
ULTRIX/SQL

UL TRIX/SQL Database Adminstrator's Guide

Order Number: AA-PBZ8A-TE

UL TRIXlSQL Database Administrator's Guide

Order Number: AA-PBZ8A-TE

June 1990

Software Version: UL TRIXlSQL Version 1.0

Operating System and Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes database administration using ULTRIX/SQL software. Version 1.0 of
ULTRIX/SQL is based on INGRES Release 6.2.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

!JamaalD
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
ULTRIX Mail Connection

ULTRIX Worksystem Software
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XU!

UNIX is a registered trademark of AT&T in the USA and other countries.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

INGRES is a trademark of Ingres Corporation.

Preface

Purpose of this Document

Intended Audience

Organization of this Document

Compatibility with Remote Access to RdbNMS

Associated Documents

Conventions

References to Products

1 ULTRIXlSQL Users and Responsibilities

Table of Contents

1.1 Overview ... 1-1

1.2 ULTRIX/SQL Users... 1-1

1.2.1 ULTRIX Operating System Administrator... 1-1

1.2.2 ULTRIX/SQL System Administrator.. 1-2

1.2.2.1 ULTRIX/SQL Superuser Permission.. 1-2
1.2.2.2 ULTRIX/SQL System Administrator Responsibilities 1-2

1.2.3 ULTRIX/SQL Database Administrator... 1-3

1.2.4 End User.. 1-4

1.3 Managing ULTRIX/SQL Databases-A Summary ... 1-4

2 Authorizing User Access

2.1 Overview ... 2-1

2.2 Using the accessdb Utility ... 2-1

2.2.1 Identifying Your Terminal to accessdb ... 2-2

2.2.2 Authorizing New Users One at a Time... 2-2

2.2.3 Modifying an Existing User's Access Rights ... 2-4

2.2.4 Deleting an Existing User 2-4

2.2.5 Listing Authorized Users ... 2-5

2.2.6 Other Uses for accessdb 2-5

2.3 Using the Users File ... 2-5

2.3.1 User Validation ... 2-5

2.3.2 Creating the Users File to Add a Large Number of New Users.................... 2-6

2.3.3 Using a Copy of Another Installation's Users File to Add New Users 2-7

2.3.4 Restoring the Users File... 2-7

3 Creating and Destroying Databases

3.1 Overview ... 3-1

3.2 ULTRIX/SQL Database Files 3-1

3.3 The Master Database .. 3-2

3.4 Types of Databases ... 3-2

3.5 Creating an ULTRIX/SQL Database ... 3-2

3.5.1 How Many Databases Can Be Created .. 3-2

3.5.2

3.5.3

3.5.4

3.5.5

Rules for Naming Databases .. .

The createdb Command .. .

Creating a Public Database

Creating a Private Database .. .

3-2

3-3

3-3

3-3

3.5.5.1 Authorizing Access to Private Databases ... 3-4
3.5.5.2 Changing a Database from Private to Public 3-4

3.6 Listing Information about ULTRIX/SQL Databases 3-5

3.6.1 Listing Database Information with accessdb.. 3-5

3.6.2 Listing Database Information with catalogdb .. 3-5

3.7 Destroying a Database 3-6

4 Using Alternate Locations

4.1 Overview ... 4-1

4.2 What Is an ULTRIX/SQL Location? ... 4-1

iv Contents

4.3 Default Locations for Database Files.. 4-2

4.4 Guidelines for Using Alternate Locations ... 4-2

4.5 Creating Alternate Locations for a New or Existing Database-An Overview..... 4-3

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

Creating a Directory Structure for a New Location

4.5.1.1 Creating a Directory Structure Within the ULTRIX/SQL
Installation Area .. .

4.5.1.2 Creating a Directory Structure Outside the ULTRIX/SQL
Installation Area .. .

4.5.1.3 Directory Structure Summary

Creating an Alternate Location

Creating a Database in an Alternate Location

Extending a Database to an Alternate Location .. .

Adding Types of Files that Can Use an Existing Location

4-3

4-3

4-4
4-5

4-5

4-8

4-8

4-10

5 Creating Tables and Views

5.1 Overview ... 5-1

5.2 Creating Shareable Objects.. 5-1

5.3 Creating Tables ... 5-1

5.3.1 The create table Statement... 5-1

5.3.2 Table Limits: Number of Rows, Number of Columns, Width of Rows 5-2

5.3.2.1 Limit on the Number of Rows Stored in One Table.......................... 5-2
5.3.2.2 Limit on the Number of Columns in One Table 5-3
5.3.2.3 Limit on the Width of a Row... 5-3

5.3.3 Duplicate Rows in Tables .. 5-3

5.3.4

5.3.5

5.3.6

5.3.3.1 Duplicate Rows When Adding New Records to or Modifying a
Table.. 5-4

5.3.3.2 Duplicate Rows when Bulk Copying Records in a Table................. 5-4
5.3.3.3 Duplicate Rows in Updated Tables... 5-4
5.3.3.4 Removing Duplicate Rows from Tables... 5-5

Creating a Table with Journaling

Creating a Table in an Alternate Location

Additional Examples of create table Statements

5-6

5-6

5-6

5.4 Manipulating Columns: Adding, Changing and Deleting ... 5-7

5.4.1 Adding a Column ... 5-8

5.4.1.1 Data Types for New Columns ... 5-8
5.4.1.2 Default Column Values.. 5-8

Contents v

5.4.2

5.4.3

5.4.4

5.4.5

Deleting a Column •...

Changing Data 'fypes .. .

Using the create table ... as Statement to Rename a Column

Additional Examples of Manipulating Columns

5-10

5-10

5-11

5-12

5.5 Moving a Table to a New Location .. 5-13

5.5.1 Moving a Table to a Single Location .. 5-13

5.5.2 Moving a Table to Multiple Locations.. 5-14

5.5.2.1 Moving a Table to a Different Number of Locations 5-14
5.5.2.2 Moving a Table to Different Multiple Locations 5-14

5.6 Creating Views.. 5-15

5.6.1 The create view Statement... 5-15

5.6.2 Examples of the create view Statement .. 5-15

5.6.3 Additional Information about Views... 5-16

5.6.4 Updating Views .. 5-16

6 Loading and Unloading a Database

6.1 Overview... 6-1

6.2 Uses for unloaddb and copydb... 6-1

6.3 Using unloaddb .. 6-2

6.3.1 unloaddb Syntax ... 6-2

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Using unloaddb to Unload and Reload a Database

How unloaddb Works .. .

6.3.3.1
6.3.3.2
6.3.3.3

The unload.ing and reload.ing Command Files
The cpDBA.out and cpUSER.out Files
The cpDBA.in, cpUSER.in, cp.DBA.cat Files

Unloading in ASCII Format.

Changing the Floating Point Specification

Locking During unloaddb

Preventing an Inconsistent Database During unloaddb

6-2

6-3

6-4
6-5
6-5

6-5

6-6

6-6

6-6

6.4 Using copydb 6-7

6.4.1 What copydb Copies .. 6-7

6.4.2 copydb Syntax... 6-7

6.4.3 How copydb Works .. 6-8

vi Contents

6.4.4 Copying Tables from One Database to Another .. 6-9

6.4.5 Copying in ASCII Format.. 6-10

6.4.6 Changing the Floating Point Specification... 6-10

6.4.7 copydb and Locking... 6-10

6.4.8 Preventing an Inconsistent Database During copy db 6-11

6.5 Moving/Copying Databases and Tables Between ULTRIX VAX and
ULTRIX RISC Systems ... 6-11

6.5.1 Copying/Moving a Database Between ULTRIX VAX and ULTRIX RISC
Systems 6-11

6.5.2 Copying/Moving Tables Between ULTRIX VAX and ULTRIX RISC
Systems 6-12

6.6 Avoiding Problems with unloaddb and copy db .. , 6-13

7 Populating Tables

7.1 Overview ... 7-1

7.2 Methods of Loading Data into Tables .. 7-1

7.3 Using the copy Statement.. 7-1

7.3.1 The copy Statement.. 7-2

7.3.2 The copy Statement and Locking.. 7-2

7.3.3 Specifying a Filename .. 7-2

7.3.4 Speed of the copy Statement .. 7-2

7.3.5 The copy Statement and Nulls ... 7-3

7.3.6 Invalid Data Errors... 7-3

7.3.6.1
7.3.6.2
7.3.6.3
7.3.6.4
7.3.6.5

Invalid Data
Miscounting Fixed-Length Field Widths .. .
Neglecting the "nl" Delimiter in the copy Statement..
Omitting Delimiters Between Fields
Including Too Many Delimiters

7-4
7-4
7-4
7-4
7-5

7.3.7 What To Do If You Are Having Trouble Loading Data 7-5

7.4 Data Integrity and Validity .. 7-6

7.4.1 Using the copy Statement's with Clause to Control Error Handling 7-6

7.4.2

7.4.3

Checking for Data Type Errors .. .

Checking for Integrity Errors Unrelated to Data Type

7-7

7-8

7.5 Unloading and Reloading Data 7-9

Contents vII

7.5.1 Bulk Copy .. 7-9

7.5.2 Unloading in Readable Fonnat ... 7-10

7.5.2.1 Unloading into Files with Fixed-Length Fields 7-10
7.5.2.2 Unloading into Files with Variable-Length Fields 7 -11

7.6 Advanced Use of the copy Statement.. 7-11

7.6.1 How to Use Multiple Files to Populate Multiple Database Tables............... 7-12

7.6.1.1 Loading a Table from Multiple Files .. 7-12
7.6.1.2 Multi-Line File Records .. 7-13

7.6.2 Loading Fixed-Length and Binary Records .. 7-13

8 ULTRIX/SQL Locking

8.1 Overview ... 8-1

8.2 The ULTRIX/SQL Locking System .. 8-2

8.3 Lock 1'ypes .. 8-2

8.4 Locking Levels ... 8-3

8.5 How ULTRIX/SQL Locking Works ... 8-3

8.5.1 How ULTRIX/SQL Detennines Whether a Lock Is Available 8-3

8.5.2 How ULTRIX/SQL Detennines the Appropriate 1'ype of Lock 8-3

8.5.3 How ULTRIX/SQL Detennines the Appropriate Level of Lock.................. 8-4

8.5.4 How ULTRIXlSQL Detennines Whether to Take a Lock............................. 8-5

8.5.5 How Long Locks Are Held ... 8-6

8.5.6 A Single-User Locking Example... 8-6

8.5.7 A Multi-User Locking Example ... 8-7

8.5.8 Waiting for Locks 8-10

8.6 User-Controlled Locking ... 8-11

8.6.1 How to Use the set lockmode Statement ... 8-11

8.6.2 Uses for the set lockmode statement .. 8-12

8.6.3 Changing the Locking Level............................... 8-13

8.6.4 Changing Maxlocks 8-13

8.6.5 Setting a Timeout ... 8-14

8.6.6 Setting Readlock... 8-14

8.6.6.1 Setting Readlock to Nolock .. 8-14
8.6.6.2 Considerations when Setting Readlock to Nolock............................. 8-15

vIII Contents

8.7 Avoiding Deadlock... 8-15

8.7.1 A Deadlock Situation... 8-15

8.7.2 Deadlock in Single-Query Transactions... 8-16

8.7.2.1 When Different Access Paths Are Used ... 8-17
8.7.2.2 When Lock Escalation Occurs .. 8-17
8.7.2.3 When Locking Occurs down an Overflow Chain.............................. 8-18

8.7.3 Handling Deadlock in Applications ... 8-18

8.8 Monitoring Locking 8-19

8.8.1 set lock_trace 8-19

8.8.2 Environment Variables... 8-20

8.8.3 lock_trace Output... 8-20

8.8.4 A lock_trace Example.. 8-21

8.9 Improving Concurrency ... 8-23

8.9.1 The "Never Escalate" Approach ... 8-24

8.9.2 The "Table Lock" Approach ... 8-25

9 Backup and Recovery

9.1 Overview ... 9-1

9.2 The ULTRIX/SQL Logging System ... 9-1

9.2.1 The Logging Facility ... 9-2

9.2.2 The Recovery Process.. 9-2

9.2.3 The Archiver Process ... 9-2

9.3 Verifying the Accessibility of Your Data .. 9-2

9.4 Backing Up a Database with Checkpoints .. 9-3

9.4.1 The ckpdb Command ... 9-3

9.4.2

9.4.3

Checkpointing a Database .. .

Cleaning Up Outdated Checkpoints

9-3

9-3

9.4.4 Checkpoints and Destroyed Databases... 9-4

9.4.5 Putting Checkpoints on Tape... 9-4

9.4.5.1 Estimating Checkpoint File Size... 9-4
9.4.5.2 Estimating Tape Capacity.. 9-5
9.4.5.3 Checkpointing to a Single Tape .. 9-6
9.4.5.4 Checkpointing to Multiple Tapes.. 9-6

9.5 Using the ULTRIX/SQL Joumaling System ... 9-8

Contents Ix

9.5.1 Starting Journaling .. 9-8

9.5.1.1 Enabling Journaling on New Tables .. 9-8
9.5.1.2 Enabling Journaling on Existing Tables ... 9-9

9.5.2 Stopping Journaling ... 9-9

9.5.3 Producing Audit Trails With Journals .. 9-9

9.5.3.1 The auditdb Command... 9-10
9.5.3.2 Loading an Audit Trail as a Table ... 9-10

9.6 Backing Up with copydb.. 9-12

9.7 Backing Up with unloaddb... 9-13

9.8 Using Operating System Backups .. 9-13

9.8.1 Mapping File Names to Table Names .. 9-14

9.8.2 Replacing a Current Table with a System Backup Copy............................... 9-14

9.8.3 Replacing a Destroyed User Table from Backup Tape 9-15

9.9 Recovering Databases ... 9-15

9.9.1 Recovering Databases from Checkpoints and Journals................................. 9-15

9.9.1.1 The rollforwarddb Command 9-16
9.9.1.2 Recovering a Non-journaled Database ... 9-16
9.9.1.3 Recovering a lournaled Database ... 9-16
9.9.1.4 Recovering a Database From Taped Checkpoints 9-16
9.9.1.5 Retracting Changes with rollforwarddb ... 9-16

9.9.2 Recovering Data from copydb Backups ... 9-17

9.9.3 Recovering Inconsistent Databases... 9-17

A ULTRIXlSQL System Files

A.l Overview ... A-I

A.2 ULTRIXlSQL Files and Directories .. A-I

B The lockstat Utility

B.1 Overview .. B-1

B.2 Using the lockstat Utility ... B-1

B.2.1 Interpreting the Locking System Summary.. B-3

B.2.2 Interpreting the "Locks by lock list" Portion ... B-4

B.2.3 Interpreting the "Locks by resource" Portion .. B-5

Index

x Contents

Preface

Purpose of this Document

The ULTRIXISQL Database Administrator's Guide provides the ULTRIX/SQL
Database Administrator with information on creating, maintaining, backing up, and
recovering ULTRIX/SQL databases. In addition, it describes different types of
ULTRIX/SQL users and provides instructions for authorizing users to access
ULTRIX/SQL software and databases.

Intended Audience

The ULTRIXISQL Database Administrator's Guide is primarily intended for
ULTRIX/SQL Database Administrators. However, in some cases, the
responsibilities of the ULTRIX/SQL Database Administrator and the ULTRIX/SQL
System Administrator may overlap. Therefore, some of the tasks and
responsibilities described in this manual may require permissions typically given to
the ULTRIX/SQL System Administrator, but not necessarily given to a Database
Administrator. In these cases, you may need to work with your ULTRIX/SQL
System Administrator to carry out these responsibilities.

Before reading this manual, the reader should be familiar with ULTRIX/SQL and
the ULTRIX operating system.

Organization of this Document

The ULTRIXISQL Database Administrator's Guide is divided into the following
parts:

• Chapter 1 describes ULTRIX/SQL users and their tasks, permissions and
responsibilities.

• Chapter 2 explains how to allow users access to ULTRIX/SQL, provides
instructions on using the access db utility, and tells how to authorize more
than one user at a time by building a users file.

• Chapter 3 tells how to create a database with the create db command, how to
list information about databases with the accessdb and catalogdb utilities,
and how to destroy a database with the destroydb command.

Preface xi

• Chapter 4 provides instructions on how to create alternate locations for
databases, how to create a database using alternate locations, and how to
extend an existing database to an alternate location.

• Chapter 5 explains how to create tables and views; it also provides
infonnation on table limits, handling duplicate rows in tables, and
manipulating columns.

• Chapter 6 tells how to unload and reload a database or selected tables with the
unload db and copydb commands.

• Chapter 7 presents methods for loading data into tables using the copy
statement and discusses considerations for ensuring the data's integrity and
validity as well as ways to avoid data errors.

• Chapter 8 discusses the automatic placement of locks on tables or pages of
tables to ensure that the many ULTRIX/SQL users trying to access the same
database at the same time do not interfere with each other.

• Chapter 9 describes various methods for backing up ULTRIX/SQL databases,
such as checkpoints and journals, and the use of the rollforwarddb command
to recover a database from checkpoints and journals.

• Appendix A describes the directories and files for ULTRIX/SQL system code,
data files, checkpoints, journals, the transaction log file, and other
ULTRIX/SQL files and provides the environment variable set for each during
the initialization of ULTRIX/SQL.

• Appendix B tells how to use the lockstat utility to examine the state of the
ULTRIX/SQL Lock Database and describes its output.

Compatibility with Remote Access to Rdb/VMS

This document assumes that your installation does not include Remote Access to
Rdb/VMS. If your installation includes this option, be sure to check your
documentation for Remote Access to Rdb/VMS for infonnation about syntax that
may differ from that described in this manual. Remote Access to Rdb/VMS is a
VMS layered product installed on a VMS system running Rdb/VMS, which is
connected to your ULTRIX/SQL system(s).

Areas that may differ include:

• Length of varchar data type

• Legal row size

• Command usage

• Name length

• Table size

xII Preface

Associated Documents

The following manuals are included in your ULTRIX/SQL base system
documentation set:

ULTRIXISQL Database Administrator's Guide
ULTRIXISQL NET User's Guide
ULTRIXISQL Operations Guide
ULTRIXISQL Reference Manual
ULTRIXISQL Release Notes

Conventions

The following conventions are used to describe syntax in this manual:

• Boldface type is used to identify reserved words and required symbols and
punctuation in syntax that must be typed as shown when used. Boldface is
also used to indicate data types and key names. In sample terminal output,
boldface is used to emphasize sections that require further explanation.

• Words in italics within text and syntax diagrams represent variable elements
of syntax that are to be supplied by the program or the user. Italics are also
used within text to introduce new terminology or to show emphasis.

• Double quotes (" ") within the general text indicate a specific value of a
parameter. Double quotes (" ") and single quotes (' ') within syntax and in
code examples have specific meanings within the context of SQL or a host
programming language.

• Reserved words are shown in boldface, lowercase letters (except in host
language examples, where embedded SQL statements appear in uppercase to
distinguish them from the host language code). Although ULTRIX/SQL does
not actually distinguish between uppercase and lowercase in reserved words,
it does convert any uppercase letters to lowercase. This is true only for
reserved words. Variables are case sensitive.

• This documentation uses generic keyboard key names. The key names on your
particular keyboard may vary slightly from those used in this documentation.
Key names joined by a hyphen (such as Control-P) indicate that the user is to
press the named keys simultaneously.

• Syntax diagrams may continue over several lines. Line wraps and additional
lines in statement and command line syntax are indented under the first line of
the statement or command.

• Clauses or arguments enclosed in square brackets ([]) within syntax
diagrams are optional.

• Clauses enclosed in braces ({ }) within syntax diagrams are optional and can
be repeated zero or more times.

• Clauses or reserved words separated by vertical bars (I) within syntax
diagrams indicate lists from which one element is to be chosen.

Preface xiii

• Examples of code are separated from the text and are shown in a special,
constant-width typeface.

• Pseudocode, a description of an operation without the actual code, is shown in
italics within examples. This generic program code is used to clarify overall
syntax structure without unnecessary detail.

References to Products

The ULTRIX/SQL documentation to which this manual belongs often refers to
products by their abbreviated names:

• ULTRIX/SQL refers to ULTRIX/SQL database software and to its
implementation of the SQL language. (Repetitive occurrences of
ULTRIX/SQL have been shortened to SQL.)

• RdbNMS refers to VAX RdbNMS database software.

xlv Preface

ULTRIXlSQL Users and Responsibilities 1

1.1 Overview

This chapter describes ULTRIX/SQL users and their tasks and responsibilities. It
discusses the ULTRIX/SQL superuser pennission, who holds it, and why it is
needed. Lastly, it provides a table listing:

• Tasks involved in managing ULTRIX/SQL databases

• Pennissions or prerequisites for perfonning these tasks

• Chapter references for additional infonnation on these tasks

1.2 ULTRIX/SQL Users

ULTRIX/SQL recognizes four different types of users:

• ULTRIX Operating System Administrator

• ULTRIX/SQL System Administrator

• ULTRIX/SQL Database Administrator

• End user

1.2.1 ULTRIX Operating System Administrator

The Operating System Administrator sets up the operating system environment in
which ULTRIX/SQL is installed. This person logs in as root and is the owner of the
root account, which provides all pennissions available from the operating system.

The Operating System Administrator helps the ULTRIX/SQL System Administrator
by perfonning all installation and initialization tasks that require root permissions.
These include loading ULTRIX/SQL with the setld utility and setting up
directories, ownerships, and pennissions for use by ULTRIX/SQL. Once the
ULTRIX/SQL environment is running, the Operating System Administrator is
responsible for adding new data areas, expanding system resources, and perfonning
system backups.

ULTRIXlSQL Users and Responsibilities 1-1

1.2.2 ULTRIX/SQL System Administrator

The ULTRIX/SQL System Administrator logs in as ingres (or uses su to become
the ingres user) and is owner of the ingres account, which provides permissions in
the ULTRIX/SQL environment that are needed to initialize and maintain
ULTRIX/SQL. As owner of the ingres account, this person has the primary
responsibility for initializing and maintaining ULTRIX/SQL. Additionally, he or
she is the primary holder of the ULTRIX/SQL superuser permission.

1.2.2.1 ULTRIXlSQL Superuser Permission

When ULTRIX/SQL is initialized, both the Operating System Administrator (root)
and the ULTRIX/SQL System Administrator (ingres) automatically receive the
ULTRIX/SQL superuser permission. (It is important not to remove this permission
from these persons, because they will need it for many of the tasks they are
required to perform.)

ULTRIX/SQL superuser permission enables the Operating System Administrator
and the ULTRIX/SQL System Administrator to impersonate other users when
accessing databases. They do this by using the -u flag with ULTRIX/SQL operating
system commands. The -u flag enables them to temporarily become the Database
Administrator for any database. Additionally, they can confer the ULTRIX/SQL
superuser permission on any other ULTRIX/SQL user. There is no limit on the
number of ULTRIX/SQL superusers that can exist at a site.

ULTRIX/SQL superuser permission is required to perform many ULTRIX/SQL
tasks, especially those necessary for initializing and maintaining the ULTRIX/SQL
installation. Although Database Administrators do not automatically receive
superuser permission, some of the tasks described in this manual require it. If you
do not have superuser permission, you will need to perform these tasks with your
ULTRIX/SQL System Administrator.

1.2.2.2 ULTRIXlSQL System Administrator Responsibilities

The ULTRIX/SQL System Administrator has the following responsibilities:

• Authorize ULTRIX/SQL users to access ULTRIX/SQL

• Initialize ULTRIX/SQL

• Define ULTRIX/SQL environment variables in the symbol table

• Start, stop, configure, and monitor servers

• Disconnect or suspend a session connected to a server

• Shut down the ULTRIX/SQL installation or parts of it

For instructions on performing these tasks, see the ULTRIX/SQL Operations Guide.

1-2 ULTRIXlSQL Users and Responsibilities

1.2.3 ULTRIX/SQL Database Administrator

Anyone who creates a database becomes the Database Administrator for that
database. There is no limit on the number of database administrators that can exist
at a site. However, before you can create a database, you must be authorized to do
so by an ULTRIX/SQL superuser, usually the ULTRIX/SQL System Administrator.
Authorization to create databases is provided through the accessdb utility; see
Chapter 2 for instructions.

As Database Administrator, you determine who can access your database and the
objects in it. You do this by:

• Creating a database as public or private. A public database is accessible to all
ULTRIX/SQL users; a private one is accessible to its owner only. After a
database has been created as private, only an ULTRIX/SQL superuser, using
the accessdb utility, can grant a user access to it.

• Creating database objects and then giving users permission to use them.
Database objects created by any other user are accessible to that user only.

As Database Administrator, you must give users explicit permission to use the
following objects, created by you:

• Tables

• Views

As Database Administrator, you can access objects in your database that were
created by another user by using the -u flag with ULTRIX/SQL operating system
commands. This enables you to temporarily become that user.

Note

If a user changes any object owned by the Database Administrator,
ULTRIX/SQL creates a new copy of the object, which is owned by that
user. This object is private to the user who created it; it is not accessible
to other ULTRIX/SQL users or to the Database Administrator.

The ULTRIX/SQL Database Administrator has the following responsibilities:

• Create and destroy ULTRIX/SQL databases

• Create public database objects

• Give users access to data through grants on tables and views

• Maintain database and query performance

• Manage locking strategies

• Back up and recover the database

UL TRIXlSQL Users and Responsibilities 1-3

The tasks listed below are sometimes considered the responsibility of the
ULTRIX/SQL System Administrator, because they are performed with the
accessdb utility, which requires ULTRIX/SQL superuser permission. However, you
may need to perform them as part of your database administration responsibilities:

• Authorize users to access ULTRIX/SQL and to create ULTRIX/SQL databases

• Define alternate locations for database files

• Authorize (extend) databases to use alternate locations

For a summary of database administration tasks described in this manual and the
permissions or prerequisites required to perform them, see the section that follows
entitled "Managing ULTRIX/SQL Databases-A Summary."

1.2.4 End User

An end user is anyone who uses ULTRIX/SQL and is not an Operating System
Administrator, ULTRIX/SQL System Administrator, Database Administrator, or
ULTRIX/SQL superuser. Since ULTRIX/SQL was designed for a wide variety of
users, this can be anyone from an application developer with many years of
experience to a data entry clerk with little or no computer experience.

End users can:

• Use any public database and any private one to which they have been
authorized access.

• Create database objects in any database to which they have access. These
objects can be viewed, updated, and destroyed only by the user who created
them or by a superuser, who is impersonating the creator by using the -u flag
with ULTRIX/SQL operating system commands.

• Use existing tables and views to which the Database Administrator has
granted them access.

1.3 Managing ULTRIX/SQL Databases-A Summary

The following table provides a summary of the database administration tasks
described in this manual. It lists:

• Tasks that are required to create and manage ULTRIX/SQL databases

• Commands, statements, or utilities used to perform these tasks

• Required permissions or prerequisites

• Chapter references for additional information

In the following table, the term "superuser" always refers to the ULTRIX/SQL
superuser and "root" refers to the ULTRIX Operating System Administrator.

