
TECHNICAL SUMMARY ~n~nomn

TECHNICAL SUMMARY ~D~DD~D

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation .
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

Digital Equipment Corporation makes no representation that the interconnec
tion of its products in the manner described herein will not infringe on existing
or future patent rights, nor do the descriptions contained herein imply the
granting of license to make, use, or sell equipment constructed in accordance
with its description .

The software described in this document is furnished under a license for use
only on a single computer system and can be copied only with the inclusion of
DIGIT Al 's copyright notice. This software , or any other copies thereof, may not
be provided or otherwise made available to any other person except for use on
such system and to one who agrees to these license terms. Title to and owner
ship of this software shall at all times remain in Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for the use or reliabil
ity of its software on equipment that is not supplied by DIGITAL.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECtape,
DECUS, DECwriter, DIBOL, Digital logo, IAS, MASS BUS, OMNIBUS,

PDP, PDT, RSTS, RSX, SBI , UNIBUS, VAX, VMS, VT
are trademarks of

Digital Equipment Corporation .

Copyrigh~1980 Digital Equipment Corporation
Maynard, Massachusetts

ii

INTRODUCTION

2 THE SYSTEM
INTRODUCTION ...

COMPONENTS
Processor
Virtual Memory Operating System
Peripherals

PERFORMANCE

.... 2-1

. 2-1
.... 2-1

........ 2-1
. 2-2

.... 2-3

RELIABILITY 2-3
Data Integrity 2-3
System Availability 2-4
System Recovery 2-4

FLEXIBILITY 2-4
Flexi blity in the Operating Environment 2-5
Flexibility in Programming Interfaces 2-5
Programmer Productivity 2-5
Extending the System 2-5
PDP-11 Compatibility 2-5

3 THE USERS
THE APPLICATION PROGRAMMER 3-1
The Command Language 3-1
Command Procedures . . 3-1
DCL Command Language Summary Table 3-2
RUN Command 3-3
Programming Languages 3-4
Record Management Services 3-5

THE SYSTEM PROGRAMMER 3-5
Job and Process Structure 3-5
Multiprogramming Environment 3-6
Program Development 3-6

THE SYSTEM MANAGER 3-6
User Authorization 3-6
Privileges 3-7
Resource Quotas and Limits 3-7
Priv ileges Summary Table 3-7
Resource Accounting Statistics 3-8
Performance Analysis Statistics 3-8
Display Utility Program 3-8

THE SYSTEM OPERATOR 3-8
Spooling and Queue Control 3-8
Batch Processing 3-9
Online Software Maintenance 3-9
System Recovery 3-9
Error Logging and Reporting 3-9
Online Diagnostics 3- 10
Remote Diagnosis 3-10

THE USER ENVIRONMENT TEST PACKAGE .. 3-10

APPLICATIONS EXAMPLES 3-10
Commercial System Example 3-10
Real-Time Flight Simulation Example 3-13
Design Considerations 3-13

iii

Contents

4 THE VAX PROCESSORS
INTRODUCTION 4-1

VAX ARCHI TECTURE 4-1

PROCESSING CONCEPTS FOR USER PROGRAMMING .. 4-1
Process Virtual Address Space 4-1
Instruction Sets 4-1
Registers and Addressing Modes 4-1
Data Types 4-1
Data Type Table 4-2
Stacks , Subroutines, and Procedures 4-4
Condition Codes 4-4
Exceptions 4-4

USER PROGRAMMING ENVIRONMENT 4-4
Process Virtual Address Space Structure 4-4
General Registers 4-5
Addressing Modes 4-5
Addressing Modes Table 4-6
Program Counter 4-6
The Stack Pointer, Argument Pointer and Frame Pointer .. 4-7
Processor Status Word .4-8
Handling Exceptions 4-8

NATIVE INSTRUCTION SET 4-8
Instruction Set Summary Table4-9
Integer and Floating Point Instructions 4-11
Packed Decimal Instructions 4-11
Edit Instruction 4-11
Character String Instructions 4-12
The Index Instruction 4-12
Variable-Length Bit Field Instructions 4-12
Queue Instructions 4-13
Address Manipulation Instructions4-13
General Register Manipulation Instructions 4-13
Branch, Jump and Case Instructions 4-13
Subroutine Branch, Jump, and Return Instructions 4-14
Procedure Call and Return Instructions 4-15
Miscellaneous Special-Purpose Instructions 4-15

COMPATIBILITY MODE4-15
PDP-11 Program Environment 4-15
PDP-11 Instruction Set 4-16

PROCESSING CONCEPTS FOR SYSTEM
PROGRAMM ING 4-16
Context Switching 4-16
Priority Dispatch ing • 4-16
Virtual Addressing and Virtual Memory 4-17

SYSTEM PROGRAMMING ENVIRONMENT 4-17
Processor Status Longword 4-17
Processor Access Modes 4-17
Protected and Privileged Instructions 4-18
Memory Management 4-18
Virtual to Physical Page Mapping 4-20
Exception and Interrupt Vectors 4-22
Interrupt Priority Levels 4-22
110 Space and 1/0 Processing 4-23
Process Context 4-23

CONSOLE 4-25 Interprocess Communication Facilities•.... 6-12

THE VAX-11 / 780 PROCESSOR 4-27
Common Event Flags 6-13
Mailboxes 6-13

INTRODUCTION 4-27 Shared Areas of Memory 6-14
VAX-11 / 780 PROCESSOR COMPONENTS 4-28 Interprocessor Communication Facility 6-14
VAX-11 / 780 Console 4-28 MEMORY MANAGEMENT 6-14
VAX-11 / 780 Memory Interconnect 4-28 Mapping Processes into Memory 6-14

VAX-11 / 780 MAIN MEMORY AND CACHE SYSTEMS 4-29 Process Virtual Memory and Work ing Set 6-15
Main Memory 4-29
Memory Cache 4-29
Address Translation Buffer 4-29

Paging 6-15
Virtual Memory Programming 6-17
VAX/VMS Memory Management Services 6-17

Instruction Buffer 4-29 PROCESS SCHEDULING 6-1 8
1/ 0 CONTROLLER INTERFACES 4-29 System Events and Process States 6-1 8
VAX- 11 MASS BUS Interface 4-29 Priority: Real-Time and Normal Processes 6-1 8
VAX-11 1780 UNIBUS Interface 4-30 Scheduling Real-Time Processes 6-1 8
Data Throughput 4-30 Scheduling Normal Processes 6- 19

VAX- 11 1780 FLOATING POINT ACCELERATOR 4-30
Swapping and the Balance Set 6-19
VAX/VMS Process Control Services 6-19

THE VAX-11 / 750 PROCESSOR 4-31
1/ 0 PROCESSING 6-19

INTRODUCTION 4-31 Programming Interfaces 6-20
VAX-111750 PROCESSOR COMPONENTS ...•.. 4-31 Ancillary Control Processes 6-20
VAX-111750 Console 4-31 1/ 0 Processing Interfaces Table 6-21
VAX-111750 Main Memory 4-32 Device Drivers 6-21
VAX-111750 Cache Systems 4-32 1/ 0 Request Processing 6-21
Peripheral Controller Interfaces 4-32 COMPATIBILITY MODE OPERATING ENVIRONMENT .. 6-22
VAX-11 MASS BUS Interface 4-33
VAX-11/750 UNIBUS Interface 4-33

User Programming Considerations 6-22
File System and Data Management 6-23

5 THE PERIPHERALS Command Languages 6-23

COMPONENTS 5-1 7 THELANGUAGES

MASS STORAGE PERIPHERALS 5- 1 INTRODUCTION 7-1
Disk Device Table 5- 1 VAX COMMON LANGUAGE ENVIRONMENT 7-1
Disks 5-2
Magnetic Tape • 5-2

Symbolic Debugger Interface 7-1
Symbolic Traceback Facil ity 7-1

UNIT RECORD PERIPHERALS 5-3 Common Run Time Library 7-1
LP11 Line Printers 5-3 VAX Calling Standard 7-1
LA 11 Line Printer•..... 5-3 Exception Handling 7-1
CR11 Card Reader 5-3 VAX-11 RMS 7-1

TERMINALS AND INTERFACES 5-3 VAX- 11 FORTRAN 7-2
LA 120 Hard Copy Terminal 5-4 Introduction•.. 7-2
LA36 Hard Copy Terminal. 5-4 File Manipulation 7-2
VT100 Video Terminal 5-4 Simplified 1/ 0 Formats 7-2
DZ11 Terminal Line Interface•... 5-5 Character Data Type 7-2

REAL-TIME 1/ 0 DEVICES 5-5 Language Extensions to FORTRAN-77 Table 7-3

LPA11 -K 5-5 FORTRAN-77 Features Table 7-4

DR11 -B•.....•.....•........... 5-5 Source Program Libraries 7-5

DR780 5-5 Calling External Functions and Procedures 7-5

INTERPROCESSOR COMMUNICATIONS LINK 5-6
DMC11 5-6
MA780 5-6

Shareable Programs 7-5
Diagnostic Messages 7-5
Compiler Operation and Optim izations 7-5
Debugging Facilities 7-7

CONSOLE STORAGE DEVICES 5-6 Cond itional Compilation of Statements 7-7
RXO 1 Floppy Disk Cartridge 5-7 Symbolic Traceback 7-7
TU58 Tape Cartridge 5-7 VAX- 11 COBOL 7-7

6 THE OPERATING SYSTEM Introduction 7-7

INTRODUCTION 6-1
General Characteristics 7-8
Structured Programming 7-8

COMPONENTS AND SERVICES 6-1 Data Types 7-9
PROCESSING CONCEPTS•... 6-2 Files and Records 7-9
Programs and Processes 6-2 SORT/ MERGE Facility 7-1 0

Resource Allocation 6-4 Symbolic Characters Facility 7-1 0
Privileges 6-4 CALL Facility 7-11
Protection 6-4 Source Library Facility 7-11

USER PROCESS ENVIRONMENT 6-5 Shareable Programs•.... . •....•.... . . 7-11

Virtual Address Space Allocation 6-5
System Services 6-5
System Services Table 6-7
110 System Services 6-10
Local Event Flags 6-11

Debugging COBOL Programs 7-11
Source Translator Utility 7-12
Source Program Formats 7-13
Additional Features 7-13
SampleVAX-11 COBOL Code 7- 13

Asynchronous System Traps 6-11 VAX-11 BASIC 7-14
Exception Conditions and Condition Handlers 6-11 Introduction 7-14
INTERPROCESS COMMUNICATION AND CONTROL. ... 6-12 General Characteristics 7-15
Process Control Services 6-12 Structured Programming 7-15

iv

Data Types•... 7-15
Data Types Table 7-15
Declarations 7-15
Files and Records 7-17
Symbolic Characters • 7-17
CALL Facility 7-18
Shareable Programs 7-18
Developing BASIC Programs • 7-18
The LOAD Command 7-18
Error Handling• 7-18
Migration to VAX/VMS 7-18
Performance 7-20
Additional Functions • 7-20

VAX-11 PL/I 7-21

Introduction 7-21
The G (General-Purpose) Subset •. 7-21
Program Structure 7-22
Program Control 7-22
Storage Control 7-22
Input/Output 7-22
Attributes and Pictures 7-22
Built-in Functions and Pseudovariables 7-22
Expressions 7-23
VAX-11 Extensions to the G Subset Standard 7-23
Procedure-Calling and Condition-Handling Extensions .. 7-23
Support of VAX-11 Record Management Services 7-23
Miscellaneous Extensions and Deviations 7-23
Full PL/I Features Supported 7-23
Implementation-Defined Values and Features 7-24
VAX-11 PL/I Programming Example 7-24

VAX- 11 PASCAL 7-26
Introduction 7-26
Sample VAX-11 Pascal Code 7-27
Compiler Listing Format 7-27
Source Code Listing. 7-27
Mach ine Code Listing 7-29
Cross-Reference Listing 7-29

VAX-11 BLISS-32 7-29
Introduction 7-29
Features of BLISS-32 7-29
VAX-11 Machine-Specific Function Table 7-30
The VAX-11 BLISS-32 Compiler 7-31
Library and Require Files 7-31
Macros 7-31
Debugging 7-31
Transportability Features 7-31
VAX-11 BLISS-32 Sample Program 7-32

VAX-11 CORAL66 7-32

VAX-11MACRO 7-33
Symbols and Symbol Definitions 7-33
Directives 7-33
Listing Control Directives 7-34
Conditional Assembly Directives 7-34
Macro Definitions and Repeat Blocks 7-34
Macro Calls and Structured Macro Libraries 7-34
Program Sectioning 7-34

PDP-11 BASIC-PLUS-2/V AX 7-34
Program Format 7-35
Long Variable and Function Names 7-35
Powerful File 1/ 0 7-35
Powerful Str ing Handling 7-35
Virtual Arrays 7-35
PRINT USING Output Formats 7-35
Subprograms and the CALL Statement 7-35
COMMON Statement 7-35
Debugging Statements 7-35

PDP-11 FORTRAN IV IV AX to RSX 7-36

MACR0-11 7-36
Symbols and Symbol Defin itions •..... 7-36
Directives 7-36

v

8 PROGRAM DEVELOPMENT AND
SUPPORT FACILITIES
INTRODUCTION 8-1

TEXT EDITORS 8-1
File Names and File Types 8-1

SOS EDITOR 8-1
Initiating and Terminating SOS 8-1
SOS Examples 8-2

EDT EDITOR 8-2
What EDT Does 8-2

EDT SPECIAL FEATURES 8-2
Editing with a Window 8-2
Start-up File 8-2
HELP Facilities 8-2
The Keypad•. 8-2
Redefining Keypad Keys 8-3
The SET and SHOW Commands 8-3
Journal Processing 8-3
The EDT CAI Program 8-3
EDT Modes of Operation 8-3

SLP EDITOR•. 8-3
Initiating and Terminating SLP 8-3
SLP Input and Output Files 8-3
Correction Input File 8-3
SLP Output File 8-4

LINKER 8-4
The LINK Command 8-4
Virtual Memory Allocation 8-4
Resolution of Symbol ic References 8-4
Image Initialization 8-4
Overview of Linker Interface to Memory Management 8-4
Linker Input 8-4
Object Module Files 8-5
Object Module Libraries 8-5
Shareable Image Files 8-5
Shareable Image Symbol Tables 8-5
Linker Output 8-5

COMMON RUN TIME PROCEDURE LIBRARY 8-5
Resource Allocation Group (LIB$) 8-5
Signal and Condition Handling 8-6
General Utility (LIB$) 8-6
Mathematical Functions (MTH$) 8-6
Language-Independent Support (OTS$) • 8-6
Language-Specific Support (FOR$, BAS$) 8-6
String Processing (STA$) 8-6
System Procedures 8-6
Compiled-Code Support Procedures 8-6
Error Processing Procedures 8-6

VAX-11 SYMBOLIC DEBUGGER 8-6
DEBUG Commands 8-7

THE LIBRARIAN UTILITY • 8-7
Librarian Routines 8-7
DCL LIBRARY Command 8-7

COMMAND LANGUAGE PROCEDURES 8-8
Passing Parameters to Command Procedures 8-8
Log ical Commands 8-8
Lexical Functions 8-8
Command Procedure Example 8-8

DIFFERENCES UTILITY 8-9

VAX-11 RUNOFF 8-10
Filling and Justifying 8-10
Page Formatting 8-10
Title Formatting 8-10
Subject-Matter Formatting 8-10
Index and Table of Contents 8-10
Miscellaneous Formatting 8-10

9 DATA MANAGEMENT SERVICES
INTRODUCTION 9-1

FILE MANAGEMENT 9-1
File Directories and Directory Structures 9-1
File Specifications 9-1

Logical File Naming 9-3
File Management 9-4

RECORD MANAGEMENT SERVICES 9-4

RMS FILE ORGANIZATIONS•...... 9-5
Sequential File Organization •.... 9-5
Relative File Organization 9-5
Indexed File Organization 9-5

RMS RECORD ACCESS MODES 9-6
Sequential Record Access Mode 9-6
Random Record Access Mode 9-7
Record 's File Address (RFA) Record Access Mode 9-7
Dynamic Access 9-7

FILE AND RECORD ATTRIBUTES 9-7
Record Formats 9-8
Key Definitions or Indexed Files 9-8

PROGRAM OPERATIONS ON RMS FILES 9-9
File Processing 9-9
Record 1/ 0 Processing 9-9
Block 1/ 0 Processing 9-10

RMS RUN TIME ENVIRONMENT 9-11
Run Time File Processing • 9-11
Run Time Record Processing 9-11
RMS Record Locking 9-12

LANGUAGE UTILITIES•........ 9-12

DATATRIEVE 9-12
DA TA TRIEVE Inquiry Facility 9-12
DATATRIEVE Report Writer Facility 9-12
Basic Commands 9-12
Terminology 9-13
Keywords 9-13
Additional DATATRIEVE Features 9-13

VAX-11 SORT/MERGE 9-14

VAX-11 SORT/ MERGE FEATURES 9-15
SORT / MERGE as a Set of Callable Subroutines 9-16
Filel / Olnterface 9-16
Record 1/ 0 Interface 9-16
Programming Considerations .. 9-16

SORT/ MERGE PERFORMANCE FEATURES 9-16

VAX-11 FORMS MANAGEMENT SYSTEM (FMS) 9-16
Using Forms in an Application 9-16
Developing Applications with VAX-11 FMS 9-17
Maintaining VAX-11 FMS Applications 9-17

vi

10 DATA COMMUNICATIONS FACILITIES
INTRODUCTION 10-1

DIGITAL NETWORK ARCHITECTURE 10-2
User Layer 10-2
Network Services Layer 10-2
Data Link Layer 10-2
Pysical Link Layer 10-2

DECNET-VAX FEATURES 10-2
File Handl ing Using a Terminal 10-2
File Handling Using Record Management Services 10-3
Network Command Terminal 10-3
Intertask Communications 10-3

DIGITAL COMMAND LANGUAGE (DCL) FILE HANDLING 10-3

RECORD MANAGEMENT SERVICES FILE HANDLING .10-4

SAMPLE VAX-11 FORTRAN INTERTASK
COMMUNICATION .1 0-4
Creating a Log ical Link Between Tasks 10-4
Send ing and Receiving Messages 10-4
Disconnecting the Logical Link 10-4
VAX-11 FORTRAN Intertask Communication Example .. 10-4

MACRO TRANSPARENT INTERTASK
COMMUNICATION 10-4
Creating a Logical Link Between Tasks 10-4
Sending and Receiving Messages 10-6
Disconnecting the Logical Link 10-6

MACRO CALLS 10-6

MACRO NONTRANSPARENT INTERTASK
COMMUNICATION 10-6
Task Messages 10-7

PROTOCOL EMULATORS (INTERNETS) 10-7
VAX-112780/ 3780 Protocol Emulator 10-7
MUX200/VAX Multiterminal Emulator 10-7

APPENDIX A

APPENDIX B

APPENDIXC

GLOSSARY

INDEX

l
Introduction

The VAX Technical Summary introduces the characteristic features
and capabilities of the VAX system to computer analysts and system
programmers. Application programmers, and system managers and
operators may also use this summary as a tool to become familiar with
the components, services, and operations of the VAX system.

The intent of this summary is to familiar ize the reader with
the features and capabilities of the VAX (Virtual Address
Extension) system. It serves as a detailed technical intro
duction to the growing family of VAX processors, the
powerful and unique Virtual Memory operating System,
VAX/VMS, and the increasing number of supported peri
pherals. In particular, this edition of the VAX Technical
Summary introduces several significant system enhance
ments:

• the newest member of the VAX family of processors, the
VAX-11 / 750

• version 2.0 of the VAX/VMS operating system

• the addition of major new languages including VAX-11
FORTRAN, VAX-11 COBOL, VAX-11 BASIC, VAX-11
PL/I , VAX-11 PASCAL, VAX-11 CORAL 66, and VAX-11
BLISS-32

Although the VAX Technical Summary contains useful in
formation for the application programmer, the system
manager, and the computer operator, the level of technical
detail makes the book particularly appropriate for the sys
tem programmer and/or computer system analyst.

As the reader proceeds through the technical summary,
the term "VAX architecture" or simply "architecture" may
seem confusing . VAX architecture is the collection of at
tributes that all family members have in common that as
sures software compatibility. For example, the architec
ture includes the instruction set, the addressing modes,
data types, etc. Examples of attributes not included in the
arch itecture are processor internal bus structure, im
plementation-specific privileged reg isters , execution
speed , etc. As new processors are added to the VAX fami
ly, a significant part of the engineering effort will be dedi
cated to preserving this software compatibility. This will
assure that programs written for today's VAX computers
will execute on future VAX systems.

The VAX Technical Summary is designed to be read in ei
ther a selective or sequential manner. The reader might
start with section 1 and continue through the book, or first
glance through the table of contents to locate those topics
of most interest. As an added convenience, an abstract
can be found prefacing each section of the summary.
Many of the system's concepts and features are repeated
throughout the text in various contexts. Appendix A con
tains a collection of most frequently used mnemonics and
their definitions.

The following paragraphs introduce the VAX Technical
Summary.

The System section presents a comprehensive overview of
VAX system features . This section serves as an introduc
tion for the reader presently familiar with computer indus
try terminology, identifying VAX characteristics and intro
ducing the system features described in detail throughout
the remainder of the summary.

The Users section contains a description of the command
language and its features. It also introduces many of the
aspects of the system that support applications program
ming, system management, and operator control.

The VAX Family of Processors and Operating System
sections provide an in-depth discussion of the system 's
characteristics and capabilities. The concepts developed

1-1

in both sections are closely related ; for example, the re
spective discussions of memory management, 1/0 proc
essing , and the compatibility mode environment should be
read together to gain a full appreciation for the system's
design . These sections should prove beneficial to systems
programmers or analysts already familiar with an assem
bly language or software executive.

Perhaps one of the most important features of the VAX
system is that its programmers do not have to know as
sembly language to use the system effectively. Both the
hardware and software contain many features that pro
mote efficient and productive high-level language pro
gramming. High- level language programmers should find
the Users, Languages, Data Management Services, and
Network Services sections, of particular interest. The be
ginning of the Operating System section is also helpful be
cause it introduces some of the VAX software terminology
and concepts.

Also of interest to high level language programmers is the
Program Development section which describes the basics
of creating , ed iting , debugging , and executing a program
written in any of the VAX high level languages. This section
also contains an introduction to some of the advanced fea
tures of the command language.

If the reader is uncertain about a particular term or phrase,
its definition can probably be found in the glossary at the
end of the summary. The glossary does not generally con
tain standard computer-related terms, but it does contain
most of the terms found throughout the VAX
documentation that have special meanings in the context
of the VAX system. The glossary is followed by a list of
mnemonics that may be encountered in the text. The mne
monics list is particularly useful during the system famili
arization stage.

For additional literature describing VAX features, capabili
ties and applications please contact the nearest DIGITAL
sales office.

2
The

System

The VAX system provides the performance, reliability, and program
ming features often found only in much larger systems. The VAX family
of processors have a 32-bit architecture based on the PDP-11 fam ily of
16-bit minicomputers. While using addressing modes and stack struc
tures similar to those of the PDP-11 , VAX provides 32-bit addressing
for a 4 gigabyte program address space, and 32-bit arithmetic and data
paths for processing speed and accuracy.

The processor's variable length instruction set and variety of data
types, including decimal and character string , promote high bit effi
ciency. The processor hardware and instruction set specifically imple
ment many high-level language constructs and operating system func
tions.

VAX is a multiuser system for both program development and applica
tion system execution. It is a priority-scheduled, event-driven system :
the assigned priority and activities of a process in the system determine
the level of service needed. Real-time processes receive serv ice
according to their priority and ability to execute, wh ile the system man
ages CPU time and memory residency allocation for normal executing
processes.

VAX is a highly reliable system. Built-in protection mechanisms in both
the hardware and software ensure data integrity and system availabili
ty. On-line diagnostics and error detecting and logging ver ify system
integrity. Many hardware and software features provide rapid diag
nosis and automatic recovery should power, hardware, or software fail.

The system is both flexible and extendible. The virtual memory operat
ing system enables the programmer to write large programs that can
execute in both small and large memory configurations without
requiring the programmer to define overlays or later modify the pro
gram to take advantage of additional memory. The command language
enables users to modify or extend their command repertoire easily,
and allows applications to present their own command interface to
users.

INTRODUCTION
VAX is a high performance multiprogramming computer
system ideally su ited for a wide variety of applications in
cluding real time, batch, time sharing, commercial, data
processing , and program development. The system com
bines a 32-bit architecture, efficient memory management,
and a virtual memory operating system to provide essen
tially unlimited program address space.

The processor's instruction set includes floating point,
packed decimal arithmetic, and character string instruc
tions. Many of the instructions are direct counterparts for
high-level language statements. The software system sup
ports programming languages that take advantage of
these instructions to produce extremely efficient code.

The VAX/VMS virtual memory operating system provides
a multiuser, multilanguage programming environment on
the VAX hardware. The floating point instructions, efficient
scheduler , and optional VAX-11 FORTRAN language are
ideal for real-time and scientific computational environ
ments. The optional VAX-11 COBOL language, data man
agement services, and large capacity peripherals make
the system equally suited to commercial applications .
VAX/VMS supports many other optional high level lan
guages suited for other applications. The system manage
ment facilities, command language, and program develop
ment tools provide the resources for efficient program ap
plications development and execut ion . Spooling and
extensive job control capabilities support batch process
ing.

The processor executes variable length instructions in na
tive mode, and non-privileged PDP-11 instructions in com
patibility mode. Native mode includes the PDP-11 data
types, and uses addressing modes and instructions similar
to those of the PDP-11 . The software supports compatible
languages and file and record formats .

COMPONENTS
The major components of a VAX system are:

• Processor-includes the basic central processing unit
implementing the VAX architecture. The specific im
plementations of the VAX processors will be treated in
greater detai l in Section 4, The VAX Processors.

• Operating System-includes a virtual memory man
ager, swapper, system services, device drivers, file sys
tem , record management services, command language,
and operator's and system manager's tools.

• Languages-includes the native mode languages VAX-
11 MACRO and optionally, VAX-11 FORTRAN, VAX-11
COBOL, VAX-11 BASIC, VAX-11 PL/I , VAX-11 PASCAL,
VAX-11 BLISS-32 , and VAX-11 CORAL 66. Also sup
ported in compatibility mode are PDP-11 BASIC-PLUS-
2/V AX , PDP-11 FORTRAN IV/VAX to RSX , and
MACR0-11 . Development tools for both native and
compatibility mode programs include editors, linkers, li
brarians, and debuggers.

• Peripherals-includes a range of small- and large-ca
pacity disk drives, magnetic tape systems, hard copy
and video term inals, line printers, card readers, and
real-time 1/0 devices.

2-1

• Network Services-includes the DECnet-VAX network
software and the DMC11 interprocessor communica
tions link.

Processor
Architecturally , a VAX processor provides 32-bit address
ing, sixteen 32-bit general registers, and 32 interrupt pri
ority levels. The instruction set operates on integer, float
ing point, character and packed decimal strings, and bit
fields. The instruction set supports nine addressing
modes.

The processor includes an efficient memory cache result
ing in greatly reduced memory access time.

Error Correcting Code (ECG) MOS memory is connected
to the memory interconnect via a memory controller . Each
memory controller includes a request buffer that substan
tially increases overall system throughput and eliminates
the need for interleaving in most applications.

The processor uses two standard clocks-a program
mable real-time clock used by the operating system and
by diagnostics, and a time-of-year clock used for system
operations. The time-of-year clock includes battery back
up for automatic system restart operations.

The console is the operator 's interface to the central
processor. Via the console terminal, the operator can exe
cute diagnostics, install new software, examine and depo
sit data in memory locations or processor registers , halt
the processor, step through instruction streams, and boot
the operating system.

Virtual Memory Operating System
VAX/VMS is a multiuser, multifunction virtual memory op
erating system that supports multiple languages, an easy
to use interactive command interface, and program devel
opment tools. The VAX/VMS operating system is designed
for many applications, including scientific/real-time, com
putational , data processing , transaction processing, and
batch .

The operating system performs process-oriented paging,
which allows execution of programs that may be larger
than the physical memory allocated to them. Paging is
handled automatically by the system, freeing the user from
any need to structure the program. In the VAX/VMS oper
ating system, a process pages only against itself-thus in
dividual processes cannot significantly degrade the per
formance of other processes.

The memory management facilities provided by the oper
ating system can be controlled by the user. Any program
can prevent pages from being paged out of its working set.
With sufficient privilege, it can prevent the entire working
set from being swapped out , to optimize program
performance for real-time or interactive environments.
Sharing and protection are provided for individual 512-
byte pages. The processor's memory management in
cludes four hierarch ical processor access modes that are
used by the operating system to provide read/write page
protection between user software and system software.
The access modes from most to least privileged are ker
nel , executive, supervisor, and user.

VAX/VMS schedules CPU time and memory residency on
a pre-emptive prior ity basis. Thus, real-time processes do

not have to compete with lower priority processes for
scheduling services. Scheduling rotates among processes
of the same priority. The scheduler adjusts the priorities of
processes assigned to one of the low 16 priorities to i m
prove responsiveness and to overlap 1/0 and computa
tion . Real-time processes can be placed in one of the top
16 scheduling priorities , in which case the scheduler does
not alter their priority. Their priorities can be altered by the
system manager or an appropriately privileged user.

Interprocess communication is provided through shared
files and shared address space, event flags , and mailbox
es wh ich are record-oriented virtual devices.

VAX/VMS provides system management facilities . A sys
tem manager and a system operator are given the tools
necessary to control the system configuration and the op
erations of system users for maximum efficiency.

The VAX/VMS command language is easy to learn and
use, and is suitable for both the interactive and batch envi
ronments. Extensive batch facilities under VAX/VMS in
clude job control, multistream spooled input and output,
operator control, conditional command branching and ac
counting .

Command procedures are supported by the command
languages as an easy method of executing strings of fre
quently used sequences of commands, or creating new
commands from the existing command set. Command
procedures accept parameters and can include extensive
control flow.

VAX/VMS provides a program development capability
that includes editors, language processors, and a symbol
ic debugger. The VAX-11 FORTRAN, VAX-11 COBOL,
VAX-11 BASIC, VAX-11 PL/I , VAX-11 PASCAL, VAX-11
BLISS-32, VAX-11 CORAL 66, and VAX-11 MACRO lan
guage processors produce native code. The PDP-11 BA-

SIC-PLUS-2/VAX,PDP-11 FORTRAN IV/VAX to RSX, and
MACR0-11 lang:.iage processors produce compatibility
mode code.

The VAX/VMS operating system provides a file and record
management facility that allows the user to create, access,
and maintain data files and records within the fi les with full
protection . The record management services handle se
quential , relative , and multi-key indexed file organ izations,
sequential and random record access, and f ixed and vari
able-length records. Indexed files with sequential and ran
dom record access are available to compatibility mode
programs, such as those written in PDP-11 BASIC-PLUS-
2/VAX.

The VAX/VMS operating system supports the Files-11 On
Disk Structure Level 2 (ODS-2), which provides the facili
ties for file creation , extension , and deletion with owner
specified protections and multilevel d irectories . On-Disk
Structure Level 2 is upwardly compatible with Level 1, the
file system currently available under the PDP-11 IAS and
RSX-11 operating systems. Both native and compatibility
mode programs can access both Level 1 and Level 2 vol
ume structures.

DECnet-VAX networking capabilities are availab le as an
option for point-to-point interprocess communication , file
access, and file transfer , and include down-line com mand
file and RSX-11 S system image loading. The Network
Command Terminal facility allows users on one system to
log into another VAX system on the network . The Mail fa
cility allows electronic mail to be addressed to users on
any VAX node in the network.

Peripherals
Medium capacity disks, unit record devices, termi nals, the
interprocessor communications links, and user-specific
devices are UNIBUS peripherals. The UNIBUS adaptor(s)

. "'. . f4 ¥ ~~£.~ ~ " •
mll VAUro ·U· -~-:

11

11

2-2

(

provides the hardware pathways for data and control in
format ion to move between the UNIBUS and the memory
interconnect.

High-performance MASSBUS mass storage peripherals
are connected to the memory interconnect via a buffered
MASSBUS adaptor. The MASS BUS adaptors provide the
hardware pathways for data and control information to
move rapidly between a MASSBUS peripheral controller
and the memory interconnect.

PERFORMANCE
Many features of VAX ensure that the system provides
real-time, computation , and transaction processing appli
cations with the processing speed and throughput they
need.

The processor provides 64-bit, 32-bit, 16-bit, and 8-bit
arithmetic, instruction prefetch, and an address translation
buffer.

An optional high-performance float ing point accelerator
(FPA) can be added to the VAX-11 /780 system. The FPA is
an independent processor executing in parallel with the
base CPU. The FPA takes advantage of the CPU's instruc
tion buffer to prefetch instructions and memory cache to
access main memory. Once the CPU has the required da
ta, the FPA overrides the normal execution flow of the
standard floating point microcode and forces use of its
own code. Then , while the FPA is executing , the CPU can
be perform ing other operations in parallel. The FPA exe
cutes standard floating point instructions with substantial
performance improvement. This execution is architectur
ally transparent to the programmer. In addition , the FPA
enhances the performance of a number of additional in
structions including :

• extended multiply and integerize (EMOD)

• polynom ial evaluation (POLY) , (F _f loating and
D_floating formats for both instructions)

• all floating to integer and integer to float ing conversions

• 8- and 16-bit integer multiply (MULB and MULW)

• extended multiply (EMUL)

• 32-bit integer multiply (MULL)

The EMOD instruction is used for fast, accurate range re
duction of mathematical function arguments. The POLY
instruction is used extensively in the evaluation of mathe
matical functions such as sine and cosine (the VAX/VMS
mathematics library makes use of the POLY instruction to
sign ificantly reduce the execution time of its subroutines).
The MULL instruction is often used in matrix manipulation
subscript calculations.

The VAX processor architecture is specifically designed to
support high-level language programming. Because the
instruct ion set is extremely bit efficient, compilation of high
level language user programs is also very efficient. Among
the features of the processor that serve to reduce program
size and increase execution speed are the:

• variable length instruction format

• float ing point, packed decimal, and character string da
ta types

• indexed, short displacement, and program counter rela
tive addressing modes

2-3

• small constant short literals

Furthermore, many instructions correspond directly to
high-level language constructs:

• the Add Compare and Branch instruction for DO and
FOR loop control

• the Case instruction for computed GO TO statements

• the 3-operand arithmetic instructions for statements
such as "A = B+C"

• the Index instruction for computing index values, includ-
ing subscript range checking

• the Edit instruction for output formatting

Much of the processor architecture also ensures that the
operating system incurs minimal overhead for real-time
multiprogramming. For example, the operating system
uses:

• the context-switching instructions and queue instruc
tions to schedule processes

• the asynchronous system trap (AST) delivery mecha-
nism to speed returns from system service calls

Careful design , coding , and performance measurement
ensure that the flow within the system is as rapid as possi
ble.

RELIABILITY
Built-in reliability features for both hardware and software
provide data integrity, increased up-time, and fast system
recovery from power, hardware, or software failures . Sev
eral of the VAX rel iab ility features are discussed in the fol
lowing paragraphs.

Data Integrity
VAX provides memory access protection both between
and with in processes. Each process has its own indepen
dent virtual address space which can be mapped to pri
vate pages or shared pages. A process cannot access any
other process' private pages. The VAX/VMS operating
system uses the four processor access modes to read
and/or write protect individual pages within a process.
Protection of shared pages of memory, files , and interpro
cess communicat ion facilities such as mailboxes and
event flags is based on file ownership and application
group identification .

The VAX/VMS file system detects bad blocks dynamically
and prevents re-use once the files to which they are allo
cated are deleted.

Integral fault detection hardware includes:

• memory error correcting code that detects all double-bit
errors and corrects all single-bit errors

• disk error correcting code that detects all errors up to
11 bits and corrects errors in a single burst of 11 bits

• extensive parity check ing

• peripheral write-verify checking that checks all input
and output disk and tape operations and ensures data
reliability

• track offset retry hardware that enables the operating
system to recover from many disk transfer errors

System Availability
The VAX/VMS operating system allows the VAX system to
continue running even though some of its hardware com
ponents have failed. The system automatically determines
the presence of peripherals on the processor at bootstrap
time. If the usual system device is unavailable, the system
can be bootstrapped from any disk. If memory units are
defective, memory is configured so that defective modules
are not referenced . Software spooling allows output to be
generated even if the normal output devices are not avail
able. Also, devices can be added on line.

The system operator can perform software maintenance
activities without bringing the system down for stand-alone
use. The operator can perform disk backup for both full
volume backup/restore and single file backup/restore
concurrent with normal activities .

The VAX/VMS operating system supports on-line peri
pherals diagnostics. VAX/VMS performs on-line error log
ging of CPU errors, memory errors, peripheral errors, and
software failures. The operator or field service engineer
can examine and analyze the error log file while the system
is in operation.

System Recovery
Automatic system restart facilities bring up the system
without operator intervention after a system failure caused
by a power interruption, a machine check hardware mal
function, or a fatal software error. The VAX/VMS operating

2-4

- -
. ,:.:; -

"--

system automatically performs machine checks and inter
nal software consistency checks during system operation .
If the checks fail , VAX/VMS performs a system dump and
reboots the system if the operator has set the system for
auto-restart.

Memory battery backup can be used to preserve the con
tents of memory during a power outage. A special memory
configuration register indicates to the recovery software
whether data in memory was lost. Following a power fail
ure, the recovery software restarts all possible 1/0 in pro
gress before the failure occurred. Programs can use the
VAX/VMS power-fail asynchronous system trap facil ity to
initiate user-specific power fail recovery processing . If
memory battery backup is used, the time-of-year clock al
lows the recovery software to calculate elapsed time of the
outage.

VAX remote diagnosis allows DIGITAL to run diagnostics,
examine memory locations , and diagnose hard
ware/software problems from a remote diagnosis center.
The engineer who goes to the site is prepared in advance
to correct any problems that may have occurred .

FLEXIBILITY
VAX is a system that is easy to use because it is both flexi
ble and easy to extend. Several of the ways in which VAX
provides the user with flexible operating and programming
environments are introduced below.

Flexibility in the Operating Environment
Virtual memory gives the user the ability to write and exe
cute arbitrarily large programs without concern for
addressing limitations. The paging and swapping algo
rithms allow more programs to execute than the available
physical memory would allow if all programs had to be to
tally resident.

Both paging and swapping are transparent to the user,
and therefore allow the system to be extended without re
programming . The system's physical memory configura
tion can change without requiring program redesign or re
linking . Programmers never have to structure their pro
grams, although they can, at their option, to achieve maxi
mum efficiency and performance for a given program .
They can control working set size, lock pages in the work
ing set or memory, and lock an entire working set in mem
ory. In addition, the system manager can control the a
mount of time a process is guaranteed memory residency
once it is swapped in .

The VAX/VMS scheduler recognizes 32 scheduling priori
ties. A program can modify its priority during execution .
Real-time processes execute at one of the high 16 priority
levels, and normal processes (including system process
es) execute at one of the low 16 priority levels . The sche
duler may temporarily increase the priority of a normal
process to increase its response to 1/0 events or system
events (but it can never lower the priority of real-time proc
ess).

Batch and printer output processing are completely flexi
ble. The operator controls the number of batch jobs that
can run concurrently. The operator defines the number of
spooler queues. There can be multiple print queues: a
generic queue for jobs that can be output on any printer,
and several queues for jobs that are designated for a spe
cific printer.

Batch jobs can be submitted to batch streams from the in
teractive environment using a terminal command, from
another batch job, or by any program using a system call .
Submitted batch jobs are queued, and a time can be spec
ified after which a batch job should be executed .

Flexibility in Programming Interfaces
The 1/0 programming facilities can be as device-indepen
dent or device-specific as desired. The record manage
ment services support high-level programming languages
by providing transparent record access and also enable
the programmer to request specific record management
services or system services to control file allocation, re
cord blocking, or record accessing directly. Programmers
can also use the system services to access file-structured
devices or non-file structured devices if they wish to use
their own record processing or volume structuring tech
niques.

Access to network facilities is device-independent, but a
user who so desires can exert control over operations to
obtain error reports or notification of broken connections
(interrupt messages, inbound connections) . System ac
cess protection applies to all network access.

Programmer Productivity
In addition to the system's reliability and performance fea
tures described above, VAX offers many tools to aid pro
grammer productivity.

2-5

• Interactive editors with CAI startup-VAX/VMS sup
ports several interactive and batch text editors,
including SOS, SLP, and now the DIGITAL standard edi
tor EDT. The system features a computer-aided instruc
tion course to introduce the user to the power and flexi
bility of EDT.

• Interactive symbolic debugger-The interactive symbol
ic debugger provides a fast and efficient method by
which the user can trace program errors. The debugger
offers the user such features as; support of various na
tive languages, support of many data types, and its in
teractive symbolic operation, i.e., the user can refer to
program locations using those symbols created within
the program.

• FMS interactive screen format generation-The Forms
Management System contains an interactive editor
which allows the application programmer to create
and/or modify screen formats.

• DATATRIEVE-DATATRIEVE software provides fast
and convenient access to data within a file or files. This
query/report writing system provides the user with ei
ther video or hardcopy output.

• HELP facility-The HELP facility provides the user with
on-line instructions pertaining to selected system oper
ations.

Extending the System
The VAX/VMS command language can be extended with
user-defined commands through the use of command
procedures. A command procedure is a set of commands,
data, or other command procedures processed in se
quence. The user can invoke command procedures by a
single command that can include parameters for the pro
cedure, such as file names or values for symbols. Com
mand procedures can execute programs, transfer control
within the command procedure conditionally or uncondi
tionally, request input from the user, and manipulate
numeric and string symbols.

VAX/VMS uses a standard procedure call interface sup
ported by the processor's call instructions. The calling
program and called procedure can be written in different
languages. This contributes to the writing of error-free,
modular, and maintainable software that can be shared by
many programs. The standard procedure call interface is
particularly useful to systems programmers who want to
add their own shareable libraries and library procedures
to the VAX/VMS Common Run Time Procedure Library.

PDP-11 Compatibility
Users who already know the PDP-11 will find the native
VAX-11 instruction set and programming characteristics
easy to learn when developing new applications for the
VAX system. The PDP-11 and the VAX systems have al
most identical FORTRAN, BASIC, and COBOL languages.
Users who have programmed in any of these languages on
the PDP-11 will need to spend very little time learning the
VAX system.

VAX offers many PDP-11 compatibility features :

• the VAX processor can execute a subset of PDP-11 16-
bit instructions in compatibility mode

• the VAX/VMS operating system provides functionally
equivalent system services for many RSX-11 M execu-

tive directives

• the VAX/VMS high-level language compilers accept
source languages that are upwardly compatible with the
same PDP-11 compilers

• the VAX/VMS file system can read and write disk vol
umes and magnetic tapes written under RSX-11 and IAS
operating systems

• the VAX/VMS record management services provide

2-6

record processing methods that are upwardly compati
ble with RMS-11 record management services

• the VAX/VMS operating system provides an RSX-11
MCA command language interpreter

• the DECnet-VAX package supports RSX-11S system
image down-line loading

These features make VAX an ideal host system to PDP-11
systems in a distributed processing environment.

3
The

Users

The VAX system is designed to execute many different kinds of jobs
concurrently. Jobs consist of one or more processes, each of which
can be executing a program image that interacts with on-l ine users,
controls peripheral equipment, and communicates with other jobs in
the same system or in remote computer systems. Jobs include:

• customer-written interactive, batch, and real-time applications

• interactive and batch program development jobs

• system management and control jobs

Typically, VAX users interact with application or system jobs via an on
line terminal , or benefit from production batch or real-time jobs. To aid
in the development of interactive, batch, and real-time applications ,
and manage and control system resources, VAX enables:

• The application programmer to write, compile, and test programs in
teractively or in batch mode, taking advantage of source code, object
code, and program image libraries.

• The system programmer to design application systems that require a
high degree of job and process interaction, data sharing, response
time, and system and device independence.

• The system manager to authorize users, limit resource usage, and
grant or restrict privileges individually.

• The system operator to monitor operations, service user requests,
and control batch production .

Users can directly control the operation of VAX through the operating
system's command language. In general, the command language is
used by programmers to develop application software, by operators to
monitor the system, and by system managers to assign user privileges.

Application programmers may also employ the command language to
execute their application programs explicitly. The command language
may be easily extended to provide custom-tailored commands defined
by the user. Customer-written application programs can prov ide their
own command interfaces for people using the system. Transaction
processing applications may require several terminals to be slave ter
minals, meaning that they are tied to particular application programs
that handle requests entered by the user.

The system manager can assign access user names and passwords to
users who log on the system at a command terminal, and determine
their privileges for obtaining services and limits for using resources .
Users who access the system through an application terminal interface
have the resources and privileges granted to the application programs
run on their behalf. An application program itself determines who can
request its services.

THE APPLICATION PROGRAMMER
The application programmer has four basic tools for re
questing services of the system :

• command interpreter

• programming languages

• programmed file and record management services

• programmed system services

The application programmer gains access to the system
through the command interpreter. The command interpre
ter enables the programmer to create, compile, and exe
cute programs written in any of several programming lan
guages. The record management services are available
through any programming language to provide device-in
dependent data processing . The system services , al
though primarily of interest to systems programmers, are
also available to the application programmer for request
ing special services of the operating system .

Command Language
The command interpreter is interactive, comprehensive,
easy to use, and extremely flexible. It enables the user to
log onto the system, manipulate files , develop and test
programs, and obtain system information . Furthermore, it
enables users to extend or redefine their command reper
toire as well as write command procedures easily. The
command language includes:

• a set of English commands that provide the basic com
mand reperto ire

• a set of control characters that provide special functions
such as erase command line, interrupt the program cur
rently executing , etc.

• a set of special operators and commands that can be
used to automate command streams and extend the
command repertoire

Table 3-1 lists the basic set of English commands accept
ed by the command interpreter. The command interpreter
is easy to use because its commands can be abbreviated ,
because it prompts for necessary arguments, and be
cause it assumes standard or user-selected default values
for command parameters and qualifiers.

A command line normally consists of a command verb fol
lowed by one or more parameters that identify the object
of the operation (a file, for example) or qualify how the op
eration is to be performed. If the interactive user enters an
incomplete command, the command interpreter prompts
for any necessary parameters. For example, the COPY
command, which creates a copy of an existing file, accepts
a total of two file specifications: one for the file to be creat
ed and one for the file to be copied. The file specifications
identify the exact location and name of the files . The COPY
command can be entered in any of several ways:

$copy
$_FROM : file-name-1
$ TO: file-name-2

$copy file-name-1
$_TO : file-name-2

$copy file-name-1 file-name-2

3-1

The command interpreter displays the dollar sign to
prompt for a command , and the dollar sign underscore to
prompt for a missing parameter.

Command Procedures
To eliminate the need for typing frequently repeated se
quences of commands, users can create command pro
cedures. A command procedure is a file containing com
plete command lines (including the $ prompt character) .
The user can request the command interpreter to read and
process the command lines in a command procedure file
just as if they were being typed successively at the termi
nal. To execute a command procedure, the user simply
precedes the name of the command procedure file with an
"at" sign(@):

$ @procedure-file

Figure 3-1 is a simple example of how the user might cre
ate, interactively, a new command called EXECUTE. The
user has previously written a VAX-11 PASCAL program
named AVE, and now wishes to compile, link, and execute
this program. To the user, EXECUTE appears to be a com
mand like any other command in the DCL command re
pertoire. The first step is to create the command pro
cedure file EXECUTE.COM. Following this, the user enters
the PASCAL, LINK, and RUN DCL commands as input to
the command file .

The blue dollar signs in Figure 3-1 represent DCL system
prompts, the remainder of the text is user supplied.

$ CREATE EXECUTE.COM
$PASCAL AVE
$LINKAVE
$RUN AVE
tz (CONTROL Z)
$

Figure 3-1
A Simple Command Procedure

Now, to execute the command procedure file , EXE
CUTE.COM, the user can type:

$ @EXECUTE

or the user can create a symbol to execute the command
file . The user may equate a unique series of letters to the
command procedure file . For instance:

$EXE:= @EXECUTE

Now, to execute the command procedure file,
EXECUTE.COM , the user need only type the symbol EXE:

$EXE

The user could just as easily have created a symbol called
GO to execute the command procedure file EXE
CUTE.COM. In this instance:

$ GO:=@EXECUTE

Now, to execute the command file, EXECUTE.COM, the
user can enter GO in response to the DCL prompt($):

$GO

Table 3-1
DCL Command Language Summary

GENERAL SESSION INFORMATION
AND CONTROL

LOGIN

HELP

SHOW

SET

ASSIGN

DEFINE

DEASSIGN

MGR

LOGOUT

REQUEST

The user initiates an interactive session with
the system by typing CTRL/C, CTRL/Y or by
pressing the carriage return on a term inal not
currently in use. The system then prompts for
username and password, and validates them .

Displays information to assist the user in se
lecting the proper command qualifiers.

Displays any of the following information : cur
rent day, date, and time; current default de
vice and directory name; status of devices in
the system; logical device name assignments;
current characteristics and status of specified
mag tape device; name, number, and status
of local network node and lists available re
mote nodes; default characteristics of system
printer; status of current process ; current file
protection to be applied to all new files creat
ed during terminal session or batch job; cur
rent status of entries in printer / batch job
queues; current disk quota; current VAX-11
RMS default multi block and multibuffer
counts; status of currently executing image in
process; current value of a local or global
symbol ; displays a list of processes and status
information in system ; current characteristics
of a specified terminal ; logical name transla
tions; display of working set quota and limit
assigned to current process.

Defines default translation mode for cards
read into system card reader; controls wheth
er command interpreter receives control
when CTRL/Y is pressed; changes the user's
default device name or directory name; de
fines default characteristics for specific mag
tape device; determines whether command
interpreter performs error checking following
execution of commands in command pro
cedures; changes execution characteristics of
currently executing process; changes a file 's
protection ; changes current status or attrib
utes of a file queued for printing or for batch
job execution; defines default values for multi
block and multibuffer counts used by VAX-11
RMS; changes characteristics of a specified
terminal ; controls whether or not command
lines in command procedures are displayed
at terminal or printed in batch job log; rede
fines default working set size for the current
process.

Assigns a logical name to a given character
string (equivalence name) and stores the the
pair of names in a process, group, or system
logical name table. Generally used to create a
logical name for a device.

Creates a logical name equivalence. (Same as
ASSIGN except for syntax.)

Breaks the correspondence between a logical
name and its equivalence name (see ASSIGN
and ALLOCATE) , or deletes a symbol (see
DEFINE).

Signifies that the given command or following
command lines are to be interpreted by the
RSX-11 command interpreter.

Terminates an interactive session and re
leases all resources allocated to the user.

Displays a message at a system operator's
terminal and optionally requests a reply.

3-2

BATCH AND COMMAND PROCEDURE
SPECIFIC CONTROL*

SUBMIT

$PASSWORD

$JOB

$INQUIRE

$GOTO

$ON

$IF

$EOD

$EXIT

$EOJ

DECK

Places a given batch command file or com
mand procedure in a batch queue for proc
essing .

Specifies the password associated with the
user name specified on a JOB card for a batch
job.

Indicates the beginn ing of a batch com mand
file and provides job control information (such
as time limit) .

Requests interactive assignment of a value to
a symbol and assigns the symbol a name.

Transfers flow of control to a given labeled
line.

Transfers flow of control to a given labeled
line if an error of a given severity or greater is
encountered at any time during command
procedure processing .

Transfers flow of control to a given labeled
line if the result of a logical compar ison of
symbol ic values is true.

Signifies the end of data in the input stream
following a $DATA command.

Term inates the command procedure.

Marks the end of a batch job submitted
through the system card reader . EOJ per-
forms the same functions as the LOGOUT
command.

Marks the beginn ing of an input stream for a
command or program .

•command names preceded by a$ are meaningful only in a batch com
mand file or command procedure . All other commands listed in this ta
ble can either be issued interactively or used in a batch com mand file or
command procedure.

VOLUME AND DEVICE RESOURCE CONTROL

MOUNT

INITIALIZE

DISMOUNT

ALLOCATE

DEALLOCATE

Requests the operator to make a volum e
available to the user and optionally associates
a logical name with the volume or volume set.

Writes a directory file and other volume struc
turing information on a disk or magnetic tape
volume to prepare it for use.

Requests the operator to break the log ical as
sociation of this device with the user's job.

Obtains exclusive ownership of device and
enables the user to assign a logical name to
the device.

Releases allocated devices.

FILE MANIPULATION

DIRECTORY

CREATE

EDIT

DELETE

DELETE/
ENTRY

DELETE/
SYMBOL

Reports information (size, protection , owner
ship, creation time, etc.) on a given fil e or set
of files .

Creates a new file from data subsequently en
tered in the input stream (user at term inal or
batch stream). Creates a directory file on a
volume.

Opens a text file and accepts commands to in
sert, delete or mod ify data in the file .

Deletes one or more files from a mass storage
disk volume.

Deletes one or more entries from a printer or
batch job queue.

Deletes one or more symbol definition from a
local symbol table or from the global symbol
table.

Table 3-1 (con '!)
DCL Command Language Summary

PURGE

RENAME

COPY

APPEND

DIFFERENCES

SORT

OPEN

CLOSE

READ

WRITE

PRINT

TYPE

DUMP

UNLOCK

Deletes all but the latest version of a given file
or files , optionally keeping the latest two or
more versions.

Changes the name of one or more existing
f iles.

Copies the contents of a file or f iles, creating
another file or files.

Concatenates the contents of sequential fi les
to a given output file , or creates a new output
file from the concatenated contents of given
sequential files.

Compares two files and reports the differ
ences between the two.

Creates a file by rearranging the records in a
given file based on the contents of key fields
within the records.

Opens a file for reading or wr iting at the com
mand level.

Closes a file that was opened for input or out
put with the open command and deassigns
the logical name specified when the file was
opened.

Reads a single record from a specified input
f ile and equates the record to a specified sym-
bol name.

Writes a record to a specified output file.

Sends the contents of a given file or files to a
spooled output device such as a line printer.

Displays the contents of a given file or files on
the device identified by the logical name
SYS$0UTPUT: (default generally the user's
terminal) .

Produces a printed list ing of the contents of a
file , ignoring any print formatting characters
that may appear in the records .

Permits access to a file that was improperly
closed .

ANALYZE/ Provides a description of the contents of an
OBJECT object file or an executable image file.

PROGRAM DEVELOPMENT AND
EXECUTION CONTROL

MACRO

FORTRAN

Assembles given assembly language source
modules, producing an object module.

Invokes the VAX-11 FORTRAN compiler to
compile one or more source programs.

In addition to executing command procedures at a termi
nal , an interactive user can also submit batch jobs. Batch
jobs execute under control of the system operator and
leave the user's terminal free to continue interactive or
command procedure processing. A batch job can be sub
mitted as a deck of cards or as a batch command file. A
batch command file is identical to a command procedure
file, except that a batch command file submitted as a deck
of cards begins with a $JOB card that provides job control
information.

However, DCL is more than just a string of commands ca
pable of standing alone; it possesses true high level pro
gramming language statements such as GOTO, IF, etc.,

3-3

COBOL

BASIC

BLISS

PL/I

PASCAL

CORAL

LIBRARY

LINK

RUN

DEBUG

EXAMINE

DEPOSIT

CONTINUE

STOP

SUBMIT

Compiles given COBOL language source
modules using VAX-11 COBOL compiler, pro-
ducing an object module.

Compiles given BASIC language source mod
ules , producing an object module.

Invokes the VAX-11 BLISS-32 compiler .

Invokes the VAX-11 PL/I compiler to compile
one or more source programs.

Invokes the VAX-11 PASCAL compiler to
compile one or more source programs.

Invokes the VAX-11CORAL66 compiler to
compile one or more CORAL source pro-
grams.

Creates, deletes, or maintains libraries of ob
ject modules, shareable images, or macro
source modules.

Links modules to produce images.

Executes a program image in the current
process context, or creates a detached proc-
ess and executes a program image in that
process context.

Starts interactive debugging session after in
terrupting program image execution by typing
a Control C or Control Y.

Displays the contents of a location in virtual
memory.

Replaces the contents of a location in virtual
memory with the given data.

Resumes execution of a program interrupted
by typing a Control C or Control Y.

Terminates the program currently interrupted
by a Control C or Control Y.

Enters a command procedure in the batch job
queue.

SYNCHRONIZE Places the process executing a command
procedure in a wait state until a specified
batch job completes execution.

WAIT Places the current process in a wait state until
a specified period of time has elapsed.

CANCEL Cancels scheduled wakeup requests for a
specified process. This includes wakeups
scheduled with the run command and with the
schedule wakeup ($SCHDWK) system ser
vice.

and accepts a series of up to eight user-defined parame
ters 'P1' through 'PS'. DCL can be used to completely de
fine and control a user environment tailored to a specific
application .

The power and flexibility of command procedures and the
DCL command language will be treated in greater detail in
the Program Development and Support Facilities section .

RUN Command
The RUN command includes several qualifiers (DELAY,
INTERVAL, and SCHEDULE) which are of particular im
portance to the real-time programmer.

Specifying any of the above qualifiers places a process in

hibernation, a wait state in which the process can be reac
tivated only when a particular time value occurs. The time
value can be specified in delta time (/DELAY qualifier), in
absolute time (/SCHEDULE qualifier) or at recurrent inter
vals (/INTERVAL qualifier). When the image completes ex
ecution , the process returns to a state of hibernation .

Programming Languages
The system includes the VAX-11 MACRO assembler for
programming the machine using its native instruction set.
A wide variety of language processors are optionally avail
able to high-level language programmers: VAX-11 FOR
TRAN , VAX-11 COBOL, VAX-11 BASIC , VAX-11 PL/I ,
VAX-11 PASCAL, VAX-11 CORAL 66, and VAX-11 BLISS-
32. In addition, VAX/VMS supports several optional lan
guage compilers that execute in compatibility mode.
These include PDP-11 BASIC-PLUS-2/VAX, PDP-11 FOR
TRAN IV IV AX to RSX and MACR0-11. These language
processors, introduced below, are described fully in the
Languages section .

The VAX-11 FORTRAN language processor is based on
the American National Standard FORTRAN specification
X3.9-1977 (commonly referred to as FORTRAN-77). The
VAX-11 FORTRAN compiler supports this standard at the
full language level. Additionally, however, VAX/VMS pro
vides support for the industry-standard FORTRAN fea
tures based on FORTRAN-66 (an option that can be select
ed at compile time), the previous ANSI standard .

The VAX-11 FORTRAN compiler produces shareable,
highly optimized VAX-11 native object code. The compiler
takes advantage of the system's large virtual address
space while utilizing the floating point and character string
instructions. FORTRAN 1/0 processing is supported by the
record management services (VAX-11 RMS) . VAX-11
FORTRAN object modules can be linked with assembler
produced object modules and the system's run-time libra
ry , which is common to all native mode programs, to pro
vide standard library functions . The VAX-11 FORTRAN
language processor offers the programmer such features
as:

• Full ANSl-77 FORTRAN language support

• Access to ISAM files as well as relative and sequential
files

• Access to the VAX/VMS system services and the run
time library procedures

• FORTRAN program can call external routines written in
other VAX-supported high level languages

• The compiler itself is shareable

The VAX-11 COBOL language processor produces highly
efficient shareable native mode code which utilizes the
system's packed decimal and character instruction set
and extended call facility . The VAX-11 COBOL language is
based on the American National Standard Programming
Language COBOL, X3.23-1974, the industry wide accept
ed standard for COBOL. Many features of the planned CO
BOL standard (anticipated in 1981) are also included. The
VAX-11 COBOL language processor offers the program
mer such features as:

• the ability to manipulate data strings via the INSPECT
verb

3-4

• performing sorting and merging operations at the CO
BOL source language level

• complete file organization capability including sequen
tial , relative, and indexed 1/0

• structured programming

• support for the full range of data types including packed
decimal and floating point

• COBOL programs can call external routines written in
COBOL or other VAX-supported high level languages

• capability of writing shareable code for use by other na
tive mode high level languages

• accepts source programs coded in either ANSI stan
dard format or the shorter easy to read DIGITAL term i
nal format

VAX-11 BASIC is a native mode, shareable language proc
essing system producing shareable VAX native object
code. The language compiler utilizes VAX floating po int
and character string instructions while supporting a fast
RUN command and immediate mode execution wh ich
makes it well suited for interactive use. VAX-11 BASIC is a
superset of PDP-11 BASIC-PLUS-2, offering the VAX user
major enhancements such as:

• access to VAX-11 RMS file and record processing

• long variable names (up to 31 alphanumeric characters)

• dynamic string handling

• CALL statement providing interface to common lan-
guage environment

• shareable and re-entrant code

VAX-11 PL/I is an extended implementation of the pro
posed ANSI X3.74, American National Standard PL/I Gen
eral Purpose Subset to full PL/I (ANSI X3.53-1976). VAX-
11 PL/I extensions include some full language features
and VAX/VMS system-specific extensions.

PL/I is a versatile language that is suited to commerc ial ,
scientific, and systems programming applications. Some
of the features of VAX-11 PL/I include:

• block structured language

• full support for all VAX-11 hardware data types

• powerful 1/0 capabilities including ISAM support

• user control of storage allocation

• condition handling

• standard VAX-11 CALL interface, including access to
VAX/VMS System Services and the run-time library

• fast, native-mode optimizing compiler

• shareable, position-independent code

VAX-11 PASCAL, a re-entrant native mode compiler , is an
extended implementation of the PASCAL language as de
fined in the PASCAL User Manual and Report (Jensen and
Wirth , 1974). Particularly suited to instructional use, PAS
CAL is gaining increasing popularity as a general purpose
language. Major features of the VAX-11 PASCAL language
include:

• block structuring via the BEGIN ... END compound state
ment to allow easy logic flow

• data structuring including the ability to declare and use
pointers, records, files and arrays

• predefined procedures and functions to deal with 1/0
handling and data manipulation

VAX-11 PASCAL takes advantage of the VAX hardware
floating point and character instructions as well as the
virtual memory capabilities of the VAX/VMS operating
system. Many of the features common to other native lan
guages are available through VAX-11 PASCAL including :

• separate compilation of modules

• standard CALL interface to routines written in other lan-
guages

• access to VAX/VMS system services

The VAX-11 CORAL 66 compiler executes in compatibility
mode and generates native mode object code under
VAX/VMS. The CORAL language, derived from JOVIAL
and ALGOL-60 in 1966, is the standard language pres
cribed by the British government for military real-time ap
plications and systems implementation . VAX-11 CORAL
66 is essentially a high level block-structured language
whose compiler offers the user many features including:

• several numeric types (byte, long and double)

• generation of re-entrant code at the procedure level

• code optimization

• Engl ish text error messages

• INCLUDE keyword to incorporate CORAL 66 source
code from user-defined files

VAX-11 BLISS-32 is a high-level systems implementation
language for VAX-11, which runs in native mode under
VAX/VMS. The BLISS language is specifically designed
for building language compilers, real-time processors,
utilities, and operating system software. BLISS contains
many of the features of high-level languages (e.g., DO
loops, IF-THEN-ELSE statements, automatic stack, and
mechanisms for defining and calling routines) , but it also
provides the flexibility and access to hardware that one
would expect from an assembly language. VAX-11 BLISS-
32 can be used as an alternative to assembly language
coding in all except the most machine-dependent systems
programming applications. The VAX-11 BLISS-32 lan
guage processor offers the programmer such features as:

• program execution on architecturally different ma
chines with little or no modification

• construction of complex expressions in which several
different kinds of operations can be performed in a sin
gle program statement

• exploitation of high level language constructs

PDP-11 BASIC-PLUS-2/VAX is an optional language
processing system that includes a compiler and an object
time system . PDP-11 BASIC-PLUS-2 is also available as
an optional language processor for the RSTS/E, RSX-
11 M, RSX-11M-PLUS, and IAS operating systems . The
PDP-11 BASIC-PLUS-2/VAX compiler produces code
that executes in PDP-11 compatibility mode.

PDP-11 FORTRAN IV IV AX to RSX is an extended FOR
TRAN IV processor based on ANSI FORTRAN X3.9-1966.
It supports mixed mode arithmetic, extended 1/0 facilities
for data formatting, error condition transfer statements, bit
manipulation , library usage, and several debugging facili
ties. The FORTRAN IV compiler (and its run time system)

3-5

execute in the compatibility mode environment.

MACR0-11 , the PDP-11 assembly language, is included in
the compatibility mode environment. Programs written in
MACR0-11 can be assembled to produce relocatable
object modules and optional assembly listings.

Record Management Services
The record management services (RMS) are a collection
of procedures that extend the programming languages by
providing general purpose file and record handling capa
bilities. Programmers using RMS include in their pro
grams statements that read, write, find, delete, and update
records within files. Records can be fixed or variable
length .

RMS enables the programmer to choose the file organiza
tion and record access method appropriate for the data
processing application. The file organizations and record
access methods are independent of the language in which
they are programmed, although some languages support
file organizations and access methods not provided in oth
ers. Every programming language uses RMS to process
files organized to provide sequential, random or multi
keyed indexed record accessing .

For further information on RMS and the system's data
management techniques, refer to the section on Data
Management Facilities.

THE SYSTEM PROGRAMMER
The system programmer can use this system to design
and build application systems for multiprogramming envi
ronments requiring fast response and a high degree of job
interaction and data sharing .

Job and Process Structure
The user program environment consists of a job structure
that can contain many processes. A process is the sched
ulable entity capable of performing computations in paral
lel with other processes. It consists of an address space
and an execution state that define the context in which a
program image executes. An executing program is associ
ated with at least one process, but it can be associated
with several processes.

A multiple process job structure allows one job to execute
more than one program image at the same time. One
process can wait for an event (such as 1/0 completion) to
occur while another process continues its computations.
The processes can communicate in several ways. They
can coordinate their execution synchronously using event
flags or asynchronously using software-simulated inter
rupts. They can send messages back and forth using virtu
al record-oriented devices called "mailboxes," and they
can share code and data on disk and in memory.

Jobs can be grouped into application subsystems that
share code and data protected from other applications.
The processes within jobs in the same group can coordi
nate their activities using group interprocess communica
tion facilities such as mailboxes and event flags, as well as
those facilities local to the job. They can access files and
data in memory that are protected from other groups in
the system.

Multiprogramming Environment
The system supports multiprogrammed applications that
require high performance by providing :

• event driven priority scheduling

• rapid process context switching

• minimum system service call overhead

• processor access mode memory protection

• memory management control

The system schedules processes for execution based on
the occurrence of events such as 1/0 completion as well as
time quantum expiration . When scheduled, the context
switching and interrupt processing hardware and software
ensure that processes are activated quickly. Real-time
processes can be assigned high priorities to ensure that
they receive processor time on demand. A process can
schedule its execution at a given time of day or after an in
terval has elapsed, and an appropriately privileged proc
ess can modify its priority during execution .

The system 's memory management hardware and soft
ware ensure that paging , swapping , and dynamic memory
allocation are both efficient and transparent to the pro
grammer. Where real-time applications require
performance control, both paging and swapping can be
reduced or eliminated by increasing the amount of memo
ry allocated to a process and by locking a process in mem
ory. Because memory management is transparent, pro
grams can be written and later tuned for performance after
they are tested. The system provides a utility program to
aid system programmers in evaluating the effectiveness of
the memory management system for their processes.

Program Development
This system provides the system programmer with tools
that support highly modular program and applications de
velopment. By taking advantage of these tools, the pro
grammer can build applications quickly, and easily modify
and extend them later.

The system includes editors, compilers, librarians, linkers,
and debuggers for both the native and compatibility pro
gramming environment. All program development utilities
can be used either interactively or in batch mode, includ
ing the editors and debuggers . The native symbolic
debugger recognizes a command language similar to the
operating system command language and uses expres
sions similar to the language in which the program being
debugged was written.

Executable program images can be built using extensive
libraries. In the native programming environment, the pro
grammer can create libraries of assembler macro defi
nitions, of object modules, and of image modules. The
system also includes the common run time procedure li
brary, which provides library functions common to all na
tive programming languages.

All program interfaces to the operating system and its utili
ties have uniform calling standards. System programmers
can add new library procedures to the common run time
procedure library and install them on-line without modify
ing existing programs and utilities, since all arguments are
passed using standard data structures.

3-6

Furthermore , user programs can be written to be
completely device independent through the system ser
vice and command language logical naming facilities. All
files and devices can be identified using arbitrarily defined
logical names that can be assigned values at run time.

THE SYSTEM MANAGER
A job is normally associated with a user known to the sys
tem to have certain privileges, quotas, and resources . The
system manager authorizes users, plans data access and
protection, grants privileges, controls resource utilization ,
and analyzes the system's accounting and performance
information.

User Authorization
The system manager controls use of the system primarily
by creating user authorization information . This informa
tion is recorded in a specially maintained and protected
file called the user authorization file. The system manag
er can create , examine, and update this file at any time.

The file contains one entry for each user authorized to ac
cess the system . Each entry :

• identifies the user

• supplies defaults

• specifies privileges

• limits resource usage

User identification consists of a unique user name, a pass
word , a default account name, and a user identification
code (UIC). When logging onto the system, people must
always enter their user name and password to gain access
to the system. The password is not displayed on the user
terminal. Privileged users can change the passwords they
are assigned as often as they desire.

This system's data protection scheme is based on the user
identification code (UIC) that the system manager assigns.
A UIC controls each user's access to the data structures
protected by UICs, which include both files and the inter
process communication facilities such as mailboxes ,
shared areas of memory, and event flags.

A UIC consists of a group number and a member number.
Every user is assigned a UIC, and every data structure is
assigned both a UIC and a protection code. A protection
code identifies what types of access are available to which
users. There are four types of access (read, write, execute,
and delete), and there are four types of user (owner,
group, world , and system). The owner is any user that has
the same UIC as that assigned the data, the group is any
user that has the same group number as that assigned the
data, the world is any user, and the system is any user with
a group number of 1 through 10.

Using this protection scheme, a system can have files and
interprocess communication facilities that are available for
access only by users having the same UIC, or for access
only by users in the same group, or for universal access.
Furthermore, since each data structure has its own protec
tion code, it is possible to protect each data structure as
signed the same UIC on a different basis. The system UICs
are generally reserved for system users and system pro-

grams and data structures. This arrangement enables a
user to protect a file from access by anyone other than the
owner or group, but still enables the system to access the
file for operations such as backup.

In addition to identifying the user and the set of data struc
tures the user can access, the user authorization file sup
plies the user with a default file protection , a default direc
tory name, and a default device name. When the user cre
ates a file, the system assigns the default file protection
unless requested otherwise. An owner can modify a file's
protection at any time.

Directory names are arbitrary character strings identifying
a directory file. A directory is simply a file containing a list
of file names and other identification information that is
used to find files on a volume. The default directory name
identifies the directory that lists the files the user normally
accesses. The default device name is the name of the de
vice on which the volume containing the files the user nor
mally accesses is mounted.

When the user issues a command to the command inter
preter that operates on a file, or runs a program that opens
a file, the file system uses the default directory name and
default device name to locate the file unless specifically
requested to use some other directory name or some oth
er device name. The user can change the default directory
and device names for a given session .

For further information on directories and directory struc
tures, refer to the section on Data Management Facilities.

Privileges
Each user's authorization file entry contains a list of the
privileges that the user can invoke. They include interproc
ess communication and control privileges, performance
control privileges, file and device access privileges, and
system operational control privileges. The system manag
er can grant distinct privileges individually to each user.
Table 3-2 lists some of the privileges.

Privileges are checked when the user executes program
images. If a user runs an image that attempts to execute a
function requiring a privilege the user is not granted, the
image incurs a privilege violation. For example, diagnostic
programs require the privilege to issue device level diag
nostic functions and the privilege to send messages to the
error logger. Users not granted these privileges will re
ceive privilege violations if they attempt to run diagnostics.

In certain cases, however, it is desirable to let a user run an
image that requires privileges the user is not granted. For
example, the login program image requires the privilege to
switch to a more protected processor access mode to set
the user's initial context in a protected area of memory. To
let a user run an image that requires special privileges, the
system enables the system manager to install known Im
ages. When the user runs a known image, the user obtains
the necessary privileges to execute the functions required
by the image, but only for the duration of that image's exe
cution .

Resource Quotas and Limits
The user authorization file also provides the limits on how
many system resources a user can tie up while logged on
the system, and quotas for how much of a resource a user

3-7

Table 3-2
Privileges Summary

INTERPROCESS CONTROL
• create event flag clusters

• create permanent common event flag clusters

• create temporary mailboxes

• create permanent mailboxes

• create global sections

• suspend, resume, wake, and delete processes within
the same group

• suspend , resume, wake, and delete any process

• create detached processes

• create and delete shared memory sections

• map to physical pages

ACCESS TO FILES AND DEVICES
• insert logical names in group logical name table

• insert logical names in system logical name table

• allocate spooled devices

• obtain exclusive ownership of a shared device

• override volume protection

• issue mount requests

PERFORMANCE CONTROL
• execute time critical images

• lock process in memory

SYSTEM OPERATION CONTROL
• issue operator commands

• set any privilege bits

• set process priority

PROGRAM EXECUTION
• execute Change Mode to Executive system service

• execute Change Mode to Kernel system service

• bypass file protection

• issue diagnostic functions

• send messages to error logger

• suppress accounting messages

• issue logical and physical 1/0 functions

can use up during an accounting period. The system
manager can assign user quotas for the maximum amount
of CPU time accumulated during a given accounting peri
od, and can limit the amount of dynamic system memory a
job can utilize for buffers. The system manager can set
disk usage quotas via the disk quota utility on a per user,
per volume or volume set basis. VAX/VMS will automati
cally record usage and enforce the assigned quotas during
file operation. However, each user possessing a private
volume controls the disk quotas on that volume. The limits

imposed by VAX/VMS include the maximum number of :

• outstanding open files

• CPU time

• outstanding subprocesses created

• pages in a process working set

• pages in system paging files

• outstanding entries in the timer queue

• outstanding system buffered 1/0 requests

• bytes in system buffered 1/0 request

• outstanding direct 1/0 requests

Resource Accounting Statistics
The system maintains an accounting information file for
collecting cumulative resource usage statistics. The sys
tem updates the accounting information file with detail re
cords each time a process terminates. The detail statistics
include:

• elapsed CPU time

• login (connect) time

• number of volumes mounted

• number of pages printed

• largest process virtual size

• largest process working set size

• number of page faults

• number of system buffered 1/0 requests

• number of direct 1/0 requests

A detail record identifies the account name, user name,
and user identification code (UIC) to which the statistic ap
plies. The accounting information file can be used to cal
culate billing information and reporting by account name,
user name, or UIC. Because the system collects all detail
records , system managers can define their own algorithms
for resource usage billing .

Performance Analysis Statistics
The system collects statistics on its activities to help sys
tem programmers and managers tune the system for max
imum performance. The information collected includes:

• System and Job Statistics-indicate the current number
of processes, interactive users, and batch jobs in the
system, the date and time at which the system was boot
ed , and the current date and time.

• Processor Access Mode Usage-indicates how much
time is spent executing at each of the access modes as a
measure of the type of code being executed and the
computational workload .

• Page Fault Activity-indicates how many and what kind
of page faults occurred as a measure of the effective
ness of memory management.

• 1/0 Activity-indicates how many and what kind of 1/0
operations are taking place.

• Network Activity-indicates network workload (current
number of nodes in the network, number of bytes trans
mitted and received, number of messages transmitted
and received, number of buffers currently in use, num
ber of successful and failing attempts to obtain space
for network buffers).

3-8

• Response Time Histograms-indicate the time it takes
the system to initiate user requests .

Display Utility Program
The Display Utility Program (DISPLAY) provides a dynam
ic display of system performance measurement statistics
on a VT100 or VT52 video display terminal. By typing ap
propriate commands, system users may list information
regarding 1/0 system activity, paging , CPU usage, current
process activity , and other relevant statistics. Figure 3-2
shows a typical screen display.

THE SYSTEM OPERATOR
An operator is any user given the privileges by the system
manager to perform operator functions. A system does not
require an operator, but it can have one or several opera
tors , and they can use any terminal to issue commands or
run programs. Operator functions include:

• system startup and shutdown

• job control (change process priorities, kill jobs, etc.)

• device allocation

• volume mount and dismount request servicing

• on-line disk and magnetic tape volume and file backup

• spool and batch queue control

• software maintenance update installation

• diagnostic execution

An operator uses the command language to control oper
ations, check system status, and run utility programs.

A special system program, the Operator Communications
Manager (OPCOM), is the primary operator aid . It collects
and delivers the messages all users and user programs
send to the operators. Any operator can respond to user
requests , and the Operations Communications Manager
will remind operators of any outstanding requests.

Spooling and Queue Control
The operators define the number and kind of input and
output spool queues in the system. The operators can cre
ate output spool ·queues for any number of devices, in
cluding line printers, terminals , or even magnetic tape.
The operators can also create input queues for spool ing
batch input from a card reader.

The operators can assign each queue a priority , merge or
redirect queues to other devices, and modify the queue
set-up at any time. It is possible to have more than one
print queue for the same printer. For example, an operator
can create a generic printer queue that will collect jobs
that can be printed on any of a set of printers, and at the
same time have a print queue for each individual printer. A
user can issue a print request for a generic printer or a
particular printer , and the operator can override the user's
request.

A print job can contain one or more files to be printed
together . Print jobs can be submitted by an interactive
user, batch job , or any program. Print jobs are also auto
matically submitted at the end of a batch job. A print job
can specify the forms type required , the number of copies
of the job, the job priority, and a " hold until given time" re
quest. Each file within a print job has its own copies coun t,

FREE LIST: 2016 1/0 SYSTEM RATES MODIFY LIST: 35
16:17:09

RATE AVG RATE AVG
NAME VALUE / SEC RATE NAME VALUE /SEC RATE

DIRECT I/ Os 32 7.30 1.50 PAGE FAULTS 65 14.84 1.83

BUFFERED I/Os 29 6.62 3.24 PAGES READ 4 0.91 0.11

MAILBOX WRITES 0 0.00 0.00 READ I/Os 2 0.45 0.07

WINDOW TURNS 3 0.68 0.14 PAGES WRITTEN 0 0.00 0.00

LOGNAME TRANS 39 8.90 0.98 WRITE I/Os 0 0.00 0.00

FILE OPENS 3 0.68 0.07 TOTAL INSWAPS 0 0.00 0.00

Figure 3-2

Display Utility Program (1/0 System Rates)

and each can have these options: double space, inhibit
form feed , print a flag page, label each page , or delete af
ter printing . The operator can choose whether or not to
print burst (job separator) pages, and can put jobs on in
definite hold , modify the priority of a job, or abort a job.

Batch Processing
The system supports multiple stream , multiple queue
batch processing . The operators control how many batch
job streams can run concurrently. Batch jobs can be sub
mitted by an interactive user, another batch job, or any
program . When the number of batch jobs submitted
exceeds the number of streams, the remainder of the
batch jobs are held in a batch input queue. As with the
spool queues, the operators can control the batch job
queue. They can change job priority , hold a job until after a
given time, hold a job indefinitely, and kill a job .

Volume mount commands issued in a batch job can re
quest a generic device, such as any disk , or a specific de
vice, such as disk drive unit 2. The batch job waits until an
operator satisfies the mount request, while other batch
jobs proceed . Operators can find out which job has a given
device.

On-line Software Maintenance
An operator can incorporate maintenance updates to the
software without bringing down the system for stand-alone
use. For example, VAX-11 /780 maintenance patches are
distributed on floppy disk and the operator simply loads
the console floppy disk drive with the maintenance floppy
to update the software on disk. Depending on the nature of
the update, an operator may have to restart the system to
activate the patched modules.

System Recovery
An operator can select manual or automatic system recov
ery following a power interruption or hardware or software
failure .

3-9

On automatic system recovery after power interruption ,
the system determines whether the contents of memory
are still valid , and if so, restarts all possible 1/0 in progress
at the time of the power interruption and continues opera
tions from the point of interruption . If the contents of mem
ory are not valid , either because memory battery backup is
not included in the configuration , or because the power
failure lasted longer than the battery, the system automati
cally boots itself from disk and executes the start-up com
mand procedures.

Error Logging and Reporting
The error logger is a job that runs continuously. It collects
errors detected by both hardware and software, including:

• device errors

• interrupt timeouts

• interrupts received from nonexistent devices

• memory, translation buffer, and cache parity errors

In addition , system software sends complete recovery in
formation to the error logger following a power interrup
tion or hardware or software failure.

The error logger writes all messages it receives into an
error log file, noting vital system statistics at the time of the
message. The error logger also notes benign events when
they occur, such as when volumes are mounted and dis
mounted, and period ic time stamps indicating that no en
tries have occurred for a specified period of time. The er
ror logger can accept messages from the operators at any
time, and from any programs privileged to send messages
to the error logger.

The system includes an error report generating program
that converts the information in the log file into a text file
that can be printed for later study.

On-line Diagnostics
An operator can run diagnostics to check the operation of
both hardware and software. An operator can run system
exercisers and device verification diagnostics while nor
mal operations proceed. System exercisers test general
purpose software and compare the results with known
answers, reporting any discrepancies to the error logger.

Operators can run device verification diagnostics either
stand-alone or concurrent with other processes. Diagnos
tics check the peripheral functions, including disk head
alignment. In addition, fault isolation diagnostics, which
isolate problems to replaceable units, are available for
stand-alone use.

Remote Diagnosis
If the system is equipped with the remote diagnosis option,
an operator sets up the system for remote preventive
maintenance or troubleshooting. When a hardware error is
detected or suspected, the operator mounts a diagnostic
disk pack, loads a diagnostic floppy disk in the console,
sets a switch on the processor console, and calls the local
DIGITAL service office. An operator does not need to be
present at the installation once the call is made. The
DIGITAL Diagnostic Center can then connect to the instal
lation, run automated diagnostics, operate the diagnostic
console manually, and check the error log file. If a problem
is found, the Field Service engineer can bring the proper
equipment and replacement modules to make the repairs.

THE USER ENVIRONMENT TEST PACKAGE
The User Environment Test Package (UETP), consists of a
series of tests designed to demonstrate that the hardware
and software components of a system are in working or
der. The UETP consists of six phases:

• The Initialization Phase-This phase verifies that 1/0 de
vices are operational via simple read/write operations.
In addition , users are prompted to supply several par
ameters which define the scope of the test, e.g .,number
of users to be simulated by UETP, amount of informa
tion to be displayed at the console, and number of
consecutive runs to be made by the UETP.

• The 1/0 Device Test Phase-In this phase, 1/0 devices
undergo comprehensive testing. Terminals and line
printers generate pages or screens of output containing
header information and a test pattern of ASCII charac
ters . Disks and magnetic tapes are also exercised. Files
are created on the mounted volumes. Data are then
written to the files. The test then checks the written data
for errors and erases the files .

• The Native Mode Phase-This phase includes three
tests, each of which exercises software services provid
ed explicitly for VAX/VMS. The first exercises VAX/VMS
system services; the second exercises native mode utili
ties such as the Symbolic Debugger and Image File
Patch Utility; and the third exercises VAX-11 RMS.

• The System Load Test Phase-This phase creates a
number of detached processes which simulate the ac
tion of a group of users concurrently issuing commands
from terminals; it tests the system's ability to handle
various levels of utilization.

3-10

• The Compatibility Mode Test Phase-This phase tests
most RSX-11 M utilities running in compatibility mode on
VAX/VMS.

• Termination Phase-In this phase, temporary files are
deleted and other cleanup activities are performed. If
miltiple runs were requested during the initialization
phase, then the UETP is restarted and control is passed
directly to the device test phase.

The UETP is invoked via command procedures. The entire
package may be specified by executing the master pro
cedure, UETP.COM , or tests may be executed individually
by specifying particular command procedures as illustrat
ed in Figure 3-3.

$ RUN UETINITOO Initialization Phase
$ RUN UETINIT01
$ RUN UNETPDEV01 1/ 0 Device Test Phase
$ @UETCOMPOO Compatibility Mode Test Phase
$ RUN UETNATV01
$ @UETNATV02 Native Mode Test Phase

$ @UETNRMSOO
$ RUN UETLOAD01 System Load Test Phase
$ RUN UETTERM01 Termination Phase

Figure 3-3

UETP Command Procedures

APPLICATIONS EXAMPLES
To illustrate how the multiprogramming capabilities of the
system can be effective in widely diverse applications, Fig
ures 3-4 and 3-5 show two hypothetical application sys
tems: a commercially oriented data processing system
and a real-time flight training simulation system .

Commercial System Example
The commercial system diagram (Figure 3-4) begins with
both a programming group and a data processing opera
tions group. Within the programming group, jobs can be
performing requests for programmers at terminals who
are using the system 's text editors, compilers, and linkers
to write and test programs for both the VAX/VMS and an
RSX-11 M system in the manufacturing department. The
programmers can execute command procedures and
submit batch jobs to automate repetitive development
steps.

Within the operations group, the system's operators can
be managing batch and spool queues, backing up disks,
and monitoring performance. They may be down -line
loading tasks into the RSX-11 M system. They may be run
ning an accounting program that interprets and summar
izes the accounting statistics collected by the operating
system during the period and sends that data to the busi
ness data processing subsystem.

A billing process within the business data processing
group can be suspended until it is activated by a process
(such as the accounting process) that wants to send it bill-

DP OPERATIONS

PROGRAMMING

MANUFACTUR ING
& STOCK CONTROL

MANUFAC TURING

RSX-l lM
PROCESS

CONTROL
SYSTEM

Figure 3-4

Commercial Data Processing System

ing information . The accounting process can send to the
billing process the name of an account summary file that it
created , using a permanent mailbox defined for that pur
pose.

The business data processing group may also run a job
that handles order entry terminals . The job can consist of a
controlling process that handles input from the terminals,

3-11

and several subprocesses that perform the actual record
processing functions . As users at the terminals enter their
requests , such as create order record , update order rec
ord, etc. , the controll ing process collects the input from a
terminal and sends the request to the appropriate sub
process's mailbox. The subprocess may be hibernating,
having requested the operating system to activate it when

ON-LINE
MAINTENANCE

INPUT

VAX-11/780 SAMPLE APPLICATION SYSTEM
FLIGHT TRAINING SIMULATION

LIBRARY OF
SCENARIOS

CONSOLE

I

SECONDARY :
USES I

REAL-TIME
INTERFACE

VAX-11/780

1---T-----------~
I I ---------~
I I
I I
I I
I I
I I
I I
I '
I \

\
I \
I \
I \
I \

I ',
I \
I \

BATCH-INTERACTIVE \

DElD \\
PROGRAM MODIFICATIONS
AND UPDATES
• EDITOR • LINKER
• COMPILER • DEBUGGER

\
\

\
\

\
\

\
\

DESD
PILOT TRAINING RECORDS
SIMULATOR MAINTENANCE

RECORDS
OTHER EDP WORK

Figure 3-5

Real-time Flight Simulation System

3-12

REAL-TIME
GRAPHICS

INSTRUCTOR'S STATION
~ /- 4--:t

REAL-TIME
TRAINING INPUTS AND
TRAINING SITUATIONS

anything is written to its mailbox. Or the controlling proc
ess can simply set an event flag to notify a subprocess that
it has received a request for which the subprocess is wait
ing .

A process in the manufacturing application group may re
gularly collect orders from the order entry job to create
materials parts lists, or notify stockroom clerks of high-pri
ority orders. The stockroom clerks can keep inventory rec
ords up to date by using the shipping and inventory jobs,
because they can collect manufacturing statistics from a
background task in the RSX-11 M process control system
on the manufacturing floor. Once orders are shipped , the
shipping process can notify an accounts receivable proc
ess in the business data processing application group,
which in turn can activate the billing process.

Real-Time Flight Simulation Example
To illustrate how VAX's facilities can be as extended to the
real-time environment, Figure 3-5 shows a sample flight
training simulation system. Flight simulation is a particu
larly good application for the VAX system, since in addition
to fast real-time response, such systems must also be ca
pable of solving large and complex equation systems. In
addition , such systems also require general program de
velopment fac ilities such as FORTRAN compilation , as
sembly, editing , debug, library facilit ies, and fast-access
file management.

