
First Edition - March 1985

This manual is a reference guide to the VAXELN
Pascal programming language.

VAXELN Pascal
Language Reference Manual

Document Order Number: AA-EU39A-TE

Software Version: 2.0

digital equipment corporation
maynard, massachusetts

First Edition, March 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may be used or copied only in accordance with the terms
of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation
or its affiliated companies.

Copyright c 1985 by Digital Equipment Corporation
All rights reserved. Printed in U.S.A.

The postage-paid READER'S COMMENTS form on the last page of
this document requests your critical evaluation to assist us in
preparing future documentation.

The Digital logo and the following are trademarks of Digital
EquipmentCorporation:

DATATRIEVE DECwriter
DEC DIBOL
DECmate LSI-11
DECnet MASSBUS
DECset MICRO/PDP-11
DECsystem-10 MicroVAX
DECSYSTEM-20 MicroVMS
DECtape PDP
DECUS P/OS

ii

Professional
Rainbow
RSTS
RSX
ULTRIX
UNIBUS
VAX
VAXELN
VMS

VT
Work Processor

Preface

Chapter 1: Notation and Lexical Elements

Sou rce Text Conventions, 1-1
Identifiers, 1-2
Reserved Words, 1-3
Special Symbols, 1-3

Punctuation Symbols, 1-3
Operators, 1-7

Contents

Spaces, Comments, and Punctuation Rules, 1-7
%INCLUDE, 1-8
Lines and Line Numbers, 1-9

Syntax Conventions, 1-10
Call Format Conventions, 1-12

Chapter 2: Program Structure

Introduction, 2-1
Compilation Units, 2-6
Modules, 2-7

Module Headers, 2-11
Export Headers, 2-12
Import Headers, 2-13
Include Headers, 2-14
Exported Symbols and the Linker, 2-15

PROGRAM Block, 2-16
Program Arguments, 2-17
Program Files, 2-17
Program Names, 2-18
Job Activation and Termination, 2-18

Routine Bod ies, 2-20
Routine Body Activation, Stack Frames, and

Termination, 2-23
UNDERFLOW and NOUNDERFLOW Attributes, 2-25

iii

Scope of Declarations, 2-26
Block Structu re, 2-27
Notion of Scope, 2-28
Special Declarative Scopes, 2-29

Routine Parameters, 2-29
Extent Parameters, 2-29
Field Names, 2-29
Names Established by the WITH Statement, 2-30
Module Names, 2-30

Order of Declarations, Circularity, 2-30

Chapter 3: Data Types

Type Declarations, 3-1
Ordinal Types, 3-3

INTEGER Data Type, 3-4
Internal Representation of INTEGER Data, 3-4

CHAR Data Type, 3-5
The Character Set, 3-9
Internal Representation of CHAR Data, 3-10

BOOLEAN Data Type, 3-10
Internal Representation of BOOLEAN Values, 3-11

Enu merated Types, 3-11
Internal Representation of Enumerated Data, 3-12

Sub range Types, 3-13
Set Types, 3-14

Set Type Definitions, 3-15
Internal Representation of Sets, 3-16

Packed Sets, 3-17
Floating-Point Types, 3-17

REAL Data Type, 3-18
Internal Representation of REAL Data, 3-18

DOU B LE Data Type, 3-19
Internal Representation of DOUBLE Data, 3-19

Flexible Types, 3-21
Flexible Type Definitions, 3-22
Bound Flexible Types, 3-25
Examples, 3-26

iv

Extent Expressions, 3-28
String Types, 3-31

STRING Data Type, 3-32
Internal Representation of STRING Data, 3-32

VARYING-STRING Data Type, 3-32
Internal Representation of VARYI NG-STRI NG

Data, 3-33
PACKED ARRAY OF CHAR, 3-33
Strings and the Type CHAR, 3-34

Array Types, 3-34
Array Type Definitions, 3-34
Declaration of Arrays with Varying Extents, 3-37
Array Operations, 3-38
Internal Representation of Arrays, 3-39

Packed Arrays, 3-40
Record Types, 3-41

Record Type Definitions, 3-41
Operations on Records, 3-43
Records With Variants, 3-44
Allocating Records With Selected Variants, 3-47
Internal Representation of Records, 3-48

POS Attribute, 3-50
Pointer Types, 3-51

Pointer Type Definitions, 3-52
Internal Representation of Pointers, 3-54
ANYTYPE Data Type, 3-54

File Types, 3-55
File Type Definitions, 3-56
Restrictions on File Variables, 3-57
Internal Representation of File Data, 3-57

System Data Types, 3-59
PROCESS Data Type, 3-59
AREA Data Type, 3-60
EVENT Data Type, 3-60
SEMAPHORE Data Type, 3-60
MESSAGE Data Type, 3-60

v

PORT Data Type, 3-61
NAME Data Type, 3-61
DEVICE Data Type, 3-61

Other Predeclared Data Types, 3-61
BYTE-DATA Data Type, 3-62
LARGE-INTEGER Data Type, 3-62

Internal Representation of LARGE-INTEGER
Data, 3-63

Type Equivalence, 3-63
Ord inal Types, 3-65
Set Types, 3-66
Flexible Types, 3-66
Predeclared Flexible Types, 3-68
Predeclared Non-Flexible Types, 3-68
Array Types, 3-68
Record Types, 3-69
Pointer Types, 3-69
File Types, 3-69

Data Representation, 3-70
Boundary Requirement, 3-71
Size of Data, 3-72
Packed Data, 3-72
Data Size Attributes, 3-73

BIT Attribute, 3-75
BYTE Attribute, 3-76
WORD Attribute, 3-76
LONG Attribute, 3-77

The ALIGNED Attribute, 3-77

Chapter 4: Constants
Introduction, 4-1
Literal Constants, 4-2

Literal Integer Constants, 4-2
Decimal Literals, 4-3
Nondecimal Literals, 4-3

Literal CHAR Constants, 4-4
Literal Floating-Point Constants, 4-4

vi

Literal String Constants, 4-6
Nonprinting Characters in Constants, 4-7

Constant Declarations, 4-8
Limited Ordinal Constants, 4-9
Initial izers, 4-10

Constant Initializers, 4-10
Concatenated String Constants, 4-11
Set Initializers, 4-12
NIL, 4-12
ZERO, 4-12
Aggregate Initial izers, 4-13
Effects of Initializers, 4-15

Predeclared Named Constants, 4-16
Predeclared Enu merated Types, 4-16

Chapter 5: Variables

Introduction, 5-1
Variable Declarations, 5-2

READONLY Attribute for Variables, 5-4
VALUE Attribute, 5-4
EXTERNAL Attribute, 5-5

Variable References, 5-6
Indexed Variable References, 5-7
Field References, 5-8
Pseudo Variable References, 5-10
Ind irect Variable References, 5-10
Buffer Variable References, 5-12
Typecast Variable References, 5-13
Addressability of Variable References, 5-17

Storage Allocation, 5-18
Interprocess Data Sharing, 5-19

Notes, 5-20

Chapter 6: Expressions and Operators

Expression Syntax, 6-1
Expressions, 6-2
Simple Expressions, 6-2

vii

Terms, 6-3
Factors, 6-4
Operator Precedence and Associativity, 6-5

Precedence, 6-6
Associativity, 6-7

Side Effects in Expressions, 6-7
Arithmetic Operators, 6-10

Operands of Different Types, 6-12
Overflow and Underflow, 6-12
Addition, Subtraction, Multiplication, Sign Inversion,

Identity, 6-13
Exponentiation, 6-13
Division and DIV, 6-13
MOD, 6-14

Boolean Operators, 6-15
Relational Operators, 6-16

Equality (=) and Inequality « », 6-17
"Less Than," etc. «, >, < =, > =), 6-17
Set Membership (IN), 6-19

Set Operators, 6-19
Set Constructors, 6-21

Concatenation Operator for Strings, 6-23

Chapter 7: Pascal Statements
General Statement Syntax, 7-1

Labels, 7-5
Assignment Statement, 7-6

Assignment Compatibility, 7-7
Null Statement, 7-12
Compound Statement, 7-12
CASE Statement, 7-13
IF Statement, 7-19
FOR Statement, 7-20
REPEAT Statement, 7-23
WHILE Statement, 7-24
WITH Statement, 7-26
GOTD Statement, 7-29

viii

Restrictions, 7-29

Chapter 8: Procedures and Functions

Introduction, 8-1
Procedure and Function Declarations, 8-2

Procedure and Function Headings, 8-4
Parameter Lists, 8-6

Data Type for a Parameter, 8-9
Attributes of Parameters, 8-10
Default Values for Value Parameters, 8-10

Function Result, 8-10
SEPARATE Procedure and Function Declarations and

Separate Routine Bod ies, 8-12
EXTERNAL Procedure and Function Declarations, 8-14
FORWARD Procedure and Function Declarations, 8-14
Procedure and Function Types, 8-14
INLINE Procedures and Functions, 8-15

Restrictions on INLINE Procedures and Functions, 8-17
Procedure and Function Calls, 8-18

Argu ment Lists, 8-20
Calls to Predeclared Routines, 8-22

Parameters and Argument Passing, 8-22
VAR Parameters, 8-23

Type Compatibility for VAR Parameters and
Arguments, 8-24

Value Parameters, 8-24
READONL Y Value Parameters, 8-25
Type Compatibility for Value Parameters and

Arguments, 8-26
Argument Copying and Use of READONLY, 8-27

Procedural Parameters, 8-29
Compatibility for Procedural Parameters and

Argu ments, 8-33
Conformant Parameters, 8-34

Conformance Rules, 8-36
ISO Conformant Extents, 8-40

OPTIONAL VAR and Procedural Parameters, 8-44

ix

LIST Parameters, 8-46
Calling Conventions, 8-47

Proced u res, 8-47
VAR Parameter, 8-48
Procedural Parameter, 8-49
Value Parameter, 8-49

Function Results, 8-50
Conformant Parameters, 8-51
The REFERENCE Attribute, 8-52

Chapter 9: VAXELN Routines

Introduction, 9-1
Arithmetic Functions, 9-3

ABS Function, 9-4
ARCTAN Function, 9-4
COS Function, 9-5
EXP Function, 9-5
LN Function, 9-6
ODD Function, 9-6
SIN Function, 9-7
SQR Function, 9-7
SQRT Function, 9-8
XOR Function, 9-8
ZERO Function, 9-9

Ordinal Functions, 9-11
PRED Function, 9-12
SUCC Function, 9-12

String Functions, 9-13
FIND-MEMBER Function, 9-14
FI NO-NON M EM B ER Fu nction, 9-15
INDEX Function, 9-16
LENGTH Function, 9-17
SUBSTR Function, 9-17
TRANSLATE-STRING Function, 9-19

Type Conversion Routines, 9-21
BIN Function, 9-22
CHR Function, 9-23

x

CONVERT Function, 9-23
HEX Function, 9-27
OCT Function, 9-28
ORD Function, 9-29
PACK Procedure, 9-29
ROUND Function, 9-31
TRUNC Function, 9-32
UNPACK Procedure, 9-32

Argument Functions, 9-35
ARGUMENT Function, 9-37
ARGUMENT-LIST-LENGTH Function, 9-39
PRESENT Function, 9-39
PROGRAM-ARGUMENT Function, 9-40
PROGRAM-ARGUMENT -COUNT Function, 9-41
TOTAL-ARGUMENT-COUNT Function, 9-42

Storage Allocation and Address Routines, 9-43
ADDRESS Function, 9-44
DISPOSE Procedure, 9-45
NEW Procedure, 9-46
SIZE Function, 9-48

VAX Functions, 9-50
MOVE-PSL Function, 9-51
PROB E-READ Fu nction, 9-51
PROBE-WRITE Function, 9-52

Time Representation Routines, 9-53
GET-TIME Procedure, 9-54
SET-TIME Procedure, 9-55
TIME-FIELDS Function, 9-56
TIME-STRING Function, 9-58
TIME-VALUE Function, 9-59

Other Routines, 9-61
ADD-INTERLOCKED Function, 9-62
ENTER-KERNEL-CONTEXT Procedure, 9-63
FIND-FIRST -BIT -CLEAR Function, 9-64
FIND-FIRST -BIT -SET Function, 9-65
INVOKE Procedure, 9-66

xi

Chapter 10: Queues

Queue Declarations, 10-1
QUEUE-ENTRY Data Type, 10-1
QUEUE-POSITION Data Type, 10-5

Queue Procedures, 10-6
INSERT-ENTRY Procedure, 10-7
REMOVE-ENTRY Procedure, 10-10
START-QUEUE Procedure, 10-12

Queue Examples, 10-13
Inserting at Tail, Removing from Head, 10-13
"Walking" a Queue, 10-14
Removing All the Entries from a Queue, 10-16
Walking a Queue and Removing One Entry, 10-17

Using Queues in Interprocess Communication, 10-18
Interprocess Communication Example, 10-19

Chapter 11: Subprocesses and Synchronization

Introduction, 11-1
Process Blocks, 11-2

Subprocess Activation and Termination, 11-4
Calling Conventions for Process Blocks, 11-5

Kernel Services for Processes and Synchronization, 11-6
CLEAR-EVENT Procedure, 11-8
CREATE-EVENT Procedure, 11-9
CREATE-JOB Procedure, 11-10
CREATE-PROCESS Procedure, 11-12
CREATE-SEMAPHORE Procedure, 11-14
CU RRENT -PROCESS Procedu re, 11-15
DELETE Procedure, 11-16
DISABLE-SWITCH Procedure, 11-18
ENABLE-SWITCH Procedure, 11-19
EXIT Procedure, 11-21
INITIALIZATION-DONE Procedure, 11-22
RESUME Procedure, 11-22
SET-JOB-PRIORITY Procedure, 11-23
SET -PROCESS-PRIORITY Procedure, 11-24

xii

SIGNAL Procedure, 11-25
SUSPEND Procedure,. 11-27
WAIT-ALL and WAIT-ANY Procedures, 11-28

Process U ICs, 11-34
Authorization Procedures, 11-35

GET-USER Procedu re, 11-36
SET-USER Procedure, 11-37

Authorization Service Utility Procedures, 11-39
AUTH-ADD-USER Procedure, 11-41
AUTH-MODIFY-USER Procedure, 11-42
AUTH-REMOVE-USER Procedure, 11-45
AUTH-SHOW-USER Procedure, 11-46

Program Loader Utility Procedures, 11-48
LOAD-PROGRAM Procedure, 11-49
UNLOAD-PROGRAM Procedure, 11-51

Exit Utility Procedures, 11-52
CANCEL-EXIT -HANDLER Proced u re, 11-53
DECLARE-EXIT -HANDLER Procedure, 11-54

M UTEX Data Type, 11-55
Mutex Operations, 11-55
Internal Representation of Mutexs, 11-57

Mutex Procedures, 11-58
CREATE-MUTEX Procedure, 11-59
DELETE-MUTEX Procedure, 11-59
INITIALIZE-AREA-MUTEX Procedure, 11-60
LOCK-MUTEX Procedure, 11-61
UNLOCK-MUTEX Procedure, 11-61

Chapter 12: Interjob Communication

Messages and Ports, 12-1
Sending Messages, 12-2
Receiving Messages, 12-3
Datagrams and Circuits, 12-3

Programming with Circuits, 12-4
Kernel Services for Message Transmission, 12-6

ACCEPT-CIRCUIT Procedure, 12-7
CONNECT-CIRCUIT Procedure, 12-9

xiii

CREATE-MESSAGE Procedure, 12-11
CREATE-NAME Procedure, 12-12
CREATE-PORT Procedure, 12-14
DISCONNECT-CIRCUIT Procedure, 12-15
JOB-PORT Procedure, 12-16
RECEIVE Procedure, 12-17
SEND Procedure, 12-19
TRANSLATE-NAME Procedure, 12-22

Interjob Data Sharing, 12-24
Kernel Services for Interjob Data Sharing, 12-26

CREATE-AREA Procedure, 12-27
Memory Allocation Procedures, 12-29

ALLOCATE-MEMORY Procedure, 12-30
FREE-MEMORY Procedure, 12-32
MEMORY-SIZE Procedure, 12-33

Stack Utility Procedures, 12-35
ALLOCATE-STACK Procedu re, 12-36
DEALLOCATE-STACK Procedure, 12-36

Chapter 13: Errors and Exception Handling

Errors, 13-1
Compiler Error Detection, 13-2
Warning-Level Errors, 13-3

EXCEPTION-HANDLER Function Type, 13-3
Exception Arguments and Types, 13-5

Signal Arguments, 13-5
Mechanism Arguments, 13-6
Additional Arguments, 13-6
Examples, 13-7
Related Documentation, 13-8

Exception Names and Status Values, 13-8
Exception Handling Procedures, 13-9

ASSERT Procedure, 13-11
DISABLE-ASYNCH-EXCEPTION Procedu re, 13-12
ENABLE-ASYNCH-EXCEPTION Procedure, 13-12
ESTABLISH Procedure, 13-13
GET -STATUS-TEXT Procedu re, 13-13

xiv

RAISE-EXCEPTION Procedure, 13-15
RAISE-PROCESS-EXCEPTION Procedure, 13-16
REVERT Procedure, 13-17
UNWIND Procedure, 13-18

Chapter 14: Device Drivers and Interrupts

Device Driver Programs, 14-1
Examples, 14-2

Single-Unit Example, 14-2
Multiple-Unit Example, 14-4

Kernel Services for Devices, 14-8
CREATE-DEVICE Procedure, 14-9
SIGNAL-DEVICE Procedure, 14-12

Interrupt Service Routine Declarations, 14-14
Interrupt Handling, 14-16
Power-Recovery Handling, 14-17

IPL Procedures, 14-20
DISABLE-INTERRUPT Procedure, 14-21
ENABLE-INTERRUPT Procedure, 14-22

DMA Device Handling Procedures, 14-23
ALLOCATE-MAP Procedure, 14-25
ALLOCATE-PATH Proced u re, 14-27
FREE-MAP Procedure, 14-29
FREE-PATH Procedure, 14-30
LOAD-UNIBUS-MAP Procedure, 14-31
PHYSICAL-ADDRESS Function, 14-33
UNIBUS-MAP Procedure, 14-33
UNIBUS-UNMAP Procedure, 14-35

Device Register Procedures, 14-36
MFPR Function, 14-37
MTPR Procedure, 14-37
READ-REGISTER Function, 14-38
WRITE-REGISTER Procedure, 14-40

Real-Time Device Drivers, 14-44
AXV Device Driver Utility Procedures, 14-45

AXV-INITIALIZE Procedure, 14-47
AXV-READ Procedure, 14-49

xv

AXV-WRITE Procedure, 14-51
KWV Device Driver Utility Procedures, 14-53

KWV-INITIALIZE Procedure, 14-55
KWV-READ Procedure, 14-58
KWV-WRITE Procedure, 14-60

DLV Device Driver Utility Procedures, 14-62
DLV-INITIALIZE Procedure, 14-65
DLV-READ-BLOCK Procedure, 14-67
DLV-READ-STRING Procedure, 14-68
DLV-WRITE-STRING Procedure, 14-69

DRV Device Driver Utility Procedures, 14-70
DRV-INITIALIZE Procedure, 14-73
DRV-READ Procedure, 14-75
DRV-WRITE Procedure, 14-76

Chapter 15: Input and Output
Files, 15-1

Open Files and Closed Files, 15-1
Explicit Opening of Files, 15-2
Implicit Opening of Files, 15-2
Closing Files, 15-3

Mode, 15-4
Buffer Variable, 15-4

Textfiles, 15-4
FILE OF type, 15-5

Cu rrent Position, 15-5
Inspection Mode and GET, 15-7
Generation Mode and PUT, 15-7
READ and WRITE, 15-7

Files as Data Structures, 15-8
TEXT Files, 15-8

Lines, 15-8
Textfiles in Inspection Mode, 15-10
Textfiles in Generation Mode, 15-10

Operations on Files, 15-11
Operations Affecting the Mode, 15-12
Inspection Mode Operations, 15-12

xvi

Generation Mode Operations, 15-13
Pascal 1/0 Routines, 15-13
General 1/0 Procedures, 15-15

OPEN Procedure, 15-16
CLOSE Procedure, 15-30

Input Procedures, 15-31
GET Procedure, 15-32
READ Procedure, 15-32
RESET Procedure, 15-38

Output Procedures, 15-40
PUT Procedure, 15-41
REWRITE Procedure, 15-42
WRITE Procedure, 15-43

Direct Access Procedures, 15-50
FIND Procedure, 15-51
LOCATE Procedure, 15-52

Miscellaneous Routines, 15-53
EOF Function, 15-54
FLUSH Procedure, 15-54

Textfile Manipulation Routines, 15-55
EOLN Function, 15-56
GET -CONTROL-KEY Procedure, 15-56
PAGE Procedure, 15-58
READLN Procedure, 15-58
WRITELN Procedure, 15·-60

File Utility Procedures, 15-63
COPY-FILE Procedure, 15-66
CREATE-DIRECTORY Procedure, 15-67
DELETE-FILE Ptocedure, 15-69
DIRECTORY-CLOSE Procedure, 15-70
DIRECTORY-LIST Procedure, 15-70
DIRECTORY-OPEN Procedure, 15-72
PROTECT-FILE Procedure, 15-74
RENAME-FILE Procedure, 15-75

Disk Utility Procedures, 15-77
DISMOUNT-VOLUME Procedure, 15-78

xvii

INIT-VOLUME Procedure, 15-78
MOUNT-VOLUME Procedure, 15-85

Tape Utility Procedures, 15-87
DISMOUNT-TAPE-VOLUME Procedure, 15-88
INIT-TAPE-VOLUME Procedure, 15-89
MOUNT -TAPE-VOLUME Procedure, 15-90

Chapter 16: Program Development

Introduction, 16-1
EPASCAL Command, 16-2

Format, 16-2
Arguments, 16-2

File Specifications, 16-2
Qualifiers, 16-3

Module Management, 16-10
Inclusion of Modules in a Compilation, 16-11
Module Dependencies and Consistency Checking, 16-13

Appendix A: Attributes

Appendix B: Collected Syntax

Appendix C: Call Formats

Index

List of Figures

Figure 1-1. %INCLUDE Syntax, 1-9
Figure 2-1. The Modules Making Up a Complete Program,

2-4
Figure 2-2. Compilation Unit Syntax, 2-6
Figure 2-3. Module Syntax, 2-9
Figure 2-4. Module Header Syntax, 2-11
Figure 2-5. Export Header Syntax, 2-12
Figure 2-6. Import Header Syntax, 2-13
Figure 2-7. Include Header Syntax, 2-14
Figure 2-8. PROGRAM Block Declaration Syntax, 2-16
Figure 2-9. Routine Body Syntax, 2-21

XVlll

Figure 2-10. Nested Block Structure, 2-27
Figure 3-1. Type Declaration Syntax, 3-2
Figure 3-2. Type Syntax, 3-2
Figure 3-3. Named Type Syntax, 3-3
Figure 3-4. Enumerated Type Definition, 3-11
Figure 3-5. Subrange Type Definition, 3-14
Figure 3-6. Set Type Definition, 3-15
Figu re 3-7. Internal Representation of REAL, 3-18
Figure 3-8. G-Floating Representation, 3-20
Figure 3-9. D-Floating Representation, 3-21
Figure 3-10. Flexible Type Definition, 3-23
Figure 3-11. Bound Flexible Type Syntax, 3-25
Figure 3-12. STRING(n) Representation, 3-32
Figure 3-13. VARYING-STRING(n) Representation, 3-33
Figure 3-14. Array Type Definition, 3-35
Figure 3-15. Row-Major Order, 3-40
Figure 3-16. Record Type Definition, 3-42
Figure 3-17. Variant Part Syntax, 3-45
Figure 3-18. POS Attribute Syntax, 3-50
Figure 3-19. Pointer Type Definition, 3-53
Figure 3-20. File Type Definition, 3-56
Figure 3-21. Internal Representation of a File Variable,

3-58
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.

LARGE-INTEGER Representation, 3-63
B IT Attribute Syntax, 3-75
ALIGNED Attribute Syntax, 3-77
Literal Floating-Point Constant Syntax, 4-5
Constant Declaration Syntax, 4-8
Constant Syntax, 4-8
Limited Ordinal Constant Syntax, 4-9
Initializer Syntax, 4-11
Aggregate Initializer Syntax, 4-13
Variable Declaration Syntax, 5-3
Variable Reference Syntax, 5-6
Indexed Variable Reference, 5-7
Field Reference, 5-8

XIX

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure7-11.
Figure 7-12.
Figure 7-13.
Figu re 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figu re 8-10.
Figure 8-11.
Figure 8-12.
Figu re 8-13.
Figure 10-1.

Pseudo Variable Reference, 5-10
Indirect Variable Reference, 5-11
Buffer Variable Reference, 5-12
Typecast Variable Reference, 5-13
Expression Syntax, 6-2
Simple Expression Syntax, 6-3
Term Syntax, 6-4
Factor Syntax, 6-5
Set Constructor Syntax, 6-22
Statement Syntax, 7-3
Label Syntax, 7-5
Label Declaration Syntax, 7-6
Assignment Statement Syntax, 7-6
Null Statement Syntax, 7-12
Compound Statement Syntax, 7-12
CASE Statement Syntax, 7-15
IF Statement Syntax, 7-19
FOR Statement Syntax, 7-20
REPEAT Statement Syntax, 7-23
WHILE Statement Syntax, 7-24
WITH Statement Syntax, 7-26
GOTO Statement Syntax, 7-29
Procedu re Declaration Syntax, 8-2
Function Declaration Syntax, 8-2
Di rective Syntax, 8-3
Procedure Heading Syntax, 8-4
Function Heading Syntax, 8-5
Parameter List Syntax, 8-7
Separate Routine Body Syntax, 8-12
Procedu re Call Syntax, 8-18
Function Call Syntax, 8-19
Argu ment List Syntax, 8-20
Argument Syntax, 8-21
ISO Conformant Type Syntax, 8-41
An Argu ment List, 8-48
An Empty Queue Header, 10-3

xx

Figure 10-2. A Single-Element Queue, 10-3
Figure 10-3. A Two-Element Queue, 10-4
Figure 11-1. Process Block Declaration Syntax, 11-3
Figure 14-1. Interrupt Service Routine Declaration Syntax,

14-14
Figure 14-2. Hypothetical Device Register, 14-42
Figure 15-1. Structure of a File, 15-6
Figure 15-2. Structure of a Textfile, 15-9

list of Tables
Table 1-1. Reserved Words, 1-3
Table 1-2. Punctuation Symbols, 1-5
Table 1-3. Special Symbol Operators, 1-7
Table 3-1. Character Set, 3-7
Table 6-1. Arithmetic Operators, 6-11
Table 6-2. Boolean Operators, 6-15
Table 6-3. Relational Operators, 6-16
Table 6-4. Set Operators, 6-20
Table 7-1. Assignment Compatibility, 7-9
Table 9-1. Arithmetic Functions, 9-3
Table 9-2. Ordinal Functions, 9-11
Table 9-3. String Functions, 9-13
Table 9-4. Type Conversion Functions, 9-21
Table 9-5. Argu ment Functions, 9-35
Table 9-6. Storage Allocation and Address Routines, 9-43
Table 9-7. VAX Functions, 9-50
Table 9-8. Time Representation Routines, 9-53
Table 9-9. Other Routines, 9-61
Table 10-1. Queue Procedures, 10-6
Table 11-1. Kernel Services for Processes and

Synchronization, 11-6
Table 11-2. Authorization Procedures, 11-35
Table 11-3. Authorization Service Utility Procedures,

11-39
Table 11-4. Program Loader Utility Procedures, 11-48
Table 11-5. Exit Utility Procedures, 11-52
Table 11-6. Mutex Procedures, 11-58

xxi

Table 12-1. Kernel Services for Message Transmission,
12-6

Table 12-2. Kernel Services for Interjob Data Sharing,
12-26

Table 12-3.
Table 12-4.
Table 13-1.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table (-1.

Memory Allocation Procedu res, 12-29
Stack Utility Proced ures, 12-35
Exception Handling Procedures, 13-9
Kernel Services for Devices, 14-8
IPL Procedures, 14-20
DMA Device Handling Procedures, 14-23
Device Register Procedures, 14-36
AXV Device Driver Utility Procedures, 14-45
KWV Device Driver Utility Procedures, 14-53
DLV Device Driver Utility Procedures, 14-62
DRV Device Driver Utility Procedures, 14-69
General 110 Procedures, 15-15
Input Procedures, 15-31
Output Procedures, 15-40
Direct Access Procedures, 15-50
Miscellaneous Routines, 15-53
Textfile Manipulation Routines, 15-55
File Util ity Procedu res, 15-63
Disk Utility Procedures, 15-77
Tape Utility Procedures, 15-87
VAXELN Pascal Procedures and Functions, (-3

xxii

Preface
V AXELN Pascal is a compatible superset of the
language defined in the International Standards
Organization document ISO DIS 7185. Any program
written in ISO-standard Pascal can be compiled by the
VAXELN Pascal compiler and executed as part of the
system.

However, VAXELN Pascal has been extended to
include data types and operations that support
concurrent programming. It is supported by a highly
optimizing compiler that generates position­
independent, native-mode code. In addition, it is the
primary implementation language of the V AXELN
toolkit itself.

The V AXELN Pascal Language Reference Manual is a
reference guide describing the elements of the extended
V AXELN Pascal programming language and a guide to
program development using V AXELN Pascal.

Manual Objectives

This manual is a summary of the V AXELN Pascal
language, for daily reference and for review by people
already familiar with Pascal. It is not intended to be a
tutorial document; however, it presents the features of
V AXELN Pascal in detail, and explains how to develop,
compile, and link V AXELN Pascal programs for
inclusion in a V AXELN system.

xxiii

Intended Audience

This manual is designed for programmers and students
who have a working knowledge of Pascal. Knowledge
of the fundamental principles of the VAX/VMS
operating system is required, as well as knowledge of
VAXELN.

Structure of this Document

This manual consists of 16 chapters and 3 appendices,
organized as follows:

• Chapter 1, ((Notation and Lexical Elements,"
explains the source text con ven tions, syntax
conventions, and call format conventions used in
V AXELN Pascal.

• Chapter 2, ((Program Structure," describes the
structure of V AXELN Pascal programs in relation
to compilation units, modules, PROGRAM blocks,
routine bodies, and the scope of declarations.

• Chapter 3, ((Data Types," discusses the declaration
of data type names, the definition of each of the
V AXELN Pascal data types, type equivalence, and
the rules for data representation.

• Chapter 4, ((Constants," discusses the rules for
literal constants, the declaration of named
constants, and initializers.

• Chapter 5, ((Variables," discusses the declaration
of variables, the rules for variable references,
storage allocation, and data sharing between
processes in ajob.

xxiv

• Chapter 6, ~~Expressions and Operators," discusses
the syntax of V AXELN Pascal expressions, the
operators used in expressions, and the rules for
opera tor precedence and associa ti vi ty .

• Chapter 7, ~(Pascal Statements," summarizes the
statements available in V AXELN Pascal.

• Chapter 8, t~Procedures and Functions," summa­
rizes the rules for declaring and calling procedures
and functions in V AXELN Pascal, including
parameter/argument relationships and calling
conventions.

• Chapter 9, ~tV AXELN Routines," describes the
arithmetic, ordinal, string, argument, and VAX
functions available in V AXELN Pascal, as well as
the type conversion, storage allocation, time
representation, and other VAXELN routines that
are available and are not described under specific
topics in later chapters.

• Chapter 10, t(Queues," discusses queue declara­
tions, queue procedures, and using queues in
interprocess communication.

• Chapter 11, ttSubprocesses and Synchronization,"
discusses process blocks and the kernel services
relating to processes and synchronization, process
UICs and the authorization procedures, the
Authorization Service utility, program loader
utility, and exit utility procedures, the MUTE X
data type, and the VAXELN procedures that
perform operations on mutexes.

• Chapter 12, ttlnterjob Communication," discusses
messages and ports and the kernel services
relating to message transmission, interjob data
sharing and the related kernel services, and the
memory allocation and stack utility procedures.

xxv

• Chapter 13, ~(Errors and Exception Handling,"
discusses errors, the EXCEPTION_HANDLER
function type, exception names and status values,
and the exception handling procedures.

• Chapter 14, ((Device Drivers and Interrupts,"
discusses device driver programs and the kernel
services relating to devices, interrupt service
routines, the procedures used to manipulate
interrupt priority levels, the procedures relating to
direct memory access UNIBUS and QBUS devices,
the device register procedures, and the real-time
device driver utility procedures.

• Chapter 15, ~~Input and Output," discusses files
and their use in file I/O, record-oriented device I/O,
and circuits, Pascal I/O routines, and the VAXELN
file utility, disk utility, and tape utility
procedures.

• Chapter 16, ((Program Development," discusses the
format and arguments of the EPASCAL command,
as well as module management.

• Appendix A, ~(Attributes," lists the attributes
allowed in VAXELN Pascal and the context in
which they may be used.

• Appendix B, ((Collected Syntax," is an alphabetical
collection of syntax diagrams representing the
syntactic categories of the V AXELN Pascal
language.

• Appendix C, ~(Call Formats," lists the call formats
of the procedures and functions available in
V AXELN Pascal.

XXVI

Associated Documents

The following documents are relevant to V AXELN
Pascal programming:

• VAXELN Release Notes (AA-Z454C-TE)

• VAXELN Installation Manual (AA-EU37A-TE)

• VAXELN User's Guide (AA-EU38A-TE)

• V AXELN Application Design Guide
(AA-EU41A-TE)

• VAX/VMS DCLDictionary(AA-Z200A-TE)

• VAX/VMS Run-Time Library Routines Reference
Manual (AA-Z502A-TE)

• V AX Architecture Handbook (EB -19580-20)

• VAX Hardware Handbook 1982-1983
(EB-21812-20J

• LSI-II Analog System User's Guide
(EK-AXVII-UG)

xxvii

xxviii

Chapter 1

Notation and Lexical Elements

This manual contains VAXELN Pascal call formats,
syntax diagrams, and examples, ranging from simple to
complex constructions. Complex examples have been
divided into several lines to make them easy to read.
Pascal does not require that you format your programs
in any particular way; therefore, you should not regard
the formats used as mandatory.

This chapter explains the source text conventions,
syntax conventions, and call format conventions used
in V AXELN Pascal.

Source Text Conventions

The source text of a VAXELN module is an ASCII file,
which may include other ASCII files by means of the
%INCLUDE construction described later in this
section. The compiler performs a two-level structure
analysis on the source text. The first level, lexical
analysis, divides the text into a sequence of lexical
tokens: identifiers, reserved words, literal constants,
and special symbols. Intervening spaces, comments,
and line breaks are ignored after lexical analysis.

The second level of analysis, parsing, determines how
the sequence of tokens is structured into language
components, such as statements and expressions.
Parsing is governed by the syntax diagrams shown
throughout this manual and collected in Appendix B.
The lexical tokens are the terminal elements of these
syntax diagrams; that is, they cannot be broken down
any further into other syntax elements. The complete

1-1

syntax notation is given in the section ((Syntax
Conventions," later in this chapter.

The form of the various literal constants is explained in
Chapter 4, ((Constants." The following subsections
describe the other types of lexical tokens and the
related rules.

Identifiers

Identifiers are used as the names of variables,
constants, types, programs, and so forth. They must
conform to the following rules:

• The first character must not be a digit.

• The maximum length of identifiers IS 31
characters.

• The set of valid characters consists of the
uppercase letters, lowercase letters, digits,
underline (-), and dollar sign ($).

• Identically spelled identifiers mean the same thing
regardless of the cases of letters; for example, ABC,
abc, and aBc all denote the same thing.

• Identifiers must not have the same spellings as the
reserved words in Table 1-1, below.

Note that the dollar sign and underline characters may
not be allowed in other versions of Pascal. In particular,
we recommend that you limit the use of the dollar sign
to names of system-specific global values and avoid its
use for ordinary program variables.

In syntax diagrams, the word identifier means a name
conforming to the above rules and is used at the
defining point of some entity, such as a data type name.
The term name indicates a legal identifier that has
been declared (or is predeclared) for a particular use.

Notation and Lexical Elements 1-2

Reserved Words

The words listed in Table 1-1 are reserved and must not
be used as identifiers. Note that identically spelled
reserved words mean the same thing regardless of the
cases of letters; for example, PROGRAM, Program, and
program all mean the same thing.

Table 1-1. Reserved Words

and for not set

array function of then

begin function-body or to

case goto otherwise type

const if packed until

div In procedure var

do interrupLservice proced ure-body while

downto label process-block with

else mod program

end module record

file nil repeat

Special Symbols

Special symbols represent punctuation marks used as
delimiters, as well as arithmetic, relational, and set
operators.

Punctuation Symbols

Table 1-2 shows the punctuation symbols used in
V AXELN Pascal programs; for some, alternatives are

1-3 Source Text Conventions

allowed, which are shown in the table. Note that
symbols consisting of two characters must not have
embedded spaces, comments, or line breaks.

Note: In this manual, the symbol t is normally used
for clarity in pointer type declarations, identified
variables, and buffer variables; the character A is more
commonly available on terminal keyboards. Note also
that quotation marks (" ,") are not valid delimiters of
character and string constants; apostrophes (',') must
be used.

Notation and Lexical Elements 1-4

Operators

Table 1-3 summarizes the special symbols used as
arithmetic, relational, or set operators. Both dyadic and
monadic arithmetic operations are defined where
appropriate. Monadic operators require a single
operand; dyadic operators require two. Note that
operators consisting of two characters must not have
embedded spaces, comments, or line breaks.

Table 1-3. Special Symbol Operators

Operator Operation(s)

+

*
/

**

<>

<
>
<=
>=

Addition (dyadic); identity (monadic);
string concatenation; set union

Subtraction (dyadic); sign inversion
(monadic); set difference

Multiplication (dyadic); set intersection

Division (dyadic)

Exponentia tion

Equality

Inequality

~~Less than"

~~Greater than"

~~Less than or equal to," set inclusion

~~Greater than or equal to," set inclusion

Spaces, Comments, and Punctuation Rules

Most of the punctuation rules of V AXELN Pascal are
shown by the syntax diagrams, but there are a few
rules that apply at the lexical level. Spaces, tabs,

1-7 Source Text Conventions

comments, and line breaks may occur before the first
lexical token, between two tokens, and after the last
token in the source text. None of these may occur
within a single token.

A comment is any series of characters enclosed in
braces. The comment ends at, and cannot contain, the
right brace (}). Comments cannot be nested. Note that
the character pairs (* and *) may be used instead of {
and} , respectively.

If two adjacent tokens are identifiers, reserved words,
literal integer constants, or literal floating-point
constants, in any combination, they must be separated
by one or more spaces, tabs, comments, or line breaks.
Also, two adjacent literal CHAR constants and/or
literal string constants must be similarly separated.

The following examples illustrate V AXELN Pascal
punctuation rules:

PROGRAM F; {Valid. }
PROGRAMF; { Invalid. }
PROGRAM{ Valid. }F;
PROGRAM

F; {Valid. }

%INCLUDE

The %INCLUDE construction includes a file of Pascal
source text in a compilation. It can be used for such
purposes as sharing source text with a different Pascal
compiler or including source text generated by a
((definition language" or other source text generator.
The syntax is shown in Figure 1-1 and is valid
anywhere that comments, spaces, tabs, or line breaks
can occur.

Notation and Lexical Elements 1-8

0/0 INCLUDE file specification 1-+-----...

Figure 1-1. %INCLUDE Syntax

The file specification designates a file of Pascal source
text; the text is included in the compilation at the
location of the %INCLUDE construction. The !LIST and
INOLIST options specify whether the included file
should be printed in the listing of the program. Note,
however, that this specification is overridden by the
specification of ILIST, /SHOW == INCL UDE, or
ISHOW==NOINCLUDE on the EPASCAL command
line (see Chapter 16, ttprogram Development").

Lines and Line Numbers

Source files are divided into lines. A line break (the
division between two lines) is a valid separation for
lexical tokens and may not occur within a token; that
is, a token must be all on one line. The compiler assigns
line numbers to the source lines. These appear on the
listing and within error messages and may be used to
position the debugger to a particular source line.

The line numbers assigned by the compiler include
numbers for lines obtained from auxiliary source files
using %INCLUDE. Hence, they may not correspond to
the normal line numbering in the source file (or include
file). Compiler error messages also give a source file
name and source file line number. (For more
information on line numbering in VMS, see the
appropriate VMS documentation, including that for the
particular editor you are using.)

1-9 Source Text Conventions

Syntax Conventions

Appendix B contains an alphabetical collection of
syntax diagrams representing the syntactic categories
of the VAXELN Pascal language. These categories are
explained individually throughout this manual, in the
appropriate sections.

In general, Pascal syntax diagrams are read from left to
right and top to bottom. Arrows point the way in case of
ambiguity. The following additional conventions are
used:

• Rounded symbols (ovals or circles) denote syntax
elements that are entered in your program exactly
as shown. These elements consist of Pascal
reserved words, specific nonreserved identifiers,
special symbol operators, or punctuation marks.
For example:

(LABEL) G-0-

(EXTERNAL) o
• Rectangular symbols denote syntax elements that

are, in most cases, syntactic categories described
by other syntax diagrams. For example:

I type declaration I

Notation and Lexical Elements 1-10

• Rectangular symbols also denote terminal syntax
elements defined by lexical rules. The following
syntactic categories represent lexical elements:

I identifier

I literal integer constant I
I literal CHAR constant I
I literal floating-point constant

I literal string constant

The rules for identifiers are given earlier in this
chapter. The rules for literal constants are given in
Chapter 4, ((Constants."

• Syntax elements ending with the words ((name" or
((type name" denote identifiers that have been
declared (or are predeclared) as the appropriate
type of name. For example:

procedure name

ordinal type name

1-11 Syntax Conventions

Call Format Conventions

Appendix C contains an alphabetical summary of the
call formats of the procedures and functions available
in V AXELN Pascal. Predeclared functions and
procedures must be called as documented. In particular,
the documented call formats for kernel procedures use
the following conventions, unless the name is prefixed
withKER$:

e All arguments shown as undecorated identifiers
are positional; they must come first in the call, in
the order shown. If they are output arguments,
they must be variables.

e. The argument form NAME := argument means
that NAME is the name of a formal parameter, and
the argument is optional. These are always the last
arguments in the V AXELN Pascal call and can
occur in any order.

e An argument name suffixed with ((-list" means
that a variable number of arguments correspond to
a single procedure parameter; in some cases, no
argument is necessary.

In other predeclared routines, optional parameters are
named in italics; however, the nonpositional form
cannot be used in these cases.

Notation and Lexical Elements 1-12

Introduction

Chapter 2
Program Structure

This section briefly discusses the overall structure of a
VAXELN Pascal program, first in its relation to
program execution, then in its relation to the VAXELN
Pascal compiler and the V AXNMS linker.

In V AXELN, a program is executed as ajob. The initial
set of jobs in a system (hence the set of programs
initially executed) is defined by using the System
Builder. Additional jobs may be created by using the
CREATE_JOB predeclared procedure (or kernel
service) or the V AXELN debugger. More than one job
may be executing a program at the same time. In this
case, there is no connection between the jobs, except via
the methods described in Chapter 12, ~~Interjob
Communication."

The ~~main" routine of a job is a PROGRAM block,
whose source text form is PROGRAM ... END. This
routine may invoke other routines: procedures and
functions as in standard Pascal, but also process blocks
and interrupt service routines.

A process block is invoked via the CREATE_PROCESS
kernel service, rather than the normal procedure-call
notation. This creates a new subprocess in the job,
which executes in parallel with the job's main process
and any other subprocesses. The process block is the
main routine of the subprocess; it can, in turn, invoke
procedures, functions, and other process blocks.

2-1

Interrupt service routines are used in device driver
programs. They are invoked asynchronously as the
result of the occurrence of a device interrupt. The
connection between an interrupt service routine and
particular hardware interrupts is made via the
CREATE_DEVICE kernel service.

Syntactically, a complete routine definition consists of
a heading followed by a routine body. The heading
specifies the type of routine (for example, PROGRAM,
FUNCTION, or PROCEDURE) and its parameters, if
any. The routine body has the same form for all
routines: a set of declarations, followed by a compound
statement (BEGIN ... END) giving the executable code.
The declarations define constants, types, variables, and
additional routines.

In Pascal, each routine body is a block. This means that
declarations of constants, types, variables, and
additional routines in the routine body are known by
name only within the block. Declaration of a name in a
block applies only within the block and overrides any
declaration of the same name in a containing block.

In V AXELN Pascal, the block structure defined by
routine bodies is extended to encompass outer-level
declarations; that is, declarations not contained within
any routine. In this regard, a complete V AXELN
program is a set of outer-level declarations, one of these
being the declaration of a PROGRAM block.

For purposes of separate compilation, a VAXELN
program may be divided into several compilation units.
One invocation of the compiler compiles one source file
(compilation unit), producing one object module. In
addition to containing object code for input to the
VAX/VMS linker, the object module contains an
exported symbol table containing the outer-level decla­
rations to be made available to other compilation units.

Program Structure 2-2

For example, if compilation unit B depends on
compilation unit A, A is compiled first, then A's object
module is included in the compilation of B. This is
explained in more detail in Chapter 16, ~(Program
Development."

A compilation unit may consist of a single outer-level
routine declaration (that is, a PROGRAM block,
PROCEDURE, FUNCTION, or PROCESS-BLOCK
declaration), or it may be an explicit module (that is, a
series of declarations introduced by the reserved word
MODULE and terminated by an END).

A module contains a set of outer-level declarations, and
it may contain module headers specifying more
explicitly the names to be exported by the module, the
names exported from other modules to be used by this
module, and the names of other modules to be used in
the compilation.

Note that every compilation unit is treated as a module
and produces a V AXNMS object module. A complete
program may contain modules provided as part of the
V AXELN development system in addition to modules
explicitly compiled by the user. Programs may also use
object modules produced by other language processors.
In this case, VAXELN Pascal declarations containing
the EXTERNAL attribute or the EXTERNAL directive
are used to define how the external data item or
routine, respectively, is to be viewed within Pascal.

Figure 2-1 illustrates the modules making up a
complete V AXELN Pascal program. The relationship
between the PROGRAM block and its associated outer­
level declarations is described in the text accompanying
the figure.

2-3 Introduction

MODULE zmod;
INCLUDE service1, report, filedef;
PROGRAM ZENO(outdata);

VAR
slave: PROCESS;
sisterport: PORT;

PROCEDURE inform(
p: PORT);
BEGIN ... END;

BEGIN
CREATE_PROCESS(
slave,service 1);
WAIT -ANY(slave);
REPORT('slave done');
CREATE-.JOB(
sisterport,siste r);
inform(sisterport)

END;
END; {End ofzmod.}

PROCESS-BLOCK service 1 ;
VAR ... :
BEGIN ... END;

PROCEDURE report(
s: VARYING_STRING(80»;
VAR ... :
BEGIN ... END;

MODULE filedef
EXPORT outdata;
VAR outdata:

FILE OF RECORD ... END;
END; {of filedef}

Here, the
procedure
inform and the
variables slave
and sisterport
are declared
inside the
PROGRAM block
(and are
available only
there).

The procedure
report, process
block service1,
and module
filedef are
compiled
separately.
When the
module zmod is
compiled, these
object modules
are included in
the compilation.
This establishes
declarations of
service 1, report,
and filedef in
the export block
(see Figure 2-10).

Figure 2-1. The Modules Making Up a
Complete Program

Program Structure 2-4

The module containing PROGRAM lEND can be
compiled by the command

EPASCAL ZENO + lENOMOD/UBRARY

where ZENO.PAS is the source file containing the
PROGRAM block and ZENOMOD.OLB is an object
library you have built to hold the object modules for
procedure report, process block service 1, and the
declarations in module filedef, which were compiled
previously. The compiler produces the object module
ZENO.OBJ from the source file.

Notice that in module filedef, the name outdata is
explicitly exported, making it available at the outer
levels of other modules; usually, it is best to put the
declarations of shared data in a separate module (not
the PROGRAM block), as shown here. The names of
routines, when used as modules, are implicitly ex­
ported, as are service 1 and report in this case.

After compiling, the object modules can be linked by
the command

LINK lENO + ZENDMOD/UBRARY

which produces the program image file ZENO.EXE
from the object module ZENO.OBJ and the object
modules contained in the library ZENOMOD.OLB. The
program image is then ready to be included in a
VAXELN system, which you create with the System
Builder.

Chapter 16, ~~Program Development," contains more
information on the EP ASCAL command. In addition,
The V AXNMS librarian and linker and the V AXELN
System Builder are discussed in the VAXELN User's
Guide.

The remainder of this chapter describes the structure of
V AXELN Pascal programs in terms of compilation

2-5 Introduction

units, modules, PROGRAM blocks, and routines bodies.
The chapter concludes with a discussion of the scope of
declara tions.

Compilation Units

An invocation of the V AXELN Pascal compiler
compiles one source file, producing one VAX/VMS
object module. The text of the source file, expanded by
inclusion of any files specified via the %INCLUDE
construction (see Chapter 1), must satisfy the syntax
for compilation units, as shown in Figure 2-2.

~; PROGRAM block declaration;
-'0..
~

~: PROCESS-BLOCK declaration I-
~: procedure declaration I

I

~: function declaration L
1

110.1 module I
~I I

Figure 2-2. Compilation Unit Syntax

The structure of a compilation unit that is an explicit
module is explained in the next section. In the other
cases, the compilation unit is treated as a module whose
exported symbol table contains just the declaration of
the PROGRAM block, process block, procedure, or
function, and the module's name is the same as the
routine's name.

Program Structure 2-6

Note that if a complete V AXELN Pascal program is a
standard Pascal program, there will be only one
compilation unit and it will be a PROGRAM block.

Modules

A module contains a set of outer-level declarations that
are compiled as a single compilation unit. The various
forms of headers name the module and provide control
over the exportation of outer-level declarations from
the module and the importation of names from other
modules.

In addition to the forms of declaration mentioned
earlier in this chapter (that is, constant, type, variable,
function, procedure, PROCESS_BLOCK, PROGRAM
block, and interrupt service routine declarations), a
module may contain separate routine bodies. These
complete the definitions of functions and procedures
declared in other modules, using the SEPARATE
directive. (See Chapter 8, ((Procedures and Functions,"
for more information on separate routine bodies.)

The syntax for modules is shown in Figure 2-3.

2-7 Modules

Program Structure 2-8

Module Headers

A module header is the first part of a module, excluding
any preceding comments. The syntax is shown in
Figure 2-4.

MODULE

GLOBALDEF

IDENT

module
identifier

literal
string

constant

Figure 2-4. Module Header Syntax

The module identifier is established as the name of the
module. This does not conflict with any other form of
declaration of the identifier.

If GLOBALDEF is specified, the names of all ordinal
constants exported from the module are made known to
the V AXNMS linker as global values. (See (tExported
Symbols and the Linker," later in this section.)

If IDENT is specified, the literal string constant is
stored in the object module's ident field. The length of
the constant must be in the range 2 .. 31. IfIDENT is not

2-11 Modules

specified, a string identifying the compiler version is
stored in this field. The ident field is in the first record
of a VAX/VMS object module. If the module is
examined using the ANALYZE/OBJECT command,
this field is displayed as the ((module version."

Note: If you want several modules to have the same
ident (for example, because it's a program version num­
ber), use %INCLUDE to include the string constant.

Note that GLOBALDEF and IDENT are, in a sense,
attributes of the module, and like other attributes, they
are placed in square brackets.

Export Headers

An export header specifies names to be explicitly
exported from a module; that is, whose declarations will
be included in the export symbol table, so they can be
used in the compilation of other modules. The syntax is
shown in Figure 2-5.

GlOBAlDEF

Figure 2-5. Export Header Syntax

If a name is specified in an export header, the name
must be declared at the outer level of the module
containing the export header.

A module may contain any number of export headers. If
it contains none, all outer-level declarations are

Program Structure 2-12

exported by default. If any export headers are specified,
only names exported by the headers are exported.

Note: An empty export header is allowed. If this is the
only export header in a module, no names are exported
from the module. The only case in which this is useful is
for a module that contains the separate routine body for
a routine whose declaration is in another module.

Exporting an enumerated type by name exports all the
constants declared by the enumerated type definition.

GLOBALDEF is used in an export header to specify
that all ordinal constants exported by that header will
be made known to the V AXNMS linker as global
values. (See ~~Exported Symbols and the Linker," later
in this section.)

Note that, in general, a module should not export a
name that is the same as a predeclared name. The
compiler issues a warning message if this occurs.

Import Headers

An import header specifies names to be explicitly
imported into the compilation of a module. Here,
importing a name means using a name exported from
another module included in the compilation. The
syntax is shown in Figure 2-6.

Figure 2-6. Import Header Syntax

2-13 Modules

A module may contain any number of import headers.
If it contains any, the compiler issues a warning
message for each imported name not explicitly specified
in an import header. In addition, the compiler issues a
warning message for any explicitly imported name not
actually referenced by the current module. If no import
headers are specified, the compiler issues no warnings
for use or nonuse of imported names.

Note: An empty import header is allowed. If this is the
only import header in the module, the compiler issues
warnings for all imported names used in the module.

Include Headers

An include header specifies modules to be explicitly
included in the compilation of this module. The syntax
is shown in Figure 2-7.

INCLUDE ~~ .. module name

Figure 2-7. Include Header Syntax

Modules can also be included by using the INCLUDE
qualifier on the EP ASCAL command, by specifying an
object module as an input file to the compiler with the
MODULE file specification qualifier, and as an indirect
result of the compilation of other modules. (See Chapter
16, ((Program Development," for a complete discussion
of the EPASCAL command and module inclusion.)

Program Structure 2-14

Exported Symbols and the Linker

The exported symbol table in a V AXELN Pascal object
module is ignored by the V AXNMS linker. (If you
examine the module with the ANAL YZE/OBJECT
command, the exported symbol table is in the records
displayed under the title ((IGNORED HEADER
(subtype 101)".) However, there is a close relationship
between the names exported by a module and the set of
global symbols defined by the object module to the
linker.

The following exported names are defined as global
symbols to the linker:

• The name of a procedure, function, subprocess,
program, block, or interrupt service routine, but
only from the module that contains its whole body,
not just a SEPARATE or EXTERNAL heading.

• The name of a procedure or function whose
definition is given by a separate routine body in
this module. (The name may actually be exported
by a different module.)

• The name of a variable, unless it is declared with
the EXTERNAL attribute.

• The name of a string constant.

• The names of ordinal constants governed by an
export header with the GLOBALDEF attribute.

Ordinal constants (governed by GLOBALDEF) and
variables with the VALUE attribute are made known
as values to the linker. String constants and other
items are made known as locations. For an exported
routine name, this is the location of the routine's entry
mask.

2-15 Modules

The following exported names are not made known as
global symbols:

• EXTERNAL names (which must be defined as
global symbols in a non-V AXELN object module).

• Names of types, routine types, and floating-point
constants.

• Names of ordinal constants not governed by
GLOBALDEF.

PROGRAM Block

The syntax for a PROGRAM block declaration is shown
in Figure 2-8.

~attributes h
- ... L-----1 C PROGRAM:' III. program

_ ~ identifier

Figure 2-8. PROGRAM Block Declaration Syntax

The program identifier is declared at the outer level as
the name of the program block. This dec lara tion is only

Program Structure 2-16

allowed at the outer level, and there must be exactly
one PROGRAM block declaration in a complete
V AXELN Pascal program.

The routine body supplies the local declarations and
executable code for the PROGRAM block. One of the
attributes UNDERFLOW or NO UNDERFLOW may be
specified in the PROGRAM block declaration. If
specified, it applies to the routine body, as explained in
the section ttRoutine Bodies," later in this chapter.

The optional file variable names in the PROGRAM
block declaration are associated with program
arguments, as explained later in this section.

Program Arguments

The arguments of a program are handled differently
from those of other routines. Each argument is a string
with up to 100 characters. The arguments are specified
in the call to CREATE-JOB that creates the job
executing the program, or in the Program Description
menus of the System Builder for jobs started as part of
system initialization.

As explained below, a program argument may be
associated with a file variable. The value of any
program argument (whether or not associated with a
file variable) can be obtained via the
PROGRAM-ARGUMENT function. The actual number
of arguments passed to a program can be obtained via
the PRO GRAM-ARGUME NT -CO UNT function.

Program Files

Specifying a file variable name in the heading of a
PROGRAM block associates the corresponding
program argument with the file variable. For example:

PROGRAM myname (OUTPUT, INPUT);

2-17 PROGRAM Block

Here, the first program argument is associated with
OUTPUT, the second with INPUT.

The argument value is used as the file specification
when the file variable is opened, unless it is explicitly
opened by a call to the OPEN procedure with a
file-Ilame argument.

A file variable name in the PROGRAM heading may be
predeclared, declared at the outer level, or declared in
the PROGRAM block. If the name is declared in more
than one of these blocks, the innermost declaration
applies, and it must declare the name as a file variable.
In this circumstance, the compiler issues a warning
message because there may be a misunderstanding of
the effect of specifying the name as a program file.

Program Names

An identifier is declared as a program name by its
occurrence as the program identifier in the heading of a
PROGRAM block. There is no language construction in
which the identifier can be used to specify the program
by name. However, a string value specifying the name
is used as an argument to kernel services, such as
CREATEJOB.

The PROGRAM block's object module defines the name
to the V AXNMS linker as a global symbol denoting the
PROGRAM block's entry point.

Job Activation and Termination

Ajob is created by the VAXELN System Builder at the
time of system initialization, or by using the
CREATE_JOB kernel service or the VAXELN
debugger. (See the VAXELN User's Guide for more
information.)

Program Structure 2-18

The V AXELN kernel establishes the job's PO address
space, which is shared by all processes in the job, and
the PI address space (stack) for the job's main process
(the process in which the PROGRAM block executes).
Program arguments are stored in PO space so they can
be accessed by the PROGRAM-ARGUMENT function
and by the I/O run-time routines (for file opening).

No files are initially open, but INPUT, OUTPUT, and
files named in the PROGRAM block's header may be
implicitly opened by the first I/O operation on them.
(See Chapter 15, ((Input and Output," for more
informa tion.)

The kernel then activates the PROGRAM block's
routine body (discussed in the next section). After
executing any required prolog code, the PROGRAM
block's compound statement (BEGIN ... END) is
executed.

A job terminates when execution of the PROGRAM
block's compound statement completes, or when the
job's main process is terminated via the DELETE or
EXIT procedures, or by the occurrence of an unhandled
exception.

Job termination also terminates all existing
subprocesses of the job. Any files not already closed are
closed, but this is not a normal close operation and data
in buffers may be lost (see Chapter 15).

If the job was created by a call to CREATE....JOB with
the NOTIFY parameter specified, a ((termination
message" is sent to the specified port. (See the
description of CREATE_JOB in Chapter 11,
((Subprocesses and Synchronization," for more
information) .

Finally, all the terminated job's resources are returned
to the kernel.

2-19 PROGRAM Block

Routine Bodies

A routine body supplies the local declarations and code
for a routine.

The syntax is shown in Figure 2-9.

Program Structure 2-20

The compound statement (BEGIN ... END) contains the
routine's executable code. The various declaration
categories provide declarations of named constants,
types, variables, functions, and procedures that are
local to the routine. Note that the declarations can
occur in any order.

Explicit declaration of statement labels may be
accomplished by using the reserved word LABEL
followed by the labels (identifiers or unsigned decimal
integers), as shown in the syntax. Labels so declared
must occur as statement labels within the routine
body's compound statement. Explicitly declaring labels
in this way is optional, but if any labels are explicitly
declared, all the labels within the compound statement
must be explicitly declared.

Routine Body Activation, Stack Frames, and Termination

Except in the case of procedures and functions with the
INLINE attribute, invoking a routine creates an
activation of its routine body by allocating a stack
frame and setting hardware register FP to denote this
frame. The structure of a basic stack frame is described
briefly in the VAXELN User's Guide and a more
detailed description is contained in the V AX
Architecture Handbook.

The stack frame contains sufficient information for
execution of a hardware RET instruction, which will
free the stack frame and properly return control to the
invoking routine body (upon procedure or function
termination) or to the kernel (upon termination of other
rOJltines) .

The stack frame of a procedure or function is allocated
on the stack (PI space) of the current process,
immediately following the stack frame of the invoking
routine body. The sequence of stack frames in a

2-23 Routine Bodies

process's stack defines the current calling chain for
procedures and functions and is sometimes referred to
as the call stack. It starts with the stack frame for the
process's main routine (PROGRAM block or process
block) and ends with the frame for the routine currently
being executed (the frame denoted by register FP).

For PROGRAM blocks and process blocks, the kernel
creates the stack frame at the base of the new process's
Pl space as part of process creation. The stack frame for
an interrupt service routine is allocated on the inter­
rupt stack (see the V AX Architecture Handbook).

Execution of a routine body's explicit code begins at the
first statement in the routine body's compound state­
ment. In general, this is preceded by the execution of
prolog code that extends the stack frame (that is,
allocates additional stack space) to hold local variables
and code that initializes local variables.

When execution of the compound statement completes,
the routine body terminates, and control is returned to
the invoking routine or to the kernel, as appropriate.
This frees the entire stack frame (that is, all the storage
used by the block activation). If the routine body has
any local file variables, they are automatically closed
before the termination completes.

A routine body activation may also terminate due to
execution of a GOTO statement whose target is in a
preceding routine body activation on the stack. In this
case also, the stack frame is freed and local files are
closed. (See Chapter 7, ((Pascal Statements," for an
explanation of an up-level GOTO statement.)

In addition, if the routine body has an established
exception handler at the moment of termination, it is
invoked with the exception SS$-UNWIND, as

Program Structure 2-24

explained in Chapter 13, (tErrors and Exception
Handling."

A routine body activation may terminate abnormally
due to termination of the containing process via the
EXIT or DELETE procedures. In this case, local files
are not closed (although they may be closed in another
way at job termination), and there is no unwinding of
the stack.

UNDERFLOW and NOUNDERFLOW Attributes

The UNDERFLOW and NO UNDERFLOW attributes
enable and disable detection of floating-point underflow
in a routine's code. As shown in the syntax for the
PROGRAM block declaration (Figure 2-8), the attri­
bute is specified at the beginning of the PROGRAM
heading, preceding the reserved word PROGRAM.

Similarly, one of these attributes can be specified at the
beginning of the routine heading in the syntax for the
various other forms of routine declaration; that is,
PROCEDURE, FUNCTION, INTERRUPT_SERVICE,
or PROCESS_BLOCK declarations. The routine
declaration must contain a routine body; it cannot
specify a directive, such as EXTERNAL.

Note: UNDERFLOW and NOUNDERFLOW are
mutually exclusive and are incompatible with the
INLINE attribute.

Underflow detection is disabled by default. An
UNDERFLOW or NOUNDERFLOW attribute applies
to nested routine bodies unless overridden by use of the
complementary attribute.

For a general discussion of the concept of floating-point
overflow and underflow, see Chapter 6, ((Expressions
and Operators."

2-25 Routine Bodies

Scope of Declarations

In this manual, the term declaration refers to a
definition of an identifier as the name of a data type,
data item, or routine. In the syntax diagrams, the
occurrence of an identifier in a declarative context is
denoted by the category name ((identifier," possibly
with a modifying adjective indicating the type of
declaration; for example, ((constant identifier."

The occurrence of an identifier in a context referencing
a declared item is denoted by use of the category name
((name," possibly with a modifying adjective indicating
the type of item; for example, (ttype name."

More than one declaration of a name is allowed. When
the compiler interprets a reference to a name, it must
determine which declaration, if any, governs the
reference. In most cases, this is determined by the block
structure of the compilation unit. The general
principles are:

• A block must not contain two declarations of the
same name.

• A reference to a name is governed by the declara­
tion in the innermost (most deeply nested) block
that contains the reference and declares the name.

• It is an error if the name is not declared in some
block containing the reference.

This picture is a bit oversimplified, however. In
addition to the blocks explicitly shown in the syntax
diagrams (that is, the bodies of routines), there are
implicit blocks related to declarations outside of any
routine. Also, there are language constructions that
declare names with scopes more or less than a block.
The following subsections discuss these topics.

Program Structure 2-26

Block Structure

Each routine body in a compilation unit is a block. In
addition, there are three implicit blocks containing
declarations of predeclared names, declarations
exported from other modules, and the outer-level
declarations of the compilation unit. The nesting of
these blocks is shown in Figure 2-10.

Predeclared Name Block

Export Block

Outer-Level Block
Included Included
Module-1 Module-2

Outer-level
Routine Body-1

Outer-level
Routine Body-n

Figure 2-10. Nested Block Structure

The predeclared name block contains all the
declarations built into the language; for example, the
type BOOLEAN and the constant TRUE.

2-27 Scope of Declarations

The export block contains the declarations of names
exported from other modules that are included in this
compilation. Non-exported declarations within
included modules are not visible in this compilation. It
is an error if the current compilation unit exports a
name that is also exported by another module. (If one
thinks in terms of the entire program rather than
individual compilation units, then all exported
declarations belong to one block, and there must not be
any duplicates.)

The outer-level block contains all constant, type,
variable, and routine declarations in the compilation
unit that do not belong to (that is, are not within) a
routine body.

Notion of Scope

For most declarations, the scope of an identifier is the
block in which it is declared. Duplicate declarations in
the same scope are not allowed; however, one scope can
be nested inside another. For example:

PROCEDURE p;
VAR a: INTEGER;

PROCEDURE q;
CONST a = 3;
BEGIN ... END;

BEGIN ... END;

Here, the scope of the declaration of a as an integer
variable is the entire block defined by procedure p. In
turn, the scope of the declaration of a as the constant
integer value 3 is limited to the nested block defined by
procedure q.

Program Structure 2-28

Special Declarative Scopes

The V AXELN Pascal declarations whose scope is not
exactly a block are summarized below. If the occurrence
of a name is not governed by one of these special scopes,
the name is resolved according to the general block
structure principles given earlier in this section.

Routine Parameters

A routine parameter identifier is declared by its
occurrence in the parameter list of a routine heading
(excluding PROGRAM block headings, which do not
have parameters in the normal sense). The scope of the
parameter declaration consists of the parameter list,
the function result type (FUNCTION heading), and the
routine body (if it exists). Note that if the SEPARATE
directive is used, the routine body may be in another
module.

Extent Parameters

An extent parameter identifier is declared by its
occurrence in a flexible type definition. The scope of the
declaration is the type on the right-hand side of the ~~ ="
in the flexible type definition (See Chapter 3, nData
Types," for more information on flexible types.)

Field Names

A field identifier is declared by its occurrence in the
field list of a record type definition. This declaration
has no scope in the ordinary sense. (The field name can
be used in a field reference that specifies the containing
record.) However, a WITH statement can be used to
establish the field name locally.

2-29 Scope of Declarations

Names Established by the WITH Statement

A WITH statement can be used to establish field names
or names specified using ((WITH identifier AS" as data
item names in the body of the WITH statement. (See
Chapter 7, ((Pascal Statenments," for more information
on the WITH statement.)

Module Names

An identifier is established as a module name by its
occurrence following the reserved word MODULE in a
module header, or if it is the name of a routine whose
declaration occurs as a complete compilation unit. This
establishment of a name has no scope in the ordinary
sense, and it does not conflict with any other
declaration of the name, except as a module name.

Order of Declarations, Circularity

Within a block, declarations can occur in any order. A
declaration may depend on one that follows it, such as:

VAR a: t;

TYPE t = 0 .. 127;

With one exception, a declaration must not be circular;
that is, it is not allowed to depend on itself directly or
through another declaration. Therefore, the following
declaration is not allowed:

TYPE tl = RECORD { Circular declarations. }
x: t2
END;

TYPE t2 = ARRAY[l .. 10] OF t1;

Program Structure 2-30

The one exception to the rule against circularity is the
use of a pointer type of the form t(t some-type", where
((some-type" is the name of a non-flexible type. (See
Chapter 3, (tData Types," for more information on
pointer types.) The following declaration is valid:

TYPE some-type = RECORD
x: STRING(10);
link: t some-type;
END;

Note that this does not allow circularity involving a
pointer to a bound flexible type (see Chapter 3). The
following is incorrect:

TYPE ten: INTEGER) = RECORD
x: STRING(n);
link: t ten) {Circular declaration. }
END;

To manipulate a structure of this sort, you must use
t ANYTYPE (see Chapter 3). For example:

TYPE s(n: INTEGER) = RECORD
x: STRING(n);
link: t ANYTYPE
END;

VAR p: t s(10);
p : = p t .link {Advances to next record in list.}

2-31 Scope of Declarations

Program Structure 2-32

Chapter 3

Data Types

Every Pascal data item is associated with a data type.
The type of a data item defines the kind of values it can
have and the operations that can be performed on it. In
addition, the type determines the item's representation.

This chapter discusses the declaration of data type
names, the definition of each of the various V AXELN
Pascal data types, the notion of type equivalence, and
the rules for internal representation of data, including
the use of attributes to modify the normal representa­
tions.

Type Declarations

In most cases, the type of a Pascal data item is specified
by using the name of a data type, either one of the
V AXELN predeclared types or a type introduced by a
type declaration. The syntax of type declarations is
shown in Figures 3-1 through 3-3. Note that these
figures also show the various possibilities for referring
to a type or introducing a new type.

In Figure 3-1, the type identifier is declared as a type. If
the type on the right-hand side of the equal sign is
simply a type name (see Figure 3-3), the identifier is
declared to be a synonym for the type denoted by the
type name. In all other cases, the identifier is declared
as the name of a new type given by the type definition
on the right-hand side of the equal sign.

3-1

Data Types

type
identifier

~--. flexi ble type defi n ition

Figure 3-1. Type Declaration Syntax

--+1 named type •
--+I record type definition I •
--+I array type definition I •
--+I set type definition I •
--+1 file type definition 1 •
--+1 subrange type definition ~
--+I enumerated type definition ~

Figure 3-2. Type Syntax

3-2

--.t type name •

--+I bound flexible type •

--+I pointer type defin ition r+
Figure 3-3. Named Type Syntax

As shown in Figure 3-1, attributes may be specified to
modify the normal representation of certain data types;
their use is explained in the last section of this chapter.
A flexible type definition declares an identifier as the
name of a new flexible type; this is explained in the
section (~Flexible Types," later in this chapter.

Ordinal Types

Ordinal types consist of the type INTEGER and certain
other types whose values have a one-to-one correspon­
dence with a consecutive set of integers. These values
are ordered so that each has a unique ordinal value that
indicates its position in a list of all the values of the
type. Ordinal types are used as extent parameters in
flexible data types, as indices in arrays, as type names
in variant records, as base types in sets, and as
operands in extent expressions.

The representation of ordinal types can be modified by
packing; that is, by being an element of a PACKED
record or array. In addition, the representation can be
explicitly controlled by the attributes BIT, BYTE,
WORD, or LONG, as discussed later in this chapter.

3-3 Ordinal Types

V AXELN Pascal supplies predefined ordinal types for
integer, character, and Boolean data. In addition,
Pascal allows you to define your own ordinal types in
one of two ways:

• By enumerating each value of the type
(enumerated types).

• By defining the type as a subrange of another
ordinal type (subrange types).

INTEGER Data Type

The type INTEGER represents whole numbers in the
range -231 through 231 -1; that is, -2,147,483,648
through 2,147,483,647. (For representation of numbers
of larger magnitude, see ttLARGE_INTEGER Data
Type," later in this chapter.)

Internal Representation of INTEGER Data

The normal representation of INTEGER data is as a
byte-aligned VAX longword (32 bits, or 4 bytes)
representing a signed integer in 2's-complement form.

Subranges of the INTEGER type are packable data
types, although INTEGER itself is not. When a
packable integer item is immediately contained in a
PACKED record or array, its boundary requirement is
only bit alignment, and it occupies only n bits, where n
is generally less than 32. When the subrange contains
only nonnegative values, n is the minimum number of
bits required to represent the subrange's maximum
value as an unsigned integer. Otherwise, n is the
minimum number of hits required to represent the low
and high sub range values as signed (2's-complement)
integers.

Packable data and boundary requirement are discussed
in ttData Representation," later in this chapter.

Data Types 3-4

INTEGER data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of INTEGER
subranges described in the preceding paragraph.

CHAR Data Type

The data type CHAR represents single characters. The
set of valid characters includes uppercase and
lowercase letters, the digits 0-9, and an assortment of
punctuation marks and nonprinting characters, as
shown in Table 3-1.

3-5 Ordinal Types

Data Types 3-6

The Character Set

CHAR is an ordinal type; each character in the set
corresponds to one of a series of integers (the ordinal
values of the character set) that start at zero. The
ordinal value of a character can be obtained with the
o RD function; the character corresponding to an
ordinal value can be obtained with the CHR function.

The V AXELN Pascal character set is compatible with
the American Standard Code for Information
Interchange (ASCII). The ASCII set specifies 128
characters and provides for an additional, unspecified
set of128.

The rules and relationships for this character set are as
follows:

• The relationship between two characters is the
same as the relationship between their ordinal
values. That is, charl < char2 if and only if
ORD(charl) < ORD(char2).

• The numeric characters (0, 1, and so on) are
numerically ordered and also are contiguous; that
is, '1' < '2' is TRUE. COI).tiguity means that if
ORD('O') is n, then ORD('l') must be n+ 1, and so
forth.

• The numeric characters (0-9) all have ordinal
values less than those of the alphabetic characters
(A-Z and a-z).

• The alphabetic characters (both uppercase and
lowercase) are alphabetically ordered, so 'A' < '8'
is TRUE.

• The uppercase letters (A-Z) have ordinal values
that are less than those of the lowercase letters
(a-z). Furthermore, the ordinal values of
uppercase and lowercase versions of the same

3-9 Ordinal Types

letter always differ by 32. For example, ORD(' a')
- ORD(' A') = 32.

• The printable characters are those with ordinal
values greater than or equal to 32 and less than
127. (CH R(32) is the space character.) Characters
with values less than 32 do not have a standard
printable representation, although some, such as
line feed (CHR(10» and carriage return (CHR(13»
are often used to format printed documents.

Internal Representation of CHAR Data

The normal representation of CHAR data is as an
eight-bit byte containing ORD(charvalue) as an
unsigned integer.

Subranges of CHAR are packable data types, although
CHAR by itself is not. When a packable CHAR data
item is immediately contained in a PACKED record or
array, its boundary requirement is only bit alignment,
and it occupies n bits, where n is the minimum number
of bits required to represent the item's maximum value
as an unsigned integer.

CHAR data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of CHAR
subranges described in the preceding paragraph.

BOOLEAN Data Type

The data type BOOLEAN represents the results of
relational operations (for example, A < B) and logical
operations (for example, F OR G). It consists of the two
constant values TRUE and FALSE. (BOOLEAN values
are represented by these identifiers in programs and in
textfiles).

Data Types 3-10

BOOLEAN is an ordinal type, with FALSE and TRUE
having the ordinal values 0 and 1, respectively.

Internal Representation of BOOLEAN Values

The normal representation of BOOLEAN data is as an
eight-bit byte. The value TRUE is encoded as the low­
order bit set and the rest zero. FALSE is encoded as all
zeros. The seven high-order bits are ignored when
BOOLEAN values are evaluated.

BOOLEAN and its subranges are packable data types.
When a BOOLEAN data item is immediately contained
in a PACKED record or array, its boundary
requirement is only bit alignment, and it occupies only
one bit. Thus, a PACKED ARRAY [l .. n] OF
BOOLEAN occupies only n bits of storage.

BOOLEAN data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of BOOLEAN
values described in the preceding paragraph.

Enumerated Types

An enumerated type has a finite set of named values (at
most 32,767 values) introduced in the enumerated
type' s definition.

An enumerated type definition has the form shown in
Figure 3-4.

constant 1--....-...) 1-----.
identifier

Figure 3-4. Enumerated Type Definition

3-11 Ordinal Types

This defines a new enumerated type and declares each
constant identifier as the name of one of the type's
distinct ordinal values. If the constant identifiers in the
definition are xl' ... xn ' in left to right order, then
ORD(xi) = i-I.

For example,

TYPE
season = (spring, summer, autumn, winter);

declares the enumerated type season and the four
constants spring, summer, autumn, and winter.
ORD(spring) = 0 and ORD(winter) = 3.

Internal Representation of Enumerated Data

Enumerated data items normally are byte-aligned
quantities occupying either a byte (eight bits) or word
(16 bits), depending on the total number of declared
values. They are stored in a byte if they have no more
than 256 possible values. The data item contains the
ordinal number of its current value. Thus, if the ordinal
number of the maximum value is at least 128 but less
than 256, the representation is an unsigned byte.

Enumerated types and their subranges are packable
data types. When an enumerated data item is
immediately contained in a PACKED record or array,
its boundary requirement is only ,bit alignment, and it
occupies n bits, where n is the minimum number of bits
needed to represent the item's maximum value as an
unsigned integer.

Enumerated data items can have their representations
specified exactly by the BIT, BYTE, WORD, or LONG
attribute, which overrides the packing of enumerated
items described in the preceding paragraph.

Data Types 3-12

For example, the variable e, declared as

VAR e: (red, yellow,blue);

occupies one byte and is byte-aligned. However, if the
same type defines a field in a PACKED record, the field
occupies only two bits because ORD(blue) is 2, which
can be represented in two bits.

Subrange Types

Sub range types denote a sub range of values of an
ordinal type. They are themselves ordinal and can be
specified wherever ordinal types are valid; for example,
as the index range of an array. Subranges are useful for
documenting the actual range of permissible values for
a variable or type.

The definition of a subrange type specifies the mini­
mum and maximum values, which must be constants of
the same ordinal type.

Normally, a variable of a subrange type requires the
same amount of storage as its host type. For example, a
subrange of integers requires 32 bits. However, if the
sub range data is a component of a PACKED array or
record, it has a packed representation, as explained
under the particular ordinal data type.

A subrange item can have its representation specified
exactly by the BIT, BYTE, WORD, or LONG attribute,
which overrides the packing described in the preceding
paragraph.

It is a range violation if a value outside the specified
range is assigned explicitly to a sub range variable.
Referring to a sub range variable when its value is out
of range (for example, because it is uninitialized or has
an out-of-range value due to typecasting) is an
unpredictable error.

3-13 Ordinal Types

A sub range type definition has the form shown in
Figure 3-5.

limited ordinal
constant

limited ordinal
constant

Figure 3-5. Subrange Type Definition

Each of the limited ordinal constants in the sub range
type definition is of the same ordinal type. An ordinal
constant value must be specified in this context; a
general extent expression is not permitted. The
constant on the left supplies the lower bound (minimum
value) of the sub range and must be less than or equal to
the constant on the right. If the two constants are
equal, the subrange denotes that single value.

A typical declaration of a subrange-of-INTEGER
variable is:

VAR sub: 0 .. 255;

Here, the variable sub can have only those values in the
designated subrange, 0-255.

Thus:

sub: = 128; {Valid assignment.}
sub: = 256; {Range violation. }

Set Types

In Pascal, a set value is a set of ordinal values, all of the
same basic ordinal type, which is called the set's
element type. If the element type is INTEGER, the
values must be in the range 0-32,766.

Data Types 3-14

A set type is defined by using the reserved words SET
OF and an ordinal type. The ordinal type determines
both the element type of the set and the minimum and
maximum values that may be contained in sets of the
type. A set type may be defined as PACKED. This can
affect the set type's internal representation if it is a
small set type; that is, ifORD(maximum-element) ~ 31.
(See «Internal Representation of Sets," later in this
section.)

Set Type Definitions

A set type definition has the form shown in Figure 3-6.

~ PACKED-n

~L _____ ~ (SET ~ordinaltype ~

Figure 3-6. Set Type Definition

The basic ordinal type specified in the set type
definition is the set type's element type. The minimum
and maximum values contained in sets of the type are
the minimum and maximum values of the ordinal type.
If the element type is INTEGER, the values must be
greater than or equal to 0 and must not exceed 32,766.
Hence, 'INTEGER' itself is not acceptable here as the
ordinal type. Note that the restrictions on the
minimum and maximum values are automatically
satisfied for all non-integer ordinal types.

The following examples illustrate set type definitions:

VAR tset: SET OF CHAR;
{ tset can contain any characters from the
character set. }

3-15 Set.Types

TYPE su bset = SET OF 'A' .. 'Z';
{Variables of type subset can contain only the
uppercase letters A-Z. }

VAR enu mset: SET OF (red,orange,yellow);
{enumset can contain only the enumerated values
red, orange, and yellow.}

Note that set operations require only that the sets
involved have the same element type, this always being
a basic ordinal type, not a subrange. Hence, with the
above examples you can have:

V AR s: subset;
tset: = s + ['a' .. 'z'];

{ The set construction denotes the set of
lowercase letters. See Chapter 6 for more
information. }

Internal Representation of Sets

Normally, a set type is represented as a byte-aligned
sequence of n consecutive longwords in storage, where
n is the minimum positive integer such that
ORD(maximum-element) < 32 X n. The bits in these
longwords can be numbered 0, 1, ... 32 X n - 1, for
example, the usual 0 to 31 for a one-Iongword set.

Bit k is 1 if and only if the element with ORD(element)
= k is in the set; otherwise, it is o. Thus, all bits in the
set's storage are defined, including those that do not
correspond to the ordinal value of an element allowed
by the set's type.

For example, SET OF 0 .. 100 is a sequence of four
longwords because that is the minimum number of
longwords that has at least 101 bits. The elements are
represented by the first 101 bits.

All sets have a (possibly unused) bit corresponding to
an element at ordinal 0, and possibly unused hits

Data Types 3-16

corresponding to the ordinal numbers between 0 and
the ordinal number of the set's minimum element; any
unused bits are always zero. For example, SET OF 2 .. 4 is
represented by a sequence of five bits (normally, the
five low-order bits ofa single longword):

Element: 4 3 2
Bit: 432 1 0

Here, bit 3 is 1 if 3 is in the set. (Note that operations
that modify bits 0 and 1 are range violations.)

Packed Sets

A set type is packable if it was declared with the word
PACKED and is small (ORD(maximum-element) s 31,
so that its normal representation would be one long­
word). When a packable set data item is immediately
contained in a PACKED record or array, its boundary
requirement is only bit alignment and it occupies only
n bits, where n = ORD(maximum-element) + 1.

Small set items (ORD(maximum-element) s 31) can
have their representations specified exactly by the BIT,
BYTE, WORD, or LONG attribute, which overrides the
packing described in the preceding paragraph.

Floating-Point Types

The predefined data types REAL and DOUBLE provide
explicit single- and double-precision floating-point
numbers. Floating-point constants use literal decimal
notation (for example, 3.2 or 32e - 1), but the internal
representation is VAX F, D, or G-floating point. There
is no special notation to distinguish REAL or DOUBLE
constants; a floating-point constant is converted to its
internal representation as REAL or DOUBLE,
depending on the context.

3-17 Floating-Point Types

REAL Data Type

The data type REAL represents real numbers in the
approximate range 0.29 X 10-38 to 1.7 X 1038. The
maximum number of significant fractional digits of a
REAL data item, its precision, is approximately seven.
Numbers with this precision are called single-precision
real numbers.

Internal Representation of REAL Data

REAL data is represented in the VAX F-floating
binary format, which occupies a single byte-aligned
longword (32 bits), as shown in Figure 3-7.

15 7 6 0

s I EXPONENT I FRACTION

FRACTION

31 16

Figure 3-7. Internal Representation of REAL

The format uses a sign bit, an eight-bit exponent (power
of two), and a 24-bi t fraction.

The zero exponent and zero sign bit together represent
the value o. If the sign bit is 1 and the exponent is zero,
the floating-point value is a reserved operand and
causes an exception (reserved operand fa ul t).
Otherwise, the forma t represents a normalized
floating-point number, in which the fraction's most
significant bit is known to be 1 and is not represented
explicitly.

Data Types 3-18

The value represented is thus:
2(exponent - 128) X fraction

If the sign bit is 1, the value is negative.

DOUBLE Data Type

The data type DOUBLE represents double-precision
real numbers. Variables of this type are declared with
DOUBLE in place of REAL. DOUBLE data can rep­
resent numbers with approximately 15 decimal digits.

All operations defined for REAL data also are defined
for DOUBLE data. If REAL and DOUBLE operands are
used in an expression, the computation is performed in
double precision. Via compiler qualifiers, you have the
option of using either the VAX D-floating format or the
G-floating format for DOUBLE data.

DOUBLE data items in G format have the approximate
range 0.56 X 10- 308 to 0.9 X 10308 . They have
approximately twice the fractional precision of REAL
data, and much greater maximum magnitudes.

When the D format is used, DOUBLE data items have
the approximate range 0.29 X 10-38 to 1.7 X 1038, the
same as REAL data. In this case, the REAL and
DO UBLE types differ only in the amount of fractional
precision, which is still about twice the precision for
DOUBLE as for REAL.

Note that neither REAL nor DOUBLE data can be as­
signed to integer variables without use of a conversion
function.

Internal Representation of DOUBLE Data

DOUBLE data is represented in the VAX D-floating or
VAX G-floating binary format, each of which occupies
a byte-aligned quadword (64 bits), as shown in Figures

3-19 Floating-Point Types

3-8 and 3-9. In either format, data is represented as a
normalized floating-point number, in which the high­
order bit of the fraction is known to be 1 and is not
explicitly represented.

The value represented is thus:
2{exponent-128) xfraction

If the sign bit is 1, the value is negative. The zero
exponent and a zero sign bit together indicate the value
o. If the sign bit is 1 and the exponent is zero, the
number is a reserved operand and causes a reserved
operand fa ul t.

15 4 3 o
sl EXPONENT I FRACTION

FRACTION

FRACTION

FRACTION

63 48

Figure 3-8. G-Floating Representation

VAX G-Floating Format. The G-floating format
represents a double-precision floating-point number in
64 bits, offering larger magnitudes than F -floating
(single-precision, REAL) numbers and approximately
twice the precision. The format uses one sign bit, an 11-
bit exponent for a range of approximately ± 10308, and
a 53-bit magnitude for about 16.0 decimal digits of
accuracy.

Data Types 3-20

15 7 6 o
s\ EXPONENT I FRACTION

FRACTION

FRACTION

FRACTION

63 48

Figure 3-9. D-Floating Representation

VAX D-Floating Format. The D_floa ting format
represents a double-precision floating-point number in
64 bits, offering the same magnitudes as F-floating
(single-precision, REAL) numbers but approximately
twice the precision. The format uses one sign bit, an 8-
bit exponent for a range of approximately ± 1038, and a
56-bit magnitude for about 16.9 decimal digits of
accuracy.

Flexible Types

A flexible type is a type with extent parameters that
determine string lengths, BYTE_DATA item lengths,
or array bounds within the data item described by the
type. There are three predeclared flexible types:
STRING, VARYING_STRING, and BYTE-DATA.
These types are discussed individually later in this
chapter. Other flexible types can be introduced by
declaration.

3-21 Flexible Types

By itself, a flexible type is not a complete description oj
data. It can only be used by specifying values for the
extent parameters. The combination of a flexible type
and extent values is called a bound flexible type; fOl
example, STRING(100) describes character strings oj
length 100.

The extent values in a bound flexible type are specifiec
by extent expressions, which are a subset of ordinal·
valued expressions. When used in bound flexible type~
as array bounds, extent expressions may have constan1
or variable operands. With constant operands, the)
may also be used in most places where standard Pasca:
requires a constant.

The following sections cover flexible type definitions
bound flexible types, and extent expressions.

Flexible Type Definitions

The syntax for a flexible type definition is shown ir
Figure 3-10.

Data Types 3-22

A flexible type definition declares an identifier as the
name of a new flexible type. Within the parentheses,
identifiers are declared as extent parameters of the
flexible type; the scope of these declarations is limited
to the flexible type definition. The data type of each
extent parameter must be an ordinal type; for example,
INTEGER or 0 .. 32767.

The new flexible type is limited to one of the four type
definitions shown on the right-hand side of the equal
sign in Figure 3-9. The new flexible type can be a
pointer to a bound flexible type, it can be defined in
terms of another flexible type, or it can be a record type
or array type. (Pointer types, record types, and array
types are explained in their own sections, later in this
chapter.)

Attributes may be specified to modify the normal
representation of an array type or record type; their use
is explained in the last section of this chapter.

