_\$2

\$	MMM MMM MMM MMM	00000000000000000000000000000000000000	RRRRRRRRRRR RRRRRRRRRRR RRRRRRRRRRRR		
SSS	MMMMM MMMMMM	GGG	RRR RRR		
\$\$\$ \$\$\$ \$\$\$	MMMMM MMMMMM	GGĞ	RRR RRR	ŤŤŤ	iii
555	ммммм ммммм	GGG	RRR RRR	TTT	LLL
222	MMM MMM MMM	GGG	RRR RRR	TTT	LLL
SSS	MMM MMM MMM	GGG	RRR RRR	ŢŢŢ	LLL
SSS	MMM MMM MMM	GGG	RRR RRR	ŢŢŢ	LLL
\$\$\$\$\$\$\$\$\$	MMM MMM	GGG	RRRRRRRRRR	ŢŢŢ	LLL
\$\$\$\$\$\$\$\$\$	MMM MMM	GGG	RRRRRRRRRRR	ŢŢŢ	rrr
\$\$\$\$\$\$\$\$\$	MMM MMM	666	RRRRRRRRRRR	III	řřř
\$\$\$ \$\$\$	MMM MMM	000000000 0000000000000000000000000000	RRR RRR	ŢŢŢ	LLL
\$55	MMM MMM	000000000 0000000000000000000000000000	RRR RRR RRR RRR	111	LLL
\$\$\$	MMM MMM	GGG GGG	RRR RRR RRR RRR	††† †††	LLL
ŠŠŠ	MMM MMM	GGG GGG	RRR RRR	ΪΪΪ	LLL
ŠŠŠ	MMM MMM	GGG GGG	RRR RRR	ή††	
SSSSSSSSSS	MMM MMM	66666666	RRR RRR	ίίi	
SSSSSSSSSS	MMM MMM	ĞĞĞĞĞĞĞĞ	RRR RRR	ΪΪ	
SSSSSSSSSS	MMM MMM	GGGGGGGG	RRR RRR	ŤŤŤ	

\$	MMMM MM	MM MMM IMMM MM MM MM MM MM MM	GGGGGGGG GGGGGGGG GG GG GG GG GG GG GG	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD			\$		RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	• • • •
\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$	MM MM	MM MM	GGGGGG GGGGGG	DDDDDDDD	AA AA	11	\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$	11	RR RR RR RR	• • • •

1

LIT

SMG

LIT

MAC

Data Structure Definitions for RTL SMGS facility File: SMGDATSTR.REQ Edit: STAN1054

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

FACILITY: Screen Management

ABSTRACT:

This file contains data structure definitions for screen management routines. Display Control Block, Pasteboard Control Block, Window Control Block, and Pasting Packet are defined here.

MODIFIED BY:

1-001 - Original. PLL 15-Mar-1983 1-002 - Expand PBCB to hold PBCB_L_MODE_SETTINGS. RKR 17-Mar-1983.

1-003 - Add literal for initial setting of PBCB_L_MODE_SETTINGS. RKR 18-Mar-1983.

1-004 - Add stuff for borders, alternate character sets, etc. RKR 24-Mar-1983.

1-005 - Corrections to last edit. RKR 24-Mar-1983. 1-006 - Expand WCB and PP structures. RKR 28-Mar-1983. 1-007 - fix typo in last edit. RKR 28-Mar-1983.

1-008 - Pull BACKGROUND_COLOR out of PBCB since we don't know what to do with it. Add stuff pertaining to borders. RKR 4-April-1983.

1-009 - More fixes. RKR 4-April-1983.

1-010 - Clean up rest of border masks. RKR 5-April-1983

! 1-011 - More additions for labeled borders. RKR 7-April-1983.

```
1-012 - Add more fields to PB(B and PP. RKR 14-APR-1983.
1-013 - Rearrange the bits for the line-drawing character set and the bit used to designate a border element. RKR 15-APR-1983.
1-014 - Define 2 more bits in the D(B, one to mean that all lines are full (and thus scrolling should occur thereafter), and one to
mean that column 80 was just written (useful on the next write operation). PLL 28-Apr-1983
1-015 - Define a bell bit in the DCB and WCB. PLL 29-Apr-1983
1-016 - New fields in PBCB. STAN 28-Apr-1983 (2nd try).
            Changed PID to PBID so as not to confuse a pasteboard id
            with a process id.
1-017 - Added event flag numbers to PBCB. STAN 30-Apr-1983
1-018 - STAN 1-May-1983
            Added SMG$K LONGEST SEQUENCE.
Added output buffer fields to PBCB.
Added rows and columns to PBCB. 1-019 - STAN 3-May-1983
            Allow up to 16 pasteboards. Put out-of-band AST routine into PBCB. Literally!
1-020 - STAN 4-May-1983
Fix typo in comment.

1-021 - Add PP_B_CONTROL_BITS field in PP. RKR 5-MAY-1983

1-022 - Add PP_V_CONTIG bit in PP_B_CONTROL_BITS. RKR 9-MAY-1983

1-023 - Add to DCB, PP, and WCB a longword that is the product of
            the number of rows * the number of columns. (Not strictly
            true for PP case -- but ignore it
            RKR 13-MAY-1983.
1-024 - Add BATCHING bit to PBCB
            STAN 16-May-1983
1-025 - Remove bell bit. PLL 20-May-1983
1-026 - Extend DCB in anticpation of backup DCB logic.
            Delete DD_K_MAX_VD -- should no longer be needed.
            RKR 20-MAY-T983.
1-027 - Add words in the DCB to store the top and bottom of a scrolling
            region. PLL 25-May-1983
1-028 - Add new fields to PP and PBCB. RKR 26-MAY-1983.
1-029 - New fields to PBCB for mailboxes et. al. STAN 1-Jun-1983.
1-030 - More of same. STAN 2-Jun-1983.
1-031 - More of same. STAN 13-Jun-1983.
1-032 - Add DCB_V_LABEL_CENTER control bit to DC6_L_CONTROL_BITS.
RKR 14-JUN-1983.
1-033 - Make PP_W_ROW and PP_W_COL signed fields.
            RKR 14-JUN-1983
1-034 - Add bit DCB_V_PP_MISMATCH. RKR 17-JUN-1983.
1-035 - Fields for Juliput files in PBCB. STAN 18-Jun-1983.
            Made LAST_CHANGED fields in PBCB signed.
            Created macros for declaring structures. Made CURSOR position in PBCB signed.
1-036 - Add structures to DCB and WCB dealing with line characteristics
            like Double-Wide, Double-High, etc.
            RKR 7-JUL-1983.
1-037 - Add bit to DCB to mark as used for autobending. PLL 7-Jul-1983
1-038 - Add more longwords to DCB for autobending (used to parse
escape sequences). PLL 8-Jul-1983
1-039 - Add 2 words to PBCB to record where the physical scrolling
            region is on the terminal.
```

LIT

MAC

MAC

RKR 11-JUL-1983.

