find the current version in
SYS$EXAMPLES:EVE$MENUS.TPU. (For more information about using
the files in SYS§EXAMPLES as examples, see Section B.1.)

Procedure user_widget_replace_all determines what user message to
display in response to the EVE command REPLACE. The procedure uses
GET_INFO (widget, "widget_info") to fetch the value of the resource
dwt$c_nvalue. A value of 0 means the Replace All toggle button appears
unshaded while a value of 1 means the toggle button appears solid.

temp array := create array;
temp array {"selectedItems" + ascii (10) + "selectedItemsCount"} := 0;
status := get_info (the widget_id, "widget_ info", temp array);

If the_widget_id is a variable containing a list box widget that has no
items selected, then

temp_array(“selectedItems” + ascii (10) + "selectedItemsCount"] contains
an empty array when the built-in returns.

7-217

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (WINDOW)

GET_INFO (WINDOW)

Returns a window from VAXTPU'’s internal list of windows or the current
window on the screen.

For general information about using all forms of GET_INFO built-ins, see the
description of GET_INFO.

FORMAT "current”
"first"
window := GET_INFO (WINDOW]S], { "last”)
"ne ")
"previous”
L

PARAMETERS '"current”

Returns the current window on the screen. Returns 0 if there is none.
GET_INFO (WINDOWTISI, "current") always returns the current window,
regardless of whether or you have first used GET_INFO (WINDOWTISI,
"first") or GET_INFO (WINDOWTISI, "last").

"first"”
Returns the first window in VAXTPU’s internal list of windows. Returns 0
if there is none.

'llastl'

Returns the last window in VAXTPU’s internal list of windows. Returns 0
if there is none.

"nex "

Returns the next window in VAXTPU’s internal list of windows. Returns 0
if there are no more windows in the list. Use string constants "current” or
"first” before using "next”.

"previous”

Returns the preceding window in VAXTPU’s internal list of windows.
Returns 0 if there are no previous windows in the list. Use string
constants "current” or "last” before using "previous”.

7-218

GET_INFO Built-Ins Grouped by First Parameter

GET_INFO (window_variable)

GET _INFO (window_variable)

Returns information about a specified window.

FORMAT

For general information about using all forms of GET_INFO built-ins, see the

description of GET_INFO.

integer
buffer
keyword
string
window
widget

("before_bol"
"beyond_eob”
"beyond_eol”
"blink_status"
"blink_video"
"bold_status”
"bold_video"

"current_column"

"current_row"

"display_value"

\ "key_map_list"

, WINDOW

"Ieft" ’ TEX T
, VISIBLE_TEXT

, WINDOW

"length" || ’ TEXT

"middle_of_tab"
"ne "

"no_video"
"no_video_status”
"original_bottom"
"original_length"
"original_top"

P

"bound"
, WINDOW
" o || » TEXT
bottom”™ || * /15181 £ WINDOW
. VISIBLE_TEXT
"buffer”

, VISIBLE_WINDOW

, VISIBLE_WINDOW
, VISIBLE_TEXT

:= GET_INFO (window_variable,

7-21!

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

4 Ilp a d”

"previous"
"reverse_status"
"reverse_video"

. WINDOW
v TEXT
right” | * VisIBLE wINDOW
| VISIBLE TEXT
"scroll" -

"scroll_amount”
" » [HORIZONTAL
scroll_bar, { 0o}

"scroll_bar_ auto_thumb”, {

"scroll_bottom"
"scroll_top"
"shift_amount"
"special_graphics_status" L
"status_line"

"status_video"

"text”
, WINDOW
, TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT
"underline_status”
"underline_video"
"video"
"visible"
"visible_bottom"
"visible_length"
"visible_top"
, WINDOW
, TEXT
, VISIBLE_WINDOW
, VISIBLE_TEXT)

HORIZONTAL }
VERTICAL

lltop n

"wi dt n

PARAMETERS

7-220

"before_bol"

Returns an integer (1 or 0) that indicates whether the cursor is to the
left of the current line’s left margin. The return value has no meaning if
"beyond_eob" is true. This call returns 0 if the window you specified is not
mapped. .

"beyond _eob”

Returns an integer (1 or 0) that indicates whether the cursor is below the
bottom of the buffer. This call returns 0 if the window you specified is not
mapped.

"beyond_eol"”

Returns an integer (1 or 0) that indicates whether the cursor is beyond the
end of the current line. The return value has no meaning if "beyond_eob"is
true. This call returns 0 if the window you specified is not mapped.

e

GET_INFO Built-lns Grouped by First Parameter
GET_INFO (window_variable)

"blink_status"

Returns an integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window’s status line. This parameter is established
or changed with the built-in procedure SET (STATUS_LINE).

"blink _video"”

Returns an integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bold _status"

Returns an integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window’s status line. This parameter is established
or changed with the built-in procedure SET (STATUS).

"bold _video"

Returns an integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bound"”

Returns an integer (1 or 0) that indicates whether the cursor is located on
a character.

"bottom ”

Returns an integer that is the number of the last row or last visible row
of the specified window, or the specified window’s text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are as follows:

Table 7-5 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length”, "Right", "Top", or
"Width"

Keyword Definition

TEXT A keyword directing the built-in to return the specified (left,
right, top, or bottom) window row or column or the number
of window rows or columns on which text can be displayed.
By specifying TEXT instead of VISIBLE_TEXT, you obtain
information about a window’s rows and columns even if they
are invisible because the window is occluded. If the window
is not occluded, the value returned is the same as the value
returned with VISIBLE_TEXT.

VISIBLE_TEXT A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns on which text
can be displayed. When VAXTPU determines a window's
last visible text row, VAXTPU does not consider the status
line or the bottom scroll bar to be a text row.

(continued on next page

7-221

GET_INFO Built-lns Grouped by First Parameter
GET_INFO (window_variable)

7-222

Table 7-5 (Cont.) Valid Keywords for the Third Parameter When the
Second Parameter is "Bottom”, "Left", "Length”,
"Right", "Top", or "Width"

Keyword Definition

VISIBLE_WINDOW A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns in the window.

WINDOW A keyword directing the built-in to return the specified (left,
right, top, or bottom) window row or column or the number
of window rows or columns in the window. By specifying
WINDOW instead of TEXT, you obtain the window’s last
row or column, even if it cannot contain text because it
contains a scroll bar or status line. By specifying WINDOW
instead of VISIBLE_WINDOW, you obtain information about
a window’s rows and columns even if they are invisible
because the window is occluded. If the window is not
occluded, the value returned is the same as the value
returned with VISIBLE_WINDOW.

GET_INFO (window_variable, "bottom", TEXT) is a synonym for GET _
INFO (window_variable, "original_bottom"). The call GET_INFO (window_
variable, "bottom", VISIBLE_TEXT) is a synonym for GET_INFO
(window_variable, "visible_bottom").

"buffer”

Beturns the buffer that is associated with the window. Returns 0 if there
is none.

"eurrent_column”

Returns an integer that is the column in which the cursor was most
recently located.

"current_row"”
Returns an integer that is the row in which the cursor was most recently
located.

"display_value"
Returns the display value of the specified window.

"key_map_list”
Returns the string that is the name of the key map list associated with the
window you specify.

"Ieft"

Returns an integer that is the number of the leftmost column or leftmost
visible column of the specified window, or the specified window’s text
area. The column whose number is returned depends on the keyword you
specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-5.

S~

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

"length"”

Returns an integer that is the number of rows or visible rows in the
specified window or the specified window’s text area. The number of rows
returned depends on the keyword you specify as the third parameter. If
you do not specify a keyword, the default is TEXT. Valid keywords are
shown in Table 7-5.

"middle_of_tab"
Returns an integer (1 or 0) that indicates whether the cursor is in the

middle of a tab. The return value has no meaning if "beyond_eob" is true.
This call returns 0 if the window you specified is not mapped.

"next"

Returns the next window in VAXTPU’s internal list of windows. Returns 0
if there are no more windows in the list.

"no_video"

Returns an integer (1 or 0) that indicates whether the video attribute of
the window is NONE. This parameter is established or changed with the
built-in procedure SET (VIDEO).

"no_video_status”
Returns an integer (1 or 0) that indicates whether the video attribute

of the window’s status line is NONE. This parameter is established or
changed with the built-in procedure SET (STATUS).

"original_bottom"
Returns an integer that is the screen line number of the bottom of the
window when it was created or last adjusted (does not include status line

or scroll bar). Digital recommends that you retrieve this information using
GET_INFO (window, "bottom", text).

"original_length"
Returns an integer that is the number of lines in the window when it was
created. The value returned includes the status line.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", window).

"original_top"
Returns an integer that is the screen line number of the top of the windov
when it was created.

1] 'p a d "”

Returns an integer (1 or 0) that indicates whether padding blanks have
been displayed from column 1 to the left margin (f the left margin is
greater than 1) and from the ends of lines to the right margin. This

parameter is established or changed with the built-in procedure SET
(PAD).

"previous"

Returns the previous window in VAXTPU’s internal list of windows.
Returns 0 if there are no previous windows in the list.

7-22

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

7-224

"reverse_status"”

Returns an integer (1 or 0) that indicates whether REVERSE is one of the
video attributes of the window’s status line. This parameter is established
or changed with the built-in procedure SET (STATUS).

"reverse_video"
Returns an integer (1 or 0) that indicates whether REVERSE is one of the

video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"right"

Returns an integer that is the number of the last column or last visible
column of the specified window or the specified window’s text area. The
window column whose number is returned depends on the keyword you

specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-5.

"scroll”
Returns an integer (1 or 0) that indicates whether scrolling is enabled for

the window. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"scroll_amount”
Returns an integer that is the number of lines to scroll. This parameter is
established or changed with the built-in procedure SET.

"scroll_bar"
This parameter is used with DECwindows only.

Returns the specified scroll bar widget instance implementing the scroll
bar associated with a window if it exists, otherwise returns 0.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar"). HORIZONTAL
directs VAXTPU to return the window’s horizontal scroll bar; VERTICAL
directs VAXTPU to return the window’s vertical scroll bar.

"scroll_bar_auto_thumb"”
This parameter is used with DECwindows only.

Returns an integer (1 or 0) indicating whether automatic adjustment of the
specified scroll bar slider is enabled. Returns 1 if automatic adjustment is
enabled, 0 if it is disabled.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar_auto_thumb").
HORIZONTAL directs VAXTPU to return information about the window’s
horizontal scroll bar; VERTICAL directs VAXTPU to return information
about the window’s vertical scroll bar.

"scroll_bottom"
Returns an integer that is the bottom of the scrolling area, an offset from

the bottom screen line. This parameter is established or changed with the
built-in procedure SET (SCROLLING).

N~

GET_INFO Built-ins Grouped by First Parameter
GET_INFO (window_variable)

"scroll_top”

Returns an integer that is the top of the scrolling area, an offset from the
top screen line. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"shift_amount”
Returns an integer that is the number of columns the window is shifted to
the left.

"special_graphics_status"

Returns an integer (1 or 0) that indicates whether SPECIAL_GRAPHICS
is one of the video attributes of the window’s status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

"status_line"”

Returns a string that is the text of the status line. Returns 0 if there is
none. This parameter is established or changed with the built-in procedure
SET (STATUS_LINE).

"status video"

If there is no video attribute or only one video attribute for the window’s
status line, the appropriate video keyword (NONE, BLINK, BOLD,
REVERSE, UNDERLINE or SPECIAL_GRAPHICS) is returned. If there
are multiple video attributes for the window’s status line, the integer

1 is returned. If there is no status line for the window, the integer 0

is returned. This parameter is established or changed with the built-in
procedure SET (STATUS_LINE).

"text"

Returns a keyword that indicates which keyword was used with SET
(TEXT). SET (TEXT) controls text display in a window. SET (TEXT)
returns any of the following keywords: BLANK_TABS, GRAPHIC_TABS,
or NO_TRANSLATE.

’ 't o p ”

Returns an integer that is the number of the first row or first visible row
of the specified window or the specified window’s text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-5.

"underline_status”
Returns an integer (1 or 0) that indicates whether UNDERLINE is one

of the video attributes of the window’s status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

"underline_video”

Returns an integer (1 or 0) that indicates whether UNDERLINE is one
of the video attributes of the window. This parameter is established or
changed with the built-in procedure SET (VIDEO).

r lvi de o ”

If there is no video attribute or only one video attribute for the window,
the appropriate video keyword (NONE, BLINK, BOLD, REVERSE, or
UNDERLINE) is returned. If there are multiple video attributes for the
window, the integer 1 is returned. If you get the return value 1 and you

7-225

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

want to know more about the window’s video attributes, use the specific
parameters such as "underline_video" and "reverse_video".

This parameter is established or changed with the built-in procedure SET
(VIDEO).

"visible"
Returns an integer (1 or 0) that indicates whether or not the window is
mapped to the screen and whether it is occluded.

"visible_bottom"

Returns an integer that is the screen line number of the visible bottom
of the window (does not include status line). This value can be changed
using the ADJUST_WINDOW built-in, by creating other windows, or by
mapping a window.

Digital recommends that you retrieve this information using GET_INFO
(window, "bottom", visible_text).

"visible_length"

Returns an integer that is the visible length of the window (includes status
line). This value differs from the value returned by GET_INFO (window_
variable, "original_length") in that the value returned by "visible_length”
is the original length minus the number of window lines (if any) hidden
by occluding windows. This value can be changed using the ADJUST_
WINDOW built-in, by creating other windows, or by mapping a window.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", visible_window).

"visible_top"

Returns an integer that is the screen line number of the visible top of the
window. This value can be changed using the ADJUST_WINDOW built-in,
by creating other windows, or by mapping a window on top of the current
window.

Digital recommends that you retrieve this information using GET_INFO
(window, "top", visible_window).

"width"

Returns an integer that is the number of columns or the number of visible
columns in the specified window or the specified window’s text area. The
number of columns returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-5.

This parameter is established or changed with the built-in procedure SET.

EXAMPLES

last_line :

7-226

GET_INFO (bottom window, "bottom", WINDOW) :

This statement returns the last line of the window bottom_window.
The value returned is the line containing the status line or scroll bar,
whichever comes last, if the window has a status line or scroll bar. For
another example of code using GET_INFO (window_variable, "bottom",
WINDOW) see Example B-5.

S

=

&

(O]

=

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO (window_variable)

current_list := GET_INFO (CURRENT_ WINDOW, "key map list");

This statement returns the key map list associated with the current
window. For an example of code using GET_INFO (window_variable,
"key_map_list", WINDOW) see Example B—6.