The illustrated system shows how the multiprogramming
capabilities of VAX allow it to handle the basic real-time
tasks of data acquisition and transmission, while also per
forming a wide range of other activities:

Looking from top to bottom, the diagram begins with a re
presentation of an aircraft fuselage containing the cockpit
throttle levers and control panel which the student oper
ates to simulate flight. The signals and control movements
of the student go through an analog to digital conversion,
and are then passed through a real-time interface device
into VAX memory. Before the system can respond to the
data generated by the student , complex flight-motion
equations must be called and combined with current air
craft data. This , in turn, produces a new set of circum
stances with which the student must deal.

Additional inputs to the system are also provided by an in
structor at a timesharing terminal (shown in the right cen
tral part of the diagram). By typing commands at the
terminal , the instructor can control the situations which the
student must face-for example, by injecting an engine
failure, weather change, or some other complication. The
instructor can also introduce additional variables into the
system by inputting predefined "scenarios" which have
been stored on libraries. The student's flight environment
can include "visual cues" (e.g., terrain , runway approach
es, other aircraft, etc.) produced by soph isticated , real
time graphics modules.

In addition to performing basic flight simulation functions,
the system also performs a number of auxiliary functions
which are less time-critical in nature. These would include
such activities as monitoring of engine performance, test
ing of navigation and instrument landing systems, testing
of weapons systems, and monitoring cabin , hydraulic, and
electrical systems. The system also generates a file of stu-

3-13

dent performance statistics which can be analyzed at a la
ter time.

The system also provides facilities for program develop
ment. As shown in the lower left-hand side of the diagram,
programmers at terminals can write and test new
applications programs (in either batch or interactive
mode) using text ed itors, compilers, linkers, and debug
gers. Because of the way the VAX architecture handles
real-time vs. normal processes (described below), pro
gram development can take place simultaneously with the
running of the fl ight simulator; no significant reduction in
real-time processing speed will result.

Design Considerations
Systems such as that shown in Figure 3-5 must be de
signed to operate at extremely high speeds, both in terms
of real-time 1/0 and computation . Many simulators require
turnaround times (data sampling , computation, and out
put) in the 25-50 mill isecond range.

There are several elements of the VAX hardware and the
VAX/VMS operating system which aid in achieving such
speeds. Most important is VAX's context switching abili
ty-a result of special processor instructions wh ich relieve
the operating system software of having to individually
load or save the hardware registers which define the hard
ware context. Another element is the design and operation
of VAX/VMS device drivers. VAX/VMS drivers are forked
processes which are created dynamically in response to a
user 1/0 request or unsolicited device interrupt. They op
erate with minimal context, execute to completion when in
voked, and remain memory resident throughout execu
tion . (VAX/VMS device drivers can be written for user
developed devices wh ich interface to the VAX UNIBUS.)

In addition , system designers can utilize the VAX/VMS
scheduling and system service facilities to yield still higher
processing speeds. For example, the following design
schema could be employed.

Those processes which perform the basic flight simulation
functions (i.e., fl ight motion equations, visual graphics
modules, etc.) can be designed as a group of hibernating
processes capable of being immediately reawakened as
required by the student's control activities. This could be
accomplished via the use of system service calls such as
($HIBERNATE/$WAKE) or ($SUSPEND/$RESUME) or by
using interprocess control structures such as mailboxes
and common event blocks.

To further ensure that basic simulation functions will oper
ate at the fastest possible speed, real-time processes can
be granted the highest scheduling priorities. Such proc
esses can also be given special privileges which allow
them to eliminate pag ing and swapping and thus assure
memory residency. (Note that when a VAX process runs at
real-time priority its priority level will actually be higher
than system processes such as the Swapper, Linker, and
Symbionts).

Processes that are not time-critical can be assigned nor
mal scheduling priorities. Those processes which perform
what is essentially a monitoring function (e .g., engine per
formance, electrical system , etc.) can also be hibernated,
then monitored periodically via the issuance of a pro
grammed system timer service. Other activities such as

program development and statistical processing can take
full advantage of the VAX/VMS system with minimum im
pact upon the basic real-time core of the simulation sys
tem .

3-14

For more information on the concepts of jobs, processes
and program images, refer to the Operating System sec
tion .

4
The
VAX.

Processors

I I I I I I I I I I I I 111111111111111111111111111111 II 11 11111111111mu1111111-
l I 11 11111/IUllllJI-

,,,,,,,,,,111111

. -.•••• 111111 lllf lll!!!!llf 11111111
1111

' ·._ -----

A VAX processor executes variable-length instructions in native mode
and non-privileged PDP-11 instructions in compatibility mode. The
VAX processor includes integral memory management, sixteen 32-bit
registers, 32 interrupt priority levels, an intelligent console, a pro
grammable real-time clock , and a time-of-day and date clock .

The VAX native instruction set provides 32-bit addressing enabling the
processor to address up to 4 billion (109) bytes of virtual address
space. The processor's memory management hardware includes map
ping registers used by the operating system , page protection by access
mode, and an address translation buffer that eliminates extra memory
accesses during virtual to physical address translation .

VAX also provides sixteen 32-bit general registers that can be used for
temporary storage, as accumulators, index registers, and base regis
ters. Four registers have special significance: the Program Counter and
three registers that are used to provide an extensive procedure CALL
facility . The processor offers a variety of addressing modes that use the
general registers to identify instruction operand locations, including an
indexed addressing mode that provides a true post-indexing capabili
ty .

The native instruction set is highly bit efficient. It includes integral deci
mal , character string, and floating point instructions, as well as integer,
logical , and bit field instructions. Instructions and data are variable
length and can start at any arbitrary byte boundary or, in the case of bit
fields, at any arbitrary bit in memory. Floating point instruction execu
tion can be enhanced by an optional floating point accelerator.

The 1/0 subsystem consists of the processor's internal bus and the UN
IBUS and MASSBUS interfaces.

INTRODUCTION
This section is divided into two parts. The first discusses
the architecture of a VAX processor, and the second dis
cusses VAX processor implementation details.

VAX ARCHITECTURE
The following sections discuss the architecture, i.e., the
programming characteristics of the processing system as
seen from the general user's and the operating system 's
viewpoint.

PROCESSING CONCEPTS FOR USER
PROGRAMMING
A program is a stream of instructions and data that a user
can request the operating system to translate, link , and ex
ecute. An executable program is called an Image to distin
guish it from source and object programs. When a user
runs an image, the context in which the image is executed
is called a process. A process is the complete unit of exe
cution in this computer system and typically runs several
images, one after another. Process context includes the
state of the image it is currently executing and includes the
image's allowable limitations, which primarily depend on
the privileges of the user executing the image.

The next few pages introduce some of the concepts that
concern assembly language programmers in general, in
cluding addressing , data types, instruction sets , and other
programming aspects of the processor. Further details on
these programming characteristics follow this introduc
tion.

Process Virtual Address Space
Most data are located in memory using the address of an
8-bit byte. The programmer uses a 32-bit virtual address
to identify a byte location. This address is called a virtual
address because it is not the real address of a physical
memory location . It is translated into a real address by the
processor under operating system control. A virtual ad
dress is not a unique address of a location in memory, as
are physical memory addresses. Two programs using the
same virtual address might refer to two different physical
memory locations, or refer to the same physical memory
location using different virtual addresses.

The set of all possible 32-bit virtual addresses is called
virtual address space. Conceptually, virtual address space
can be viewed as an array of byte " locations" labelled from
Oto 232 - 1, an array that is approximately four billion bytes
in length . This address space is divided into sets of virtual
addresses designated for certain uses. The set of virtual
addresses designated for use by a process, including an
image it executes, is one half of the total virtual address
space. Addresses in the remaining half of virtual address
space are used to refer to locations maintained and pro
tected by the operating system.

Instruction Sets
At any one time, the processor's instruction interpretation
hardware can be set to either of two modes: native mode
or compatibility mode. In native mode the processor exe
cutes a large set of variable-length instructions, recog
nizes a variety of data types, and uses sixteen 32-bit gen
eral purpose reg isters . In compatibil ity mode the
processor executes a set of PDP-11 instructions, recog
nizes integer data, and uses eight 16-bit general pu rpose

4-1

registers. While native mode is the primary instruction ex
ecution state of the machine and compatibility mode the
secondary state, the ir instruction sets are closely related ,
and their programming characteristics are very similar. A
user process can execute both native mode images and
compatib ility mode images.

A native instruction consists of an operation code (op
code) and zero or more operands, which are described by
data type and addressing mode. The native instruction set
is based on over 200 different kinds of operations, of each
operand of which can be addressed in any one of several
ways. Thus, the native instruction set offers a tremendous
number of instructions from which to choose.

In spite of the large number of instructions, the native in
struction set is a natural programming language that is
very easy to learn. Many of the instructions correspond
directly to high-level language statements, and the assem
bler mnemonics are readily associated with the instruction
function .

To choose the appropriate instruction , it is only necessary
to become famil iar with the operations, data types, and ad
dressing modes. For example, the ADD operation can be
applied to any of several sizes of integer, floating point, or
packed decimal operands, and each operand can be ad
dressed directly in a register , directly in memory, or indi
rectly through pointers stored in registers or memory
locations.

Registers and Addressing Modes
A register is a location within the processor that can be
used for temporary data storage and addressing. The as
sembly language programmer has sixteen 32-bit general
reg isters available for use with the native instruction set.
Some of these reg isters have special significance. For ex
ample, one register is designated as the Program Counter,
and it contains the address of the next instruction to be ex
ecuted . Three general registers are designated for use
with procedure linkages: the Stack Pointer, the Argument
Pointer, and the Frame Pointer.

An instruction operand can be located in main memory, in
a general register, or in the instruction stream itself. The
way in which an operand location is specified is called the
operand addressing mode. The processor offers a variety
of addressing modes and addressing mode optim izations.
There is one addressing mode that locates an operand in a
register. There are six addressing modes that locate an
operand in memory using a register to :

• point to the operand

• point to a table of operands

• point to a table of operand addresses

Additionally, there are six addressing modes that are in
dexed modifications of the addressing modes that locate
an operand in memory. Finally, there are two addressing
modes that identify the location of the operand in the in
struction stream : one for constant data, and one for
branch instruction addresses.

Data Types
The data type of an instruction operand identifies how
many bits of storage are to be treated as a unit, and what

the interpretation of that unit is. The processor's native in
struction set recognizes four primary data types: integer,
floating point, packed decimal, and character string. For
each of these data types, the selection of operation im
mediately tells the processor the size of the data and its
interpretation. The processor can also manipulate a fifth
data type, the bit field, in which the user defines the size of
the field and its relative position . In addition, the processor
supports two types of linked-list queue structures.

There are several variations on the four primary data
types. Table 4-1 provides a summary of the data types
available, each of which are illustrated in Figure 4-1. Integ
er data are stored as a binary value in either byte, word,
longword, or, in some cases, in quadword or octaword for
mat. A byte is eight bits, a word is two bytes, a longword is
four bytes, a quadword is eight bytes, and an octaword is
sixteen bytes. The processor can interpret an integer as ei
ther a signed (2's complement) value or an unsigned val
ue. The sign is determined by the high-order bit.

Floating point values are stored using a signed exponent
and a binary normalized fraction . The normalization bit is
not represented. Four types of floating point data formats
are provided . The two PDP-11 compatible formats

(F _floating and D_floating) are standard on all VAX family
processors. Two extended range formats (G_floating and
H_floating) are available as options on VAX family proces
sors. F _floating and D_floating are 4 and 8 bytes long re
spectively, with an 8-bit excess 128 exponent. The effec
tive 24-bit fraction of F _floating yields approximately 7 de
cimal digits of precision. The 56-bit fraction of O_float ing
yie lds approximately 16 decimal digits of prec ision.
G_f loating is also 8 bytes in length , but has an 11-bit ex
cess 1024 exponent and effectively 53 bits of fraction . Its
precision is approximately 15 decimal digits. H_float ing is

16 bytes in length with a 15-bit excess 16384 exponent and
113-bit fraction . Its precision is approximately 33 decimal
digits.

Packed decimal data are stored in a string of bytes. Each
byte is divided into two 4-bit nibbles. One decimal digit is
stored in each nibble. The first , or high-order, d igit is
stored in the high-order nibble of the first byte, the second
digit is stored in the low-order nibble of the first byte, the
third digit is stored in the high-order nibble of the second
byte, and so on . The sign of the number is stored in the
low-order nibble of the last byte of the string .

Character data are simply a string of bytes contain ing any
binary data, for example, ASCII codes. The first character

Table 4-1

Data Types

DATA TYPE SIZE RANGE (decimal)

Integer Signed Unsigned

Byte 8 bits - 128 to +127 0 to 255

Word 16 bits - 32768 to +32767 0 to 65535

Longword 32 bits - 231 to +231 -1 Oto 232-1

Quadword 64 bits - 263 to + 263 - 1 0 to 264 -1

Octaword 128 bits -2127 to +2127 -1 Oto 2 128 -1

F _and D_floating point ±2.9 x 10-37 to 1.7 x 1038

F _floating point 32 bits approximately seven decimal
digits precision

D_floating 64 bits approximately sixteen decimal
digits precision

G_floating point ±0.56 x 10·3os to 0.9 x 10308

G_floating 64 bits approximately fifteen decimal
digits prec ision

H_floating point ± 0.84 x 10-4932 to ±0.59 x 104932

H_floating 128 bits approximately thi rty-three
decimal digits precision

Packed Decimal Oto 16 bytes numeric , two dig its per byte
String (31 digits) sign in low half of last byte

Character String 0 to 65535 bytes one character per byte

Variable-length Oto 32 bits dependent on interpretation
Bit Field

Numeric String 0 to 31 bytes (DIGITS) - 103' -1 to +103' - 1

Queue ~ 2 longwords/ Queue entries at arbitrary
queue entry displacement in memory

4-2

WORD _1_5_

lONGM:)R()
31

QJJAOWORD
:.3_1

63

OCTAWORD

31

127

F_FLOATING

7 6

EXPONENT I FRACTION

FRACTION

31

G FLOATING

15 14

>l EXPONENT

FRACTION

FRACTION

FRACTION

PACKED DECIMAL STRING (+ 123)

4 3 J FRACTION

,, . ' .. •.. '/::.,
CHARl>CTER STRING (XYZJ

0

" X" : A

"Y" : A+l

" z" : A+2

VARIABLE-LENGTH BIT FIELD

P+S P+ S-1

S-1

BYTE
0 -7-

:A

D_ FLOATING
0 15 7 6

sJ EXPONENT I
FRACTION

16
FRACTION

FRACTION

0 63

: A

:A+2

: A+4
H FLOATING

15 14
: A+6 sl EXPONENT

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

P- 1

0

Figure 4-1
Data Type Representations

4-3

0

:A

0

: A

0

:A

: A+4

32

D

:A

: A+4

: A+8

:A+12

96

D

FRACTION

48

0

: A

:A+2

: A•4

: A•6

:A+ 8

:A+lO

:A+12

:A+14

: A

in the string is stored in the first byte, the second character
is stored in the second byte, and so on . A character string
that contains ASCII codes for decimal digits is called a nu
meric string .

The address of any data item is the address of the first byte
in which the item resides. All integer, floating point,
packed decimal, and character data can be stored starting
on an arbitrary byte boundary. A bit field, however, does
not necessarily start on a byte boundary. A field is simply a
set of contiguous bits (0-32) whose starting bit location is
identified relative to a giyen byte address or register. The
native instruction set can interpret a bit field as a signed or
unsigned integer.

The VAX queue data types consist of circular, doubly
linked lists. A queue entry is specified by its address. Each
queue entry is linked to the next entry via a pair of long
words. The first longword is the forward link; it specifies
the location of the succeeding entry. The second longword
is the backward link; it specifies the location of the preced
ing entry. VAX processors support two queue types ac
cording to the nature of the links: absolute and self-rela
tive. An absolute link contains the absolute address of the
entry that it points to. A self-relative link contains a dis
placement from the address of the queue entry.

Stacks, Subroutines, and Procedures
A stack is an array of consecutively addressed data items
that are referenced on a last-in, first-out basis using a
general register. Data items are added to and removed
from the low address end of the stack. A stack grows to
ward lower addresses as items are added, and shrinks to
ward higher addresses as items are removed .

A stack can be created anywhere in the user's program
address space. Any register can be used to point to the
current item on the stack. The operating system, however,
automatically reserves portions of each process address
space for stack data structures. User software references
its stack data structure, called the user stack, through a
general register designated as the Stack Pointer. When
the user runs a program image, the operating system au
tomatically provides the address of the area designated
for the user stack.

A stack is an extremely powerful data structure because it
can be used to pass arguments to routines efficiently. In
particular, the stack structure supports re-entrant routines
because the processor can handle routine linkages auto
matically using the Stack Pointer. Routines can also be re
cursive because arguments can be saved on the stack for
each successive call of the same routine.

The processor provides two kinds of routine call instruc
tions: those for subroutines, and those for procedures. In
general, a subroutine is a routine entered using a Jump to
Subroutine or Branch to Subroutine instruction, while a
procedure is a routine entered using a Call instruction .

The processor provides more elaborate routine linkages
for procedures than for subroutines. The processor auto
matically saves and restores the contents of registers to be
preserved across procedure calls. The processor provides
two methods for passing argument lists to called pro
cedures: by passing the arguments on the stack, or by
passing the address of the arguments elsewhere in memo
ry. The processor also constructs a "journal" of procedure

4-4

call nesting by using a general register as a pointer to the
place on the stack where a procedure has its linkage data.
This record of each procedure's stack data, known as its
stack frame, enables proper returns from procedures
even when a procedure leaves data on the stack . In add i
tion , user and operating system software can use the stack
frame to trace back through nested calls to handle errors
or debug programs.

Condition Codes
A user program can test the outcome of an arithmetic or
logical operation . The processor provides a set of cond i
tion codes and branch instructions for this purpose. The
condition codes indicate whether the previous arithmetic
or logical operation produced a negative or zero result, or
whether there was a carry or borrow, or an overflow. There
are a variety of branch on condition instructions: those for
overflow and carry or borrow, and those for signed and
unsigned relational tests .

Exceptions
Certain situations may require that the results of an opera
tion be tested either by the user or by the processor direct
ly. The processor recognizes many events for which it
must test directly, and automatically changes the normal
flow of the user program when they occur. These events,
called exceptions, are the direct result of executing a spe
cific instruction . Exceptions also include errors automati
cally detected by the processor, such as improperly
formed instructions.

All exceptions trap to operating system software. There
are essentially no fatal exceptions. All exceptions either
wait for the instruction that caused them to complete be
fore trapping or they restore the processor to the state it
was in just prior to executing the instruction that caused
the exception . In either case, the instruction can be retr ied
after the cause of the exception is cleared . Depending on
the exception, it may be desirable to correct the situation
and continue. If not, the operating system issues an appro
priate message and aborts the instruction stream in prog
ress. To continue, the user can request the operating sys
tem software to · start execution of a condition handler
automatically when an exception occurs.

USER PROGRAMMING ENVIRONMENT
A process context includes the definition of the virtual ad
dress space in which it executes an image. An image exe
cuting within a process context controls its execut ion
through the use of one of the instruction sets, the general
purpose registers, and the Processor Status Word. These
hardware resources are discussed in detail in the following
sections.

Process Virtual Address Space Structure
As mentioned earlier , certain sets of virtual addresses in
virtual address space are designated for particular uses.
The processor and operating system provide a multipro
gramming environment by dividing virtual address space
into two halves: one half for addressing context-depen
dent code and data, the other half for addressing context
independent code and data.

The first half is called per-process space (or more simply,
" process space"), which is capable of addressing approxi-

mately two billion bytes. An image executing in the context
of a process and the operating system on behalf of the
process use addresses in process space to refer to code
and data particular to that process context. A process can
not represent virtual addresses in any process space but
its own . Thus, code and data belonging to a process are
automatically protected from other processes in the sys
tem.

The second half of virtual address space is called system
space. The operating system assigns specific meanings to
addresses in system space. The significance of any ad
dress in system space is the same for every process, inde
pendent of process context. Although most locations
referred to by system space addresses are protected from
access by user images, if two images executing in different
process contexts do use an address in system space, the
address always refers to the same physical location in
memory.
Process space is further subdivided into two equal re
gions. Addresses in the first region , called the program re
gion , are used to identify the location of image code and
data. Addresses in the second region , called the control
region , are used to refer to stacks and other temporary
program image and permanent process control informa
tion maintained by the operating system on behalf of the
process. Program region addresses are allocated from
address 0 up, and control region addresses are allocated
from address 23 ' -1 down.

System space is also subdivided into two equal regions.
The operating system assigns the system region ad
dresses for linkages to its service procedures, for memory
management data, and for 1/0 processing routines. The
second region is presently unused.

General Registers _
Instruction operands are often either stored in the proces
sor's general registers or accessed through them. The six
teen 32-bit programmable general registers are labelled
RO through R15 (in decimal). Registers can be used for
temporary storage, accumulators, base registers , and in
dex registers. A base register contains the address of the
base of a software data structure such as a table, and an
index register contains a logical offset into a data struc
ture.

Whenever a register is used to contain data, the data are
stored in the register in the same format as would appear
in memory. If a quadword or double floating datum is
stored in a register, it is actually stored in two adjacent
registers . For example, storing a double floating number in
register R? loads both R? and RB.

Some registers have special significance depending on
the instruction being executed . Registers R12 through R15
have special significance for many instructions, and there
fore have special labels. These special registers are:

• The Program Counter (PC or R15), which contains the
address of the next byte to be processed in the instruc
tion stream.

• The Stack Pointer (SP or R14) , which contains the ad
dress of the top of a stack maintained for subroutine
and procedure calls.

4-5

• The Frame Pointer (FP or R13), which contains the ad
dress of the base of a software data structure stored on
the stack called the stack frame, maintained for pro
cedure calls.

• The Argument Pointer (AP or R12), which contains the
address of the base of a software data structure called
the argument list , maintained for procedure calls.

In addition, the first six registers, RO through RS, have spe
cial significance for character and packed decimal string
instructions, and the Cyclic Redundancy Check and Poly
nomial Evaluation instructions. These instructions use
these registers to store temporary results and, upon com
_pletion , leave results in the registers that a program can
use as the operands of subsequent instructions.

A register's special significance does not preclude its use
for other purposes, except for the Program Counter. The
Program Counter can not be used as an accumulator, as a
temporary reg ister , or as an index register. In general,
however, most users do not use the Stack Pointer, Argu
ment Pointer, or Frame Pointer for purposes other than
those designated.

Addressing Modes
The processor's addressing modes allow almost any oper
and to be stored in a register or in memory, or as an im
mediate constant. Table 4-2 summarizes the addressing
modes.

There are seven basic addressing modes that use the gen
eral registers to identify the operand location . They in
clude:

• Register mode, in which the register contains the oper
and.

• Register Deferred mode, in which the register contains
the address of the operand.

• Autodecrement mode, in which the contents of the
register are first decremented by the size of the oper
and , and then used as the address of the operand. The
size of the operand (in bytes) is given by the data type of
the instruction operand , and depends on the instruction.
For example, the Clear Word instruction uses a size of
two, since there are two bytes per word.

• Autoincrement mode, in wh ich the contents of the regis
ter are used as the address of the operand , and then in
cremented by the size of the operand. If the Program
Counter is the specified register, the mode is called Im
mediate mode.

• Autoincrement Deferred mode, in which the contents of
the register are used as the address of a location in
memory containing the address of the operand, and
then are incremented by four (the size of an address). If
the Program Counter is the specified register, the mode
is called Absolute mode.

• Displacement mode, in which the value stored in the
register is used as a base address. A byte, word, or
longword signed constant is added to the base address,
and the resulting sum is the effective address of the op
erand .

Table 4-2

Addressing Modes: Assembler Syntax

Literal I ~1 #constant (Immediate)

Register Rn

Reg ister Deferred (Rn)

Autodecrement -(Rn)

Auto increment (Rn) +

Autoincrement Deferred @(Rn) + Indexed

(Absolute) @#address [Rx]

Displacement (~·}

Displacement Deferred @ff}
n = Othrough 15
x = 0 through 14

• Displacement Deferred mode, in which the value stored
in the register is used as the base address of a table of
addresses. A byte, word , or longword signed constant is
added to the base address, and the resulting sum is the
address of the location that contains the actual address
of the operand .

Of these seven basic modes, all except register mode can
be modified by an index register. When an index register is
used with a basic mode to identify an operand , the ad
dressing mode is the name of the basic mode with the suf
fix " indexed ." For example, the indexed addressing mode
for register deferred is called "register deferred indexed"
mode. In addition to the seven basic addressing modes
that use registers, the processor recognizes six indexed
addressing modes.

In an indexed addressing mode, one register is used to
compute the base address of a data structure, and the oth
er register is used to compute an index offset into the data
structure. To obtain the operand 's effective address in an
indexed addressing mode, the processor: 1) computes the
base operand address provided by one of the basic ad
dressing modes (except register mode), 2) takes the value
stored in the index register and multiplies it by the given
operand size, and 3) adds the resultant value to the oper
and address. The index register contents are not affected
and can be used for subsequent processing operations.

The processor also provides literal mode addressing , in
which an unsigned 6-bit field in the instruction is interpret
ed as an integer or floating point constant.

The variety of addressing modes enables the assembly
language programmer to write , and high-level language
compilers to produce, very compact code. For example, li
teral mode is a very efficient way to specify small con
stants. The 6-bit field is interpreted as an integer when

4-6

displacement (Rn)
address

displacement (Rn)
address

used with integer operations, and can therefore express
the constants 0 through 63 (decimal). The 6-bit field is in
terpreted as a floating point constant when used in floating
point operations, where three bits express an exponent
and three a fraction .

The autoincrement and autodecrement modes enable au
tomatic stepping through tables. Displacement mode en
ables generation of offsets into a table , with a choice of ei
ther short or long displacements. The deferred modes en
able the user to maintain tables of operand addresses
instead of the operands themselves.

The indexed addressing modes allow indexing into tables
with a step size automatically determined by the operand.
As in autoincrement and autodecrement addressing , the
index is calculated in the context of the operand data type.
Th is means that the user can easily access several tables
of differing data types using the same index key.

Furthermore, because the indexed addressing modes en
able specification of the base operand address using any
mode that generates an actual address (that is, any mode
except register or literal) , the user has the ability to con
struct double indexing . The base address can be selected
from a table of base addresses using displacement de
ferred mode, and then use an index register to provide the
offset into the particular table selected .

Thus the processor's addressing modes allow cons idera
ble flexibility in the arrangement and processing of data
structures. A data structure's design does not have to be
tied to its processing method for efficiency.

Program Counter
A native mode instruction has a variable-length format,
and instructions are thought of as byte aligned . A variable
length format not only makes code more compact, it

means that the instruction set can be extended easily. The
opcode for the operation is either one or two bytes, and is
followed by zero to six operand specifiers, depending on
the instruction. An operand specifier can be one or several
bytes long , depending on the addressing mode. Figure 4-2
illustrates the representation of an instruction as a string of
bytes. Just before the processor begins to execute an in
struction, the Program Counter contains the address of
the first byte of the next instruction . The way in which the
Program Counter is updated is totally transparent to the
programmer.

The Program Counter itself can be used to identify oper
ands. The assembler translates many types of operand
references into addressing modes using the Program
Counter. Autoincrement mode using the Program Count
er , or immediate mode, is used to specify in-line con
stants other than those available with literal mode ad
dressing. Autoincrement deferred mode using the Pro
gram Counter, or absolute mode, is used to reference an
absolute address . Displacement and displacement
deferred modes using the Program Counter are used to
specify an operand using an offset from the current loca
tion.

Program Counter addressing enables the user to write po
sition-independent code. Position-independent code can
be executed anywhere in virtual address space after it has
been linked, since program linkages can be identified as
absolute locations in virtual address space and all other
addresses can be identified relative to the current instruc
tion.

Stack Pointer, Argument Pointer and Frame Pointer
The Stack Pointer is a register specifically designated for
use with stack structures. Autodecrement mode address
ing using the Stack Pointer can be used to place items on
the stack . Auoincrement mode can be used to remove
items from the stack . To reference and modify the top ele-

ment on a stack without removing it, use register deferred
mode, and to reference other elements of the stack use
displacement mode addressing .

The processor designates Register 14 as the Stack Pointer
for use with both the subroutine Branch or Jump instruc
tions, and the procedure Call instructions. On routine en
try, the processor automatically saves the address of the
instruction that follows the routine call on the stack . It uses
the Program Counter and the Stack Pointer to perform the
operation . Before entering the subroutine, the Program
Counter contains the address of the instruction following
the Branch , Jump, or Call instruction; the Stack Pointer
contains the address of the last item on the stack . The
processor pushes the contents of the Program Counter on
the stack. Returning from a subroutine, the processor au
tomatically restores the Program Counter by popping the
return address off the stack .

Also for the procedure Call instructions, the processor de
signates Register 12 as an Argument Pointer, and Register
13 as a Frame Pointer. The Argument Pointer is used to
pass the address of the argument list to a called pro
cedure, and the Frame Pointer is used to keep track of
nested Call instructions.

An argument list is a formal data structure containing the
arguments required by the procedure being called. Argu
ments may be actual values, addresses of data structures,
or addresses of other procedures. An argument list can be
passed in either of two ways: by passing only its address,
or by passing the entire list on the user stack . The first
method is used to pass long argument lists, or lists that are
to be preserved. The second method is generally used
when calling procedures that do not require arguments, or
when building an argument list dynamically.

When issuing a procedure Call instruction, the processor
uses the Argument Pointer to pass arguments to the pro
cedure. If arguments were passed on the stack, the proc-

AUTODECREMENT MODE, MOVE LONG INSTRUCTION

MOVL-{R3) ,R4

BEFORE INSTRUCTION EXECUTION

ADDRESS SPACE

00001014

00001015

00001016

00001017

AFTER INSTRUCTION EXECUTION

R3 R4

\0000101s \ \00000000 i

R3 R4

\00001014 I \cE543210

MACHINE CODE : {ASSUMED STARTING LOCATION 00003000)

00003000

00003001

00003002

OPCODE FOR MOVE LONG INSTRUCTION

AUTODECREMENT MODE , REGISTER R3

REGISTER MODE, REGISTER R4

Figure 4-2

Instruction Representation

4-7

essor automatically pops the arguments off on return from
the procedure.

The importance of the way the Call instructions work is that
nested calls can be traced back to any previous level. The
Call instructions always keep track of nested calls by using
the Frame Pointer register. The Frame Pointer contains
the address on the stack of the items pushed on the stack
during the procedure call. The set of items pushed on the
stack during a procedure call is known as a call frame or
stack frame. Since the previous contents of the Current
Frame register are saved in each call frame, the nested
frames form a linked data structure which can be unwound
to any level when an error or exception condition occurs in
any procedure.

Processor Status Word
The Processor Status Word (a portion of the Processor
Status Longword) is a special processor register that a
program uses to check its status and to control synchro
nous error conditions. The Processor Status Word, illu
strated in Figure 4-3, contains two sets of bit fields:

• the condition codes

• the trap enable flags

The condition codes indicate the outcome of a particular
logical or arithmetic operation. For example, the Subtract
instruction sets the Negative bit if the result of the subtrac
tion operation produced a negative number, and it sets the
Zero bit if the result produced zero. The Branch on Condi
tion instructions can be used to transfer control to a code
sequence that handles the condition .

There are two kinds of exceptions that concern the user
process: trace faults and arithmetic exceptions. The trace
fault is used by debugging programs or performance eva
luators. Arithmetic exceptions include:

• integer, floating point, or decimal string overflow, in
which the result was too large to be stored in the given
format

• integer, floating point, or decimal string divide by zero,
in which the divisor supplied was zero

• floating point underflow, in which the result was too
small to be expressed in the given format

Of the arithmetic exceptions, integer overflow, floating un
derflow, and decimal string overflow may be handled in

15

NOT USED

DECIMAL OVERFLOW TRAP ENABLE
FLOATING UNDERFLOW EXCEPTION ENABLE
INTEGER OVERFLOW TRAP ENABLE
TRACE FAULT ENABLE
NEGATIVE CONDITION CODE
ZERO CONDITION CODE
OVERFLOW CONDITION CODE
CARRY (BORROW) CONDIT ION CODE

one of two ways. By clearing the exception enable bits in
the Processor Status Word, the processor can be directed
to ignore integer and decimal string overflow and floating
underflow. The user may check for these conditions either
by testing the condition codes (except for underflow) using
the Branch on Condition instructions or by enabling the
exception bits. By enabling the exception bits, the proces
sor treats integer and decimal string overflow and floating
underflow as exceptions. In any case, floating overflow and
divide by zero exceptions are always enabled .

Handling Exceptions
When an exception occurs, the processor immediately
saves the current state of execution and traps to the oper
ating system. The operating system automatically search
es for a procedure that wants to handle the exception. Pro
cedures that respond to exceptions are called condition
handlers. The user can declare a condition handler for an
entire image and for each individual procedure called . In
addition, because the processor keeps track of nested
calls using the Frame Pointer register, it is possible to de
clare condition handlers for procedures that call other pro
cedures in which exceptions might occur. The operating
system automatically traces back through call frames to
find a condition handler that wants to handle an exception
that occurs.

NATIVE INSTRUCTION SET
The instruction set that the processor executes is selected
under operating system control to either native mode or
compatibility mode. The native mode instruction set is
based on over 200 different opcodes. The opcodes can be
grouped into classes based on their function and use. In
structions used to manipulate the general data types in
clude:

• integer and logical instructions

• floating point instructions

• packed decimal instructions

• character string instructions

• bit field instructions

Instructions that are used to manipulate special kinds of
data include:

• queue manipulation instructions

8 7 6 5 4 3 2 0

1 I l
Figure 4-3

Processor Status Word

4-8

• address manipulation instructions

• user-programmed general register control instructions

Instructions that provide basic program flow control , and
enable the user to call procedures are:

• branch, jump and case instructions

• subroutine call instructions

• procedure call instructions

Table 4-3 lists the basic instruction operations in order by
these classifications. Instructions that enable operating
system procedures to provide user mode processes with
services requiring privilege are listed in the table, but dis
cussed in the system programming environment section .
Instructions that are singular in the functions they provide
are listed last. The following paragraphs describe the func
tions of most of the instructions within each class. ·For fur
ther information on the instruction set, refer to the VAX-11
Architecture Handbook.

Table 4-3
Instruction Set Summary

Integer and Floating Point Logical Instructions

MOV_' Move (B,W,L,F,D,G,H,Q,O)"
MNEG_ Move Negated (B,W,L,F,D,G,H)
MCOM_ Move Complemented (B ,W,L)
MOVZ_ Move Zero-Extended (BW,BL,WL)
CLR_ Clear (B,W,L=F,Q=D=G,O=H)
CVT_ Convert (B ,W,L ,F,D,G,H)(B,W,L,F,D,G,H)

except BB,WW,LL,FF,DD,GG ,HH ,DG ,
and GD

CVTR_L Convert Rounded (F,D,G,H) to Longword
CMP_ Compare (B,W,L,F,D,G,H)
TST_ Test (B,W,L,F,D,G,H)
BIS_2 Bit Set (B ,W,L) 2-0perand
BIS_3 Bit Set (B,W,L) 3-0perand
BIC_2 Bit Clear (B,W,L) 2-0perand
BIG_3 Bit Clear (B,W,L) 3-0perand
BIT_ Bit Test (B,W,L)
XOR_2 Exclusive OR (B,W,L) 2-0perand
XOR_3 Exclusive OR (B ,W,L) 3-0perand
ROTL Rotate Longword

Integer and Floating Point Arithmetic Instructions

INC_
DEC_
ASH_
ADD_2
ADD_3
ADWC
ADAWI
SUB_2
SUB_3
SBWC
MUL--2
MUL_3
EMUL
DIV--2
DIV_3
EDIV
EMOD_
POLY_

Increment (B ,W,L)
Decrement (B,W,L)
Arithmetic Shift (L,Q)
Add (B,W,L,F,D,G,H) 2-0perand
Add (B ,W,L,F,D,G,H) 3-0perand
Add with Carry
Add Aligned Word Interlocked
Subtract (B ,W,L,F,D,G,H) 2-0perand
Subtract (B,W,L,F,D,G,H) 3-0perand
Subtract with Carry
Multiply (B ,W,L,F,D,G,H) 2-0perand
Multiply (B ,W,L,F,D,G ,H) 3-0perand
Extended Multiply
Divide (B ,W,L,F,D,G,H) 2-0perand
Divide (B ,W,L,F,D,G,H) 3-0perand
Extended Divide
Extended Modulus (F,D,G,H)
Polynomial Evaluation (F,D,G,H)

4-9

Packed Decimal Instructions

MOVP Move Packed
CMPP3 Compare Packed 3-0perand
CMPP4 Compare Packed 4-0perand
ASHP Arithmetic Shift Packed and Round
ADDP4 Add Packed 4-0perand
ADDP6 Add Packed 6-0perand
SUBP4 Subtract Packed 4-0perand
SUBP6 Subtract Packed 6-0perand
MULP Multiply Packed
DIVP Divide Packed
CVTLP Convert Long to Packed
CVTPL Convert Packed to Long
CVTPT Convert Packed to Trailing
CVTTP Convert Trailing to Packed
CVTPS Convert Packed to Separate
CVTSP Convert Separate to Packed
EDIT PC Edit Packed to Character String

Character String Instructions

MOVC3 Move Character 3-0perand
MOVC5 Move Character 5-0perand
MOVTC Move Translated Characters
MO VT UC Move Translated Until Character
CMPC3 Compare Characters 3-0perand
CMPC5 Compare Characters 5-0perand
LOCC Locate Character
SKPC Skip Character
SCANC Scan Characters
SPANG Span Characters
MATCHC Match Characters

Variable-Length Bit Field Instructions

EXTV
EXTZV
INSV
CMPV
CMPZV
FFS
FFC

Extract Field
Extract Zero-Extended Field
Insert Field
Compare Field
Compare Zero-Extended Field
Find First Set
Find First Clear

Table 4-3 (Cont.)
Instruction Set Summary

Index Instruction

INDEX

Queue Instructions

INSQUE
INSQHI
INSQTI
REMQUE
REMQHI

REMQTI

Compute Index

Insert Entry in Queue
Insert Entry into Queue at Head , Interlocked
Insert Entry into Queue at Tail, Interlocked
Remove Entry from Queue
Remove Entry from Queue at Head,
Interlocked
Remove Entry from Queue at Tail ,
Interlocked

---- --------------------

Address Manipulation Instructions

MOVA_
PUS HA_

Move Address {B,W,L=F,Q=D=G,O=H)
Push Address (B,W,L=F,Q=D=G,O=H)
on Stack

-- -------------
General Register Manipulation Instructions

PUSHL
PUSHR
POPA
MOVPSL
BISPSW
BICPSW

-- --------------

Push Longword on Stack
Push Registers on Stack
Pop Registers from Stack
Move from Processor Status Longword
Bit Set Processor Status Word
Bit Clear Processor Status Word

Unconditional Branch and Jump Instructions

BR_
JMP

Branch with {B , W) Displacement
Jump

Branch on Condition Code

BLSS
BLSSU
BLEQ
BLEQU
BEQL
(BEQLU)
BNEQ
(BNEQU)
BGTR
BGTRU
BGEQ
BGEQU
(BCC)
(BCS)
BVS
BVC

Branch on Bit

Less Than
Less than Unsigned
Less than or Equal
Less than or Equal Unsigned
Equal
(Equal Unsigned)
Not Equal
(Not Equal Unsigned)
Greater than
Greater than Unsigned
Greater than or Equal
Greater than or Equal Unsigned
(Carry Cleared)
(Carry Set)
Overflow Set
Overflow Clear

BLB_
BB_
BBS_
BBC_
BBSSI
BBCCI

Branch on Low Bit (Set, Clear)
Branch on Bit (Set, Clear)
Branch on Bit Set and (Set, Clear) Bit
Branch on Bit Clear and (Set, Clear) Bit
Branch on Bit Set and Set Bit Interlocked
Branch on Bit Clear and Clear Bit
Interlocked

Loop and Case Branch

ACB_
AOBLEQ
AOBLSS
SOBGEQ

SO BG TR
CASE_

Add, Compare and Branch (B,W,L,F,D,G,H)
Add One and Branch Less Than or Equal
Add One and Branch Less Than
Subtract One and Branch Greater
Than or Equal
Subtract One and Branch Greater Than
Case on (B ,W,L)

Subroutine Call and Return Instructions

BSB_

JSB
RSB

Branch to Subroutine with (B, W)
Displacement
Jump to Subroutine
Return from Subroutine

Procedure Call and Return Instructions

4-10

CAL LG
CALLS
RET

Call Procedure with General Argument List
Call Procedure with Stack Argument List
Return from Procedure

Protected Procedure Call and Return Instructions

CHM_

REI
PROBER
PRO BEW

Change Mode to (Kernel, Executive,
Supervisor, User)
Return from Exception or Interrupt
Probe Read
Probe Write

Privileged Processor Register Control Instructions

SVPCTX
LDPCTX
MTPR
MFPR

Save Process Context
Load Process Context
Move to Process Register
Move from Processor Register

Special Function Instructions

CRC
BPT
XFC
NOP
HALT

Cyclic Redundancy Check
Breakpoint Fault
Extended Function Call
No Operation
Halt

The underscore following the instruction name implies that the
instruction will operate upon any data type contained in the
parentheses following that instruction.

•• B =byte
W =word
L =longword
Q =quadword
0 = octaword
F = F _floating
D = D_floating
G = G_floating
H = H_floating

Instructions that operate on G, H, and 0 formats are only avail
able on VAX family processors equipped with the extended
range floating point option .

Integer and Floating Point Instructions
The logical and integer arithmetic instructions illustrate
how the opcodes , data types, and addressing modes can
be combined in an instruction . Most of the operations pro
vided for integer data are also provided for floating point
and packed decimal data. Exceptions are the strictly logi
cal operations for integer data (such as bit clear, bit set,
complement) , the multiword arithmetic instructions for in
teger data (such as Add/Subtract with Carry and Extended
Multiply and Extended Divide), and the Extended Modulus
and Polynomial instructions for floating point data.

The arithmetic instructions include both 2-operand and 3-
operand forms that eliminate the need to move data to and
from temporary operands. The 2-operand instructions
store the result in one of the two operands, as in "Set A
equal to A plus B." The 3-operand instructions effectively
implement the high-level language statements in which
two different variables are used to calculate a third , such
as "Set C equal to A plus B." The 3-operand instructions
are applicable to both integer and floating point data, and
equivalent instructions exist for packed decimal data.

To illustrate the instruction set and addressing modes,
consider the FORTRAN language statement:

A(I) = 8(1) * C(I)

where A, B, and C are statically allocated REAL •4 arrays
and I is INTEGER*4. A code sequence that performs this
operation is:

MOVL

MULF3

l,RO ;Move the longword I
;to a register

B[RO] ,C[RO],A[RO) ;3-operand floating
;multiply

The same code applies if A, B, and Care REAL *8, INTEG
ER*4 , INTEGER*2, or even INTEGER*1 data types: the
MULF3 instruction is simply changed to MULD3, MULL3,
MULW3, or MULB3, respectively.

If arrays A, B, and Care dynamically allocated arrays, the
code sequence could be:

MOVL
MULF3

l,RO
Bdisp(FP)[RO) ,Cdisp(FP)[RO),Adisp(FP)[RO]

If A, B, and C are arguments to a procedure, the code
could be:

MOVL
MULF3

l,RO
@Bargptr(AP)[RO],@Cargptr(AP)[RO),
;@Aarg ptr[RO)

In fact, the locations of A, B, and C can be arbitrarily se
lected. For example, combining the above, if A is statically
allocated , B dynamically allocated, and C an argument,
then the code sequence could be:

MOVL l,RO
MULF3 Bdisp(FP)[RO) ,@Cargptr(AP)[RO] ,A[RO)

Some of the arithmetic instructions are used for extending
the accuracy of repeated computations. The Extended
Multiply (EMUL) instruction takes longword integer argu
ments and produces a quadword result. The instruction ef
fectively implements a high-level language statement such
as "Set D equal to (A times B) plus C. " The Extended Di
vide (EDIV) instruction divides a quadword integer by a
longword and produces a longword quotient and a long
word remainder.

4-11

The Extended Modulus (EMOD) instructions multiply a flo
ating point number with an extended precision floating
point number (extended by eight bits for F _floating and
D_floating for an effective 9 or 19 digits of accuracy) and
returns the integer portion and the fractional portion sepa
rately. This instruction is particularly useful for the reduc
tion of the argument of trigonometric and exponential
functions to a standard interval.

The Polynomial Evaluation (POLY) instructions evaluate a
polynomial from a table of coefficients using Homer's
method . This instruction is used extensively in the high
level languages' math library for operations such as sine
and cosine.

Packed Decimal Instructions
Many of the operations for integer and floating point data
also apply to packed decimal strings. They include:

• Move Packed (MOVP) for copying a packed decimal
string from one location to another, and Arithmetic Shift
Packed (ASHP) for scaling a packed decimal up or
down by a given power of 10 while moving it, and op
tionally rounding the value.

• Compare Packed (CMPP) for comparing two packed
decimal strings. Compare Packed has two variations: a
3-operand (CMPP3) instruction for strings of equal
length , and a 4-operand instruction (CMPP4) for strings
of differing lengths.

• Convert Instructions, including Convert Long to Packed
(CVTLP), Convert Packed to Long (CVTPL), Convert
Packed to Numeric with Trailing sign (CVTPT), Convert
Numeric with Trailing sign to Packed (CVTTP), Convert
Packed to Numeric with Separate overpunched sign
(CVTPS) , and Convert Numeric with Separate over
punched sign to Packed (CVTSP) . These instructions
enable the conversion of our packed decimal format to
commonly used numeric formats . Numeric with trailing
sign allows various sign encodings including zoned and
overpunched .

• Add Packed (ADDP) and Subtract Packed (SUBP) for
adding or subtracting two packed decimal strings, with
the option of replacing the addend or subtrahend with
the result (ADDP4 and SUBP4), or storing the result in a
third string (ADDP6 or SUBP6).

• Multiply Packed (MULP) and Divide Packed (DIVP) for
multiplying or dividing two packed decimal strings and
storing the result in a third string .

In addition , the packed decimal instructions include a spe
cial packed decimal string to character string conversion
instruction that provides output formatting : the Edit in
struction .

Edit Instruction
The Edit Packed to Character String (EDITPC) instruction
supplies formatted numeric output functions. The instruc
tion converts a given packed decimal string to a character
string using selected pattern operators. The pattern oper
ators enable the creation of numeric output fields with any
of the following characteristics:

• leading zero fill

• leading zero protection

• leading asterisk fill protection

• a floating sign

• a floating currency symbol

• special sign representations

• insertion characters

• blank when zero

Character String Instructions
The character string instructions operate on strings of
bytes. They include:

• move string instructions, with translation options

• string compare instructions

• single character search instructions

• substring search instructions

There are two basic forms of Move instructions for charac
ter strings. The Move Character instructions (MOVC3 and
MOVC5) simply copy character strings from one location
to another. They are optimized for block transfer opera
tions. The 5-operand variation provides for a fill character
(user-supplied) that the instruction uses to pad out the
destination location to a given size.

The Move Translated Characters (MOVTC) and Move
Translated Until Character (MOVTUC) instructions actually
create new character strings. The user supplies a string
which the instruction uses as a list of offsets into a transla
tion table. The instruction selects characters from the table
in the order that the offset list points to the table. The
MOVTC instruction allows the user to supply a fill charac
ter that the instruction uses to pad out the resultant string
to a given size with an arbitrary character. The MOVTUC
instruction allows the user to supply any number of escape
characters. When the next offset points to an escape char
acter in the table, translation stops.

The Compare Characters (CMPC) instructions provide
character-by-character byte string compares. CMPC has a
3-operand form and a 5-operand form . Both instructions
compare two strings from beg inning to end, informing the
user when they reach the first character that is different
between the strings, or when they get to the end of either
str ing . The 5-operand variation provides for a fill character
which it uses to effectively pad out a string when compar
ing it with a longer one.

The Locate Character (LOCC) and Skip Character (SKPC)
instructions are search instructions for single characters
within a string . LOCC searches a given string for a charac
ter that matches the search character supplied by the
user. This is useful, for example, when searching for the
delimiter at the end of a variable-length string . SKPC, on
the other hand, finds the first character in the string that is
different from the search character supplied. This is useful
for sk ipping through fill characters at the end of a field to
find the beginning of the next field.

The Match Characters (MATCHC) instruction is sim ilar to
the Locate Character instruction , but it locates multiple
character substrings. MATCHC searches a string for the
first occurrence of a substring supplied by the user.

The Span Characters (SPANG) and Scan Characters
(SCANC) instructions are search instructions that look for
members of character classes. For these instructions the
user supplies a character string , a mask, and the address

4- 12

of a 256-byte table of character type definitions. For each
character in the given string , the instruction looks up the
type code in the table for that character , and then AN D the
given mask with the character's type code. SPANC finds
the first character in the string which is of the type indicat
ed by its mask. SCANC finds the first character in the
string which is of any type other the one indicated by its
mask.

The Index Instruction
The Index instruction (INDEX) calculates an index for an
array of fixed length data types (integer and floating) and
for arrays of bit fields, character str ings, and decimal
strings. It accepts as arguments: a subscript, lower and
upper subscript bounds, an array element size, a g iven in
dex, and a destination for the calculated index. It incorpo
rates range check ing within the calculation for high-level
languages using subscript bounds, and it allows index cal
culation optimization by removing invariant expressions.

The COBOL statements:

01 A-ARRAY
02 A PIC X(10) OCCURS 15 TIMES.

01 B PIC X(10) .
MOVE A(I) TO B.

are equ ivalent to :

INDEX I, #1 , #15, #10, #0, RO ; 1 less than or equal I
; I less than or equal 15
; (0 + 1) *1 0 is
; stored in RO

MOVC3 #10, A-10[RO],B

The FORTRAN statements:

INTEGER*4A(L1 :U1 , L2:U2), I, J
A(l ,J) = 1

are equivalent to :

INDEX J, #L2, #U2, #M1 , #0, RO
INDEX I, #L 1, #U1 , #1 , RO, RO
MOVL #1 , A-a[RO)

; M1=U1 - L1

; a= ((L2*M1)+L 1)*4

Variable-Length Bit Field Instructions
The bit field instructions enable the user to define , access,
and modify those fields whose size and location were user
specified. Location is determined from a base address or a
register and a signed bit offset. If the field is in memory,
the offset can reach bits located up to 23 ' bits (approxi
mately 256 million bytes) away in either direction. If the
field is in a reg ister, the offset can be large as 31 . Fields of
arbitrary lengths (0 to 32 bits) may be used for storing data
structure header information compactly , for status codes,
or for creating user data types. The field instructions en
able manipulation of fields easily.

The Insert Field and Extract Field instructions store data in
and retr ieve data from fields. Insert Field (INSV) stores da
ta in a field by taking a specified number of bits of a long
word (starting from the low-order bit) and writing them into
a f ield , which may start at any bit relative to a given base
address. The Extract Field instruction retrieves data from a
field by copying the bit field and storing it in the low-order

bits of a longword . The field can either be signed (EXTV) or
unsigned (EXTZV).

The Compare Field and Find First instructions enable the
user to test the contents of a field . Compare Field extracts
a field and then compares it with a given longword. The
field can be interpreted as signed (CMPV), or as unsigned
(CMPZV). The Find First instructions locate the first bit in a
field that is clear (FFC) or set (FFS), scanning from low-or
der bit to high-order bit. These instructions are particularly
useful for scanning a status control longword . For exam
ple, the longword may represent a set of queues proc
essed in order by priority 0 (high) to 31 (low). Each set bit
represents an active queue. The Find First Set instruction
quickly returns the highest priority queue that is active.
Together with the SKPC instructions, the Find First instruc
tions are also useful for scanning an allocation table (bit
map) of arbitrary length .

Queue Instructions
The processor has six instructions that allow easy con
struct ion and maintenance of queue data structures .
Queues manipulated using the queue instructions are cir
cular, doubly linked lists of data items.

The first longword of a queue entry contains the forward
pointer to the next entry in the queue, and the next long
word contains the backward pointer to the preceding entry
in the queue.

Two types of queues are provided : absolute and self-rela
tive. Absolute queues use pointers that are virtual ad
dresses, whereas self-relative queues use pointers that
are relative displacements.

Two instructions are provided for manipulating absolute
queues: INSQUE, and REMQUE. INSQUE inserts an entry
specified by an entry operand into the queue following the
entry specified by the predecessor operand . REMQUE re
moves the entry specified by the entry operand. Queue en
tries can be on arbitrary byte boundaries. Both INSQUE
and REMQUE are implemented as non-interruptible in
structions.

Four operations can be performed on self-relative queues:
insert at head (INSQHI), remove from head (REMQHI), in
sert at tail (INSQTI), and remove from tail (REMQTI). Furth
ermore, these operations are interlocked to allow cooper
ating processes in a multiprocessor system to access a
shared queue without additional synchronization . Queue
entries must be quadword aligned .

Address Manipulation Instructions
Because the processor offers a variety of addressing
modes enabling access to data structures easily via base
addresses and indices in registers, addresses are often
manipulated . The processor provides two instructions en
abling an address to be fetched without actually accessing
the data at that location :

• The Move Address (MOVA) instruction, which stores the
address of a byte, word, longword (and floating), or
quadword (and double floating) datum in a specified
register or location in memory.

• The Push Address (PUSHA) instruction, which stores
the address of a byte, word, longword (and floating) , or
quadword (and double floating) datum on the stack.

4-13

The Push Address instruction is useful for computing an
address to be passed to a called subroutine or procedure.
Move Address is useful for loading a base register and
performing run time position-independent address com
putation. It has some interesting uses because it is effec
tively an ADD instruction :

MOVAB disp(R1)[R2] ,X ; sets X=R1 +R2+displacement
; (two adds in one instruction)

MOVA_disp(Rn)[Rn],Rn ; multiplies Rn by 3
; (for MOVAW),
; 5 (for MOVAL),
; or 9 (for MOVAQ)
; and adds displacement to it.

General Register Manipulation Instructions
The general register manipulation instructions enable any
user program to save or load the general purpose regis
ters in one operation , examine the Processor Status Long
word , and set or clear status bits in the Processor Status
Word. (Processor register control instructions primarily
used by operating system software are covered later.)

The Push Longword (PUSHL) instruction pushes a long
word on the stack . This instruction is the same as a Move
Longword using the Stack Pointer in register deferred
mode, but is a byte shorter. It is a consistent and conven
ient way to move data to the stack .

The Push Registers (PUSHR) instruction pushes a set of
registers on the stack in one operation. The user supplies
a mask word in which each set bit (0-14) represents a
register (RO-R14) to be saved on the stack. (The only gen
eral register that cannot be saved using this instruction is
R15, the Program Counter .) Pop Registers (POPA)
reverses the operation , loading each register from succes
sive longwords on the stack according to the given mask
word . The PUSHR and POPA instructions replace the
need to write a sequence of Move instructions to save and
restore registers upon entry and exit from a subroutine.

The Move from Processor Status Longword (MOVPSL) in
struction allows examination of the contents of the proces
sor's status register by loading its contents into a specified
location . The Bit Set (BISPSW) and Bit Clear (BICPSW)
Processor Status Word instructions enable the user to set
or clear the PSW condition codes and trap enable bits. The
mask bits represent the bits to be set or cleared .

Branch, Jump and Case Instructions
The two basic types of control transfer instructions are
branch and jump instructions. Both branch and jump load
new addresses in the Program Counter. With branch in
structions, the user supplied displacement (offset) is add
ed to the current contents of the Program Counter to ob
tain the new address. The jump instructions allow the user
specified address to be loaded, using one of the normal
addressing modes.

Because most transfers are to locations relatively close to
the current instruction , and branch instructions are more
efficient than jump instructions, the processor offers a va
riety of branch instructions to choose from. There are two
unconditional branch instructions and many conditional
branch instructions.

The unconditional branch instructions allow specification
of either a byte-size (BAB) or a word-size displacement
(BRW), thereby permitting displacements as far away from
the current location as 32,767 bytes in either direction. The
Jump instruction (JMP) should be used for transfer of con
trol to locations greater in displacement than 32,767 bytes.

Most conditional branches allow only byte displacements,
although some of the more powerful, such as the Add
Compare and Branch instruction, allow word displace
ments. Conditional branch instructions include:

• branch on bit instructions

• set and clear bit instructions with a branch if it is already
set or cleared

• loop instructions that increment or decrement a count
er, compare it with a limit value, and branch on a rela
tional condition

• computed branch instruction in which a branch may
take place to one of several locations depending on a
computed value

The Branch on Condition (B) instructions enable transfer
of control to another location depending on the status of
one or more of the condition codes in the Processor Status
Word (PSW). There are three groups of Branch on Condi
tion instructions :

• The signed relational branches, which are used to test
the outcome of instructions operating on integer and
field data types being treated as signed integers, float
ing point data types, and decimal strings.

• The unsigned relational branches, which are used to
test the outcome of instructions operating on integer
and field data types being treated as unsigned integers,
character strings, and addresses.

• The overflow and carry test branches, which are used
for checking overflow when traps are not enabled, for
multiprecision arithmetic, and for the results of special
instructions.

The instruction mnemonics clearly indicate the choice
between a signed and unsigned integer data type interpre
tation for relational testing . The relational tests determine
if the result of the previous operation is less than, less than
or equal, equal, not equal, greater than or equal, or greater
than zero . For example, the Branch on Less than or Equal
Unsigned (BLEQU) instruction branches if either the Carry
or Zero bit is set. The Branch on Greater Than (BGTR) in
struction branches if neither the Negative nor the Zero bit
is set.

General purpose Branch on Bit instructions similar to
Branch on Condition also exist. The Branch on Low Bit Set
(BLBS) and Branch on Low Bit Clear (BLBC) instructions
test bit 0 of an operand, which is useful for testing Boolean
values. The Branch on Bit Set (BBS) and Branch on Bit
Clear (BBC) instructions test any selected bit.

There are special kinds of Branch on Bit instructions that
are actually bit set/clear instructions. The Branch on Bit
Set and Set (BBSS) is an example. The instruction branch
es if the indicated bit is set, otherwise it falls through. In
either case, the instruction sets the given bit. The BBSS in
struction can thus be thought of as a Bit Set instruction
with a branch side-effect if the bit was already set. There
are four permutations:

4-14

• Branch on Bit Set and Set (BBSS)

• Branch on Bit Clear and Clear (BBCC)

• Branch on Bit Set and Clear (BBSC)

• Branch on Bit Clear and Set (BBCS)

These instructions are particularly useful for keeping track
of procedure completion or initialization , and for signal ing
the completion or initialization of a procedure to a cooper
ating process. In addition, there are two Branch on Bit In
terlocked instructions that provide control variable protec
tion :

• Branch on Bit Set and Set Interlocked (BBSSI)

• Branch on Bit Clear and Clear Interlocked (BBCCI)

The memory interconnect bus provides a memory inter
lock on these instructions . No other BBSSI or BBCCI
operation can interrupt these instructions to gain access to
the byte containing the control variable between the test
ing of the bit and the setting or clearing of the bit.

The processor offers three types of branch instructions
that can be used to write efficient loops. The first type pro
vides the basic subtract-one-and-branch loop. A counter
variable (user-supplied) is decremented each time the
loop is executed . In the Subtract One and Branch Greater
Than (SOBGTR) instruction, the loop repeats until the
counter equals zero. In the Subtract One and Branch
Greater Than or Equal (SOBGEQ) instruction , the loop re
peats until the counter becomes negative.

The counterpart to subtract-one-and-branch is add-one
and-branch . A counter and a limit must be supplied by the
user. The counter is incremented at the end of the loop. In
the Add One and Branch Less Than (AOBLSS) instruction,
the loop repeats until the counter equals the user-defined
limit. In the Add One and Branch Less Than or Equal (AO
BLEQ) instruction, the loop repeats until the counter
exceeds the user defined limit.

The third type of loop instruction efficiently implements the
FORTRAN language DO statement and the BASIC lan
guage FOR statement: Add Compare and Branch (ACB).
In this case, the user must supply a limit, a counter , and a
step value. For each execution of the loop, the instruction
adds the step value to the counter and compares the
counter to the limit. The sign of the step value determines
the logical relation of the comparison: the instruction loops
on a less than or equal comparison if the step value is po
sitive, on a greater than or equal comparison if the step
value is negative.

The processor provides a branch instruction that imple
ments higher-level language computed GO TO state
ments: the CASE instruction. To execute the CASE in
struction , the user must supply a list of displacements that
generate different branch addresses indexed by the value
obtained as a selector. The branch falls through if these
lector does not fall within the limits of the list.

Subroutine Branch, Jump, and Return Instructions
Two special types of branch and jump instruction are
provided for calling subroutines: the Branch to Subroutine
(BSB) and Jump to Subroutine (JSB) instructions. Both
BSB and JSB instructions save the contents of the Pro
gram Counter on the stack before loading the Program
Counter with the new address. With Branch to Subroutine,

the user supplies either a byte (BSBB) or word (BSBW)
displacement. With Jump to Subroutine, regular address
ing is used.

The subroutine call instructions are complemented by the
Return from Subroutine (RSB) instruction. RSB pops the
first longword off the stack and loads it into the Program
Counter. Since the Branch to Subroutine instruction is ei
ther two or three bytes long , and the Return from Subrou
tine instruction is one byte long, it is possible to write ex
tremely efficient programs using subroutines.

Procedure Call and Return Instructions
Procedures are general purpose routines that use
argument lists passed automatically by the processor. The
procedure Call instructions enable language processors
and the operating system to provide a standard calling in
terface. They:

• save all the registers that the procedure uses, and only
those registers , before entering the procedure

• pass an argument list to a procedure

• maintain the Stack, Frame, and Argument Pointer regis-
ters

• initialize the arithmetic trap enables to a given state

When issuing a Call procedure instruction , the address of
the procedure being called, must be included. The first
word of a procedure contains an entry mask that is used in
the same way as the entry mask defined for the Push
Registers instruction. Each set bit of the 12 low-order bits
in the word represents one of the general registers, RO
through R11, that the procedure uses. The Call instruction
examines this word and saves the indicated registers on
the stack. In addition, the Call instruction also automatical
ly saves the contents of the Frame Pointer, Argument
Pointer, and Program Counter registers. This is an ex
tremely efficient way to ensure that registers are saved
across procedure calls . No general register is saved that
does not have to be saved.

The Call Procedure with General Argument List (CALLG)
instruction accepts the address of an argument list and
passes the address to the procedure in the Argument
Pointer register. The Call Procedure with Stack Argument
List (CALLS) passes the argument list , (placed on the
stack by the user) by loading the Argument Pointer regis
ter with its stack address.

When a procedure completes execution , it issues the Re
turn from Procedure instruction (RET). Return uses the
Frame Pointer register to find the saved registers that it re
stores, and to clean up any data left on the stack, including
nested routine linkages. A procedure can return values us
ing the argument list or other registers.

Miscellaneous Special Purpose Instructions
The processor has a number of special purpose instruc
tions. They include:

• Cycl ic Redundancy Check (CRC)

• Breakpoint Fault (BPT)

• Extended Function Call (XFC)

• No Operation (NOP)

• Halt

4-15

The Cyclic Redundancy Check (CRC) instruction calcu
lates a cyclic redundancy check for a given string using
any CRC polynomial up to 32 bits long. The user supplies
the string for which the CRC is to be performed, and a ta
ble for the CRC function. The operating system library in
cludes tables for standard CRC functions, such as CRC-
16.

The Breakpoint Fault (BPT) instruction makes the proces
sor execute the kernel mode condition handler associated
with the Breakpoint Fault exception vector. BPT is used by
the operating system debugging utilities, but can also be
used by any process that sets up a Breakpoint Fault condi
tion handler.

The Extended Function Call (XFC) instruction allows
escapes to customer-defined instructions in writable con
trol store. The NOP instruction is useful for debugging.
The HALT instruction is a privileged instruction issued only
by the operating system to halt the processor when bring
ing the system down by operator request.

COMPATIBILITY MODE
Under control of the operating system, the processor can
execute PDP-11 instruction streams within the context of
any process. When executing in compatibility mode, the
processor interprets the instruction stream executing in
the context of the current process as a subset of the PDP-
11 instruction set.

In general , compatibil ity mode enables the operating sys
tem to provide an environment for executing most user
mode programs written for a PDP-11 except stand-alone
software. The processor expects all compatibility mode
software to rely on the services of the native operating sys
tem for 1/0 processing, interrupt and exception handling ,
and memory management. There are some restrictions,
however, on the environment that the native operating sys
tem can provide a PDP-11 program. For example, the
PDP-11 memory management instructions Move To/From
Previous Instruction/Data Space can not be simulated by
the operating system since they do not trap to native mode
software.

PDP-11 Program Environment
PDP-11 addresses are 16-bit byte addresses. There is a
one-to-one correspondence between compatibility mode
virtual addresses and the first 64K bytes of virtual address
space available to native mode processes. As in the PDP-
11, a compatibility mode program is restricted to referenc
ing only these addresses. It is possible for the operating
system to provide most of the PDP-11 memory manage
ment mechanisms. For example, compatibility mode auto
matically supports PDP-11 memory segment protection,
but in 512-byte rather than 64-byte segments.

All of the PDP-11 general registers and addressing modes
are available in compatibility mode. Compatibility mode
registers RO through R6 are the low-order 16 bits of native
mode registers RO through R6. Compatibility mode R? (the
Program Counter) is the low-order bits of native mode reg
ister 15 (the Program Counter) . Native mode registers 8
through 14 are not affected by compatibility mode. Note
that the compatibility mode register R6 acts as the Stack
Pointer for program-local temporary data storage, but that
the program-local stack is allocated address space in the
program region , not the control region.

A subset of the PDP-11 Processor Status Word is defined
for compatibility mode. Only the condition codes and the
trace trap bit are relevant for the PDP-11 instruction
stream .

All interrupts and exceptions that occur when the proces
sor is executing in compatibility mode cause the processor
to enter native mode. As in native mode, it is the operating
system's responsibility to handle interrupts and excep
tions. There are a few types of exceptions that apply only
to compatibility mode. They include illegal instruction ex
ceptions and odd address trap.

PDP-11 Instruction Set
The compatibility mode instruction set is that of the PDP-
11 with the following exceptions:

• The privileged instructions (HALT, WAIT, RESET, SPL,
and MARK) are illegal.

• The trap instructions (BPT, IOT EMT, and TRAP) cause
the processor to enter native mode, where either the
trap may be serviced, or the instruction simulated

• The Move From/To Previous Instruction/Data space in
structions (MFPI, MTPI, MFPD, and MTPD) execute ex
actly as they would on a PDP-11 in user mode with in
struction and data space overmapped. They ignore the
previous access level and act as PUSH and POP in
structions referencing the current stack.

• PDP-11 floating point instructions are emulated through
software.

All other instructions execute as they would on a PDP-
11 /70 processor running in user mode.

PROCESSING CONCEPTS FOR
SYSTEM PROGRAMMING
The processor is specifically designed to support a high
performance multiprogramming environment. The chief
advantage of a multiprogramming system is its ability to
get the most out of a computer that is being used for sev
eral different purposes concurrently. For example, mul
tiprogramming enables the simultaneous execution of two
or more application systems, such as process control and
order entry. It is also possible to execute several applica
tion systems while simultaneously developing application
programs. The characteristics of the hardware system that
support multiprogramming are:

• rapid context switching

• priority dispatching

• virtual addressing and memory management

As a multiprogramming system, VAX not only provides the
ability to share the processor among processes, but also
protects processes from one another while enabling them
to communicate with each other and share code and data.

Context Switching
In a multiprogramming environment, several individual
streams of code can be ready to execute at any one time.
Instead of allowing each stream to execute to completion
serially (as in a batch-only system), the operating system
can intervene and switch between the streams of code
which are ready to execute.

4-16

To support multiprogramming for a high-performance
system, the processor enables the operating system to
switch rapidly between individual streams of code. The
stream of code the processor is executing at any one time
is determined by its hardware context. Hardware context
includes the information loaded in the processor's regis
ters that identifies:

• where the stream's instructions and data are located

• which instruction to execute next

• what the processor status is during execution

A process is a stream of instructions and data defined by a
hardware context. Each process has a unique identifica
tion in the system. The operating system switches between
processes by requesting the processor to save one proc
ess hardware context and load another. Context switching
occurs rapidly because the processor instruction set in
cludes save hardware context and load hardware context
instructions. The operating system's context switching
software does not have to individually save or load the
processor registers which define the hardware context.

The actual scheduling mechanism for arbitrating among
processes competing for processor time is left to the oper
ating system software itself to give the system flexibility.

Priority Dispatching
While running in the context of one process, the processor
executes instructions and controls data flow to and from
peripherals and main memory. To share processor, mem
ory and peripheral resources among many processes, the
processor provides two arbitration mechanisms that sup
port high-performance multiprogramming: exceptions
and interrupts. Exceptions are events that occur synchro
nously with respect to instruction execution, while inter
rupts are external events that occur asynchronously.

The flow of execution can change at any time, and the
processor distinguishes between changes in flow that are
local to a process and those that are system-wide. Proc
ess-local changes occur as the result of a user software er
ror or when user software calls operating system services.
Process-local changes in program flow are handled
through the processor's exception detection mechanism
and the operating system's exception dispatcher.

System-wide changes in flow generally occur as the result
of interrupts from devices or interrupts generated by the
operating system software. Interrupts are handled by the
processor's interrupt detection mechanism and the oper
ating system's interrupt service routines. (System-wide
changes in flow may also occur as the result of severe
hardware errors, in which case they are handled either as
special exceptions or high-priority interrupts.)

System-wide changes in flow take priority over process- lo
cal changes in flow. Furthermore, the processor uses a
priority system for servicing interrupts. To arbitrate
between all possible interrupts, each kind of interrupt is
assigned a priority, and the processor responds to the
highest priority interrupt pending. For example, interrupts
from real-time 1/0 devices would take precedence over in
terrupts from mass-storage devices, terminals, line print
ers and other less time-critical devices.

The processor services interrupts between instructions, or
at well-defined points during the execution of long, itera-

tive instructions. When the processor acknowledges an in
terrupt , it switches rapidly to a special system-wide
context to enable the operating system to service the inter
rupt. System-wide changes in the flow of execution are
handled in such a way as to be totally transparent to indi
vidual processes.

Virtual Addressing and Virtual Memory
The processor's memory management hardware enables
the operating system to provide an execution environment
that allows users to write programs without having to know
where the programs are loaded in physical memory, and
to write programs that are too large to fit in the physical
memory they are allocated.

The processor provides the operating system with the abil
ity to provide virtual addressing . A virtual address is a 32-
bit integer that a program uses to identify storage loca
tions in virtual memory. Virtual memory is the set of all
physical memory locations in the system plus the set of
disk blocks that the operatlng system designates as exten
sions to physical memory.

A physical address is an address that the processor uses
to identify physical memory storage locations and peri
pheral controller registers . It is the physical address that
the processor sends to the memory and peripheral adap
tors.

The processor must be capable of translating virtual ad
dresses provided by the executing program into the
physical addresses recognized by the memory and peri
pherals. To provide virtual to physical address mapping,
the processor has address mapping registers controlled
by the operating system and an integrated address trans
lation buffer.

The mapping registers enable the operating system to re
locate programs in physical memory, to protect programs
from each other, and share instructions and data between
programs transparently or at their request. The address
translation buffer ensures that the virtual address to physi
cal address translation takes place rapidly.

SYSTEM PROGRAMMING ENVIRONMENT
Within the context of one process, user-level software con
trols its execution using the instruction sets, the general
registers and the Processor Status Word. Within the mul
tiprogramming environment, the operating system con
trols the system's execution using a set of special instruc
tions, the Processor Status Longword, and the internal

31 15

11 ~ 11 .. ~ I

processor registers.

Processor Status Longword
A processor register called the Processor Status Long
word (PSL) determines the execution state of the proces
sor at any time. The low-order 16 bits of the Processor
Status Longword is the Processor Status Word available to
the user process. The high-order 16 bits provide privi
leged control of the system. Figure 4-4 illustrates the Proc
essor Status Longword.

The fields can be grouped together by functions that con
trol :

• the instruction set the processor is executing

• the access mode of the current instruction

• interrupt processing

The instruction set the processor executes is controlled by
the compatibility mode bit in the Processor Status Long
word . This bit is normally set or cleared by the operating
system. For further information on compatibility mode,
refer to the Operating System section.

The following paragraphs discuss access modes, the na
tive instructions primarily used by the operating system ,
memory management, and interrupt processing.

Processor Access Modes
In a high-performance multiprogramming system , the
processor must provide the basis for protection and shar
ing among the processes competing for the system 's re
sources. The basis for protection in this system is the
processor's access mode. The access mode in which the
processor executes determines:

• instruction execution privileges: what instructions the
processor will execute

• memory access privileges: which locations in memory
the current instruction can access

At any one time, the processor is executing code in the
context of a particular process, or it is executing in the sys
tem-wide interrupt service context. In the context of a
process, the processor recognizes four access modes:
kernel, executive, supervisor, and user. Kernel is the most
privileged mode and user the least privileged .

The processor spends most of its time executing in user
mode in the context of one process or another. When user
software needs the services of the operating system,
whether for acquisition of a resource, for 1/0 processing,
or for information, it calls those services.

The processor executes those services in the same or one

0

PROCESSOR STATUS WORD

I I I
'-._-II '-._-I ~~---INTERRUPT PRIORITY LEVEL

. '---------- PREVIOUS ACCESS MODE
'------------CURRENT ACCESS MODE

'--------------EXECUTING ON THE INTERRUPT STACK
'---------------INSTRUCTION FIRST PART DONE

'--------- ---------TRACE PENDING
'-------------------COMPATIBILITY MODE

Figure 4-4

Processor Status Longword

4-17

of the more privileged access modes within the context of
that process. That is, all four access modes exist with in the
same virtual address space. Each access mode has its
own stack in the control region of per-process space, and
therefore each process has four stacks : one for each ac
cess mode. Note that this makes it easy for the operating
system to context switch a process even when it is execut
ing an operating system service procedure.

In any mode except kernel, the processor will not execute
the instructions that:

• halt the processor

• load and save process context

• access the internal processor registers that control
memory management, interrupt processing , the proc
essor console, or the processor clock

These instructions are privileged instructions that are gen
erally reserved to the operating system.

In any mode, the processor will not allow the current in
struction to access memory unless the mode is privileged
to do so. The ability to execute code in one of the more pri
vileged modes is granted by the system manager and
controlled by the operating system. The memory protec
tion the privilege affords is enforced by the processor. In
general, code executing in one mode can protect itself and
any portion of its data structures from read and/or write
access by code executing in any less privileged mode. For
example, code executing in executive mode can protect its
data structures from code executing in supervisor or user
mode. Code executing in supervisor mode can protect its
data structures from access by code executing in user
mode. This memory protection mechanism provides the
basis for system data structure integrity.

Protected and Privileged Instructions
The processor provides three types of instructions that en
able user mode software to obtain operating system ser
vices without jeopardizing the integrity of the system . They
include:

• the Change Mode instructions

• the PROBE instructions

• the Return from Exception or Interrupt instruction

User mode software can obtain privileged services by call
ing operating system service procedures with a standard
CALL instruction. The operating system's service dis
patcher issues an appropriate Change Mode instruction
before actually entering the procedure. Change Mode al
lows access mode transitions to take place from one mode
to the same or more privileged mode only. When the mode
transition takes place, the previous mode is saved in the
Previous Mode field of the Processor Status Longword , al
lowing the more privileged code to determine the privilege
of its caller.

A Change Mode instruction is simply a special trap in
struction that can be thought of as an operating system
service call instruction. User mode software can explicitly
issue Change Mode instructions, but since the operating
system receives the trap, non-privileged users can not
write any code to execute in any of the privileged access
modes. User mode software can include a condit ion
handler for Change Mode to User traps, however, and this

4-18

instruction is useful for providing general purpose services
for user mode software. The system manager ultimately
grants the privilege to write any code that handles Change
Mode traps to more privileged access modes.

For service procedures written to execute in privileged ac
cess modes (kernel , executive, and supervisor), the proc
essor provides address access privilege val idation instruc
tions. The PROBE instructions enable a procedure to
check the read (PROBER) and write (PROBEW) access
protection of pages in memory against the privileges of the
caller who requested to access a particular location . This
enables the operating system to provide services that exe
cute in privileged modes to less privileged callers and still
prevent the caller from accessing protected areas of mem
ory.

The operating system's privileged service procedures and
interrupt and exception service rout ines exit using the Re
turn from Exception or Interrupt (REI) instruction . REI is
the only way in which the privilege of the processor's ac
cess mode can be decreased. Like the procedu re and
subroutine return instructions, REI restores the Prog ram
Counter and the processor state to resume the process at
the point where it was interrupted.

REI performs special services, however, that normal return
instructions do not. For example, REI checks to see if any
asynchronous system traps have been queued for the cur
rently executing process while the interrupt or exception
service routine was executing, and ensures that the proc
ess will receive them . Furthermore, REI checks to ensure
that the mode to which it is returning control is the same as
or less privileged than the mode in which the processor
was executing when the exception or interrupt occurred .
Thus REI is available to all software including user-written
trap handling rout ines , but a program cannot increase its
privi lege by altering the processor state to be restored .

When the operating system schedules a context switching
operation , the context switch ing procedure uses the Save
Process Context (SVPCTX) and Load Process Context
(LDPCTX) instructions to save the current process context
and load another. The operating system's context switch
ing procedure ident ifies the location of the hardware con
text to be loaded by updating an internal processor reg is
ter .

Internal processor registers not only include those that
identify the process currently executing , but also the mem
ory management and other reg isters, such as the console
and clock control registers. The Move to Processor Regis
ter (MTPR) and Move from Processor Register (MFPR) in
structions are the only instructions that can expl ic itly ac
cess the internal processor registers . MTPR and MFPR are
privileged instructions that can be issued only in kernel
mode.

Memory Management
The processor is responsible for enforcing memory pro
tection between access modes. Memory protection , how
ever, is only a part of the processor's memory manage
ment function . In particular, the memory management
hardware enables the operating system to provide an ex
tremely flex ible and efficient virtual memory programming
environment. Virtual and physical address space defi-

nitions provide the basis for the virtual memory available
on a system.

Virtual address space consists of all possible 32-bit ad
dresses that can be exchanged between a program and
the processor to identify a byte location in physical memo
ry. The memory management hardware translates a virtual
address into a physical address. A physical address can
be up to 30 bits in length as in the case of the VAX-11 /780.
Other processor implementations may choose a smaller

physical address. A physical address is the address ex
changed between the processor and the memory and per
ipheral adaptors. Physical address space is the set of all
possible physical addresses the processor can use to ex
press unique memory locations and peripheral control
registers. Figure 4-5 compares the structure of the com
mon virtual address space with that of the VAX-11 /750 and
VAX-11 /780 physical address spaces.

VAX-11
VIRTUAL
ADDRESS

SPACE

PROG
REGION

CONTROL
REGION

SYSTEM
REGION

PER PROCESS
SPACE

SYSTEM
SPACE

VAX-111780
PHYSICAL
ADDRESS

SPACE
0

AVAIL.
PHYSICAL
MEMORY

BM BYTE s

512M BYTES=2 29

UNIBUS
SPACE

'"

)

1<

)

I..)

Figure 4-5

PHYSICAL
MEMORY
ADDRESSES

110
SPACE
ADDRESSES

Virtual and Physical Address Space

4-19

VAX-11/750
PHYSICAL
ADDRESS

0
SPACE

AVAIL .
PHYSICAL
MEMORY

2M BYTES>--------<

15M BYTESl------l
IIO

DEVICES
15 .25M BYTESl------l

PHYSICAL
MEMORY
ADDRESSES

110
) SPACE

ADDRESSES
15 . 75M BYTESl-----l

UNIBUS
SPACE

16M BYTES=2 24 '-----' ./

On the VAX-11 /780, physical address space is an array of
addresses which can be used to represent 230 byte loca
tions, or approximately one billion bytes. Half of the ad
dresses in VAX-11 /780 physical address space can be
used to refer to real memory locations and the other half
can be used to refer to peripheral device control and data
registers . The lowest-addressed half of physical address
space is called memory space, and the highest-ad
dressed half 1/0 space. On the VAX-11/750, physical ad
dress space is an array of addresses which can be used to
represent 224 byte locations, or approximately 16 million
bytes. The first 15M bytes are dedicated to physical mem
ory addresses while the last 1 M byte is dedicated to 1/0
space.

The following section describes the way in which the mem
ory management hardware enables the operating system
to map virtual addresses into physical addresses to pro
vide the virtual memory available to a process .

Virtual to Physical Page Mapping
Virtual address space is divided into pages, where a page
represents 512 bytes of contiguously addressed memory.
The first page begins at byte zero and continues to byte
511 . The next page begins at byte 512 and continues to
byte 1023, and so forth . For example, decimal and hexa
decimal addresses of the first eight pages of virtual ad
dresss space are:

PAGE ADDRESS(10) ADDRESS(16)
decimal hexadecimal

0 0000-0511 0000-01 FF
1 0512-1023 0200-03FF
2 1024-1535 0400-05FF
3 1536-2047 0600-07FF
4 2048-2559 0800-09FF
5 2560-3071 OAOO-OBFF
6 3072-3583 OCOO-ODFF
7 3584-4095 OEOO-OFFF

The size of a virtual page exactly corresponds to the size of
a physical page of memory, and the size of a block on disk.

To make memory mapping efficient, the processor must
be capable of translating virtual addresses to physical ad
dresses rapidly. Two features providing rapid address
translation are the processor's internal address translation
buffer and the translation algorithm itself.

Figure 4-6 compares the virtual address format to the
physical address formats of the VAX-11 /780 and VAX-
11 /750 processors. The high-order two bits of a virtual ad
dress immediately identify the region to which the virtual
address refers. Whether the address is physical (proces
sor specific) or virtual, the byte within the page is the
same. Thus, the processor has to know only which virtual
pages correspond to which physical pages.

The processor has three pairs of page mapping registers,
one pair for each of the three regions actively used . The
operating system's memory management software loads
each pair of registers with the base address and length of
data structures it sets up called page tables. The page ta
bles provide the mapping information for each virtual page
in the system. There is one page table for each of the three
regions.

A page table is a virtually contiguous array of page table
entries. Each page table entry is a longword representing
the physical mapping for one virtual page. To translate a
virtual address to a physical address, therefore, the proc
essor simply uses the virtual page number as an index into
the page table from the given page table base address .
Each translation is good for 512 virtual addresses since
the byte within the virtual page corresponds to the byte
within the physical page.

Figure 4-7 shows the format of a page table entry. The
high-order bits are used to indicate the page's status and
protection. The page's protection can be set to prevent
read and/or write access by any mode (kernel, executive ,
supervisor, or user). The page's status indicates what the
remainder of the page table entry means. It may be, for ex
ample, a page address in physical address space, a disk

. sector, or a temporary pointer to a page shared by two or
more processes. The system's virtual memory is a dy
namic memory that is defined by the physical memory and
disk pages that are virtually mapped by page table entries .

The operating system's memory management software
maintains the page table entry protection and status bits ,
with the exception of the modified page bit. The processor
sets the modified page bit to indicate that it has written into
a physical page in memory. This is used to keep disk 1/ 0 to
a minimum when paging a process.

The processor uses the page table base registers to locate
the page tables, and uses the length registers as a validity
check to ensure that any given virtual page is in the range
of defined page table entries. Figure 4-8 summarizes and
compares the page table structures.

4-20

All process page tables have virtual addresses in the sys
tem region of virtual address space, but the system region
page table is located by its address in physical memory.
That is, the system region page table base register con
tains the physical address of the page table base, while the
process page table base registers contain the virtual ad
dresses of their page table bases. Because a per-process
page table entry is referred to by a virtual address in the
system region , the hardware translates its virtual address
using the system page table .

There are two advantages to using a virtual address as the
base address of a per-process page table. The first advan
tage is that all page tables do not have to reside in physical
memory. The system region page table is the only page
table that needs to be resident in physical memory. All
process page tables can reside on disk ; that is, process
page tables can themselves be paged and swapped as
necessary.

The second advantage is that the operating system 's
memory management software can allocate per-process
page tables dynamically, because the per-process page
tables do not need to be mapped into contiguous physical
pages. And although the system region page table must be
mapped into contiguous physical pages, this requirement
does not restrict physical memory allocation. The region is
shared among processes, and therefore does not requ ire
redefinition from context to context.

To illustrate the efficiency of this memory mapp ing
scheme, suppose that 16 processes, each of which is us-

VAX-1 l VIRTUAL ADDRESS

9 8 0

-----VIRTUAL PAGE NUMBER BYTE WITHIN PAGE-

0 0 PROGRAM REGION
0 l CONTROL REGION
l 0 SYSTEM REGION
l l RESERVED

u
VAX-11/780 PHYSICAL ADDRESS

4-----PAGE FRAME NUMBER-------- BYTE WITHIN PAGE -

+ 0 MEMORY ADDRESS
l I/O SPACE ADDRESS

VAX-11/750 PHYSICAL ADDRESS

~23 22 212019

~1111
----PAGE FRAME NUMBER ---111•-•- B'Y'TE WITHIN PAGE -

• ' + +
l l l l 1/0 SPACE ADDRESS

ALL OTHER BIT)
COMBINATIONS MEMORY ADDRESS SPACE

Figure 4-6

Virtual and Physical Address Formats

4-21

1
'-----...,--)t._

- ACCESS MODE READ/WRITE PROTECTION CODE

'--~~~~~~~~ST~A~TU~S=-=B~IT_'~~~~~~~~~~~~~~~~~~~-,

PHYSICAL ADDRESS VALID

BIT 26 : MODIFIED PAGE STATUS

BITS 21-25: RESERVED FOR DIGITAL SOFTWARE

BITS 0-20: PAGE FRAME NUMBER

0
ACTIVATE PAGING SOFTWARE ON REFERENCE (PAGE FAULT)

BITS 0-26: MAY INDICATE :

DISK SECTOR IDENTIFICATION
TEMPORARY POINTER TO SHARED PAGE

Figure 4-7

Page Table Entry

ing 4 million bytes of virtual address space, are known to
the system at the same time (for a total of 64 Mb of virtual
address space). One system page table entry maps one
page of per-process page table entries, and one page of
per-process page table entries maps 65,536 (64K) bytes of
virtual address space (since it is possible to store 128 page
table entries in a single page of memory) . Therefore one
page of system page table maps 128 pages of per-process
page tables, which in turn maps 8 Mb of process virtual
address space. Thus the system region page table needed
to map these 16 processes requires approximately 8
physical pages (4K bytes) of memory.

Exception and Interrupt Vectors
The processor can automatically initiate changes in the
normal flow of program execution. The processor recog
nizes two kinds of events that cause it to invoke conditional
software: exceptions and interrupts. Some exceptions af
fect an individual process only, such as arithmetic traps,
while others affect the system as a whole, for example, ma
chine check. Interrupts include both device interrupts,
such as those signaling 1/0 completion, and software
requested interrupts, such as those signaling the need for
a context switch operation.

The processor knows which software to invoke when an
exception or interrupt occurs because it references specif
ic locations, called vectors, to obtain the starting address
of the exception or interrupt dispatcher. The processor
has one internal register, the System Control Block Base
Register, which the operating system loads with the physi
cal address of the base of the System Control Block, which
contains the exception and interrupt vectors. The proces
sor locates each vector by using a specific offset into the
System Control Block. Figure 4-9 illustrates the vectors in
the System Control Block. Each vector tells the processor
how to service the event, and contains the system region

4-22

virtual address of the routine to execute. Note that vector
14 (hex) can be used as a trap to writable control store to
execute user-defined instructions, and the vector contains
information passed to microcode.

Interrupt Priority Levels
Exceptions do not require arbitration since they occur syn
chronously with respect to instruction execution . lnter
ru pts, on the other hand, can occur at any time. To
arbitrate between interrupt requests that may occur simul
taneously, the processor recognizes 31 interrupt priority
levels.

The highest 16 interrupt priority levels are reserved for in
terrupts generated by hardware, and the lowest 16 inter
rupt priority levels are reserved for interrupts requested by
software . Table 4-4 lists the assignment of each level , from
highest to lowest priority. Normal user software runs at
process level, which is interrupt priority level zero.

To handle interrupt requests, the processor enters a spe
cial system-wide context. In the system-wide context , the
processor executes in kernel mode using a special stack
called the interrupt stack. The interrupt stack cannot be
referenced by any user mode software because the proc
essor only selects the interrupt stack after an interrupt,
and all interrupts are trapped through system vectors.

