


ADDITIONAL COPIES
Additional copies of this handbook may be purchased for $5.00
per copy. Please send your order to the address below. DEC offers
special discounts on quantity orders.

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01754



Joligiiltlall]

Inaneciocor:

prepared
small systems technical writing 'gr'oup

programming depal
digitalequipment corporation

pdp-8 handbook series



FIRST PRINTING, JANUARY 1973

The description and availability of the software products de-
scribed in this manual are subject to change without notice. The
availability or performance of some features of the software prod-
ucts may depend on a specific configuration of equipment. Conse-
quently, DEC makes no claim and shall not be liable for the
accuracy of the software products. Distribution of software prod-
ucts shall be in accordance with the then standard policy for each
such software product.

Copyright © 1973
Digital Equipment Corporation

The following are registered trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC FOCAL
DECtape 0S/8
Digital | PDP
EduSystem RSTS

ERROR REPORTING

If you find any errors in this handbook, or if you have any
questions or comments concerning the clarity or completeness of.
this handbook, please direct your remarks to:

Digital Equipment Corporation
Software Information Service, Building 3-5
Maynard, Massachusetts 01754

ADDITIONAL COPIES
Additional copies of this handbook may be purchased for $5.00
per copy. Please send your order to the address below. DEC offers
special discounts on quantity orders.

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01754

ii



coreuJoro,

The computer is an exciting contemporary piece of equipment.
This fact alone explains some of the fascination that a computer
invariably stirs up among students, but it doesn’t explain all of it.
The powerful motivational capabilities which the computer dem-
onstrates in every school that.installs one can only be explained
by the way it is used.

The computer is tireless. Unlike a student, it loves to do com-
plex calculations. Separating theory from calculation in school
assignments has always been a problem. Some of the most in-
teresting and challenging concepts of math and science involve,
unfortunately, an overwhelming amount of dull calculations. The
student gets bogged down in the arithmetic and never gets ex-
cited about the idea. Or, worse still, a less important concept is
taught because its calculations come out even. The computer, by
taking on all calculations and doing them quickly and accurately,
opens up new possibilities for classroom study and student interest.

The computer is immediate and unfailingly accurate. It does in
seconds what people take minutes or hours to do. The speed of
its responses make for powerful reinforcement. It challenges the
student to think through the concepts as fast as it grinds through
the calculations.

The computer is anonymous. Real Iearmng occurs when a stu-
dent has an idea and tries it out. At the start, he isn’t sure whether
the idea is valid. Some students have no fear of being wrong and
will tell the class their idea. Others are less willing to risk the
ridicule of being wrong. The computer lets all students try out
their ideas and gain confidence in them. It treats all students alike;
it has no favorites. It waits for the slower user and bounds ahead
quickly for the brighter student. With a computer, a student com-
petes with his past achievements, not with other students.

- Above all else, the computer is challenging. Why is it that a
student who quits on a homework problem after trying it once
will work tenaciously to get a program running right? Partly, it’s

iii



the immediacy of the computer’s response. Partly, it’s the ease
with which the student can change his program and try again.
Partly, it’s the fun of talking to .a machine and having it respond.
But beyond all that, there is something about the close interaction
between a user and a fast, willing, logical machine which is tre-
mendously challenging.

In all these ways and more, the computer stimulates the student,
stretches his thinking, provides an immediate and pertinent appli-
cation for skills learned in class. The impact on the teacher can
be just as great as the impact on the student. Given motivated
students, the dedicated teacher becomes even more dedicated. It
is not unusual for a teacher to stay at school until five o’clock to
give students more time on the computer.

- Computers have other uses around the school than instruction.
For example, a computer can easily be programmed to grade tests,
thereby saving precious teacher time, as well as providing more
immediate feedback to students. Other tedious administrative
chores such as attendance reporting, grade reporting, transcripts,
and payroll can be performed on the computer.

What will the computer mean in your school? Almost certainly
it will mean that students learn and improve at a faster rate. Tests
have shown that students who use the computer as part of their
math class improve at four times the rate of those who are taught
in the traditional way—not just honor students, not using a
futuristic curriculum. A cross-section of students—black, white,
Chicano, disadvantaged, rich, middle-class—in regular algebra
classes improved four times as fast with the computer. The com-
puter also means more thorough understanding coupled with tre-
mendous student motivation. It means more dedicated teachers
and an erasing of tedious administrative chores. It means con-
temporary education for today’s world.

The computer does not replace the teacher. Nor does the simple
existence of the computer make a poor student into a superior
student. But in school after school, the computer is turning the
bored, lethargic student into an involved, eager student. We at
Digital believe that this is the vital, first step to better education.
And we firmly believe that computers are for all kids, not for a
few geniuses.

iv



' introdudtion

EDUSYSTEMS—SCHOOL COMPUTERS THAT
MEET THE CHALLENGE '

It takes more than just hardware to make an effective school
computer system. It takes a thoroughly tested combination of
system components and instructional materials designed - specif-
ically for classroom use. Recognizing this fact, Digital Equipment
Corporation has designed EduSystems-—a complete line of com-
puter systems tailored to the needs of schools and colleges.

The basis of each EduSystem is. a PDP-8/E computer,® a ter-
minal, and a BASIC language processor. All EduSystems utilize
the well-known computer language BASIC. BASIC programs are
simple combinations of English words and decimal numbers.
Students with no previous computer experience can be writing
meaningful programs after as little as an hour of instruction.

EduSystems are compact, trouble-free, and engineered for use
in the busy school environment. Even the largest EduSystem can
be installed and used right in the classroom. All systems can run
- completely unattended (i.e., no operator is necessary). Each Edu-
System is designed to handle a large number of student users.
Time-sharing allows up-to 16 students and teachers to work at
the computer simultaneously. Batch processing allows hundreds
of student runs per day. o

EduSystems are expandable; as school and student needs in-
crease, the configuration of the system may also increase. Starter
systems (EduSystems 5, 10, 15, and 20) grow to be Intermediate
Systems (EduSystems 25, 30, and 40); Intermediate Systems grow

1 Certain EduSystems are also available on the PDP-11 computer.
Write to the Educational Products Group, Building 5-5, Digital Equipment
Corporation, Maynard, Mass. 01754, for more information.

v



to be the Total System (EduSystem 50). The expansion modules
can be installed right at the school. Expandable EduSystems are
always the right size to meet a school’s present demands. There is
never the need to start out with too much computer or end up
with too little.

As the EduSystem computer expands, so does the BASIC lan-
guage. Digital’s Total Systems? offer the most powerful BASIC
language processors of any computers in their class. In addition,
EduSystem 50 provides time-shared FOCAL and FORTRAN-D
language processors, a time-shared Assembly Language package,
and system utility programs. ‘

The effectiveness of EduSystems as classroom tools is well
proven. Hundreds of schools starting out with EduSystem 10 or
EduSystem 20 have since expanded to an Intermediate System, or
even a Total System, while many others are continuing to support
excellent programs of computer education without expanding their
facilities at all.

USING THE EDUSYSTEM HANDBOOK

The EduSystem Handbook provides a complete user’s guide for
each individual EduSystem and a self-instruction course in the
use of the BASIC language in general. Most EduSystem users will
need to read only two- chapters of this handbook: Chapter 1, and
the chapter concerning the EduSystem being used.

Chapter 1 is a primer on the BASIC language,?® allowing the
user to teach himself the fundamentals of BASIC and to familiar-
ize himself with the EduSystem terminal keyboard. Many examples
and exercises are included to aid the user in discovering the ele-
ments of the BASIC language. A user familiar with Chapter 1 can
write simple BASIC programs and run them on any EduSystem.-

Once the user knows the fundamentals of BASIC, he refers to
the chapter (chapters 2 through 9) concerning his particular
EduSystem. The individual EduSystem chapters describe the fea-
tures and extended capabilities of BASIC as it is used on the
specific EduSystem. Each chapter also contains detailed operating
instructions and error messages for the EduSystem. In addition,

2 EduSystem 80 is a Total System available only on the PDP-11.
3 Chapter 1 is derived from Teach Yourself BASIC, Volumes I and II
published by Technica Education Corporation.

vi



each chapter contains a table summarizing the BASIC language
capabilities of the EduSystem being described.

- Chapter 9 provides a detailed description of EduSystem 50 capa-
bilities, not only of the BASIC language but also' of FOCAL,
FORTRAN-D, PAL-D (the assembly language), the EduSystem
50 Monitor, and all the system utility programs. The EduSystem
50 user will also find much helpful information in Introduction to -
Programming and Programming Languages, Volumes 1 and 2 of
the PDP-8 handbook series. _

The EduSystem Handbook is designed to serve as the primary
guide for users of all EduSystems. Users of each EduSystem will
find many programming examples to facilitate their understanding
of the system. A summary of the BASIC language capabilities of
all Digital EduSystems is provided at the end of Chapter 1.

 COMMON PROGRAMMING TERMS

Such words as loop, jump, nesting, and array have special
- meanings to computer programmers. Familiarity with these terms
is a prerequisite to learning the more advanced programming
languages. The Index/Glossary at the end of this handbook defines
many of the commonly used computer programming terms.

vii



viii



contents

CHAPTER 1 TEACH YOURSELF BASIC

INtroduction ............c.cccoovvevieenrieniienienisieneene e esresseesseesnnes. 1=1
Teletype Keyboard ........cccoevvivininiiiiinniinnnn berereressesesiareen 1-3
Getting Acquainted With BASIC ..................... reeeererreeaas 1-5
Numerical EXPressions ........ccocccreeeeerviiinreeeeeessissnenieeessons 1-9
The PRINT Statement .........c..coevveuriivrneeenne e 1-11
Floating Point Numerals .............c........ eerereeesantaeasaes 1-15
Printing Messages .........cccovivveririiriiinineeiineeecensineenen evraes 1-17
Exponents—Computing the Power of a Number ............ 1-19
Gathering Speed ................ccoovvvrvveveniveinnenenen, eeerneneeens 1220
Variables ......ociiviiiiniiiiiiniiiie e e 1-20
Variable Expressions ..............cccoeeuee. SRTOUUUOOPROPUPOPPPRR 1-24
Feeding the Beast ..............ccccoooiiiiiiiiiiiiiiiiniiiiieireneen e senenenen 1-26
The INPUT Statement .........cccceovveiiiicnnniiiiiniinicnennnnne 1-26
The GO TO Statement ......... eeerens ettt aasessaeees 1-30
READ and DATA Statements .......c...cceeveviveeirveensireeenenne 1-32
The RESTORE Statement ...........c.ccoene... SRR 1-36
MOTE MESSAZES ..vcvverrerrenrinierreeresieereesreseereensessessassessessassens 1-37
You Can Count on It ..........ccovvvvvnviivivieiniiiriieininennes ereeraeees 1-39
Loops ............ e eueeeetereet et s et et eateeseerrassaaaniesaaaaserbanes 1-39
Loops Exposed ........ e ereen et e eer ettt e esesateeenaens 1-41
FOR-NEXT LoOPS ....cccooviiirieieiiniiinnenens ceereeenneea—————. 1-45
The STEP Clause .................. e bt ete e b e b beerens 1-50
Variable FOR Statements ........cccccccvvvevvnnieeeriannn, SOUTORRRPN 1-52

Extra for EXPEerts .......cccccveeerreiveeerssnivnecnssninissssnne dravsanas 1-55



Function JUNCHOM ................o.ooveomvvreereeseesseesieesseeesseneeneens - 1-57

The Integer (INT) Function .............cooeveeieninirniicvnnennn. 1-57
The Square Root (SQR) Function .......c..cooevvviiverriennnnee 1-61
Finding Your Way .........ccccccovviiiiinieniininiiine e ecinnnns e 1-65
Flowcharts .......ccoviviiii 1-65
FOR-NEXT Loops in a Flowchart .........cccccvvvvveernnneen. 1-71
Making Decisions ............c.ccoeeeeviiiiiiiiiiiiiieriicrrs 1-73
- A Fork in the Road ......ccccccviiiiiiiiiininecieeeeen 1-73
The IF Statement ........cccccceveiiiviiineniinioricisiiiininnenreeeceeens 1-79
| Varying Patterns ..............occcooviiiiiiiiinieeeiniencoeensesiieescnninnnnns 1-81.
Rectangular Patterns ...........cccooeevviiveenreeniiinnnneen e nninnnne 1-81
The TAB Function ..........cccccceivvvevinveeenriniienrenes e 1-86
Meandering ..........cccccvvviiiiiiiiiiiiiiinrnrrrrrrrreire e 1-89
Random NUMDETS ........cciiiiiiiiiieiiiriirieeienicnvincni e 1-89
Constellations ......cccoccvveeiiiiiiiiiiiiiirirrrrrre e 1-93
Little BOXES .......coovvviiiiiiiiiiiiiiiiciiieie e erenenreceecenrrreneereeaan 1-97
Subscripted Variables .........cccccccvviiiiiieniiiincireeen 1-97
Generalizing ........ccoovviiiiiiiiiiir e 1-101
Variable Subscripts .........cccoovieiiiiiiiiici . 1-102
SUDIOULINES ..ooeviiiiiiiiieeiiirirrrrrrrrree e e e e e s e se e ieasrens 1-105
Snoopy and the Red Baron .............................. eerreeer 1-107
NO OPIMION ...oeevniiiiiriieerrie et s 1-111
More CROICES ....cccevvrrrirriniiiiiririrereeeereereeenereenenerrrressees 1-113
Generation Gap .....c..coovvriveneeninne JOPTOPRR 1-115
REPIISE ..o 1-119
Kaleidoscope ............cccovvviviiiiiniiiccccreere e 1-123
COIN TOSSET ...ovevninernnirmiririiinerireceetirreeee e s ae e seearesessssssrans 1-123
DHCE oottt a s ee e s s 1-124
23 MatChes .....oooeveiveiiiiiiiiicriirrere e 1-125
Rounding a Number ...........cc.eeevvviiiiiiiiniinnreerecieeee, 1-127
Miscellaneous Math ....... et e e es e b 1-128
Say Something in Trigonometry .............ccccoivvriinnnnnennnee 1-130
Do It Yourself Functions .............cccoocovviininnnninniennn, . 1-131
Past and Future BASIC ..................ooooiiiiiiieee 1-132



CHAPTER 2 EDUSYSTEM §

Introduction ............cccociiiiiniiinn s 2-1
System COmMPONENtS ....coevecirurrirrinrieriinmiineiiineree e 2-2
System Expansion ................. TP 2-2

BASIC Language Capabilities ...............ccooevriviinininiinininnneinn 2-2
Line NUmMberS ........ccoveereririrvenes oo eaes 2-2
Single-Character PRINT Command .........cccovvcnveerriinennens 2-2
Multiple Statements Per Line ........ccoveervnenn, s 22
Immediate Mode .......coovvvvviivcnnnininnnnnen e e ereresens 2-3
INPUT Statement ........cccceveiviniieeniinererniionnnesennnieeesnennnees 2-4

Program Editing ...................oocoviiinnenn i, Fererrereneerarenens 2-5

EXTOr MEeSSAZES .....cccoovivvveiiiiiiriieeinirnreeinsiveeeesinrnneeenisnnsrsonsans 2-5

Operating Instructions | 2-6
Initial Installation ........ccccociveviiiieriniinecieee e cvrenns 2-6
Turning Off the System ..........ccceeeunnee. e et renreraaeesee 2-9
Restarting the System .........cccovvvriveereeeiiiiiinnnneeinencenecnnnnen 2-9
Reloading the Functions ............ccceeevveeiiinieeennniicnnicninnnneen, 2-9
Saving Programs on Paper Tape ........coccevviirinnroreecnnennns 2-9
Reloading Program From Paper Tape .........cccvvvierveenneenn. 2-10

CHAPTER 3 EDUSYSTEM 10

Introduction ............... e e bbb bbbt ereae s 3-1
System COompPoOnents .........occeeveeveviiiiimirirerieeerneeen 3-1
System EXpansion ........ccccccoviimiiiiii 3-2

BASIC Language Capabilities ..................cccocoveivrivenrennnenn, 3-2
Line NUMDETS ....ccoovriiiiiiiieiriiciiiieniininniirrenneenseraneessannneeenen 3-2
Single-Character PRINT Command ........ccccccvevivvvieeeinnennnn. 3-2
Multiple Statements per Line ........ccccceeceeeneveernenne e 3-2
Immediate Mode .......ccooiviiiiniiinieiniiiieecineenenn, e 3-3
INPUT Statement .......cccovevveeerrevrereeennenns eereereereerrrerrntr o, 3-4

Program Editing ............ et e st et aaaeeesesasssesens 3-6

Error Messages ...............coevevvrrvrvrennennnns rerererererere e e 3-7



Operating Instructions ...............c.coccevverneennn. e 3-8

Initial Installation ..........cccocoomiiiiinninnin, rererrraeeens 3-8
Turning Off the System ........ccccccmveiriiiii 3-10
Restarting the System .........ccocceeeviiiiniiiiiiiiiinan 3-11
Reloading the Functions .......c....ccccecvviviineiinnciiniiinennnn, 3-11
Saving Programs on Paper Tape ..........cccooieeeinnns e 3-11 -
Reloading Programs From Paper Tape ............. everrrera— 3-12

CHAPTER 4 EDUSYSTEM 15

Introduction ..................... e et ar et e e et ietra— et rertraas 4-1
System COMPONENLS ......covvrrreeierieeeriieeceiiiie e ereennes 4-1
BASIC Language Capabilities ....................ceevvrniiiinnnnn. 4-2
Entering Programs ........ccccoevvvviiieveeiiinivineeeeensnnienienenens 4-2
Using Random Numbers ........c.cccooriiiiiiiiiiiiiiiiiiniine, 4-2
Listing the Program ........cccccooviiiiniiiininiicieenininen, 4-3
Executing the Program ...........cccccooeviiiiiiiiiiniiiniinininiiniinnn 4-4
Privileged Control Commands ..............oooecivniniinnnninnnne, - 4-4
DECtape System Storage Capability ................... ceeeeenne 4-5
Advanced System Capabilities ......................oeecvreeennnnnnnn, 4-6
Running Very Long Programs ..........ccccccvvvververneenreneennnn, 4-6
Using a Data File .....c..ccccccoviiiiiiiiiinniiirvinee, 4-7
Character Variables and String Capability ...................... 4-8
Program Editing ...............cc..cccccoiiniimmiineneee e, 4-11
Error MeSSALES .........couovevviiiiiieiiiiireerrieneeriinereeeiineesennnesernnne 4-12
~ Program Loading EITOIS ........ccccovveivveiireeeriiireesree e s 4-12
Coding EITOIS ....cccoviiiiiniiiiiiiiciieitccee e 4-13
Program Logic Errors .......cccccccccoiiiiminiiniiininiinineennneeenne, 4-15
Operating Instructions .................cccccoeiviiiiic 4-16
Loading the System .........cccccooiiiniiiiiiiiinniiiiinreeecreeeen 4-16
Initialize the DECtape Unit ..........cccoveeeey..o. e 4-17
Initialize Computer Memory .........ccccocevvvivviiiinneennn 4-17
System Building Dialog ..........ccuvvvviiiiiiieiiiiiiieenieinne, veeenee 4-19
Diagnostic Messages During System Building ............ 4-23
Turning off the System ............cccceiiiiiiiiiees 4-25
. Restarting the System ...........cccoccociiiiiiiiiiniiiicens 4-25



Saviﬁg Programs on Paper Tape .........cccccovvvniiinnenininnnnns 4-25
Reloading Programs from Paper Tape ..............c...... e 4-26

CHAPTER 5 EDUSYSTEM 20

C IntroduCtion ...........ocoiiiiiiiiin e e ee e 5-1
System Components .........ccceeevieiiinieiniinnennneeiniinennieen, 5-1
System Expansion. ........c.coeeeeue. evereene e . 52

EduSystem 20 BASIC ..............cccoviiiiniiniiniic, 5-2
"~ Abbreviated Commands ..........ccoeceviiiiiininiiiininn, e 5-2
Multiple Statements per Line .........cocoevvvecevmrneeerireennenn, 5-4
Immediate Mode ........cceveeviiiiiiinireiiiiicsre e 5-5
INPUT Statement ........c.oocevvreireiiiimmiinininieeesionseseeessmesennees 5-6
COMMENLS ....evvveerirrireerecirirrereessieesssurnnesessesssssrsnnsesansssns 5-6
Subscripted Variables .........c.......... SO eeeneene 5-7
IF THEN Statement .....cccccveeevvivieriieriicrrmneiernieersonsennserenes 5-8
Truncation Function (FIX) .....ccccccmriiiiiiivernriinnnininnieenenn, 5-9
CHRS$ Function ......... eeieeeneeens vrrereens rereerrenrereeresssraseenienns 5-9
ON GOTO Statement ............ IR PR e 5-10
ON GOSUB Statement .........cccocvvvecieirrernsrcneneececessssnnneens 5-10
'RANDOMIZE Statement ........ccccooorverreecieeeeirsniuerensenneees 5-11
Error Messages ........c.cccccvvviiiiiiniiiiiiinieennine e sinens - 5-12
Program Editing ..................... e S 5-14
Operating INStruCoONS ............ccccoiiiinineeniiiiciiiinenniee s 5-16
Loading EduSystem 20 BASIC .......cccccccviveviiinriinerereennns 5-16
Initial DIalog .....ccccoviiiiiiiinnniiiiiiienniieeerinesseraesssenreseasienes 5-17
System Reconfiguration .......... Ceereettereestretrereetaneesbennraraees 5-21
System Shutdown ..........cccccevvinnnnns vetenisesanettninarserasruone 5-21
System Restart ................... e r e 5-21
Program Storing Procedures ..........cccccoveeriiniineerininieniennnns 5-21
Teletype Paper Tape Punch ............cccocevvvriieniieineninnnn, 5-22
High-Speed Punch .........cccocivniiinnnininiiiireenieeeeenennn 5-22
Program Reloading Procedures ..........ccccuvivinininncnnenn, 5-22
Teletype Paper Tape Reader .........cccccocevvieriiinneneeennn. 5-22

High-Speed Reader .........ccccceeveriennnn ereereetiesssesennns . 5-22



CHAPTER 6 EDUSYSTEM 25

Infroduction ..............cccceovvvvvivnniine e, rereresererannraras 6-1
System COMPONENLS ......eevvvrvrerrererrieeresiuereseersereessvenerenns 6-1
System EXpansion .....c..cccccelivvveeninineeninnneneresnnneenennnn veee 6-2

BASIC Language Capabilities ...................cccceeevivnrinrininnnn, 6-2
Abbreviated Commands ...........cccvvviiveernnninenrinineeneninen. 6-2
Multiple Statements per Line .........ccccovcvveeeveiiieeirenceeennnns 6-2
Immediate MOde .......ocovvveerviiiiiiirireieeiiirreereiicesseerreenenenns 6-3
INPUT Statement ...........cccovvevreevnvivenssrneniinsessasnessonersseenns 6-4
COMMENLS ...coviirrirrerriiiirnenrrerinrrerrnreessenessstressnresssrsasenees 6-4
IF THEN Statement ..........ccoccccvvvivveernnivienicninnesssnneesinnns 6-5
ON GOTO Statement ............c.coveeevrveniirnernrrnnnrcereeereessen 6-6
ON GOSUB Statement ..........ccccccveeererinnneeeronimmmmmmenieees 6-6
RANDOMIZE Statement ........c...cocvvvverecrnreeernsnncessnnrnenesas 6-7
Truncation Function (FIX) ......cccocevveviiiiiinnnininninnnnin, 6-8

Extended System Capabilities ..............cccccovvvvrrviinieenniinnnn 6-8
String Variables ........cccccccrviiiiriiiiiniecnicccne e 6-8

Reading String Data ..........ccccoevvvveeirinnrnciieecencinnnen, 6-8

CPrinting Srings ..o 6-9

Inputting Strings .......ccccccvvveirieiiiiiiiiiriirereeeerene 6-9
Line Input ......c..eooe... eeeereere et erree st as s bre e rasae s - 6-10
Working with Strings ........cocccoviiiiiiiiinciccnnnnneeenn, 6-11
String Functions .........ccccooveiivevicccnecinnnneennnnnnne . 6-11
. CHRS FUunction .......c.ccoovieviiinneennnnnencrenneeseessnnnee 6-11
MID Function ........cccccccomminnnininnniiinnnnnnin i, 6-12
LEN Function ........ccococcvieviiveinnnneneeccnininneennn 6-13
CAT Function ........ccccccceevveviiieninnerersisnssssssnnnnns conens 6-13
Program Storage/Retrieval .........c..cocvvevivccrrereiicneciinnnen, 6-13
Storing USer Programs .........c.cccoceveevverveenneenseenineennens 6-14
Retrieving User Programs ............cccccoeveeeerireecnenennns 6-14
Running Very Long Programs ..........c.ceceverirercvesensenene 6-15
Deleting Stored Programs ...........cccccvvvvereressuesesneessens 6-16
Using Public Library Programs ........cccoccceviivivnnnennnns 6-17
Data File Storage/Retrieval ........cccccvvviinereninnininininnnenn 6-18
Creating Data Files ........c.ooeeeveivincreneninnennreresnnssessen: 6-18
Reading Data Files ................ eererererterreerseraee e naany 6-20



Listing Data Files ........cccccceiiiniiiiiinienin e 6-21

Erasing Data Files .....ccccccoooiveiiiiiiiiiiiiiiiiiiiiiienecie, 6-22
Using Public Data Files .......cccccccciiiniiiiiinennnienniiinnn, 6-22
Error MesSages ..........cccc.ivievveciiiiinnneesinneesinneennneessnnneens revee - 6-26
Program Editing ..............ccccocceiniininiiiiiiccee e 6-28
Operating Instructions ....................ccooevviiieiiiiccinnieiineenenne, 6-31
Loading EduSystem 25 ............ccoiviviiiiniiiniinniieeceeneeeinnnns 6-31
Initialize the DECtape Unit .........c.cccveennennne e 6-31
Initialize Computer Memory .........c.ccoocvevevrunen. SR 6-31
Answer System Dialog ........ccccoevvieieiiiniiiniivencree e, 6-32
Establish Terminal Extensions ............cc.ccceveennen. e 6-35
Create Data File Tape .......cooccvvvveriiciiinnnnnnnnnn. SUSTR 6-37
Maintaining the Public Library ............. tereernesieeenngeen, . 0-38
Protecting DECtape Files .................... et 6-39
Storing Programs on Paper Tape .........cccccvvereennn. ceerrneee 6-39
Reloading Programs from Paper Tape .............. rveeroeeenens 039
System Reconfiguration ..........ccccccveeiiiiniciiiiiecenieeninnneee 6-40
System ShUtdown .........ccoovvvvirieiieiirnerienensieersiiererness 0740
System Restart ...........ccceeevernnne e R 6-40
CHAPTER 7 EDUSYSTEM 30
Introduction ......... S AP A |
System COMPONENLS ........ceeverirerrerverereereraerannnns i 71
System EXpansion ........ccccccceveriieieenieniiennns ererereeaeeaaeeaerens 72
BASIC Language Capabilities .......... SRR 7-2
Using Random Numbers ..........cccovviniiniiniiininniniens 71=3
Running Long Programs .................... e ——— e 15
Using a Data File .......cccovivviiriiereenriiireenreesreeee e eeeenns 7-6
Character Variables and String Capablllty ...................... 7-8
Using the Interactive Terminal-................c.ccccccovvvirererernnnnn 7-11
Entering a Program .............cccccooviiiviininniiiirieneninnenneneeee 7-11 -
Using Multiple Statements per Line ....... v s - 7-12
Listing the Program ................ccoveeeevnnee e et e aaeeaaeees 7-12
Executing the Program ...........ccocoveeinieiennicenniiieennnn, . 7-13
Loading a Card Program for Interactive Use ................. 7-13