1l

first_column := GET_INFO (CURRENT_ WINDOW, "left", TEXT):

This statement returns the leftmost column where text can be displayed
in the current window. Note that changing the left margin setting has no
effect on the value returned.

the_length := the_length + GET_INFO (the_window, "length", WINDOW) ;

This statement adds the length of the window (the value in the_window)
to the value in the_length. Note that the length of the window includes
the length added by the scroll bar and status line, if the window has them.
For another example of code using GET_INFO (window_variable, "length",
WINDOW) see Example B-5.

last_column := GET_INFO (CURRENT_WINDOW, "right", WINDOW) ;

This statement returns the number of the rightmost column in the current
window. Note that the column whose number is returned can be occupied
by a vertical scroll bar if one is present. Note, too, that the returned value
changes if you widen the window, but not if you move the window without
widening it.

first_row := GET_INFO (CURRENT WINDOW, "top", WINDOW);

This statement returns the number of the first row in the current window.
Note that the row number returned is relative to the top of the VAXTPU
screen. Thus, if the current window is not the top window on the VAXTPU
screen, the row number returned is not 1. For another example of code
using GET_INFO (window_variable, "top”, WINDOW) see Example B-5.

the width :

GET_INFO (CURRENT_WINDOW, "width", WINDOW)

This statement returns the number of columns in the current window.
For an example of code using GET_INFO (window_variable, "width",
WINDOW) see Example B-6.

the_bar := GET_INFO (CURRENT_WINDOW, "scroll bar", VERTICAL);

This statement returns the vertical scroll bar widget associated with the
current window. For another example of code using GET_INFO (window_
variable, "scroll_bar") see Example B-6.

status := GET_INFO (CURRENT WINDOW,
"scroll_bar auto_thumb", VERTICAL);

This statement returns an integer indicating whether automatic
adjustment is enabled for the vertical scroll bar slider associated with
the current window. For another example of code using GET_INFO
(window_variable, "scroll_bar_auto_thumb", WINDOW) see Example B-6.

7-227

VAXTPU Built-In Procedures
HELP_TEXT

HELP_TEXT

Invokes the VMS Help Utility. You must specify the help library to be used
for help information, the initial library topic, the prompting mode for the Help
Utility, and the buffer to which the help information is to be written.

FORMAT HELP_TEXT (iibrary-file, topic, { 8ﬁF } butter)

PARAMETERS library-file
A string that is the file specification of the help library.

topic
A string that is the initial library topic. If this string is empty, the top
level of help is displayed.

ON

A keyword specifying that the Help Utility should prompt the user for
input.

OFF
Specifies that the prompting mode of the Help Utility should be turned off.

buffer
The buffer to which the help information is written.

DESCRIPTION You can enter a complete file specification for the help library as the
first parameter. However, if you enter only a file name, the Help Utility
provides a default device (SYS$HELP) and default file type (HLB).

If you do not specify an initial topic as the second parameter, you must
enter a null string as a place holder. The Help Utility then displays the
top level of help available in the specified library.

When the prompting mode is ON for the built-in procedure HELP_TEXT,
the following prompt appears if the help text contains more than one
window of information:

Press RETURN to continue ...

Before VAXTPU invokes the Help Utility, VAXTPU erases the buffer
specified as the help buffer. (In EVE the buffer to which the help
information is written is represented by the variable help_buffer.) If

the help buffer is associated with a window that is mapped to the screen,
the window is updated each time VAXTPU prompts the user for input. If
you set the prompting mode to OFF, then the window is not updated by
the built-in procedure HELP_TEXT.

If help_buffer is not associated with a window that is mapped to the
screen, the information from the Help Utility is not visible.

7-228

S

VAXTPU Built-In Procedures

HELP_TEXT
SIGNALED
ERR RS TPU$_TOOFEW ERROR The HELP_TEXT built-in requires
0O four parameters.
TPU$_TOOMANY ERROR You specified more than four
parameters.
TPUS$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.
TPU$_BADKEY ERROR Only ON and OFF are allowed.
TPU$_NOTMODIFIABLE WARNING The output buffer is currently
unmodifiable.
TPU$_SYSERROR ERROR Error activating the help librarian.
TPU$_OPENIN ERROR Error opening help library.
]
EXAMPLES
ﬂ HELP_TEXT ("tpuhelp", "", OFF ,help buffer)
This statement causes the top level of help information from the
SYS$HELP:TPUHELP.HLB library to be written to the help buffer. The
Help Utility prompting mode is not turned on.
B HELP_TEXT ("tpuhelp", (READ_LINE ("Topic: ")), OFF, second buffer)
This statement prompts the user to provide the topic for the Help Utility.
The information on that topic that is in the VAXTPU help library is
written to second_buffer.
! Interactive HELP

PROCEDURE user_help

SET (STATUS_LINE, info_window, UNDERLINE,
"Press CTRL/Z to leave prompts then CTRL/F to resume editing"):
MAP (info_window, help buffer);

HELP_TEXT ("USERHELP", READ_LINE ("Topic: "), ON, help buffer);
ENDPROCEDURE;

This procedure displays information about getting out of help mode on
the status line, prompts the user for input, and maps help_buffer to the
screen.

7-229

VAXTPU Built-In Procedures

INDEX

INDEX

Locates a character or a substring within a string and returns its location
within the string.

FORMAT

integer := INDEX (string, substring)

PARAMETERS

return value

string

The string within which you want to find a character or a substring.

substring
A character or a substring whose leftmost character location you want to
find within stringl.

An integer showing the character position within a string of the substring
you specify.

DESCRIPTION The built-in procedure INDEX finds the leftmost occurrence of substring (
within string. It returns an integer that indicates the character position
in string at which substring was found. If string is not found, VAXTPU
returns a 0. The character positions within string start at the left with 1.
i I
SIGNALED TPU$_NEEDTOASSIGN ERROR INDEX must be on the right-hand
_ ust be e right-
ERRORS side of an assignment statement.
TPU$_TOOFEW ERROR INDEX requires two arguments. {
TPU$_TOOMANY ERROR INDEX accepts only two '
arguments.
TPU$_INVPARAM ERROR The arguments to INDEX must be
strings.
L
EXAMPLES

loc := INDEX ("1234567","67")

7-230

This assignment statement stores an integer value of 6 in the variable loc,
because the substring "67" is found starting at character position 6 within
the string "1234567".

VAXTPU Built-In Procedures
INDEX

B PROCEDURE user_is character (c)
LOCAL symbol characters;

symbol_characters :=
"abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

RETURN INDEX(symbol_characters, ¢) > 0;
ENDPROCEDURE;

This procedure uses the built-in procedure INDEX to return true if a given
item is an alphanumeric character; otherwise, it returns false. (The list of
characters in this example does not include characters that are not in the
ASCII range of the DEC Multinational Character Set. However, you can
write a procedure using such characters, because VAXTPU supports the
DEC Multinational Character Set.) The parameter that is passed to this
procedure is assumed to be a single character.

7-231

VAXTPU Built-In Procedures

INT

INT

Converts keyword or a string that consists of numeric characters into an
integer.

FORMAT

integert
integer3 := INT (< keyword)
string [, integer2 J

PARAMETERS

return value

integer1
Any integer value. INT accepts a parameter of type integer so you need
not check the type of the parameter you supply.

keyword

A keyword whose internal value you want.

string

" A string that consists of numeric characters.

integer2
An integer specifying the radix (base) of the string being converted. The
default radix is 10. The other allowable values are 8 and 16.

The integer equivalent of the parameter you specify.

DESCRIPTION You can use INT to store an integer value for a keyword or a string of
numeric characters in a variable. You can then use the variable name in
operations that require integer data types.

INT signals a warning and returns 0 if the string is not a number.

SIGNALED TPU$_NEEDTOASSIGN ERROR INT ret lue that must be

v ‘returns a value that m
TPU$_TOOFEW ERROR INT requires one parameter.
TPU$_TOOMANY ERROR INT accepts only one parémeter.
TPU$_ARGMISMATCH ERROR The parameter to INT was not a

keyword or string.
TPUS$_INVNUMSTR WARNING The string you passed to INT was
not a number.
TPU$_NULLSTRING WARNING You passed a string of length 0 to
INT.

7-232

VAXTPU Built-In Procedures
INT

TPU$_BADVALUE ERROR You specified a value other than 8,
10, or 16 for the radix parameter.

EXAMPLES

ﬂ user_int := INT ("12345")

This assignment statement converts the string "12345" into an integer
value and stores it in the variable user_int.

B ! Parameters:
1
! new_number New integer value - output
! prompt_string Text of prompt - input
! no_value_message Message printed if user presses the
|

RETURN key to get out of the command - input

PROCEDURE user_ prompt_ number (new_number, prompt_string,
no_value message)
LOCAL read_line_string;

ON_ERROR
IF ERROR = TPU$_ NULLSTRING
THEN
MESSAGE (no_value_message);
ELSE
IF ERROR = TPUS_INVNUMSTR
THEN
MESSAGE (FAO ("Don’t understand !'AS",
read_line_string));
ELSE
MESSAGE (ERROR_TEXT) ;
ENDIF;
ENDIF;
user prompt_ number := 0;

ENDON_ERROR;

user_prompt_number := 1;

read_line_string := READ_LINE (prompt_string);
EDIT (read_line_string, TRIM);

TRANSLATE (read_line_string, "1", "1%);

new_number := INT (read line string);
ENDPROCEDURE;

This procedure is used by commands that prompt for integers. The
procedure returns true if prompting worked or was not needed; it returns
false otherwise. The number that is returned is returned in the output
parameter.

7-233

VAXTPU Built-In Procedures
JOURNAL_CLOSE

JOURNAL_CLOSE

Closes an open keystroke journal file (if one exists for your session) and
saves the journal file. Note that JOURNAL_CLOSE applies only to keystroke
journaling.

FORMAT JOURNAL_CLOSE

PARAMETERS Nore.

DESCRIPTION Once you specify JOURNAL_CLOSE, VAXTPU does not keep a keystroke
journal of your work until you specify JOURNAL_OPEN. Calling the built-
in procedure JOURNAL_OPEN causes VAXTPU to open a new keystroke
journal file for your session.

To turn off buffer change journaling, see the description of the SET
(JOURNALING) built-in procedure.

Caution: Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

SIGNALED TPU$_TOOMANY ERROR JOURNAL_CLOSE accepts no
ERROR - arguments.
EXAMPLE i -

JOURNAL_CLOSE

This statement causes VAXTPU to close the keystroke journal file, if one
exists for your editing session.

7-234

VAXTPU Built-In Procedures
JOURNAL_OPEN

JOURNAL_OPEN

Opens a keystroke journal file and starts making a copy of your editing
session by recording every keystroke you make. If you invoked VAXTPU with
the /RECOVER qualifier, then VAXTPU recovers the previous aborted section
before recording new keystrokes. JOURNAL_OPEN optionally returns a string
containing the file specification of the file journaled. Note that JOURNAL_
OPEN applies only to keystroke journaling.

FORMAT [string :=] JOURNAL_OPEN (file-name)
PARAMETER _ file-name —

return value

A string that is the name of the keystroke journal file created for your
editing session.

The file specification of the file journaled.

DESCRIPTION

Caution:

VAXTPU saves the keystrokes of your editing session by storing them in
a buffer. VAXTPU writes the contents of this buffer to the file that you
specify as a journal file. If for some reason VAXTPU should terminate
unexpectedly, you can recover your editing session by using this journal
file. To do this, invoke VAXTPU with the /RECOVER qualifier. See
Chapter 5 for information on recovering files.

To turn on buffer change journaling, see the description of the SET
(JOURNALING) built-in procedure.

By default, VAXTPU writes keystrokes to the journal file whenever the
journal buffer contains 500 bytes of data. VAXTPU also tries to write
keystrokes to the journal file when it aborts.

When you recover a VAXTPU session, your terminal characteristics should
be the same as they were when the journal file was created. If they are
not the same, VAXTPU informs you what characteristics are different
and asks whether you want to continue recovering. If you answer yes,
VAXTPU tries to recover; however, the different terminal settings may
cause differences between the recovered session and the original session.

JOURNAL_OPEN succeeds if used in batch mode (NODISPLAY) but
nothing is journaled as there are no keystrokes in batch mode.

Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

7-235

VAXTPU Built-In Procedures
JOURNAL_OPEN

SIGNALED
ERRORS TPU$_BADJOUFILE ERROR JOURNAL_OPEN could not open
the journal file.
TPU$_TOOFEW ERROR JOURNAL_OPEN requires one
argument.
TPU$_TOOMANY ERROR JOURNAL_OPEN accepts only
one argument.
TPU$_INVPARAM ERROR The parameter to JOURNAL_
OPEN must be a string.
TPU$_ASYNCACTIVE WARNING You cannot journal with
asynchronous handlers declared.
TPU$_JNLOPEN ERROR A journal file is already open.
EXAMPLES

I JOURNAL OPEN ("test.fil")

This statement causes VAXTPU to open a file named TEST.FIL as the
journal file for your editing session. VAXTPU uses your current default
device and directory to complete the file specification.

B PROCEDURE user_start_journal

! Default journal name
! Auxiliary Jjournal name derived from file name

LOCAL default_journal name,
aux_journal_ name;

IF (GET_INFO (COMMAND LINE, "journal") = 1)
AND

(GET_INFO (COMMAND LINE, "read only") <> 1)
THEN

aux_journal_name := GET_INFO (CURRENT_BUFFER, "file_name");

IF aux_journal name = ""
THEN

aux_journal name := GET_INFO (CURRENT BUFFER, "output_file");
ENDIF;

IF aux_journal name = 0
THEN

aux_journal_name := "";
ENDIF;

7-236

N

~—

VAXTPU Built-In Procedures
JOURNAL_OPEN

IF aux_journal name = ""

THEN

default_journal name := "user.TJL";
ELSE

default_journal name := ".TJL";
ENDIF;

journal file
journal_ file :

GET_INFO (COMMAND_LINE, "journal file");

FILE_PARSE (journal file, default_journal name,
aux_journal_name) ;

JOURNAL_OPEN (journal file);

ENDIF;
ENDPROCEDURE;

This procedure starts journaling. It is called from the TPUSINIT_
PROCEDURE after a file is read into the current buffer.

7-237

VAXTPU Built-In Procedures
KEY_NAME

KEY_NAME

Returns a VAXTPU keyword for a key or a combination of keys, or creates a
keyword used as a key name by VAXTPU.

FORMAT integer
keyword2 := KEY_NAME (< key name
string

SHIFT_KEY
SHIFT_MODIFIED

I { ALT_MODIFIED L--11
CTRL_MODIFIED
HELP_MODIFIED

[[, FUNCTION]])

, KEYPAD

PARAMETERS integer

An integer that is either the integer representation of a keyword for a key,
or is a value between 0 and 255 that VAXTPU interprets as the value of a
character in the DEC Multinational Character Set.

key_name
A keyword that is the VAXTPU name for a key.

string
A string that is the value of a key from the main keyboard.

SHIFT _KEY

A keyword specifying that the key name created includes one or more
shift keys. The keyword SHIFT_KEY specifies the VAXTPU shift key, not
the key on the keyboard marked SHIFT. The shift key is also referred to
as the GOLD key in EVE. (See the description of the SET (SHIFT_KEY)
built-in in the VAX Text Processing Utility Manual.)

SHIFT_MODIFIED

A keyword specifying that the key name created by the built-in includes
the key marked SHIFT on the keyboard. The keyword SHIFT_MODIFIED
specifies the key that toggles between uppercase and lowercase, not the
key known as the GOLD key.

SHIFT_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non-
DECwindows version of VAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

ALT _MODIFIED

A keyword specifying that the key name created by the built-in includes
the ALT key. Note that on most Digital keyboards the ALT key is labeled
Compose Character.

7-238

return value

DESCRIPTION

VAXTPU Built-In Procedures
KEY_NAME

ALT MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non-
DECwindows version of VAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

CTRL_MODIFIED

A keyword specifying that the key name created by the built-in includes
the CTRL key.