Bound Flexible Types

To use a flexible type, you specify the type name and
values for each extent parameter. This combination of
flexible type and extent values is a bound flexible type.
The syntax is shown in Figure 3-11.

flexible type name t--or-" extent expression

Figure 3-11. Bound Flexible Type Syntax

3-25 Flexible Types

In a bound flexible type, each extent expression
supplies the value of an extent parameter of the type
being bound. These extent values match the flexible
type's extent parameters left to right and must equal
them in number. The extent values must have ordinal
types that are assignment compatible with the extent
parameters'. It is a range violation if an extent value is
outside the range of the corresponding extent parame­
ter or if substitution of the value into the governing
flexible type definition leads to a range violation.

Examples

Consider the following flexible type declaration:

TYPE vector(n: INTEGER) = ARRAY [l .. n] OF REAL;

Substituting the extent values into the type's definition
gives the basic Pascal interpretation of the bound type.
Thus, vector(10) is equivalent to ARRAY[1 .. 10] OF
REAL.

A flexible type name cannot -be used by itself to specify
an item's type; it must be bound. For example, type

VAR x: vector;

is not allowed because the vector's size is not specified.

Flexible types can be defined in terms of other flexible
types, either predeclared or user-declared.

For example:

TYPE
vectorpair(m; INTEGER) =

RECORD

Data Types

a,b: vector(m);
END;

3-26

With this declaration, vectorpair(10) is equivalent to:

RECORD
a,b : ARRAY [1 .. 10] OF REAL;
END;

Pointer types can also be flexible, as in:

TYPE
stringptr(m: 0 .. 32767) = i STRING(m);

VAR
p : stringptr(100);

Here, the type of p is equivalent to i STRING(l 00).

In general, the extent values in a bound flexible type
are specified by extent expressions. The value of an
extent expression within a bound flexible type need not
be a constant. It can depend on a routine's value
parameters or other values known at entry to a routine.
This is the general mechanism in V AXE LN Pascal for
manipulating dynamically sized data. For example:

FUNCTION fen: INTEGER) : vector(2*n);

Here, f is a function returning vectors of length 2*n.

Extent expressions within the type definition can also
depend on the flexible type's parameters, as in:

TYPE doublestring (n : INTEGER) = STRING(2*n);

For routines, the most important feature for describing
dynamically sized data is the conformant parameter.
Here, the extents of a parameter are derived from the
actual argument passed to that parameter. For
example:

FUNCTION sum(v: vector(<n ») : REAL;
VAR

k: INTEGER;
s: REAL: = 0;

BEGIN

3-27 Flexible Types

FOR k : = 1 to n DO s : = s + v[k];
sum: = s;

END;

Here, function sum returns the sum of elements in the
parameter v. (See Chapter 8, ((Procedures and
Functions," for more information on conformant
parameters.)

Flexible types are normally used within declarations to
describe variables, parameters, record fields, and so
forth. However, they can also be used in the executable
part of a block, in typecast variable references. This
gives a completely dynamic description of data in the
sense that extents are determined at the moment the
variable reference is executed. For example,

p t : :STRING(n)

means a string whose length is the current value of n
and whose location is given by the current value of the
pointer p. (See Chapter 5, ((Variables," for more
information on typecast variable references.)

Extent Expressions

An extent expression is a type of ordinal-valued
expression that is used to specify an extent value in an
array type or bound flexible type. Extent expressions
with constant operands may also be used in several
contexts where standard Pascal requires an ordinal
constant. Extent expressions denoting true constant
values can be used in the following contexts and are
evaluated by the compiler:

• On the right-hand side of CONST declarations
(CONSTi = 5+1) .

• In initializers for variables and value parameters
(VAR i: INTEGER:= 5+ 1).

Data Types 3-28

• As the upper or lower bound of an array's index
range (V AR a: ARRA Y[O .. 5 + 1] OF INTEGER).

• As extents in bound flexible types (STRING(5 + 7».

In the last two cases, extent expressions denoting non­
constant values can be used; in these cases, the
expression denotes a value that will be determined at
entry to a routine or by flexible type binding. For
example:

TYPE
flex(m: INTEGER) = ARRAY[O .. m - 1] OF REAL;
{ A flexible type. }

VAR
a1 : flex(10); {The value of m is determined now.}

PROCEDURE p(s: STRING«n»;
VAR

a : PACKED ARRAY[O .. n - 1] OF CHAR;
{ The value of n is the length of argument s,
determined when procedure p is called. }

The following rules define the class of ext en t
expressions:

1. Only a limited set of operations is permitted, to
ensure that the result is ordinal and can easily be
evaluated at compile time (constant operands):

• The dyadic +, -, *, AND, OR, DIV, and MOD
operators (string concatenations with + are not
allowed).

• The monadic operators +, -, and NOT.

• Relational operators (for example, <).

• The functions ODD, ORD, PRED, SQR, ABS,
CRR, SUCC, and XOR.

3-29 Flexible Types

2. The terminal operands of the expression must
denote ordinal values.

3. Within the definition of a flexible type, a terminal
operand of an extent expression can be the name of
one of the type's extent parameters (as with type
flex in the previous example).

4. Within the type specified for a routine's
parameters or function result, a terminal operand
of an extent expression can be the name of a
conformant extent or value parameter of the same
routine. For example, function f returns a string
one character longer than its argument:

FU NCTION f (STRING(< n ») : STRING(n + 1);

5. Within a type specified in a declaration that is
inside a routine, a terminal operand of an extent
expression can be the name of a value known at
entry to that routine (as with procedure p in the
above example). That is, it can be the name of a
variable declared outside 'the routine, or it can be
the name of one of the routine's conformant extents
or value parameters.

In cases where it can matter, the compiler
generates code to capture the value at entry to the
routine. Thus, assignment to the variable within
the routine's body does not affect the meaning of
the extent expression wi thin the declaration.

6. Except as allowed in 3, 4, and 5 above, a terminal
operand of an extent expression must be a literal
ordinal constant or the name of an ordinal
constant.

Note that the dynamic specification of values allowed
by rule 5 can be combined with rule 3 or 4 and with true
constants, which is occasionally useful.

Data Types 3-30

For example:

TYPE
matrix (m,n: INTEGER) = ARRAY [l .. m, 1 .. n] OF
REAL;
vector (m: INTEGER) = ARRAY [l .. m] OF REAL;

CONST
row = 10;

PROCEDURE p(
VAR a : matrix(row,col);
col: INTEGER
);
TYPE

t (alpha: INTEGER) = matrix(2*alpha,col - 1);

In the declaration of parameter a, row is a named
constant, while col is a value parameter of the same
routine, as allowed by rule 4. In the declaration of the
flexible type t (within p), 2*alpha uses the extent
parameter alpha in accordance with rule 3, and col-l
uses the value col, known at block entry in accordance
with rule 5.

String Types

Character string values, or simply, strings, are
sequences of zero to 32,767 characters. These are the
values of the data types STRING and
VARYING-STRING. Strings also are the results of
string expressions, which include certain predeclared
functions and the concatenation of two or more strings.
In string expressions, variables of types PACKED
ARRA Y[l .. n] OF CHAR (when n does not exceed
32,767) and CHAR also yield string values.

3-31 String Types

STRING Data Type

The data type STRING(n) represents character strings
containing exactly n characters (0 s n s 32,767).

Internal Representation of STRING Data

A STRING data item is stored as a number of bytes
equal to the maximum length n, as illustrated in
Figure 3-12.

31

Char4

Char8

22
Char3

Char7

15

• • •

Char2

Char6

Char n • • •

7 0
Char1

CharS

Note that in this memory diagram (as in a
typical storage dump), the string characters
appear in reverse order on each line.

Figure 3-12. STRING(n) Representation

VARYING_STRING Data Type

The data type VARYING_STRING(n) represents
character strings of various lengths, up to a maximum
of n characters (0 s n s 32,767). The current length of a
VARYING_STRING variable can be obtained with the
LENGTH function.

Data Types 3-32

Internal Representation of VARYING-STRING Data

A VARYING-STRING data item is stored as a 16-bit
word containing the current length in characters,
followed by a number of bytes equal to the maximum
length, as illustrated in Figure 3-13.

Char2 Char 1 Current length

Char6 Char 5 Char4 Char3
• • •

Charn • • •

Note that in this memory diagram (as in a
typical storage dump), the string characters
appear in reverse order on each line.

Figure 3-13. VARYING_STRING{n) Representation

PACKED ARRAY OF CHAR

For compatibility with other Pascal implementations,
PACKED ARRAY[l .. n] OF CHAR can be used, in most
cases, as if it were STRING(n). However, there are
restrictions on assignments and relational operations,
since this is formally an array type. Also, when such an
array is used as a string type, it is a range violation if n
exceeds 32,767.

3-33 String Types

Strings and the Type CHAR

There is a close relationship between strings and the
data type CHAR. In any context that requires a string
value, a value of type CHAR is acceptable; it is treated
as a string of length 1. Similarly, in any context that
clearly requires a value of type CHAR, a string of
length 1 is allowed. (When a dynamically sized string
value is used in such a context, it is a range violation if
its length is not 1.)

Array Types

Array types represent aggregates of elements, all of
which have the same type. Through the use of flexible
types, arrays can be declared with dynamic extents;
that is, with varying numbers of elements in some or all
of their dimensions.

An array type must not specify more than eight
dimensions; if its elements are arrays, their dimensions
count toward this total. However, it's permissible to
have additional arrays of up to eight dimensions within
record elements.

Array Type Definitions

The definition of an array type supplies the data type of
its elements, the number of its dimensions, and the
data types (including minimum and maximum values)
of its subscripts, or indices.

The information about the indices in each dimension is
expressed by an index range. The indices need not have
the same data types nor the same minimum and
maximum values in each dimension. The syntax for an
array type definition is shown in Figure 3-14.

Data Types 3-34

Array Type

PACKED

ARRAY

Index Range

extent
expression

ordinal type name

extent
expression

enumerated type definition

Figure 3-14. Array Type Definition

3-35 Array Types

An array type can be defined as PACKED to specify the
most compact storage possible. (More details on
PACKED arrays are given later in this section.)

The index range supplies the data type of the array's
indices in a dimension, along with the minimum and
maximum indices. The data type must be ordinal. The
index range can be specified as a pair of extent
expressions separated by the symbol ~ .. ', the name of an
ordinal type, or (rarely) the definition of an enumerated
type. The minimum and maximum indices are either
the minimum and maximum values of the specified
ordinal type, the minimum and maximum values of the
enumerated type, or the left and right extent expres­
sions.

The ordinal value of an array dimension's upper bound
must be greater than or equal to the ordinal value of
Clower-bound - 1). The number of elements in a
dimension is (upper-bound - lower-bound + 1). Thus,
arrays with zero elements are allowed.

The data type of the array's elements can be of any
type, so you can declare arrays of types such as REAL
and INTEGER, as well as arrays of arrays, arrays of
records, arrays of files, and so forth. Note again that the
total number of dimensions in an array type must not
exceed eight.

Mul tidimensional arrays can be denoted either as, for
example:

ARRA Y[range 1] OF ARRA Y[range2] OF CHAR

or as:

A~RAY[range1 ,range2] OF CHAR

Attributes may be specified to control the internal
representation of an array type; their use is explained
in the last section of this chapter.

Data Types 3-36

Declaration of Arrays with Varying Extents

Perhaps the most straightforward use of flexible types
is in the declaration of arrays with varying extents. In
the following example, a type matrix is defined as a two­
dimensional array whose extents are specified in the
declarations of variables, permitting matrices of
various sizes:

TYPE
matrix(row,column: INTEGER) =
ARRAY[1 .. row, 1 .. column] OF REAL;
{ Matrix of reals. }

VAR
m2x3: matrix(2,3); {A 2 X 3 matrix.}
m50x10: matrix(50,1 0); { A 50 X 10 matrix. }

A flexible type such as matrix can also be used as part of
another flexible type's definition. Here, for example, a
record is defined, one field of which is of type matrix:

PROGRAM flextypes(OUTPUT);

TYPE
matrix(row,column: INTEGER) =
ARRAY[1 .. row,1 .. column] OF REAL;
{ Matrix of reals. }
square(side: INTEGER) = RECORD

number: INTEGER;
datum: matrix(side,side);
{ Square matrix. }
END;

VAR
s3: square(3); { Record containing 3X3 matrix.}
i,j: INTEGER;

BEGIN
s3.number: = 3;
FOR i : = 1 TO 3 DO

3-37 Array Types

FOR j : = 1 TO 3 DO s3.datum[i,j] : = j;
FOR i : = 1 TO 3 DO

FOR j : = 1 TO 3 DO WRITELN(s3.datum[i,j));
WRITELN('Size of square(3) in bytes: f, SIZE(square(3»
);
END.

The output of the program is:

1.00000E + 00
2.00000E + 00
3.00000E + 00
1.00000E + 00
2.00000E + 00
3.00000E + 00
1.00000E + 00
2.00000E + 00
3.00000E + 00

Size of square(3) in bytes: 40

Array Operations

Except for the special case of PACKED ARRAY OF
CHAR (discussed in the preceding section, ttString
Types"), operations with array types are limited to
assignments, either to individual elements or to the
entire array, and argument passing.

You can manipulate elements of arrays with indexed
variables. These are variables that give the name of the
array followed by a list of indices in brackets. For
example:

TYPE
table2(n: INTEGER) =

ARRA Y[l .. n, 1 .. 2*n] OF CHAR;
row(n: INTEGER) =

ARRA Y[1 .. 2*n] OF CHAR;

Data Types 3-38

VAR
table,table1: table2(2);
row1: row(2);

BEGIN

table[1][4] : = 'a'; {Put 'a' in row 1, column 4. }

table[1,4] : = 'a'; {Same thing. }

table1 : = table; {Assignment of entire array. }

row1 : = table[1]; {Assign first row to row1.}

Notice that, with a multidimensional array, the indices
can be written in consecu ti ve sets of brackets or
combined inside one set and separated by commas; the
meaning is the same.

The next to last assignment assigns the entire contents
of table to table 1. The name table, without indices, is a
reference to the entire array, and the expression on the
right-hand side must also be an entire array with
identical type.

The last assignment assigns the contents of the first
row of table to row1, since table[1] is an array of four
characters.

Internal Representation of Arrays

The elements of an array are stored in ((row-major"
order. This means that, for example, the two­
dimensional array table, type ARRA Y[1 .. 2,1 .. 4], is
stored as a sequence of elements, and the elements are
placed in the sequence with the right-most index
varying most rapidly, as shown in Figure 3-15.

3-39 Array Types

table[1,1]

table[1,2]

table[1,3]

•
•

II table[2,4] II

Row-major order means that the
elements of the first row are stored
first, beginning at the lowest address.
That is, the right-most index,
representing "columns" in this case,
varies more rapidly .

The last element in storage is the entry
in the last column of the last row.

Figure 3-15. Row-Major Order

If the array is PACKED (innermost dimension) and the
component type has a boundary requirement of bit
alignment, the elements are packed to the bit and the
array's boundary requirement is bit alignment.
Otherwise, the boundary requirement of the elements
is either their natural alignment or byte alignment
(whichever is larger), and this is also the boundary
requirement of the array itself.

Packed Arrays

Specifying PACKED on an array type has the following
consequences:

• If the element type is a suitable ordinal type or
small PACKED set, its data representation is
changed from the normal one to a packed
representation.

• If the element type is as above or is a PACKED
record or array with bit alignment, the elements of

Data Types 3-40

the array are packed to the bit, with no fill in
between elements.

Except in these cases, PACKED has no effect on data
representation. However, it does count in the rules for
type equivalence. In the above cases, the general effect
is to save storage at the expense of time to access
individual elements. A typical use is PACKED
ARRA Y[I .. n] OF BOOLEAN, which gives the most
compact form of BOOLEAN array.

Note that if a multidimensional array is denoted by

PACKED ARRA Y[1 .. 2, 1 .. 4] OF BOOLEAN;

PACKED applies to both dimensions because the
element type is BOOLEAN, but in

PACKED ARRAY[1 .. 2] OF ARRAY[1 .. 4] OF BOOLEAN;

PACKED has no effect on the representation, because
the element type is ARRAY without PACKED.

Record Types

A record type represents an aggregate of data, called
fields, that can have different data types. Records
provide a very flexible means of organizing related, but
dissimilar information. For example, PACKED records
can be used to represent the various bit fields in a
hardware device register.

Record Type Definitions

The definition of a record type supplies the types and
names of its fields, as shown in Figure 3-16.

3-41 Record Types

Record Type

PACKED

RECORD

Field List

variant part

Figure 3-16. Record Type Definition

A record type can be defined as PACKED to specify the
most compact storage possible. (The effect of this is
discussed later in this section, under ~~Internal
Representation of Records.")

The field list specifies the names and types of the
record's fields. Each field identifier is declared as a field
name for this record type. The field names must be
distinct within the record type, including field names
introduced in the variant part. Declaration of an
identifier as a field name does not conflict with any
other declaration of the identifier , including
declaration as a field name in another record type.

Data Types 3-42

The type of a field is specified on the right-hand side of
the colon following the field identifier (or list of such
identifiers, separated by commas).

Attributes may appear before the type for a field
(including a tag field). As explained later in this
section, the POS attribute can be used to exactly specify
the position of a field in a PACKED record. Note that
the POS attribute is not allowed on the tag type of a
variant part unless the tag field is actually present.
Data representation attributes may be present if
allowed on the particular field type. These attributes
are defined in the section ~~Data Representation," later
in this chapter.

The variant part of a field list, if present, defines
additional fields grouped into variants that share
storage in the record. (Variants are described later in
this section, under ((Records With Variants.")

Operations on Records

An individual field in a record is accessed using field
selection or the WITH statement; it is then used in
accordance with the field's data type. For example:

TYPE employee = RECORD
name: VARYING-STRING(80);
salary: REAL;
END;

VAR
ref: employee;

The fields in the record employee can be accessed by
using field selection, as follows:

employee.name { the employee's name}
employee.salary { the employee's salary}

3-43 Record Types

In addition, the WITH statement can be used to
establish a reference to the record, such as:

WITH ref DO
BEGIN

name: = 'Anthony Lowell';
salary: = 25000.00;

END;

Note that the only operation applicable to an entire
record is assignment of a record value to a record
variable.

Records With Variants

A record can contain one or more variants, with each
variant containing a group of fields. The variants share
storage, so in effect, the record can contain different
types of data at different times.

The definition of a record type with variants contains a
variant part as the last item in its field list (see Figure
3-16).

The form of the variant part is shown in Figure 3-1 7 .

Data Types 3-44

Variant Part

Variant

field
identifier

ordinal type

Figure 3-17. Variant Part Syntax

The ordinal type preceding the reserved word OF is the
variant part's tag type. The POS attribute and data
representation attributes may be used with the tag
type, as with an ordinary record field, but they have no
effect unless the field identifier and colon are present.

When the field identifier and colon are present, the
field identifier is declared as a record field in the
containing record. (It is not part of any of the variants.)
In conventional usage, this explicit tag field is set to
indicate which variant is currently in use. Note,
however, that the compiler never implicitly sets or
checks this tag field.

3-45 Record Types

Each variant is preceded by one or more ordina
constants (not extent expressions) providing value
tha t may be used to select the particular variant. All (J

these constants must be compatible with the varian
part's tag type, the same value cannot occur twice, anI
no variant can be preceded by more than 31 constants.

The fields in a particular variant are defined by a fiell
list enclosed in parentheses (see Figure 3-16). Note tha
this field list may itself contain a variant part
therefore, nested variants are possible. Whatever th
variant structure, the field names in all variants an4
the nonvariant part of the record must all be distinc
names.

Because the variants in a variant part share the saml
storage, assignment to a field in one variant must, i1
general, be regarded as invalidating the values of a1
fields in all other variants.

By using knowledge of the record's storage layout (vic
the compiler's MAP command qualifier) and takinJ
account of the rules for data representation, you can USI
fields in different variants at the same time or use then
to access the same data by different data types
However, this usage is nonstandard and can make (
program very sensitive to changes in a record type.

Variant records are useful for organizing informatiol
when the need for some kinds of information depend:
on other information. For example, the following reCOf(
type organizes some medical information, where th4
requirements differ for males and females:

TYPE
gender: (female,male);
date = LARGE-INTEGER;

Data Types 3-46

VAR
person 1: RECORD

name: VARYING-STRING(80);
birthdate: date;
CASE sex: gender OF

male: (); { Empty. }
female: (pregnancies: INTEGER)

END

Here, both males and females have birthdates and
names, but female variants also have an additional
field, containing the number of pregnancies. Since
there is a tag field (sex), one or the other variant is
identified by assigning either female or male to the
field person 1.sex.

The field in the female variant is referenced by field
selection in the usual way or by using the WITH
statement. For example:

WITH person 1 DO
pregnancies: = pregnancies + 1;

Allocating Records With Selected Variants

Normally, a record occupies enough storage to hold the
largest variant in the record's variant part. However,
the NEW procedure (see Chapter 9, ((VAXELN
Routines") can be used to select a specific variant (or a
specific set of nested variants) to be allocated. For
example:

TYPE t = RECORD
CASE INTEGER OF

1: (a: array [1 .. 100] OF INTEGER);
2: CASE INTEGER OF

21: (b: array [1 .. 100] OF DOUBLE);
22: (c: array [1 .. 100] OF CHAR»

END

3-47 Record Types

VAR p: At;

NEW(p,1);
NEW(p,2,21);
NEW(p,2,22);

{400 bytes; holds array a }
{ 800 bytes; holds array b }
{ 100 bytes; holds array c }

A record created in this way cannot be used in a record
assignment; the compiler does not know that it is
smaller than the normal size. This or any other
reference to a field that does not lie entirely within the
allocated part is an unpredictable error.

The SIZE function (see Chapter 9) can be used to
determine the amount of storage occupied by a record
with selected variants.

Internal Representation of Records

In determining a record's internal representation, the
compiler first determines the boundary requirement of
each field (including those in variants). This is the
maximum of the following:

• The boundary requirement implied by the field's
data type.

• Alignment specified by the ALIGNED attribute on
a field.

• Byte alignment unless the record is designated
PACKED.

The record's boundary requirement is the maximum of
all the fields' boundary requirements and any
alignment specified by the ALIGNED attribute, if it is
present on the record itself. Note the following:

• The boundary requirement and representation of
packable data types is different from normal if the
record is PACKED.

Data Types 3-48

• The record will have a boundary requirement of bit
alignment only if the record is PACKED, all field
data types require only bit alignment, and the
ALIGNED attribute is not used anywhere in the
record.

Once the boundary requirements are determined, the
compiler determines a relative location (offset from the
beginning of the record) and cumulative size for each
field, both quantities starting at zero. Fields are
assigned locations in the order of their declarations.
((Fill" is introduced between the end of field A and the
beginning of field B only to the extent required to
ensure that field B has the correct alignment relative to
the record's origin. Otherwise, the offset offield B is the
same as the cumulative size, including field A.

The cumulative size at the last field is the record's size.
Sizes and offsets are kept in units of bits only when they
do not equal an integral number of bytes.

The above description applies to records in which all
fields have constant size, the record has no variant part,
and the POS attribute is not used. The following rules
describe how these other cases are handled:

• Variable-size fields are handled by symbolic
expressions within the compiler, including
expressions to convert units to satisfy boundary
requirements.

• If a record has a variant part, the entire variant is
treated as the last field in the record. Its boundary
requirement is the maximum of all fields in all the
variants. Its contribution to the cumulative size is
the maximum of the variants.

• A particular variant is laid out starting at the
beginning of the variant part.

3-49 Record Types

• If the last field of a record (or any variant) is
variable-sized and bit-sized, the record will be
variable-bit-sized.

• If the natural size of a record type is ~ 32 bits, its
size may be specified exactly by using the BIT,
BYTE, WORD, or LONG attribute. BYTE, WORD,
and LONG force at least byte alignment.

• The pas attribute (see below) forces a field to have
a particular constant offset (expressed in bits
within the attribute). The compiler issues an error
message if the size conflicts with the field's
boundary requirement or the cumulative size,
including the preceding field.

Note: The actual layout of a record can be determined
wi th the compiler's MAP command qualifier.

POS Attribute

The pas attribute can be used to specify that a field
within a PACKED record begins at a given position
with respect to the origin. It conflicts with explicit use
of the ALIGNED attribute.

The syntax for the pas attribute is shown in Figure 3-
18.

--+C pas }-+(!)-+I extent expression ~

Figure 3-18. POS Attribute Syntax

The extent expression in the syntax for the pas
attribute must produce a nonnegative integer constant.

Data Types 3-50

The POS attribute can be applied to any field within a
PACKED record. The field with attribute POSen)
begins at bit position n; the origin of the record is
POS(O). The position n must be beyond the last bit of
the previous field, if any. The bit offset must be
consistent with the alignment requirements of the
field. For instance, [POS(15)] means that the field
begins at bit 15 (the 16th bit).

Generally, the POS attribute introduces filler bits or
bytes in the record. When used within a variant, the
attribute denotes the position relative to the beginning
of the entire record.

When applied to a type governing more than one
identifier, POS applies to the first. For example:

a,b: POS(32) CHAR;

Here, the field a is 32 bits from the record's origin; b is
40 hits from the origin.

Pointer Types

A pointer value is either the address of a data item in
the job's virtual memory or a distinct null value
denoted by the reserved word NIL. In Pascal, a pointer
type definition normally specifies the type of the items
to which the pointers will point (although r ANYTYPE
is also allowed). This is referred to as the pointer's
associated data type.

When a pointer variable has a valid value, you can
make a reference to the located variable by suffixing
the pointer variable with the indirection operator (@, A,
or r). For example:

TYPE stringptr = t STRING(80);
VAR p : stringptr;
BEGIN

3-51 Pointer Types

NEW(p);

pi: = 'any string';

END;

Here, p is a pointer to a variable of type STRING, and
pi denotes that variable. The NEW procedure
allocates storage large enough to hold an SO-character
string and assigns its address to p. The assignment
statement then assigns 'any string' to the data item
referenced by pi.
Pointer values other than NIL are obtained from the
routines NEW and ADDRESS and from some of the
kernel procedures such as CREATE-MESSAGE. A
pointer value so obtained remains valid only as long as
the storage it addresses remains allocated in the job.
Thus, a pointer obtained from NEW becomes invalid
when the storage is deallocated by a call to DISPOSE.
Pointers obtained from the ADDRESS function are
subject to further restrictions, as discussed in the
description of that function.

Pointer values can be compared with the equality and
inequality operators, with each other, or with NIL.
Pointer variables are assignment compatible only with
NIL and with other variables of the same type or type
t ANYTYPE (which is explained later in this section).

Pointer Type Definitions

The definition of a pointer type supplies the data type of
the variables whose locations it can address. A pointer
type definition can be used in the following contexts:

• On the right-hand side of a TYPE declaration.

• As the type of a parameter.

Data Types 3-52

• As the type of a function result.

• As the target type of a typecast variable.

The syntax for a pointer type definition is shown in
Figure 3-19.

...... typename

bound flexible type

Figure 3-19. Pointer Type Definition

The type name in a pointer type definition must be the
name of a nonflexible data type. It specifies the type of
the items to which the pointers will point. The type
ANYTYPE can be used here to declare pointers of
unspecified type, as explained later in this section.

A pointer type definition can also specify that pointers
of the defined type will point to items of a bound flexible
type. Bound flexible types are discussed under
cCFlexible Types," earlier in this chapter.

The following example shows the use of a pointer type
to identify dynamically allocated records:

PROGRAM update(lNPUT, OUTPUT, PFILE);

TYPE
persrec = RECORD

name: VARYING-STRING(80);
salary: REAL;

END;

3-53 Pointer Types

VAR
perspointer: Apersrec;
pfile: FILE OF persrec;

BEGIN

N EW{perspoi nter);
{ Allocate new record; its location is now in
perspointer. }

WRITE{'Enter name, salary: ');
READLN{perspointer

A
.name,

perspointer
A
.salary);

REWRITE{pfile) ;
WRITE(pfile,perspointer

A
);

DISPOSE(perspointer) ;
{ Dispose of the record; perspointer is now
invalid. }

END.

Internal Representation of Pointers

Pointer variables are longwords containing 32-bit
addresses. NIL is represented by zero, which is never a
valid memory address in a process.

ANYTYPE Data Type

The data type ANYTYPE represents data of completely
unspecified type (unlike BYTE-DATA, where the
data's size is specified). ANYTYPE may only be used
for V AR parameters and for the associated data type of
a pointer type.

When a t ANYTYPE pointer is used to reference data,
the data item's type must be specified by typecasting, as
explained in Chapter 5, ((Variables."

Data Types 3-54

For example,

pi:: INTEGER

casts the pointer p to type INTEGER when it is used.

Note that t ANYTYPE is assignment compatible (as
either the source or target of the assignment) with any
other type of pointer.

File Types

In Pascal, a file type is the type of a Pascal file variable,
which is a data item used to designate the source
(target) of an input (output) operation. In many cases,
the I/O source or target will be a true file (that is, a file
in the file system), and it may be convenient to ignore
the distinction between the Pascal file variable and the
file system file. However, they are not at all the same
thing, and file variables may be used independently of
the file system.

A file variable has an associated data item called a file
buffer, which holds the data transmitted by use of the
GET or PUT procedures. The file buffer's data type is
called the file's component type. In I/O involving a true
file, this is the data type of the records in the file. The
component type V ARYING-STRING(n) may be used to
handle files with variable record lengths.

The predeclared file type TEXT has special properties
useful in text I/O. Textfiles are explained in Chapter
15, ~~Input and Output."

The remainder of this section discusses the definition of
file types, restrictions on file variables, and the internal
representation of file variables. The use offile variables
in I/O is fully described in Chapter 15.

3-55 File Types

File Type Definitions

A file type definition has the form shown in Figure 3-
20.

rcPACKEO?1
---..------....... __ ~(FILE ~type ~

Figure 3-20. File Type Definition

The type in a file type definition determines the file's
component type, and hence the type of its associated
buffer. It must be constant-sized, with the size not
exceeding 32,768 bytes. The type must not be a file type
(that is, there cannot be ttfiles of files") or a record or
array type with components of a file type (there cannot
be ttfiles of arrays of files," and so forth).

PACKED has no effect in V AXELN Pascal, except in
regard to the equivalence of file types, as explained
later in this chapter.

The following examples illustrate file type definitions:

TYPE
pers-file = FILE OF RECORD

name: VARYING-STRING(80);
hire-date: LARGE-INTEGER;
salary: REAL;

VAR

END; {A data type used for files of employee
records.}

console-in: FILE OF CHAR;{ File of characters. }

Data Types 3-56

Restrictions on File Variables

A variable of a file type does not have a value in the
ordinary sense. It is a control block used by the system
to store information for supporting the various file 1/0
operations. For this reason, file variables are not
allowed as targets of assignment statements or as value
parameters.

Any modification of the storage of a file variable, except
with the predeclared I/O operations, has unpredictable
effects. For this reason, file variables should usually
not be used within the variant parts of variant records.
(The compiler issues a warning message in this case.)

The contents of the buffer variable are closely related to
the operations on the file variable. For this reason, it is
an error to refer to the buffer variable and perform any
operation on the buffer variable in the same simple
statement. For example, if p is a procedure with V AR
parameters of file types, then p(file, file t) is generally
invalid. Again, violations of this rule have unpredict­
able effects.

Internal Representation of File Data

A file variable is byte-aligned and occupies 16 bytes
plus the size of its buffer variable's type (rounded up to
the nearest byte if it is bit-sized). A file variable's
address is used by the run-time library to uniquely
identify a file. Note that file variables are shareable by
a job's processes only if they are declared at the outer
level.

The structure of the internal representation of a file
variable is shown in Figure 3-21.

3-57 File Types

31 0

buffer pointer

flags

descriptor pointer

control-block pointer

buffer variable

~.-.-.-.-.-.-.-.-.-.-.-.-

File variable

~

-
AI. ... ~

? ~ File descriptor)
.................

: •••••• n •• ~
~ File control block ~

Figure 3-21. Internal Representation of a File Variable

The flags part of the file variable contains such
information as the file's location in the PROGRAM
argument list (if applicable), whether the buffer is
currently ~~valid" in Pascal terms, and so forth.

The file descriptor contains information about the file
that is determined by the compiler, such as whether it
has type TEXT, whether it is declared in a module's
outer block, and so forth. Usually, the file descriptor is
allocated in read-only storage.

The file control block is allocated dynamically by the
run-time routines. It contains internal information
needed by the routines to process file 110, such as the
size and address of the record buffer, whether the file is
the standard INPUT or OUTPUT, whether access is
sequential or direct, and the PORT value identifying
the circuit used for data transmission.

The exact definitions of the file variable's parts, the file
descriptor, and the file control block are in the source
filePASIODEF.PAS.

Data Types 3-58

System Data Types

The system data types PROCESS, AREA, EVENT,
SEMAPHORE, MESSAGE, PORT, NAME, and
DEVICE are used to synchronize the concurrent parts
of programs (processes), to control devices, and to
communicate between programs.

Each system data type represents the identifying value
of a V AXELN kernel object. A V AXELN Pascal
program declares variables of these types to hold the
identifying values of the corresponding objects.

Values of the system data types can be assigned to
variables of the same type, passed as arguments to
parameters of the same type, and returned by functions
with the same result type. Generally speaking, all
other operations on these types are performed by
predeclared kernel procedures.

The system data types are briefly described below,
including the internal representation of each type. The
kernel objects themselves (including their internal
representation) are described in detail in the V AXELN
User's Guide.

PROCESS Data Type

A PROCESS object represents an independent thread of
execution; that is, a process. There can be any number
of processes executing the same process block.

PROCESS values are represented internally as 32-bit
longwords that are used by the kernel to identify an
individual thread of execution. They are valid only
within their ownjob.

3-59 System Data Types

AREA Data Type

An AREA object represents a region of memory that
can be shared among jobs on a single node in a
V AXELN network.

AREA values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular area and its associated properties.

EVENT Data Type

An EVENT object represents the state of an event used
for process synchronization.

EVENT values are represented internally as 32-bit
longwords that are used by the kernel to locate the
actual data and its associated properties.

SEMAPHORE Data Type

A SEMAPHORE object represents a synchronization
gate used to meter process execution and synchronize
access to shared data.

SEMAPHORE values are represented internally as 32-
bit longwords that are used by the kernel to locate the
actual object and its associated properties.

MESSAGE Data Type

A MESSAGE object describes data transmitted
between processes. Messages can be transmitted
between processes on the same network node or on
different network nodes.

MESSAGE values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular message and its associated properties.

Data Types 3-60

PORT Data Type

A PORT object represents a repository for messages
waiting to be received; that is, a message port. Only the
processes in the job that created a port can receive a
message from that port; any process in any job can send
a message to it.

PORT values are represented internally as 128-bit
quantities that are used by the kernel to uniquely
identify the message port.

NAME Data Type

A NAME object represents a user-defined name for a
message port.

NAME values are represented internally as 32-bit
longwords that are used by the kernel to identify a
particular name for a port.

DEVICE Data Type

A DEVICE object represents a device interrupt
connected to an interrupt service procedure.

DEVICE values are represented internally as 32-bit
longwords that are used by the kernel to locate the
actual object containing its associated properties.

Other Predeclared Data Types

The data types described in this section do not fall into
any of the preceding categories of predeclared data
types. These types are BYTE-DATA and
LARGE-INTEGER.

3-61 Other Predeclared Types

BYTE_DATA Data Type

The type BYTE_DATA(n) represents storage of a
specific size (n eight-bit bytes), whose contents are not
interpreted in any specific way. There are no operations
defined on this type except assignments and argument
passing.

To facilitate systems programming, some special
conventions apply to byte data:

• Routine parameters of type BYTE_DATA(n) are
considered to be compatible with any data type of
the same size.

• Conformant BYTE_DATA parameters, such as
BYTE_DATA(< n», are compatible with data of
any size.

The size parameter of BYTE_DATA can be omitted in a
typecast variable, and the result is interpreted as
BYTE_DATA, with the size of the source variable. For
example, if variable velac is of type REAL, the variable

velac:: BYTE-OAT A

is interpreted as BYTE_DATA(4), because REAL data
requires four bytes of storage.

LARGE_INTEGER Data Type

The data type LARGE_INTEGER represents signed,
64-bit integers. Variables of this type are declared with
the word LARGE-INTEGER. The data type is provided
primarily for representing 64-bit time values.

Only a few operations are allowed on
LARGE-INTEGER values, and they are not ordinals.
(See Chapter 6, ttExpressions and Operators," for the
operations allowed.)

Data Types 3-62

The range of LARGE-INTEGER data is from - 263 to
263 -1 (approximately + 9.2233 X 1019). Any attempt
to compute a LARGE-INTEGER value outside this
range causes an integer overflow exception, with the
result undefined.

Internal Representation of LARGE-INTEGER Data

Internally, a LARGE_INTEGER data item is
represented in 2's complement form in a V AX
quadword (64 bits). The most significant bit (63) is
always zero for positive numbers and always one for
negative numbers.

The internal representation is shown in Figure 3-22.

31 0

I I
63 +- Increasing significance 32

Figure 3-22. LARGE-INTEGER Representation

Type Equivalence

V AXELN Pascal imposes the requirement of type
equivalence in several contexts, the most important
being passing an argument to a VAR parameter,
assignment of array and record values, and assignment
of pointer values where the associated C~pointed-to")
types must be equivalent.

The general principle underlying type equivalence is
that two data types should be considered equivalent if
they have the same internal representation and they

3-63 Type Equivalence

have the same logical meaning in Pascal terms. The
interpretation of this principle for the various Pascal
data types reflects practical usage of the language, but
it may not exactly match the requirements of a
particular application. In cases where the type
equivalence rules are too strict, typecasting may be
used to override them.

Type equivalence is a weaker relation than type
identity. Two types are identical if they are the same
predeclared type or denote the same occurrence of one
of the syntactic categories whose name ends in ((type
definition." For example:

TYPEA = 1 .. 3;
B = 1 .. 3;
C = A;

Here, types A and C are the same, but B is a distinct
sub range type. This technical notion of identical type is
needed only for the definition of type equivalence.

Type equivalence is a stronger relation than
assignment compatibility, which is summarized in
Chapter 7, ((Pascal Statements." For example:

VAR A:REAL;
B: DOUBLE;

A:= B;
B:= A;

Here, the assignment statements are valid because
REAL and DOUBLE are compatible types, even though
they are not equivalent.

The type equivalence rules for arrays and flexible types
involve extent values. Failure of type equivalence
related to extent values is a range violation. If the
extent values are not constant, the error will only be
detected at run time, and only if range checking is

Data Types 3-64

enabled. In all other cases, type equivalence errors are
detected by the compiler.

The following subsections present the equivalence rules
for the various classes of data types.

Ordinal Types

The base ordinal types are INTEGER, CHAR,
BOOLEAN, and enumerated types. In the most general
terms, an ordinal type has a base ordinal type, may be a
subrange type (for example, ttO .. 7") and may have a
representation attribute, such as BYTE. Every ordinal
type has a minimum value and a maximum value.

Two ordinal types are equivalent if all the following are
true:

• They have the same base ordinal type.

• Either both are sub ranges or neither is.

• They have the same representation attribute, if
any.

• They have the same minimum and maximum
values.

If the two types have the same base type, lack of
equivalence is only a warning-level error in some cases
where the internal representation is the same. For
example:

• Neither data item is PACKED.

• One data item is PACKED, but is specified with
BIT, BYTE, WORD, or LONG, where that is the
normal representation of the base type.

• Both data items are PACKED and have the same
representation attribute, if any.

A program giving this sort of warning message may be
correct in practical terms, but you should be sure that

3-65 Type Equivalence

the actual values of variables do not violate the
variables' ranges. Range-checking code is not
generated in these cases.

Set Types

Two set types are equivalent if all the following are
true:

• They have the same element type.

• Either both are PACKED or neither is PACKED.

• Both have the same representation attribute, if
any.

• They have the same minimal element and the
same maximal element.

If two set types have the same base type, lack of
equivalence is only a warning-level error in some cases
where the internal representation is the same. For
example:

• Neither set is PACKED and both occupy the same
number of long words.

• One set is PACKED but is specified with LONG,
and the other occupies one longword.

• Both sets are PACKED and are specified with the
same representation attribute, if any.

Flexible Types

Each definition of a flexible type introduces a distinct
type that is not identical with any other. For example:

TYPE
A (m: INTEGER) = ARRAY [1 .. m] OF INTEGER;
B (m: INTEGER) = ARRAY [1 .. m] OF INTEGER;

Here, types A and B are different types.

Data Types 3-66

A bound flexible type is a flexible type with explicit
extent values. For example:

TYPE
Tl (m: INTEGER) = ARRAY [l .. m] OF INTEGER;
T2 = Tl(10); {Tl(10) is a bound type. }

Here, the definition of type T2 is a bound flexible type.

If two bound types are matched for equivalence, and
neither is defined in terms of the other, the only thing
that matters is whether the types ttwithin" them are
equivalent.

For example:

TYPE
Tl (m: INTEGER) = ARRAY [l .. m] OF INTEGER;
T2 (n: INTEGER) = ARRAY [O .. n] OF INTEGER;
T3 = Tl(10); {Tl(10) is a bound type.}
T4 = T2(9); {T2(9) is a bound type. }

Here, T3 and T4 are equivalent because the two arrays,
although they are not identical, have the same number
of INTEGER elements.

If one of the types is defined in terms of the other, then
equivalence is determined by comparing extent values
in corresponding positions. For example:

TYPE
Tl (m,n: INTEGER) = ARRAY [l .. m, 1 .. n] OF
INTEGER;
T2 (o,p: INTEGER) = Tl (o,p);
T3 = Tl(5,10);
T4 = T2(5,10);

Here, T4 = T2(5,10) is ttexpanded" to the type Tl(5,10)
by substituting the extent values for 0 and p. Here, T3
and T4 are equivalent. Nonequivalence of flexible types
due to differing extent values is a range violation.

3-67 Type Equivalence

Predeclared Flexible Types

For the data types STRING, VARYING_STRING, and
BYTE-DATA, two types are equivalent only if the type
is the same and the extent value is the same. For exam­
ple, STRING(10) is equivalent only with STRING(10). It is
a range violation if the extents are different.

Predeclared Non-Flexible Types

If a predeclared type is defined in this manual as a
particular array or pointer type, then it is covered by
the regular rules for the equivalence of array and
pointer types, which follow. Apart from this, two
predeclared non-flexible types are equivalent only if
they are identical.

Array Types

Array types are equivalent if the following
requirements are satisfied:

• They have the same number of dimensions.

• They have equivalent element types.

• They have the same alignment requirement. (This
only matters if the ALIGNED attribute is used.)

• Both are PACKED or neither is PACKED in
corresponding places.

• The number of elements is the same for each
dimension. It is a range violation if the numbers of
elements are diffe;rent.

Note: The last requirement is satisfied if the bounds
are the same in each dimension, but that is not required
for equivalence. For example, ARRAY ['a' .. 'z'] OF
INTEGER is equivalent to ARRAY[l .. 26] OF INTEGER,
since the number of elements is 26 in either case.

Data Types 3-68

Record Types

Two record types are equivalent only if they are
identical.

Each definition of a record type introduces a distinct
type that is not identical with any other. For example:

TYPE
A = RECORD

name: STRING(80);
salary: REAL;

END;

B = RECORD
name: STRING(80);
salary: REAL;

END;
C = B;

Here, A and B are different types; C is the same as B
because it is only a synonym. Note again that A and B
are not identical even though they have the same field
definitions.

Pointer Types

If one or both types are t ANYTYPE, they are
equivalent; otherwise, the associated types must be
equivalent.

File Types

Two file types (other than TEXT) are equivalent if the
following requirements are satisfied:

• Both are PACKED or neither is PACKED .

• They have equivalent buffer-variable types.

The file type TEXT is not equivalent to any other type.

3-69 Type Equivalence

Data Representation

For some system programming applications you may
need to know the rules by which data is stored
internally, and the language features, such as data
attributes, that modify the representation.

Each data type has an internal representation that is
used for entire variables of that type. It specifies the
following:

• The size of the data item in bits or bytes.

• The boundary requirement of the type (bit
alignment, byte alignment, and so forth).

• The actual form of a data item in memory.

The normal internal representation for each type is
given in the section on that type earlier in this chapter.
The representation can be modified as follows:

• Within a PACKED record or array, the following
packable data types have a special representation
(unless overridden by one of the data size
attributes, as explained later in this section):
BOOLEAN, enumerated types, subranges of
INTEGER and CHAR, and small PACKED sets.
The special packed representation is explained in
the section for each type.

• Certain ordinal data items, small PACKED sets,
and PACKED records may have their size modified
by one of the data size attributes BIT, BYTE,
WORD, or LONG, as explained later in this
section.

• The ALIGNED attribute may be used to specify a
more stringent than normal alignment require­
ment for arrays, records, and fields within records.

Data Types 3-70

• In the VAX argument list generated for a routine
call, the argument corresponding to a value
parameter of type CHAR, BOOLEAN, or
enumerated is a longword whose low-order byte or
word contains the value (with the normal
representation) and whose high-order bytes are
zero. This means that the entire longword can be
used as the integer value ORD(argument).

• The compiler may keep intermediate expression
results in other forms, which are not visible to you.

The remainder of this section discusses the following
topics:

• The definition of boundary requirement

• The definition of size

• Packed data

• The data size attributes BIT, BYTE, WORD, and
LONG

• The ALIGNED attribute

Boundary Requirement

The boundary requirement of a data type is the
minimum alignment for storage allocation of that type.
For example, if the boundary requirement for a data
type is byte alignment, data of that type must be
allocated on byte boundaries. The compiler may
allocate the data item on ~(higher" boundaries, such as
longword boundaries for integers.

If a data type's boundary requirement is bit alignment,
it can be allocated at any location.

3-71 Data Representation

Size of Data

The size of a data type is the amount of storage required
to represent a data item of that type. The size is
normally an integral number of eight-bit bytes, and
those are the units returned by the SIZE function. Bit­
sized data is possible in the following cases:

• Within a PACKED record or array, data types
with special packed representations, as mentioned
previously, may he bit-sized.

• A PACKED record or array containing bit-sized
data may he bit-sized.

• Data items with the BIT attribute may be bit-
sized.

Note: The storage allocated for a bit-sized record or
array data item is rounded up to the next integral
number of bytes, unless the item is itself immediately
contained in a PACKED record or array. The extra, or
((fill," bits resulting from this allocation are not
properly part of the data item and have unpredictable
values.

Packed Data

The reserved word PACKED can he used to control data
representation in the following ways:

• Applied to a record type denotation, PACKED
causes fields ofpackahle data types to be stored in
their special packed representation. To the extent
that the fields have a boundary requirement of bit
alignment, they are packed so that there are no
unused hits.

• If PACKED is specified in a record type definition,
the BIT, BYTE, WORD, or LONG attribute can

Data Types 3-72

also be used on the record definition, and POS may
be used within the record.

• If the element type of an array definition is one of
the packable data types and the array is
designated PACKED, each element is stored in its
special packed representation. If the element's
data type has a boundary requirement of bit
alignment, the array is packed so that there are no
unused bits between elements .

• If a set type definition is designated PACKED, and
if the type's normal representation is one longword
(that is, the ordinal number of the maximum
element is less than 32), then the set type is a
packable data type.

Apart from these cases, PACKED has no effect on the
data representation. It is, however, significant in the
rules for type equivalence whether or not the
representation is changed. In addition, PACKED
ARRA Y[l .. n] OF CHAR can be used as a string, as
discussed earlier in this chapter.

Data Size Attributes

The BIT, BYTE, WORD, and LONG attributes can be
used to control the size of an ordinal data item, a small
set item, or a small PACKED record. In terms of
V AXELN Pascal syntax rules, these attributes are
allowed preceding a type on the right hand side of a
type declaration, in a VAR declaration, in a field of a
record (including the tag following- CASE in the variant
part), or preceding the type definition of an array
element.

Generally, these attributes are intended to be used for
fields in data structures. Indiscriminate use of them
can result in substantial performance degradation.

3-73 Data Representation

The type to which the data size attribute is applied
must be one of the following:

• A PACKED record type definition whose natural
size is constant and ~ 32 bits.

• A set type definition (PACKED or not) defining a
small set type, where small means the ordinal
number of the maximum element is less than 32.

• An explicit subrange C(low-value .. high-value").

• A named ordinal type or named small set type. In
this case, if the named type already has a data size
attribute, the new attribute overrides it.

Additionally, the following properties and rules apply
to the data size attributes:

• A named type defined using one of these attributes
may be used anywhere, subject to the normal data
type rules. In particular, such a named type may
be used in typecasting. Typecasting of bit-aligned
and packed fields is allowed, providing the cast
type is appropriate. (See Chapter 5, ((Variables,"
for a discussion of typecasting.)

• When a named type has one of these attributes,
any item defined directly as of the named type will
also have the attribute.

• If an item of type CHAR has one of these
attributes, it is not accepted as a string.

• If an enumerated type is originally defined with a
representation attribute, subranges of the type
will have the same attribute, unless overridden.

• If you typecast a reference to a data type with the
BIT attribute, or to an array or record type with an
alignment requirement of only bits, the reference

Data Types 3-74

doesn't have to be addressable; that is, it may
appear to the compiler to have a bit offset.

• If the control variable of a FOR loop is INTEGER
or BOOLEAN, it must not have a representation
attribute other than LONG (INTEGER) or BYTE
(BOOLEAN). If the control variable is CHAR or
enumerated, it can have BYTE, WORD, or LONG,
but not BIT.

• If a field of a PACKED record or the element type
of a PACKED array has one of these attributes, its
representation is not affected by the PACKED
designation.

BIT Attribute

The BIT attribute specifies the number of bits of
storage occupied by a data item, and it implies a
boundary requirement of bit alignment. It conflicts
with the BYTE, WORD, LONG, and VALUE
attributes.

The syntax for the BIT attribute is shown in Figure 3-
23.

--+(",_B_IT_~ extent expression ~
Figure 3-23. BIT Attribute Syntax

The extent expression in the syntax for the BIT
attribute must produce an integer constant in the range
1 .. 32. The constant must be at least as large as the data
item's natural size in packed representation.

3-75 Data Representation

If the bitfield's size exceeds the data item's required
size, the field value is extended as follows:

• Signed integer fields are sign extended.

• Other ordinal fields are zero extended.

• Sets are zero extended.

• For PACKED records, the extra bits have
undefined values unless a defined value, such as
ZERO, is assigned to the entire record.

The BIT attribute makes it possible to precisely
describe any packed representation while keeping
subranges and set ranges in line with the values
actually expected.

BYTE Attribute

The BYTE attribute specifies that a data item occupies
exactly one byte of storage, and it implies a boundary
requirement of byte alignment. It conflicts with the
BIT, WORD, and LONG attributes.

Note that the data item's size without BYTE must not
exceed eight bits.

WORD Attribute

The WORD attribute specifies that a data item occupies
exactly one word of storage, and it implies a boundary
requirement of byte alignment. It conflicts with the
BIT, BYTE, and LONG attributes.

Note that the data item's size without WORD must not
exceed 16 bits.

Data Types 3-76

LONG Attribute

The LONG attribute specifies that a data item occupies
exactly one longword (32 bits) of storage, and it implies
a boundary requirement of byte alignment. It conflicts
with the BIT, BYTE, and WORD attributes.

Note that the data item' size without LONG must not
exceed 32 bits.

The ALIGNED Attribute

The ALIGNED attribute may be specified on an array
type definition, a record type definition, or on the type
of a field in a record definition. Note that in the latter
case, the POS attribute cannot be used.

The syntax for the ALIGNED attribute is shown in
Figure 3-24.

~ ALIGNED ~ extent expression ~

Figure 3-24. ALIGNED Attribute Syntax

The extent expression in the syntax for the ALIGNED
attribute must produce the integer constant 0 (byte
alignment), 1 (word alignment), or 2 (longword align­
ment).

The net boundary requirement of the array, record, or
field is the maximum of the data item's natural
boundary requirement and whatever is specified by the
ALIGNED attribute. Only the net boundary
requirement figures in the rules for type equivalence.

3-77 Data Representation

Data Types 3-78

Introduction

Chapter 4

Constants

V AXELN Pascal provides a variety of means for
describing constant data; that is, data whose value does
not change during the execution of a program. This
chapter presents the rules for literal constants, the
declaration of named constants, and initializers.

A literal constant is a lexical token denoting a
particular ordinal, floating-point, or character string
value. A named constant is a name (identifier) denoting
one of these same types of values. Named constants are
declared in CONST declarations and in enumerated
type definitions. In addition, VAXELN Pascal provides
several predeclared named constants, which are
summarized in the last section of this chapter.

In the declaration of named constants and in most other
places where standard Pascal requires a constant
value, an extent expression with constant operands can
be used to supply an ordinal value. This feature is
explained under ((Flexible Types" in Chapter 3. The few
cases where the language requires a constant rather
than a general restricted expression are explained in
the section ((Limited Ordinal Constants," later in this
chapter.

An initializer is a special syntactic construction used to
specify a constant initial value for a variable (or default
value for a value parameter). Initializers can be used
with any data type, including record and array types.

4-1

Certain forms of constant data are defined using
variable declarations, whose syntax is given in the next
chapter. The most important case is a VAR declaration
with the READONL Y attribute. Such a declaration
allocates readonly storage for the declared data, which
can be of any type. The data's value is given by an
ini tializer.

A V AR declaration with the VALUE attribute may be
used (for certain data types) to declare a constant value
made available to the VAXNMS linker. Used with the
EXTERNAL attribute, it allows access to such items
defined in other languages; for example, assembly
language. Note that such items are not full-fledged
constants, since their values are not known at compile
time.

Literal Constants

Literal constants are lexical tokens that denote a
particular value of type INTEGER, CHAR, REAL,
DOUBLE, or STRING. The type is implied by the form
in which the literal constant is written and, to some
degree, the context in which it is used. Numbers are
unsigned simply because the sign is a distinct lexical
token.

Literal Integer Constants

Literal integer constants can be written either in
decimal or nondecimal form; the default is decimal. In
most places, the syntax allows an integer-valued
constant expression in lieu of an integer constant.

Constants 4-2

Decimal Literals

An unsigned decimal integer literal consists of 1 to 31
decimal digits specifying a nonnegative value in the
range 0 through 231 -1. The following are valid
examples:

102938747
398
o
1
12

The type of such a literal constant is INTEGER.

Note that 2,147,483,648 is not a valid integer literal,
even though - 2,147,483,648 is (internally) an
acceptable value. This most negative integer value can
be specified by the hexadecimal literal %X80000000.

Also note that any literal containing a decimal point (.)
is of type REAL, not of type INTEGER.

Nondecimal Literals

Integer literals can also be written in binary, octal, or
hexadecimal form. Each of these forms consists of a
radix specifier followed by an unsigned series of digits
which are optionally enclosed in apostrophes.

The radix specifiers are %B (binary), %0 (octal), and
%X (hexadecimal). It makes no difference whether the
radix specifiers are uppercase or lowercase. In the
quoted version, spaces and tabs can be used for clarity
and are ignored. Spaces and tabs can also appear
between the radix specifier and number.

This form of literal specifies an integer by giving its
two's-complement representation with zero exteflsion
to 32 bits. It thus denotes a value n in the range

4-3 Literal Constants

- 2 31 s; n < 231. The following are valid examples, with
their decimal equivalents shown in {}:

% 8'1000110 l' { - 115 }
%8001101 { - 51 }
%0 '1777377' { -1573121 }
%071263 { - 3405}
%X'981 FA' { - 425478}
%xFF012 { - 4078}
%XFFFFFFFF { - 1 }
% x80000000 { - 2147483648 }

Literal CHAR Constants

A single character enclosed in apostrophes (for
example, 'a') is a literal constant of type CHAR.

Literal Floating-Point Constants

Figure 4-1 uses the same notation as the language
syntax diagrams to show the form of a literal floating­
point constant. Here, the terminal elements are
decimal digits, the period used as a decimal point (.),
the plus (+) and minus (-) symbols, and the lowercase
letter e or the uppercase letter E.

A literal floating-point constant has a mantissa,
consisting of an integral part and a fractional part
(separated by a decimal point), and an optional
exponent. Note that the integral part is required, and
that the constant must contain a fractional part or an
exponent. The total number of integral and fractional
digits must not exceed 34, and the total number of
characters in a literal must not exceed 43.

The exponent consists of the letter E (or e) followed by
an optionally signed integer exponent. The fractional
part of the mantissa is optional only if the exponent is
specified.

Constants 4-4

integral part fractional part

exponent

Figure 4-1. Literal Floating-Point Constant Syntax

The exact decimal value of a floating-point literal is
equal to the mantissa multiplied by the power of 10
indicated by the exponent. For example, the literal
floating-point constant 1.234E2 is equivalent to the
expression 1.234 X 102, which is the decimal number
123.4. The exact value is converted by rounding to the
closest value in the internal F, D, or G_floating format,
depending on the context.

For purposes of determining the result type of a
floating-point operation, a floating-point literal is
considered to have the type REAL. However, constants
are not converted to an internal representation until
the compiler determines the context of use. This applies
to named floating-point constants as well as to literals.
Thus, no accuracy is lost if a floating-point constant
with many digits is used in a DOUBLE expression or
assigned to a DO UBLE variable.

4-5 Literal Constants

The following are valid examples of literal floating­
point constants:

1.0
lEl0
le - 10
lE + 10
1.234
O.234el0
1.234E - 10
1.234e + 10
0.234

The following constants are invalid:

1. { Decimal point without fraction; should be 1.0}

.234 { No integral part; should be 0.234 }

0.123456789012345678901234567890123124412el0
{Too long.}

Literal String Constants

A string constant is a string enclosed in apostrophes.
For example:

'This isn"t a character, it"s a string.'

Notice that the apostrophe itself is represented as a
double apostrophe in a string constant. The string
constant, including the surrounding apostrophes, must
be written on one line in your programs.

A string of length zero is called the null string and is
represented by an empty string constant:

"

Note that this is different from the literal CHAR
constant '0', where 0 represents a space. Note also that
the null string is not the same as the character NUL
(CHR(O}).

Constants 4-6

The type of a string constant is CHAR if it contains one
character; such constants can be assigned to CHAR
variables and used in contexts where ordinal types are
required; for instance, as arguments to the ORD
function. It is treated as a string when appropriate; for
example, when it is assigned to a STRING variable.

Nonprinting Characters in Constants

N onprinting characters can be represented by their
ordinal values (see Table 3-1 in Chapter 3, ttData
Types") enclosed in parentheses, concatenated to string
constants:

'These are printable.'(7), <-that isn"t!'

Any ordinary string constant can be followed by a list of
decimal integer literals enclosed in parentheses. Each
literal is the ordinal value of a character, and at least
one must be present. If more than one literal is present,
they are separated by commas.

Although the ordinary constant must be written on one
line, these parenthesized lists can be separated by
ttwhite space" (including line breaks) and can contain
white space. For example, all of the following constants
are valid:

'printable'(7,7,7)

'printable'
(7,7,7)'printable'

'printable'
(7 ,7,7
),printable'

Each of these is a single string constant.

4-7 Li teral Constants

Constant Declarations

Figures 4-2 and 4-3 show the syntax for constant
declarations. In Figure 4-2, the constant identifier is
declared as a constant name whose value is given by
the constant on the right-hand side of the equal sign.

Constants

constant
identifier

constant

Figure 4-2. Constant Declaration Syntax

....------" extent expression

literal floating-point constant

floating-point constant name

..... ----~" literal string constant

~-----.. string constant name

Figure 4-3. Constant Syntax

4-8

In Figure 4-3, the extent expression must have constant
operands. It can be a literal or named ordinal constant,
a signed integer constant, or a more general expression.
Extent expressions are explained under ((Flexible
Types" in Chapter 3.

Limited Ordinal Constants

There are three contexts in the languages's syntax
where an ordinal constant value must be specified
using the limited ordinal constant syntax shown in
Figure 4-4, rather than the more general extent
expression. These contexts are:

• Specifying the limits in a sub range type.

• Specifying the ordinal value associated with a
variant in a record type definition.

• Specifying the case value of a statement within a
CASE statement.

literal integer constant

integer constant name

1-------" literal CHAR constant

1-------.. CHAR constant name

....... -----.. enumerated constant name

Figure 4-4. Limited Ordinal Constant Syntax

4-9 Limited Ordinal Constants

Initializers

Initializers supply constant initial values for variables
and constant default values for optional value
parameters. To specify an initializer, follow the item's
type with the symbol tt: =" (the assignment operator),
followed by the initializer.

For example, the following V AR section shows several
kinds of non aggregate initializers:

VAR
a: INTEGER: = 3;
s: SET OF CHAR: = ['a' .. 'z','A'];
s2: SET OF (red,yellow) : = []; { Empty set. }
counter: INTEGER: = 1 + 2;
c: [READONLY] REAL: = 3e10;
p: i INTEGER: = NIL;
str: STRING(80) : = "; { Empty string. }

The following procedure heading illustrates an
initializer used to supply a constant default value for a
value parameter:

PROCEDURE p (c: CHAR: = 'A');

Here, for the procedure p, the default value for the
value parameter c is the character A.

The syntax ofinitializers is shown in Figure 4-5.

Constant Initializers

In constant initializers, the constant must be
assignment compatible with the target data item, and
it is converted to the exact target type by the general
rules for assignment. Strings are truncated or padded
by spaces as required. If an ordinal constant is out of
the target's range, the compiler detects the error.

Constants 4-10

literal string or literal CHAR constant

aggregate initializer

Figure 4-5. Initializer Syntax

As explained previously in the section t(Constant
Declarations," a constant can be an extent expression
with constant operands. Note that a parenthesized
extent expression is treated as an aggregate initializer
(as defined later in this section) if the corresponding
data item is an array or record.

Concatenated String Constants

The concatenation of literal string and/or literal CHAR
constants provides a notation for expressing strings of
more than 256 characters as initializers.

A string constant or concatenated string can be used to
initialize a PACKED ARRA Y[l .. n] OF CHAR.

4-11 Initializers

Set Initializers

Sets are initialized with set constructors enclosed in
brackets ([]) that are either empty or consist of member
designators separated by commas. Each member
designator is either a constant extent expression or a
pair of such expressions separated by the symbol ~ .. '. A
set constructor has the same meaning here as in an ex­
pression (see Chapter 6, ~cExpressions and Operators").

NIL

The reserved word NIL, which denotes the null pointer
value, can be used only to initialize a pointer item.

ZERO

The ZERO function can be used in initializers. It is
compatible with any data type and means that the
entire storage of the variable is initialized to binary
zero. For example, the following declaration initializes
a record variable to binary zero:

VAR
rec: RECORD

END: = ZERO;

If used in an aggregate initializer for the tag of a
variant part of a variant record, ZERO initializes the
entire variant part to binary zero (in which case there
must be no further initializers for the record).

In Pascal terms, the initialization with ZERO has the
following meaning:

Constants

INTEGER zero

REAL or DOUBLE zero

4-12

BOOLEAN FALSE

Enumerated The enumerated element
with ORD(element) = 0

CHAR The character NUL

STRING String of NUL characters

VARYING-STRING The null string

Sets The empty set

Pointer types NIL

Note that an ordinal target with a sub range type can
thus be initialized to a value outside the subrange. The
compiler does not treat this as an error.

Aggregate Initializers

Aggregate initializers are used to initialize arrays or
records, and an initial value must be specified for each
element or field. The syntax is shown in Figure 4-6.

REPEAT

extent
expression

initializer

initializer

Figure 4-6. Aggregate Initializer Syntax

The OF and REPEAT constructions allow you to repeat
an initial value for several fields or elements. The

4-13 Ini tializers

extent expression preceding OF specifies the number of
iterations. It must have constant operands and yield a
nonnegative integer. REPEAT uses the subsequent
initializer to fill out the remaining fields or elements in
the data item. It's an error to explicitly specify too few
or too many initializers, but REPEAT will correctly fill
it out.

An empty aggregate initializer is valid only if the
corresponding data item is an empty array or record. A
parenthesized constant or extent expression can be
used for an aggregate with one element.

In this context, multidimensional arrays are considered
one-dimensional arrays with arrays as elements;
nested aggregate initializers have to be used unless
ZERO is used to zero the entire sub array .

For example, the following declaration initializes an
array's elements to 1:

VAR
al: ARRAY[1 .. 5, 1 .. 10] OF INTEGER

: = (5 OF (10 OF 1»;

For variant records, there must be an initializer for the
tag whether or not the record has an explicit tag field.
Except where ZERO is used, the initializer for the tag
must be compatible with the tag's type; the remaining
initializers then match the selected variant. For
example:

VAR
x: RECORD

CASE BOOLEAN OF
true: (a: INTEGER);
false: (b: STRING(8»

END
: = (false, 'abc');

Here, field b is initialized to 'abc' .

Constants 4-14

Effects of Initializers

Initializers define constant values and are allowed only
with constant-sized variables and parameters. For
variables with the READONL Y or VALUE attribute,
the initializer simply defines the data item's constant
value; no code needs to be executed.

For outer-level nonconstant variables, the data item is
initialized by the system as part of job initialization.
For local variables (V AR declarations within a
PROGRAM or other routine), the data item is
initialized by prologue code; that is, code that is
executed just before the code for the routine's
BEGIN-END.

An initializer for a value parameter supplies a default
value that is used whenever an explicit argument is not
supplied for the parameter. (See Chapter 8, ~(Procedures
and Functions," for more information.)

In some cases, the use of an initializer is far more
expensive in code space and/or execution time than
would appear from looking at the source code. The
following restrictions are imposed by the compiler to
avoid some of the less efficient cases:

• No initialized data item can have a storage size
greater than 65,535 bytes .

• If the initialized data item is a local (not outer­
level) variable or a value parameter, at least one of
the following must be true:

- It has the READONL Y or VALUE attribute.

- It is initialized with the ZERO function.

- It is initialized to a string with no more than 256
characters.

- Its size does not exceed 256 bytes.

4-15 Ini tializers

You should also bear in mind that initializing a large
outer-level variable (unless it has the READ ONLY
attribute) may involve moving a substantial amount of
data at run time and require additional storage to hold
the constant image of the initialized storage. This data
movement may be less efficient than explicit assign­
ments. For example, if you have a large table (array)
with relatively few nonzero initial entries, it is usually
more efficient to initialize the entire table with ZERO
and then use assignment statements to supply the
nonzero values.

Predeclared Named Constants

V AXELN Pascal provides the following predeclared
named constants:

• The words TRUE and FALSE, which represent the
two values of the type BOOLEAN.

• The word MAXINT, which represents the value
2,147,483,647; that is, 2 31 _1. This is the
maximum value of type INTEGER. The minimum
value of type INTEGER is -(MAXINT + 1); that
is, - 231.

• The constant ASSERT_CHECK_ENABLED,
which can be used to make the execution of code
depend on the presence of the compiler qualifier
CHECK = ASSERT. This qualifier enables
assertion checking. If the qualifier is present, the
constant is TRUE; otherwise, it is FALSE.

Predeclared Enumerated Types

In addition to the predeclared named constants
described above, VAXELN Pascal provides the

Constants 4-16

following predeclared enumerated types, which in turn
define predeclared named constants:

• The type EVENT-STATE is used in calls to
CREATE_EVENT. The defined values are
EVENT$CLEARED and EVENT$SIGNALED.

• The type FILE--.ACCESS is used in calls to OPEN.
The defined values are ACCESS$SEQUENTIAL
and ACCESS$DIRECT.

• The type FILE-CARRIAGE-CONTROL is used in
calls to OPEN. The defined values are
CARRIAGE$LIST, CARRIAGE$FORTRAN, and
CARRIAGE$NONE.

• The type FILE-DISPOSITION is used in calls to
OPEN. The values are DISPOSITION$SAVE and
DISPOSITION$DELETE.

• The type FILE_HISTORY is used in calls to
OPEN. The defined values are HISTORY$OLD,
HISTORY$NEW, HISTORY$UNKNOWN, and
HISTORY$READONL Y.

• The type FILE-RECORD_TYPE is used in calls to
OPEN. The defined values are RECORD$FIXED
and RECORD$V ARIABLE.

• The type FILE_SHARING is used in calls to
OPEN. The defined values are SHARE$NONE,
SHARE$READONLY, SHARE$READWRITE.

• The type N AME_ TABLE is used in calls to
CREATE-NAME and TRANSLATE_NAME. The
defined values are NAME$LOCAL,
NAME$UNIVERSAL, NAME$BOTH (allowed
only for TRANSLATE-NAME).

• The type OPEN-CIRCUIT is used in calls to
OPEN. The values are CIRCUIT$CONNECT and
CIRCUIT$ACCEPT.

4-17 Predeclared Named Constants

• The type QUEUE_POSITION is used in calls to
REMOVE-ENTRY and INSERT_ENTRY. The
defined values are QUEUE$HEAD,
QUEUE$TAIL, and QUEUE$CURRENT (allowed
only for REMOVE-ENTRY).

Constants 4-18

Introduction

Chapter 5

Variables

V AXELN Pascal provides for the introduction of
several sorts of variables; that is, items to which
different values can be assigned during the execution of
a program. This chapter discusses the declaration of
variables, the rules for variable references, storage
allocation, and data sharing between processes in ajoh.

A local variable is defined by use of a variable
declaration (without the READONL Y attribute) within
the body of a routine. A value parameter declared
without READONL Y is also a local variable of its
routine, the difference being that it is initialized to the
corresponding argument value. In each invocation of a
routine, a local variable is a distinct data item. Due to
recursive use of a procedure or function or multiple
parallel invocations of a process block, several
instances of a local variable may exist at the same time.
An outer-level variable declaration without
READONL Y defines a single variable data item that
exists for the entire duration of the job. An outer-level
variable declaration may also specify the EXTERNAL
attribute, which means that the data item is actually
defined in a module not written in V AXELN Pascal.

A variable declaration with the READONL Y attribute
defines a constant data item. A special form of constant
data related to the V AXNMS linker is provided by a
variable declaration with the VALUE attribute.

5-1

The construction used to reference a variable is called a
variable reference, which can denote all or part of a
variable, as follows:

• An indexed variable reference denotes an element
in an array.

• A field reference denotes a field in a record.

• A pseudo variable reference calls the SUBSTR or
ARGUMENT function to form a variable
reference.

• An indirect variable reference denotes a data item
specified by its address. Such an item can be
introduced by a variable declaration, but it is
usually an item allocated by use of the dynamic
allocation routines discussed in the section
((Storage Allocation."

• A buffer variable reference denotes the buffer
associated with a file variable.

• A typecast variable reference references a data
item using a data type that is different from that of
the original reference.

Special care must be taken in referencing data that is
shared between processes. The last section of this
chapter, ((Interprocess Data Sharing," discusses data
sharing within a single job. Sharing data between jobs
is discussed in Chapter 12, ((Interjob Communication."

Variable Declarations

The syntax for variable declarations is shown in Figure
5-1.

Variables 5-2

initializer

Figure 5-1. Variable Declaration Syntax

Each variable identifier in the list is declared as the
name of a variable. The scope of the declaration is the
containing routine body. All variables in the list have
the type, attributes, and initializer specified on the
right-hand side of the colon (:).

The READONLY, VALUE, and EXTERNAL attri­
butes apply specifically to variables and are described
in the following subsections. The ALIGNED, BIT,
BYTE, WORD, and LONG attributes may also be used,
depending on the specified type. These attributes are
described under CCData Representation" in Chapter 3.

The initializer supplies a constant initial value for the
variable (or variables). An initializer is required for
READONLY and VALUE variables without the
EXTERNAL attribute; it is not allowed with
EXTERNAL. Other rules for ini tializers depend on the
variable's data type, as explained under CCInitializers"
in Chapter 4.

5-3 Variable Declarations

READONL V Attribute for Variables

The READONL Y attribute, as used in a variable
declaration, specifies that the variable is to be allocated
in readonly storage so that it is a form of constant data.
The compiler issues an error message for any explicit
attempt to modify a READONL Y variable.
Modifications not detectable by the compiler (for
example, via a pointer to the variable) result in an
access violation exception at run time.

Unless EXTERNAL is specified, a READONLY
variable must have an initializer, since there is no
other way to give it a value. The variable must not be a
file or contain a file.

The actual memory allocation of EXTERN AL
READONL Y variables depends on the external
definition, so the compiler cannot guarantee write
protection at run time. However, it does issue the usual
error message for any explicit attempt to modify the
variable.

Note that the READONL Y attribute can also be
specified for value parameters, as explained in Chapter
8, ((Procedures and Functions."

VALUE Attribute

The VALUE attribute is used in a variable declaration
to define a form of constant data item related to the
VAXNMS linker. If the variable's name is exported
without EXTERNAL, the defined value is made
available to the linker as the value of a global symbol
with the same name. If the declaration also specifies
EXTERNAL, the name denotes a value that will be
supplied to the linker by a non-VAXELN Pascal
module.

Variables 5-4

The following rules apply to variables declared with the
VALUE attribute:

• Unless the EXTERNAL attribute is also specified,
the declaration must contain an initializer. This
determines the value denoted by the name.

• A variable reference to the declared item must be
its name only (typecasting, for example, is not
allowed) and it must occur in a context denoting
the item's value (that is, as a function in an
expression) .

• The data type of the variable must an ordinal type,
REAL, a small set type (that is, ifORD(maximum­
element) :s; 31), or a pointer type. It must not have
the BIT attribute. All these types require ~ 32 bits
of storage. The value made available to the linker
is the appropriate 32-bit representation; for
example, a value of type CHAR would be zero
extended to 32 bits.

Note that VALUE can be used for non-exported, non­
EXTERNAL variables, but this is not a significant
usage.

EXTERNAL Attribute

The EXTERNAL attribute is used in a variable
declaration to indicate that the variable is actually
defined in a non-VAXELN Pascal module. If the
declaration has the VALUE attribute, the item must be
available to the V AXNMS linker as a global value.
Otherwise, it must be available as a global symbol
denoting the address of storage defined by another
module.

5-5 Variable Declarations

Variable References

Figure 5-2 shows the various forms of variable
references.

~: name :
.. ,.

~: Indexed variable reference r--
~ field reference I

I

~ pseudo variable reference I
I

~; indirect variable reference r--
~i buffer variable reference I

I

~: typecast variable reference I-
Figure 5-2. Variable Reference Syntax

The name specified in a variable reference can be the
name of a variable (V AR declaration), value parameter,
V AR parameter, a name established as a variable name
by a WITH statement, or a function name (left-hand
side of assignment statement within the function).

If the reference is simply a name, it references the
entire data item denoted by the name, and the
reference's data type is the same as the name's type.

The other forms of variable reference restrict the
reference to part of a data item, access a related item, or

Variables 5-6

redefine the assumed type of the item. These forms are
explained in the following subsections.

Indexed Variable References

An indexed variable reference selects an element of the
array denoted by the initial variable reference shown in
Figure 5-3.

variable
reference

Figure 5-3. Indexed Variable Reference

Each expression provides a subscript value. The
expression's type must be assignment compatible with
the corresponding subscript type (index range) in the
array's type definition. If the array has more than one
dimension, multiple expressions can be written,
separated by commas, in the same set of brackets. It is a
range violation if the expression's value is outside the
corresponding index range.

The data type of the indexed variable reference is the
array's element type. If the array is multidimensional
and not fully subscripted in this reference, the indexed
variable reference will have an array type.

Examples:

VAR
namearray: ARRA Y[1 .. 1 0] OF
VARYING-STRING(80);
stats: RECORD

5-7 Variable References

BEGIN

filenum: INTEGER;
table: ARRAY [1 .. 4,1 .. 6] OF REAL;

END;

namearray[1] : = 'Shakespeare';
stats.table[1][1] : = 1.23ge10;
stats.table[1,2] : = S.Oe21;
stats.table[1] : = stats.table[2] ;

END.

Here, namearray, stats.table[1], and stats.table all are
references to arrays. That is, namearray and stats.table
refer to entire arrays, and stats.table[1] refers to an
array element that is itself an array. Notice, therefore,
that an element in the multidimensional array
stats.table can be referred to either with a sequence of
bracketed indices or with a sequence of indices in the
same brackets.

Field References

A field reference selects a field in the record denoted by
the initial variable reference shown in Figure 5-4.

--...... 1 variable ~ field name ~
. reference ~

Figure 5-4. Field Reference

The field name must be one of the field names defined
in the original definition of the record type. The data
type of the field reference is the same as the type of the
field within the record type.

Variables 5-8

Examples:

TYPE rtype = RECORD
person: VARYING-STRING(80);
stats : RECORD

salary: REAL;
hiredate : LARGE-INTEGER;
END {stats.}

END; { rtype. }
VAR

r : rtype;
rptr: j rtype;
rarray: ARRAY [1 .. 10] OF rtype;

BEGIN
r.person : = 'Arturo Toscanini';
r .stats.salary : = 15000.00;
r.stats.hiredate : = TIME-VALUE(

'l-JAN-1939 00:00');
NEW(rptr);
rptrj : = r;
rarray[l].stats.hiredate : = rptr j .stats.hiredate;

END;

Here, r, r .stats, rptr j , and rarray[1] all are references to
records and so can be followed by field names to
designate specific fields. Used by themselves, they refer
to entire records, as in

rptr j : = r;

which assigns the entire contents of record r to the
record identified by rptr.

Note that in a reference to a field in a nested record,
there must be a field selection for each level of record
nesting. Therefore, in the above example, the field
hiredate in r must be referenced as r.stats.hiredate. The
compiler will reject r.hiredate because hiredate is not
the name ofa field immediately in r.

5-9 Variable References

The WITH statement provides a method to temporarily
establish the field names in a record as variable names,
so they can be used without further qualification. For
example:

WITH r .stats DO
salary: = salary + 1;

Here, the WITH statement establishes a reference to
the record r.stats. Within the statement's body, this
reference applies to the field name salary, even though
it is not preceded by a record reference. The WITH
statement is described in Chapter 7, ((Pascal
Statements."

Pseudo Variable References

The predeclared functions SUBSTR or ARGUMENT
can be used to form a pseudo variable reference. The
syntax is shown in Figure 5-5.

----... 1 function call I •
Figure 5-5. Pseudo Variable Reference

The function call is an invocation of the SUBSTR
function with a variable reference as its first argument,
or the ARGUMENT function with a V AR parameter as
its first argument. These functions are described in
Chapter 9, ((VAXELN Routines."

Indirect Variable References

An indirect variable reference denotes the data item
whose address is given by the value of the initial

Variables 5-10

variable reference shown in Figure 5-6. This reference
must have a pointer data type.

Figure 5-6. Indirect Variable Reference

The data type of the indirect reference is the same as
the associated data type of the pointer. The indirection
character is either a caret (A), up-arrow (t), or at sign
(@). The up-arrow is generally used in this manual, for
clarity, but the at sign and caret are more commonly
available on terminal keyboards.

The following example shows the use of pointers to
access fields in a dynamically allocated record:

TYPE
gender = (male, female);
persrec = RECORD

VAR

name: VARYING-STRING(80);
age: 0 .. 200;
CASE sex: gender OF
male:
(beard: BOOLEAN;
bdate: LARGE-INTEGER);
female:
(births: BOOLEAN;
birthdate: LARGE-INTEGER);
END;

patient: i persrec;

5-11 Variable References

BEGIN
NEW(patient) ;
WITH patient t DO BEGIN

name: = 'Melvin Cowsnofski';
age: = 45;
sex: = male;
beard: = TRUE;
bdate : = TIM E-VALU E('29-FEB-1956')

END
END.

Here, patient t refers to an entire record allocated by
the NEW procedure, and a reference to the record is
established by the WITH statement.

Buffer Variable References

A buffer variable reference denotes the buffer associated
with the Pascal file variable specified by the value of
the initial variable reference shown in Figure 5-7. This
reference must have a file data type.

J variable I. ~
------, reference ("\!)~------.

Figure 5-7. Buffer Variable Reference

The data type of the buffer reference is the same as the
file type's component type. The indirection character is
either a caret (A), up-arrow (i), or at sign (@). The up­
arrow is generally used in this manual, for clarity, but
the at sign and caret are more commonly available on
terminal keyboards.

Variables 5-12

For example,

output i : = 'a';

assigns the character' a' to the buffer of the predeclared
file output. The type of the reference output i is
CHAR.

Note that a reference to a file's buffer or the value in its
buffer is not always valid and may trigger actual 110, as
explained in Chapter 15, ffInput and Output."

Typecast Variable References

A typecast variable reference is used to reference a data
item using a data type that is different from that of the
original reference. The new type is specified by the
named type in the typecast variable reference, as
shown in Figure 5-8.

J variable I .. /'::\ .. : .. I
--.. , reference ~ named type

Figure 5-8. Typecast Variable Reference

The named type can be a type name, a bound flexible
type, or a pointer to one of these types. (See Chapter 3,
ffData Types," for the exact named type syntax.)

In general, these types have the same meaning as when
used in a declaration. However, there are two special
cases of interest:

1. TypecastingtoBYTE-DATA.

The type name BYTE_DATA can be used as a
complete named type. In this case, it is interpreted

5-13 Variable References

as BYTE_DATA(n), where n is the storage size of
the original variable reference. For example:

VAR x: DOUBLE; y: LARGE-INTEGER;
x::BYTE-DATA: = y::BYTE_DATA

Here, both typecast references have the type
BYTE-DATA(8), and the assignment statement
simply moves the contents of y to x.

2. Typecasting to a flexible type.

The new type of a typecast reference may be
specified as a bound flexible type or as a pointer to
such a type. In either case, the extents of the bound
flexible type may be given as arbitrary expres­
sions. They are not restricted to the special class of
extent expressions. The only requirement is that
the extent expression be assignment compatible
with the corresponding extent parameter of the
flexible type.

In typecasting to a bound flexible type, the
expressions are evaluated each time the typecast
reference is evaluated. This provides a completely
general way to describe dynamically sized data.
(For examples, see the discussion of the WITH
statement in Chapter 7, ttpascal Statements.")

The size of the new data type in a typecast variable
reference must not exceed the size of the original type
(to avoid a range violation error). In addition, if the
reference is not addressable, the new data type must
have a boundary requirement of bit alignment. (Other
data types are not consistent with non-addressability of
data.)

A typecast variable reference denotes the data item at
the same location as the original reference, extending
for the size specified by the new type. Typecasting has
no effect on the contents of the data item. The effects of

Variables 5-14

using a typecast reference are dependent upon the
internal representation of data, and the construction is
not part of standard Pascal.

Incorrect use of typecasting leads (immediately or
later) to an attempt to use an invalid value, because the
contents of the data item are inconsistent with the
applicable data type. Note that typecasting a literal or
named constant is not allowed. You must use a
READONLY variable initialized to the constant value;
this clearly defines the internal representation of the
constant.

The following example shows the use of typecasting to
examine the individual parts of a REAL data item:

TYPE f-float = PACKED RECORD
{ Hidden bit is not in the internal representation.}
fraction 1: 0 .. 127; { 7 bits unsigned. }
exponent: 0 .. 255; {8 bits unsigned, biased. }
sign BOOLEAN; { 1 bit.}
fraction2: 0 .. 65535; {16 bits unsigned.}
END;

VAR m: INTEGER; x: REAL;

BEGIN
x:= -1.25el0;
WRITELN(hex(x»; {Prints 43B7D13A. }
WITH x::f-float DO
BEGIN

{ Print unbiased exponent as decimal integer. }
WRITELN(exponent - 128); {Prints 34. }
{ Print fraction including hidden bit as a hex

integer. }
m : = (128 {Gives hidden bit.} +

fraction 1)*65536 + fraction2;
WRITELN(hex(m»; {Prints BA43B7. }

5-15 Variable References

{ Produce a reserved operand value. }
exponent: = 0;
sign: = TRUE;
WRITELN(hex(x»; { O.K., x accessed as

BYTE-DATA.} {Prints 43B7803A.}
m : = TRUNC(x); {Reserved operand exception.}
WRITELN(m);

END;
END;

This example is typical of typecasting in that more than
one reference to a typecast item (x: :f-float) is needed.
The WITH statement is useful in this situation; see the
discussion of the WITH statement in Chapter 7, ttpascal
Statements," for examples of using the construction
ttWITH name AS" to handle more general typecasting.

The possibility of typecasting a packed field occurs
often; however, care must be taken in order to get the
representation exactly right. The following example
illustrates the typecasting of packed fields:

VAR x: PACKED RECORD {16 bits. }
a : 0 .. 127; {7 bits unsigned.}
b: PACKED SET OF 0 .. 7; {8 bits.} {Has 7-bit

offset, so is not addressable. }
c : BOOLEAN;
END;

TYPE t7 = [bit(7)] 0 .. 127;
t8 = [bit(8)] 0 .. 127;
t9 = [bit(9)] 0 .. 127;

BEGIN
x.b: = [0 .. 7]; {Sets all 8 bits of x.b.}
WRITELN(x.b:: CHAR); { The compiler issues an

error message rejecting typecasting because
type CHAR cannot apply to a non-addressable
referen ce. }

Variables 5-16

WRITElN(x.b: :t7); {Allowed. Access on the first 7
bits of the 8-bit field, so 127 is printed. }

WRITElN(x.b: :t8); {Allowed. Treats the field as an
8-bit integer with the high-order bit as the sign
bit. Because the subrange specification is
0 .. 127, the sign bit should be zero. The effect is
to print -127 without any indication of an
error. }

WRITElN(x.b: :t9); {The compiler issues a warning
message detecting a range violation because
the type being cast to is larger than the
constant size of the variable being cast.
Executing the program results in an exception
referencing the specific error. }

END;

Addressability of Variable References

A variable reference may denote a data item that is not
addressable; that is, it is not located at a byte boundary
in the VAX-11 memory. Such a reference may not be
used as the argument of the ADDRESS function or as
an argument passed to a V AR parameter in any
routine. The compiler issues an error message for any
attempt to use a non-addressable reference in these
contexts.

The compiler considers a reference to be non­
addressable only if both of the following are true:

• The reference's data type has a boundary
requirement of bit alignment.

• The reference has a bit offset (from an addressable
location), excluding the case of a constant bit offset
divisible by eight.

5-17 Variable References

Storage Allocation

This section summarizes the way the compiler allocates
storage for constants and variables.

If a READONL Y variable or a named string constant is
exported from a module, it is allocated storage in the
code program section (PSECT) of that module. Other­
wise, constants, READONL Y variables, and VALUE
variables are allocated storage in the code PSECT of
that module only as required by the generated code in a
module using the item. The code PSECT is potentially
shared by all instances of the program.

An outer-level, non-READONL Y variable is allocated
in the data PSECT of the containing module if it is
exported or if it is required by the generated code.
(Thus, unreferenced nonexported variables are not
allocated storage.) The data PSECT is materialized
separately for each instance of the program (as a job),
which requires copying any nonzero initializers for the
data.

In a V AXELN job, there is one copy of the data PSECT
shared by all processes in the job. Thus, any data in this
PSECT is potentially shared by the processes in a job.

Storage allocation for a local variable depends on its
data type and how it is used by the generated code.
Unreferenced constant-sized variables (including those
eliminated by optimization) are not allocated storage. If
a constant-sized variable is used in the genera ted code,
it will be assigned to one or more registers and/or a
location in the routine's stack frame, depending on its
data type and pattern of usage. In any case, the
allocation is, at most, for the duration of the routine's
activation. Passing a variable to a V AR parameter,

Variables 5-18

referencing it from a nested routine, or taking its
address will force allocation at a stack frame location.

Dynamically sized local variables are allocated by
extending the routine's stack frame in prolog code that
is executed immediately before the code for the
routine's executable statements (BEGIN ... END).

The preceding discussion of local variables applies to
variables declared in non-in-line routines. In each
expansion of an in-line routine, a constant-sized local
variable is treated as though it belonged to the non-in­
line invoking routine. If required, it will be allocated in
registers and/or the invoking routine's stack frame.
Local variables of disjoint in-line expansions may share
storage in the stack frame.

Dynamically sized local variables for in-line routines
are allocated on the stack by prolog code generated as
part of each in-line expansion of the routine. They are
temporary additions to the invoking routine's stack
frame and will be deallocated with it if not before. (For
more information on V AX memory management and
the VAX stack architecture, see the VAXELN User's
Guide.)

Interprocess Data Sharing

Data may be shared (that is, accessed) by more than one
process in a job. All data is potentially shareable except
local variables of routines and value parameters of
routines. These data items are allocated by the
compiler in PI memory (stack) space, and the address is
meaningful only within the process allocating the data,
since the stack space is private to each process in a
VAXELNjob.

Outer-level variables can be shared by name; that is,
more than one process can refer to the variable by its

5-19 Interprocess Data Sharing

name. Sharing can also be accomplished with pointers
and with V AR parameters of process blocks.