XV



Storing Programs on Paper Tape ........ccccocceieiiinninnnnnn, 7-14

Reloading Programs from Paper Tape ... 7-14
Privileged Control Commands ...........cccoivereerenenneed W 7-14
Using the System Storage Capability ............coceeiiinene, 7-15
SAVE and UNSAVE Commands ........c.ccceveverriinnnne 7-15
CATALOG Command ..........ccccomivinnicmninniininniininns 7-16
LENGTH Command ..........cccoovmmmmnmminnieiiicinninn, 7-16
OLD Command .......cccoceeiveiiiiiiiirieeinienereninrnsesnssncessnenns 7-17
Returning to Batch Mode ...........cooovvviiiniiniiiiiiiniiiiiiinnnn e 1-17
- Program Editing .......ccccoccveiiennimvinniennine e . 71-17
Writing and Running Card Programs ........................ evereneee 1-18
Writing a Program on Cards .........c.ccovvvvveiiinniiiiinnennnn, 7-18
Line Numbers ......cccccccervvciiiverinnniiniinine e 7-19
BASIC Statements ............. SUUTORIN [T RPRRR 7-20
Statement Operand .........c.ccooevviviiiiiiinieniinee s 7-20
Summary of Card Marking Procedure .............ccouueenn. 7-22
Submitting a Program to be Run .........ccoecevveuveinniinenninnn, 7-23
The NEW Card .......cccovvvriviniviiniicicnininienen e 7-23
The LIST Card .......coocvreieviiiiiirieinienneinieeenns 7-24
The RUN Card .......ccccooviiririinnicen e 7-24
SUMMATY .cooiiiiiiiiiiiiiiciiieircierrirerer e sse s s es s e s 7-24
Getting the Results of a Computer Run ........c..eovvvurvneenn, 7-25
Using a Stored Program ..............ccoooevveeveveverenreneneaenn, v 126
Interacting with the Operator ..................... crrereereeanrrans 7-27
Editing and Rerunning a Program ........c.ccccecevvvvvenrvnnneen. 7-27
Inserting Messages in the Program Printout .................... 7-28
Sample PrOZIam ..........ocococoueiviemereriusnersssrsseesinsesseneses 7-28
Problem ...cccoocieiiiiiiiiiie ittt 7-28
ProCedures ......ccccceeeierieeiiiiiiiicinnmnnennreeracerieessesseennanas 7-28
Printed Results ........cccceeviiniiriniiiirncr e 7-29
Executing Card Programs ...............ccccccceervincinnneenrcrinnnnnes 7-29
Normal Batch Operation ...........ccccoerveiiivnnnerennnn. PR 7-29
Executing Card Programs Individually ............c.eccunee. . 7-30
Controlling a Batch RUn .......ccooevvvveveeeeeeeeieenennes reverees 131
BATCH Command ..........coccccevmiireiiiiinnnennisncnienesaronns 7-31
MAX Command ........c.cccceveiiieiinnnereeronineeensenreesnneenns 7-31
HEADER €Command ....... et er e aeeeeseaee s s e eianes 7-32 .
STACK Command .......ccccecerverrrieienineeeinneeennncinnennnnes 7-32
LOG Command .......cc.ccoovvvviiirriiiciiireenrenineraneeseseenenns - 7-33



Hands-On Interaction Versus Batch .......coovvvviivviiviinninne . ,7-33

Errors MesSsages ..........c.cccoovvviviinninecininininiiiiieeisnminniieiens 7-34
Batch Mode Program Loadmg Errors .....ccovvevvciiinininnnnn, 7-34
Interactive Mode Program Loading Errors ......c.cccceeuuens 7-35
Coding EITOIS ...ccoiviciiiiireiieiiiimnieensiiienessasssenecesesens 7-36
Program Logic Errors ........ccccccciivcinninninieninininicnn. 7-37

Operating Instructions ...............c.cccoovviiiinninniininne . 7-38
Loading EduSystem 30 ...........cciceniiiiiiniiinniniinnnn ~7-38

Initialize the DECAisk ......cooovvvirvenneen. et - 7-38
Initialize the DECtape Unit .........c.ccoovvveiniinninincnnnne 7-38
Initialize Computer Memeory ........ccccccevvrvvreerereivinnenneeens 7-39
System Building Dialog .................... e e ———— 7-39
Diagnostic Messages During System Bu11d .................. 7-43

+ Turning Off the System ..........ccivveeiiiiiiniinnece e 7-47
Turning On the SyStem .....c.ccocccvvrviirieeniniiieniniineeeeonnnes 7-48

- Restarting EduSystem 30 .......ccccoecviiiiirinnniiiiiinnenninnennnns - 7-48

DF32 or RFO8 DisK ........cccovinriiininininiiinisieeninni 7-48
TCO1 DECLAPE ....ccovvriiiiriiiieniiiierisiiiiessserieesessneees 7-49
- TD8E DECLaPe .......ovovvrrivieririiiirnieeeeieeiiirnnrereesannens v 71-49
Using Optional- Hardware ..........ccccccoreiieenniieeriieeinineeanne 7-50
LPO8 Line Printer ...... SRR E o4,
High-Speed Paper Tape Reader/Punch ...................... 7-50
Punched Card Input ......c.cocceviivvieiiricininireciiie e .7-51
Calculating Available Storage ...............c..ocovveiiviineerinnnnnn. 7-52

CHAPTER 8 EDUSYSTEM 40

Introduction ...............cccooviiiiiiiiniini e 8-1
System Components ........cccccvvvveeriiniiinieniniee . 8-1
System EXpansion ..........cccoeeeviciiiniiiinieioneenn, 8-2

BASIC Language Capabilities ..............c.ccocceeivinviennnnnnnn. 8-2
Advantages and Applications ...........ccceeeiiiiimniinieniiniinns 8-2

EduSystem 20 ..........ccccueennnee ereerersete s neres s rabt e e seans 8-2
EduSystem 30 ......ccccenviiiiiiniineciiiiccinrre e e 8-3

Language Summaries ...............ccccoiviviiiniiinnnnniineennn. . 84

BASIC Statements and Commands ........cccceeiiiiiiiniinnnnn 8-4

xvii



Batch Control Cards ........cccoccvvvviiniiiiiiiiininiinieee e, 8-8
BASIC Functions and Arithmetic Operations ................ 8-9
Error Message Summaries .................cccccceeiiiniiinien e, 8-10

EduSystem 20 .......cccocciiiiiiiriiii e - 8-10
EduSystem 30 .....ccoiiiiiiiiiii s 8-12
Batch Mode Program Loading Errors ............c.......... 8-12
Interactive Mode Program Loading Errors ................ 8-12
Coding EITOTS ....ccccvviviiieiiieiieiriieeeee e 8-13
Program Logic EITOTS .......ccccovivviiiiiiiiiieeeiniiiniieennens 8-15
Loading and Operating Instructions .....................cccceeerens 8-16
Initializing the DECAisk ........ccocceeeiiiniiniineeinniinnineneen, 8-16
Building EduSystem 40 on Disk .......cccocevveiiiniiniiinicnnnnn, 8-16
Starting EduSystem 40 .........ccocomvvviiiriineineeneniiiineee e 8-20
CHAPTER 9 EDUSYSTEM 50
Introduction ...............cccccceviiiinnnnn, SRR 9-1
User Programs .........c.cccovvvermmiiiicrirenieeennen e 9-2
User Files ....uuuviiiiiiiiiiiiiiiicnnnriccnenvininineennn s 9-2
System Configuration ..........cccccvcvveererererneernnriessinsmenreenenn 9-3
System EXpansion ..........cccccoceeevieniiinineonreenneennieesneneenns 94
EduSystem 50 Monitor ..................ccccccvvviiiiiiiiinnreneennnenen 9-4
Calling the MONItOT ......c.cvvvvuereeiuriiririrenereenerenerenneeeecennnne 9-4
Logging into EduSystem 50 .......cccccovniiiiiriiinniiiiicnnnnn, 9-6
Logging out of EduSystem 50 .......cccccccvveeimieenniiiinininnnnns 9-8
System Library Program Control ........cccccocvvcvvvviiinnicrnnenn, 9-10
Communication with Other Users .........ccccccccccvvernereeeen, 9-11
System Status Reports ..........cccooiimiiiiiiiceiiinniine 9-12
Resource Sharing .........cccccocceviiiiiniiininiieee, 9-12
Error MESSAZES ...ccovvereeeireiiiiiiciiieeiieeniiiiine e a e e 9-16
System Library Programs ..................cccocvvrvviviiiniiiiiiiinnenn, 9-17
General File Characteristics ...........oovviiviiirinnenneeecenenen, 9-18
Controlling the Execution of System Library Programs .... 9-20
Returning to the Monitor .........c.ccoveevvinieenineenniee i 9-21



7N (R e . 9:23

Truncation Function, FIX(X) ..................... ceerrrerreneeeenas 9-24
ON GOTO Statement ......... et st sttt e e e s e st rbnes 9-24
SLEEP Statement ...... reereereeraraans e uer e eerrr e errrr s 9-24
Comments ......c.cceeeerarinnnnnenns ettt raaetreereteeaaeseananan 9-25
Blank Lines .......ccoovvvervirenennas et eeereeresarsstersaennens 926
Multiple Statements per Line .........ccoceeeiiiniiieiniiiccieinnenn 9-26
Editing BASIC Statements ........ SRR UPURVOPRPRPN 9-26
Saving Compiled Programs ........cc.cccoevvnivveeiiiininnninnecnnnns 9-27
File ProteCtion ........ccocivriniiiiiiineiieeriseissesessereeesenens 9-27
Project-Programmer Numbers ..........ccoceveiivinnineennnn s 9-28
Restricted ACCOUNLS ....cceevviiivieeaviinicniiniveensireensesnneennnnns. 9-28
Catalog FOTMAL .......ccocvovirriririreienirirnsereserersesecnneseseennas 9-29
Strings in BASIC ...oovrennan reeereeereennrrabbe b bar et reraterreaes 9-29
Reading String Data ..................... e se e e 9-29 .
Printing Strings ......cccccceevvicinnrrieniinnnanns SRR 9-31
© Inputting Strings .......cccovvciiiviviiiieeen e e 9-31
Line INPUL ..oooiiiiiiiiiiieer i cssnsinrereee e sseennn s 9-32
Working with Strings .........ccoccvciviviiiiiniencneiniienee e 9-33
The CHANGE Statement ...........cocceeeeinvnveernenenneecrnnns 9-34
The CHRS Function ..........ccccivviveeniieninieneiinecenieee s 9-36
Program Chaining ..........cccovvvvvnninininninnnnnnenennn. ervreees . 9-36
Disk Data Files .......ccccccoriiiiiinninnnnennciireeeninneneanes e 9-38
File ReCOIAS ........iovviieiiiiiriniiiieeeceninneeee s ssenvneneseens 9-38
Opening a Disk File ........ccccoeeiviiineinnnnee. [T 9-40
Reading/Writing Disk Files ......cccccccoovviinniinnniieniinnnnnes 9-40
Closing/Deleting Disk Files .......cc.cccoovviiieeriiiinneerennnnne, 9-42
. DECtape Data Files .........ccccocviiniiiriiceenniiineeriecneeniennnnns 9-43
DECtape File Records ...... bieeraeaenertheterenttbbenernneraneesrans 9-43
Opening a DECtape File ........... et e e e e e renas 9-44
Reading/Writing DECtape Files .......ccocevveeinennennne 9-45
Closing DECtape Files ........ beeeetrrerenreenesereeseane ereeerereens 9-46
Using DECtape Data Files with OS/8 FORTRAN .... 9-46
Line Printer OULPUL .......ccevvviveiiiiiiniiee e e crinevneees 9-47
Paper Tape OULPUL ......o.cevivieirieririiiteccreeere s erecre s 9-47
Internal Data Codes ..., 9-48
Numeric Data ........ccocevievivicininiiicenee e 9-48
String Data ............ et e e e s a et e e e e e raaeseebarees 9-50
Error MeSSages .......cocvvvverreeiviniiniinnneeessnniisnieneeesseenosnens avene 9-50



FOCAL ...ttt 9-61

Using FOCAL Commands ........cccccoccvvviiiieriiniineenennnennn, 9-61
FOCAL OVerview ......ccccovvvvveevvenneecnnnnnens et e rie e rera 9-62
NUIMDELS .ovvviiriiireiiiicr et e ee e e ees e eeenses 9-63
Variable NAmES .....ccovveiiiiiieriiire e 9-63
Arithmetic Operations .......ccccccceeeeviiiienriiinnecnnnnnn. ereeene 9-64
Priority of Arithmetic Operations .............cccccceevirinnnne. 9-64
28 1163 a1 1§ - S 9-65
Input/Output Commands ........cccccevveerreerirriiecrnviiiinennnnnen 9-66
TYPE Command .......cccccoviviviviiiiiiirieeiiiiiiiiceneeereenennnn 9-66
ASK Command ...... eeereeeeerereeetetrra .. ————————————— wrvens 9-67
Text Output with ASK .......cccocoiiiiiiiiii, 9-68
Computational Command ............ccocevveeerveiiivereeresniinnene 9-68
SET Command ........cccccoeeeeeeivrieiniiianeennnnnnns v reeees 9-68
Control Commands ...........ccoeceerreerimriiiiiiniiierrrriiinn e 9-68
GO or GOTO Command ..........ccceeeevvvrvniiieininiieeirieeenaenn 9-68
IF Command ........coeveeivriieiiiiriiiiniceiien v eeevae e eeneans 9-69
If with Less Than Three Line Numbers .................. 9-69
Arithmetic Comparison with IF Command ............ 9-70
DO Command ...........coeiivmiiriiiiniiiievceeneerier e eeraes 9-71
Nested DO ....oovveeiiieieiece e eeanienss. 9271
RETURN Command ...........ccccceeeeerrnrennnnnn. reererereereen 9-72
QUIT Command ..........coocviivieeriiiiirriiiieiee e 9-72
FOR Command ..........cccooeeivveiiiiiiiieiirinrieine e eeeeneininns 9-72 -
FOR with @ DO ...oooeviiiiieiieeiccvieeeeeeeeeeevenveaae 9-73
Nested FOR and DO ........ccooevvvivivriiincriee e, 9-73
Subscripted Variables .........cccccoeiviniiirienneiniineeeeeninnnnes 9-74
COMMENT or CONTINUE Command .................... 9-74
Edit Commands ........ccoeeeeneiiviiieiiiniiiic i enaes 9-75
WRITE or WRITE ALL Command .....cccccccevvvvvvnnnin. 9-75
ERASE and ERASE ALL Commands ......c......ccccon..e. 9-76
MODIFY Command ........ccccceeeeeveieirvrniiiieeernrerrincenennanens 9-76
Library Commands .......c..cccccevireiiieiiienninriiireceeee e 9-78
LIBRARY SAVE ...t 9-78
LIBRARY CALL ...t 9-78
LIBRARY DELETE ........coovvviiiiieeccen e 9-79
LIBRARY LIST oo e 9-79
Error Messages with Library Commands .................... 9-79
Estimating Program Length ................ccccccciiiiiiinninnnn 9-80
DEbUZEING .cooeovvriiiiiieiinerereerireeeeeerc e 9-81



Using the Error Diagnostics .........ccoeceenseciniiinneinniennn, 0-81

Using the Trace Feature ........c.ccocorciinnnene. ceeereenrenn 9-82
FOCAL FUNCHIONS ...cccovvieeinreeicivnenesineeesinronnseeressseeesnrenes 9-82
Sine Function (FSIN) ...ccccvvoirevivmemeicemmvnreneerereerneeses 9-83
Cosine Function (FCOS) .vviriviiiiiiiiriirinneeivieenenns 9-83
Exponential Function (FEXP) .........ccocceiviiininnniinnn 9-84
Logarithm Function (FLOG) .................... et erana, 9-84
Arctangent Function (FATN) ....coocccovinvinenicnniennnn, 9-84
Square Root Function (FSQT) ...ccccoevviviiniiiiiiinnnnn 9-85
Absolute Value Function (FABS) .....cccoocovvvvinnnnnienne. 9-85
Sign Part Function (FSGN) .....cccoeviiiiniiiiiiiinnie 9-85
Integer Part Function (FITR) .....cccccveeeiiviiiiniiinnnnnnnn. 9-86
Random Number Function (FRAN) ........................ 9-86
FOCAL Output Operations ...........ccvevvuvivneerirsneerineeennn . 9-86
Control Characters ............ooeeereieeirciienciiinnirrereeerecreeeeees 9-87
Reading FOCAL Paper Tapes .................. et e aaa s 9-88
FORTRAN-D ...ttt neccnritcrie s seccirere s e s 9-95
Calling FORTRAN-D .......cccoovvimimisivinernrererererereesienennnns 9-95
Using FORTRAN-D .......cccooimiiiiiiiiiiiiiienecciieeeee e 9-96
-~ Line Format ........ccccoovviviiniiiiiniieniiicieeciiiniecine 9-97
Statement NUmMDEIS .......cccovivmiiiiniiiiiiiiicniciie 9-98
Statement Continuation Character .............cccceeveeniee. 9-98
FORTRAN Statements ........c.ccoceveeveeereersoniieeenresiorannnnnn 9-99
Comment Statements ...........coeeeevereveenenn Ceeeerreerre e 9-99
Character Set ........ecevveiiciieriiniiiiniriirireiie e 9-100
COnNSLANLS ..oveeiviiiiriiiriiirre et se e e 9-100
Integer Constants .......ccccccceeveriecreneneeennnn. teerreans 9-100
Real Constants ............ccoeevveeveemvveeneeereerenenes SUUTTTR 9-101
Fixed and Floating-Point Representation ................ 9-101
Variables ......ccciiiiiiieeiiiiiiiiiieereeetnnneeeeeerannieneseererenn e 9-102
Integer Variables .........ccccccrvveiiiciieiceninicciniiiieeeen, - 9-103
Real Variables ........ccccovivveviiiieieennieeeiiiieneneeenenennenns 9-103
Scalar Variables ........ccccovverreiimieieriiieeeiceree e 9-103
Array Variables ............. PP 9-104
DIMENSION Statement ..........c.ccceeeeveviiniinennne. e 9-104
FORTRAN Arithmetic .......... S SOPROPRRRPY 9-105
Arithmetic Operators ........ccccevvvvvreereerreciiiveneeeeeesernnnnes 9-105
Use of Parentheses .......cccooccevervevivineeeniieeeinieenneannnn, 9-106
Arithmetic EXpressions ...........iceeeveviiinennnineeeonnn. 9-107



Arithmetic StatemMENtS ....c.ovvvvivreeriirerreeeeersrersesseseeeesens 9-108

Multiple Replacement .........ccccccvvvimvvnvriccreeinnennnne 9-109
Mode Conversion .........cccovceeevnerecnrennnnn, preererenes e 9-110
FUnctions ........ccccoovveeniiiiniinnniienciiie s esvnssssnae e 9-110
Program COntrol ..........c.ceevmvevennessennsesisenssesssnnens 9-111
END Statement .........ccooccceeeieiiiiiinriiniieenninnerensneseeens 9-111
STOP Statement .........c.cccceeviiniivirninineennrineecenivereesenens 9-111
PAUSE Statement ........cccceocvvveiniineeiniieeenieneesienenenes 9-112
GO TO Statement .........cccceevvrveeenrnneceriniieresnnieeesonnnns 9-112
Example of Integer Summation ........c.cccccevveververeeeenn. 9-113
IF Statement .........coovvvviieieiiireiiiiin v 9-113
DO LOOPS wreeiiiiiiiieieiiriieieten e sriererae e s sierenne e enaes . 9-115
CONTINUE Statement ........ccc.occcvvrvrneeennnereereeneennrns 9-117
Computed GO TO ..o 9-118
FORTRAN Input/Output .........covvrveereiiiiiiiieeeeririiinenen 9-118
Data Formats ..........coocovciiimmiiiiiniiriiiniiiee s 9-119
ASCII Coded Data ........cccoeccvvereeniiireeiieeeriiieeees 9-119
Binary Coded Data ......cccccceevvmiiiininirciciecinen, 9-119
Input/Output Statements ........cccceevvieeieeeiriccinieeecrnnnns 9-119
ACCEPT and TYPE Statements ..........cccocceererennnns 9-120
READ and WRITE Statements ........c.....ccccvevernenns 9-121
Variable Specification in I/O Statements .................... 9-121
FORMAT Statement ........cccccceeviiveierroieeciinennnnnnnienenes 9-123
The A Format Specification .......c.cccccvevevieiiinicrenninnnns 9-124
Input Formats ..........cccoovvvvvveviinicriiirniniee e SO 9-125
Integer Values—the I Format ...............ooovvveeiiinnnns 9-125
Real Values—the E Format ........c...cccoceniniinnnnnne 9-126
Output Formats ................... et e s - 9-126
E and I Formats .......cccoooviriieecriireeninniiniinennnrcinnes 9-126
Format Control Specifications ..........cccoeeeeeerieicninnnnns 9-127 -
Hollerith Qutput ..........cccocvveeiiiiriiiniineee s 9-127
Implementation NOES .......ccoocviviiiriniiiiiiinnnicineneee .. 9-128
Double SUDSCIIPLS ....cccoeiiiviiiiiiniriiirecrree e see s sesnnnens 9-128
Substatement Feature ..........cccoccvveeiieiiieicninen i, 9-129
Error ChecKing .......cooooiiiviiiiiiiiiiiriirenierien e 9-130
FORTRAN-D Source Program Restrictions .............. 9-131
FORTRAN-D Compiler and Operating System
Core Map ..ocoovviiriiiicii s 9-131
FORTRAN-D Error Diagnostics ............ooovvnvvrnnnenennnee 9-133
Compiler Compilation Diagnostics .........cc.cevveevininninnen 9-133

xxii



Compiler Systems Diagnostics ............ eveereeeens e 9-135

Operating System Diagnostics ........... et 9-136
PAL=D ASSEMDICE ...........ovvrreriinniscieinsiisienssssseesenenes 9-137
Introduction ..........cccccooiniiiniiiinnnn, R 9-137
"EduSystem 50 PAL-D .....c.cccoooeevrircnerninrerrniesnsersnenennes. 9-137
Example of a PAL-D Program ..........ccccceivviiiiineenrennnnns 9-138
Utility Programs ...................co........ e et 9-145
Symbolic Editor ........ccccoeevviiiniiieeriinininnnnen et eraaaeaa 9-145
Loader .......ccocovvveviieviiiesivninnnennnnn, e eererr e aaares ceenes 9-149
Octal Debugging Technlque ............................................ 9-150
Catalog (CAT) ..ccvvvvivviiiiniieiineneneenn, et e era e raaaeen 9-153
System Status (SYSTAT) ....... e et et 9-154
Programs for Paper Tape and DECtape Control ................ 9-157
PIP (Peripheral Interchange Program) .........ccocceievunennn. 9-157
PIP Conventions .......cccccceevveeeeneerennnnnnn. erreetrerrareeaesaeeans 9-157
Paper Tape to Disk Transfers .......ccccccovvvvrvevieiieinnnnnen, 9-157
Disk to Paper Tape Transfers ..........cccoveveveeiirivnnnnnn. 9-158

High-Speed Reader/Punch Assignments .................... 9-158
BIN Format File Transfers .........ccccooccvvvvvviniivnenineenn, 9-159
Moving Disk Files .......... Feererrrrer et raterrtaaaaeaes . 9-159
Deleting Disk Files .......c.ccccocvvienerenveniivennnrennne. R w 9-160
BASIC File Transfers .........cccccovvivivviinniiieeeenniiee e 9-160
SAVE Format File Transfers .......ccccccccceevniiieniincnneen. 9-160
COPY Program .......ccceceeeiviiiiiiiiiiiiiiisiecseeiecesiecesvvsnvnnens 9-161
Using and Calling COPY .......cococcvvvmvriivesinniseernisnenas 9-161
Loading Files from DECtape ........c..ccccevvvivrnrveennneenns 9-162
Saving Disk Files on DECtape ......ccccocovveveeiniennerennnen. 9-163
© Listing DIr€CtOri€s ........ccoevvvvrierivereirevinireesreerseeseesneenn. 9-163
+ Deleting Files ........cocccvviiiieiiiiiniiiiiiieeeee s ceeennnneen S 9-164

. Deleting all Existing Files on a Device ...........covvneee. 9-164
. Example of COPY UsSage ....cccccvvvvieeiiviinneeiienneinenn, ¢ 9-165
. Advaneed Monitor Commands ...................cccooeviviniinnnnin, . 9-167
INtroduction .........ccceveviviiiiiiiiiie e s - 9-167
Control of User Programs ..........cccccoeevrvveeeevrrecresnienneennns 9-168
Defining Disk Files ......ccciviiiiiiiiiiiiiiiicciccenierraeveneneees 9-169
Creating a Disk File .......ccoovviiviiiie i, 9-170
Opening and Closing a File .......c.cccoevivnviiiiiiiiininreciiiinns 9-170
Extendlng, Reducing, and Renaming a DlSk Flle ...... 9-171

XXiii



Protection COUES ....icvveivreiereerieeerirerenerersserneseenessenseees 9-171

Error Conditions ........ccccccovvvvevnnieerninennsnieensvnnnninnine. 9-173
Saving and Restoring User Programs .............c..ccovevvveeen. 9-174
Utility Commands .......c.cocccveeiviivnreiniirenesnee e 9-177

Writing Assembly Language Programs ...............cccceeuvven.. 9-179
INtroduction ........cccoceiiiiiiiiiiiree 9-179
Console I/O e reerr e 9-180
Files and Disk I/0 ........ e, T ferrreernriraane 9-183
Assignable Devices ............ feerereereteeeetaaeaeearraeanaaarrbataran 9-190
Program Control ............ Ceesnerensanes reerereeeeneenneraneensienenes. 92195
Program and System Status .........cccccovvviinvieeiiiorivienennnn. 9-197
PDP-8 Compatibility ........ccccoevuvirieinieinrineeiiieeeeeniieee s 9-200

Storage Alocation ...............cccooevvviiiiiiii e 9-205
Storage Map ...cccceeiviiiiiii 9-205
File DIir€ctories ......c..ccoevvriiiveiiiiiiiiriecireceee e resseesneanes 9-205
Project-Programmer Numbers .........c.ccccceevvicneiennnnnn. e 9-206

APPENDICES
Appendix A Read-In Mode Loader .......c.ccoevvinviiiniens. A-1
Appendix B Character Codes ..... e et e e B-1

Appendix C EduSystem 50 Monitor Command Summary C-1
Appendix D EduTest ......c.oovninrniinnnnnn, ereereeeet e D-1

LIST OF TABLES

Table 1-1  BASIC Statements ....... rrereee e e e 1-134
Table 1-2  BASIC Edit and Control Commands ........ 1-139
Table 1-3. BASIC Functions and Arithmetic Operations 1-144
Table 2-1  EduSystem 5 BASIC Statement Summary 2-11
Table 3-1  EduSystem 10 BASIC Statement Summary 3-5
Table 4-1 EduSystem 15 BASIC Statement Summary 4-26
Table 5-1 EduSystem 20 BASIC Statement Summary 5-2
Table 5-2  EduSystem 20 BASIC Function Summary 5-3
Table 5-3  EduSystem 20 Error Messages ......... vereeenne 5-12
Table 6-1  EduSystem 25 BASIC Statement Summary 6-23

XXiv



Table
Table
Table
Table
Table
Table
Table
Table
‘Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

“Table
Table
Table
Table
Table

Table
Table

Table
Table
Table
Table
Table
Table
- Table
Table
Table
Table
Table

9-13

9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24

~ EduSystem 25 BASIC Function Summary 6-26

EduSystem 25 Error Messages ............ e 6-26
EduSystem 30 BASIC Statement Summary 7-2
Statements ......cccceeveeriiiiiiiennnnieee e eeeens 8-4
Edit and Control Commands ...................... 8-6
Batch Control Cards .............ccooveverevervennnn. .. 88

- Functions .......c..ccoeeeiiiiniiconiiniinnnnes AR 8-9
Arithmetic Operations .............c.e..... N 8-10
EduSystem 20 Error Messages .................. 8-10
Batch Mode Program Loading Errors ........ 8-12
Interactive Mode Program Load.ng Errors 8-13
Coding EITors .......cc.coovvviironiininrieniiineenne 8-14
Program Logic Errors ......c.cccoeccceveannenenn, 8-15

- LOGOUT Options .........ccoeeererennnes e 9-10
Monitor Error Messages ......cccccvveeeeneennn. .. 9-16
Internal Data Codes ........c.ccoevevvicreriiiieennnne, 9-49
BASIC Error Messages .........coovvuviviiieennns 9-50
Non-Fatal Error Messages ...........ccce.u.. veeee. 9255
EduSystem 50 BASIC Language Summary .. 9-56_
FOCAL Command Summary ........cocoeeeee. 9-89
FOCAL Functions .......cccccccevvvuuieeeeeenennnnnn 9-92
FOCAL Error Messages .........cccevvvvvvveernnen, 9-93
FORTRAN-D Statement Summary ............ 9-132
FORTRAN-D Compiler Compilation
Diagnostics ......ceeevieieiriiriiriiiiiiiiniireeeeiaeeaainn 9-134
FORTRAN-D Compiler Systems
Diagnostics ......ccoovvuieeiiimniiceiiniiiiee e, 9-135
FORTRAN-D Operating System
Diagnostics ........ccocvrruiiiiiiiiiiiiiiiireeeeenieeneen 9-136
EduSystem 50 Symbol List ...........ccceuvnnee. 9-139
PAL-D Error Diagnostics .................. ceveienens - 9-142
- Symbolic Editor Operations Summary ........ 9-146
- EDIT Command Summary ..........ccccoennnen. 9-147
ODT Command Summary .........ccccceeeeeernnnns 0-151
PIP Option SUummary ..........c.cococveevvvvveennenens 9-161
COPY Option Summary .........cccccovveninnnnnne 9-165
Monitor Program Control Commands ........ 9-169
Monitor Utility Commands ........ [ETTPP 9-178
EduSystem 50 Internal Character Set ........ 9-192

EduSystem 50 IOT Instruction Summary .... 9-202

XXV



Table A-1
Table D-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

RIM Loader Programs ...........cccccevviveeeeennnnn. A-1
EduTest Error Messages ...... SR crrreees D-10
LIST OF ILLUSTRATIONS

System Building Dialog ........ccocoviniiiieininncne. 4-20
EduSystem 30 BASIC Card ........cccccvveveeennnn. 7-18
Line Number Example ...........cccoveveierinnnne 7-19
Statement Example ... R ... 720
EduSystem 30 BASIC Template .................. 7-21
Marking the Statement Operand .................... 7-22
Completed BASIC Cards .......cccccoeevvivinnnen, 7-23
BASIC Program Deck .......cccccceevviniiinninnninn, 7-25
System Building Dialog .......cccccocceevviiniinnnnnn. 7-44
Building EduSystem 40 ................. ererereerene 8-18
Starting EduSystem 40 ............ccooeiviniiinnnn 8-21
Number Representation ...........cccoccovvvvnennnene. 9-102
Program FIOW .......cocovvvvviiiiiiiiciiiiiiiereeneeeeeen, 9-112
Legal and Illegal Nesting Techniques ............ 9-116
Program Branching in DO Loops ................ 9-117
EduSystem 50 Storage Map .........ccccvvvvvnnee 9-205
File Directories ...........ccccivcvivieerieeenseeinennnnas 9-206
Loading the RIM Loader .........ccccceevveennnennnn. A-2
Checking the RIM Loader .............cooevvvvevennns A-3

XXvi



CNCoCEr
teach gourseIF
- basic

INTRODUCTION

BASIC! is a conversational computer language which enables a
human to carry on a “dialog” with a computer. We will “talk” to
the computer by using a Teletype? like the one shown below. Your
‘terminal may be an alphanumeric cathode ray tube (CRT)
DECterminal or a high-speed DECwriter. Operations with these
terminals are, in most cases, identical with the Teletype, so we * .
will only discuss the Teletype here.

