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CHAPTER 1
INTRODUCTION

1.1 MANUAL SCOPE

This manual contains a comprehensive technical description of the
functional and operational characteristics of the VAX 8800 system.
This manual is written at two levels of detail:

1. Introduction and overview
2. Functional and detailed logic level

The 1introduction and overview level provides a description of the
major components and the function and relationship of each
component.

The functional and detailed logic level is provided in separate
sections of the manual and contains a description of each of the
major components and a detailed explanation of the operational
characteristics of each component,

1.2 MANUAL ORGANIZATION
This section provides an overview of the VAX 8800 System Technical
Description manual and an introduction to the VAX 8800 system and
contains four chapters with the following information:

Chapter 1 Introduction to the manual and the overall VAX 8800
system. Contains a physical and functional description
of the system and provides a 1list of reference
documentation.

Chapter 2 System Control. Includes a description of the console
software, system operating modes, and console/operator
interaction. Provides an overview of the console
commands, operator displays, and the console logfile.

Chapter 3 System Operation. Description of the CPU microcode
including sequencing, format, parallel operations,
and stalls and traps. Memory I/O transfers, and
interrupts and exceptions.

Chapter 4 Diagnostic and Maintenance Aids, Discussion of
available diagnostics, error logging, voltage
margining, and remote diagnostic procedures.

The entire manual is divided into 10 sections as shown in Table
1-1.
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Table 1-1 Technical Description Manual Organization

Section Description

1 Introduction and overview of the VAX 8800 system and
its major components.

2 System Bus Summary. Description of the VAX 8800 bus
architecture and how the system components are
interconnected.

3 Console Subsystem. Introduction and functional
description of the console subsystem. Includes an
explanation of how the console interacts with the VAX
8800 system.

4 Power System Complex. Description of the VAX 8800
power system including major components, controls and
indicators, power modules, environmental monitoring,

and distribution.

5 Clock Module. Functional description of the system
clock generation logic.

6 IBoOX. Functional description of the instruction box
logic, including microsequencer, writable control
store, instruction buffer, and instruction stream

decoder hardware.

7 EBox. Functional description of the execution box
logic including slow data file, register file, main
ALU, BCD ALU, and array processor.

8 CBox. Description of the cache box logic including
translation buffer, microsequencer, and NMI write
buffer.

9 MBox. Description of the VAX 8800 memory system logic
including 4-megabyte memory array board, VAX 8800
array bus, and NMI signal functions.

10 NBI (NMI to VAXBI Adapter). Description of the VAX
8800 memory interconnect (NMI) to VAX bus interconnect
(VAXBI) adapter including NBIA and NBIB modules, and
VAXBI interface.

1.3 RELATED DOCUMENTATION

Table 1-2 provides a 1list of related documents containing
additional information pertaining to the VAX 8800 system. The
references listed in the table refer to documentation available at
the system level only. Each section of this manual provides a
list of related information for the specific area of the system if
applicable.
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Table 1-2 Related Documentation

Title Document Number
VAX 8800 System Hardware User's Guide EK-8800H-UG-001
VAX 8800 System Diagnostic User's Guide EK~KA88D-UG-001
VAX 8800 System Maintenance Guide EK-88XV1-MG-001
VAX 8800 System Installation Guide EK-8800I-IN-001

VAX 8800 Site Preparation and Planning Guide EK-8800P-SP-001
VAX 8800 Field Maintenance Print Set

1.4 SYSTEM DESCRIPTION

The following paragraphs provide a general, physical, and
functional description of the VAX 8800 system. The functional
description 1is intended to provide an overview of the system and
an explanation of how the major components described in the
subsequent chapters interact with each other.

The VAX 8800 system is an LSI-based, high performance system
adaptable to all VAX technical and commercial applications. The
system supports the VAX/VMS operating system and is configured as
either a single or dual-CPU system.,

The dual-CPU system allows asymmetrical multiprocessing with the
primary CPU performing all I/O transfers. The secondary CPU is
assigned to perform compute-ready processes. ’

1.5 PHYSICAL DESCRIPTION

Figure 1-1 shows the cabinet layout of a dual-CPU VAX 8800 system
and the location of the major components. Table 1-3 provides a
list of the physical characteristics and applicable parameters for
each characteristic.

The system 1is housed in an H9650 cabinet and contains the
following:

Module power system
Cooling system

Module cardcage (backplane)
Input/output bulkhead

An  H9652 expansion cabinet is used to house the power system ac
input transformer and the system battery backup unit.

Figure 1-2 shows a layout of the VAX 8800 cardcage and Table 1-4

lists and identifies the modules contained in the cardcage. Table
1-5 identifies the modules used in the module power system (MPS).
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Figure 1-1 VAX 8800 System Major Component Locations

(Rear View)
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Table 1-3 VAX 8800 System Physical Characteristics

Characteristics

Parameters

Cabinet Type

Cabinet Dimensions
Width
Height
Depth

Environmental
Estimated Maximum Heat
Maximum Temperature Rise
Temperature Range
Operational
Nonoperational
Humidity
Operational
Nonoperational

Cooling System
Type
Drive
Air Mover

Air Source

Electrical :
Input Requirements

Internally Generated

H9650

46.5 inches
61.5 inches
30.0 inches

6500 Watts
17 Degrees Celsius

10 to 40 Degrees Celsius
-40 to 66 Degrees Celsius

10 to 90 percent relative humidity
10 to 95 percent relative humidity

Air moving device

Three phase 208 Vac, 60 Hz/440 Vac,
50 Hz induction motor

OQuad inlet, dual outlet centrifugal
blower

Filtered ambient air

Three phase 208 Vac, 60 Hz/440 Vac,
50 Hz

300 vdc

+/-5 Vdc

+/-12 Vdc

+10 Vdc

-5.2 vdc

-2.0 vdc
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Table 1-4 Cabinet Module Identification

Slot Module Description CPU
1 WCS Writable Control Store Right
2 SEQ Sequencer Right
3 DEC Instruction Decoder Right
4 CCs Cache Control Sequencer Right
5 ADP Address Data Path Right
6 SLCO Data Slice 0 Right
7 SLC1 - Data Slice 1 Right
8 SHR Shifter Right
9 NBIA I/0 1 Both
10 Reserved
11 CLK Clock and Console Interface Both
12 NBIA I/0 2 Both
13 WCS Writable Control Store Left
14 SEQ Sequencer Left
15 DEC Instruction Decoder Left
16 CCs Cache Control Sequencer Left
17 ADP Address Data Path Left
18 SLCO Data Slice 0 Left
19 SLC1 Data Slice 1 Left
20 SHR Shifter Left
21 MCL Memory Controller Both
MAR4 4-Mbyte Memory Array Both
VAXBIO/ VAX Bus Interconnect Options Both
VAXBI1

Table 1-5 Power Supply Identification

Power Supply Description

MOD C H7186 +5.0 Vdc Supply

MOD B H7186 +5.0 Vdc Supply (Battery Backup)

MOD D H7187 =2.0 Vdc Supply

EMM Environmental Monitoring Module

MOD E H7180 =-5.2 Vdc Supply

MOD F H7189 +5.0, -2.0, +/-12, -5.2, +15 vdc Supply
MOD H H7189 +5.0, -2.0, +/-12, -5.2, +15 Vdc Supply
1.6 FUNCTIONAL DESCRIPTION

The VAX 8800 system configuration as shown in Figure 1-3 consists
of the console subsystem, a primary CPU, secondary CPU, memory
subsystem with one to eight 4-Mbyte arrays, power system, and one
Oor two VAX bus interconnect (VAXBI) adapters. The system is
interconnected through a synchronous backplane bus called the VAX
8800 memory interconnect (NMI). The NMI provides the system with a
communications path between the CpPUs, memory, and the adapters
that connect to the VAX bus interconnects.
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Communication between the console and either of the VAX 8800 CPUs
is accomplished by transferring data to and from a console
interface on the VAX 8800 clock module.

The console computer contains an I/0 option called the real-time
interface (RTI) that 1is installed in slot six of the six-slot
PRO-38N VAX bus interconnect. The RTI provides a communications
path between the PRO-38N and the console interface located on the
clock module.

The RTI provides the console processor with several I/0 ports
including a programmable peripheral interface (PPI) and two serial
line units (SLU).

The PPI contains three 8-bit ports for transferring data, address,
and control signals between the console and the console interface.
One of the SLUs 1is connected to the environmental monitoring
module (EMM) in the power system complex, and provides the console
with the ability to control and monitor the power and
environmental parameters of the VAX 8800 system.

The other SLU has the RECEIVE DATA input and TRANSMIT DATA output
connected to a spare connector located on the VAX 8800 bulkhead.
This wunused spare SLU connector could be used for simple data
transfers to the PRO-38N, but it is not currently supported by the
VAX 8800 console software.

The rear of the PRO-38N contains a serial printer port for
connecting an optional printer to the console.

A remote diagnostic 1link can be established through an existing
port on the rear of the PRO-38N that is configured for modem
control.

Refer to Section 3 of this manual for detailed information
concerning the console subsystem.
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Figure 1-4 Simplified Block Diagram of the Console Subsystem

1.6.2 Central Processing Unit
The VAX 8800 processor shown in Figure 1-5 consists of three
functional units and associated data transfer Dbuses. The

functional units and data buses are listed and described in Table

1-6. Refer to the following individual sections of this manual for
additional information concerning the functional units of the CPU:
Functional Unit Section

Instruction Box 5
Execution Box 6
Cache Box 7
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Table 1-6 VAX 8800 Processor Functional Units/Data Bus

Descriptions

Functional Unit/Bus

Description

Instruction Box

Execution Box

Cache Box

Virtual Address Bus

Cache Data Bus

Write Data Bus

Cache/ALU Bypass Bus

Visibility Bus

Instruction Buffer
Data Bus

CPU microcode store and control. Consists of
the writable control store (WCS), and the
decoder and sequencer modules (DEC) (SEQ) .

Processes data received from the cache and
instruction boxes, Performs arithmetic,
logical, and bit shift operations. The EBox
consists of the data slice modules (SLCO and
SLCl), and the shifter (SHR) module.

Contains the cache, translation buffer, and
the interface to memory and the I/0. The
cache is a 64-KByte physical index, direct
mapped and buffered write-through cache. The
translation buffer is a 1K direct mapped
cache of virtual-to-physical address
translations. The CBox consists of the
address data path (ADP) and cache control
sequencer (CCS) modules.

Data path for transferring virtual address
from the execution box to the cache.

Data path from the cache to the execution box
and instruction parser.

Data path for write data from the execution
box to the cache.

Bypass register data that is scheduled to be
written into, but does not yet have valid
data.

Slow speed data bus that allows the console
to access internally latched data in the CPU
modules.

Data path for transfer to the execution box.
The data consists of byte, word, and longword
address displacements, absolute addresses,
and immediate data. Branch displacements and
literals are also transferred over the
instruction buffer data bus.
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Figure 1-5 Simplified Block Diagram of Single CPU
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1.6.2.1 Instruction Box -- The instruction box (IBox) shown in
Figure 1-6 is the CPU's microcode store and control center. Major
functions performed by the IBox include:

® Buffering the prefetched VAX instruction stream data
recéived from the cache box.

° Decoding and controlling the execution of
microinstructions.

° Monitoring and servicing microtraps, interrupts, and
exceptions.

° Supplying instruction stream embedded data (literals,
immediate data) to the execution box.

° Providing an interface between the clock module and the
CPU.

CACHE DATA BUS

IB DATA BUS
P TRICTION SPECEEER INSTRUCTION FILE BUS
OP CO
BUFFER »  DECODER ADDRESS | | WATCHER NTROL
wAa TRD TALIGN —I DECODER CONTROL
INSTRUCTION |«
BUFFER D
MANAGER <
4 > M conTRroL [€
MICRO-

CONDITION g STORE
CODE AND BRANCH | .| MicRoO- WORD | 70 EBOX——p
BRANCH »|  SEQUENCER 10 CBOX
INTERRUPT [ [’
LOGIC

SEQUENCING CONTROL

GATEWAY

CONS DATA/CONTROL CONTROL

v

SCLD-79

Figure 1-6 Simplified Block Diagram of the CPU 1Rox
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The 1IBox resides on the DEC, SEQ, and WCS modules and consists of
the following elements:

Instruction buffer (IB)

Decoder

Microseqguencer

Control store

Condition code and microbranch logic
Interrupt and processor register logic
File address generator

Console gateway control

Instruction Buffer

The instruction buffer 1is a 4-longword, 1l6-byte memory that
receives prefetched VAX I-stream data from the CBox. The
instruction buffer outputs the following macroinstruction data:

Op code byte

Current operand specifier

GPR number of the current specifier
Specifier extension bytes

Instruction stream data enters the instruction buffer one longword
at a time from the cache data bus. The data is loaded into a
longword 1location that is indicated by the write address. An
instruction buffer manager controls the read/write operations of
the instruction buffer.

Decoder

The decoder consists of a 4K x 17-bit writable RAM (DRAM), and a
special address encoder composed of discrete priority encoders and
multiplexers.

The DRAMs are addressed by the current specifier number, the op
code byte, and a 2-byte indicator signal. The specifier number
and the 2-byte indicator signal are received from the instruction
buffer manager, and the op code from the instruction buffer. The
DRAMs perform the following functions:

° Supply the microsequencer with part of the entry point
address for op code and specifier microroutines.

° Assist the instruction buffer manager in controlling the
instruction buffer.

. Indicate which EBox memory data register is to receive
the data from memory for those specifiers requesting
data.
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Microsequencer Logic

The microsequencer logic determines which one of several possible
sources is to supply the control store RAMs with the address of

the next microword to be executed. The next possible microwords
to be executed include:

Current microword

Decoder entry-point microaddress

EBox or CBox microtrap vector

Machine check microtrap vector

Trapped microPC from a microPC silo

Microsubroutine return address from a microstack break
Console supplied address

The 14 bit wide selected address is stored in microPC latchesland
presented to the control store.

Control Store

The microcode control store of 16K x 143 bits, resides in a set of
16K x 1-bit writable RAMs. The RAMs are loaded from the console
by means of the gateway controller during system initialization.
Approximate RAM usage consists of:

Amount Use
15K CPU Control
1K User-Written Code

Condition Code and Macrobranch Logic

The condition code and macrobranch logic are responsible for
maintaining the condition code bits of the processor status
longword, and seven CPU state bits. Raw condition codes from
various EBox operations are used in the generation of microbranch
conditions based on the size of the data being processed and the
raw condition codes. The raw condition codes can be compared with
the current longword condition code bits to create a macrobranch
instruction, or stored as the new longword condition bits.

The CPU state bits are microprogramming aids that provide firmware
writers with a method of controlling microcode flow. The bits can

be set or cleared in a microroutine and then tested as conditions
in later routines.
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Interrupt and Processor Logic

The interrupt and processor logic contains the priority interrupt
hardware and the four internal processor registers (IPRs). The
interrupt portion of the logic monitors all hardware interrupts,
encodes the level of the highest pending request, and compares it
to the current priority level. If the encoded level is higher than
the current level, the interrupt logic will request an interrupt
by asserting an interrupt pending line.

The internal processor registers control and supply data to the
interrupt logic, microsequencer, and the memory management logic
in the CBox.

File Address Generator

The file address generator performs the following functions:

° Supplies addressing for the EBox register file and slow
data file
° Stores general-purpose register numbers referenced by

operand specifiers

° Records changes made to general-purpose registers in
auto-increment/decrement operations

Gateway Control Logic

The gateway control (GWC) controls the data paths between the CPU
and the console interface. The GWC controls the loading of the
control store RAMs and micromatch register, and the loading of the
decoder and cache control RAMs.

1.6.2.2 Execution Box =-- The execution box shown in Figure 1-7
processes data received from the CBox and the IBox, and returns
with the virtual address to the CRox.

L uas QULLTCoSS

the processed dat o} 1TT
Functions performed by the EBox include:

) All CPU required arithmetic, logical, and bit shift
operations.

° Maintaining the program counter and general-purpose
registers.

° Maintaining the internal processor registers.

® Controlling data transfers between the CBox, IBox, and
clock module registers,

° Providing condition code information to the IBox
microsequencer.
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Figure 1-7 simplified Block Diagram of the CPU Execution Box

The EBox consists of the following major elements:

Register file

Slow data file

Program counter logic

Main arithmetic and logic unit
Shifter

Floating-point support logic
Multiplier

The major elements that make up the EBox are located on the data
slice modules (SLCO and SLCl), the shifter (SHR), and part of the
CBox decoder (DEC) module.
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Register File

The register file consists of 32 high-speed 36-bit registers (32
bits of data and 4 parity bits). The 32 registers in the register
file include:

) 15 general-purpose registers (GPR)

° 9 temporary registers (TEMPS) microcode scratchpad
registers

° 8 memory data registers (MDR) store data received from

the cache

Slow Data File

The slow data file has a timing restraint that inhibits access to
the file for three cycles following a write operation. The file
consists of 256 1low data rate 36-bit registers (32 bits of data
and 4 parity bits). Slow data file registers consist of:

° VAX internal processor registers (IPR)
° Data path constants
L) Diagnostic test patterns

Program Counter

The program counter (PC) maintains the VAX PC, PC incrementer,
backup and trap PCs, and the virtual address file (VAF) register.
VAX PC

The VAX PC supplies the CBox translation buffer with the virtual
address tor each op code, operand, and operand specifier of the
instruction stream.

PC Incrementer

The PC 1incrementer updates the PC by adding an increment value

equal to the size of I-stream data being processed. The increment
value (0-6) is supplied by the PC increment generator in the IBox.

Backup PC

The backup PC saves macroinstruction op codes and restores the PC
if the 1instruction results in a macroexception. Saving the op
code allows a service routine to examine the op code of a failing
instruction and service the fault.
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Trap PC

The trap PC maintains a history of recent PC activity, and
provides microtrap service routines with the active PC at the time
a microtrap occurs.

Virtual Address File

A copy of each virtual address sent to the CBox is saved in the

virtual address file. This copy 1is wused as a backup if the
address causes a microtrap.

Main Arithmetic and Logic Unit

The arithmetic and logic wunit is a 32-bit adder that processes
integer, floating-point, and binary coded decimal data to perform
the following functions:

e Addition and subtraction (carries propagated)
) Logical AND, OR, and exclusive OR

Auxiliary functions performed include:

° Multiplexing data received by the data slice modules
) Supplying memory and register data to the CBox
° Supplying virtual address to the CBox translation buffer
° Routing data to and from the shift register module
3 Providing carry and condition codes to the IBox
Shifter

The shifter is a 64-bit input, 32-bit output shift matrix that
handles data in all formats in one of the following three modes of
operation:

[ Integer
° Flecating-point
® Binary coded decimal

Floating-Point
This support system processes the sign and exponent fields of

floating-point data. Included in the floating-point support logic
are: a shift count ALU, priority encoder, and an exponent ALU.
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Multiplier

The multiplier 1is a 64-bit multiplier that enhances the speed of
integer and floating-point multiplication. Characteristics of the
multiplier are:

° Incorporates an "eight bit at a time" multiply algorithm
that generates eight result bits per cycle.

e Produces or generates the correct two's complement
results for integer data.

° Incorporates a "one bit at a time" division algorithm
that generates l-quotient bits per cycle.

1.6.2.3 Cache Box -- The cache box (CBox) shown in Figure 1-8, is
a 64K byte physical indexed, direct mapped, and buffered
write—-through cache that speeds address translations and provides
a communication path for the CPU to the NMI.

The CBox consists of a translation buffer, NMI interface, and the
64K byte data store cache.

Translation Buffer

The translation buffer (TB) is a 1K direct mapped cache of virtual
to physical address translations. The TB consists of a tag store
and a data store. The TB 1is organized into 512 per process
translations and 512 system region translations.

The tag store uses a portion of the virtual address (VA) to access
a RAM array and compares the contents of the RAM with the
remaining VA bits. When the comparison results are equal and the
TB valid bit is set, the address has "HIT" and the contents of the
Data Store will be valid for that address.

The data store uses the page frame number (PFN) of the page table
entry (PTE) for the virtual address. If the tag store comparison
results in a TB HIT, the PFN concatenated with VA<8:0> is used as
the physical address.

Cache

The cache 1is a hardware mechanism used to provide fast access to
frequently used data, and is addressed by a physical address. If
required read data is available in the cache, the data is
extracted and a memory request is not required. If the data is
not available in the cache, a memory request is initiated to
provide the data. The data from memory is passed on to the
requester and is also placed in the cache for subsequent use.
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NMI Interface

The NMI interface provides the CPU with a control and data path
for communication with the VAX 8800 memory interconnect (NMI).
When a cache read MISSES (no comparison), the interface uses the
missed address to build a command/address transaction to send to
memory. This allows the translation buffer and the cache to be
free to process additional CPU requests until the requested data
arrives from memory. When the requested data arrives from memory ;
the interface assumes control of the cache and loads the new data
into the cache data store.

TRANSLATION BUFFER

TO/FROM
NMI

B TAG
STORE NMI
VIRTUAL PHYSICAL INTERFACE
_ADDRESS |

FROM EBOX REFILL
DATA
CACHE

) CACHE DATA
| STORE
MICROWORD FROM IBOX
TO
IBOX AND EBOX
CACHE DATA BUS

DATA
STORE ADDRESS
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Figure 1-8 Simplified Block Diagram of the CBRox

1.6.3 Clock Module

The «clock module contains all of the hardware necessary to
generate, control, and distribute the VAX 8800 system timing to
all system modules. Included on the clock module is the interface
between the console and the rest of the VAX 8800 system. Refer to
Section 4 of this manual for detailed information pertaining to
the clock logic.
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Figure 1-9 Simplified Block Diagram of the Clock Module

timing source e clock module 1is a 250 kHz
that generates ference signal used by the phase

r to produce two nonoverlapping clock phases.

of th
a re

The
phase

phase generator output consists of Phase A, B, and W. The W

signal is similar to the A phase, but longer in duration.
The A and B clock phases are gated in the distribution logic by
signals from the «clock control logic to produce gated system
clocks that can be started, stopped, or burst by the clock control
logic.

The distribution
that are used

identifies the

clock module.

logic also produces free-running (ungated) clocks
in the VAX 8800 system. Table 1-7 lists and
clock signals generated and distributed by the
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Table 1-7 System Clocks

Clock Signal Function

A and B CLK Main system clocks used by the CPU modules and the
I1/0 adapters to Sequence and synchronize
operations.

W CLK Free-running system clock wused in RAM write
operations of CPU modules SLCO and SLC1.

FA and FB CLK Free-running system clocks used by the memory
controller and I/O adapters to sequence and
synchronize operations. Also used by the console
interface to control and monitor the CPU when
clocks are stopped.

The console subsystem controls the clock generation logic with
operator initiated commands by means of the console interface.
Three registers within the clock logic are used for control of tha.
system clocks by the console. A fourth register provides status
information for the console operator. The registers used are:

Clock control
Clock period

Burst count
Timeout and status

Console control of the clocks allows the system operator to:

Start and stop the clocks

Burst the clocks

Single step the clocks

Enable a clock stop on a micromatch

Change the clock period

Disable clock stalls

Control the NMI timeout clock (NMI slow clock enable)

1.6.4 Memory (MBox)

The VAX 8800 memory system (MBox) consists of a memory control
logic (MCL) module located in slot 21 of the cardcage, and one to
eight MAR4 4-Mbyte memory array boards. The array boards are
located in slots 22 through 29 of the cardcage. Figure 1-10 shows
a simplified block diagram of the MBox with one MAR4 array board.
Refer to Section 8 of this manual for additional information
pertaining to the MBox.
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Figure 1-10 Simplified Block Diagram of the MBox
1.6.4.1 Memory Control Logic -- The MCL provides control and a
communications interface between the NMI and the memory array
boards. The single MCL has the capability to control up to eight
array boards, and can menitor operations on three arrays
simultaneously. Table 1-8 describes the command operations that

the MCL performs on the MAR4 array.

Table 1-8 MCL Command Operations

Operation Description

Longword Write Writes a data 1longword and seven ECC check
bits into one of the MAR4 array banks.

Longword Read Reads a data longword and seven ECC check bits
from one of the MAR4 array banks.

Octaword Read Reads four data longwords and associated check
bits from a MAR4 array.
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MAR4 selection is accomplished by asserting a board select line
and enabling the control 1logic on the appropriate array board.
The MCL performs periodic memory refresh and distributes battery
backup power from the power system during power interruptions.

1.6.4.2 MAR4 Memory Array -- The MAR4 array board consists of
four 1-Mbyte array banks for a total of 4 Mbytes of memory for
each MAR4. The array banks contain a 39 bit wide common I/O
longword and seven error correction code (ECC) check bits. Data
transfer and interfacing between the memory control logic and the
array boards is accomplished by means of the VAX 8800 array bus
(NAB) .

1.6.5 System Buses
The VAX 8800 has three system level buses that provide a path for
data transfers and status information.

° VAX 8800 memory interconnect
® VAX bus interconnect
° Visibility bus

The VAX 8800 memory interconnect (NMI) is a backplane bus that
interconnects the major system components and allows transfer of
data between the connected units.

The VAX bus interconnect (VAXBI) is the system I/O bus that
provides a connection point between the VAX 8800 system and
external device adapters.

The wvisibility bus provides the console operator with diagnostic
access to internal 1latch contents. The VBus is also used to
perform error checks during initialization.

1.6.5.1 VAX 8800 Memory Interconnect (NMI) -- The NMI shown in
Figure 1-11 is a synchronous backplane bus that interconnects the
following major components of the VAX 8800 system:

Primary CPU

Secondary CPU

Memory system controller
NMI to VAXBI adapters (NBI)
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Figure 1-11 Simplified Block Diagram of the VAX 8800 Memory
Interconnect

Table 1-9 1lists the primary functions performed by the NMI, and

provides a brief description of ecach of them. Refer to Section ?

of this manual for detailed information concerning the NMI.
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Table 1-9 NMI Function Descriptions

Function

Description

Write Transactions

Read Transactions

Memory Read/Write
Operations

I/0 Register Read/
Write Operations

Interrupt Handling

System
Synchronization

System
Initialization

Power-Fail Warning

Supports longword, quadword, and octaword
write.

Supports longword, octaword, and hexword
read.

Allows the CPUs and I/0O adapters to access
memory through bus read/write transactions.

Allows the primary CPU to access 1/0
registers in the memory, I/0 adapters, and
I/0 devices through bus read/write
transactions.

Transmits interrupt requests generated by
the memory and I/0 adapters to the primary
CPU.

Provides system clocks to all nexus
(hardware blocks physically connected to
the NMI).

Allows the console to initialize all nexus.

Provides ACLO and DCLO signals to all
nexus.

1.6.5.2 VAX Bus

Interconnect (VAXBI) -- The VAX bus interface

(VAXBI) is the I/O bus for VAX 8800 and is connected to the system

through the NMI

to VAXBI (NBI) adapter as shown in Figure 1-12.

Each NBI adapter can interface up to two VAX bus interconnects and

provides for a

maximum of four VAXBIs to be connected to the

system when two NBI adapters are installed.
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description of some of the different types of bus adapters can be

found in Section 1.6.6.

Table

by the VAX bus interconnect.

1-10 identifies and describes the basic functions performed



Table 1-10 VAXBI Function Descriptions

Function Description

Memory Read/Write Allows DMA transfers between an I/0 device

Operations on the VAXBI and the VAX 8800 main memory
through bus read/write transactions.

I/0 Register Read/ Allows the primary CPU to access I/0

Write Operations registers in the I/O devices on the VAXBI
through bus read/write transactions

originated on the NBI.

Interrupt Handling Enables I/0 devices on the VAXBI to
interrupt the primary CPU through bus INTR
transactions directed to the NBI node.

System Provides NBI generated clocks to all nodes
Synchronization connected to the VAXBI,
System Allows node to assert a reset line, and

s
initialize a simulated VAXBI power-fail
sequence generated by the NBI.

Power-Fail Warning Provides ACLO and DCLO signals to all
nodes.
1.6.5.3 Visibility Bus (VBus) -- The visibility bus is a slow

speed bus consisting of sixteen data lines and two control lines.
The VBus allows the console operator to read internally latched
data in the VAX 8800 CPU modules during the execution of
microdiagnostics and system initialization. The VBus is used when
the system clocks are stopped. Major functions performed by the
VBus include:

° Monitoring the state of the CPUs during the execution of
microdiagnostics or in response to commands entered at
the console during system debug.

[ Verifying CPU module installation and revision during
system initialization.

° Ensuring that control store parity errors do not occur
when loading microcode during system initialization.

The console controls and reads the VBus by means of two registers
located on the clock module's console interface. The VBus control
and access registers perform the following functions:

Select the VBus input channel

Step the clocks that operate the VBus

Send serial VBus addresses to the CPU modules

Halt the operation of the VBus address shift register
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1.6.6 VAX Bus Interconnect and I/0 Adapters

The VAX 8800 memory interconnect-to-VAXBI interconnect
adapters provide a connection point for the VAX 8800 CPUs
backplane. Additional optional adapters can be connected
backplane as shown in Figure 1-13 to allow for connection

(NBI)
to the
to the
of the

CPUs to other I/O devices. Table 1-11 lists and identifies some of

the optional adapters that can be connected to the VAXBI.

Table 1-11 Optional VAX Bus Interconnect Adapters

Adapter Function

DWBUA-CA VAXBI Bus—-to-UNIBUS controller. Requires an
expansion cabinet and uses existing UNIBUS
adapters.

KDB50-BA VAXBI Bus-to-Storage Interconnect disk controller.

BSA VAXBI Bus-to-Storage Interconnect disk and magnetic
tape controller.

DEBNT-AA VAXBI BUS-to-Network Interconnect controller. Uses
Ethernet.

CIBCA-AA VAXBI Bus-to-Computer Interconnect controller.

CIBCI-CA VAXBI Bus-to-Computer Interconnect controller.

KLESI-AA VAXBI Bus-to-Native tape controller.

DMB32-LF VAXBI Bus-to-Native asynchronous comm. controller.

DRB32-AA VAXBI Bus-to-Multifunction controller.
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The NMI-to-VAXBI (NBI) adapter shown in Figure 1-14 consists of an
NBIA module that interfaces to the NMI, and one or two NBIB
modules. The NBIB modules interface to the VAXBI through the use
of a VAXBI interface chip (BIIC).

The NBIA module contains the NMI nexus registers, and the NBIB
module contains the VAXBI connecting registers. Tables 1-12 and
1-13 list and identify the registers on each module.

>

NBI

NBIA MODULE

111

< VAXBI 0 D £ VAXBI 1 )

SCLD-88

Figure 1-14 NMI-to-VAXBI Adapter
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Table 1-12 NBIA Registers

Address Register
2X080000 Control/Status 0 (CSRO)
2X080004 Control/Status 1 (CSR1)
2X080008 VAXBI 0 Stop Register (BIOI)
2X08000C VAXBI 1 Stop Register (BI1I)
2X080010 BR4 Vector Offset (BR4VR)
2X080014 BR5 Vector Offset (BR5VR)
2X080018 BR6 Vector Offset (BR6VR)
2X08001C BR7 Vector Offset (BR7VR)
X =0 = NBIA O

4 = NBIA 1

Table 1-13 NBIB Registers

Address Register
2X000000 Device Type
2X000004 VAXBI Control/Status
2X000008 Bus Error
2X00000cC Error Interrupt Control
2X000010 Interrupt Destination
2X000014 IP Interrupt Mask
2X000018 IP Interrupt Destination
2X00001c IP Interrupt Source
2X000020 Starting Address
2X000024 Ending Address
2X000028 BCI Control
2X00002cC Write Status
2X000040 User Interrupt Control
X = 0 = NBIA 0/BI 0

2 = NBIA 0/BI 1

4 = NBIA 1/BI O

6 = NBIA 1/BI 1
1.6.7 Power System Complex

The power system complex provides the voltages necessary to
operate the CPUs, memory, and the VAX bus interconnect of the VAX
8800 system. Three phase ac utility power is used as the primary
source for the system. The required ac and dc voltages are
developed wusing the power modules and voltage regulators located
within the VAX 8800 cabinet. Figure 1-15 shows a simplified block
diagram of the power system complex. Refer to Section 10 of this
manual for detailed information concerning the power system
complex.
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Figure 1-15 Simplified Block Diagram of the Power System Complex

1.6.7.1 876 Power Controller -- The 876 controller is the main ac
1nput module for the power system. Power is received from the main
circuit Dbreaker and distributed to the other system components by

the 876 controller. The controller distributes the following
power:

Unit Power
NBox Single and three phase
BBU Unswitched single phase
Console Unswitched single phase
Air Mover Unswitched three phase
1.6.7.2 NBox Port Conditioner -- The NBox is a multifunction

power assembly containing five modules. Table 1-14 identifies the
modules and describes the function of each module.
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Table 1-14 NBox Modules

Module Function

H7170 X Convert three-phase ac power into 300 vdc
output.

H7170 Y Same as H7170 X.

Interface Logic Provide logic signal interface between EMM

Module (ILM) and other power sSystem components. Controls

BBU operation.

Control and Startup Convert single-phase ac power to logic level
Power (CSP) voltages. Supplies: +5, +12, -12, and +10.5
for the EMM and ILM.

New Box Translator Converts logic signals for startup and
(NBT) initialization.
1.6.7.3 Module Power Supplies -~ The module power supplies (MPS)

are a group of dc power modules and backplane located above the
CPU cardcage in the main CPU cabinet. The MPS contains the
regulated dc power supplies that provide the operating power for
the CPU, memory, and extender modules.

1.6.7.4 Environmental Monitoring Module -- The environmental
monitoring module (EMM) 1is a microprocessor-based unit that
monitors the power and environmental conditions within the VAX
8800 system. The EMM responds to console control commands during
power-up and power-down sequencing, initialization, and battery
backup operations. The console controls the power system through
the EMM.

1.6.7.5 Battery Backup Unit -- The battery backup unit (BBU)
gives the power System a method of providing protection voltage to
the main CPU memory during an ac power failure. The BRU contains
a 48-Vdc rechargeable battery pack, charging circuit, and a
dc-to-dc converter. The converter provides 300 Vdc during the
backup mode.
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CHAPTER 2
SYSTEM CONTROL

2.1 GENERAL

This chapter describes the interaction between the VAX 8800 system
and the console subsystem, and how the VAX 8800 system is
controlled by the console software. Included in this chapter is
an overview of the console commands, operator displays, and the
system logfile.

2.2 SYSTEM CONTROL
The console subsystem is a complex mixture of software and
hardware that controls the VAX 8800 system.

2.2.1 Software

The primary function of the console software is to control the
console and VAX hardware, and provide a communications media
between the VAX microcode and the console.

2.2.2 Hardware

Control of the hardware is accomplished using encoded command,
status, and data streams by means of several data paths and
registers located within the VAX system and console. A body of VAX
resident code, called the console support microcode (CSM), allows
the console to access portions of the VAX 8800 CPU that the
console cannot access directly by means of a hardware link. The
CSM allows the console to access the internal CPU registers and
locations in main memory.

Figure 2-1 shows a simplified block diagram of some of the key
hardware and software involved in the control of the VAX 8800
system by the console. Table 2-1 describes the components
identified in the block diagram.
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Table 2-1

Hardware and Software Component Description

Component

Function

Console Software

RTI Driver

Console Support
Microcode (CSM)

RTI Hardware

Console Interface

Handles input from the VAX system and EMM.

Responds to VAX system and EMM with appropriate
control actions.

Commands and issues RSX-based $0I0s to the RTI
driver.

Services all SQIO service requests for data
transfers between the console, and VAX system
and EMM.

Generates encoded commands for the VAX system
and EMM.

es asynchronous input from the VAX system

VAX/WCS resident microcode that executes the
functions requested by the console software.

The CSM receives encoded commands and
parameters from the RTI driver under interrupt
control as a result of console generated

commands.

The RTI module in the PRO-38N console computer,
contains a programmable peripheral interface
(PPI) that communicates with the VAX 8800
system through three addressable ports.

Data 1is transferred to and from the ports
across a bus connecting the PPI to the console
interface on the clock module.

The RTI contains a serial 1line port for
communication with the EMM.

The console interface resides on the clock
module and contains the hardware necessary to
receive, route, and control the data stream
between the console and the VAX system.

The console interface communicates by means of
the PPI bus on the console side and the
bidirectional data bus on the VAX side.

Transmit and receive data buffers provide the
data transfer link between the PPI bus and the
VAX 8800 system internal data buses.
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2.3 CONSOLE SOFTWARE COMPONENTS
The console software consists of the following four major
components:

1. Control program

2. File transfer program

3. Logical block server program

4. Real-time interface driver
2.3.1 Control Program
The control program 1is the main console program and implements
both program and console mode, logfiles, EMM support,

micromonitor, and remote access.

The control program is composed of interruptable code and
asynchronous system traps (ASTs), which are software interrupt
routines. The main body of code executes, and is interrupted
periodically, when ASTs execute. AST routines are executed when
some type of I/O or other system event occurs.

The control program normally has a QIO outstanding to the EMM,
remote port (when enabled), and local terminal. When operating in
the console mode, the 1local and remote QIOs represent entire
lines. During program mode operation, the OIOs represent single
characters. The 1local and remote ports can be in different modes
or the same mode simultaneously. The console terminal driver
echoes and implements special characters like ~U and RUBOUT during
the console mode, and the VAX terminal driver performs the
identical function during program mode.

The control program makes full use of the following RSX system
directives:

QIO without wait
OIO with AST completion routines
QIO without AST completion routines

® Set

° Clear

® Wait for event flag
° Timed requests

® 0/IC with wailt

®

°

°

2.3.1.1 Special Control Program Features

CPU Designation

Console software maintains mappings from the LOGICAL "primary" and
"secondary" CPUs, to the physical "left" and "right" CPUs.
Start-up procedures refer to primary or secondary CPU rather than
left or right.
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Automatic Remapping

If the CPU designated as "primary" is not available, the control
program can remap the "primary" to the other physical CPU and the
start-up procedures will continue to Operate properly.

Disable Secondary CPU

A secondary disabled state bit in the console is set by the
control program when the secondary CPU is not operational. If one
CPU is not operational, the other CPU is automatically designated
as the primary CPU.

The secondary disabled bit can also be set by either a console
command or a miscellaneous VMS command from the primary, to force
single CPU operation.

When secondary disabled is set, the control program will assert
CPU INIT and disable the NMI microsequencer. BOOT SECONDARY
miscellaneous commands from the primary CPU will be ignored if the
secondary CPU is disabled. The primary CPU will timeout waiting
for the secondary to come up.

Current Primary and Next Primary

The SET NEXTPRIMARY command allows the operator to designate
either the left or right CPU as the next primary. The keywords
CURRENTPRIMARY and NEXTPRIMARY apply to the SET CPU command, and
allow the VAX 8800 system operator to specify the logical CPU.

2.3.1.2 Multiple Command Streams —-— The control program listens
to and accepts commands from both the local and remote ports at
all times. This requirement results in simultaneous 'local' and
'remote’ command streams. An additional requirement of the
dual-CPU system is that the secondary CPU can be rebooting
independent of activity in the primary. The additional requirement
creates another stream of commands that can be executing
independently from commands entered at either the local or remote
console.

The control program implements the three independent command
streams by having a separate database for each stream. A global
variable STREAM selects which copy of the database to use.

A fourth copy of the database is used to prevent database
corruption by incorrect console commands. The control program
creates a temporary copy of the database prior to processing each
command. If the command is not interpreted successfully, the
temporary database is copied back.
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2.3.2 File Transfer Program

The file transfer program transfers data files between the VAX and
the console Winchester disk drive. The VAX accesses the console
disk by transferring files to/from the file transfer program.
This transfer process allows the console to control all disk I/O
functions without interference from the VAX.

The record management system (RMS) is used to read, write, and
delete files.

2.3.3 Logical Block Server Program
The logical block server program (LBS) is the mechanism by which
the operating system (VMS/UNIXTM) reads or writes console media.

The VAX 8800 console provides arbitrarily large virtual floppies
to VMB. A virtual floppy is a file on the Winchester disk. When
VMB is reading or writing a logical block on a floppy, the LBS
converts the logical block request into a virtual block operation.

The logical block server supports the read and write logical block
functions and allows the VAX system to read or write to two
logical devices (CSAl: and CSA2:).

LBS communicates with an operating system device driver through
RXDB/TXDB and the RTI program.

2.3.4 Real-Time Interface Driver
The RTI driver program provides the link between the RTI hardware
and the control, logical block server, and file transfer programs.

Separate sub-drivers are used for communications with the PPI port
or serial 1line wunit. The PPI sub-driver translates console
commands, such as EXAMINE or DEPOSIT, into the appropriate
sequence of READ, WRITE, and ACKNOWLEDGE commands for the PPI.

2.4 CONSOLE SUPPORT MICROCODE (CSM)
The CSM 1is a special group of microcoded routines that control
console command processing inside the VAX system where the console
cannot directly access the hardware. The CSM is used to access the
internal CPU registers and main memory.

2.4.1 Console Support Microcode Structure
The CSM consists of four major sections of code. Table 2-2 lists
and describes each of the sections.

UNIX is a trademark of AT&T.
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Table 2-2 Major Sections of CSM Code

Section Description

Executive Wait Loop Polls RXCS and RXDB for console-to-VAX
data.

Entry Points into Many entry-point microaddresses.

specific CSM routines

Command Dispatcher Tests ID bits for CSM commands, and
dispatches microcode to correct routine.

Exit Routines Cleans up and transcends to other
VAX/CONSOLE states.

In order to utilize WCS space in an efficient manner, the console
support microcode resides in two locations (resident and
nonresident).

The resident CSM is in instruction set processing (ISP) code space
and is always loaded to allow MTPR, MFPR, PROBER, and PROBEW
instructions to utilize CSM routines to access registers.

Nonresident CSM 1is overlaid on top of USER WCS code space. This
code is used for initialization and troubleshooting.

2.4.2 CSM Data Transfers/Protocol

Data is transmitted in one or more bytes of information. Most
routines require numerous byte transfers to execute successfully.
The executive routines are responsible for building “"packets" to
send to the console.

The following guidelines describe the protocol during data
transfers:

° Commands are 1 to 9 bytes long.
° Responses are 1 to 5 bytes long.
° During console~to-VAX transfers, the most significant

byte is transmitted first.
° During VAX-to-console transfers, the least significant

byte is transmitted first.

2.4.3 Console Support Microcode Entry Points
The CSM can be entered by both hardware and 1Isp (instruction) code
exXecution. Table 2-3 lists the entry points.
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Table 2-3 Console Support Microcode Entry Points

Type of Entry Entry Point

Hardware Microtraps
Special Address
Startup Constrained Addresses

Software MTPR/MFPR Instructions
(ISP Shared) VAX Communications
PROBER/PROBEW Instructions

2.5 OPERATIONAL MODES

The console operates in one of two modes as shown in Figure 2-2.
Refer to Section 3 (Console) of the manual for additional
information concerning modes of operation and machine states.

VAX 8800 CONSOLE CPU

HALTED Ch DDEONSOLE

RUNNING gerAM

CONSOLE

SCLD-91

Figure 2-2 Console Operational Modes

2.5.1 Console Mode

The console mode can be in effect with the VAX 8800 system halted
or running. While the VAX system is halted, the entire range of
console commands is available to the operator.

Typing a CTRL/P while the VAX system is running causes the console
to enter the console mode (leaving the VAX system running). Since
the VAX system is running, the available commands during the
console mode are limited.
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2.5.2 Program Mode

Program mode allows the console to act as a VAX terminal. During
this mode, communications with the VAX system are
interrupt-driven.

2.6 OPERATOR/CONSOLE INTERACTION

The VAX 8800 system and console CPUs constitute a complex system
that must be initialized, operated wunder normal and abnormal
conditions, and turned off. Which Ffunctions are valid at any
particular time are dependent on the "state" of the VAX and
console,

The console and VAX system are two separate CPUs that can be
operating in any combination of states. The state of one CPU is
independent of the other CPU.

2.6.1 Console State Bits
The states of the VAX system and console are maintained by console
software, and are used to implement restrictions on state

transitions and console commands. The following state information
is available:

Left CPU
Right CPU
Common hardware
Command streams

Table 2-4 provides examples of the state bits.

Table 2-4 Bit Examples
State Type
VAX power on ? Common
Remote port enabled ? Common
Battery Backup unit working ? Common
AUTOBOOT enabled ? Common
EMM OK ? Common
Clock running ? Common
CPU halted ? Left/Right
Terminal in Console or Program mode ? Per command stream




2.6.1.1 Command Validity -- Each console command calls a utility
routine that specifies which state bits must be TRUE and which
must be FALSE for a specific command. Unspecified bits are not
checked. 1If the specified bits are not in the correct states, the
command will not be executed and an error message will be printed.

Some bits require access to the hardware each time it is
referenced. (Example: The clock may stop if the microPC matches
and stop-on-micromatch was set. It must be checked each time the
clock bit is referenced.)

Each console command can specify whether the CPU-specific bits to
be checked are in the CPU for which the command was issued, the
other CPU, or both CPUs. This causes some commands to be dependent
on the states of both CPUs.

2.6.1.2 Saving Console State -- Important console state variables
are preserved during console power failures. These include:

° Default settings -- anything that can be set with SET
DEFAULT.

° Logfile control block.

® Console "state bits", which include the AUTO

BOOT/RESTART/POWERON switches.

) Clock rate.

e Rebcot-Primary ID.

° Shadow copies of clock board registers.

° TODR, date, and time TODR was written.
2.6.2 Console Commands

The VAX 8800 Console Command Language (CCL) is the interface
between the operator and the control and monitoring capabilities
of the VAX 8800 console and micromonitor subsystems. Table 2-5
provides an overview of VAX 8800 commands. Refer to the Console
User's Guide for a complete description of each command.
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Table 2-5

Console Command Overview

Command Description

@ Opens specified file and processes the records
within the file -

BOOT Executes Device nameBOO.CMD; if no device is

CLEAR ACCUMULATOR

SOMM
TOMM
CONTINUE
DEPOSIT/EXAMINE
DISABLE/ENABLE
EXIT
FIND
HALT
HELP
IF
INITIALIZE
LINK
LOAD
MICROSTEP
NEXT
PERFORM

specified, executes DEFBOO.CMD

Resets the settings made by the SET and PROBE
commands

Starts execution at current PC
Deposit/Examine address/data

Establishes console parameters:
Auto Restart/Boot/Poweron
Odometer, Printer, Console
User monitoring

Terminates console program
Enables memory search:
64Kb of good memory

Restart Parameter Block

CPU halts at the
boundary

next macroinstruction

Prints help for the specified topic
Enables conditional execution of commands
Sets CPUs to defined state

Creates temporary indirect command file

Loads memory/control store
Bursts the clock (n) cycles
Steps the VAX through (n) macroinstructions

Executes the command file created

with LINK

temporary
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Table 2-5 Console Command Overview (Cont)

Command Description

POWER Turns power ON/OFF/STANDBY

PROBE ORs VBus bit into Accumulator

REPEAT Causes command line to be executed
continuously

SENSE REVISION Senses revisions of specified component

SET Sets Clocks, CPU Primary, Defaults

EMM Power Margins, Relocation
Values for EXAM/DEP, SOMM,
TOMM, Verify/Nonverify

SHOW Shows Value/Status: Accumulator, CPU,
Defaults, EMM, Logfile, Revision History

START Starts execution of macro/microcode

TEST Starts customer diagnostics or micromonitor

UNJAM Asserts/Deasserts UNJAM, reloads NBI with hi
and lo memory limits

VERIFY Verifies EMM, module placement, revision
history

2.6.2.1 Executing Console Commands -- All commands that read or

write the VAX 8800 system hardware are implemented by means of
0IOs to the RTI driver program. Commands that require the power,
clocks, or CPU to be in a specific state, generate a state check
prior to executing the command.

Commands from the console are passed to the VAX system as 8 bits
of data by the RTI driver. The command data is transferred by
means of the PPI bus connecting the console computer and the

console interface on the clock module.

The command data being transferred contains encoded identification
and data fields describing the type, purpose, and destination of
the command. The console interface places the command data into
the receive data buffer (RXDB) so that it can be transferred to
the VAX CPU decoder module by means of the bidirectional data bus
connecting the console interface and the VAX 8800 CPU.
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2.6.3 Console/Operator Display

The display for the VAX 8800 system is the PRO-38N console display
terminal. Only one of the VAX 8800 system's dual CPUs will be
shown on the display screen during normal operation. During
system testing in the micromonitor mode, the output from both CPUs
may be observed simultaneously.

Status 1is displayed at the bottom of the screen to allow for
longer view time during scrolling when the screen is responding to
other console output.

2.6.3.1 Local Display During Remote Operation -- During remote
operations, both the local and remote terminals can be operational
at the same time. The local operator can monitor the input/output
over the remote port by enabling the remote monitoring function.

When remote monitoring is enabled, all remote activity appears in
the logfile as well as on the local screen. Figure 2-3 shows an
example of character flow during simultaneous local and remote

rataT~-% a-X ]

Ans
Operacions.
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2.6.3.2 Console Command Language Display Prompts -- Table 2-6
describes the console command language prompts that appear on the
local and remote display screens.

Table 2-6 Console Command Language Prompts

Prompt Description

>>> Console Command Level Input

MIC> Micromonitor Input

<LK Link Mode Input (Reference LINK and PERFORM

Commands)

2.6.4 System Logfile

The console maintains two logfiles for the purpose of saving and
reviewing console output pertaining to each CPU. Each logfile
consists of a circular buffer capable of storing 720 lines (30
screens) of 80 characters per line.

All of the data that appears on the display screen during console
mode operations, as well as the output from the VAX, is saved in
the logfile. Console entries made during the program mode are
echoed back from the VAX, but are not saved in the logfile.

2.6.4.1 Displaying the Logfile -- The SHOW LOGFILE command allows
the operator to 1look at the contents of the logfile with the
provision for scrolling up and down, and changing pages of the
display. Data received during the display of the logfile will be
appended to the end of the file and not displayed with the present
viewing.

2.6.4.2 Logical Terminals/Logfile Integrity -- Logical terminal
OPAO: is the standard 1logical terminal for normal system
operations, and all OPAO: data is placed in the logfile. Entering
the SET TERMINAL OPAl: command prior to program mode operations
will eliminate filling the logfile with unwanted data.
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2.6.4.3 Saving the Logfile -- Logfile data is preserved if either
the control program stops, or the console power fails.
Nonvolatile data is stored in the first block of the logfile:

Logfile control block

Micromatch address

Verify switch

Examine/Deposit defaults

Default radix

Internal trace bits

State bits

Clock rate

Regulator margin mask

Reboot primary identity

Memory limits

Shadow copies of clock board registers
TODR written by the VAX system

P/0OS date and time when TODR written
Micromonitor state variables

2.7 POWER-UP/DOWN SEQUENCING

The following paragraphs provide a brief overview of the
power-up/down and restart functions. Refer to the Console and
Power Sections of the manual for detailed information concerning
power—on sequencing, recovery, and initialization and boot
processes.

2.7.1 Power On
The power-on sequence can be initiated by either a VAX 8800 system
power-fail recovery, OF by entering the POWER ON command at the
console terminal.

The console software determines whether the recovery was a
console-only failure by examining the VAX power status by means of
the env1ronmenta1 monitoring module in the power system.

The power-up procedure requlres that the consoclc send commands to
the EMM to apply system power in a particular segquence. Table 2-7
shows the sequence in which the power supply modules are turned

on.
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Table 2-7 Module Power Supply Turn-On Sequence

Order Module Power Application

1 J +300

2 B +5 Memory/Battery

3 C +5

4 F +/- 12, =5.2, +5, -2 to VAXBI
5 H +/- 12, =-5.2, +5, -2 to VAXBI
6 E -5.2

7 D -2

2.7.2 Power Fail

Power failure recognition by the environmental monitoring module
in the power system will result in an interrupt to the VAX 8800
system by means of the console interface. The EMM is directed to
assert the ACLO and DCLO signals, and initiate the power—-fail
sequence.

2.7.3 Powerdown

An intentional powerdown is initiated by operator command at the
console. The console software checks the status of the battery
backup wunit and informs the operator if the BBU is not present or
enabled.

If Dbackup power is not available, the software asks the operator
if it should continue or abort the powerdown process. If the BBU
is enabled or the operator wishes to continue without backup
power, the EMM is directed to assert the ACLO and DCLO signals and
initiate power shutdown.

2.7.4 Warm Restart

Warm restart uses the same procedures as the power-on sequence for
turning on the system power. Memory must be backed up and a
restart parameter block must be available for a warm restart.

I 2-17



CHAPTER 3
SYSTEM OPERATION

3.1 INTRODUCTION

This chapter contains a brief overview of the CPU microcode,
memory addressing, read/write operations, and interrupts and
exceptions. Refer to the individual sections of this manual for
detailed information.

3.2 MICROCODE ‘
The control store microcode resides in the IBox and consists of
16K words x 143 bits. The microcode is loaded into the control
store RAMs from the console during system initialization. The
control store usage is:

® CPU control -- 15K
° User-written code -- 1K
3.2.1 Microcode Characteristics

3.2.1.1 Functionality
Horizontal -- Microword bits are grouped into fields with each
field directly feeding and controlling a specific CPU element.
(Some fields have vertical functionality in that they control
more than one element.)

3.2.1.2 Operation
Pipelined -- More than one microword is active at any given
time. Pipelining allows the CPU to perform multiple operations
simultaneously.

3.2.1.3 Structure
Segmented -- Each microword is divided into three segments, CSO,
CSl, and Cs2. Dividing the microword into three segments
enhances the pipelining process.

CS0 RAM Segment

Resides on the SEQ module and consists of microword bits
<47:0>. Provides early control - IBox and EBox operations.
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CS1 RAM Segment

Resides on the WCS module and consists of microword bits
<95:48>. Provides mid/late control - EBox operations.

CS2 RAM Segment

Resides on the WCS module and consists of microword bits
<142:96>. Provides late control - EBox and CBox operations.

3.2.2 Microcode Control
The sequencer module (SEQ) controls the operation of the
microcode. The primary duties performed by the SEQ module are:

e Select the appropriate microPC input for the control
store address latches.

) Monitor hardware and software interrupt requests.

o Provide CSO segment microcode data to the kernel.

° Monitor microbranch and microtrap conditions.

° Provide a data path between the CPU and the console.

The functional areas of the sequencer are:

® INPR
® CCBR
) GWYC
° UTRP
® UBRS

3.2.2.1 Interrupt and Processor Register (INPR)

° Receives and prioritizes hardware interrupts (software
interrupts are handled by microcode).
° Provides interrupt microtrap vectors and microbranch

conditions to the microsequencer logic for interrupt
processing.
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3.2.2.2 Condition Code and Branch (CCBR)
® Monitors EBox and CBox condition bits.

® Provides macrobranch and trap vectors during instruction
execution.

® Contains the PSL <N, C, V, Z> bits.

® Controls instruction buffer flushing during macrobranch
and macrotrap.

° Contains STATE flags for microcode branching.

3.2.2.3 Gateway Control (GWYC)

° Controls console access to the micromachine during RAM
loading and microcode requests.

® Monitors conscle parity errors during data transfers.

3.2.2.4 Microtrap (UTRP)

°® Receives and prioritizes all macro- and microtrap
conditions.

® Provides microvectors to the microbranch slice logic.
° Controls microstack addressing and uPC mux.
° Provides SILO control to save machine state during traps.

3.2.2.5 Microbranch Slices (UBRS)

° Monitors microbranch conditions from the CPU kernel.
° Monitors microvectors from the microtrap logic.
) Supplies the next microPC to the control sﬁore address
latches. '
° Provides microstack data and receives RETURN data.
3.2.3 Pipelining

The process of pipelining (processing multiple microwords
simultaneously) allows the VAX 8800 system to utilize the hardware
in a more efficient manner, and increase the performance of the
CPU. Figure 3-1 shows a simplified drawing of VAX 8800 pipelining.
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Figure 3-1 Simplified Pipelining

3.2.4 Microtraps

Microtraps are hardware conditions that prevent the current
microword from executing properly. When a microtrap occurs, the
hardware forces the control store address to a fixed location {the
location is dependent on the type of trap) overriding the address
that would have been selected. The forced address is the starting
location of the trap handler microcode routine.

Microtraps are used extensively by the memory management system,
and for resolving .system faults such as parity and bus errors.
Table 3-1 1lists the various types of microtraps for the VAX 8800
system.
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Table 3-1 VAX 8800 System Microtraps

Microtrap Condition Priority

Microbreak Highest
Machine Check *

VA Parity Error *

TB Tag Parity Error *

Not Used

Reserved Floating-Point Operand

Floating-Point Round Error, ADD

Floating-Point Round Error, Multiply

Integer Overflow

TB Miss

Access Violation

Modify Bit

Page Cross

Unaligned Page Cross

Unaligned Conditional Branch

Integer Overflow Lowest

* = Machine Check

When a microtrap occurs, any register or cache writes that would
otherwise be performed by the microwords in the pipeline are
blocked until the cause of the trap has been cleared. The hardware
performs most of the state-saving and restoration for return to
the blocked microinstructions.

Microaddresses of the. blocked microinstructions are saved in a
queued microPC silo to allow for the possibility of a branch in
one of the blocked microinstructions.

3.2.5 Micromatch
One method of halting the micromachine is through the use of a
micromatch. [The hardware matches every microPC (program counter)

with the specified breakpoint microaddress. ]

- The micromatch function provides for one of two actions to be
specified when a micromatch occurs:

1. Stop on Match
2, Trap on Match

3.2.5.1 Stop on Match -- When the clocks are stopped during a
micromatch, the state of the machine is frozen until a command
from the console restarts the system clocks.



3.2.5.2 Trap on Match -- Following a microPC match, the
micromachine traps to a specified location to perform the intended
operation. Original microcode flow can be continued at the
completion of the trap routine.

3.3 MEMORY ADDRESSING AND READ/WRITE OPERATIONS

3.3.1 Virtual Addresses

The processor generates a 32-bit virtual address for each
instruction and operand 1in memory. As the process executes, the
system translates each virtual address to a physical address.

Virtual address space is a 32-bit unsigned integer specifying a
byte location in the physical address space and is arranged in
512-byte units, called pages.

A memory management system provides the mechanism for mapping the
active part of the virtual address space to the available physical
address space and provides page protection between separate
processes. The operating system controls the virtual-to-physical
address mapping tables and places the 1inactive parts of the
virtual address space on the external storage media.

When memory mapping is disabled, virtual addresses are translated
to physical addresses by ignoring bits 30 and 31.

The translation buffer in the CBox is used to speed virtual
address translations by holding calculated address translations
for future use. If the translation for a virtual address exists in
the translation buffer, the data is used for the physical address.
If the desired address translation does not exist, a microtrap
occurs and a trap routine performs the address translation. When
the trap routine completes the translation process, the translated

address is written into the translation buffer.
3.3.1.1 Layout -- Virtual address space is divided into two equal
size spaces:

1. Per-process address space
2. System address space

Per-process space 1is distinct for each process running on the

system and system space is shared by all processes. Figure 3-2
shows the layout for virtual address space.

3.3.1.2 Format -- The format for the 32-bit virtual address is
shown in Figure 3-3.
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00000000
PO (PROGRAM REGION)
LENGTH REGISTER = POLR
PER/PROCESS
SPACE
3FFFFFFF
40000000
P1 (CONTROL REGION)
LENGTH REGISTER = PiLR
7FFFFFEF
80000000
S (SYSTEM REGION)
LENGTH REGISTER = SLR
SYSTEM
SPACE
BFFFFFFF
€0000000
RESERVED REGION
FFFFFFFF

SCLD-94

Figure 3-2 Virtual Address Space Layout
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31 3¢

VPN <31:9> BYTE NUMBER

VPN (VIRTUAL PAGE NUMBER) -- SPECIFIES THE VIRTUAL PAGE TO BE REFERENCED

BIT 31 1 SYSTEM SPACE ADDRESS
0 = PER-PROCESS SPACE ADDRESS

BIT 30 PER-PROCESS SPACE
1 = CONTROL REGION
0 = PROGRAM REGION

BYTE NUMBER -- SPECIFIES THE BYTE ADDRESS WITHIN THE PAGE

SCLD-85

Figure 3-3 Virtual Address Format




3.3.2 Physical Addresses

Physical address space consists of two parts, memory space and I/0
space. Memory space starts at address zero and continues to
IFFFFFFF. I/0 space begins at 20000000 and continues to the end of
the physical address space 3FFFFFFF. Figure 3-4 shows the layout

of physical address space.

HEX BYTE ADDRESS

00000000 PRIMARY MEMORY
SPACE
1FFFFFFF (512 MB)
- <+
20000000 NBI #0 32 MBYTES
VAXBI #0 170 SELECT = 0
21FFFFFF ( ) <
22000000 BI #0 1 35 MBYTES
(VAXBL #4) 1/0 SELECT = 1
23FFFFFF (VAXBI #1) <«
24000000 ., MBYTES
Vaxa 170 SELECT = 2
25FFFFFF (VAXBI #0) | g
<«
26000000 NBI #1 32 MBYTES
28000000
| RESERVED |
2 (352 MB) T
3DFFFFFF i [
S CONTROLLER 32 MBYTES
3FFFFFFF

SCLD-96

Figure 3-4 Physical Address Space Layout
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3.3.3 Address Translation

The process of translating a virtual address to a physical address
is controlled by setting the memory mapping enable (MME) bit in
the MAPEN (MAP ENABLE) internal processor register. Figure 3-5
shows the bit configuration of the MAP enable register.