1-040 - Fix typo. RKR 11-JUL-1983.

1-041 - Save original terminal width and height. STAN 22-Aug-1983

1-042 - STAN 31-Aug-1983 Line characteristics types.

1-043 - Add a truncation icon attribute bit to the DCB. PLL 1-Sep-1983

1-044 - Get rid of 2 unused fields in the DCB by renaming one to a simulated device type and leaving the other one as a placeholder. PLL 2-Sep-1983.

1-045 - Added some terminal characteristics constants.

STAN 5-Sep-1983.

1-046 - Use up DCB B FILL by turning it into DCB_B_LABEL_REND.

RKR 15-SEP-1983.

1-047 - Add a user line drawing bit the rendition attribute. PLL 21-Sep-1983.

1-048 - Background color byte. STAN 27-Sep-1983.

1-049 - STAN 14-Oct-1983. Added wide and high bits; AST-reentrancy bits.

1-050 - STAN 14-Oct-1983. CTRL/O bit.

1-051 - STAN 17-Oct-1983. Add Cancel control/O bit.

1-052 - STAN 15-Jan-1984. Add TERMTABLE.

1-053 - STAN 21-Feb-1984. Add TERMTABLE.

1-054 - STAN 6-Mar-1983. Add NOTABS bit.

Critical sizes and counts for virtual displays and pasteboards

LITERAL

PBD_K_MAX_PB = 16,

! Maximum number of pasteboards we can track. ! It controls the range of pasteboard id's we ! will allocate and the size of the pasteboard ! directory (PBD) structure in OWN storage. ! Currently constrained not to exceed 32 by ! usage of FFC instruction in \$GET_NEXT_PID.

SMG\$k_LONGEST_SEQUENCE = 255;

Longest control or escape sequence that can be returned by TERMTABLE routines. This value can be used to preallocate a buffer to hold the text or can be used to tell if the next sequence desired could overflow your buffer.

! Virtual Display Control Block (DCB)

This data structure defines the layout of a Virtual Display Control Block. The area is allocated in heap storage. One such block is allocated for each new virtual display created by callers. It contains dimensions of the virtual display and pointers to other buffers associated with this display. It also contains pointers to the pasteboards onto which it is pasted. This area is deallocated when the virtual display is deleted -- not when it is unpasted.

MACRO

DCB_Q_COORD	= 0, 0, 00, 0%, ! Really 0, 0, 64, 0
!	Quadword containing next four words. These 4 fields
•	define the coordinate system for this virtual display
Į.	and their address is transmitted to pass the 4 fields
	as a single parameter

DCB_W_ROW_START = 0, 0, 16, 0%. ! Row number of 1st row. (=1)
DCB_W_NO_ROWS = 2, 0, 16, 0%. ! Number of rows
DCB_W_COL_START = 4, 0, 16, 0%. ! Col number of 1st col (=1)
DCB_W_NO_COLS = 6, 0, 16, 0%. ! Number of columns

DCB_Q_LABEL_DESr = 8, 0, 00, 0%, ! Really 8, 0, 64, 0 ! Dynamic string descriptor ! for border label text

DCB_A_TEXT_BUF = 16, 0, 32, 0%, ! Addr. of buffer containing ! text for this virtual ! display.

DCB_A_ATTR_BUF = 20, 0, 32, 0%, ! Addr. of buffer containing ! video attributes for each ! character position in ! TEXT_BUF.

DCB_A_CHAR_SET_BUF = 24, 0, 32, 0%, ! Addr. of buffer containing ! character set codes for ! each character in TEXT_BUF. ! This buffer allocated only ! when needed.

 $DCB_L_BATCH_LEVEL = 28, 0, 32, 0%,$

Number of levels of batching in effect for this display. Incremented by call to SMG\$START_DISPLAY_UPDATE and decrement toward zero by each call to SMG\$END_DISPLAY_UPDATE. Output Tlows from this virtual display to the screen only when this variable is zero.

L11

MAC

DCB_A_PP_NEXT = 32. 0. 32. 0% DCB_A_PP_PREV = 36. 0. 32. 0%	Above two longwords are the queue header for the chain of Pasting Packets tied to
DCB_W_CURSOR_ROW = 40, 0, 16, 0%	! this virtual display. ! Cursor row position in this ! virtual display
DCB_W_CURSOR_COL = 42, 0, 16, 0%	<pre>. ! Cursor col position in this ! virtual display</pre>
DCB_W_LABEL_UNITS = 44, 0, 16, 0%	<pre>. ! Starting position in the ! line or column indicated by ! DCB_B_LABEL_POS</pre>
DCB_B_DEF_VIDEO_ATTR= 46, 0, 8, 0%	! this virtual display
DCB_V_RENBOL = 46, 0, 1, 0% DCB_V_RENREV = 46, 1, 1, 0% DCB_V_RENBLK = 46, 2, 1, 0% DCB_V_RENUND = 46, 3, 1, 0%	Bold Reverse video Blink Underline
DCB_B_DEF_DISPLAY_ATTR=47,0, 8, 0%	. ! Default display attributes
DCB_V_BORDERED = 47, 0, 1, 0%	! of this virtual display . ! Bordered
DCB_V_TRUNC_ICON = 47,1, 1, 0%	, ! Flag to use truncation icon
DCB_V_DISPLAY_CONTROLS = 47, 2, 1, 0%	! Flag to display carriage control
DCB_B_DEF_CHAR_SET = 48, 0, 8, 0%	<pre>. ! Default character set for ! all text in this virtual ! display.</pre>
DCB_B_LABEL_POS = 49, 0, 8, 0%	<pre>Code for positioning of border label: 0 = Tcp border line 1 = Bottom border line 2 = Left border line 3 = Right border line</pre>
DCB_B_LABEL_CHAR_SET= 50, 0, 8, 0%	
DCB_B_LABEL_REND = 51, 0, 8, 0%	. ! Rendition for border label
DCB_L_CONTROL_BITS = 52, 0, 32, 0%	.! Control bits
DCB_V_FULL = 52, 0, 1, 0%	<pre>. ! All display lines used ! (next op may scroll)</pre>
DCB_V_COL_80 = 52, 1, 1, 0%	, ! Column 80 just written