OFF

REL.

B. SP. .

ON

START —
STOP—
FREE~

OFF
LINe () LocaL

1 BASIC (Beginner’s All-purpose Symbolic Instruction Code) is a trade-
mark reglstered by the Trustees of Dartmouth College.
2 Teletype is a registered trademark of the Teletype Corporation.

1-1




Using the Teletype, we type messages to the computer, request-
ing it to carry out operations. The computer performs the required
operations and prints the results on the same Teletype. If we
make certain mistakes or if we ask the computer to do something
‘it cannot do, it may print an error message. For example, if we type

DO THE HOMEWORK ON PAGE 257 )
(and press the RETURN key)
WHAT?

the computer may respond by printing a message such as
WHAT?

The actual response depends on the EduSystem that you are
using.

If you wish to use the computer, you must:

Learn what the computer can do and what the computer can-
not do.

Learn a language, such as BASIC, so that you can instruct
the computer to do things within its capability.

Communcate with the computer by means of the Teletype.

We will begin by assuming that you know little or nothing about
computers and will try to lead you through the following four
levels of “know-how.”

1. You know nothing about computers. If you wish to use a
computer to help you solve a problem, you describe the
problem to Susan. Susan uses the computer and returns the
answer to you.

2. You can operate the computer (Teletype), using a pro-
gram supplied by another person. The program, however,
is gibberish to you—incomprehensible!

3. You can read and understand programs written by others
but are unable to write original programs of your own.

4. Computerland is yours! You can invent your own original
problem-solving procedures, write them in the BASIC lan-
guage, check them out on the computer, correct them (“de-
bug” them) if necessary, and obtain the desired results.

This chapter is designed to help you learn the fundamentals of
BASIC. Many examples and exercises are included to aid you in
discovering the elements of the BASIC language.

1-2



Teletype Keyboard | :
BASIC programs must be written using the symbols that appear

on the Teletype keyboard. A diagram of the Teletype keyboard
is shown below:

DOOOOOOOOOOO®
®O00O®POO0EOO®®
DOOOOA®OOOAO®O®
HOOOOOOOOOD ™

: L |

SPACE

No other symbols may be used. For example, the following
symbols are commonly used in mathematics, but may not appear
in a BASIC program because they are not on the keyboard.

a B .2 S -~ om $ g =

On the keyboard diagram, locate the keys with the following
symbols:

Lettersg: ABCDEFGHI JKLMUN
CIeIS: o P QRS TUVWXY 2

Digits: 1 2 3 456178 90
Special: , « 7 -

To type any of the above symbols, simply press the appropriate
key. For example, to type the letter S, press the key on which S

appears.
1-3



Here is another copy of the keyboard chart so you won’t have
to turn the page back.

@é@@ee@éé?éé@
=lelelclclclelelelelelele
RO0®OOOOOOOOE®E
HOOOOOOOOODE)

1 sehet ] \

Locate the SHIFT keys. There are two of them, located at the
left and right ends of the bottom row of keys, When we refer to a-
character that is typed while the SHIFT key is held down, we will
show it as SHIFT/Character. For example, if we want you to type
a « (back arrow) we will tell you to type SHIFT/O.

We have drawn arrows to call your attention to the keys with
the following special characters.

) k= o~ ot 4

To type any of these characters, you must hold either SHIFT
key down and press the key that has the desired character,

The space bar looks like this: seace ]

Use it to insert spaces as you type.
Locate the RETURN key: .

Now you are ready to start “talking” to the computer.

1-4



- GETTING ACQUAINTED WITH BASIC

Imagine that we are seated at the teletype and that (perhaps
with some help) we have attracted the attention of the computer.
We will begin with some absurdly simple programs.

»

If you try these programs,; remember to press the
RETURN key at the end of each line that you type. If
you make a mistake, the computer may printan error
message. Ignore it—retype the line. o

Here we go!

SCR First, we type SCR and press the
RETURN key. The computer -
SCRatches (erases) any old pro-
gram in its memory.

18 PRINT 7 Then we enter our BASIC program,
99 END consisting of two statements. Each
statement is on a separate line. The
- program is in the computer’s mem-

ory.

RUN B We tell the computer to RUN the
7 ' program, It does and prints the re-
' sult, 7.

The BASIC program is shown é.gain below.

10 PRINT" 7
99 END

It consists of two statements, a PRINT statement and an END '
statement. Each statement begins with a line number. Read on—
it gets better, ‘

1-5



Let’s do something a little more exciting.

SCR First, we SCRatch the preceding
program,

14 PRINT 3+4 And then enter a new pfogram.

99 END This program also has two state-
ments.

RUN We tell the computer to RUN the
program.

7 It does. The result is 7 since 3 -+
4=17.

20 PRINT 3-4 Let’s add three more statements.

30 PRINT 3%4 We use 20, 30 and 40 as line num-

40 PRINT 374 bers.

40 PRINT 374

LIST | Then we type LIST and press the
RETURN Kkey.

10 PRINT 3+4 The computer LISTs the program

20 PRINT 3-4 in its memory. Note that there are

30 PRINT 3*4 - five statements and that they are

40 PRINT 374 listed in li b d

99 END isted in line number order.

RUN O.K,, let’s RUN the program.

7 Here are the four results, one for
-1 each of the first four statements in
: ls 5 the program.

Exercise 1. Examine the preceding program, then write the sym-
bol that is used to tell the computer to perform each of the follow-
ing arithmetic operations.

OPERATION SYMBOL

Addition
Subtraction
Multiplication

Division

1-6



Remember these things.

WE TYPE TO TELL THE COMPUTER TO
SCR SQRatch (erase) the program in memory.
RUN RUN the program in memory.
LIST LIST the program in memory. .

The statement

18 PRINT 3+4

tells the computer to evaluate the numerical expression 3 + 4 and
print the result. In this case, the resultis 7.

The statement

30 PRINT 3%4

tells the computer to evaluate the numerical expression 3*4 (3
times 4) and print the result. This time, the result is 12. '

The statement

99 END

simply marks the end of the program. Every BASIC program
must have an END statement.

Each statement begins with a line number. A line number may
be any counting number in the range:

1< line‘number < 2046 .

Larger EduSystems permit line numbers to 9999, but 2046 is
plenty for most programs.

Instead of numbering statements with consecutive counting num-
bers (1, 2, 3, etc.) we use 10, 20, 30 and so on. This gives us
room to insert a new statement between two old statements. For
example, if we had already entered a program using 10, 20, 30,
40 and 99 as line numbers, we could insert a statement between
statement 20 and statement 30 by using 25 as the line number
of the new statement,

1-7



Exercise 2. Do not use the computer to do this exercise. Instead,
pretend that you are the computer. We have entered the following
program into your memory and told you to RUN the program.

Do

19
29
30
40
99
RUN

it

PRINT
PRINT
PRINT
PRINT
END

12+3
12=-3
123
1273

We entered this program, consisting
of five statements, into your mem-
ory.

O.K., computer, RUN the program. .
Indicate your answer by filling in
the blanks.

‘Exercisc 3. You are still the compuer. We will add a statement
to the program we entered in the preceding exercise.

58 PRINT 2x%3+4

LIST

RUN-

We add this statement.

LIST the program in your memory.

Now RUN the program.

1-8



Numerical Expressions

The computer prints the value of a numerical expression as a
decimal numeral. The following table shows examples of computer-
printed values of numerical expressions.

EXPRESSION VALUE

REMARKS

3.14
—123

2+344
5—3+4
2%3%4
2*3/4

2*3 4+ 4
24 3%4
35 — 2*3
1/2 + 3
24+ 3/4
24/2*3

1/(2 +3)
(2+3)/4
24/(2*3)

1/3
2/3
100/3
200/3

3.14
—123

9
6

24
1.5

10
14
29
3.5
2.75
36

2
1.25
4

3333333
6666667
33.33333
66.66667

A decimal numeral is a

decimal numeral

2+3+4=5+4=9

5—3+4=2+4=6 NOTE 1..
2%3%4 = 6*4 = 24

2*3/4=6/4=15

2%3 4+ 4=6+4=10
2+43%%=2412=14
35—-2%3=35—-6=29  NOTE 2.
1/24+3=.5+3=35
24+3/4=2+.75=275

24/2%3 = 123 = 36
/Q2+3)=1/5=.2
(2+3)/4=5/4=125 NOTE 3.

24/(2%3) = 24/6 =4

Value rounded to seven
significant digits.

NOTES

1. The operations are done in left to right

2.

- order,

All multiplications and/or divisions are done
before any additions and/or subtractions.
To evaluate 24/2*3 the computer first div-
ides 24 by 2, obtaining 12. Then it multiplies
12 by 3, obtaining 36.

. We use parentheses to modify the order in

which operations are done.

1-9



Your turn—but let someone else use the computer while you
work the following exercises.

Exercise 4. You are the guest star on the television program
“Computer for a Day.” To win the grand prize (7 microbucks)
you must evaluate each of the following numerical expressions. Go!

(1) 3*4 +5 (2) 3 +4%5
(3) 3/4+5 (4) 3+4/5
(5) 3*4/5 (6) 3/4*5
(7) 3*(4+5) (8) 3/(4*5)
(9) 3/(4+5) (10) 3/4/5

Use your computer to check the answers. Did you win the prize?
If not you can still win by finding a computer that evaluates nu-
merical expressions the same way you do. Good luck!

Exercise 5. Complete the following table showing BASIC ex-
pressions that correspond to given mathematical expressions.

MATHEMATICAL EXPRESSION BASIC EXPRESSION

(1)2xX34+4+5 2*3 + 4/5
(2) 37(43 —19) 37*(43 — 19)

(3)3.14x5x%5

4) _2
3+4

(5) 73 — 25
29 + 53

Back to the computer to check your answers.

1-10



The PRINT Statement
Previously, we used PRINT statements of the following form: .
n PRINT e

‘where. n = line number
e = numerical expression .

For example:

10 PRINT 3+4

1

. line number -

- PRINT

numerical expression -

A PRINT statement of this form directs the computer to com-
pute the value (simplest form) of the numerical expression e and
to print the result on the Teletype.

The following program illustrates a PRINT statement that has
more than one numerical expression.

SCR " As usual, we first SCRatch any left-
over program.

10 PRINT 3+4,3-4, 3%x4,3/74 Next, we enter the program. The

99 END PRINT statement includes. four ex-
pressions.

RUN - Let’s RUN the program.

7 -1 12 «75

Since the PRINT statement has four expressions, the computer
prints four results.

1-11



A more general form of the PRINT statement is shown below.

n  PRINT - list of expressions

For example,

10 PRINT 344, 34, 3%4, 374

line number ——1 T

PRINT

list of expressions

Remember these things:
® A PRINT statement can contain more than one expression.

® One result is printed for each expression in a PRINT state-
ment.

e If a PRINT statement contains more than one expression,
then the expressions must be separated by commas.

® Up to five (5) results per line are printed. If there are more
than five expressions in the PRINT statement, additional
results are automatically printed on the next line.

For example, the statement

10 PRINT 344, 3~4, 3%4, 374, 3%4%5, 3%x4/5, 374%5

will cause the computer to print the following results.

7 -1 12 «75 60
2.4 3.75

1-12



Exercise 6. Do not use the computer for this exercise. Instead,
pretend that you are the computer and RUN each of the follow-
ing programs.

10 PRINT 1,253,455, 657:8,9,10,11,12
99 END

RUN : ¥

10 PRINT 1%2,2%3, 3%&4, 4%5, 5% 65 6%Ts TkBs 8%9
99 END

RUN

Exercise 7. Each new PRINT statement causes a new line to
“be printed. RUN this program.

10 PRINT 1, 1%1
20 PRINT 2,242
30 PRINT 3, 3%3
40 PRINT 4, 4%4 Once again . . .

56 PRINT 5, 5%5 'Each new PRINT statement

60 PRINT 6s6%6 : S
76 PRINT 7. 7%7 causes a new line to be printed.

99 END
RUN

1-13



If we use a semicolon (;) instead of a comma to separate ex-
pressions, the results will be packed more closely together. For
example, try this one on your computer.

SCR Goodbye, old program!

10 PRINT 3+4;33-433%x433/74 Note the semicolons (;).
99 END

Watch the spacing in the results be-

low.
RUN The results are “packed” more
7 -1 12 .75 closely together than if we had

used commas,

When we use semicolons to separate expressions, the computer
will print up to 17 results per line. The actual number, however,
depends on the number of digits that it must print. For example,

10 PRINT 132333435565 75859510511312;513514315516517;18319
99 END
RUN

!l 2 3 4 5 6 7 8 9 180 11 12 13 14 15 16 17
18 19

The first 17 results were printed on
the first line — the 18th result on
the second line.

Let’s see what happens as the numbers get larger.

16 PRINT 1312512351234312345;12345€;1234567
99 END

RUN
1 12 123 1234 12345 123456 1.234567E+06

This is a floating point numeral. We describe floating point nu-
merals in the next section. '

1-14



Remember these things:

e If a PRINT expression.contains more than one expression,
then the expressions must be separated by commas (,) or
semicolons (;).

o If commas are used for spacing, up to five results per line
are printed. If semicolons are used, the results are “packed”
more closely together. The actual spacing depends on the
size of the numbers mvolved

e If you want to find out more about spacing — experiment!

EXPERIMENT!

Floating Point Numerals

Floating point notation is similar to smentlﬁc notation. The com-
puter does it this way.

160 PRINT 10 In the program each number is ex-
20 PRINT 100

: (13 ” [ 9
23 PRINT 1000 pressed in “standard” or “common

49 PRINT 10000 notation.
5@ PRINT 100000 ‘

60 PRINT 1000000

70 PRINT 10000000

99 END

RUN ' The numerals are printed in stan-
10 _ . dard notation, exactly as they are
100 written in the PRINT statements.
1000 o
10000
100000 . .
1.000000E+06 But these are printed as floating
1.000000E+07 . point numerals. '

1-15



The following examples show the same number expressed in
“standard” notation, scientific notation and floating point notation.
If a number is larger than 6 digits, its numeral will be printed in
floating point notation.

STANDARD SCIENTIFIC FLOATING

NOTATION NOTATION POINT
1000000 1 x 108 I.OOOOOOE + 06
10000000 1 x 107 1.000000E + 07
160000000 1 X108 1.000000E + 08
1000000000000 1 % 1012 1.000000E + 12

Let’s see how BASIC handles small numbers.

18 PRINT .1
20 PRINT .001
30 PRINT .000000001

99 END

RUN
o1
1.000000E-03 If a number has more than 2 deci-
1.000069E-09 mal places, its numeral is printed

in floating point notation.

Exercise 8. Complete the following table showing the numerals
in scientific: notation and standard notation corresponding to nu-
merals given in floating point notation as they might be printed
by the computer.

FLOATING SCIENTIFIC STANDARD
POINT NOTATION NOTATION
1.00000E + 09 1% 10 1000000000
1.00000E ~— 09 1 X 10-9 .000000001
2.00000E +- 09 2 X 100 2000000000
2.00000E — 08 2 X 10-8
3.00000E + 12
6.02000E + 23 6.02 X 1028
1.23456E — 16 .000000000000000123456

1-16



Printing Messages |
The PRINT statement in the following program directs the com-

puter to print a message.

The message is enclosed in quotation marks.

10 PRINT "1 LIKE PEOPLE"

. 99 END

RUN Let’s RUN the program.

1 LIKE PEOPLE The computer types the message.

Here is another example.

18 PRINT "GOOD MORNING"
99 END

RUN -

GOOD MORNING

Unfortunately, if you RUN this program in the afternoon, the
computer will still print

GOOD MORNING

The next example illustrates the difference between a numerical
expression and the value of a numerical expression.

12 PRINT "'3+4=", 3+4

99 END : This program directs the computer
RUN. ; a g
4 4e 7 to print the message “3 + 4 =

followed by the value of 3 + 4.
READY.

1-17



If you didn’t like the spacing in the printed results, you can use
a semicolon instead of a comma to control the spacing.

10 PRINT "3+4:="33+4

99 END _ .
"RUN Semicolon spacing.

3+4=7

Exercise 9. You be the computer. RUN the following program
without using the computer—you do the work and fill in the
blanks.

16 PRINT "IF 1 WERE. A COMPUTER,"

2@ PRINT "I'D DO ARITHMETIC LIKE THIS"
30 PRINT "3+4="33+4

40 PRINT "3-4="33-4

S0 PRINT "3#4=";3%4

6@ PRINT "3/4="33/4

99 END

RUN |

IF 1 WVERE A COMPUTER,

1'D DO ARITHMETIC LIKE THIS

Your work is here.

REMEMBER THIS: Anything enclosed in quotation marks in
a PRINT statement is printed exactly as
it appears. No arithmetic is performed.

1-18



Exponents—Computing a Power of a Number
The following program illustrates a new idea — computing a
power of a number.

10 PRINT *"5%5=512="3512 : .
20 PRINT "2%2#2=213="30¢3 Lh¢ Tison the bottom row of keys.

30 PRINT “3*3%3=3t4="3314 Hold the SHIFT down when you

99 END wish to type 1.

23235'2. 25 ' We use the 1 key when we want to
2#242=213= 8 tell the computer to compute a
3%3%3=3t4= 81 power of a number,

In math, ‘we write 23, but in BASIC we write 2 1 3. Remember -
—BASIC notation is not math notation even though there are
similarities. '

Here are some examples showing the values of expressions in
~which the 1 is used.

EXPRESSION VALUE REMARKS
215 32 - 215 = 2%2*2%2*2 =32
312 + 412 25 32 +412=9+16=25
(2+3)14 625 (24 3)14 =514 = 5*5*%5*5 = 625

Exercise 10. Write the value of each expression.

EXPRESSION VALUE YOUR REMARKS

113
712
313
415

Unless parentheses are used to change the order, the computer
does powers first, then multiplications and divisions, then additions
and subtractions. (See Note 2, page 1-9.)

1-19



GATHERING SPEED

Variables

In mathematics, we have great freedom in selecting symbols to
use as variables. We use the letters A — Z of our alphabet, the
letters of the Greek alphabet and, in fact, any symbol that we may "
“invent” for this purpose. In BASIC, however, we must restrict
you in your choice of symbols. For now, we impose this rule:

A BASIC variable may be any letter of the
alphabet. That is, any of the following may be
used as a variable:

A BCDETFGHTIIJKLM
NOPQRSTUVWXYZ

In BASIC, each variable refers to a distinct location in the com-
puter’s memory. It may help you to think of the computer’s mem-
ory as a set of 26 boxes, labeled A through Z, like this:

A H o) \'
B I P w
C ] Q X
D K R Y
E L S y/
F M T

G N U

We call these boxes locations. Each location can hold one num-
ber at any one time. This number is the value of the variable
corresponding to the location.

Exercise 11. LET A = 3. In other words, take pencil in hand and
write the numeral “3” in the box labeled “A.” Then do the follow-
ing in similar fashion: |
(1) LET B=4 {(2) LET P=3.14 (3) LET Z= -1

1-20



The following example shows how we assign a value to a variable
in a BASIC program.

10 LET A=3 : Assign the value 3 to the variable

20 PRINT A ) A. Print the value of A.

99 END . .

RUN ‘ And here it is (the value of A4, that
3 : is). '

A more general form of the LET statement is shown below.
n LET v = e

where . n = line number
‘ v = BASIC variable
e = numerical expression

For example,

10 LET S=2%3+4*5

Here is some additional evidence. You may wish to RUN the
following program..

-

SCR : Don’t forget to SCRatch!

10 LET A=3"
20 LET B=4.

30 LET C=3+4

4@ LET D=3-4 -

50 LET E=3#4

60 LET F=3/4

70 LET G=314

80 PRINT A3B3CID3E;F3G

BN

3747 7 =1 12 .75 81

(Note the semicolons.)

1-21



Let’s sce what happens—blow by blow—as the computer RUNs
the program. Below is a trace of the program from the preceding
page. The trace shows the value of each variable after the state-

ment on the same line has been carried out by the computer.

STATEMENT A B C D E F G
10 LET A = 3 3

20 LET B = 3 4

30LET C =3 +4 3 4 7

40 LET D = 3 — 4 3 4 7 -1

50 LET E = 3*4 3 4 7 -1 12

60 LET F =3/4 3 4 7 -1 12 75

70 LET G = 314 3 4 7 -1 12 75 81
80 PRINT A;B,CD;ESF;,G 3 4 7 -1 12 .75 81
99 END 3 4 7 -1 12 .75

81

The trace is an important idea—from now on, we will depend
on it. Therefore, you had better learn how to (1) read a trace and

(2) do atrace.

Exercise 12. Trace the following program.

STATEMENT P Q R

10 LET P = 5

20 LET Q = —123

30 LET R = 57.3

40 LET S = 2*3 + 4*5
50 PRINT P, Q, R, S
99 END

1-22



The LET statement directs the computer to compute the value
of the expression to the right of the “=" symbol and assign this
value to the variable that appears to the left of the “=" symbol.
This value replaces any previous value of the variable. For example,

STATEMENT A REMARKS

10 LET A = 1 1 A;sign the value 1 to 4.

15 PRINT A 1 Print the current value of 4.
20 LET A = 2 2 Assign the value 2 to 4.

25 PRINT A 2 Print the current value of 4.
30 LET A = 3 3 Assign the value 3 to 4.

35 PRINT A 3 Print the current value of 4.
99 END 3

If we RUN the program above, we obtain the following results.

RUN
1
2
3

Exercise 13. Without using the computer, RUN each of the fol-
lowing programs. (Fill in the blanks.)

10 LET X=3 19 LET X=3

20 LET X=5 29 LET Y=5

30 LET X=7 30 LET Z=7
49 PRINT X 40 PRINT X3Y3Z -
99 END - 99 END

RUN . : RUN

- P.S.

On EduSystems, you don’t have to type the word LET in an ex-
pression. In other words,

10 A=1 is equivalent to 10 LET A=1

~ To be consistent with Dartmouth BASIC, we’ll use LET in this
manual but you don’t have to on your EduSystem.

1-23



Variable Expressions
A variable expression is an expression that contains a variable.
For example, the following are variable expressions:

A A-B 2*X P/Q -C A*(B + C)
A/B + C/D 3.14*R 1 2,

We evaluate a variable expression by assigning values to its vari-
able or variables and carrying out-the indicated operations.

- For example, A*B is a variable expression with variables A and
B. If A=3 and B = 4, then the value of A*B is 12. But if
A = —7 and B = 5, then the value of A*B is -35.- '

VARIABLE VALUE(S) OF VALUE OF
EXPRESSION VARIABLE(S) EXPRESSION
A A=3 3
A=—123 —123
A—B A=12and B=7 5
A=3andB=4 —1
2%X X =3.14 : 6.28
X = —6 —12
P/Q P=35and Q=5 - 7
P=2 and Q=3 .666667-
—C C =8 —8
C=0 0
C=-—12 12
A*(B + C) A=3,B=4C=5 27
3.14*R 1 2 R=3 28.26

1-24



Each of the 'following programs directs the computer to evaluate
one or more variable expressions and print the result or results.
We use LET statements to assign values to variables.

10° LET A=3 10 LET A=3

20 LET B=4 ' 20 LET B=4
30 PRINT A+B , 30 PRINT A*B
99 END 99. END

RUN RUN

1 12

Exercise 14. Without using the computer, complete each RUN
by filling the blank with the result.

19 LET A=3 186 LET A=3

20 LET B=4 20 LET B=4
30 PRINT A-B 3@ PRINT A/B
99 END | 99 END

RUN RUN

Exercise 15. The following program illustrates the use of variable
expressions. Trace the program by filling in the blanks under the
headings “A” through “G.”

PROGRAM A B C D E F G
10LET A =3
20LETB =4

30LETC=A+B
40LETD=A—B
50LETE = A*B

60 LETF = A/B.-
70LETG=A*tB

80 PRINT A;B;C;D;E;F;G
99 END

1-25



FEEDING THE BEAST

The INPUT Statement -4

In this section, we introduce a statement called the INPUT state-
ment. But first, let’s solve a problem that may point up the need
for the INPUT statement.

Problem. The area A of a circle of radius R is given by the
formula: |

A — =R? where = = 3.14

We want to use the computer to compute the areas of three dif-
ferent circles. These circles have radii

R=2,R=3,and R = 8.

Here is a step-by-step description of how we could use a com-
puter to solve the problem.

SCR First, SCRatch any old program.
10 LET R=2 . Here is our program. It will work
20 PRINT Rs3.14%R1t2 for R =2,
99 END
RUN Let’s RUN it.
2 12,56 For R = 2, the area is 12.56.
10 LET R=J Do NOT type SCR. Instead, enter
a new Statement 10.
RUN For R = 3, A = 28.26.
3 28.26
10 LET R=8 Again—change Statement 10.
RUN And RUN the program.
8 © 208.96 " For R = 8, A = 200.96.

1-26



We can reduce the amount of work required to solve the prob-
lem on the preceding page by using the INPUT statement. Here
is a program that uses an INPUT statement to permit input of a
value of R.

We enter this program.

16 INPUT R

€0 PRINT R,3.14%R12 And tell the computer to RUN it.
99 END ’ -
RUN The computer types a question
? ' mark and stops.

For a second, we sit and contemplate that question mark. What
does the computer want? Of course! It wants a value for R. So
we enter 2 as the value of R and press the RETURN key. The
computer then prints o

2 12456

O.K,, here is a RUN for R=2, R =3 and R = 8. Try this one
on your computer.

SCR SCRatch any previo'us-program.

1@ INPUT.R '

20 PRINT R,3.14%R12 Enter the program.

99 END _

RUN RUN the program.

72 | Enter 2 and press RETURN.
2 12.56 For R =2, A = 12.56.

RUN RUN the program again.

73 Enter 3 and press RETURN.
3 28.26 C For R = 3, A = 28.26.

RUN o RUN the program again.