31 01 00

MBZ <31:1> MME

MEMORY MANAGEMENT ENABLED

MME (MEMORY MAP ENABLE) 1 =
0 = MEMORY MANAGEMENT DISABLED

SCLD-97

Figure 3-5 MAP Enable Register Bit Configuration

3.3.3.1 Page Table Entry —-- The CPU uses a page table entry (PTE)
to translate virtual addresses to physical addresses. Figure 3-6
shows the format and bit configuration of the PTE. Table 3-2
describes the function and purpose of the PTE bits.

Figures 3-7 through 3-9 show simplified diagrams of the
translation process for system space and process space regions 0
and 1.
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Figure 3-6 Page Table Entry Bit Configuration
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Table 3-2

Page Table Entry Bit Description

Bit Symbol Function Comments

31 v Valid Bit Determines validity of the M bit and
PFN field. 1 = Vvalid, 0 = not valid.
When V = 0, the M and PFN fields are
reserved for DIGITAL software.

30-27 PROT Protection Always valid. Used by the CPU

Field hardware.

26 M Modify Bit When bit 31 is set, the M bit
indicates whether the page has been
modified. If the M bit is set, the
page may have been modified.

25 Z Zero Bit Reserved for DIGITAL software. Must
be zero.

24-23 OWN Owner Bits Reserved for DIGITAL software. Use
as the access mode for the page
owner.

22-21 S Software Bits Reserved for DIGITAL software.

20-0 PFN Page Frame Upper 21 bits of the physical

Number

address of the base of the page.
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Figure 3-7 System Space Virtual-to-Physical Address Translation
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3.3.4 Cache Operation
The CBox shown in Figure 3-10 consists of three major functional
areas:

1. Translation Buffer (TB)
2. Cache
3. NMI Interface

3.3.4.1 Translation Buffer -- The translation buffer 1is a
hardware buffer used to hold calculated address translations for
future wuse. The TB also contains control information concerning
the physical page. Table 3-3 lists and describes the fields of
the translation buffer.

PHYSICAL ADDRESS
XIB%E%%% TRANSLATION > oacke — cAcHE
— ——P| BUFFER DATA
> NM
|
MICROWORD o INTERFACE > NMI
FROM IBOX

SCLD-102

Figure 3-10 CBox Functional Components

Table 3-3 Translation Buffer Field Description

Field Field Description

TB Tag Used 1in the matching process to determine
if the TB contains a translation for a
virtual address.

TB Data Consists of the page frame number (PFN) of
the page table entry (PTE) for the virtual
address.

Protection Protection information from the page table

entry of the page. Compared with the
current processor mode to determine access
capabilities to the page.

M Bit Modify bit from the page table entry.
TB Valid Bit Indicates whether a TB entry is valid. The

TB valid bit is not the same as the valid
bit in the page table entry.
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TB Hit

A translation buffer hit indicates that the currently accessed TB
entry 1is the correct translation for the virtual address. A TB
hit is determined by accessing the TB with virtual address bits
<31, 17:9> and matching the TB tag field with virtual address bits
<30:18>. If the addresses match and the entry is valid, the
translation is for the virtual address, and protection and modify
bit checks are initiated.

If there are no protection or Mbit problems, then it is a TB hit
and the PFN concatenated with VA<8:0> is used as the physical
address.

TB Miss

A TB miss occurs when there is no translation of the virtual
address to a physical address.

3.3.4.2 Cache -- The cache is a read allocate only device, and
cache locations are updated only if a previous cache hit existed.
Write misses do not affect the cache. In order for the cache to
process either reads or writes in one cycle and in any order, the
cache uses a delay write algorithm that delays the update until

the next write cycle.
The cache is divided into three sections:
1. Cache Tag Store

2. Cache Tag Valids
3. Cache Data Store

Cache Tag Store

The cache tag store holds the cache tags that are compared with
the incoming PA<28:16> as part of the effort to determine a cache
hit.

Cache Tags Valid

Each tag entry has four associated valid bits that are used to

indicate an octaword wvalid. The wvalid bits are wused in the
matching process to determine a cache hit.
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Cache Data Store

The cache data store contains the data corresponding to the cache
tag. If the access results in a cache hit, the data being read
from the cache data store is valid data and is passed to either
the IBox or EBox.

3.3.4.3 NMI Interface -- The NMI interface provides the control
and data path that allows the CPU to communicate with the VAX 8800
memory interconnect. Following a cache read miss, the NMI
interface uses the missed read address to build an NMI
command/address transaction and sends it to memory by means of the
NMI. The translation buffer and cache are free to process
additional CPU requests while the NMI interface handles the memory
transaction with the NMI.

When the memory data arrives, the NMI interface assumes control of
the cache, loads the data into the cache store, and validates the
cache tag valids with the new tag address. ’

Read/write command/address transactions generated by the NMI
interface in the CBox are transferred to memory and I/O devices by
means of the VAX 8800 memory interconnect, which is a synchronous
backplane bus that interconnects the CPUs, memory, and 1I/0
adapters.

3.3.5 Read/Write Operations

Before any device can perform a transfer of data on the NMI, the
device must request and be granted use of the bus by asserting an
NMI arbitration request 1line. The bus is granted to the
requesting device by the assertion of a bus enable signal for one
cycle.

A write transaction requires only one transfer. The device
initiating the transaction arbitrates for the bus and then
transfers command/address information followed by write data.

Read transactions require multiple transfers to complete the
transaction. First, the device requesting the read arbitrates for
the bus and transfers the command/address. The device containing
the data to be read arbitrates for the bus and transfers the read
data during a second transfer cycle. A third transfer of read
data may be required for some read hexword transactions.

At the beginning of a read/write transaction, the 30-bit NMI
address is asserted during the command/address cycle to identify
the device involved in the transaction. NMI address selection is
shown in Figure 3-11.
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MEMORY ADDRESS
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00

1/0 REGISTER ADDRESS

28 27 26 25 00
of(o0]|0 1/0 ADAPTER 0 REGISTER SELECT BITS
25 24 00
0 VAXB! 0 REGISTER SELECT BITS
e
25 24 00
—
1 VAXBI 1 REGISTER SELECT BITS
| )
28 27 26 25 00
00 |1 1/O0 ADAPTER 1 REGISTER SELECT BITS
25 24 00
0 VAXBl 0 REGISTER SELECT BITS
-
25 24 00
—
1 VAXB! 1 REGISTER SELECT BITS
28 27 26 25 24 00
]
1111 1 MEMORY CONTROLLER CSR SELECT BITS

Figure 3-11 NMI Address Selection
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3.3.6 Device Address Selection

Address bit <29> determines if the specified address is a memory
or I/0 address. If it 1is an 1I/0 address, then bits <28:26>
further define which 1I/0 adapter (NBI O or NBI 1) is being
addressed. If an NBI is addressed, then bit <25> selects the
appropriate VAXBI (0 or 1). Bits <25:29> must be set to one in
order to select a memory controller CSR.

3.3.6.1 Transaction Significant Address Bits -- Which bits of an
address are significant, depends on the type of transaction being
performed. Figure 3-12 shows the significant and nonsignificant

bits for different transactions.

READ LONGWORD (TO WORD-ORIENTED DEVICE)
313029 01 00

XX SIGNIFICANT ADDRESS BITS X

READ LONGWORD, READ OCTAWORD, READ HEXWORD, WRITE LONGWORD
313029 0100

X|X SIGNIFICANT ADDRESS BITS XX

WRITE QUADWORD
313029 0302 01 00

X|X SIGNIFICANT ADDRESS BITS X[X|X

WRITE OCTAWORD
313029 0403020100

X|X SIGNIFICANT ADDRESS BITS X[X|X{X

NOTE: X INDICATES THAT THE BIT IS NOT SIGNIFICANT AND IS IGNORED
BY THE RESPONDING DEVICE.

SCLD-104

Figure 3-12 NMI Address Bit Significance
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3.4 INTERRUPTS AND EXCEPTIONS

3.4.1 Servicing
The two VAX 8800 CPUs handle interrupts that originate from within
the processor or from the other processor. Interrupts from the

NMI nexus (I/0 devices and memory controller) are handled
exclusively by the CPU that is designated as primary.

3.4.1.1 NMI Interrupt Enable Register -- Each proccessor has an
interrupt control register (NICTRL) that enables or disables
interrupt handling for that processor. The bits of the NICTRL are
used as follows:

Bit Function

7 Enable Interrupts from NMI Device 0
6 Enable Interrupts from NMI Device 1
5 Enable Interrupts from Main Memory

3.4.1.2 Types of Interrupts -- There are two types of interrupt
requests generated by the NBIs. An interrupt request can be
generated locally by the NBI, or it can be generated by any one of
the I/0 devices connected to the NBI.

Locally generated interrupts are at the BR4 level and I/0 device
interrupt requests can be at any BR level. (Refer to Table 3-4.)

3.4.1.3 Servicing the Interrupt -- To service an NBI interrupt,
the CPU performs a firmware initiated read of a system control
block vector offset wvalue from one of the four vector offset
registers in the NBI. The BR level of the interrupt determines
which one of the four registers is used.

Locally generated interrupts will use page zero (0) of the SCB for
the vector offset. and T/0 devices use pages 1 through 63 for the
vector offset.

3.4.2 Priority Levels

In order for the CPU to respond to an interrupt, the incoming
interrupt must have an interrupt priority level (IPL) greater than
the IPL in the processor status longword (PSL). Table 3-4 lists
the hardware IPL assignments.
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Table 3-4 Hardware Interrupt Priority Level Assignments

Device or Condition Interrupt Priority Level (HEX)
Unassigned 1F

Power Fail 1E

CBox Error 1D

NMI Fault 1C

Unassigned <1B:18>

I/0 Adapter #0 (NBI #0), NMI BR7 17
I/0 Adapter #1 (NBI #1), NMI BR7 17

Interval Timer 16
1/0 Adapter #0 (NBI #0), NMI BR6 16
1/0 Adapter #1 (NBI #1), NMI BR6 16

I/0 Adapter #0 (NBI #0), NMI BRS5 15
1/0 Adapter #1 (NBI #1), NMI BRS 15
Memory, NMI BR5 15

I/0 Adapter #0 (NBI #0), NMI BR4 14
I/0 Adapter #1 (NBI #1), NMI BR4 14

Console Terminal Receive 14
Console Terminal Transmit 14
Other Processor 14
Unassigned <13:10>
3.4.3 System Control Block (SCB) Format

The system control block for the VAX 8800 system can have up to 64
pages of vectors that are allocated to three levels of interrupt
vectors. The first page (page 0) is reserved for VAX architectural
and NMI nexus vectors, and subsequent pages are allocated to I/0
devices connected through the NBI adapters (maximum of 60
devices). Table 3-5 shows the configuration of SCB page 0.

I 3-21



Table 3-5 System Control Block Page 0 (000--1FF)

Vector (HEX) Condition

00 NOP

04 Machine Check

08 Kernel Stack not Valid Abort
0C Power Fail

10 Reserved/Privileged Instruction
14 Customer Reserved Instruction
18 Reserved Operand

1C Reserved Operating Mode

20 Access Control Violation Fault
24 Translation Not Valid

28 Trace Pending

2C Breakpoint Instruction

30 Not Used

34 Arithmetic

38 Not Used

3C Not Used

40 CHMK

44 CHME

48 CHMS

4C CHMU

50 Not Used

54 Not Used

58 Not Used

5C NMI Fault

60 -- 6C Not Used

70 -- 7C Not Used

80 Tnterrupt Other Processor

84 Software Level 1

38 Software Level 2

8C Software Level 3

90 Software Level 4

94 Software Level 5

98 Software Level 6

9C Software Level 7

AQ Software Level 8

Ad Software Level 9

A8 Software Level A

AC Software Level B
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Table 3-5 System Control Block Page 0 (000--1FF) (Cont)

Vector (HEX) Condition
BO Software Level C
B4 Software Level D
B8 Software Level E
BC Software Level F
Cco Interval Timer
C4 -- CC Not Used
DO -- DC Not Used
E0 -- EC Not Used
FO, FC Not Used
F8 Console Terminal Receive
FC Consoie Terminal Transmit
100 -- 11C Not Used
120 I/0 Adapter #0 (NMI)
124 -- 12C Not Used
130 I/0 Adapter #1 (NMI)
134 -~ 13C Not Used
140, 144 Not Used
148 Memory (NMI)
14C -- 1FF Not Used
3.4.3.1 SCB Pagination =-- The pages of the SCB following page 0

are allocated for devices connected through the NMI adapters.

Interrupt devices are classified as either offsetable or directly
connected.

3.4.3.2 Offsetable Devices -- Offsetable devices that pass
interrupts from devices on another bus will use the first page
following page 0.

3.4.3.3 VAXBI Node Direct Connected Devices -- Vectors for direct
connected devices will be located beginning on the first even
numbered page following the pages for offsetable devices.
Depending on the amount of pages required for offsetable devices,
a blank page may exist as a result of starting on an even numbered
page with direct connected devices. One page will be allocated
for each VAXBI.
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3.4.3.4 SCB Format -- The format for the SCB vector offset values
supplied by an NBI I/0 adapter are shown in Figure 3-13,.

NM! ADAPTER VECTOR FIELD (SCB PAGE 0)
13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 0 0 BR LEVEL ID LEVEL 0 0

OFFSETABLE VECTOR FIELD (31 PAGES AVAILABLE)
13 12 11 10 09 08 07 06 05 04 03 02 01 00

NON - ZERO <4— UNIBUS VECTOR——» 0 0

1-31 :UNIBUS OFFSET 1 PAGE PER UNIBUS

THE NBI ADAPTER DETECTS VAXBI VECTOR <13:9> NOT EQUAL
TO 0 FROM THE VAXB! AND PASSES THE VECTOR TO THE NMI.

EACH BUA IN THE SYSTEM MUST HAVE A DIFFERENT VALUE
LOADED IN THE VECTOR OFFSET REGISTER FOR PROPER
SCB OFFSETTING.

VAXBI NODE VECTOR FIELD 1 PAGE PER VAXBI
13 12 11 10 09 08 07 06 05 04 03 02 01 00
ol oo | o] o BR LEVEL VAXB| NODE o | o
MUST BE ZERO 0-3:RSVD
FROM NONOFFSETTABLE gfg‘;g
VAXBI NODES 2 BRe

7.BRZ

THE NBI ADAPTER DETECTS VAXBI VECTOR <13:9> EQUAL TO 0
FROM THE VAXBi AND ORS THE NBi VOR <i13:9> BELOW.

| |
v v v

13 12 11 10 09 08 07 06 05 04 03 02 01 00

NBI VOR REG. X BR LEVEL VAXBI NODE ID 0 0

i

| o -t
|l 1o =vaAxBi#o0
HARDWARE SET | = VAXBI #1
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Figure 3-13 NBI I/0O Adapter SCB Vector Offset Format
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3.4.4 Machine Check Exception

A machine check exception occurs any time the processor detects an
internal error and reports the error to the VMS Ooperating system.
The exception 1is taken into the system control block at virtual
address SCBB +04. Communication between the VMS system and the
CPU microcode during machine check handling is accomplished by
means of the machine check status register.

3.4.4.1 Types of Exceptions -- Machine check exceptions consist
of either a fault or an abort. Faults allow the instruction that
created the exception to be retried because it assumes the state
of the machine is stable. Aborts do not allow for a retry. Table
3-6 lists examples of faults and aborts that may occur in the VAX
8800 system. ’

Table 3-6 Machine Check Exception Examples

Type Description Location

FAULTS Sequencer-to-Console Processor Register IBox
Data Parity Error

Console Processor Register—to—Sequencer IBox
Data Parity Error

Decoder RAM-to-Sequencer Data Parity Error IBox

Console Processor Register Input Data IBox
Parity Error

Memory Failure CBox
Cache Tag Parity Error CBox
Memory Data Parity Error CBox
Virtual Address Parity Error CBox
Translation Buffer Tag Parity Error . CBox
Translation Buffer Data Parity Error CBox
Data Read Error CBox
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Table 3-6 Machine Check Exception Examples (Cont)

Type Description Location

ABORTS CS0 Parity Error IBOX
CS1 Parity Error IBoOX
CS2 Parity Error IBoOX
NMI Sequencer Control Store Parity Error CBox
Decoder RAM Output Data Parity Error IBox

FAULTS OR ABORTS DEPENDING ON SOURCE
B - Side Byte 3 Parity Error EBox
A - Side Byte 3 Parity Error EBox
B - Side Byte 2 Parity Error EBox
A - Side Byte 2 Parity Error EBox
B - Side Byte 1 Parity Error EBOX
A - Side Byte 1 Parity Error EBoX
B - Side Byte 0 Parity Error EBox
A - Side Byte 0 Parity Error EBox
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CHAPTER 4
DIAGNOSTIC AND MAINTENANCE AIDS

4,1 INTRODUCTION

This chapter contains a brief overview of the diagnostics and
maintenance aids wused in the VAX 8800 system. Included in this
chapter is a description of the module keying verification and the
power and environmental system. Refer to the System Diagnostic
User's Guide for detailed information concerning diagnostic use.

4,2 GENERAL

The VAX 8800 diagnostic software package provides a bottom-up
sequence for verifying the CPU cluster and the system. Tests and
test programs should be run in the sequence they were designed
for, in order to achieve maximum coverage and isolation.

A top-down test sequence is also provided for installation or
repair wverification if the ©run time of the bottom-up sequence
exceeds field service limitations.

In a dual processor configuration, some microdiagnostic tests can
be run concurrently 1in both processors, and others must be run
sequentially in one processor at a time. The microdiagnostic
monitor controls dispatching to microdiagnostics making this
transparent to the user.

The default diagnostic mode in the dual processor configuration is
to test both left and right CPUs. The user must explicitly select
a single processor if both are not to be tested.

) CAUTION
Diagnostics cannot be run in one
processor while an operating system is
running in the other.

VAX 8800 specific diagnostics (for example, NMI exerciser, cluster
exerciser) require both processors to be running cooperative
macroprograms.,

The flowchart 1in Figure 4-1 shows a complete bottom-up test
sequence for the VAX 8800 system. Normally, the sequence can be
abbreviated, but when a failure is detected, more information will
be gained by running every test.
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POWERUP VERIFICATION TEST

v
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BOTTOM-UP_SEQ
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DUAL PROCESSOR DIAG

v
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v

LOAD CPU WCS AND OTHER
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SUPPCORT LOAD AND RUN
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v

USE AUTO SIZER, LOAD AND
RUN 170 ADAPTER DIAGNOSTICS

v
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SYSTEM TEST

Figure 4-1
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( VERIFICATION
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VERIFY CACHE AND INTERLOCKS

FULLY VERIFY MEMORY CONTROLLER
AND MEMORY ARRAYS

SET UP FOR MACRODIAGNOSTICS
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4.3 DIAGNCSTICS
The diagnostics for the VAX 8800 system are divided into the
following major areas:

) Console selftest
o Microdiagnostics
) Macrodiagnostics
°

Customer runnable diagnostics

Each of the major diagnostic areas tests a certain section or
sections of the VAX 8800 system.

4.3.1 Console Selftest

The console selftest is initiated automatically when the console
power is applied and requires no intervention by the console
operator. A failure during the console selftest results in a
graphic identification of the failed area on the operator's
console display. The console selftest checks:

® That the console hardware will run P/OS (professional
operating system)

) Disk drives (floppy and hard)
° The RTI (real-time interface)

Refer to the PRO Series manuals for additional information
concerning console error analysis.

4.3.2 Microdiagnostics

The VAX 8800 specific microdiagnostics are initiated from the
console by entering commands at the console keyboard when in the
micromonitor (MICMON) mode.

The micromonitor program is part of the console software and runs
in the console processor. It is used to load, control, and monitor
both console-based and WCS-based microdiagnostics. The
microdiagnostics test:

° The left and right CPUs

® The clock/console interface
® The NMI

°® Memory



4.3.2.1 CSM Commands -- A subset of console commands requiring
console support microcode (CSM) 1is available while running
diagnostics. If CSM commands are executed between tests, the test
cannot be continued. Because some CSM code may use functions that
have not vyet been tested, some tests may not function correctly
after executing CSM commands from the console.

To execute console CSM commands while running diagnostics, enter
the START/C 3000 command following the MIC> prompt. This will
force the UPC to the start of diagnostic CSM code and turn the
clocks ON. The following commands will be valid:

° DEPOSIT/PHYSICAL/LONG
] DEPOSIT/PHYSICAL/BYTE
® EXAMINE/PHYSICAL/LONG
® EXAMINE/PSL

® DEPOSIT/PSL

® EXAMINE/SDF

® DEPOSIT/SDF

° EXAMINE/TEMP

e DEPOSIT/TEMP

° DEPOSIT/CACHE

Executing the EXAMINE/DEPOSIT/TEMP commands while running
diagnostics (using diagnostic CSM code) requires using different
addresses for the TEMP registers. Table 4-1 1lists the TEMP
register addresses to be used for diagnostic CSM.



Table 4-1 TEMP Register Addresses for use
with Diagnostic CSM

Temp Register Address (Hex)

WDR
TO
Tl
T2
T3
T4
MT1
MT?2
MT3
MDO
MD1
MD2
MD3
MD4
MD5

LY R Y~
1O

MM.MDR 10
VA 11
BACK.UP.PC 12
INVALID 13 - 1F

WJWUOW'P‘\OOO\JO\UTJ}UJI\)O—'O

The microcode error registers can be read when running diagnostic
CSM code, by using the EXAMINE/IPR command with the error register
addresses listed in Table 4-2.
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Table 4-2 Microcode Error Register Addresses

Register Address Format of Returning Register Data

Cache Register 0 Bits<2-0> = NMI ON, CACHE ON, and
MM ENABLE, respectively

Cache Err Reg Byte 2 1 Bits<5-0> = CER Byte 2

Cache Err Reg Byte 1 2 Bits<5-0> = CER Byte 1

Cache Err Reg Byte 0 3 Bits<5-0> = CER Byte 0

NMI Error Address Reg 4 Bits<29-1> = PA<K29-1>

NMI Fault Reg Byte 1 5 Bits<4-0> = NFSR Byte 1

NMI Fault Reg Byte 0 6 Bits<4-0> = NFSR Byte 0

NMI Silo 7 Bits<19-0> = NMI SILO Byte 2,
Byte 1, and Byte 0, respectively

EBox Error Reg 8 EBox Error Reg

IBox Error Reg 9 IBox Error Reg

The NBI diagnostic routines test for error conditions and detect

the condition of the NMI. The cursor prompt for the
microdiagnostics is 'MIC>'.

4.3.2.2 Status and Error Information -- During the execution of
microdiagnostics, as much information as possible 1is made
available to the operator. Both section and test tracing

Section tracing displays the name and revision level of each
section that is being executed. Test tracing displays the name and

a brief description of each test being executed.

An extented error printout is available that provides the SYNCH
UPC and CONT UPC fields for hardware debug. SYNCH UPC provides the
WCS address at the top of the loop, and CONT UPC provides the WCS
address of the microinstruction just beyond the error loop.

Example 4-1 shows a sample micromonitor/microdiagnostic display
output with section and test trace enabled. Example 4-2 shows a
sample output with an error message.



MIC> DIAGNOSE

TESTING LEFT & RIGHT CPU
EZKBA - REV X.Z

TEST 1 (Description of Test 1)
TEST 2 (Description of Test 2)

LY
LY

EXKBB - REV X.Z

TEST 1 (Description of Test 1)

.

END OF PASS [NO ERRORS DETECTED]

MIC>

Example 4-1 Sample Microdiagnostic Display Output

MIC> SELECT RIGHT
MIC> DIAGNOSE

TESTING RIGHT CPU
EZKBA - REV X.Z

TEST 1 (Description of Test 1)

TEST 2 (Description of Test 2)

*** RIGHT CPU FAILED *** EZKBA *** TEST (2 *** ERROR (] ***
FAILING HW: M1234, M5678, M9012 ....
SYNCH UPC: aaaa CONT UPC: bbbb

MIC>

Example 4-2 Sample Microdiagnostic Error Display
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4.3.2.3 Micromonitor Error Messages —-- The following is a list of
possible micromonitor error messages:

e Unexpected trap occurred (type of trap)
® Unexpected interrupt occurred (type of interrupt)
NOTE

An unexpected error detected by a
diagnostic wusually indicates that the
WCS code went off to some illegal
location.

Illegal error number received from WCS-based test
Illegal message received from WCS-based diagnostic
Failure sending message to diagnostic

Power not on

Illegal section name(s)

No section currently loaded

Illegal test number(s)

Maximum test number exceeded

Micmon protocol error

Unable to load console-based section

Unable to load WCS-based section

Unable to load diagnostic CSM

4.3.3 Macrodiagnostics

The macrodiagnostics are both VAX 8800 system specific and generic
diagnostics. Macrodiagnostics (except = EVKAA) are run under the
VAX diagnostic supervisor (DS>).

The macrodiagnostics are used to test and isolate problems in the:

° CPU kernel (both left and right CPU)

) I/0 subsystem

° I1/0 adapters

® 1/C devices such as the NBIA, NBIB, VAXBI, SI

The macrodiagnostics are also used to exercise various portions of
the VAX 8800 system as well as repair verification. The cursor
prompt for the macrodiagnostics is: DS>.

NOTE
In order to fully test the VAX 8800
system, both the macrodiagnostics and
the microdiagnostics must be run.

Table 4-3 1lists and describes the major tests available in the
macrodiagnostic programs.
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Table 4-3 Macrodiagnostic Tests

Test Description
EVKAA Function Verification of the VDS Kernel Instruction Set
EVKAB Basic Instruction Exerciser. Runs Native Mode

Instructions in:

Integer Arithmetic
Variable-Length Bit Fields
Control Instructions

Queue Instructions
Character Strings

Decimal Strings

EVKAC VAX Floating-Point Exerciser

EVKAE VAX Privileged Architecture Diagnostic

EZKAX VAX 8800 System-Specific CPU Cluster Exerciser.
EZKAX tests:

Internal Processor Register Access
Processor Power Failure

Processor Halts

User Writable Control Store
Machine Checks

Dual-Processor Communication

EZCJA NMI-to-VAXBI Adapter Diagnostic Test
EZXCA NMI Activity Diagnostic Test
4.3.4 Customer Runnable Diagnostics

Customer runnable diagnostics (CRD) are a packaged set of
user-friendly diagnostics designed to enable the user to isolate
system problems to the failing option. CRDs are designed with the
customer 1in mind, and are fast and easy to use. All test results
are printed in English.

When the diagnostic media is loaded and the TEST command is given,
the test proceeds automatically under the control of the
micromonitor. The CRDs will test the system and inform the
operator of the status of the option being checked, the time
required to complete the test, and whether that particular option
passed or failed.

Customer runnable diagnostics provide the user with two options:

1. Auto-Test mode
2. Menu mode
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4.3.4.1 Auto-Test Mode -- The auto-test mode verifies the
operation of the CPU internal opticns, VMS system disk, and the
diagnostic 1load disk. The test requires approximately 20 minutes
to complete.

4,3,4,2 Menu Mode -- Menu mode is an extension of auto-test that
allows verification of all system supported options. The test run
time is dependent upon the number of installed system options.

4.3.5 Remote Diagnostics

A COMM port on the rear of the console PRO-38N is available for
remote access to the VAX 8800 system. From a console software
point of view, the remote port 1is identical to the 1local
operator's console, For safety reasons, the POWER ON command is
not accepted from the remote console. The DISABLE PRINTER and
DISABLE REMOTE MONITORING commands will not be executed from the
remote terminal.

When a remote port is connected and is operating in the console
mode, the local port cannot execute commands that can change the
state of the VAX CPUs. This restriction prevents a local operator
from inadvertently changing the machine state while remote
debugging is taking place. The 1local operator 1is limited to
control and status commands during a remote diagnostic operation.

4.4 POWER/ENVIRONMENTAL SYSTEM

When the main circuit breaker of the VAX 8800 system is turned to
the ON position, power is applied to the cooling blower and the
NBox. The NBox supplies a dc voltage to the EMM for the module
keying test prior to application of power to the backplane.

4.4.1 Module Placement Verification
Module placement verification is performed in two steps. The

first step uses a module key test to ensure that there are no
modules ingerted in a slot that will cause damage to the module

when power is applied. The second step verifies that the correc
module is installed in the intended slot.

4.4.1.1 Module Key Test -- The key test verifies that VAX 8800
modules are installed correctly in one of the following four
module groupings:

1. CPU modules
2. Clock module

b
3. Memcry centrel lo

4, NBIA module

!
3
0]
Q.
-
I..—l
@

ol
Y+
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The modules within a group have similar power requirements and
cannot be damaged, provided that the module is installed in the
correct grouping, even if it is in the wrong slot (for example, a
CPU decoder module installed the in shifter module slot).

There is no requirement to test memory array or VAXBI modules, as
they will not fit into the other slots. The memory array modules
use three segments of pins, and the VAXBI modules use a
five-segment card. CPU, <clock, MCL, and NBIA modules use two
segment cards.

The EMM parallel key circuit uses the key sense input shown in
Figure 4-2 to enable it to turn on the power to the system. The

key sense signal 1is a single wire looped from the EMM to the
computer backplane and back to the EMM.

The EMM compares the Key Sense input with an internal reference
voltage and asserts a signal that holds the EMM in a reset state
if an error is detected. Holding the EMM in a reset state, keeps
the EMM from receiving POWER ON commands from the console.
Failure of the module key test illuminates the KEY FAULT LED on
the front of the EMM. The "Electrical Key Override" switch on the
front of the EMM is not used in the VAX 8800 system. Figure 4-3
shows how the Key Source signal is looped through the four module
groups and returned to the EMM as Key Sense.

EMM CPU BACKPLANE
MODULE KEY
+12 Vo AA\A"~—m |+ 5
324K OHM SOURCE >
LED (VREF
DISABLE | coMPARE MODULE KEY
¢ < <
SENSE

SCLD-108

Figure 4-2 Module Keying Test Simplified Block Diagram
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Figure 4-3 Module Key Test Connections

4.4.1.2 Module Placement -- When the key test verifies that the
modules are installed in a correct grouping and power is applied,
the Vbus is used to determine that the correct module is inserted
in the clock and CPU slots.

The Vbus test that is used to test for correct module placement
within the CPU group will not work if the clock module is not
installed in the <correct slot. (The Vbus control registers are
located on the console interface portion of the clock module.)

s used to check for the presence of

ot
oy
)

4.4.2 Power Monitoring/Error Reporting

The environmental monitoring module in the power system complex
has sensors for monitoring cooling system airflow, cabinet
temperatures, and line and system operating voltages. The EMM also
contains actuators that control the application and removal of the
system power and the battery backup unit in response to console
commands.

The EMM has a microprocessor that communicates with the console
processor and performs a power shutdown when the environmental
parameters are not within allowable specifications established by
the console.
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4.4.2.1 Default Mode Error Reporting -- When system power is
first applied and the console has not vyet established
communications with the EMM, the EMM uses a set of default
parameters to monitor power system performance. The default
parameters are stored in the EMM ROM and are loaded into the EMM
RAM during the EMM boot procedure.

If the EMM detects an error during the EMM selftest, a single
character error code is sent to the console to inform the console
of a test failure. The EMM repeats the failing test until it
passes successfully or until the console reaches the point in the
bower-up sequence where the console is ready to communicate with
the EMM.

When the console receives the error message, or fails to establish
communications with the EMM, the console software prints an error
message on the operator display and stops the power-up sequence.

The following default parameter error codes are used by the EMM
when the console has not reached the point in the power-up

sequence to pass monitoring parameters:
Voltage DMCODE 0-11; Regulator A-L
Temperature DMCODE 12-15; Therm T1-T4
Temperature DMCODE 16-18; Diff D12-D14
Module OK Transition DMCODE 19
Air Flow Fault DMCODE 20-21; AFF1-2
Battery Backup Fault DMCODE 22
4.4.2.2 Operational Error Reporting -- During the power—-up and

initialization process, the console passes a set of parameters to
the EMM to replace the default parameters used prior to
establishing communications.

When one of the parameters monitored by the EMM no longer meets
specifications, the EMM sends an unsolicited warning message to
the console display and begin a five minute timer. If the problem
is not resolved in five minutes, the EMM asserts the TOTAL OFF
command and shuts down the system power. Example 4-3 shows a
sample EMM warning message display.
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**** WARNING, ENVIRONMENTAL MONITORING MESSAGE RECEIVED

VOLTAGE EXCEPTION REPORTED BY EMM %067, 5-AUG-85 10:00:00
REG A transition from 'In Range' to 'Below Range'

pol: + mea: 0001 input: 2

mar: 0000 lolim: 0000 hilim: 0000

AUTOMATIC SHUTDOWN IN PROGRESS (BLINKING)
reg: A B C D E F G H I J K L KAC LAC KEY
mok : ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

sig: AFl1 BBF CBF AF2 ACL DCL PEN PER
val: 0 0 1 0 1 0 1 1

Example 4-3 EMM Warning Message

4,4.3 Voltage Margining
The voltage regulators in the VAX 8800 system can be margined up
or down by the console operator, using the SET MARGIN command.

The Margin Enable (MARGEN) and Margin Hi Lo (MARHILO) Registers
shown in Figure 4-4 are EMM registers used to margin the Module
Power Supply Regulators. The MARGEN Register enables voltage
margining for the appropriate regulator when the corresponding bit
is set. The same bit in the MARHILO register determines if the
regulator voltage is raised or lowered.



MARGIN ENABLE REGISTER

BIT SET -

BIT RESET =

07 06

A
L NOT USED

REGULATOR B

REGULATOR C

REGULATOR D

REGULATOR E

REGULATOR F

REGULATOR H

NOT USED

MARGIN
RETURN TO
NOMINAL VALUE

+5.0 V BBU

+5.0 V

-2.0 vV

-5.2 Vv

BI

Bl

MARGIN H! LO REGISTER

BIT SET =

02 BIT RESET

07 06 05 04 03 01 00

NOT USED

NOT USED

Figure 4-4

I 4-15

MARGIN H1i
= MARGIN LO

REGULATOR B +5.0 V BBU

REGULATOR C +5.0 V

REGULATOR D -2.0 V

REGULATOR E -5.2 Vv

REGULATOR F BI

REGULATOR H BI

SCLD-110

Margin Enable and Margin Hi Lo Registers



4.5 MAINTENANCE AIDS

4.5.1 Machine Check Logout Stack

A machine check exception is taken any time the processor detects
an internal error. Each machine check exception must be detected
and reported to VMS in an established way. Parameters from the
environment in which the error occurred have to be collected from
various locations in the machine and pushed onto a Machine Check
Logout Stack. The data in the stack is used by VMS to determine
whether to continue to run normally or halt and return to Console
Mode. Figures 4-5 through 4-15 show the format of the Machine
Check Logout Stack and associated error registers.
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STACK FRAME LENGTH IN BYTES (20 HEX)

MACHINE CHECK STATUS REGISTER (MCSTS)

MICROPC

VA/VIBA

IBOX ERROR REGISTER (IBER)

CBOX ERROR REGISTER (CBER)

EBOX ERROR REGISTER (EBER)

NMiI FAULT SUMMARY REGISTER (NMIFSR)

NM! ERROR ADDRESS REGISTER (NMIEAR)

MACROPC

PROCESSOR STATUS LONGWORD (PSL)

SCLD-11+

Figure 4-5 Machine Check Logout Stack
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CBOX ERROR REGISTER
31 302928 27262524 232221201918 171615 1413121110 09 08 07 06 05 04 03 02 01 00

o(ofojoj0f0|0|0}0 0 0 010 ojoto

-~ VY Yy

VA PARITY ERROR ——— I I
TB DATA PARITY ERROR

CACHE DATA PARITY ERROR

MEM DATA PARITY ERROR

TB TAG PARITY ERROR

NMI CS PARITY ERROR

BAD READ DATA

BAD PIBA DATA

NMI DATA PARITY ERROR

SCLD-112

Figure 4-6 CBox Error Register

IBOX ERROR REGISTER
31 30 29 28 2726 2524 23 2221201918 1716151413 121110 09 08 07 06 05 04 03 02 01 00

o/loflojojojoj0jOoj0|0O|O|0O;0|0O|0O|O|OjO|0]|O

PiBA FAILURE

BAD MICROADDRESS

IB PARITY ERROR, UPPER WORD
1B PARITY ERROR, LOWER WORD
SEQ IPR PARITY ERROR

DEC IPR PARITY ERROR
DECODER RAM OUTPUT PARITY ERROR
CONSOLE TO DEC PARITY ERROR
CS0 PARITY ERROR

CS1 PARITY ERROR

CS2 PARITY ERROR

DEC TO CONSOLE PARITY ERROR

SCLD-113



EBOX ERROR REGISTER

07 06 05 04 03 02 01 00

| |

B SIDE PARITY ERROR ‘_l

A SIDE PARITY ERROR

SOURCE FOR B SIDE DATA / I
SOURCE FOR A SIDE DATA

SCLD-114

Figure 4-8 EBox Error Register

NICTRL -- NMI INTERRUPT CONTROL IPR# = 80 WRITE ONLY

31302928 27262524 232221201918 171615 1413 121110 09 08 07 06 05 04 03 02 01 00

l f o
oofo o‘lo‘ollofoooololo 0lojojojojolofolojo|o ojojofofo
- Ll
DEVICE 0 INTERRUPT ENABLE
DEVICE 1 INTERRUPT ENABLE
MEMORY INTERRUPT AND NMI FAULT ENABLE o
CLD-115

Figure 4-9 NMI Interrupt Control Register
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NMIFSR - NMI FAULT SUMMARY

IPR#

82 READ ONLY

31 30 29 28 2726 2524 23 22 21 201918 171615 1413 121110

09 08 07 06 0504 03 02 0100

TIMEOUT CODE VALID I|F BUF ID INDICATES TIMEOUT

<2> <i> <0>

a2 .00 00

e OO0+ 00O

a0 -0 —_ =0

NO TIMEOUT

RESERVED

INTERLOCK TIMEOUT

NO RETURN READ DATA

NO ACCESS - NO RESPONSE
NO ACCESS TO BUS

NO ACCESS - INTERLOCKED
NO ACCESS BUSY

ure 4-10 NMI Fault Summary

T 4-20

0010 0({0]|0 000000‘000‘000\10‘1000
1

TIMEQUT STATUS 0
TIMEOUT STATUS 1
TIMEQUT STATUS 2
TRANSMIT
READ SEQUENCE ERROR
CONTROL PARITY ERROR
ADDRESS/DATA PARITY ERROR
BUFFER ID <0>
BUFFER ID <1>
NMI FAULT

BUF 1D BUFFER CODE

<1> <0>

0 0 NO TIMEOUT

0 1 WRITE TIMEOUT

1 0 i READ TIMEOUT

1 1 | PIBA TIMEQUT

SCLD-116



NMISILO - NMI SILO DATA PR # = 83 READ ONLY

31302928 27262524232221201918 171615 1413 121110 09 08 07 06 05 04 03 02 01 00
™1 T

I
! |
| 0 0j0(0]0 oioo
|

L
L~———————NMICONHRMAHON

NMI ADDRESS/DATA
NMI FUNCTION
NMi ID MASK
RIGHT CPU ARB
LEFT CPU ARB
MEMORY ARB

1/0 1 ARB

170 0 ARB
MEMORY BUSY

DIAGNOSTIC SILO MARKER
AFTER FAULT

!
|
|

00,00

T
!
|
1

SCLD-117

Figure 4-11 NMI Silo Data

NMIEAR - NMI ERROR ADDRESS REGISTER IPR# = 84 READ ONLY
3130 29 28 2726 2524 232221201918 171615 1413 121110 09 08 07 06 05 0403 02 0100

00 NMi ADDRESS <29::00>

SCLD-118

Figure 4-12 NMI Error Address Register
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COR - CACHE ON REGISTER IPR# = 85  READ/WRITE
31 30 29 28 2726 2524 23 2221201918 171615 1413 121110 09 08 07 06 05 04 03 02 0100

ojojojojofo

ololojlolo|o|o|o|Oo|OjO|O|0O|O0O(0O|0|0|0

olo|ojojof0]|O

CACHE ON
SCLD-119

Figure 4-13 Cache ON Register

MCSTS - MACHINE CHECK STATUS  IPR# = 26 READ VERSION

31 30 29 28 2726 2524 2322212019 18 1716151413 121110 09 08 07 06 0504 03 02 0100

olololojojo|0jOj0{0|0|0|0]0

ololo|ojlo|ojofolojolojo]0|0 |0

MACHINE CHECK ENTERED FROM INTERRUPT
MACHINE CHECK IN PROGRESS
ABORT

SCLD-120

Figure 4-14 Machine Check Status

REVR1 - REVISION REGISTER 1 IPR# = 86 READ ONLY
31 30 29 28 2726 2524 232221201918 1716151413 121110 09 08 07 06 05 04 03 02 0100

CcCs DEC SEQ WCS

SHR SLC1 SLCo ADP

REVR2 - REVISION REGISTER 2 IPR# = 87 READ ONLY

31 30 29 08 2726 2524 232221201918 171615 1413 121110 09 08 07 06 05 04 03 02 0100
UCODE TOP REV USER UCODE REV CONSOLE TOP REV BACKPLN CLK
SCLD-121

Figure 4-15 Revision 1/2 Registers
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SECTION 2
SYSTEM BUS SUMMARY



CHAPTER 1
MEMORY INTERCONNECT (NMI)

1.1 INTRODUCTION

The Memory Interconnect (NMI) is a synchronous backplane bus that
interconnects the VAX 8800 primary and attached CPUs, memory, and
I1/0 adapters as shown in Figure 1-1. Terms wused in the NMI
description that follows are defined in Table 1-1.

The NMI has 32 multiplexed address/data lines plus control lines
and system clocks. It also has address/data and control line
parity. Bus arbitration is centralized (bus arbitrator in left
CPU) and bus signals are ECL, except for FET-driven AC LO and DC LO
signals.

The primary CPU services all interrupts generated on the NMI. (The
primary CPU may be either the left or right CPU in dual-processor
systems.) It also performs all I/0 data transfers on the NMI.
The NMI supports the following read/write transactions:

® Write transactions: longword, quadword, and octaword

® Read transactions: longword, octaword, and hexword
Longword, quadword, octaword, and hexword transactions are used to
transfer memory data. Only longword transactions are used for I/0

data transfers. If desired, memory data transfers may be hardware
interlocked by the memory nexus (interlocked reads/unlock writes).
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CPU 0
NEXUS

(PRIMARY CPU)

CPU 1
(ATTACHED CPU)
NEXUS

MEMORY INTERCONNECT (NMI)

-

170
ADAPTER 0

1/0
ADAPTER 1
NEXUS
(NBT 1)

MEMORY
NEXUS

Figure 1-1

Memory Interconnect

[
-
}...J
I
N

(NMI)
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Table 1-1 Glossary of NMI Terms

Term

Definition

Nexus

Transaction

Transfer

Commander

Responder

A hardware block that physically connects to the NMI.

A task performed on the NMI (read/write). A transaction
consists of one or more transfers. For example, a write
transaction consists of one transfer (command/address
and data). A read consists of two or three transfers
(command/address followed by one or two transfers of
return read data).

The discrete transfer of data that occurs after a nexus
gets control of the NMI and before it relinquishes the
NMI. A transfer may consist of one Or more bus cycles.
For example, (1) the command/address cycle of a read
transaction or (2) the command/address cycle and the
data cycle(s) of a write transaction.

The nexus that initiates a transaction. For example, if
the CPU initiates a read from memory, the CPU is the
commander.

The nexus that is the object of a transaction. For
example, if the CPU initiates a read from memory, the
memory is the responder.

IT 1-3



1.2 BASIC FUNCTIONS
The NMI performs six major functions.

l.

Memory read/write operations -- By means of bus read/write
transactions, allows the CPUs and I/O adapters to access
memory. (Memory read/write operations by the I/0 adapters
are DMA operations initiated by the I/0 devices connected
to the adapters.)

I1/0 register read/write operations -- Again by means of
bus read/write transactions, allows the primary CPU to
access control/status registers in the memory, 1/0

adapters, and the I/O devices connected to the adapters.

Interrupt handling -- Transmits interrupt requests
generated by the memory and I/O adapters to the primary
CPU. (Interrupt requests by an I/0 adapter may be
generated by the I/O adapter itself or by the I/0 devices
connected to the adapter.)

System synchronization -- Provides system clocks to all
nexus.

System initialization -- Allows console to initialize all
nexus. (UNJAM console command asserts UNJAM signal on
NMI.)

Power loss warning -- Provides AC LO and DC LO signals to

all nexus.

=t
(B
\_—l
|
N



1.3 NMI SIGNALS AND TIMING

Generally, bus signals are asserted and negated at the beginning of
a bus «cycle, which is phase B of the system clock. Also, bus
signals are received and latched using phase A of the system clock.
Refer to Figure 1-2,

< NMI BUS CYCLE j

B CLK H \ \.
X TRANSMIT PERIOD

'4_%%

A CLK H ///—_—__—“\\\7
RECEIVE PERIOD

DATA

LATCHED

SCLD-123

Figure 1-2 Basic NMI Timing

All the NMI signals are shown in Figure 1-3 and defined in Table
1-2. Most signals are generated by (and only connect to) the NMI
nexus. However, the system clocks and some miscellaneous control
signals originate on the clock module, and the bus arbitration
signals connect to the bus arbitrator in the left CPU (in the CCs
module). AC LO and DC LO signals are generated by the EMM in the
power subsystem.
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32 32
ya y4
'/ ADDRESS DATA <31:00> H __/
7/ 7
< /5 FUNCTION<4:0> H 5 >
NMI 7, 4 . NMI
NEXUS | ~ ID_MASK<3:0> H 4 | NEXUs
<+ 7
2
/" DATA PARITY H, FUNCT ID PARITY H & _
| / >
2
L 7 CONFIRMATION<1:0> H ,2
INTERRUPT AND FAULT LINES (SEE SHEET 3)
ARBITRATION LINES (SEE SHEET 2)
CLOCK AND MISC. CONTROL LINES (SEE SHI_ET 4)
A
< AC LO L/DC LO L|(SEE SHEET 4) .
A >
CLOCK BUS
EVM «—— ARBITRATOR
MODULE ARBITRATOR D o
CCS MODULE
(LEFT CPU)

ARBITRATION LINES {17)

MEMORY HOLD H (1) MEMORY ARB H (1) MCL BUS EN (1)
LEFT CPU HOLD H (1) 1/0 0 ARB H (1) 1/0 0 BUS EN (1)
RIGHT CPU HOLD H21§ 1/0 1 ARB H 1 1/0 1 BUS EN 1
110 Q HOLD H 1 LEFT CPU ARB H 51; LEFT_CPU BUS EN 21;
i/O HOLD H (1) RIGHT CPU ARB H i RIGHT CPU BUS EN (1)
MEMORY BUSY H (1) MEMORY BUSY ARB H }1%

INTERRUPT LINES (14) MISC. CONTROL LINES {10)
LCPU MEM INTR H
(1 RCPU MEM INTR (1) UNJAM <2:0> H (23

DEVO LINTR H (1 DEVo MINTR W é{é SLOW CLOCK ENABLE H $1§
DEV1 LINTR H $1; DEV1 RINTR H 1) SLOW MODE H 1
DEVO LINTR LVL<1:0> H (2) DEVO RINTR LVL<1:0> H {(2) HARBINGER <2:0> H §3;
DEV1 LINTR LVL<1:0> H (2) DEV1 RINTR LVL<1:0> H (2) RESET <1:0> H 2

FAULT LINES (5) SYSTEM CLOCKS BACKPANEL SELECT LEVELS

FAULT DETECT<3:0> H (4) (SEE SHEET 4) 170 SEL <1> H, ONE LEVEL H

FAULT H (1)

SCLD-124

Figure 1-3 NMI Signals (Sheet 1 of 4)
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NMI_ARBITRATION LINES

LEFT CPU HOLD H_ | |, 1/0 0 HOLD H
&t LEFT CPU_ARB H 1/0_0 ARB H ADAPTER 0
v —> NEXUS
¢« _LEFT CPU BUS EN H 1/0_0 BUS EN H
¢« MEMORY BUSY H MEMORY BUSY H__,|
RIGHT CPU HOLD H 1/0 1 HOLD H
—» 170
RIGHT RIGHT CPU ARB H /0 1 ARB H ADAPTER 1
« NEXUS
NEXUS <« RIGHT CPU BUS EN H 1/0 1 BUS EN H
«MEMORY BUSY H MEMORY BUSY H |
Bus  le (ARB REQ LINES), ® | | mevosy HoiD H
ARBITRATOR HOLD LINES) .5 MEMORY
«_(H L o | ¢ MEMORY BUSY H NEXUS
5
ccs mopy g —BUS EN LINES) />, ¢ MEMORY BUSY ARB H
(LEFT CPU)
MEMORY BUSY ARB H <« MEMORY ARB H
«(SEE_NOTE) MCL BUS EN H
L
NOTE: MEMORY BUSY ARB IS NOT AN ARBITRATION REQUEST LINE. IT IS A GOPY

OF MEMORY BUSY THAT CONNECTS TO THE BUS ARBITRATOR.

Figure 1-3 NMI Signals (Sheet 2 of 4)
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INTERRUPT AND FAULT LINES

{\4 DEVO LNTR H

<« DEVO LINTR H

LEFT 2 2 170
CPU | (DEVO LINTR LVL<1:0> H/| |/ DEVO LINTR LVL<1:0> H ADAPTER 0
NEXUS 4 7 NEXUS

DEVO RINTR H

«DEV1 LINTR H

<
(SEE NOTE)¢DEV1 LINTR LVL<1:0> H/2 ) ,2 DEVO RINTR LVL<1:0> H
F

€ -CPU MEM INTR H FAULT DETECT <2> H

FAULT H

—»
FAULT DETECT 0 H > /O SEL<i> H=0 1 ]
FAULT H 7
(HARD WIRED)y¢——ONE LEVEL H
DEV0 RINTR_H DEV1 LNTR H
RIGHT | 1T
CPU DEVO RINTR LVL<1:0> H2| |2 DEV1 LINTR LVL<1:0> H /0
NEXUS  [¢ 7 7 ADAPTER 1
¢ DEV1 RINTR H ¢ DEVi RINTR H ADAPT
(SEE NOTE) . DEVi BRINTR LVL<1:0> H/,?: ‘7/2 DEV1 RINTR tV0<1:0> H
¢ RCPU MEM INTR H ¢ _FAULT DETECT <3> H
FAULT H
FAULT DETECT 1 H > 1/0_SEL<1> H=1 1
< FAULT H
(HARD WIRED) ¢ ONE LEVEL H
| LCPU_MEM INTR H
| BCPU_MEM INTR H MEMORY
FAULT DETECT<3:0> H >
| FAULT H
NOTE: ONLY THE PRIMARY CPU IS
ENABLED TO SERVICE NMI
INTERRUPTS.

SCLD-126

Figure 1-3 NMI Signals (Sheet 3 of 4)
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NOTE 1:

NOTE 2:

SYSTEM CLOCKS AND MISCELLANEOQUS CONTROL SIGNALS

FAN

AC LO H
EMM
CPU € SLOW CLOCK ENABLE H DC LO H
NEXUS | aclom
(-
<« DCLOH UNJAM <n> H >
SLOW CLOCK ENABLE H o
" "o
ADAPTER n
SLOW MODE H »| NEXUS
HARBINGER <n> H o
"I n = <i:0>
UNJAM <2:0> H _| Ac Lo H o
2 Ld
SLOW CLOCK ENABLE HolZ| Dc 1o H >
SLOW_MODE H «BESET <n> H
3 (SEE
CLOCK HARBINGER<2:0> H NOTE 1)
MODULE 2
RESET <1:0>
UNJAM <2> H
SLOW CLOCK ENABLE H
SLOW MODE H MEMORY
NEXUS

SYSTEM CLOCKS
(SEE NOTE 2)

HARBINGER <2> H

DC LO H

HARBINGER SIGNAL NOT USED BY NBI.

NEXUS SYSTEM CLOCKS USED

CcPU A CLK H/L, B CLK H/L
MEMORY | F A CLK H/L, F B CLK H/L
110

A CLK H/L, B CLK H/L
F A CLK H/L, F B CLK H/L (THESE CLOCKS NOT USED BY NBI)

Figure 1-3

11 1-9
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NMI Signals (Sheet 4 of 4)
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Table 1-2

NMI Signal Descriptions

Signal Line(s) Number Description

ADDRESS 32 Transfer 30-bit read/write address

DATA<31:00> H during NMI command/address cycles
and 32-bit longword of read/write
data during NMI data cycles.

FUNCTION<4:0> H 5 Specify type of bus transaction

(command type) during command/address
cycle and type of data during NMI
data cycles.

FUNCTION<K4:0>

(Hex) Command/Data Type

10 Read Longword

12 Read Octaword

13 Read Hexword

14 Read Longword (Interlocked)
16 Read Octaword (Interlocked)
17 Read Hexword (Interlocked)
1B Write Longword

iF Write Octaword

18 Write Longword Masked

19 Write Quadword Masked

1A Write Octaword Masked

1C Write Longword Unlock Masked
1D Write Quadword Unlock Masked
1E Write Octaword Unlock Masked
00 No Op

04 Memory Pause (Not Used)

oA Return Read Data (Good Data)
0 Return Read Data (Bad Data)
08 Read Continuation (Good Data)
0C Read Continuation (Bad Data)
09 Write Data
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Table 1-2 NMI Signal Descriptions (Cont)

Signal Line(s) Number Description

ID MASK<3:0> H 4 Specify ID of commander during NMI
command/address cycles and return read
data cycles. No ID is required for the
memory nexus because it is never the
commander during a bus transaction.

ID Nexus

0100 CPU 0 (Primary CPU)
0101

0110 CPU 1 (Attached CPU)
0111

1000 NBI 0 (VAXBI 0)
1001

1010 NBI 0 (VAXBI 1)
1011

1100 NBI 1 (VAXBI 0)
1101

1110 NBI 1 (VAXBI 1)
1111

During NMI write data cycles of masked
write transactions, specify the bytes in
the longword (four bytes) of write data
to be written,

MASK BIT
3210
XXX1 Write byte 0
XX 1X Write byte 1
X 1XX Write byte 2
1 XXX Write byte 3
DATA PARITY H 1 Transfers even parity bit for the 32

ADDRESS DATA lines during NMI command/-
address and data cycles. Parity computed
by transmitter. Parity checked by all
nexus.
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Table 1-2 NMI Signal Descriptions (Cont)

Signal Line(s) Number Description

FUNCTION ID 1 Transfers even parity bit for the five

PARITY H FUNCTION lines and four ID MASK lines during
NMI command/address and data cycles. Parity
computed by transmitter. Parity checked by
all nexus.

CONFIRM- 2 Specify response (by responder) to function

ATION<1:0> H sent by commander.

CONFIRMATION
<1:0> Response
00 No response
01 Responder accepts data
10 Responder interlocked
11 Responder busy

Arbitration Lines

MEMORY ARB H 1 Asserted by memory nexus to request use of
the bus. This bus arbitration request line
has the highest priority.

I0 0 ARB H 1 Asserted by I/0 adapter 0 nexus (NBI 0) to
request use of the bus.

I0 1 ARB H 1 Asserted by I/O adapter 1 nexus (NBI 0) to
request use of the bus.

LEFT CPU ARB H 1 Asserted by left CPU nexus to request use
of the bus.

RIGHT CPU ARB H 1 Asserted by right CPU nexus to regquest use
of the bus.

NOTE
Arbitration requests by I/0 adapter and CPU nexus

have
an alternating basis.

the same (lowest) priority and are granted on
That is, if there are both
CPU and 1I/0 adapter requests, a CPU will get the
bus if an I/0 adapter was given the bus last (and
vice versa). Also, if there are two CPU requests
when a CPU is given the bus, CPU 0 gets the bus 1if
CPU 1 was given the bus last (and vice versa).
Similarly, if there are two I/0O adapter requests
when an I/0 adapter is given the bus, I/O adapter 0
gets the bus if I/0 adapter 1 was given the bus
last (and vice versa).
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Tab

le 1-2

NMI Signal Descriptions (Cont)

Signal Line(s)

Number

Description

MEMORY BUSY H

MEMORY BUSY
ARB H

MEMORY HOLD H

LEFT CPU HOLD H

RIGHT CPU HOLD H

IO 0 HOLD H

IO 1 HOLD H

1

Asserted by memory nexus when its command /
data buffers are full. Causes current
transmitter to abort transaction and
rearbitrate for the bus when asserted during
command/address cycle of memory read, or
during command/address or first data cycle
of memory write.

Not a bus arbitration request line. It is a
copy of MEMORY BUSY that connects only to
the bus arbitrator. Asserted by memory nexus
when its command/data buffers are full. This
line disables the bus arbitrator so that it
will not arbitrate requests by the CPU and
I/0 adapter nexus. (The arbitrator will
arbitrate requests from the memory nexus.)

Asserted by memory nexus when it requires
another (more than one) bus cycle after
winning the bus.

Asserted by left CPU nexus when it requires
another (more than one) bus cycle after
winning the bus.

Asserted by right CPU nexus when it requires
another (more than one) bus cycle after
winning the bus.

Asserted by I/0O adapter 0 nexus when it
requires another (more than one) bus cycle
after winning the bus.

Asserted by I/O adapter 1 nexus when it
requires another (more than one) bus cycle
after winning the bus.

NOTE

HOLD signals disable bus arbitrator so that it
cannot arbitrate requests by any nexus.

MCL BUS EN H

Asserted by bus arbitrator to grant memory
nexus use of the bus.
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Table 1-2 NMI Signal Descriptions (Cont)

Signal Line(s) Number Description

Interrupt Lines

IO 0 BUS EN H 1 Asserted by bus arbitrator to grant I/0
adapter 0 nexus (NBI 0) use of the bus.

Asserted by bus arbitrator to grant I/0
adapter 1 nexus (NBI 1) use of the bus.

IO 1 BUS EN H

p—

LEFT CPU BUS 1 Asserted by bus arbitrator to grant left

EN H CPU nexus use of the bus.

RIGHT CPU BUS 1 Asserted by bus arbitrator to grant right

EN H CPU nexus use of the bus.,.

LCPU MEM INTR 1 Asserted by memory nexus to interrupt the

PT H left CPU. (Left CPU enabled as the primary
CPU.)

RCPU MEM INTR 1 Asserted by memory nexus to interrupt the

PT H right CPU. (Right CPU enabled as the primary
CPU.)

DEVO LINTR H 1 Asserted by I/0 adapter 0 nexus (NBI 0) to

interrupt the left CPU. (Left CPU enabled as
the primary CPU.)

DEV0O RINTR H 1 Asserted by I/0 adapter 0 nexus (NBI 0) to
interrupt the right CPU. (Right CPU enabled
as the primary CPU.)

DEVO LINTR 2 Asserted by I/O0 adapter 0 nexus (NBI 0) to
LVLL1:0> specify the interrupt request level to left
CPU. (Left CPU enabled as primary CPU.)

DEV0O RINTR 2 Asserted by I/0 adapter 0 nexus (NBI 0) to
LVIL<1:0> specify the interrupt reguest level tc right
CPU. (Right CPU enabled as primary CPU.)

DEVO (L/R)INTR LVL Interrupt

<1:0> Request Level
00 BR4

01 BR5

10 BR6

11 BR7
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Table 1-2 NMI Signal Descriptions (Cont)

Signal Line(s) Number Description

Fault Lines

DEV]1 LINTR H 1 Same as DEVO LINTR except asserted by I/0
adapter 1 (NBI 1) nexus.

DEV1 RINTR H 1 Same as DEVO RINTR except asserted by I/0
adapter 1 (NBI 1) nexus.

DEV1 LINTR 2 Same as DEVO LINTR LVL<1:0> except asserted

LVL<1:0> by I/0 adapter 1 (NBI 1) nexus.

DEV1 RINTR 2 Same as DEVO RINTR LVL<1:0> except asserted

LVL<1:0> by 1/0 adapter 1 (NBI 1) nexus.

FAULT 4 Each line asserted by corresponding I/0

DETECT<3:0> adapter or CPU nexus when it has detected

a fault. signals are ORed by fault-handling
logic in memory nexus.

FAULT DETECT Fault Detected By
0 Left CPU nexus
1 Right CPU nexus
2 1/0 adapter 0 nexus (NBI 0)
3 I1/0 adapter 1 nexus (NBI 1)

FAULT H 1 Asserted by fault-handling logic in memory
nexus to signal that a FAULT DETECT line
has been asserted. Used to generate a CPU
interrupt request, freeze the NMI transaction
silo in the CBox, and latch the fault status
registers in all nexus.

Miscellaneous
Control Signals

UNJAM H 1 Initializes all nexus without clearing fault
status registers. If I/0O nexus is an NBI,
UNJAM also causes a power-fail sequence on
the VAXBI. Asserted by clock module in
response to the console command.
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Table 1-2

NMI Signal Descriptions (Cont)

Signal Line(s)

Number

Description

RESET <1:0> H

SLOW CLOCK
ENABLE H

SLOW MODE H

HARBINGER<2:0> H

AC LO H

DC LO H

2

et

Each line asserted by corresponding NBI
adapter if VAXBI RESET is asserted. Causes
console to stop both CPUs and then boot the
system (a cold start). The boot does not
occur until RESET is negated.

