First Edition - March 1985

This manual is a reference guide to the VAXELN
Pascal programming language.

VAXELN Pascal
Language Reference Manual

Document Order Number: AA-EU39A-TE
Software Version: 2.0

digital equipment corporation
maynard, massachusetts

First Edition, March 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may be used or copied only in accordance with the terms
of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation
or its affiliated companies.

Copyright ¢ 1985 by Digital Equipment Corporation

All rights reserved. Printed in U.S.A.

The postage-paid READER’S COMMENTS form on the last page of
this document requests your critical evaluation to assist us in
preparing future documentation.

The Digital logo and the following are trademarks of Digital
EquipmentCorporation:

DATATRIEVE DECwriter Professional VT

DEC DIBOL Rainbow Work Processor
DECmate LSI-11 RSTS

DECnet MASSBUS RSX

DECset MICRO/PDP-11 ULTRIX

DECsystem-10 MicroVAX UNIBUS
DECSYSTEM-20 MicroVMS VAX
DECtape PDP VAXELN
DECUS P/OS VMS

ii

Contents

Preface

Chapter 1: Notation and Lexical Elements

Source Text Conventions, 1-1
Identifiers, 1-2
Reserved Words, 1-3
Special Symbols, 1-3
Punctuation Symbols, 1-3
Operators, 1-7
Spaces, Comments, and Punctuation Rules, 1-7
%INCLUDE, 1-8
Lines and Line Numbers, 1-9
Syntax Conventions, 1-10
Call Format Conventions, 1-12

Chapter 2: Program Structure

Introduction, 2-1
Compilation Units, 2-6
Modules, 2-7
Module Headers, 2-11
Export Headers, 2-12
Import Headers, 2-13
Include Headers, 2-14
Exported Symbols and the Linker, 2-15
PROGRAM Block, 2-16
Program Arguments, 2-17
Program Files, 2-17
Program Names, 2-18
Job Activation and Termination, 2-18
Routine Bodies, 2-20
Routine Body Activation, Stack Frames, and
Termination, 2-23 ,
UNDERFLOW and NOUNDERFLOW Attributes, 2-25

iii

Scope of Declarations, 2-26

Block Structure, 2-27

Notion of Scope, 2-28

Special Declarative Scopes, 2-29
Routine Parameters, 2-29
Extent Parameters, 2-29
Field Names, 2-29
Names Established by the WITH Statement, 2-30
Module Names, 2-30

Order of Declarations, Circularity, 2-30

Chapter 3: Data Types

Type Declarations, 3-1
Ordinal Types, 3-3
INTEGER Data Type, 3-4
Internal Representation of INTEGER Data, 3-4
CHAR Data Type, 3-5
The Character Set, 3-9
Internal Representation of CHAR Data, 3-10
BOOLEAN Data Type, 3-10
Internal Representation of BOOLEAN Values, 3-11
Enumerated Types, 3-11
Internal Representation of Enumerated Data, 3-12
Subrange Types, 3-13
Set Types, 3-14
Set Type Definitions, 3-15
Internal Representation of Sets, 3-16
Packed Sets, 3-17
Floating-Point Types, 3-17
REAL Data Type, 3-18
Internal Representation of REAL Data, 3-18
DOUBLE Data Type, 3-19
Internal Representation of DOUBLE Data, 3-19
Flexible Types, 3-21
Flexible Type Definitions, 3-22
Bound Flexible Types, 3-25
Examples, 3-26

iv

Extent Expressions, 3-28
String Types, 3-31
STRING Data Type, 3-32
Internal Representation of STRING Data, 3-32
VARYING-STRING Data Type, 3-32
Internal Representation of VARYING-STRING
Data, 3-33
PACKED ARRAY OF CHAR, 3-33
Strings and the Type CHAR, 3-34
Array Types, 3-34
Array Type Definitions, 3-34
Declaration of Arrays with Varying Extents, 3-37
Array Operations, 3-38
Internal Representation of Arrays, 3-39
Packed Arrays, 3-40
Record Types, 3-41
Record Type Definitions, 3-41
Operations on Records, 3-43
Records With Variants, 3-44
Allocating Records With Selected Variants, 3-47
Internal Representation of Records, 3-48
POS Attribute, 3-50
Pointer Types, 3-51
Pointer Type Definitions, 3-52
Internal Representation of Pointers, 3-54
ANYTYPE Data Type, 3-54
File Types, 3-55
File Type Definitions, 3-56
Restrictions on File Variables, 3-57
Internal Representation of File Data, 3-57
System Data Types, 3-59
PROCESS Data Type, 3-59
AREA Data Type, 3-60
EVENT Data Type, 3-60
SEMAPHORE Data Type, 3-60
MESSAGE Data Type, 3-60

PORT Data Type, 3-61
NAME Data Type, 3-61
DEVICE Data Type, 3-61
Other Predeclared Data Types, 3-61
BYTE-DATA Data Type, 3-62
LARGE-INTEGER Data Type, 3-62
Internal Representation of LARGE-INTEGER
Data, 3-63
Type Equivalence, 3-63
Ordinal Types, 3-65
Set Types, 3-66
Flexible Types, 3-66
Predeclared Flexible Types, 3-68
Predeclared Non-Flexible Types, 3-68
Array Types, 3-68
Record Types, 3-69
Pointer Types, 3-69
File Types, 3-69
Data Representation, 3-70
Boundary Requirement, 3-71
Size of Data, 3-72
Packed Data, 3-72
Data Size Attributes, 3-73
BIT Attribute, 3-75
BYTE Attribute, 3-76
WORD Attribute, 3-76
LONG Attribute, 3-77
The ALIGNED Attribute, 3-77

Chapter 4: Constants

Introduction, 4-1
Literal Constants, 4-2
Literal Integer Constants, 4-2
Decimal Literals, 4-3
Nondecimal Literals, 4-3
Literal CHAR Constants, 4-4
Literal Floating-Point Constants, 4-4

vi

Literal String Constants, 4-6
Nonprinting Characters in Constants, 4-7

Constant Declarations, 4-8
Limited Ordinal Constants, 4-9
Initializers, 4-10

Constant Initializers, 4-10

Concatenated String Constants, 4-11

Set Initializers, 4-12

NIL, 4-12

ZERO, 4-12

Aggregate Initializers, 4-13

Effects of Initializers, 4-15
Predeclared Named Constants, 4-16

Predeclared Enumerated Types, 4-16

Chapter 5: Variables

Introduction, 5-1
Variable Declarations, 5-2
READONLY Attribute for Variables, 5-4
VALUE Attribute, 5-4
EXTERNAL Attribute, 5-5
Variable References, 5-6
Indexed Variable References, 5-7
Field References, 5-8
Pseudo Variable References, 5-10
Indirect Variable References, 5-10
Buffer Variable References, 5-12
Typecast Variable References, 5-13
Addressability of Variable References, 5-17
Storage Allocation, 5-18
Interprocess Data Sharing, 5-19
Notes, 5-20

Chapter 6: Expressions and Operators

Expression Syntax, 6-1
Expressions, 6-2
Simple Expressions, 6-2

vii

Terms, 6-3
Factors, 6-4
Operator Precedence and Associativity, 6-5
Precedence, 6-6
Associativity, 6-7
Side Effects in Expressions, 6-7
Arithmetic Operators, 6-10
Operands of Different Types, 6-12
Overflow and Underflow, 6-12
Addition, Subtraction, Multiplication, Sign Inversion,
Identity, 6-13
Exponentiation, 6-13
Division and DIV, 6-13
MOQOD, 6-14
Boolean Operators, 6-15
Relational Operators, 6-16
Equality (=) and Inequality (< >), 6-17
“Less Than,” etc. (<, >, < =, > =), 6-17
Set Membership (IN), 6-19
Set Operators, 6-19
Set Constructors, 6-21
Concatenation Operator for Strings, 6-23

Chapter 7: Pascal Statements

General Statement Syntax, 7-1
Labels, 7-5

Assignment Statement, 7-6
Assignment Compatibility, 7-7

Null Statement, 7-12

Compound Statement, 7-12

CASE Statement, 7-13

IF Statement, 7-19

FOR Statement, 7-20

REPEAT Statement, 7-23

WHILE Statement, 7-24

WITH Statement, 7-26

GOTO Statement, 7-29

viii

Restrictions, 7-29

Chapter 8: Procedures and Functions

Introduction, 8-1
Procedure and Function Declarations, 8-2
Procedure and Function Headings, 8-4
Parameter Lists, 8-6
Data Type for a Parameter, 8-9
Attributes of Parameters, 8-10
Default Values for Value Parameters, 8-10
Function Result, 8-10
SEPARATE Procedure and Function Declarations and
Separate Routine Bodies, 8-12
EXTERNAL Procedure and Function Declarations, 8-14
FORWARD Procedure and Function Declarations, 8-14
Procedure and Function Types, 8-14
INLINE Procedures and Functions, 8-15
Restrictions on INLINE Procedures and Functions, 8-17
Procedure and Function Calls, 8-18
Argument Lists, 8-20
Calls to Predeclared Routines, 8-22
Parameters and Argument Passing, 8-22
VAR Parameters, 8-23
Type Compatibility for VAR Parameters and
Arguments, 8-24
Value Parameters, 8-24
READONLY Value Parameters, 8-25
Type Compatibility for Value Parameters and
Arguments, 8-26
Argument Copying and Use of READONLY, 8-27
Procedural Parameters, 8-29
Compatibility for Procedural Parameters and
Arguments, 8-33
Conformant Parameters, 8-34
Conformance Rules, 8-36
ISO Conformant Extents, 8-40
OPTIONAL VAR and Procedural Parameters, 8-44

ix

LIST Parameters, 8-46
Calling Conventions, 8-47
Procedures, 8-47
VAR Parameter, 8-48
Procedural Parameter, 8-49
Value Parameter, 8-49
Function Results, 8-50
Conformant Parameters, 8-51
The REFERENCE Attribute, 8-52

Chapter 9: VAXELN Routines

Introduction, 9-1
Arithmetic Functions, 9-3
ABS Function, 9-4
ARCTAN Function, 9-4
COS Function, 9-5
EXP Function, 9-5
LN Function, 9-6
ODD Function, 9-6
SIN Function, 9-7
SQR Function, 9-7
SQRT Function, 9-8
XOR Function, 9-8
ZERO Function, 9-9
Ordinal Functions, 9-11
PRED Function, 9-12
SUCC Function, 9-12
String Functions, 9-13
FIND-MEMBER Function, 9-14

FIND-NONMEMBER Function, 9-15

INDEX Function, 9-16
LENGTH Function, 9-17
SUBSTR Function, 9-17

TRANSLATE-STRING Function, 9-19

Type Conversion Routines, 9-21
BIN Function, 9-22
CHR Function, 9-23

CONVERT Function, 9-23
HEX Function, 9-27
OCT Function, 9-28
ORD Function, 9-29
PACK Procedure, 9-29
ROUND Function, 9-31
TRUNC Function, 9-32
UNPACK Procedure, 9-32
Argument Functions, 9-35
ARGUMENT Function, 9-37
ARGUMENT-LIST-LENGTH Function, 9-39
PRESENT Function, 9-39
PROGRAM-ARGUMENT Function, 9-40

PROGRAM-ARGUMENT-COUNT Function, 9-41

TOTAL-ARGUMENT-COUNT Function, 9-42
Storage Allocation and Address Routines, 9-43
ADDRESS Function, 9-44
DISPOSE Procedure, 9-45
NEW Procedure, 9-46
SIZE Function, 9-48
VAX Functions, 9-50
MOVE-PSL Function, 9-51
PROBE_READ Function, 9-51
PROBE-WRITE Function, 9-52
Time Representation Routines, 9-53
GET-TIME Procedure, 9-54
SET-TIME Procedure, 9-55
TIME-FIELDS Function, 9-56
TIME-STRING Function, 9-58
TIME-VALUE Function, 9-59
Other Routines, 9-61
ADD-INTERLOCKED Function, 9-62
ENTER-KERNEL-CONTEXT Procedure, 9-63
FIND-FIRST-BIT-CLEAR Function, 9-64
FIND-FIRST-BIT-SET Function, 9-65
INVOKE Procedure, 9-66

Chapter 10: Queues

Queue Declarations, 10-1
QUEUE-ENTRY Data Type, 10-1
QUEUE-POSITION Data Type, 10-5
Queue Procedures, 10-6
INSERT-ENTRY Procedure, 10-7
REMOVE-ENTRY Procedure, 10-10
START-QUEUE Procedure, 10-12
Queue Examples, 10-13
Inserting at Tail, Removing from Head, 10-13
“Walking” a Queue, 10-14
Removing All the Entries from a Queue, 10-16
Walking a Queue and Removing One Entry, 10-17
Using Queues in Interprocess Communication, 10-18
Interprocess Communication Example, 10-19

Chapter 11: Subprocesses and Synchronization

Introduction, 11-1
Process Blocks, 11-2
Subprocess Activation and Termination, 11-4
Calling Conventions for Process Blocks, 11-5
Kernel Services for Processes and Synchronization, 11-6
CLEAR-EVENT Procedure, 11-8
CREATE-EVENT Procedure, 11-9
CREATE-JOB Procedure, 11-10
CREATE-PROCESS Procedure, 11-12
CREATE-SEMAPHORE Procedure, 11-14
CURRENT-PROCESS Procedure, 11-15
DELETE Procedure, 11-16
DISABLE-SWITCH Procedure, 11-18
ENABLE-SWITCH Procedure, 11-19
EXIT Procedure, 11-21
INITIALIZATION-DONE Procedure, 11-22
RESUME Procedure, 11-22
SET-JOB-PRIORITY Procedure, 11-23
SET-PROCESS-PRIORITY Procedure, 11-24

xii

SIGNAL Procedure, 11-25
SUSPEND Procedure, 11-27
WAIT-ALL and WAIT-ANY Procedures, 11-28
Process UICs, 11-34
Authorization Procedures, 11-35
GET-USER Procedure, 11-36
SET-USER Procedure, 11-37
Authorization Service Utility Procedures, 11-39
AUTH-ADD-USER Procedure, 11-41
AUTH-MODIFY-USER Procedure, 11-42
AUTH-REMOVE-USER Procedure, 11-45
AUTH_SHOW_USER Procedure, 11-46
Program Loader Utility Procedures, 11-48
LOAD-PROGRAM Procedure, 11-49
UNLOAD-PROGRAM Procedure, 11-51
Exit Utility Procedures, 11-52
CANCEL-EXIT-HANDLER Procedure, 11-53
DECLARE-EXIT-HANDLER Procedure, 11-54
MUTEX Data Type, 11-55
Mutex Operations, 11-55
Internal Representation of Mutexs, 11-57
Mutex Procedures, 11-58
CREATE-MUTEX Procedure, 11-59
DELETE-MUTEX Procedure, 11-59
INITIALIZE-AREA-MUTEX Procedure, 11-60
LOCK-MUTEX Procedure, 11-61
UNLOCK-MUTEX Procedure, 11-61

Chapter 12: Interjob Communication

Messages and Ports, 12-1
Sending Messages, 12-2
Receiving Messages, 12-3
Datagrams and Circuits, 12-3
Programming with Circuits, 12-4
Kernel Services for Message Transmission, 12-6
ACCEPT-CIRCUIT Procedure, 12-7
CONNECT-CIRCUIT Procedure, 12-9

xiii

CREATE-MESSAGE Procedure, 12-11
CREATE-NAME Procedure, 12-12
CREATE-PORT Procedure, 12-14
DISCONNECT-CIRCUIT Procedure, 12-15
JOB-PORT Procedure, 12-16
RECEIVE Procedure, 12-17
SEND Procedure, 12-19
TRANSLATE-NAME Procedure, 12-22
Interjob Data Sharing, 12-24
Kernel Services for Interjob Data Sharing, 12-26
CREATE-AREA Procedure, 12-27
Memory Allocation Procedures, 12-29
ALLOCATE-MEMORY Procedure, 12-30
FREE-MEMORY Procedure, 12-32
MEMORY-SIZE Procedure, 12-33
Stack Utility Procedures, 12-35
ALLOCATE-STACK Procedure, 12-36
DEALLOCATE-STACK Procedure, 12-36

Chapter 13: Errors and Exception Handling

Errors, 13-1
Compiler Error Detection, 13-2
Warning-Level Errors, 13-3
EXCEPTION-HANDLER Function Type, 13-3
Exception Arguments and Types, 13-5
Signal Arguments, 13-5
Mechanism Arguments, 13-6
Additional Arguments, 13-6
Examples, 13-7
Related Documentation, 13-8
Exception Names and Status Values, 13-8
Exception Handling Procedures, 13-9
ASSERT Procedure, 13-11
DISABLE-ASYNCH-EXCEPTION Procedure, 13-12
ENABLE-ASYNCH-EXCEPTION Procedure, 13-12
ESTABLISH Procedure, 13-13
GET-STATUS-TEXT Procedure, 13-13

Xiv

RAISE-EXCEPTION Procedure, 13-15
RAISE-PROCESS—-EXCEPTION Procedure, 13-16
REVERT Procedure, 13-17

UNWIND Procedure, 13-18

Chapter 14: Device Drivers and Interrupts

Device Driver Programs, 14-1

Examples, 14-2
Single-Unit Example, 14-2
Multiple-Unit Example, 14-4

Kernel Services for Devices, 14-8
CREATE-DEVICE Procedure, 14-9
SIGNAL-DEVICE Procedure, 14-12

Interrupt Service Routine Declarations, 14-14
Interrupt Handling, 14-16
Power-Recovery Handling, 14-17