CTRL_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non-
DECwindows version of VAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

HELP_MODIFIED

A keyword specifying that the key name created by the built-in includes
the HELP key.

HELP_MODIFIED only modifies function keys and keypad keys.

Digital recommends that you avoid using this keyword in the non-
DECwindows version of VAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

FUNCTION

A parameter that specifies that the resulting key name is to be that of a
function key.

KEYPAD

A parameter that specifies that the resulting key name is to be that of a
keypad key.

A VAXTPU keyword to be used as the name of a key.

Using the KEY_NAME built-in, you can create key names that are
modified by more than one key. For example, it is possible to create a
name for a key sequence consisting of the GOLD key, the CTRL key, and
an alphanumeric or keypad key.

The built-in GET_INFO (key_name, "key_modifiers") returns a bit-encoded
integer whose value represents the key modifier or combination of key
modifiers used to create a given key name. For more information about
interpreting the integer returned, see the description of GET_INFO (key_
name, "key_modifiers").

The built-in GET_INFO (keyword, "name") has been extended to return a
string including all the key modifier keywords used to create a key name.
For more information about fetching the string equivalent of a key name,
see the description of GET_INFO (keyword, "name").

7-239

VAXTPU Built-In Procedures

KEY_NAME
SIGNALED
ERRORS TPU$_INCKWDCOM WARNING Inconsistent keyword combination.
TPU$_MUSTBEONE WARNING String must be one character long.
TPU$_NOTDEFINABLE WARNING Second argument is not a valid
reference to a key.
TPU$_NEEDTOASSIGN ERROR KEY_NAME call must be on the
right-hand side of an assignment
statement.
TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
KEY_NAME built-in.
TPU$_BADKEY ERROR KEY_NAME accepts SHIFT_KEY,
FUNCTION, or KEYPAD as a
keyword argument.
TPU$_TOOFEW ERROR Too few arguments passed to the
KEY_NAME built-in.
TPU$_TOOMANY ERROR Too many arguments passed to
the KEY_NAME built-in.
]
EXAMPLES
new_key := KEY NAME (KP4, CTRL_MODIFIED, SHIFT KEY);

DEFINE_KEY ("eve_fill", new_key);

These statements create a name for the key sequence GOLD/CTRI/KP4
and bind the EVE command FILL to the resulting key sequence.

keyl := KEY NAME ("z")
This assignment statement creates the key name keylI for the keyboard
key Z.

key2 := KEY NAME (KP5, SHIFT KEY)

This example uses KEY_NAME to create a key name for a combination of
keys.

key3 := KEY_NAME (ASCII (10))

This assignment statement creates the key name key3 for the line-feed
character.
! Procedure to define keys to emulate EDT
PROCEDURE user_define edtkey
! Bind the EDT Fndnxt function to PF3
DEFINE KEY ("edt$search next", PF3);
! Bind the EDT Find function to SHIFT PF3

DEFINE_KEY ("edtS$search", KEY NAME (PF3, SHIFT KEY));
ENDPROCEDURE;

This example shows a portion of a command file that defines the keys for
an editing interface that emulates EDT.

7-240

VAXTPU Built-In Procedures
KEY_NAME

KEY NAME (90)

This assignment statement creates the key name key4 for the keyboard
key Z. The key name is identical to keyI in the first example, because 90 is
the ASCII code for Z.

KEY NAME ("A", KEYPAD)

This assignment statement creates the key name key5 for the keypad key
that is terminated by an A in the code that represents key names. This
is identical to the key name UP, which VAXTPU uses to refer to the up
arrow key.

VAXTPU defines a keypad key as a control sequence consisting of the code
SS3 followed by a character. The control sequence SS3 can be represented
as follows:

Esc O

For more information on the representation of keys, see the manual for
your terminal.

KEY NAME (29, FUNCTION)

e

This assignment statement creates the key name key6 for the function
key whose representation contains the number 29. This is identical to the
VAXTPU keyword DO, which VAXTPU uses to identify the Do key.

VAXTPU defines a function key as a control sequence with the following
format:

CSl decimal-number ~
The element CSI can be represented as follows:
ESC [

In this representation, the decimal number must be in the range 0 to 255.
For more information on the representation of keys, see the manual for
your terminal.

7-241

VAXTPU Built-In Procedures
LAST_KEY

LAST KEY

Returns a VAXTPU keyword for the last key that was entered, read, or
executed.

FORMAT keyword := LAST_KEY

PARAMETERS Nore.

DESCRIPTION When VAXTPU is replaying a learn sequence or executing the program
bound to a key, LAST_KEY returns the last key replayed or processed
so far, not the last key that was pressed to invoke the learn sequence or
program.

When you invoke VAXTPU with the /NODISPLAY qualifier, the value 0
is returned for LAST KEY, except in the following case. If you precede
the LAST_KEY statement with a READ_LINE statement, LAST KEY
can return a key name representing the last key read by READ_LINE,
CTRL/Z, or the RETURN key. See the description of READ_LINE for
more information on the values that LAST KEY can return when you use
LAST KEY while running VAXTPU in /NO_DISPLAY mode.

R
SIGNALED TPU$ TOOMANY ERROR T ents passed t

00 many argum 0
ERROR B it i

the LAST_KEY buiit-in.

EXAMPLE
PROCEDURE user_define_key
def READ LINE ("Definition: ");

key READ_LINE ("Press key to define.",1);
IF LENGTH (key) > O
THEN
key := KEY_NAME (key)

ELSE

key := LAST KEY;
ENDIF;
DEFINE KEY (def, key);

ENDPROCEDURE;

This procedure prompts the user for input for key definitions.

7-242

VAXTPU Built-In Procedures
LEARN_ABORT

LEARN_ABORT

Causes a learn sequence being replayed to be terminated whether or not the
learn sequence has completed.

FORMAT [integer :=] LEARN_ABORT
PARAMETERS Nore.
return value An integer indicating whether a learn sequence was actually replaying at

the time the LEARN_ABORT statement was encountered. The value 1 is
returned if a learn sequence was being replayed, 0, otherwise.

DESCRIPTION LEARN_ABORT aborts a learn sequence that is being replayed. Only the
currently executing learn sequence is aborted.

Whenever you write a procedure that can be bound to a key, the procedure
should invoke the LEARN_ABORT built-in in case of error. Using
LEARN_ABORT prevents a learn sequence from finishing if the learn
sequence calls the user-written procedure and the procedure is not
executed successfully.

SIGNALED N

ERROR TPU$_TOOMANY ERROR The LEARN_ABORT buiit-in takes
no parameters.

EXAMPLE

ON_ERROR

MESSAGE ("Aborting command because of error."):;
LEARN_ABORT;
ABORT;

ENDON_ERROR

In this error handler, if an error occurs any executing learn sequence is
aborted.

7-243

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

LEARN_BEGIN and LEARN_END

Saves all keystrokes typed between LEARN_BEGIN and LEARN_END.
LEARN_BEGIN starts saving all keystrokes that you type. LEARN_END stops
the “learn mode” of VAXTPU and returns a learn sequence consisting of all
the keystrokes that you entered.

FORMAT EXACT
!.EARN_BEGIN ({ NO_EXACT })
;earn := LEARN_END
PARAMETERS EXACT

return value

DESCRIPTION

7-244

Causes VAXTPU to use the input that was entered for each READ_LINE,
READ_KEY, or READ_CHAR built-in procedure when the learn sequence
was created as the input for these built-in procedures when the learn
sequence is replayed.

NO_EXACT

Causes VAXTPU to prompt for new input each time a READ_LINE,
READ_KEY, or READ_CHAR built-in procedure is replayed within a learn
sequence.

A variable of type learn storing the keystrokes you specify.

You can use the variable name that you assign to a learn sequence as
the parameter for the built-in procedure EXECUTE to replay a learn
sequence. You can also use the variable name with the built-in procedure
DEFINE_KEY to bind the sequence to a key so that the learn sequence is
executed when you press a key.

Learn sequences are different from other VAXTPU programs in that
they are created with keystrokes rather than with VAXTPU statements.
You create the learn sequence as you are entering text and executing
VAXTPU commands. Because learn sequences make it easy to collect
and execute a sequence of VAXTPU commands, they are convenient for
creating temporary “programs.” You can replay these learn sequences
during the editing session in which you create them.

Learn sequences, created by collecting keystrokes, are not flexible enough
to use for writing general programs. Learn sequences are best suited to
saving a series of editing actions that you perform many times during a
single editing session.

Note:

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

It is possible to save learn sequences from session to session so that you
can replay them in an editing session other than the one in which you
created them. To save a learn sequence, bind it to a key; before ending
your editing session, use the built-in procedure SAVE to do an incremental
save to the section file you are using. Using the built-in procedure SAVE
causes the new definitions from the current session to be added to the
section file with which you invoked VAXTPU. For more information, see
the built-in procedure SAVE.

VAXTPU key definitions may change in future versions. You may lose
learn sequences that you have saved when you run a new version of
VAXTPU.

You should not use built-in procedures that can return WARNING
or ERROR messages as a part of a learn sequence because learn
sequences do not stop on error conditions. Because the learn
sequence continues executing after an error or warning condition,
the editing actions that are executed after an error or a warning
may not take effect at the character position you desire.

If, for example, a built-in procedure SEARCH that you use as a
part of a learn sequence fails to find the string you specify and
issues a warning, the learn sequence does not stop executing. This
can cause the rest of the learn sequence to take inappropriate
editing actions.

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey procedure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU executes the code bound to the key itself.

VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

SIGNALED
ERRORS

TPU$_NOTLEARNING WARNING LEARN_BEGIN was not used
since the last call to LEARN_END.

TPU$_ONELEARN WARNING A learn sequence is already in
progress.

7-245

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

TPU$_TOOFEW
TPU$_TOOMANY

TPU$_INVPARAM

ERROR

ERROR

ERROR

LEARN_BEGIN requires one
argument.

LEARN_BEGIN accepts only one
argument.

The specified parameter has the
wrong type.

EXAMPLE

LEARN_BEGIN (EXACT)

This represents a typical editing session,

in which you perform commands that are
bound to keys.

do_again := LEARN_END

This example shows how to combine LEARN_BEGIN and LEARN_END
so that all of the keystrokes that you enter between them are saved. The
keyword (EXACT) specifies that if you use READ_LINE, READ_CHAR,
or READ_KEY within the learn sequence, any input that you enter for
these built-in procedures is repeated exactly when you replay the learn

sequence.

7-246

VAXTPU Built-In Procedures
LENGTH

LENGTH

Returns an integer that is the number of character positions in a buffer, range,
or string.

FORMAT buffer
integer := LENGTH (< range ;)
string

PARAMETERS buffer

The buffer whose length you want to determine. If you specify a buffer,
line terminators are not counted as character positions.

range
The range whose length you want to determine. If you specify a range,
line terminators are not counted as character positions.

string
The string whose length you want to determine.

SIGNALED .
ERRORS TPU$_NEEDTOASSIGN ERROR LENGTH must be on the right-
hand side of an assignment
statement.
TPU$_TOOFEW ERROR LENGTH requires one argument.
TPU$_TOOMANY ERROR LENGTH accepts only one
argument.
TPU$_ARGMISMATCH ERROR The argument to LENGTH must
be a string or a range.
TPU$_CONTROLC ERROR You pressed CTRL/C while
LENGTH was executing.
EXAMPLES

str_len := LENGTH ("Don Quixote")

This assignment statement stores the number of characters in the string
"Don Quixote" in the variable str_len. In this example, the integer value is
11.

user_how_long := LENGTH (my_range)

This assignment statement stores the number of character positions
(excluding line terminators) in my_range in the variable user_how_long.

7-247

VAXTPU Built-In Procedures
LENGTH

Parameters:

=

1
!
! mark parameter is user-supplied string,
! which is used as a mark name

PROCEDURE user_mark (mark_parameter)
! Local copy of mark_parameter
LOCAL mark_name;

ON_ERROR
MESSAGE (FAO ("Cannot use !AS as a mark name", mark name));
RETURN;

ENDON_ERROR;

! 132 - length ("user_mark ")
IF LENGTH (mark parameter) > 122

THEN
mark_name := SUBSTR (mark name, 1, 122);
ELSE
mark_name := mark parameter;
ENDIF;
EXECUTE ("user_mark " + mark_name + " := MARK (NONE)");
MESSAGE (FAO ("Current position marked as !AS", mark name));
ENDPROCEDURE;

This procedure puts a marker without any video attributes at the current
position. The marker is assigned to a variable that begins with user_
mark_ and ends with the string you pass as a parameter. The procedure
writes a message to the message area verifying the mark name that comes
from the input parameter.

7-248

~_

VAXTPU Built-in Procedures
LINE_BEGIN

LINE_BEGIN

Matches the beginning of a line.

FORMAT LINE_BEGIN

PARAMETERS Nore

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_BEGIN matches the start of a line.

Although LINE_BEGIN behaves much like a built-in, it is actually a
keyword.

LINE_BEGIN lets you search for complex strings by creating patterns that
match certain conditions. For example, if you want to find all occurrences
of the exclamation point (!) when it is the first character in the line, use
LINE_BEGIN to create the following pattern:

pat1 = LINE_BEGIN + "I';

For more information on patterns, see Chapter 2.

SIGNALED LINE_END is a keyword and has no completion codes.
ERROR
EXAMPLES
patl := LINE_BEGIN
This assignment statement stores the beginning-of-line condition in the
variable patl.
POSITION (SEARCH (LINE_BEGIN, REVERSE));
This VAXTPU statement positions you at the beginning of the current line.
PROCEDURE user_remove_dsrlines
LOCAL sl,
patl;

patl := LINE_BEGIN + ".";

LOOP
sl := SEARCH QUIETLY (patl, FORWARD):;
EXITIF sl = 0y
POSITION (sl):
ERASE _LINE;
ENDLOOP;
ENDPROCEDURE;

7-249

VAXTPU Built-In Procedures
LINE_BEGIN

This procedure removes all DSR commands from a file by searching for a
pattern that has a period (.) at the beginning of a line and then removing
the lines that match this condition.

7-250

S

VAXTPU Built-In Procedures
LINE_END

LINE_END

Matches the end of a line.

FORMAT LINE_END

PARAMETERS Nore.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_END matches the end of a line.

Although LINE_END behaves much like a built-in, it is actually a
keyword.

The end-of-line condition is one character position to the right of the last
character on a line.

For more information on patterns, see Chapter 2.

R

SIGNALED LINE_END is a keyword and has no completion codes.
ERROR

EXAMPLES

patl := LINE_END

This assignment statement stores the keyword LINE_END in the variable
patl. Patl can be used as an argument to the SEARCH built-in or as part
of a complex pattern.

PROCEDURE user_end_of_line
LOCAL eol_range;
eol_range := SEARCH QUIETLY (LINE_END, FORWARD);
IF eol_range <> 0
THEN
POSITION (eol_range);
ENDIF;
ENDPROCEDURE;

If you are not already at the end of the current line, the preceding
procedure moves the editing point to the end of the line.

7-251

VAXTPU Built-In Procedures

LOCATE_MOUSE

LOCATE_MOUSE

Locates the window position of the pointer at the time LOCATE_MOUSE is
invoked. LOCATE_MOUSE returns the window name and the window position
of the pointer and optionally returns a status indicating whether the pointer
was found in a window.