8 Enter 8 and press RETURN.

8 200.96 For R = 8§, A = 200.96.

1-27



The general form of the INPUT statement is
line number INPUT list of variables

For example,

10 INPUT A,B.,C

line number
INPUT

list of variables

Note that only the variables in the list are separated by commas.
There is no comma following the word “INPUT” and there is no
comma after the last variable in the list.

The INPUT statement directs the computer to type a question
mark and then stop and wait. Now you must understand that
computers are very patient—if you don’t cooperate, the computer
will simply wait—and wait—and wait. To prevent this from hap-
pening, all you have to do is feed the computer—it’s hungry—it
wants data. '

Remember these things:

¢ The INPUT statement causes the computer to type a ques-
tion mark.

¢ When the question mark appears, the operator must enter
one value for each variable in the INPUT statement. The
values are entered in the same left to right order as the vari-
ables appear in the INPUT statement.

o Don’t forget to type commas between values.

e After entering the last number, press the RETURN key. If
you have done everything correctly, the computer will pro-
ceed.

Here is another example.

17 INPUT A,B»C

23 PRINT A*(B+C) Since there are three variables, we
99 END must enter three values.
RUN
2354,5 If A =3,B=4,C =35, then
217 A*(B 4+ C) = 27.

1-28



Exercise 16. There is something wrong with each INPUT state-
ment shown below. For each one, circle the mistake and write the
reason.

INCORRECT STATEMENT , REASON

10 INPUT ,A,B,C,
20 INPUT X,Y,

30 IMPUT P,Q,R,S,T
40 INPUT A+B
50 INPUT L;J;K

60 INPUT AA,BB,
70 INPUT A B C

Exercise 17. We ran two simple programs. Here they are but
some things are missing. Complete each RUN by filling in the
blanks.

1@ INPUT A;B,C 12 INPUT U,V,VW,X
20 PRINT A 25 PRINT U,U+V
34 PRINT B,C 36 PRINT W,WxX
99 END : 99 END
. RUN ' RUN
2=2,=3,=4 y
7 12

3 45

1-29



The GO TO Statement
The following program appeared on page 1-27.

10 INPUT R
28 PRINT R.3.14%R1t2
99 END

When we used it, we had to type RUN for each value of R. (See
page 1-27.) To eliminate the need to type RUN for each new
value of R, we add the following GO TO statement.

3% GO TO 10 (This directs the computer to “GO
TO Statement 10.”)

Here is a RUN of the modified program. Try it on your com-
puter.

SCR First, let’s SCRatch.

18 INPUT R Then enter the program.

20 PRINT R,3.14%R12

368 GO T0 19 Here is our GO TO statement,

99 END

RUN Now let’s RUN the program.

22 Each time after printing the results
2 12.56 the computer does a GO TO 10

73 and automatically restarts at the
3 28,26 INPUT statement,

78

.96 ,
?8 £209.3 How do we tell the computer we

are finished? Hold CTRL down,
press C, and release. The computer
will stop.

1-30



The GO TO statement has the general form

liné number GO TO line number

The GO TO statement directs the com?
puter to GO TO the statement that has
this «

For example: 30 GOTO 10
Iine number
GO TO

line number

" Exercise 18. Do not use the computer to answer this. If you were
a computer and you came to the following statement, what would
you do?

45 GO TO 45

Exercise 19. Complete the following program to convert from
degrees Centigrade to degrees Fahrenheit,

In math notation, the formulais F = 2 C+ 32 )

5

16 INPUT C '
20 LET F= _ (You write the formula—in
30 PRINT C,F BASIC.)
40 PRINT
S®@ GO TO (GO TO where?)
99 END
RUN
?0 . ' ‘

2 32 _ If C =0, then F = 32,
7100 : ‘

100 212 If C =100, then F = 212,
237 R | |

317 , T (Hint: Body temperature)
? | . '

77 Give F, what is C?

1-31



READ and DATA Statements

Whenever possible, we prefer providing data (values of vari-
ables) by means of the READ and DATA statements. The follow-
ing program is a modification of our “Area of a Circle” friend on
page 1-26. ‘

16 READ R This is a READ statement.
20 PRINT R,3.14%Rt2
30 DATA 2,3,8 This is a DATA statement.
40 GO TO 1@ Here are the results.-On each line,
99 END the value of R is on the left and
RUN the value of the area is on the right.
2 12.56
3 2826
8 200.96
DATA ERROR AT LINE 19 This message may be different or

even omitted. It simply means that
the computer has READ all th
DATA. :

The statement

I8 READ R

tells the computer to read one value of R from the list of values in
the DATA statement. Each time the READ statement is executed,
the computer reads the next value from the DATA statement. In
other words, the computer remembers what values have already
been read. ‘

If there is no more data to be read in the DATA statement, the
computer stops automatically.

1-32 -



Here is another example using the READ and DATA statements.

Four students named Frodo, Sam, Gandalf, and Strider have
each taken three quizzes. Their scores are:

L
®

STUDENT  FIRST SCORE SECOND SCORE THIRD SCORE

Frodo 66 81 75
Sam 91 . 38 . 95
Gandalf 78 78 . .6.2
Strider 80 83 86

We have written a program to compute the arithmetic mean
(average) of three scores and have run it for the above data.

N

19 READ X,Y»Z We use X, Y, Z to denote the first,

20 LET M=(X+Y+Z)/3 second and third scores.

30 PRINT X»YoZoM

40 GO TO 10

9@ DATA 66,81,75 Frodo’s scores.

91 DATA 91,88,95 Sam’s scores.

92 DATA 78,78,62 Gandalf’s scores.,

93 DATA 80,83,86 T

99 END | Strider’s scores.

RUN
66 g1 75 74
91 88 95 91.33333
78 78 62 T2 .66667
80 : 83 86 83

DATA ERROR. AT LINE 10

' The averages of the three scores are in this column.

DATA statements may be- placed anywhere in the program.
They must, however, have line numbers smaller than the line num-
ber of the END statement.

1-33



The general form of the READ statement is
line number READ list of variables

For example: 10 READ X,Y, Z

line number )
e The variables are

READ separated by

commas.

list of variables

Exercise 20. There is probably? something wrong with each of
the following READ statements. For each one, circle the mistake
(if possible) and write the reason.

INCORRECT STATEMENT REASON

10 READ, A,B,C
20 READ XY

30 REED P,Q,R,S, T
40 READ A+B

50 READ LJ;K

60 READ AA BB
70 READ ABC

80 READ 3.14

The READ statement directs the computer to read one value
from the DATA statement for each variable in the READ state-
ment. If there are two or more DATA statements in a program,
the values in the statement with the smallest line number are used
first, then the data in the statement with the next smallest line
number and so on.

8 Depends on the system . . . EXPERIMENT!
1-34



The general form of the DATA statement is:
line number DATA list of numerals

For example: 90 DATA 66, 81, 75

line number Expressions such as -

DATA 2 + 3 are not allowed
. in the list.

list of numerals

Exercise 21. There is something wrong with each of the follow-
ing DATA statements. For each one, circle the mistake and write

the reason.

INCORRECT STATEMENT REASON

10DATE 1, 2, 3, 4

20 DATA 1/2,2/3,3/4

30 DATA A, B,C, D, E
40 DATA, 3.7, 2.9

50 DATA 3.7, 2.9,

The following three sets of DATA statements are equivalent.

90 DATA 2, 3, 6, 8, 12, 15, 19, 27, 33, 26, 47, 59

90 DATA?2, 3,6
91 DATA 8, 12, 15,19, 27
92 DATA 33, 26, 47, 59

90 DATA 2,3,6,8,12,15
91 DATA 19, 27, 33, 26, 47, 59

That's right, the numerals in the list are separated by commas.

1-35



The RESTORE Statement

The RESTORE statement allows you to reuse DATA statements,
beginning with the lowest numbered DATA statement in the pro-
gram. An example of the use of the RESTORE statement is shown
below:

16 DATA 2,3,6

20 DATA 8,12,15

380 READ AsB-C,D:
48 PRINT A,B,C,D

5S¢ RESTORE
6@ READ E,F ,
70 PRINT E,F The RESTORE statement at line
99 END 50 allows ther READ statement at
line 60 to obtain values from the
DATA statement at line 10
RUN
2 3 6 8
2 3

Without the RESTORE statement, an error message would have
occurred, indicating a lack of data for the READ statement at line
60. !

Exercise 22. Without using the computer, RUN each of the fol-
lowing programs. (Fill in the blanks.) If you wish, check your an-
swers with the computer.

10 DATA 1,2 18 READ X

20 READ A,B 20 PRINT X

32 PRINT A,B 30 RESTORE

49 RESTORE 40 READ Z

50 DATA 3,4 5@ PRINT Z

6@ READ C»D 60 DATA 4,1.,2.
70 PRINT C,D 7@ DATA 3,5.,7
99 END 99 END

RUN RUN

1-36

N



More Messages

We can make the results more readable by including a statement
that causes the computer to print a heading. For example

S PRINT “RADIUS","AREA" Print a heading.
16 READ R

1S DATA 2,3,8

20 PRINT R,3+14%R12

25 GO TO 1¢-

99 END

RUN

RADIUS AREA

2 12.56

-3 28.26 .
8 - 200.96

DATA ERROR AT LiNE.JG .

Exercise 23. Time to. play computer. Without using the com- .
puter, RUN the following program.

10 PRINT "L","R","L*10+R","L*8+R" Headings
13 READ L,R
21 PRINT L,R,L%10+R,L*8+R"

27 GO T0O 13 ' -
85 DATA PsT012051515327520057+7
99 END

RUN

_ Numerical results

1-37



Exercise 24. We have written a program to compute the area of
a triangle, given the base B and the height H as data.

AREA = $BH = BH/2

We want to complete the following table.

B H AREA
7 6
12
5 9
23 17

Here is our program. Complete it by filling in the DATA state-
ment. Then, if you can get on the computer, RUN it and complete
the above table. :

10 PRINT "B","H'","AREA"
20 READ B,H

30 PRINT B,H,B*H/2

40 GOTO 20

98 DATA

99 END

1-38



YOU CAN COUNT ON IT

Loops :

Let’s teach the computer to count. That is, let’s develop a pro-
gram to direct the computer to generate and print consecutive
counting numbers. The counting numbers are:

1,2,3,4,5,6,7,8,...

Here is our program and a RUN as evidence that it does what
we claim. ‘ i

Beware! If you RUN the following program
you may have trouble stopping the computer.
Check with someone who knows how to in-
terrupt your computer.

-

Assign the value 1 to K.

ég t;‘} N’T( '-':( Print the current value of K.

36 LET KzK+1 ' Increase the value of K by 1.

4 GOTO 20 Go around again.

99 END

RUN Let’s RUN the program.

i

2 If we don’t interrupt the computer,
5 it will go on and on—printing
g counting numbers. We can inter-
s rupt the computer by holding the
7 CTRL key down and pressing C.
and so on.

The above program contains a loop. The lobp is described below.

10 LET K=1 This is a loop. The statements in
20 PRINT K the loop are repeated indefinitely.
30 LET K=K+1 Each time through the loop, the
40 GO TO 20 current .value of K is increased by
99 END 1 and the loop is repeated.

1-39



If you are confused by the statement

30LETK=K+1

BEFORE STATEMENT AFTER _

K 1 30 LET K=K +1 - K 2
K 2 30 LET K=K +1 K 3
K 3 30 LET K=K +1 K 4

Remember the general form of the LET statement.
line number LET variable = expression

The expression may be any BASIC expression. The LET state-
ment directs the computer to evaluate the expression and then as-
sign the value to the variable. If the expression is a variable ex-
pression, it is evaluated using the current values of its variable or
variables.

Therefore, the statement LET K = K + 1 directs the computer
to evaluate the expression K + 1 using the current value of K and
then assign the new value to K.

Exercise 25. Show the value of the variable after the statement
has been executed.

'BEFORE STATEMENT AFTER
K 25 30 LET K=1 K
E 6 40 LET E=E + 2 E

1-40



Loops Exposed :

In order to clarify what happens as the computer executes the
program, we will “unwrap” the loop and trace it. The following
trace shows the value of K following the execution of each state-
ment in the program. Under the heading “OUTPUT” we also show
results printed by the computer. We have traced the program seven
times through the loop.

| Study this trace carefully. We will ask you to do several such
traces.

'STATEMENT K OUTPUT REMARKS

10 LET K=1

—

20 PRINT K
30 LET K=K +1
40 GO TO 20

1 First time through the loop.

20 PRINT K 2 Second time throdgh the loop.
30 LET K=K +1

40 GO TO 20

20 PRINT K
30 LET K =1 +1
40 GO TO 20

20 PRINT K
30 LET K=K + 1
40 GO TO 20 -

3 Third time through the loop.
4 Fourth time through the loop.

20 PRINT K
30 LET K=K + 1
40 GO TO 20

20 PRINT K
30 LET K=K + I
40 GO TO 20

20 PRINT K
30 LET K=K +1
40 GO TO 20

5 - Fifth time through the loop.
6 Sixth time through the loop.

7 Seventh time through the loop.

oo NN NSO il AW O WWLN DN

and so on!

1-41



Exercise 26. Without using the computer, show the first five re-
sults printed by the computer under control of each of the following

programs. (Fill in the blanks.)

10 LET X=1
20 PRINT X
30 LET X=X+2
40 GO TO 20
99 END

RUN

and so on.

18 LET E=2
20 PRINT E
3@ LET E=E+2
49 GO TO 20
99 END

RUN

and so on.

Exercise 27. Complete each program (fill in the blanks) so that
when we run the program, the computer will produce the results

shown.

10 LET J=
280 PRINT J
30 LET J=
40 GO TO 20
99 END

RUN

Fo AN NN

and so on.

12 LET P=
25 PRINT P
33 LET P=
41 GO TO
99 END

RUN

e - R

and so on.

1-42



Exercise 28. This is a trace of one of the programs shown in
Exercise 26. Complete the trace for three times through the loop.

STATEMENT

X OuTPUT REMARKS

10

20
30
40

20
30
40
20
30
40

20

LET X =1

PRINT X
LET X=X 42
GO TO 20

PRINT X

LET X=X -+2
GO TO 20
PRINT X

LET X=X +42
GO TO 20

PRINT X

and so on.

1
1
3
3

1 First time through loop.

—_ Second- time.

—_— Third time.

— Fourth time and we quit!

Exercise 29. Here are two variations on previously written pro-
grams, For each one, show the first four results.

180 LET K=0
20 LET K=K+1
3¢ PRINT K
40 GO TO 20
99 END

RUN

and so on.

10 LET K=1
20 PRINT 2x%K
30 LET K=K+1
40 GO TO 20
99 END

RUN

and so on

1-43



Exercise 30. Trace the following program four times through

the loop.

10 LET A=}

17 LET B=-}

25 LET C=A+B -

3@ PRINT A

36 LET A=B

43 LET B=(C

50 GO TO 25

99 END '
STATEMENT A B C REMARKS
10 LET A=1 These statements are done once.
17 LET B=1
25 LET C=A+B First time through loop.
30 PRINT A '
36 LET A=B
43 LET B=C
50 GO TO 25
25 LET C=A+B - Second time through loop.
30 PRINT A
36 LET A=B
43 LET B=C
50 GO TO 25
25 LET C=A+B Third time through loop.
30 PRINT A -
36 LET A=B
43 LET B=C
50 GO TO 25
25 LET C=A+B Fourth time through loop.
30 PRINT A
36 LET A=B
43 LET B=C
50 GO TO 25

1-44



FOR-NEXT Loops

The loops we have used so far do not terminate by themselves.
‘They go on, and on, and on .. . until someone manually interrupts.
Now let’s look at a loop that terminates automatically. This loop
- makes use of two new statements called the FOR statement and
NEXT statement.

10 FOR K=1 TO 5 :
20 PRINT K . We call this a FOR-NEXT loop.

38 NEXT K
99 END
RUN .Let’s Run it and see what happens.
1
2 We did not interrupt.
a
a The computer stopped automati-
5 cally.

Perhaps the following trace ‘will help you understand how a
'FOR-NEXT loop works. '

STATEMENT K OUTPUT REMARKS

10 FORK=1TO 5 1 K starts at 1.
20 PRINT K 1 1 First time through loop.
30 NEXT K 2 ' K < 5. Do it again.
20 PRINT K 2 2 Second time through lbop.
30 NEXT K 3 - K < 5.Dit again.
20 PRINT K 3 3 Third time through loop.
30 NEXT K 4 K < 5. Do it again.
20 PRINT K 4 4 -Fourth time through loop.
30 NEXT K - 5 K < 5. Do it again.
20 PRINT K 5 5 Fifth time through loop.
30 NEXT K 6 K > 5. Stop the loop!

+ 99 END 6 Everything stops.

1-45



A FOR-NEXT loop consists of three things.
1. AFOR statement
2. A NEXT statement

3. A set of statements between the FOR statement and the
NEXT statement.

A FOR-NEXT loop begins with a FOR statement and ends with
a NEXT statement. The set of statements between FOR and NEXT
is called the body of the loop. Here is a “pictorial” representation
for a FOR-NEXT loop.

16 FOR X=1 TO 12 .
The same vari-

body of the loop able must be used
' in both places.
50 NEXT X

Here is another example.

[ .
10 FOR N=2 TO 7 This FOR statement defines a set
20 PRINT N of values for N. The set is:
30 NEXT N
99 END | {2,3,4,5,6,7]
RUN .
2= The body of the loop is executed
3 repeatedly, once for each value of
g‘ N defined by the FOR statement.
,6, - Every FOR statement must have a

NEXT statement and every NEXT
statement must have a FOR state-
ment.

Has it occurred to you that the value of the variable increases by
one each time through the loop? '

1-46



Exercise 31. In each pro_grarri, circle the body of the FOR-
NEXT loop. | o

10 PRINT “RADIUS".,'AREA" 16 PRINT “RADIUS","AREA"™

20 FOR R=2 TO 4 26 FOR R=2 TO 4

30 PRINT R»3.14%Rt2 25 LET A=3.14%R12

40 NEXT R 39 PRINT Rs,A

99 END 40 NEXT R

RUN - 99 END

RADIUS AREA '

2 12.56 RUN

3 . £B.26 RADIUS " AREA

4 50.24 2 12.56
3 £28.26

4 S@.24

Remember these things.
e The FOR statement defines a set of values for the variable.

~® The body of the loop is executed for each member of the
set.

¢ The NEXT statement causes the body of the loop to be exe-
cuted again, using the next member of the set. However, if
all members of the set have already been used, then the
NEXT statement directs the computer to move on to the
statement following the NEXT statement.

The following shows the set of values defined for the variable in
each example of a FOR statement. We have omitted line numbers.

FOR Statement ' Variable Set of Values for the Variable

FOR J =0 TO 3 I [0,1,2,3 1]

FOR I=1 TO 1 1 11

FOR A=3 TO 5 A [3,4,5]

FOR X=—-2TO0 2 X [—2,—1,0,1,2]

FOR B=1 TO 0O B En_]pty — the loop is skipped.

Do you see a pattern? Try the following exercises.

1-47



Exercise 32 Complete the following table.

FOR Statement Variable  Set of Values for the Variable
FOR N=1 TO 6 N
FOR C=0 TO 5 C

FOR W=-3 TO 0
FOR E=12 TO 12
FOR T=7 TO 5

The next three are tricky. Be brave—guess!

FOR X =.5 TO 2.5
FOR Y=1 TO 2.5
FOR Z==.5 TO 3 -

Exercise 33. Time to play computer. RUN each program as if
you were the computer.

10 FOR X=2 TO 4 12 FOR K=1 TO 3
20 PRINT X,X*X 23 LET Pz21K
30 NEXT X 30 PRINT K,P
99 END 37 NEXT K
99 END
RUN
RUN

1-48



Instead of using the computer to grind out numbers, let’s use it

- to print patterns.

16 FOR K=1 TO 8
20 PRINT "¥kkikkakikkk®
30 NEXT K

16 FOR K=1 TO 7
20 PRINT "XO0XO0XOXO0X"

99 END 30 NEXT K
RUN 99 END
ook oo e s ok ok ok ok RUN
kAo ok Kk XO0XO0X0X0OX
Aol o ok o ook ok ok X0X0X0X0X
ook ok ok ok ok ok o oK X0X0X0X0X
Aok oo oo o ok ok o X0X0X0X0X
ek o o ook o o oK XOXO0X0X0X
ok o o s ke ol ok ok ok XOX0X0X0X
ok ook oo e ok ok XOX0X0X0X
19 PRINT "XXXXXXXXX"
20 FOR K=1 TO 5
19 FOR K=1 TO 3 30 PRINT "X0000000X™
20 PRINT "t=d=twtabnt=4" 40 NEXT K
30 PRINT "=#-tcdtotot=" 50 PRINT "XXXXXXXXX"
40 NEXT K : 09 END
99 END _ RUN
RUN KXXXXXXXX
toteted=b=t=t X0000000X
et Ak ok ok St Sk : ‘ X0000000X
totmtobmdot=t X0000000X
et it DL Ll Sl d & X0000000X
todmbmtmbat=t X0000000X

| whebedmdotes - KXXXKXXXX

Exercise 34, Write a -prografn to generate each pattern.

Y bk et T . ek Rk ok K
ct=toteototata . *
Fet=t=t=d=t=t *
B s s s St *
R s st Rk s ot *
Bk kS T *
+=detotedatet *
B btk aak e o 2 *
S ik al o ST L *

1-49 | .



The STEP Clause-

A variation of the FOR statement is shown in the following'pro-

gram.
10 FOR K=1 TO 9 STEP 2 Note the STEP clause,
20 PRINT K
3@ NEXT K
99 END
RUN The STEP 2 clause causes the value
1 of K to increase by 2 each time.
3 You can verify this by examining
,5, the printed results.
9

The following shows the set of values defined for the variable in

each FOR statement. We have omitted line numbers.

FOR Statement

Values of the Variable

FOR E =0TO 10 STEP 2
FORE =0TO 11 STEP 2
FORX =1TO 3 STEP .5
FORW =1TO7S8TEP O

E=0,2 468,10
E=0,2, 4,68, 10
X=1,15,2,25,3
wW=1,1,1,...

Exercise 35. Complete the following table.

FOR Statement

Values of the Variable

7 FORT =0TO 6 STEP 3
FORN=1TOS5STEP 1
FOR K = 100 TO 130 STEP 10
FORX =0TO 1 STEP .25
Now—-be careful on the next two!
FOR E=0TOOSTEP2
FOR B =3 TO 0 STEP —1

T =
N=,
K=

1-50



In the following example, we use a space-saving trick.

12 SR X=0 TO 12 STEP 2 .

23 PRINT X» ‘ Aha! Note the comma.
35 NEXT X '

99 END

RUN

- Exercise 36. If the PRINT statement ends with a comma, results
are printed across the page, with up to five results per line. Here
is another example—we call it program COUNTDOWN.

16 FOR N=18 TO 1| STEP -1
20 PRINT N»

30 NEXT N

40 PRINT "BLAST-OFF!{1{"
50 FOR K=1 TO 55

60 PRINT ">";

78 NEXT K

99 END A semicolon to the rescue/

RUN :
10 9 8 7 ) 6
5 4 3 2 ' ) 1

BLAST-OFF1!1!
P3>33EP>3>F5535SSEIOESSDESIEIEIIIIISIFRDDIIESESEI>>>E>>

1-51



Be sure to RUN this program on your computer.

Variable FOR Statements
By using variables instead of numerals, we obtain variable FOR
statements such as the one in the following program.

1@ INPUT N < )

20 gon ¥=1,ro N ———— See it!

38 PRINT K .

48 NEXT K Variable FOR-NEXT loop.
586 GOTO 1@

99 END

RUN = We enter 3 as the value of N.
}’3"" ' ForN:3,K=],2,3.

? ~___.We enter 5 as the value of N.
?54——-" ForN=5K=1,2,3,4,5
2 We enter O as the value of N.
‘2 The FOR loop is skipped because
5 1>N.

70

and so on.

Change one statement in the above program.

18 INPUT N Here is the change. ,

20 FOR K=| TM :

38 PRINT "x" And we added this statement.

40 NEXT K / If you want to know why, RUN

45 PRINT the program without it.

0 GOTOo 1@

99 END We enter 3 as the value of N.
And the computer prints 3 aster-

RUN sk

23 isks.

ok We enter 7 as the value of N.

?7 And the computer prints 7 aster-

——_— isks.

and so on, Carry on—you pick the value of N.

1-52



Another example. Study it carefully.

10 INPUT A,B

20 FOR X=A TO B . . o

30 PRINT X3 The semicolon packs ’em in.
40 NEXT X

5@ PRINT

68 G0 TO 19

99 END

RUN
73,8
3 4 5 6 7 8
71,13
1 2 3 4 5 6 7T 8 9 10 11 12 13

- Let’s trace the above program for 4 = 3, B = 8.

STATEMENT A B X OUTPUT REMARKS
10 INPUT A, B 3 8

20FORX—=ATOB 3 8 3

30 PRINT X; 3 8 3 3 First time

40 NEXT X 3 8 4 X<B

30 PRINT X; - 3 8 4 4 Second time

40 NEXT X 3 8 5 X<B

30 PRINT X; 3 8 5 5  Third time

40 NEXT X 3 8 6 X<B

30 PRINT X; 3 8 6 6 Fourth time

40 NEXT X 3 8 7 X<B

30 PRINT X: 3 8 7 7 Fifth time

40 NEXT X 3 8 8 X<B

30 PRINT X; 3 8 8 8 Sixth time

40 NEXT X~ 3 8 9 X > B. Stop the loop!
50 PRINT 3 8 9 A carriage return
60GOTO 10 3 8 9 and a line feed.
I0INPUTA,B  andsoon,:

1-53



Exercise 37. The following program directs the computer to
compute and print the sum and the arithmetic mean of N numbers.

Trace it.

1% READ N

20 LET S=p

32 FOR K=} TO -N

40 READ X

50 LET S=5+X

60 NEXT K

70 PRINT N»S,»S/N
98 DATA 3

91 DATA 87,73,95
99 END

The value of N is in Line 90.
The values of X are in line 91.

Here is the value of N. (See Line
10.) And here are the values of X.
Note that there are N values.

STATEMENT

K X OUTPUT

10 READ N
20LETS=0
30FORK =1TON

40 READ X
S0LETS=S+X
60 NEXT K

40 READ X
SOLETS=S+X
60 NEXT K

40 READ X
SOLETS=S-+X
60 NEXTK

70 PRINT N, S, S/N
99 END

Exercise 38. How would you modify the two DATA statements
to compute the mean of the numbers: 75, 66, 83, 75, 98?

9@ DATA
91 DATA

1-54



Extra for Experts , _

The examples on this and the following page may help you dis-
cover more things about the FOR statement and how it is used.
We also encourage you to experiment—-try out your own ideas on
the computer. You may wish to guess how something works and
then try it out,.

10 INPUT A,B,H
20 PRINT "RAD1US","AREA"

‘30 FOR R=A TO B STEP H Compare!
40 -PRINT R,3.14%Rt2 :
5@ NEXT R '
55 PRINT
6@ GO TO 1o
99 END
RUN
72,853 . (A=2,B=8and H=23)
RADIUS AREA
2 12.56 The value of R is stepped from 2
5 7845 to 8 in steps of 3.
8 . 200.96 “

Another example—another idea.

&

1& READ N - We can use any BASIC expression.
20 FOR K=N*N TO N#*(N+1)
30 PRINT K3 Note the semicolon.
40 NEXT K ' . o
50 PRINT Causes a line space. That is, prints
68 GO TO 1@ a blank line since there is no list
99 DATA 3,7 following the word PRINT.
99 END
RUN
9 19 11 12 Results for N = 3
49 58 S1 52 53 54 855 656 Results for N =7

DATA ERROR AT LINE 10

1-55



We can have a loop within a loop.

10
15
20

PRINT ™I%,"J"
PRINT
FOR 1=1 TO 2

38 FOR J=1 TO 3 « : . .
40 PRINT 1.,J <t [nside loop |~€&——— Qutside loop
50 NEXT J
60 NEXT I
99 END
gon _
 § J
1 1]
1 2 ~<—— Inside loop .
1 3 _| ~#———— Qutside loop.
2 1 =
2 2 ~«¢— Inside loop
2 3

B

We can use a loop within a loop to print a pattern of M rows
with N asterisks in each row.

10
20
3@
40
50
60
70
80
20
99

INPUT Ms>N

FOR I=1 TO M _

FOR J=1 TO N |-e——N asterisks per row ~4—— M rows
PRINT "%';

NEXT J .