IPL Procedures, 14-20
DISABLE-INTERRUPT Procedure, 14-21
ENABLE-INTERRUPT Procedure, 14-22

DMA Device Handling Procedures, 14-23
ALLOCATE-MAP Procedure, 14-25
ALLOCATE-PATH Procedure, 14-27
FREE-MAP Procedure, 14-29
FREE-PATH Procedure, 14-30
LOAD-UNIBUS-MAP Procedure, 14-31
PHYSICAL-ADDRESS Function, 14-33
UNIBUS—-MAP Procedure, 14-33
UNIBUS-UNMAP Procedure, 14-35

Device Register Procedures, 14-36
MFPR Function, 14-37
MTPR Procedure, 14-37
READ-REGISTER Function, 14-38
WRITE-REGISTER Procedure, 14-40

Real-Time Device Drivers, 14-44

AXV Device Driver Utility Procedures, 14-45
AXV-INITIALIZE Procedure, 14-47
AXV-READ Procedure, 14-49

Xv

AXV-WRITE Procedure, 14-51

KWV Device Driver Utility Procedures, 14-53
KWV-INITIALIZE Procedure, 14-55
KWV_-READ Procedure, 14-58
KWV-WRITE Procedure, 14-60

DLV Device Driver Utility Procedures, 14-62
DLV-INITIALIZE Procedure, 14-65
DLV-READ-BLOCK Procedure, 14-67
DLV-READ-STRING Procedure, 14-68
DLV-WRITE-STRING Procedure, 14-69

DRV Device Driver Utility Procedures, 14-70
DRV-INITIALIZE Procedure, 14-73
DRV-READ Procedure, 14-75
DRV-WRITE Procedure, 14-76

Chapter 15: Input and Output

Files, 15-1

Open Files and Closed Files, 15-1
Explicit Opening of Files, 15-2
Implicit Opening of Files, 15-2
Closing Files, 15-3

Mode, 15-4

Buffer Variable, 15-4
Textfiles, 15-4
FILE OF type, 15-5

Current Position, 15-5
Inspection Mode and GET, 15-7
Generation Mode and PUT, 15-7
READ and WRITE, 15-7

Files as Data Structures, 15-8

TEXT Files, 15-8
Lines, 15-8
Textfiles in Inspection Mode, 15-10
Textfiles in Generation Mode, 15-10

Operations on Files, 15-11
Operations Affecting the Mode, 15-12
Inspection Mode Operations, 15-12

xvi

Generation Mode Operations, 15-13
Pascal I/0 Routines, 15-13
General I/0 Procedures, 15-15
OPEN Procedure, 15-16
CLOSE Procedure, 15-30
Input Procedures, 15-31
GET Procedure, 15-32
READ Procedure, 15-32
RESET Procedure, 15-38
Output Procedures, 15-40
PUT Procedure, 15-41
REWRITE Procedure, 15-42
WRITE Procedure, 15-43
Direct Access Procedures, 15-50
FIND Procedure, 15-51
LOCATE Procedure, 15-52
Miscellaneous Routines, 15-53
EOF Function, 15-54
FLUSH Procedure, 15-54
Textfile Manipulation Routines, 15-55
EOLN Function, 15-56
GET-CONTROL-KEY Procedure, 15-56
PAGE Procedure, 15-58
READLN Procedure, 15-58
WRITELN Procedure, 15-60
File Utility Procedures, 15-63
COPY_FILE Procedure, 15-66
CREATE-DIRECTORY Procedure, 15-67
DELETE-FILE Procedure, 15-69
DIRECTORY-CLOSE Procedure, 15-70
DIRECTORY-LIST Procedure, 15-70
DIRECTORY-OPEN Procedure, 15-72
PROTECT-FILE Procedure, 15-74
RENAME-FILE Procedure, 15-75
Disk Utility Procedures, 15-77
DISMOUNT-VOLUME Procedure, 15-78

xvii

INIT-VOLUME Procedure, 15-78
MOUNT-VOLUME Procedure, 15-85

Tape Utility Procedures, 15-87
DISMOUNT-TAPE-VOLUME Procedure, 15-88
INIT-TAPE-VOLUME Procedure, 15-89
MOUNT-TAPE-VOLUME Procedure, 15-90

Chapter 16: Program Development

Introduction, 16-1
EPASCAL Command, 16-2
Format, 16-2
Arguments, 16-2
File Specifications, 16-2
Qualifiers, 16-3
Module Management, 16-10
Inclusion of Modules in a Compilation, 16-11
Module Dependencies and Consistency Checking, 16-13

Appendix A: Attributes
Appendix B: Collected Syntax
Appendix C: Call Formats
Index

List of Figures

Figure 1-1. %INCLUDE Syntax, 1-9

Figure 2-1. The Modules Making Up a Complete Program,
2-4

Figure 2-2. Compilation Unit Syntax, 2-6

Figure 2-3. Module Syntax, 2-9

Figure 2-4. Module Header Syntax, 2-11

Figure 2-5. Export Header Syntax, 2-12

Figure 2-6. Import Header Syntax, 2-13

Figure 2-7. Include Header Syntax, 2-14

Figure 2-8. PROGRAM Block Declaration Syntax, 2-16

Figure 2-9. Routine Body Syntax, 2-21

XVIiil

Figure 2-10.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.

Figure 3-22.
Figure 3-23.
Figure 3-24.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

Nested Block Structure, 2-27

Type Declaration Syntax, 3-2

Type Syntax, 3-2

Named Type Syntax, 3-3

Enumerated Type Definition, 3-11
Subrange Type Definition, 3-14

Set Type Definition, 3-15

Internal Representation of REAL, 3-18
G-Floating Representation, 3-20
D-Floating Representation, 3-21
Flexible Type Definition, 3-23

Bound Flexible Type Syntax, 3-25
STRING(n) Representation, 3-32
VARYING-STRING(n) Representation, 3-33
Array Type Definition, 3-35
Row-Major Order, 3-40

Record Type Definition, 3-42

Variant Part Syntax, 3-45

POS Attribute Syntax, 3-50

Pointer Type Definition, 3-53

File Type Definition, 3-56

Internal Representation of a File Variable,
3-58

LARGE-INTEGER Representation, 3-63
BIT Attribute Syntax, 3-75

ALIGNED Attribute Syntax, 3-77
Literal Floating-Point Constant Syntax, 4-5
Constant Declaration Syntax, 4-8
Constant Syntax, 4-8

Limited Ordinal Constant Syntax, 4-9
Initializer Syntax, 4-11

Aggregate Initializer Syntax, 4-13
Variable Declaration Syntax, 5-3
Variable Reference Syntax, 5-6
Indexed Variable Reference, 5-7

Field Reference, 5-8

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.

Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 10-1.

Pseudo Variable Reference, 5-10
Indirect Variable Reference, 5-11
Buffer Variable Reference, 5-12
Typecast Variable Reference, 5-13
Expression Syntax, 6-2

Simple Expression Syntax, 6-3
Term Syntax, 6-4

Factor Syntax, 6-5

Set Constructor Syntax, 6-22
Statement Syntax, 7-3

Label Syntax, 7-5

Label Declaration Syntax, 7-6
Assignment Statement Syntax, 7-6
Null Statement Syntax, 7-12
Compound Statement Syntax, 7-12
CASE Statement Syntax, 7-15

IF Statement Syntax, 7-19

FOR Statement Syntax, 7-20
REPEAT Statement Syntax, 7-23
WHILE Statement Syntax, 7-24
WITH Statement Syntax, 7-26
GOTO Statement Syntax, 7-29
Procedure Declaration Syntax, 8-2
Function Declaration Syntax, 8-2
Directive Syntax, 8-3

Procedure Heading Syntax, 8-4
Function Heading Syntax, 8-5
Parameter List Syntax, 8-7
Separate Routine Body Syntax, 8-12
Procedure Call Syntax, 8-18
Function Call Syntax, 8-19
Argument List Syntax, 8-20
Argument Syntax, 8-21

ISO Conformant Type Syntax, 8-41
An Argument List, 8-48

An Empty Queue Header, 10-3

XX

Figure 10-2.
Figure 10-3.
Figure 11-1.
Figure 14-1.

ASingle-Element Queue, 10-3

A Two-Element Queue, 10-4

Process Block Declaration Syntax, 11-3
Interrupt Service Routine Declaration Syntax,
14-14

Hypothetical Device Register, 14-42
Structure of a File, 15-6

Structure of a Textfile, 15-9

Figure 14-2.
Figure 15-1.
Figure 15-2.

List of Tables

Table 1-1.

Table 1-2. Punctuation Symbols, 1-5

Table 1-3. Special Symbol Operators, 1-7

Table 3-1. Character Set, 3-7

Table 6-1. Arithmetic Operators, 6-11

Table6-2. Boolean Operators, 6-15

Table 6-3. Relational Operators, 6-16

Table 6-4. Set Operators, 6-20

Table 7-1. Assignment Compatibility, 7-9

Table9-1. Arithmetic Functions, 9-3

Table9-2. Ordinal Functions, 9-11

Table 9-3. String Functions, 9-13

Table9-4. Type Conversion Functions, 9-21

Table9-5. Argument Functions, 9-35

Table9-6. Storage Allocation and Address Routines, 9-43

Table9-7. VAX Functions, 9-50

Table 9-8. Time Representation Routines, 9-53

Table 9-9. Other Routines, 9-61

Table 10-1. Queue Procedures, 10-6

Table 11-1. Kernel Services for Processes and
Synchronization, 11-6

Table 11-2. Authorization Procedures, 11-35

Table 11-3. Authorization Service Utility Procedures,
11-39

Table 11-4. Program Loader Utility Procedures, 11-48

Table 11-5. Exit Utility Procedures, 11-52

Table 11-6. Mutex Procedures, 11-58

Reserved Words, 1-3

xx1

Table 12-1.
Table 12-2.

Table 12-3.
Table 12-4.
Table 13-1.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.

Table C-1.

Kernel Services for Message Transmission,
12-6

Kernel Services for Interjob Data Sharing,
12-26

Memory Allocation Procedures, 12-29
Stack Utility Procedures, 12-35

Exception Handling Procedures, 13-9
Kernel Services for Devices, 14-8

IPL Procedures, 14-20

DMA Device Handling Procedures, 14-23
Device Register Procedures, 14-36

AXV Device Driver Utility Procedures, 14-45
KWV Device Driver Utility Procedures, 14-53
DLV Device Driver Utility Procedures, 14-62
DRV Device Driver Utility Procedures, 14-69
General I/0 Procedures, 15-15

Input Procedures, 15-31

Output Procedures, 15-40

Direct Access Procedures, 15-50
Miscellaneous Routines, 15-53

Textfile Manipulation Routines, 15-55

File Utility Procedures, 15-63

Disk Utility Procedures, 15-77

Tape Utility Procedures, 15-87

VAXELN Pascal Procedures and Functions, C-3

xxil

Preface

VAXELN Pascal is a compatible superset of the
language defined in the International Standards
Organization document ISO DIS 7185. Any program
written in ISO-standard Pascal can be compiled by the
VAXELN Pascal compiler and executed as part of the
system.

However, VAXELN Pascal has been extended to
include data types and operations that support
concurrent programming. It is supported by a highly
optimizing compiler that generates position-
independent, native-mode code. In addition, it is the
primary implementation language of the VAXELN
toolkit itself.

The VAXELN Pascal Language Reference Manual is a
reference guide describing the elements of the extended
VAXELN Pascal programming language and a guide to
program development using VAXELN Pascal.

Manual Objectives

This manual is a summary of the VAXELN Pascal
language, for daily reference and for review by people
already familiar with Pascal. It is not intended to be a
tutorial document; however, it presents the features of
VAXELN Pascal in detail, and explains how to develop,
compile, and link VAXELN Pascal programs for
inclusion in a VAXELN system.

xxiii

Intended Audience

This manual is designed for programmers and students
who have a working knowledge of Pascal. Knowledge
of the fundamental principles of the VAX/VMS
operating system is required, as well as knowledge of
VAXELN.

Structure of this Document

This manual consists of 16 chapters and 3 appendices,
organized as follows:

Chapter 1, “Notation and Lexical Elements,”
explains the source text conventions, syntax
conventions, and call format conventions used in

VAXELN Pascal.

Chapter 2, “Program Structure,” describes the
structure of VAXELN Pascal programs in relation
to compilation units, modules, PROGRAM blocks,
routine bodies, and the scope of declarations.

Chapter 3, “Data Types,” discusses the declaration
of data type names, the definition of each of the
VAXELN Pascal data types, type equivalence, and
the rules for data representation.

Chapter 4, “Constants,” discusses the rules for
literal constants, the declaration of named
constants, and initializers.

Chapter 5, “Variables,” discusses the declaration
of variables, the rules for variable references,
storage allocation, and data sharing between
processes in a job.

XXIiV

Chapter 6, “Expressions and Operators,” discusses
the syntax of VAXELN Pascal expressions, the
operators used in expressions, and the rules for
operator precedence and associativity.

Chapter 7, “Pascal Statements,” summarizes the
statements available in VAXELN Pascal.

Chapter 8, “Procedures and Functions,” summa-
rizes the rules for declaring and calling procedures
and functions in VAXELN Pascal, including
parameter/argument relationships and calling
conventions.

Chapter 9, “VAXELN Routines,” describes the
arithmetic, ordinal, string, argument, and VAX
functions available in VAXELN Pascal, as well as
the type conversion, storage allocation, time
representation, and other VAXELN routines that
are available and are not described under specific
topics in later chapters.

Chapter 10, “Queues,” discusses queue declara-
tions, queue procedures, and using queues in
interprocess communication.

Chapter 11, “Subprocesses and Synchronization,”
discusses process blocks and the kernel services
relating to processes and synchronization, process
UICs and the authorization procedures, the
Authorization Service utility, program loader
utility, and exit utility procedures, the MUTEX
data type, and the VAXELN procedures that
perform operations on mutexes.

Chapter 12, “Interjob Communication,” discusses
messages and ports and the kernel services
relating to message transmission, interjob data
sharing and the related kernel services, and the
memory allocation and stack utility procedures.

XXV

Chapter 13, “Errors and Exception Handling,”
discusses errors, the EXCEPTION_HANDLER
function type, exception names and status values,
and the exception handling procedures.

Chapter 14, “Device Drivers and Interrupts,”
discusses device driver programs and the kernel
services relating to devices, interrupt service
routines, the procedures used to manipulate
interrupt priority levels, the procedures relating to
direct memory access UNIBUS and QBUS devices,
the device register procedures, and the real-time
device driver utility procedures.

Chapter 15, “Input and Output,” discusses files
and their use in file I/O, record-oriented device I/O,
and circuits, Pascal I/O routines, and the VAXELN
file utility, disk utility, and tape utility
procedures.

Chapter 16, “Program Development,” discusses the
format and arguments of the EPASCAL command,
as well as module management.

Appendix A, “Attributes,” lists the attributes
allowed in VAXELN Pascal and the context in
which they may be used.

Appendix B, “Collected Syntax,” is an alphabetical
collection of syntax diagrams representing the
syntactic categories of the VAXELN Pascal
language.

Appendix C, “Call Formats,” lists the call formats
of the procedures and functions available in
VAXELN Pascal.

XXV1

Associated Documents

The following documents are relevant to VAXELN
Pascal programming:

® VAXELN Release Notes (AA-Z454C-TE)

VAXELN Installation Manual (AA-EU37A-TE)
VAXELN User’s Guide (AA-EU38A-TE)

VAXELN Application Design Guide
(AA-EU41A-TE)

VAX/VMS DCL Dictionary(AA-Z200A-TE)

® VAX/VMS Run-Time Library Routines Reference

Manual(AA-Z502A-TE)

® VAX Architecture Handbook (EB-19580-20)
® VAX Hardware Handbook 1982-1983

(EB-21812-20)

LSI-11 Analog System User’s Guide
(EK-AXV11-UG)

XXVil

xxviii

Chapter 1
Notation and Lexical Elements

This manual contains VAXELN Pascal call formats,
syntax diagrams, and examples, ranging from simple to
complex constructions. Complex examples have been
divided into several lines to make them easy to read.
Pascal does not require that you format your programs
in any particular way; therefore, you should not regard
the formats used as mandatory.

This chapter explains the source text conventions,
syntax conventions, and call format conventions used
in VAXELN Pascal.

Source Text Conventions

The source text of a VAXELN module is an ASCII file,
which may include other ASCII files by means of the
%INCLUDE construction described later in this
section. The compiler performs a two-level structure
analysis on the source text. The first level, lexical
analysis, divides the text into a sequence of lexical
tokens: identifiers, reserved words, literal constants,
and special symbols. Intervening spaces, comments,
and line breaks are ignored after lexical analysis.

The second level of analysis, parsing, determines how
the sequence of tokens is structured into language
components, such as statements and expressions.
Parsing is governed by the syntax diagrams shown
throughout this manual and collected in Appendix B.
The lexical tokens are the terminal elements of these
syntax diagrams; that is, they cannot be broken down
any further into other syntax elements. The complete

1-1

syntax notation is given in the section “Syntax
Conventions,” later in this chapter.

The form of the various literal constants is explained in
Chapter 4, “Constants.” The following subsections
describe the other types of lexical tokens and the
related rules.

Identifiers

Identifiers are used as the names of variables,
constants, types, programs, and so forth. They must
conform to the following rules:

® The first character must not be a digit.

® The maximum length of identifiers is 31
characters.

® The set of valid characters consists of the
uppercase letters, lowercase letters, digits,
underline (=), and dollar sign ($).

