¢ 12

001

wwnrwn
wwnw
v
wvwrnwn
wwnuv
wnn
wrwnnv
wvnn
ww;w:
wvurnw
wwwnon
wrLnwm

[l el T L 7 L 7 L ¥

NNV NW
(Tad 7 X T X P XV 2 7,)

MMM MMM GGGGGGGGGGGG RRRRRRRRRRRR TETTTTTTTTTITIT LLL
MMM MMM GCGGGGGGGGGG RRRRRRRRRRRR TYTITITTITRTITIT LLL
MMM MMM GGGGGGGGGGGG RRRRRRRRRRRR TYTTTITITTITITIT LLL
MMMMMM MMMMMM GGG RRR RRR 177 LLL
MMMMMM MMMMMM GGG RRR RRR 177 LLL
MMMMMM MMMMMM GGG RRR RRR 177 LLL
MMM MMM MMM GGG RRR RRR 177 LLL
MMM MMM MMM GGG RRR RRR 177 LLL
MMM MMM MMM GGG RRR RRR 177 LLL
MMM MMM GGG RRRRRRRRRRRR 117 LLL
MMM MMM GGG RRRRRRRRRRRR 117 LLL
MMM MMM GGG RRRRRRRRRRRR 177 tLL
MMM MMM GGG GGGGGGGGG RRR RRR 117 LLL
MMM MMM GGG GGGGGGGGG RRR RRR 177 LLL
MMM MMM GGG GGGGGGGGG RRR RRR 177 LLL
MMM MMM GGG GGG RRR RRR 11T LLL
MMM MMM GGG GGG RRR RRR 177 LLL
MMM MMM GGG GGG RRR RRR 117 LLL
MMM MMM GGGGG66G6 RRR RRR 1T LLLLLLLLLLLLLLL
MMM MMM 6GGGGGGGE6 RRR RRR 177 LLLLLLLLLLLLLLL
MMM MMM GGGGGGGG6 RRR RRR 17 LLLLLLLLLLLLLLL

NNSNSNSNSN NN
T T T
MMM TTTATMTRY

I ' [
8
eefJLEve [DeeSMGDATSTR 2 SMG
LI
LIT
SSSSSSSS MM MM GGGGGGG6G DDDDDDDD AAAAAA TITTTITTITIT SSSSSSSS TTITTTTTITT RRRRRRRR
$S555S5S MM MM GGGGGGGG DDDDDDDD AAAAAA TTTITITTTTY $SSSSSSSS TTTTTYTTTT RRRRRRRR
SS MMMM MMMM GG 0D DD AA AA 17 SS 17 RR RR
SS MMMM MMMM GG 0D DD AA AA 17 SS 17 RR RR
sS MR MM MM GG 0D DD AA AA 17 SS 17 RR RR
SS MR MM MM GG 0D DD AA AA 17 SS 17 RR RR
SSSSSS MM MM GG 0D DD AA AA 17 SSSSSS 17 RRRRRRRR
555555 M- MM GG 0D DD AA AA 17 $558SS 17 RRRRRRRR
SS MM MM GG GGGGGG DD DD AAAAAAAAAA 17 SS 17 RR RR
SS MM MM GG GGGGGG DD DO AAAAAAAAAA 17 SS 17 RR RR
SS MM MM GG GG DD DD AA AA 17 SS 17 RR RR
SS MM MM GG GG DD DD AA AA 17 SS 1T RR RR
55555888 MM MM GGGGGO pODDDDDD AA AA 17 SSSSSSSS 17 RR RR
SS5555S8S MM MM 6G6GG6 o0DODDDD AA AA 17 S58S5S8SS 17 RR RR
RRRRRRRR EEEEEEEEEE 000QQQ
RRRRRRRR EEEEEEEEEE QQQQaQ
RR RR EE QQ QQ
RR RR EE QQ Qe
RR RR EE QQ QQ
RR RR EE QQ QQ
RRRRRRRR EEEEEEEE QQ QQ
RRRRRRRR EEEEEEEE QQ QQ
RR RR EE G0 Q0 Q0
RR RR EE Q@ Q0 Q0
RR RR EE QQ QQ
RR RR EE QQ Qa
RR RR EEEEEEEEEE QeQQ Q0
RR RR EEEEEEEEEE QaQa Qo

r

o
=
WY

¢
SMGDATSTR.REQ; 1 16-SEP-1984 16:57:11.4% Page

Data Structur it
File:

¢ De
SMGDATSTIR

finitions for RTb SMGS facility *
.REQ Edit: STANI0S54

| 8

i
|
1

!fi"""'"'."""."".'.""i"""t""""t""""'"""'i"'i"""t
v '
iv COPYRIGHT (c) 1978, 1980, 1982, 1984 BY .
is DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.)
{e ALL RIGHTS RESERVED. '
*]
‘v THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED +
ie ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
le INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER +
{s+ COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY «
ie QTHER PERSON, NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY +
iv TRANSFERRED. '
*
| |
|
1
*
| {
| §
*
]
*

e o e POy~

=x
»)
P

e

'* THE INFORMATION IN THIS SOFTWARE S SUBJECT TO CHANGE WITHOUT NOTICE
'* AND SHOULD NNT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
;' CORPORATION.

le

'* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
s' SOf TWARE ON EQUIPMENT WHICH]S NOT SUPPLIED BY DIGITAL.

l e

|
i:tittt'ﬁﬁﬁttttttttt'tttt'ttt'tttitltttttttttttttttt'!'ttttt't'ttt‘ttttttttt
i

Tee
FACILITY: Screen Management

ABSTRA(CT:

This file contains data structure definitions for screen management
routines. Display Control Block, Pasteboard Control Block, Window
Control Block, and Pasting Packet are defined here.

MODIFIED BY:

1-001 -~ Original. PLL 15-Mar-1983

1-002 - Expand PB(B to hold PB(B_L_MODE_SETTINGS. RKR 17-Mar-1983.

1-003 - Add Literal for initial setting of PBCB_L_MODE_SETTINGS.
RKR 18-Mar-1983.

.t TR S A M mw® M s s am b e e S e s e MRS MRS GG ARl EEOWE MR A AN RS u e e -

1-004 - Add stuff for borders, alternate character sets, etc.
RKR 24-Mar-1983.)

1-005 - Corrections to last edit. RKR 24-Mar-1983,

1-006 - Expand W(B and PP structures, RKR 28-Mar-1983.

1-007 - Fix typo in Last edit. RKR 28-Mar-1983.