RESET Asserted By
0 I1/0 adapter 0 nexus (NBI 0)
1 I1/0 adapter 1 nexus (NBI 1)

Asserted by clock module and used to
increment timeout counters in all nexus.

Early-warning signal asserted by clock
module to indicate that the normal system
clocks (A CLK and B CLK) are about to
start or stop. Asserted a minimum of 4
microseconds before HARBINGER.

All lines asserted by clock module during
last B PHASE clock when normal system
clocks are stopped. Used as clock blocking
signal by nexus using free-running clocks
(F A CLK and F B CLK) to simulate stopped-
clock condition.

HARBINGER Connects To
0 I/0 adapter 0 nexus
1 I/0 adapter 1 nexus
2 Memory nexus

FET driven and received power-loss warning
signal asserted by EMM when ac power is
below specified limits,

FET driven and received power-loss warning
signal asserted by EMM when dc power is
below specified limits.
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Table 1-2 NMI Signal Descriptions (Cont)

Signal Line(s) Number Description

Backpanel
Select Levels

I/0 SELK1> H 1 Backplane-generated (hard-wired) signal
that determines I/0 address space for
each I/O adapter nexus. A logical one is
generated by backplane wiring that connects
I/0 SEL input to the ONE LEVEL output of
the nexus. (No connection is equivalent to
a logical zero.)

I/0 SEL I/0 NMI Base Address
<1> Adapter (Hex)
0 0 2000 0000
1 1 2400 0000
ONE LEVEL H 1 Logic level output (logical one) asserted by

each I/0 nexus. Used to assert I/O SEL input
signal on the backplane.

System Clocks

A CLK H/L 2 Phase A of normal system clock. Generated on
clock module. Stalled A CLK is generated in
a nexus by gating A CLK with STALL. The STALL
signal is asserted by the CBox.

B CLK H/L 2 Phase B of normal system clock. Generated on
clock module. An NMI bus cycle is defined as
the period between the leading edge of one
B CLK and the next.

F A CLK H/L 2 Phase A of free-running system clock.
F B CLK H/L 2 Phase B of free-running system clock.
NOTE

A nexus may receive more than one copy of a
specific system clock from the clock module. Each
copy of a system clock is a pair of differentially
driven and received signals connecting to only one
destination module.
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1.4 NMI ADDRESS SPACE

The 1 Gbyte of NMI address space is allocated as shown 1in Figure
1-4, One half, 512 Mbytes, is allocated to physical memory. The
other half is allocated to I/O register space.

I/0 register space includes a 64-Mbyte block allocated to each of
the two I/0 adapters (128 Mbytes total), a reserved block of 352
Mbytes, and a 32-Mbyte block allocated to memory controller
control/status registers (CSRs). When an I1/0 adapter is an NBI,
the 64 Mbytes of address space is VAXBI I/0 space and is allocated
evenly between the two VAXBIs that may connect to the adapter (32
Mbytes for each VAXBI). The I/O registers in the memory controller
(the CSRs) and the NBI are listed in Table 1-3. NBI registers are
either VAXBI node registers or NMI nexus registers (for example,
the NBI CSRs). The VAXBI node registers, one set for each VAXBI,
are in the node register space for VAXBI 0 and VAXBI 1. The NMI
nexus registers are in the private address space for VAXBI 0.
VAXBI address space is discussed in Chapter 2.

The NMI address, which is 30 bits, is asserted on the ADDRESS DATA
lines at the beginning of a read or write transaction (during the
command/address cycle). The address is asserted on the 30
low—-order lines (ADDRESS DATA<29:00>). The two high-order lines
(ADDRESS DATA<31:30>) are not used for addressing purposes.

As shown in Figure 1-5, not all of the NMI address bits are
significant. Their significance depends upon the transaction type.

During write transactions, write data is transferred to naturally
aligned addresses (even longword addresses, quadword addresses that
are a multiple of eight, octaword addresses that are a multiple of
16). This means that the following low-order bits can be assumed
to be zeros and, thus, are not significant.

1. Two low-order bits of a longword address

2 Three low-order bits of d

quadword address

Q

3. Four low-order bits of an octaword address
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During read transactions, transfers are also from naturally aligned
blocks of data, but multilongword transfers may be wrapped. Thus,
the address for read octaword and read hexword transactions must
identify the longword to be transferred first; only the two
low-order bits are not significant. Also, as for a write longword
address, the two low-order bits of a read longword address are not
significant except for longword-oriented devices (memory and most
I/0 devices). For word-oriented devices (some UNIBUS devices that
may Dbe connected to an 1/0 adapter), address bit <01> is
significant. This is because there is no explicit NMI read word
transaction and the read longword transaction must specify the word
address. Low words (address bit <01> = 0) are returned over the 16
low-order ADDRESS DATA lines during read data cycles. (The 32
ADDRESS DATA lines normally transfer a longword of data at a time.)
High words (address bit <01> = 1) are returned over the 16
high-order ADDRESS DATA lines.

Basic NMI address selection is shown in Figure 1-6. Address bit
<29> determines if the address is a memory or an I/0 address. If
it is an I/0 address, bits <28:26> specify the I/0 adapter (0 or
1). In addition, when the 1I/0 adapter is an NBI, bit <255 selects
the appropriate VAXBI (0 or 1). All these bits (<29:25>) must be
equal to one to select a memory controller CSR.
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0000 0000
PHYSICAL NBI ADAPTER ADDRESS ALLOCATION
MEMORY (32 MB FOR EACH VAXBI)
(512 MB)
_ NBI 0
2000 00600
VAXB! 0
1FFF FFFF 21FF FFFF (32 MB)
2000 0000
110 2200 0000 VAXBI 1
(64 MB) 23FF FFFF
23FF FFFF B 2
4 -
2400 0000 o - .
ADAPTER 1 2400 0000
(64 MB) VAXBI 0
27FF FFFF (32 MB)
2800 0000 25FF FFFF
RESERVED 2600 0000 | VAXB! 1
(352 MB) (32 MB)
27FF FFFF
e
3DFF FFFF
3E00 0000 | MEMORY
CONTROLLER
3FFE FFFF |02 MB)

SCLD-128

Figure 1-4 NMI Address Space
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Table

1-3

I/0 Registers in NBI and Memory Controller

Address (Hex)*

Registers

NBI (VAXBI Node) Registers

bb
bb
bb
bb

+ + + +
(@I -YWe]

bb

+

bb
bb

+ +

bb
bb
bb
bb

+ 4+ + +

bb
bb

+ +

bb +

bb +

bb +

bb +

bb +

14
18

1cC
20
24
28

2C
30

40

FO

FO

FO

FO

Device Register (DTYPE)

VAXBI Control/Status Register (BICSR)
Bus Error Register (BER)

Error Interrupt Control Register
(EINTRCSR)

Interrupt Destination Register
(INTRDES)

IPINTR Mask Register (IPINTRMSK)
IPINTR/STOP Destination Register
(FIPSDES)

IPINTR Source Register (IPINTRSRC)
Starting Address Register (SADR)
Ending Address Register (EADR)

BCI Control/Status Register
(BCICSR)

Write Status Register (WSTAT)
Force IPINTR/STOP Command Register
(FIPSCMD)

User Interrupt Control Register
(UINTRCSR)

General-Purpose Register 0 (GPRO)
~= Not used

General-Purpose Register 1 (GPRO)
—-—- Not used

General-Purpose Register 2 (GPRO)
—-— Not used

General-Purpose Register 3 (GPRO)
-= Not used

NBI (NMI Nexus) Registers

2x08
2x08
2x08
2x08

2x08
2x08
2x08
2x08

0000
0004
0008
00o0c

0010
0014
0018
001cC

Control/status register 0
Control/status register 1
Reserved
Reserved

BR4 vector register
BR5 vector register
BR6 vector register
BR7 vector register
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Table 1-3 1I/0 Registers in NBI and Memory Controller (Cont)

Address (Hex)* Registers

Memory Controller Registers

3E00 0000 Control/status register 0

3E00 0004 Control/status register 1

3E00 0008 Control/status register 2

3E00 000cC Control/status register 3

3E00 0010 Control/status register 4

3E00 0014 Control/status register 5

3E00 0018 Control/status register 6
*NOTE:
For NBI (VAXBI Node) For NBI (NMI Nexus)
Registers Registers
bb = 2000 0000 (hex) + 2000 (hex) * node ID (NBI 0, VAXBI 0)
bb = 2200 0000 (hex) + 2000 (hex) * node ID (NBI 0, VAXBI 1)
bb = 2400 0000 (hex) + 2000 (hex) * node ID (NBI 1, VAXBI 0)
bb = 2600 0000 (hex) + 2000 (hex) * node ID (NBI 1, VAXBI 1)
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READ LONGWORD (TO WORD-ORIENTED DEVICE)

313029 01 00
X| X SIGNIFICANT ADDRESS BITS X
READ LONGWORD, READ OCTAWORD, READ HEXWORD, WRITE LONGWORD

313029 02 01 00
X| X SIGNIFICANT ADDRESS BITS XX
WRITE QUADWORD

3130 29 03 02 01 00
X)X SIGNIFICANT ADDRESS BITS X|XIX

WRITE OCTAWORD
313029

X| X SIGNIFICANT ADDRESS BITS

04 03 02 01 00

X1 X|X]|X

NOTE: AN X INDICATES BIT IS NOT USED FOR ADDRESSING PURPOSES.

SCLD-129

Figure 1-5 NMI Address Bits
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00

29 28
E MEMORY ADDRESS
E 1/0 REGISTER ADDRESS
28 2726 25 00
0:0:0 1/C ADAPTER 0 REGISTER SELECT BITS
25 24 00
0 VAXB! 0 REGISTER SELECT BITS
7o)
ADAPTER
25 00 IS NBI
(NB1 0)
1 VAXB! 1 REGISTER SELECT BITS
28 2726 25 00
001 /0 ADAPTER 0 REGISTER SELECT BITS
25 24 00 _]
0 VAXB! 0 REGISTER SELECT BITS
WHEN_1/0
AUACriIcn
7 Is NBi
(NBI 1)
1 VAXB! 1 REGISTER SELECT BITS

28 2726 25 24 00

11111 1 MEMORY CONTROLLER CSR SELECT BITS

SCLD-130

Figure 1-6 NMI Address Selectiocn
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1.5 READ/WRITE TRANSACTIONS

Before any nexus can perform a transfer of data on the NMI, it must
first request and then be granted use of the bus. It does this by
asserting its NMI arbitration (ARB) request line. The bus
arbitrator monitors all requests, resolves request priority if more
than one nexus is requesting the bus, and (when the bus is free)
grants the bus by asserting a bus enable (BUS EN) line to the
requesting nexus. The bus is granted for one bus cycle only. If a
transfer 1is to take more than one cycle, the nexus must assert a
HOLD signal during each bus cycle of the transfer except the last
cycle. (The HOLD signal from a nexus disables the bus arbitrator.)
Bus arbitration is discussed in Section 1.7.

A bus write transaction requires only one transfer. That 1is, the
nexus initiating the transaction (the commander) arbitrates for the
bus and then transfers command/address information followed by
write data. This ends the transaction. No transfer by the nexus
addressed by the commander (the responder) is required.

A bus read transaction requires more than one transfer. First, the
commander arbitrates for the bus and transfers the command/address.
The responder then must arbitrate for the bus and return the read
data to the commander during a second transfer. A third transfer
of read data may be necessary for some read hexword transactions.
This occurs when the second octaword of data is not ready to be
transferred following transfer of the first octaword.

Timing for a write transaction and a read transaction are shown in
Figures 1-7 and 1-8. The information transmitted on the NMI signal
lines is indicated.

During the first bus cycle of a transaction, called the
command/address cycle, the commander transmits the memory or I/0
address on the NMI ADDRESS DATA lines. It also transmits the
transaction type (for example, write octaword and read longword) on
the FUNCTION lines and its own ID number on the ID MASK lines.
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WRITE OCTAWORD

WRITE QUADWORD

/
WRITE LONGWORD

NMI CYCLE C/A DATA DATA DATA DATA
LEGEND
30-BIT WRITE | WRITE WRTvTE warlTE
ADDR DATA DATA DATA DATA — COMMANDER
ADDRESS DATA <31:00> | <29:00> 0 1 2 3 % - OR%SPONDER
AN = ALL NEXUS
C/A = COMMAND/
ADDRESS
SOURCE c c c c c CYCLE
WRITE | WRITE WRITE WRITE | WRITE
FUNCTION<4:0> CMD DATA DATA DATA DATA
SOURCE C C (o] (o] C
_ CMDR'S BYTE BYTE BYTE BYTE |¢—
ID MASK<3:0> ID MASK MASK MASK MASK
SOURCE c Cc C C C
GEN c G G c c MASK FIELD
IGNORED BY
DATA PARITY EVEN EVEN EVEN EVEN EVEN RESPONDER | F
FUNCTION |F PARITY EVEN EVEN FVEN EVEN EVEN AT R A A QI
i I rFARLLY NU IV‘IHOI’\EL}
OHK AN AN AN AN AN WRITE.
CONFIRMATION<1:0> OK
SOURCE R
L—iCONFIRMATION OCCURS THIS CYCLE
FOR ALL WRITE COMMANDS.
c c c c
HOLD H \f
WRITE LONGWORD J WRITE QUADWORD t__ WRITE OCTAWORD

SCLD-43¢

Figure 1-7 NMI Write Transaction
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LEGEND

C = COMMANDER
2N= Riffongiﬁs READ HEXWORD (SEE NOTE 2)
CI/A = %%%TEAND/ADDRESS READ OCTAWORD
REA
LONGWORD
NMI N
CYCLE CIA . DATA DATA DATA DATA ~___DATA DATA DATA DATA
l 27 '/
30- SEE NOTE 1—p >
BIT READ | READ | READ | READ | 'SEE | READ | READ | READ READ
ADDR DATA | DATA | DATA | DATA (NOTE 1| DATA | DATA | DATA DATA
ADDRESS <29:00> 0 1 2 3 4 5 6 7
DATA
<31:00>
SOURCE c . R R R R ~ | R R R R
FUNCTION READ “ | RIN [ READ |READ |READ| RTN | READ | READ | READ
<4:0% VD DATA | CONT | CONT | CONT DATA | CONT | CONT | CONT
SOURCE c . R R R R R R R R
Vg
ID MASK CMDR 7 [cmpR [ cMoR [ovor [omor |~ | ovor | ovioR CMDR | CMDR
<3:0> ID ID D 1D ID 1D ID ID ID
SOURCE c g R R R R . R R R R
GEN C o R R R R R R R R
DATA pAE/ EVEN EVEN | EVEN | EVEN | EVEN EVEN | EVEN | EVEN | EVEN
F ID PAR EVEN EVEN | EVEN | EVEN | EVEN EVEN | EVEN | EVEN | EVEN
CHK AN _ | AN | AN | AN | AN _ AN AN | AN | AN
CONFIRMATION ok | f
<1:0>
SOURCE R
g i
= 7
R R R R R R
HOLD H e/ Li / \
NOTE 1: NMI AVAILABLE FOR OTHER TRANSACTIONS.
NOTE 2:  RESPONDER (MEMORY) RELEASES NMI AFTER TRANSFER OF FIRST OCTAWORD

IN THE READ HEXWORD TRANSACTION SHOW. RESPONDER (MEMORY) MAY
ALSO HOLD BUS AND TRANSFER ALL THE DATA (EIGHT SUCCESSIVE DATA
CYCLES) IF SECOND OCTAWORD IS READY FOR TRANSMISSION.

SCLD-132

Figure 1-8 NMI Read Transaction
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Following the command/address cycle and if the transaction 1is a
write, the commander transmits the write data on the ADDRESS DATA
lines during the next bus cycle or cycles. The number of these
data cycles depends on the transaction type. (One longword of data
may be transferred over the 32 ADDRESS DATA lines each bus cycle.)
Also, during the data cycles, the commander asserts the FUNCTION
lines to identify the data as write data, and it transmits a byte
mask on the ID MASK lines if the transaction is a masked write.
(The byte mask indicates which bytes in the longword of write data
are to be written.) If the transaction is a read, no data cycles
immediately follow the command/address cycle.

All nexus monitor the NMI during each bus cycle. When the
responder is addressed during a command/address cycle, it will
accept the transaction by transmitting a "responder accepts data"
(OK) response on the NMI CONFIRMATION lines. The CONFIRMATION
lines are asserted two bus cycles after the command/address cycle.
These steps complete a write transaction with the responder taking
the write data as it is received during each data cycle.

A read transaction requires the responder to arbitrate for the NMI
and return the read data to the commander over the ADDRESS DATA
lines in one or more data cycles. (Again, the number of data
cycles depends on the transaction type. Two separate transfers of
data may be required as stated previously.) The FUNCTION lines
identify the data as return read data. The first data cycle of a
transfer has a return data function specified; all others have a
read continuation function specified. Also, the function specifies
if the data is good or bad. Bad data is data that cannot be
corrected by memory.

During all read data cycles, the 1ID MASK 1lines specify the
commander and the commander completes the transaction by taking the
read data as it is transmitted by the responder. It does not
notify the responder that the data has been taken.

Figures 1-9 and 1-10 show the specific format for each read and
write transaction type.

Two separate even parity bits are generated by the transmitter
(either commander or responder) during command/address and data
cycles. One parity bit, which is generated for the information on
the ADDRESS DATA lines, 1is transmitted on the DATA PARITY line.
The other parity bit, which is generated for the information on
both the FUNCTION and ID lines, is transmitted on the FUNCTION ID
PARITY line. The two parity bits are checked by all nexus. If bad
(odd) parity is detected, it causes an NMI fault. Parity and other
errors that can occur during NMI read/write transactions are
discussed in Section 1.9.
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CYCLE
ADDRESS DATA<31:00>

FUNCTION<4:0>

ID MASK<3:0>

CONFIRMATION<1:0>

CYCLE
ADDRESS DATA<31:00>

FUNCTION<4:0>

ID MASK<3:0>

CONFIRMATION<1:0>

CYCLE
ADDRESS DATA<31:00>

FUNCTION<4:0>
ID MASK<3:0>

CONFIRMATION<1:0>

Figure 1-9

WRITE LONGWORD

C/A
ADR

WRITE
LONG

CMDR
1D

DATA
DATA | ——

WRITE| ——
DATA | — =

VIAQLS —
IVIRON e

WRITE QUADWORD

NMI Write

C/A
ADR

WRITE
QUAD

CMDR
1D

oK

DATA = DATA

DATA | DATA| ——

WRITE | WRITE| ——

DATA | DATA | ——

BYTE | BYTE | ——

MASK | MASK | ——
OK ——

WRITE OCTAWORD

C/A
ADR

WRITE
OCTA

CMDR
ID

IT 1-29

DATA | DATA | DATA | DATA

DATA | DATA | DATA | DATA | ——
WRITE | WRITE| WRITE | WRITE | —=—
DATA |DATA | DATA | DATA | —=

BYTE | BYTE | BYTE | BYTE | —=—
MASK | MASK | MASK | MASK | ——

oK ——

SCLD-133
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ALL READS (COMMAND/ADDRESS TRANSFER)

CYCLE C/A
ADDRESS DATA<31:00> | —— |ADR | ——
FUNCTION<4:0> —— |READ | ——

—— | TYPE | ——
ID MASK<3:0> g I+ (e B
CONFIRMATION<1:0> - oK

READ LONGWORD (RETURN READ DATA TRANSFER)

CYCLE DATA
ADDRESS DATA<31:00> { —— | DATA | ——
FUNCTION<4:0> -~ |READ | ——
__ IRWmN | — T
ID MASK<3:0> —— |emom | ZZ
— | ID —_-
CONFIRMATION<1:0> | —— -

READ OCTAWORD (RETURN DATA TRANSFER)

CYCLE DATA | DATA DATA | DATA
ADDRESS DATA<31:00> | —=— | DATA | DATA | DATA | DATA | ——

FUNCTION<4:0> —— | READ | READ | READ| READ | ——
—— | RTAN | CONT | CONT | CONT | ==
ID MASK<3:0> —— | CMDR | CMDR | CMDR | CMDR | ——
——|ID ID ID | ID —_

CONFIRMATION<1:0> — _—

SCLD-134A

Figure 1-10 NMI Read Transaction Types (Sheet 1 of 2)
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CYCLE

ADDRESS DATA<31:00>

FUNCTION<4:0>

ID MASK<3:0>

CONFIRMATION<1:0>

CYCLE

ADDRESS DATA<31:00>

FUNCTION<4:0>

ID MASK<3:0>

CONFIRMATION<1:0>

Figure 1-10

READ HEXWORD (ONE RETURN DATA TRANSFER)

DATA DATA DATA DATA DATA
— T | DATA | DATA | DATA | DATA | DATA
_— READ | READ | READ | READ | READ
—— | RTRN | CONT | CONT | CONT | RTRN
—— | CMDR | CMDR | CMDR | CMDR | oMDR
—= | ID ID ID 1D 1D
READ HEXWORD (TWO RETURN DATA TRANSFERS)

DATA DATA DATA

DATA
DATA | DATA
READ | READ
RTRN | CONT
CMDR | CMDR
ID ID
NMI Read

DATA

READ
CONT

CMDR
ID

DATA

READ
CONT

CMDR
1D

Transaction
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o000
c o000
©coao
°cocoo0

coao0
o coo
soo
coo
oo

° 00

o0 0 o o

°o0 o0

DATA DATA DATA

DATA

READ
CONT

CMDR
ID

DATA

DATA

READ
RTRN

1D

DATA

READ
CONT

CMDR
ID

DATA

DATA

READ
CONT

CMDR
ID

DATA

READ
CONT

CMDR
1D

DATA

DATA

READ
CONT

1D

DATA

DATA

READ
CONT

ID

Types (Sheet 2 of 2)

rs
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1.6 INTERLOCKED OPERATIONS

The memory nexus has hardware that allows memory to be interlocked
by a read transaction and unlocked by a write transaction. This is
to allow synchronization of processes in dual-CPU configurations
that access shared areas of memory.

When the memory executes an interlocked read transaction, the
normal read function (longword, octaword, or hexword) is performed.
However, it will not accept any further interlocked read
transactions until the interlock has been removed by a write unlock
transaction. Also, to limit the time a nexus can hold a hardware
interlock, a counter in the memory will remove the interlock after
a timeout period. If the time limit is exceeded, the memory
interrupts the (primary) CPU.

During the time memory is interlocked, it will accept normal read
transactions and all write transactions. However, a "responder
interlocked" response 1is returned to the commander on the
CONFIRMATION lines when a read interlock transaction is attempted.
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1.7 BUS ARBITRATION

To control bus arbitration on the NMI, each nexus has a bus
arbitration (ARB) request line, a bus HOLD line, and a bus enable
(BUS EN) line connecting to the bus arbitrator in the left CPU.
The memory nexus has two ARB lines connecting to the arbitrator.
However, only one (MEMORY ARB) is a bus arbitration request line.
The other (MEMORY BUSY ARB) is a copy of MEMORY BUSY. The MEMORY
BUSY line connects from the memory nexus to the CPU and I1/0 adapter
nexus. Basic arbitration line timing is shown in Figure 1-11.

NEXUS X Y

CYCLE C/A C/A DATA

~ A e
e X__/j_ X

ARB Y ////
e—
S EN Y
BU %///

N
o N

SCLD-135

Figure 1-11 Basic NMI Arbitration Line Timing

IT 1-33



To request the use of the bus, each nexus must assert 1its ARB
request line. The request line is asserted at the beginning of a
bus cycle. More than one nexus may request the bus at a time. As
a result, the bus arbitrator in the left CPU resolves request
priority and asserts the BUS EN line for the winning nexus. The
BUS EN line is asserted immediately if the bus is not currently in
use. If the bus is in use, the BUS EN line is not asserted wuntil
the bus 1is free. This ensures a dead cycle between transfers on
the NMI, which is necessary due to electrical constraints. When a
nexus receives its BUS EN signal, it negates its ARB request line
at the beginning of the next bus cycle.

If a nexus wins the bus and requires more than one bus cycle for a
transfer, 1t must assert its HOLD line to keep the bus. The HOLD
line is asserted at the beginning of the first bus cycle 1in the
transfer. It is negated at the beginning of the last bus cycle in
the transfer. 1In the bus arbitrator, the asserted HOLD 1line
disables any further bus arbitration. It also causes the BUS EN
line to the nexus holding the bus to remain asserted.

The memory nexus has the highest priority when requesting the bus.
The CPUs and 1I/0 adapters have the lowest priority and share the
bus on an alternating basis. Operation of the bus arbitrator is
shown in Figure 1-12.

The CPUs and I/0 adapters share the bus in the following manner.
If both a CPU and an I/0 adapter are requesting the bus, and if a
CPU rather than an I/0 adapter won the bus last, then the TI/0
adapter wins the bus. Conversely, 1if a CPU rather than an I/0
adapter had the bus last, the CPU wins. Furthermore, if both 1I/0
adapters are requesting the bus and an I/0 adapter wins, it will be
the one that did not use the bus last. Similarly, if both CPUs are
requesting the bus and a CPU wins, it will be the one that did not
use the bus last. Typical arbitration line sequencing is shown in
Figure 1-13.

In addition to having the highest priority, the memory nexus may
assert MEMORY BUSY, which «causes the arbitrator to completely
ignore requests by the CPUs and I/O adapters. MEMORY BUSY causes
the arbitrator to ignore requests by means of the MEMORY BUSY ARB
line (the copy of MEMORY BUSY connecting to the bus arbitrator).
That 1is, 1like +the HOLD 1lines, MEMORY BUSY ARB disables the
arbitrator but only for CPU or I/0 adapter requests. Bus requests
by the memory itself can still be granted. Timing is shown in
Figure 1-14.
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The memory asserts MEMORY BUSY when its command/data buffers are
full. It does this to prevent the other nexus (the CPUs and I/0
adapters) from using the bus until it can accept more commands or
data. Also, if the buffers contain read data, the memory nexus has
unrestricted use of the bus to return the data to the commander
and, thus, empty the buffers as soon as possible.

If MEMORY BUSY is asserted during the command/address cycle of a
memory read/write transaction, it indicates to the current
transmitter that the command will not be accepted by the memory.
In this respect, MEMORY BUSY acts as an early-warning status line
in addition to its function of temporarily preventing further
memory read/write transactions on the bus. That is, the current
transmitter does not have to wait for the "responder busy" code on
the CONFIRMATION 1lines before aborting and then retrying the
transaction. This allows the nexus to retry before another lower
priority nexus gets the bus, should memory become available in the
shortest possible time. (MEMORY BUSY is asserted for only two bus
cycles in some cases.)

When MEMORY BUSY is asserted after the command/address cycle but
during the first data cycle of a memory write transaction, i
indicates the command will not be accepted by the memory. Again,
the current transmitter does not have to wait for the "responder
busy" on the CONFIRMATION lines before retrying the transaction.
When MEMORY BUSY is asserted during a data cycle following the
first of a multilongword memory write transaction (write quadword
or write octaword), it is ignored by the current transmitter. In
this case, the command and data will be accepted by memory unless
otherwise indicated by the code returned on the CONFIRMATION lines.
These 1lines are valid during the second data cycle of the
transaction.
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1.8 INTERRUPTS

The interrupt lines on the NMI connect to both CPUs,. However, only
the primary CPU 1is enabled to accept NMI interrupts. A CPU is
enabled by setting bit <00> in its NMI interrupt enable register.

There are two types of NMI interrupts.

1. Conventional interrupts by an I/0 device (memory or an I/0
adapter nexus) when it has an error or other condition to
report to the CPU.

2. A special interrupt caused by the assertion of the NMT
FAULT 1line. All nexus, including the CPUs, can assert
FAULT when certain types of bus errors are detected. That
is, FAULT not only interrupts the primary CPU, it freezes
an NMI transaction silo in the CBox. This silo holds the
state of selected bus signals for the taulting and
preceding bus cycles.

1.8.1 NMI Interrupt Priority Levels

Table 1-4 lists the interrupt priority level (IPL) assigned to each
NMI interrupt. As can be seen, an NMI fault has the highest IPL
(1C) and thus the highest priority. Interrupts by an I/0 adapter
may be at one of four possible bus request levels: BR 4, 5, 6, or
7. The BR7 request level has the highest priority corresponding to
an IPL of 17. The BR4 level has the lowest priority corresponding
to an IPL of 14. The memory will always interrupt at a BRS request
level (IPL = 15).

Table 1-4 NMI Interrupt Priority Levels (IPLs)

Device or Condition IPL (Hex)
NMI Fault 1C
I/0 Adapter 0 (BR7) 17
I/0 Adapter 1 (BR7) 17
I1/0 Adapter 0 (BR6) 16
I/0 Adapter 1 (BR6) 16
I1/0 Adapter 0 (BR5) 15
I/0 Adapter 1 (BR5) 15
Memory (BR5) 15
I/0 Adapter 0 (BR4) 14
I/0 Adapter 1 (BR4) 14
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1.8.2 Device Interrupts

Seven NMI lines connect to the primary CPU to request device
interrupts. There 1is an 1interrupt request line from the memory
(CPU MEM INTRPT) and one from each of the I/0 adapters (DEVO INTR
and DEV1 INTR). 1In addition, there are two interrupt request level
lines from each adapter (DEVO INTR LVL<1:0> and DEVI1 INTR
LVL<1:0>). There are two sets of these seven lines. One set
connects to the left CPU and one to the right CPU. However, only
one CPU (the primary CPU) 1is enabled to accept interrupts as
explained previously.

The interrupt sequence is as follows.

When ready to interrupt, the interrupting device simply asserts its
interrupt request line and (if it is an I/0 adapter) transmits a
request level code on the INTR LVL lines. More than one device may
be requesting an interrupt at any time.

INTR LVI<1:0> BR Level
00 BR4
01 BR5
10 BR6
11 BR7

When ready to service the highest priority device interrupt
request, and if the request is by an I/O adapter, the CPU microcode
reads an interrupt vector from an adapter register. The register
is read by means of an NMI read transaction. The CPU microcode
does not read a vector from the memory when the memory interrupts.

The CPU microcode must read a vector from an I/0 adapter to
identify the interrupting device. That is, the interrupt can be
locally generated by the adapter itself (one vector value) or it
can be generated by any one of the I/O devices connected to the
adapter {(vector value depending on the device). The vector is used
by the CPU microcode to generate an address in the SCB. (It is
added to the SCBB.) The contents of the SCB location, in turn, are
used by the CPU microcode to dispatch to the appropriate interrupt
service routine.

The vector addresses for locally generated interrupts by each of
the two I/0 adapters are in page 0 of the SCB. 1In this case, an
adapter is interrupting as an NMI nexus like memory, whose vector
is also 1in page 0. Vectors for devices connected to the adapters
are allocated starting with page 1.
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1.8.3 NMI Faults
The bus errors causing an NMI fault condition are as follows.

® Bus parity errors
® Write sequence errors
® Read sequence errors

These errors, and the nexus checking for each error, are discussed
in Section 1.9,

When a CPU or I/0O adapter nexus detects a fault, it asserts and
negates a FAULT DETECT line. (Refer to Figure 1-15.) There is a
FAULT DETECT line for each CPU and I/O adapter, and the signals are
logically ORed in the memory nexus causing a single FAULT line to

be asserted at the beginning of the next bus cycle. (When the
memory nexus detects a fault, it also asserts the FAULT line.) The
FAULT line connects from the memory to all other nexus. It does

the following.

1. In the primary CPU, the asserted FAULT line causes an
interrupt request as stated previously, and it remains
asserted until cleared by the CPU microcode (to dismiss
the interrupt). FAULT is cleared by reading CSR5 in the
memory controller. The vector address for an NMI fault
condition is in page 0 of the SCB.

2. In all nexus, FAULT latches the NMI error status bits SO
they may be examined during the interrupt sequence.

3. In the primary CPU, FAULT freezes (prevents further
loading of) the NMI transaction silo. This silo,
containing 256 locations, holds a history file of the last
256 bus cycles including the faulting cycle. The states
of the following NMI lines are stored for each cycle,

Arbitration lines
FUNCTION lines

ID MASK lines
CONFIRMATION lines
ADDRESS DATA <29>

The NMI transaction silo is an IPR (NMISILO register) and <can be
accessed by error 1logging programs. A "last in/first out"
addressing scheme allows the bus information for the most recent
(faulting) cycle to be read first, followed by the older
information.
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During microdiagnostics, the silo address can be cleared to =zero
and the silo conditioned to freeze when the address overflows
(increments from the highest address back to zero). This allows
silo information to be —captured without having to induce an NMI
fault condition.

CLEARED BY
READING CSR5

FAULT DETECT<n>H _/—— N\ IN MEMORY

CONTROLLER
s

FAULT H 4 ~ f N

SCLD-139

Figure 1-15 Fault Signal Timing

1.9 NMI ERRORS
There are two classes of NMI errors.

1. Interrupt (Only) -- These errors only cause a CPu
interrupt request by the nexus detecting the error.
Memory and I/0 nexus generate the interrupt (a device
interrupt) request by means of the interrupt lines on the
NMI. Interrupt requests by CPU nexus are internally
generated.

2., Faults -- A fault causes a CPU interrupt request but it
also freezes the NMI transaction silo. Thus, this class
of errors are those for which a recent history of NMI bus
transactions are useful in determining the cause of error.
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NMI errors are listed in Table 1-5.
Table 1-5 NMI Errors

Nexus Checking Error

Interrupt/
NMI Error Fault CPU 1/0 Memory
No Return Read Data (Timeout) I Yes Yes No
No Access To Bus (Timeout) I Yes Yes No
No Access, Busy (Timeout) I Yes Yes No
No Access, Interlocked (Timeout) I Yes Yes No
No Access, No Response (Timeout) I Yes Yes No
Interlock, No Unlock (Timeout) I No No Yes
Bus Parity Error F Yes Yes Yes
Write Sequence Error F No Yes Yes
Read Sequence Error F Yes Yes No

Errors causing conventional interrupts by the individual nexus are
all timeout errors. That is, a timeout counter in a CPU or I/0
adapter nexus generates the interrupt when the nexus does not
receive return read data or gain access to the bus or another nexus
after a certain length of time. Also, a timeout counter 1in the
memory generates an interrupt request when it has been interlocked
for too long a time.

Specifically, a bus access timeout occurs when the arbitrator
delays granting the bus for a transfer. This condition is not
checked by the memory because it requests the bus only to transfer

return read data. (The absence of return read data will cause a
timeout error in the CPU or I/0 adapter initiating the read
transaction.) The other access errors occur when a CPU or I/O
adapter continues to receive a "no response" code, a "busy"
response code, or an "interlocked" response code on the

CONFIRMATION lines following a command/address cycle. The memory
does not check these error conditions because it is never the
commander during a bus transaction.
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Errors causing an NMI fault are bus parity errors and read and
write sequence errors. A write sequence error is when a responder
does not receive enough write data. That is, there are not enough
write data cycles to complete the specified transaction. A read
sequence error is when a commander does not receive enough read
data {(too few read data cycles) to complete the transaction. Also,
a read sequence error can be caused when a "read continuation" code
is received on the FUNCTION lines during a read data cycle, and
there was no "return read data" code received (flagging the first
longword of read data) during a previous data cycle in the
transfer.

NMI errors detected by a CPU nexus will set error bits in the NMI
fault/status register (NMIFSR). NMI errors detected by a memory or
1/0 adapter nexus will set error bits in the nexus first
control/status register (CSRO).
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CHAPTER 2
VAX BUS INTERCONNECT (VAXBI)

2.1 INTRODUCTION

The VAX Bus Interconnect (VAXBI) is the I/O bus for the system. A
VAXBI connects to the system through the NMI to VAXBI (NBI) adapter
as shown in Figure 2-1., Each NBI adapter may interface up to two
VAXBIs allowing a maximum of four VAXBIsS to be connected to the
system when both NBI adapters are installed. The terms used in the
following VAXBI description are defined in Table 2-1.
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Table 2-1 Glossary of VAXBI Terms

Term Definition

Node A hardware block (a VAXBI Interface) physically
connecting to (and occupying one of sixteen logical
locations on) the VAXBI. A VAXBI node consists of
one or more VAXBI modules.

Transaction The execution of a VAXBI command on the VAXBI. Also,
the term applies to the special mode execution of a
loopback request. A loopback operation transfers data
within a node without using the VAXBI data lines.

Master The node that gains control of the VAXBI and initiates
a VAXBI transaction.,

Slave A node that responds to a transaction initiated by the
master.

The VAXBI is a 32 bit wide synchronous bus with parity that
interconnects up to 16 VAXBI interfaces (VAXBI nodes) having
logical addresses 0 through 15. (The address of a node is
determined by an ID plug inserted on the backplane.) The NBI
associated with the VAXBI is one node. The other nodes are the 1/0
device controllers or I/O bus adapters interfacing the system's I/0
devices to the VAXBI. An example of an I/0 bus adapter is the
VAXBI to UNIBUS adapter (DWBUA) that allows the family of UNIBUS
I/0 devices to be used as peripherals on the systemn. Processor
nodes (I/O processors) can also be connected to a VAXBI.

Bus arbitration for the VAXBI is not controlled by any one node. A
distributed arbitration scheme is used where each node requesting
use of the bus samples all bus requests. The node with the highest
priority then assumes control of the bus during the next bus cycle
(when the bus is inactive) or following the current bus transaction
(when the bus is busy). To allow bus arbitration when the bus is
busy, an embedded arbitration cycle is included as part of every
bus transaction.

The VAXBI supports the following read/write transactions:

® Write transactions: longword, quadword, octaword
® Read transactions: longword, quadword, octaword
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All read/write transaction types (longword, quadword, and octaword)
are used for memory data transfers. Only longword transactions are
used to transfer I/0 register data.

I1f desired, memory read/write transactions may be interlocked
(interlocked reads/unlock writes). Also, memory read/write
transactions may be specified as having cache intent following
cache misses. This facilitates the invalidating of cache locations
in cached multiprocessor configurations on the VAXBI (not
applicable to this system, because any processors that may be on a
VAXBI must have their caches turned off as explained 1in Section
2.8).

All nodes using the VAXBI must use a ZMOS integrated circuit called
the VAXBI interface chip (BIIC) as the bus interface. This chip
initiates and responds to all bus transactions in response to input
commands by the node's internal logic. BIIC operation is discussed
in the NBI Technical Description.

2.2 BASIC FUNCTIONS
A VAXBI on the VAX 8800 system performs the following major
functions.

1. Memory read/write operations -- By means of bus read/write
transactions directed to the NBI node, allows DMA data
transfers between an I/0 device on the VAXBI and the
system's main memory (on the NMI). (Main memory may also
be accessed by an I/0 processor node on the VAXBI.)

2. I/0 register read/write operations =-- By means of bus
read/write transactions originated by the NBI node, allows
the primary CPU (on the NMI) to access I/0 reqgisters (for
example, CSRs) in the I/0O devices on the VAXBI. (Device
1/0 registers may also he accessed by an I/0 processor
node on the VAXBI.)

3. Interrupt handling -- By means of bus INTR transactions
directed to the NBI node, allows the I/0 devices on the
VAXBI to interrupt the primary CPU (on the NMI). Also, in
response to the interrupts and by means of bus IDENT
transactions originated by the NBI node, allows the
primary CPU to read interrupt vectors from the I/0 devices
on the VAXBI. (Interrupts by I/0 devices and the NBI may
also be fielded by an I/0 processor node on the VAXBI.)

4. System synchronization -- Provides clocks tn synchronize
operation of all nodes. Clocks are generated by the NBI
node.
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5. System initialization -- By asserting a RESET line, allows
a node to initiate a simulated VAXBI power-fail (AC LO/DC
LO) sequence by the NBI node. The NBI also asserts RESET
on the NMI causing the VAX console to halt both CPUs and
initiate a system bootstrap (a cold start).

6. Power loss warning -- Provides AC LO and DC LO signals to
all nodes.

2.3 VAXBI SIGNALS AND TIMING

VAXBI signals are shown in Figure 2-2 and defined in Table 2-2.
All signals are 2ZMOS-driven (TTL voltage levels), except the
FET-driven AC LO and DC LO signals and the ECL clocks.

The clocks and basic bus timing are shown in Figure 2-3. Data path
and synchronous control signals are asserted and negated at the
beginning of a bus cycle. The signals are received and latched
near the end of the cycle. The data path signals are the data,
parity, and information signals. The synchronous control signals
are the confirmation, NO ARB, and BSY signals. The other control
signals (AC LO, DC LO, RESET, STF, and BAD) are asserted and
negated asynchronously with respect to the bus cycle.
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Table 2-2 VAXBI Signal Descriptions

Signal Line(s) Number Description

D<31:00> L 32 Data lines -- Specify length of transfer
and 30-bit address during command/address
cycles of read, write, and invalidate
transactions. (Also specify interrupt level
and/or destination mask information during
command/address cycles of other transactions.)
Transfer write, read, or vector data during
data cycles. Specify decoded IDs of
arbitrating nodes during arbitration cycles.

I<3:0> L 4 Information lines -- Specify VAXBI command
during command/address cycles, byte mask
during write data cycles, and data status
during read and vector data cycles. Also
specify the master's ID during embedded
arbitration cycles.

I<3:0>
(Hex) Command
0 Reserved
1 Read (READ)
2 Interlocked read with cache
intent (IRCI)
3 Read with cache intent (RCI)

4 Write (WRITE)

5 Write with cache intent (WCI)

6 Unlock write masked with cache
intent (UWMCI)

7 Write masked with cache intent
(WMCTI)

Interrupt (INTR)

Identify (IDENT)

Reserved

Reserved

Stop (STOP)

Invalidate (INVAL)

Broadcast (BDCST)

Interprocessor interrupt (IPINTR)

TMEHOOQm PO
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Table 2-2 VAXBI Signal Descriptions (Cont)

Signal Line(s) Number

Description

PO L 1

CNF<2:0> L 3

I<3:0> Byte Mask

XXX1 Write byte 0

XX1X Write byte 1

X1XX Write byte 2

1XXX Write byte 3

I<3:0> Data Status

0X00 Reserved

0X01 Read data

0X10 Corrected read data

0X11 Read data substitute

0X00 Reserved

1X01 Read data, don't cache

1X10 Corrected read data, don't cache
1X11 Read data substitute, don't cache
Parity line -- Transfers odd parity bit

for the I lines during embedded
arbitration cycles, and for the D and I
lines during command/address cycles, and
during data cycles when read/write (or
vector) data is being transmitted.

Confirmation lines —-- Specify response by
slave(s) to command sent by master, by
slave(s) during the data cycles of a
transaction, and by node receiving data
during the two bus cycles following the
data cycles of a transaction.

CNF

<2:0> Response

000 No Acknowledgment (NOACK)
001 Illegal

010 Illegal

011 Acknowledgment (ACK)

100 Illegal

101 STALL

110 RETRY

111 Illegal
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Table 2-2

VAXBI Signal Descriptions (Cont)

Signal Line(s)

Number

Description

NO ARB L

BSY L

RESET L

BAD L

STF L

TIME H/L

PHASE H/L

AC IO L

DC LO L

1

No arbitration line -- Asserted by
arbitrating nodes, master, pending master,
or slave to inhibit arbitration by nodes
during the next bus cycle. The pending
master is the node winning the bus after
an embedded arbitration cycle.

Busy line -- Asserted by master or slave
to indicate that a transaction is in
progress. May also be asserted by any node
to extend the current transaction, or
(when asserted together with NO ARB) delay
the start of the next transaction in order
to perform special mode operations such as
a loopback request.

Reset line -- Causes the NBI to simulate
a VAXBI power-fail (AC LO/DC LO) sequence.
Also causes NBI to assert RESET on the NMI
causing the VAX console to halt both CPUs.
The VAX console then boots the system (a
cold start) when VAXBI RESET is negated.

Bad line -- Indicates one or more nodes
detected a selftest or other error.

Selftest fast line -- Enables the fast
selftest mode in all nodes.

20 MHz differentially driven clock lines
(ECL) -- Used in conjunction with PHASE
H/L to provide reference for VAXBI cycle
timing in all nodes. Generated by the NBI.

5 MHz differentially driven clock lines
(ECL) -- Used in conjunction with TIME
H/L to provide reference for VAXBI cycle
timing in all nodes. Generated by the NBI.

AC LO line -- Indicates ac power is below
specified limits. Asserted by NBI and
expander cabinets.

DC LO line -- Indicates dc power is
below specified limits. Asserted by NBI
and VAXBI expander cabinets.
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2.4 VAXBI ADDRESS SPACE

The VAXBI address space is 1 Gbyte. As shown in Figure 2-4, one
half (512 Mbytes) is physical memory space. The other half is I/0
space.

2.4.1 Memory Address Space

Except when a memory is connected to the VAXBI to support an I/0
processor node, the VAXBI memory space in the system is actually
NMI memory space. That is, memory data transfers by I/0 devices on
the VAXBI are to/from the system's main memory (on the NMI) through
the NBI node. The transfers, initiated by the I/0 device nodes,
are DMA transfers that take place independently of the CPU(s).
System memory on the VAXBI is not supported. (The NBI cannot
initiate memory data transfers on the VAXBI in response to an NMI
transaction.) The only VAXBI memory supported is that associated
with an I/0 processor. 1In this case, transfers are initiated by
the processor and are local to the VAXBI (directly between the
processor node and its associated VAXBI memory node).

2.4.2 1/0 Address Space

The allocated I/O space for a VAXBI is 32 Mbytes. The range of
VAXBI I/0 addresses, 2000 0000 to 21FF FFFF (HEX), is the same for
each of the (up to four) VAXBIs in the system. This means that
when VAXBI 1I/0 space is accessed by the NBI in response to an NMI
transaction, the NBI must clear address bits <26:25> during the NMI
to VAXBI address translation as shown below.

VAXBI I/0 Addresses(Hex)

NMI I/O Addresses (Hex) VAXBI1 [Bits <26:25> Cleared by NBI]
2000 0000 - 21FF FFFF VAXBI 0 (NBI 0) 2000 0000 - 21FF FFFF
2200 0000 - 23FF FFFF VAXBI 1 (NBI 0) 2000 0000 - 21FF FFFF
2400 0000 - 25FF FFFF VAXBI 0O (NBI 1) 2000 0000 - 21FF FFFF
2600 0000 - 27FF FFFF VAXBI 1 (NBI 1) 2000 0000 - 21FF FFFF

The 32 Mbytes of I/O space for each VAXBI consist of register space
for each node, multicast space, node private space, and adapter
window space. (Refer again to Figure 2-4.) Multicast space
contains addresses for which more than one node can respond. Node
private space contains registers that are not accessed from the
VAXBI. For example, the NMI nexus registers in the NBI node (the
CSRs, and vector offset registers) have node private sSpace
addresses. Window space is used for address mapping by adapter
nodes interfacing another bus and its devices to the VAXBI., That
is, the VAXBI addresses are converted to addresses specific to the
other bus (UNIBUS addresses, for example). A block of window space
is allocated to each node.
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The register space for each node (8K bytes) is shown in Figure 2-5.
The first group of registers, called the VAXBI required registers,
must be implemented by every node on the VAXBI. The second group
are the BIIC-specific registers. A register in this group may Or
may not be used depending upon the node design.

The VAXBI required and BIIC-specific registers are contained in the
node's BIIC. These registers are shown in Figures 2-6 and 2-7 and
are described in the NBI Technical Description. The BIIC-specific
registers include four general-purpose registers. If more
registers are needed, they may be implemented outside the BIIC but
these addresses are still within the 8K bytes of register space
allocated for the node.

2.4.3 Address Selection

A VAXBI memory or I/0 register address (30 bits) is asserted on the
data lines during the first bus cycle of a read or write
transaction. As shown in Figure 2-8, the two high-order data lines
are not used for addressing, but are used to specify the length of
the transaction: longword, quadword, oOr octaword. As stated
previously, only longword transactions are used to transfer I/0
data. Thus, only a longword length is specified when the address
is an I/0 address.

Because data is transferred to/from naturally aligned addresses,
some number of the low-order address bits are not significant
depending upon the transaction type.

For longword transactions, the two low-order Dbits are not
significant except when the transaction is directed to a word or
byte-oriented I/O device. (A longword transaction is wused to
address these devices because there is no specific word or byte
transaction type.) Word and byte references are made only to
devices on other buses through an adapter and are restricted to
node window space. :

Multilongword write transfers are not wrapped, so the three
low—-order address bits of write quadword transactions and the four
low-order address bits of write octaword transactions are not
significant. However, multilongword read transactions may be
wrapped. Thus, the address must specify the first longword to be
transferred and only the two low-order address bits are not
significant.



ADDRESS(HEX)

0000 0000
VAXBI MEMORY
SPACE
(512 MB)
1FFF FFFF
2000 0000 1/0 SPACE
(32 MB)

21FF FFFF

2200 0000

3FFF FFFF

RESERVED FOR
MULTIPLE VAXBI
SYSTEMS
(480 MB)

ADDRESS(HEX)

2000

2000
2000

2000
2000

2000
2000

2000
2000

2000
2000

2000

2001

2001
2002

2003
2004

203F
2040

2043

207C

207F
2080

21FF

0000

1FFF
2000

3FFF
4000

SFFF
6000

7FFF
8000

9FFF
A000

BFFF

{(
N

E000

FFFF
0000

FFFF
0000

FFFF
0000

FFFF

0000

FFFF
0000

FFFF

1/0 SPACE

NODE 0 REG SPACE
(8KB)

NODE 1 REG SPACE
(8KB)

NODE 2 REG SPACE
(8KB)

NODE 3 REG SPACE
(8KB)

NODE 4 REG SPACE
(8KB)

NODE 5 REG SPACE
(8KB)

26 oo

1T

NODE 15 REG SPACE
(8KB)

MULTICAST SPACE
RESERVED
(128KB)

NODE PRIVATE SPACE
(3.75 MB)

ADAPTER WINDOW
SPACE #0
(256KB)

1)

oo oo

ADAPTER WINDOW
SPACE #15
(256KB)

RESERVED
(24 MB)

NOTE: VAXBI MEMORY SPACE IN A VAX 8800 SYSTEM IS THE SYSTEM’'S MAIN MEMORY

SPACE (ON THE NMI) EXCEPT FOR ANY MEMORY SPACE ALLOCATED TO AN
170 PROCESSOR'S VAXBI MEMORY NODE.

Figure 2-4

SCLD-426

VAXBI Address Space
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ADDRESS (HEX)

[SEE NOTE]
bb + 00 ]
VAXBI REQUIRED REGISTERS
bb + 10
bb + 14
\ BIIC CSR SPACE
(256 BYTES)
BIIC SPECIFIC REGISTERS
bb + FC
L REMAINDER OF 8 KB NODE |
REGISTER SPACE RESERVED
FOR USER CSR REGISTERS
(NOT IMPLEMENTED IN BIIC)

NOTE: bb = BASE ADDRESS = 2000 0000 (HEX) + 2000 (HEX) X NODE ID

SCLD-144

Figure 2-5 VAXBI Node Register Space
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ADDRESS (HEX)
[SEE NOTE]

31 00

bb + 00 DEVICE REGISTER

bb + 04 [ VAXBI CONTROL/STATUS REGISTER

bb + 08 BUS ERROR REGISTER

ERROR INTERRUPT CONTROL

bb + 0C REGISTER

bb + 10 INTR DESTINATION REGISTER

NOTE: bb = BASE ADDRESS = 2000 0000 (HEX) + 2000 (HEX) X NODE ID

SCLD-145

Figure 2-6 VAXBI Required Registers
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ADDRESS (HEX)

[SEE NOTE]
31 00
bb + 14 IPINTR MASK REGISTER
bb + 18 IPINTR/STOP DESTINATION REGISTER
bb + 1C IPINTR SOURCE REGISTER
bb + 20 STARTING ADDRESS REGISTER
bb + 24 ENDING ADDRESS REGISTER
bb + 28 BCI CONTROL REGISTER
bb + 2C WRITE STATUS REGISTER
bb + 30 FORCE IPINTR/STOP COMMAND REGISTER
bb + 34 UNUSED
bb + 38 UNUSED
bb + 3C UNUSED
bb + 40 USER INTERRUPT CONTROL REGISTER
bb + 44
= UNUSED =
bb + EC
bb + Fo GENERAL-PURPCSE REGISTER ¢
bb + F4 GENERAL-PURPOSE REGISTER 1
bb + F8 GENERAL-PURPOSE REGISTER 2
bb + FC GENERAL-PURPOSE REGISTER 3
NOTE: bb

Figure 2-7

= BASE ADDRESS = 2000 0000 (HEX) + 2000 (HEX) X NODE ID

SCLD-148

BIIC-Specific Device Registers



READ/WRITE LONGWORD (TO BYTE-ORIENTED DEVICE, WINDOW SPACE ONLY)

31 30 29 00
LNG SIGNIFICANT ADDRESS BITS

READ/WRITE LONGWORD (TO WORD-ORIENTED DEVICE, WINDOW SPACE ONLY)

31 30 29 01 00
LNG SIGNIFICANT ADDRESS BITS X

READ/WRITE LONGWORD, READ QUADWORD, READ OCTAWORD

31 30 29 02 01 00
LNG SIGNIFICANT ADDRESS BITS X | X

WRITE QUADWORD

31 30 29 03 02 01 00
LNG SIGNIFICANT ADDRESS BITS X | X|X

MBZ (SEE NOTE)——J

WRITE QUADWORD

31 30 29 04 03 02 01 00
LNG SIGNIFICANT ADDRESS BITS X| X| X! x

MBZ (SEE NOTE)——I

NOTES:

1. AN X INDICATES BIT IS NOT SIGNIFICANT AND SHOULD BE IGNORED BY SLAVE.
HOWEVER, BIT <02> IN WRITE QUADWORD ADDRESS AND BITS <03:02s> IN WRITE
OCTAWORD ADDRESS MUST BE ZERO(MBZ) TO PREVENT WRAPPED WRITES IN SOME NODES.

2. BITS <31> AND <30> SPECIFY LENGTH OF DATA TRANSFER.

00 RESERVED CODE
01 LONGWORD
10 QUADWORD
11 OCTAWORD

Figure 2-8 VAXBI Read/Write Address Bits

IT 2-17
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2.5 BASIC VAXBI TRANSACTION FORMAT

All VAXBI transactions consist of a command/address cycle followed
by an embedded arbitration <cycle followed by at least one data
cycle. Refer to Figure 2-9.

COMMAND/ EMBEDDED
ADDRESS ARBITRATION DATA . . .
CYCLE CYCLE CYCLE(S)

SCLD-184

Figure 2-9 Basic VAXBI Transaction Format

2.5.1 Command/Address Cycle

During the command/address cycle, the bus master must select a
slave (or slaves) and specify the command type. To select the
slave(s), it transmits a read/write address or other selection
information such as a destination mask on the data (D) lines. To
specify the command type (read, write, etc.), it transmits a 4-bit

command code on the information (I) 1lines. For read/write
transaction types, it also transmits a 2-bit length code along with
the 30-bit read/write address on the D 1lines. As discussed

previously, this length code specifies the data size (longword,
quadword, or octaword) of the read/write transaction.

2.5.2 Embedded Arbitration Cycle

The embedded arbitration cycle is the second cycle of every VAXBI
transaction. This cycle provides an additional opportunity for bus
arbitration (when the bus is busy). To request use of the bus, a
node asserts a D line corresponding to its node ID. The D line may
be one of the low-order 16 lines (a high priority request) or it
may be one of the high-order 16 lines (a low priority request).

[ 1P VU S VU

Alsoc, during itration cycle, the current bus master
transmits its node ID on the I lines. Bus arbitration is discussed
in Section 2.11.
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2.5.3 Data Cycles

For single-responder transactions (never more than one responding
slave), the data cycle or cycles following the embedded arbitration
cycle transfer read/write (or vector) data between the master and
slave over the D 1lines. Write data is also transferred for the
broadcast transaction, which is a multiresponder transaction (more
than one possible responding slave). The other multiresponder
transactions contain a data cycle, but no data is actually
transferred over the D lines. During this cycle, as in all data
cycles, the responding slave(s) transmits a response code to the
bus master on the confirmation (CNF) lines.

2.5.4 Bus Parity

Odd parity is generated and checked on the VAXBI during the
command/address and embedded arbitration cycles of all
transactions. It is also generated and checked during the data
cycles of transactions when read/write (or vector) data is being
transmitted. The parity bit is asserted on the PO line.

Except for the embedded arbitration cycle, parity is generated for
the information on both the D and I lines. During an embedded
arbitration cycle, only I-line parity is generated.

The bus master generates the parity bit during command/address and
embedded arbitration cycles. Parity is checked by all nodes
(including the master) and each node sets an error flag if bad
(even) parity is detected. Nodes detecting a parity error in the
command/address cycle will not respond to the command/address.
This aborts the transaction. A transaction 1is not aborted by
parity errors detected during the embedded arbitration cycle.
Parity generation and checking during data cycles is discussed in
the following sections.
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2.6 READ/WRITE TRANSACTIONS

Examples of write type and read type transactions are shown in
Figures 2-10 and 2-11. Except for data length (octaword in the
examples), all write transaction formats are basically the same and
all read transaction formats are basically the same. A write
transaction may be a normal write, a write with cache intent, a
write masked (with cache intent), or an unlock write masked (with
cache intent). A read transaction may be a normal read, a read
with cache intent, or an interlocked read (with cache intent).

The number of data cycles following the command/address and
embedded arbitration cycles of a write or read transaction depends
upon the length of the transfer. It also depends upon whether
there are any stalls or a retry (refer to Secticns 2.6.4 and
2.6.5). A minimum of four data cycles are required for an octaword
data transfer. Correspondingly, a gquadword transfer requires a
minimum of two data cycles and a longword transfer requires a
minimum of one.

2.6.1 Write Data Cycles

During each data cycle of a write transaction, the bus master
transmits the write data to the selected slave on the D lines and
transmits a 4-bit byte mask on the I lines if the write transaction
is a masked write. (The byte mask indicates which byte or bytes in
the longword of write data are to be written.) The bus master also
transmits odd parity for the D and I lines on the PO line. The
selected slave (if it is ready and if it has detected no errors)
takes the write data and transmits an acknowledgment (ACK) code
back to the master on the CNF lines. An ACK response 1is also
generated by the slave for the two cycles following the last data
cycle to indicate that no error was detected when executing the
transaction.

If an error (such as a parity error) 1is detected by the slave
during a data cycle, it asserts no CNF lines (a NC ACK response)
during any remaining data cycles in the transaction and for at
least two cycles following the 1last data cycle. The NO ACK
response causes the master to set an error flag and terminate the
transaction.

2.6.2 Read Data Cycles

During each data cycle of a read transaction, the selected slave
(if it is ready and if it has detected no errors) transmits the
read data back to the master on the D lines, together with an ACK
response on the CNF lines. It also transmits a read data status
code on the I lines as well as the D and I-line odd parity bit on
the PO line.

11 2-29



VAXBI CYCLE C/A 1A DATA DATA DATA DATA

LENGTH ' LEGEND
<31:30>
M = MASTER
S = SLAVE
AN = ALL NODES
IDDEC,D AAN = ALL gna ING
LoW C/A = COMMAND/
PRIOR ADDRESS CYCLE
<31:16> IA = IMBEDDED ARB
CYCLE
D<31:00> 30-BIT WRITE | WRITE | WRITE | WRITE
ADDR DATA | DATA | DATA DATA
DEC'D
ID
HIGH
PRIOR
<15:00>
MASK FIELD UNDEFINED
SOURGE " AAN M " M M IF NOT MASKED WRITE.
1<3:0> WRITE | MASTER | BYTE | BYTE BYTE BYTE
CMD 1D MASK | MASK ' MASK MASK
SOURCE M M M M M M
Po GEN M M M M M
CHK AN AN S s S s
CNF<2:0> ACK ACK ACK ACK ACK ACK
SOURCE , 8 |, s .S |, s S s
M M M,S M,S M.S
BSY L
M,AAN M,S M,S M,S
NO ARB L

NOTES: 1. AN ASTERISK (*) INDICATES SLAVE MAY STALL (GIVE STALL RESPONSE)
FOR ONE OR MORE BUSY CYCLES BEFORE TAKING DATA (ACK RESPONSE).

2. A DOUBLE ASTERISK (**) INDICATES SLAVE MAY REQUEST RETRY OF
TRANSACTION (GIVE RETRY RESPONSE).

SCLD-185

Figure 2-10 VAXBI Write Transaction (Octaword Length)
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VAXB! CYCLE C/A 1A DATA DATA DATA DATA

LENGTH LEGEND
<31:30> ——
M = MASTER
S = SLAVE
AN = ALL NODES
RFCT) AAN = ﬁébgéRB'NG
LOW C/A = COMMAND/
PRIOR ADDRESS CYCLE
<31:16> IA = IMBEDDED ARB
CYCLE
D<31:00> 30-BIT READ | READ | READ READ
ADDR DATA | DATA | DATA DATA
<29:00>
DECD
ID
HIGH
PRIOR
<15:00>
SOURCE M AAN S S S s
1<3:0> READ | MASTER | READ READ | READ READ
CMD 1D STAT STAT | STAT STAT
SOURCE M M S S S S
PO
GEN M M s S s s
CHK AN AN M M M M
CNF<2:0> ACK ACK ACK ACK ACK ACK
SOURCE . S .S . S ., S S S
M M M,S M.S M,S
BSY L

MAAN  MS  MS MS
NO ARB L / N\

NOTES: 1. AN ASTERISK (*) INDICATES SLAVE MAY STALL (GIVE STALL RESPONSE)
FOR ONE OR MORE BUSY CYCLES BEFORE TAKING DATA (ACK RESPONSE).