® Identically spelled identifiers mean the same thing
regardless of the cases of letters; for example, ABC,
abc, and aBc all denote the same thing.

® Identifiers must not have the same spellings as the
reserved words in Table 1-1, below.

Note that the dollar sign and underline characters may
not be allowed in other versions of Pascal. In particular,
we recommend that you limit the use of the dollar sign
to names of system-specific global values and avoid its
use for ordinary program variables.

In syntax diagrams, the word identifier means a name
conforming to the above rules and is used at the
defining point of some entity, such as a data type name.
The term name indicates a legal identifier that has
been declared (or is predeclared) for a particular use.

Notation and Lexical Elements 1-2

Reserved Words

The words listed in Table 1-1 are reserved and must not

be used as identifiers. Note that identically spelled
reserved words mean the same thing regardless of the
cases of letters; for example, PROGRAM, Program, and
program all mean the same thing.

Table 1-1. Reserved Words

and
array
begin
case
const
div

do
downto
else

end
file

for

function
function_body
goto

if

in
interrupt_service
label

mod

module

nil

not

of

or

otherwise
packed
procedure
procedure_body
process—block
program

record

repeat

set
then
to
type
until
var
while

with

Special Symbols

Special symbols represent punctuation marks used as
delimiters, as well as arithmetic, relational, and set

operators.

Punctuation Symbols

Table 1-2 shows the punctuation symbols used in
VAXELN Pascal programs; for some, alternatives are

Source Text Conventions

allowed, which are shown in the table. Note that
symbols consisting of two characters must not have
embedded spaces, comments, or line breaks.

Note: In this manual, the symbol 1 is normally used
for clarity in pointer type declarations, identified
variables, and buffer variables; the character * is more
commonly available on terminal keyboards. Note also
that quotation marks (“,”) are not valid delimiters of
character and string constants; apostrophes (',’) must
be used.

Notation and Lexical Elements 1-4

Operators

Table 1-3 summarizes the special symbols used as
arithmetic, relational, or set operators. Both dyadic and
monadic arithmetic operations are defined where
appropriate. Monadic operators require a single
operand; dyadic operators require two. Note that
operators consisting of two characters must not have
embedded spaces, comments, or line breaks.

Table 1-3. Special Symbol Operators

Operator Operation(s)

+ Addition (dyadic); identity (monadic);
string concatenation; set union

- Subtraction (dyadic); sign inversion
(monadic); set difference

* Multiplication (dyadic); set intersection

~

Division (dyadic)
ok Exponentiation

Equality

\Y%

Inequality
“Less than”
“Greater than”

“Less than or equal to,” set inclusion
b

Il

V ANV A A

“Greater than or equal to,” set inclusion

Spaces, Comments, and Punctuation Rules

Most of the punctuation rules of VAXELN Pascal are
shown by the syntax diagrams, but there are a few
rules that apply at the lexical level. Spaces, tabs,

1-7 Source Text Conventions

comments, and line breaks may occur before the first
lexical token, between two tokens, and after the last
token in the source text. None of these may occur
within a single token.

A comment is any series of characters enclosed in
braces. The comment ends at, and cannot contain, the
right brace (}). Comments cannot be nested. Note that
the character pairs (* and *) may be used instead of {
and }, respectively.

If two adjacent tokens are identifiers, reserved words,
literal integer constants, or literal floating-point
constants, in any combination, they must be separated
by one or more spaces, tabs, comments, or line breaks.
Also, two adjacent literal CHAR constants and/or
literal string constants must be similarly separated.

The following examples illustrate VAXELN Pascal
punctuation rules:

PROGRAM F; { Valid. }
PROGRAMF; {Invalid. }
PROGRAM({ Valid. }F; '
PROGRAM

F; { Valid. }

%INCLUDE

The %INCLUDE construction includes a file of Pascal
source text in a compilation. It can be used for such
purposes as sharing source text with a different Pascal
compiler or including source text generated by a
“definition language” or other source text generator.
The syntax is shown in Figure 1-1 and is valid
anywhere that comments, spaces, tabs, or line breaks
can occur.

Notation and Lexical Elements 1-8

%INCLUDE ‘ file specification

Figure 1-1. %INCLUDE Syntax

The file specification designates a file of Pascal source
text; the text is included in the compilation at the
location of the %INCLUDE construction. The /LIST and
/NOLIST options specify whether the included file
should be printed in the listing of the program. Note,
however, that this specification is overridden by the
specification of /LIST, /SHOW=INCLUDE, or
/SHOW =NOINCLUDE on the EPASCAL command
line (see Chapter 16, “Program Development”).

Lines and Line Numbers

Source files are divided into lines. A line break (the
division between two lines) is a valid separation for
lexical tokens and may not occur within a token; that
is, a token must be all on one line. The compiler assigns
line numbers to the source lines. These appear on the
listing and within error messages and may be used to
position the debugger to a particular source line.

The line numbers assigned by the compiler include
numbers for lines obtained from auxiliary source files
using %INCLUDE. Hence, they may not correspond to
the normal line numbering in the source file (or include
file). Compiler error messages also give a source file
name and source file line number. (For more
information on line numbering in VMS, see the
appropriate VMS documentation, including that for the
particular editor you are using.)

1-9 Source Text Conventions

Syntax Conventions

Appendix B contains an alphabetical collection of
syntax diagrams representing the syntactic categories
of the VAXELN Pascal language. These categories are
explained individually throughout this manual, in the
appropriate sections.

In general, Pascal syntax diagrams are read from left to
right and top to bottom. Arrows point the way in case of
ambiguity. The following additional conventions are
used:

® Rounded symbols (ovals or circles) denote syntax
elements that are entered in your program exactly
as shown. These elements consist of Pascal
reserved words, specific nonreserved identifiers,
special symbol operators, or punctuation marks.
For example:

E O
@D O

® Rectangular symbols denote syntax elements that
are, in most cases, syntactic categories described
by other syntax diagrams. For example:

type declaration

Notation and Lexical Elements 1-10

® Rectangular symbols also denote terminal syntax
elements defined by lexical rules. The following
syntactic categories represent lexical elements:

| identifier

literal integer constant

literal CHAR constant

literal floating-point constant

literal string constant

The rules for identifiers are given earlier in this
chapter. The rules for literal constants are given in
Chapter 4, “Constants.”

® Syntax elements ending with the words “name” or
“type name” denote identifiers that have been
declared (or are predeclared) as the appropriate
type of name. For example:

procedure name

ordinal type name

1-11 Syntax Conventions

Call Format Conventions

Appendix C contains an alphabetical summary of the
call formats of the procedures and functions available
in VAXELN Pascal. Predeclared functions and
procedures must be called as documented. In particular,
the documented call formats for kernel procedures use
the following conventions, unless the name is prefixed
with KERS:

® All arguments shown as undecorated identifiers
are positional; they must come first in the call, in
the order shown. If they are output arguments,
they must be variables.

®. The argument form NAME := argument means
that NAME is the name of a formal parameter, and
the argument is optional. These are always the last
arguments in the VAXELN Pascal call and can
occur in any order.

® An argument name suffixed with “-list” means
that a variable number of arguments correspond to
a single procedure parameter; in some cases, no
argument is necessary.

In other predeclared routines, optional parameters are
named in italics; however, the nonpositional form
cannot be used in these cases.

Notation and Lexical Elements 1-12

Chapter 2
Program Structure

Introduction

This section briefly discusses the overall structure of a
VAXELN Pascal program, first in its relation to
program execution, then in its relation to the VAXELN
Pascal compiler and the VAX/VMS linker.

In VAXELN, a program is executed as a job. The initial
set of jobs in a system (hence the set of programs
initially executed) is defined by using the System
Builder. Additional jobs may be created by using the
CREATE_JOB predeclared procedure (or kernel
service) or the VAXELN debugger. More than one job
may be executing a program at the same time. In this
case, there is no connection between the jobs, except via
the methods described in Chapter 12, “Interjob
Communication.”

The “main” routine of a job is a PROGRAM block,
whose source text form is PROGRAM ... END. This
routine may invoke other routines: procedures and
functions as in standard Pascal, but also process blocks
and interrupt service routines.

A process block is invoked via the CREATE_PROCESS
kernel service, rather than the normal procedure-call
notation. This creates a new subprocess in the job,
which executes in parallel with the job’s main process
and any other subprocesses. The process block is the
main routine of the subprocess; it can, in turn, invoke
procedures, functions, and other process blocks.

Interrupt service routines are used in device driver
programs. They are invoked asynchronously as the
result of the occurrence of a device interrupt. The
connection between an interrupt service routine and

particular hardware interrupts is made via the
CREATE_DEVICE kernel service.

Syntactically, a complete routine definition consists of
a heading followed by a routine body. The heading
specifies the type of routine (for example, PROGRAM,
FUNCTION, or PROCEDURE) and its parameters, if
any. The routine body has the same form for all
routines: a set of declarations, followed by a compound
statement (BEGIN ... END) giving the executable code.
The declarations define constants, types, variables, and
additional routines.

In Pascal, each routine body is a block. This means that
declarations of constants, types, variables, and
additional routines in the routine body are known by
name only within the block. Declaration of a name in a
block applies only within the block and overrides any
declaration of the same name in a containing block.

In VAXELN Pascal, the block structure defined by
routine bodies is extended to encompass outer-level
declarations; that is, declarations not contained within
any routine. In this regard, a complete VAXELN
program is a set of outer-level declarations, one of these
being the declaration of a PROGRAM block.

For purposes of separate compilation, a VAXELN
program may be divided into several compilation units.
One invocation of the compiler compiles one source file
(compilation unit), producing one object module. In
addition to containing object code for input to the
VAX/VMS linker, the object module contains an
exported symbol table containing the outer-level decla-
rations to be made available to other compilation units.

Program Structure 2-2

For example, if compilation unit B depends on
compilation unit A, A is compiled first, then A’s object
module is included in the compilation of B. This is
explained in more detail in Chapter 16, “Program
Development.”

A compilation unit may consist of a single outer-level
routine declaration (that is, a PROGRAM block,
PROCEDURE, FUNCTION, or PROCESS_BLOCK
declaration), or it may be an explicit module (that is, a
series of declarations introduced by the reserved word
MODULE and terminated by an END).

A module contains a set of outer-level declarations, and
it may contain module headers specifying more
explicitly the names to be exported by the module, the
names exported from other modules to be used by this
module, and the names of other modules to be used in
the compilation.

Note that every compilation unit is treated as a module
and produces a VAX/VMS object module. A complete
program may contain modules provided as part of the
VAXELN development system in addition to modules
explicitly compiled by the user. Programs may also use
object modules produced by other language processors.
In this case, VAXELN Pascal declarations containing
the EXTERNAL attribute or the EXTERNAL directive
are used to define how the external data item or
routine, respectively, is to be viewed within Pascal.

Figure 2-1 illustrates the modules making up a
complete VAXELN Pascal program. The relationship
between the PROGRAM block and its associated outer-
level declarations is described in the text accompanying
the figure.

2-3 Introduction

MODULE zmod;
INCLUDE service1, report, filedef;
PROGRAM ZENO(outdata);

VAR
slave: PROCESS;
sisterport: PORT,;

PROCEDURE inform(

p: PORT);
BEGIN ... END;

BEGIN
CREATE_PROCESS(
slave,service1);
WAIT_ANY(slave);
REPORT('slave done’);
CREATE_JOB(
sisterport,sister);
inform(sisterport)

END;

END; { End of zmod. }

PROCESS_-BLOCK service1;
VAR ...:
BEGIN...END;

PROCEDURE report(
s: VARYING_STRING(80));
VAR ...:
BEGIN...END;

MODULE filedef
EXPORT outdata;
VAR outdata:
FILE OF RECORD...END;
END; {of filedef}

Here, the
procedure
inform and the
variables slave
and sisterport
are declared
inside the
PROGRAM block
(and are
available only
there).

The procedure
report, process
block service1,
and module
filedef are
compiled
separately.
When the
module zmod is
compiled, these
object modules
are included in
the compilation.
This establishes
declarations of
servicel, report,
and filedef in
the export block
(see Figure 2-10).

Figure 2-1. The Modules Making Up a

Complete Program

Program Structure 2-4

The module containing PROGRAM ZENO can be
compiled by the command

EPASCAL ZENO + ZENOMOD/LIBRARY

where ZENO.PAS is the source file containing the
PROGRAM block and ZENOMOD.OLB is an object
library you have built to hold the object modules for
procedure report, process block servicel, and the
declarations in module filedef, which were compiled

previously. The compiler produces the object module
ZENO.OBJ from the source file.

Notice that in module filedef, the name outdata is
explicitly exported, making it available at the outer
levels of other modules; usually, it is best to put the
declarations of shared data in a separate module (not
the PROGRAM block), as shown here. The names of
routines, when used as modules, are implicitly ex-
ported, as are servicel and report in this case.

After compiling, the object modules can be linked by
the command

LINK ZENO + ZENOMOD/LIBRARY

which produces the program image file ZENO.EXE
from the object module ZENO.OBJ and the object
modules contained in the library ZENOMOD.OLB. The
program image is then ready to be included in a
VAXELN system, which you create with the System
Builder.

Chapter 16, “Program Development,” contains more
information on the EPASCAL command. In addition,
The VAX/VMS librarian and linker and the VAXELN
System Builder are discussed in the VAXELN User’s
Guide.

The remainder of this chapter describes the structure of
VAXELN Pascal programs in terms of compilation

2-5 Introduction

units, modules, PROGRAM blocks, and routines bodies.
The chapter concludes with a discussion of the scope of
declarations.

Compilation Units

An invocation of the VAXELN Pascal compiler
compiles one source file, producing one VAX/VMS
object module. The text of the source file, expanded by
inclusion of any files specified via the %INCLUDE
construction (see Chapter 1), must satisfy the syntax
for compilation units, as shown in Figure 2-2.

h 4

PROGRAM block declaration »

A 4

PROCESS-BLOCK declaration

h 4

proceduredeclaration

function declaration

h 4

module

h 4

Figure 2-2. Compilation Unit Syntax

The structure of a compilation unit that is an explicit
module is explained in the next section. In the other
cases, the compilation unit is treated as a module whose
exported symbol table contains just the declaration of
the PROGRAM block, process block, procedure, or
function, and the module’s name is the same as the
routine’s name.

Program Structure 2-6

Note that if a complete VAXELN Pascal program is a
standard Pascal program, there will be only one
compilation unit and it will be a PROGRAM block.

Modules

A module contains a set of outer-level declarations that
are compiled as a single compilation unit. The various
forms of headers name the module and provide control
over the exportation of outer-level declarations from
the module and the importation of names from other
modules.

In addition to the forms of declaration mentioned
earlier in this chapter (that is, constant, type, variable,
function, procedure, PROCESS_BLOCK, PROGRAM
block, and interrupt service routine declarations), a
module may contain separate routine bodies. These
complete the definitions of functions and procedures
declared in other modules, using the SEPARATE
directive. (See Chapter 8, “Procedures and Functions,”
for more information on separate routine bodies.)

The syntax for modules is shown in Figure 2-3.

2-7 Modules

Program Structure

2-8

Module Headers

A module header is the first part of a module, excluding
any preceding comments. The syntax is shown in
Figure 2-4.

module
MODULE identifier 'I

literal
string @
constant

GLOBALDEFJ

Figure 2-4. Module Header Syntax

The module identifier is established as the name of the
module. This does not conflict with any other form of
declaration of the identifier.

If GLOBALDETF is specified, the names of all ordinal
constants exported from the module are made known to
the VAX/VMS linker as global values. (See “Exported
Symbols and the Linker,” later in this section.)

If IDENT is specified, the literal string constant is
stored in the object module’s ident field. The length of
the constant must be in the range 2..31. If IDENT is not

2-11 Modules

specified, a string identifying the compiler version is
stored in this field. The ident field is in the first record
of a VAX/VMS object module. If the module is
examined using the ANALYZE/OBJECT command,

this field is displayed as the “module version.”

Note: If you want several modules to have the same
ident (for example, because it’s a program version num-
ber), use %2INCLUDE to include the string constant.

Note that GLOBALDEF and IDENT are, in a sense,
attributes of the module, and like other attributes, they
are placed in square brackets.

Export Headers

An export header specifies names to be explicitly
exported from a module; that is, whose declarations will
be included in the export symbol table, so they can be
used in the compilation of other modules. The syntax is
shown in Figure 2-5.

EXPORT GLOBALDEF

Figure 2-5. Export Header Syntax

If a name is specified in an export header, the name
must be declared at the outer level of the module
containing the export header.

A module may contain any number of export headers. If
it contains none, all outer-level declarations are

Program Structure 2-12

exported by default. If any export headers are specified,
only names exported by the headers are exported.

Note: An empty export header is allowed. If this is the
only export header in a module, no names are exported
from the module. The only case in which this is useful is
for a module that contains the separate routine body for
aroutine whose declaration is in another module.

Exporting an enumerated type by name exports all the
constants declared by the enumerated type definition.

GLOBALDEF is used in an export header to specify
that all ordinal constants exported by that header will
be made known to the VAX/VMS linker as global
values. (See “Exported Symbols and the Linker,” later
in this section.)

Note that, in general, a module should not export a
name that is the same as a predeclared name. The
compiler issues a warning message if this occurs.

Import Headers

An import header specifies names to be explicitly
imported into the compilation of a module. Here,
importing a name means using a name exported from
another module included in the compilation. The
syntax is shown in Figure 2-6.