1-008 - Pull BACKGROUND_COLOR out of PB(B since we don't know what
to do with it., Add stuff pertaining to borders.
RKR &-April-1983.

1-009 - More fixes. RKR &4-April-1983. .

1-010 - (lean up rest of border masks. RKR S-Agrll-19$3

1-011 - More additions for labeled borders. RKR 7-April-1983.

SMGDATSTP,

e e e o o o b D 4 o s e B MRS e 4 AR Y AR O EN S GBS ¥ s s S NS MRS ER S WDt TS e T TN MRS R NP M A RN N R D e M S R R A P ARG ARG e SR D e M s M W S W g s S e s e s N e W M M Mg e s s

1-01
1-01

1-014

1-037
1-038

1-039

REQ;1 16=-SEP-1684 16:57:1?.#8 Page

Add more tields to PB(B and PP. RKR 14-APR-1083,

Rearrange the bits for the Line-drawing charagter set and the
bit use§ to designate a» border element. RKR 15-APR-1983,
Detine 2 more bits in the D(B, one to mean that all lines are
full (and thus scrolling should occur thereafter), and one to
mean that column was ugi written (useful on the next write
operation). PL -Apr=19

Define a bell bit in the D(B and wgg. PLL 29-Apr-1983

New fields in PB(B. STAN 28-Apr-1983 (2nd try).

Changed PID to PBID so as not to confuse a pasteboard id

with a process id.

Added event flgg numbers to PB(B. STAN 30-Apr-1983

STAN 1-May=-198

Added SMGSK _LONGEST_SEQUENCE.

Added output bufter tields to PB(B.

Added _rows and columns to PB(B.

STAN 3-mMay~-1983

Allow up to 16 pasteboards.

Put out-of-band AST routine into PB(B. Literally!

STAN 4-Mpy-1983

Fix typo in comment.

Add PP_B_CONTROL BITS field in PP, RKR 5-MAY-1983

Add PP_V_CONTIG bit in PP_B_CONTROL _BITS. RKR 9-MAY-1983

Add to DUB, PP, and W(B a longword that is the product of

the number of rows * the number of columns, (Not strictly
true for PP case -- but ignore it

RKR 13-MAY-1983.

Add BATCHING bit to PR(B

STAN 16-May~-1983

Remove bell bit. PLL 20-Ha¥-1983)

Extend D(B in anticpation of backup D(B logic.

Delete DD _K _MAX_VD =-- should no longer be needed.

RKR 20-MAY-T983°

Add words in the D(B to store the top and bottom of a scrolling
region. PLL ZS-Haz-198

Ado new fields to PP and PB(B. RKR 26-MAY-1983,

New fields to PB(B for mailboxes et. al. STAN 1-Jun-1983,
More of same. STAN 2-Jun-1983.

More of same. STAN 13-Jun-1983.

Add DCB_V _LABEL_CENTER control bit to DCE_L_CONTROL_BITS.

RKR 14=-JUR-1983" .)

Make PP_W ROW and PP_W_(OL signed fields.

RKR 14-JUR-1983

Add bit DCB_V_PP_MISMATCH. RKR 17-JUN-1983,

Fields for oufguf files in PBCB., STAN 18-Jun-1983,

Made LAST_CHANGED fields in PB(B signed.

(reated macros for declaring structures.

Made CURSOR position in PB(B signed.) . .
Add structures to D(B and W(B dealing with line characteristics
like Double-wWide, Double-High, etc.

RKR 7-JUL-1983. ,

Add bit to D(B to mark as used for autobending. PLL 7-Jul-1983
Acd1 more longwords to DCB for autobending (used to parse
oscase sequences). PLL 8-Jul-1983] .

Add 2 words to PB(B to record where the physical scrolling
region is on the terminal.

SAG

LIT

MAC

SMGDATSTR.REQ; 1 16=SEP=1984 15:57:15.45 Page 3 SAG

RKR 11-JUL-1983, '
Fix typo. RKR 11-JuL-1983, '
Save original terminal width and height. STAN 22-Aug-1983 f
STAN 31-Aug-19 %ine characteristics types.

Add a truncation icon attribute bit to the DCB, PLL 1-Sep=-1983 |
Get rid of 2 unused tields in the D(B by renaming one to :
s simulated go.:ce type and leaving the other one as a placeholder.

PLL 2-Sep-1983

Added some terminal characteristics constants. '
STAN S-Seg-1983. _ '
Use up OCB_B FiLL by turning it into DCB_B_LABEL_REND. '
RKR 12-SEP=1G883. ' =
Add a user Line drawing bit the rendition attribute. PLL 21-Sep-1983 MA
Background color byte. STAN 27-SQR‘193 .

STAN 14-0ct~1983. Added wide and high bits; AST-reentrancy bits.

STAN 14-0ct=-1983. CTRL/0 bit.

STAN 17-0ct-1983. Add Cancel control/0 bit.

STAN 15-Jan=-1984. Add TERMTABLE.

STAN 21-Feb-1984. Add LF, TAB, and BS optimization bits in PBD.

STAN 6-Mar-1983. Add NOTABS bit.

— ek
©

"0 e
(oleloalels
F ol ol aF oF
BP0 = O

-l
1
o
&~
N
'

DVDOO0OD NN~

1-046

]
o
I
~
e

[
afelelelalels)
CVAAIA L S

t 1Pt

£ NNV O

. e . kD R e

I b el ad o d e o —D

F
SMGDATSTR.REQ; 16-SEP-1984 16:57:11.66 Page &

fe
5 Critical sizes and counts for virtual displays and pasteboards

LITERAL

PBD_K_MAX_PB = 16, Maximum number of pasteboards we can track.
It controls the range of pasteboard id's we
will allocate and the size of the pasteboard
directory (PBD) structure in OWN storage.
Currently constrained not to exceeed 3/ by
usage of FFC instruction in SGET_NEXT_PID.

SMGSK_LONGEST_SEQUENCE = 255;

'
i
i
1
]
i

! Longest control or esca?e sequence that

: can be returned by TERMTABLE routines.

! This value can be used to preallocate »

; buffer to hold the text or can be used to tell
[]

it the next sequence desired could overflow
your buffer.

SM(C

—

‘e
(
1

s Em s am s mm e ame @

MA

SMGDATSTR,REQ; 1 16-SEP-1984 16:57:1?.68 Page

! Virtual Display Control Block (D(B)

This dats structure defines the Layout of a virtual Display
Control Block. The area is allocated in heap storage. One such
block is allocated for each new virtual display created by callers.
It contains dimensions of the virtual display and pointers to other
buffers associated with this display. It also contains pointers to
the pasteboards onto which it is pasted. This area is deallocated
when the virtual display is deleted -- not when it is unpasted.