2. A DOUBLE ASTERISK (**) INDICATES SLAVE MAY REQUEST RETRY OF
TRANSACTION (GIVE RETRY RESPONSE).

SCLD-186

Figure 2-11 VAXBI Read Transaction (Octaword Length)
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The status code indicates if the data is valid, wvalid but
corrected, or uncorrectable (READ DATA SUBSTITUTE code) . (A READ
DATA SUBSTITUTE code causes the master to set an error flag.) Also,
to limit the caching and subsequent invalidation of data in some
systems, the status code indicates when the read data is not to be
cached.

Like the write, an ACK response is transmitted on the CNF lines
(this time by the master) for two cycles after the last data cycile
if the transaction completed successfully. A NO ACK response by
the master indicates that an error (a parity error, for example)
was detected during transaction execution causing the slave to set
an error flag. Also, as for a write, a NO ACK response by the
slave during (and not after) the data cycles of a read transaction
is an error condition. The error condition causes the master to
set an error flag and end the transaction.

2.6.3 Nonexistent Addresses

If there is a NO ACK response (no responding slaves) during the
first cycle of a read or write transaction, it probably indicates
the master transmitted a nonexistent memory or I/0 address. As for
any NO ACK response during a data cycle, the master sets an error
flag and ends the transaction.

2.6.4 Stalls

If the selected slave is not ready to accept write data or return
read data during any data cycle, it can assert a STALL code on the
CNF lines.

During stall data cycles for a write transaction, the master
continues to transmit the same longword of write data on the D
lines until the slave takes the data and generates an ACK response.
For a read transaction, the D lines are undefined (may be in any
state) until the stalled data and an ACK response are transmitted
by the slave.

If a slave has to generate 128 consecutive STALL responses, it sets

an error flag, generates a NO ACK response, and ends the
transaction.
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2.6.5 Retries

A selected slave not ready to accept write data or send read data
may not just stall. It may also cause the master to retry the
transaction.

A slave may cause a retry in the first data cycle or following a
stall data cycle (if no data has previously -been transferred) by
transmitting a RETRY response on the CNF lines. The master, or the
slave following a stall data cycle, then ends the transaction. The
master can retry the transaction after arbitrating again for the
bus. If a slave causes a transaction to be retried 4096 times, the
master sets an error flag.

2.7 BROADCAST TRANSACTIONS

The broadcast transaction, not currently wused during normal bus
operation, allows more than one node to be written at a time. It
provides a means of announcing events to a number of nodes without
using interrupt requests. 4

Format for the broadcast transaction is shown in Figure 2-12. An
octaword data 1length is shown. The transaction is similar to a
write, except that the bus master transmits no memory or I/O
address on the D lines during the command/address cycle. Instead,
it transmits a destination mask on the 16 low-order D lines. The D
lines asserted correspond to the node 1IDs of the slaves to be
selected.

During each data cycle of a broadcast transaction, at least one
slave must generate an ACK response on the CNF lines. A NO ACK
response during a data cycle (or during the two <cycles after the
last data <c¢ycle) causes the master to set an error flag during a
write transaction. Unlike a write, and because more than one slave
can respond to the master, a single slave cannot stall or cause a
retry of the broadcast transaction. Thus, the master sets an error

£V o~ £ 3L sammndtesme o QOMATT e NDMNOY amm o moen v o
.L.Lclg 1L LL LTCeolved a oiAaanl, UL LIl LCD}_)UHDC.
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VAXBiI CYCLE C/A 1A DATA DATA DATA DATA

LENGTH LEGEND
<31:30> ———
M = MASTER
S(S) = SLAVE OR SLAVES
AN = ALL NODES
D AAN = ALL ARB'ING
f%c NODES
RESD |Low
C/A = COMMAND/
FIELD | PRIOR
<29:16> | <31:16> ADDRESS CYCLE
IA = IMBEDDED ARB
CYCLE
D<31:00> WRITE | WRITE | WRITE | WRITE
DATA | DATA | DATA DATA
DEC'D
ID
BDCST | HIGH
MASK PRIOR
<15:00> | <15:00>
SOURCE M AAN M M M M
1<3:0> BDCST | MASTER | BYTE | BYTE BYTE BYTE
CcMD ID MASK | MASK MASK MASK
SOURCE M M M M M M
P
’ oKl oM M Mol omo | m M
AN AN S(8S) S(S) S(S) S(S)
CNF<2:0> ACK ACK ACK ACK ACK ACK
SOURCE S(S) $(8S) S(S) S(S) S(S) | s(S)
M M M M M
BSY L
M,AAN M M M
NO ARB L

SCLD-187

Figure 2-12 VAXBI Broadcast (BDCST) Transaction (Octaword Length)
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2,8 INVALIDATE TRANSACTIONS

The invalidate transaction (Figure 2-13) allows a processor node to
signal other nodes that they may have cached data that is no longer
valid. The bus master transmits the address and data length of the
invalid block of data in the command/address cycle. More than one
slave may respond with an ACK response on the CNF lines during the
transaction's single data cycle. (No data is actually transferred
and parity is not generated or checked during this cycle.) If there
is no response by any node, an error flag is set in the master.

The invalidate transaction is not used on a VAXBI in this system.
Any processor nodes must have their caches turned off as stated
previously. This is because the addresses of memory transactions
local to the NMI are not passed to the VAXBI; thus, caches on the
VAXBI (if turned on) could contain invalid data.
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VAXBI CYCLE

D<31:00>

SOURCE
1<3:0>
SOURCE
Po GEN
CHK
CNF<2:0>
SOURCE
VAXBI| BSY L

VAXBI NO ARB L

Figure 2-13

C/A A
LENGTH
<31:30> LEGEND
M = MASTER
S(S) = SLAVE OR SLAVES
AN = ALL NODES
lDDEC’D AAN = QLLEARB’ING
b R C/A Cgh[:/)IMSAND/
PRIO =
30-BIT | <31:16> ADDRESS CYCLE
ADDR , IA = IMBEDDED ARB
<29:00> RESV'D CYCLE
FIELD
DEC'D
iD
HIGH
PRIOR
<15:00>
M AAN
INVAL | MASTER | RESV'D
CMD ID FIELD
M M
M M RESV'D
AN AN FIELD
ACK
S(S)
M M
SCLD-188

VAXBI Invalidate
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2.9 INTERRUPT OPERATION (INTR, IDENT, AND IPINTR TRANSACTIONS)

The interrupt (INTR) and identify (IDENT) transactions are used to
signal and service conventional device type interrupts on the
VAXBI. That is, a node can send an interrupt request to one oOr
more nodes using the INTR transaction. (As for the NMI, there are
four request priority levels; BR4, 5, 6, and 7.) Then, when an
interrupt fielding node is ready to service the interrupt requests
at a specific request level, it uses an IDENT transaction to read
an interrupt vector from the interrupting node. Because more than
one node may be interrupting at that request level, the vector |is
read from the highest priority device based on the node ID.

The VAXBI also allows one processor node to interrupt another

processor node. This 1is done using the interprocessor interrupt
(IPINTR) transaction. Transaction format is similar to the INTR
transaction. However, there 1is no need for a node responding to

the interrupt request to follow with an IDENT transaction. This is
because the interrupt fielding node stores the vector (and also the
request level) information for this type of interrupt.

The interrupt fielding nodes on a VAXBI in the system are the NBI
and any 1I/0 processors that are installed. The NBI node services
INTR transactions by passing the interrupt requests on to the NMI
and the primary CPU. It then issues an IDENT transaction to
collect the vector information when the primary CPU reads an NBI
vector register over the NMI. (There are four vector registers in
the NBI, one for each request level.) The interrupt requests
generated on the VAXBI are normally from I/0 device nodes but may
also be from an I/0 processor node.

The NBI can also field IPINTR transactions allowing an I/0
processor to interrupt the primary CPU using an interprocessor
interrupt request. (An I/O processor can also interrupt another
I/0 processor using an IPINTR.) Not only can the NBI field an
IPINTR, it can generate one. It can also generate an INTR,
allowing the primary CPU to interrupt an 1/0 processor with either
type of interrupt request.
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2.9.1 Interrupt (INTR) Transactions

Format for the INTR transaction is shown in Figure 2-14, During
the command/address cycle, the master (the interrupting node)
transmits a 16-bit destination mask on the low-order D lines. Each
bit in the mask corresponds to one of the 16 possible nodes on the
VAXBI, allowing the master to select one or more slaves to field
the interrupt. For example, the master may signal both the NBI and
an I/0 processor that it is interrupting.

The master also transmits the interrupt request level on four of
the high-order data lines during the command/address cycle. There
is a bit for each level as shown below. This allows a master (an
adapter node, for example) to make an interrupt request at more
than one request level with a single INTR transaction. (More than
one I/O device attached to the adapter can be interrupting at the
same time and at different assigned request levels.) When more than
one request level is specified, the interrupt fielding node (when
it is ready) will service the highest priority request only.

Requests at other levels have to be made again using another INTR
transaction.

D<19:16> Request Level
1XXX BR7 (Highest Priority)
X1XX BR6
XX1X BR5
XXX1 BR4 (Lowest Priority)

During the single data cycle following the command/address and
embedded arbitration cycles, any selected slave that intends to
service the interrupt request asserts an ACK response on the CNF
lines. This is essentially a command confirmation cycle with no
data being transferred between the master and the selected
slave(s). If no slave responds (a NO ACK response), the master
sets an error flag.
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VAXBI CYCLE C/A 1A

LEGEND
M = MASTER
e S(S) = SLAVE OR SLAVES
RESV'D , AN = ALL NODES
FIELD | DEC'D AAN = ALL ARB'ING
<31:20> | ID NODES
LOW
PRIOR C/A = COMMAND/
<31:16> ADDRESS CYCLE
iA = IMBEDDED ARB
INTR CYCLE
D<31:00> LEVEL
<19:16> RESV'D
FIELD
INTR DEC'D
DEST ID
MASK HIGH
<15:00>| PRIOR
<15:00>
SOURCE M AAN
1<3:0> INTR | MASTER | RESV'D
CMD ID FIELD
SOURCE M M
PO
GEN M M RESV'D
CHK AN AN FIELD
CNF<2:U> ACK
SOURCE S(S)
M M

VAXBI BSY L

M,AAN

VAXBI NO ARB L ANy a

SCLD-189

Figure 2-14 VAXBI Interrupt (INTR) Transaction
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2.9.2 Identify (IDENT) Transactions

As stated previously, an interrupt fielding node responding to an
INTR transaction does an IDENT transaction to read an interrupt
vector. IDENT format is shown in Figure 2-15.

During the command/address cycle and similar to the INTR
transaction, the master transmits the interrupt level on four of
the high-order D 1lines. However, this 1is the only select
information transmitted and only one of the four lines should be
asserted. The line asserted specifies the single interrupt request
level to be serviced.

D<19:16> Request Level
1000 BR7 (Highest Priority)
0100 BR6
0010 BR5
0001 BR4 (Lowest Priority)

During the cycle following the command/address cycle and embedded
arbitration cycle, the master transmits its decoded ID on the 16
high-order D lines. Only the D line corresponding to the master's
node ID (plus 16) will be asserted. The transmission of the
master's ID is necessary because there can be more than one
interrupt fielding node on the bus, and nodes with an interrupt
pending at the specified request level may not want service by the
node doing the IDENT.

During the next bus cycle of the IDENT, the nodes wanting interrupt
service by the master must arbitrate for the bus as when
arbitrating to become bus master (Section 2.11). (However, decoded
IDs are transmitted only on the high-order data lines.) The nodes
must arbitrate because only one may be serviced by the IDENT. That
is, only one node may become the slave and return an interrupt
vector to the master. Nodes not winning the arbitration must make
another interrupt request (INTR transaction) unless they are
serviced by another IDENT before a request can be made.
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After winning the bus, the slave (if it is ready) asserts an ACK
response on the CNF lines and transmits the vector on the D lines
during the next bus cycle. At the same time, and 1like a read
transaction, the slave transmits a data status code on the I lines,
and it transmits D and I-line parity on the PO line. (A READ DATA
SUBSTITUTE status code causes the master to set an error flag.)
Also, similar to a read transaction, the slave may transmit a STALL
response on the CNF lines for one more cycle until the vector is
ready to transmit. (An adapter node would do this if the vector
had to be first read from an attached I/0 device.) Again, 128 stall
cycles <cause the slave to set an error flag and end the
transaction. Once the vector 1is sent by the slave ending the
transaction, the master transmits an ACK response on the CNF lines
for the next two bus cycles if the transaction was executed
correctly. If not (a parity error detected by the master, for
example), a NO ACK response causes an error flag to be set in the
slave.

A slave serviced by an IDENT may not necessarily have made a
previous interrupt request. The interrupt condition may have
occurred just before it could arbitrate for the bus and transmit an
INTR transaction. For this reason, a node cannot arbitrate for the
bus to do an INTR during the embedded arbitration cycle of the
IDENT. It may win the bus and become pending bus master, and then
it may win the following arbitration for service by the IDENT. It
would then have to abort the INTR because the request had already
been serviced.

A NO ACK response occurring during (not after) an IDENT transaction
is not an error condition. This can happen if the IDENT is the
result of an interrupt request to more than one interrupt fielding
node, and the request has already been serviced by another node,
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INTR

VAXBI CYCLE C/A IA DMID  ARB DATA
LEGEND
M = MASTER
S = SLAVE
, AN = ALL NODES
?ESVD AAN = ALL ARB'ING
IELD DEC: DEC'D NODES
<381:20> ,DCD DECD |1 APS = ALL POTENTIAL
LOW MASTER [ARB’ING| 0'S SLAVES
PRIOR |ID SLAVES C/A = COMMAND/
<31:16> [<31:16>|<31:16> ADDRESS CYCLE
IA = IMBEDDED ARB
oot
D<31:00> <19:16>
DEC'D
ID VECTOR

RESV'D EIGH RESV'D | RESV'D {<08:02>| (VAXBI NODE)

FIELD RIOR FIELD FIELD [<13:02> (OFFSETABLE DEVICE)
<15:00> | <15:00> | <15:00>{ <15:00>

0'S
SOURCE M AAN M APS ]
1<3:0> IDENT | MASTER | RESV'D| RESV'D | VECTOR
cva |a FIELD | FIELD | STATUS
SOURGE M M S IF ACK RESPONSE
IN VECTOR DATA
PO GEN M M M | RESV'D s CYCLE
CHK AN AN APS | FIELD M A~
CNF<2:0> ACK/ ACK ACK
NO ACK
SOURGE s M M
M M M,S M,S

BSY L \ /_

M,AAN M,S M,S
NO ARB L / N\ /

NOTE: A NO ACK BY SLAVE IS A VALID RESPONSE INDICATING A TRANSIENT
INTERRUPT OR THE INTERRUPT HAS BEEN SERVICED BY ANOTHER NODE.
ALSO, SLAVE MAY STALL (GIVE STALL RESPONSE) FOR ONE OR MORE
BUS CYCLES BEFORE RETURNING VECTOR (ACK RESPONSE).

SCLD-18C

Figure 2-15 VAXBI Identify (IDENT) Transaction
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2.9.3 Interprocessor Interrupt (IPINTR) Transaction

The format for the IPINTR transaction (Figure 2-16) differs from
the INTR transaction only in the selection information transmitted
by the master in the command/address cycle. A destination mask is
transmitted on the 1low-order D lines, but no interrupt level is
transmitted on the high-order D lines. This 1is because the
interrupt fielding node (the slave) holds the interrupt request
level. Instead, the master's decoded ID 1is transmitted on the
high-order D 1lines as in the third cycle of an IDENT. This is
necessary because a slave may not be enabled to accept
interprocessor interrupt requests from the current master.

As for the INTR, the single data cycle following the embedded
arbitration cycle is essentially a command confirmation cycle. (No
data is transferred between master and slave.) At least one slave
must respond with an ACK during the cycle or an error flag is set
in the master.
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4VAXBI CYCLE C/A 1A

LEGEND
MASTER | DEC'D M = MASTER
DEC'D |ID S(S) = SLAVE OR SLAVES
12 res | e AN~ ALL NODES
' <31:16> AAN = ALL ARB’ING NODES
C/A = COMMAND/
ADDRESS CYCLE
iA = |MBEDDED ARB
RESV'D CYCLE
D<31:00> b FIELD
INTR DEC'D
DEST D
MASK HIGH
<15:00> | PRIOR
<15:00>
SOURCE M AAN
1<3:0> IPINTR | MASTER | RESV'D
CMD ID FIELD
SOURCE M M
Po GEN M M RESV'D
CHK AN AN FIELD
CNF<2:0> ACK
SOURCE S(S)
M M
VAXBI BSY L
M,AAN
VAXBl NO ARB L
SCLD-191

Figure 2~16 VAXBI Interprocessor Interrupt (IPINTR)} Transaction
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2.10 STOP TRANSACTIONS

The STOP transaction is used to force nodes to a state where they
cannot issue any more VAXBI transactions while retaining as much
error and other status information as possible. However, nodes
must still be able to respond to VAXBI transactions so that the
retained status information can be examined by another node.

A processor node can use the STOP transaction to first stop all bus

activity after an error condition. It can then read status
registers in one or more nodes for error logging or diagnostic
purposes. A node can be returned to normal operation by forcing a

selftest operation. (A DC LO indication is generated by the BIIC
during the selftest sequence, which initializes the node.)

STOP transaction format (Figure 2-17) is similar to INTR and IPINTR
format, except that the master transmits only a destination mask on
the D lines during the command/address cycle. More than one slave
may be addressed and at least one must generate an ACK response on
the CNF lines or the master sets an error flag. Like the INTR and
IPINTR, the response is generated 1in the single data cycle
following the embedded arbitration cycle. (No data 1is actually
transferred over the D lines in this cycle.)

If a responding slave cannot enter STOP mode by the end of the
transaction's single data cycle, it still generates an ACK
response. However, until the STOP sequence is complete, it must
either hold the bus (by asserting BSY) or it must generate RETRY
responses to single-responder commands and NO ACK responses to
multiresponder commands. (The BSY signal is discussed in Section
2.11.)
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VAXB| CYCLE

D<31:00>

SOURCE
1<3:0>

SOURCE
PO GEN

CHK

CNF<2:0>

SOURCE
VAXBI BSY L

VAXBI NO ARB L

Figure 2-17

LEGEND
M = MASTER
S({(S) = SLAVE OR SLAVES
AN = ALL NODES
AAN = ALL ARB’ING NODES
C/A = COMMAND/

ADDRESS CYCLE
1A = IMBEDDED ARB

CYCLE

C/A 1A
RESV'D DECD
FIELD ID
<31:00> | LOW
PRIOR
<31:16>
RESV'D
FIELD
IP
INTR DEC'D
DEST 1D
MASK HIGH
<15:00> | PRIOR
<15:00>
M AAN
STOP MASTER | RESV'D
CMD 1D FIELD
M M
M M RESV'D
AN AN FIELD
ACK
S(S)
M M /
M,AAN

SN
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2.11 BUS ARBITRATION AND CONTROL
A node may request the bus during any bus cycle when the bus 1is

inactive, It may also request the bus during the embedded
arbitration cycle of any VAXBI transaction when the bus 1is busy.
Each requesting node monitors all requests (distributed

arbitration), and if it has the highest priority, assumes control
of the bus as bus master, either in the next cycle (when there is
no transaction in progress) or at the end of the current
transaction. When a node wins the bus during the embedded
arbitration cycle of the current transaction, it is called the
pending bus master until it assumes control of the bus when the
current transaction ends.

2.11.1 Bus Reguests

Nodes request use of the bus by asserting a D line that corresponds
to its node ID. As shown in Figure 2-18, the line asserted may be
one of the 16 high-order lines or one of the 16 low-order lines.
The low-order 1lines are high priority requests. The high-order
lines are low priority requests. Within each group of high or 1low
priority requests, the node with the lowest ID (lowest numbered D
line asserted) has the highest priority. Of course, any high
priority request always has a higher priority than any low priority
request.

31 16 15 00
VAXBI DATA
LINES LOW PRIORITY REQUEST LINES HIGH PRICRITY REQUEST LINES
P i | e [ | | [ A
t T |
NODE 15 0 15 o]

LOWER 4——’PRIORITY HIGHER

NOTE: NODE ASSERTS EITHER A HIGH OR LOW REQUEST LINE TO ARBITRATE FOR VAXBI.

SCLD-193

Figure 2-18 Bus Arbitration Request Lines
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2.11.2 Arbitration Modes
Whether the node asserts its high priority line or its low priority
line depends on the arbitration mode. There are three modes.

1. Dual round robin
2. Fixed high priority
3. Fixed low priority

Nodes are normally programmed to operate in dual round-robin mode.
In this mode, a requesting node asserts its high priority request
only if the previous bus master has a lower ID (higher priority)
than it does. At any other time, it asserts its low priority line.
All nodes store the 1ID of the previous bus master, which is
asserted on the I lines during the embedded arbitration cycle of
the previous transaction.

On the average, dual round-robin mode assures equal access to the
bus for all nodes. 1If a node requires rapid access to the bus as
in some special real-time applications, it can be programmed to
operate in fixed high-priority mode. That is, it will always
assert its high-priority request 1line when requesting the bus.
Also, access may be further enhanced by programming other nodes to
operate in fixed low-priority mode (only low-priority requests will
be asserted).

2.11.3 Arbitration Control

The arbitration for the bus by any VAXBI node (as described above)
is shown in Figure 2-19. As can be seen, arbitration is controlled
by two bus signals, NO ARB and BSY.

NO ARB is asserted by any nodes requesting the bus. It 1is also
asserted by the current and pending bus masters and the slave at
various times during a transaction depending upon the transaction
type, 1its 1length, and the responses generated. The net result is
that NO ARB is always asserted except during the following bus
cycles.

1. Null cycles (no bus arbitration or transaction in
progress)

2. Command/address cycles

3. The last data cycle in transactions unless there is a
pending bus master
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REQ

— IDLE NO ARB

l NO ARB * REQ

WIN *» BSY
ARB
«—LOE 1 cycle l
WIN » BSY PENDING ‘—l
MASTER lBSY
BSY

MASTER <
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Figure 2-19 Arbitration State Diagram

BSY is asserted only by the current master and slave during a
transaction. The master asserts BSY during the command/address and
embedded arbitration cycles. Both the master and slave can assert
BSY during data cycles as for the NO ACK signal. BSY can also be
asserted to extend a transaction and, together with NO ARB, during
special mode functions as well. BSY is not asserted during the

following bus cycles.

1. Null cycles

2. Arbitration cycles (when there 1is no transaction in
progress)

3. The last cycle of transactions or special mode functions
(see Section 2.11.5)



When NO ARB is not asserted, nodes may arbitrate for the bus during

the next cycle. When BSY is not asserted, a node may begin a
transaction in the next cycle. For example, a node winning a bus
arbitration when BSY = 0 becomes bus master and begins the
transaction in the next cycle. (Refer again to Figure 2-19.)

Similarly, if a node wins the bus during the embedded arbitration
cycle when BSY = 1, it must wait as pending bus master until BSY =
0 before it can begin its transaction in the next cycle.

Timing for NO ARB and BSY during a typical bus operation is shown
in Figure 2-20. As can be seen, when there is little bus activity
and no nodes arbitrating in the embedded arbitration cycle of a
transaction, there is at 1least one dead cycle before the next
transaction can begin. However, with increased bus activity and
nodes arbitrating during embedded arbitration cycles, one
transaction immediately follows the next, raising the data transfer
rate for the bus.

2.11.4 Extending a Transaction

BSY may be asserted by a node to extend a transaction one or more
cycles beyond its normal length. The additional cycles, called
busy stall cycles, stop bus activity until the node is ready to
respond properly to another transaction. For example, a node
responding to the previously discussed STOP transaction may assert
BSY to delay the start of the next transaction until it can enter
STOP mode.

2.11.5 Special Mode Functions

Both BSY and NO ARB may be asserted by a node during execution of
some special mode functions. A bus transaction between other nodes
may Or may not be in progress. As when extending a transaction,
the assertion of BSY delays the start of the next bus transaction
until the special mode function is completed. (The NO ARB signal
is asserted to identify the operation as a special mode function.)
For example, a node doing a BIIC loopback operation cannot respond
to bus transactions and it asserts BSY and NO ARB to prevent any
transaction until the loopback is complete. A loopback operation
is when the node 1is reading or writing one of its own BIIC
registers using internal data paths only.
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TRANSACTION 1 l«TRANSACTION 2 A{TRANSACTlON 3
C/A | IA

CYCLE NULL | ARB DATA! ARB | C/A | IA |[DATA|DATA| C/A | 1A IDATA|C/A

MASTER A A A A A A A B B B c

PENDING
MASTER B B C

ARB’ING
NODE(S) A A

BSY L L AN N
A 1 SN TN |

SCLD-195

Figure 2-20 VAXBI Arbitration (Example)

2.12 VAXBI ERRORS
The error detection by VAXBI nodes (done by the BICC) consists of

the following:
1. Parity Checking
2. Transmit Check Error Detection

2
Je Pr

2.12.1 Parity Checking

The VAXBI has a single parity 1line (PO). Except for embedded

arbitration cycles, the parity bit (when it is generated) is for
the information on the D and I lines. During embedded arbitration
cycles, only I-line parity is generated. The nodes generating and
checking parity during VAXBI cycles are listed below.
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Parity Parity

Generating Checking Transaction

Cycle Node Node(s) Aborted
Command/Address Master All No

Embedded Arbitration Master All No

Decoded ID (IDENT) Master Potential Slave(s) No

Write Data Master Slave Yes

Read (Vector) Data Slave Master Yes

Null N/A All (see note) N/A

NOTE

All nodes check that no D or L lines are
asserted during null cycle.

When a node detects a parity error, it sets an error flag in its
bus error register (in the BIIC) and generates an interrupt request
if error interrupts are enabled. Nodes detecting bad parity during
command/address cycles do not acknowledge (ACK) the
command/address. Also, interrupt nodes that detect a parity error
during the decoded 1ID cycle of an IDENT transaction do not
participate in the IDENT arbitration cycle.

2.12.2 Transmit Check Error Detection

There are two types of transmit check errors. One type is when the
information transmitted by a master on the D, I, and PO lines does
not compare with the information received (by the same node). The
check is made during command/address, write data, and decoded ID
(IDENT) cycles when the master is the only node transmitting
information on the D, I, and PO 1lines. When the information
transmitted and received does not compare, the master sets an error
flag in 1its bus error register and generates an interrupt request
(if enabled). The transaction is also aborted. The other type of
transmit check error 1is when a master or a slave should be
asserting BSY or NO ARB, and it does not detect the asserted state
on the VAXBI lines. Again, the node sets an error flag in its bus
error register and generates an interrupt request (if enabled).
However, if a transaction is in progress, it is not aborted.
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2.12.3 Protocol Checking
The following errors in VAXBI transaction execution are checked.

When an

error is detected by a node, it sets an error flag in its

bus error register and generates an interrupt request (if enabled).

NO ACK to Multi-Responder Command Received - A master
received a NO ACK response for an INVAL, STOP, INTR, or
IPINTR command.

Interlock Sequence Error - A node successfully completed
an unlock write transaction that was not preceded by a
corresponding read interlocked transaction.

IDENT Vector Error - An ACK response was not received by
the master indicating the vector was not correctly
received by the slave.

Read Data Substitute Error — A read data substitute (or
reserved) status code was received with read (or vector)
data and no parity error was detected.

Retry Timeout - The master received 4096 consecutive RETRY
responses from the slave for the same transaction.

Stall Timeout - The slave transmitted 128 consecutive
STALL responses. Causes the slave to abort the
transaction.

Bus Timeout - A node was unable to start a pending bus
transaction after 4096 consecutive bus cycles.

Nonexistent Address - A master received no response to a
read/write type command, and it detected no parity error
or transmit check error for the command/address
information. Causes the master to abort the transaction.

Illegal Confirmation Error - A master or slave detected a
reserved or illegal response code.
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CHAPTER 3
VISIBILITY BUS (VBUS)

3.1 INTRODUCTION

The visibility bus (VBus) is a slow speed bus consisting of 16 data
lines and two control lines that allow the PRO-38N console to read
selected logic levels in the CPU modules. It is used mainly during
the execution of microdiagnostics and during system initialization.
Normally, the VBus is used when the system clocks are stopped.

The PRO-38N controls and reads the VBus by means of two registers
located on the clock module's console interface. These registers,
the VBus control register and the VBus access register (actually
the outputs of a VBus data multiplexer), are accessed by the
PRO-38N over the RTI. Both the VBus and the VBus control on the
console interface are shown in Figure 3-1.

3.2 BASIC FUNCTIONS
The VBus allows the PRO-38N console to perform the following major
functions:

1. Monitor the state of the CPU(s) during the execution of
microdiagnostics or in response to commands entered at the
console during system debug. CPU signals are usually
examined in the interval between single-stepped clocks or
clock bursts.

2. Verify during system 1initialization (with the clock
stopped) that the CPU modules are installed correctly.
Module revision numbers are also read at this time.

3. Check that no control store parity errors occur when
microcode is loaded during system initialization. 1In this
case, VBus data bits (parity error flags) are read with
the system clock running at full speed.

3.3 VBUS SIGNALS
The VBus signals, which are ECL driven and received, are defined in
Table 3-1. ‘
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LEFT CPU MODULES

RIGHT CPU MODULES
<15> o]

4+—>21 s

» SHR ————>

<14>

&1 gic1 |«

SLC1 — >

stco  —=<13>

=] sLco

ADP <12> »

R ADP <

=32 ccs

<11>
CCS F————» +

‘_<_2>_._ DEC

DEC <10> »

PPN L2 SEQ

sEQ  |—=22p

<8> >

VBUS DATA <7:0> H VBUS STOP SHIFT H

VBUS | ADDRESS H VBUS DATA <15:8> H

Y

CLK % BCLK H

VBUS DATA MUX SEL MUX
SEL

STOP | STEP| VBUS
SHFT | BCLK| ADDR

s

|, 8

\ J

X

—» (TO/FROM OTHER CONSOLE

y

CTL

VBUS CONTROL
REGISTER

INTERFACE REGISTERS)

PRO-38N INTERFACE

CLOCK (CLK) MODULE

Figure 3-1

o

PRO-38N
CONSOLE

Visibility Bus (VBus)
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Table 3-1 VBUS Signal Descriptions

Signal Line Number Description
VBUS DATA 16 Transfer VBus data from CPU modules to
<15:0> H console interface on clock (CLK) module.

Each data line connects to one CPU
module and corresponds to one VBus
channel.

VBus DATA Left/Right CPU CPU Module

<15> R SHR
<14> R SLC1
<13> R SLCO
<12> R ADP
<11> R CCSs
<10> R DEC
<9> R SEQ
<8> R WCS
<7> L SHR
<6> L SLC1
<5> L SLCO
<4> L ADP
<3> L CCs
<2> L DEC
<1> L SEQ
<0> L WCS
VBUS ADDRESS H 1 Transfer VBus data address from console

interface to all CPU modules. Address
is shifted into VBus address registers
(shift registers) on each module one
bit at a time.

VBUS STOP 1 Asserted by console interface to

SHIFT H disable the shifting of VBus address
registers in some CPU modules (ccs,
DEC, and SEQ modules). The registers
hold their current contents (the current
VBus data address) as long as the line
is asserted.
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The 16 data lines allow 16 separate visibility channels to be read
by the console. That is, a data line connects from each of the 16
CPU modules to the VBus data multiplexer on the console interface.
(There are eight modules in the left CPU and eight in the right
CPU.) Eight VBus channels, either the eight left CPU channels or
the eight right CPU channels, can be read by the console at a time.

The two VBus control lines connect to more than one module. One,
the VBus ADDRESS line, connects to all modules. The console reads
VBus data from a module by first shifting an address onto this line
one bit at a time. The address is held in the module (in a shift
register) and it selects the single VBus data bit that is
transmitted on the module's VBus data line. Because the address
line connects to all modules, a VBus data bit may be selected in
more than one module by a single address. As mentioned above, the
VBus data bits from all modules can be read eight bits at a time
once an address is loaded.

The second VBus control line, VBus STOP SHIFT, connects to only the
ccs, DEC, and SEQ modules in each CPU. When asserted by the
console, this signal causes the shift registers holding the VBus
data address bits in the modules to hold that address even if the
system clocks are started. The selected VBus data bits may then be
examined during normal operation when clocks are running at full
speed. This is done during the loading of microcode when the VBus
is used to monitor control store parity error flags. (These parity
error flags in the CCS, DEC, and SEQ modules are all selected by
the same VBus data address bits: 100110, where the right-most or
least significant bit is the last bit shifted into the VBus address
path.)

VBus STOP SHIFT can also be asserted during system debug so that
selected VBus signals may be scoped on the backpanel while the
system clock is running.

3.4 VBUS REGISTERS

Register bit formats for the two VBus registers on the console
interface are shown in Figures 3-2 and 3-3. The VBus control
register is a write-only register. The VBus access register, which
is the output of the VBus data multiplexer, is a read-only
register.

The bits in the VBus control register are defined in Table 3-2.
The VBus ADDRESS and STOP SHIFT control bits (latch outputs) drive
the two VBus control lines. These control bits hold their current

state unless changed when the VBus contrcl register is written
again.

I 3-4



The STEP BCLK control bit causes one system BCLK to

It 1is

set

every time a BCLK is to be

operations

clocked by BCLK).

it on

generated

is

be

gen

erated.

only momentarily (for one clock cycle) and must be set
. It

used during VBus
to clock the VBus data address into the modules. (The
shift registers that hold the VBus data address in the modules are

which ¢tr
The console then shifts the address

bit into the module's shift register by setting STEP BCLK.

repeated
modules.

until all bits

CONSOLE
ADDRESS  READ/
(HEX) WRITE

B w

Figure 3-2

of the

address

are

VBUS CONTROL REGISTER (VBCTL)

07

04

03

02

01

00

When the console loads a VBus data address bit,
it first loads the bit in the VBus ADDRESS latch,
the VBus ADDRESS line.

ansmits

This is

shifted into the

NOT USED

MUX
SEL

STOP
SHIFT

STEP
BCLK

VBUS
ADDR

VBus Control Register
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Table 3-2 VBus Control Register Bit Descriptions

Bit(s)

Description

<7:4>

<3>

<2>

<1>

<0>

Not used.

Multiplexer select. Selects which VBus channels
are read by console when it reads the VBus
access register. Cleared by CPU INIT.

MUX SEL

SELECTED VBUS CHANNELS

0 Eight channels
1 Eight channels

Stop shift. Prevents BCLK

that hold VBus
Used to freeze
flags in these
Cleared by CPU

address in
address of

INIT.

from
from

from
CCs,

left CPU
right CPU

shifting registers

and SEQ modules.
control store parity error
modules when microcode is loaded.

DEC,

Step BCLK. Causes one system BCLK to be generated.
Set for only one clock cycle.

VBus address.

This address bit is shifted: into

serial VBus address path (in each module) by BCLK.

Cleared by CPU

INIT.
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CONSOLE

ADDRESS  READ/ VBUS ACCESS REGISTER (VBACC)

(HEX) WRITE 07 06 05 04 | 03 02 01 00
4 R

I | |
VBUS DATA BITS

T T

SHR SLCO CCS SEQ
MODULE MODULE | MODULE MODULE
SLC1 ADP DEC WCS
MODULE MODULE MODULE MODULE

NOTE: VBUS DATA BIiTS ARE FROM LEFT CPU
IF BIT<3> IN VBUS CONTROL REGISTER IS
CLEARED. IF BIT<3> IS SET, VBUS
DATA BITS ARE FROM RIGHT CPU MODULES.

SCLD-198

Figure 3-3 VBus Access Register

The MUX SELECT control bit (another latch output) simply drives the
select line for the VBus data multiplexer and determines which
eight VBus channels are read by the console when it reads the VBus
access register.

The console uses the VBus registers as follows during a typical
read of one or more VBus channels (system clock turned off).

1. Loads VBus ADDRESS bit and STOP SHIFT = O

2. Loads same VBus ADDRESS bit, STOP SHIFT = 0, and STEP BCLK
= 1 (to shift address bit into modules)

3. Repeats steps 1 and 2 (until all address bits are shifted
into modules)

4. Loads MUX SELECT bit and reads VBus data bits

Note that a copy of the VBus ADDRESS bit is loaded when the BCLK is
stepped. This is because the console is not allowed to change the
state of the VBus ADDRESS bit when STEP BCLK 1is set. It also
cannot change the state of the STOP SHIFT bit when STEP BCLK is
set. These programming restrictions are necessary due to the

L it
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3.5 MODULE VBUS CHANNEL CIRCUITRY
The VBus channel <circuitry in a CPU module is basically the
following:

l. One or more shift registers (clocked by BCLK) that hold
the VBus data address shifted into the module by the
console. The same number of address bits are not used by
all modules.

2. One or more data multiplexers that select the VBus data
bit specified by the address. The bit is transmitted on
the module's single VBus data line.

3.5.1 Minimum Configuration

The minimum amount of VBus channel circuitry required for a CPU
module is shown in Figure 3-4. That is, all CPU modules must allow
the console to read the module's revision number and also an "eat
the tail" bit to test VBus channel operation. The console reads
these VBus data bits during system initialization. Modules having
the minimum amount of VBus circuitry are the SHR, SLCO, SLCl, and
WCS modules. (In the WCS module, two control store parity error
flags can be read in addition to the revision number and tail bit.)

The tail bit is a bit in the serial address stream that is not used
for selection purposes but, when shifted out of a module's shift
register and followed by its own VBus data address bits, may be
read by the console. When testing the VBus channel, the console
shifts both a 1 and a 0 tail bit through the shift register and
reads each back to verify that the VBus channel is operating
correctly. A successful test also verifies that a module is
installed in the slot. Furthermore, because the tail bit address
is different for each module, the test verifies that the correct
module is installed in the slot.

3.5.2 Expanded Configuration

Some CPU modules allow a large number of internal logic levels to
be examined wusing the VBus. Thus, additional shift registers and
data multiplexers are required in the module and these, for the
most part, are located within the MCAs. A typical expanded
configuration is shown in Figure 3-5. Modules having an expanded
VBus capability are the ADP, CCS, DEC, and SEQ modules.
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Figure 3-5 VBus Channel in CPU Module (Expanded Configuration)
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3.6 VBUS ADDRESS/DATA SUMMARY

The VBus directory in the System Maintenance Guide lists the logic
levels in each module that can be read using the VBus. (An excerpt
from the beginning of the directory is given 1in Table 3-3.) The
minimum number of VBus data address bits required for each module
(each channel) varies from three bits to ten bits (not including
the tail bit).

3.7 VBUS CONSOLE COMMANDS
There are three VBus console commands:

1. ©PROBE VBUS <address> <accumulator bit>
2. SHOW ACCUMULATOR
3. CLEAR ACCUMULATOR

The PROBE VBUS command selects a single VBus data bit and loads it
into (actually ORs it with) one of the bits in a 32-bit
accumulator. The use of an accumulator allows a string of these
commands to assemble several bits of VBus data into a useful format
before the data is finally examined with the SHOW ACCUMULATOR
command. All bits in the 32-bit accumulator can be cleared at any
time with the CLEAR ACCUMULATOR command.

The address for the PROBE VBUS command consists of a channel number
and a VBus data address. This is followed by the bit number in the
32-bit accumulator. The command causes the console to shift the
VBus data address out to all modules, read the selected VBus data
(eight channels), and then load the data bit for the specified
channel into the specified bit position in the accumulator.

Use of the VBus commands is illustrated below. The example 1is a
command file that reads the address of the first microword in the
pipeline. The address bits, stored in the microPC silo on the SEQ

413:00> of the accunulatoer

1 1 3
are assem AA in h“"- L ¥ S CAN it e

meaAdrl A o
mouu L, [SESESTISHITOIN RS 10 S Iy § Sy O By SRS

IMICROPC.CMD
lassembles microPC bits from VBus and displays them
CLEAR ACCUMULATOR

PROBE VBus %X1007 00 ‘read bit 0
PROBE VBus %X100F 01 !read bit 1
PROBE VBus $%X1017 02 'read bit 2
PROBE VBus %X1117 12 lread bit 12
PROBE VBus %X111F 13 lread bit 13

SHOW ACCUMULATOR



Table 3-3 VBus Directory (Excerpt)

Channel Module Module Type
0 WCS F1009
1 SEQ F1008
2 DEC F1007
3 CCs F1006
4 ADP F1005
5 SLCO F1004
6 SLC1 F1003
7 SHR F1002
PROBE
VBus VBus Data
Address Address
Channel (Hex) (Binary)* Signal Remarks
0 0000 0 000 TAIL BIT H = 0 Tail bit should be 0
0 0008 1 000 TAIL BIT H = 1 Tail bit should be 1
0 0002 010 INT CS1 PE H CS1 Parity Error
0 0003 011 INT CS2 PE H CS2 Parity Error
0 0004 100 MODULE REVISION <0> H
0 0005 101 MODULE REVISION <1> H
0 0006 110 MODULE REVISION <2> H
0 0007 111 MODULE REVISION <3> H
1 1000 000 INT CSO PE H CS0 Parity Error
1 1001 0 XXX 001 TAIL BIT H = 0 Tail bit should be 0
1 1041 1 XXX 001 TAIL BIT H = 1 Tail bit should be 1
1 1002 010 MODULE REVISION <0> H
1 1003 011 MODULE REVISION <1> H
1 1004 100 MODULE REVISION <2> H
1 1005 101 MODULE REVISION <3> H
1 1006 110 CS PARITY ERROR H Cs0, CS1l, or CS2 PE
1 1007 00 00X 000 111 DIG UADDR 3 <0> H
1 100F 00 00X 001 111 DIG UADDR 3 <1> H
1 1017 00 00X 010 111 DIG UADDR 3 <2> H
1 101F 00 00X 011 111 DIG UADDR 3 <3> H
1 1027 00 00X 100 111 DIG UADDR 3 <4> H
1 1087 00 01X 000 111 DIG UADDR 3 <5> H Address of first
1 108F 00 01X 001 111 DIG UADDR 3 <6> H microword in pipeline
1 1097 00 01X 010 111 DIG UADDR 3 <7> H (address in uPC silo)
1 109F 00 01X 011 111 DIG UADDR 3 <8> H
1 10A7 00 01X 100 111 DIG UADDR 3 <9> H
1 1107 00 10X 000 111 DIG UADDR 3 <10> H
1 110F 00 10X 001 111 DIG UADDR 3 <11> H
1 1117 00 10X 010 111 DIG UADDR 3 <12> H
1 111F 00 10X 011 111 DIG UADDR 3 <13> H

* The right-most bit of the VBms data address (binary) is the least
significant bit and the last bit shifted into the serial address path.
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CHAPTER 1

INTRODUCTION
1.1 GENERAL
This section provides a technical description of the VAX 8800
console subsystem. The section 1is divided into three chapters
containing the following information:
Chapter 1 -- An introduction and overview of the console subsystem
at the simplified block diagram level.
Chapter 2 -- A functional description of the console and how it
interacts with the VAX 8800 system.
Chapter 3 -- Detailed analysis of the console interface and a

description of the input/output ports, timing signals, MCA logic,
and register definitions.

1.2 RELATED DOCUMENTATION AND REFERENCES

This technical description does not contain detailed information
pertaining to the Professional Series 380 computer. The following
references have been provided for operation, installation, and
maintenance of the PRO-38N:

Professional 300 Series Owner's Manual (AA-N587A-TH)

Professional 300 Installation Guide (AZ-N626A-TH)

Professional 300 User's Guide for Hard Disk System (AA-N603A-TH)
Professional 300 Communications Manual (AA-N602B-TH)

Professional 300 Pocket Service Card (EK-PC3XX~-PC)

Professional 300 Technical Manual (EK-PC3XX-TM

Professional 300 Field Maintenance Print Set (MP-01394-00)

VR210 Field Maintenance Print Set (MP-01410-00)

LK201 Field Maintenance Print Set (MP-01395-00)

KEF1ll Field Maintenance Print Set (MP001473-00)

VAX 8800 System Hardware User's Guide (EK-8800H-UG-001)

VAX 8800 System Installation Guide (EK-8800T-IN-001)
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1.3 FUNCTION AND PURPOSE

The console subsystem 1is an independent computer system that
provides primary control of the VAX 8800 system. The software of
the console subsystem controls power switching, 1loading of
microcode, and the general operation of a dual-CPU VAX 8800
system.

1.4 SUBSYSTEM COMPONENTS

The console subsystem shown in Figure 1-1 uses a Professional
Series 380 computer (PRO-38N) as a console device. The PRO-38N is
a self-contained system that consists of a Winchester disk drive,
dual-floppy disks, display monitor, and terminal keyboard.

A real-time interface (RTI) I/0 module located in slot six of the
PRO-38N, provides the communication path between the console and
the VAX 8800 CPU(s). All of the console/VAX 8800 communications
are transmitted and received through the RTI. The RTI uses a
programmable peripheral interface (PPI) and a serial line unit
(SLU) as I/0 devices for communication.

The PPI communicates by means of an 8-bit bus to the VAX 8800
cabinet, and handles the transfer of read/write data, system
status, and control signals. The SLU is the console's interface to
the VAX 8800 power subsystem. Control and status signals between
the console and a microprocessor in the environmental monitoring
module (EMM) provide the <console with the ability to monitor
specific parameters in the VAX 8800 cabinet such as voltage,
temperature, and airflow.

The PPI bus 1is connected to a console interface residing on the
VAX 8800 clock module. The clock module's connection to the VAX
8800 backplane provides the console with a point of communication
with the VAX 8800 CPUs.

An ni- r\na'l Nnrintar can he connected to the
s s . 12 N A w4 b 2 AS R A e NS LR S

console subsvyvstem
ti 12 conscle subsystem
through a serial printer port on the rear of the PRO-38N, A
remote diagnostic link can be established through an existing port

on the PRO-38N that is set up for modem control.

11T 1-2



e-T III

PRO-38N CONSOLE VAX 8800 CABINET

—————
FIXED- REAL-TIME
HEAD INTERFACE CLOCK MODULE
DISK PRIMARY
consote | ¥ oP
PPI
DUAL. »| INTERFACE |
FLOPPY
DISK
SLU ¢—
DISPLAY
AND POWER SYSTEM
KEYBOARD SECONDARY
EMM
512 KB —>
OPTIONAL MEMORY
PRINTER
J-11 CPU
NONVOLATILE
CLOCK (TOY)
REMOTE
TERMINAL
SCLD-211

Figure 1-1 Simplified Block Diagram of the Console Subsystem



1.5 CONSOLE/VAX 8800 INTERACTION

The console operates in two modes as shown in Figure 1-2. The
power-up and boot mode is included in the discussion of operating
modes, because of the important role that the console has in the
power-up seguence.

1.5.1 Power-Up Mode

During the power-up mode of operation, the console is responsible
for the sequencing and control of the following VAX 8800
functions:

® Power application/sequencing

@ Monitoring environmental status

° Performing loopback testing of the interface

e Verifying correct module placement

° Performing revision compatibility comparisons

° Providing system identification

° Loading VAX 8800 firmware and booting the system

1.5.2 Console 1I/0

The console mode can be in effect during either the VAX 8800 halt
or run mode. During halt mode, the console can perform, examine,
and deposit, microcode/macrocode stepping and clock control
functions. The VAX software must be halted during these functions
to allow the console support microcode (CSM) to communicate wit
the console. Commands not requiring mwmicrocode assistance are
valid in either mode.

T T e U e PRt Nt I I T DA & & W ¥ 4

Placing the console in console mode during the VAX 8800 CPU run
mode with a CTRL/P 1limits the amount of VAX 8800 commands
available to the operator, but allows the <console to run

independently of the VAX.
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SCLD-212
Figure 1-2 Modes of Operation
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Program mode places the console 1in a state similar to any VAX
terminal. Communication with the VAX 8800 CPU is under interrupt
control using the ready and done conditions. During program mode,
the console is free to interact with the VAX 8800 at the
instruction set processor (ISP) level and perform normal operator
interactive functions.

1.5.3 VAX 8800 State Description
The VAX 8800 CPU exists in one of the following four
hardware/operational states:

1. Power off
2. Clock stopped/WCS invalid
3. Clock running/WCS invalid

4, Clock running/WCS valid

1.5.3.1 Power Off -- All regulators turned off.

1.5.3.2 Clock Stopped/WCS Invalid -- The VAX 8800 regulators have
been turned on and the clock is stopped while the console checks
module and software revisions. Microcode has not been loaded, and
volatile RAM locations remain invalid. The clocks are then
started to load microcode.

1.5.3.3 Clock Running/WCS Invalid -- There are two conditions in
which this state can be true: during powerup and loading of the
WCS. The «c¢lock is running during the power-up sequence and all
RAM areas are volatile and invalid. During WCS and IBox loading,
the clock is running.

i.5.3.4 <Clock Running/wWCS Valid -- Microcode has been loaded into
the WCS; the 1IBox decoder RAMs and cache control store are
loaded. The VAX system is executing a NOP microinstruction and

the VAX 8800 CPU is in the ready state.
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1.5.4 Console State Description
The console CPU exists in one of the following operational states:

Power Off
The power switch on the PRO-38N is in the OFF position.
Stuck

Console selftests have failed. Power-up and boot sequence will
not proceed.

P/0S

The console is running the PRO operating system. This condition
can be the result of an intentional exit from the VAX 8800 system
to use P/0S, or the result of a console-only power failure.

NOTE
The P/0OS state will exist when the
system has been assembled and the
console applications have not been
installed.

Console Applications

Console applications have begun. The console is initializing the
data base and spawning the RTI driver. Testing of the real-time
interface, environmental monitoring module, and VAX 8800 hardware
have not been performed. Commands for testing and interrogation
are valid during this state.

Test

EMM, RTI, and clock module loopback testing have been completed

successfully. Commands to the EMM to begin VAX 8800 powerup are
valid.

Power
VAX 8800 CPU power has been applied and the clock is NOT running.

Commands to start the clock and load microcode, IBox decoder RAMs,

and cache control store are valid. The POWERDOWN command is
valid.
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Micromonitor Mode
Micromonitor 1is a subset of the console program that allows
loading, control, and monitoring of console-based and WCS-based
microdiagnostics.

The commands that are valid include the conventional console
commands plus a set of micromonitor commands.

Console Mode

The VAX 8800 ISP with console support microcode has been loaded.
Commands that are allowable when the clock is running are valid.

Microbreak

Clock stopped, microcode execution halted. This state is a result
of one of the following:

°® MicroPC match and stop on micromatch set
°® Clock burst of (n) cycles complete
) SET CLOCK OFF command

Intermediate

This state exists during the transition from console mode to
program mode. Characters are not passed from the terminal and a
limited amount of commands are valid.

Program Mode

Normal mode of operation for the VAX 8800 run mode.

Boot

The console is in the process of booting the VAX 8800 system.
Restart

The console is in the process of restarting the VAX 8800 system.
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1.6 CONSCLE SOFTWARE COMPONENTS
The console software consists of the following three distinct
processes to implement control of the VAX 8800 system:

1. Control program

2. Logical block server program

3. Real-time interface driver
l1.6.1 Control Program

The control program is the main console program and is responsible
tor implementing console modes (program or console I/0), logfiles,
micromonitor, EMM support, and remote terminal access. The
control program uses RSX system directives SET, CLEAR, TIMED
REQUESTS, WAIT EVENT FLAGS, and QUEUED I/O WAIT.

During system initialization, the control software installs and
initializes the RTI driver, spawns the logical block server and
disk access programs, reads nonvolatile console state from the
console disk drive, and initializes the console database.

1.6.2 Logical Block Server Program

The logical block server program enables the VAX 8800 CPU to read
or write files to and from the console floppy disks. The console
presents the floppies to the VAX 8800 as large virtual floppies by
creating a file on the Winchester drive.

1.6.3 Real-Time Interface Driver

The real-time interface driver provides the software link between
the RTI circuitry in the PRO-38N, and the hardware independent
functions of the control, logical block server, and file transfer
programs. Separate subdrivers are used for communications with
either the programmable peripheral interface, or the serial line
unit. The PPI subdriver provides mapping from high-level
functions, to machine-specific operations (for example: Examine or
Deposit requests require a correct sequencing of reads, writes,
and acknowledge operations).

111 1-9



1.7 CONSOLE/VAX 8800 POWER SEQUENCE
The description of the console and VAX 8800 power sequencing is
divided into five functional areas:

Powerup

EMM/Console initialize
Restart/Boot/Halt
Power fail

Powerdown

U W
.

Each of the five functional areas is illustrated with a flowchart
in Figures 1-3 through 1-7. The flowcharts are intended as a
reference for the brief overview of the VAX 8800 power sequencing,
and do not contain sufficient information for a detailed analysis.
Refer to Section 10 of the manual for information about the power
subsystem.

1.7.1 Powerup (Refer to Figure 1-3)

The power-up sequence involves two independent processors to bring
the VAX 8800 system to ready state. The microprocessor in the
environmental monitoring module, and the console processor perform
numerous cooperative tasks that ensure the correct sequencing of
power and initialization of the system.
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(EMM INITIALIZE)
SCLD-213
Figure 1-3 Power-Up Sequence

When the main power «circuit breaker on the VAX 8800 cabinet is
turned to the ON position, ac voltage is applied to the following:

°o 876 power controller
° Console subsystem

The 876 power controller applies ac voltage to the NBox (port
conditioner) and the battery backup unit (BBU). The NBox provides
a 12-volt and 5-volt dc to the EMM, enabling the EMM to begin the
power-on sequence.
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1.7.2 EMM/Console Initialize (Refer to Figure 1-4)

The dc voltages applied to the EMM reset the microprocessor and
begin the initialize sequence by performing a module keying test.
If the keying test is satisfactory, the EMM conducts a selftest.
Failure of either the keying test or the selftest will result in
an error message to the console and a reset of the EMM. The reset
will prevent the EMM from responding to console commands. Upon
completion of the selftest, the EMM will load its own default
monitoring parameters, initiate auto shutdown monitoring, and wait
for the console to be switched "ON".

When the console operator places the PRO-38N power switch to the
"l" position, the console processor performs a selftest of the
PRO-38N's major components. Satisfactory completion of the
selftest results 1in the 1loading and running of the console
software. The console software initializes the database and the
RTI driver so that it can communicate with the EMM in the VAX 8800
system.

As soon as the console software verifies that it can communicate
with the EMM, the console sends specific monitoring parameters to
the EMM and enables failure monitoring. The specific parameters
replace the default parameters loaded by the EMM during the
powerup without the console.

The console software checks the INITIALIZE IN PROGRESS flag to
determine if a previous powerup attempt had failed prior to
completion. If the flag indicates that a previous attempt had been
aborted, the console is set to the console I/0O mode and the power
sequence 1s aborted. Power supply status is checked to determine
if it was a console-only power failure. If a console-only power
failure had occurred, the console clears the CONSOLE GONE flag,
and sets either console or program mode depending on the state
when the console failed.

The console executes SYSINIT.COM and the command file checks AUTO
POWER ON to determine if the console should continue with the
automatic power sequence or abort and wait for further
instructions.

The console performs a series of loopback tests to determine that
all required communication paths with the VAX 8800 system are
operational. Successful completion of the loopback tests allows
the console to verify correct module placement and revision
status.

When the console is satisfied that all modules are correctly

placed, and the revisions are compatible, the console loads the

WCS, cache control store, and IBox decoder RAMs. IPRs and memory
- » .

< 3 3 3 1A ~A ~ TIN TAM 3 4 + 3 3 -
are initialized and an UNJAM is performed to initialize I/0.
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Figure 1-4 EMM/Console Initialize (Sheet 1 of 4)

IT1 1-13



A

RESPOND TO
CONSOLE

SET NEW
PARAMETERS

MONITOR
FOR FAILURES

Figure 1-4

B

N
!

RUN_CONSOLE
SELFTEST

NO

A
oK __J
YES

LOAD & RUN
CONSOLE SOFTWARE

3

INITIALIZE
DATABASE &
RTi DRIVER

A

ENABLE EMM
COMMUNICATION

YES

SEND SPECIFIC
PARAMETERS
TO EMM

‘

ENABLE EMM
MONITORING

ERR

TO CONS

MSG

sC

LD-215

EMM/Console Initialize (Sheet 2 of 4)
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1.7.3 Restart/Boot/Halt (Refer to Figure 1-5)

When the power-on sequence is completed, the VAX 8800 system is
ready to enter either the restart, boot, or halt mode, depending
on the position of the software mode keyswitch. The flowchart,
shown in Figure 1-5, only refers to the primary VAX 8800 CPU. The
secondary CPU 1is restarted using an RPB saved in memory by the
primary CPU. The secondary CPU is restarted by the console when
requested by the primary CPU.

If the software keyswitch indicates boot, the console uses the
console support microcode to locate 64 Kbytes of contiguous
memory, and loads and executes VMB. A successful boot results in
a continue to program I/0 mode.

The FIND MEMORY command requests the microcode to search main
memory, starting at address 0, for a page-aligned 64-Kb block of
good memory. If a block is found, the starting address plus 512 is
left in the SP and the cold restart flag is set.

The FIND RPB command initiates a microcode search of physical
memory for a valid restart parameter block. If an RPB is found,
the warm restart flag is set. A warm restart states that memory
has been backed up and a restart parameter block is available.
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Figure 1-5 Restart/Boot/Halt
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1.7.4 Power Fail (Refer to Figure 1-6)

The environmental monitoring module is responsible for recognizing
a pending power fail and informing the VAX 8800 CPU and the
console. When the EMM senses a decrease in a monitored voltage, it
asserts a signal called ACLO. The ACLO signal generates a
power—-fail interrupt to the VAX by means of the console interface
and informs the console that a sensed voltage has fallen below
acceptable limits.

At least five milliseconds after the ACLO signal, the EMM asserts
the DCLO signal. DCLO asserts the CPU INIT signal to the primary
and secondary CPUs and disables microcode execution. If the
console subsystem power is still active, the console recognizes
the interrupt and executes the POWER OFF command
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Figure 1-6 Power-Fail Sequence
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1.7.5 Powerdown (Refer to Figure 1-7)

An intentional powerdown is initiated by a console command. When
the command is recognized, the console software checks the status
of the battery backup unit.

If the BBU is enabled or the operator wishes to continue without

backup power, the EMM is directed by the console to begin
sequential shutdown of the voltage regulators.
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CHAPTER 2
FUNCTIONAL DESCRIPTION

2,1 GENERAL

This chapter contains a functional description of the console
subsystem and how it interacts with the VAX 8800 system.
Simplified block diagrams illustrate the process of initialization,
status and control, and data transfers.

Figure 2-1 is a functional block diagram of the console subsystem.
It 1is designed to show the interaction between the console and the
VAX 8800 system at a functional flow 1level, by indicating key
signals. Refer to the block diagram for the following system
description.

2.2 REAL-TIME INTERFACE (RTI)

The real-time interface is the only data link between the PRO-38N
console computer and the console interface located on the VAX 8800
clock module. The RTI is connected to the console computer through
the PRO-38N backplane and provides the VAX 8800 system CPUs with a
data path to the console storage, display, and control components.

The RTI consists of a programmable peripheral interface (PPI), an
IEEE port, and two serial line ports. The PPI is the primary data
transfer point to and from the VAX 8800 system. Serial line port
"A" is connected to the environmental monitoring module in the VAX
8800 power system, and provides the console with a means of
controlling and monitoring the power and environmental parameters
of VAX 8800. Serial line port "B" 1is connected to a spare
connector at the VAX 8800 bulkhead. The IEEE port is not used in
the present configuration.
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2.2.1 Programmable Peripheral Interface (PPI)

The PPI contains three 8-bit ports that are used to transfer data,
address, and control signals between the console and the VAX 8800
system. The PPI ports are connected to the buffer, translator, and

synchronize circuitry on the console interface board by means of
the PPI bus. Figure 2-2 shows the format of PPI Port A.

2.2.1.1 Port A -- Eight-bit bidirectional data port. Data bits to
and from the VAX 8800 CPU are transferred by means of this port.

07 06 05 04 03 02 01 00

MKV86-1265

PI Port A Format

2.2.1.2 Port B -- Eight-bit address and control port (refer to
Figure 2-3 and Table 2-1). Bits <3:0> contain address information
that is passed to the console address decoder. Bits <7:4>
enable/disable console-to-CPU communications, enable reads from the
interface, and mask interrupts to the console.

07 06 05 04 03 02 01 00
CONSOLE| SELECT | MASK READ CLK-MOD | CLK-MOD | CLK-MOD | CLK-MOD
GONE KEY INTRPTS | ENABLE |ADRS<3>|ADRS<2>|ADRS<1> | ADRS<0O>

MKV86-1266

Figure 2-3 PPI Port B Format
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Table 2-1

PPI Port B Bit Description

Bit

Name

Description

07>

<06>

<05>

CONSOLE GONE

SELECT KEY

MASK INTERPTS
(Mask Interrupts)

0
1

Console power is ON.