1-4 ULTRIXlSQL Users and Responsibilities

Table 1-1: Tasks Required to Manage ULTRIX/SQL Databases

Task Command, Prerequisite For more
Statement, or Utility information, see

Authorize users to accessdb superuser Chapter 2
access ULlRlX/SQL

Create databases createdb authorization by a Chapter 3
superuser to create
databases

Destroy databases destroydb Database Chapter 3
Administrator for the
database or a superuser

Define UL1RIX/SQL accessdb superuser, Chapter 4
locations root

Authorize (extend) a accessdb superuser, Chapter 4
database to use root
alternate locations

Create public tables create table, create Database ChapterS
and views view Administrator for the

database or a superuser

Unload/copy data unloaddb, copydb Database Chapter 6
from one database into Administrator for the
another database or a superuser

Populate tables with copy, insert table owner or Chapter 7
data pennission from

Database
Administrator to
update the table

Manage locking set lockmode authorization to access Chapter 8
strategies implemented the database
by application
developers

Back up and recover ckpdb, rollforwarddb Database Chapter 9
the database Administrator for the

database or a superuser

ULTRIXlSQL Users and Responsibilities 1-5

Authorizing User Access 2

2.1 Overview

This chapter tells you how to allow users access to ULTRIX/SQL. It provides
instructions on using the accessdb utility to:

• Give a new user access to ULTRIX/SQL and specific ULTRIX/SQL databases

• Modify an existing user's access to ULTRIX/SQL and specific ULTRIX/SQL
databases

• Delete an existing user's access to ULTRIX/SQL and specific ULTRIX/SQL
databases

• Find out an existing user's authorizations

It also tells you how to authorize more than one user at a time by building a users
file when ULTRIX/SQL is initialized.

2.2 Using the accessdb Utility

The accessdb utility lets you provide, modify, and query user access to
ULTRIX/SQL for one user at a time. To use accessdb, you need:

• ULTRIX/SQL superuser permission

See Chapter I for a description of the ULTRIX/SQL superuser permission.

• An understanding of how to use a forms-based program, such as isql or
catalogdb.

The accessdb utility is a forms-based program. If you do not know how to use
an ULTRIX/SQL forms-based program, refer to the ULTRIXISQL Reference
Manual.

• A cursor-addressable terminal that you must identify with the environment
variable TERM_INGRES or TERM.

If you have problems when you are using accessdb, you can access a Help screen
from the accessdb menu by selecting Help.

Authorizing User Access 2-1

2.2.1 Identifying Your Terminal to accessdb

You can only run accessdb on a cursor-addressable terminal (for example, a
VT100) that you must identify. To identify the terminal, you set the environment
variable TERM_INGRES or TERM to a terminal definition contained in the
ULTRIX/SQL $ICSYSTEM/sql/files/termcap file.

If you do not specify a terminal with TERM_INGRES. the value in TERM is used
by default. If that value is not a valid ULTRIX/SQL terminal definition,
ULTRIX/SQL fails with an error. Often you may want to identify terminal
capabilities using TERM_INGRES to access features not activated by ULTRIX
TERM values.

For example, if you are using a VT100 terminal with function keys active in the C
shell environment, you identify your terminal to ULTRIX/SQL by including the
following command in your .login or .cshrc file:

setenv TERM INGRES vt100f

To identify your VT100 terminal in the Bourne shell environment, include the
following commands in your .profile file:

TERM INGRES=vtlOOf
export TERM_INGRES

You can specify any of the valid terminal codes listed in the ULTRIXISQL
Reference Manual.

2.2.2 Authorizing New Users One at a Time

You must have access to the ingres account or have ULTRIX/SQL superuser
permission to grant new users access to ULTRIX/SQL or old users new privileges.
Using the accessdb utility, you can add, modify, or delete ULTRIX/SQL users, one
at a time, and authorize them to access ULTRIX/SQL.

Authorizing access to ULTRIX/SQL is different from granting permission to view
and manipulate the data in ULTRIX/SQL databases. Only the Database
Administrator can grant permission to use the data in your tables with the SQL
grant statement.

To authorize a new user to use ULTRIX/SQL:

1. Start accessdb by issuing the access db command at the operating system
prompt.

2. Select User from the access db main menu.

3. Type the login for the user you wish to add at the following prompt:

User name:

Note

Because ULTRIX is case sensitive, to avoid problems, we strongly
recommend that only lower case ULTRIX logins be specified for
ULTRIX/SQL users.

2-2 Authorizing User Access

4. Type y (yes) at the following prompt:

Unknown user - do you want to create a new user?

A fonn that contains infonnation describing the new user appears. It contains
a list of four types of pennission that you can assign to the user by changing
the default values that are displayed.

Figure 2·1: Information About a User Frame

InI'or_tlon about an IHGRES User

User HOUle: 1IC01l1

PerMissions:
Creat. Databases: y Set Trace Flags: n

Updat. SystBM tatalogs: n Super User: n

Da ases Ounecl Datahases Authorized to Use

D.I.teUser Sauo Help End

5. Change the default value of the Create Databases permission from y to n if
you want to deny the user permission to create new databases.

6. Change the default value of the Update System Catalogs permission from n to
y if you want to permit the user to update system catalogs with a query
language. (This should be granted with caution.)

7. Change the default value of the Set Trace Flags permission from n to y if you
want to permit the user to set the debugging trace flags within ULTRIX/SQL.

8. Change the default value of the Super User permission from n (no) to y (yes)
if you want to give ULTRIX/SQL superuser permission to the user. See
Chapter 1 for a description of the ULTRIX/SQL superuser pennission.

9. Select Save from the menu to save the changes you just entered, and return to
the accessdb main menu.

10. Repeat steps 2-9 for each new user you wish to authorize.

11. Select Quit to leave accessdb.

Authorizing User Access 2-3

2.2.3 Modifying an Existing User's Access Rights

To modify an existing user's (that is, either your own or another's) access to
ULTRIXlSQL and user capabilities:

1. Start accessdb by issuing the access db command at the operating system
prompt.

2. Select User from the access db main menu.

3. At the following prompt, type the login of the user you wish to modify:

User name:

4. Reassign any of the privileges on the form by changing their current values.
Type y (yes) or n (no).

Do not attempt to add or delete any database names in the read-only table
field called Databases Owned. You can only use the createdb or destroydb
commands to add or delete databases.

5. Select Save from the menu to save the changes you just entered and return to
the accessdb main menu.

6. Repeat steps 1-5 for each existing user whose authorization you wish to
modify.

7. Select Quit to leave accessdb.

2.2.4 Deleting an Existing User

To delete an existing user's access to ULTRIX/SQL:

1. Repeat steps 1-4 in the procedure "Modifying an Existing User" above.

2. When the user's information form appears on the screen, select Delete from
the menu.

3. Return to the accessdb menu and repeat steps 1-3 for each user you want to
delete.

4. Select Quit to leave accessdb.

Since there are many places in the system catalogs where a user's name could
appear, you cannot delete more than one user at one time.

Note

You are not allowed to delete any user who is the owner of a database,
table, or view.

2-4 Authorizing User Access

2.2.5 Listing Authorized Users

To list the names of the ULTRIX/SQL users at your installation and their
corresponding permissions:

1. Start accessdb by issuing the accessdb command at the operating system
prompt.

2. Select Catalog from the access db menu.

3. Select Users from the Catalog menu.

The Catalog Users screen appears. It contains a scrollable table that displays
the 10gins and user permissions of all the ULTRIX/SQL users at your
installation.

You cannot modify the information displayed in this table. To change
information about a particular user you must return to the accessdb main
menu and select the User function. To modify or delete a user, see the
procedures in the sections "Modifying an Existing User's Access Rights" or
"Deleting an Existing User" earlier in this chapter.

4. To return to the accessdb main menu, select End.

5. Select Quit to leave accessdb.

2.2.6 Other Uses for accessdb

The accessdb utility can also be used to:

• Create nondefault locations for databases, checkpoints, and journals

• Extend an existing database to new locations

• Authorize access to private databases

• Change a database from private to public or from public to private

These functions are described in Chapter 3 and Chapter 4.

2.3 Using the Users File

With the $ICSYSTEM/sql/files/users file, you can authorize a large number of new
users at initialization time. This section tells you how to create a new users file.

2.3.1 User Validation

ULTRIX/SQL keeps track of valid ULTRIX/SQL users in two places:

• An ULTRIX/SQL system catalog

• The $II-SYSTEM/sql/files/users file, located in the $ICSYSTEM/sql/files
directory

Authorizing User Access 2·5

The users file is submitted to the ULTRIX/SQL iibuild procedure, when
ULTRIX/SQL is initialized for the first time. The file provides the initial entries for
one of the ULTRIX/SQL system catalogs that is created when the master database
(iidbdb) is created. That system catalog contains the logins of users authorized to
use ULTRIX/SQL. Each time a user tries to use ULTRIX/SQL, his or her login is
compared against the entries in the catalog.

Because ULTRIX/SQL uses both the system catalog and the users file, the catalog
and fIle must remain consistent with each other.

2.3.2 Creating the Users File to Add a Large Number of New Users

To add a large number of new users all at once when ULTRIX/SQL is initialized,
create a users file and then have your ULTRIX/SQL System Administrator run
iibuild using this file instead of the version of the users file that iibuild creates by
default.

When you run iibuild for the first time, you are prompted for the pathname for the
users file. If you do not supply the pathname, iibuild creates the users file in the
$ICSYSTEM/sqVfiles directory. To build the users file, add an entry for each new
user. The entry consists of a line containing four fields, each of which is separated
by an exclamation point (!). The format for each field is as follows:

• The usemame in lowercase in the first field

• A zero (0) in the second field (currently not used)

• A zero (0) in the third field (currently not used)

• A fourth field, the status code field, which contains a number representing the
permissions you can assign to the user

The status code field can contain a single number representing a single permission
or it can contain a sum, representing any two, three, or all four permissions. The
codes for each permission are shown in the following table:

Table 2-1: Permission Codes

Status Code Permission

100000 S uperuser permission

20 Ability to set trace flags

4 Ability to update system catalogs

1 Ability to create databases

The following table provides examples of status codes representing more than one
permission.

2-6 Authorizing User Access

Table 2-2: Codes Representing More Than One Permission

Status Code Permission

100001 Superuser and the ability to create databases

100025 All privileges

24 Set trace flags and update system catalog

An example of an entry for user "samiam" with the superuser, update system
catalogs, and create databases permissions is:

samiam!O!O!l00005

2.3.3 Using a Copy of Another Installation's Users File to Add New
Users

If you are creating a new installation, you can add new users by using a copy of the
users file of another ULTRIX/SQL installation.

If you edit the users file, do so with the names of new users, their accounts, and
permissions before the iibuild command is run to initialize ULTRIX/SQL. Then,
when the master database is created during the iibuild (initialization) procedure,
the ULTRIX/SQL system catalogs will be current and consistent with the users file.

If you edit the users file after the master database is created, the listing in the
system catalog is not updated. Thus, editing the users file after the master database
is created is not a way to add new users. For information on adding new users, refer
to the section entitled "Authorizing New Users One at a Time" earlier in this
chapter.

2.3.4 Restoring the Users File

If your installation's users file is destroyed, you can recover it. You must create a
temporary users file in the $ICSYSTEM/sql/files directory with the following lines
in it:

$ingres!O!O!l00025
ingres!O!O!l00025
root!O!O!l00025

These lines comprise the template with which a new ULTRIX/SQL installation
begins.

Then use the following procedure to run accessdb from the ingres account:

1. Start accessdb by issuing the access db command at the operating system
prompt.

2. Select User from the access db main menu.

3. At the following prompt, specify the root account by typing root:

User name: root

Authorizing User Access 2·7

4. Select Save from the menu to save the changes you just entered. You do not
actually need to make a change to this screen. The users file will get updated
with information from the appropriate system catalog and contain an entry for
every ULTRIX/SQL user account that exists in the system catalog.

5. Select Quit to leave accessdb.

2-8 Authorizing User Access

Creating and Destroying Databases 3

3.1 Overview

This chapter tells you how to create a database using the default locations for
database files that are established when ULTRIX/SQL is initialized. It describes the
createdb command and tells you how it works. It provides instructions for listing
information about databases with the accessdb and catalogdb utilities. Lastly, it
tells you how to destroy a database with the destroy db command.

3.2 ULTRIX/SQL Database Files

Each ULTRIX/SQL database contains a configuration file, data files, checkpoint
files if you checkpoint your database, and journal file, if you journal your database.
These files are described below.

The configurationfile contains administrative details about the database, such as
the location of data, checkpoint, and journal files.

Datafiles consist of the following:

• User tables and indexes that you or another authorized user create in the
database.

• The system catalogs, which are tables that contain information about the
database such as descriptions of its tables, columns, and views. System
catalogs exist for each database and can be viewed by any ULTRIX/SQL user.
For a complete description ofthe system catalogs, see the ULTRIXISQL
Reference Manual.

Checkpoint files contain a static copy of your entire database. A checkpoint file is
created each time you use the ckpdb command to take a checkpoint of your
database.

lournalfiles contain dynamic records of changes committed to the journaled tables
in your database. Both checkpoint and journal files are used to recover your
database if a disk crashes. For information about backing up and recovering your
database, see Chapter 9.

When ULTRIX/SQL is initialized, default locations are established for each of
these types of files. Chapter 4 provides a list of these locations as well as
instructions for creating a database using alternate locations.

Creating and Destroying Databases 3·1

3.3 The Master Database

The master database, called the iidbdb, contains information about all
ULTRIX/SQL databases, their locations, and the users who can access them. The
master database is sometimes referred to as the ULTRIX/SQL system database.

3.4 Types of Databases

There are two types of databases:

• A public database, which is accessible to all ULTRIX/SQL users.

• A private database, which is accessible only to its creator, to an ULTRIX/SQL
superuser, and to other users designated by an ULTRIX/SQL superuser with
the accessdb utility.

When a database is public, it means that all ULTRIX/SQL users can access the
database. It does not mean that all ULTRIX/SQL users can access its data. As
Database Administrator, you control access to the data in your database by granting
users permission to access tables and views that you own. See the ULTRIXISQL
Reference Manual for details.

3.5 Creating an ULTRIX/SQL Database

Before you can create a database in ULTRIX/SQL, you must be authorized to do
so by the ULTRIX/SQL System Administrator or another superuser. See Chapter 2
for instructions.

3.5.1 How Many Databases Can Be Created

ULTRIX/SQL does not limit the number of databases that you can create. You can
create as many databases as your operating system configuration allows.
Additionally, you can use alternate locations to spread your databases across disks.
For information about using alternate locations, see Chapter 4.

3.5.2 Rules for Naming Databases

Database names must follow these rules:

• They must be unique within an ULTRIX/SQL installation.

• They can be up to 24 alphanumeric characters, including an underscore. No
special characters other than the underscore are allowed.

• They must begin with any alphabetic character except the underscore.

ULTRIX/SQL stores database names in lowercase. If you use uppercase to name
your database, ULTRIX/SQL automatically changes the name to lowercase.

3·2 Creating and Destroying Databases

3.5.3 The createdb Command

The syntax of the createdb command is:

createdb [-uusername] [-p] dbname [-dlocation] [-clocation] [-j location]

For a complete description of the flags and parameters for createdb, see the
ULTRIX/SQL Reference Manual.

After you issue createdb, ULTRIX/SQL:

• Updates the system catalogs in the master database (iidbdb).

• Creates a new subdirectory, with the name of the database, under the database
location for the database. If you use the default location for your database,
this subdirectory will be under $ICDATABASE/ingres/data/default.

• Copies the appropriate files from the database template directory
($ICSYSTEM/sqVdbtmplt) to the new database directory.

• Creates the system catalogs for the new database.

• Modifies the system catalogs for the new database.

• Creates the database's configuration file (aaaaaaaa.cnf) in the database's data
directory.

• Updates the system catalogs for the new database.

3.5.4 Creating a Public Database

To create a public database that uses default locations, issue the createdb command
at the operating system prompt:

createdb dbname

To locate a database's data, checkpoint, or journal files in locations other than the
default location, see Chapter 4.

3.5.5 Creating a Private Database

When you create a database, it is automatically public, unless you use the -p flag
with the create db command. To create a private database that uses the default
locations, issue the following command at the operating system prompt:

createdb -p dbname

If an unauthorized user tries to access a private database, ULTRIX/SQL returns an
error message.

To locate a private database's data, checkpoint, or journal files in locations other
than the default location, see Chapter 4.

Creating and Destroying Databases 3-3

3.5.5.1 Authorizing Access to Private Databases

To authorize a user to access a private database, use the access db utility. You must
be an ULTRIX/SQL superuser to use accessdb.

To authorize a user to access a private database:

1. Start accessdb by issuing the accessdb command at the operating system
prompt.

2. Select Database from the menu.

3. At the following prompt, enter the name of the private database:

Database:

4. When the Information About a Database frame appears:

a. Tab to the Authorized Users table field.

b. Enter the logins of the users you want to authorize to use this database.

5. Select Save from the menu.

6. Select Quit to leave accessdb.

3.5.5.2 Changing a Database from Private to Public

To change a database from private to public, or from public to private, use the
accessdb utility. You must be an ULTRIX/SQL superuser to use accessdb.

To change database access from private to public, or public to private:

1. Start accessdb by issuing the access db command at the operating system
prompt.

2. Select Database from the menu.

3. At the following prompt, enter the name of the database:

Database:

4. When the Information About a Database frame appears, the cursor will be in
the Access field. Type private over public (or public over private).

5. If you changed the access from public to private,

a. Tab to the Authorized Users field.

b. Enter the logins of the users who you want to access this database.
Remember to enter your (the Database Administrator's) login.

7. Select Save from the menu.

8. Select Quit to leave accessdb.

3004 Creating and Destroying Databases

3.6 Listing Information about ULTRIX/SQL Databases

You can list ULTRIX/SQL database information with the following utilities:

• accessdb

• catalogdb

Instructions for using these utilities appear in the following sections.

3.6.1 Listing Database Information with accessdb

With the accessdb utility, you can list information about all ULTRIX/SQL
databases. To use accessdb, you must be an ULTRIX/SQL superuser.

To list database information with accessdb:

1. Start accessdb by issuing the accessdb command at the operating system
prompt:

2. When the Accessdb frame appears, make one of the following selections:

To see

All ULlRlX/SQL databases, their owners, access
status, and type

All UL1RIX/SQL users and their pennissions

All locations and their ULlRIX directories

All databases using a particular location

Information about a particular ULlRIX/SQL user

Information about a particular database

3. After viewing the information, select End.

4. Select Quit to leave accessdb.

Select

Catalog and then Databases

Catalog and then Users

Catalog and then Locationnames

LocationNames and then enter the
location name.

User and then enter the user name

Database and then enter the
database name.

3.6.2 Listing Database Information with catalogdb

With the catalogdb utility, you can list information about all of the ULTRIX/SQL
databases that you own. Any ULTRIX/SQL user can use catalogdb; unlike
accessdb, you do not need to be an ULTRIX/SQL superuser.

To list database information with catalogdb:

1. Start catalogdb by issuing the catalogdb command at the operating system
prompt.

2. When the Catalogdb frame appears, make one of the following selections:

Creating and Destroying Databases 3·5

To see

All databases that you own, their access
status, and type

Locations and their UL1RIX directories

Select

Catalog and then Databases

Catalog and then Locationnames

Your databases and their extended locations Catalog and then DbExtension

Information about a particular database (its Database and then enter the name of the
access status. authorized users, and data, database
ckp, andjn11ocations)

All databases that you own, all databases to User
which you have access, and your pennissions

3. After viewing the infonnation, select End.

4. Select Quit to leave catalogdb.

3.7 Destroying a Database

To destroy a database, use the destroy db command. The syntax for this command
is:

destroydb [-uusername] dbname

To use this command, you must be the Database Administrator for the database or
an ULTRIX/SQL superuser impersonating the Database Administrator for the
database.

The destroydb command:

• Deletes the database, checkpoint, and journal directories for the database.

• Removes all traces of the database from the master database (iidbdb).

For a complete description of the destroydb command, see the ULTRIXISQL
Reference Manual.

3-6 Creating and Destroying Databases

Using Alternate Locations 4

4.1 Overview
When ULTRIX/SQL is initialized, your ULTRIX/SQL System Administrator
creates default locations for the files that comprise a database (data, checkpoint,
and journal files.)

Chapter 3 provides instructions for creating a database using the default locations.
However, you do not have to place your database files in the default locations; you
can use alternate locations for them. Using alternate locations enables you to
organize your ULTRIX/SQL installation, databases, and tables across multiple
disks.

This chapter tells you how to:

• Create alternate locations

• Create a database using alternate locations

• Extend an existing database to an alternate location. Extending a database
means putting the database's tables and indexes in more than one location.

4.2 What Is an ULTRIX/SQL Location?

An ULTRIX/SQL location is a logical entity. A location associates a directory path
(area) on a disk with a label, or locationname. The distinction between the logical
location and the physical path allows databases to be defined independent of
operating system or site. locationname

Note

The ULTRIX/SQL accessdb form refers to the directory structure as an
area. It is possible to use the ingsetenv command to set any variable
name you choose to a directory structure (area). If you do this, you can
enter the variable name on the Accessdb form instead of the full path
name. (See the section "Creating an ULTRIX/SQL Location" in this
chapter for specific instructions.) However, since ULTRIX/SQL will
expand the variable to the full path name in the configuration file, do not
change the variable after you have set it.

For information about ingsetenv, see the ULTRIX/SQL Operations Guide.

Using Alternate Locations 4-1

When you use certain commands, such as createdb, create table, or create index,
you specify the location with the locationname, not the directory specification.

4.3 Default Locations for Database Files

When ULTRIX/SQL is initialized, your ULTRIX/SQL System Administrator
creates the following default locations for data, checkpoint, and journal files:

Table 4-1: Default Locations for Database Files

Type of File Default Location Directory Created for Default

data $ICDATABASE/ingres!data/default

checkpoint $ICCHECKPOINT/ingres!ckp/default

journal iijournal $ICJOURNAL/ingres!ckp/default

4.4 Guidelines for Using Alternate Locations

The following list contains guidelines for using alternate locations:

• You can use alternate locations for a database's data, checkpoint, and journal
files.

• You can store any of a database's data files, except system catalogs, in more
than one location; this is called extending a database. After you have extended
a database to an alternate location, you can place new data files in it or
relocate existing data files to it. For more information, see the section
"Extending a Database to an Alternate Location" below.

• You must store all of a database's checkpoint files in a single location. The
location is determined when you create the database.

• You must store all of a database's journal files in a single location. The
location is determined when you create the database.

• By default, the data, checkpoint, and journal files for a database are stored in
the same locations and on the same disk. We recommend that you store data
files in a different location and on a different disk from those used to stored
checkpoint and journal files. Doing so helps to protect your data in the event
of disk failure.

• After creating a database:

• You can change the location of the user tables and indexes, but not the
system catalogs. For instructions, see Chapter 5.

• You cannot change the location of its checkpoint and journal files. Since
these locations are written permanently in the configuration file, you
cannot change them later.

4·2 Using Alternate Locations

The following table summarizes the guidelines for using alternate locations:

Table 4-2: Summary of Guidelines for Using Alternate Locations

Database File Can use alternate Can extend to OK to change
location multiple locations location

data (user tables, indexes) yes yes yes

data (system catalogs) no no no

checkpoint yes no no

jomnal yes no no

4.5 Creating Alternate Locations for a New or Existing
Database-An Overview

Before using an alternate location for a new or existing database, the location must
exist. The following steps provide an overview of the process for creating a new
database in an alternate location or extending an existing database to an alternate
location:

1. Create the directory structure for the new location.

For instructions, see the section "Creating a Directory Structure for a New
Location" below.

2. Create the new location and map it to the directory structure.

For instructions, see the section "Creating an Alternate Location" below.

3. Use the new location when you create a new database or extend an existing
one. See the section "Creating a Database in an Alternate Location" or
"Extending a Database to an Alternate Location" below.

4.5.1 Creating a Directory Structure for a New Location

You can create a directory structure for a new location:

• Within the ULTRIX/SQL installation area

• Outside the ULTRIX/SQL installation area

You need ULTRIX/SQL system permission to create the directory structure within
the ULTRIX/SQL installation area. You need ULTRIX operating system permission
to create the directory structure outside the ULTRIX/SQL installation area.

4.5.1.1 Creating a Directory Structure Within the ULTRIXlSQL Installation Area

To create a directory structure within the ULTRIX/SQL installation area:

Using Alternate Locations 4-3

1. Log in or su to the ULTRIX/SQL System Administrator's account (ingres).

The ingres account must own the subdirectories that you will create in this
procedure.

2. Change directory to the appropriate default directory:

• $ICDATABASE/ingres/data to create a new location for data files

• $ICCHECKPOINT/ingres/ckp to create a new location for checkpoints

• $ICJOURNAL/ingres/jnl to create a new location for journal files

For example, if you are going to create a new location for data files, issue the
following command:

cd $II_DATABASE/ingres/data

3. Make a new subdirectory. For example, to make a directory named new_area,
issue the following command:

mkdir new area

4. Change the permissions of the new directory to 777. For example:

chmod 777 new area

5. You have now created a new subdirectory inside the ULTRIX/SQL
installation area. To create a new location and map it to this area, see the
section "Creating a New Location" below.

4.5.1.2 Creating a Directory Structure Outside the ULTRIX/SQL Installation
Area

To create a new area outside the ULTRIX/SQL installation:

1. Log in or su to the ULTRIX operating system account, root.

2. Change location to the directory where you will create the new directory
structure. For example, to create the new directory structure in the /otherplace
directory, issue the command:

cd /otherplace

3. Create a new subdirectory owned by the ingres account. For example:

mkdir new area
chown ingres new_area

4. Log in or su to the ingres account. The ingres account must own the
subdirectories that you will create in this procedure.

5. Create subdirectories for the types of database files that use the new area.

For example, to create a subdirectory for data files in new_area, issue these
commands:

4-4 Using Alternate Locations

mkdir new area/ingres
mkdir new -area/ingres/data
mkdir new=area/ingres/data/default

To make subdirectories for checkpoints, substitute ckp or jnl for data when
issuing the above commands.

6. Place the appropriate permissions on the new directories and subdirectories,
as shown in this example below:

chmed 755 new area
chmed 755 new_area/ingres
chmed 700 new_area/ingres/data
chmed 777 new_area/ingres/data/default

6. You now have created a new directory structure outside the ULTRIX/SQL
installation area. To create a new location and map it to the new directory
structure, see the section "Creating a New Location" below.

4.5.1.3 Directory Structure Summary

The following table provides a summary of the directory structure created in the
examples in the sections above. Additionally, it shows the sample location to which
you will map the directory structures, as described in the next section "Creating a
New Location."

Table 4-3: Directory Structure for Alternate Locations

Location is Name of Name of New Area
New
Location

Within the new _loc new_area
ULTRIX/SQL
installation

Directory Structure (path)

$ICDATABASF/ingres/data/new_area
$ICCHECKPOINT/ingres/ckp/new _area
$ICJOURNAL/ingres/jnVnew_area

Outside the new_loe
ULTRIX/SQL
installation

/otherplace/new _area /otberplace/new _areafmgres/data/default
/otberplace/new _areafmgres/ckp/default
/otberplace/new _areafmgres/jnVdefault

4.5.2 Creating an Alternate Location

When you create a new location, you must map it to an existing directory structure.
If the directory structure does not exist, create it before you perform the following
procedure. See the section "Creating a Directory Structure for a New Location"
above.