CRO

0CB_Q_COORD = 0, 0, 00, 0X, ! Really 0, 0, 64, 0

Quadword containing next four words. fhese 4
define the coordinate system for this virtual
and their address is transmitted to pass the &
as 8 single parameter

DCB_W_ROW START 0. 0, 16, 0%,
DCB_W_NO_ROWS . 0, g 0X
6

;}el?s
spla
field;

! Row number of 1st row. (=1)
. ! Number of rows

0¥, ! Col number of 1st col (=1)
0X. ! Number of columns

. 00, OX, ! Reall¥ 8, 0, 64, 0
! Dynamic string descriptor
! for border lLabel text

16, 0, 32, 0X, ! Addr. of buffer containing
! text for this virtual
! display.

DCB_W_COC_START
DCB_W_NO_TOLS

DCB_Q_LABEL _DESF

nunnAn

-

L4

* * w»

L]
o OO0
-

4
6
8

DCB_A_TEXT_BUF

DCB_A_ATTR_BUF

20, 0, 32, 0%, Addr. of buffer containing
video attributes for each
character position in

TEXT_BUF .

Addr. of butfer containing
character set codes for
each character in TEXT_BUF.
This buffer allocated only
when needed.

sam s -

DCB_A_CHAR_SET_BUF = 24, 0. 32. 0X,

b s -

DCB_L_BATCH_LEVEL 28, 0, 32, 01, Number of levels of)
batching in effect for this
display.

Incremented by call to
SMGSSTART _DISPLAY_UPDATE
and decrement toward zero
b‘ each call to

SMGSEND _DISPLAY_UPDATE.
Output Tlows from this
virtual display to the
screen only when this

variable is 2ero.

I I L T T TR TR R

SM(C

Wl

)
SMGDATSTR.REQ; 1 16=-SEP=-1984 16:57:11.46 Page 6 SAG

DCB_A_PP_NEXT = 22. 0, 23' 0%,
nrB_A_PP_PREV = 36, 0, 32, 0X,
! Above twoc longwords are the
' queue header for the chain MAC
! of Pasting Packets tied to
! this virtual display.
DCB_W_CURSOR_ROW = 40, 0, 16, 0X, ! Cursor row position in this
! virtual display
DCB_W_CURSOR_COL = &2, 0, 16, 0X, ! Cursor col position in this
' virtusl display
DCB_W_LABEL_UNITS = &4, 0, 16, 0X, ! Starting position in the
! Lline or column indicated by
' DCB_B_LABEL_POS
DCB_B_DEF_VIDEO_ATTR= 46, O, 8, 0%, ! Default video attributes of
! this virtual display
DCB_V_RENBOL =46, 0, 1, 0%, ! Bold
DCB_V_RENREV z 46, 1, 1, 0X, ! Reverse video
DCB_V_RENBLK = 46, 2, 1, 0%, ! Blink
DCB_V_RENUND = 46, 3, 1, 01, ! Underline
DCB_B_DEF_DISPLAY_ATTR=47,0, 8, 0X, ! Default display attributes
! of this virtual display
DCB_V_BORDERED = 47, 0, 1, OX, ! Bordered
DCB_V_TRUNC_ICON = 47,1, 1, 0X, ! Flag to use truncation icon
DCB_V_DISPLAY_CONTROLS = ! flag to displaz carriage control
&7, 2, 1, 0X, ! characters such a <CR> instead
! of execute them
DCB_B_DEF_CHAR_SET = 48, 0, 8, 01X, ! Default character set for
' all text in this virtual
! display.

DCB8_B_LABEL_POS 49, 90, 8, 0X, ! Code for gositioninq of
! border Llabel: .

! 0 = Teo border Line

| Bottom border lLine

: i Left border Lline

Right border Lline

DCB_B_LABEL_CHAR_SET= 50, 0, 8, 0X, ! Code for character set of
! border label.

DCB_B_LABEL _REND =51, 0, 8, 0X, ! Rendition for border Label

DCB_L_CONTROL_BITS = 52, 0, 32, 0X, ! Control bits

DCB_V_FULL 52, 0, 1, 0%, ! ALl display lines used

! (next op may scroll)

pCB_v_COL_80 52, 1, 1, 0%, ! Column B0 just written

g s e e

SMGDATSTR,REQ:;1

0CB_wW_BOTTOM_OF _SCRREG

DCB_V_LABEL_CENTER=52,2,

DCB_V_PP_MISMAT(H=S52, 3,
DCB_V_AUTOBENDED =52, &,
DCB_V_ALLOW_ESC = 52, S,
DCB_V_LOCKED z 52, 6,
0CB_L_DID = 56, 0,
DCB_L_BUFSIZE = 60, 0,
DCB_A_BACKUP_D(B = 64, 0,
DCB_B_STRUCT_TYPE = 68, 0,
DCB_wW_DCB_LENGTH = 69, 0,
0CB_B_FILL_2 =7, 0,
DCB_wW_TOP_OF _SCRREG = 72, 0,

32,

32,

‘6.
8.
16,

0x,

0x,
0%,
0x,

0x,

0x,

0x,

0x,
0x,
0x,

[P —

L R R R e I P

16-SEP-1984 16:57:1‘.48 Page

It set indicates that
border Label should be
centered -- even it virt,
display s redimensioned.

It this bit is set it
indicates that this virtual
display control block
chunged in such a way that
all associated pastin?
packets need to have their
constants recalculated.
However, this change occurred
while the display was
‘batched’’ and could not be
done at that time.

SMGSEND _DISPLAY_UPDATE
senses this bit whenever it
makes the transition to
batch_Llevel=0 and performs
the psting packet recalc.
8t that time, then resets
this bit.

This DL created by
autobenaed routines

Parse escape sequences when set

DCB i3 locked for our use

Virtual display id
(Currently the address of
the D(B itseit.)

= .D(B Eoce_u_uo,nous% .
.0¢B {DCB W NOZCOLS

|t nor-2ero, address of the
backup DCB when this D(B is
batched. Backup D(B holds
the state of the 0D(8 at the
time batching started.