The interrupt service routine executes at the interrupt pri
ority level of the interrupt request. When the processor re
ceives an interrupt request at a level higher than that of the
currently executing software, the processor honors the re
quest and services the new interrupt at its priority level.
When the interrupt service routine issues the REI (Return
from Exception or Interrupt) instruction, the processor re
turns control to the previous level.

System Base Register
(contains the physical address of the first entry of the page
table)

System Length Register
(contains the number of page table entries, N)

Program Region Base Register
(contains the virtual address of the first entry in the page
table)

Program Region Length Register
(contains the number of page table entries, N)

Control Region Base Register
(contains the virtual address of base of the page table)

Control Region Length Register
(contains the virtual address of the first entry in the page
table for virtual page number 222 -N, where N is the num
ber of page table entries.)

SYSTEM REGION PAGE TABLE -------Page Table Entry for Virtual Page O (first entry)
PTE for VPN 1
PTE for VPN 2

Page Table Entry for Virtual Page N - 1 (last entry)

PER-PROCESS PAGE TABLES -------
PROGRAM REGION PAGE TABLE -------

Page Table Entry for Virtual Page O (first entry)
PTE for VPN 1
PTE for VPN 2
PTE for VPN 3

PTE for Virtual Page N-1 (last entry) _____
CONTROL REGION PAGE TABLE ------

Page Table Entry for Virtual Page 222-N

PTE for VPN 2·22-(N-1) ------t
PTE for VPN 2·22-(N--'2) ____ __.
PTE for VPN 2•22-(N-3) ------4

PTE for VPN 2·22-1 (last entry) ______ ...
Figure 4-8

Page Tables

1/0 Space and 1/0 Processing
An 1/0 device controller has a set of control/status and da
ta registers . The registers are assigned addresses in
physical address space, and their physical addresses are
mapped, and thus protected, by the operating system's
memory management software. That portion of physical
address space in which device controller registers are lo
cated is called 1/0 space.

No special processor instructions are needed to reference
1/0 space. The registers are simply treated as locations
containing integer data. An 1/0 device driver issues com
mands to the peripheral controller by writing to the con
troller's registers as if they were physical memory loca
tions. The software reads the registers to obtain the con
troller status. The driver controls interrupt enabling and

4-23

disabling on the set of controllers for which it is responsi
ble. When interrupts are enabled, an interrupt occurs
when the controller requests it. The processor accepts the
interrupt request and executes the driver's interrupt ser
vice routine if it is not currently executing on a higher-pri
ority interrupt level.

Process Context
For each process eligible to execute, the operating system
creates a data structure called the software process con
trol block. Within the software process control block is a
pointer to a data structure called the hardware process
control block. The hardware process control block is illus
trated in Figure 4-10. It contains the hardware process
context, that is, all the data needed to load the processor's

4
8
c

10
14
18
1C
20
24
28
2C
30
34

40
44
48
4C

84
88
BF
co

100
101

13F
140

17F
180

1BF
1CO

1FF

Machine Check
Kernel Stack Not Valid

Power Fail
Reserved or Privileged Instruction

Customer Reserved Instruction
Reserved or Illegal Operand

Reserved or Illegal Addressing Mode
Access Violat ion

Translation Not Valid (p~e fault)
Trace Fault

Breakpoint Fa ult
Compatibility Mode Exce pt ion

Arithmetic Exception

Chan_g_e Mode to Kernel
Change Mode to Executive

Change Mode to Supervisor
Change Mode to User

Software Level 1
Software Level 2
Software Level F

Interval Timer

Device Level 14, device 0
Device Level 14, device 1

Device Leve l 14, device 15
Device Level 15, device 0

Device Level 15, device 15
Dev1celeveTio,aev1ce lY

Device Level 16, device 15
Device Level 17, device 0

Device Level 17, device 15

Offset from System Control Block Base Register (HEX)

Figure 4-9

System Control Block

4-24

EXCEPTION VECTORS

INTERRUPT VECTORS

Table 4-4
Interrupt Priority Levels

PRIORITY HARDWARE EVENT
Hex Decimal
1F 31 Machine Check , Kernel Stack Not Valid
1E 30 ~owerTaTT
10 29 } Prnce8'oc,
1C 28
1B 27 Memory, or
1A 26
19 25 Bus Error
18 24 Clock
17 23 UNIBUS BR? "'I
16 22 UNIBUS BR6
15 21 UNIBUS BR6
14 20 UNIBUS BR4 >Device Interrupt
13 19
12 18
11 17
10 16 .,;

PRIORITY SOFTWARE EVENT
OF 15
OE 14 } Reserved for
OD 13 DIGITAL
OC 12
OB 11
OA 10 }Device
09 09 Drivers
08 08
07 07 Timer Process
06 06 Queue Asynchronous System Trap (AST)

]_[--00 [B:eservedTor DTGTTAl
04 04 1/ 0 Post
03 03 Process Scheduler
02 02 AST Delivery
01 01 Reserved for DIGITAL
00 00 User Process Level

process-specific reg isters when a context switch occurs.
To give control of the processor to a process, the operat
ing system loads the processor's Process Control Block
Base register with the physical address of a hardware
process control block and issues the Load Process Con
text instruction . The processor loads the process context
in one operation and is ready to execute code within that
context.

As can be seen from the illustration , a process control
block not only contains the state of the programmable
registers , it also contains the definition of the process
virtual address space. Thus, the mapping of the process is
automatically context-switched .

4-25

Furthermore, the process control block provides the me
chanism for triggering asynchronous system traps to user
processes. The Asynchronous System Trap field enables
the processor to schedule a software interrupt to initiate an
AST routine and ensure that they are delivered to the
proper access mode for the process.

CONSOLE
The console is the operator's interface to the central proc
essor. Using the console terminal , the operator can exam
ine and deposit data in memory locations or the processor
registers , halt the processor, step through instruction
streams, and boot the operating system.

HARDWARE PROCESS CONTROL BLOCK

Kernel mode stack pointer

Executive mode stack pointer

Supervisor mode stack pointer

User mode stack pointer

Register O

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Registe~ 12

Register 13

Register 14

Register 15

Processor Status Longword

Program Region Base Register - Program Region Length Register

Control Region Base Register

·~ Control Region Length Register

31 2

*Enabl e performance monitor
nchronous System Trap pending **Asy

Figure 4-10

Hardware Process Control Block

4-26

0

11 I II llll Ill 11111111111111111111111111111111

111111111111111111111111111111 lllll I Ill I I I 11111111111111111111111111111111111111 I I II

"

I l II Ill II 11111111111111111111
1
1
11

11
1
1
1
1
1

II llllll II I I II
lllllllllllllllllllllllll!!ll!llllll''''' 11111111111111111111

11111111111111111111111
1
'

THEVAX~1R80PROCESSOR

INTRODUCTION

A VAX-11 processor is a specific set of hardware logic that
performs the operations of the computer system accord
ing to the VAX-11 architecture.

This section describes the implementation-specific details
of the VAX-11 /780 processor. Its integrated components
are:

• The Central Processing Unit (CPU) itself, including its
cache, writable diagnostic control store, optional float
ing point accelerator, clocks and console.

• Main memory and main memory controllers .

• Input/output bus adaptors.

• Optional multiport memory.

• Optional high performance 32-bit interface.

These components communicate over a high-speed inter
nal bus called the memory interconnect. Figure 4-11 illu
strates the major processor components.

The Central Processing Unit performs the logical and
arithmetic operations requested of the computer system.
Its user programmable registers include sixteen 32-bit
general purpose registers for data manipulation, and the
Processor Status Longword for controlling the execution
states of the CPU. The processor's instruction set is in
terpreted by the microcode contained in its control store.

The processor includes 12K bytes of writable diagnostic
control store for updating the instruction set microcode.
The writable diagnostic control is also used for storing mi-

4-27

crocode diagnostics, which can be loaded from the con
sole's floppy disk.

The processor will also support 12K bytes of user writable
control store (WCS). WCS is optionally available to the
customer for augmenting the speed and power of the ba
sic machine with customized functions.

The console enables the computer system operator to
control the processor operation directly. The console actu
a11y consists of an LSl-11 microcomputer with 24K bytes of
memory, a floppy disk system, and a terminal. A serial line
interface is optionally available for remote diagnosis.

Two memory controllers can be be connected to the mem
ory interconnect. Each controller handles up to 4096K
bytes of semiconductor memory, for a system total of
8192K bytes of memory. The memory controllers employ
an error detecting and correcting technique that ensures
correction of all single-bit errors and detection of all dou
ble-bit errors.

In addition, VAX-11 /780 supports the multiported memory
option. Multiported memory supports very high through
put interprocessor communications. Multiported memory
is discussed more fully in the Peripherals section .

Three 1/0 bus adaptors can be interfaced to the memory
interconnect: an adaptor for the MASSBUS, which con
nects high-speed disk and magnetic tape devices to the
processor; an adaptor for the UNIBUS, which connects
lower-speed devices to the processor, including disks,
communications lines, and 1/0 peripherals such as termi
nals, line printers, and card readers; and an optional adap
tor for the high performance 32-bit interface. The high per-

FLOPPY
DISK

LA120

SYSTEMS
CONSOLE VAX- 111780

CPU

CACHE

MEMORY
CONTROLLER

512 KB

4MB MAX

110 ADAPTERS

MAX I/0 RATE : 13.JMB/SEC (WITH 2 MEMORY CONTROLLERS)

~
INDICATES
OPTIONAL
EQUIPMENT

1 STANDARD
3 OPTIONAL

4 OPTIONAL 1 OPTIONAL

Figure 4-11

VAX-11 /780 Processor

formance interface enables the user to interface custom
devices directly to the memory interconnect, or to connect
two VAX-11/780 systems together. The high performance
interface will be discussed more thoroughly in the Peri
pherals section.

VAX-11 /780 PROCESSOR COMPONENTS
Described below are the major hardware components of
the VAX-11 /780 processor.

VAX-11 /780 Console
The VAX-11 /780's integrated console consists of an LSl-
11 microcomputer with 16K bytes of read/write memory
and BK bytes of ROM (used to store the LSI diagnostic, the
LSI bootstrap, and fundemental console routines) , a flop
py disk system (for the storage of basic diagnostic pro
grams and software updates), a hard-copy terminal, and
an optional remote diagnosis port.

The console is further used for updating the software with
maintenance releases and for loading optional software
products distributed on floppy disk.

The operator communicates with the VAX-11 /780 console
via a set of user-oriented, English-like commands known
as the console command language (CCL).

An EIA serial line interface and modem can be added to
the console to provide remote diagnosis.

VAX-11 /780 MEMORY INTERCONNECT
The memory interconnect is the system 's internal bus,
conveying addresses, data, and control information
between the processor and memory, and between memo
ry and the 1/0 controllers. The memory interconnect has a
cycle time of 200 nanoseconds and can transfer 32 bits

4-28

each cycle. Data transfers use two consecutive cycles to
transfer 64 bits at a time. The maximum memory intercon
nect transfer rate is 13.3 million bytes per second. The
memory interconnect provides an unusual degree of
throughput and reliability because it uses:

• time-division multiplexing

• distributed priority arbitration

• parity and protocol checking on every transfer

• transaction history recording

The protocol, or sequence in which operations occur on
the memory interconnect, is time-division multiplexed to
increase the effective bus bandwidth. Time-division multi
plexing means that the transactions which constitute one
transfer operation are interleaved with the transactions
which constitute another transfer operation. Thus, several
operations can be in progress over the same period of
time. For example, the CPU can ask a memory controller
to read some data; the same memory controller might then
transfer previously requested data to an 1/0 device before
it transfers the requested data to the CPU.

In some systems, the processor bus can be tied up for
each transfer because a requester acquires the bus to
send an address and then keeps the bus while it waits for
the requested data. In VAX-11 /780, the bus is not held in
active during the data access time because bus ownersh ip
is relinquished after every cycle. A requester acquires the
bus to specify an operation and send an address, and then
relinquishes the bus . At some time later the responder ac
quires the bus to send back the requested data. In the in
terim , any number of other transactions can be initiated or
completed. This and the fact that transactions are buffered

make it possible for the bus to operate at its full
bandwidth .

Arbitration on the memory interconnect is distributed,
which ensures that no unit is critical to bus operation. Ev
ery unit on the memory interconnect has its own arbitra
tion line. Arbitration lines are ordered by priority and every
unit monitors all the arbitration lines each cycle to deter
mine if it will get the next cycle. Unlike some bus systems,
any unit on the memory interconnect (except the CPU
clock) can fail without causing a failure of the entire bus.

To ensure the integrity of the signals transmitted, the
memory interconnect includes several error checking and
diagnostic mechanisms, such as:

• parity checking on data, addresses, and commands

• protocol checking in each interface

• a history silo of the last 16 memory interconnect cycles

VAX-11 /780 MAIN MEMORY AND CACHE SYSTEMS
The processor includes both main memory systems and
cache memory systems. Transactions between main
memory and the processor take place over the memory in
terconnect. The cache memory systems are internal to the
processor.

Main Memory
Main memory consists of arrays of MOS RAM integrated
circuits with a cycle time of 600 nanoseconds. A memory
controller can access a maximum of 4, 194,304 bytes (4M
bytes). Two memory controllers can be connected to the
memory interconnect, yielding a maximum of BM bytes of
physical memory that can be available on the system. The
maximum total physical address space is 229 or approxi
mately 512 million bytes. However, the minimum required
memory is 256K bytes, which is then expandable in incre
ments of 256K bytes.

A memory controller will buffer one command while it
processes another to increase system throughput. Main
memory can also be interleaved (where two memory con
trollers are each addressing the same amount of memory)
to increase the available memory bandwidth . The memory
system employs error checking and correction (ECG) that
corrects all single bit errors and detects all double bit er
rors .

When the system is powered down, an ac standby current
is normally used to retain the contents of memory. In case
of temporary AC power interruption , an optional backup
battery is also available to provide 1 O minutes of power for
up to 4M bytes of memory so that the contents of main
memory are not destroyed. Two backup batteries provide
power for up to BM bytes of memory.

Data are fetched from main memory 64 bits at a time (two
memory interconnect cycles) and cached in the proces
sor's internal memory systems. The internal memory sys
tems include a main memory cache, an address transla
tion buffer. and an instruction lookahead buffer.

Memory Cache
The memory cache is the primary cache system for all data
coming from memory, including addresses, address
translations, and instructions. The memory cache is an 8K
byte, two-way set associative, write-through cache.

4-29

Write-through provides reliability because the contents of
main memory are updated immediately after the proces
sor performs a write . Most write-through cache systems tie
up the processor while main memory is updated. However,
the VAX-11 /780 processor buffers data to be written to
memory to avoid waiting while main memory is updated
from the cache. Therefore, while providing the reliability of
a write-through cache, this system also provides much the
same performance as a write-back cache.

Memory cache significantly reduces processor wait time
since practically all of the time, (greater than 95%), the da
ta are in the cache. The cache memory system carries byte
parity for both data and addresses for increased integrity.

Address Translation Buffer
The address translation buffer is a cache of virtual to
physical address translations. It significantly reduces the
amount of time spent by the CPU on the repetitive task of
dynamic address translation . The cache contains 128
virtual-to-physical page address translations which are di
vided into equal sections: 64 system space page transla
tions and 64 process space page translations. Each of
these sections is two-way associative. There is byte parity
on each entry for increased integrity.

Instruction Buffer
The 8-byte instruction buffer improves CPU performance
by prefetching data in the instruction stream. The control
logic continuously fetches information from memory or
cache, where possible, to keep the 8-byte buffer full. It ef
fectively eliminates the time spent by the CPU waiting for
two memory cycles where bytes of the instruction stream
cross 32-bit longword boundaries. In addition , the instruc
tion buffer processes operand specifiers in advance of ex
ecution and subsequently routes them to the CPU.

1/0 CONTROLLER INTERFACES
Peripherals can be connected to the processor's memory
interconnect bus in either of two ways: through the MASS
BUS, for high-speed disk and/or magnetic tape devices,
or through the UNIBUS, for a variety of 1/0 devices,
including line printers, disks, card readers, terminals , and
interprocessor communication links.

VAX-11 MASSBUS Interface
The processor interface for a MASSBUS peripheral is the
MASSBUS adaptor. The MASSBUS adaptor performs
control, arbitration, and buffering functions. Up to four
MASSBUS adaptors can be connected to the memory in
terconnect. The MASS BUS is typically used to attach high
speed disk or magnetic tape devices.

Each MASSBUS adaptor includes its own address transla
tion map that permits scatter/gather disk transfers. In
scatter/gather transfers, physically contiguous disk blocks
can be read into or written from discontiguous blocks of
memory. The translation map contains the addresses of
the pages, which may be scattered throughout memory,
from or to which the contiguous disk transfer takes place.

Each MASS BUS adaptor includes a 32-byte s·ilo data buff
er. Data are assembled in 64-bit quadwords (plus parity) to
make efficient use of the memory interconnect bandwidth.
On transfers from memory to a MASSBUS peripheral, the·

MASSBUS adaptor anticipates upcoming MASSBUS data
transfers by fetching the next 64 bits from memory before
all of the previous data have been transferred to the peri
pheral.

On-line diagnostics and built-in loop-back testing enable
fault isolation of the MASSBUS adaptor for any of its func
tion circuits without a drive on the MASSBUS.

VAX-11 /780 UNIBUS Interface
All devices other than the high-speed disk drives and
magnetic tape transports are connected to the UNIBUS, an
asynchronous bidirectional bus. These include all
DIGITAL- and user-developed real-time peripherals. The
UNIBUS is connected to the memory interconnect through
the UNIBUS adaptor. The UNIBUS adaptor does priority
arbitration among devices on the UNIBUS. Up to four UNI
BUS adapters can be placed on the memory interconnect.

The UNIBUS adaptor provides access from the VAX-
11 /780 processor to the UNIBUS peripheral device regis
ters by translating UNIBUS addresses, data transfer re
quests, and interrupt requests to their memory intercon
nect equivalents, and vice versa. The UNIBUS adaptor ad
dress translation map translates an 18-bit UNIBUS
address to a 30-bit memory interconnect address. The
map provides direct access to system memory for non
processor request UNIBUS peripheral devices and per
mits scatter/gather disk transfers.

The UNIBUS adaptor enables the processor to read
and/or write the peripheral controller registers. In some
cases this constitutes the transfer .

To make the most efficient use of the memory interconnect
bandwidth, the UNIBUS adaptor provides buffered direct
memory access data paths for up to 15 nonprocessor re
quest (NPR) devices. Each of these channels has a 64-bit
buffer (plus byte parity) for holding four 16-bit transfers to
and from UNIBUS devices. The result is that only one
memory interconnect transfer (64 bits) is required for ev
ery four UNIBUS transfers. The maximum aggregate
transfer rate through the buffered data paths is 1.35 mil
lion bytes per second. On memory interconnect-to-UNI
BUS transfers, the UNIBUS adaptor anticipates upcoming
UNIBUS requests by pre-fetching the next 64-bit quad
word from memory as the last 16-bit word is transferred
from the buffer to the UNIBUS. By the time the UNIBUS de
vice requests the next word, the UNIBUS adaptor has it
ready to transfer.

Any number of unbuffered direct memory access transfers
are handled by one Direct Data Path. Every 8- or 16-bit
transfer requires one 32-bit transfer on the memory inter
connect. The maximum transfer rate through the Direct
Data Path is 500,000 bytes per second.

4-30

The UNIBUS adaptor permits concurrent program inter
rupt, unbuffered , and buffered data transfers. The aggre
gate throughput rate of the Direct Data Path, plus the 15
buffered data paths, is 1.35 million bytes per second .

Data Throughput
VAX-11 /780 includes many features that support high data
throughput, including silo data buffers for MASS BUS peri
pheral controllers, buffered direct memory access for the
UNIBUS peripherals, and 64-bit data transfers and pre
fetching .

Memory bandwidth matches that of the processor's inter
nal bus - 13.33 million bytes per second , including time
for refresh cycles. This is primarily because of the memory
controller request buffers, which substantially increase
memory throughput and overall system throughput, and
decrease the need for interleaving for most configurations.
Memory interleaving , which is enabled and disabled under
program control , can be used effectively when more than
two MASSBUS peripheral controllers are connected and
the MASSBUS and UNIBUS devices are transferring at
very high rates - greater than one million bytes per sec
ond .

The operating system supports the hardware throughput
in its 1/0 request processing software. The software uses
the processor's multiple hardware priority levels to in
crease 1/0 response time, and keeps each disk controller
as busy as possible by overlapping seek requests with 1/0
transfers.

VAX-11 /780 FLOATING POINT ACCELERATOR
The floating point accelerator (FPA) is an optional high
speed processor enhancement. When included in the
processor, the floating point accelerator accelerates the
execution of the addition, subtraction , multiplication , and
division instructions that operate on single- and double
precision floating point operands. This includes the spe
cial EMOD and POLY instructions in both single- and dou
ble-precision formats. Additionally, the floating point ac
celerator enhances the performance of the 32-bit integer
multiply instruction _MUL.

The processor does not have to include the floating point
accelerator to execute floating point operand instructions;
the FPA increases the execution speed of floating point in
structions. The floating point accelerator can be added or
removed without changing any existing software.

When the floating point accelerator is included in the
processor, a floating point register-to-register add instruc
tion takes as little as 800 nanoseconds to execute. A regis
ter-to-register multiply instruction takes as little as one mi
crosecond. The inner loop of the POLY instruction takes
approximately one microsecond per degree of polynomial.

\\\l\\\\\\\\\\\\\UU\I•

7

THE VAX-11 /750 PROCESSOR

INTRODUCTION

A VAX-11 processor is a specific set of hardware logic that
performs the operations requested of the computer sys
tem according to the VAX-11 architecture.

This section describes the implementation specific details
of the VAX-111750 processor. Its integrated components
are:

• the Central Processing Unit (CPU) itself, including its
cache, optional user control store, clocks and console

• main memory and main memory controllers

• peripheral bus adaptors

Figure 4-12 illustrates the major VAX-11 /750 processor
components.

The central processing unit performs the logical and
arithmetic operations requested of the computer system.
Its user programmable registers include sixteen 32-bit
general purpose registers for data manipulation, and the
Processor Status Word for controlling the execution states
of the CPU. The processors instruction set is defined by
the microcode contained in its control store.

The optional User Control Store includes 1 OK bytes
(1 Kbytes of 80 bit microwords) of writeable storage. This
allows customers to augment the speed and power of the
basic machine with customized microcode functions.
Digital offers a loadable microcode package for extended
precision floating point arithmetic operations (G- and
H-floating point data types) on the 11 /750.

4-31

The console enables the computer system operator to
control the processor operation directly. The console sub
system consists of the console terminal (LA38 DECwriter),
the front panel , the user oriented console command lan
guage, and a TU58 Tape Cartridge Drive. Also optionally
available for the console is the remote diagnosis interface.

The main memory subsystem consists of ECC MOS mem
ory, which is interfaced to the system via the memory con
troller . MOS memory may be added to the system in
increments of 256K bytes to a maximum of 2M bytes.

The 1/0 subsystem consists of the UNIBUS and MASS BUS
devices connected to the system via special buffered inter
faces called adaptors. Each VAX-11 /750 system contains
one UNIBUS adapter for standard peripherals and up to a
maximum of three MASSBUS adapters for high speed
peripherals.

VAX-11 /750 PROCESSOR COMPONENTS
Described below are the major hardware components of
the VAX-111750 processor.

VAX-11 /750 Console
The console enables the computer system operator to
control the processor operation directly. The console sub
system consists of the console terminal (LA38), the front
panel, the user oriented console command language, and
a TU58 Tape Cartridge Drive. Simple console commands,
entered through the console terminal, replace the tradi
tional toggle switches and provide operational control (i.e.,
bootstrapping, initialization, self testing, examining and
depositing data in memory.etc.). When not performing op-

TU58

LA38

SYSTEMS
CONSOLE VAX-111750

CPU

CACHE

MEMORY
CONTROLLER

512KB

I/0 ADAPTORS
MAXI/ORATE: 5MB/SEC

~
INDICATES
OPTIONAL
EQUIPMENT

1 STANDARD 3 OPTIONAL

Figure 4-12
VAX-11 /750 Processor

erator functions or error logging, the same terminal can be
available to authorized users for normal system opera
tions.

The VAX-11 /750 console subsystem and the console com
mand language also facilitate the loading of diagnostics
and software updates from the TU58 Tape Cartridge. For
those customers subscribing to a DIGIT AL maintenance
contract, the console subsystem may also be equipped
with a remote diagnosis module (ADM) allowing the VAX-
11 /750 to interface to a host computer at a DIGITAL Diag
nostic Center for remote fault detection or preventive
maintenance procedures.

VAX-11 /750 Main Memory
The VAX-11 /750 main memory is built using 16K MOS
RAM (random access memory) LSI chips. Physical memo
ry is organized into an array of 32-bit longwords plus an
additional 7 bits per longword dedicated to ECG (error
correcting code). ECG allows the correction of all single-bit
errors and the detection of all double bit errors to insure
data integrity. Main memory is interfaced to the VAX sys
tem via the memory controller. The VAX-11 /750 can be
easily field upgraded to 2M bytes of main memory by sim
ply adding 256K byte expansion modules.

VAX-11 /750 Cache Systems
The VAX-11 /750 CPU provides three cache systems: the
main memory cache, the address translation buffer, and
the instruction buffer.

• Main Memory Cache

Memory cache (typically 90% hit rate) provides the central
processor with high-speed data access by storing fre
quently referenced addresses, data and instruction items.
The memory cache typically reduces memory access time
in half.

4-32

The VAX-11/750 memory cache is a 4K byte, direct
mapped, write-through cache. It is used for all data com
ing from memory, including addresses and instructions.
The write-through feature protects the integrity of memory
because memory contents are updated immediately after
the processor performs a write. For increased integrity, the
cache memory system carries byte parity for both data
and addresses. Cache locations are allocated when data is
read from memory or when a longword is written to memo
ry . Memory cache also watches 110 transfers and updates
itself appropriately. Therefore, no operating system over
head is needed to synchronize the cache with 1/0 opera
tions, i.e., memory cache is transparent to all software.

• Instruction Buffer

The instruction buffer is an 8 byte buffer that enables the
CPU to fetch and decode the next instruction while the cur
rent instruction completes execution . The instruction
buffer in combination with the parallel data paths (which
can perform integer arithmetic and shifting operations si
multaneously) significantly enhances the VAX-11 /750's
performance because the CPU is not held in a wait state.

• Address Translation Buffer

The address translation buffer is a cache of the most fre
quently used 512 physical address translations. It signifi
cantly reduces the amount of time the CPU spends on the
repetitive task of dynamic address translation . The cache
contains 512 virtual-to-physical page address translations
which are divided into equal sections: 256 system space
page translations and 256 process space page transla
tions. Each of these sections is two-way associative and
has parity on each entry for increased integrity.

Peripheral Controller Interfaces
Peripherals can be connected to the processor in either of
two ways: through the MASSBUS, which conveys signals

to and from high-speed disks or magnetic tape devices, or
through the UNIBUS, which conveys signals to and from a
variety of 1/0 devices, including line printers, disks, card
readers , tapes, terminals , and interprocessor communica
tion links.

VAX-11 MASSBUS Interface
The processor interface for a MASSBUS peripheral is the
MASSBUS adaptor. The MASSBUS adaptor performs
control , arbitration, and buffering functions. There may be
a total of three MASS BUS adapters on each VAX-11 /750
system.

Each 11 /750 MASS BUS adaptor includes its own address
translation map that permits scatter/gather disk transfers.
In scatter/gather transfers, physically contiguous disk
blocks can be read into or written from discontiguous
blocks of memory. The translation map contains the ad
dresses of the pages, which may be scattered throughout
memory, from or to which the contiguous disk transfer
takes place.

Each 11 /750 MASS BUS adaptor includes a 32-byte silo
data buffer. Data are assembled in 32-bit longwords (plus
parity) to make efficient use of the system bus. On trans
fers from memory to a MASSBUS peripheral, the MASS
BUS adaptor anticipates upcoming MASS BUS data trans
fers by fetching the next 32 bits from memory before all of
the previous data are transferred to the peripheral.

On-line diagnostics and loop-back enable adaptor fault
isolation without requiring the use of a drive on the MASS
BUS.

VAX-11 /750 UNIBUS Interface
General purpose peripherals and customer developed de
vices are connected to the VAX-111750 system via the UN
IBUS. Since the 11 /750 memory deals in 24-bit physical

4-33

addresses (16M byte physical address space), 18-bit UNI
BUS addresses must be translated to 24 bit memory ad
dresses. This mapping function is performed by the UNI
BUS adapter (a special hardware interface between mem
ory and the UNIBUS) which translates UNIBUS addresses
to their memory equivalents, and vice versa.

The UNIBUS adapter performs priority arbitration among
devices on the UNIBUS, a function handled by the central
processor in PDP-11 systems. The address translation
map permits contiguous disk transfers to and from non
contiguous pages of memory (these are called scat
ter /gather operations). Interrupts on the VAX-11 /750 UNI
BUS are directly vectored into the appropriate process
handler.

The UNIBUS adapter allows two kinds of data transfer's;
program interrupt and direct memory access (OMA). To
make the most efficient use of the memory bandwidth, the
UNIBUS adapter facilitates high-speed OMA transfers by
providing buffered OMA data paths for up to 3 high-speed
devices at one time. Each of these channels has a 32-bit
buffer (plus byte parity) for holding two 16-bit transfers to
or from UNIBUS devices. The result is that only one mem
ory transfer (32 bits) is required for every two UNIBUS
transfers. The maximum aggregate transfer rate through
the buffered data paths is 1.5M bytes per second .

Any number of unbuffered OMA transfers are handled by
one direct OMA data path . Every 8- or 16-bit transfer on
the UNIBUS requires a 32-bit memory transfer (although
only 16 bits are used). The maximum transfer rate through
the direct data path is 1 M bytes per second .

It should be noted that the UNIBUS adapter permits pro
gram interrupts, unbuffered and buffered data transfers to
occur concurrently.

5
The

Peripherals
- --,, !

{ t~ -
' --

The VAX system supports high-performance mass storage devices for
on-line data retrieval , unit record equipment for data processing, ter
minals and line interfaces for the interactive user, direct memory ac
cess interfaces for real-time users and a line interface for interproces
sor communications.

The mass storage systems provide large capacity and high throughput.
Each MASS BUS adapter can support up to eight disk drives or seven
disk drives and one magnetic tape controller. In addition, up to eight
medium-capacity disk drives can be connected to the system's UNI
BUS. VAX/VMS overlaps seeks on all multiple-drive disk
configurations, performs multiple-block 1/0 transfers, and allows the
user to control buffering, positioning, and blocking .

Card readers and line printers can be spooled input and output devices
managed by operator-controlled queues. The LP11 and LA 11 series
line printers provide a range of high-speed and low-cost printer mo
dels. Up to four LP11 printers and up to 16LA11 printers can be used
on the system .

The system supports full-duplex handling for both hard copy and video
terminals. The LA 120 is a hard-copy terminal which offers moderate
throughput and advanced print features; the VT100 video terminal of
fers a variety of controllable character and screen attributes including
24 lines by 80 columns or 14 lines by 132 columns screen sizes, smooth
scrolling , and split screen . The system can support up to 96 terminals.

The DMC11 serial synchronous communications line provides high
performance point-to-point interprocessor connection using the
DIGITAL Data Communications Message Protocol (DDCMP). The
DMC11 ensures reliable data transmission and relieves the host proc
essor of the details of protocol operation. For very high-performance
interprocessor communications, the VAX-11/780 offers both multiport
memory (MA780) and a high-speed channel interface (DR780) . The
DR780 can also be used for interfacing customer devices which require
transfer rates of up to 6.67M bytes/second .

For real-time applications, VAX supports the LPA 11-K and DR11-B
direct memory access (OMA) interfaces. These devices reduce CPU in
volvement in 1/0 operations and speed the transfer of data between ex
ternal devices and computer memory. The LPA 11-K is an intelligent
(dual-microprocessor) controller which provides high speed data sam
pling, operates in both dedicated and multirequest mode, and supports
a number of peripheral devices. The DR11-B is a general purpose in
terface which performs high speed block data transfers between the
VAX memory and user peripheral devices.

All equipment is integrated with the software system, and is supported
by both on-line error logging and diagnostics. Each component in
cludes extensive error checking and correction features. The software
provides power failure and error recovery algorithms.

COMPONENTS
VAX supports four types of peripheral subsystems:

• Mass storage peripherals such as disk and magnetic
tape

• Unit record peripherals such as line printers and card
readers

• Terminals and terminal line interfaces

• Interprocessor communications links

All peripheral device control/status registers (CSAs) are
assigned addresses in physical 1/0 space. No special
processor instructions are needed for 1/0 control. In addi
tion, all device interrupt lines are associated with locations
that identify each device's interrupt service routine. When
the processor is interrupted on funct ion request comple
tion, it immediately starts executing the appropriate inter
rupt service routine. There is no need to poll devices to de
term ine which device needs service.

Devices use either one of two types of data transfer
techniques: direct memory access or programmed inter
rupt request. The mass storage disk and magnetic tape
devices and the interprocessor commun ications link are
capable of direct memory access (DMA) data transfers.
The DMA devices are also called non-processor request
(NPA) devices because they can transfer large blocks of
data to or from memory without processor intervention un
til the entire block is transferred .

The unit record peripherals and terminal interfaces are
called programmed interrupt request devices. These de
vices transfer one or two bytes at a time to or from as
signed locations in physical address space. Software then
transfers the data to or from a buffer in physical memory.

MASS STORAGE PERIPHERALS
The mass storage peripherals include various capacity
moving head disk drives and various speed magnetic tape
transports :

• the high speed , large capacity AP06 and AMOS disk drives

• the high speed, medium capacity AM03 disk drive

• the medium speed, smaller capacity AL02, and AKO?
disk drives

• the AX02 floppy disk

• the TE16, TU4S, and TU77 magnetic tape transports

• the TS 11 magnetic tape transport

The AM03, AP06, and AMOS disks and the TE16, TU4S,
and TU77 magnetic tape controllers are MASSBUS peri-

pheral devices. The AX02 floppy disk, the AL02, and AKO?
disk drives, and the TS 11 tape subsystem are UNIBUS
peripheral devices. Each MASSBUS can support up to
eight device controllers ; eight disk controllers with one
drive each or seven disk drives and one magnetic tape for
matter with up to eight tape transports.

To support the performance and reliability features of the
system's disk and magnetic tape devices, the operating
system 's disk and magnetic tape device drivers provide:

• overlapped seeks for increased throughput on control
lers with multiple disk drives

• overlapped magtape operations (write on one transport
while another rewinds, for example)

• multiple block non-contiguous 1/0 transfers for file
structured devices

• read and write checks on a per-request, per-file , and/or
volume basis

• extensive error recovery algorithms (e.g., ECG and off
set recovery for disk, NAZI error correction for magnetic
tape)

• logging of all device errors

• dynamic bad block support for file-structured disk de
vices

• volume mount verification after a change in drive status
(off/on-line, powerfail)

• powerfail recovery for on-line drives, including reposi
tioning of magnetic tape transports

Table 5-1
Disk Devices

DISK RX02 RL02 RK07 RM03 RP06 RMOS

Pack capacity: 512 Kbytes 10.4 Mbytes 28 Mbytes 67 Mbytes 176 Mbytes 300 Mbytes

Peak transfer 55 Kbytes 512 Kbytes 538 Kbytes 1200 Kbytes 806 Kbytes 1200 Kbytes
rate (/sec):

Ave. seek time: 263ms 55ms 36.5ms 30ms 30ms 30ms

Ave . rotational 83ms 12.5ms 12.5ms 8.3ms 6ms 8.3ms
latency:

S-1

For applications requiring special data reliability checks,
the programmer can implement user written error recov
ery procedures without having to write unique device dri
ver routines. The operating system driver's normal error
recovery retry and error logging operations can be inhibit
ed. If any error occurs when the recovery functions are in
hibited, the driver immediately terminates the 1/0 opera
tion and returns a failure status. User software can then
perform its own recovery or logging procedures, since all
the hardware diagnostic operations are available to jobs
granted the diagnostic privilege by the system manager.

Disks
The disk subsystems provide high performance and relia
bility. They feature accurate servo positioning, error cor
rection, and offset positioning recovery. Table 5-1
summarizes the capacities and speeds of the disk devices.

All disk drives use top-loading removable media. The
AM03, AP06, and AM05 disk drives can be mixed on the
same MASSBUS.

The UNIBUS accepts AK06, AKO?, and AL02 disk drives
and the AX02 floppy disk. The AX02 is the smallest capaci
ty disk available, while the AKO? is the largest capacity
disk. Up to eight AX02, AL02, AK06, and AKO? disk drives
can be mixed in any combination on the same controller.
In small system configurations where the AK06 or RK07 is
used as the systems device, two drives are required in the
configuration.

To decrease the effective access time and increase
throughput, the operating system's disk device drivers
provide overlapped seeks for all disk units on a controller.
All 1/0 transfers, including write checks, are preceded by a
seek, except when the seek is explicitly inhibited by diag
nostic software. On MASSBUS devices, seeks to any unit
can be initiated at any time and do not require controller
intervention. During seeks, the controller is free to perform
a transfer on any unit other than the one on which the seek
is active. If a data transfer was in progress at the time of
completion, the driver processes the attention interrupts
caused by seek completion when the controller is free.

The device unit notifies the driver when it detects a read
error that can be recovered using its error correction code
(ECG). It provides the position and pattern of any error
burst of up to 11 bits within the data field. The driver ap
plies the error correction to the data in memory. The trans
fer continues as if the error had not occurred.

In addition to overlapping seeks with data transfers, the
driver also overlaps offset error recovery with normal con
troller operation. Offset recovery enables the driver to re
position the head on the track to pick up a stronger signal
on a sector during a read operation. Provided that retry is
not inhibited, the driver performs offset recovery automati
cally when a read error occurs that can not be corrected
using the hardware ECG.

The driver logs all errors, including those from which it
successfully recovers. The driver also supplies dynamic
bad block handling for virtual 1/0 (Files-11 file-structured)
operations. Wheo a bad block is detected, the information
is stored in the file header. The bad block is recorded in
the bad block file when the file is deleted.

5-2

In addition to the driver's dynamic bad block handling , the
system includes an on-line static bad block utility and on
line diagnostics for verifying drive level functions .

Magnetic Tape
The TE16, TU45 , and TU77 are high performance MASS
BUS tape storage subsystems, which share the following
characteristics:

• program-selectable 1600 or 800 bpi, 9-track data stor-
age

• industry compatible data formats

• reading in reverse (as well as forward)

• parity, longitudinal, and cyclic redundancy checking

• NAZI error correction

The TU45 and TE16 are identical in capacity: both allow up
to 40 million bytes per tape reel and both allow up to 8 tape
drives per formatter. However, the TU45 offers substan
tially higher speed and throughput. Read/write speeds for
the TU45 and TE16 are 75 and 45 inches/second respec
tively; their data transfer speeds are 120K and 72K bytes
per second.

The TU77 tape storage system can perform read/writes of
data at the rate of 125 inches/second, while allowing a
peak transfer rate of 200K bytes/second. These features
make the TU77 ideally suited for heavy duty cycle applica
tions such as disk to tape backup and transaction proc
essing.

The TS11 is a med ium performance UNIBUS magnetic
tape subsystem containing 9 tracks with a density of 1600
bpi. It performs read/writes at a speed of 45 inch
es/second . The TS11 subsystem can handle a maximum
data transfer rate of up to 72K bytes/second.

The operating system's magnetic tape device driver sup
ports the read reverse operation, which enables a pro
gram to request a sequential read of the block preceding
the block at which the tape is positioned . Writing occurs
only while the tape is moving forward .

The operating system's file system can read and write file
structured magnetic tape volumes using the current ANS
magnetic tape standard . The system also supports multi
volume files , program-controlled blocking factors, and
unlabeled magnetic tapes.

UNIT RECORD PERIPHERALS
The operating system normally treats line printers and
card readers as spooled shareable devices managed by
multiple operator-controlled queues. The devices can also
be allocated to individual programs.

The operating system's line printer handling includes line
and page counting for job accounting . The user can speci
fy carriage control as: one lin~ per record, FORTRAN con
ventions, contained within the record itself, or general pre
and post-spacing (within the limits of the hardware capa
bilities).

The operating system's card reader driver interprets the
encoded punched information using the American Nation
al Standard 8-bit card code. The driver uses a special
punch outside the data representation to indicate end-of
file .

LP11 Line Printers
LP11 series line printers can be connected to the VAX sys
tem. The LP11 series printers are impact-type, rotating
drum, serial interface line printers. They feature full line
buffering , a static eliminator, and a self-test capability .

All models are 132-column printers that can accept paper
4 to 16-3/4 inches wide with up to 6-part forms. They print
10 characters per inch horizontally, and 6 or 8 lines per
inch vertically (switch selectable). They include a vernier
adjustment for horizontal and vertical paper position . All
models are available with either upper (64) or upper/lower
(95) character sets (including numbers and symbols) .
Most models have optional scientific or EDP character
sets.

The low-cost models print one line every two revolutions
(300 lines per minute with the 64-character set, 230 lines
per minute with the 95-character set), or one line every
revolution (600 lines per minute with the 64-character set,
460 lines per minute with the 95-character set). A higher
speed version that includes a noise-reduction cabinet, rib
bon guide, and a high-speed paper puller offers 900 line
per-minute printing with the 64-character set, or 660 lines
per minute with the 95-character set.

For systems requiring even greater printer throughput,
LP11 models are available that print up to 1200 lines per
minute with the 64-character set or 800 lines per minute
with the 95-character set.

LA 11 Line Printer
The LA 11 is an extremely low-cost, highly-reliable parallel
interface printer. The LA 11 prints at speeds up to 180
characters per second . The print set consists of the ASCII
characters, including 95 upper and lower case letters,
numbers, and symbols. Characters are printed using a 7 x

5-3

7 matrix with horizontal spacing of 10 characters per inch
and vertical spacing of six lines per inch.

Adjustable pin-feed tractors allow for a variable-form
width of 3 to 14-7/8 inches (up to 132 columns) . A forms
length switch sets the top-of-form to any of 11 common
lengths, with fine adjustment for accurate forms place
ment. The printer can accommodate multipart forms (with
or without carbons) of up to six parts.

CR11 Card Reader
CR11 card readers can be connected to the system as pro
grammed interrupt request devices. The CR11 reads up to
285 80-column punched cards per minute. The card read
er has a high tolerance for cards that have been nicked ,
warped , bent, or subjected to high humidity. The card
reader uses a short card path, with only one card in the
track at a time. It uses a vacuum pick mechanism and
keeps cards from sticking together by blowing a stream of
air through the bottom half-inch of cards in the input hop
per. The input hopper holds up to 400 cards, and cards
can be loaded and unloaded while the reader is operating .

TERMINALS AND INTERFACES
Interactive terminals can be connected to the VAX system.
The operating system's terminal driver provides full du
plex handling for both hard copy and video terminals.

Programs can control terminal operations through the ter
minal driver. The terminal driver supports many special
operating modes for terminal lines. A program can enable
or disable the following modes by calling a system service:

• SLAVE All unsolicited data are discarded. This mode
is used to establish application-controlled terminals .

• NO ECHO Data entered on the terminal keyboard are
not printed or displayed on the terminal. This mode is
used, for example, to read passwords typed on the ter
minal.

• PASS ALL All data entered on the terminal are trans
mitted to the program as 8-bit binary information with
out any interpretation, except where a line terminator or
terminators are specified. This mode enables programs
to perform their own interpretation of control characters
instead of using the VAX/VMS interpretation.

• ESCAPE Escape sequences entered on the terminal
are recognized as read terminators, validated, and
passed to a program for interpretation .

• TERMINAL/HOST SYNCHRONIZATION Data sent to
the terminal are controlled by terminal-generated XOFF
and XON. These functions are generated by typing
CTRL/S and CTRL/Q on command terminals and are
interpreted as requests to stop and resume output to
the terminal.

• HOST/TERMINAL SYNCHRONIZATION All read op
erations are explicitly solicited with XON and terminated
with XOFF. XON and XOFF are also used to keep the
type-ahead buffer from filling .

Input from a command terminal is always independent of
concurrent output. This capability is called type-ahead.
Data typed at the terminal are retained in a type-ahead
buffer until a program issues a read request. At that time
the data are transferred to the program buffer and echoed

on the terminal (provided that echoing is not disabled). If a
read is already in progress, the echo and data transfer are
immediate. Deferring the echo until a read operation is ac
tive allows the program to specify the mode of the termi
nal, such as No Echo or Convert Lower Case to Upper, to
modify the read operation.

A line entered on a command terminal is terminated by
any of several special characters, for example, the RE
TURN key. A program reading from a terminal can option
ally specify a particular line terminator or class of line ter
minators for read requests (including read PASS ALL re
quests).

Terminal characteristics are initially established during
system generation. Users operating command terminals
can modify the characteristics of the particular terminal
being used. For example, the user can set the baud rate
(transmission speed) or change the terminal line width .

LA120 Hard Copy Terminal
The LA 120 is a hard copy terminal which offers exception
al throughput and a number of advanced keyboard-selec
table formatting and communication features . It uses a
contoured typewriter-styled keyboard and includes an ad
ditional numeric keypad and a prompting LED display for
infrequently used features.

The LA 120 achieves high throughput owing to several fea
tures:

• 180 character per second print speed

• 14 data transmission speeds ranging up to 9600 baud

• 1 K character buffer to equalize differences between
transmission speeds and print speeds

• smart and bidirectional printing so that printhead al
ways takes shortest path to next print position

• high speed horizontal and vertical skipping over white
space

In addition to its throughput, the LA 120 is distinguished by
its printing features. The terminal offers eight font sizes,
ranging from expanded (5 characters per inch) to com
pressed font (16.5 characters per inch). Hence a user
could, for example, select a font size of 16.5 cpi and print
132 columns onto an 81/2-inch-wide sheet. Other print fea
tures include six line spacings ranging from 2 to 12 lines
per inch, user-selectable form lengths up to 14 inches,
left/right and top/bottom margins and horizontal and
vertical tabs.

The LA120 is designed for easy use. Terminal characteris
tics are selected via clearly labeled keys and simple mne
monic commands. Once the selections have been made,
the operator can check his settings by depressing the
STATUS key. The terminal will then print a listing of these
lected settings.

LA36 Hard Copy Terminal
The LA36 is an exceptionally reliable hard copy terminal. It
is a lower-priced device than the LA 120 with lower
throughput (30 cps vs. 165 cps) and fewer print features.

The LA36 uses a typewriter-like keyboard which produces
128 ASCII characters, consisting of 95 upper- and lower
case printing characters and 33 control characters, and is
available with optional special character sets, including
various foreign language character sets.

5-4

Characters are printed using a 7 x 7 matrix with horizontal
spacing of ten characters per inch and vertical spacing of
six lines per inch. To ensure clear visibility of the printed
line, the print head automatically retracts out of the way
when not in operation . Adjustable pin-feed tractors allow
for a variable-form width from 3 to 14-7 /8 inches (up to
132 columns). The print mechanism will accommodate
multi part forms (with or without carbons) of up to six parts.

The LA36 operates at speeds of 110, 150, or 300 baud (10,
15, or 30 characters per second). Printable characters are
stored in a buffer during the carriage return operation .
While more than one character is in the buffer, the printer
mechanism operates at an effective speed of 60 charac
ters per second.

VT100 Video Terminal
The VT100 Video Terminal is an upper- and lower-case
ASCII terminal which offers a variety of controllable char
acter and screen attributes. The VT100 features a typewrit
er-like detachable keyboard which includes a standard
numeric/function keypad for data entry applications. Also
featured are seven LEDs, four of which are program-con
trolled , used as operator information and diagnostic aids.

The VT100 offers a number of advanced features . The
most important of these are:

• ability to select either of two screen sizes: 24 lines by 80
columns or 14 lines by 132 columns

• ability to select either double-width single-height char
acters or double-width double-height characters on a
line by line basis

• smooth scrolling and split screen capability

• ability to set baud rates, tabs, and Answer Back mes
sages from the keyboard and to store these in RAM
(Random Access Memory)

• special line drawing graphic characters providing the
ability to display simple graphics for business or labora
tory applications

• ability to select black-on-white characters or white-on
black characters on a full screen basis

- -
I""°" - -

' j

In addition , several options further extend the capabilities
of the VT100. These include the advanced video option ,
which adds selectable blinking, underline, and dual in
tensity characters to the existing reverse video attribute;
the provision of space, power, and interconnects for the
future addition of a terminal processor; and additional
RAM allowing 24 lines of 132 characters.

DZ11 Terminal Line Interface
The DZ11 is a serial line multiplexer whose character for
mats and operating speeds are programmable on a per
line basis. A DZ11 connects the UNIBUS with up to a maxi
mum of 8 or 16 asynchronous serial lines, depending on
the configuration. Each line can run at any one of 15
speeds.

Local operation with EIA terminals is possible at speeds up
to 9600 baud . Remote dial-up terminals can operate full
duplex at speeds up to 300 baud using Bell 103 or 113 mo
dems, or up to 1200 baud using the Bell 212 modem.

The DZ11 optionally generates parity on output and
checks parity on input. Incoming characters are buffered
using a 64-character silo buffer. Outgoing characters are
processed on a programmed interrupt request basis.

REAL-TIME 1/0 DEVICES
To enhance real-time performance, VAX supports the DR-
11 B, the LPA 11-K direct memory access (DMA) interfaces,
and the DR780 32-bit high performance parallel interface
(VAX/11-780 only) . These devices allow data to be trans
ferred from a peripheral device to memory and vice-versa
without the intervention of computer programs except at
the initialization and completion of transfers. The result is
that CPU involvement in 1/0 operations is greatly reduced .
Further, since these devices are capable of "driving" large
blocks of information at high speeds, their usage can
greatly increase 1/0 bandwidth, i.e., the capacity of the
system to sustain a total data transfer load. 1/0 bandwidth
is an important performance measure in real-time applica
tions, since such applications require data transfers
between external devices and computer memory.

LPA11-K
The LPA 11-K is an intelligent (dual-microprocessor) direct
memory access controller that buffers real-time data and
transfers them to VAX memory in efficient blocks (rather
than a word at a time) . Since the LPA 11-K has automatic
buffer switching capability, transfers may occur continu
ously. Via a system call, the programmer can instruct the
LPA 11-K to take samples from a data source at specified
time intervals. Sampling is handled by the microproces
sors, without the intervention of the CPU. Under VMS, the
LPA 11-K can be accessed via VAX-11 FORTRAN, VAX-11
BASIC, VAX-11 BLISS-32, and MACRO.

The LPA11-K operates in two distinct modes: dedicated
mode and multi request mode.

In multirequest mode, up to eight requests can be active
concurrently. Each user's sampling rate is a user-specified
multiple of the common real-time clock rate; thus indepen
dent rates can be maintained for each user. Each request
specifies the device so that AID, DI A or digital 1/0 can be
synchronously sampled; the transition of a bit in a digital

5-5

word can synchronize the sampling with a user event. In
multirequest mode, throughput is determined by the num
ber and types of requests. The aggregate throughput rate
for all users is typically 15,000 samples per second .

In dedicated mode, one user can sample from analog-to
digital converters , or output to a digital-to-analog convert
er. Two analog-to-digital converters can be controlled si
multaneously. Sampl ing is initiated by an overflow of the
real-time clock , or by an external signal. Two sampling
algorithms are implemented . One, at each overflow, sam
ples both analog-to-digital converters in parallel, allowing
two channels to be sampled simultaneously. The other al
gorithm samples the two converters on an interleaved ba
sis, beginning with the first whose sampling begins on al
ternate clock overflows.

The LPA 11-K supports the following 1/0 devices on VAX:

• AA 11 K (four-channel 12-bit D/ A converter)

• AD11K(eight-channel12-bit A/D converter)

• AM11 K (multiplexer board)

• DR11 K (16-bit parallel , general device interface)

• KW11 K (real-time clock)

DR11-B
The DR11-B is a general purpose, direct memory access
(OMA) digital interface to the UNIBUS. The DR11-B, rather
than using programmed controlled data transfers ,
operates directly to or from memory, moving data between
the UNIBUS and the user device. The DR11-B, like the
LPA 11-K, is a block transfer device. However, it is less ex
pensive than the LPA 11-K, does not include a microproc
essor, and can only handle a single task for a single pro
grammer.

The DR11-B interface consists of four registers: command
and status, word count, bus address, and data. Operation
is initialized under program control by loading word count
with the 2's complement of the number of transfers, speci
fying the initial memory or bus address where the block
transfer is to begin and by loading the command/status
register with function bits. The user device recognizes
these function bits and responds by setting up the control
inputs. If the user device requests data from memory of a
UNIBUS device, the DR11-B performs a UNIBUS Data In
transfer (DATI) and loads its data register with the informa
tion held at the referenced bus address. The outputs of
this register are available to the user device; this output
data is buffered . If the user device requests data to be writ
ten into memory, the DR11-B performs a UNIBUS Data
Out transfer (DATO), moving data from the user device to
the referenced bus address; this input data is not buffered.
Transfers normally continue at a user-defined rate until the
specified number of words is transferred . The DA11-B has
the capability of transferring data at a rate of 500,000
bytes/second, but actual transfer rates depend upon the
particular configuration.

DR780
The DR780 is a high performance general purpose inter
face adaptor that enables users to directly interface cus
tom devices to a VAX-11 /780 system or to connect two
VAX-11 /780 systems. This high performance, general pur
pose interface provides a 32-bit parallel data path capable
of transferring data up to 6.67 megabytes/second.

The architecture of the DR780 uses separate interconnect
structures for transfer of control information and data. The
control interconnect is an asychronous 8-bit bidirectional
path for transferring control information to and from the
user device. The 8-bit width of the control interconnect
makes it possible to have up to 256 individual registers in
the user device. The data interconnect is a synchronous
32-bit bidirectional path synchronized to a single clock (ei
ther the internal DR780 clock or a clock provided in the
user device). By using the DR780 internal clock, the trans
fer rate is selectable under program control from .156 to
6.67M bytes/sec.

The DR780 provides the high performance interface to uti
lize the system bandwidth of the VAX-11/780. However, to
achieve DR780 bandwidths over 2.0 Mb/second, it is re
quired that the system include two interleaved memory
controllers .

Typical applications of the DR780 are high-speed data col
lection, CPU to CPU communications, signal processing,
and interfacing to graphics and array processors.

INTERPROCESSOR COMMUNICATIONS LINK
VAX permits interprocessor communications via the
DMC11 communications link or via the MA780, multiport
(shared) memory. MA780 is supported by the VAX-111780
processor only.

DMC11
The DMC11 communications link is designed for high-per
formance point-to-point serial interprocessor connection
based on the DIGIT AL Data Communications Message
Protocol (DDCMP). The DMC11 provides local or remote
interconnection of two computers over a serial synchro
nous link. Both computers can include the DMC11 and
DECnet software , or both computers can include the
DMC11 and implement their own communications soft
ware. For remote operations, a DMC11 can also communi
cate with a different type of synchronous interface provid
ed that the remote system has implemented the DDCMP
protocol.

By implementing the DDCMP protocol in its high-speed
microprocessor , the DMC11 ensures reliable data
transmission and relieves the host processor of the details
of protocol operation (including character and message
synchronization, header and message formatt ing, error
checking , and retransmission control). The DDCMP proto
col detects errors on the channel interconnecting the sys
tem using a 16-bit Cyclic Redundancy Check (CRC-16).
Errors are corrected by automatic retransmission. Se
quence numbers in message headers ensure that mes
sages are delivered in proper order with no omissions or
duplications.

The DMC11 supports full- or half-duplex operation . Full
duplex operation offers the highest throughput and is used
when the communications facilities permit two-way opera
tion . The DDCMP protocol permits continuous simulta
neous transmission of data messages in both directions
when buffers are available and there are no errors on the
channels.

Where both computers are located in the same facility, the
DMC11 permits transmission at speeds of up to 1,000,000

5-6

bits per second over coaxial cable up to 6,000 feet long , or
speeds of up to 56,000 bits per second over coaxial cable
up to 18,000 feet long. The necessary modems for local in
terconnection are built in. Where the computers are locat
ed remotely and connected using common carrier facili
ties, the DMC11 permits transmission of up to 19,200 bits
per second using an EIA interface. A DMC11 can interface
to synchronous modems such as the Bell models 208 and
209, or other synchronous modems conforming to the
RS232-C standard.

MA780
MA780 multiport memory is a bank of MOS semiconduc
tor memory with error correcting code (ECG) that can be
shared by up to four VAX-11 /780 systems. Each system
can randomly access all of the shared memory in exactly
the same way it accesses its local memory.

Each MA780 can be expanded from a minimum of 256K
bytes to a maximum of 2M bytes. This storage is in addi
tion to each system's local memory, which can be as large
as SM bytes. Since there can be up to two MA780s con
nected to a CPU, a VAX-11/780 system can now directly
address up to 12M bytes of physical memory.

Extensions to VAX/VMS make access to the shared mem
ory transparent to the programmer. That is, processes can
be moved from one CPU to another with transparency to
the programs involved .

The MA780 can be thought of as a very fast commun ica
tion device between VAX-11 /780 systems. Specifically,
VAX/VMS provides support for interprocessor commun i
cations through the sharing of data regions, VMS mailbox
es, and common event flags. VAX/VMS also allows code
to be shared among CPUs.

The MA780 can be used to configure multiple computer
systems for very high throughput. Depending on the appl i
cation , the CPUs can be arranged in either a parallel or
pipeline manner, as described in Figure 5-1 below:

VA X

VAX

PARALLEL PIPELINE

Figure 5-1
Multiported Memory Configurations

In parallel systems, two or more appropriately pro
grammed CPUs can divide a task. This allows the CPUs to
effectively pool their power to finish the job quickly. Pipe
line systems can increase throughput by allowing instan
taneous data exchange between CPUs that are handling
sequential parts of an application .

CONSOLE STORAGE DEVICES
The VAX-11/780 console utilizes the RX01 floppy d isk

while the VAX-11 /750 console utilizes the TU58 magnetic
tape cartridge.

RX01 Floppy Disk Cartridge
The RX01 floppy disk is an integral part of the VAX-11 /780
console subsystem, storing microdiagnostics and system
software. This feature facilitates fast diagnosis (initiated
both locally and remotely) , simplifies bootstrapping and
initialization and improves software update distribution.

The RX01 is a random access mass memory subsystem
that stores data in fixed length blocks on a flexible diskette
with preformatted, industry standard headers. The RX01 is
a single drive floppy capable of storing 256K bytes of data.
The RX02 floppy disk system can also read/write data for
matted for the RX01 floppy disk.

TUSS tape cartridge
The TU58 Tape Cartridge Drive is an important part of the

5-7

VAX-11/ 750 console subsystem. Because the TU58 is con
nected directly to the CPU, it maintains the capability to
administer diagnostics even with some system compo
nents inoperative. This feature significantly increases sys
tem reliability. The TU58 may also be used to boot the sys
tem , to load files into physical memory, and to store files
which describe and execute site-specific bootstrap pro
cedures .

The tape cartridge is preformatted to store 2048 records
each containing 128 bytes. The controller provides'
random access to any record. The TU58 searches at 60
inches per second (ips) to find the file requested , then
reads at 30 ips. Data read from the tape are verified
through checksums at the end of each record or header.
All data transfers between the TU58 and the host are in
512 byte blocks, with the TU58 concatenating four 128
byte records to accomplish this. Data are transferred to
the CPU at approximately 2 KB per second.

6
The

Operating
System

VAX/VMS is the general purpose operating system for VAX systems. It
provides a reliable, high-performance environment for the concurrent
execution of multiuser timesharing, batch , and real-time applications.
VAX/VMS provides:

• virtual memory management for the execution of large programs

• event-driven priority scheduling

• shared memory, file , and interprocess communication data protec
tion based on ownership and application groups

• programmed system services for process and subprocess control
and interprocess communication

VAX/VMS uses memory management features to provide swapping ,
paging, and protection and sharing of both code and data. Memory is
allocated dynamically. Applications can control the amount of physical
memory allocated to executing processes, the protection pages, and
swapping . These controls can be added after the application is imple
mented .

VAX/VMS schedules CPU time and memory residency on a pre-emp
tive pr iority basis. Thus , real-time processes do not have to compete
with lower priority processes for scheduling services. Scheduling ro
tates among processes of the same priority.

VAX/VMS allows real-time applications to control their virtual memory
paging and execution priority. Real-time applications can eliminate
services not needed to reduce system overhead . Processes granted
the privilege to ex·ecute at real-time scheduling levels , however, do not
necessarily have the privilege to access protected memory and/or data
structures.

VAX/VMS includes system services to control processes and process
execution , control real-time response, control scheduling , and obtain
information . Process control services allow the creation of sub
processes as well as independent detached processes. Processes can
communicate and synchronize using mailboxes, shared areas of mem
ory, shared files or multiple common event flag clusters. A group of
processes can also communicate using multi ported memory.

Applications designers can use the VAX/VMS protection and privilege
mechanisms to implement system security and privacy. VAX/VMS pro
vides memory access protection both between and within processes.
Each process has its own independent virtual address space which can
be mapped to private pages or shared pages. A process cannot access
any other process's pr ivate pages. VAX/VMS uses the four processor
access modes to read and/or write protect individual pages within a
process. Protection of shared pages of memory, files , and interprocess
communication facilities.such as mailboxes and event flags , is based
on User Identification Codes individually assigned to accessors and
data.

INTRODUCTION
VAX/VMS is built for executing high-performance applica
tions where:

• Event-driven interprocess communication and pro
cedure and data sharing are important. Order entry and
teller transaction systems often consist of many cooper
ating processes that synchronize record creation and
modification .

• Priorities of resource allocation can be set for currently
executing jobs. Both real-time processes and resource
sharing processes can execute in the same environ
ment, as in a communications network. High-speed
links can be serviced on demand, while interactive ter
minal users and batch jobs share processor time and
peripherals.

• Large programs can be developed to execute in a physi
cal memory smaller than the program's total memory
requ irements . Engineering computation programs such
as simulators often build data arrays which require a
large address space to describe the arrays.

The VAX/VMS operating system provides the run time
services for executing high-performance application sys
tems. Operations managers and systems programmers
have considerable flexibility in designing and controlling
data and program flow.

Applications can be divided into several independent sub
systems where data and code are protected from one
another, and yet which have general communication and
data sharing facilities . Jobs can communicate using gen
eral , group, or local communication facilities .

Applications which require an immediate response to
some external event can be scheduled as real-time proc
esses. When a real-time process is ready to execute, it ex
ecutes until it becomes blocked or another higher priority
real-time process needs the resources of the processor.
Normal jobs can be scheduled using a modified pre-emp
tive algorithm that ensures that they receive processor and
peripheral resources at regular intervals commensurate
with their processing needs.

If insufficient memory is available for keeping concurrently
executing jobs resident, the operating system will swap
jobs in and out of memory to allocate each its share of
processor time. Real-time processes can be locked in
memory to ensure that they can be started up rapidly when
they need to execute.

The operating system provides a dynamic virtual memory
programming environment. Large programs can be exe
cuted in a portion of physical memory that is considerably
smaller than the program's memory requirements, without
requiring the programmer to define overlays. The operat
ing system optimizes its virtual memory system for pro
gram locality and provides tools that support optimization.
It makes program performance predictable and controll
able by allowing the programmer to restrict physical
memory usage, and by bringing in large amounts of a pro
gram at one time. Processes executing under VAX/VMS
page against themselves and not against the entire sys
tem ; thus heavily paging processes executing large pro
grams do not affect the paging of other processes.

The operating system provides sophisticated peripheral

6-1

device management for sharing, protection, and through
put. Devices can be shared among all jobs or reserved for
exclusive use by particular jobs. Input and output for low
speed devices are spooled to high-speed devices to in
crease throughput. Files on mass storage devices can be
protected from unauthorized access on an individual,
group, or volume basis.

Furthermore, the 1/0 request processing system is optim
ized for throughput and interrupt response. The operating
system provides the programmer with several data ac
cessing methods, from logical record accessing for easy,
device-independent programming to direct 1/0 accessing
for extremely rapid data processing . Files can be stored in
any of several ways to optimize subsequent processing .

VAX/VMS provides the programming tools , scheduling
services, and protection mechanisms for multiuser pro
gram development. Programmers can write, execute, and
debug programs on the system interactively, and also cre
ate batch command files that perform repetitive program
development operations without requiring their attention.

Although it provides a multiuser program development en
vironment, VAX/VMS is unlike traditional program de
velopment timesharing systems. VAX/VMS is an
application-oriented operating system that optimizes total
system throughput and response to high-priority activities.
As in a timesharing system, interactive jobs can be given
equal opportunities for resource acquisition. In addition,
the system can be executing real-time applications while
program development jobs run, since higher priority activ
ities always have the ability to pre-empt lower priority ac
tivities.

COMPONENTS AND SERVICES
The operating system is the collection of software that or
ganizes the processor and peripherals into a high-per
formance system. The operating system's basic
components include:

• processes that control initial resource allocation, com-
municate with the sy:.>tem operator, and log errors

• the command interpreters

• user-callable process control services

• memory management routines

• shared run time library routines

• scheduling routines and swapper

• file and record management services

• interrupt and 1/0 processing routines

• compatibility mode executive routines

• hardware and software exception dispatching

The operating system 's jobs run as independent activities
on the system. They include the Job Controller, which initi
ates and terminates user processes and manages spool
ing ; the Operator Communications Manager, which han
dles messages queued to the system operators ; the
Swapper, which controls the swapping of a processes
working set in and out of main memory; and the Error Log
ger, which collects all hardware and software errors de
tected by the processor and operating system.

A command interpreter executes as a service for interac
tive and batch jobs. It enables the general user to request

the basic functions that the operating system provides,
such as program development, file management, and sys
tem information services.

Both hardware-detected and software-detected exception
conditions are tracked through the exception dispatcher.
The exception dispatcher passes control to user-pro
grammed condition handlers or, in the case of system
wide exception conditions, to operating system condition
handlers.

The operating system's memory management routines in
clude the image activator, which controls the mapping of
virtual memory to system and user jobs; the pager, which
moves portions of a process in and out of memory as re
quired; and various system services, callable by users that
want to manage their virtual address space directly. They
respond to a program's dynamic memory requirements,
and enable programs to control their allocated memory,
share data and code, and protect themselves from one
another.

The scheduler controls the allocation of processor time to
system and user jobs. The scheduler always ensures that
the highest priority, ready-to-execute real-time process
receives control of the processor until it relinquishes it.
When no real-time processes are ready to execute, the
scheduler dynamically allocates processor time to all other
jobs according to their priorities and resource require
ments. The swapper works in conjunction with the sched
uler to move entire jobs in and out of memory when mem
ory requirements exceed memory resources. The swapper
ensures that the jobs most likely to execute are kept in
memory.

The operating system's 1/0 processing software includes
interrupt service routines, device-dependent 1/0 drivers,
device-independent control routines, and user-pro
grammed record processing services. The 1/0 system en
sures rapid interrupt response and processing through
put, and provides programming interfaces for both special
purpose and general purpose 1/0 processing.

The next few sections discuss some of the concepts basic
to understanding the operating system's functions and
services. They are followed by descriptions of the services
available to individual and cooperating processes, and de
scriptions of memory management and scheduling for the
systems programmer.

PROCESSING CONCEPTS
To support high-performance multiprogramming applica
tion environments, the operating system provides the ap
plications programmer with the tools to implement:

• shared programs

• shared files and data

• interprocess communication and control

To enable the programmer to write shared programs easi
ly, the operating system treats a program independently of
the context in which a program executes. The context de
fines the privileges assigned by the system manager to a
particular user. Users with different privileges can share
programs, and the operating system will enforce protec
tion independently of the program.

6-2

The operating system controls privilege and accounts for
resource allocation by job. A job can be performing proc
essing operations under the direction of one user at a ter
minal , or it can be performing processing operations for
several users at multiple terminals. A job can consist of
one or several independently executing processes that
share the resource allocations for that job. Jobs can be
grouped into application subsystems that share files and
communication channels that are protected from other ap
plication subsystems.

Programs and Processes
The four concepts important for understanding how the
operating system supports multiprogrammed application
systems are:

• image , or executable program

• process, or image context and address space

• job, or detached process and its subprocesses

• group, or set of jobs that can share resources

These concepts are for the most part transparent to the
general user whose only contact with the system is the op
erating system's command language interpreter or an ap
plication's command interface. They are, however, signifi
cant concepts for the applications programmer. Figure 6-1
illustrates the concepts of groups, jobs, processes, and
images.

An image is an executable program. It is created by trans
lating source language modules into object modules and
linking the object modules together. An image is stored in
a file on disk . When a user runs an image, the operating
system reads the image file into memory to execute the
image.

The environment in which an image executes is its context.
The complete context of an image not only includes the
state of its execution at any one time (known as its hard
ware context) , it also includes the definition of its resource
allocation quotas, such as device ownership, file access,
and maximum physical memory allocation . These re
source allocation quotas are determined by the quotas
given to the user who runs the image.

Two or more users can execute the same image concur
rently; that is, image code can be shared, in which case the
image is executing in two or more different contexts. An
image context, including the address space used by an im
age, is called a process. The operating system schedules
processes, and a process provides a context in which an
image executes.

The distinction between an image and a process is a sig
nificant one. We can speak of two processes, each execut
ing the FORTRAN compiler. There may be only one copy
in physical memory of the FORTRAN compiler 's image,
but two different contexts in which the image executes. In
one context, the compilation may have just begun ; in the
other context, it may be almost complete. In one context,
the compiler may be reading and writing files listed in one
directory; in the other context, the compiler may be read
ing and writing files listed in another directory.

A process executes only one image at a time, but it pro
vides the context for serially executing any number of d if
ferent images. For example, when a user logs on the sys-

GROU P 1

JOBI JOB 2

a (DETACHED) B PROCESS PROCESS
OWNER

A D Sl.SPROCES D SUBPROCESS
OWNER

J D SUBPROCESS
JO B 3

D

GROUP 2 GROUP 3

Figure 6-1

Programs and Processes

tern at an interactive terminal , the operating system
creates a process for that user. If the user edits a file, the
editor image executes in the context of that user's process.
If the user then compiles a program, the compiler image
executes in the context of that user's process. A process
thus acts as a continuous "envelope" for a user's activities.

An image executing in the context of a process can create
subprocesses. A subprocess can be thought of as an aux
iliary process in which a given image executes. When an
image creates a subprocess, it identifies the image to be
executed in the context of the subprocess or the source of
commands to be interpreted in that process. An image ex
ecuting in a subprocess context can in turn create other
subprocesses.

The process executing the image that creates a subpro
cess is an owner process. An owner process has com
plete control over the execution of the subprocesses it
creates. It determines which of its privileges it will allow a
subprocess to have. Each detached process and all sub-

6-3

processes created below it heirarchically share a common
pool of quotas. The owner process can control the sche
duling of its subprocess, and it can delete the subprocess.
When an owner process terminates, all of the sub
processes it owns are terminated .

A detached process is the process created by the operat
ing system on behalf of a user who logs onto the system
and requests services of the system using a command
interpreter. A detached process has no owner. Normally,
only the operating system can create detached processes,
but a suitably privileged application program could also
create a detached process and start up an application
command interface to execute images serially for the de
tached process or any subprocess it creates.

A job consists of a detached process and all the sub
processes it creates, and all the subprocesses they create,
etc. Jobs are the accounting entities that the system uses
to control resource allocation . All processes constituting a
job are scheduled independently (they can compete for

processor time individually to overlap processing), but
they share the total resources allocated to the detached
process. Each job has a set of resources that it can use,
i.e. , authorized quotas. Subprocesses share these quotas
with the detached process.

Jobs can be associated in groups. Groups are the basis
for the definition and development of application subsys
tems. Groups are mutually exclusive, that is, if a job be
longs to one group, it does not belong to any other group.
A process with appropriate privilege can control the exe
cution of other processes in the same group. Processes in
the same group can synchronize their activities using pro
tected group communication facilities .

Resource Allocation
The resources of the system are the processor, memory,
and peripherals. The system handles many jobs
simultaneously, and each job can have different resource
requirements . The operating system enables jobs to share
the resources according to their ind ividual needs, and the
operating system protects each job and its data from other
jobs on the system .

The operating system controls resource allocation dy
namically through its scheduling, memory management,
device allocation, and 1/0 processing software, and stati
cally through the authorization of users.

The system manager is responsible for creating an au
thorization file entry for each user of the system. The au
thorization file provides the operating system with the re
source quotas and limits for each job. For example, there
are quotas and limits that control :

• total processor time usage

• number of subprocesses a job can create

• number of simultaneously open files

• process virtual and physical memory usage

• number of simultaneous 1/0 transfers

Separate authorization files located on each disk volume
control disk usage quotas.

Privileges
In addition to provid ing job quotas, the user authorization
file provides the base definition for each user's privileges.
There are potentially 64 distinct privileges that can be
individually granted or withheld . Among them are privi
leges that give the job the right to:

• alter the priority of a process

• execute a user-written program at a more privileged ac-
cess mode

• execute operator functions

• create detached processes

• set up the communication facilities used by cooperating
processes

• control other processes in the same group

Whenever the user executes an image, the image can at
most acquire only those privileges and quotas granted
directly to that user's job by the authorization file, unless
the image is a known image. Known images are installed
by the system manager, and while they execute they pro
vide a second , dynamic set of privileges granted a user.

6-4

When the user executes a known image, the process has
the privileges and quotas granted to the user in the au
thorization file, plus those run time execution privileges
granted specifically to that image. While that image exe
cutes, the user may have the priv ilege to perform opera
tions not granted when executing any other image. For ex
ample, one known image is the operating system's LOGIN
image, which enables a user to log on the system. The
LOGIN image has the privilege required to access the user
authorization file to obtain the user's privileges and quo
tas.

Protection
The basis for data protection in the VAX system is the user
identification code (UIC) . A UIC consists of two numbers: a
group number and a member number. The system man
ager assigns each user a user identification code (UIC) in
the user authorization file . Images that the user executes
are given or denied data access privileges based upon the
user's UIC.

When a file or an interprocess communication facility is
created , it is assigned a UIC and a protection code. The
UIC determines which group of users or programs, and
which members within the group, have controlled access
to that data. The protection code provides the access con
trol.

The protection code applies to four types of access : read ,
write , execute, and delete . Each type of access can be
given or denied to:

• the owner: the user whose UIC is the same as the UIC
assigned to the data.

• the group: every user whose UIC group number is the
same as that assigned the data.

• the world : every user whose UIC group number is diffe r
ent or the same from that assigned the data. (everyone
on the system)

• the system: every user or program with the privilege
SYSPRV, and those whose UIC group number is a sys
tem privileged group number (1-X, where Xis a number
specified by the sysgen parameter, MAXSYSGROUP).

For example, in a common application of the protection
scheme, a user can create a program image file and as
sign it the same UIC as the user's own UIC (the default
case). The user can give it a protection code to:

• enable the user (and all other users with the same UIC)
to read, write , execute, and delete the file

• enable other users in the group to execute the program
image, but prevent them from reading , writing or delet
ing the file

• prevent all users outside the group (other than privi
leged system users) from reading, writ ing, executing, or
deleting the file

• enable the the privileged system users to read the file
(so that it can be backed up, for example)

Read and write access applies to both files and interproc
ess communication facilities. Delete access applies only to
files , and execute access applies only to program image
files. (The privileges and quotas granted in the user au
thorization file control creation and deletion for
interprocess communication facilities.)

USER PROCESS ENVIRONMENT
The user program environment is the process, which is the
entity the operating system schedules for execution . Each
process has its own independent address space in which
an image executes. Each image executing in a process
can call system service procedures to acquire resources
and request special processing services from the operat
ing system. The following paragraphs introduce program
virtual address allocation and the fundamental system ser
vice procedures available to user programs directly, as
well as indirectly through the more complex programmed
requests provided by the operating system.

Virtual Address Space Allocation
Process virtual address space is the set of 32-bit ad
dresses that an image executing in the context of a proc
ess uses to identify byte locations in virtual memory. For
the purpose of allocating virtual memory to processes, the
operating system divides process virtual address space
into four sets of virtual addresses. The first three sets of
addresses are called the program region , the control re
gion, and the system region . The fourth set of addresses is
unused.

Figure 6-2 illustrates the general allocation of virtual ad
dress space for each process. Addresses in the first two
regions are used for process code and data, where the
first reg ion is generally used for image-specific code and
data, and the second for stacks, process permanent data,
buffers, and operating system code. Addresses in the sys
tem region are also used for code and data maintained by
the operating system, but in this case the addresses refer
to the same locations in every process context. The system
region addresses provide a set of locations whose ad
dresses are independent of process context , and therefore
do not have to be context switched.

6-5

When a user program is translated and linked, the image
is allocated addresses starting with address 512 and con
tinuing up . The first page is not normally allocated (al
though it can be) because it helps catch programming
errors caused by improperly initialized pointers, by
branching or jumping to 0, or by passing O or other small
addresses as arguments. The linker allocates the remain
der of address space to image sections according to
whether they are shared or private, position-independent
or position-dependent, and read-only or read/write , such
that memory protection can be used to full advantage in
preventing and isolating programming errors.

The addresses in the control region are used to identify the
locations containing temporary image control information
and data such as the stacks, permanent process control
information such as 1/0 channel allocations, and code pro
vided by the operating system. These addresses are allo
cated from address 231 -1 down . One reason this method
of allocating in reverse is convenient is because the con
trol region contains the process stacks, and stacks grow to
lower addresses as data are added , and to higher ad
dresses as data are removed .

There are four stack areas reserved in the control region ,
one for each access mode orotection level that the proces
sor provides for software executing in the context of a
process. (Refer to the VAX Processors section for a de
scription of access modes.) The stack seen by the image
executing in the program region is the user stack . All other
stack areas are protected from that image. These stacks
are used by operating system software executing in the
context of the process on behalf of the image the process
is executing. For example, command interpreters use the
supervisor stack , the record management services use the
executive stack , and the exception dispatcher and some
exception handlers use the kernel stack.

The system region addresses, which start at address 231 ,

are used to identify the locations containing the entry vec
tors for system service procedures, followed by locations
containing privileged operating system code and data. The
system service entry vectors are permanently reserved
virtual addresses so that no relinking is required if system
services are modified . Other addresses in the system re
gion are not generally used by the image allocated to the
program region , and access to areas mapped by these ad
dresses is restricted .

System Services
An image requests services of the operating system
directly through calls to the system services. The system
services are to the operating system what the instruction
set is to the processor. They provide all the primary re
source request activities, such as 1/0 processing and
interprocess communication . Other programmed re
quests available to the user are often derived from system
services. For example, the record management services
use the 1/0 processing system services as the basis for
logical record processing functions.

Images that use the system services can be written in as
sembly language or any native programming language
that has a Call statement. (Refer to the Languages section
and the section on the RSX-11 M Programming Environ
ment for system services available for compatibility mode

- - OooOooOo - - r NO ACCESS PAGE

PER
PROCESS
SPACE

PO

'---------------<
2 NON PIC IMAGE

3 PIC SHARED AND
PIC IMAGf

!AS MUCH AS FITSI

l NON· PIC SHARED
CODE AND DATA

(PREVIOUSLY LINl(EDl THIS PART OF PO SPACE
>-------------i lS DEFINED BY THE

4 THE REST OF
PIC SHARED AND PIC
IMAGE\IF ANY)

LINl(ER AND MAPPED
8Y THE IMAGE ACTIVAT~

PROGRAM RTL VECTORS
SPACE f-- - - - - - - - -

.5 RUN TIME LIBRARY
VMS RTL . EXE

IF NEEDED AND NOT EXCLUDED! .__ __________ ,_ - - - - - - -
DEBUGGER (LIB$ DEBUG I
(IF REQUESTED AT LINK.,
RUN . OR EXECUTION TIME!

TRACE BACI((LIB & TRACE)
(IF NOT OVERR IDDEN AT LINI(
TIME ANO NEEDED)

>-------------!- - - - - - -
NOT MAPPED *

-N~~:£o- - - ~--------------<- - - - - - -

Pl
(CONTROL}

SPACE

IMAGE I/0 SEGMENT

>-------------!-- - - - - -
PU PROCESS MESSAGE SECTION (S) PERMANENT POftTION

OF Pl SPACE

CLI SYMBOL TABLE

Cll IMAGE

Pl WINDOW TO PROCESS HEADER DYNAMIC PORTION
OF Pl SPACE

'---------------'- - - - - -
CHANNEL CDNTROL BLOCK TABLE

PROCESS I/0 SEGMENT

PER PROCESS COMMON AREA

PER PROCESS COMMON AREA

COMPATIBILITY MOOE DATA PAGE

PROCESS 1/0 SEGMENT

PROCESS ALLOCATION REGION

GENERIC CLI DATA PAGES

IMAGE ACTIVATOft SCRATCH PAGES

DEBUGGER CONTEH
VECTORS FOR MESSAGES AND USER
WRITTEN SYSTEM SERVICES
IMAGE HEADER SUFFER

NO ACCESS PAGE

l(ERNEl STACK

EXECUTIVE STACI(

SUPERVISOR STACI(

Pl POINTER PAGE

DEBUGGER SYMBOL TABLE
(NOT MAPPED IF DEBUGGER NOT
PRESENT]

STATIC POfHION
OF Pl SPACE

7 FFFFFFF - - - -- - -~·~---------~

Figure 6-2

80000000

SYSTEM
REGION

Virtual Address Space Allocation

6-6

I ~·-.~ ... "o" ~'t'.W,Bm" coo• lNDD• •
NONPAGED E-XECUTIVE DATA

NONPAGED EXECUT!VE CODE

PAGE.AIRE EXECUTIVE ROUTINES

XDELTA(USUALLV UNMAPPED). !NIT

SVS TEM VIRTUAL PAGES MAPPED
TO J/0 ADDRESSES

RMS IMAGE (RMS . EXE)

SVSTEM MESSAGE FILE (S"YSMSG EXEi

POOL OF UN MAPPED SVSTEM PAGES :::

RESTART PARAMETER BLOCK

PFN DATABASE

PAGED DVNAMIC MEMORl

NONPAGED DYNAMIC MEMORY

INTERRUPT STA(I(

SYSTEM CONT ROL BLOCK

BALANCE SLOTS

SYSTEM HEADER

SYSTEM PAGE TABLE

GLOBAL PAGE TABLE

5 T~T!f .!:QR..!!_O_~J S_..!...S _E.X!J __
DYNAMlCALLl MAPPED AT
NITIALIZATIQN TIME]

I
I

programming languages.) The Call interface is the same
independent of the programming language selected with
the exception of CORAL 66.

Table 6-1 summarizes the system services available to the

applications programmer, some of which are controlled by
privilege. The table also lists those system services used
primarily by the operating system but which can also be
used by suitably privileged application system code.

Table 6-1

System Services

1/0 SERVICES FOR DEVICE-DEPENDENT 1/0

Assign 1/0 Channel
($ASSIGN)

Deassign 1/0 Chan
nel ($DASSGN)

Get 1/0 Channel
Information
($GETCHN)

Get 1/0 Device
Information
($GETDEV)

Allocate Device
($ALLOC)

Deallocate Device
($DALLOC)

Queue 1/0 Request
($QIO)

Queue 1/0 Request
and Wait ($QIOW)

Cancel 1/0 on
Channel
($CANCEL)

Formatted ASCII
Output ($FAO)

Formatted ASCII
Output with List Pa
rameter ($FAOL)

Establish a path for an 1/0 request.

Establish a path for network opera
tions.

Release linkage for an 1/0 path.

Release a path from the network .

Provide information about a device
to which an 1/0 channel has been
assigned .

Provide information about a physical
device.

Reserve a device for exclusive use by
a process and its subprocesses.

Relinquish exclusive use of a device.

Initiate an input or output operation
and continue processing while 1/0 is
in progress.

Initiate an input or output operation
and cause the process to wait until the
1/0 is complete before continuing ex
ecution.

Cancel pending 1/0 requests on a
channel.

Perform ASCII string substitution, and
convert numeric data to ASCII repre
sentation and substitute in output.

1/0 SERVICES FOR MAILBOXES AND MESSAGES

Create Mailbox and
Assign Channel
($CREMBX)

Delete Mailbox
($DELMBX)

Broadcast
($BRDCST)

Send Message to
Accounting Manag
er ($SNDACC)

Create a temporary mailbox.

Create a permanent mailbox.

Mark a permanent mailbox for dele
tion .

Send a high-priority message to a
specified terminal or terminals.

Control accounting log file activity.

Write an arbitrary message to the ac
counting log file.

Send Message to
Symbiont Manager
($SNDSMB)

Send Message to
Operator
($SN DO PR)

Send Message to
Error Logger
($SN DERR)

Get Message
($GETMSG)

Put Message
($PUTMSG)

Request symbiont manager to initial
ize, modify, or delete a printer, device,
or batch job queue.

Request symbiont manager to queue
a batch or print file, or delete or
change characteristics of a queued
file.

Write a message to designated opera
tor(s) terminal(s).

Enable or disable an operater's termi
nal, send a reply to a user request or
initialize the operator's log file .

Write arbitrary data to the system er
ror log file.

Return text of system or application
error message from message file.

Write a system or application error
message to the current output and er
ror devices.

LOGICAL NAME SERVICES

Create Logical
Name ($CRELOG)

Delete Logical
Name ($DELLOG)

Translate Logical
Name ($TRNLOG)

Place logical name/equivalence
name pair in process logical name
table.

Place logical name/equivalence
name pair in group logical name
table.

Place logical name/equivalence
name pair in system logical name
table.

Remove logical name/equivalence
name pair from process logical name
table.

Remove logical name/equivalence
name pair from group logical name
table.

Remove logical name/equivalence
name pair from system logical name
table.

Search logical name table for a speci
fied logical name and return its equi
valence name when the first match is
found.

6-7

Table 6-1 (con 't)
System Services

EVENT FLAG PROCESSING AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES

Associate Common
Event Flag Cluster
($ASCEFC)

Disassociate Com
mon Event Flag
Cluster ($DACEFC)

Delete Common
Event Flag Cluster
($DLCEFC)

Set Event Flag
($SETEF)

Clear Event Flag
($CLREF)

Read Event Flags
($READEF)

Wait for Single
Event Flag
($WAITFR)

Wait for Logical OR
of Event Flags
($WFLOR)

Wait for Logical
AND of Event Flags
($WFLAND)

Create a temporary common event
flag cluster.

Create a permanent common event
flag cluster.

Create a common event flag cluster in
memory shared by multiple proces
sors.

Establish association with an existing
common event flag cluster.

Cancel association with a common
event flag cluster .

Mark a permanent common event flag
cluster for deletion.

Turn on an event flag in a process
local event flag cluster.

Turn on an event flag in a common
event flag cluster.

Turn off an event flag in a process
local event flag cluster.

Turn off an event flag in a common
event flag cluster.

Return the status of all event flags in a
process-local event flag cluster.

Return the status of all event flags in a
common event flag cluster.

Place the current process in a wait
state pending the setting of an event
flag in a process-local event flag
cluster.

Place the current process in a wait
state pending the setting of an event
flag in a common event flag cluster .

Place the current process in wait state
pending the setting of any one of a
specified set of flags in a process
local event flag cluster .

Place the current process in a wait
state pending the setting of any one of
a specified set of flags in a common
event flag cluster .

Place the current process in a wait
state pending the setting of all speci
fied flags in a process-local event flag
cluster.

Place the current process in a wait
state pending the setting of all speci
fied flags in a common event flag
cluster .

6-8

Set Power Recovery
AST ($SETPRA)

Set AST Enable
($SET AST)

Declare AST
($DCLAST)

Establish AST routine to receive con
trol following power recovery condi
tion .

Enable or disable the delivery of
AS Ts.

Queue an AST for delivery.

CONDITION HANDLING SERVICES

Set Exception Vec
tor ($SETEXV)

Set System Service
Failure Exception
Mode ($SETSFM)

Unwind from Condi
tion Handler Frame
($UNWIND)

Declare Change
Mode or Compati
bility Mode Handler
($DCLCMH)

Define condition handler to receive
control in case of hardware- or soft
ware-detected exception conditions.

Request or disable generation of a
software exception condition when a
system service call returns an error or
severe error.

Delete a specified number of call
frames from the call stack following a
nonrecoverable exception condition.

Designate a routine to receive control
when change mode to user instruc
tions are encountered .