Sharing constant data, including variables declared
with READONL Y or VALUE, presents no program­
ming problems. However, sharing data that is modified
by one or more processes must be carefully managed to
prevent unpredictable program behavior.

The following atomic operations can be used safely on
data shared by processes within ajob:

• The READ_REGISTER and WRITE-REGISTER
routines. (Note that they are not restricted to
operations on actual device registers.)

• The procedures INSERT-ENTRY and
REMOVE-ENTRY, when used on the head and
tail entries of a queue.

• The ADD_INTERLOCKED function.

If more complicated operations are performed on shared
data, the access to the data must be synchronized.
While one process is executing code that can modify the
data, no other process can execute code that can access
the data in any way. The synchronization must be done
with kernel procedures or with the mutex routines
(which call the kernel procedures themselves when
necessary), as discussed in Chapter 11, ((Subprocesses
and Synchronization."

Failure to observe this principle results in unpredict­
able program behavior. A program that works on one
processor model can fail on another, or a change to the
V AXELN system might cause program failure.

Notes

The following notes supply additional guidelines
regarding shared data.

Variables 5-20

Dynamic variables. Data allocated by NEW, like most
other data, can be shared. The operations NEW and
DISPOSE are atomic.

File variables. File variables are subject to the same
rules as other data, and almost any operation on a file
variable is a modify operation. Failure to synchronize
the access to a file can result in scrambled input or
output data or in a run-time error (if the Pascal run­
time routines detect simultaneous access).

Initialization of shared data. It is good practice to
initialize shared outer-level variables in the master
process before subprocesses are created. It is easy to
forget that the initialization operation must be
synchronized; for example, initialization of a queue by
START-QUEUE or of a MUTE X variable by
CREATE_MUTEX.

Record locking. Programs that use shared data often
must protect data more complicated than single Pascal
variables. For example, if multiple processes are
updating records in a File Service file using a single
Pascal file variable, they must synchronize access to
the file variable, but they must also protect (or «lock")
records in the file. Otherwise, two read-rewrite
sequences on the same record can get interleaved.

Shared messages. A message and its associated «text"
variable can be manipulated by more than one process
in a job, but the operations must be properly
synchronized. For example, if process A deletes a
message while process B is preparing to send it, the
program will misbehave. Process B may get the status
KER$_BAD-VALUE from SEND, or it may get an
exception when it tries to access the message's text
variable; these are relatively harmless results. It is also
possible for process B to access some new, unrelated
data via the address of the original text variable or

5-21 Interprocess Data Sharing

even (rarely) for the 32-bit MESSAGE value to be
reused as a new object ID before B sends the message.

Communication regions. The communication region of
an interrupt service routine is shared in a special way
between the interrupt service routine and the rest of
the device driver program. The program logic of the
device driver must ensure that nonatomic operations
are synchronized.

Device registers. Device registers are not shared data
in the sense used above. In some cases, all they do is
symbolize the responses of a device to events, such as
read and write requests, that occur on the bus. The only
predictable operations on device registers are
READ-REGISTER and WRITE_REGISTER.

Variables 5-22

Chapter 6

Expressions and Operators

An expression in V AXELN Pascal represents the value
of a constant, a variable, or a function result, or it may
represent a combination of two or more such values
separated by operators, or a range of such values.

V AXELN Pascal provides the following classes of
operators:

• Ari thmetic opera tors

• Boolean operators

• Relational operators

• Set operators

• Concatenation operator

This chapter discusses the syntax of Pascal expressions,
including a discussion of operator precedence and
associativity, followed by a discussion of side effects in
expressions. The remainder of the chapter discusses
each of the classes of operators individually.

Expression Syntax

In the syntax for V AXELN Pascal expressions, an
expression consists of a simple expression, or two simple
expressions separated by an operator. Each simple
expression contains one or more terms, each consisting
of a single factor, or two or more factors separated by
operators. Each factor yields a value.

This summary of the terminology used in expression
syntax is expanded in the following subsections.

6-1

Expressions

An expression in terms of the V AXELN Pascal syntax
consists of a simple expression, or two simple
expressions separated by a relational operator.

The expression syntax is shown in Figure 6-1.

simple expression

simple expression

Figure 6-1. Expression Syntax

The relational operators shown in the syntax diagram
are discussed in the section ~~Relational Operators,"
la ter in this chapter.

The following is an example of a V AXELN Pascal
expression:

- alb + a * d < alb + a * d

Simple Expressions

A simple expression in the expression syntax contains
one term, possibly preceded by the monadic + or
monadic - operator, or two terms separated by one of a
specific set of dyadic operators.

Expressions and Operators 6-2

The syntax for a simple expression is shown in Figure
6-2.

Figure 6-2. Simple Expression Syntax

The + and - operators shown in the syntax diagram
are discussed in the section ~~Arithmetic Operators,"
later in this chapter. The operator OR is discussed
under ~~Boolean Operators."

The following is an example of a simple expression:

-alb + a*d

Terms

Each term in the simple expression syntax consists of a
single factor, or two or more factors separated by one of
a specific set of dyadic operators.

The term syntax is shown in Figure 6-3.

6-3 Expression Syntax

Figure 6-3. Term Syntax

The I, *, **, DIV, and MOD operators shown in the
syntax diagram are discussed in the section
((Arithmetic Operators," later in this chapter. The
operator AND is discussed under ((Boolean Operators."

The following are examples of terms:

alb and a*d

Factors

Each factor in the term syntax is a primary expression
that yields a value. A factor can be a literal constant, a
constant name, a variable reference, a function call, an
expression enclosed in parentheses, or a set constructor.
(Set constructors are discussed later in this chapter; the
other types of factors are discussed in detail elsewhere
in this manual.)

In addition, the reserved word NIL can be used as a
factor, and the logical operator NOT can be applied to a
factor. (NOT is discussed in the section ((Boolean
Operators, " later in this chapter.)

The factor syntax is shown in Figure 6-4.

Expressions and Operators 6-4

--...,....----.... Iiteral constant

1-----.... constant name

Figure 6-4. Factor Syntax

Operator Precedence and Associativity

When an expression contains several different
operators, the rules for operator precedence define the
grouping of operands with operators. The associativity
rules define the evaluation of operations with equal
precedence.

The rules for precedence and associativity ate needed
by compilers to produce consistent results. Although
they tend to produce what you expect in simple cases,
they are not meant to be memorized and relied upon in
programming. Instead, it is usually more practical to
use parentheses to eliminate ambiguity.

6-5 Expression Syntax

Precedence

Any expression can be enclosed in parentheses;
subexpressions in the deepest level of parentheses are
evaluated first. Within each expression or
subexpression, the precedence of operators is as follows:

1. The exponentiation operator (**) has the highest
precedence.

2. The exponentiation operator is followed by the
monadic operators (NOT, +, and -).

3. The monadic operators are followed by the
multiplicative operators (*, /, DIV, MOD, and
AND).

4. The multiplicative operators are followed by the
additive operators (+, -, and OR) and the string
concatenation opera tor (+).

5. At the lowest level of precedence are the relational
operators (=, < >, <, >, < =, > = , and IN).

For example, the expression

- 2.0**2

is equivalent to

- (2.0**2)

giving the result - 4.0.

Parentheses, and nested parentheses, can be used to
treat subexpressions as single operands. For example,

NOT AOR B

means ttthe OR (union) of NOT A with B," because NOT
has higher precedence than 0 R. However,

NOT (A OR B)

Expressions and Operators 6-6

means ~~the logical negation of the union of A with B,"
because (A OR B) is treated as a single operand.

Associativity

The associativity of all dyadic operators of equal
precedence is from left to right. For example,

A/B*C

is equivalent to

(A/B)*C

Likewise, the expression

x**y**z

is equivalent to

(x**y)**z

Usually, the associativity rules produce the result you
would expect from your knowledge of arithmetic.
However, you must sometimes introduce parentheses to
prevent floating-point errors. For example, the
parentheses in the following expression are required, to
avoid a floating-point overflow:

3.0e 10 *(1.0e209* 1.0e - 199)

If the parentheses are omitted, the first two factors are
multiplied first, and their product (3 X 10309) is too large
to be a valid REAL or DOUBLE value (floating-point
overflow). With the parentheses, the second and third
factors are multiplied first, and their product (1 X 1010)

is a valid result.

Side Effects in Expressions

If evaluation of an expression's operands has side
effects (beyond determining the operand's values), the
program's behavior may be sensitive to the compiler's

6-7 Side Effects in Expressions

code generation methods and may vary depending on
such things as the compiler's version or the setting of
command options such as /CHECK and /OPTIMIZE.
Programmers should be aware of the following
considera tions.

The order of operand evaluation is unpredictable.
Misinterpretation of this fact is a common source of
programming mistakes. For instance, consider the
following expression, in which F, G, and H are function
calls:

F+G+H

The rules described previously specify only that the
sum F + G is computed first, not that function F is called
first nor, in fact, that the functions are called in any
predictable order. In particular, parentheses change
only the associativity and not the order of operand
evaluation. That is, in the expression

F + (G + H)

there are still no guarantees about which function is
called first, only that the sum G + H is computed first.

Obviously, then, a program containing such an
expression must make no assumptions about the
calling order, such as having one function modify a
variable in preparation for use by another. Mistakes of
this kind are best a voided initially, because they can be
quite difficult to detect. For instance, if the functions
really must be called in a certain order, call them in
that order and then add up their results:

a : = F; b : = G; c : = H; d : = a + b + c;
Similarly, the arguments in a procedure or function call
are not evaluated in any predictable order, and the
same caution applies. The caution also applies to

Expressions and Operators 6-8

expressions used as subscripts in a reference to an
element of a multidimensional array.

Note that the unpredictability of the order of
evaluation applies across an entire simple statement.
Thus, for

x[k] : = f;

the value of k may be taken before or after the call to f.
Try this with f modifying k and with /CHECK and
INOCHECK.

The evaluation of expressions involving AND and OR
may cease as soon as the final result is obvious. An
optimization of this kind (so-called ttshort-circuit
evaluation") can save significant execution time when
logical expressions are long, but as a result, you should
avoid certain assumptions when writing programs.

For example:

IF A AND F(I) ...

Here, evaluation stops immediately if either operand is
FALSE, since the result is then certainly FALSE. Once
again, this may lead to programming mistakes when,
for example, F is a function with some effect other than
simply returning a BOOLEAN value (a so-called ttside_
effect"}-such as calling another function or procedure,
modifying a global variable, and so on. If A happens to
be evaluated first and is FALSE, function F will not be
called, which might change the behavior of the
program. The only precaution is to avoid these
constructions altogether if one of the operands is a
function with side effects. For example:

B : = F(I);
IFAAND B ...

6-9 Side Effects in Expressions

A similar caution applies to expressions involving the
OR operator, the evaluation of which may stop as soon
as an operand is TRUE.

It is also possible to make mistakes by depending on
short-circuit evaluation, since all logical operands are
evaluated if you do not compile the program with
optimization. For example:

IF pointer < > NIL AND pointer i > 0 THEN ...

Here, an error occurs if you compile with
NQOPTIMIZE, because when pointer does equal NIL,
pointer i is an illegal reference.

When a program behaves differently with the
OPTIMIZE and NOOPTIMIZE compiler qualifiers,
short-circuit evaluation is a likely cause. (See Chapter
16, ((Program Development," for more information on
compiling and compiler qualifiers.)

Arithmetic Operators

The arithmetic operators are shown in Table 6-1. The
operands must have arithmetic data types, such as
INTEGER and REAL.

The arithmetic operators produce the result that is
defined by the rules of arithmetic. If the result is too
large to be represented by the result type, an overflow
error occurs, and the result is undefined. If the result of
a floating-point operation is too small (in absolute
value) to be represented, a floating-point underflow
error occurs. (See (tOverflow and Underflow," later in
this section, for more information.)

Expressions and Operators 6-10

Table 6-1. Arithmetic Operators

Operator Operation Operand Result
Type Type

Dyadic

+ Addition Integerl, Integer or
floating2 floating-point3

Subtraction Integerl, See +
floating

* Multiplication Integer4, See +
floating

** Exponentiation Integer5, Floating-
floating point6

/ Division Integer4, Floating-point
floating

DIV Division Integer4 Integer

MOD Modulo Integer4 Integer

Monadic

Sign Integer!, Same as
inversion floating operand's

+ Identity Integerl, Same as
floating operand's

IHere, "integer" means type INTEGER or LARGEJNTEGER. The type
LARGEJNTEGER can be combined only with integers.

2Here, "floating" means the types REAL and DOUBLE.

3Ifboth operands are integers, the result is an integer; otherwise, the result is
REAL or DOUBLE.

4The type LARGEJNTEGER is not allowed.

5The first operand must be REAL or DOUBLE; the second operand must be
INTEGER, REAL, or DOUBLE.

6If either operand is DOUBLE, the result is DOUBLE; otherwise, the result is
REAL.

6-11 Ari thmetic Operators

Operands of Different Types

The monadic operators always produce results of the
same type as the operand's. The rules for the result type
with dyadic operators are as follows:

1. If either operand is of type LARGE-INTEGER, the
other must be INTEGER or LARGE-INTEGER,
and the result is of type LARGE_INTEGER.

2. Otherwise, if either operand is of type DOUBLE,
the result is of type DOUBLE.

3. Otherwise, if either operand is of type REAL, the
result is of type REAL.

4. Otherwise, both operands are of type INTEGER
and the result is also of type INTEGER.

The effect of these rules is to perform computations and
produce results with the same degree of precision as the
most precise operand's.

Overflow and Underflow

If the result of a floating-point operation has a
magnitude larger than the maximum allowed for the
da ta type, the operation is said to overflo w. The same
applies if the magnitude of an intermediate result
exceeds the allowed maximum. Overflow causes one of
the exceptions SS$-FLTOVF or SS$_FLTOVF_F to be
raised.

If the result of a floating-point operation is non-zero but
has a magnitude smaller than the minimum allowed
for the data type, the operation is said to underflow.
The same applies if the magnitude of an intermediate
result is less than the allowed minimum. The effect of
underflow depends on whether or not the underflow
exception is enabled. This can be controlled by the use

Expressions and Operators 6-12

of the UNDERFLOW and NOUNDERFLOW attributes
in routines, as discussed in Chapter 2.

By default, the underflow exception is disabled. In this
case, underflow yields a floating-point zero result and
no exception is raised. If the underflow exception is
enabled, one of the exceptions SS$_FLTUND or
SS$_FLTUND_F is raised.

Addition, Subtraction, Multiplication, Sign Inversion,
Identity

These operations produce integers if both operands (or
the sole operand) are integers; otherwise, the result is a
floating-point value. The operations all follow the usual
arithmetic rules, unless underflow or overflow occurs.

Exponentiation

Exponentiation (that is, x**y) always produces a REAL
or DOUBLE result, since the first operand, x, must be
REAL or DOUBLE. The case of x an integer is not
allowed in V AXELN Pascal, although y can be an
integer.

Division and DIV

Division (with the / operator) always produces a REAL
or DOUBLE result, since, in general, two integers are
not exactly divisible. Consequently, the result of the
operation cannot be assigned to an integer variable.

The DIV operator always produces an integer, and both
its operands must be integers. A DIV operation, in
effect, produces a floating-point result and removes the
fraction to produce an integer. For example, the result
of the operation 1/2 is 0.5, while the result of the
operation 1 DIV 2 is o.

6-13 Arithmetic Operators

The divisor must not be zero in either case, or else one
of the following exceptions is raised at run time:
SS$_INTDIV, SS$_FL TDIV, or SS$_FL TDIV _F.

MOD
Given an integer 1 and a positive integer J (the
modulus), the result of the operation

IMODJ

is the value, for some integer k, of

1 - (k x J)

such that

Os 1 MODJ < J

Note that J must be positive, not zero or negative. If 1 =
J, or 1 is a multiple of J, or 1 = 0, then 1 MOD J is o.
An elementary example of modulo arithmetic is ttclock
arithmetic," in which the modulus is 24. For example,

hour: = advance MOD 24;

where the 24-hour clock (values from 0 to 23 hours,
initially 0) is advanced by some number of hours given
by advance (or, if advance is negative, the clock is
turned back).

If advance is 25, hour is 1. If advance is 58, hour is 10. If
advance is 0, the clock is not advanced, and hou r is still
o. Finally, if advance is - 25, then k is - 2, and hour is
23. (That is, if the current time is 0, and you turn back
the clock 25 hours, the new time is 23.) Note that:

-(I MODJ) ~ -I MODJ

Note also that 1 MOD J is the same as the remainder of 1
DIV J, but only when I is greater than or equal to zero; for
example, the remainder of -25 divided by 24 is -1,
which is not the same as - 25 MOD 24.

Expressions and Operators 6-14

Boolean Operators

The Boolean operators are shown in Table 6-2. The
operands must have BOOLEAN data types and produce
the BOOLEAN values TRUE and FALSE.

Table 6-2. Boolean Operators

Operator Operation Operand Result
Type Type

Dyadic

AND Logical Boolean Boolean
AND

OR Logical Boolean Boolean
OR
(inclusive)

Monadic

NOT Logical Boolean Boolean
negation

The result of the operation

AANDB

is TRUE only ifhoth A and B are TRUE. The result of

AORB

is TRUE if either A or B is TRUE (inclusive OR). The
result of

NOTA

is TRUE if A is FALSE, and vice versa.

Note that the exclusive OR operation is provided by the
predeclared function XOR. That is, if a and bare

6-15 Boolean Operators

BOOLEAN variables or expressions, then XOR(a,b) is
TRUE if a and b have different TRUE/FALSE values;
otherwise, the result is FALSE.

Relational Operators

The relational operators are shown in Table 6-3. All
take two operands and produce BOOLEAN results.

Table 6-3. Relational Operators

Operator Operation Operand
Types

- Equality Ordinal types, floating-
point types, system types,
pointers, sets, and strings

<> Inequality Same as =
< ~(Less than" Ordinal types, floating-

point types, and strings

> ~~Greater Same as <
than"

<= ~tLess than Ordinal types, floating-
or equal to"; point types, sets, and
set inclusion strings

>= ~~Greater Same as < =
than or
equal to";
set inclusion

IN Set member- Left: ordinal type T;
ship right: set whose base type

is such a type

Expressions and Operators 6-16

The operands of all operators except IN must be two
expressions of compatible types, or two of the same set
type, or else one must be INTEGER and the other
REAL or DOUBLE.

The data types allowed as operands include the types
listed in the table and user-defined types denoting
these types. Note that arrays and records (except
PACKED ARRAY OF CHAR used as a string) cannot
be operands of rela tional opera tors.

Note that the system data types PROCESS, AREA,
EVENT, SEMAPHORE, MESSAGE, PORT, NAME,
and DEVICE can be compared only with the equality
and inequality operators.

Equality (=) and Inequality (< »
The result of an equality operation is TRUE if the two
operands are equal; the result of the inequality
operation is TRUE if they are not equal.

Two sets are equal if they contain exactly the same
elements.

Two strings are equal if all their characters are
identical. For strings of different lengths, the shorter
string is implicitly extended with spaces. (Note that
uppercase and lowercase letters are not identical.)

Two pointers are equal if they point to the same object
or have the value NIL. One pointer can be of type
i ANYTYPE; otherwise, both must point to the same
type. Equality and inequality are the only valid
operations on pointers.

"LessThan," etc. «, >, < =, > =)

The result of one of these operations is TRUE if the
relation is true.

6-17 Relational Operators

For example,

A<8

is TRUE if the value of A is less than 8's. The relation of
ordinal types depends on their ordinal values; with
characters, this is the same relation as alphabetical
order.

Sets can be compared only with < = and > = , not with
< or >. If A and 8 are sets, the operation

A<=B

is TRUE if and only if all of A's elements are elements
of 8 (that is, A is included in 8, or A is a subset of 8).
Conversely,

A>=B

is TRUE only if 8 is included in A.

When these operators are used to compare strings, they
denote lexicographic relations; that is, the rules by
which words are ordered alphabetically. For example,

'thomas' < 'mary'

is FALSE, and

'1234' < '56834'

is TRUE.

Formally, the definition of Sl < 52 is as follows, where
51 and S2 are strings of equal length and, for example,
51 [2] denotes the second character in the string 51 :

51 < S2 if and only if:
there exists a p in the closed interval [l .. n] such
that, for all i in the interval [l .. p - 1].
51[/1 = 52[/1 AND
51[p] < S2[p]

Expressions and Operators 6-18

This might also be stated as, tts 1 is less than S2 only if,
at the first place they disagree, Sl's letter is less than
52's."

Furthermore, strings of unequal length can be
compared; effectively, the shorter string is extended
with spaces before the comparison is made. Note that
the ordinal value of the space character (32) is less than
that of any letter or digit.

The following relations are TRUE in this
implementation:

'THOMAS' < 'Thomas'
'THOM' < 'THOMAS'
'tom and mary' < 'tomandmary'
'tom-and mary' < tomandmary'
'TOM-ANDMARY' > 'TOMANDMARY'

Set Membership (IN)

The left-hand operand of IN must have an ordinal value
of type T, and the right-hand operand must denote a
SET OF T.

The result of the operation

AINB

is TRUE if ordinal value A is an element of set B.

Set Operators

The set operators are shown in Table 6-4. Both
operands must be sets with the same base ordinal type,
and the result is a set of the same type.

6-19 Set Operators

Table 6-4. Set Operators

Operator Operation Operand
Type

+ Set Compatible
union sets

Set Compatible
difference sets

* Set inter- Compatible
section sets

The plus operator (+) produces the union of two sets.
That is, it produces a new set containing all the
members from each set. Logically, this is the inclusive
OR operation, because an element appears in the
resulting set if it is present in either operand, including
the case in which it is present in both operands. For
example,

eset : = eset + ['B']

adds the letter B to the elements already in eset.

The minus operator (-) produces the difference
between two sets. That is, it produces a new set
containing those members present in the left-hand set
but not present in the right-hand set. For example,

eset: = ['a' .. /d'] - ['e']

assigns the set ['a' ,'b' ,'d'] to eset.

Note that the difference operation depends on the order
of the operands and so does not answer the question,
((Which elements belong to only one set or the other?"
This question is answered by using the predeclared
function XOR, as described below.

Expressions and Operators 6-20

The asterisk operator (*) produces the intersection of
two sets. That is, it produces a new set containing the
elements present in both. Logically, this is the AND
operation, because an element appears in the resulting
set only if it appears in both operands. For example,

cset: = ['a' .. 'e'] * ['c' .. 'f']

assigns the set [' c' .. ' e'] to cset.

In addition to the operators described above, the
predeclared function XOR provides the logical exclusive
OR operation on two sets. That is, an element appears
in the resulting set if it appears in one set but not if it
appears in both. XOR(a,b) has the same result as
(a-b)+(b-a).

The following example shows more results of these
operations:

VAR
cset,alphabet: SET OF CHAR;
uppercase: SET OF ' A' .. 'Z' : = (' A' .. 'Z'];
lowercase: SET OF 'a' .. 'z' : = ['a' .. 'z'];

BEGIN
alphabet: = uppercase + lowercase; { All the
letters. }
cset: = ['a','A','b','B'] * uppercase; {The set
['A','B']. }
cset: = uppercase - ['A' .. 'W']; {The set
['X','Y','Z']. }
cset: = XOR(['a','b'],['b','c']); {The set ['a','c']. }

Set Constructors

Set constructors are used in expressions and ini tializers
to enumerate elements of the base type. The syntax is
shown in Figure 6-5.

6-21 Set Operators

).I.po---~ expression

expression expression

Figure 6-5. Set Constructor Syntax

Each expression must be of the same ordinal type
(ignoring subrange limits), which is the base type of the
constructed set. The form

expression 1 .. expression2

denotes the set of all elements e of the base type such
that expression 1 ~ e s expression2.

If expression 1 > expression2, then the form denotes the
empty set of the base type, which can also be indicated
by a set constructor containing no expressions ([D. For
example:

TYPE
charset = SET OF CHAR;

VAR
alphabet: charset : = [' A' .. 'Z','a' .. 'Z']; {The set of
letters. }
empty: charset : = ['Z' .. ' a']; {The empty set of
characters. }
empty2: charset : = []; { Same thing. }

Here, the type of all three set constructors is SET OF
CHAR.

Expressions and Operators 6-22

Note: If any expressions in the constructor are non­
constant, the amount of storage required to represent
the constructed set may not be known at compile time.
This can result in inefficient code, so the compiler tries
to limit the required storage in various ways. For
example, if the set's base type is reasonable (almost
anything but INTEGER) or the constructor is the
source expression in an assignment to a set variable of
modest size, the code will be reasonable.

Concatenation Operator for Strings

The concatenation operator is the plus sign (+).
Applied to two string expressions, the concatenation
produces a new string value. For example:

VAR
vstring : VARYING-STRING(15);

BEGIN
vstring : = 'abcdef' + 'ghijkl';

Here, the result of the concatenation (and, thus, the
value ofvstring) is 'abcdefghijkl'.

6-23 Concatenation Operator

Expressions and Operators 6-24

Chapter 7

Pascal Statements

VAXELN Pascal provides several statements that
control the actions performed in a program. These are:

• The assignment statement

• The null statement

• The compound statement

• The conditional statements CASE and IF

• The loop statements FOR, REPEAT, and WHILE

• The WITH statement

• The GOTO statement

• Procedure calls

In addition, all statements can be labeled, as possible
targets of GOTO statements.

This chapter discusses the general statement syntax,
including labels, followed by a discussion of each
statement and its syntax. Procedure calls are discussed
in Chapter 8, ((Procedures and Functions."

General Statement Syntax

The general statement syntax for V AXELN Pascal
statements is shown is Figure 7-1.

7-1

Pascal Statements 7-2

Labels

Labels mark locations in a program that are possible
destinations for GOTO statements. The label is
separated from the labeled statement by a colon (:).

A label can be a literal integer constant or any valid
identifier, as shown in Figure 7-2.

---.--____ Iiteral integer constant 100----..

--.. identifier

Figure 7-2. Label Syntax

If a statement is labeled by a literal integer constant, it
must be an unsigned decimal integer. The compiler
treats it as though it is the identifier whose spelling is
given by the decimal digits, ignoring leading zeros.

If a statement is labeled by an identifier, the identifier
is declared as a label, with its scope being the block
containing the statement.

In either case, the integer or identifier must not occur
as the label of another statement in the same block.

The following are examples of labels:

error-message: WRITELN('Could not continue. ');

10: WRITELN('Terminating driver process. ');

The corresponding GOTO statements are:

GOTO error-message;

GOTO 10;

7-5 General Statement Syntax

Since labels are declared implicitly by their use, the
declara tion of labels in a rOll tine body is not required,
but is allowed for compatibility with standard Pascal.
The label declaration syntax is shown in Figure 7-3.

-+(LABEL)

Figure 7-3. Label Declaration Syntax

Note: If any label in a block is declared with a label
declaration, all labels in the block must be declared,
and all declared labels must be used as statement labels
in the same block.

Assignment Statement

The syntax for the assignment statement is shown in
Figure 7-4.

---+I variable reference ~ expression r--.
Figure 7-4. Assignment Statement Syntax

Execution of the assignment statement evaluates the
target variable reference on the left-hand side and the
source expression on the right-hand side and assigns

Pascal Statements 7-6

the value of the expression to the data item denoted by
the target reference.

The target and source data types must be assignment
compatible, as explained below. The target reference
must not denote a data item that is invalid as an
assignment target. In particular:

• A variable declared in a V AR declaration with the
READONL Y or VALUE attribute.

• A value parameter with the READONL Y or LIST
attribute.

• A conformant extent or value parameter used as
an explicit extent in the same routine heading.
(See Chapter 8, ((Procedures and Functions," for
more information on conformant parameters.)

• The control variable of a FOR loop, when the
assignment is inside the loop or in a sub block of the
block containing the FOR statement.

• A variable that is a file or contains a file.

These rules apply to the variable used on the left-hand
side of an assignment statement, a variable passed as
an argument to a predeclared routine that modifies the
argument, and a variable passed as an argument to a
VAR parameter of a routine that modifies the
parameter. Performing an assignment to such a
variable by another name (such as a V AR parameter or
via pointers) is an unpredictable error.

Assignment Compatibility

In any situation where a source value is assigned to a
target variable, Pascal requires that the source value's
type be assignment compatible with the target
variable's type. The principal contexts in which this
rule applies are assignment by an assignment

7-7 Assignment Statement

statement, as described above, and passing an
argument value to a value parameter.

The general rules for assignment compatibility are
given in Table 7-1. The following notes apply:

1. Regarding subranges of ordinals.

The type of an ordinal value is always a basic
ordinal type, not a subrange type. For example:

VAR k: 0 .. 255; n: INTEGER;
n: = k;

Here, the value of k is of type INTEGER and is
assignment compatible with k. If n was also of
subrange type (for example, - 128 .. 127), the value
of k would be assignment compatible, but a range
violation would occur if the value fell outside n's
subrange.

2. Regarding INTEGER.

A REAL or DOUBLE source value is not con­
sidered assignment compatible with INTEGER,
because the assignment can reasonably be done
with either rounding or truncation. Use the
ROUND or TRUNC functions (see Chapter 9,
~~V AXELN Routines") to specify the desired
con version.

3. Regarding BYTE_DATA.

If a value parameter has type BYTE_DAT A(n),
any argument value is treated as assignment
compatible. It is converted to BYTE_DATA(n) as
described under the CONVERT function (see
Chapter 9). Note that this extra freedom does not
apply in other contexts.

Pascal Statements 7-8

4. Regarding sets.

Assignment compatibility for sets requires only
that the source set value and target set type have
the same element type. A range violation occurs in
either of the following cases:

• The source value contains an element such
that ORD(element) is less than the minimal
element of the target type .

• The source expression contains an element
such that ORD(element) is greater than the
maximal element of the target AND is less
than or equal to the index of the highest bit in
the target variable's representation (bits
beyond that are simply discarded).

Note that truncating nonzero source bits in the
copy is not considered an error. Indeed, when the
source is an expression, the compiler may a void
computing bits outside the range required by the
target's size. For example:

VAR
s : SET OF 0 .. 15; { One longword }
r : PACKED RECORD

f: PACKED SET OF 5 .. 15; { 16 bits. }
END;

s: = [0 .. 31]; {Range violation, 16 .. 31 not in
range.}

s : = [32 .. 63]; {OK; assigns empty set. }

r.f : = [0 .. 15]; {Range violation; 0 .. 4 not in
range. }

r.f : = [5 .. 31]; {OK; assigns [5 .. 15]. }

7-11 Assignment Statement

Null Statement

The syntax for the null statement is shown in Figure 7-
5.

Figure 7-5. Null Statement Syntax

Execution of the null statement has no effect. The only
real purpose of the statement is to provide an explicit
null alternative in an IF statement.

Compound Statement

The syntax for the compound statement is shown in
Figure 7-6.

---+C BEGIN >-t statement

----410--------
Figure 7-6. Compound Statement Syntax

A compound statement groups a sequence of statements
together as a single larger statement so they can be
used as the body of a routine, an alternative in an IF
statement, or the body of a WHILE statement, for
example.

Pascal Statements 7-12

Note that the statement sequence needs semicolons
only to separate statements, not to terminate them.
That is, a sequence of n statements requires only n - 1
semicolon separators. Extra semicolons have no effect
on the program's meaning and generate no code.

Executing the compound statement performs the
contained statements in order, unless the order is
modified by execution of a GOTO statement.

CASE Statement

The syntax for the CASE statement is shown in Figure
7-7.

7-13 CASE Statement

Pascal Statements 7-14

All of the limited ordinal constants occurring as case
constants must have the same data type, and the
expression must also have this type. (The syntax for
limited ordinal constants is given in Chapter 4,
((Constants.") The range of values in the case constants
must not exceed 32,767.

When a CASE statement is executed, the expression is
evaluated. If its value is equal to one of the case
constants, the corresponding statement is executed. If
the value of the expression is not equal to one of the
case constants, the first statement in the OTHERWISE
clause is executed. If the OTHERWISE clause is
omitted, and the value of the expression is not equal to
one of the constants, a range violation occurs.

For example,

CASE ch OF
'A': procedure-A;
'b': procedure-b;
OTHERWISE IF ch IN alphabet THEN ...

ELSE ... ;
END;

calls (selects) procedure-A if the expression ch equals
the uppercase letter A. It selects procedure-b if the
expression equals b. The IF statement is executed if the
expression equals neither of the constants. Only one
case (here, either I A', 'b ' , or OTH ERWISE) is selected.
You can define as many possible actions as there are
possible values of the expression,' and, with the
OTHERWISE clause, you can define an action to take if
no other case is selected.

In most cases, the compiler generates a V AX CASE
instruction for a CASE statement. This requires a word
of storage for each value in the range of constants

7-17 CASE Statement

(minimum to maximum), which can be very inefficient
for a sparse range. For example, the statement

CASE integer-expression OF
1: procedure-a;
30000: procedure-b;
OTH ERWISE proced u re-c;

END;

allocates 30,000 words for possible values of
integer-expression, even though only two of these
values actually appear as case constants. The
guideline, then, is to avoid situations where the case
constants specify a very large range but only a very few
values in the range are tested; IF is much more efficient
in such cases. The type CHAR and most enumerated
types have ranges small enough that this matter is
usually irrelevant.

CASE is often useful in examining the result of a
WAIT_ANY procedure call, to determine how the wait
was satisfied and take appropriate action. For example:

VAR
ok: EVENT;
unit-available: SEMAPHORE;
other-process: PROCESS;
satisfier: INTEGER;

WAIT-ANY(
ok,
unit-available,
other -process,
RESU L T : = satisfier,
TIME: = TIME-VALUE('O 00:00:01.0')
);

Pascal Statements 7-18

CASE satisfier OF
0: { Timeout (one second elapsed) ... } ;
1: { Event ok was signaled ... } ;
2: { Unit is available ... } ;
3: { Other process terminated ... } ;

END;
END;

Here, WAIT-ANY returns an integer (satisfier)
identifying the argument that satisfied the wait. The
possible return values are all within a small range (the
number of arguments present in the call), and you
usually cannot predict the chances of any particular
value being returned. For both these reasons, and for
readability, CASE is a good choice for processing the
resul t of the procedure call.

IF Statement

The syntax for the IF statement is shown in Figure 7 -8.

expression statement

Figure 7-8. IF Statement Syntax

Execution of the IF statement evaluates the expression,
whose type must be BOOLEAN. If the resulting value
is TRUE, the statement following THEN is executed. If

7-19 IF Statement

the value is FALSE and an ELSE clause is present, the
statement following ELSE is executed.

In a series of THEN ... ELSE clauses, each ELSE
always matches the nearest unmatched THEN. For
example:

IF A = 1
THEN IFA= 2

THEN procedure1
ELSE procedure2;

Here, the clause ELSE procedure2 matches the clause
THEN procedure1.

Note that the null statement can be used to provide an
explicit null alternative in an IF statement.

FOR Statement

The syntax for the FOR statement is shown in Figure 7-
9.

variable
reference

expression

expression

statement

Figure 7-9. FOR Statement Syntax

Pascal Statements 7-20

The FOR statement executes a body of statements
repeatedly, while it assigns a sequence of values to a
variable reference called a control variable. The body is
executed a fixed number of times, possibly zero.

The control variable must be an entire variable of
ordinal type. It must be declared in the same block as
the FOR statement. Within the statement itself or any
subblocks of the FOR statement's block, the variable
must not be the target of an assignment, READ call, or
WRITE-REGISTER call, passed to a VAR parameter,
or used in any other operation that might change its
value; this is to guarantee that the FOR loop always
executes the specified number of times. The reserved
word TO indicates that the variable is incremented on
each repetition. DOWNTO indicates that the variable
is decremented on each repetition.

Note that the value of the control variable is undefined
after the last repetition of the loop, unless you leave the
loop with a GOTO statement. You should not write
programs that depend on the final value of the control
variable after the loop terminates normally. Taking the
address of the variable (with the ADDRESS function) is
illegal.

The type of the expressions must be compatible with
the control variable. The first expression supplies the
value of the variable for the first execution of the FOR
loop, if the loop is executed at all. (With TO, this
expression must be less than MAXINT; overflow is
possible.) The second expression supplies the value
used to control the termination of the FOR loop.

The body of a FOR statement (the statement following
the reserved word DO) can be any statement, including
compound statements and FOR statements. The
statement can be (or contain) a GOTO statement that
transfers control to a label outside the FOR loop.

7-21 FOR Statement

If the loop is exited by a GOTO statement, the control
variable has the last value assigned to it by FOR, and
its control variable is available for use outside the loop.
This feature is sometimes useful for responding to an
abnormal condition, such as invalid input.

Use the FOR statement when you know beforehand
how many times an operation must be repeated. For
example, the following program converts six-digit
binary integers to decimal:

PROGRAM convert(lNPUT,OUTPUT);
{ Convert binary numbers to decimal. }

LABEL 10,20;

CONST digits = 6;

TYPE numarray = ARRAY[l .. digits] OF INTEGER;

VAR
chararray: PACKED ARRAY[l .. digits] OF CHAR;
unparray : ARRAY [l .. digits] OF CHAR;
oldnumber: numarray; i: INTEGER;

FUNCTION decimal(old: numarray) : INTEGER;
VAR i,newnumber: INTEGER;
BEGIN

newnumber : = old[l];
FOR i : = 2 TO digits DO

newnumber: = old[i] + newnumber * 2;
decimal: = newnumber;
END;

BEGIN

READLN(chararray);
UNPACK(chararray,unparray,l);
FOR i : = 1 TO digits DO

CASE unparray[i] OF
'0': oldnumber[i] : = 0;

Pascal Statements 7-22

'1': oldnumber[i] : = 1;
OTHERWISE GOTO 10;

END;
WRITELN{decimal{oldnumber»;
GOTO 20;

10: WRITELN('The character' ,unparray[i],
, is invalid; terminating.');

20: ;
END.

REPEAT Statement

The syntax for the REPEAT statement is shown in
Figure 7-10.

REPEAT

expression

Figure 7-10. REPEAT Statement Syntax

The REPEAT statement executes a body of statements
repeatedly, until a stated condition is true. The
expression must be of type BOOLEAN. After each
repetition of the statement (that is, ((at the bottom of
the loop"), the expression is evaluated. The REPEAT
loop terminates when the expression is TRUE. Note
that the body is always executed at least once.

7-23 REPEAT Statement

Any statement is valid in the body of a REPEAT loop. A
sequence of statements is delimited by the words
REPEAT and UNTIL and need not be enclosed in
BEGIN and END.

Use the REPEAT statement when you do not know how
many times the loop should execute, but you know it
should execute at least once; usually, it is necessary
when the value of the expression is derived from the
operation of the loop itself.

WHILE Statement

The syntax for the WHILE statement is shown in
Figure 7-11.

--.c WHILE)+I expression ~ statement ~

Figure 7-11. WHILE Statement Syntax

The WHILE statement executes a body of statements
repeatedly, as long as a stated expression is TRUE. The
expression must be of type BOOLEAN. Before each
repetition of the loop (that is, ((at the top of the loop"),
the expression is evaluated, and the body (the
statement following the reserved word DO) is executed
only if the result is TRUE.

Any executable statement is valid in the body of a
WHILE statement, including another WHILE
statement or a compound statement.

Use the WHILE statement when you do not know
beforehand how many times the loop should execute,

Pascal Sta temen ts 7-24

and when it should not be executed at all unless a given
condition is TRUE. Like REPEAT, WHILE is usually
used when the condition for terminating the loop
results from the action of the loop itself.

For example, the following program reads characters
from INPUT until a nonalphabetic character is
encountered or until end-of-file is encountered:

PROGRAM readchar(lNPUT,OUTPUT);
{ Read characters from INPUT. }

CONST maxlength = 26;

VAR
alphabet: SET OF CHAR;
ch: CHAR;
word: VARYING-STRING(maxlength);

BEGIN ,
alphabet: = ['a/ .. 'z/,/A/ .. 'Z'];
word: = ";
IF NOT EOF THEN READ(ch);
WHILE NOT EOF AND (ch IN alphabet) DO

BEGIN
word: = word + ch;
READ(ch);
END;

WRITELN('Word: I,word)
END.

This program constructs a word from the characters it
reads and writes the word to OUTPUT. It considers a
word to be a series of the characters a-z and A-Z,
terminated by a nonalphabetic character (including a
space) or by the end of the file INPUT. To be general in
purpose, the program must account for the very first
character being nonalphabetic; that is, it cannot predict
the first character. Therefore, the WHILE statement is

7-25 WHILE Statement

a better choice than REPEAT, which would have to
make an assumption about the first character.

Similarly, words have a maximum length, but the
precise number of characters in a word is not known
beforehand; instead, the termination of the loop is
controlled by the operation of the loop itself-reading a
particular character. Therefore, FOR is not a good
choice, since it would require all input words to have
the same length.

WITH Statement

The syntax for the WITH statement is shown in Figure
7-12.

-(WITH)I--r-....... a.-.. _____ .-i---....

identifier

statement

variable
reference

Figure 7-12. WITH Statement Syntax

Execution of the WITH statement establishes part of a
program in which abbreviated references can be made
to the fields of a record or in which an identifier is
established as the name of the data item denoted by a
variable reference.

Pascal Statements 7-26

The first variable reference in the syntax is a reference
to a declared record. The variable is accessed before the
body (the statement following the reserved word DO) is
executed, and a reference is established for the duration
of that statement.

The variable reference following the reserved word AS
introduces a temporary variable that can be referenced
within the body of the WITH statement (a typecast
variable is often used here, as shown in the second
example below).

Note: When a WITH statement has multiple
references, they are evaluated in order, and each may
apply to the following ones.

The statement in the body of a WITH statement is
usually a compound statement. For the extent of this
statement, you can refer to fields in the specified record
or records by using their field names only: within the
scope of the WITH statement, fieldname means
ttref.fieldname," where ref is the established reference.

For example:

TYPE rtype = RECORD
person: VARYING-STRING(80);
stats : RECORD

salary: REAL;
hiredate : LARGE-INTEGER;
END { stats. }

END; { rtype. }
VAR

r : rtype;
rptr: i rtype;
rarray : ARRAY [1 .. 10] OF rtype;

BEGIN
WITH r, r.stats DO BEGIN

person: = 'Arturo Toscanini';

7-27 WITH Statement

salary: = 15000.00;
hiredate: = TIME-VALUE(

'1-JAN-1939 00:00');
END;
NEW(rptr);
rptr i : = r;
WITH rarray[l].stats DO
hiredate : = rptr i .stats.hiredate;

END;

Here, the WITH statements establish references to the
records r, r.stats, and rarray[l].stats. Within the
statements' bodies, these references apply to field
names that are not preceded by a record reference.

If a temporary variable is introduced by the AS clause
of the WITH statement, you can refer to it within the
statement. The WITH ... AS construction is especially
useful with typecasting. In the following example, the
name str is introduced to represent a record typecast to
type VARYING-STRING:

CONST k = 100;
TYPE {Model of type VARYING-STRING.}

vstring(n : 0 .. 32767) = PACKED RECORD
length: [WORD] 0 .. 32767;
body: STRING(n);

END;
VAR

x : vstring(k);
BEGIN

WITH x, str AS x: :VARYING-STRING(k) DO
BEGIN
{ Here, you can refer to x's fields (the string's
length and body) by the simple names 'length' and
'body' or to the name str, which is x treated as a

Pascal Statements 7-28

VARYING-STRING. Without the AS clause, you
could refer only to the fields 'length' and 'body.'}

END; {End of WITH. }
END;

GOTO Statement

The syntax for the GOTO statement is shown in Figure
7-13.

---.. ~(GOTO H label I-------.~

Figure 7-13. GOTO Statement Syntax

Execution of the GOTO statement unconditionally
transfers control (or ((branches") to a specified label.

The label is a literal integer constant or an identifier,
as explained under ((Labels," earlier in this chapter.
Either must occur as a statement label for a statement
in the block containing the GOTO statement or in some
higher-level block containing that block (this is
referred to as an up-level GOTO).

Restrictions

The following restrictions apply to every use of the
GOTO statement.

7-29 GOTO Statement

Branch into Structured Statement. A GOTO statement
must not transfer control from the outside to the inside
of a structured or compound statement.

For example:

GOIO case-stmt; {Invalid.}
CASE letter OF

'A': case....stmt: BEGIN
WRIIELN('a'); GOTO case-stmt {Valid.}
END;
'B': WRIIELN('B');
OTHERWISE ... ;

END;

Up-level GOTO. An up-level GOTO is one that specifies
a label in a higher-level block containing the block to
which the GOTO statement belongs. In this case, the
target label must label a statement immediately
contained in the higher-level block. (That is, it must
label a statement in that block's main sequence of
statements). The compiler detects all violations of this
rule.

For example:

PROCEDURE high;
PROCEDURE low;

BEGIN {Low code.}
GOIO mainlabel; {Valid up-level. }
GOIO innerlabel; {Invalid up-level. }

END; { Low code. }
BEGIN { High code. }

low;

Pascal Statements 7-30

FOR I: = 1 TO 100 DO BEGIN

innerlabel: ... { Statement. }
END; {FOR}

mainlabel: EXIT; {Labels a statement in the
block's main BEGIN-END. }

END; { High code. }

An up-level GO TO terminates the block activation that
executes it and all activations between that block and
the target block activation. This feature is useful in
((unwinding" the call stack from an exception handler.
Call frames are removed from the stack, beginning
with the GOTO's (exception handler's) frame, until the
target block is reached. (See Chapter 13, ((Errors and
Exception Handling," for more information.)

7-31 GOTO Statement

Pascal Statements 7-32

ChapterS
Procedures and Functions

Introduction

Procedures and functions give you a means of putting a
frequently used computation in a single package, which
can then be invoked from several points in a program.

This chapter discusses the following topics:

• Procedure and function declarations (including
procedure and function headings, parameter lists,
function results, procedure and function types,
directives, and in-line routines)

• Procedure and function calls (including arguments
and argument lists)

• Parameters and argument passing (including the
parameter/argument relationships for VAR and
value parameters, procedural parameters, confor­
mant parameters, OPTIONAL parameters, and
LIST parameters)

• Calling conventions

The meanings of procedure and function are quite
similar, and, in this manual, both are meant by the
term routine. When invoked, or called, a routine
performs the actions you have defined in its
declaration.

A function also takes on a value, called the function
result. To invoke a finction, its name (possibly with a
list of arguments) is simply used in the program as if it
were an expression of a particular type.

8-1

Procedure and Function Declarations

Procedure and function declarations have almost the
same form. The only differences are the reserved word
(PROCEDURE or FUNCTION) in the heading, and the
fact that a function heading specifies a result type.

The syntax of procedure and function declarations is
shown in Figures 8-1 and 8-2, respectively.

-1+i attributes il. procedure
. . heading

Figure 8-1. Procedure Declaration Syntax

-4j attributes i1+ function
heading

Figure 8-2. Function Declaration Syntax

A procedure or function declaration declares the
procedure or function identifier in its heading as the
name of a routine or (if the PROCEDURE_TYPE or
FUNCTION_TYPE directive is used) as the name of a
procedure or function type. The heading declares the

Procedures and Functions 8-2

routine's parameters (if any) and, for a function, its
result type. (See (tprocedure and Function Headings,"
later in this section.)

The routine body, if present, contains the local
declarations and code for the procedure or function.
Routine bodies have the same form for procedures,
functions, PROGRAM blocks, process blocks, and
interrupt service routines. (See Chapter 2, ttprogram
Structure," for the syntax of routine bodies.)

The syntax of directives is shown in Figure 8-3.

SEPARATE

PROCEDURE_TYPE

FUNCTION_TYPE

EXTERNAL

FORWARD

Figure 8-3. Directive Syntax

The directives SEPARATE and FORWARD indicate
that the text of the routine body is elsewhere. The
EXTERNAL directive means that the routine body is
defined in another programming language.
SEPARATE and EXTERNAL are only allowed at the
outer level.

8-3 Declarations

Note that the scope of parameter declarations in the
procedure or function heading includes the routine
body even in the cases in which its text is elsewhere
(that is, when the SEPARATE or FORWARD directive
is present).

If a procedure or function declaration contains a routine
body, one of the mutually exclusive attributes
UNDERFLOW, NOUNDERFLOW, or INLINE may be
specified. UNDERFLOW and NOUNDERFLOW apply
to the code of the routine body (see Chapter 2 fot more
information). INLINE specifies that each call to the
routine is to be expanded into code inline (see ((INLINE
Procedures and Functions," later in this section.)

Procedure and Function Headings

A heading can occur in a procedure or function
declaration or in a parameter list. The syntax of
procedure and function headings is shown in Figures 8-
4 and 8-5, respectively.

PROCEDURE procedure
identifier

procedure type name

Figure 8-4. Procedure Heading Syntax

Procedures and Functions 8-4

FUNCTION function
identifier

named type

function type name

Figure 8-5. Function Heading Syntax

The procedure or function identifier is declared as:

• The name of a procedure or function if the heading
occurs in a procedure or function declaration
without the directives PROCEDURE_TYPE or
FUNCTION_TYPE.

• The name of a procedure or function type if the
heading occurs in a procedure or function
declaration and is followed by the directive
PROCEDURE_TYPE or FUNCTION_TYPE.

• The name of a procedural parameter if the heading
occurs in a parameter list.

In the first two cases, the scope of the declaration is the
block containing the procedure or function declara­
tions. The third case is governed by the rules for
parameter declarations (see ((Parameter Lists," later in
this section).

The heading's parameter list, if present, declares the
routine's parameters. The named type following the
colon (:) in a function heading specifies the function's
result type. Note that for name interpretation, the

8-5 Declarations

function's result type is within the scope of parameter
declarations in the parameter list.

Unless the construction OF TYPE is used, a function
heading must give a result type, and absence of a
parameter list in a procedure or function heading
means that the routine has no parameters.

The construction OF TYPE followed by a procedure or
function type name is used as an al terna ti ve to
specifying an explicit parameter list and function result
type. Instead, these are taken from the named
procedure or function type. (For more information, see
((Procedure and Function Types," later in this section.)

Parameter Lists

A parameter list declares the parameters of a
procedure, function, process block, or interrupt service
routine. The syntax of parameter lists is shown in
Figure 8-6.

The scope of a parameter declaration is:

• The parameter list in which it occurs; plus

• The result type of the function, if it's a parameter
of a function; plus

• The routine body, if the parameter list is in a
routine declaration that has a body, whether or not
its text is elsewhere.

Procedures and Functions 8-6

A parameter is either a value parameter, a VAR
parameter, or a procedural parameter. The latter is
declared by the occurrence of an entire procedure or
function heading in the parameter list.

Normally, a routine call specifies an argument to be
passed to each parameter of the called routine, but
some flexibility may be obtained by use of default
values (that is, initializers) for value parameters, the
OPTIONAL attribute for V AR and procedural
parameters, and the LIST attribute.

The section ttprocedure and Function Calls," later in
this chapter, explains how the arguments in a call are
associated with particular parameters of a called rou­
tine. The section ttparameters and Argument Passing"
describes in detail the relationship between each of the
various types of parameters and its argument.

The remainder of this subsection gives some general
rules for the contents of a parameter list. The rules
given here apply to all routines, but there are
additional restrictions on the parameters of process
blocks and interrupt service routines.

Data Type for a Parameter

A named type supplies the parameter's data type. The
named type can be a type name, a bound flexible type,
or a pointer to either of these (for example,
i STRING(10». The bound flexible type may refer to
other value parameter names in extent expressions and
it may define a conformant extent using the angle
bracket notation (for example, STRING(< n >)). See
ttConformant Parameters," later in this chapter, for
more information.

An ISO conformant type may be used instead of a
named type to define a conformant array parameter.

8-9 Declarations

See ((ISO Conformant Extents," later in this chapter,
for more information on conformant array parameters.

Attributes of Parameters

The attributes OPTIONAL and LIST apply specifically
(and only) to parameters; they are explained in
separate sections, later in this chapter. READONL Y
applies to value parameters, it is covered in the section
on value parameters. REFERENCE applies to certain
value parameters; it pertains to the calling conventions
and is covered in that section.

Apart from the preceding, the only attributes allowed
are BIT, BYTE, WORD, and LONG, which may be
applied to ordinal types and small set types (that is,
where ORD(maxelement) < 32), as explained In
Chapter 3, ((Data Types."

Default Values for Value Parameters

The type of a value parameter may be followed by the
construction ((: = initializer". The initializer specifies a
constant default value for the parameter. This value is
passed to the parameter if a routine call does not specify
an argument for it. The initializer's form depends on
the type of the parameter, as explained in Chapter 4,
((Constants." The parameter must be constant sized.

Function Result

A function call occurs as a factor in an expression. Like
any other Pascal expression, it has a data type. This is
specified by the function's result type, which follows the
colon (:) in the function heading. For example,

FUNCTION f(x: REAL): i REAL;

defines a function of type i REAL.

Procedures and Functions 8-10

Like the type of a parameter, the result type of a
function is specified as a named type. This may be a
bound flexible type, depending on the function's value
parameters or conformant extents.

For example:

FUNCTION reverse(s: [READONL Y] STRING(< n >)) :
STRING(n);

Note that the result type cannot be a file type nor
contain a file type.

Within a function's routine body, the function name is
used in a restricted way as the name of a local variable,
called the result variable. The function name only has
this interpretation when it occurs as the variable name
in a variable reference on the left-hand side (that is, the
target side) of an assignment statement.

At normal termination, the value of the result variable
becomes the value of the function call. It is an
unpredictable error if the result variable does not have
a value or if its value is incomplete (for example, only
part of an array result is defined) or inconsistent with
the result type (because of typecasting).

For example:

FUNCTION reverse(s: [READONL Y] STRING(< n >)) :
STRING(n);

VAR k: INTEGER
BEGIN

FOR k : = 1 TO n DO
SUBSTR(reverse,k,1) : == SUBSTR(s,n-k + 1,1);

END;

Here, it would be an error if the loop was from 2 TO n,
because the first character of the result would be
undefined.

8-11 Declarations

SEPARATE Procedure and Function Declarations and
Separate Routine Bodies

An outer-level procedure or function declaration may
contain the SEPARATE directive instead of a routine
body. This means that the routine's actual body is given
elsewhere. Normally, the separate body is defined in
another module, but it may be in the same module
containing the SEP ARA TE declaration.

The form of a separate routine body is shown in Figure
8-7.

---&. .. attri butes

FUNCTION_BODY function name

PROCEDURE_BODY procedure name

routine body

Figure 8-7. Separate Routine Body Syntax

You can apply one of the attributes UNDERFLOW and
NOUNDERFLOW to the code of the routine body, as
explained in Chapter 2, ~(Program Structure."

The following rules govern the use of the SEPARATE:

• SEPARATE and separate routine bodies are only
allowed at the outer level.

Procedures and Functions 8-12

• The procedure or function name in a separate
routine body must be declared by a SEPARATE
declaration, either in the current module or by an
exported declaration from another module
included in the current compilation.

One typical use of SEPARATE declarations is in
gathering a group of related declarations together in a
module, while keeping the routine bodies in distinct
modules, so they can be edited without editing the
declaration module.

Another use, analogous to the use of FORWARD in
standard Pascal, is with mutually dependent modules.
For example:

MODULE ml;
PROCEDURE p(i: INTEGER); SEPARATE;
PROCEDURE q;

BEGIN

p(2); { Call p. }
END;

END; { End of module. }

MODULE m2;
PROCEDURE-BODY p;

BEGIN

q; { Call q; }
END;

END; { End of module. }

Here, module ml depends on a declaration in m2 (the
procedure p). The SEPARATE directive allows the two
modules to be compiled in the order m 1, m2. Module m 1
contains all the information needed to compile a call to

8-13 Declarations

procedure p even though the procedure is defined
elsewhere (and may not yet be written).

EXTERNAL Procedure and Function Declarations

An outer-level procedure or function declaration may
contain the EXTERNAL directive instead of a routine
body. This means that the routine's code is written in
another programming language, such as C or MACRO.
EXTERNAL is only allowed at the outer level.

Note that EXTERNAL can be used with the same
meaning in place of the routine body of a process block
declaration or interrupt service routine declaration.
EXTERNAL can also be used as an attribute in outer­
level variable dec lara tions.

FORWARD Procedure and Function Declarations

A procedure or function declaration may contain the
FORWARD directive instead of a routine body. This
means that the routine's actual body occurs later
(textually) in the block containing the FORWARD
declaration. FORWARD is included only to support
standard Pascal. It is not needed in VAXELN Pascal,
because the declarations in a block may occur in any
order.

The actual routine body for a FORWARD declaration
appears as a procedure or function declaration of the
same name, with a routine body, and without a
parameter list or result type (for functions). Note that
this is not shown in the syntax diagrams.

Procedure and Function Types

A procedure or function declaration may contain the
PROCEDURE_TYPE or FUNCTION_TYPE directive
instead of a routine body. This means that the

Procedures and Functions 8-14

declaration declares the name of a procedure type or
function type, rather than the name of a routine.

Any procedure heading may contain the construction
ttOF TYPE procedure type name" instead of a param­
eter list. This means that the procedure's parameters
have the same declarations (names and types) as the
parameters declared in the procedure type.

Similarly, any function heading may contain the
construction ttO F TYPE function type name" instead of
a parameter list and result type. The parameter
declarations and result type are taken from the
function type. For example:

FUNCTION ftype(n,m: INTEGER;
VARarr: ARRAY[1 .. 10] OF INTEGER;): BOOLEAN;
FUNCTION-TYPE;

FU NCTION f OF TYPE ftype;
BEGIN ... END; { Body of function f. }

Here, the function f has the value parameters nand m,
the V AR parameter arr, and the result type BOOLEAN.

Defining a procedure or function type is generally
appropriate when working with procedural parameters.
Note that the Data Access Protocol interface (module
$DAP) makes extensive use of procedure and function
types. In addition, the predeclared function type
EXCEPTION_HANDLER is discussed in Chapter 13,
ttErrors and Exception Handling."

INLINE Procedures and Functions

The INLINE attribute may be specified in a procedure
or function declaration containing a routine body. This
means that for each occurrence of a routine call to the
procedure or function, the routine's body will be
expanded into code at the point of the call.

8-15 Declarations

For example, if the following INLINE procedure
declaration is specified:

[INlINE] PROCEDURE increment(VAR i: INTEGER);
BEGIN i : = i + 1 END;

A call to the declared procedure, such as

VAR n: INTEGER;

increment(n);

results in generated code similar to the following:

INCL R3

An in-line routine has no V AX argument list or stack
frame, and the VAX CALL instruction is not used.
INLINE has no other effect on the meaning of a routine,
but its use is subject to the restrictions described below,
to ensure that the compiler can perform the in-line
expansion.

The use of INLINE will generally decrease program
execution time. This occurs both because of the
elimination of the general procedure call overhead, and
because the compiler's general optimization methods
apply across the expanded code. INLINE is especially
appropriate for small procedures and functions, but its
use on large ones can payoff as well. A good practice is
to try it and compare execution times or simply inspect
the resulting code.

The use of IN LINE can cause difficulties in debugging.
There is no stack frame for an in-line routine and no
debugger symbol table information for the expanded
routine (variables or statement locations). The
NOINLINE qualifier can be used on the EPASCAL
command, to force in-line routines to be compiled as
normal routines, with stack frames and with debugger

Procedures and Functions 8-16

symbol table information. This qualifier applies only to
in-line routines declared in the compilation unit, not to
those defined in other modules.

Restrictions on INLINE Procedures and Functions

The following restrictions on in-line procedures and
functions must be observed:

• The body of an in-line routine must not contain
other routines.

• An in-line routine must not establish an exception
handler, nor be used as an exception handler.

• An in-line routine must not declare file variables
or variables with the READONLY attribute. (File
parameters are permissible.)

• If an in-line routine is exported and it refers to an
outer-level variable or routine X, then X must be
an exported name.

• A parameter of an in-line routine must not have
the LIST attribute.

• An in-line routine R must not call itself, either
directly or by calling another in-line routine that
calls R. (However, it is permissible to call a non-in­
line routine that calls R.)

• . INLINE applies only to a complete procedure or
function declaration; it must not be applied to a
procedural parameter or to a SEPARATE,
EXTERNAL, FORWARD, PROCEDURE_TYPE,
FUNCTION-TYPE, PROCEDURE_BODY, or
FUNCTION_BODY declaration. It cannot be used
with the OF TYPE construction or with the
UNDERFLOW or NOUNDERFLOW attribute.

• In-line routines must not be passed as arguments.

8-17 Declarations

• Predeclared names used within the executable
(BEGIN ... END) part of an exported routine
should not be redeclared at the outer level of any
module using the exported in-line routine;
otherwise, when the compiler expands the in-line
routine, it will misinterpret the predeclared name
with unpredictable effects.

Procedure and Function Calls

Procedure and function calls have the same syntax and
the same interpretation, except as follows: a procedure
call occurs as a statement and does not return a result;
a function call occurs as a factor of an expression and
returns a result value.

When a routine call is executed, its arguments (if any)
are associated with the routine's parameters and the
routine's body is then activated. If the routine body
terminates normally, control returns to the point of
invocation and normal statement sequencing or
expression evaluation continues. (See Chapter 2,
((Program Structure," for more information on routine
body activation and termination.)

The syntax of procedure and function calls is shown in
Figures 8-8 and 8-9 , respectively.

procedure name -------------.......

argument list

Figure 8-8 Procedure Call Syntax

Procedures and Functions 8-18

-.I function name I
~ argument list

Figure 8-9 Function Call Syntax

The procedure or function name is the name of the
routine to be called. This name is usually one declared
by a procedure or function declaration. However, it can
be the name of a procedural parameter, or it can be a
call to the ARGUMENT function, accessing a
particular argument routine passed to a procedural
parameter with the LIST attribute.

The argument list in a procedure or function call
specifies arguments to be passed to some or all of the
called routine's parameters. As explained in the
following subsection, either positional or nonpositional
notation can be used to associate an argument with its
corresponding parameter.

Once the parameter corresponding to a given argument
is determined, the argument is interpreted in
accordance with the particular properties of the
parameter. This process is explained fully in the section
((Parameters and Argument Passing," later in this
chapter. Briefly:

• If the parameter is a value parameter, the
argument is interpreted as an expression.

• If the parameter is a V AR parameter, the
argument is interpreted as a variable reference.

8-19 Procedure and Function Calls

• If the parameter is a procedural parameter, the
argument is interpreted as a routine name (like
the routine name in a procedure or function call).

Argument Lists

The argument list in a procedure or function call
associates arguments with some or all of the called
routine's parameters. An argument must be specified
for a parameter unless it is a value parameter declared
with a default value, an OPTIONAL V AR or procedural
parameter, or a parameter with the LIST attribute. If
no argument is given for a value parameter with a
default value, the compiler supplies the default value
as the argument. (The treatment of OPTIONAL and
LIST parameters is explained in later sections of this
chapter.)

The syntax for argument lists and arguments is shown
in Figures 8-10 and 8-11, respectively.

argument _M

Figure 8-10 Argument List Syntax

Note: In the above syntax, a completely empty
argument list is not allowed. The maximum number of
arguments allowed is 253.

Procedures and Functions 8-20

variable reference........, (for VAR parameters)

expression ----1 (for value parameters)

function name --1 (for function name parameters)

procedure name (for procedure name parameters)

Figure 8-11 Argument Syntax

There are three possibilities for an entry in an
argument list:

• Positional argument. This is an argument not
preceded by ((parameter name : =". Positional
arguments are associated in left to right order with
the routine's parameters.

• Explicitly omitted positional argument. This is
indicated by the occurrence of ~~(" or ('-," followed
immediately by (()" or (\". The corresponding
parameter is skipped in the association of
positional arguments with parameters.

• Nonpositional argument. This is an argument (or
list of arguments) immediately preceded by
((parameter name : = ". The parameter name must
be the name of a parameter of the called routine,
and this use is not affected by any other
declarations. The nonpositional argument (or list
of arguments) is associated with the named
parameter. No other argument (positional or
nonpositional) can be specified for the same
parameter.

8-21 Procedure and Function Calls

Positional arguments can be used in the same call as
nonpositional ones, but any positional arguments must
be listed first. For example:

sort(arr, out-of-order : = descending, n : = 10);

Note that a parameter with the LIST attribute may be
associated with zero or more arguments. To specify no
arguments for such a parameter, simply omit it from
the argument list. Otherwise, give the list of arguments
nonpositionally (that is, following ((parameter name
: =") or positionally at the end of an argument list. In
the latter case, arguments must either be given or
explicitly omitted for all the parameters preceding the
LIST parameter (which is always the last parameter).

Calls to Predeclared Routines

Predeclared routines must be called exactly as shown in
this manual. The calling (argument-passing)
conventions used by V AXELN Pascal routines are
discussed in the section ((Calling Conventions," at the
end of this chapter.

Parameters and Argument Passing

This section is concerned with the relationship between
a parameter and the corresponding argument in a
routine call. Individual subsections cover the three
general types of parameters: V AR parameters, value
parameters, and procedur.al parameters.

Additional subsections cover the rules for conformant
parameters (value ,or VAR), OPTIONAL parameters
(V AR or procedural), and LIST parameters (any type).

Procedures and Functions 8-22

VAR Parameters

The argument corresponding to a V AR parameter is
interpreted as a variable reference. It must be an
addressable reference, and its data type must be
compatible with the parameter's, as described below.
Within the called routine, the V AR parameter denotes
the data item established by the interpretation of the
argument.

U sing a V AR parameter in effect renames the
argument within the called routine. Accessing the
parameter's value accesses the argument's current
value. Modifying the parameter modifies the argument.
However, if the argument is actually a READONL Y
data item, modification is an error, with unpredictable
effects.

Note that interpretation of the argument establishes
the argument data item (but not its value) for the
duration of the called routine.

For example:

VARa: ARRAY[1..100] OF INTEGER;
n: INTEGER;

PROCEDURE p(x,i: INTEGER);
BEGIN i: = 3;

END;

n : = 2;
p(a(n),n);

x:=x+1;

During execution of p, the parameter x denotes the
second element of the array a, while i denotes the
variable n. Execution of p assigns 3 to n (via i), but this
does not affect the running of the assignment statement
x : = x + 1, which increments the second element of a.

8-23 Parameters

Type Compatibility for VAR Parameters and
Arguments

The data types of a V AR parameter and its argument
must be equivalent, with the following exceptions:

• If the parameter's type is ANYTYPE, the
argument may be of any type .

• If the parameter's type is BYTE-DATA(n), the
argument is implicitly typecast to BYTE_DATA(n)
before applying the equivalence requirement. In
other words, the argument is compatible if its
storage size is n bytes.

The parameter's type is determined after the value of
any conformant extents are determined. In typical
usage, this makes the parameter and argument types
equivalent. For example, the V AR parameter type
BYTE_DATA«n» is compatible with any
addressable argument.

Value Parameters

The argument corresponding to a value parameter is
interpreted as an expression. The resulting value is
converted (if necessary) to the data type of the
parameter. The converted value becomes the param­
eter's initial value (non-READONL Y value parameter)
or value (READONL Y value parameter). The data
types of the parameter and argument must be
compatible, as described below.

A non-READONLY value parameter is a local variable
of the called routine. It is initialized to the converted
value of the argument, but there is no other connection
between the argument and the parameter.

Procedures and Functions 8-24

For example:

VAR n: INTEGER;

PROCEDURE p(a: INTEGER; VAR b: INTEGER);
BEGIN b: = 0;

END;

n: = 2;
p(n,n);

a:= a+1;

During execution of p, the parameter a is a local
variable initialized to 2 (the value of n at the time of the
call), and b is a V AR parameter denoting the variable
n. The assignment b : = 0 sets n to 0, but has no effect
on a. The assignment a : = a + 1 sets a to 3, but has no
effect on n.

READONL Y Value Parameters

A value parameter is considered READONL Y in the
following cases:

• The parameter is declared with the READONL Y
attribute.

• The parameter is declared with the LIST attribute.
• The parameter is used in an extent expression in

another parameter's type or in the function result
type in the same routine heading.

Also, a conformant extent is treated like a READONL Y
value parameter, except that its value is determined by
conformance rather than an explicit argument in the
argument list.

A READONL Y value parameter denotes the same
value throughout execution of the called routine. It is
an error to modify a READONLY value parameter. The
compiler issues an error message for any explicit
attempt to modify a READONL Y value parameter; for

8-25 Parameters

example, by using it as the target in an assignment
statement. Modifications not detectable by the compiler
(for example, via a pointer to the parameter) result in
unpredictable behavior.

Type Compatibility for Value Parameters and
Arguments

In general, the data type of a value parameter's
argument must be assignment compatible with the
parameter's data ty·pe. (See Chapter 7, ((Pascal
Statements," for assignment compatibility rules.)

If the types are compatible but not equivalent, the
argument value is converted to the target type
according to the rules for assignment statements; for
example, an INTEGER argument is converted to agree
with a REAL parameter.

The parameter's type is determined after the values of
any conformant extents are determined. For typical
conformant array types, this makes the parameter and
argument types equivalent, and therefore compatible.
To provide additional flexibility in the use of strings
and BYTE-DATA, the following special rules apply:

• If a value parameter's type is conformant
STRING«n» or VARYING-STRING«n»,
the argument may be any string value, including
values of type CHAR and PACKED ARRAY [l .. n]
OF CHAR. The length of the argument becomes
the value of the conformant extent n, and there is
no conversion (that is, no truncation or padding
with blanks) .

• If a value parameter's type is conformant
BYTE_DATA«n», the value may be of any
type. It is converted to BYTE_DATA as explained
under the CONVERT function (see Chapter 9,
((VAXELN Routines"), and n is the length of the

Procedures and Functions 8-26

converted result. In most cases, no real conversion
occurs, and n is simply the storage size of the
argument. However, PACKED ordinals and
PACKED small sets may be expanded in size, and
set expressions may be truncated (see the
CONVERT function).

• If a value parameter's type is nonconformant
BYTE-DATA(n), the argument may be of any
type, provided that the length after conversion to
BYTE_DATA is equal to n. It is a range violation if
this is not the case. (Again, see the CONVERT
function for more information.)

Argument Copying and Use of READONL Y

Passing an argument to a value parameter generally
(but not always) involves moving the argument's value
from one storage location to another. This discussion
explains why this happens and presents some
guidelines for declaring parameters so as to a void
performance degradation related to argument copying.

There are two related reasons for copying the argument
value. The first applies to non-a.EADO NL Y value
parameters. Because such a parameter is a local
variable of the called routine, the value must be moved
to initialize it. The called routine cannot use the value's
original storage as the local variable, because that
might modify data belonging to the calling routine.
This situation is illustrated by the example given
earlier under ~(V al ue Parameters."

The second reason for copying an argument value is to
capture it, so it will not be modified by side effects of the
called routine. Copying to initialize a non-READONLY
value parameter accomplishes this purpose also, but
the need to capture a value may specifically cause a

8-27 Parameters

copy to be performed in the case of a READONL Y
parameter.

For example:

VAR x: DOUBLE;

PROCEDURE p(a: [READONLY] DOUBLE;
VAR b: DOUBLE);
BEGIN b: = 3.2;

END;

x: =2;
p(x,x);

b : = a + b;

Here, the value parameter a gets the value 2 (from x),
while the V AR parameter b denotes the variable x. The
assignment b : = 3.2 must change x but not a. Hence,
the call to p has to copy x's value into safe storage for
use as a.

The compiler does not copy argument values in cases
where it can determine that avoiding the copy will not
change the routine's behavior (assuming correct use of
READONL V). This does not, however, eliminate all un­
necessary instances of argument copying (unnecessary
given the know ledge of the programmer regarding the
routine's behavior, that is). Following these guidelines
will generally yield the best results:

• Unless a value parameter is truly needed as a local
variable, declare it with the READONLY attri­
bute. This is good practice in any case, because the
compiler will then detect inadvertent attempts to
modify it .

• Performance degradation due to argument copying
is not an issue for small arguments, especially for
those data types that are passed immediately in

Procedures and Functions 8-28

the argument list. (See ((Calling Conventions,"
later in this chapter, for more information.)

• Array and record input parameters should
generally be declared as V AR parameters, unless
use of the parameter as a local variable is neces­
sary. You must then avoid side effects that can
inadvertently change the parameter's value while
the called routine still needs the original value .

• Input string parameters are generally best
declared as [READONLY] STRING(< n». In
some cases, however, it works well to use a single
type of string variable throughout a program (for
example, VARYING-STRING(80»), and make all
parameters V AR parameters of this type. If this is
done, consider declaring string constants as
READONL Y variables of the same type.

Procedural Parameters

A procedural parameter is declared by the occurrence of
a procedure or function heading in a routine's
parameter list. The argument corresponding to such a
parameter must itself be the name of a procedure or
function. The argument name may be one declared by a
normal procedure or function declaration, or the
argument may itself be a procedural parameter
(declared in another routine's parameter list). In either
case, the declarations of parameter and argument must
be compatible in the sense explained below.

Within the called routine, a procedural parameter
denotes the same routine as the corresponding
argument. If the argument is the name of a procedure
or function (say F) declared within another routine, one
additional data item is passed as part of the argument.
That item is the stack frame pointer for the current
stack frame of F's parent routine. When F is invoked

8-29 Parameters

(via the parameter to which it was passed), this stack
frame pointer is used to locate references within F to
variables and other items in its parent routine (or any
other containing non-outer-Ievel blocks).

For example:

PROCEDURE p;
VAR x: ARRAY [1 .. 100] OF REAL;
FUNCTION f(i: INTEGER) : REAL;
BEGIN f : = x[i];
END;

q(f);

The call q(f) passes the function f to some other routine
q. Any invocation of f by q (via the parameter) will
return the ith element of the array x in the stack frame
of p current at the point of the call q(f).

Note that procedural parameters are used heavily in
the Data Access Protocol interface (module $DAP), as
illustrated in the source file DAP.PAS, supplied with
your development system.

The following example of a recursive ((tree walk"
illustrates both the use of procedural parameters and
the manipulation of dynamically sized self-defining
data. Here, the dynamic data structure is a tree node
that can have any number of subnodes. The procedural
parameter defines the action to be taken at each
subnode in a complete tree.

Procedures and Functions 8-30

r

PI

PI

Compatibility for Procedural Parameters and
Arguments

A procedural parameter and its argument must be
compatible in the sense that the declaration of each
must specify parameter lists with the same number and
types of parameters, and with the same function result
type (for functions). The straightforward way to ensure
compatibility is to use a procedure or function type in
declaring the parameter and any routines that may be
passed to it.

If the parameter and argument are not declared using
the same routine type, the compiler compares the two
declarations. The exact compatibility rules it uses are
complicated, but are approximated by the following.

To be compatible, two procedure or function
declarations must:

• Both be procedures or both be functions.

• Have compatible parameter lists.

• Iffunctions, have equivalent result types.

To be compatible, two parameter lists must declare the
same number of parameters. In addition:

• A corresponding pair of parameters must both be
V AR parameters with equivalent types, value
parameters with equivalent types, or procedural
parameters (which must be compatible).

• If a parameter in one parameter list has the LIST,
READONLY, or REFERENCE attribute, the
corresponding parameter in the other list must
have it also.

• If a parameter in one parameter list is conformant,
the corresponding parameter in the other list must
also be conformant. They must have the same

8-33 Parameters

number of extents, corresponding conformant
extents must occur in exactly the same positions in
the two parameter lists or function result types
being compared, and the extents must be passed
the same way.

Conformant Parameters

A conformant parameter is a parameter with one or
more extents that adjust automatically to the
corresponding extents of the argument. The adjustable
extents are called conformant extents, and they are
implicit READONLY value parameters of the called
routine. (Refer to the section on flexible types in
Chapter 3, ~~Data Types," for background information.)

Various examples in this manual illustrate the use of
conform ant parameters; this subsection discusses the
rules in detail.

A conformant extent is declared by using an identifier
surrounded by angle brackets in place of an extent
expression within the conformant parameter's type. For
example:

PROCEDURE p(mat: MATRIX(< n > ,n»;

Here, mat is a conformant parameter of a flexible type
named MATRIX. Its first extent, represented by < n >,
conforms implicitly to the same extent of the
corresponding argument. Notice that n can be used
without the angle brackets in other extent expressions,
to represent the extent value derived from < n >. For
instance, if MATRIX is declared this way:

TYPE MATRIX(m,n: INTEGER) = ARRAY[1 .. m,1 .. n] OF
INTEGER;

then the parameter mat is a ~~square" matrix, since the
same extent value is used for both the first and second
dimensions in the parameter declaration.

Procedures and Functions 8-34

When two or more parameters are specified by the same
type containing a conformant extent, the first
parameter is conformant. The other parameters use the
value derived from the first. Similarly, a procedure can
declare a parameter with a fixed (per call) but
unspecified number of bytes of un interpreted data:

PROCEDURE p(bytes: BYTE-DATA«n>));

or a character string with fixed but unspecified length:

PROCEDURE p(chars: STRING«n>));

or a character string with fixed but unspecified
maximum length:

PROCEDURE p(vchars: VARYING-STRING(< n >));

Parametric extents can be specified explicitly rather
than as conformant extents:

PROCEDURE p(mat: MATRIX(n,n); n: INTEGER;
vstring: VARYING-STRING(m); m: INTEGER);

This feature is illustrated by the tree-walk example
given earlier under (tprocedural Parameters."

The rules for conformant parameters and extents are as
follows:

• There can be only one defining instance of a
conformant extent per parameter list using the
angle-bracket notation.

• The type of a conformant extent is the same as the
type of the corresponding extent parameter in the
flexible type.

• Conformant extents and ordinary value
parameters can be used as extents in other
parameter's types or in the function result type;
that is, they can be terminal operands of extent
expressions within those types.

8-35 Parameters

• Conformant extents and value parameters used as
extents are readonly value parameters within the
routine; they cannot be used as local variables
(that is, cannot be assigned to) within the routine's
body.

• The name of a conformant extent can occur as the
name of a value parameter. In this case, the
conformant extent value is placed in the V AX
argument list at the position of the value
parameter. (Normally, all extents defined by a
conformant parameter are collected in a
descriptor.) This feature is primarily for defining
routines written in other languages. When this
feature is used, the value parameter must be
declared with a type compatible with the
conformant extent's and without a default value.
The value parameter cannot be explicitly
referenced by the nonpositional argument
notation, and it is ignored for positional matching.

• The LIST attribute, OPTIONAL attribute, and
default expressions are not allowed on parameters
that define conformant extents.

Conformance Rules

Given a conformant value or V AR parameter and the
corresponding argument, the compiler determines the
value of the parameter's conformant extents by
matching them with extents in the argument's type.
This is to give the conformant extents values such that
the resulting parameter type will be compatible with
the argument type.

The compiler does not require that the parameter and
argument have exactly the same flexible type. Instead,
it uses a flexible set of rules whose aim is to
accommodate most cases where the two types could be

Procedures and Functions 8-36

considered equivalent. For example, a conformant
matrix parameter will conform to an argument
explicitly declared as a two-dimensional array with
indices of type CHAR.

There are special rules for conformant BYTE-DATA
parameters and conformant string value parameters;
these are given in the subsections on VAR and value
parameters. In other cases, the original parameter type
(with symbolic conformant extents) and the argument
type match the conformant extents in the parameter's
type with the corresponding extents in the argument's
type. These cases are described below.

Case 1, Same Predeclared Flexible Type. In this case,
the argument and parameter types are the same
predeclared flexible type, ei ther STRIN G,
VARYING-STRING, or BYTE-DATA. The argument's
extent is the parameter's extent.

Case 2, Same User-Defined Flexible Type. In this case,
the argument and parameter types are the same user­
defined flexible type. A conformant extent in the
parameter type gets the value of the same extent in the
argument type.

Case 3, Argument Derived from Parameter. In this
case, the argument and parameter types are different
flexible types, but the argument type is derived from
the parameter type. Here, the argument type is
expanded in terms of the parameter type, to determine
which extent applies. For example:

TYPE matrix(m,n: INTEGER) = ARRAY[1 .. m, 1 .. n] OF
INTEGER;

TYPE squarematrix(s: INTEGER) = matrix(s,s);

PROCEDURE p(mat: matrix«x>,x)); ...

VAR sqr: squarematrix(5);

8-37 Parameters

BEGIN ... p(sqr); '" END.

The type of argument sqr, squarematrix(5), expands to
matrix(5,5); the first extent of sqr thus is used as the
extent matching <x> in the parameter mat. Note that
the two types must be equivalent after the expansion;
for example, they would not be equivalent if the type of
parameter mat was matrix(< x > ,2).

Case 4, Parameter Derived from Argument. In this
case, the types are different flexible types, but the
parameter type is derived from the argument type. The
compiler expands the parameter type in terms of the
argument type; the extents must then ma tch
symbolically. A conformant extent in the parameter
type must occur as at least one of the extents of its
expanded type; it then gets the value of the
corresponding extent in the argument type. For
example (with the same flexible types as in case 3):

PROCEDURE p(sqr : squarematrix(<x>)); ...

VAR mat: matrix(5,5);

BEGIN ... p(mat); ... END.

Here, the value parameter sqr is expanded back to a
common type, matrix(x,x); x corresponds to the extent 5
in the argument mat's type, so the extents of the
parameter also are 5 and 5. Notice that the argument­
passing would fail (with a range violation) if the
argument was

VAR mat: matrix(5,1 0);

because the parameter's expanded type, matrix(5,5), is
not equivalent to the argument's. In addition, the
conformance would fail if type squarematrix was
defined as

TYPE squarematrix(s: INTEGER) = matrix(2*s,2*s);

Procedures and Functions 8-38

because the expansion, matrix(2*x,2*x), does not match
the argument's type symbolically.

Case 5, All Other Situations. If cases 1-4 do not apply
(for example, different flexible types are involved, not
derived from each other, or the argument does not have
a flexible type), both types are expanded to completely
eliminate user-defined flexible types. The resulting
expanded types must then be equivalent by the usual
type equivalence rules.

Conformance is possible in case 5, but the expanded
parameter type must be one of these forms:

• flex(exten t) , where flex is STRING,
VARYING-STRING, or BYTE_DATA

• ARRA Y[dimensionl , ... dimensionN] OF
flex(extent)

• ARRA Y[dimensionl , ... dimensionN] OF type,
where type is not an array type or a flexible type

The expanded argument type must also have the same
form. Each conform ant extent x must occur either as
((extent" in /Zex(extent) or in one of the dimensions in
one of the following forms:

1. constant-lower-bound .. x

2. nonconstant-Iower-bound .. x

3. x .. any-upper-bound

With form 1, x's ordinal value is determined so that the
parameter will have the same number of elements as
the argument in this dimension. In 2 and 3, x's ordinal
value is determined by the corresponding bound. In all
cases, it is a range violation if this ordinal value is
inconsistent with the type ofx.

8-39 Parameters

For example:

TYPE matrix(m,n: INTEG ER) = ARRA Y[1 .. m, 1 .. n] OF
INTEGER;

TYPE vector(l: INTEGER) = ARRA Y[1 . .I] OF INTEGER;

TYPE vecarrayG,k: INTEGER) = ARRA Y[O . .J] OF
vector(k);

VAR vec2: vecarray(S,10);

PROCEDURE p(mat: matrix(<x>, 10»;

BEGIN ... p(vec2); ... END.

The expansion of the parameter mat's type is:

matrix(x, 10) -+ ARRAY [1 .. x, 1 .. 10] OF INTEGER

The expansion of the argument vec2's type is:

vecarray(S, 1 0) -+

ARRAY [O .. S] OF vector(10) -+

ARRAY[O .. S] OF ARRAY[1 .. 10] OF INTEGER ==

ARRAY[O .. 5, 1 .. 10] OF INTEGER;

The value 6 is used for the extent x, because there are
six elements in the corresponding dimension of the
expanded type of the argument vec2.

ISO Conformant Extents

The ISO Pascal standard provides a different means of
defining conformant array parameters. Instead of using
a bound flexible type with conformant extents as a
parameter's type (MATRIX(< m>, < n >)), you write a
kind of explicit array type in which the conformant
extents' names occur as the low and high index values
in each dimension. The extent types are specified by
ordinal type names embedded in the array type, as
shown in Figure 8-12.

Procedures and Functions 8-40

In V AXELN Pascal, this is interpreted by considering
the conformant type first, as though it introduced a
uniquely named flexible type, T, with the indica ted
extent parameters, such as P1, P2, ... Pn. The parameter
type is then interpreted as:

T«P1 >, <P2>, ... <Pn»

For example,

PROCEDU RE r(
a,b : ARRAY[m .. n : INTEGER; c..d : CHAR] OF REAL
);

achieves the same effect as

TYPE
T(m,n: INTEGER; c,d: CHAR) =
ARRA Y[m .. n, c..d] OF REAL;

PROCEDURE r(
a,b: T«m>,<n>,<c>,<d»
);

The following rules and notes apply to an ISO
conformant type:

• A distinct name must be used for each low and
high index in the conformant array. Like ordinary
conformant extents, these are CCtrue" value param­
eters and cannot be modified within the routine.

• The name of an ISO conformant extent must not
duplicate the name of any other parameter or
conformant extent.

• In most cases, the use of ISO conformant arrays
involves more overhead than the use of normal
VAXELN Pascal conformant parameters. We
recommend that ISO conformant arrays only be
used in programs designed to conform to the ISO
standard.

8-43 Parameters

• The V AXELN Pascal interpretation of conformant
arrays is not as strict as the ISO standard. It is
wise to check that the declaration and usage
conform strictly to the standard.

OPTIONAL VAR and Procedural Parameters

A V AR or procedural parameter may be declared with
the OPTIONAL attribute, which means that an
argument need not be supplied for the parameter when
the routine is called. As explained in the section
((Procedure and Function Calls," earlier in this chapter,
arguments can be omitted by giving a short argument
list, by using the nonpositional notation, or by omitting
a positional argument while including the following t\".
The OPTIONAL attribute is incompatible with the
LIST attribute, and it cannot be applied to a
conformant parameter.

Within the called routine, the predeclared function
PRESENT can be used to determine if an OPTIONAL
parameter was actually passed an argument. The
function

PRESENT{optionaLparameter)

returns TRUE if the argument was supplied; otherwise,
it returns FALSE.

It is an unpredictable error to reference an OPTIONAL
parameter whose argument was not supplied, except
using the PRESENT function or in passing the
parameter as an argument to an OPTIONAL
parameter in another routine call. For example:

PROCEDURE q{VAR b: [OPTIONAL] INTEGER);
BEGIN;

IF PRESENT{b) THEN b : = 1;
END;

Procedures and Functions 8-44

PROCEDURE p(VAR a: [OPTIONAL] INTEGER);
BEGIN;

q(a);
END;

Here, the code for procedure p does not have to
explicitly test for the presence of the OPTIONAL
argument, because a is simply passed along as an
OPTIONAL argument to q.

The following example shows how you might organize a
routine that has an 0 PTI 0 N AL procedural parameter:

PROCEDURE option-type; PROCEDURE-TYPE;
{These are any procedures without arguments. }

PROCEDURE graph(
VAR y-array: arraytype;
[OPTIONAL] PROCEDURE option OF TYPE

option-type);

PROCEDURE default OF TYPE option-type;
BEGIN ... END; { Body of default. }
{ Invoked if no option specified. }

BEGIN { Graph code. }
IF PRESENT(option) THEN option { Execute option
procedure. }
ELSE default; { Use default procedure. }

Here, the procedural parameter option specifies some
sort of initialization action related to graph. If a call to
graph omits the argument option, the code for graph
invokes the internal procedure default rather than
option.

8-45 Parameters

LIST Parameters

A parameter may be declared with the LIST attribute,
which means that it may be supplied zero or more
arguments. The number of arguments supplied is
limited by the maximum number of arguments (253)
allowed in a complete argument list.

A LIST parameter may be a value parameter, a V AR
parameter, or a procedural parameter. Only one
parameter of a routine can have this attribute, and it
must be the last parameter in the routine's parameter
list. (This rule prevents ambiguity in interpreting the
argument list.) LIST is incompatible with the
OPTIONAL attribute and with the specification of a
default value for a value parameter. A LIST parameter
must not be conformant.

Within the called routine, the LIST parameter must
only be referenced as an argument of the predeclared
ARGUMENT and ARGUMENT_LIST-LENGTH
functions, which reference individual arguments
passed to the LIST parameter and return the total
number of such arguments, respectively. For example:

PROGRAM c(OUTPUT);
FUNCTIONcomparesum(

sum: INTEGER: = 0;
addends: [LIST] INTEGER
): BOOLEAN;
{This function returns TRUE if the argument for
sum equals the sum of the addends.}

VAR tempsum, addcount: INTEGER: = 0;
BEGIN

FOR addcount : = 1 TO
ARGUMENT-LiST-LENGTH(addends) DO
tempsum : = tempsum +
ARGUMENT(addends,addcount);

Procedures and Functions 8-46

comparesum : = tempsum = sum;
END; {comparesum }

BEGIN
IF com'paresum(5,2,3) THEN

WRITELN('5 = 2 + 3');
IF comparesum(addends : = 2,3, sum: = 5) THEN

WRITELN('2 + 3 = 5');
IF comparesum THEN

WRITELN('O = 0');

END.