PRINT

NEXT I

PRINT

GO TO 19

END

RUN Try this program without the

PRINTS in Lines 60 and 80.

27,12 (7 rows, 12 asterisks per row)

Rk ok Rk okkk |
oo ok o o ek oo ok
Aot ok o ok ok ok o

Here they are. Seven rows of aster-

sk ok ok ok okokokok ok ok
i ——————— < . . .
isks with 12 asterisks in each row.

ok e o o ok o o ok ok ok Xk
ek e o o ok ook o ok ok
Sk o o ok o e sk o o ole ok

?

1-56



FUNCTION JUNCTION

The Integer (INT) Function -
The integer (INT) function returns the value of the nearest
integer not greater than x. Let’s see how it works.

18 PRINT INTC@),INTC1),INTC2),INTC3.14),INT(7+99)
99 END ‘

RUN
0 1 2 3 : 7

From the results, we see that:

INT(0) =0 INT(1) =1 | INT(2) =2
INT(3.14) =3 INT (7.99) =7

Here are some rules you can count on.
¢ If X is a whole number, then INT(X) = X.
‘For example,

INT(0) =0 INT(D) =1
INT(2) =2 INT(3) =3

o If Xisa positive number or zero, then INT(X) is the
whole number part of X.

For example,

INT(2.99) =2 INT(123.45) = 123
INT(0.75) =0 INT(.75) =0

Exercise 39. Complete the following,

(1) INT(4) = (4) INT(2701) = __
(2) INT(12345) = (5) INT(12/4) = ¢
(3) INT(0.999999) = - (6) INT(13/5) = ¢

4 Evaluate the numerical expression first, then 'apply the INT function to
the result. '

1-57



The INT function is useful in solving problems such as the fol-
lowing. '

Let a be a whole number and let b be a natural number. Di-
vide b into a to obtain a whole number partial quotient, g,
and a whole number remainder, r.

For example, leta=28and b=17.

4 Partial quotient, g = 4.
7/28
28
0 ‘Remainder, r = 0.

Next let’s try @ = 97 and b =5.
19 Partial quotient, g = 19.

5/97
5

47
45
2 Remainder, r = 2.

~Once more — this time a = 29 and b = 32.

0 Partial quotient, g = 0.
32 /29
' 0
29 Remainder, r = 29.

We can write a mathematical sentence relating a, b, g and r, as
follows.

a=bg+r where 0 < r < b.
For example, o 97=5x19+2
a=bxq+r Notethatr <b.

1-58



Let’ssolveforr: =~ r=a— bq

And let’s remember that q is the whole number part of a/b. Here
is a program to compute q and r given input values of a and b.

16 ) PRINT "A".' "B.": nqn, "R" .
20 READ A,B

30 LET Q=INT(A/B)

40 LET R=A-B*Q

5@ PRINT A,B,QsR .

6@ GO TO 28 : .

78 DATA 28,7,97,5,29,32

99 END . '

: Note how we compute g and r.
RUN
A B Q . R

28 7 4 )

97 S 19 2

29 . 32 o . 29
DATA ERROR AT LINE 20

Exercise 40. Complete the following trace of the RUN of the
preceding program.

STATEMENT A B Q R OUTPUT
.10 PRINT “A” “B”,“Q”,“R”" A B Q R

20 READ A,B 28 7

30 LET Q = INT (A/B) 28 7 4

40 LETR = A — B*Q 286 7 4 0

50 PRINT A,B,Q,R 286 7 4 0 28 7 4 0

60 GO TO 10 288 7 4 0

20 READ A,B

30 LET Q = INT(A/B)
 40LETR = A — B*Q
50 PRINT A,B,Q,R

60 GO TO 10

20 READ A,B

30 LET Q = INT(A/B)
40LETR = A — B*Q
'50 PRINT A,B,Q,R

60 GO TO 10

and so on.

1-59



Exercise 41. Let x be a 2-digit whole number. That is, X is
whole number such that:

10<x<99
We define a number y as follows.
y = sum of the digits of x.

For example, ifx=10,theny=140-=
ifx=25theny=2-+5=7
ifx=99,theny=949 =18

Complete the following program to compute y for a given value
of x. RUN it for the DATA shown.

10 READ X
20 .

30

4p

50 j

78 PRINT X,Y

86 GO TO 1o _
90 DATA 10,15,23.37,46,99
99 END

Exercise 42. Let z be the number obtained by reversing the digits
of x. For example:

if x=10thenz=01=1
ifx=37thenz=173
if x = 99 then 7 =99

Modify your program of Exercise 41 so that the computer com-
putes the value of z instead of the value of y.

EXPLORE!

Try the INT function on negative numbers (non-integers as
well as integers). Can you give a general definition of the
INT function?

1-60



The Square Root (SQR) Functlon
We assume that you know how to compute square roots of num-

bers. Let’s find out,

Exercise 43. Complete each of the following:

1. A square root of 4 is

- 2. Another square root of 4 is

‘Here is how we instruct the computer to compute square roots.

~

10 PRINT SQR(4),SQR(25),SQR(100),SARCD)
99 END .

RUN
2 -5 10 o

If X is any non-neg&tive number (positive or zero), then SQR(X)
is the non-negative square root of X. If you try to take the square
root of a negative number, you may obtain an error message.

.18 PRINT SQR(-4)
© 99 END

RUN Note the error message.

ARGUMENT ERROR AT LINE 10
The symbol SQR() which we use in BASIC corresponds to the
symbol v~ which we use in mathematics. Perhaps you recall that, -

Va  is used to mean the non-negative square root of q.

—va  is used to mean the negative square root of a when
a >0.

1-61



Here is a program to compute the two square roots of a.

18 INPUT A
20 PRINT SQRCA),-SQRCA)
30 GO TO 10

99 END

RUN

14

2 -2
74096

?ga ' -64 If @ = 0, there is no negative square

@ ) root.

72

1414214 -l.414214 These answers are approximations

to the square roots of 2.

By using the FOR-NEXT loop, you can build your own square
root table.

10 FOR X=1 TO 10
28 PRINT X»SQR(X)
30 NEXT X

99 END

o]
c
2

1

1.414214

1.732051

2

2.236068

2+44949

2645751

2.828427

3 . To obtain the square root table of
2 3.162278 your choice, modify the FOR state-

ment.

0RO NDLWND e

Exercise 44. How would you write the FOR statement to obtain
a square root table with values of X running from O to 1 in STEPS
of .2?

1-62



If we know the lengths of two sides of a right triangle, we can
compute the length of the third side by applying the Pythagorean
theorem. For example, suppose c is the length of the hypotenuse
and a and b are the lengths of the other two sides, as indicated in
the diagram.

Given a and b, we want to compute c.

c= VETH

a

Let’s use the computer.

16 READ A,B
20 LET C=SQR(A12+B*t2)
30 PRINT A,B,C

40 GO TO 19
92 DATA 3,4,12,5,1,1 (Data for 3 triangles)
99 END
RUN
3 4 5
12 5 13
1 1 1.414214

DATA ERROR AT LINE 10

From the results we see that
Ifa=3,b=4thenc=5
Ifa=12,b=5thenc=13

| Ifa=1,b=1thenc=1.41421

Exercise 45. Suppose we know the values of ¢ and a. You write

the program to compute and print the value of b. Then use your
program to obtain the value of b for each of the following.




LOOK BOTH WAYS
LOOK BOTH WAYS

Look back—where have we been?

Loops SCR — LIST INT =
FOR NEXT floating point + RUN
SQR expressions ) * READ
LET INPUT messages PRINT

variables . DATA END RESTORE

Look ahead—more BASIC—where will it lead?

IF RND STOP TAN
< >

ABS COS ATN DIM GOSUB
RETURN REM Arrays SIN
ON...GOTO SGN ﬂow charts EXP
Subscripted variables DEF LOG

1-64



FINDING YOUR WAY

Flowcharts
A flowchart is like a road map. A road map helps you find your

way through unfamiliar terrain—a flowchart helps you find your
way through a computer program. If you want to use a road map,
you must learn how to read it—true also of a flowchart. We will
- start with easy flowcharts and show you how to read them. Here
is a flowchart ofa program to generate counting numbers,

When you read a program When you read a flowchart,
follow the line numbers. follow the arrows.
LET K= 1
10 LET K=}
20 PRINT K
3¢ LET KeK+1 _ - PRINT K
49 GO TO 20
99 END
. P »
: i © LET KaK+t
s
e
s

Note that this arrow corresponds to the GO TO statement. In
this flowchart there is no box corresponding to the END statement.

 If you prefer, you can draw horizontal flowcharts instead of
vertical flowcharts.

LETK=1 PRINT K ——> LET K=K+1

@Y

1-65



Here is a flowchart with an END box.

LET R=3 LET A=3.14%R?2 PRINT R,A

10 LET R=3
20 LET Am3.+14%R12
38 PRINT RsA
99 END =

In the above flowchart, we showed the END box because it is
actually executed in the program, causing the computer to stop.

What next? An INPUT box.

———( INUT R )

1@ INPUT R
-+ 26 LET A=3.14%R12
A=314%R 12 23 gg";g ?EA
99 END

This END is never actually
executed by the computer; so
we don’t show it in the flow-
chart.

Note the shapes of the boxes used in the flowchart so far.

5 From now on, we will usually omit this reminder.

1-66



Confused? More examples may help.

—( PuTAB )

LET Q=INT(A/B)

LET R=A-B*Q

'PRINT A,B,Q,R

13
25

37

43
S2
99

INPUT A,B

LET Q=INTCA/B)
LET R=A-B*Q
PRINT A,B,Q,R
GO TO 13

END

RUN

279,12

79

?

12 6 7

? and so on.

To save space, we might do the
above flowchart like this

LET Q= INT(A/B)
LET R=A-B*

PRINT A,B,Q,R

K/-J

—( weutag )

or like this

LET Q= INT(A/B
(et ae  )—e LETGOITINE

PRINT A,B,Q,R

We simply put two LET statements in one
LET box in order to save space. If there

are two or more statements in a box, execute
them in order from top to bottom.

1-67



Exercise 46. Below are flowchart boxes in the order in which we
introduced them. Note the shape and write the type of box (IN-
PUT, END, LET, etc.) beneath each shape.

E/“]OC D

How do we indicate a GO TO statement in a flowchart?

&

Exercise 47. Complete the flowchart of the following program.

C )

16 INPUT A,D
20 PRINT A

30 LET A=A+D
40 G0 TO 20
99 END ;

Exercise 48. Write the program that corresponds to the following
flowchart. Use our line numbers.

12
LET K=1 24
, 36
LET P=24K
48
:PRINT K,P 60
99
LET K=K+ What does the program do? That

is, what does it direct the com-
puter to do? Predict the results,
then RUN the program on the
computer.

1-68



We use the same box shape for READ as we do for INPUT.
But there is no flowchart box corresponding to a DATA statement.

10 READ A,B
20 LET C=A%B

1-69

—(__ReAD AB )

30 PRINT A,B,C
49 GO TO 10 ‘
90 DATA 35,4,5,~7 .
99 END |  LET C-A%B
RUN
, PRINT A,B,C
3 4 12
5 -7 . =35
. DATA ERROR AT LINE 10 -
Let’s put the computation
directly into the PRINT
statement (program) or the
PRINT box. (flowchart).
19 READ X,N
20 PRINT X,N,X+N
30 GO TO 10
i 60 DATA 2,3,10,10 -
—( READXN ) 99 END 4
RUN
PRINT X,N, XN
‘ 2 3 5
19 10 20
DATA ERROR AT LINE 10
Remember: Use (_ ) for either INPUT or READ.



Messages? How do we show them in a flowchart? Easy . . .

16 PRINT "GOOD MORNING"

99 END

PRINT
“GOOD MORNING"

Note the quotation marks.

Another example—

10 PRINT "RADIUS","AREA"
20 READ R

30 PRINT R,»3.14%R1t2

490 GO TO 20

5¢ DATA 2,3,8

99 END

Cror ) RUN
5 RADIUS AREA

PRINT ] 2 12.56
R,3.14 :RfZ 3 - 28.26
8 200.96

DATA ERROR AT LINE 20

PRINT
"RADIUS AREA

If you don’t like our style of flowchart, invent your own. Like . . .

ENTER

COMPUTE
AREA

CATCH
ANSWER

1-70



FOR-NEXT Loops in a Flowchart

Remember FéR—NEXT loops? We show them in a special way
in a flowchart, , )

10 FOR K=1 T0 5 — —
20 PRINT K3 | —-( (TR )

30 NEXT K
99 END

RUN

PRINT K

L-—( NEXT K >

1 2 3 4 5

Another one—-this time with

a STEP clause.
. on - 1@ FOR E=@¢ TO 1@ STEP 2 -
. 26 PRINT E
( EST%J°2‘° ) 39 NEXT E
99 END
j RUN
PRINT E "
o
A
- 6
< 8
| NEXT E > 10

We include the END box in the flowchart above becahse it is -

actually executed—stopping the computer after all numbers speci-
fied by the FOR-NEXT loop have been printed.

1-71



Exercise 49. Complete the flowchart of the following program.

19 INPUT A»BsH

28 FOR X=A TO B STEP H

39 PRINT X

48 NEXT X

59 GO TO 10 77T

99 END : @

N
"

D

Exercise 50. Draw-a flowchart of the following program. Draw

your flowchart here. \

190 INPUT N
29 FOR K=1 TO N
30 LET P=K1K
49 PRINT K,P

58 NEXT K -
99 END
RUN
75
1 1
2 4
3 27
4 256
5 3125
K * K increases rapidly,
doesn’t it?!

1-72



MAKING DECISIONS

A Fork in the Road
The road divides into two paths . . . which way?

. / This way?
\ or this way?

You must decide:

In a flowchart we use a diamond shaped box to indicate a de-
cision point based on a condition.

One arrow into the box

We write the

condition inside YES _

the box. Two arrows out of the box—
NO - one labelled “YES” and

one labelled “NQO”

The condition in the box must have exactly two possible out-
comes,

e If the condition in the box is TRUE, follow the arrow
labelled YES.

e If the condition is FALSE, follow the arrow labelled NO.

Examine the condition in the decision box above and complete
the following table showing which path to follow for given values
of A and B. :

Value of 4 Value of B Which Path? (YES or NO)

MO O N W
ey

1-73



Which is larger, 3 or 47
Which is larger, 5 or 2?

If A =3 and B = 4, which is larger, A or B? -

If 4 = 5 and B = 2 which is larger, A or B?

~In the flowchart below, trace the path for 4 = 3, B = 4 and the
path for 4 = 5, B = 2. You may wish to mark these paths in two
different colors.

—(  INPUTAB

g =

NO

PRINT B

\/— The flowchart directs the

computer to print the larger
of two numbers, A and B.

Suppose you mark the path for 4 = 3, B = 4 with a red pencil
and the path for 4 = 5, B = 2 with a green pencil. Which path
would we follow (red or green) if

A=1,B=07 A=0,B=2?

A=7,B=T7 A=—-1,B=-2?

Let’s translate the flowchart into a BASIC program.

1-74



10
20
30
40
- 50
60
99
RUN
73,
.4
75,
5

INPUT A,B

IF A>B THEN 50 -t
PRINT B

GO TO 10

PRINT A

GO TO 1o

This is an IF statement. It corres-
ponds to a decision box in a flow-
chart.

END
4

2

.. . Follow me if and only if A>B.
Prove it! RUN the program.

A=3,B=4
B is larger than A4.
A=5,B=2.

A is larger than B.

If A = 3 and B = 4 the computer executes statements 10, 20,
30 and 40.
If A =5 and B = 2 the compu.er executes statements 10, 20,

50 and 60.

-

Let’s trace the program. We follow the computer as it executes
. each statement and show the values of 4 and B after each state-
ment is carried out. For a PRINT statement, we also show what is
printed under the heading “OUTPUT.”

STATEMENT A B OUTPUT REMARKS
10 INPUT A,B 3 4 First case: 4 = 3,
B =4,

20 IF A>B THEN 50 3 4 A>B is FALSE.

30 PRINTB . 3 4 4 Continue with State-
ment 30.

40GO TO 10 Go around again.

10 INPUT A,B 5 2 Second case: 4 = 5,
B =2,

20IFA>BTHENS50 5 2 A>B is TRUE.

50 PRINT A 5 2 5 Go to Statement 50 and

: : proceed.

60 GO TO 10 Go around again.

10 INPUT A,B 7 7 Third case: A =17,
B=1.

20 IF A>B THEN 50 7 17 . A>B is FALSE.

30 PRINT B 7 17 7 Continue with State-

' ment 30.
40GO TO 10
and so on,

1-75



Exercise 51. Complete the following program and flowchart di-
recting the computer to print the smaller of two numbers, A and B.

18 INPUT A,B —(  inPUTA,B e
20

3@ PRINT B
4p GO TO 10
50 PRINT A vES
68 GO TO 1P | PRINT A -
99 END '

RUN

NO
73,4

3 PRINT B
15, 2

Exercise 52. We have written a program directing the computer
to print two numbers in ascending order with the smaller on the left
and the larger on the right. You do the flowchart here.’/

19 INPUT A,B
20 IF A<B THEN S@
30 PRINT BsA
4ap GO TO 1@
5@ PRINT AsB
60 GO TO 10
99 END
RUN
23,4
3 4
75,2
2 5

1-76



There is usually another way. In this case, another way to direct
the computer to select and print the larger of two numbers,

First, enter the two numbers.

—(  INPUTAB )

Guess that 4 > BandsetC = A.

A
LET C=A

If C =2 B is TRUE, our guess is
correct. In this case, follow the
YES path.

But if C =2 B is FALSE, we were
wrong. We acknowledge our mis-
take and set C = B.

PRINT C

| By either path,

. C = MAX(A, B) = maximum of
A and B. So we print the value of
C.

Again, there are two possible paths through the flowchart. Mark
them in two colors. If you mark the path for 4 = 3, B = 4 in green
and the path for 4 = 5, B = 2 in red, which path (green or red)
should we follow if

A=2,B=1? .A=9,B=10?

A=T7,B=T A=0,B=-17_.
1-77




O.K., hexf‘e is the BASIC program to go with the flowchart on the

preceding page.

18 INPUT A,B

29 LET C=A

30 IF C>=B THEN 50
40 LET C=B

5@ PRINT C

60 GO TO 10

99 END

RUN

7232 4
4
75,2
5

Note how we write =2 in an IF
statement. '

..... Follow me if and only if

C = Bis TRUE.
A=3,B=4
C=4,
A=5B=2
C =>5.

Your turn . . . complete the following trace of the above program.

STATEMENT 4 B C OUTPUT REMARKS

10 INPUT A,B 34

20LETC=A 3]4d3

30IFC>=BTHEN50 |3]|4]3 C > B is FALSE,

40LETC =B | You carry on.

50 PRINT C )

60 GO TO 10

10 INPUT A,B 512

20LETC=A Jd215 _

30IFC > =B THEN 50 |5 \;Ts TRUE or FALSE?
: Where to next?

1-78



The IF Statement

The IF statement directs the computer to examine a relation be-
tween two expressions and then follow one (and only one) of two
paths depending on whether the relationship is TRUE (YES) or
FALSE (NO). ‘

- In general, the IF statement looks like this:
n IF €4 . r e» ’THEN t

where n = line number of the IF statement
e; = any BASIC expression
e, = any BASIC expression
r = any legal BASIC relation (see below)

t = line numbef of the statement executed next
if and only if e, r e, is TRUE

Relation between /
two expressions, e; and e, '

. For example,

3*5 IfF );: ?— INT(X) THEN 60
n I1F e r e, THEN t
is TRUE if X is an integer.
X = INT(X) |

is FALSE if X is not an integer.

Here is a handy table showing BASIC relations and correspond-
ing mathematical ralations.

MATH BASIC RELATION

Equal to
Less than
Greater than
<= Less than or equal to
= Greater than or equal to
<> Not equal to

VA

HWVAVA

1-79



A Problem. Write a program directing the computer to tell us
whether a number is positive, negative or zero.

Let’s solve it. Since there are three possibilities (X > 0, X < 0,
or X = 0), we can’t solve the problem with a single IF statement.

But we can do it with two IF statements.

For example,

INPUT X

If X > 0is FALSE, then
X < 0or X =0. Which
one?

PRINT "X IS

'POSITIVE"

PRINT'X 1S ‘
L "NEGATIVE’ ,
NO -

PRINT XIS |
Sy

é®

There are three possible paths through the program. Mark them
in three colors. '

What color path if X = 7?
- What color path if X = —3?
What color path if X = 0?

Exercise 53. Write a BASIC program to go with our flowchart.
RUNitfor X =7, X =—-3 and X =0.

1-80



VARYING PATTERNS

Rectangular Patterns _
We wrote a program to print rectangular patterns on the Tele-
type. We raniit. . . here is what happened.

Rows

712, 29 Columns

Aok ook ok o ok K R ok sk o ok ok ok ok ok .
sk kcooRR ook ook kkkx Our program  lets us  specify the

3 e ok ok ok ak K e Ok ok kok koK ok kokok ok ook bk " " 1 1
e ok ke ke e ok ok 3 ke ok ok kol e e ok o ok ok koK e kKo numbel Of rows and COlumnS n thls

S KR o R HOK RKRROK KK R Kok K rectangular pattern.
e T T T S T T LA
A AR KR AR HOR KR KKK kKK

sk oo o ook s R ok o Ak ok KR KoK This pattern has 12 rows and 29

e o 3 o ok e a3k ok e Sk 3k ok ok ok ok e sk ok e koK ok ok ok ok ok : :
<ok o oK ol ke i o 3K 3k ok Rk ok e sk 3k sk ek ok s ok sk ko ok COhnnnS"rhatls’lt has 12 rows

3 ok ok a3k ok ke sk ok sk ok ok ke ok ok ok ook ok ok o ok ok and there are 29 asterisks in each
ok o o o o ok ok ok ok sk oo ok ok Ok ok ok sk ok o ok s ok ok ok ok oW :

Using our program, we can direct the computer to print rec-
tangular patterns with as many rows as we want. The number of
columns, however, is limited to 72 since there are only 72 printing
positions across the paper. '

In the above pattern, there are
12 x 29 = 348

asterisks in all.

Let’s RUN the program again.

735, 10 =% This time we want 3 rows, 10

. columns.
ek ke A oK ok K -
ok ek ok ko ok ok ok Here they are . . . count them.

ok ok ok ok o o oK oK

~ Now let’s look at the program,

1-81



Below is part of the program. This part directs the computer to
print one row of asterisks with N asterisks in the row.

10 INPUT N
15 PRINT

30 FOR C=1 .TO N

40 PRINT "x";
50 NEXT C

60 PRINT
80 GO TO 1@
99 END

RUN

210
koK ok koK ok K

720

AR AORAOR R A AR KA A K

772

N specifies the number of asterisks
to be printed in the row.

Here is the heart of the program. It
causes the computer to print N
asterisks, all in one row because the
PRINT statement ends with a semi-
colon.

This PRINT causes a carriage re-
turn and line feed to occur after all
the asterisks have been printed.

Let’s try it.

N =10, so
the computer prints a row with 10
asterisks.

N = 20.
How many asterisks?

N = 72. Computer prints 72 aster-
isks.

N = 73 ... can’t get them all on
one line.

R KK oK K ok Ao e Rl o K ok i kK e ok ol K koK ok ok ek koK s ok ok K koK ok ok oK ok ok ok ok AR K

773

ook R R KK o o R o Ao o R oK e oK oK R K oK o e oo o 3 R ok o ok o R A R ol o A R K ek ok Kok kK ok

*

‘The 73rd asterisk ended up here.

The computer will print up to 72 asterisks on one line . . . but
no more. If N > 72 then the computer prints 72 asterisks on the
first line and continues on the next line. Suppose N = 200. How
many lines will it take to print the “row” of 200 asterisks?

1-82



By adding three statements and changing the INPUT statement
in the preceding program, we get a program to print a pattern con-
sisting of M rows with N asterisks in each row. -

10 INPUT M>N Which lines did

15 PRINT we add?
23 FOR R=1 TO M
30 FOR C=1 TO N One row with | = M rows
40 PRINT ‘''x'; . N asterisks
5@ NEXT C
6@ PRINT
70 NEXT R | \
. \T his program has a “loop within a
75 PRINT ‘ loop.”
B@ GO TO 10
99 END . _
RUN Does it work? RUN it.
75,12 Weenter M = 5, N = 12,
kb o e o o ok ok o o ok , The computer prints a rectangular
-k ok o ok ok ok _ pattern with 5 rows and 12 col-
ek o o o o ok o ook ok umns.
¥k ok s ok ok ok o ok ok ok ok ' ‘
Ak ko o ok ook ,
71,7 A 1 by 7 pattern (1 row, 7 col-
umns).
Aok ok ok Kok
17,1 : ' And a 7 by 1 pattern (7 rows, 1
‘column). ,
3
*
*
*
* .
21,1 We finish with a 1 by 1 pattern.
*
20,0 P.S. How about a null (empty)
pattern?

1-83



Exercise 54. If you are tired of seeing asterisks before your eyes,

change this statement —l

40 PRINT '"'x';
to thls\b_‘lg PRINT "X'3

or thig — 40 PRINT "z

or to the statement of your choice. Then RUN the program again.

Exercise 55. Start with our program on page 1-83. Change the
INPUT statement to

10 INPUT M

and change one other statement so that the modified program will
print right triangular patterns, like these. /l

This pattern has 2 rows with-1

RUN

72 asterisk in Row 1 and 2 asterisks in

* Row 2

*k ' :

73— \

. ]

Kk . . This pattern has 3 rows with 1

Ak asterisk in Row 1, 2 asterisks in
Row 2 and 3 asterisks in Row 3.

74 ~—

*x

KoK

*AK ) )

KKK This pattern has 4 rows with 1 as-
terisk in Row 1, . ..

and so on.

For an INPUT value of M, the pattern has M rows with 1 aster-
isk in Row 1, two asterisks in Row 2, three asterisks in- Row 3,
..., M asterisks in Row M.

1-84



In the following program, we use a “brute force” approach to
tell the computer to print a “leaning tower” pattern. ~

10 PRINT ""skokkkkdkokk'

20 PRINT * skokokokokdkok' :
30 PRINT ' sokaokkskokok® Each PRINT statement tells the

40 PRINT " P T T T A _computer to print a certain num-
SO PRINT " X skdokkdkokok! ber of spaces followed by 8 aster-
69 PRINT " o ok ok ok ok ok kok 'Y isks
70 PRINT " grpngngrgosr L LIRS
83 PRINT " ok kokokkokk"
99 END :
spaces
RUN -
" ookokokdkokdkk - )
a8 ok ok ok o ok ok ok
ok ok ok o ok ok o oK
ke ok ok ok ok ok ok ok
*:::::::* You can. use the-brute force
Mook o ok ook o method to print just about any
ook Kok ko ok pattem you wapt.
spaces

Let’s make the tower lean the other way. .

10 PRINT " e ok e o e sk ok T
20 PRINT " _ Aok ok ok ok
30 PRINT " ke ke ok ok ok kok ok 0
" . (1]
gg ﬁgm .}‘ v *:::::::: Pr.int 7 spaces, then 8 asterisks.
60 PRINT. ™  skskokdkokkk™ Print 6 spaces, then 8 asterisks.
76 PRINT "  sxssxk¥x” . Andsoon.
8@ PRINT ' skskokkskokokk®
99 END
RUN
’ sk ok ok o ok o ok Xk
TTTITY T
ok ok ok ok ok Kk
ok ok ook oKk
¢ ook ok ok ok ok K
S ITIT T T
¢ o ok ok ok o ok ok
TTTTITT S

1-85



The TAB Function
Yes, we're leading up to something . . . here is another way to
do the first leaning tower pattern.

190 PRINT TABCO) ;> "kokkokkokkk"
20 PRINT TABC1) 3" ®kkikkkkkx"
3@ PRINT TABC2); " %kkkokkk"
40 PRINT TABC3)3 "#kokkkkkx'
S50 PRINT TABC4);"kaxkkkkk"
68 PRINT TABCS) "kkdokkkkk'
70 PRINT TABC6)3 "hakkkokokk®
83 PRINT TABCT)Y3 "™kkkkkkkk"

99 END
RUN _ o
ook ok ok ok ok We wrote this program primarily
ook ok ok ok ok : to introduce the TAB function.
4o e e ok o ok
*::::::: - The TAB function causes the com-
ok o K Kok puter to space over to the printing
e otk ok ok oK A position enclosed in the ( ).
o e ok ok ok ok o ok

We hope your version of BASIC provides the TAB function . . .
if not, you might as well skip the rest of this section.® If your com-
puter does provide the TAB function, read on!