Code to mark this structure
as being a D(B

Stored length of a D(B

Top Line in scrolling region

SAC

Ve

1 |

LI

SMGDATSTR.REQ; 1

DCB_A_LINE_CHAR

16=-SEP=-1984 16:57:1{.6g Page 8

764, 0, "5, 0X, ! Bottom line in scrolling region

76, 0, 32, 01, Address of the Line
characteristics vector,
This vector, one byte for
each Line, records whether
the Line {s Single, Double-
High, Double-Wide, etc.
This vector is allocated to
be D(B_W_NO_ROWS + 1 bytes
long so Tt can be indexed
directly by row number

(1 through DCB_W_NO _ROWS).

S A e m e A S ARG A A AR AR Em A e ErS MRS AES MRS WS MRS e em e

DCB_SIM_CONTROL = 80, 0, 32. 0x, Control bits for SMGSSSIM_TERM
DCB_ARG_1 = 84, 0, 32, 0X, Control sec arg 1

DCB_ARG_? = 88, 0, 32, 0X, Control seq arg ¢

DCB_SIM DEV_TYPE = 92, 0, 32. 0X, Device type to simulate
DCB_UNUSED =96, 0 3% 0% Unused

DCB SAVED_HPOS = 100, 0,732, 08, i Saved cursor column
DCB_SAVED_VERT = 106, 0, 32, 0X Saved cursor row
DCB_SAVED_VIDEO_ATTR = 108, §, 38, 0f; i Saved video attributes

LITERAL

DCB_K_STRUCT_TYPE = Xx'11*', ! (ode stored in DCB [(DCB_B_STRUCT_TYPE]

DCB_K_SIZE
MACRO
$DCB_DECL

' to mark is as being a DUB°
= 112; ! Total number of bytes in a D(B

= BLOCKIDCB_K_SIZE.BYTE] X;

Femem
e
—d OF =g

- O =4 =4

SMGDATSTR,REQ; 1

+

Pasteboard Control Block (PB(B)

K
16-SEP-1984 16:57:11.48 Page 9

This data structure resides in HEAP storage. One of these areas

' js sllocated whenever & new stream is established for the first time.

It is deallocated when the pasteboard is deleted.

MACRO

PBCB_A_PP_NEXT
PBCB-A_PP_PREV

PBCB_A_W(B

PBCB_L_MODE _SETTINGS
PBTB_v_BUF _ENABLED
PBCB_V_MINOPD
PBCB_V_CLEAR _SCREEN
PBCB_V_NOTABS

PBCB_B_DEVTYPE

PBCB_B_PARITY
PBCB_W_DEVNAM_LEN

PBCB_L_PBID
PBCB_T_DEVNAM

0,
4,

o e e b
[QS 1,1] NI N

- % " % °

16,

17, 0
18, 0

20, 0
24, 0

0.
0.

W - OO

T & & o

3%

0x,
0X

! 1t contains the ‘undemental information associated with a pasteboard
' and pointers to ro(B-related structures Like the W(B.

! Previous two longwords serve

! as 3 queue header for the

' chain of pasting packets of

! all the virtual displays that
! are pasted to this pasteboard.

0x.

0x.
0x,

. of window control block

Q

e setting for this PB(B

it buffering enabled

it minimal update enabled
if should clear screen on exit
\beHG should not use physical
t. s.

HH =R
— b b O

Logical device type.
Status are defined in
SMGTERM.REQ an
currently are:
UNKNOW
V105

VTFORE IGN
HARDCOPY

<

-

(%,

N
It
VS LNND = O

! parity flags

Length of the
resultant device name
string contained in
PB(B_T_DEVNAM,

! Pasteboard id

A 64-byte area. This
buffer contains the
resultant device name
string. Its length
is contained in

S

™ 30D 4

L1

CEm s .. wwe -

o ") - m

vy
LIt

SMGDATSTR.REQ; 1 16-SEP-1984 16:57:1%.43 Page 10 oef

! PBC._W_DEVNAM_LEN.

PB(B_R_CHARBUF = 88, 0, 0, 0%, ! Start of 12-byte
! characteristics buffer
PBCB_L_DEVCHAR = 88, 0, 32, 0%, ! Device characteristics
PBCB_B_CLASS = 88, 0, 8, 01, ! Device class, e.g. DCS_TERM
PB(B_8_PHY_DEV_TYPE= 89, 0, 8, 0%, ! Physical device type,
| e.g. DT$_VT100
PBCB_W_WIDTH = 90, 0, 16, 0%, ' Device width
PB(B_L_DEVDEPEND = 92, 0, 32, 01, ! Primary device dependent

! dbits. These are the bits
! of the TISv_xyz flavor.

PB(B_B_ROWS = 92, 24, 8, 0X, ! Number of rows on terminal
! (overlaps previous field)

PBCB_L _DEVDEPEND?2 = 96, 0, 32, 01, ! Secondary device

! dependent bits., These

! are the bits of the

! T12%V_xyz flavor.
PB(B_W_CHAN = 100, 0, 16, 0X, ! Channel number. 0 means

! no channel as been assigned

! yet.
PB(B_B_EFN = 102, 0, 8, 0%, ! Primary output event flag
PBCB_B_ASYNC_EFN = 103, 0, 8, 0%, i Secondary output event flag

' used for asynchronous operations
PBCB_A_MBX_MSG_LISY = 104, 0, 32, OX, ! List of messages that came

! from our associated mailbox
PBCB_A_OUTPUT _BUFFER = 108, 0, 32, 0X, ! Address of buffer used to

! buftfer up output sequences.
PBCB_W_OUTPUT_BUFSI? = 112, 0, 16, 0%, ! (Maximum) size of output buffer
PB(B_W_OUTPUT_BUFLEN = 114, 0, 16, 0X, Current length of output buffer

i.e. number of characters in
the buffer. 0 means the
buffer is empty.

tem e . -—-

PBCB_R_EXIT_BLOCK = 116, 0, 0 ,0X, ! Exit block (5 longwords)
PBCB_L_EXIT_LINK = 116, 0, 32, 0%, ! system forward Link to next block
PBCB_A_EXIT_ADDR = 120, 0, 32, OX, ! ad”ress of our exit handler
PBCBCB_EXIT_ARGCNT = 124, 0, 8, 0%, ! argument count (=2) .
PBCB_A_EXIT_RSN = 1%8. 0, 32. 01, ! arg 1: address to store exit reason
PBCB_A_EXIT_PB(B = 132, 0, 32, 0%, ! arg 2: our PB(B address