Pulled up to "1" by clock module,
when console power is OFF, or
when any of the cables connecting
the RTI to the clock module are
disconnected.

Provides multiple use of MASK INTRPTS
(mask interrupts) and READ ENABLE bits.

0 = MASK INTERPTS and READ ENABLE bits
perform normal functions.

1 = MASK INTERPTS serves the KEY DATA
function, and READ ENABLE serves the
KEY CLOCK function. The key data
and key clock signals are used in
the unlock sequence of console
isolation.

Function determined by SELECT KEY bit.
If the SELECT KEY bit is a "0", this bit
masks all interrupts from the console
interface to the console. If the SELECT
KEY bit is a "1", this bit and the READ
ENABLE bit enable console-to-CPU commun-
ications.

Interrupts are not masked.
Interrupts are masked. The mask bit
must be set prior to a read/write

from consocle interface operation.

SELECT KEY = 0
0 =
1 =

SELECT KEY = 1

0 = Normal mode, no action.

1 = Provides a serial data input to the
shift registers that enable the
console sequencer following a console
power failure or cable disconnect.

IIT 2-4



Table 2-1 PPI Port B Bit Description (Cont)

Bit Name Description

<04> READ ENABLE Function determined by SELECT KEY bit.
If the SELECT KEY bit is a "0", this bit
initiates a read sequence from the
console interface. If the SELECT KEY
bit is a "1", this bit, in conjunction
with the MASK INTERRUPTS bit, unlocks
the console interface and enables
console-to-CPU communications.

SELECT KEY = 0

Read Enable is toggled from 0 to 1 to
initiate read sequencing control of
the console interface.

SELECT KEY = 1

Clock input to the shift registers used
to enable the console sequencer follow-
ing a PRO-38N power failure or cable
disconnect.

<03> CLK_MOD ADRS Four-bit address to the console address
<3:0> (Clock decoder on the console interface.
Module Address)
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2.2.1.3 Port C -- Eight-bit bidirectional status and control port
(refer to Figure 2-4 and Table 2-2). Bits <3, 5, and 7> are
read-only bits that display PPI status information. Bits <6 and 4>
are used by the console's I/0 driver to control interrupts during
data transfers to and from the console interface. Bits <2:0> are
programmable bits used for the detection of RTI power-up diagnostic
execution. Bit 0 enables the console interconnect test (LOOPBACK
A). Bit 1 enables the interface data path test (LOOPBACK B).

07 06 05 04 03 02 01 00
outpuT | AT |INPUT Ry | RupT TO|-RTI e | NoT
BUF FULL | inaple |BUF FULL | EnagLe | PRO-38N [DIA MODE| g cy USED

MKV86-1267

Figure 2-4 PPI Port C Format

Table 2-2 PPI Port C Bit Description

Bit Name Description

<07> -=OUTPUT BUF FULL O PPI Port "A" output buffer contains

(Output Buffer data for the console interface.

Full) 1 = PPI Port "A"™ output buffer is empty.

<06> XMT RUPT ENABLE 0 = Disables interrupts to the console,

(Transmit when PPI Port "A" output buffer is

Interrupt empty.

Enabled) 1 = Enables interrupts to the console,
when the PPI Port "A" output buffer
is empty.

<05> INPUT BUF FULL 0 = PPI Port "A" input buffer is empty.
(Input Buffer 1 = PPI Port "A" input buffer contains
Full) data from the console interface.

<04> RCV RUPT ENABLE 0

Disables interrupts to the console

(Receive when the PPI Port "A" input buffer

Interrupt is full.

Enable) 1 = Enables interrupts to the console
when the PPI Port "A" input buffer
is full.
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Table 2-2

PPI Port C Bit Description (Cont)

Bit Name Description
<03> RUPT TO PRO-38N 0 = Inactive interrupt request to the
(Interrupt to PRO-38N.
PRO-38N) 1 = Active interrupt request.
<02> -RTI DIA MODE 0 = Real-time interface power-up
(RTI Diagnostic diagnostics are executing.
Mode) 1 = Normal VAX 8800 console operation.
<01> ENABLE LOOPBACK 0 = Loopback disabled.
1 = Loopback enabled.
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2.2.1.4 PPI Control -- The PPI is controlled by programming an
8-bit control word register. The control word register performs
two functions selected by the MSB of the register (refer to Figure
2-5 and Table 2-3). When the MSB equals 0, the CWR controls the
bit set and reset functions of PPI Port "C". 1If the MSB equals 1,
the CWR selects the modes of operation of Ports "A", "B", and "C".

CAUTION

The control word register should never be written to by
anything other than the console's I/0 driver or VAX 8800
diagnostics.

Writing to this register using either the BIT SET/RESET
function or the MODE SELECT function can cause damage to
the RTI or clock module hardware.

Reading the control word register in accordance with the
PPI specification drives the data bus with undefined
data and places the clock handshaking signals into an
unknown state.

The contents of the control word register are not returned
when the register is read.

Figure 2-5 shows the control word register as it should appear

after the system has been booted. This configuration should not be
altered except by the console's I/0 driver and the VAX 8800
diagnostics.
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CONTROL WORD REGISTER (WRITE ONLY)
PRO-38N ADDRESS ='17775216 (OCTAL)

07 06 05 04 03 02 01 00
CW FUNC A MODE Al/-O CU /-0 | B MODE B1/-O0 CL 1/-O0
1 1 0 1 0 0o 0 0
MKV86-1268
Figure 2-5 PPI Control Register Format
Table 2-3 PPI Control Register Bit Description
Bit(s) Name Description
07> CW FUNC 0 = Port "C" bit set and reset
{Control Word 1 = Mode select (Ports "A"™, "B",
Function) and "C")
<05:06> A MODE (Port "A" 1 0 = Mode 2 (Strobed Bidirectional)
Mode Control)
<04> A I/-0 (Port "A" Must = 1 This bit is used by the
Input/Output Mode) RTI ROM only
<03> CU I/-0 (Port "C" 0 = Output
Upper 4 bits I/0) 1 = Input
<02> B MODE (Port "B" 0 = Basic input/output (outputs
Mode Control) latched, inputs unlatched, no
handshaking)
1 = Strobed input/output
<01> B I/-O0 (Port "B" 0 = Output
Input/Output Mode) 1 = Input
<00> CL I/-0 (Port "C" 0 = Output
Lower 4 bits I/0) 1 = Input
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2.2.2 Serial Line Port

Serial line port "A" provides the console with a communication link
to the environmental monitoring module in the VAX 8800 power
supply. A major component of the serial line port is the enhanced
programmable communications interface (EPCI). The ECPI controls
the method of communication between the console and the EMM through
three programmable registers. Three hardware registers are used
for transmitting and receiving data and reading status from the
EMM.

2.2,2,1 ECPI Registers -- The ECPI controls the communications
between the console and the EMM with two mode registers and one
command register. Mode register 1 (Figure 2-6 and Table 2-4)
defines the required format of all messages to be transmitted or
received. Mode register 2 (Figure 2-7 and Table 2-5) defines the
clock source, internal baud rate generator frequency, and the
receiver/transmitter clock baud rate factor. The command register
(Figure 2-8 and Table 2-6) enables/disables loopback testing and
data transfers, and resets error flags in the status register.

MODE REGISTER 1 (READ/WRITE)
PRO-38N ADDRESS = 17775244 (OCTAL)

07 06 05 04 03 02 01 00
STOP BITS PARTYP | PAREN CHAR LENGTH M/B FACT
i 0 X 0 1 1 O 1

MKV86-1269

Figure 2-6 ECPI Mode 1 Register
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Table 2-4 ECPI Mode 1 Register Bit Description

Bit(s) Name Description

<06:07> STOP BITS 1 0=1.5 Stop bits
(Number of
Stop Bits)

<05> PAR TYP X = Don't care (Parity disabled
(Parity Type) by bit 4)

<04> PAR EN 0 = Disable
(Parity Enable) 1 = Enabled

<02:03> CHAR LENGTH 1 1 = 8-bit characters
(Character Length)

<00:01> M/B FACT (Mode 0 1 = Asynchronous communication
and Baud Rate and Unity baud rate
Factors)

NOTE

The required Mode 1 format for EMM communications

is 1.5 stop bits,
length, asynchronous

parity disabled, 8-bit word
communications, and a unity

baud rate factor. This configuration is programmed

by writing 215 Octal

to mode register 1.
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MODE REGISTER 2 (READ/WRITE)
PRO-38N ADDRESS = 17775244 (OCTAL)

07 06 05 04 03 02 01 00
1 ! 1 | 1 |
RCV/XMT CLOCK BAUD RATE SEL
0] 0 1 1 1 1 1 o

MKV86-1270

Figure 2-7 ECPI Mode 2 Register

Table 2-5 ECPI Mode 2 Register Bit Description

Bits Name Description

<04:07> RCV/XMT CLOCK 0011 Internal clock source

(Receiver and Unity baud rate factor
Transmitter Clock)

<00:03> BAUD RATE SEL 1110 = 9600 Baud
(Baud Rate
Select)
NOTE

Console communications with the EMM require setting
the internal clock source at 9600 baud with unity
baud rate factor. This is accomplished by writing

N=e f a1\ A~ ram A A~
076 {octal) to mode register 2.

Mode registers 1 and 2 use the same address for register access.
An alternating mode register pointer allows alternating access to
the registers during normal read/write operations. The pointer can
be initialized to point to mode register 1 with either a RESET
command, or a read command register operation.
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The command register is used to enable or disable the transmitter

and receiver, reset error flags in the status register, and force
key signals into the high or low state. Normal operation for the
command register 1is to have loopbacks disabled and the break
condition deasserted. The following drawing shows the command
register set up for normal operation.
COMMAND REGISTER (ACCESS AS SPECIFIED)
PRO-38N ADDRESS = 17775246 (OCTAL)
07 06 05 04 03 02 01 00
OP MODE FRC RTS | RST ERR | FRC BRK | RCV CTL | FRC DTR | XMT CTL
0 0 1/0 1/0 0 1/0 1/0 1/0
MKV86-1271
Figure 2-8 ECPI Command Register
Table 2-6 ECPI Command Register Bit Description
Bit(s) Name Description
<06:07> OP MODE 0 0 = Normal operation
(Operating Mode) 1 0 = Local Loopback enabled
(all characters echo back)
<05> FRC RTS (Force 0 = Disabled
Request To Send) 1 = Enabled
<04> RST ERR 0 = Reset not enabled
(Reset Error) 1 = Reset status register error
write-only bit flags
<03> FRC BRK 0 = Normal operation
(Force Break)
<02> RCV CTL 0 = Receiver disabled
(Receiver Control) 1 = Receiver enabled
<01> FRC DTR (Force 0 = Disabled
Data Terminal 1 = Enabled
Ready)
<00> XMT CTL 0 = Transmitter disabled
(Transmit Control) 1 = Transmitter enabled
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2.2.2.2 Data Transfer and Status Registers -- The serial line port
uses three registers for transferring data and status between the
RTI and the EMM (refer to Figure 2-9 and Table 2-7). The receive
holding register 1is an 8-bit data buffer that holds data received
from the EMM. The transmit holding register is an 8-bit data
buffer that holds data to be transmitted to the EMM. The status
register contains error status, data set ready and data carrier
detect status, transmitter shift register status, and transmitter
and receiver ready and done bits.

RECEIVE HOLDING REGISTER (READ ONLY)
PRO-38N ADDRESS = 17775240 (OCTAL)

07 06 05 04 03 02 01 00
T T T T T T T

DATA RECEIVED FROM THE EMM

1 1 1 | I 1 1

TRANSMIT HOLDING REGISTER (WRITE ONLY)
PRO-38N ADDRESS = 17775240 (OCTAL)

07 06 05 04 03 02 01 00

1 I | i 1 1 i

DATA TO TRANSMIT TO THE EMM

{ | I 1 ! | 1

STATUS REGISTER (READ ONLY)
PRO-38N ADDRESS = 17775242 (OCTAL)

07 06 05 04 03 02 o1 00

DSR DCD FRA ERR | OVR ERR | PAR ERR | XSR EM |RCV DON |XMT RDY

MKV86-1272

Figure 2-9 Serial Line Port Data and Status Registers
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Table 2-7

Serial Line Port Data and Status Registers

Bit Description

Bit Name Description
<07> DSR (Data 0 = DCD Input is active
Set Ready) 1 = DCD Input is not active
<06> DCD (Data 0 = DSR Input is active
Carrier Detect) 1 = DSR Input is not active
<05> FRA ERR 0 = No error
(Framing Error) 1 = Error
<04> OVR ERR 0 = No Error
(Overrun Error) 1 = Error
<03> PAR ERR 0 No error
(Parity Error) 1 Error
<02> XSR EM 0 = Shift register not empty/No
(Transmitter change in DSR or DCD
Shift Register 1 = Shift register empty/Change
Empty/Change in DSR or DCD
in DSR or DCD)
<01> RCV DON 0 = Rcvr holding register empty
(Receiver Done) 1 = Rcvr holding register full
<00> XMT RDY 0 = Xmt holding register full
(Transmitter 1 = Xmt holding register empty
Ready)
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2.3 CONSOLE INTERFACE

The console interface provides the console and the VAX 8800 system
with a medium for communication with, and control of, the VAX 8800
CPUs. Data and control signals are received from the real-time
interface in the console and distributed to specific areas of the
console interface for loading, control, and monitoring of the VAX
8800 system.

The primary functional areas of the console interface are:

Buffer, translate, and synchronization circuitry
Console address decode

Console sequencer (CSEQ MCA)

Terminal register interval clock (TRIC MCA)

Data output mux

CPU control registers

Visibility bus

Console interrupts

Power status

2.3.1 Buffer Translate and Synchronize

The buffer translate and synchronize logic buffers the incoming
signals from the console and provides translation of the console
output signals from TTL to ECL logic. The translated data is
applied to the TRIC MCAs, control registers, VBus control and clock
control logic. The lower four bits of the translated port "B"
address data are applied to the address decoder where they are used
in the generation of control signals for the operation of the
console interface. Most of the signals coming from port C or the
upper four bits of port B are synchronized to the VAX 8800 CPU
clocks after being translated to ECL logic levels. <Control and
data to the console is translated from ECL to TTL logic prior to
being placed in the output drivers.

2.3.2 Console Address Decode

The address decoder logic uses the lower four bits <K3:0> of the
incoming port "B" address from the PPI to generate control signals
for control registers <2:0>, VBus control, the «clock registers,
console receive data buffer, and the console load paths to the CPU.
The address decoder is also used in the generation of transmit
ready and receiver done signals for the VAX IPRs.
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2.3.3 Console Sequencer (CSEQ MCA)

The console sequencer MCA is the centralized data input/output
control point for the console interface. Synchronized strobe and
acknowledge signals are generated for the proper sequencing of data
transfers as well as creation of command flags for loading the VAX
8800 control store and RAMs. Major functions performed by the CSEQ
MCA include:

Console read sequencing

Console interrupt generation
Console write seguencing

Control store load mechanism
Console/VAX CPU isolation control
CPU timeout

1 MHz clock generation

CPU write address timing

2.3.4 Terminal Register/Interval Clock (TRIC) MCA

BEach of the VAX 8800 CPUs use two TRIC MCAs to transfer data and
control signals between the console interface and the CPU. The
combination of both TRIC MCAs make up the VAX internal processor
registers (IPR) required to implement the transfer process. The

IPRs for one VAX CPU include:
Receive IPR

® Receive Data Buffer ( RXDB <15:0> )
® Receive Control and Status ( RXCS <7:0> )

Transmit IPR

® Transmit Data Buffer ( TXDB <15:0> )
® Transmit Control and Status ( TXCS <7:0> )

Interval Clock
® Interval Count Register ( ICR <30:0> )
® Next Interval Count Register ( NICR <31:0> )
e Interval Clock Control/Status Register ( ICCS <31:0> )

Figure 2-10 shows the IPRs contained on the TRIC MCAs, and the bit
configuration of each register.
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RECEIVE DATA BUFFER (L/R RXDB)

CONSOLE WRITE ONLY - CPU READ ONLY

15 14 13 12 1 10 09 08
DATA
OVER X ID3 ID2 X X IDO1 IDO
RUN
HIGH TRIC LOW TRIC
07 06 05 04 03 02 01 00
T T T T T T
DATA <7:4> DATA <3:.0 >
] ] ) ] ] ]
HIGH TRIC LOW TRIC

TRANSMIT DATA BUFFER (L/R TXDB)

CONSOLE READ ONLY - CPU WRITE ONLY

15 14 13 12 11 10 09 08
X X ID3 ID2 X X ID1 IDO
HIGH TRIC LOW TRIC
07 06 05 04 03 02 01 00
T T T T T T
DATA <7:4> DATA <3:0>
1 | 1 1 ! ]
HIGH TRIC LOW TRIC

DATA BUFFER CONTROL/STATUS (DBCS) READ/WRITE
07 06 05 04 03 02 01 00
RXDB TXDB
RXOB | \NTRPT 0 0 TXDB | \NTRPT ) 0
DONE | eNABLED READY | eNABLED

|

READ READ/WRITE
ONLY

READ READ/WRITE
ONLY

MKVEE-1273

Figure 2-10 RXDB, TXDB, and DBCS




The data buffer control/status register is formed by combining two
bits of the RXCS register and two bits of the TXCS register into a
common register. RXCS <7:6> are mapped into DBCS <7:6>, and TXCS
<7:6> are mapped into DBCS <3:2>. The bits are reformatted by VAX
8800 microcode to be compatible with VMS.

Input and output data between the VAX CPU and the TRIC MCA is
transferred over an 8-bit bidirectional bus connected to the CPU
decoder. The control process is determined by the operating mode
(program or console).

2.3.4.1 Program Mode -- Data from the console to the CPU is under
interrupt control wusing the DONE bit from the receive data buffer
in the High slice TRIC MCA. The transmit data buffer wuses the
READY bit in the 1low slice TRIC for interrupt control of data
transfers to the console.
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2.3.4.2 Console Mode -- During the console mode of operation, the
CPU polls the READY and DONE bits to determine the status of the
data transfer registers.

The READY and DONE bits from the receive and transmit data buffers
are applied to the interrupt generator on the CSEQ MCA. These
signals are used to create an interrupt strobe signal to the
console for use in the data transfer process. The same signals are
also applied to the data output mux as a flag to identify the
source of the interrupt.

2.3.5 Data Output Mux

The data ocutput mux is the centralized collection point for all of
the data and status going to the console from the console
interface. Console address bits <3:1> determine which signals are

selected in the mux for output to the console. 1Input signals to
the mux consist of:

Left TXDB data

Right TXDB data

VBus data

Interrupt status

Clock status

Left CPU timeout

Right CPU timeout
Clock module revision
CPU backplane revision
Serial number

The selected mux data is translated to TTL logic levels and sent to
the console by means of the 8-bit bidirecticnal PPI port "A" bus.
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2.3.6 Control Registers

The console interface uses three control registers (CRO, CR1l, and
CR2) to transfer control signals to the VAX 8800 CPUs. The
write-only control registers receive the Port "A" data from the
console and latch enable strobes, and the register load commands
from the console address decoder logic. Figure 2-11 shows the
configuration of the control registers and identifies the bit
configurations.

CONTROL REGISTER O WRITE ONLY

(@]
()

na no na
US VL Ui

(@]
S

~=r IaY ne
07 06 05

DISABLE | DISABLE | DISABLE LEFT DISABLE | DISABLE | DISABLE RIGHT
LFT CPU | LFT CPU | LFT CPU CPU RHT CPU | RHT CPU | RHT CPU | CPU
STALLS | TRAPS NMI SEQ INIT STALLS | TRAPS NMI SEQ | INIT

CONTROL REGISTER 1 WRITE ONLY
07 06 05 04 03 02 01 00
NMI ENABLE NMI ENABLE |[ENABLE HALT [ENABLE HALT

UNJAM |LFT RXDB| SLOW |RHT RXDB|TRAP ON | LEFT  [TRAP ON RIGHT
INTRPT MODE |INTRPT |LTMATCH| CPU RT MATCH CPU

CONTROL REGISTER 2 WRITE ONLY
07 06 05 04 03 02 01 00
NOT NOT NOT ENABLE DISABLE | DISABLE | CLEAR SET CPU

IDP LOOP- | LFT SDF | RHT SDF | LATCHED | TIMEOUT

USED | USED | USED gack | WRITES | WRITES |RESET | FLAG

MKV86-1274

Figure 2-11 Control Registers
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2.3.7 Visibility Bus Control

The visibility bus provides the console with wvisibility 1into the
VAX 8800 system and enables the console to monitor the sixteen
modules using the VBus. Port "A" data from the console controls
the selection of VBus signals through the use of the visibility bus
control register (Figure 2-12). The VBus data 1is read from the

VBus access register and muxed with the outgoing signals in the
data output mux.

VISIBILITY BUS CONTROL WRITE ONLY
07 06 05 04 03 02 01 00
NOT NOT NOT NOT SELECT |STEP STEP VBUS
USED USED USED USED RHT CPU | ADDRESS| B ADDRESS
INPUT SHIFT CLOCKS |OUTPUT
VISIBILITY BUS ACCESS READ ONLY
07 06 05 04 03 02 Oi 00
SHR SLC1 SLCO ADP CCs DEC SEQ WCS
VBUS VBUS VBUS VBUS VBUS VBUS VBUS VBUS
DATA DATA DATA DATA DATA DATA DATA DATA

MKV86-1275

Figure 2-12 VBus Control and Access Registers
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2.3.8 Console Interrupt Generation

Console interrupts can occur from any one of the following five
events. The events are listed in priority sequence with NMI reset
having the highest priority:

NMI Reset

A request from a processor external to the VAX 8800
system to halt and reboot the VAX 8800 processor(s).

TXDB Not Ready (Primary CPU)
TXDB Not Ready (Secondary CPU)

The VAX 8800 CPU has placed data for the console into
the transmit data buffer.

RXDB Not Done (Primary CPU)
RXDB Not Done (Secondary CPU)

The data placed in the receive data buffer by the

console has been accepted by the VAX 8800 CPU and
the buffer is empty and ready for another data transfer.

Requests for a console interrupt are passed to the interrupt
generator on the CSEQ module, which handles the sequencing of the
interrupt request.

2.3.9 Power Status
The console interface receives a copy of the ACLO and DCLO signals

from the EMM and translates the signals to ECL logic levels. The
ACLO signal is synchronized with the VAX 8800 CPU clocks and is
used to generate the power-fail interrupt to the VAX 8800 CPU.

The clock synchronized DCLO signal is used to assert all of the

bits in control register 0, including the CPU hardware
initialization signal CPU INIT.
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2.4 CONSOLE/VAX 8800 INTERACTION

The following paragraphs describe the interaction of the console
and the VAX 8800 system during initialization, read/write control,
and data transfers.

2.4.1 Initialization

The console controls the operations required to get the VAX 8800
system powered up and running. Major tasks 1involved in this
process include:

Turn "ON" system power

Reset EMM

Console power ON

Load and run console power software
Sequenced power application
Initialize hardware

Test and checkout

Load RAMs and DRAMs

The initialization process is presented in detailed flowchart form,
and the events are shown in the sequence in which they occur. The
flowcharts include a combination of operator commands, command
files, and hardware actions and responses. They are intended to

show the sequence of events that occur during a process. At the
end of the flowcharts is a table listing some of the key signals
and functions identified 1in the flowcharts. Included 1is a

description of the signal and the logic circuit where the signal is
processed.

2.4.1.1 Turn ON and Monitor System Power/Reset EMM -- The events
involved in the 1initial turn-on of power to the VAX 8800 system,
and the subsequent resetting of the environmental monitoring module
are shown in Figures 2-13 and 2-14. These events are controlled by
the VAX 8800 power system complex. Refer to the power system
section of the manual for a complete description of the events

shown in Figures 2-13 and 2-14.

sSNow igure
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TURN ON AND
MONITOR SYSTEM
POWER

MAIN BREAKER ON

v

AC VOLTAGE TO CSP,
BBU, AND CONSOLE

v

+/- 12 V AND +5 V
TO ILM AND BWM .

v

+5 V TO NBT

v

PERFORM MODULE
KEYING TEST

v

+10.5 V TO MPS
BACKPLANE

v

FAIL SAFE
ENABLE TO BBU

v

-MOD A INTERLOCK
TO BEMM

v
C RESET BwW )

SCLD-221

Figure 2-13 System Power-On Sequence
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( RESET BEW )
1

Y

RUN SELFTEST

v

LOAD DEFAULT
PARAMETERS

BEGIN AUTC
SHUTDOWN
MONITORING

,

WAIT-CONSOLE TO
COMMUNICATE
WITH BwWM

I
(o)

1

men

SCLD-222

tal Monitoring Module Reset Sequence



2.4.1.2 Console Poweron
"1", the console begins
with the VAX 8800 power
events that occur when
Professional 300 Series

-— When the console power switch is set to
a selftest of the PRO-38N before continuing
sequence. Figure 2-15 shows the major
the console power is applied. Refer to the
handbooks for additional information.

(o)
¢

POWER SWITCH
SET TO 1

'

RECEIVE DCOK
FROM CONSOLE
POWER SUPPLY

I

v

RECEIVE POK
FROM CONSOLE
POWER SUPPLY

A 4
RUN SELFTEST

LOAD AND RUN
CONSOLE POWERUP
SOFTWARE

SCLD-223

Figure 2-15 Console Power-On Events
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2.4.1.3 Load and Run Console Power-Up Software —-- When the VAX 8800
main cabinet power switch is turned on, the power supply and the
environmental monitoring module are waiting for control signals
from the console to proceed with the power-on sequence.
Preliminary tasks of the console macrocode require communication
with the EMM to:

Establish and test communications

Send environmental parameters to the EMM RAM

Enable EMM monitoring tasks

Enable sequenced power application to VAX 8800 modules

Serial data is transferred between the console and EMM wusing the
transmit and receive holding registers in the serial line port of
the RTI. Figure 2-16 shows a simplified drawing of the three key
registers in the serial 1line port. Figure 2-17 identifies the
events that occur during the loading and running of the console
power-up software.

CONSOLE DATA TO EMM

S T S S

RDY TRANSMIT HOLDING REGISTER I TOFROM EMM

aln|slw|n|aio

7

STATUS DONE
REGISTER

RECEIVE HOLDING REGISTER

v v ¥ v v v v v
EMM DATA TO CONSOLE

5C.D-zz2¢

Figure 2-16 Serial Line Port Data Transfer Registers
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Bits 0 and 1 of the status register inform the console of the
status of the holding registers during data transfers (refer to
Table 2-8).

Table 2-8 Serial Line Port Data Transfer Registers
Bit Description

Bit Name Description

<01> DONE 0 = Receiver holding register is empty
and ready to accept another data
character from the EMM.
1 = Receiver holding register still
contains the last character placed
in it by the EMM.

<00> READY 0 = Transmit holding register is full.
The EMM has not taken the last
character yet.
1 = Transmit holding register is empty.
The EMM has taken the last character
and the register is ready to accept
another character for transfer.
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LOAD AND RUN-
CONSOLE POWERUP
SOFTWARE

A 4

INITIALIZE
DATABASE

A 4

SPAWN RTI
DRIVER

'

ISSUE ASYNC
QIos

'

VERIFY BEMM
COMMUNICATIONS

'

VERIFY BMM REVISION
COMPATIBILITY

'

LOAD SPECIFIC
PARAMETERS IN
RAM

(TO SHEET 2)

SCLD-225

Figure 2-17 Load/Run Console Power-Up Software Events
(Sheet 1 of 2)

11T 2-3¢



(FROM SHEET 1)

'

RESTORE CONSOLE
STATE FROM
LOGFILE

v

CHECK STATE FOR
PREVIOUS POWERUP

ABORT

CHECK STATUS
(MOD OK, ACLO,
AND DCLO)

'

SEE IF
CONSOLE-ONLY
POWER FAILURE

'

SET SYSTEM INIT
IN PROGRESS FLAG

SEQUENCED POWER
APPLICATION

SCLD-226

Figufe 2-17 Load/Run Console Power-Up Software Events
(Sheet 2 of 2)
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2.4.1.4 Sequenced Power Application =-- The sequenced power
application consists of a series of software commands to the power
system that enable the module regulators to apply voltages to the
various VAX 8800 components. Response from the previous command is
required to proceed to the next event in the sequence. Figure 2-18
identifies the -events tha occur during the power application
phase.

APPLICATION
|

v

CHECK AUTO
POWER ON

I

CHECK EMM/CONSOLE
INTERRUPT (-MOD OK)

]

LL BMWM TO
BEGIN SEQUENCED
POWERON

I

TURN ON
REGULATED VOLTAGE
TO MOD J

( SEQUENCED POWER

VOLTAGE TO FAN
AND AIRFLOW
SENSORS

DEASSERT AC LO
WHEN 300 V BUS =
200 V

(TO SHEET 2)

SCLD-227

Figure 2-18 Sequenced Power Application Events (Sheet 1 of 4)
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(FROM SHEET 1)

'

CLOCK OPAMPS RECEIVE +12 V

I
v

CONSOLE RECEIVES MOD J OK

v

TELL EMM TO TURN ON REGULATED B +5 V

;

MEMORY GETS +5B (COLD STATUS SAVED)

|
Y

DEASSERT NMI BAT DC LO

'

BATTERY BACKUP RECEIVES ENABLE AND 48 V

:

CONSOLE RECEIVES MOD B STATUS OK

v

TELL BMM TO TURN ON REGULATED +5C

v

CLOCK, MEMORY, AND NBIAS GET +5 V

v

(TO SHEET 3)

SCLD-228

Figure 2-18 Sequenced Power Application Events (Sheet 2 of 4)
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Figure 2-18

(FROM SHEET 2)

:

CONSOLE RECEIVES MOD C STATUS OK

|
4

TELL BYMW TO TURN ON REGULATED F

;

VAXBI **1’’ RECEIVES POWER

:

CONSOLE RECEIVES MOD F STATUS OK

'

TELL BMM TO TURN ON REGULATED H

y

VAXBI ‘0" RECEIVES POWER

:

CONSOLE RECEIVES MOD H STATUS OK

|
y

TELL BMM TO TURN ON REGULATED E -5.2 V

v

CLK, CPU, MEM, AND 1/O RECEIVE -5.2 V

|

v

(TO SHEET 4)
SCLD-229

Sequenced Power Application Events

(Sheet 3 of 4)



(FROM SHEET 3)

CONSOLE RECEIVES MOD E STATUS OK

'

TELL BEMM TO TURN ON REGULATED D -2 V

I

CLK, CPU, MEM, AND I/0 RECEIVE -2 V

:

CONTROL REGISTER 0 ASSERTS CPU INIT

v

CONSOLE RECEIVES MOD D STATUS OK

'

POWER-ON SEQUENCE COMPLETE

INITIALIZE
C HARDWARE )

Figure 2-18 Sequenced Power Application Events (Sheet 4 of 4)

SCLD-230
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2.4.1.5 Initialize Hardware -- When the sequenced power application
process 1is complete, the console software must ensure that the
console interface is initialized and ready for communications
between the console and the VAX 8800 CPUs. The first step in the
initialization process involves verifying the communications path
with a console interconnect loopback and an interface data path
loopback.

The two tests allow the console to test data, address, and control
paths between the console and the console interface, as well as the
data path between the console and the VAX 8800 CPUs. Enabling the
tests requires modification of the ECPI command register, the PPI
control word register, bit 4 of control register 2, and bit 1 of
PPI port "C".

CAUTION

The control word register should never be written
to by anything other than the console's I/0 driver
or VAX 8800 diagnostics.

Writing to this register using either the BIT
SET/RESET function or the MODE SELECT function can
cause damage to the RTI or clock module hardware.

Reading the control word register in accordance
with the PPI specification will drive the data bus
with undefined data and place the clock handshaking
signals into an unknown state.

The contents of the control word register are not
returned when the register is read.

The console interconnect loopback test verifies the operation of
the PPI ports through the console interface. Figures 2-19 and 2-20
show simplified block diagrams of the bits and signals that are
verified.
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PPl CONSOLE INTERFACE

DATA OUT
PORT "*A’" <7:0> < TTL/ECL
8
!
RT ““B'" <5:0 TRANSLATE ——<5¢°>“_‘J
PO <5:0> AND [ OUTPUT BUF FULL
PORT ‘C'’ <7:5» » DECODE — INPUT BUF FULL

SCLD-231

Figure 2-19 Console Interconnect Loopback Testing Through
Ports A, B, and C

PPI CONSOLE INTERFACE
PORT ‘°C <6:4> ¢ TTL/ECL b
MUX
TRANSLATE
PORT ‘‘B’'’ <«7,6> | AND —<7.6>
DECODE PP}
CONTROL

SCLD-232

Figure 2-20 Console Interconnect Loopback Testing Through
Ports B and C
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The interface data path loopback test verifies the communication
link between the console and the VAX 8800 CPUs. The test uses the
same data path that is wused in transferring both buffered and
unbuffered data to and from the VAX 8800 system.

Figure 2-21 shows the two-step procedure for testing the unbuffered
data path used in loading the VAX 8800 control store. Figure 2-22
shows the procedure for testing the buffered data path through RXDB
and TXDB.

CONSOLE INTERFACE

ADDRESS_ LOAD PP
REGISTER
WRITE <7:0> A »{ TRANSCVR
OF PORT **A’"
OUTPUT LATCH B »| ADDR
DECODE
c
TXDB
CONSOLE INTERFACE
PPI
ADDRESS THE
TXDB AND READ A TRANSCVR
<7:0> OF PORT **A"’
INPUT LATCH B »| ADDR
DECODE
c

TXDB

SCLD-233

Figure 2-21 1Interface Data Path Loopback Test of Unbuffered Data
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CONSOLE INTERFACE

PPI
itz e
WRITE <7:0> A —»| RXDB TRANSCVR
OF PORT “*A""
OUTPUT LATCH B A
c
TXDB
CONSOLE INTERFACE
PPI
ADDRESS THE
TXDB AND A
READ <7:0> RXDB TRANSCVR
OF PORT '*A”’ B ADDR
INPUT LATCH DECODE
c

TXDB

SCLD-234

Figure 2-22 1Interface Data Path Loopback Test of Buffered Data
Through RXDB and TXDB

During powerup and testing of the console interface hardware, the
console sequencer (CSEQ) is disabled to isolate the console
subsystem from the VAX 8800 CPU.

During normal operation, bit 7 of PPI port B is driven low by the
console. If the PRO-38N experiences a power failure or the console
cable connecting the PPI to the clock module is disconnected, a
pullup on the bit 7 line at the clock module asserts the CONSOLE

GONE signal and disables all console operations that could affect
the CPU.
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When the PRO-38N and the RTI power—up diagnostics have Dbeen
completed, the console enables communications with the CPU by
sending a sequence of serial data (KEY DATA) to a demultiplexer on
the CSEQ MCA. The SELECT KEY signal (port B bit 6) controls the
two demultiplexers that allow the MASK/KEY DATA and READ/KEYCLOCK
signals to be used for two functions.

Key data is clocked into the key circuit shift register by the KEY
CLOCK signal and produces the unlock and INIT signals. Figure 2-23
shows a simplified drawing of the CSEQ enable logic.

__» READ ENABLE
—p] DEMUX

SEL
PORT B <4>
» SYNCHRONIZER
READ ENABLE LOGIC

——» MASK INTRPTS

PORT B <5> DEMUX

MASK INTRPTS

v v

SEL

PORT B <6>
SELECT KEY d

PORT B <7> DISAB ; "SET NIT
| |

CONSOLE GONE P
SHIFT ‘ 1
REG RESET |
o—————} UNLOCK

CSEQ

— CLK

SCLD-235

Figure 2-23 Console Sequencer Enable Logic
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Hardware initialization of the VAX 8800 CPUs is performed by
writing the CPU INIT bit of control register 0, or asserting DCLO
on the EMM. Figure 2-24 shows a simplified block diagram of how
the control register initialization signals are generated.

ASYNG ACLO
ACLO—» TTL SYNCHRONIZER | oo
. L C
ECL DCLO INIT B LATCH
DCLO ——— ASYNG DCLO LATCH LATCH [———»
A B
INIT CNTRL 0
—ps
> —p
INIT CNTRL 1

SCLD-236

Figure 2-24 Control Register Initialization
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The initialization of the hardware sets the clock, console, and VAX
8800 modules to a known state prior to the test and checkout of the

system. Figure 2-25 identifies the events that occur during the
hardware initialization process.

INITIALIZE
HARDWARE

I

CONSOLE RUNS LOOPBACK TESTS WITH CLOCK

y

INITIALIZE RT! DRIVER DATABASE

'

ENABLE CONSOLE INTERFACE SEQUENCER

'

SET CLOCKS ‘*ON’’

I

HRDWRE INIT INTERFACE, CPU, AND NBIA'S

I

TELL Bw TO DEASSERT LAT DC LO

v

CLOCK RECEIVES -CPU DC LO

I

MEM RECEIVES -NMI DC LO

v

(TO SHEET 2)

SCLD-237

Figure 2-25 Hardware Initialization Events (Sheet 1 of 2)
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(FROM SHEET 1)

/0 RECEIVES -NMI DC LO ON NBI

I

TELL EMM TO DEASSERT LAT AC LO

'

CLOCK RECEIVES -CPU AC LO

Y

CPU DEASSERTS POWER FAIL

I

/0 RECEIVES -NM! AC LO NBI

y

TELL BW TO BEGIN
DEFAULT MONITORING

!

CONSOLE DEASSERTS CPU INIT

v

HARDWARE INITIALIZATION COMPLETE

<TEST AND CHECKOUT)

SCLD-238

Figure 2-25 Hardware Initialization Events (Sheet 2 of 2)
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2.4.1.6 Test and Checkout -- CPU module placement is checked using
a callable diagnostic routine that writes the address of a module
onto the VBus address path. The tail bit of the address is read
back in the VBus data path and verified. This procedure is
performed with both a "1" and "0" for all of the modules in both of
the CPUs.

After completion of the module placement test, the console proceeds
with the revision sensing test. Figure 2-26 identifies the events
that occur during the test and checkout process.

CI' EST AND CHECKOUD

SET CLOCK PERIOD TO §0 NS

'

TEST VBUS, AND VERIFY MODULE PLACEMENT

:

DETERMINE MODULE AVAILABILITY

'

SET PRIMARY AND SECONDARY CPU
]

v

(TO SHEET 2)

SCLD-239

Figure 2-26 Test and Checkout Events (Sheet 1 of 2)



(FROM SHEET 1)

CHECK CLOCK AND CPU MODULE REVISION

y

CHECK CPU BACKPLANE REVISION

Y

CHECK EMM SOFTWARE & SERIAL NO. REV.

I

CHK CONSOLE SOFTWARE & SERIAL NO. REV.

I

v

VERIFY ALL REVISION COMPATABILITIES

'

VERIFY RAM PARITY ERROR CHECK

!

SET ALL CLOCKS RUNNING

COMPARE MICROCODE REV. WITH CPU KERNEL

LOAD RAMS
AND DRAMS

SCLD-240

Figure 2-26 Test and Checkout Events (Sheet 2 of 2)
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2.4.1.7 Load RAMs and DRAMs -- The console 1is responsible for
loading the VAX 8800 microcode into the control store (CS2 - CSO)
located on the WCS and SEQ modules, IBox decoder RAMs (DRAMs), and
the NMI control store located on the CCS module.

The microcode to be loaded resides on the console Winchester disk
and is loaded by means of the unbuffered data path to the DEC, SEQ,
WCS, and CCS. The normal buffered data path through the 1IPRs
cannot be used because of the lack of cooperating microcode.

Commands and data are transferred to each CPU through the use of a
command load register and a data load register. Data written to
either the command load or data load register is actually latched
into the micromatch register on the decoder module of the IBox.

During the time that the RAMs are being loaded, clocks are running,
stalls and traps are disabled, the NMI microsequencer is disabled,
and CPU INIT is deasserted.

Parity error bits involved in loading the VAX 8800 RAMs can be read
using the VBus.

Loading the Control Store

LOAD SEQUENCE
The sequence for loading the control store is:

Write physical segment counts for CS2 - CSO
Point VBus to parity error bits
+-> Write control store address
b Write control store data to the specified address (18 bytes)
1 Check parity using the VBus
1
1 1
1 1
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PHYSICAL SEGMENT COUNT

The physical segment count is the number of bytes to be loaded into
each RAM address minus one. Because the number varies with the

different RAMs loaded by the console, there are five segment counts
that must be loaded (CS2, CS1, CSO, DRAM, and NMI CS).

The physical segment counts for loading the control store are:

Command Load Register = XXXX1100 MODE = Write CS0 PSEG Count
Data Load Register = CS0 PSEG Count Currently equal to 5
Command Load Register = XXXX1101 MODE = Write CS1 PSEG Count
Data Load Register = CS1 PSEG Count Currently equal to 5
Command Load Register = XXXX1110 MODE = Write CS2 PSEG Count
Data Load Register = CS2 PSEG Count Currently equal to 5

RESETTING THE BYTE COUNTER

The RAM loading mechanism on the decoder module contains a counter
that points to the byte currently being loaded. The counter must
be reset prior to beginning the 1load process by writing
XXXX1000(binary) to the command load register.

WRITE CONTROL STORE ADDRESS

An address of greater than 8 bits is loaded by means of the console
bus in several slices. A slice ID field points to the destination
of the bits being sent to the control store address latches.
Address slices can be sent in any order.

The command load register is loaded with XXXX00001 to enter the SET
CS ADDRESS mode. The CS address 1is loaded in three slices as
follows:

Command Load Register = XXXX0001 Mode = Set CS Address

Data Load Register = 011AAAAA AAAAA = CS Address <14:10>
Data Load Register = 010AAAAA AAAAA = CS Address <9:5>
Data Load Register = 001AAAAA AAAAA = CS Address <4:0>
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WRITE CONTROL STORE DATA

The control store is partitioned into three sections (Cs0, CsSl, and
cs2) and data for each microaddress is loaded into each of the
sections in the following order:

First --- CSO
Second -- CSl1
Third --- CS2

Each section is loaded in bytes, beginning with the most
significant byte and ending with the least significant byte. The
sequencer on the decoder module points to the byte currently being
loaded.

The data load process begins by writing XXXX0101l to set the command
load register mode, followed by 18 consecutive writes to the data
load register. If a RAM data segment written to the data load
register 1is 1less than 8 bits wide, the most significant bits are
"don't care" bits.

Command Load Register = XXXX0101 Mode = Write CS Data

Data for CS0 <47:40>
Data for CS0 <39:32>
Data for CS0 <31:24>
Data for CSO0 <23:16>
Data for CS0 <15:08>
Data for CS0 <07:00>

Data Load Register
Data Load Register
Data Load Register
Data Load Register
Data Load Register
Data Load Register

1

Data for CS1 <95:88>
Data for CS1 <87:80>
Data for CS1 <79:72>
Data Load Register Data for CS1 <71:64>
Data Load Register Data for CS1 <63:56>

™ - 1
Data Load Register = Data for CS1 <55:48>

Data Load Register
Data Lcad Register
Data Load Register

Data Load Register
Data Load Register
Data Load Register
Data Load Register
Data Load Register
Data Load Register

Data for CS2 <142:136> -- (7 bits only)
Data for CS2 <135:128>

Data for CS2 <127:120>

Data for CS2 <119:112>

Data for CS2 <111:104>

Data for CS2 <103:96>
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CHECK PARITY

The VBus access register in the console interface contains the
parity error bits for the NMI control store (VBA <3> from the CCS
module), the decoder RAMs (VBA <2> from the DEC module), and the OR
of the Cs0, CS1, and CS2 (VBA <1> from the SEQ module). All of the
parity error bits are selected by the VBus address 26(hex). The
least significant digit of the VBus address is the last bit shifted
into the CPU (refer to Figure 2-27).

07 06 05 04 - 03 02 01 00
SHR SLC1 SLCO ADP Ccs DEC SEQ WCS
A A Y
] |

L— OR OF CSX PARITY ERROR (HI TRUE)
DRAM PARITY ERROR (LOW TRUE)
NMI CS PARITY ERROR (HI TRUE)

MKV86-1276

Figure 2-27 VBus Parity Bits

LOAD FUNCTION INACTIVE

When the control store data has been loaded, the loading mechanism
on the decoder module must be left in the inactive state prior to
starting the machine. This procedure 1is performed by writing
XXXX0000 to the command load register.
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Loading the Decoder RAMs

LOAD SEQUENCE
Machine Executing Nonfunctional Loop
Hardware initialization (CPU INIT)
Write DRAM physical segment count
Point VBus to parity error bits
Reset byte counter

+--> Write DRAM address

9 Write DRAM data (3 bytes)
| Check parity using VBus

i Al

o e +

Zero the load address
Set load function inactive

MACHINE EXECUTING NONFUNCTIONAL LOOP

The decoder RAM address is the OR of the 1load address from the
console and the op code address field from the decoder. When one
of these two inputs is used, the other must be zero. Prior to
loading the DRAMs, a hardware initialization must be accomplished
to force the op code address field to zero.

when the address field is to remain =zero, the machine must be
operating in a nonfunctional loop while the decoder RAMs are being
loaded. This creates the requirement that the one microinstruction
necessary to execute the loop be loaded previously into the control
store.

PHYSICAL SEGMENT COUNT

Command Load Register = XXXX1011 Mode = Write DRAM PSEG Count
Data Load Register = DRAM PSEG Count Currently equal to 2
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WRITE DRAM ADDRESS (Figure 2-28)

WRITE DRAM ADDRESS
DECODER RAM ADDRESS <11:0>

o7 06 05 04 03 02 01 00
T T T T T

0 SLID 6 BITS OF ADDRESS

1 L 1 1 i

1 = DRAM ADDRESS <11:06>
0 = DRAM ADDRESS <05:00>

MKV86-1277
Figure 2-28 DRAM Address
The command load register is loaded with XXXX0010 to enter the SET
DRAM ADDRESS mode and the address is loaded in two slices.
Command Load Register = XXXX0010 Mode = Set DRAM Address

Data Load Register = 01AAAAAA AAAAAA = DRAM Address <11l:6>
Data Load Register 00AAAAAA AAAAAA DRAM Address <5:0>

1]
it

WRITE DRAM DATA

The command load register is loaded with XXXX0110 to enter the SET
DRAM DATA mode and the data is loaded in three consecutive slices.

Command Load Register = XXXX0110 Mode

Set DRAM Data

Data for DRAM <16:12>
Data for DRAM <11:06>
Data for DRAM <05:00>

Data Load Register
Data Load Register
Data Load Register

[ T
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CLEAR THE LOAD ADDRESS

Command Load Register = XXXX0010 Mode = Set DRAM Address
Data Load Register = 01000000 DRAM Address <11:06> = 0
Data Load Register = 00000000 DRAM Address <05:00> = 0

LOAD FUNCTION INACTIVE

When the DRAM data has been loaded, the loading mechanism on the
decoder module must be left in the inactive state prior to starting
the machine. This procedure is performed by writing XXXX0000 to
the command load register.
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Loading the NMI Control Store

LOAD SEQUENCE

Write
Point
Reset

+--> Write

L Write
4 Check
1

e —

NMI CS physical segment count
VBus to parity error bits
byte counter

NMI CS address
NMI CS data (4 bytes)
parity using VBus

1

Zero the load address
Set load function inactive

PHYSICAL SEGMENT COUNT

Command Load

Register = XXXX1llil Mode = Write NMI CS PSEG
Data Load Register = NMI CS PSEG Count Currently equal to 3
WRITE NMI CS ADDRESS (Figure 2-29)
WRITE NMI CS ADDRESS
NMI CONTROL STORE ADDRESS <7:0>
07 06 05 04 03 02 01 00
1 ]
MUX

SEL SLICE ID

4 BITS OF ADDRESS

| |

]

10 = NMI CS ADDRESS <03:00>

MUX SELECT SELECTS LOAD ADDRESS
‘ 01 = MUX SELECT AND NMI CS

ADDRESS <07:04>

Figure 2-29 NMI Control Store Address
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The command load register is loaded with XXXX001l to enter the SET
NMI CS ADDRESS mode and the address is loaded in two slices.

Command Load Register = XXXX001l1 Mode = Set NMI CS Address
Data Load Register = 0101AAAA AAAA = NMI CS Address <7:4>
Data Load Register = 0110AAAA AAAA = DRAM Address <3:0>

WRITE NMI CS DATA

The command load register is loaded with XXXX011l1 to enter the SET
NMI CS WRITE DATA mode and the data is loaded in four consecutive
slices.

Command Load Register = XXXX0111 Mode = Write NMI CS Data

Data for NMI CS <27:24>
Data for NMI CS <23:16>
Data for NMI CS <15:08>
Data for NMI CS <07:00>

Data Load Register
Data Load Register
Data Load Register
Data Load Register

CLEAR THE LOAD ADDRESS PATH
Command Load Register = XXXX0011 Mode = Set NMI CS Address

Data Load Register = 0001XXXX MUX SELECT = 0

LOAD FUNCTION INACTIVE

When the NMI control store data has been 1loaded, the 1loading
mechanism on the decoder module must be left in the inactive state
prior to starting the machine. This procedure 1is performed by
writing XXXX0000 to the command load register.
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RAM/DRAM Load Circuitry

Figure 2-30 shows a simplified block diagram of the data path used
in the transfer process. The gateway control (GWYC) on the decoder
module functions as a distribution device, and routes the RAM data
to the proper location. The console communicates with the GWYC by
sending commands and data over the 8-bit bidirectional bus
connecting the console interface with the decoder module. Commands
must be written to the command 1load register, and data and
addresses to the data load register for the appropriate CPU.

The flag and strobe signals used by the GWYC to load the RAMs are
generated by the CSEQ MCA on the console interface.
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BIDI DATA
CONS DATA TRANSCVR » XCVR DATA
WRT
ADDR
LATCH
CONS ADDRESS »| DECODE
CONS CONTROL CMD FLAG >
CSEQ STROBE GWYC
TROB »
CONSOLE INTERFACE [DEC]
B DATA DATA DATA
WRT CSo WRT CSt WRT C82
{_, LATCH ADDR r ADDR ADDR
»| LATCH p| LATCH
[SEQ] [WCS]
P DATA
NMI
WHT csS
p| LATCH »1 ADDR
[CCS]

Figure 2-30

IIT 2-56

RAM Loading Simplified Block Diagram

SCLD-24¢



Figure 2-31 identifies the sequence of events that occur during the
process of loading the RAMs and DRAMs.

LOAD RAMS j)

DISABLE WRITES TO SLOW DATA FILE

!

SET CLOCKS OFF

y

LOAD VBUS ADDRESS FOR RAM PE BIT

SET CLOCKS ON

'

LOAD CONTROL STORE RAMS-CS0/CS1/CS2

!

LOAD MICROPC WITH ADDRESS OF NOP

v

(TO SHEET 2)

SCLD-242

Figure 2-31 RAM/DRAM Loading Events (Sheet 1 of 5)
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(FROM SHEET 1)

|

ASSERT/DEASSERT CPU INIT
(INITIALIZE SEQ, DEG, CCS, AND ADP)

y

LOAD NMI CONTROL STORE

I

LOAD DRAM CONTROL STORE

'

SET CLOCKS OFF

v

LOAD CSM INIT INTO MICROPC

Y

SET CLOCKS ON

!

MICROCODE HALTS VAX

:

MICROCODE ENTERS WAIT LOOP

I

SET CLOCKS OFF

y

(TO SHEET 3)

SCLD-243

Figure 2-31 RAM/DRAM Loading Events (Sheet 2 of 5)



(FROM SHEET 2)

'

DISABLE SDF WRITES

I

LOAD STARTING MICROPC

!

BURST CLOCKS

v

ENABLE SDF WRITES

:

START CLOCKS

)

MICROCODE HALTS VAX

‘

DISABLE NMI, STALLS, TRAPS

I

ENABLE SDF WRITES

v

(TO SHEET 4)

SCLD-244

Figure 2-31 RAM/DRAM Loading Events (Sheet 3 of 5)
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i
.-J-

«Q

m

(FROM SHEET 3)

v

LOAD SDF DATA - ADDRESS

!

LOAD USER MICROCODE

™o

l

SET CLOCKS OFF

!

LOAD CSM INIT INTO MICROPC

l

MICROCODE HALTS VAX

'

INITIALIZE COMMAND

I

INITIALIZE IPRS

w
[

'

(TO SHEET 5)
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(FROM SHEET 4)

'

VERIFY MIN MEMORY AND 1/0O REQUIREMENTS
T

v

ENABLE STALLS, TRAPS,
NMi MICROSEQUENCER

I

SET CPU NEXT PRIMARY

v

ASSERT UNJAM

I
4

VERIFY MCL AND NBI REVISION

Y

DETERMINE AVAILABLE MEMORY

v

IF COLD START, INITIALIZE MEMORY ARRAYS

'

CLEAR COLD BIT

!

CLEAR SYSTEM INIT IN PROGRESS FLAG

'

END INITIALIZATION PROCESS

SCLD-246

Figure 2-31 RAM/DRAM Loading Events (Sheet 5 of 5)
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Table 2-9 lists some of the key hardware signals and functions used
during the initialization process, and 1identifies the console
interface logic that performs the process. These signals and
functions are described in more detail in the discussion of the
individual logic areas identified.

Table 2-9 Key Initialization Signal/Functions

Signal/Function Console Logic Comments

ACLO/DCLO Synchronizer Received from EMM -- Trans-
lated and clock synced.
Initializes console interface
registers and sends power-fail
interrupt to VAX 8800 CPU.

CPU INIT Control Reg 0 Created in control register 0
from console data (software
command) or forced by assertion

of DCLO.
UNLOCK CSEQ Console Generated by serial data
Sequencer sequence from port B bit 5.

Enables the console sequencer
for communication with the

console.

DISABLE SDF Control Reg 2 Disables write to slow data
file in VAX 8800 CPU.

RAM STROBE Console Strobe signal and command/-

COMMAND FLAG Sequencer data flag to the VAX 8800 CPU
decoders.

DISABLE STALLS, Control Reg 2 Disable signal to minimize

TRAPS, NMI undesirable events (stalls,
traps, NMI traffic) during

JORRY

ST 1922
i1iiiciaiida
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2.4.2 VAX 8800 CPU Control
Read/write control of data transfers, and setup of the VAX 8800
CPUs 1is performed by the console sequencer and the three control
registers in the console interface.
Console sequencer functions:

® Console read/write sequencing

® Console interrupt generation

® RAM strobe and flag generation

Console/CPU isolate and disable

Control register CPU control signals:
Control register 0

® Disable traps

e Disable stalls

e Disable NMI

e CPU init
Control register 1

NMI UNJAM

® Enable receive interrupts to console
® FEnable slow mode
® Enable breakpoint trap
® Set CPU halt
Control register 2
e Disable slow data file writes

® Set CPU timeout
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2.4.2.1 Console Sequencer -- Communications between the console and
the console interface requires handshaking signals and
synchronization of the data transfers to the VAX 8800 CPU. Figure
2-32 shows a simplified drawing of the key signals used in the data
transfers.

PPI OUTPUT FULL — | » CONSOLE WRITE
MASK INTERRUPTS ———— P ———»» PPl ACKNOWLEDGE
SEQUENCER

READ ENABLE —_> ——p CONSOLE READ
PPl INPUT FULL ———» PPi STROBE
SCLD-247

Figure 2-32 Console/Interface Timing Signals
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Read/Write Sequencing

The console writes data to the interface by writing the address of
the interface or «clock location to the port "B" register of the
PPI. The handshaking signals associated with this operation are
PPI OUTPUT FULL and PPI ACKNOWLEDGE. PPI output full informs the
interface that data is now available from the console. PPI
acknowledge enables the output buffer of the PPI so that the data
can be transferred. Figure 2-33 shows a simplified drawing of the
write sequence.

When the interface receives the PPI OUTPUT FULL signal, it responds
by asserting PPI ACKNOWLEDGE. The ACKNOWLEDGE signal is held
asserted for one to two microseconds. The console sequencer
generates the CONSOLE WRITE term for use in the data transfer
process. If interrupts are enabled, the console will receive an
interrupt from the PPI at the completion of the data transfer.

PPI CONSOLE INTERFACE
PORT A <7:0> CONSOLE DATA <7:0>
PORT B <3:0> CONSOLE ADDRESS <3:0>

PPI OUTPUT FU
PORT C <7> L CSEQ |———»CONS WRITE

PPl ACKNOWLEDGE

PORT C <6>

SCLD-248
Figure 2-33 Write Sequence
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The console sets up the read sequence by writing the address of the
location to be read to the interface by means of PPI port B, and
asserting READ ENABLE (PPI port B <4>). The address selects the
desired mux input to be placed on the data bus to the console.

Read enable initiates a read sequence by sending the expected
handshaking signals to the PPI and enabling the bidirectional bus
to the console with the appropriate timing. Figure 2-34 shows the
read sequence setup.

PPI CONSOLE INTERFACE
PORT A <7:0> (]
< CONS DATA X DATA
y
PORT B <3:0> CONS ADDR
R
PORT B <4> READ ENABLE CSEQ CONS READ

SCLD-249

Figure 2-34 Read Seqguence (Setup)
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The control signals used in the data transfer process are the PPI
STROBE and PPI INPUT FULL. The STROBE latches the data into the
PPI port A buffer, and the PPI INPUT FULL informs the interface
that the buffer 1is full and will not accept more data until the

butfer has been cleared. Figure 2-35 shows the control signals
used during the transfer process.

PPl CONSOLE INTERFACE
PORT A <7:0> ¢ CONS DATA MUX DATA
PORT B <3:0> CONS ADDR
CONS
PORT C <5> PPl INPUT FULL _ | csEa cons
PORT C <4> PPl STROBE __]

SCLD-250

Figure 2-35 Read Sequence (Data Out)
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89-¢ III

CONS
DATA

~——————pp TRNSVR 705

Figure 2-36

| <7>-DIS$ LFT CPU STALL— TO CCS
|—<6>-DIS LFT CPU TRAP —pTO SEQ
AEG —‘ﬁf_o's LFT CPU NMI—p TO CCS

4

—<

| <3>_DIS RHT CPU STALL—» TO CCS
|——<2>-DIS RHT CPU TRAP —» TO SEQ
—<1>—DIS RHT CPU NM!—p TO CCS

}—<0 >\

LATCH

LATCH |-—# TO CPU

L———— TRIC MCA INIT

LATCH

RHT
LATCH |—¥» TO CPU

B cCs

L———3 TRIC MCA INIT

SCLD-251

Simplified Diagram of Control Register 0
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PPI P BATA
| PORT ‘*A’"
————>
<7:0> —P{ TRNSVR <7:0>
Figure 2-

REG

—<7>—NM| UNJAM ———p TO MCL, NBIA
—<6>—ENA LFT RCV INTRPT—P» TO SEQ
—<5>—ENA NMI SLOW———p TO MCL, NBIA
—<4>—ENA RHT RCV INTRPT—p TO SEQ

—~<3>—ENA LFT BKPT TRAP —3p TO DEC
<2>—SET LFT CPU HALT—P TO DEC

—<1>—ENA RHT BKPT TRAP —Pp TO DEC
—<0>—SET RHT CPU HALT—— TO DEC

SCLD-252

37 sSimplified Diagram of Control Register 1

PPl PORT ‘A’ o TRNSVR

<7:0>

Figure 2-38

CONS

AN

DATA
<3:0>

REG

—<7> » NOT USED
<6 ¥ NOT USED
<5 » NOT USED
—<4> » ENA IDP LOOPBACK

—<3>—DIS LFT SDF

ITT 2-69

WRITE —» TO WCS
—<2>— DIS RHT SDF WRITE—®» TO WCS
—<1>- CLEAR RESET——»
0>— SET CPU TIMEOUT—p

TO CSEQ
MCA

SCLD-253

Simplified Diagram of Control Register 2



2.4.3 Data Transfers

The receive data buffer (RXDB) and transmit data buffer (TXDB) are
used in the transfer of data between the console and the VAX 8800
CPUs. The low byte of the registers contains the information being
transferred, and the high byte identifies the use of the data being
transferred.

When the console has data to transfer to the CPU, the interrupt
status register must be examined in order to verify that the last
data transfer has been completed and the RXDB is empty and ready to
accept data to be transferred. If the RXDB is empty, the console
writes two bytes to the RXDB by means of PPI port A. The hardware
in the TRIC MCA generates an interrupt to the CPU if interrupts are
enabled. If interrupts are not enabled; the CPU can poll the DONE
bit by reading the RXCS.

The console must wait for the deassertion of the DONE signal before
writing to the RXDB again. If RXDB interrupts to the console are
enabled, the deassertion of DONE will interrupt the console.

The VAX 8800 CPU responds to the interrupt, reads the data from the
RXDB, and hardware in the TRIC MCA clears DONE. Parity checks of
data transfers between the interface and the CPU are performed and
monitored by the CPU. Figure 2-39 shows a simplified drawing of
the transfer process.
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CONSOLE INTERFACE

VAX 8800 CPU DECODER

CONS DATA
PARITY PARITY
GEN PloHok [ 12,
RXDB
BUS
—»{ B8, —$ TO IBOX DATA BUS
DBCS
»{ INTRPT » TO SEQ
DONE
— INTRPT STATUS TO MUX
L » INTRPT TO CSEQ

SCLD-254

Figure 2-39 Data Transfer Console Interface-to-VAX 8800 CPU
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Data transfers from the VAX 8800 CPU to the console 1interface are
performed under the control of the microcode. The microcode
monitors the READY signal to determine if the transmit data buffer
(TXDB) has been cleared or if it still contains the last data word
sent. When the console receives an interrupt (deassertion of
READY) informing it that there is data in the TXDB, the console
initiates a TXDB read and the TRIC MCA sets READY for another CPU
write. Figure 2-40 shows a simplified drawing of the
CPU-to-interface data transfer.