! Top line in scrolling region

LIT

DCB_V_LABEL_CENTER=52,2, 1, 0%, ! If set indicates that border label should be centered -- even if virt. display is redimensioned. DCB_V_PP_MISMATCH=52, 3, 1, 0%, If this bit is set it indicates that this virtual display control block changed in such a way that all associated pasting packets need to have their constants recalculated. However, this change occurred while the display was 'batched' and could not be done at that time.
SMGSEND DISPLAY UPDATE
senses this bit whenever it makes the transition to batch_level=0 and performs the psting packet recalc. at that time, then resets ! this bit. ! This DL created by DCB_V_AUTOBENDED =52, 4, 1, 0%, ! autobended routines DCB_V_ALLOW_ESC = 52, 5, 1, 0%, ! Parse escape sequences when set ! DCB is locked for our use DCB_V_LOCKED = 52, 6, 1, 0%, DCB_L_DID = 56, 0, 32, 0%, ! Virtual display id (Currently the address of ! the DCB itseif.) DCB_L_BUFSIZE = 60, 0, 32, 01! = .DCB [DCB_W_NO_ROWS] * .DCB [DCB_W_NO_COLS] DCB_A_BACKUP_DCB = 64, 0, 32, 0x,If non-zero, address of the backup DCB when this DCB is batched. Backup DCB holds the state of the DCB at the ! time batching started. DCB_B_STRUCT_TYPE = 68, 0, 8, 0! Code to mark this structure ! as being a DCB DCB_W_DCB_LENGTH = 69, 0, 16, 0%, ! Stored length of a DCB D(B_B_FILL_2 = 71, 0, 8, 0%,

DCB_W_TOP_OF_SCRREG = 72, 0, 16, 0%,

DCB_W_BOTTOM_OF_SCRREG

! 1

```
16-SEP-1984 16:57:11.49 Page 8
SMGDATSTR.REQ; 1
                                     = 74, 0, 16, 0%, ! Bottom line in scrolling region
                                     = 76, 0, 32, 0%
      DCB_A_LINE_CHAR
                                                                      Address of the line
                                                                      characteristics vector.
                                                                      This vector, one byte for
                                                                     each line, records whether the line is Single, Double-
                                                                     High, Double-Wide, etc.
This vector is allocated to be DCB_W_NO_ROWS + 1 bytes long so it can be indexed
                                                                     directly by row number (1 through DCB_W_NO_ROWS). Control bits for SMG$$SIM_TERM Control sec arg 1
      DCB_SIM_CONTROL = 80, 0, 32, 0%,
DCB_ARG_1 = 84, 0, 32, 0%,
DCB_ARG_2 = 88, 0, 32, 0%,
DCB_SIM_DEV_TYPE = 92, 0, 32, 0%,
DCB_UNUSED = 96, 0, 32, 0%,
DCB_SAVED_HPOS = 100, 0, 32, 0%,
DCB_SAVED_VIDEO_ATTR = 108, 0, 32, 0%;
                                                                      Control seq arg 2
                                                                      Device type to simulate
                                                                      Unused
                                                                      Saved cursor column
                                                                      Saved cursor row
                                                                   ! Saved video attributes
LITERAL
      DCB_K_STRUCT_TYPE = %X'11', ! Code stored in DCB [DCB_B_STRUCT_TYPE]
                                                  ! to mark is as being a DCB.
      DCB_K_SIZE = 112;
                                                  ! Total number of bytes in a DCB
MACRO
      $DCB_DECL = BLOCK[DCB_K_SIZE,BYTE] %;
```

LIT

A 64-byte area. This buffer contains the resultant device name string. Its length

! is contained in

PBCB_T_DEVNAM

```
! Pasteboard Control Block (PB(B)
  This data structure resides in HEAP storage. One of these areas is allocated whenever a new stream is established for the first time.
  It is deallocated when the pasteboard is deleted.
! It contains the fundemental information associated with a pasteboard
! and pointers to fdCB-related structures like the WCB.
MACRO
     PBCB_A_PP_NEXT
PBCB_A_PP_PREV
                                                      Previous two longwords serve
                                                      as a queue header for the
                                                      chain of pasting packets of all the virtual displays that
                                                      are pasted to this pasteboard.
                                       8, 0, 32, 0%,
! Addr. of window control block
     PBCB_A_WCB
    PBCB_L_MODE_SETTINGS = 12, 0, 32, 0%,
PBCB_V_BUF_ENABLED = 12, 0, 1, 0%,
PBCB_V_MINOPD = 12, 1, 1, 0%,
PBCB_V_CLEAR_SCREEN= 12, 2, 1, 0%,
PBCB_V_NOTABS = 12, 3, 1, 0%,
                                                                Mode setting for this PBCB = 1 if buffering enabled
                                                                =1 if minimal update enabled
                                                                =1 if should clear screen on exit
                                                                =1 if SMG should not use physical
                                                                    tabs.
     PBCB_B_DEVTYPE
                                   = 16, 0, 8, 0%,
                                                                Logical device type
                                                                Status are defined in
                                                                 SMGTERM.REQ and
                                                                currently are:
UNKNOWN = 0
                                                                   VT05
VT52
                                                                                = 1
                                                                               = 2
= 3
                                                                   VT100
                                                                   VIFORFIGN = 4
                                                                   HARDCOPY = 5
     PBCB_B_PARITY
                                   = 17, 0, 8, 0%,
                                                             ! parity flags
     PBCB_W_DEVNAM_LEN
                                   = 18, 0, 16, 0%,
                                                              ! Length of the
                                                                resultant device name
                                                                 string contained in
                                                                PBCB_T_DEVNAM.
     PB(B_L_PBID
                                   = 20, 0, 32, 0%,
                                                              ! Pasteboard id
```

= 24.0.0.0

Tarc

SMC

LIT

! C

. .