EXAMPLE EXPLANATION

TAB(7) Space the teletypewriter over to printing Position 7.
TAB(25) Space the teletypewriter over to printing Position 25.

There dre 72 printing positions across the page . . . they are
numbered O through 71.

ok 6 s sk sk sk sk sk ok oo sjeske ofe ok sl sk sk e skeook ok e sk sk sde ok afe sk sk sk ok ok sle sie s sk sie sk ok ol sk sl sfesfe sk e e ok ok ok sk

Position 0 Position 37 Position 71

Your turn . . . circle printing Positions 10, 20, 30, 40, 50, 60
and 70 above.

6 EduSystem 10 does not include the TAB function; larger systems do.

1-86



In general, the TAB function looks like this
TAB(e)

where e is any BASIC expression. The expression is evaluated and
the computer spaces the Teletype to the position specified by the
value of the expression. If the value of e is not a whole number,
then the computer spaces the teletype to the whole number part
of the value of e. o

EXAMPLES ‘ EXPLANATION

TAB(K) Move to Position K. (0 < K < 71)
TAB(R - 1) Move to Position R —1. (0K R —-1<171)

TAB (2*X + 3) Move to Position 2*X + 3. (0 S 2*X + 3 < 71)

Here is yet another way to print the leaning tower pattern.

18 FOR R=1 TO 8 \
20 PRINT TABCR=1)3 "kkkokkkkk'
30 NEXT R |

99 END . Space over to printing Position
RUN , R — 1., When R = 1, this is Posi-
Aok ok ok ok tion 0; when R = 2, this is position
Aok ko ook ok 1; and so on.
o KK Kk oK
ek ook ok K ok
Rokokodok kok ok The computer cannot space the
ok Aok Teletype <« to the left. So, if it is
Kk o Ok K . s
ok o K ok ok o already at Position 30, you cannot
space it to Position 20.

There are no negative printing po-
sitions. TAB(—1) is ignored. TAB
(K) is ignored if K < 0.

1-87



Exercise 56. By changing one statement in the preceding pro-
gram you can get a program to print the leaning tower in which
the top leans to the right. Do it! Then RUN it.

Exercise 57. Here are two programs. Read them. Figure out
what they do. Without using the computer write down what you .
think the computer will print. Then (and not until then) RUN the
programs. ( Were you correct?)

20 FOR K=} TO 8 20 FOR R=1 TO 8

3@ PRINT TAB(R-1)3; 30 PRINT TAB(B-R);
49 FOR C=1 TO 8 40 FOR C=1 TO 2*R-1
50 PRINT *'*x'; 50 PRINT ''x'';

60 NEXT C 60 NEXT C

73 PRINT 70 PRINT

8@ NEXT R 80 NEXT R

99 END : 99 END

Exercise 58. By adding an INPUT statement and changing a few
things in the programs of the preceding exercise, you can get a pro-
gram that will let you specify the size of the pattern. Try it.

Exercise 59. Use the brute force method (page 1-85) to cause
the computer to print a pattern of your choice: SNOOPY, a dove,
a flower, you name it.

1-88



MEANDERING
Random Numbers

Random numbers—what are they? According to one definition,
a random number is a number that.is chosen by chance from a
given set of numbers.

e We flipped a coin ten times. If it came up HEADS, we wrote

“1” and if it came up TAILS we wrote “0.”
Here is what happened: 1011101001

e We rolled a die 20 times. Each time we wrote down the num-

ber of spots showing on top.
Here is what happened: 5215334214
6 251513261

In each case we got a random sequence of numbers. Each num-
ber in the sequence was selected at random from a given set of
numbers. '

¢ When we flip a coin, we select numbers at random from the

set (0,1).

e When we roll a die, we select numbers at random from the

set (1,2,3,4,5,6).

By “select at random” we simply mean that we use a selection
process in which each member of the set has the same chance of
being selected as any other member of the set. That is, the prob-
“ability of selecting any member of the set is the same as the prob-
ability of selecting any other member.

We can obtain a random sequence of numbers from the set
(0,1,2,3,4,5,6,7,8,9) by using a spmner like the one pictured
below.

Spin the wheel . . . select
the number at which it stops.-

We show the wheel 'stopp'ed
at seven.

1-89



There is a BASIC function called RND. It generates “random

numbers.” Here is a sequence of 50 random numbers.

16 FOR K=1 TO 5@
20 PRINT RND(®),

30 NEXT K

99 END

RUN
« 3481899
- 6482347
« 7759228
e 4857633
«6156673
« 3796163
9547609
« 052804178
« 98488608
« 5828625

«9928119
+ 3675558

« 08069808

«4192038
«5921191
« 2023254
« 2890875
+« 3859534
« 2466345
« 7026891

«8231623
«371222
« 5038833
« 1433537

«P1170888

e 7974058
e 1416765
«8404774
« 61588

« 9703719

3.666706E-N3 6135392

+«91933
«2790171

- 038728769

«7411813
«9635064
« 2482717
«5692836
«4755698
« 4930298

» 1749821
1661529
« 2335427
«341708

« 6843865
«2145417
«+85140A56
« 3104984
« 2548316

Every number in the random sequence is greater than zero but
less than one. In other words,

0 <RND(0) <1.

Every time the computer evaluates RND(0), it generates an-
other random number between zero and one. In the above pro-
gram, RND(0) occurred in a FOR-NEXT loop and was evaluated

50 times. Therefore, 50 random numbers were printed.

BEWARE!

If you RUN our program,
don’t expect to obtain the
same results.

1-90



~ But what if we want a random sequence in which each number
in the sequence is zero or one? Here is one way.

N R e T2 D@5 Print the integer part of
PRI * . . _

30 NEXT K twice the raridom number.
99 END

RUN’

2! {1 & # © 1 1 » .1 6 1 1 1 © 1 1 1 @

{

Why does the computer print only zeros and ones? Because, if
you recall, ’
0 <RND(0) < 1.
Therefore, 0 < 2*RND(0) < 2
and INT(Z*RND(O)) is either O or 1.

The RND function is useful when we want to use the computer
to simulate (imitate) a real life activity in which chance plays a
part. Since we can flip a coin to obtain random numbers, why not
use random numbers to simulate coin flipping?

10 FOR K=1 TO 20 /R is either O or 1.

20 LET R=INT(2%xRNDC(3))

23 ;glﬁil"z‘;?gsf” If R = 1, “HEADS” is printed.
2 e — [13 3] :

58 GO TO 70 ] Ot.herwme (R = 0), “TAILS” is

60 PRINT "HEADS", printed.

70 NEXT K

99 END

RUN

HEADS HEADS HEADS TAILS HEADS

TAILS TAILS HEADS ' HEADS HEADS

HEADS TAILS TAILS HEADS HEADS

TAILS TAILS HEADS HEADS HEADS

REMEMBER . .. If you
RUN our program you will probably
get a different set of results.

1-91



Exercise 60. Write a program to simulate N tosses of a coin,
where the value of N is entered in response to an INPUT statement.
Here is a RUN of our program for this exercise.

RUN

710

HEADS HEADS TAILS HEADS TAILS
TAILS HEADS TAILS HEADS HEADS
READY .

and so on.

Exercise 61. The possibility set for INT(2*RND(0)) is (0,1).
The possibility set is the set of all possible values of the complete
expression. What is the possibility set for each of the following?

(1) INTGB*RND(0))___ (2) 3*INT(RND(@O))___
(3) INT(6*RND(0))
(4) INT(6*RND(0)) +1
(5) INT(10*RND(0))
(6) INT(10*RND(0))/10

Exercise 62. Simulate something. Write a program to generate a
random sequence that imitates a real life activity—Ilike rolling one
die, rolling two dice, spinning a spinner like the one shown on
page 1-89, a game of chance, or you name it!

1-92



Con;stellations

Remember this program? (See page 1-83)

180 INPUT MusN

20 FOR R=1 TO M o .
38 FOR C=1 TO N This program prints an M by N

40 PRINT ''*'"; rectangular pattern of “stars.”

50 NEXT C
60 PRINT

790 NEXT R
75 PRINT

80 GO TO 190
99 END

RUN °

|
' 1
‘ We want '; rows and 12 columns.

27512

ok ok ok ok ok ok ok ok ok ok ok
ek e ok ok ook o ok o o ok
ke ok o o o e ok ok ok ok ok
T ITTIITIILIY

Aok s ok o o ok ok ok X
ek ok ok ook ok ok ok This pattern uses 7 X 12 = 84

e o o ok o o ok o koK K printing positions. A “star” is
printed in each printing position.

Now suppose that we print an M X N pattern but instead of
printing a star (*) in each position, we flip a coin . . . if it comes
up HEADS we print a star . . . if it comes up TAILS we print a
space. Here are some 10 X 20 patterns obained in this manner.

ok RRoRE K Mok ok Aok ok ok ek X okk RKokdok Aol ok ok ok ok

* Kk dokdkk ok ok okdokkk kR okk Aok kKR kK kok ok ok kdokkR kk %

*kk ok Aok ok ok ookdokk ok Kk ok Kk ok % ® kok ok Kk Aok ok ok k oKk K ok Kk & kk ok
g fokokok ok ok ok dkokjokkok Kk Rk ok Il L EIEIEETE ETE T I B
*okkkkk kK RERRE KKK KX Kk dokkok Rk ok ok ok R kR kR ohdk Xk

Xk ok ok K kkoRkRk R ok kk ok Kok Kk C sk ook Rk K kdok ok Sk dkdokkk K
Rhk ok ok AR kR odokkok ok kKKK . Wk koo ko ookokk Kk Kk Rkk Kok
dokokk Aok okk Bk dokdokkk kK Aok ok kR R ok dokk & ok Kk kkkk
* ook ok ookl o okkk ok ok ok Kk x k Kk dokk okokk ko ok ok ofokokk ok okokk ok kK

HEE Kk Rk ok ok RlookRx kR * & Rk R kokk ok ok ok kiR dok kK

1-93



<

0.K., we didn’t actually sit at the Teletype and flip coins. Instead,
we added some statements to our program to generate rectangular
patterns and let the computer do the work. Here it is.

We let the computer “flip” the coin.
If it comes up HEADS (1) then

10 INPUT M,N print a “star”; otherwise print a
15 PRINT
2@ FOR R=1 TO M space.

3@ FOR C=1 TO N
35 IF INTC2%RND(@))=1 THEN 50
PRINT " 3

——2
58" PRINT "%}

6@ NEXT C
65 PRINT

M NEXT R
75 PRINT

86 GO TO 1o
99 END

How many stars were printed in

all?
713,20

wK R ok Kk kk Rk Kk kk kkk ok Kk Kk
kk K K ok Rk ok KRk kkE Kk K K

* ok ko k Kk kREk K k& KEE Kk Kk ok K *
A ok kk k& ok & ok AOKERAEXK ok K
ek dk ckokkk kk kk Rk kk kK

ok kk Kk dok kk k K ok % kkAX * ¥ ok
wkkk dokk kK kkkkk Rk Kk Kk %

* KK kK kK Kk kK Kk KK Kkk RKRkE
wtokkk Kk R kkokkkk Kk K ok kEk

AR S L he probability of printing a star
is ¥2. The probability of printing a
space is V2.

Let’s look more closely at statement 35.

35 IF INT(2*RND(0)) =1 THEN 50

The possible
values are O
and 1.

The following statement will also do the job. Try it!
35 IF RND(0) < 1/2 THEN 50

Because \ _
RND(0) < .5is TRUE about ¥2 the time.
RND(0) « .5is FALSE about ¥2 the time."

1-94



In the following pattern the probability of printing a star is 1/10
and the probability of printing a space is 9/10. LOOK FOR CON-
STELLATIONS . .. MAKE UP YOUR OWN . .. ARE ANY
SIGNS OF THE ZODIAC HERE? '

* * % kk k ok %
* ok *
*x - * * * ok *
* *x x * * *k
* % * *
* * * * * % *
* * * * *
* * *x ok *
* *x % * * *
* * * *%
% Ok * *k * *
*k ok % K *
Aok * * , *
* * *k * * * * *  x
* X * * * * *k
x * X * *%
* * * *
* * % * . * *K
* * *x *x *
* x X% * *
* koK *
* * * *
x kX * *x % * *
* * ©okk
* % * % * *x X
* * * *
* x % * * % * x
* x* * *
%K %
* * * kK
* X *%k * *x X * * *k *
* Rk kk * * ’ kK
*k * X * % * %
Rk K * ok * * *%
* * * % *
x * * *
* * K * ok * *
* x *x kk K ¥ * %* * * *
*x % * *ik
*%k x % * *® % * *
* * * *x Kk % * X * *%
* * * * * * * *

Did you look at it from the left? The right? The top?
1-95



Exercise 63. Write a program to generate random patterns like
‘the one on the preceding page. You can do it by changing one
statement in our program on page 1-94. RUN it—Ilook for con-
stellations.

Exercise 64. Modify your program of the preceding exercise so
that the probability of printing a star is 1/20 and the probability
of printing a space is 19/20. RUN it—look for constellations.

Exercise 65. Why not enter the probability of printing a star
along with M and N? Begin your program with the statement

10 INPUT M, N, P
where

M is the number of rows,
N is the number of columns, and
P is the probability of printing a star.

But note: P must be entered as a decimal numeral such as .5 or
.1 or .05.

Here is a RUN of our program.

728,65,.1
* * * kK k% *
*k *
* * * * % *
* * % * * *ok
* ¥ * *
* * * * *x * %
* * * * *
* * *  x *
* *x % * * *
* * * *k
* ¥ * ok * *
*k ok *x ok *
*xK * * *
* * *% * * * * * %
x X * * * * *k
* % % * *K
* * * *
* * ok * * *X
* * * * *
* * ok ¥ *

1-96



LITTLE BOXES ,
Remember . . . in BASIC, a variable refers to a location in the
computer’s memory You can thmk of the variable as the name

of the location.

variable / A-location is a “box” in which we
location can store a number.

Here is a box (location) with a number in it.

A 37

The number in the location is the
value of the variable. (The value
of A is 37.)

Subscripted Variables
Are you acquainted with subscrlpted variables?

Here is a subscripted variable —b X3
This is the subscript
The symbol ‘x3’ is read ‘x sub 3.’

Here are some additional examples of subscripted variables.

- .

Po Cr

ks Xy V4 Read ‘a;’ as ‘a sub 1’
a X z Read ‘c; as ‘c sub 7’
1 2
2 Read ‘ry’ as ‘r sub 2’
) X3 21 and so on.
Wy

1-97



In BASIC, we can use subscripted variables, but we write them
in a slightly different way. Like this:

Here is a BASIC subscripted variable =X (3)

This is the subscript

The subscripted variables X (1), X(2) and X(3) each corre-
spond to a location

X(1) X(2) X(3)

Exercise 66. LET X (1) = 73. In other words, take pencil in
hand and write the numeral “73” in the box labelled “X (1).” Then
do the following in similar fashion.

(1) LET X(2)= 67 (2) LET X(3) =85

Suppose that X(1), X(2) and X(3) are scores obtained on
three quizzes. Here is a program to compute and print the average
score (the arithmetic mean of the three scores).

10 LET XC1)=73 Quiz 1. The score is 73.
12 LET X(2)=67

14 LET X(3)=85 . .

20 LET S=X(1)+X(2)+X(3) Quiz 2. The score is 67.
30 LET M=S5/3

40,PRINT M Quiz 3. The score is 85.
99 END

RUN

75 Add the three scores, then divide

the sum by 3 and print the result.

Yes, we know you can write a

shorter program . . . but did you
learn anything about subscripted
variables?

1-98



Here is a better program.

10 INPUT X¢1),X(2),X(3)
20 LET S=X(1)+X(2)+X(3)
30 LET M=5/3 7 :

40 PRINT M

580 PRINT - With this program, we INPUT the

60 GO TO 10 three scores.

99 END

RUN I .

773, 67, 85 X(1) 73

75 '
X2) | 67
X(3) 85
7 - — O.K., enter your scores.

4

‘Exercise 67. Complete the following program to compute and
print the arithmetic mean (average) of four scores:

X (1), X(2),X(3) and X(4)

10 INPUT
20 LET S=
32 LET M=
40 PRINT M RUN your program for the follow-
50 PRINT ~ ing sets of data. Each set consists of
60 GO TO 1@ four scores.
99 END
RUN )
? 73, 67, 85, 83
82, 88, 97, 90

SHOW THE RESULTS
OF THE RUN .

1-99



Next, let’s change our program so that the data is called in by
means of a READ statement instead of an INPUT statement.

18 PRINT "XC1)',"X(2)'", "X(3)", "MEAN"
15 READ X(1),X¢2),X(3)

20 LET SsXC1)+X(2)+X(3)

30 LET M=5/3

48 PRINT XC1),X(2),X(3),M

60 GO TO 15

806 DATA 73, 67,85

81 DATA 82,88,97 Four sets of data. Each set has
82 DATA 93) 89’ 95 three scores. ’

83 DATA 77,71, 67
99 END

RUN
XC1) Xc2) XC(3) MEAN

73 67 85 75

82 88 97 89

93 . 89 9% 92.33333
77 71 67 71. 66667

DATA ERROR AT LINE 15

Exercise 68. Change the above program to a program to com-
pute and print the mean of four numbers X (1), X(2), X(3), and
X (4). Show the modified program below along with a RUN for
the following sets of data:

73, 67, 85, 83
82, 88, 97,90

1-100



Generalizing :

But what if there are five scores or six scores -or seven scores?
Shall we write a separate program for each case? Why not write
one program that takes care of any number of scores . . . let’s try.

- We want to write a program to compute the arithmetic mean of
N numbers (quiz scores, golf scores, measurements . . . you nhame
it). Since we have N numbers, let’s call them

X(1), X(2), ..., X(N).

We tried the following program but it didn’t-work. We kept
_getting error messages. '

16 READ N ' Our computer didn’t like these two

20 READ x<1>.x<2>....,x<N)7 statements.
30 LET SsX(1)+X(2)+ess,LIST

16 READ N '

20 READ X(1),X(2), 000, X(N)

38 LET S=XC1)+X(2)+BB0+X(N)

gg ;ngT NS’f‘; " Note that we want N, S and
» 29 .

60 GO TO 10 - M printed, but not the Xs..

70 DATA 3,73, 67,85 ‘ :

71 DATA .3,82,88,97

;’2 gﬂﬁ ‘5‘: 22: 2;;%?;22;75 Each DATA statement has the
99 END value of N followed by the N.
' ’ values of

X(1), X(Z), ..., X(N).

For example

NN

N X()  X(2) X(3) X(4) -

Our program above didn’t work because we did not work within:
the rules of the BASIC language. Read on! ' '

1-101



Variable Subscripts

The subscripted variable X (K)
has a variable subscript
If K=1, then X(K) is X(1).
If K=2, then X(K) is X(2).
If K=3, then X(K) is X(3).
Got the idea? Let’s find out.
A(1) 8 | B(1) | 3.7 I 1
A(2) -6 | B(2) 9.2 J 2
A(3) 10 | C(1D) 3 K | 3
A(4) 13 | C(2) 4 4
Write the value of each variable below.
A(l) = = A(l) =
A(2) = = A() =
A(K) = A(X) = . B(I) =
B(J) = C(1) = CH =
Ready for some slightly more difficult ones?
Ad+D)=__  Ad+2)=____ Ad+3)=___
A(2*]) = AR —-1)=___ AX-=-3)=_____
Ad+)=__ AX-K+I)=_ A(J*K-X)=___

1-102



Here is a program to compute and print the sum and mean of
N numbers X (1), X(2), ...., X(N).

18 READ N

20 FOR K=1 TO N o
23 READ X(K) ————— READ X(1), X(2), ..., X(N)
27'NEXT K

39 LET S=0
33 FOR K=t TON | LETS=X{1) +X2)+ ...+
35 LET S=S+X(K) X(N)

37 NEXT K

40 LET M=S/N

50 PRINT N, S»,M

66 GO TO 10

79 DATA 3,73, 67,85

71 DATA 3,82,88,97

72 DATA 45,73,67,85,83

73 DATA 5,665 78,71,82,75

99 END
RUN
3 225 : 5.
3 267 : 89
4 308 117
5 3172 T4e 4

DATA ERROR AT LINE 10

Here is a partial trace of the program, using the first set of data
(the data in Line 70).

STATEMENT N K X(1) X122 X3)
10 READ N 3 '
20FORK=1TON 3 1
23 READ X(K) 3 1 73
27 NEXT K 3 2 73
23 READ X(K) 3 2 73 67
27 NEXT K 3 3 73 67
23 READ X(K) 3 3 73 67 85
27 NEXTK 3 4 73 67 85
h S 4
K > N. Therefore the loop terminates.

1-103



Exercise 69. Let’s continue the trace that we began on the pre-
ceding page. We will show the statements; you fill in the K, S and
M columns. Remember . . .
follows.

X(1) 73

X(2)

67

we left X (1), X(2) and X(3) as

X(3) 85

STATEMENT

o

S M OUTPUT

30LETS=0
33 FORK =

35 LETS = § + X(K)
37 NEXT K
35 LET S = S + X(K)
37 NEXT K

35LET S =S + X(K)
37 NEXT K

40 LET M == S§/N
SO0PRINTN, S, M
60 GOTO 10

and so on.

WWW LW WW WL W wl|Z

Exercise 70. For each program segment (portion of a program)
fill in the affected locations.

10 FOR N=1 TO 4 P(1) P(2)
20 LET P(N)=2tN
30 NEXT N P(3) P(4)
F(1) F(2)
70 LET F(1) —_—
75 FOR K=2 TO 6
88 LET F(K)=K*F(K-1) F(3) F(4)
85 NEXT K
F(5) F(6)

1-104




Subroutines .

A new idea—subroutines—and three new statements, GOSUB,
RETURN, and STOP, Let’s use them in a rewrite of the program
on page 1-103, |

18 READ N
—- 20 GOSUB 100
~p-30 LET M=S/N
43 PRINT N» S»M
54 GO TO 10
60 STOP

main program

100 FOR K=1 TO N
110 READ X(K)
120 NEXT K

130 LET S=0

140 FOR K=1 TO N
153 LET S=S+X(K)
160 NEXT K
170 RETURN

subroutine

300 DATA 3,73, 67,85
310 DATA 3,82,88597
320 DATA 4,73, 67,85,83 database
330 DATA 5» 665 78> 71,82, 75

999 END

This program has a main program, one subroutine and a data
base. The subroutine in lines 100-170 is called by the GOSUB
in line 20.

Now, RUN the above program. The results should be the same
as for the program on page 1-99.

When the GOSUB in line 20 calls the subroutine, the computer
goes to line-100 and executes the commands from line 100 to 160.
‘The RETURN statement in line 170 sends the computer to the
line following the GOSUB (line 30) that sent the computer to the
subroutine. The STOP statement in line 60 sends the computer to
the END statement, thus signaling the completion of the program.

A program may contain more than one subroutine. Suppose that
we wish to print. headings for each of the columns printed by the
above program. We can do this by adding one statement to the

~main program and including one more subroutine.

1-105



5 GOSUB 200 new main program statement

200 PRINT "N', "S'", "M" new subroutine
210 PRINT
220 RETURN

Now LIST the program and then RUN it.

5 GOSUB 200

16 READ N

20 GOSUB 100

403 PRINT N» S»M

56 GO TO 10

60 STOP

160 FOR K=]1 TO N

118 READ X(K)

120 NEXT K

138 LET S=0

148 FOR K=1 TO N

150 LET S=S+X(K)

160 NEXT K

170 RETURN

268 PRINT ''N*,"S", "M"
210 PRINT

220 RETURN

369 DATA 3, 73,67,85
310 DATA 3,82,88,97
320 DATA 4,73,67,85,83
330 DATA 5, 66,78, 71,82, 75

999 END

RUN

N S M
3 225 0
3 267 [/
4 348 A
5 372 /)]

DATA ERROR AT LINE 10

A program may have many GOSUB’s, each of which go to the
same subroutine; this is especially helpful when the same (or sim-
ilar) statements appear more than once in the same program.

When you use subroutines, keep them distinct from the main
program. This is normally done by placing them after the main
program. Remember that the last statement in the main program
must be a STOP or a GO TO (e.g., GO TO 999—the END
statement).

1-106



SNOOPY AND THE RED BARON

It is 1976 and the candidates for President of the United States
are Snoopy and the Red Baron. We conducted a poll by asking
29 of our friends to respond tb the following question.

Who should be President in 19767
Circle the number to the left of the
candidate of your choice.

1. Snoopy
2. Red Baron
You guessed it . . . we are going to write a pi'ogram to direct

the computer to count the votes for each candidate, Snoopy and
the Red Baron. First, let’s record the 29 votes in one or more
DATA statements. Remember, each vote is a “1” or a “2.”

51 DATA 2,
2

2,1,
92 DATA l,1,

1,
92,
Before continuing, we ask you the following questions.

How many votes did Snoopy get?

How many votes did Red Baron get?

Add the number of votes obtained by Snoopy and the number
obtained by the Red Baron. The total should be 29 . . . if not,
check your work. T

-

1-107



as

We think you answered the questions on the preceding page
follows.

1. You counted the number of “1s” in the two DATA state-
ments. The result is the number of votes obtained by
Snoopy.

2. Then you counted the number of “2s” in the two DATA

statements. The result is the number of votes obtained by
the Red Baron.

That’s fine, but we are going to use a different method. First, we

define two subscripted variables and assign the value zero (0) to
each. Like this:

C(1) 0 C(2) 0

Then we read the 29 votes, one by one. If the vote (V) is a “1”

we increase the value of C(1) by one. But if the vote is a “2,” we
increase the value of C(2) by one. After we have read all 29
votes, C (1) will contain the number of votes for Snoopy and C(2)
will contain the number of votes for the Red Baron. Here is the
program and the results of a RUN.

19
20
30
40
58
60
70
91
92
99

If you don’t understand the pro-
gram, study the trace on the next
LET C(l1)=0

LET C(2)=0 page.

FOR K=1 TO 29

READ V

LET CCU)=CCVl+1

NEXT K

PRINT C(1),C(2)

DATA 2,152, 151,2,2,2,15,1,2,2,2, 151
DATA 2,2,15152,2,2,1,2,1515152,2
END

RUN
13

16
t !

Vote count for Snoopy.

Vote count for the Red Baron.

1-108



Ekercise-71. Study the following partial trace of our vote count-
-ing program and fill in the missing information under the K, V,
C(1) and C(2) columns. '

STATEMENT K vV C(1) C(2)

1I0LETC(1) =0 : 0
20LET C(2) =0

30FORK =1TO 29

40 READ V
50 LET C(V) =C(V) + 1
~ 60 NEXT K

40 READ V
SOLETC(V) =C(V) +1
60 NEXT K '

40 READ V |
50 LETC(V) =C(V) + 1
60 NEXT K

40 READ V
S0LET C(V) =C(V) +1
60 NEXT K

40 READ V
50 LET C(V) = C(V) + 1
60 NEXT K

40 READ V
S0LET C(V) = C(V) + 1
60 NEXT K

40 READ V
S50 LET C(V) = C(V) + 1
60 NEXT K

jam—y
oo O O
= = =)

== NN
[Sury

N
et ek
oy

DWW WO NEm=
[\

[\
-
[\

and so on.

1-109



Exercise 72, We conducted another poll, asking the same ques-
tion. But this time, we asked 32 people to vote for Snoopy or the
Red Baron. Here are the votes.

1,1,2,1,2,2,2,2,1,1,2, 1,1, 1, 1, 1
2,2,1,2,1,1,2,2,2,1,1,1,2,1, 1,2

Use our program to process the above data. You will have to
change Lines 30, 91 and 92.

Exercise 73. Conduct your own poll. Then use our program to
process the data. You will probably have to change Lines 30, 91
and 92. '

Exercise 74. Figure out how to use the following program to
count votes. Change it to count the votes of either Exercise 68
or 69.

13 READ N - N votes
20 LET C(1)=0
25 LET C(aY)=0
30 FOR K=1 TO N -
40 READ V
S@ LET C(UV)=CCU)+1
68 NEXT K
78 PRINT C(13,C(2)
99 DATA 29 = Value of N.
91 DATA 251,251,512, 2,2515152,25251,1
92 DATA 2,2515152,2:,251,25151,1,2,2
99 END
RUN
13 16

1-110



No Opinion ' |
Here is a slightly different questionnaire.