CONSOLE INTERFACE VAX 8800 CPU
DATA/INTRPT PARITY
TO DATA MUX Pl cHECK » TO
« SEQ
«— f PARITY
PARITY
TXDB GEN
TO|CSEQ T BUS
DBCS |« CNTR { FROM CACHE DATA BUS
INTRPT —p TO SEQ
READY
[DEC]

Figure 2-40 Data Transfer VAX 8800 CPU-to-Console Interface
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2.5 CONSOLE/VAX 8800 CLOCKS AND TIMING

The Console Interface contains a 1 MHz clock, an interval timer,
and a timeout circuit that is used by the VAX 8800 system. The
1-MHz clock is the basic timing source for the interval timers, and
is also wused during data transfers to the PPI as a timing control
signal. The VAX-11 interval clock is a 32-bit timer used by the
operating system and the diagnostic software to time events and
generate interrupts. Timeout circuits monitor the VAX 8800 CPUs
during the program mode.

2.5.1 One-MHz Clock

The function of the 1-MHz clock logic shown in Figure 2-41 1is to
provide a constant clock frequency to the TRIC MCA interval clocks
and a timing source for PPI data transfers. A functional
description of the basic VAX 8800 clock is provided in Section V of
this manual.

The EN ICLOCK INC signal is asserted once each microsecond and
remains asserted from one VAX 8800 CPU clock cycle. EN ICLOCK INC
is derived from the 7-bit MOD N counter of the clock module and
applied to the terminal register interval clock on the TRIC MCA.

The MSB of the MOD N counter is phase-locked with the constant
frequency of the crystal oscillator and produces an output
(interval sync) that is equal to (N) times the 250-kHz oscillator.
The wvalue of (N) is held constant in the clock period register and
is used as a comparator reference in the generation of the 1-MHz
clock signal.

The comparator reference logic uses the N clock period to produce
three reference values; 3N/4, 2N/4, and N/4. The three reference
values and zero are used as a comparison against the changing
interval sync value and will create the EN ICLOCK INC whenever the
comparison is found. The resultant signal is generated at a rate
four times the oscillator frequency (250 kHz) to produce the 1-MHz
clock regardless of the value of N.

The latched 1-MHz ENABLE signal is used on the CSEQ MCA in the
generation of the following PPI handshaking signals:

PPI STROBE
CONSOLE READ
PPI ACKNOWLEDGE
CONSOLE WRITE
RAM STROBE
COMMAND FLAG
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REF PHASE |—pi »>
RTAL . PHASE FLTER >  voo |—» PHASE [ g cik
F(OUT)
MO(|) N NOTE
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INTERVAL F(OUT) = N X F(IN)
SYNC
CLOCK
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(=N)
CLOCK LOGIC
v CONSOLE INTERFACE
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¢ €
< N/2
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< RIGHT
< L SHIFT
COMPARE N4
- ZERO
COMPARE
» EN ICLK INC (TO TRIC MCA)
L »| LATcH |— 1 MHZ ENABLE
B
SCLD-256
Figure 2-41 1 MHz Clock Generation



2.5.2 Interval Clock

Each VAX 8800 CPU has an interval clock residing on the console
interface. The clock logic and the three registers that provide
control and data transfer are evenly sliced, and located on two
identical MCAs. Figure 2-42 shows the bit configuration of the
registers, and Figure 2-43 is a simplified block diagram of the
interval clock.

The three registers that are used for the interval clocks are:
1. Interval Count Register {ICR)

2. Next Interval Clock Register (NICR)
3. Interval Count Control/Status (ICCS)

15 12 11 08 07 06 05 04 03 02 01 00
ICCS INT | IE | SGL| - ERR | RUN | XFR
HIGH TRIC LOW TRIC HIGH TRIC LOW TRIC
31 28 27 24 23 20 19 16
HIGH
NICR D<31:28> D<27:24> D<23:20> D<19:16>
HIGH TRIC LOW TRIC HIGH TRIC LOW TRIC
15 12 11 08 07 04 03 00
h?évn D<15:12> D<11:8> D<7:4> D<3:0>
HIGH TRIC LOW TRIC HIGH TRIC LOW TRIC
31 28 27 24 23 20 19 16
IHClgH D<31:28> D<27:24> D<23:20> D<19:16>
HIGH TRIC LOW TRIC HIGH TRIC LOW TRIC
15 12 11 08 07 04 03 00
[LCO\F?/ D<15:12> D<11:8> D<7:4> D<3:0>
HIGH TRIC ) LOW TRIC HIGH TRIC LOW TRIC

SCLD-257

Figure 2-42 1Interval Clock Registers Bit Configuration
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The interval timer provides a method for accurately measuring
variable time intervals and enables the software to perform
time-dependent events. The timer informs the CPU of a completed
interval by means of an interrupt generated by the overflow of the
interval count register being incremented to a full count.

The interval count register (ICR) is a 32-bit counter that
increments at the rate of one microsecond per count. The
incrementing pulse (EN ICLOCK INC) is supplied by the 1-MHz clock
on the CSEQO. The next interval count register (NICR) is a 32-bit
register containing the value to be loaded into the ICR each time
the ICR overflows. Control and status is provided by the interval
clock control and status register (ICCS). Table 2-10 shows the bit
configuration of the ICCS.

Table 2-10 ICCS Bit Configuration

Bit Name Function
<07> INT (Interrupt Set when the ICR overflows. Interrupts
Request) the CPU if interrupts are enabled.
Cleared by writing 1 to this bit.
<06> IE (Interrupt Allows interrupt to occur at ICR
Enable) overflow.
<05> SGL (Single) Used for maintenance functions. When

set, the count register will increment
by one. Set for one cycle only.

<03> ERR (Error) Iindicates that a second overflow
interrupt has been requested before
the first is serviced. Cleared by
writing 1 to this bit.

<02> RUN Provides the function of counter
enable. Cleared on powerup and
initialize.

<01> XFR (Transfer) Transfers the contents of the NICR
to the ICR. Set for one cycle only.
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The procedure for using the timer requires loading the NICR with a
value corresponding to the two's complement of the number of
microseconds between interrupts and setting the run, interrupt
enable, and transfer bits in the ICCS. The NICR will be loaded
into the ICR and the ICR will begin counting. When the ICR makes
the transition from all ones to zero, an interrupt is generated and
the next value is loaded from the NICR. 1If a transition is again
reached before the last interrupt is serviced, the error flag is
set and counting continues.

L B ICR <31:0
CPU DATA <7:05>— ICR <31:0>

NICR —» ICR
WR NICR <3:0>—p» » ———p OVERFLOW NEXT

ICCS RUN Y
ICCS STEP —p| INTERVAL

b
EN ICLOCK INC —p» ggﬂ%m » ENABLE ICR NoTE

—Pp » LOAD ICR -
E:E%gEgﬁA:qggER—’ INTERRUPT = HI TRIC
ERROR = LOW TRIC

r———=-—-

INTR OR ERR

ERR
OR ~————— HOLD INTRPT/ERR

ACLOCK — p| INT

B CLOCK ———p ————» 1ccs <3>
NOTE
CPU DATA <2>—pf i |—1CCS INT EN EI:ULRZTLS\JVB%‘R-—-ICHI TRIC E
. e |
WR ICCS —> i ——» Iccs RUN
NOTE

;STEP ICR = HI TRIC

! TRANSFER ICR = LO TRIC

CPU DATA <1> —p oTpp |——p STEP ICR e i
OR

WR ICCS XFR | TRANSFER NICR

SCLD-258

Figure 2-43 1Interval Clock Simplified Block Diagram
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2.5.3 CPU Timeouts
The console interface monitors the VAX 8800 system for a possible
CPU hang. A timeout flag is maintained for each CPU and is checked

periodically by the console software. Figure 2-44 shows a
simplified block diagram of the timeout 1logic on the console
interface. Figure 2-45 shows the bit configuration of the

read-only clock status/timeout register (CST).

The timeout flag is set by a signal from control register 2, which
is set by console software. The flag is cleared when the CPU
hardware releases a stall. Time detects a CPU infinite stall.

CONS ADDR _j

SET CPU TIMEOUT —
FROM CONSOLE TIMEOUT X MUX DATA OUT
LOGIC |—»CPU TIMEOUT —Ppf = TO PPl PORT A

CLEAR CPU TIMEOUT ——p
FROM CLOCK DISTR
(CPU STALL DEASSERTION)

SCLD-259

Figure 2-44 Simplified CPU Timeout

07 06 05 04 03 02 01 00

T T 1
GaTED | RcPU | L cPU

CLOCKS MICRO TIMEOUT
STOPPED MATCH
L CPU BURST R CPU
MICRO DONE TIMEOUT
MATCH

SCLD-260

Figure 2-45 Clock Status and Timeout Register (CST)
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2.5.4 Visibility Bus

The console uses the VBus control/access logic on the console
interface to address and read VBus data in the CPU. Figure 2-46
shows the signals involved in the reading of the VBus information.
Figure 2-47 shows a simplified block diagram of the VBus logic. -

8
Qﬁ? RIGHT CPU VBUS

MUX 4—~— LEFT CPU VBUS
VBUS ACCESS <7:00> ¢——
SEL

| STOP SHIFT
CONS DATA <3:0> — | VBUS

| CONTROL | sTeP B CLK
WR VBUS CONTROL — | - » VBUS ADDRESS

SCLD-261

Figure 2-46 VBus Control/Data Signals

Bit 3 of the VBus control register is the mux select bit and
selects either the 1left or right CPU inputs to the console. The
stop shift and VBus address are used in the process of selecting
which data 1is applied to the console interface. The address bit
supplies the input to the serial shift register and is clocked by
the STEP B signal. Stop shift freezes the address to prevent
subsequent B clocks from shifting the address.
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CPU MODULE

LATCH

MUX SELECT

STOP SHIFT

I | [T | <

{szl 51|80 32‘51 so|¢

ADDRS OUT

STEP B CLK
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Figure 2-47

VBus Logic Simplified Block Diagram
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CHAPTER 3
DETAILED DESCRIPTION

3.1 GENERAL

This chapter contains additional detailed information concerning
specific areas of the console subsystem. Included in this chapter
are:

° Diagrams and descriptions of the CSEQ and TRIC MCAs
° Console register summary
° Console subsystem cabling

3.2 TERMINAL REGISTER INTERVAL CLOCK (TRIC)

The console interface contains four 19-0TRIC-00 TRIC MCAs to
implement the transfer of data and status between the console and
the VAX 8800 system. Despite being identical MCAs, the TRICs have
minor variations in wiring in order to facilitate the high and low
slicing. Figure 3-1 shows a block diagram of a single TRIC MCA.
Figures 3-2 and 3-3 show the pin layout and body drawing of the
TRIC MCA. Table 3-1 1lists each TRIC MCA pin and identifies the
signal assigned. Table 3-2 lists some of the key signals on the
TRIC MCA and provides a description of the signal functions.

Data to be transferred from the console to the VAX 8800 CPU is
received from the interface TTL-to-ECL translators as CONS DATA.
CONS DATA 1is applied to both the receive data buffer (RXDB)} and
the bidirectional bus output mux. The unbuffered data path
directly to the output mux is used for the transfer of microcode
during the initialization process.

The normal path for data transfers is by means of the receive data
buffer. The SELECT RXDB and WRITE ENABLE signals enable the
loading of the RXDB. The 2-byte output of the receive data buffer
(RXDB DATA) is applied to the data mux along with the
control/status (DBCS DATA) information and the interval clock
outputs (Four bytes of ICR data and one byte of ICCS DATA). The
3-bit RCV ADRS determines which of the eight mux inputs will be
applied to the bidirectional bus output mux. EN LOAD REG
determines if the output to the VAX 8800 CPU will be buffered (IPR
DATA) or unbuffered (CONS DATA).

Data transfers from the VAX 8800 CPU to the console are received
as incoming data on the bidirectional bus and latched into the
transmit data buffer (TXDB) by WR TXDB. The XMIT DISABLE signal
blocks the buffered and unbuffered data output from the
bidirectional bus during a CPU-to-console transfer. An interrupt
triggered by the deassertion of the READY condition informs the
console of received data waiting to be processed. The VAX 8800 CPU
cannot transfer additional data until READY has been reasserted.
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DEC TO CONS PARITY €——] PARITY

IIT 3-2

GEN
BID! DATA <3:0> (TO/FROM CPU DEC) < D
PARITY OUT
D
% Do—
RCV_ADDR P >
HeV ADDR ,, -
D
N EN LOAD REG BIDI
4 BUS
| -
5 XMIT DISABLE | CNTRL
RXDBO SELECT
N CONS DATA <3:0>
>
3 EN LOOPBCK B
ICCS INTRPT SET— ] NTERVAL | /CLK INTRPT
N EN ICLK INC> CLOCK — CARRY OUT <3:0>
REFRESH ICR CARRY IN <3:0> L STEP OR XFER
ICCS STEP——p Nicn [ INTRPT OR RUN
—
ICCS RUN Nie
ICCS TRANSFER Iccs
ICR DATA
ICCS DATA——
DBCS DATA————
RXDB DATA
XMIT
i ADDRs [ YR NICR —» CONSOLE
' g DECODE [T WA IcCs TERMINAL
LOW SLICE ID REGISTER
SET DONE OR READY———
WRITE READ PR g)égg
WRITE _jF> > | WRITE TXDBE——————
IPR - WRITE DBcs ———————p{  RXDB
CONS DATA
SCLD-263
Figure 3-1 TRIC MCA Block Diagram



(15) (13) (11) ( 9) ( 7) ( 5) ( 8) [ 1] (69)
(16) (14) (12) (10) ( 8) ( 6) ( 4) ( 2) (68)

(67) (66)
MCA PINNING (65) (64)
(63) (62)
(61) (60)
DEVICE TYPE = DC957 (59) (58)
(57) (56)
(55) (54)
38) (40) (42) (44) (46) (48) (50) (53) (52)
(37) (39) (41) (43) (45) (47) (49) (51) (72)
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Figure 3-2 TRIC MCA Pin Layout
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TERMINAL REGISTER/
INTERVAL CLOCK

CONS DATA <3:0> —
SET DONE/READY O
EN LOOPBACK B —
EN LOAD REG—O
SELECT RXDB—(
SELECT H! BYTE —
WRITE ENABLE —O

XMIT ADRS <2:0>-—0O
RCV ADRS <2:0>—O
XMIT DISABLE —
WRITE IPR —

READ IPR—O

EN ICLK INC —

REFRESH ICR —O

LOW SLICE ID —
CARRY IN<3:0>—0O
ICCS INTRPT SET—O

ICCS RUN—C
ICCS STEP—O
ICCS TRANSFER—O
INIT TRIC —
STALL ACLK1 IN-—Q
A CLK IN —Q
B CLK IN —O

— TXDB DATA <3:0>

— CONS TO DEC PAR

— DEC TO CONS PAR
O DONE OR READY

— DBCS INTRPT

— ICLOCK INTRPT

O CARRY OUT

O INTRPT OR RUN

O STEP OR TRANSFER

Figure 3-3
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TRIC MCA Body Drawing
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Table 3-1

TRIC MCA Pin Assignments

Pin Signal Assignment Pin Signal Assignment
1 ICLK INTRPT 37 -XMIT ADRS <0>

2 -BIDI CPU DATA <1> 38 -XMIT ADRS <1>

3 GROUND 39 WRITE IPR

4 ~CARRY IN <3> 40 -XMIT ADRS <2>

5 DATA BUFF CNTRL/STATUS INTRPT 41 -A CLCK1 1IN

6 -CARRY IN <2> 42 CONS DATA <2>

7 ~CARRY OUT <2> 43 NEG 52V

8 CONS TO DEC PARITY 44 CONS DATA <3>

9 NEG 52V 45 CONS DATA <0>

10 —-CARRY OUT <1> 46 CONS DATA <1>

11 DEC TO CONS PARITY 47 —-ICCS TRANSFER

12 ~CARRY IN <1> 48 INIT TRIC

13 TRANSMIT DATA BUFFER <3> 49 —ICCS INTERRUPT SET
14 -DONE OR READY 50 ENABLE LOOPBACK B
15 GROUND 51 —-REFRESH ICR

16 =BIDI CPU DATA <3> 52 —ENABLE LOAD REGISTER
17 TRANSMIT DATA BUFFER <2> 53 XMIT DISABLE

18 TRANSMIT DATA BUFFER <1> 54 LOW SLICE 1ID

19 -BIDI CPU DATA <0> 55 -RECV ADDRESS <1>
20 GROUND 56 -RECV ADDRESS <2>
21 TRANSMIT DATA BUFFER <0> 57 —RECV ADDRESS <0>
22 —-CARRY IN <0> 58 =ICCS RUN

23 -CARRY OUT <0> 59 -ICCS STEP

24 NOT ASSIGNED 60 GROUND

25 ~STALLED A CLOCK1l 1IN 61 ENABLE ICLK INC
26 GROUND 62 NOT ASSIGNED

27 SELECT HIGH BYTE 63 -B CLCK1l 1IN

28 -WRITE ENABLE 64 -CARRY OUT <3>

29 NOT ASSIGNED 65 —INTERRUPT OR RUN
30 -READ IPR 66 GROUND

31 NOT ASSIGNED 67 -BIDI DATA <2>

32 —SET DONE OR READY 68 - STEP OR TRANSFER
33 NOT ASSIGNED 69 GROUND

34 NOT ASSIGNED 70 GROUND

35 NOT ASSIGNED 71 GROUND

36 —-SELECT RECEIVE DATA RBUFFER 72 GROUND
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Table 3-2 TRIC MCA Signal Descriptions

Signal

Comments

BIDI CPU DATA <3:0>

RECV ADRS <2:0>

EN LOAD REG

XMIT DISABLE

CONS DATA <3:0>

EN LOOPBACK B

WRITE IPR

Bidirectional data bus between the VAX 8800
CPU and the TRIC MCAs. Consists of four bits
of data from each of the MCA slices.

Three bits of address data from the VAX 8800
CPU DEC module. Selects the mux input that
will be applied to the bidirectional bus for
output to the VAX 8800 CPU.

A control signal from the console address
decode circuitry. Used to create the SELECT
LOAD PATH signal. SELECT LOAD PATH selects
either the buffered (RXDB) or unbuffered (RAM
load) data to be applied to the bidirectional
data bus and forces the deassertion of INT
XMIT DISABLE that allows the TRIC to drive
the bus.

Control signal from the DEC module that
disables bidirectional bus data output to the
VAX 8800 CPU when input data is being sent by
the console interface. (The default state of
this signal 1is asserted.) The bidirectional
bus between the clock and decoder modules is
disabled at both ends when not used.

Eight bits of console data from the PPI port
A. Sliced into four bits each on the high and
low TRICs; this data is applied to the data
buffer for output to the VAX 8800 CPU.

Console control signal from the PPI port C.
Enables testing of the receive and transmit
data buffers, and the load path to the CPU.

VAX 8800 CPU control signal frowm the DEC
module. The 3-bit signal is used to if the
incoming data word from the CPU is console
data or interval timer control. The decoded
address generates the write enable signals
for the interval timer and TXDB.

A latched enable signal derived from the
XMIT-to-CONS signal from the CPU DEC. WRITE
IPR enables the decoders that select the
write signals for the interval <clock and
transmit data buffers.
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Table 3-2 TRIC MCA Signal Descriptions (Cont)

Signal Comments

RXDB0O <3:0> DATA Output of the high and low slice receive data
buffers. RXDB is the output data from the
console to the VAX 8800 CPU.

DBCS <3:2> Two Dbits of status information for output to
the VAX 8800 CPU from the data buffer control
and status register. Informs the VAX 8800 CPU
of the state of the ready or done bits, and
if interrupts are enabled for the transmit
and receive data buffers.

ICCS <3:2> Two bits of status data for output to the VAX
8800 CPU from the interval clock
control/status register. ICCS data informs
the CPU of the state of the interval clock.
Interrupt status and error and run
information is supplied.

ICR <3:0> Four bytes of interval count register data to
the VAX 8800 CPU. Two nibbles are supplied by
each TRIC MCA. The interval timer data is
applied to the TRIC output mux for transfer
to the bidirectional bus.

WR NICR WR NICR, WR ICCS, WR DBCS, and WR TXDB are

WR ICCS write—-enable signals that are derived from

WR DBCS the XMIT ADRS and WRITE IPR input from the

WR TXDB VAX 8800 CPU.

EN ICLOCK INC Latched output of the 1-MHz clock on the CSEQ

MCA. EN ICLOCK INC 1is the primary enable
signal for incrementing the interval timer.

CARRY IN <3:0> CARRY IN and CARRY OUT are four bits of count
CARRY OUT <3:0> control signals that are used in the counting
process of the interval timer count register.

ICCS INTRPT SET TRIC MCA control signal used for setting the
interval timer error bit of the ICCS.

REFRESH ICR Internally generated control signal used in
the transfer and 1loading of NICR and ICR
count data. This signal is also wused to
create the interrupt and error bits of the
ICCS.
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Table 3-2

TRIC MCA Signal Descriptions (Cont)

Signal

Comments

ICCS STEP

ICCS RUN

ICCS TRANSFER

LOW SLICE ID

SET DONE or READY
SELECT RXDB

READ TIPR

WRITE ENAB

SELECT HIGH BYTE

DEC TO CONS PAR

ICLOCK INTRPT

STEP OR XFER
INTRPT OR RUN

TXDB DATA

ICCS STEP, RUN, and TRANSFER are internally
generated signals derived from the CPU data
input, and are enabled by the WR ICCS term.
They are used internally to enable the step
and run of the counter and to transfer the
NICR count to the ICR.

Differentiates high and 1low slices of the
TRIC.

The SET DONE or READY, and SELECT RXDB are
generated by the console address decoder
logic. The DONE and READY signals are used
in the interrupt logic to the VAX 8800 CPU to
show the state of the receive and transmit
data buffers. SELECT RXDB selects the RXDB to
receive data from the console.

Derived from the RECV FR CONS signal from the
DEC module. Asserted for one cycle when the
CPU is reading a TRIC IPR. This signal is
also one of the control signals used for the
RXDB data overrun error bit and DBCS done
bit.

Control signal from the CSEQ that enables
latching of data received from the console,

Control signal from the console address
decoder. Determines selection of the low and
high slice of data for the TXDB.

Parity bit calculated from eight bits of data
from the DEC module to the console interface.

Interval clock interrupt from console to CPU
SEQ.

Internally generated interval clock signals.
Created by CPU data and enabled by WR ICCS.
Latched to create the ICCS STEP, ICCS XFER,
ICCsS INTRPT, and ICCS RUN depending on
whether the signal is coming from high or low
TRIC MCA.

Mux selected output data from the VAX 8800
CPU to the console. The TRIC output mux
selects either high or low slice data to be
applied to the interface data output mux.
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Table 3-2 TRIC MCA Signal Descriptions (Cont)

Signal Comments

DBCS INTRPT Internally generated console interrupt to the
CPU SEQ created from the DONE (High Slice)
and READY (Low Slice) bits and enabled by CPU
data and WR DBCS.

DONE OR READY DONE and READY are wused to identify the
source of interrupts (DONE = RXDB -- READY =
TXDB) .

3.3 CONSOLE SEQUENCER MCA (CSEQ)

The console interface contains a single 19-0CSEQ-00 console
sequencer MCA to implement the sequencing of read/write transfers
between the <console and the VAX 8800 system. The CSEQ also
provides write address timing to the IPRs and a 1-MHz synchronized
clock for the interval timer. Figure 3-4 shows a block diagram of
the CSEQ MCA. Figures 3-5 and 3-6 show the pin layout and body
drawing of the CSEQ MCA. Table 3-3 lists each CSEQ MCA pin and
identifies the signal assigned. Table 3-4 lists some of the key
signals on the CSEQ MCA and provides a description of the signal
functions.

3.3.1 Console Strobe Sequencer

The console strobe sequencer controls the direction of data
transfers on the PPI bidirectional data bus between the console
and the interface with the assertion of the CONS READ signal. It
also controls the transfer of data to the console by providing a
latch signal (PPI STROBE) to the PPI port A buffer.

3.3.2 Read Acknowledge

The read acknowledge logic controls the timing of data transfers
from the VAX 8800 CPU by informing the CPU (DATA ACCEPTED) when
data from the transmit data buffer has been received by the
console.

3.3.3 Console Write Sequencer

Control sequencing of data transfers from the console to the
console interface is accomplished by the console write sequencer
logic. It also generates the control signals that enable writing
to the console clock, control registers, VBus control register,
and the interface control registers.

3.3.4 Control Store Load Sequencer

The control store load sequencer generates the control signals
that enable loading of the control store RAMs during the
initialization process.
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Figure 3-4 CSEQ MCA Block Diagram
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Figure 3-5 CSEQ MCA Pin Layout
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Figure 3-6

SCLD-268

CSEQ MCA Body Drawing

ITT 3-12



Table 3-3 CSEQ MCA Pin Assignments

Pin Signal Assignment Pin Signal Assignment

1 -DATA ACCEPTED 37 -R EN LOAD REG

2 L CPU TIMEOUT 38 -LOAD CMD

3 GROUND 39 INTERVAL SYNC <6>

4 INTERVAL SYNC <1> 40 CLOCK PERIOD <4>

5 =R XMIT ADRS <1> 41 CLOCK PERIOD <2>

6 -R CLR CPU TIMEOUT 42 CLOCK PERIOD <1>

7 —-CONS READ 43 NEG 52V

8 R CPU TIMEOUT 44 -L STALLED A CLK1 IN
9 NEG 52V 45 -R CONS IPR ADRS <0>
10 -CMD FLAG 46 -R CONS IPR ADRS <2>
11 -PPI ACKNOWLEDGE 47 ~L CONS IPR ADRS <K0>
12 INTERVAL SYNC <2> 48 -L CONS IPR ADRS <2>
13 -R RAM STROBE 49 —-L CONS IPR ADRS <1>
14 -L XMIT ADRS <K1> 50 MASK OR KEY DATA

15 GROUND 51 -R CONS IPR ADRS <1>
16 -PPI STROBE 52 READ OR KFEYCLK

17 -L RAM STROBE 53 SELECT KEY

18 -R XMIT ADRS <2> 54 CLEAR RESET

19 EN ICLOCK INC 55 SET CPU TIMEOUT

20 GROUND 56 -R STALLED A CLK1l IN
21 INTERVAL SYNC <5> 57 SYNC NMI RESET

22 CS LOAD STEP 58 CLOCK PERIOD <6>

23 -~CONS WRITE 59 -F B CLK1 IN

24 NOT ASSIGNED 60 GROUND

25 INTERVAL SYNC <4> 61 -L CLR CPU TIMEOUT
26 GROUND 62 NOT ASSIGNED

27 -L EN LOAD REG 63 =L XMIT ADRS <0>

28 INTERVAL SYNC <3> 64 -R XMIT ADRS <0>

29 -F A CLK1 IN 65 PPI INPUT FULL

30 CLOCK PERIOD <3> 66 GROUND

31 CLOCK PERIOD <5> 67 RESET INTRPT

32 DISABLE CSEQ 68 -L XMIT ADRS <2>

33 NOT ASSIGNED 69 GROUND

34 INTERVAL SYNC <K0> 70 GROUND

35 INTRPT REQ 71 GROUND

36 -PPI OUTPUT FULL 72 GROUND
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Table 3-4 CSEQ MCA Signal Descriptions

Signal Comments

SYNC NMI RESET Generated by the NMI reset from the NBIA.
Latched in the synchronizer logic to become
SYNC NMI RESET. The CSEQ MCA detects the
rising edge and sets LATCHED RESET, which
generates an interrupt to the console. The OR
of LATCHED RESET and SYNC NMI RESET are used
for bit 5 of the console interrupt status
register.

CLEAR RESET Generated by control register 2 as a result
of a console command. Clears LATCHED RESET.

TERM REG INTRPT Internally generated interrupt enable signal.
One of the signals used to create PPI STROBE.
Derived from RXDB DONE and TXDB READY of both
CPUs.

MASK OR KEYDATA Control signal received from PPI port B, bit
5. Performs one of two functions depending on
the state of the SELECT KEY input. 1If the
SELECT KEY bit is set, it provides the input
to the shift register for generating the
UNLOCK CSEQ term. If the SELECT KEY is not
set, it performs the function of interrupt
mask .

READ OR KEYCLK Control signal received from PPI port B, bit
4, Dual function determined by the SELECT KEY
signal. If the SELECT KEY bit is not set,
read enable is passed to the strobe
sequencer. If SELECT KEY is set, the demux
output is a clocking pulse to the CSEQ unlock
shift register.

a I

es that the PPI input
buffer contains ta for the console. PPI
INPUT FULL is used internally on the CSEQ to
terminate a read seqguence. PPI OUTPUT FULL
indicates that the output buffer has data
from the console that is to be transferred to
the VAX 8800 CPU. The OUTPUT FULL signal is
used to generate the CS LOAD ENABLE and the
PPI ACKNOWLEDGE.

m the clock m

lalk i aYal’ n TAN . o
CLCCK PERICD Control signals from

re odu
create INTERVAL SYNC the 1-MHz cloc
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Table 3-4

CSEC MCA signal Descriptions {Cont)

Signal

Comments

LOAD CMD

L/R EN LOAD REG

DISABLE CSEQ

L/R CONS IPR ADRS
L/R XMIT ADRS

PPI STROBE

CONS READ

DATA ACCEPTED

Console control signal derived from the
console address decoder logic. Generates the
command flag signal that is sent to the VAX
8800 decoder module. COMMMAND FLAG is used by
the gateway control to load the RAMs during
the initialization process.

Console control signals derived from the
console address decoder logic. These are the
primary signals used in the generation of the
left and «right RAM strobe signals to the
gateway control on the decoder module. The
strobe signals are used for RAM loading
during initialization.

ENABLE/DISABLE signal that is used to disable
the CSEQ during a PRO-38N power failure or
console cable disconnect.

Internally generated address signals from the
DEC. Clock delayed signals (L/R XMIT ADRS)
used to create the write enable signals for
the TRIC MCA. The CSEQ only provides a
delaying mechanism.

Internally generated signal that is used for
latching console interface data into the PPI
port A buffer.

Internally generated signal used to
enable/disable the bidirectional port A data
transceiver.

Internally generated signal used to set the
TX READY bit. Informs VAX 8800 system that
the TXDB has been read by the console and is
ready to accept another data transfer.

IIT 3-15



Table 3-4

CSEQ MCA Signal Descriptions (Cont)

Signal

Comments

PPI ACKNOWLEDGE

CONS WRITE

Internally generated signal that enables the
console to drive the bidirectional bus from
PPI port A.

Internally generated signal that is used as a
control to create the following enable
signals:

WR CLOCK PERIOD

WR BURST COUNT

WR CLOCK CONTROL

WR CLOCK REG <2:0>
WR VBUS CONTROL

WR CONTROL REG <2:0>
SET L/R RCVR DONE
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3.4

3.4.1

CONSOLE/VAX 8800 REGISTER SUMMARY

Console Registers (Refer to Figure 3-7)

LEFT RECEIVE DATA BUFFER  LRXDB  <7:0>
WRITE ONLY  CONSOLE ADDRESS =0
INITIALIZED BY DCLO OR CPU INIT TO OO(HEX)

07 06 05 04 03 02 01 00

T T T T T T T
DATA FROM CONSOLE TO LEFT CPU

LEFT RECEIVE DATA BUFFER LRXDB <15:8>
WRITE ONLY  CONSOLE ADDRESS = 1
INITIALIZED BY DCLO OR CPU INIT TO O

07 06 05 04 03 02 01 00

NOT NOT L RXDB | L RXDB NOT NOT L RXDB | L RXDB
USED USED IDENT 3 | IDENT 2 USED USED IDENT 1 | IDENT O

RIGHT RECEIVE DATA BUFFER RRXDB  <7:0>
WRITE ONLY ~ CONSOLE ADDRESS = 2
INITIALIZED BY DCLD OR CPU INIT TO OO(HEX)

07 06 05 04 03 02 01 00

| 1 I ] ! I 1

DATA FROM CONSOLE TO RIGHT CPU

1 1 | l | I A

MKV86-1279
Figure 3-7 Console Registers (Sheet 1 of 7)
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RIGHT RECEIVE DATA BUFFER RRXDB  <15:8>
WRITE ONLY  CONSOLE ADDRESS = 3
INITIALIZED BY DCLO OR CPU INIT TO O

07 06 05 04 03 02 01 00
NOT NOT R RXDB | R RXDB NOT NOT R RXDB | R RXDB
USED USED IDENT 3 | IDENT 2 USED USED IDENT 1 | IDENT O

LEFT COMMAND LOAD REGISTER  LCLR
WRITE ONLY CONSOLE ADDRESS = 4
INITIALIZED BY CPU INIT TO O
07 06 05 04 03 02 01 00
| ] I
NOT NOT NOT NOT CONMMAND TO GATEWAY CONTROL
USED USED USED USED MCA OF LEFT CPU
| i 1
LEFT DATA LOAD REGISTER LDLR
WRITE ONLY CONSOLE ADDRESS =5
NOT INITIALIZED
07 06 05 04 03 02 01 (014
1 I ] | ] 1 !
RAM DATA OR ADDRESS TO LEFT CPU
1 | | | | | 1
RIGHT COMMAND LOAD REGISTER RCLR
WRITE ONLY  CONSOLE ADDRESS = 6
INITIALIZED BY CPU INIT TO O
07 06 05 04 03 02 01 00
I | |
NOT NOT NOT NOT COMMAND TO GATEWAY CONTROL
USED USED USED USED MCA OF RIGHT CPU
1 1 |
Figure 3-7 Console Registers (Sheet 2 of 7)



RIGHT DATA LOAD REGISTER RDLR
WRITE ONLY CONSOLE ADDRESS = 7
NOT INITIALIZED

07 G 05 04 03 0z 01 00
! I 1 1 1
RAM DATA OR ADDRESS TO RIGHT CPU
] ] ] ] I
CONTROL REGISTER O CRO
WRITE ONLY CONSOLE ADDRESS = 8
INITIALIZED BY DCLO TO FF(HEX)

07 06 05 04 03 02 01 00
DISABLE | DISABLE | DISABLE LEFT DISABLE | DISABLE | DISABLE RIGHT
L CPU L CPU L CPU CPU R CPU R CPU R CPU CcpPU
STALLS | TRAPS NMI SEQ INIT STALLS | TRAPS | NMISEQ | INIT

CONTROL REGISTER 1 CR1
WRITE ONLY CONSOLE ADDRESS = 9
INITIALIZED BY DCLO TO OO(HEX)

07 06 05 04 03 02 01 00
NMI ENABLE | NMI ENABLE [ENABLE HALT | ENABLE HALT
UNJAM L RXDB SLOW RRXDB |TRAP ON | LEFT TRAP ON | RIGHT

INTRPT MODE INTRPT |L MATCH| CPU R MATCH| CPU
CONTROL REGISTER 2 CR2
WRITE ONLY CONSOLE ADDRESS = A
INITIALIZED BY DCLO TO O
07 06 05 04 03 02 01 00
ENABLE | DISABLE | DISABLE | CLEAR SET CPU
NOT NOT NOT
USED USED USED IDP LOOP-| L SDF R SDF LATCHED | TIMEOUT

BACK WRITES | WRITES | RESET FLAG

Figure 3-7

MKV86-1281

Console Registers (Sheet 3 of 7)
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VISIBILITY BUS CONTROL VBC
WRITE ONLY CONSOLE ADDRESS = B
INITIALIZED BY DCLO TO O

07 06 05 04 03 02 01 00
NOT NOT NOT NOT SELECT |STOP STEP | VBUS
USED Usep | usep | usep | RCPY |ADDRESS| B

INPUT | SHIFT CLOCKS | OUTPUT
CLOCK CONTROL REGISTER CCR
WRITE ONLY CONSOLE ADDRESS = C
INITIALIZED BY CONSOLE SOFTWARE TO 78(HEX)
07 06 05 04 03 02 01 00
STOP  |DISABLE |DISABLE | DISABLE | ENABLE
START |STOP ON |STOP ON | CLOCK | Stow Eggo ﬂgg[) ﬁ(s)ETD
CLOCKS |L MATCH | R MATCH| BURSTS | CLOCK
BURST COUNT REGISTER BCR
WRITE ONLY CONSOLE ADDRESS = D
INITIALIZED BY CONSOLE SOFTWARE TO 0
07 06 05 04 03 02 01 00

NUMBER OF CYCLES FOR CLOCK TO RUN DURING A BURST OPERATION

1 I 1 I | | 1

1 1 | | ] I |

CLOCK PERIOD REGISTER CPR

WRITE ONLY CONSOLE ADDRESS = E
INITIALIZED BY DCLO TO 38(HEX)
INITIALIZED PERIOD = 70.18 NS

o7 06 05 04 03 02 01 00
T T T T T T
SELECT
LO FREQ {1/ {CLOCK PERIOD x 250K} ) -1
RANGE

! 1 I ! ! 1

MKV86-1282

Figure 3-7 Console Registers (Sheet 4 of 7)
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LEFT TRANSMIT DATA BUFFER LTXDB <7:0>
READ ONLY CONSOLE ADDRESS =0

07 06 05 04 03 02 0] 00
T T I L ]
DATA FROM LEFT CPU TO CONSOLE
L 1 ] | ]
LEFT TRANSMIT DATA BUFFER LTXDB <15:8>
READ ONLY CONSOLE ADDRESS =1
07 06 05 04 03 02 01 00
NOT NOT L TXDB L TXDB NOT NOT L TXDB L TXDB
USED USED IDENT IDENT USED USED IDENT IDENT
<3> <2> <1> <0>
RIGHT TRANSMIT DATA BUFFER RTXDB <7:0>
READ ONLY CONSOLE ADDRESS = 2
07 06 05 04 03 02 01 00
| | I | I
DATA FROM RIGHT CPU TO CONSOLE
| | | | |
RIGHT TRANSMIT DATA BUFFER RTXDB <15:8>
READ ONLY CONSOLE ADDRESS =3
07 06 05 04 03 02 01 00
NOT R TXDB | R TXDB NOT NOT R TXDB | R TXDB
ngD USED IDENT IDENT USED UgED IDENT IDENT
<3> <2> <1> <0>

MKV86-1283

Figure 3-7 Console Registers (Sheet 5 of 7)
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VISIBILITY BUS ACCESS VBA
READ ONLY CONSOLE ADDRESS = 4

07 06 05 04 03 02 01 00

SHR SLC1 SLCO ADP CCs DEC SEQ WCS
DATA DATA DATA DATA DATA DATA DATA DATA

CONSOLE INTERRUPT STATUS IST
READ ONLY CONSOLE ADDRESS = 6

07 06 05 04 03 02 01 00
NOT NOT NMI LEFT RIGHT LEFT RIGHT MUST
USED USED RESET TXDB TXDB RXDB RXDB BE ZERO

CLOCK STATUS/TIMEOUT CST
READ ONLY CONSOLE ADDRESS = 8

07 06 05 04 03 02 01 00
gfgg'?s iMICCPR% Em((::‘;z% BURST | NOT NOT |LePu |RcpPu
CLOCKS | MrOn | Matcu | DONE USED | USED |TIMEOUT | TIMEOUT
STOP=1 MATCH=0 MATCH=0 DONE=0 TIMEOU 1 =1 TIMEOUT=1

BACKPLANE/CLOCK REVISION REV
READ ONLY CONSOLE ADDRESS = A

07 06 05 04 03 02 01 00

| ! I | 1 !

CPU BACKPLANE REVISION LEVEL CLOCK MODULE REVISION LEVEL

| | | | 1 ]

MKV86-1285

Figure 3-7 Console Registers (Sheet 6 of 7)
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SERIAL NUMBER SER <7:0>
READ ONLY CONSOLE ADDRESS = C

07 06 05 04 03 02 o1 00

T T T T T T T
LOW BYTE OF SERIAL NUMBER FOR SYSTEM IDENTIFICATION REGISTER

SERIAL NUMBER SER <15:8>
READ ONLY CONSOLE ADDRESS = E
07 06 05 04 03 02 01 00

| I 1 | I 1 I

HIGH BYTE OF SERIAL NUMBER FOR SYSTEM IDENTIFICATION REGISTER

MKV86-1286

Figure 3-7 Console Registers (Sheet 7 of 7)
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3.4.2 VAX 8800 CPU Registers (Refer to Figure 3-8)

TRANSMIT DATA BUFFER TXDB <7:0>
WRITE ONLY CPU ADDRESS =0
INITIALIZED BY DCLO OR CPU INIT TO OC

07 06 0b 04 03 02 01 Q0
} | ] ! 1 1 |

DATA FROM CPU TO CONSOLE

1 1 1 1 1 | 1

TRANSMIT DATA BUFFER TXDB <15:8>
WRITE ONLY CPU ADDRESS = 1
INITIALIZED BY DCLO OR CPU INIT TO O

07 06 05 04 03 02 01 00

TXDB TXDB
IDENT IDENT

TXDB TXDB

NOT NOT IDENT | IDENT

USED USED

NOT NOT
USED USED

<3> <2> <> <0>
DATA BUFFER CONTROL AND STATUS ~ DBCS
WRITE ONLY  CPU ADDRESS = 2
INITIALIZED BY DCLO OR CPU INIT TO O
07 06 05 04 03 02 01 00
NoT | ENABLE | ot | moT | Nor | ENERM 1 wor i oot
USED | "XDB | Usep | UseD | USED | \RPr | USED | USED
INTERVAL CLOCK CONTROL/STATUS  ICCS
WRITE ONLY  CPU ADDRESS = 3
INITIALIZED BY DCLO OR CPU INIT TO 0
07 06 05 04 03 02 01 00
ENABLE | STEP RUN TRANSFR
coan | BT | | ror | g | M (Wt
INTRPT | CLOCK CLOCK | TO ICR
l |
WRITE 1 WRITE 1
TO CLEAR TO CLEAR
MKV86-1287

Figure 3-8 VAX 8800 CPU Registers (Sheet 1 of 4)

IIT 3-24



NEXT INTERVAL COUNT REGISTER NICR <7:0>

WRITE ONLY CPU ADDRESS = 4
INITIALIZED BY DCLO OR CPU INIT TO 00

07 06 05 04 03 02 01 00
T T I I [ !
INTERVAL COUNT REFRESH VALUE BYTE O
| | 1 ] | ]
NEXT INTERVAL COUNT REGISTER NICR <15:8>
WRITE ONLY CPU ADDRESS =5
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00
T T T T T T
INTERVAL COUNT REFRESH VALUE BYTE 1
| 1 ] ] 1 1
NEXT INTERVAL COUNT REGISTER NICR <23:16>
WRITE ONLY CPU ADDRESS = 6
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00
T T T ] 1 ]
INTERVAL COUNT REFRESH VALUE BYTE 2
L 1 ! L ] ]
NEXT INTERVAL COUNT REGISTER NICR <31:24>
WRITE ONLY CPU ADDRESS = 7
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00

1 ! ! i |
INTERVAL COUNT REFRESH VALUE BYTE 3

MKV86-1284

Figure 3-8 VAX 8800 CPU Registers (Sheet 2 of 4)
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RECEIVE DATA BUFFER RXDB <7:0>
READ ONLY CPU ADDRESS =0
INITIALIZED BY DCLO OR CPU INIT TO 00

07 06 05 04 03 02 01 00
T T T T T T T

DATA FROM CONSOLE TO CPU

RECEIVE DATA BUFFER RXDB <15:8>
READ ONLY CPU ADDRESS = 1
INITIALIZED BY DCLO OR CPU INIT TO 44(HEX)

07 06 05 04 03 02 01 00
RXDB RXDB RXDB RXDB RXDB
ERROR 1 IDENT IDENT X 1 IDENT IDENT
OCCURRED <3> <2> <1> <0>

DATA BUFFER CONTROL AND STATUS DBCS

READ ONLY CPU ADDRESS = 2
INITIALIZED BY DCLO OR CPU INIT TO 08(HEX)

07 06 05 04 03 02 01 oc
RXDB TXDB
RXDB
DONE | INTRPT 0 o | ZXDB. | INTRPT 0 0
ENABLED ENABLED
INTERVAL CLOCK CONTROL/STATUS Iccs
READ ONLY  CPU ADDRESS - 3
INITIALIZED BY DCLO OR CPU INIT TO 0
07 06 05 04 03 02 01 00
NTRPT | TIVER error | INTERVL
INTRPT 0 0 CLOCK 0 0
OCCURRED| INTRPT occurrep| CLOCK

MKV86-1288

Figure 3-8 VAX 8800 CPU Registers (Sheet 3 cof 4)
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INTERVAL COUNT REGISTER ICR <7:0>
READ ONLY CPU ADDRESS = 4
INITIALIZED BY DCLO OR CPU INIT TO 00

07 06 05 04 03 02 01 00
T T T T T T T
BYTE O OF CURRENT INTERVAL COUNT
] | 1 l | | 1
INTERVAL COUNT REGISTER ICR <15:8>
READ ONLY CPU ADDRESS =5
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00
I | I | 1 I I
BYTE 1 OF CURRENT INTERVAL COUNT
| 1 | | 1 | |
INTERVAL COUNT REGISTER ICR <23:16>
READ ONLY CPU ADDRESS = 6
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00
I I [ I I I I
BYTE 2 OF CURRENT INTERVAL COUNT
| ! i 1 | | |
INTERVAL COUNT REGISTER ICR <31:24>
READ ONLY CPU ADDRESS = 7
INITIALIZED BY DCLO OR CPU INIT TO 00
07 06 05 04 03 02 01 00
| 1 | 1 I . 1 i
BYTE 3 OF CURRENT INTERVAL COUNT
1 | 1 1 l 1 1
MKV86-1292
Figure 3-8 VAX 8800 CPU Registers (Sheet 4 of 4)
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3.5 CONSOLE CABLING

The cables that connect the console to the VAX 8800 system are
listed in Table 3-5 and illustrated in Figure 3-7. The first
column of the table (Item) contains a callout reference to Figure
3-9.

Table 3-5 Console Cable List
Item Description Part No. From To
(A) Console to EMM cable 17 00655-01 Cons Dist J6 MPS 2 J63
(B) Console Cable #2 17 00651-01 CPU J22 Cons Dist J4
{(C}) Console Cable #1 17 00649-01 CPU J23 Cons Dist J5
(D) PC 380 BCC26-201 CBL 17 00665-01 Cons Dist J2 PC 380
(E) PC 380 Power Cable 17 00442-17 88X PC 380
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MODULAR POWER SUPPLY

:

MPS 2
J63
(A) ——Pp
(t'3)
CLK l
J22
J23
VAXBIOQ VAXBI1 CPU il MEM
(C)—
BULKHEAD |
DISTRIBUTION
J5J4  Jb 88X
J2
VAX8800 CABINET
(D)———— ¢—(E)
PRO-38N

SCLD-269

Figure 3-9 Console Subsystem Cabling Diagram
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SECTION 4
POWER SYSTEM COMPLEX



CHAPTER 1
GENERAL DESCRIPTION

1.1 INTRODUCTION

The power supply provides the dc voltages necessary to operate the
main CPU(s), memory and VAXBI of the VAX 8800 system. Three-phase
ac utility power is used to energize the power system. The dc
voltages required are developed using the ac power modules and the
dc voltage regulators located in the CPU cabinet. In the following
paragraphs, the power supply is occasionally referred to as the
power system. Both names refer to the power supply.

Chapter 1 provides a general description of the power supply and
introduces the components used to generate the dc voltages
required to operate the CPU and its related components.

Chapters 2 and 3 contain more comprehensive descriptions of the
power supply modules and their functions.

Details of the operating signals and the specifications of the
power supply modules are presented in the Appendix.

This chapter introduces the components, configurations, controls,
and indicators of the VAX 8800 power system. It includes
illustrations of the power system and its basic components,
operational descriptions of the components, and general
specifications for the power system.

Figure 1-1 is a physical layout of the VAX 8800 system showing the
power module layout and the blower subsystem.

Figure 1-2 is a block diagram of the 60 Hz power system.

Figure 1-3 is a block diagram of the 50 Hz power system.
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FRONT END CABINET

CPU CABINET

Cl750

BA11-A

BLOWER ASSEMBLY

MODULAR POWER SYSTEM (MPS)

BBU
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Figure 1-2 VAX 8800 Power System Block Diagram (60 Hz)
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Figure 1-3 VAX 8800 Power System Block Diagram (50 Hz)
1.2 SYSTEM COMPONENTS
The power system shown in Figure 1-1 includes the components
listed in Table 1-1.
Table 1-1 Power System Components
Component Mnemonic Component Number
876A power controller 876A 876A
NBox power converter NPC
Modular power supplies MPS H7180, H7186,
H7187, H718°%
Environment monitor module EMM H7188
Battery backup (option) BBU H7231-D
Air flow blower system AFS
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1.2.1 876A Power Controller

The 876A power controller is the main ac input module for the
power system. Three-phase ac facility power to the VAX 8800 system
is passed through BRKRI, the main system circuit breaker, and on
to the 876A for power distribution to the system components.

Power from the 876A feeds switched and unswitched power as
follows:

[ Switched three-phase and unswitched single-phase power to
the NBox.
' Unswitched single-phase power to the BBU.
° Switched three-phase power to the blower system.
° Switched single-phase power to the expander units
(C1750).
1.2.2 NBox Power Converter

The NBox PC 1is a multifunction power assembly that contains the
modules listed in Table 1-2.

Table 1-2 NBox Modules

NBox Module Function

H7170A (X) Converts 3-phase ac power into 300 Vdc power out
for 300 V bus.

H7170A (Y) Same as above.

ILM Provides logic signal interface between EMM and

other power system components. Also controls BBU
operation.

CsP Converts single-phase ac power to 1logic level
voltages: +5 Vv, +/-12 v, +10.5 V for EMM, ILM.

NBT Converts logic signals for start-up and system
operation. Also interfaces with DIGITAL power bus.
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1.2.3 Modular Power System (MPS)

The Modular Power System (MPS) is a dc power supply module nest
located above the CPU cardcage in the main CPU cabinet. The MPS
contains the dc power regulators that provide the dc power for
operating the main CPU, memory, and extender modules of the VAX
8800 system.

The MPS nest also contains the Environmental Monitoring Module
(EMM), described briefly in the following section.

Power 1is applied to the power supplies, located in the MPS nest,
by «cabling connected to the 300-Vdc power bus. The 300-Vdc buses
are fed from the H7170 ac-to~dc power converters located in the
NBox.

There are three 300-Vdc power buses located in the MPS area, one
of which connects to power supply module B, the regulator used to
provide power to the CPU memory during battery backup operation.

The MPS backplane provides connections for:

° The power control signals (MPS powerup, powerdown, and
BBU assignment) to the power regulators

e The EMM, CSP, and ILM modules (via NBox backplane)

® The CPU backplane

® The environmental monitoring signals
1.2.4 Environmental Monitoring Module
The Environmental Monitoring Module (EMM) is a microprocessor-
based (8085 module located in the MPS cage. It is used to
monitor:

® DC power regulator operation

e Power system status

o Power system start-up and operation

) Environmental conditions within the main CPU cabinet.

The EMM is also the main communications link between the VAX 8800
system console and the power system. Additionally, the EMM
provides control during power-up and power-down sequencing and
during battery backup operations.

A complete description of the EMM module and a detailed discussion
of the functions it performs is presented in Chapter 2.
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1.2.5 Cooling System

Cooling for the VAX 8800 system is designed to maintain the
internal temperature of the main CPU cabinet within the proper
operating range for normal CPU system operation. This 1is
accomplished using an air-moving system powered by a three-phase
induction motor. The components of the cooling system include:

° A three-phase 208 Vac, 60 Hz (or 416 Vac, 50 Hz)
induction motor with a double-ended shaft

° Quad-inlet, dual-outlet air movers

° A centrifugal blower with two sets of vanes on each end

of the motor shaft

The vanes are the forward-curved type and deliver approximately
1800 CFM in free air. As used in the VAX 8800 CPU cabinet, the
blower air flow rate is approximately 1100 to 1200 CFM.

The temperature within the CPU cabinet is monitored continuously
by the EMM module, which senses the outputs of thermistors
strategically placed within the cabinet. The air flow rate within

the CPU cabinet is also monitored.

1.2.6 Battery Backup Unit H7231-M

The Battery Backup Unit (BBU) provides the VAX 8800 system with
the capability to protect the main CPU memory data in the event
that ac utility power is temporarily lost. The BBU consists of:

o A 48-volt rechargeable lead acid battery pack (four 12 Vv
batteries)

° A charging circuit

° A dc-to-dc converter (48 V to 300 vdc)

The converter converts the 48 volts to 300 volts dc for use in the
battery backup mode. The BBU is an option for the VAX 8800 system.
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1.3 MECHANICAL CONFIGURATION

The VAX 8800 power system components are housed in two cabinets,
the front-end cabinet and the main CPU cabinet. The front-end
cabinet contains:

AC distribution components

The main circuit breaker (BRKR1)

The BBU

I1/0 expander modules (BAll-A), (CI750)
Power cables

50 Hz transformer (international only)

The components contained in the CPU cabinet are:

876A Power Controller
NBoOx

MPS power regulators
EMM

Blower system

300 V buses

MPS backplanes

I/0 bulkhead

Console interface

Power/Signal distribution cables

Figures 1-4 and 1-5 show the front and rear view of the CPU
cabinet, and the location of the power components within the
cabinet.
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1.3.1 876A Power Controller

The 876A power controller mounts to the base of the H9650 CPU
cabinet at the lower left side, as viewed from the front. The 876A
is approximately 10.0 inches wide by 10.0 inches deep by 8.0"
high,

1.3.2 NBox Port Conditioner

The NBox mounts to the base of the H9650 cabinet on the lower
right side as viewed from the front. The NBox is approximately
19.0 inches wide by 19.0 inches deep by 7.0 inches high and weighs
100 pounds. Connections to the NBox include:

DIGITAL power control bus

300-vdc power bus

300-vVdc storage capacitors

MPS backplane control logic (EMM)
Battery backup unit

A minimal amount of <cooling 1is required by the NBox. This is
accomplished by placing the NBox in the intake air stream with its
heat sinks in the air flow path. Screened openings in the chassis
of the NBox allow the moving air to circulate through the chassis.

1.3.3 MPS Modules (Regulators) and Cage

The MPS cage is a sheet metal/tubing structure that, in addition
to supporting the MPS modules and the EMM, provides for mounting
of the power backplane and the 300-Vdc bus input to the MPS
regulators.

The cage 1is mounted on four corners and bolted to the cabinet
directly above the logic cardcage. It has the capacity to contain
up to 9 MPS modules and the EMM.

The MPS backplane spans the width of the MPS cage and is
fabricated in two sections. The MPS backplanes contain the power
control signals and environmental monitoring signals to and from
the EMM module.

The MPS regulator modules are inserted into the MPS cage in the
designated area. Each module provides regulated dc power that is
distributed by means of the MPS backplane or bus bar straps
connected to the CPU logic backplanes.
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1.3.4 Battery Backup Unit

The optional BBU is mounted to the right side of the front-end
cabinet as viewed from the front. The BBU module contains three
assemblies:

e The charging circuit
° The dc-to-dc converter circuit
° The 48-volt lead acid battery pack

The BBU module is 7.0 inches high by 15.12 inches deep by 19.0
inches wide and weighs 42 pounds. It requires a minimal amount of
cooling.

Therefore, placement of the module in the front-end cabinet
satisfies the convection cooling requirements.

1.3.5 Air Flow System
The blower for the air flow system is located at the top of the
CPU cabinet, above the MPS cage.

The rotary blower creates a negative pressure within the cabinet,
which causes air to be drawn into the cabinet at the bottom and
flow through the cabinet components before exiting at the top of
the cabinet.

Thermistor sensors (T1-T4) and air flow sensors (AFS) sense the

temperature and air flow rate and provide this information to the
EMM for monitoring purposes.
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1.4 POWER DISTRIBUTION

1.4.1 AC Power

AC utility power is brought into the VAX 8800 system at the rear
of the front-end cabinet. Three-phase ac power is cabled to BRKRI1,
the main system circuit breaker, from which it is connected to
terminal blocks for system distribution.

The three-phase ac power is cabled from the terminal blocks to the
876A power controller located 1in the CPU cabinet. A second
three-phase power connection is made to the Dranetz phase monitor
port accessed at the front-end cabinet.

A single-phase ac cable is routed to the system console outlet box
located in the CPU cabinet.

The 876A distributes three-phase and single-phase ac power to
system components by means of power receptacles located on its
chassis. Power plugs for the components are inserted into the
receptacles provided.

Figure 1-6 shows the receptacles located at the rear of the 876A.

Table 1-3 1lists the components powered by the 876A and the ac
power provided.
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Table 1-3 876A Power Distribution

Component Three-Phase Single-Phase
NBox X X
Blower X
BBU X
CI750 X
1.4.2 DC Power

The VAX 8800 system uses 300-volt dc power, provided by the NBox
(H7170X and Y) or the BBU, to supply the dc regulator modules that
produce the dc logic voltages required to operate the system.

During normal system operation, the 300-V power is supplied by the
two H7170 power modules located in the NBox. If ac utility power
is lost, 300-Vdc power is provided by the BBU controlled through
the NBox.

During power dropouts, the 300 Vdc supplied by the BBU is used to
support module B, the memory power supply module. A detailed
discussion of dc power distribution is presented in Chapter 3.

Figure 1-7 1is a block diagram of the components that support the
dc power section of the VAX 8800.
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1.4.3 Controls and Breakers

1.4.3.1 Controls =-- The primary power controls for the VAX 8800
system are BRKRl, the main circuit breaker, located at the rear of
the front-end cabinet, and the ON/OFF (1/0) switch located at the
system console.

Placing these two switches 1in the ON (1) position allows the
system to operate in the software-driven mode, enabling the
console keyboard to issue commands to the power system by means of
the EMM,.

There are no front- panel controls for the VAX 8800 system. The
PRO-38N power system is the console device for the VAX 8800 that
accomplishes all the tasks of a front panel.

1.4.3.2 Circuit Breakers =-- There are nine (9) circuit breakers
in a fUllV confloured VAX 8800 power system, seven (7) thre(_\—p“ab.a
and two (2) single-phase. Table 1-4 1lists the 1location and
characteristics of the circuit breakers.

Table 1-4 VAX 8800 Circuit Breakers

Component Phases Breaker 1ID Comment

876A PC 3 BRKR2 (CB1) Main Input

" 1 CB 2 BBU

" 3 CB 3 Aux. Out.

" 3 CB 4 H7170X/Y

F.E. Cab. 3 BRKR1(CR1) Main Sys.CR

" 3 CR 2 Dranetz Ph.Mon.
NBox H7170X 3 CB 1 Module Input
NBox H7170Y 3 CB 1 Module Input
Console 1 CB 1 Console Input

The VAX 8800 power system circuit breaker diagram is shown in
Figure 1-8.
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1.5 AC POWER SPECIFICATIONS
The following is a summary of the VAX 8800 power requirements.

1.5.1 Electrical Requirements

1.5.1.1 AC Power Sources

Domestic

120/208 vac, 60 Hz, 60 A, 3-Phase, 5-Wire WYE connected service.
International

240/416 Vvac, 50 Hz, 30 A, 3-Phase, 4-Wire Delta connected service.
Taps are available on the 50 Hz transformer to accommodate 380-vac
and 440-Vac inputs. Taps must be selected and wired before power
is applied.

Refer to the VAX 8800 System Installation Guide (EK-8800I-IN) for
additional details.

Line Voltage

60 Hz equipment 156-222 V rms line-to-line, 208 V nominal.

50 Hz equipment 312-444 V rms line-to-line, 416 V nominal.
Line Current

60 Hz equipment - 50 Amps max. @ 156 V rms

50 Hz equipment - 30 Amps max. @ 312 V rms

Power Factor

60 Hz - 0.65 minimum

50 Hz - 0.85 minimum

Power Consumption

6500 Watts maximum; Maximum Heat dissipation 22.2K BTU/hr
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Environmental Requirements

DIGITAL STANDARD 102 for Class A environments

Temperature
Ambient Temperature Range - Operating - Centigrade - 15 to 32
degrees

Fahrenheit - 59 to 90 degrees

Storage - Centigrade - -40 to +66 degrees
Fahrenheit - -40 to +151 degrees
Humidity

20 to 80 % relative humidity

Altitude

Sea Level to 8000 feet

Weight

1700 1bs combined weight for both cabinets
Dimensions

30 inches d x 60 inches h x 73.5 inches combined width
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1.6 FAULT AND STATUS INDICATORS

The only visible indication of system fault and status is that
available to the system operator. The console monitor displays
messages to inform the operator when faults occur and the status
of the modules in the power system.

Each of the power system components contain front-panel indicators
that display fault and status. However, these displays are not
visible during normal operation.