LIT

! 1

```
! PBC__W_DEVNAM_LEN.
                          = 88, 0, 0, 0%,
PBCB_R_CHARBUF
                                                   ! Start of 12-byte
                                                   ! characteristics buffer
  PBCB_L_DEVCHAR
                          = 88, 0, 32, 0%,
                                                  ! Device characteristics
    PBCB_B_CLASS
                          = 88, 0, 8, 0%,
                                                  ! Device class, e.g. DCS_TERM
    PBCB_B_PHY_DEV_TYPE= 89, 0, 8, 0%,
                                                   ! Physical device type,
                                                   ! e.g. DT$_VT100
    PBCB_W_WIDTH
                          = 90, 0, 16, 0%,
                                                  ! Device width
                                                   ! Primary device dependent! bits. These are the bits
  PBCB_L_DEVDEPEND
                          = 92, 0, 32, 0%,
                                                   ! of the TT$V_xyz flavor.
    PBCB_B_ROWS
                          = 92, 24, 8, 0%,
                                                   ! Number of rows on terminal
                                                   ! (overlaps previous field)
  PBCB_L_DEVDEPEND2
                                                    Secondary device dependent bits. These
                          = 96, 0, 32, 0%,
                                                     are the bits of the
                                                    TT2$V_xyz flavor.
PBCB_W_CHAN
                          = 100, 0, 16, 0%,
                                                    Channel number. O means
                                                    no channel as been assigned
                                                   ! yet.
PBCB_B_EFN
                          = 102. 0. 8. 0%.
                                                  ! Primary output event flag
PBCB_B_ASYNC_EFN
                          = 103, 0, 8, 0%,
                                                  ! Secondary output event flag
                                                   ! used for asynchronous operations
PBCB_A_MBX_MSG_LIST
                          = 104, 0, 32, 0%,
                                                   ! List of messages that came
                                                   ! from our associated mailbox
PBCB_A_OUTPUT_BUFFER
                          = 108, 0, 32, 0%,
                                                   ! Address of buffer used to
                                                   ! buffer up output sequences.
PBCB_W_OUTPUT_BUFSIZ
                          = 112, 0, 16, 0%
                                                  ! (Maximum) size of output buffer
PBCB_W_OUTPUT_BUFLEN
                          = 114, 0, 16, 0%,
                                                   ! Current length of output buffer
                                                    i.e. number of characters in
                                                    the buffer. O means the
                                                   ! buffer is empty.
PBCB_R_EXIT_BLOCK
                          = 116, 0, 0, 0
                                                  ! Exit block (5 longwords)
    PBCB_L_EXIT_LINK = 116, 0, 32, 0%, PBCB_A_EXIT_ADDR = 120, 0, 32, 0%, PBCB_B_EXIT_ARGCNT = 124, 0, 8, 0%, PBCB_A_EXIT_RSN = 128, 0, 32, 0%, PBCB_A_EXIT_PBCB = 132, 0, 32, 0%,
                                                    system forward link to next block
                                                    address of our exit handler
                                                    argument count (=2)
                                                    arg 1: address to store exit reason arg 2: our PBCB address
```

TI

...

.