When creating a new location, the locationname:

• Must be 24 characters or less

• Must be alphanumeric

• May contain the underscore character

Using Alternate Locations 4-5

• Must begin with a letter or the underscore

• Will be translated to lowercase, if you enter it in uppercase

To create a new location, you use accessdb, which requires ULTRIX/SQL
superuser permission.

To create a new location:

1. Issue the accessdb command at the operating system prompt.

2. Select LocationName from the menu.

3. At the following prompt, type the new location name:

Location name:

Remember that the locationname is the name of a logical entity. It is not
equivalent to the path with which the locationname is later associated.

4. Press Return.

5. When the following message appears, type y (yes):

Unknown location - do you want to create a new one?

6. Press Return.

The Information about a Location frame (Figure 4-1) appears.

Figure 4-1: Information About a Location

Inror"atlon about a Location

Location Can Be Used For: Databases Using Location

Databases: !I

Journals: n

Checkpoints: n

Save Help End

4-6 Using Alternate locations

When you create or extend a database to this location, ULTRIX/SQL
automatically puts the database name in the Databases Using Location table
field on this frame. This field is read-only. You cannot specify databases that
will use this location by entering them in this field.

7. Type the name of the directory to which you are mapping this location in the
Area field.

Enter the directory pathname in the Area field. When the location points to a
directory structure within the ULTRIX/SQL installation area, enter only the
name of the new directory. When the location points to a directory structure
outside the ULTRIX/SQL installation area, you must specify the full
pathname.

Table 4-4 summarizes how to enter directory pathnames in the Area field.

Table 4-4: How to Enter Directory Path names

Location is

Within the
ULTRIX/SQL
installation

Outside the
ULTRIX/SQL
installation

Sample Pathname

$ICDATABASE/ingres/data/new_area

/otherplace/new _area/ingres/
data/default

Note

Enter in the Area
Field

/otherplace/new_area

If you used ingsetenv to set a variable to the directory structure, you can
enter the variable name instead of the pathname. See the section "What
is an ULTRIX/SQL Location" for additional infonnation.

8. Press Return.

9. By default, ULTRIX/SQL creates alternate locations for data files. To change
this, enter n (no) in the Databases field.

10. To use this location for checkpoints or journals, enter y (yes) in the
Checkpoints or Journals fields.

You must have created subdirectories for the types of database files that use
this location. For example, if you enter y next to checkpoints, then you
already must have created a ckp subdirectory in the area to which this location
is mapped.

11. Select Save from the menu.

12. Select Quit to leave accessdb.

Using Alternate Locations 4-7

You can now use the new location for a new or existing database. For
instructions on creating a new database in the new location, see the section
"Creating a Database in an Alternate Location" below. For instructions on
extending a database to the new location, see the section "Extending a
Database" below.

4.5.3 Creating a Database in an Alternate Location

To place database files in the new location, use the createdb command with any of
the following flags followed by the name of the alternate location:

• -d for data files

• -c for checkpoints

• -j for journals

You can place these flags in any order. If you do not use these flags, ULTRIX/SQL
places your database's data, checkpoint, and journal files in the default locations.

You must create the alternate location before you attempt to place database files in
it. See the section "Creating Alternate Locations for a New or Existing
Database-An Overview."

To create a database named "sample," whose checkpoints and journals are in the
default location and whose data is in an alternate location named "data_location,"
issue this command at the operating system prompt:

createdb -d data_location dbname sample

4.5.4 Extending a Database to an Alternate Location

When you want to store a database's tables and indexes in more than one location,
you must first extend the database to these locations. You use the ExtendDB option
of the accessdb utility to do this.

You cannot use ExtendDB to place database files for a new database in an alternate
location. In this case, you create the database in the alternate location; follow
instructions given above in "Creating a Database in an Alternate Location."

To use accessdb, you must have ULTRIX/SQL superuser permission.

To extend a database to an alternate location:

1. Before extending a database to a new location, you must create the location.
For instructions, see the sections "Creating a Directory Structure for a New
Location" and "Creating a New Location" above.

To extend a database to an existing location, start at Step 2.

2. Issue the accessdb command at the operating system prompt.

3. Select ExtendDB from the menu.

4-8 Using Alternate Locations

4. At the following prompt, enter the name of the Database Administrator (DBA)
for the database you are extending:

DBA name:

5. When the Extend Databases to Alternate Locations frame appears (see Figure
4-2, "Extending Databases"), type the name of the database you want to
extend in the Database Name field.

Figure 4-2: Extending Databases

Extend Databases to Alte~nale locations

EXisting Dalabases and Localions for DBA: ~ilh

Database lIatoe Cu~rent Localion Ha~

s'lld_ ii_dalabase
address ii_dalabase
apc1eu6 ll_database
apcleu? ll_database
cbt ii_dalabase

Enter lieu Locations fo~ Databases:

Database IIatta Hau Location Hafta

Saua Help End

6. In the New Location Name field type the name of the location to which you
are extending the database.

You cannot change the current locations of an existing database by typing a
new locationname over an existing one. The database's system catalogs are in
the location for data files that you specified when you created the database,
and you cannot move them. This location, as well as any locations to which
you have extended the database, is saved permanently in the database's
configuration file. You only can enter additional locations for an existing
database.

7. Select Save from the menu.

8. Select Quit to leave accessdb.

After extending a database to a new location, you can place new or existing tables
and indexes in the new location. See Chapter 5 for instructions.

Using Alternate Locations 4-9

4.5.5 Adding Types of Files that Can Use an Existing Location

After you create a new location and use it to create a new database or extend an
existing one, you cannot change the mapping between the location and the
directory structure. When you use a location, ULTRIX/SQL writes the
locationname and directory structure to the database's configuration file. After this
has occurred, the only change you can make to the location is to add to the types of
files (data, checkpoint, or journal) that can use the location.

To add types of database files that can use an existing location:

1. Create subdirectories for the database files to be stored in this location. See
the section "Creating an Alternate Location" above.

2. Issue the accessdb command at the operating system prompt.

3. Select LocationName from the menu.

4. At the following prompt, type the location name:

Location name:

5. Press Return.

6. When the Information about a Location frame appears (see Figure 4-3,
"Changing Location Information"), type y (yes) next to the additional types of
files that you will store in this location.

Figure 4-3:Changing Location Information

InforMation about a Location

Location Can Be Used For: Databases Using Location

Diltabases: n

Journals: y

Chackpolnts: n

Area:

Sau. Help End

7. Select Save from the menu.

8. Select Quit to leave accessdb.

4-10 Using Alternate Locations

Creating Tables and Views 5

5.1 Overview

This chapter tells you how to create tables and views. It also provides information
on table limits, how to handle duplicate rows in tables, how to manipulate columns,
and how to move tables to new locatons.

For instructions on creating database indexes, refer to the ULTRIX/SQL Reference
Manual.

5.2 Creating Shareable Objects

Any user who is authorized to use a database can create private objects in that
database. However, only the Database Administrator (DBA) can create shareable
objects.

As DBA, you give users permission to access your tables and views. See the
ULTRIX/SQL Reference Manual for instructions.

5.3 Creating Tables

The create table statement creates a new base table that is owned by the user
issuing the command.

You can issue the create table statement:

• In an embedded SQL program

• In the ULTRIX/SQL Terminal Monitor

• In interactive ULTRIX/SQL

5.3.1 The create table Statement

To create a table, use one of the following create table statements:

create table tablename
(column name format {,columnname format})
[with-clause];

Creating Tables and Views 5-1

create table table name
[(columnname {,columnname})]
as subselect
[with-clause];

A with-clause consists of the word with followed by a list of any number of the
following items, separated by commas:

• [noliournaling

• location = (locationname [,locationname))

• [no)duplicates

• structure = storage_structure

For the syntax of subselect, see the select statement in the ULTRIX/SQL Reference
Manual.

For a complete description of the create table statement and its parameters, see the
ULTRIX/SQL Reference Manual.

The create table statement creates entries in the ULTRIX/SQL system catalogs for
the table created.

5.3.2 Table Limits: Number of Rows, Number of Columns, Width of
Rows

While there is no limit on the number of tables in an ULTRIX/SQL database, disk
space is the limiting factor. The table below describes the limits on the contents of
a table. For a discussion of each limit, see the sections immediately following the
table.

Table 5-1: Table Limits

Type or Limit Size of Limit

Number of Rows 4,194,304 multiplied by the number of rows per page

Number of Columns 127

Width of Rows 2000 bytes

5.3.2.1 Limit on the Number of Rows Stored in One Table

The maximum number of ULTRIX/SQL pages in a table is 4,194,304.

A page is a block of physical storage space. Each page is 2048 bytes in size.

Each row must fit within one ULTRIX/SQL page. The length of a row in bytes is
detennined by the fonnat declared in the create table statement.

5·2 Creating Tables and Views

5.3.2.2 Limit on the Number of Columns in One Table

The number of columns allowed in one table is limited to 127. This limit applies to
queries and views as well. The select list of a query may have up to 127 columns,
and selecting from or creating a view is also limited to 127 columns. The following
select statement could not join two tables, each with 100 columns, because the
target list in a query is limited to 127 columns:

select * from a,b;

5.3.2.3 Limit on the Width of a Row

Each row can use a maximum of 2000 bytes. To derive this figure, subtract the
space used by ULTRIX/SQL from the 2048 bytes on an ULTRIX/SQL page.

A select is also limited to 2000 bytes. Since you cannot select more than 2000 bytes
in one target list, dividing a table in two and rejoining the pieces does not select
more than 2000 bytes.

5.3.3 Duplicate Rows in Tables

A table contains duplicate rows when two or more rows are identical.

When you create a table, you can specify the handling of duplicate rows. To do
this, use the with [no]duplicates clause of the create table statement. For example:

create table emps(
name char(lO),
id integer
) with noduplicates;

When you create a table with duplicates, duplicate rows are allowed. (This is the
default for ULTRIX/SQL.) When you specify a table with no duplicates, no
duplicate rows are allowed in the table, except if the table has a heap storage
structure. (With a heap structure, duplicate rows are always allowed, even if no
duplicates was specified. See the ULTRIX/SQL Reference Manual for a description
of storage structures.) If a user attempts to insert a duplicate row into a table where
duplicate rows are not allowed, ULTRIX/SQL generates an error.

ULTRIX/SQL checks for duplicate rows only when the table has a keyed storage
structure. Duplicate rows are always allowed in heap or cheap tables, since these
structures are not keyed, so there is no implicit order in the table.

Depending on whether you specify with duplicates or with noduplicates,
ULTRIX/SQL performs the following tasks differently:

• Adding new records into a table with the insert statement

• Revising existing records in a table with the update statement

Creating Tables and Views 5·3

5.3.3.1 Duplicate Rows When Adding New Records to or Modifying a Table

If a table is created with duplicates, duplicate rows can always be inserted.

If a table is created with noduplicates:

• Duplicate rows can be added if the storage structure of the table is either heap
or cheap.

• Single row inserts (insert ••• values) are silently discarded if a duplicate row
occurs on a keyed structure.

• Multiple row inserts (insert ••• select) generate an error if a duplicate row
occurs on a keyed structure. The entire statement is rolled back.

• Wben a table is modified from a heap or cheap structure to a keyed structure,
duplicates are silently eliminated.

5.3.3.2 Duplicate Rows when Bulk Copying Records in a Table

If a table is created with duplicates, duplicate rows can always be loaded.

If a table is created with noduplicates:

• Duplicate rows can be loaded if the table storage structure is heap or cheap.

• Duplicate rows are silently removed if the table has a keyed structure.

5.3.3.3 Duplicate Rows In Updated Tables

If a table is created with duplicates, duplicate rows can always be updated to
duplicate other rows.

If a table is created with noduplicates:

• Rows can be updated to duplicate other rows if the table storage structure is
either heap or cheap.

• Rows cannot be updated to duplicate other rows if the table is a keyed
structure. The update is rejected and an error is generated.

In the following bulk increment update example, specified columns in all rows
selected from the table are updated. For example:

update tablel
set info = info+l;

(where Info has values of 1,2,3,4 ...)

If with noduplicates is being enforced on the table, this update fails due to
duplicate rows being created, as the following explains:

5·4 Creating Tables and Views

The new values for the first row are prepared, changing "info" from 1 to 2. Before
inserting the new values, ULTRIX/SQL checks to see if they violate any integrity
constraints. Since the new value, 2, duplicates the value in an existing row, thus
violating the with noduplicates criterion, an error is generated and the update is
rolled back.

To solve this problem, you can use either of the following methods:

• Create the table with duplicates

• Change the table storage structure to heap or cheap before perfonning the
update, since with no duplicates is not enforced on these structures

5.3.3.4 Removing Duplicate Rows from Tables

If a table was originally created with duplicates, ULTRIX/SQL preserves duplicate
rows, even when the table is modified to another structure. If you decide that
duplicate rows are not wanted, there are several teChniques for removing them, as
described in the following paragraphs:

• Use with no duplicates with a heap structure. This is the recommended way
of handling tables that sometimes contain duplicate rows and sometimes must
be unique:

1. Create the table with noduplicates.

2. Modify the table to heap or cheap.

3. Insert the rows that contain duplicates.

4. Modify the table to a keyed structure to remove duplicates.

• Remove duplicate rows using a temporary table. If you create a table with
duplicates and later decide that you do not want duplicate rows, you can
remove them by using a temporary table. In the example below, the table
named "has_dups" has duplicate rows that are deleted using the following
SQL statements:

create table temp as
select distinct * from has dUPSi

drop has_dups;

create table has dups as
select * from temp
with noduplicatesi

drop tempi

Note

This technique may not be appropriate for large tables because of disk
space constraints.

Creating Tables and Views 5·5

5.3.4 Creating a Table with Journaling

When you create a table, you can enable journaling on it. See Chapter 9 for
instructions.

5.3.5 Creating a Table in an Alternate Location

When you create a table, ULTRIX/SQL places it in the default location for the
database unless you specify otherwise. Before you place a table in an alternate
location:

• The location must exist and be set up and specified as a location that can hold
data files

• The database must be extended to the alternate location

For instructions on creating a location and extending a database, see Chapter 4.

To place a table in an alternate location, use the with location option of the create
table statement. For example:

create table emp (name char(lO» with location = (altlocl)i

To create a table that spans multiple locations, use the with location option,
specifying multiple locationnames. For example:

create table emp (name char(lO» with location = (altlocl,altloc2)i

After creating a table, you can change its location. For instructions, see the section
"Moving a Table to an Alternate Location" later in this chapter.

5.3.6 Additional Examples of create table Statements

The following examples of creating tables illustrate the syntax variations of the
create table statements discussed earlier in this chapter:

• Creating a table named "employee" with no special options

create table employee
(

emp_number
last_name
first_name
birth date
) ;

integer2,
varchar(30),
varchar(20),
date,

• Creating a table named "employee" with all varchar columns not null with
default

create table employee

emp_number
last name
first name
birth date
) ;

5-6 Creating Tables and Views

integer2,
varchar(30) not null with default,
varchar(20) not null with default,
date,

• Creating a table named "employee" with integer and date columns not null
not default

create table employee

emp_number
last name
first name
birth date
) ;

integer2 not null not default,
varchar (30),
varchar (20),
date not null not default,

• Creating a table named "employee" that spans two alternate locations

create table employee
(

emp_number
last name
first name
birth date
)

with location

integer2,
varchar(30),
varchar(20),
date,

(altlocl,altloc2);

• Creating a table named "employee" at an alternate location, with journaling

create table employee
(

emp_number
last name
first name
birth date
)

with location

integer2,
varchar (30),
varchar (20),
date,

(altlocl), journaling;

• Creating a table named "employee" with no duplicates

create table employee
(

emp_number
last name
first name
birth date
)

with noduplicates;

integer2,
varchar (30),
varchar (20),
date,

• Creating a table named "employee" from table "emp_trans" with a hash structure
keyed on "emp_number"

create table employee
as select * from emp_trans
with structure = hash, key (emp_number) ;

5.4 Manipulating Columns: Adding, Changing and Deleting

While ULTRIX/SQL does not provide a one-step method for adding or deleting a
column from an existing table, the methods described here are very easy to use.
You can use the same methods for changing the data type of an existing column or
renaming it.

Creating Tables and Views 5-7

Deleting a column in a table or changing its data type does not change anything
else that is dependent on the column. You need to re-create or edit all views,
permits, programs, and so forth, that refer to the old column in any way. In
particular, make sure views that were destroyed are re-created. Any views or
indexes on a table are automatically destroyed when the table is destroyed.

5.4.1 Adding a Column

The method for adding a column to an existing table is to use the create table ••• as
statement as described below. Note that this procedure requires twice the disk
storage as that required by the original table.

1. Create a temporary table containing the existing columns from the original
table and the new columns. See the following section, "Data Types for New
Columns," for an explanation of assigning data types to new columns.

create table temp as
select test. * I varchar (' ') as newcol from test;

2. Drop the original table.

drop test;

3. Rename the temporary table with the name of the original table using a create
table •.• as statement with a subselect statement.

create table test as
select * from temp;

4. Drop the temporary table.

drop temp;

If the column named "newcol" is to be located in the middle of the table structure,
you must list all the columns individually. For example, Step 1 could look like:

create table temp as
select coll,col2,varchar('

col3,col4 from test;

5.4.1.1 Data Types for New Columns

') as newcol,

Use the associated conversion function for the data type assigned to the new
column. If the new column is created with no conversion function, the defaults are:

• varchar for character strings

• float (floatS) for floating point numbers

• smallint (integer2) or integer (integer4) for integer numbers (depending on
the size of the number)

5.4.1.2 Default Column Values

Instead of specifying a typical default value of 0 or quoted spaces (' '), you may
want to substitute a particular value as the default value for the new column.

5-8 Creating Tables and Views

You can also specify the default value of null within any of the numeric conversion
functions or the date function to initialize a column's value to null. This makes the
column null able. Do not use null as a default value for character fields, as
ULTRIX/SQL attempts to create a character field of null length, which cannot be
done, and returns an error.

The following table lists examples of the available data types and their associated
conversion functions for creating a column with each of those data types:

Table 5-2: Data Types and Their Conversion Functions

Data Type Conversion Function

integer! int1(O)

smallint (integer2) int2(O)

integer (integer4) int4(O)

float4 float4(null)

float (floatS) float8(O)

money money(O)

date date(' ') or date(null)

char(1) char(' ')

c1 c(' ')

varchar(7) varchar(' ')

text(7) text(' ')

If you wish to specify a very large varchar or character string, instead of typing the
number of spaces you need between quotes use the following SQL statements:

create table temp2 (calx varchar(IOOO»;
insert into temp2 (calx) values (NULL);
create table templ as

select a.*, b.* from test a, temp2 b;
drop test,temp2;
create table test as

select * from tempI;
drop tempI;

This also works for adding new character columns with null as the initial value.

Creating Tables and Views 5·9

5.4.2 Deleting a Column

To delete a column:

1. Create a temporary table containing all the columns except the column you
wish to delete.

create table temp as
select name, addr from test;

2. Drop the original table.

drop temp;

3. Recreate the original table from the temporary table.

create table test as
select * from temp;

4. Drop the temporary table.

drop test;

5.4.3 Changing Data Types

If you wish to change the data type of an existing column (perhaps increasing the
size of a varchar column or changing a float4 column to a float (floatS) column),
you can use the same method as for adding a column. For example, to change the
data type of the column Salary from float4 to float, do the following:

1. Create a temporary table containing the existing columns from the Original
table and the new columns.

create table temp as
select name, addr, float8(salary)

as salary from test;

2. Drop the original table.

drop test;

3. Rename the temporary table with the name of the original table using a create
table ••. as statement with a subselect statement.

create table test as
select * from temp;

4. Drop the temporary table.

drop temp;

To make a varchar or char column larger, do the following:

1. Create a lemporary table and select the column to be made larger, as follows:

a. Add the number of blanks necessary to yield the larger column width. (You
can use the method shown earlier, in the section "Default Column
Values.")

5-10 Creating Tables and Views

b. Use the pad function (which pads the column out to the declared size).

c. Use the squeeze function to remove the trailing blanks added by the pad.
The squeeze function is important because char columns treat blanks as
visible characters; they must be specified in an exact match query.

See the ULTRIXISQL Reference Manual for information on string functions.

The following example illustrates the use of the create table ••• as and select
statements to make the column "addr"larger:

create table temp as
select squeeze(pad(addr)+'

from test;
') as addr

2. Drop the original table (automatically dropping dependent integrities, views,
permits, and index structures).

drop test;

3. Rename the temporary table with the name of the original table.

create table test as
select * from temp;

4. Drop the temporary table.

drop temp;

5.4.4 Using the create table ... as Statement to Rename a Column

In the following example, you rename a column using the create table ••• as
statement:

1. Create a temporary table wi th the columns from the original table that are to
be renamed.

create table temp as
select name as employee, addr as address

from test;

2. Drop the original table.

drop test;

3. Re-create the original table with the columns from the temporary table.

create table test as
select * from temp;

4. Drop the temporary table:

drop temp;

Make sure you update any ULTRIX/SQL objects dependent on the old column
name, such as programs. Re-create integrities, views, permits, and index structures,
which are automatically deleted when the original table is dropped.

Creating Tables and Views 5-11

5.4.5 Additional Examples of Manipulating Columns

The following examples of modifying columns illustrate additional uses for the
create table statements discussed earlier in this chapter. (It is a good idea to
backup or duplicate the table before trying any of the following. in case something
goes wrong.)

• Adding the column named "manager" with the data type of varchar(20) to
the table named "employee"

create table temp as
select emp number, last name, first name,

birth_date, job_title, department, salary,
varchar(' '} as manager

from employee;
drop employee;
create table employee as

select * from temp;
drop temp;

• Deleting the column named "manager" from the table named "employee"

create table temp as
select emp number, last name, first name,

birth_date, job_title, department, salary
from employee;

drop employee;
create table employee as

select * from temp;
drop temp;

• Renaming the column "emp_number" to "ss_number" in the table named
"employee"

create table temp as
select emp_number as ss_number,

last_name,first_name,birth_date,
job title, department, salary

from employee;
drop employee;
create table employee as

select * from temp;
drop temp;

• Changing the order of the columns in the table named "employee"

create table temp as
select birth date, salary, first name,

emp_number, job_title, department,
last name

from employee;
drop employee;
create table employee

select * from temp;
drop temp;

5-12 Creating Tables and Views

• Changing the data type for the column named "salary" from float4 to money

create table temp as
select emp number, last name,

first_name, birth_date, job_title,
department,money(salary)as salary

from employee;
drop employee;
create table employee

select * from temp;
drop temp;

5.5 Moving a Table to a New Location

As a database grows, it may become necessary to move some of its tables (or
indexes) to an alternate location.

Perhaps a table has grown so large that you can no longer modify it at the current
location, or perhaps the table needs to be distributed across multiple disk drives for
optimal performance. In either case, the solution is to move the table to one or
more locations. The maximum number of locations that one table can occupy is 255.

Use the modify ••• to relocate statement whenever the number of new locations is
the same as the number of old locations. Use the modify ••• to reorganize
statement only if the number of locations is changing, since there is extra overhead
if you use this statement.

To move a table to an alternate location:

• You must be the table owner (or a Database Administrator impersonating the
table owner in his or her database).

• The alternate location must exist.

• The database must be extended to the alternate location.

For details on defining locations and extending a database to a location, see
Chapter 4.

5.5.1 Moving a Table to a Single Location

To move a table from one location to another, use the modify statement. The syntax
for the modify statement is as follows:

modify table_name to relocate
with oldlocation = (areal),

newlocation = (area2);

For example, to move the table named "employees" from location "loc_I" to the
location "loc_2," the table owner enters:

modify employees to relocate
with oldlocation (loc_l),

newlocation = (loc_2);

Creating Tables and Views 5-13

For a description of the options and parameters for the modify statement, see the
ULTRlXISQL Reference Manual.

5.5.2 Moving a Table to Multiple Locations

When moving a table to multiple locations, there are two cases to keep in mind:

• Moving where the number of locations used by a table increases or decreases.
This case involves table reorganization.

• Moving where the number of locations for a table remains unchanged, but one
or more locations change.

5.5.2.1 Moving a Table to a Different Number of Locations

Whenever you want to change the number of locations over which a table's data is
spread, use the modify ••• to reorganize statement:

modify tablename to reorganize
with location = (location_name, location_name {, ... });

For example, to reorganize the table "employees," which was contained in one
location, over three locations, "loc_2," "loc_3," and "loc_ 4:"

modify employees to reorganize
with location = (loc_2,loc_3,loc_41;

Keep in mind that a multiple-location table can also be reorganized to be spread
across fewer locations.

5.5.2.2 Moving a Table to Different Multiple Locations

If you want to move a table that is already in multiple locations, keeping the same
number of locations, use the modify •.. to relocate statement, as follows:

modify table_name to relocate
with oldlocation = (location_name, location_name {, ... }),
newlocation = (location_name, location_name {, ... });

where each part of the table in oldlocation is moved to the corresponding
newlocation.

For example, to relocate the multi-location table named "employees" to locations
"loc_ 4," "loc_5," and "loc_6," use the modify ..• to relocate statement, as follows:

modify employees to relocate
with oldlocation = (loc 2,loc 3,loc 4)

newlocation = (loc=4,loc=S,loc=6);

Notice that the modify ••• to relocate statement literally moves the data from one
location to another. There is no internal reorganization of the data in the table, as
occurs with modify ••• to reorganize.

Internal reorganization of the data occurs when some data in the table is moved to a
different location, while other data remain in the original location. In that case, the
table is reorganized to be spread across two locations.

5-14 Creating Tables and Views

If you just want to move part of a multi-location table to a different location,
specify the locations you want to move. For example, if the "employees" table is
located at "loc_ 4," "loc_S," and "loc_6," use the following command to move the
part of the table at location "loc_S" back to location "loc_3":

modify employees to relocate
with oldlocation = (loc 5),

newlocation = (loc~3);

For more information on the modify statement, see the ULTRIXISQL Reference
Manual.

5.6 Creati ng Views

Views can be thought of as virtual tables. They do not make copies of the data, but
refer to the base tables involved in the view. The main use of a view is to store a
commonly used query.

Another use for views is to provide security by limiting access to specific columns
in selected tables, without compromising database design.

As the name suggests, a view is a device designed primarily for selecting data.
Although update rules are presented in the section "Updating Views," later in this
chapter, we do not recommend updating a database by means of a view.

A view is destroyed when the base table is destroyed.

5.6.1 The create view Statement

A view is created with the create view statement:

create view view_name [(co[umnname (,columnname})]
as subselect [with check option]

For further details on the create view statement, sec the ULTRIXISQL Reference
Manual.

5.6.2 Examples of the create view Statement

The following examples illustrate the create view statement:

• Creating a view called "emp_view"

create view emp_view
(

view coIl,
view-coI2,
view-col3
)

as select emp_number, job_title, salary
from employee
where department = 'Technical Support';

Creating Tables and Views 5-15

• Creating a view called "emp_ view" utilizing the check option

create view emp_view
(

view colI,
view-co12,
view-co13
)
as select emp number, job title, salary

from employee -
where department = 'Technical Support'

with check option;

5.6.3 Additional Information about Views

A table on which a view operates is called a base table. For an ULTRIX/SQL view
that the DBA has created on tables he or she owns, access is controlled by
pennissions on the view, not the base table. By granting pennissions on a view, you
can allow users to read some of the data in a base table while denying them
pennission on other, more sensitive data.