Designate a routine to receive control
when change mode to supervisor in
structions are encountered .

Designate a routine to receive control
when compatibility mode exceptions
occur.

PROCESS CONTROL SERVICES

Create Process
($CREPRC)

Set Process Name
($SETPRN)

Get Job/Process
Information
($GETJPI)

Delete Process
($DELPRC)

Hibernate ($HISER)

Schedule Wakeup
($SCHDWK)

Create a subprocess.

Create a detached process.

Establish a text string to be used to
identify the current process.

Return information about the current
process.

Return information about the current
process context of other processes in
the same group.

Return information about any other
process in the system.

Delete the current process, or a sub
process.

Delete another process in the same
group.

Delete any process in the system .

Make the current process dormant
but able to receive ASTs until a sub
sequent wakeup request.

Wake a process after a specified time
interval or at a specific time.

Cancel Wakeup
($CA NW AK)

Wake ($WAKE)

Suspend Process
($SUSPND)

Resume Process
($RESUME)

Exit ($EXIT)

Force Exit
($FORCEX)

Declare Exit
Handler ($DCLEXH)

Cancel Exit Handler
($CANEXH)

Set Priority
($SETPRI)

Set Resource Wait
Mode ($SETRWM)

Set Privileges
($SETPRV)

Table 6-1 (con't)
System Services

Cancel a scheduled wakeup request.

Restore executability of the current
process or a hibernating subprocess.

Restore executability of a hibernating
process in the same group.

Restore executability of any hibernat
ing process in the system .

Make the current process or a sub
process nonexecutable and unable to
receive ASTs until a subsequent re
sume or delete request.

Make another process in the same
group nonexecutable and unable to
receive ASTs until a subsequent re
sume or delete request.

Make any process in the system non
executable and non interruptible
until a subsequent resume or delete
request.

Restore executability of a suspended
subprocess.

Restore executabil ity of a suspended
process in the same group.

Restore executability of any suspend
ed process in the system.

Terminate execution of an image and
returns to command interpreter.

Cause image exit for the current proc
ess or a subprocess.

Cause image exit for a process in the
same group.

Cause image exit for any process in
the system.

Designate a routine to receive control
when an image exits.

Cancel a previously established exit
handling routine.

Change the execution priority for the
current process or a subprocess.

Change the execution priority for a
process in the same group.

Change the execution priority for any
process in the system.

Request wait, or that control be re
turned immediately, when a system
service call cannot be executed be
cause a system resource is not avail
able.

Allow a process to enable or disable
specified user privileges.

TIMER AND TIME CONVERSION SERVICES

GetTime
($GETTIM)

Convert Binary
Time to Numeric
Time ($NUMTIM)

Convert Binary
Time to ASCII String
($ASCTIM)

Convert ASCII
String to Binary
Time ($BINTIM)

Set Timer
($SETI MR)

Cancel Timer Re
quest ($CANTIM)

Schedule Wakeup
($SCHDWK)

Cancel Wakeup
($CANWAK)

Set System Time
($SETIME)

Return the date and time in system
format.

Convert a date and time from system
format to numeric integer values.

Convert a date and time from system
format to an ASCII string.

Convert a date and time in an ASCII
string to the system date and time for
mat.

Request setting of an event flag or
queuing of an AST, based on an ab
solute or delta time value.

Cancel previously issued timer re
quests.

Schedule a wakeup for the current
process or a hibernating subprocess.

Schedule a wakeup for a hibernating
process in the same group.

Schedule a wakeup for any hibernat
ing process in the system.

Cancel a scheduled wakeup request
for the current process or a hibernat
ing subprocess.

Cancel a scheduled wakeup request
for a hibernating process in the same
group.

Cancel a scheduled wakeup request
for any hibernating process in the
system .

Set or recalibrate the current system
time.

MEMORY MANAGEMENT SERVICES

Adjust Working Set
Limit ($ADJWSL)

Expand
Program/Control
Region
($EXPREG)

Contract
Program/Control
Region
($CNTREG)

Create Virtual
Address Space
($CRETVA)

Delete Virtual
Address Space
($DEL TVA)

6-9

Change maximum number of pages
that the current process can have in
its working set.

Add pages at the end of the program
or control region.

Delete pages from the end of the pro
gram or control region .

Add pages to the virtual address
space available to an image.

Make a range of virtual addresses
unavailable to an image.

Table 6-1 (con't)
System Services

Create and Map
Section ($CRMPSC)

Identify a disk file as a private section
and establish correspondence
between virtual blocks in the file and
the process' virtual address space.

Identify a disk file containing share
able code or data as a temporary glo
bal section and establish correspon
dence between virtual blocks in the
file and the process' virtual address
space.

Identify a disk file containing share
able code or data as a permanent glo
bal section and establish correspon
dence between virtual blocks in the
file and the process' virtual address
space.

Update Section File
on Disk ($UPDSEC)

Map Global Section
($MGBLSC)

1/0 System Services

Identify a disk file containing share
able code or data as a system global
section and establish correspon
dence between virtual blocks in the
file and the process' virtual address
space.

Identify one or more page frames in
physical memory as a private or glo
bal section and establish correspon
dence between the page frames and
the process' virtual address space.

Write modified pages of a private or
global section into the section file.

Establish correspondence between a
global section and a process' virtual
address space.

The operating system provides the programmer with two
request interfaces for performing input/output operations:
the 1/0 system services and the record management ser
vices. Record management services, discussed in the Da
ta Management Facilities section, provides a general pur
pose file and record programming interface that satisfies
most 1/0 processing needs, and allows the programmer to
implement 1/0 processing quickly. The 1/0 system ser
vices provide the programmer with direct control over the
1/0 processing resources of the operating system. In
particular, the 1/0 system services enable the programmer
to:

• perform both device-independent and device-depen
dent 1/0 processing

• read and write blocks on mass storage media using
physical (device-oriented), logical (volume-relative), or
virtual (file-relative) addressing

The 1/0 system recognizes several types of devices, and
within the extents of their capabilities, all devices are pro-

6-10

Delete Global Sec
tion ($DGBLSC)

Set Protection on
Pages ($SETPRT)

Lock Pages in
Working Set
($LKWSET)

Unlock Pages from
Working Set
($ULWSET)

Purge Working Set
($PURGWS)

Lock Page in Mem
ory ($LCKPAG)

Unlock Page in
Memory
($ULKPAG)

Set Process Swap
Mode ($SETSWM)

Mark a permanent global section for
deletion .

Mark a system global section for
deletion.

Control access to a range of virtual
addresses.

Specify that particular page cannot be
paged out of the process' working set.

Allow previously locked pages to be
paged out of the working set.

Remove all pages within a specified
range from the current working set.

Specify that particular pages may not
be swapped out of memory.

Allow previously locked pages to be
swapped out of memory.

Control whether or not the current
process can be swapped out of the
balance set.

CHANGE MOOE SERVICES

Change Mode to Ex
ecutive ($CM EXEC)

Change Mode to
Kernel ($CMKRNL)

Adjust Outer Mode
Stack Pointer
($ADJSTK)

Execute a specified routine in execu
tive mode.

Execute a specified routine in kernel
mode.

Modify the current stack pointer for a
less privileged access mode.

grammed in the same manner. All devices can be sequen
tially accessed, including mass storage devices such as
disks and magnetic tapes, and record-oriented devices,
such as terminals, card readers and line printers. In addi
tion, disk volumes can be accessed randomly.

Mass storage volumes can be either file-structured or non
file-structured, according to the choice of the user. The 1/0
system services enable programmers to use either the
physical (device assigned) address or a logical (driver as
signed) address for directly addressing blocks on foreign
mass storage vo lumes. A foreign volume can be either
non-file-structured, or structured with the user's own file
structure. If the volume is structured using the operating
system's Files-11 disk file or ANSI magnetic tape struc
ture, the 1/0 system services enable the programmer to
address blocks directly using virtual (file system assigned)
addresses.

A special type of record-oriented device is the mailbox,
which is a virtual device that a process creates for the re
ceipt of messages from other processes. Mailboxes are

treated like any other record-oriented device: they can be
read from and written to using either the 1/0 system ser
vices or record management services. Mailboxes are dis
cussed further in the section on Interprocess Communica
tion .

Before a process requests 1/0 to a device, it obtains a
channel assignment from the operating system. A process
can use a device name or a logical name in a channel as
signment request to identify the device for which the chan
nel is desired .

A device name is a unique name assigned by the operating
system to a particular physical device. The name identifies
the type of device and its controller and line or unit num
ber, as applicable. For example, DMA3: is the operating
system's device name for the RK06 disk drive unit 3 on
controller A, and TT A 12: is the operating system 's name
for the terminal on line 12 on multiplexer A.

A logical device name is any string of characters a user or
program assigns to a device name assigned by the operat
ing system. The Create Logical Name system service not
only enables a process to define logical names for device
names, but it enables a process to assign logical names to
any portion of a file specification, or to other logical
names. Furthermore, logical names can be assigned on a
per-process, per-group, or system-wide basis. (For more
information on logical names, refer to the Data Manage
ment Facilities Section .)

Once a channel is obtained, a process can issue 1/0 re
quests on that channel. The Queue 1/0 Request system
service is a general 1/0 request interface. All 1/0 using sys
tem services is asynchronous: both 1/0 and computation
can be taking place simultaneously. An 1/0 request is sim
ply queued to the device driver and control is normally re
turned to the requesting process before the 1/0 operation
is complete.

The process is responsible for synchronizing with 1/0
completion. The process can simulate synchronous 1/0
processing by using the Queue 1/0 Request and Wait sys
tem service, or it can continue to execute during the 1/0
operation and request 1/0 completion notification using
the general purpose event flag or asynchronous system
trap notification mechanisms.

Real-time interface extensions (connect-to-interrupt and
map-to-1 / 0 page) provide the real-time programmer
(MACRO and BLISS-32) a technique of more simply inter
facing to user-specialized devices. The connect-to-inter
rupt facility can be used to cause an interrupt to be deliv
ered directly to the user's program. As a consequence of
this approach , response to the interrupt occurs in the
shortest time possible without writing an 1/0 driver.

The map-to-1/0 page is a complement to the connect-to
interrupt facility by allowing the user program to access
the device registers. Before these extensions were avail
able, the user had to write both a device driver and an ap
plication program to achieve the same results.

Local Event Flags
An event flag is a status bit used for posting an event, such
as 1/0 completion or elapsed time interval. Event flags are
an extremely efficient means of starting up or synchroniz
ing procedures.

6-11

Each process has available for its own use two local event
flag clusters, each of which contains 32 event flags. Eight
flags in the first cluster are reserved by the operating sys
tem. A process can set, clear, and read individual event
flags, as well as wait for one or more event flags to be set.
The advantage to having two clusters of event flags is that
the flags in each cluster can be treated as a related group.
A process can wait until any of a specified set of flags in a
particular cluster is set, or wait until all of a specified set of
flags in a particular cluster are set.

Aside from their use with 1/0 processing and timer sche
duling , a process can assign its own meanings to local
event flags . Event flags can be used to coordinate several
asynchronous events, such as multiple 1/0 request com
pletions, or to simplify asynchronous processing. For ex
ample, a program may wish to know if a terminal user has
typed a CTRL/C (indicating the desire to interrupt execu
tion) only at well-defined points during processing . An
asynchronous system trap routine can set an event flag to
indicate that a CTRL/C has been received .

Asynchronous System Traps
An asynchronous system trap (AST) is a software-simulat
ed interrupt used for event notification within a process.
An asynchronous system trap routine is a procedure that
handles an AST. AST routines provide an efficient means
for processing events that can occur at any time during
processing (such as terminal input) because they elimi
nate the need for poll ing.

For example , a program can specify AST routines for 1/0
request processing , timer scheduling , and power recov
ery. When the 1/0 operation completes, time interval ex
pires, or power is restored, the operating system declares
an AST. When the AST is delivered, the operating system
interrupts the process and executes the AST routine. A
process can be hibernating and still receive ASTs de
clared for it.

Code executing at one processor access mode can de
clare an AST for code executing at the same or a less privi
leged access mode. The operating system automatically
disables AST delivery while an AST routine is executing,
and code executing at a given access mode can explicitly
disable AST delivery. While ASTs are disabled, the operat
ing system queues any ASTs waiting to be delivered to that
access mode in the order in which they were declared.
When AST delivery is again enabled for that acess mode,
the ASTs are delivered in the order in which they were
queued.

Exception Conditions and Condition Handlers
A program may request the processor or a system service
to do operations they cannot perform correctly. For exam
ple, a program might inadvertently issue a divide instruc
tion using a divisor of zero. Normally there is no way to re
cover and the program cannot continue. In this system,
however, it is possible for a program to continue if it de
clares a condition handler that can correct the situation. If
a user program declares a condition handler, control
transfers to the condition handler when an exception con
dition occurs.

This system treats all errors or special events that occur
synchronously with respect to a program's execution as

exception conditions, and provides a general purpose
mechanism for dispatching condition handlers. Exception
conditions include:

• errors from which the processor cannot normally recov
er, such as the divide by zero arithmetic trap

• special conditions for which a program does not wish to
test continually , for example, the floating point overflow
arithmetic trap or unsuccessful system service comple
tion

Some of the exceptions detected by the processor are
handled automatically by the operating system. For exam
ple, the pager is a condition handler for translation-buffer
not-valid faults.

In addition to processor and system service detected ex
ception conditions, any software procedure can define
cases for which it will fail or produce an exception by call
ing a system library procedure that signals an exception
cond ition . The search sequence for a condition handler is
independent of the nature of the exception condition : the
search sequence is the same whether an exception condi
tion is detected by hardware or software.

A process can declare two kinds of condition handlers:
those that are process-wide and those that are applicable
to individual procedures. Process-wide condition handlers
are declared using the Set Exception Vector system ser
vice, which enables a process to declare a primary and a
secondary condition handler. Condition handlers applica
ble to individual procedures are declared by the pro
cedure when it is called using one instruction.

When an exception condition occurs, the exception dis
patcher does not differentiate between exception
conditions, it simply transfers control to the first condition
handler it can find that wants to handle the exception con
dition . This method for handling exception conditions is an
efficient means of transferring control to the appropriate
condition handler rapidly, since condition handling is de
fined by the module or modules in which an exception
condition may occur.

For programs written in high-level languages, each lan
guage may have different definitions of what is and what is
not an exception condition . As the user program calls lan
guage functions , the exception conditions for those func
tions can be handled locally with the procedure. And
where exception conditions should be handled on a proc
ess-wide basis, the primary and secondary exception vec
tors provide a top level exception condition trap. For ex
ample, when a user program is linked with the debugger,
the debugger uses the primary exception vector to declare
a process-wide condition handler.

INTERPROCESS COMMUNICATION AND CONTROL
This system supports both simple and complex job defi
nitions. A simple job is a detached process created by the
operating system on behalf of the user who logs in at a ter
minal, or for the purpose of executing a batch job . A sim
ple job serially executes images, but it does not create
subprocesses.

A complex job is one in which a detached process creates
subprocesses in which designated images execute. These
subprocesses can also create their own subprocesses,

6-12

and so on. The advantage of a complex job over a simple
job is that a complex job performs parallel processing op
erations because it has control over several images exe
cuting concurrently .

The following sections describe the services that enable a
process to control and communicate with other processes.

Process Control Services
The system services provide process control by enabl ing a
process to :

• create and delete subprocesses

• hibernate, then reactivate, a process via the Hiber-
nate/ Wake and Suspend/Resume system services

The ability to create subprocesses is granted to a user by
the system manager, where the number of subprocesses a
job can create is a resource limit. When a process creates
a subprocess, it can give the subprocess all or some of its
privileges, and its resource quotas and limits are shared
with the subprocess . Other resource quotas are shared
between the creator and the subprocess.

The Hibernate/Wake and Suspend/Resume mechanisms
are methods of process control which are especially effi
cient in real-time applications. They allow the user to pre
pare an image for execution and then place it into a wait
state until some event occurs which requires its activation .

The Hibernate system service provides the greatest flexi
bility in sequencing processes for execution . When a Hi
bernate system service is invoked, normal execution can
be resumed only by issuance of a $WAKE system service
(or a variant , $SCHDWK, which allows wake-up at an
absolute time or at a fixed time interval). However, a hiber
nating process can be interrupted temporarily by the deliv
ery of an AST (Asynchronous System Trap) . When the AST
service routine completes execution , the process contin
ues hibernation. If, however, the process calls the $WAKE
system service during execution of the AST service rou
tine, the process wakes itself after the service routine
completes. Figure 6-3 shows an example of a program
which uses the hibernate and wake system services.

Using the $SUSPEND system service, a process can place
itself or another process into a wait state similar to hiber
nation . However, a suspended process cannot be as easily
activated as a hibernating one. It cannot, for example, be
interrupted by delivery of an AST. Nor can it wake itself,
but can only resume normal execution following issuance
of a $RESUME system service by another process. Table
6-1 summarizes the differences between hibernation and
suspension.

The interprocess system services can be used by a proc
ess to control another process executing in the same
group. While only an owner process can create and delete
subprocesses, a process can be given the privilege to sus
pend , resume, and wake other processes in its group.

Jobs with sufficient privilege can also create detached
processes, and delete, suspend, resume, or wake any
process in the system. These privileges are normally re
served for the operating system or the system manager.

Interprocess Communication Facilities
In addition to providing process control services, the oper-

Process: GEMINI

ORION: .ASCID 'ORION'
FASTCOMP: .ASCID 'COMPUTE.EXE'

;SUBPROCESS NAME
;IMAGE

$CREPRG_SPRCNAM =ORION ,
IMAGE = FASTCOMP ;CREATE ORION - HE'LL

;SLEEP
BLBC RO , ERROR

3 $WAKE_S PRCNAM =ORION
BLBC RO, ERROR

$WAKE_S PRCNAM =ORION
BLBC RO, ERROR

Process: ORION

FASTCOMP:
2 .WORD 0
10$ $HIBER_S

BLBC RO, ERROR

BAB 10$

Notes:

;BRANCH IF SERVICE ERROR
;CONTINUE

;WAKE ORION
;BRANCH IF SERVICE ERROR

;WAKE ORION AGAIN
;BRANCH IF SERVICE ERROR

;ENTRY MASK
;SLEEP 'TIL GEMINI WAKES
;ME
;BRANCH IF SERVICE ERROR
;PERFORM ...

;BACK TO SLEEP

1. Process GEMINI creates the process ORION , specifying the image name FASTCOMP.

2. The image FASTCOMP is initialized , and ORION issues the $HISER system service.

3. At an appropriate time, GEMINI issues a $WAKE request for ORION. ORION continues execut ion following the $HISER service call.
When it finishes its job, it loops back to repeat the $HISER call and to wait for another wake.

Figure 6-3

Program Using Hibernate/Wake System Services

ating system provides process communication facilities for
synchronizing execution, for sending messages, and for
sharing common data. The three techniques that cooper
ating processes can use to communicate are:

• common event flags

• mailboxes

• shared areas of memory

Common event flags are available by group association to
processes with in jobs. Mailboxes and shared areas of
memory are more general purpose fac ilities which can be
limited or unlim ited in scope. They can be limited to a spe
cific member family within a group or to a specific group of
jobs, or they can be extended to all jobs in the system.

Common Event Flags
In addition to the local event flags available to each proc
ess, cooperating processes can communicate using com
mon event flags . Every group in the system can define any

6-13

number of common event flag clusters. Each cluster con
tains 32 flags . The flags can be assigned any meaning for
the processes in the group.

Each process in a group can associate with up to two of its
group's common event flag clusters at one time. A process
can read , set , clear, or wait for common event flags to be
set. The ability to read, set, or clear event flags is
controlled by the protection code and User Identification
Code assigned to the common event flag cluster.

Common event flag clusters can also be used by cooperat
ing processes on different processors in a multi port mem
ory configuration.

Mailboxes
A mailbox is a record-oriented virtual 1/0 device created
by a process . Mailboxes can be used to pass status infor
mation , return codes, messages, or any other data from
one process to another. A process can protect its mailbox
es from read and/or write access by any process outside

its member family or outside its group. Mailboxes can also
be used by processes to communicate with other
processes on different processors in a multiport memory
configuration.

All of the 1/0 system services and record management
services can be applied to mailboxes. Other processes
write messages to a process' mailbox by queuing write re
quests for the device. A process reads messages in its
mailbox by queuing read requests for the device. A proc
ess can request AST notification when anything is written
to its mailboxes, and it can assign mailboxes logical
names.

Shared Areas of Memory
The system supports a high degree of code and data shar
ing through the use of global sections. A global section is a
copy of all or a portion of an image or data file that can be
mapped in a process virtual address space at run time.
Global sections can be used for shared data structures, as
communication regions for cooperating processes, or they
can be used simply to eliminate multiple copies of image
code or data.

Global sections can be created dynamically by a process
or they can be permanently present in the system . Dy
namically created global sections are mapped into proc
esses that reference them, and deleted when no more
references are made to them. Permanent global sections
are created by a sufficiently privileged process, and re
main until they are explicitly deleted. They are loaded into
and removed from memory dynamically as references are
made to them.

Each process that maps a global section into its virtual ad
dress space can have a different access privilege to a glo
bal section . When a global section is created, it is assigned
a User Identification Code (UIC) identifying the group and
member family to which the global section belongs, and a
protection code identifying the read and write access
privileges of processes in the system. Global sections can
be shared by all processes in the system, or shared only
by processes within a particular group, or shared only by
processes within a particular job. One or more controlling
processes can have write privileges while other processes
in the system, group, or job have only read privileges.

A process can map to a global section explicitly by issuing
a Map Global Section system service, or it can be mapped
implicitly by referring to a shareable image. If an image
references a shareable image, the linker does not normally
include the shareable image in the image. The shareable
image is installed as a global section or set of global sec
tions. When the image is executed , the image activator
calls the Map Global Section system service on behalf of
the image. For example, the Common Run Time Pro
cedure Library is a shareable image consisting of library
procedures that is mapped as a system-wide permanent
global section. The use of permanent global sections sig
nificantly reduces the size of programs using common li
brary procedures and the overall system memory require
ments.

Interprocessor Communication Facility
VAX/VMS support for the multiport memory subsystem
means that both user data and subroutines may reside in

6-14

shared memory for access from multiple processors con
nected to the multiport memory. All three of the interpro
cess communication facilities, i.e., common event flags ,
mailboxes, and global sections, may reside in multiport
memory, thus providing interprocessor communication fa
cilities. Through the use of logical names, common event
flags, mailboxes, and global sections may be placed either
in local or multiport memory, transparently to the pro
gram. Common event flags, mailboxes, and global sec
tions are the communication facilities permitted in mult i
port memory configurations.

MEMORY MANAGEMENT
In a multiprogramming system, many processes coexist
simultaneously in main memory. The system switches
between these processes, giving each some time to exe
cute . In most multiprogramming environments, however,
the number, size , and kind of concurrently executing
processes change rapidly, while the amount of memory
available for processes remains constant. Users log on
and off the system, production activities vary periodically ,
and special production jobs occur. Since it is generally
inefficient to have available the maximum amount of mem
ory that might ever be needed at one time, it becomes the
task of the operating system to provide a dynamic memory
that responds to the changing multiprogramming environ
ment.

VAX/VMS uses two interdependent complementary tech
niques to allocate limited memory to competing proc
esses: paging and swapping . These techniques relieve the
general programmer of concern for memory allocation
while still allowing system programmers to optimize pro
gram performance in limited configurations. This section
and the following section on scheduling discuss how this
system's paging and swapping techniques extend limited
memory resources with minimum effect on the system or
programs when the system has sufficient memory to hold
all concurrently executing processes.

Mapping Processes into Memory
The operating system's memory management software is
responsible for creating and maintaining the information
used to map the virtual addresses used in a program to
physical memory addresses. The unit mapped is the page,
which is a block of 512 contiguous byte locations in physi
cal memory.

Virtual addresses are also grouped into 512-byte pages,
and each page of virtual addresses can be mapped to a
page of real memory locations. Any number of virtual
pages can be mapped to one physical page. Unlike sys
tems that partition or statically allocate portions of physical
memory, this system dynamically allocates physical mem
ory, with the result that pages of a process may be scat
tered anywhere throughout memory. It is never the con
cern of the programmer to determine how physica l
memory is allocated. To illustrate this, Figure 6-4 shows
how two processes might be mapped into physical mem
ory.

When a process is created, the operating system sets up
its mapping information, called page tables. Each process
has its own page tables mapped by system region virtual

Process A

Worki ng Set

Pages

1 I
2 I
3 I
4 I
7 .I
9 I
32 I
s I
6 I
c~
I s1 I
I 37 I
L 43 I
I 44 I

I

Process 8

Work ing Set

Pages

20 I
I 21 I
I 1 I
I 2 I
I 3 I
I 30 I
I 31 I
I 11 I

12 I
19 I
14 I
15 I
16 I

I 17 I

';y

,..{/

Physical Memory

Pages

81

82

83

A7

A51

A37

A2 and 81 5

830

A39

A4 and 8 17

A1and814

A3 and816

A43

A44

820

81 2

819

A32

A42

AS

822

811

831

Figure 6-4

'"l'-

\Glob"
Section

1""''"

0-

Mapping Processes into Memory

addresses. (Refer to the Processor section on memory
management for a complete description .) Initially, a proc
ess page table simply maps those pages of the control re
gion that define the permanent process context.

When a program is linked , the addresses the linker as
signs in the image are always virtual addresses. The linker
has no knowledge of how physical memory is allocated . Its
primary function is to build descriptions of the size and
protection requirements of the program 's code and data
areas.

When an image is executed , the memory management

6-15

software uses the linker's descriptions of code and data
areas to map image virtual pages to physical pages. The
operating system 's image activator builds the image's
mapping information in the process' page tables.

Process Virtual Memory and Working Set
The total virtual memory requirement of a process is called
process virtual memory. Process virtual memory consists
of all the pages of the process program region and control
region which are mapped by the process page tables.

At any one time, some of the pages of process virtual
memory may be mapped to disk and some to physical
memory. The physical memory requirement of a process
is the process working set. When a process is executing,
a process working set consists of all the pages of a proc
ess ' virtual memory residing in physical memory that the
process can directly access without incurring a page fault,
plus any actively used portions of the process page tables
and process header information .

The working set is a dynamic characteristic of a process
that has both minimum and maximum size limits. The sys
tem designates a required minimum number of pages that
has to be in a process working set, and the system manag
er defines the maximum number of pages allowed in any
one job's working set in the user authorization file . The size
of a process working set affects its paging and swapping
performance, as well as affecting the number of process
working sets that can be resident when the process work
ing set is resident.

A process may increase or decrease its working set, within
the authorized limits, through the use of command
language commands or system service calls .

Under version 2.0 of VAX/VMS, working set size adjust
ments are made automatically by the operating system.
This facility, when enabled by the system manager, moni
tors the page fault rate of a process and automatically in
creases or decreases the working set (again within author
ized limits) to optimize performance and memory usage.
This automatic adjustment provides a more immediate re
sponse in system reaction/performance.

Paging
Through its paging technique, the operating system can
execute programs that are too large to fit in the amount of
physical memory allocated to a process, without requiring
the programmer to define overlays. Inactive portions of a
program are automatically stored on disk while the active
portions are resident in memory. When the program refer
ences a disk-resident portion of the program, the operat
ing system reads in , or pages in, the referenced portion,
moving out other portions of the program to disk if neces
sary. This system's paging technique has several features
that distinguish it from other techniques:

• clustering, or the ability to read in several pages at one
time

• paging processes against themselves, not against the
entire system

• maintaining an available page pool from which proc
esses can recover recently discarded pages without in
curring disk 1/0

• writing back to disk only the modified pages that are re
leased from a process working set and only writing them
when several have accumulated

• activating a process waiting for page fault 1/0 to execute
AST routines when they are delivered

When the operating system activates an image for the first
time, a number of pages are read into memory from the
image file on disk. The number of pages read in the first
time can be controlled by a cluster factor the programmer
can assign optionally per image. The ability to read in sev
eral pages at once allows the image to execute for some
time without incurring page faults, and provides
significantly improved responsiveness in starting pro
grams.

A process is subsequently paged only when it executes an
image that needs more pages than the process is allowed
to have in its working set. If the number of pages in the im
age plus the number of pages for the remainder of the
process is less than the working set size limit, all the pages
are read in and the process is never paged.

7FFEFEOO Pointers

7FFEECOO Kernel

7FFEEAOO Stack

7FFEE800

8008BOOO Process

8008B200 Header

8008B400

7FFE8AOO Command Interpreter Code

7FFE8600

8008F200 Control Re ion Pa e Table

7FFE8400 Command Interpreter Code

7FFE8200

7FFEFCOO Supervisor Stack

7FFEF800

7FFE9200 Command Interpreter Code

8008B600 Program Region Page Table

7FFE7800 Command Interpreter Data

7FFE9400 Command Interpreter Code

7FFEE400 Image Header Buffer

7FFE4600 Process 1/ 0 Segment

7FFE6800 Process Logical Name Table

7FFEFOOO Executive Stack

7FFE4800 Process 1/ 0

7FFE4EOO Segment

7FFE5000

7FFEFAOO Supervisor Stack

7FFE3EOO 1/ 0 Channels
7FFE1COO User Stack
00001800

1
00001000

00001600

00001400

OOOOOEOO USER

00001AOO PROGRAM

00001200

00000600

00000200

00000400

ooooocoo

If all the pages are not read in initially, at some point the
image will reference the pages that have not been read in .
At that time, the process incurs a page fault, that is, a
reference to a page not mapped in the process working
set.

The operating system's pager is a condition handler that
executes when a process incurs a page fault. If the working
set size limit has not yet been reached, the pager reads in
the faulted page from disk, plus any additional pages,
again according to a cluster factor for that section of the
image.

If a page fault occurs when the working set size limit is
reached , the pager obtains a page from a pool of available
pages to read in the faulted page, and releases the least
recently faulted page from the process working set into the
pool and writes it to disk if it has been modified. Figure 6-5
illustrates two different size working sets for a process run
ning the same program in each case. The illustration
shows the order in which the pages were faulted. (Refer to
Figure 6-2 to see how the pages appear in virtual address
space.)

7FFEFEOO

7FFEECOO

7FFEEAOO

7FFEE800

8008BOOO

8008B200

8008B400

8008B600
8008F200

7FFEFCOO

7FFEF800

7FFE1COO

00001800

00001000

00001600

00001400

OOOOOEOO

00001AOO

00001200

7FFE3EOO
7FFEE400

00000600

00000800
7FFE4600

7FFE5000

Pointers

Kernel

Stack

Process

Header

Program Region Page Table

Control Region Page Table

Supervisor Stack

User Stack

t
USER

PROGRAM

1/ 0 Channels

Image Header Buffer
USER PROGRAM

Process 1/ 0 Segment

Figure 6-5

Process Working Sets

6-16

The pager pages a process only against itself. It does not
release pages of one process to satisfy another's needs.
This ensures that only those processes that need paging
are affected by paging . Other processes in the system
need not be affected by another process's memory re
quirements.

The list of available pages works as a cache of pages that
effectively extends a working set size above its limit when
few processes are competing for memory resources and
there are many pages in the list. If a process faults a page
that was released and is still in the list, the page does not
have to be read in from disk, it is simply taken from the list
and remapped into the working set.

When a page is released , it is placed on one of two lists:
the free page list or the modified page list. Modified pages
are pages the process has written into and , if they need to
be added to the free page list to be used by another proc
ess, must be saved on disk. Modified pages are only writ
ten to disk when the modified page list exceeds a thresh
old size or when an image's execution is terminated and
the files containing the modified pages must be closed .
When modified pages are written , they are writen in clus
ters to increase system performance.

Virtual Memory Programming
The processor provides the programmer with a large virtu
al address space and rapid address translation , and the
operating system provides the programmer with extremely
efficient mapping and paging algorithms. Furthermore,
these memory management mechanisms are totally trans
parent to the application programmer. It is not necessary
for a programmer to be concerned with address allocation
or page mapping: the high-level language compilers and
the linker take advantage of the memory management
mechanisms to set up the memory allocation optimal for
most programming requirements.

For those systems with limited memory or special process
ing requirements , however, this system enables users to
control and optimize memory management. The system
manager can control the memory allocation requirements
of the system as a whole by initialization parameters such
as desired and minimum acceptable number of available
pages, and of individual jobs by user authorization param
eters such as paging file usage limit and maximum work
ing set size. It is possible to have a process avoid paging
entirely by making its working set size equal to its virtual
memory requirements, or to reduce paging by choosing a
working set size that satisfies the average demand for
pages over time.

The programmer also has the ability to control memory al
location for images in two ways: through properly coded
programs and through the memory management system
services. This system's memory management software op
timizes for program locality. Programs that incur paging
infrequently are those in which the code and data used
during each stage of processing are contained in the few
est possible number of virtually contiguous pages.

For the most part, the linker allocates virtual addresses so
that images require the minimum mapping information
possible. The programmer can also ensure that images
that process large data structures require the least possi
ble mapping information and potential paging by organiz-

6-17

ing data structures as if they were disk-resident files. In
general , the programmer need not be concerned with data
structures such as tables and arrays whose elements are
virtually contiguous and sequentially processed.

Large data structures that are randomly accessed can,
however, be optimized . For example, processing down a
linked chain in which the chain elements are spaced far
apart with no useful data in between requires that an im
age reference a large number of pages in a short period of
time. If all of the pages cannot fit in the process working
set at the same time, the references to successive chain
elements will incur disk 1/0.

On the other hand, a large data structure can be efficiently
accessed using directory trees, where a page or set of
consecutive virtual pages contains all one kind of informa
tion. One page can contain all of the information that
points to randomly arranged, but virtually contiguous,
pages containing the data processed at that locality.

VAX/VMS Memory Management Services
For those who have special processing requirements,
there are system services that control memory manage
ment within the quotas and limits assigned by the system
manager. These memory management system services
enable a process to :

• modify the working set size limit

• add or delete pages from process virtual memory

• expand or contract the program region or control region

• lock pages in the working set

• lock pages in physical memory

A program can impose a limit on process working set size
anywhere between the minimum required by the system
and the maximum specified by the system manager. The
limit can be adjusted in accordance with program beha
vior and real-time requirements. By maintaining the small
est working set size consistent with an acceptable paging
rate, a program that temporarily requires a large working
set can reduce its impact on the system. For example, a
process control program or simulator might use a small
working set while processing interactive initialization com
mands. Once real-time processing is underway, the pro
gram can expand its process working set size to reduce
paging . When real-time processing is finished, the pro
gram can contract the working set.

A process can add selected pages to and delete selected
pages from its virtual memory dynamically. Deleting a
page is in effect saying that the image is no longer going to
use those virtual addresses, and the operating system
does not need to map them to pages in virtual memory.
Deleting read/write pages (such as those used for inter
process communication) as soon as they are no longer
used eliminates the need for the system to write them out
as modified pages to a paging file. When an image has
reached its paging file quota, it can delete pages in order
to map other pages in its virtual address space.

A process can request an extension to the amount of virtu
al memory allocated to its program region. The operating
system will map zero-filled pages into the process virtual
address space following the highest addressed page allo
cated for the program region. This service is useful for dy
namically creating data arrays whose size is not known be-

forehand , and it eliminates the need for allocating a data
area in a program image. A process can also extend the
initial allocation of pages for the user stack by requesting
th8 operating system to map zero-filled pages into process
virtual address space preceding the lowest addressed
page allocated for the control region. In Version 2.0 of
VAX/VMS, the system will automatically extend the stack if
the process references unmapped addresses in the con
trol region .

In unusual situations, a process can lock pages in its work
ing set. Locking a page in the working set is useful when a
process does not reference a particular page regularly ,
but the page needs to be in the working set to increase the
performance of the code in that page. For example, it
might be desirable to keep the page containing asynchro
nous system trap routines in a working set to ensure that
the routines are started up rapidly when an AST is deliv
ered . Note, however, that locking a page in the working set
causes other pages to be paged more frequently, since the
page will not be paged out, no matter how long it has been
in the working set. A page can be unlocked when it is no
longer necessary to keep it in the working set.

It is also possible to lock pages in memory. A page locked
in memory is not only locked in the working set, it is not
swapped out with the process. This service is useful for
real-time processes that need to keep buffers in memory
for 1/ 0 transfers.

PROCESS SCHEDULING
VAX/VMS features event-driven scheduling based on
process priority. Unlike traditional timeshared scheduling
systems, this system's ability to respond to events enables
it to dispatch real-time processes efficiently as well as to
share processing time among normal processes compet
ing for resources. Furthermore, priority assignment en
ables the user to bias processor time allocation based on
process activity, to bias the allocation absolutely forcer
tain processes, or to mix both allocation methods.

The operating system's scheduler and swapper are re
sponsible for ensuring that the processes executing in the
system receive processor time commensurate with their
priority, which is controlled by assignment, and with their
ability to execute, which is controlled by system events.

System Events and Process States
In VAX/VMS, dispatching a process for execution involves
little decision making. The selected process is always the
highest priority executable process. The real scheduling
decisions are made as the result of system events that
make processes executable.

A system event is an event that affects the ability of a proc
ess in the system to execute. System events include events
external to the process currently executing , such as 1/0
completion or timer interrupt. System events also include
events internal to the process currently executing . The
process may issue a wait request or a hibernate request,
or it may request or release a system resource, for exam
ple, a page of memory.

Every active process in the system is listed in one of sever
al state queues that identifies whether or not a process is
executable, and if not, the event or resource for which the

6-18

process is waiting . Whenever a system event occurs, the
scheduler adjusts the process state queues accordingly .
For example, the scheduler adds a process to the executa
ble state queue when a resource for which it is waiting be
comes available , or removes it when it requests an event
or resource for which it must wait.

The executable state queue supplies the scheduler with a
list of processes that are eligible to execute. Priority deter
mines which process among those eligible executes. Re
scheduling occurs when a system event makes executable
a process with higher priority than the one current ly
executing .

Unl ike timeshared scheduling, therefore, event-driven
scheduling is based on the activities of the processes
themselves, not on a time limit imposed by the scheduler.
Because scheduling intervals are determined by system
events , the interval between rescheduling is random.
Quantum keeping and requested timer events provide a
minimum level of event activity but, in practice, the aver
age interval between events is determined by the duration
of the typical 1/0 operation .

Priority: Real-Time and Normal Processes
The scheduler recognizes 32 scheduling priorities, where
priority 31 is high and 0 is low. Priorities 31-16 are for real
time processes, and priorities 15-0 are for normal proc
esses. When a process is created, the system assigns it a
scheduling priority. A program image that the process ex
ecutes can modify the process priority using a system ser
vice. The system manager grants jobs the privilege to
execute at real-time priorities.

The scheduler maintains a queue for each scheduling pri
ority. Processes having the same priority are listed in the
same queue. The priority assigned to a process when it is
created is its base priority. The scheduler does not alter
the priority of a real-time process during execution . The
scheduler may temporarily increase the priority of a nor
mal process during its execution, but its priority never
drops below its base priority.

Scheduling by strict priority for real-time processes and by
potentially modifying priority for normal processes allows
the scheduler to achieve maximum overlap of compute
and 1/0 activities while still remaining responsive to high
priority real-time applications.

Scheduling Real-Time Processes
When a system event occurs that makes a real-time proc
ess eligible to execute, it receives control of the processor
unless another higher priority process is currently execut
ing . A real-time process retains control of the processor
until it finishes execution, enters a wait state, or is pre
empted by a higher priority process. (Note that under
VAX/VMS, real-time processes actually have a higher pri
ority than system processes, thus ensuring that real-t ime
processing will never be encumbered by system over
head.)

A higher priority real-time process can pre-empt any lower
priority process whenever a system event occurs that
makes it eligible to execute. For example, a device inter
rupt may occur that signals the completion of an 1/0 trans
fer requested by the higher priority real-time process.

When a real-time process is pre-empted to dispatch a

process of higher priority, the pre-empted process is
placed at the end of its priority queue. This rotates proc
esses within a priority , with the result that available proc
essor time is distributed among processes of the same pri
ority.

Scheduling Normal Processes
When no real-time processes are executing, the scheduler
distributes processor time among the processes on the
normal priority levels. As with real-time processes, the
scheduler selects the highest priority ready-to-execute
normal process. That process executes until it finishes ex
ecution, enters a wait state, or is pre-empted by a higher
priority process. Unlike real-time process scheduling ,
however, the scheduler modifies normal process priority
whenever a system event occurs for a normal process and
whenever a normal process is scheduled .

When a system event occurs that affects a normal process,
the scheduler increases the priority of the normal process
(but not to more than the maximum priority of 15) and
places the process at the tail of the queue for its new pri
ority. The amount of priority increment depends on the na
ture of the event. For example, the scheduler increases the
priority of a normal process on the following events:

• term inal input completed

• terminal output completed

• resource available

• wake, resume, delete request received

• nonterminal 1/0 completion, page fault completion, or
other event

In this case, the terminal 1/0 events receive the highest pri
ority increments to enable the system to be most respon
sive to the interactive terminal user. When the scheduler
increases a normal process's priority, that process gets
control of the processor if its new priority is higher than
that of the process currently executing.

Each time a normal process is scheduled , the scheduler
decreases its priority by one (unless it is already in its base
priority queue) and places it at the end of that priority
queue. The effect of dynamically increasing and decreas
ing normal process priority ensures maximum overlap of
computation and 1/0.

Swapping and the Balance Set
It is the job of the swapper to keep the scheduler supplied
with the highest priority executable processes in configu
rations that do not have a sufficient amount of physical
memory to keep all process working sets memory-resi
dent. The balance set is the set of all process working sets
that are currently in memory. The swapper ensures that
the balance set always contains the highest priority execu
table processes by moving low priority or nonexecutable
memory resident process working sets to a swap area on
disk , and moving high priority or executable process
working sets into memory.

Swapping is a very efficient way of extending limited mem
ory resources when many processes are executing con
currently. Process working sets for small processes (less
than 64K bytes or 128 pages) can be swapped in and out
of memory in one disk 1/0 operation . Where paging ex
tends limited memory resources on a per-process basis

6-19

and is limited to moving few pages in and out of memory,
swapping balances the memory requirements of the sys
tem as a whole.

The swapper is activated whenever a system event occurs
that can make a nonresident process resident, a nonresi
dent process executable, or a resident process non
executable. For example, a resident process might release
sufficient memory to enable the swapper to move in a non
resident process. An 1/0 completion event might make a
nonresident process executable. A resident process might
enter a wait state and become nonexecutable. In any case,
the swapper uses three conditions to determine which
processes should be swapped in and which should be
swapped out:

• which processes are executable and which are not (and
the reason for the wait state)

• what the process priorities are

• whether a process balance set quantum has expired

The balance set quantum effectively enforces a swapping
rotation for compute-bound normal processes. Every nor
mal process is assigned a time quantum that provides a
guaranteed minimum amount of time in which the process
can perform useful work before it is eligible to be swapped
out of the balance set. A process can be pre-empted many
times before it has received its full quantum. It remains in
the balance set until it completes its first quantum unless a
real-time process that is swapped out becomes executa
ble and no other processes can be swapped out to make
room for the real-time process.

VAXNMS Process Control Services
In addition to the VAX/VMS system services that enable
processes to create, delete, suspend, resume, and wake
other processes , or to hibernate and wake themselves, a
process can control the manner in which it is scheduled
by:

• setting process swap mode

• setting resource wait mode

A suitably privileged process can request that it not be
swapped out of the balance set, even when it becomes in
active. This is useful for high priority real-time processes
that need to be activated rapidly when they become exe
cutable.

Normally, when a process requires dynamic resources of
the system and they are not available, the process enters a
wait state until the resources become available. Dynamic
resources primarily include the buffer space needed for
mailboxes, 1/0 requests, etc. A process can request to be
notified when resources are not available and take alterna
tive action instead of entering a wait state.

1/0 PROCESSING
The 1/0 processing system consists of several modular, in
terdependent components that enable programmers to
choose the programming interface and processing
method appropriate for their needs, without incurring run
time space or performance overhead for features not
used. In addition, the 1/0 request processing software
takes advantage of the hardware's ability to overlap 1/0
transfers with computation, switch contexts rapidly, and

generate interrupts on multiple priority levels to ensure the
maximum possible data throughput and interrupt re
sponse. Figure 6-6 presents an overview of the major 1/0
processing system components and their relationsh ips.

Programming Interfaces
The 1/ 0 programming tools are the record management
system, VAX-11 RMS, for general purpose file and record
processing , and the Queue 1/0 system services, for direct
1/0 processing . Table 6-2 summarizes the programming
interfaces.

RMS (refer to the Data Management Facilities Section)
provides device-independent access to file-structured 1/0
devices. The most general purpose type of access enables
programs to process logical records; RMS automatically
provides record blocking and unblocking .

RMS users can also choose to perform their own record
blocking on file-structured volumes such as disk and mag
netic tape, either to control buffer allocation or optimize
special record processing . Users performing their own
record blocking address blocks using a virtual block num
ber (which is the number of the block relative to the file be
ing processed) for volume-independent processing .

USER
PROGRAM

OR

OR

RMS OPEN, CLOSE
GET, PUT

RMS OPEN, CLOSE
and $010

$010

OPERATING SYSTEM

Procedures

RECORD MANAGEMENT
SERVICES

Physical Block
Device Relative

1/ 0 SYSTEM
SERVICES

The 1/ 0 system services provide both device- independent
and device-dependent programming . Users perform their
own record blocking on file-structured and non-file-struc
tured devices. Virtual block addressing is used on Files-11
disk or ANSI magnetic tape volumes. In add ition , users
with sufficient privilege can perform 1/ 0 operations using
either logical or physical block addressing for defining
their own file structures and accessing methods on disk
and magnetic tape volumes.

The 1/ 0 system services also provide device-dependent
programming of devices not supported by RMS, such as
real-time interfaces.

Ancillary Control Processes
Both RMS and the 1/0 system services use the same 1/ 0
control processes, called ancillary control processes
(ACPs) , for processing file-structured 1/ 0 requests . An
ACP provides file structuring and volume access control
for a particular type of device. Typical ACP functions
would include creating a directory entry or file, accessing
or deaccessing a file , modifying f ile attributes, and delet
ing a directory entry or file header. There are three kinds
of ACPs provided in the system : Files-11 disk, ANS I
magnetic tape, and network commun ications l ink .

I
-- - ~

file and
record

file
access

- -- --1
file-structured or
non-file-structured

--- --j

Processes

ANCILLARY
CONTROL
PROCESS

DRIVER
FORK
PROCESS

Disk .
Magtape, or
Networks

t!J7l7lA RMS provides
V//!i!JI record blocking / unblocking

0 user does own
record blocking and unblocking

Figure 6-6

User Interfaces to 1/0 Services

6-20

Table 6-2

1/0 Processing Interfaces

METHOD PROGRAM 1/0 COMPONENTS PURPOSE
INTERFACE

Record 1/0 RMS requests RMS, ACP and Use Files-11 disk or ANS
Driver magtape file structure, use RMS

record access methods

File 1/ 0 RMS OPEN and RMS for OPEN, Use Files-11 disk or ANS
$QIO requests ACP and Driver magtape file structure,

Device 1/0 $QIO requests Driver

The RMS and 1/0 system services programming interfaces
are the same regardless of the ACP involved, but since
ACPs are particular to a device type, they do not have to
be present in the system if the device is not present. There
is one network ACP process for all DECnet network com
munications links in the system, and none if the system is
not in a network.

Device Drivers
Once the ACP sets up the information for file-structured
1/0 requests, a request can be passed on to a device driv
er. All non-file-structured 1/0 requests are passed directly
to a device driver.

A VAX/VMS driver:

• defines the peripheral device for the rest of the
VAX/VMS operating system

• defines the driver for the operating system procedure
that maps and loads the driver and its device data base
into system virtual memory

• initializes the device (and/or its controller) at system
startup time and after a power failure

• translates software requests for 1/0 operations into de
vice-specific commands

• activates the device

• responds to hardware interrupts generated by the de-
vice

• reports device errors

• returns data and status from the device to software

Device drivers work in conjunction with the VAX/VMS op
erating system. The operating system performs all 1/0
processing that is unaffected by the particular specifica
tions of the target device (i.e., device-independent) proc
essing. When details of an 1/0 operation need to be trans
lated into terms recognizable by a specific type of device,
the operating system transfers control to a device driver
(i.e., device-dependent processing) . Since different peri
pheral devices expect different commands and setups,
each type of device on VAX/VMS requires its own support
ing driver.

The VAX/VMS operating system contains device drivers
for a number of standard DIGITAL-supported devices.

6-21

implement own record access
methods

Fast dumps to disk or magnetic
tape, foreign file structure

These include both MASSBUS and UNIBUS devices. In
addition , the user can write additional drivers for non-stan
dard UNIBUS devices.

1/0 Request Processing
All 1/0 requests are generated by a Queue 1/0 (QIO) Re
quest system service. If a program requests RMS pro
cedures, RMS issues the Queue 1/0 Request system ser
vice on the program's behalf. Queue 1/0 Request process
ing is extremely rapid because the system can:

• keep each device unit as busy as possible by minimizing
the code that must be executed to initiate requests and
post request completion

• keep each disk controller as busy as possible by
overlapping seeks with 1/0 transfers

The processor's many interrupt priority levels improve in
terrupt response because they enable the software to have
the minimum amount of code executing at high priority
levels by using low priority levels for code handling re
quest verification and completion notification. In addition,
device drivers take advantage of the processor's ability to
overlap execution with 1/0 by enabling processes to exe
cute between the initiation of a request and its completion.
User processes can queue requests to a driver at any time,
and the driver immediately initiates the next request in its
queue upon receiving an 1/0 completion interrupt.

All access validation and checking takes place before an
1/0 request is actually queued. For file-structured 1/0 re
quests, the Queue 1/0 Request system service obtains all
the virtual block mapping and volume access checking in
formation from the ACP or directly from tables created by
the ACP. For example, on virtual block 1/0 requests for
multivolume files, the system service obtains from the
ACP's tables the mapping information that enables it to
queue requests to different drivers when the user's 1/0 re
quest involves a transfer that spans volumes. The Queue
1/0 Request system service also checks the validity of the
function requested (read, write, rewind, etc.) for the partic
ular device. Because all access validation and function
checking is performed before the request is queued, the
driver has little to do to initiate a request.

Once the system service has verified the 1/0 request, it
raises the interrupt priority level to that of the driver. The
only activity it has to perform at this level is a test to see if
the driver is busy. If the driver is not busy, it calls the driv
er. Otherwise, it queues the request according to the pri
ority of the requesting process and immediately returns to
the user process.

When the driver is called, it initiates the request and re
turns to the user process. Because disk seeks do not re
quire the controller once they are initiated , if a disk driver
receives a seek request and the controller is currently
busy with an 1/0 transfer request on some other disk unit,
the driver queues the request so that the controller will ini
tiate the seek request before any pending 1/0 transfers
when it has finished the current transfer .

When the device subsequently generates its interrupt at
the hardware interrupt priority level , the interrupt dis
patcher calls the appropriate interrupt service routine. An
interrupt service routine simply saves the device con
trol / status registers , requests a software interrupt at the
driver's interrupt priority level , and returns to the interrupt
dispatcher which is then free to scan for unit attentions.
Because a disk controller cannot generate interrupts on
any unit performing a seek until the current transfer com
pletes, the interrupt dispatcher will also dispatch seek
completion when dispatching a disk 1/0 transfer comple
tion interrupt.

When the driver receives the completion interrupt, it pre
pares the 1/0 completion status for the requester , and re
quests a software interrupt. The driver is then free to proc
ess another request in its queue and , if the queue is not
empty, the driver begins again . All 1/0 completion notifica
tion takes place outside the driver , minimizing the
interrequest idle time. The 1/0 post routine notifies the
process of 1/0 completion and releases or unlocks buffers.

COMPATIBILITY MODE OPERATING ENVIRONMENT
The processor can execute user mode PDP-11 instruction
streams in the context of a process. The operating system
supplements this feature by substituting its functionally
equivalent system services for many of the RSX-11 Moper
ating system executive directives that user mode tasks
may call. This enables the system to execute such non-pri
vileged RSX-11 M task images as:

• the PDP-11 MACRO assembler

• the PDP-11 FORTRAN IV/VAX to RSX compiler

• the PDP-11 BASIC-PLUS-2/VAX compiler

• the RSX-11 M program development and file manage-
ment utilities, including the task builder, text editor , etc.

In addition, the operating system supports the RMS-11
and RMS-11 K record management services procedures
for compatibility mode programs. Program and data files
can therefore be transported between VAX and RSX sys
tems.

The operating system also supports the RSX-11 M Monitor
Console Routine (MCA) commands, either typed directly
on a terminal, or submitted as indirect command files.

User Programming Considerations
Any PDP-11 BASIC-PLUS-2/VAX, PDP-11 FORTRAN

6-22

IV IV AX to RSX, or PDP-11 MACRO program can be exe
cuted in compatibili ty mode, provided that it is first linked
by the RSX-11 M Version 3.2 task builder and that the re
sulting task image meets the following requirements:

• it must not execute PDP-11 privileged instructions

• it must have been built for a mapped system

• it must not depend on 32-word memory granularity

• it must not use the privileges that enable it to map into
the executive or 1/0 page

• it must not use the PLAS (program logical address
space) executive directives

• it must not rely on environmental features of RSX-11 M
that VAX/VMS does not support , e.g., partitioning or
significant events

• it must not use DECnet

The task can be privileged to issue directives other than
memory management directives-direct volume access
using the QIO request executive directive, for example.
IAS or RSX-11 D tasks that meet these requirements can
also be executed . They must first be built with the RSX-
11 M Version 3.2 task builder. For programs that do not
meet these requirements, VAX/VMS provides the pro
gram development utilities (for example, the MACRO as
sembler and the task builder) for modifying programs to
execute in compatibility mode.

For most RSX-11 M executive directives, the native mode
operating system executes a functionally equivalent sys
tem service. In most cases, the system service duplicates
the function . For example:

• A checkpoint enable/disable directive is interpreted as
the set swap mode system service.

• The send/receive directives are translated into mailbox
write/read system services. Native mode and compati
bility mode images can communicate using mailboxes.

• The event flag directives are for the most part identical.
Native mode and compatibility mode images can
communicate using common event flags , provided they
are in the same group.

• A Logical Unit Number (LUN) assignment directive is in
terpreted as a channel assignment for the appropriate
device.

In some cases the operating system cannot duplicate the
function , but it does what it can to let a program continue.
For example:

• A task image is allowed to declare a significant event ,
but the directive is ignored .

• A set priority directive is ignored , since the scheduling
priority ranges are different. To run at a given priority ,
the image must be run in the context of a process given
that priority.

For the most part, however, many RSX-11 M and
VAX/VMS program environment characteristics corre
spond . For example, tasks can hibernate, receive asyn
chronous system traps, and schedule wake requests . Syn
chronous system trap routines can be declared as condi
tion handlers for trace traps, breakpoint traps, illega l
instruction traps, memory protection violations, and odd
address errors.

File System and Data Management
Both RSX-11 M and VAX/VMS recogn ize User Identifica
tion Codes as a protection mechanism. UICs provide the
defau lt user file directory in RSX-11 M systems, while , in
VAX/VMS, a UIC is not necessarily associated with an ac
count name or default directory name. UIC-based file pro
tection , however, is much the same in both systems. That
is, it is used in determining read , write , and delete privi
leges for system, owner, group, and world .

Tasks may use any of the RSX data management services
includ ing File Control Services (FCS), RMS-11, and RMS-
11 K. Special versions of FCS and RMS-11 /RMS-11 K are
supplied with VAX/VMS. A compatibility mode task built
on VAX/VMS is thus provided with the full file naming ca
pabil ities of VAX/VMS, including logical names and mul
tilevel d irector ies. However, update of a file by multiple
tasks is not supported .

Both magnetic tape and Files-11 disk volumes can be
transported between systems. VAX/VMS can read and
write both Files-11 Level 1 disk structures (ODS-1) and the
Level 2 disk structures (ODS-2). The Extend access pro
tection field in ODS-1 is used for Execute access protec-

6-23

tion in ODS-2. Wh ile reading files stored on ODS-1 vol
umes, therefore, this protection field is ignored .

Command Languages
VAX/VMS users can select the MCA command interpreter,
which allows them to execute a language (VAX/VMS MCA)
that is similar to the RSX-11 M MCA command language.
Selecting the MCA command interpreter allows the
VAX/VMS user to perform the following :

• Run RSX-11 M images and VAX-11 images.

• Use RSX-11 M components for RSX-11 M program de
velopment, for example, MACR0-11 or the task builder.

• Use VAX/VMS components for native program devel
opment, for example, VAX-11 MACRO or the linker.

• Execute RSX - 11 M indirect command files. (The
VAX/VMS user can use this facility to execute those files
required for RSX-11 M or RSX-11 S system generation .)

VAX/VMS will associate the MCA command interpreter
with a process, if "MCA" is the default command interpre
ter named in the user's authorization file entry or if the user
specifies /C LI= MCA following "username" in the LOGIN
statement (overrid ing the default).

,,,,,,,,,,,,,,j. ·

1'11111 '
111111

'

···"

7
The

Languages

'

VAX/VMS includes a complete program development environment for
a wide range of languages. In addition to the native assembly language,
VAX/VMS offers many optional high-level programming languages
commonly used in developing both scientific and commercial applica
t ions: FORTRAN , COBOL, BASIC , PL/I , PASCAL, CORAL 66, and
BLISS-32. It provides the tools necessary to write, assemble or com
pile, and link programs, as well as build libraries of source, object, and
image modules.

Programmers can use the system for development while production is
in progress. They can interact with the system on-line , execute com
mand procedures, or submit command procedures as batch jobs. No
vice programmers can learn the system quickly because the command
language accepts standard defaults for invoking the editors, compilers,
and linker. Experienced programmers will appreciate the flexibility and
control each tool offers.

INTRODUCTION
VAX/VMS provides a complete program development en
vironment. In addition to the assembly language, MACRO,
it offers the optional higher level languages commonly
needed in engineering and scientific, commercial , instruc
tional, and implementation applications-FORTRAN, CO
BOL, BASIC, PL/I, PASCAL, CORAL 66, and BLISS-32.
VAX/VMS provides the tools to write, assemble or com
pile, and link programs, as well as to build libraries of
source, object, and image modules. User applications may
employ more than one language, and the ability of lan
guages to call one another allows concatenation of appli
cation segments written in a variety of languages, provided
they satisfy certain criteria.

These native mode language processors produce native
object code, and take advantage of the native instruction
set and 32-bit architecture of the VAX hardware.

In addition, there is the host development mode program
ming environment which provides support for PDP-11 BA
SJC-PLUS-2/V AX, PDP-11 FORTRAN IV IV AX to RSX, and
MACR0-11 . These produce compatibility mode object
code.

VAX COMMON LANGUAGE ENVIRONMENT
An important feature provided by VAX is a "common lan
guage" environment, i.e., the VAX languages adhere to a
specific set of standards, including :

• symbolic debugger interface

• use of the symbolic traceback facility

• use of the Common Run Time library

• conformance to the VAX calling standard which allows
calls among any set of VAX languages, to VAX/VMS
system services and to SORT and FMS subroutines

• common handling of exceptions

• use of VAX-11 RMS for record handling

Symbolic Debugger Interface
VAX/VMS provides facilities to aid the debugging of pro
grams written in native mode. It accomplishes this via a
program known as the interactive symbolic debugger. The
debugger can be linked with a native program image to
control image execution during development. It can be
used interactively or can be controlled from a command
procedure file. The debugging language is similar to the
VAX/VMS command language. Expressions and data
references are similar to those of the source language
used to create the image being debugged. Debugging
statements can be conditionally compiled.

Debugging commands include the ability to start and inter
rupt program execution, to step through instruction se
quences, to call routines, to set break or trace points, to
set default modes, to define symbols, and to deposit, ex
amine, or evaluate virtual memory locations.

Symbolic Traceback Facility
VAX/VMS supports the Symbolic Traceback Facility. This
is a run time facility that aids programmers in finding er
rors by describing the call sequences that occurred prior
to the error. The traceback facility is automatic and does
not require that any special qualifiers be included with the

7-1

FORTRAN or LINK commands (but it can be suppressed
by specifying NOTRACE with the LINK command).

When an error condition is detected, the error message is
displayed by the run time library indicating the nature of
the error and the address at which the error occurred
(user PC). This is followed by the traceback information,
which is presented in inverse order to the calls. For each
call frame, traceback lists module name, routine name,
source program line, and absolute and relative PC. Using
this information , the programmer can usually locate the
source of the error in a relatively short period of time.

Common Run Time Library
The VAX-11 Common Run Time Procedure Library con
tains sets of general purpose and language-specific pro
cedures. User programs call these procedures to perform
specific tasks required for program execution. Both VAX-
11 MACRO and native mode high-level language pro
grammers can use any of the Run Time Library pro
cedures in any combination. Because all procedures
follow the same programming standards and make no
conflicting execution assumptions, a language-indepen
dent common run time environment is provided for user
programs. Such an environment encourages a user pro
gram to be composed of procedures written in different
languages, and thus increases programming flexibility.

VAX Calling Standard
The VAX-11 procedure calling standard defines and sup
ports the mechanisms for passing arguments between
modules of major VAX-11 software subsystems such as
languages, VAX-11 RMS, and the VAX/VMS operating
system. The standard facilitates the calling of a procedure
written in one language from a program written in another
language.

Exception Handling
The mechanisms defined by the VAX-11 calling standard
are also used by the condition handling facility to signal
the occurence of exceptions detected by hardware or soft
ware.

VAX-11 RMS
VAX-11 Record Management Services (RMS) is the tech
nique programmers use to handle record 1/0 within pro
grams. VAX-11 RMS routines are system routines that
provide an efficient and flexible means of handling files
and their data. Typically, VAX-11 RMS routines allow the
programmer to create a file and:

• accept new input

• read or modify data

• produce output in a meaningful form

High-level language programmers normally use the 1/0 fa
cilities of their particular language to perform record and
file operations. These operations are implemented using
the VAX-11 RMS facilities. VAX-11 MACRO programmers
can use the VAX-11 RMS routines directly within their pro
grams.

VAX-11 RMS routines are an integral part of the operating
system. The programmer need not perform any special
linking or declaring of global entry points for the routines.

Furthermore, calls to VAX-11 RMS routines are consistent
with the VAX calling standard.

The elements of the common language environment are
discussed more fully as they apply to each individual VAX
language. Introduced below are each of the VAX-support
ed languages, their attributes, characteristics, and sample
coding.

VAX-11 FORTRAN
Introduction

VAX-11 FORTRAN is an optional language processing sys
tem whose language specifications are based on the
American National Standard FORTRAN X3.9-1978 (com
monly called FORTRAN-77). The VAX-11 FORTRAN com
piler supports this standard at the full-language level. At
the same time, it provides optional support for certain
FORTRAN features based on the previous ANSI standard ,
X3.9-1966. The VAX-11 FORTRAN compiler performs the
following functions :

• produces highly optimized VAX native object code

• makes use of the VAX floating point and character string
instructions

• produces shareable code

The VAX-11 FORTRAN language is upwardly compatible
with the PDP-11 FORTRAN language. Table 7-1 lists ex
tensions to the ANSI FORTRAN-77 language. Table 7-2
lists the features of FORTRAN-77.

Some characteristics of VAX-11 FORTRAN are described
below.

File Manipulation
OPEN and CLOSE statements extend the file management
characteristics of the FORTRAN language. An OPEN state
ment can contain specifications for file attributes that
direct file creation or subsequent processing. Attributes
include: file organization (sequential, relative, indexed);
access method (sequential , direct , keyed); protection
(read-only, read/write); record type (formatted, unformat
ted) ; record size; and file allocation or extension . The pro
gram can also specify whether the file can be shared , and
whether the file is to be saved or deleted when closed . The
OPEN statement can contain an ERR keyword which spec
ifies the statement to which control is transferred if an er
ror is detected during OPEN.

Of particular interest is the VAX-11 FORTRAN support for
the Indexed Sequential Access Method (ISAM), a powerful
keyed input/output file access capability. VAX-11
FORTRAN is able to create, read, and write indexed (and
relative) files. In addition, FORTRAN is able to reference a
relative or indexed file already created by another lan
guage (for instance, COBOL), provided the file and data
formats and the key information are compatible.

Simplified 1/0 Formats
List-directed input and output statements provide a
method for obtaining simple sequential formatted input or
output without the need for FORMAT statements. On input,
values are read, converted to internal format, and as
signed to the elements of the 1/0 list. On output, values in

7-2

the 1/0 list are converted to characters and written in a
fixed format according to the data type of the value.

Character Data Type
A program can create fixed-length CHARACTER variables
and arrays to store ASCII character strings. The VAX-11
FORTRAN language provides a concatenation operator,
substring notation , CHARACTER relational expressions,
and CHARACTER-valued functions. CHARACTER con
stants, consisting of a string of printable ASCII characters
enclosed in string quotes, can be assigned symbol ic
names using the PARAMETER statement. Operat ions
which use CHARACTER strings are more efficient and
easier to use than their analogs using arithmetic data
types. VAX/VMS provides a set of character manipulation
instructions that are FORTRAN-callable (e.g., LIB$LOCC,
locate a character in a string).

Figure 7-1 illustrates two VAX-11 FORTRAN subroutines.
This figure illustrates the use of the FORTRAN CHARAC
TER data type and some of the VAX-11 FORTRAN exten
sions to FORTRAN-77. The first subroutine, wh ich
reverses a character string, illustrates CHARACTER de
clarations (both fixed and passed length), the intrinsic
function LEN, substring manipulation, and the ENDDO
statement. The second subroutine locates a substring of a
character string and marks the starting position of the sub
string. This subroutine illustrates CHARACTER declara
tions (both fixed and passed length), assignments of char
acter values to variables, the intrinsic function INDEX, sub
string manipulation, and the FORTRAN-77 block IF
statement.

10

91

SUBROUTINE REVERSE($)
CHARACTER T, S*(*)

J = LEN(S)
DO 1=1 , J/2

T = S(l:I)
S(l :I) = S(J:J)
S(J :J) = T
J = J-1

ENDDO
END

SUBROUTINE FIND_SUBSTRINGS(SUB, S)
CHARACTER*(*) SUB, S
CHARACTER*132 MARKS

I= 1
MARKS=' '

J = INDEX(S(I:), SUB)
IF (J .NE. 0) THEN

I= I+ (J-1)
MARKS(l:I) = '#'
I= 1+1
IF (I .LE. LEN(S)) GO TO 10
ENDIF

WRITE(6,91) S, MARKS
FORMAT(2(/1X, A))
END

Figure 7-1

FORTRAN CHARACTER
Data Type Program

VAX-11 FORTRAN

31-character symbolic
names

CALL extensions

Hexadecimal and octal con
stants and field descriptors

DO WHILE/END DO

Data initial ization in type-de
claration statements

INTEGER data type defaults

Table 7-1
Language Extensions to FORTRAN-77,

X3.9-1978

Symbolic names used to
identify programs, subpro
grams, external functions
and subroutines, COMMON
blocks, variables, arrays,
symbolic constants, and
statement functions can be
longer than the standard six
characters. Symbolic names
can include letters, digits,
dollar sign , and underscore;
however, the first character
in name must be a letter.

Permit interfacing to
VAX/VMS system service
procedures using the VAX-
11 calling standards.

Both octal and hexadecimal
constants can be expressed
in DAT A statements. No con-
version of the defined value
(such as sign-extension) is
performed. The Z field de
scriptor in FORMAT state
ments enables a program to
read and write hexadecimal
digits which are stored in an
internal format in an 1/0 list
element.

Structured looping control
constructs.

Keyed READ

Indexed File WRITE

REWRITE statement

DELETE statement

UNLOCK statement

Logical operations on
integers

INCLUDE statement

Key types: INTEGER*2, IN
TEGER*4, CHARACTER with
generic, and approximate
key match.

New records can be written
to ISAM files with the write
statements.

Existing records in ISAM files
can be modified with the
REWRITE statement.

Existing records can be
deleted from ISAM or rela
tive files with the DELETE
statement.

Single-record locking (in the
VAX environment) and buck
et-level locking (in the PDP-
11 environment) for shared
file applications involving re
lative and indexed organiza
tion files.

The logical operators .AND.,
.OR., .NOT., .XOR., and
.EQV. may be applied to in-
teger data to perform bit
masking and manipulation.

The INCLUDE statement in
corporates FORTRAN
source text from a separate
file into a FORTRAN pro
gram.

Variables can be assigned
initial values in type declara
tion statements.

VAX-11 FORTRAN, PDP-11 FORTRAN IV-PLUS, and PDP-11
FORTRAN IV

A compiler command speci
fication allows all
INTEGER and LOGICAL de
clarations without explicit
length specifications to be
considered as INTEGER*2
and LOGICAL *2 or INTEG
ER*4 or LOGICAL *4, respec
tively.

Array subscripts using gen
eral expressions of any nu
meric data type

End-of-Line comments

Any arithmetic expression
can be used as an array sub
script. If the value of the
expression is not an integer,
it is converted to integer for
mat.

VAX-11 FORTRAN and PDP-11 FORTRAN IV-PLUS

Any FORTRAN statement
can be followed, in the same
line, by a comment that be
gins with an exclamation
point.

Additional data types and
type declaration statements
(DOUBLE COMPLEX, COM
PLEX*16, and CHARACTER*
n are VAX-11 FORTRAN on
ly)

NOTE
Names appearing on the
same line above are syno
nyms. Those in boldface are
the ANSI standard ones.

Indexed File 1/0

BYTE, LOGICAL *1,
LOGICAL*2,
LOGICAL, LOGICAL *4,
INTEGER*2,
INTEGER, INTEGER*4,
REAL, REAL *4,
DOUBLE PRECI-
SION, REAL *8,
COMPLEX, COMPLEX*8,
DOUBLE COMPLEX, COM
PLEX*16,
CHARACTER*n

Extensions are provided to
allow FORTRAN language
access to RMS ISAM files.

7-3

Conditional compilation of
debugging statements

Default FORMAT width

Statements that are included
in a program for debugging
purposes can be so desig
nated by the letter D in co
lumn 1. Those statements
are compiled only when the
associated compiler com
mand option is set. They are
treated as comments other
wise.

The programmer can specify
input or output formatting by
type and default width and
precision values will be sup
plied.

Table 7-2
FORTRAN-77 Features

VAX-11 FORTRAN

Additional data types The data type INTEGER*4
provides a sign plus 31 bits
of precision. INTEGER*4 al
lows a greater range of val
ues to be represented than
INTEGER*2. Both data types

Array dimension bounds

can be used in the same pro- List-Directed 1/0 statements

Additional 1/0 statements

gram.

READ (u'r,fmt) and WRITE
(u'r,fmt) provide input and
output to direct access files.

The control variable of a DO DO control variable data
types statement can be a REAL or Additional 1/0 statements

Additional data type

IF THEN ELSE statements

Standard CALL facility

DOUBLE PRECISION vari-
able, as well as an INTEGER*
2 or INTEGER*4 variable.
The initial, terminal, and in-
crement parameters can be
of any data type and are con-
verted before use to the type
of the control variable if
necessary.

The data type CHARACTER
permits manipulation of
strings of ASCII characters
expressed as constants, vari-
ables, arrays, substrings,
symbolic names, or func
tions.

The FORTRAN-77 block-IF
statements are provided: IF,
ELSE IF, ELSE, and ENDIF.
These structured program
ming statements provide
more readable and reliable
methods for expressing con
ditional statement execution.

Provides standard argument
definitions for called pro
cedures.

VAX-11 FORTRAN and PDP-11 FORTRAN IV-PLUS
ENTRY statement ENTRY statements can be

used in SUBROUTINE and
FUNCTION subprograms to
define multiple entry points
in a single program unit.

PARAMETER statement PARAMETER statements
can be used to give symbolic
names to constants.

Generic function selection Function selection by argu
ment data type is provided
for many FORTRAN library
functions.

7-4

End-of-file or Error Condi-
tion transfer

Additional data type

IMPLICIT declaration

Lower bounds as well as up
per bounds of the array di
mension can be specified in
array declarators. The value
of the lower bound dimen
sion declarator can be nega
tive, zero or positive.

The READ (u , *) , WRITE (u, *),
TYPE* , ACCEPT*, and
PRINT* statements provide
list-directed, or "free for
mat," 1/0 without requir ing a
FORMAT specification .

OPEN and CLOSE state
ments provide file control
and attribute definition . AC
CEPT, TYPE, and PRINT
statements provide device
oriented 1/0. ENCODE and
DECODE statements provide
memory-to-memory format
ting. DEFINE FILE, READ
(u'r) , WRITE (u'r) , and FIND
(u 'r) provide unformatted
direct access 1/0, which al
lows the FORTRAN program
mer to read and write files
written in any format.

The specifications END = n
and ERR=n (where n is a
statement label) can be in
cluded in any READ or
WRITE statement to transfer
control to the specified state
ment upon detection of an
end-of-file or error condition.
The ERR=n option is also
permitted in the ENCODE
and DECODE statements, al
lowing program control of
data format errors.

The byte data type (keyword
LOGICAL *1 or BYTE) is use
ful for storing small integer
values as well as for storing
and manipulating character
information.

The IMPLICIT statement has
been added to redefine the
implied data type of symbolic
names.

DO loop iteration count The terminal and increment
parameters can be modified
within a DO loop without af
fecting the iteration count.
The number of times a DO
loop is executed is deter
mined at the initialization of
the DO statement and is not
re-evaluated during succes
sive executions of the loop.
Consequently, the number of
times the loop is executed
will not be affected by chang
ing the variables used in the
DO statement.

VAX-11 FORTRAN, POP-11 FORTRAN IV-PLUS, and
PDP-11 FORTRAN IV

Array dimensions

Character literals

Source Program Libraries

Arrays can have up to seven
dimensions.

Character strings bounded
by apostrophes can be used
in place of Hollerith con
stants.

The INCLUDE statement provides a mechanism for writing
modular, reliable, and maintainable programs by eliminat
ing duplication of source code. A section of program text
that is used by several program units, such as a COMMON
block specification , can be created and maintained as a
separate source file. All program units that reference the
COMMON block then merely INCLUDE this common file .
Any changes to the COMMON block will be reflected auto
matically in all program units after compilation .

Calling External Functions and Procedures
FORTRAN programs can call subroutines written in any
other VAX language, and also system services, using the
VAX-11 procedure calling standard. Special operators ex
ist for passing arguments by immediate value, by refer
ence, or by descriptor. A special operator also exists for
obtaining the location of argument values used by the sys
tem services procedures.

Shareable Programs
The FORTRAN language can be used to create shareable
programs. FORTRAN subprograms can also be used to
create shareable image libraries, which can be available to
any program written in a native programming language.

Diagnostic Messages
Diagnostic messages are generated when an error or po
tential error is detected. Errors detected during compila
tion are reported by the compiler, and include source pro
gram errors, such as misspelled variable names, missing
punctuation marks, etc.

Source program diagnostic messages are classified ac
cording to severity: F (Fatal), E (Error), or W (Warning). F-

7-5

Mixed-mode expressions

General expression DO and
GO TO parameters

DO increment parameter

Optional statement label list

General expressions in 1/0
lists

Mixed-mode expressions
can contain any data type, in
cluding complex and byte.

General expressions are per
mitted for the initial value, in
crement, and limit parame
ters in the DO statement, and
as the control parameter in
the computed GO TO state
ment.

The value of the DO state
ment increment parameter
can be negative.

The statement label list is an
assigned GO TO is optional.

General expressions are per
mitted in 1/0 lists of WRITE,
TYPE, and PRINT state
ments.

class messages indicate errors that must be corrected
before compilation can be completed . Object code is not
produced. E-class messages indicate that an error was
detected that is likely to produce incorrect results; how
ever, an object file is generated. W-class messages are
produced when the compiler detects acceptable but non
standard syntax; or when it corrects a syntactically incor
rect statement. The message indicates the existence of
possible trouble in executing the program.

Compiler Operations and Optimizstlons
The VAX-11 FORTRAN compiler accepts sources written
in the FORTRAN language and produces an object file
which must be linked prior to execution. The compiler
generates VAX-11 native machine language code. Figure
7-2 is an illustration of VAX-11 FORTRAN code and its
equivalent VAX-11 MACRO code.

During compilation , the compiler performs many code op
timizations. The optimizations are designed to produce an
object program that executes in less time than an equi
valent nonoptimized program. Also, the optimizations are
designed to reduce the size of the object program.

The VAX-11 FORTRAN compiler performs the following
optimizations:

• Constant folding-constant expressions are evaluated
at compile-time.

• Compile-time constant conversion.

• Compile-time evaluation of constant subscript expres
sions in array calculations.

• Constant pooling-only a single copy of a constant is al
located storage in the compiled program. Constants
that can be used as immediate mode operands are not

1-Apr-1980 11 :56:00 VAX-11 FORTRAN V2.0-1 Page 1

0001

0002
0003
0004

0005

0006

0007
0008
0009
0010
0011 10

0012

0013
0014

SUBROUTINE RELAX2(EPS)

PARAMETER M =40, N =60
DIMENSION X(O:M,O:N)
COMMON X

LOGICAL DONE

DONE= .TRUE.

DO 10J = 1,N-1
DO 10 I= 1,M-1

XNEW = (X(l-1 ,J)+X(l+1,J)+X(l ,J-1)+X(l ,J+1))/4
IF (ABS(XNEW-X(l,J)) .GT. EPS) DONE= .FALSE.
X(l,J) = XNEW

IF (.NOT. DONE) GO TO 1

RETURN
END

1-Apr-1980 11 :56:00 VAX-11 FORTRAN V2.0-1 Page 2

.TITLE

.IDENT

0000 .PSECT
0000 X:

0000 .PSECT
0000 RELAX2::
0000 .WORD
0002 MOVAL

0009 .1:
0009 MNEGL

oooc MOVL
OOOF MOVAL
0016 L$1 :

0016 MOVL
0019 MULL3
0010 L$2:

0010 ADDL3
0021 ADDF3
0029 ADDF2
002F ADDF2
0035 MULF3

003D SUBF3
0042 BICW2
0047 CMPF
004B BLEQ
004D CLRL
004F L$3:

004F MOVL
0053 AOBLEQ
0057 AOBLEQ
005B MOVL
005F MOVL
0063 MOVL

0067 BLBC

006A RET
.END

RELAX2
01

$BLANK

$CODE

tM<IV,R5,A6,R7 ,AS,R9 ,A10,R11 >
$LOCAL, R11

; 0006

#1, DONE(A11)
; 0007

#1, R6
$BLANK, A5

; ooos
#1, R9
#41, R6, R7

; 0009
R9, A7, R10
X+4(R5)(R10), X-4(R5)[R10], RO
X-164(R5)[A10], RO
X+164(A5)[R10], RO
#tX3FSO, RO, RS

X(R5)[R10], R8, RO
#tXSOOO, RO
RO, tEPS(AP)
L$3
DONE(R11)

RS, X(A5)[R1 OJ
#39,R9,L$2
#59,R6,L$1
R6, J(R11)
RS, XNEW(R11)
R9,l(R11)

DONE(R11), .1

; 0010

; 0011

; 0012

; 0013

Figure 7-2

Page 1 above illustrates, as a VAX-11 FORTRAN sub
routine, a relaxation function often found in engineering
applications. This particular example is a planar (2-di
mensional) function that can be used to obtain the val
ues of a variable at coordinates on a surface, for in
stance, temperatures distributed across a metal plate.
The algorithm illustrated here locates the array element
values relative to a given point in the plane.

Page 2 contains the equivalent VAX-11 MACRO
assembly code for this VAX-11 FORTRAN subroutine.
The line numbers in the comment just to the left of this
paragraph refer to the lines in the VAX-11 FORTRAN
subroutine listing above. Several VAX-11 FORTRAN
compiler optimizations are illustrated, including global
and local register assignment, removal of invariant
computations from the DO loop, recognition of common
subexpressions, branch instruction optimizations, in
line ABS function , and peephole optimization.

The code for lines 7 and 8 contains the global register
assignments for the function. The multiply statement
just preceding the code for line 9 is an invariant compu
tation (J ' 41) removed from the DO loop. DO loop con
trol is provided by the Add One and Branch Less Than
or Equal (A OBLEQ) instructions in the code for line 11 .

The code for line 9 evaluates the common subexpres
sion for the computation. The code contains a local reg
ister assignment (R10), and uses 2- and 3-operand
instructions and context switching ([R10]) to calculate
an array element value. The last instruction for line 9 is a
peephole optimization that increases execution speed
by using a "multiply by .25" in place of the FORTRAN
statement's "divide by 4."

VAX-11 FORTRAN Program

7-6

allocated storage. For example, logical, integer, and
small floating point constants are generated as immedi
ate mode or short literal operands wherever possible.

• Argument list merging-if two function or subroutine
references have the same arguments, a single copy of
the argument list is generated.

• Branch instruction optimizations for arithmetic or logical
IF statements.

• Elimination of unreachable code-an optional warning
message is issued to mark unreachable statements in
the source program listing.

• Recognition and replacement of common subexpres
sions.

• Removal of invariant computations from DO loops.

• Local register assignment-frequently referenced vari
ables are retained (if possible) in registers to reduce the
number of load and store instructions.

• Assignment of frequently used variables and expres
sions to registers across DO loops.

• Reordering expression evaluation to minimize the num
ber of temporary registers required.

• Delaying negation/not to eliminate unary complement
operations.

• Flow-Boolean optimizations.

• Jump/Branch instruction resolution-the Branch in
struction is used wherever possible to eliminate unne
cessary Jump instructions. This reduces code size.

• Peephole optimizations-the code is examined on an
operation-by-operation basis to replace sequences of
operations with shorter and faster equivalent opera
tions.

Debugging Facilities
VAX-11 FORTRAN debugging facilities include diagnostic
messages, conditional compilation flags, and access to the
VAX/VMS DEBUG program. The DEBUG program lets the
programmer set breakpoints and trace points, and exam
ine and modify the contents of locations dynamically when
executing the program.

DEBUG understands FORTRAN data type representations
and syntax. It can examine and deposit locations using
floating point representation, and it can reference
FORTRAN symbols, statement labels, and line numbers
symbolically. It can also reference arrays symbolically, for
example:

EXAMINE A(l,J+3)

When debugging VAX-11 FORTRAN programs, the pro
grammer can disable optimizations that would remove un
referenced statement labels, FORMAT statement labels,
and immediately referenced labels. This ensures that all
statement labels are available to the debugger .

Conditional Compilation of Statements
During the development stages of a program, it is often
useful to establish points in the program at which specified
values can be examined to insure that the program is func
tioning correctly. For example, if the value of a variable is
known after the execution of a specified statement, the

7-7

variable can be printed to verify its contents. Therefore, by
including a number of such source lines at strategic points
throughout the program, debugging the program is greatly
simplified. FORTRAN provides a facility for conditionally
compiling such source lines so that they can be compiled
during the development stage but treated as comments
once the program has been debugged.

Symbolic Traceback
Figure 7-3 illustrates a source VAX-11 FORTRAN program
and the symbolic traceback facility supported by
VAX/VMS. (Note that some of the entries in the list show
relative and absolute PC but no corresponding values for
module name and routine name; this indicates that the val
ues refer to procedure calls internal to the run time li
brary.)

0001 1=1
0002 CONTINUE
0003 J= 2
0004 CONTINUE
0005 K=3
0006 CALL SUB1
0007 CONTINUE
0008 END

0001 SUBROUTINE SUB1
0002 1=1
0003 J= 2
0004 CALLSUB2
0005 END

0001 SUBROUTINE SUB2
0002 COMPLEXW
0003 COMPLEXZ
0004 DAT AW / (0.,0.)/
0005 Z = LOG(W)
0006 END

%MTH-F-INVARGMAT, invalid argument to math library
user PC 00000449

% TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line relative PC absolute PC

0000074C 0000074C

0000081 c 0000081 c
SU82 5 00000011 00000449

SU81

T1$MAIN

4

6

Figure 7-3

00000017

00000018

FORTRAN Symbolic Traceback

VAX-11 COBOL
Introduction

00000437

00000418

VAX-11 COBOL is a new, high-performance implementa
tion of COBOL. It is based on American National Standard
Programming Language COBOL, X3.23-1974, the indus
try-wide accepted standard for COBOL. Some features
planned for the next COBOL (anticipated in 1981), are also
included. VAX-11 COBOL expands and enhances its pred
ecessor, VAX-11 COBOL-74, and includes features that

appeal to a wider range of COBOL users because it allows
more complex coding procedures to be accomplished
more simply.

It is anticipated that the new ANSI standard will call for
greater structured programming. This allows explicit de
limiting of statements in the Procedure Division, a feature
which can simplify COBOL coding that previously required
additional GO TO statements and procedure names. In
meeting the requirement for structured programming, the
new VAX-11 COBOL includes-among other fea
tures-the in-line PERFORM statement, allowing a reduc
tion of program complexity by putting all the logic of the
PERFORM in line.

Many features of VAX-11 COBOL make the programmer's
job easier, either by simplifying coding procedures or by
giving direct access to more VAX/VMS facilities. The
COBOL SORT and MERGE verbs are now available in
VAX-11 COBOL so that sorting and merging can be per
formed at the source language level rather than though
direct calls to the VAX/VMS utilities. VAX-11 COBOL sup
ports symbolic characters so that the programmer can de
fine non-printable characters simply and can generate
video display forms. Further, the REFORMAT utility allows
bidirectional conversion of COBOL source programs from
easy-to-enter DIGITAL terminal format to ANSI standard
format and vice versa.

VAX-11 COBOL is properly defined as an implementation
of ANSI COBOL with full support of the following:

• full Level 2 Nucleus Module without the RERUN option
in the 1-0-CONTROL paragraph

• full Level 2 Table Handling Module

• full Level 2 Sequential 1/0 Module

• full Level 2 Relative 1/0 Module

• full Level 2 Indexed 1/0 Module

• full Level 2 Segmentation Module

• full Level 2 SORT/MERGE Module

• full Level 2 Library Module

• full Level 2 lnterprogram Communication Module

Besides the VAX-11 object module, the compiler is capa
ble of producing a machine language listing, a cross refer
ence listing in either alphabetic sequence or order of de
claration , and maps of file names, data names, procedure
names, and external program names.

General Characteristics
Most of the code in an object module is implemented with
in-line VAX-11 instructions. The object code produced by
the compiler takes advantage of such native mode fea
tures as:

• direct calls to the operating system

• transparent access to DECnet

• direct calls to VAX-11 SORT

• many of the VAX-11 string manipulation instructions

• direct calls to the Common Run Time Library

• direct calls to an external routine (written in a DIGITAL
supported language) that conforms to the VAX-11
Procedure Calling Standard

7-8

The object code produced by VAX-11 COBOL uses the
VAX/VMS traceback facility for determining the source of
run time errors. If a fatal error occurs at run time, an En
glish error message is printed to identify the cause of the
error. Additionally, the traceback pinpoints the source of
the error to a specific line number in the COBOL source
module producing the error. The English error message
coupled with the traceback facility gives the user a power
ful debugging tool for identifying fatal execution errors.

Object modules produced by the compiler can be linked
with native mode object modules produced by other VAX-
11 language processors including BASIC, FORTRAN , and
MACRO.

Structured Programming
Structured programming adds some of the features of a
block-structured language (such as ALGOL) to the new
VAX-11 COBOL compiler. Thus, more complex programs
can be written in-line without recourse to subroutines. This
makes programs easier to write and to read.

The example below shows the READ and IF statements us
ing structured programming. The statements after END
READ are executed regardless of whether the AT END
condition occurs. Similarly, the MOVE after END-IF is exe
cuted regardless of the value of FILE-END.

IF ITEMA = ITEMS
READ FILE-A AT END

MOVE 1 TO FILE-END

CLOSE FILE-A
END-READ

MOVE ITEMS TO ITEMC
IF FILE-END = 1

DISPLAY ITEMC
END-IF

MOVE ITEMD TO ITEME.

Several COBOL verbs have structured programming de
limiters. Among them are:

ADD
CALL
COMPUTE
DELETE
DIVIDE
IF
MULTIPLY
PERFORM
READ
RETURN
REWRITE
SEARCH
START
STRING
SUBTRACT
UNSTRING
WRITE

Particularly, the PERFORM verb has been enhanced . The
resultant in-line PERFORM capability is similar to DO
WHILE and DO UNTIL in other high-level languages.