IMPORT —P name

Figure 2-6. Import Header Syntax

2-13 Modules

A module may contain any number of import headers.
If it contains any, the compiler issues a warning
message for each imported name not explicitly specified
in an import header. In addition, the compiler issues a
warning message for any explicitly imported name not
actually referenced by the current module. If no import
headers are specified, the compiler issues no warnings
for use or nonuse of imported names.

Note: An empty import header is allowed. If this is the
only import header in the module, the compiler issues
warnings for all imported names used in the module.

Include Headers

An include header specifies modules to be explicitly
included in the compilation of this module. The syntax
is shown in Figure 2-7.

—{ INcLubE [module name = >@-—b

Figure 2-7. Include Header Syntax

Modules can also be included by using the INCLUDE
qualifier on the EPASCAL command, by specifying an
object module as an input file to the compiler with the
MODULE file specification qualifier, and as an indirect
result of the compilation of other modules. (See Chapter
16, “Program Development,” for a complete discussion
of the EPASCAL command and module inclusion.)

Program Structure 2-14

Exported Symbols and the Linker

The exported symbol table in a VAXELN Pascal object
module is ignored by the VAX/VMS linker. (If you
examine the module with the ANALYZE/OBJECT
command, the exported symbol table is in the records
displayed under the title “IGNORED HEADER
(subtype 101)”.) However, there is a close relationship
between the names exported by a module and the set of
global symbols defined by the object module to the
linker.

The following exported names are defined as global
symbols to the linker:

® The name of a procedure, function, subprocess,
program, block, or interrupt service routine, but

only from the module that contains its whole body,
not just a SEPARATE or EXTERNAL heading.

® The name of a procedure or function whose
definition is given by a separate routine body in
this module. (The name may actually be exported
by a different module.)

® The name of a variable, unless it is declared with
the EXTERNAL attribute.

® The name of a string constant.

® The names of ordinal constants governed by an
export header with the GLOBALDEF attribute.

Ordinal constants (governed by GLOBALDEF) and
variables with the VALUE attribute are made known
as values to the linker. String constants and other
items are made known as locations. For an exported
routine name, this is the location of the routine’s entry
mask.

2-15 Modules

The following exported names are not made known as
global symbols:

o EXTERNAL names (which must be defined as
global symbols in a non-VAXELN object module).

® Names of types, routine types, and floating-point
constants.

® Names of ordinal constants not governed by
GLOBALDEF.

PROGRAM Block

The syntax for a PROGRAM block declaration is shown
in Figure 2-8.

r attributes

1;f | program
'QEEGRLM)—’ identifier ‘]

file variable name

0,
—-}Q—v routinebody {——)

Figure 2-8. PROGRAM Block Declaration Syntax

A 4

). 4
e

—@‘r
¢

The program identifier is declared at the outer level as
the name of the program block. This declaration is only

Program Structure 2-16

allowed at the outer level, and there must be exactly
one PROGRAM block declaration in a complete
VAXELN Pascal program.

The routine body supplies the local declarations and
executable code for the PROGRAM block. One of the
attributes UNDERFLOW or NOUNDERFLOW may be
specified in the PROGRAM block declaration. If
specified, it applies to the routine body, as explained in
the section “Routine Bodies,” later in this chapter.

The optional file variable names in the PROGRAM
block declaration are associated with program
arguments, as explained later in this section.

Program Arguments

The arguments of a program are handled differently
from those of other routines. Each argument is a string
with up to 100 characters. The arguments are specified
in the call to CREATE_JOB that creates the job
executing the program, or in the Program Description
menus of the System Builder for jobs started as part of
system initialization.

As explained below, a program argument may be
associated with a file variable. The value of any
program argument (whether or not associated with a
file variable) can be obtained via the
PROGRAM_ARGUMENT function. The actual number
of arguments passed to a program can be obtained via
the PROGRAM_ARGUMENT_COUNT function.

Program Files

Specifying a file variable name in the heading of a
PROGRAM block associates the corresponding
program argument with the file variable. For example:

PROGRAM myname (OUTPUT, INPUT);

2-17 PROGRAM Block

Here, the first program argument is associated with
OUTPUT, the second with INPUT.

The argument value is used as the file specification
when the file variable is opened, unless it is explicitly
opened by a call to the OPEN procedure with a
file_name argument.

A file variable name in the PROGRAM heading may be
predeclared, declared at the outer level, or declared in
the PROGRAM block. If the name is declared in more
than one of these blocks, the innermost declaration
applies, and it must declare the name as a file variable.
In this circumstance, the compiler issues a warning
message because there may be a misunderstanding of
the effect of specifying the name as a program file.

Program Names

An identifier is declared as a program name by its
occurrence as the program identifier in the heading of a
PROGRAM block. There is no language construction in
which the identifier can be used to specify the program
by name. However, a string value specifying the name
is used as an argument to kernel services, such as
CREATE_JOB.

The PROGRAM block’s object module defines the name
to the VAX/VMS linker as a global symbol denoting the
PROGRAM block’s entry point.

Job Activation and Termination

A job is created by the VAXELN System Builder at the
time of system initialization, or by using the
CREATE_JOB kernel service or the VAXELN
debugger. (See the VAXELN User’s Guide for more
information.)

Program Structure 2-18

The VAXELN kernel establishes the job’s PO address
space, which is shared by all processes in the job, and
the P1 address space (stack) for the job’s main process
(the process in which the PROGRAM block executes).
Program arguments are stored in PO space so they can
be accessed by the PROGRAM_ARGUMENT function
and by the I/O run-time routines (for file opening).

No files are initially open, but INPUT, OUTPUT, and
files named in the PROGRAM block’s header may be
implicitly opened by the first I/O operation on them.
(See Chapter 15, “Input and Output,” for more
information.)

The kernel then activates the PROGRAM block’s
routine body (discussed in the next section). After
executing any required prolog code, the PROGRAM
block’s compound statement (BEGIN ... END) is
executed.

A job terminates when execution of the PROGRAM
block’s compound statement completes, or when the
job’s main process is terminated via the DELETE or
EXIT procedures, or by the occurrence of an unhandled
exception.

Job termination also terminates all existing
subprocesses of the job. Any files not already closed are
closed, but this is not a normal close operation and data
in buffers may be lost (see Chapter 15).

If the job was created by a call to CREATE_JOB with
the NOTIFY parameter specified, a “termination
message” is sent to the specified port. (See the
description of CREATE_JOB in Chapter 11,
“Subprocesses and Synchronization,” for more
information).

Finally, all the terminated job’s resources are returned
to the kernel.

2-19 PROGRAM Block

Routine Bodies

A routine body supplies the local declarations and code
for a routine.

The syntax is shown in Figure 2-9.

Program Structure 2-20

The compound statement (BEGIN ... END) contains the
routine’s executable code. The various declaration
categories provide declarations of named constants,
types, variables, functions, and procedures that are
local to the routine. Note that the declarations can
occur in any order.

Explicit declaration of statement labels may be
accomplished by using the reserved word LABEL
followed by the labels (identifiers or unsigned decimal
integers), as shown in the syntax. Labels so declared
must occur as statement labels within the routine
body’s compound statement. Explicitly declaring labels
in this way is optional, but if any labels are explicitly
declared, all the labels within the compound statement
must be explicitly declared.

Routine Body Activation, Stack Frames, and Termination

Except in the case of procedures and functions with the
INLINE attribute, invoking a routine creates an
activation of its routine body by allocating a stack
frame and setting hardware register FP to denote this
frame. The structure of a basic stack frame is described
briefly in the VAXELN User’s Guide and a more
detailed description is contained in the VAX
Architecture Handbook.

The stack frame contains sufficient information for
execution of a hardware RET instruction, which will
free the stack frame and properly return control to the
invoking routine body (upon procedure or function
termination) or to the kernel (upon termination of other
routines).

The stack frame of a procedure or function is allocated
on the stack (P1 space) of the current process,
immediately following the stack frame of the invoking
routine body. The sequence of stack frames in a

2-23 Routine Bodies

process’s stack defines the current calling chain for
procedures and functions and is sometimes referred to
as the call stack. It starts with the stack frame for the
process’s main routine (PROGRAM block or process
block) and ends with the frame for the routine currently
being executed (the frame denoted by register FP).

For PROGRAM blocks and process blocks, the kernel
creates the stack frame at the base of the new process’s
P1 space as part of process creation. The stack frame for
an interrupt service routine is allocated on the inter-
rupt stack (see the VAX Architecture Handbook).

Execution of a routine body’s explicit code begins at the
first statement in the routine body’s compound state-
ment. In general, this is preceded by the execution of
prolog code that extends the stack frame (that is,
allocates additional stack space) to hold local variables
and code that initializes local variables.

When execution of the compound statement completes,
the routine body terminates, and control is returned to
the invoking routine or to the kernel, as appropriate.
This frees the entire stack frame (that is, all the storage
used by the block activation). If the routine body has
any local file variables, they are automatically closed
before the termination completes.

A routine body activation may also terminate due to
execution of a GOTO statement whose target is in a
preceding routine body activation on the stack. In this
case also, the stack frame is freed and local files are
closed. (See Chapter 7, “Pascal Statements,” for an
explanation of an up-level GOTO statement.)

In addition, if the routine body has an established
exception handler at the moment of termination, it is
invoked with the exception SS$_UNWIND, as

Program Structure 2-24

explained in Chapter 13, “Errors and Exception
Handling.”

A routine body activation may terminate abnormally
due to termination of the containing process via the
EXIT or DELETE procedures. In this case, local files
are not closed (although they may be closed in another
way at job termination), and there is no unwinding of
the stack.

UNDERFLOW and NOUNDERFLOW Attributes

The UNDERFLOW and NOUNDERFLOW attributes
enable and disable detection of floating-point underflow
in a routine’s code. As shown in the syntax for the
PROGRAM block declaration (Figure 2-8), the attri-
bute is specified at the beginning of the PROGRAM
heading, preceding the reserved word PROGRAM.

Similarly, one of these attributes can be specified at the
beginning of the routine heading in the syntax for the
various other forms of routine declaration; that is,
PROCEDURE, FUNCTION, INTERRUPT-SERVICE,
or PROCESS_BLOCK declarations. The routine
declaration must contain a routine body; it cannot
specify a directive, such as EXTERNAL.

Note: UNDERFLOW and NOUNDERFLOW are
mutually exclusive and are incompatible with the
INLINE attribute.

Underflow detection is disabled by default. An
UNDERFLOW or NOUNDERFLOW attribute applies
to nested routine bodies unless overridden by use of the
complementary attribute.

For a general discussion of the concept of floating-point
overflow and underflow, see Chapter 6, “Expressions
and Operators.”

2-25 Routine Bodies

Scope of Declarations

In this manual, the term declaration refers to a
definition of an identifier as the name of a data type,
data item, or routine. In the syntax diagrams, the
occurrence of an identifier in a declarative context is
denoted by the category name “identifier,” possibly
with a modifying adjective indicating the type of
declaration; for example, “constant identifier.”

The occurrence of an identifier in a context referencing
a declared item is denoted by use of the category name
“name,” possibly with a modifying adjective indicating
the type of item; for example, “type name.”

More than one declaration of a name is allowed. When
the compiler interprets a reference to a name, it must
determine which declaration, if any, governs the
reference. In most cases, this is determined by the block
structure of the compilation unit. The general
principles are:

® A block must not contain two declarations of the
same name.

® A reference to a name is governed by the declara-
tion in the innermost (most deeply nested) block
that contains the reference and declares the name.

® It is an error if the name is not declared in some
block containing the reference.

This picture is a bit oversimplified, however. In
addition to the blocks explicitly shown in the syntax
diagrams (that is, the bodies of routines), there are
implicit blocks related to declarations outside of any
routine. Also, there are language constructions that
declare names with scopes more or less than a block.
The following subsections discuss these topics.

Program Structure 2-26

Block Structure

Each routine body in a compilation unit is a block. In
addition, there are three implicit blocks containing
declarations of predeclared names, declarations
exported from other modules, and the outer-level
declarations of the compilation unit. The nesting of
these blocks is shown in Figure 2-10.

Predeclared Name Block

Export Block

Included Included
Outer-Level Block Module-1 | | Modute-2

Outer-Level
Routine Body-1

Outer-Level
Routine Body-n

Figure 2-10. Nested Block Structure

The predeclared name block contains all the
declarations built into the language; for example, the
type BOOLEAN and the constant TRUE.

2-27 Scope of Declarations

The export block contains the declarations of names
exported from other modules that are included in this
compilation. Non-exported declarations within
included modules are not visible in this compilation. It
is an error if the current compilation unit exports a
name that is also exported by another module. (If one
thinks in terms of the entire program rather than
individual compilation units, then all exported
declarations belong to one block, and there must not be
any duplicates.)

The outer-level block contains all constant, type,
variable, and routine declarations in the compilation
unit that do not belong to (that is, are not within) a
routine body.

Notion of Scope

For most declarations, the scope of an identifier is the
block in which it is declared. Duplicate declarations in
the same scope are not allowed; however, one scope can
be nested inside another. For example:

PROCEDURE p;
VAR a: INTEGER;

PROCEDURE q;
CONST a=3;
BEGIN...END;

BEGIN ... END;

Here, the scope of the declaration of a as an integer
variable is the entire block defined by procedure p. In
turn, the scope of the declaration of a as the constant
integer value 3 is limited to the nested block defined by
procedure q.

Program Structure 2-28

Special Declarative Scopes

The VAXELN Pascal declarations whose scope is not
exactly a block are summarized below. If the occurrence
of a name is not governed by one of these special scopes,
the name is resolved according to the general block
structure principles given earlier in this section.

Routine Parameters

A routine parameter identifier is declared by its
occurrence in the parameter list of a routine heading
(excluding PROGRAM block headings, which do not
have parameters in the normal sense). The scope of the
parameter declaration consists of the parameter list,
the function result type (FUNCTION heading), and the
routine body (if it exists). Note that if the SEPARATE
directive is used, the routine body may be in another
module.

Extent Parameters

An extent parameter identifier is declared by its
occurrence in a flexible type definition. The scope of the
declaration is the type on the right-hand side of the ="
in the flexible type definition (See Chapter 3, “Data
Types,” for more information on flexible types.)

Field Names

A field identifier is declared by its occurrence in the
field list of a record type definition. This declaration
has no scope in the ordinary sense. (The field name can
be used in a field reference that specifies the containing
record.) However, a WITH statement can be used to
establish the field name locally.

2-29 Scope of Declarations

Names Established by the WITH Statement

A WITH statement can be used to establish field names
or names specified using “WITH identifier AS” as data
item names in the body of the WITH statement. (See
Chapter 7, “Pascal Statenments,” for more information
on the WITH statement.)

Module Names

An identifier is established as a module name by its
occurrence following the reserved word MODULE in a
module header, or if it is the name of a routine whose
declaration occurs as a complete compilation unit. This
establishment of a name has no scope in the ordinary
sense, and it does not conflict with any other
declaration of the name, except as a module name.

Order of Declarations, Circularity

Within a block, declarations can occur in any order. A
declaration may depend on one that follows it, such as:

VAR a: t;
TYPEt = 0..127;

With one exception, a declaration must not be circular;
that is, it is not allowed to depend on itself directly or
through another declaration. Therefore, the following
declaration is not allowed:

TYPEt1 = RECORD { Circular declarations. }
x: t2
END;

TYPE t2 = ARRAY[1..10] OF t1;

Program Structure 2-30

The one exception to the rule against circularity is the
use of a pointer type of the form * 1 some-type”, where
“some-type” is the name of a non-flexible type. (See
Chapter 3, “Data Types,” for more information on
pointer types.) The following declaration is valid:

TYPE some-type = RECORD
x: STRING(10);
link: 1 some-type;
END;

Note that this does not allow circularity involving a
pointer to a bound flexible type (see Chapter 3). The
following is incorrect:

TYPE t(n: INTEGER) = RECORD
x: STRING(n);
link: 7 t(n) { Circular declaration. }
END;

To manipulate a structure of this sort, you must use
1 ANYTYPE (see Chapter 3). For example:

TYPE s(n: INTEGER) = RECORD
x: STRING(n);
link: T ANYTYPE
END;
VAR p: 15(10);
p:=p7T.link {Advancesto nextrecord inlist.}

2-31 Scope of Declarations

Program Structure 2-32

Chapter 3
Data Types

Every Pascal data item is associated with a data type.
The type of a data item defines the kind of values it can
have and the operations that can be performed on it. In
addition, the type determines the item’s representation.

This chapter discusses the declaration of data type
names, the definition of each of the various VAXELN
Pascal data types, the notion of type equivalence, and
the rules for internal representation of data, including
the use of attributes to modify the normal representa-
tions.

Type Declarations

In most cases, the type of a Pascal data item is specified
by using the name of a data type, either one of the
VAXELN predeclared types or a type introduced by a
type declaration. The syntax of type declarations is
shown in Figures 3-1 through 3-3. Note that these
figures also show the various possibilities for referring
to a type or introducing a new type.

In Figure 3-1, the type identifier is declared as a type. If
the type on the right-hand side of the equal sign is
simply a type name (see Figure 3-3), the identifier is
declared to be a synonym for the type denoted by the
type name. In all other cases, the identifier is declared
as the name of a new type given by the type definition
on the right-hand side of the equal sign.