Pennissions may be granted by the DBA, using the grant statement.

Only the definition for the view is stored, not the data. A view definition can
encompass from one to thirty-two tables. A view can be created on other views or
on physical database tables.

When a table used in the definition of a view is dropped, the view is also dropped.

If a view definition involves multiple tables, those tables should be joined together
in the where qualification by their common columns. For example:

create view empmgr as
select e.name, e.salary, d.dept, d.mgr
from emp e, department d
where e.dept = d.dept;

To use the view, refer to "empmgr" just as you would any other table in a query.
For example:

select * from empmgr
where dept = 'Technical Support';

To see the definition of a view that has been created, use the help view viewname
SQL statement.

All selects on views are fully supported. Simply use a view _name in place of a
tablename in the select statement.

5.6.4 Updating Views

Only a limited set of updates on views are supported because of anomalies that can
occur. ULTRIX/SQL does not support updates on views that have more than one
base table. If the with check option is turned on, no updates are allowed on
columns that are in the qualification of the view definition, or on any column
whose source is not a simple column name (for example, set functions or
computations).

5·16 Creating Tables and Views

Updating is supported only if it can be guaranteed (without looking at the actual
data) that the result of updating the view will be identical to that of updating the
corresponding base table. This can be achieved if the rules for updating are
observed before running the query.

Updating, deleting, or inserting data in a table using views is not recommended.
You can update, delete or insert with ULTRIX/ SQL statements, but you must abide
by the following rules. Keep in mind that an ULTRIX/SQL error message appears
when you attempt an operation that is not permitted:

• Do not update columns in the qualification of a view definition. Consider the
following example:

create view admin as
select name, dept, sal from deptinf
where dept = 'admin'i

If the view has the with check option turned on, the column "dept" cannot be
updated through this view because it is in the qualification of the view
definition.

• Do not update columns that are aggregates or computations. Consider the
following example:

create view totsal as
select dept, sum(sal) as tsal
from deptinf
group by depti

The column "tsal" cannot be updated through this view because it is an
aggregate.

• Do not update columns that would cause more than one table to be updated.
Consider the following example:

create view empinfo as
select e.name, e.dept, e.div, d.bldg, d.floor
from emp e, deptinf d
where e.dept = d.dname
and e.div = d.divi

Updates to this data should be done through the underlying base tables, not
through this view.

Creating Tables and Views 5-17

Loading and Unloading a Database 6

6.1 Overview

This chapter tells you how to unload and reload a database or selected tables with
the unloaddb and copydb commands.

The Unload db and copydb ULTRIX/SQL commands are run from the operating
system. When you run them on a database, they generate scripts that enable you to:

• Unload an entire database (unloaddb) to external binary or ASCII files

• Copy selected tables, or all the tables and views that you own (copydb) to
external binary or ASCII files

• Reload the database or objects from these files

Both unloaddb and copy db are two-phase operations. In phase 1, you run the
command on a database and ULTRIX/SQL creates the scripts. In phase 2, you
execute the scripts to copy data out of a database and then into a database.

You must be the Database Administrator (DBA) for the database or an
ULTRIXlSQL superuser to run unloaddb. Any user can run copy db to copy
selected tables or all the tables and views that he or she owns in the database.

6.2 Uses for unloaddb and copydb

The unloaddb and copy db commands are most frequently used to copy or move a
database or selected tables from one ULTRIX/SQL installation to another. Using
these commands, you can copy or move data from one installation to another with
the same or different architecture.

In addition, you can also use these commands to:

• Copy a database, or tables from one database, to another on the same
installation.

• Document your database or specific tables in it. When you run unloaddb or
copydb, it produces create scripts for the tables and views being copied. You
can use these scripts as documentation for your database.

Loading and Unloading a Database 6-1

• Make static copies of your database or selected tables for the purpose of
recovery.

6.3 Using unloaddb

The unioaddb command enables you to completely unload a database and then
reload it into a new, empty database.

Unloaddb unloads all of the objects and system catalogs in your database,
including:

• Tables

• Views

• Associated permissions, integrities, and indexes

To run unloaddb, you must be the Database Administrator for the database or a
superuser impersonating the Database Administrator by using the -u flag.

6.3.1 unloaddb Syntax

The syntax of the unload db command is:

unloaddb [-uusername] [-c] [-ddirectory-specijication] dbname

For a complete description of flags and parameters for unloaddb, see the
ULTRIXISQL Reference Manual.

6.3.2 Using unloaddb to Unload and Reload a Database

The following example shows you how to use unIoaddb to unload and reload a
database on the same installation.

Since unloaddb creates many files. you may find it useful to create a subdirectory
and then run the command while in the subdirectory. If you do this, all of the files
created by unloaddb will be in this subdirectory.

1. At the operating system prompt. run unloaddb on the database you are
unloading:

unloaddb dbname

This creates the unload.ing, reload.ing, cpDBA.in, cpDBA.out, cpUSER.in,
cpUSER.out, and cpDBA.cat files described in the table in the following
section.

2. To unload the database. execute the unload.ing command file:

unload.iog

3. To reload the database into another database:

6-2 Loading and Unloading a Database

a. Create the new database:

createdb newdb

b. Change the name of the database in the reload.ing command file to the
name of the database you created in Step 3a. For example:

sql -s -f4F79.38 -f8F79.38 -uDBA newdb
</path/cpDBA.in

c. If you want to create the new database in a different location than the
original, use an editor to change the location name in the cpDBA.in or
cpUSER.in script to the new location name.

d. Execute the reload.ing command file:

reload.ing

4. If you want to destroy the original database. use the destroydb command:

destroydb original_dbname

Caution

Make sure you successfully unloaded the original database and reloaded
the new database before you destroy the original database.

6.3.3 How unloaddb Works

When you run unloaddb on a database, it creates the files listed and described in
the following table.

In this table and the following examples. the characters DBA and USER are used to
represent the logins of the Database Administrator and other users who own objects
in the database. The actual names of these files do not contain the characters DBA
or USER, but the logins of the Database Administrator and users. To ensure
compatibility across all systems. ULTRIX/SQL truncates the names of the files
generated by unloaddb to twelve characters.

Table 6-1: Flies Generated by unloaddb

File

unload.ing

cpDBA.out

cpUSER.out

Contains

Operating system commands to invoke the Tenninal Monitor and
execute the cpDBAout and cpUSER.out files.

SQL commands to copy out system catalogs and tables owned by the
Database Administrator to external files.

SQL commands to copy out objects owned by the user (non-DBA).
UL1RIX/SQL creates one cpUSER.out file for each user who owns
objects in the database.

Loading and Unloading a Database 6-3

FOe

reloadJng

cpDBA.in

cpUSER.in

cpDBA.cat

Contains

Operating system commands to invoke the Tenninal Monitor and
execute the cpDBA.in, cpUSER.in, and cpDBA.cat scripts.

SQL commands to re-create the objects owned by the Database
Administrator.

SQL commands to re-create the objects owned by the user.
UL1RIX/SQL creates one cpUSER.in me for each user who owns
objects in the database.

SQL commands to copy system catalogs into the new database.

6.3.3.1 The unload.lng and reload.lng Command Flies

After you run the unloaddb command on a database, you execute the unload.ing
and reload.ing command files to unload and reload the database.

To unload a database, you execute the unload.ing command file at the operating
system prompt:

unload.ing

This is an example of an unload.ing command file:

sql -s -f4F79.38 -f8F79.38 -uDBA dbname </path/cpDBA.out

To reload a database, you execute the reload.ing command file at the operating
system prompt:

reload.ing

This is an example of a reload.ing command file:

sql -s -f4F79.38 -f8F79.38 -uDBA dbname <path/cpDBA.in

sql -s -f4F79.38 -f8F79.38 -u'$ingres' dbname <path/cpDBA.cat

The parameters in these command files have the following meanings:

• sql is the operating system level command to invoke the Terminal Monitor.

• -s tells ULTRIX/SQL not to print Terminal Monitor messages when you
execute these files.

• -f4Fi9.38 and -fSF79.38 are the float4 and float8 specifications.

• -uDBA represents the login of the Database Administrator for the database.

• dbname is the name of the database that was unloaded and then reloaded.

6-4 Loading and Unloading a Database

Note

Never reload into the same database that you unloaded because the copy
scripts will append all the unloaded data into the existing system
catalogs and tables.

• /pathlcpDBA.in represents the full pathname/filename for the cpDBA.in
script

6.3.3.2 The cpDBA.out and cpUSER.out Files

When you execute the unload.ing command file, the scripts contained in the
cpDBA.out and cpUSER.out scripts are invoked.

These copy out scripts cause ULTRIX/SQL to copy the extended system catalogs
and tables into files. These files reside in the current directory or in the directory
that you specified with the -d flag when you ran unloaddb. The format for the
name of these files is:

6.3.3.3 The cpDBA.ln, cpUSER.ln, cp.DBA.cat Flies

When you execute the reload.ing command file, the cpDBA.in, cpUSER.in, and
. cpDBA.cat scripts are invoked. This causes ULTRIX/SQL to :

• Re-create the database's tables in their original location

Note

If you want the tables re-created in another location, you must change
the location in the cpDBA.in or cpUSER.in script.

• Re-create permissions, integrities, and views

• Copy the contents of the files generated by the copy out scripts into the
re-created tables and system catalogs

• Grant permission to select to public (everyone authorized to access the
database) on the extended system catalogs

6.3.4 Unloading in ASCII Format

When you issue the unloaddb command without the -c flag, ULTRIX/SQL unloads
the files in binary format. To unload the database in ASCII format, use the -c flag:

unloaddb -c dbname

Unloading in ASCII format allows you to:

• Move databases to an installation with a different machine architecture

Loading and Unloading a Database 6-5

• Edit the data files before reloading them into a database

Caution

If you unload the files in binary format, do not edit them or you will not
be able to reload them.

6.3.5 Changing the Floating Point Specification

The floating point specification defaults to maximum precision and length
(-fSF79.38) in the unload.ing and reload.ing command files. To reduce precision
or length, you can edit this specification in these files. If you do not, zeros with no
significance may consume disk space in the external data files.

6.3.6 Locking During unloaddb

When you execute the unloaddb command or the unload.ing command file,
ULTRIX/SQL takes shared locks on:

• System catalogs

• Tables being reloaded

When you execute the reload.ing command file, ULTRIX/SQL takes exclusive
locks on the user tables and system catalogs being unloaded.

6.3.7 Preventing an Inconsistent Database During unloaddb

There are two major ways that a database can become inconsistent during
unloaddb:

• Since, by default, the database is not exclusively locked while unloaddb or
unload.ing is running, a user can alter tables that are not locked during this
time.

• A user can alter the database after you have executed the unloaddb command,
but before you have executed the unload.ing command file.

If a user drops a table between the time that you execute unloaddb and the
time that you execute the unload.ing command file, ULTRIX/SQL generates
an error message. However, if a user either adds or deletes rows from a table
or adds a table, ULTRIX/SQL does not generate an error message and you
will not know about the change.

To ensure the consistency of the database while it is being unloaded, lock it
exclusively. To do this, add the ·1 flag to the sql scripts in the unload.jng command
file:

sq1 -1 -s -f4F79.38 -f8F79.38 -uDBA db name </path/cpDBA.out

sq1 -1 -s -f4F79.38 -f8F79.38 -uUSER dbname </path/cpUSER.out

6-6 Loading and Unloading a Database

6.4 Using copydb
The copydb command enables you (a DBA or non-DBA) to copy:

• Selected tables in a database

• All of the tables and views that you own in a database

Even as DBA, you will not be able to copy private tables and views in your
database by using copydb. To do this, use unloaddb.

6.4.1 What copydb Copies

What copydb copies in the database depends on whether:

• A DBA or end user issues the command

• Table names are specified in the command

The following table shows what is copied in each situation.

Table 6-2: What copydb Copies

Who issued Table Command issued What is copied
copydb specified in

command?

DBA no copydb dbname All tables and views (owned
byilieDBA)and~mted
indexes, integrities, and
pennissions

DBA yes copydb dbname {tablename 1 Specified tables (owned by ilie
DBA) and assocmted indexes,
integrities, and pennissions

User no copydb dbname All tables and views (owned
(non-DBA) by ilie user who issued ilie

command) and assocmted
indexes and integrities

User yes copydb dbname {tablenamel Specified tables (owned by ilie
(non-DBA) user who issued ilie command)

and assocmted indexes and
integrities

6.4.2 copydb Syntax

The syntax of the copy db command is:

copydb [-uusername] [-c] [-ddirectory-speciJication] dbname {tablename}

Loading and Unloading a Database 6-7

For a complete description of the flags and parameters for this command, see the
ULTRIXISQL Reference Manual.

6.4.3 How copydb Works

To copy all of the tables and views that you own in a database, issue the following
command at the operating system prompt:

copydb dbname

This produces two scripts:

• copy.out, which contains ULTRIX/SQL statements to copy your tables and
views to operating system files

• copy.in, which contains ULTRIX/SQL statements to re-create your tables,
views, and indexes, and associated permits and integrities, and copy the
table's data from the operating system files into an ULTRIX/SQL database

To copy the tables out of the database, you run the copy.out script. To copy them
into the same or another database, you run the copy.in script. For instructions, see
the section "Copying Tables from One Database to Another" below.

The copy.out script contains a copy statement for each table being copied.

The copy.in script contains the following statements for each of your tables and
views if you do not specify a particular table when running copydb:

• create table

• create view

• copy to load your tables

• create index to re-create secondary indexes, if any

• grant to re-create permissions, if any

• create integrity to re-create integrities, if any

• modify to modify any tables that did not use the heap structure to their
original storage structures

If you specify a particular table, the copy.in script will not contain statements to
create views.

The following example shows you the copy.out and copy.in scripts produced when
you run the copydb command on the "personnel" database and specify that only
the "emp" table should be copied. Since there are no secondary indexes or
integrities for this table, the copy.in script does not contain statements to re-create
them. The -c flag causes the table to be copied into a file in ASCII format. This is
necessary when transferring the database from a VAX to a RISC system or from a
RISC to a VAX system.

6-8 Loading and Unloading a Database

copydb -c personnel emp

It produces this copy.out script:

copy emp (
name= varchar(lo),
salary= cotab,
dept= varchar(8},
div= varchar(3},
mgr= varchar(lo},
birthdate= cotab,
numdep= cOnI,
nl= dl}

into '/path/emp.USR'
\p\g

(where "USR" represents the first 3 characters of the user's login)

And it produces this copy.in script:

table emp (
name text(lo) not null with default,
salary money not null with default,
dept text(8) not null with default,
div text(3) not null with default,
mgr text(lo) not null with default,
birthdate date not null with default,
numdep smallint not null with default

with noduplicates, journaling,
location (ii database)
\p\g -

copy emp (
name= varchar(lo),
salary= cotab,
dept= varchar(8),
div= varchar(3),
mgr= varchar(lo),
birthdate= cotab,
numdep= cOnI,
nl= dl)

from '!path/emp.USR'
\p\g

(where "USR" represents the first 3 characters of the user's login)

modify emp to isam on name
with fillfactor = 80
\p\g

grant all on emp to public
\p\g

6.4.4 Copying Tables from One Database to Another

To copy tables from one database to another on the same installation:

1. Run copydb on the database that contains the tables you want to copy:

copydb database] table] table2

Loading and Unloading a Database 6-9

This creates copy.out and copy.in scripts for "table 1" and "table2" in
"databasel." If you had not specified tablenames, ULTRIX/SQL would have
copied all the tables and views that you own in "databasel."

2. To copy the tables out of the database, execute the sql command to run the
copy.out script:

sql database1 <copy.out

This creates data files that the copy.in script uses to load the tables into the
new database.

3. To copy the tables into another database, execute the sql command to run the
copy.in script. Use the name of the database that you are copying the table(s)
into:

sql database2 <copy.in

6.4.5 Copying in ASCII Format

When you issue the copydb command without the -c flag, ULTRIX/SQL copies the
files in binary fonnat. To copy the files in ASCII format, use the -c flag:

copydb -c dbname

Copying the files in ASCII format allows you to:

• Move the tables you own to an installation with a different machine
archi tecture

• Edit the data files before copying them into a database

Caution

If you copy the files in binary format, do not edit them; doing so will
cause your data to be corrupted.

6.4.6 Changing the Floating Point Specification

When you execute the sql command to run the copy.out and copy.in scripts, the
floating point specification defaults to 10 positions with 3 to the right of the
decimal point. To change this specification, use the -f flag with the sql command
when you run the copy.out and copy.in scripts. See the ULTRIX/SQL Reference
Manual for a description of the floating point (-0 flag parameters that you can use
with the sql command.

6.4.7 copydb and Locking

When you execute the copydb command or the copy.out script, ULTRIX/SQL
takes shared locks on the tables being copied.

When you execute the copy.in script, ULTRIX/SQL takes exclusive locks on the
tables being copied.

6-10 Loading and Unloading a Database

6.4.8 Preventing an Inconsistent Database During copydb

There are two major ways that the database can become inconsistent during
copydb:

• Since ULTRIX/SQL takes shared locks on the tables being copied while
copydb or copy.out is running, a user can alter the tables that are not locked
during this time.

• A user can alter the tables being copied after you run the copy.out script, but
before you have run the copy.in script.

If a user drops a table between the time that you execute copydb and run the
copy.out script, ULTRIX/SQL generates an error message. However, if a user
adds or deletes rows from a table during this time, ULTRIX/SQL does not
generate an error message, and you will not know about the changes.

To ensure the consistency of the tables being copied, exclusively lock them while
they are being copied. To do this, add the -I flag to the sql command used with the
copy.out script:

sqI -I dbname <copy.out

6.5 Moving/Copying Databases and Tables Between ULTRIX
VAX and ULTRIX RISC Systems

6.5.1

One of the most common uses for unloaddb and copydb is copying or moving
databases from one installation to another. This section provides instructions for
copying/moving an ULTRIX/SQL database or selected tables from an ULTRIX
VAX system to an ULTRIX RISC system or from an ULTRIX RISC system to an
ULTRIX VAX system.

If you plan to destroy the original database or tables after moving them to a new
installation, be sure you have a good operating system backup of them first.

Copying/Moving a Database Between ULTRIX VAX and ULTRIX
RISC Systems

To perform the following steps, you must be either:

• The DBA for the database being copied or moved

• An ULTRIX/SQL superuser impersonating the DBA by using the -u flag with
the unloaddb command

1. Issue the following command at the operating system prompt of the system
where the database is currently located:

unloaddb -c dbname

This creates scripts to unload the database into ASCII files.

Loading and Unloading a Database 6-11

2. Execute the unload.ing command file by issuing the following command at
the ULTRIX system prompt:

unload.ing

This unloads the database into files into the current directory or into the
directory that you specified when you ran unloaddb.

3. Use a file transfer utility to transfer the files created by the unloaddb
command and the unload.ing command file to the target system.

4. Log on to the other ULTRIX system with a differing architecture.

5. Create a new database on the other system using the create db command at the
ULTRIX system prompt.

Be sure to use a database name that does not currently exist. If you do not,
ULTRIX/SQL returns an error message.

6. Edit the reload.ing file:

a. Change the name of the database to the name you specified in Step 5.

b. Convert the ULTRIX directory path to the correct path for the new system.

7. Edit the cpDBA.in, cpUSER.in, and cpDBA.cat files:

a. Convert the ULTRIX directory path to the correct path for the new system.

b. Convert the directory path specification for the iiud.scr file to the correct
path for the new system.

8. Issue the following command at the ULTRIX prompt on the new system:

reload.ing

9. Back up the new database. See Chapter 9 for instructions.

10. If you want to destroy the original database:

a. Make sure you have successfully moved the database to the new installation
before destroying the original one.

b. Return to the original ULTRIX system.

c. Use the destroydb command at the ULTRIX system prompt to destroy the
original database:

destroydb original_ dbname

6.5.2 Copying/Moving Tables Between ULTRIX VAX and ULTRIX RiSe
Systems

Users can copy or move tables that they own from one system to another. To do this:

6·12 Loading and Unloading a Database

1. Issue the following command at the operating system prompt:

copydb -c dbname table1 table2

This command creates scripts to unload the tables into ASCII files.

2. Run the copy.out script by issuing the following command at the system
prompt:

sql dbname <copy.out

3. Use a file transfer utility to transfer the files created by the copydb command
and the copy.out script to the target system.

4. Log on to the other ULTRIX system.

S. Edit the copy.in script to convert the directory path to the correct path on the
other system.

6. Run the copy.in script by issuing the following command at the ULTRIX
prompt on the new system:

sql dbname <copy.in

7. If you want to destroy the original table:

a. Make sure you have successfully moved the table to the new installation
before destroying the original one.

b. Return to the original ULTRIX installation.

c. Execute the drop statement in the ULTRIX/SQL Terminal Monitor or in
interactive SQL:

drop table1, table2;

6.6 Avoiding Problems with unloaddb and copydb

To avoid problems with unloaddb and copydb:

• Be careful not to make syntax errors if you edit the scripts generated by these
commands.

• If the data files are in binary format, do not edit them. This will cause
problems when ULTRIX/SQL tries to read the files into the new database.

• Do not try to change the copy scripts to skip fields in a binary file because of
the difficulty of counting bytes in a binary file.

If you need to change the copy scripts, copy or unload the data in ASCII
format by using the -c flag with either copydb or unloaddb. See the sections
"Unloading in ASCII Format" or "Copying in ASCII Format" for additional
information.

Loading and Unloading a Database 6·13

• Be sure to copy or unload data in ASCII format (using the -c flag) if you are
transferring data between ULTRIX VAX and ULTRIX RISe systems.

6-14 Loading and Unloading a Database

Populating Tables 7

7.1 Overview

This chapter presents methods for loading data into tables using the copy
statement. It discusses considerations for ensuring the data's integrity and validity,
and ways to avoid data errors. The chapter also explores advanced use of the copy
statement including its use in unloading and reloading data.

7.2 Methods of Loading Data into Tables

There are several ways to get data into a database. Which method you choose
depends on several considerations:

• Where is the data coming from?

• How much of it is there?

• What level of action is needed?

The methods for loading data into tables include:

• Using the SQL copy statement if the data is already in a file, or if it will be
put in one by a program. The copy statement loads large quantities of data
quickly from files and is flexible in dealing with various record formats. This
statement is discussed in the sections titled "Using the Copy Statement" and
"Advanced Use of the Copy Statement" in this chapter.

• Writing an embedded language program for data entry

• Using the SQL insert statement in the ULTRIX/SQL Terminal Monitor or in
interactive SQL. This choice is appropriate for entering a very small amount
of test data.

7.3 Using the copy Statement

This section tells you how to use the copy statement to load data into tables.

Populating Tables 7-1

7.3.1 The copy Statement

To load data into a table or unload data back into a file, use the following copy
statement:

copy [table] tablename (columnname=format
[with null [(value)]]
{,coiumnname=format [with null[(value)]]})

intolfrom 'filename'
[with-clause]

A with-clause consists of the word with followed by a comma-separated list of any
number of the following items:

on error = terminatelcontinue
error count =n
rollback = enabled I disabled
log = 'filename'

For details on the copy statement, see the ULTRIXISQL Reference Manual.

7.3.2 The copy Statement and Locking

The copy statement takes an exclusive lock on a table while data is being copied
into the table and a shared lock on the table while data is being copied out of it.

7.3.3 Specifying a Filename

The copy statement is not able to expand -$HOME or to recognize the ULTRIX
variables set in your environment. Using these variables to specify a pathname for
the copy statement does not work.

Always enclose the pathname in single quotation marks.

The following copy statements work:

copy emp() from '/usr/fred/emp.lis';
copy emp() from 'subdir/emp.lis';

The following copy statements do not work:

copy emp () from '-fred/emp.lis';
copy emp () from '$HOME/emp.lis';

If you are copying files from your current directory, you can specify just the name
of the file rather than a full path.

7.3.4 Speed of the copy Statement

The copy statement is the fastest way to load a table with data. It executes most
quickly when the table into which it copies is an empty, unjoumaled, unindexed
heap, since no transaction logging is necessary. If you are loading a substantial
amount of data, it is much faster to load a table as a heap and modify it to another
storage structure after it is loaded.

7-2 Populating Tables

Avoid copying large amounts of data into a table with an isam structure. Doing so
could result in overflow chains that can degrade performance. Copying data to a
hash structure can be quick if enough space is pre-allotted for the new data (using
the fillfactor or minpages clauses with the modify statement).

7.3.5 The copy Statement and Nulls

When you copy data from a table to a file or from a file to a table, the with null
clause of the copy statement allows you to substitute a value for nulls.

When you use variable length data types, you must replace the nulls with some
string that represents nulls; for example:

copy table personnel (name=c20,
salary=cO with null ('N/A'),
title = cO with null ('xxx'),
dummy=dOnl)
into 'pers.data';

After executing this statement, the pers.data file will contain "N/A" for each null
salary and "xxx" for each null title.

With other data formats, you are not required to substitute a value for nulls.
However, if you do not, you will get an ULTRIX/SQL binary data file containing
unprintable characters.

When substituting a value for nulls. the value:

• Must not be one that occurs in your data

• Must be compatible with the format of the field in the file:

• Character formats require quoted values

• Numeric formats require unquoted numeric values

Do not use a null if you are copying to a numeric format. The file will not accept an
actual ASCII null character or the word null for numeric format.

For a complete explanation of the copy statement, see the ULTRIXISQL Reference
Manual.

7.3.6 Invalid Data Errors

When copying from file to table. the following problems are the most frequent
causes for errors:

• Using data that does not match the specified format

• Miscounting fixed-length field widths

• Neglecting the "nI" delimiter in the copy statement format

• Omitting delimiters between fields in the copy statement format

• Including too many delimiters in the copy statement format

Populating Tables 7-3

7.3.6.1 Invalid Data

If you try to load invalid data into a field, ULTRIX/SQL rejects the row. For
example, suppose you had the following record in a file:

559-58-2543, 31-feb-1945,Weir, 100000.00, Executive

Since February has only twenty-eight or twenty-nine days, ULTRIXlSQL will
return errors.

7.3.6.2 Miscounting Fixed-Length Field Widths

If the widths of fixed-length fields are not correct, the copy statement may try to
include data in a field that it cannot convert to the appropriate format. For example,
here is a record to be copied into a table which will generate an error:

554-39-2699 1-oct-1943 Quinn 28000.00 Assistant

The copy statement is:

copy table personnel (ssno=c20,
birthdate=c12,name=c11,salary=c9,
title=cOnl)
from 'pers.data';

Because "c20" was specified incorrectly for the "ssno" field, the copy statement
includes part of the birthdate in the value for the Social Security number. The copy
statement then reads "943 Quinn "for the birthdate. For information on
variable-length field width formats, refer to the ULTRIXISQL Reference Manual.