The outer front-panel covers of the CPU and front—-end cabinets
must be removed to view the fault and status indicators.

Fault and status indicators for the power system components are

described in the following paragraphs.

l.6.1 876A Power Controller

The 876A power controller has three "POWER" lamps located on the
upper right side of the front panel, which light when ac facility
power is applied.

Figure 1-9 shows the front panel of the 876A PC.

REMOTE/LOCAL SWITCH

CB2 CB3 CB4
% CONTROL ® L1©Q OF1 o
L@ (OF2
@ OrFs
® ® ®
‘alalalg) FEL SR Sy
NcTYa |
5 5 ﬁ BIRIF BBIAF L=
° °° ° ey ©
CB1

SCLD-60

Figure 1-9 876A Power Controller Front Panel

1.6.2 NBox
Figure 1-10 shows the front-panel location of the NBox indicators.
Table 1-3 defines the visual indicators provided.
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1.6.2.1 H7170 Built-In Test Equipment -- The front panel of the
H7170 has four indicators to display the current operating status
of the module. The indicators are colored LEDs that light to
indicate status. Table 1-5 lists the indicators and the related
indication.

Table 1-5 H7170 Status Indicators

Indicator/Color Indication

1. GREEN BUS OK - Bus voltage > 165 vdc

2. GREEN MODULE OK - No problems

3. RED OVERVOLTAGE FAULT - Crowbar has occurred
4. BLINKING YELLOW OVERCURRENT FAULT

1.6.2.2 1ILM Built-In Test Equipment -- The ILM front panel

contains two types of fault/status indicators: electro-mechanical
magnetic latches and a single-digit LED display.

The electro-mechanical indicators located below the digit display,
are defined below:

° Binary 1 = Manual Intervention
° Binary 5 = CSP OT
® Binary 7 = MOD B OT

The single digit LED BITE display on the ILM front panel indicates
fault conditions as dfined below:

H7170X failed
H7170Y failed
CLOCK FAIL

MANUAL RESET

oo @0
QO U1 N
i

The only fault indication sent to the EMM for the console is a MOD
B OT failure. All other fault indications apply to the NBox.
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1.6.3

Figure 1-11
the modular
status indications,

Modular Power Supply Regulators

shows the location of the front-panel indicators for
power regulators. All power regulators have the same
as defined in Table 1-5.

Table 1-6 MPS Regulator Indicators

Indicator Indication Definition

Green LED Module OK The power supply module is operating
properly, the output voltage is
within regulation range, and no
other faults exist,

Red LED Overvoltage The module voltages have crowbarred.

Yellow LED Overcurrent The module's output current is above

(Blinking)

its rating.

Figure 1-11

LE
GREEN ©
RED o

YELLOW ©

H718X

okt
CLD-452

Indicators for the Modular Power Regulators
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1.6.4 Environmental Monitoring Module

Figure 1-12 1is a diagram of the EMM front panel showing the
location of the front-panel components. The red LED indicators
signal a KEY FAULT.

The four magnetic latches above the LEDs are used to indicate the
fault conditions defined in Table 1-8. The octally coded latches
are weighted as shown in Figure 1-12,

TOTAL OFF CODE
() 10
4

KEY FAULT
AC INPUT MOD FAULT

ELECTRICAL KEY
OVERRIDE (NOT USED)

SCLD-453

Figure 1-12 EMM Front-Panel Indicators
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Table 1-7

EMM Magnetic Status Indicator Codes

Coded Readout (Octal) Indication Device

Black = 0

Yellow =1

bOO No failure

001 Not used

010 Overtemperature Module B H7186

011 Overtemperature Module C H7186

100 Overtemperature Module D H7187
(either one)

101 Overtemperature Module E H7180
(either one)

110 Overtemperature Module F H7189

111 Overtemperature Module H H7189

1000 Not used

1001 Not used

1010 Not used

1011 Not used

1100 Overtemperature Cabinet sensors
(any one of four)

1101 Not used

1110 Not used

1111 Not used

1.6.5 System Console Device

Operation and control of the VAX 8800 system is performed by the

PRO-38N that allows the operator to
A complete discussion of the PRO-38N
including 1its specifications

system console, a
interact with the
system console,

modified
system.

characteristics, is provided in Section 3 of this manual.
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CHAPTER 2
FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

Chapter 1 of this document introduced the components that make up
the VAX 8800 power system. This chapter describes the power system
at a Dblock diagram and flowchart level. More detailed component
descriptions are presented in Chapter 3.

2.2 POWER SYSTEM BLOCK DIAGRAM

Figure 2-1 is a functional block diagram of the VAX 8800 power
system showing the major components of the system and the
interconnections.
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Figure 2-1 VAX 8800 Power System Block Diagram
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2.3 SIMPLIFIED OPERATION

Utility ac power is brought into the VAX 8800 system through the
front-end cabinet. The ac passes through the main system circuit
breaker, BRKR1l, and connects to the ac distribution block.

Connections to the distribution block include the following:

° Console power port
° Dranetz phase monitor port (via Circuit Breaker 2)
° 876A power controller

The console/printer power port and the 876A are located in the CPU
cabinet.

The console power port is a single-phase ac power receptacle to
provide unswitched ac power for the console subsystem and printer

The Dranetz power port provides a three-phase ac receptacle into
which the Dranetz voltage monitor plug is inserted.

The 876A is described in the following section.

2.3.1 876A Power Controller

The 876A power controller interfaces the three-phase ac utility
power input to the VAX 8800 power system. The functions of the
876A are:

1. Distribute 3-phase and l-phase ac power to system modules

2. Filter ac input power

3. Control application of ac power to modules (K1 power
switch)

4. Provide ac reptacles for system modules

5. ggotect system modules from power fault conditicns (BRKR

6. Interface with DIGITAL power control bus

The 876A, the main VAX 8800 power control module, distributes
switched and unswitched ac power to the three-phase and
single-phase modules listed in Table 2-1.
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Table 2-1 876A Power Distribution

Module AC Phases

NBox

Blower

BBU

BAll-A
Auxiliary port

P 1

— =W W

2.3.2 NBox
The NBox 1is a power converter assembly containing the following
modules:

o 2 H7170 power converters
® ILM
[ CSP
[ NBT
Each of the above modules 1is described in the following

paragraphs.

2.3.2.1 H7170 Power Converter -- The H7170 power converter
converts the three-phase ac input power to 300-Vdc output power
for use by the MPS dc power regulators.

There are +two H7170 PCs in the NBox (NPC), designated H7170X and
H7170Y. The outputs of these wunits supply the 300-Vdc buses
connected to the regulators.

When the ac voltage input to either H7170 falls below 156 V rms,
both of these wunits are disabled. Battery backup power from the
BBU supplies 300-Vdc power to regulator B for main memory bias
support.

All other regulators are disabled when AC LO occurs.
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2.3.2.2

Control Start-up Power Module (CSP) -- The CSP receives

unswitched single-phase ac power from the 876A power controller
and creates the following dc bias voltages:

+5 Vv
+/=12 V
+15 VvV
+10.5 Vv

The CSP output voltages are used as shown in Table 2-2.

2.3.2.3

Table 2-2 Modules Using CSP Bias Voltages

Voltage Modules Used On Purpose
+5 Vv ILM, EMM Bias
+/~- 12 V ILM, EMM Bias
+10.5 V(3) All MPS Regulators Startup
+15 VvV CLK/CNSL pcb Bias
Interface Logic Module (ILM) -- The ILM module performs

the following power system functions:

l‘

2.

2.3.2.4
provides

Provides interface logic for the power-up sequence
Controls logic for the operation of the BBU
Generates clocks for MPS regulators

Initiates BBU power output to regulator B by means of the
NBox

Interfaces with the DIGITAL control bus to control

utility power

New Box Translator Module (NBT) -- The NBT module
logic signal conversions and combination logic functions

on signals used during the power sequences. The NBT also provides
the system with "FAIL SAFE," which prevents BBU operation in the
event that a system CB is turned off, or tripped.
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2.3.3 Modular Power System (MPS)
The modular power system includes the power regulators that
provide the dc voltages necessary to operate the following:

) Main CPU
L] Memory
) VAXBI modules

The power regulators are powered from the 300-volt dc power bus,
which is split into two sections.

The regulators have the following common characteristics:

Pulse width modulation (PWM)
50 kHz clock from ILM

Line and load regulation
Remote voltage sensing

The EMM module, which monitors the output of the dc regulators and
the environment 1in the CPU cabinet, is located in the MPS along
with the eight (8) regulated power supplies.

The MPS module cage is a mechanical structure internal to the CPU
cabinet that supports:

The modular power supplies
The EMM module

The 300-V buses

The MPS backplanes

The MPS cage is located above the main CPU cardcage.

Table 2-3 1lists the regulator modules by part designation, dc
output voltage, and the area of the computer system they service.



Table 2-3 Voltage Regulators

Regulator Module DC Output (volts) Logic Backplane(s)
H7186 (B) + 5.0 Battery Memory

H7186 (C) + 5.0 Memory

H7187 (D) - 2.0 CPU

H7180 (E) - 5.2 CPU

H7189 (F, H) +/- 12.0, - 5.2, VAXBI

The regulator output voltages are connected to the CPU backplanes
using the following:

e Flexible cable
) Laminated bus straps
® CPU backplane etches

The laminated bus straps are used to minimize voltage drop when

—age

making high current connections with minimum voltage drop.

The MPS backplane connections to the CPU, memory and VAXBI
backplanes, viewed from the rear of the cabinet, are shown
schematically in Figure 2-2.

l[¢—————BACKPLANE 1 Pl BACKPLANE 2—————————p|

MOD H| MODF | MOD E | MOD E MOD D | MOD D MOD C | MOD B
H7189 | H7189 | H7180 | H7180 | H7188 | H7187 | H7187 | SPARE | H7186 | H7186
VAXBI | (VAXBI)| (-5.2) | -5.2 | EMM [(-2.0) | -2.0 +5.0 l+5.0

LTJ L_r_l L‘F] L_]_I
Fﬁ** 5 5 GND b b

|
| IL 5 & 5.2V —
| l |
| 2.0 v | ¢
v v Y
~___
N |
70
VaZEl ! MEMORY
BACKPLANES TO T0 TO
cPU CPU cPU
BACKPLANE BACKPLANE BACKPLANE

SCLD-455

Figure 2-2 MPS Backplane Configuration (Rear View)
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2.3.4 Battery Backup Unit (BBU Model H7231-M)
The H7231-M Battery Backup Unit (BBU) for the VAX 8800 power
system consists of:

o A battery charger (H72303)
) A dc-to—-dc converter (H7240A)
° A 48-volt lead acid battery pack

The BBU provides battery backup power for the CPU memory modules
when a utility power failure occurs during system operation.

The BBU output supports regulator module B, the only active
regulator during short-term utility power drop outs.

Charging for the 48-volt, 5 Ah battery pack occurs during normal
system operation by means of the unswitched 120-volt, single-phase
ac voltage that is fed to the BBU from the 876A power controller.

The ac voltage 1is applied to the H7230 charging circuit that
controls the current to the batteries.

The level of <charge on the batteries is monitored to prevent
overcharging and to signal the ILM monitor of its charge status.

The BBU is capable of supporting the memory modules for a minimum
of 9 minutes from a fully charged battery. It is intended to
provide power for the memory modules during short-term power
losses that occasionally occur.

The output circuit for the BBU is a dc-to-dc converter module
(H7240) that converts the 48-volt dc from the battery pack to 300
volts dc at 700 mA.

The 300-volt output is applied to the NBox where it is interfaced
with the 300-volt dc bus used to feed the power regulator modules.

During a power loss period, the 300-volt dc is applied to all
regulator modules, but only module B is enabled.



2.3.4.1 BBU Control =-- Control of the BBU's power Dbackup
operation is performed by the ILM module, which issues commands to
the BBU in response to a BBU request from the EMM module.

The AC LO signal is sent to the EMM in response to an AC LO signal
received from a power line monitor in the NBox. AC LO occurs when
the ac 1line voltage falls below 156 volts rms. The normal ac
voltage level phase-to-phase is 208 volts rms.

Upon receipt of the AC LO signal, the EMM signals the ILM to
provide battery backup power (MODULE ENABLE L).

The ILM responds to a BBU request by:

1, Enabling BBU power output
2. Asserting (ILM RQUEST RTN) to the EMM

Module B must indicate that it is functioning correctly by
asserting the signal (MODULE OK H).

The TOTAL OFF BUS signal must not be asserted.

If the conditions above are met, the BBU provides 300 volts @ 700
mA to the 300-volt dc bus.

The EMM, in response to a signal (MODULE ENABLE L) from the BBU,
initiates a programmed sequence to disable all regulators except
Module B.

The BBU continues to supply 300-volt bus power (maximum time 10
minutes) until ac power returns.

The return of ac power is signaled by AC LO deasserted, Mod J
reporting OK, and the EMM requesting control of Mod B. If all
these are true, then the ILM will turn off the BBU.

If system power is completely shut down by the system operator, AC
LO will not be deasserted.

Figure 2-3 is a functional block diagram of the battery backup

subsystem showing the control logic signal flow and the power
interconnects associated with the BBU module.
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2.3.5 Environmental Monitoring Module (EMM)
The environmental monitoring module is a multipurpose logic module
that performs the following functions:

Monitors the status of the modular power supplies
Monitors the environmental status of the CPU cabinet
Communicates logically with the system console
Enables/disables the regulators

Communicates with the ac power system

Verifies correct CPU pc board installation

The EMM is an 8-bit microprocessor-based (8085) module that
contains the following microprocessor system support chips.

® RAM
® ROM
° 1/0
® RS232 communications

The RAM chip provides temporary storage for data and instructions
sent to the EMM from the system console over the serial
communications line.

The ROM chip contains the preprogrammed instruction set needed to
perform routine EMM tasks. These include:

Regulator on/off control

AC system monitoring

Regulator output voltage monitoring
Regulator output margin testing
Regulator temperature monitoring

CPU cabinet environmental monitoring
BBU on/off control

Figure 2-4 is a functional block diagram of the EMM module showing
the communications interface with the system console and the I1/0
interfaces to the power system monitoring and testing devices.
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The serial communications link to the system console is vital to
the functioning of the VAX 8800 power system.

The system console is the primary user interface to the VAX 8800
system.

The EMM as power system monitor, continually communicates with the
system console regarding:

® Function and status of the power system
® Power system fault conditions

The EMM signals the console when a fault occurs, and receives
instructions regarding the corrective action to be taken.

2.3.6 Power System Monitoring
The main functions of the EMM are:

1. Monitoring the power system components
2. Notifying the system console of malfunctions

The monitoring is done using devices that provide an I/0 interface
with the 8085 computer.

As shown in Figure 2-4, the I/0 section of the EMM is located on
the right side of the block diagram. The monitored I/0 signals
include the following:

Key faults

Regulator control

BBU control
MPS/BBU/EXT. IN status
AC/DC LO

Regulator overtemp

CPU temperature

The following paragraphs describe the input and output signals
briefly, indicating their purpose and the resulting fault response
by the EMM.
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2.3.6.1 Key Monitoring -- The PC boards in the CPU cage are keyed
to assure <correct insertion into the CPU PCB slots. The key loop
circuit wverifies that the PCBs are correctly inserted. Failure to
satisfy this requirement causes:

1. Power-up sequence halted
2. Reinitialization of the microprocessor (8085)

The power—up sequence cannot proceed until the fault is corrected.

2.3.6.2 Regulator Control -- The EMM provides control logic for
turning the dc voltage regulators on and off, margin testing, and
monitoring the dc output voltage(s) of the regulators.

The internal temperature of the modules 1is also monitored to
prevent overheating and thermal runaway.

All of the regulators are fixed output design.

2.3.6.3 BBU Control -- The EMM communicates with the ILM to

monitor BBU status and to request BBU output when an AC/DC LO
signal has been received by the EMM.

The EMM, in response to the AC/DC LO signal:
1. Sends a BBU request to the ILM

2. Signals the system console that the AC/DC LO signal has
occurred

The ILM enables the BBU (see power—-down sequence).

4 Air Flow Status —-- Incorporated into the VAX 8800 system

.6.
ign 18 an alr movino avatem +that continaally fn
ign an alY 1g system chac COr Y C

e movir rtinuall f
hroughout the CPU cabinet for cooling.

oogc 217
LTS Gac

The air flow rate is continuously monitored. If the air flow rate
falls below the specified minimum, the EMM notifies the system
console.

The console responds by initiating a system shutdown procedure.
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2.3.6.5 AC/DC LO Signals -- AC LO and DC LO are two fundamental
power system fault signals sent to the EMM when a fault condition
occurs in the utility power system.

An AC LO indication signals the EMM that a low ac line voltage
exists, in either a single-phase or in all three phases of the ac
line voltage to the H7170s,.

When the EMM receives an AC LO indication, it immediately:

° Notifies the system console that a fault exists
® Requests BBU power through the ILM
° Notifies the CPU, NBI, and memory

The console displays the AC LO condition at the console monitor
and initiates a system power-down procedure to disable the system.

2.3.6.6 Regulator Overtemp. and CPU Cabinet Temperature
(Thermistor Volts) —-- The EMM continu

i

environment within the CPU cabinet wh
operating.

3 + S |
usly mecnitors the thermal

“ P4
le the VAX 8800 system is

o]
i

There are four thermistors in the CPU cabinet:
° Tl, located at the forced air input to the CPU cage

° T2, T3, T4, located at the air flow output between the
CPU cage and the MPS module cage

The thermistors are temperature-sensitive resistors that vary
inversely with temperature. The thermistor volts signal sensed by
the EMM 1is a translation of the value of thermistor resistance,
and therefore, an indication of the air temperature in the
location of the thermistor.

The temperature values reflected by the thermistors located in the
CPU cabinet are continuously monitored by the EMM and compared to
the specification limits.

When the EMM senses a temperature outside the upper limits set
(red zone), it sends a message to the system console. Then it
initiates a power-down (TOTAL OFF) for the system, tripping BRKR2
in the 876A.

The REGULATOR OVERTEMP signal 1is a logic indication that an

individual dc voltage regulator has exceeded 1its operating
temperature limit,
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The regulator temperature sensors are bimetallic devices that
close when the design temperature is exceeded.

All of the regulators in the VAX 8800 system contain an
overtemperature indicator that generates a logic signal to the EMM
when the module temperature exceeds its upper limit.

When this occurs, the EMM notifies the system console, initiating
a system (TOTAL OFF).

2.4 POWER SEQUENCES

Powering up the VAX 8800 system is a sequential process that must
proceed in an orderly manner if successful system operation is to
be achieved.

2.4.1 Circuit Breakers

Prior to initiating the power-up sequence for the VAX 8800 system
you must verify that all of the circuit breakers (CB) in the
system are in the "ON" position.

The main CB, BRKR1, which enables utility power to the system, is
the last to be turned on at the start of the power-up sequence.

There are nine (9) CBs in a fully configured VAX 8800 system:
seven (7) three-phase ac CBs and two (2) single-phase CBs.

The 876A power controller contains four CBs.

All CBs except BRKR1, located at the rear of the front-end cabinet
must be manually set as part of the prepower-up preparations.

Table 2-4 1lists the circuit breakers contained in the system and

the modules in which they are located. The function of the CBs are
also indicated.
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Table 2-4 System Circuit Breakers

Part Designation Phases Amp. Rating Comment

CBl1 (BRKRI1) 3 50 Main system CB (front-end
cab) to phase monitor

CB2 3 2

CB1 1 ? Console input

CB1 (BRKR2) 3 40 876A input

CB2 1 20 876A for H7231-M

CB3 3 876A to blower

CB4 3 30 876A to NBox (H7170s)

CB1 3 6 H7170 input

CBl 3 6 H7170 input

The power sequences presented in the following section are
discussed 1in conjunction with the power flowcharts shown in
Figures 2-5 through 2-8.

There are four power sequences for the VAX 8800 system:

1. Routine powerup

2. AC powerup from BBU operation

3. Powerdown from console command

4. Powerdown from power interrupt with BBU
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2.4.2 Summary of Power-Up Sequence

The first step in the power-up sequence is to manually put all CBs
in the "ON" position. BRKR1l, the main circuit breaker for the
system, is put on last.

The three-phase ac utility power enters the front-end cabinet and
is distributed to the power controlling components of the power
system.

Three-phase ac power is sent to:

® Dranetz phase monitor inside the front-end cabinet
° 876A inside the CPU cabinet

Single-phase wunswitched ac is also sent to the system console ac
port to power up the console/printer.

NOTE

When power is applied to the
PRO-38N system console wunit, the
console proceeds to execute its own
powerup and initialization routine.
See the following publications for
details of the console start up
procedure.

1. Section 3 of this manual
2. VAX 8800 System User's Guide

Inside the CPU cabinet, unswitched single-phase ac is sent from
the 876A to:

® The BBU

° The CSP module (located in the NBox)
After a delay of less than a minute, the CSP module generates +5
Vdc,; and +/-12 vdc bias voltage for the following modules:

® NBT

® ILM

® EMM

A +10.5 Vdc bias for the MPS regulator start-up power is also
generated by the CSP.

The NBT module, also located in the NBox, sends a FAIL SAFE ENABLE
signal to the BBU. In response, the BBU sends a BBU AVAIL L signal

+n +tha MM
L k2O

iIggit: e
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Upon receiving the +5 V and +/-12 Vdc bias voltages from the CSP
module, the ILM module powers on, performs a selftest, and
displays the number "0" on its numerical display, if "OK."

Similarly, the EMM module powers on after receiving the +5 V and
+/-12 Vdc bias voltages from the CSP.

The key circuit, which checks the correct placement of CPU PCBs,
signals the EMM if no faults are detected, indicating that the
power—-up sequence may proceed.

If a fault is detected, the key fault LED lights and the power-up
sequence halts until the problem is resolved. During a fault, the
console cannot communicate with the system.

The control console issues a POWER ON command to the EMM, which is
acknowledged by the EMM if no key faults exist.

NOTE
If the console has been set to the
AUTOPOWERON mode, it will power up
automatically when utility power is
applied. Otherwise, the console
operator must type the POWER ON
command to enable the power system.

The CSP provides +15 V to:

® AIR FLOW SENSOR PCB
® CLK/CNSL PCB

A POWER REQUEST signal is also sent to the 876A power controller
power switch, S1, from the ILM to enable ac power to:

1. Blower motor
2. NBox (H7170s)
3. BAll-As

The H7170s generate 300 Vdc to supply the 300-Vdc buses feeding
the regulators in the MPS rack. The regulators are enabled
sequentially by the EMM, with module D being the last to be
enabled.
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SYSTEM POWER-UP FLOWCHART (FIGURE 2-5)

The main circuit breaker (CB 1), located in the rear of
the front-end cabinet, must be placed in the "ON"
position.

AC is distributed to the console (BRO-38N and LAS50
printer), wvia J1/J2 of the console power outlet box, and
to the unswitched outlets and phase indicators (L1, L2,
L3) of the 876 Power Controller. Upon receipt of ac
power, the PRO-38N performs a selftest, and loads/runs
the console software (this takes approximately 1
minute).

The wunswitched outlets (J17) of the 876 distribute ac to
the battery backup unit connector J22, and to the NBox J5
(the control start-up power (CSP) module connector J69).
The CSP 1is 1located in the NBox. The charging circuits
within the BBU (H7231) become operative at this point,
and need no intervention/control from ILM/console.

After a delay of not more than one minute, the CSP
generates +5 V and +/- 12 V, which is distributed to the
EMM (via J4 CSP and J15, J9 connectors on NBox, to J64
MPS (modular power supply) connector, to J50 of the EMM),
and to the interface logic module (ILM) (via J4 of the
CSP to J5 of the ILM). The ILM is also located in the
NBox. The CSP also distributes +10.5 V to +the MPS
backplane, which 1is wused as bias (turn-on) voltage by
each regulator inserted in the MPS B/P. The CSP also
monitors its input ac voltage as reflected by a
rectified, and filtered (300-Vdc NOM) voltage. The
resultant signal is CSP BULK OK which is sent to the ILM.

The new box translator (NBT) receives power 1if the
circuit breakers for the H7170¢ and the main circuit

(O N SR DA VX ~sLTaQATLS LUL CddT a7 a v L 5 R {4 11 airouULu

breaker in the front-end cabinet are in the "ON"
position. This powers up the NBT's fail safe enable
circuitry, which monitors the following CBs: front-end
cab CBl1 (main CB), 876A CBl. If all the above CBs (4) are
in the 1 position (ON), the NBT sends "FAIL SAFE ENABLE"
to the BBU (via J320 of the NBT, to J378 of the NBox, to
J20 of the BBU). The BBU sends "BBU AVAIL L" to the EMM
to indicate it is ready to supply power when needed. The
BBU also sends its status to the ILM, which displays this
information via the "batt stat" led, which is located on
the front panel of the ILM.
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10.

11.

When the ILM receives +5 V and +/-12 V, it powers up and
performs a selftest. If the results of this test are
"OK", the 1ILM displays the number "0" in the numeric
display element. The numeric display element is located
on the front panel of the ILM.

When the EMM receives +5 V and +/-12 V, its internal
circuitry 1is active, but the uP 8085 is held in the init
state awaiting "MOD A INLK L" H. In this init state, the
EMM performs "hardware tests" such as MPS overtemp, and
parallel key sense (CPU module misplace) tests. If a key
fault 1is detected, the EMM illuminates the "key fault"
LED on its front panel and deasserts "MOD A ENABLE".

When the EMM is in the INIT state, the communications bus
is deactivated, and the system is held incommunicado.

When the ILM receives both "CSP BULK OK H" and "MOD A
ENABLE", the ILM deasserts "MOD A INTLK L" and sends it
to the EMM (via J5 ILM and J9 NBox connectors to J58 MPS
connector, to J50 of the EMM). The deassertion of "MOD A
INTLK L" allows the EMM to begin functioning from an
initialized state. At this point, the EMM begins to
perform "default mode" tests that are located within
H7188AB ROM. These tests are: system temperature, system
air flow (which 1is being forced, or defaulted by the
ILM/NBT to the "LOW" or "OK" state until "MOD J ENABLE"
is asserted from the EMM). This allows the system to
"IDLE" with no power on and no air mover without
faulting.

The console can now establish a data link (RS232) with
the EMM, and tries to access the EMM by sending the EMM's
ID number/console code. The code 1is system-specific
(i.e., VAX 8800 vs VAX 8750 and matches an ID code in the
MPS II backplane). Refer to AD drawings for specific
codes. If no codes are matched, the communications line
is defaulted to an error message. If the EMM's ID code is
matched, then the system-specific limits are loaded. The
EMM now begins testing the system to the specific limits
set in the console code.

Assuming this is an initial power-up situation, the
"POWER ON" command is sent by the console operator.

Providing there are no faults within or detected by the
EMM, power begins to sequence up. This sequence is
initiated when the EMM asserts "-SHUTDOWN RTN MOD J L"
and sends this signal to the ILM (via J50 connector for
the EMM, to J58 MPS connector, to J9 of NBox, to J5 pin
49 of the ILM).
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12.

].3Q

14.

15,

16.

17.

18.

19.

when the ILM receives "-SHUTDOWN RTN MOD J L" it asserts
"PWR ROST H" for the 876 (via J5 of the ILM, to J8 NBox
and to J4 of the 876).

The CSP sends air flow sensor power to the AIR FLOW
SENSORS, located in the main CPU cabinet. The AFS power
is sent via J9 of the CSP, to J58 and J60 pin 5 of the
MPS (modular power supply) backplane connectors. The ILM
releases the outputs of the air flow sensors to allow
them to report a fault (until this time they were held
low "OK" by pins 74, 42 of the ILM).

The CSP sends +5 V switched to the CLK/CNSL board (via J4
of the CSP to Jl15 pin 14 the NBox connector), to Jb64
(pl4) then to J56 Pll, then to J59 pin 11, then to J65
P17. A cable then routes this to the CPU backplane.

The 876 completes its power-on sequencing and distributes
ac to the blower motor (via J13 of the 876, to the blower
motor connector Jl), to H7170Y (via J12 of the 876, to
J380 NBox connector for the H7170Y), and to H7170X (via
J11 of the 876, to J382 NBox connector for the H7170X).

Providing H7170Y and H7170X have no internal faults
reflected by the "MOD OK" and "BUS OK" LEDs (located on
the front panel) being lit, each will begin producing 300
vdc.

The H7170Y distributes 300 Vdc directly to the H7180
regulators in the MPS II backplane (via the 300-Volt
bus).

The H7170X distributes 300 vdc to the H7189, H7187, and
H7186 regulators in the MPS backplane (via the 300-Volt
distribution module). The distribution module has four
connectors, J100 through J103. Each connector interfaces
some power system component to the 300-Volt bus. J100
interfaces to the H7170X; J101 interfaces to the H7189
regulators. J102 interfaces to the H7187 and H7186
regulators, and J103 interfaces the BBU connector J9 to
the distribution module.

Both H7170s send control signals to the EMM, via the new
box translator (NBT) and the interface 1logic module
(ILM). The H7170Y sends "MOD OK" H to the NBT (via J1l and
J381 NBoXx connectors for the H7170Y to P320/J320
connector for the NBT), which is renamed "PCM A OK" H.
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20.

21.

22.

23.

24.

25.

26.

27.

H7170X sends "MOD OK" H to the NBT (via J1 and J379 NBox
connectors for the H7170X to P320/J320 connector for the
NBT), which is renamed "PCM B OK H".

Each H7170 sends an "AC LO L" and a "BUS LO L" in the
deasserted state to the NBox connector P320/J320 for the
NBT. At the backplane, the "AC LO" signals are combined
to generate one input to the NBT, and so are the "BUS LO"
signals.

The NBT sends "PCM A OK H" and "PCM B OK H" as well as
the "AC LO" and "BUS LO" signals to the TILM (via
P320/3320 of the NBT, to J5 of the ILM).

The "PCM A OK" and "PCM B OK" signals, within the ILM,
are merged to become "MOD J OK H". The signal "AC LO"
becomes "EMM5 AC LO MODL" and "BUS LO" becomes "BUS LO
MODL™".

The ILM sends "MOD J OK H", "EMM5 AC LO MODL L", and "BUS
LO MODL L" to the EMM (via J5 and J9 of the ILM, to J58
MPS connector, to J50 of the EMM).

The EMM powers up each regulator in the MPS B/P in a
particular sequence. Starting with MOD B (+5), MOD C, MOD
F, and MOD H (BIP), MOD E (-5), and MOD D (-2). The EMM
verifies that each regulator has powered up by sensing
each regulator's "MOD OK" signal.

MOD B 1is powered on directly by the ILM before MOD C.
First the EMM asserts "~SHUTDOWN RTN MOD B L" and sends
it to the ILM, then the ILM asserts "ILM MOD B SHUTDOWN
RIN L" and sends it directly to MOD B regulator.
Regulator MOD B is the +5-V battery power reqgulator for
the memory array modules.

When the ILM turns on MOD B regulator, the EMM verifies
that MOD B is on by sensing the "MOD B OK H" signal from
the regulator. Once the ILM senses that "MOD B OK H" is
asserted, and providing the "TOTAL OFF" signal is not
asserted, it asserts the "BBU ENABLE" signal. The "BBU
ENABLE" signal enables the EMM/ILM to assert "BBU REQ RTN
L", and PHASE OVERRIDE A when it detects an AC LO
condition, which turns on the BBU.
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The power system power-down flowchart is shown in Figure 2-6.

Console operator
issues “POWER DOWN"
command (asserts CPU
AC L, 5 ms wait,
asserts CPU DC L,
then sequences off
MPS regulators
D.E H,F,C,B)

EMM deasserts
“-SHUTDOWN RTN MCD
J L’ and sends to

ILM, also CLK/CNSL
power is removed

ILM deasserts

“PWR RQST H"’
and sends to 876

v

876 opens contactor
which removes AC

from the switched

outlets (BLOWER
and H7170s)

v

300 Vdc Bus begins
dissipating voltage

T

y

H7170s assert ‘‘AC
LO" and after at
least 5 ms ““‘BUS
LO" (DC LO)

v

MOD J OK H
is deasserted and
is sent to BEMM

di
Y0’ in numeric
display element
The CSP and BMM still
have power, BVM
waiting for next
CONSOLE command
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Figure 2-6 System Power-Down Flowchart



CONSOLE POWER-DOWN FLOWCHART (FIGURE 2-6)

The console operator issues the "POWER DOWN" command.
This asserts both CPU AC L, and 5 ms later, CPU DC L. All
of the MPS regulators are disabled in this sequence
b,E,H,C,B,J.

The EMM receives the "POWER DOWN" command and begins the
power—down sequence by deasserting "~SHUTDOWN RTN MOD J",
which is sent to the ILM (via J50 of the EMM, to J58 of
the MPS, to J5 of the ILM). Also the power (switched 15
V) to the CLK/CNSL board is removed.

When the ILM receives "-SHUTDOWN RTN MOD J L" negated, it
deasserts "PWR RQST H", which is sent to the 876 power
controller (via J5 of the ILM, to J4 of the 876).

When the 876 receives "PWR ROST H" negated, it opens the
contactor that removes ac from the switched ac outlets.
These outlets supply ac to the blower motor and to the
H7170s.

The 300-V bus begins dissipating its voltage. The 300-V
bus should reach 0 volts in 5 minutes.

By this time the H7170s will have asserted "AC LO". After
at least 5 milliseconds (holdup) from the assertion of
"AC LO", the H7170s assert "BUS LO" (DC LO). In this
case, these signals are ignored because the console had
previously asserted CPU AC L and CPU DC L.

The ILM should display a "O" in its numeric display
element, which indicates it still has +5 V and +/- 12 Vv
trom the CSP. The CSP and EMM also still have power, and
the EMM is just waiting for the next console command to
be issued to it.
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Figure 2-7 is a flow diagram of the signal events that occur
during short-term power interruptions.

NBT monitors all H7170s or CSP assert
major AC circuit ““AC LO L’ and send
breakers to ILM

]

An open C/B will ILM receives ‘‘AC
cause ““FAIL SAFE toL"” and asserts
EN’’ de-assertion and “EMM5 AC LO MODL L'’
BBU will deassert which is sent to ’
BBU AVAILABLE EVM

v

EMM receives ““EMMS

AC LO MODL L’ which CPU now has 5 ms
genef?tes .(‘?PU AC to perform power-fail
LO L and ‘‘SBIA routine

AC LO H'’ which are

sent to the CPU(s)
and VAXBI B/Ps

v

As a result of “*AC
LO"” the EMM asserts

“BBU REQ RTN L'’
and sends to the ILM

v

The ILM receives
“BBU REQ RTN L'’ and
asserts ‘‘ILM BBU
REQ RTN L'’ and
“PHASE OVERRIDE A L'’
which are sent to the
BBU, unless circuit
breaker trips

f

The BBU receives ‘‘ILM
RBU REQ RTN L'’ and
asserts “MODULE
ENABLE L'’ which is

sent to the BEMM
]

v

The BEMM receives
“MODULE ENABLE L’
and shuts down all
of the regulators
{(except MOD B)

A

ILM keeps MOD B
regulator functioning
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Figure 2-7 Powerdown/Power Interrupt with BBU Flowchart
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POWER-DOWN/POWER INTERRUPT WITH BBU FLOWCHART
(FIGURE 2-7)

The VAX 8800 backup translator contains a circuit that
monitors the main circuit breakers in the backup system.

The four circuit breakers are: the main breaker (CB1)
located in the rear of the front-end cabinet, the main
breaker (CBl) for the 876, and the breakers for the
H7170s. If any of the above breakers should trip, the
battery backup wunit will not operate, due to the
assertion of "FAIL SAFE ENARBRLE L".

Either of the H7170s or the control start-up power (CSP)
module can assert "AC LO L". Once "AC LO L" is asserted,
it is sent to the interface logic module (ILM) (via NBT
connector P320/J320, to J5 of the ILM).

When the ILM recognizes that "AC LO L" is asserted, it
asserts "EMM5 AC LO MODL L" and sends it to the
environmental wmonitoring module (EMM) (via J5 and J9 of
the ILM, to MPS connector J58, to J50 of the EMM).

The EMM receives "EMM5 AC LO MODL L", which generates
"CPU AC LO L" and SBIA AC LO H". These signals are sent
to the CPU(s) backplane (via J50 of the EMM, to J65 MPS
backplane connector). The VAXBI "AC LO" signal is
jumpered between the CPU(s) backplane and the VAXBI
backplane.

When the EMM recognized that "EMM5 AC LO MODL L" was
asserted, it began the process that is defined in the
BATTERY BACKUP UNIT. This is accomplished by asserting
"BBU REQ RTN L", which is sent to the ILM (via J50 of the
EMM, to J58 MPS connector, to J5 of the ILM).
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When the ILM receives "BBU REQ RTN L", it asserts two
signals ("ILM BBU REQ RTN L" and "PHASE OVERRIDE A L") if
Mod J is requested, and Mod B is "OK". These signals are
sent to the BBU (via J5 of the ILM, to J18 of the BBU).
"PHASE OVERRIDE A L" disables an internal ac monitoring
circuit in the BBU, which allows any BBU request to be
honored. The ILM has also taken control of MOD J EN,
which it keeps enabled throughout the power outage,
awaiting return of ac.

1f any of the major ac circuit breakers should trip, the
NBT deasserts "FAIL SAFE ENABLE L", which causes the BBU
to deassert "BBU AVAIL L" and inhibits the BBU from
recognizing any request for battery backup operation.

At this time, the ILM has a circuit that monitors: "BBU
REQ RTN L" from the EMM, "BUS LO L" from the H7170s, and
"BUFFERED CSP BULK OK L" from the control start-up power
(CSP) module. When any of these signals are asserted, the
control of MOD B regulator, by the EMM, is taken over by
the ILM (see note).

The BBU receives "ILM BBU REQ RTN L" and asserts "MODULE
ENABLE L", which is sent to the ILM, which then gates it
by AC LO L or H7170's MOD OK deassertion. It then sends
"MODULE ENABLE" to the EMM (via J18 of the BBU, to J58 of
the MPS, to J50 of the EMM). The BBU also begins
supplying 300 vdc to the 300-V bus (via J9 of the BBU to
J103 of the 300~V distribution module).

When the EMM recognizes that "MODULE ENABLE L" is
asserted, it begins to shut down all of the MPS
regulators, except MOD B. This is done by deasserting all
of the "-SHUTDOWN.RTN MMOD X L" signals. This shutdown
occurs within 6ms of assertion of MODULE ENABLE L. These
shutdown signals are interfaced to each regulator plugged
into the MPS backplane.
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The 1ILM recognizes the need to keep MOD B regulator on
and does so by turning on the BBU, which provides 300 vdc
to MOD B. MOD B regulator is now operating (providing +5
Vdc to the memory arrays).

NOTE

If the loss of ac affected the Csp,
the CSP would power down and not be
able to provide the 45 V and +/-12
V to the EMM and ILM. This means
that MOD B regulator provides +5 V
for the ILM and the ILM uses +5 to
generate +/-12 for MOD B (MOD B
Overtemp and MOD B OK signals). The
only components in the power system
still working are the: MOD B
regulator, ILM, NBT, and BBU.

If the H7170s lose a phase, the CSP

remains on and provides the EMM and
ILM with +5 Vdc and +/-12 vdc.
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Figure 2-8 1is a
operation sequence.

Figure 2-8

flowchart

MOD B regulator
supplying +5 Vdc
to Memory Arrays

v

AC restored to
system
CSP powers up

!

ILM deasserts
“MOD A INTLK L’
and sends to EMM

v

Refer to System
Power Up Flow,
Steps 8 — 25

!

ILM receives
“MOD J OK K™
and “-SHUTDOWN

RTN MOD B L'’

v

ILM asserts “PHASE

OVERRIDE B L'’
and sends to BBU

SCLD-463

IV 2-34

of the ac

power-up

from the BBU

AC Powerup from BBU Operation Flowchart



POWERUP FROM BBU FLOWCHART (FIGURE 2-8)

MOD B regulator is under BBU control and providing +5 Vdc
to the system's memory arrays.

AC 1is restored to the system and the CSP begins to power
up. The CSP generates the signal "DELAYED CSP BULK OK H"
and sends it to the ILM (via J4 of the CSP, to J5 of the
ILM).

The ILM deasserts "MOD A INTLK L" and the power-up
sequence is the same as a console powerup. The "POWER ON"
command is executed. (Refer to the system power-up flow,
steps 8 through 25.)

The ILM receives "MOD J OK H" from the H7170s via the NBT
(via P320/3320 NBT connector, to J5 of the ILM) and
"-SHUTDOWN RTN MOD B L" from the EMM (via J50 of the EMM,
to J58 MPS connector, to J5 of the ILM).

Ac a

n " "n__ TAINT MAT MATY Y T I
As a result of "MOD J OK H" and SHUTDOWN

SIS GRS § oLu L LN Pl D s

the ILM asserts "PHASE OVERRIDE B L" and sends it to the
BBU (via J5 of the ILM, to J18 of the BBU). When the BBU
receives "PHASE OVERRIDE B L", it stops supplying 300
Volts and is put in the charge mode.
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CHAPTER 3
DETAILED DESCRIPTION

3.1 INTRODUCTION
This chapter focuses on those parts of the power system that were
described briefly in the preceding chapters, but, because of their
importance in the power system, require additional information.
Among the components to be described in this chapter are:

1. 876A power controller

2. NBOX power converter

3. Power supply regulators

4, Buses and backplanes

5. EMM module

6. BBU
7. Air flow and cooling
3.2 BLOCK DIAGRAM OF THE VAX 8800 POWER SYSTEM

A detailed block diagram of the VAX 8800 power system, shown in
Figure 3-1, identifies the key components of the power system and
the interconnections.

The 876A power controller, which interfaces utility input power to

the operating modules of the power system, is discussed in the
following paragraphs.
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3.3 876A POWER CONTROLLER

The 876A PC receives wutility power from BRKR1, the main system
circuit breaker, and distributes switched and unswitched ac power
to the system components, as shown in Table 3-1.

Table 3-1 876A AC Power Distribution

AC 60/50 Hz,

Component 120/240 power Supplied
BBU l-phase, unswitched
CSP module (NBox) l1-phase, unswitched
Blower motor 3-phase, switched
H7170X&Y (NBox) 3-phase, switched
BAll-A (expander) l-phase, switched

Aux. port l-phase, switched

AC is distributed to the system components using receptacles
located at the rear of the 876A. The system components are mated
with the designated receptacles to receive ac power when the
system is energized.

Figure 3-2 shows the front and rear panels of the 876A,
illustrating the «circuit breakers, lamps, and receptacles and
their locations.
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Referring to Figure 3-3, three-phase ac utility power is
immediately sent to an RFI filter wupon entering the 876A
enclosure. The ac is then applied to:

1. AC indicator lamps, L1-L3
2. CB1(BRKR2), 876A main circuit breaker

From CBl, single-phase ac power is routed to the BBU-CSP branch
through a single-phase circuit breaker (CB2). Three-phase power is
applied to the transformer/filter/rectification/relay circuits.

The output of this section of the 876A is referred to as switched
ac. It is controlled by the power control bus and S1, a three pole
power relay.

The switched three-phase ac power is sent through surge protectors
to:

° CB3 for 3-phase blower
l1-phase BAll
l-phase aux. port

° CB4 for 3-phase H7170 power converter (2) located in NBox
3.4 NBOX POWER CONVERTER ASSEMBLY

The NBex 1is a multifunction assembly that performs the following
functions in the VAX 8800 power system:

1. Converts three-phase ac input power to 300 Vdc for
distribution to the MPS regulators by means of the 300-V
Bus.

2. Converts single-phase ac 1input power to logic level

voltages for the ILM and EMM modules and the MPS
regulators.

3. Controls the operation of the battery backup unit (BBU).

4, Communicates with the EMM during power-up and power-down
sequencing and battery backup operations.

5. Distributes 300-Vdc power from the H7170s and the BRU to
the 300-vdc buses.

6. Monitors circuit breaker status.

7. Monitors AC LO and DC LO signals.
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3.4.1 NBox Modules

The function or functions performed by each of the modules
contained 1in the NBox are 1listed 1in Table 3-2., A detailed
description of each module 1is presented in the following
paragraphs.

Table 3-2 NBox Modules

Module Function(s)
H7170 (2) Convert 3-phase ac to 300 vdc for MPS regulators.
CSP Converts 1-phase ac power to logic level voltages

{+5 v, +/- 12 vV for EMM and ILM), (+ 10.5 V for MPS
modules), (+15 V for CLK/CNTL module).

ILM Provides interface logic between MPS and EMM.
Controls operation of BBU.

NBT Converts logic signals during powerup. Monitors
circuit breaker status. Monitors AC LO and DC LO
signals.

3.4.1.1 H7170 -- There are two H7170 power conversion modules

located in the NBox that perform identical functions, that is,
converting three-phase ac input power to 300-Vdc power.

The 300-V unregulated dc output from the two converters, H7170X
and H7170Y, are connected to separate sections of the 300-vdc
power bus located within the MPS cage.

The 300-V output from the BBU 1is brought into the NBox to
interface with the outputs of the H7170s and be distributed to the
300-V power bus during battery backup operation.



3.4.2 Ccsp

The control start-up power (CSP) module converts single-phase ac
input power to logic 1level dc voltages for use by the modules
indicated in Table 3-3,

Table 3-3 CSP Voltages

DC Logic Voltage Modules Supplied

+/=12 V EMM, ILM

+5 V EMM, ILM

+10.5 V MPS Regulators

3.4.2.1 ILM -- The interface logic module (ILM) is a single PC

board assembly that provides logic signal interfacing and control
functions to the following power system modules:

) CSP

® EMM

® BBU

® H7170 (X and Y)
o System clock

) Module B

°® NBT module

The 1ILM also contains BITE (built in test equipment) circuits to
drive the front-panel indicators described in Chapter 1.
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Figure 3-5 shows the PC board connector for the ILM module and
signals that interface to the ILM.

ILM. J5
BAT STAT & OVERRIDE A
67 84 =
RTN 69 83 o ¢ OVERRIDE B
BBU ENABLE 3
BBU ENABLE RTN 76 97 e MOD A SHUTDOWN
MOD ENABLE RTN 93
MOD ENABLE FEED 95
ILM BBU RQST .
ILM BBU RQST RTN 63
BBU AVAIL
BBU AVAIL RTN
MSTR CLOCK IN 56
MSTR CLOCK RTN 54
ACLO 98
BRKR TRIP 68
EMM4MOD J OK H
PCM OK (H7170X) ¥ Z? 40«
46 MOD B +5 V (+5 VB)
PCM OK (H7170Y) 43 4 e EMM5 AC LO OUT
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PWR REQUEST 79
48 EMM TOT OFF RTN
PWR REQUEST RTN
66 50
£9 o} EMM BBU REQST RTN L
H7170 BUS LO 95 55 ILM-12 V-
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89 o] MAN. INTERVENTION H
92 o] MAN. INTERVENTION L
61
62 CSP +5 V RTN

Figure 3-5
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The ILM receives +5 V and +/- 12 V during the power-up sequence
from the CSP module, as explained in Chapter 2. After powering up,
the ILM receives CSP BULK OK HIGH and KEY SENSE HIGH, which causes
three signals, internal to the ILM, to be activated:

® DELAYED CSP BULK OK
o A INTERLOCK L
°® AC POWER UP RESET L

The resulting ILM output, A INTERLOCK LO, is sent to the EMM to
release the 8085 microprocessor, allowing the EMM to communicate
with the system console.

The EMM, wupon receiving a POWER ON command from the console,
asserts SHUTDOWN RTN MOD J L, causing the ILM to assert power
request, which energizes the power relay, K1, located in the 876A.

When K1 1is energized, ac power is delivered to the power system
components provided:

The TLM asserts PCM ENA L to regquest power.
BUFFERED CSP BULK OK L is asserted.
AC POWER UP RESET H is not asserted.

Timeout has not occurred.

=W N -
« o

Upon receipt of PCM A OK and PCM B OK from the H7170 power
converters, the ILM asserts MOD J OK H to indicate proper
operation of the H7170s.
The ILM is able to request battery backup power if:

° Module B is operating properly (MOD B OK H asserted), and

° AC power has dropped below 156 V rms (DELAYED CSP BULK OK
or MOD J OK H is not asserted)

The ILM asserts ILM BBU ENABLE RETURN L (PIN 75) to enable the BBU
to respond to a BBU REQUEST signal from the ILM. The BBU does not
respond to a BBU REQUEST signal if:

1. TOTAL OFF signal is asserted, or
2. MOD B OK is not asserted
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BATT STAT is a three-state signal sent to the ILM from the BBU to
indicate battery status. The LED is located on the front panel cf
the ILM (H7061). 1The three indications are:

® OFF

- No current or signal. BBU not available.

® READY

- Continuous current flow or signal. LED "ON." BBU
available and batteries fully charged.

- Oscillating current flow at 1 Hz. LED blinking
"siowly." BBU available but Dbatteries not fully
charged. Charging in process.

@ ON

- Oscillating current flow at 10 Hz. LED blinking
"fast." BRBU is on and providing power.

Phase Override

This signal 1is wused to override the ac level detect circuitry
located 1in the BBU when wusing a three-phase system. The BBU
responds to a BBUR signal from the ILM gated by the following
signals:

® PHASE OVERRIDE A -- Assures that the BBU will turn on.
® PHASF OVERRIDE B -- Assures that the BBU will turn off.

Power Control

System power is requested Dby the EMM 1in response to a power

request 1issued by the system console. In response, the EMM sends
MOD J SHUTDOWN RTN I. to the ILM.

The ILM responds hy closing relay contacts. K1, (POWER REQUEST and
POWER  RECULST ®TH), cabt.ied to the 876A. Tne PUWER REOUEST gignals
activate hthe rolay withie the 876A and provide switched ac power
to the system.
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Syscem Ciock

e osystew  cioo. 10 o= [Dl=kidr 317ii Sinarated witain the ILMV by
mazns  of METH ILCC0« Y ans M3T®  CLGCK RTN. The master clock
syncnronizes tne paless width modalzted power regulators to the
c2E- 20 taw syscen.

Bite Indicatoers

The built in test equipment (BITE) located on the ILM module front
panel are magnetically latching indicators that continue to
display after power has been removed. The indicators automatically
resef at powerup or when a fault condition has been corrected.

Tne monitcored faults are:
» CSP OT (overtemperature)
® MANUAL INTERVENTION
e MOD B OT

The ILM also contains a seven-segment LED digital display that
indicates the following:

& CLOCK FATLURE
® H7170X, H7170Y MOD OK (PLMA, B OK)
) MANUAL RESET

Power Status Indications to ILM

The H7170s located in the NBox signal the ILM when the power input
to the H7170s starts to deteriorate. The signals are:

® AC LO -- This signal performs a power-fail routine, and
is sent to the CPU via the EMM.

) BUS LO -- This signal is sent to the CPU via the EMM. The
signal 1indicates that the system voltages are no longer
within acceptable parameters, and the system must shut
down immediately.

Bias Circuit

The dc bias voltages for ILM logic are derived from the CSP inputs
(+12 VvV POWER, ILM -12 V and CSP +5 V) and/or MOD B during normal
operation. During battery backup, +5 V is fed from Mod B (MOD B +5
V) to develop the bias voltages.

Thne  +12 V dc from the CSP is wire-ORed with the ILM +12 V BIAS to
provide the source voltage tor the ILM MOD B SHUTDOWN SOURCE
gignal during powerup.
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3.4.2.,2 NBT Module -- The New Box Translator (NBT) module is used
to convert 1logic signals during the power-up sequence to perform
operating system functions required during and after powerup.

The signals that are translated are:

Input Output

MOD OK X to H7170 X OK
MOD OK Y to H7170 Y OK
AC LO IN to AC LO

BUS LO to BUS LO L
BRKR TRIP to TOT OFF

Power for the NBT module is provided by CSP +5 V during normal
operation and MOD B +5 V during BBU operation. Both supplies are
ORed together on the PC board.

The NBT monitors circuit breaker status (BRKRs 1 and 2) and CBl on
both H7170s and sends out a signal [FAIL SAFE ENABLE (FSE FEED)]
when any of the above breakers are tripped.

It also sends out a TOT OFF command to shut down the power system
in response to a BRKR TRIP signal from the ILM.

Figure 3-6 is a PC board connector diagram showing the signals in
and out of the NBT,.
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NBT PC Board Signals
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3.4.3 Modular Power System -- MPS

The modular power supplies in the VAX 8800 power system complex
are pulse width modulated (PWM) dc power regulators. The
regulators provide the dc logic voltages necessary to operate the
VAX 8800 computer system.

Figure 3-7 is a front view of a fully configured MPS assembly for
a dual-CPU VAX 8800 system. The regulators, their indicators, and
the MPS backplanes are described in the following paragraphs.

Regulators not used in a single-CPU VAX 8800 system are indicated
by an asterisk (*).
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The dc logic voltages supplied by the MPS are listed in Table 3-4.

Table 3-4 VAX 8800 MPS Regulators

Quantity Regulator Volts (DC)

1 B (H7186) +5 V

1 C (H7186) +5 V

1l or 2 D (H7187) -2V

1l or 2 E (H7180) -5.2 V

1 F (H7189) +/-12 v, +5 Vv, =-5.2 Vv, -2V, +15V

1 H (H7189) +/-12 v, 45 v, =-5.2 Vv, -2V, +#15 V
3.4.3.1 H7186 +5.0-Volt Regulator -- The H7186 regulators,

modules B and C, generate an output of +5 Vdc at up toc 85 A, to
provide power to the CPU memory modules.

Module B 1is also wused to provide power to the memory modules

during battery backup operation, when ac facility power is lost.
Figure 3-8 is a block diagram of the H7186.
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The H7186 is made up of two major subassemblies:

1. Side Panel
2. Main Board

3.4.3.2 Side Panel -

The functions and interconnects for the

H7186 side-panel assembly are defined in Table 3-5.

Table 3-5 H7186 Side-Panel Components and Interconnects

Component/Interconnect

Description/Function

J6

Tl

Overtemperature Switch

SCR (Silicon Rectifier)

Connects output filter board to main
board.

Power transformer - steps down and
isolates the dc input voltage.

Senses temperature on output rectifier
heatsink.

Indicates overtemperature condition at
100 degrees C (212 degrees F)

Generates shutdown signal to EMM,

Overvoltage protection device.
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3.4.3.3 H7186 Main

Board -- The functions of the logic circuits

and interconnects on the main board are defined in Table 3-6.

Table 3-6 H7186 Main Board Circuits and Interconnects

Circuit/Interconnect

Description/Function

J1

J2

J3

J4

J5

F1 and F2

Isolation Circuit

Pulse Width Modulator
and Control Circuit

Overvoltage Circuit

Overcurrent Circuit

Connects signals from the main board to
the MPS backplane.

Connects overtemperature switch and J6
to the main board.

Connects T1 output to the main board.

Connects 300-Vdc input to the main
board.

Connects output of isolation circuits
£

S
to step-down transforme

]

.

5-A 600-V fuses used for input overload
protection.

Isolates high voltages on the main
board.

Provides a stable voltage output using
variable pulse width to compensate for
input voltage and load fluctuations.

Crowbar protection circuit designed to
disable output voltage.

Lights red LED for overvoltage.

Overvoltage -- (7.3 Vdc max. to 6.3 Vdc
min.).

Disables output voltage.

Blinks vyellow LED on/off to signal
overcurrent.
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Table 3-6 H7186 Main Bo

ard Circuits and Interconnects (Cont)

Circuit/Interconnect

Description/Function

Ref Voltage and Margin
Circuit

Module OK Circuit

Remote Sense Circuit

Current Sharing Circuit

Provides 1 of 3 jumper selected voltage
outputs.

Output selected can be margined +/-5%

through the EMM.

Lights green LED to signal MOD OK.

Enables sensing of output voltage at
remote load.
Allows sharing of 1load current when

cross—-connected with another H7186.

3.4.4 H7187 -2.0-Volt Re
The H7187 regulator, Modu
up to 100 A. The output is

backplane area.

The block diagram for the H
H7186 in Figure 3-8 due to

The mechanical configurat
to the H7186 with minor
subassemblies, the side pan

The components, circuits,
are described in Tables 3-5

Two module D regulators are

3.4.5 H7180 -5.2-Volt Re
The H7180 regulator mod
provides an ocutput of -

connect the dc voltage from MOD E to the CPU

Figure 3-9 is a block diagr

Two module E

configuration.

regulator

The H7180 consists of two
the main printed circuit
interconnects on each sub
paragraphs.

gulator
le D, provides an output of -2.0 Vdc at
connected by bus bar straps to the CPU

7187 is identical to that shown for the
the similarity of components.

ion of the H7187 is virtually identical

exceptions. It 1is made up of two
el and the main board. ‘
and interconnects for each subassembl

and 3-6.

used in the dual-CPU configuration.

gulator
dule E, 1located in MPS Backplane 1,
5.2 Vdc, at up to 200 A. Bus bar straps

backplane area.
am of the H7180.

s are wused 1in the dual-CPU system

major subassemblies, the side panel and
board. The components, circuits, and
ly are discussed in the following

G T

semb

Q
cagssemp
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3.4.5.1 H7180 Side Panel -- The functions of the components and
interconnects on the side panel assembly are defined in Table 3-7.

Table 3-7 H7180 Side Panel Components and Interconnects

Component/Interconnect Description/Function
P6 Connects 300 Vdc to the regulator.
P7/37 Connects crowbar SCR and power output

return terminal to PC board.

Transformer 1 and 2 Power transformers used to step down
and isolate dc input voltage.

S ——= Switch/Sensor mounted on output
rectifier heatsink to indicate
overtemperature condition (100 deg. C

212 deg. F).
Generates shutdown signal to EMM.

SCR (Silicon Rectifier) Overvoltage protection device used at
the power output terminals

3.4.5.2 H7180 Main PC Board -- The functions of the logic
circuits and interconnects on the H7180 main printed circuit board
are defined in Table 3-8.

Table 3-8 H7180 Main PCB Circuits and Interconnects

Circuit/Interconnect Description/Function

J1 Connects 300 Vvdc to PC board.
Connects igolation circuits to the
step—-down transformers and PWM
circuitry.

J4 Connects overtemperature switch to PC
board.

J5 Connector that interfaces power output
terminal and J7 to PC board.

J6 Connects PC board to MPS backplane.

F1l and F2 Input overload protection fuses, 10-A
600-V type.
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Table 3-8 H7180 Main PCB Circuits and Interconnects (Cont)

Circuit/Interconnect

Description/Function

Isolation Circuit

Pulse Width Modulator

Overvoltage Circuit

Overcurrent Circuit

Ref Voltage and Margin
Circuit

Module OK Circuit

Remote Sense Circuit

Current Sharing Circuit

Isolates high voltages from PC board.
Provides a stable output voltage using
variable pulse width control (PWM) to
compensate for input voltage and load
fluctuations.

SCR Crowbar protection circuit designed
to disable the output voltage.

Lights red LED on output fault.

Overvoltage condition (7.0 Vdc max. 6.0
Vdc min.).

Disables output voltage.

Blinks yellow LED on/off on overcurrent
condition.

Connects one of three voltage outputs
using jumpers.

Selected output margined +/-5%.
Verifies fault-free status.
Lights a green LED.

Enables output voltage sensing at
remote load.

Allows sharing of 1locad current when
cross—-connected with another H7186 to
common load.
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3.4.6 H7189 BIP Regulator
The H7189 power regulator 1is a multiple voltage output power

module that provides operating voltages for the Bus Interconnect
(VAXBI) module exclusively.

A VAXBI module can contain up to six VAXBI PC boards depending on
the number of peripherals used. It provides the interface between
peripheral equipment and the VAX 8800 system.

Two H7189 power regulators can be configured into backplane I of
the MPS to accommodate two VAXBI modules, as required.

Figure 3-10 1is a block diagram of the H7189 power regulator,
illustrating its major components.
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There are three PC boards in the H7189 regulator:

®
®
°
Modules
PC board

Module I
Module II
BALUN Module

I and II interface with the MPS backplane through 80-pin

connectors. The functions performed by Modules I and II

and the BALUN module are shown in Table 3-9.

Table 3-9 H7189 Module Functions
Module Functions Provided
I -2 Vdc switched regulator output
+5-Vdc switched regulator output
LED drivers —-- green
red
yellow
Overtemperature sense circuit
II +15-Vdc linear regulated output (2)
+12-Vdc linear regulated output
-12-vdc linear regulated output
-5.2-Vdc switched regulator output
BALUN Storage capacitors
Power output (5 V) connectors
The H7189 power module uses a combination of linear regulation and
sw1tch1ng regulaticon to generate the dc output .oltages required,
A brief functional description of the H7189 is presented in the
following section.
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3.4.6.1 H7189 Functional Description == 300 Vdc is brought into
the H7189 by the bus connector and applied to the two switching
transistor modules connected to transformers Tl and T2 (Figure
3-10). T1 and T2 provide:

) High voltage isolation between the bus and regulators
° Stepped down voltage to the regulators
® Stepped up current to the regulators

Transformer TIl, located on module I, applies secondary output
voltage to:

° -2-V switching regulator and output filter

°® +5-V  output filter. The +5-V supply uses a switching
regulator at the primary of T1

Transformer T2, located on Module II, applies secondary output
voltage to:

® +15-V filter feeding two +15 V linear regulators

) +12-V filter and linear regulator

® -12-V filter and linear regulator

® ~5.2-V filter (the -5.2-V supply uses a switching

regulator at the primary of T2.
Three types of regulation are used on the H7189 module:

° High-powered switching regulation performed at the
primary of T1 and T2

° Low-powered switching regulation performed at the
secondary of T1 (-2 V)

° Linear regulation performed by Module II regulators

High-powered switching regulation is used for those outputs that
provide high-current power to the VAXBI. These outputs are:

° +5 V

° -5.2 V
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The high-powered switching regulation provided for the +5-V and
-5.2-V supplies also provides a quasi-regulated voltage to the
inputs of the following regulators:

° -2V
° +15 vV (2)
o +12 VvV
® -12 v

The =-2-V supply uses a switching regulator for higher power
handling capacity.