1 1

1 1

!-

SWI

LIE

! +

```
= 136, 0, 32, 0x,
PBCB_L_EXIT_REASON
                                                             exit reason (address stored
                                                             as first argument in exit
                                                             block).
PBCB_Z_OUT_OF_BAND_RTN = 140, 0, 0, 0%,
PBCB_W_ENTRY_MASK = 140, 0, 16, 0%,
PBCB_B_CALLG = 142, 0, 8, 0%,
PBCB_B_REG_AP = 143, 0, 8, 0%,
PBCB_B_ABS = 144, 0, 8, 0%,
PBCB_A_BAND_HANDLER= 145, 0, 32, 0%,
PBCB_B_RET = 149, 0, 8, 0%,
                                                              ten-byte routine resides here.
                                                              0000 You may not believe it.
                                                                FA but 'tis so. The first
                                                                6C word is the entry mask.
                                                                    Address of generic
                                                                04 out-of-band AST handler
PBCB_A_BAND_ROUTINE
                               = 152.0.32.0%,
                                                             Address of user's AST routine
                                                              for out-of-band characters.
                                                             O means out-of-band ASTs
                                                             are not enabled.
PBCB_L_BAND_AST_ARG
                               = 156, 0, 32, 0%,
                                                           ! User's arg to his AST routine
PBCB_M_BAND_MASK
                               = 160. 0. 32. 0%.
                                                             Character mask for out-of-
                                                             band ASTs currently in effect
Batching level. If non-O,
then batching is in effect.
PBCB_L_BATCH_LEVEL
                               = 164.0.32.0%.
                                                             Next 4 fields are set
                                                              during mapping from
                                                             virtual display to
                                                             pasteboard buffers
                                                             and describe what part
                                                             of the WCB buffers
                                                             have changed since
                                                             last call to output.
PBCB_W_FIRST_CHANGED_ROW = 168, 0, 16, 1%,
PBCB_W_LAST_CHANGED_ROW = 170, 0, 16, 1%, PBCB_W_FIRST_CHANGED_COL = 172, 0, 16, 1%, PBCB_W_LAST_CHANGED_COL = 174, 0, 16, 1%,
                               = 176, 0, 32, 0%,
PBCB_A_OUTNAM
                                                             Address of buffer containing
                                                             the output filename as
                                                             specified by the user (or "SYS$OUTPUT" if not specified).
PBCB_W_SPEED PBCB_B_TSPEED
                               = 180, 0, 16, 0%,
                                                             Terminal speed
                              = 180, 0, 8, 0%,
= 181, 0, 8, 0%,
                                                             transmit speed
   PBCB_B_RSPEED
                                                             receive speed
PBCB_W_FILL
                               = 182, 0, 16, 0%,
                                                           ! Terminal fill
  PBCB_B_CRFILL
PBCB_B_LFFILL
                               = 182, 0,
= 183, 0,
                                            8. 0%.
8. 0%.
                                                             CR fill
                                                           ! LF fill
                              = 184. 0. 32.
= 188. 0. 32.
= 192. 0. 32.
= 196. 0. 32.
PBCB_A_BROADCAST_RIN
                                                             Broadcast mailbox AST routine
PBCB_L_BROADCAST_ARG
PBCB_A_UNSOLICIT_RIN
                                                 OX.
                                                             Broadcast mailbox AST argument
                                                              Unsolicited input mailbox AST routine
PBCB_L_UNSOLICIT_ARG
                                                             Unsolicited input mailbox AST argument
PBCB_Q_BROADCAST_MSG_QUEUE = 200,0,0,0%,
                                                           ! Queue for holding broadcast messages
```

```
PBCB_L_SMGMBX_FLINK = 200, 0, 32, 0%, PBCB_L_SMGMBX_BLINK = 204, 0, 32, 0%,
                                                                                         ! Forward link
                                                                                         ! Backward link
                                              = 208, 0, 16, 0%,
= 208, 0, 1, 0%,
= 208, 1, 1, 0%,
= 208, 2, 1, 0%.
 PBCB W FLAGS
                                                                                            Flags
    PBCB_V_BROADCAST
PBCB_V_UNSOLICIT
                                                                                             Broadcast msg trapping enabled Unsolicited input notification enabled
                                                                                             1 tells AST routine this is
     PBCB_V_SMGMBX_INIT
                                                                                             an initialization call
    PBCB_V_RMS = 208, 3,
PBCB_V_LOCKED = 208, 4,
PBCB_V_REBUILD = 208, 5,
PBCB_V_CONTROLO = 208, 6,
PBCB_V_CANCEL_CONTROLO=208, 7,
PBCB_V_BS = 208, 8,
PB_B_V_COMPLEX_BORDER= 208, 9,
                                                                                             1 means using RMS for output
                                                                    1.0%.
                                                                                             PBCB is locked
                                                                                             A rebuild is needed
                                                                    1. 0%.
1. 0%.
                                                                                             Previous output aborted by CTRL/O Cancel CTRL/O on next QIO
                                                                                             1 means terminal can do backspace
                                                                                            1 means some border capability
                                                                                         ! is longer than a byte
PBCB_W_ASYNC_CHAN
PBCB_W_MBX_CRAN
PBCB_W_SMGMBX_BUFSIZ
PBCB_A_SMGMBX_BUFFER
PBCB_Q_SMGMBX_IOSB
PBCB_W_OUTNAM_LEN
PBCB_W_ORIG_WIDTH
PBCB_A_FAB
PBCB_A_RBF
                                             = 210, 0, 16, 0%,

= 212, 0, 16, 0%,

= 214, 0, 16, 0%,

= 216, 0, 32, 0%,

= 220, 0, 0, 0%,

= 228, 0, 16, 0%,

= 230, 0, 16, 0%,

= 232, 0, 32, 0%,

= 236, 0, 32, 0%,

= 240, 0, 32, 0%,
                                                                                             Asynchronous channel to terminnal
                                                                                             Mailbox channel
                                                                                             Max message size for mailbox
                                                                                             Address of mailbox buffer
                                                                                             I/O status block for mbx read
                                                                                             Length of output name string Original width of terminal
                                                                                             Address of FAB (if file)
                                                                                             Address of RAB (if file)
                                                                                            Address of record buffer
PBCB_W_TOP_SCROLL_LINE = 244, 0, 16, 0%, PBCB_W_BOT_SCROLL_LINE = 246, 0, 16, 0%.
                                                                                             Top scroll line
                                                                                             Bottom scroll line
                                                                                             Above 2 words record
                                                                                             where the physical
                                                                                             scrolling region is
                                                                                             currently set on the
                                                                                             terminal.
                                              = 248.0, 8.0%.
 PBCB_B_ORIG_HEIGHT
                                                                                             Original number of rows on
                                                                                             terminal (reserved for
                                                                                             future use).
PBCB_B_BACKGROUND_COLOR= 249, 0, 8, 0%, PBCB_W_INTERNAL_ATTR = 250, 0, 16, 0%, PBCB_V_WIDE = 250, 0, 1, 0%, PBCB_V_HIGH = 250, 1, 1, 0%, PBCB_V_TABS = 250, 2, 1, 0%, PBCB_L_TERMTABLE = 252, 0, 32, 0%, PBCB_L_LONGEST_SEQUENCE= 256, 0, 32, 0%, PBCB_A_CAP_BUFFER = 260, 0, 32, 0%, PBCB_L_CAP_LENGTH = 264, 0, 32, 0%, PBCB_R_BORDER_VECTOR = 268, 0, 0, 0%;
                                                                                             Background color
                                                                                             Internal attributes
                                                                                            Pasteboard allows wide lines
Pasteboard allows high wide lines
Pbd allows physical tabs
Corresponding TERMTABLE.
Longest capability sequence
Address of capability buffer
                                                                                             Length of last capability gotten
                                                                                            16-longword border vector
```

LITERAL

PBCB_K_SIZE = 332;

. Total size of PBCB in bytes.

MACRO

SMC

! -

XIF XTH XFI

XTH

XFI XIF XTH XFI

! E

```
**F
```

```
$PBCB_DECL = BLOCK[PBCB_K_SIZE,BYTE] %;
LITERAL ! masks for bits in field PBCB_L_MODE_SETTINGS

PBCB_M_BUF_ENABLED = 1, ! =1 if buffering enabled
PBCB_M_MINUPD = 2, ! =1 if minimal update enabled
PBCB_M_CLEAR_SCREEN = 4, ! =1 if should clear screen on image exit
PBCB_M_NOTABS = 8; ! =1 if SMG should not use physical tabs

LITERAL

PBCB_K_DEF_MODE_SETTINGS =

PBCB_M_MINUPD ; ! Minimum update enabled
```

```
Window Control Block (WCB)
```

This data structure resides in heap storage. There is (currently) one WCB associated with each pasteboard and is pointed to by it.

After an output operation, WCB A TEXT BUF and WCB A SCR TEXT BUF have their contents swapped. At the same time, WCB A ATTR BUF and WCB A SCR ATTR BUF have their contents swapped. Hence, at any point in time, WCB A SCR TEXT BUF and WCB A SCR ATTR BUF record what is currently on the screen. WCB A TEXT BUF and WCB A ATTR BUF are used to construct the next screen full.