Who should be President in 19767
Circle the number to the left of the
candidate of your choice.

1. Snoopy
2. Red Baron

3. No Opinion

We asked 37 people and got the following votes.
1,3,1,2,3,1,1,2,3,1,1,2,1,1,2,1,2,2, 2
2, 1, 3’ 2, 2, 1’ 2’ 1.’ 1’ 3’ 17 1’23 3’ 1? 1’ 293

How many votes for Snoopy?

How many votes for the Red Baron?

How many No Opinions?

TOTAL of above categories?

Now we have three categories, so we use three subscripted
" variables,

C(1) C(2) | c3d) |

Snoopy / Red Baron / No Opinion /

Exercise 75. Change our program of Exercise 74 into a program
to process data such as the above (three categories instead of two).
You will have to add a line to set C(3) to zero, change Line 70
and, of course, change Lines 90, 91 and 92.

1-111



Exercise 76. In a newspapef, the results of a poll might be pre-
sented in a table such as the following.

- CANDIDATE VOTES PERCENT

Snoopy 17 46 %
Red Baron 13 35%
No Opinion 7 19%

(% of total vote)

Modify your program of Exercise 75 so that the results are
printed in a table like the one shown above.

Exercise 77. But suppose there are three candidates. For exam-
ple, our questionnaire might look like this.

Who should be President in 1976?
Circle the number to the left of the
candidate of your choice.

1. Snoopy

2. Red Baron
3. Lucy

4. No Opinion

Write a program to count votes obtained by using the above
questionnaire. Invent your own data . . . print results in a table
similar to the table in Exercise 76.

1-112



More Choices

We have used questionnaires with two choices, three choices and
four choices. In each case, the choices have been political candi-
dates or a “No Opinion” category. Our categories don’t have to be
political, however. Here are several questionnaires that you can use
to gather data. Do so . . . then use the program on the following
page to compute the results of each of your polls.

What is your favorite mu-
sical group? Circle the
number to the left of your
choice.

Which breakfast cereal do
you prefer? Circle the
number to the left of your
choice.

. 1. Beatles

‘2. Blood, Sweat and

Tears
3. Crosby, Stills, Nash &
" Young

. Jefferson Airplane
Lawrence Welk
Rolling Stones
None of the Above

1. Trix
2. Total
3. Cheerios
~ 4. No Opinion

Now e

What is your favorite individual sport? Circle the num-
ber to the left of your choice.

1. Badminton - 2. Bowling 3. Boxing
4. Fencing ‘ 5. Golf 6. Gymnastics
7. Handball 8. Ice Skating 9. Karate
10. Roller Skating  11. Snow Skiing 12. Squash
13. Surfing 14. Swimming 15. Tennis
16. Track 17. Water Skiing 18. Wrestling
19. None of Those '
Listed

If someone circles two or more choices, throw out then' ques-
tionnaire . . . our program can’t handle this case.

1-113



Here is our program. The lines that begin with the word “RE-
MARK?” are remarks! They have no effect on the execution of the
program. You may insert a REMARK line wherever you please.

100 REMARK***THE PEOPLE'S POLL

200 REMARK**xxM IS THE NUMBER OF CATEGORIES (M<=99)
219 DINM C(99) e

228 READ M Let’s talk about this below.

300 REMARK***SET C(1),C(2),...,C(M) ALL TO ZERO
319 FOR K=1 TO M

328 LET CC(K)=0

330 NEXT K

400 REMARK*xkxPRINT A HEADING .

4109 PRINT "CATEGORY", "VOTES"

420 PRINT

588 REMARK***xTHERE ARE N VOTES

510 READ N

600 REMARK*xx*READ N VOTES AND COUNT BY CATEGORY
6i0 FOR K=1 TO N

626 READ V

636 LET C(V)=C(V)+i

64@ NEXT K

700 REMARK*%xPRINT RESULTS (M LINES,Z NUMBERS PER LINE)
718 FOR K=z1 TO M

720 PRINT K,C(K)

730 NEXT K
900 REMARK***BEGIN DATA LISTS
981 DATA = Put your value of M here.
- 902 DATA = Put your value of N here.
993 DATA == ‘ Record your votes, beginning here.
999 END Use as many DATA statements as
necessary.
##% 0K, now RUN it ***
The statement ‘ 210 DIM C(99)

is a DIMension statement.” It tells the computer to permit sub-
scripts of C up to and including 99. Without a DIM statement, the
largest permissible subscript is 10. We chose 99 arbitrarily. We
could have chosen 25 or 100 or 150 or any limit we wanted.

7 Not necessary on EduSystems 20 or 25.

1-114



Generation Gap
Snoopy and the Red Baron , . . a new questionnaire.

Q1. Who should be President in 19767 Circle the
number to the left of your choice. |

1. Snoopy
2. Red Baron
3. No Opinion
Q2. Circle the number to the left of the phrase
that describes your age group.

1. Under 30 years old
2. 30 years old or older.

The first question has three possible responses (1, 2 or 3) and.
the second question has two possible responses (1 or 2). Each
completed questionnaire gives us two numbers. For example,

-

A vote for Snoopy 7. . by a person 30 years old or older.

We conducted a survey. We asked 32 people to vote, therefore
we got back 32 pairs of numbers . . . 64 numbers in all.

1,2,2,1,3,2,1.1.2.2.2.2.1,1,2,1,1,2,2,2,2,2,3, 1
2,2,1,1,1,1,2,2,1,2,3,2,2,2,2,1,1,1,1,1,1,1, 1,2
1,1,1,2,2,1,1,2,2,2,1,1,3,1,1, 1

Begin'here and circle or underline each pair of numbers. The first
number in each pair is the vote (1, 2, or 3) and the second number
in each pair is the age group of the voter.

How many people’undef 30 voted for Snoopy?

How many people 30 or older voted for Snoopy?
1-115



_Fortunately, BASIC permits us to use variables with two sub-
scripts. :

UNDER 30 . 30 OR OVER
Snoopy C(1,1) C(1,2)
Red Baron C(2,1) C(2,2)
No Opinion C(3,1) C@3,2)
Here is a variable with two subscripts: C(3,1)

First subscript / /
Second subscript -

Have you guessed the following?

C(1, 1) = number of votes for Snoopy by people under 30.
C(1, 2) = number of votes for Snoopy by people 30 or over.

C(2, 1) = number of votes for Red Baron by people under 30.
Your turn. Complete the following,.

C(2,2) =

C@3,1) =

C(3,2) =

Here is our data again, copied from the preceding page. Use it to
- fill in the boxes (C(1,1), C(1,2), etc.) at the top of the page. We
suggest that you look at each pair of numbers and, for each pair,
put a mark in the appropriate box. After you have used all pairs,
simply count the number of marks in each box and write in the
number.

1,2,2,1,3,2,1,1,2,2,2,2,1,1,2,1,1,2,2,2,2,2,3, 1

2,2,1,1,1,1,2,2,1,2,3,2,2,2,2,1,1,1,1,1, 1,1, 1,2

1,1,1,2,2,1,1,2,2,2,1,1,3,1,1, 1

1-116




several REMARKS to describe what’s happening.

100
200
210
220
230
240
250
300
310
320
330
340
350
400
410
420
430
440
450
900
901
902
993
999

Here is a BASIC program to count the votes. We have included

0

REMARK*** SNOOPY, RED BARON AND THE GENERATION GAP
REMARK*%*PUT ZEROS IN THE BOXES

FOR I=F TO 3

FOR J=1 TO 2

LET CC(1,U)=0 ,

NEXT J

NEXT 1

REMARK***READ A NUMBER PAIR AND UPDATE A BOX

REMARK***VU=VOTE AND A=AGE GROUP
FOR K=1 TO 32

READ U, A

LET C(V, A)=C(VsA)+]

NEXT K

REMARK***PRINT THE RESULTS

PRINT "CANDIDATE', '"UNDER 3@',"30 OR OVER"

PRINT

PRINT "SNOQPY"»C(1,1),CC1, )

PRINT *"RED BARON'",C(2,1),C(2,2)

PRINT ""NO OPINION',C(3,1),C(3,2)

REMARK#***HERE 1S THE DATA

DATA 152525153525 151525252525 151525151,2,2,2,2,2,3,1
DATA 2,25151,151525,2,152,3,2,2,2,2,1515151,1,1,1,1,2
DATA 1515152,25151,2,2,251515,35151,1

END

RUN -
CANDIDATE UNDER 30 39 OR OVER

SNOOPY 12 6
RED BARON 4 ‘ 8

NO

‘OPINION 2 2

Study the above program and understand it before you move on.

Perhaps the following comments will help.

If IT=1 and J=1 then C(I,J) is C(1, 1)
If I=1 and J=2 then C(,J) is C(1, 2)
If T=2 and J=1 then- C(L, J) is C(2, 1)
and so on.

Remember. ..
C(V, A)
V= 1,2,or3/ \A =1or2
If V=1 and A =2 then C(_V., A) is C(1,2).

1-117



Exercise 78. Modify our program on the preceding page so that
the results are printed as follows.

CANDIDATE UNDER 30 3@ OR OVER TOTAL VOTES

SNOOPY 10 6 16
RED BARON 4 8 12
NO OPINION 2 2 4

Exercise 79. Modify your program of Exercise 78 so that instead
of printing the number of votes, the computer prints the percent of
the total number of votes, rounded to the nearest whole number
percent. For example, using the same data as in Exercise 78, the
computer should print the following results.

CANDIDATE UNDER 30 38 OR OVER TOTAL

SNOOPY 31 Z 19 Z ‘ 5@ 7
RED BARON 13 2 25 2 38 2
NO OPINION 6 % 6 2 12 2

Exercise 80. Change the questionnaire. Add a candidate and
add an age group as follows.

CANDIDATES AGE GROUPS
1. Snoopy 1. Under 21
2. Red Baron 2, 21-29

3. Lucy 3. 30orolder
4. No Opinion

Write a program to count votes and print the results under the
following headings.

CANDIDATE UNDER 21 21-29 38 OR OVER

1-118



Reprise
A BASIC variable may have

no subscript: ABCD,...
one subscript: A(3),B(K),C(X+2),...
two subscripts: A(1,2), B(I,]),C(X, X+ 1),...

A subscript may be
a numeral or a variable or an expression.

A subscript must have a non-negative value. Furthermore, if the
subscript is not a whole number, then the computer uses the whole
number of the subscript. For example:

X (3.7) is interpreted as X (3).
If K=2.9 then P(K) is P(2).

The computer permits a subscript value of zero (0).

180 LET ACO)Y=100
20 PRINT AC®)
99 END

If a subscript value exceeds 10, you may have to use a DIM
statement. Otherwise, this may happen

No DIM statement here.

12 LET AC1O)=110
20 PRINT AC1®)
30 LET AC11)=1)} -e—————]n Line 30, we used a subscript of
48 PRINT AC11) 11. '
99 END
RUN

110

SUBSCRIPT ERROR AT LINE 30

1-119



So let’s add a DIM statement

S DIM ACl1) = - This DIM statement tells the com-
10 LET AC10)=110 puter that the subscript of 4 may
20 PRINT AC10) be at most 11.

38 LET ACl11)=111
48 PRINT AC1D)
99 END

RUN
110 Now the program works as desired.
111

A DIM statement has the following general form

line number DIM list of subscripted variables

For example: 18 DIM A(20),B(38),C(20,12)D(5,T)

/

line number
DIM

list of subscripted variables

The above DIM statement tells the computer that:
The subscript of A must me < 20.

The subscript of B must be < 30.

The first subscript of C must be < 20.
!The second subscript of C must be < 12.

The first subscript of D must be < 5.

The second subscript of D must be < 7.

If you don’t mention a subscripted variable in a DIM statement,
then the computer assumes that its subscript or subscripts must be
less than or equal to 10.

1-120



Below are two programs. RUN each program using the given
data. Describe to. yourself what each program does, then make up
your own data and RUN it again.

10 DIM K(50),A(580)

15 READ N

20 FOR J=1 TO N

gg SPE:}I-:'? KcJ) Maybe you can figure out what the
J . N

35 LET S=0 program does without a RUN, Try

46 FOR J=1 TO N it!
45 READ A¢JO)

.50 1F A(JY<>K(J> THEN 60
55 LET S=S+1

60 NEXT J

65 PRINT S

76 GO TO 35

80 DATA 12

81 DATA 2,1,253,4,1,3,25154, 4,1
82 DATA 2,151,3,4515,3,15153,4,2
83 DATA 25,15253,351535251545 451
84 DATA 1,1,153,45,153,2,2,4,4,1
85 DATA 3,4525154515,25,453,4,1,3
99 END

160 DIM X(3®)

2090 READ N

219 FOR K=1 TO N

220 READ X(K)

230 NEXT K

333 FOR J=1 TO N-1

312 FOR K=Jg TO N )
320.. XCJy=XC(K)L —
109 DIM 30.

200 READ N

210 FOR K=! TO N

220 READ X(K)

230 NEXT K

308 FOR J=1 TO N-1

319 FOR K=J TO N

320 IF X¢J)<=X(K) THEN 360
338 LET T=X(J)

340 LET X(J)=X(K)

350 LET X(K)>=T

360 NEXT K

378 NEXT J

4090 FOR K=1 TO N

410 PRINT X(K)3

420 NEXT K

9600 DATA 20

931 DATA 66, 755,59,93,77585548,92, 67,78
902 DATA 83;47:96)7@:66:73)59:75:8@:53
999 END

1-121



100 REMARK***DECIMAL MULTIPLICATION TABLE
200 REMARK**xGENERATE AND STORE THE TABLE
210 FOR A=1 TO 9

220 FOR B=1 TO 9

230 LET C(A,B)=A%B

240 NEXT B

250 NEXT A

300 REMARK***PRINT THE TABLE

318 FOR A=1 TO 9
320 FOR B=1 TO 9
330 PRINT CCA,B);
340 NEXT B

343 PRINT

347 PRINT

350 NEXT A

999 END

We avoided 4 = 0 and B = 0.
You may wish to change the pro-
READY gram to include these values.

RUN

1 2 3 4 5 6 7 8 9

2 4 6 8 190 12 14 16 18

W
(o ]

9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36
5 19 15 20 25 30 35 40 45
6 12 18 24 3@ 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 -32 40 48 56 64 12

9 18 27 36 45 54 63 72 81

Exercise 81. Modify the program so that the computer prints the
decimal addition table.

Exercise 82. Modify the program so that the computer prints the
octal (base 8) multiplication table.® (Remember—the base 8 digits
are: 0,1,2,3,4,5,6and 7.)

8 If you don’t understand octal, see Introduction to Programming 1972.

1-122



KALEIDOSCOPE

Coin Tosser

The following program causes the computer to simulate (imi-
tate) coin tossing. During the simulated tossing, no printout occurs.
Instead, the computer counts the number of heads and tails that
happen. After the required number of tosses have been completed,
the computer prints the counts.

10
15
29
25
30
40
50
60
10
80
85
90
99

PRINT
INPUT

PRINT
PRINT
PRINT
GO TO
END

RUN
HOW MANY

RESULTS:
HOW MANY
RESULTS?
"HOW MANY
RESULTS?
HOW MANY
RESULTS?
HOW MANY
RESULTS?

HOW MANY

LET NC1)>=0

LET N(2)=0

FOR K=1 TO T

LET X=INT(2%¥RND(@))+1
LET N¢(X)=N(X)+1

NEXT K

*HOW MANY TOSSES*:; —T is

T -
N(1) number of HEADS.
N(2) = number of TAILS. .

1 for HEADS and 2 for TAILS.

the number of t’osses.'—'

"RESULTS:*"3sNC1)3"HEADS AND"3N(2)3"TAILS"

10

TOSSES? 100

50 HEADS AND 50 TAILS
TOSSES? 100

51 HEADS AND 49 TAILS
TOSSES? 1000

500 HEADS AND 500 TAILS
TOSSES? 1000

499 HEADS AND 501 TAILS

TOSSES? 1000

501 HEADS AND 499 TAILS

TOSSES? = Your turn. Carry on.

1-123



Dice

Next . . . a program to simulate rolling a pair of dice. For each

roll, the computer prints the number of spots showing for each die
and the total spots—both dice. '

10
20
30
59
60
70
80
99
99

PRINT "HOW MANY ROLLS"3;-—Let’s have T rolls of the pair of
INPUT T - dice.

FOR R=1 TO T

LET B=INR(6xRND(@))+1

PRINT As Bs A+B A = number of spots, die (1).
NEXT R B = number of spots, die (2).
PRINT

GO TC 10

END ' Total spots, both dice.

Exercise 83. Modify the above program so that the computer

does not print the results of each roll. Instead, after all rolls have
been completed, have it print a frequency distribution showing the
number of times the total number of spots (both dice) came up
2,3,4,5, ..., 12. Here is a printout of our program.

HOW MANY ROLLS? 1000

TOTAL SPOTS NUMBER OF TIMES

25
55
g2
105
135
180
139
96
86
65
32

1-124



23 Matches _

Have you ever played 23 matches? It goes like this . . . we start
with 23 matches. You move first. You may take 1, 2 or 3 matches.
Then I move . . . I may take 1, 2 or 3 matches. You move, I move,
and so on. The one who is forced to take the last match loses. Here
is a program to enable you to play 23 matches against the com-
puter. Enter it and type RUN.

. 100
110
115
120
130
140
150
200
205
210
215
220
230
240
250
251
252
253
254
260
270
-280
290
300
310
320
330
340
350
360
370
375
380
390
400
410

420"

438
440
450
460
999

LET M=M-H

LET C=INT(3%*RNDC(O))>+1}
GOTO 360

‘REMARK***23 "MATCHES
-LET M=23

PRINT :

PRINT "WE START WITH 23 MATCHES. WHEN IT IS YOUR"
PRINT "TURN, YOU MAY TAKE 1,2, OR 3 MATCHES. THE"
PRINT "ONE WHO MUST TAKE THE LAST MATCH LOSES."

PRINT _
REMARK***THE HUMAN MOVES

PRINT

PRINT "THERE ARE NOW";M;"MATCHES"
PRINT

PRINT "HOW MANY MATCHES DO YOU TAKE?'';

INPUT H

IF H>M THEN 260 ,

IF H=INTC(H)Y THEN 252

GOTO 260

IF H>? THEN 254

GOTO 260

IF H<4 THEN 280

PRINT "YOU CHEATED! I'LL GIVE YOU ANOTHER CHANCE."
GOTO 215 :

IF M=0 THEN 410
REMARK**xTHE COMPUTER MOVES
LET R=M=-4xINT(M/4)
IF R<>] THEN 350

LET C=(R+3)-4*INT((R+3)/4)
LET M=M-C
IF M=0 THEN 440

PRINT
PRINT *I TOOK"3C3"MATCHES"
GOTO 200

REMARK***SOMEBODY WON(SEE LINES 290 AND 378>
PRINT :
PRINT "I WwON!!!Y BETTER LUCK NEXT TIME.*"

GOTO 100 '

PRINT

PRINT "OeKe. SO YOU WONe. LET'S:-PLAY AGAIN."

‘GOTO . 100

END

We show a RUN on the following page (we lost).

1-125



WE START WITH 23 MATCHES. WHEN IT I35 YOUR
TURN, YOU MAY TAKE 1,2, OR 3 MATCHES. THE
ONE WHO MUST TAKE THE LAST MATCH LOSES.

THERE ARE NOW 23 MATCHES ~ ,Human (that’s me)
HOW MANY MATCHES DO You Takez? 37 (2kes 3 matches.

I TOOK 3 MATCHES Computer takes 3 matches.
THERE ARE NOW 17 MATCHES

HOW MANY MATCHES DO YOU TAKE?? 2
I TOOK 2 MATCHES

THERE ARE NOW 13 MATCHES

HOW MANY MATCHES DO YOU TAKE?? 3
I TOOK 1 MATCHES

THERE ARE NOW 9 MATCHES

/Quite illegal!

HOW MANY MATCHES DO YOU TAKE?? 4
YOU CHEATED! I'LL GIVE YOU ANOTHER CHANCE. VVegotcaughU

HOW MANY MATCHES DO YOU TAKE?? 1
I TOOK 3 MATCRHES

THERE ARE NOW S5 MATCHES

HOW MANY MATCHES DO YOU TAKE?? 2

I TOOK 2 MATCHES

Nice try, but again

THERE ARE NOW 1 MATCHES
we got caught.

HOW MANY MATCHES DO YOU TAKE?? @
YOU CHEATED! I'LL GIVE YOU ANOTHER CHANCE.

HOW MANY MATCHES DO YOU TAKE?? 2
YOU CHEATED! I'LL GIVE YOU ANOTHER CHANCE.

HOW MANY MATCHES DO YOU TAKE?? 1

1 WON!!! BETTER LUCK NEXT TIME.

Can you beat the computer? Try it!

1-126



Rounding a Number
Sometimes we want to round a number. If you don’t know what

we mean by “round,” study the following program and the RUN
of it.

1@ REMARK#**% ROUND TO THE NEAREST INTEGER

20 PRINT " X'","X ROUNDED"

3@ PRINT

40 READ X

50 LET R=INT(X+.5)-———R = X rounded to nearest integer.
6@ PRINT X, R

70 GOTO 40

‘80 DATA 0+152,2¢7853¢14:809995,9¢55=3.7,-3.2

99 END

RUN

X X ROUNDED
2 P
1 1
2 2
2.78 3
3.14 3
B«999 9
945 10
~3e7 -4
-3.2 -3

L)

Exercise 84. Modify the program so that X is rounded to two
decimal places instead of to the nearest integer. (To the nearest
penny!) Use the following DATA statements. i

DATA ERROR AT LINE 40

DATA 3.142,2¢718564555,9¢993,7.995
DATA =3.142,-2.7185-6.555,~7¢993,-7.995

1-127



Miscellaneous Math

Previously we discussed two BASIC functions (INT and SQR)
that are used to perform mathematical operations. BASIC also in-
cludes other mathematical functions to help you calculate loga-
rithms, exponential equivalents, absolute values, and signs of
values. The following examples illustrate these additional functions.

LOG

The LOG function returns the natural logarithm of X to the
base e (log.X). Line 20 in the following program contains a LOG
function used to convert several values to their logarithmic equiv-
alents.

18 READ X

20 PRINT LOG(X)

30 DATA 54.59815,22026.,47,12345,200, .720045E11
49 GO TO 10

99 END

RUN

4
19
9.421006
4,60517
25

DATA ERROR AT LINE 1@

EXP :

The exponential (EXP) function raises the number e to the
power of x. EXP is the inverse of the LOG function. The following
program prints the exponential equivalents of several values. Note
that the input values below are the output values from the LOG
function example.

180 READ X

2@ PRINT EXP(X)

30 -DATA 4,10,9.421006,4.60517,25
40 GO TO 1@

99 END

RUN

-54.,59815
22026.46
12345
99.99999
7.20@490E+10

DATA -ERROR AT LINE 10
1-128



ABS -

The absolute (ABS) function returns an absolute value for
any input value. Absolute value is always positive. In the following
program, various input values are converted to their absolute values
and printed.

10 READ X

28 LET X=ABS (X)

38 PRINT X )

49 DATA -35,.17,2, 25Elﬂ 185555567, 18.12345
58 GO T0 19

99 END

RUN

35.7

2

2.500000E+11
1.055556E+08

190.12345

DATA ERROR AT LINE 1@

SGN

The sign (SGN) function returns the value 1 if x is a positive
value, O if x is O, and —1 if x is negative. The following program
illustrates the use of the SGN function. :

1@ READ A,B,C

20 PRINT "A="A,"B= "B, C "C

38 PRINT "SGN(A)"’SGN(A), SGN(B)="SGN(B),"SGN(C)="SGN(C)
4“ DATA ‘7.52’ oAq,g

58 GO TO 1@

99 END

RUN

Az-7.32  Bz=.44 C=0

SGN(A)=-1] SGN®B)=| SGN(C):=0
DATA ERROR AT LINE 10

1-129



Say Something in Trigonometry

If you haven’t had trig, just skip this page. But if you do know
something about trig, read on!

Let R be the measure of an angle, given in radians.

18 PRINT *R", "SINCR)", “COSCR)"s "TANCR)Y ", "ATNCR) "
20 PRINT
30 READ R

408 PRINT R,

56 GOTO 3@

6@ DATA 051525 353141595 3141654555 657,8,100

99 END
READY

RUN
R

1
e
3
3. 14159
3.1416

=D

o0

DATA ERROR AT LINE 39

SIN(R)Y

1}
«841471
« 9092974
«14112

2+ 668363E~-6
-7+ 3497AGE-6

-« 7568025
-+ 9589243
-e 2794155
» 6569866
« 9893582
“~e 5063656

COS(R)

1
«5403023
~+4161468
-+9899925
-1
-1
-+ 6536436
« 2836622
«9601703
+ 7539022
-+ 1455
+ 8623185

SINCR)» COSC(R)Y» TANCR)s» ATN(R)

TANC(R)

o

1.557408
-2.18504
-+1425466

-2.668363E-6
7.349700E-6

1.157821
-3.380515
-+2910062

«8714481
-6.795713
-+5872141

ATNC(R)

7}

« 7853982
1.107149
1.249046
1.262627
1.262628°
1.325818
1.373401
1405648
1« 428899
1.446441
1.560797

Exercise 85. The above program requires that the value of R be
given in radians. Modify the program so that the data is given in
degrees. Include the following DATA statements.

DATA 0,38,45,90,120,135,150, 180

DATA 210,225,240,279,300,315,330,360
DATA 1000,2000,5000,3630,3645,5660

1-130



!

Do It Yourself Functions

When you have mastered BASIC and are writing your own pro-
grams, you may wish to define functions other than those provided
- by BASIC. The DEF statement allows you to do this.

To show you how the DEF statement works, we defined as a
function the formula for converting Fahrenheit to Centigrade. We
provided the computer with Centigrade values. We included a
check to ensure that all values were above —273. We used the

formula:
9

to convert Centigrade to Fahrenheit. And we request that the
converted values be printed.

Here is the program we used:

READY

10 DEF FNF(T)>=(9/5)%T+32
20 GOSUB 100
30 PRINT FNF(X)
49 GOTO 10
50 STOP
100 REMARK***READ AND TEST DATA
119 READ X .
120 1F X>-273 THEN 140
130 PRINT "INVALID DATA" _
140 RETURN
200 DATA -40,0,100,23,9,37,-274
999 END

RUN
-40

32

212

73.4

48.2

98. 6
INVALID DATA
-461.2

DATA ERROR AT LINE 11@

C+ 32

The DEF statement in line 10 defines a function FNF which
may then be used elsewhere in the program. Defined functions must
- have three letter names, starting with FN. The format of the DEF
statement is as follows:

(line number)DEF FNF(T) = (9/5)*T + 32
argument formula argument

1-131



F may be any letter. The argument (T) has no significance but
must be the same on both sides of the equal sign. The formula may
be expressed in terms of numbers, several variables, other functions
(INT, SQR, etc.), or mathematical expressions.

Once the function has been defined, it is called in the same
manner as other BASIC functions, e.g. FNF(X). Only one DEF
statement is permitted in an EduSystem 10 program. The larger
EduSystems allow multiple DEF statements in a program.

Exercise 86. Define a function to find the area of a circle. Re-
member that the formula is:

A=3.14xR?  or as wesay in BASIC A = 3.14*R 12

Use the function to find the areas of circles with radii of 6, 8,
and 12. Use the computer to check your answers.

PAST AND FUTURE BASIC ,
Look back . . . you have learned a lot about the language called
BASIC.

e Direct Statements? SCR, RUN, LIST
e Statements: PRINT, END, LET, INPUT, GO TO, READ,
DATA, FOR, NEXT, IF, DIM, REMARK,
GOSUB, RESTORE
Operations: +, —, *, /, 1
e Relations: =, <, >, <=, >=, <>
e Functions: INT, SQR, TAB, RND
¢ Also: Numerals, numerical expressions, variables, variable
expressions, traces, messages, loops, flowcharts, sub-
scripted variables

‘ 'Brie.ﬂy mentioned:
e The SIN, COS, TAN, and ATN functions
e The LOG, EXP, ABS, and SGN functions

9 A direct statement does not have a line number. It is executed immedi-
ately {(when you press RETURN) instead of being stored in the computer’s
memory for later execution. Some people use the term “immediate state-
ment” instead of “direct statement.” '

1-132



- Now you can “say” simple things in BASIC, but you are not
yet fluent. As with any language, if you want to become fluent, you
must use the language and also learn more about it.