7.3.6.3 Neglecting the "nl" Delimiter in the copy Statement

When using fixed-length specifications in the copy statement, the Newline (nl)
character at the end of the record must be accounted for. This is an example with an
error:

554-39-2699 1-oct-1943 Quinn 28000.00 Programmer
335-12-1452 23-jun-1931 Smith 79000.00 Sr Analyst

copy table personnel (ssno=c20,birthdate=c12,
name=cl1,salary=c9,title=clO)
from 'pers.data';

The format specified for the "title" field is clO, which does not account for the
Newline character. As a result, ULTRIX/SQL returns an error.

The Newline characters are converted to blanks, as specified in the warning
message. The extra characters force the copy statement to begin reading a third
record that ends abnormally with an unexpected end of file.

7.3.6.4 Omitting Delimiters Between Fields

Omitting delimiters between fields in the data file causes another error message.
For example. the first record below has no delimiter between the employee's name
and her salary:

7-4 Populating Tables

123-45-6789,1-jan-1960,Garcia33000.00,Programmer
246-80-1357,2-jan-1960,Smith,43000.00,Coder

The copy statement

copy table personnel (ssno=cO,birthdate=cO,name=cO,salary=cO,
ti tle=cOnl)

from 'pers.data';

results in an error.

The copy statement attempts to read the value "Programmer" into the "salary"
field, resulting in the error messages.

7.3.6.5 Including Too Many Delimiters

Accidental inclusion of too many delimiters in the data file occurs most often when
the comma is used as a delimiter and also appears in the data. For example, in the
first record, the salary value contains a comma:

123-45-6789,1-jan-1960,Garcia,33,OOO.OO,Programmer
246-80-1357,2-jan-1960,Smith,43000.00,Coder

The following copy statement will cause ULTRIX/SQL to return errors:

copy table personnel (ssno=cO,birthdate=cO,
name=cO,salary=cO,title=cO)
from 'pers.data';

The copy statement reads the value 33 into the "salary" field, 000.00 into the "title"
field, and "Programmer" as into the "ssno" field. It then attempts to read
"246-80-1357" as the "birthdate," which produces the error.

If the copy statement had specified title=cOnl, there would have been no error
messages. The copy statement would have again read 33 as the "salary," but would
have read "OOO.OO,Programmer" as the "title," since it is only looking, at that point,
for a Newline at the end of the "title." The copy statement would have read the
second record correctly. Although no error message would have been generated, the
"title" field for one record would have been incorrect.

7.3.7 What To Do If You Are Having Trouble Loading Data

If you are having trouble loading your data into the designated tables:

• Take two rows from the data file you are using and work with the copy
statement until you succeed with those two rows. Check the database table to
be sure the results are what you require.

• Use the options available in the copy statement syntax to continue on error
and log records that fail for later examination.

If attempts to load data from binary files are not successful:

• Check to make sure the data comes from exactly the same machine
architecture. Integer and floating point formats can differ between machines.

Populating Tables 7-5

• Pick apart your data column by column, using dummy delimiters for the rest
of the row until the copy statement succeeds.

• If all else fails, get an ASCII copy of the data so you can correct errors.

7.4 Data Integrity and Validity

There are two ways to ensure that your data is consistent and error-free:

• Integrity constraints, imposed by the SQL create integrity statement

• Program customized data checking with embedded SQL

Sometimes the data you want to put in an ULTRIX/SQL table is already in a file,
ready to be loaded with the copy statement. Because copy from is a
high-performance utility, it is not subject to integrity constraints defined by the
create integrity statement. Errors in the data must be handled, nonetheless.

These situations always terminate the copy statement:

• When ULTRIX/SQL cannot read the input file when doing a copy ••• from

• When ULTRIX/SQL cannot write the output file when doing a copy ••• into

• When server errors occur

The following errors do not necessarily terminate the copy statement:

• Data type errors in which non-numeric characters are scattered throughout
ASCII (character) representations of numeric fields. This is the most common
type of error.

• Errors unrelated to data type; for example, a syntax error where the "name"
column fails to start with a capital letter, when it is required to do so.

7.4.1 Using the copy Statement's with Clause to Control Error Handling

You can control the way the copy statement handles errors by specifying options in
its with clause.

The options allow you to decide:

• Whether the copy should stop or continue when an error occurs

• Whether the rows already copied should be undone, assuming the copy will
not continue

• Whether the copy should stop when a certain number of errors occur

• Whether the records not copied should be logged into a log file for analysis

7-6 Populating Tables

If you do not specify any of the options, the default is to stop copying when the
first error is encountered and to rollback or undo whatever was copied up to that
point.

Typical combinations of options used in the copy statement follow:

• If you want to load data from a file, but stop and rollback if more than ten
errors occur:

copy table personnel (name=cO,dept=cOnl)
from 'pers.data'
with on_error=terminate,error_count=lO,
rollback = enabled;

• If you want to load data from a file, throwing away any invalid rows and
continuing to process good ones:

copy table personnel (name=cO,salary=cOnl)
from 'file.data'
with on_error=continue,rollback=disabled;

• If you want to load data from a file, logging any bad rows in badrows.data:

copy table personnel (name=cO,address=cOnl)
from 'hr.data'
with on_error=continue,rollback=disabled,
log = 'badrows.data';

For more information about the with clause, see the copy statement in the
ULTRIX/SQL Reference Manual.

The copy statement will write lock a table while data is being copied into it, but
will only read lock a table while data is being copied out of it. For a discussion of
locking, see Chapter 8.

7.4.2 Checking for Data Type Errors

As the example below illustrates, using the with clause of the copy statement when
loading tables can be very helpful if the data files contain data type errors:

• The copy statement continues to copy good records into the database table
even after encountering errors.

• Those records with errors are logged in a log file that you can examine and
use to correct the records in the data files.

Otherwise, the copy statement aborts with error messages indicating type-mismatch.

Suppose, for example, that you want to load some personnel data from a file with
the following record format:

social_security_number,name,jobtitle,salary

Although "salary" is a numeric item, it is stored in character format.

Suppose further that in the ULTRIX/SQL "personnel" table, into which you want to
load the data, "salary" is the name of a column of type money.

Populating Tables 7-7

The copy statement handles this conversion easily, provided each "salary" value
consists only of digits and (optionally) a dollar sign, minus sign, and/or decimal
point. Nevertheless, there might be spurious characters in the "salary" data, such as
those contained in the following two records:

123-45-6789, Garcia,Programmer, 3Z000
559-58-2543,Weir,Executive,I80000

The data contains a Z instead of a 3, an uppercase I instead of I, and three letter Os
instead of zeros. If the copy statement encountered this data while trying to load a
numeric table column, it would abort with an error message, indicating
type-mismatch.

While ULTRIX/SQL provides the row number where it failed, if there are many
problem rows, visually scanning a large amount of raw data is tedious and seldom
productive.

You can solve this problem by using the with clause of the copy command to log
invalid records. The copy statement would look like this:

copy table personnel (ssnum=cO,name=cO,
jobtitle=cO,salary=cOn1)

from 'pers.data' with on_error=continue,
log='logfilename' ;

The with clause has two parts in this case:

• The first part, on_error=continue, causes the copy command to continue
copying data after a data format error has occurred.

• The second part, log='logfilename,' causes the records with data type errors
to be logged in the log file you name. When the copy statement is done, you
can examine the log file and use it to correct errors in the original data. All
good records will have been copied into the database table.

Once you have corrected the errors in the data logged in the log file, you can run
the copy statement again using the log file to insert the corrected data into the
"personnel" table.

7.4.3 Checking for Integrity Errors Unrelated to Data Type

Other kinds of errors unrelated to data type, such as syntax errors, can exist in the
data to be loaded. With the create integrity on •.. is statement, you can do the
following, provided you own the table (or, with ULTRIX/SQL superuser status,
impersonate the table owner):

• Impose on the table integrity constraints that the data must satisfy.

Note

The copy from statement, designed for high-speed data loading, ignores
these constraints.

• Catch any exceptions as errors

7-8 Populating Tables

Consider again the example in which the copy statement loads data into the
ULTRIX/SQL Personnel table. (See the section, "Checking for Data Type Errors"
above.) Now suppose the values in the "name" column of that table must begin
with an uppercase letter. Suppose also that the record for the executive contained
the name "weir" misspelled with a lowercase "w," but was, nevertheless, added to
the table since the copy ignored that constraint.

The following procedure, used prior to loading the data, would enable you to catch
the exception as an error, correct it, and impose the integrity constraint so that
future updates with that kind of error would not occur. If you already had an
integrity definition, it was ignored, so remove it with the drop integrity statement
and re-create the integrity after copying.

1. Execute the create integrity on ... is command to impose the integrity
constraint as follows:

create integrity on personnel
is name like '\[A-Z\]%' escape '\';

If the search condition is not true for every existing row in the table when the
command is issued, an error message appears and the integrity constraint is
rejected.

2. Find the incorrect rows with the following query:

select name from personnel where name not
like '\[A-Z\]%' escape '\';

3. Use interactive SQL to browse the "personnel" table, spot errors, and correct
them.

4. Repeat Step 1 to impose the integrity constraint.

7.5 Unloading and Reloading Data

The copy statement is bi-directional; in addition to loading data into a table, it also
unloads data from a table. A common use of copy is to unload a table for backup to
tape or for transfer to another database. In either case, there is the possibility of
reloading the data into a database later.

7.5.1 Bulk Copy

The quickest form of the copy statement to code and execute is called a bulk copy.
This statement has the following format:

copy table tablename 0 into I output filename ';

The bulk copy statement copies all table data, byte for byte, into a file. It places no
delimiters between fields or between records. It performs no type conversions;
thus, all data items retain the type they had in the table. If any columns have a type
other than char or varchar, they are not readable as characters in the outputfile.

Populating Tables 7·9

Unloading data in binary format for backup may be inconvenient if you need to
inspect the data later. On the other hand, the binary format may be better for
maintaining floating point accuracy.

Another concern when you use the bulk copy is that it is designed for reloading
data into tables that have exactly the same record layout as those from which the
data was unloaded. Those tables must be on a machine with the same architecture
as that from which they were unloaded. The ULTRIX/SQL utilities designed for
quick unloading and reloading of tables or databases, copy db and unloaddb, both
use the bulk form of copy by default. They automate the process so you can easily
re-create and reload tables of identical layout.

You cannot use unloaded binary data to load, at a later time, tables that have a
different column order, number of columns, data types, or table structure. For that
reason, you may wish to have your external files in character format, with newlines
separating records, so that you can inspect them.

7.5.2 Unloading in Readable Format

There are several important things to remember to include in the copy statement
when unloading your data into readable files.

• You must specify each column in the target list; omitting the column names is
not acceptable.

• You must describe the external file format. not the table column format, in the
target list of the copy statement.

• There are two major types of copying for unloading into files: one for
fixed-length fields and another for variable-length fields.

7.5.2.1 Unloading Into Flies with Fixed-Length Fields

Fixed-length fields can use automatic or explicit specification of the field length, as
indicated below:

• If you use cO or char(O), character fields are printed using their full length.
Other types of columns are formatted using the field formats integerl,
smallint, integer, float4, date, and money ..

• If you use cN or char(N), the copy statement prints exactly N characters.
Excess characters are discarded and shorter columns are padded with blanks.

• Use of the text(N) format has the same results as use of the cN or char(N),
except that the padding is with null bytes. The varchar(N) format prints
exactly N characters with a leading length indicator in binary format,
discarding any excess characters. Shorter columns are padded with null bytes.

Variable length data items are written to a file by the copy statement as follows:

• text(l), ... , text(2000)-no leading length indicator is written to the output
file with the data item

7-10 Populating Tables

• text(O) delim-writes a two-byte binary length. followed by the data.
followed by the delimiter

• varchar(O)-an ASCII length is written preceding varchar(O)

7.5.2.2 Unloading Into Flies with Variable-Length Fields

There are two types of variable-length fields. those with a leading length indicator
and those that end with a delimiter:

• The varchar(O) fonnat prints the data in the column with a leading length
indicator.

• The text(O) fonnat prints the data in the column with an optional trailing
delimiter and trims trailing blanks.

The c and char data type fonnats trim trailing blanks. whereas the text and
varchar data type fonnats retain them.

7.6 Advanced Use of the copy Statement

You can find extensive documentation on the copy statement in the ULTRIXISQL
Reference Manual. Be sure to review this material before using the copy statement.
The current section discusses variations on the use of this command.

The examples in this section use a database illustrated by the following table:

Table 7-1: Example Database

Table Name Column Name Data Type

Header Ordemo Integer2
Date Date
Suppno Integer2
Status Char(l)

Suppinfo Suppno Integer2
Suppinfo Char(35)

Detail Ordemo Integer2
Invno Integer2
Quan Integer2

Iteminfo Invno Integer2
Descript Char(20)

Princeinfo Invno Integer2
Suppno Integer2
Catno Integer2
Price Money

Populating Tables 7-11

7.6.1 How to Use Multiple Files to Populate Multiple Database Tables

Suppose that the information for the database described in the last section was
stored in data files outside ULTRIX/SQL, and that those files, filel and file2, have
the record formats shown below:

orderno,date, suppno,suppinfo, status

orderno,invno,catno,descript,price,quan

The copy statement can be used to load the data from these files into a five-table
database. Assume that the files are entirely in ASCII character format, with fields
of varying length terminated by commas, except for the last field, which is
terminated by a Newline. The following copy statement loads the "header" table
from the first file:

copy table header (orderno=cOcomma, date=
cOcomma,suppno=cOcomma,
dummy=dOcomma,status=cOnl)
from 'filel';

Each column of the "header" table is copied from a variable-length character field
in the file. All columns except the last are delimited by a comma; the last column is
delimited by a Newline.

Specification of the delimiter, although included in the statement, is not needed
because the copy statement looks for the first comma, tab, or Newline as the field
delimiter by default.

The notation dO, used in place of cO, tells the copy statement to ignore the
variable-length field in that position in the file, rather than copy it. The copy
statement ignores the column name (in this case "dummy") associated with the
field described as d format.

Note

The order of column names in a copy statement must correspond to the
order in the file from which the data comes. The data type indicates the
data type in the file, not in the table. The order of columns in the table
does not have to be the same as the order of fields in the file.

7.6.1.1 Loading a Table from Multiple Flies

Loading the "priceinfo" table presents special difficulties. The copy statement can
read only one file at a time, but the data needed to load the table resides in two
files.

The solution to this kind of problem varies with the file and table designs in any
particular situation. In general, a good solution is to copy from the file containing
most of the data into a temporary table containing as many columns of information
as needed to complete the rows of the final table.

To load data from the files into the "priccinfo" table, do the following:

1. Create a temporary table named "pricetemp" that contains the "ordemo"
column in addition to all the columns of the "priceinfo" table:

7·12 Populating Tables

create table pricetemp (orderno integer2,
invno integer2,
suppno integer2,
catno, integer2 price moneY)i

The reason you need to add the "ordemo" column to the temporary table is
that it enables you to join the temporary table to the "header" table to get the
supplier number for each row.

2. Copy the data from the order detail file into the "pricetemp" table.

copy table pricetemp (orderno=cO,invno=cO,
catno=cO,dummy=dO,price=cO,dummy=dO)
from 'file2'i

3. Insert into the "priceinfo" table all rows that result from joining the
"pricetemp" table to the "header" table.

insert into priceinfo
(invno,suppno,catno,price)

select p.invno,h.suppno,p.catno,p.price
from header h, pricetemp p
where p.orderno=h.ordernoi

7.6.1.2 Multi-Line File Records

Another feature of the copy statement is that it can read multi-line records from a
file into a single row in a table. For instance, suppose that for viewing convenience,
the detail file was formatted so that each record took three lines. That file might
look like this:

1, 5173
10179A, No.2 Rainbow Pencils
0.29
1, 5175
73122Z, 1986 Rainbow Calendars
4.90

You could load these values into the "pricetemp" table with the following copy
statement:

copy table pricetemp (orderno=cOcomma,
invno=cOnl,catno=cOcomma,
descript=dOnl,price=cOnl)
from 'file2'i

It does not matter that Newlines have been substituted for commas as delimiters
within each record. The only requirement is that the data fields be uniform in
number and order, the same as for single-line records.

7.6.2 Loading Fixed-Length and Binary Records

The copy statement can also load data from fixed-length records without any
delimiters within or between the data. In addition, numeric items in the file may be
stored in true binary format. For example, the value 256 may be stored in a 2-byte
integer instead of 3 characters.

Populating Tables 7·13

For example. if the order header file is laid out as follows:

orderno date suppno suppinfo status

With field formats of:

2-byte integer, 8 characters, 2-byte integer, 35 characters, 1 character

The following copy statement loads the "header" table:

copy table header (orderno=integer2,date=c8,
suppno=integer2,dummy=c35,
status=cl)

from 'filel';

It is also possible to copy data from files that contain both fixed- and
variable-length fields.

7-14 Populating Tables

ULTRIX/SQL Locking 8

8.1 Overview

ULTRIX/SQL is a shared system; it allows many users to access the same database
at the same time. To ensure that their transactions do not interfere with each other,
ULTRIX/SQL uses locking.

In any database management system with multiple users, there is a tradeoff
between consistency and concurrency. Ideally, you want all of your users to be able
to access the database at the same time (concurrency) and you want all of the data
to be accurate (consistency).

To ensure consistency, ULTRIX/SQL automatically places locks on tables or pages
of tables when users submit queries to change or select data.

But locking can cause some users to wait for other users to finish their queries, if
not handled carefully. The purpose of this chapter is to provide you, the Database
Administrator (DBA), with the knowledge you need to maximize concurrency,
while minimizing the time that users wait for locks to release.

This chapter describes the following:

•

•

•

•

•

•

•

•

•

Types and levels of locks

How ULTRIX/SQL locking works

How long locks are held

Locking examples

L~cking parameters

How to change locking parameters with set lockmode

How to avoid deadlock situations

How to monitor locks

How to improve concurrency

UL TRIXlSQL Locking 8-1

The ULTRIX/SQL locking system, which uses shared memory and semaphores,
controls all locks. The shared memory and semaphores used by your ULTRIX/SQL
installation are configured in the operating system when your ULTRIX kernel is
configured.

Your ULTRIX/SQL System Administrator initially configures the locking and
logging system when ULTRIX/SQL is initialized. The parameters that he or she
selects are installation-wide. These parameters may be changed, but only by the
ULTRIX/SQL System Administrator. For a complete discussion of these locking
parameters, see the ULTRIXISQL Operations Guide.

The ULTRIX/SQL locking system controls locking by:

• Managing and queuing lock requests

• Detecting deadlock situations

For a discussion of deadlock, see the section "Avoiding Deadlock" later in this
chapter.

8.3 Lock Types
ULTRIX/SQL locks can be of various types. The term type refers to how powerful
the lock is; for example, whether it prevents other users from reading the data it
protects, or only from changing that data. ULTRIX/SQL uses the five types of lock
that are described in the following table.

Table 8-1: ULTRIX/SQL Locks

Type of Lock

x

S

IX,IS

SIX

N

8-2 UL TRIXlSQL Locking

Description

Exclusive locks or write locks. Only one user may hold an exclusive
lock on a resource at any given time. (A resource is a data page or table
on which a lock can be taken. A user of this lock is called a writer.)

Shared locks or read locks. Multiple users may hold shared locks on the
same resource at the samc timc. No user can update an object which is
read locked. A user of this lock is called a reader.

Intended exclusive and intended shared locks. Whenever ULTRIX/SQL
takes an exclusive (X) or shared (S) lock on a page within a table,
ULTRIX/SQL takes an intended exclusive (IX) or intended shared (IS)
lock on the table. ULTRIX/SQL uses these locks to determine whether it
is possible to take a lock on the table. These locks do not actually lock
users out of the table.

Shared intended exclusive locks. The ULlRIX/SQL database
management system server's buffer manager uses these locks to manage
its page cache.

Null locks. An ULTRIX/SQL lock that does not block any action but
preserves the number in the value block of the lock.

8.4 Locking Levels

ULTRIX/SQL locks can be of various levels. The level of a lock refers to the scope
of the resource on which the lock is taken; for example, an entire table or a single
page. (A page is a block of physical storage space; it is the smallest unit on which a
user can take a lock. Each page is 2048 bytes in size.)

Although there are many other levels of lock besides the page and table, these are
the only two levels subject to the user's control. For details on user-controlled
locking, see the section "User-Controlled Locking" later in this chapter.

8.5 How ULTRIX/SQL Locking Works

When a user issues a query, implicit requests for locks are made. In response,
ULTRIX/SQL considers the following factors to determine what kind of lock, if
any, to take on behalf of that user:

• Are there any locks available?

• Does the query involve reading or changing data?

• Should the locking level be for a page or an entire table?

• What kind of resource is affected by the query?

• Do any other users already hold locks on the affected resource?

8.5.1 How ULTRIX/SQL Determines Whether a Lock Is Available

When your ULTRIX/SQL System Administrator configures the ULTRIX/SQL
logging and locking system, he or she sets the total number of available locks. As
each lock is taken, a counter is decremented by one to reflect the number of locks
still available. If ULTRIX/SQL receives a lock request after all available locks have
been taken, the request cannot be satisfied until a lock is freed. If this happens
frequently, your ULTRIX/SQL System Administrator can reconfigure the maximum
number of locks. For details on configuring the number of ULTRIX/SQL locks, see
the ULTRIX/SQL Operations Guide.

8.5.2 How ULTRIX/SQL Determines the Appropriate Type of Lock

When a user issues a select statement to access some data, a shared lock is
required, since the user only wants to read the resulting data.

When a user issues a statement that writes to the database, such as an update,
insert, or delete statement, ULTRIX/SQL knows that an exclusive lock is required.

UL TRIXlSQL Locking 8-3

8.5.3 How ULTR!X/SQL Determines the Appropriate Leve! of Lock

The default locking level for ULTRIX/SQL is the page level. Page-level locks are
taken whenever possible.

Using the set lockmode statement, you can change parameters that determine how
ULTRIX/SQL handles locking during a session. One of these is the maxlocks
parameter. Using maxlocks, you can reset the maximum number of page-level
locks ULTRIX/SQL can take per table per query before it escalates to table-level
locking.

The default for maxlocks is ten. For a discussion of the set lockmode statement,
see the section "User-Controlled Locking" below. For more details on the
maxlocks parameter, see the section "Changing maxlocks" below.

If the ULTRIX/SQL optimizer facility (OPF) estimates that a query will be
touching more than the number of pages to which maxlocks is set, the query will
start out with a table-level lock. This saves the overhead of accumulating multiple
page"levellocks. For example, on a query that is not restrictive or does not use a
key to locate affected records, where the optimizer decides that scanning the entire
table is required, ULTRIX/SQL takes a table-level lock at the beginning of query
execution.

If the optimizer estimates that no more than maxlocks pages will be needed,
ULTRIX/SQL takes page-level locks.

If a query involves a single table with only a primary key, the optimizer is not used
and page-level locks are taken on the appropriate pages of the table.

If the number of pages in a table on which ULTRIX/SQL holds locks reaches
maxlocks during the processing of a query, ULTRIX/SQL escalates to table-level
locks to complete the query, by doing the following:

• Stops accumulating page-level locks

• Escalates to a table-level lock

• Drops all page-level locks it has accumulated

ULTRIX/SQL also escalates to table-level locks in an attempt to complete a query
if the transaction or the installation has run out of locks. To avoid this situation in
the future, the ULTRIX/SQL System Administrator can shut down the
ULTRIX/SQL installation and reconfigure the locking system for the number of
locks allowed per transaction. The locking system cannot be reconfigured in the
middle of processing a query if the transaction or the installation has run out of
locks. ULTRIX/SQL simply returns an error and backs out the transaction.

The following table describes what type and level of lock ULTRIX/SQL invokes by
default when a query is issued. For more information on the optimizer facility and
ULTRIX/SQL lock levels, refer to the ULTRIX/SQL Operations Guide.

8-4 UL TRIXlSQL Locking

Table 8-2: ULTRIX/SQL Locking Levels

ULTRIXlSQL Operation Comment Lock Lock Level
Type

select For each table involved in the IS Table lock
select and

S Page lock(s) on
pages in table

If query touches> maxlocks S Table lock
pages, ULTRIX/SQL takes a
shared table lock mther than
page locks

update, insert, or delete Table update, insert, or delete IX Table lock
and
X Page lock(s) on

pages in table

If query touches> maxlocks X Table lock
pages

For other tables used in query S See lock for
but not being changed select statement

Create On base table X Table lock
index

On index X Table lock

Create table On table X Table lock

Drop table On table X Table lock

8.5.4 How ULTRIX/SQL Determines Whether to Take a Lock

Whether ULTRIX/SQL can take a lock depends on whether any other user holds a
lock on that resource, and if so, what type of lock the other user holds. If no locks
are available or another user already holds an exclusive lock on the resource in
question, ULTRIX/SQL cannot take a new lock. The user will have to wait.

As mentioned earlier, ULTRIX/SQL looks for intended shared and intended
exclusive locks on a table to determine quickly whether a table-level lock can be
taken on that table, as follows:

• An intended shared lock on the table means that a shared lock has been taken
on at least one page of the table; nevertheless, a shared lock, if available, can
still be taken at either the page or table level.

• An intended exclusive lock on the table means that an exclusive lock has been
taken on at least one page of the table; no table-level lock can be taken on the
table on behalf of another user until the current exclusive page-level locks
have been released.

UL TRIXlSQL Locking 8-5

Th", /i",-f!lll11t C!",tt;ncy n-f th", TTT TO TV I~('IT lnf'1rintT """t""" "n,",,'"'' th .. t .. no .. "" .. ,..,. .. A.aa ___ u""" c " ... wa,., "'....., " ... 6 .. 'U"A.J ... vlwl .. ~.&.6 ~J.., .. "" & "" ... a",u."", "&141. v U.,....,'" -",,"".1.

read data being changed and no user can change data being read. However, users
may read data that is being read by other users. This means that:

• ULTRIX/SQL can take an S lock for User2 on resource R provided Userl
does not already hold an X lock on R.

• ULTRIX/SQL can take an X lock on resource R for User2 provided User 1
does not already hold an S or X lock on R.

• ULTRIX/SQL can take an S lock on resource R for User2 even if User 1
already holds an S lock on R.

This default strategy is adequate for most situations. When it is not, you can
establish a different strategy using the set lockmode statement. For details, see the
sections "Uses for the set lockmode Statement" and "Considerations when Setting
readlock to nolock" later in this chapter.

8.5.5 How Long Locks Are Held

In ULTRIX/SQL, locks are held until a transaction is committed. When a
transaction is committed, its results are written to the database and all locks
accumulated during the transaction are dropped. Transactions are committed:

• By issuing the commit statement after one or more SQL queries.

• By ending your ULTRIX/SQL session. This is not recommended.

After a commit is executed, the current transaction is terminated and you are in a
new transaction as soon as the next SQL statement is issued.

Note

If you do not issue the commit statement during a session, all locks
taken on the resources affected by your queries are held until your
session ends. Your entire session will be treated like one transaction and
will cause concurrency problems.

8.5.6 A Single-User Locking Example

In the following example, a user issues an SQL query to read data on the employee
named Jeff from the table named "emp." The user then issues a commit statement
so that ULTRIX/SQL releases the locks taken on the table after executing the
query.