MACRO WCB_Q_COORD

= 0,0,00,0%, ! Really 0,0,64,0 ! Quadword containing next four words. The four fields ! define the coordinate system for the pasteboard and ! hence the window buffer. Their address is passed to ! transmit these 4 fields as a single parameter.

WCB_W_ROW_START = 0, 0, 16, 0%, ! Row number of 1st row (=1) WCB_W_NO_ROWS = 2, 0, 16, 0%, ! Number of rows WCB_W_COL_START = 4, 0, 16, 0%, ! Col number of 1st col (=1) WCB_W_NO_COLS = 6, 0, 16, 0%, ! Number of cols

WCB_A_TEXT_BUF = 8, 0, 32, 0%, ! Address of a text buffer ! for this window.

WCB_A_ATTR_BUF = 12, 0, 32, 0%, ! Address of attribute buffer ! for this window.

WCB_A_CHAR_SET_BUF = 16, 0, 32, 0%, ! Address of character set ! buffer for this window. ! This buffer is allocated ! only if needed.

WCB_A_SCR_TEXT_BUF = 20, 0, 32, 0%, ! Address of text buffer ! representing what is ! currently on the screen.

WCB_A_SCR_ATTR_BUF = 24, 0, 32, 0%, ! Address of attribute buffer ! associated with ! WCB_A_SCR_TEXT_BUF

WCB_A_SCR_CHAR_SET_BUF=28, 0, 32, 0%, ! Address of character set ! buffer associated with ! WCB_A_SCH_TEXT_BUF. ! Allocated only if needed.

WCB_W_CURR_CUR_ROW = 32, 0, 16, 1%, WCB_W_CURR_CUR_COL = 34, 0, 16, 1%,

! Cursor position in ! WCB_A_TEXT_BUF.

WCB_W_OLD_CUR_ROW = 36, 0, 16, 1%,

! | ++ | F

144

SMG

...

T

1 1

LIN

--

```
WCB_W_OLD_CUR_COL
                              = 38, 0, 16, 13,
                                                            Cursor position in WCB_A_SCR_TEXT_BUF.
                                                         = .WCB [WCB_W_NO_ROWS] *
.WCB [WCB_W_NO_COLS]
WCB_L_BUFSIZE
                              = 40, 0, 32, 0%,
WCB_A_LINE_CHAR
                              = 44, 0, 32, 0%,
                                                            Address of line
                                                            characteristics vector for
                                                             text buffer.
                                                            This vector, one byte for each line, records whether the line is Single, Double-High, Double-Wide, etc.
This vector is allocated to
                                                            be WCB_W_NO_ROWS + 1 bytes
long so it can be indexed
                                                            directly by row number
                                                          ! (1 through WCB_W_NO_ROWS).
WCB_A_SCR_LINE_CHAR = 48, 0, 32, 0%;
                                                            Address of line
                                                            characteristics vector for
                                                             screen text buffer.
                                                            This vector, one byte for
                                                            each line, records whether
the line is Single, Double-
                                                            High, Double-Wide, etc.
This vector is allocated to
                                                            be WCB_W_NO_ROWS + 1 bytes long so it can be indexed
                                                          ! directly by row number ! (1 through WCB_W_NO_ROWS).
```

LITERAL WCB_K_SIZE = 52: ! No. of bytes in a WCB MACRO

SWCB_DECL = BLOCK[WCB_K_SIZE,BYTE] %;

LIN

LIN

```
Pasting Packet (PP)
This data structure defines the layout of a Pasting Packet.
   this area is allocated in heap storage. One such structure exists for
  every pasting of a virtual display to a pasteboard. It exists simultaneously on two queues -- the queue (DCB A PP NEXT) headed in the DCB which contains the queue of PP's representing to which
  pasteboards this DCB is pasted, and at the same time, it is a member of the queue (PBCB A PP NEXT) headed in the PBCB which contains the queue of PP's representing all virtual displays pasted to this
   pasteboard.
MACRO
      PP A_NEXT_DCB
                                                  0, 0, 32, 0%,
4, 0, 32, 0%,
The previous 2 longwords serve as
      PP_A_PREV_D(B
                                                   a queue entry for purposes of enqueing onto queue DCB_A_PP_NEXT -- the queue
                                                   of all pasteboards to which this
                                                 ! virtual display is pasted.
                                                 8, 0, 32, 0%,
12, 0, 32, 0%,
! The previous 2 longwords serve as
! a queue entry for purposes of enqueing
! onto queue PBCB A PP NEXT -- the queue
! of all virtual displays which are
      PP_A_NEXT_PBCB
     PP_A_PREV_PBCB
                                                 ! pasted to this pasteboard.
      PP_A_DCB_ADDR
                                                 16, 0, 32, 0%,
                                                 ! Address of the DCB involved in this
                                                 ! pasting.
      PP_A_PBCB_ADDR
                                                 20, 0, 32, 0%,
                                                 ! Address of the PBCB involved in this
                                                 ! pasting.
                                                24, 0, 16, 1%. ! The row number of the pasteboard onto
      PP_W_ROW
                                    =
                                                   which row 1 of the virtual display
                                                 maps.
                                                26, 0, 16, 1%, ! The column number of the pasteboard
      PP_W_COL
                                                   onto which column 1 of the virtual
                                                 ! display maps.
                                                 28, 0, 16, 0%, ! The number of rows which have to be
      PP_W_ROWS_TO_MOVE
                                                   moved from the display buffer to the
                                                 ! window buffer. If zero, the next 3 ! fields are meaningless.
                                                 30, 0, 16, 0%, ! The byte index beyond the begining of
      PP_W_FROM_INDEX
                                    =
                                                 ! a source buffer which represents the
```

...

1st byte position to be moved when copying from display buffers to window buffers.

 $PP_w_{10} = 32, 0, 16, 0%,$

The byte index beyond the begining of a destination buffer which represents the 1st byte to be deposited when copying from a display buffers to window buffers.

PP_W_MOVE_LENGTH = 34, 0, 16, 0%,

! The number of columns to be moved from ! display buffers to window buffers.