In this example, if the first occurrence of ITEMS is not
equal to "X": (1) the in-line PERFORM statements are exe
cuted, moving an "X" to the first 10 occurrences of ITEMS;

then , (2) the message is displayed.

IF ITEMS (1) NOT = "X"
PERFORM

VARYING ITEMA FROM 1 BY 1
UNTIL ITEMA > 10

MOVE "X" TO ITEMS (ITEMA)
END-PERFORM
DISPLAY "ARRAY INITIALIZED"

Data Types
VAX-11 COBOL increases the number of data types avail
able to the COBOL programmer, including floating point
and double floating point. The standard data types are:

• Numeric DISPLAY Data

Trail ing overpunch sign
Leading overpunch sign
Trailing separate sign
Lead ing separate sign
Unsigned
Numeric-edited

• Numeric COMPUTATIONAL Data

Word fixed binary
Longword fixed binary
Quadword fixed binary

• Packed-Decimal Data (COMP UT ATIONAL-3)

Unsigned packed decimal
Signed packed decimal

• Floating Point Data

F floating (COMPUTATIONAL-1)
D~floating (COMPUTATIONAL-2)

• Alphanumeric DISPLAY Data

Alphanumeric
Alphabetic
Alphanumeric-edited

As indicated previously, VAX-11 COBOL supports the
COMP-3 (packed decimal) data type (two decimal digits
per byte). This data type offers the following advantages:

• disk storage savings

FD

01

PAYROLL-MASTER
LABEL RECORDS ARE STANDARD.

PAYROLL-REC.
02 EMPLOYEE-NAME
02 EMPLOYEE-ID
02 YTD-GROSS-PAY
02 YTD-FED-WITHHOLD-T AX
02 YTD-FICA
02 YTD-STATE-WITHHOLD-TAX
02 YTD-LOCAL-WITHHOLD-TAX
02 YTD-VOLUNTARY-DEDUCTIONS
02 YTD-NET-PAY

• faster arithmetic operations than standard numeric dis
play data type

• compatibility with and migration from other COBOL
vendors

Figure 7-4 illustrates a record definition of a typical payroll
master file application in which the COMP-3 data type is
frequently used. In this record definition, all numeric fields
on which arithmetic operations are performed are defined
to be the COMP-3 data type.

Figure 7-5 illustrates a sample calculation of one such
COMP-3 data item in the record. Here, the year-to-date
net pay is calculated as a function of the gross pay, and all
voluntary and involuntary deductions to date.

Infrequently, commercial applications arise in which the
utilization of floating point data (COMP-1 and COMP-2) is
useful. For example, a large corporation may want to sur
vey its customers regarding its product quality. The corpo
ration wishes to select a statistically valid sample of its cus
tomer base without going to the expense of contacting
each and every customer. Hence, it is necessary to ran
domly sample its customer base; a random number gen
erator is used to select those customers to be sampled.

Figure 7-6 illustrates a COBOL program fragment in which
a CALL to the VAX-11 run-time procedure library routine
MTH$RANDOM is made to generate random numbers.
This routine returns a random number in COMP-1
(F _floating) data type representation in the range from 0.0
to 1.0. Such numbers are then integerized and subse
quently used to select those customers to be sampled in
the product quality survey.

The COMP-2 data type may be used in similar commercial
applications.

Files and Records
VAX-11 COBOL's Sequential 1/0, Relative 1/0, and In
dexed 1/0 modules meet the full ANSI Level 2 standard.
The language's Level 2 Indexed 1/0 module statements
enable VAX-11 COBOL programs to use the VAX-11 RMS
multi key indexed record management services to process
files . These files can be accessed sequentially, randomly,

PIC X(30).
PIC9(9)
PIC 9(5)V99
PIC 9(5) V99
PIC 9(4)V99
PIC 9(5)V99
PIC 9(5)V99
PIC 9(4)V99
PIC 9(5)V99

USAGE IS DISPLAY.
USAGE IS COMP-3.
USAGE IS COMP-3.
USAGE IS COMP-3.
USAGE IS COMP-3.
USAGE IS COMP-3.
USAGE IS COMP-3.
USAGE IS COMP-3.

Figure 7-4
COMP-3 Record Definition

7-9

•
•
•
SUBTRACT YTD-FED-WITHHOLD-T AX,

•
•
•

YTD-FICA
YTD-ST ATE-WITHHOLD-TAX,
YTD-LOCAL-WITHHOLD-T AX,
YTD-VOLUNTARY-DEDUCTIONS
FROM YTD-GROSS-PAY
GIVING YTD-NET-PAY.

F!gure 7-5
Arithmetic on COMP-3 Data Type

or dynamically using one or more indexed keys to select
records. The RESERVE AREAS clause enables the user to
specify the number of 1/0 buffers for fast multi key proc
essing. The APPLY clause allows the user to specify file
processing optimization attributes for fast record access.

VAX-11 COBOL has full variable-length record capability.
This is an improvement over VAX-11 COBOL-74, in which
variable-length records were only partially supported.

Reference modification-the ability to refer to parts of de
fined fields without redefining them-has also been in
cluded in VAX-11 COBOL.

The language includes a facility to manipulate data strings.
The INSPECT verb allows the user to search for embed
ded character strings, tallying and/or replacing the occur
rences of such strings. Additionally, the STRING and
UNSTRING verbs permit the user to join together and
break out separate strings with various delimiters.

RAND-NUM

SORT/MERGE Facility
The VAX-11 COBOL SORT/MERGE module meets the full
ANSI standard and permits performing sort and merge
operations at the COBOL source language level without
requiring the programmer to understand the VAX-11
SORT interface. The COBOL SORT/MERGE capability in
cludes sorting and/or merging one or more files in the
same source module, specifying one or more sort/merge
key(s) (in ascending or descending order) for each file ,
and the option to use either standard or user-specified in
put/output procedures .

Figure 7-7 illustrates how to sort a file with the USING and
GIVING phrases of the SORT statement. The fields to be
sorted are S-KEY-1 and S-KEY-2; they contain account
numbers and amounts. The sort sequence is amount with
in account number. Notice that OUTPUT-FILE is a relative
file.

In Appendix B, the sample program is merging three iden
tically sequenced regional sales files into one total sales
file. The program adds sales amounts and writes one rec
ord for each product-code.

Symbolic Characters Facility
It is often useful for the programmer to be able to construct
on a video terminal, the image of a form similar to a printed
form . This process involves imbedded or non-printing
characters (i.e., line feed, carriage return, escape key,
etc.). VAX-11 COBOL provides the user with the ability to
include, within the COBOL code, non-printing control
characters. Essentially, these characters control the posi
tion of the cursor during an interactive session utilizing a
video terminal (i.e., VT52, VT100, etc.).

Figure 7-8 illustrates a sample data entry form used as a
prompt for data input.

The VAX-11 COBOL code used to generate this particular
form is listed in Appendix C. The sample code is used in
conjunction with the VT100 terminal. Code for the VT52 is
similar.

USAGE IS COMP-1 . 01
01
01

RAND-CUST-NUM PIC 9(7).

01

•
•
•

•
•
•

CUST-NUM REDEFINES RAND-CUST-NUM.
02 DISTRICT PIC 9(2).
02 WITHIN-DIST PIC 9(5).
SEED PIC 9(8) USAGE IS COMP .

CALL "MTH$RANDOM" USING SEED
GIVING RAND-NUM.

COMPUTE RAND-CUST-NUM ROUNDED= RAND-NUM * 10000000 .

Figure 7-6
Example of COMP-1 Data Type

7-10

IDENTIFICATION DIVISION.
PROGRAM-ID. SORT EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

VAX-11.
VAX-11 .

SELECT INPUT-FILE ASSIGN TO " INPFIL".
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS RELATIVE.
SELECT SORT-FILE ASSIGN TO "SRIFIL".

DAT A DIVISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1 .
05 S-ACCOUNT-NUM PIC X(8) .

03 FILLER PIC X(32).
03 S-KEY-2.

05 S-AMOUNT PIC S9(5)V99.
03 FILLER PIC X(53).

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

01 IN-REC PICX(100).
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD. PIC X(100).
01 OUT-REC PIC X(100).
PROCEDURE DIVISION.
000-00-THE-SORT.

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

WITH DUPLICATES IN ORDER
USING INPUT-FILE GIVING OUTPUT-FILE.

DISPLAY "END OF PROGRAM SORT EXAMPLE".
STOP RUN.

Figure 7-7
Sample SORT Code

CUSTOMER NUMBER:12345678
CUSTOMER NAME: ROLAND J. JONES----
CUSTOMER ADDRESS:747 FIRST AVE.----
CITY:ANYTOWN------ST ATE: NH ZIP:03061

CALL Facility

Figure 7-8
Video Form

The CALL statement enables a COBOL programmer to ex
ecute routines that are external to the source module in
which the CALL statement appears. The VAX-11 COBOL
compiler produces an object module from a single source

7-11

module. The object module file can be linked with other
VAX-11 object modules, so as to produce an executable
image. Thus, COBOL programs can call external routines
written in other VAX-11 supported languages including
BASIC, FORTRAN, and MACRO.

The CALL statement facility has been extended by allow
ing the user to pass arguments BY REFERENCE (the de
fault in COBOL), BY DESCRIPTOR, and BY VALUE. These
argument-passing mechanisms conform to the VAX-11
Procedure Calling Standard and allow COBOL programs
to call VAX/VMS operating system service routines. Also,
a COBOL program can receive a returned status value
from the routine it calls via the GIVING clause associated
with the extended CALL facility. Such an extended CALL
facility gives the user access to operating system specific
facilities and Common Run Time facilities. Figure 7-9 illu
strates a sample program utilizing all three types of argu
ment passing mechanisms.

In this program the system service routine $ASCTIM is
called, which converts binary time to an ASCII string re
presentation . In this example, the buffer length as speci
fied by "timbuf" plus the value of the item "dummy" deter
mine the type of information which the service routine will
return to the COBOL program (e.g., specifying a length of
24 plus values of 0 in the following two arguments will
cause both current date and time to be returned; if a length
of 11 had been specified, then only the date would be re
turned) .

Source Library Facility
VAX-11 COBOL supports the full ANSI COBOL Library fa
cility . All frequently used data descriptions and program
text sections can be stored in library files available to all
programs. These files can then be copied into source pro
grams performing textual substitution (i.e., replacement)
in the process. This capability reduces program prepara
tion time and eliminates a common source of error during
program development.

Shareable Programs
The COBOL language can be used to create shareable
programs. VAX-11 COBOL subprograms can be placed in
shareable image libraries created by the linker, which then
can be made available to any program written in a native
programming language.

Debugging COBOL Programs
The VAX-11 COBOL compiler produces source language
listings with embedded diagnostics indicating line and po
sition of error. Fully descriptive diagnostic messages are
listed at the point of error. Many error conditions are
checked at compile time, varying from simple information
al indications to severe error detections. At the user's op
tion, the compiler can also produce a machine language
listing, a file name map, a data name map, a procedure
name map, an external program name map, and a cross
reference listing.

When a fatal error occurs at run time, an error message
identifying the cause of the error is displayed to the user.
Additionally, the traceback system facility prints the se
quence of routine invocations active at the time of the fatal
error. For each routine invocation, traceback displays the

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL TST2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11 .
OBJECT-COMPUTER. VAX-11.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TIMLEN
01 D-TIMLEN
01 TIMBUF
01 RETURN-VALUE

01 D-RETURN-VALUE
PROCEDURE DIVISION.
PO.

DISPLAY "CALL SYS$ASCTIM".
CALL "SYS$ASCTIM"

USING

GIVING

BY REFERENCE TIM LEN
BY DESCRIPTOR TIMBUF
BY VALUE ZERO
BY VALUE ZERO

RETURN-VALUE.
DISPLAY "DATE/TIME=" TIMBUF.
MOVE TIMLEN TO D-TIMLEN.
DISPLAY "LENGTH OF RETURNED= " D-TIMLEN.
MOVE RETURN-VALUE TOD-RETURN-VALUE.
DISPLAY "RETURN-VALUE=" D-RETURN-VALUE.
STOP RUN.

PIC 9(4) USAGE IS COMP VALUE IS 0.
PIC 9(4) VALUE IS 9999.
PIC X(24) VALUE IS SPACES.
PIC 9(9)USAGE IS COMP
VALUE IS 999999999.
PIC 9(9) VALUE IS 999999999.

Figure 7-9
System Services Call

module name, routine name, and source line number in
which either an invocation to another user routine occurs
or the fatal error itself occurs.

As an example of the traceback facility, Figure 7-10 illu
strates the printing of error messages and the subsequent
traceback for a COBOL module in which an 1/0 error oc
curs at run time. Specifically, a COBOL OPEN statement
failed because the file "DB2:[COBOL)MASTERFIL.DAT"
was not found on the OPEN operation. The " module
name" and "routine name" fields (of the traceback) identi
fy the entry point, IOERRTEST, into the COBOL module.
The OPEN failure occurs on line number 22 of the source
module. The "relative PC" field specifies that the OPEN
failure corrrspondingly occurs at "67'' hexadecimal bytes
into the object code relative to the entry point IOERRTEST.
The "absolute PC" field also specifies that the OPEN fail
ure occurs at absolute location "667" in the executable im
age containing IOERRTEST.

Additionally, the user can request a complete explanation
of the OPEN error by interrogating the system interactively
with the command "HELP ERRORS COB FILNOTFOU".

·This VAX/VMS command displays the information shown
in Figure7-11 .

7-12

Thus, the issuance of specific , English-like error messages
coupled with the traceback facility and interactive interro
gation of the system to explain completely the run-time er
ror offers the user a powerful debugging tool in identifying
programming errors.

Also, the VAX-11 COBOL debugging facilities provide ac
cess to the VAX/VMS SYMBOLIC DEBUGGER. The SYM
BOLIC DEBUGGER lets the programmer set breakpoints,
and examine and modify the contents of locations
dynamically while the COBOL program is executing.

Source Translator Utility
The source translator utility is helpful to those users mi
grating from PDP-11 COBOL and VAX-11 COBOL-74 to
the VAX-11 COBOL compiler. This utility produces a trans
lated source program and a listing with flags indicating
those language elements which could not be mechanically
translated and which therefore require further investiga
tion by the programmer.

Some of the differences between VAX-11 COBOL and
PDP-11 COBOL or VAX-11 COBOL-74 that require such a
translator are:

• some changes in file status codes

• different specification for the storage of intermediate re
sults

%COB-F-FILNOTFOU, file_ D32:[COBOL]MASTERFIL. DAT; not found on OPEN
-RMS-E-FNF, file not found
% TRACE-F-TRACEBACK, symbol stack dump follows

module routine line relative PC absolute PC
name name

IOERRTEST IOERRTEST 22 00000067 00000667

Figure 7-10
Example of Traceback Facility

• different methods of specifying file optimization attrib-
utes

Fortunately, most differences are transparent to the pro
grammer, and moving programs from PDP-11 COBOL or
VAX-11 COBOL-74 requires little (in some cases, no) pro
grammer work.

Source Program Formats
The VAX-11 COBOL compiler accepts source programs
that are coded using either the ANSI standard (conven
tional) format or a shorter, easy-to-enter DIGIT AL terminal
format. Terminal format is designed for use with the inter
active text editors. It eliminates the line number and identi
fication fields and allows the user to enter horizontal tab
characters and short text lines.

The REFORMAT utility reads COBOL source programs
that are coded using DIGITAL terminal format and con
verts the source statements to the ANSI standard format
accepted by other COBOL compilers throughout the in
dustry. It also has the inverse option to accept programs
written in ANSI standard format and to convert the source
statements to DIGITAL terminal format. This offers the ad
vantage of saving disk space and compile-time processing
when a user is initially migrating from a non-DIGITAL
COBOL system to VAX-11 COBOL.

ERRORS

COB

FILNOTFOU

file not found on OPEN

Explanation: The named file was not
found during the execution of the open
statement. The file status variable, if pre
sent, has been set to 97. No applicable
USE procedure has been found.

User Action: The user should examine
the referenced directory to check for the
existence of the named file . Another
common source of this error is a mistake
in spelling the file specification for the
file.

Figure 7-11
Interactive Explanation of Error

7-13

Additional Features
Some additional features of the VAX-11 COBOL compiler
are:

• Subscripts can be arithmetic expressions.

• Subscripting and indexing are interchangeable.

• The CONTINUE statement is included. It transfers con
trol to the next executable statement and can replace
conditional or imperative statements.

• The AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-
COMPILED, and SECURITY paragraphs are included.

• INITIAL clause on the Program-ID is included.

• User-defined alphabets are included.

• PADDING CHARACTER is supported in the FILE-CON
TROL paragraph .

• VALUE OF clause is included.

• Delimited scope statements are included (e.g. , END
ADD, END-IF) .

• All arithmetic statements with overlapping operands
function as if the operands did not overlap except for
operands specified in LINKAGE SECTION or as EXTER
NAL.

• AL TEA statement is included.

• CALL data-name is included. Both ON OVERFLOW and
EXCEPTION are supported.

• CANCEL statement is fully implemented.

• INITIALIZE statement is fully implemented.

• INSPECT statement is fully implemented including com
bined TALL YING and REPLACING format.

• SET statement supporting mnemonic-names and con
dition-names is included.

• Independent segments (segments 50 and above) of the
SEGMENTATION module are included.

• WRITE advancing mnemonic-name and associated
SPECIAL NAMES C01 is included.

• Use of source file libraries by the COPY statement is in-
cluded.

This powerful , flexible, and easy-to-use compiler is lay
ered with the VAX/VMS operating system and is available
to those customers who require COBOL with VAX/VMS,
V2.0.

Sample VAX-11 COBOL Code
This sample VAX-11 COBOL code demonstrates some of

the powerful language elements of VAX-11 COBOL. It illu
strates an interactive COBOL program which will generate
various types of reports depending upon user specified
options. The program operates on an indexed information
file via the dynamic access mode. Illustrated are three ma
jor COBOL verbs: ACCEPT, DISPLAY and INSPECT.

In Figure 7-12, the program describes the file organization
and the access mode. Also described are the primary and
alternate keys used for accessing the file randomly.

INPUT-OUTPUT SECTION.

FILE CONTROL.
SELECT CUSTOMER-FILE

ASSIGN TO "CUSTOM.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUST-CUST-NUMBER
ALTERNATE RECORD KEY IS

GUST-CUSTOMER-NAME
FILE STATUS IS CUSTOMER-FILE-ST A TUS.

SELECT STATEMENT-REPORT
ASSIGN TO "STATEM.REP"
FILE STATUS IS

STATEMENT-REPORT-STATUS.

Figure 7-12
File Description

In Figure 7-13, using the DISPLAY verb, the interactive
COBOL program requests the user to specify an options
selection. The user response is then transmitted to the
program via the ACCEPT verb. The program uses the IN
SPECT verb to check that a valid response has been re
ceived.

DISPLAY "ENTER OPTIONS:".
DISPLAY "S = Print statements".
DISPLAY" I = Print invoices".
DISPLAY "CA= Mail all catalogs" .
DISPLAY "CO = Mail selective catalogs".
DISPLAY "CL= Credit limit letters".
ACCEPT OPTIONS-AREA.
MOVE ALL ZERO TO OPTION-STORAGE.
IF OPTIONS-AREA =SPACES

DISPLAY "Discrepancy Report Only"
GO TO CONFIRM-OPTIONS.

MOVE 0 TO A-COUNT.
INSPECT OPTIONS-AREA TALLYING

OPTION-ENTRY (1) FOR ALL "S"
OPTION-ENTRY (2) FOR ALL "I"
OPTION-ENTRY (3) FOR ALL "CA"
OPTION-ENTRY (4) FOR ALL "CO"
OPTION-ENTRY (5) FOR ALL "CL':

Figure 7-13
Procedure Division Using
Interactive COBOL Verbs

7-14

IF OPTION-STORAGE= ALL ZERO
DISPLAY "No options recognized"
STOP RUN.

DISPLAY "Selected options'.'
IF WANT-STATEMENTS

DISPLAY "Statements'.'
IF WANT-INVOICES
DISPLAY " Invoices"

Figure 7-13 (Can 't)
Procedure Division Using
Interactive COBOL Verbs

Figure 7-14 illustrates the dynamic access method , i.e.,
shift from random to sequential access. The user moves
zero to the primary record key, searches the file randomly,
and commences sequential processing at the first non-ze
ro number.

OPEN INPUT CUSTOMER-FILE.
MOVE "000000" TO CUST-CUST-NUMBER.
START CUSTOMER-FILE

KEY IS> CUST-CUST-NUMBER.
OPEN OUTPUT STATEMENT-REPORT.

MAINLINE SECTION
SBEGIN .

READ CUSTOMER-FILE NEXT
ATEND

GO TO END-PROCESS.
ADD 1 TO RECORD-COUNT

Print statement if required

Figure 7-14
Random to Sequential Access

VAX-11 BASIC
Introduction

The new BASIC product gives the VAX user all the benefits
of a highly interactive programming environment and
high-performance development language. It combines the
best features of PDP-11 BASIC-PLUS-2 and RSTS/E BA
SIC-PLUS with the significant performance and address
ing benefits provided by a native mode VAX language that
is fully integrated with the VMS environment.

VAX-11 BASIC is a highly extended implementation lan
guage. It provides powerful mathematic and string han
dling facilities, support for symbolic characters, and full
RMS indexed, sequential, and relative 1/0 operations.
There does not yet exist an ANSI standard comparable to
th is level of BASIC.

VAX-11 BASIC can be used as though it were either an in
terpreter or a compiler. A fast RUN command and support

for direct execution of unnumbered statements (immedi
ate mode) gives the VAX-11 BASIC user the "feel " of an
interpreter. However, this product can also be used in a
compilation mode, where it generates native-mode object
modules like the other VAX compilers. In either case, VAX-
11 BASIC generates optimized VAX native-mode instruc
tions which have extremely fast execution times. Typical
compilation speeds are up to 3,000 lines per minute and
computations will generally execute up to five times faster
than the same programs on a PDP-11 .

Following is a brief overview of the general characteristics
of VAX-11 BASIC.

General Characteristics
VAX-11 BASIC generates in-line native VAX-11 instruc
tions in both its RUN and its compilation modes. The code
produced takes advantage of VAX/VMS native mode ca
pabilities, including:

• direct calls on operating system service routines, even
in immediate mode

• transparent access to DECnet

• direct calls to the Common Run Time Library and stan
dard system utilities, including VAX-11 SORT /MERGE

• direct calls to separately compiled native mode pro
cedures written in any language that uti lizes the VAX
procedure call ing standard

• program sizes up to 2 billion bytes are allowed

• all modules are position-independent (PIG) and can be
run as fully re-entrant code

• the VAX-11 DEBUG facility has full support for VAX-11
BASIC

The code generated by VAX-11 BASIC uses the standard
VAX/VMS traceback facility for determining the source of
run-time errors. If a fatal program error should occur, an
English message is printed identifying the module and line
number where the error occurred . The English text, the
traceback, and the integrated BASIC HELP utility provide
a powerful program debugging environment.

Object modules produced by VAX-11 BASIC can be linked
with native mode modules produced by other language
processors including BLISS, COBOL, FORTRAN, PAS
CAL, and MACRO.

Structured Programming
Structured programming adds some of the features of a
block structured language (such as PASCAL) to BASIC to
allow complex programs to be written without recourse to
subroutines or obscure programming techniques. This
makes programs easier to write and maintain.

Figure 7-15 below illustrates a record defined by a MAP
statement, successive retrievals by the use of a GET state
ment, and iteration controlled by a WHILE ... NEXT state
ment block.

The SUBPROGRAM and FUNCTION constructs in VAX-11
BASIC have structured END and EXIT statements. In addi
tion, BASIC allows the use of statement modifiers which al
low conditional or repetetive execution of the statement
without requiring the user to construct artificial loops or
block constructs. Any non-declarative statement in VAX-

7-15

11 BASIC can have one or more statement modifiers. The
BASIC statement modifiers include FOR, IF, UNLESS, UN
TIL, and WHILE constructs. Each of the statements in Fig
ure 7-16 illustrates the use of a statement modifier.

Data Types
VAX-11 BASIC increases the number of data types avail
able to the BASIC programmer by allowing the use of 32-
bit integer and 64-bit floating point data values. Tabel 7-3
below describes the data type supported by VAX-11 BA
SIC.

Data Type

REAL

WORD

LONG

INTEGER

STRING

Declarations

Table 7-3 Data Types

Meaning

Specifies that the variable or constant
contains floating-point data. The preci
sion depends on the COMPILE com
mand qualifier you use. COM
PILE/ SINGLE specifies 32-bit floating
point numbers; COMPILE/DOUBLE
specifies 64-bit floating point numbers.

Specifies that the variable or constant
contains word-length integer data, re
gardless of the COMPILE command
qualifier you use.

Specifies that the variable or constant
contains longword integer data, regard
less of the COMPILE command qualifier
you use.

Specifies that the variable or constant
contains integer data. This data type de
faults to the qualifier used at compile
time. If you compile the program with the
/WORD qualifier, integers are 16 bits
long; with the /LONG qualifier, 32 bits
long.

Specifies that the variable or array con
tains string data.

VAX-11 BASIC allows inplicit declaration of variables. Un
less specifically named in a declaration statement, a vari
able will be declared by its first reference. The PDP-11 BA
SIC-PLUS-2 convention is to implicitly type a variable or
value by the trailing character in its representation, e.g.
ABC$ is a STRING variable; XYZ% and 123% are INTEG
ER; T12, 314159, and 3.14 are implicitly REAL.

Variables can be declared in COMMON, MAP, or DE
CLARE statements. Both COMM.ON and MAP statements
are used to declare static storage areas-typically 1/0 rec
ords or shared data blocks. If a program has several
named common statements with the same name, the com
mon program sections (PSECTs) are stored one after the
other. If several MAP statements have the same name,
they overlay the same PSECT.

The DECLARE statement is used to explicitly type vari
ables, functions, and constants. Note that the appearance
of a variable name in a DECLARE statement implies that

99

100

110
200

MAP (REC1)

MAP (REC1)

EMPLOYEE RECORD DEFINITION(S)

LINE 100: THE "GENERAL DEFINITION"
LINE 200: THE "EXPANDED DEFINITION"

STRING EMPLOYEE.RECORD = 36 ,
REAL RATE,
INTEGER ENDFLAG

STRING LAST.NAME = 20,
STRING FIRST.NAME = 12,
STRING MID.INITS = 4,
REAL FILL ,
INTEGER FILL

21 0 --!
298
299
300 FILE.NAME.1$ ="EMPLOYEE.DAT"
310
320 OPEN FILE.NAME.1$ AS FILE #1 ,SEQUENTIAL, ACCESS READ, MAP REC1
330
400 TOTAL.RATES= 000000.00
410
411
490 --------------- COMPUTE SUM OF RATES IN FILE-------------- -
498
499
500 WHILE NOT ENDFLAG

510
511
590
591
599
600
610
611
690
699
700
900
999

GET #1
TOTAL.RATE = TOTAL.RATE + RATE

NEXT

--------------- REPORT CUMULATIVE SUM BELOW

PRINT "TOTAL.RATE: $";TOTAL.RATE

--------------- REPORT COMPLETED: CLOSE FILE(S)

CLOSE#1

END

Figure 7-15

Sample Structured Basic Program

A(I) = A(I) + 1 FOR I= 1TO100

&
&
&
&
&

&
&

&
&
&
&
&

100
110
200
210
300
310
400
410
500
510
600

PRINT SUMMARY.DATA IF OPTION .1 AND REPORT ="MONTHL Y"

PRINT FNHOUSE.PAYMENT

GET#1

GOSUB 12300

PRINT " NORMAL EXIT"

UNTIL

WHILE

UNLESS

IF

Figure 7-16

Statement Modifiers

7-16

RATE < 123.45

EMPLOYEE.NUMBER < 76000

ERROR.FLAG

TOTAL > 1000 UNLESS ERRORS > 0

that variable will not be in static storage (see MAP, COM
MON above).

Finally, the EXTERNAL statement is provided to let the BA
SIC programmer explicitly declare data types for symbols
external to the current program unit, e.g. the name of a
VMS system service module, an external BASIC function,
or an external constant which is to be global in an applica
tion.

The OPEN statement in VAX-11 BASIC allows specifica
tion of file crganization , access modes, file sharing, record
formats , record size, and file allocation. At the record level,
a BASIC program can FIND, GET, PUT, UPDATE, DELETE,
or RESTORE any record in a file either sequentially or ran
domly.

Figure 7-17 illustrates the use of COMMON, MAP, DE
CLARE, and EXTERNAL statements.

VAX-11 BASIC can access files created by other native
mode languages, assuming appropriate data representa
tions are maintained with the records.

Symbolic Characters
Files and Records
VAX-11 BASIC supports RMS sequential , indexed, and re
lative file organization . In addition, BASIC applications can
access virtual arrays (stored on files) , terminal-format
files , and block 1/0 files via RMS.

BASIC now supports references to symbolic charac
ters-those characters in the 96-character ASCII set which
do not print, e.g. NUL, SOH , FF, CR, etc. Figure 7-18 illu
strates the use of symbolic characters in a BASIC pro
gram.

100 ! --------- ------------- COMMON STATEMENTS --------------------
101 !
102 COMMON (DATASET1) REAL A,B,C,D,E,F,G,H,O,P,Q,R,S,T,U,V,W,X,Y,Z,

INTEGER 1,J,K,L,M,N
STRING S 1,S2,S3,S4

103
104
105
200
201
202

COMMON (DATASET1) LAST.NAME$=10, FIRST.NAME$=5

MAP STATEMENTS -------------- -------

203
204

205
300
301
302

303 !

MAP (DATASET2)

MAP (DATASET2)

DECLARE

304 DECLARE

305

REAL
INTEGER
STRING

REAL
INTEGER
STRING

DECLARE STATEMENTS

INTEGER
REAL
LONG
WORD
STRING

INTEGER

REAL
STRING

306 DEF CONCAT(STRINGY, STRING Z)
307 CONCAT = Y + Z
308 FNEND
309
310 PRINT CONCAT("THIS IS" ," THE RESULT")
311 !

PART.NUMBER, COST,
VENDOR.CODE, QA.INDEX,
VENDOR.ID=40

FILL , FILL ,
FILL , FILL ,
VENDOR.NAME= 10, FILL,
VENDOR.TWX= 30

COUNTER.1, COUNTER.2,
STANDARD.DEVIATION ,
A.32 .BIT.VARIABLE,
A.16.BIT. VARIABLE,
LAB .NAME= 20

CONSTANT

CONSTANT
FUNCTION

DEBUG .MODE
MY.P = 3,
MY.Pl
CONCAT

312 !----------------------------- EXTERNAL ST A TEM ENTS ------- -------------------
401 !

= 0,

= 3.1416,

402 CAN BE USED FOR VMS SERVICES
404 EXTERNAL INTEGER FUNCTION SYS$ASSIGN
405
406 EXTERNAL INTEGER FUNCTION SYS$TRNLOG ! LOGICAL TRANSLATIONS
407
408 EXTERNAL INTEGER FUNCTION SYS$QIOW ! SYNCHRONOUS QIO CALL
410
500 !-------- --- - ----- ----- -- --------- -- -- ------ -- ------ ------- ----

Figure 7-17

Declaration Statements

7-17

&
&

&
&

&
&
&

&
&
&
&
&

&
&

&

10
11
15
19
20

21
30
31

PRINT "PROGRAM STARTS ... ";LF;LF;"AT "+ TIME$(0)

TITLE$= "SUMMARY REPORT"

PRINT TITLE$;CR; FOR I = 1 TO 5

PRINT

Bold copy
by overprinting

• Direct execution of unnumbered BASIC statements, al
l owing quick verification of algorithms, inspec
tion / change of data values, and invocation of subrou
tines or functions in a halted BASIC program.

• An integral HELP facility helps program
debug/development by providing online reference text
from the BASIC manual set.

40 PRINT A(I) FOR I= 1TO10 Output report data
• The VAX-11 BASIC system can produce source lan

guage listings with embedded diagnostics indicating the
line and position of any errors. Fully descriptive diag
nostic messages are provided at the point of an error.
Many error conditions are caught at compile time. At the
user's option, VAX-11 BASIC can also output a machine
language listing and/or a cross-reference listing .

41
50
51
99

Ready
RUN
TEST5

PRINT

END

28-MAY-1980

PROGRAM STARTS ...

SUMMARY REPORT
0
0
0
0
0
0
0
0
0
0

Ready

CALL Facility

AT05:20 PM

Figure 7-18

Symbolic Characters

17:20

The CALL statement allows the BASIC programmer to in
voke procedures and functions that are external to the cur
rent source module . By using the VMS native mode LINK
utility, procedures written in any of the VAX native mode
languages can be invoked, i.e., BASIC routines can call or
be called by procedures written in COBOL , CORAL ,
FORTRAN, PASCAL, etc.

The CALL statement in VAX-11 BASIC has been extended
to allow a procedure to pass parameters BY REFerence,
BY VALUE, or BY DESCriptor. These mechanisms con
form to the VAX-11 procedure calling standard and allow
BASIC programs to call VMS service routines and accept
returning status values.

Shareable Programs
Applications written in VAX-11 BASIC can be made share
able images by the VMS LINKER. BASIC now generates
fully re-entrant PIC code.

Developing BASIC Programs
VAX-11 BASIC delivers a high-productivity development
environment. The key features of this environment include:

• Automatic line number generation via SEQUENCE com
mand.

• Integral line editing with EDIT.

• A RUN command which allows a program to be placed
directly into execution without requiring a separate LINK
operation .

7-1 8

• The VAX/VMS SYMBOLIC DEBUGGER lets the pro
grammer set breakpoints, and inspect or change the
value of variables during execution of a program.

Figure 7-19 illustrates the use of several of these features .
The text appearing in blue type in Figure 7-19 corresponds
to user input, the remaining text is supplied by the BASIC
system.

The LOAD Command
A major goal of VAX-11 BASIC is to support a program de
velopment environment. The LOAD command allows a
user to stay in BASIC, even when a program under devel
opment involves several separately compiled BASIC sub
routines. When a RUN command is issued, any BASIC
modules moved into memory by the previous LOAD com
mand are automatically bound together with the module
under development and the resulting in-memory image
begins execution, i.e., the user is not required to leave BA
SIC, invoke the LINKER, and use the DCL $RUN com
mand. This speeds program development considerably.

Once an application has been checked out, a final call on
the LINKER can be used to create a shareable native mode
executable image for production use.

Error Handling
VAX-11 BASIC allows user-directed error and event han
dling . Occurence of an error can activate one or more rou
tines which handle the error (or event) , and then return
control to the point where the error occurred (RESUME) ,
or to the calling program (ON ERROR GO BACK), or to the
BASIC system itself for standard cleanup and return of
control at the BASIC command level.

In determining the cause of an error, the BASIC prog ram
can use the value of : ERR-the error message number as
signed by BASIC, ERL-the line number where the error
occured, ERN$-the name of the BASIC module where the
error occurred , and ERT$(ERR)-the error message text
which the BASIC system would print if the error were not
trapped by the program.

Migration to VAX/VMS
During the VAX-11 BASIC Field Test , numerous sites
moved programs from BASIC-PLUS-2 and BASIC-PLUS
(on PDP-11 systems) to the VAX native BASIC. A typical
site converted literally hundreds of programs and general
ly had few difficulties. Minor changes were made to BA
SIC-PLUS-2 programs: the error checking in VAX-11 BA-

100 1------ --------------INPUT A FILE NAME, COUNT NUMBER OF LINES IN IT---- -- -- - ---- ----
110 LINPUT "What file to be opened ", FILE.NAME$
140 F.NAME$ = EDIT$(FILE.NAME$,32%)
160 OPEN F.NAME$ FOR INPUT AS FILE #1
180 ON ERROR GOTO 900
200 LINPUT#1 %,TEXT$ FOR I = 1to1000000
210 STOP
900 LINE. = ERL

NUMBER. = ERR
MESSAGE$= ERT$(NUMBER .)
RESUME LINE 910

910 PRINT ... END, FROM LINE"; LINE.;"WITH TEXT: "; MESSAGE$;
PRINT " - AFTER " ;! ;"RECORDS"

991 STOP
995 PRINT THE END •• •"
999 END

Ready

RUN NH

%BASIC-E-SYNERR, syntax error
at line 900 statement 4

RESUME LINE 910

Ready

HELP RESUME

RESUME

t

The RESUME statement marks the end of an error handling routine ,
and returns program control to a specified line number.

Format

RESUME [< lin-num >]

Examples

990 RESUME 300

or

990 RESUME

Ready

LIST 900
TEST6 28-MAY- 1980 17:15

900 LINE. = ERL
NUMBER. = ERR
MESSGE$ = ERT$(NUMBER.)
RESUME LINE 910

Ready

EDIT 900 I LINE I I

900 LINE. = ERL
NUMBER. = ERR
MESSAGE$ = ERT$(NUMBER)
RESUME 910

Ready

RUN
TEST6 28-MAY-1980 17:16

What file to be opened ? TEST6.BAS
•END, FROM LINE 200 WITH TEXT: ?End of file on device - AFTER 17 RECORDS
%BAS-l-STO, Stop
-BAS-1-FROLINMOD, from line 991 in module TEST 6
Ready

PRINT MESSAGE$;" FROM FILE"; F.NAME$
?End of file on device FROM FILETEST6.BAS
Ready

PR INT F.NAME$;CR; FOR I= 1 TO 5
TESTS.BAS
Ready

Figure 7-19

BASIC Program Development Features

7-19

SIC caught actual bugs in many "working" programs. BA
SIC-PLUS programs were converted to EXTEND mode (or
run through the BASIC-PLUS to VAX-11 BASIC translator)
and then modified as though they were in BASIC-PLUS-2.
Typically, these changes were made:

• the MODE expression on an OPEN statement was
changed to the corresponding set of keywords, e.g .,

OPEN F$ AS FILE #1 MODE2%
becomes

OPEN F$ AS FILE #1, ACCESS APPEND

• MAP and DIM statements were moved to occur before
OPEN statements

• RSTS/E SYS-CALLS were examined and removed if not
supported by VMS

Files were then copied over on tape or by using DECnet,
and the programs were RUN under VAX-11 BASIC. In the
event errors were detected by BASIC, the on line HELP fa
cility was used to determine any additional changes need
ed for correct compilation.

Certain features were carried forward from PDP-11 BA
SIC-PLUS and PDP-11 BASIC-PLUS-2 to VAX-11 BASIC
in order to make the move to VAX easier. These include:

• BASIC-PLUS to VAX-11 BASIC Translator utility

• Program RESEQUENCE utility from BASIC-PLUS-2
V1 .6

• FIELD statement

• CVT, SWAP, and MAGTAPE functions

• Foreign buffer support

• String arithmetic

• Numerous non-privileged RSTS/E SYS calls

• Virtual arrays

Performance
The programs in Figure 7-20 illustrate the level of com
pute-bound performance possible under VAX-11 BASIC.

PRIMES 29-MAY-1980 21 :08
90 OPEN "T.1" FOR OUTPUT AS FILE #1, RECORDSIZE
132
100
110
120
125
130
140
150
160
170
180
190
200
210
220
230
240
250
255
260
270

rem
rem

Interface Age's benchmark program to
discover the first 1000 prime numbers

rem
PRINT CHR$(7)
t1 = time(1)
FORn=1to1000

FOR k = 2 TO 500

next k
PRINT#1 , N;
NEXTn
t2 = time(1)
PRINT CHR$(7)

m=n/k
l=int(m)
IF I = 0 THEN 230
IF I = I THEN 220
1Fm > ITHEN220
IF m =I THEN 240

PRINT "Elapsed time: ";0.1 *(t2-t1);" seconds"
END

Program A was taken from page 84 of the March, 1980 is
sue of BYTE magazine. Program B is very similar and is
from page 130 of the June, 1980 issue of Interface Age.

Finally, initial performance tests on VAX-11 BASIC were
samples of the "Towers of Hanoi" program and the Whet
stone benchmark. These tests show VAX BASIC execution
speeds comparable to non-optimized VAX-11 FORTRAN.

Additional Functions
The features listed below complete the promise of a BA
SIC that leads the competition in virtually every area. Th is
is not an exhaustive list, but does serve to indicate key ca
pabilities of this new product.

• powerful string manipulation functions for creating , con
verting , searching , editing , and extracting character
values

• variable names up to 30 characters long

• maxiumum length of a single string is 65,535 characters

• multiple statements on a line

• multiline IF ... THEN ... ELSE statements

• optional use of line continuator "&" and statement se
parator " \ ", e.g.,

100 PRINT vs.
PRINT
PRINT

100 PRINT
\ PRINT
\ PRINT

&
&

• DCL pass-through in the BASIC command mode by
simply prefixing the DCL command line with a dollar
sign , e.g. ,

Ready
$DIR *. BAS, *.OBJ

• Provision for up to ten individual BASIC object library
files for automatic use at RUN time when developing an
application using separately-compiled BASIC subrou
tines.

System CPU Run-time

TRS-80 Z80 1982 sec

Technico Tl9900 585 sec

DEC-10 PDP-10 65 sec

BASIC-PLUS- 2 PDP-11 /70 11 sec

VAX-11 BASIC 11/780 2.7 sec

Figure 7-~.-A

Program A

7-20

29-MAY-1980 21 :09 PRIME3
10 PRIME NUMBER PROGRAM #3 OF 3 &

&
FROM MARCH 1980 BYTE MAGAZINE &
PAGE84 &
"TRS-80 PERFORMANCE... &
EVALUATION BY PROGRAM TIMING &
(INCLUDES 370/ 148 PL/I AND BAL TIMES &

15 DECLARE INTEGER M,K
20 OPEN " PRIMES3.TMP" FOR OUTPUT AS FILE #1
30 PRINT "PRIME3 " + TIME$(0)
40 PRINT
45 T1=TIME(1)
50 PRINT #1 , 1 ;2;3;
55 C=O
70 M=3
80 M=M+2
90 FORK= 3 TO M/ 2 STEP K-1
100 IF INT(M/K)'K-M = 0 THEN 190
110 NEXTK
121 PRINT#1 %, M;
122 C=C+1
190 IF M < 10000 then 80
195 PRINT#1 %,"C= ";C
196 PRINT "C= ";C
199 T2 = TIME(1%)

P$ = " DONE: " +NUM1$(0.1'(T2-T1))+" CPU SEC"
200 PRINT P$

PRINT #1, P$
201 END

TRS-80 BASIC Z80

Assembler Z80

Optimizing 370/148
PL/I

BAL 370/148

VAX-11 BASIC 11 /780

23470 sec

1370 sec

79 sec

56 sec

58.2 sec

Figure 7-208
Program B

VAX-11 PL/I
Introduction
VAX-11 PL/ I is an extended implementation of the General
Purpose Subset (X3.74-"Subset G") of ANSI PL/I , X3 .53-
1976. VAX-11 PL/I extensions to the subset language are
either full language PL/I features included because they
were highly desirable, or system-specific extensions in
tended to provide more complete access to VAX/VMS fea
tures. VAX-11 PL/I is a shareable compiler which runs un
der the VMS operating system and generates highly op
timized positon-independent machine code.

All compiler-generated code, with the exception of some
built-in functions calls and 1/0 operations, is in line. Out-of
line operations are performed by the VAX-11 Common
Run Time Library. Most high-level language operations
are supported directly by VAX hardware instructions.

VAX-11 PL/I supports the VAX Symbolic Debugger.

All VMS system services are available to programs written
in PL/I via the CALL statement. Furthermore, VAX-11 PL/I
fully supports RMS, the VAX/VMS record management
services. A set of ENVIRONMENT options provides access
to a large subset of RMS features . All RMS file organiza
tions are supported : sequential , relative , and indexed .

VAX-11 PL/I fully supports the VAX interlanguage calling
standard. Routines written in any other native mode lan
guage can call PL/I and vice versa . In addition, all
VAX/VMS system services and system utilities (Run Time
Library, SORT, etc.) are available via the PL/I CALL state
ment. For system services, a library of predefined ENTRY

7-21

declarations is provided to minimize the coding required
to use these services.

Subset G is a rich language that combines the scientific
computing abilities of FORTRAN, the commercial data
handling of COBOL, the string manipulation of BASIC, and
the block structuring of ALGOL. Selected extensions fur
ther enhance these basic capabilities.

The remainder of this section :

• provides an overview of the G Subset

• lists the extension made to the language to provide en
hancements for PL/I programs executing in the
VAX/VMS operating system environment

• lists features of full PL/I that were excluded from the G
Subset but that have been incorporated in the im
plementation of VAX-11 PL/I

• lists the implementation-defined values that are used in
VAX-11 PL/I

THE G (GENERAL-PURPOSE) SUBSET
The G subset of PL/I was designed to be useful in scientif
ic, commercial , and system programming, especially on
small and medium-size computer systems. Among the pri
mary goals of the design of the subset were:

• to include features that were easy to learn and to use
and to exclude features that were difficult to learn or
prone to error

• to provide a subset that would be easily portable from
one computer system to another

• to exclude features that were not often used and whose
implementation greatly increased the complexity of the
run time support required by the compiler

The essential elements of the subset are described below.

Program Structure
The G subset includes a complete character set , with com
ments, identifiers, decimal arithmetic constants, and sim
ple string constants.

Begin blocks and DO-groups are included in the subset.
Each block or group in the program must be terminated
with an END statement. For example:

ON ENDFILE(INFILE) BEGIN;
PUT SKIP LIST('End of input file ');
CLOSE FILE(INFILE) ;
END;

Program Control
The fol lowing program control statements are included in
the subset: CALL, RETURN, IF, DO, GOTO, null , STOP,
ON, REVERT, and SIGNAL.

The DO statement options supported are TO, BY, WHILE,
and REPEAT.

An IF statement may contain unlabeled THEN and ELSE
clauses. A null statement may be used to specify no action
for a given condition . For example:

IF A< B THEN; ; • no action•;
ELSE PUT LIST('valid ');

An ON statement may specify a single condition . The con
dition names supported are ERROR, ENDFILE, EN DP AGE,
FIXEDOVERFLOW, KEY, OVERFLOW, UNDEFINEDFILE,
UNDERFLOW, and ZERODIVIDE. For example, an attempt
to divide by zero can be detected and handled by an ON
unit that specifies ZERODIVIDE:

ON ZERODIVIDE BEGIN;
1• action to be taken

·1
END;

Storage Control
The subset includes the assignment statement and the as
signment of array and structure variables whose dimen
sions and data types match . The subset also permits ag
gregate promotion, that is, the assignment of a scalar
expression to every element or member of an aggregate
variable. For example:

ARRAY= A,;
evaluates the expression A, and assigns the result to every
element of ARRAY.

The subset also provides the INITIAL attribute , which
specifies initial values for variables when they are de
clared . For example:

DECLARE EOF BIT(1) STATIC INITIAL('O'B) ;

declares an "end-of-line" flag named EOF and sets its ini
tial value to 'O'B (false). In the subset, only static variables
may be initialized .

The ALLOCATE statement with the SET option and the
FREE statement are included in the subset. ALLOCATE

7-22

dynamically allocates storage for a based variable and
sets a pointer to the location of the allocated storage. For
example:

ALLOCATE LIST_ ELEMENT SET(LIST _POINTER);

allocates storage for the based variable LIST_ ELEMENT
and sets LIST POINTER to the location of the allocated
storage. The allocated storage can be subsequently re
leased by:

FREE LIST POINTER-.LIST ELEMENT - -
Input/Output
The 1/ 0 statements are:

• OPEN and CLOSE.

• READ, WRITE, DELETE and REWRITE for record 1/0 .
Record 1/ 0 statements operate on an entire record in a
file.

• GET, and PUT, with FILE, STRING, EDIT, LIST, PAGE,
SKIP, and LINE options for stream 1/ 0 . Stream 1/0
statements operate on a stream of ASCII input or output
data; the stream may be a file of such data or a charac
ter-string variable or expression .

The file attributes, specified in DECLARE or OPEN, are
DIRECT , ENVIRONMENT , INPUT, KEYED , OUTP UT ,
PRINT, RECORD, SEQUENTIAL, STREAM, and UPDATE.

The FORMAT statement is included. The format items are
E, F, P, A, X, R, PAGE, SKIP, COLUMN, TAB, and LI NE.
Format items, and the GET EDIT and PUT EDIT state
ments, provide a formatted 1/0 capability comparable to
that of FORTRAN. For example:

PUT EDIT(A) (F(S,2)) ;

writes out the value of A as a fixed-point decimal nu mber
of up to five digits, two of which are fractional.

Attributes and Pictures
The DECLARE statement is included in the subset. All
names must be declared , either by means of a DECLARE
statement or by means of a label prefix.

The attributes supported are: ALIGN ED, AUTOMATIC ,
BASED, BINARY, BIT , BUil TIN , CHARACTER, DECIMAL,
DEFINED, DIRECT, ENTRY, ENVIRONMENT, EXTERNAL,
FILE, FIXED, FLOAT, INITIAL, INPUT, INTERNAL, KEYED,
LABEL, OPTIONS, OUTPUT, PICTURE, POINTER, PRINT,
RECORD, RETURNS, SEQUENTIAL, STATIC, STREAM ,
UPDATE, VARIABLE, and VARYING.

The picture characters included are CR, DB, S, V, Z, 9, -,
+. $, and • . The picture insertion characters (. , I B) are
also included. Pictures allow special characters to be in
serted in a fixed-point decimal number. The picture facility
(on output) is comparable to the PRINT USING statement
of BASIC. For example:

PUT EDIT(A) (P '$99999V.99');

Writes out the value of A in fixed-point format with five in
tegral digits and two fractional digits, and precedes the
number with a dollar sign .

Built-in Functions and Pseudovariables
PL/I provides a set of built-in functions that perform
common calculations and data manipulation . A built-i n
function may be used without declaration , wherever an
expression of the same data type is permitted . The bui lt-in

functions in the subset are: ABS, ACOS , ADDA, ASIN,
ATAN , ATAND, ATANH, BINARY, BIT, BOOL, CEIL,
CHARACTER, COLLATE, COPY, COS, COSD, COSH,
DATE, DECIMAL, DIMENSION, DIVIDE, EXP, FIXED,
FLOAT, FLOOR, HBOUND, INDEX, LBOUND, LENGTH,
LINENO, LOG , LOG2, LOG10, MAX, MIN, MOD, NULL,
ONCODE, ONFILE, ONKEY, PAGENO, ROUND, SIGN,
SIN , SINO, SINH, SQRT, STRING, SUBSTR, TAN , TAND,
TANH , TIME, TRANSLATE, TRUNC, UNSPEC, VALID, and
VERIFY .

Subset G also provides pseudovariables that can be used
as the targets of assignment statements. The pseudovari
ables are PAGENO, STRING , SUBSTR, and UNSPEC. For
example, whereas the SUBSTR built-in function returns a
substring of a specified bit or character string, the
SUBSTR pseudovariable allows the assignment of an
expression to such a substring .

Expressions
The subset supports all infix and prefix operators, the lo
cator qualifier, parenthesized expressions, subscripts, and
function references . Implicit conversion from one data
type to another is restricted to those contexts in which the
conversion is likely to produce the desired results. For ex
ample:

DECLARE I DECIMAL;
I= '1.2' ;

converts the character string ' 1.2' to the decimal equi
valent and assigns it to the decimal variable I. However,
the following assignment:

DECLARE B BIT(8);
B = 'A';

is not valid because, to be convertible to a bit string , a
character string must consist entirely of 0 and 1 charac
ters .

VAX-11 EXTENSIONS TO THE
G SUBSET STANDARD
Procedure-Calling and Condition-Handling Extensions
The following extensions to PL/I were made to allow VAX-
11 PL/I procedures to call procedures written in any other
programming language that also supports the VAX-11
calling standard.

1. The attributes ANY and VALUE describe how data are
to be passed to a called procedure.

2. The VARIABLE option for the ENTRY attribute permits
a PL/I procedure to call a non-PL/I procedure with an
argument list of variable length . It also permits a pro
cedure to omit arguments in an argument list.

3. The DESCRIPTOR built-in function may be used to
pass an argument by descriptor to a non-PL/I pro
cedure.

The following new attributes provide storage classes for
PL/I variables. These attributes permit PL/I programs to
take advantage of features of the VAX-11 linker and to
combine PL/I procedures with other procedures that use
these storage classes.

1. The GLOBALDEF and GLOBALREF attributes let you
define and access external global variables and op
tionally to place all external global definitions in the
same program section .

7-23

2. The READ ONLY attribute can be applied to a static
computational variable whose value does not change.

3. The VALUE attribute defines a variable that is, in ef-
fect , a constant whose value is supplied by the linker.

The following extensions to ON condition handling provide
support for condition handling in the VAX/VMS environ
ment:

1. The ON statement supports the ANYCONDITION key
word . The ON-unit established by this keyword is exe
cuted when any condition occurs for which no explicit
ON-unit exists.

2 . The ON statement supports programmer-named
conditions with the VAXCONDITION keyword .

3. The RESIGNAL built-in subroutine permits an ON-unit
to keep a signal active.

4. The ONARGSLIST built-in function provides an ON
unit with access to the mechanism and signal argu
ments of an exception condition .

Support of VAX-11 Record Management Services
The options of the ENVIRONMENT attributes provide sup
port for many of the features and control values of the
VAX-11 Record Management Services (RMS). Additional
extensions have been made to the PL/I language to aug
ment this support, as described below.

1. The OPTIONS option is supported on the GET, PUT,
READ, WRITE, REWRITE, and DELETE statements.
For example:

GET LIST(A) OPTIONS(PROMPT('Enter A>'));

displays the prompt " Enter A" on the user's terminal.
2. These built-in subroutines provide file handling and

control functions : DISPLAY, EXTEND, FLUSH,
NXTVOL, REWIND, and SPACEBLOCK.

Miscellaneous Extensions and Deviations
The following list summarizes miscellaneous extensions
and deviations.

1. The RANK and BYTE built-in functions are supported ,
which return the ASCII code for a given character and
the ASCII character for a given code, respectively.

2. The expression in a WHILE clause or in an IF state
ment may be a bit string of any length . When evaluat
ed , the expression results in a true value if any bit of
the string expression is a one and in a false value if all
bits in the string expression are zeroes.

3. The control variable and the expressions in the TO,
BY, and REPEAT options of the DO statement are not
restricted to integers and pointers.

FULL PL/I FEATURES SUPPORTED
The items listed below are features that are explicitly ex
cluded from the subset standard but that have been imple
mented in VAX-11 PL/I. These features all exist in full PL/I.

1. The ENTRY statement is supported. The ENTRY state
ment provides a means of defining alternate entry
points to a procedure. For example, such an alternate
entry point can be invoked by a function reference
even though the containing procedure is invoked as a
subroutine.

2 . The ENVIRONMENT option is supported on the
CLOSE statement.

3. The picture characters Y, T, I, and R are supported,

and pictures may include iteration factors . These
characters provide an additional means of represent
ing zeros in a number (Y) and allow a digit and a sign
to be represented by a single character (T, I, R) .

4. RETURNS CHARACTER(*) is valid. That is, a function
can return a character string whose length is deter
mined by the program.

5. The FINISH condition is supported.
6. A REWRITE statement need not specify the FROM op

tion if the most recent 1/0 operation on the file was a
READ statement with the SET option. (A READ SET
statement acquires a record from an input file and
sets a pointer to the location of the 1/0 buffer contain
ing the contents of the record.)

7. The AREA and OFFSET attributes are supported . The
AREA attribute allows declaration and manipulation of
an entire region of memory (up to 500 million bytes),
and the OFFSET attribute declares variables that are
offsets into such an area. Offset variables may be
used in most contexts in which pointer variables are
permitted . Allocation within an area must be con
trolled by a user-written procedure.

8. The OFFSET and POINTER built-in functions are sup
ported . These functions convert pointer values to off
set values, and vice versa.

9. The POSITION attribute is supported. POSITION al
lows the declaration of a DEFINED variable to specify
the position within the base string at which the
definition begins.

10. Automatic variables may be initialized. The INITIAL at
tribute may contain scalar expressions and asterisks
with automatic variables. Asterisks indicate that the
corresponding variable or element in the declaration
is not assigned an initial value.

11 . The SET option is optional on the ALLOCATE state
ment if the allocated variable was declared with
BASED(pointer-reference) . The ALLOCATE state
ment then allocates storage for the based variable and
sets the referenced pointer variable to the storage lo
cation.

12. The character pair /* may be embedded in a com
ment. This feature permits a statement such as:

IF tVALID(P) THEN
PUT LIST('lnput error');/* check validity* I

to be "commented out":

I* IF tVALID(P) THEN
PUT LIST('lnput error');/* check validity* I

IMPLEMENTATION-DEFINED VALUES
AND FEATURES

1. VAX-11 PL/I supports the full 256-character ASCII
character set.

2. The default precisions for arithmetic data are:

FIXED BINARY (31)
FIXED DECIMAL (7)
FLOAT BINARY (24)
FLOAT DECIMAL (7)

where each precision is the number of binary or deci
mal digits, as appropriate.

7-24

3. The maximum record size for SEQUENTIAL files is
32,767 bytes minus the length of any fixed-length con
trol area.

4. The maximum key size is 255 bytes for character keys.
5. The default value for the LINESIZE option is as fol

lows. The line size is used by stream 1/0 statements to
determine when to go to a new line.
• If the output is to a physical record-oriented de

vice, such as a line printer or terminal , the default
line size is the width of the device.

• If the output is to a print file, the default line size is
132.

• If the output is to a nonrecord device (magnetic
tape), the default line size is 510.

6. The default value for the PAGESIZE option is as fol
lows. The page size is used by stream output (PUT)
statements to determine when to signal the ENDPAGE
condition.
• If the logical name SYS$LP _LINES is defined , the

default page size is the numeric value of
SYS$LP LINES - 6.

• If SYS$LP LINES is not defined, or if its value is -
less than 30 or greater than 90, or if its value is not
numeric, the default page is 60.

7. The values for TAB positions are columns beginning
with column 1 and every eight columns thereafter : 1,
9, 17, 25, .. 8*i + 1, where i is (line size)/8. List-directed
output (by the PUT LIST statement) is positioned on
tab stops if the output is to a file with the PRINT attri
bute.

8. The maximum length allowed for a file title is 128 char
acters. File titles are VAX/VMS file specifications that
are associated with PL/I file constants and file vari
ables.

9. The maximum number of digits in editing fixed-point
data is 34.

10. The maximum numbers of digits for each combination
of base and scale are:

FIXED BINARY -31
FIXED DECIMAL-31
FLOAT BINARY -113
FLOAT DECIMAL-34

11 . The default precision for integer values is 31 .
12. The maximum number of arguments that can be

passed to an entry point is 253.

VAX-11 PL/I Programming Example

Figure 7-21 illustrates a VAX-11 PL/I program. This pro
gram calls a VAX/VMS system service (SYS$TRNLOG) to
determine the equivalence string for a logical name.

The program TRNLN calls a VAX/VMS system service,
SYS$TRNLOG, to determine the equivalence string for a
logical name. SYS$TRNLOG is declared as an external en
try constant, with three parameters:

1. A character string of any length, representing the logi
cal name.

2. An integer representing the length of the translated
name.

3. A character string of any length representing the
translated name itself.

I* Translates logical names to equivalent strings• I

TRNLN: PROCEDURE OPTIONS (MAIN);

DECLARE SYS$TRNLOG ENTRY(

CHARACTER(*),
FIXED BINARY(15) ,
CHARACTER(*)

)
OPTIONS(VARIABLE)
RETURNS(FIXED BINARY(31)) ;

DECLARE INPUT CHARACTER(63) VARYING,
OUTPUT CHARACTERS(63),

I* VAX/VMS system service •I
I Parameters: ·I
I* Logical name ·I
I * Length of translated name •I
I* Translated name• I

I* Some arguments optional •I
I * SYS$TRNLOG returns integer* I

I* Input name* /
/* Translated name • I
I* Length of translated name •I
I* Return status of SYS$TRNLOG *I

OUTPUT_LEN FIXED BINARY(15) ,
RETURN_STAT FIXED BINARY(31),
SUCCESS BIT(1) I* Successful return •I

ALIGNED BASED (ADD(RETURN_STAT)) ;

DECLARE SS$ NO TRAN
GLOBALREF FIXED BINARY(31) VALUE;

%REPLACE NOTEND BY '1'B;
ON ENDFILE(SYSIN) STOP;

DO WHILE (NOTEND);
PUT SKIP;
GET LIST(INPUT)

I* Flag for undefined name*/

I* "Always true"--to control DO-group• I
I* Stop on CTRL/Z from terminal • I

I* Terminated by ON-unit* /

OPTIONS(PROMPT('Enter logical name '));

/* Invoke sytem service as PL/I function reference:• I
RETURN_STAT = SYS$TRNLOG((INPUT),OUTPUT _LEN ,OUTPUT,,,) ;

IF RETURN_STAT = SS$_NOTRAN THEN
PUT SKIP LIST(INPUT: :'not defined') ;

ELSE IF SUCCESS THEN
PUT SKIP LIST(INPUT::' is ':: SUBSTR(OUTPUT, 1,0UTPUT _LEN)) ;

END;
END TRNLN ;

Figure 7-21
Sample VAX-11 PL/I Code

The declaration also states that SYS$TRNLOG returns an
integer and can have an argument list of variable length .

Note that the explicit declaration of SYS$TRNLOG is
shown here for clarity . VAX-11 PL/I is supplied with a libra
ry of predefined entries for VAX/VMS system services, so
the declaration of SYS$TRNLOG can be replaced by the
single statement:

%INCLUDE SYS$TRNLOG;

The program also uses a global reference to
SS$_NOTRAN ; the return value of the system service
equals SS$_NOTRAN when there is no defined equi
valence for the given logical name.

SYS$TRNLOG actually requires that its first and third ar
guments be the addresses of character string descriptors.
VAX-11 PL/ I allows you to pass a character string by de
scriptor by declaring the correspond ing parameter as
CHARACTER(*) . Such a parameter can have an argument
that is a fixed-length character string of any length . If the

7-25

written argument for such a parameter is a varying-length
string, a dummy argument is created by the compiler . To
avoid the accompanying warning message, the argument
INPUT is enclosed in parentheses.

When a dummy argument is created, the invoked pro
cedure cannot modify the associated parameter. There
fore , the translated name (OUTPUT) is not declared as a
varying-length string . Instead, OUTPUT and OUT
PUT _LEN both are supplied as arguments to
SYS$TRNLOG, wh ich then assigns the necessary values to
them . The translated name is written out with a reference .
to the SUBSTR built-in function:

SUBSTR(OUTPUT, 1,0UTPUT _LEN);

which writes out a substring beginning at character 1 of
OUTPUT and continuing for OUTPUT_ LEN characters.

A sample session with the program might be:

$DEF LNK$LIBRARY DB1 :[PROJECT]MYLIB,OLB<RET>
$ R TRNLN < RET >

Enter logical name> LNK$LIBRARY<RET>
LNK$LIBRARY is DB1 :[PROJECT]MYLIB.OLB<RET>
Enter logical name> GRACE< RET >
GRACE not defined
Enter logical name> tZ
$

VAX-11 PASCAL
Introduction
VAX-11 Pascal , a re-entrant native mode compiler, is an
extended implementation of the Pascal language as de
fined by Jensen and Wirth in the Pascal User Manual and
Report(1974) .

Particularly suited to instructional use, Pascal is also an in
creasingly popular general purpose language. It imple
ments a well-chosen, compact set of general purpose lan
guage features. In addition, portability is easily achievable
in programs written in Pascal.

Block structuring and flexible data types make Pascal a
good language for commercial users. It is also suitable for
systems programming and research applications.

VAX-11 Pascal takes advantage of the VAX-11 hardware
floating point, character instruction sets, and virtual mem
ory capabilities of the VAX/VMS operating system. Many
of the features com man to other languages of VAX/VMS
are available through VAX-11 Pascal, including :

• separate compilation of modules

• standard call interface to routines written in other lan-
guages

• access to VAX/VMS system services

At compile time, options available to the process include:

• run-time checks for illegal assignment to set and su-
brange variables, and illegal array subscripts

• cross-reference listing of identifiers

• source program listing

• machine code listing

• generation of some DEBUG and TRACEBACK records
for the VAX-11 Symbolic Debugger

Though VAX-11 Pascal has access to the Common Run
Time Library routines of VAX/VMS, it also has Pascal-spe
cific Run Time Library routines installed in ST ARLET.OLB.
Such routines primarily provide 1/0 interfaces to the Rec
ord Management Services (RMS) .

Standard Pascal provides a modular, systematic approach
to computerized problem solving . Major features of the
language are:

• INTEGER, REAL, CHAR, BOOLEAN, user-defined, and
subrange scalar data types

• ARRAY, RECORD, SET, and FILE structured data types

• Constant identifier definition

• FOR, REPEAT, and WHILE loop control statements

• CASE and IF-THEN-ELSE conditional statements

• BEGIN ... END compound statement

• GOTO statement

• GET, PUT, READ, WRITE, READLN, and WRITELN 1/0
procedures

• Standard functions and procedures

In addition , VAX-11 Pascal incorporates the following ex
tensions to standard Pascal , some of which are common in
other Pascal implementations:

• Lexical

Upper- and lowercase letters treated identically ex
cept in character and string constants
New reserved words: MODULE, OTHERWISE, SE
QUENTIAL , VALUE, %DESCR, %1MMED, %IN
CLUDE, and %STDESCR
The exponentiation operator, ••
Hexadecimal and octal constants
DOUBLE constants
$and _ characters in identifiers

• Predefined data types

DOUBLE
SINGLE

• Predefined procedures

CLOSE (f)
FIND (f,n)
OPEN (f, ...)
DATE (a)
HALT
LINELIMIT (f,n)
TIME(a)

• Predefined functions

7-26

LOWER(a,n)
SNGL (d)
UPPER (a,n)
EXPO (r)
CARD (s)
CLOCK
UNDEFINED (r)

• Extensions to procedures READ and WRITE

READ (or READLN) of user-defined scalar type
READ (or READLN) of string
WRITE (or WRITELN) of user-defined scalar type
WRITE (or WRITELN) of any data us ing
hexadecimal or octal format

• %INCLUDE directive

• VALUE initialization

• OTHERWISE clause in CASE statement

• External procedure and function declarations

• Dynamic array parameters

• Extended parameter specifications

%DESCR
%1MMED
%1MMED PROCEDURE and %1MMED FUNCTION
%STDESCR

• Separate compilation of procedures and functions . (A
separate compilation unit is termed a MODULE and sev
eral routines may be part of a MODULE. Each MODULE
is eventually embedded in a host or main program .)

The OPEN, CLOSE and FIND procedures extend the 1/ 0
capabilities of the VAX-11 Pascal language. The OPEN
procedure can contain file attributes that define the crea
tion or subsequent processing of the file . A FIND pro
cedure is another extension to the language for direct ac
cess to sequential files of fixed length records. The stan-

dard 1/0 procedures of GET , PUT , READ, WRITE,
READLN and WRITELN are also available in VAX-11 Pas
cal.

The extended parameter specifications %DESCR , %
IMMED, and %STDESCR are added to the Pascal lan
guage to denote the method of argument passing when
calling a system service, procedure, or function not written
in VAX-11 Pascal (for example, in VAX-11 FORTRAN or
MACRO.)

Sample VAX-11 Pascal Code
Figure 7-22 illustrates a VAX-11 Pascal program which a
user may write to calculate the hypotenuse of a right trian
gle. The inputs to the program are the length of the two
sides of the triangle and the output is the length of the hy
potenuse. This version of the program has not yet been
debugged to illustrate how error messages are reported.

Compiler Listing Format
Figure 7-22 contains the compiler listing of the hypotenuse
program. The compiler listing contains the following three
sections:

0
EXAMPLE
01

LINE
NUMBERS

(i>
23-MA Y-1980 23:00:05
11-0CT-1979 11 :34:47

LEVEL (D
PROC STMT STATEMENT

• Source code listing-When the LIST qualifier is speci
fied , the source code is listed by default.

• Machine code listing-To generate the machine code
listing , the MACHINE_CODE qualifier must be specified .

• Cross-reference listing-To generate cross references
for all identifiers used in the program , the
CROSS_REFERENCE qualifier must be specified.

The following sections describe the format of the user
requested listings. Note that the numbers in these sections
are keyed to the circled numbers in the listings of Figure 7-
22 .

Title Line - Each page of the listing contains a title line.
The title line lists the module name (1). the date and time of
the compilation (2) , the Pascal compiler name and version
number (3), and the listing page number (4).

Source Code Listing
Each page of the source code listing contains a line under
the title line specifying the date and time of source file
creation (5) and the VAX/VMS file specification of the
source file (6) .

0
VAX-11 PASCAL VERSION V1 .1-29

DB1.[200,200]EXAMPLE PAS:4 (1)

0

PAGE 1

100 1 program EXAMPLE(INPUT,OUTPUT) ;
200 2

(;\ 300 0 3
v 400 4

500 5
600 6
700 7
800 8
900 9

1000 10
1100 11
1200 12

%PAS-W-DIAGN

1300 13
1400 14
1500 15
1600 16
1700 17

%PAS-F-DIAGN

1800 18
1900 19

20

0
2

@ 2
2
2

label 10;
var A,B,C:REAL;

beg in

repeat
WRITELN('Enter triangle sides ');
if EOLN(INPUT) then goto 10;
READLN(A ,B) ;
C := (SQR(A) + SQR(B)) •• 0.5;

t450
.. . WARNING 450: nonstandard Pascal : Exponentiation

2 WRITELN('Hypotenuse is: ',C) ;
2 until FALSE;
1

10:
WRITELN(' Done';

;; .. • ERROR 4: ")" expected
._, • • • ERROR 20: " ," expected

1
1 end.
0

0

")

t20: ,4

0

Compilation time = 1.35 seconds (889 lines / minute) .

2 Errors
/-:,;\

1 Nonstandard feature ~

Last error(warning) on line 17. @

Active options at end of compilation : a
NODEBUG ,STANDARD,LIST,NOCHECK,WARNINGS,CROSS REFERENCE, 0
MACHINE-CODE,OBJECT,ERROR_LIMIT = 30 -

Figure 7-22

Sample VAX-11 Pascal Code

7-27

12 == > 0

17 == > 12

0 0

EXAMPLE 23-MAY-1980
MACHINE-CODE

23:00:05 VAX-11 PASCAL VERSION V1 . 1-29 PAGE2

GENERATED CODE (PRIOR TO BRANCH OPTIMIZATION)
LINE ADDRESS OPCODE OPERANDS BYTESTREAM (HEXADECIMAL; READ FROM RIGHT TO LEFT)

0002 MOVAB ·vAR(O, O),R11 58 00 00 00 00 00 9E
0009 MOVL R13,*VAR(O, 4) 00 00 00 00 00 50 DO
0010 CLRL -(R14) 7E 04
0012 CLRD -(R14) 7E 7C
0014 PUS HAL (R11)Bf8 08 AB OF
0017 CALLS #1,PAS$1NPUT 00 00 00 00 00 01 FB
001E PUS HAL (R11)Bf8 98 AB OF
0021 PUS HAL (R11)Wf236 00 EC CB OF
0025 CALLS #2,PAS$0UTPUT@ 00 00 00 00 00 02 FB

@ ~ 002C MOVL R14 ,(R13)Bf-12 F4 AD 5E DO
0030 MOVAB (R11)Wf236,R10 5A 00 EC CB 9E
0035 SUBL2 #16,R14 @ 5E10C2
0038 @ PUSHL R10 5A DD
003A MOVAB ·vAR(2, O) ,R9 59 00 00 00 00 00 9E
0041 MOVL R9,(R14)Bf4 04 AE 59 DO
0045 MOVL #21 ,(R14)Bf12 OCAE15DO
0049 MOVL #21,(R14)Bf8 08 AE 15 DO
0040 CALLS #5,PAS$WRITESTR 00 00 00 00 00 05 FB
0054 MOVAB (R11)Wf236,R10 5A 00 EC CB 9E

EXAMPLE 23-MAY-1980 23:00:05 VAX-11 PASCAL VERSION V1. 1-29 PAGE4
CROSS REFERENCE

CROSSREFERENCE LISTING

A 4 11 12
B @ 4 11 12 @
c @ 4 12 13
INPUT 1 10
OUTPUT 1

GLOBALLY DEFINED IDENTIFIERS:

EOLN 0 10
FALSE 0 14
READLN 0 11
REAL 0 4 0
SQR 0 12 12
WRITELN 0 9 13 17

Figure 7-22 (Con't)
Sample VAX-11 Pascal Code

Source Code Listing - The lines of the source code are
printed in the source code listing. In addition, the listing
contains the following information pertaining to the source
code:

• SOS line numbers (7)-lf the source lines were created
or edited in a Pascal module with the SOS editor, SOS
line numbers appear in the leftmost column of the
source code listing. SOS line numbers are irrelevant to
the Pascal compiler .

• Line numbers (8)-The compiler assigns unique line
numbers to the source lines in a Pascal module. The
symbolic traceback that is printed if the program en
counters an exception at run time refers to these line
numbers.

• Procedure level (9)-Each line that contains a declara
tion lists the procedure level of that declaration. Pro
cedure level 1 indicates declarations in the outermost

7-28

block. The procedure level number increases by one for
each nesting level of functions or procedures.

• Statement level (10)-The listing specifies a statement
level for each line of source code after the first BEGIN
delimiter. The statement level starts at 0 and increases
by 1 for each nesting level of Pascal structured state
ments. The statement level of a comment is the same
level as that of the statement that follows it.

Errors and Warnings - The source code listing includes
information on any errors or warnings detected by the
compiler . A line beneath the source code line in which the
error is detected specifies whether the diagnostic is a
warning or an error. In addition, the error description can
contain the following information:

• A circumflex (t) that points to the character position in
the line where the error was detected (11).

• A numeric code, following the circumflex, that specifies

the particular error (12) . On the following lines of the
source listing , the compiler prints the text that corre
sponds to each numeric code (13). Note that one source
program error often causes the Pascal compiler to de
tect more than one error (14).

• An asterisk (*) that shows where the compiler resumed
translation after the error (15).

• The line number in which the error was detected (16)
and the line number of the last line containing an error
diagnostic (17) . These error line numbers can be used
to trace the error diagnostics backwards through the
source listing .

Summary - At the end of the source listing , the compiler
lists the amount of time required for the compilation (18). If
program generated warning or error messages resulted ,
the compiler prints a summary of all the errors (20) and the
source line number of the last message (19) . Finally, the
compiler lists the status of all the compilat ion options (21).

Machine Code Listing
The machine code listing (if requested with the MA
CHINE_CODE qualifier) follows the source listing. The ma
chine code listing contains:

• Symbolic representation (22)-The symbolic represen
tation , similar to a VAX-11 MACRO instruction, appears
for each object instruction generated . Because the Pas
cal compiler operates in one pass, it must generate
these instructions before it performs branch optimiza
tion. Branch optimization can cause certain BRW in
structions to be deleted. Therefore, these instructions
will not be identical to those appearing in the executable
image.

• Source line number (23)-A source line number marks
the first object instruction that the compiler generated
for the first Pascal statement on that source line.

• Hexadecimal address (24)-The hexadecimal address
is an approximation of the address of the object instruc
tion . Do not use these addresses for debugging pur
poses because they do not correctly correspond to the
locations in the executable image. The branch optimiza
tion mentioned above can change the addresses of the
object instructions.

• Hexadecimal instruction (25)-This is the hexadecimal
representation of the object instruction . The hexadeci
mal instruction should be read from right to left because
the rightmost byte has the smallest address. Again,
because of its one-pass operation , the compiler must
generate some object instructions before it can deter
mine the address bytes of their operands. The ad
dresses of these operands are printed as zeros. After
generating the hexadecimal representation of an in
struction , but before writing the object code file , the
compiler places the correct values into the binary object
code.

Cross-Reference Listing
The cross-reference listing (if requested with the
CROSS_ REFERENCE qualifier) appears after the machine
code listing . It contains two sections:

• User-specified identifiers (26)-This section lists all the
user declared identifiers.

7-29

• Globally-defined identifiers (27)-This section lists the
Pascal predefined identifiers that the program uses.

Each line of the cross-reference listing contains an identifi
er (28) and a list of the source line numbers where the
identifier is used (29). The first line number indicates
where the identifier is declared. Predefined identifiers are
listed as if they were declared on line 0. The cross-refer
ence listing does not specify pointer type identifiers that
are used before they are declared.

VAX-11 BLISS-32
Introduction
BLISS-32 is a high level systems implementation language
for VAX-11. It is specifically designed for building software
such as compilers , real-time processors, and operating
systems modules. (For example, the VAX-11 FORTRAN
compiler is coded in BLISS, as is most of the VAX-11 RTL.)
It contains many of the features of high-level languages
(e .g., DO loops, IF-THEN-ELSE statements, automatic
stack and register allocations, and mechanisms for defin
ing and calling routines) but also provides the flexibility, ef
ficiency, and access to hardware which one would expect
from an assembly language. The BLISS compiler pro
duces highly-optimized object code which is typically with
in 5% to 10% of the efficiency of code produced by an
experienced assembly language programmer. The VAX-
11 BLISS-32 compiler is written entirely in BLISS and runs
in native mode under the VAX/VMS operating system.

Features of BLISS-32
VAX-11 BLISS-32 has several characteristics which set it
apart from other high-level languages:

• Data-BLISS-32 is "type-free": all data are manipulated
as values from 1 to 32 bits in length . The interpretation
of any data item is provided by the operator applied to it.
A value can be fetched from or assigned to any contigu
ous field of from 1 to 32 bits located anywhere in the
VAX-11 virtual address space. The expression
Y <4,4> =0 deposits zero into bits 4 through 7 of loca
tion Y. This BLISS expression generates the single VAX-
11 instruction : BICB2 #tXFO,Y.

• Value Assignments-all names in BLISS-32 represent
addresses. Contents of storage locations are accessed
by means of a fetch operator(.). Hence, the expression
X= .Y+3 is interpreted as adding 3 to the contents of lo
cation Y, then assigning the result to the storage loca
tion beginning at X.

• Operators-BLISS-32 supplies operators which inter
pret their operands as addresses, signed integers, un
signed integers or character-sequences.

• Expressions-BLISS-32 permits construction of
complex expressions in which several different kinds of
operations can be performed in a single program state
ment. For example, the expression 2*(8=.C+1) calcu
lates 2*(.C+1) and simultaneously assigns the value of
.C+1toB.

• Structures-BLISS-32 defines such data structures as
VECTOR, BLOCK, BITVECTOR, and BLOCKVECTOR.
In addition , the programmer can define arbitrary data
structures specifically designed for a given application .

Other BLISS-32 features include:

• CASE , SELECT, SELECTONE, and IF-THEN
ELSE-providing for sequencing of instructions based
on evaluation of expressions at run-time.

• DO, WHILE, and UNTIL-providing for looping until a
particular condition is satisfied .

• INCR, DECR-providing for iterative looping , incre
menting or decrementing a loop index.

• EXITLOOP and LEAVE-providing for early termination
of loops and for exiting a BEGIN-END block. (There is
no GO TO in BLISS .)

• Condition Handl ing-the BLISS-32 language fully sup
ports a VAX/VMS condition-handling environment. The
ENABLE declaration establishes a condition-handler for
exceptions raised within the scope of a routine. The
SIGNAL , SIGNAL_STOP and UNWIND predeclared
functions allow a programmer to raise condit ions and
process them.

• GLOBAL and EXTERNAL declarations-allowing code
and data to be shared among several modules.

• LOCAL , STACKLOCAL , and REGISTER declara
tions- allowing dynamic stack-like allocation using ei
ther the execution stack or the general registers.

• REQUIRE and LIBRARY declarations-allowing source
material from subsidiary files to be included in the mod
ule at compile time.

• LEXICAL functions-allowing a variety of compile-time
operations such as concatenation of strings, construc
tion of names, testing properties of macro parameters,
testing compiler switch options, generating compiler
diagnostic messages, and controlling macro expansion .

• Conditional Compilation-The programmer may in
clude or exclude source text from compilation through
use of %IF-% THEN-%ELSE-%FI. In conjunction with the
lexical functions, this provides a powerful capability for
tailoring source code for distinct environments.

BLISS-32 also provides a number of machine-dependent
features specifically designed to complement the VAX ar
chitecture and VAX/VMS. These include the following :

• LINKAGE declarations allow the programmer to make
full use of the VAX-11 call facilities; in particular, you
may specify either the CALLS/CALLG/RET or
JSB/BSB/RSB call and return sequences, pass param
eters in general registers or on the stack, and control
the use of registers by a routine or across a set of rou
tines.

• PSECT declarations provide information to the linker re
garding storage requirements for various sections of a
program. For example, a particular data segment may
be designated as READ or NOREAD, SHARE or NO
SHARE, LOCAL or GLOBAL, and so on .

• System lnterfaces-STARLET.REQ (or STARLET.L32)
prov ides keyword macros for all VAX-11 RMS and
VAX/VMS system services, as well as symbolic defi
nitions for system data structures and completion
codes. LIB.REQ (or LIB .L32) provides the defin itions in
STARLET , as well as definitions needed for writing
ACPs or privileged kernel-mode code.

7-30

• BUILTIN declarations allow use of VAX-11 machine
specific functions for access to VAX-11 features not oth
erwise provided in the BLISS-32 language. The compi
lation of a machine specific function results in the gen
eration of inline code, often a single instruction , rather
than a call to an external routine. Machine specific func
tions generally have the same name as t he ir
corresponding VAX-11 instructions (e .g ., ADAW I,
BISPSW , CRC , HALT , INDEX, MTPR , PROBER ,
REMQUE, MOVP, etc.). Over 50 such functions are pro
vided . (The complete list is shown in Table 7-4) .

Table 7-4

VAX-11 Machine Specific Functions

Processor Register Operations

MTPR
MFPR

Move to a Processor Reg ister
Move from a Processor Reg ister

Parameter Validation Operations

PROBER
PRO BEW

Probe Read accessibil ity
Probe Write accessibility

Program Status Operations

MOVPSL
BISPSW
BICPSW

Move from PSL
Bit set PSW
Bit clear PSW

Queue Operations

INSQUE
REMQUE

Bit Operations

TESTBITSS
TESTBITSC
TESTBITCS
TESTBITCC

TESTBITSSI
TESTBITCCI
FFS
FFC

Insert entry in Queue
Remove entry from Queue

Test for Bit Set, then Set bit
Test for Bit Set, then Clear bit
Test for Bit Clear, then Set bit
Test for Bit Clear, then Clear bit

Test for Bit Set, then Set bit Interlocked
Test for Bit Clear. then Clear b it Interlocked
Find First Set bit
Find First Clear bit

Extended Arithmetic Operations

ASHQ
EDIV
EMUL
INDEX
CRC

Arithmetic Shift Quad
Extended Divide
Extended Multiply
Index (Subscript) Calculation
Cycl ic Redundancy Calculation

Floating Point Conversion Operations

CVTLF
CVTLD
CVTFL
CVTDL

CVTFD

Convert Long to Floating
Convert Long to Double
Convert Floating to Long
Convert Double to Long

Convert Floating to Double

Table 7-4 (con't)
VAX-11 Machine Specific Functions

CVTDF Convert Double to Floating
CVTRDL Convert Rounded Double to Long
CVTRFL Convert Rounded Floating to Long

CMPF Compare Floating
CMPD Compare Double

String Operations

MOVTUC
SCA NC
SPANG

Move Translated Until Character
Scan Characters
Span Characters

Decimal String Operations

MOVP
CMPP
CVTLP
CVTPL

CVTPT
CVTTP
CVTPS
CVTSP

EDITPC

Move Packed
Compare Packed
Convert Long to Packed
Convert Packed to Long

Convert Packed to Trailing Numeric
Convert Trailing Numeric to Packed
Convert Packed to Leading Separate Numeric
Convert Leading Separate Numeric to Packed

Edit Packed to Character

Miscellaneous Operations

HALT
ROT
ADAWI
BPT

CHMx
CALLG
NOP

Halt Processor
Rotate
Add Aligned Word Interlocked
Breakpoint

Change Mode
Call with General Argument List
No Operation

The VAX-11 BLISS-32 Compiler
The VAX-11 BLISS-32 compiler performs a number of op
timizations. These include common subexpression elimi
nation , removal of loop invariants, constant folding, block
register allocation, peephole replacement, test instruction
elimination, jump vs. branch instruction resolution, branch
chaining, and cross-jumping.

The VAX-11 BLISS-32 compiler optionally produces
source text and generated code in a format closely resem
bling a VAX-11 assembly listing . Other options allow the
programmer to control the degree of optimization, sup
press production of object code, determine types and for
mats of output listings, generate traceback information ,
and specify the types of information to be listed at the ter
minal.

BLISS-32 generates shareable, re-entrant and position-in
dependent code. These features make it easy to use
BLISS-32 for writing software to be included in shareable
libraries for use by any native language. it is also useful for
writing connect-to-interrupt device handlers and user
written system services.

7-31

Library and Require Files
BLISS-32 provides two methods for including commonly
used text into BLISS programs at compile time. These in
volve use of either library files or Require files:

• Library Files-These are special files created by the
compiler in a previous library compilation and are in
voked by the LIBRARY declaration in the BLISS source
program.

• Require Files-These are source (text) files which are
invoked via the REQUIRE declaration in the BLISS
source program.

Since Library files are "precompiled," lexical processing
and declaration parsing and checking need not be repeat
ed each time these files are included in a compilation ; their
use results in a considerable reduction in total compilation
time.

The contents of Require files must be fully processed each
time the file is used in a compilation . Hence, using Require
files will, in general , be less efficient than using Library
files . However, since these files operate under a less strin
gent set of syntactical rules, their use may be warranted in
situations where a higher level of flexibility is desired .

Macros
VAX-11 BLISS-32 provides an extensive macro-building
facility, allowing frequently used groups of declarations or
expressions to be expressed in an abbreviated way.
Macros are defined via MACRO declarations and are ac
cessed by simple call statements. They are fully expanded
at compile time. BLISS-32 allows parameters to be speci
fied in the macro definition, thus allowing each block of
text to be specialized by the actual parameters passed to
it. Macros may be positional or keyword , and may be sim
ple, iterative, or conditional.

Debugging
The VAX-11 BLISS-32 compiler produces a list of error
messages showing the source program line on which the
error occurred followed by a description of the error. If the
error is recoverable , then the compiler will generate a
"warning " diagnostic and continue with the compilation
process. If the error is serious enough to invalidate the
compiler's internal representation of the module, then an
"error" diagnostic is generated, and processing ceases
following the syntax checking-no object module is pro
duced.

If an error occurs at execution time, the process image can
access the VAX-11 Symbolic Debugger program. This
program may be accessed when the object module is
linked with the DEBUG option . The DEBUG program al
lows the programmer to examine and deposit values in
storage, set breakpoints, call routines, trace through a
program as it executes, and perform other operations use
ful in checking out a program. VAX-11 DEBUG under
stands BLISS syntax and permits the use of the user's
symbolic names. (See the section on the Symbolic Debug
ger for a further description of VAX-11 debugging facili
ties.)

Transportability Features
The BLISS-32 language is designed to facilitate transpor
tability, that is, the writing of programs that can be execut
ed on architecturally different machines with little or no

modification . BLISS compilers also exist for the DECsys
tem-10 and DECSYSTEM-20 (BLISS-36), and for the PDP-
11 (BLISS-16). Several language features enhance trans
portability:

• The high-level language constructs may be transferred
from one machine to another with little or no alteration .

• Machine-specific functions can be separated from the
common, mainline code via modularization , macros,
and Library and Require files.

• Parameterization allows machine-specific characteris
tics to be passed to BLISS data structures.

• The compiler can be instructed to perform transporta
bility checking via the "LANGUAGE (COMMON)" mod
ule-head switch .

BLISS's transportability makes it an ideal language for
system programming applications-and a desirable alter
native to assembly language coding in those applications
in which extreme machine dependence is not involved.

BLISS-32 Sample Program
Figure 7-23 illustrates how VAX-11 BLISS-32 can call
VAX/VMS system services and the VAX-11 Common Run

Time Procedure Library to print the current t i me on
SYS$0UTPUT.

VAX-11CORAL66
The VAX-11 CORAL 66 compiler compiles in compatibili ty
mode and generates native mode object code unde r
VAX/VMS. The CORAL 66 language, derived from JOVIAL
and ALGOL-60 in 1966, is the standard language pres
cribed by the British government for military real-time ap
plications and systems implementation . A government
agency controls the language standard for CORAL 66,
which was first widely used in military projects beg inning
in 1970. Her Majesty's Stationery Office publishes the "Of
ficial Definition of CORAL 66."