: —

M
SMGDATSTR,REQ;1 16-SEP-1984 16:57:11.48 Page 11 SHC

| PBCB_L_EXIT_REASON = 136, 0, 32, 0X, ! exit reason (address stored 381
! as first argument in exit : R
' block). : f
PBCB_ 7 OUT_OF BAND RTN = 140, 0, 0, 0%, ! ten-b;te routine resides here. L e
BUB_W_ENTRY_MESx = 140, 0, 16, 01X, ! 0000 You may not believe it, v
PBCB_B_ CALLG = 14;. 0, 8. 0%, L FA but 'tls s0. The first ‘e
PBCB_B-RE(= 143, 0. 8, 0X, ! 6C word is the entry mask. e
PB(B B ABS = 144, 0, g. 0X. ! 9F e
PBCBZA_BAND_HANDLER= °45, 0, 32, 0X, ! Address of generic it
PBCB_B_RET ~ = 149, 0, 8, 0X, ! 064 out-of-band AST handler E:
PBCB_A_BAND_ROUI INE = 152, 0, 32, 0%, ! Address of user's AST routine te
! for out-of-band characters. te
! 0 means out-of-band ASTs e
! are not enabled. E:
PBCB_L_BAND_ASY_ARG = 156, 0, 32, 0%, ! User's arg to his AST routine E:
PBCB_M_BAND_MASK = 160, 0, 32, 0%, ! Character mask for out-of- Lo
' band ASTs currently in effect e
PBCB_L_BATCH_LEVEL = 164, 0, 32, 0X, ! Batching level. 1t non-0, e
! then batching is in effect. ::
! Next & fields are set e
! during mapping fron lee
! virtual displa !
! pasteboard buf ers A
! and describe what part !
! of the uffers .
! of the W(B buff L |
! have changed since ' 1
' Last call to outpu*. |
PBCB_W_FIRST _CHANGED ROW = 168, 0, 16, 1X, '
PBCB u LAST _CHANGED ROw = 170, 0, 16, 1X, !
PBCB_W rlnsT CHANGED _CoL = 172, 0, 16, 1%, ' 1
PBCB_W_LAST_UHANGED _TOL = 174, 0, 16, 1X, ; }
PBCB_A_OUTNAM = 176, 0, 32. 0X, ! Address of buffer containing !
! the output filename as !
! specified b¥ the user '
' (or ''SYSSOUTPUT" if not specified). % 1
PB(B_W_SPEED = 180, 0, 16, 0%, ! Terminal speed
PBLB B_TSPEED = 180, 0, 8, 0X, ' transmit speed e
PBCB_B_RSPEED = 181, 0, 8, OX%, ! receive speed : }
PBCB_W_FILL = 182, 0, 16, 0X, ! Terminal fill ! F
PBUB_B_CRFILL = 182, 0, 8, 0X, ' CR fill ‘-
PBCB_B_LFFILL = 183, 0, 8, 0X, VLF Ot sul
PBCB_A_BROADCAST _RIN = 184, 0, 32, 0X, ! Broadcast mailbox AST routine
PBCB_L_BROADCAST_ARG = 188, 0, %, 0x, ! Broadcast mailbox AST argument) LIE
PBCBAUNSOLICITCRIN = 192, 0, 32. 0X. ! Unsolicited input mailbox AST routine
PBCB_L_UNSOLICITCARG = 196, 0, 32, OX, ! Unsolicited input mailbox AST argument '
PBCB_Q_BROADCAST_MSG_QUEUE = 200,0,0,0X, ! Queue for holding broadcast messages 'S

N
SMGDATSTR.REQ; 16=-SEP=-1984 16:57:11.«3 Page 12 SA(
PBCB_L_SMGMBX _FLINK = 500. 0. gs. 0x, ' Forward Link l-
PBCB SHGHBX “BLINK = 204, O, . 0%, ! Backward Link REC
PBCB W _FLAGS z soa. 0, 16, 0%, ' Flags REQ
PBCB_V_BROADCASY = 208, 0, 1, O%, ! Broadcast ms? trapping enabled REQ
PBCB_V_UNSOLICIT = 208, 1, 1, 0X, ' ynsolicited Tnput notification enabled REQ
PBCB_V_SMGMBX _INIT = 208, 2, 1, 0%, ' 1 tells AST routine this is REQ
' an initialization call REQ
PB(B_V_RMS = 508. 3, 1, 0%, ' 1 means using RMS for output REQ
PRCB-VCLOCKED = 208, 4, 1, 0%, ' PBCB is Locked REQ
PBCB_V_REBUILD = 208, 5, 1, OX, ' A rebuild is needed
PBCB V_CONTROLO = 508, 6. 1. 0X, ' Previous outBut aborted by CTRL/0 RIF
PBCB_V_CANCEL_CONTROLO=208, 7. 1, 0X. ' Cancel CTRL/D on next XTH
PBCB_V_BS = 208, 8, 1, 0Y, ' 1 means terminal can do backspace IF]
PB.B_V_COMPLEX_BORDER= 208, 9, 1, 0%, ! 1 means some border capability
' i{s longer than a byte %%:
PBCB_W_ASYNC CHAN = 210, 0, 16, 0X, ! Asynchronous channel to terminnal
PBCB W_MBX CAAN = 212, 0, 16, 0%, ! Mailbox channel
PBCB_W_SMGABX BUFSIZ = 214, 0, 16, 0X, ! Max message size for mailbox
PBCB_AZSMGMBX _BUFFER = 216, 0, 32, 0X, ! Address ot mailbox buffer
PBCB-Q_SMGMBX_10SB = 220, 0, 0, 0%, ! 1/0 status block for mbx read X1
PBCB_W_OUTNAMTLEN = 228, 0, 16, 0%, ! Length of outgut name string
PBCB_W_ORIG_WIDTH = 230, 0, 16, 0%, ! Original width of terminal XLF
PBCB_A_FAB = 232, 0, 32. 0%, ! Address of FAB (if file) XTH
PBCB_A_RAB = 236, 0, 32, 0%, ! Address of RAB (if file) XF 1
PBCB_A_RBF = 240, 0, 32, 0OX, ! Address of record buffer '
PBCB_W_TOP_SCROLL_LINE = 244, 0, 16, OX, ! Top scroll Lline
PBCB_W_BOT_SCROLL_LINE = 246, 0, 16, 0X, ! Bottom scroll Lline
! Above ¢ words record
! where the physical
! scrolling region is
! currently set on the
! terminal.
PBCB_B_ORIG_ME IGHT = 248, 0, 8, 0X, ! Original number of rows on
! terminal (reserved for
! future use).
PBCB_B_BACKGROUND COLOR= 249, 0, 8, 0X, ! Background color
PBCB W _INTERNAL _ATTR = 250, 0, 16, 0X, ! Internal attributes)
PBCB_V_WIDE™ = 250, 0, 1, OX, ! Pasteboard allows wide lines
PBCB_V_HIGH = 250, 1, 1, 0X, ! Pasteboard allows high wide lines
PBCB V_TABS = 250, 2. 1, OX, ! Pbd allows physical tabs
PBCB_L_TERATABLE = 252, 0, 3¢. 0%, ! Correspond1ng TERMTABLE.
PBCB_L_LONGEST SEQUENCE= 256, 0, 32, 0X, ! Longest capa 1l1t{ sequence
PB(B_ A CAP_BUFFER = 260, 0, 32, OX, ' Address of capability butffer
PBCB_L_CAPTLENGTH = 264, 0, 32, OX, ! Length of last capab1l1ty gotten
PBCB_R_BORDER_VECTOR = 268, 0, 0, 0X; ! 16-longword border vector
LITERAL
PBCB_K_SIZE = 332; . Total size of PB(B in bytes.
MACRO