FORMAT

[integer :=] LOCATE_MOUSE (window, x_integer, y_integer)

PARAMETERS

return value

DESCRIPTION

7-252

window

Returns the window in which the pointer is located. You can pass any data
type except a constant in this parameter. If the pointer is not found, an
unspecified data type is returned.

X_integer

Returns the column position of the pointer. You can pass any data
type except a constant in this parameter. If the pointer is not found,
an unspecified data type is returned.

y_integer

Returns the row position of the pointer. You can pass any data type except
a constant in this parameter. If the pointer is not found, an unspecified
data type is returned. This parameter returns O if the pointer is in the
status line for a window.

An integer indicating whether the pointer was found in a window. The
value is 1 if VAXTPU finds a window position, 0, otherwise.

I
When the user presses a mouse button, VAXTPU determines the location
of the mouse pointer and makes that information available while the code
bound to the mouse button is being processed. Mouse pointer location
information is not available at any other time.

In DECwindows VAXTPU, you can use the built-in LOCATE_MOUSE
anytime after the first keyboard or mouse-button event. The built-in
returns the location occupied by the pointer cursor at the time of the most
recent keyboard or mouse button event.

If there is no mouse information available (because no mouse button has
been pressed or if the mouse has been disabled using SET (MOUSE)),
LOCATE_MOUSE signals the status TPU$_MOUSEINV.

P

~—

VAXTPU Built-In Procedures
LOCATE_MOUSE

]
SIGNALED TPU$_MOUSEINV WARNING The mouse position is not currentl
i urrel
ERRORS - valid. P y
TPU$_TOOFEW ERROR LOCATE_MOUSE requires three
parameters.
TPU$_TOOMANY ERROR LOCATE_MOUSE accepts at most
three parameters.
TPU$_BADDELETE ERROR You have specified a constant as
one or more of the parameters.
EXAMPLES
LOCATE_MOUSE (abc_window, x_1, Y1);

The example returns the window and coordinate position of the pointer.

PROCEDURE user_move to_mouse

LOCAL my_window,

x 1,
vl;
my window := 0;
x 1 :=0;
yl := 0;
IF (LOCATE MOUSE (my_ window, x_1, Y1) <> Q)
THEN
IF (CURRENT_WINDOW <> my_window)
THEN

POSITION (my_window);
UPDATE (my_window);

ENDIF;

CURSOR_VERTICAL (yl — (CURRENT_ROW - GET_INFO

(my_window, "visible_top") + 1));
CURSOR_HORIZONTAL (CURRENT COLUMN - x 1);
ENDIF;
ENDPROCEDURE;

Binding the user_move_to_mouse procedure to a mouse button moves
the cursor to the mouse location. The user_move_to_mouse procedure is
essentially equivalent to POSITION (MOUSE).

Note that CURRENT_ROW and CURRENT_COLUMN return screen-
relative location information, while LOCATE_MOUSE returns window-
relative location information.

status := LOCATE_MOUSE (new_window, x_value, y_value);

The previous statement returns an integer in the variable status indicating
whether the pointer cursor was found in a window, the window in the
parameter new_window where the mouse was found, an integer in the
parameter x_value specifying the pointer cursor’s location in the horizontal
dimension, and an integer in the parameter y_value specifying the pointer
cursor’s location in the vertical dimension.

7-253

VAXTPU Built-In Procedures

LOOKUP_KEY

LOOKUP_KEY

Returns the executable code or the comment that is associated with the key
you specify. The code can be returned as a program or as a learn sequence.
The comment is returned as a string.

FORMAT :nteger
earn_sequence | ._
program := LOOKUP_KEY
string3
COMMENT .
(key-name, { KEY MAP } [[{ ’ zmg; }]])
PROGRAM ’
PARAMETERS key-name

7-254

A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VI300-series, VT200-series, and
VT100-series keyboards.

COMMENT

A keyword specifying that the LOOKUP_KEY built-in is to return the
comment supplied when the key was defined. If no comment was supplied,
the LOOKUP_KEY built-in returns the integer zero.

KEY _MAP

A keyword specifying that the LOOKUP_KEY built-in is to return the key
map in which the key’s definition is stored. If you specify a key that is not
defined in any key map, LOOKUP_KEY returns a null string.

PROGRAM

A keyword specifying that the LOOKUP_KEY built-in is to return the
program or learn sequence bound to the key specified. If the key is not
defined, the LOOKUP_KEY built-in returns the integer 0.

string1

The name of the key map from which the LOOKUP_KEY built-in is to
obtain the key definition. Use this optional parameter if the key is defined
in more than one key map. If you do not specify a key map or a key map
list for the third parameter, the first definition found for the specified key
in the key map list bound to the current buffer is returned.

string2

The name of the key map list from which the LOOKUP_KEY built-in is to
obtain the key definition. Use this optional parameter if the key is defined
in more than one key map list. If you do not specify a key map or a key
map list for the third parameter, the first definition found for the specified
key in the key map list bound to the current buffer is returned.

return value

VAXTPU Built-In Procedures

LOOKUP_KEY

¢ integer — The integer 0. This value is returned if the key specified as
a parameter has no definition.

¢ learn_sequence — The learn sequence bound to the key specified as

a parameter.

¢ program — The program bound to the key specified as a parameter.

e stringd — If you specified COMMENT as the second parameter,
string3 is the comment bound to the key specified as the first
parameter. If you specified KEY_MAP as the second parameter,
string3 is the string naming the key map in which the key definition

was found.

DESCRIPTION

The LOOKUP_KEY built-in procedure can return a program, a learn
sequence, a string, or the integer 0 (0 means that the key has no

definition).

LOOKUP_KEY is useful when you are defining keys temporarily during
an editing session and you want to check the existing definitions of a key.

SIGNALED
ERRORS

TPU$_NOTDEFINABLE
TPU$_NOKEYMAP
TPU$_NOKEYMAPLIST
TPU$_KEYMAPNTFND
TPU$_EMPTYKMLIST
TPU$_TOOFEW
TPU$_TOOMANY

TPU$_NEEDTOASSIGN

TPU$_INVPARAM

TPU$_BADKEY

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

ERROR

Argument is not a valid reference
to a key.

Argument is not a defined key
map.

Argument is not a defined key map
list.

The specified key map is not
found.

The specified key map list contains
no key maps.

Too few arguments passed to the
LOOKUP_KEY built-in.

Too many arguments passed to
the LOOKUP_KEY built-in.

LOOKUP_KEY must be on the
right-hand side of an assignment
statement.

Wrong type of data sent to the
LOOKUP_KEY built-in.

An unknown keyword has been
used as an argument. Only
PROGRAM, COMMENT, and
KEY_MAP are valid keywords.

7-255

VAXTPU Built-In Procedures
LOOKUP_KEY

EXAMPLES

]

[]

programx := LOOKUP_KEY (keyl, PROGRAM)

This assignment statement returns the executable code that is associated
with keyl. The second keyword, PROGRAM, indicates that the result is
returned to a variable of type program or learn.

PROCEDURE user_what_is comment
MESSAGE (LOOKUP_KEY (LAST_KEY, COMMENT)) :;
ENDPROCEDURE;

This procedure displays in the message area the comment that you
included with your key definition for the last key that you typed.

PROCEDURE user_ get_key_info
LOCAL key_to_interpret,

key_info;

MESSAGE ("Press the key you want information on: "):
key_to_interpret := READ_KEY;
key info := LOOKUP_KEY (key_to_ interpret, COMMENT);
IF key_info <> ""
THEN

MESSAGE ("Comment: " + key info);
ELSE

MESSAGE ("No comment is associated with that key."):;
ENDIF;

ENDPROCEDURE;

This procedure returns the comment associated with a particular key.

key_map name := LOOKUP_KEY (RET_KEY, KEY MAP, "tpu$key map list");
IF LENGTH (key_map name) = 0
THEN

MESSAGE ("RET_KEY is undefined");
ELSE

MESSAGE ("RET KEY is defined in key map " + key_map_name);
ENDIF;

This procedure returns the key map within the key map list TPUSKEY_
MAP_LIST in which the RETURN key is defined.

PROCEDURE shift_key_handler (key_map list_name);
LOCAL bound_program;
bound _program := LOOKUP_KEY (READ_KEY, PROGRAM, "key map_ list name"):;

IF bound program <> 0
THEN
EXECUTE (bound_program);
ELSE
MESSAGE ("Attempt to execute undefined key"):
ENDIF;
ENDPROCEDURE;

7-256

R

VAXTPU Built-In Procedures
LOOKUP_KEY

red keys := CREATE KEY MAP ("red_keys"):

red_key map list := CREATE_KEY MAP_LIST ("red_key map_list",
red_keys);
DEFINE KEY ("shift_key handler (red_key map_ list)", PF3,
"RED shift key"):

This procedure implements multiple shift keys.

7-257

VAXTPU Built-In Procedures
MANAGE_WIDGET

MANAGE_WIDGET

Makes the specified widget instances visible, provided that the specified
widgets’ parent is also visible.

FORMAT MANAGE_WIDGET (widget [, widget...])

PARAMETERS widget

The widget instance to be managed.

DESCRIPTION This built-in performs the same functions as the X Toolkit MANAGE
CHILD and MANAGE CHILDREN routines.

If you have multiple children of a single widget that you want to manage,
include them in a single call to MANAGE_WIDGET. Managing several
widgets at once is more efficient than managing one widget at a time.

All widgets passed in the same MANAGE_WIDGET operation must have
the same parent.

SIGNALED TPU$_INVPARAM ERROR Yo ified ter of th
| 'ou specified a parameter of the
ERRORS wrong type.
TPU$_TOOFEW ERROR Too few arguments passed to the
MANAGE_WIDGET bulit-in.
TPU$_NORETURNVALUE ERROR MANAGE_WIDGET cannot return
a value.
TPU$_REQUIRESDECW ERROR You can use the MANAGE_
WIDGET built-in only if you are
using DECwindows VAXTPU.
TPU$_WIDMISMATCH ERROR You have specified a widget whose
class is not supported.
EXAMPLE For a sample procedure using the MANAGE_WIDGET built-in, see

Example B-2.

7-258

VAXTPU Built-In Procedures
MAP

MAP

Associates a buffer with a window and causes the window or widget to
become visible on the screen. Before using MAP, you must already have
created the widget, buffer, and window that you specify as parameters. See
CREATE_WIDGET, CREATE_BUFFER, and CREATE_WINDOW.

FORMAT

MAP ({ window, buffer })

widget

PARAMETERS window

The window you want to map to the screen.

buffer

The buffer you want to associate with the window.

widget
The widget instance you want to make visible.

DESCRIPTION The window and buffer that you use as parameters become the current
window and the current buffer, respectively. The map operation
synchronizes the cursor position with the editing point in the buffer.

If the window is not already mapped to the buffer when you use MAPF,
VAXTPU puts the cursor back in the last position the cursor occupied the
last time the window was the current window.

MAP may cause other windows that are mapped to the screen to be
partially or completely occluded. If MAP causes the new window to
segment another window into two pieces, only the upper part of the
segmented window remains visible and continues to be updated. The
lower part of the segmented window is erased on the next screen update.
If you remove the window that is segmenting another window, VAXTPU
repaints the screen so that the window that was segmented regains its
original size and position on the screen.

In DECwindows, MAP also maps the VAXTPU main widget if it has not
already been mapped.

Note that if you execute MAP within a procedure, the screen is not
updated to reflect such operations as window repainting, line erasure,

or new mapping until the procedure has finished executing and control
has returned to the screen manager. If you want the screen to reflect

the changes before the entire program is executed, you can force the
immediate update of a window by including the following statement in the
procedure before any statements containing the MAP built-in:

UPDATE (WINDOW) ;

7-259

VAXTPU Built-In Procedures

MAP
R
SIGNALED ,
ERRORS TPU$_TOOFEW ERROR MAP requires at least two
parameters.
TPU$_TOOMANY ERROR You specified more than two
parameters.
TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.
TPU$_MAXMAPPEDBUF WARNING The buffer is already mapped to
the maximum number of windows
allowed by VAXTPU.
_ -
EXAMPLES

I MAP (main_window, main_buffer)

This statement associates the main buffer with the main window and
maps the main window to the screen. You must have established the
main buffer and the main window with CREATE_BUFFER and CREATE _
WINDOW before you can use them as parameters for MAP.

(V]

PROCEDURE user message_window

message_buffer := CREATE_BUFFER ("message");
SET (EOB_TEXT, message buffer, "");

SET (NO_WRITE, message_buffer);

SET (SYSTEM, message_ buffer);

message_window := CREATE WINDOW (23, 2, OFF);

SET (VIDEO, message window, NONE):

MAP (message_window, message_buffer);
ENDPROCEDURE;

This procedure creates a message buffer and a message window. It then
associates the message buffer with the message window and maps the
message window to the screen.

B MAP (example_widget);

This statement causes the widget assigned to the variable example_widget
to become visible if the widget has been created and managed but not
mapped. For more information on how to map widgets without managing
them, see the description of the SET (MAPPED_WHEN_MANAGED)
built-in, :

7-260

VAXTPU Built-In Procedures
MARK

MARK

FORMAT

Returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse
video, bolded, blinking, or underlined).

BLINK

BOLD
FREE_CURSOR)
NONE

REVERSE
UNDERLINE

marker := MARK (

PARAMETERS

DESCRIPTION

BLINK
A keyword directing VAXTPU to display the marker in blinking rendition.

BOLD
A keyword directing VAXTPU to display the marker in bold rendition.

FREE _CURSOR

A keyword directing VAXTPU to create a free marker (that is, a marker
not bound to a character). Specifying the parameter FREE_CURSOR does
not create a free marker unless the editing point is before the beginning of
a line, after the end of a line, in the middle of a tab, or below the bottom of
a buffer when the statement MARK (FREE_CURSOR) is executed. If the
editing point is on a character when the statement is executed, the marker
is bound. A free marker has no video attribute.

NONE '
A keyword directing VAXTPU to apply no video attributes to the marker.

REVERSE
A keyword directing VAXTPU to display the marker in reverse video.

UNDERLINE
A keyword directing VAXTPU to underline the marker.

This built-in procedure can be used to establish place holders, or
“bookmarks.”

A marker can be either bound or free. For more information on how
these markers differ, see Chapter 2.

To create a bound marker, use the MARK built-in with any of its
parameters except FREE_CURSOR. This operation creates a bound
marker even if the editing point is beyond the end of a line, before the
beginning of a line, in the middle of a tab, or beyond the end of a buffer. To
create a bound cursor in a location where there is no character, VAXTPU
fills the space between the marker and the nearest character with padding
space characters.

7-261

VAXTPU Built-In Procedures

MARK

A bound marker is tied to the character at which it is created. If the
character tied to the marker moves, the marker moves also. If the
character tied to the marker is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the
following way:

1 If there is a character position on the same line and to the right, the
marker moves to this position, even if the position is at the end of the
line.

2 If the line on which the marker is located is deleted, the marker moves
to the first position on the following line.

You can move one column past the last character in a line and place a
marker there. However, the video attribute for the marker is not visible
unless a subsequent operation puts a character under the marker.

If you use a marker at the end of a line as part of a range, it is included in
the range even though the marker is not positioned on a character.

A marker is free if the following conditions are true:

¢ You used the statement marker_variable := MARK(FREE_CURSOR) to
create the marker.