The CORAL 66 language replaces assembly-level pro
gramming in a number of commercial , process control , re
search , and military applications. It is particularly adapted
to long-life products requiring flexibil ity and ease o f
maintenance.

VAX-11 CORAL 66 is a block-structured language. A block
is a piece of a program that can be entered only at the be-

0001
0002
0003
0004
0005
0006

MODULE showtime(IDENT='1-1' %TITLE 'SHOW TIME', MAIN = timeout)=
BEGIN

M 0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029

P0030
p 0031
P0032

0033
0034
0035
0036
0037
0038
0039

LIBRARY 'SYS$LIBRARY:STARLET';

MACRO
desc[] = %CHARCOUNT(%REMAINING),

UPLIT BYTE(%REMAINING) %;

OWN
timebuf:
msgbuf:
msgdesc:

VECTOR[2].
VECTOR[80 ,BYTE].
BLOCK[8,BYTE]

! Defines System Services, etc .

! A VAX-11 Style String descriptor

! 64 bit system time
! Output msg. buffer
! Str ing descriptor

PRESET([dsc$w length] = 80 ,
[dsc$a~po i nter] = msgbuf);

! for output buffer

BIND
fmtdesc = UPLIT(DESC('At the tone, the t ime is ', %CHAR(?), '115% T'));

EXTERNAL ROUTINE
lib$put_output : ADDRESSING_MODE(GENERAL);

ROUTINE timeout=
BEGIN
LOCAL

RSLT: WORD;

$GETTIM(TIMADR = timebuf);

$FAOL(CTRSTR=fmtdesc,
OUT LEN = nslt,
OUTBUF = msgdesc,
PRMLST= %REF(timebuf)) ;

MSGDESC[dsc$w_length] = .rslt;

lib$put_output(msgdesc)

END;

Figure 7-23
Sample VAX-11 BLISS-32 Code

7-32

! From VMS RTL

! Resultant str ing length

! Get time as 64 b it integer

! Format control -string address
! Resultant length (only a word!)
! Output buffer descriptor address
! Address of pointer to time block

! modify output descriptor

! print the formatted time

ginning . Though internal structures cannot be "seen" from
the outside, statements inside a block can "see" out. Sort
ing is possible, so that programs may be written in which
information is accessible for only the time it is required ,
and no longer. In this way, unwanted interactions among
program parts are avoided , and out-of-date information is
very quickly forgotten .

To satisfy real-time needs, CORAL 66 allows different
modules of the same suite of programs to be executed at
apparently the same time. A CORAL 66 compiler assumes
that any subroutine global to the whole program is likely to
be active at the same time as any other, so the compiler
assures that such subroutines do not share any local stor
age. Interactions, however, can be explicitly arranged by
the programmer. A program consists of communicators
and separately compiled segments. Each segment has the
form of an ALGOL-60 block, within which blocks and pro
cedures may be nested to arbitrary depth . In the absence
of communicators, block structure would prevent different
segments from using common data, labels, switches, or
procedures. The purpose of a communicator is to specify
and name those objects which are to be commonly acces
sible to all segments. The presence of communicators im
poses a modular and disciplined approach to program
ming larger systems where a team of programmers is em
ployed .

In addition to the functionalities prescribed in the Official
Definition , the VAX-11 CORAL 66 compiler provides the
following features:

• BYTE, LONG (32-bit integer) and DOUBLE (64-bit float-
ing point) numeric types

• generation of re-entrant code at the procedure level

• switch-selectable option to optimize generated code

• conditional compilation of defined parts of source code

• English text error messages at compile and (optionally)
run-time

• switch-selectable option to control listing output

• INCLUDE keyword to incorporate CORAL 66 source
code from user-defined files

• switch-selectable option to read card format

VAX-11 CORAL 66 is essentially a high-level block-struc
tured language possessing certain facilities associated
with low-level languages, and is designed for use on small
or medium-size dedicated computers. One of the main in
tentions is that programs written in CORAL 66 should be
fast to execute, taking up limited quantities of storage,
while being easy to write .

The real-time applications of the language are implicit
rather than explicit, permitting the utilization of any hard
ware or special features . Procedures, optionally with para
meters, permit communication with and reaction to exter
nal events. This is aided further by a direct code facility
which enables machine code to be included in the source
program for extra efficiency in any critical tasks.

VAX-11 MACRO
The VAX-11 MACRO assembler accepts one or more
source modules written in MACRO assembly language
and produces a relocatable object module and optional

7-33

assembly listing . VAX-11 MACRO is similar to PDP-11
MACRO, but its instruction mnemonics correspond to the
VAX native instructions. VAX- 11 MACRO is characterized
by:

• relocatable object modules

• global symbols for linking separately assembled object
programs

• global arithmetic, global assignment operator, global la-
bel operator and default global declarations

• user-defined macros with keyword arguments

• multiple macro libraries with fast access structure

• program sectioning directives

• conditional assembly directives

• assembly and listing control functions

• alphabetized , formatted symbol table listing

• default error listing on command output device

• a Cross Reference Table (CREF) symbol listing

Symbols and Symbol Definitions
Three types of symbols can be defined for use within
MACRO source programs: permanent symbols, user-de
fined symbols and macro symbols. Permanent symbols
consist of the VAX instruction mnemonics and MACRO
directives and do not have to be defined by the user. User
defined symbols are those used as labels or defined by
direct assignment. Macro symbols are those symbols used
as macro names.

MACRO maintains a symbol table for each type of symbol.
The value of a symbol depends on its use in the program.
To determine the value of a symbol in the operator field ,
the assembler searches the macro symbol table , user
symbol table , and permanent symbol table in that order.
To determine the value of the symbol used in the operand
field , the assembler searches the user symbol table and
the permanent symbol table in that order. These search
orders allow redefinition of permanent symbol table en
tries as user-defined or macro symbols.

User-defined symbols are either internal to a source pro
gram module or global (externally available). An internal
symbol definition is limited to the module in which it
appears. Internal symbols are local definitions which are
resolved by the assembler.

A global symbol can be defined in one source program
module and referenced within another. Global symbols
are preserved in the object module and are not resolved
until the object modules are linked into an executable pro
gram. With some exceptions, all user-defined symbols are
internal unless explicitly defined as being global.

Directives
A program statement can contain one of three different
operators: a macro call, a VAX instruction mnemonic, or
an assembler directive. MACRO includes directives for:

• listing control

• function specification

• data storage

• radix and numeric usage declarations

• location counter control

• program termination

• program boundaries information

• program sectioning

• global symbol definition

• conditional assembly

• macro definition

• macro attributes

• macro message control

• repeat block definition

• macro libraries

Listing Control Directives
Several listing control directives are provided in MACRO
to control the content, format, and pagination of all listing
output generated during assembly. Facilities also exist for
titling object modules and presenting other identification
information in the listing output.

The listing control options can also be specified at assem
bly time through qualifiers in the command string issued to
the MACRO assembler. The use of these qualifiers pro
vides initial listing control options that may be overridden
by the corresponding listing control directives in the
source program.

Conditional Assembly Directives
Conditional assembly directives enable the programmer
to include or exclude blocks of source code during the as
sembly process, based on the evaluation of stated condi
tion tests within the body of the program. This capability
allows several variations of a program to be generated
from the same source module.

The user can define a conditional assembly block of code,
and within that block, issue subconditional directives.
Subconditional directives can indicate the conditional or
unconditional assembly of an alternate or non-contiguous
body of code within the conditional assembly block . Con
ditional assembly directives can be nested.

Macro Definitions and Repeat Blocks
In assembly language programming, it is often convenient
and desirable to generate a recurring coding sequence by
invoking a single statement within the program. In order to
do this, the desired coding sequence is first established
with dummy arguments as a macro definition. Once a
macro has been defined, a single statement calling the
macro by name with a list of real arguments (replacing the
corresponding dummy arguments in the macro definition)
generates the desired coding sequence or macro expan
sion . MACRO automatically creates unique symbols where
a label is required in an expanded macro to avoid dupli
cate label specifications. Macros can be nested; that is, the
definition of one macro can include a call to another.

An indefinite repeat block is a structure that is similar to a
macro definition, except it has only one dummy argument.
At each expansion of the indefinite repeat range, this dum
my argument is replaced with successive elements of a
specified real argument list. This type of macro definition
does not require calling the macro by name, as required in
the expansion of conventional macros. An indefinite re
peat block can appear within or outside of another macro
definition, indefinite repeat block, or repeat block.

7-34

Macro Calls and Structured Macro Libraries
A program can call macros that are not defined in that pro
gram. A user can create libraries of macro definitions, and
MACRO will look up definitions in one or more given libra
ry files when the calls are encountered in the program .
Each library file contains an index of the macro definitions
it contains to enable MACRO to find definitions quickly.

Program Sectioning
The MACRO program sectioning directives are used to de
clare names for program sections and to establish certain
program section attributes. These program section attrib
utes are used when the program is linked into an image.

The program sectioning directive allows the user to ex
ercise complete control over the virtual memory allocation
of a program, since any program attributes established
through this directive are passed to the linker. For exam
ple, if a programmer is writing multiuser programs, the
program sections containing only instructions can be de
clared separately from the sections containing only data.
Furthermore, these program sections can be declared as
read-only code, qualifying them for use as protected , re
entrant programs.

PDP-11 BASIC-PLUS-2/VAX
PDP-11 BASIC-PLUS-2/VAX is an optional language
processing system that includes a compiler and an object
time system. PDP-11 BASIC-PLUS-2is also available as an
optional language processor for the RSTS/E, RSX-11 M,
RSX-11 M PLUS, and IAS operating systems. The PDP-
11 BASIC-PLUS-2/V AX compiler produces code that exec
utes in PDP-11 compatibility mode.

BASIC-PLUS-2 is a PDP-11 applications implementation
language which features many programming fac iliti es
found in VAX-11 BASIC. These include:

• program formatting and commenting facilities

• long variable names

• indexed, sequential, and relative file 1/0

• virtual arrays

• variable-length strings

• PRINT USING statement

• COMMON statement

• a subprogram CALL statement

• extended debugging facilities

• integrated INQUIRE (HELP) facility

The compiler accepts source programs written in the BA
SIC-PLUS-2 language.

The programmer can edit the source if necessary, and
compile it to produce an object module which can be
linked with previously compiled object modules.

The object time system (OTS) is a collection of library
modules used during program execution . The library rou
tines include math and floating point functions , in
put/output operations, error handling , and dynamic string
storage functions . Since the OTS is an object module li
brary, the task builder can select only those functions
needed at run time to be included in a program. Unneces
sary routines are omitted from the program and memory
usage is reduced .

Program Format
The basic source program unit is a line. In its simplest
form , it consists of a line number, a keyword and state
ment, and a line terminator. In BASIC-PLUS-2, one or sev
eral spaces or tabs can be used to separate line numbers,
keywords, and variable names. Line numbering deter
mines the order in which the program is processed ; the
programmer can enter BASIC-PLUS-2 program lines in
any order.

BASIC-PLUS-2 programs can be one or several lines long.
The programmer can place one statement on each line,
place several statements on any one line, or spread one
statement over several lines. Program comments can be
placed anywhere within a line using the REM (Remark)
statement or using comment field delimiters. These facili
ties enable the programmer to freely format a program to
make it more readable.

Long Variable and Function Names
Most BASIC languages limit the length of a variable or
user-defined function name to one character . BASIC
PLUS-2 recognizes variable names and function names as
long as 30 characters. The programmer can fully identify
variables and functions.

Powerful File 1/0
The BASIC-PLUS-2 language supports use of RMS-11
block, indexed, sequential, and relative file operations. Al
though RMS-11 operates in RSX-11 compatibility mode, it
does not have support for file sharing under VMS. For ap
plications requiring access to shared files , VAX-11 BASIC
should be used.

Powerful String Handling
The BASIC-PLUS-2 language enables the programmer to
manipulate strings of alphanumeric characters easily. As
in BASIC-PLUS, the BASIC-PLUS-2 relational operators
enable programmers to concatenate and compare strings,
string operators enable the programmer to convert strings
and numerics, and string functions add the ability to ana
lyze the composition of strings. The BASIC-PLUS-2 lan
guage includes string functions that:

• create a string of a fixed length

• search for the position of a set of characters within a
string

• insert spaces within a string

• trim trailing blanks from a string

• determine the length of a string

Unlike many BASIC languages, BASIC-PLUS-2 imposes
no limit on the size of string values or string elements of
arrays manipulated in memory, other than the amount of
available memory.

Virtual Arrays
Virtual arrays are random access disk-resident files. A
program can create and access virtual arrays in the same
way memory-resident arrays are accessed: using element
names. Explicit read/write programming is not required .
The last element in the array can be accessed as quickly
as the first. Because the arrays are stored on disk, how
ever, the programmer can manipulate large amounts of
data without affecting program size.

7-35

PRINT USING Output Formats
The PRINT USING statement allows the programmer to
control the appearance and location of data on an output
line to create complex lists, tables, reports, and forms. In
addition to the numeric field definitions provided by BA
SIC-PLUS, which allow the programmer to generate float
ing dollar sign , aligned decimal point, trailing minus, aster
isk fill, and exponential format fields, BASIC-PLUS-2 pro
vides string field definitions which allow the programmer
to generate left-justified, right-justified, centered , and
extended string fields .

Subprograms and the CALL Statement
The BASIC-PLUS-2 CALL statement enables a program to
access external BASIC-PLUS-2 or MACR0-11 subpro
grams. A programmer can therefore write a program in
several modular segments, each of which can be compiled
separately to speed program development. BASIC-PLUS-
2 provides a complete traceback on errors occurring in
subroutines.

COMMON Statement
The COMMON statement enables a program to pass data
to another program or subprogram. The BASIC-PLUS-2
COMMON statement format is compatible with PDP-11
FORTRAN COMMON. Strings passed in COMMON are
fixed length , which reduces string handling overhead .

Debugging Statements
BASIC-PLUS-2 provides an interactive debugging mode
similar to the " immediate mode" facilities found in most
BASIC interpreters. During program development, the
programmer can use the compiler to create, save, edit,
and test the source program. The compiler checks syntax
immediately on input from a terminal so that many errors
can be found prior to compilation. The debugging state
ments can be used when executing and testing the pro
gram. The BREAK, LET, PRINT, UNBREAK, CONTINUE,
STEP, and STOP statements enable the programmer to
control and observe program execution interactively.

To set breakpoints, the programmer uses the BREAK
command just prior to running the program , or while it is
stopped . As many as ten breakpoints can be set during the
course of program execution. On reaching a breakpoint,
the program halts to allow the programmer to examine or
modify variables or set other breakpoints.

To examine variables while a program is stopped , the pro
grammer uses the PRINT statement. The LET statement
allows the programmer to modify the value stored in the
variable.

Typing the CONTINUE command resumes execution until
the next breakpoint is reached. Before typing CONTINUE,
the programmer can issue an UNBREAK command to se
lectively disable one or all of the breakpoints set, and exe
cution continues until a STOP statement is encountered in
the program or until the program completes.

When a program halts because a STOP statement is in
cluded in the program, or because a BREAK command
was issued interactively, the programmer can type the
STEP command on the terminal to let program execution
continue on a line-by-line basis. Typing a STOP command
in interactive debugging mode terminates program execu
tion, just as if an END statement was encountered in the
program.

PDP-11 FORTRAN IV IV AX to RSX
FORTRAN IV is an extended FORTRAN implementation
based on American National Standard (ANSI) FORTRAN,
X3.9-1966. PDP-11 FORTRAN IV code is executed in com
patibility mode under VAX/VMS. The FORTRAN IV lan
guage includes the following extensions to the ANSI stan
dard;

• general expressions allowed in all meaningful contexts

• mixed-mode arithmetic

• BYTE data type for character manipulation

• ENCODE, DECODE statements

• PRINT, TYPE, and ACCEPT input/output statements

• direct-access unformatted input/output DEFINE FILE
statement

• comments allowed at the end of each source line

• PROGRAM statement

• OPEN and CLOSE file access control statements

• list-directed input/output

Additionally, virtual arrays are supported on target sys
tems with memory management directives. Virtual arrays
are memory-resident and require enough main memory to
contain all elements of all arrays.

The PDP-11 FORTRAN IV compiler is a fast, one-pass
compiler. Compiler options allow program size versus ex
ecution speed (threaded code versus inline code) trade
offs. FORTRAN IV compiler optimizations include:

• common subexpression elimination

• local code tailoring

• array vectoring

• optional inline code generation for integer and logical
operations

MACR0-11 assembly language subroutines may be called
from FORTRAN IV programs. FORTRAN IV also includes a
set of object modules, called the Object Time System
(OTS), that are selectively linked with compiler-produced
object modules to produce an executable program.

MACR0-11
MACR0-11, the PDP-11 assembly language, is included in
the compatibility mode environment. Programs written in
MACR0-11 can be assembled to produce relocatable ob
ject modules and optional assembly listings. MACR0-11
provides the following features:

• relocateable object modules

• global symbols for linking separately assembled object
programs

• device and file name specifications for input and output
files

7-36

• user-defined macros

• comprehensive system macro library

• program sectioning directives

• conditional assembly directives

• assembly and listing control functions at program and
command string levels

• alphabetized , formatted symbol table listing

• default error listing on command output device

Symbols and Symbol Definitions
Three types of symbols can be defined for use within
MACR0-11 source programs: permanent symbols, user
defined symbols, and macro symbols. Accordingly ,
MACRO maintains three types of symbol tables: the Per
manent Symbol Table (PST), the User Symbol Table
(UST), and the Macro Symbol Table (MST).

Permanent symbols consist of the PDP-11 instruct ion
mnemonics and MACRO directives. The PST contains all
the permanent symbols automatically recognized by
MACRO and is part of the assembler itself. Since these
symbols are permanent, they do not have to be defined by
the user in the sou rce program.

User-defined symbols are those used as labels or defined
by direct assignment. Macro symbols are those symbols
used as macro names. The UST and MST are constructed
during assembly by adding the symbols to the UST or MST
as they are encountered.

Directives
A program statement can contain one of three d ifferent
operators: a macro call, a PDP-11 instruction mnemonic,
or an assembler directive. MACRO includes directives for :

• listing control

• function specification

• data storage

• radix and numeric usage declarations

• location counter control

• program termination

• program boundaries information

• program sectioning

• global symbol definition

• conditional assembly

• macro definition

• macro attributes

• macro message control

• repeat block definition

• macro libraries

8
Program

Development
and

Support
Facilities

VAX/VMS offers the user a powerful and sophisticated program devel
opment environment including several support facilities . Described in
th is section are the interactive and batch text editors, the linker, the
Common Run Time Procedure Library, the VAX-11 interactive symbol
ic debugger, the librarian utility, command language procedures, the
differences utility, and VAX-11 RUNOFF.

In addition to the interactive text editor SOS and the SLP batch editor,
VAX/VMS now supports the powerful interactive text editor EDT. EDT
supports many user oriented features including both line and character
editing facilities , an extensive HELP facility , a journaling facility , and the
window editing facility.

The VAX/VMS linker is the program development tool that takes the
output of a translator or compiler and produces a file that can be exe
cuted on the VAX-11 hardware.

The Common Run Time Procedure Library offers the user a set of com
mon language routines that can be called from any of the native mode
languages via the VAX-11 calling standard .

The VAX-11 interactive symbolic debugger is extremely useful in isolat
ing program errors by allowing the user to examine and modify the
contents of memory locations while the program is executing.

The librarian is a utility that allows the user easy access to the data
stored in any of the four libraries (object , macro, help , text). The librari
an allows an executing program to initialize and open a library, and to
retreive , insert, and delete modules.

The command language procedure section describes the power and
flexibility of executing strings of frequently used sequences of DCL
commands, or creating new commands from the existing DCL com
mand set. Command procedures can accept up to eight parameters
and can include extensive control flow.

By utilyzing the DIFFERENCES utility, the user can determine whether
or not two files are identical.

VAX-11 RUNOFF is a document formatter, offering the user such fea
tures as page and title formatting, subject-matter formatting , and the
ability to produce indexes and tables of contents easily.

INTRODUCTION
VAX/VMS provides a complete program development en
vironment for the user. Development tools supporting this
environment are:

• Interactive and batch text editors

• Linker

• Common Run Time Procedure Library

• VAX-11 interactive symbolic debugger

• Librarian Utility

• Command Language Procedures

• Differences Utility

• VAX-11 Runoff

These tools, as well as program language compilers, are
available to the programmer via the command language
facility. In addition , VAX/VMS supports a complete set of
shareable routines collectively known as the common run
time procedure library. And finally, VAX/VMS supports the
user's ability to write programs utilizing the DCL command
set (similar to coding programs in other high level lan
guages). These programs are known as command lan
guage procedures.

The text editors can be used to create memos, documen
tation, and text and data files, as well as source program
modules for any language processor. The linker, librarian,
debugger, and run time procedure library are used only in
conjunction with the language processors that produce
native code.

TEXT EDITORS
Text editing refers to the process of creating , modifying ,
and maintaining files . VAX/VMS supports three text edi
tors : two interactive text editors (SOS and EDT) and a
batch-oriented text editor (SLP) .

The user invokes the SOS and EDT text editors interactive
ly, i.e. , the user creates and processes files on-line. The
SLP text editor, on the other hand, allows direct modifica
tion to a file via a command file prepared by the user. SOS
is often used to create SLP command files. All editors are
invoked by the command EDIT. The default editor is SOS.
Therefore, to invoke SOS, enter the command EDIT or
EDIT /SOS; to invoke EDT, enter EDIT /EDT; for SLP, use
EDIT/ SLP.

Before describing the text editors, a short summary of file
naming conventions and default file types is presented.

File Names and File Types
By taking advantage of the default disk and directory, the
user can identify a file uniquely by specifying its file name
and file type, illustrated in the following format:

filename.typ

The file name can be from one to nine alphanumeric char
acters, and can assume any name that is meaningful to the
user.

The file type is a 3-character identifier preceded by a peri
od; it describes more specifically the kind of data in the
file . Although file type can consist of any three alpha
numeric characters meaningful to the user, several file
types have standard meanings. Among these special file
types are:

8-1

File Type

.FOR

.MAR

.COB

.BAS

.PAS

.DAT

.LIS

.EXE

Default Use

FORTRAN language source statements

MACRO assembly source statements

COBOL language source statements

BASIC language source statements

PASCAL language source statements

A data file

An output listing from a compiler

An executable image

.OBJ An output file from a compiler

For example, a file containing FORTRAN source state
ments would possess the file type .FOR.

SOS EDITOR
SOS is a line-oriented, interactive text-editing program.
SOS has features that allow examination and modification
of text, character by character. SOS can be used to per
form the following functions :

• examine, create, and modify ASCII files

• search for and/or change one or more arbitrary text
strings, with the option to verify each change before it is
made

• merge parts of one file into another

• create a file that is a subset of another file

SOS is line-oriented , so it usually operates with line-num
bered text files. If a file is edited that does not contain line
numbers, the editor adds line numbers to the text lines.
For most SOS commands, a line number or range of line
numbers specifies the text to be operated on . When com
manded to insert, delete, move, or copy text, SOS main
tains line numbers in ascending order within each page of
text.

Advanced features of SOS allow considerable flexibility in
searching for a string of text and allow specification of
blocks of text by content, or relative position from a known
location , instead of by line number. SOS has many opera
tional features under user control.

Initiating and Terminating SOS
SOS is initiated by entering one of the following com
mands in response to the command language prompt($):

$ EDIT file-spec <RET>

If the user were to omit file-spec, SOS would immediately
prompt the user for the missing parameter.

To terminate SOS, enter the command E (EXIT) followed
by a carriage return after SOS's prompt(*).

*E<RET>
[file-spec]

$

Upon terminating , SOS writes an output file containing all
the modifications made in editing the file. The original file
is not changed . The specifier SOS uses for the output file
has a version number higher by 1 than the latest version of
the original file unless otherwise specified by the user.

SOS Examples
Copy command

1) C300,9000:9500
Make a copy of lines numbered 9000-9500 and
insert the lines after line 300.

Find command

1) Fmore<ESC>
Search for " more" from the current point in the
file .

2) Fmore<ESC>,1 :1000
Search for the first occurrence of "more" in the
range of lines from 1 through 1000.

Print command

1) P500:800
Print lines 500 through 800.

2) P1800
Print line numbered 1800.

Substitute command

1) Smore<ESC>less<ESC>,500:800
Change all occurrences of "more" into "less" on
lines numbered 500 through 800.

EDT EDITOR
EDT, an interactive text editor, is included with VAX/VMS
Version 2.0. This editor lets users enter and manipulate
text and programs. EDT, with its extensive HELP facility, is
designed to be learned easily by novices. In addition, EDT
provides many capabilities that will appeal to advanced
users.

What EDT Does
EDT is a powerful text editor that provides:

• both line and character editing facilities

• screen editing and keypad editing on the VT52 and
VT100 video terminals

• ability to work on multiple files simultaneously

• a journaling facility, which protects against loss of edits
due to system crashes, or loss of carrier on a dial-up
line

• an extensive HELP facility

• a start-up command file, which allows a choice of edit
ing options to be set automatically

• a window into a file (on video terminals only) that lets
users view changes in file contents immediately

EDT is also supported on hardcopy terminals and video
terminals other than the VT52 and VT100.

EDT SPECIAL FEATURES
Editing with a Window
"Window editing" is a valuable feature that lets users edit
one 22-line window (screenful) at a time. This feature al
lows a user to see immediately how the edits made affect
his file. The user may position the window anywhere in the
file. Window editing is illustrated in Figure 8-1.

Start-up File
When the editor is started, it executes commands from a
start-up file. In this file, one can insert editing options such
as SET NOKEYPAD and DEFINE KEY. These options take
effect automatically when an editing session begins.

8-2

CURSOR
-............._

N

HELP Facilities

FILE --------------------------

~

~ --

Figure 8-1

Window Editing

}
22 LINE
WINDOW

The HELP facilities on EDT are extensive. Users can get
help on general EDT operations by typing HELP. Wh ile in
keypad mode, users can get help by pressing the help key,
which displays a picture of the keypad and provides addi
tional information on each of the keypad keys .

The Keypad
The keypad is a special set of keys to the right of the main
keyboard. Figure 8-2 illustrates the functions of the VT100
keypad ; the VT52 keypad is similar.

FINO UNO L
SHIFT HELP

FNONXT DEL EL
~OM MAND REPL UNO W

PAGE SECT APPEND DEL EW
BOTTOM TOP PASTE UNO C

ADVANCE BACKUP CUT DEL C
DEL EOL INSCOD

SUBS
WORD EL CHAR

OPEN LINE RESET
ENTER

LINE SELECT

Figure 8-2

VT100 Keypad Functions

Keypad functions allow the user to perform a variety of op
erations. Furthermore, the function of any keypad key can
be changed to meet the needs of the user via the DEFINE
command.

The commands in the keypad submode let users alter text
or change the cursor position in the file . Keypad functions
are available to advance or back up the cursor or move the
cursor to the top or bottom of the text. One can also move
the cursor any number of characters , words, lines, or
pages at a time.

Keypad keys let a user select a string of text and move it
elsewhere in any of his files. One can even find the next

occurrence of some text and delete or replace it. There is
also a key to press for help messages.

Redefining Keypad Keys
One can redefine any of the keypad keys, and most of the
control (CTRL) keys, on VT52 and VT100 terminals. This
feature lets the user assign a series of commands to a key;
EDT performs these commands when the keys are
pressed . Therefore, one can adapt the funct ions of keypad
and CTRL keys to meet special needs.

The SET and SHOW Commands
The SET command , with a variety of qualifiers, controls
EDT's ed iting capabil ities. SET controls such screen para
meters as line width or lets a user determ ine the appear
ance of text, such as changing the window size to less than
22 lines. The SHOW command provides information on
the current state of the editor , such as terminal parame
ters , definitions of keypad keys, and the names of buffers
in use during the editing session .

Journal Processing
Journal processing protects the user's work against un
likely system crashes. During an editing session , EDT
saves all the terminal input in a journal file. After a crash
and recovery, the user may choose to retrieve and execute
commands in this saved file with the / RECOVER EDIT
command qualifier. In this way the user can recover edited
files to the time of the crash.

The EDT CAI Program
Also available with VAX/VMS V2.0 EDT is a Computer
Assisted Instruction (CAI) program on EDT. This interac
tive program presents the " Introduction to the EDT Editor"
min icourse, which demonstrates how to use EDT. The CAI
program runs on VT100 terminals and takes about three
hours.

EDT Modes of Operation
A " mode" in EDT is a state in which the editor lets a user
perform a specific set of functions . EDT has two basic
modes of operation : line mode and change mode.

Line mode allows users to establish editing parameters
and to d isplay and edit text by range specification . (One
can specify a range with such entities as line numbers and
character strings.)

One can modify the text with line ed iting commands such
as COPY, SUBSTITUTE, and REPLACE. Or one can move
about in the text by using the FIND and TYPE commands,
for example, or by pressing the RETURN key.

Change mode lets users operate on such entities as char
acters, words, sentences, paragraphs, and lines. One can
also work with strings of text or delete and move whole
pages. EDT lets a user redefine these entities to tailor them
to specific applications, which can be as diverse as docu
mentation or programming .

Change mode consists of a set of NOKEYPAD commands.
Typing any of these commands lets a user perform useful
functions . By typing FNDNXT, for example, one can find
the next occurrence of a string of characters.

With VT52 and VT100 terminals, one can also use KEY
PAD commands. The set of keypad keys, as well as sever
al CTRL keys, lets the user enter any of the NOKEYPAD

8-3

commands simply by pressing a key. Users can also rede
fine the function of these keys.

SLP EDITOR
SLP is the batch-oriented editing program used for source
file maintenance. SLP allows updating (deletion , replace
ment, addition) of lines in an existing file. The SLP com
mand file provides a reliable method of duplicating the
changes made to a file, at a later time or on another sys
tem.

Input to SLP consists of a correction input file that is to be
updated , and command input containing text lines anded
it command lines that specify the update operations to be
performed. SLP locates lines to be changed by means of
locators (line numbers or character strings). Command in
put normally enters through an indirect file that contains
commands and text input lines to be inserted into the file.
Alternatively, commands can be entered from the termi
nal.

SLP output is an optional listing file and an updated copy
of the corrected input file. SLP provides an optional audit
trail that helps keep track of the update status of each line
in the file . The aud it trail is provided in the listing and is
included permanently in the output file. When a given file is
updated with successive versions of an SLP command file,
different audit trails may be used to differentiate between
changes made at various times.

SLP output qualifiers permit the user to create or suppress
an audit trail , eliminate an existing audit trail , specify the
length and beginning position of the aud it trail , or generate
a double-spaced listing.

Initiating and Terminating SLP
SLP is initiated via the command language EDIT
command . The normal way to use SLP is to specify an in
direct command file that informs SLP what files to process,
and indicates what editing changes are to be made to the
correction input file. The indirect file can be specified on
the same line with the EDIT command , or on a separate
line. The indirect file must be created before running SLP.
An interactive text editor is normally used to create SLP in
direct command files . If both new and old versions of the
file exist , the differences utility can be used to create a SLP
correction file that will change the old file into the new one.

SLP Input and Output Files
SLP requires two types of input: a correction input file and
command input. The correction input file is the source file
to be updated using SLP. Command input consists of an
initialization line, followed by SLP edit commands that in
dicate how the file is to be changed.

SLP output consists of a listing file and an output file. The
listing file is a copy of the output file with sequence num
bers added ; it shows the changes SLP makes to the cor
rection input file . The output file is the permanently
updated copy of the input file .

Correction Input File
The correction input file is the file to be updated by SLP. It
can contain any number of lines of text. When SLP
processes the correction input file, it makes the changes
specified by SLP ed it commands in the output file.

SLP Output File
The SLP output file is the updated input file . All of the up
dates specified by the command input are inserted in this
file . An audit trail , unless suppressed, is applied to lines
changed by the update. The numbers generated by SLP
for the listing file do not appear in the output file.

LINKER
The VAX/VMS linker is a program development tool that
takes the output of language translators (object files or
modules) , such as the VAX-11 MACRO assembler or the
VAX-11 FORTRAN compiler, and produces a file that can
be executed on the VAX-11 hardware. This output file is
known as an image. To write an application in modules, it
is necessary to be able to link together the separately com
piled modules. The linker is activated by the DCL LINK
command, which can be entered interactively or from with
in a command procedure. Linking consists of three basic
operations:

• allocation of virtual memory addresses

• resolution of intermodule symbolic references

• initialization of the contents of a memory image

At the end of a linking operation, the program has virtual
memory addresses assigned , has intermodule references
resolved, and exists as an executable initialized entity in a
disk-resident image file .

The LINK Command
The DCL LINK command provides the interface between
the user and the linker. When the user requests the linking
of object modules, the command interpreter receives the
command and activates the linker.

Virtual Memory Allocation
Language translators do not compute any addresses in
the program. At the time of translation, the allocation of
virtual address space is undecided. Each object module is
relocatable in virtual memory. The reason that language
translators cannot allocate virtual memory addresses is
that a translator can see only one module at a time: it can
not know how modules interrelate. As a result , it is the link
er's function to perform the memory allocation, reference
resolution , and image initialization required to form one
executable program from a number of object modules.

VAX/VMS language translators use the object language to
describe a module to the linker. The output from a transla
tor is an object module consisting of records describing
the module to the linker. The language translators define
each object module as a number of separate areas called
program sections. Some program sections contain data,
others contain instructions. Some can be modified during
execution, others cannot. Some are accessible to pro
cedures in other modules, others are local to a module.
When determining the virtual memory allocation of a pro
gram, the linker must consider the attributes of each pro
gram section. The linker groups program sections with
similar attributes together in virtual memory.

Resolution of Symbolic References
VAX language translators provide the ability to call exter
nal procedures by name. They permit the use of other ex
ternal items such as literals and variables by name. Exter-

8-4

nal references have values that are available only to the
linker when all the input (e.g ., modules and library pro
cedures) is gathered together . The VAX-11 object lan
guage provides the ability for a language translator to de
scribe to the linker the external items required by a mod
ule. The linker maintains a description of the items of each
module that are available to other separately translated
modules. In the object language, all of these external items
are either references to global symbols or definitions of
global symbols.

Image Initialization
After the linker allocates virtual memory and resolves ex
ternal references, the linker fills in the actual contents of
the image. This image initialization consists mainly of co
pying the binary data and code that was written by the
compiler or assembler. However, the linker must perform
two additional funct ions to initialize the image contents:

• It must insert addresses into instructions that refer to
externally defined fields . For example, if a module con
tains an instruction moving FIELDA to FIELDS, and if
FIELDS is defined in another module, the linker must
determine the virtual address of FIELDS and insert it in
to the instruction .

• It must compute values that depend on externally de
fined fields . For example, if a module defines X as being
equal to Y plus Z, and if Y and Z are defined in an exter
nal module, the linker must compute the value of Y plus
Zand insert it in X.

Overview of Linker Interface to Memory Management
The linker describes the virtual address space required for
an image in such a way that the image activator function of
VAX/VMS can initialize the VAX memory management
hardware to place the image in a process virtual address
space. When a user requests execution of an image, the
image activator obtains a description of the image's virtual
address requirements from the image file produced by the
linker.

The mechanism used to describe images to VAX/VMS is
an image section descriptor. The linker creates an image
section description (ISD) for each image section of a
shareable or executable image. The header of an image
contains the ISDs for the image. With the ISO, memory
management can determine the following information
about an image section:

• the starting block number of the image section in the im
age file

• the starting virtual page number in the process's virtual
address space to which to map the image section

• characteristics of the image section , e.g., read -only,
read/write

• additional control information

Using the information in the ISD, memory management
sets the page table and other data structures used to bring
process pages into physical memory and to allow sharing
in physical memory.

Linker Input
The linker accepts the following types of files as input to a
binding operation :

1. Object module files
2. Libraries of object modules
3. Shareable images files
4. Symbol tables from shareable images

Object Module Files
The linker requires as a minimum one object file as input
to a binding operation . An object module contains four
types of information :

1. Compiled program code and data.
2. Descriptions of program code and data used by the

linker in performing relocation and link-time compu
tations.

3. Identification of the object module and its history for
use by the librarian and patch utilities.

4. Description of the memory allocation requirements of
the module.

Object Module Libraries
The librarian creates and updates object module library
files. Each library file contains a catalog of the object mod
ules and global symbols within it. The linker can access
modules in such libraries either explicitly or implicitly.

Explicit extraction is performed on the basis of the name of
a particular module in the file or by naming the library file
and letting the linker extract any modules required to re
solve undefined symbols.

Implicit access to object module libraries occurs after all
explicitly named input modules have been extracted, and
is done by loading modules which contain global symbols
that resolve undefined global symbols in the link .

Shareable Image Files
A shareable image is an image that comprises part of a
complete program . All references in the shareable image
are resolved when the shareable image is created. Share
able images are used as input to a later link to create an
executable image.

Shareable Image Symbol Tables
When the linker produces an image file, it appends the
symbol table to the file. The symbol table produced by the
linker has the same form as an object module. That is, it
defines those symbols available to object modules that are
outside the set of object modules that produced the share
able image. Such symbols are called universal.

Linker Output
The linker can produce three different types of images.

1. Executable images
2. Shareable images
3. System images

Executable images are the most common . As the name
suggests, an executable image is the type run in response
to a command given to the command interpreter. The sec
ond type, shareable images, is intended for use at link time
and , potentially, at run time. At link time, a shareable im
age can be linked with object modules to produce an exe
cutable image. The same shareable image can be shared
when executable images bound to it are run . A system im
age is a special type of image intended for stand-alone
operation on the hardware i.e., it does not run under the
control of the VAX/VMS operating system.

8-5

COMMON RUN TIME PROCEDURE LIBRARY
The VAX-11 Common Run Time Procedure Library (RTL)
is composed of a set of general purpose and language
specific VAX procedures which establish a common run
time environment for all user programs written in any na
tive mode language. Because all of the language support
procedures follow the same programming standards and
make nonconflicting assumptions about the execution en
vironment, a user program can be composed of modules
written in different languages, including assembly lan
guage. Because of the VAX procedure calling standard ,
each native mode user module can call any other native
mode user module or any of the procedures in the Run
Time Library.

Most of the VAX-11 Run Time Library is constructed as a
separate shareable image which is accessed by users via
entry point vectors. This allows:

1. Installation of a new library without the need to relink a
user's program.

2. Implementation of new internal algorithms without re
linking all user programs.

3. A single copy of the library to be shared by all
processes.

Each procedure entry point in the shareable image is at an
address defined relative to the base of the shareable sec
tion, and will never change, once it has been assigned .
New entry points are always added at the end of the list of
entry point vectors. The entry point vector contains the
procedure entry mask and a transfer of control to the pro
cedure. Use of entry vectors permits a single position-in
dependent copy of the library to be bound to different
virtual addresses in processes which are sharing it. Use of
entry vectors also permits a new release of the library to be
installed without requiring that user images be relinked .

The VAX-11 Run Time Library is designed as a set of mod
ular re-entrant procedures comprising several functional
groups. They are:

• a resource allocation group (virtual memory, logical unit
number, and event flags)

• a condition handling group (signaling exception condi
tions and declaring condition handlers)

• a general utility group (data type conversions)

• a mathematical group (single and double precision tri
gonometric, logarithmic, and exponential functions)

• a language-independent support group (error handling
and Record Management Services support functions)

• language-specific support groups (file handling support
functions)

• a string handling group (static and dynamic string func
tions)

Resource Allocation group (LIB$)
The resource allocation group includes all procedures
which allow allocation of process-wide resources. Such re
sources include:

1. Virtual Memory-one procedure to allocate and one
to deallocate arbitrary-sized blocks of process virtual
memory.

2. Logical Unit Numbers-allow logical unit numbers to
be allocated in a modular manner.

3. Event Flags-allow event flags to be allocated in a
modular manner.

In most cases, the resource allocation procedures must be
used to allocate process-wide resources in order for all li
brary, DIGITAL, and customer-written procedures to work
together properly within an image.

Signaling and Condition Handling
The VAX-11 condition handling facility is a collection of li
brary procedures and system services which provides a
unified and standardized mechanism for handling errors
internally in the operating system, the Run Time Library,
and user programs. In some cases, the mechanism is also
used to communicate errors across these interfaces. In
particular, all error messages are printed using this me
chanism . When an error condition is signaled, the process
stack is scanned in reverse order. Establishing a handler
provides the programmer with some control over fix-up,
reporting, and flow of control on errors. It can override the
standard error messages in order to give a more suitable
application-oriented user interface.

General Utility (LIB$)
General utility procedures are not mandatory in order to
use the rest of the library successfully. They are provided
for the convenience of the user only. General utility pro
cedures include outputting a record to a logical device
(SYS$0UTPUT).

Mathematical Functions (MTH$)
The mathematical library consists of standard procedures
to perform common mathematical functions , such as tak
ing the sine of an angle. The standard entry points have
one or two call-by-reference input parameters and a single
function value. Some frequently used procedures also
have call-by-value entry points that are called by the JSB
instruction.

Language-Independent Support (OTS$)
The language support libraries support the code generat
ed inline by compilers. As such, most of the procedures
are called implicitly as a consequence of a language con
struct specified by the user, rather than being called expli
citly by the user with a CALL statement. Those language
support procedures which are independent of higher level
language use the facility prefix OTS$.

Language-Specific Support (FOR$, BAS$)
Each of the language support libraries is composed of five
principal types of procedures:

• 1/0 processing procedures

• Language-independent initialization and termination

• System procedures

• Compiled-code support procedures

• error and exception-condition processing procedures

String Processing (STA$)
The string processing procedures allocate and deallocate
dynamic strings and perform a number of useful string
functions on any class of VAX strings.

System Procedures
VAX-11 programs written in the higher-level languages

8-6

may call the operating system directly. However, since
some languages cannot easily pass arguments in the form
that system services require, and some languages use da
ta types that system services cannot properly handle (i.e. ,
dynamic strings), LIB$ routines provide easy access to the
operating system directives.

Compiled-Code Support Procedures
These routines complement the compiled code by per
forming operations too complicated or too cumbersome to
perform directly with inline code. Thus, the language sup
port libraries support the code generated by the compiler.
For example, division of complex numbers is performed
by a library procedure.

Error Processing Procedures
Errors detected by the Run Time Library are indicated by
returning an error completion status wherever possible.
This is especially true for the general utility library (LIB$).
However, the math library and the language support librar
ies indicate most errors by CALLing the VAX-11
LIB$SIGNAL or LIB$STOP procedures. The LIB$SIGNAL
procedures use a condition value as an argument which
has an associated error message stored in a system error
message file. The condition is signaled to successive pro
cedure activations in the process stack . These procedures
may have established handlers to handle the conditions or
change the error message. Thus an application can tailor
its error messages to its own needs.

VAX-11 SYMBOLIC DEBUGGER
The VAX-11 SYMBOLIC DEBUGGER is a language-inde
pendent, interactive program that can be linked with user
code written in all native mode languages supported by
VAX/VMS. Current languages with which the debugger
can be used are: VAX-11 FORTRAN, VAX-11 BASIC, VAX-
11 COBOL, VAX-11 BLISS-32 , VAX-11 CORAL66, VAX-11
PASCAL, and the VAX-11 MACRO assembly language. Af
ter linking with the user program, the DEBUG facility is op
erative in the language of the first module of the image file .
If it is necessary to alter the language for a later module,
the SET LANGUAGE command may be used .

DEBUG enables dynamic examination and modification of
the contents of memory locations, which is useful in isolat
ing program errors. Since user program execution is con
trolled by DEBUG once it is invoked , modifications may be
made to the program while it is executing.

The VAX-11 debugger includes many user oriented
functions that facilitate the use of the VAX-11 SYMBOLIC
DEBUGGER.

• The debugger is interactive-the user maintains control
of the program while conversing with the debugger via
the terminal.

• The debugger is symbolic-program locations may be
referred to by the symbols the user has created in the
program. The debugger is also capable of displaying lo
cations as symbolic expressions.

• The debugger supports all native mode languages-the
debugger lets the user converse with the program via
the source program's language. Furthermore, the user
may change languages during the course of a debug
ging session by means of a simple command.

• The debugger permits a variety of data forms-the user
controls the way in which the debugger accepts and dis
plays addresses and data. For example, an address can
be represented symbolically, or as a virtual address in
decimal , octal , or hexadecimal. Also, data can be repre
sented by symbols, expressions (X + 3) , VAX-11 MACRO
instructions, ASCII character strings, or numeric strings
in decimal , octal , or hexadecimal.

DEBUG Commands
DEBUG commands direct the execution of the program
and can be entered interactively from a terminal or from an
indirect command file. Typically, the DEBUG commands
can :

• Specify po ints at which execution will be suspended,
when and if they are encountered , by using the SET
BREAK command.

• Trace the sequence of program execution by means of
the SET TRACE command. This command establishes
tracepoints in the program.

• Display before-and-after values of a location whenever
that location is stored into, by means of the SET WATCH
command .

• Initiate or resume execution , by means of the GO com
mand or the STEP command .

• Determine the location of breakpoints, tracepoints, and
watchpoints by means of the commands SHOW BREAK,
SHOW TRACE, and SHOW WATCH, respectively.

• Erase breakpoints, tracepoints , and watchpoints in the
program , through use of the CANCEL command .

• Display the contents of memory locations, by using the
EXAMINE command .

• Change the value of the contents of memory locations,
by using the DEPOSIT command .

• Obtain the value of an expression or the current address
of a symbol , or express a numeric value in a different
rad ix, by using the EVALUATE command.

• Call a subroutine at DEBUG time, by means of the CALL
command .

• Change values of parameters for LANGUAGE, SCOPE,
MODE, and TYPE.

• Specify an arbitrary file name for the DEBUG log file by
means of the SET LOG command.

• Control DEBUG 1/ 0 at debug time, via the SET OUTPUT
command . This includes normal term inal output, log file
output, and command file verification .

• Find all current output attributes (VERIFY, TERMINAL
and LOG) by using the SHOW OUTPUT command . For
more limited needs, a SHOW LOG command is avail
able that d isplays only the LOG data.

• Instruct DEBUG to take commands from a specified file
by means of @filespec.

THE LIBRARIAN UTILITY
Libraries are indexed files that contain frequently used
modu les of code or text. There are four types of libraries;
object, macro, help, and text. The library type indicates the
type of module that the library contains. Each library con-

8-7

tains indexes that store information regarding the library's
content, including type, and location. The librarian is a
utility that allows the user easy access to the data stored in
libraries.

The librarian may be invoked in one of two ways; via a set
of librarian rout ines that can be called from the user pro
gram directly, or interactively via the DCL command LI
BRARY issued from the terminal or from within an indirect
command file . The DCL LIBRARY command enables the
user to replace and maintain modules in an existing libra
ry , or to create a new library. The librarian routines enable
an executing program to initialize and open a library, and
to retrieve, insert, and delete modules.

The four library types are defined as follows:

• Object libraries (file type OLB) contain frequently called
routines and are used as input to the linker. Tbe linker
searches the object module library whenever it encoun
ters a reference it cannot resolve from the specified
input files .

• Macro libraries (file type MLB) contain macro definitions
used as input to the MACRO assembler. The assembler
searches the macro library whenever it encounters a
macro that is not defined in the input source file.

• Help libraries (file type HLB) contain help modules; that
is, modules that provide user information concerning a
program. The help message can be retreived by calling
the appropriate librarian routines .

• Text libraries (file type TLB) contain any sequential rec
ord files requ ired by the user program . A user program
can call library routines d irectly to retrieve text modu les.

Librarian Routines
The Librarian utility provides a set of 18 user-callable rou
tines that:

• initialize a library

• open a library

• look up a key in a library

• insert a new key in a library

• return the names of the keys

• delete a key and its associated text

• read text records

• write text records

The user program can call the librarian routines using the
VAX-11 standard calling sequence supported in all lan
guages producing VAX-11 native mode code.

DCL LIBRARY Command
The LIBRARY command creates or modifies an object ,
help, text , or a macro library, or inserts, deletes, replaces ,
or lists modules, macros, or global symbol names in a li
brary.

To invoke the LIBRARY command , enter the following for
mat:

LIBRARY Ii brary[file-spec,. ...]

For example, to create an object library named TESTLIB,
and insert entries ERRMSG, and STARTUP, the user
would proceed as follows:

$LIBRARY / CREATE TESTLIB ERRMSG,STARTUP

COMMAND LANGUAGE PROCEDURES
A command procedure is a file containing DCL com
mands, command or program input data, or both. Com
mand procedures may be used to catalog sequences of
commands frequently used during an interactive session
or to submit all jobs for batch processing.

In its simplest form, a command procedure consists of one
or more command lines that the command interpreter ex
ecutes. In its most complex form, a command procedure
resembles a program written in a high level programming
language: it can establish loops and error checking pro
cedures, call other procedures, pass values to other pro
cedures and test values set in other procedures, perform
arithmetic calculations and input/output operations, and
manipulate character string data.

Passing Parameters to Command Procedures
The user can write generalized command procedures that
may perform differently each time they are executed . The
command interpreter defines eight special symbols for
use as parameters within command procedures. These
symbols are named P1, P2, P3 ... P8; they are all initially
equated to null strings. Either numeric or character string
values for these parameters may be passed when execut
ing the procedure with the @ command or the SUBMIT
command when entering a batch job.

For example, the procedure named EXECUTE contains
the following lines:

$IF P2 .EQS. ""THEN $P2:="FORTRAN"
$ 'P2' 'P1'
$LINK 'P1'
$RUN 'P1'

The command procedure EXECUTE accepts both the lan
guage compiler and the user program name as input. If the
user executes the procedure with the @ command, the
values for the command parameters P1 and P2 would be
entered as follows:

$@EXECUTE PAYROLL COBOL
In this sample run, the user chose the program name PAY
ROLL, and the COBOL compiler.

It is also possible to define a symbol as a local symbol , us
ing a single equals sign(=) in an assignment statement.
For example, the user might have equated the symbol EXE
to the execution command @EXECUTE as follows:

$ EXE*CUTE:=@EXECUTE
The asterisk (*) specifies that EXE, EXEC, EXECU, etc. are
abbreviations of EXECUTE. The minimum abbreviation is
three characters (in this case, EXE). A colon (:) in an as
signment statement indicates a character string assign
ment. Now to execute the command procedure the use
can enter the following:

$EXE STRESS
In this run, STRESS is the user program name and the
compiler is the default compiler, FORTRAN (i.e. , the sec
ond parameter in the EXE command was left blank).

Logical Commands
Normally, the command interpreter executes each com
mand in a command procedure in sequential order, and
terminates processing when it reaches the end of the com
mand procedure file. However, by using combinations of

8-8

the logical commands, the user can alter the flow of execu
tion of the command procedure. By using the IF, GOTO,
ON, EXIT, and STOP commands, the user can control the
execution sequence, conditionally execute lines, construct
loops, and handle errors.

Lexical Functions
The command interpreter recognizes a set of functions,
called lexical functions, that return information about char
acter strings and attributes of the current process. Lexical
functions may be used in any context in which symbols
and expressions are used. Within command procedures,
lexical functions are used to translate logical names, per
form character string manipulations, and determine the
current processing mode of the procedure.

Command Procedure Example
The command procedure described in Figure 8-3, when
invoked, locks up a user terminal as being in use. If the
current user must leave the terminal for some time and
does not wish to have it disturbed, the user can invoke the
command procedure I NUSE.COM, rendering the terminal
inaccessible to any other user not knowing the access
password .

This command procedure illustrates several of the power
ful features of DCL, including:

• Trapping of the Control-Y function.

• Calling a command procedure from within a command
procedure (i.e., @COMMANDS:INUSE.TXT). ERASE,
ERASELINE, and TEXT are user-defined symbols that
also invoke command procedures.

• Referencing lexical functions (i.e., 'F$TIME, 'F$LOCATE,
and 'F$EXTRACT).

Upon invoking the command procedure I NUSE.COM:

• The current setting of VERIFY is retrieved via the lexical
function 'F$VERIFY, and stored in local variable VER
(line 100).

• The procedure will set NOVERIFY (line 200), i.e. , the
command lines are not echoed on the terminal during
execution (if verify was on when the command pro
cedure was invoked, it will be turned on when the pro
cedure exits successfully).

• The address of the password routine (line 900) is stored
for later use if Control-Y is typed.

• The address of ERR_HNDLR (line 950) is stored for
processing any errors that might occur.

Execution then proceeds with the BEGIN code block (lines
1000-1300). The ERASE procedure (line 1100) is called ,
which clears the screen of all text. !NUSE.COM then calls
the command procedure INUSE.TXT (line 1300). This pro
cedure prints in block letters, "IN USE," across the video
screen . Execution then proceeds to the LOOP section of
code (lines 1500-2300). This block of code retreives the
current date and time of day from VMS, using the lexical
function 'F$TIME. The date and time of day normally ap
pear as follows:

dd-mmm-yyyy hh:mm:ss.cc
The 'F$LOCATE and 'F$EXTRACT lexical functions oper
ate upon the date and time of day, reducing the time quan
tity to hours and seconds only. Therefore the final date and

100 $ VER ='F$VERIFY()
200 $ SET NOVERIFY
300 $
400 $! THIS COMMAND PROCEDURE LOCKS A TERMINAL AS BEING IN USE. IT DISABLES
500 $! CONTROL Y, SETS A CONTROL Y ENTRY POINT AND LOOPS ON A SHOW TIME
600 $! COMMAND. A CONTROL Y TYPED AT THE TERMINAL WILL TRANSFER CONTROL
700 $! TO A CHECK FOR A PASSWORD TO EXIT FROM THIS PROCEDURE.
800 $
900 $ ON CONTROL Y THEN $GOTO PASSWORD
950 $ ON ERROR THEN GOTO ERR HNDLR
1000 $BEGIN: -
1100 $ ERASE
1200 $
1300 $ COMMANDS:INUSE.TXT
1400 $
1500 $LOOP:
1600 $ TIMSTR:='F$TIME()
1700 $ DOT = 'F$LOCATE(" .",TIMSTR)
1800 $ DOT = DOT-3 !SHOWTIMEDOWNTOMINUTES
1900 $ TIMSTR: ='F$EXTRACT(O,DOT,TIMSTR)
2000 $ TEXT 5 32 ""TIMSTR'"
2100 $ TEXT 1 1
2200 $ WAIT 00:01
2300 $ GOTO LOOP
2400 $
2500 $PASSWORD:
2600 $ TEXT 1 1
2700 $ INQUIRE MAGIC "ENTER THE PASSWORD TO CONTINUE"
2800 $ IF ""MAGIC"' .EQS. ""P1 "' THEN $GOTO EXIT
2900 $ IF ""MAGIC"' .EQS. "REFRESH" THEN $GOTO BEGIN
3000 $ ERASELINE 1
3100 $ ERASELINE 2
3200 $ ERASELINE 3
3300 $ ERASELINE 4
3400 $ ERASELINE 5
3500 $ ERASELINE 6
3600 $ ERASELINE 7
3700 $ GOTO LOOP
3800 $
3801 $ ERR HNDLR:
3802 $ ON ERROR THEN GOTO ERR HNDLR
3803 $ GOTO PASSWORD
3900 $EXIT:
4000 $ SET CONTROL Y
4100 $ ERASE
4200 $ IF VER THEN $SET VERIFY
4300 $ EXIT
4400 $
4500 $! END OF I NUSE.COM

Figure 8-3

Example Command Procedure

time of day appear as:

dd-mmm-yyyy hh :mm
This date and time of day function are printed on the
screen above the " IN USE" message. The date and time of
day are refreshed once every minute. The PASSWORD
code (lines 2500-3700) is entered only if a Control-Y is
typed at the terminal while the terminal is locked up. The
command procedure prompts for a password . If the en
tered password matches the initial password (declared by
the current user of the terminal), the flow of execution
drops to the EXIT code block (lines 3900-4300). If the
passwords do not match , execution drops through to line
3000, which clears the top seven lines of the screen .

8-9

Another added feature is the REFRESH statement (line
2900). The REFRESH statement directly follows the PASS
WORD check statement (line 2900). If the screen gets clut
tered with garbage characters, any user may enter a CON
TROL Y, and in response to the system prompt for a pass
word (line 2700), type REFRESH. REFRESH is recognized
in line 2900, clearing the entire screen of unwanted
characters. This is followed by a new IN USE and date and
time of day message.

DIFFERENCES UTILITY
By invoking the DIFFERENCES command, the user can
determine if two files are identical and, if not, how they dif-

fer. The DIFFERENCES utility compares the contents of
two disk files on a record-by-record basis and creates a
listing of the records that do not match. By default, the
DIFFERENCES utility compares every character in each
file, and by default, the DIFFERENCES utility writes the
output in ASCII.

VAX-11 RUNOFF
VAX-11 RUNOFF is a document formatter. A RUNOFF
processed document can be updated without extensive
retyping because text changes, via the text editors, do not
affect the basic design. The input to RUNOFF is a file con
taining the text of the document and the RUNOFF instruc
tions. Executing in default mode, RUNOFF provides:

• a standard typewriter page size of BW' x 11 "

• sequential page numbering for every page but the first

• page width of 60 characters

• single spacing

• automatic tab settings for every eighth print position ,
starting with the ninth column (9, 17,25, etc.)

• automatic filling and justifying

The output file is the print-ready document. After RUNOFF
has processed the file, the original file remains available
for further editing .

VAX-11 RUNOFF contains commands to perform the fol
lowing functions:

• filling and justifying text

• page formatting

• title formatting

• subject-matter formatting

• graphic, list and note formatting

• index and table of contents

• miscellaneous formatting

Filling and Justifying
RUNOFF commands set left and right margins, so that the
user may enter text without concern for line width or vari
able spacing between words. The RUNOFF program will
fill and justify the text when it is run . Filling is the succes
sive addition of words to a line until one more word would

8-10

exceed the right margin. RUNOFF justifies the line by ex
panding the spaces between words to produce an even
right margin.

Page Formatting
The page formatting commands control the appearance of
each page of output. For example, there are page format
ting commands to establish the style and location of chap
ter headings and subheads. Other page formatting com
mands engage or disengage page numbering , produce
and format titles and subtitles, or force the printer to ad
vance to a new page.

Title Formatting
Title formatting commands provide page, title , and subtitle
information for all pages. Such actions as placing only the
chapter heading on the first page of a chapter; printing any
subtitles of designated words; and determining the num
ber of header levels (up to six) that the document will have
are all provided by the title formatting commands.

Subject-Matter Formatting
Subject-matter formatting commands include manag ing
the design and appearance of text, as with ragged right
hand margin, indenting a paragraph, skipping a number of
lines, centering the text, underlining, hyphenation , and
overstriking. Of course, different parts of the text may be
formatted differently, and commands may be combined.
To illustrate, a user has the option to have lists justified or
to have them with ragged margins.

Index and Table of Contents
RUNOFF has powerful facilities for creating indexes and
tables of contents easily. There is a command to generate
a one-column index. In addition, the TCX program gener
ates two-column indexes, while the TOG program gener
ates tables of contents. Both TCX and TOG create files that
can be edited or can be processed by RUNOFF; this adds
great flexibility to the preparation of indexes and tab les of
contents.

Miscellaneous Formatting
A number of useful RUNOFF commands help the user to
re-establish all default values, to add nonprinted com
ments to the source file, to gather externally located f iles
into the input, and to set time and date.

9
Data

Management

ENVIRONMENT DIVISION.
[INPUT-OUTPUT SECTION.]
FILE-CONTROL.

SELECT file -name

ASSIGN TO device-name-1 [, device-name-2]

; ORGANIZATION IS INDEXED

[{
SEQUENTIAL}]

; ACCESS MODE IS RANDOM
DYNAMIC

; RECORD KEY IS data-name-1

Facilities

[;ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

DATA DIVISION.
[FILE SECTION.

[FD fi le-name

[{
RECORDS }]

; BLOCK CONTAINS [integer-1 TO] integer-2 CHARACTERS

[;RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

{
RECORD IS } {STANDARD}

; LABEL RECORDS ARE OMITTED

[{
RECORD IS }

; DATA RECORDS ARE data-name-3 [. data-name-4) ..]

PROCEDURE DIVISION.

{

INPUT file-name-1 [. file-name-2) .
OPEN OUTPUT fi le-name-3 [. file -name-4)

1-0 file-name-5 [. file-name-6) ... }

VAX/VMS data management includes a file system that provides vol
ume structuring and protection, and record management services that
provide device-independent access to the VAX peripherals.

The VAX/VMS on-disk structure provides a multilevel hierarchy of
named directories and subdirectories . Files can extend across multiple
volumes and be as large as the volume set on which they reside . Vol
umes are mounted to identify them to the system. VAX/VMS also sup
ports multivolume ANSI format magnetic tape files with transparent
volume switching.

The VAX/VMS record management input/output system (RMS) pro
vides device-independent access to disks, tapes , unit record equip
ment, terminals , and mailboxes. RMS allows user and application pro
grams to create, access, and maintain data files with efficiency and
economy. Under RMS, records are regarded by the user program as
logical data units that are structured and accessed in accordance with
application requirements.

RMS provides sequential record access to sequential file organiza
tions , sequential ; random , or combined record access to relative file
organizations and sequential, random , or a combination using index
key access to multikey indexed files . Multikey indexed file processing
includes incremental reorganization .

VAX/VMS also supports several other data management facilities:
DATATRIEVE, VAX-11 SORT, and the Forms Management System
(FMS) utility package.

INTRODUCTION
The operating system's data management services are
provided by the following facilities :

• utilities for data and file manipulation and inquiry

• file system

• record management services

• device drivers

• command interpreter

Utilit ies which VAX offers include the VAX-11
SORT/ MERGE for reordering data, DATATRIEVE for data
inquiry and report writ ing , and FMS for screen formatting
and forms generation.

The file system provides volume structuring and directory
access to disk and magnetic tape files . Programmers can
use the file system as a base to build their own record
processing system, or they can use the VAX/VMS record
management services.

The record management services (RMS) provide device
independent access to all types of 1/ 0 peripherals. The
RMS procedures enable a program to access records
within files, and provide the same programming interface
regardless of device characteristics. The system includes
utilities for RMS file creation and maintenance.

The device drivers provide the basic 1/ 0 device handling
for all of the other data management services. Device dri
vers and their features are described in the Peripherals
and Operating System sections.

As described in the Users section , the command interpret
er enables a user to reserve devices for exclusive use, set
device and directory name defaults, and assign logical
names to file specifications. The command interpreter also
enables the user to execute file management utilities that
provide fi le copy, transfer , and conversion operations.

The fo llowing paragraphs discuss some of the features
and functions of the file system , includ ing the file struc
tures, file naming facilities, and the file management utility
programs. The remainder of this section describes the
record management services programming environment,
and util ities for high-level data and file man ipulation .

FILE MANAGEMENT
VAX/VMS provides two file structures: one for disk vol
umes and one for magnetic tape volumes. From the user's
point of view, the only differences between the two file
structu res are those imposed by the capab ilities of the
media. Volumes are mounted for ident if ication , and files
can extend across multiple volumes. The practical limit to
file size is that they can be only as large as the volume set
on which they reside.

Volume and file protection are based on User Identifica
tion Codes (UICs) assigned to accessors and the file or
volume. The UICs establish the accessor's relationship to
the data structure as owner, the owner's group, the sys
tem , or the world (all others). Depend ing on the relation
sh ip , the accessor may or may not have read , write, exe
cute, or delete access to any given file.

Disk volumes are multiuser volumes. They can contain a
multilevel directory hierarchy that is defined dynamically
by the users of the volume. The on-disk file structure

9-1

appears to a program to be a virtually contiguous set of
blocks. The blocks of the file, however, may be scattered
anywhere on a volume. Mapping information is maintained
to identify all the blocks constituting a file . Figure 9-1 illus
trates the file structure.

Disk files can be extended easily. The blocks of the file are
allocated in physically contiguous sets, called extents.
Users are not requ ired to preallocate space, although they
can do so. Users can specify placement on an allocation
request , and they can control automatic allocation . For ex
ample, when a file is automatically extended, it can be ex
tended by any g iven number of contiguous blocks . If de
sired , a file can be created as a contiguous file , in wh ich
case it is both virtually and physically contiguous.

The disk structure includes duplicates of its critical volume
information . The system detects bad disk blocks dynami
cally and prevents re-use once the files to which they are
allocated are deleted .

Magnetic tape volumes are single-user volumes. Magnetic
tape files consist of physically contiguous blocks. Record
blocking is under program control. Files have ANSI format
labels . VAX/VMS also supports unlabeled (non-f i le
structured) magnetic tapes.

File Directories and Directory Structures
A directory is a file containing a list of files on a given vol
ume. A directory entry contains the name, type, version ,
and unique file ID for a particular file. A directory can list
files having the same owner UIC or files having different
owner UICs. The entries are listed alphabetically.

A disk volume contains at least one directory, called the
master file directory. The system manager is responsible
for creating a volume's master file directory. The master
file directory can (and normally does) contain a list of
directory files wh ich form a second level of directories. The
second level of directory files can list data files and / or oth
er directory files , called subdirectories. Users can create
subdirectories within the directories they own . The subdi
rectories can also list other directory files and/or data files.
Figure 9-2 illustrates a multilevel directory structure.

Since directories of files on volumes are files themselves,
they are assigned owner UICs and can be protected from
certain kinds of access depending on the relationship es
tablished by an accessor's UIC. In the special case of
directory files, the file protection fields control an acces
sor's ability to :

• look up f iles

• enter new files in the directory, including new versions
of existing files

• remove files from the directory

File Specifications
A file specification identifies which file is to be used in a
file processing operation . Programs use file specifications
to identify the file they want to create, access, delete, or ex
tend , and users supply the command interpreter with a file
specification to identify the file they want to edit, compile,
copy, delete, etc. A complete file specification is a well-de
fined character string composed of the following fields :

• Node Name - The node of the network in which the vol
ume containing the file is stored . The node name is

DATA
LOGICAL AREA 1

VIRTUAL

FILE HEADER BLOCK

FILE I.D.

BLOCK
#221 BLOCK

#1

DATA AREA PTR 1 I-
DATA AREA PTR 2 ,___ __

#222 #2

DATA AREA PTR 3 1-- #223 #3

#224 #4

INDEX FILE
#225 #5

FILE HEADER# 1
FILE HEADER BLOCK DATA

AREA 2
FILE HEADER#2 D-FILE LOGICAL

BLOCK VIRTUAL
#172 BLOCK

#6

FILE HEADER #3

•
•
•
• #173 #7

FILE HEADER BLOCK

D-FILE #174 #8

DATA
LOGICAL AREA 3
BLOCK VIRTUAL
#450 BLOCK

#9

Figure 9-1

Disk File Structure

followed by two colons(::) to delimit it from the remain
der of the file specification.

• Device Name - The device on which the volume con
taining the file is mounted. The device name is followed
by a single colon (:)to delimit it from the remainder of
the file specification .

• Directory Name - The directory in which the file is list
ed. A directory name begins with an opening bracket (<
or[) and ends with a closing bracket(> or]). If the file is
listed in a subdirectory, the directories to be searched
are listed in the desired search order, with the names
separated by periods, e.g.:

[name1 .name2.name3)

• File Name - The user-assigned name of the file.

• File Type - The type identification for the file. The type
is preceded by a period (.)to delimit it from the remain
der of the file specification.

• File Version - the generation number of the file. The file
version is preceded by a semicolon (;) or period (.) to
delimit it from the remainder of the file specification.

For example, a complete file specification might be:

NODE47::DBA 1 :[JONES]HANOl.FOR;2

In this case, NODE47 is the name of the network node,

9-2

OBA 1 is the name of the device (DB for disk pack device, A
for disk controller, 1 for drive unit number), [JONES] is the
directory name, HANOI is the file name, FOR is the file type
(meaning that th·e file is a FORTRAN source file), and 2 is
the version number.

Neither programs nor command language users need to
provide a complete file specification to identify files . The
system applies defaults to most fields of a file specification
when they are not present. For example, if the node name
is not present, the node is assumed to be the node on
which the program is executing. If the version number is
not present, the version is always assumed to be the latest
version. Device name and directory name defaults for
users and the programs they execute are supplied by the
system manager in the user authorization file, and users
can change the standard defaults at any time during their
session on the system.

Some commands (such as COPY, PRINT, and DELETE)
accept a wild card in one or more fields of a file specifica
tion . A wild card is an asterisk appearing in a file specifica
tion field and it means "all."

File specifications also apply to non-file-structured de
vices such as line printers, card readers, and terminals. In
these cases, however, the user or program needs to sup
ply only the node name and device name, as appropriate.

MASTER FILE
DIRECTORY

JONES . DIR JONES . DIR

SMITH .

PAYROLL .

DIR

DIR

HANOI FOR

HANOI. LIS

TEST . COM

etc.

etc .
:

:

BACKUP. DIR

PAYROLL. DIR MASTER . DAT
L___. MASTER . DAT WE EK 0 9. DAT

WEEKLY. DAT WEEK 10 DAT

BACKUP. DIR W EE K l l. DAT

etc. etc .

lf'AYROLg MASTER . DAT [PAYROLL. BACKU~ MASTER . DAT

Figure 9-2

Multilevel Directory Structure

Logical File Naming
To provide both system and device independence, users
and programs are not limited to identifying files by their file
specifications. They can use logical names in place of a
complete file specification , or in place of a portion of a file
specification. For example, a user can assign a logical
name to the left-most three fields of a file specification:

$ASSIGN NODE47::DBA4:[JONES] to VOL

And then use the logical name VOL in a subsequent com
mand :

$TYPE VOL: HANOI.FOR

Defaults also apply when translating logical names, so that
the user could have made the assignment:

$ASSIGN NODE47: :(JONES] to VOL

In this case, the user's default device name would be used
to derive the complete file specification.

Logical name assignments can be made on a process,
group, or system-wide basis. Logical names can also be
recursive, that is, a logical name can be assigned to anoth
er logical name, or to a logical name and a portion of a file
specification.

For example, suppose a company's weekly payroll pro
duction run includes an application program that uses the
current week's payroll changes data file . That data file may
be located in the directory named [PAYROLL) one week,
or in the payroll backup subdirectory, [PAY
ROLL.BACKUP) , another week. The volume on which the

9-3

file is stored may be mounted on disk pack drive unit num
ber 1 one week, or on unit 2 another week.

The application programmer can write the program
without knowing which directory the data file is listed in, or
which device the volume is mounted on . A series of logical
name assignments provides the complete file specifica
tion. The assignments are the responsibility of the people
who know what directory the file is listed in, and what drive
the volume is mounted on .

In the example shown in Figure 9-3, the application pro
gram contains an OPEN statement for the payroll data file
using the logical name WEEKLY _PAYROLL_
CHANGES (note that underscore is a legal character) . The
application systems designer has created a command
procedure file called PAYRUN that controls the production
run . The command procedure file includes a logical name
assignment that obtains the file name as a parameter sup
plied by the operator or production clerk who starts the
production run. The logical name used by the application
program is given a value that consists of another logical
name (WEEKLY _PAYROLL) and the file name and type
specifications.

To complete the series of logical name assignments, the
payroll group operations manager makes a group-wide
logical name assignment: the payroll data files this week
are stored in the PAYROLL.BACKUP subdirectory. The
logical name assignment provides the directory name, us
ing another logical name (PAY _PACK) known to the oper-

Application Programmmer:

OPEN ("WEEKLY _PAYROLL_CHANGES")

Application System Programmer:

Command Procedure: PAY _RUN .COM

accepts one parameter (P1): Week Number

$ASSIGN WEEKLY _PAYROLL:'P1 '.WPY WEEKLY_PAYROLL_CHANGES

$RUN APPLICATION

Production Clerk:

$ @PAY _RUN WEEK09

Payroll Group Operations Manager:

$ASSIGN/GROUP PAY _PACK:[PAYROLL.BACKUP] WEEKLY PAYROLL

Local Operator:

$ASSIGN / SYSTEM DBA2: PAY PACK

Figure 9-3

Logical Naming

ator who mounts the payroll data files volume. The opera
tor makes the system-wide logical name assignment when
mounting the pack before the production run . Given the
assignments shown in the example, the logical name used
to open the file is translated to:

DBA2:[PA YROLL.BACKUP]WEEK09.WPY

(The local system node name and the latest version num
ber are used as defaults to complete the file specification .)
Should the directory name change, or the pack be mount
ed on another device that day, the only changes made are
the logical name assignments. There is no need to modify
either the application program or the command procedure
controlling the production run.

File Management
The VAX/VMS system includes many services that aid in
data management and maintenance. Some of these are
described in the following paragraphs.

Sorting Files - The SORT/MERGE program allows the
user to rearrange, delete, and reformat records in a file .
The user can arrange the records in the ascending or des
cending sequence of one or more fields within the records
for subsequent sequential processing . SORT can also cre
ate several different index files for accessing a file accord
ing to these indexes without reordering the data itself.

Comparing Files - A file differences command contrasts
two files by automatically aligning matching text, and op
tionally ignoring comments, empty records , trailing
blanks, or multiple blanks. The output can be a file-by-file
list of differences, an interleaved list of differences, a list
with change bars, or a batch editor command input file .

Backing Up Files and Volumes - The Disk Save and Com
press (DSC) utility enables a user to back up entire disk
volumes to magnetic tape or to other disks. When backing
up disk volumes to other disk volumes, or restoring disk
volumes from magnetic tape, DSC combines unused
blocks on disks into contiguous areas.

Verifying File Structures - The file verification utility
checks the consistency and accuracy of the file structure

9-4

on a Files-11 disk volume. It can also display the number
of available blocks in a volume, locate f iles that could not
otherwise be accessed , and list the names of files on the
volume.

Bad Block Locator - The bad block locator utility deter
mines the number and location of bad blocks on Files-1 1
disk volumes and stores this information in the bad block
file on the volume so that the blocks can not be allocated .
Running this utility before initializing a Files-11 volume is
useful in ensuring a disk's integrity.

RMS Utilities - The record management services pro
cedures are complemented by a number of utilities de
signed especially for RMS file creation and maintenance.
They allow the user to :

• create an RMS file and define the attributes of the file

• list the attributes of a single file or a group of files , or list
the contents of a backup magnetic tape

• convert a file wi th any file organization or record format
to a file with any other file organization or record format

• back up a single file or group of files in a compact fo r
mat (optionally by creation or revision date)

• restore files previously backed up (optionally by
creation or revision date)

RECORD MANAGEMENT SERVICES
The record management services (RMS) are a set of sys
tem procedures that provide efficient and flexible facilit ies
for data storage, retrieval , and modification. When writing
programs, the user can select processing methods from
among the RMS file organizations and accessing tech
niques. The following sections discuss RMS:

• file organizations

• file attributes

• program operations

• run-time environment

The manner in which RMS builds a file is called its or
ganization . RMS provides three file organizations:

• sequential

• relative

• indexed

All three file organizations are available in both compatibil
ity mode (using RMS-11) and in native mode (using VAX-
11 RMS).

The organization of a file establishes the techniques one
can use to retr ieve and store data in the file. These tech
niques are known as record access modes. The record
access modes that RMS supports are:

• sequential

• random

• Record's File Address (RFA)

An application program or a RMS utility can be used when
creating a RMS file to specify the organization and charac
teristics of the file . Among the attributes specified are:

• storage medium

• file name and protection specifications

• record format and size

• file allocation information

After RMS creates a file according to the specified attrib
utes, application programs can store, retrieve and modify
data. These program operations take place on the logical
records in a file or the blocks comprising the file.

RMS FILE ORGANIZATIONS
A file is a collection of related information . For example, a
file might contain a company's personnel information (em
ployee names, addresses, job titles) . Within this f ile, the in
formation is divided into records. All the information on a
single employee might constitute a single record . Each
record in the personnel file would be subdivided into dis
crete pieces of information known as fields. The user de
fines the number, locations within the record , and logical
interpretations of these fields.

The user can completely control the grouping of fields into
records and records into files. The relationship among
fields and records is embedded in the logic of the pro
grams. RMS does not know the logical relat ionships that

RE CORD RECORD RECORD RECORD RECORD

exist within the information in the files.

RMS ensures that every record written into a file can sub
sequently be retrieved and passed to a requesting pro
gram as a single logical unit of data. The structure, or or
ganization , of a file establishes the manner in which RMS
stores and retrieves records. The way a program requests
the storage or retrieval of records is known as the record
access mode. The organization of a file determines which
record access modes can be used .

Sequential File Organization
In sequential file organization , records appear in
consecutive sequence. The order in which records appear
is the order in wh ich the records were originally written to
the file by an appl ication program or RMS utility. Sequen
tial organization is the only file organization permitted for
magnetic tape and unit record devices. Most VAX/VMS
system utilities that deal with files , deal with sequentially
organized files. All system editors and language proces
sors, for instance, operate on sequentially organized files.
Figure 9-4 illustrates sequential file organization .

Relative File Organization
When relative organization is selected, RMS structures a
file as a series of fixed-size record cells . Cell size is based
on the maximum length permitted for a record in the file.
These cells are numbered from 1 (the first) ton (the last). A
cell's number represents its location relative to the begin
ning of the file.

Each cell in a relative file can contain a single record.
There is no requ irement, however, that every cell contain a
record . Empty cells can be interspersed among cells con
taining records. Figure 9-5 illustrates a relative file or
ganization.

Since cell numbers in a relative file are unique, they can be
used to identify both a cell and the record (if any) occupy
ing that cell. Thus, record number 1 occupies the first cell
in the file , record number 17 occupies the seventeenth
cell, and so forth . When a cell number is used to identify a
record , it is also known as a relative record number.

Indexed File Organization
The location of records in indexed file organization is

END OF FILE!

RECORD RECORD I RECORD I

Figure 9-4

CELL NO. 2

RECORD RECORD
1 2

Sequential Fiie Organization

3 4 5

RECORD
4

Figure 9-5

Relative File Organization

9-5

999 1000

RECORD
999

transparent to the program. RMS completely controls the
placement of records in an indexed file. The presence of
keys in the records of the file governs this placement.

A key is a field present in every record of an indexed file.
The location and length of this field are identical in all rec
ords. When creating an indexed file, the user decides
which field or fields in the file's records are to be a key. Se
lecting such fields indicates to RMS that the contents (i.e.,
key value) of those fields in any particular record written to
the file can be used by a program to identify that record for
subsequent retrieval.

At least one key must be defined for an indexed file : the
primary key. Optionally, additional keys or alternate keys
can be defined. An alternate key value can also be used as
a means of identifying a record for retrieval.

As programs write records into an indexed file , RMS
builds a tree-structured table known as an index. An index
consists of a series of entries containing a key value cop
ied from a record that a program wrote into the file. Stored
with each key value is a pointer to the location in the file of
the record from which the value was copied. RMS builds
and maintains a separate index for each key defined for
the file. Each index is stored in the file. Thus, every in
dexed file contains at least one index, the primary key in
dex. Figure 9-6 illustrates an indexed file organization with
a primary key. When alternate keys are defined, RMS
builds and stores an additional index for each alternate
key.

RMS RECORD ACCESS MODES
The methods of retrieving and storing records in a file are
called record access modes. A different record access
mode can be used to process records within the file each
time it is opened. A program can also change record ac
cess mode during the processing of a file. RMS permits
only certain combinations of file organization and recor'.d
access mode. Table 9-1 lists these combinations.

Sequential Record Access Mode
Sequential record access mode can be used to access all
RMS files and all record-oriented devices, including mail
boxes. Sequential record access means that records are
retrieved or written in the sequence established by the or
ganization of the file.

Sequential Access to Sequential Files - When using se
quential record access mode in a sequentially organized
file , physical arrangement establishes the order in wh ich
records are retrieved . To read a particular record in a file,
say the fifteenth record , a program must open the file and
access the first fourteen records before accessing the
desired record . Thus each record in a sequential file can
be retrieved only by first accessing all records that physi
cally precede it. Similarly, once a program has retrieved
the fifteenth record , it can read all the remaining records
(from the sixteenth on) in physical sequence. It cannot ,
however, read any preceding record without closing and
reopening the file and beginning again with the first re
cord .

Sequential Record Access to Relative Files - During the
sequential access of records in the relative file organiza
tion , the contents of the record cells in the file establish the
order in which a program processes records. RMS recog
nizes whether successively numbered record cells are
empty or contain records.

When a program issues read requests in sequential record
access mode for a relative file , RMS ignores empty record
cells and searches successive cells for the first one con
taining a record . When a program adds new records in se
quential record access mode to a relative file, RMS places
a record in the cell whose relative number is one higher
than the relative number of the previous request, as long
as that cell does not already contain a record . RMS allows
a program to write new records only into empty cells in the
file .

Sequential Record Access to Indexed Files - A program
can use the sequential record access mode to retrieve rec-

KEY
DEFINITION

1 ~----PRIMARY INDEX(EMPLOYEE NAME---~

ABLE JONES SMITH

ABLE ELM AV 24379 JONES MAIN ST 19 72 4 SMITH HO LT RD 35888

'------------------- DATA RECORDS-- - ---------- - ----/

Figure 9-6

Indexed File Organization

9-6

Table 9-1
Record Access Modes and File Organizations

File Organization

Sequential
Relative '
Indexed '

1 Disk files only.

Sequential

Yes
Yes
Yes

2 Fixed length record format d isk files only.

ords from an indexed file in the order represented by any
index. The entries in an index are arranged in ascending
order by key values. If more than one key is defined for the
file, each separate index associated with a key represents
a different logical ordering of the records in the file.

When reading records in sequential record access mode
from an indexed file, a program initially specifies a key
(primary key, first alternate key, second alternate key, etc.)
to RMS. Thereafter, RMS uses the index associated with
that specified key to retrieve records in the sequence rep
resented by the entries in the index. Each successive rec
ord RMS returns in response to a read request contains a
value in the specified key field that is equal to or greater
than that of the previous record returned .

When writing records to an indexed file , RMS uses the def
inition of the primary key field to place the record in the
file .

Random Record Access Mode
In random record access mode, the program establishes
the order in which records are processed . Each program
request for access to a record operates independently of
the previous record accessed. Each request in random
record access mode identifies the particular record of in
terest. Successive requests in random mode can identify
and access records anywhere in the file.

Random Record Access to Sequential Files - Native pro
grams can access sequential files on disk using relative re
cord number to randomly locate a record , provided that
the records are in fixed-length record format.

Random Record Access to Relative Files - Programs can
read or write records in a relative file by specifying the re
lative record number. RMS interprets each number as the
corresponding cell in the file . A program can read records
at random by successively requesting , for example, record
number 47, record number 11, record number 31, and so
forth . If no record exists in a specified cell , RMS notifies
the requesting program. Similarly, a program can store
records in a relative file by identifying the cell in the file that
a record is to occupy. If a program attempts to write a new
record in a cell already containing a record , RMS notifies
the program.

Random Record Access to Indexed Files - For indexed
files, a key value rather than a relative record number
identifies the record . Each program read request in ran
dom record access mode specifies a key value and the in
dex (primary index, first alternate index, second alternate

Record Access Mode
Random

Record#

Yes 2

Yes
No

No
No
Yes

RFA
Key Value

Yes '
Yes
Yes

index, etc.) that RMS must search. When RMS finds the
key value in the specified index, it reads the record that the
index entry points to and passes the record to the user
program.

Program requests to write records randomly in an indexed
file do not require the separate specification of a key value.
All key values (primary and , if any, alternate key values)
are in the record itself. When an indexed file is opened,
RMS retrieves all definitions stored in the file. RMS knows
the location and length of each key field in a record . Before
writing a record into the file, RMS examines the values
contained in the key fields and creates new entries in the
indexes. In this way RMS ensures that the record can be
retrieved by any of its key values.

Record's File Address (RFA) Record Access Mode
Record 's File Address (RFA) record access mode can be
used to retrieve records in any file organization as long as
the file res ides on a disk volume. Like random record ac
cess mode, RFA record access allows a specific record to
be identified for retrieval , using the record's unique ad
dress. The actual format of this address depends on the
organization of the file.

After every successful read or write operation, RMS re
turns the RFA of the subject record to the program. The
program can then save this RFA to use again to retrieve
the same record . It is not required that this RFA be used
only during the current execution of the program. RFAs
can be saved and used at any subsequent time.

Dynamic Access
Dynamic access is not strictly an access mode. It is the
ability to switch from one record access mode to another
while processing a file. For example, a program can ac
cess a record randomly, then switch to sequential record
access mode for processing subsequent records. There is
no limitation on the number of times such switching can
occur. The only limitation is that the file organization must
support the record access mode selected.

FILE AND RECORD ATTRIBUTES
When creating an RMS file, a program or user defines its
logical and physical characteristics, or attributes. These
characteristics are defined by source language statements
in an application program or by an RMS utility. The pro
gram or user assigns the file a name, the owner's User
Identification Code, and a protection code, and selects the
file organization . The program or user also defines or se
lects other attributes, including:

9-7

• device

• file size

• file location

• record format and size

• keys (for indexed files only)

Selection of device is related to the organization of the file.
Sequential files can be created on Files-11 disk volumes or
ANSI magnetic tape volumes. Sequential files can also be
read from mailboxes, terminals, and card readers, and
written to mailboxes, terminals, and line printers. Relative
and indexed files can be created on Files-11 disk volumes.

The logical limit on file size is 231 -1 blocks, with a more
realistic limit being the volume set on which a file can re
side. When creating an RMS file on a disk volume, the user
can specify an initial allocation size. If no file size is given,
RMS allocates the minimum amount of storage needed to
contain the defined attributes of the file. The initial size can
be extended dynamically. The user can let RMS locate the
file , or the user can allocate the file to specific locations on
the disk to optimize disk access time. The file's starting lo
cation can be specified optionally using a volume-relative
block number, or a physical cylinder address.

When creating a file on a magnetic tape volume, a user or
program does not specify an initial allocation size. The
blocks are simply written one after another down the tape,
beginning after the last file, if any, written on the tape.
Once a tape file has been created, another file can replace
it or be appended to it, but all subsequent files on the tape,
if any, are lost.

Record Formats
The user provides the format and maximum size specifica
tions for the records the file will contain. The specified for
mat establishes how each record appears in the file. The
size specification allows RMS to verify that records written
into the file do not exceed the length specified when the
file was created.

Fixed length record format refers to records of a file that
are all equal in size. Each record occupies an identical a
mount of space in the file. All file organizations support
fixed length record format.

Variable-length record format records can be either equal
or unequal in length . All file organizations support vari
able-length record format. RMS prefixes a count field to
each variable-length record it writes. The count field de
scribes the length (in bytes) of the record . RMS removes
this count field before it passes a record to the program.
RMS produces two types of count fields, depending on the
storage medium on which the file resides:

• Variable-length records in files on Files-11 disk volumes
have a 2-byte binary count field preceding the data field
portion of each record. The specified size excludes the
count field .

• Variable-length records on ANSI magnetic tapes have
4-character decimal count fields preceding the data
portion of each· record. The specified size includes the
count field. In the context of ANSI tapes, this record for
mat is known as. D format.

Variable-with-fixed-control (VFC) records consist of two
distinct parts, the fixed control area and a variable-length

9-8

data record . Although stored together , the two parts are
returned to the program separately when the record is
read. The size of the fixed control area is identical for all
records of the file . The contents of the fixed control area
are completely under the control of the program and can
be used for any purpose. For example, fixed control areas
can be used to store the identifier (relative record number
or RFA) of related records. Indexed file organizations do
not support VFC record format.

Key Definitions for Indexed Files
To define a key fo r an indexed file , the user specifies the
position and length of particular data fields within the rec
ords. At least one key, the primary key, must be defined
for an indexed file. Additionally, up to 254 alternate keys
can be defined. In general, most files have two or three
keys. Because indexes require storage space and RMS
updates indexes as records are added or modified , no
more than six to eight keys should be defined where stor
age space or access time is important.

Each primary and alternate key represents from 1 to 255
bytes in each record of the file. RMS permits six key field
data types.

• string

• signed 15-bit integer

• unsigned 16-bit binary

• signed 31-bit integer

• unsigned 32-bit binary

• packed decimal

The string key field can be composed of simple or seg
mented keys. A simple key is a single, contiguous string of
characters in the record ; in other words, a single field . A
segmented key, however, can consist of from two to eight
fields within records. These fields need not be contiguous.
When processing records that contain segmented keys,
RMS treats the separate fields (segments) as a logically
contiguous character string. The integer , binary , and
packed decimal data types can only be simple keys.