Data Types

attributes

type —
identifier

type

flexible type definition

Figure 3-1. Type Declaration Syntax

v

named type

| record type definition }——y)p

| array type definition p——p

| set type definition pP—————

file type definition }—————p)

subrange type definition }—)

A A A A A

enumerated type definition }—)

Figure 3-2. Type Syntax

3-2

v

—)| type name

—-Dl bound flexible type p—p

~—P| pointer type definition p—p

Figure 3-3. Named Type Syntax

As shown in Figure 3-1, attributes may be specified to
modify the normal representation of certain data types;
their use is explained in the last section of this chapter.
A flexible type definition declares an identifier as the
name of a new flexible type; this is explained in the
section “Flexible Types,” later in this chapter.

Ordinal Types

Ordinal types consist of the type INTEGER and certain
other types whose values have a one-to-one correspon-
dence with a consecutive set of integers. These values
are ordered so that each has a unique ordinal value that
indicates its position in a list of all the values of the
type. Ordinal types are used as extent parameters in
flexible data types, as indices in arrays, as type names
in variant records, as base types in sets, and as
operands in extent expressions.

The representation of ordinal types can be modified by
packing; that is, by being an element of a PACKED
record or array. In addition, the representation can be
explicitly controlled by the attributes BIT, BYTE,
WORD, or LONG, as discussed later in this chapter.

3-3 Ordinal Types

VAXELN Pascal supplies predefined ordinal types for
integer, character, and Boolean data. In addition,
Pascal allows you to define your own ordinal types in
one of two ways:

® By enumerating each value of the type
(enumerated types).

® By defining the type as a subrange of another
ordinal type (subrange types).

INTEGER Data Type

The type INTEGER represents whole numbers in the
range —23! through 23! —1; that is, —2,147,483,648
through 2,147,483,647. (For representation of numbers
of larger magnitude, see “LARGE_INTEGER Data
Type,” later in this chapter.)

Internal Representation of INTEGER Data

The normal representation of INTEGER data is as a
byte-aligned VAX longword (32 bits, or 4 bytes)
representing a signed integer in 2’s-complement form.

Subranges of the INTEGER type are packable data
types, although INTEGER itself is not. When a
packable integer item is immediately contained in a
PACKED record or array, its boundary requirement is
only bit alignment, and it occupies only n bits, where n
is generally less than 32. When the subrange contains
only nonnegative values, n is the minimum number of
bits required to represent the subrange’s maximum
value as an unsigned integer. Otherwise, n is the
minimum number of bits required to represent the low
and high subrange values as signed (2’s-complement)
integers.

Packable data and boundary requirement are discussed
in “Data Representation,” later in this chapter.

Data Types 3-4

INTEGER data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of INTEGER
subranges described in the preceding paragraph.

CHAR Data Type

The data type CHAR represents single characters. The
set of valid characters includes uppercase and
lowercase letters, the digits 0-9, and an assortment of
punctuation marks and nonprinting characters, as
shown in Table 3-1.

3-5 Ordinal Types

Data Types

3-6

The Character Set

CHAR is an ordinal type; each character in the set
corresponds to one of a series of integers (the ordinal
values of the character set) that start at zero. The
ordinal value of a character can be obtained with the
ORD function; the character corresponding to an
ordinal value can be obtained with the CHR function.

The VAXELN Pascal character set is compatible with
the American Standard Code for Information
Interchange (ASCII). The ASCII set specifies 128
characters and provides for an additional, unspecified
set of 128.

The rules and relationships for this character set are as
follows:

® The relationship between two characters is the
same as the relationship between their ordinal
values. That is, char1 < char2 if and only if
ORD(char1) < ORD(char2).

® The numeric characters (0, 1, and so on) are
numerically ordered and also are contiguous; that
is, ‘1’ < ‘2" is TRUE. Contiguity means that if
ORD('0) is n, then ORD(’'1’) must be n+1, and so
forth.

® The numeric characters (0-9) all have ordinal
values less than those of the alphabetic characters
(A-Z and a-2).

® The alphabetic characters (both uppercase and
lowercase) are alphabetically ordered, so ‘A’ < ‘B’
is TRUE.

® The uppercase letters (A-Z) have ordinal values
that are less than those of the lowercase letters
(a=z). Furthermore, the ordinal values of
uppercase and lowercase versions of the same

3-9 Ordinal Types

letter always differ by 32. For example, ORD('a’)
- ORD('A") = 32.

® The printable characters are those with ordinal
values greater than or equal to 32 and less than
127. (CHR(32) is the space character.) Characters
with values less than 32 do not have a standard
printable representation, although some, such as
line feed (CHR(10)) and carriage return (CHR(13))
are often used to format printed documents.

Internal Representation of CHAR Data

The normal representation of CHAR data is as an
eight-bit byte containing ORD(charvalue) as an
unsigned integer.

Subranges of CHAR are packable data types, although
CHAR by itself is not. When a packable CHAR data
item is immediately contained in a PACKED record or
array, its boundary requirement is only bit alignment,
and it occupies n bits, where n is the minimum number
of bits required to represent the item’s maximum value
as an unsigned integer.

CHAR data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG

attribute, which overrides the packing of CHAR
subranges described in the preceding paragraph.

BOOLEAN Data Type

The data type BOOLEAN represents the results of
relational operations (for example, A < B) and logical
operations (for example, F OR G). It consists of the two
constant values TRUE and FALSE. (BOOLEAN values
are represented by these identifiers in programs and in
textfiles).

Data Types 3-10

BOOLEAN is an ordinal type, with FALSE and TRUE
having the ordinal values 0 and 1, respectively.

Internal Representation of BOOLEAN Values

The normal representation of BOOLEAN data is as an
eight-bit byte. The value TRUE is encoded as the low-
order bit set and the rest zero. FALSE is encoded as all
zeros. The seven high-order bits are ignored when
BOOLEAN values are evaluated.

BOOLEAN and its subranges are packable data types.
When a BOOLEAN data item is immediately contained
in a PACKED record or array, its boundary
requirement is only bit alignment, and it occupies only
one bit. Thus, a PACKED ARRAY [1..n] OF
BOOLEAN occupies only n bits of storage.

BOOLEAN data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of BOOLEAN
values described in the preceding paragraph.

Enumerated Types

An enumerated type has a finite set of named values (at
most 32,767 values) introduced in the enumerated
type’s definition.

An enumerated type definition has the form shown in
Figure 3-4.

v

__@_ constant ;/)\
471 identifier "N/

Figure 3-4. Enumerated Type Definition

3-11 Ordinal Types

This defines a new enumerated type and declares each
constant identifier as the name of one of the type’s
distinct ordinal values. If the constant identifiers in the

definition are x,, ... x,, in left to right order, then
ORD(x;) =i—1.
For example,

TYPE

season = (spring, summer, autumn, winter);

declares the enumerated type season and the four
constants spring, summer, autumn, and winter.
ORD(spring) = 0 and ORD(winter) = 3.

Internal Representation of Enumerated Data

Enumerated data items normally are byte-aligned
quantities occupying either a byte (eight bits) or word
(16 bits), depending on the total number of declared
values. They are stored in a byte if they have no more
than 256 possible values. The data item contains the
ordinal number of its current value. Thus, if the ordinal
number of the maximum value is at least 128 but less
than 256, the representation is an unsigned byte.

Enumerated types and their subranges are packable
data types. When an enumerated data item is
immediately contained in a PACKED record or array,
its boundary requirement is only bit alignment, and it
occupies n bits, where n is the minimum number of bits
needed to represent the item’s maximum value as an
unsigned integer.

Enumerated data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of enumerated
items described in the preceding paragraph.

Data Types 3-12

For example, the variable e, declared as
VAR e: (red, yellow,blue);

occupies one byte and is byte-aligned. However, if the
same type defines a field in a PACKED record, the field
occupies only two bits because ORD(blue) is 2, which
can be represented in two bits.

Subrange Types

Subrange types denote a subrange of values of an
ordinal type. They are themselves ordinal and can be
specified wherever ordinal types are valid; for example,
as the index range of an array. Subranges are useful for
documenting the actual range of permissible values for
a variable or type.

The definition of a subrange type specifies the mini-
mum and maximum values, which must be constants of
the same ordinal type.

Normally, a variable of a subrange type requires the
same amount of storage as its host type. For example, a
subrange of integers requires 32 bits. However, if the
subrange data is a component of a PACKED array or
record, it has a packed representation, as explained
under the particular ordinal data type.

A subrange item can have its representation specified
exactly by the BIT, BYTE, WORD, or LONG attribute,
which overrides the packing described in the preceding
paragraph.

It is a range violation if a value outside the specified
range is assigned explicitly to a subrange variable.
Referring to a subrange variable when its value is out
of range (for example, because it is uninitialized or has
an out-of-range value due to typecasting) is an
unpredictable error.

3-13 Ordinal Types

A subrange type definition has the form shown in
Figure 3-5.

limited ordinal limited ordinal
— — () —

constant constant

Figure 3-5. Subrange Type Definition

Each of the limited ordinal constants in the subrange
type definition is of the same ordinal type. An ordinal
constant value must be specified in this context; a
general extent expression is not permitted. The
constant on the left supplies the lower bound (minimum
value) of the subrange and must be less than or equal to
the constant on the right. If the two constants are
equal, the subrange denotes that single value.

A typical declaration of a subrange-of-INTEGER
variable is:

VAR sub : 0..255;

Here, the variable sub can have only those values in the
designated subrange, 0-255.

Thus:
sub : = 128; { Valid assignment. }
sub : = 256; { Range violation.}
Set Types

In Pascal, a set value is a set of ordinal values, all of the
same basic ordinal type, which is called the set’s
element type. If the element type is INTEGER, the
values must be in the range 0-32,766.

Data Types 3-14

A set type is defined by using the reserved words SET
OF and an ordinal type. The ordinal type determines
both the element type of the set and the minimum and
maximum values that may be contained in sets of the
type. A set type may be defined as PACKED. This can
affect the set type’s internal representation if it is a
small set type; that is, if ORD(maximum-element) < 31.
(See “Internal Representation of Sets,” later in this
section.)

Set Type Definitions
A set type definition has the form shown in Figure 3-6.

(PACKED)]
;f SET @ lordinal type —p

Figure 3-6. Set Type Definition

The basic ordinal type specified in the set type
definition is the set type’s element type. The minimum
and maximum values contained in sets of the type are
the minimum and maximum values of the ordinal type.
If the element type is INTEGER, the values must be
greater than or equal to 0 and must not exceed 32,766.
Hence, ‘INTEGER' itself is not acceptable here as the
ordinal type. Note that the restrictions on the
minimum and maximum values are automatically
satisfied for all non-integer ordinal types.

The following examples illustrate set type definitions:

VAR tset: SET OF CHAR;
{ tset can contain any characters from the
character set. }

3-15 Set Types

TYPE subset = SETOF ‘A"..'Z’;
{ Variables of type subset can contain only the
uppercase letters A-Z. }

VAR enumset: SET OF (red,orange,yellow);
{ enumset can contain only the enumerated values
red, orange, and yellow. }

Note that set operations require only that the sets
involved have the same element type, this always being
a basic ordinal type, not a subrange. Hence, with the
above examples you can have:

VAR Ss: subset;
tset:=s+['a'..'2'];
{ The set construction denotes the set of
lowercase letters. See Chapter 6 for more
information. }

Internal Representation of Sets

Normally, a set type is represented as a byte-aligned
sequence of n consecutive longwords in storage, where
n is the minimum positive integer such that
ORD(maximum-element) < 32X n. The bits in these
longwords can be numbered 0, 1, ... 32Xn—1, for
example, the usual 0 to 31 for a one-longword set.

Bit & is 1 if and only if the element with ORD(element)
= kis in the set; otherwise, it is 0. Thus, all bits in the
set’s storage are defined, including those that do not
correspond to the ordinal value of an element allowed
by the set’s type.

For example, SET OF 0..100 is a sequence of four
longwords because that is the minimum number of
longwords that has at least 101 bits. The elements are
represented by the first 101 bits.

All sets have a (possibly unused) bit corresponding to
an element at ordinal 0, and possibly unused bits

Data Types 3-16

corresponding to the ordinal numbers between 0 and
the ordinal number of the set’s minimum element; any
unused bits are always zero. For example, SET OF 2.4 is
represented by a sequence of five bits (normally, the
five low-order bits of a single longword):

Element: 4 3 2
Bit: 43210

Here, bit 3 is 1 if 3 is in the set. (Note that operations
that modify bits 0 and 1 are range violations.)

Packed Sets

A set type is packable if it was declared with the word
PACKED and is small (ORD(maximum-element) < 31,
so that its normal representation would be one long-
word). When a packable set data item is immediately
contained in a PACKED record or array, its boundary
requirement is only bit alignment and it occupies only
n bits, where n = ORD(maximum-element) + 1.

Small set items (ORD(maximum-element) < 31) can
have their representations specified exactly by the BIT,
BYTE, WORD, or LONG attribute, which overrides the
packing described in the preceding paragraph.

Floating-Point Types

The predefined data types REAL and DOUBLE provide
explicit single- and double-precision floating-point
numbers. Floating-point constants use literal decimal
notation (for example, 3.2 or 32e - 1), but the internal
representation is VAX F, D, or G_floating point. There
is no special notation to distinguish REAL or DOUBLE
constants; a floating-point constant is converted to its
internal representation as REAL or DOUBLE,
depending on the context.

3-17 Floating-Point Types

REAL Data Type

The data type REAL represents real numbers in the
approximate range 0.29 X 10-38 to 1.7 X 1038, The
maximum number of significant fractional digits of a
REAL data item, its precision, is approximately seven.
Numbers with this precision are called single-precision
real numbers.

Internal Representation of REAL Data

REAL data is represented in the VAX F_floating
binary format, which occupies a single byte-aligned
longword (32 bits), as shown in Figure 3-7.

15 7 6 0
S| EXPONENT FRACTION
FRACTION
31 16

Figure 3-7. Internal Representation of REAL

The format uses a sign bit, an eight-bit exponent (power
of two), and a 24-bit fraction.

The zero exponent and zero sign bit together represent
the value 0. If the sign bit is 1 and the exponent is zero,
the floating-point value is a reserved operand and
causes an exception (reserved operand fault).
Otherwise, the format represents a normalized
floating-point number, in which the fraction’s most
significant bit is known to be 1 and is not represented
explicitly.

Data Types 3-18

The value represented is thus:
2(exponent - 128) ¢ fraction

If the sign bit is 1, the value is negative.

DOUBLE Data Type

The data type DOUBLE represents double-precision
real numbers. Variables of this type are declared with
DOUBLE in place of REAL. DOUBLE data can rep-

resent numbers with approximately 15 decimal digits.

All operations defined for REAL data also are defined
for DOUBLE data. If REAL and DOUBLE operands are
used in an expression, the computation is performed in
double precision. Via compiler qualifiers, you have the
option of using either the VAX D_floating format or the
G_floating format for DOUBLE data.

DOUBLE data items in G format have the approximate
range 0.56 X 10-398 to0 0.9 X 103%8 They have
approximately twice the fractional precision of REAL
data, and much greater maximum magnitudes.

When the D format is used, DOUBLE data items have
the approximate range 0.29 X 10-38t0 1.7 X 1038, the
same as REAL data. In this case, the REAL and
DOUBLE types differ only in the amount of fractional

precision, which is still about twice the precision for
DOUBLE as for REAL.

Note that neither REAL nor DOUBLE data can be as-
signed to integer variables without use of a conversion
function.

Internal Representation of DOUBLE Data

DOUBLE data is represented in the VAX D_floating or
VAX G_floating binary format, each of which occupies
a byte-aligned quadword (64 bits), as shown in Figures

3-19 Floating-Point Types

3-8 and 3-9. In either format, data is represented as a
normalized floating-point number, in which the high-
order bit of the fraction is known to be 1 and is not
explicitly represented.

The value represented is thus:
2(exponent - 128) y¢ fraction

If the sign bit is 1, the value is negative. The zero
exponent and a zero sign bit together indicate the value
0. If the sign bit is 1 and the exponent is zero, the
number is a reserved operand and causes a reserved
operand fault.

15 43 0
S| EXPONENT FRACTION
FRACTION
FRACTION
FRACTION
63 48

Figure 3-8. G-Floating Representation

VAX G-Floating Format. The G_floating format
represents a double-precision floating-point number in
64 bits, offering larger magnitudes than F_floating
(single-precision, REAL) numbers and approximately
twice the precision. The format uses one sign bit, an 11-
bit exponent for a range of approximately + 10308, and
a 53-bit magnitude for about 16.0 decimal digits of
accuracy.

Data Types 3-20

15 76 0

S| EXPONENT FRACTION
FRACTION
FRACTION
FRACTION

63 48

Figure 3-9. D-Floating Representation

VAX D-Floating Format. The D_floating format
represents a double-precision floating-point number in
64 bits, offering the same magnitudes as F_floating
(single-precision, REAL) numbers but approximately
twice the precision. The format uses one sign bit, an 8-
bit exponent for a range of approximately + 1038 and a
56-bit magnitude for about 16.9 decimal digits of
accuracy.

Flexible Types

A flexible type is a type with extent parameters that
determine string lengths, BYTE_DATA item lengths,
or array bounds within the data item described by the
type. There are three predeclared flexible types:
STRING, VARYING_STRING, and BYTE_DATA.
These types are discussed individually later in this
chapter. Other flexible types can be introduced by
declaration.

3-21 Flexible Types

By itself, a flexible type is not a complete description of
data. It can only be used by specifying values for the
extent parameters. The combination of a flexible type
and extent values is called a bound flexible type; for
example, STRING(100) describes character strings of
length 100.

The extent values in a bound flexible type are specifiec
by extent expressions, which are a subset of ordinal.
valued expressions. When used in bound flexible types
as array bounds, extent expressions may have constan
or variable operands. With constant operands, thejy
may also be used in most places where standard Pasca.
requires a constant.