Here, the function comparesum can accept up to 252
integer arguments for addends, since the parameter
sum also is specified. Notice that although a LIST
parameter like addends must be the last parameter, it
need not be the last argument. The nonpositional
argument form can be used to associate particular
values in the call with the LIST parameter.

Calling Conventions

This section explains the conventions used to pass
arguments to V AXELN Pascal procedures and
functions and to return function results. The rules for
procedures without conformant parameters are given
first, followed by the rules for functions and conformant
parameters. This section does not apply to predeclared
or in-line routines, which are expanded into in-line code
and, therefore, have no argument list in the ordinary
sense.

Procedures

A procedure is invoked by a V AX CALL instruction
with a standard V AX argument list, as shown in Figure
8-13.

8-47 Calling Conventions

Argument pointer (AP)

not used

argument 1

argument 2

•
•

argument n

n is the argument
count. Bits 4
through 31 are
reserved to Digital.

Figure 8-13. An Argument List

The VAX arguments correspond to the procedure's
parameters in the order the parameters are written in
the procedure's heading. The VAX arguments, if any,
corresponding to a LIST parameter are at the end of the
argument list. The total length of the argument list can
be obtained with the ARGUMENT-LIST-LENGTH
function. The total number of arguments in the list can
be obtained with TOTAL-ARGUMENT_COUNT.

The contents of a particular VAX argument's longword
are determined as described below.

VAR Parameter

For a V AR parameter, the V AX argument is the
address of the V AXELN Pascal argument. If the
parameter is optional and its V AXELN Pascal
argument is omitted, the VAX argument is zero.

Procedures and Functions 8-48

Procedural Parameter

The VAX argument is the address of a quadword, the
first longword of which contains the address of the
V AXELN Pascal argument's entry mask. (The
VAXELN Pascal argument is a routine name or
another procedural parameter, from which the entry
mask address is obtained.)

If the V AXELN Pascal argument denotes an internal
procedure or function (that is, one contained inside
another routine), the second longword contains a
pointer to a stack frame for its parent routine. If the
procedural parameter is optional and its VAXELN
Pascal argument is omitted, the VAX argument is zero.

Value Parameter

In general, if a value parameter's data type is
represented in 32 or fewer bits, its argument is passed
immediately. That is, the VAX argument contains the
value of the V AXELN Pascal argument. The value is
zero-extended to a longword (32 bits) in cases where the
parameter's data type has a normal representation less
than a longword (for example, type CHAR). The data
types for which values are passed immediately are
BOOLEAN, CHAR, INTEGER, enumerated, pointers,
small sets (ORD(maxelement) < 32), REAL, and the
system object types except PORT, excluding types with
the BIT attribute.

If a value parameter's type is not one for which values
are passed immediately, or if the value parameter
would normally be passed immediately but has a
REFERENCE attribute (see «The REFERENCE
Attribute," later in this section), the VAX argument is
the address of storage containing the V AXELN Pascal
argument's value.

8-49 Calling Conventions

If a value parameter is optional and its VAXELN
Pascal argument is omitted, the VAX argument is the
parameter's default value (passed immediately or not,
as described above).

When a value argument is passed by address, the
following rules apply to the storage addressed by the
VAX argument:

• If the parameter has the READONL Y or LIST
attribute, the argument's storage must be such
that it will not be modified while the called routine
is executing. For example, it must not be the
storage occupied by a variable that will be
modified by the called routine. (The called routine
will not directly modify this storage.)

• If the parameter is not READONLY or LIST, but is
a record or array whose boundary requirement is
only bit alignment, the argument storage must be
a dummy variable that can be freely used by the
called routine.

• For all other value parameters, the only
requirement is that the argument's storage
contain the argument's value when the call is
executed. The called routine copies the value into a
local variable before executing any code that could
change the contents of the argument's storage.

Function Results

Function results are returned as follows:

1. If the function's result data type is one for which
value arguments are passed immediately, the
function's result is returned in register RO.

Procedures and Functions 8-50

2. If the function's result data type is
LARGE_INTEGER or DOUBLE, the function
result is returned in the register pair RO, RI.

3. Otherwise, the function result is returned in
storage whose address is given by the first VAX
argument. This storage is used as a local variable
during the function's execution. Note that the
position of each V AXELN Pascal argument in the
VAX argument list is displaced by one longword in
this case.

Conformant Parameters

The argument corresponding to a conformant
parameter is normally passed by a descriptor. The VAX
argument is the address of the descriptor. The
descriptor contains the address of the data and the
conform ant extent values.

The first extent value is the descriptor's first longword;
the second longword contains the address of the data.
Subsequent longwords contain any further extent
values, one per longword. The extent values are treated
as 32-bit integers; that is, ORD(extent) is stored in the
descriptor.

The following notes apply:

• The data item denoted by the address in the
descriptor is determined in accordance with the
rules for nonconformant parameters.

• If a conformant extent is also named explicitly in
the routine's parameter list, it will not be in the
descriptor. If all conformant extents of a parameter
are so named, the argument is passed by address,
not by descriptor.

• The form of descriptor used is simpler than the
VAX standard descriptor. In general, passing

8-51 Calling Conventions

arguments by descriptor to an external routine
(not called in VAXELN Pascal) has to be treated in
V AXELN Pascal as passing a record with the
appropriate contents. However, the V AXELN
Pascal descriptors for STRING(< n » and
VARYING-STRING(<n» have the same form as
the standard VAX descriptors for strings.
V AXELN Pascal accepts the standard form.

A non-VAXELN Pascal routine will accept the
V AXELN Pascal form unless it accesses th,e second
word of the descriptor, which, in a standard V AX
descriptor, contains a code denoting the particular
descriptor class.

The REFERENCE Attribute

A value parameter may be declared with the
REFERENCE attribute, which means that its
argument will be passed by address rather than
immediately in the VAX argument list. The
REFERENCE attribute can only be specified for value
parameters whose data type is such that they would
otherwise be passed immediately in the argument list.

Procedures and Functions 8-52

Introduction

Chapter 9
VAXELN Routines

V AXELN Pascal supplies procedures and functions
that perform commonly used operations. Many of the
routines are predeclared; these routines must be called
exactly as shown in the call format for each routine.

Most of the operations on the system data types are
performed by predeclared kernel procedures, referred to
as kernel services. These services create, delete, or
otherwise affect the state of the kernel objects repre­
sented by the system data types. (See Chapter 3, ~(Data
Types," for a description of the system data types.)

Other V AXELN Pascal routines are not predeclared.
These routines are used in programs by including
particular modules from the library RTLOBJECT.OLB
in the compilation.

This chapter describes all V AXELN Pascal routines
that do not fall under specific topics discussed in later
chapters. These routines are categorized as follows:

• Arithmetic functions

• Ordinal functions

• String functions

• Type conversion routines

• Argument functions

• Storage allocation routines

• VAX functions

9-1

• Time representation routines

• Other routines

Within each category, the functions and procedures are
listed in alphabetical order. A brief description of each
routine is given, followed by the call format and the
arguments and function result (if appropriate). Note
that functions always return a value that is associated
with the function identifier.

The other VAXELN routines are located as follows:

• Chapter 10, ~~Queues," describes the procedures
relating to queues.

• Chapter 11, ((Subprocesses and Synchronization,"
describes the kernel services relating to processes
and synchronization, the authorization procedures,
the Authorization Service utility, program loader
utility, and exit utility procedures, and the mutex
proced ures.

• Chapter 12, ((Interjob Communication," describes
the kernel services relating to message
transmission and interjob data sharing, the
memory allocation procedures, and the stack
utility procedures.

• Chapter 13, ((Errors and Exception Handling,"
describes the procedures relating to exception
handling.

• Chapter 14, ((Device Drivers and Interrupts,"
describes the kernel services relating to devices,
the IPL procedures, the DMA device handling
procedures, the device register procedures, and the
real-time device driver utility procedures.

• Chapter 15, nInput and Output," describes all
Pascal I/O routines, as well as the V AXELN file
utility, disk utility, and tape utility procedures.

VAXELN Routines 9-2

Arithmetic Functions

The arithmetic functions described in this section
perform mathematical computations. Table 9-1
summarizes these functions.

Table 9-1. Arithmetic Functions

Function Purpose

ABS(x) computes the absolute value of
x.

ARCTAN(x) computes the arctangent ofx.

COS(x) compu tes the cosine of x.

EXP(x) computes the exponential ofx.

LN(x) computes the natural
logarithm of x.

ODD indicates whether an integer
is odd or even.

SIN(x) computes the sine of x.

SQR(x) computes the square of x.

SQRT(x) computes the nonnegative
square root of x.

XOR performs an excl usi ve OR.

ZERO sets a variable to binary zero.

9-3 Arithmetic Functions

ASS

The ABS function returns the absolute value of its
argument.

Call Format

RESULT: = ABS(expression)

Arguments and Result

expression. The argument supplies a value of type
INTEGER, LARGE_INTEGER, REAL, or DOUBLE.

The result is the expression's absolute value; its data
type is the same as the expression's.

ARCTAN

The ARCTAN function returns the arctangent of its
argument.

Call Format

RESULT: = ARCTAN(expression)

Arguments and Result

expression. The argument supplies an expression of
type REAL, DOUBLE, or INTEGER. An INTEGER
argument is converted to REAL before the result is
computed.

The result is a REAL or DOUBLE value e such that
-n/2 < e < n/2. That is;e is the angle in radians whose
tangent is expression.

V AXELN Routines 9-4

cos
The COS funtion returns the cosine of its argument.

Call Format

RESULT: = COS(expression)

Arguments and Result

expression. The argument supplies an expression of
type REAL, DOUBLE, or INTEGER, representing an
angle in radians. An INTEGER expression is converted
to REAL before the computation is performed.

The result is a REAL or DOUBLE value representing
the cosine.

EXP

The EXP function raises the base of the natural
logarithms (e) to a specified power.

Call Format

RESU L T : = EXP(power)

Arguments and Result

power. The argument supplies an INTEGER, REAL, or
DOUBLE exponent. An INTEGER argument IS

converted to REAL before the computation is
performed.

The result is the REAL or DOUBLE value ePower.

9-5 Ari thmetic Functions

LN

The LN function returns the natural (base e) logarithm
of its argument.

Call Format

RESULT: = LN(value)

Arguments and Result

value. The argument supplies an INTEGER, REAL, or
DOUBLE value, which must be greater than zero.

The floating-point result is the natural logarithm of
value. If value is INTEGER or REAL, the result is
REAL; if it is DOUBLE, the result is DOUBLE.

ODD
The ODD function determines whether an integer is
odd or even.

Call Format

RESULT: = ODD(expression)

Arguments and Result

expression. The argument supplies an integer
expressIon.

The result is the BOOLEAN value TRUE if expression
is odd, otherwise FALSE. That is, the result is
equivalent to:

(ABS(expression) mod 2 = 1)

VAXELN Routines 9-6

SIN

The SIN function returns the sine of its argument.

Call Format

RESULT: = SIN(expression)

Arguments and Result

expression. The argument supplies an INTEGER,
REAL, or DOUBLE value representing an angle in
radians. INTEGER is converted to REAL before the
operation is performed. .

The floating-point result (REAL or DOUBLE) is the
sine of expression.

SQR

The SQR function returns the square of its argument.

Call Format

RESULT: = SQR{expression)

Arguments and Result

expression. The argument supplies an integer or
floating-point expression.

The result is the square of expression and has the same
data type as expression.

9-7 Arithmetic Functions

SQRT

The SQRT function returns the nonnegative square
root of its argument.

Call Format

RESU L T : = SQRT(expression)

Arguments and Result

expression. The argument supplies an integer or
floating-point expression; the value must not be
negative.

The floating-point result is the square root of
expression.

XOR

The XOR function performs an exclusive OR on two
sets or BOOLEAN values.

Call Format

RESULT: = XOR(a,b)

Arguments and Result

a, b. The arguments supply two sets with the same base
type or two BOOLEAN expressions.

For two set arguments seta and setb, the result is

(seta - setb) + (setb - seta)

where - and + are the set difference and union
operators, respectively. That is, the result is a set of the
same base type as the arguments and whose elements
are the elements present in one argument but not both.

V AXELN Routines 9-8

For example,

VAR
seta, setb, xset: SET OF CHAR;

BEGIN
seta: = ['a','b','c'];
setb : = ['a','c','e'];
xset: = XOR(seta,setb);

END.

makes xset = ['b','e'].

For two BOOLEAN values, the result is TRUE if one
expression is TRUE and the other is FALSE; otherwise,
the result is FALSE.

ZERO

The ZERO function is used in assignment statements
and initializers to set a variable to binary zero.

Call Format

RESULT: = ZERO

Arguments and Result

There are no arguments.

The result is that the target is set to binary zero; that is,
every bit of its internal representation is cleared.

For the rules governing the use of the ZERO function in
initializers, see Chapter 4, ttConstants." The rules for
its use in assignment statements are as follows:

• It is allowed only as the entire right-hand side of
the assignment statement .

• The target can be a variable or, within the body of
a function, the function's name.

9-9 Ari thmetic Functions

• The target must be aligned at least on a byte
boundary (that is, it cannot be a packed field
beginning at an arbitrary bit position, for
example).

• The target must not be bit-sized (that is, it must be
a whole number of bytes) unless it is an entire
variable.

• The use of ZERO is a range violation unless the
size of the target is less than or equal to 65,535
bytes.

V AXELN Routines 9-10

Ordinal Functions

The ordinal functions described in this section require
an actual parameter of an ordinal type and return a
value of the same type. Table 9-2 summarizes these
functions.

Function

PRED(x)

SUCC(x)

Table 9-2. Ordinal Functions

Purpose

returns the value that
immediately precedes x in the
ordered sequence of values of
its type.

returns the value that
immedia tely succeeds x in the
ordered sequence of values of
its type.

9-11 Ordinal Functions

PRED

The PRED function returns the predecessor of its
ordinal argument. For example, PRED('b') is 'a'.

Call Format

RESULT: = PRED(expression)

Arguments and Result

expression. The argument is an expression of ordinal
type. The call is a range violation if the value of
expression is the minimum value of its type.

The result is a value of the same data type as
expression and with an ordinal value that is one less
than expression's.

suee
The SUCC function returns the ordinal data item
succeeding its argument. For example, SUCC('a') is 'b'.

Call Format

RESULT: = SUCC(expression)

Arguments and Result

expression. The argument supplies an expression of
ordinal type; the call is a range violation if the
expression result has the maximum ordinal number of
its type.

The result has the same data type as expression and
has an ordinal number one greater than expression's.

V AXELN Routines 9-12

String Functions

The string functions described in this section
manipulate character strings. Table 9-3 summarizes
these functions.

Table 9-3. String Functions

Function

FIND-.MEMBER

Purpose

finds the first character in a
string that is a member of a
specified set.

FIND-NONMEMBER finds the first character in a
string that is not a member of
a specified set.

INDEX

LENGTH

returns the position of a
substring.

returns the current length ofa
string.

SUBSTR returns or refers to a substring
of a specified string or
BYTE-DAT A expression or
variable.

TRANSLA TE_STRIN G replaces occurrences of old
characters with corresponding
translation characters and
returns the resulting string.

9-13 String Functions

FIND-MEMBER

The FIND_MEMBER function finds the first character
in a string that is a member of a specified set.

Call Format

RESULT: = FIND-MEMBER(
string,
charset
)

Arguments and Result

string. This argument supplies a string value.

charset. This argument supplies a set of characters.

The result is an integer indicating the position in string
of the first character that is a member of charset. The
val ue 1 indicates the first character in the string. The
val ue 0 indicates that none of the string's characters
are members of the set.

For example, the call

position: = FIND-MEMBER('One at a time.',[' ']);

finds the position (4) of the first space. The call

position:= FIND-MEMBER(
'sys$-normal' ,[' A' .. 'Z',' a' .. 'z']);

finds the position (1) of the first alphabetic character.

The complementary operation is performed by
FIND-NONMEMBER.

VAXELN Routines 9-14

FIND-NONMEMBER

The FIND-NONMEMBER function finds the first
character in a string that is not a member of a specified
set.

Call Format

RESULT: = FIND-NONMEMBER(
string,
charset
)

Arguments and Result

string. This supplies a string value.

charset. This argument supplies a set of characters.

The result is an integer indicating the position in string
of the first character that is not a member of charset.
The value 1 indicates the first character in the string.
The value 0 indicates that all of the string's characters
are members of the set.

For example, the call

position: = FIND-NONMEMBER('sys $ normal',[' ']);

finds the position (1) of the first character that is not a
space. The call

position:= FIND-NONMEMBER(
'sys$-normal',[' A' .. 'Z',' a' .. 'z']);

finds the position (4) of the first nonalphabetic
character.

9-15 String Functions

INDEX

The INDEX function returns the position of a
substring.

Call Format

RESULT: = INDEX(
string,
substring
)

Arguments and Result

string. The first argument supplies a string value in
which the substring may occur.

substring. The second argument supplies a substring.

The result is an integer giving the position of the
leftmost occurrence of substring in string. The value 1
indicates the first character in string. The value 0
indicates that substring does not occur in string, which
is also the case if either argument is a zero-length
string or ifsubstring is longer than string.

Notes

Uppercase and lowercase letters are not considered
equivalent in this context. For example, the call

position: = INDEX('Machines were mice', 's were');

assigns the value 8 to position. The call

position: = INDEX('and men were lions','s were');

assigns 0 to position, because the substring does not
occur in the string.

V AXELN Routines 9-16

LENGTH

The LENGTH function returns the length of a string
value.

Call Format

RESULT: = LENGTH(value)

Arguments and Result

value. The argument supplies a string value.

The result is an integer in the range 0-32767, giving
the length in characters of the string value; for a
VARYING-STRING variable, this is the current
length.

SUBSTR
The SUBSTR function returns or refers to a substring
of the specified string.

Call Format

RESULT: = SUBSTR(
string,
position,
length
)

Arguments and Result

string. The first argument is a string expression or
. variable, or a BYTE_DATA expression or variable.

position. This argument is an integer expression
supplying the position at which the substring begins,
where 1 indicates the first character in string.

9-17 String Functions

length. This optional argument is an integer expression
that supplies the length of the substring. If it is
omitted, SUBSTR denotes the substring beginning at
position and ending at the end of string.

If the string argument is a string variable, SUBSTR
yields a variable reference of type STRING(n), where n
is the length of the specified substring. (In this case, if
string is a VARYING-STRING value, it must have a
defined value or the result is an unpredictable error.) In
addition, it can be used as the target of an assignment.
For example:

SUBSTR(string,k,1) : = '*';
{replace character at position k with *}

If SUBSTR is used as a term in an expression (for
example, on the right-hand side of an assignment or as
an operand of another string opera tor), the result
returned is the indica ted substring.

If the first argument is a BYTE-DATA variable or
expression, SUBSTR yields a BYTE_DATA result.

It is a range violation if the indicated substring is not
within the string. That is, the following conditions
must be satisfied:

1 ~ position ~ LENGTH(string)

and

position + length - 1 ~ LENGTH(string)

and

o ~ length

If the first argument is a VARYING_STRING variable
reference, it must have a defined value.

V AXELN Routines 9-18

TRANSLATE-STRING

The TRANSLA TE-STRIN G function, given an original
character string as an argument, replaces occurrences
of old characters with corresponding translation
characters and returns the resulting string.

Call Format

RESULT: = TRANSLATE-STRING (
original,
translation,
OLDCHARS : = old
)

Arguments and Result

original. The first argument supplies the string
expression to be translated.

translation. If old is not present, this argument is a
string expression providing a translation table used to
translate the characters in original. If old is present,
this argument must be a string constant defined in the
current module (that is, not imported from another
module); in this case, translation and old together
specify the desired translation.

old. This optional argument must be a string constant
defined in the current module. Together with
translation, it specifies the desired translation.

The result is the translated character string.

Notes

When old is present, the compiler constructs the
translation table by using old's characters as indices
into translation.

9-19 String Functions

For example,

TRANSLATE-STRING(
TEXT-LINE, 'AEIOU',OLDCHARS: = 'aeiou')

translates all the lowercase vowels in TEXT -LI N E to
uppercase and returns the resulting string.

If old is omitted, the translation argument indexes the
entire 256-character character set in ascending order.A
particular character in translation thus corresponds to
the character at the same position in the ordinal
sequence; for example, the first character in translation
is the translation ofCHR(O), the second character is the
translation of CHR(l), and so on. It is a range violation
if translation contains no translation for some character
occurring in original.

V AXELN Routines 9-20

Type Conversion Routines

The conversion functions described in this section
convert parameters of one type to another type,
returning the converted value of the new type. The
procedures (PACK, UNPACK) pack and unpack array
parameters. Table 9-4 summarizes these routines.

Table 9-4. Type Conversion Routines

Routine

BIN

CHR

CONVERT

HEX

OCT

ORD

PACK

ROUND

TRUNC

UNPACK

Purpose

converts an argument to its
binary representation.

converts an integer to a
character.

converts a value to another
type.

converts an argument to its
hexadecimal representation.

converts an argument to its
octal representation.

returns the ordinal value of its
argument.

converts elements of an
unpacked array to a packed
array.

rounds a floating-point value
to the nearest integer.

truncates a floating-point
number to produce an integer.

converts elements of a packed
array to an unpacked array.

9-21 Type Conversion

BIN

The BIN function returns a character string
representing the binary value of its argument.

Call Format

RESULT: = BIN(
expression,
length,
digits
)

Arguments and Result

expression. This argument is an expression of any type.
Some types are converted implicitly to BYTE-DATA,
following the rules given in under CONVERT.

length, digits. These optional arguments are integer
expressions supplying the total length of the result in
characters and the minimum number of significant
digits, respectively. If they are omitted, the length in
bits of the converted expression is the default value for
digits; the default for length is one greater, causing the
string to be preceded by a space character.

The result is a character string whose format is:
'Obbbb ... ' where bbbb ... are the characters 0 and 1. The
binary digits are preceded by a space.

V AXELN Routines 9-22

CHR

The CHR function returns the character corresponding
to its integer argument.

Call Format

RESULT: = CHR(expression)

Arguments and Result

expression. The argument supplies an integer
expression, which must be in the range 0-255,
inclusive; otherwise, the expression is a range
violation.

The result is the single character ch such that ORD(ch)
= expression.

CONVERT

The CONVERT function converts a value to another
type.

Call Format

RESULT: = CONVERT(
type,
value
)

Arguments and Result

type. This argument supplies the type to which to
convert value. It can be ordinal, a set type,
BYTE-DATA, LARGE_INTEGER, REAL, DOUBLE,
PACKED ARRA Y OF CHAR, STRING, or
VARYING_STRING.

9-23 Type Conversion

value. This argument supplies the value to be
converted, which must be of type LARGE-INTEGER,
REAL, DOUBLE, a set type, an ordinal type (excluding
CHAR), or string type.

The result is value converted to type.

Note that the following conversions are not done by
CONVERT because they are available with other
routines:

• Ordinal types to integer: Use ORD.

• Integer to CHAR: Use CHR.

• REAL or DOUBLE to integer: Use ROUND or
TRUNC.

• Conversion of a value's internal representation to
a string: Use BIN, OCT, or HEX.

INTEGER/LARGE-INTEGER Conversions

The only conversion for type LARGE_INTEGER is to or
from INTEGER (or subranges of INTEGER). Overflow
occurs if a LARGE_INTEGER source is too large for the
target type; otherwise, the conversion is exact.
INTEGER to LARGE-INTEGER is exact.

Conversions with Ordinal Types

If an integer is converted to BOOLEAN or an
enumerated type, or if the target type is one of these
types and the source value is the same type, the result
is a value v of the target type such that ORD(v) equals
the source value. For example, the result of
CONVERT(BOOLEAN,O) is FALSE, because ORD(FALSE)
is 0. It is a range violation if v does not exist in the
target type.

Only strings of length 1 can be converted to CHAR.

VAXELN Routines 9-24

Conversions to or from REAL and DOUBLE

If the source value is REAL or DOUBLE, the target
type must be REAL or DOUBLE. The conversion of
integers to REAL or DOUBLE is exact, as is REAL to
DOUBLE and REAL to REAL. The conversion of a
DOUBLE value or integer to REAL is by rounding. If
the source value is a floating-point constant, its decimal
representation is rounded to convert it to REAL or
DOUBLE.

Conversions of Strings

The conversion of a string to an ordinal (except CHAR),
REAL, or DOUBLE value uses a field of the string,
beginning at the first character that is not a space or
tab and ending at the end of the string or an invalid
character; in other words, the conversion is comparable
to that performed by the READ procedure with a
textfile.

Conversions to String Types

If the type argument is a string type, the length of the
result is determined by the source value represented as
a string. The actual length and format of the converted
result are the same as for the WRITE procedure used
with a textfile, except that leading spaces are not used.
If the extent of the string type is less than the width of
the result, the effect is the same as when a short field
width is specified in a WRITE call.

The following example converts the value TRUE or
FALSE to the string 'TR' or 'FA':

CONVERT(STRING(2),boolean-value)
In conversions of strings to strings, CONVERT uses the
rules for padding, truncation, and length matching that
apply in string assignments. For example, if the target

9-25 Type Conversion

type is a packed array of CHAR, it is a range violation
unless the source value has the same length.

Conversions with Set Types

If the type argument is a set type, the source value
must be a set with the same ordinal base type. The
representation rules for sets determine an integer n,
such that the target type is represented by n longwords.
If the source set has a larger n, it is truncated to the
number for the target type (in other words, any
elements in the source set are discarded if
ORD(element) ~ 32 X n). The result value is a set of the
target type containing only those elements in the
(possibly truncated) source value. It is a range violation
if the truncated value has any elements that are not in
the range of the target type.

Sets can also be converted to BYTE_DATA, as
described below.

Conversions to BYTE-DATA

Any of the valid source types can be converted to
BYTE-DATA. If the BYTE-DATA size is not specified,
it is determined implicitly from the size in bytes of the
source.

The source is always treated as a value for this
conversion; for instance, if it is a function, the function
is called and its result is used as the source value.

If the source value is a packed field, it is unpacked to its
normal representation. If it is a bit-aligned array or
record, it is copied to a byte-aligned temporary, if
necessary.

If the source is a set expression more general than a
variable, it is truncated, if necessary, so that its size is
32 bytes.

V AXELN Routines 9-26

If an explicit size is given (for example, BYTE-OAT A(8»,
the source value as modified by the above rules must
have the same size, or else the conversion is a range
violation.

HEX

The HEX function returns a character string
representing the hexadecimal value of its argument.

Call Format

RESULT: = HEX(
expression,
length,
digits
)

Arguments and Result

expression. This argument is an expression of any type.
Some types are converted implictly to BYTE_DATA,
following the rules given under CONVERT for that
type.

length, digits. These optional arguments are integer
expressions supplying the total length of the result and
the minimum number of significant digits,
respectively. If they are omitted, the length in
hexadecimal digits of the converted expression is the
default number of digits; the default for length is then
one greater, causing the string to be preceded by a
space character.

The result is a character string whose format is:
'Odddd ... ' where dddd ... are from the sets of characters
0-9 and A-F. The hexadecimal digits are preceded by a
space.

9-27 Type Conversion

OCT

The OCT function returns a character string
representing the octal value of its argument.

Call Format

RESULT: = OCT(
expression,
length,
digits
)

Arguments and Result

expression. The expression can be of any type. Some
types are converted implicitly to BYTE_DATA,
following the rules given in CONVERT.

length, digits. These optional arguments are integer
expressions supplying the total length of the result and
the mInImum number of significant digits,
respectively. If they are omitted, the length in octal
digits of the converted expression is the default value
for the digits argument; the default for length is one
greater, causing the string to be preceded by a space
character.

The result is a character string whose format is:
'Odddd .. .' where dddd ... are the characters 0-7. The
octal digits are preceded by a space.

V AXELN Routines 9-28

ORO

The ORD function returns the ordinal number of its
argument.

Call Format

RESULT: = ORD(expression}

Arguments and Result

expression. The argument supplies an expression of
ordinal type or a string expression with one character
(which is treated as a value of type CHAR). It is a range
violation if the length of a string argument does not
equall.

The result is an integer giving the ordinal number of
expression.

PACK

The PACK procedure transfers elements of an
unpacked array to a packed array.

Call Format

PACK(
unpacked,
first,
packed
}

Arguments

unpacked. The first argument is an unpacked array
variable. If it is multidimensional, it is treated as a one­
dimensional array whose elements are arrays.

9-29 Type Conversion

first. This argument supplies an ordinal value that is
the index of an element in unpacked. This element will
be the first element transferred to packed.

packed. This argument is a packed array variable that
receives elements from unpacked. If it is
multidimensional, it is treated as a one-dimensional
array whose elements are arrays. The types of its
elements and those of unpacked must be equivalent.
The first element of packed receives unpacked[first],
and so on until packed is filled.

The range requirements are as follows:

• The lower bound of unpacked must not exceed first .

• The sum of first and the number of elements in
packed must not exceed 1 plus the upper bound of
unpacked:

(first) + (no.-elements(packed»
~ up-bound(unpacked) + 1

That is, the procedure must not demand the
transfer of more elements from unpacked than
exist between unpacked[first] and the end of
unpacked.

Algorithm

Given:

UA is a variable of type ARRAY[ITYPE1] OF T,
PA is a variable of type PACKED ARRAY[ITYPE2] OF T,
LOW and HIGH are the minimum and maximum

values of ITYPE2 (the minimum and maximum
indices of PA), and

FIRST is a value that is assignment compatible with
ITYPEl (that is, a valid index of array UA).

VAXELN Routines 9-30

Then PACK(UA,FIRST,PA) is equivalent to

begin
k : = FIRST; { Index first element. }
for j : = lOW to HIGH do { For all elements of PA. }

begin
PA[j] : = UA[k]; { Transfer element. }
if j < > HIGH then k : = succ(k)

{ Index next element. }
end

end

where k is an auxiliary variable of type ITYPE1 and j is
an auxiliary variable of type ITYPE2.

ROUND

The ROUND function rounds a floating-point
expression to the nearest INTEGER value.

Call Format

RESULT: = ROUND(expression)

Arguments and Result

expression. The argument supplies a floating-point
expression (type REAL or DOUBLE).

The result is the integer formed by adding or
subtracting 0.5, depending on the sign of expression,
and truncating the result.

For example, ROUND(3.5) is 4, ROUND(- 3.5) is - 4,
and ROUND(- 3.3) is - 3.

Overflow occurs if the rounded result is not in the range
of type INTEGER.

9-31 Type Conversion

TRUNC
The TRUNC function truncates a floating-point
number to produce an integer and returns the integer.

Call Format

RESULT: = TRUNC(expression)

Arguments and Result

expression. The argument supplies a floating-point
expression (type REAL or DOUBLE).

The result is an integer formed by truncating the
fractional part of the floating-point expression. The
result has the same sign as expression. For example,
TRUNC(3.5) is 3; TRUNC(- 3.5) is - 3.

Integer overflow occurs if the truncated result is
outside the range of type INTEGER.

UNPACK
The UNPACK procedure transfers all the elements of a
packed array to an unpacked array.

Call Format

UNPACK(
packed,
unpacked,
first
)

V AXELN Routines 9-32

Arguments

packed. This argument is a packed array. If it is
multidimensional, it is treated as a one-dimensional
array whose elements are arrays.

unpacked. This argument is an unpacked array. If it is
multidimensional, it is treated as a one-dimensional
array whose elements are arrays. The types of its
elements and those of packed must be equivalent. The
element unpacked[first] receives the first element of
packed, and so on until all the packed elements have
been transferred.

first. This argument is an ordinal value that is the
index of an element of unpacked. It indexes the element
of unpacked that receives the first element of packed.

The range requirements are as follows:

• The lower bound of unpacked must not exceed first .

• The difference between the upper bound of
unpacked and first, plus 1, must be equal to or
greater than the number of elements in packed:

(up-bound(unpacked) - first) + 1 ~
no.-el ements(packed)

That is, enough elements must be available in the
indexed portion of unpacked to hold all the values
in packed.

Algorithm

Given:

UA is a variable of type ARRAY[lTYPE1] OF T,
PA is a variable of type PACKED ARRAY[lTYPE2] OF T,
LOW and HIGH are the minimum and maximum

values of ITYPE2 (the minimum and maximum
indices of PA), and

9-33 Type Conversion

FIRST is a value that is assignment compatible with
ITYPE 1 (that is, a valid index of array UA).

Then UNPACK(PA,UA,FIRST) is equivalent to

begin
k : = FIRST; { Index first element. }
for j : = LOW to HIGH do

{ For all elements of PA. }
begin
UA[k] : = PA[j]; {Transfer element. }
if j < > HIGH then k : = succ(k)
{ Index next element. }
end

end

where k is an auxiliary variable of type ITYPE 1 and j is
an auxiliary variable of type ITYPE2.

V AXELN Routines 9-34

Argument Functions

The functions described in this section obtain
arguments, argument list lengths, and argument
counts. Table 9-5 summarizes these functions.

Table 9-5. Argument Functions

Function

ARGUMENT

ARGUMENT_LIST_LENGTH

PRESENT

PROGRAM-ARGUMENT

Purpose

references an
argument that
corresponds to a
LIST parameter.

returns the
number of
arguments passed
to a LIST
parameter.

indicates whether
the argument list
of the routine
from which it is
called contains an
argument
corresponding to
the specified
optional
parameter.

returns the
character string
passed as a
program
argument.

9-35 Argument Functions

Table 9-4. Continued

Function Purpose

PROGRAM-ARGUMENT_COUNT returns the
number of
arguments passed
to the program.

TOTAL.ARGUMENT _COUNT

V AXELN Routines 9-36

returns the
number of
arguments passed
to the current
routine.

ARGUMENT

The ARGUMENT function denotes a particular
argument that corresponds to a function or procedure
parameter with the LIST attribute. It must be called
only within a procedure or function declared with such
a parameter or within a subordinate routine.

ARGUMENT is the only valid means of reference to an
argument corresponding to a LIST parameter.

Call Format

RESULT: = ARGUMENT{
parameter-name,
argu ment-nu mber
)

Arguments and Result

parameter-name. This argument supplies the name of
a parameter declared with the LIST attribute.

argument-number. This argument supplies a positive
INTEGER value identifying the argument. The first
argument in a particular list is denoted by 1. The total
length of the argument list can be obtained with
ARGUMENT_LIST_LENGTH.

It is a range violation if the value supplied for
argument-number is less than 1 or exceeds

ARGU M ENT -LIST -LENGTH{parameter -name)

Within the called routine, ARGUMENT denotes the
corresponding argument exactly as if the par~meter
was not a LIST parameter and the call to ARGUMENT
was, instead, the parameter name.

9-37 Argument Functions

That is:

• If the LIST parameter is a value parameter,
ARGUMENT denotes the corresponding value in
the argument list.

• If the LIST parameter is a V AR parameter,
ARGUMENT is a reference to the corresponding
variable in the argument list.

• If the LIST parameter is a procedural parameter,
ARGUMENT denotes the function or procedure
passed to that parameter.

For example:

PROCEDU RE f(
[LIST] PROCEDURE propar(x,y: INTEGER)
);

BEGIN

ARGUMENT(propar,3)(1,2);
{ Call third argument for propar with the
arguments 1 and 2. }

Here, procedure f has a procedural LIST parameter;
that is, f's arguments are zero to 253 procedures with
two integer arguments each. In the body of f, the third
of these arguments is called with the arguments 1 and
2.

Note that the call to the procedure itself is formed by
ARGUMENT(propar ,3), followed by the usual parenthe­
sized argument list.

V AXELN Routines 9-38

ARGUMENT -LIST-LENGTH

The ARGUMENT_LIST_LENGTH function returns
the number of arguments corresponding to a LIST
parameter.

Call Format

RESULT: = ARGUMENT-LiST-LENGTH(
parameter -name
)

Arguments and Result

parameter-name. The argument supplies the name of a
LIST parameter.

The result is an INTEGER value denoting the number
of arguments (zero or more) corresponding to the LIST
parameter.

PRESENT

The PRESENT function indicates whether the
argument list of the routine from which it is called
contains an argument corresponding to the specified
optional parameter. It usually is used to supply a
default value (or take a default action) when the
argument for a V AR or procedural parameter is
omitted.

Call Format

RESULT: = PRESENT(parameter-name)

9-39 Argument Functions

Arguments and Result

parameter-name. The argument is the name of a VAR
or procedural parameter with the OPTIONAL
attribute. The name must be the name of a formal
parameter of the function or procedure within which
PRESENT is called, or else PRESENT must be called
from a subroutine of that function or procedure.

The result is the BOOLEAN value TRUE or FALSE.
TRUE indicates that the argument list of the
containing routine contains an argument
corresponding to the optional parameter. FALSE
indicates that the argument was omitted.

Notes

PRESENT is not used with value parameters, because
a default value must be specified in the parameter
declaration if a value parameter is optional.

PRESENT can also be used in a subroutine of the
routine having the optional parameter.

PROGRAM-ARGUMENT

The PROGRAM-ARGUMENT function returns the
character string passed as a program argument to the
current job.

Call Format

RESULT: = PROGRAM-ARGUMENT(position)

V AXELN Routines 9-40

Arguments and Result

position. The argument is an integer expression that
gives the position in the argument list (in
CREATE-JOB or the System Builder's program
description). The first position is 1.

The result is the character string passed as the
argument in, for example, a CREATEJOB calL

The result is the null string if there is no argument or if
positi on exceeds the number of program arguments.

PROGRAM-ARGUMENT -COUNT

The PROGRAM-ARGUMENT-COUNT function
returns an integer indicating the number of arguments
passed to the program.

Call Format

RESULT: = PROGRAM-ARGUMENT-COUNT

Arguments and Result

There are no arguments.

The result is an INTEGER value giving the number of
arguments passed.

9-41 Argument Functions

TOTAL-ARGUMENT-COUNT

The TOTAL_ARGUMENT_COUNT function returns
the number of arguments in the V AX argument list
passed to the current routine. This function is intended
for use within a routine that may be invoked with an
argument list whose length is inconsistent with the
routine's declaration. It may be used to detect the
necessity for an error action, or to take default actions
for missing arguments.

Call Format

RESULT: = TOTAL-ARGUMENT-COUNT

Arguments and Result

There are no arguments.

The result is an INTEGER value giving the number of
arguments passed.

Notes

This function must not be used within a routine with
the INLINE attribute.

To use this function successfully, the procedure calling
conventions used by the V AXELN Pascal compiler
must be thoroughly understood. In particular, note that
if a missing argument is used in a routine's prologue
code, an unpredictable error will occur before any code
in the body of the routine is executed.

VAXELN Routines 9-42

Storage Allocation and Address Routines

The routines described in this section allocate and
release storage for variables (NEW, DISPOSE), return
the address of a specified variable (ADDRESS), and
return the size in bytes of a variable or type (SIZE).
Table 9-6 summarizes these routines.

Table 9-6. Storage Allocation and Address Routines

Routine

ADDRESS

DISPOSE

NEW

SIZE

Purpose

returns the address of the
variable reference supplied as
its argument.

releases storage previously
allocated by NEW.

allocates storage for new
variables.

returns the size of its
argument's storage.

9-43 Storage Allocation

ADDRESS

The ADDRESS function returns the address of the
variable reference or routine name supplied as its
argument.

Call Format

RESULT: = ADDRESS(variable)

Arguments and Result

variable. The argument supplies a variable of any type.
The variable must be addressable. The argument can
also be the name of a routine.

If variable is of type t, then the result is of type t t. The
validity of the pointer returned is subject to these rules:

• If variable denotes all or part of the storage of a
local variable or value parameter, the pointer is
valid only in the current process and becomes
invalid when the block activation to which it
belongs terminates.

• If variable is a reference to all or part of a V AR
parameter, the result pointer must not be used in
any other process, and it must not be used after
return from the routine of which the variable is a
parameter.

Violation of these rules results in unpredictable errors
that are difficult to diagnose.

If, instead of a variable, the argument for ADDRESS is
the name of a routine, the result is of type t ANYTYPE
and is the address of the entry mask. This feature can
be used to pass the address of a routine to an external
procedure written in another language or as an
argument of the INVOKE procedure.

VAXELN Routines 9-44

It is an error to take the address of a predeclared
routine or a routine with the INLINE attribute. A
warning message is issued if you take the address of a
routine that is not declared at the outer level or if you
take the address of a program, process block, or
interrupt service routine.

DISPOSE

The DISPOSE procedure releases the storage
previously allocated for a data item by NEW. The
storage is identified by a pointer previously returned by
NEW; after the DISPOSE operation, the pointer value
is invalid.

Call Formats

There are two call formats; Format 2 is used only with
variant records allocated by a similar NEW call and is
included only to support standard Pascal.

Format 1 DISPOSE(pointer)

Format 2 DISPOSE(

Arguments

pointer,
tag-list
)

pointer. This argument supplies a pointer value,
previously returned by the NEW procedure, to the
variable whose storage is to be released. The pointer
must not be NIL or invalid. The pointer can be of any
type, including t ANYTYPE. The pointer is invalid
following the DISPOSE operation.

tag-list. If the first argument denotes a variant record,
this argument may supply one or more constants to

9-45 Storage Allocation

select variants, as in the NEW procedure. The compiler
checks that the tags are valid in this usage, but they
have no effect on the operation of DISPOSE.

Notes

The DISPOSE procedure returns the released storage
to a list of free storage available for future calls to NEW
in the current job. Small blocks of free storage are
collected together in the list if they are contiguous; this
reduces fragmentation of the job's virtual address
space.

However, the DISPOSE procedure does not return
released storage to the kernel for use by other jobs in
the system. If this is required, ALLOCATE-MEMORY
and FREE_MEMORY should be used explicitly.

NEW

The NEW procedure allocates heap storage for a data
item. The new item's address is assigned to a pointer
variable, and the variable's exact pointer type
determines the size of the allocated item. The pointer is
valid in the entire job. It becomes invalid when passed
to the DISPOSE procedure.

Call Formats

There are two call formats; Format 2 is used only with
variant records.

Format 1 NEW(pointer)

Format 2 NEW(
pointer,
tag-list
)

V AXELN Routines 9-46

Arguments

pointer. This argument is a variable reference whose
type is a pointer type, excluding t ANYTYPE. The
associated type of the pointer determines the size of the
allocated item, and upon return, the address of the
allocated item is assigned to the pointer variable.

tag-list. This is a list of tags (case constants) for a
dynamically allocated variant record; the tags are
separated by commas. The first tag must select a
variant in the record type's variant part. Successive
tags, if any, must select a variant in the variant part of
the variant selected by preceding tags.

Notes

The values of all items allocated with NEW are
initially undefined.

In Format 2, the tags cause NEW to allocate only the
amount of storage required to hold the specified
variant; they do not assign the listed values to the tag
fields or in any other way select the variant. (See
Chapter 3, ((Data Types," for more information on
records with variants.)

NEW allocates storage from a free space list
maintained within the job's PO memory. (Note that
because PO is shared by a job's processes, variables
allocated this way are potentially shareable.) If this
space list is empty, NEW uses ALLOCATE-MEMORY
to allocate new memory to the job. Space can be
returned to the free list by using DISPOSE.

NEW always allocates memory in 16-byte quantities
aligned on quadword boundaries. A variable allocated
by NEW also has an 8-byte internal header that is used
by NEW and DISPOSE to save both the size of the

9-47 Storage Allocation

variable and a pointer to the next block of free memory.
Therefore, if NEW is called to allocate an INTEGER
variable, the new variable will occupy 16 bytes: 4 bytes
for the integer, 8 bytes for the header, and 4 bytes to
round up to a 16-byte multiple.

SIZE

The SIZE function returns the size in bytes of its
argument's storage. This function is allowed in extent
expressions, with the restrictions noted below.

Call Formats

There are two call formats.

Format 1 RESU L T : = SIZE(
variable-reference,
tag-list
)

Format 2 RESULT: = SIZE(
named-type,
tag-list
)

Arguments and Result

variable-reference. This argument supplies a reference
to an addressable variable.

named-type. This argument supplies a data type:
either a declared type name or a bound flexible type.
That is:

type-name
flexible-type-na me(extent-I ist)

tag-list. If the first argument is a variant record or
variant record type, this argument may supply one or
more constants to select variants, as in the NEW

V AXELN Routines 9-48

procedure. The constants cause the SIZE function to
compute a size based only on the selected variants and
not the entire record.

The result is the size of the identified item in bytes. If
the item is a variant record, and no tag list is supplied,
the result is the size of the largest possible variant. If
the size of the data item is not an even number of bytes,
it is rounded up to the next byte.

Notes

If used in an extent expression, the first argument must
be an identifier denoting a type, variable, or parameter
with a constant-size data type. Additional arguments, if
any, must be extent expressions that select variants.

9-49 Storage Allocation

VAX Functions

The functions described in this section use V AX
instructions to perform VAXELN Pascal operations.
(See the VAX Architecture Handbook for more
information on the VAX instructions themselves.)
Table 9-7 summarizes these funtions.

Table 9-7. VAX Functions

Routine

PROBE_READ

PROBE_WRITE

VAXELN Routines

Purpose

returns the current contents of
a V AX processor status
longword.

indicates whether the first
and last bytes of the specified
variable are accessible for
reading in the current
processor mode.

indicates whether the first
and last bytes of the specified
variable are accessible for
wri ting in the current
processor mode.

9-50

MOVE-PSL

The MOVE-PSL function returns the current contents
of a VAX processor status longword treated as a 32-bit
integer. This operation is performed by the VAX
MO VPSL instruction and is not affected by any
compiler optimizations.

Call Format

RESULT: = MOVE-PSL

Arguments and Result

There are no arguments.

The result is an INTEGER value representing the
current processor status longword contents.

PROBE-READ

The PROBE-READ function indicates whether the
first and last bytes of the variable supplied as its
argument are accessible for reading in the current
processor mode. The probe operation is performed by
the V AX PROBER instruction and is not affected by
any compiler optimizations.

Call Format

RESULT: = PROBE-READ(variable)

Arguments and Result

variable. The argument must be an addressable
variable reference whose size is > 0 and < 65K bytes.

The result is the BOOLEAN value TRUE if both bytes
are accessible for reading; otherwise FALSE.

9-51 VAX Functions

PROBE-WRITE

The PROBE-WRITE function indicates whether the
first and last bytes of the variable supplied as its
argument are accessible for writing in the current
processor mode. The probe operation is performed by
the VAX PROBEW instruction and is not affected by
any compiler optimizations.

Call Format

RESULT: = PROBE-WRITE(variable)

Arguments and Result

variable. The argument must be an addressable
variable reference whose size is > 0 and < 65K bytes.

The result is the BOOLEAN value TRUE if both bytes
are accessible for writing; otherwise FALSE.

V AXELN Routines 9-52

Time Representation Routines

The routines described in this section are provided for
converting between time values represented by the 64-
bit integer type LARGE-INTEGER and representative
character strings. Table 9-8 summarizes these routines.

Table 9-8. Time Representation Routines

Routine

SET_TIME

TIME_FIELDS

TIME-STRING

TIME_VALUE

Purpose

returns the current absolute
system time.

sets a new absolute system
time.

returns a special record type,
TIME_RECORD, whose fields
represent the integer
components of a complete
64-bit time value.

returns a character string
representing its
LARGE-INTEGER
argument.

returns the
LARGE-INTEGER value
corresponding to a character
string.

Note: Negative time values represent time intervals by
convention; nonnegative values are absolute times.
Therefore, when you want to add a time interval to an
absolute time, you must subtract the
LARGE-INTEGER value representing the interval
from the one representing the absolute time.

9-53 Time Representation

GET-TIME

The GET_TIME kernel procedure returns the current
system time.

Call Format

GET-TIME{
time,
STATUS: = stat
)

Arguments

time. This argument is a LARGE-INTEGER variable
that receives a value representing the time of day. (The
value can be converted to a character string with the
TIME_STRING function.)

stat. This optional argument is an INTEGER variable
that receives the completion status of GET_TIME.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-TIME~NOT-SET. The time of day has not been set.
This is an al terna te success status.

KER$-BAD-COUNT. The procedure call specified an
incorrect number of arguments.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

VAXELN Routines 9-54

SET-TIME

The SET-TIME kernel procedure sets a new system
time.

Call Format

SET-TIME(
time,
STATUS: = stat
)

Arguments

time. This argument is a nonnegative
LARGE_INTEGER, specifying an absolute system
time. The integer is created with the TIME-VALUE
function and an argument in absolute time format, as
in:

SET - TIME(TIME-VALUE('01-JAN-1985 00: 00:00.00'»;

stat. This optional argument is an INTEGER variable
that receives the completion status of SET_TIME.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-VALUE. The time value is invalid.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

9-55 Time Representation

TIME-FIELDS

The TIME_FIELDS function returns a record whose
fields are the integer-valued components of a 64-bit
time value.

Call Format

RESULT: = TIME-FIELDS(tvalue)

Arguments and Result

tvalue. The argument is a LARGE-INTEGER value,
such as the value returned by GET_TIME and
TIME_VALUE.

The result is a record of the type TIME_RECORD,
which is declared for you as follows:

TYPE
TIME-RECORD = PACKED RECORD

year : 0 .. 65535;
month: 0 .. 65535;
day: 0 .. 65535;
hour: 0 .. 65535;
minute: 0 .. 65535;
second: 0 .. 65535;
hundredth: 0 .. 65535;
END;

If tvalue is a time interval (negative value), the
returned year and month fields are both 0, and the day
field is the number of days specified by the interval
(less than 10,000).

VAXELN Routines 9-56

The following example writes out the individual
components of a time value:

PROGRAM time(OUTPUT);
VAR

L : LARGE-INTEGER;
T : TIME-RECORD;

BEGIN
GET-TIME(L);
T : = TIME-FIELDS(L);
WITHTDO

WRITELN(
year,
month,
day,

END.

hour,
minute,
second,
hundredth,
);

Another example is a function that computes the
number of seconds between two time values:

[INlINE] FUNCTION seconds(
start, end: LARGE-INTEGER) : INTEGER;
VAR

T : TIME-RECORD;
BEGIN

T : = TIME-FIELDS(start-end);
WITHTDO

seconds: = (24*60*60*day) +
(60*60*hour) +
(60*minute) +
second;

END;

9-57 Time Representation

TIME-STRING

The TIME-STRING function converts a
LARGE_INTEGER value to a character string
representing an absolute time or time interval.

Call Format

RESULT: = TIME-STRING(tvalue)

Arguments and Result

tvalue. The argument is a LARGE_INTEGER value,
such as the value returned by GET-TIME and
TIME_VALUE.

The result is a character string representing either an
absolute time or a time interval:

• If tvalue is nonnegative, it represents an absolute
time, and the result format is:

'dd-m m m-yyyyoh h: m m: ss.ee'

dd is 1-31 (day of month); mmm is JAN-DEC; yyyy
is 1858-9999; 0 is a space; hh is 0-23 hours; mm is
0-59 minutes; ss is 0-59 seconds; and ee is 0-99
hundredths of a second.

• If tvalue is negative, it represents a time interval,
and the result format is:

'ddddOhh: mm :ss.ee'

dddd is a number of days from 0 to 9999; 0 is a
space; hh is 0-23 hours; mm is 0-59 minutes; ss is
0-59 seconds; and ee is 0-99 hundredths of a
second.

V AXELN Routines 9-58

TIME-VALUE

The TIME_VALUE function converts a character
string to a LARGE_INTEGER representing either
absolute time or a time interval, depending on the
format of the string.

Call Format

RESULT: = TIME-VALUE(tstring)

Arguments and Result

tstring. The argument is a character string with one of
two formats:

• Absolute format, written as:

, dd-mmm-yyyyohh: mm: ss.ee'

dd is 1-31 (day of month); mmm is JAN-DEC; yyyy
is 1858-9999; 0 is a space; hh is 0-23 hours; mm is
0-59 minutes; ss is 0-59 seconds; and ce is 0-99
hundredths of a second .

• Interval format, written as:

, ddddohh: mm: 5s.ee'

dddd is a number of days from 0 to 9999; 0 is a
space; hh is 0-23 hours; mm is 0-59 minutes; ss is
0-59 seconds; and ee is 0-99 hundredths of a
second.

If tstring is in interval format, the result is a negative
LARGE_INTEGER representing a time interval. If it is
in absolute format, the result is a nonnegative value
representing an absolute time.

9-59 Time Representation

String Syntax for TIME-VALUE Arguments

You can omit parts of strings in either interval or
absolute format, subject to the following rules and
defaults:

• For absolute format, the function supplies the
current system time fields for any you omit. For
instance, if you omit the ((days" (dd) part, the
current day of the month is used.

• For interval format, unspecified fields default to
zero. However, if a time interval is to specify 0
days, you must enter a 0 explicitly.

• In either format, you can simply omit trailing
fields, with the defaults described above. However,
if you omit leading fields, you must specify the
punctuation marks (including at least one space
where shown above).

• In either format, the string can be preceded by any
number of (leading) spaces, and there can be any
number of spaces where one is shown above.
However, there can be no spaces inside the date or
time parts of the string.

For example, the interval string '0 00:00: l' represents
a time interval of one second. So does '0 : : 1', since the
omi tted fields defa uIt to o.
The absolute string '15-J U L-1985' represents the
current time of day on July 15th. The absolute string
'15--1985 00:00:00' represents midnight on the 15th
day of the current month, and so on. (Notice that when
the leading (tmonth" field is omitted, the punctuating
hyphens must be supplied.)

V AXELN Routines 9-60

Other Routines

The routines described in this section do not fall into
any of the previous categories. Table 9-9 summarizes
these routines.

Table 9-9. Other Routines

Routine Pu rpose

ADD.J:NTERLOCKED adds an integer value
to a WORD variable.

ENTER-KERNEL_CONTEXT executes the specified
rou tine in the kernel
processor mode.

FIND_FIRST_BIT_CLEAR finds the first bit
whose value is O.

FIND-FIRST _BIT _SET finds the first bit
whose value is 1.

INVOKE calls a routine
identified by an
ANYTYPE pointer.

Note: To use ENTER-KERNEL-CONTEXT, include
the module $KERNEL from the RTLOBJECT library
in the compilation of your program.

9-61 Other Routines

ADDJNTERlOCKED

The ADD_INTERLOCKED function adds an integer
value to a WORD (16-bit) variable using an interlocked
machine instruction. The operation is safe on shared
data.

Call Format

RESULT: = ADD-INTERLOCKED(
delta,
word-argu ment
)

Arguments and Result

delta. This argument supplies the value to be added to
the word-argument. It must be in the range -32768 to
32767; ifnot, the call is a range violation.

word-argument. This argument is a variable declared
with the WORD attribute. (The WORD attribute can be
applied to a packed record or a field in such a record.)
Whatever its data type, the function treats it as a word­
length integer variable. It supplies one of the addends
and receives the sum. The value of the variable after
the addition determines the function result. The
variable must be aligned on a word boundary; to ensure
that it is, use the ALIGNED(I) attribute as well as
WORD within a record. It is a run-time error if the
argument is not properly aligned.

The result is 1 if the sum is positive, 0 if the sum is zero,
and -1 if the sum is negative.

V AXELN Routines 9-62

ENTER-KERN ELCONTEXT

The ENTER-KERNEL-CONTEXT procedure executes
the specified routine in the kernel processor mode. The
specified routine is called with the specified argument
list, and its completion status is returned as the
completion status of this procedure. (Note that the
completion status is only available if the specified
routine is a function returning an INTEGER status.)

This procedure can be used to execute a particular
routine in kernel mode when, for some reason, it is not
desirable to execute the entire program in kernel mode.
To use the procedure, you must include the module
$KERNEL in the compilation.

Call Format

KER$ENTER-KERNEL-CONTEXT(
status,
routine,
argument-block
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of routine.
(This assumes that routine is a function returning an
INTEGER status.)

routine. This argument is the address of the routine to
be called in kernel mode; its type is t ANYTYPE. A
suitable value can be obtained by supplying the
ADDRESS function with the routine's name as the
argument.

argument-block. This argument is the address of the
V AX argument list to be passed to the called routine;

9-63 Other Routines

its type is f ANYTYPE. The argument list is a block of
longwords in the standard V AX format: the first byte of
the first longword contains the number of arguments;
the block contains an additionallongword for each of
the actual arguments.

FIND-FIRST -BIT -CLEAR

The FIND_FIRST _BIT _CLEAR function finds the first
bit in a PACKED ARRAY OF BOOLEAN whose value
is o.

Call Format

RESULT: = FIND-FIRST -BIT -ClEAR(
vector,
start index
)

Arguments and Result

vector. This argument is a variable of type PACKED
ARRAY OF BOOLEAN, with an INTEGER index type.
The array must be one-dimensional.

start index. This optional argument is an integer
expression indexing the element at which the search
starts. It must be greater than or equal to vector's lower
bound and less than or equal to 1 plus vector's upper
bound; otherwise, a range violation occurs. If it is
omitted, the search starts at vector's first element.

The result is an integer indexing the first element
containing the valu~ o. If no bit is 0, the result is 1 plus
the upper bound of vector. If vector or the indexed part
of vector has a size of 0, the result is start index.

VAXELN Routines 9-64

FIND-FIRST -BIT-SET

The FIND_FIRST_BIT_SET function finds the first bit
in a PACKED ARRAY OF BOOLEAN whose value is
1.

Call Format

RESULT: = FIND-FIRST-BIT-SET(
vector,
start index
)

Arguments and Result

vector. This argument is a variable of type PACKED
ARRAY OF BOOLEAN, with an INTEGER index type.
The array must be one-dimensional.

start index. This optional argument is an integer
expression indexing the element at which the search
starts. It must be greater than or equal to vector's lower
bound and less than or equal to 1 plus vector's upper
bound; otherwise, a range violation occurs. If it is
omitted, the search starts at vector's first element.

The result is an integer indexing the first element
containing the value 1. If no bit is 1, the result is 1 plus
the upper bound of vector. If vector or the indexed part
of vector has a size ofO, the result is start index.

9-65 Other Routines

INVOKE

The INVOKE procedure calls a procedure or function
identified by an ANYTYPE pointer.

Call Format

INVOKE{
pointer,
routine-type,
argument-list
)

Arguments

pointer. This argument is a pointer to the routine's
entry mask. It's type must be t ANYTYPE. Such a
pointer value can be obtained from the ADDRESS
function or from routines written in other
programming languages. The identified routine must
be one de~lared at the outer level (that is, it must not be
in ternal to another routine).

routine-type. This argument supplies the name of a
procedure type or function type.

argument-list. This optional argument list must be a
valid argument list for the routine being invoked, as
described by routine-type. Note that a pointer obtained
with the ADDRESS function can be passed as the
argument for a procedural parameter.

For example:

MODULE mod1;

FUNCTION operation{operand : REAL) : REAL;
FUNCTION-TYPE;

V AXELN Routines 9-66

FUNCTION square OF TYPE operation;
BEGIN
square: = operand * operand;
END;

FUNCTION cube OF TYPE operation;
BEGIN
cube: = operand * operand * operand;
END;

PROGRAM test;
VAR res1,res2 : REAL;
p: t ANYTYPE;

BEGIN
{this call accomplishes res2 : = square(res1); }
p : = ADDRESS(square);
res2: = INVOKE(p, operation, res1);

{this call accomplishes res2 : = cube(res1); }
p : = ADDRESS(cube);
res2 : = INVOKE(p, operation, res1);
END;

END;

9-67 Other Routines

VAXELNRoutines 9-68

Chapter 10

Queues

Queues are ordered, circular, doubly linked data lists.
Each item on the queue is referred to as an entry.
Entries on a queue are ordered in that there is a
distinctive path from each entry to the next. The path is
constructed as entries are inserted onto the queue. The
queue is circular in that following the path forward
from a given entry will lead back to the same entry. The
queue is doubly linked because it is possible to travel
forward, as well as backward, on the path from entry to
entry.

This chapter discusses queue declarations and queue
procedures, including examples of typical uses of
queues in V AXELN Pascal, followed by a discussion of
using queues in interprocess communication.

Queue Declarations

All queue entries are declared using the data type
QUEUE-ENTRY.

QUEUE_ENTRY Data Type

QUEUE-ENTRY is a predeclared record type. Each
queue entry contains links, or addresses, for two other
entries: the one ttin front" of it and the one ((behind" it.
These addresses are stored in a record containing the
two addresses:

TYPE QUEUE-ENTRY = RECORD
flink: i QUEUE-ENTRY;

10-1

blink: i QUEUE-ENTRY;
END;

The forward link fl ink is the address of the succeeding
queue entry. The backward link blink is the address of
preceding queue entry.

In V AXELN Pascal, you can create new queues, insert
entries, and remove entries. New entries can be
inserted ((ahead" of an entry already on the queue, or
((after" the entry. Similarly, entries can be removed
from any point on the queue.

Larger data structures can be placed on the queue by
imbedding the QUEUE_ENTRY structure as the first
member of a larger record or structure. It is important
to make the queue entry the first member, so that the
addresses contained in the queue entry can be used to
address the entire structure. For example:

VAR myentry: RECORD
myentryq: QUEUE-ENTRY;
item: INTEGER;
END;

Since it is possible to traverse from one entry on the
queue, around the queue, coming back to that entry, it
is usually the practice to designate one entry as the
queue head. This entry is special in that it is a place
holder for the queue list structure and not an array on
the queue to contain data.

A queue header specifies the first and last entries on
the queue. Because the header contains only the two
pointers flink and blink, you can declare it as follows:

VAR header: QUEUE-ENTRY;

The forward link of the header is the address of the
queue head. The backward link of the header is the
address of the queue tail, the last entry on the queue.

Queues 10-2

A queue is termed empty if the head is the only entry on
the queue, as shown in Figure 10-1.

head-add ress : head-address

head-add ress

Figure 10-1. An Empty Queue Header

Note that both the forward and backward links in the
header address the header itself. A queue entry in this
state is considered empty by definition.

Since queues are dynamic structures, it is necessary to
initialize or ((start" them. In VAXELN Pascal, you use
the START_QUEUE procedure to set a queue header to
reflect an empty queue. You then use the
INSERT-ENTRY procedure to insert an entry onto the
queue.

A queue with a single element on it is shown in Figure
10-2.

fi rst-el ement_add ress

first-element_add ress

head-add ress

head-add ress

: head_address

:first-element-address

Figure 10-2. A Single-Element Queue

10-3 Queue Declarations

A queue with two elements is shown in Figure 10-3.

fi rst-el emenLadd ress : head_add ress

second-element-add ress

second-element-address :first-element-address

head_add ress

head-add ress : second_element_add ress

first-element-add ress

Figure 10-3. A Two-Element Queue

Note that a queue with two elements has a distinct
ordering or position for each element. The first element
on the queue (going forward from the header) is
first-element, the second is second-element. By
definition,first-element is at the head of the queue,
since it is first. Also by definition, second-element is at
the tail of the queue, since it is last.

Entries on the queue can be inserted and removed from
arbitrary positions along the queue. For instance, in a
first-in-first-out (FIFO) queue, entries are inserted at
the tail and removed from the head, thus preserving the
removal order as the insertion order. By contrast, in a
last-in-first-out (LIFO) queue, entries are inserted at
the head and removed from the head; this is also called
a push down queue.

Queues 10-4

QUEUE-POSITION Data Type

In V AXELN Pascal, the positions along a queue are
represented by the data type QUEUE_POSITION,

. which is a predeclared enumerated type:

TYPE QUEUE-POSITION =
(QUEUE$HEAD, QUEUE$TAIL, QUEUE$CURRENT);

QUEUE_POSITION is used with INSERT-ENTRY or
REMOVE-ENTRY to specify the position at whjch
insertion or removal should take place. Note that
QUEUE$CURRENT is used only with the
REMOVE_ENTRY procedure, to remove the entry at
the current position while ((walking" the queue (see
((Queue Examples," later in this chapter).

10-5 Queue Declarations

Queue Procedures

In creating a new queue, the first steps are declaring a
suitable variable as the header and initializing it with
the START_QUEUE procedure. Entries are inserted
and removed with the procedures INSERT_ENTRY
and REMOVE-ENTRY, respectively. Table 10-1
summarizes these procedures.

Table 10-1. Queue Procedures

Procedure

INSERT _ENTRY

REMOVE-ENTRY

START_QUEUE

Queues

Purpose

inserts an entry onto a queue.

removes an entry from a
queue.

initializes a queue header.

10-6

INSERT-ENTRY

The INSERT_ENTRY procedure inserts an entry onto a
queue identified by a header, at a position (head or tail)
specified with type QUEUE_POSITION. The procedure
also informs you if the inserted entry was the first entry
(not including the header).

Call Format

INSERT -ENTRY(
header,
entry,
first-element,
position
)

Arguments

header. This argument is a variable of type
QUEUE-ENTRY, representing the queue header. The
forward link of this entry points to the first queue entry
(the one at the head), and the backward link points to
the last entry.

entry. This argument is also a variable of type
QUEUE-ENTRY, representing the entry to be
inserted.

first-element. This argument is a variable of type
BOOLEAN. After the INSERT-ENTRY call, the
variable's value is TRUE if the queue was empty
(except for the header) before the call; otherwise,
FALSE.

position. This argument supplies the location of the
insertion. The value must be the enumerated constant
QUEUE$HEAD or QUEUE$TAIL, where

10-7 Queue Procedures

QUEUE$HEAD specifies that the new entry is inserted
at the head.

For example:

VARheader: QUEUE-ENTRY;
firstelement: BOOLEAN;
myentry: RECORD

myentryq: QUEUE-ENTRY;
item: INTEGER;

{ For queue of integers. }

END;

BEGIN

START -QUEUE{header);
{ Initialize header. }
myentry.item : = 1;
{ Define item. }
INSERT -ENTRY{

header,
myentry.myentryq,
firstelement,
queue$head
);
{ Insert entry at head. }

END.

After the insertion, the BOOLEAN variable
firstelement is TRUE if the inserted entry was the first.

The position QUEUE$HEAD is merely the position
identified by header.flink, and QUEUE$TAIL is the
position header.blink.

Queues 10-8

The position QUEUE$CURRENT cannot be used with
INSERT_ENTRY. Because INSERT-ENTRY's first
argument is any QUEUE_ENTRY variable, however,
you can actually insert entries at any position in a
queue. For example, suppose myentry has been inserted
in the queue, as above, and is followed by several more
entries. You can insert a new entry, mynext,
immediately after myentry as follows:

VAR header: QUEUE-ENTRY;
firstelement: BOOLEAN;
mynext,myentry: RECORD

entryq: QUEUE-ENTRY;
item: INTEGER;
{ For queue of integers. }

END;

BEGIN

. {Insert myentry and various others. }

INSERT -ENTRY(
myentry.entryq,
{ Pretend this is the header.}
mynext.entryq,
{ Entry to be inserted.}
fi rstel em ent,
QUEUE$HEAD
);
{ Insert mynext after myentry. }

END.

Here, myentry.entryq is used as if it were the header.
Thus, the entry mynext.entryq is inserted at
myentry .entryq. fl ink.

10-9 Queue Procedures

RE MOVE-ENTRY

The REMOVE-ENTRY procedure removes an entry
from a queue identified by a header, from the position
specified with type QUEUE-POSITION. The procedure
also informs you if the removed entry was the last entry
(not including the header).

Call Format

REMOVE-ENTRY(
header,
entry,
empty,
position
)

Arguments

header. This argument is a value of type
QUEUE-ENTRY identifying the queue from which to
remove the en try. (When the posi tion is
QUEUE$CURRENT, this argument is a
QUEUE_ENTRY value identifying the entry to
remove.)

entry. This argument is a variable of type
i QUEUE_ENTRY that receives a pointer to the
QUEUE_ENTRY part of the removed entry. If the
queue is empty before the operation, the variable
receives the value NIL.

empty. This argument is a BOOLEAN variable that
receives the value TRUE if the queue is empty after the
removal. Otherwise, it receives the value FALSE.

position. This argument is an enumerated constant
specifying the position for removal. The valid values

Queues 10-10

are QUEUE$HEAD, QUEUE$TAIL, and
QUEUE$CURRENT.

For example:

VARheader: QUEUE-ENTRY;
empty: BOOLEAN;
entryptr: i QUEUE-ENTRY;

BEGIN

REMOVE-ENTRY(
header,
entryptr,
empty,
QUEUE$HEAD
);

{Remove the entry at the head.}

END.

After this operation, the entry previously at the head is
removed from the queue and is identified by entryptr.
The pointers in the remaining entries are updated by
REMOVE-ENTRY. If the only remaining entry is the
header, the variable empty is TRUE and if the queue
was already empty, entryptr is NIL.

Note that entryptr does not necessarily point to the
record or other variable containing the
QUEUE-ENTRY data item. To ensure that it does, we
recommend that you model a queue entry with a record
as shown above (that is, with the first field having type
QUEUE-ENTRY). The pointer returned by
REMOVE_ENTRY will then have the address of the
record, and it can be typecast to point to the record's

10-11 Queue Procedures

type. (For more information about typecasting, see
Chapter 5, ((Variables.")

An entry at any position can be removed with
QUEUE$CURRENT. In this case, the pointer to the
current entry is supplied as the header argument, and
QUEUE$CURRENT as the position.

START-QUEUE

The START_QUEUE procedure initializes a queue
header for use by INSERT _ENTRY. A queue initialized
with START_QUEUE is termed empty.

Call Format

5T ART -QU EU E(head er)

Arguments

header. The argument supplies a variable of type
QUEUE-ENTRY. The procedure makes the header's
forward link and backward link pointers point to the
header itself.

Queues 10-12

Queue Examples

The examples illustrated in this section suggest typical
uses of queues in V AXELN Pascal.

Inserting at Tail, Removing from Head

This example is a simplified version of a common
technique: inserting items at the queue tail and
removing them from the head. In this case, three queue
entries are inserted, linking three integers; then they
are removed from the queue in the same order:

PROGRAM qwalk(OUTPUT);

TYPE
linkedentry = RECORD

entryq: QUEUE-ENTRY;
item: INTEGER;
END;

VAR
header: QUEUE-ENTRY;
entryptr: i linkedentry;
entry: linkedentry;
entry2: linkedentry;
entry3: linkedentry;
firstel,empty: BOOLEAN;

BEGIN
START -QUEUE(header);
entry. item : = 1;
INSERT -ENTRY(

header,
entry.entryq,
firstel,
QUEUE$TAIL
);

entry2.item : = 2;

10-13 Queue Examples

INSERT -ENTRY(
header,
entry2.entryq,
firstel,
QUEUE$TAIL
);

entry3.item : = 3;
INSERT -ENTRY(

header,
entry3.entryq,
firstel,
QUEUE$TAIL
);

REPEAT
REMOVE-ENTRY(

header,
entryptr:: i QUEUE-ENTRY,
empty,
QUEUE$HEAD
);

WRITELN('entry item: "
entryptr i .item);

UNTIL empty;

END.

··Walking" a Queue

This sequence moves forward in a queue, accessing one
entry at a time, beginning with the one at the head (in
such a case, you can operate on the linked data items
without removing their associated queue entries):

TYPE

Queues

entrytype = RECORD
entryq: QUEUE-ENTRY;
item: INTEGER;
END;

10-14

VAR
header: QUEUE-ENTRY;
qptr: i QUEUE-ENTRY;
entry1, entry2, ... : entrytype;
{ Declare entries. }

BEGIN

{ Initialize header, insert entries. }

{Walk the queue: }
qptr: = header.flink;
{ Identify head entry. }
REPEAT

WITH qptr:: i entrytype i DO BEGIN
{ With the above reference to the record,
operate as you like on the entryq or item fields;
for example: }
WRITELN('Entry's item : ',item);

END; {End of WITH. }

qptr: = qptr i .flink
{ Identify the next entry.}
UNTIL qptr = ADDRESS(header)
{End of walk.}

END.

Here, the first operation in the REPEAT loop affects
the entry at the head. After the operation, qptr is given
the location of the next entry. The loop stops when qptr
identifies the header, meaning that the last operation
affected the tail entry.

10-15 Queue Examples

The pointer variable qptr (type t QUEUE-ENTRY)
must be cast to type i entrytype (a pointer to a record)
and then followed by the indirection character; this
way, the WITH statement establishes a reference to the
record containing the data item.

You can walk backward in a queue as well, by starting
at header.blink (the tail), updating qptr with
qptr i .blink, and using the same UNTIL expression.

Note also that you need not start at the head or tail.

Removing All the Entries from a Queue

This sequence removes all entries from a nonempty
queue, starting with the first:

VAR
header: QUEUE-ENTRY;
qptr: i QUEUE-ENTRY;
empty: BOOLEAN;
entry: RECORD

entryq: QUEUE-ENTRY;
item: integer;
END;

BEGIN
REPEAT

Queues

REMOVE-ENTRY{
header,
qptr,
empty,
QUEUE$HEAD
);

{ Remove head entry. }
IF (qptr < >NIL) THEN BEGIN

{Entry removed. Do what you like with qptr.}

10-16

END; { End of IF.}

UNTIL empty
{When the last entry is removed, qptr is NIL and
empty is TRUE. }

END.

Walking a Queue and Removing One Entry

This sequence removes a particular entry from a
nonempty queue:

VAR
header: QUEUE-ENTRY;
entryptr,qptr: i QUEUE-ENTRY: = NIL;
empty: BOOLEAN;
entry: RECORD

entryq: QUEUE-ENTRY;
item: integer;
END;

BEGIN
qptr : = header.fl ink;
{ Identify head entry. }
REPEAT

IF ...
{ If item is the one you want. }
THEN BEGIN

{Remove this entry.}
REMOVE-ENTRY(

qptr i , {Current entry.}
entryptr, { Address of removed entry. }
empty,
QUEUE$CURRENT
);

10-17 Queue Examples

qptr : = ADDRESS(header);
{ Stop wal k. }

END
ELSE qptr : = qptr i .flink;
{ Identify next entry. }

UNTIL qptr = ADDRESS(header);
IF entryptr = NIL

THEN WRITELN('Entry not found.');
ELSE ...
{ Do what you like with the entry identified by
entryptr. }

END.

Using Queues in Interprocess Communication

One of the most important uses for queues in V AXELN
is their use as a very efficient intra-job, interprocess
communication mechanism. They can be used to pass
data ((messages" between two or more processes within
a single job. Using queues this way is more efficient
within a single job than using the SEND/RECEIVE
procedures. Although the SEND/RECEIVE procedures
can be used to send messages between processes in the
same job, they are better suited to passing messages
between jobs on the same or different systems in a
network (see Chapter 12, ((Interjob Communication").

Queues can be used efficiently because the
INSERT-ENTRY and REMOVE-ENTRY procedures
are implemented using the V AX INSQUEIREMQUE
instructions. These instructions are non-interruptible
and, therefore, provide implicit synchronization of
insertion and removal of queue entries. This means
that two processes can simultaneously access a queue,
one inserting entries and the other removing entries,
without additional synchronization.

Queues 10-18

A semaphore is typically used with each queue to signal
the transition of the queue from an empty state to a
none~pty state. The INSERT_ENTRY procedure and
the INSQ UE instruction provide this indication via a
self-synchronizing method. Therefore, the queue and
the semaphore can work together to provide for both
list maintenance and process synchronization and
scheduling.

Interprocess Communication Example

The following example module shows how to use queues
with semaphores for the most efficient method of
interprocess communication in V AXE LN. The module
is composed of the module data, one procedure and two
process blocks. The module data consists of the two
queues (a list of free entries and a list of done entries)
and two semaphores, one per queue. The procedure
initialize initializes the queue heads and the sema­
phores and fills the free queue with entries.

The first process block, producer, is the producer of
data and ((done" queue entries. It first allocates a free
queue entry (waiting if there are none), calls an
imported procedure to ((get some data," and then inserts
the queue entry into the done queue. If the entry in the
done queue is the first one, it signals the semaphore,
which awakens the other process.

The second process block, consu mer, is the consumer of
data and ((done" queue entries. It first allocates a done
queue entry (waiting until one is produced by the
producer process), calls an imported procedure to ((use
some data," and then inserts the used queue entry into
the free list. If the entry in the free queue is the first
one, it signals the semaphore, which awakens the other
process.

10-19 Interprocess Communication

MODULE producer-consumer;

IMPORT
data, get-some-data, use-some-data;

TYPE
list-entry = RECORD

q: QUEUE-ENTRY;
d: data;
END;

VAR
free-list, done-list: QUEUE-ENTRY;
free-non-empty, done-non-empty: SEMAPHORE;

PROCEDURE initialize;

Queues

VAR
p: t list-entry;
empty: BOOLEAN;
free-count: INTEGER;

BEGIN
START -QUEUE(free-list);
ST ART -QU EU E(done-I ist);
CREATE-SEMAPHORE(free-non-empty, 1, 1);
CREATE-SEMAPHORE(done-non-empty, 0, 1);

FOR free-count: = 1 TO 10 DO
BEGIN

NEW(p);
INSERT -ENTRY(

free-list,
p:: t QUEUE-ENTRY t,
empty;
QUEUE$TAIL
);

END;

END;

10-20

PROCESS-BLOCK producer;

VAR
p: i list-entry;
first, empty: BOOLEAN;
stat: INTEGER;

BEGIN

REPEAT

REPEAT
REMOVE-ENTRY(

free-list,
p:: i QUEUE-ENTRY,
empty,
QUEUE$HEAD
);

IF P = NIL THEN
WAIT -ANY(free-non-empty);

UNTIL p< > NIL;

get-some-data(p i'.d);

INSERT -ENTRY(
done-list,
p:: i QUEUE-ENTRY i,
first,
QUEUE$TAIL
);

IF first THEN
SIGNAL(done-non-empty, STATUS: = stat);

UNTIL FALSE;

END;

10-21 Interprocess Communication

PROCESS-BLOCK consu mer;

VAR
P: i list-entry;
first, empty: BOOLEAN;
stat: INTEGER;

BEGIN

REPEAT

REPEAT
REMOVE-ENTRY(

done-list,
p:: i QUEUE-ENTRY,
empty,
QUEUE$HEAD
);

IF P = NIL THEN
WAIT -ANY{done-non-empty);

UNTIL p < > NIL;

use-some-data{p i .d);

INSERT -ENTRY{
free-list,
p:: i QUEUE-ENTRY i,
first,
QUEUE$TAIL
);

IF first THEN
SIGNAL{free-non-empty, STATUS: = stat);

UNTIL FALSE;

END;

END;

Queues 10-22

Introduction

Chapter 11

Subprocesses and
Synchronization

The V AXELN kernel controls the sharing of system
resources and synchronizes communication among the
various programs in the system. The kernel maintains
all information about the system data and about the
user programs defined for a particular system.

The kernel provides most of its services through the set
of structured variables called kernel objects and the
procedures to manipulate them, called kernel services.
These services create, delete, or otherwise affect the
state of the kernel objects represented by the system
data types PROCESS, AREA, EVENT, SEMAPHORE,
MESSAGE, PORT, NAME, and DEVICE. (For a
detailed discussion of the V AXELN kernel and the
kernel objects, see the VAXELN User's Guide.)

As described in Chapter 2, ~~Program Structure," a
PROGRAM block is the main routine of a job's master
process. A subprocess of a job is created by a call to the
CREATE_PROCESS kernel service. One argument of
the CREATE_PROCESS call is the name of a process
block, and this process block is the main routine of the
subprocess.

All subprocesses of a job execute in parallel with the
master process and with each other. In general,
subprocesses must synchronize their activities using

11-1

the special data types and routines provided in
V AXELN Pascal for this purpose.

This chapter discusses process blocks and the kernel
services relating to processes and synchronization. A
brief description of each procedure is given, followed by
the V AXELN Pascal call format, detailed argument
descriptions, and status values.

The relationship between the kernel services described
in this chapter and those described in Chapter 12,
((Inter job Communication," is as follows:

• The DELETE procedure (defined in this chapter)
may be used to delete a MESSAGE or AREA
object, as well as any of the objects related to
processes and synchronization.

• The SIGNAL procedure (defined in this chapter)
may also be used to signal an AREA object.

• The WAIT-ANY and WAIT_ALL procedures
(defined in this chapter) may also be used to wait
for the arrival of a message or to wait for a signal
to an AREA object.

• Messages and ports (defined in the next cha ter)
may be used for communication between processes
in the same job, as well as between different jobs.

In addition, this chapter discusses process VICs and the
authorization procedures, the Authorization Service
utility, program loader utility, and exit utility
procedures, the MUTEX data type, and the V AXELN
procedures that perform operations on mutexes.

Process Blocks

The syntax for a process block declaration is shown in
Figure 11-1.

Subprocesses I Synchronization 11-2

attributes

PROCESS_BLOCK
process
block

identifier

parameter list ...----. routine body

EXTERNAL

Figure 11-1. Process Block Declaration Syntax

The process block identifier is declared at the outer
level as the name of the process block. This declaration
is only allowed at the outer level.

The routine body gives the local declarations and
executable code for the process block. One of the
attributes UNDERFLOW and NOUNDERFLOW may
be specified. The attribute applies to the routine body,
as explained in Chapter 2, ((Program Structure."

The EXTERNAL directive may be used to indicate that
the routine body is coded in another programming
language. In this case, neither UNDERFLOW nor
NOUNDERFLOW is allowed.

The optional parameter list specifies a list of process
parameters, arguments for which can be supplied by
CREATE-PROCESS calls. The arguments in
CREATE_PROCESS match these parameters position­
ally, from left to right. The parameter list has the same
format as for procedures (for details, see Chapter 8,
((Procedures and Functions"). If supplied, the

11-3 Process Blocks

parameters must meet the following constraints, which
are related to the way arguments are passed to the
process block (via a call to CREATE_PROCESS, the
call being made in another process):

• The total number of parameters (or arguments)
must not exceed 31 , including any conforman t
extents.

• The parameters must be value or V AR parameters
(not procedural parameters).

• The data types of value parameters are restricted
to ordinal types, set types with ORD(maxelement)
< 32, pointer types, and types REAL, PROCESS,
AREA, EVENT, SEMAPHORE, MESSAGE,
NAME, and DEVICE. (These types all have values
expressible in 32 bits.) Types with the BIT
attribute are not allowed, and the REFERENCE
attribute cannot be used.

Subprocess Activation and Termination

A subprocess is created when another process in the job
calls CREATE_PROCESS. The kernel establishes a
new stack (PI virtual address space) for the new process
and prepares it for execution, beginning at the first
statement within the process block's compound
statement (BEGIN ... END). The new process is in the
Ready state; it will begin actual execution now or later,
depending on its priority.

A subprocess terminates when anyone of the following
occurs:

• Execution of its compound statement (BEGIN ...
END) terminates.

• The process calls the EXIT procedure.

• The process is deleted by a call to DELETE.

Subprocesses / Synchronization 11-4

• An unhandled exception occurs in the process; this
may be an unhandled QUIT signaled by another
process.

• The job's master process terminates.

When a subprocess terminates, its stack (Pl address
space) is returned to the kernel. In addition, the kernel
takes action so that:

• In any process of the job that is currently waiting
for termination of this process, the wait is satisfied.

• If the call to CREATE-PROCESS that activated
this process specified an exit-status argument, the
terminated process's exit status is stored in the
designated data item. (It's an unpredictable error if
the data item has been freed since the call to
CREATE_PROCESS.)

These actions are not taken in the case where the
subprocess is terminated because the master process
terminates.

VAXELN provides utility procedures that can be used
to establish an exit handler to perform cleanup
operations following the termination of a job with the
EXIT procedure. These procedures are described under
((Exit Utility Procedures," later in this chapter.

Calling Conventions for Process Blocks

The argument list for a process block is created by the
kernel using the process block arguments specified in
the call to CREATE-PROCESS. The conventions for
this argument list are the same as for a procedure's or
function's argument list, except that descriptors are not
used. Instead, the conformant extents are in the
argument list, immediately following the conformant
argument that defines them. (For more information,
see ((Conformant Parameters," in Chapter 8.)

11-5 Process Blocks

Kernel Services for Processes and
Synchronization

The kernel services described in this section relate to
creating, terminating, and scheduling processes and
jobs, and to the synchronization of processes, events,
semaphores, ports, devices, and areas. Table 11-1
summarizes these procedures alphabetically.

Table 11-1. Kernel Services for Processes and
Synchronization

Procedure

CLEAR-EVENT

CREATE-EVENT

CREATEJOB

CREATE-PROCESS

CREATE-SEMAPHORE

CURRENT -PROCESS

DELETE

DISABLE-SWITCH

ENABLE-SWITCH

Subprocesses / Synchronization 11-6

Purpose

sets the state of an
EVENT value to cleared.

crea tes and initializes an
EVENT value.

creates a new job.

creates a new process
execu ting a specified
process block.

creates and initializes a
semaphore.

returns a variable
identifying the process
from which it is called.

removes a kernel object
from the system.

disables process resched­
uling in current job.

resumes process resched­
uling in current job.

Table 11-1. Continued

Proced u re Pu rpose

EXIT ends the current process.

INITIALIZATION-DONE informs the kernel that
the current job has
completed the
initialization sequence.

RESUME resumes a suspended
process.

SET...JOB_PRIORITY sets scheduling priority
'ofthe current job.

SET-PROCESS-PRIORITY sets scheduling priority
of the specified process.

SIGNAL signals a process,
semaphore, event, or
area.

SUSPEND suspends execution of a
process.

WAIT -ALL makes the calling
process wait for all
object values to satisfy
the wait.

WAIT -ANY makes the calling
process wait for any
object value to satisfy
the wait.

11-7 Kernel Services

CLEAR-EVENT

The CLEAR-EVENT procedure sets the state of an
EVENT object to EVENT$CLEARED.

Call Format

CLEAR-EVENT{
event,
STATUS: = stat
)

Arguments

event. This argument supplies the EVENT value
identifying the EVENT object to be cleared.

stat. This optional argument is an INTEGER variable
that receives the completion status of CLEAR-EVENT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-TYPE. The event argument is not of type
EVENT.

KER$-BAD-VALUE. The event argument is invalid or
refers to a deleted event.

Subprocesses / Synchronization 11-8

CREATE-EVENT

The CREATE_EVENT procedure creates and
initializes an EVENT object.

Call Format

CREATE-EVENT(
event,
initial-state,
STATUS: = stat
)

Arguments

event. This argument is a variable of type EVENT that
receives the identifier of the new event.

initial-state. This argument supplies a value of the
predeclared enumerated type EVENT-STATE:

TYPE EVENT-STATE = (EVENT$CLEARED,
EVENT$SIGNALED)

The value gives the initial state of the EVENT object.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CREATE-EVENT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

11-9 Kernel Services

CREATE-.JOB

The CREATE....JOB procedure creates a new job, which
executes a specified program image. Note that
CREATE....JOB runs a program image already in the
system (via the System Builder or via the
LOAD_PROGRAM procedure); it cannot add a new
image to a system.

Call Format

CREATE--.JOB(
job-port,
program,
argument-list,
NOTIFY: = exit-port,
STATUS: = stat
)

Arguments

job-port. This argument is a PORT variable that
receives the new job port value. The value can be used
by the caller of CREATE....JOB to send messages to the
new job. The same value is returned within the new job
by the JOB-PORT procedure.

program. This argument is a string that supplies the
name of the program the job is to run. The name is one
of the programs specified to the System Builder or
loaded via the LOAD_PROGRAM procedure (see
((Program Loader Utility Procedures," later in this
chapter).

argument-list. This is an optional list of strings
supplied as arguments to the program. Arguments can
also be supplied to the program with the System
Builder, as part of a program description. Note that any

Subprocesses / Synchronization 11-10

arguments supplied here override arguments supplied
with the System Builder.

exit-port. This optional argument supplies a PORT
value for termination notification. If this argument is
present, a Cttermination message" is sent to the port
when the new job terminates. (Note that the port must
already be created.) The message data of the
termination message is the INTEGER value making up
the completion status of the created job's master
process. The job's master process can return an explicit
status with the EXIT procedure; if it specifies no status
and completes successfully, the default status returned
in the termination message is 1 (success). If the
argument is omitted, no message is sent.

stat. This optional argument is an INTEGER variable
that receives the completion status of CREATE JOB.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-LENGTH. A string argument was too long.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-MEMORY. No free pages of physical memory
are currently available.