When defining keys at file creation time, two characteris
tics for each key can be specified :

• duplicate key values are or are not allowed

• key value can or cannot change

When duplicate key values are allowed, more than one
record can have the same value in a given key. For exam
ple, the creator of a personnel file could define the depart
ment name field as an alternate key. As programs wrote
records into the file, the alternate index for the department
name key field would contain multiple entries for each key
value (e.g., PAYROLL, SALES, ADMINISTRATION), since
departments are composed of more than one employee.
When such duplication occurs, RMS stores the records so
that they can be retrieved in first-in/first-out (FIFO) order.

If key values can change, records can be read and then
written back into the file with a modified key value. For ex
ample, this specification would allow a program to access
a record in the personnel file and change the contents of a
department name field to reflect the transfer of an em
ployee from one department to another. This characteris
tic can be specified only for alternate keys. If key values
can change, the user must also specify that the duplicate

key values are allowed . If the primary key value can
change, the user may not change the record length.

Figures 9-7 and 9-8 show excerpts from a COBOL pro
gram which operates upon an indexed customer informa
tion file via the dynamic access method. The program
searches through the file and generates various reports
based upon the customer's financial status and additional
input typed in by the user at the terminal. In Figure 9-7, the
program describes the organization of the file and speci
fies the access method to be used. In Figure 9-8, the pro
gram searches for the first non-zero customer number.
Using the "approximate key" match facil ity (greater than) ,
the program searches for the first non-zero customer.
When RMS has located the first non-zero customer num
ber, the program changes access method and the file is
read sequentially.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CUSTOMER-FILE

ASSIGN TO "CUSTOM.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS GUST-CUSTOMER-NUMBER
ALTERNATE RECORD IS KEY IS GUST-CUSTOMER-NAME
FILE STATUS IS CUSTOMER-FILE-STATUS.

Figure 9-7

ISAM File Description

OPEN INPUT CUSTOMER-FILE.
MOVE "000000" TO CUST-CUST-NUMBER.
START CUSTOMER-FILE.

KEY IS> CUST-CUST-NUMBER.
OPEN OUTPUT STATEMENT-REPORT.•

MAINLINE SECTION.
SBEGIN.

READ CUSTOMER-FILE NEXT
AT END

GO TO END-PROCESS.
ADD 1 TO RECORD-COUNT.

Figure 9-8

Dynamic Access Processing

PROGRAM OPERATIONS ON RMS FILES
After RMS has created a file according to the user's de
scription of file characteristics , a program can access the
file and store and retrieve data.

When a program accesses the file as a log ical structure
(i.e., a sequential , relative , or indexed file) , it uses record
1/0 operations such as add , update, and delete record.
The organization of the file determines the types of record
operations permitted .

If the record accessing capabilities of RMS are not used,
programs can access the file as an array of virtual blocks.
To process a file at this level, programs use a type of ac
cess known as block 1/0.

9-9

File Processing
At the file level , that is, independent of record processing ,
a program can:

• create a file

• open an existing file

• modify file attributes

• extend a file

• close the file

• delete a file

Once a program has opened a file for the first time, it has
access to the un ique internal ID for the file. If the program
intends to open the f ile subsequently, it can use that inter
nal ID to open the file and avoid any directory search.

Record 1/0 Processing
The organization of a file, defined when the file is created ,
determines the types of operations that the program can
perform on records. Depending on file organization , RMS
permits a program to perform the following record opera
tions:

• Read a record . RMS returns an existing record within
the file to the program .

• Write a record . RMS adds a new record that the pro
gram constructs to the file . The new record cannot re
place an already ex isting record .

• Find a record . RMS locates an existing record in the file .
It does not return the record to the program, but esta
blishes a new current position in the file.

• Delete a record . RMS removes an existing record from
the file. The delete record operation is not valid for the
sequential file organ ization .

• Update a record . The program modifies the contents of
a record in the file. RMS writes the modified record into
the file, replacing the old record. The update record op
eration is not val id for sequential file organizations,
except for sequentially organized disk files .

Sequential File Record 110 - In a sequential file organiza
tion , a program can read existing records from the file us
ing sequential , RFA, or, if the file contains fixed-length re
cords, random record access mode. New records can be
added only to the end of the file and only through the use
of sequential or random record access mode.

The find operation is supported in both sequential and
RFA record access modes. In sequential record access
mode the program can use a find operation to skip rec
ords. In RFA record access mode, the program can use
the find operation to establish a random starting point in
the file for sequent ial read operations.

The sequential file organization does not support the de
lete operation, since the structure of the file requires that
records be adjacent in and across virtual blocks. A pro
gram can, however, update existing records in sequential
disk files as long as the modification of a record does not
alter its size.

Relative File Record 110 - Relative file organization per
m its programs greater flexibility in performing record
operations than does sequential organization. A program
can read existing records from the file using sequential ,
random , or RFA record access mode.

New records can be sequentially or randomly written as
long as the intended record cell does not already contain a
record . Similarly, any record access mode can be used to
perform a find operation . After a record has been found or
read, RMS permits the delete operation. Once a record
has been deleted , the record cell is available for a new rec
ord . A program can also update records in the file. If the
format of the records is variable, update operations can
modify record length up to the maximum size specified
when the file was created.

Indexed File Record 110 - Indexed file organization pro
vides the greatest flexibility in performing record opera
tions. A program can read existing records from the file in
sequential , RFA, or random record access mode. When
reading records in random record access mode, the pro
gram can choose one of four types of matches that RMS
performs using the program-provided key value. The four
types of matches are:

• exact key match

• approximate key match

• generic key match

• approximate and generic key match

Exact key match requires that the contents of the key in the
record retrieved precisely match the key value specified in
the program read operation.

The approximate match facility allows the program to se
lect either of the following relationships between the key of
the record retrieved and the key value specified by the
program:

• equal to or greater than

• greater than

The advantage of this kind of match is that if the requested
key value does not exist in any record of the file, RMS re
turns the record that contains the next higher key value.
This allows the program to retrieve records without know
ing an exact key value.

Generic key match means that the program need specify
only an initial portion of the key value. RMS returns to the
program the first occurrence of a record whose key con
tains a value beginning with those characters. This allows
the program to retrieve a class of records, for example, all
employee records in the personnel file with a name field
beginning with M.

The final type of key match combines both generic and ap
proximate facilities. The program specifies only an initial
portion of the key value, as with generic match.
Additionally, a program specifies that the key data field of
the record retrieved must be either:

• equal to or greater than the program-supplied
value

• greater than the program-supplied value

RMS also allows any number of new records to be written
into an indexed file. It rejects a write operation only if the
value contained in a key of the record violates a user-de
fined key characteristic (e.g., duplicate key values not per
mitted).

The find operation, similar to the read operation , can be
performed in sequential, RFA, or random record access

9-10

mode. When finding records in random record access
mode, the program can specify any one of the four types of
key matches provided for read operations.

In addition to read, write, and find operations, the program
can delete any record in an indexed file and update any
record . The only restriction RMS applies during an update
operation is that the contents of the modified record must
not violate any user-defined key characteristic (e.g., key
values cannot change and duplicate key values are not
permitted).

Block 1/0 Processing
Block 1/0 allows a program to bypass the record process
ing capabilities of RMS entirely. Rather than performing
record operations through the use of supported record ac
cess modes, a program can process a file as a structure
consisting solely of blocks.

Using block 1/0, a program reads or writes blocks by iden
tifying a starting virtual block number in the file and a
transfer length. Regardless of the organization of the f ile,
RMS accesses the identified block or blocks on behalf of
the program.

Since RMS files, particularly relative and indexed files,
contain internal information meaningful only to RMS itself,
DIGIT AL does not recommend that a file be modified by
using block 1/0. The presence of the block 1/0 facility,
however, does permit user-created record formats on a
Files-11 disk volume or ANSI magnetic tape volume.

RMS RUN TIME ENVIRONMENT
The environment within which a program processes RMS
files at run time has two levels, the file processing level and
the record processing level.

At the file processing level , RMS and the operating system
provide an environment permitting concurrently executing
programs to share access to the same file. RMS ascertains
the amount of sharing permissible from information pro
vided by the programs themselves. Additionally , at the file
processing level, RMS provides facilities allowing pro
grams to exercise as little or as much control over buffer
space requirements for file processing as desired.

At the record processing level, RMS allows programs to
access records in a file through one or more record access
streams. Each record access stream represents an inde
pendent and simultaneously active series of record opera
tions directed toward the file. Within each stream, pro
grams can perform record operations synchronously or
asynchronously. That is, RMS allows programs to choose
between receiving control only after a record operation re
quest has been satisfied (synchronous operation) or re
ceiving control before the request has been satisfied
(asynchronous operation).

For both synchronous and asynchronous record opera
tions, RMS provides two record transfer modes, move
mode and locate mode. Move mode causes RMS to copy a
record to/from an 1/0 buffer from/to a program-provided
location. Locate mode allows programs to process re
trieved records directly in an 1/0 buffer.

Run Time File Processing
RMS allows executing programs to share files rather than
requiring them to process files serially. The manner in
which a file can be shared depends on the organization of
the file. Program-provided information further establishes
the degree of sharing of a particular file.

File Organization and Sharing - With the exception of
magnetic tape files, which cannot be shared , an RMS file
can be shared by any number of programs that are read
ing, but not writing, the file. Sequential disk files can be
shared by multiple readers and multiple writers, but they
are responsible for any record locking required to handle
multiple readers and writers properly.

Program Sharing Information - A program specifies what
kind of sharing actually occurs at run time. The user con
trols the sharing of a file through information the program
provides RMS when it opens the file. First, a program must
declare what operations (e.g., read, write, delete, update)
it intends to perform on the file. Second, a program must
specify whether other programs can read the file or both
read and write the file concurrently with this program.

These two types of information allow RMS to determine if
multiple user programs can access a file at the same time.
Whenever a program's sharing information is compatible

9-11

with the corresponding information another program pro
vides, both programs can access the file concurrently.

Buffer Handling - To a program, record processing under
RMS appears as the direct movement of records between
a file and the program itself. Transparently to the program,
however, RMS reads or writes the blocks of a file into or
from internal memory areas known as 1/0 buffers. Re
cords within these buffers are then made available to the
program . Users can control the number and size of buff
ers. For sequential record access, users can choose an
optional 1/0 read-ahead and write-behind buffer manage
ment. For magnetic tape file access, they can control the
number of buffers for multiple buffering. For sequential
disk files, users can specify the number of blocks that are
to be transferred whenever RMS performs an 1/0 opera
tion .

Run Time Record Processing
After opening a file , a program can access records in the
file through the RMS record processing environment. This
environment provides three facilities:

• record access streams

• synchronous or asynchronous record operations

• record transfer modes

Record Access Streams - In the record processing envi
ronment, a program accesses records in a file through a
record access stream. A record access stream is a serial
sequence of record operation requests. For example, a
program can issue a read request for a particular record ,
receive the record from RMS, modify the contents of the
record, and then issue an update request that causes RMS
to write the record back into the file. The sequence of read
and update record operation requests can then be per
formed for a different record, or other record operations
can be performed, again in a serial fashion. Thus, within a
record access stream, there is at most one record being
processed at any time.

For relative and indexed files, RMS permits a program to
establish multiple record access streams for record oper
ations to the same file. The presence of such multiple rec
ord access streams allows programs to process in parallel
more than one record of a file . Each stream represents an
independent and concurrently active sequence of record
operations.

As an example of multiple record access streams, a pro
gram could open an indexed file and establish two record
access streams to the file. The program could use one
record access stream to access records in the file in ran
dom access mode through the primary index. At the same
time, the program could use the second record access
stream to access records sequentially in the order speci
fied by an alternate index.

Synchronous and Asynchronous Record Operations -
Within each record access stream, a program can perform
any record operation either synchronously or asynchro
nously. When a record operation is performed synchro
nously, RMS returns control to a program only after the re
cord operation request has been satisfied (e.g., a record
has been read and passed on to the program).

If the programming language allows asynchronous proc
essing, RMS can return control to a program before the

record operation request has been satisfied . A program
can use the time required for the physical transfer to per
form other computations. A program cannot, however, is
sue a second record operation through the same stream
until the first record operation has completed. To ascertain
when a record operation has actually been performed , a
program can specify completion routines or issue a wait
request and regain control when the record operation is
complete.

Record Transfer Modes - A program can use either of
two record transfer modes to gain access to each record in
memory:

• move mode

• locate mode

Move mode means that the individual records are copied
between the 1/0 buffer and a program. For read opera
tions, RMS reads a block into an 1/0 buffer, finds the de
sired record within the buffer, and moves the record to a
program-specified location in its work space. For write op
erations, the program builds or modifies a record in its
own work space and RMS moves the record to an 1/0 buff
er. RMS supports move mode record operations for all file
organizations.

Locate mode enables programs to read records directly in
an 1/0 buffer. Locate mode reduces the amount of data
movement, thereby saving processing time. RMS provides
the program with the address and size of the record in the
1/0 buffer. RMS supports locate mode record transfers on
all file organizations for read operations only.

RMS Record Locking
VAX-11 RMS provides a record locking capability for files
that use the relative and indexed organization . In addition,
RMS record locking is supported for sequential files with
512-byte fixed length records. This provides control over
operation when the file is being accessed simultaneously
by more than one program and/or more than one stream
in a program. Record locking makes certain that when a
program is adding, deleting, or modifying a record on a
given stream, another program or stream is not allowed
access to the same record or record cell. RMS-11 execut
ing in compatibility mode does not support record locking
and file sharing . There are two varieties of record locking
and unlocking:

• Automatic Record Locking - The lock occurs on every
execution of a $FIND or $GET macro instruction , and
the lock is released when the next record is accessed ,
the current record is updated or deleted, the record
stream is disconnected, or the file is closed . The $FREE
macro instruction explicitly unlocks all records previ
ously locked for a particular record stream. The $RE
LEASE macro instruction explicitly unlocks a specified
record in a record stream .

• Manual Record Locking - In manual record locking,
varying degrees of locking may be specified by setting
bits in the record processing options field (ROP) of the
RAB. The ULK bit specifies manual (as opposed to au
tomatic) locking and unlocking. This bit specifies that
locking will occur on the execution of a $GET, $FIND, or
$PUT macro instruction and that unlocking may take
place explicitly only via a $FREE or $RELEASE macro

9-12

instruction. The NLK bit specifies that the record ac
cessed with either a $GET or $FIND macro instruction is
not to be locked, while the RLK bit specifies that a rec
ord may be accessible for read purposes but may not
otherwise be a<;:cessed .

UTILITY LANGUAGES
VAX/VMS supports a number of data management fac il,
ties: DATATRIEVE, VAX-11 SORT, and the Forms Man
agement System (FMS) utility package.

DATATRIEVE
DATATRIEVE is user application software that provides
direct, easy, and fast access to data contained in VAX-11
RMS (Record Management System) files. The system is
designed for relatively unsophist icated computer users;
everyday use of DATATRIEVE requires no programming
skills. While providing the user with an inquiry language
and a report writing facility, DAT A TRI EVE also supports a
user-specifiable Data Dictionary which describes VAX-11
RMS record formats. DATATRIEVE data management fa
cil ities include interactive retrieval , sort, update, and dis
play of data records, in addition to maintenance com
mands for the Data Dictionary.

OATATRIEVE Inquiry Facility
DATATRIEVE accepts English-like commands from the
user, and reacts by modifying, updating , or extracting data
from the specified VAX-11 RMS file . In those cases where
certa in sequences of commands need to be issued on a
recurr ing basis, DAT A TRI EVE provides a feature that per
mits the definition and use of procedures. A procedure is a
group of DAT A TRI EVE statements and commands identifi
able (callable) by a unique procedure name. At any time
during the interactive session, this group of DAT A TRI EVE
statements and commands can be invoked simply by call
ing the procedure name.

DATATRIEVE Report Writer Facility
In addition to query commands, DATATRIEVE provides a
report facility to generate reports from VAX-11 RMS files.
The report facility allows the user to specify the following
parameters:

• Spacing

• Titles

• Column headings

• Page headings and footnotes

• Report headings

Commands to the report facility are simply an extension of
query facility commands. Although the report facility pro
vides extensive formatting capabilities, its default settings
are suitable for many applications, further simplifying its
use. Furthermore, errors in commands are discovered im
mediately (as in the query facility), so the user can correct
the commands before printing wrong or incomplete re
ports.

Basic Commands
DATATRIEVE uses a simple English-like command lan
guage for data retrieval , modification , and display.
Prompting is automatic for both command and data entry.

The major commands are:

• HELP - provides a summary of each DATATRIEVE
command .

• READY - identifies a domain for processing and con
trols the access mode to the appropriate file.

• FIND - establishes a collection (subset) of records con
tained in either a domain or a previously established
collection based on a Boolean expression .

• SORT - reorders a collection of records in either the
ascending or descending sequence of the contents of
one or more fields in the records.

• PRINT - pr ints one or more fields of one or more rec
ords. Output can optionally be directed to a line printer
or disk file. Format control can be specified . A column
header is generated automatically.

• SELECT - identifies a single record in a collection for
subsequent individual processing .

• MODIFY - alters the values of one or more fields for ei
ther the selected record or all records in a collection .
Replacement values are prompted for by name.

• STORE - creates a new record . The value for each field
contained in the record is prompted for by name.

• ERASE - removes one or more records from the RMS
file corresponding to the appropriate domain.

• FOR - executes a subsequent command once for each
record in the record collection, providing a simple loop
ing facility.

• EXTRACT - copies domains, records, procedures, and
tables from the Data Dictionary to an external file.

• SHOW FIELDS - prints field names and data types for
all fields in ready domains.

• DEFINE DICTIONARY - allows creation of private dic-
tionaries.

In add ition to the simple data manipulation commands, a
number of more complex commands are available for the
advanced user. These commands, such as REPEAT, BE
GIN-END, and IF-THEN-ELSE, may be used to combine
two or more DATATRIEVE commands into a single com
pound command . These, in turn , may be stored in the Data
Dictionary as procedures for invocation by less experi
enced users.

DATATRIEVE provides a full set of arithmetic operators
(addition , subtraction, multiplication , division , and nega
tion), a set of statistical operators (total , average, maxi
mum, minimum, and count) , and provides automatic con
version between data types used in the FORTRAN ,
COBOL, DIBOL, and BASIC languages.

Terminology
Files, domains, collections, records, and fields are terms
of fundamental importance to the file structure of DATA
TRIEVE.

Records are groups of related items of data that are treat
ed as a unit. For example, all the pieces of data describing
a model of a yacht in a marina could be grouped to consti
tute the record for that yacht.

Each of the individual pieces of data in a record is referred
to as a field . The yacht's model number, length , and price
are all potential fields in its record.

9-13

The term fil es refers to the log ically related groups of data
that are kept by RMS. For example, we might put all of the
yacht records for a current inventory of yachts into one file.

Domains are named groups of data containing records of
a single type. A DATATRIEVE domain consists of all the
records in a particular RMS file, in addition to a record def
inition of this file contained in the Data Dictionary. In this
case, we could say that all the yacht records for the current
inventory are kept in the YACHTS domain . The number of
records in any domain may change as new records are
stored or old records are erased.

A record collection is a subset of a domain. It may consist
of no records , one record, or up to all the records in the
domain . Using our previous example, we could say that all
the yachts manufactured by Grampian could be made to
form the Grampian collection, while those yachts manu
factured by Islander could be used to form the Islander
collection . To carry this example one step further, if the in
ventory is currently out of stock of yachts manufactured by
Seaworthy, the Seaworthy collection will be empty, or null.

The Data Dictionary is a location where the definitions for
procedures, records , and domains are kept in a standard
fashion by DATATRIEVE. The data administrator will be
concerned with the creation and maintenance of Data Dic
tionary information . Certain users will be able to display
certain information from this dictionary, but only manage
ment will be concerned with defining it.

Keywords
DAT A TRI EVE util izes language elements called keywords
which have a specific denotation and associated function .
If they are used in any other context, they may serve to
confuse the system about user intentions. Thus, it is good
policy to avoid the use of these words as names of do
mains, procedures, records, fields, and collections.

Additional DATATRIEVE Features
Among the many DATATRIEVE features supported by
VAX/VMS are:

• Application Design Tool (ADT)
ADT allows less experienced users to set up simple DA
T A TRI EVE applications. Through a simple dialogue,
ADT generates a command file containing the record ,
domain , and file definitions.

• Nested Procedures
Procedures may contain references to other procedures
(nested procedures) provided that no procedure in
vokes itself either directly or indirectly. The maximum
depth of nesting varies from about 10 to about 30 de
pending on the amount of memory available, number
and size of established collection, etc.

• Data Hierarchies
Use of hierarch ies allows manipulation of complex data
containing lists and sublists. A hierarchy may be defined
as a single file with a repeating group or multiple do
mains automatically cross-linked. Extensions related to
hierarchies include the inner print list (to override de
fau It formatting of a sublist) and the ANY Boolean
expression, which allows DATATRIEVE to search a sub
list for the existence of a particular record.

• Views
Views can be used to restrict the set of fields accessible,
to apply an automatic selection criterion to a file, or to
cross-link a number of elementary domains to/from an
apparent hierarchy. Once defined, a view is indistin
guishable from an RMS domain to the user.

• DATE Data Type
This allows easy inclusion of dates in DAT A TRI EVE rec
ords, direct comparison of dates, computation of
elapsed dates. Dates may be formatted for printing in
virtually any form. Similarly, DATATRIEVE accepts the
entry of dates in virtually any form. The DATATRIEVE
date format is compatible with the VAX/VMS date stan
dard.

• Tables
Tables are generally used to translate encoded values
into something that can be edited by the DAT A TRI EVE
editor. Table lookups are performed by the VIA value
expression; table searches (for table membership) are
specified with the Boolean IN expression.

• TOT AL Statement
The TOTAL statement allows very simple computation
of totals and subtotals.

• CONTAINING Relational Operator
CONTAINING is used in a record selection expression
to retrieve records with a field containing a particular
substring. The substring may be anywhere in the field,
and need not match the case (uppercase/lowercase) of
the search string. For example, the command:

FIND BOOKS WITH TITLE CONTAINING "LASER"

will find all records in BOOKS with the word "LASER"
somewhere in the field TITLE.

• OCCURS Clause
Use of the OCCURS clause permits definition of records
containing a repeating group (sublist). The sublist may
be of fixed or variable length.

• Value Validation
A Boolean validation expression may be included as
part of a field description in a record definition. If speci
fied on a field, the validation expression is automatically
executed every time the field is modified, to insure that
only legal values are stored in a data base. If a validation
error is detected, the user is re-prompted for a new val
ue if possible, or the DATATRIEVE statement is aborted.

• COMPUTED BY Fields
A field in a record definition may be defined as a COM
PUTED BY field by specifying a value expression to be
computed for its value. A COMPUTED BY field takes no
space in the actual RMS record, and is computed on
reference. A COMPUTED BY field may be used in con
junction with a table to provide completely automatic ta
ble lookup.

• Tutorial Software (Guide Mode)
A CRT-based tutorial is included in DATATRIEVE. The
tutorial feature can be used only by VT52, VT52-com
patible, and VT100 terminals. A tutorial session is en
tered by the DATA TRI EVE command:

SET GUIDE

The software is self-documenting.

9-14

• Procedure Editor
A DATATRIEVE procedure editor has been added . The
editor is invoked by the command:

EDIT procedure-name

where "procedure-name" is the name of an existing
procedure.

The command EDIT procedure-name invokes an editor
which can insert, replace, or delete text from pro
cedures defined in the data dictionary.

VAX-11 SORT/MERGE
VAX-11 SORT /MERGE is a native mode utility that may be
run interactively, as a batch job, or it can be callable from a
user-written VAX-11 native mode program.

The SORT utility allows the user to reorder data from any
input file into a new file in a sequence based upon key
fields within the input data records. A user can specify up
to ten input files and SORT will produce one sorted output
file . The sorting sequence is determined by user-specified
control fields, also known as key fields, within the data
themselves. If the user does not wish to reorder the data
base, SORT can still be used to extract key information ,
sort that information, and store the sorted information as a
permanent file. Later that file can be used to access the
data base in the order of the key information in the sorted
file. The contents of the sorted file may be entire records,
key fields, or record file addresses which point to the posi
tion of each record within the file.

SORT provides four sorting techniques:

• Record Sort produces a reordered data file sorted by
specified keys, moving the entire contents of each rec
ord during the sort. A record sort can be used on any
acceptable VMS input device and can process any valid
VAX-11 RMS format.

• Tag Sort produces a reordered data file by sorting
specified keys, but moving only the record keys during
the sort. SORT then randomly reaccesses the input file
to create a resequenced output file according to those
record keys. The tag sort method conserves temporary
storage, but can accept only input files residing on disk.

• Address Sort produces an address file without reorder
ing the input file. The address file contains RFAs, a
pointer to each record's location in the file which can lat
er be used as an index to read the data base in the de
sired sequence. Any number of address files may be
created for the same data base. A customer master file,
for instance, may be referenced by customer-number
index or sales territory index for different reports . Ad
dress sort is the fastest of the four sorting methods.

• Index Sort Index sort produces an address file contain
ing the key field of each data record and a pointer to its
location in the input file. The index file can be used to
randomly access data from the original file in the de
sired sequence.

The MERGE utility permits the user to merge data from as
few as two, to as many as ten similarly sorted input files.
The MERGE utility merges the data according to key
field(s) defined by the user and generates a single output
file. The input files to be merged must be in sorted order,
i.e., the SORT and MERGE key fields must be the same.

The following example illustrates the sorting of a sales rec
ord file by customer last name. The name of the initial file
is SALES.DAT. Each record contains six fields: date of
sale, department code, salesperson , account number,
customer name , and amount of sale. The numerical
ranges listed below the set of records indicate the position
and size of each information field within the record .

DATE DPT SALESP ACCT GUST-NAME AMT

091580 25 Fielding 980342 Cool idge Carol 24999
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Bradley 829582 Olsen Allen 3350
091580 19 Erkkila 980342 Cool idge Carol 7200

L._.}'-.--) 1...-..,-J 1...-..,-J '----v----J L._.)
1-7 8-10 11-21 22-28 29-58 59-65

The user may now rearrange the sales records in file
SALES.DAT according to any of the file 's information
fields. For instance, to sort the file in alphabetical order of
customer's last name, the user would type the following
command sequence:

$SORT /KEY=(POSITION=29,SIZE=30) SALES .DAT
BILLING.LIS <er>

In this command sequence, the user is defining the SORT
key to be the customer's last name and the output file to be
BILLING.LIS

The user may now obtain a listing of the sorted data file by
using either the TYPE or PRINT commands.

$TYPE BILLING.LIS

DATE DPT SALESP ACCT GUST-NAME AMT

091580 19 Erkkila 980342 Cool idge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298

To perform the MERGE function, the MERGE utility ex
pects presorted data files upon which to operate. In the
following example, MERGE is operating upon two presort
ed (by alphabetical order) sales data files , STORE1 .FIL
and STORE2.FIL.

STORE1.FIL
DATE DPT SAL ESP ACCT GUST-NAME AMT

091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 28 Meredith 272731 Karsten Jane 4000
091580 25 Sanchez 643881 McKee Michael 2499
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Arndt 166392 Wilson Brent 1298

9-15

STORE2.FIL
DATE DPT SAL ESP ACCT GUST-NAME AMT

091580 20 Oconnor 358419 Beaulieu Ronald 1598
091580 04 Doc us 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
091580 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
091580 20 Oconnor 643881 McKee Michael 995
091580 19 Erkkila 454389 VanDerling Julie 5480

To merge the two data files, the user must type the follow
ing command sequence:

$ MERGE/KEY=(POSITION=29,SIZE=30)
STORE1 .FIL,STORE2.FIL GENTA.FIL <er>

The user has indicated in the above command sequence
that the files are to merged via the alphabetical order of
the customer's last name. The user can examine the out
put file via the PRINT or TYPE commands.

$TYPE GENTA.FIL < er>

DATE DPT SAL ESP ACCT GUST-NAME AMT

091580 20 Oconnor 358419 Beaulieu Ronald 1598
091580 19 Erkkila 980342 Coolidge Carol 7200
091580 25 Fielding 980342 Coolidge Carol 24999
091580 04 Doc us 980342 Coolidge Carol 575500
091580 25 Fielding 669011 Fernandez Felicia 12000
091580 28 Meredith 272731 Karsten Jane .4000
091580 35 Leith 848105 Kingsfield Stanley 5550
091580 04 Kramer 561903 Landsman Melissa 230000
091580 25 Sanchez 643881 McKee Michael 2499
091580 20 Oconnor 643881 McKee Michael 995
091580 25 Bradley 829582 Olsen Allen 3350
091580 25 Bradley 753735 Rice Anne 10875
091580 19 Erkkila 454389 VanDerling Julie 5480
091580 19 Arndt 166392 Wilson Brent 1298

VAX-11 SORT/MERGE FEATURES
VAX-11 SORT can perform the following functions:

• reorder data files (records are sorted in ascending or
descending order by up to ten keys which can be in any
order)

• merge up to ten sorted input files into one sorted output
file

• create reordered address files of RFAs and keys for
software use

• SORT/MERGE fixed , variable, and VFC records

• SORT /MERGE ASCII character keys in ASCII or
EBCDIC sequence

• SORT/MERGE sequential, relative, indexed-sequential
files

• SORT /MERGE character, decimal, binary, unsigned bi
nary, F _, D _, G _, and H _floating data types

• SORT can determine its own work file requirements
based on input file RMS information received

• SORT can be controlled by a command string or specifi
cation file

• SORT can be tuned for maximum efficiency

• SORT provides four processing techinques: record, tag ,
address, index

• SORT /MERGE input files from any VAX/VMS input de
vice

• Output sorted data files to any VAX/VMS output device

• SORT automatically prints out statistics upon comple
tion

• Be invoked by a single command string, or can prompt
the operator for input and then output file specification

• Respond with unique SORT/MERGE error messages in
VAX/VMS format

• Optional sequence checking of input files on merge

VAX-11 SORT /MERGE supports the following key for
mats:

• character data are ASCII

• ASCII and EBCDIC collating sequence

• binary data are VAX representation

• packed decimal data are VAX representation

• zoned decimal data are VAX representation

• unsigned binary and F _, D _, G _,and H _floating

• string decimal data format can be:

leading separate sign
leading overpunched sign
trailing separate sign
trailing overpunched sign

SORT/MERGE as a Set of Callable Subroutines

SORT /MERGE can be used as a set of callable
subroutines from any native VAX language. This subrou
tine package provides two functional interfaces to choose
from: a file 1/0 interface and a record 1/0 interface. Both
interfaces share the same set of routines, and the same
calls are used for all languages.

SORT and MERGE subroutines are callable from VAX-11
COBOL using the standard COBOL SORT and MERGE
verbs.

For either interface, the user can supply a key comparison
routine. This feature allows the user the flexibility of de
parting from the key types supported by SORT /MERGE.

With this release of VAX/VMS, full MERGE capability has
entered the list of SORT features callable as a subroutine.
This allows a much increased file flexibility.

File 1/0 Interface
The file 1/0 interface allows the user to specify the input
files and an output file to SORT or MERGE. SORT then
reads the data from the input file(s) and sorts the data into
the output file. MERGE also reads the data form the input
file(s) and merges it into one output file .

Record 1/0 Interface
The record 1/0 interface allows the user to pass each indi
vidual data record to SORT/MERGE, let SORT/MERGE
order them and then receive each record back in the cor
rect order, individually, from SORT /MERGE.

Programming Considerations
Any program can use either SORT /MERGE subroutine in
terface with any of the VAX-11 native mode languages.

SORVMERGEPERFORMANCEFEATURES
• SORT /MERGE compiles a key comparison routine spe

cific to each sort or merge. This results in a substantial
reduction of CPU usage.

• Work files are not created until they are needed . This re
duces overhead when sorting small files .

• The internal record size has been reduced , therefore,
less 1/0 is required to do intermediate merge passes for
SORT.

• For some sorts, the number of intermediate merge
passes has been reduced , thereby providing a substan
tial increase in speed of the SORT.

9-16

VAX-11 FORMS MANAGEMENT SYSTEM (FMS)
VAX-11 Forms Management System (FMS) is a utility
package used to provide video form support for applica
tions on the VT100 video terminal. VAX-11 FMS provides a
flexible , easy-to-use interface between the form appl ica
tion program and the terminal user. FMS allows a terminal
user to develop form applications using any native mode
language processor .

Using Forms in an Application
VAX-11 FMS forms include a video screen image compris
ing data fields and constant background text, along with
protection and validation attributes for individual data
fields . The data fields and background text can be high
lighted using any combination of the VT100 video attrib
utes: reverse video, underline, blink, and bold characters.
Split screen and scrolling capabilities allow the user to
view more data than can be displayed on the screen at one
time.

Individual data fields can be display-only, enter-only (no
echo), or can be restricted to modification by privileged
users. Data fields can be formatted with fill characters, de
fault values, and other formatting characters-such as the
dash in a phone number-which assist the terminal opera
tor, but which are not visible to the application program.
Fields may be right- or left-justified or may use a special
fixed decimal data field type to normalize floating point de
cimal numbers into fixed point for easier use in computa
tion.

Field validation includes checking each keystroke in a field
for the proper data type (e.g., alphabetic, numeric, etc.) .
Fields may also be defined as "must enter" or "must
complete. "

A line of HELP information may be associated with each
field , and a chain of one or more HELP forms may be asso
ciated with each form. If people need additional instruc
tions while using a form, they press the HELP key to dis
play the HELP line for the current field. A second HELP

keystroke displays the first HELP screen for the current
form , so that from any point in the application form the
user can get to an entire series of HELP forms. In this way
the entire user manual for an application can be put on
line, automatically keyed to the appropriate user form.

Almost any class of application can benefit from using
VAX-11 FMS. Source data entry and inquiry/
response/update are the most obvious types of forms-or
iented uses, but other types of programs can benefit
equally well. For example, a simulation or numerical ana
lysis program could use FMS forms to explain and accept
input parameters, and then to format and scroll through
the output of the run. Forms might constitute the front end
of a student registration or a computer-aided instruction
system. Alternatively, they could be used to review data
acquired from laboratory or factory instrumentation , or to
format the operator input of control parameters to such
processes. Almost any application which uses alphanu
meric video terminals can be enhanced by using FMS
forms to talk to the terminal user.

Developing Applications with VAX-11 FMS
VAX-11 FMS forms are created and modified interactively
on the screen using a special FMS utility called the Form
Editor (FED). Because the video image is typed and mani
pulated directly on the screen , there is no need to lay out a
form on a paper chart or to code complex specifications
into a form definition program written in a difficult lan
guage. Rather , the form creator always sees the form on
the screen exactly as it will appear to the application user.
A set of 24 ed iting and data manipulation functions in
voked through the funct ion keypad of the VT100 terminal
allow easy alteration of the form description.

Fields are defined interactively via the function keypad and
by typing the COBOL-like picture character for each posi
tion of the field directly on the screen. The remaining field
attributes, such as field name, default value, and the con
tents of the HELP line, are described by interactively filling
in a questionnaire form on the screen . Another form is
used to define certain characteristics which apply to the
form as a whole, such as the name of the form and of the
first HELP form associated with it, and whether the screen
is to be placed into reverse video or 132-column mode. A
third form is used to specify application constants, called
"named data," which can be stored with the form instead
of hard-coded into the appl ication program. This last fea
ture allows appl ication parameters such as small data ta
bles, file names, names of subsequent forms, etc. , to be
stored with the form and edited almost interactively.

When the application developer is sat isfied with the
appearance and content of the form, the Form Editor
writes the form out into a work file . The Form Utility (FUT)
is then used to insert the form into a new or existing form
library, from which it will be retrieved when the application
program is executed. The Form Utility may be used to per
form other maintenance functions on form libraries, as
well as to generate hard-copy descriptions of forms suit
able for inclusion in application documentation. FUT can

9-17

also generate COBOL Data Division code to correspond to
the form description .

Once the form has been stored in a form library, one or
more application programs to use it must be coded. These
application programs control the interaction between
themselves, the form , and the operator by making calls to
a library of VAX-11 FMS subroutines called the Form Dri
ver (FD'/) . Under the direction of the calling application
program, the Form Driver displays forms, performs all
screen management an application requires, handles all
terminal input and output, and validates each operator en
try by checking it against the field description for the field .
A broad selection of subroutine calls allows the program to
communicate with the screen on either a full-screen or
field-by-field basis. While the terminal operator is typing
data, all data validation and formatting, error messages,
and HELP requests occur completely transparently to the
application program.

Maintaining VAX-11 FMS Applications
Several features of VAX-11 FMS make maintenance of ap
plications using forms both rapid and reliable . The most
obvious such feature is the interactive editing capability of
the Form Editor. Capabilities such as Open Line for insert,
Cut and Paste, etc., make modifications to existing forms
quick and easy . Furthermore , when fields are moved
around on the screen , their attributes are preserved, so
that re-entry of the form is not required .

Perhaps the most important contribution to application
maintainability comes from the fact that the application
makes all references to screen data by field name. These
field name references are not resolved until the program
executes, so that the form description is actually indepen
dent of the appl ication program. This means that it is easy
to write programs that do not know or depend upon the
specific order of the fields , or even know the names or
each field . This capability, combined with the storage of
forms in libraries, means that in many cases the form can
be rearranged , or new fields added, without requir ing that
the application program be recompiled, or even relinked!

The last feature of VAX-11 FMS that promotes application
maintainability is the ability to store application parame
ters with forms as named data. 1-'arameters such as the
names of related forms or programs, file specifications,
small look-up tables, range check boundaries, and error
messages specific to the particular form may be stored
with the form and ed ited with the same rapidity and ease.
For example, imagine an application that will be used by
operators who speak a variety of different languages. The
first thing the operator would do when logging into the ap
plication would be to select a language. The program
would simply open the form library with all the forms trans
lated into that language. Named data would be used to
store all other language-dependent application parame
ters, such as program-generated error messages, abbre
viations (Y=YES or O=OUI or S=SI), etc. The same pro
gram code would then be executed regardless of the lan
guage the application would "speak." A new language
could be added by simply modifying the initial language
selection form and creating a form library with the forms
and named data translated into the new language.

10
Data

Communications
Facilities

DECnet is a family of_network products developed by Digital Equipment
Corporation that adds networking capability to DIGIT Al's computer
families and operating systems. Using DECnet, various DIGIT AL com
puter systems can be linked together to facilitate remote communica
tions, resource sharing, and distributed computation. DECnet is highly
modular and flexible. It can be viewed as a set of tools or services from
which a user selects those appropriate to build a network to satisfy the
requirements of a particular application.

DIGITAL Network Architecture (DNA) provides the common network
architecture upon which all DECnet products are built. The architecture
is designed to handle a broad range of application requirements be
cause all the functions of the network from the user interface to physi
cal link control are completely modular. DNA allows nodes to operate
as switches, front-ends, terminal concentrators, or hosts.

DECnet-VAX:

• provides an interprocess communication facility that is highly trans-
parent and easy to use

• provides a higher-level language programming interface

• allows programs to access files at other systems

• allows users and programs to transfer files between systems

• allows users to transmit command files to be executed on other sys
tems

•allows an operator to down-line load RSX-11S system images into
other systems

VAX/VMS also supports protocol emulators (lnternets), which enable
DIGITAL systems to communicate with other vendors' systems.

INTRODUCTION
DIGITAL computers can commun icate with other DIGITAL
computers either remotely or locally via a network . By uti
lizing protocol emulators (lnternets), they can communi
cate with computers from other suppl iers.

DECnet is the family of products that allow DIGIT AL sys
tems to participate in a cooperative multiprocessing envi
ronment known as a network. A network is a configuration
of two or more independent computer systems, called
nodes, linked together to facilitate remote communica
tions, share resources, and perform distributed process
ing. Network nodes are not all required to run on the same
type of operating system. Within the scope of a single net
work, several nodes with different operating systems and
different features can interact to provide increased proc
essing flexibility.

Adjacent network nodes are linked together via carriers
known as physical links. Physical links can be relatively
permanent bonds , such as telephone lines or cable wires
laid from one node to another, or they can be temporary
connections that change with each use, such as dialed-up
telephone calls.

In a network of DECnet nodes, several tasks can use the
same physical link to exchange data. That is, more than
one data path can be handled simultaneously by a physi
cal link . This data path is known as a log ical link . A task is
an image running in the context of a process.

With DECnet, a variety of computer networks can be im
plemented. They typically fall into one of three classes:

• Commun ications Networks. These networks exist to
move data from one, often distant, physical location to
another. The data may be file-oriented (as is often the
case for remote job entry systems) or record-oriented
(as occurs with the concentration of interactive terminal
data). Interfaces to common carriers, using both
switched and leased-line facil ities, are normally a part of
such networks. Such networks are often characterized
by the concentration of all user applications programs
and data bases on one or two large host systems in the
network. Figure 10-1 illustrates such a network .

Figure 10-1

Communications Network

10-1

• Resource-Sharing Networks. These networks exist to
permit sharing expensive computer resources among
several computer systems. Shared resources not only
include peripherals such as mass storage devices, but
they can also include logical entities, such as a central
ized data base wh ich is made available to other systems
in the network. Such networks are often characterized
by the concentration of high-performance peripherals,
extensive data bases, and large programs on one or two
host systems in the network , while the satellite systems
have less expensive peripherals and smaller programs.
Figure 10-2 illustrates a resource-sharing network .

PDP-1 i

PDP -1 l

t--- --t VA X - 111780 1--------l

Figure 10-2

Resource-Sharing Network

PDP - 11

PDP-11

• Distributed Computing Networks. These networks coor
dinate the activities of several independent computing
systems and exchange data among them. Networks of
this nature may have specific geometries (star, ring,
hierarchy), but often have no regular arrangement of
links and nodes. Such networks are usually configured
so that the resources of a system are close to the users
of those resources. Distributed computing networks are
usually characterized by multiple computers with appli
cations programs and data bases distributed through
out the network. Figures 10-3 and 10-4 illustrate two
such networks.

PLANT INTERFACE

Figure 10-3

Typical Manufacturing Network

,----------------

PDP- 11

COMPUTAT IONAL SERVICE BUREAU
OR IN HOUSE DATA CENTER
VAX-111780

' ,)

' I

: ~PL-o=n=ER~!
: GRAPH ICS TERMINALS
I IGT - 40) I
L _____________ --------- ___ _J

ENGIN EER ING FIRM

Figure 10-4

Computational Network

When DECnet is used to connect heterogeneous systems,
each node of the network has both common DECnet at
tributes and system-specific attributes. Programs execut
ing in native mode can access the following network facili
ties:

• Interprocess (Task-to-Task) Communication : Pro-
grams executing on one system can exchange data with
programs executing on other systems.

• lntersystem File Transfer: A program or user can
transfer an entire data file from one system to another.

• lntersystem Resource Sharing : Programs executing on
one system can access files and devices physically lo
cated at other systems in the network. Access to devices
in other systems is provided through the file system of
the target node and is subject to that node's file system
restrictions.

• Network Command Terminal: A terminal on one VAX
system can appear to be connected to another VAX sys
tem in the network.

• Down-Line System Loading: Initial load images for
RSX-11 S systems in the network can be stored on the
host VAX system , and be loaded into adjacent PDP-11
systems configured for the RSX-11 S operating system.

• Down-Line Command File Loading: Command lan
guage users can send command files to a remote node
to be executed there. However, no status information or
error messages are returned.

DIGITAL NETWORK ARCHITECTURE
The DIGIT AL Network Architecture (DNA) is a set of proto
cols (rules) governing the format, control, and sequencing
of message exchange for all DECnet implementations.
DNA controls all data that travel throughout a DECnet net
work and provides a modular design for DECnet.

Its functional components are defined within four distinct
layers: User Layer, Network Service Layer, Data Link Lay
er, and Physical Link Layer. Each layer performs a well
defined set of network functions (via network protocols)
and presents a level of abstraction and capability to the
layer above it.

User Layer
This layer contains all user and DIGITAL supplied func
tions. Modules in this layer include network remote file
access modules, a remote file transfer utility, and a remote
system loader module. The protocol used for remote file
access and file transfer is the Data Access Protocol (OAP).

10-2

Network Service Layer
This layer provides a location-independent commun ica
tion mechanism for the user layer. The means by which
they communicate is called a loglcal link. Two network
application modules may communicate with each other by
means of the network service layer regardless of their
network locations. The protocol used between network
service modules is the Network Services Protocol (NSP).

Data Link Layer
This layer provides the transport layer with an error-free
communication mechanism between adjacent nodes. The
data link module specified for this layer implements the
DIGITAL Data Communications Message Protoco l
(DDCMP). The functions provided by this layer are inde
pendent of communication facility characteristics. For
DECnet-VAX, DDCMP is incorporated into the microproc
essor of the communications interface.

Physical Link Layer
This layer, the lowest layer in the DNA structure, provides
the data link layer with a communication mechanism
between adjacent nodes. Several modules are specified
for this layer, one for each type of communication device
that can be used in a DECnet network.

DNA is system-independent. It enables a variety of
DIGITAL computers running a variety of DIGITAL operat
ing systems to be tied together in a DECnet network .

A DECnet network can grow both in size and in the number
of functions it provides. It can , therefore, be adapted to
new technological developments in both hardware and
software. Existing DECnet implementations can take ad
vantage of these new technologies. DECnet components
can be replaced if better communications hardware be
comes available or if technical innovations in networking
occur. A DECnet network can accommodate the change of
a function from software into hardware.

DECNE~VAXFEATURES
The capabilities offered the DECnet-VAX programmer and
terminal user extend through a wide range of network
functions.

File Handling Using a Terminal
By using DECnet-VAX DIGITAL Command Language
(DCL) commands, the user can copy files from one node to
another, delete files stored on a remote node, take directo
ries of files on remote nodes, and transfer a command file
to another node and then execute the command file on the
remote node.

File Handling Using Record Management Services
A wide range of VAX/VMS Record Management Services
(RMS) can be used to handle files and records stored on
remote nodes. At the file level, these operations include
opening, closing , creating, deleting , and updating files
stored on a remote node. Also, at the record level , RMS
can be used to read, write, update, and delete records
stored on a remote node.

Network Command Terminal
The network command terminal facility allows a local ter
minal to operate as if it were physically connected to a re
mote computer .

Intertask Communications
Any native-mode language programmer can write pro
grams that perform intertask (interprocess) communica
tion. Intertask communication is a method of creating a
logical link between two tasks, exchanging data between
the tasks, and disconnecting the link when the communi
cation is complete.

Intertask communication routines can be coded using one
of two methods, transparent or nontransparent.

Transparent Intertask Communication - The program
opens the network interchange as if it were preparing for
device access, and then performs a series of reads and
writes just as it would to a pair of serial devices, one for
input and the other for output.

By its very nature, transparent access has no calls specifi
cally associated with DECnet. The calls used for interpro
cess communication are the same as the calls used for ac
cessing a sequential file in a higher-level language: OPEN,
CLOSE, READ, WRITE, etc. The programmer can choose
to include the target node name in the OPEN statement, or
can defer assignment using logical names.

Nontransparent Intertask Communication - In non
transparent access, a program can obtain information
about the network status to control the nature of its com
munication with other processes or tasks. This method of
coding intertask communications is available to the
MACRO programmer. And if you don't do AST processing
or attempt to accept multiple connects, you may program
in any language. Nontransparent access is available only
through calls to operating system service procedures. A
program can issue the following requests :

• CONNECT-establish a logical link (the analog of
OPEN)

• CONNECT REJECT -reject a connect initiation

• RECEIVE-receive a message (the analog of GET or
READ)

• SEND-transmit a message (the analog of PUT or
WRITE)

• SEND INTERRUPT MESSAGE-transmit a high-priority
message

• DISCONNECT -terminate a conversation (the analog of
CLOSE)

10-3

The process can send optional data along with the connect
request; for example, the size or number of messages that
it wants to send . The receiving process or task can accept
or reject the connect initiation. A process can accept multi
ple connect requests.

A process can send or receive mailbox messages to or
from another process or task . Mailbox message traffic is
essentially no different from data message traffic except
that it uses a mailbox associated with the 1/0 channel over
which the logical link was created. (This is the same me
chanism used, for example, for telling programs that un
solicited terminal data are available.) A logical link, there
fore, has two subchannels over which messages can be
transmitted : one for normal messages and another for
high-priority messages. In DECnet-VAX, an interrupt mes
sage is written to a mailbox that a process supplies for that
purpose.

In DECnet-VAX, a program using nontransparent access
normally opens a control path directly to a Network Ancil
lary Control Process (NET ACP), and designates one or
more mailboxes for receiving information from the NE
T ACP about the logical or physical links over which the
process is communicating . The NETACP can notify a proc
ess when:

• a partner requests a synchronous disconnect

• a partner requests a disconnect abort

• a partner exits

• a physical link goes down

• an NSP protocol error is detected

DIGITAL COMMAND LANGUAGE (DCL)
FILE HANDLING
A VAX/VMS DCL user can transfer files from one node to
another and delete files at other nodes. However, to per
form operations on files stored on a remote node, the user
must prefix the file specification with the remote node's
name, and an optional access control string as follows:

nodename"access control string"::filename.filetype;version
where:

nodename =

access control
string=

filename=
filetype
version

A 1- to 6-character name (numerics
or uppercase alphabetics) identifying
the remote network node.

Typically, a "username password." If
omitted, default login information
comes from an entry located in the lo-
cal configuration data base.

The double colon(::) following the no
dename separates the nodename
from the file specifier.

Use the following format for a DEC
net-VAX node:

device:[directory]filename.filetype;
version

DECnet-VAX supports a subset of VAX/VMS (DCL) com-
mands. They are:

APPEND
ASSIGN
COPY

DEASSIGN
DEFINE
DELETE
DIRECTORY
SUBMIT
TYPE

The following examples illustrate the COPY and SUBMIT
commands:

$COPY BOSTON::DBA1:TEST.DAT DENVER::DMA2:

transfers a file named TEST.DAT from the disk (DBA 1 :) at
the node named BOSTON to the disk (DMA2:) at the node
named DENVER.

Using the VAX/VMS command SUBMIT, a terminal user
can have a command file executed at another node in the
network. For example, the command:

$SUBMIT/REMOTE WASHDC: :INITIAL.COM

preceded by a DCL COPY command will transfer the com
mand file named INITIAL.COM from the host system to the
node named WASH DC, where the command file is execut
ed. The SUBMIT command assumes that the file already
exists at the remote node. Command files must be written
in the command language of the system. No status infor
mation or messages are returned to the sender.

RECORD MANAGEMENT SERVICES
FILE HANDLING
By using a subset of the VAX-11 Record Management Ser
vices (RMS), the user can manipulate records and files
stored on remote DECnet nodes. However, before using
VAX-11 RMS to perform operations on files and records
stored on a remote node, the user must prefix the file
specification with the node name of the remote node and
an optional access control string, just as with any other re
mote file application.

Much of the VAX-11 RMS functionality is supported by
DECnet-VAX, including managing sequential, relative, and
indexed file organizations. A large number of the VAX-11
RMS macros are available to network users.

SAMPLE VAX-11 FORTRAN INTERTASK
COMMUNICATION
This section describes the basic communication protocol
involving VAX-11 FORTRAN intertask communications.
The user communicates with another task in much the
same way as an access to a sequential file, i.e., via OPEN,
READ, WRITE and CLOSE statements. Similar capabilities
exist in any of the native mode languages.

Three major steps in VAX-11 FORTRAN intertask com
munication are:

1. Creating a logical link between tasks.
2. Sending and receiving messages (each message can

be 1to512 bytes in length).
3. Destroying the link at the end of the message dial-

ogue.

Creating a Logical Link Between Tasks
A logical link between tasks can be created only if they
agree to cooperate, with each other. That is, one task must
request that a logical link be created, and the other must

10-4

agree to accept the request. The task requesting the logi
cal link is called the source task; the one agreeing to ac
cept the logical link request is called the target task.

Sending and Receiving Messages
After the logical link has been created, the tasks must
"cooperate" with each other. That is, for each message
sent by a task (WRITE statement), the receiving task must
issue a corresponding receive (READ statement).

In addition, the tasks must ensure that enough buffer
space is allocated for messages, must ensure that the end
of dialogue can be determined, and must determine which
of the tasks will disconnect the logical link (CLOSE state
ment).

Disconnecting the Logical Link
Either task can disconnect the logical link by calling
CLOSE. CLOSE aborts all pending sends and receives,
disconnects the link immediately, and frees the channel
number associated with the logical link.

VAX-11 FORTRAN Intertask Communication Example
Figure 10-5 illustrates intertask communications using
normal VAX-11 FORTRAN 1/0 instructions.

MACRO TRANSPARENT INTERTASK
COMMUNICATION
This section describes the fundamentals of coding a
MACRO program for transparent intertask commun ica
tions utilizing a subset of the existing macro calls available
under VAX/VMS system services. These macro calls allow
the user to perform intertask communications in much the
same way as normal 1/0 operations are performed.

The term "transparent" simply implies that the calls are
identical in format to all other 1/0 calls.

Thus, communication with another task is performed in
much the same way as an 1/0 channel is assigned to a de
vice ($ASSIGN). Reads and writes are then performed as if
to a pair of sequential devices (that is, $010 with the
10$ _ WRITEVBLK function or $OUTPUT, and $010 with the
10$_READVBLK function or $INPUT). Finally ,
$DASSGN the device when communication is complete.

Three major functions in transparent intertask commun i
cation are:

1. Create a logical link between tasks.
2. Send and receive messages (each message can be O

to 65,535 bytes long).
3. Delete the link at the end of the message dialogue.

Creating a Logical Link Between Tasks
A logical link between tasks can be created only if the
tasks agree to cooperate with each other. That is, one task
must request that a logical link be created, and the other
task must agree to accept the request.

A logical link is requested by including a task specifier in
the source task's $ASSIGN call. A task specifier identifies
the remote node and the target task to which it will be con
nected.

The target task identifies the source task requesting the
logical link connect request by specifying SYS$NET as the

Source Task Code
PROGRAM DEM02.FOR

c
C This program prompts the user for a request, communicates
C with a remote task to obtain the requested data, and displays
C the answer for the user. The remote task is referenced by
C the logical name TASK. If the remote task is named DEM03.EXE
C at node TULSA, the following procedure is used to run the
C two programs:
c
C $DEFINE TASK TULSA::""TASK=DEM03""
C $RUN DEM02
c

c
100
200
300
400
c
c
c
c

c

LOGICAL *1 CODE(4),BUFFER(20)

FORMAT
FORMAT
FORMAT
FORMAT

('$Enter request code: ',4A 1)
(4A1)
(Q,20A1)
('OStock number for code ',4A 1,'is: ',20A 1)

Request the remote task to be run and establish a logical
link into it.

OPEN (UNIT= 1,NAM E='TASK,'ACCESS= 'SEQUENTIAL',FORM = 'FORMATTED')

C Prompt the user for a request code, send the code to the
C remote task, read the reply from the remote task, and display it to
C the user.
C Repeat the cycle until the user enters 'Exit' as his request code.
c
10 ACCEPT 100,CODE

IF(CODE(1) .EQ.'E') GOTO 20

c
c
c
20

WRITE (1 ,200END=20)CODE
READ (1,300) NCHAR,(BUFFER(K),K= 1,NCHAR)
TYPE 400,CODE,(BUFFER(K),K= 1,NCHAR
GOTO 10

Finished .

CLOSE
END

(UNIT=1)

Target Task Code
PROGRAM DEM03.FOR

c
C This is the companion task for DEM02. For each request it
C receives from the remote task it replies with a 1- to 20-
C character response. This program does not know the name of the
C requesting task . To complete the logical link with its initiator, it
C opens the 'file ' specified by the logical name SYS$NET.
c

c
100
200
c

LOGICAL *1 CODE(4),BUFFER(20)

FORMAT
FORMAT

(4A1)
(20A1)

Figure 10-5

VAX-11 FORTRAN Intertask Communications

10-5

C Establish a communication path with the remote task.

c
OPEN (UNIT=1,NAME='SYS$NET,:'ACCESS='SEOUENTIAL' ,FORM='FORMATTED')

c
c
c
10
c
c
c
c

Process requests until end-of-file encountered .

READ (100,END=20)CODE

Perform appropriate processing to obtain result to
transmit back to the requesting task.

WRITE
GOTO

(1,200) (BUFFER(K),K= 1,NCHAR)
10

c
C Finished.
c
20 CLOSE

END
(UNIT=1)

Figure 10-5 (Con't)
VAX-11 FORTRAN Intertask

Communications

devnam argument in the $ASSIGN statement. This action
completes the creation of the logical link.

Sending and Receiving Messages
After the logical link is created, the tasks must "cooperate"
with each other. That is, for each message sent by a task
($010 with the 10$_WRITEVBLK function or $OUTPUT),
the receiving task must issue a corresponding receive
($010 with the 10$_READVBLK function or $INPUT).

In addition, the tasks must ensure that enough buffer
space is allocated for messages, must ensure that the end
of dialogue can be determined, and must decide which of
the tasks will disconnect the logical link ($DASSGN).

Disconnecting the Logical Link
Either task can disconnect the logical link by calling
$DASSGN. $DASSGN aborts all pending sends and re
ceives, disconnects the link immediately, and frees the
channel number associated with the logical link.

MACRO CALLS
Listed below are the VAX/VMS system service macro calls
that can be used for transparent intertask communica
tions.

• $ASSIGN-Assign 1/0 Channel

• $010-Send a Message to a Remote Task $010
(10$ _ WRITEVBLK)

• $010-Receive a Message from a Remote Task $010
(10$ _ READVBLK)

• $INPUT-Read a Message

• $OUTPUT -Write a Message

• $DASSGN-Disconnect the Logical Link

MACRO NONTRANSPARENT INTERTASK
COMMUNICATION
Nontransparent intertask communication may consist of

10-6

two or more tasks interacting to establish a logical link . Af
ter establishing the logical link, the tasks exchange mes
sages over the link , then disconnect the link when com
munication is complete.

The MACRO system service calls discussed in this section
provide the user with greater flexibility and control over
network operations. The following features can be used
when performing nontransparent intertask communica
tion:

• Associate a mailbox with the 1/0 channel (over which
the logical link will be created) . The mailbox can then re
ceive mailbox messages sent by a remote task, or notifi
cations affecting the status of the logical link . For exam
ple, status returned through a mailbox includes whether
the remote task accepted or rejected a connect , or the
cooperating task disconnected or destroyed the link.

• A task can declare itself as a network task to accept
multiple logical link connect requests.

• A source task can send a logical link connect request to
the target task. The source task can optionally send up
to 16 bytes of data to the target task at the same time it
issues the connect request.

• The target task can accept or reject the connect re
quest. It can send up to 16 bytes of optional data back to
the source task at the same time it accepts or rejects the
connect request.

• A task using the nontransparent interface can also ac
cept or reject connect requests received from tasks
written using transparent intertask communication sys
tem service calls.

• Either task can send or receive a 1- to 16-byte interrupt
message after the logical link is created.

• Either task can abort the link immediately, or issue a
synchronous disconnect. The task disconnecting or
aborting the logical link can send up to 16 bytes of op-

tional data to the remote task at the same time it discon
nects or aborts a logical link.

Task Messages
There are two types of messages in nontransparent inter
task communications: data messages and mailbox mes
sages.

Data Messages - A data message is a message sent by
one task, and expected by the cooperating task. That is,
for each message sent by a task $010 with the
10$ _ WRITEBLK function or $OUTPUT, the receiving task
must issue a receive $010 with the 10$ READVBLK func-
tion or $INPUT. -

Thus, a data message in nontransparent intertask com
munications is the same as a data message sent in trans
parent communication.

Mailbox Messages - All other messages received by a
task employing a nontransparent interface are classified
as mailbox messages. These include any one of the follow
ing message types:

1. A logical link connect request-this message is re
ceived by the target task. It requests a logical link con
nection to the source task.

2. A connect accept-this message is received by the
source task. The message confirms that the target
task accepted the logical link connect request.

3. A connect reject-this message is also received by the
source task. The message informs the source task
that the target rejected the logical link connect re
quest.

4. An interrupt message-either task can receive a 1- to
16-byte interrupt message sent by a cooperating task .
The 1 to 16 bytes of data are placed in the task 's mail
box.

5. A synchronous disconnect-this message informs the
task that the cooperating task synchronously discon
nected the logical link.

6. A disconnect abort-this message informs the task
that the cooperating task aborted the link. The link is
destroyed immediately.

7. A network status message-this message informs the
task of some unusual network occurrence, for exam
ple, the data link has been restarted .

After a logical link is created between cooperating tasks,
DECnet places a received mailbox message into the mail
box associated with the channel representing the logical
link to which the mailbox message applies.

In the case of a task that can accept multiple inbound con
nect requests, inbound connect requests are placed into
the mailbox associated with the 1/0 channel over which the
network name was declared .

Note that the mailbox was previously created using the
$CR EM BX system service call. The task must then explicit
ly retrieve the unsolicited message from the mailbox using
the $010(10$ _ READVBLK) system service call.

PROTOCOL EMULATORS (INTERNETS)
VAX/VMS supports a number of software emulators that
enable and promote coexistence between the VAX family
and products supplied by other vendors. In this way, VAX
computers become even more flexible, particularly in ex-

10-7

tending existing mainframe facilities to include powerful
minicomputer data processing .

VAX-11 2780/3780 Protocol Emulator
This product provides the VAX/VMS user with a mecha
nism for transferring files between the VAX system and
another system equipped to handle IBM 2780 or 3780
communications protocols. It does this by emulating the
synchronous line protocol used by a 2780 or 3780 Remote
Batch Terminal.

The emulator may be invoked either interactively or by a
command procedure. The emulator's command set is de
signed to facil itate sharing a communication line among
several users. With the appropriate modem options, the
emulator is capable of automatically answering incoming
calls.

Sophisticated operations can be performed by a combina
tion of command procedures, allowing, for example, unat
tended operation . Th is would include the capability to de
tect an incoming call , establish the connection, and then
transmit and receive files and recover from transmission
failures, all without the intervention of the operator.

Several data formats are supported with the use of a par
ticular format selected by user command . Users may
select various forms to control translation schemes (rec
ords can be padded with spaces to card images before
transmission), translation to and from EBCDIC, and BSC
transparency . All file 1/0 is performed through the
VAX/VMS record management facility . Print and punch
stream recogn ition is implemented in such a way that the
data manipulation scheme can differ with each stream.

The following remote batch terminal features are support
ed :

• 2780 Extended and Multiple Record Option

• Variable Horizontal Forms Control

• BSC Transparency

• 3780 Space Compression

All of the above features are supported on a simultaneous,
multiline basis. The product can concurrently run up to
four physical lines, each with a different set of attributes
(e.g ., some may be 2780, others, 3780) at speeds up to
9600 baud per line.

MUX200/V AX Multiterminal Emulator
MUX200/VAX is a VAX-based software package wh ich
provides communication with a CDC6000, CYBER series,
or other host computer systems capable of using 200 UT
mode 4A commun ications protocols.

Any VAX interactive terminal may be used to control re
mote job entry or to communicate at command level with
the host system. Input files may be sent from , and output
files received onto, any VAX-supported mass storage, unit
record , or term inal device.

MUX200/VAX communicates with the host using the Mode
4A communications protocol as defined in CDC publica
tion 82128000. The software package can be configured to
support either the ASCII or the external BCD versions of
the protocol.

MUX200/VAX provides for one synchronous communica
tion circuit to a host computer system . The product sup-

ports a single switched or dedicated leased line two- or
four-wire common carrier facility at speeds up to 9600
baud .

MUX200/VAX enables several users to communicate si
multaneously with a host system over a single line. The
VAX/VMS system, though using a single physical drop,
appears to the host as a number of multidrops and termi
nals on the circuit.

M UX200/V AX features include:

• Output received from the host system may be spooled
to the line printer upon detection of a text string prede
fined by the user.

• Up to eight VAX/VMS files may be specif ied fo r
transmission to the host in a single command .

• VAX/VMS terminals may be detached for other use
while the software package is operating. Data received
from the host directed to a terminal are saved for pri nt
ing until the terminal is reattached .

• In many applications the host system can be offloaded
by taking advantage of the local processing power of the
VAX/VMS system. This reduces host processing and
line costs; for example, file editing can be performed lo
cally rather than on the host.

Figure 10-6 illustrates a schematic of the MUX200.

CDC 6000
OR

CARD
READER

CY BER
HOST SYSTEM

VAX-111780 --------

UP TO 16 TERMINALS

Figure 10-6

MUX200 Schematic

10-8

PRINTER

APPENDIX A

COMMONLY USED MNEMONICS

ACP Ancillary Control Process MTPR Move To Process Register instruction

ANS American National Standard MUTEX Mutual Exclusion semaphore

ASCII American Standard Code for Information In- NSP Network Services Protocol

terchange OPCOM Operator Communication Manager

AST Asynchronous System Trap POBR Program region base register

ASTLVL Asynchronous System Trap level POLR Program region length register

CCB Channel Control Block POPT Program region page table

CM Compatibility Mode bit in the hardware PSL P1BR Control region base register

CRB Channel Request Block P1LR Control region limit register

CRC Cyclic Redundancy Check P1PT Control region page table

OAP Data Access Protocol PC Program Counter

DOB Device Data Block PCB Process Control Block

DDCMP DIGITAL Data Communications Message Pro- PCBB Process Control Block Base register
tocol PFN Page Frame Number

DDT Driver Data Table PIO Process Identification Number
DV Decimal Overflow trap enable bit in the PSW PME Performance Monitor Enable bit in PCB

ECB Exit Control Block PSECT Program Section
ECC Error Correction Code PSL Processor Status Longword

ESP Executive Mode Stack Pointer PSW Processor Status Word

ESR Exception Service Routine PTE Page Table Entry

F11ACP Files-11 Ancillary Control Process QIO Queue Input/Output Request system service

FAB File Access Block RAB Record Access Block

FCA Fixed Control Area RFA Record 's File Address

FCB File Control Block RMS Record Management Services

FCS File Control Services RWED Read , Write, Execute, Delete

FDT Function Decision Table SBI Synchronous Backplane Interconnect

FP Frame pointer SBR System Base Register

FPO First Part (of an instruction) Done see System Control Block

FU Floating Underflow trap enable bit in the PSW SCBB System Control Block Base register

GSD Global Section Descriptor SLR System Length Register

GST Global Symbol Table SP Stack Pointer

IDB Interrupt Dispatch Block SPT System Page Table

IPL Interrupt Priority Level SSP Supervisor Mode Stack Pointer

IRP 1/0 Request Packet SVA System virtual address

ISECT Image Section TP Trace trap Pending bit in PSL

ISO Image Section Descriptor UBA UNIBUS Adapter

ISP Interrupt Stack Pointer UCB Unit Control Block

IS Interrupt Stack bit in PSL UETP User Environment Test Package

ISR Interrupt Service Routine UFO User File Directory

IV Integer Overflow trap enable bit in the PSW UIC User Identification Code

KSP Kernel Mode Stack Pointer USP User Mode Stack Pointer

MBA MASSBUS Adapter VCB Volume Control Block

MBZ Must Be Zero VPN Virtual Page Number

MCR Monitor Console Routine wee Window Control Block

MFD Master File Directory wcs Writable Control Store

MFPR Move From Process Register instruction woes Writable Diagnostic Control Store

MME Memory Mapping Enable

A-1

APPENDIX B

IDENTIFICATION DIVISION .
PROGRAM-ID. MERGE EXAMPLE.

*******************************•···
This program MERGEs three identically sequenced
regional sales files into one total sales file.
The program adds sales amounts and writes one
record for each product-code .

....••••.........••••••••..•.........••••••••••••.•••.........••••••.........•.••
ENVIRONMENT DIVISION.
CONFIGURATION SECTION .
SOURCE-COMPUTER. VAX-11 .
OBJECT-COMPUTER. VAX-11 .
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT REGION1-SALES
SELECT REGION2-SALES
SELECT REGION3-SALES
SELECT MERGE-FILE
SELECT TOTAL-SALES

ASSIGN TO "REG1SLS".
ASSIGN TO "REG2SLS".
ASSIGN TO "REG3SLS".
ASSIGN TO "MRGFILE".
ASSIGN TO "TOTLSLS".

DATA DIVISION.
FILE SECTION.
FD REGION1-SALES

LABEL RECORDS ARE STANDARD.
01 REGION1-RECORD
FD REGION2-SALES

LABEL RECORDS ARE STANDARD.
01 REGION2-RECORD
FD REGION3-SALES

LABEL RECORDS ARE STANDARD.
01 REGION3-RECORD
SD MERGE-FILE.

01 MERGE-REC.
03 M-REGION-CODE
03 M-PRODUCT-CODE
03 M-SALES-AMT
03 FILLER

FD TOT AL-SALES
LABEL RECORDS ARE STANDARD.

01 TOTAL-RECORD
WORKING-STORAGE SECTION.
01 INITIAL-READ PIC X
01 THE-COUNTERS.

03 PRODUCT-AMT
03 REGION1-AMT
03 REGION2-AMT
03 REGION3-AMT
03 TOT AL-AMT

01 SAVE-MERGE-REC.
03 S-REGION-CODE
03 S-PRODUCT-CODE
03 S-SALES-AMT
03 FILLER

PROCEDURE DIVISION.
000-START SECTION.

B-1

PIC X(100).

PIC X(100).

PIC X(100).

PICXX.
PIC X(10) .
PIC S9(7)V99.
PIC X(79).

PIC X(100) .

VALUE "Y".

PIC S9(7)V99.
PIC S9(9)V99.
PIC S9(9)V99.
PIC S9(9)V99.
PIC S9(11)V99.

PICXX.
PIC X(10) .
PIC S9(7)V99.
PIC X(79) .

010-MERGE-FILES.
OPEN OUTPUT TOT AL-SALES.
MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE

USING REGION1 -SALES REGION2-SALES REGION3-SALES
OUTPUT PROCEDURE IS 020-BUILD-TOTAL-SALES

THAU 100-DONE-TOTAL-SALES.
DISPLAY "TOTAL SALES FOR REGION 1 "

REGION1-AMT.
DISPLAY "TOTAL SALES FOR REGION 2 "

REGION2-AMT.
DISPLAY "TOT AL SALES FOR REGION 3 "

REGION3-AMT.
DISPLAY "TOTAL ALL SALES " TOTAL-AMT.
CLOSE TOT AL-SALES.
DISPLAY "END OF PROGRAM MERGE01 ".
STOP RUN.

020-BUILD-TOTAL-SALES SECTION.
030-GET-MERGE-RECORDS.

RETURN MERGE-FILE AT END
MOVE PRODUCT-AMT TO S-SALES-AMT
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC
GO TO 100-DONE-TOT AL SALES.

IF INITIAL-READ = "Y"
MOVE "N" TO INITIAL-READ
MOVE MERGE-REC TO SAVE-MERGE-REC
PERFORM 050-T ALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

040-COMPARE-PRODUCT-CODE.
IF M-PRODUCT-CODE = S-PRODUCT-CODE

PERFORM 050-T ALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

MOVE PRODUCT-AMT TO S-SALES-AMT.
MOVE ZEROES TO PRODUCT-AMT.
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC.
MOVE MERGE-REC TO SAVE-MERGE-REC.
GO TO 040-COMPARE-PRODUCT-CODE.

050-T ALLY-AMOUNTS.
ADD M-SALES-AMT TO PRODUCT-AMT TOT AL-AMT.
IF M-REGION-CODE = "01 "

ADD M-SALES-AMT TO REGION1-AMT.
IF M-REGION-CODE = " 02"

ADD M-SALES-AMT TO REGION2-AMT.
IF M-REGION-CODE = "03"

ADD M-SALES-AMT TO REGION3-AMT.
100-DONE-TOTAL-SALES SECTION.
120-DONE.

EXIT.

8-2

VT100 examples:

IDENTIFICATION DIVISION.
PROGRAM-ID. VIDE03.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11 .
OBJECT-COMPUTER. VAX-11 .
SPECIAL-NAMES.

APPENDIX C

SYMBOLIC CHARACTERS ESCAPER PARM-1 PARM-2 PARM-3 PARM-4

ARE 28 92 60 103 75.

...........••.••••••••.••.•••••..•...•..•...................•....•......•.•••.••••••••••..•..•..
ESCAPER = ESC PARM-1 = [PARM-2 = ; PARM-3=f PARM-4 = J ..

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NAME-FILE ASSIGN TO "NAM FIL".
DAT A DIVISION.
FILE SECTION.
FO NAME-FILE

LABEL RECORDS ARE STANDARD.
01 NAME-REC.

03 N-CUST-NUM
03 N-CUST-NAME
03 N-ADDRESS
03 N-CITY
03 N-STATE
03 N-ZIP

WORKING-STORAGE SECTION.
01 HOME-UP.

03 FILLER
03 FILLER
03 H-LINE
03 FILLER
03 H-COL
03 FILLER

01 CLEAR-SCREEN .
03 FILLER
03 FILLER
03 FILLER

01 THE-FORM.
03 FORM-LINE-1 .

04 FILLER
04 FILLER
04 LINE-4
04 FILLER
04 COL-3
04 FILLER
04 FILLER

PICX(8) .
PIG X(25)
PIG X(25)
PIG X(20)
PICXX.
PIG X(5) .

PICX
PICX
PIC99
PICX
PIC99
PICX

PIG X
PICX
PICX

PICX
PICX
PIC99
PICX
PIC99
PICX
PIG X(24)

"CUSTOMER NUMBER: __ _
03 FORM-LINE-2.

04 FILLER
04 FILLER
04 LINE-6
04 FILLER
04 COL-3
04 FILLER
04 FILLER

PICX
PICX
PIC99
PICX
PIC99
PICX
PIG X(39)

"CUSTOMER NAME:". ____ _

C-1

VALUE ESCAPER.
VALUE PARM-1 .
VALUE 00.
VALUE PARM-2.
VALUEOO.
VALUE PARM-3.

VALUE ESCAPER.
VALUE PARM-1.
VALUE PARM-4.

VALUE ESCAPER.
VALUE PARM-1 .
VALUE04.
VALUE PARM-2.
VALUE03.
VALUE PARM-3.
VALUE

VALUE ESCAPER.
VALUE PARM-1 .
VALUE 06.
VALUE PARM-2.
VALUE 03.
VALUE PARM-3.
VALUE

03 FORM-LINE-3.
04 FILLER
04 FILLER
04 LINE-8
04 FILLER
04 COL-3
04 FILLER
04 FILLER

"CUSTOMER ADDRESS:

03 FORM-LIN E-4.
04 FILLER
04 FILLER
04 LINE-10
04 FILLER
04 COL-3
04 FILLER
04 FILLER

PICX
PIC X
PIC99
PICX
PIC 99
PICX
PIC X(42)

PICX
PICX
PIC99
PICX
PIC99
PICX
PIC X(48)

"CITY: _ _ _ _ STATE: ZIP:

01 CURSOR-POSITIONER.
03 FILLER
03 FILLER
03 LINE-POS
03 FILLER
03 COL-POS
03 FILLER

01 INPUT-AREA
PROCEDURE DIVISION.
000-0PEN.

OPEN OUTPUT NAME-FILE.
005-BEGIN.

DISPLAY HOME-UP WITH NO ADVANCING .
010-CLEAR-SCREEN.

PICX
PICX
PIC 99.
PICX
PIC 99.
PICX

DISPLAY CLEAR-SCREEN WITH NO ADVANCING .
020-PAINT-FORM.

DISPLAY THE-FORM.
GO TO 050-GET-INPUT-DATA.

050-G ET-IN PUT-DAT A.
MOVE SPACES TO INPUT-AREA.

************************ **** ** **** ******** *** **

• Position cursor to accept customer number.••....••.•••••••.•..........•..•••.••••
MOVE 4 TO LINE-POS.
MOVE 19 TO COL-POS.
DISPLAY CURSOR-POSITIONER WITH NO ADVANCING.
ACCEPT INPUT-AREA.
IF INPUT-AREA= "DONE"

PERFORM 005-BEGIN THRU 010-CLEAR-SCREEN
CLOSE NAME-FILE STOP RUN.

MOVE INPUT-AREA TO N-CUST-NUM.
MOVE SPACES TO INPUT-AREA . •..•••.•.......•..............•..••••••.••.••

• Position cursor to accept customer name.•

MOVE 6 TO LINE-POS.
MOVE 17 TO COL-POS.
DISPLAY CURSOR-POSITION ER WITH NO ADVANCING.
ACCEPT INPUT-AREA.
MOVE INPUT-AREA TO N-CUST-NAME.
MOVE SPACES TO INPUT-AREA.

C-2

VALUE ESCAPER.
VALUE PARM-1.
VALUE OS.
VALUE PARM-2.
VALUE03.
VALUE PARM-3.
VALUE

VALUE ESCAPER.
VALUE PARM-1 .
VALUE 10.
VALUE PARM-2 .
VALUE03.
VALUE PARM-3 .
VALUE

VALUE ESCAPER.
VALUE PARM-1.

VALUE PARM-2.

VALUE PARM-3.
PIC X(25) .

****** ** **** ** *************************** ** *** **

* Position cursor to accept customer address.*••.....................••..... .
MOVE 8 TO LINE-POS.
MOVE 20 TO COL-POS.
DISPLAY CURSOR-POSITIONER WITH NO ADVANCING .
ACCEPT INPUT-AREA.
MOVE INPUT-AREA TON-ADDRESS.
MOVE SPACES TO INPUT-AREA.•... •.•••..••.•••••••

* Position cursor to accept city .
********** ** ** ** *** ****** ***********

MOVE 10 TO LINE-POS.
MOVE 8 TO COL-POS.
DISPLAY CURSOR-POSITIONER WITH NO ADVANCING .
ACCEPT INPUT-AREA.
MOVE INPUT-AREA TON-CITY.
MOVE SPACES TO INPUT-AREA.

*** ** ************* *** ****************

* Position cursor to accept state.

MOVE 38 TO COL-POS.
DISPLAY CURSOR-POSITIONER WITH NO ADVANCING.
ACCEPT INPUT-AREA.
MOVE INPUT-AREA TON-STATE.
MOVE SPACES TON-STATE.

* Position cursor to accept zip.

MOVE 46 TO COL-POS.
DISPLAY CURSOR-POSITIONER WITH NO ADVANCING .
ACCEPT INPUT-AREA.
MOVE INPUT-AREA TON-ZIP.
WRITE NAME-REC.
GO TO 005-BEGIN.

C-3

The
Glossary

glos·sa·rY

abort An exception that occurs in the middle of an
instruction and potentially leaves the registers and
memory in an indeterminate state, such that the in
struction cannot necessarily be restarted .

absolute indexed mode An indexed addressing
mode in which the base operand specifier is ad
dressed in absolute mode.

absolute mode In absolute mode addressing, the
PC is used as the register in autoincrement deferred
mode. The PC contains the address of the location
containing the actual operand.

absolute time Time values expressing a specific
date (month, day, and year) and time of day. Abso
lute time values are always expressed in the system
as positive numbers.

access mode 1. Any of the four processor access
modes in which software executes. Processor ac
cess modes are, in order from most to least
privileged and protected : kernel (mode 0) , executive
(mode 1), supervisor (mode 2), and user (mode 3).
When the processor is in kernel mode, the executing
software has complete control of, and responsibility
for, the system. When the processor is in any other
mode, the processor is inhibited from executing pri
vileged instructions. The Processor Status Long
word contains the current access mode field . The
operating system uses access modes to define pro
tection levels for software executing in the context of
a process. For example, the Executive runs in kernel
and executive mode and is most protected . The
command interpreter is less protected and runs in
supervisor mode. The debugger runs in user mode
and is no more protected than normal user pro
grams. 2. See record access mode.

access type 1. The way in which the processor
accesses instruction operands. Access types are:
read , write, modify, address, and branch . 2. The way
in which a procedure accesses its arguments. 3. See
also record access type.

access violation An attempt to reference an ad
dress that is not mapped into virtual memory or an
attempt to reference an address that is not accessi
ble by the current access mode.

account name A string that identifies a particular
account used to accumulate data on a job's resource
use. This name is the user's accounting charge num
ber, not the user's UIC.

address A number used by the operating system
and user software to identify a storage location. See
also virtual address and physical address.

G-1

address access type The specified operand of an
instruction is not directly accessed by the instruc
tion . The address of the specified operand is the
actual instruction operand. The context of the
address calculation is given by the data type of the
operand.

addressing mode The way in which an operand is
specified ; for example, the way in which the effective
address of an instruction operand is calculated us
ing the general registers. The basic general register
addressing modes are called: register, register de
ferred, autoincrement, autoincrement deferred, au
todecrement, displacement, and displacement de
ferred . In addition , there are six indexed addressing
modes using two general registers, and literal mode
addressing. The PC addressing modes are called:
immediate (for register deferred mode using the
PC), absolute (for autoincrement deferred mode us
ing the PC) , and branch .

address space The set of all possible addresses
available to a process. Virtual address space refers
to the set of all possible virtual addresses. Physical
address space refers to the set of all possible physi
cal addresses sent out on the SBI.

allocate a device To reserve a particular device
unit for exclusive use. A user process can allocate a
device only when that device is not allocated by any
other process.

alphanumeric character An upper or lower case
letter (A-Z, a-z) , a dollar sign ($), an underscore(_),
or a decimal digit (0-9).

alternate key An optional key within the data rec
ords in an indexed file ; used by VAX-11 RMS to build
an alternate index. See key (indexed files) and pri
mary key.

American Standard Code for Information
Interchange (ASCII) A set of 8-bit binary numbers
representing the alphabet, punctuation, numerals,
and other special symbols used in text representa
tion and communications protocol.

Ancillary Control Process (ACP) A process that
acts as an interface between user software and an
1/0 driver. An ACP provides functions supplemental
to those performed in the driver, such as file and
directory management. Three examples of ACPs
are: the Files-11 ACP (F11ACP), the magnetic tape
ACP (MTACP) , and the networks ACP (NET ACP).

area Areas are VAX-11 RMS maintained regions
of an indexed file . They allow a user to specify place
ment and/or specific bucket sizes for particular por
tions of a file . An area consists of any number of
buckets, and there may be from 1 to 255 areas in a
file .

Argument Pointer General register 12 (R12). By
convention, AP contains the address of the base of
the argument list for procedures initiated using the
CALL instructions.

assign a channel To establish the necessary soft
ware linkage between a user process and a device
unit before a user process can transfer any data to or
from that device. A user process requests the sys
tem to assign a channel and the system returns a
channel number.

asynchronous record operation A mode of
record processing in which a user program can con
tinue to execute after issuing a record retrieval or
storage request without having to wait for the re
quest to be fulfilled.

Asynchronous System Trap A software-simulat
ed interrupt to a user-defined service routine. ASTs
enable a user process to be notified asynchronously
with respect to its execution of the occurrence of a
specific event. If a user process has defined an AST
routine for an event, the system interrupts the proc
ess and executes the AST routine when that event
occurs. When the AST routine exits, the system
resumes the process at the point where it was inter
rupted.

Asynchronous System Trap level (ASTLVL) A
value kept in an internal processor register that is
the highest access mode for which an AST is pend
ing. The AST does not occur until the current access
mode drops in priority (raises in numeric value) to a
value greater than or equal to ASTLVL. Thus, an AST
for an access mode will not be serviced while the
processor is executing in a higher priority access
mode.

authorization file See user authorization file.

autodecrement indexed mode An indexed ad
dressing mode in which the base operand specifier
uses autodecrement mode addressing.

autodecrement mode In autodecrement mode
addressing, the contents of the selected register are
decremented, and the result is used as the address
of the actual operand for the instruction. The con
tents of the register are decremented according to
the data type context of the register: 1 for byte, 2 for
word, 4 for longword and floating, 8 for quadword
and double floating.

autoincrement deferred indexed mode An in
dexed addressing mode in which the base operand
specifier uses autoincrement deferred mode ad
dressing.

autoincrement deferred mode In autoincrement
deferred mode addressing, the specified register
contains the address of a longword which contains

G-2

the address of the actual operand. The contents of
the register are incremented by 4 (the number of
bytes in a longword). If the PC is used as the register ,
this mode is called absolute mode.

autoincrement indexed mode An indexed ad
dressing mode in which the base operand specifier
uses autoincrement mode addressing.

autoincrement mode In autoincrement mode ad
dressing, the contents of the specified register are
used as the address of the operand, then the con
tents of the register are incremented by the size of
the operand.

balance set The set of all process working sets
currently resident in physical memory. The
processes whose working sets are in the balance set
have memory requirements that balance with avail
able memory. The balance set is maintained by the
system swapper process.

base operand address The address of the base of
a table or array referenced by index mode address
ing.

base operand specifier The register used to cal
culate the base operand address of a table or array
referenced by index mode addressing.

base priority The process priority that the system
assigns a process when it is created. The scheduler
never schedules a process below its base priority.
The base priority can be modified only by the system
manager or the process itself.

base register A general register used to contain
the address of the first entry in a list, table, array, or
other data structure.

binding See linking.

bit string See variable-length bit field.

block 1. The smallest addressable unit of data that
the specified device can transfer in an 1/0 operation
(512 contiguous bytes for most disk devices). 2. An
arbitrary number of contiguous bytes used to store
logically related status, control, or other processing
information.

block 1/0 The set of VAX-11 RMS procedures that
allow you direct access to the blocks of a file regard
less of file organization.

bootstrap block A block in the index file on a
system disk that contains a program that can load
the operating system into memory and start its exe
cution.

branch access type An instruction attribute which
indicates that the processor does not reference an
operand address, but that the operand is a branch
displacement. The size of the branch displacement

is given by the data type of the operand.

branch mode In branch addressing mode, the in
struction operand specifier is a signed byte or word
displacement. The displacement is added to the
contents of the updated PC (which is the address of
the first byte beyond the displacement), and the re
sult is the branch address.

bucket A storage structure, consisting of from 1 to
32 blocks, used for building and processing relative
and indexed files. A bucket contains one or more
records or record cells. Buckets are the unit of con
tiguous transfer between VAX-11 RMS buffers and
the disk.

buffered 1/0 See system buffered 1/0.

bug check The operating system's internal diag
nostic check . The system logs the failure and
crashes the system.

byte A byte is eight contiguous bits starting on an
addressable byte boundary. Bits are numbered from
the right , 0 through 7, with bit 0 the low-order bit.
When interpreted arithmetically, a byte is a 2's com
plement integer with significance increasing from
bits 0 through 6. Bit 7 is the sign bit. The value of the
signed integer is in the range -128 to 127 decimal.
When interpreted as an unsigned integer, signifi
cance increases from bits 0 through 7 and the value
of the unsigned integer is in the range 0 to 255 deci
mal. A byte can be used to store one ASCII charac
ter.

cache memory A small, high-speed memory
placed between slower main memory and the proc
essor. A cache increases effective memory transfer
rates and processor speed. It contains copies of data
recently used by the processor, and fetches several
bytes of data from memory in anticipation that the
processor will access the next sequential series of
bytes.

call frame See stack frame.

call instructions The processor instructions
CALLG (Call Procedure with General Argument List)
and CALLS (Call Procedure with Stack Argument
List) .

call stack The stack, and conventional stack struc
ture, used during a procedure call . Each access
mode of each process context has one call stack,
and interrupt service context has one call stack.

channel A logical path connecting a user process
to a physical device unit. A user process requests
the operating system to assign a channel to a device
so the process can transfer data to or from that de
vice.