The following sections cover flexible type definitions
bound flexible types, and extent expressions.

Flexible Type Definitions

The syntax for a flexible type definition is shown ir
Figure 3-10.

Data Types 3-22

A flexible type definition declares an identifier as the
name of a new flexible type. Within the parentheses,
identifiers are declared as extent parameters of the
flexible type; the scope of these declarations is limited
to the flexible type definition. The data type of each
extent parameter must be an ordinal type; for example,
INTEGER or 0..32767.

The new flexible type is limited to one of the four type
definitions shown on the right-hand side of the equal
sign in Figure 3-9. The new flexible type can be a
pointer to a bound flexible type, it can be defined in
terms of another flexible type, or it can be a record type
or array type. (Pointer types, record types, and array
types are explained in their own sections, later in this
chapter.)

Attributes may be specified to modify the normal
representation of an array type or record type; their use
is explained in the last section of this chapter.

Bound Flexible Types

To use a flexible type, you specify the type name and
values for each extent parameter. This combination of
flexible type and extent values is a bound flexible type.
The syntax is shown in Figure 3-11.

-

flexible type name —t@ -

h 4

extent expression)@.—}

O,

Figure 3-11. Bound Flexible Type Syntax

3-25 Flexible Types

In a bound flexible type, each extent expression
supplies the value of an extent parameter of the type
being bound. These extent values match the flexible
type’s extent parameters left to right and must equal
them in number. The extent values must have ordinal
types that are assignment compatible with the extent
parameters’. It is a range violation if an extent value is
outside the range of the corresponding extent parame-
ter or if substitution of the value into the governing
flexible type definition leads to a range violation.

Examples
Consider the following flexible type declaration:
TYPE vector(n: INTEGER) = ARRAY [1..n] OF REAL;

Substituting the extent values into the type’s definition
gives the basic Pascal interpretation of the bound type.
Thus, vector(10) is equivalent to ARRAY[1..10} OF
REAL.

A flexible type name cannot be used by itself to specify
an item’s type; it must be bound. For example, type

VAR x: vector;
is not allowed because the vector’s size is not specified.

Flexible types can be defined in terms of other flexible
types, either predeclared or user-declared.

For example:

TYPE
vectorpair(m; INTEGER) =
RECORD
a,b : vector(m);
END;

Data Types 3-26

With this declaration, vectorpair(10) is equivalent to:

RECORD
a,b : ARRAY [1..10] OF REAL;
END;

Pointer types can also be flexible, as in:

TYPE
stringptr(m: 0..32767) = 1 STRING(m);

VAR
p : stringptr(100);

Here, the type of p is equivalent to T STRING(100).

In general, the extent values in a bound flexible type
are specified by extent expressions. The value of an
extent expression within a bound flexible type need not
be a constant. It can depend on a routine’s value
parameters or other values known at entry to a routine.
This is the general mechanism in VAXELN Pascal for
manipulating dynamically sized data. For example:

FUNCTION f(n: INTEGER) : vector(2*n);
Here, f is a function returning vectors of length 2*n.

Extent expressions within the type definition can also
depend on the flexible type’s parameters, as in:

TYPE doublestring (n : INTEGER) = STRING(2*n);

For routines, the most important feature for describing
dynamically sized data is the conformant parameter.
Here, the extents of a parameter are derived from the
actual argument passed to that parameter. For
example:

FUNCTION sum(v: vector(<n>)) : REAL;
VAR
k: INTEGER;
s:REAL:= 0;
BEGIN

3-27 Flexible Types

FORk: =
sum:=s;
END;
Here, function sum returns the sum of elements in the
parameter v. (See Chapter 8, “Procedures and
Functions,” for more information on conformant
parameters.)

1tonDOs: = s+ v[k];

Flexible types are normally used within declarations to
describe variables, parameters, record fields, and so
forth. However, they can also be used in the executable
part of a block, in typecast variable references. This
gives a completely dynamic description of data in the
sense that extents are determined at the moment the
variable reference is executed. For example,

p T ::STRING(n)

means a string whose length is the current value of n
and whose location is given by the current value of the
pointer p. (See Chapter 5, “Variables,” for more
information on typecast variable references.)

Extent Expressions

An extent expression is a type of ordinal-valued
expression that is used to specify an extent value in an
array type or bound flexible type. Extent expressions
with constant operands may also be used in several
contexts where standard Pascal requires an ordinal
constant. Extent expressions denoting true constant
values can be used in the following contexts and are
evaluated by the compiler:

® On the right-hand side of CONST declarations
(CONSTi=5+1).

® In initializers for variables and value parameters
(VARi:INTEGER:=5+1).

Data Types 3-28

® As the upper or lower bound of an array’s index
range (VAR a: ARRAY[0..5+1]OF INTEGER).

® Asextentsin bound flexible types (STRING(5+ 7)).

In the last two cases, extent expressions denoting non-
constant values can be used; in these cases, the
expression denotes a value that will be determined at
entry to a routine or by flexible type binding. For
example:

TYPE
flex(m: INTEGER) = ARRAY[0..m - 1] OF REAL;
{ A flexible type. }

VAR
al: flex(10); { The value of m is determined now.}

PROCEDURE p(s : STRING(<n>);
VAR
a : PACKED ARRAY[0..n - 1] OF CHAR;
{ The value of nis the length of arguments,
determined when procedure p is called. }

The following rules define the class of extent
expressions:

1. Only a limited set of operations is permitted, to
ensure that the result is ordinal and can easily be
evaluated at compile time (constant operands):

® The dyadic +, —, *, AND, OR, DIV, and MOD
operators (string concatenations with + are not
allowed).

® The monadic operators +, —,and NOT.
® Relational operators (for example, <).

® The functions ODD, ORD, PRED, SQR, ABS,
CHR, SUCC, and XOR.

3-29 Flexible Types

2. The terminal operands of the expression must
denote ordinal values.

3. Within the definition of a flexible type, a terminal
operand of an extent expression can be the name of
one of the type’s extent parameters (as with type
flex in the previous example).

4. Within the type specified for a routine’s
parameters or function result, a terminal operand
of an extent expression can be the name of a
conformant extent or value parameter of the same
routine. For example, function f returns a string
one character longer than its argument:

FUNCTION f (STRING(<n>)) : STRING(n + 1);

5. Within a type specified in a declaration that is
inside a routine, a terminal operand of an extent
expression can be the name of a value known at
entry to that routine (as with procedure p in the
above example). That is, it can be the name of a
variable declared outside the routine, or it can be
the name of one of the routine’s conformant extents
or value parameters.

In cases where it can matter, the compiler
generates code to capture the value at entry to the
routine. Thus, assignment to the variable within
the routine’s body does not affect the meaning of
the extent expression within the declaration.

6. Except as allowed in 3, 4, and 5 above, a terminal
operand of an extent expression must be a literal
ordinal constant or the name of an ordinal
constant.

Note that the dynamic specification of values allowed
by rule 5 can be combined with rule 3 or 4 and with true
constants, which is occasionally useful.

Data Types 3-30

For example:

TYPE
matrix (m,n: INTEGER) = ARRAY [1..m, 1..n] OF
REAL;
vector (m: INTEGER) = ARRAY [1..m] OF REAL;
CONST
row = 10;

PROCEDURE p(

VAR a : matrix(row,col);
col : INTEGER
);
TYPE

t (alpha : INTEGER) = matrix(2*alpha,col - 1);

In the declaration of parameter a, row is a named
constant, while col is a value parameter of the same
routine, as allowed by rule 4. In the declaration of the
flexible type t (within p), 2*alpha uses the extent
parameter alpha in accordance with rule 3, and col -1
uses the value col, known at block entry in accordance
with rule 5.

String Types

Character string values, or simply, strings, are
sequences of zero to 32,767 characters. These are the
values of the data types STRING and
VARYING-STRING. Strings also are the results of
string expressions, which include certain predeclared
functions and the concatenation of two or more strings.
In string expressions, variables of types PACKED
ARRAYI[1..n] OF CHAR (when n does not exceed
32,767) and CHAR also yield string values.

3-31 String Types

STRING Data Type
The data type STRING(n) represents character strings

containing exactly n characters (0 < n < 32,767).
Internal Representation of STRING Data

A STRING data item is stored as a number of bytes
equal to the maximum length n, as illustrated in
Figure 3-12.

31 2 15 7 (4]
Char4 | Char3 Char2 | Char1

Char8 | Char7 | Char6 | Char5

Charn)

Note that in this memory diagram (as in a
typical storage dump), the string characters
appear in reverse order on each line.

Figure 3-12. STRING(n) Representation

VARYING_STRING Data Type

The data type VARYING_STRING(n) represents
character strings of various lengths, up to a maximum
of n characters (0 < n < 32,767). The current length of a
VARYING_STRING variable can be obtained with the
LENGTH function.

Data Types 3-32

Internal Representation of VARYING-STRING Data

A VARYING-STRING data item is stored as a 16-bit
word containing the current length in characters,
followed by a number of bytes equal to the maximum
length, as illustrated in Figure 3-13.

1 22 15 7 0
Char2 | Char1 Currentlength

Char6 | Char5s Char4 | Char3

Charn e oo

Note that in this memory diagram (as in a
typical storage dump), the string characters
appear in reverse order on each line.

Figure 3-13. VARYING-STRING(n) Representation

PACKED ARRAY OF CHAR

For compatibility with other Pascal implementations,
PACKED ARRAY[1..n] OF CHAR can be used, in most
cases, as if it were STRING(n). However, there are
restrictions on assignments and relational operations,
since this is formally an array type. Also, when such an
array is used as a string type, it is a range violation if n
exceeds 32,767.

3-33 String Types

Strings and the Type CHAR

There is a close relationship between strings and the
data type CHAR. In any context that requires a string
value, a value of type CHAR is acceptable; it is treated
as a string of length 1. Similarly, in any context that
clearly requires a value of type CHAR, a string of
length 1 is allowed. (When a dynamically sized string
value is used in such a context, it is a range violation if
its length isnot 1.)

Array Types

Array types represent aggregates of elements, all of
which have the same type. Through the use of flexible
types, arrays can be declared with dynamic extents;
that is, with varying numbers of elements in some or all
of their dimensions.

An array type must not specify more than eight
dimensions; if its elements are arrays, their dimensions
count toward this total. However, it’s permissible to
have additional arrays of up to eight dimensions within
record elements.

Array Type Definitions

The definition of an array type supplies the data type of
its elements, the number of its dimensions, and the
data types (including minimum and maximum values)
of its subscripts, or indices.

The information about the indices in each dimension is
expressed by an index range. The indices need not have
the same data types nor the same minimum and
maximum values in each dimension. The syntax for an
array type definition is shown in Figure 3-14.

Data Types 3-34

Array Type

PACKED

b 4
et

=P indexrange

attributes |
@) | :QL_. pe ——>

Index Range

A 4

R extent IG | extent
"| expression expression 1+

) ordinal type name

h 4

enumerated type definition

Figure 3-14. Array Type Definition

3-35 Array Types

An array type can be defined as PACKED to specify the
most compact storage possible. (More details on
PACKED arrays are given later in this section.)

The index range supplies the data type of the array’s
indices in a dimension, along with the minimum and
maximum indices. The data type must be ordinal. The
index range can be specified as a pair of extent
expressions separated by the symbol “..’, the name of an
ordinal type, or (rarely) the definition of an enumerated
type. The minimum and maximum indices are either
the minimum and maximum values of the specified
ordinal type, the minimum and maximum values of the
enumerated type, or the left and right extent expres-
sions.

The ordinal value of an array dimension’s upper bound
must be greater than or equal to the ordinal value of
(lower-bound — 1). The number of elements in a
dimension is (upper-bound — lower-bound + 1). Thus,
arrays with zero elements are allowed.

The data type of the array’s elements can be of any
type, so you can declare arrays of types such as REAL
and INTEGER, as well as arrays of arrays, arrays of
records, arrays of files, and so forth. Note again that the
total number of dimensions in an array type must not
exceed eight.

Multidimensional arrays can be denoted either as, for
example:

ARRAY[range1] OF ARRAY[range2] OF CHAR
or as:
ARRAY[range1,range2] OF CHAR

Attributes may be specified to control the internal
representation of an array type; their use is explained
in the last section of this chapter.

Data Types 3-36

Declaration of Arrays with Varying Extents

Perhaps the most straightforward use of flexible types
is in the declaration of arrays with varying extents. In
the following example, a type matrix is defined as a two-
dimensional array whose extents are specified in the
declarations of variables, permitting matrices of
various sizes:

TYPE
matrix(row,column: INTEGER) =
ARRAY[1..row,1..column] OF REAL;
{ Matrix of reals. }

VAR
m2x3: matrix(2,3); { A 2 X 3 matrix.}
m50x10: matrix(50,10); { A 50 X 10 matrix. }

A flexible type such as matrix can also be used as part of
another flexible type’s definition. Here, for example, a
record is defined, one field of which is of type matrix:

PROGRAM flextypes(OUTPUT);

TYPE
matrix(row,column: INTEGER) =
ARRAY[1..row,1..column] OF REAL;
{ Matrix of reals. }
square(side: INTEGER) = RECORD
number: INTEGER;
datum: matrix(side,side);
{ Square matrix. }
END;

VAR
s3: square(3); { Record containing 3X3 matrix. }
i,j: INTEGER;

BEGIN
s3.number: = 3;
FORi:= 1TO3DO

3-37 Array Types

FORj:= 1TO3 DO s3.datumli,jl : = j;
FORi:=1TO3DO
FORj: = 1TO 3 DO WRITELN(s3.datumli,j]);
WRITELN('Size of square(3) in bytes: ', SIZE(square(3))
),
END.
The output of the program is:

1.00000E + 00

2.00000E + 00

3.00000E + 00

1.00000E + 00

2.00000E + 00

3.00000E + 00

1.00000E + 00

2.00000E + 00

3.00000E + 00
Size of square(3) in bytes: 40

Array Operations

Except for the special case of PACKED ARRAY OF
CHAR (discussed in the preceding section, “String
Types”), operations with array types are limited to
assignments, either to individual elements or to the
entire array, and argument passing.

You can manipulate elements of arrays with indexed
variables. These are variables that give the name of the
array followed by a list of indices in brackets. For
example:

TYPE
table2(n: INTEGER) =
ARRAY[1..n,1..2*n] OF CHAR;
row(n: INTEGER) =
ARRAY][1..2*n] OF CHAR;

Data Types 3-38

VAR
table,table1: table2(2);
rowl: row(2);

BEGIN

table[1][4] : = ‘a’; {Put’'a’inrow 1,column 4.}
table[1,4] : = ‘a’; { Same thing. }

table1: = table; { Assignment of entire array. }
row1: = table[1]; { Assign first row torow1.}

Notice that, with a multidimensional array, the indices
can be written in consecutive sets of brackets or
combined inside one set and separated by commas; the
meaning is the same.

The next to last assignment assigns the entire contents
of table to table1. The name table, without indices, is a
reference to the entire array, and the expression on the
right-hand side must also be an entire array with
identical type.

The last assignment assigns the contents of the first
row of table to row1, since table[1] is an array of four
characters.

Internal Representation of Arrays

The elements of an array are stored in “row-major”
order. This means that, for example, the two-
dimensional array table, type ARRAY[1..2,1..4], is
stored as a sequence of elements, and the elements are
placed in the sequence with the right-most index
varying most rapidly, as shown in Figure 3-15.

3-39 Array Types

table[1,1]| Row-major order means that the
elements of the first row are stored
table[1,2]|| first beginning at the lowest address.
That is, the right-most index,
table[1,3]| representing “columns” in this case,
varies more rapidly.

The last element in storage is the entry

table[2,4] in the last column of the last row.

Figure 3-15. Row-Major Order

If the array is PACKED (innermost dimension) and the
component type has a boundary requirement of bit
alignment, the elements are packed to the bit and the
array’s boundary requirement is bit alignment.
Otherwise, the boundary requirement of the elements
is either their natural alignment or byte alignment
(whichever is larger), and this is also the boundary
requirement of the array itself.

Packed Arrays

Specifying PACKED on an array type has the following
consequences:

o If the element type is a suitable ordinal type or
small PACKED set, its data representation is
changed from the normal one to a packed
representation.

® If the element type is as above or is a PACKED
record or array with bit alignment, the elements of

Data Types 3-40

the array are packed to the bit, with no fill in
between elements.

Except in these cases, PACKED has no effect on data
representation. However, it does count in the rules for
type equivalence. In the above cases, the general effect
is to save storage at the expense of time to access
individual elements. A typical use is PACKED
ARRAYI[1..n] OF BOOLEAN, which gives the most
compact form of BOOLEAN array.

Note that if a multidimensional array is denoted by
PACKED ARRAY[1..2,1..4] OF BOOLEAN;

PACKED applies to both dimensions because the
element type is BOOLEAN, but in

PACKED ARRAY[1..2] OF ARRAY[1..4] OF BOOLEAN;

PACKED has no effect on the representation, because
the element type is ARRAY without PACKED.

Record Types

A record type represents an aggregate of data, called
fields, that can have different data types. Records
provide a very flexible means of organizing related, but
dissimilar information. For example, PACKED records
can be used to represent the various bit fields in a
hardware device register.

Record Type Definitions

The definition of a record type supplies the types and
names of its fields, as shown in Figure 3-16.

3-41 Record Types

Record Type

S PACKED

RECORD | field list END

Field List

fiold O l"lattrlbutes L

b 7] identifier

O

type =

A

variant part

w

Figure 3-16. Record Type Definition

A record type can be defined as PACKED to specify the
most compact storage possible. (The effect of this is
discussed later in this section, under “Internal
Representation of Records.”)