¢ There was no character in the position marked by the editing point at
the time you created the marker.

VAXTPU keeps track of the location of a free marker by measuring the
distance between the marker and the character nearest to the marker.

If you move the character from which VAXTPU measures distance to

a free marker, the marker moves too. VAXTPU preserves a uniform
distance between the character and the marker. If you collapse white
space containing one or more free markers (for example, if you delete a tab
or use the APPEND_LINE built-in), VAXTPU preserves the markers and
binds them to the nearest character.

If the current buffer is mapped to a visible window, the MARK built-in
causes the screen manager to synchronize the editing point, which is

a buffer location, with the cursor position, which is a window location.
Unless you specify the parameter FREE_CURSOR, using the MARK built-
in may result in the insertion of padding spaces or lines into the buffer if
the cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

SIGNALED
ERRORS

7-262

TPU$_TOOFEW ERROR MARK requires one parameter.

TPU$_TOOMANY ERROR MARK accepts only one
parameter.

TPU$_NEEDTOASSIGN ERROR The MARK built-in must be on the
right-hand side of an assignment
statement.

TPU$_NOCURRENTBUF
TPU$_INVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

TPU$_INSVIRMEM

VAXTPU Built-In Procedures

WARNING

ERROR

ERROR

ERROR

FATAL

MARK

You must be positioned in a buffer
to set a marker.

One or more of the specified
parameters have the wrong type.
The keyword must be NONE,

BOLD, BLINK, REVERSE,
UNDERLINE, or FREE_CURSOR.

You have specified an unknown
keyword.

There is not enough memory to
create the marker.

EXAMPLES

user_mark := MARK (NONE)

This assignment statement places a marker at the editing point. There
are no video attributes applied to the marker.

user_mark_under := MARK (UNDERLINE)

This assignment statement places a marker at the row and column
position that corresponds to the editing point. The character tied to

the marker is underlined.

m

my_markl
my_mark2

MARK (UNDERLINE) ;
MARK (BLINK);

These assignment statements place a marker at the row and column
position that corresponds to the editing point. The character tied to the
marker is underlined and blinks.

PROCEDURE user_paste
temp_pos := MARK (NONE):;

POSITION (END_OF (paste buffer));
MOVE_HORIZONTAL (-2);

paste_text := CREATE_RANGE (BEGINNING OF (paste_buffer),

MARK (NONE), NONE);
POSITION (temp pos);
COPY_ TEXT (paste_text);
ENDPROCEDURE;

This procedure marks a temporary position at the current character
position, and then goes to the paste buffer and creates a range of the
contents of the paste buffer. VAXTPU then goes to temp_pos and copies
the text from the paste buffer at the temporary position.

7-263

VAXTPU Built-In Procedures
MATCH

MATCH

MATCH returns a pattern that matches from the editing point up to and
including the sequence of characters specified in the parameter.

FORMAT { buffer }
pattern := MATCH ((range })
string

PARAMETERS buffer
An expression that evaluates to a buffer. MATCH forms a string from

the contents of the buffer and stops matching when it finds the resulting
string.

range

An expression that evaluates to a range. MATCH forms a string from
the contents of the range and stops matching when it finds the resulting
string.

string
An expression that evaluates to a string. MATCH stops matching when it
finds this string.

return value A variable of type pattern that matches text from the editing point up to
and including the characters specified in the parameter.

L

DESCRIPTION MATCH returns a pattern that matches any string ending in the
specified sequence of characters. The matched string does not contain
line terminators.

A
SIGNALED TPU$_NEEDTOASSIGN ERROR MATCH t in the right
| must appear in the right-
ERRORS hand side of an assignment
statement.
TPU$_TOOFEW ERROR MATCH requires at least one
argument.
TPU$_TOOMANY ERROR MATCH requires no more than
one argument.
TPU$_ARGMISMATCH ERROR Argument to MATCH has the
wrong type.
TPU$_CONTROLC ERROR You pressed CTRL/C during the

execution of MATCH.

7-264

S~

e

VAXTPU Built-in Procedures
MATCH

EXAMPLES

I patl := MATCH ("abc")

This assignment statement stores in patl a pattern that matches a string
of characters starting with the editing point up to and including the
characters "abc". '

B PROCEDURE user_double_parens

"((" + MATCH (1))");
SEARCH_QUIETLY (paren_text, FORWARD, NO_EXACT):;

paren_text
found_range

IF found_range = 0 ! No match
THEN
MESSAGE ("No match found.");
ELSE
POSITION (found_range);
ENDIF;
ENDPROCEDURE;

This procedure finds text within double parentheses. It moves the editing
point to the beginning of the parenthesized text, if it is found.

7-265

VAXTPU Built-In Procedures

MESSAGE

MESSAGE

Depending on the format you choose, either puts the characters that you
specify into the message buffer, or else fetches text associated with a
message code, formats the text using FAO directives, and puts it in the
message buffer.

If you use the first format, MESSAGE inserts the characters in the string,
range, or buffer that you specify into the message buffer, if one exists.

(By defauit, VAXTPU looks for a buffer variable that is named MESSAGE_
BUFFER.) If there is no message buffer, VAXTPU displays the message at
the current location on the device pointed to by SYSSOUTPUT (usually your
terminal).

If you use the second format, MESSAGE fetches the text associated with
a message code, formats the text using FAO directives, and displays the
formatted message in the message buffer. (If there is no message buffer,
VAXTPU displays the message on SYS$OUTPUT.)

T I AR
FORMATS buffer .
MESSAGE ({ range } [, integer1 J)
integer2
keyword ;
MESSAGE (string [, integer3
buffer
[, FAO-parameter [, FAO-parameters... J J)
PARAMETERS buffer

7-266

The buffer containing the text that you want to include in the message
buffer.

range
The range containing the text that you want to include in the message
buffer.

integert

An integer indicating the severity of the message placed in the message
buffer. If you do not specify this parameter, no severity code is associated
with the message. The allowable integer values and their meanings are as
follows:

Integer Meaning

0 Warning
1 Success

P

VAXTPU Built-in Procedures
MESSAGE

Integer Meaning

2 Error
3 Informational
integer2

The integer representing the message code associated with the text to be
fetched.

keyword

The VAXTPU keyword representing the message code associated with the
text to be fetched. VAXTPU provides keywords for all of the message codes
used by VAXTPU and EVE.

string
Either a quoted string or a variable representing the text you want to
include in the message buffer.

integer3

A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is zero, then
the mezsage flags set by the SET (MESSAGE_FLAGS) built-in procedure
are used.

Table 7-6 shows the message flags:

Table 7-6 Message Flag Values

Bit Constant Meaning

0 TPUSK_MESSAGE_TEXT Include text of message.

1 TPU$K_MESSAGE_ID Include message identifier.

2 TPUSK_MESSAGE_SEVERITY Include severity level indicator.
3 TPUSK_MESSAGE_FACILITY Include facility name.
FAO-parameter

One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAO system service, substituting the values into the
text associated with the message code to form the resultant string.

The FAO directives are listed in the description of $FAO in the VMS
System Services Reference Manual.

DESCRIPTION

If you use the first format shown above, the MESSAGE built-in provides
the user who is writing an editing interface with a method of displaying
messages in a way that is consistent with the VAXTPU language.

If you have associated a message buffer with a message window, and if the
message window is mapped to the screen, the range you specify appears
immediately in the message window on the screen.

7-267

VAXTPU Built-In Procedures

MESSAGE

SIGNALED
ERRORS

7-268

If you have not associated a message buffer with a message window,
messages are written to the buffer, but do not appear on the screen.

If you use the second format shown above, the MESSAGE built-in places a
formatted string in the message buffer. The difference between MESSAGE
and MESSAGE_TEXT is that MESSAGE_TEXT simply returns the
resulting string while MESSAGE places the resulting string in the
message buffer. The string is specified by the message code passed as

the first parameter and constructed according to the rules of the $FAO
system service. The control string associated with the message code
directs the formatting process, and the optional arguments are values to
be substituted into the control string.

MESSAGE capitalizes the first character of the string placed in the
message buffer. The MESSAGE_TEXT built-in, on the other hand, does
not capitalize the first character of the returned string.

Some FAO directives you can include as part of the message text are the
following:

IAS Inserts a string as is

0L Converts an integer to octal notation

IXL Converts an integer to hexadecimal notation

IZL Converts an integer to decimal notation

UL Converts an integer to decimal notation without adjusting for negative
number

ISL Converts an integer to decimal notation with negative numbers converted
properly

y Inserts a new line character (carriage return/line feed)

! Inserts a tab

1} Inserts a form feed

i Inserts an exclamation point

1%S Inserts an s if the most recently converted number is not 1

1%T Inserts the current time if you enter 0 as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

1%D Inserts the current date and time if you enter 0 as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

TPU$_TOOFEW ERROR MESSAGE requires at least
one argument.

TPU$_TOOMANY ERROR MESSAGE cannot accept
as many arguments as you
have specified.

TPU$_ARGMISMATCH ERROR You have specified an
argument of the wrong type.

TPU$_INVFAOPARAM WARNING Argument was not a string
or integer.

TN

VAXTPU Built-In Procedures

MESSAGE

TPU$_INVPARAM ERROR You have specified an
argument of the wrong type.

TPU$_FLAGTRUNC INFORMATIONAL Message flag truncated to 4
bits.

TPU$_SYSERROR ERROR Error fetching the message
text.

TPU$_ILLSEVERITY WARNING lllegal severity specified;
VAXTPU used the severity
“error.”

TPU$_MSGNOTFND WARNING Message not found.
VAXTPU returned default
message.

EXAMPLES

MESSAGE ("Hello")

This statement writes the text "Hello" in the message area.

PROCEDURE user_on_eol
! test if at eol, return true or false

MOVE_HORIZONTAL (1);
IF CURRENT_OFFSET = 0 ! then we are on eol
THEN
user_on_end of line := 1; ! return true
MESSAGE ("Cursor at end of line");
ELSE
user_on_end of line := 0; ! return false
MESSAGE ("Cursor is not at the end of line");
ENDIF;
MOVE_HORIZONTAL (-1); ! move back
ENDPROCEDURE;

This procedure determines whether the cursor is at the end of the line. It
sends a text message to the message area on the screen about the position
of the cursor.

MESSAGE (TPU$_OPENIN, TPUSK MESSAGE_TEXT, "bat.bar");

The code fragment above fetches the text associated with the message code
TPU$_OPENIN and substitutes the string "BAT.BAR" into the message.
All of the text of the message is fetched. The following string is displayed
in the message buffer:

Error opening BAT.BAR as input

7-269

VAXTPU Built-ln Procedures

MESSAGE_TEXT

MESSAGE_TEXT

The MESSAGE_TEXT built-in procedure lets you do the following:
« Fetch the text associated with a message code

» Use FAO directives to specify how strings and integers should be
substituted into the text

For complete information on the $FAO and $GETMSG system services, see
the VMS System Services Reference Manual.

FORMAT string := MESSAGE_TEXT ({ Tet%ﬁrr 1d } [, integer2 [, FAO-parameter
[, FAO-parameters... J]])
PARAMETERS integer1

7-270

The integer for the message code associated with the text that is to be
fetched.

keyword

The keyword for the message code associated with the text that is to be
fetched. VAXTPU provides keywords for all of the message codes used by
VAXTPU and the EVE editor.

integer2

A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is 0, then the
message flags set by the SET (MESSAGE_FLAGS) built-in procedure are
used. ‘

Table 7-7 shows the message flags:

Table 7-7 Message Flag Values

Bit Constant Meaning

0 TPU$K_MESSAGE_TEXT Include text of message.

1 TPU$K_MESSAGE_ID Include message identifier.

2 TPU$K_MESSAGE_SEVERITY Include severity level indicator.
3 TPU$K_MESSAGE_FACILITY Include facility name.
FAO-parameter

One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAO system service, and substitutes the resultant
values into the text associated with the message code to form the returned
string.

return value

VAXTPU Built-In Procedures
MESSAGE_TEXT

The text associated with a message code that is fetched and formatted by
MESSAGE_TEXT.

DESCRIPTION MESSAGE_TEXT returns a formatted string, specified by the message
code passed as the first parameter, and constructed according to the
rules of the $FAO system service. The control string associated with the
message code directs the formatting process, and the optional arguments
are values to be substituted into the control string.

MESSAGE_TEXT does not’capitalize the first character of the returned
string. The MESSAGE built-in, on the other hand, does capitalize the first
character. .
Some FAQO directives you can include as part of the message text are the
following:
IAS Inserts a string as is
10L Converts an integer to octal notation
IXL Converts an integer to hexadecimal notation
IZL Converts an integer to decimal notation
UL Converts an integer to decimal notation without adjusting for negative
N number
g ISL Converts an integer to decimal notation with negative numbers converted
properly
v Inserts a new line character (carriage return/line feed)
U Inserts a tab
i} Inserts a form feed
1} Inserts an exclamation point
1%S Inserts an s if the most recently converted number is not 1
> 1%T Inserts the current time if you enter O as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)
1%D Inserts the current date and time if you enter 0 as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)
SIGNALED TPU$_INVFAOPARAM WARNING Argument was not a string or
ERRORS - in'(gger. °
TPUS_ ERROR MESSAGE_TEXT must
NEEDTOASSIGN appear on the right-hand side
of an assignment statement.
TPU$_INVPARAM ERROR You have specified an
argument of the wrong type.
TPU$_TOOFEW ERROR MESSAGE_TEXT requires at
least one parameter.
TPU$_TOOMANY ERROR MESSAGE_TEXT accepts up

to 20 FAO directives.

7-27

VAXTPU Built-In Procedures
MESSAGE_TEXT

TPU$_FLAGTRUNC INFORMATIONAL Message flag truncated to 4
bits.

TPU$_SYSERROR ERROR Error fetching the message
text.

EXAMPLE

all message_flags := TPUSK_MESSAGE TEXT OR
TPUSK_MESSAGE_ID OR
TPUSK_MESSAGE_SEVERITY OR
TPUSK_MESSAGE_FACILITY;
openin_text := MESSAGE_TEXT (TPU$_OPENIN, all message_flags,
"bat.bar");

This code fragment fetches the text associated with the message code
TPU$_OPENIN and substitutes the string "BAT.BAR" into the message.
All of the text of the message is fetched. The following string is stored in
the variable openin_text:

$TPU-E-OPENIN, error opening BAT.BAR as input

7-272

VAXTPU Built-In Procedures
MODIFY_RANGE

MODIFY RANGE

FORMAT

Dynamically modifies a range.

markeri
MODIFY_RANGE (range, { keyword1 }’ {

[, keyword2 J)

marker2
keyword1

PARAMETERS

N

range
The range to be modified.

marker1
The starting mark for the range.

marker2
The ending mark for the range.

keyword1

A keyword indicating the point in the buffer where you want the range

to begin or end. Table 7-8 shows the valid keywords and their meanings.
Use of the delimiting keywords is more efficient than the BEGINNING_OF
and END_OF built-ins.

Table 7-8 MODIFY_RANGE Keyword Parameters

Keyword Meaning

LINE_BEGIN The beginning of the current buffer’s current line.

LINE_END The end of the current buffer’s current line.