G-3

character A symbol represented by an ASCII
code. See also alphanumeric character.

character string A contiguous set of bytes. A char
acter string is identified by two attributes: an address
and a length. Its address is the address of the byte
containing the first character of the string. Subse
quent characters are stored in bytes of increasing
addresses. The length is the number of characters in
the string.

character string descriptor A quadword data
structure used for passing character data (strings).
The first word of the quadword contains the length of
the character string . The second word can contain
type information. The remaining longword contains
the address of the string.

cluster 1. A set of contiguous blocks that is the
basic unit of space allocation on a Files-11 disk vol
ume. 2. A set of pages brought into memory in one
paging operation. 3. An event flag cluster.

command An instruction , generally an English
word , typed by the user at a terminal or included in a
command file which requests the software monitor
ing a terminal or reading a command file to perform
some well-defined activity. For example, typing the
COPY command requests the system to copy the
contents of one file into another file.

command file A file containing command strings.
See also command procedure.

command interpreter Procedure-based system
code that executes in supervisor mode in the context
of a process to receive, syntax check, and parse
commands typed by the user at a terminal or submit
ted in a command file.

command parameter The positional operand of a
command delimited by spaces, such as a file specifi
cation, option, or constant.

command procedure A file containing commands
and data that the command interpreter can accept in
lieu of the user typ ing the commands individually on
a terminal.

command string A line (or set of continued lines),
normally terminated by typing the carriage return
key, containing a command and, optionally, informa
tion modifying the command. A complete command
string consists of a command, its qualifiers, if any,
and its parameters (file specifications, for example) ,
if any, and their qualifiers, if any.

common A FORTRAN term for a program section
that contains only data.

common event flag cluster A set of 32 event flags
that enables cooperating processes to post event
notification to each other. Common event flag clus-

ters are created as they are needed. A process can
associate with up to two common event flag clusters.

compatibility mode A mode of execution that en
ables the central processor to execute non-privi
leged PDP-11 instructions. The operating system
supports compatibility mode execution by providing
an RSX-11 M programming environment for an RSX-
11 M task image. The operating system compatibility
mode procedures reside in the control region of the
process executing a compatibility mode image. The
procedures intercept calls to the RSX-11 M Executive
and convert them to the appropriate operating sys
tem functions.

condition An exception condition detected and
declared by software. For example, see failure ex
ception mode.

condition codes Four bits in the Processor Status
Word that indicate the results of previously executed
instructions.

condition handler A procedure that a process
wants the system to execute when an exception con
dition occurs. When an exception condition occurs,
the operating system searches for a condition
handler and , if found, initiates the handler immedi
ately. The condition handler may perform some ac
tion to change the situation that caused the excep
tion condition and continue execution for the proc
ess that incurred the exception condition. Condition
handlers execute in the context of the process at the
access mode of the code that incurred the exception
condition.

condition value A 32-bit quantity that uniquely
identifies an exception condition.

context The environment of an activity. See also
process context, hardware context, and software
context.

context indexing The ability to index through a
data structure automatically because the size of the
data type is known and used to determine the offset
factor.

context switching Interrupting the activity in prog
ress and switching to another activity. Context
switching occurs as one process after another is
scheduled for execution. The operating system
saves the interrupted process' hardware context in
its hardware process control block (PCB) using the
Save Process Context instruction, and loads another
process' hardware PCB into the hardware context
using the Load Process Context instruction, sche
duling that process for execution.

continuation character A hyphen at the end of a
command line signifying that the command string
continues on to the next command line.

G-4

console The manual control unit integrated into
the central processor. The console includes an LSl-
11 microprocessor and a serial line interface con
nected to a hard copy terminal. It enables the opera
tor to start and stop the system, monitor system op
eration, and run diagnostics.

console terminal The hard copy terminal connect
ed to the central processor console.

control region The highest-addressed half of per
process space (the P1 region). Control region virtual
addresses refer to the process-related information
used by the system to control the process, such as:
the kernel, executive, and supervisor stacks, the
permanent 1/0 channels, exception vectors, and dy
namically used system procedures (such as the
command interpreter and RSX-11 M programming
environment compatibility mode procedures). The
user stack is also normally found in the control re
gion, although it can be relocated elsewhere.

Control Region Base Register (P1 BR) The proc
essor register, or its equivalent in a hardware proc
ess control block, that contains the base virtual ad
dress of a process control region page table.

Control Region Length Register (P1 LR) The
processor register, or its equivalent in a hardware
process control block, that contains the number of
non-existent page table entries for virtual pages in a
process control region.

copy-on-reference A method used in memory
management for sharing data until a process
accesses it, in which case it is copied before the
access. Copy-on-reference allows sharing of the ini
tial values of a global section whose pages have
read/write access but contain pre-initialized data
available to many processes.

counted string A data structure consisting of a
byte-sized length followed by the string. Although a
counted string is not used as a procedure argument,
it is a convenient representation in memory.

current access mode The processor access
mode of the currently executing software. The Cur
rent Mode field of the Processor Status Longword
indicates the access mode of the currently executing
software.

cylinder The tracks at the same radius on all re
cording surfaces of a disk.

D _floating (point) datum A floating point datum
consisting of B contiguous bytes (64 bits) starting on
an arbitrary byte boundary. The value of the
D _floating datum is in the approximate range (+ or
-) 0.29 x 1 o-3a to 1. 7 x 1038. The precision is ap
proximately one part in 255 or typically sixteen deci
mal digits.

data base 1. All the occurrences of data described
by a data base management system. 2. A collection
of related data structures.

data structure Any table, list, array, queue, or tree
whose format and access conventions are well-de
fined for reference by one or more images.

data type In general, the way in which bits are
grouped and interpreted. In reference to the proces
sor instructions, the data type of an operand identi
fies the size of the operand and the significance of
the bits in the operand. Operand data types include:
byte, word, longword and quadword integer, floating
and double floating, character string, packed deci
mal string, and variable-length bit field .

deferred echo Refers to the fact that terminal
echoing does not occur until a process is ready to
accept input entered by type ahead.

delta time A time value expressing an offset from
the current date and time. Delta times are always
expressed in the system as negative numbers whose
absolute value is used as an offset from the current
time.

demand zero page A page, typically of an image
stack or buffer area, that is initialized to contain all
zeros when dynamically created in memory as a re
sult of a page fault. This feature eliminates the waste
of disk space that would otherwise be required to
store blocks (pages) that contain only zeros.

descriptor A data structure used in calling se
quences for passing argument types, addresses and
other optional information. See character string de
scriptor.

detached process A process that has no owner.
The parent process of a tree of subprocesses. De
tached processes are created by the job controller
when a user logs on the system or when a batch job
is initiated . The job controller does not own the user
processes it creates; these processes are therefore
detached.

device The general name for any physical
term inus or link connected to the processor that is
capable of receiving, storing, or transmitting data.
Card readers, line printers, and terminals are exam
ples of record-oriented devices. Magnetic tape de
vices and disk devices are examples of mass stor
age devices. Terminal line interfaces and interpro
cessor links are examples of communications
devices.

device interrupt An interrupt received on interrupt
priority level 16 through 23. Device interrupts can be
requested only by devices, controllers, and memo
ries.

G-5

device name The field in a file specification that
identifies the device unit on which a file is stored.
Device names also include the mnemonics that iden
tify an 1/0 peripheral device in a data transfer re
quest. A device name consists of a mnemonic fol
lowed by a controller identification letter (if
applicable), followed by a unit number (if applica
ble) , and ends with a colon(:).

device queue See spool queue.

device register A location in device controller log
ic used to request device functions (such as 1/0
transfers) and/or report status.

device unit One drive, and its controlling logic, of
a mass storage device system. A mass storage sys
tem can have several drives connected to it.

diagnostic A program that tests logic and reports
any faults it detects.

direct 1/0 An 1/0 operation in which the system
locks the pages containing the associated buffer in
memory for the duration of the 1/0 operation. The
110 transfer takes place directly from the process
buffer. Contrast with system buffered 1/0.

direct mapping cache A cache organization in
which only one address comparison is needed to
locate any data in the cache because any block of
main memory data can be placed in only one possi
ble position in the cache. Contrast with fully associa
tive cache.

directory A file used to locate files on a volume
that contains a list of file names (including type and
version number) and their unique internal identifica
tions.

directory name The field in a file specification that
identifies the directory file in which a file is listed. The
directory name begins with a left bracket ([or <)and
ends with a right bracket(] or>).

displacement deferred indexed mode An in
dexed addressing mode in which the base operand
specifier uses displacement deferred mode
addressing.

displacement deferred mode In displacement
deferred mode addressing, the specifier extension is
a byte, word , or longword displacement. The dis
placement is sign extended to 32 bits and added to a
base address obtained from the specified register.
The result is the address of a longword which con
tains the address of the actual operand. If the PC is
used as the register, the updated contents of the PC
are used as the base address. The base address is
the address of the first byte beyond the specifier
extension .

displacement indexed mode An indexed ad
dressing mode in which the base operand specifier
uses displacement mode addressing.

displacement mode In displacement mode ad
dressing, the specifier extension is a byte, word, or
longword displacement. The displacement is sign
extended to 32 bits and added to a base address
obtained from the specified register. The result is the
address of the actual operand. If the PC is used as
the register, the updated contents of the PC are used
as the base address. The base address is the ad
dress of the first byte beyond the specifier extension.

drive The electro-mechanical unit of a mass stor
age device system on which a recording medium
(disk cartridge, disk pack, or magnetic tape reel) is
mounted.

driver The set of code that handles physical 1/0 to
a device.

dynamic access A technique in which a program
switches from one record access mode to another
while processing a file.

echo A terminal handling characteristic in which
the characters typed by the terminal user on the key
board are also displayed on the screen or printer.

effective address The address obtained after in
direct or indexing modifications are calculated.

entry mask A word whose bits represent the
registers to be saved or restored on a subroutine or
procedure call using the call and return instructions.

entry point A location that can be specified as the
object of a call. It contains an entry mask and excep
tion enables known as the entry point mask.

equivalence name The string associated with a
logical name in a logical name table. An equivalence
name can be, for example, a device name, another
logical name, or a logical name concatenated with a
portion of a file specification.

error logger A system process that empties the
error log buffers and writes the error messages into
the error file. Errors logged by the system include
memory system errors, device errors and timeouts,
and interrupts with invalid vector addresses.

escape sequence An escape is a transition from
the normal mode of operation to a mode outside the
normal mode. An escape character is the code that
indicates the transition from normal to escape mode.
An escape sequence refers to the set of character
combinations starting with an escape character that
the terminal transmits without interpretation to the
software set up to handle escape sequences.

G-6

event A change in process status or an indication
of the occurrence of some activity that concerns an
individual process or cooperating processes. An in
cident reported to the scheduler that affects a proc
ess' ability to execute. Events can be synchronous
with the process' execution (a wait request), or they
can be asynchronous (1/0 completion). Some other
events include: swapping; wake request; page fault.

event flag A bit in an event flag cluster that can be
set or cleared to indicate the occurrence of the event
associated with that flag. Event flags are used to syn
chronize activities in a process or among many
processes.

event flag cluster A set of 32 event flags which are
used for event posting. Four clusters are defined for
each process: two process-local clusters, and two
common event flag clusters. Of the process-local
flags, eight are reserved for system use.

exception An event detected by the hardware
(other than an interrupt or jump, branch, case, or call
instruction) that changes the normal flow of instruc
tion execution. An exception is always caused by the
execution of an instruction or set of instructions
(whereas an interrupt is caused by an activity in the
system independent of the current instruction).
There are three types of hardware exceptions: traps,
faults, and aborts. Examples are: attempts to exe
cute a privileged or reserved instruction, trace faults,
compatibility mode faults, breakpoint instruction ex
ecution, and arithmetic faults such as floating point
overflow, underflow, and divide by zero.

exception condition A hardware- or software-de
tected event other than an interrupt or jump, branch,
case, or call instruction that changes the normal flow
of instruction execution.

exception dispatcher An operating system pro
cedure that searches for a condition handler when
an exception condition occurs. If no exception
handler is found for the exception or condition, the
image that incurred the exception is terminated .

exception enables See trap enables.

exception vector See vector.

executable image An image that is capable of be
ing run in a process. When run, an executable image
is read from a file for execution in a process.

executive The generic name for the collection of
procedures included in the operating system soft
ware that provides the basic control and monitoring
functions of the operating system.

executive mode The second most privileged
processor access mode (mode 1). The record man
agement services (RMS) and many of the operating

system's programmed service procedures execute
in executive mode.

exit An image exit is a rundown activity that occurs
when image execution terminates either normally or
abnormally. Image rundown activities include deas
signing 1/0 channels and disassociation of common
event flag clusters. Any user- or system-specified
exit handlers are called .

exit handler A procedure executed when an im
age exits. An exit handler enables a procedure that
is not on the call stack to gain control and clean up
procedure-own data bases before the actual image
exit occurs.

extended attribute block (XAB) An RMS user da
ta structure that contains additional file attributes
beyond those expressed in the file access block
(FAB), such as boundary types (aligned on cylinder,
logical block number, virtual block number) and file
protection information.

extension The amount of space to allocate at the
end of a file each time a sequential write exceeds the
allocated length of the file .

extent The contiguous area on a disk containing a
file or a portion of a file . Consists of one or more
clusters.

F _floating (point) datum A floating point datum
consisting of 4 contiguous bytes (32 bits) starting on
an arbitrary byte boundary. The value of the
F _floating datum is in the approximate range
(+ or -) 0.29 x 10-3s to 1. 7 x 1038. The precision is
approximately one part in 223 or typically seven deci
mal digits.

failure exception mode A mode of execution se
lected by a process indicating that it wants an excep
tion condition declared if an error occurs as the re
sult of a system service call. The normal mode is for
the system service to return an error status code for
which the process must test.

fault A hardware exception condition that occurs
in the middle of an instruction and that leaves the
registers and memory in a consistent state, such that
elimination of the fault and restarting the instruction
will give correct results.

field 1. See variable-length bit field. 2. A set of
contiguous bytes in a logical record .

file An organized collection of related items (rec
ords) maintained in an accessible storage area, such
as disk or tape.

file access block (FAB) An RMS user data struc
ture that represents a request for data operations
related to the file as a whole, such as OPEN, CLOSE,
or CREATE.

G-7

file header A block in the index file describing a
file on a Files-11 disk structure. The file header iden
tifies the locations of the file's extents. There is a file
header for every file on the disk.

file name The field preceding a file type in a file
specification that contains a 1- to 9-character logical
name for a file.

filename extension See file type.

file organization The physical arrangement of da
ta in the file. You select the specific organization
from those offered by V AX-11 RMS, based on your
individual needs for efficient data storage and re
trieval. See indexed file organization, relative file or
ganization, and sequential file organization.

Files-11 The name of the on-disk structure used
by the RSX-11, IAS and VAX/VMS operating sys
tems. Volumes created under this structure are
transportable between these operating systems.

file specification A unique name for a file on a
mass storage medium. It identifies the node, the de
vice, the directory name, the file name, the file type,
and the version number under which a file is stored.

file structure The way in which the blocks forming
a file are distributed on a disk or magnetic tape to
provide a physical accessing technique suitable for
the way in which the data in the file is processed.

file system A method of recording, cataloging,
and accessing files on a volume.

file type The field in a file specification that is
preceded by a period or dot (.) and consists of a
zero- to three-character type identification. By con
vention, the type identifies a generic class of files
that have the same use or characteristics, such as
ASCII text files, binary object files, etc.

fixed control area An area associated with a vari
able length record available for controlling or assist
ing record access operations. Typical uses include
line numbers and printer format control information.

fixed-length record format Property of a file in
which all records are of the same size. This format
provides simplicity in determining the exact location
of a record in the file and eliminates the need to
prefix a record size field to each record.

floating (point) datum A numeric data type in
which the number is represented by a fraction (less
than 1 and greater than or equal to 112) multiplied by 2
raised to a power. There are four floating point data
types: F _floating (4 bytes), D_floating (8 bytes),
G_floating (8 bytes), and H_floating (16 bytes)

foreign volume Any volume other than a Files-11
formatted volume which may or may not be file
structured.

fork process A dynamically created system proc
ess such as a process that executes device driver
code or the timer process. Fork processes have min
imal context. Fork processes are scheduled by the
hardware rather than by the software. The timer
process is dispatched directly by software interrupt.
1/0 driver processes are dispatched by a fork dis
patcher. Fork processes execute at software inter
rupt levels and are dispatched for execution immedi
ately. Fork processes remain resident until they ter
minate.

frame pointer General register 13 (R13) . By
convention, FP contains the base address of the
most recent call frame on the stack.

fully associative cache A cache organization in
which any block of data ·from main memory can be
placed anywhere in the cache. Address comparision
must take place against each block in the cache to
find any particular block. Contrast with direct map
ping cache.

G_floating (point) datum A floating point datum
consisting of 8 contiguous bytes (64 bits) starting on
an arbitrary byte boundary. The value of the
G_floating datum is in the approximate range
(+ or -) 0.56 x 10-3os to 9 x 10308• The precision is
approximately one part in 252 or typically fifteen.

general register Any of the sixteen 32-bit registers
used as the primary operands of the native mode
instructions. The general registers include 12 gener
al purpose registers which can be used as accumu
lators, as counters, and as pointers to locations in
main memory, and the Frame Pointer (FP). Argu
ment Pointer (AP), Stack Pointer (SP), and Program
Counter (PC) registers.

generic device name A device name that identi
fies the type of device but not a particular unit; a
device name in which the specific controller and/or
unit number is omitted.

giga Metric term used to represent the number 1
followed by nine zeros.

global page table The page table containing the
master page table entries for global sections.

global section A data structure (e.g., FORTRAN
global common) or shareable image section
potentially available to all processes in the system.
Access is protected by privilege and/or group num
ber of the UIC.

global symbol A symbol defined in a module that
is potentially available for reference by another mod
ule. The linker resolves (matches references with
definitions) global symbols. Contrast with local sym
bol.

G-8

global symbol table (GST) In a library, an index of
strongly defined global symbols used to access the
modules defining the global symbols. The linker will
also put global symbol tables into an image. For ex
ample, the linker appends a global symbol table to
executable images that are intended to run under
the symbolic debugger, and it appends a global
symbol table to all shareable images.

group 1. A set of users who have special access
privileges to each other's directories and files within
those directories (unless protected otherwise), as in
the context "system, owner, group, world ," where
group refers to all members of a particular owner's
group. 2. A set of jobs (processes and their sub
processes) who have access privileges to a group's
common event flags and logical name tables, and
may have mutual process controlling privileges,
such as scheduling, hibernation, etc.

group number The first number in a User Identifi
cation Code (UIC).

H_floating (point) datum A floating point datum
consisting of 16 contiguous bytes (128 bits) starting
on an arbitrary byte boundary. The value of the
H_floating datum is in the approximate range
(+ or -) 0.84 x 104932 to 0.59 x 104932 • The precision
is approximately one part in 2112 or typically 33 deci
mal digits.

hardware context The values contained in the fol
lowing registers while a process is executing: the
Program Counter (PC); the Processor Status Long
word (PSL); the 14 general registers (RO through
R13) ; the four processor registers (POBR, POL~ .

P1 BR and P1 LR) that describe the process virtual
address space; the Stack Pointer (SP) for the current
access mode in which the processor is executing ;
plus the contents to be loaded in the Stack Pointer
for every access mode other than the current access
mode. While a process is executing, its hardware
context is continually being updated by the proces
sor. While a process is not executing, its hardware
context is stored in its hardware PCB.

hardware process control block (PCB) A data
structure known to the processor that contains the
hardware context when a process is not executing. A
process' hardware PCB resides in its process head
er.

hibernation A state in which a process is inactive,
but known to the system with all of its current status.
A hibernating process becomes active again when a
wake request is issued. It can schedule a wake re
quest before hibernating, or another process can is
sue its wake request. A hibernating process also be
comes active for the time sufficient to service any
AST it may receive while it is hibernating. Contrast
with suspension.

home block A block in the index file that contains
the volume identification, such as volume label and
protection.

image An image consists of procedures and data
that have been bound together by the linker. There
are three types of images: executable, shareable,
and system.

image activator A set of system procedures that
prepare an image for execution. The image activator
establishes the memory management data struc
tures required both to map the image's virtual pages
to physical pages and to perform paging .

image exit See exit.

image 1/0 segment That portion of the control re
gion that contains the RMS internal file access
blocks (IFAB) and 1/0 buffers for the image currently
being executed by a process.

image name The file name of the file in which an
image is stored .

image privileges The privileges assigned to an
image when it is linked. See process privileges.

image section (isect) A group of program sec
tions (psects) with the same attributes (such as read
only access, read/write access, absolute, relocata
ble, etc.) that is the unit of virtual memory allocation
for an image.

immediate mode In immediate mode addressing,
the PC is used as the register in autoincrement mode
addressing.

index The structure which allows retrieval of rec
ords in an indexed file by key value . See key (in
dexed files) .

index file The file on a Files-11 volume that
contains the access information for all files on the
volume and enables the operating system to identify
and access the volume.

index file bit map A table in the index file of a
Files-11 volume that indicates which file headers are
in use.

index register A register used to contain an ad
dress offset.

indexed addressing mode In indexed mode ad
dressing, two registers are used to determine the
actual instruction operand: an index register and a
base operand specifier. The contents of the index
register are used as an index (offset) into a table or
array. The base operand specifier supplies the base
address of the array (the base operand address or
BOA). The address of the actual operand is calculat
ed by multiplying the contents of the index register
by the size (in bytes) of the actual operand and add-

G-9

ing the result to the base operand address. The
addressing modes resulting from index mode ad
dressing are formed by adding the suffix "indexed"
to the addressing mode of the base operand specifi
er: register deferred indexed, autoincrement in
dexed, autoincrement deferred indexed (or absolute
indexed), autodecrement indexed, displacement in
dexed, and displacement deferred indexed .

indexed file organization A file organization
which allows random retrieval of records by key val
ues and sequential retrieval of records in sorted or
der by key value. See key (indexed files).

indirect command file See command procedure.

input stream The source of commands and data.
One of: the user's terminal, the batch stream, or an
indirect command file.

instruction buffer A buffer in the processor used
to contain bytes of the instruction currently being
decoded and to pre-fetch instructions in the instruc
tion stream. The control logic continously fetches
data from memory to keep the buffer full.

interleaving Assigning consecutive physical
memory addresses alternately between two memory
controllers.

interlocked The property of a read followed by a
write to the same datum with no possibility of an
intervening reference by a second processor or 1/0
device. Examples are the Branch on Bit Interlocked
and Add Aligned Word Interlocked instructions.

interprocess communication facility A common
event flag, mailbox, or global section used to pass
information between two or more processes.

interrecord gap A blank space deliberately placed
between data records on the recording surface of a
magnetic tape.

interrupt An event other than an exception or
branch, jump, case, or call instruction that changes
the normal flow of instruction execution. Interrupts
are generally external to the process executing when
the interrupt occurs. See also device interrupt, soft
ware interrupt, and urgent interrupt.

interrupt priority level (IPL) The interrupt level at
which the processor executes when an interrupt is
generated. There are 31 possible interrupt priority
levels. IPL 1 is lowest, 31 highest. The levels arbitrate
contention for processor service. For example, a de
vice cannot interrupt the processor if the processor
is currently executing at an interrupt priority level
greater than the interrupt priority level of the device's
interrupt service routine.

interrupt service routine The routine executed
when a device interrupt occurs.

interrupt stack The system-wide stack used when
executing in interrupt service context. At any time,
the processor is either in a process context execut
ing in user, supervisor, executive or kernel mode, or
in system-wide interrupt service context operating
with kernel privileges, as indicated by the interrupt
stack and current mode bits in the PSL. The inter
rupt stack is not context switched.

interrupt stack pointer The stack pointer for the
interrupt stack. Unlike the stack pointers for process
context stacks, which are stored in the hardware
PCB, the interrupt stack pointer is stored in an inter
nal register.

interrupt vector See vector.

1/0 driver See driver.

1/0 function An 1/0 operation that is interpreted by
the operating system and typically results in one or
more physical 1/0 operations.

1/0 function code A 6-bit value specified in a
Queue 1/0 Request system service that describes
the particular 1/0 operation to be performed (e.g.,
read , write, rewind).

1/0 function modifier A 10-bit value specified in a
Queue 1/0 Request system service that modifies an
1/0 function code (e.g., read terminal input no echo).

1/0 lockdown The state of a page such that it can
not be paged or swapped out of memory until any
1/0 in progress to that page is completed.

1/0 rundown An operating system function in
which the system cleans up any 1/0 in progress
when an image exits.

1/0 space The region of physical address space
that contains the configuration registers, and device
control/status and data registers.

1/0 status block A data structure associated with
the Queue 1/0 Request system service. This service
optionally returns a status code, number of bytes
transferred, and device- and function-dependent in
formation in an 1/0 status block. It is not returned
from the service call, but filled in when the 1/0 re
quest completes.

job 1. A job is the accounting unit equivalent to a
process and the collection of all the subprocesses, if
any, that it and its subprocesses create. Jobs are
classified as batch and interactive. For example, the
job controller creates an interactive job to handle a
user's requests when the user logs onto the system
and it creates a batch job when the symbiont manag
er passes a command input file to it. 2. A print job.

LOGIN image for the job, maintains the accounting
record for the job, manages symbionts, and termi
nates a process and its subprocesses.

job queue A list of files that a process has suppl ied
for processing by a specific device, for example, a
line printer.

kernel mode The most privileged processor
access mode (mode 0). The operating system's most
privileged services, such as 1/0 drivers and the pag
er, run in kernel mode.

key
indexed files: A character string, a packed decimal
number, a 2- or 4-byte unsigned binary number, or a
2- or 4-byte signed integer within each data record in
an indexed file. You define the length and location
within the records; VAX-11 RMS uses the key to
build an index. See primary key, alternate key, and
random access by key value.

relative tiles : The relative record number of each da
ta record in a data file; VAX-11 RMS uses the relative
record numbers to identify and access data records
in a relative file in random access mode. See relative
record number.

lexical function A command language construct
that the command interpreter evaluates and substi
tutes before it performs expression analysis on a
command string. Lexical functions return informa
tion about the current process, such as UIC or de
fault directory; and about character strings, such as
length or substring locations.

librarian A program that allows the user to create,
update, modify, list, and maintain object library, im
age library, and assembler macro library files.

library file A direct access file containing one or
more modules of the same module type.

limit The size or number of given items requ iring
system resources (such as mailboxes, locked pages,
1/0 requests, open files, etc.) that a job is allowed to
have at any one time during execution, as specified
by the system manager in the user authorization file .
See also quota.

line number A number used to identify a line of
text in a file processed by a text editor.

linker A program that reads one or more object
files created by language processors and produces
an executable image file, a shareable image file , or a
system image file .

linking The resolution of external references
between object modules used to create an image,
the acquisition of referenced library routines, service
entry points, and data for the image, and the assign-

job controller The system process that establishes ment of virtual addresses to components of an im-
a job's process context, starts a process running the age.

G- 10

literal mode In literal mode addressing , the in
struction operand is a constant whose value is ex
pressed in a 6-bit field of the instruction. If the
operand data type is byte, word , longword , quad
word , or octaword, the operand is zero-extended
and can express values in the range 0 through 63
(decimal). If the operand data type is F _, D _, G _, or
H _floating, the 6-bit field is composed of two 3-bit
fields, one for the exponent and the other for the
fraction. The operand is extended to F _, D _, G _, or
H _floating format.

locality See program locality.

local symbol A symbol meaningful only to the
module that defines it. Symbols not identified to a
language processor as global symbols are consid
ered to be local symbols. A language processor re
solves (matches references with definitions) local
symbols. They are not known to the linker and can
not be made available to another object module.
They can, however, be passed through the linker to
the symbolic debugger. Contrast with global symbol.

locate mode Technique used for a record input
operation in which the data records are not copied
from the 1/0 buffer. See move mode.

locking a page in memory Making a page in an
image ineligible for either paging or swapping . A
page stays locked in memory until it is specifically
unlocked .

locking a page in the working set Making a page
in an image ineligible for paging out of the working
set for the image. The page can be swapped when
the process is swapped. A page stays locked in a
working set until it is specifically unlocked .

logical block number A number used to identify a
block on a mass storage device. The number is a
volume-relative address rather than its physical (de
vice-oriented) address or its virtual (file-relative) ad
dress. The blocks that constitute the volume are la
beled sequentially starting with logical block 0.

logical 1/0 function A set of 1/0 operations (e.g.,
read and write logical block) that allow restricted
direct access to device level 1/0 operations using
logical block addresses.

logical name A user-specified name for any por
tion or all of a file specification. For example, the
logical name INPUT can be assigned to a terminal
device from which a program reads data entered by
a user. Logical name assignments are maintained in
logical name tables for each process, each group,
and the system. A logical name can be created and
assigned a value permanently or dynamically.

logical name table A table that contains a set of
logical names and their equivalence names for a

G-11

particular process, a particular group, or the system.

logical 1/0 functions A set of 1/0 functions that
allow restr icted direct access to device level 1/0 op
erations.

logical record A group of related fields treated as
a unit.

longword Four contiguous bytes (32 bits) starting
on an addressable byte boundary. Bits are num
bered from right to left, 0 through 31. The address of
the longword is the address of the byte containing bit
0. When interpreted arithmetically, a longword is a
2's complement integer with significance increasing
from bit 0 to bit 30. When interpreted as a signed
integer, bit 31 is the sign bit. The value of the signed
integer is in the range -2,147,483,648to2,147,483,-
647. When interpreted as an unsigned integer, sig
nificance increases from bit 0 to bit 31 . The value of
the unsigned integer is in the range 0 through
4,294,967 ,295.

macro A statement that requests a language proc
essor to generate a predefined set of instructions.

mailbox A software data structure that is treated
as a record-oriented device for general interprocess
communication. Communication using a mailbox is
similar to other forms of device-independent 1/0.
Senders perform a write to a mailbox, the receiver
performs a read from that mailbox. Some system
wide mailboxes are defined: the error logger and
OPCOM read from system-wide mailboxes.

main memory See physical memory.

mapping window A subset of the retrieval infor
mation for a file that is used to translate virtual block
numbers to log ical block numbers.

mass storage device A device capable of reading
and writing data on mass storage media such as a
disk pack or a magnetic tape reel.

member number The second number in a user
identification code that uniquely identifies that code.

memory management The system funct ions that
include the hardware's page mapping and protec
tion and the operating system's image activator and
pager.

Memory Mapping Enable (MME) A bit in a proc
essor register that governs address translation.

modify access type The specified operand of an
instruction or procedure is read, and is potentially
modified and wr itten , during that instruction 's or
procedure's execution.

module 1. A portion of a program or program li
brary, as in a source module, object module, or im-

age module. 2. A board, usually made of plastic cov
ered with an electrical conductor, on which logic de
vices (such as transistors, resistors, and memory
chips) are mounted, and circuits connecting these
devices are etched, as in a logic module.

Monitor Console Routine (MCR) The command
interpreter in an RSX-11 system.

mount a volume 1. To logically associate a volume
with the physical unit on which it is loaded (an activity
accomplished by system software at the request of
an operator). 2. To load or place a magnetic tape or
disk pack on a drive and place the drive online (an
activity accomplished by a system operator).

move mode Technique used for a record transfer
in which the data records are copied between the 1/0
buffer and your program buffer for calculations or
operations on the record. See locate mode.

mutex A semaphore that is used to control exclu
sive access to a region of code that can share a data
structure or other resource. The mutex (mutual ex
clusion) semaphore ensures that only one process at
a time has access to the region of code.

name block (NAM) An RMS user data structure
that contains supplementary information used in
parsing file specifications.

native image An image whose instructions are ex
ecuted in native mode.

native mode The processor's primary execution
mode in which the programmed instructions are in
terpreted as byte-aligned, variable-length instruc
tions that operate on byte, word, longword, quad
word, and octaword integer, F _, D_, G_ and
H _floating format, character string, packed decimal,
and variable-length bit field data. The instruction ex
ecution mode other than compatibility mode.

network A collection of interconnected individual
computer systems.

nibble The low-order or high-order four bits of a
byte.

node An individual computer system in a network.

null process A small system process that is the
lowest priority process in the system and takes one
entire priority class. One function of the null process
is to accumulate idle processor time.

numeric string A contiguous sequence of bytes
representing up to 31 decimal digits (one per byte)
and possibly a sign. The numeric string is specified
by its lowest addressed location, its length, and its
sign representation.

object module The binary output of a language
processor such as the assembler or a compiler,

G-12

which is used as input to the linker.

object time system (OTS) See Run Time Pro
cedure Library.

octaword Sixteen contiguous bytes (128 bits)
starting on an addressable byte boundary. Bits are
numbered from right to left, 0 to 127. An octaword is
identified by the address of the byte containing the
low-order bit (bit 0).

offset A fixed displacement from the beginning of
a data structure. System offsets for items within a
data structure normally have an associated symbolic
name used instead of the numeric displacement.
Where symbols are defined, programmers always
reference the symbolic names for items in a data
structure instead of using the numeric displacement.

opcode The pattern of bits within an instruction
that specify the operation to be performed.

operand specifier The pattern of bits in an in
struction that indicate the addressing mode, a regis
ter and/or displacement, which, taken together,
identify an instruction operand.

operand specifier type The access type and data
type of an instruction's operand(s). For example, the
test instructions are of read access type, since they
only read the value of the operand. The operand can
be of byte, word, or longword data type, depending
on whether the opcode is for the TSTB (test byte) ,
TSTW (test word), or TSTL (test longword) instruc
tion.

Operator Communication Manager (OPCOM) A
system process that is always active. OPCOM re
ceives input from a process that wants to inform an
operator of a particular status or condition, passes a
message to the operator, and tracks the message.

operator's console Any terminal identified as a
terminal attended by a system operator.

owner In the context "system, owner, group,
world," an owner is the particular member (of a
group) to which a file, global section, mailbox, or
event flag cluster belongs.

owner process The process (with the exception of
the job controller) or subprocess that created a sub
process.

packed decimal A method of representing a deci
mal number by storing a pair of decimal digits in one
byte, taking advantage of the fact that only four bits
are required to represent the numbers 0 through 9.

packed decimal string A contiguous sequence of
up to 16 bytes interpreted as a string of nibbles.
Each nibble represents a digit except the low-order
nibble of the highest addressed byte, which repre-

sents the sign. The packed decimal str ing is speci
fied by its lowest addressed location and the number
of dig its.

page 1. A set of 512 contiguous byte locations
used as the unit of memory mapping and protection.
2. The data between the beginning of file and a page
marker, between two markers, or between a marker
and the end of a file .

page fault An exception generated by a reference
to a page which is not mapped into a working set.

page fault cluster size The number of pages read
in on a page fault.

page frame number (PFN) The address of the first
byte of a page in physical memory. The high-order
21 bits of the physical address of the base of a page.

page marker A character or characters (generally
a form feed) that separates pages in a file that is
processed by a text editor.

pager A set of kernel mode procedures that exe
cutes as the result of a page fault. The pager makes
the page for which the fault occurred available in
physical memory so that the image can continue ex
ecution. The pager and the image activator provide
the operating system's memory management func
tions.

page table entry (PTE) The data structure that
identifies the location and status of a page of virtual
address space. When a virtual page is in memory,
the PTE contains the page frame number needed to
map the virtual page to a physical page. When it is
not in memory, the page table entry contains the
information needed to locate the page on secondary
storage (disk) .

paging The action of bringing pages of an execut
ing process into physical memory when referenced.
When a process executes, all of its pages are said to
reside in virtual memory. Only the actively used
pages, however, need to reside in physical memory.
The remaining pages can reside on disk until they
are needed in physical memory. In this system, a
process is paged only when it references more
pages than it is allowed to have in its working set.
When the process refers to a page not in its working
set, a page fault occurs. This causes the operating
system's pager to read in the referenced page if it is
on disk (and , optionally, other related pages de
pend ing on a cluster factor), replacing the least re
cently faulted pages as needed . A process pages
only against itself.

parameter See command parameter.

per-process address space See process address
space.

G- 13

physical address The address used by hardware
to identify a location in physical memory or on
directly addressable secondary storage devices
such as a disk . A physical memory address consists
of a page frame number and the number of a byte
within the page. A physical disk block address con
sists of a cylinder or track and sector number.

physical address space The set of all possible 30-
bit physical addresses that can be used to refer to
locations in memory (memory space) or device
registers (1/0 space) .

physical block A block on a mass storage device
referred to by its physical (device-oriented) address
rather than a log ical (volume-relative) or virtual (file
relative) address.

physical 1/0 functions A set of 1/0 functions that
allow access to all device level 1/0 operations except
maintenance mode.

physical memory The memory modules connect
ed to the SBI that are used to store: 1) instructions
that the processor can directly fetch and execute,
and 2) any other data that a processor is instructed
to manipulate. Also called main memory.

position-dependent code Code that can execute
properly only in the locations in virtual address
space that are assigned to it by the linker.

position-independent code Code that can exe
cute properly without modification wherever it is lo
cated in virtual address space, even if its location is
changed after it has been linked . Generally, this
code uses addressing modes that form an effective
address relative to the PC.

primary key The mandatory key within the data
records of an indexed file; used by V AX-11 RMS to
determine the placement of records within the file
and to bu ild the primary index. See key (indexed
files) and alternate key.

primary vector A location that contains the start
ing address of a condition handler to be executed
when an exception condition occurs. If a primary
vector is declared , that condition handler is the first
handler to be executed .

private section An image section of a process that
is not shareable among processes. See also global
section.

privilege See process privilege, user privilege,
and image privilege.

privileged instructions In general, any instruc
tions intended for use by the operating system or
privileged system programs. In particular, instruc
tions that the processor will not execute unless the

current access mode is kernel mode (e.g., HALT,
SVPCTX, LDPCTX, MTPR, and MFPR).

procedure 1. A routine entered via a Call instruc
tion . 2. See command procedure.
process The basic entity scheduled by the system
software that provides the context in which an image
executes. A process consists of an address space
and both hardware and software context.

process address space See process space.

process context The hardware and software con
texts of a process.

process control block (PCB) A data structure
used to contain process context. The hardware PCB
contains the hardware context. The software PCB
contains the software context, which includes a
pointer to the hardware PCB.

process header A data structure that contains the
hardware PCB, accounting and quota information ,
process section table, working set list, and the page
tables defining the virtual layout of the process.

process header slots That portion of the system
address space in which the system stores the proc
ess headers for the processes in the balance set.
The number of process header slots in the system
determines the number of processes that can be in
the balance set at any one time.

process identification (PIO) The operating sys
tem's unique 32-bit binary value assigned to a proc
ess.

process 1/0 segment That portion of a process
control region that contains the process permanent
RMS internal file access block for each open file, and
the 1/0 buffers, including the command interpreter's
command buffer and command descriptors.

process name A 1- to 15-character ASCII string
that can be used to identify processes executing un
der the same group number.

processor register A part of the processor used
by the operating system software to control the
execution states of the computer system. They in
clude the system base and length registers, the pro
gram and control region base and length registers,
the system control block base register, the software
interrupt request register, and many more.

Processor Status Longword (PSL) A system pro
grammed processor register consisting of a word of
privileged processor status and the PSW. The privi
leged processor status information includes: the
current IPL (interrupt priority level), the previous ac
cess mode, the current access mode, the interrupt
stack bit, the trace fault pending bit, and the compa
tibility mode bit.

G-14

Processor Status Word (PSW) The low-order
word of the Processor Status Longword . Processor
status information includes: the condition codes
(carry, overflow, zero, negative), the arithmetic trap
enable bits (integer overflow, dec imal overflow ,
floating underflow), and the trace enable bit.

process page tables The page tables used to de
scribe process virtual memory.

process priority The priority assigned to a proc
ess for scheduling purposes. The operating system
recognizes 32 levels of process priority, where 0 is
low and 31 high. Levels 16 through 31 are used for
time-critical processes. The system does not modify
the priority of a time-critical process (although the
system manager or process itself may). Levels O
through 15 are used for normal processes. The sys
tem may temporarily increase the priority of a nor
mal process based on the activity of the process.

process privileges The privileges granted to a
process by the system, which are a combination of
user privileges and image privileges. They include,
for example, the privilege to: affect other processes
associated with the same group as the user's group,
affect any process in the system regardless of UIC,
set process swap mode, create permanent event flag
clusters, create another process, create a mailbox,
and perform direct 1/0 to a file-structured device.

process section See private section.

process space The lowest-addressed half of virtu
al address space, where per-process instructions
and data reside. Process space is divided into a pro
gram region and a control region.

Program Counter (PC) General register 15 (R15) .
At the beginning of an instruction's execution, the PC
normally contains the address of a location in mem
ory from which the processor will fetch the next in
struction it will execute.

program locality A characteristic of a program
that indicates how close or far apart the references
to locations in virtual memory are over time. A pro
gram with a high degree of locality does not refer to
many widely scattered virtual addresses in a short
period of time.

programmer number See member number.

program region The lowest-addressed half of
process address space (PO space). The program re
gion contains the image currently being executed by
the process and other user code called by the image.

Program region Base Register (POBR) The proc
essor register, or its equivalent in a hardware proc
ess control block, that contains the base virtual ad
dress of the page table entry for virtual page number
0 in a process program region.

Program region Length Register (POLR) The
processor register, or its equivalent in a hardware
process control block, that contains the number of
entries in the page table for a process program re
gion.

program section (psect) A portion of a program
with a given protection and set of storage manage
ment attributes. Program sections that have the
same attributes are gathered together by the linker
to form an image section.

project number See group number or account
number.

pure code See re-entrant code.

quadword Eight contiguous bytes (64 bits) starting
on an addressable byte boundary. Bits are num
bered from right to left, 0 to 63. A quadword is identi
fied by the address of the byte containing the low
order bit (bit 0). When interpreted arithmetically, a
quadword is a 2's complement integer with signifi
cance increasing from bit 0 to bit 62. Bit 63 is used as
the sign bit. The value of the integer is in the range
-263 to 263 - 1.

qualifier A portion of a command string that modi
fies a command verb or command parameter by
selecting one of several options. A qualifier, if pre
sent, follows the command verb or parameter to
which it applies and is in the format: " /qualifier:op
tion. " For example, in the command string "PRINT
filename/COPIES:3," the COPIES qualifier indicates
that the user wants three copies of a given file print
ed.

queue 1. n. A circular, doubly-linked list. See sys
tem queues. v. To make an entry in a list or table,
perhaps using the INSQUE instruction. 2. See job
queue.

queue priority The priority assigned to a job
placed in a spooler queue or a batch queue.

quota The total amount of a system resource , such
as CPU time, that a job is allowed to use in an ac
counting period , as specified by the system manager
in the user authorization file. See also limit.

random access by key Indexed files only: Retriev
al of a data record in an indexed file by either a
primary or alternate key within the data record . See
key {indexed files) .

random access by record's file address The re
trieval of a record by its unique address, which is
provided to the program by RMS. This method of
access is the only means of randomly accessing a
sequentially organized file containing variable length
records.

G-15

random access by relative record num
ber Retrieval of a record by its relative record
number. See relative record number. For relative
files, random access by relative record number is
synonymous with random access by key. See ran
dom access by key (relative files only) .

read access type An instruction or procedure op
erand attribute indicating that the specified operand
is only read during instruction or procedure execu
tion .

record A set of related data that your program
treats as a unit.

record access block (RAB) An RMS user data
structure that represents a request for a record ac
cess stream. A RAB relates to operations on the rec
ords within a file, such as UPDATE, DELETE, or GET.

record access mode The method used in RMS for
retrieving and storing records in a file. One of three
methods: sequential , random, and record's file ad
dress.

record blocking The technique of grouping multi
ple rcords into a single block. On magnetic tape, an
IRG is placed after the block rather than after each
record. This technique reduces the number of 1/0
transfers required to read or write the data; and, in
addition {for magnetic tape), increases the amount
of usable storage area. Record blocking also applies
to disk files.

record cell A fixed-length area in a relative file that
can contain a record. The concept of fixed-length
record cells lets VAX-11 RMS directly calculate the
record 's actual position in the file.

record format The way a record physically
appears on the recording surface of the storage me
dium. The record format defines the method for de
termining record length.

record length The size of a record; that is, the
number of bytes in a record.

record locking A facility that prevents access to a
record by more than one record stream or process
until the initiating record stream or process releases
the record.

Record Management Services A set of operating
system procedures that are called by programs to
process files and records within files. RMS allows
programs to issue READ and WRITE requests at the
record level (record 1/0) as well as read and write
blocks {block 1/0). RMS is an integral part of the
system software. RMS procedures run in executive
mode.

record-oriented device A device such as a termi
nal, line printer, or card reader, on which the largest

unit of data a program can access in one 1/0 opera
tion is the device's physical record.

record's file address The unique address of a
record in a file, which is returned by RMS whenever
a record is accessed, that allows records in disk files
to be access randomly regardless of file organiza
tion. This address is valid only for the life of the file. If
an indexed file is reorganized, then the RFA of each
record will typically change.

re-entrant code Code that is never modified dur
ing execution. It is possible to let many users share
the same copy of a procedure or program written as
re-entrant code.

register A storage location in hardware logic other
than main memory. See also general register, proc
essor register, and device register.

register deferred indexed mode An indexed ad
dressing mode in which the base operand specifier
uses register deferred mode addressing.

register deferred mode In register deferred mode
addressing, the contents of the specified register are
used as the address of the actual instruction
operand.

register mode In register mode addressing, the
contents of the specified register are used as the
actual instruction operand.

relative file organization The arrangement of rec
ords in a file where each record occupies a cell of
equal length within a bucket. Each cell is assigned a
successive number, called a relative record number,
which represents the cell's position relative to the
beginning of the file.

relative record number An identification number
used to specify the position of a record cell relative
to the beg inning of the file; used as the key during
random access by key mode to relative files.

resource A physical part of the computer system
such as a device or memory, or an interlocked data
structure such as a mutex. Quotas and limits control
the use of physical resources.

resource wait mode An execution state in which a
process indicates that it will wait until a system re
source becomes available when it issues a service
request requiring a resource. If a process wants noti
fication when a resource is not available, it can dis
able resource wait mode during program execution .

return status code See status code.

RMS-11 A set of routines which is linked with
compatibility mode programs, and provides similar
functional capabilities to VAX-11 RMS. The file or
ganizations and record formats used by RMS-11 are
identical to those of VAX-11 RMS.

Run Time Procedure Library The collection of
procedures available to native mode images at run
time. These library procedures (such as trigonome
tric functions, etc.) are common to all native mode
images, regardless of the language processor used
to compile or assemble the program.

scatter/gather The ability to transfer in one 1/0
operation data from discontiguous pages in memory
to contiguous blocks on disk, or data from contigu
ous blocks on disk to discontiguous pages in memo
ry.

secondary storage Random access mass stor
age.

secondary vector A location that identifies the
starting address of a condition handler to be execut
ed when a condition occurs and the primary vector
contains zero or the handler to which the primary
vector points chooses not to handle the condition .

section A portion of process virtual memory that
has common memory management attributes (pro
tection, access, cluster factor, etc.). It is created from
an image section, a disk file , or as the result of a
Create Virtual Address Space system service. See
global section, private section, image section, and
program section.

self-relative queue A circularly linked list whose
forward and backward links use the address of the
entry in which they occur as the base address for the
link displacement to the linked entry. Contrast with
absolute addresses used to link a queue.

G-16

sequential file organization A file organization in
which records appear in the order in which they were
originally written. The records can be fixed length or
variable length.

sequential record access mode Record storage
or retrieval which starts at a designated point in the
file and continues in one-after-the-other fashion
through the file. That is, records are accessed in the
order in which they physically appear in the file.

shareable image An image that has all of its inter
nal references resolved, but which must be linked
with an object module(s) to produce an executable
image. A sharable image cannot be executed . A
shareable image file can be used to contain a library
of routines. A shareable image can be used to create
a global section by the system manager.

shell process A predefined process that the job
initiator copies to create the minimum context
necessary to establish a process.

signal 1. An electrical impulse conveying informa
tion . 2. The software mechanism used to indicate
that an exception condition was detected.

slave terminal A terminal from which it is not pos
sible to issue commands to the command interpret
er. A terminal assigned to application software.

small process A system process that has no con
trol region in its virtual address space and has an
abbreviated context. Examples are the working set
swapper and the null process. A small process is
scheduled in the same manner as user processes,
but must remain resident during its execution.

software context The context maintained by the
operating system that describes a process. See
software process control block (PCB).

software interrupt An interrupt generated on in
terrupt priority level 1 through 15, which can be
requested only by software.

software process control block (PCB) The data
structure used to contain a process' software con
text. The operating system defines a software PCB
for every process when the process is created. The
software PCB includes the following kinds of infor
mation about the process: current state; storage ad
dress if it is swapped out of memory; unique identifi
cation of the process, and address of the process
header (which contains the hardware PCB). The
software PCB resides in system region virtual ad
dress space. It is not swapped with a process.

software priority See process priority and queue
priority.

spooling output spooling: The method by which
output to a low-speed peripheral device (such as a
line printer) is placed into queues maintained on a
high-speed device (such as disk) to await transmis
sion to the low-speed device. Input spooling: the
method by which input from a low-speed peripheral
(such as the card reader) is placed into queues
maintained on a high-speed device (such as disk) to
await transmission to a job processing that input.

spool queue The list of files supplied by processes
that are to be processed by a symbiont. For exam
ple, a line printer queue is a list of files to be printed
on the line printer.

stack An area of memory set aside for temporary
storage, or for procedure and interrupt service link
ages. A stack uses the last-in, first-out concept. As
items are added to ("pushed on") the stack, the
stack pointer decrements. As items are retrieved
from ("popped off") the stack, the stack pointer in
crements.

stack frame A standard data structure built on the
stack during a procedure call, starting from the loca
tion addressed by the FP to lower addresses, and
popped off during a return from procedure. Also
called call frame.

G-17

stack pointer General register 14 (R14). SP con
tains the address of the top (lowest address) of the
processor-defined stack. Reference to SP will ac
cess one of the five possible stack pointers (kernel ,
executive, supervisor, user, or interrupt) depending
on the value in the current mode and interrupt stack
bits in the Processor Status Longword (PSL).

state queue A list of processes in a particular
processing state. The scheduler uses state queues
to keep track of processes' eligibility to execute.
They include: processes waiting for a common event
flag, suspended processes, and executable
processes.

status code A longword value that indicates the
success or failure of a specific function. For exam
ple, system services always return a status code in
RO upon completion.

store through See write through.

strong definition Definition of a global symbol that
is explicitly available for reference by modules linked
with the module in which the definition occurs. The
linker always lists a global symbol with a strong defi
nition in the symbol portion of the map. The librarian
always includes a global symbol with a strong defi
nition in the global symbol table of a library.

strong reference A reference to a global symbol
in an object module that requests the linker to report
an error if it does not find a definition for the symbol
during linking. If a library contains the definition , the
linker incorporates the library module defining the
global symbol into the image containing the strong
reference.

subprocess A subsidiary process created by
another process. The process that creates a subpro
cess is its owner. A subprocess receives resource
quotas and limits from its owner. When an owner
process is removed from the system, all its sub
processes (and their subprocesses) are also re
moved.

supervisor mode The third most privileged proc
essor access mode (mode 2). The operating
system's command interpreter runs in supervisor
mode.

suspension A state in which a process is inactive,
but known to the system. A suspended process be
comes active again only when another process re
quests the operating system to resume it. Contrast
with hibernation .

swap mode A process execution state that deter
mines the eligibility of a process to be swapped out
of the balance set. If process swap mode is disabled,
the process working set is locked in the balance set.

swapping The method for sharing memory re
sources among several processes by writing an
entire working set to secondary storage (swap out)
and reading another working set into memory (swap
in). For example, a process' working set can be writ
ten to secondary storage while the process is waiting
for 1/0 completion on a slow device. It is brought
back into the balance set when 1/0 completes. Con
trast with paging.

switch See (command) qualifier.

symbiont A full process that transfers record-or
iented data to or from a mass storage device. For
example, an input symbiont transfers data from card
readers to disks. An output symbiont transfers data
from disks to line printers.

symbiont manager The function (in the system
process called the job controller) that maintains
spool queues, and dynamically creates symbiont
processes to perform the necessary 1/0 operations.

symbol See local symbol, global symbol, and univ
ersal global symbol.

Synchronous Backplane Interconnect (SBI) The
part of the hardware that interconnects the proces
sor, memory controllers, MASSBUS adapters, and
the UNIBUS adapter.

synchronous record operation A mode of record
processing in which a user program issues a record
read or write request and then waits until that re
quest is fulfilled before continuing to execute.

system In the context "system, owner, group,
world," the system refers to the group numbers that
are used by operating system and its controlling
users, the system operators and system manager.

system address space See system space and
system region.

System Base Register (SBR) A processor register
containing the physical address of the base of the
system page table.

system buffered 1/0 An 1/0 operation, such as
terminal or mailbox 1/0, in which an intermediate
buffer from the system buffer pool is used instead of
a process-specified buffer. Contrast with direct 1/0.

System Control Block (SCB) The data structure in
system space that contains all the interrupt and ex
ception vectors known to the system.

System Control Block Base register (SCBB) A
processor register containing the base address of
the system control block.

system device The random access mass storage
device unit on which the volume containing the oper
ating system software resides.

G-18

system dynamic memory Memory reserved for
the operating system to allocate as needed for tem
porary storage. For example, when an image issues
an 1/0 request, system dynamic memory is used to
contain the 1/0 request packet. Each process has a
limit on the amount of system dynamic memory that
can be allocated for its use at one time.

System Identification Register A processor
register which contains the processor type and serial
number.

system image The image that is read into memory
from secondary storage when the system is started
up.

System Length Register (SLR) A processor regis
ter containing the length of the system page table in
longwords, that is, the number of page table entries
in the system region page table.

System Page Table (SPT) The data structure that
maps the system region virtual addresses, including
the addresses used to refer to the process page ta
bles. The System Page Table (SPT) contains one
Page Table Entry (PTE) for each page of system re
gion virtual memory. The physical base address of
the SPT is contained in a register called the SBA.

system process A process that provides system
level functions. Any process that is part of the oper
ating system. See also small process, fork process.

system programmer A person who designs
and/or writes operating systems, or who designs
and writes procedures or programs that provide
general purpose services for an application system.

system queue A queue used and maintained by
operating system procedures. See also state
queues.

system region The third quarter of virtual address
space. The lowest-addressed half of system space.
Virtual addresses in the system region are shareable
between processes. Some of the data structures
mapped by system region virtual addresses are: sys
tem entry vectors, the System Control Block (SCB),
the System Page Table (SPT), and process page ta
bles.

system services Procedures provided by the op
erating system that can be called by user processes.

system space The highest-addressed half of
virtual address space. See also system region.

system virtual address A virtual address identify
ing a location mapped by an address in system
space.

system virtual space See system space.

task An RSX-11 /IAS term for a process and image
bound together.

terminal The general name for those peripheral
devices that have keyboards and video screens or
printers. Under program control, a terminal enables
people to type commands and data on the keyboard
and receive messages on the video screen or print
er. Examples of terminals are the LA36 DECwriter
hard-copy terminal and VT100 video display termi
nal.

time-critical process A process assigned to a
software priority level between 16 and 31, inclusive.
The scheduling priority assigned to a time-critical
process is never modified by the scheduler, al
though it can be modified by the system manager or
process itself.

timer A system fork process that maintains the
time of day and the date. It also scans for device
timeouts and performs time-dependent scheduling
upon request.

track A collection of blocks at a single radius on
one recording surface of a disk.

transfer address The address of the location con
taining a program entry point (the first instruction to
execute).

translation buffer An internal processor cache
containing translations for recently used virtual ad
dresses.

trap An exception condition that occurs at the end
of the instruction that caused the exception. The PC
saved on the stack is the address of the next instruc
tion that would normally have been executed. All
software can enable and disable some of the trap
conditions with a single instruction.

trap enables Three bits in the Processor Status
Word that control the processor's action on certain
arithmetic exceptions.

two's complement A binary representation for in
tegers in which a negative number is one greater
than the bit complement of the positive number.

two-way associative cache A cache organization
which has two groups of directly mapped blocks.
Each group contains several blocks for each index
position in the cache. A block of data from main
memory can go into any group at its proper index
position. A two-way associative cache is a com
promise between the extremes of fully associative
and direct mapping cache organizations that takes
advantage of the features of both.

type ahead A terminal handling technique in
which the user can enter commands and data while
the software is processing a previously entered com-

G-19

mand. The commands typed ahead are not echoed
on the terminal until the command processor is
ready to process them. They are held in a type ahead
buffer.

unit record device A device such as a card reader
or line printer.

universal global symbol A global symbol in a
shareable image that can be used by modules linked
with that shareable image. Universal global symbols
are typically a subset of all the global symbols in a
shareable image. When creating a shareable image,
the linker ensures that universal global symbols re
main available for reference after symbols have
been resolved.

unwind the call stack To remove call frames from
the stack by tracing back through nested procedure
calls using the current contents of the FP register
and the FP register contents stored on the stack for
each call frame.

urgent interrupt An interrupt received on interrupt
priority levels 24 through 31. These can be generat
ed only by the processor for the interval clock, seri
ous errors, and power fail.

user authorization file A file containing an entry
for every user that the system manager authorizes to
gain access to the system. Each entry identifies the
user name, password, default account, User Identifi
cation Code (UIC), quotas, limits, and privileges as
signed to individuals who use the system.

user environment test package (UETP) A
collection of routines that verify that the hardware
and software systems are complete, properly in
stalled, and ready to be used.

User File Directory (UFO) See directory.

User Identification Code (UIC) The pair of num
bers assigned to users and to files, global sections,
common event flag clusters, and mailboxes that
specifies the type of access (read and/or write ac
cess, and in the case of files, execute and/or delete
access) available to the owners, group, world, and
system. It consists of a group number and a member
number separated by a comma.

user mode The least privileged processor access
mode (mode 3). User processes and the Run Time
Library procedures run in user mode.

user name The name that a person types on a
terminal to log on to the system.

user number See member number.

user privileges The privileges granted a user by
the system manager. See process privileges.

utility A program that provides a set of related

general purpose functions, such as a program de
velopment utility (an editor, a linker, etc.), a file man
agement utility (file copy or file format translation
program), or operations management utility (disk
backup/restore, diagnostic program, etc.).

value return registers The general registers RO
and R1 used by convention to return function values.
These registers are not preserved by any called pro
cedures. They are available as temporary registers
to any called procedure. All other registers (R2,
R3, ... ,R11, AP, FP, SP, PC) are preserved across
procedure calls.

variable-length bit field A set of 0 to 32 contigu
ous bits located arbitrarily with respect to byte
boundaries. A variable bit field is specified by four
attributes: 1) the address A of a byte, 2) the bit posi
tion P of the starting location of the bit field with
respect to bit 0 of the byte at address A, 3) the size,
in bits, of the bit field, and 4) whether the field is
signed or unsigned.

variable-length record format A file format in
which records are not necessarily the same length.

variable with fixed-length control record for
mat Property of a file in which records of variable
length contain an additional fixed control area capa
ble of storing data that may have no bearing on the
other contents of the record. Variable with fixed
length control record format is not applicable to in
dexed files.

VAX-11 Record Management Services (VAX-11
RMS) The file and record access subsystem of the
VAX/VMS operating system for VAX. VAX-11 RMS
helps your application program process records
within files, thereby allowing interaction between
your application program and its data.

vector 1. A interrupt or exception vector is a stor
age location known to the system that contains the
starting address of a procedure to be executed when
a given interrupt or exception occurs. The system
defines separate vectors for each interrupting device
controller and for classes of exceptions. Each sys
tem vector is a longword. 2. For exception handling,
users can declare up to two software exception vec
tors (primary and secondary) for each of the four
access modes. Each vector contains the address of
a condition handler. 3. A one-dimensional array.

version number 1. The field following the file type
in a file specification. It begins with a period(.) and is
followed by a number which generally identifies it as
the latest file created of all files having the identical
file specification but for version number. 2. The num
ber used to identify the revision level of program.

virtual address A 32-bit integer identifying a byte
"location" in virtual address space. The memory

G-20

management hardware translates a virtual address
to a physical address. The term "virtual address"
may also refer to the address used to identify a virtu
al block on a mass storage device.

virtual address space The set of all possible virtu
al addresses that an image executing in the context
of a process can use to identify the location of an
instruction or data. The virtual address space seen
by the programmer is a linear array of 4,294,967,296
(232) byte addresses.

virtual block A block on a mass storage device
referred to by its file-relative address rather than its
logical (volume-oriented) or physical (device-orient
ed) address. The first block in a file is always virtual
block 1.

virtual 1/0 functions A set of 1/0 functions that
must be interpreted by an ancillary control process.

virtual memory The set of storage locations in
physical memory and on disk that are referred to by
virtual addresses. From the programmer's
viewpoint, the secondary storage locations appear to
be locations in physical memory. The size of virtual
memory in any system depends on the amount of
physical memory available and the amount of disk
storage used for non-resident virtual memory.

virtual page number The virtual address of a page
of virtual memory.

volume
Disks: An ordered set of 512-byte blocks. The basic
medium that carries a Files-11 structure.

Magnetic tape: A reel of magnetic tape, which may
contain a part of a file, a complete file, or more than
one file.

volume set A collection of related volumes.

wait To become inactive. A process enters a proc
ess wait state when the process suspends itself, hi
bernates, or declares that it needs to wait for an
event, resource, mutex, etc.

wake To activate a hibernating process. A hiber
nating process can be awakened by another process
or by the timer process, if the hibernating process or
another process scheduled a wake-up call .

weak definition Definition of a global symbol that
is not explicitly available for reference by modules
linked with the module in which the definition occurs.
The librarian does not include a global symbol with a
weak definition in the global symbol table of a libra
ry. Weak definitions are often used when creating
libraries to identify those global symbols that are
needed only if the module containing them is other
wise linked with a program.

weak reference A reference to a global symbol
that requests the linker not to report an error or to
search the default library's global symbol table to
resolve the reference if the definition is not in the
modules explicitly supplied to the linker. Weak refer
ences are often used when creating object modules
to identify those global symbols that may not be
needed at run time.

wild card A symbol, such as an asterisk, that is
used in place of a file name, file type, directory
name, or version number in a file specification to
indicate "all" for the given field.

window See mapping window.

word Two contiguous bytes (16 bits) starting on an
addressable byte boundary. Bits are numbered from
the right, 0 through 15. A word is identified by the
address of the byte containing bit 0. When interpret
ed arithmetically, a word is a 2's complement integer
with significance increasing from bit O to bit 14. If
interpreted as a signed integer, bit 15 is the sign bit.
The value of the integer is in the range -32,768 to
32,767. When interpreted as an unsigned integer,
significance increases from bit 0 through bit 15 and
the value of the unsigned integer is in the range 0
through 65,535.

working set The set of pages in process space to
which an executing process can refer without incur
ring a page fault. The working set must be resident in

G-21

memory for the process to execute. The remaining
pages of that process, if any, are either in memory
and not in the process working set or they are on
secondary storage.

working set swapper A system process that
brings process working sets into the balance set and
removes them from the balance set.

world In the context "system, owner, group,
world," world refers to all users, including the system
operators, the system manager, and users both in an
owner's group and in any other group.

write access type The specified operand of an in
struction or procedure is written only during that in
struction's or procedure's execution.

write allocate A cache management technique in
which cache is allocated on a write miss as well as on
the usual read miss.

write back A cache management technique in
which data from a write operation to cache are co
pied into main memory only when the data in cache
must be overwritten. This results in temporary incon
sistencies between cache and main memory. Con
trast with write through.

write through A cache management technique in
which data from a write operation are copied in both
cache and main memory. Cache and main memory
data are always consistent. Contrast with write back.

Absolute mode addressing 4-7

Access modes 2-1, 4-17, 4-18

Accounting statistics 3-8

ACP (ancillary control process)
6-20, 6-21

Address
manipulation instructions 4-10,
4-13
mapping registers 4-17
physical 4-17 to 4-22

Address
virtual 4-17 to 4-22

Addressing modes 4-1 , 4-5 to 4-7

Address sort 9-14

Address space
physical 4-18 to 4-20
virtual 4-1 , 4-4, 4-5, 4-18 to
4-20,6-5

Address translation buffer 4-29

Ancillary control process (ACP)
6-20,6-21

Application programming 3-1 to
3-5, 3-10 to 3-14

Arbitration
Memory Interconnect 4-28, 4-29

Argument Pointer (AP) 4-5, 4-7, 4-8

Arguments
definitions 4-7
passing 4-4 , 4-7, 4-8

Arithmetic exceptions 4-8

Assembler (see also VAX-11 ,
MACRO; (instruction set))

MACR0-11 (PDP-11) 7-36
VAX-11 MACRO 3-4, 7-33, 7-34

Asynchronous system trap
processing services 6-8, 6-11

Autodecrement addressing
mode 4-5, 4-6

Autoincrement addresssing
mode 4-5, 4-6

Autoincrement Deferred addressing
mode 4-5, 4-6

Automatic recovery
power failure 3-9

Automatic restart 2-4

Backup disks 2-4

Backup files 9-4

Bad block locator 9-4

Bad blocks 2-3, 5-1, 5-2

Balance Set 6-19

Bandwidth
memory 4-30

Base priority 6-18, 6-19

BASIC
PDP-11
VAX-11
7-21

2-1,2-2, 7-1, 7-34, 7-35
1-1,2-1, 2-2, 7-1, 7-14to

Batch processing 2-1 , 2-5, 3-3, 3-6,
3-9,8-1,8-3,8-4

Battery backup 2-4, 4-29

Bit field 4-4

BLISS-32 1-1, 2-1, 2-2, 3-4, 3-5,
6-11, 7-29 to 7-32

Block 1/0 5-1 , 5-2 , 6-10, 9-10, 9-11

Blocks
bad 2-3, 5-1, 5-2

Bootstrap 2-3, 2-4

Branch instructions 4-10, 4-13 to
4-15

Buffers 4-29, 4-32

BUS
MASSBUS 2-2, 4-29, 4-30, 4-33,
5-1, 5-2
Memory Interconnect 2-1, 2-2 ,
4-28 to 4-29
UNIBUS 2-2, 4-27, 4-30, 4-33,
5-1 , 5-2 , 5-5

Byte 4-1 to 4-4

Cache memory 2-1, 4-29, 4-32

CALL
facility 7-1, 7-5, 7-11, 7-18, 7-23
instructions 4-10, 4-15

Call frame 4-8

Card reader 5-3

Case instruction 4-10, 4-13, 4-14

Character data 4-2, 4-4

Character string instructions 4-9,
4- 12

Clocks 2-1

COBOL 1- 1, 2-1 , 2-2, 3-4, 7-1 , 7-7
to 7-14, 9-9

Command language 2-2, 2-5, 3-1 to
3-4

Command procedures 2-2, 2-5, 3-1
3-3, 8- 1, 8-8, 8-9

Command terminal 5-3, 5-4

Commercial system
example 3-10, 3-11 , 3-13

Index

Communication
between processes 2-2, 3-6, 3-7,
6-12 to 6-14
interprocessor 5-6
network 10-1

Compatibility mode 2-5 , 3-4, 3-5,
4-1,4-15,4-16,6-22,6-23, 7-1 , 7-34
to 7-36

Condition codes 4-4 , 4-8

Condition handlers 4-8, 6-11, 6-12

Connect-to-interrupt 6-11

Console 2-1, 4-25, 4-28, 4-31 , 4-32,
5-6, 5-7

Context 4-1 , 6-2, 6-3

Context switching 4-16

Control region 4-5, 6-5, 6-6

CR11 card reader 5-3

Data Communications Facilities 10-1
to 10-8

Data
integrity 2-3
managment facilities 9-1 to 9-17
protection 6-4, 6-5
throughput 4-30, 5-5, 5-6
types

VAX-11 4-1 to 4-4
VAX-11 BASIC 7-15
VAX-11 COBOL 7-9
VAX-11 FORTRAN 7-2

DATATRIEVE 9-12to9-14

DDCMP (DIGITAL Data
Communications Message
Protocol) 5-6, 10-2

Debugger 2-2, 3-6, 7-1 , 8-1, 8-6, 8-7

Debugger
BLISS-32 7-31
COBOL 7-11
FORTRAN 7-7

Decimal data 4-2, 4-3

DECnet 10-1 to 10-7

Default device name 3-7

Definitions G-1 to G-21

Detached process 6-3

Device
drivers 3-13, 4-23, 4-24, 5-1, 6-2 ,
6-11, 6-22, 9-1
independence 3-6, 6-20
name 6-11

Diagnostics
on-line 3-9 , 3-10

peripherals 2-3, 2-4
remote 2-4 , 3-10

DIGIT AL Data Communications
Message Protocol (DDCMP) 5-6,
10-2

DIGIT AL Network Architecture
(DNA) 10-2

Direct memory access (OMA)
devices 5-1 to 5-3, 5-5

Di rectory 3-7, 9-1, 9-2

Disks
backup 2-4, 9-4
supported 5-1 , 5-2

Disk Save and Compress (DSC)
utility 9-4

Displacement addressing mode
4-5,4-6

Displacement Deferred addressing
mode 4-6

Distributed computing network
10-1 , 10-2

OMA (direct memory access)
devices 5-1 to 5-3, 5-5

DMC11 communications link 5-6

DNA (DIGITAL Network
Architecture) 10-2

Down-line loading 2-5, 3-10, 10-2

DR11-B direct memory access digital
interface 5-5

DR780 (High Performance
Interface) 5-5, 5-6

Drivers
device 3-13, 4-23, 4-24, 5-1, 6-2,
6-11 , 6-22, 9-1

DSC (Disk Save and Compress)
utility 9-4

Dynamic access 9-7

DZ11 terminal line interface 5-5

Edit instruction 4-9, 4-11, 4-12

Ed itors 2-1 , 8-1 to 8-4

Error
logging 2-4, 3-9
read 5-2

Error Correcting Code (ECC) MOS
memory 2-1 , 2-3, 4-27, 4-32, 5-2

Event 6-18

Event flag
clusters 6-11 , 6-13
common 6-13
local 6-11
system services 6-8

Exception condition handling
services 6-8, 6-11, 6-12

Exceptions 4-4, 4-8, 4-16, 6-11,
6-12

Eception vectors 4-22

Fault detection 2-3

Files
backup 9-4
comparing 9-4

directories 9-1
logical names 9-3, 9-4
management 2-2 , 9-1 to 9-4
manipulation

DECnet-VAX 10-2 to 10-4
PDP-11 BASIC-PLUS-2/V AX
7-35
protection 3-6, 3-7
RMS-11 2-5, 6-22, 6-23
sorting 9-4, 9-14to 9-16
specificaions 9-1, 9-2
VAX-11 BASIC 7-17
VAX-11 COBOL 7-9, 7-10
VAX-11 FORTRAN 7-2
VAX-11 RMs 2-2 , 3-5, 6-20 , 7-1,
7-2, 9-1to9-12

Files-11 On-Disk Structure Level 2
(ODS-2) 2-2

Flight simulation
example 3-10, 3-12, 3-13

Floating point
accelerator 2-3, 4-30
data 4-2 , 4-3
instructions 4-9, 4-11

Foreign volume 6-10

FORTRAN
PDP-11 FORTRAN IV IV AX to
RSX 2-1, 2-2, 3-4, 3-5, 7-1, 7-36
VAX-11 FORTRAN 3-4, 7-1 , 7-2to
7-7

Frame Pointer (FP) 4-5, 4-7 , 4-8

General register manipulation
instructions 4-10, 4-13

General registers 4-1, 4-5

Global sections 6-14

Glossary G-1 to G-21

Hard copy terminal 5-4

Hardware
context 4-16, 4-25
process control block 4-23

High performance interface
(DR780) 5-5, 5-6

Host development mode 7-1

Image 4-1 , 6-2, 6-14

Immediate mode addressing 4-7

Indexed addressing mode 4-6

lndexedfiles 7-2,7-9,7-10, 9-Sto
9-10

Index instruction 4-10, 4-12

Index register 4-6

Index sort 9-14

Instruction buffer 4-29, 4-32

Instruction set
compatibilitymode 4-1 , 4-15,
4-16
native mode 4-1 , 4-8 to 4-15

Integer instructions 4-9, 4-11

Interactive terminals 5-3 to 5-5

Interactive text editor 8-1 to 8-3

Interleaving 4-29

lnternets (protocol emulators) 10-7,
10-8

Interprocess communication 2-2,
3-6, 3-7, 6-12 to 6-14

Interprocessor communications
link 5-5, 5-6, 6-14

Interrupts 4- 16, 4-23

Interrupt vectors 4-22

1/0
controller interfaces 4-29 to 4-33
device drivers 3- 13, 4-23, 4-24,
5-1,6-2,6-11,6-22,9-1
processing 6-19 to 6-22
RMS 9-9 to 9-11
space 4-23
system services 6-7, 6-10 to 6-12,
6-20

Jump instruction 4-10, 4-13 to 4-15

Key
indexed files 9-8, 9-9

Known image 6-4

LA 11 line printer 5-3

LA 120 hard copy terminal 5-4

LA36 hard copy terminal 5-4

Languages (see also names of
specific languages) 1-1 , 2-1 , 2-2,
3-4, 3-5, 7-1 to 7-36

Librarian 2-1 , 8-1, 8-7

Libraries 3-6 , 7-5, 7-11 , 7-31 , 7-34

Line printers 5-3

Linker 2-1 , 8-1 , 8-4 , 8-5

Literal mode addressing 4-6

Local event flag 6-11

Local event flag clusters 6-11

Logical names 6- 11 , 9-3, 9-4

Longword 4-2, 4-3

Loop control instructions 4-10,
4-13, 4-14

LPA11-K direct memory access
controller 5-5

LP11 line printers 5-3

MACRO assembler 2-1 , 2-2, 3-4,
7-1 , 7-33, 7-34

Macros
BLISS-32 7-31
MACRO 7-34

Magnetic tape 5-2, 5-3

Mailbox 2-2, 3-5, 3-6, 3-11, 6-10,
6-11 , 6-13 , 6-14

Main memory (see also Memory)
2-1 to 2-4, 4-27 to 4-29, 4-32

Manager
system 3-6 to 3-8

Map-to-1/ 0 page 6-11

Mapping 4-18 to 4-22, 6-14, 6-1 5

Mapping registers 4-17

MASSBUS 2-2, 4-29, 4-30, 4-33,
5-1 , 5-2

Mass storage devices 2-2, 5-1 to
5-3, 6-10

Mathematics library 2-3, 8-6

Memory
bandwidth 4-30
battery backup 2-4, 4-29
interleaving 4-29
main 2-1 to 2-4, 4-29, 4-32
management 2-1 , 4-18 to 4-22,
6-2, 6-14 to 6-18
Management control system
services 6-9, 6-10, 6-17, 6-18
mapping 4-18 to 4-22, 6-14, 6-15
multiported 5-6, 6-14
physical 2-1 to 2-4, 4-29, 4-32
protection 2-1 , 4-17, 4-18
shared areas 5-6, 6-14
virtual (see also Virtual addressing ;
Virtual memory) 4-17

Modified pages 6-16, 6-17

MOS (Main) memory 2-1 to 2-4,
4-29, 4-32

Multiprogramming 2-1 , 3-5, 3-6,
4-16

Native mode
instruction set 4-1 , 4-8 to 4-15
programming environment 7-1 to
7-36, 8-1to8-10

Network Ancillary Control Process
(NETACP) 10-3

Network services 2-1 , 2-2, 2-5, 10-1
to 10-8

Network Services Protocol
(NSP) 10-2

Non-processor request (NPR)
devices 5-1 to 5-3

Non-transparent interprocess
communication 10-3

macro 10-6

Octaword 4-2, 4-3

On-line diagnostics 3-9, 3-10

Operating system
compatibility mode 6-22, 6-23
interprocess communication and
control 6-12 to 6-14
110 processing 6-19 to 6-22
memory management 6-2, 6-14
to 6-18
overview 2-1 to 2-5 , 6-1 to 6-5
process scheduling 6-2, 6-18,
6-19
system services 6-5 to 6-14
user environment 6-5 to 6-14

Operator
system 3-8 to 3-10

Optimizations
VAX-11 FORTRAN 7-5 to 7-7

Owner process 6-3

Packed decimal
data 4-2
instructions 4-9, 4-11

Page
description 2-1 , 6-15 to 6-17

fault 6-16
mapping 4-20 to 4-22
tables 4-20, 4-22, 6-14

Paging 2-1 , 3-5, 3-6, 6-15 to 6-17

PDP-11
BASIC-PLUS-2/V AX 2-1 , 2-2,
3-4, 3-5, 7-1 , 7-34, 7-35
Compatibility 2-5, 3-4, 3-5, 4-1 ,
4-15, 4-16, 6-22, 6-23, 7-1 7-34 to
7-36
DATATRIEVE 9-12to9-14
FORTRANIV/VAXtoRSX 2-1 ,
2-2 , 3-4, 3-5, 7-1 , 7-36
instructions 4-1, 4-16
MACR0-11 2-1, 2-2, 3-4, 3-5, 7-1 ,
7-36

Performance 2-3

Performance analysis statistics 3-8

Peripheral devices 2-2, 5-1 to 5-7

Per-process space 4-4, 4-5, 6-6

Physical address 4-18 to 4-20

Physical memory 2-1to2-4, 4-29,
4-32

Position independent code 4-7

Power failure 3-9

Priority 2-1 , 2-2, 2-5, 4-16, 4-17,
4-22, 6-18 , 6-19

Private Pages 2-3

Privilege 3-7, 6-4

Privileged instructions 4-10, 4-18

Procedure
control instructions 4-10, 4-15
definition 4-4

Process
communication 2-2, 3-6, 6-12 to
6-14 , 10-3, 10-4
control blocks 4-23 to 4-25
control system services 6-8, 6-9
context 4- 1
description 3-5, 4-1, 4-16, 6-2 to
6-4
mapping 6-14, 6-15
page table 4-20, 4-22, 4-23
scheduling 6-18, 6-19
virtual address space 4-1, 4-4,
4-5
virtual memory 6-15

Processor
access modes 4-17, 4-18
description 2-1, 4-1 to 4-33

Process-oriented paging (see also
Paging) 2-1

Processor Status Longword
(PSL) 4-17

Processor Status Word 4-8

Process control system services
6-8, 6-9, 6-12 to 6-14

Program Counter (PC) 4-1, 4-6, 4-7

Program
application 3-1 Oto 3-13
development tools 2-2, 3-6, 8-1 to
8-10

region 4-5, 6-5, 6-6

Programmable real-time clock 2-1

Programmed interrupt request
devices 5-1

Programming
interfaces 2-5
languages 1-1 , 2-1 , 2-2, 3-4 , 3-5,
7-1 to 7-36

Protection 2-1 , 2-3, 4-17, 4-18

Protection code 3-6

Protocol Emulators (lnternets) 10-7,
10-8

PSL (Processor Status
Longword) 4-17

Quadword 4-2, 4-3

Queue control 3-8, 3-9

Queue instructions 4-10, 4-13

Queue 1/0 Request processing
6-21 , 6-22

Quota 3-7 , 3-8

Random record access mode 9-7

Read error 5-2

Real-time clock 2-1

Real-time flight simulation
example 3-10, 3-12, 3-13

Real-time Interface Extensions
connect-to-interrupt 6-11
map-to-1/0 page 6-11

Real-time processes
memory management 3-6
priority 2-1, 2-2, 2-5 , 4-16, 4-17
resource allocation 3-7, 3-8, 6-1 ,
6-18,6-19

Record
access modes

RMS 9-6, 9-7
attributes 9-7 to 9-9
processing

RMS 9-9to9-12

Record 1/0 9-9, 9-10

Record Management Services
(RMS) 2-2, 2-5, 3-5, 6-20, 7-1, 7-2,
7-9 , 7-17, 7-23, 9-1to9-12

Record 's File Address (RFA access
mode) 9-7, 9-9

Record sort 9-14

Regions 4-5

Register addressing mode 4-5

Register Deferred addressing
mode 4-5, 4-6

Register Deferred Indexed
Addressing mode 4-6

Register manipulation
instructions 4-10, 4-13

Registers 4-1, 4-5

Relative Files 9-5 to 9-7, 9-9, 9-10

Reliability features 2-3, 2-4

Remote diagnostics 2-4, 3-1 O

Resource
allocation 6-4
quota 3-7, 3-8

Resource-sharing network 10-1

Restart 2-4

RFA (Record 's File Address) access
mode 9-7, 9-9

RK06 disk drive 5-2

RK07 disk drive 5-1, 5-2

RL02 disk drive 5-1, 5-2

RM03 disk drive 5-1 , 5-2

RM05 disk drive 5-1 , 5-2

RMS-11 2-5, 6-22, 6-23

RMS (Record Management
Services) 2-2, 2-5, 3-5 , 6-20, 7-1,
7-2 , 7-9, 7-17, 7-23, 9-1to9-12

RP06 disk drive 5-1, 5-2

RSX-11 M (see also PDP-11,
Compatibility) 6-22, 6-23

RX01 Floppy disk 5-6, 5-7

RX02 disk drive 5-1, 5-2

Scatter/gather transfers 4-29

Scheduling 2-1 , 2-2, 2-5, 3-5, 3-6,
6-2, 6-18 , 6-19

Sequential files 9-5 to 9-7

Sequential record access mode
9-6, 9-7,9-9

Serial line multiplexer 5-5

Sharable image 8-5

SLP text ed itor 8-1, 8-3, 8-4

Software process control block
4-23

Sort/MERGE 9-14to 9-16

SOS interactive text editor 8-1, 8-2

Special function instructions 4-10,
4-15

Spooling 2-3, 3-8, 3-9

Stack 4-4

Stack frame 4-4, 4-8

Stack Pointer (SP) 4-5, 4-7 , 4-8

String handling
BASIC-PLUS-2/VAX 7-35

Subprocess 6-3

Subroutine control instructions
4-10, 4-14, 4-15

Swapping 6-19

Symbolic debugger 2-2, 3-6, 7-1,
8-1 , 8-6, 8-7

Symbolic Traceback Facility 7-1,
7-7, 7-11 , 7-12

System
automatic recovery

power failure 2-4, 3-9
event 6-18
manager 3-6 to 3-8
operator 3-8 to 3-1 O
page table 4-20, 4-21
programming 4-17 to 4-26
region 4-5, 6-5 , 6-6
services 6-5 to 6-14
space 4-5

System Control Block 4-22, 4-24

Tag sort 9-14

TE16 tape storage system 5-2, 5-3

Terminals 5-3 to 5-5

Terms
definitions G-1 to G-21

Text editors 8-1
Interactive

EDT 8-1 to 8-3
sos 8-1 ,8-2

Batch
SLP 8-1 , 8-3, 8-4

Time-of-year clock 2-1

Traceback 2-2, 3-6, 7-1 , 8-1 ,
8-6, 8-7

Trace faults 4-8

Transparent interprocess
communication
10-3

macro 10-4

Traps 4-8

TS11 tape storage subsystem 5-2

TU45 tape storage system 5-2

TU58 tape storage system 5-7

TU77 tape storage system 5-2

Type-ahead 5-3

UETP (User Environment Test
Package) 3-10

UIC (user identification code) 3-6 to
3-8 , 6-4,6-5

UNIBUS 2-2, 4-27, 4-30, 4-31, 4-33

Unit record peripherals 5-3

User authorization 3-1 O

User authorization file 3-1 O, 6-4, 6-5

User Environment Test Package
(UETP) 3-10

User identification code (UIC) 3-6 to
3-8, 6-4, 6-5

Variable-length bit field
instructions 4-9, 4-12, 4-13

VAX-11
750 Processor 4-31 to 4-33
780 Processor 4-27 to 4-30
BASIC 1-1, 2-1 , 2-2, 3-4, 7-1, 7-14
to 7-21
BLISS-32 1-1 , 2-1 , 2-2, 3-4 , 3-5 ,
7-1 , 7-29 to 7-32
COBOL 1-1 , 2-1, 2-2, 3-4, 7-1 , 7-7
to 7-14
Common language
environment 7-1 , 7-2
CORAL 66 2-1, 2-2, 3-4 , 3-5, 7-1 ,
7-32, 7-33
data types 4-1 to 4-4
Forms Management System
(FMS) 9-16, 9-17
FORTRAN 1-1 , 2-1 , 2-2, 3-4 , 7-1 ,
7-2 to 7-7
Interactive Symbolic debugger
2-2,3-6, 7-1 , 8-1,8-6,8-7
MACRO 2-1 , 2-2, 3-4, 7-1 , 7-33,
7-34
PASCAL 1-1, 2-1 , 2-2, 3-4, 3-5,
7-1 , 7-26 to 7-29
PL/I 1-1, 2- 1, 2-2, 3-4, 7-1 , 7-21 to
7-26
Procedure Calling Standard 2-5,
7-1, 7-23
Processor architecture 4-1 to
4-26
Record Management System
(RMS) 2-2, 2-5, 3-5, 6-20, 7-1,
7-2, 7-9, 7-17, 7-23,9-1 to9-12
RUNOFF 8-10
SORT/MERGE 9-14to9-16

V AX-11 /750 4-31 to 4-33

V AX-11 /780 4-25 to 4-28

VAX/VMS
command language 2-2, 2-5, 3-1
to 3-4
DEBUG program 2-2, 3-6, 7-1 ,
8-1 , 8-6,8-7
operating system (see also
Operating system) 2-1to2-5, 6- 1
to 6-23

Vectors 4-22, 4-24

Video terminal 5-4, 5-5

Virtual addressing 4-1 , 4-4, 4-5,
4-17 to 4-22, 6-5

Virtual memory
operating system 2-1 to 2-5 , 6-1
to 6-23
process 2-1 to 2-3, 6-2, 6-3, 6-12
programming considerations
6-17 to 6-19

VT100 video terminal 5-4, 5-5

Word 4-2, 4-3

Working set 6-15, 6-16

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, MA 01754, Tel. (617) 897-5111 - SALES AND SERVICE OFFICES;
UNITED STATES - ALABAMA, Birmingham, Huntsville ARIZONA, Phoenix , Tucson ARKANSAS, Little Rock CALIFORNIA, Costa Mesa, El
Segundo , Los Angeles, Oakland, Sacramento, San Diego, San Francisco , Monrovia, Santa Barbara, Santa Clara , Sherman Oaks COLORADO,
Colorado Springs , Denver CONNECTICUT, Fairfield, Meriden DELAWARE, Newark FLORIDA, Miami , Orlando, Pensacola , Tampa GEORGIA,
Atlanta HAWAII , Honolulu IDAHO, Boise ILLINOIS, Chicago, Peoria INDIANA, Indianapolis IOWA, Bettendorf KENTUCKY, Louisville LOUISI
ANA , New Orleans MARYLAND, Baltimore MASSACHUSETTS, Boston, Springfield, Waltham MICHIGAN, Detroit , Kalamazoo MINNESOTA,
Minneapolis MISSOURI , Kansas City, St. Louis NEBRASKA, Omaha NEW HAMPSHIRE, Manchester NEW JERSEY, Cherry Hill , Parslppany ,
Princeton , Somerset NEW MEXICO, Albuquerque, Los Alamos NEW YORK, Albany , Buffalo, Long Island, New York City, Rochester , Syracuse,
Westch:?ster NORTH CAROLINA, Chapel Hill, Charlotte OHIO, Cincinnati, Cleveland, Columbus , Dayton OKLAHOMA, Tulsa OREGON , Portland
PENNSYLVANIA, Harrisburg, Philadelphia, Pittsburgh RHODE ISLAND, Providence SOUTH CAROLINA, Columbia, Greenville TENNESSEE,
Knoxville, Nashville TEXAS, Austin , Dallas , El Paso, Houston , San Antonio UTAH, Salt Lake City VERMONT, Burlington VIRGINIA, Fairfax,
Richmond WASHINGTON , Seattle, Spokane WASHINGTON D.C. WEST VIRGINIA , Charleston WISCONSIN , Milwaukee INTERNATIONAL -
EUROPEAN AREA HEADQUARTERS: Geneva , Tel: [41) (22)-93-33-11 INTERNATIONAL AREA HEADQUARTERS: Acton , MA 01754 , U.S.A., Tel :
(617) 263-6000 AUSTRALIA, Adelaide, Brisbane, Canberra, Hobart, Melbourne, Perth , Sydney, Townsville AUSTRIA , Vienna BELGIUM, Brus
sels BRAZIL, Rio de Janeiro, Sao Paulo CANADA, Calgary , Edmonton, Halifax, Kingston , London, Montreal , Ottawa , Quebec City , Regina ,
Toronto , Vancouver , Victoria , Winnipeg DENMARK, Copenhagen ENGLAND, Basingstoke, Birmingham, Bristol , Ealing , Epsom, Leeds, Leices
ter , London , Manchester, Reading, Welwyn FINLAND, Helsinki FRANCE, Bordeaux , Lyon , Paris, Puteaux, Strasbourg HOLLAND, Amstelveen ,
Delft , Utrecht HONG KONG IRELAND, Dublin ISRAEL, Tel Aviv ITALY, Milan , Rome, Turin JAPAN , Osaka, Tokyo MEXICO, Mexico City ,
Monterrey NEW ZEALAND, Auckland, Christchurch , Wellington NORTHERN IRELAND, Belfast NORWAY, Oslo, PUERTO RICO , San Juan
SCOTLAND, Edinburgh REPUBLIC OF SINGAPORE SPAIN , Barcelona, Madrid SWEDEN, Gothenburg , Stockholm SWITZERLAND, Geneva,
Zurich, WEST GERMANY, Berlin , Cologne , Frankfurt , Hamburg , Hannover, Munich , Nurnberg, Stuttgart