KER$-NO-PAGE-TABLE. No free process page table is
currently available. The number of process page tables
can be set by the System Builder utility.

KER$-NO-POOL. No free system pool is currently
a vailable. The size of the system pool can be set by the
System Builder utility.

KER$-NO-PORT. No free system port table entries are
currently available. The size of the system port table
can be set by the System Builder utility.

11-11 Kernel Services

KER$-NO-SUCH-PROGRAM. No program with the
specified name can be found in the program list created
by the System Builder utility.

CREATE-PROCESS

The CREATE_PROCESS procedure creates a new
process executing a specified process block.

Call Format

CREATE-PROCESS(
process,
subprocess-name,
argument-list,
EXIT: = exit-status,
STATUS: = stat
)

Arguments

process. This argument is a PROCESS variable that
receives the identifier of the new process.

subprocess-name. This argument supplies the name of
the process block to run.

argument-list. This is a list of zero to 31 arguments,
separated by commas. The arguments are passed to the
corresponding parameters in the process block's
parameter list, just as in a procedure or function
invocation. Note, however, that only the positional
argument notation (as explained under ~~Call Format
Conventions" in Chapter 1) can be used; the
nonpositional notation cannot be used.

exit-status. This optional argument is an INTEGER
variable that receives the final status of the created
process. Such a value can be returned with the EXIT

Subprocesses / Synchronization 11-12

procedure. By convention, odd-numbered values indi­
cate success; even-numbered values indicate errors (not
necessarily fatal). If the argument is omitted, no status
is returned.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CREATE-PROCESS.

As part of its internal operation, the call to
CREATE-PROCESS passes the following addresses to
the new process:

• The address of an argument passed to a V AR
parameter

• A pointer value passed to a value parameter

• The address of the exit status item

It is an error if any of these addresses denote an item in
the creating process's PI address space (for example, a
local variable). The compiler and the kernel detect
some violations of this rule. Undetected violations lead
to unpredictable behavior, since PI address values from
the creating process have no meaning in the new
process.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-COUNT. The procedure call specified an
incorrect number of arguments.

KER$-BAD-VALUE. The exit status variable is in PI
space.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

11-13 Kernel Services

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-MEMORY. No free pages of physical memory
are currently available.

KER$-NO-PAGE-TABLE. No free process page table is
currently available. The number of process page tables
can be set by the System Builder utility.

KER$-NO-POOl. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

KER$-NO-STATUS. The process was deleted; therefore,
no exit status value is available to return. (This value is
returned only as an exit status, in the
CREATE-PROCESS exit-status argument.)

CREATE-SEMAPHORE

The CREATE_SEMAPHORE procedure creates and
initializes a semaphore.

Call Format

CREATE-SEMAPHORE(
semaphore,
initial-count,
maximum-count,
STATUS: = stat
)

Arguments

semaphore. This argument is a SEMAPHORE variable
that receives the identifier of the new semaphore.

Subprocesses / Synchronization 11-14

initial-count. This argument is an INTEGER
expression that supplies the initial semaphore count.
The initial count must not exceed the maximum count.

maximum-count. This argument is an INTEGER
expression that supplies the maximum semaphore
count. Signaling the semaphore beyond this count is an
error.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CREATE_SEMAPHO RE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-VALUE. The specified initial count is
greater than the maximum count.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
a vailable. The size of the system pool can be set by the
System Builder utility.

CURRENT -PROCESS

The CURRENT-PROCESS procedure returns the
PROCESS value identifying the process from which it
is called.

Call Format

CU RRENT -PROCESS(
process,
STATUS: = stat
)

11-15 Kernel Services

Arguments

process. This argument is a PROCESS variable that
receives the identifier of the calling process.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CURRENT-PROCESS. KER$-SUCCESS is the only
possible status.

DELETE

The DELETE procedure removes a PROCESS, AREA,
EVENT, SEMAPHORE, MESSAGE, PORT, NAME, or
DEVICE object from the system.

Call Format

DELETE(
value,
STATUS: = stat
)

Arguments

value. This argument supplies a value of type
PROCESS, AREA, EVENT, SEMAPHORE,
MESSAGE, PORT, NAME, or DEVICE.

stat. This optional argument is an INTEGER variable
that receives the completion status of DELETE.

Notes

The result of deleting the various objects is as follows:

PROCESS Objects

When a process is deleted, if any other process is
waiting for its termination, that aspect of its wait

Subprocesses / Synchronization 11-16

condition is satisfied permanently. When a master
process is deleted, all subprocesses in the same job are
also deleted, along with all data and kernel objects
created by any processes in the job. The exit status of a
deleted process is KER$-N O-ST A TUS.

AREA Objects

An area can be deleted by any process of a job that has
created or mapped the area. The memory associated
with the area is deleted when the last referencer deletes
its reference.

EVENT and SEMAPHORE Objects

When an event or semaphore is deleted, any waiting
processes are removed from their wait states
immediately; the status of WAIT-ANY or WAIT_ALL
is KER$_BAD_ VALUE.

MESSAGE Objects

When a MESSAGE object is deleted, the message is
unavailable for sending or receiving, and any pointers
to the message's data buffer become invalid.

PORT Objects

When a port is deleted, any connected port (when the
deleted port is in a circuit) is disconnected, any
messages at the port are deleted, and the wait
conditions of any waiting processes are satisfied with
the completion status KER$-BAD_ VALUE.

NAME Objects

When a universal name is deleted, the Network Service
on each node ensures that the deletion is reflected in
the list of universal names. The deletion of local names

11-17 Kernel Services

is performed by the kernel on the local node and does
not involve the Network Service.

DEVICE Objects

When a DEVICE object is deleted, the memory used for
its communication region is deleted, and any pointers
to that memory become invalid. The interrupt service
routine is disconnected from the interrupt vector. Any
waiting processes are removed from their wait states
immediately, with the completion status
KER$_BAD-VALUE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-STATE. A device specified to DELETE has
an interrupt pending.

KER$-BAD-VALUE. The value argument is invalid or
refers to an object that was deleted.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

DISABLE-SWITCH

The DISABLE-SWITCH procedure disables process
switching for the job from which it is called. The calling
process continues executing, regardless of the priorities
of other processes in the job, until switching is
reenabled with ENABLE-SWITCH.

Note: Process switching is reenabled automatically if
the process calls EXIT or deletes itself.

Call Format

DISABLE_SWITCH(STATUS: = stat)

Subprocesses / Synchronization 11-18

Arguments

stat. This optional argument is an INTEGER variable
that receives the completion status of
DISABLE-SWITCH.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-COUNT-OVERFLOW. The DISABLE_SWITCH
procedure was called more times than
ENABLE-SWITCH.

ENABLE-SWITCH

The ENABLE-SWITCH procedure restores preemptive
process scheduling, or switching, for the calling job.
When process switching is enabled, the control of the
CPU is given to the highest priority process in the job
that is ready to run.

Call Format

ENAB LE-SWITCH(STATUS: = stat)

Arguments

stat. This optional argument is an INTEGER variable
that receives the completion status of
ENABLE-SWITCH.

Notes

The procedures ENABLE-SWITCH and
DISABLE_SWITCH have a feature that allows them to
be called with reasonable effects from nested routines.
The implementation uses a counter that is incremented
whenever DISABLE-SWITCH is called and

11-19 Kernel Services

decremented whenever ENABLE-SWITCH is called.
Switching is enabled only when the number of calls to
ENABLE_SWITCH is equal to the number of calls to
DISABLE-SWITCH for a given process. For example:

PROCEDURE a;
BEGIN
DISABLE-SWITCH;

ENABLE-SWITCH;
END;

PROCEDURE b;
BEGIN
DISABLE-SWITCH;

a; {Call procedure a. }
ENABLE-SWITCH;
END;

Here, procedure b disables process switching and then
calls procedure a. Procedure a also disables process
switching during its execution and then calls
ENABLE_SWITCH. This call does not reenable process
switching, however, since that would cause an error
upon returning to procedure b. Process switching is
reenabled only when procedure b calls
ENABLE_SWITCH.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-COUNT-UNDERFLOW. The ENABLE-SWITCH
procedure was called more times than
DISABLE-SWITCH.

Subprocesses / Synchronization 11-20

EXIT

The EXIT procedure causes an immediate exit from the
calling process. Block activations are not terminated
individually; that is, there is no ~~unwinding" of the
stack. If the calling process is the master process, all
the objects it owns (including subprocesses) are deleted.
All open files are closed.

Call Format

EXIT(
EXIT-STATUS: = exit,
STATUS: = stat
)

Arguments

exit. This optional argument supplies an INTEGER
expression giving the exit status of the current process
to its creator. If omitted, the creating process receives a
status value indicating that no status was returned.

stat. This optional argument is an INTEGER variable
that receives the completion status of EXIT.
KER$-SUCCESS is the only possible status.

Notes

Ifprocess switching was disabled by the calling process,
it is reenabled automatically when the EXIT procedure
is called.

VAXELN provides the DECLARE_EXIT_HANDLER
procedure to establish an exit handler to perform
cleanup operations following the termination of a job
with the EXIT procedure (see ~~Exit Utility
Procedures," later in this chapter).

11-21 Kernel Services

INITIALIZATION-DONE

The INITIALIZATION-DONE procedure informs the
kernel that the calling job has completed an
initialization sequence, and other programs can be
started if specified.

Call Format

INITIALIZATION-DONE{STATUS : = stat)

Arguments

stat. This optional argument is an INTEGER variable
that receives the completion status of
INITIALIZATION-DONE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-INITIALIZATION. The calling program does
not have the Init required characteristic.

RESUME

The RESUME procedure resumes a suspended process.
A resumed process is ready to run, but not necessarily
running. If the process was waiting when it was
suspended, the wait is repeated when it is resumed, as
if the WAIT -ANY or WAIT -ALL procedure were called
again. Any asynchronous exceptions that occurred
during the suspension are raised before the wait is
performed, however , including the exception
KER$QUIT-SIGNAL that results from signaling the
process itself.

Subprocesses / Synchronization 11-22

Call Format

RESUME(
process,
STATUS: = stat
)

Arguments

process. This argument supplies a value of type
PROCESS that identifies the process to be resumed.

stat. This optional argument is an INTEGER variable
that receives the completion status of RESUME.

Status Values

KERS-SUCCESS. The procedure completed successfully.

KERS-BAD-STATE. A process specified to RESUME is
not suspended.

KERS-BAD-TYPE. The first argument is not of type
PROCESS.

KERS-BAD-VALUE. The process argument is invalid or
identifies a process that no longer exists.

SET .JOB-PRIORITY

The SET_JOB_PRIORITY procedure sets the
scheduling priority of the current job.

Call Format

SET -JOB-PRIORITY(
priority,
STATUS: = stat
)

11-23 Kernel Services

Arguments

priority. This argument is an integer in the range 0-31
that supplies the new priority. Priority 0 is the highest.

stat. This optional argument is an INTEGER variable
that receives the completion status of
SET-JOB-PRIORITY.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-VALUE. The priority argument is out of
range.

SET -PROCESS-PRIORITY

The SET-PROCESS-PRIORITY procedure sets the
scheduling priority of the specified process.

Call Format

SET -PROCESS-PRIORITY (
process,
priority,
STATUS: = stat
)

Arguments

process. This argument supplies the PROCESS value
identifying the process whose priority is to be changed.

priority. This argument supplies the new priority as an
integer in the range 0-15. Priority 0 is the highest.

stat. This argument is an INTEGER variable that
receives the completion status of
SET-PROCESS-PRIORITY.

Subprocesses / Synchronization 11-24

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-TYPE. The first argument is not of type
PROCESS.

KER$-BAD-VALUE. Either the process argument is
invalid or refers to a deleted process, or the priority
argument is out of range.

SIGNAL

The SIGNAL procedure signals a process, area, event,
or semaphore.

Call Format

SIGNAL(
value,
STATUS: = stat
)

Arguments

value. This argument supplies a value of type
PROCESS, AREA, EVENT, or SEMAPHORE.

stat. This optional argument is an INTEGER variable
that receives the completion status of SIGNAL.

Notes

The result of signaling the various objects is as follows:

PROCESS Objects

A process can be signaled to quit with the SIGNAL
procedure. The process must establish a handler for the

11-25 Kernel Services

exception KER$-QUIT-SIGNAL. If it does not handle
the exception, it is forced to exit.

AREA Objects

When a referencing process is finished with its
exclusive access to an area, the SIGNAL procedure
allows the next waiting process to gain explicit access.
It is an error to signal an area if the area is not ttlocked"
by any process.

If the area is of zero length, the object represents a
named inter job binary semaphore, in which case the
semaphore count is incremented and tested. If the new
count is greater than zero, the first waiting process in
the semaphore's queue whose wait conditions can be
satisfied is continued, and the count is decremented. If
no processes are waiting, or if none of the waiting
processes can continue, the count is not decremented.

EVENT Objects

SIGNAL sets the state of an event to SIGNALED and
continues all waiting processes whose wait conditions
can be satisfied.

SEMAPHORE Objects

Signaling a semaphore increments and then tests the
semaphore count. If the new count is greater than zero,
the first waiting process in the semaphore's queue
whose wait conditions can be satisfied is continued, and
the count is decremented. Ifno processes are waiting, or
if none of the waiting processes can continue, the count
is not decremented. At most, one process continues as a
result of signaling a semaphore.

Subprocesses / Synchronization 11-26

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-TYPE. The value argument identifies an
object that cannot be signaled.

KER$-BAD-VALUE. The value argument is invalid or
refers to a deleted object.

KER$-COUNT-OVERFLOW. SIGNAL was called for a
semaphore already at its maximum count.

SUSPEND

The SUSPEND procedure suspends the execution of a
process. If the process is currently waiting, as a result of
WAIT-ANY or WAIT-ALL, it is removed immediately
from the W ai ting state and then suspended. If the
process is subsequently resumed, the wait is repeated.

Call Format

SUSPEND{
process,
STATUS: = stat
)

Arguments

process. This argument supplies a value of type
PROCESS identifying the process to be suspended.

stat. This optional argument is an INTEGER variable
that receives the completion status of SUSPEND.

Status Values

KER$-SUCCESS. The procedure completed successfully.

11-27 Kernel Services

KERS-BAD-TYPE. The first argument is not of type
PROCESS.

KER$-BAD-VALUE. The process argument is invalid or
refers to a deleted process.

WAIT -ALL and WAIT -ANY

The WAIT-ALL and WAIT-ANY procedures are used
to make a process wait for one or more objects,
including processes, areas, events, semaphores, ports,
and devices. WAIT -ANY allows the invoking process to
proceed if any of the wait conditions is satisfied;
WAIT -ALL requires that all the conditions be satisfied
simultaneously. WAIT -ANY identifies the object that
satisfied the wait.

Call Formats

WAIT-ALL(
object-list,
RESULT: = wait-result,
TIME: = tvalue,
STATUS: = stat
)

WAIT-ANY(
object-list,
RESULT: = wait~result,
TIME: = tvalue,
STATUS: = stat
)

Arguments

object-list. This list supplies zero to four values of type
PROCESS, AREA, EVENT, SEMAPHORE, PORT, or
DEVICE, separated by commas. If no values are listed,

Subprocesses / Synchronization 11-28

the wait is satisfied by the timeout if one is specified, or
immediately if none is specified.

wait-l'esult. This optional argument is an INTEGER
variable that receives the argument number of the
object that satisfied the wait. The value 0 means that
the wait was satisfied by a timeout, as specified by the
tvalue argument. Otherwise, the value placed in
wait-result identifies, for WAIT_ANY, the object that
satisified the wait, where 1 indicates the first object in
the list, and so forth. With WAIT_ALL, 0 means that
the procedure timed out, and otherwise the result is an
integer in the range 1-4, the exact value being
unpredictable. The value of wait-result is undefined if
the procedures terminate unsuccessfully.

tvalue. This optional argument supplies an absolute
time or time interval. At the specified absolute time, or
after the specified interval, the wait is satisfied
regardless of the states of the specified objects.

stat. This optional argument is an INTEGER variable
that receives the completion status of WAIT_ALL or
WAIT-ANY.

Notes

The WAIT procedures return immediately if one of
their objects is deleted. The deletion is indica ted by
KER$_BAD-VALUE. Both procedures also return
immediately if the necessary conditions were satisfied
already (before the call). Therefore, the elapsed time is
only the time required to perform a procedure call, and
any specified timeout value is irrelevant.

A timeout value of zero may be used to ensure that the
WAIT procedure returns immediately. If the returned
wait-result value is zero, it means the wait condition

11-29 Kernel Services

specified by the objects was not satisfied. (That is, the
objects are tested before the timeout.)

Note that, if more than one wait condition satisifies the
wait, the wait-result argument does not have any
predictable value.

Both WAIT procedures delay the execution of the
invoking process until either the wait condition or
timeout is satisfied. For example:

PROGRAM driver;

VAR
ready: EVENT;
unit-avail: SEMAPHORE;
stat: INTEGER;
one-second: LARGE-INTEGER;
satisifier: INTEGER;

BEGIN
CREATE-EVENT(ready,EVENT$CLEARED);
CREATE-SEMAPHORE(unit-avail, 1 ,1);
one-second: = TIME-VALUE('OOOO 00:00:01.00');

{Wait for 1 second, for a process to signal ready,
or for a process to signal unit-avail, whichever
comes first. }

WAIT-ANY(
ready,
unit-avail,
RESU L T : = satisfier,
TIME: = one-second,
STATUS: = stat
);

Subprocesses / Synchronization 11-30

CASE satisfier OF
0: { Timeout }
1: { ready (or both) signaled }
2: { unit-avail signaled }
END;

END.

WAIT-ANY waits for anyone of a number of conditions
to occur, up to a specified time. It might be used in a
device driver to wait for a device interrupt or device
timeout. In a multiport server, it might wait for a
message to arrive on anyone of several ports.

If an asynchronous exception (such as
KER$-POWER-SIGNAL) is delivered to a waiting
process, several actions are possible, depending on the
action of the exception handler:

• If the handler returns FALSE, the exception is
~~resignaled," meaning that the stack is searched
for another handler; here the process may not
reenter the waiting state.

• If the handler simply returns TRUE (meaning
~~exception handled"), the process reenters the
waiting state.

• If the the handler is exited with a GOTO
statement, the process may not reenter the waiting
state.

The conditions for satisfying waits for the various
objects and the effects of waiting for each type of object
(both procedures have the same effect on their
arguments) are as follows:

PROCESS Objects

A wait for a process is satisfied when it terminates.
Waiting for a process causes no modification to the

11-31 Kernel Services

object, and all waiting processes continue if their wait
conditions are otherwise satisfied.

AREA Objects

A wait for an AREA object is satisfied when the object
is signaled. Waiting for an area implies that, after the
wait is satisfied, the waiting process has exclusive
access to the area until a complementary signal is sent.
When a referencing job's main process is deleted, a
check is made and if the process being deleted is the
owner process, the area is implicitly signaled. If the
process being deleted is the last referencer, the area is
deleted.

If the area is of zero length, the object represents a
named interjob binary semaphore, in which case the
semaphore count is decremented if the wait is satisfied
by signaling the semaphore.

EVENT Objects

A wait for an event is satisfied when the object is
signaled. Waiting for an event causes no modification
to the object, and all waiting processes continue if their
wait conditions are otherwise satisfied.

SEMAPHORE Objects

A wait for a semaphore is satisfied when the object is
signaled. Waiting for a semaphore causes the sema­
phore count to be decremented if the wait is satisfied by
signaling the semaphore; at most one process continues
as the result of signaling a semaphore.

PORT Objects

A wait for a port (including a port in a circuit) is
satisfied when it has a message in it. Waiting for a port
causes no modification to the object, and all waiting

Subprocesses I Synchronization 11-32

processes continue if their wait conditions are
otherwise satisfied.

DEVICE Objects

A wait for a DEVICE object is satisfied when the state
of the object is ((signaled" (the result of the
SIGNAL_DEVICE procedure, called from an interrupt
service routine). Waiting for a device causes the
DEVICE object to be cleared if the wait is satisfied by
the DEVICE object. That is, only one process continues
as a result of the action of an interrupt service routine.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-COUNT. The procedure call specified an
incorrect number of arguments.

KER$-BAD-TYPE. An argument in the object-list is not
a type that can be waited for.

KER$-BAD-VALUE. An argument in the object-list is
invalid or refers to a deleted object.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

11-33 Kernel Services

Process UICs

Associated with each process in a V AXELN system is a
user name and a user identification code, or UlC. The
primary use of a process's user name and VIC is to
enable the process's requests to remote systems to be
authorized by the remote system.

The UIC is an INTEGER value that provides a
shorthand way of identifying a user or group of users.
The user name and UIC are maintained by the
V AXELN Authorization Service and are inherited by a
process from the process or job that created it. A process
can also set its own user name and UIC to any desired
values by calling the SET-USER kernel procedure.

A process can determine its own user name and UIC by
calling the GET-USER kernel procedure. Since the
V AXELN security features are based upon validating
network requests, a process can also determine the user
name and UIC of the process from which it has accepted
a circuit connection.

For a detailed discussion of VAXELN system security,
including the Authorization Service and the use of
UICs, refer to the VAXELN User's Guide. The
procedures provided by the Authorization Service to
maintain the authorization database are described
under ((Authorization Service Utility Procedures," later
in this chapter.

Subprocesses / Synchronization 11-34

Authorization Procedures

The procedures described in this section set or return
the user identity of processes. Table 11-2 summarizes
these procedures.

Table 11-2. Authorization Procedures

Procedure

GET-USER

SET-USER

Purpose

returns the user identity
of a process.
sets the user identity of
the current process.

Note: To use these procedures, include the module
$KERNEL from the RTLOBJECT library in the
compilation of your program.

11-35 Authorization Procedures

GET-USER

The GET_USER kernel procedure returns the user
identity of either the calling process or the partner
process connected by a circuit to the caller's port. To use
the procedure, you must include the module $KERNEL
in the compilation.

Call Format

KER$GET -USER(
status,
circuit,
username,
uic
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
GET_USER.

circuit. This optional argument supplies a PORT value
specifying the partner process's port in the circuit. If
this argument is supplied, the port must be currently
connected in a circuit that the caller has accepted with
the ACCEPT-CIRCUIT procedure. Valid information
is not returned if the caller initiated the connection
with CONNECT_CIRCUIT; that is, GET-USER can
only provide information about the object of a
connection, not the subject.

username. This optional argument receives a string of
up to 20 characters which is the user name of either the
calling process or the partner process.

uic. This optional argument is an INTEGER variable
that receives the user identification code of either the

Subprocesses / Synchronization 11-36

calling process or the partner. process. If the circuit is
from a remote user, but there is no Authorization
Service available in the system (that is, the
Authorization required characteristic on the Edit
Network Node Characteristics System Builder menu is
~~No"), GET-USER returns zero for the UIe parameter.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-L~NGTH. The username argument is too
long.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

SET-USER

The SET-USER kernel procedure sets the user identity
of the current process. To use the procedure, you must
include the module $KERNEL in the compilation.

Call Format

KER$SET -USER(
status,
username,
uic
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
SET-USER.

username. This argument supplies a string of up to 20
characters giving the user name to be associated with
the process.

11-37 Authorization Procedures

uic. This argument is an INTEGER value that supplies
the user identification code to be associated with the
process.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-STATE. A port specified to SET-USER
contains unreceived messages or has an incomplete
ACCEPT_CIRCUIT or CONNECT-CIRCUIT pending.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-SUCH-PORT. No port with the specified value
can be found in the system or network, or the port is not
owned by the current job, as required by SET-USER.

Subprocesses / Synchronization 11-38

Authorization Service Utility Procedures

The procedures described in this section maintain the
authorization database. Table 11-3 summarizes these
procedures.

Table 11-3. Authorization Service Utility Procedures

Procedure

AUTH-ADD-USER

AUTH-MODIFY -USER

AUTH-REMOVE-USER

AUTH-SHOW-USER

Purpose

adds a new user record to
the authorization
database.
modifies an existing user
record in the
authorization database.
removes an existing user
record from the
authorization database.
returns au thoriza tion
database information for
the specified user or
users.

Notes: To use these procedures, include the module
$AUTHORIZE_UTILITY from the RTLOBJECT
library in the compilation of your program.

These procedures all assume that the calling program
has connected a circuit to the Authorization Service's
AUTH$MAINTENANCE port.

11-39 Authorization Service Utilities

The following Pascal types are declared in module
$AUTHORIZE-UTILITY for use with the Authori­
zation Service utility procedures:

TYPE
auth$field-names = (auth$username-field,

auth$nodename-field,auth$password-field,
auth$u ie-field, auth$userdata-field);
{ Authorization field names. }

auth$fields = set of auth$field-names;
{ Authorization fields. }

auth$username = varying-string(20);
{ Username string. }

auth$password = varying-string(20);
{ Password string. }

auth$nodename = varying-string(32);
{ Nodename string. }

auth$userdata = varying-string(128);
{ User-specified data. }

Subprocesses / Synchronization 11-40

AUTH-ADD-USER

The AUTH_ADD-USER procedure adds a new user
record to the authorization database. This procedure
requires that the caller be authorized with a system
group UIC (that is, a UIC less than or equal to
%X0008FFFF or [10,177777]). To use the procedure,
you must include the module $AUTHORIZE-UTILITY
in the compilation.

Call Format

ELN$AUTH-ADD-USER(
status,
circuit,
username,
nodename,
password,
uic,
userdata
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
AUTH-ADD_USER.

circuit. This argument supplies a PORT value
specifying the port connected in a cireui t to the
Authorization Service's AUTH$MAINTENANCE port.

username. This argument supplies a user name of type
AUTH$USERNAME for the new user; it cannot be
blank. The reserved name $ANY can be specified for
the username argument, meaning that any user from
the specified node that does not mateh one of the

11-41 Authorization Service Utilities

explicit user names is authorized with the specified
user identification code.

nodename. This argument supplies a node name of
type AUTH$NODENAME for the node on which the
new user is authorized; it can be blank. If nodename is
specified, the database record represents a proxy
authorization and the password is unused. If nodename
is not specified, the database record represents a
destination authorization. The reserved name $ANY
can be specified for the nodename argument, meaning
that any user with the specified name from any node
that does not match one of the explicit node names is
authorized with the specified user identification code.

password. This argument supplies a password of type
AUTH$PASSWORD for the new user; it can be blank.
If a destination authorization record is added, the
password is stored with the record. Passwords are
al ways stored in a scrambled form so that they cannot
be read once they are stored.

uic. This argument is an INTEGER value that supplies
the user identification code assigned to the new user.

userdata. This argument supplies an arbitrary string of
user-specified data of type AUTH$USERDATA that is
stored with the user record for use by applications.

AUTH-MODIFY -USER

The AUTH-MODIFY-USER procedure modifies an
existing user record in the authorization database. This
procedure requires that the caller be authorized with a
system group UIC (that is, a {TIC less than or equal to
%X0008FFFF or [10,177777]). To use the procedure,
you must include the module $AUTHORIZE-UTILITY
in the compilation.

Subprocesses / Synchronization 11-42

Call Format

ELN$AUTH-MODIFY -USER(
status,
circuit,
username,
nodename,
new-fields,
new-username,
new-nodename,
new-password,
new-uic,
new-userdata
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
AUTH_MODIFY -USER.

circuit. This argument supplies a PORT value
specifying the port connected in a circuit to the
Authorization Service's AUTH$MAINTENANCE port.

username. This argument supplies the user name of
type AUTH$USERNAME for the record to be modified;
it cannot be blank.

nodename. This argument supplies the name of the
node of type AUTH$NODENAME on which the user is
authorized.

new-fields. This argument, which can be blank,
supplies a set that specifies which of the other fields are
to be modified.

new-username. This argument supplies a new user
name of type AUTH$USERNAME for the user; it
cannot be blank. The reserved name $ANY can be

11-43 Authorization Service Utilities

specified for the new-username argument, meaning
that any user from the specified node that does not
match one of the explicit user names is authorized with
the specified user identification code. Note that if the
user name is modified, the password must be reset as
well.

new-nodename. This argument supplies a new node
name of type AUTH$NODENAME for the node on
which the user is authorized; it can be blank. If
new-nodename is specified, the database record
represents a proxy authorization and the password is
unused. If new-nodename is not specified, the
database record represents a destination authorization.
The reserved name $ANY can be specified for the
new-nodename argument, meaning that any user
with the specified name from any node that does not
match one of the explicit node names is authorized with
the specified user identification code.

new-password. This argument supplies a new
password of type AUTH$PASSWORD for the user; it
can be blank. If a destination authorization record is
added, the password is stored with the record.
Passwords are always stored in a scrambled form so
that they cannot be read once they are stored. Note that
if the user name is modified, the password must be reset
as well.

new-uic. This argument is an INTEGER value that
supplies the new user identification code assigned to
the user.

new-userdata. This argument supplies an arbitrary
string of user-specified da ta of type
AUTH$USERDATA that is stored with the user record
for use by applications.

Subprocesses / Synchronization 11-44

AUTH-REMOVE-USER

The AUTH-REMOVE-USER procedure removes an
existing user record from the authorization database.
This procedure requires that the caller be authorized
with a system group UIC (that is, a UIC less than or
equal to %X0008FFFF or [10,177777]). To use the
procedure, you must include the module
$AUTHORIZE-UTILITY in the compilation.

Call Format

ELN$AUTH-REMOVE-USER(
status,
circuit,
username,
nodename
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
AUTH-REMOVE-USER.

circu it. This argument supplies a PORT value
specifying the port connected in a circuit to the
Authorization Service's AUTH$MAINTENANCE port.

username. This argument supplies the user name of
type AUTH$USERNAME of the user to be removed; it
cannot be blank.

nodename. This argument supplies the name of the
node of type AUTH$NODENAME on which the user is
no longer authorized.

11-45 Authorization Service Utilities

AUTH-SHOW-USER

The AUTH-SHOW-USER procedure returns
authorization database information for the specified
user or users. To use the procedure, you must include
the module $AUTHORIZE-UTILITY in the
compilation.

Note that the user-specified show-user procedure is
only invoked if the specified user entry is found in the
authorization database.

Call Format

ELN$AUTH-SHOW-USER(
status,
circuit,
username,
nodename,
show-user
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
AUTH-SHOW -USER.

circuit. This argument supplies a PORT value
specifying the port connected in a circuit to the
Authorization Service's AUTH$MAINTENANCE port.

username. This argument supplies the user name of
type AUTH$USERNAME of the user records to be
accessed; it cannot be blank.

nodename. This argument supplies the name of the
node of type AUTH$NODENAME from which the user
is authorized. This argument should only be specified

Subprocesses / Synchronization 11-46

as a non-null string if the proxy information for the
specified user(s) is requested, in which case the proxy
information is returned.

show-user. This argument supplies a procedure name
of type AUTH$SHOW_USER-ROUTINE that
identifies a user-specified routine to be invoked by
AUTH-SHOW-USER.

Notes

This procedure calls the user-specified show-user
procedure with the values of a specified user record or
all the records in the authorization data file. To return
all the records in the file, specify the input username
parameter as the string '*'; the specified show-user
procedure is then called once for each record in the file.

The procedure type declaration for
AUTH$SHOW-USER-ROUTINE In module
$AUTHORIZE-UTILITY is as follows:

PROCEDURE
auth$show-user -routi ne{

var username: auth$username;
var nodename: auth$nodename;
var uic: integer;
var userdata: auth$userdata);

PROCEDU RE-TYPE;

11-47 Authorization Service Utilities

Program Loader Utility Procedures

The procedures described in this section dynamically
load and unload program images in to a running
V AXELN system after the initial system is built. Table
11-4 summarizes these procedures.

Table 11-4. Program Loader Utility Procedures

Procedure

LOAD-PROGRAM

UNLOAD-PROGRAM

Purpose

loads a specified image
file into a currently
running system.
unloads a specified
program from a
currently running
system.

Note: To use these procedures, include the module
$LOADER_UTILITY from the RTLOBJECT library in
the compilation of your program.

Subprocesses / Synchronization 11-48

LOAD-PROGRAM

The LOAD-PROGRAM procedure loads a specified
image file into a currently running V AXELN system.
After the image file is loaded, the CREATE...JOB
procedure (described earlier in this chapter) is used to
start the program running. To use the procedure, you
must include the module $LOADER-UTILITY in the
compilation.

Call Format

ELN$LOAD-PROGRAM(
file-name,
program-name,
kerneLmode,
start-with-debug,
power-recovery,
kerneLstack-size,
initiaLuser -stack-size,
message-limit,
job-priority,
process-priority,
status
)

Arguments

file_name. This argument supplies a string of up to 255
characters giving the name of the image file to be
loaded into the system. The file is opened in the context
of the caller, so the file name must be provided in
sufficient detail to correctly identify the file. The file
can reside on the system or on a remote node.

program-name. This argument supplies a string of up
to 40 characters giving the name by which the program

11-49 Program Loader Utilities

will be known for the CREATE_JOB call. If the
argument is specified as a null string, the image name
supplied by the linker is used for the program name,
and that name is returned in this argument.

kernel-mode. This argument is a BOOLEAN value
specifying in which mode the program is to run. TRUE
means kernel mode; FALSE (the default) means user
mode.

starLwith-debug. This argument is a BOOLEAN
value specifying whether the debugger is to get control
of the program when it is started. TRUE means the
debugger is to get control; FALSE (the default) means
the debugger is not to get control.

power_recovery. This argument is a BOOLEAN value
specifying whether the job running the specified
program is to be given the power recovery exception if
the power fails on the system. TRUE means the job is to
be given the power recovery exception; FALSE (the
default) means the job is not to be given the power
recovery exception.

kernel_stack_size. This argument is an INTEGER
value that supplies the size, in pages, of the kernel
mode stack for jobs running this program. User mode
programs require at least 1 page (the default) of kernel
stack.

initial-user _stack_size. This argument is an INTEGER
value that supplies the initial size, in pages, of the user
mode stack for jobs running this program. Programs
require at least 1 page (the default) of user stack. This
parameter is ignored for kernel mode programs.

message-limt. This argument is an INTEGER value
that specifies the maximum number of messages the job
port can contain; the default is O.

Subprocesses / Synchronization 11-50

job-priority. This argument is an integer from 0 to 31
that specifies the starting job priority for this program;
the default is 16.

process-priority. This argument is an integer from 0 to
15 that specifies the starting process priority for this
program; the default is 8.

status. This optional argument is an INTEGER
variable that receives the completion status.

UNLOAD-PROGRAM

The UNLOAD_PROGRAM procedure unloads a
specified program from a currently running V AXELN
system. To use the procedure, you must include the
module $LOADER-UTILITY in the compilation.

Call Format

ELN$UNLOAD-PROGRAM(
program-name,
status
)

Arguments

program_name. This argument supplies a string of up
to 40 characters identifying the program to be
unloaded.

status. This optional argument is an INTEGER
variable that receives the completion status.

11-51 Program Loader Utilities

Exit Utility Procedures

The procedures described in this section establish and
delete an exit handler to perform cleanup operations
following the termination of a job with the EXIT
procedure. Table 11-5 summarizes these procedures.

Table 11-5. Exit Utility Procedures

Procedure Purpose

CANCEL-EXIT-HANDLER deletes a specific exit
handler routine.

DECLARE_EXIT -HANDLER calls an exit handler
routine defined by the
program.

Note: To use these procedures, include the module
$EXIT-UTILITY from the RTLOBJECT library in the
compilation of your program.

Subprocesses/Synchronization 11-52

CANCELEXIT -HANDLER

The CANCEL_EXIT_HANDLER procedure allows you
to cancel an exit handler (identified by the exit handler
and an associated context value), which was enabled by
DECLARE-EXIT-HANDLER. To use the procedure,
you must include the module $EXIT_UTILITY in the
compilation.

Call Format

ELN$CANCEL-EXIT -HANDLER(
exit-handler,
exit_context
)

Arguments

exit_handler. This argument supplies a procedure
name of type ELN$EXIT_HANDLER that identifies
the exit handler routine to be cancelled.

exit_context. This optional argument is a variable of
type t ANYTYPE. This variable must exactly match
the exit-context variable used in the
DECLARE-EXIT-HANDLER call in order for the
proper handler to be cancelled.

11-53 Exit Utility Procedures

DECLARE-EXIT -HANDLER

The DECLARE_EXIT_HANDLER procedure allows
you to declare an exit handler for a program. The
named exit handler procedure is called upon the
termination of a job with the EXIT procedure. To use
the procedure, you must include the module
$EXIT_UTILITY in the compilation.

Call Format

ELN$DECLARE-EXIT -HANDLER(
exit-handler,
exit-context
)

Arguments

exit_handler. This argument supplies a procedure
name of type ELN$EXIT_HANDLER that identifies an
exit handler routine to be called upon the termination
of ajob with the EXIT procedure.

exit-context. This optional argument is a variable of
type t ANYTYPE that will be passed to the specified
exit handler routine when it is invoked.

Notes

The procedure type declaration for
ELN$EXIT_HANDLER in module $EXIT-UTILITY is
as follows:

PROCEDURE
eln$exit-handler(

var exit-context: [optional] t anytype);
PROCEDU RE-TYPE;

Subprocesses / Synchronization 11-54

MUTEX Data Type

The MUTEX data type is provided as an optimization of
binary semaphores. To use the type and its associated
procedures, you must include the module $MUTEX
from the library RTLOBJECT in the compilation.

Mutex Operations

The general m~anings of mutex operations are
identical to the comparable operations on binary
semaphores, with one important difference: When a
process locks a mutex, to gain access to a shared
resource, it does not have to call a WAIT procedure
unless some other process has already locked the
mutex. This results in a very significant improvement
in efficiency compared with simply calling the WAIT
and SIGNAL procedures with binary semaphores.

The operations on mutexes are as follows:

• The CREATE_MUTEX procedure initializes a
mutex (initially unlocked) and creates its
associated semaphore.

• The INITIALIZE-ARE A_MUTE X initializes a
mutex that uses an AREA object as the
synchronization object.

• The LOCK_MUTEX procedure locks a mutex
(used in lieu of WAIT -.ANY or WAIT-.ALL).

• The UNLOCK-MUTEX procedure unlocks a
mutex (used in lieu of SIGNAL).

• The DELETE_MUTEX procedure deletes the
semaphore created for a mutex.

Each of these procedures takes a MUTEX variable as
one of its arguments (or as its only argument).

11-55 MUTEX Data Type

As an example of the use of mutex operations, consider
a program in which several concurrent processes will
write values in a device register:

MODULE mutexample;
INCLUDE $MUTEX;

VAR playmutex: MUTEX;

PROGRAM main;
BEGIN

CREATE-M UTEX(playmutex);

. { CREATE-PROCESS calls to activate
play subprocesses. }

END; { End of main program. }

PROCESS-BLOCK play;.
BEGIN

LOCK-M UTEX(playmutex);
{ Prevent other subprocesses from writing the
device registers until this one is done. }

. {WRITE-REGISTER calls to load device
registers. }

UNLOCK-MUTEX(playmutex);
{Allow other subprocesses access to registers. }

END; { End of process block. }

END; {End of module mutexample.}

Subprocesses / Synchronization 11-56

Internal Representation of Mutexes

A MUTEX value is represented internally as a 6-byte
record containing a I6-bit counter and a SEMAPHORE
value. The counter is initialized to -1 and the
SEMAPHORE value to a binary semaphore by
CREATE-MUTEX. The counter is then incremented
and decremented (using the ADD-INTERLOCKED
routine) by LOCK_MUTEX and UNLOCK_MUTEX,
respecti vely .

If LOCK-MUTEX increments the counter and the
result is greater than 0, another process has already
locked the mutex, so LOCK-MUTEX calls a WAIT
procedure to wait for the semaphore. If
UNLOCK-MUTEX decrements the counter and the
result is greater than or equal to 0, another process is
waiting for the mutex, so UNLOCK-MUTE X calls
SIGNAL to signal the semaphore.

When a mutex is deleted with the DELETE_MUTEX
procedure, the counter is set to 0, indicating that the
mutex is locked. A subsequent call to LOCK-MUTEX
will then call aWAIT procedure and fail with the status
KER$-BAD-VALUE.

11-57 MUTEX Data Type

Mutex Procedures

The procedures described in this section perform
operations on mutexes. Table 11-6 summarizes these
procedures.

Table 11-6. Mutex Procedures

Procedure Purpose

CREATE-MUTEX initializes a mutex and
crea tes its associated
semaphore.

DELETE_MUTEX deletes the semaphore
created for a mutex.

INITIALIZE-AREA-MUTEX initializes a new
mutual exclusion
semaphore that uses
an AREA object as the
synchronization object.

LOCK_MUTEX locks a mutex.

UNLOCK-MUTEX unlocks a mutex.

Note: To use these procedures, include the module
$MUTEX from the RTLOBJECT library in the
compilation of your program.

Subprocesses / Synchronization 11-58

CREATE-M UTEX

The CREATE_MUTEX procedure initializes a MUTE X
variable for use in guarding the access to a shared
variable or other shared resource. The initial state is
(tunlocked." The procedure creates a SEMAPHORE
object and stores its identifying value in one of the
MUTEX variable's fields. To use the procedure, you
must include the module $MUTEX in the complIation.

Call Format

ELN$CREATE-MUTEX(
mutex,
status
)

Arguments

mutex. This argument is a MUTEX variable that
receives the new MUTEX value.

status. This optional argument is an INTEGER
variable that receives the completion status.

DELETE-MUTEX

The DELETE_MUTE X procedure deletes the
semaphore associated with a MUTEX variable. To use
the procedure, you must include the module $MUTEX
in the compilation.

Call Format

ELN$DELETE-M UTEX(
mutex,
status
);

11-59 Mutex Procedures

Arguments

mutex. This argument is a variable of type MUTEX. It
is not modified by the procedure. The semaphore
identified by the variable's semaphore field is deleted
from the system.

status. This optional argument is an INTEGER
variable that receives the completion status.

INITIALIZE-AREA-MUTEX

The INITIALIZE_AREA_MUTEX procedure initializes
a new mutual exclusion semaphore that uses an AREA
object as the synchronization object. To use the
procedure, you must include the module $MUTEX in
the compilation.

Call Format

ELN$I NITIALIZE-AREA-M UTEX(
mutex,
area,
status
)

Arguments

mutex. This argument is a MUTEX variable that
receives the new MUTEX value.

area. This argument is an AREA variable that receives
the identifier of the new area.

status. This optional argument is an INTEGER
variable that receives the completion status.

Subprocesses / Synchronization 11-60

LOCK-MUTEX

The LOCK.-MUTEX procedure locks a mutex. To use
the procedure, you must include the module $MUTEX
in the compilation.

Call Format

ELN$LOCK-MUTEX(mutex)

Arguments

mutex. The argument is a variable of type MUTEX.

UNLOCK-MUTEX

The UNLOCK_MUTEX procedure unlocks a mutex. To
use the procedure, you must include the module
$MUTEX in the compilation.

Call Format

ELN$UNLOCK-MUTEX(mutex)

Arguments

mutex. The argument is a variable of type MUTEX.

11-61 Mutex Procedures

Subprocesses / Synchronization 11-62

Chapter 12

Interjob Communication

This chapter discusses messages and ports as they
relate to inter job communication, including the kernel
services rei a ting to message transmission. In addition,
this chapter discusses interjob data sharing using
AREA objects and the related kernel services. Finally,
the memory allocation procedures and stack utility
procedures provided by V AXELN are discussed.

Messages and Ports

The V AXELN kernel provides a MESSAGE object to
describe a block of memory that can be moved from one
job's virtual address space to another's. The block of
memory is called message data and is allocated
dynamically by the kernel from physically contiguous,
page-aligned blocks of memory. A MESSAGE object
and its associated message data are both created by
calling the CREATE-MESSAGE kernel service.

Message data is mapped into a job's PO virtual address
space, so it is potentially accessible to all the processes
in the job. If a message is sent to a job on the sending
job's local node, the kernel unmaps the message data
from the sending job's virtual address space and remaps
it into the receiver's space.

If a message is sent to a remote node, the kernel again
unmaps the message data, but it remaps it into the
appropriate network device driver job to send the
message to the remote system. The reverse operations

12-1

then cause the message data to be remapped in the
receiver's space.

A PORT object represents a system-maintained
message queue that is created with the
CREATE-PORT kernel service. PORT object values
identify unique destinations for messages; they can be
passed as arguments, sent in messages, or obtained
from the RECEIVE procedure.

To facilitate communication between jobs, message
ports can be given names. These names are created
with the CREATE_NAME kernel service. Names have
their own data type in order to establish ownership of
the name; that way, only the process that creates a
name, or some other process in the same job, can delete
it. Names can be either local to a node or universal. A
local name is guaranteed to be unique within the local
node. Universal names are guaranteed to be unique
throughout the entire local area network.

Sending Messages

To send a message, you declare a pointer to the type of
data you want to send, supply the pointer to
CREATE-MESSAGE, use the pointer to fill in the
message data (the size of the message data is implied by
the pointer), and supply the MESSAGE and PORT
object values to the SEND procedure. For example:

VAR dptr: j INTEGER;
msg: MESSAGE;
dest: PORT;

BEGIN
CREATE-MESSAGE(msg,dptr) ;
dptrj:= 512;
SEND(msg,dest);

END.

Interjob Communication 12-2

The SEND procedure removes the message data from
your job and places the MESSAGE object value in the
destination port.

Receiving Messages

The receiver process waits for a message to arrive on its
port and then uses the RECEIVE procedure to obtain it.
The RECEIVE procedure automatically maps the
message data into the receiver's address space, returns
a MESSAGE object value for the receiver's use, and
optionally returns the values of the reply port and
destination port. To reply, the receiver formulates an
answer and sends a reply to the reply port.

Note that any expedited data messages queued to a port
are received by the RECEIVE procedure before any
normal data messages are received.

Datagrams and Circuits

Two methods are used to transmit messages:

• The datagram method is used when messages are
sent between unconnected message ports .

• The circuit method is used when messages are sent
between two ports connected via a circuit.

The datagram method cannot guarantee that a
message is actually received at the destination;
however, it does guarantee that received messages are
correct. In addition, two messages sent to the same
destination port can possibly arrive in a different order.
In contrast, messages sent through circuits are
guaranteed to be delivered (if the physical connection is
intact) and to be delivered in the same sequence in
which they are sent.

12-3 Messages and Ports

Using circuits, messages can have any length, and, if
the transmission is across the network, the network
services will divide the message into segments of the
proper length, transmit the segments in sequence, and
reassemble them at the destination node.

In addition, the OPEN procedure permits you to ((open"
a circuit as if it were a file and to use the Pascal I/O
routines (such as READ and WRITE) to transmit
messages. (See Chapter 15, ((Input and Output," for
descriptions of the OPEN procedure and all Pascal I/O
routines.)

Programming with Circuits

Circuits are established between two ports by the
CONNECT-CIRCUIT and ACCEPT-CIRCUIT proce­
dures. Options of these procedures allow you to control
the flow of messages through a circuit; that is, you can
prevent a sending process from sending too many
messages to a slower receiving process.

A process that wants to establish a circuit calls
CONNECT_CIRCUIT and designates a destination
port in another process. A special connection request
message is automatically sent to the designated port.
For example:

CONNECT -CIRCUIT(myport,
DESTINATION-NAME: = 'request-server');

Here, myport is a port in the calling process that will
form its half of the circuit. The destination name is
specified by the string 'request-server', which is
translated automatically by CONNECT-CIRCUIT to
designa te the destination port.

Elsewhere, an ACCEPT-CIRCUIT call causes a process
to wait for a connection request message on the
designated port.

Interjob Communication 12-4

For example:

VAR
server: NAM E;
receiver-port, connect-port: PORT;

CREATE-PORT(receiver-port, LIMIT: = 10);
CREA TE-PORT(connect-port);
CREATE-NAME(server,'request-server' ,

receiver-port) ;

ACCEPT-CIRCUIT(receiver-port,
CONNECT: = connect-port);

{ Wait for a connection request. When the wait is
satisfied, a circuit is established between the
requestor and connect-port. }

At this point, the acceptor can take a variety of actions
to communicate with the requestor, such as creating a
subprocess to continue the dialog and passing it the
port value (connect-port) representing its half of the
circuit. The ACCEPT-CIRCUIT procedure can notify
you of error conditions, such as an unreceived message
in receive-port or another connection request for which
acceptance is still pending.

Circuits are broken when either partner calls the
DISCONNECT-CIRCUIT procedure. The SEND and
RECEIVE procedures both notify their callers if the
designated port was disconnected.

For more information on messages, ports, and circuits,
see the VAXELN User's Guide.

The kernel .services relating to message transmission
are described in detail in the following section. A brief
description of each procedure is given, followed by the
VAXELN Pascal call format, arguments, and status
values.

12-5 Messages and Ports

Kernel Services for Message Transmission

The kernel services described in this section relate to
transmitting messages between processes, jobs, and
ports. Table 12-1 summarizes these procedures.

Table 12-1. Kernel Services for Message Transmission

Procedure

ACCEPT _CIRCUIT

CONNECT_CIRCUIT

CREATE_MESSAGE

CREATE-NAME

CREATE_PORT

DISCONNECT -CIRCUIT

JOB-PORT

RECEIVE

SEND

TRANSLATE-NAME

Interjob Communication 12-6

Purpose

establishes a circuit
between two ports.

connects a port to a
specified destination
port.

creates a message and
its associated message
data.

creates a name for a
port.

creates a message port.

breaks the circuit
connection between two
ports.

returns the current job
port.

receives a message from
a port.

sends a message to a
port.

returns a value
identifying a named
port.

ACCEPT -CIRCUIT

The ACCEPT_CIRCUIT procedure causes the invoking
process to wait for a circuit connection. When the wait
is satisfied (that is, on successful completion), the
circuit is established between two ports.

Call Format

ACCEPT_CIRCUIT (
sou rce-port,
CONNECT: = connect-port,
FULLERROR: = flag,
ACCEPT_DATA: = accdata,
CONNECT-DATA: = conndata,
STATUS: = stat
)

Arguments

source-port. This argument supplies the value of the
port on which to wait for a connection request. Unless
connect-port is present, this port also forms the
invoker's half of the circuit. If, during the call, this port
receives a message that is not a connection request, the
message is ignored.

connect-port. This optional argument supplies a
different port, which is used for the actual connection; if
it is absent, the sou rce-port value is used for the
connection. This argument need only be specified if
additional connections need to be accepted before
previous ones are disconnected.

flag. This optional argument supplies a BOOLEAN
value to enable or disable the implicit wait caused
when the partner port is full. The default is FALSE,
meaning that the sender waits if the partner is full. If

12-7 Kernel Services

TRUE is supplied, an error status or the corresponding
exception occurs with SEND when you attempt to send
a message and the partner's port is full.

accdata. This optional argument supplies a
VARYING_STRING(16) value that is passed to the
process requesting the circuit connection (that is, the
requesting process receives this value in the
ACCEPT-DATA parameter of its CONNECT-CIRCUIT
call).

conndata. This optional argument is a variable of type
V ARYING-STRING(16) that receives data passed by
the requesting process in the CONNECT-DATA
parameter of its CONNECT_CIRCUIT call.

stat. This optional argument is an INTEGER variable
that receives the completion status of
ACCEPT-CIRCUIT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-STATE. A port specified to
ACCEPT-CIRCUIT contains unreceived messages or
has an incomplete CONNECT_CIRCUIT or
ACCEPT-CIRCUIT pending.

KER$-CONNECT-PENDING. A CONNECT-CIRCUIT is
pending, and the port cannot be used for another
purpose until the connection has completed.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-SUCH-PORT. No port with the specified value
can be found in the system or network, or the port is not
owned by the current job, as required by
ACCEPT-CIRCUIT.

Interjob Communication 12-8

CONNECT -CIRCUIT

The CONNECT-CIRCUIT procedure connects a port to
a specified destination port. If the process receiving the
connection request accepts it, the two ports are bound
together in a circuit. The destination port can be
specified either by name or by PORT value.

Call Format

CONN ECT -CI RCU IT(
port,
DESTINATION-PORT: = dest-port,
DESTINATION-NAME: = string,
FULL-ERROR: = flag,
CONNECT-DATA: = conndata,
ACCEPT-DATA: = accdata,
STATUS: = stat
)

Arguments

port. This argument supplies a PORT value that will
form the caller's half of the circuit.

dest-port. This optional argument supplies a PORT
value giving the destination for the connection request
message. (Such a PORT value can be obtained from the
reply-port argument of RECEIVE).The argument can
be omitted only if a destination name is supplied by the
following argument.

string. This optional argument supplies the destination
for the connection request message as a character­
string name, usually a name established by the
CREATE-NAME procedure. If the destination is
specified this way, via a NAME object, string is
automatically translated to a destination port. If

12-9 Kernel Services

dest-port is also specified, it overrides this argument.
(Either this argument or dest-port must be present.)
The string can also have the forms

nodename: : local-port-name

nodenumber: :Iocal-port-name

for connection to a port in a VAXELN system (where
the local-port-name is a local name established on the
V AXELN node), or the form

nodenumber: : object

for connection to a DECnet-VAX (VAXNMS) system
(where object is the name of the object on the non­
VAXELN DECnet system that will handle the
connection).

For more information about connections to non­
VAXELN systems, see the VAXELN User's Guide.

flag. This optional argument supplies a BOOLEAN
value to enable or disable the implicit wait performed
(with SEND) when the partner port is full. The default
is FALSE, meaning that the sender waits until the
partner port is not full; if TRUE is specified, SEND
returns an error status or raises the corresponding
exception if the partner port is full.

conndata. This optional argument supplies data to the
process receiving the connection request. The data type
is V ARYING_STRING(16).

accdata. This optional argument is a variable of type
VARYING-STRING(16) that receives any data
supplied by the accepting process in its
ACCEPT_CIRCUIT call.

stat. This optional argument is an INTEGER variable
that receives the completion sta tus of
CONNECT_CIRCUIT.

Interjob Communication 12-10

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-STATE. A port specified to
CONNECT-CIRCUIT contains unreceived messages or
has an incomplete CONNECT-CIRCUIT or
ACCEPT-CIRCUIT pending.

KER$-CONNECT-TIMEOUT. The connection request was
not accepted by the destination within the connection
timeout limit. The connection timeout time can be set
by the System Builder utility.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-DESTINATION. Neither a destination port
value nor port name was specified in the procedure call.
KER$-NO-SUCH-NAME. The procedure call specified a
NAME value for which there is no translation.

KERS-NO-SUCH-PORT. No port with the specified value
can be found in the system or network, or the port is not
owned by the current job, as required by
CONNECT-CIRCUIT.

CREATE-MESSAGE

The CREATE-MESSAGE procedure creates a
MESSAGE object and allocates storage for its
associated message data.

Call Format

(REA TE-M ESSAG E(
message,
data-pointer,
STATUS: = stat
)

12-11 Kernel Services

Arguments

message. This argument is a MESSAGE variable that
receives the identifier of the new MESSAGE object.

data-pointer. This argument supplies a pointer
variable that will identify the message's data. It can
have any type except t ANYTYPE. The procedure
allocates storage of the base type's size and sets the
pointer to identify it. The returned pointer value is
valid in the current job; it becomes invalid if the
message is sent or deleted.

stat. This optional argument is an INTEGER variable
that receives the completion sta tus of
CREATE-MESSAGE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-MEMORY. There was not enough physical
memory to create the message data area.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

CREATE-NAME

The CREATE-NAME procedure creates a NAME
object that refers to a specified port. Names created by
this procedure are guaranteed to be unique within the
specified name space (local or universal). If you attempt
to create a name that is not unique, the NAME object is
not created, and an error status is returned.

Interjob Communication 12-12

Call Format

CREATE-NAME(
name,
name-string,
port-value,
TABLE: = table,
STATUS: = stat
)

Arguments

name. This argument is a NAME variable that receives
the identifier of the new NAME object.

name-string. This argument supplies the name (as a
1-31-character string).

port-value. This argument supplies the value of the
port being named.

table. This optional argument supplies the enumerated
value NAME$LOCAL, NAME$UNIVERSAL, or
NAME$BOTH. It specifies that the new name is either
local (valid only in this system, or node), universal
(valid throughout the application, or on any node), or
both. NAME$LOCAL is the default. If the system does
not contain the Network Service, all names are placed
in the local name table.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CREATE-NAME.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-LENGTH. A string argument was too long.

12-13 Kernel Services

KER$-DUPLICATE. The CREATE-NAME procedure
was called with a name string that is a duplicate of an
existing name.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

CREATE-PORT

The CREATE_PORT procedure creates a message port
and optionally specifies its maximum message
capacity.

Call Format

CREATE-PORT(
port,
LIMIT: = int,
STATUS: = stat
)

Arguments

port. This argument is a PORT variable that receives
the identifier of the new PORT object.

into This optional argument is an integer expression
that supplies the maximum number of messages that
can be queued to the port at one time. If the maximum
is exceeded and the port is connected in a circuit, the
sending process waits until a message is received from

Interjob Communication 12-14

the port. If the port is not connected in a circuit, further
messages are lost. The default value is 4.

stat. This optional argument is an INTEGER variable
that receives the completion status of CREATE_PORT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-08J ECl. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

KER$-NO-PORl. No free system port table entries are
currently available. The size of the system port table
can be set by the System Builder utility.

DISCONNECT-CIRCUIT

The DISCONNECT_CIRCUIT procedure is used to
break the circuit connection between two ports. If any
process is waiting for either port in the circuit, its wait
condition is satisfied. A request for connection can be
rejected by first calling ACCEPT_CIRCUIT and then
calling DISCONNECT-CIRCUIT.

Call Format

DISCONNECT -CIRCUIT(
port-value,
STATUS: = stat
)

12-15 Kernel Services

Arguments

port-value. This argument supplies a PORT value
representing the caller's half of the circuit.

stat. This optional argument is an INTEGER variable
that receives the completion status of
DISCONNECT-CIRCUIT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-STATE. A port specified to
DISCONNECT_CIRCUIT was not connected.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-SUCH-PORT. No port with the specified
value can be found in the system or network, or else the
port is not owned by the current job, as required by
DISCONNECT-CIRCUIT.

JOB-PORT

The procedure JOB-PORT returns a PORT value
identifying the caller's job port. A unique job port is
created whenever ajob is created.

Call Format

JOB-PORT(
port,
STATUS: = stat
)

Interjob Communication 12-16

Arguments

port. This argument is a PORT variable that receives a
PORT value identifying the caller's job port. -

stat. This optional argument is an INTEGER variable
that receives the completion status of JOB-PORT.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

RECEIVE

The RECEIVE procedure removes a MESSAGE object
from the designated message port and maps the
message data into the receiver job's virtual address
space.

Call Format

RECEIVE(
message,
data-ptr,
port,
SIZE: = size,
DESTINATION: = dest-port,
REPLY: = reply-port,
STATUS: = stat
)

Arguments

message. This argument is a MESSAGE variable that
receives the MESSAGE value identifying the next
message, if there is one in the port.

12-17 Kernel Services

data-ptr. This argument is a pointer variable that
receives a pointer value identifying the message data.
The pointer value is valid only in the current job and
becomes invalid if the message is sent or deleted. The
variable you supply can be a pointer to any type.
(Presumably, its type is the same one used by the
sender to create the message.)

port. This argument supplies the PORT value of the
port from which to retrieve the message.

size. This optional argument is an INTEGER value
that receives the size in bytes of the message data.

dest-port. This optional argument is a PORT variable
that receives the value of the destination port.
Normally, this is the same value supplied by the sender
for the receiver's port. It is available, and returns a
different value, only for the internal interface between
the kernel and the Network Service.

reply-port. This optional argument is a PORT variable
that receives the value of the reply port. Note that this
value is not set properly by RECEIVE if the port is
connected in a circuit.

stat. This optional argument is an INTEGER variable
that receives the completion status of RECEIVE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-EXPEDITED. The procedure completed
successfully, and the received message is an expedited
message.

KER$-CONNECT-PENDING. A CONNECT_CIRCUIT is
pending, and the port cannot be used for another
purpose until the connection has completed.

Interjob Communication 12-18

KER$-DISCONNECT. The circuit was disconnected by
the partner process.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-MESSAGE. No unreceived messages are
currently in the port.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-SUCH-PORT. No port with the specified value
can be found in the system or network, or the port is not
owned by the current job, as required by RECEIVE.

KER$-NO-VIRTUAL. No free virtual address space (to
map the message data) is currently available for the
job. The size of the job's virtual address space can be set
using the System Builder.

SEND

The SEND procedure removes a message's message
data from the sender's address space and then places
the MESSAGE object that describes the data in the
destination's message port.

Call Format

SEND(
message,
destination,
SIZE: = size,
REPLY: = reply-port,
EXPEDITE: = expedite,
STATUS: = stat
)

12-19 Kernel Services

Arguments

message. The first argument supplies the MESSAGE
value identifying the message to send. After the
operation, any pointers to the message data are no
longer valid.

destination. This argument supplies the PORT value
identifying the destination port; if the message is being
sent through a circuit, this port is the sender's half, and
the message arrives at the receiver's half.

size. This optional argument is an INTEGER value
that supplies the length in bytes of the message data to
be sent; ifit is omitted, the size of the originally created
message data is the default. If size is specified, its value
must be equal to or less than the original message data
SIze.

reply-port. This optional argument is a PORT value
identifying the reply port. If it is not specified, the
kernel supplies the value of the sender's job port.

expedite. This optional argument supplies a
BOOLEAN value stating whether to expedite the
message. The default is FALSE. An expedited message
bypasses the normal flow-control mechanism and can
be sent even if the receiving port already has its
maximum number of messages. The message is
received by the port before any normal data messages.
The size of an expedited message must not exceed 16
bytes.

stat. This optional argument is an INTEGER variable
that receives the completion status of SEND.

Status Values

KER$-SUCCESS. The procedure completed successfully.

Interjob Communication 12-20

KERS-BAD-MESSAGE-SIZE. The message data is too
large to be sent to the destination port. This can occur
for the following reasons:

• The message is being sent to a remote port not
connected in a circuit. The maximum message data
size that can be sent as a datagram to a remote port
is the System Builder's Network Segment Size
minus 32. The default segment size is 576, so the
maximum size remote datagram in the default
case is 544 bytes.

• The message is being expedited. The maximum
message data size that can be sent as an expedited
message is 16 bytes.

KER$-BAD-TYPE. The first argument is not of type
MESSAGE.

KERS-BAD-VALUE. The message or size argument is
invalid or the message argument refers to a deleted
mesage.

KER$-CONNECT-PENDING. A CONNECT-CIRCUIT is
pending, and the port cannot be used for another
purpose until the connection has completed.

KER$-COUNT -OVERFLOW. The destination port is full
(with circuits, raised if the FULL-ERROR parameter in
the ACCEPT-CIRCUIT or CONNECT-CIRCUIT
procedure was TRUE).

KER$-DISCONNECT. The circuit was disconnected by
the partner process.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KERS-NO-SUCH-PORT. No port with the specified value
can be found in the system or network, or the port is not
owned by the current job as required by SEND with
circuits.

12-21 Kernel Services

TRANSLA TE-NAM E

The TRANSLATE_NAME procedure returns a value
identifying a named port. The specified name string is
used to search for a NAME object with a matching
string. If the NAME object is found, a value for the
name's associated port is returned.

Call Format

TRANSLATE-NAME(
port,
name-string,
selector,
STATUS: = stat
)

Arguments

port. This argument is a PORT variable that receives
the value of the associated message port.

name-string. This argument is a character string that
supplies the name of the port. Name strings are not
case sensitive; uppercase and lowercase versions of the
same name mean the same thing.

selector. This argument specifies which name table
(local or universal) is to be searched. Possible values
are values of the predeclared enumerated type
NAME_TABLE:

• NAME$LOCAL specifies that only the local name
table is searched .

• NAME$UNIVERSAL specifies that only the
universal name table is searched.

Interjob Communication 12-22

• NAME$BOTH specifies that the local name table
is searched first, followed by the universal table.
The search ends as soon as a match is found.

stat. This optional argument is an INTEGER variable
that receives the completion status of
TRANSLATE-NAME.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-SUCH-NAME. The translation for the
specified name string cannot be found.

12-23 Kernel Services

Interjob Data Sharing

Although messages are the recommended means of
communicating between jobs, V AXELN provides
AREA objects as a means of sharing data among jobs on
a single V AXELN node. An AREA object represents a
shareable region of memory and an associated binary
semaphore, which can be used by the sharing jobs (and
subprocesses) to synchronize access to the area's data.
The synchronization must be done with kernel
procedures or with the mutex routines, as discussed in
Chapter 11, ((Subprocesses and Synchronization."

The CREATE-AREA kernel service is used for two
purposes:

• To create a new AREA object with a specified name

• To access an existing named area

In both cases, the procedure maps the area's data region
into the calling job's PO address space. If the original
(creating) caller specifies a specific PO virtual address
for the area, it will be mapped into all jobs at this
address. This feature makes the area not position
independent; the sharing jobs can place real, fixed­
pointer values in the region and they mean the same
thing in each sharer's address space.

If a virtual address is not specified in the original call,
the CREATE-AREA procedure will allocate a free PO
base address. Since the area could be in a different
place in each sharer's space, fixed-pointer values
cannot be used in the area. This is the typical case, with
the area being used to hold one data structure.

The data region for an AREA object is allocated from
physically contiguous 512-byte pages of memory and is
mapped into the creating job's PO virtual address space.

Interjob Communication 12-24

The region always occupies an integral number of
memory pages and is aligned on a page boundary.

Note that areas with a size of zero are valid and
represent only the semaphore.

The kernel services relating to interjob data sharing
are described in detail in the following section. A brief
description of each procedure is given, followed by the
VAXELN Pascal call format, arguments, and status
values.

12-25 Interjob Data Sharing

Kernel Services for Interjob Data Sharing

The kernel services described in this section relate to
sharing data among jobs on a single V AXELN node.
Table 12-2 summarizes these procedures.

Table 12-2. Kernel Services for Interjob Data Sharing

Procedure

CREATE_AREA

Interjob Communication 12-26

Purpose

crea tes a new area or
maps an existing area of
memory in to the
creating job's PO virtual
address space.

CREATE-AREA

The CREATE-AREA procedure creates a new area or
maps an existing area of memory into the creating job's
PO virtual address space.

Call Format

(REA TE-AREA(
area,
data-pointer,
area-name,
VI RTUAL: = base-va,
STATUS: = stat
)

Arguments

area. This argument is an AREA variable that receives
the identifier of the new AREA object.

data-pointer. This argument supplies a pointer
variable for the base address of the area. It can have
any type except t ANYTYPE. The procedure creates a
data area of the base type's size and validates the
pointer to identify it.

area-name. This argument supplies the name for the
area (as a 1-31-character string).

base-va. This optional argument supplies the base
virtual address where the area is to be placed; it must
be in PO space.

stat. This optional argument is an INTEGER variable
that receives the completion status of CREATE-AREA.

Status Values

KER$-SUCCESS. The procedure completed successfully.

12-27 Kernel Services

KER$-BAD-VALUE. The area-name argument has a
bad length, the base virtual address or ending address
is not in PO space, or the virtual address is specified and
does not match the area's specified virtual address.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-MEMORY. There were not enough memory
pages to complete the operation.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

KER$-NO-VIRTUAL. The necessary virtual address
range is not available in the calling job's virtual
address space.

Interjob Communication 12-28

Memory Allocation Procedures

The procedures described in this section relate to
allocating and freeing memory. Table 12-3 summarizes
these procedures.

Table 12-3. Memory Allocation Procedures

Procedure

ALLOCATE-MEMORY

FREE_MEMORY

MEMORY -SIZE

Purpose

allocates physical VAX
memory to the calling
job.

frees a region of physical
VAX memory previously
allocated.

scans the kernel memory
data base to determine
the free and largest
block sizes.

Note: To use MEMORY-SIZE, include the module
$KERNEL from the RTLOBJECT library in the
compilation of your program.

12-29 Memory Allocation Procedures

ALLOCATE-MEMORY

The ALLOCATE-MEMORY kernel procedure allocates
physical memory and maps it into the virtual address
space of the job that calls it. The memory allocation can
be specified to start at a given virtual address or at a
gi ven physical address, or both.

Call Format

ALLOCATE-MEMORY(
mem-pointer,
size,
VIRTUAL: = virtual-address,
PHYSICAL: = physical-address,
STATUS: = stat
)

Arguments

mem-pointer. This argument is a pointer variable that
receives a pointer (t ANYTYPE) to the first location of
the allocated memory. The received value is the virtual
address.

size. This argument supplies an INTEGER value
giving the number of bytes of memory to allocate. The
value supplied is increased to the next multiple of 512.

virtual-address. This optional argument is a pointer
value that supplies the starting virtual address of the
allocated memory. The value is truncated if necessary
to address a 5l2-byte page boundary. If this argument
is omitted, the memory is allocated using any available
contiguous address space in the calling job's PO region.
If the argument is present, allocation is attempted at
the specified location in PO or Pl.

Interjob Communication 12-30

physical-address. This optional argument is an
INTEGER value that supplies the starting physical
address of the allocated memory. It is truncated if
necessary to address a 512-byte page boundary. If it is
omitted, the allocated memory comes from the system's
pool of free memory.

stat. This optional argument is an INTEGER variable
that receives the completion status of
ALLOCATE-MEMORY.

Notes

For most purposes, you should allocate memory with
the NEW procedure, which then calls the
ALLOCATE-MEMORY procedure.

Caution should be exercised when the PHYSICAL
parameter is used. The kernel maintains a list of all the
pages of physical memory in the system that are free. If
the ALLOCATE-MEMORY procedure is called without
a PHYSICAL parameter specified, the kernel uses the
list to determine what pages of memory can be
allocated. If the PHYSICAL parameter is specified,
however, the kernel does not consult the list. Instead, it
assumes the calling program knows w ha t pages are
unused; for example, the memory associated with I/O
registers or multi-ported memory. Since specifying the
PHYSICAL parameter incorrectly could cause a program
to overwrite currently allocated memory, the program
must be running in kernel mode to use the PHYSICAL
parameter.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-MODE. The physical-address argument was
specified by a program that was not running in kernel

12-31 Memory Allocation Procedures

mode; kernel mode is required to allocate specific
physical memory.

KER$-BAD-VALUE. The virtual-address argument is
not in the job's address space.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-MEMORY. No free pages of physical memory
are currently available.

KER$-NO-VIRTUAL. No free contiguous virtual address
space is currently available for the process. The size of
process virtual address space can be set using the
System Builder utility.

FREE-MEMORY

The FREE-MEMORY kernel procedure frees a region
of memory previously allocated by the
ALLOCATE-MEMORY procedure. (Note that
dynamically allocated memory is normally allocated
with the NEW procedure and freed with DISPOSE.)
Any pointers to the freed memory become in valid.

Call Format

FREE-MEMORY(
size,
virtual-address,
STATUS: = stat
}

Arguments

size. This is an integer expression that supplies the
number of bytes of memory to be freed. This value is
increased to the next 512-byte page.

Interjob Communication 12-32

virtual-address. This argument supplies the starting
virtual address of the memory, as returned by
ALLOCATE-MEMORY. This value is truncated to a
512-byte page address.

stat. This optional argument is an INTEGER variable
that receives the completion status of
FREE_MEMORY.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-VALUE. The virtual-address argument is
not in the calling job's address space.

MEMORY-SIZE

The MEMORY-SIZE kernel procedure scans the kernel
memory data base and returns, in 512-byte pages, the
initial main memory, the current free memory, and the
size of the largest, physically contiguous, block of free
memory. While MEMORY_SIZE performs the memory
scan, all other kernel operations are stopped. To use the
procedure, you must include the module $KERNEL in
the compilation.

Call Format

KER$MEMORY -StZE(
status,
memory-size,
free-size,
largest-size
)

12-33 Memory Allocation Procedures

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
MEMORY _SIZE.

memory-size. This argument is an INTEGER variable
that receives the size, in 512-byte pages, of the initial
main memory.

free-size. This argument is an INTEGER variable that
receives the size, in 512-byte pages, of the current free
memory.

largest-size. This argument is an INTEGER variable
that receives the size, in 512-byte pages, of the largest,
physically contiguous, block of free memory.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

Interjob Communication 12-34

Stack Utility Procedures

The procedures described in this section explicitly
manage the stack size during the execution of a
program. Table 12-4 summarizes these procedures.

Table 12-4. Stack Utility Procedures

Procedure

ALLOCATE-STACK

DEALLOCATE_STACK

Purpose

verifies the availability
of a particular amount of
stack space.
trims the stack by up to
the number of bytes
specified.

Note: To use these procedures, include the module
$STACK-UTILITY from the RTLOBJECT library in
the compilation of your program.

12-35 Stack Utility Procedures

ALLOCATE-STACK

The ALLOCATE_STACK procedure v,erifies that the
process has the stack space you requested; if not, it
allocates the stack space. To use the procedure, you
must include the module $STACK-UTILITY in the
compilation.

Call Format

ELN$ALLOCATE-ST ACK(
stack-size,
status
)

Arguments

stack-size. This argument is an INTEGER value that
supplies the number of bytes of stack space required.

status. This optional argument is an INTEGER
variable that receives the completion status.

DEALLOCATE-5T ACK

The DEALLOCATE-STACK procedure trims the stack
back by the amount specified, but not beyond the page
containing the current stack pointer (SP). Specifying an
overly large number will cause the stack to be trimmed
to the currently needed size. To use the procedure, you
must include the module $STACK_UTILITY in the
compilation.

Interjob Communication 12-36

Call Format

ELN$DEALLOCA TE-STACK(
stack-size,
status
)

Arguments

stack-size. This argument is an INTEGER value that
supplies the number of bytes by which to reduce the
current stack size.

status. This optional argument is an INTEGER
variable that receives the completion status.

12-37 Stack Utility Procedures

Interjob Communication 12-38

Chapter 13

Errors and Exception Handling

The term error in this manual means a violation of the
language rules (including violations in calling kernel
procedures). The Pascal language was designed so that
most errors can be detected by the compiler, without
executing the program. Of the errors not detected by
the compiler, many can be detected during program
execution, but this usually requires additional code.

This chapter discusses errors and the
EXCEPTION_HANDLER function type. Exception
names and status values are discussed and the
exception handling procedures are described in detail.
A brief description of each procedure is given, followed
by the V AXELN Pascal call format, arguments, and
status values (for kernel procedures).

Errors

The following list classifies most error detection in the
development system. Not included here is the manner
in which the kernel detects and reports errors that were
not detected by the compiler. Errors detected by the
kernel are reported to the caller of the kernel procedure
via a status value returned in the argument list or via
an exception. The types of errors are:

• Any violation of a language rule that is not
described by the other items in this list is detected
by the compiler. Usually, the result is an error­
level message, although a warning-level message
is issued in a few cases.

13-1

• A warning -level error is a potential error detected
by the compiler, It results only in a warning-level
message.

• A run-time error is an error that causes an
exception if the statement containing the error is
executed.

• A range violation is, in most cases, an error related
to the actual value of a variable or expression, such
as an array index outside the limits of the
corresponding index range or an ordinal value
outside the target's sub range in an assignment. If
the values in question can be determined by the
compiler, the range violation is detected at compile
time. Otherwise, the compiler generates code to
check for the violation at run time, but only if the
compiler command's CHECK=RANGE qualifier
is used. If this qualifier is not used and a range
violation occurs during program execution, further
effects are unpredictable.

• An unpredictable error is an error that is not
explicitly detected. If a statement contains an
unpredictable error, the compiler may detect it or
may detect a related error; however, the error may
raise a run-time exception or cause later
misbehavior in the program's execution.

Compiler Error Detection

The compiler does not try to detect all errors in a
program. Instead, it favors producing only one message
for each error, possibly at the expense of masking other,
nearby errors. The aim is quick diagnosis, editing, and
recompilation of the program.

In many cases, the compiler completely evaluates
expressions with constant operands. Such evaluation

Errors and Exception Handling 13-2

may let the compiler detect a run-time error or range
violation, either in the evaluated expression or in the
statement containing it. In such a case, the compiler
usually (but not always) issues a warning-level
message and generates code that will cause an
exception if executed. The aim is to tolerate errors in
statements that will not actually be executed. Because
execution of the statement is definitely an error, the
compiler may trim its code down to one instruction that
raises the relevant exception.

Warning-Level Errors

In general, the compiler issues warning-level messages
for things that are likely to be mistakes but which can,
in fact, occur in a correct program. Examples include:

• Some trivial syntax errors, such as ~~; ELSE"

• Some technically correct constructions that are
likely to be mistakes, such as ~(DO ;"

• Cases that are range violations or run-time errors;
these may be all right if the statement containing
the error is never executed.

• Errors explicitly classified as warning-level errors

The generation of warning-level messages is controlled
by a compiler command option. The best practice is to
enable warning-level messages and, if feasible, modify
the program to eliminate them.

EXCEPTION-HANDLER Function Type

Functions of type EXCEPTION_HANDLER are user­
defined handlers for exception conditions. Within a
program, procedure, function, or process block, only one
function of this type can be established at a time as the
exception handler for that block. The established

13-3 EXCEPTION-HANDLER

handler is then called on the occurrence of all
exceptions in that block's activation, whether as a
result of an operation in the block, as the result of
calling the RAISE-EXCEPTION kernel procedure, or
as the result of an asynchronous event represented by
such exceptions as KER$-QUIT -SIG N AL and
KER$_POWER_SIGN AL.

The asychronous exception KER$-POWER-SIGNAL is
delivered to programs only if you enable it with the
System Builder.

If there is no handler established for the current block,
the stack of active blocks is searched for an exception
handler. Unhandled exceptions are fatal and cause
deletion of the process, unless a debugger is included in
the system. If a second exception occurs during the
execution of an exception handler, the search for the
second exception's handler skips the stack frames that
were searched to find the first one. This means that
exception handlers are not reentered recursively.

All functions of this type have the result type
BOOLEAN. You write a handler to examine the
argument list and determine which exception occurred.
If the exception is nonfatal (that is, if you can repair the
problem dynamically), you return TRUE. If you cannot
handle the exception, return FALSE; this causes the
exception to be ~~resignaled," and the kernel attempts to
find a handler in an enclosing block.

You can also ~~unwind" the call stack by using a GO TO
statement whose target is a label in a higher-level
block. In this case, call frames are removed from the
stack, -beginning with the exception handler's frame,
until the target block is reached. If, when a frame is
going to be removed, it has an associated exception
handler, that handler is called with the exception name
SS$_UNWIND. This exception name indicates to the

Errors and Exception Handling 13-4

handler that it is about to be removed from the stack
and gives it a chance to clean up any local variables or
other state information.

Exception Arguments and Types

The function type EXCEPTION-HANDLER is used as
if the following declaration is present:

FUNCTION EXCEPTION-HANDLER(
VAR SIGNAL-ARGS:

CHF$R-SIGNAL-ARGS;
VAR MECH-ARGS:

CHF$R-MECH-ARGS
): BOOLEAN;
FU NCTION-TYPE;

The CHF$ data types are provided for use in functions
of this type; they define the signal and mechanism
arguments delivered for particular exceptions.

Signal Arguments

TYPE
CHF$R-SIGNAL-ARGS = RECORD
{ Signal array. }

ARG-COUNT : INTEGER;
NAME: INTEGER;
ADDITIONAL: ARRAY[l .. 250] OF INTEGER;

END;

This type represents the number and name of the signal
arguments, plus an array of additional arguments, if
any. The exception names in the system are
represented as named integer constants declared in
RTLOBJECT.OLB. The additional arguments can be
typecast as shown in the examples below.

13-5 EXCEPTION-HANDLER

Mechanism Arguments

TYPE
CHF$R-MECH-ARGS = RECORD
{ Mechanism array. }

ARG-COUNT: INTEGER;
FRAME: i ANYTYPE;
DEPTH: INTEGER;
SAVRO: INTEGER;
SAVR1 : INTEGER;

END;

This type represents the number of mechanism
arguments, plus the arguments themselves (frame
pointer, frame depth, and saved contents of registers RO
and Rl, respectively).

Additional Arguments

TYPE
CHF$R-SIGNAL-ARGS-ADDITIONAL

{ARG-COUNT: INTEGER} = RECORD
ARG-ARRAY:

ARRA Y[1 .. ARGCOU NT - 3]
OF INTEGER;

PC: INTEGER;
PSL : INTEGER;

END;

This flexible type represents additional arguments plus
the exception program counter (PC) and processor
status longword (PSL). It can be used in typecasting the
additional arguments, with the number of additional
signal arguments as its extent value.

Errors and Exception Handling 13-6

Examples

FUNCTION eh OF TYPE EXCEPTION-HANDLER;
VAR i : INTEGER;
BEGIN
i : = SIGNAL-ARGS.NAME;

{ Return TRUE or FALSE, as appropriate.}
END;

Here, an exception handler named eh obtains the name
of the exception that caused it to be called and takes
appropriate action: returning TRUE means that the
exception was handled; FALSE causes a search of the
stack for another handler or, if there is no other
handler, deletion of the process.

FUNCTION eh OF TYPE EXCEPTION-HANDLER;
VAR i,j,k : INTEGER;
BEGIN
WITH x AS signal-args.additional::

chf$r -signal-args-add itional
(signal-args.arg-count)
DO BEGIN

i : = x.PC;
j : = x.PSL;
k : = x.ARG-ARRAY[1];

END;

{ Return TRUE or FALSE, as appropriate.}
END;

Here, the handler obtains access to the additional
signal arguments, to examine the PC and PSL and the
first element of the additional argument array. The
signal argument signal-args.additional is typecast to

13-7 EXCEPTION-HANDLER

the flexible type representing such arguments, with the
number of signal arguments supplied as the extent
value.

Related Documentation

For a general discussion of the techniques for writing
exception handlers, see the V AX/VMS R un-Time
Library Routines Reference Manual.

Exception Names and Status Values

The names of most exceptions are listed in Appendix C
of the VAXELN User's Guide.

The module $P ASCALMSG defines the names of
exceptions detected by the Pascal run-time routines.
$ELNMSG defines the exceptions detected by the
compiler and V AXELN run-time routines. Include
these modules (from the library RTLOBJECT.OLB) in
the compilation of your source program. Note that to be
used in exception handlers, the SS$ exception names
must be declared in your program with the
EXTERNAL and VALUE attributes.

Kernel procedures raise exceptions if they are
unsuccessful and you do not request the completion
status by using the status parameter. Such exceptions
have the same names as the corresponding status
values. (That is, KER$_NO_SUCH_PROGRAM can be
either a status value or exception name depending on
whether you request the status.) The idea is that you
can decide not to check the status after every call and
can instead take an exception in the event of an error.

The status values are defined in the module
$KERNELMSG in RTLOBJECT.OLB; include this
module in the compilation of your program to use the
values for checking completion status.

Errors and Exception Handling 13-8

Exception Handling Procedures

The procedures described in this section relate to
V AXELN exception handling and accessing the
message data base. Table 13-1 summarizes these
procedures.

Table 13-1. Exception Handling Procedures

Procedure

ASSERT

Purpose

checks the
validity of a
Boolean
expression and
raises an
exception if the
result is FALSE.

DISABLE-ASYNCH-EXCEPTION prevents the
delivery of
asynchronous
exceptions.

ENABLE-ASYNCH-EXCEPTION allows the
delivery of
asynchronous
exceptions.

ESTABLISH establishes a
function as a
block's exception
handler.

GET_STATUS_TEXT returns the text
associated with a
status code.

13-9 Exception Handling Procedures

Table 13-1. Continued

Procedu re Pu rpose

RAISE-EXCEPTION causes a software
exception in the
calling process.

RAISE-PROCESS-EXCEPTION raises the KER$_
PROCESS­
ATTENTION
exception.

REVERT disables exception
handling in the
current block.

UNWIND unwinds the call
stack to a new
location.

Note: To use GET_STATUS_TEXT, include the module
$GET_MESSAGE_TEXT from the RTLOBJECT
library in the compilation of your program. To use
RAISE_PROCESS_EXCEPTION or UNWIND, include
the module $KERNEL from the RTLOBJECT library
in the compilation of your program.

Errors and Exception Handling 13-10

ASSERT

The ASSERT procedure checks the validity of a
BOOLEAN expression. It can be used to validate the
arguments received by a function or procedure, for
example.

Call Format

ASSERT(expression)

Arguments

expression. The argument supplies a relational or
other BOOLEAN-valued expression.

Notes

If assertion checking is enabled by the command
qualifier CHECK= ASSERT, the expression is
evaluated by the compiler if possible.

If the compiler evaluation is possible and results in
TRUE, the ASSERT procedure has no effect. If the
result is FALSE, the compiler issues a warning
message and generates code that will raise an exception
if executed.

If the expression cannot be evaluated by the compiler,
the compiler generates code to check the assertion at
run time. If found FALSE at run time, the
ELN$ASSERT exception is raised.

If the CHECK qualifier is not used on the compiler
command, the ASSERT procedure has no effect,
although its argument is still checked for linguistic
validity.

13-11 Exception Handling Procedures

DISABLE-ASYNCH-EXCEPTION

The DISABLE-ASYNCH-EXCEPTION kernel
procedure prevents the deli very of asynchronous
exceptions (such as KER$-QUIT_SIGNAL and
KER$_POWER-SIGNAL) to the calling process.

Call Format

DISABLE-ASYNCH-EXCEPTION(STATUS : = stat)

Arguments

stat. This optional argument is an INTEGER variable
that receives the completion status of
DISABLE-ASYNCH-EXCEPTION. KER$-SUCCESS
is the only possible status.

ENABLE-ASYNCH-EXCEPTION

The ENABLE_ASYNCH_EXCEPTION kernel
proced ure allows the deli very of asynchronous
exceptions (such as KER$-QUIT_SIGNAL and
KER$_POWER_SIGNAL) to the calling process.
Asynchronous exceptions are enabled by default and
must be reenabled only after being explicitly disabled.

Call Format

ENABLE-ASYNCH-EXCEPTION(STATUS: = stat)

Arguments

stat. This optional argument is an INTEGER variable
that receives the completion status of
ENABLE-ASYNCH-EXCEPTION. KER$-SUCCESS
is the only possible status.

Errors and Exception Handling 13-12

ESTABLISH

The ESTABLISH procedure establishes a specified
function as a block's exception handler.

Call Format

EST AB LlSH(fu nction)

Arguments

function. This argument supplies a function of type
EXCEPTION-HANDLER.

GET -ST A TU S-TEXT

The GET_STATUS_TEXT procedure returns the text
associated with a status code that you provide as input
to the routine. In addition, a format-control parameter
can be provided so that the returned string contains
only a part of the information available. To use the
n~n/'1lor111~o 'un11 ...,..,....,ot- ;n~l"A~ the module l'.&."' """'-A. "'" J"' u.ou .L~.I.1.J.J..u.\A.\..I

$GET-MESSAGE_TEXT in the compilation. In
addition, you normally link selected object modules
with your program to provide the message data base.
(For complete information, see the V AXELN User's
Guide.)

Call Format

ELN$GET -STATUS-TEXT(
msgid,
flags,
result-string
)

13-13 Exception Handling Procedures

Arguments

msgid. This argument is an integer supplying the
status code.

flags. This argument is a set that provides format
control of the resulting string. (Its type is
GET-STATUS_FLAGS, which is also defined in the
module $GET_MESSAGE_TEXT.) The result string
has four fields, delimited here by angle brackets:

% <facility>-<severity>-<msg-ident>, <message-text>

The flags argument specifies which of these fields are
returned. Specifying an empty set causes all fields to be
returned. The following type declarations are provided:

TYPE
{ Define the input parameter to control the format of
the text message. }

get-status-fields = (status$text,
status$ident,
status$severity,
status$facility);

get-status-flags = SET OF get-status-fields;

{ Define a record of fields to overlay the INTEGER
status parameter. }

status-value-format = PACKED RECORD
severity: (status$warning,

status$success,
status$error,
status$information,
status$fatal,
status$reserved-5,
statu s$reserved-6,
status$reserved-7) ;

status-id : 0 .. %x1 fffffff;
END;

Errors and Exception Handling 13-14

For instance, if the argument is

[status$severity,status$text]

the message will be formatted as follows:

%severity, message text

result-string. This string variable (type
VARYING_STRING(255)) receives the text
corresponding to the status code, formatted according to
the flags parameter. This procedure always returns
text in the result-string even if the status code is not
found. In that case, result-string will contain:

%facility-severity-NOMSG, Message number <number>

For example,

ELN$GET -STATUS-TEXT(
ker$-bad-count,
[status$faci I ity ,status$severity ,status$id ent,status$text],
output-string
);

will cause output-string to receive:

% KERNEL-F-BAD-COUNT, Bad parameter count

RAISE-EXCEPTION

The RAISE_EXCEPTION kernel procedure causes a
software exception in the calling process.