—

SMGDATSTR.REQ; 1

LITE

16-SEP-1984 16:57:1?.«3 Page 13

$PB(B_DECL = BLOCK[PBC(B_K_SIZE,BYTE] X;

PBCB_M_BUF ENABLED = 1,
PBCB_M_MINOPD = 2,
PBCB_M_CLEAR _SCREEN = &,
PBCB M_NOTABS = 8;
RAL

PBCB_K_DEF_MODE_SETTINGS =
PBCB_M_MINUPD ;

LITERAL ! masks for bits in field

'
i
]
5

PBCB_L_MODE_SETTINGS

if butfering enabled

it minimal update enabled ,

if should clear screen on image exit
if SMG should not use physical tabs

nuwnuH
b i el o

Minimum update enabled

vef

SMGDATSTR.REQ; 1 16-SEP~-1984 16:57:1%.‘3 Page 14

te

‘-

MA

Hwndou Control Block (wW(B)
1h\s data structure resides in heap storage. There is

(cur:ontly) one W(B associated with each pasteboard and is pointed to

i
After an output operation WCB_A_TEXT _BUF and W(B_A _SCR _TEXT_BUF have
their contents suapﬁ At the same time, UCB A_KTTR_BOF and
WwCB_A_SCR_ATTR_BUF ave their contents suap? “Hence, at any point
in Time, GCB_AZSCR_TEXT_BUF and WCB A SCR_ATTR BUF record what is
current(y or"tRe sCreenT WCB_A_TEXT _BUF and WIB_A_ATTR_BUF are used
to construct the next screen FYull.

CRO
Ww(B_Q_COORD = 0, 0, 00, OX, ! Really 0, 0, 64, 0
! Quadworgd contalnwng next four words. The four fields
| detine the coordinate system for the pasteboard and
' hence the u1ndou buffer. Their address is passed to
| transmit these 4 fields as a single parameter,

WCB_W_ROW START = 0. 16, 0X, ' Row number of 1st row (=1)
WCB W_NO ROWS = 2. 0, 16, 0X, ' Number of rows
WCB W_COC_START = &, 0, 16, 0X, ! Col number of 1st col (=1)
WwCB_W_NO_CfOLS = 6, 0, 16. 0%, ' Number of cols

8, 0, 32, 0X, ! Address of a text buffer
! for this window.

12, 0, 32, 0X, ! Address of attribute buffer
! for this window.

WCB_A_TEXT_BUF

WCB_A_ATTR_BUF

WCB_A_CHAR_SET_BUF

16, 0, 32, 0X, ! Address of character set
! buffer for this window.
: This buffer is allocated

! only if needed.

20, 0, 32, 0X, ! Address of text buffer
representing what is
! currently on the screen.

24, 0, 32, 0X, ! Address of attr1bute buffer
! associated with
! WCB_A_SCR_TEXT_BUF

! Address of character set
' puffer associated with

! WCB_A_SCHM_TEXT_BUF,

' Allocated only it needed.

WCB_A_SCR_TEXT_BUF

WCB_A_SCR_ATTR_BUF

WCB_A_SCR_CHAR_SET_BUF=28, 0. 32, 0%,

W(B_W_CURR_CUR_ROW
W(B_W_CURR_CUR_(COL

Hn
(Vv LV |
»no
.
o
. s
— et
oo
- -
-t st

! Cursor position in
! WCB_A_TEXT_BUF.

WCB_W_OLO_CUR_ROW 36, 0, 16, 11,

law

R Y T T T R P

§ - -—b -l ol

LIN

~ —
t D g
SMGDATSTR.REQ; 1 16-SEP-1984 16:57:11.4% Page 15 SHG

WCB_W_OLD_CUR_COL

38, 0, 16, 1X,
?n

ion i

XT_BUF. *
w_
w_

n

;

_ROWS]) * ‘=
ZeoLs

it

| WCB_A_SCR_TE

40, 0, 32, 0%, ' = .W(B [WCB_
i .w(B Lwcs:

Address of Lline
characteristics vector for
text buffer.

! Cursor Egs
w(B_L_BUFS]ZE w(

B
NO
NO

WCB_A_LINE_CHAR “, 0, 32, 0%,

This vector, one byte for
each Line, records whether
the Line {s Single, Doubie-
Ha?h. Double-Wide, etc.
This vector is allocated to
be W(B_W_NO_ROWS + 1 bytes \
long s0 Tt can be indexed *
directly by row number - L

(1 through W(B_W_NO_ROWS). '-
LIN

WCB_A_SCR_LINE_CHAR

«8, 0, 32, 0%; Address of line
characteristics vector for
screen text buffer.

This vector, one byte for
each Line, records whether
the Line is Single, Double-
High, Double-Wide, etc.
This vector is al{ocatea to
be W(B_W_NO_ROWS + 1 bytes
long so0 Tt can be indexed
directly by row number

(1 through W(B_W_NO_ROWS).

t e et st ar s S s En A wn o W -

LITERAL
WCB_K_SIZE = 52; ! No. of bytes in a W(B

MACRO
$W(B_DECL = BLOCK(WCB_K_SIZE,.BYTE]) X;

—

!

SMGDATSTR.REQ;1 16-5EP-1984 16:57:1?.&3 Page

¢

'
: Pcstin? Packet (PP) _ ‘

' his data structure defines the Layout of a Pasting Packet.