PP_W_LABEL_BYTES_TO_MOVE = 36, 0, 16, 0%,

The number of bytes of the border label which need to be moved to the W(B text buffer when the virtual display is mapped to the W(B text buffer. This field may be zero if no characters fit the way the display is pasted.

PP_W_SRC_LABEL_OFF = 38, 0, 16, 0

PP_W_DST_LABEL_OFF

= 40, 0, 16, 0%.
! The offset (0-based) beyond the beginning of .WCB [WCB_A_TEXT_BUF] where the first byte of the visible label lands. This same offset is used to reach the appropriate attribute byte in WCB [WCB_A_ATTR_BUF]. This field may not be valid if .PP [PP_W_LABEL_BYTES_TO_MOVE] is 0.

NOTE: The 7 fields above are computed as a function of both the dimensions of the virtual display and the position on the pasteboard on which it is pasted. If either (dimensions or pasting position) changes, these fields must be recomputed. They are initially set up as a result of pasting. Having these fields precomputed in the PP makes the output operation of moving data from display buffer to window buffer run faster since these values do not have to be continually recomputed on the fly.

 $PP_B_CONTROL_BITS = 42, 0, 8, 0%,$

! **

F

M -----

PP_V_OCCLUDED

Home for various PP-wide status bits.

42, 0, 1, 0%,
Records whether the pasting of this
virtual display to this pasteboard -taking into consideration all other
pasting to this pasteboard -- is

occluded or not.

1 => Occluded. 0=> Not occluded

PP_V_CONTIG = 42, 1, 1, 0%,

= 42, 1, 1, 0%,
! If set, this bit means that the
! virtual display (as pasted) can be
! moved to the window buffer via a
! single CH\$MOVE-- i.e. the source
! and destination fields are contiguous
! bytes.
! If not set, text must be moved on a
! row by row basis since only the bytes
! within a row are contiguous.

PP_L_MOVE_SIZE

= 43, 0, 32, 0%, ! = .PP [PP_W_ROWS_TO_MOVE] = ! .PP [PP_W_MOVE_LENGTH]

Next 4 fields tell where on the WCB buffer the part of the virtual display that fits within the pasteboard projects. I.e., what area of the WCB buffers get modified when this virtual display is mapped to the pasteboard. These fields are not meaningful if PP W ROWS TO MOVE is zero since it then doesn't even hit the pasteboard. Note: these fields do not take into account whether the virtual display is bordered. For most instances this is the right thing to do. There is one known quirk that needs to be fixed later— If a virtual display is pasted to a row or column which is one unit outside of the pasteboard boundaries, then its PP W ROWS TO MOVE will be O since the display Itself will not project onto the pasteboard — but its border will!!

PP_W_fIRST_WCB_ROW = 47, 0, 16, 0%, PP_W_LAST_WCB_COL = 49, 0, 16, 0%, PP_W_LAST_WCB_COL = 51, 0, 16, 0%, PP_W_LAST_WCB_COL = 53, 0, 16, 0%;

PP_PBCB_QUEUE_OFFSET = 8,

Offset of the queue header for the pasteboard side of the chain. This is the byte offset of the PBCB_A_NEXT_PBCB field.

```
SMGDATSTR.REQ;1

16-SEP-1984 16:57:11.49 Page 19

PP_K_SIZE = 55; ! Size in bytes of a PP

MACRO

$PP_DECL = BLOCK[PP_K_SIZE,BYTE] %;
```

MAC

```
The following are masks of bit positions in the bytes of the stribute array pointed to by WEB [WEB_A_ATTR_BUF].

LITERAL

ATTR_M_REND_BOLD = %x'01', ! Bold rendition
ATTR_M_REND_REV = %x'02', ! Reverse video rendition
ATTR_M_REND_BLINK = %x'04', ! Blink rendition
ATTR_M_REND_UNDER = %x'08', ! Underline rendition
```

ATTR_M_REND_GRAPHIC = %x'10', ! Line-drawing character set ! If set, this bit indicates that this character must ! be rendered using the device's line-drawing character set ! set !

ATTR_M_USER_GRAPHIC = %x'40', ! User line-drawing char set ! This indicates a generic line-drawing character which ! must be converted to the device-specific character ! before being output to the screen.