Call Format

RAISE-EXCEPTION(
exception-name,
add itional-argu ment-list,
STATUS: = stat
}

13-15 Exception Handling Procedures

Arguments

exception-name. This argument supplies an integer
value denoting a particular exception. Usually, named
constants are used. Note that some exception names,
such as SS$_ACCVIO, are used to identify specific
system or hardware events (in this case, an access
violation); take care not to raise one of these exceptions.

additional-argument-list. This list supplies zero or
more additional exception arguments that will be made
available to the exception handler in the array of
addi tional arguments.

stat. This optional argument is an INTEGER variable
that receives the completion status of
RAISE_EXCEPTION.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-COUNT. The procedure call specified an
incorrect number of arguments.

KER$-BAD-STACK. The stack size was insufficient.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

RAISE-PROCESS-EXCEPTION

The RAISE_PROCESS_EXCEPTION kernel procedure
raises the asynchronous exception
KER$_PROCESS_ATTENTION in the specified
process. To use the procedure, you must include the
module $KERNEL in the compilation.

Errors and Exception Handling 13-16

Call Format

KER$RAISE-PROCESS-EXCEPTION(
status,
process-var
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
RAISE_PROCESS_EXCEPTION.

process-var. This argument specifies the process in
which the exception is to be raised.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-TYPE. The process-var argument is not of
type PROCESS.

KER$-BAD-VALUE. The process-var argument is
invalid or refers to a deleted process.

REVERT

The REVERT procedure disables exception handlers.
The effect on program logic is as if no exception handler
had been established in the current block.

Call Format

REVERT

Arguments

There are no arguments.

13-17 Exception Handling Procedures

UNWIND

The UNWIND kernel procedure unwinds the call stack
to a new location. To use the procedure, you must
include the module $KERNEL in the compilation.

Call Format

KER$UNWIND(
status,
new-fp,
new-pc
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
UNWIND.

new-fp. This argument supplies the target frame
pointer (FP).

new-pc. This argument supplies the new program
counter (PC) at the new FP.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-COUNT. The procedure call specified an
incorrect number of arguments.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

Errors and Exception Handling 13-18

Chapter 14

Device Drivers and Interrupts

This chapter briefly discusses device driver programs
and the kernel services that relate to devices. In
addition, interrupt service routines are discussed,
including declarations, the handling of device
interrupts, recovery from power failure, and the
procedures used to manipulate interrupt priority levels.
This chapter also discusses the procedures relating to
direct memory access (DMA) UNIBUS and QBUS
devices and those relating to device registers. Finally,
the utility procedures relating to real-time devices are
described in detail.

Device Driver Programs

Device drivers are run by their own jobs, like the jobs
running application programs. Typically, a device
driver job runs in kernel mode at a higher priority than
jobs running application programs.

Interrupt service routines are used to service device
interrupts and to handle power recovery in device
driver programs. With the CREATE_DEVICE kernel
service, you can connect a device interrupt to an
interrupt service routine. When connected, the
interrupt service routine can take any appropriate
action to service the interrupt.

The interrupt service routine can signal the DEVICE
object with the SIGNAL_DEVICE kernel service. Only
one process continues as a result of a call to
SIGNAL-DEVICE.

14-1

A DEVICE object is also associated with a description
of the physical device. Device descriptions consist of a
name for the device, its bus-request priority, and the
addresses of the device's interrupt vector and
control/status register. They are entered in the system,
once, with the System Builder, and are then used by
programs (device drivers) via the DEVICE object.

Examples

DEVICE objects and their associated procedures can be
used to write drivers for devices that have one unit per
controller or multiple units per controller.

Single-Unit Example

This example reads single characters from a
hypothetical device controller named ANALOG, which
interrupts each time it receives a new input character.
ANALOG has only one unit.

MODULE analogdriver;

TYPE
csr-def = PACKED RECORD ... ;
{ Definition of control status register. }

region-def = PACKED RECORD
dat: CHAR;
END;
{ Communication region for single characters
(bytes). }

csr-ptr = i csr-def;
region-ptr = i region-def;
{ Pointer types for CREATE-DEVICE and interrupt
service routine arguments. }

INTERRUPT-SERVICE isr(intcsr: csr -ptr;
intreg: region-ptr};

Device Drivers and Interrupts 14-2

BEGIN

{ On occurrence of interrupt, read a single
character from the control/status register, and
then signal the DEVICE object: }

intreg i .dat : =
READ-REGISTER(intcsr i .data);

SIGNAL-DEVICE;

END;
{ End of interrupt service routine. }

PROGRAM analog;

VAR
dev: DEVICE;
devicename: VARYING-STRING(30);
csr: csr-ptr;
reg: region-ptr;
pri: INTEGER;
{ CREATE-DEVICE argu ments. }

BEGIN { Main program. }
{ Obtain device name from argument list. }
devicename : = PROGRAM-ARGUMENT(1);

{ Create the DEVICE object. }
CREA TE-DEVICE(

devicename,
dev,
SERVICE-ROUTINE: = isr,
REG ION: = reg,
REGISTERS: = csr,
PRIORITY: = pri
);

{ Disable interrupts while initializing the device.
}
DISABLE-INTERRUPT(pri);

14-3 Device Driver Programs

WRITE-REGISTER{csr i .csrO, init : = true);
ENABLE-INTERRUPT;

{Wait for the DEVICE object; when the wait is
satisfied (because the interrupt service
procedure calls SIGNAL-DEVICE), a single
character has been read from the device. }

WAIT -ANY{dev);
{ Perform any appropriate processing on the new
character in reg i .data: }

END. {End of program.}

END; { End of module analogdriver. }

Multiple-Unit Example

The following example is for a device named ANALOG,
a controller with four units attached. The main
program creates a subprocess to handle each unit.

MODULE analogdriver;

TYPE
csr-def = PACKED RECORD ... ;
region-def = PACKED RECORD

dat: ARRA Y[O .. 3] OF CHAR;
END;

csr-ptr = i csr-def;
region-ptr = i region-def;
{Types for CREATE-DEVICE arguments.}

VAR
reg: region-ptr;
dev: ARRA Y[O .. 3] OF DEVICE;
csr: (sr -ptr;

Device Drivers and Interrupts 14-4

INTERRUPT-SERVICE isr{intcsr: csr-ptr;
intreg: region-ptr);

VAR
unit: INTEGER;
attn: SET OF 0 . .3;

BEGIN

{Scan the device's attention summary register.
For each unit with attention set, read the data
and signal the device object. }

attn: = READ-REGISTER{intcsr i .attn);
FOR unit: = 0 TO 3 DO

BEGIN
IF unit IN attn THEN

BEGIN
intreg i .dat[unitl : =
READ-REGISTER{intcsr i .data[unit]);

WRITE-REGISTER{intcsr i .attn,
attn: = [unit]);

SIGNAL-DEVICE{
DEVICE-NUMBER: = unit);

END {Done with 1 attention. }
END { End of attention scan. }

END; { End of interrupt service procedure.
}

PROGRAM analog;

VAR
devicename: VARYING-STRING(30);
pri: INTEGER;

{ CREATE-DEVICE arguments. }
uproc: ARRA Y[0 .. 3] OF PROCESS;
unit: INTEGER;

14-5 Device Driver Programs

BEGIN {Main program. }
devicename: = PROGRAM-ARGUMENT(1);

{ Create a DEVICE value for each unit. }
CREATE-DEVICE(devicename,

dev, {Four-element array of DEVICE. }
SERVICE-ROUTINE: = isr,
REGION: = reg,
REGISTERS: = csr,
PRIORITY: = pri
);

{ Disable interrupts while initializing device. }
DISABLE-INTERRUPT(pri);
WRITE-REGISTER(csr i .csrO, init : = true);
ENAB LE-I NTERRU PT;

{Create a subprocess to handle each unit: }
FOR unit: = 0 TO 3 DO

CREATE-PROCESS(
uproc[unit],

{ PROCESS variable. }
un it-p rocess,

{ Name of process block. }
unit

{ Unit number. }
);

END. { End of main program.}

PROCESS-BLOCK unit-process(unit: INTEGER);
{ Process to handle information from one unit. }
BEGIN

WAIT -ANY(dev[unit]);

Device Drivers and Interrupts 14-6

{When the wait is over, take any appropriate
action to process the character in
reg i .dat[unit]. }

END; { End of process block. }

END; { End of module analogdriver. }

The kernel services relating to devices are described in
detail in the following section. A brief description of
each procedure is given, followed by the VAXELN
Pascal call format, arguments, and status values.

14-7 Device Driver Programs

Kernel Services for Devices

The kernel services described in this section relate to
devices and DEVICE objects. Table 14-1 summarizes
these procedures.

Table 14-1. Kernel Services for Devices

Procedure

CREATE_DEVICE

SIGNAL_DEVICE

Device Drivers and Interrupts 14-8

Purpose

establishes a connection
between a physical
device, a program, and an
interrupt service routine.

signals a DEVICE object
from an interrupt service
routine.

CREATE-DEVICE

The CREATE-DEVICE procedure establishes a
connection between a physical device, a program, and
an interrupt service routine. It creates one or more
objects of type DEVICE, which are used to synchronize
the program with the device. CREATE_DEVICE can be
called only from a program running in kernel mode.

Call Format

CREA TE-DEVICE(
device-name,
device,
VECTOR-NUMBER: = relative-vector,
SERVICE-ROUTINE: = routine-name,
REGION: = region-pointer,
REGISTERS: = register-pointer,
ADAPTER-REGISTERS: = adapter-pointer,
VECTOR: = vector-pointer,
PRIORITY: = interrupt-priority,
POWERFAIL-ROUTINE : = power-routine,
STATUS: = stat
)

Arguments

device-name. This argument supplies a I-30-character
string naming the device. The name must match one of
the device names established with the System Builder.

device. This argument is a DEVICE variable that
receives the identifier of the new DEVICE object or
objects. It can be a single DEVICE variable or an array
of 1 to 16 DEVICE elements, the lower bound of which
must be o. If you specify an array, a DEVICE object is
created for and its identifier is placed in each element.

14-9 Kernel Services

relative-vector. This optional argument supplies an
integer from 1 to 128, specifying which vector of a
multiple-interrupt-vector device should be connected to
the interrupt service routine. (The base vector address
is part of the device description established with the
System Builder.) If this argument is omitted, the
default is 1 (first vector).

routine-name. This optional argument supplies the
name of an interrupt service routine. It can be omitted,
to drive a device by polling instead of with interrupts. If
its name is supplied, the routine is called by the kernel
on the occurrence of a device interrupt.

region-pointer. This optional argument is a variable of
any appropriate pointer type (except t ANYTYPE) and
receives a pointer to the communication region of the
interrupt service routine. CREATE-DEVICE uses the
size of the pointer variable's base type to establish a
region of the appropriate size; the region is zeroed by
CREATE_DEVICE. The pointer is also passed by the
kernel to the interrupt service routine on the
occurrence of a device interrupt. If the argument is
omitted, no region is created, and the interrupt service
routine (if any) receives NIL instead of the region's
address. Note that every call with this parameter
creates a new communication region; if you use the
same pointer variable from one call to another, the
procedure will overwrite its previous value with the
address of the new communication region.

register-pointer. This optional argument is a variable
of an appropriate pointer type that receives a pointer to
the first device control register. (The I/O space address
of the first control register is part of the device
description established with the System Builder.) The
pointer is also passed to the interrupt service routine on
the occurrence of a device interrupt. This argument can

Device Drivers and Interrupts 14-10

be omitted. Within the interrupt service routine, the
corresponding parameter is declared to specify the type
of the register pointer.

adapter-pointer. This optional argument is a variable
of an appropriate pointer type that receives a pointer to
the first adapter (UNIBUS or QBUS) control register.

vector-pointer. This optional argument is a variable of
an appropriate pointer type that receives a pointer to
the interrupt vector in the system control block. The
interrupt vector address is part of the device description
established with the System Builder.

interrupt-priority. This optional argument is an
INTEGER variable that receives the interrupt priority
level (IPL) of the device. The bus-request interrupt
priority level is part of the device description
established with the System Builder.

power-routine. This optional argument supplies the
name of an interrupt service routine that is called,
before any process or interrupt service routine is
restarted, when the processor enters a power recovery
sequence.

stat. This optional argument is an INTEGER variable
that receives the completion status of
CREATE-DEVICE.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-MODE. The procedure was called from a
program that was not running in kernel mode; kernel
mode is required for this procedure.

KER$-BAD-VALUE. The device argument is an array
with more than 16 elements.

14-11 Kernel Services

KER$-DEVICE-CONNECTED. The device named in the
CREATE_DEVICE call is already connected to a
DEVICE value.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-OBJECT. No free job object table entries are
currently available. There are a maximum of 1024
object table entries per job.

KER$-NO-POOL. No free system pool is currently
available. The size of the system pool can be set by the
System Builder utility.

KER$-NO-SUCH-DEVICE. The device name specified in
a CREATE-DEVICE call cannot be found in the list of
devices created by the System Builder utility.

KER$-NO-SYSTEM-PAGE. No free system page table
entries are currently available to map the I/O region.

SIGNALDEVICE

The SIGNAL-DEVICE procedure signals a DEVICE
object from an interrupt service routine. It can be called
only from an interrupt service routine or a subroutine
thereof.

Call Format

SIGNAL-DEVICE(
DEVICE-NUMBER: = integer,
STATUS: = stat
)

Device Drivers and Interrupts 14-12

Arguments

integer. This optional argument supplies an integer in
the range 0-15, identifying the element in a DEVICE
array to be signaled.

stat. This optional argument is an INTEGER variable
that receives the completion status of
SIGNAL-DEVICE.

Note: No exceptions are raised by the procedure, even if
status is not requested and an error occurs.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-VALUE. The integer argument is out of
range.

14-13 Kernel Services

Interrupt Service Routine Declarations

An interrupt service routine resembles a procedure
with two pointer parameters. The routine is called by
the kernel directly on the occurrence of a device
interrupt, and the parameters then point to the first
control register of a device and to a communication
region.

The syntax of an interrupt service routine declaration
is shown in Figure 14-1.

attributes

INTERRUPT_SERVICE

interrupt
service
routine

identifier

parameter list toT-...... routine body

EXTERNAL

Figure 14-1. Interrupt Service Routine
Declaration Syntax

The interrupt service routine identifier is declared at
the outer level as the name of the interrupt service
routine. This declaration is only allowed at the outer
level. The declaration cannot be used as a complete
compilation unit; it must occur within the MODULE ...
END construction.

Device Drivers and Interrupts 14-14

The routine body gives the local declarations and
executable code for the interrupt service routine. One of
the attributes UNDERFLOW or NOUNDERFLOW
may be specified; it applies to the routine body, as
explained in Chapter 2, ~~Program Structure."

The EXTERNAL directive may be used to indicate that
the routine body is coded in another programming
language. In this case, neither UNDERFLOW nor
NOUNDERFLOW is allowed.

The parameter list has the same form as in a procedure
or function declaration. However, it must declare
exactly two parameters: both value parameters, and
both having pointer data types. The first parameter is a
pointer to the device's first control/status register. The
second parameter is a pointer to the communication
region defined by the call to CREATE_DEVICE that
established the interrupt service routine.

The interrupt service routine's body is executed in a
special context in which the only memory accessible is
system space (where the communication region is
mapped) and the local storage of the block. Thus, it has
access only to its local variables, the communication
region, and the device registers that are addressed by
the first parameter of the interrupt service routine.

In particular, an interrupt service routine must not
access an outer-level variable unless it has the VALUE
or READONL Y attribute. The compiler detects this
error for the interrupt service routine's body and any
routines declared within it. However, any other access
to improper data (for example, via pointers or by some
other routine called by the interrupt service routine) is
an unpredictable error.

14-15 Interrupt Service Routines

Note that pointers to other communication regions can
be stored in a communication region, for use with
multivector devices.

Usually, few routines are called from an interrupt
service routine, and some cannot be called. Specifically
excl uded are all kernel proced ures except
SIGNAL-DEVICE, the predeclared I/O procedures
(CLOSE, OPEN, READ, PUT, and so forth), and NEW
and DISPOSE.

Interrupt Handling

When a device's interrupts are connected to an
interrupt service routine (by the CREATE-DEVICE
procedure), the specified routine is called by the kernel
each time the device interrupts the processor.

The interrupt service routine can take any action
needed to service the interrupt, using the device
register pointer to gain access to the device registers.
Typically, with devices that interrupt for several
reasons, the interrupt service routine can examine the
control status register to determine which interrupt
has occurred.

The interrupt service routine can communicate with
the main program via the communication region. In
fact, the communication region supplies any and all
data available in the interrupt service routine other
than its own local variables and outer-level constants.

The routine also can call SIGNAL_DEVICE to
synchronize the main program with the interrupt. (The
main program waits for the handling of an interrupt by
using WAIT_ANY or WAIT_ALL to wait for the
associated DEVICE object to be signaled.)

Device Drivers and Interrupts 14-16

A typical declaration begins this way:

INTERRUPT-SERVICE isr (
register: t mycsr;
comm: t myregion
);

BEGIN{Actions to service interrupt.}
IF comm t .count = ... ;

END;

The name of this routine (isr) is then used as the
argument for the SERVICE-ROUTINE parameter of
CREATE-DEVICE.

Power-Recovery Handling

Devices normally need special attention following a
power failure, and the necessary speed and synchroni­
zation requirements cannot be met by the general
power-recovery exception KER$-POWER....SIGNAL.
For this reason, you can specify, in a
CREATE_DEVICE call, the name of an interrupt
service routine that is called when the processor enters
its power-recovery sequence. Such a routine is called
before any other process or ordinary interrupt service
rou tine is restarted.

The VAX architecture defines a power-failure interrupt
at interrupt priority level (IPL) 31. Therefore, a process
can set the processor's IPL to 31 and block the
interrupt, allowing it to synchronize itself with the
power-recovery routine.

More information on interrupt priority levels is
provided in the VAXELN User's Guide.

14-17 Interrupt Service Routines

The following example illustrates the power-recovery
facilities provided by V AXELN:

CONST
IPL$POWER = 31;

TYPE
myregion = RECORD ... END;
mycsr = ... ;

VAR
com: i myregion;
reg: i mycsr;
dev : DEVICE;
ipl : INTEGER;

INTERRUPT-SERVICE power (
regptr: i mycsr;
comm: i myregion);
BEGIN {Actions for power recovery. }

{ Reinitialize controller. }
WRITE-REGISTER(regptr i .csr,
master-dear: = TRUE);
{Set state for other parts of program. }
comm i .powerfail = TRUE;
{ If someone was busy, signal the device. }
IF comm i .busy THEN SIGNAL-DEVICE;

END;

INTERRUPT-SERVICE isr (
reg ptr: i mycsr;
comm : i myregion);
BEGIN

comm i .busy : = FALSE; { Clear state. }

SIGNAL-DEVICE;
END;

Device Drivers and Interrupts 14-18

BEGIN { Device driver program. }

CREATE-DEVICE('MYDEV',
dev,
SERVICE-ROUTINE: = isr,
REGION: = com,
REGISTERS: = reg,
PRIORITY: = ipl,
POWERFAIL-ROUTINE : = power);

REPEAT
com i .powerfail : = FALSE;
DISABLE-INTERRUPT(ipl);
WRITE-REGISTER(reg i .bytecount, bufsize);
DISABLE-INTERRUPT(lPL$POWER);
IF NOT com f .powerfail
THEN

BEGIN
WRITE-REGISTER(reg i .csr,

function: = read,
go: = TRUE,
intenable : = TRUE);

com i .busy : = TRUE;
ENABLE-INTERRUPT;
WAIT-ANY(dev);
END

ELSE
ENABLE-INTERRUPT;

UNTIL NOT com i .powerfail;

END.

For more examples, see the Pascal sources for the
drivers delivered with your development system.

14-19 Interrupt Service Routines

IPL Procedures

The procedures described in this section raise or lower
the processor's interrupt priority levels. Table 14-2
summarizes these procedures.

Table 14-2. IPL Procedures

Procedure

DISABLE-INTERRUPT

ENABLE-INTERRUPT

Device Drivers and Interrupts 14-20

Purpose

prevents interrupts from
a device by raising the
interrupt priority level.

allows interrupts from a
device by lowering the
interrupt priority level to
o.

DISABLE-INTERRUPT

The DISABLE-INTERRUPT procedure prevents
interrupts from a device, by raising the interrupt
priority level (IPL) of the processor to the IPL of the
device. It can be called only from programs running in
kernel mode. While interrupts are disabled, no kernel
procedures can be called; attempting to do so causes
unpredictable results.

Call Format

DISABLE-INTERRUPT(priority)

Arguments

priority. This argument supplies an integer in the
range 1-31, giving the new interrupt priority level.

Notes

The current interrupt priority level is part of the
processor-wide state of a V AX computer. Disabling
interrupts of a certain priority also disables all other
system activities that occur at or below that priority
level. In essence, if the IPL is raised by a process to
block device interrupts, that process is the only
activity, other than interrupt service routines, that can
execute until the process lowers the IPL by calling
ENABLE-INTERRUPT.

If the power fails while interrupts are disabled, the IPL
is set to zero before the KER$POWER-SIGNAL
exception is raised. This exception is handled like any
other, synchronous exception, but continuing from the
exception if it occurs with interrupts disabled has
unpredictable effects.

14-21 IPL Procedures

ENABLE-INTERRUPT

The ENABLE-INTERRUPT procedure allows
interrupts from a device by lowering the interrupt
priority level (IPL) of the calling process to minimum
priori ty (0). I t can be called only from programs
running in kernel mode.

Call Format

ENABLE-INTERRUPT

Arguments

There are no arguments.

Device Drivers and Interrupts 14-22

DMA Device Handling Procedures

The procedures described in this section are used in
device driver programs for UNIBUS and QBUS direct
memory access (DMA) devices. Table 14-3 summarizes
these procedures.

Table 14-3. DMA Device Handling Procedures

Proced u re Pu rpose

ALLOCATE-MAP allocates a contiguous block
of UNIBUS or QBUS map
registers.

ALLOCATE-PATH allocates a UNIBUS adapter
buffered datapath.

FREE-MAP frees previously allocated
UNIBUS or QBUS map
registers.

FREE_PATH frees a previously allocated
UNIBUS adapter buffered
datapath.

LOAD_UNIBUS_MAP loads UNIBUS or QBUS
map registers.

PHYSICAL-ADDRESS returns the physical address
of the variable supplied as
its argument.

UNIBUS-MAP maps memory buffers for
direct memory access by
UNIBUS or QBUS devices.

14-23 DMA Device Procedures

Table 14-3. Continued

Procedure

UNIBUS-UNMAP

Purpose

unmaps memory buffers
previously mapped for
direct memory access by a
UNIBUS or QBUS device.

Notes: To use ALLOCATE_MAP, ALLOCATE_PATH,
FREE_MAP, or FREE_PATH, include the module
$KERNEL from the RTLOBJECT library in the
compilation of your program.

To use LOAD_UNIBUS_MAP, UNIBUS-MAP, or
UNIBUS-UNMAP, include the module $UNIBUS from
the RTLOBJECT library in the compilation of your
program.

To use PHYSICAL_ADDRESS, include the module
$PHYSICAL_ADDRESS from the RTLOBJECT library
in the compilation of your program.

Device Drivers and Interrupts 14-24

ALLOCATE-MAP

The ALLOCATE-MAP procedure allocates a
contiguous block of UNIBUS or QBUS map registers
for use by a device driver program to map VAX memory
to UNIBUS or QBUS memory addresses. It can be
called only from programs running in kernel mode. To
use the procedure, you must include the module
$KERNEL in the compilation.

Call Format

KER$ALLOCATE-MAP(
status,
register,
number,
count,
device-object,
spt-add ress
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
ALLOCATE-MAP.

register. This argument is a pointer variable that
receives a pointer (t ANYTYPE) to the first register
allocated.

number. This argument is an INTEGER variable that
receives the starting map register number (0-495).

count. This argument supplies an INTEGER
expression giving the number of registers to allocate.

14-25 DMA Device Procedures

device-object. This argument supplies the DEVICE
value that identifies the device for which the registers
are to be used.

spt-address. This optional argument is a pointer
variable that receives the base address (i ANYTYPE)
of the system page table (SPT).

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-MODE. The procedure was called from a
program that was not running in kernel mode; kernel
mode is required for this procedure.

KER$-BAD-TYPE. The device-object argument is not of
type DEVICE.

KER$-BAD-VALUE. The device-object argument is
invalid or refers to a deleted device.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-MAP-REGISTER. No free map registers are
currently available. There are 496 map registers per
UNIBUS or QBUS.

Device Drivers and Interrupts 14-26

ALLOCATE-PATH

The ALLOCATE-PATH procedure allocates a
UNIBUS adapter buffered datapath for use by a direct
memory access (DMA) UNIBUS device. It can be called
only from programs running in kernel mode. To use the
procedure, you must include the module $KERNEL in
the compilation.

Call Format

KER$ALLOCATE-PATH(
status,
register,
number,
dev
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
ALLOCATE_PATH.

register. This argument is a pointer variable that
receives a pointer (t ANYTYPE) to the allocated
datapath register.

number. This argument is a INTEGER variable that
receives the allocated datapath register number (1 .. 3).

dey. This argument supplies the DEVICE value that
identifies the device for which the datapath is allocated.

Notes

A buffered datapath can be used to optimize the use of
memory by a DMA device that does strictly sequential
address transfers. (For additional information on

14-27 DMA Device Procedures

buffered datapaths, see the VAX Hardware Handbook.)
The VAX-l1/750 is the only processor supported by
V AXELN that has UNIBUS buffered datapaths.

To use a buffered datapath for a DMA transfer, the
allocated datapath number must be loaded into the
UNIBUS map registers being used for the transfer. The
UNIBUS-MAP and LOAD-UNIBUS_MAP procedures
accept an optional datapath number for loading into the
UNIBUS map registers.

When a UNIBUS buffered datapath is used for a DMA
transfer, the datapath must be ~~purged" when the
transfer has completed. This is accomplished by writing
a value of 1 to the datapath register, identified by the
returned register pointer.

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-MODE. The procedure was called from a
program that was not running in kernel mode; kernel
mode is required for this procedure.

KER$-BAD-TYPE. The dev argument is not of type
DEVICE.

KER$-BAD-VALUE. The dev argument is invalid or
refers to a deleted device.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

KER$-NO-PATH-REGISTER. No free UNIBUS adapter
datapath register is currently available. There are
three buffered datapaths per VAX-l1/750 UNIBUS
adapter.

Device Drivers and In terru pts 14-28

FREE-MAP

The FREE_MAP procedure frees a set of previously
allocated UNIBUS or QBUS map registers. It can be
called only from programs running in kernel mode. To
use the procedure, you must include the module
$KERNEL in the compilation. Any pointers to the freed
registers become invalid.

Call Format

KER$FREE-MAP{
status,
count,
number,
device-object
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
FREE-MAP.

count. This argument is an INTEGER expression that
supplies the number (count) of contiguous map
registers to be freed.

number. This argument is an INTEGER expression
that supplies the map register number of the first map
register, such as the one returned by
ALLOCATE-MAP.

device-object. This argument is a DEVICE value that
identifies the device for which the registers are freed.

Status Values

KER$-SUCCESS. The procedure completed successfully.

14-29 DMA Device Procedures

KERS-BAD-MODE. The procedure was called from a
program that was not running in kernel mode; kernel
mode is required for this procedure.

KER$-BAD-VALUE. The device-object argument is
invalid or identifies a deleted device.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

FREE-PATH

The FREE-P ATH procedure frees a previously
allocated UNIBUS adapter buffered datapath. It can be
called only from programs running in kernel mode. To
use the pro~edure, you must include the module
$KERNEL in the compilation. The V AX-11/750 is the
only processor supported by V AXELN that has
UNIBUS buffered datapaths.

Call Format

KER$FREE-PATH(
status,
number,
dev
)

Arguments

status. This optional argument is an INTEGER
variable that receives the completion status of
FREE-PATH.

number. This argument is an INTEGER value that
supplies the datapath register number, such as the one
returned by ALLOCATE-PATH.

dey. This argument supplies the DEVICE value that
identifies the device for which the datapath is freed.

Device Drivers and Interrupts 14-30

Status Values

KER$-SUCCESS. The procedure completed successfully.

KER$-BAD-MODE. The procedure was called from a
program that was not running in kernel mode; kernel
mode is required for this procedure.

KER$-BAD-VALUE. The dev argument is invalid or
identifies a deleted device.

KER$-NO-ACCESS. An argument specified is not
accessible to the calling program.

LOAD-UNIBUS-MAP

The LOAD-UNIBUS_MAP procedure is used in device
driver programs to load UNIBUS or QBUS map
registers for use by a direct memory access UNIBUS or
QBUS device. This is an alternative procedure to the
more commonly used UNIBUS_MAP procedure. It can
be called only from programs running in kernel mode.
To use the procedure, include the module $UNIBUS in
the compilation.

Call Format

ELN$LOAD-UNIBUS-MAP(
map-register,
buffer,
buffer -size,
spt-address,
datapath
)

14-31 DMA Device Procedures

Arguments

map-register. This argument is a pointer to the first
UNIBUS or QBUS map register allocated by
ALLOCATE-MAP.

buffer. This argument is a variable of type
BYTE_DATA(buffer_size}, representing the I/O buffer.

buffer-size. This argument is an INTEGER value
supplying the buffer size.

spt-address. This optional argument is a pointer to the
System Page Table. If this argument is not supplied, a
device communication region (or any system space
buffer) cannot be mapped.

datapath. This optional argument supplies a UNIBUS
datapath to be used for the transfer. If the argument is
not supplied, datapath 0, the direct datapath, is used.

Notes

The LOAD-UNIBUS-MAP procedure assumes that
sufficient map registers have been allocated by the
calling program using the ALLOCATE-MAP
procedure (UNIBUS_MAP allocates them for the
caller). The LOAD_UNIBUS-MAP procedure also
assumes that one additional map register (beyond the
number actually necessary to map the buffer) has been
allocated for use as an invalid «wild-transfer-stopper."

Device Drivers and Interrupts 14-32

PHYSICALADDRESS

The PHYSICAL-ADDRESS function returns the
physical address of a data item. To use the function, you
must include the module $PHYSICAL--.ADDRESS in
the compilation.

Call Format

RESU l T : = PHYSICAl-ADDRESS(po;nter)

Arguments and Result

pointer. This argument is a pointer value of any type
(t ANYTYPE) supplying the virtual address of a data
item.

The result is an INTEGER value denoting the physical
address of the data item.

UNIBUS-MAP

The UNIBUS-MAP procedure is used in device driver
programs to map memory buffers for direct memory
access by UNIBUS or QBUS devices. That is, the
specified buffer is mapped into the UNIBUS or QBUS
address space, and the address of the first register is
returned. It can be called only from programs running
in kernel mode. To use the procedure, you must include
the module $UNIBUS in the compilation.

14-33 DMA Device Procedures

Call Format

ELN$UNIBUS-MAP(
dev,
buffer,
buffer-size,
unibus-add ress,
datapath
)

Arguments

dev. This argument is a DEVICE value identifying the
device that will use the mapped memory.

buffer. This argument is a variable of type
BYTE_DATA(buffer_size), representing an I/O buffer.

buffer-size. This argument is an INTEGER value
supplying the buffer size.

unibus-address. This argument is an INTEGER
variable that receives the 18-bit UNIBUS address or
22-bit QBUS address of the mapped buffer.

datapath. This optional argument supplies an integer
that specifies the UNIBUS adapter datapath to use.
The default is 0, specifying the unbuffered data path.

Notes

The UNIBUS_MAP procedure allocates the correct
number of map registers by calling ALLOCATE_MAP.
It then converts the virtual address of each page of the
buffer to a physical address and stores and validates the
physical page numbers in the allocated map registers.
If a datapath other than 0 is specified, it is also stored in
the map registers. Although the map registers are allo­
cated by UNIBUS-MAP before use, a nonzero datapath
number is assumed to be unused by any other device.

Device Drivers and Interrupts 14-34

UNIBUS-UNMAP

The UNIBUS-UNMAP procedure is used in device
driver programs to unmap memory buffers previously
mapped for direct memory access by a UNIBUS or
QBUS device. It can be called only from programs
running in kernel mode. To use the procedure, you
must include the module $UNIBUS in the compilation.

Call Format

ELN$UNIBUS-UNMAP(
dev,
buffer,
buffer -size,
unibus-address
)

Arguments

dey. This argument is a DEVICE value identifying the
device which was using the mapped memory.

buffer. This argument is a variable of type
BYTE_DATA(buffer_size), representing an 110 buffer.

buffer-size. This argument is an INTEGER value
supplying the buffer size.

unibus-address. This argument is an INTEGER
variable supplying the IS-bit UNIBUS address or 22-
bit QBUS address of the mapped buffer.

Notes

The UNIBUS-UNMAP procedure deallocates the
correct number of map registers by calling
FREE_MAP.

14-35 DMA Device Procedures

Device Register Procedures

The procedures described in this section read and write
device registers and internal processor registers. Table
14-4 summarizes these routines.

Table 14-4. Device Register Procedures

Routine

MFPR

MTPR

READ_REGISTER

WRITE_REGISTER

Purpose

returns the current contents of
a V AX processor register.

moves a specified value into a
specified V AX internal
processor register.

returns the contents of a
device register.

loads a specified value or
group of values into a specified
target variable.

Device Drivers and Interrupts 14-36

MFPR

The MFPR function returns the current contents of a
VAX processor register. It can be called only from
programs running in kernel mode.

Call Format

RESULT: = MFPR(reg-number)

Arguments and Result

reg-number. The argument is an integer expression
whose value identifies the specific processor register.
See the V AX Hardware Handbook or other documen­
tation for the target processor you are using.

The result is an INTEGER value representing the
register contents.

MTPR

The MTPR procedure moves a specified value into a
specified VAX internal processor register. It can be
called only from programs running in kernel mode.

Caution: Processor registers are a privileged system
resource. Changing the contents of processor registers
while a system is running may cause a fatal exception.

Call Format

MTPR(
reg-number,
expression
)

14-37 Device Register Procedures

Arguments

reg-number. This argument supplies an integer
identifying a specific register. See the VAX Hardware
Handbook or other documentation for the processor
model in use.

expression. This argument supplies a value to be
loaded into the specified register. The value must be an
integer, a pointer, or an item with the LONG attribute.

READ-REGISTER

The READ_REGISTER function returns the value of a
variable reference. The operation is performed by a
single machine instruction and is not affected by any
compiler optimizations. This is the only safe method for
reading a device register, and it can also be used safely
to read a shared variable.

This function should always be used, instead of a direct
assignment, to read the fields in a device register. This
use is required because the VAX architecture does not
permit certain instructions (in particular, the variable­
length bit-field instructions) to be used to read device
registers. Using READ_REGISTER ensures that the
compiler will generate only the allowed instructions.

Note: To read the contents of a V AX internal processor
register, see the MFPR function.

Call Format

RESULT: = READ-REGISTER{variable)

Device Drivers and Interrupts 14-38

Arguments and Result

variable. The argument is a variable of type INTEGER,
a pointer type, or a type with the BYTE, WORD, or
LONG attribute.

The result is the current value of the variable and has
the same data type.

Use with Actual Device Registers

To model a device register, consult the device's
hardware manual for the register definition and then
declare a Pascal variable whose internal representation
matches the register. Typically, actual device registers
are modeled by pointers to integers or records.

The pointer value (that is, the register address) is
obtained in the program via the CREATE-DEVICE
procedure and the pointer is then used as the
READ-REGISTER argument. The register's I/O space
address is supplied to the system when you build it with
the System Builder.

For example:

PROCEDU RE x;
TYPE
csr = [BYTE] PACKED RECORD

go: BOOLEAN;
ready: BOOLEAN;
END;

VAR
csrpointer: i csr;
currentcsr : (sr;

14-39 Device Register Procedures

BEGIN

CREATE-DEVICE(dev ... ,
REGISTERS: = csrpointer, ... };

currentcsr: = READ-REGISTER(csrpointer i);
IF currentcsr.ready THEN ... ;

END;

WRITE-REGISTER

The WRITE_REGISTER procedure loads a specified
value or group of values into a specified target variable
reference. The write operation is performed by a single
machine instruction and is not affected by any compiler
optimizations. This is the only safe method for writing
device registers, and it can also be used to safely write a
shared variable.

In one form, the procedure can write into specific bits
within the register, modeled as fields in a packed
record. In such a case, the procedure can be viewed as
building a temporary data item of tht necessary size,
zeroing all its bits, and then assigning to the specified
fields; the resulting temporary value is then used as the
source operand of the single VAX MOVE instruction.

This procedure should always be used, instead of a
direct assignment statement, to write the fields in a
device register. This is required because the VAX
architecture does not allow certain instructions (in
particular, the variable-length bit-field instructions) to
be used to write device registers. Calling
WRITE_REGISTER ensures that the compiler
generates only the allowed instructions.

Device Drivers and Interrupts 14-40

Note: To write the contents of a VAX internal
processor register, see the MTPR procedure. Note also
that this procedure is not restricted to use with actual
device registers; it can be used to write the contents of
any suitably declared variable.

Ca II Formats

There are two call formats.

Format 1 WRITE-REGISTER(
target-variable,
expression
)

Format 2 WRITE-REGISTER(
target-variable,
field: = expression,
field: = expression, ...
)

Arguments

target-variable. This argument is a reference to a
device register or other variable with a suitable data
type. In Format 1, it must be an INTEGER variable, a
pointer variable, or a variable whose type has the
BYTE, WORD, or LONG attribute. In Format 2, it
must be a packed record with one of these attributes.

expression. Each expression optionally supplies a value
compatible for assignment to the register or field. In
Format 2, each field is the name of a field in the
indicated packed record, and each must be distinct. The
expression with each field must be assignment
compatible with the record field. There can be fewer
expressions than record fields, but not more. If a record
field has no corresponding expression in this list, it is
cleared. If the expression is omitted from Format 1, the

14-41 Device Register Procedures

entire register is cleared. Any register bits not
explicitly declared are cleared by the procedure.

Use with Actual Device Registers

To model a device register, consult the device's
hardware manual for the register definition and then
declare a Pascal variable whose internal representation
matches the register.

The device drivers supplied with your development
system contain many programming examples.
Typically, actual device registers are modeled by
pointers to integers or records. The pointer value (that
is, the register address) is obtained in the program via
the CREATE_DEVICE procedure and the dereferenced
pointer is then used as a WRITE-REGISTER argu­
ment. The register's I/O space address is supplied to the
system when you build it with the System Builder.

For example, suppose a device register is defined as
shown in Figure 14-2:

15 7 4 0

I Unused, M8Z I OPCODE I Unused, M8Z I GO I
Figure 14-2. Hypothetical Device Register

In this case, GO is a single bit, the low-order bit in the
register, and OPCODE (bits 4-7) is a four-bit field that
must be loaded with an integer operation code in the
range 1-7. All other bits are unused but must be zero
(MBZ).

Note that, in general, the OPCODE field may already
contain a value from some previous operation.

Device Drivers and Interrupts 14-42

Therefore, it is not enough merely to ((set the
appropriate bits" to represent the new operation code,
because some bits from the previous value might
remain set. Note also that (as is typical of device
registers) the OPCODE field is large enough to hold 16
codes, but only 7 are meaningful.

One model of the register is a packed record with a one­
bit (BOOLEAN) field at the beginning and a three-bit
field beginning at bit 4. The unused fields in the
register must be zero, but this is guaranteed by the
operation of WRITE-REGISTER, which puts zeros in
any positions that are not written explicitly. Bit 7, the
meaningless part of the OPCODE field, also is zeroed.

TYPE
dregister: [WORD] PACKED RECORD

go: [POS(O)] BOOLEAN;
opcode: [POS(4)] 1 .. 7;
END;

VAR
regptr: i dregister;

BEGIN
{ Obtain register add ress and assign to regptr. }

{ Load the register. }
WRITE-REGISTER(

regptr i '
go: = TRUE,
opcode: =4
);

END.

Notice that, because the data type offield opcode is the
subrange 1 .. 7, the assignment of some other integer
would be a range violation.

14-43 Device Register Procedures

Real-Time Device Drivers

The V AXELN development system includes device
drivers for the following real-time devices:

• The ADVIIC or AXVIIC analog-to-digital
converter. The AXVIIC is the same as an
ADVIIC, but it also has two digital-to-analog
output channels.

• The KWVIIC programmable, real-time clock. The
KWVIIC can be used to initiate action after a
specified time interval (via an interrupt or an
external signal) or to time an event.

• The DLVJI asynchronous serial line controller.
The DLVJl (formerly DLVII-J) is a QBUS
interface that contains four asynchronous serial
line channels; it is intended for real-time
applications that collect data and control real-time
devices using asynchronous serial lines.

• The DRVII-J parallel line interface. The
DRVI1-J is a QBUS interface that provides
communication between a Micro V AX and up to
four user devices in I6-bit word lengths via four
1/0 ports.

The design of these drivers prohibits accessing a given
device from more than one job. However, gaining access
from different processes within the same job is possible,
provided the caller ensures there is no simultaneous
access to the same device.

For more information about the real-time devices
described above and their associated device drivers,
please refer to the V AXELN User's Guide.

Device Drivers and Interrupts 14-44

AXV Device Driver Utility Procedures

The procedures described in this section are used in
programs that access ADV11C or AXV11C real-time
devices. (The LSI-II Analog System User's Guide
contains information on the hardware.) Table 14-5
summarizes these procedures.

Table 14-5. AXV Device Driver Utility Procedures

Procedure

AXV _INITIALIZE

AXV_READ

AXV_WRITE

Purpose

readies an ADV or AXV
device for input and/or output
and creates all needed data
structures.

reads analog data from the
specified channels, converts it
to binary form, and stores it in
a data array.

writes a value to an
analog-to-digital conversion
output register on an AXV
device.

Notes: To use these procedures, include the module
$AXV _UTILITY from the RTLOBJECT library in the
compilation of your program.

The following Pascal types are declared in module
$AXV -UTILITY for use with the AXV device driver
utility procedures:

TYPE
{ Input/output data for results of conversions. }
axv$data = - %03777 .. %07777;

14-45 AXV Device Driver Utilities

{ Gain data. }
axv$gain = (axv$gain-one,

axv$gain-two,
axv$gain-four,
axv$gain-eight);

{ Identifiers - one for each physical device. }
axv$ = i anytype;

{ Data packets passed to axv-read. }
axv$data-array(val ues-per -chan,

first-chan,last-chan: integer) = packed
a r ray[1 .. val u es-p er -ch an, fi rst-c han .. 1 ast-ch an]
of [word]axv$data;

axv$gain-array{first-chan,last-chan: integer) =
packed array[first-chan . .last-chan] of
[byte]axv$gain;

{ Dac channel selections for axv-write. }
axv$dac-channel = (axv$dac-channel-a,

axv$d ac-ch ann el-b);

Device Drivers and Interrupts 14-46

AXV-INITIALIZE

The AXV _INITIALIZE procedure readies an ADV or
AXV device for input and/or output and creates all
needed data structures. It can be called only from
programs running in kernel mode. This procedure must
be called at least once for each AXV or AD V device
used. (The only reason to call this procedure more than
once for a single device is to change the values of the
BOOLEAN flag parameters or the maximum-values
parameter.) To use the procedure, you must include the
module $AXV -UTILITY in the compilation.

Call Format

ELN$AXV-INITIALlZE(
device-name,
identifier,
maximum-values,
clock-start-enable,
external-start-enable,
re_initialize,
use-polling,
status
)

Arguments

device_name. This argument supplies a string of up to
30 characters giving the name of the device to be
initialized. This name must match the name
established with the System Builder.

identifier. This argument is a variable of type AXV$
tha t (if this call is successful) receives a longword
identifier to be used to identify this device in

14-47 AXV Device Driver Utilities

subsequent calls to AXV _INITIALIZE, AXV _READ,
and AXV -WRITE.

maximum-values. This argument is an INTEGER
expression that supplies the maximum number of data
values that can be read from this device in a single call
to AXV _READ.

c/ock-start-enable. This optional argument is a
BOOLEAN expression. TRUE enables a conversion to
be initiated by the KWV clock option. The default value
is FALSE.

externa'--start-enable. This optional argument is a
BOOLEAN expression. TRUE enables a conversion to
be initiated by an external signaL The default value is
FALSE. If both clock-starLenable and
externaL-start-enable are FALSE, conversions will be
enabled under program control, by a call to
AXV_READ.

re_initialize. This optional argument is a BOO LEAN
expression. TRUE means that the device has been
initialized previously, in which case device-name is
ignored and identifier is used to identify the device. No
new data structures or objects are created unless the
maximum-values argument is greater than the
previous value for this device. The default value is
FALSE.

use-pol/ing. This optional argument is a BOOLEAN
expression. TRUE causes the device to be driven by
polling rather than interrupts; FALSE means
interrupts will be used to gather data. Polling is always
done at device IPL (4 for this device). The default value
is FALSE. Polling is only recommended if clock or
external starting is being used to ini tia te conversions;
it should not be used if conversions are being initiated
under program control.

Device Drivers and Interrupts 14-48

status. This optional argument is an INTEGER
variable that receives the completion status of
AXV -INITIALIZE. The only possible value is 1, which
indicates that the procedure completed successfully.

AXV-READ

The AXV -READ procedure causes analog data to be
sampled from specified channels, converted to binary
form by the device, and stored in a data array. The
procedure performs one read for each desired channel,
continuing until all data has been collected. It can be
called only from programs running in kernel mode. To
use the procedure, you must include the module
$AXV _UTILITY in the compilation.

Call Format

ElN$AXV-READ(
identifier,
start-channel,
end-channel,
reads-per -channel,
data-array-ptr,
kwv-ident,
gain-array,
status
)

Arguments

identifier. This argument supplies an expression of type
AXV$ that identifies the device to be read; this value is
the one returned in the identifier parameter after a call
to AXV _INITIALIZE.

start-channel. This argument is an INTEGER expres­
sion that supplies the first analog channel to be read.

14-49 AXV Device Driver Utilities

end-channel. This argument is an INTEGER
expression that supplies the last analog channel to be
read.

reads-per-channel. This argument is an INTEGER
expression that supplies the number of data to be
gathered from each channel.

data-array-ptr. This argument is a variable of type
t AXV$DATA-ARRAY that receives the address of an
array containing converted data from the device. (The
meaning of the converted data depends on the positions
of several hardware jumpers, as described in the LSI -11
Analog System User's Guide.) The first array element
corresponds to the first channel read. All or part of this
array may be overwritten by subsequent calls to
AXV -READ for this device.

kwv-ident. This optional argument is a value of type
KWV$ that supplies the identifier of a KWV real-time
clock device; this value is the one returned in the
identifier parameter after a call to KWV _INITIALIZE.
If kwv-ident is present, it is assumed that the KWV
device's clock overflow is connected to the AXV/ADV's
clock start line. Just before the data is sampled, the
clock is started, and it is stopped when all data has been
gathered. The KWV device must have been initialized
to operate in mode 1 (if more than one value is to be
read) or mode 0 (if only one value is to be read) and set
up with the desired tick count (which controls how often
an overflow is generated) by a call to KWV -WRITE.
The call to KWV-WRITE must also have specified
st2-go-enable as TRUE so that the call to AXV -READ
will do the actual starting of the clock. If kwv-ident is
not present, the call to AXV _READ does nothing to
start a real-time clock.

gain...array. This optional argument is an array
variable of type AXV$GAIN-ARRA Y that supplies the

Device Drivers and Interrupts 14-50

gain to be used in the data conversion for each channel
being read. The first array element corresponds to the
first channel to be read. The allowable values for this
argument are 1, 2, 4, and 8, which are specified by the
enumerated type AXV$GAIN. If this argument is not
present, the gain value that was used for the last
conversion from this AXV device will be used. If no
gains were ever used on this device, its initial hardware
value of 1 will be used.

status. This optional argument is an INTEGER
variable that receives the completion status of
AXV_READ.

Status Values

1. This value indicates that AXV -READ completed
successfully.

ELN$_AXV_DEVICE_ERROR. This value indicates that
either the sampling rate is too high and the data is
subject to error, or a conversion was finished before the
previous conversion's data was read. Both of these
conditions can occur only if conversions are being
initiated by the clock or an external signal.

AXV-WRITE

The AXV -WRITE procedure causes a value to be
written to an analog-to-digital conversion output
register on an AXVI1C device. These registers are not
present on an ADVI1C device; therefore, this procedure
cannot be called for an ADVI1C device. The result of
calling this proced ure is to ca use an analog ou tpu t
voltage to be generated on the specified channel. It can
be called only from programs running in kernel mode.
To use the procedure, you must include the module
$AXV _UTILITY in the compilation.

14-51 AXV Device Driver Utilities

Call Format

ELN$AXV-WRITE(
identifier,
dac-channel,
value,
status
)

Arguments

identifier. This argument supplies an expression of type
AXV$ that identifies the device to be written to; this
value is the one returned in the identifier parameter
after a call to AXV _INITIALIZE.

dac-channel. This argument is an expression of type
AXV$DAC-CHANNEL that supplies the output
channel to be written to.

value. This argument is an expression of type
AXV$DATA that supplies the actual data to be
written. The manner in which this value determines
the output voltage is determined by some hardware
jumper settings, as described in the LS1-11 Analog
System User's Guide.

status. This optional argument is an INTEGER
variable that receives the completion status of
AXV _WRITE. The only possible value is 1, which
indicates that the procedure completed successfully.

Device Drivers and Interrupts 14-52

KWV Device Driver Utility Procedures

The procedures described in this section are used in
programs that access KWVIIC real-time devices. (The
LS1-11 Analog System User's Guide contains informa­
tion on the hardware.) Table 14-6 summarizes these
procedures.

Table 14-6. KWV Device Driver Utility Procedures

Procedure

KWV -INITIALIZE

KWV_READ

KWV_WRITE

Purpose

readies a KWV device for
input and creates all needed
data structures.

reads time values from a
KWV device and stores them
in a data array.

sets up the KWV11 C device to
generate the clock-overflow
signal.

Notes: To use these procedures, include the module
$KWV _UTILITY from the RTLOBJECT library in the
compila tion of your program.

The following Pascal types are declared in module
$KWV -UTILITY for use with the KWV device driver
utility procedures:

TYPE
{ Modes of operation for the device. }
kwv$mode = (kwv$mode-zero,

kwv$mode-one,
kwv$mode-two,
kwv$mode-three);

14-53 KWV Device Driver Utilities

{ Clock rate settings. }
kwv$clock-rate = (kwv$rate-stop,

kwv$rate-1 mhz,
kwv$rate-100khz,
kwv$rate-10khz,
kwv$rate-1 khz,
kwv$rate-100hz,
kwv$rate-st 1,
kwv$rate-line);

{ Clock counter and also buffer/preset register. }
kwv$cou nter = - 32768 .. 32767;

{ Identifiers used externally - one per device. }
kwv$ = i anytype;

{ Data packets passed to kwv$read. }
kwv$data-array(value-count : integer) = packed

array[1 .. value-count] of [word]kwv$counter;

Device Drivers and Interrupts 14-54

KWV-INITIALIZE

The KWV _INITIALIZE procedure readies a KWV
device for input and creates all needed data structures.
It can be called only from programs running in kernel
mode. This procedure must be called at least once for
each KWV device used. (The only reason to call this
procedure more than once for a single device is to
change the value of a parameter or to stop a device that
is running in mode 0 or mode 1.) To use the procedure,
you must include the module $KWV -UTILITY in the
compilation.

Call Format

ELN$KWV-INITIALIZE(
device-name,
identifier,
mode,
clock-rate,
maximum_values,
re_initialize,
use-polling,
status
)

Arguments

device_name. This argument supplies a string of up to
30 characters giving the name of the device to be
initialized. This name must match the name
established with the System Builder.

identifier. This argument is a variable of type KWV$
that (if this call is successful) receives a longword
identifier to be used to identify this device in

14-55 KWV Device Driver Utilities

subsequent calls to KWV _INITIALIZE, KWV -READ,
and KWV -WRITE.

mode. This argument is an expression of type
KWV$MODE that determines the mode in which the
device is to be operated:

• KWV$MODE_ZERO, single interval mode. In this
mode, action is initiated by a call to KWV -WRITE.
The clock is started by either a Schmitt Trigger #2
signal or the call itself. The clock stops after
counting the number of ticks specified in the call to
KWV _WRITE. At this time (clock overflow), it
interrupts the processor, if that is enabled, and
asserts the clock-overflow signal line. Note that
interrupting the processor on overflow is not
supported by this driver.

• KWV$MODE_ONE, repeated interval mode. This
mode is identical to single interval mode, except
that when clock overflow is reached, the clock is
repeatedly restarted to run for the same interval.
Therefore, the device produces repeated signals on
the clock-overflow line-and repeated processor
interrupts, if that is enabled. Note that
interrupting the processor on overflow is not
supported by this driver.

• KWV$MODE_TWO, external event or program
timing mode. In this mode, used for timing an
external event, action is initiated by a call to
KWV _READ. The clock's counter is set to zero and
is started by either the KWV -READ call or a
Schmitt Trigger #2 signal. The clock continues to
run, and it's counter value is read each time there
is an external signal to Schmitt Trigger # 2, until
the desired number of values has been read.

This mode may also be used to time a section of
code; that is, the clock may be started and stopped

Device Drivers and Interrupts 14-56

from program control. In this case, it is started by a
call to KWV -WRITE. A subsequent call to
KWV -READ stops the clock and reads a single
value from its counter, which represents the
elapsed time since the write. If a device is used in
this way, switches 3 and 4 on dip switch sw3 should
be in the (toff' position; otherwise, any external
signals to Schmitt Trigger #2 may result in
incorrect operation.

• KWV$MODE_THREE, external event timing
from zero base mode. This mode is identical to
mode 2, except that the counter is reset to zero each
time its contents are read.

clock-rate. This argument is an expression of type
KWV$CLOCK-RATE that supplies the clock
frequency to be used. This can be a set crystal­
controlled frequency, the A.C. line frequency, or
Schmitt Trigger #1 input.

maximum-values. This optional argument is an
INTEGER expression that supplies the maximum
number of data values that can be read from the
specified device in a single call to KWV -READ. This
argument is only significant for modes 2 and 3. If this
argument is not specified, a default of one is assumed.

re_initialize. This optional argument is a BOOLEAN
expression. TRUE means that the device has been
initialized previously, in which case device-name is
ignored and identifier is used to identify the device. No
new data structures or objects are created unless the
maximum-values argument is greater than the
previous value for this device. The default value is
FALSE.

use-polling. This optional argument is a BOOLEAN
expression. TRUE causes the device to be driven by
polling rather than interrupts; FALSE means

14-57 KWV Device Driver Utilities

interrupts will be used to gather data. Polling is always
done at device IPL (4 for this device). The default value
is FALSE. This argument is only significant for a
device operating in modes 2 or 3 when KWV -READ is
called to gather data (that is, not when KWV -READ is
called following a call to KWV _WRITE).

status. This optional argument is an INTEGER
variable that receives the completion status of
KWV _INITIALIZE. The only possible value is 1, which
indicates that the procedure completed successfully.

KWV-READ

The KWV -READ procedure reads time values from a
specified device and stores them in a data array. The
procedure may only be called for a device that has been
initialized to operate in mode 2 or 3. It can be called
only from programs running in kernel mode. To use the
procedure, you must include the module
$KWV -UTILITY in the compilation.

There are two possible cases in which KWV -READ
would be called:

• The device is not already running. In this case, the
call to KWV -READ either starts the device or sets
the device so that a signal from Schmitt Trigger #2
will start it. Subsequently, the specified number of
data are gathered (each representing the occurence
of a Schmitt Trigger #2 signal), and the clock is
stopped .

• The device is already running, having been started
by a call to KWV_WRITE. In this case, the call to
KWV _READ stops the clock, then reads and
returns the clock's counter value.

Device Drivers and Interrupts 14-58

Call Format

ELN$KWV-READ(
identifier,
value-count,
st2-go-enable,
data-array-ptr,
status
)

Arguments

identifier. This argument supplies an expression of type
KWV$ that identifies the device to be read; this value is
the one returned in the identifier parameter after a call
to KWV _INITIALIZE.

value-count. This argument is an INTEGER
expression that supplies the number of values to be
read.

data-array-ptr. This argument is a variable of type
t KWV$DATA_ARRA Y that receives the address of an
array containing data from the device. Each output
datum is a signed I6-bit integer giving a count of ticks.

st2-go-enable. This argument is a BOOLEAN
expression. TRUE causes the clock to begin counting
upon receipt of a Schmitt Trigger #2 signal. FALSE
causes the call to KWV _READ itself to start the
counter. The default value is FALSE. This argument is
ignored if the clock is already running.

status. This optional argument is an INTEGER
variable that receives the completion status of
KWV-READ.

14-59 KWV Device Driver Utilities

Status Values

1. This value indicates that KWV-READ completed
successfully.

ELNS-KWV_DATA-OVERRUN. This value indicates that
a Schmitt Trigger #2 event occurred before the driver
had finished processing the previous one.

KWV-WRITE

The KWV _WRITE procedure performs differently
depending on which mode the device is operating in:

• For devices initialized to operate in mode 0 or mode
1, KWV_WRITE causes the device to generate the
clock-overflow signal when the specified number of
ticks has occurred. Additionally, if the device was
initialized to operate in mode 1, clock-overflow
signals will be genera ted repea tedly after each
interval containing the specified number of ticks.
The clock can be stopped by calling
KWV _INITIALIZE to reinitialize it .

• For devices initialized to operate in mode 2 or mode
3, KWV_WRITE causes the device to begin
counting from zero, or wait for an ST2 signal to do
so. It is then expected that sometime a call to
KWV _READ will be made, which reads the
current elapsed time.

The procedure can be called only from programs
running in kernel mode. To use the procedure, you
must include the module $KWV _UTILITY in the
compila tion.

Device Drivers and Interrupts 14-60

Call Format

ELN$KWV-WRITE(
identifier,
st2-go-enable,
tick-count,
status
)

Arguments

identifier. This argument supplies an expression of type
KWV$ that identifies the device to be written to; this
value is the one returned in the identifier parameter
after a call to KWV _INITIALIZE.

st2-go-enable. This argument is a BOOLEAN
expression. TRUE causes the clock to begin counting
upon receipt of a Schmitt Trigger #2 signal. FALSE
causes the call to KWV _WRITE itself to start the
counter. The default value is FALSE.

tick-count. This optional argument is a 16-bit, signed,
positive integer of type KWV$COUNTER that supplies
an interval in clock ticks after which a clock-overflow
signal is asserted. This argument has no significance if
the device was initialized to operate in mode 0 or 1.

status. This optional argument is an INTEGER
variable that receives the completion status of
KWV _WRITE. The only possible value is 1, which
indicates that the procedure completed successfully.

14-61 KWV Device Driver Utilities

DLV Device Driver Utility Procedures

The procedures described in this section are used in
programs that access DLV J1 (formerly DLV11-J)
serial line controller devices. Table 14-7 summarizes
these procedures.

Table 14-7. DLV Device Driver Utility Procedures

Procedure

DL V -INITIALIZE

Purpose

readies a DL V device line for
input and/or output and
creates all needed data
structures.

DLV _READ_BLOCK reads characters from a serial
line until the specified
number of characters is read.

DLV -READ-STRING reads characters from a serial
line until a carriage return
character is encountered.

D LV - WRITE-STRING wri tes the specified character
string to a serial line.

Notes: To use these procedures, include the module
$DLV_UTILITY from the RTLOBJECT library in the
compilation of your program.

The following Pascal named constant and types are
declared in module $DL V -UTILITY for use with the
DL V device driver utility procedures:

CONST
{ Maximum string length. }
dlv$max-Iength = 1024;

Device Drivers and Interrupts 14-62

TYPE
{ DLV11 device register formats. }
dlv$rcsr-register = [word] packed record

ie: [pos(6)] boolean;
done: [pos(7)] boolean;
end;

dlv$rbuf-register = [word] packed record
dat: [pos(O)] char;
parity: [pos(12)] boolean;
frame: [pos(13)] boolean;
overrun: [pos(14)] boolean;
error: [pos(1S)] boolean;
end;

dlv$xcsr-register = [word] packed record
break: [pos(O)] boolean;
ie: [pos(6)] boolean;
ready: [pos(7)] boolean;
end;

dlv$xbuf-register = [word] packed record
dat: [pos(O)] char;
end;

dlv$registers = record
rcsr: dlv$rcsr-register;
rbuf: dlv$rbuf-register;
xcsr: dlv$xcsr-register;
xbuf: dlv$xbuf-register;
end;

14-63 DLV Device Driver Utilities

dlv$region(max-Iength: integer) = record
count: integer;
index: integer;
max-count: integer;
string-rcv: boolean;
string: string(max-Iength);
end;

{ Device context record. }
dlv$context-record = record

dl: i dlv$registers;
rcv-device, xmt-device: device;
rcv-region, xmt-region:
i dlv$region(dlv$max-Iength);
interrupt-rcv: boolean;
priority: integer;
end;

{ Device context pointer.}
dlv$ = i dlv$context-record;

Device Drivers and Interrupts 14-64

DLV-INITIALIZE

The DL V _INITIALIZE procedure readies a DL V device
line for input and output and creates all needed data
structures. It can be called only from programs running
in kernel mode. This procedure must be called once for
each DL V serial line used. Since each line is initialized
and handled separately from other lines, each line
should have its own device description specified in the
target system's System Builder menus. To use the
procedure, you must include the module
$DLV _UTILITY in the compilation.

Call Format

ELN$DLV-INITIALlZE(
device-name,
identifier,
maximum_length,
string_mode,
use_polling
)

Arguments

device-name. This argument supplies a string of up to
30 characters giving the name of the device to be
initialized. This name must match the name
established with the System Builder.

identifier. This argument is a variable of type DL V$
that (if this call is successful) receives an identifier to
be used to identify this device in subsequent calls to
DLV_READ-STRING, DLV-READ_BLOCK, and
DLV_WRITE_STRING.

14-65 DLV Device Driver Utilities

maximum_length. This optional argument is an
INTEGER value that supplies the maximum string or
block length, in bytes, that will be read or written. The
default value is 256.

string-mode. This optional argument is a BOOLEAN
expression. TRUE causes the serial line to be used in
string mode; FALSE causes it to be used in block mode.
The default value is TRUE. String mode means the
input is obtained by calling DLV-READ-STRING and
will always be terminated by a carriage-return
character, CHR(13). Block mode means the input is
obtained by calling DL V _READ_BLOCK and will be
fixed-length blocks of data, with no carriage return
checking performed.

use_polling. This optional argument is a BOO LEAN
expression. TRUE means the read procedures will poll
the device register; FALSE means the read procedures
will use interrupts. Polling is always done at the
device's interrupt priority level, which is 4 for the DLV.
The default value is FALSE.

Device Drivers and Interrupts 14-66

DLV-READ-BLOCK

The DL V _READ_BLOCK procedure causes characters
to be read from the serial line until the specified
number of characters is read. This procedure should be
called to read from the serial line if the string_mode
argument was FALSE in the call to DLV -INITIALIZE.
It can be called only from programs running in kernel
mode. To use the procedure, you must include the
module $DL V-UTILITY in the compilation.

Call Format

ELN$DLV-READ-B LOCK(
identifier,
block,
timeout
)

Arguments

identifier. This argument supplies a value of type
DL V$ that identifies the serial line device to be read;
this value is the one returned in the identifier
parameter after a call to DLV -INITIALIZE.

block. This BYTE-DATA argument receives the
characters read from the serial line.

timeout. This optional LARGE-INTEGER argument
specifies a time interval that is the maximum time
allowed for the block of characters to be read. If the
timeout occurs, the block is returned incomplete. The
default value is zero, which implies no timeout.

14-67 DLV Device Driver Utilities

DLV-READ-STRING

The DL V -READ_STRING procedure causes characters
to be read from the serial line until a carriage return
character is encountered. This procedure should be
called to read from the serial line if the string-mode
argument was TRUE in the call to DL V-INITIALIZE.
It can be called only from programs running in kernel
mode. To use the procedure, you must include the
module $DL V_UTILITY in the compilation.

Call Format

ELN$DLV-READ-STRING(
identifier,
strng
)

Arguments

identifier. This argument supplies a value of type
DL V$ that identifies the serial line device to be read;
this value is the one returned in the identifier
parameter after a call to DLV _INITIALIZE.

strng. This VARYING_STRING argument receives the
character string read from the serial line.

Device Drivers and Interrupts 14-68

DLV-WRITE-STRING

The DL V - WRITE STRING procedure causes the
specified character string to be written to the serial
line. It can be called only from programs running in
kernel mode. The characters are not interpreted by this
procedure; therefore, any variable .. length string can be
written. To use the procedure, you must include the
module $DL V -UTILITY in the compilation.

Call Format

ELN$OLV-WRITE-..STRING(
identifier I
strng
)

Arguments

identifier. This argument supplies a value of type
DLV$ that identifies the serial line device to be written
to; this value is the one returned in the identifier
parameter after a call to DL V_INITIALIZE.

strng. This STRING argument specifies the character
string to be written to the serial line .

14-69 DLV Device Driver Utilities

DRV Device Driver Utility Procedures

The procedures described in this section are used in
programs that access DRV11--J parallel line interface
devices. Table 14-8 summarizes these procedures.

Table 14-8. DRV Device Driver Utility Procedures

Procedure

DRV _INITIALIZE

DRV_READ

DRV-WRITE

Purpose

readies a DRV device
controller for input and/or
output and creates all needed
da ta structures.

reads data words from the
specified parallel port.

writes data words to the
specified parallel port.

Notes: To use these procedures, include the module
$DRV _UTILITY from the RTLOBJECT library in the
compilation of your program.

These procedures assume tha t the user device
connected to the DRV11--J asserts the USER REPLY
lines when the user device is to inform the DRV11--J
that either data is available (for reading by the
application program) or that data has been accepted
(written by the application program).

Device Drivers and Interrupts 14-70

The following Pascal named constants and types are
declared in module $DRV-UTILITY for use with the
DRV device driver utility procedures:

CONST
{ Port ind ices. }
drv$a = 0;
drv$b = 1;
drv$c = 2;
drv$d = 3;

{Port A index}
{ Port B index}
{ Port C index}
{ Port D index}

TYPE
{ DRV11 device register definitions. }
d rv$csrlo = [byte] packed record

case integer of
0: (cmd: [pos(O)] 0 .. 255);
1: (armed: [pos(3)] boolean;

polled: [pos(4)] boolean;
rprio: [pos(5)] boolean;
input: [pos(6)] boolean;
noint: [pos(7)] boolean;

2: (bits: [pos(O)] packed array[O .. 7] of boolean);
end;

drv$csrhi = [byte] packed record
dir: [pos(O)] boolean;
ie: [pos(1)] boolean;
rdy: [pos(7)]boolean;
end;

{Data buffer word.}
drv$word = [word] 0 .. 65535;

{ Set of port nu mbers. }
drv$port-set = packed set of drv$a .. drv$d;

14-71 DRV Device Driver Utilities

{ Port reg isters. }
d rv$port = packed record

csrlo: drv$csrlo;
csrhi: drv$csrhi;
dbr: drv$word;
end;

{ Ports A-D. }
drv$registers =

packed array[drv$a .. drv$d] of drv$port;

{ lID buffer.}
drv$buffer(words: integer) =

packed array[drv$a .. drv$d, 1 .. words] of
drv$word;

{ Device communication region. }
drv$region(words: integer) = record

count: array[drv$a .. drv$d] of integer;
index: array[drv$a .. drv$d] of integer;
buffer-size: integer;
buffer: drv$buffer(words);
end;

{ Device context record.}
drv$context-record(words: integer) = record

dry: i drv$registers;
done-device: array[drv$a .. drv$d] of device;
interrupt-io: boolean;
priority: integer;
io-region: i drv$region(words);
end;

{ Device context pointer. }
drv$ = i drv$context-record(1);

Device Drivers and Interrupts 14-72

DRV-INITIALIZE

The DRV _INITIALIZE procedure readies a DRV device
controller for input and output and creates all needed
data structures. It can be called only from programs
running in kernel mode. This procedure must be called
once for each DRV controller used. To use the
procedure, you must include the module
$DRV _UTILITY in the compilation.

Call Format

ELN$DRV -I N ITIALlZE(
device-name,
identifier,
buffer,
buffer -size,
output_ports,
use_polling
)

Arguments

device_name. This argument supplies a string of up to
30 characters giving the name of the device to be
initialized. This name must match the name
established with the System Builder.

identifier. This argument is a variable of type DRV$
that (if this call is successful) receives an identifier to
be used to identify this device in subsequent calls to
DRV-READ and DRV_WRITE.

buffer. This argument is a variable of type
t DRV$BUFFER(buffer_size) that receives a pointer to

the liD buffer. The buffer is a two-dimensional array of
data words; the first array index specifies the port
number and the second index specifies a data word

14-73 DRV Device Driver Utilities

number. The I/O buffer is allocated by the
DRV _INITIALIZE procedure; it will receive all data
read from the device and should be filled with all data
to be written to a port.

buffer-size. This argument is an INTEGER value that
specifies the size (the number of I6-bit words) of the I/O
buffer for each port allocated in the buffer array. This
argument is also an upper bound on the buffer array's
second index.

output-ports. This argument specifies the set of port
numbers of type DRV$PORT_SET that are to be used
for output instead of input. The type DRV$PORT_SET
defines the SET OF 0 .. 3 for this argument. If a port is
specified as an output port, the port's ((DIR" bit is set in
the port register; otherwise it is cleared.

use-polling. This argument is a BOOLEAN expression.
TRUE means the read procedures will poll the device
register; FALSE means the procedures will use
interrupts. Polling is always done at the device's
interrupt priority level, which is 4 for the DRVII-J.

Device Drivers and Interrupts 14-74

DRV-READ

The DRV _READ procedure causes data words to be
read from the specified parallel port. It can be called
only from programs running in kernel mode. The
resulting data is stored in the buffer pointed to by the
buffer parameter returned by DRV _INITIALIZE. To
use the procedure, you must include the module
$DRV _UTILITY in the compilation.

Call Format

ELN$DRV-READ(
identifier,
prt,
word-count
)

Arguments

identifier. This argument supplies a value of type
DRV$ that identifies the device to be read; this value is
the one returned in the identifier parameter after a call
to DRV _INITIALIZE.

prt. This argument supplies an INTEGER value (0 .. 3)
specifying which port to read.

word-count. This argument supplies an INTEGER
value specifying the number of 16-bit words to be read.

14-75 DRV Device Driver Utilities

DRV-WRITE

The DRV _WRITE procedure causes data words to be
written to the specified parallel port. It can be called
only from programs running in kernel mode. Before
calling this procedure, the data words should be stored
in the buffer pointed to by the buffer parameter
returned by DRV -INITIALIZE. To use the procedure,
you must include the module $DRV _UTILITY in the
compilation.

Call Format

ELN$ORV-WRITE(
identifier,
prt,
word-count
)

Arguments

identifier. This argument supplies a value of type
DRV$ that identifies the serial line device to be written
to; this value is the one returned in the identifier
parameter after a call to DRV _INITIALIZE.

prt. This argument supplies an INTEGER value (0 .. 3)
specifying which port will be written to.

word-count. This argument supplies an INTEGER
value specifying the number of 16-bit words to be
written.

Device Drivers and Interrupts 14-76

Chapter 15

Input and Output

This chapter discusses V AXELN Pascal files, including
textfiles and (~internal files" used as data structures,
and their use in file 110, record-oriented device 110, and
circuits. The chapter then describes in detail the
V AXELN Pascal I/O routines and the V AXELN file
utility, disk utility, and tape utility procedures.

Files

In V AXELN Pascal, you can declare files with
components of any type except file types or record and
array types that have components of file types (see
Chapter 3, ttData Types"). Files have the additional
properties of a mode, a buffer variable, and a current
position. In addition, files are either ttopen" or ttclosed."

Open Files and Closed Files

Initially, all files are closed. For typical usage, files can
be ttopened," usually to associate them with a file on a
disk or other mass storage device, with a circuit port, or
with a record-oriented device itself, such as a terminal.
When a file is open, the records of the file correspond to
the components of the Pascal file type or, in the case of
the special file type TEXT, to lines of text. Files can be
opened either explictly or implicitly.

When a file is not associated with an external device, it
is referred to as an ttinternal file" and can be used as an
in-memory data structure in which components of the
same type can be accessed sequentially (in memory). In

15-1

this case, the entire structure has no specified length,
only a defined beginning and an end-of-file position.

Explicit Opening of Files

You can use the OPEN procedure to open a file
explicitly, which establishes an association with either
a file, device, or circuit. In the common case, a disk file,
OPEN can set up access to an existing file or can create
a new one. A variety of options are possible when files
are opened explici tly for specifying the record
characteristics of files and, in particular, whether the
files are usable with the direct access procedures, FIND
and LOCATE.

Implicit Opening of Files

A closed file can be opened implicitly by the RESET and
REWRITE procedures. The sort of input/output
connection made is determined as follows:

1. If the file is named as a program parameter, it is
opened with the corresponding program argument
(a string) as its file specification.

2. If 1 does not apply, but the file is the default
textfile INPUT or OUTPUT, it is opened with a
default specification, usually referring to the
console terminal.

3. If neither 1 nor 2 applies, the file is ~~opened" for
internal I/O only.

Further, if INPUT is closed and it is accessed by some
procedure other than RESET (for example, EOF), it is
opened implicitly, by the implicit application of RESET
to it. Similarly, OUTPUT can be opened by an implicit
application of REWRITE if, for example, it is accessed
by the PUT procedure while it is closed.

Input and Output 15-2

Closing Files

The CLOSE procedure is provided to close files
explicitly; such files can be reopened with OPEN,
perhaps to give them different characteristics for
further liD processing.

Any file variables declared in a block that are still open
when the block terminates normally are closed
implicitly.

If you remove a process with the EXIT or DELETE
procedures, implicit file closing occurs according to the
following rules:

• Removal of a subprocess with the EXIT or
DELETE procedure does not close any files
implicitly.

• All the job's files are closed if the master process
calls EXIT. However, local files of subprocesses are
closed only as described in the next item.

• All the job's files are closed if the master process
(and thus, the job) is deleted with the DELETE
procedure. However, the closing in this case occurs
only because all the job's circuits (some of which
are used for file I/O) are disconnected. This means
that, in this case, any information buffered by the
run-time library routines is not flushed to the
appropriate device driver or service and so is lost.
(This method of exiting a job is not recommended.)
Note that freeing a file variable (for example, by
the DISPOSE procedure) when it is open has
unpredictable effects, although the file will be
closed at job termination as described above.

15-3 Files

Mode

An open file's mode determines whether the
components are being generated or inspected. That is,
inspection mode specifies that a file's records can be
inspected, or ((read," but no new records can be added.
Generation mode specifies that new records can be
added but no records can be inspected.

The mode of a file is set by the various procedures that
operate on files, such as RESET, REWRITE, and (when
the ((append" argument is TRUE), OPEN.

Buffer Variable

A buffer variable holds the value of (at most) one
component at a time. Buffer variable references have
the format file-variable f , similar to identified pointer
variables. For the file type FILE OF component-type,
there is an automatically created buffer variable of type
component-type. For the type TEXT, the buffer variable
type is CHAR.

When you create a file on a disk or other record­
organized device, the record size is related to the type of
the buffer variable, as explained below.

Textfiles

Textfiles have buffer variables of type CHAR and
normally have variable-length records. Each record
corresponds to a line of the textfile, as explained later
in this section. It is also possible to open a file with
fixed-length records and use it as a textfile.

Input and Output 15-4

FILE OF type

When a new file is created, its record size is the size of
type in bytes; if type is a bit-sized PACKED RECORD
or PACKED ARRAY, its size is rounded up to the next
byte in computing the record size.

If type is VARYING-STRING(n), the created file has
variable-length records with a maximum record size of
n bytes. Otherwise, the file has fixed-length records.

With READ and WRITE, the file's record size must
match the size of type unless type is
V ARYING-STRING. In this case, WRITE writes a
record whose length is equal to the current length of
file i. READ sets the current length of file i to the
record length.

Current Position

The current position can be thought of both as a position
wi th respect to the beginning of the file and as defining
the contents of the buffer variable.

The position following the last file component is called
end-of-file. An inspection mode file is at this position
after its last component has been read or when it is
empty. Normally, a file that is in generation mode is, by
definition, positioned at end-of-file because new
components are added at the end. The direct-access
procedure LOCATE can move a generation-mode file to
any position; the next output is written at this position.
The function EOF tests for the end-of-file position.

The structure of a nonempty file is shown in Figure 15-
1.

15-5 Files

Component 1

Component 2

Component 3

Last
component

End-of-file

•
•

•

This is the current
component after
RESET. When the
mode is inspection,
the buffer variable
contains the current
component.

.. The current postion
can be visualized as an
arrow that either
points to a component
or to end-of-file.

Files can have any
number of
components.

The EOF fu nction tells
you whether the
cu rrent position is
end-of-file.

Figure 15-1. Structure of a File

When files are empty, the current position is end-of-file.
This is the situation after the REWRITE procedure is
performed on a file (which also sets its mode to
generation) and after the RESET procedure is
performed on an empty file (which sets its mode to
inspection) .

Input and Output 15-6

Inspection Mode and GET

With inspection mode files, the buffer variable
normally contains contents of the component at the
current position.

Note: With textfile I/O from a terminal, the system
does not actually read from the terminal until
necessitated by a reference to the buffer variable or the
use ofEOF, EOLN, and so forth.

You can obtain the current component of an inspection
mode file by assigning the buffer variable to a program
variable of a compatible type. The GET procedure
advances an inspection mode file to its next component,
if one exists.

Generation Mode and PUT

With generation mode files, you assign to the buffer
variable the value to be added as a new component;
then, with the PUT procedure, you append the buffer
variable's contents to the file at the current position.
After a PUT operation, the buffer variable's contents
are undefined.

READ and WRITE

The procedure READ performs the combined action of
obtaining an inspection mode file's current component
and advancing to the next component. Similarly,
WRITE assigns a new value to the buffer variable and
writes the buffer variable to a generation mode file in a
single procedure call.

15-7 Files

Files as Data Structures

As mentioned previously, ttinternal files" are simply
data structures that can be accessed sequentially; their
components are allocated the same way as items
allocated by NEW. Applying REWRITE or CLOSE to
such a file variable disposes of all its associated storage.

TEXT Files

TEXT is a special, predeclared file type with
components of type CHAR. Files declared with type
TEXT are called textfiles. Textfiles have the special
properties described below that make them suitable for
representing written text and, when they are open, for
display on a terminal, printing on a line printer, and so
forth. The structure of a nonempty textfile is illustrated
in Figure 15-2.

Lines

A textfile is organized as a sequence of lines of text (in
general, a record is a line). A line is, by definition, a
possibly empty sequence of characters terminated with
a special component called end-or-line.

In textfile lIO, the components of a file are considered to
be the individual characters. Thus, GET and PUT
transmit single characters. However, this transmission
is from or to a hidden buffer maintained by the run­
time system; the run-time system transmits whole lines
from or to the external file.

In textfile output, the insertion of end-of-line
components (that is, the division into records) is
determined by the use of the WRITELN procedure.
However, attempting a PUT when the hidden buffer is
full automatically performs a WRITELN (that is,
writes a record) before the PUT.

Input and Output 15-8

Component 1 _

Component 2 _

Component 3 _

Last compon­
ent in line

End-of-line
component

Second line

Last line

End-of-file

•
•

-
-

J
•
•

•

All textfile
components are of
type CHAR, as is the
buffer variable.

Lines can contain up to
32, 767 chara~ers.

The EOLN function
tells you whether the
current component is
end-of-I i ne.

This sequence is a
single line.

Textfiles can have any
number of Iin~s.

The EOF fu nction tells
you whf:ther the
cu rrent position is end­
of-file.

Figure 15-2. Structure Qf a Textfile

15-9 Files

Note that the end-of-line component is generally not a
data byte in a file system file. Also note that in
inspection mode, if a file is at an end-of-line component,
the buffer variable contains a blank.

The predeclared function EO LN can determine
whether a textfile's current component is end-of-line.
(The end-of-line component cannot be distinguished
from a space character except with EOLN and the
procedures RESET, READLN, WRITELN, and PAGE.)

The standard files INPUT and OUTPUT are
predeclared with type TEXT. (They also are the default
files for most file-handling procedures and functions,
such as EOF, READ, READLN, WRITE, WRITELN,
and EOLN.)

Unless you specify otherwise, these two files also are
associated with the console terminal, assuming that
your target system has one and was configured with the
console driver. That is, the READ/READLN and
WRITEIWRITELN procedures by default read and
write text messages on this terminal, treating it as a
textfile. (Note that the remote debugger will act as a
console driver if there is no console driver provided in
the system.)

Textfiles in Inspection Mode

When textfiles are in inspection mode, by definition
they are either completely empty or else contain at
least one complete line. Note that a ~~complete line" can
consist of zero characters (the empty sequence) followed
by the end-of-line component.

Textfiles in Generation Mode

When textfiles are in generation mode, the last
complete line may be followed by a sequence of

Input and Output 15-10

character components that is not terminated by end-of­
line (that is, a sequence that is an incomplete line). This
is simply the state of a generation mode file while a new
line of characters is being added.

The various procedures that can change the file's mode
to inspection also assure that the last character
sequence is properly terminated by end-of-line.

Operations on Files

You operate on files by referring to the buffer variable
and by use of the standard routines GET, WRITELN,
and so forth. These procedures and functions are
categorized below.

\

The buffer variable associated with a file can be
assigned to or referred to regardless of the file's mode.
For the sake of avoiding invalid references, note that
the contents of the buffer variable are undefined in the
following circumstances:

• Immediately after a REWRITE operation, since it
erases the file's contents.

• Immediately after a RESET operation on an empty
file.

• Immediately after any PUT operation, WRITE
operation, or WRITELN operation.

• Immediately after a GET, READ, or READLN
operation that advances to end-of-file (for READ
and READLN, this means that the last record of an
open file has been read).

The EOF function can be used to test for end-of-file
regardless of the file's mode.

15-11 Files

Operations Affecting the Mode

The following operations affect the mode (inspection or
generation) of a file:

• The RESET procedure sets the current position to
the first component in the file and places the file in
inspection mode.

• The REWRITE procedure erases the file's
components and places it in generation mode.

• The FIND procedure positions an open, direct­
access file at any record and places the current
component in the buffer variable. The file can be in
either mode initially and is in inspection mode
after the operation.

• The LOCATE procedure positiQns an open, direct­
access file at any record. The file can be in either
mode initially and is in generation mode after the
operation. The next PUT or WRITE writes at that
position, ollerwriting any record already there.
(Writing a sequence of records at an arbitrary
location requires repeating the LOCATE ... PUT
sequence.)

• The OPEN procedure places the opened file in
generation mode when the optional append
argument is TRUE.

Inspection Mode Operations

The following operations can be performed if and only if
the file is in inspection mode:

• Advancing to the next component with the GET
procedure (but note that GET(INPUT) implicitly
opens INPUT).

Input and Output 15-12

• Reading the current component into a variable
with the READ procedure.

• Reading the current line of a textfile with the
READLN procedure.

Generation Mode Operations

The following operations can be performed if and only if
the file is in generation mode:

• Writing out the buffer variable's contents and
advancing the current position with the PUT
procedure.

• Adding a new component with the WRITE
procedure.

• Wri ting a new line to a textfile with the WRITELN
procedure.

• Designating, for textfiles only, that subsequent
output is to appear on the next page if the file is
actually printed (PAGE procedure).

Pascal 1/0 Routines

In V AXELN, Pascal I/O is performed by transparent
message transmissions between a program and some
external en ti ty, such as a terminal, disk file, or other
mass storage device. The Pascal I/O run-time routines
completely handle all the message protocol details.
Simply write programs according to the usual Pascal
conventions and include the appropriate resource
service or driver in the final system:

• The File Service handles I/O between the program
and all file-storage devices. The File Service
consists of a disk File Service and a separate tape
File Service. To use the File Service, include in the

15-13 Pascal I/O Routines

system the device driver for the device in use. Disk
and tape drivers are linked to the appropriate File
Service shareable image when they are developed.

• The Console Driver handles 110 with the console
terminal on the target machine. The standard
textfiles INPUT and OUTPUT are associated with
this terminal by default.

• The Terminal Driver handles 110 with additional
terminals connected to serial lines.

• The Network Service routes 110 messages and
manages universal names in local area networks,
where each node is running its own V AXELN
system. Each system in such a case is configured
with a Network Service. For example, it is possible
for a program on one node to read disk files stored
on a different node. The Network Service also
supports communication with other DECnet nodes.

For details on the File Service, device drivers, and the
Network Service, see the VAXELN User's Guide.

When the necessary services or drivers are in place, the
run-time routines used by your program (READ,
WRITE, and so forth) automatically communicate
between your program and the device, using circuits
and automatically formatted and transmitted mes­
sages. Since circuits are used by the underlying 110
operations, the OPEN procedure also allows you to give
file properties to a circuit you have created yourself.
You can then transmit messages on the circuit with the
usual Pascal I/O routines.

The remainder of this chapter describes in detail the
V AXELN Pascal 110 routines and the file utility, disk
utility, and tape utility procedures. A brief description
of each routine is given, followed by the call format,
arguments, and function result (if appropriate).

Input and Output 15-14

General 1/0 Procedures

VAXELN Pascal provides predeclared routines to
perform general input/output operations on files. Table
15-1 summarizes these procedures.

Procedure

OPEN

CLOSE

Table 15-1. General 1/0 Procedures

Purpose

explicitly opens a file.

explicitly closes a file.

15-15 General 110 Procedures

OPEN

The OPEN procedure opens a file explicitly. In some
circumstances, files are opened implicitly (that is,
without calling OPEN)~ If a file is not associated with
an external entity by OPEN or by implicit opening (for
a file variable named as a program file), it is available
only as an in-memory data structure.

Call Format

OPEN(
file,
FILE-NAME: = specification,
HISTORY: = file-history,
RECORD-LENGTH: = length,
RECORD-LOCKING: = lock,
ACCESS-M ETHOD : ::: access,
RECORD-TYPE : = record-type,
CARRIAGE-CONTROL: = control,
DISPOSITION: = disposition,
SHARING: = sharing,
CIRCUIT: = action,
APPEND: = append,
BUFFERING: = buffering,
BUFFERSIZE : = buffer-size,
CONTIGUOUS: = contiguous,
EXTENDSIZE : = extend-size,
FILESIZE : = file-size,
TRUNCATE: = truncate,
FILE-ATTRIBUTES: = file-attributes,
OWNER: = owner-uk,
PROTECTION: = protection-value,
STATUS: = stat
}

Input and Output 15-16

Arguments

file. This is a file variable representing the file to be
opened. INPUT and OUTPUT are permissible if they
are closed.

specification. This optional argument supplies a name
for the external item to be opened. If it is omitted, the
file specification is the specification supplied in the
CREATE-JOB call or System Builder argument
associated with the specified file variable (which must
be a program parameter). If no such information was
supplied, and the file variable is either INPUT or
OUTPUT, the file-opening applies to the console
terminal; if the file name is neither INPUT nor
OUTPUT, the file's name is assumed to be the same as
the file variable's and its type is DAT.

File specifications have the following format:

node: :volume: [directory]name.type;version

All punctuation separating parts of the specification is
required if the parts are present. The type and version
can be separated either by a semicolon or a period. The
parts of the specification are interpreted as follows:

node This must be a valid node number or the
name of a V AXELN node. No node
identification is needed to access a
V AXELN File Service volume by its
volume name. Further, this field need not
be specified if the volume being accessed
is on the current node. (See Note 1,
below.)

volume This may be a volume label (such as
DISK$VOLUME), an explicit device
name (such as DUAl), or null. If null, the
volume being referred to is the default

15-17 General I/O Procedures

volume on the current node or the default
volume on the node specified by the node
field. (See Note 1, below.)

directory This is the directory containing the disk
file; as in V AXNMS, it can be suffixed
with subdirectory names, separated by
periods. If this field is not specified, the
default is the master file directory on the
specified volume ([0,0]).

name This is the name of the file (0-39
characters) .

type This is the type of the file (0-39
characters) .

version This is the version number of the file (a
decimal number between 0 and 65535).