. this area is allocated in heap storage. One such structure exists for
! ever pastin? of a virtual dlsplaz to a pasteboard. It exists

' simultaneous(y on two queues =-- the aueue (DCB_A_PP_NEXT) headed in

: the DCB which contains the queue ot PP's representing to which

! pasteboards this D(B is ﬁasted. and at the same time, it is a member

: of the queue (PB(B_A_PP_NEXT) headed in the PB(B which contains the

! queue of PP's representing all virtual displays pasted to this

! pasteboard.
0. 0, 3%. 0x,
00 3) oz.

-
MACRO
PP_A_NEXT D(B 0
' the previous 2 longwords serve as
! a queue entry for Burgoses of enqueing
; onto Queue DUB_A_PP_NEXT == the queue
t

PP_A_PREV_D(B
' ot all pasteboards To which this
! virtual display is pasted.

PP_A _NEXT PB(B . 0, 32. 0%,

8
2, 0, 32, 0%,

PP_A_PREV_PB(B 1
T - ! The previous 2 longwords serve as

! a queue entry for purposes of enqueing
. onto queue PECB A_PP_NEXT == the queue
! of all virtual displays which are
! pasted to this pasteboard.

PP_A_DCB_ADDR = 16, 0, 32. 0%,
! Address of the D(B involved in this
! pasting.

PP_A_PBCB_ADDR 20, 0, 32, 0OX,)) .
! Address of the PB(B involved in this

! pasting.

24, 0, 16, 1X,

! fhg row number of the pasteboard onto
; which row 1 of the virtual display

! maps.

26, 0, 16, 1X,

U the column number of the pasteboard
! onto which column 1 of the virtual
! display maps.

28, 0, 16, 0OX,)

! The number of rows which have to be

! moved from the display buffer to the
! window buffer. If zero, the next 3

! fields are meaningless.

30, 0, 16, 0X, .
' the byte index be‘qnd the beg1n1n? of
! 8 source buffer which represents the

L]

PP_W_ROW

PP_w_COL

PP_W_ROWS_TO_MOVE

]

PP_w_FROM_INDEX

16

vef

r
SMGDATSTR.REQ;

PP_w_TO_INDEX

P N L I T Y]

PP_W_MOVE _LENGTH

PP_W_LABEL_BYTES_TO_MOVE

PP_W_SRC_LABEL_OFF

PP_W_DST_LABEL_OFF

F
16-SEP-198¢ 16:57:11.&3 Page 17

! 1st byte position to be moved when
! copying from display bufters to
! window buffers.

32, 0, 16, 0%, _

' the byte index beyond the begining of
! & destination buffer which represents
; the st byte to be deposited when
[}

copying from a display buffers to
window buffers.

34, 0, 16, 0X,
! fbe number of coiumns to be moved from
! display buffers to window buffers.

36, 0, 16, 0X,

! The number of bytes of the border

! Label which need to be moved to the

! W(B text buffer when the virtual

: display is mapped to the W(B text

! buffer. This tield may be zero if no
! characters fit the way the display is
! pasted.

38, 0, 16, 0X,

; The offset (O-based) begond the
]

]

t

t

]

]

! beginning of the the Label string

! which represents the 1st byte of the
! label to be moved.

' (= length of label _string -

t PP [PP_Q_LKBEL_BYTES_TO_MOVED).

' This field naELnot be valid it

.PP [PP_w_LABEL_BYTES_TO_MOVE] is 0.

40, 0, 16, 0X,

' fhe oftfset (O-based) beyond the

! beginning ot .W(B [(WC(B_A_TEXT_BUF]

' where the first byte of the visible

! Label Lands. This same offset is used
! to reach the lpgropriate attribute

! byte in WCB [WCB_A_ATTR_BUF]. This

' field may not be valid Tt

i PP [PP_W_LABEL_BYTES_TO_MOVE) is O.

NOTE: The 7 fields above are computed as a function
of both the dimensions of the virtual display and

the position on the pasteboard on which it is pasted.
It either (dimensions or pasting position) changes,
these fields must be recomputed. .

They are initially set up as a result of pasting.
Hav\n? these fields precomputed in the PP makes the
output operation of moving data from display buffer
to window buffer run faster since these values do not
have to b~ continually recomputed on the fly.

PP_B_C(ONTROL _BITS = &2, 0, 8. 0%,

SMG

"E

I XY)

'we
e
ie
e
ie
e
v
iw
ie
ie
ie
i o
ie
ie
e
e
e
e
v
Ie
.
‘ee

—

SAGDATSTR.REQ;1

PP_V_OCCLUDED

PP_V_CONTIG

PP_L_MOVE_SI]Zt

PP_W_FIRST W(B_ROW
PP_W_LAST QCB_Row
PP W_FIRST w(B_COL
PP_Ww_LAST_QCB_TOL

LITERAL
PP_PB(B_QUEUE _OFFSET

&
[}
I
i
i
i
;
i
)
i

[
!

1
i
|
i
t
[}
1
i
i
?
9
1
3

(VL IV W W

— s -

e, 1.
vft set

! one known qQuirk t

16-SEP-1984 16:57:1?.43 Page

Home f?r B;rious PP-wide status bits,

2, 0,
Records whether the Rasting ot this
virtusl display to this pasteboard -~
teking into consideration all other
pasting to this pasteboard -- is
occluded or not
1 2> Occluded, O=> Not occluded

1. 0’0
this bit means that the
virtual displa; (as pasted) ian be
moved to the window buffer via a
single CNSMOVE~-- i.e. the source
;nd destination fields are contiguous
tes.
It not set, text must be moved on a
row by row basis since only the bytes
within a row are contiguous.

3, 0, 32, 0%,
= PP EPP_U_ROUS_TO novg] .
.PP (PP_W_MOVE_LERGTH

! Next & fields tell where on the W(B
! buffer the part of the virtual display
! that fits within the pasteboard

rojects. [.e., what area of the
(B buffers get modified when this

! virtual disp az is -apfod to the
! pasteboard. Thes

e fields are not

! meaningtul it PP_W_ROWS_TO_MOVE is

! zero since it then doesn't even hit

. the pasteboard.

! Note: these fields do not take into

! account whether the virtual dwsola"
is

is bordered. For most instances t
is the right thina to do. There is

at needs to be fixed
later-- |t @ virtual display is pasted

! to & row or column which is one unit
! outside of the pasteboard boundaries,
! then its PP_W_ROWS_TO_MOVE will be 0
' since the display Ttself will not

roject onto the pasteboard -- but its
order will !'!'!

. 0. 16
[0'
"0

—
o

’ Ld

0x.