The field list specifies the names and types of the
record’s fields. Each field identifier is declared as a field
name for this record type. The field names must be
distinct within the record type, including field names
introduced in the variant part. Declaration of an
identifier as a field name does not conflict with any
other declaration of the identifier, including
declaration as a field name in another record type.

Data Types 3-42

The type of a field is specified on the right-hand side of
the colon following the field identifier (or list of such
identifiers, separated by commas).

Attributes may appear before the type for a field
(including a tag field). As explained later in this
section, the POS attribute can be used to exactly specify
the position of a field in a PACKED record. Note that
the POS attribute is not allowed on the tag type of a
variant part unless the tag field is actually present.
Data representation attributes may be present if
allowed on the particular field type. These attributes
are defined in the section “Data Representation,” later
in this chapter.

The variant part of a field list, if present, defines
additional fields grouped into variants that share
storage in the record. (Variants are described later in
this section, under “Records With Variants.”)

Operations on Records

An individual field in a record is accessed using field
selection or the WITH statement; it is then used in
accordance with the field’s data type. For example:

TYPE employee = RECORD
name: VARYING-STRING(80);
salary: REAL;

END;

VAR

ref: employee;

The fields in the record employee can be accessed by
using field selection, as follows:

employee.name { the employee’s name }
employee.salary {the employee’s salary}

3-43 Record Types

In addition, the WITH statement can be used to
establish a reference to the record, such as:

WITH ref DO

BEGIN
name : = ‘Anthony Lowell’;
salary : = 25000.00;

END;

Note that the only operation applicable to an entire
record is assignment of a record value to a record
variable.

Records With Variants

A record can contain one or more variants, with each
variant containing a group of fields. The variants share
storage, so in effect, the record can contain different
types of data at different times.

The definition of a record type with variants contains a
variant part as the last item in its field list (see Figure
3-16).

The form of the variant part is shown in Figure 3-17.

Data Types 3-44

Variant Part

=] attributes

field | .) 2
identifier __’O *

—}‘ CASE >

b 4

h 4

ordinal type }-—@ -)Ivariant ¥)
Variant Q

limited
ordinal Ng cald i -@___—p
47| constant '@@ field list

Figure 3-17. Variant Part Syntax

y

The ordinal type preceding the reserved word OF is the
variant part’s tag type. The POS attribute and data
representation attributes may be used with the tag
type, as with an ordinary record field, but they have no
effect unless the field identifier and colon are present.

When the field identifier and colon are present, the
field identifier is declared as a record field in the
containing record. (It is not part of any of the variants.)
In conventional usage, this explicit tag field is set to
indicate which variant is currently in use. Note,
however, that the compiler never implicitly sets or
checks this tag field.

3-45 Record Types

Each variant is preceded by one or more ordina
constants (not extent expressions) providing value
that may be used to select the particular variant. All ¢
these constants must be compatible with the varian
part’s tag type, the same value cannot occur twice, an
no variant can be preceded by more than 31 constants.

The fields in a particular variant are defined by a fiels
list enclosed in parentheses (see Figure 3-16). Note tha
this field list may itself contain a variant part
therefore, nested variants are possible. Whatever th
variant structure, the field names in all variants ana
the nonvariant part of the record must all be distinc
names.

Because the variants in a variant part share the samy
storage, assignment to a field in one variant must, i
general, be regarded as invalidating the values of al
fields in all other variants.

By using knowledge of the record’s storage layout (vi:
the compiler’s MAP command qualifier) and taking
account of the rules for data representation, you can us
fields in different variants at the same time or use then
to access the same data by different data types
However, this usage is nonstandard and can make ¢
program very sensitive to changes in a record type.

Variant records are useful for organizing informatior
when the need for some kinds of information depend:
on other information. For example, the following recor«
type organizes some medical information, where ths
requirements differ for males and females:

TYPE
gender: (female,male);
date = LARGE-INTEGER;

Data Types 3-46

VAR
person1: RECORD
name: VARYING-STRING(80);
birthdate: date;
CASE sex: gender OF
male: (); { Empty. }
female: (pregnancies: INTEGER)
END

Here, both males and females have birthdates and
names, but female variants also have an additional
field, containing the number of pregnancies. Since
there is a tag field (sex), one or the other variant is
identified by assigning either female or male to the
field person1.sex.

The field in the female variant is referenced by field
selection in the usual way or by using the WITH
statement. For example:

WITH person1 DO
pregnancies : = pregnancies + 1;

Allocating Records With Selected Variants

Normally, a record occupies enough storage to hold the
largest variant in the record’s variant part. However,
the NEW procedure (see Chapter 9, “VAXELN
Routines”) can be used to select a specific variant (or a
specific set of nested variants) to be allocated. For
example:

TYPEt = RECORD
CASE INTEGER OF
1: (a: array [1..100] OF INTEGER);
2: CASE INTEGER OF
21: (b: array [1..100] OF DOUBLE);
22: (c: array [1..100] OF CHAR))
END

3-47 Record Types

VAR p: 't;

NEW(p,1); {400 bytes; holds array a }
NEW(p,2,21); {800 bytes; holds array b }
NEW(p,2,22); {100 bytes; holds array ¢ }

A record created in this way cannot be used in a record
assignment; the compiler does not know that it is
smaller than the normal size. This or any other
reference to a field that does not lie entirely within the
allocated part is an unpredictable error.

The SIZE function (see Chapter 9) can be used to
determine the amount of storage occupied by a record
with selected variants.

Internal Representation of Records

In determining a record’s internal representation, the
compiler first determines the boundary requirement of
each field (including those in variants). This is the
maximum of the following:

® The boundary requirement implied by the field’s
data type.

® Alignment specified by the ALIGNED attribute on
afield.

® Byte alignment unless the record is designated
PACKED.

The record’s boundary requirement is the maximum of
all the fields’ boundary requirements and any
alignment specified by the ALIGNED attribute, if it is
present on the record itself. Note the following:

® The boundary requirement and representation of
packable data types is different from normal if the
record is PACKED.

Data Types 3-48

® The record will have a boundary requirement of bit
alignment only if the record is PACKED, all field
data types require only bit alignment, and the
ALIGNED attribute is not used anywhere in the
record.

Once the boundary requirements are determined, the
compiler determines a relative location (offset from the
beginning of the record) and cumulative size for each
field, both quantities starting at zero. Fields are
assigned locations in the order of their declarations.
“Fill” is introduced between the end of field A and the
beginning of field B only to the extent required to
ensure that field B has the correct alignment relative to
the record’s origin. Otherwise, the offset of field B is the
same as the cumulative size, including field A.

The cumulative size at the last field is the record’s size.
Sizes and offsets are kept in units of bits only when they
do not equal an integral number of bytes.

The above description applies to records in which all
fields have constant size, the record has no variant part,
and the POS attribute is not used. The following rules
describe how these other cases are handled:

® Variable-size fields are handled by symbolic
expressions within the compiler, including
expressions to convert units to satisfy boundary
requirements.

® If arecord has a variant part, the entire variant is
treated as the last field in the record. Its boundary
requirement is the maximum of all fields in all the
variants. Its contribution to the cumulative size is
the maximum of the variants.

® A particular variant is laid out starting at the
beginning of the variant part.

3-49 Record Types

® If the last field of a record (or any variant) is
variable-sized and bit-sized, the record will be
variable-bit-sized.

® If the natural size of a record type is < 32 bits, its
size may be specified exactly by using the BIT,
BYTE, WORD, or LONG attribute. BYTE, WORD,
and LONG force at least byte alignment.

® The POS attribute (see below) forces a field to have
a particular constant offset (expressed in bits
within the attribute). The compiler issues an error
message if the size conflicts with the field’s
boundary requirement or the cumulative size,
including the preceding field.

Note: The actual layout of a record can be determined
with the compiler’s MAP command qualifier.

POS Attribute

The POS attribute can be used to specify that a field
within a PACKED record begins at a given position

with respect to the origin. It conflicts with explicit use
of the ALIGNED attribute.

The syntax for the POS attribute is shown in Figure 3-
18.

POS (extent expression _;®_.;

Figure 3-18. POS Attribute Syntax

The extent expression in the syntax for the POS
attribute must produce a nonnegative integer constant.

Data Types 3-50

The POS attribute can be applied to any field within a
PACKED record. The field with attribute POS(n)
begins at bit position n; the origin of the record is
POS(0). The position n must be beyond the last bit of
the previous field, if any. The bit offset must be
consistent with the alignment requirements of the
field. For instance, [POS(15)] means that the field
begins at bit 15 (the 16th bit).

Generally, the POS attribute introduces filler bits or
bytes in the record. When used within a variant, the
attribute denotes the position relative to the beginning
of the entire record.

When applied to a type governing more than one
identifier, POS applies to the first. For example:

a,b : POS(32) CHAR;

Here, the field a is 32 bits from the record’s origin; b is
40 bits from the origin.

Pointer Types

A pointer value is either the address of a data item in
the job’s virtual memory or a distinct null value
denoted by the reserved word NIL. In Pascal, a pointer
type definition normally specifies the type of the items
to which the pointers will point (although 1 ANYTYPE
is also allowed). This is referred to as the pointer’s
associated data type.

When a pointer variable has a valid value, you can
make a reference to the located variable by suffixing
the pointer variable with the indirection operator (@, ",
or 1).For example:

TYPE stringptr = 7 STRING(80);
VAR p : stringptr;
BEGIN

3-51 Pointer Types

NEW(p);

p7T := "anystring’;
END;

Here, p is a pointer to a variable of type STRING, and
pT denotes that variable. The NEW procedure
allocates storage large enough to hold an 80-character
string and assigns its address to p. The assignment
statement then assigns ‘any string’ to the data item
referenced by p 1.

Pointer values other than NIL are obtained from the
routines NEW and ADDRESS and from some of the
kernel procedures such as CREATE_MESSAGE. A
pointer value so obtained remains valid only as long as
the storage it addresses remains allocated in the job.
Thus, a pointer obtained from NEW becomes invalid
when the storage is deallocated by a call to DISPOSE.
Pointers obtained from the ADDRESS function are
subject to further restrictions, as discussed in the
description of that function.

Pointer values can be compared with the equality and
inequality operators, with each other, or with NIL.
Pointer variables are assignment compatible only with
NIL and with other variables of the same type or type
1 ANYTYPE (which is explained later in this section).

Pointer Type Definitions

The definition of a pointer type supplies the data type of
the variables whose locations it can address. A pointer
type definition can be used in the following contexts:

® On theright-hand side of a TYPE declaration.
® Asthe type of a parameter.

Data Types 3-52

® As the type of a function result.
® Asthe target type of a typecast variable.

The syntax for a pointer type definition is shown in
Figure 3-19. '

v

type name

A 4

—®

b 4

bound flexibletype }———)

Figure 3-19. Pointer Type Definition

The type name in a pointer type definition must be the
name of a nonflexible data type. It specifies the type of
the items to which the pointers will point. The type
ANYTYPE can be used here to declare pointers of
unspecified type, as explained later in this section.

A pointer type definition can also specify that pointers
of the defined type will point to items of a bound flexible
type. Bound flexible types are discussed under
“Flexible Types,” earlier in this chapter.

The following example shows the use of a pointer type
to identify dynamically allocated records:

PROGRAM update(INPUT, OUTPUT, PFILE);

TYPE
persrec = RECORD
name: VARYING-STRING(80);
salary: REAL;
END;

3-53 Pointer Types

VAR
perspointer: “persrec;
pfile: FILE OF persrec;

BEGIN

NEW(perspointer);
{ Allocate new record; its location isnow in
perspointer. }

WRITE('Enter name, salary:);
READLN(perspointer”.name,
perspointer”.salary);

REWRITE(pfile);
WRITE(pfile,perspointer”);
DISPOSE(perspointer);
{ Dispose of the record; perspointer is now
invalid. }

END.

Internal Representation of Pointers

Pointer variables are longwords containing 32-bit
addresses. NIL is represented by zero, which is never a
valid memory address in a process.

ANYTYPE Data Type

The data type ANYTYPE represents data of completely
unspecified type (unlike BYTE_DATA, where the
data’s size is specified). ANYTYPE may only be used
for VAR parameters and for the associated data type of
a pointer type.

When a T ANYTYPE pointer is used to reference data,
the data item’s type must be specified by typecasting, as
explained in Chapter 5, “Variables.”

Data Types 3-54

For example,
p T::INTEGER
casts the pointer p to type INTEGER when it is used.

Note that 1 ANYTYPE is assignment compatible (as
either the source or target of the assignment) with any
other type of pointer.

File Types

In Pascal, a file type is the type of a Pascal file variable,
which is a data item used to designate the source
(target) of an input (output) operation. In many cases,
the I/O source or target will be a true file (that is, a file
in the file system), and it may be convenient to ignore
the distinction between the Pascal file variable and the
file system file. However, they are not at all the same
thing, and file variables may be used independently of
the file system.

A file variable has an associated data item called a file
buffer, which holds the data transmitted by use of the
GET or PUT procedures. The file buffer’s data type is
called the file’s component type. In I/O involving a true
file, this is the data type of the records in the file. The
component type VARYING_STRING(n) may be used to
handle files with variable record lengths.

The predeclared file type TEXT has special properties
useful in text I/O. Textfiles are explained in Chapter
15, “Input and Output.”

The remainder of this section discusses the definition of
file types, restrictions on file variables, and the internal
representation of file variables. The use of file variables
in I/O is fully described in Chapter 15.

3-55 File Types

File Type Definitions

A file type definition has the form shown in Figure 3-
20.

(o) —oee —>

Figure 3-20. File Type Definition

The type in a file type definition determines the file’s
component type, and hence the type of its associated
buffer. It must be constant-sized, with the size not
exceeding 32,768 bytes. The type must not be a file type
(that is, there cannot be “files of files”) or a record or
array type with components of a file type (there cannot
be “files of arrays of files,” and so forth).

PACKED has no effect in VAXELN Pascal, except in
regard to the equivalence of file types, as explained
later in this chapter.

The following examples illustrate file type definitions:

TYPE
pers—file = FILE OF RECORD
name: VARYING-STRING(80);
hire-date: LARGE-INTEGER;
salary: REAL;
END; { A data type used for files of employee
records.}

VAR
console—in: FILE OF CHAR;{ File of characters. }

Data Types 3-56

Restrictions on File Variables

A variable of a file type does not have a value in the
ordinary sense. It is a control block used by the system
to store information for supporting the various file I/0
operations. For this reason, file variables are not
allowed as targets of assignment statements or as value
parameters.

Any modification of the storage of a file variable, except
with the predeclared I/O operations, has unpredictable
effects. For this reason, file variables should usually
not be used within the variant parts of variant records.
(The compiler issues a warning message in this case.)

The contents of the buffer variable are closely related to
the operations on the file variable. For this reason, it is
an error to refer to the buffer variable and perform any
operation on the buffer variable in the same simple
statement. For example, if p is a procedure with VAR
parameters of file types, then p(file, file 1) is generally
invalid. Again, violations of this rule have unpredict-
able effects.

Internal Representation of File Data

A file variable is byte-aligned and occupies 16 bytes
plus the size of its buffer variable’s type (rounded up to
the nearest byte if it is bit-sized). A file variable’s
address is used by the run-time library to uniquely
identify a file. Note that file variables are shareable by
a job’s processes only if they are declared at the outer
level.

The structure of the internal representation of a file
variable is shown in Figure 3-21.

3-57 File Types

buffer pointer —

flags

descriptor pointer

control-block pointer

buffer variable

Figure 3-21. Internal Representation of a File Variable

The flags part of the file variable contains such
information as the file’s location in the PROGRAM
argument list (if applicable), whether the buffer is
currently “valid” in Pascal terms, and so forth.

The file descriptor contains information about the file
that is determined by the compiler, such as whether it
has type TEXT, whether it is declared in a module’s
outer block, and so forth. Usually, the file descriptor is
allocated in read-only storage.

The file control block is allocated dynamically by the
run-time routines. It contains internal information
needed by the routines to process file I/0, such as the
size and address of the record buffer, whether the file is
the standard INPUT or OUTPUT, whether access is
sequential or direct, and the PORT value identifying
the circuit used for data transmission.

The exact definitions of the file variable’s parts, the file
descriptor, and the file control block are in the source
file PASIODEF.PAS.

Data Types 3-58

System Data Types

The system data types PROCESS, AREA, EVENT,
SEMAPHORE, MESSAGE, PORT, NAME, and
DEVICE are used to synchronize the concurrent parts
of programs (processes), to control devices, and to
communicate between programs.

Each system data type represents the identifying value
of a VAXELN kernel object. A VAXELN Pascal
program declares variables of these types to hold the
identifying values of the corresponding objects.

Values of the system data types can be assigned to
variables of the same type, passed as arguments to
parameters of the same type, and returned by functions
with the same result type. Generally speaking, all
other operations on these types are performed by
predeclared kernel procedures.

The system data types are briefly described below,
including the internal representation of each type. The
kernel objects themselves (including their internal
representation) are described in detail in the VAXELN
User’s Guide.

PROCESS Data Type

A PROCESS object represents an independent thread of
execution; that is, a process. There can be any number
of processes executing the same process block.

PROCESS values are represented internally as 32-bit
longwords that are used by the kernel to identify an
individual thread of execution. They are valid only
within their own job.

3-59 System Data Types

AREA Data Type

An AREA object represents a region of memory that
can be shared among jobs on a single node in a
VAXELN network.