For example,

'[test]file 1.dat'

refers to the most recent version of the file FILE1.DAT in
the directory [TEST] on the default volume for the
current node. As another example,

'trout: :file1.dat'

refers to the most recent version of the file FILE 1.DAT in
the master file directory ([0,0)) on the default volume
for node TROUT. If that volume's label is TEST, the
resultant filename is:

'TROUT:: DISK$TEST: [O,O]FILE 1.DAT'

As another example,

'disk$test: [data]file1.dat; 23'

refers to the file FILE1.DAT, version 23, in the directory
[DAT A] on the volume DISK$TEST, wherever it happens
to reside.

Input and Output 15-18

As a final example,

'duaO:filel.dat'

refers to the most recent version of the file FILE1.DAT in
the master file directory ([0,0]) on the local volume
DUAO.

Note 1: Default volume names are determined to be the
first volume specified in the System Builder's Edit
System Characteristers menu, under the Disk/volume
names entry. If no volumes were specified, the default
volume for the node is the first volume mounted with
the MOUNT_VOLUME procedure.

Note 2: In place of a file specification, you can supply
the name of a device, as specified in the System
Builder's Edit Device Descriptions menu. In this case,
program I/O (with READ and WRITE, for example), is
performed directly between your program and the
device driver. For example, if 'TTA2' was established as
the name of a terminal, you can open it for
communication with

OPEN(tty, FILENAME: = 'TTA2:');

where tty is a suitably declared file variable.

file-history. This optional argument specifies how to
interpret the file-opening depending on whether the file
already exists. The possible arguments are values of
the predeclared enumerated type FILE-HISTORY:

TYPE
FILE-HISTORY = (

HISTORY$OLD,
HISTORY$NEW,
HISTORY$UNKNOWN,
HISTORY$READONL Y
);

15-19 General I/O Procedures

HISTORV$OLD This opens an existing file. An
error occurs if the file does not
exist.

HISTORV$NEW This creates and opens a new
file. This is the default.

HISTORV$UNKNOWN This opens the file if it exists
and creates a new one if it does
not exist.

HISTORY$READONL V This opens an existing file for
input only. An error occurs if
you try to write to the file.

length. This optional argument is an INTEGER
expression that specifies the maximum length in bytes
(characters) of each record in a textfile or a file of
VARYING-STRING. (For files of other types, the size
of the records is fixed at the size of the component data
type and cannot be overridden.) The value you specify
must be in the range 1-32,767. For new files, the
default is 133 bytes; for existing files, the default is the
length established when the file was created.

By default, textfiles and files of VARYING-STRING
have variable-length records, so the file's records can
have any number of characters up to the value length.
If you create a textfile or FILE OF VARYING-STRING
with fixed-length records, this argument specifies the
exact length of each record; that is, any output record
must have exactly this length.

lock. This optional argument supplies a BOO LEAN
value specifying whether record locking is enabled for
the file. The default is FALSE. If the file is shareable,
you must enable record locking via this parameter. The
following rules apply:

• Record locking is possible only on files with fixed­
length records. There is no restriction on the record

Input and Output 15-20

length unless the file is on a V AXNMS system, in
which case it must be 512 bytes.

• Records are locked against access by the GET,
FIND, and PUT procedures only (not READ or
WRITE) .

• If your program tries to access a locked record, it
waits until the record is unlocked. Records are
unlocked when the program that locked the record
calls RESET, GET, PUT, or some other procedure
that changes the current position in the file.

access. This optional argument specifies the method by
which individual records are written or retrieved. The
possible arguments are values of the predeclared
enumerated type FILE-ACCESS:

TYPE
FILE-ACCESS = (

ACCESS$SEQU ENTIAL,
ACCESS$DIRECT
);

ACCESS$SEQU ENTIAL This allows sequential access.
Each retrieval obtains the re­
cord following the previously
obtained record, and each
update adds a record after the
previously added one.

ACCESS$DIRECT This allows direct access.
With this method, the FIND
and LOCATE procedures can
be used to position the file at
any record, and retrieval or
update operations take effect
there.

ACCESS$SEQUENTIAL is the default method and can
be used with either fixed-length or variable-length

15-21 General I/O Procedures

records. ACCESS$DIRECT can be used only with fixed­
length records and disk devices. It is possible to open an
existing file of fixed-length character records for direct
access and manipulate it as a textfile.

record-type. This optional argument specifies the kind
of records in the file. The possible arguments are values
of the predeclared enumerated type
FILE_RECORD_TYPE:

TYPE
FILE-RECORD-TYPE = (

RECORD$FIXED,
RECORD$VARIABLE
);

RECORD$FIXED This specifies fixed-length
records.

RECORD$VARIABLE This specifies variable-length
records.

The default for existing files is the record type specified
when the file was created. The default for new files is
RECORD$V ARIABLE for textfiles and files of
VARYING-STRING; otherwise, the default is
RECORD$FIXED.

control. This optional argument specifies the carriage
control applied to output files when they are listed on a
terminal or printer. The possible arguments are values
of the predeclared enumerated type
FILE-CARRIAGE-CONTROL:

TYPE
FILE-CARRIAGE-CONTROL = (

CARRIAGE$LlST,
CARRIAGE$FORTRAN,
CARRIAGE$NONE
);

Input and Output 15-22

CARRIAGE$LlST This specifies single spacing
between output records.

CARRIAGE$FORTRAN This specifies that the first
character of every record is a
carriage control character. The
interpretations of characters are
as follows:

space New line (single spacing)

o New line (double spacing)

1 Newpage

+ Carriage return (for over­
printing)

$ Do not terminate partial line
(for prompting)

CARRIAGE$NONE Specifies that the records
contain no carriage control
informa tion.

The default is CARRIAGE$LIST for all textfiles,
including the predeclared textfile OUTPUT, and for
files of VARYING-STRING components. For all other
files, the default is CARRIAGE$NONE.

disposition. This optional argument specifies the action
to take when a disk file is closed. The possible
arguments are values of the predeclared enumerated
type FILE-DISPOSITION:

TYPE
FILE-DISPOSITION = (

DISPOSITION$SAVE,
DISPOSITION$DELETE
);

DISPOSITION$SAVE This specifies that the disk
file is saved when closed.

15-23 General I/O Procedures

DISPOSITION$DELETE This specifies that the disk
file is deleted when closed.

The default is DISPOSITION$SA VE. Note that
READONL Y files cannot be deleted.

sharing. This optional argument specifies whether the
file can be shared with other jobs. The possible
arguments are values of the predeclared enumerated
type FILE_SHARING:

TYPE
FILE-SHARING = (

SHARE$NONE,
SHARE$READONLY,
SHARE$READWRITE
);

SHARE$NONE This specifies that no other
job has access to the file while
it is open.

SHARE$READONL Y This specifies that other jobs
can read the file while it is
open but cannot write to it.

SHARE$READWRITE This specifies that other jobs
can read and write to the file
while it is open.

SHARE$READONL Y is the default for files that also
have HISTORY$READONLY. SHARE$NONE is the
default for files with HISTORY$NEW,
HISTORY$OLD, and HISTORY$UNKNOWN.

action. This optional argument indicates that the file
variable is being used to represent a circuit instead of a
data file. (In this case, the arguments length, access,
control, record-type, and sharing cannot be specified;
history is ignored.) After the OPEN call, GET and
READ operations receive messages from the circuit,

Input and Output 15-24

and PUT and WRITE operations send messages on the
circuit. The possible arguments are values of the
predeclared enumerated type OPEN-CIRCUIT:

TYPE
OPEN-CIRCUIT = (

CIRCUIT$CONNECT,
CIRCUIT$ACCEPT
);

CIRCUIT$CONNECT This specifies that the OPEN
procedure is to create an un­
named port and connect it to an
existing named port, the name
of which is supplied by the
specification argument.

CIRCUIT$ACCEPT This specifies that the OPEN
procedure is to create a named
port, where the name is supplied
by the specification argument,
and wait for a circuit connection
request on that port. When the
OPEN procedure completes, a
circuit is established with the
named port as your half.

append. This optional argument is a BOOLEAN
expression that specifies whether the file is initially
positioned at end-of-file. That is, TRUE means that the
file is opened in generation mode; in this case, RESET
and REWRITE must not be applied to the file before
writing records. FALSE is the default and does not
imply the mode of the file, so RESET or REWRITE
must be used to establish the mode.

buffering. This optional argument is a BOOLEAN
expression that specifies whether file I/O is buffered.
The default is TRUE. If the value is FALSE, the output
written by a PUT operation is written immediately to

15-25 General I/O Procedures

the device (unless the device driver also buffers its
input), at the loss of the better performance implicit in
buffered I/O.

buffer-size. This optional argument is an INTEGER
expression that supplies the size in bytes of the run­
time library I/O buffer. The I/O buffer is used to ~~block"
multiple records together in a single I/O message. A
large buffer reduces the number of messages that must
be exchanged between the run-time library and the File
Service or device driver handling the open file. The
default size is 4096 bytes; the size should not be less
than 512 bytes.

contiguous. This optional argument is a BOO LEAN
expression that specifies whether a new file is created
contiguously on the output disk volume. FALSE is the
default. When a contiguous file is created, the disk
space for the file is preallocated on consecutive disk
blocks. Therefore, a contiguous file is somewhat more
efficient to access than a noncontiguous file. However, a
contiguous file cannot be extended after it is created, so
the file size must be known when the file is created (the
file-size argument must be specified when contiguous
is TRUE).

extend-size. This optional argument is an INTEGER
expression that specifies the number of 512-byte disk
blocks by which the file is automatically extended
whenever the current allocation is exceeded. This
argument can be specified only for new files. The
default extension size is 0, which allows the File
Service to determine the default extension quantity.

file-size. This optional argument is an INTEGER
expression that specifies the number of disk blocks that
the file is initially allocated, when it is created. This
argument can be specified only for new files. The

Input and Output 15-26

default initial size is 0, which allows the File Service to
determine the number of blocks to allocate for the file.

truncate. This optional argument is a BOOLEAN
expression that specifies whether the file is truncated
to the last-used disk block when it is closed. That is, if
the file was allocated a larger number of blocks than
needed, by file-size or extend-size, the file is truncated
to just the size needed to contain its current records.
FALSE is the defa ul t.

file-attributes. This optional argument is a variable of
type t FILE$ATTRIBUTES-RECORD that supplies a
pointer to the file attributes record. (The type is
declared in the module $FILE_UTILITY.) If an error
occurs on the OPEN, you can determine if the record
was allocated by checking the pointer variable for NIL.
Note that the record is allocated by OPEN, but must be
deallocated by the user. To use this argument, you must
include the module $FILE_UTILITY from the
RTLOBJECT library in the compilation.

owner-uic. This optional argument is an INTEGER
value that specifies the User Identification Code of the
owner of the file. If specified as 0, this parameter has no
effect. In addition, the parameter only has an effect if
the file is being created (that is, HISTORY : =
HISTORY$NEW or HISTORY$UNKNOWN and the
file does not exist).

protection-value. This optional argument supplies a
protection code of type FILE$PROTECTION for the
file. (The type is declared in the module
$FILE_UTILITY.) The protection code is a lti-bit word
that is composed of four 4-bit fields. Each field
represents a category of users: system, owner, group,
and world.

15-27 General I/O Procedures

The fields are values of the predeclared enumerated
type FILE$PROTECTION-CATEGORIES:

TYPE
FILE$PROTECTION-CATEGORIES = (

FILE$SYSTEM,
FILE$OWNER,
FILE$GROUP,
FILE$WORLD
);

FILE$SYSTEM This defines the system
category protection field.

FILE$OWNER This defines the owner category
protection field.

FILE$GROUP This defines the group category
protection field.

FILE$WORLD This defines the world category
protection field.

Each of the four fields consists of four I-hit indicators
that specify the access denied to the category_ These
indicators are values of the predeclared enumerated
type FILE$PROTECTION-TYPES:

TYPE
FILE$PROTECTION-TYPES = (

FILE$DENY -READ-ACCESS,
FILE$DENY -WRITE-ACCESS,
FILE$DENY -EXECUTE-ACCESS,
FILE$DENY -DELETE-ACCESS
);

Input and Output 15-28

FILE$DENY -READ-ACCESS

FILE$DENY -WRITE-ACCESS

If this bit is set in a
'category's field, users
in that category are
denied read access to
the file.

If this bit is set in a
category's field, users
in that category are
denied write access to
the file.

FILE$DENY -EXECUTE -ACCESS If this bit is set in a
category's field, users
in that category are
denied execute access
to the file.

FILE$DENY -DELETE-ACCESS If this bit is set in a
category's field, users
in that category are
denied delete access to
the file.

Note that this parameter only has an effect if the file is
being created (that is, HISTORY: = HISTORY$NEW
or HISTORY$UNKNOWN and the file does not exist).
To use this argument, you must include the module
$FILE_UTILITY from the RTLOBJECT library in the
compilation.

stat. This optional argument is an INTEGER variable
that receives the completion status. An exception is
raised if the OPEN procedure does not succeed and this
argument is omitted.

15-29 General 110 Procedures

CLOSE

The CLOSE procedure closes a file. It is usually used to
close a file so it can be reopened with different
properties, with the OPEN procedure. Any open files
are closed automatically upon normal exit from the
block in which they are declared, except files allocated
by NEW.

Call Format

CLOSE(file)

Arguments

file. The argument is a file variable representing the
file to be closed.

Input and Output 15-30

Input Procedures

The input procedures described in this section apply
primarily to files opened for sequential access.
However, these procedures can also be used on files
opened for direct access. Table 15-2 summarizes these
procedures.

Procedure

GET

READ

RESET

Table 15-2. Input Procedures

Purpose

ad vances a file to the next
component.

reads successi ve values from
an input file and assigns the
val ues to a list of program
variables.

positions a specified file at its
beginning and resets the mode
to inspection.

15-31 Input Procedures

GET

The GET procedure advances a file to the next
component. Following the GET operation, the file's
buffer variable either contains the next component or is
invalid (end-of-file).

With open files, each GET reads a record into the buffer
variable or, if the file is a textfile, it reads a single
character into the (type CHAR) buffer variable. The
size in bytes of a non-textfile's records must equal the
size of the buffer variable's type unless the buffer
variable is of type VARYING-STRING. In textfile
input, if the next component is an end-of-line, a space
character is stored in the buffer.

Call Format

GET(file)

Arguments

file. The argument is a file variable; the file must be a
nonempty file that is in inspection mode C~open for
input"). The current position, prior to the call, must be
such that the GET operation would not advance the file
beyond end-of-file. In particular, EOF(file) must be
FALSE prior to the GET call or an exception will occur.

READ

The READ procedure retrieves as many records as
needed from an open file, beginning with the current
record, and assigns suitable values to a list of program
variables. The current record is either the one located
by the immediately preceding FIND procedure; the one
following the record last obtained by GET, READ, or

Input and Output 15-32

READLN; or, following RESET, the first record in the
file. The procedure works similarly on internal (in­
memory) files, reading one or more data items from
memory until the list of target variables is satisfied.

Call Format

READ(
file,
target-I ist
)

Arguments

file. This optional argument is a file variable; if it is
omitted, the operation applies to the standard textfile
INPUT. If in this case INPUT is currently closed, it is
implicitly opened by READ, and RESET is implied as
well, meaning that the current record is the first record
in the file. With terminal input, this means simply that
the first characters read are the first ones that have not
been obtained by a previous READ or other input
operation.

target-list. This list supplies one or more target
variables, the data types of which are assignment
compatible with the type of the file's buffer variable.
The variables are separated by commas, and there must
not be more in the list than there are input items
remaining in the file. The READ procedure assigns a
data item, beginning with the current contents of the
buffer variable (file i), to each target variable in the
list. The assignments continue until the list of targets
is exhausted.

Note: The targets are not considered V AR parameters;
therefore assignment compatibility with the buffer
variable's type is the only requirement.

15-33 Input Procedures

Algorithms

The exact meaning of the READ procedure differs
depending on the type of the specified file's buffer
variable and the types of the target variables. Briefly,
the differences pertain to special conversions applied
when reading data of types other than CHAR from a
textfile, including the default textfile INPUT.

In all cases, READ obtains a suitable value from the
specified file, assigns it to the target variable, and
advances the file to the next data item. Enough records
or (for textfiles) characters are read to obtain values for
all the targets in the list; the details are given below.

Because READ implies the GET operation, the
preconditions for the GET procedure must hold,
namely:

• The file must be in inspection mode CCopen for
input").

• The file must not be positioned at end-of-file.

• For open files that are not textfiles, the record size
in bytes must equal the size of the buffer variable's
type unless the variable's type is
VARYING-STRING.

In addition, the buffer variable (file i) must be defined.
All these preconditions are in effect after RESET has
been performed (either explictly or implicitly) on a
nonempty file; for example, it is always valid to read
from INPUT when it is associated with the system
console or other terminal.

Finally, in all cases, the operation

READ{f,t1,t2, ... tn)

Input and Output 15-34

is equivalent to:

begin READ(f,t1); READ(f,t2); ... READ(f,tn) end

(This is merely a formal description of the variable­
length list of targets.)

Textfiles with Integer, Floating-Point, BOOLEAN, and
Enumerated Targets

In these cases, READ obtains a representative series of
characters from the textfile and assigns it, after the
appropriate type conversion, to the target. As many
records as needed are retrieved in the search for
characters. The appropriate series are as fQllows:

INTEGER targets. For integer targets, the series of
characters is an optionally signed sequence of decimal
digits.

REAL and DOUBLE targets. For floating-point targets,
the series must conform to the syntax for floating-point
constants.

Enumerated-type targets (including BOOLEAN). For
enumerated variables, the series must spell the name of
a previously declared enumerated type value;
uppercase and lowercase letters are considered
equivalent. The value can be abbreviated if the
abbreviation is unique in the type of the target
variable. Because identifiers are limited to 31
characters, a run-time error occurs if a 32nd character
is encountered before the input field is properly
terminated.

Input "fields." Leading spaces, tabs, and line (record)
endings are skipped in the search for the series; the
series is considered to end when a character is
encountered that is not a valid character in the series.
This means, in practical terms, that the textfile input is
made up of «tfields" of characters, and the fields are

15-35 Input Procedures

delimited by spaces, line endings, commas, or other
characters that do not occur in constants of the target
types. For example, an enumerated-type field is
considered terminated by the occurrence of any
character that is not valid in an identifier (such as a
space or tab).

Having obtained the series of characters, READ
converts it to the target's data type, assigns the
converted value to the target, and advances to follow
the field just read.

Textfiles with PACKED ARRAY[1 .. n] OF CHAR Targets

You can also use the READ procedure to read a
sequence of characters from a textfile into 1 a packed
array of characters. The array must have a lower bound
of 1. Successive characters from the file are assigned to
elements of the array, in order, until each element has
been assigned a value. If any characters remain on the
line after the array is full, the next READ operation
begins with the next character on the line. If end-of-line
is encountered before the array is full, the remaining
array elements are filled with spaces. Essentially, this
operation is treating the packed array similarly to a
variable of type STRING(n).

Textfiles with STRING(n) and VARYING-STRING(n)
Targets

With a target of either of these types, n characters are
read from the textfile into the string variable unless
end-of-line is encountered first. For open textfiles, end­
of-line is the same as the end of the record or the end of
a line of input from a terminal. If end-of-line is
encountered first, STRING variables are padded with
spaces; VARYING-STRING variables assume a new
length equal to the number of characters actually read.

Input and Output 15-36

Textfiles with CHAR Targets

One character is read from the textfile for each CHAR
variable in the list. Line or record boundaries are
crossed as needed to satisfy the list of targets and are
read as spaces.

All Other Files (FILE OF INTEGER, Etc.)

In these cases, the file's data must have the same data
type as the targets, and no conversions are needed or
performed by READ. That is, each record contains a
single value of the target variable's type, and a record is
read and its contents assigned to the variable. As many
records are read as there are variables in the target list.

Note: The type FILE OF CHAR is not the same as type
TEXT; that is, it is not a textfile. A FILE OF CHAR has
one character per record, and one record is read for each
variable in the target list, which must, again, have type
CHAR.

The operation

READ(file,target)

is equivalent to:

begin target: = file i ; get(file) end

That is, ~~assign the current value (contents of file i) to
the target and to the value." As stated previously, the
GET operation is invalid if, for example, the file is
previously at end-of-file, and so, therefore, is READ.

Following RESET on an open, nonempty file, READ
assigns the first record's contents to the first variable,
reads the next record, assigns it to the next variable,
and so on until either all the target variables have been
assigned values or end-of-file is encountered.

15-37 Input Procedures

RESET

The RESET procedure positions the specified file at its
beginning; that is, the first record in a nonempty, open
file becomes the current record, and the record's
contents become the current contents of the file's buffer
variable. The RESET procedure changes a file's mode to
inspection. It is commonly used to read data from a file
after a previous sequence of operations has written data
to it.

Call Format

RESET(file)

Arguments

file. The argument is a file variable representing the
file to be reset. Following the call, the file is in
inspection mode C~open for input"). Following the call,
the content of the buffer variable (file i) either is
undefined (because the file is empty) or is the first
component in the file.

If it is currently closed, the file may be opened
implicitly by RESET; the particular sort of I/O
connection made is determined as follows:

1. If the file is named as a program parameter,
RESET opens it implicitly, with the corresponding
argument (a string) as its file specification. If there
is no corresponding argument, the file is opened
with the parameter's name as its name and file
typeDAT.

2. If 1 does not apply, but the file is the default
textfile INPUT (that is, not a declared file with
this name but some other component type), it is

Input and Output 15-38

opened with a default specification identifying the
console terminaL

3. Otherwise, the file is available only as an internal
data structure (that is, it is not used for device I/O).
The operation of RESET is the same, however: The
file's first data item, if any, becomes the current
value offile t , and so forth.

If the default textfile INPUT is referenced by GET,
READ, or READLN, it is opened by the implicit
application of RESET, as above.

If the file is a nonempty textfile and does not end in an
end-of-line indicator, RESET puts one there before
moving to the beginning; this assures that every line in
a textfile is properly terminated.

15-39 Input Procedures

Output Procedures
The output procedures described in this section apply
primarily to files opened for sequential access.
However, these procedures can also be used on files
opened for direct access. Table 15-3 summarizes these
procedures.

Procedure

PUT

REWRITE

WRITE

Input and Output

Table 15-3. Output Procedures

Purpose

appends the contents of a file
buffer variable to a file.

erases records in a specified
file, positions the file at its
end, and changes the mode to
generation.

adds one or more expressions
to a specified file.

15-40

PUT

The PUT procedure writes the current contents of a file
buffer variable to the associated file, device, or circuit.
For file output, it appends a new component to a file at
the current position. If the current position is end-of­
file, the end-of-file now follows the added component. If
the file is open and at end-of-file, PUT appends a record
(or, for textfiles, a character) to the file; if immediately
preceded by LOCATE (which cannot be used with
textfiles), PUT replaces the located record.

Call Format

PUT(file)

Arguments

file. The argument is a file variable representing the
output file. Prior to the call, the file must be in
generation mode Ctopen for output").

For example, the following sequence appends a record
to the file personnel:

VAR personnel: FILE OF RECORD
name: VARYING-STRING(80);
hiredate: LARGE-INTEGER;
hiresalary, currentsalary: REAL;
END;

BEGIN
REWRITE(personnel);
{ Erase file; position at end. }
WITH personnel" DO BEGIN
{ Assign to variable. }

name: = 'Ozgood Franklin';

15-41 Output Procedures

hiredate: = TIME-VALUE(
I 1-0CT -198 t');

hiresalary : = 12000.;
cu rrentsalary : = 20000.;
END;

PUT(personnel);
{ Append record. }

END

REWRITE

The REWRITE procedure erases any records in the
specified file and positions the file at its end; that is,
EOF becomes TRUE for the file, and it is ready for
output. The procedure changes a file's mode to
genera tion.

Call Format

REWRITE(file)

Arguments

file. The argument is a file variable representing the
file to be rewritten. Following the call, the file is in
generation mode (ttopen for output") and the content of
file f is undefined because the file is empty.

If it is currently closed, the file may be opened
implicitly by REWRITE; the particular sort of I/O
connection made is determined as follows:

1. If the file is named as a program parameter,
REWRITE opens it implicitly, with the
corresponding argument (a string) as its file
specification. If there is no corresponding

Input and Output 15-42

argument, the file is opened with the parameter's
name as its name and file type DAT.

2. If 1 does not apply, but the file is the default
textfile OUTPUT (that is, not a declared file with
this name but some other component type), it is
opened with a default specification identifying the
console terminal.

3. Otherwise, the file is available only as an internal
data structure (that is, it is not used for device lIO).
The operation of REWRITE is the same, however:
The file's data is effectively erased, the current
content of file i becomes undefined, and EOF is
TRUE.

If the default textfile OUTPU'l1 is referenced by PUT,
WRITE, or WRITELN, it is opened by the implicit
application of REWRITE, as described above.

WRITE

The WRITE procedure adds one or more expressions to
the specified file. If the specified file is a textfile,
expressions that are not string values already are
converted to suitable character strings before being
written out. With open files that are not textfiles, the
procedure writes one record for each expression in the
source list. With an open textfile, it writes the
converted character string one character at a time,
crossing record boundaries if necessary.

The written output in an open file begins at the current
record, which is either the one located by the
immediately previous LOCATE operation; the record
following the one last written by WRITE, PUT, or
WRITELN; or, following REWRITE, the first record in
an otherwise empty file.

15-43 Output Procedures

Call Format

WRITE(
file,
sou rce-I ist
)

Arguments

file. This optional argument names a file variable to
which the new data is added. The file must be in
generation mode Copen for output"). (For instance, this
precondition is satisfied immediately after a REWRITE
operation.) If the file is omitted, the WRITE operation
applies to the default textfile OUTPUT; if 0 UTPUT is
currently closed, the procedure opens it implicitly by
applying REWRITE. Following a WRITE operation,
the mode is still generation, and the content of the
buffer variable (file i) is undefined.

source-list. This list supplies one or more INTEGER,
BOOLEAN, floating-point, character-string, or
enumerated-type expressions, separated by commas, if
the output file is a textfile. If the output file is not a
textfile, the expressions must have a data type that is
assignment compatible with the type of file i. The
expressions in the source list are added, one by one, to
the output file, beginning at the current position, until
the source list is exhausted.

Field-width specifiers for textfile output. When the
output file is a textfile, the sources can be suffixed with
field-width specifiers; these give the total width in
characters of the output field and, for fixed-point
representations of real numbers, the number of
fractional digits displayed.

Input and Output 15-44

The specifiers have the following formats, where e is
the expression to be wri tten out:

e:width
{ Where e is a character, string, BOOLEAN, INTEGER,
REAL, DOUBLE, or enumerated value. }

or

e:width:fraction
{ Only where e is of type REAL or DOUBLE. }

In both cases, width is an INTEGER expression giving
the total width of the output field; fraction is an
INTEGER expression giving the number of fractional
digits shown for a real number displayed in fixed-point
notation.

Note that the total field width includes signs, the letter
E, and spaces, as applicable to the source data type.

Algorithms

The exact meaning of WRITE depends on whether the
output file is a textfile. Briefly, the differences involve
the conversions, performed when writing to textfiles,
from the source expressions' types to character string
representations. For files of other types, no conversions
are performed; the types of the source expressions must
be assignment compatible with the type of the file's
buffer variable.

Files Other than Textfiles

When f is not a textfile, the operation

WRITE(f,s 1 ,s2, ... sn)

is equivalent to

begin WRITE(f,s1);WRITE(f,s2); ... WRITE(f,sn) end

15-45 Output Procedures

where s 1 to Sn are expressions of a type compatible with
ft. (This is merely a formal description of WRITE's
variable number of arguments.)

The operation

WRITE(f,s)

where s is an expression of a type compatible with f t ,
is equivalent to:

begin f i : = s; PUT(f) end

Note that, since the conditions for PUT apply, file f is in
generation mode both before and after a WRITE
opera tion, and following a WRITE opera tion, the
current content of f i is undefined. The PUT operation
writes a single record to the file, containing the value of
s.

If the file is open, its record size in bytes must equal the
size off t unless f t is of type VARYING-STRING.

Textfiles

When WRITE applies to a textfile, the source
expressions are in general converted to string values
before output; sources that are themselves string
values are not converted, although their placement in
the field can be controlled with field width specifiers.

If no field width specifiers appear in the source list,
default widths are chosen appropriately for each data
type, the expressions are converted to representative
string values, and the strings are appended to the
textfile. (At this point, the converted string value is
written character-by-character to the file, as for non­
textfiles.)

The following paragraphs describe the conversions and
default field widths for each source data type.

Input and Output 15-46

CHAR. The representation written to the file is a single
character preceded by width -1 spaces. The default
value of width is 1 (that is, there is no preceding space).

Strings. The representation written to the file is the
string value right-justified in the field. If the string is
longer than the specified width, it is truncated on the
right. The default field width is the actual length of the
string in characters.

INTEGER. The representation written to the file is the
decimal representation of the integer; it is signed if and
only if it is negative. For integers, any specified field
width defines a minimum field width; integer
representations are never truncated. If the integer
representation is shorter than the specified or default
field width, the representation is right-justified in the
field. If the INTEGER value is zero, the single digit 0 is
right-justified in the field. The default field width is 10
characters.

BOOLEAN. The representation written to the file is the
uppercase string TRUE or FALSE, right-justified in the
field. The default value of width is 6. If a field width is
specified and is shorter than the string representation,
the string is truncated on the right.

Enumerated type. The uppercase version of the
enumerated value's identifier is written out. The
default field width is the size in characters of the type's
longest identifier, plus 1, up to a maximum of 32. The
identifier is right-justified in the field.

REAL, DOUBLE. REAL and DOUBLE values can be
written in floating-point notation (if no fraction
specifier is included) or in fixed-point notation (if
fraction is specified).

15-47 Output Procedures

The floating-point representation is as follows (note
that the parts are not separated by spaces in the actual
output):

sign int-digit . frac-digits E esign exp

where

sign (-) is included only if the value is negative and is
otherwise a single space,

int-digit is the first digit of the value,

. (decimal point) separates the integral and fractional
digits,

frac-digits are the specified number of fractional
digits,

E is the letter E,

esign (sign of the exponent) is either - or + as
appropriate (+ if the floating-point value is zero), and

exp is an exponent (with a leading zero if
appropriate). If the output data is type DOUBLE and
the G-floating format is used, a three-digit exponent
is used; otherwise, a two-digit exponent is used. The
exponent for the value zero is 00.

The number of fractional digits (frac-digits) depends on
the actual field width. The actual field width is either
the specified field width or 8 (9 for G-floating),
whichever is larger. The number of fractional digits is
the actual field width minus 7 (7 [8 for G-floating] is
the total number of characters used by the other
components). The floating-point value is adjusted to
have one digit to the left of the decimal point and is
rounded to this number of fractional digits.

For example, assume that the REAL variable velocity
has the value -313.4789 X 10- 17• The operation

WRITE(f,velocity: 10)

Input and Output 15-48

appends the following field to textfile f (where the angle
brackets are shown here for clarity, to delimit the field):

(-3.13SE-1S)

If the number of fractional digits is specified in the
source, the fixed-point representation is used:

sign int-digits . frac-digits

where

sign (-) is included only if the value is negative and
is otherwise a space,

int-digits are the integral digits (0 is shown for the
value zero and for fractions), and

frac-digits are the specified number of fractional
digits.

The floating-point value is rounded to this number of
fractional digits before it is written out. If the specified
or default field width is larger than necessary, the
fixed-point representation is right-justified in the field.
Otherwise, any specified width actually defines a
minimum field width; fixed-point representations are
never truncated. Note that the floating point value 0 is
written 0.0 in fixed-point notation. The default field
widths are 12 characters for REAL and 20 for
DOUBLE.

15-49 Output Procedures

Direct Access Procedures

The procedures described in this section are generally
valid only on files opened for direct access. Table 15-4
summarizes these procedures.

Table 15-4. Direct Access Procedures

Procedure

FIND

LOCATE

Input and Output

Purpose

posi tions a file at a specified
record for input.

positions a file at any record
for output.

15-50

FIND

The FIND procedure positions a file at a specified
record. The file must not have type TEXT, must have
fixed-length records, and must have been explicitly
opened with ACCESS$DIRECT. The file can be in
either mode (inspection or generation) before the FIND
call; after the call, its mode is inspection, it is positioned
at the indicated record, and the file's buffer variable
contains the record's contents. EOF is undefined after
any FIND operation.

Call Format

FIND(
file-variable,
record-number
)

Arguments

file-variable. This argument is a file variable
representing the file.

record-number. This argument is a positive INTEGER
expression giving the record number relative to the
beginning of the file. Record 1 is the file's first record.
You can specify a smaller record number than in the
last FIND call, allowing you to move either backward
or forward in the file. The record number must not be
zero or negative.

15-51 Direct Access Procedures

LOCATE

The LOCATE procedure positions a direct-access file at
any record, so that the next PUT (or WRITE) operation
can modify that record. LOCATE can specify a record
beyond the end-of-file; if so, LOCATE extends the file
by adding undefined records between the original end­
of-file and the indicated location.

In general, neither GET nor PUT is valid immediately
after a LOCATE-PUT sequence; in particular, when
the first LOCATE-PUT writes a record other than at
the first position in a file, subsequent writing should be
done with more LOCATE-PUT sequences.

Call Format

LOCATE(
file,
record-nu m ber
)

Arguments

file. This argument supplies a file variable that was
opened with ACCESS$DIRECT. The file can be in
either inspection or generation mode before the call;
after the call, its mode is generation.

record-number. This argument is a positive INTEGER
expression giving the record number relative to the
beginning of the file; it must not be zero or negative.
Record 1 is the file's first record.

Input and Output 15-52

Miscellaneous Routines

The routines described in this section do not fall into
any of the previous categories. They are generally used
when dealing with sequential access files; however,
they can also be used on files opened for direct access.
Table 15-5 summarizes these routines.

Routine

EOF

FLUSH

Table 15-5. Miscellaneous Routines

Purpose

indicates whether a specified
file is positioned at end-of-file.

flushes the 110 buffers
associated with an open file.

15-53 Miscellaneous Routines

EOF

The EOF function indicates whether a specified file is
positioned at end-of-file.

Call Format

RESULT: = EOF(file)

Arguments and Result

file. The optional argument is a file variable. If it is
omitted, the function applies to the standard textfile
INPUT.

The result is the BOOLEAN value TRUE if the file is at
end-of-file, otherwise FALSE.

FLUSH

The FLUSH procedure flushes the I/O buffers
associated with an open file. For a disk file, this causes
any records still residing in the I/O system's buffers to
be written to the disk.

Note: To flush all buffers, the file must either be open
for direct access, or the BUFFERING parameter on the
OPEN procedure must be set to FALSE. (That is, the
file cannot be in ((file transfer" mode.)

Call Format

FLUSH(file)

Arguments

file. The argument is the Pascal file variable associated
with the open file.

Input and Output 15-54

Textfile Manipulation Routines

The routines described in this section apply only to the
handling of textfiles. Table 15-6 summarizes these
routines.

Table 15-6. Textfile Manipulation Routines

Routine

EOLN

Purpose

indicates whether a specified
textfile is positioned at
end-of-line.

GET_CONTROL_KEY waits for a control key
to be pressed at a
terminal and stores it
in a buffer variable.

PAGE

READLN

WRITELN

writes subsequent output to a
textfile on the next page.

reads successive lines from a
textfile and assigns the
values to a list of variables.

appends a complete line of
text to a textfile.

15-55 Textfile Manipulation

EOLN

The EOLN function indicates whether a specified
textfile is positioned at end-of-line.

Call Format

RESULT: = EOLN(file)

Arguments and Result

file. The optional argument is a TEXT variable. If it is
omitted, the function applies to the standard textfile
INPUT. The buffer variable must be valid when the
function is called, and EOF(file) must be FALSE.

The function result is the BOOLEAN value TRUE if
the current component is the end-of-line component,
otherwiseF ALSE.

GET -CONTROLKEY

The GET_CONTROL_KEY procedure waits until a
control key from a specified set is pressed at a terminal
and stores the actual key pressed in a file's buffer
variable. It is useful in writing interactive programs.

Calling the procedure specifying a separate file open to
a terminal does not affect any read or write operations
that may be in progress or issued in the future for the
terminal. That is, the procedure is treated by the
terminal drivers as a ((parallel stream." If a control key
is pressed, any GET_CONTROL_KEY requests are
completed first if the new key was specified in the
requests, and then the key is added to the type-ahead
buffer for any current read request.

Input and Output 15-56

Call Format

GET -CONTROL-KEY(
file,
keys
)

Arguments

file. This argument is a TEXT variable that has been
opened to a terminal device). The file must be in
inspection mode.

keys. This argument supplies a value of type SET OF
0 .. 31, where each element in the set represents one of
the 32 ASCII control characters.

A typical use for this procedure is in a command -driven
utility that must be halted if it gets into an illegal or
otherwise unstoppable state. In this case, a job can
create a process that waits until a CTRL/C is pressed, at
which time the process deletes the creator or performs
some other clean-up activity.

For example:

PROCESS-BLOCK stopper(main-process : PROCESS);
CONST ctrl-c = 3;
VAR t: TEXT;
BEGIN

OPEN (t, FILE-NAME: = 'CONSOLE:');
RESET(t);
GET -CONTROL-KEY(t, [ctrl-c]);
DELETE(main-process);

END;

15-57 Textfile Manipulation

PAGE

The PAGE procedure causes subsequent output to a
textfile to be written on the next page, when the file is
printed out.

Call Format

PAGE{file)

Arguments

file. The optional argument is a variable of type TEXT;
the file must be in generation mode and at end-of-file
prior to the call. If the argument is omitted, PAGE
applies to the default textfile OUTPUT.

If prior to the call, the file is not empty and its last
component is not end-of-line, PAGE performs an
implicit WRITELN(file), to ensure that all lines in the
textfile are properly terminated.

The current component (file i) is always undefined
after a P AG E operation.

READLN

The READLN procedure reads entire lines of input
from a textfile (including, if applicable, the rest of the
current line) and assigns input values to a list of
variables. For textfiles, whether opened implicitly or
explicitly, each line corresponds to one record or one
line of input from a terminal. The textfile input can be
considered to be made up of input fields, which are
series of characters representing values, not
necessarily values of type CHAR. The definitions of
fields and of the type conversions are the same as for
the READ procedure.

Input and Output 15-58

The procedure assigns a field, after appropriate type
conversion, to each target variable in the list,
beginning at the current position in the file. Note that
the current position may be in the middle of a line
immediately after a previous GET or READ; if so,
READLN retrieves the rest of that line and as many
new ones as it needs to find values for all the variables
in the list. Immediately following a READLN, the
textfile is positioned either at the beginning of a new
line or at end-of-file.

The assignments continue until either all variables
have been assigned values or end-of-file is encountered.
Line endings and spaces are skipped until the last
target variable has been assigned a value, and the file
is then advanced to the beginning of the next line.

Call Format

READLN(
file,
target-list
)

Arguments

file. This optional argument is a TEXT variable; if it is
omitted, the operation applies to the standard textfile
INPUT. The rules for implicit opening and application
of RESET are the same as for the READ procedure.
Only textfiles are valid for input with READ LN.

target-list. This list optionally supplies one or more
target variables, the data types of which are INTEGER,
CHAR, string, floating-point, or enumerated types. The
variables are separated by commas, and there must not
be more in the list than there are fields remaining in
the file. If you do not supply a target list, the effect is to
simply advance to the next line of input.

15-59 Textfile Manipulation

Algorithms

The operation

READLN(file, t 1, t2, ... t n)

is equivalent to:

begin READ(file, t1, t2, ... t n); READLN(file) end

The operation

READLN(file)

is equivalent to:

begin WHILE NOT EOLN(file) DO GET(file); GET(file)
end

That is, the READ operations obtain the necessary
number of fields from the file to satisfy the target list,
and then READLN(file) moves the file to the position
following the next end-of-line. This position is either
end-of-file or the beginning of the next line of input.

WRITELN

The WRITELN procedure appends a complete line of
text to a textfile, including the character-string
representations of an optional list of expressions.
Expressions that are not string values already are
converted to suitable character strings before being
written out.

If you specify expressions in WRITELN's argument list,
each one is converted to a suitable string value, as with
WRITE, and written at the current position in the text­
file. Note that the current position can be in the middle
of a line if the previous output to the file was by PUT or
WRITE. If the textfile is open, record boundaries are
crossed as necessary while writing out the strings.
When all the strings have been written out, the current

Input and Output 15-60

line is terminated, so that the next output after
WRITELN begins on a new line. If no expressions are
specified, WRITELN writes an empty line to the file.

Because textfiles cannot be opened for direct access
(and so, LOCATE is invalid), the first expression
written by WRITELN is always written at end-of-file.

Call Format

WRITELN(
file,
sou ree-list
)

Arguments

file. This optional argument supplies a textfile to which
the new data is appended. The file must have type
TEXT and must be in generation mode Ctopen for
output"). (For instance, this precondition is satisfied
immediately after a PUT, WRITE, or REWRITE
operation on a textfile.) If the file is omitted, WRITELN
applies to the default textfile OUTPUT; if OUTPUT is
currently closed, WRITELN opens it implicitly by
applying REWRITE. Following a WRITELN operation,
the mode is still generation, the last data item in the
file is the end-of-line component, and the current
content of the buffer variable (file i) is undefined.

source-list. This optional list supplies one or more
INTEGER, BOOLEAN, floating-point, character­
string, or enumerated-type expressions, separated by
commas. The expressions in the source list are
appended, one by one, to the output file until the source
list is exhausted. Before being written out, each source
expression is converted to a suitable string value, as
with the WRITE procedure applied to textfiles. If no
source expressions are supplied, WRITELN merely

15-61 Textfile Manipulation

appends the end-of-line component; any unfinished line
of output is therefore terminated, and subsequent
output appears on the next line.

Field-width specifiers. The sources can be suffixed with
field-width specifiers; these give the total width in
characters of the output field and, for fixed-point repre­
sentations of real numbers, the number of fractional
digits displayed. The specifiers have the following
formats, where e is the expression to be written out:

e:width {Where e is a character, string, BOOLEAN,
INTEGER, REAL, DOUBLE, or enumerated value. }

or

e: wi dth: f r act i on
{ Only where e is of type REAL or DOUBLE. }

In both cases, width is an INTEGER expression giving
the total width of the output field; fraction is an
INTEGER expression giving the number of fractional
digits shown for a real number displayed in fixed-point
notation. Note that the total field width includes signs,
the letter E, and spaces, as applicable to the source data
type (see the WRITE procedure for details).

Algorithms

The operation

WRITELN(f,s l,s2, ... Si, ... Sn)

is equivalent to:

begin WRITE(f,s 1 ,s2, ... sj, ... sn); WRITELN(f) end

The WRITE operations append each converted source
expression (5j) at end-of-file. The expressions must be
convertible to character strings, as described above.
The operation WRITELN(f) appends the end-of-line
component to file f, leaves f in generation mode, and
makes the current contents of f t undefined.

Input and Output 15-62

File Utility Procedures

The file utility procedures described in this section are
performed by the V AXELN File Service for disk and
tape volumes. Table 15-7 summarizes these procedures.

Table 15-7. File Utility Procedures

Procedure Purpose

COPY_FILE makes an exact duplicate of
the specified file.

CREATE_DIRECTORY creates a directory
on the specified disk volume.

DELETE-FILE deletes a file from a mounted
disk volume.

DIRECTORY-CLOSE closes an existing directory on
a mounted disk volume.

DIRECTORY-LIST obtains the next filename
from a mounted disk
directory.

DIRECTORY-OPEN opens an existing directory on
a mounted disk volume in
preparation for a directory
listing.

PROTECT-FILE changes the protection of a
disk file.

RENAME-FILE renames a disk file.

Notes: To use these procedures, include the module
$FILE_UTILITY from the RTLOBJECT library in the
compilation of your program.

15-63 File Utility Procedures

The CREATE_DIRECTORY, DELETE_FILE,
PROTECT-FILE, and RENAME_FILE procedures are
invalid for tape volumes.

The following Pascal types (among others) are declared
in module $FILE_DTILITY for use with the file utility
procedures:

TYPE
{ Directory file definition.}
eln$dir-file = packed record

dapd: i dap$r -dapd;
dir-status: integer;
server: varying-string(255);
volume: varying-string(255);
directory: varying-string(255);
end;

{ Protection code bit definitions. }
file$protection-types = (

file$deny-read-access,
file$deny-write-access,
fi I e$d eny-execute-access,
file$deny-delete-access);

{ Protection code set definition. }
file$protection-set = packed set of

file$deny-read-access .. file$deny-delete-access;

{ Protection field definitions. }
file$protection-categories = (file$system,

file$owner, file$group, file$world);

{ Record field definition. }
file$protection =

packed array[file$system . .file$world]
of file$protection-set;

Input and Output 15-64

{ File attributes record definition. }
file$attributes-record = packed record

organization: file$organization;
record-format: file$record-format;
record-attributes: file$record-attributes;
bucket-size: [byte] 0 .. 255;
maximum-record-size: [word] 0 .. 65535;
block-size: [word] 0 .. 65535;
fixed-control-size: [word] 0 .. 65535;
default-extension-quantity: [word] 0 .. 65535;
longest-record-Iength: [word] 0 .. 65535;
first-free-byte: [word] 0 .. 65535;
maximum-record-number: integer;
file-options: file$file-options;
device-characteristics:

file$device-characteristics;
allocation-quantity: integer;
highest-block: integer;
end-of-file-block: integer;
starting-block-number: integer;
revision-number: integer;
creation-date: large-integer;
revision-date: large-integer;
expiration-date: large-integer;
backup-date: large-integer;
owner: integer;
protection: file$protection;
resultant-filename: varying-string(255);
end;

(See the source file FILEUTIL.PAS for more
informa tion.)

15-65 File Utility Procedures

COPY-FILE

The COPY_FILE procedure makes an exact duplicate
of the specified file. To use the procedure, you must
include the module $FILE-UTILITY in the
compilation.

Call Format

ELN$COPY -FILE(
source-file,
destination-file,
status,
sou rce-fi Ie-error,
block-mode,
count,
resultant-source-file,
resu Ita n t-destina tion-file
)

Arguments

source-file. This argument is a string of up to 255
characters giving the file specification of the file to
copy. Wildcard characters are not permitted.

destination-file. This argument is a string of up to 255
characters giving the file specification of the copy.
Wildcard characters are not permitted.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

source-file-error. This optional argument is a
BOOLEAN expression indicating which file the error
occurred on, if the status code is not odd. TRUE

Input and Output 15-66

indicates that the error exists in the source file; FALSE
indicates that the error exists in the destination file.

block-mode. This optional argument is a BOOLEAN
variable that specifies the mode in which the file was
copied. TRUE indicates block mode (that is, the file was
copied by blocks); FALSE indicates record mode (that
is, the file was copied one record at a time). Note that
block mode is more efficient for disk files.

count. This optional argument is an INTEGER
variable that specifies the number of blocks or records
copied, as determined by the block-mode argument.

resultant-source-file. This optional argument is a
string of up to 255 characters giving the resultant
filename of the source file.

resultant-destination-file. This optional argument is a
string of up to 255 characters giving the resultant
filename of the destination file.

CREATE-DIRECTORY

The CREATE-DIRECTORY procedure creates a
directory on the specified File Service disk volume. The
directory must be created on a VAXELN disk volume;
the procedure cannot create a directory on a remote
non-V AXELN system's volume.

This procedure is invalid for tape volumes. To use the
procedure, you must include the module
$FILE-UTILITY in the compilation.

15-67 File Utility Procedures

Call Format

ELN$CREATE-DIRECTORY(
d i recto ry-na me,
status,
owner,
resultant-directory-name
)

Arguments

directory-name. This argument is a string of up to 255
characters giving the file specification for the directory
to be created. Wildcard characters are not permitted.
For example, 'DISK$TEST: [DATA]' creates the directory
DATA.DIR in the master file directory on the volume
DISK$TEST. Note that the procedure creates only the
last directory in the specification; any intermediate
directories (as in 'DISK$TEST: [intermediate.last],) must
already exist, or the error status ELN$_DNF is
returned.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

owner. This optional argument is an INTEGER value
that specifies the User Identification Code of the owner
of the file.

resultant-directory-name. This optional argument is a
string of up to 255 characters giving the resultant
filename of the created directory file.

Input and Output 15-68

DELETE-FILE

The DELETE-FILE procedure deletes a file from a
mounted disk volume. This procedure is invalid for tape
volumes. To use the procedure, you must include the
module $FILE_UTILITYin the compilation.

Call Format

ELN$DELETE-FILE(
file-name,
status,
resu Ita n t-file-na me
)

Arguments

file-name. This argument is a string of up to 255
characters giving the file specification of the file to be
deleted. Wildcard characters are not permitted. If an
explicit version number is not specified, or if no
semicolon or period is specified, the most recent version
of the file is deleted. For example, 'test.dat; 23'
designates version 23 is to be deleted; 'test.dat;',
'test.dat.', and 'test.dat' all designate the most recent
version of the file is to be deleted.

status. This optional argument is an INTEGER
variable that receives the completion status of. An
exception is raised if the procedure does not succeed and
this argument is omitted.

resultant_file_name. This optional argument is a string
of up to 255 characters giving the resultant filename of
the deleted file.

15-69 File Utility Procedures

DIRECTORY -CLOSE

The DIRECTORY-CLOSE procedure closes an existing
directory on a mounted disk volume. This procedure is
used to terminate a directory listing prematurely
without having to call DIRECTORY_LIST until all of
the files in the directory have been exhausted. To use
the procedure, you must include the module
$FILE_UTILITY in the compilation.

Call Format

ELN$DIRECTORY -CLOSE(
dir-file,
status
)

Arguments

dir-file. This argument is a variable of type
t ELN$DIR-FILE that supplies a pointer to the

directory file. (The type is declared in the module
$FILE_UTILITY.)

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

DIRECTORY -LIST

The DIRECTORY_LIST procedure obtains the next
filename from a mounted disk directory. To use the
procedure, you must include the module
$FILE-UTILITY in the compilation.

Input and Output 15-70

Call Format

ELN$DIRECTORY -LlST(
dir-file,
directory-name,
file-name,
status,
file-attributes
)

Arguments

dir-file. This argument is a variable of type
t ELN$DIlLFILE that supplies a pointer to the

directory file. (The type is declared in the module
$FILE_UTILITY.)

directory-name. This argument is a variable of type
V ARYING_STRING(255) that receives the resultant
directory specifica tion (w hen a wildcard directory
specification is used in DIRECTORY-OPEN). That is,
if more than one directory is tra versed by
DIRECTORY_LIST, the directory name will change.

file-name. This argument is a variable of type
V ARYING-STRING(255) that receives the filename.
Note that it receives the filename only, not the volume
or directory name.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

file-attributes. This optional argument is a variable of
type t FILE$ATTRIBUTES_RECORD that supplies a
pointer to the file attributes record. (The type is
declared in the module $FILE_UTILITY.)

15-71 File Utility Procedures

DIRECTORY -OPEN

The DIRECTORY_OPEN procedure opens an existing
directory on a mounted disk volume in preparation for a
DIRECTORY-LIST operation. To use the procedure,
you must include the module $FILE-UTILITY in the
compila tion.

Call Format

ELN$DIRECTORY -OPEN(
dir-file,
search-name,
volume-name,
directory-name,
status,
server-name,
file-attributes
)

Arguments

dir-file. This argument is a variable of type
t ELN$DIR-FILE that supplies a pointer to the

directory file. (The type is declared in the module
$FILE_UTILITY.) Prior to calling the procedure, you
must allocate an ELN$DIR-FILE variable, usually
with the NEW procedure.

search-name. This argument supplies a string of up to
255 characters giving a specification of an existing
directory to search for. The general form of the string is:

disk: [directory]filename.type;version

The filename, type, and version can use the ~~wildcard"
characters, % and *, as in V AXNMS file specifications.
The % character matches any character in the
corresponding position; the * character matches any

Input and Output 15-72

character or string in the indicated positions, including
null strings.

For example, the string

DISK$TEST: [testdata]* A % % c. *; *

matches any specification with a filename of at least
four characters, the last being C and the fourth-from­
last being A, and any file type or version. Wildcards are
not allowed in volume names or, for V AXELN volumes,
in directory specific a tions.

If the directory is on a non-V AXELN (for example,
VAXNMS) volume, the asterisk (*), percent sign (%),
and ellipsis C ..) can be used in the directory
specification. The ellipsis following a directory name
matches all directories below and including the named
directory.

volume-name. This argument is a variable of type
V ARYING_STRING(255) that receives the volume
name if the procedure is successful.

directory-name. This argument is a variable of type
VARYING-STRING(255) that receives the directory
name if the procedure is successful.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

server-name. This optional argument is a variable of
type V ARYING-STRING(64) that receives the
resultant node specification or server process port
name.

file-attributes. This optional argument is a variable of
type t FILE$ATTRIBUTES-RECORD that supplies a
pointer to the file attributes record. (The type is
declared in the module $FILE_UTILITY.)

15-73 File Utility Procedures

PROTECT-FILE

The PROTECT-FILE procedure changes the file
ownership DIC and/or the protection code for a specified
disk file. This procedure is invalid for tape volumes. To
use the procedure, you must include the module
$FILE_DTILITY in the compilation.

Call Format

ELN$PROTECT -FILE(
file-name,
owner,
protection,
status,
resu Itant-file-name
)

Arguments

file-name. This argument is a string of up to 255
characters giving the file specification. Wildcard
characters are not permitted.

owner. This optional argument is an INTEGER value
that supplies the ownership DIC of the file. If this
argument is not specified, or is specified as zero, the file
ownership is not changed.

protection. This optional argument supplies a
protection code of type FILE$PROTECTIO N for the
file. (The type is declared in $FILE-DTILITY.) The
protection code is a I6-bit word that is composed of four
4-bit fields. Each field represents a category of users:
system, owner, group, and world. The protection field
definitions are values of the predeclared enumerated
type FILE$PROTECTION-CATEGORIES. Each of the
four fields consists of four I-bit indicators that specify

Input and Output 15-74

the access denied each category. These protection code
bit definitions are values of the predeclared
enumerated type FILE$PROTECTION_TYPES. If this
argument is not specified, the protection code is not
changed.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

resultant-file_name. This optional argument is a string
of up to 255 characters giving the resultant filename of
the file.

RENAME-FILE

The RENAME-FILE procedure renames a disk file.
This procedure is invalid for tape volumes. To use the
procedure, you must include the module
$FILE_UTILITY in the compilation.

Call Format

ELN$RENAME-FILE(
old-filename,
new-filename,
status,
resultant-old-filename,
resultant-new-filename
)

Arguments

old-filename. This argument is a string of up to 255
characters giving the current file specification.
Wildcard characters are not permitted. (To rename
several related files, use DIRECTORY-LIST to find
them and RENAME-FILE to rename each one.)

15-75 File Utility Procedures

new-filename. This argument is a string of up to 255
characters giving the new file specification. The new
volume name must be the same as the old one; that is, if
the old specification includes a volume name, the new
one must either supply the same volume name or no
volume name. Any parts of the current specification
that are not supplied in this argument are obtained
from old-filename.

status. This optional argument is an INTEGER
variable that receives the completion status. An
exception is raised if the procedure does not succeed and
this argument is omitted.

resultant_old_filename. This optional argument is a
string of up to 255 characters giving. the resultant
filename of the old file.

resultant_new_filename. This optional argument is a
string of up to 255 characters giving the resultant
filename of the new file.

Input and Output 15-76

Disk Utility Procedures

The disk utility procedures described in this section are
performed by the V AXELN disk File Service. Table 15-
S summarizes these procedures.

Table 15-8. Disk Utility Procedures

Praced u re Pu rpase

DISMOUNT-VOLUME dismounts a File Service
volume on the specified
disk drive.

INIT-VOLUME

MOUNT_VOLUME

initializes a File Service disk
for use as a file-structured
volume.

mounts a File Service disk for
use as a file-structured
volume.

Note: To use these procedures, include the module
$DISK-UTILITY from the RTLOBJECT library in the
compilation of your program.

15-77 Disk Utility Procedures

DISMOUNT-VOLUME

The DISMOUNT_VOLUME procedure dismounts a
File Service volume on the specified disk drive. The
procedure must be called on the same node that has the
File Service. To use the procedure, you must include the
module $DISK_UTILITYin the compilation.

A dismounted disk can be opened and used for non-file
logical block I/O. Note that the user must have RWED
privileges to dismount a volume.

Call Format

ELN$DISMOUNT -VOLUME(
device,
status
)

Arguments

device. This argument supplies a string of up to 30
characters naming the disk drive; for example, 'DQA l'
for drive one on disk controller DQA.

status. This optional argument is an INTEGER
variable that receives the completion status.

iNIT-VOLUME

The INIT-VOLUME procedure initializes a File
Service disk for use as a file-structured volume. Disks
must be initialized once before they are used. You can
initialize any volume on any node running a V AXELN
system, but only if the volume is not mounted or open
for logical I/O. The procedure must be called on the
same node that has the File Service. To use the

Input and Output 15-78

procedure, you must include the module
$DISK_UTILITY in the compilation.

This procedure is similar in nature to the VAXNMS
command INITIALIZE, as used for disk volumes. (For
additional information, consult the VAXNMS
documentation.)

Call Format

ELN$INIT-VOLUME(
device,
volume,
defau It-extension,
username,
owner,
volu me-protection,
file-protection,
record-protection,
accessed-directories,
maximum-files,
user ~directories,
file-headers,
windows,
cluster-size,
index-position,
data-check,
share,
group,
system,
verified,
bad-list,
status
)

15-79 Disk Utility Procedures

Arguments

device. This argument supplies a string of up to 30
characters, giving the device specification of the disk
drive; for example, 'DQA l' for drive 1 of controller
DQA. The node must be specified explicitly for a drive
on another node.

volume. This argument supplies a string of up to 12
characters, giving the volume label for the disk. The
only valid characters are: A .. Z, 0 .. 9, $, and_.

default-extension. This optional argument supplies a
value in the range 0-65,535 (type DSK$UWORD)
giving the default extension quantity in blocks for all
files on the disk volume. The extension quantity is
applied when the size of a file is increased beyond its
initial allocation by an update. The default is 5 blocks.

username. This optional argument supplies a string of
up to 20 characters, giving a user name to be recorded
on the volume. If it is omitted, the default is VAXELN.

owner. This optional argument supplies an integer
identifying the volume owner (UIe). The default is
%xOOOlOOOl.

volume-protection. This optional argument supplies a
value of type DSK$W -PRO (see the example at the end
of this section) that specifies the protection for the
volume. If it is not specified, users in all categories
(system, owner, group, and world) have RWED (read,
write, execute, and delete) access. When you specify
protection for an entire disk volume, ((execute"
privilege implies ((create" privilege. Note that the
group, share, and system arguments can also be used to
specify volume protection.

file-protection. This optional argument supplies a
value of type DSK$W-PRO that specifies the default

Input and Output 15-80

protection code for all files on the volume. If it is
omitted, the system and owner have RWED access, the
group has RE access, and the world has no access.

record-protection. This optional argument supplies a
value of type DSK$W _PRO that supplies the protection
code for records. If omitted, the system and owner have
RWED access, the group has read access, and the world
has no access. (This feature is not currently used.)

accessed-directories. This optional argument supplies
a value in the range 0-255 (type DISK$UBYTE)
designating the number of directories that can be
cached by the File Service by default. The default is 3.

maximum-files. This optional argument is an integer
that supplies the maximum number of files that can
exist on a disk. The default is calculated by the
procedure based on the size of the disk.

user-directories. This optional argument supplies a
value in the range 16-16000 (type DSK$UWORD)
specifying the number of entries that are preallocated
for user directories. The default is 16.

file-headers. This optional argument is an integer that
supplies the number of file headers allocated initially
for the index file (the file for the volume's file
structure). The maximum value is the same as the
maximum-files value. The default is 16.

windows. This optional argument is a value of type
DSK$UBYTE in the range 7-80 that supplies the
number of mapping pointers to be allocated for file
windows. When a file is opened, the mapping pointers
are used to describe the logical segments of the file for
access. The default is 7.

cluster -size. This optional argument supplies a value in
the range 1 to 1/100 the size of the vol ume (type
DSK$UWORD) giving the cluster size. The default is 1

15-81 Disk Utility Procedures

for volumes with less than or equal to 50000 blocks and
otherwise 3. The cluster size is the minimum allocation
unit for the volume.

index-position. This optional argument supplies a
value of type DSK$_POSITION that specifies the
position of the index file. Possible values are
DSK$_BEGINNING, DSK$_MIDDLE, and
DSK$-END. The default is DSK$_MIDDLE.

data-check. This optional argument is a value of the
type DSK$_DATA-CHECK that enables or disables
data checking on read or write operations. Possible
values are DSK$-READ (check following all read
operations), DSK$-WRITE (check following all write
operations), and DSK$-NOCHECK. The default is
DSK$-NOCHECK.

share. This optional argument supplies a BOOLEAN
value that designates whether the volume is shareable.
The default is TRUE, implying that users in all
categories have read, write, execute, and delete
privileges. If the argument is FALSE, the default
protection is no access for group and world, RWED
access for system and owner.

group. This optional argument supplies a BOOLEAN
value that designates that the disk volume is a group
volume. If it is TRUE, the owner UIC defaults to the
group number as specified in the owner argument, and
the member number defaults to o. The default is
FALSE. If group is TRUE and share is FALSE, the
volume protection is RWED for the group, owner, and
system. However, if group and share are both TRUE,
the volume protection is RWED for all user categories.

system. This optional argument supplies a BOOLEAN
value that designates that the volume is a ((system
volume." In this case, the default protection is RWED
access for all users of the system. Only users with

Input and Output 15-82

system UIes (group numbers of 0-10 octal, inclusive)
can create directories on system volumes. The default is
TRUE.

verified. This optional argument supplies a BOOLEAN
value that designates whether the volume has
information about where bad blocks are located. The
default is TRUE. FALSE means that the procedure
should ignore information already on the disk about
bad blocks. Some disks do not contain any bad block
information (for example, RD51s and RD52s). For these
types of disks, this argument should be set to FALSE.

bad-list. This argument is a variable of type
DSK$_BADLIST that supplies a list of bad blocks.
These are areas on the volume that are knovyn to be
faulty and are marked by the procedure so that no data
will be written on them. The bad block list specifies a
range of either logical or physical block numbers. For
physical block numbers, pbn-format must be TRUE;
for logical block numbers, it must be FALSE. (See the
example below.) The argument is required, although a
null list can be specified. To specify a null list of bad
blocks, allocate a zero-extent array or typecast the
variable to an array of zero extents, for example:

bad-list: = bad-block-list: :dsk$-badlist(O);

status. This optional argument is an INTEGER
variable that receives the completion status.

Example

The following Pascal types (among others) are defined
in module $DISK-UTILITY:

TYPE
dsk$-category = (dsk$-system, dsk$-owner,

dsk$-group, dsk$-world);

15-83 Disk Utility Procedures

dsk$-prot-names = (dsk$v-read ,dsk$v-write,
dsk$v-exec, dsk$v-delete);

dsk$w-pro = packed array
[dsk$-system .. dsk$-world] of dsk$b-pro;

dsk$b-pro = packed set of
dsk$v-read .. dsk$v-delete;

dsk$-badblock = packed record
case integer of
0: (start-Ibn: integer;

Ibn-count: [word]dsk$uword;
$$fiIlO: [word]dsk$uword;
);

1: (sector: [byte]dsk$ubyte;
track: [byte]dsk$ubyte;
cylinder: [word]dsk$uword;
pbn-count : [word]dsk$uword;
pbn-format: boolean;
$$fiIl1 : packed array [1 .. 15] of boolean;
);

end;

dsk$-badlist(badblocks : integer) =
array [l .. badblocks] of dsk$-badblock;

In a program, a volume might be initialized as follows:

VAR
bad-block-list: dsk$-badlist(10);
volpro : dsk$w-pro;
i : dsk$-category;

BEGIN
for i : = dsk$-system to dsk$-group do

volpro[i] : = [];
volpro[dsk$-world] : = [dsk$v-read,

dsk$v-write,
dsk$v-exec,
dsk$v-delete];

Input and Output 15-84

bad-block-list[l].start-lbn : = 26899;
bad-block-list[l].Ibn-count: = 1;
bad-block-list[l].pbn-format: = false;

INIT -VOLUME{
'DMA 1',
'TESTVOLU M E',
default-extension: = 10,
volume-protection: = volpro,
windows: = 7,
bad-list: = bad-block-list: :dsk$-badlist{l)
);

(See the source file DISKUTIL.PAS for more
information.)

MOUNT-VOLUME

The MOUNT-VOLUME procedure mounts a File
Service disk for use as a file-structured volume. The
procedure requires that the device and its driver
Oinked to the File Service) be present in the same
system from which it is called. The procedure does not
return until the disk is completely mounted. To use the
procedure, you must include the module
$DISK_UTILITY in the compilation.

Call Format

ELN$MOUNT -VOLUME{
device,
volume,
status
)

15-85 Disk Utility Procedures

Arguments

device. This argument is a string of up to 30 characters
naming the disk drive on which the volume is to be
mounted; for example, 'DQA l' for drive 1 on controller
DQA.

volume. This optional argument is a variable of type
V ARYING-STRING(12) that supplies the volume
label. If it is omitted, the procedure simply mounts
whatever volume is loaded in the indicated drive.

status. This optional argument is an INTEGER
variable that receives the completion status.

Input and Output 15-86

Tape Utility Procedures

The tape utility procedures described in this section are
performed by the V AXELN tape File Service. Table 15-
9 summarizes these procedures.

Table 15-9. Tape Utility Procedures

Procedure Purpose

DISMOUNT-TAPE-VOLUME dismounts a File
Service tape on the
specified tape drive.

INIT_TAPE_ VOLUME

MOUNT_TAPE-VOLUME

initializes a File
Service tape for use as
a file-structured
volume.

mounts a File Service
tape for use as a file­
structured volume.

Note: To use these procedures, include the module
$TAPE_UTILITY from the RTLOBJECT library in the
compila tion of your program.

15-87 Tape Utility Procedures

DISMOUNT-TAPE-VOLUME

The DISMOUNT-TAPE_VOLUME procedure dis­
mounts a File Service tape on the specified tape drive.
The procedure must be called on the same node that has
the tape File Service. To use the procedure, you must
include the module $TAPE-UTILITY In the
compilation.

Call Format

ELN$DISMOU NT - T APE-VOLU M E(
device,
unload,
status
)

Arguments

device. This argument supplies a string of up to 30
characters naming the tape drive; for example, 'MUAO'
for drive 0 on tape controller MU A.

unload. This optional argument is a BOOLEAN
expression that specifies whether the tape is unloaded.
The default is FALSE, implying that the tape is
rewound but not unloaded when the volume is
dismounted.

status. This optional argument is an INTEGER
variable that receives the completion status.

Input and Output 15-88

INIT-TAPE-VOLUME

The INIT-TAPE-VOLUME procedure initializes a File
Service tape for use as a file-structured volume that
conforms to ANSI standard X3.27 -1978. Tapes must be
initialized before they are used. The procedure requires
the device and its driver (and the tape File Service) to
be present in the same system from which it is called.
The procedure does not return until the tape is
initialized. To use the procedure, you must include the
module $TAPE-UTILITY in the compilation.

This procedure is similar in nature to the V AXNMS
command INITIALIZE, as used for tape volumes. (For
additional information, consult the VAXNMS
documentation.)

Call Format

ELN$INIT-TAPE-VOLUME(
device,
volume,
density,
status
)

Arguments

device. This argument supplies a string of up to 30
characters, giving the device specification of the tape
drive; for example, 'MUAO' for drive 0 on tape controller
MUA. The node must be specified explicitly for a drive
on another node.

volume. This argument supplies a string of up to 6
characters, giving the volume label for the tape.

density. This optional argument is an INTEGER value
that supplies the density (in bytes per inch) that the

15-89 Tape Utility Procedures

tape will be initialized to. If the specified density is not
supported, the tape will be initialized to the supported
density closest to it; the actual density is returned in
this argument. The default density is the highest
density supported by the specified tape drive.

status. This optional argument is an INTEGER
variable that receives the completion status.

MOUNT-TAPE-VOLUME

The MOUNT-TAPE_VOLUME procedure mounts a
File Service tape on the specified tape drive for use as a
file-structured volume that conforms to ANSI standard
X3.27 -1978. The procedure requires the device and its
driver (and the tape File Service) to be present in the
same system from which it is called. The procedure does
not return until the tape is completely mounted. To use
the procedure, you must include the module
$TAPE_UTILITY in the compilation.

Call Format

ELN$MOUNT-TAPE-VOLUME(
device,
volume,
block-size,
status
)

Arguments

device. This argument supplies a string of up to 30
characters, giving the device specification of the tape
drive; for example, 'MUAO' for drive 0 on tape controller
MUA. The node must be specified explicitly for a drive
on another node.

Input and Output 15-90

volume. This optional argument is a variable of type
V ARYING-STRING(6) that supplies the volume label
for the tape.

block-size. This optional argument supplies an
INTEGER value that determines the number of bytes
in each block of a newly created file. The default is
2048.

status. This optional argument is an INTEG ER
variable that receives the completion status.

15-91 Tape Utility Procedures

Input and Output 15-92

Introduction

Chapter 16

Program Development

A Pascal source program or module is compiled using
the V AXNMS command EP ASCAL, which invokes the
VAXELN Pascal compiler. The compiler then produces
an object module. If the source file specified a complete
program, the resulting object module can be given
directly to the VAXNMS linker to produce a program
image. Otherwise, it can be used as input to later
compilations, continuing until you have formed a set of
object modules specifying the complete program. The
entire set is then given to the linker to prepare the
program image.

The LINK command invokes the V AXNMS linker and
produces program images by combining object modules.
The program images are then ready to be included in a
V AXELN system. The format of the LINK command
and the command arguments are explained in detail in
the VAXELN User's Guide.

The V AXNMS librarian is used in program develop­
ment to maintain libraries of object modules for use as
inpu t to the V AXE LN Pascal compiler or the linker.
The use of the librarian is also explained in the
VAXELN User's Guide.

This chapter explains the format of the EPASCAL
command and the command arguments. In addition,
module management is discussed, including module
dependencies and consistency checking.

16-1

EPASCAL Command

The EP ASCAL command invokes the V AXELN Pascal
compiler and produces a single object module from a
single file of V AXELN Pascal source text.

Format

$ EPASCAL qualifier-list file-specification-list

Arguments

The command arguments specify options affecting the
entire compilation (qualifier-list), the source file, and
object modules, if needed to compile the source.

File Specifications

The source file is a single file represented by a standard
V AXNMS file specification. If you do not specify a file
type, the compiler uses the default file type PAS. The
text of the source file, expanded by inclusion of any files
specified via the %INCLUDE construction, must satisfy
the syntax requirements for a compilation unit, as
explained in Chapter 2, ~~Program Structure."

By default, the resulting object module has file type
OBJ and the same filename as the source file.

Additional specifications can be listed, to designate
object libraries or single object modules whose exported
declarations can be included during compilation.
Multiplefile specifications can be separated by commas
or by pI us signs.

Libraries have the default file type OLB and are
designated by the LIBRARY qualifier on the file
specification. Object-module files (default type OBJ)
are designated by the MODULE qualifier on the file

Program Development 16-2

specification. If /LIBRARY is specified for a file, all
subsequent files in the list are treated as object
libraries unless /LIBRARY or /MODULE is found on a
later file specification. Up to eight object libraries can
be listed; there is no limit to the number of object­
module files.

Qualifiers

The qualifiers described below can be applied to the
EPASCAL command or to the source file specification;
each is preceded by a slash {/). All qualifiers and options
can be abbreviated to the shortest unique form.

Note: Unless a qualifier is explicitly stated to apply to a
file, it applies only to the command. In addition, the
LIBRARY and MODULE qualifiers apply only to files
other than the first (source file).

The default qualifiers in interactive use are:

NOCHECK
NOCROSS-REFERENCE
DEBUG == TRACEBACK
EXPORT
NOG-FLOATING
INLINE
NOLIST
NOMACHINE-CODE
NOMAP
OBJECT
OPTIMIZE
SHOW = (SOURCE, HEADER)
VALIDATE = REQUIRED
WARNINGS

16-3 EPASCAL Command

CHECK = (option-list), NOCH ECK. These qualifiers
enable or inhibit checking of various kinds, which are
specified by the following options:

ALL Enables all CHECK options.

ASSERT, NOASSERT Enables or inhibits detection
of false assertions.
NOASSERT disables both
compile-time and run-time
assertion checking.

RANGE, NORANGE Enables or inhibits run-time
detection of most range
violations.

NOCHECK is the default. If CHECK is specified
without an option list, range and assertion checks are
performed by default. (Note also that range violations
that can be detected by the compiler are detected
irrespective of the RANGE option.)

CROSS-REFERENCE, NOCROSS-REFERENCE. These
qualifiers enable or disable generation of a cross­
reference listing. For each variable in the program, a
cross-reference lists the line numbers containing
references. The LIST and default MAP qualifiers are
implied by CROSS-REFERENCE. The default is
NOCROSS_REFERENCE.

DEBUG = (option-list), NODEBUG. These qualifiers
include or omit debugging information in the created
object module. DEBUG means that the object module
has traceback information, source-line information,
and a debugger symbol table with the names of all
items declared in the source module. NODEBUG
means that none of this information is included.

If neither DEBUG nor NODEBUG is specified, the
object module contains traceback and source-line
information, but no symbol table.

Program Development 16-4

Note: You must also specify the DEBUG qualifier on
the LINK command to transfer the object module's
symbol table, if any, to the final program image. In
other words, if the EP ASCAL command has the explicit
DEBUG qualifier, so should the LINK command.

The option list allows more control of the debugger
information, as follows:

ALL Include traceback, source lines, and
all this module's symbols; equivalent
to DEBUG with no option list.

EXPORT-ONLY Include traceback, source lines, and
only those symbols exported from the
module.

IMPORT-TOO Include traceback, source lines,
symbols defined in this module, and
referenced symbols imported from
other modules. This option is useful
for debugging programs using stan­
dard definition modules (such as
$DAP) that are compiled without
symbols.

NONE No information is included for the
debugger; equivalent to NODEBUG.

SYMBOLS Include traceback, source lines, and
all symbols defined in this module;
equivalent to DEBUG with no option
list.

TRACEBACK Include traceback and source lines
only; this has the same effect as
when you specify neither DEBUG
nor NODE BUG.

Generally speaking, you should request a listing if you
intend to debug a program.

16-5 EPASCAL Command

EXPORT, NOEXPORT. These qualifiers enable or inhibit
the generation of an export symbol table. This table
contains the declaration information for exported
names for use in other modules. A module compiled
with NOEXPORT cannot be used as input to
subsequent EP ASCAL compilations. In effect, the
result is a non-EPASCAL object module. NOEXPORT
is intended only for unusual situations. (See also the
DEBUG options above, for information about
debugging with exported and imported symbols.)

G-FLOATING, NOG-FLOATING. These qualifiers
determine whether DOUBLE data are represented in
DJ10ating (default) or G_floating format. If you are
building a system for a Micro V AX I, be sure that you
generate instructions only for the double-precision data
type supported by the hardware on your machine or
else include the floating-point instruction emulation
with the System Builder.

INCLUDE = (module-list). This qualifier includes the
listed modules in the compilation. (They must be
present in the libraries specified in the command or be
specified input files using IMODULE.) The INCLUDE
qualifier provides a way to include modules in a compi­
lation that are not mentioned in the INCLUDE line of
the MODULE heading (that is, within the source file).

INLlNE, NOINLINE. These qualifiers enable or disable
the INLINE attribute on procedures and functions in
the compilation unit. The default is INLINE. (Note that
these qualifiers do not affect procedures and functions
declared in included modules.)

LIBRARY. This qualifier is used on a file specification to
designate that it is an object library containing object
modules for input to the compilation. If you specify it
for an input file, it applies to subsequent files unless
LIBRARY or MODULE is specified again.

Program Development 16-6

LIST = file-specification, NOLIST. These qualifiers
enable or disable generation of a compiled-source
listing. The specified file, if any, receives the listing; by
default, the listing file has the name of the source file
and type LIS. The default is NOLIST for interactive
compilations, LIST for batch compilations. The default
LIST qualifier is supplied implicitly when you use any
qualifier that requires a listing.

MACHINE-CODE, NOMACHINE-CODE. This qualifier
generates a listing with machine code following the
corresponding V AXELN Pascal statements.
MACHINE-CODE implies the default LIST qualifier.
(Note: The NOOBJECT qualifier inhibits code genera­
tion, and therefore the machine code listing, even if
MACHINE-CODE is specified.)

MAP = option, NOMAP. These qualifiers enable or
disable listing of a storage map. The default LIST
qualifier is implied. The following options are sup­
ported, with REFERENCED the default option:

LOCAL Include symbols defined in the source
module.

REFERENCED Include symbols defined or referenced
in the source module.

ALL Include symbols defined in the source
module and all included modules.

MODULE. This qualifier is applied to a file specification
to designate that it is an object module for input to the
compilation. If you specify it for an input file, it applies
to subsequent files unless LIBRARY or MODULE is
specified again.

OBJECT = file-specification, NOOBJECT. These quali­
fiers write the object module to the specified file, or
inhibit code generation and production of an object

16-7 EP ASCAL Command

module. If both are omitted, the object file has the name
of the source file and type 0 BJ.

OPTIMIZE = (option-list), NOOPTIMIZE. These qualifiers
enable or inhibit various compiler optimizations. All
optimizations are performed if no options are listed.
NOOPTIMIZE inhibits many of the optimizations
performed by the compiler, including some (such as
short-circuit evaluation of Boolean expressions) which
are not reflected in the option list. With the option list,
certain optimizations can be selectively inhibited,
although it is seldom appropriate to do so. Multiple
options must be separated by commas and the list
enclosed in parentheses. The following options are
supported:

COMMON_SUBEXPRESSIONS, Enables or inhibits
NOCOMMON-SUBEXPRESSIONS removal of common

subexpressions from
statement sequen­
ces.

DISJOINT, NODISJOINT Enables or inhibits
the placement of
local variables in
multiple registers.
(DEBUG = SYM­
BOLS implies
NODISJOINT.)

INVARIANT, NOINVARIANT Enables or inhibits
removal of invari­
ant expressions
from loops.

LOCALS_IN-REGISTERS, Enables or inhibits
NOLOCALS-IN-REGISTERS placement of local

variables in regis­
ters.

Program Development 16-8

PEEPHOLE, NOPEEPHOLE Enables or inhibits
replacement of code
patterns with sim­
plified code.

RESULT-INCORPORATION, Enables or inhibits
NORESUL T -INCORPORATION replacement of

certain opera tions
with three-operand
instructions.

SHOW = (option-list). This qualifier specifies a list of
items for inclusion in the listing file. Multiple options
must be separated by commas and the list enclosed in
parentheses. The following options are supported:

HEADER, NOH EADER Enables or inhibits page
headers.

INCLUDE, NOINCLUDE Enables or inhibits
listing of %INCLUDE
files (LIST is implied).

MODULES, NOMODULES Enables or inhibits
listing of module names
used in this compilation
(LIST is implied).

SOURCE, NOSOURCE Enables or inhibits
listing of V AXELN Pas­
cal source code.

STATISTICS, NOSTATISTICS Enables or inhibits
listing of compilation
statistics.

The default SHOW options are SOURCE and
HEADER.

VALIDATE = option. This qualifier specifies the level of
version consistency checking among modules included
in the compilation. (See ~~Module Management," below.)

16-9 EPASCAL Command

The following options are supported, with REQUIRED
as the default option:

NONE The compiler tries to generate code even
if inconsistencies are detected that might
generate incorrect code. An informational
message is issued if any are detected.

REQUIRED The compiler issues error-level messages
if inconsistencies are detected among
modules on which this one depends for
declarations.

ALL The compiler issues error messages if
inconsistencies are detected among any
related modules.

WARNINGS, NOWARNINGS. These qualifiers enable or
inhibit compiler diagnostic messages with Warning
severity. Errors with this severity usually allow compi­
lation to proceed, although, in some cases, the program
will fail if executed. WARNINGS is the default.

Module Management

The treatment of modules and exported symbols in
V AXELN Pascal is based on the idea that there should
be only one declaration of a given object. Thus, there
should be only one declaration of a procedure and its
parameter list, even if the procedure is used i:q. many
routines in many different programs.

The declaration of an exported name is stored (in
compiled form) in the object module containing the code
associated with the name. This reduces the number of
files that need to be managed, and it helps to avoid
inconsistencies that can arise from multiple versions of
a module, such as when a module is changed during the
course of program or system development.

Program Development 16-10

Object modules can be stored in object libraries for use
as compiler input or as direct input to the VAXNMS
linker. In addition, V AXELN supplies run-time
libraries for linking with Pascal object modules to form
a complete VAXELN system. These libraries are listed
in the VAXELN User's Guide.

Inclusion of Modules in a Compilation

If a compilation unit, C, uses a name exported from
another module, M, that module must be compiled
before C, and it must be included in the compilation of
C. M will be included in C's compilation if it is specified
as an input file in the EP ASCAL command using the
MODULE file qualifier. Alternatively, and more
typically, M can be placed in an object module library,
L, which is then specified as an input file to the
EPASCAL command using the LIBRARY file qualifier.
For example:

$ EPASCAL C + ULiBRARY

Note that specifying the library, L, as an input file does
not suffice to include M in the compilation. M's
inclusion must be requested either by an include
header in the compilation unit, an INCLUDE option on
the EP ASCAL command, or indirectly because M is
needed by another module in the compilation. If M is
not included and the compilation unit tries to reference
a name exported from M, an undeclared-name error
message will result. There is no automatic search of
libraries to find the module exporting a name.

The exact rules for determining the modules included
in a compilation are as follows:

1. Modules provided as EPASCAL input files with
the MODULE qualifier are included.

16-11 Module Management

2. Modules specified in the include header of a
compilation unit and not already included are
included by searching the libraries specified in the
EP ASCAL command line.

3. Modules specified in the EPASCAL command
qualifier INCLUDE and not already included are
included by searching the specified libraries.

4. Any related modules not already included are
included by searching the libraries. A related
module, R, is a module on which some included
module, M, depends; that is, R was included in the
compilation of M and M uses a declaration
exported by R. Note that the interpretation of
related is controlled by the VALIDATE command
qualifier, discussed in the next subsection.

Inclusion of a module by library search is the typical
method in EPASCAL. The libraries listed as input files
are searched in the listed order. The module, identified
by its name, is taken from the first library in which it
occurs. If the module is not found, the compiler issues
an error message.

Note that if a module, A, occurs in two libraries (that is,
each library contains an object module named A), the
occurrence in the first library overrides that in the
second. For example, in developing a new version of a
program, you might use a library, L2, containing all
modules of the original version and a library, L1,
containing modified versions of some modules. For
example:

$ EPASCAL newversion + L 1/UBRARY + L2

Note that the LIBRARY qualifier need be specified only
once, since it applies to all subsequent files unless
another LIBRARY or MODULE qualifier is specified.

Program Development 16-12

Module Dependencies and Consistency Checking

Modules are typically modified and recompiled in the
course of program development. This can lead to
inconsistencies in compiling and linking the complete
program. The V AXELN Pascal compiler, therefore,
takes some steps to detect such inconsistencies.

For example, suppose that a complete program contains
a module P, the PROGRAM block, that uses modules A
and B, and that B also uses A. Suppose, then, the
following sequence of events:

1. A is compiled.

2. B is compiled.

3. A is edited and recompiled.

4. P is compiled.

When P is compiled, the compiler will (with high
probability) report an inconsistency: module B depends
on a different version of module A than the one
included in the compilation of P. This can be corrected
by recompiling B and then again compiling P.

This subsection explains in more detail how the
compiler's consistency checking works, and how the
VALIDATE command option may be used to control the
checking. It should be noted that the compiler's
capabilities are intended to supplement other methods
of module management, such as the use of a source code
management system or the use of systematic builds in
which all modules and programs in a system are
compiled and linked in the proper order. (The V AXELN
developers use the latter method to ensure system
consistency.)

When a module, M, is compiled, the compiler computes
a ((checksum" based on the contents of the module's

16-13 Module Management

exported symbol table. The checksum is 32 bits long
and is computed using exclusive OR. If two different
versions of the same module have a different exported
symbol table, it is highly likely (but not certain) that
their checksums will differ. This forms the basis of the
compiler's module consistency checking. (Note that
even a trivial change to a module, such as
interchanging the order of two declarations, may
change the checksum. In practice, the compiler's notion
of consistency is rather severe.)

You can determine the checksum of a V AXELN Pascal
module using the ANAL YZE/OBJECT command. The
third record of a V AXELN Pascal module will be
entitled ((IGNORED HEADER (subtype 101)". Bytes 4
through 7 of the displayed data contain the checksum.

Consistency checking via checksum comparison is
driven by module dependency information stored in
each module's exported symbol table. Module A is
dependent on module M if A references any symbol
exported from M. If the only references are in the
executable statements of non-in-line routines, A is
code-dependent on M. Otherwise, A is declaration­
dependent on M.

If A is dependent on M, A's exported symbol table
contains an entry specifying its dependency on M and
giving the checksum of the version of M included in A's
compilation. If any later compilation includes both A
and M, the compiler compares M's actual checksum
with that specified in A's exported symbol table (for its
dependency on M) and reports a difference as a module
inconsistency.

Note that the EPASCAL command option
SHOW = MODULES may be used to obtain a listing of
included modules and their dependencies.

Program Development 16-14

If a detected inconsistency is one involving declaration­
dependent modules, the compiler issues an error-level
message, which prevents code generation for the
current compilation unit. It does this because such
declaration-related inconsistencies may lead to a fatal
compiler error or to the generation of incorrect code.

As noted above, the compiler's consistency checking can
prove rather severe in practice. During program
development, it is often desirable to compile each
module as it is changed, recompiling other, dependent
modules only when really necessary. For example,
suppose you add a completely new constant, ALPHA, to
a module you are working on. Since no other modules
can be invalidated by this new declaration, it would be
convenient to avoid recompiling modules that depend
on the current one for other reasons.

To support this mode of operation, the
VALIDATE=NONE qualifier for the EPASCAL
command is provided. With this qualifier, each module
inconsistency is reported only as a warning -level
message. In addition, one informational message is
printed if there are inconsistencies that would normally
be reported at the error level. (Note that ignoring a
non-harmless module inconsistency in this way may
lead to a fatal compiler error or to the generation of
incorrect code.) Eventually, one should validate
consistency by the normal method or systematically
compile all modules in the proper order.

The VALIDATE command qualifier has two additional
forms. VALIDATE = REQUIRED is the default. This
simply means that the compiler includes in the
compilation only those modules explicitly requested
and those on which included modules are declaration­
dependent. Consistency is checked as described above.

16-15 Module Management

The command qualifier VALIDATE = ALL can be used
to force additional consistency checking. It has the
following effects:

• If a directly or 'indirectly included module is code­
dependent or declaration-dependent on another
module, that module is also included in the
compilation.

• If any module inconsistency is detected, an error­
level summary message is issued (even if the
inconsistency is a warning-level one).

• An error-level message is issued if any module
contains a SEPARATE procedure or function
declaration without the corresponding separate
routine body being in one of the included modules
(or the source module).

If you structure your program so that no declarations
are exported from the module containing the
PROGRAM block, then compiling it with VALIDATE
= ALL validates the entire program.

Program Development 16-16

Appendix A
Attributes

This appendix lists the attributes allowed in the
syntactic category ((Attributes" and the context in
which the attributes may be used.

• UNDERFLOW, NOUNDERFLOW. Any com­
plete routine declaration. (The routine declaration
must contain a routine body; it cannot specify a
directive, such as EXTERNAL.)

• INLINE. A complete procedure or function
declaration containing a routine body.

• EXTERNAL. An outer-level V AR declaration.

• VALUE. A V AR declaration (not parameter).

• READONLY. A·VAR declaration (not parameter)
or a value parameter.

• REFERENCE. A value parameter (in a procedure
or function parameter list) whose data type is such
that the parameter would normally be passed by
immediate value.

• OPTIONAL. A VAR parameter, or a procedure or
function heading occurring as a parameter.

• LIST. The last parameter in a parameter list.

• BIT, BYTE, WORD, LONG. A PACKED record
definition, an ordinal type, or a small set type.

• ALIGNED. An array type definition, a record
definition, or a field in a record.

• POSe A field in a PACKED record.

A-l

Attributes A-2

Appendix B

Collected Syntax

This appendix is an alphabetical collection of syntax
diagrams representing the syntactic categories of the
V AXELN Pascal language. These categories are
explained individually throughout this manual, in the
appropriate sections.