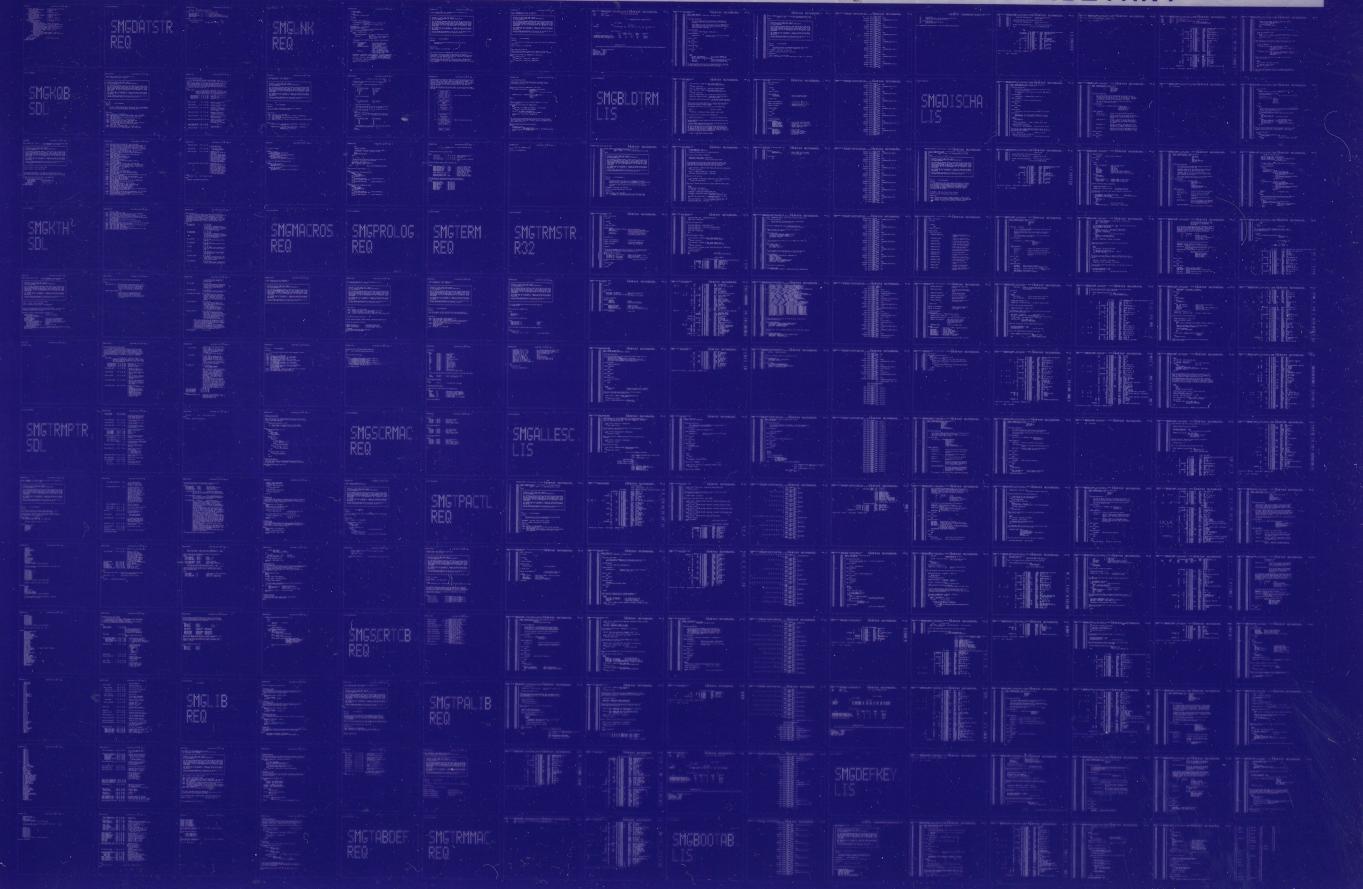
= %x'80': ATTR_M_BORD_ELEM ! Border control bit. This bit is used to record that the associated text byte is (was) not a printable text byte, but a component of a border element. This bit is not supplied by the caller to SMG, but is established internally while virtual displays are being mapped to the pasteboard buffer. It is not of interest to the output routines. During the mapping phase, while the various virtual displays are mapped onto the output window buffer, this bit is used to record the fact that an element of a border occupies the corresponding cell in the W(B text buffer. It is used to distingiush a normal ASCII text character from an encoding of what pieces of a border element must occupy this text slot. After all virtual displays have been mapped to the WCB buffers and all intersections of border characters have been resolved, each byte in the attribute array is inspected to see if it constains this bit. If the bit in the attribute byte is set, the bits in the text byte are inspected to see how they should be rendered. If the device associated with the pasteboard does not support a line-drawing character set, the bits in the text byte are changed to the closest ASCII character approximation -- "", "-", or "!". This cellular position can now be treated like any other text postion. However, if the associated device does support a linedrawing character set, the bits in the text cell are changed to the appropriate graphic code for that line-drawing set and the ATTR_M_GRAPHIC bit in the attribute array byte is furned on. The bits (in the text buffer) that encode the desired graphic are given below.

! These masks are used to set and reset these bits, e.g.

\$ - M C B O

\$ - M CB C

```
SIMITTICT
MAC
```


```
$
GA
MAC
```

```
byte_in_attr_array = .byte_in_attr_arry OR ATTR M ???? ! Set
byte_in_attr_array = .byte_in_attr_arry XOR ATTR M ???? ! Reset
! The following are the corresponding constants for accessing the
  bits for interrogation purposes.
LITERAL
    ATTR_V_REND_BOLD
ATTR_V_REND_REV
ATTR_V_REND_BLINK
                             = %x'00',
= %x'01',
= %x'02',
                                                    Bold
                                                    Reverse video
                                                    Blink
     ATTR_V_REND_UNDER
                                                  ! Underline
     ATTR_V_REND_GRAPHIC = %x'04',
ATTR_V_USER_GRAPHIC = %x'06',
                                                  ! Graphic character
                                                  ! User graphic character
                          = $x.07:
     ATTR_V_BORD_ELEM
                                                  ! Border element control bit
          These bits are used in BLISS constructs like:
          If .(some_place_in_the_attribute_buffer)<ATTR_V_???,1> ! If set
! These constants are used to check the line characteristics vector.
! The line characteristics vector is used to specify double wide and
! double high/double wide.
LITERAL
    LINE_K_NORMAL
LINE_K_WIDE
LINE_K_UPPER_HIGH
LINE_K_LOWER_HIGH
                             = 0,
                                                  ! single width and height (must be 0)
                             = 1,
                                                    double wide
                             = 2.
= 3:
                                                    upper half of double high
                                                  ! lower half of double high
```

```
The following are bit definitions of bits found in the text buffer pointed to by WCB [WCB_A_TEXT_BUF] when a particular cell contains
  not a printable character, but an encoding of what parts of a border
  character need to be placed in this position.
LITERAL
     BORD M RIGHT
BORD M UP
BORD M LEFT
BORD M DOWN
                                    = %x'01',
= %x'02',
= %x'04',
= %x'08',
                                    = BORD_M_RIGHT + BORD_M_LEFT,
      BORD_M_HORIZ
      BORD M_VERT
                                    = BORD MUP
                                                         + BORD_M_DOWN,
      BORD_M_ULCORN
BORD_M_URCORN
BORD_M_LLCORN
BORD_M_LRCORN
                                    = BORD M DOWN + BORD M RIGHT,
= BORD M DOWN + BORD M LEFT,
= BORD M UP + BORD M RIGHT,
                                    = BORD M UP
                                                           + BORD_M_LEFT;
   Certain combinations of the above bit patterns are meaningful, e.g. BORD_M_VERT + BORD_M_RIGHT represent a "right-T" graphic
   These bits are used to 'OR' together the right total graphic that is
   needed at a particular position on the screen to represent some
  element of a border.
! The corresponding bit positions:
LITERAL
      BORD_V_RIGHT
BORD_V_UP
BORD_V_LEFT
BORD_V_DOWN
                                    = %x'00',
= %x'01',
= %x'02',
                                    = 1x'03';
```

0355 AH-BT13A-SE

DIGITAL EQUIPMENT CORPORATION CONFIDENTIAL AND PROPRIETARY