Linear regulators are used for the Module II voltage outputs
because the current required is lower.

The switching regulator control circuits located on Module I and
IT PC boards provide interfacing and control functions for the
high-power switching regulators. These functions include:

° POWER ENABLE -- Enables operation of the regulators
° SYNCH -- Synchronizes switching regulators to system
clock

These signals are brought into the H7189 module through the MPS
backplane connectors for Modules I and II.

Other signals brought into the H7189 are +/-12 V and +/-12 V RTN,
+

1e regulator start-up bias voltages.

The front panel contains three LED indicators that display
regulator operating status.

Indicator (LED) Indication
GREEN No faults —-- Normal operation
RED Overvoltage
YELLOW Overcurrent
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The GREEN LED is driven by an AND circuit sensor that lights when
all regulator outputs are operating correctly.

The RED LED will 1light when any of the regulators have an
overvoltage fault condition.

The yellow LED will 1light when any of the regulators have an
overcurrent fault.

A THERMAL SENSE circuit, located on Module I, signals the EMM when
an overtemperature condition has been sensed.

Table 3-10 1lists the output voltage, current, and power provided
by the H7189 regulator to the VAXBI module.

Table 3-10 H7189 Outputs

Output Voltage (Vdc) Current (Amps) Power (Watts)
+ 5.0 55 275

- 2.0 30 30

- 5.2 25 130

+ 12.0 2 24

- 12.0 2 24

+ 15.0 .5 7.5

+ 15.0 .5 7.5
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Tables 3-11 and 3-12 describe the components and functions of the
two PC board subassemblies, Module I and Module II, of the H7189
regulator.

Table 3-11 H7189 Module I Circuits and Interconnects

Component/Interconnect Description/Function

J 2 80-pin PC board connector to MPS
backplane

J 2 300-vdc bus power connector

J 4 Intermodule connector

T 1 Isolation transformer with multiple
outputs

01,02 Power switching transistors for 5-V
regulator

Switching regulator for +5-V supply

Table 3-12 H7189 Module II Circuits and Interconnects

Circuit/Interconnect Description/Function
J 1 MPS backplane connector
J 2 300-Vdc bus connector
J 3 Intermodule connector

Regulates +15-V supply (2)
+12-V linear regulator
-12-V linear regulator

Switching regulator for =5.2 V
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3.4.7 MPS Regulator BITE Indicators

The regulators contained in the MPS cage have built in test
equipment (BITE) indicators to provide a visual indication of the
operating status of each regulator, as described in Chapter 1.
Table 1-3 is repeated here for convenience, as is Figure 1-7.

Indicator Indication Definition

Green LED Module ok The power regulator is operating
properly. The output voltage is
within regulation range. No

faults are evident.

Red LED Overvoltage The regulator voltage has
crowbarred.

Yellow LED Overcurrent The regulator output current is
above its rating.
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3.4.8 Buses and Backplanes
Signal and power connections between functional sections of the
VAX 8800 system are made using the following:

Multilayer, multiconnection printed wiring boards
Flexible, multiconductor printed wiring cables
Flexible, insulated, single- and multiconductor cable
Laminated, high-current, rigid conductor straps
Rigid, high-current conductor buses

The major functional sections of the VAX 8800 system are:

* MPS
° 876A
® NBox
() CPU
® VAXBI

The power and signal connections in and between these sections are
discussed in the following paragraphs.

3.4.9 MPS Backplane

The MPS backplane consists of two hardwire-etched conductor
sections that span the width of the MPS cage. The backplane
provides electrical contacts between the regulators and the
following:

EMM

CsP

CPU backplane
VAXBI backplane
System clock

The EMM interacts with the regulators <B:H> to:

1. Monitor regulator output voltage

2, Monitor regulator temperature faults
3. Margin test regulator output

4, Start up/shut down regulators

5. Monitor fault status

The CSP provides start-up power to the regulators (+10.5 V) and
operating voltages (+/-12 V and +5 V) to the EMM and ILM modules
by means of the MPS backplane.

The system clock provides synchronizing signals to the pulse width
modulator circuits of the regulators.
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The regulator dc outputs are connected to the CPU backplane from
the MPS backplane. High-current outputs are connected to the CPU
backplane using laminated copper straps to reduce voltage drops.

The voltage outputs of the H7189 regulators are connected to the
VAXBI backplane from the MPS backplane using flexible cable.

Each regulator interfaces to the MPS backplane through multipin PC
board connectors that mate with the regulator PCBs.

Table 3-13 identifies the connector(s) for each regulator type.

Table 3-13 MPS Regulator Connectors

Regulator Connector No. of Pins
H7180 J6 50
H7186 J1 50
H7187 Jl 50
H7189 J1l and J2 80

Figure 3-12 illustrates the backplane and bus organization of the
power system. Figures 3-13 and 3-14 show details of the
backplanes.

IV 3-36



MPS

MPS 1 BACKPLANE MPS 2 BACKPLANE
L’ L - L V V- - - L
50 50 50 Ts0 Tis0 150 “Ts050 ‘50 T80 “Teo
H7186 | H7186 | SPARE | H7187 | H7189 | EMM | H7180 | H7180 | H7189 | H7189
MOD C | MOD B MOD D | MOD D MODE | MODE | MODF | mMODH
Il 300 V BUS 1 I 3o0oveus 1l 300veus ]

300 Vdc DC
BBU DIST
1BAC H7170 X N BOX H7170Y

876A

3gAC

MKV38-1248

Figure 3-12 Organization of the Power System

Iv 3-37




DJS

DJ10

n J
DJQ UJH

J2s[

Figure 3-13 MPS I Backplane

IV 3-38

MKV86-1222



J56 __
J58
J65 DJGG

- L

m ] J6s
J57 u
—

UJ61 J64 J59
[}63 L J
J60

L
3

J67

MKV86-1223

Figure 3-14 MPS II Backplane

Iv 3-39




3.4.9.1 300-vdc Buses ~- The 300-Vdc buses carry the high-power
dc voltages developed by the H7170X and Y ac-to-dc power
converters to the MPS regulators.

There are two 300-Vdc bus sections supplying the regulators, as
indicated in Table 3-14.

Table 3-14 300-V Buses, Power Sources, and Loads

Bus No. Power Source Regulator Load
1 SECA H7170X MOD F (H7189)
BBU MOD H (H7189)
2 H7170X MOD B (H7186)
BBU MOD C (H7186)
MOD D (H7187) 2*
1 SECB H7170Y MOD E (H7180) 2%

* 2 required for dual-CPU configuration.

The 300 Vdc 1is cabled from the NBox to the buses located in the
MPS cage. The buses are rails located below the regulators.
Connections to the regulators are made through high-current,
high-voltage leaf contacts located on the front panel of the

regulators.

The connectors mate electrically and mechanically with the buses
when the regulator modules are inserted into the designated slots.

Each regulator must make at least two mechanical and electrical
connections in the MPS:

° Multipin PC board to the MPS backplane

e 300-Vdc power to the bus
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3.4.10 Environmental Monitoring Module

The environmental monitoring module (EMM) performs a variety of
power system functions, as described in Chapter 2. 1In this
chapter, the major logic elements contained in the EMM module are
described in more detail.

The major elements included in the EMM are shown in Figure 3-15.
These elements are:

8085A Microprocessor System
Electric Key Monitor
Regulator Control

Status Registers

AC LO/DC LO Circuits
Total-Off Control

Voltage Measuring Circuit

BBU (Battery Backup Unit) Control

Air Flow Sensor Control

Temperature Sensing Circuits

System Console Communication/Interface
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3.4.10.1 8085A Microprocessor System -- The main components in
the 8085A microprocessor system are:

8085A 8-bit, single-chip microprocessor
8x8K byte PROM chip

8x1K byte RAM chip

PCI (Program Communications Interface)

The 8K byte PROM stores the main body of the EMM program executed
by the 8085A. The 1K byte RAM provides a working storage area and
contains the software registers addressable by the console. The
PCI connects the EMM to the console over the EIA RS423 or RS232
serial line.

NOTE
The interface to the serial line is
a nonstandard interface that allows
the data transmitted by the PCI to
also be received by the PCI. This
is a requirement of the EMM/console
communications protocol.

The 8085A, PROM, RAM, and PCI all connect between an 8-bit address
(ADR) bus and a multiplexed 8-bit address/data (AD) bus. The
8085A asserts I/0 register addresses and the high-order byte of
memory addresses on the ADR bus,

I/0 register addresses and the low-order part of memory addresses
are asserted on the AD bus, but only at the beginning of a
read/write operation. During the rest of the read/write
operation, the AD bus is used to transfer data between the 8085A
and the addressed I/0 register or memory (RAM) location.

The I/0 registers in the EMM are the hardware registers (POWREG,
MISREG, etc.) used by the EMM to control and monitor power system
operation.

Other logic elements in the B8085A microprocessor system include:

° 5.0688-MHz oscillator for 8085A and PCI clock
° synch counter
° parity generator/checker

When a RAM parity error is detected, the 8085A PC (Program
Counter) 1is reset to 0 and a selftest (including a RAM test) is
done similar to the power—up sequence.
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A selftest error (including a RAM failure) causes an error message
to be sent to the console.

To prevent a parity error from resetting the 8085A during selftest
operations, the EMM program clears a normally set control bit (the
parity check enable bit) in the EMM's MISREG. The status of this
control Dbit can be read at any time by the console. The execution
of instructions by the 8085A consists almost entirely of a series
of read/write data transfer operations between the 8085A and the
memory and I/0 register addresses.

The addresses, the data (as processed by the 8085A), and the
sequence of read/write operations differ, depending on the
instructions being executed. Each read/write operation is called
a machine cycle, and one to five of these machine cycles are
needed to execute a single 8085A instruction.

In addition to making 8-bit parallel transfers of data over the AD
bus, the 8085A can send or receive single bits of serial data. The
8085A's serial output data 1line (SOD) is used to set or clear
single control bits in some of the EMM's control circuits. The
8085A's serial input data line (SID) is used to read the output of
the EMM's voltage measuring circuit.

3.4.10.2 Electric Key Monitor =-- The electric key monitor
circuit stops the power-up sequence by negating a logic level (KEY
ENABLE) when a module keying fault is detected.

An LED on the EMM module (MODULE KEY FAULT) signals the fault.

In the VAX 8800 system, a mislocated circuit board 1in the
following groups closes the parallel key.

1. CPU

2. Memory controller

3. Clock

4, I/0 adapter module
The parallel key CKT, which is normally open, is closed if faulted
to prevent module damage. This can occur when a module is plugged
into a backplane slot intended for a different function group PC
board.

For example, the parallel key loop is closed (by being grounded)
when a CPU module is plugged into a memory controller module slot.

A series key loop is not being used in the VAX 8800 configuration.
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In addition to detecting module keying faults, the electric key
monitor disables the EMM from receiving console commands if the
(module key fault) is asserted.

MODULE ENABLE, which indicates that battery backup is currently
supplying power to the cabinet:

1. Holds the EMM microprocessor in an initialized state
2, Causes all regulator modules (except mod B) to shut down

When ac power returns, the 8085A's 1initialize signal 1is
deasserted, allowing a normal power-up sequence to start.

3.4.10.3 Regulator Control Circuits =-- The regulators for the
VAX 8800 system, located in the CPU cabinet, are listed in Table
3-4., Figure 3-7 shows the MPS regulator configuration. The EMM's
regulator control logic, shown in Figure 3-15, contains:

® POWREG =-- allows each MPS regulator to be turned on or
off by the EMM in response to console commands

e MARGEN

[ ) MARHILO

The MARGEN and MARHILO registers allow each regulator to be
margin-tested high and low, (+/-5%).
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3.4.10.4 Regulator On/Off Control Circuits -- The power
regulators in the MPS are turned on and off by command from the
EMM. The regulator control 1lines (SHUT DOWN RTN MOD <B:H>)
attached to the POWREG register, receive ON/OFF commands under EMM
program control.

One POWREG bit, BBU REQ EN, when cleared, enables the automatic
activation of battery backup power when AC LO occurs.

Interrupted ac power (AC LO) causes:

Battery backup power to be activated

All regulators (except regulator B) to be turned off
Backup power to be applied through regulator B

The EMM's microprocessor tc be held initialized
MODULE ENABLE from the BBU to be asserted

MODULE ENABLE negates DC REGL EN, which turns off all the
regulators (except regulator B).

Refer to EMM Engineering drawing (D-CS-5415304-0-EMM5) for details
of the circuit that allows regulator B to apply +5.0 Vdc to the
memory backplane.

3.4.10.5 Regulator Margin Control Circuits -- A regulator is
margin-tested by grounding either its high or low margin line.
Eight MPS regulators <B:H> can be margined using:

° EMM microprocessor
° MARGEN register
° MARHILO register

IV 3-46



Ly-€ Al

CONSOLE

PRO-38N
CPU
SYSTEM

EMM H7188

o

Vi
7
MPS
MARGEN REG MARHILO REG REGULATORS
Al N/U Al N/U MOD H
H7189
B B VAXBI
A ¢ ¢ MOD F
A EN?B i 1 H7189
p| 1 D| 170 |Low VAXBI
Bl 8 -
u E E MOD E
S H7180
F F 5.2
H H
8085A K??%S
EAAEJRO J| ~Nu J| Nju 5.2
SYSTEM L MARG HI MOD D
_J MOD D
becLo L/ COMMON —— H7187
SoD 2.0
IMARGLOMODD
v 3— MOD D
H7187
POWREG 20
B MOD B
H7186
cl 10 +5.0
D TURN ON REG = 1 ‘
N\ SHUTDOWN RTN moD ¢ | MOD C
H7186
E |/ +5.0
F
H
MODULE EN
J
+12V DC REG EN
BBD
FROM BBU  FROM UPC

Figure 3-16

Voltage Margining Circuit

MKV86-124 /7

WWH oy3 Jo weabetp e sT 97-¢ oanbtd

b

Tutbaeu

*S3TNOAIO TOIUOD Dbu



3.4.11 Status Registers
There are two status registers located on the EMM PC board:

1. MODOK -- 16 bits
2. MISREG -- 8 bits

The MODOK register indicates:

® Regulator module (MODULE <B:H> OK) status
) The EMM module ID (ID BIT <2:0>)
[ AC LO status

Each regulator 1in the MPS cage asserts its MODULE OK status line
once power has been applied, if its output voltage is within the
regulation range and it has detected no other faults.

The ID number is determined by the backplane etch. It 1is the
EMM's physical address wused during EMM/console communications
over the serial line. The AC LO signal is discussed later.

The MISREG register status bits indicate:

Air flow faults

RAM parity error

RAM parity check enable

-2~V crowbar

AC LO (latched)

DC LO (latched)

BBU AVAIL (fully charged and ready for use)

N U W N
.
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3.4.11.1 AC/DC LO Circuits -- The main power fault signals for
the power system complex are:

1. AC LO
2. BUS LO

AC LO is asserted when the ac-input level to the power converters
(H7170s) in the NBox falls below 165 V rms. The ILM responds to
the AC LO signal by signaling the EMM (EMM5 AC LO MODL

BUS LO is asserted when the 300-Vdc output voltage from the H7170s
falls below 205 Vdc. It indicates that the input voltage to the
MPS regulators is below that needed to maintain regulator
specifications. BUS LO, which occurs after AC LO, indicates that:

1. System operator requests POWER DOWN, or
2. AC power is lost

Refer to power-down sequences discussed in Chapter 2 for details
of power-down signal flows.

When ac power is lost, The EMM initiates a BBU REQUEST and signals
the ILM to start providing BBU power to the memories by means of
regulator B. The CPU, SBIA, and the system operator are notified.

The AC LO signal from the NBox causes AC LO IN L to be asserted in
the EMM. The BUS LO signal from the NBox causes BUS LO IN L to be
asserted. A timing diagram for these signals is shown in Figure
3-15,

BUS LO IN L is also asserted in the EMM when any MODULE OK signal,
from a regulator or the NBox, is negated. At powerup, this signal
holds BUS LO IN L asserted until the dc regulators are turned on
and operating normally.

The EMM AC ©LO IN and BUS LO IN signals generated, are used to
signal power loss warning signals for:

® The main CPU -- CPU AC LO
CPU DC LO

® The SBIA -~ SBIA AC LO
SBIA DC LO

The AC LO IN and BUS LO IN output signals are latched in the EMM
and can only be cleared by a console POWER UP command after the
fault condition has been cleared. Figure 3-17 shows the AC/DC LO
timing signals.
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Figure 3-18 shows a detailed view of the AC LO/DC LO circuit.
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@ DC POWER BUS OK AND REGULATORS TURNED ON BY CONSOLE

@ SYSTEM AC LO & DC LO TURNED OFF BY CONSOLE

@ INITIATES SYSTEM POWER-FAIL RECOVERY SEQUENCE
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Figure 3-17 AC/DC LO Timing Diagram
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3.4.11.2 Total-Off Control and Indicator Circuits -- The
total-off «circuit initiates an emergency shutdown of ac power to
all modules powered by the 876A by tripping BRKR2, the main 876A
CB. A TOTAL POWER OFF command can occur when:

The CPU cabinet overheats

A regulator overheats

Air flow falls below specified limit
The air filter interlock is open

=W N e
« o o

When BRKR2 trips, ac power is removed from:

The air mover (blower)

The BBU

The NBox (three-phase and single-phase)
The BAll-A

The TOTAL OFF command originates from two sources:

1. EMM
2. ILM

The FEMM monitors The following TOTAL OFF sensors (see Figure
3-15):

Air flow

CPU cabinet temperature

Regulator (C:H) overtemperature

CPU cabinet and air filter interlocks

During normal system operation the ILM monitors:

1. Regulator B overtemperature (MOD B OT)
2. Air filter screens in bottom of cabinet

During BBU operation, the ILM also monitors MOD B OT.

ons cited above default, a TOTAL OFF

When any of the condi
i t t the BRKR2

it
by eith MM or the ILM to disable BRKR2Z in

([)
a1
]

AC power can be restored by manually resetting BRKR2 in the 876A.

If the EMM initiates the TOTAL OFF command, the magnetic latches
on the front panel of the EMM module display a 4-bit code to
indicate the cause of the fault. The latches retain the code when
power is removed and reset on powerup.



When a TOTAL OFF command is initiated by the control console, the
EMM does not <cause the magnetic latch display to indicate the
cause of the fault.

The interface logic module (ILM) asserts a TOTAL OFF RTN when SW2
(air filter interlock) is grounded, indicating a fault.

3.4.11.3 Temperature Sensing Circuits -- The CPU temperature
sensing circuits monitored by the EMM are voltage divider series
resistor strings in which one component is a temperature-sensitive
thermistor resistor. The voltage sensing connection to the EMM is
at the junction of the fixed resistor and the thermistor.

Measurements made by the temperature-sensing circuits are:

® CPU cabinet temperature -- (THERM SENSE 1)
° CPU/MPS amb. temperature —-- (THERM SENSE <2:4>)
® CPU delta temperature -- (THERM SENSE <2:4> - 1)

The EMM's internal program routinely monitors the CPU cabinet
temperatures and regulator overtemperatures. Temperature
measurements are also made in response to a MEASURE command from
the system console. Console requests usually follow temperature
default indications from the EMM. Thermistor (T3) is used to
initiate an emergency power shutdown when:

1. The EMM fails
2. The EMM program is faulty
3. T3 indicates excessive temperature

The temperature sensing circuitry contained on the EMM module is
shown in Figure 3-19.
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3.4.11.4 Voltage Measuring Circuit -- The EMM performs dc voltage
measurements under program control on the following:

1. All MPS regulators <B:H>
2. All thermistors <1:4>

Voltage measurements are performed using the circuits shown in
Figure 3-20. The unknown voltage is determined using the following
steps:

1. EMM program specifies voltage to be tested.

2. Unknown voltage is selected using VINSEL command and fed
to voltage comparator.

3. Reference voltage (8-bit D/A) 1is also connected to
comparator ramps up from 0 V at 27 MV/step.

4. When reference volts = unknown volts, comparator outputs
a signal.

5. Digital value in D/A = value of unknown voltage.

6. Analog voltage = 27.6 MV X decimal equivalent of 8-bit
digital code for regulator voltage.

7. Analog voltage = 333.3 MV X decimal equivalent
(compliment) of 8-bit digital code for thermistor
voltage.

NOTE

To maintain positive slope for
converting temperature measurements
(thermistors have a negative
temperature coefficient), the A/D
magnitude 1is the complement of the
voltage drop across the thermistor.
That is, it is the digital
complement of the value measured by
the EMM's voltage measuring circuit
and contained in the VOLREG after
the measurement.
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3.4.11.5 EMM/Console Voltage Tests -- Voltage measurements of
regulator output and thermistor temperature can be requested by
the console using the MEASURE command.

Voltage readings returned to the console by the EMM in response
to a MEASURE command, consist of:

1. An 8-bit binary value
2. A sign bit
3. An input select code

3.4.11.6 Battery Backup Unit (BBU) Control =-- The EMM's BBU
control logic activates battery backup power when the following
signals are asserted:

) AC LO (from 876A in NBoX)
° MODULE OK H (from Regulator B)

The EMM responds to the above conditions by asserting BBU REQ EN
to the ILM. The ILM asserts BBU ROST RTN and provides backup power
if the BBU batteries are fully charged.

The BBU provides 300 Vdc to the NBox, which is connected to the
300-vdc bus, as 1is regulator b. Regulator b, the only regulator
active during battery backup operation, provides +5 V to the
memory array and the CSP. The CSP module uses MOD B +5 V to create
+/-12 V to bias the EMM and ILM modules during battery backup.

When ac power returns to the 876A, the 300-V output from the BBU
is disabled and power is supplied by the NBox H7170 modules.

When power 1is applied to regulator B, the EMM asserts ARRAY +5 V
OK, enabling refresh operations in the memory array. The signal is
asserted as long as the MODULE OK signal for regulator B is true.

Refer to Figure 3-22 for a detailed diagram of the BBU system.
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3.4.12 Battery Backup Unit (H7231-M)

The battery backup unit (BBU) for the VAX 8800 system delivers
300-vdc backup power to 300-V bus 2 when utility power is
momentarily interrupted.

The H7231-M consists of:

® A charger (H7230)
) A dc-to-dc converter (H7240)
) A 48-V rechargeable, lead acid battery pack

The charger receives 120 Vac at its input from the 876A power
controller and provides two levels of charge to the battery pack:

1. Charge - 400 milliamp to 59 volts dc battery output
2. Maintenance - 10 milliamp above 59 volts dc

The 400-milliamp charge level is reinitiated when the dc battery
output falls below 52 volts. )

= Lol LB LIS f207V JUal Lol Lila

@]
to 300 Vdc using flyback transformer converter. The 300 V
generated by the converter is provided on demand to the NBox,
which is connected to the 300-Vdc bus feeding the regulators.

The dc—-to-dc converter (H7240) steps up the 48-V battery voltage
a

Regulation of the H7240 output is accomplished using pulse width
modulation (pwm). The ac 1input line voltage and the dc battery
voltage are continuously monitored.

The H7240 has the following protection circuits:

1. An overvoltage protection circuit to inhibit converter
operation if the output voltage exceeds 330 Vdc nominal.

2. A primary overcurrent sense circuit to protect circuit
components from output overload condition (3 A surge
limit, fuse protected).

3. A power transistor overtemperature circuit to inhibit
operation above 90 degrees C (194 degrees F).
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The battery backup system has two special features:

® FAIL SAFE ENABLE
° DIGITAL power bus monitor

Both signals open the power relay terminating battery backup
power. The FAIL SAFE ENABLE signal allows the H7240 to respond to
control signal inputs.

The DIGITAL power bus interface monitors the emergency shutdown
signal (TOTAL OFF RTN), which, when asserted, disables the output
of the H7240.

The BBU interfaces to the power system by means of a 15-pin D type
connector. The interface signals are defined in Table 3-15.

Figure 3-22 shows the BBU subsystem block diagram.
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Table 3-15

Battery Backup Interface Signals

Signal

Definition

BBU Enable

BBU ENABLE RTN

BBU AVAIL

BBU AVAIL RTN

ILM BBU RQST

ILM BBU RQOST RTN

MOD ENABLE L

MOD ENABLE RTN

BAT STAT

Activates the series power relay. Must
be asserted before battery backup is
requested.

BBU ENABLE signal return.

When true, indicates BBU available to
provide battery backup power.

BBU AVAIL signal return.

Requests battery backup power to the
load when the loss of the main ac has
occurred.

ILM BBU ROST signal return.

Enables "Regulator B" to accept battery
backup power.

MOD ENABLE signal return.

Indicates battery status as follows:

State Current Flow Batteries
OFF no current charging
READY constant full charge
or
1 Hz rate charging
(slow)
ON 10 Hz rate discharging
(fast)

The signal
and ENABLE

NOTE
pairs, BBU ENABLE/BBU
RTN ETC, are obtained

from opto-couplers that provide

ground

isolation and high-voltage

protection to the ILM.
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3.4.13 Air Flow Sensing Circuit
The EMM monitors two air flow sensors located in the CPU cabinet,
AIR FLOW 1 and AIR FLOW 2. The EMM program checks the state of
each sensor by reading the MISREG.

Wnen a single air flow fault is detected, a five-minute shutdown
notice is sent to the system's console.

When both detectors indicate an air flow fault, a two-minute
shutdown notice is sent to the system's console.

The console can also read the air flow fault sensors at any time.
The air flow sensors are reset by the EMM during a power-up
sequence, and at any time thereafter in vresponse to a WRITE

command.

Figure 3-23 shows the air flow sensing circuit.
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3.5 COOLING SUBSYSTEM

The cooling air moving through the CPU cabinet is drawn up through
the Dbottom of the CPU cabinet with negative pressure created by
the three-phase motor.

The moving air passes through a washable aluminum mesh filter just
below the NBox and 876A, 1located on the bottom shelf, before
entering the CPU cardcage. The air filter is interlocked to assure
that it is:

1. In place
2. Correctly seated

Upon leaving the cardcage area, the moving air enters the MPS area
and exits at the back of the CPU cabinet.

The maximum VAX 8800 system (a dual-CPU configuration) is expected
to dissipate a 6500-watt heat load as follows:

1. 4100 watts in the CPU logic module area
2, 2000 watts in the MPS cage
3

. The balance of 400 watts in the NBox
An additional 400 watts is dissipated by the three-phase motor.

The power dissipated in the front-end cabinet is not sufficient to
require forced air cooling.

The temperature rise in the CPU cabinet is 17 degrees C (62.6
degrees F), with a 10 degree C rise (50 deg. F) contributed by the
CPU logic and 7 degrees C (44.6 degrees F) rise allowed for the
MPS power regulators.

An air flow rate of 1100 to 1200 CFM has been determined to be
sufficient to satisfy the above requirements. The motor/blower
assembly is mounted within a steel plenum/housing secured to the
four corners of the CPU cabinet above the MPS cage.

Four air outlets at the rear of the cabinet exhaust the heated
air. The outlets direct the air into the rear door mounted exhaust
housing and plenum, which further guide the air downward and to
the rear.

At the exhaust outlets, there is a damper mechanism that deflects
the air flow during maintenance. The plastic/sheet metal plenum is
lined with acoustically absorbent material that allows it to
function as a noise-reduction muffler.

Figure 3-24 is an illustration of the air flow in the CPU cabinet.
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CHAPTER 1
INTRODUCTION

1.1 BASIC OPERATION

The clock generator generates and distributes the system clocks to
the left and right CPUs, the memory subsystem, and the I/0
adapters. It is located on the clock (CLK) module and controlled
by the PRO-38N console. A basic block diagram is shown in Figure
1-1.

The PRO-38N controls the clock generator using three registers. As
shown in the block diagram, these registers (the clock control,
clock period, and clock burst count registers) are in the clock
generator, but are written via the console interface, which is also
located on the CLK module. A fourth register (the clock/timeout
status register) allows the PC350 to examine clock status bits;
these are also read via the console interface. (The status
register is actually the output of a data multiplexer within the
console interface.) The console interface and the functions it
performs in the system are described in the Console
Subsystem Technical Description.

The system clocks generated by the clock generator are listed 1in

Table 1-1. Several copies of each clock are transmitted on the
system backplane, with each copy having only one destination
module. (A module can have more than one copy of the same clock.)

The clock generator also generates a slow clock used to increment
timeout counters in the CPUs, memory controller, and I/0O adapters.

Table 1-1 System Clocks

Clocks Function

A CLK, B CLK Main system clocks used by CPU modules
and I/0 adapters to sequence and
synchronize operation.

F A CLK, F B CLK Free-running system clocks used by
memory controller to sequence and
synchronize operation. Also connect
to I/0 adapters (not used by NBI).

W CLK Free-running system clock used to write
RAMs in two CPU module types (SLCO and
SLC1).

Vv 1-1



INTERVAL
SYNC

Figure 1-1

CLOCK (CLK) MODULE

VAN

SYS CLK
DISTRIBUTION
—>
oC
OSCILLATOR » PHASE B :
GENERATOR : — ¥
> » | (SEE TEXT)
’ CLK —>
SAMPLE —
PERIOD GATES
CLOCK CONTROL LOGIC SLOW CLOCK ENABLE
CLK PERIOD REG HARBINGER >
CLK CONTROL REG MICROMATCH
CLK BURST CNT REG SCOPE_SYNC >
Z
-
o
S
‘ S
CONSOLE SLOW MODE >
DATA/REG
CLOCK | STEP DISABLE STALL
STATUS | BCLK SELECT
MODULE CLOCK
Y DISTRIBUTION
CONSOLE INT SYSTEM
INTERFACE . CLKS CLOCKS
I (SEE NOTE) I
\
CLK STALL
CLK/T.O. STATUS REG SAMPLE <
(SEE NOTE) .

Clock Generator

.

II“\

TO/FROM
CONSOLE

v 1-2

(and Console

NOTE: CONSOLE INTERFACE Vv
AND CONNECTIONS TO
SYSTEM DESCRIBED IN
CONSOLE SUBSYSTEM
TECHNICAL DESCRIPTION.

SCLD-201

Interface) on Clock Module



1.2 BASIC COMPONENTS AND TIMING
The clock generator consists of the following basic components.

. Oscillator

. Phase generator

. Clock distribution circuits
. Clock control logic

B W N -

The oscillator generates a reference clock that 1is used by the
second component, the phase dgenerator, to produce two
nonoverlapping clock phases, PHASE A and PHASE B, plus a W PHASE
that 1is similar to PHASE A but longer in duration. The clock
distribution circuits, in turn, gate PHASE A and PHASE B with
signals from the clock control logic to produce several copies of
the main (gated) system clocks, A CLK and B CLK. These clocks may
be started, stopped, and bursted by the clock control logic. The
clock distribution circuits also produce the free-running (ungated)
system clocks, F A CLK, F B CLK (from the A and B phases) and the
free-running W CLK (from the W phase).

w clock produced by the clock generator, called SLOW CLOCK
ENAB, is generated in the clock control logic. It is derived from
B CLK (asserted once for every 65,536 B CLKs that are generated)
and, thus, will be synchronized with the main system clocks when
they are started, stopped, and bursted.

A

System clock timing is shown in Figure 1-2. The phase generator
produces the clocks by dividing the reference clock frequency by
six. Because the reference clock is normally 120 MHz, this results
in a normal system clock frequency of 20 MHz and, thus, a normal
system clock period of 50 ns. However, the system's console can
change the reference clock frequency to produce system clock
periods ranging from 140 ns down to 40 ns. :

The period of SLOW CLOCK ENAB, derived from B CLK, also depends - on

the reference clock frequency. This signal is asserted once every
3.28 milliseconds at the normal system clock rate.
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1.3 CLOCK CONTROL (BY CC 1SOLE)
The PC350 console can control the main (gated) system clocks in the
following ways:

1. Stop the clocks (unconditionally)
2. Start the clocks

3. Burst the clocks (burst up to 255 pairs of A CLK and B
CLK)

4. sSingle-step the clocks (a burst of one A CLK and B CLK)
5. Enable the clocks to stop on micromatch

6. Change the clock period (also changes free-running clock
period)

7. Single-step the B CLK only (when loading VBus address)
8. Disable A CLK stalls (by left or right CPU)

The console can also continuously assert the clock generator's SLOW
CLOCK ENABLE output that is used to generate timeout errors in the
CPUs, memory controller, and I/0 adapters. This 1is done during
diagnostics to set the timeout flags without having to force the
error condition.

The clocks are controlled mainly by the three registers in the
clock generator. Control bits in the clock control register allow
the console to start the main system clocks and to stop them either
unconditionally (when a micromatch occurs) or after a specified
number of clocks are generated (a clock burst). A control bit in
this register also allows the slow clock to be continuously
asserted. The number of clocks in a burst of system clocks is
specified by the burst count register. (A burst count of one
single-steps the clocks.) Clock period-is determined by the wvalue
in the clock period register. Bit format for the three registers
is given in Figures 1-3 through 1-5. Clock control register bit
definitions are given in Table 1-2.
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Most console control of the system clocks affects both CPUs. That
is, the «clock outputs to each CPU from the clock generator are
synchronized with each other and are not independently controlled.
For example, when clocks are unconditionally stopped and then
restarted at a different frequency (the clock period changed),
sequencing in both CPUs stops and then starts again at the
different rate. Similarly, clocks in both CPUs single-step and

burst together. This is also true when only the B CLK is
single-stepped during the loading of a VBus address. In this case,
the single-stepping is not <controlled by a clock generator

register; it is controlled by a bit in the VBus control register
located in the console interface.

The clocks also stop together when a stop on micromatch occurs in
either CPU. A micromatch is when the current microPC value in a
CPU's IBox equals a preloaded microaddress (also in the IBox).
This condition, in addition to stopping the clocks when enabled by
the console, always causes the clock generator to generate a scope
sync on the backplane.

Before the console unconditionally stops the clocks, or Dbefore it
enables the clocks to stop on a micromatch or after a clock burst,
it must place the memory controller and some I/O adapters, such as
the NBI, into a slow (unpipelined) mode of operation. The console
does this by asserting a SLOW MODE signal on the NMI. The signal
is asserted when the console sets a control bit in a console
interface register (control register 1).

Another early-warning signal, HARBINGER, is asserted on the NMI by
the clock generator hardware just before the clocks actually stop.
The memory controller, which 1is sequenced by the free-running
clocks and not the gated <clocks, uses the signal to block its
free-running clocks and simulate the stopped clock condition
occurring in the CPUs and other system components. This signal is
also deasserted by hardware just before the clocks start to allow
the memory controller to unblock its free-running clocks.

<
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1.4 CLOCK STALLS

One type of system clock control does not affect both CPUs. This
is the stalling of A CLK in some CPU (and console interface) logic
when cache cannot be immediately read or written. That 1is,
sequencing (by A CLK) is stopped temporarily until the access can
be made. The CCS module in the stalling CPU inhibits the
appropriate A CLKs by asserting a STALL signal. The gating of an A
CLK with STALL to stop sequencing 1is not done 1in the clock
generator. It is done in the clock distribution circuits for each
module. These are the circuits that receive the system clocks
transmitted on the backplane by the clock generator. Every module
has its own clock distribution circuits including the CLK module
itself. (Refer again to Figure 1-1.)

Although the console does not assert STALL, it can prevent its
assertion by either of the CPUs by writing control bits in a
console interface register (control register 0). This 1is done
during system initialization to ensure that all the system clocks
are generated when microcode is loaded. The STALL signal is
generated by microcode, and unwanted stalls could occur during the

loading process if not disablied.

1.5 CLOCK STATUS

The console determines clock generator status by reading the
clock/timeout status register. Register bit format is shown in
Figure 1-6. Bit definitions are given in Table 1-3.

There are four clock generator status bits. One indicates whether
the main system clocks are stopped. The others, valid only when
the clocks are stopped, indicate whether the clocks stopped at the
end of a specified clock burst or because of a micromatch in the
left or right CPU.

Two other bits in the register are used as flags by the console to
determine if either the left or right CPU is hung in a stalled (A
CLK) state. The flags are located 1in the console interface.
Periodically, the console reads the flags and (if the flags are
cleared) writes a control bit in control register 2. The control
bit sets each flag if a stall in the associated CPU is in progress.
Once set, a flag is cleared only when the stall ends. Thus, if it
is still set when read again by the console (at the end of the
timeout period), it indicates a hung state with the set bit
indicating the faulty CPU.

v 1-7



CONSOLE
ADDRESS READ/ CLOCK CONTROL REGISTER

(HEX) WRITE 07 06 05 04 03 02 01 00
C w
NOT USED
STOP -RIGHT -SLOW CLOCK
CLOCK SOMM HOLD
-LEFT -BURST
SOMM ENABLE

SCLD-203

Figure 1-3 Clock Control Register

Table 1-2 Clock Control Register Bit Descriptions

Bit(s) Description
<KT> Stops clock. When set to 1, stops main system clocks.
When set to 0, starts main system clocks. Initialized
to 0 by console.
<6> Enables left CPU to stop on micromatch (when set to 0).
Initialized to 1 by console.
<5> Enables right CPU to stop on micromatch (when set to 0).
Initialized to 1 by console.
<4> Enables clock to stop at end of clock burst specified
by burst count register (when set to 0). Initialized
to 1 by console.
<3> Holds (force assertion of) slow clock enable signal
on NMI (when set to 0). Initialized to 1 by console.
<2:0> Not used.
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Figure 1-5 Clock Period Register
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CONSOLE

ADDRESS  READ/ CLOCK/TIMEQUT STATUS REGISTER
(HEX) WRITE 07 06 05 04 03 02 01 00
8 R |
NOT USED
|
CLOCK -RIGHT LEFT STALL
OFF MICRO- I TIMEOUT
MATCH . l
-BURST
LEFT DONE RIGHT STALL
MICROMATCH TIMEOUT
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Figure 1-6 Clock/Timeout Status Register

Table 1-3 Clock/Timeout Status Register Bit Descriptions

Bit(s) Description
<7> Clock off. 1Indicates main system clocks are turned
off.
<6> When equal to 0, indicates micromatch in left CPU.
<5> When equal to 0, indicates micromatch in right CPU.
<4> Burst done. When equal to 0, indicates burst counter

has reached a count of 0.
<3:2> Not used.

<1> Left stall timeout. Indicates left CPU hung in A CLK
stall state.

<0> stall timeout. Indicates right CPU hung in A CLK

state,
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=
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CHAPTER 2
FUNCTIONAL DESCRIPTION

.1 DETAILED BLOCK DIAGRAM

detailed block diagram of the clock generator is shown in Figure
-1. Clock generator input and output is defined in Tables 2-1 and
-2

2
A
2
2-2.
2,1.1 Oscillator

The oscillator «consists of a crystal-controlled 1low frequency
source (250 kHz), and a phase-locked 1loop circuit. The
phase-locked loop circuit multiplies the low frequency to produce
the input (REFERENCE CLOCK) to the system clock phase generator.
The low frequency is normally multiplied by a factor of (N 1) X 6,
where N is the value loaded in the clock generator's clock period
register.

Besides allowing different REFERENCE CLOCK frequencies (based on
the value of N), the phase-locked loop closely controls the current
REFERENCE CLOCK frequency by continuously comparing the phase of
the crystal-controlled low frequency source with one of the system
clocks derived from REFERENCE CLOCK. This clock sample, divided by
N 1 in the phase-locked 1loop hardware, is a copy of the
free-running A clock (F A CLK) received from the backplane with the
rest of the system clocks.

In addition to its REFERENCE CLOCK output, the phase-locked 1loop
circuit has seven INTERVAL SYNC outputs that connect to the
system's interval timer located in the console interface. These
signals, together with outputs from the clock period register, are
used to maintain a constant interval timer frequency (1 MHz) even
though the REFERENCE CLOCK (and, thus, the system clock) frequency
is changed.
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2.1.2 Phase Generator

The phase generator consists mainly of shift registers that divide
the REFERENCE CLOCK frequency by six and generate the two
nonoverlapping A and B clock phases, as well as the W phase. Latc

circuits output four copies each of A PHASE and B PHASE plus a
single copy of W PHASE. All copies are used as inputs to the clock
distribution circuits. 1In addition, single copies of both A PHASE
and B PHASE are produced that are used by the clock control logic.

N

.1.3 Clock Control Logic

he clock contrel legic contains the clock control register, the
clock period register, and the burst count register. It also
contains a burst counter, the slow <clock counter, and clock
start/stop control 1logic. The burst counter is loaded from the
burst count register and decrements to zero to signal the end of a
clock burst. The slow clock counter produces the NMI signal (SLOW
CLOCK ENAB) used to increment error timeout counters in the CPUs,
memory controller, and I/O adapters. The start/stop logic
generates the clock gating signals A GATE (turned on by B PHASE)
and B GATE (turned on by A PHASE). These are the levels that

enable the clock distribution circuits to transmit the main system
clocks on the backplane.

2.1.4 Clock Distribution Circuits

The clock distribution circuits consist mainly of ECL drivers that
transmit the system clocks to the CPUs, memory controller, I/0
adapters, and the clock module itself. Several copies of each
system clock are distributed (radially) with each copy consisting
of a pair of differentially driven cutputs that connect to a single
destination module.

he free-running system clocks (F A CLK, F B CLK, and W CLK) are
derived directly from the free-running clock phases (A PHASE, B
PHASE, and W PHASE). The main system clocks are also derived from
the free-running clock phases but are gated with A GATE and B GATE
from the clock control logic to start, stop, and burst the clocks.

m
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Table 2-1

Clock Generator Inputs

Signal(s)

Number

Description

CONSOLE DATA <7:0>

WR CLOCK REG <2:0>

\

STEP BCLK

CLOCK INIT

L MICROMATCH
R MICROMATCH

EXTERNAL CLOCK ENAB

8

Transfers register data from
conscle interface when a clock
register is written by the
console.

Loads addressed clock register
when written by console. The
three lines are outputs of
address decoder in console
interface.

WR CLOCK REG LOADS

<2> Clock period
register

<1> Burst count
register

<0> Clock control
register

Causes one B CLK to be generated.
Output of VBus control register
in console interface.

Initializes clock period
register. Asserted by DC LO
logic in console interface.

Indicates micromatch detected in
left CPU. Asserted by CPU's IBox.

Indicates micromatch detected in
right CPU. Asserted by CPU's IBox.

Enables output from an external
clock source to produce

REFERENCE CLOCK and, thus, system
clocks. Used by module test
device during manufacturing
test/repair procedures.
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Table 2-1 Clock Generator Inputs (Cont)

Description

Signal(s) Number
EXTERNAL CLOCK IN 1
TEST PHASE GENERATOR 1
TEST SLOW CLOCK 1

External clock source from module
test device. See EXTERNAL CLOCK
ENAB.

Initializes phase generator.

(An A CLK is generated after test
signal is asserted and deasserted
coincident with REFERENCE CLOCK,
and five additional REFERENCE
CLOCKS occur.) Used by module test
device during manufacturing
test/repair procedures.

Initializes slow clock counter to
zero. Used by module test device
during manufacturing test/repair

Aiireoc
proceaures.

Table 2-2 Clock Generator Outputs

Signal(s) Number

System Clocks

Description

A CLK 24
B CLK 20
F A CLK 5
F B CLK 5
W CLK 4
INTERVAL SYNC <6:0> 7
CLK PERIOD <6:1> 6

Gated A clock

Gated B clock
Free-running A clock
Free-running B clock
W clock (free-running)

Used to keep interval timer in
console interface synchronized
with system clocks.

Six high-order outputs of clock
period register. Used with
INTERVAL SYNC <6:0> to keep
interval timer in console
interface synchronized with
system clocks.
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Table 2-2 Clock Generator Outputs (Cont)

Signal(s) Number Description

CLK STATUS <7:4> 4 Clock generator status bits to
clock/timeout status register
(outputs of a data multiplexer)
in console interface.

CLK STATUS STATUS BITS

<7> CLOCK OFF
<6> LEFT MICROMATCH
<5> RIGHT MICROMATCH
<4> BURST DONE

NMI HARBINGER <3:0> 4 Early-warning signal to memory

controller that clocks are
about to stop (when signal is
asserted) or start (when signal
is deasserted).

L SCOPE SYNC 1 Scope sync signal asserted on
backplane when micromatch occurs
in left CPU.

R SCOPE SYNC 1 Scope sync signal asserted on
backplane when micromatch occurs
in right CPU,

NMI SLOW CLOCK ENABRLE 1 Slow clock used to increment
timeout counters in CPU, memory
controller, and I/O adapters.

TEST DIVIDER 1 Output of divider circuit in
oscillator's phase-locked loop
circuit. (Signal is a copy of
DIVIDED ACLK.) Used by module
test device during manufacturing

test/repair procedures.

COUNTER TEST 1 Overflow (borrow output) from
eight high-order stages of
16-bit slow clock counter. Used
by module test device during
manufacturing test/repair
procedures.




2.2 CLOCK GENERATOR INITIALIZATION

At powerup, DC LO asserts CLOCK INIT, which loads a value of 56
into the <clock period register. Also, at powerup, the oscillator
starts to generate the system clock phases. The c¢lock period,
determined by the value preset in the clock period register, is 70
ns. The console 1lowers the clock period (increases clock
frequency) to 1its normal value during the system initialization
sequence that follows powerup.

With the system clock phases running, the clock generator 1is also

producing the free-running clocks. This allows the console to
access the clock (and console interface) registers during system
initialization. (The console must start, stop, burst, and change

the frequency of the clocks during the loading of microcode and the
many other operations performed.) When system initialization ends,
the clock generator is left in the following state:

e Clocks running (STOP CLOCK <cleared in clock control
register)

e Clock period set to 50 ns (N = 79 in clock period
register)

e Micromatch stop disabled (-SOMM bits set in clock control
register)

® Clock bursts disabled (-BURST ENABLE set in clock control
register)

e Slow clock running (-SLOW CLOCK HOLD set in clock control
register)
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2.3 SYSTEM CLOCK PERIOD CONTROL
System clock frequency (and, thus, system clock period) is
controlled by the oscillator's phase-locked 1loop circuit. The
circuit is used as a frequency synthesizer to produce a wide range
of frequencies determined by the wvalue N 1in the clock period
register. Refer to Figure 2-2,

2.3.1 Phase-Locked Loop Operation
The phase-locked loop circuit contains the following components.

Phase detector

Low pass filter

Voltage controlled oscillator (VCO)
Low range divider

Divide by N 1 Counter

The phase detector compares the 250 KkHz crystal-controlled low
frequency source with a system clock sample that has been divided
in frequency by the divide by N 1 counter. This 7-bit counter,
loaded with the wvalue N from the <c¢lock period register, is
continuously decremented by the system clock sample (F A CLK).
Whenever the counter reaches a 0 count (after N 1 counts), it
reloads from the clock period register, starts decrementing again,
and asserts the divided (by N 1) system clock connecting to the
phase detector. This signal is called DIVIDED ACLK.

If a phase difference exists between the crystal-controlled
frequency and DIVIDED ACLK, indicating that the two frequencies are
not the same, the phase detector asserts one of two signals, UP or
DOWN. The signal asserted depends on whether the divided system
clock sample has a lower frequency (UP asserted) or a higher
frequency (DOWN asserted) than the crystal-controlled frequency.
The duration of the UP and DOWN outputs 1is proportional to the
phase difference detected.

The low pass filter integrates the UP/DOWN signals to produce a dc
voltage 1input to the VCO. The dc voltage determines the frequency
of the VCO output, which is a high frequency square wave. This VCO
output (or the VCO output divided by two) is the REFERENCE CLOCK
that the phase generator divides by six to produce the system clock
phases. (The VCO output is divided by two when the clock period
register's LOW RANGE control bit 1is set as described in the
following paragraph.)
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At poweron, the clock period register is initialized to a value of
56 (by CLOCK 1INIT, which 1is asserted by DC LO). Also, the VCO
begins generating the REFERENCE CLOCK; the phase detector starts
generating UP or DOWN signals to bring the REFERENCE CLOCK
frequency to a value where the divided system <clock and the
crystal-controlled frequency are the same. When this occurs, the
phase-locked loop is locked and (for N = 56 and the LOW RANGE bDit
cleared) the REFERENCE CLOCK frequency is 85.5 MHz and the system
clock frequency is 14.25 MHz (70 ns clock period). Further phase
detector outputs are minimal, compensating only for slight drifts
in the clock frequency. Of course, when the clock period register
is loaded with a new value of N, the phase detector outputs (which
are pulses) sharply increase in duration and then decrease over
time as the clock frequency quickly approaches and locks to the new
value.

The relationship between N, the 1low frequency source, and the
system clock frequency is derived below.

At the input to the phase detector:

DIVIDED A CLK FREQUENCY

LOW FREQUENCY SOURCE

Substituting:

SYSTEM CLOCK FREQUENCY

250 kHz

Thus:

SYSTEM CLOCK FREQUENCY

(N + 1) X 250 kHz
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As can Dbe seen, the 1low frequency source 1is not only the
crystal-controlled reference frequency for the phase-locked loop;
its value also determines the frequency step size. That 1is, the
system clock can only be some multiple of 250 kHz and, of course,
250 kHz is the smallest increment or decrement that can be made in
the system clock frequency by changing N.

In normal operation, the specified range of system clock
frequencies that can be generated is 14.25 MHz to 25 MHz (N = 56 to
99). The limiting factor is mainly the operating range of the VCO.
However, for diagnostic and debug purposes, the LOW RANGE control
bit can be set in the clock period register causing the 1low range
divider to divide the VCO frequency by two. This gives a lower
range of system clock frequencies with the VCO still operating
within its specified range. The low frequency range is 7 MHz to
12.5 MHz (N = 27 to 49). Note that the values of N are half of
what they are in the normal operating range. That is, the system
clock frequency is always 250 kHz X (N 1), regardless of how the
VCO output is divided to produce the clocks.

2.3.2 Changing Clock Period

To change the clock period, the console simply loads a new value of
N in the <clock period register. The clocks do not need to be
stopped first, and any sized increment or decrement may be made as
long as the resulting clock frequency falls within the clock

generator's specified operating range. The only restriction 1is
that there should be no change from the low to normal, or normal to
low, frequency range when a program is running. The changing of

the LOW RANGE control bit in the clock period register can cause
the low range divider to introduce a transient change in the system
clock period. This clock period change can cause a sequencing CPU,
memory, or other system component to malfunction.
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2.4 SYSTEM CLOCK START/STOP/BURST CONTROL

Figure 2-3 shows the clock control logic that starts, stops, and
bursts the main system clocks. (Timing is shown in Figure 2-4.)
The major control element is a latch circuit that, when cleared,
asserts the gating signals (A GATE and B GATE) that allow the clock
distribution circuits to transmit the main system <clocks on the
backplane. This latch, when set, stops transmission of the clocks
and asserts the CLOCK OFF bit in the clock/timeout status register
that can be read by the console.

The first clock generated when the clocks are started is A CLK.
The last clock generated when the clocks are stopped is B CLK.
Before the last B CLK (and when the last A CLK occurs), the clock
control 1logic asserts HARBINGER on the NMI. This is the signal
used by the memory controller, which 1is sequenced by the
free-running clocks, as a clock blocking signal. The controller
can then simulate stopped <clock operation even though the
free-running clocks continue to be generated after the main clocks
are stopped. HARBINGER, when it is deasserted, also serves as an
early-warning signal that the clocks are about to start. When the
clocks are restarted, HARBINGER is deasserted by a free~running
clock (F A CLK) one system clock period before the first A CLK
occurs.

Besides requiring the assertion of HARBINGER before the clocks
stop, the memory controller must also be in a slow mode of
operation as discussed in Chapter 1. That 1is, the console must
assert SLOW MODE on the NMI by setting a control bit in a console
interface register (control register 1). (Some I/0 adapters such

as the NBI must also be set to slow mode before the clocks stop.)
The ST(’\T7 Mf\DE‘ ﬁignal muc&- l‘\e asserted b.‘l’ +ho rAncnlo at Tasc+t+ Ffanv

DuZw Moot S =R UV LiiT LD LT LT G LA

microseconds before the clocks stop.
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2.4.1 Starting the Clocks

The console starts the clocks by clearing the STOP CLOCK bit in the
clock control register. This generates a START pulse that clears
the CLOCK OFF latch enabling the GATE A and GATE B signals to be
asserted. The clocks will remain running until stopped
unconditionally by the console, by a micromatch stop condition, or
at the end of a burst. Once stopped, the only way to restart the
clocks is for the console to again clear the STOP CLOCK bit.

2.4.2 Stopping the Clocks Unconditionally

The console can stop the clock at any time by just setting the STOP
CLOCK bit in the clock control register. (SLOW MODE must be
asserted first, however.) Setting STOP CLOCK asserts STOP, which
sets the CLOCK OFF latch preventing the assertion of the GATE A and
GATE B signals.
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2.4.3 Stopping the Clocks on Micromatch/Scope Sync Generation

The console can enable the clock control logic to stop the clocks
when the microPC in the left or right CPU is at a specified value.
This condition, a micromatch, also causes the clock control 1logic
to generate a scope sync. The scope sync is always generated by a
micromatch even though the clocks are not enabled to stop.

To cause a micromatch (and scope sync) on a specific microPC value,
the console must load that value in the CPU's micromatch register
located in the IBox. If the console wants to stop the clocks when
a micromatch occurs, it asserts SLOW MODE and clears the CPU's SOMM
(stop on micromatch) bit in the clock control register. (A SOMM
bit is asserted when equal to 0.) The loading of the microPC value,
the assertion SLOW MODE, and the clearing of the SOMM bit are done
with the clocks turned off.

Once the clock is turned on and if a micromatch occurs, the CPU's
IBox asserts a MICROMATCH signal. This signal (one for each CPU)

generates the scope sync (there 1is one for each CPU). The
micromatch signal also sets the CLOCK OFF latch to stop the clocks,
provided the corresponding SOMM bit has been asserted. Micromatch

and scope sync timing is shown in Figure 2-5.

After the clocks stop on a micromatch, the MICROMATCH signal is
normally deasserted. If it is still asserted when the clocks are
restarted (indicating the microinstruction has branched to its own
microaddress), the clock control logic generates one pair of system
clocks, an A CLK and a B CLK, and stops the clock again.

A CLK / N\ / N\ / N\

|
B CLK !
i
|
]
i
I

-

w
—{
n

o “—CLOCKS STOP IF STOP
ON MICROMATCH ENABLED

MICROMATCH / \
SCOPE SYNC yaR g

SCLD-208

Figure 2-5 Micromatch and Scope Sync Timing Diagram
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2.4.4 Bursting the Clocks :
Bursting the clocks causes a specified number of clock cycles to be
generated. (A clock cycle is one A CLK and one B CLK.) The clocks
in the burst occur at the nominal clock frequency; that is, the
frequency specified by the current contents of the clock period
register.

To burst the clocks, with the clocks stopped, the console first
asserts SLOW MODE (if not already asserted), loads a burst count in
the burst count register, and clears the BURST ENABLE bit in the
clock control register. (Like the SOMM bits, the BURST ENABLE bit
is asserted when equal to 0.) The burst count, which can be any
value from 1 to 255, is also loaded from the burst count register
into the clock control's burst counter. (This is an automatic load
performed by hardware whenever the burst count register is loaded.)
The console starts the clock burst by simply starting the clocks as
it does normally.

During a clock burst, the burst counter is decremented each clock
cycle. When the count reaches zero (indicating that the specified
number of clocks have been generated), and with the BURST ENABLE
bit previously asserted by the console, the clock control's CLOCK
OFF latch is set to stop the clocks and end the burst.

The console can tell when a clock burst has ended by reading the
BURST DONE (burst counter = 0) status bit in the clock/timeout
status register. It may then generate another burst by reloading
the burst count register and restarting the clocks. If the clocks
are stopped by the console or by a micromatch during a burst, the
burst counter holds its current count and the interrupted burst
completes when the clocks are restarted.

2.4.5 Single-Stepping the Clocks

The single-step operation is Just a clock burst with the burst
count equal to 1. A single clock cycle (one A CLK and one B CLK)
is generated. The console loads the burst count and produces the
clock burst as described in Section 2.4.4.
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2.4.6 Single-Stepping the B CLK

During VBus operations, the console must single-step the B CLK to
shift the VBus data address into the CPU modules. The
single-stepping of the B CLK is not done by bursting the clock as
when single-stepping a complete clock cycle (generating both an A
CLK and a B CLK). Instead, the console sets a control bit in the
VBus control register called STEP B CLK. The bit is immediately
cleared by hardware so that it remains asserted for only one clock
period. In the clock control logic, the STEP B CLK signal asserts
the GATE B (but not the GATE A) clock enable signals causing one
system B CLK to be generated. Timing is shown in Figure 2-6.

A PHASE /T N\ /7 \ 7\ 7/ \
B PHASE /7~ \ /T \ N\ /\

STEP B CLK_/ \
B GATE / AN
B CLK ﬂ

SCLD-20¢

Figure 2-6 Single-Stepping B CLK Timing Diagram

VvV 2-18



2.5 SLOW CLOCK GENERATION AND CONTROL

SLOW CLOCK ENAB, an NMI signal, 1is asserted by the slow clock
counter in the clock control 1logic. This 16-bit counter
continuously decrements as long as the main system clocks are
turned on (it is clocked by B CLK). The SLOW CLOCK ENAB signal is
asserted just after the counter reaches its minimum value of 0 and
when it begins a new count starting at its maximum value of 65,536
(64K). Timing is shown in Figure 2-7.

As can be seen, SLOW CLOCK ENAB is asserted for one B CILK period.
NMI nexus wuse the signal to enable counters detecting timeout
errors that are in the millisecond range (for example, no access to
bus, no return read data). That is, the counters are clocked by
the module's own system clocks but only when SLOW CLOCK ENAB has
been asserted (once every 3.28 milliseconds at the normal system
clock frequency). This clocking scheme allows the use of much
smaller counters than would be necessary if only the system clocks
were used to count through the comparatively long timeout periods.

Because of the way SLOW CLOCK ENAB is used, forcing the signal to
its asserted state causes a timeout counter to count at the system
clock rate and quickly set the associated error flag. The console
can force the continuous assertion of the signal by clearing the
SLOW CLOCK HOLD bit in the clock control register. (This control
bit is asserted when equal to 0.) Diagnostics do this to simulate
the timeout condition and check the error flag.

Bk /N N\ e N e N 2 N

Sow ook ¢ 64K X X 1 X 0 X 64K X

gﬁ% CLOCK h ﬂ
.
T

|l< 65,536 B CLKS

SCLD-210

Figure 2-7 Slow Clock Timing Diagram
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2.6 CLOCK CONSOLE COMMANDS

Three console commands control the main system clocks. The SET
CLOCK command can stop and start the clocks and also change the
clock period. The MICROSTEP command bursts the clocks. The SET
SOMM command enables the clocks to stop (and a scope sync to be
generated) on a micromatch., (A SET SYNC command enables only the
scope sync to be generated on a micromatch, and a SET TOMM command
enables a microtrap and a scope sync to be generated on a
micromatch.) The three clock console commands affect the clocks in
both CPUs.

Table 2-3 Clock Console Commands

Command Descripticn

SET CLOCK OFF Turns off clocks. (Asserts SLOW MODE,
sets CLOCK OFF in clock control
register, deasserts SLOW MODE.)

SET CLOCK ON Turns on clocks. (Asserts SLOW MODE,
clears CLOCK OFF in clock control
register, deasserts SLOW MODE.)

SET CLOCK NORMAL Sets clock period to its normal value
of 50 ns. (Loads N = 79 into clock
period register.)

SET CLOCK SLOW Sets clock period to its high margin
value of 55 ns. (Loads N = 71 into
clock period register.)

SET CLOCK FAST Sets clock period to its low margin
value of 45 ns. (Loads N = 87 into

clock period register.)
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Table 2-3

Clock Console Commands (Cont)

Command

Description

SET CLOCK <value>

MICROSTEP <stepcount>

SET SOMM <microaddress>

Sets clock period. The value specifies
clock period in nanoseconds. Restricted
to a range of 140 to 40 ns. (Loads

N = 27 to 99 into clock period register.)

Bursts the clocks. The stepcount specifies
the number of clock cycles in the burst.
Restricted to a range of 1 to 255 clock
cycles. A burst of one clock cycle is
generated if no stepcount is specified.
(The clocks are single-stepped.) After
the last clock cycle in a burst, pressing
the space bar causes one more clock cycle
to be generated. This space bar
(single-step) mode can be exited by
pressing carriage return (<cr>).

Enables the clocks to stop and a scope
sync to be generated when a micromatch
occurs in the CPU; that is, when the
microPC is equal to the specified
microaddress. (Loads the microaddress
in the CPU's micromatch register and
asserts the SOMM bit in the clock
control register.
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