BUFFER_ Line 1, offset 0 in the current buffer. This is the first position
BEGIN where a character could be inserted, regardiess of whether there

is a character there. This is the same as the point referred to by
BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a character could be inserted,
regardless of whether there is a character there. This is the same
as the point referred to by END_OF (CURRENT_BUFFER).

keyword2

A keyword specifying the new video attribute for the range. By default,
the attribute is not modified. You can use the keywords NONE,
REVERSE, UNDERLINE, BLINK, or BOLD to specify this parameter.

7-273

VAXTPU Built-In Procedures
MODIFY_RANGE

DESCR]PT|0N You can use MODIFY_RANGE to specify a new starting mark and ending

mark for an existing range.

MODIFY_RANGE can also change the characteristics of the range without
deleting, re-creating, and repainting all the characters in the range. Using
MODIFY_RANGE, you can direct VAXTPU to apply or remove the range’s
video attribute to or from characters as you select and unselect text.

Ranges are limited to one video attribute at a time. Specifying a video
attribute different from the present attribute causes VAXTPU to apply the
new attribute to the entire visible portion of the range.

If the video attribute stays the same and only the markers move, the only
characters that are refreshed are those visible characters newly added to
the range and those visible characters that are no longer part of the range.

SIGNALED TPU$_NOTSAMEBUF WARNING The first and second marker are in
ERRORS - different buffers.
TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by the
MODIFY_RANGE built-in.
TPU$_BADKEY WARNING You specified an illegal keyword.
TPU$_INVPARAM ERROR You specified a parameter of the
wrong type.
TPU$_MODRANGEMARKS ERROR MODIFY_RANGE requires either
two marker parameters or none.
TPU$_TOOFEW ERROR Too few arguments passed to the
MODIFY_RANGE built-in.
TPU$_TOOMANY ERROR Too many arguments passed to
the MODIFY_RANGE built-in.
TPU$_NORETURNVALUE ERROR MODIFY_RANGE cannot return a
value.
]
EXAMPLES
begin mark := MARK (BOLD);

POSITION (MOUSE);

finish_mark := MARK (BOLD):;

this_range := CREATE_RANGE (begin_mark, finish_mark, BOLD);
1

t . (User may have moved mouse)
1

POSITION (MOUSE):;
new_mark := MARK (BOLD):;
IF new _mark <> finish mark
THEN
MODIFY RANGE (this_range, begin_mark, new_mark, BOLD);
ENDIF;

This code fragment creates a range between the editing point and the
pointer cursor location. At a point in the program after you might have

7-274

N

g

VAXTPU Built-in Procedures
MODIFY_RANGE

moved the pointer cursor, the code fragment modifies the range to reflect
the new pointer cursor location.

MODIFY RANGE (this_range, , ,BLINK);

This statement sets the video attribute of the range this_range to BLINK.

3] PROCEDURE move mark (place_to_start, direction);

POSITION (place_to_start):

IF direction
THEN

=1

MOVE_HORIZONTAL (1)

ELSE

MOVE_HORIZONTAL (-1):;

ENDIF;

RETURN MARK (NONE) ;

ENDPROCEDURE;

PROCEDURE user_shrink and_enlarge_range

LOCAL start_mark,
end_mark,
direction,
dynamic_range,
rendition,
remembered_range;

The following lines
create a range that
shrinks and grows and

a range that defines

the limits of the dynamic
range.

G bt = b g

POSITION (LINE_BEGIN) ;
start_mark := MARK (NONE):;
POSITION (LINE_ END);

end mark := MARK (NONE);

rendition :=

REVERSE;

remembered range := CREATE RANGE (start_mark, end mark, NONE);
dynamic_range := CREATE_RANGE (start_mark, end mark, rendition);

direction :=

LooP

! The following lines
! shrink and enlarge
! the dynamic range.

1;

UPDATE (CURRENT_WINDOW) ;

start_mark := move mark (BEGINNING OF (dynamic_range), direction);

end_mark

:= move_mark (END_OF (dynamic_range), 1 - direction);

MODIFY RANGE (dynamic_range, start_mark, end_mark);

7-275

VAXTPU Built-In Procedures
MODIFY_RANGE

IF start_mark > end mark

THEN
EXITIF READ KEY = CTRL_Z_KEY;
direction := 0;
IF rendition = REVERSE
THEN
rendition := BOLD;
ELSE
rendition := REVERSE;
ENDIF;

MODIFY RANGE (dynamic_range, , , rendition);
ENDIF;

IF (start_mark = BEGINNING OF (remembered_range)) OR
(end_mark = END_OF (remembered_range))
THEN
direction := 1;
ENDIF;
ENDLOOCP;

ENDPROCEDURE;

These procedures cause the range dynamic_range to shrink to one
character, then grow until it becomes as large as the range remembered_
range.

4] PROCEDURE line_up characters (text_range, lined_chars_pat)

LOCAL
range_start,
range_end,
temp_range,
max_cols;

range_end := END_OF (text_range): ! These statements store
! the ends of the range
! containing the text operated on.

range_start := BEGINNING OF (text_range):;
! The following statements
! locate the portions of
! text that match the pattern
! and determine which is
! furthest to the right.
max_cols := 0;
LOOP

temp range := SEARCH_QUIETLY (lined_chars_pat, REVERSE, EXACT, text_range);
EXITIF temp range = 0;
POSITION (temp_range);

IF GET_INFO (MARK (NONE), "offset_column") > max cols
THEN

max_cols := GET_INFO (MARK (NONE), "offset_column"):;
ENDIF;

MOVE_HORIZONTAL (-1);
MODIFY_ RANGE (text_range, BEGINNING_OF (text_range), MARK (NONE)):
ENDLCOP;

7-276

o

VAXTPU Built-In Procedures
MODIFY_RANGE

! The following lines
! locate matches to the
text_range := CREATE_RANGE (range_start, range end); ! pattern and align them
! with the rightmost
! piece of matching text.
LOOP
temp_range := SEARCH_QUIETLY (lined chars_pat, FORWARD, EXACT, text_range);
EXITIF temp_range = 0;
POSITION (temp_ range);
IF GET_INFO (MARK (NONE), "offset_column") < max cols
THEN
COPY_TEXT (" ™ * (max_cols - GET_INFO (MARK (NONE), "offset column")));
ENDIF;
MOVE_HORIZONTAL (1);
MODIFY RANGE (text_range, END_OF (text_range), MARK (NONE));
ENDLOOP ;

! Restore the range to its original state, plus a reverse attribute.
i

text_range := CREATE RANGE (range start, range_end, REVERSE); ! This line
! restores the
! range to its
! original state
! and displays
! the contents
! in reverse video.

ENDPROCEDURE;

This procedure aligns text that conforms to the pattern specified in the
second parameter. For example, if you want to align all comments in a
piece of VAXTPU code, you would pass as the second parameter a pattern
defined as an exclamation point followed by an arbitrary amount of text or
whitespace and terminated by a line end.

The procedure is passed a range of text. As the procedure searches the
range to identify the rightmost piece of text that matches the pattern,
the procedure modifies the range to exclude any matching text. Next, the
procedure searches the original range again and inserts padding spaces
in front of each instance of matching text, making the text align with the
rightmost instance of matching text.

7-277

VAXTPU Built-in Procedures
MOVE_HORIZONTAL

MOVE_HORIZONTAL

FORMAT

PARAMETERS

Changes the editing point in the current buffer by the number of characters
you specify.

MOVE_HORIZONTAL (integer)

integer

The signed integer value that indicates the number of characters the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

VAXTPU does not count the column where the editing point is located
when determining where to establish the new editing point. VAXTPU does
count the end-of-line (the column after the last text character on the line)
when determining where to establish the new editing point.

DESCRIPTION

The horizontal adjustment of the editing point is tied to text. MOVE_
HORIZONTAL crosses line boundaries to adjust the current character
position.

You cannot see the adjustment caused by MOVE_HORIZONTAL unless
the current buffer is mapped to a visible window. If it is, VAXTPU scrolls
text in the window, if necessary, so that the editing point you establish
with MOVE_HORIZONTAL is within the scrolling limits set for the
window.

If you try to move past the beginning or the end of a buffer, VAXTPU
displays a warning message.

Using MOVE_HORIZONTAL may cause VAXTPU to insert padding
spaces or blank lines in the buffer. MOVE_HORIZONTAL causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

SIGNALED
ERRORS

7-278

TPU$_TOOFEW ERROR MOVE_HORIZONTAL requires
one parameter.

TPU$_TOOMANY ERROR You specified more than one
parameter.

VAXTPU Built-In Procedures
MOVE_HORIZONTAL

TPU$_INVPARAM ERROR The specified parameter has the
wrong type.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_ENDOFBUF WARNING You are trying to move forward

past the last character of the
buffer.

TPU$_BEGOFBUF WARNING You are trying to move in reverse
past the first character of the
buffer.

EXAMPLES

MOVE_HORIZONTAL (+5)

This statement moves the editing point five characters toward the end of
the current buffer.

PROCEDURE user_move_by lines

IF CURRENT_DIRECTION = FORWARD
THEN
MOVE_VERTICAL (8)
ELSE
MOVE_VERTICAL (- 8)
ENDIF;

MOVE_HORIZONTAL (-CURRENT OFFSET);
ENDPROCEDURE;

This procedure moves the editing point by sections that are eight lines
long, and uses MOVE_HORIZONTAL to put the editing point at the
beginning of the line.

7-279

VAXTPU Built-In Procedures
MOVE_TEXT

MOVE_TEXT

Depending on the mode of the current buffer, moves the text you specify and
inserts or overwrites it in the current buffer. When you move text with range
and buffer parameters, you remove it from its original location. For information
on how to copy text instead of removing it, see the description of the COPY_
TEXT built-in.

FORMAT buffer
frange2 := JMOVE_TEXT (< rangel ;)
string

PARAMETERS buffer
The buffer from which text is moved.

rangef

The range from which text is moved.

string /
A string representing the text you want to move. Text is not removed from |
its original location with this argument.

return value The range where the copied text has been placed.

DESCRIPTION If the current buffer is in insert mode, the text you specify is inserted
before the editing point in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current /
position and continuing for the length of the string, range, or buffer.

Markers and ranges are not moved with the text. If the text of a marker
or a range is moved, the marker or range structure and any video attribute
that you specified for the marker or range are moved to the next closest
character, which is always the character following the marker or range. To
remove the marker or range structure, use the built-in procedure DELETE
or set the variable to which the range is assigned to O.

MOVE_TEXT is similar to COPY_TEXT. However, MOVE_TEXT erases
the text from its original string, range, or buffer, while COPY_TEXT just
makes a copy of the text and places the copy at the new location.

You cannot add a buffer or a range to itself. If you try to do so, VAXTPU
issues an error message. If you try to insert a range into itself, part of the
range is copied before VAXTPU signals an error. If you try to overstrike a
range into itself, VAXTPU may or may not signal an error.

7-280

VAXTPU Built-In Procedures

MOVE_TEXT

Using MOVE_TEXT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. MOVE_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

EIRGRN OARLSE D TPU$_NOCACHE ERROR

TPU$_TOOFEW ERROR
TPU$_TOOMANY ERROR
TPU$_ARGMISMATCH ERROR
TPU$_NOTMODIFIABLE ERROR

TPU$_MOVETOCOPY WARNING

There is not enough memory to
allocate a new cache.

MOVE_TEXT requires one
argument.

MOVE_TEXT accepts only one
argument.

The argument to MOVE_TEXT
must be a buffer, range, or string.

You cannot copy text into an
unmodifiable buffer.

MOVE_TEXT was able to copy
the text into the current buffer but
could not delete it from the source
buffer because the source buffer is
unmodifiable.

EXAMPLES

MOVE_TEXT (main_buffer)

If you are using insert mode for text entry, this statement causes the
text from main_buffer to be placed in front of the current position in the
current buffer. The text is removed from main_buffer.

B PROCEDURE user _move_text
LOCAL this_mode;

! Save mode of current buffer in this_mode
this_mode := GET_INFO (CURRENT BUFFER, "mode");

! Set current buffer to insert mode
SET (INSERT, CURRENT_ BUFFER);

! Move the scratch buffer text to the current buffer
MOVE_TEXT (scratch_buffer);

! Reset current buffer to original mode
SET (this_mode, CURRENT_BUFFER) ;
ENDPROCEDURE;

This procedure puts the text from the scratch buffer before the editing
point in the main buffer. The text in the scratch buffer is removed; no

copy of it is left there.

7-281

VAXTPU Built-In Procedures

MOVE_VERTICAL

MOVE_VERTICAL

Modifies the editing point in the current buffer by the number of lines you
specify.

FORMAT

MOVE_VERTICAL (integer)

PARAMETERS

integer

The signed integer value that indicates the number of lines that the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

DESCRIPTION

The adjustment that MOVE_VERTICAL makes is tied to text. VAXTPU
tries to retain the same character offset relative to the beginning of the
line when moving vertically. However, if there are tabs in the lines, or the
lines have different margins, the editing point does not necessarily retain
the same column position on the screen.

By default, VAXTPU keeps the cursor at the same offset on each line.
However, since VAXTPU counts a tab as one character regardless of how
wide the tab is, the cursor’s column position may vary greatly even though
the offset is the same.

To keep the cursor in approximately the same column on each line, use the
following statement:

SET (COLUMN_MOVE VERTICAL, ON)

This statement directs VAXTPU to keep the cursor in the same column
unless a tab character makes this impossible. If a tab occupies the column
position, VAXTPU moves the cursor to the beginning of the tab.

You cannot see the adjustment caused by MOVE_VERTICAL unless the
current buffer is mapped to a visible window. If it is, VAXTPU scrolls text
in the window, if necessary, so that the editing point you establish with
MOVE_VERTICAL is within the scrolling limits set for the window.

Using MOVE_VERTICAL may cause VAXTPU to insert padding spaces or
blank lines in the buffer. MOVE_VERTICAL causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

If you try to move past the beginning or end of a buffer, VAXTPU displays
a warning message.

—

VAXTPU Built-In Procedures

MOVE_VERTICAL

MOVE_VERTICAL requires at
least one parameter.

You specified more than one
parameter.

One or more of the specified
parameters have the wrong type.
You are trying to move backward
past the first character of the
buffer.

You are trying to move forward

past the last character of the
buffer.

You are not positioned in a buffer.

SIGNALED
: TPU$_TOOFEW ERROR
ERRORS
TPU$_TOOMANY ERROR
TPU$_INVPARAM ERROR
TPU$_BEGOFBUF WARNING
TPU$_ENDOFBUF WARNING
TPU$_NOCURRENTBUF WARNING
EXAMPLES

MOVE_VERTICAL (+5)

This statement moves the editing point in the current buffer down five

lines toward the end of the buffer.

PROCEDURE user_move_8_lines

IF CURRENT DIRECTION = FORWARD
THEN
MOVE_VERTICAL (8);
ELSE
MOVE_VERTICAL (- 8);
ENDIF;
MOVE_HORIZONTAL (- CURRENT_ OFFSET) ;
ENDPROCEDURE;

This procedure moves the editing point by sections that are eight lines

long.

7-283

VAXTPU Built-In Procedures

NOTANY

NOTANY

Returns a pattern that matches a specific number of characters not in the
string, buffer, or range that is used as a parameter.