I. The user issues a select statement followed by a commit statement:

select * from emp where name = 'Jeff';
commit;

2. ULTRIX/SQL takes an IS lock on the "emp" table and a page-level S lock on
the second page of that table.

8-6 UL TRIXlSQL Locking

Since the query is restrictive (only the row specified in the where clause is to
be retrieved), and the table itself has an isam structure indexed on the "name"
column, ULTRIX/SQL does not have to scan the entire table. Thus, an S on
the entire table is not necessary. ULTRIX/SQL can use the index to go directly
to the row for Jeff. For this reason, an IS lock on the table and an S lock on
the page containing the row for Jeff are sufficient.

3. ULTRIX/SQL retrieves the Jeff row.

4. ULTRIX/SQL releases the locks held.

If the user, upon retrieving the row for Jeff, were to decide that he wanted to update
that record, he could issue an update statement before issuing the commit.

If so, and there are no other shared locks on the page containing the Jeff row,
ULTRIX/SQL would escalate the shared lock taken on the page to an exclusive
lock and the IS lock on the table to an IX lock.

8.5.7 A Multi-User Locking Example

In the previous section, the example illustrated the use of locking when a single
user initiates a transaction.

The next example illustrates how ULTRIX/SQL uses locks when multiple users run
queries against the same tables. (A brief summary of the example precedes two
figures showing what locks are taken on the tables involved. A scenario with the
details of both users' transactions follows.)

Userl initiates a multi-query transaction to update the salary of each employee in
the Techsup department to 30000. Shortly thereafter, User2 issues a query to read
the salary and floor of the employee named Dan. Both users end their transactions
with a commit statement.

Both users' transactions affect the tables named "emp" and "dept." The former
table is keyed on "name," with a secondary index on "dept," while the latter is
keyed on "dname." Because of the way these tables are indexed, page-level locking
is used, since only a few pages within the tables need to be accessed. If the query
were likely to span many pages (either because there were many employees in the
Techsup department or because the row for each employee was very wide),
table-level locking might have been required.

The following tables illustrate the first four pages of the "cmp" table and the "dept"
tables, with the locks ULTRIX/SQL takes on behalf of both users.

UL TRIXlSQL Locking 8-7

Table 8-3: The "Emp" Table

Page Name Salary Deptno

1 Andy 55000 9

Candy 50000 6

Dan 25000 7

2 Ed 20000 2

Fred 20000 8

Jeff 35000 4

3 Kevin 40000 3

Lenny 30000 6

Marty 25000 8

4 Penny 50000 9

Susan 20000 1

Tami 15000 6

Table 8-4: The "Dept" Table

Page Deptno Dname Floor

1 1 Accting 5

2 Admin 4

3 Develop 4

2 4 Mgr 3

5 Prod 2

6 Sales 3

3 7 Shipping 2

8 Techsup 1

4 9 VP 5

10 WP 5

8-8 UL TRIXlSQL Locking

Table 8-5: Locks Taken on the "Emp" and "Dept" Tables

Table

EmpTable

Dept Table

Page

Entire table

1

2

3

4

Entire table

1

2

3

4

The scenario looks like this:

Locks Taken for
User!

IX

X

X

IS

S

1. Userl issues the following statements:

update emp set salary = 30000 where deptno in
(select deptno from dept
where dname = 'Techsup');

commit;

2. User2 issues the following statements:

select e.salary, d.floor from emp e, dept d
where d.deptno = e.dept
and e.name = 'Dan';

commit;

Locks Taken for
User2

IS

S

IS

S

3. On behalf of Userl, ULTRIX/SQL takes the following locks:

a. An IS lock on the "dept" table

b. An S lock on the third page of the "dept" table where the record for the
Techsup department is located

and starts executing the subselect statement to retrieve the Techsup record.

4. On behalf of User2, ULTRIX/SQL takes the following locks:

a. An IS lock on the "emp" table

b. An S lock on the first page of the "emp" table where the record for the
employee named Dan is located

UL TRIXlSQL Locking 8-9

c. An IS lock on the "dept" table

d. An S lock on the third page of the "dept" table where the Shipping record is
located

and starts executing the select statement to retrieve the salary for employee
Dan from the "emp" table and the floor on which he works from the "dept"
table, using the "dname" value "Shipping."

5. On behalf of User!, ULTRIX/SQL takes the following locks:

a. An IX lock on the "emp" table

b. An IX on the second and third page of the "emp" table where the updates
will be made and begins executing the update statement, setting the
value of the "salary" column for all employees in the Techsup
department to 30000.

6. On behalf of User2, ULTRIX/SQL executes the commit statement, dropping
all locks held on her behalf.

1. On behalf of User!, ULTRIX/SQL executes the commit statement,
committing all updates and dropping all locks held on his behalf.

8.5.8 Waiting for Locks

Now look at what would have happened in the previous example if User2 had
issued instead the following query:

select * from emp;
commit;

Because ULTRIX/SQL took an IX lock on the second and third pages of the "emp"
table on behalf of User!, User2 would have waited to retrieve all the values from
the "emp" table until User! completed his query and released all locks. The reason
is that if one user is updating at least one page in a table, no other user can read the
entire table.

In this simple case, the waiting time would have been negligible, but had User!
issued a complicated update on a large number of rows in the "emp" table, User2
might have waited a long time.

To prevent delays, there are several approaches:

• Keep all transactions as short as possible. This is the best approach. (Note that
the set lock mode statement is not allowed in an open transaction.)

For details on the set lockmode statement, see the section "Uses for the set
lockmode Statement" later in this chapter.

• Use the set lockmode statement with readlock = nolock (when possible) to
avoid having to wait for read locks.

8-10 ULTRIXlSQL Locking

• Use the set lockmode parameter timeout to indicate how long to wait for a
lock. (The default is to wait forever.) ULTRIX/SQL returns an error when the
timeout is reached. The current statement (not the transaction) is aborted. It is
up to the program to trap the error.

8.6 User-Controlled Locking

User-controlled locking is available in ULTRIX/SQL through the set lockmode
option of the set statement. The syntax for the set lockmode statement is as follows:

set lockmode session I on tablename
where [level = page I table I session I system]
[, readlock = no lock I shared I exclusive I session I system]
[, maxlocks = n I session I system]
[, timeout = n I session I system]

Note

You cannot issue the set lockmode statement within a transaction. You
can issue it as the first statement in a session or after a commit statement.

For a complete description of the set lockmode statement, see the ULTRIXISQL
Reference Manual.

8.6.1 How to Use the set lockmode Statement

There are several ways to use the set lockmode statement:

• Type the statement in the interactive SQL Terminal Monitor.

• Include it in an embedded ULTRIX/SQL program as you would any other
ULTRIX/SQL statement. This affects only the session of the user running the
program.

• Specify the ULTRIX/SQL set statement with any of the following
environment variables, each of which has a different scope.

Note

When typed interactively or included in an embedded SQL program, set
lockmode overrides the locking parameters specified by these
environment variables.

This affects all users.

This affects only users in the specified database.

ULTRIXlSQL Locking 8-11

This affects only the SQL session.

This affects all ULTRIX/SQL users.

The set statements pointed to by the environment variables are executed
whenever an ULTRIX/SQL user connects to the server. The environment
variables can be set in the ULTRIX/SQL symbol table as installation-wide
variables. They may also be set locally in each user's environment. (See the
ULTRIXISQL Operations Guide for details, including the syntax, for each of
these variables.)

For example, to specify readlock = nolock for a user's session with the set
lockmode option using lNG_SET, usc:

C shell:

setenv ING SET "set lockmode session where readlock=nolock";

Bourne shell:

ING SET="set lockmode session where readlock=nolock"

8.6.2 Uses for the set lockmode statement

With the set lockmode statement, you can:

• Set locking parameters for a particular table. For example:

set lockmode on emp where readlock = nolock;

• Set locking parameters for the duration of an ULTRIX/SQL session. For
example:

set lockmode session where read lock = nolock;

For more discussion on the use of locking parameters, see the following sections in
this chapter:

• "Changing the Locking Level"

• "Changing Maxlocks"

• "Setting a Timeout"

• "Setting Readlock to Nolock"

8-12 ULTRIXlSQL Locking

8.6.3 Changing the Locking Level

By default, ULTRIX/SQL locks at the page level. Page-level locks will be taken
whenever possible. If the optimizer estimates that not more than maxlocks pages
per table, per transaction need be locked, ULTRIX/SQL takes page-level locks;
otherwise, ULTRIX/SQL takes table-level locks.

To specify table-level locking, use the following:

set lockmode session where level = table;

There are several situations where the page locking default might not be
appropriate:

• If a query is not restrictive or does not make use of the key for a table,
scanning the entire table is required. In that case, ULTRIX/SQL will
automatically start with a table-level lock; you don't need to specify it.

• If there are a number of unavoidable overflow pages, it might be preferable to
set table-level locking for reasons of efficiency. Refer to the ULTRIX/SQL
Reference Manual for a discussion on storage structures.

• If, during execution of a query, ULTRIX/SQL must lock more than maxlocks
pages on a table (often because of an overflow chain), ULTRIX/SQL will
escalate to a table-level lock. ULTRIX/SQL then drops the page locks that
have been accumulated. Since accumulating page locks when a table lock was
really necessary is a waste of resources, table locking from the outset would
be preferable.

• If multiple users are concurrently running queries to change data, deadlock
can occur.

Deadlock occurs when multiple users are waiting for each other to release
locks so they can escalate locking to a higher level, and none of them can
complete their transactions. For example, if Userl is holding exclusive page
locks on "tablet" and trying to get an exclusive table lock on "tablet" while
User2 is holding exclusive page locks on "tablel" and trying to get an
exclusive table lock on "tablel," neither user can get the table lock until all
the page locks are released. This results in deadlock. If ULTRIX/SQL had
taken an exclusive table lock on behalf of one of the users at the onset, this
deadlock could have been avoided.

For a discussion on deadlock, see the section "Avoiding Deadlock" later in this
chapter.

8.6.4 Changing Maxlocks

By default, ULTRIX/SQL escalates to a table-level lock after locking ten
(maxlocks) pages within a table. But lock escalation can lead to deadlock.

Set the number of locks taken before escalation occurs to a number higher than ten.
For example:

set lockmode on emp where maxlocks = 20;

ULTRIXlSQL Locking 8-13

changes the number of pages in the "empu table that can be locked fiom 10 to 20.

This requires more locking system resources. The ULTRIX/SQL lock limit may
have to be raised. But, this can provide better concurrency in a table with
unavoidable overflow chains. Be forewarned that btree tables use twice as many
locks as isam and hash tables, since index pages, leaf pages (pages containing a
unique key and tuple identifiers for every row in the table), and data pages are all
locked.

8.6.5 Setting a Timeout

By default, ULTRIX/SQL waits for a lock indefinitely. (The default is timeout
O-that is, no timeout.) For instance, if User! is running a report and User2
attempts to insert into the table used for the report, the insert will appear to "hang"
while waiting for a lock. User2 will wait for the lock, no matter how long that takes.

If you aren't certain how long users in your database will have to wait for locks,
you may want to limit the period of time (expressed in seconds) a user waits for a
lock. This can be done using the timeout option of the set lockmode statement.

To set the time limit for which a lock request should remain pending to thirty
seconds, issue the following statement:

set lockmode session where timeout = 30;

If a lock is not granted in the amount of time specified, the query is rolled back (not
the entire transaction) and ULTRIX/SQL returns an error. This error may be
trapped and handled in embedded SQL programs.

If you embed a timeout in an application, timeout must be carefully handled by the
application. If timeout occurs while processing a statement in a multi-query
transaction, only the query that timed out is rolled back. The entire transaction is
not rolled back unless the user specifies rollback. Previous statements are not
backed out and the next query in the transaction is processed. For this reason, the
application must contain code to trap the error, roll back the entire transaction, and
retry it, starting with the first query.

8.6.6 Setting Readlock

Pages locked for reading are normally locked with a shared lock. A shared lock on
a page does not prevent multiple users from reading that data concurrently.
However, a user trying to change data on the locked page will have to wait for all
shared locks to be released, since changing data requires exclusive locks.

8.6.6.1 Setting Readlock to Nolock

By setting the lockmode on the table to readlock = nolock, one user can read data
while another user modifies data. To set readlock = nolock, issue the following
statement:

set lockmode session where readlock = nolocki

Using readlock = nolock does not affect any query that updates, deletes, or inserts
rows in a table.

8-14 ULTRIXlSQL Locking

But if this is done, the user retrieving data may end up with inconsistent data if
changes were made by others during the retrieval. Before using this strategy,
consider how important the consistency and accuracy of the data is.

To ensure that a readlock = nolock user is reading accurate pages, ULTRIX/SQL
uses a table control lock. A table control lock is a special lock on a table that is
implemented prior to normal table locking. This lock ensures that no reader of any
type (including those for whom readlock=nolock) can look at a table:

• When it is being loaded using the copy or the create table ••• as select
statement

• When its schema is being created or changed, using either the create table,
create index, create view, create integrity, drop, or modify statement

8.6.6.2 Considerations when Setting Readlock to Nolock

Whereas readlocks prevent other users from obtaining writelocks and slow down
their performance, setting readlock = nolock can improve concurrent performance
and reduce the possibility of deadlocks.

To summarize, setting readlock = nolock is beneficial when updates, inserts, or
deletes to a table involve isolated operations on single rows rather than multi-query
transactions or iterative operations on multiple rows.

In contrast, setting readlock = no lock is undesirable when using multi -query
transactions that include updates that reference data from other tables. Here one
cannot guarantee the consistency of data between the tables with no readlocks.

8.7 Avoiding Deadlock

Deadlock is different from waiting for locks, but the two situations are often
confused. Deadlock occurs when Userl is being blocked from continuing his
transaction by User2, and at the same time User2 is being blocked from continuing
her transaction by Userl. Both are unable to proceed until one transaction is
aborted, allowing the other to continue.

8.7.1 A Deadlock Situation

The next example depicts a situation that produces deadlock:

User! initiates a multi-query transaction to read all the data from the "employee"
table and then insert a record with the department name "Sales" into the
"department" table. Shortly after, User2 initiates a multi-query transaction to read
all the data from the "department" table and then to insert a record with the
employee name "Bill" into the "employee" table.

The scenario goes like this:

1. User! issues the following statement:

select * from empi

UL TRIXlSQL Locking 8-15

2. On behalf of U serl, ULTRIX/SQL takes a shared lock on the "emp" table and
starts executing his select statement.

3. User2 issues the following statement:

select * from dept;

4. On behalf of User2, ULTRIX/SQL takes a shared lock on the "dept" table and
starts executing her select statement.

S. Userl enters the following statement:

insert into dept (dname) values 'Sales'

6. User2 enters the following statement:

insert into emp (name) values 'Bill'

7. ULTRIX/SQL blocks Userl's implicit request for an IX lock on the "dept"
table because of the shared lock already on the table.

8. ULTRIX/SQL blocks User2 's implicit request for an IX lock on the "emp"
table because of the shared lock already on the table.

Userl must wait for User2 to release his shared lock on the "department" table, but
this will never happen unless User2 can finish her transaction. To finish her
transaction, she needs to obtain an exclusive lock on the "employee" table, which
she cannot get until Userl releases his shared lock on it.

Thus, both users are waiting for each other, so neither would ever finish his or her
transaction if it were not for the fact that periodically, the ULTRIX/SQL locking
system checks on all processes waiting for locks to make sure deadlock has not
occurred.

When a deadlock is discovered, the locking system aborts the transaction of one of
the users, allowing the other user to continue. The user whose transaction was
aborted receives an ULTRIX/SQL error.

All his queries from the last commit up to the point of the deadlock will be backed
out, not just the last query. For this reason, the ULTRIX/SQL deadlock error should
be trapped and the transaction retried in an application program.

Deadlock should not happen frequently if transactions are concise and no lock
escalation occurs (either page to table or shared lock to exclusive lock.) A deadlock
is always logged to the error log.

8.7.2 Deadlock in Single-Query Transactions

Because ULTRIX/SQL uses page-level locking, accumulating locks one by one,
deadlock can happen even when single-query transactions are being used. At least
two users must be accessing the database, since deadlock will not occur when
running single-user, and at least one user must be modifying rows. Deadlock
generally does not occur when ULTRIX/SQL is only executing select statements,
since shared locks do not conflict with each other.

8-16 ULTRIXlSQL Locking

It is possible for deadlock to occur during a single-query transaction when:

• Different access paths to pages in the base table are used

• Lock escalation occurs

• A select statement opens a cursor without the for read only option

Lock escalation deadlock can be caused by any of the following:

• Read to shared lock to exclusive lock

• Overflow chains

• System lock limits exceeded

• maxlocks exceeded

• Btree index splits

8.7.2.1 When Different Access Paths Are Used

Multiple users updating table data using different access paths can cause
single-query deadlocks. Consider the following example in which the "emp" table
has an isam structure indexed on "name" and a hash secondary index on "empno."

1. Userl, accessing the "emp" table through the secondary index, takes an
exclusive lock on the fourth page of the table.

2. User2, accessing the "emp" table by way of the isam key on the base table,
takes an exclusive lock on the third page. .

3. Userl needs an exclusive lock on the third page, but cannot get one because
User2 already has a lock on it.

4. User2 needs an exclusive lock on the fourth page, but cannot get one because
Userl already has a lock on it.

8.7.2.2 When Lock Escalation Occurs

When multiple users are updating a table and lock escalation occurs, they can
deadlock. This is probably caused by one of three things:

• A user has run into a lock limit and can only continue by escalating to
table-level locks.

• More than maxlocks pages need to be locked during the course of a query.

• There are long overflow chains.

If you are running into locking limits, either raise these limits or shorten the
multi-query transactions.

If lock escalation deadlock is occurring, consider using the set lockmode statement
to force table-level locking on the table or to increase maxlocks.

ULTRIXISOL Locking 8-17

To understand how lock escalation can produce deadlock, consider the following
example in which two users are trying to insert into the same table that has many
overflow pages:

Userl tries to insert a record, and because of the long overflow chain exclusively
locks ten pages. Meanwhile, User2 also tries to insert a record and takes locks
down another overflow chain.

During the processing of Userl 's query, the transaction reaches maxlocks pages
and needs to escalate to an exclusive table-level lock. But, because User2 is still
exclusively locking pages in the table, Userl 's request must wait.

User2's query also needs to lock more than maxlocks pages, so a request is made
to escalate to an exclusive table-level lock. User2's request is also blocked, because
Userl is holding exclusive page-level locks.

Deadlock occurs in that neither user can proceed because each is blocking the other.

When many concurrent users are inserting to a small btree table, index splits are
likely to occur and deadlock can happen as the locking level in the index must be
escalated to exclusive.

8.7.2.3 When Locking Occurs down an Overflow Chain

Tables with many overflow pages can cause locking problems because
ULTRIX/SQL must search all overflow pages. It locks each page individually and
keeps locks all the way down the overflow chain. Escalation to table-level locking
while locking an overflow chain can cause deadlock in heavily concurrent
environments, as well as slow down the query processing time.

If you have a table with many unavoidable overflow pages, you may wish to use
the set lockmode statement to do the following:

• Establish table-level locking as the default for that table

• Increase maxlocks

8.7.3 Handling Deadlock in Applications

The following program sample checks for deadlock after every query. If deadlock
happens when a query is issued and that query is the victim, the entire transaction
of which the failed query was a part aborts, the application is sent back to line 100,
and the transaction is retried until it successfully completes without deadlock. This
sample program is written in embedded FORTRAN.

EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO 100;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL BEGIN DECLARE SECTION;
integer*4 X;
EXEC SQL END DECLARE SECTION;
X = 0;

10 continue;

EXEC SQL SELECT MAX(empno) INTO :x
FROM emp;

8-18 UlTRIXlSQllocking

EXEC SQL INSERT INTO emp (empno)
VALUES (:x + 1);

EXEC SQL COMMIT;

goto 200;

100 if (sqlcode .eq. -4700) then goto 10

200

In this example, if deadlock occurs, there is no need to issue the rollback
statement, since ULTRIX/SQL has already aborted the transaction.

If deadlock was not checked for and handled, and the select statement to retrieve
the maximum employee number failed with a deadlock, the program flow would
continue and the next statement issued, the insert statement, would complete.

INSERT INTO emp (empno)
VALUES (:x + 1)

Since the select statement did not complete, this statement would insert the value 1,
which very probably is not the maximum employee number. If there is no check for
deadlock in this situation and deadlock does occur, incorrect data is inserted into
the "emp" table.

Programmers using embedded SQL should note that the default behavior is to
continue when an error occurs and that errors are not printed by default. To handle
an error, the programmer needs to specify the desired behavior in the whenever
sqlerror statement or to check the sqlca.sqlcode manually after each SQL
statement.

8.8 Monitoring Locking

If you are having problems with concurrency, you can use one of the following
tools to see how ULTRIX/SQL places and releases locks:

• The set lock_trace statement, which displays the locks that ULTRIX/SQL
places each time a user executes a query.

• The lockstat utility, which provides a summary listing and a "snapshot" of all
the locking activity in your installation. For details on the lockstat utility, see
Appendix B in this manual.

8.8.1 set lock_trace

You can use the set lock_trace option ofthe set statement as you use the set
lockmode statement. For details on the set lockmode statement, see the section
"How to Use the set lockmode Statement" earlier in this chapter.

The set lock_trace statement enables you to start and stop lock tracing at any time
during a session.

ULTRIXISOL Locking 8-19

To start tracing locks, issue the following statement:

set lock_trace;

To stop tracing locks, issue the following statement:

set nolock_trace;

When you use set lock_trace during a session, you receive a list of the locks
placed during the execution of your query. This list is displayed on your tenninal
with the results of your query.

You should only use set lock_trace as a debugging or tracing tool. Since set
lock_trace output is not guaranteed to remain the same across releases, you should
not base applications on it.

8.8.2 Environment Variables

You can use any of the following environment variables to start the lock_trace
option:

• ING SET

• ING SET DBNAME

• DBNAME_SQL_INIT

• ING SYSTEM SET - -
(See the ULTRIXISQL Operations Guide for the infonnation about these variables.)

If you use any of the environment variables to start the set lock_trace option, you
receive output for ULTRIX/SQL user interface startup queries as well as for query
language statements.

To set environment variables in your local environment, issue a statement like the
following at the operating system prompt, specifying the environmental variable
you want to set:

C shell:

setenv lNG SET 'set lock trace'

Bourne shell:

lNG SET='set lock trace'
export lNG_SET -

8.8.3 lock_trace Output

Following is some sample output from the set lock _trace statement. Table 8-5
provides an explanation of the infonnation in this listing. To help you locate the
appropriate explanation, column numbers have been added to the sample output.

8-20 UL TRIXlSQL Locking

1 2 3 4 5 6
LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiattribute,21)
UNLOCK: PAGE Key: (inv,iiattribute,21)
LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv, iiindex, 11)
UNLOCK: PAGE Key: (inv,iiindex,11)
LOCK: TABLE PHYS Mode: IS Timeout: 0 Key: (inv,parts)
LOCK: PAGE Mode: S Timeout: 0 Key: (inv,parts,O)

The following table provides an explanation of each column in the set lock_trace
output.

Table 8-5: Explanation of set lock_trace Output

Column Name

1 LOCK, UNLOCK

2 PAGE,TABLE

3 PHYS

BLANK

Key

4 Mode

5 Tuneout

6 Key

8.8.4 A lock_trace Example

Explanation

A lock was taken or released.

Page or table level lock.

Physical lock, which is either a table-level lock
or a lock internal to ULTRIX/SQL.

Indicates that lock is on a user table. The lock is
held until the transaction is committed.

Lockname assigned by ULTRIX/SQL. See
Column 6 for a description of the lock name.

S = shared lock
X = exclusive lock
IS = intended shareed lock
IX = intended exclusive lock
N = null lock
SIX = shared intended exclusive lock

Default timeout (0) or timeout set with set
lockmode.

Lock name assigned by UL1RIXlSQL. The
lock name consists of the database name, table
name, and page number.

This section shows the set lock_trace output for the following transaction:

select * from parts where color = 'red'i
update parts set price = 10 where partno = IIi
commit;

The set lock_trace output for this transaction appears below. It contains line
numbers, which are explained on the page foUowing the set lock_trace output.

UL TRIXlSQL Locking 8-21

Note

If you run the same query several times, you may begin to receive less
set lock_trace output. This is because ULTRIX/SQL is caching the
system catalogs information.

lock_trace Output:
select * from parts where color = 'red'

+------+-------------+------+-----------+-----+
Ipartnolpartname Icolor Iwt Ipricel
------+-------------+------+-----------+------

(1) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iirelation,ll)
(2) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv,iiattribute,21)
(3) UNLOCK: PAGE Key: (inv,iiattribute,21)
(4) LOCK: PAGE PHYS Mode: S Timeout: Key: (inv,iiattribute,19)
(5) UNLOCK: PAGE Key: (inv,iiattribute,19)
(6) UNLOCK: PAGE Key: (inv,iirelation,ll)
(7) LOCK: PAGE PHYS Mode: S Timeout: 0 Key: (inv, iiindex, 11)
(8) UNLOCK: PAGE Key: (inv, iiindex, 11)
(g) LOCK: TABLE PHYS Mode: IS Timeout: 0 Key: (inv,parts)
(10) LOCK: PAGE Mode: S Timeout: 0 Key: (inv,parts,O)
**
11A12 ITruck Ired 1 290.0001 $16.001
11B5 IBean bag Ired I. 198.0001 $18.001
120G ILaser Ired 1 165.0001 $15.801
+-----+-----------+---------+-----------+--------+

(3 rows)

update parts set price = 10 where partno = 20G

(11) LOCK:
(12)LOCK:

TABLE PHYS Mode: IX Timeout: 0 Key: (inv,parts)
PAGE Mode: X Timeout: 0 Key: (inv,parts,O)

**
(1 row)

commit
**
(13) UNLOCK: ALL Tran-id: 092903CBOA7
**
End of Request

Explanation of set lock_trace output:

(1) ULTRIX/SQL took a shared physical lock on page 11 of the iirelation table of
the "inv" (inventory) database.

Remember that physical locks are internal to ULTRIX/SQL and are released
as soon as possible.

(2) ULTRIX/SQL took a shared physical lock on page 21 of the iiattribute table
of the "iov" database.

(3) ULTRIX/SQL released the lock 00 page 21 of the iiattribute table.

(4) ULTRIX/SQL took a shared physical lock on page 19 of the iiattribute table
of the "iov" database.

(5) ULTRIX/SQL released the lock on page 19 of the iiattribute table.

8-22 UL TRIXlSQL Locking

(6) ULTRIX/SQL released the lock on page 11 of the iirelation table.

(7) ULTRIX/SQL took a shared physical lock on page 11 of the iiindex table of
the "inv" database.

(8) ULTRIX/SQL released the lock on page 11 of the iiindex table.

(9) ULTRIX/SQL took an intended shared lock on the "parts" table.

This is the first lock in this example that was placed on a user table.

(10) ULTRIX/SQL took a shared lock on page 0 of the "parts" table.

(11) ULTRIX/SQL took an intended exclusive lock on the "parts" table.

(12) ULTRIX/SQL took an exclusive lock on page 0 of the "parts" table.

(13) ULTRIX/SQL released all locks taken during this transaction.