—
oo
0O
»epa

Ottset of the queue header for the
pasteboard side of the chain, This is
the b‘te oftset of the
PBCB_A_NEXT_PB(B field.

18

:

P Y I T T X T T TR AN R TR TR R FE_ P

%

L 4
*

» =

= o b - ol ol cud ’

[X

H
SRGDATSTR REQ; 16-SEP-1984 16:57:11.63 Page 19 SMG

PP_K_SIZE z §5; ' Size in bytes of a PP
MACRO

$PP_DECL = BLOCKCPP_K_SIZE.BYTE) I;

-3 R [~

]

P e WSS R AR N LM M. . W o

MAC

— i —a i e

-

SMGDATSTR _REQ;1

‘e

ATTR_M_USER_GRAPHIC = IX'40°,

ATTR_M_BORD_ELEM = 1x'80';

' The following are masks of bit positions i
! attribute array pointed to by W(B (W(B_A_A

16-SEP-1984 16:57:1‘.&3 Page 20

n the bytes of the
T Fit

TR_BU
LITERAL
ATIR_M_REND_BOLD = 11'81'. ' Bold rendition
ATTR_M_REND_REV = IX'02°, ! Reverse video rendition
ATTR_M_REND BLINK = XIX'04‘, ! Blink rendition
ATTR_M_REND_UNDER = XIX'08', ' underline rendition
ATTR_M_REND_GRAPHIC = XXx'10° ' Line=drawing character set

. 1t set, this b{t indicitog that this character must
; botrcndorod using the device's line-drawing character
! set.

X ! User Line-drawing char set

! This indicates a generic linc-drouin? character which
: must be converted to the device-specific character

! before being output to the screen.

. ! Border control bit.
Thig bit is used to record that the associated text
byte is (was) not a printable text byte, but a
component of a border element. Thig bit is not
supplied by the caller to SMG, but is established
1ntornall‘ while virtual d\sp[ays sre being mapped to
the pasteboard buffer. [t is not of interest to the
output routines,
During the mapping phase, while the various virtual
g;?plg¥s are mapped onto the output window buffer,

s
8 border occupies the corresponding cell in the W(B

text character from an encoding of what pieces of a
border element must occupy this text slot.
After all virtual displays have been mapped to the

have been resolved, each byte in the attribute array
is inspected to see if it constains this bit. |[f the

It the device associated with the pasteboard does not
support & line-drawing character set, the bits in the
text byte are choq?gd to the closest ASCII character
aggro:1natlon == R MY o M, _

This cellular position can now be treated Like any
other text postion,

d;auing character set, the bits in the text cell are
change

drawing set and the ATIR RAPHIC bit in the
attribute grra‘ byte is Yturned on. .
The bits (in the text buffer) that encode the desired
graphic are given below.

 m EE s T e G s mm U e am e b e b ek MRS M AE Y e ma s MG O WD NRY R e MmN WSS EeSMEL AR R A e ame

! These masks are used to set and reset these bits, e.g.

t is used to record the fact that an element of
text buffer. It is used to distingiush a normal ASCI]I
W(B buffers and all intersections of border characters

bit in the attribute byte is set, the bits in the text
byte are inspected to see how they should be rendered.

However, it the associated device does support a line-

to the apgropriat; gra hic code for that Line-

SMG

[

(oMo ol SN

MAC

ol Talc SN _J

SMGDATSTR.REQ; 1 16-SEP-1984 16:57:1*.«3 Page 21 SHG

! byte_1in_attr_array = .byte_in_attr_arry OR ATTR M 7277 | Se¢
: byte_in_attr_array = .byte_in_attr_arry XOR ATTR_M_2777 ! Reset
! The tfollowing are the corresponding constants for accessing the |
! bits tfor interrogation purposes.
LITERAL
ATTR_V_REND_BOLD = IX'00°', ! Bold
ATTR_V_REND_REV = IX'01', ' Reverse video
ATTR_V_REND_BLINK = XX'(2°', ' Blink
ATTR_V_REND_UNDER = XXx'03°', ! Underline
ATTR_V_REND_GRAPHIC = XIX'04°, ! Graphic character '
ATTR_V_USER_GRAPHIC = Xx'06°, ! User graphic character :
ATTR_V_BORD_ELEM = IX'07'; ! Border element control bit ;3
' These bits are used in BLISS constructs Like: A
! IF .(some_place_in_the_attribute_buffer)<ATIR_v_2?2,1> ! [f set ; :
! These constants are used to check the Line characteristics vector. b1
* The Line characteristics vector is used to specify double wide and S
! double high/double wide. ;-t
LITERAL MAC
L INE _K_NORMAL =0, ! single width and height (must be 0)
LINE_K_WIDE =1, ! double wide _
LINE_K_UPPER _HIGH = g. ! upper halt of double high
LINE_K_LOWER_HIGH = 3; ! Llower half of double high
te
|
‘ -
b6
' A
|l
MA(

¥ o3
SMGDATSTR.REQ: 1 16-SEP-1984 16:57:11.49 Page 22 SMG

L

]

! The following are ?it detinitions of bits found in the text buffer

! pointed to bg Ww(B (wCB A_TEXT BUF] when » particular cell contains

! not a printable character, but an encoding of what parts of a border
! character need to be placed in this position.

LITERAL

BORD_M_RIGHT = IX'01°,

BORD “MUP = 1x°02°.

BORD M_LEFT = IX'04°,

BORD “M_DOWN = Ix'08°,

BORD_M_HOR]Z = BORD_M_RIGHT + BORD_M_LEFT,
BORD “M_VERT = BORD_M_UP + BORD_M_DOWN.,
BORD_M_ULCORN = BORD_M_DOWN ¢ BORD_M_RIGHT,
BORD “M_URCORN = BORD'M_DOWN ¢ BORD -M”LEFT
BORD_M_LLCORN = BORDM_UP + BORD_M_RIGHT,
BORD_M_LRCORN = BORD_MUP + BORD_M_LEFT;

Certain combinations of the above bit patterns are meaningful, e.g.
BORD_M_VERT + BORD_M_RIGHT represent a ‘'right=-T'' graphic

These bits are used to 'OR’’ together the right total graphic that is
needed at » particular position on the screen to represent some
element of a border.

PR

: The corresponding bit positions:

LITERAL
BORD_V_RIGHT = 1X°00°,
BORD™V_UP = Ix'01°,
BORD -V LEFT = 1X'02°.
BORD_V_DOWN = IX'03';

EC AH-BT13A-SE

ENT CORPORATION
_AND PROPRIETARY