Chapter 1, ~~Notation and Lexical Elements," contains
an explanation of the conventions used in these syntax
diagrams. Table 1-1 lists the VAXELN Pascal reserved
words; Table 1-2 defines the complete set of
punctuation symbols used as delimiters in VAXELN
Pascal programs; Table 1-3 summarizes the special
symbols used as opera tors.

As explained in the syntax conventions, the terminal
syntax elements in square boxes are defined by lexical
rules. The rules for identifiers are given in Chapter 1
and the rules for literal constants are given in Chapter
4, nConstants."

Note that in order to include text from other files as
part of the source, the source file for a compilation may
contain constructions of the following form:

%INCLUDE file specification ----...

B-1

The relation of the syntax to the operation of the
compiler is as follows: A complete V AXELN Pascal
program consists of one or more compilation units, one
of which contains a PROGRAM block declaration. An
invocation of the compiler compiles one source file,
satisfying the syntax for the compilation unit. One
object module is produced. The compilation may
reference information in other object modules.

B-2

Aggregate Initializer

REPEAT 1----.. initializer

.... .-+ extent expression 1---....

initializer

Argument

---.------oooi~.;1 variable reference ;...--..... --.~ (for VAR parameters)

~--___ ~~.II . I~ ________ ~
~ 1 expression I (for value parameters)

~--------oooi~.11 f' 11------1 ~ I unction name 1 (for function name parameters)

"',1 1 "--------"'1 procedure name II---~ (for procedure name parameters)

Note: The function name or procedure name may be a function call to the ARGUMENT function,
whose first argument is an appropriate procedural parameter with the LIST attribute.

B-3 Collected Syntax

Argument List

----------~~ .. Iargument ~~--------------------~--------------------

Note: A completely empty argument list is not allowed.

Array Type Definition

type

Assignment Statement

-----t.M1 variable reference t-1--Gt-------t ... 1 expression I ~ --------••

Collected Syntax B-4

Attributes

UNDERFLOW

NOUNDERFLOW

INLINE

EXTERNAL

VALUE

READONLV

REFERENCE

OPTIONAL

LIST

BYTE

WORD

LONG

BIT extent expression

ALIGNED extent expression

POS extent expressi on

B-5 Collected Syntax

Bound Flexible Type

flexible type name

Buffer Variable Reference

----~~ .. I variable reference r---.<!)~-----'.

Case Statement

--.~(CASE J-+ expression
limited ordinal

statement 1--+----...... (END)I __ -'~

OTHERWISE ~-.. statement -~M

Collected Syntax B-6

Compilation Unit

~; PROGRAM block declaration i ... ,.

~i PROCESS_BLOCK declaration j

~; procedure declaration
L

J

... 1 f . d I . I "1 unction ec aratlon J

.... • ,., module I

Compound Statement

.C BEGIN) t .1 statementJ,.. ... (END) ... ---------. •

.. ---... 0----...

B-7 Collected Syntax

Constant

extent expression

literal floating-point constant 1----1

floating-point constant name t-----t

literal stri ng constant

~--------t .. string constant name 1--------'

Constant Declaration

1IIIir.() I constant ~
, _C_O_N_S_T_, T .. _._ .. ___ i-d __ e_n:t:if:ie:r::~~~~:.~_= _____ c_o_n_s_ta_n_t ______ ---'

Collected Syntax B-8

Directive

SEPARATE

PROCEDURE_ TYPE

FUNCTION_TYPE

FORWARD

Enumerated Type Definition

constant
identifier

B-9 Collected Syntax

Export Header

--+ EXPORT GLOBALDEF

Expression

simple expression

simple expression ~

Collected Syntax B-IO

Extent Expression

----I~~I expressi on

Notes: 1. Extent expressions have ordinal constant operands and produce ordinal results.

2. Only the following set of operations is permitted:
• The dyadic +, -, *, AND, OR, DIV, and MOD operators (string concatenations with + are not allowed).
• The monadic operators +, -, and NOT.
• Relational operators (for example, <).
• The functions ODD, ORO, PREO, SQR, ABS, CHR, SUCC, and XOR.

B-11 Collected Syntax

Factor

--..... -----... 1 literal constant

.... ----~M constant name

.... -----.. variable reference

.... -----M function call

expression

.... ----~ .. set constructor

Collected Syntax B-12

Field List

field
identifier

-----..... variant part 1-----------------------.....

Field Reference

----..... 1 variable reference r-o--.I field name ... 1-----..

File Type Definition

~PACKED"h
--.. ------~__M.(FILE),...-... 8--t/ type

B-13 Collected Syntax

Flexible Type Definition

flexible
type

identifier

FOR Statement

variable reference

Collected Syntax

ordinal type 1--...... ...,

bound flexible type

record type definition

array type definition

expression expression I statement ~

B-14

Function C;:all

--...... 1 function name

LCD~-".I argument list

Note: The function name may be a function call to the ARGUMENT function, whose first
argument is an appropriate procedural parameter with the LIST attribute.

Function Declaration

1
function heading --IM routine body 1----...

directive

Function Heading

function ~~.I
identifier 1 named type "I---~----". --+ FUNCTION

B-15 Collected Syntax

GOTO Statement

IF Statement

expression statement

Import Header

--+ IMPORT

Include Header

--+ INCLUDE ---..... - module name

Collected Syntax B-16

Index Range

extent expression extent expressi on

ordinal type name ------------......

enumerated type definition ---------...

Indexed Variable Reference

Indirect Variable Reference

----~.all variable reference I--.{!)I------....

B-17 Collected Syntax

Initializer

literal string or literal CHAR constant

set constructor

aggregate initializer

Interrupt Service Routine Declaration

..... ------..... -- INTERRUPT_SERVICE

Collected Syntax

interrupt
service
routine

identifier

B-18

parameter list - ... routine body - ...

ISO Conformant Type

ordinal type name type name

ordinal type name

Label

--..... - Iiteral integer constant

...-.-.... identifier

Note: The literal integer constant must be an unsigned decimal integer.

B-19 Collected Syntax

Limited Ordinal Constant

literal integer constant ----.... ----.

integer constant name ----...

..... --------tM literal CHAR constant ------1

.... --------tM CHAR constant name 1-------1

"'-------~M enumerated constant name

Literal Constant

.. II' I fl" I ...
,... Itera oatlng-polnt constant I ,..

~: literal integer constant:

~!Iiteral CHAR constant:

.... " I ' , ,.., Itera string constant I

Collected Syntax B-20

Module

export header

--.... module header 1-..&.-..------+ import header

include header

constant declaration I-------------jll

type declaration 1-------------...

variable declaration

function declaration

procedure declaration I----------~II

PROGRAM block declaration -------..

PROCESS_BLOCK declaration -------..

interrupt service routine declaration

separate routine body t-----------...

B-21 Collected Syntax

Module Header

--+ MODULE

Named Type

module
identifier

GLOBALDEf

IDENT

LI 1 ~ --..... -----1,..,11 type name 1 ,.

~I I t---ooooi,..11 bound flexible type 1 ---1

~I I '-----,..,11 pointer type definition I -~

Null Statement

Collected Syntax B-22

Ordinal Type

LI I~ __________ ~ ______ .~

---.... ---... ,11 ordinal type name I "

.... --------1-"" • .11 d f' " 11----...... ... subrange type e Inltlon J

.... ___ .L'lr d d f' " 1 _.-.. '" enumerate type e Inltlon I

Parameter List

value
parameter
identifier

attributes I-P-.-.. named type 1-.... --------------+--1"

I initializer ~

~------------~~.I
ISO conform ant

VAR
I-P-.t parameter

~---- identifier

............ attributes ~---..... --t.1 procedure heading

function heading

B-23

type

~~ .. named type t---.... ----.1
attributes

Collected Syntax

Pointer Type Definition

type name

bound flexible type

Procedure Call

--~.IPro~urenamel~--~~---------------~---~-----~.

4Q)~""'.I'" a-rg-u-m-en-t-lis-t ---.t--..... ~

Note: The procedure name may be a function call to the ARGUMENT function, whose first
argument is an appropriate procedural parameter with the LIST attribute.

Procedure Declaration

1
---.... ---•• , attributes 1-,-----..... procedure heading 1 routine body 1-1---·.

directive

Collected Syntax B-24

Procedure Heading

---.1J...(~ procedure
~ PROCEDURE.r identifier

PROCESS_BLOCK Declaration

PROCESS_BLOCK

PROGRAM Block Declaration

PROGRAM program
identifier

process
block

identifier

B-25

procedure type name

parameter list

file variable
name

h--M routine body 1----'

routine body

Collected Syntax

Pseudo Variable Reference

-----.~I function call

Note: The function call is an invocation of the SUBSTR function with a variable reference as its first argument,
or the ARGUMENT function with a VAR parameter as its first argument.

Record Type Definition

(RECORD H field list 1 - (END)---.....

REPEAT Statement

-+C REPEAT)~-T"P'''''.I statement , -....---c(UNTIL)1--.-..1 expression 1
-0

Collected Syntax B-26

Routine Body

constant declaration -------------------------------~~

type declaration

variable declaration

function declaration

procedure declaration

compound statement ~~-----------~--.

B-27 Collected Syntax

Separate Routine Body

FUNCTION_BODY function name t----..

I routi ne body I •
PROCEDURE_BODY procedure name 1---"

Set Constructor

~ ----.I expression

expression expression

Set Type Definition

...... --.c PACKED)""--'1
----~--------~_~.,(seT J-@~-•• I ordinal type 1-----....

Collected Syntax B-28

Simple Expression

B-29 Collected Syntax

Statement

label

..... -----------1--.. assignment statement t---.-------.....

1---'" null statement 1-----....
1---.... compound statement -

1---... CASE statement 1-----.....
1---... IF statement I----------IM

1---.... FOR statement t------..
.... - REPEAT statement 1-----...001.-

~-.... WHILE statement t----..

1---.... WITH statement t----.....

1---... GOTO statement 1-----....

.... - procedurecall ____

Collected Syntax B-30

Subrange Type Definition

Term

limited ordinal
constant

limited ordinal
constant

B-31 Collected Syntax

Type

.... 1 ..
"1 named type I "

.. I d d f .. I
"'1 recor type e Inltlon I

~; array type definition • r
.. I 1
"'1 set type definition 1

~; file type definition
1

1

~i subrange type definition •
I

~~ enumerated type definition ~

Type Declaration

..... ----------... flexible type definition t-----

Collected Syntax B-32

Typecast Variable Reference

----...... , variable reference ~ named type 1 .. -----....

Variable Declaration

initializer

B-33 Collected Syntax

Variable Reference

Note:

Collected Syntax

... • ...
"I name 1

,.

~: Indexed variable reference L
I

~: field reference
1
I

~ pseudo variable reference 1
j

~l indirect variable reference I
J

~; buffer variable reference
I

J

~~ typecast variable reference J

The name is the name of a variable (VAR declaration), value parameter,
VAR parameter, a name established by a WITH statement as a variable name,
or a function name (left-hand side of assignment within the function).

B-34

Variant

limited

Variant Part

WHILE Statement

field
identifier ~--~-......... ordinal

type

----.(WHILE >+I expression re~-,,~, statement ... I------.. ~

B-35

variant

Collected Syntax

WITH Statement

variable reference

identifier variable reference statement

Collected Syntax B-36

AppendixC
Call Formats

This appendix lists the call formats of the procedures
and functions available in V AXELN Pascal.

Chapter 1, ((Notation and Lexical Elements," contains
an explanation of the conventions used in these call
formats. As explained in the conventions, predeclared
routines must be called as documented. In particular,
the call formats for V AXELN kernel procedures use the
conventions listed in Chapter 1, unless the name is
prefixed with KER$.

Note that some of the routines are provided with
V AXELN but are not predeclared. They are used in
programs by including particular modules from the
RTLOBJECT library in the compilation. In Table C-l,
they can be identified by the statement ((include module
name" in the routine's description. For these routines,
the actual names and positions of the parameters are
shown in the call format, and the usual V AXELN
calling rules apply.

C-l

Call Formats C-2

Table (-1. VAXELN Pascal Procedures and Functions

Call Format

ABS(expression)

ACCEPT _CIRCUIT(myport,
FULL-ERROR : = boolean,
CONNECT: = connecLport,
ACCEPT_DATA : = varying_string,
CONNECT-DATA : = varying_string,
STATUS: = integer_variable)

ADD.J:NTERLOCKED(
delta, word-argumen t)

ADDRESS(variable)
KER$ALLOCATE-MAP(status,

register, number, count,
device_object, spt_address)

ALLOCATE-MEMORY(mempointer,
size, VIRTUAL: = address,
PHYSICAL: = integer,
STATUS:= integer_variable)

KER$ALLOCATE-P ATH(status,
register, number, dev)

ELN$ALLOCATE_STACK(stack_size,
status)

ARCTAN (expression)

ARGUMENT(name,expression)

ARGUMENT_LIST_LENGTH(name)

Meaning

Return absolute value of expression.

Establish circuit between myport and originator of connection request;
if the full error is disabled (FALSE, default), SEND will wait implicitly
when the partner port is full (otherwise, an error status is returned by
SEND); the varying strings supply optional data to the originator (accept)
or receive data (connect). The optional connect_port specifies a different port
on which to make the actual connection.

Return sum of the integer word_argument and delta in word_argument and
the function result 1 if the sum is positive, 0 if the sum is zero, and -1 if the
sum is negative.

Return pointer to variable.

Allocate count UNIBUS or QBUS map registers, returning first register
number, for DEVICE value device_object, and return pointer to first
(i ANYTYPE) in register. The optional INTEGER variable status receives the
completion status, and spt_address receives an ANYTYPE pointer to the
system page table base. Include module $KERNEL.

Allocate size bytes of memory, beginning at virtual address, and return.
i ANYTYPE in mempointer. Optionally, the integer can supply the starting
physical address explici tly; the program must be in kernel mode for this use.

Allocate UNIBUS buffered datapath for DEVICE value dev, and return
pointer to datapath register (i ANYTYPE) in register and the data path
number in number. The optional INTEGER variable status receives the
completion status. Include module $KERNEL.

Verify that the process has the stack_size requested; if not, allocate the stack
space. The optional INTEGER variable status receives the completion status.
Include module $STACK_UTILITY.

Return angle in radians whose tangent is expression.

Refer to LIST parameter name in list position given by expression.

Return number of arguments for LIST parameter name.

C-3 Call Formats

Call Format

ASSERT(boolean_expression)
ELN$AUTH-ADD_USER(status,

circuit, username, nodename,
password, uic, userda ta)

ELN$A UTH-MODIFY _USER(status,
circui t, username, nodename,
new..fields, new _username,
new-Ilodename, new_password,
new_uic, new_userdata)

ELN$AUTH_REMOVE_USER(status,
circuit, username, nodename)

ELN$AUTH_SHOW _USER(status,
circuit, username, nodename,
show:"'user)

Call Formats

Table C-1. Continued

Meaning

Raise exception or compiler error if boolean_expression is FALSE.

Add a new user record with username, password, and uic to the authorization
database, to be authorized on nodename. The PORT value specifying the port
connected in a circuit to the Authorization Service's AUTH$MAINTENANCE
port is supplied by circuit, and userdata supplies an arbitrary string of user­
specified data. The optional INTEGER variable status receives the completion
status. Include module $AUTHORIZE_UTILITY.

Modify an existing user record in the authorization database, uniquely
identified by username and nodename. The PORT value specifying the port
connected in a circuit to the Authorization Service's AUTH$MAINTENANCE
port is supplied by circuit, and new-fields supplies a set that specifies which of
the other fields are to be modified. The optional INTEGER variable status
receives the completion status. Include module $AUTHORIZE_UTILITY.
Remove an existing user record from the authorization database, uniquely
identified by username and nodename. The PORT value specifying the port
connected in a circuit to the Authorization Service's AUTH$MAINTENANCE
port is supplied by circuit. The optional INTEGER variable status receives the
completion status. Include module $AUTHORIZE_UTILITY.

Return authorization database information for the specified user or users
identified by username and nodename. The PORT value specifying the port
connected in a circuit to the Authorization Service's AUTH$MAINTENANCE
port is supplied by circuit, and show_user supplies a procedure name that
identifies a user-specified routine to be invoked with the values of the specified
user record or all the records in the authorization data file. The optional
INTEGER variable status receives the completion status. Include module
$AUTHORIZE_UTILITY.

C-4

Call Format

ELN$AXV -"lNITIALIZE(device-11ame,
identifier, maximuIll-values,
clock_start_enable,
external_start_enable, re_initialize,
use_polling, status)

ELN$AXV -READ(identifier,
starLchannel, end-channel,
reads_per _channel, data-array _ptr,
kwv_ident, gain_array, status)

ELN$AXV _ WRITE (identifier,
dac_channel, value, status)

BIN(expression,length,digits)

ELN$CANCEL-EXIT.JIANDLER(
exi Lhandler, exit_context)

CHR(ordinal_expression)
CLEAR-EVENT(event,

STATUS: = integer_variable)
CLOSE(file)

Table C-1. Continued

Meaning

Ready device_name ADV or AXV device for input and/or output and create all
needed data structures. The variable identifier receives a longword identifier to
be used to identify the device in subsequent calls. The maximum number of
values that can be read from the device in a single call to AXV -READ is
supplied by maximum_values. The optional arguments clock_start_enable,
external_start_enable, re_initialize, and use_polling are BOOLEAN
expressions. The optional INTEGER variable status receives the completion
status. Include module $AXV _UTILITY.

Read reads_per _channel analog data from ADV or AXV device identifier, from
start_channel to end_channel, and convert it to binary form. The variable
data_array_ptr receives the address of an array containing converted data from
the device. The optional kwv_ident supplies the identifier of a KWV real-time
clock device. The optional gain_array supplies the gain to be used in the data
conversion for each channel to be read. The optional INTEGER variable status
receives the completion status. Include module $AXV _UTILITY.

Write value to an analog-to digital conversion output register dac_channel on
AXV device identifier. The optional INTEGER variable status receives the
completion status. Include module $AXV _UTILITY.

Return string giving binary notation for expression, with optionally specified
length and minimum number of significant digits.

Cancel an exit handler, identified by exit_handler and exit_context, previously
enabled by DECLARE-EXIT.JIANDLER. Include module $EXIT_UTILITY.
Return character whose ordinal number is ordinal_expression.

Set state of event to EVENT$CLEARED.

Close file.

C-5 Call Formats

Call Format

CONNECT _CIRCUIT(myport,
DESTINATION-PORT:= port,
DESTINATION-NAME : = name,
FULL-ERROR : = boolean_expression,
CONNECT-DATA:= varying_string,
ACCEPT-DATA: = varying_string,
STATUS: = integer_variable)

CONVERT(type,expression)

ELN$COPY -FILE(sourceJile,
destinationJile, status,
source_file_error, block_mode,
count, resultant_source_file,
resultant_destination_file)

COS(expression)

CREATE-AREA(area_variable,
data-pointer, area-name,
VIRTUAL: = virtual_address,
STATUS: = integer_variable)

CREATE-DEVICE(device-name,
device_variable,
VECTOR-NUMBER : = integer,
SERVICE-ROUTINE :=isr,
REGION: = rpointer,
REGISTERS: = regpoin ter,
ADAPTER-REGISTERS : = adpointer,
VECTOR: = vpointer,
PRIORITY: = integer_variable,
POWERFAIL_ROUTINE:= isr,
STATUS: = integer_variable)

Call Formats

Table C-1. Continued

Meaning

Request circuit connection between myport and destination name or port;
if the full error is disabled (FALSE, default), SEND will wait implicitly
when the partner port is full (otherwise, an error status is returned by
SEND); the varying strings supply optional data to the destination (connect)
or receive data when the destination accepts. (The destination must be
specified either by NAME or PORT value.)

Return expression converted to type.

Copy source_file to destination_file. The optional INTEGER variable status
receives the completion status. The optional source_file_error is TRUE if an
error exists in source_file, FALSE if an error exists in destination_file. The
optional block_mode is TRUE ifblock mode, FALSE if record mode. The
optional INTEGER variable count specifies the number of blocks or records.
The optional resultant_source_file and resultant_destination_file return the
resultant filename strings. Include module $FILE_UTILITY.

Return cosine of expression (angle in radians).

Create a new area or map an existing area of memory with a unique area_name
and return the AREA value in area_variable. The variable data_pointer
receives a pointer to the beginning of the allocated memory.
The optional virtual_address specifies the exact PO base address.

Connect to device_name interrupt and return the DEVICE value in
device_variable. The vector number is an integer from 1 (default) to 128.
Interrupt service routines (isrs) can be supplied for interrupt and power
recovery handling. The variable rpointer receives a pointer to the
communication region; regpointer and adpointer receive pointers
to the first device control register and first adapter control register,
respectively; vpointer receives a pointer to the interrupt vector.
Integer variables receive the interrupt priority
level of the device and the completion status of the procedure.
The device_variable can be a scalar DEVICE variable or
an ARRA Y[O .. n] OF DEVICE, where n s; 15.

C-6

Call Format

ELN$CREATE_DlRECTORY(
directorY-Ilame, status, owner,
resultant_directory_name)

CREATE-EVENT(event-variable,
initial_state,
STATUS: = integer_variable)

CREATE-cJOB(porLvariable,
program-Ilame, argument-list,
NOTIFY: = exiLport-variable,
STATUS:= integer_variable)

CREATE_MESSAGE (message_variable,
da ta_poin ter,
STATUS: = integer_variable)

ELN$CREATE-MUTEX(mutex, status)

CREATE_NAME (name_variable ,
string, port, TABLE: = scope,
STATUS: = integer_variable)

CREATEJlO RT(porL vari able,
LIMIT: = in teger,
STATUS: = integer_variable)

CREATE-PROCESS(process_variable,
process_block_name ,argument-list,
EXIT: = integer_variable,
STATUS: = integer_variable)

CREATE_SEMAPHORE(sem_variable,
initial_count, maximum_count,
STATUS: = integer_variable)

Table C-1. Continued

Meaning

Create the specified directory (up to 255 characters in the file specification)
and return the status in the optional INTEGER variable status. The optional
owner supplies the user identification code of the owner of the file, and the
optional resultant_directory_name returns the resultant filename string of the
directory file. Include module $FILE_UTILITY.

Create an event with initial_state EVENT$SIGNALED or
EVENT$CLEARED, and return EVENT value in event_variable.

Create ajob running program_name, with optional arguments supplied
to the program. The variable port_variable receives the value of the
new job'sjob port. The variable exit_port_variable supplies a port that
receives notification of the job's termination.

Create a message with a data area suitable for the base type of
the data_pointer, and return the MESSAGE value in message_variable.

Return new MUTEX value in mutex and the completion status in the optional
INTEGER variable status. Include module $MUTEX.

Make string the name of port, with scope NAME$LOCAL (default),
NAME$UNNERSAL, or NAME$BOTH, and return the NAME value in
name_variable.

Create a message' port able to hold up to integer (default 4) messages,
and return the PORT value in port-variable.

Create a subprocess running process_block_name, with optional arguments
supplied to the subprocess, and return the PROCESS value in
process_variable. Optional integer variables receive the final
(exit) status of the subprocess and the procedure's completion status.
Create a semaphore with the specified initial_count and
maximum_count, and return the SEMAPHORE value in sem_variable.

C-7 Call Formats

Call Format

CURRENT ..PROCESS(
process_variable,
STATUS: = integer_variable)

ELN$DEALLOCATE_STACK(
stack_size, status)

ELN$DECLARE-EXIT-HANDLER(
exi Lhandler, exit_context)

DELETE(system_value,
STATUS: = integer_variable)

ELN$DELETE_FILE(file-name,
status, resultant_file_name)

ELN$DELETE~UTEX(

mutex-variable, status)

ELN$DIRECTORY _CLOSE(dir _file,
status)

ELN$DIRECTORY _LIST(dir _file,
directory_name, file_name, status,
file_attributes)

Call Formats

Table C-1. Continued

Meaning

Return the value of the current process in process_variable.

Trim the stack by stack_size. The optional INTEGER variable status receives
the completion status. Include module $STACILUTILITY.

Declare an exit handler, identified by exit_handler and exit_context, to be called
upon termination ofajob with the EXIT procedure. Include module
$EXIT _UTILITY.

Delete the AREA, DEVICE, EVENT, MESSAGE, NAME, PORT, PROCESS,
or SEMAPHORE value from the system.

Delete the specified file (up to 255 characters in the file specification) and
return the status in the optional INTEGER variable status. The optional
resultant_file_name returns the resultant filename string of the deleted file.
Include module $FILE_UTILITY.

Delete the semaphore associated with mutex_variable and return the status in
the optional INTEGER variable status. Include module $MUTEX.

Close dir _file (type ELN$DIR_FILE) and return the completion status in the
optional INTEGER variable status. Include module $FILE_UTILITY.

Search dir _file (type ELN$DIR-FILE) for the next file specification and
return it in file_name (type VARYING_STRING(255) variable), with
completion status in the optional INTEGER variable status. The variable
directory_name (type VARYING_STRING(255» receives the resultant
directory specification ifmore than one directory is traversed. The optional
file_attributes (type FILE$ATIRIBUTES-RECORD) supplies a pointer to the
file attributes record. Include module $FILE_UTILITY.

C-8

Call Format

ELN$DIRECTORY _OPEN(dir -file,
search-Ilame, volume_name,
directory_name, status,
server-Ilame, file_attributes)

DISABLE-ASYNCH-EXCEPTION(
STATUS: = integer_variable)

DISABLE-INTERRUPT(priori ty)
DISABLE_SWITCH(

STATUS: = integer_variable)
DISCONNECT_CIRCUIT(port,

STATUS: = integer_variable)
ELN$DISMOUNT_TAPE_ VOLUME(

device, unload, status)

ELN$DISMOUNT_ VOLUME(device,
status)

DISPOSE(pointer, tag-list)

Table C-1. Continued
Meaning

Open dir _file (type ELN$DIR-FILE) in preparation for DIRECTORY_LIST,
searching for the specified directory (search_name, up to 255 characters). If
the search is successful, return with completion status in the optional
INTEGER variable status and the volume name and directory name in the
V ARYING_STRING(255) variables volume_name and directory_name. The
optional server _name receives the resultant node specification or server process
port name. The optional file_attributes (type FILE $ATTRIB UTE S_RE CORD)
supplies a pointer to the file attributes record. Include module
$FILE_UTILITY.

Disable delivery of asynchronous exceptions to the calling process.

Disable interrupts with interrupt priority level less than or equal to priority.

Disable process switching for the job from which the procedure is called.

Break circuit, where port is the one in the current job.

Dismount a File Service tape on the tape drive named device (string of up to
30 characters), and return the completion status in the optional INTEGER
variable status. The optional unload is a BOOLEAN expression that specifies
whether the tape is unloaded. Include module $TAPE_UTILITY.

Dismount the volume on the disk drive named device (string of up to 30
characters), and return the completion status in the optional INTEGER
variable status. Include module $DISILUTILITY.

Dispose of storage identified by pointer; the optional tag-list designates a
particular variant if pointer identifies a variant record type.

C-9 Call Formats

Call Format

ELN$DLV.J:NITIALIZE(device-Ilame,
identifier, maximum_length,
string_mode, use_polling)

ELN$DLV -READ..BLOCK(identifier,
block, timeout)

ELN$DLV -READ_STRING(identifier,
strng)

ELN$DLV _ WRITE_STRING(identifier,
strng)

ELN$DRV.J:NITIALIZE(device-Ilame,
identifier, buffer, buffer_size,
outpuLports, use_polling)

ELN$DRV -READ(identifier,
prt, word-count)

ELN$DRV _ WRITE(identifier,
prt, word-count)

ENABLE-ASYNCH-EXCEPTION(
STATUS: = integer_variable)

ENABLE..INTERRUPT

Call Formats

Table C-1. Continued

Meaning

Ready device_name DLV device for input and/or output and create all
needed data structures. The variable identifier receives an identifier to
be used to identify the device in subsequent calls. The optional
maximum_length supplies the maximum string or block length that will be
read or written. The optional arguments string_mode and use_polling are
BOOLEAN expressions. Include module $DL V _UTILITY.

Read from serial line device identifier until the specified number of
characters is read or, optionally, until timeout is reached. The characters read
are returned in block. Include module $DL V _UTILITY.

Read from serial line device identifier until a carriage return character is
encountered. The character string read is returned in strng. Include module
$DLV_UTILITY.

Write the specified character string strng to serial line device identifier.
Include module $DLV _UTILITY.

Ready device_name DRV device for input and/or output and create all
needed data structures. The variable identifier receives an identifier to
be used to identify the device in subsequent calls. The variable buffer receives a
pointer to the I/O buffer of size buffer _size. The set of port numbers to be used
for output instead of input is specified by output_ports, and use_polling is a
BOOLEAN expression indicating whether the read procedures will poll the
device register or use interrupts. Include module $DRV _UTILITY.

Read word_count data words from parallel port prt of device identifier. The
resulting data is stored in the I/O buffer pointed to by the buffer parameter
returned by DRV..INITIALIZE. Include module $DRV _UTILITY.

Write word_count data words (stored in the I/O buffer pointed to by the buffer
parameter returned by DRV..INITIALIZE) to parallel port prt of device
identifier. Include module $DRV _UTILITY.

Allow delivery of asynchronous exceptions to the calling process.

Reenable interrupts.

C-IO

Table C-1. Continued

Call Format Meaning

ENABLE_SWITCH(Resume process switching for the calling job.
STATUS: = integer_variable)

KER$ENTER-KERNEL_CONTEXT(Call target_routine in kernel mode with argument_block, the address of the
status, target-routine, argument-block) VAX argument list to be passed to the called routine. The optional INTEGER

variable status receives the completion status of target_routine. Include module
$KERNEL.

EOF(file)

EOLN(textfile)

ESTABLISH(functionJlame)

EXIT(EXIT_STATUS : = integer,
STATUS: = integer_variable)

EXP(expression)

FIND(file,recordJl umber)
FIND_FIRST -BIT _CLEAR(

vector ,start_index)

FIND-FIRST -BIT _SET(
vector ,start_index)

FIND_MEMBER(string,charset)

FIND-NONMEMBER(string,charset)
FLUSH(file)

KER$FREE-MAP(status,count,
number, dev_object)

FREE-MEMO RY (size, virtual_address,
STATUS: = integer_variable)

KER$FREE-PATH(status, number,
dev)

Return TRUE if file (default is INPUT) is at end-of-file.

Return TRUE if current component of textfile (default is INPUT) is end-of-line.
Establish EXCEPTION-HANDLER function_name for this block.

End current process, with optional integer exit status delivered to creator.

Return the value eexpression.

Position direct-access file at indicated record for input (see also LOCATE).
Return position of first zero (FALSE) bitin vector, a PACKED ARRAY OF
BOOLEAN, starting at given start_index or first bit.

Return position of first one (TRUE) bit in vector, a PACKED ARRAY OF
BOOLEAN, starting at given start_index or first bit.

Return position in string of first character that is a member of set charset.

Return position in string of first character that is not a member of set charset.

Flush I/O buffers associated with file.

Free count UNIBUS or QBUS map registers, starting with register number,
previously allocated by ALLOCATE-MAP for device dev_object. The optional
status is an INTEGER variable. Include module $KERNEL.

Free size bytes of memory at virtual_address, previously allocated by
ALLOCATE_MEMORY.

Free UNIBUS datapath number, previously allocated for DEVICE dev by
ALLOCATE-PATH. The optional status is an INTEGER variable. Include
module $KERNEL.

C-ll Call Formats

Call Format

GET(file)

GET_CONTROL_KEY(textfile,
keys)

ELN$GET _STATUS_TEXT(msgid,
flags, resulLstring)

GET _TIMEOarge_integer _variable,
STATUS: = integer_variable)

KER$GET_USER(status,
circuit, username, uic)

HEX(expression,length,digits)

INDEX(string,substring)

ELN$INIT_TAPE_ VOLUME(device,
volume, density, status)

Call Formats

Table C-1. Continued

Meaning

Advance file to next component and move its contents into file t .
Wait for control key identified by set keys (SET OF 0 .. 31) to be pressed at
the terminal to which textfile is opened.

Get text associated with the message identified by the integer msgid,
format the text as specified by flags, and return the resulting string in the
V ARYING_STRING(255) variable result_string. The argument flags is a set
expression with possible elements STATUS$SEVERITY, STATUS$TEXT,
STATUS$IDENT, and STATUS$F ACILITY; the presence of an element means
that the corresponding field is included in the result string; an empty set means
that all fields are included. Include module $GET-MESSAGE_TEXT and link
the program with the desired message object modules.

Return current system time in large_integer _variable.

Return username and/or uic of either the calling process or the partner process
connected by a circuit to the caller's port; the PORT value of the partner
process's port is supplied by circuit. The optional INTEGER variable status
receives the completion status. Include module $KERNEL.

Return string giving hexadecimal notation for expression, with optionally
specified length and minimum number of significant digits.

Return position of substring in string.

Initialize a File Service tape for use as a file-structured volume on the tape
drive named device (string of up to 30 characters), giving it the volume label
volume (string of up to 6 characters). The optional density is an INTEGER
value that supplies the density (in bytes per inch) that the tape will be
initialized to. The optional status is an INTEGER variable. Include module
$T APE_UTILITY.

C-12

Call Format

ELN$INIT_ VOLUME(device, volume,
default_extension, username,
owner, volume_protection,
file_protection,
record-protection, accessed_directories,
maximum_files, user_directories,
file_headers, windows,
cluster _size, index_position,
data_check, share, group,

\ system, verified,
bad-list, status)

INITIALIZATIONJlONE(
STATUS: = integer_variable)

EL~$INITIALIZE-AREA-MUTEX(
mutex, area, status)

INSERT..ENTRY(header_queue_entry,
queue_entry, boolean_variable,
position)

INVOKE(pointer,
routine_type, argument-list)

JOB-PORT(porLvariable,
STATUS: = integer_variable)

Table C-1. Continued

Meaning

Initialize the disk volume on the drive named device (string of up to 30
characters), giving it the volume name volume (string of up to 12
characters), and using the bad block list supplied by bad_list (a variable­
length array of the flexible type DSK$_BADLIST). The optional status is an
INTEGER variable. Include module $DISK-UTILITY.

Inform the kernel that the current process has completed its initialization
sequence.

Initialize a new mutual exclusion semaphore that uses an AREA object as the
synchronization object and return the status in the optional INTEGER variable
status. The MUTEX variable mutex receives the new MUTEX value, and the
AREA variable area receives the identifier of the new area. Include module
$MUTEX.

Insert queue_entry in queue identified by header _queue_entry at position
QUEUE$HEAD or QUEUE$TAIL; the boolean_variable receives TRUE
if the inserted entry was the first.

Invoke a routine of the given routine_type (procedure or function type name),
where pointer is the address of the routine obtained with ADDRESS and
argument-list is a valid argument list for the routine.

Return PORT value identifying the caller's job port in port_variable.

C-13 Call Formats

Call Format

ELN$KWV -INITIALIZE (device-Ilame,
identifier, mode, clock...rate,
maximum_values, re_initialize,
use_polling, status)

ELN$KWV -READ(identifier,
value_count, st2_go_enable,
dat8-array_ptr, status)

ELN$KWV _ WRITE(identifier,
st2_go_enable, tick_count, status)

LENGTH(string)
LN(expression) -

ELN$LOAD-PROGRAM(file-Ilame,
prograIIl-Ilame, kernel-Illode,
start-with_debug, power...recovery,
kernel_stack_size,
ini tial_user _stack_size,
message_limi t, job_priori ty ,
process-priori ty, status)

Call Formats

Table C-1. Continued

Meaning

Ready device_name KWV device for input and create all needed data
structures. The variable identifier receives a longword identifier to be used to
identify the device in subsequent calls. The mode in which the device is to be
operated is determined by mode, and clock_rate supplies the clock frequency to
be used. The maximum number of data values that can be read from the device
in a single call to KWV -READ is optionally supplied by maximum_values. The
optional arguments re_initialize and use_polling are BOOLEAN expressions.
The optional INTEGER variable status receives the completion status. Include
module $KWV _UTILITY.

Read value_count time values from KWV device identifier and store them in a
data array. The variable data_array_ptr receives the address of the array
containing data from the device; st2_go_enable is a BOOLEAN expression. The
optional INTEGER variable status receives the completion status. Include
module $KWV _UTILITY.

Set up the KWV device identifier to generate the clock-overflow signal. The
optional tick_count supplies an interval in clock ticks after which a clock­
overflow signal is asserted; st2_go_enable is a BOOLEAN expression. The
optional INTEGER variable status receives the completion status. Include
module $KWV _UTILITY.

Return length of string; for varying strings, this is the current length.
Return natural (base e) logarithm of expression.

Load file_name into a currently running V AXELN system, after which
CREATE...JOB will start the program running; program_name supplies the
name by which the program will be known for the CREATE...JOB call. The
starting job and process priori ties are specified by job_priority and
process_priority, respectively. The kernel_mode, start_with_debug, and
power _recovery arguments-are BOOLEAN expressions; kernel_stack_size,
initial_user _stack_size, and message_limit are INTEGER values. The optional
INTEGER variable status receives the completion status. Include module
$LOADER-UTILITY.

C-14

Call Format

ELN$LOAD_UNIBUS.MAP(
map.-register, buffer, buffer_size,
spt_address, datapath)

LOCATE(file,record-Ilumber)

ELN$LOCILMUTEX(mutex)
KER$MEMORY _SIZE(status,

memory_size, free_size, largesLsize)

MFPR(register -Il umber)
ELN$MOUNT_TAPE_ VOLUME(

device, volume, block_size, status)

ELN$MOUNT_ VOLUME(
device, volume, status)

MOVE-PSL

MTPR(register -Il umber, expression)

NEW(pointer, tag-list)

Table C-1. Continued

Meaning

Load UNIBUS or QBUS map registers for use by a direct memory access
UNIBUS or QBUS device, where map_register is a pointer to the first register
allocated by ALLOCATE-MAP, buffer (typeBYTE.JlATA(buffer_size» is a
variable representing the I/O buffer, buffer _size is the integer buffer size, and
spt_address and datapath are the optional pointers to the system page table
and the datapath number, respectively. Include module $UNIBUS.
Position direct-access file at indicated record_number for output.

Lock the MUTEX value mutex. Include module $MUTEX.
Scan the kernel memory database and return, in 512-byte pages, the initial
memory_size, the current free_size, and the largest_size contiguous block of free
memory. The optional status is an INTEGER variable. Include module
$KERNEL.

Return integer contents of processor register identified by register_number.

Mount a File Service tape on the tape drive named device (string of up to 30
characters), using the optional volume label volume (string of up to 6
characters). The optional block_size supplies an INTEGER value that
determines the number of bytes in each block of a newly created file. The
optional status is an INTEGER variable. Include module $TAPE_UTILITY.

Mount the disk volume in the drive named device (string of up to 30
characters), using the optional volume name volume (string of up to 12
characters); if volume is omitted, the procedure mounts whatever disk is loaded
in the drive. The optional status is an INTEGER variable. Include module
$DISK-UTILITY.

Return current contents of VAX processor status longword as 32-bit integer.

Write expression (integer, pointer, or LONG data item) to processor register
identified by register_number.

Allocate storage for variable of pointer's associated type and validate pointer to
identify it; the optional tag-list designates a particular variant if pointer
identifies a variant record type.

C-15 Call Formats

Call Format

OCT(expression,length,digits)

ODD(integer)

Table C-1. Continued

Meaning

Return string giving octal notation for expression, with optionally specified
length and minimum number of significant digits.

Return TRUE if integer is odd.

OPEN(file, FILE..NAME: = specification, Open file for I/O, with optional file specification, file_history
HISTORY: = file_history, (HISTORY$OLD [default], -NEW, -UNKNOWN, or -READONLY),
RECORD-LENGTH: = length maximum record length for textfile (1-32,767, default 133 for new files),
RECORD_LOCKING: = lock, record locking (for shareable files) either TRUE or FALSE,
ACCESS_METHOD: = access, access method (ACCESS$DIRECT, default-SEQUENTIAL),
RECORD_TYPE: = record_type, record_type (RECORD$FIXED or -VARIABLE [default for new textfiles]),
CARRIAGE_CONTROL: = control, carriage control (CARRIAGE$LIST [textfile], -NONE, -FORTRAN),
DISPOSITION: = disposition, disposition on closing (DISPOSITION$SAVE [default], -DELETE),
SHARING: = sharing, sharing while open (SHARE$NONE, -READONLY, -READWRITE),
CIRCUIT: = action, and circuit action, if the ((file" variable is used for circuit transmissions
APPEND: = append, (CIRCUIT$CONNECT creates an unnamed port and connects it to a named
BUFFERING: = buffering, port; CIRCUIT$ACCEPT creates a named port (where the name is the given
BUFFERSIZE : = buffer_size, file name), and waits for a connection request on that port. If action is
CONTIGUOUS: = contiguous, specified, omit all other arguments except file and specification.) If append is
EXTENDSIZE : = extend_size, TRUE, the file is initially positioned at end-of-file. If contiguous is TRUE,
FILESIZE : = file_size, the file is allocated contiguously. If truncate is TRUE, the file is truncated to its
TRUNCATE: = truncate, minimum size. The optional_sizes are INTEGER expressions. If buffering is
FILE-ATTRIBUTES: = file_attributes, TRUE (default), file I/O is buffered. The optional file_attributes argument (type
OWNER: = owner_uic, FILE$ATTRIBUTES_RECORD) supplies a pointer to the file attributes record;
PROTECTION: = protection_value, include module $FILE_UTILITY to use this argument. The optional owner _uic
STATUS: = integer_variable) specifies the user identification code of the owner of the file, and the optional

protection_value supplies a protection code of type FILE$PROTECTION for the
file.

o RD(ordinal_expression)

P ACK(un packed_array, ordinaLindex,
packed-array)

PAGE(textfile)

Call Formats

Return ordinal number of ordinal_expression result.

Copy elements from unpacked_array to packed_array, beginning
with element at unpacked_arrayfordinal_indexl.

Write subsequent output to textfile (default OUTPUT) on new page.

C-16

Call Format

PHYSICAL-ADDRESS(pointer)

PRED(ordinal_expression)

PRESENT(optional_parameter -name)

PROBE-READ(variable-reference)

PROBE_ WRITE (vari able-reference)

PROGRAM-ARGUMENT(posi tion)
PROGRAM-ARGUMENT_COUNT

ELN$PROTECTJ'ILE(file-name,
owner, protection, status,
resultant-file_name)

PUT(file)

KER$RAISE-DEBUG-EXCEPTION(
status, job.id, process.id)

RAISE-EXCEPTION(name,
argument-list,
STATUS:= integer_variable)

KER$RAISE-PROCESS-EXCEPTION(
status, process_var)

READ(file, target-list)

READLN(textfile, target-list)

Table C-1. Continued

Meaning

Return integer denoting the physical address of the variable identified by
pointer. Include module $PHYSICAL-ADDRESS.

Return value of ordinal_expression's type with next lower ordinal number.

Return TRUE if argument was supplied for the named optional parameter.

Return TRUE if first and last bytes of variable_reference are accessible for
reading in current processor mode.

Return TRUE if first and last bytes of variable_reference are accessible for
writing in current processor mode.

Return program argument at position in argument list.
Return number of arguments submi tted to calling program.

Change the file owner and/or the protection code for file_name and return the
status in the optional INTEGER variable status. The optional
resultant_file_name returns the resultant filename of the file. Include module
$FILE_UTILITY.

Append contents of buffer variable (file i) to file.

Raise the asynchronous exception KER$_DEBUG_SIGNAL in the specified
context. The optional status is an INTEGER variable. Include module
$KERNEL.

Raise exception name in the calling process, with additional arguments, ifany,
given by argument-list. All arguments are integers.

Raise the asynchronous exception KER$-PROCESS-ATTENTION in the
specified process. The optional status is an INTEGER variable. Include module
$KERNEL.

Read values from input file (default INPUT) and assign to variables in target­
list.
Read values from current line of input textfile (default INPUT) and assign to
optional variables in target-list.

C-17 Call Formats

Call Format

READ-REGISTER(device_register)

RECEIVE (message_ variable,
pointer_variable, port,
SIZE: = integer_variable,
DESTINATION: = porLvariable,
REPLY: = porLvariable,
STATUS: = integer_variable)

REMOVE-ENTRY(header_queue_entry,
queue_entry_pointer_variable,
boolean_variable, position)

ELN$REN AME_FILE(old-filename,
new-filename, status,
res ultant_old_filena me,
resultant_new_filename)

RESET(file)

RESUME(process,
STATUS: = integer_variable)

REVERT
REWRITE (file)

ROUND(floating_expression)

SEND(message, port,
SIZE : = size,
REPL Y : = port,
EXPEDITE: = boolean_expression
STATUS: = integer_variable)

SET...JOB-PRIORITY(integer,
STATUS: = integer_variable)

Call Formats

Table C-1. Continued

Meaning

Return contents of register reprepesented by device_register (INTEGER,
pointer, or PACKED record variable).

Receive message from port, return its MESSAGE value in message_variable
and a pointer to its data part in pointer _variable; INTEGER variables
optionally receive the data area's size in bytes and the procedure's
completion status; PORT variables optionally receive the destination port
specified by the sender and a port for replies.

Remove queue entry from queue identified by header _queue_entry at position
QUEUE$HEAD, -TAIL, or -CURRENT; queue_entry_pointer _variable
receives a pointer (i QUEUE-ENTRY) to the removed entry; the
boolean_variable receives TRUE if the queue is empty after the removal.

Rename old_filename to new_filename and return the completion status in
the optional INTEGER variable status. The optional resultant_old_filename
and resultant_new_filename return the resultant filename strings. Include
module $FILE_UTILITY.

Reset file to inspection mode and first record (if any), in preparation for input.

Resume a previously suspended process.

Cancel exception handling in current block.

Erase records in file in preparation for output.

Return f1oating_expression rounded to nearest integer.

Send message to port, optionally specifying the data area's size in bytes
and a port for replies. Optionally, expedite the message.

Set priority of current job to integer (0-31,0 highest).

C-18

Call Format

SET -PROCESS-PRIO RITY (process,
integer, STATUS: = integer_variable)

KER$SET-PROTECTION(status,
size, base_address, code)

SET _ TIME(nonnegati ve_Iarge-in teger,
STATUS: = integer_variable)

KER$SET_USER(status,
username, uic)

SIGNAL(value,
STATUS: = integer_variable)

SIGNAL-DEVICE(
DEVICE-.NUMBER : = integer,
STATUS: = integer_variable)

SIN (expression)
SIZE(i tem,tag -list)

SQR(expression)

SQRT(expression)
START_QUEUE(queue_entry_variable)

SUBSTR(string, position,
length)

SUCC(ordinal_expression)
SUSPEND(process,

STATUS: = integer_variable)

Table C-1. Continued

Meaning

Set priority of process to integer (0-15, 0 highest).

Set protection of size bytes of memory at virtual base_address to code
(0 for read-only access, 1 for read/write access, 2 for no access). The optional
INTEGER variable status receives the completion status. Include module
$KERNEL.
Set current time to nonnegative_large_integer.

Set username and uic of the current process. The optional INTEGER variable
status receives the completion status. Include module $KERNEL.

Signal value of type AREA, EVENT, SEMAPHORE, or PROCESS.

Signal DEVICE object from interrupt service routine; the integer optionally
supplies the index of the value to signal in an ARRAY[O .. n] OF DEVICE,
where n s 15.

Return sine of integer, REAL, or DOUBLE expression (angle in radians).

Return size in bytes of item, an addressable variable or named type; the
optional tag-list designates a particular variant if item is a variant record.
Return square of INTEGER, REAL, or DOUBLE expression.

Return square root of nonnegative INTEGER, REAL, or DOUBLE expression.

Initialize queue_entry_variable for use as a queue header.

Refer to substring of string at position (first character is 1); length
optionally specifies the substring's length (default is the rest of string).

Return value of ordinal_expression's type with next higher ordinal number.
Suspend the execution of process.

C-19 Call Formats

Call Format

TIME_FIELDSOarge_in teger)

TIME_STRIN G(large.in teger)
TIME_ V ALUE(string)

TOTAL-ARGUMENT_COUNT
TRANSLATE-N AME(porL variable,

string, scope,
STATUS: = integer_variable)

TRANSLATE_STRIN G(original_string,
translation_string,
OLDCHARS : = olcL.string}

TRUNC(floating_expression)

ELN$U.NIBUS-MAP(dev, buffer,
buffer_size, unibus_address)

ELN$UNIBUS_UNMAP(dev,buffer,
buffer_size, unibus_address)

ELN$UNLOAD-PROGRAM(
prograIlLl1ame, status)

ELN$UNLOCK_MUTEX(mutex)

Call Formats

Table C-1. Continued

Meaning

Return TIME-RECORD data item representing fields of large_integer time.
The fields in type TIME_RECORD are unsigned words (16 bits) named year,
month, day, hour, minute, second, and hundredth. If large_integer is a time
interval (negative), the returned year and month are 0, and day is the number
of days in the time interval, which must be less than 10 thousand.

Return string representing time or time interval given by large_integer.

Return LARGE.J:NTEGER value representing time or integer described by
string; time format: cdd-mmm-YYYYDhh:mm:ss.cc'; interval format:
cddddDhh:mm:ss.cc', where 0 is a space.

Return number of arguments in VAX argument list passed to current routine.
Translate string, searching in scope NAME$LOCAL, NAME$UNIVERSAL, or
NAME$BOTH, and return the associated PORT value in port_variable.

Replace occurrences of old_string characters in original_string wi th
corresponding translation_string characters, and return the resulting string.
The result ofTRANSLATE_STRING(string,CAEIOU',OLDCHARS: = caeiou'} is
string with all lowercase vowels translated to uppercase. The default for
old_string is the character set in ascending order.

Return integer formed by truncating REAL or DOUBLE floating_expression.

Map memory buffers for direct memory access by UNIBUS or QBUS device dev,
wi th BYTE-DATA buffer of size buffer _size, and return unibus_address of first
register. Include module $UNIBUS.

U nmap memory buffers previously mapped for direct memory access by
UNIBUS or QBUS device dev, with BYTE-DATA buffer of size buffer_size;
unibus_address is the address of the first register. Include module $UNIBUS.
Unload program_name from a currently running V AXELN system. The
optional INTEGER variable status receives the completion status. Includf~
module $LOADER-UTILITY.

Unlock MUTEX value mutex. Include module $MUTEX.

C-20

Call Format

UNPACK(packed-array,
un packed-array, ordinal.lndex)

KER$UNWIND(status,
newJp, new_pc)

W AIT-ALL(object-list,
RESULT: = integer_variable,
TIME: = large.Jn teger,
STATUS: = integer_variable)

WAIT-ANY(object-list,
RESULT: = integer_variable,
TIME: = large_integer,
STATUS: = integer_variable)

WRITE(file, source-list)

WRITELN(textfile, source-list)

Table C-1. Continued

Meaning

Copy all elements from packed_array to unpacked_array, with first
assignment to unpacked_array[ordinal_index}.

Unwind call stack to new location. The optional INTEGER variable status
receives the completion status. Include module $KERNEL.

Make calling process wait for all AREA, DEVICE, EVENT, PORT, PROCESS,
or SEMAPHORE values in object-list to satisfy the wait. Zero to four object
values can be specified; the optional integer _variable receives a nonzero
value if the system values satisfied the wait or 0 if the procedure timed out. The
optional large_integer specifies a time interval or absolute time defining the
timeout; the timeout is irrelevant, and the wait result is nonzero, if the
necessary conditions were satisfied before the call.

Make calling process wait for any object in object-list to satisfy the wait.
If one or more object value is specified, the optional integer _variable receives
the position of the argument satisfying the wait or 0 if the procedure timed out.
The optional large_integer specifies a timeout as for W AIT-ALL.

Write expressions in source-list to file (default OUTPUT); if file is a textfile, the
source expressions are converted to character-string representations;
otherwise, the types of the source expressions must be the same as the type of
file 1. For textfile output, source expressions can be suffixed with field
specifiers of the form ttwidth:fraction". For integers and floating-point
numbers, any specified field width is the minimum width.

Equivalent to WRITE(textfile,source-list);WRITELN(textfile), where the
WRITELN appends the end-of-line component. The default textfile is OUTPUT;
if no source-list is supplied, any current, partial line is ended and the next
output begins on the next line.

C-21 Call Formats

Table C-1. Continued

Call Format Meaning

WRITE-REGISTER(register, expression) Write compatible expression to register, which must be an INTEGER variable,

WRITE-REGISTER(register,
assignment-list)

x 0 R,(boolean_ val ue , boolean_val ue)

x 0 R(seta,Setb)
ZERO

Call Formats

a pointer with the BYTE, WORD, or LONG attribute, or a PACKED record
with one of these attributes. If expression is omitted, the register is zeroed.

Write compatible expressions to register, which must be a PACKED record
with the BYTE, WORD, or LONG attribute. Each assignment has the form
ufieldnam-e : = expression", where the field names are those of the record. Any
record field without an assignment is zeroed; ifno assignments are given, the
entire register is zeroed. Any bits in the register not represented by field names
are cleared always.

Return TRUE if the two arguments have different TRUE/FALSE values,
otherwise FALSE.

Return a set whose elements are present in either set argument but not in both.

Return binary zero in the target of the assignment (for example, A: = ZERO or
VAR a: ARRA Y[1 .. 5,1 .. lO] OF INTEGER: = (REPEAT ZERO).

C-22

A
ABS function, 9-4

ACCEPT_CIRCUIT procedure,
12-4to 12-5, 12-7to 12-8

ADD-INTERLOCKED function,
5-20, 9-62, 11-57

ADDRESS function, 9-44 to
9-45

Addressability of variable
references, 5-17

Aggregate initializers. See
Initializers

ALIGNED attribute, 3-48 to
3-49, 3-77, 5-3

ALLOCATE-MAP procedure,
14-25 to 14-26

ALLOCATE-MEMORY
procedure, 12-30 to 12-32

ALLOCATE-PATH procedure,
14-27 to 14-28

ALLOCATE_STACK procedure,
12-36

ANYTYPE data type, 3-54 to
3-55

ARCTAN function, 9-4

AREA data type, 3-60

Areas, 12-24 to 12-25

Index

Arithmetic functions, 9-3 to
9-10

Arithmetic operators, 6-10 to
6-14

ARGUMENT function, 8-19,
8-46, 9-37 to 9-38

Argument functions, 9-35 to
9-42

ARGUMENT_LIST_LENGTH
function, 8-46, 8-48, 9-39

Argument list, 8-20 to 8-22,
8-48

Argument passing, 8-22 to 8-47

Array data types, 3-34 to 3-41
equivalence of, 3-68

Arrays
index range of, 3-34
indexed variables of, 3-38
operations on, 3-38 to 3-39
packed, 3-40 to 3-41
with varying extents, 3-37

ASCII
character set, 3-7,3-9
files, 1-1

ASSERT -CHECK-ENABLED
predeclared constant, 4-16

ASSERT procedure, 13-11

Assignment compatibility,
3-55,3-64, 7-7 to 7-11

Index-l

Assignment operator (: =),
4-10

Assignment statement, 7-6 to
7-11

Associativity rules. See
Operators

Asynchronous exceptions,
13-4, 13-12, 13-16

Attributes of parameters, 8-10

Authorization procedures,
11-35 to 11-38

Authorization Service, 11-34

Authorization Service utility
procedures, 11-39 to 11-47

AUTH-ADD_USER procedure,
11-41 to 11-42

AUTH-MODIFY _USER
procedure, 11-42 to 11-44

AUTH-REMOVE-USER
procedure, 11-45

AUTH-SHOW-USER procedure,
11-46 to 11-47

AXV device driver utility
procedures, 14-45 to 14-52

AXV_INITIALIZE procedure,
14-47 to 14-49

AXV_READ procedure,
14-49 to 14-51

AXV_WRITE procedure,
14-51 to 14-52

B

BIN function, 9-22

Binary semaphore, 11-55,
11-57, 12-24. See also Mutex

BIT attribute, 3-5, 3-10, 3-11,
3-12,3-13,3-50,3-75,5-3,8-10

Block structure, 2-27 to 2-28

BOOLEAN data type, 3-10 to
3-11

Boolean operators, 6-15 to
6-16

Bound flexible type, 3-25 to
3-26,3-53

Buffer variable, 15-4, 15-5,
15-7, 15-11

Buffer variable reference,
5-12 to 5-1 3, 1 5-4

BYTE attribute, 3-5, 3-10, 3-11,
3-12,3-13,3-50,3-76,5-3,8-10

BYTE-DATA data type, 3-62

c
Call format conventions, 1-12

Calling conventions, 8-47 to
8-52

Call stack, 2-24, 13-4

CANCE LEXIT _HANDLER
procedure, 11-53

CASE statement, 7-13 to 7-19

CHAR data type, 3-5 to 3-10,
3-34

Character set, 3-7, 3-9

Character string values. See
String data types

Checksum, 16-13 to 16-14

Index-2

CHR function, 9-23

Circuits, 12-3 to 12-5, 15-14

CLEAR_EVENT procedure, 11-8

CLOSE procedure, 15-3, 15-8,
15-30

Comments, 1-7 to 1-8

Communication region, 14-16
po i nte rs to, 14-15 to 14-16
sharing of, 5-22

Compilation units, 2-2 to 2-3,
2-6, 16-11 to 16-12

Compiler. See VAXELN Pascal
compiler

Compiler error detection, 13-2,
16-15

Compiling. See EPASCAL
command

Compound statement, 2-2,
2 -19, 2 -23, 7-12 to 7 -13, 11-4

Concatenation operator (+),
6-23

Conformant extent. See
Conformant parameter

Conformant parameter
argument passing, 8-34 to

8-44
calling conventions, 8-51 to

8-52
Conformance rules, 8-36 to

8-40

Console terminal as textfile,
15-10

Constant declarations. See
Declarations

Constants
allocation in program

section, 5-18
case, 7-17
sharing of, 5-20

Control variable in FOR
statement, 7-21 to 7-22

CONVERT function, 9-23 to
9-27

COPY_FILE procedure, 15-66 to
15-67

COS function, 9-5

CREATE-AREA procedure,
12-24, 12-27 to 12-28

CREATE-DEVICE procedure,
2-2, 14-1, 14-9 to 14-12, 14-15,
14-16, 14-17

CREATE-DIRECTORY
procedure, 15-67 to 15-68

CREATE-EVENT procedure,
11-9

CREATE-.JOB procedure, 2-1,
2 -17, 2 -18, 2 -19, 11 -1 0 to 11 -1 2

CREATE-MESSAGE procedure,
12-1, 12-2, 12-11 to 12-12

ISO conformant extents, 8-40
CREATE-MUTEX procedure,
11-55, 11-59

to 8-44

CONNECT_CIRCUIT procedure,
12-4, 12-9to 12-11

Console driver, 15-10, 15-14

CREATE-NAME procedure,
12-2,12-12 to 12-14

CREATE-PORT procedure, 12-2,
1 2 -14 to 1 2 -1 5

Index-3

CREATE-PROCESS procedure,
2-1,11-1,11-3,11-4,11-5,
11-12 to 11-14

CREATE_SEMAPHORE
procedure, 11-14to 11-15

CURRENT-PROCESS procedure,
11-15 to 11-16

D
D_floating format, 3-19, 3-21

Data representation, 3-70
boundary requirement, 3-71
size of data, 3-72
packed data, 3-72 to 3-73

Data sharing. See Shared data

Data size attributes, 3-73 to
3-77

Data types
ANYTYPE, 3-54 to 3-55
AREA, 3-60
array, 3-34 to 3-41
BOOLEAN, 3-10 to 3-11
BYTE-DATA, 3-21
CHAR, 3-5 to 3-10, 3-34
DEVICE, 3-61
DOUBLE, 3-19 to 3-21
enumerated, 3-11 to 3-13
EVENT, 3-60
file, 3-55 to 3-58
flexible, 3-17
floating-point, 3-17 to 3-21
INTEGER, 3-4 to 3-5
LARGE-INTEGER, 3-62 to

3-63
MESSAGE, 3-60
MUTEX, 11-55 to 11-57
NAME, 3-61
named, 3-1 to 3-3

ordinal, 3-3 to 3-14
pointer, 3-51 to 3-55
PORT, 3-61
PROCESS, 3-59
QUEUE_ENTRY, 10-1 to 10-4
QUEUE-POSITION, 4-18, 10-5
REAL, 3-18to 3-19
record, 3-41 to 3-51
SEMAPHORE, 3-60
set, 3-14 to 3-17
STRING, 3-32
string, 3-31 to 3-34
subrange, 3-13 to 3-14
system, 3-59 to 3-61
VARYING_STRING, 3-32 to

3-33

Datagrams, 12-3

DEALLOCATE_STACK
procedure, 12-36 to 12-37

DEBUG command option
on EPASCAL command, 16-4

to 16-5
on LINK command, 16-5

Declarations
circularity, 2-30 to 2-31
CONST, 4-8 to 4-9
EXTERNAL, 8-14
FORWARD, 8-14
FUNCTION, 2-3, 8-2 to 8-17
INTERRUPT_SERVICE, 14-14

to 14-16
LABEL, 2-23, 7-6
order of, 2-30
outer-level, 2-2, 5-1
parameter, 8-6 to 8-9
PROCEDURE, 2-3, 8-2 to 8-17
PROCESS-BLOCK, 2-3, 11-2 to

11-3
PROGRAM block, 2-3,2-16
queue, 10-1 to 10-5

Index-4

scope of, 2-26 to 2-30
SEPARATE, 8-12 to 8-13,

16-16
TYPE, 3-1 to 3-3
VAR, 4-2, 5-2 to 5-5

DECLARE_EXIT _HANDLER
procedure, 11-54

DELETE procedure, 2-19, 2-25,
11-2, 11-4, 11-16 to 11-18, 15-3

DELETE_FILE procedure, 15-69

DELETE-MUTEX procedure,
11-55,11-57,11-59 to 11-60

DEVICE data type, 3-61

Device descriptions, 14-2

Device driver programs, 14-1 to
14-7

multiple-unit example, 14-4
to 14-7

single-unit example, 14-2 to
14-4

Device interrupts, 14-1

Device register procedures,
14-36 to 14-43

Device registers, 14-39 to
14-40, 14-42 to 14-43

sharing of, 5-22

Directives, 8-3

DIRECTORY-CLOSE Rfocedure,
15-70

DIRECTORY_LIST procedure,
1 5-70 to 15-71

DIRECTORY-OPEN procedure,
15-72 to 15-73

DISABLE-ASYNCH_EXCEPTION
procedure, 13-12

DISAB LE-I NTE RR U PT
procedure, 14-21

DISABLE-SWITCH procedure,
11-18 to 11-19

DISCONNECT-CIRCUIT
procedure, 12-5, 12-15to 12-16

Disk utility procedures, 15-77
to 15-86

DISMOUNT -TAPE-VOLUME
procedure, 15-88

DISMOUNT_VOLUME
procedure, 15-78

DISPOSE procedure, 9-45 to
9-46

DIVoperator, 6-13 to 6-14

DLV device driver utility
procedures, 14-62 to 14-69

DLV_INITIALIZE procedure,
14-65 to 14-66

DLV_READ_BLOCK procedure,
14-67

DLV_READ_STRING procedure,
14-68

DLV_WRITE-STRING procedure,
14-69

DMA device handling
procedures, 14-23 to 14-35

DOUBLE data type, 3-19 to
3-21

DRV device driver utility
procedures, 14-70 to 14-76

DRV_INITIALIZE procedure,
14-73 to 14-74

DRV_READ procedure, 14-75

Index-5

DRV_WRITE procedure, 14-76

E
ENABLE-ASYNCH_EXCEPTION
procedure, 13-12

ENABLE_INTERRUPT
procedure, 14-22

ENABLE-SWITCH procedure,
11-19 to 11-20

ENTER_KERNELCONTEXT
procedure, 9-63 to 9-64

Enumerated data types, 3-11
to 3-13

equivalence of, 3-65
predeclared, 4-16 to 4-18,

10-5

EOF function, 15-5, 15-6, 15-9,
1 5-11, 1 5-54

EOLNfunction, 15-9,15-10,
15-56

EPASCAL command, 16-2 to
16-10

file specifications, 16-2 to
16-3

format, 16-2
qualifiers, 16-3 to 16-10

Error detection, 13-1 to 13-3
range violation, 13-2
run-time error, 13-2
unpredictable error, 13-2
warning-level error, 13-2,

13-3,16-15

ESTABLISH procedure, 13-13

EVENT data type, 3-60

Exception arguments, 13-5 to
13-6

EXCEPTION-HANDLER functior
type, 13-3 to 13-8

Exception handling
proced u res, 13-9 to 13-18

Exception names, 13-8

Exclusive OR operation, 6-15 to
6-16,6-21

EXIT procedure, 2-19, 2-25,
11-4, 11-21, 15-3

Exit utility procedures, 11-52 to
11-54

EXP function, 9-5

Exponentiation, 6-13

Export header, 2-12 to 2-13

Exported symbol table, 16-14

Expressions, 6-1 to 6-3
factors of, 6-4 to 6-5
side effects in, 6-7 to 6-10
simple, 6-1, 6-2 to 6-3
terms of, 6-3 to 6-4

Extent expressions, 3-28 to
3-31,8-25

Extent parameters, 3-21
scope of, 2-29

EXTERNAL attribute, 2-3, 2-15,
5-1,5-5

EXTERNAL directive, 2-3, 2-15,
2-16,8-3,8-14,11-3

F

Field reference, 5-8 to 5-10

Fields

Index-6

of records, 3-41 to 3-43, 3-48
to 3-50

scope of field names, 2-29
tag, 3-45 to 3-47

Fi Ie data types, 3-55 to 3-58.
See also TEXT file type

equivalence of, 3-69

File mode, 15-4. See also
Generation mode and
Inspection mode

File Service, 15-13 to 15-14

File specifications on EPASCAL
command, 16-2 to 16-3

File utility procedures, 15-63 to
15-76

File variables, 3-55
associated file buffer, 3-55
internal representation of,

3-57 to 3-58
restrictions on, 3-57
sharing of, 5-21
use of in 110, 15-3

Files, 15-1 to 15-13
closing of, 15-3
component type of, 3-55
current position of, 15-5 to

15-7
end-of-file, 15-5
explicit opening of, 15-2
implicit opening of, 15-2
internal, 15-1 to 15-2, 15-8
operations on, 15-11 to

15-13
structure of, 15-6

FIND procedure, 15-2, 15-12,
15-51

FIND-FIRST _BIT_CLEAR
function, 9-64

FIND_FIRST _BIT _SET function,
9-65

FIND_MEMBER function, 9-14

FIND_NONMEMBER function,
9-15

Flexible data types, 3-21 to
3-31. See also Bound flexible
type

equivalence of, 3-66 to 3-68

Floati ng-poi nt data types, 3-17
to 3-21

FLUSH procedure, 15-54

FOR statement, 7-20 to 7-23

FORWARD directive, 8-3, 8-14

FREE_MAP procedure, 14-29 to
14-30

FREE-MEMORY procedure,
12-32 to 12-33

FREE_PATH procedure, 14-30 to
14-31

Function calls, 8-18 to 8-22

Function declarations, See
Declarations

Function result, 8-1, 8-10 to
8-11

calling conventions, 8-50 to
8-51

result type, 8-5 to 8-6, 8-10 to
8-11

result variable, 8-11

FUNCTION_TYPE directive,
8-2 to 8-3, 8-5, 8-14to 8-15

Index-7

G
G-floating format, 3-19, 3-20,
15-48, 16-6

Generation mode, 15-4, 15-5,
15-7

GET procedure, 15-7, 15-8,
15-11, 15-12, 15-32

GET _CONTROLKEY procedure,
15-56 to 15-57

GET_STATUS_TEXT procedure,
13-13 to 13-15

GET_TIME procedure, 9-54

GET-USER procedure, 11-34,
11-36 to 11-37

Global symbols, 2-15 to 2-16

GLOBALDEF attribute, 2-11 to
2-13,2-15,2-16

GOTO statement, 2-24, 7-29 to
7-31,13-4

H
Headings

module, 2-11 to 2-14
procedure and function, 2-2,

8-4 to 8-6

HEX function, 9-27

%INCLUDE, 1-8 to 1-9,2-6,
2-12, 16-2

IDENT attribute, 2-11 to 2-12

Identifiers, 1-2
scope of, 2-26, 2-28 to 2-30

IF statement, 7-19to 7-20

Import header, 2-13 to 2-14

IN operator, 6-19

Include header, 2-14

INCLUDE command option,
16-6, 16-11, 16-12

Inclusive OR operation, 6-20

INDEX function, 9-16

Indexed variable reference, 5-7
to 5-8

Indirect variable reference,
5-10 to 5-12

INIT_TAPE_VOLUME
procedure, 15-89 to 15-90

INIT-VOLUME procedure,
15-78 to 15-85

INITIALIZATION_DONE
procedure, 11-22

INITIALlZE_AREA_MUTEX
procedure, 11-55, 11-60

Initializers, 4-1,4-10 to 4-16,
5-3

aggregate, 4-13 to 4-14
constant, 4-10 to 4-11
effects of, 4-15 to 4-16
set, 4-12

INLINE attribute, 2-25, 8-4, 8-15
to 8-18

INPUTfile, 15-2, 15-10,15-12,
15-14

INSERT_ENTRY procedure,
5-20,10-3,10-5, 10-7 to 10-9

Inspection mode, 15-4, 15-5,
15-7

Index-8

INTEGER data type, 3-4 to 3-5

Interjob data sharing. See
Shared data

Internal files. See Files

Interrupt handling, 14-16 to
14-17

Interrupt priority level. See IPl

Interrupt service routine
declarations. See Declarations

Interrupt service routines, 2-2,
14-1, 14-14 to 14-19

INVOKE procedure, 9-66 to
9-67

I/O routines, 15-13 to 15-62
direct access procedures,

15-50 to 15-52
general I/O procedures,

15-15 to 15-30
input procedures, 15-31 to

15-39
miscellaneous routines,

15-53 to 15-54
output procedures, 15-40 to

15-49
textfile manipulation

routines, 15-55 to 15-62

IPl (interrupt priotity leve!),
14-17

IPl procedures, 14-20 to 14-22

ISO conformant extents, 8-40
to 8-44

J
JOB_PORT procedure, 12-16 to
12-17

Jobs, 2-1

K

activation, 2-18 to 2-19
termination, 2-19

KER$-POWER-SIGNAl
exception, 13-4, 13-12

KER$-PROCESS-A TTENTION
exception, 13-16

KER$-QUIT _SIGNAL exception,
13-4,13-12

Kernel objects, 11-1

Kernel services, 9-1, 11-1 to
11-2

for devices, 14-8 to 14-13
for interjob data sharing,

12·26 to 12-28
for message transmission,

12-6 to 12-23
for processes and

synchronization, 11-6 to
11-33

KWV device driver utility
procedures, 14-53 to 14-61

KWV-INITIAlIZE procedure,
14-55 to 14-58

KWV-READ procedure,
14-58 to 14-60

KWV_WRITE procedure,
14-60 to 14-61

L

label declarations, See
Declarations

labels, 2-23, 7-5 to 7-6

Index-9

LARGE-INTEGER data type,
3-62 to 3-63

LENGTH function, 9-17

Lexical tokens, 1-1,4-2

Lexicographic relations, 6-18

LIBRARY file-qualifier, 16-2 to
16-3, 16-6, 16-11, 16-12

Limited ordinal constant, 4-9

Line numbers, 1-9

LINK command, 16-1, 16-4 to
16-5

LIST attribute, 8-9, 8-10, 8-19,
8-22,8-25,8-46

LIST parameter, 8-46 to 8-47,
8-48. See also LIST attribute

Literal constants, 4-1, 4-2 to 4-7
CHAR, 4-4, 4-11
decimal integer, 4-2 to 4-3
floating-point, 4-4 to 4-6
nondecimal integer, 4-3
string, 4-6 to 4-7,4-11

LN function, 9-6

LOAD_PROGRAM procedure,
11-49 to 11-5 1

LOAD_UNIBUS_MAP
procedure, 14-31 to 14-32

Local names, 12-2

Local variable, 5-1
storage allocation for, 5-18

to 5-19

LOCATE procedure, 15-2, 15-5,
15-12,15-52

LOCK_MUTEX procedure,
11-55,11-57,11-61

LONG attribute, 3-5, 3-10, 3-11,
3-12,3-13,3-50,3-77,5-3,8-10

M

MAXINT predeclared constant
4-16 '

Mechanism arguments, 13-6

Memory allocation procedures,
12-29 to 12-34

MEMORY-SIZE procedure,
12-33 to 12-34

Message data, 12-1

MESSAGE data type, 3-60

Message port. See Ports

Messages, 12-1 to 12-5
sending, 12-2 to 12-3
sharing, 5-21 to 5-22
receiving, 12-3
transmitting, 12-3 to 12-5

MFPR function, 14-37

MOD operator, 6-14

Mode. See File mode

MODULE file-qualifier, 16-2 to
16-3, 16-7, 16-11, 16-12

Module header, 2-11

Module management, 16-10 to
16-16

Module names
scope of, 2-30

Modules, 2-3 to 2-5, 2-7 to 2-16
dependencies and

consistency checking,
1 6-13 to 16-16

Index-IO

inclusion in a compilation,
16-11 to 16-12

MOUNT_TAPE_VOLUME
procedure, 15-90 to 15-91

MOUNT-VOLUME procedure,
15-85 to 15-86

MOVE_PSL fu netion, 9-51

MTPR procedure, 14-37 to
14-38

MUTEX data type, 11-55 to
11-57

Mutex
internal representation of,

11-57
operations, 11-55 to 11-56
procedures, 11-58 to 11-61

N
NAME data type, 3-61

Named constants, 4-1
predeclared, 4-16 to 4-18

Network Service, 15-14

NEW procedure, 3-48 to 3-49,
5-21,9-46 to 9-48, 15-8

NIL
as a factor in an expression,

6-4
asa pointer value, 3-51 to

3-52,6-17
as an initializer, 4-12

Nonpositional arguments
in argument lists, 8-21 to

8-22,8-47
in call formats 1-12

NOUNOERFLOWattribute,
2-17,2-25,8-4,8-12, 11-3,
14-15

Null statement, 7-12

o
Object modules, 2-3 to 2-5,
2-15,16-2,16-11

OCT function, 9-28

ODD function, 9-6

OPEN procedure, 2-18, 12-4,
15-2, 15-12, 15-14, 15-16 to
15-29

Operators
arithmetic, 6-10 to 6-14
assignment, 4-10
associativity rules, 6-5, 6-7
Boolean, 6-15 to 6-16
classes of, 6-1
concatenation, 6-23
dyadic, 1-7,6-11,6-12,6-15
indirection, 3-51
monadic, 1-7,6-11,6-12,6-15
precedence rules, 6-5 to 6-7
relational, 6-16 to 6-19
set, 6-19 to 6-23

OPTIONAL attribute, 8-9, 8-10,
8-44 to 8-45

ORO function, 9-29

Ordinal data types, 3-3 to 3-14
equivalence of, 3-65

Ordinal functions, 9-11 to 9-12

OUTPUT file, 15-2, 15-10, 15-14

Overflow in floating-point
operations, 6-12 to 6-13

Index-II

p

PO address space, 2-19, 12-1,
12-24

P1 address space, 2-19, 2-23 to
2-24,5-19, 11-4, 11-5

PACK procedure, 9-29 to 9-31

Packed
arrays, 3-40 to 3-41
data representation, 3-70,

3-72 to 3-73
records, 3-41 to 3-42, 3-48 to

3-49
sets, 3-15, 3-17

PACKED ARRAY OF CHAR, 3-33

PAGE procedure, 15-13, 15-58

Parameter declarations. See
Declarations

Parameter lists, 8-6 to 8-10
in process block declarations,

11-3 to 11-4

Parsing, 1-1

Pascal I/O routines. See I/O
routines

PHYSICALADDRESS function,
14-33

Pointer data types, 3-51 to 3-55
equivalence of, 3-69

Pointer variables, 3-51
indirection operator used

with, 3-51

Pointers
associated data type of, 3-51
comparing pointer values,

3-52

PORT data type, 3-61

Ports, 12-1 to 12-5

POS attribute, 3-43, 3-45, 3-50
to 3-51

Positional arguments
in argument lists, 8-21 to

8-22
in call formats, 1-12

Power-recovery handling,
14-17 to 14-19

Precedence rules. See
Operators

PRED function, 9-12

PRESENT function, 9-39 to 9-40

PROBE-READ function, 9-51

PROBE_WRITE function, 9-52

Procedural parameter, 8-9
argument passing, 8-29 to

8-34
calling conventions, 8-49
OPTIONAL, 8-44 to 8-45
recursive "tree walk"

example, 8-31

Procedure calls, 8-18to 8-22

Procedure declarations. See
Declarations

PROCEDURE_TYPE directive,
8-2 to 8-3,8-5,8-14 to 8-15

Process block, 2-1, 11-2 to 11-5.
See also Declarations

PROCESS data type, 3-59

Program
arguments, 2-17

Index-12

fi I es, 2 -17 to 2 -18
names, 2-18

PROGRAM_ARGUMENT
function, 2-17, 2-19,9-40 to
9-41

PROGRAM_ARGUMENT_COUNT
function, 2-17,9-41

PROGRAM block, 2-1, 2-16 to
2-19. See also Declarations

Program loader utility
procedures, 11-48 to 11-51

PROTECT_FILE procedure,
15-74 to 15-75

Pseudo variable reference,
5-10

Punctuation
rules, 1-7 to 1-8
symbols, 1-3 to 1-5

PUT procedure, 15-2, 15-7,
15-8,15-11,15-12,15-13,15-41
to 15-42

Q

Qualifiers on EPASCAL
command, 16-3 to 16-10

Queue declarations. See
Declarations

QUEUE-ENTRY data type, 10-1
to 10-4

QUEUE_POSITION data type,
10-5

Queue procedures, 10-6 to
10-12

Queues
empty, 10-3

examples, 10-13 to 10-18,
10-19 to 10-22

queue entry, 10-1
queue head, 10-2
queue tail, 10-2
in interprocess

communication,10-18to
10-22

"walking" a queue, 10-14to
10-16

QUIT exception, 11-5

R
RAISE-EXCEPTION procedure,
13-4, 13-15 to 13-16

RAISE-PROCESS_EXCEPTION
procedure, 13-16to 13-17

READ procedure, 15-5, 15-7,
15-10, 15-11, 15-13, 15-32to
15-37

READLN procedure, 15-10,
15-11, 15-13, 15-58 to 15-60

READ_REGISTER procedure,
5-20,5-22, 14-38 to 14-40

READONLY attribute, 4-2, 4-15,
5-1, 5-4, 5-15,8-10,8-25,8-28,
8-29,14-15

REAL data type, 3-18to 3-19

Real-time device drivers, 14-44

RECEIVE procedure, 12-2, 12-3,
12-5,12-17 to 12-19

Record data types, 3-41 to 3-51
equivalence of, 3-69

Record locking, 5-21

Records
fields of, 3-41

Index-13

operations on, 3-43 to 3-44
packed, 3-41 to 3-42, 3-48 to

3-49
with variants, 3-44 to 3-48

REFERENCE attribute, 8-10,
8-52

Relational operators, 6-16 to
6-19

REMOVE-ENTRY procedure,
5-20, 10-5, 10-10 to 10-12

RENAME-FILE procedure,
15-75 to 15-76

REPEAT statement, 7-23 to
7-24

Reserved words, 1-3

RESET procedure, 15-2, 15-6,
15-11, 15-12, 15-38 to 15-39

Result variable. See Function
result

RESUME procedure, 11-22 to
11-23

REVERT procedure, 13-17

REWRITE procedure, 15-2,
15-6, 15-8, 15-11, 15-12, 1 5-42
to 15-43

ROUND function, 9-31

Routine body, 2-2, 2-20 to 2-25,
8-3

activation, 2-23 to 2-24
termination, 2-24 to 2-25

Routine parameters
scope of, 2-29

s
SEMAPHORE data type, 3-60

SEND procedure, 12-2 to 12-3,
12-5, 12-19to 12-21

SEPARATE directive, 2-7, 2-15,
2-29,8-3,8-12 to 8-13

Separate routine bodies, 2-7

Set constructors, 6-21 to 6-23

Set data types, 3-14 to 3-17
equivalence of, 3-66

SET -.JOB-PRIORITY procedure,
11-23 to 11-24

Set membership. See IN
operator

Set operators, 6-19 to 6-23

SET -PROCESS_PRIORITY
procedure, 11-24 to 11-25

SET_TIME procedure, 9-55

SET-USER procedure, 11-34,
11-37 to 11-38

Sets
element type of, 3-14
packed, 3-15, 3-17
small set type, 3-15

Shared data
among processes, 5-19 to

5-22
among jobs, 12-24 to 12-25
initialization of, 5-21

Signal arguments, 13-5

SIGNAL procedure, 11-2, 11-25
to 11-27

SIGNALDEVICE procedure,
14-1, 14-1 2 to 14-1 3, 14-1 6

Simple expression. See
Expressions

Index-14

SIN function, 9-7

SIZE function, 3-58, 9-48 to
9-49

Source text conventions, 1-1 to
1-9

Special symbol operators, 1-7

Special symbols, 1-3 to 1-7

SQR function, 9-7

SQRT function, 9-8

SS$_INTDIV exception, 6-14

SS$-FL TDIV exception, 6-14

SS$_FLTDIV_F exception, 6-14

SS$_FLTOVF exception, 6-12

SS$-FLTOVF-F exception, 6-12

SS$_FLTUND exception, 6-13

SS$_FLTUND_F exception, 6-13

SS$-UNWIND exception, 2-24,
13-4

Stack frame, 2-23 to 2-24

Stack utility procedures, 12-35
to 12-37

START_QUEUE procedure,
10-3,10-12

Statements
assignment, 7-6 to 7-11
CASE, 7-13 to 7-19
compound, 7-12 to 7-13
conditional, 7-1, 7-13 to 7-20
FOR, 7-20 to 7-23
general syntax, 7-3
GOTO, 7-29 to 7-31
IF, 7-19 to 7-20
labeling, 7-1, 7-5 to 7-6
loop, 7-1, 7-20 to 7-26

null,7-12
REPEAT, 7-23 to 7-24
WHILE, 7-24 to 7-26
WITH, 7-26 to 7-29

Status values, 13-8

Storage allocation, 5-18 to 5-19

Storage allocation routines,
9-43 to 9-49

String constants. See Literal
constants

STRING data type, 3-32

String data types, 3-31 to 3-34
equivalence of, 3-68

String expressions, 3-31

String functions, 9-13 to 9-20

Strings. See String data types

Subrange data types, 3-13 to
3-14

Subprocess, 11-1
activation, 11-4
termination, 11-4 to 11-5

SUBSTR function, 9-17 to 9-18

SUCC function, 9-12

SUSPEND procedure, 11-27 to
11-28

Syntax conventions, 1-10 to
1-11

System data types, 3-59 to 3-61,
11-1

comparing, 6-17

T
Ta pe uti I ity p roced u res, 1 5-87
to 15-91

Index-15

Terminal driver, 15-14

TEXT file type. See Textfiles

Te'xtfiles, 15-4 to 15-5, 15-8 to
15-11

end-of-line, 15-8
in generation mode, 15-10

to 15-11
in inspection mode, 15-10
INPUT, 15-2, 15-10, 15-14
OUTPUT, 15-2, 15-10, 15-14
reading, 15-35 to 15-37
structu re of, 15-9
writing to, 15-46 to 15-49

TIME_FIELDS function, 9-56 to
9-57

Time represenatation routines,
9-53 to 9-60

TIME_STRING function, 9-58

TIME_VALUE function, 9-59 to
9-60

TOTALARGUMENT_COUNT
function, 8-48, 9-42

TRANSLATE_NAME procedure,
12-22 to 12-23

TRANSLA TE_STRI NG fu nctio n,
9-19 to 9-20

TRUNC function, 9-32

Type conversion routines, 9-21
to 9-34

Type declarations. See
Declarations

Type equivalence, 3-63 to 3-69

Type identity, 3-64

Typecast variable reference,
5-13 to 5-17

Typecasting, 3-54

Types. See Data types

u
UIC (user identification code),
11-34

UNDERFLOW attribute, 2-17,
2-25,8-4,8-12,11-3,14-15

Underflow in floating-point
operations, 6-12 to 6-13

UNIBUS-MAP procedure, 14-33
to 14-34

UNIBUS-UNMAP procedure,
14-35

Universal names, 12-2

UNLOAD_PROGRAM
procedure, 11-51

UNLOCK-MUTEX procedure,
11-55, 11-57, 11-61

UNPACK procedure, 9-32 to
9-34

UNWIND procedure, 13-18

Up-level GOTO, 7-30 to 7-31

User identification code. See
UIC

User name, 11-34

v
VALIDATE command option,
16-9 to 16-10, 16-12, 16-13,
16-1 5 to 16-16

VALUE attribute, 2-15,4-2,
4-15,5-1, 5-4 to 5-5, 14-15

Index-16

Value parameter, 8-9
argument passing, 8-24 to

8-29
as local variable, 5-1
calling conventions, 8-49 to

8-50
default values for, 8-10
READONLY, 8-25 to 8-26,

8-27 to 8-29

VAR parameter, 8-9
argument passing, 8-23 to

8-24
calling conventions, 8-48
OPTIONAL, 8-44 to 8-45

Variable declarations. See
Declarations

Variable reference, 5-2, 5-6 to
5-17

in assignment statement, 7-6
in FOR statement, 7-21 to

7-22
in WITH statement, 7-26 to

7-28

Variables
allocation in program

section, 5-18 to 5-19
sharing of, 5-19 to 5-20

Variants
in records, 3-44 to 3-48, 3-49

to 3-50
tags used in, 3-45

VARYING_STRING data type,
3-32 to 3-33

VAX functions, 9-50 to 9-52

VAXELN Pascal compiler, 16-1
consistency checking, 16-13

to 16-16

VAXNMS librarian, 16-1

VAXNMS linker, 16-1

Virtual address space. See PO
address space and P1 address
space

w
WAIT-ALL procedure, 11-2,
11-28 to 11-33, 14-16

WAIT_ANY procedure, 11-2,
11-2 8 to 11-3 3, 14-1 6

WHILE statement, 7-24 to 7-26

WITH statement, 2-30, 3-43 to
3-44, 5-16, 7-26 to 7-29

WORD attribute, 3-5, 3-10,
3-11,3-12,3-13,3-50,3-76,5-3,
8-10

WRITE procedure, 15-5, 15-7,
15-10, 15-11, 15-12, 15-13,
15-43 to 1 5-49

WRITELN procedure, 15-8,
15-1 0, 15-11, 1 5-13, 1 5-60 to
15-62

WRITE_REGISTER procedure,
5-20, 5-22, 14-40 to 14-43

x
XOR function, 9-8 to 9-9

z
ZERO function, 9-9 to 9-10

in initializers, 4-12, 4-15, 4-16

Index-17

VAXELN PASCAL
Language Reference Manual
AA-EU39A-TE

READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to improve the

quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, completeness,

organization, etc.)

What features are most useful? ____________________ _

Does the publication satisfy your needs?

What errors have you found? _____________________ _

Additional comments ________________________ _

Name

Title

Company Dept.

Address

City State Zip

(staple here)

.---- ----Do Not Tear· Fold Here and Tape ----------------------------------:::.

mamaomo I " III

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

Attention Publications Manager
Digital Equipment Corporation
2265 116 Avenue Northeast
Be"evue.
Washington. 98004

No Postage
Necessary

if Mailed in the
United States

- - - -- ---Do Not Tear· Fold Here and Tape - - -- - - - ---- - ------ --- - ----- - - - -- - - --

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	09-62
	09-63
	09-64
	09-65
	09-66
	09-67
	09-68
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	14-61
	14-62
	14-63
	14-64
	14-65
	14-66
	14-67
	14-68
	14-69
	14-70
	14-71
	14-72
	14-73
	14-74
	14-75
	14-76
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	15-59
	15-60
	15-61
	15-62
	15-63
	15-64
	15-65
	15-66
	15-67
	15-68
	15-69
	15-70
	15-71
	15-72
	15-73
	15-74
	15-75
	15-76
	15-77
	15-78
	15-79
	15-80
	15-81
	15-82
	15-83
	15-84
	15-85
	15-86
	15-87
	15-88
	15-89
	15-90
	15-91
	15-92
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	replyA
	replyB