FORMAT { buffer }
pattern := NOTANY ({ range ; [, integert])
string
PARAMETERS buffer

return value

An expression that evaluates to a buffer. NOTANY matches any character
not in the resulting buffer.

range
An expression that evaluates to a range. NOTANY matches any character
not in the resulting range.

string
An expression that evaluates to a string. NOTANY matches any character
not in the resulting string.

integer1
This integer value indicates how many contiguous characters NOTANY
matches. The default value for this integer is 1.

A pattern that matches characters not in the string, buffer, or range used
as a parameter.

DESCRIPTION NOTANY returns a pattern that matches one or more contiguous
characters. NOTANY only matches characters that do not appear in the
string, range, or buffer used as the first parameter. The second parameter
determines the number of characters NOTANY must match. NOTANY
does not match across line breaks.

_

SIGNALED TPU$_NEEDTOASSIGN ERROR NOTANY must in th

| (must appear in the

ERRORS right-hand side of an assignment

statement.

TPU$_TOOFEW ERROR NOTANY requires at least one
argument.

TPU$_TOOMANY ERROR NOTANY accepts no more than
two arguments.

TPU$_ARGMISMATCH ERROR NOTANY was given an argument

7-284

of the wrong type.

VAXTPU Built-In Procedures

NOTANY
TPU$_INVPARAM ERROR NOTANY was given an argument
of the wrong type.
TPU$_MINVALUE WARNING NOTANY was given an argument
less than the minimum value.
TPU$_CONTROLC ERROR You pressed CTRL/C during the

execution of NOTANY.

—

EXAMPLES

patl := NOTANY ("XYZ")
This assignment statement creates a pattern that matches the first
character that is not an X, a Y, or a Z. The match fails if no character
other than X, Y, or Z is found.

B patl := notany ("ABC", 2)

This assignment statement creates a pattern that matches two characters,
neither of which can be an A, a B, or a C.

a_buf := CREATE_BUFFER ("new buffer");
POSITION (a_buf):

COPY_TEXT ("=xy"):

SPLIT LINE;

COPY_TEXT ("abc"):

patl := NOTANY (a_buf);

These VAXTPU statements create a pattern that matches any single
character other than one of the characters a, b, ¢, x, and y.

1
! The following procedure returns a marker pointing to
! the next nonalphabetic character or the integer zero
! if there are no more nonalphabetic characters. You
! call the procedure in the following way:

1

[}

non_alpha_marker := user_ search_for nonalpha;
PROCEDURE user_search_for_nonalpha

LOCAL pat,
first_non_alpha;

pat := NOTANY ("abcdefghijklmnopgrstuvwxyz");
first non_alpha := SEARCH QUIETLY (pat, FORWARD, NO_EXACT) ;

IF first_non_alpha <> 0
THEN

first_non_alpha := BEGINNING OF (first non_alpha);
ENDIF;

RETURN first non_alpha;
ENDPROCEDURE;

This procedure starts at the current location and looks for the first
nonalphabetic, nonlowercase character. The variable non_alpha_range
stores the character that matches these conditions.

7-285

VAXTPU Built-In Procedures
PAGE_BREAK

PAGE_BREAK

Specifies the form-feed character, ASCII(12), as a portion of a pattern to be
matched.

FORMAT PAGE_BREAK

PARAMETERS Nore.

DESCRIPTION PAGE_BREAK matches the next form-feed character. This character has
an ASCII value of 12.

Although PAGE_BREAK behaves much like a built-in, it is actually a
keyword.

If the form-feed character is the only character on a line, PAGE_BREAK
matches the whole line. If the form-feed character is not the only character
on a line, PAGE_BREAK matches only the form-feed character.

SIGNALED PAGE_BREAK is a keyword and has no completion codes.
ERROR

EXAMPLE

PROCEDURE user_next_page
LOCAL next_page;

next_page := SEARCH_QUIETLY (PAGE_BREAK, FORWARD):
IF next_page <> 0
THEN
POSITION (next_page);
ELSE
POSITION (end of (current_buffer));
ENDIF;
ENDPROCEDURE;

This procedure places the cursor on the next page in the current buffer. If
you are already on the last page of a document, it places the cursor at the
end of that document.

VAXTPU Built-In Procedures
POSITION

POSITION

Ties the editing point to a specific character in a specific buffer, and moves
the editing point to a specified record in the current buffer. The character
and buffer in which POSITION establishes the editing point depend on which
parameter you pass to POSITION.

FORMAT

(buffer)
BUFFER_BEGIN
BUFFER_END
integer
LINE_BEGIN
LINE_END

marker

MOUSE

range

TEXT

\ window J

POSITION

"V

PARAMETERS

buffer
The buffer in which you want to establish the editing point.

VAXTPU maintains an editing point in each buffer even when the buffer
is not the current buffer. When you position to a buffer, the editing point
that VAXTPU maintains becomes the active editing point. The location at
which POSITION establishes the editing point is the last character that
the cursor was on when the buffer was most recently current.

BUFFER_BEGIN

A keyword directing VAXTPU to establish the editing point at the
beginning of the current buffer. Note that this is more efficient than
using POSITION (BEGINNING_OF (CURRENT_BUFFER)).

BUFFER_END

A keyword directing VAXTPU to establish the editing point at the
end of the current buffer. Note that this is more efficient than using
POSITION (END_OF (CURRENT_BUFFER)).

integer
The number of the record where you want VAXTPU to position the editing
point.

A record number indicates the location of a record in a buffer. Record
numbers are dynamic; as you add or delete records, VAXTPU changes

the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible in a
window, or whether the record contains text.

7-287

VAXTPU Built-in Procedures

POSITION

7-288

To position the editing point to a given record, specify the record number.
The number can be in the range from 1 to the number of records in the
buffer plus 1. For example, the following statement positions the editing
point to record number 8 in the current buffer:

POSITION (8);
VAXTPU places the editing point on the first character of the record.

Specifying a value of 0 has no effect. Specifying a negative number or a
number greater than the number of records in the buffer plus 1 causes
VAXTPU to signal an error.

LINE_BEGIN
A keyword directing VAXTPU to establish the editing point at the
beginning of the current line.

LINE _END

A keyword directing VAXTPU to establish the editing point at the end of
the current line.

marker

The marker to which you want to tie the editing point. You can position
either to a bound marker or a free marker. (For more information on the
distinction between bound and free markers, see Chapter 2.) Positioning
to a free marker does not cause VAXTPU to insert padding blanks between
the nearest text and the free marker; such positioning establishes the
editing point as free. (For more information on the distinction between
free and detached editing points, see Chapter 6.)

MOUSE

A keyword directing VAXTPU to associate the editing point with the
location of the pointer cursor.

In DECwindows VAXTPU, you can use the statement POSITION
(MOUSE) at any point after the first keyboard or mouse button event.
The statement positions the editing point to the location occupied by the
pointer cursor at the time of the most recent keyboard or mouse-button
event.

If the pointer cursor is on a window’s status line when POSITION
(MOUSE) is executed, VAXTPU positions the editing point at the line
just above the status line.

If the pointer cursor is not located in a VAXTPU window at the time of
the most recent keyboard or mouse-button event, POSITION (MOUSE)
returns the status TPU$_NOWINDOW.

In non-DECwindows VAXTPU, POSITION (MOUSE) is only valid during
a procedure that is executed as the result of a mouse click. At all other
times, the mouse position is not updated.

The statement POSITION (MOUSE) makes the window in which the
pointer cursor is located the current window, and the buffer in which the
pointer cursor is located the current buffer.

range

The range in which you want to place the editing point. The editing point
is established at the beginning of the range. To establish the editing point
at the end of the range, use the statement POSITION (END_OF (range)).

~——

VAXTPU Built-In Procedures
POSITION

TEXT

A keyword indicating that if the editing point is at a free-cursor location
(a portion of the screen where there is no text), the POSITION built-in

is to establish the editing point at the nearest location that has a text
character in it. The character may be a space or an end of line. If you use
POSITION (TEXT) when the editing point is already bound to a character,
the built-in has no effect.

window

The window in which you want to establish the editing point. The window
must be mapped to the screen.

The location at which POSITION establishes the editing point is the last
character that the cursor was on when the window was most recently
current. If that character has been deleted, the editing point is the
character closest to the last character that the cursor was on when the
window was current.

Positioning to a window causes the buffer associated with the window
to become the current buffer. This is true whether you directly position
to a window, or a new window is mapped as the result of a POSITION
(MOUSE) statement.

DESCRIPTION

The editing point is the location in the current buffer where most editing
operations are carried out. VAXTPU maintains a marker pointing to an
editing point in each buffer, but only the editing point in the current buffer
is active. An editing point, whose location is always tied to a character

in a buffer, is not necessarily the same as the cursor position, whose
location is always tied to a position in a window. For more information

on the distinction between the editing point and the cursor position, see
Chapter 6.

The POSITION built-in synchronizes the editing point and the cursor
position if the current buffer is mapped to a visible window. POSITION

also moves the editing point to the the specified record in the current
buffer.

When you pass the keyword MOUSE to POSITION, the built-in
establishes the mouse pointer’s location as the cursor position. POSITION
also establishes the window in which the mouse pointer is located as the
current window, and establishes the buffer mapped to that window as the
current buffer. ‘

Positioning to a buffer, a marker, or a range does not necessarily move
the cursor. VAXTPU does not change the cursor position unless the cursor
is in a window that is mapped to the buffer specified or implied by the
POSITION parameter. For example, if you use POSITION to establish
the editing point in a buffer that is not mapped to a window, the cursor is
unaffected by the POSITION operation. If you want to do visible editing,
you should position to a window rather than a buffer.

If you try to position to an invisible window, VAXTPU issues a warning
message.

For more information on the relationship between the editing point and
the cursor position, see Chapter 6.

7-289

VAXTPU Built-In Procedures

POSITION

SIGNALED

ERRORS TPU$_TOOFEW ERROR POSITION requires one
parameter.

TPU$_TOOMANY ERROR You specified more than one
parameter.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
built-in.

TPU$_BADKEY WARNING You have specified an invalid
keyword.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

TPUS$_BADVALUE ERROR You specified a record number
less than O or greater than the
length of the buffer plus 1.

TPU$_MOUSEINV WARNING The mouse position is not currently
valid.

TPU$_NOWINDOW WARNING The pointer cursor was not located
in a VAXTPU window at the time
of the most recent keyboard or
mouse-button event.

TPU$_WINDNOTMAPPED WARNING Window is not mapped to the
screen.

TPU$_WINDNOTVIS WARNING Window is totally occluded.

EXAMPLES

il POSITION (message window)

This statement establishes the editing point in the message window. Your
position in the window is the same character position you occupied when
you were last positioned in the window.

™=

user_mark := MARK (NONE) ;
POSITION (user_mark)

These statements establish the editing point at the marker associated with
the variable user_mark.

B PROCEDURE user_change windows
IF CURRENT WINDOW = main window
THEN
POSITION (extra window);
ELSE
POSITION (main_window) ;
ENDIF;
ENDPROCEDURE;

This procedure toggles the active editing point between two windows.

7-290

VAXTPU Built-In Procedures
QUIT

QUIT

Leaves the editor without writing to a file.

FORMAT ON .
QUIT [({ O } [, severity]
PARAMETERS ON
A keyword indicating that VAXTPU should prompt to find out if the user
really wants to quit with modified buffers. This is the default value.
OFF
A keyword indicating that VAXTPU should quit without asking the user
whether to quit with modified buffers.
severity
If present, the least significant two bits of this integer are used as the
severity of the status VAXTPU returns to whatever invoked it.
Value Severity
0 Warning
1 Success
2 Error
3 Informational
It is not possible to force VAXTPU to return a fatal severity status.
DESCRIPTION If you modify any buffers that are not set to NO_WRITE and you do

not specify OFF as the first parameter to the QUIT built-in procedure,
VAXTPU tells you that you have modified buffers and asks whether you
want to quit. Enter Y (Yes) if you want to quit without writing out any
modified buffers. Enter N (No) if you want to retain the modifications
you have made and return to the editor. If you specify OFF as the first
parameter to QUIT, VAXTPU quits without informing you that you have
modified buffers. All modifications are lost because VAXTPU does not
write out buffers when quitting.

Journal files (if any) are deleted upon quitting.

Use the EXIT built-in procedure when you have made changes and want
to save them when you leave the editor. (For more information, see the
description of EXIT.)

Normally, when VAXTPU quits it returns a status of TPU$_QUITTING to
whatever invoked it. This is a success status.

7-291

VAXTPU Built-In Procedures

QUIT
This feature is useful if you are using VAXTPU to create an application
in which quitting, especially before the end of a series of statements
executing in batch mode, is an error.
A special use of the built-in procedure QUIT is at the end of your section
file when you are compiling it for the first time. See Chapter 4 for
information on creating section files.
SIGNALED
ERRORS TPU$_CANCELQUIT WARNING "NO" response was received
from” ... continue quitting?"
prompt.
TPU$_TOOMANY ERROR QUIT accepts no more than two
arguments.
TPUS$_INVPARAM ERROR One of the arguments to QUIT has
the wrong data type.
TPU$_BADKEY WARNING QUIT accepts only the keywords
ON and OFF.
EXAMPLES
QUIT;

Buffer modifications

QUIT (OFF)

This returns control of execution from an editor layered on VAXTPU to
the program, application, or operating system that called VAXTPU. If you
have modified any buffers, you see the following prompt:

will not be saved, continue quitting (Y or N)?

Enter Yes if you want to quit and not save the modifications. Enter No if
you want to return to the editor.

This returns control of execution from an editor layered on VAXTPU to the
program, application, or operating system that called VAXTPU. VAXTPU
does not alert you if you have modified buffers. All modifications since the
last time you wrote out the buffer are discarded.

PROCEDURE user_quit

SET (SUCCESS,

QUIT;

OFF) ;

! Turn message back on in case user answers "No" to the
! prompt "Buffer modifications will not be saved, continue
! quitting (Y or N)?2"

SET (SUCCESS,

ENDPROCEDURE;

7-292

ON) ;

This procedure turns off the display of the success message, “Editor
successfully quitting”, when you use the built-in procedure QUIT to leave
an editing interface. '

VAXTPU Built-In Procedures
READ_CHAR

READ_CHAR

Stores the next character entered from the keyboard in a string variable.

L —

FORMAT string := READ_CHAR

PARAMETERS Nore.

return value A variable of type string containing a character entered from the keyboard.

DESCRIPTION The character read by READ_CHAR is not echoed on the screen; therefore,
the cursor position does not move.

READ_CHAR does not process escape sequences. If a VAXTPU procedure
uses READ_CHAR for an escape sequence, only part of the escape
sequence is read. The remaining part of the escape sequence is treated
as text characters. If control then returns to VAXTPU, or a READ_
KEY or READ_LINE built-in procedure is executed, the results may be
unpredictable.

In DECwindows VAXTPU, READ_CHAR maps the main window if it is
not already mapped.

In the DECwindows environment, READ_CHAR cannot read a keypad or
function key. If a VAXTPU procedure uses READ_CHAR and you press a
keypad or function key, READ_CHAR returns a null string and signals the
warning TPU$_NOCHARREAD.

If you invoke VAXTPU with the /NODISPLAY qualifier, do not use READ_
CHAR during the session. READ_CHAR causes VAXTPU to abort when
VAXTPU is running in NODISPLAY mode.