AREA values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular area and its associated properties.

EVENT Data Type

An EVENT object represents the state of an event used
for process synchronization.

EVENT values are represented internally as 32-bit
longwords that are used by the kernel to locate the
actual data and its associated properties.

SEMAPHORE Data Type

A SEMAPHORE object represents a synchronization
gate used to meter process execution and synchronize
access to shared data.

SEMAPHORE values are represented internally as 32-
bit longwords that are used by the kernel to locate the
actual object and its associated properties.

MESSAGE Data Type

A MESSAGE object describes data transmitted
between processes. Messages can be transmitted
between processes on the same network node or on
different network nodes.

MESSAGE values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular message and its associated properties.

Data Types 3-60

PORT Data Type

A PORT object represents a repository for messages
waiting to be received; that is, a message port. Only the
processes in the job that created a port can receive a
message from that port; any process in any job can send
a message toit.

PORT values are represented internally as 128-bit
quantities that are used by the kernel to uniquely
identify the message port.

NAME Data Type

A NAME object represents a user-defined name for a
message port.

NAME values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular name for a port.

DEVICE Data Type

A DEVICE object represents a device interrupt
connected to an interrupt service procedure.

DEVICE values are represented internally as 32-bit
longwords that are used by the kernel to locate the
actual object containing its associated properties.

Other Predeclared Data Types

The data types described in this section do not fall into
any of the preceding categories of predeclared data
types. These types are BYTE_DATA and
LARGE_INTEGER.

3-61 Other Predeclared Types

BYTE_DATA Data Type

The type BYTE_DATA(n) represents storage of a
specific size (n eight-bit bytes), whose contents are not
interpreted in any specific way. There are no operations
defined on this type except assignments and argument
passing.

To facilitate systems programming, some special
conventions apply to byte data:

® Routine parameters of type BYTE_DATA(n) are
considered to be compatible with any data type of
the same size.

® Conformant BYTE_DATA parameters, such as
BYTE_DATA(<n>), are compatible with data of

any size.

The size parameter of BYTE_DATA can be omitted in a
typecast variable, and the result is interpreted as
BYTE_DATA, with the size of the source variable. For
example, if variable veloc is of type REAL, the variable

veloc::BYTE-DATA

is interpreted as BYTE_DATA(4), because REAL data
requires four bytes of storage.

LARGE_INTEGER Data Type

The data type LARGE_INTEGER represents signed,
64-bit integers. Variables of this type are declared with
the word LARGE_INTEGER. The data type is provided
primarily for representing 64-bit time values.

Only a few operations are allowed on
LARGE_INTEGER values, and they are not ordinals.
(See Chapter 6, “Expressions and Operators,” for the
operations allowed.)

Data Types 3-62

The range of LARGE_INTEGER data is from —263 to
263 —1 (approximately +9.2233 X 1019). Any attempt

to compute a LARGE_INTEGER value outside this
range causes an integer overflow exception, with the
result undefined.

Internal Representation of LARGE-INTEGER Data

Internally, a LARGE_INTEGER data item is
represented in 2’s complement form in a VAX
quadword (64 bits). The most significant bit (63) is
always zero for positive numbers and always one for
negative numbers.

The internal representation is shown in Figure 3-22.

31 0

63 ¢ Increasingsignificance 32

Figure 3-22. LARGE-INTEGER Representation

Type Equivalence

VAXELN Pascal imposes the requirement of type
equivalence in several contexts, the most important
being passing an argument to a VAR parameter,
assignment of array and record values, and assignment
of pointer values where the associated (“pointed-to”)
types must be equivalent.

The general principle underlying type equivalence is
that two data types should be considered equivalent if
they have the same internal representation and they

3-63 Type Equivalence

have the same logical meaning in Pascal terms. The
interpretation of this principle for the various Pascal
data types reflects practical usage of the language, but
it may not exactly match the requirements of a
particular application. In cases where the type
equivalence rules are too strict, typecasting may be
used to override them.

Type equivalence is a weaker relation than type
identity. Two types are identical if they are the same
predeclared type or denote the same occurrence of one
of the syntactic categories whose name ends in “type
definition.” For example:

TYPEA =1..3;
B=1.3;
C=A;

Here, types A and C are the same, but B is a distinct
subrange type. This technical notion of identical type is
needed only for the definition of type equivalence.

Type equivalence is a stronger relation than
assignment compatibility, which is summarized in
Chapter 7, “Pascal Statements.” For example:

VAR A:REAL;

B: DOUBLE;
A:=B;
B:=A;

Here, the assignment statements are valid because
REAL and DOUBLE are compatible types, even though
they are not equivalent.

The type equivalence rules for arrays and flexible types
involve extent values. Failure of type equivalence
related to extent values is a range violation. If the
extent values are not constant, the error will only be
detected at run time, and only if range checking is

Data Types 3-64

enabled. In all other cases, type equivalence errors are
detected by the compiler.

The following subsections present the equivalence rules
for the various classes of data types.

Ordinal Types

The base ordinal types are INTEGER, CHAR,
BOOLEAN, and enumerated types. In the most general
terms, an ordinal type has a base ordinal type, may be a
subrange type (for example, “0..7”) and may have a
representation attribute, such as BYTE. Every ordinal
type has a minimum value and a maximum value.

Two ordinal types are equivalent if all the following are
true:

® They have the same base ordinal type.

® Either both are subranges or neither is.

® They have the same representation attribute, if
any.

® They have the same minimum and maximum
values.

If the two types have the same base type, lack of
equivalence is only a warning-level error in some cases
where the internal representation is the same. For
example:

® Neither data item is PACKED.

® One data item is PACKED, but is specified with
BIT, BYTE, WORD, or LONG, where that is the

normal representation of the base type.

® Both data items are PACKED and have the same
representation attribute, ifany.

A program giving this sort of warning message may be
correct in practical terms, but you should be sure that

3-65 Type Equivalence

the actual values of variables do not violate the
variables’ ranges. Range-checking code is not
generated in these cases.

Set Types

Two set types are equivalent if all the following are
true:

® They have the same element type.

® Either both are PACKED or neither is PACKED.

® Both have the same representation attribute, if
any.

® They have the same minimal element and the
same maximal element.

If two set types have the same base type, lack of
equivalence is only a warning-level error in some cases
where the internal representation is the same. For
example:

® Neither set is PACKED and both occupy the same
number of longwords.

® One set is PACKED but is specified with LONG,
and the other occupies one longword.

® Both sets are PACKED and are specified with the
same representation attribute, if any.
Flexible Types

Each definition of a flexible type introduces a distinct
type that is not identical with any other. For example:

TYPE
A (m: INTEGER) = ARRAY [1..m] OF INTEGER;
B (m: INTEGER) = ARRAY [1..m] OF INTEGER,;

Here, types A and B are different types.

Data Types 3-66

A bound flexible type is a flexible type with explicit
extent values. For example:

TYPE
T1 (m: INTEGER) = ARRAY [1..m] OF INTEGER;
T2 = T1(10); { T1(10) is a bound type. }

Here, the definition of type T2 is a bound flexible type.

If two bound types are matched for equivalence, and
neither is defined in terms of the other, the only thing
that matters is whether the types “within” them are
equivalent.

For example:

TYPE
T1(m: INTEGER) = ARRAY [1..m] OF INTEGER;
T2 (n: INTEGER) = ARRAY [0..n] OF INTEGER;
T3 = T1(10); { T1(10) is a bound type. }
T4 = T2(9); {T2(9) is a bound type. }

Here, T3 and T4 are equivalent because the two arrays,
although they are not identical, have the same number
of INTEGER elements.

If one of the types is defined in terms of the other, then
equivalence is determined by comparing extent values
in corresponding positions. For example:

TYPE
T1 (m,n: INTEGER) = ARRAY [1..m,1..n] OF
INTEGER;
T2 (o,p: INTEGER) = T1(o,p);
T3 = T1(5,10);
T4 = T2(5,10);

Here, T4 = T2(5,10) is “expanded” to the type T1(5,10)
by substituting the extent values for o and p. Here, T3
and T4 are equivalent. Nonequivalence of flexible types
due to differing extent values is a range violation.

3-67 Type Equivalence

Predeclared Flexible Types

For the data types STRING, VARYING-STRING, and
BYTE_DATA, two types are equivalent only if the type
is the same and the extent value is the same. For exam-
ple, STRING(10) is equivalent only with STRING(10). It is
arange violation if the extents are different.

Predeclared Non-Flexible Types

If a predeclared type is defined in this manual as a
particular array or pointer type, then it is covered by
the regular rules for the equivalence of array and
pointer types, which follow. Apart from this, two
predeclared non-flexible types are equivalent only if
they are identical.

Array Types
Array types are equivalent if the following
requirements are satisfied:
® They have the same number of dimensions.
® They have equivalent element types.

® They have the same alignment requirement. (This
only matters if the ALIGNED attribute is used.)

® Both are PACKED or neither is PACKED in
corresponding places.

® The number of elements is the same for each
dimension. It is a range violation if the numbers of
elements are different.

Note: The last requirement is satisfied if the bounds
are the same in each dimension, but that is not required
for equivalence. For example, ARRAY ['a’.."z’'] OF
INTEGER is equivalent to ARRAY[1..26] OF INTEGER,
since the number of elements is 26 in either case.

Data Types 3-68

Record Types

Two record types are equivalent only if they are
identical.

Each definition of a record type introduces a distinct
type that is not identical with any other. For example:

TYPE
A = RECORD
name : STRING(80);
salary : REAL;
END;

= RECORD
name : STRING(80);
salary : REAL;

END;

C = B;

Here, A and B are different types; C is the same as B
because it is only a synonym. Note again that A and B
are not identical even though they have the same field
definitions.

Pointer Types

If one or both types are { ANYTYPE, they are
equivalent; otherwise, the associated types must be
equivalent.

File Types

Two file types (other than TEXT) are equivalent if the
following requirements are satisfied:

® Both are PACKED or neither is PACKED.
® They have equivalent buffer-variable types.
The file type TEXT is not equivalent to any other type.

3-69 Type Equivalence

Data Representation

For some system programming applications you may
need to know the rules by which data is stored
internally, and the language features, such as data
attributes, that modify the representation.

Each data type has an internal representation that is
used for entire variables of that type. It specifies the
following:

® The size of the data item in bits or bytes.

® The boundary requirement of the type (bit
alignment, byte alignment, and so forth).

® The actual form of a data item in memory.

The normal internal representation for each type is
given in the section on that type earlier in this chapter.
The representation can be modified as follows:

® Within a PACKED record or array, the following
packable data types have a special representation
(unless overridden by one of the data size
attributes, as explained later in this section):
BOOLEAN, enumerated types, subranges of
INTEGER and CHAR, and small PACKED sets.
The special packed representation is explained in
the section for each type.

® Certain ordinal data items, small PACKED sets,
and PACKED records may have their size modified
by one of the data size attributes BIT, BYTE,
WORD, or LONG, as explained later in this
section.

® The ALIGNED attribute may be used to specify a
more stringent than normal alignment require-
ment for arrays, records, and fields within records.

Data Types 3-70

In the VAX argument list generated for a routine
call, the argument corresponding to a value
parameter of type CHAR, BOOLEAN, or
enumerated is a longword whose low-order byte or
word contains the value (with the normal
representation) and whose high-order bytes are
zero. This means that the entire longword can be
used as the integer value ORD(argument).

The compiler may keep intermediate expression
results in other forms, which are not visible to you.

The remainder of this section discusses the following
topics:

The definition of boundary requirement
The definition of size
Packed data

The data size attributes BIT, BYTE, WORD, and
LONG

The ALIGNED attribute

Boundary Requirement

The boundary requirement of a data type is the
minimum alignment for storage allocation of that type.
For example, if the boundary requirement for a data
type is byte alignment, data of that type must be
allocated on byte boundaries. The compiler may
allocate the data item on “higher” boundaries, such as
longword boundaries for integers.

If a data type’s boundary requirement is bit alignment,
it can be allocated at any location.

3-71 Data Representation

Size of Data

The size of a data type is the amount of storage required
to represent a data item of that type. The size is
normally an integral number of eight-bit bytes, and
those are the units returned by the SIZE function. Bit-
sized data is possible in the following cases:

® Within a PACKED record or array, data types
with special packed representations, as mentioned
previously, may be bit-sized.

® A PACKED record or array containing bit-sized
data may be bit-sized.

® Data items with the BIT attribute may be bit-
sized.

Note: The storage allocated for a bit-sized record or
array data item is rounded up to the next integral
number of bytes, unless the item is itself immediately
contained in a PACKED record or array. The extra, or
“fill,” bits resulting from this allocation are not
properly part of the data item and have unpredictable
values.

Packed Data

The reserved word PACKED can be used to control data
representation in the following ways:

® Applied to a record type denotation, PACKED
causes fields of packable data types to be stored in
their special packed representation. To the extent
that the fields have a boundary requirement of bit
alignment, they are packed so that there are no
unused bits.

o If PACKED is specified in a record type definition,
the BIT, BYTE, WORD, or LONG attribute can

Data Types 3-72

also be used on the record definition, and POS may
be used within the record.

® If the element type of an array definition is one of
the packable data types and the array is
designated PACKED, each element is stored in its
special packed representation. If the element’s
data type has a boundary requirement of bit
alignment, the array is packed so that there are no
unused bits between elements.

® If a set type definition is designated PACKED, and
if the type’s normal representation is one longword
(that is, the ordinal number of the maximum
element is less than 32), then the set type is a
packable data type.

Apart from these cases, PACKED has no effect on the
data representation. It is, however, significant in the
rules for type equivalence whether or not the
representation is changed. In addition, PACKED
ARRAY[1..n] OF CHAR can be used as a string, as
discussed earlier in this chapter.

Data Size Attributes

The BIT, BYTE, WORD, and LONG attributes can be
used to control the size of an ordinal data item, a small
set item, or a small PACKED record. In terms of
VAXELN Pascal syntax rules, these attributes are
allowed preceding a type on the right hand side of a
type declaration, in a VAR declaration, in a field of a
record (including the tag following CASE in the variant
part), or preceding the type definition of an array
element.

Generally, these attributes are intended to be used for
fields in data structures. Indiscriminate use of them
can result in substantial performance degradation.

3-73 Data Representation

The type to which the data size attribute is applied
must be one of the following:

® A PACKED record type definition whose natural
size is constant and < 32 bits.

® A set type definition (PACKED or not) defining a
small set type, where small means the ordinal
number of the maximum element is less than 32.

® An explicit subrange (“low-value..high-value”).

® A named ordinal type or named small set type. In
this case, if the named type already has a data size
attribute, the new attribute overrides it.

Additionally, the following properties and rules apply
to the data size attributes:

® A named type defined using one of these attributes
may be used anywhere, subject to the normal data
type rules. In particular, such a named type may
be used in typecasting. Typecasting of bit-aligned
and packed fields is allowed, providing the cast
type is appropriate. (See Chapter 5, “Variables,”
for a discussion of typecasting.)

® When a named type has one of these attributes,
any item defined directly as of the named type will
also have the attribute.

® If an item of type CHAR has one of these
attributes, it is not accepted as a string.

® If an enumerated type is originally defined with a
representation attribute, subranges of the type
will have the same attribute, unless overridden.

® If you typecast a reference to a data type with the
BIT attribute, or to an array or record type with an
alignment requirement of only bits, the reference

Data Types 3-74

doesn’t have to be addressable; that is, it may
appear to the compiler to have a bit offset.

® If the control variable of a FOR loop is INTEGER
or BOOLEAN, it must not have a representation
attribute other than LONG (INTEGER) or BYTE
(BOOLEAN). If the control variable is CHAR or
enumerated, it can have BYTE, WORD, or LONG,
but not BIT.

® Ifa field of a PACKED record or the element type
of a PACKED array has one of these attributes, its
representation is not affected by the PACKED
designation.

BIT Attribute

The BIT attribute specifies the number of bits of
storage occupied by a data item, and it implies a
boundary requirement of bit alignment. It conflicts
with the BYTE, WORD, LONG, and VALUE
attributes.

The syntax for the BIT attribute is shown in Figure 3-
23.

BIT (extent expression)

Figure 3-23. BIT Attribute Syntax

The extent expression in the syntax for the BIT
attribute must produce an integer constant in the range
1..32. The constant must be at least as large as the data
item’s natural size in packed representation.

3-75 Data Representation

If the bitfield’s size exceeds the data item’s required
size, the field value is extended as follows:

® Signed integer fields are sign extended.

Other ordinal fields are zero extended.

Sets are zero extended.

For PACKED records, the extra bits have
undefined values unless a defined value, such as
ZERO, is assigned to the entire record.

The BIT attribute makes it possible to precisely
describe any packed representation while keeping
subranges and set ranges in line with the values
actually expected.

BYTE Attribute

The BYTE attribute specifies that a data item occupies
exactly one byte of storage, and it implies a boundary

requirement of byte alignment. It conflicts with the
BIT, WORD, and LONG attributes.

Note that the data item’s size without BYTE must not
exceed eight bits.
WORD Attribute

The WORD attribute specifies that a data item occupies
exactly one word of storage, and it implies a boundary
requirement of byte alignment. It conflicts with the
BIT, BYTE, and LONG attributes.

Note that the data item’s size without WORD must not
exceed 16 bits.

Data Types 3-76

LONG Attribute

The LONG attribute specifies that a data item occupies
exactly one longword (32 bits) of storage, and it implies
a boundary requirement of byte alignment. It conflicts
with the BIT, BYTE, and WORD attributes.

Note that the d