8.9 Improving Concurrency

When evaluating performance in a situation where multiple users are performing
selects, updates, inserts, and deletes on the same set of tables concurrently, consider
the following:

• If there are no users changing data in a set of tables, multiple, concurrent
users reading data have no performance problems associated with
concurrency. There are no deadlock problems either.

Once a writer mixes with the readers of a table, concurrency is affected, since
the writer will be acquiring exclusive write locks on pages or on entire tables.
Deadlocks may occur, degrading performance for users who are "backed out"
from the deadlock.

• Remember that locks acquired during a multi-query transaction are held until
the commit statement is executed. This wHl reduce concurrency.

• Whenever possible, users should work in their own tables or download into
their own tables with create table as select statements. Doing so offloads
tables where there is heavy concurrent activity.

In a heavy concurrent usage situation, there are two approaches:

• The "never-escalate-at-any-cost" approach:

Concurrent users are working in different regions of the table. Extreme care is
taken by the person whose role it is to deal with concurrency problems, (the
ULTRIX/SQL System Administrator, the Database Administrator, or both) to
make sure nobody escalates to a table lock.

UL TRIXlSQL Locking 8-23

• The "table lock" approach:

This approach, which minimizes the occurrence of deadlock, is appropriate
when there is much concurrent activity on smaller tables or in one part of a
larger table.

8.9.1 The "Never Escalate" Approach

This approach is appropriate when the users are working in different parts of the
table, running simple queries and updates, and making full use of primary and
secondary indexes. Here, the goal is to have users coexist as much as possible
within the same tables, where no one impedes another user's performance by
acquiring table locks. Considerations of the "never escalate" approach include:

• A single-table keyed query starts with page locking, unless the set lockmode
statement has been issued. Page locks are acquired until maxlocks is reached,
at which point lock escalation occurs. By checking the tuple identifiers (tids)
of rows visited, you can estimate the number of pages visited in a specific
table.

• More complex queries may take a table-level lock right away, if the
ULTRIX/SQL optimizer thinks that maxlocks pages will be used.

• Make sure that you are using primary and secondary indexes effectively.
Check how many pages are returned from a keyed, primary or secondary
lookup to check that it is less than maxlocks for that table. The optimizedb
statement should be run at least on primary and secondary keys to help the
optimizer make estimates.

• Monitor overflow levels in tables with isam and hash primary an4 secondary
indexes.

• It is advisable to reduce fillfactors to lower than the default if tables with isam
or hash storage structures are used, since this provides more room in the table
after the modify.

• Make sure max locks is set to an appropriate figure, such as ten percent of
table size.

When choosing storage structures while using the "never escalate" approach, the
basic principle is that isam or hash structures with little or no overflow are better
than small btrees in a concurrent environment. The reason is that growing btrees
involve some locking when index pages split.

However, as the percentage of overflow builds up in the JIash or isam structure,
they become inferior to btrees, because locks are held within overflow chains. In
particular, if any overflow chain being visited is greater than maxlocks, escalation
to table locks will occur. This may increase the risk of deadlocks when there are
multiple users in the same table.

At what point the tradeoff occurs depends on the circumstances, such as how
frequently modify statements can be performed. Experimentation is advised.
Overflow buildup should be checked in secondary indexes as well as primary
indexes.

8-24 UL TRIXlSQL Locking

Concurrent perfonnance is much more difficult to analyze than single-user
perfonnance. Be prepared to experiment using the guidelines presented.

8.9.2 The "Table Lock" Approach

The "table lock" approach is used only when there are unsolvable bottlenecks. The
philosophy behind the approach is that it is better for users to queue up in an
orderly manner to get into a table, thereby avoiding the risk of deadlock, than to
waste time backing out of deadlock situations.

Note

Before using this approach, ensure that lock escalation and transaction
size are minimized.

This approach is appropriate when extensive table scanning is needed, as with set
functions such as max and min. In these cases it may be advisable to keep an extra
table around containing max and min values, or to search for max and min values
directly in a secondary index without reference to the base table.

In multi-query transactions, table locks reduce the likelihood of deadlocks, but do
not eliminate them. The following statement reduces the likelihood of deadlock in a
multi -query transaction:

set lockmode on table name
where level = table;

To do the same for secondary indexes, where necessary, use the following
statement:

set lockmode on indexname
where level = table;

This also applies to btrees when they are small.

Under some circumstances setting readlock = exclusive might be useful. For
example, when executing an open, fetch, update sequence in a program or the
subquery that is part of an update statement, there is little advantage to taking
shared locks for the retrieval operation and immediately escalating the same locks
to exclusive for the update. In this case, setting readlock = exclusive helps ensure
completion of the update quickly and without interference.

UL TRIXlSQL Locking 8-25

Backup and Recovery 9

9.1 Overview

Databases, or individual tables, can be damaged accidentally by hardware failure or
human error. For instance, a disk crash, power failure or surge, operating system
bug, or system crash can destroy or damage your database or tables in it. For this
reason, it is important to back up your database regularly, so that you can recover
your data if necessary.

This chapter describes the following methods for backing up and recovering
ULTRIX/SQL databases:

• Using checkpoints and journals to back up your database

• Using the unloaddb command to back up your database

• Using the copydb command to back up particular tables or all of the objects
you own in a database

• Using operating system backups to replace current or destroyed tables in a
database

• Using the rollforwarddb command to recover a database from checkpoints
and journals

9.2 The ULTRIX/SQL Logging System

The ULTRIX/SQL logging system keeps track of all database transactions
automatically. It is comprised of:

• The logging facility, which includes:

• A transaction log file

• Shared memory that contains the logging database

• A recovery process (dmfrcp)

• An archiver process (dmfacp)

Backup and Recovery 9-1

9.2.1 The Logging Facility

Each ULTRIX/SQL installation has one installation-wide transaction log file that
keeps track of all ULTRIX/SQL transactions for all users. This log file is identified
by the environment variable II_LOG_FILE.

The logging facility logs ULTRIX/SQL transactions and manages the logging file.
It ensures that log records are written in a way that makes them accessible to the
recovery and archiver processes. These processes manipulate the data in the
transaction log file when certain events occur. For example, after a transaction is
committed, the logging facility moves the log buffer, which resides in shared
memory, to the transaction log file.

9.2.2 The Recovery Process

The recovery process handles on-line recovery from system failures and transaction
aborts caused by user actions. ULTRIX/SQL writes consistency points into the
transaction log file to ensure that all databases are consistent up to that mark and to
allow on-line recovery to take place when a problem is detected. When
ULTRIX/SQL roUs back a transaction, users may continue working in the database.

9.2.3 The Archiver Process

The archiver process removes completed transactions from the transaction log file
and writes them to the corresponding journal files for the database, for joumaled
tables. Each database has its own journal files, which contain a record of all the
changes made to the database since the last checkpoint was taken. The archiver
process "sleeps" until sufficient portions of the transaction log file are ready to be
archived or until the database is removed from the logging system.

9.3 Verifying the Accessibility of Your Data

To verify that the data in your database is accessible before backing it up, use one
of the following methods:

• Run sysmod on your system catalogs and modify on the user tables. (See the
ULTRIX/SQL Reference Manual for a description of these commands.)

• Use any procedure that will touch all the rows in each table being backed up;
for example, select all the rows from the tables.

If rows in a table are not accessible, you will receive an error message. If this
happens, restore the table from an earlier backup before doing a new backup.

There is no ULTRIX/SQL or ULTRIX utility that can verify the accessibility of
your tables for you. You must do this by using one of the methods listed above. You
can, however, write a script that will automatically check each of the tables and
system catalogs in your database.

Before you back up your database, it is a good idea to scan the error log for access
method failures. If you find any such errors, please submit a Software Performance
Report (SPR).

9·2 Backup and Recovery

9.4 Backing Up a Database with Checkpoints

By using the ckpdb (checkpoint) command, you can make a static backup of your
entire database. This enables you to restore all data up to the last checkpoint using
the rollforwarddb command.

For an up-to-the-minute backup of your database, use the ckpdb command in
combination withjoumaling. See the section "Using the ULTRIX/SQL Joumaling
System" below for instructions.

Each time you run the ckpdb command, it creates a new checkpoint for the named
database. When the checkpoints are being created, the database is exclusively
locked and is not available to any user until the checkpoint is complete.

To checkpoint a database, you must be the Database Administrator for the database
or an ULTRIX/SQL superuser impersonating the Database Administrator by using
the -u or -s flags on the ckpdb command line.

Note

Taking checkpoints and joumaling tables is not a substitute for normal
operating system backups.

9.4.1 The ckpdb Command

The syntax of the ckpdb is:

ckpdb [-d] [+jl-j] [-rndevice] [-uusername] [-s] [+wl-w] {dbname}

For a complete description of the flags and parameters, see the ULTRIXISQL
Reference Manual.

9.4.2 Checkpointing a Database

To checkpoint a database, issue the following command at the operating system
prompt:

ckpdb dbname

This command causes a checkpoint of the database to be made without affecting
the state of joumaling.

For instructions on enabling and disabling journaling with a checkpoint, see the
sections that follow entitled "Starting Joumaling" and "Stopping Joumaling."

9.4.3 Cleaning Up Outdated Checkpoints

To delete all previous checkpoints and journals when you take a new checkpoint,
use the -d flag with the ckpdb command:

ckpdb -d dbname

Backup and Recovery 9-3

If you need to delete older checkpoints that have not been removed by using the -d
flag, use the ULTRIX rm command. In this case, delete all but the most recent
checkpoint. You can identify the most recent checkpoint by its version number.

When you checkpoint a database, ULTRIX/SQL creates a checkpoint file for each
location on which the database is stored. The names of the checkpoint files are in
the following format:

COOOvO01.ckp

where v is the version number of the checkpoint sequence and I is the location
number of the data directories. The most recent checkpoint file has the highest
version number.

9.4.4 Checkpoints and Destroyed Databases

A checkpoint is a backup of an existing database. If you destroy the database, you
will not be able to re-create it from a checkpoint because the checkpoint has been
destroyed.

If you want to destroy your database and then re-create it, use unloaddb. See
Chapter 6 for instructions.

9.4.5 Putting Checkpoints on Tape

The ckpdb command allows you to checkpoint directly to magnetic tape.

ULTRIX/SQL uses an operating system utility, such as tar or cpio, to create
checkpoints. Both cpio and tar are limited to handling files that will fit on a single
tape. Since checkpoints of larger databases will abort at the end of the first tape,
you must estimate both the checkpoint size and the tape capacity before
checkpointing these databases. If you estimate that the checkpoint will exceed the
tape size, follow instructions in "Checkpointing to Multiple Tapes" later in this
chapter.

The following sections provide instructions for estimating checkpoint and tape size,
checkpointing to a single tape, and checkpointing to multiple tapes.

9.4.5.1 Estimating Checkpoint File Size

ULTRIX/SQL creates a separate checkpoint file for each location of a database. To
estimate the size of checkpoint files:

l. Issue the following command at the ULTRIX system prompt:

du $11 _DATABASE/ingresidata/defauIt/{dbname}

For other locations, substitute the name of the directory associated with the
location name.

2. For tar, increase the resulting block size of the directory by 5%.

3. To get the file size in bytes, multiply the block size by the number of bytes in
a block on your operating system.

9-4 Backup and Recovery

See your operating system manual for information on the number of bytes in a
block on your system.

9.4.5.2 Estimating Tape Capacity

The capacity of a tape depends on the:

• Density at which the tape is written

• Length of the tape

• Size of the blocks written on the tape

• Length of the inter-record gap (IRG)

Standard drives write tapes at either 800, 1600, or 6250 bits per inch (bpi) on 9
tracks, so the bits per inch specification is the same as saying bytes per inch. The
standard tape length is 2,400 feet.

Block sizes, which are not standardized, are important because of what is between
the blocks-the IRG. A typical IRG is .75 inches of empty tape separating each
block from the next. With this information, you can use the following formula to
estimate the size of the file in bytes that a tape can accommodate:

F 12*B*D*L
B+(l*D)

where:

• F is the file size in bytes

• B is the block size in bytes

• D is the density in bpi

• L is the length of the tape in feet

• I is the IRG in inches

The file sizes in the following table were calculated for a standard 2400 foot tape,
assuming an IRG of .75.

Table 9-1: Examples of File Sizes

Tape Size mG Block Size Density File Size in Mbytes

2400 .75 512 1600 13.8

2400 .75 512 6250 17.7

2400 .75 8192 1600 40.2

2400 .75 8192 6250 114.5

Backup and Recovery 9-5

After usimr this formula to calculate the file size. vou need to add an arbitrarY
amount to -allow for miscalculations. You do not '~ant a tape to run off the re~l
because you miscalculated the size of the file that ought to fit. A reasonable amount
to add is 5% of a tape's capacity.

If your system uses a cartridge tape or other storage media, contact the vendor for
the specifications that will allow you to make the calculations described above.

9.4.5.3 Checkpolntlng to a Single Tape

To checkpoint a database to a single tape:

1. Mount a tape reel.

2. For a tape drive whose device special file is named Idev/rmt8, issue the
following command at the operating system prompt:

ckpdb -m/dev/rmt8 dbname

The backup created by this checkpoint writes over everything that was on the tape
previously.

9.4.5.4 Checkpolntlng to Multiple Tapes

There are two cases to consider when checkpoint files exceed tape size.

Case 1: The checkpoint file exceeds the size of the tape, but will fit on a disk.

In this case, follow this procedure:

1. Follow normal procedures for checkpointing to disk.

2. Have your Operating System Administrator move the checkpoints from disk
to tape. Use a standard system backup method, such as cpio or dump.

If some of the database's tables are stored in alternate locations, the ckpdb
command creates separate checkpoint files for them in the checkpoint
location. These files may be small enough to move to single tapes.

Caution

It is possible that large checkpoints will exceed the ulimit on your
system. (The ulimit is a tunable operating system parameter that sets a
limit on file size.) It can be set using limit in the csh(l) shell, ulimit in
the shS(1) shell, or the ulimit(2) system call.

Case 2: The checkpoint file exceeds the size of the tape and will NOT fit on a
disk.

In this case, you must checkpoint the database manually. To successfully
checkpoint a database manually, you have to lock all users out during the entire
process.

To lock out all users and take the checkpoint, follow this procedure:

1. To synchronize journaling. checkpoint the database to a null device:

9-6 Backup and Recovery

ckpdb +w -d -m/dev/null dbname

The +w flag causes the ckpdb command to wait until all user locks have been
released before beginning the checkpoint.

The -d flag removes all previous checkpoints and journals.

The -m flag causes the checkpoint to be placed in /dev/null, which is a
nonexistent device. This makes the database "think" it is being checkpointed
and causes journaling to be correctly synchronized. At this time, all changes
to the database are guaranteed to be on disk.

2. To lock the database, start a new process:

a. C shell:

After the first message from ckpdb is printed, press Control-Z.

Bourne shell:

Log in at another terminal immediately after the checkpoint begins.

b. Start the new process:

sq) -I +w dbname

The -I flag requests a lock on the entire database.

The +w flag tells ULTRIX/SQL to wait until that lock is granted.

3. After the checkpoint finishes:

C shell:

If the checkpoint process is stopped (cshjob contro!), put the job back in the
foreground; then wait for the process to complete.

Bourne shell:

Wait for the process to complete.

4. Have your Operating System Administrator use standard system backup
methods to back up the database directory to tape.

Make sure that the backup method used allows you to save the files and
recover them to their original places on the system. Some backup methods
have limitations.

5. C shell:

Leave the second process stopped (csh).

Bourne shell:

Leave the second process at the interactive ULTRIX/SQL Terminal Monitor
prompt (*) until the backup is complete.

Backup and Recovery 9-7

6. Quit from the ULTRIX/SQL Terminal Monitor prompt held by the second
process.

9.5 Using the ULTRIX/SQL Journaling System

For a dynamic backup of your database, use journals in combination with
checkpoints. Checkpoints provide you with a snapshot of the database at the time
you took the checkpoint. Journals keep track of all changes made to journaled
tables since the last checkpoint.

When you are journaling a database:

• Take regular checkpoints of your database to minimize recovery time.

• Periodically verify that your journaling data is correct by auditing the
database. See the section "Producing Audit Trails with Journals" below.

9.5.1 Starting Journaling

In ULTRIX/SQL, journaling is selective on a table-by-table basis. That is, you must
identify those tables in a database that you want to journal.

To start journaling, you:

1. Select the tables you want journaled and enable journaling on them.

2. Enable journaling on the database by using the +j flag with the ckpdb
command.

For instructions on enabling journaling on tables, see the sections "Enabling
Joumaling on New Tables" and "Enabling Journaling on Existing Tables" below.

If you have not enabled journaling on the database, ULTRIX/SQL begins
joumaling the new tables when you enable journaling on the database by taking a
checkpoint and using the +j flag:

ckpdb +j dbname

9.5.1.1 Enabling Journaling on New Tables

There are two ways to enable journaling on new tables:

• With the with journaling option of the create table statement

For example, to tum journaling on when you create the "emp" table, issue this
command:

create table emp
(name varchar(20),
age i2,
salary money,

with journalingi

9-8 Backup and Recovery

• By setting journaling on for an entire session with the set journaling option
of the set statement, for example:

set journaling;

This allows you to enable journaling on all the tables you create during a
session.

If you have enabled journaling on the database, ULTRIX/SQL begins journaling the
newly created tables immediately.

9.5.1.2 Enabling Journallng on Existing Tables

To enable journaling on an existing table, use the journaling option of the set
statement:

set journaling on table name;

When you enable journaling on a table after creating it, ULTRIX/SQL does not
begin journaling the table until you take the next checkpoint. If you have not
previously enabledjournaling on the database, use the +j flag when you take this
checkpoint:

ckpdb + j dbname

After using the + j flag to begin joumaling, you do not need to use it when you take
subsequent checkpoints. ULTRIX/SQL will continue to journal the table until you
specifically stop journaling on it.

For complete descriptions of set and ckpdb, see the ULTRIX/SQL Reference
Manual.

9.5.2 Stopping Journaling

To stop journaling a particular table, use the set nojournaling statement:

set nojournaling on tablename;

To stop journaling all the tables in a database, issue the following command at the
operating system prompt:

ckpdb -j dbname

This will cause ULTRIX/SQL to take a checkpoint of the named database and then
stop journaling it. After stopping joumaling, you can still take periodic checkpoints
of the database.

9.5.3 Producing Audit Trails With Journals

In addition to using journals for recovery, you can use them to produce audit trails
of changes to a database. You use the audit db command, described in this section,
to produce these audit trails.

Periodically, you should run auditdb to verify that your journals are correct.

Backup and Recovery 9-9

9.5.3.1 The audltdb Command

The auditdb command enables you to produce a listing or file of changes made to
journaled tables since the last checkpoint. This listing may not include all changes
made since the last checkpoint for the following reasons:

• Since auditdb does not exclusively lock the database, other users may
complete a transaction while auditdb is running.

• If other users are using the database when you run auditdb, ULTRIX/SQL
may not have moved a completed transaction to the journal files.

You must be the DBA for the database or an ULTRIX/SQL superuser to run
auditdb on a database.

The syntax of auditdb is:

auditdb [-a] [-bdd-mmm-yyyy:hh:mm:ss] [-edd-mmm-yyyy:hh:mm:ss]
[-s] [-ttablename] [-f] [-uusername] {dbname}

For a complete description of the auditdb flags and parameters, see the
ULTRIX/SQL Reference Manual.

9.5.3.2 Loading an Audit Trail as a Table

To make querying the data easier, you can create an audit trail as a file in your
current directory and then load the file into a table in your database. To do this:

1. When you create the audit trail, use the -f flag to create a file named audit.trl
in your current directory. You can use this flag only if the table you are
auditing has less than 120 columns and less than 1948 bytes per row.

In the following example, auditdb extracts a record of the changes to the
"employee" table from the journal for the "demodb" database. It automatically
places the changes in the current directory in a file named audit.trl.

auditdb -temployee -f demo db

2. To rename the audit.trl file, use the ULTRIX mv command.

In the following example, the audittrl file is renamed to empaudit.trl.

mv audit.trl empaudit.trl

3. To copy the file into a database table, create a table to hold the audit trail data.

When creating the table, include the audit trail table columns shown below.
Enter the audit trail columns before the table's columns, in the order shown. If
you don't, the copy statement will fail when you try to copy the audit trail
data into the table.

9-10 Backup and Recovery

Table 9-2: Audit Trail Table Columns

Column Name Data Type Description

date date not null with default Date and time of the beginning of the
multi-query transaction that contained
the operation

usemame cbar(24) not null with ULTRIX/SQL username of the user
who performed the operation

operation

tranidl

tranid2

table_idl

default

cbar(8) not null with
default

integer not null with
default

integer not null with
default

integer not null with
default

integer not null with
default

Select. insert, update. delete

Transaction identification number.
Concatenated with tranid2.

Transaction identification number.
Concatenated with tranidl.

Table identification number.
Corresponds to the value in the
table reltid column of the iitables
system catalog for the specified table.

Table identification number.
Corresponds to the value in the
table reltidx column of the iitables
system catalog for the specified table.

In the following example. a table named "empaudit" is created to hold the
data from the empaudit.trl file.

create table empaudit
(date date not null with default,
username char(24) not null with default,
operation char(8) not null with default,
tranidl integer not null with default,
tranid2 integer not null with default,
table idl integer not null with default,
table-id2 integer not null with default,
name varchar(20),
age integer,
salary money,
dname varchar(lO),
manager varchar(20»

The last five columns are columns from the employee table.

4. Use the copy statement to load the new table with the data from the
empaudit.trl file.

In the following example. the data in the empaudit.trl file is copied to the
"empaudit" table:

copy empaudit() from' lusr/joelempaudit.trl';

Backup and Recovery 9-11

The "empaudit" table will contain a row for each row added to the
"employee" table, a row for each row removed, and two rows for each update:
one showing the row before the update and the other showing the row after
the update.

9.6 Backing Up with copydb

The copydb command, which is explained in detail in Chapter 6, can be used to
back up the tables that you own in a database.

If you specify tablenames with copydb, only those tables will be copied. If you do
not specify tablenames with copydb, all of the tables, views, and procedures that
you own in the database will be copied. See Chapter 6 for a complete explanation
of what copydb copies.

Since any user authorized to use a database can use copydb, this is a useful backup
method for a non-Database Administrator, who can use it to back up his or her own
tables, views, and procedures.

Before you use the following procedure, you should understand how copydb
works; see Chapter 6 for a complete explanation of this command.

To back up tables with copydb:

1. Create a temporary working directory for the copy.in and copy.out scripts and
move to this directory.

2. To back up specified tables, issue the following command at the operating
system prompt, for example:

copydb dbname table1 table2

To back up all the tables, views, and procedures that you own in the database,
issue the following command at the operating system prompt:

copydb dbname

This creates copy.out and copy.in scripts for the objects copied.

Unless you specify otherwise, the copy.in and copy.out scripts will be copied
into the default directory. If you want them stored in another directory, use the
-d flag:

copydb -ddirectory_name db name

4. To copy the data into the default or specified files, issue the following
command from the operating system:

sql dbname <copy.out

This creates a copy of the objects copied in your database. You can store these
files on tape or leave them on disk.

9-12 Backup and Recovery

To restore data from a copy db backup, you run the copy.in script. See the
section "Recovering Data from copydb Backups."

9.7 Backing Up with unloaddb

The unloaddb command is a time-consuming method for backing up and
recovering your database, because all of your database's files must be unloaded and
then reloaded. For this reason, it is recommended that you use the ckpdb command
instead.

However, unloaddb can be useful as a backup tool because it enables you to:

• Generate copy scripts, which can be used to re-create your database

• Recover particular tables by editing the copy.in scripts (See Chapter 6 for a
description of the copy.in scripts.)

To use unloaddb to back up a database, run unloaddb on the database and then
execute the unload.ing file. If you need to recover from a backup made with
unloaddb, execute the reload.ing command file . For detailed instructions on using
unloaddb, see Chapter 6.

9.8 Using Operating System Backups

Do not rely solely on operating system backups to back up your ULTRIX/SQL
databases for the following reasons:

• You may not be able to control the frequency of these backups.

• If a user is working in the database during the backup, the backup copy of the
database may be inconsistent. To prevent an inconsistent backup, make sure
that all users are out of ULTRIX/SQL before doing the backup.

However, system backups can be useful for replacing a current table. Additionally,
you can use system backups to restore a destroyed table and to restore the system
catalogs, although this is a difficult operation and should be done by experienced
ULTRIX/SQL users only.

To preserve your database, make sure that the following directories are backed up
during the system backup:

• The directory containing the database location for the database

• Directories containing locations to which the database has been extended

• Directories containing embedded language programs, which are not stored in
the database

Backup and Recovery 9-13

9.8.1 Mapping File Names to Table Names

The tables in your database are stored as files. The names of these files are not the
same as the names of the tables. To determine the file names associated with your
tables, issue the following statement:

select * from iifileJnfo;

Since you will need to know the pathname to restore a table from an operating
system backup, it is recommended that you execute this command every night and
save the resultant listing, so that you always have a current list of the file names
associated with your database's tables.

9.8.2 Replacing a Current Table with a System Backup Copy

When you replace a current table with a copy from backup tape, the columns,
column widths, data types, keys and storage structures of the current table and the
backup table must be the same. If they are not, this procedure will not work. If you
are not sure that they are the same, backing up the entire database is safer than
using this procedure.

To perform this procedure, you will need help from both your ULTRIX Operating
System Administrator and ULTRIX/SQL System Administrator.

To replace a current user table with a system backup copy:

1. Back up the table that is being replaced.

2. Verify that the storage structure of the current table and the copy of the table
on tape are the same.

If they are not, modify the storage structure of the current table to the same
storage structure as the table on tape. Do this even if there is no data in the
current table. If you do not, ULTRIX/SQL will not correctly access the data
replacing the current table.

3. To lock the database exclusively, execute this command at the operating
system prompt:

sql -I dbname

4. Have your Operating System Administrator replace the current file on disk
with the backup copy from tape. Make sure you know the location of the
table.

The name of the file on disk and the table name are not the same. To find out
the file name, issue the following SQL statement:

select file name
from iifile info where
table_name = 'the_name_ofyour _table';

This command works only if you have not destroyed and re-created the table
since the last operating system backup.

9-14 Backup and Recovery

5. Have your ULTRIX/SQL System Administrator shut down the database
management system server and start up a new one in order to clear the
server's buffer manager. See the ULTRIX/SQL Operations Guide for
instructions on starting and stopping database management system servers.

6. Log into ULTRIX/SQL and access the database into which you are replacing
the table.

7. Run the modify statement on the replaced table.

Although you do not have to modify the table, it is a good idea to do so. This
ensures that the row count and the number of pages are correct. Since
ULTRIX/SQL uses this information to formulate query execution plans, it
must be correct.

8. If the table is journaled, take a new checkpoint and restart the journals.

9.8.3 Replacing a Destroyed User Table from Backup Tape

To replace a destroyed user table from backup tape:

1. Re-create the table exactly as it was created before.

Make sure the column ordering, widths, and other details are exactly the same.
This procedure will not work if there are any differences in the order of
columns, column widths, data types, keys, or storage structures.