SIGNALED ,
ERRORS TPU$_NOCHARREAD WARNING READ_CHAR did not read a
character.
TPU$_NEEDTOASSIGN ERROR READ_CHAR must be on the
right-hand side of an assignment
statement.
TPU$_TOOMANY ERROR READ_CHAR takes no arguments.
EXAMPLES

new_char := READ_CHAR

This assignment statement stores the next character that is entered on
the keyboard in the string new_char.

7-293

VAXTPU Built-In Procedures
READ_CHAR

PROCEDURE user_gquote
COPY_TEXT (READ_CHAR):;
ENDPROCEDURE;

This procedure enters the next character that is entered from the keyboard
in the current buffer. If a key that sends an escape sequence is pressed,
the first character of the escape sequence is copied into the buffer.
Subsequent keystrokes are interpreted as self-inserting characters, defined
keys, or undefined keys, as appropriate.

7-294

VAXTPU Built-in Procedures
READ_CLIPBOARD

READ_CLIPBOARD

Reads string format data from the clipboard and copies it into the current
buffer, at the editing point, using the buffer's current text mode (insert or

overstrike).
FORMAT range -
[GrepEciFiED | *= READ_CLIPBOARD
return value A range containing the text copied into the current buffer, or an
unspecified data type indicating that no data was obtained from the
clipboard.

DESCRIPTION If VAXTPU finds a line-feed character in the data, it removes the line feed
' and any adjacent carriage returns and puts the data after the line feed on
the next line of the buffer. If VAXTPU must truncate the data from the
clipboard, VAXTPU copies the truncated text into the current buffer.

All text read from the clipboard is copied into the buffer starting at the
editing point. If VAXTPU must start a new line to fit all the text into the
buffer, the new line starts at column 1, even if the current left margin is
not set at column 1.

SIGNALED
ERRORS

TPU$_CLIPBOARDLOCKED WARNING VAXTPU cannot read from the
' clipboard because some other
application has locked it.
TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPU$_CLIPBOARDFAIL WARNING The clipboard has not returned
any data.

TPU$_REQUIRESDECW ERROR You can use the READ_
CLIPBOARD built-in only if you
are using DECwindows TPU.

- TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65,535
characters.

TPU$_TOOMANY ERROR Too many arguments passed to

the READ_CLIPBOARD built-in.

7-295

VAXTPU Built-In Procedures
READ_CLIPBOARD

EXAMPLE

PROCEDURE eve$$insert_clipboard

ON_ERROR
[TPUS_CLIPBOARDNODATA] :
eveSmessage (EVE$_NOINSUSESEL) ;
eve$learn_ abort;
RETURN (FALSE) ;
[TPU$_CLIPBOARDLOCKED] :
eve$message (EVE$_CLIPBDREADLOCK) ;
eve$learn_abort;
RETURN (FALSE) ;
[TPUS_TRUNCATE] :
[OTHERWISE] :
eve$learn_abort;
ENDON_ERROR;

IF eveS$test_if modifiable (CURRENT BUFFER)
THEN

READ_CLIPBOARD; This statement using
READ_CLIPBOARD reads
data from the clipboard
and copies it into the

current buffer.

- rm b = e

RETURN (TRUE) ;
ENDIF;

eve$learn_ abort;
RETURN (FALSE);

ENDPROCEDURE;

This procedure shows one possible way that an application can use the
READ_CLIPBOARD built-in. This procedure is a modified version of the
EVE procedure EVE$$INSERT_CLIPBOARD. You can find the original
version in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

Procedure EVE$$INSERT _CLIPBOARD fetches the contents of the

clipboard and places them in the current buffer.

7-296

S~

VAXTPU Built-In Procedures
READ_FILE

READ_FILE

Reads a file and inserts the contents of the file immediately before the current
line in the current buffer. READ_FILE optionally returns a string containing the
file specification of the file read.

FORMAT Istring2 :=] READ_FILE (string1)

PARAMETER string1

A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the name of the file you want
to read and include in the current buffer.

return value A string that is the specification of the file read.

DESCRIPTION If the current buffer is mapped to a visible window, the READ_FILE built-
in causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

VAXTPU writes a message indicating how many records (lines) were read.

If you try to read a file containing lines longer than 32767 characters,
VAXTPU truncates the line to the first 32767 characters and issues a
warning.

SIGNALED L
ERRORS TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_CONTROLC ERROR The execution of the read
terminated because you pressed
CTRL/C.
TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.
TPU$_TOOFEW ERROR READ_FILE requires at least one
parameter.
TPU$_TOOMANY ERROR READ_FILE accepts no more than
one parameter.
TPU$_INVPARAM ERROR The parameter to READ_FILE
must be a string.
TPUS$_TRUNCATE WARNING One of the lines in the file was too

long to fit in a VAXTPU buffer.

7-297

VAXTPU Built-In Procedures

READ_FILE
The following errors, warnings, and messages can be signaled by
VAXTPU's file I/O routine. You can provide your own file I/O routine
by using VAXTPU’s callable interface. If you do so, READ_FILE’s
signaled errors, warnings, and messages depend upon what status you
signaled in your file I/O routine.
TPU$_OPENIN ERROR READ_FILE could not open the
file you specified.
TPU$_READERR ERROR READ_FILE did not finish reading
the file because it encountered a
file system error.
TPU$_CLOSEIN ERROR READ_FILE did not finish closing
the file because it encountered a
file system error.
O -]
EXAMPLES

READ_FILE ("login.com")

This statement reads the file LOGIN.COM and adds it to your current
buffer.
B PROCEDURE user_ two windows

w := CREATE_WINDOW (1, 10, ON):;
b := CREATE_BUFFER ("buf2");

MAP (w, Db);
READ_FILE (READ_LINE ("Enter file name for 2nd window : "));
POSITION (BEGINNING_QF (b))

DEFINE KEY ("POSITION (w)", KEY NAME ("W", SHIFT KEY)):;
ENDPROCEDURE;

This procedure creates a second window and a second buffer and maps
the window to the screen. The procedure also prompts the user for a file
name to include in the buffer and defines the key sequence SHIFT/W as
the sequence with which to move to the second window. (The default shift
key is PF1.)

7-298

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

READ_GLOBAL_SELECT

Requests information about the specified global selection from the owner of
the global selection. If the owner provides the information, READ_GLOBAL _
SELECT reads it and copies it into the current buffer at the editing point, using
the buffer’s current text mode (insert or overstrike). The READ_GLOBAL _
SELECT built-in also puts line breaks in the text copied into the buffer.

FORMAT PRIMARY
[{ :‘::P:"“'e“ } =1 READ_GLOBAL_SELECT({ SECONDARY }
g selection_name

selection_property_name)

PARAMETERS PRIMARY
A keyword indicating that the application is requesting information about
a property of the primary global selection.

SECONDARY

A keyword indicating that the application is requesting information about
a property of the secondary global selection.

selection_name

A string identifying the global selection whose property is the subject of
the application’s information request. Specify the selection name as a
string if the layered application needs information about a selection other
than the primary or secondary global selection.

selection_property _name
A string specifying the property whose value the application is requesting.

return value

unspecified A data type indicating that the information requested by the
application was not available.
range A range containing the text copied into the current buffer.

DESCRIPTION Use READ_GLOBAL_SELECT to ask the application that owns the
specified global selection for information about a property of the global
selection. For example, you can ask about the global selection’s font, the
number of lines it contains, or the string-formatted data it contains, if any.

All text read from the global selection is copied into the current buffer
starting at the editing point. If VAXTPU must start a new line to fit all
the text into the buffer, the new line starts at column 1, even if the current
left margin is not set at column 1.

7-299

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

If the global selection information requested is an integer, the built-in
converts the integer into a string before copying it into the current buffer.
If the information requested is a string, the built-in copies the string into
the buffer, replacing any line feeds with line breaks. Carriage returns
adjacent to line feeds are not copied into the buffer.

glRGRN OARLSE D TPU$_BADKEY

TPU$_GBLSELOWNER

TPU$_INVGBLSELDATA
TPU$_NOGBLSELDATA
TPU$_NOGBLSELOWNER
TPU$_TIMEOUT

TPU$_ARGMISMATCH

TPU$_REQUIRESDECW

TPU$_TOOFEW

TPU$_TOOMANY

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

ERROR

You specified an invalid keyword
as a parameter.

VAXTPU owns the global
selection.

The global selection owner
provided data that VAXTPU cannot
process.

The global selection owner has
indicated that it cannot provide the
information requested.

You have requested information
about an unowned global
selection.

The global selection owner did not
respond before the timeout period
expired.

Wrong type of data sent to the
READ_GLOBAL_SELECT built-in.

You can use the READ_GLOBAL.__
SELECT built-in only if you are
using DECwindows VAXTPU.

Too few arguments passed to the
READ_GLOBAL_SELECT built-in.

Too many arguments passed to
the READ_GLOBAL_SELECT
built-in.

EXAMPLE

READ GLOBAL_SELECTION (PRIMARY, "STRING"):;

This statement reads the string-formatted contents of the primary global
selection and copies it into the current buffer at the current location.

For another example of code using the READ_GLOBAL_SELECT built-in,

see Example B-9.

7-300

VAXTPU Built-In Procedures
READ_KEY

READ_KEY

Waits for you to press a key and then returns the key name for that key.

FORMAT keyword := READ_KEY

PARAMETERS Nore.

return value A key name for the key just pressed.

DESCRIPTION The READ_KEY built-in procedure should be used rather than READ_
CHAR when you are entering escape sequences, control characters, or
any characters other than text characters. READ_KEY processes escape
sequences and VAXTPU’s shift key (PF1 by default).

The key that is read by READ_KEY is not echoed on the terminal screen.

In DECwindows VAXTPU, READ_KEY maps the main window if it is not
already mapped.

If you invoke VAXTPU with the /NODISPLAY qualifier, do not use READ_
KEY during the session. READ_KEY causes VAXTPU to abort when
VAXTPU is running in NODISPLAY mode.

SIGNALED

ERRORS TPU$_NEEDTOASSIGN ERROR READ_KEY must be on the
right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR READ_KEY accepts no
arguments.

TPU$_CONTROLC ERROR You pressed CTRL/C during the
execution of READ_KEY.

TPU$_REQUIRESTERM ERROR You cannot use READ_KEY when
VAXTPU is in NODISPLAY mode.

EXAMPLES

my_key := READ KEY

This assignment statement reads the next key that is entered and stores
the keyword for that key in the variable my_key.

7-301

VAXTPU Built-In Procedures
READ_KEY

B PROCEDURE user_help on_key

LOCAL key_pressed,
key comment;

MESSAGE ("Press the key you want help on.");

key_pressed := READ_KEY;
key_comment LOOKUP_KEY (key pressed, COMMENT);

IF key_comment = 0

THEN
MESSAGE ("That key is not defined.");
ELSE
IF key comment = ""
THEN
MESSAGE ("There is no comment for that key."):
ELSE
MESSAGE (key_comment);
ENDIF;
ENDIF;
ENDPROCEDURE;

This procedure looks in the current key map list for the next key pressed.
If the key is found, any comment associated with that key is put into the
message buffer.

7-302

VAXTPU Built-in Procedures
READ_LINE

READ_LINE

Displays the text that you specify as a prompt for input and reads the
information entered in response to the prompt. You can optionally specify
the maximum number of characters to be read. READ_LINE returns a string
that holds the data that is entered in response to the prompt.

FORMAT string2 := READ_LINE [(string1 [,integer J) J

PARAMETERS string1
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the text used as a prompt for
input. This parameter is optional.

integer

The integer value that indicates how many characters to read from the
input entered in response to the prompt. The maximum number is 132.
This parameter is optional. If not present, control of execution passes from
READ_LINE to VAXTPU’s main loop when the user presses RETURN,
CTRL/Z, or the one hundred thirty-second character.

return value A string storing the user’s response to a prompt.

DESCRIPTION The terminators for READ_LINE are the standard VMS terminators
such as CTRL/Z and RETURN. READ_LINE is not affected by VAXTPU
key definitions; the built-in takes literally all keys except standard VMS
terminators.

By default, the text you specify as a prompt is written in the prompt area
on the screen. The prompt area is established with the built-in procedure
SET (PROMPT_AREA). See SET (PROMPT_AREA) for more information.
If no prompt area is defined, the text specified as a prompt is displayed at
the current location on the device pointed to by SYS$OUTPUT (usually
your terminal).

If READ_LINE terminates because it reaches the limit of characters
specified as the second parameter, the last character read becomes the
last key. Example 2 is a procedure that tests for the last key entered in a
prompt string.

In DECwindows VAXTPU, READ_LINE maps the main widget if it is not
already mapped.

When you invoke VAXTPU with the /NODISPLAY qualifier, terminal
functions such as screen display and key definitions are not used. The
built-in procedure READ_LINE calls the LIB§GET_INPUT routine to
issue a prompt to SYS$INPUT and accept input from the user. A read
done this way does not terminate when the number of keys you specified
as the second parameter (integer) are entered. However, string2 contains

7-303

VAXTPU Built-In Procedures

READ_LINE

the number of characters specified by the integer parameter and LAST_
KEY contains the value of the key that corresponds to the integer specified
as the last key to be read, except in the following cases. If the read is
terminated by CTRL/Z, LAST_KEY has the value CTRL/Z. If the read

is terminated by a carriage return before the specified integer limit is
reached, LAST KEY has the value of the RETURN key.

SIGNALED

TPU$ NEEDTOASSIGN ERROR READ_LINE must appear on the
ERRORS - PP

right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR READ_LINE accepts no more than

two arguments.

TPU$_INVPARAM ERROR One of the arguments to READ__

LINE has the wrong data type.

EXAMPLES

1] my_ prompt := READ_LINE ("Enter key definition:", 1)

This assignment statement displays the text "Enter key definition:" in the
prompt area, and stores the first character of the user’s response in the
variable my_prompt.

PROCEDURE user_ test_lastkey

LOCAL my_key,
k;

my input’ := READ LINE ("Enter 3 characters:", 3):;

! Press the keys "ABC"
my_key := LAST KEY;

IF my_key = KEY NAME ("C")

THEN

MESSAGE (" C key "):

ELSE

MESSAGE (" Error "):;

ENDIF;
ENDPROCEDURE;

This procedure prompts for three characters and stores them in the
variable my_input. It then tests for the last key entered.

Parameters:

!

!

! old_number

! new_number

! prompt_string

! no_value message
1

0ld integer value - input

New integer value - output

Text of prompt - input

Message printed if user hits RETURN to
get out of the command - input

PROCEDURE user_prompt_number (old number, new_number,

! String read after prompt

LOCAL read_line_string;

7-304

prompt_string, no_value_ message)

VAXTPU Built-In Procedures

new_number := old_number;
IF old_number < 0
THEN
read_line_string := READ_LINE (prompt_string);
EDIT (read_line_string, TRIM);
IF read_line_string = "

THEN
MESSAGE (no_value message);
new_number := 0;
RETURN (0);

ELSE

! Change lowercase 1 to #1
TRANSLATE (read_line_string, "1", "1");

new_number := INT (read_line_string);
IF (new_number = 0) and (read_line_string <> "0")
THEN

MESSAGE (FAO ("Don’t understand !AS",
read line_string));

RETURN (0) ;
ELSE
RETURN (1) ;

ENDIF;

ENDIF;

ELSE
RETURN (1);
ENDIF;
ENDPROCEDURE;

READ_LINE

This procedure is used by commands that