2. Follow steps I through 8 in the preceding section.

9.9 Recovering Databases

This section tells you how to:

• Recover a non-journaled database from a checkpoint

• Recover a journaled database from checkpoints and journals

• Recover a database from a taped checkpoint

• Recover tables from copy db backups

9.9.1 Recovering Databases from Checkpoints and Journals

To recover a database from checkpoints and journals or from checkpoints only, use
rollforwarddb. The rollforwarddb command overwrites the current contents of
the database being recovered.

When you run rollforwarddb, ULTRIX/SQL locks the database to prevent errors
from occurring. If the database is busy, rollforwarddb waits for the database to be
free before recovering it. (If you use the -w flag, rollforwarddb will proceed to the
next database entered if the first database is busy.)

Backup and Recovery 9-15

To use rollforwarddb, you must be the DBA for the database or an ULTRIX/SQL
superuser (using the -u or -s flags).

9.9.1.1 The rollforwarddb Command

The syntax of the rollforwarddb command is:

rollforwarddb [-bdd-mmm-yyyy :hh:mm:ss] [+cI-c] [-edd-mmm-yyyy:hh:mm:ss]
[+jl-j] [-mdevice:] [-s] [-uusername] [-v] [+wl-w] {dbname}

For a complete description of the flags and parameters, see the ULTRIX/SQL
Reference Manual.

9.9.1.2 Recovering a Non-Journaled Database

To recover a non-journaled database from the last checkpoint, issue the following
command at the operating system prompt:

rollforwarddb +c dbname

9.9.1.3 Recovering a Journaled Database

To recover a database from the last checkpoint and journal, where both the
checkpoints and journals are stored online, issue the following command at the
operating system prompt:

rollforwarddb dbname

To recover all of your databases from checkpoints and journals, issue the following
command at the operating system prompt:

rollforwarddb

9.9.1.4 Recovering a Database From Taped Checkpoints

To recover a database whose checkpoints are on tape:

1. Mount the tape reel containing the checkpoints.

?. With a tape drive named /dev/rmt8, issue the following command at the
operating system prompt:

rollforwarddb +c +j -m/dev/rmt8/dbname

The rollforwarddb command reads the checkpoint from the tape and then
applies the appropriate journal files to bring your database up to date.

9.9.1.5 Retracting Changes with rollforwarddb

If a user makes a serious error in a table that is being journaled, you can retract the
changes. Use rollforwarddb to restore the database up to the beginning of the
transaction in which the error occurred.

For example, to restore database "db I" from the previous checkpoint to its
condition at 8:00 a.m. on August 17, 1989, issue the following command at the
operating system prompt:

9-16 Backup and Recovery

rollforwarddb -v +c +j -e17-aug-1989:08:00:00 dbl

This retracts all changes made to the database after this time, not just those made to
the table with the error.

To ensure that the error is not reintroduced when you run rollforwarddb in the
future, take a new checkpoint to reset the journals.

9.9.2 Recovering Data from copydb Backups

To recover data from a backup made with copydb, execute the sql command to run
the copy.in script. To do this, issue this command from the operating system:

sql dbname <copy.in

9.9.3 Recovering Inconsistent Databases

Although it is highly unlikely that your database will become inconsistent, certain
conditions may cause this to happen. If it does, please submit a Software
Performance Report (SPR).

Backup and Recovery 9-17

ULTRIX/SQL System Files A

A.1 Overview

When ULTRIX/SQL is initialized, your ULTRIX/SQL System Administrator
determines where to place the directories and files for ULTRIX/SQL system code,
data files, checkpoints, journals, the transaction log file, and other files. This
appendix describes these directories and files and provides the environment
variable set for each during the initialization of ULTRIX/SQL.

A.2 ULTRIX/SQL Files and Directories

The following table lists the major ULTRIX/SQL system files and directories, and
provides the environment variable set for them when ULTRIX/SQL is initialized.
The environment variable for each of these files points to the directory structure
where they reside on your system.

ULTRIXlSQL File
or Directory

Code for your ULTRIX/SQL
installation

UL1RIX/SQL files

Log file

Data files

Checkpoint files

Description

Executable images ofUL1RIX/SQL
programs, error and help files,
embedded UL1RIX SQL libraries,
and other miscellaneous files.

Error, help, header, symbol table,
user, and other miscellaneous files.

File to store information about all
UL1RIX/SQL transactions that are
performed in an installation.

File containing the database's tables
and system catalogs. Each database
has its own system catalogs, which
store detailed information about it.
Also contains the iidbdb, the
UL1RIX/SQL master database

Static copies of a database.

Environment
Variable

ICSYS1EM

ICCONFIG

II_DATABASE
(points to the default
directory for data
files)

ICCHECKPOINT
(points to the default
directory for
checkpoints)

Ul TRIXlSQL System Files A-1

ULTRiXiSQL File
or Directory

Journal files

A·2 Ul TRIXlSQl System Files

Description

Dynamic records of the changes
made to a database since the last
checkpoint. These records are kept
only for databases with joumaling
enabled.

Environment
Variable

II_JOURNAL
(points to the default
directory for
journals)

The lockstat Utility B

B.1 Overview

This appendix tells you how to use the lockstat utility and describes its output.

B.2 Using the lockstat Utility

The lockstat utility allows you to examine the state of the ULTRIX/SQL Lock
Database. It provides a summary listing and a "snapshot" of the installation's
locking activity.

To invoke the locks tat utility, issue the following command at the operating system
prompt:

lockstat

The following figure shows an example of the output from the lockstat utility. The
example is followed by an explanation of each part of the output.

=======8-AUG-1989 14:02:17.17 Locking System Summary=======

Create lock list 42 Release lock list 23
Request lock 157 Re-request lock 4
Convert lock 68 Release lock 103
Escalate 0 Lock wait 1
Convert wait 0 Convert Deadlock 0
Deadlock Search 1 Deadlock 0
Cancel 0

--------------------Locks by lock list--------------------

Id: 0001001E Tran id: 0000009287AB931A R llb: 00000000 R cnt: 0 - - -
Wait: 00000000 Locks: (0,0/128) Status: NONPROTECT,EWAIT,ESET

Id: 0001001F Tran id: 0000000000000010 R llb: 00000000 R cnt: 0 - - -
Wait: 00000000 Locks: (0,0/128) Status: NONPROTECT,NOINTERRUPT

Id: 00010022 Tran_id: OOOOOOOOOOOOOOOE R_llb: 00000000 R_cnt: 0
Wait: 00000000 Locks: (8,0/128) Status: NONPROTECT

Id: 00030066 Rsb: 0001002C Gr: IS Req: IS State: GR PHYS(l)
KEY(BM_DATABASE,DB=OOOOOOOl)

Id: 0003006E Rsb: 00010029 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[1,0],PAGE=13)

Id: 0003000D Rsb: 00010027 Gr: IS Req: IS State: GR PHYS (1)
KEY(SV_PAGE,DB=00000001,TABLE=[1,0],PAGE=4)

The lockstat Utility 8-1

Id: 0002005C Rsb: 0001001D Gr: IS Req: IS State: GR PHYS(l)

Id: 00040062 Rsb: 0002001F Gr: IS Req: IS State: GR PHYS(l)
KEY(BM_TABLE,DB=00000001,TABLE=[44,O])

Id: 00010057 Rsb: 00010058 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[44,0],PAGE=10)

Id: 00010027 Tran_id: OOOOOOOOOOOOOOOB R_llb: 00000000 R_cnt: a
Wait: 00000000 Locks: (0,0/128) Status: NONPROTECT,NOINTERRUPT

Id: 00010028 Tran id: OOOOOOOOOOOOOOOA R llb: 00000000 R cnt: a - -
Wait: 00000000 Locks: (8,0/128) Status: NONPROTECT

Id: 0001002B Rsb: 0001002C Gr: IS Req: IS State: GR PHYS(l)
KEY (BM_DATABASE,DB=OOOOOOOl)

Id: 00010028 Rsb: 00010029 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[l,0],PAGE=13)

Id: 00010026 Rsb: 00010027 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[l,O],PAGE=4)

Id: 00010020 Rsb: 00010021 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[l,O],PAGE=20)

Id: 0001001C Rsb: 0001001D Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[3,O],PAGE=4)

Id: 0002001E Rsb: 0002001F Gr: IS Req: IS State: GR PHYS(l)
KEY(BM_TABLE,DB=00000001,TABLE=[44,O])

Id: 00010018 Rsb: 00010019 Gr: IS Req: IS State: GR PHYS(l)
KEY(SV_PAGE,DB=00000001,TABLE=[44,O],PAGE=3)

Id: 00010029 Tran id: 0000000000000009 R lib: 00000000 R cnt: a - - -
Wait: 00000000 Locks: (0,0/128) Status: NONPROTECT, NOINTERRUPT

---------------------------Locks by resource-----------------------------

Id: 00010001 Gr: IS Conv: IS Value: 00000000000
KEY(SV_PAGE,DB=00000001,TABLE=[l,O],PAGE=15)

Id: 00010070 Lib: 0001002C Gr: IS Req: IS State: GR PHYS(l)

Id: 00010003 Gr: IS Conv: IS Value: 00000000000
KEY(SV_PAGE,DB=00000001,TABLE=[l,2],PAGE=2)

Id: 00010002 Lib: 0001002C Gr: IS Req: IS State: GR PHYS(l)

Id: 00010019 Gr: IS Conv: IS Value: 00000000000
KEY(SV_PAGE,DB=00000001,TABLE=[44,O],PAGE=3)

Id: 00010010 Lib: 0001002C Gr: IS Req: IS
Id: 00010018 Lib: 00010028 Gr: IS Req: IS

Id: 0003006D Gr: IS Conv: IS Value: 00000000000
KEY(BM_TABLE,DB=00000001,TABLE=[151,O])

State: GR PHYS(l)
State: GR PHYS(l)

Id: 0003006c Lib: 0001002C Gr: IS Req: IS State: GR PHYS(l)

B-2 The lockstat Utility

B.2.1 Interpreting the Locking System Summary

The first portion of the output is a summary listing of locking activity for this
installation. All values are cumulative from the time iistartup was run for this
iteration of the system. The meaning of each entry is described in the following
table.

Table B-1: Explanation of Locking System Summary

Entry

Create lock list

Release lock list

Request lock

Re-request lock

Convert lock

Release lock

Escalate

Lock wait

Convert wait

Convert Deadlock

Deadlock Search

Deadlock

Cancel

Explanation

Number of times a lock list was created for server, session, or
transaction.

Number of times a release of a lock list occurred for a server, session, or
transaction.

Number of new lock requests that the ULTRIX/SQL locking system
processed.

Number of times an implicit lock conversion request was issued on a
resource that the lock list already had locked. Implicit lock conversion
requests can occur when a request is made on a page for update that was
previously requested for read.

Number of times an explicit lock conversion request is made to change a
lock mode on a physical lock from one mode to another. These types of
requests occur as a result of a physical lock being converted during an
existing transaction to lower or higher modes.

Number of times a specific ULTRIX/SQL logical lock is released, as
opposed to a full, partial, or physical lock release.

Number of times a partial release occurred to allow lock escalation from
page to table level.

Number of times a new lock request had to wait to be granted.

Number of times an existing lock waited for conversion to a different
lock mode.

Number of times a request for conversion turned into a deadlock.

Number of times a deadlock search was initiated.

Number of times that deadlock existed.

Number of times a lock request was cancelled due to a timeout or
interrupt.

The lockstat Utility B-3

8.2.2 Interpreting the "Locks by lock list" Portion

The second portion of the lockstat utility output shows the lock infonnation sorted
by lock list. Lock lists either represent transaction units or can span transactions
(related lock lists) and contain items such as database locks. The first line item
reports the lock list identifier. Any locks associated with the specified lock list are
listed following the lock list description and indented to set them off.

"Locks by lock list" values are described in the following table.

Table B-2: ExplanatIon of "Locks by lock list" Values

''Locks by lock Explanation
list" Values

Id

Tran id

R Db

Wait

Locks

Status

8·4 The lockstat Utility

Internal lock list identifier (lock list block).

Transaction identifier associated with this lock list. This value correlates to a
transaction identifier in the logstat utility output.

Related lock list identifier, if not a transaction lock list.

Number of related lock list identifiers that this lock list must assure are
released before this lock list can be released.

Internal resource block identifier of the lock that is currently blocked.

Made up of three values: total number of locks currently on the list, number of
logical locks currently on the list, and total number of locks allowed to be on
this list.

The state of the lock list at the present time. The possible values are:

WAIT Waiting for a lock

NONPROTECT Can be released without going through a recovery
(system lock lists)

ORPHAN Lock list remaining without a transaction

EWAlT Waiting on a system event

RECOVER Lock list taken over by the recovery process

MASTER Lock list owned by the recovery process

ESET Lock list set on the wait queue for an event

ED ONE Indicates that the event that lock list is waiting on
is done

NOINTERRUPT List of non-interruptable lock requests

The values indented under individual lock lists are lock block values. These are
described in the following table.

Table B-3: Explanation of Lock Block Values (Locks by lock list)

Lock Block Values Explanation

Id Internal lock block identifier.

Rsb Internal resource block identifier.

Gr Grunted lock mode.

Req Requested lock mode.

State Current state of lock (GR = granted, wr = waiting).

KEY Information used to identify the resource being locked. When checking
contention on data pages, the key will contain PAGE, the database ID
that can be traced back to logstat output, the table reltid and reltidx,
and the page number.

B.2.3 Interpreting the "Locks by resource" Portion

The third portion of lockstat output groups the individual locks by resource block
and shows any contention that can lead to query performance problems.

The "Locks by resource" values are described in the following table.

Table B-4: Explanation of "Locks by resource" Block Values

"Locks by resource" Explanation
Values

Id Internal resource block identifier

Gr Grunted mode of the resource

ConY Conversion mode requested on the resource

Value Lock value associated with the resource

KEY Byte string identifying the resource

The indented portions of the resource blocks show the individual lock blocks that
are contending for the resource. These lock blocks are described in the following
table.

The lockstat Utility 8-5

Table 8-5: Explanation of Lock Block Values (Locks by resource)

Lock Block Values Explanation

Id Intemallock block identifier

Lib Lock list identifier that this lock resides on

Gr Granted mode of the lock

Req Requested lock mode

State Current state of the lock (GR = granted, wr = waiting)

8·6 The lockstat Utility

A

Accessdb (utility)

accessing private databases, 3-4

changing private databases to public, 3-4

creating locations, 4-6

deleting user access, 2-4

extending databases, 4-8

help, 2-1

identifying terminal, 2-2

listing authorized users, 2-5

listing database information, 3-5

modifying user access, 2-4

requirements for using, 2-1

Archiving

process {dmfacp), 9-2

ASCII

and copy (statement), 7-12

copying tables in, 6-10

unloading databases in, 6-5

Audit trails

databases, 9-9

loading as tables, 9-10

Auditdb (command)

described, 9-10

Authorizing

access to private databases, 3-4

users (many), 2-5

users (one), 2-2

B

Backup

checkpoints, 9-3

c

copydb (command), 9-12

methods for, 9-1

operating system, 9-13

reasons for, 9-1

unloaddb (command), 9-13

Catalogdb (utility)

listing databases, 3-5 to 3-6

Character fields

nulls and, 5-9

Checkpoints

alternate location, 4-2

ckpdb (command), 9-3

default location for, 4-2

deleting, 9-3

described, 3-1

establishing, 9-3

II_CHECKPOINT, A-I

on tape, 9-4 to 9-8

recovery, 9-15 to 9-16

restoring destroyed databases, 9-4

size of, 9-4

tape capacity for, 9-5

version number, 9-4

Ckpdb (command)

locking during, 9-3

syntax, 9-3

Columns (in tables)

adding, 5-8

Index

Index-1

changing data types, 5-10, 5-13

changing ordering, 5-12

converting data types, 5-8

deleting, 5-8,5-10

enlarging character columns, 5-10

limits, 5-3

renaming, 5-11 to 5-12

Commit (statement)

releasing locks, 8-6

Concurrency

improving, 8-23 to 8-25

Configuration file

described, 3-1

ICCONFIG), A-I

Conversion

character string, 5-9

functions, 5-9

Conversion functions

creating columns with data types, 5-9

Copy

scripts generated by copydb, 6-8

scripts generated by unloaddb, 6-5

Copy (statement)

abnormal termination, 7-6

data type errors, 7-6

error handling, 7-6

fixed-length records, 7-13

loading data from multiple files, 7-12

loading data into tables, 7-2, 7-12

problems with, 7-3 to 7-6

reading multi-line records, 7-13

specifying filename, 7-2

speed,7-2

syntax errors, 7-6

unloading data, 7-10

unloading tables into files, 7-9

with nulls clause, 7-3

Copydb (command)

avoiding problems with, 6-13

backing up with, 9-12

copying tables with, 6-9

inconsistent databases, 6-11

moving tables with, 6-12

recovery, 9-17

scripts generated by, 6-8

uses for, 6-1

Index-2

using, 6-7 to 6-11

Copying

bulk copying into files, 7-9

databases, 6-11 to 6-12

tables, 6-9 to 6-10

Create table (statement)

adding columns, 5-12

changing column order, 5-12

changing columns, 5-13

described, 5-1

duplicate rows, 5-3

examples, 5-6

issuing, 5-1

modifying columns, 5-12

renaming columns, 5-11

syntax, 5-1

system catalog entries, 5-2

with location (option), 5-6

with noduplicates clause, 5-3

Create view (statement)

described,5-15

Createdb (command)

D

alternate locations for databases, 4-8

explanation of, 3-3

Data

verifying accessibility of, 9-2

Data files

alternate location, 4-2

default location for, 4-2

described,3-1

II_DATABASE, A-I

Data types

changing, 5-8, 5-10, 5-13

checking for errors, 7-7

conversion, 5-8

Database Administrator (DBA)

control of access to database, 1-3

described, 1-3

responsibilities, 1-3

shareable objects, 5-1

Database database

see iidbdb

Databases

see also Backup, ijdbdb, Locking, Recovery

access to, 1-3, 2-2

accessing objects in, 1-3

accessing private, 3-4

administration tasks, 1-4

administrator, 1-3

audit trail creation, 9-9

changing private to public, 3-4

checkpoint files, 3-1

checkpointing, 9-3

configuration file, 3-1

copying, 6-11 to 6-12

creating, 3-2 to 3-3

creating in alternate locations, 4-8

data files, 3-1

default location for, 4-2

destroyed, 9-4

destroying, 3-6

extending, 4-2, 4-8

files, 3-1

in alternate locations, 4-8

inconsistent and copydb, 6-11

inconsistent and unloaddb, 6-6

journal files, 3-1

limits on number of, 3-2

limits on tables, 5-2

listing information about, 3-5 to 3-6

location, 4-1

maintaining, 1-4

moving, 6-11 to 6-12

naming, 3-2

private, 3-2 to 3-3

public, 3-2 to 3-3

unloading, 6-2

Deadlock

aborting queries, 8-16

access paths, 8-17

avoiding, 8-15, 8-24 to 8-25

btree tables, 8-18

described, 8-15

examples, 8-15 to 8-16

in applications, 8-18 to 8-19

lock escalation, 8-17

overflow, 8-18

Deleting

columns from a table, 5-10

user access, 2-4

Destroydb (command)

destroying databases, 3-6

Destroying

databases, 3-6

Duplicates

table rows, 5-3 to 5-5

E

Environment variables

DBNAME_SQL_INIT, 8-20

lNG_SET, 8-20

ING_SET_DBNAME, 8-11

ING_SET_DBNAME,8-20

ING_SYSTEM_SET, 8-12, 8-20

specifying set (statement), 8-11

TERM_INGRES, 2-2

ULTRIX/SQL system files, A-I

Exclusive locks

see Locking

Extenddb (function)

extending databases, 4-8

H

Help

accessdb (utility), 2-1

ii_checkpoint, 4-2

iidbdb

described, 3-2

Indexes

moving to a new location, 5-13

lNG_SET

described, 8-11

Index-3

lNG_SET _DBNAME

described, 8-11

ING_SYSTEM_SET

described, 8-12

Intended exclusive locks

see Locking

Intended shared locks

see Locking

J

Iournaling

see also Journals

described, 9-8

recovery, 9-15 to 9-16

starting, 9-8

stopping, 9-9

Iournals

L

alternate location, 4-7

audit trails from, 9-9

default location for .. 4-8

deleting, 9-3

described,3-1

II_JOURNAL, A-I

Limits

table, 5-2

tables in a database, 5-2

Locationname

defined,4-2

guidelines, 4-5

Locations

alternate (for databases), 4-2

alternate (for tables), 5-6

changing definition, 4-10

creating, 4-3

defaults, 4-2

defined, 4-1

maximum number of, 5-13

multiple (for databases), 4-8

multiple (for tables), 5-6

Index-4

naming, 4-5

Locking

see also Locking system, Lockstat, Set lock_trace

(statement)

query statements, 8-5

auditdb (command), 9-10

copydb (command), 6-10

deadlock, 8-15

default locking level, 8-4

defaults, 8-6

during ckpdb command, 9-3

escalation, 8-17

examples, 8-6 to 8-10

exclusive locks, 8-2

intended exclusive, 8-2, 8-5

intended shared, 8-2, 8-5

levels, 8-3, 8-13

lockstat (utility), B-1 to B-6

maximum number of locks, 8-4

max locks, 8-4, 8-13

monitoring, 8-19 to 8-23

null locks, 8-3

optimizer, 8-4

overflow chains, 8-17

overflow pages, 8-18

page-level, 8-3

parameters, 8-4

process, 8-3 to 8-11

readlock, 8-14

releasing locks, 8-6

shared intended exclusive locks, 8-2

shared locks, 8-2

table-level, 8-3 to 8-4

timeout, 8-14

tracing locks, 8-19

types, 8-2

unloaddb (command), 6-6

user-controlled, 8-11

waiting, 8-10

Locking system

described, 8-2

using, 8-2 to 8-25

Lockstat (utility)

described, 8-19

using, B-1 to B-6

Log file

ICWG_FILE, A-I
Logging

system. 9-1

M

Master database

see iidbdb

Maxlocks

see also Locking

changing, 8-13

described, 8-4

Modify (statement)

relocating tables, 5-13 to 5-14

reorganizing tables, 5-14

Moving

N

databases, 6-11 to 6-12

tables, 5-13 to 5-15

Naming

databases, 3-2

Null values

numeric conversion, 5-9

o
Objects (database)

copying, 6-7

creating shareable, 5-1

Operating system

backups, 9-13

p

Page-level locks

see Locking

Pages

definition. 5-2

locking, 8-3, 8-13

overflow, 8-18

Permissions

codes for users file, 2-6

create databases, 2-3

set trace flags, 2-3

superuser, 2-3

update system catalogs, 2-3

Private database

see Databases. private

Public database

see Databases. public

R

Read locks

see Shared locks

Readlock

see also Set lockmode (statement)

setting, 8-14

setting to nolock, 8-14 to 8-15

Recovery

checkpoint on tape, 9-16

checkpoints and journals, 9-15

copydb (command), 9-17

methods, 9-1, 9-15

process (dmfrcp), 9-2

rollforwarddb (command), 9-15

unloaddb (command), 9-13

Reload.ing (command file)

described, 6-4

Rollforwarddb (command)

recovery, 9-15

retracting changes, 9-16

Rows (in tables)

Index-5

duplicates, 5-3 to 5-5

removing duplicates, 5-5

Rows in tables

limits, 5-3

s
Set lock_trace (statement)

described, 8-19

example, 8-21

output, 8-20

starting with environment variables, 8-20

Set lockmode (statement)

maxlocks parameter, 8-13

preventing locking delays, 8-10

readlock = nolock, 8-12

readlock parameter, 8-14 to 8-15

timeout parameter, 8-11, 8-14

user-controlled locking, 8-11

uses for, 8-12

using, 8-11

Shared locks

see Locking

Superuser

described, 1-2

System Administrator (OS)

described, 1-1

System Administrator (ULTRIX/SQL)

described, 1-2

responsibilities, 1-2

superuser permission, 1-2

T

Tables

alternate locations, 5-6

changing locations, 5-6

copying, 6-9

copying from VAX to RISe, 6-13

create table (statement), 5-1

creating with duplicates, 5-3

creating with journaling, 5-6

creating without duplicates, 5-3

file names for, 9-14

Index-&

journaling, 9-8

limit on number of, 5-2

limits, 5-2

loading data into, 7-12

location, 5-6

locking, 8-3

locking overflow pages, 8-18

moving, 5-15

moving from VAX to RISe, 6-13

moving to a new location, 5-13 to 5-15

moving to a single location, 5-13

moving to multiple locations, 5-14

multiple locations, 5-6

pages, 5-2

reorganizing, 5-14

replacing current, 9-14

replacing destroyed, 9-15

specifying locks, 8-13

Tapes

estimating capacity for checkpoints, 9-5

Termcap description

for specified terminals, 2-2

Terminals

definition, 2-2

termcap, 2-2

Timeout

setting, 8-14

Timeout parameter

set lockmode (statement), 8-11

Transaction

when locks are released, 8-6

u
Unload.ing (command file)

described, 6-4

Unloaddb (command)

avoiding problems with, 6-13

backing up with, 9-13

files generated by, 6-3

inconsistent databases, 6-6

objects unloaded by, 6-2

uses for, 6-1

using, 6-2 to 6-6

Unloading

databases, 6-2

Updating

views, 5-15

Users

authorizing (group), 2-5

authorizing (one), 2-2

described, 1-4

listing authorized, 2-5

modifying access, 2-4

validation, 2-5

Users file

v

authorizing new users, 2-5

building, 2-6

editing a copy of, 2-7

permission codes, 2-6 to 2-7

restoring, 2-7

user validation, 2-5

Varchar data type

conversion function, 5-9

Views

controlling access, 5-16

create view (statement), 5-15

creating, 5-15

dropping, 5-16

selecting data from, 5-16

updating, 5-15 to 5-17

uses for, 5-15

w
Write locks

see Exclusive locks

Index-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internat'"

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMOlE15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

... For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
UL TRIXlSQL Database Administrator's Guide

AA-PBZBA-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough infonnation) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of!

What do you like best about this manual? ____________________ _

What do you like least about this manual? ___________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? _____ _

Namerritle _____________________ Dept. ______ _

Company _________________________ Dmre ____ __

Mailing Address ____________________________ _

____________ Email ___________ Phone

- - -. Do Not Tear - Fold Here and Tape

IlIlIDraa 1M

-----------------------------rrl-r~--------;-----------~-

111111

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2IZ04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111 dh 11111 dh II ddllill hlllllill 11111 dill I

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

.---. Do Not Tear - Fold Here .---~

I
I
I
I
I

Cut I
I

Along!
Dotted .
Line

Reader's Comments ULTRIX
UL TRIXlSQL Database Administrator's Guide

AA-PBZSA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? ____________________ _

What do you like least about this manual? ____________________ _

Please list errors you have found in this manual:
Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ____ -'--_

Namerritle _____________________ Dept. ______ _
Company _______________________ Date ____ _
Mailing Address ___________________________ _
____________ Email ___________ Phone ______ _

-~IDo~TI~D-~~~amdTM~ -----------------------------rrl-rll--------~-::::::~E--~-
III ~ II NECESSARY

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

Illnllllh Ih nlllnni dhlnlill dnll hnllllni

IF MAILED IN THE
UNITED STATES

---. Do Not T~- Fold Here '.---~

Cut
Along
Dotted
line