Look ahead .. . more to learn about BASIC . . . things that
we haven’t covered at all or have only mentioned briefly.

e Statements DEF, GOSUB, ON ... GO-TO ..., RE-
STORE, RETURN, STOP

® Jogical Operations: 'AND, OR, NOT
¢ Functions: ABS, ATN, COS, EXP, LOG, SIN, TAN

The above are included in many versions of BASIC. But there
are also some hopped-up versions of BASIC that have additional
features. Look for:

® Strings and String Variables
e String Functions
* Files

Where do you look? For each EduSystem there is a chapter in
this handbook that describes the exact characteristics of the lan-
guage for that EduSystem. The following chart summarizes the
BASIC statements, edit and: control commands, and functions and
indicates the EduSystems on which they. are available.

1-133



PET-T

‘Table 1-1. BASIC Statements

EduSystems
Statement Format Description 5 10 15-20 25 30 40 50
Input/ Output
CLOSE CLOSE Close open ouput data file. X
CLOSE CLOSE £ Close file f. X
DATA DATA n,,n,,.n, Numbers n, through n, are X X X X X X X X
variables for READ.
GET GETf{,1r Read record r, form as in X
line 1, from file f.
INPUT INPUT v,,v,,..v, Get v,, through v, input from X X X X X X X X
Teletype.
INPUT# INPUT#, v Get v (can be numeric and/ X
or string variable) from
input data file.
KILL KILL F$ Delete a stored data file X
named by F$.
LINPUT LINPUT v$,,v$,,...v§, Get long character string X X
from Teletype.
LPRINT Print values of specified text X

LPRINT e,,e.,...e,

or expressions on line printer
or high-speed paper tape
punch.



SET-1

Table 1-1 (Cont.). BASIC Statements

EduSystems
- Statement Format Description 5 10 15 20 25 30 40 50
OPEN OPEN f,n$ _ Open a file named nS$ as file f. : X
OPEN A$ FOR INPUT Open an existing data file X
: named by AS. .
OPEN B$ FOR OUTPUT x Create or reopen an existing X
data file named by B$; x is
number of blocks reserved for
this file.
OPEN-ELSE OPEN f ELSE n | Open a file; go to line n if X
_ ‘ unavailable. ' :
PRINT PRINT e,.e.,...e, : Print values of specified text, X X X X X ‘X X X
, , variables, or expressions.
- Format control (, or ;).
PRINT# PRINT#,n ' Write data (numeric or I
' o string) onto thé output data
file. - '
PUT PUT f,1,r Write record r, form as in X
. line 1, in file £.
READ READ v,,v,,...V, Read variables v, through X X X X X X X X
' v, from DATA list.
RESTORE RESTORE Reset DATA pointer to be- X X X X X X X X

ginning value,



9¢1-1

Table 1-1 (Cont.). BASIC Statements

_ EduSystems
Statement Format Description 5 10 15 20 25 30 40 50
RESTORE* RESTORE* : Reset DATA pointer for | X
S Co T - numeric data only.
RESTORES$ - RESTORE$ Reset DATA pointer for X
character string data only.
UNSAVE UNSAVE f Delete file from disk storage. X
WRITE WRITE n,..n, - Record data n, through n, on X X X X
mass storage file.
Transfer of Controls
GO TO GO TOn Transfer control to line n. X X X X X X X
IF-GO TO Ifelre2GOTOn If relationship r between el X X X X X
and e2 is true, transfer control
to line n. .
IF-THEN IFelre2 THEN n Same as IF-GO TO. X X X X X X X X
iFelre2 THEN X If relationship r between el X X
and e2 is true, then perform
executable BASIC statement.
ON-GO TO ONel GOTOIL,L,...I, Computed GO TO. X X X X
Loops and Subscripts
DIM DIM v(d,),v(d,,d,) Dimensions, variables sub- X X X X X X "X X

scripted.



LET-T

Table 1-1 (Cont.). BASIC Statements

DEF FNA(X,y)=(x,y)

EduSystems
Statement Format Description 10 15 20 25 30 40 50
FOR-TO-STEP  FOR v=el TO €2 STEP ¢3 Set up program ioop. Define X X X X X X X
v values beginning at el to e2,
incremented by €3,
NEXT NEXT v Terminate program loop in- X X X X X X X
crement value of v until v
_ (>e2).
Subroutines
GOSUB GOSUB n Enter subroutine at line n. X X X X X X X
ON-GOSUB ON el GOSUB L,,L,..., "~ Computed GOSUB. X X
RETURN RETURN Return from subroutine to X X X X X X X
. statement following GOSUB
_ ~ or ON-GOSUB.
STOP STOP Transfer control to END X X X X X X X
) statement.
- Others ‘
CHAIN CHAIN n$ Link to next user program. X X X X X
‘CHAINS CHAINS A$ Link to public library program X
. named in AS.
CHANGE CHANGE v,, TO v, Change character string to X
' array of character codes.
DEF DEF FNAX)=f(x) Define a functjon. X X X X X X X



8¢I-1

Table 1-1 (Cont.). BASIC Statements
EduSystems :

Statement Format Description 10 15 20 25 30 40 50
END END End of program. X X X X X X X
LET LET v=f Assign value of formula £ X X X X X X X

to variable v. The word LET

is optional.
RANDOMIZE RANDOMIZE Randomizes random number X X X X X X

routine.
RECORD RECORD v,,v,,...v Define the size and comp0si- X

tion of record.
REMARK REM text insert a remark or comment. X X X X X X X
SLEEP SLEEP n Cause program pause for X

n seconds.




6¢1-1

Table 1-2. BASIC Edit and Control Commands

_ EduSysfems
Command Format Description 5 10 15 20 25 30 40 50
BYE BYE Leave BASIC Monitor. X
CATALOG CAT List names of user programs X X X X
in storage area. .
CATS CATS ~ List names of public library X
programs.
COMPILE COMname Compile program in core, X
1 save on disk.
CTRL/C . CTRL/C Stop program execution, X X X X
return to edit mode.
DELETE DELn Delete line n. X X X
: n Delete line n. X X X X
DEL nm Delete lines n through m X! X X
inclusive. .
EDIT EDIn Search line n for character c. X X X
' (c) (See appropriate chapters for
instructions on use.)
FILELOG FIL List the data files stored by X
this user. :
FILELOGS$ FILS List the public data files. X
KEY KEY Return to keyboard mode X X X X

after TAPE.



ovI-1

Table 1-2 {Cont.).

BASIC Edit and Control Commands

- EduSystems
Command Format Description 5 10 15 20 25 30 40 50
LIST LIST  List entire program in core. X X X X X X X X
LIST n List program starting at X X X X X
line n.
LISTn List line n only. X X X X
LIST n,m List lines n through m X X X X
inclusive. '
LISTNH List entire program, no X "X X
header.
LISTNHn List program starting at line n, X X X
no header.
LLIST LLIST List program to line printer. X
NEW NEW Clear core, request program X X X X x
name.
OLD OLD Clear core, bring program to X X X X X
core from storage area,
OLD$ OLD$ Clear core, request public X
library program name, bring
program to core from storage
area.
REPLACE REP Replace old file on disk with X
: version in core,
REP name If name not specified, old X

name retained.



Ivi-I

.

Table 1-2 (Cont.). BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50
RUN RUN Compile and run program X X X X X X X X
‘ . in core.
RUN NH Same as RUN without header. X X X
SAVE SAVE name Store program named on p X X X X
- , storage device.

SCRATCH SCR Erase current program from ¥ X X X X X X X
core.

TAPE TAP Read paper tape; suppress X X X X X X

- printing on Teletype. _ '
UNSAVE UNSAVE name Delete program named from X X X X X
' storage area.

BATCH BATCH Commence batch processing.- X X X

ECHO ECHO Switch from printout to non- X X X
printout mode or vice versa.

LPT LPT Print output on line printer. X X X

LENGTH LENGTH Request number blocks to X X X
store current program,

NAME NAME Same as NEW but does not X X X

‘ delete existing program,
PTP PTP Punch entire program on X

paper tape.



(448!

Table 1-2 (Cont.).

BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50
PTR PTR Read paper tape. X
PUNCH PUNCH Punch entire program on X X X
paper tape.
PUNCH n Punch program starting at X X X
line n.
RENAME REN Change name of program in X
core. |
RESEQUENCE ° RESEQUENCE Renumber program lines, X X X
TTY TTY Print output on Teletype. X X X
PRIVILEGE" PRIVILEGE Enable use of privileged X X X
commands.
(password) Insert password, no echo.
Privileged Control Commands _
'BATCH BATCH n Same as BATCH, limit pro- X X x
gram runs to n.
HEADER HEADER Change header; type new X X X
(header) header (maximum 12 char-
acters) for next batch run.
LOG LOG Print system log. X X X



tvi-1

' Table 1-2 (Cont.).

BASIC Edit and Control Commands

area.

- EduSystems
‘Command  Format Description 5 10 15 20 25 30 40 50
| MAX MAXn . Set instruction limit n times X X X
200 per program for next
batch run. |
PASSWORD PASSWORD Change password, no echo. X X X
(new password) | ”

SAVE. SAVE ' Save program in storage area. X X X
STACK STACK Start unattended batch X X X
’ operation. '

STACK n Same as STACK; limit runs/ X X X
program.
UNSAVE UNSAVE Delete program from storage X X X




Table 1-3. BASIC Functions and Arithmetic Operations

EduSystems

Functions Description 5 10 15 20 25 30 40 50

SQR(x) Square root of x(\/X) X X X X X X X X

SIN(x) Sine of x (x in radians) X X X X X X X X

COS(x) Cosincof x(xinradians) X X X X X X X X

TAN(®X) Tangent of x (x in X X X X X X X X
radians)

ATN(x) Arctangent of x (X in X X X X X X X X
radians; result in radians)

EXP(x) e* (e=2.712818) X X X X X X X X

LOG((x) Natural log of x (log.x) X X X X X X X X

ABS(x) Absolute valueof x (X) x X X X X X X X

INT(x) Greatest integer of x X X X X X X X X

SGN(x) Sign of x (41 if positive, X X X X X X X X
—1 if negative, 0 if zero)

RND(x) Random number be- X X X X X X X X
tween O and 1

FIX(x) Truncates decimal por- X X X X
tion of x

TAB(x) Controls printing head X X X X X X
position on Teletype

CHRS$(x) Converts character code X X X X X X

to character. Used only
with PRINT statement.

1-144



Table 1-3 (Cont.)) BASIC Functions and Arithmetic Operations

' EduSystems

Functions Description ’ 5 10 15 20 25 30 40 50
MID(A$,M,N) Returns N characters, ‘ X

starting at the Mth char-

acter of AS. .
LEN(AS) Returns the number of X

_ characters in AS$.

CAT(A$,B$) Returns a string of A$ _ X

concatenated with B$
(maximum of 6 char-
acters returned).
Arithmetic Operations
SYMBOLS
1 eXponentiation
*  multiplication
/  division
-+ addition
— subtraction

ORDER OF EXECUTION

1. Parenthetical expressions
Exponentiation
Multiplication and Division
Addition-and Subtraction

Rl

1.145



1-146



edusgstem 5

INTRODUCTION |

EduSystem 5 is a BASIC-speaking supercalculator—calculator
because it can be used like a calculator to obtain fast, accurate
results, super because it is a computer that uses BASIC and does
much more than calculate. EduSystem 5 has the ability to operate
in two modes: immediate and programmable. Immediate mode
allows the user to perform arithmetic calculations and obtain im-
mediate results without writing programs. The problem and the
solution are printed at the Teletype to provide a hard copy for
future reference. In programmable mode, one uses BASIC to
write programs and type them on the Teletype keyboard. Programs
are stored in computer memory and can be printed via the teletype
and, if desired, punched on paper tape to be used again in the
future.

EduSystem 5 BASIC contains all the elements needed to write
and execute meaningful programs. In addition, it provides several
special features.

® Several commands may be typed on a single line. Programs
using this feature require less storage in the computer, thus
enabling users to write longer programs.

® A colon (:) may be used in place of the PRINT command
to save time and storage space.

e Typing errors are easily corrected with: the use of th_e ALT
MODE (or ESCAPE), « back arrow, or RUBOUT key.

e INPUT statement responses may be either mathematical

- expressions or numeric values. |

All these features, and more, are yours with EduSystem 5. And
it expands. If your needs grow beyond EduSystem 5, you can
expand it, with a few simple additions, to an-intermediate-scale
EduSystem 15.

\ | 2-1



System Components

EduSystem 5 is composed of a table-top computer (PDP-8/F)
with 4096 words of core memory and a Teletype with paper tape
reader and punch. An optional off-line Teletype with paper tape
reader and punch allows users to prepare paper tapes of their
programs before coming to the EduSystem 5 and increases the
number of persons who may use it each day. Each EduSystem $
includes the BASIC language processor, a user’s guide, and a
self-teaching workbook for -learning the BASIC language.

System Expansion

EduSystem 5 is easily expanded to EduSyqtem 15 by adding a
DECtape magnetic tape drive (TD8-E), memory extension control,
256 word read-only memory, and an EduSystem 15 software kit.
(See Chapter 4 for a full description of the capabilities of Edu-
System 15.).

BASIC LANGUAGE CAPABILITIES

EduSystem 5 BASIC includes the language elements shown in
Table 2-1. These clements are used as explained in Chapter 1.
Differences in usage for EduSystem 5 are discussed below.

Line Numbers
In EduSystem 5 BASIC there is no upper limit on the size of
the line number for any statement. '

Single-Character PRINT Command

EduSystem 5 permits the use of a colon (:) in place of the
PRINT command. This abbreviation can be used in place
of PRINT in either programmable or immediate mode. The state-
ment format is the same as that of the PRINT command, for
example:

18 :5+1@ /isthe same as {@ PRINT 5+10

Multiple Statements per Line

EduSystem 5 allows more than one command to be typed on a
single line. Commands after the first begin with a back slash
character (M), typed as SHIFT/L on the keyboard. A program is
often more understandable when statements, such as a series of

2-2



LET’sl, are grouped into a single line. For example, the program:

18 LET A=l

13 A=1\B=4\C=6 20 LET B=4

20 :(A+B)*C - isthesameas 32 LET C=6

9 END ' 47 PRINT (A+B)*C
. 99 END

and will produce the same result when the RUN command is
typed

RUN
30

This capability is helpful when the program to be written is too
big for EduSystem 5. Commands take less storage in the computer
when they are grouped as a single statement.

Immediate Mode

EduSystem 5 allows certain BASIC statements to be used in
immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Commands commonly
used with immediate mode are PRINT (or:), LET}! FOR, and
NEXT. Immediate mode is a quick way to calculate expresswns
and equatlons For example, the statement

:SINCE),COSC1), TANCI)

followed by the RETURN key, causes the sine, cosine, and tangent
of 1 radian to be printed immediately, as follows:

i

P.841471 B.540302 1.,55741

Typing multiple commands per line is especially useful in the
immediate mode. A table of square roots of the first 10 integers

1Remember that the word LET is optional in the LET statement.
2-3



could, for example, be generated by typing the following single
line and pressing the RETURN key:

FOR I=1 TO 18\t SQR(I),\NEXT I
1  1.41421 1.,73205 2 2.,23607
2.44946  2,64575 2.82843 3 3.16228

Although they are rarely used, other BASIC commands are
available in immediate mode. The immediate GOTO command
may be used to start a program at a point other than the beginning.
This is accomplished by loading the program into the computer
memory and typing, for example:

GO TO 200

After the RETURN key is pressed, the program execution will
begin automatically at line number 200. In this case, the RUN
command need not be typed.

INPUT Statement

EduSystem 5 allows the student to respond to the INPUT query
(?) with either a mathematical expression or a numeric value. An
expression entered as input may contain one or more arithmetic
operations and may use any available BASIC function. For ex-
ample, the BASIC statement: :

18  INPUT X

could be answered in any of the following Ways:

7181546 = 7L0G(186) - 7SQR(412-2)
As explained in Chapter 1, the INPUT statement may have

multiple inputs. These inputs may be either mathematical expres-
sions or numeric values. For example, the BASIC statement

16 INPUT A,B,C
could be answered as follows:
27512, INT(876,33),7+6125

2-4



NOTE
Remember that you use CTRL/C to stop
a program that is running.

PROGRAM EDITING :

There are two times when a program may require editing pro- -
cedures. The first occurs while a line is being typed but before
the RETURN key has been pressed. The second occurs when a
line has been completely typed and thé¢ RETURN key has been
pressed. Each situation has its own editing procedures.

Procedure 1: Before .the RETURN key is pressed.
Three keys may be used to correct typing ¢rrors: ALT MODE
(or ESCAPE), « (back arrow), or RUBOUT.

ALT MODE (or ESCAPE) is used to delete ar‘; entire line.
When this key is used, BASIC prints: $DELETED, erases
that line from the program, and returns the carriage so that
line may be retyped.

<« (back arrow), SHIFT/0 on the keyboard, or RUBOUT is
used to delete a character from a line. BASIC prints a back
arrow, deleting the last character from that line. More than
one back arrow deletes more than one character, in reverse
‘order.

Procedure 2: After the RETURN key is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, or changed.

INSERTION: To add a line to a program, assign a line
number that falls between two existing lines, type the line
number and text, and press RETURN. )

DELETION: To erase a ‘line from computer memory, type
the line number only and press the RETURN key. :

CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one.

ERROR MESSAGES _ _ ,
EduSystem 5 checks all commands before executing them. If it ~
cannot execute a command, it informs the user by printing one

2-5



of the following messages and the line number in which the error

was found,
Message

SYNTAX ERROR

- FUNCTION ERROR

TOO-BIG ERROR

SUBSCRIPT ERROR
LINENO ERROR

FOR ERROR
NEXT ERROR -

GOSUB ERROR
RETURN ERROR

DATA ERROR

ARGUMENT ERROR

Explanation

Command does not have correct syntax.
Common examples of syntax errors are
misspelled commands, unmatched paren-
theses, and other typographical errors.

The function used was deleted at system
load time and thus is not available. A
DEF statement will produce this message
if the DEF capability was deleted.

Program and variables exceed computer
capacity. Reducing one or the other may
help. If the program has undergone ex-
tensive revision, try punching it out, typ-
ing SCR, and reloading.

The subscript used is outside the DIM
statement limits.

A branch statement (GOTO, GOSUB,
or IF) references a nonexistent line.

FOR loops are too deeply nested.

FOR and NEXT statements are im-
properly paired.

Subroutines are too deeply nested.

GOSUB and RETURN statements are
improperly paired.

No more items are in the data list.

A function has been given an illegal argu-
ment, e.g., SQR(—1).

To correct the error indicated by the message, the appropriate
line in the program must be corrected in the manner described
under Program Editing, Procedure 2.

OPERATING INSTRUCTIONS

Initial Installation

When EduSystem 5 is first installed, it must be loaded with a
special software program, the BASIC language processor. Once
this software is loaded, it need not be reloaded. Perform the
following steps to load BASIC.

1. Plug the EduSystem 5 computer into a standard 3-prong

2-6



electrical outlet. Plug the Teletype into a second standard
outlet. Turn the key lock on the front of the computer to the
power position and turn the Teletype to line. Set all switches
on the SWITCH REGISTER (to the left of the ADDR
LOAD switch) to the “down” position and press the EXTD
ADDR LOAD switch.

2. Perform the following set of switch manipulations. In each
step, there are 12 figures which correspond to the 12 switches
labeled SWITCH REGISTER (SR) on the front of the com-

~ puter. The & symbol indicates that the corresponding switch
should be set to its “up” position. The ¢ symbol means that
the corresponding switch should be set to its “down” posi-
tion. The octal instructions which correspond to this diagram
appear on the right.?

, OCTAL
Set SR to: m m &}3 “9 then press ADDR LOAD 7756
SetSRto: @80 000 O@® O8O thenlift DEP 6032
SetSRio: 80 000 O6® 0O thenlift DEP 6031
SetSRto: 80 086 @06 &8 then it DEP 5357
Set SR to: “9 000 9“ &6 then lift DEP 6036
SetSRto: 686 00® 00O @@ thenlift DEP 7106
SetSRto: 888 Q00 00O @@ thenlift DEP 7006

 SetSRto: 668 €08 00 OO thenlift DEP 7510
SetSRto: 60® (@6 €06 G thenlift DEP 5357
SetSRto: 688 (00 Q00 @8O thenlift DEP 7006
SetSRto: @80 Q00 @ CO then lift DEP 6031
SetSRto: @00 0@ @60 8 thenlift DEP 5367
SetSRto: #89 000 O@® @00 thenlift DEP 6034
SetSRto: 8 €00 @0 00O thenlift DEP 7420
SetSRto: 00® 6@ & 60 thenlift DEP 3776
SetSRto: 8@ 086 &6 8¢ thenlift DEP 3376
SetSRto: 806 08 &33 6 thenift DEP 5356

and again lift DEP

2The octal instructions are provided for those familiar with the octal, or

base 8, number system. An explanation of this system is included in
Introductzon to Programming 1972.

2-7




3.

4.

Place the tape labeled EDUSYSTEMS-S5 in the Teletype paper
tape reader. Position the tape at the single row of holes
punched at the beginning of the tape
Set the SR to @6 6& ¢ o (7756); then press
ADDR LOAD. Press the CLEAR switch, then the CONT
switch. Push the paper tape reader switch to the START
position. The tape should read in. If it stops before the end
of tape, an error has occurred. Repeat steps 2, 3, and 4.

. When the tape has read in properly, BASIC prints the

following message:

SELECT THE SMALLEST SET OF FUNCTIONS NEEDED FROM THE
FOLLOWING CHOICES

ATN P IxXt 1yt
LOG+EXP P Ixixt 1111
SIN+COS+TAN I IXIXIX! ! 1 !
DEF(FN) Poixixixixt 1t
SQR PIxixixixixt 1
RND PoIXixixixixixt

OPTION ABCDETFSG
TYPE OPTION LETTER?

At this time, it is possible to delete any functions which will
not be used. In response to the question “TYPE OPTION
LETTER?”, type the letter of the option that represents the
functions needed.

Deleting functions increases the size of the BASIC program
which may be accommodated. If all functions are deleted
(option A), the maximum program size is approximately 60
lines. If all functions are retained (option B), the maximum
program size is approximately 30 lines.

After the functions have been selected, BASIC prmts the
following question:

DO SUBSCRIPTS START AT @ OR 17

Indicate whether subscripts will begin at O or 1. Many BASIC
programs do not use the zero element of an array. If this is
the case, setting subscripts to start at 1 allows larger pro-
grams to be run.

EduSystem 5 is now ready for use. Turn the key lock to

- PANEL LOCK and remove the key to prevent the system

from being accidentally disturbed.
2-8



Turning Off the System
Perform the following steps to turn off the EduSystem 5:

1.
2.

Type CTRL/C to stop any program that is running.
Turn the key lock to OFF.

Restarting the System
Perform the following steps to restart the EduSystem 5:.

1.
2.
3.

- PANEL LOCK and remove the key to prevent the sys-

Turn the key lock to POWER.
Press the CLEAR switch, then the CONT switch.
EduSystem 5 is now ready for use. Turn the key lock to

tem from being accidentally disturbed.

Reloading the Functions -

If a need arises for functions which were deleted at system load
time, the functions can be reloaded without reloading the entire
system. Perform the following steps to reload the functions:

1.
2.

3.

Type CTRL/C to stop any program that is running.
Turn the key lock to the POWER position; press the
HALT switch, then raise it again.

Follow the procedure for Initial Installation, starting

at step 3. Use the shorter tape labeled EDUSYSTEM-5
FUNCTIONS ONLY instead of the EDUSYSTEM-5
tape.

Saving Programs on Paper Tape

Once a program has been typed in correctly, it may be saved on
paper tape so that it may be reloaded quickly. To save the pro-
gram, follow this sequence of steps:

XN npwO-

o

Turn the Teletype control knob to LINE.

Type LIST but do not press the RETURN key.

Turn the Teletype paper tape punch ON.

Turn the Teletype control knob to LOCAL.

Press the HERE IS key to produce some leader tape.
Turn the Teletype control knob to LINE.

Press RETURN.

When punching is complete, turn the control knob to
LOCAL.

Press the HERE IS key to produce some traller tape.

2-9



10.
11.

Turn the Teletype punch OFF.

Turn the Teletype control knob to LINE.

Reloading Programs from Paper Tape

Programs punched out on paper tape may be reloaded using the
Teletype paper tape reader. To reload programs, follow this
sequence of steps:

o LN —

Turn the Teletype control knob to LINE.

Type SCR, then press the RETURN key.

Insert the program tape in the reader.

Turn the Teletype reader to START.

When the tape has read in, turn the Teletype reader to
FREE.

2-10



Table 2-1. EduSystcm 5 BASIC Statement Summary

Statement Description

LET Assign a value to a variable. LET js optional.
PRINT (or:) Print out the indicated information.

READ Assign values from data list to variables.
DATA Provide data for a program.

GOTO Change order of program execution.

IF GOTOy | Conditionally change order of program

IF THEN execution,

FOR TO STEP
NEXT
GOSUB
RETURN
INPUT

REM (or’)
RESTORE
DEF

STOP
END
DIM

Functions®
ABS(X)
ATN(X)
COS(X)
EXP(X)
INT(X)
LOG(X)
~RND(X)

 SGN(X)

SIN(X)
SQR(X)
TAN(X)

Set up a program loop.
End of program loop.
Go to a subroutine.

* Return from a subroutine.

Get values of expressions from the Teletype.
Insert a program comment. “

Restore the data list.

Define a function. (Availability must be re-
quested when system is loaded.)

Stop program exccution.

End a program.

Define subscripted variables.

Absolute value of x -

Arctangent of x(result in radians)
Cosine of x(x in radians)

e* (e=2.718282)

Greatest integer of x

Natural logarithm of x

Random number

Sign of x(+-1 if positive, —1 if negative.
0 if zero)

Sine of x(x in radians)

Square root of x

Tangent of x(x in radians) -

" Editing/ Control Commands

LIST

. LIST n

RUN
SCR
CTRL/C

- List all stored program statements.

List program statements beginning at line n.
Run the currently stored program:.

Delete the currently stored program.

Stop execution of a program or printing of a
listing. CTRL/C is typed by pressing C while
holding down the CTRL key.

3The ABS, INT, and SGN functions are always available. Other functions

(and the DEF statement) must be selected when the system is loaded. (See
Initial Installation, step 5.)

2-11



2-12



INTRODUCTION

EduSystem 10 is a mini-EduSystem with maxi-potential. It
speaks a very fluent BASIC with all the standard features and a
few special ones. It provides printed output and paper tape read-
ing and punching. EduSystem 10 even tells you when you make
a mistake and provides simple corrective measures. So why, with
all EduSystem 10 has to offer, do we call it a starter system?
- Because EduSystem 10 can expand as your needs expand. It has the
built-in potential to grow into larger EduSystems—EduSystem 20
or 30 at first, and as big as you want to go thereafter.

Even though it isn’t as powerful as the larger EduSystems,
EduSystem 10 has some features that even some of the big ones
can’t duplicate. Two operating modes are available: immediate and
programmable. Immediate mode lets you perform arithmetic cal-
culations without writing programs. Programmable mode lets you
write programs in BASIC, store them in the computer, and punch -
them on paper tape. Both modes provide the problem and the
solution on printed output. Other features include:

e Muitiple statements per line to save computer storage space -
~ and let you write longer programs.
® An abbreviated PRINT command, colon (:).
~ ® Special keys (ALT MODE, RUBOUT, and <) for cor-
recting typing errors.
® Mathematical expressions or numeric values as responses to
the INPUT statement.

System Components '

EduSystem 10 is composed of a table-top computer (PDP-8/E),
4096 words of core memory, automatic loader (hardware boot-
strap), and a Teletype with paper tape reader and punch. Each

3-1



EduSystem 10 includes a BASIC language processor and a library
of sample programs, textbooks, and curriculum guides. Optional
components for EduSystem 10 include one or more Teletypes for
off-line preparation of paper tape and a high-speed paper tape
reader and punch which facilitates the use of other system capabili-
ties such as FOCAL, FORTRAN, and assembly language.

‘System Expansion

EduSystem 10 may be easily expanded to either EduSystem 20
or EduSystem 30. To expand to EduSystem 20, add 4096 words
(or more) of core memory, an EduSystem 20 software kit, and
as many as 7 additional Teletypcs with interfaces. To expand to
EduSystem 30, add one DECdisk or DECtape, an optical mark
card reader, and an EduSystem 30 software kit. (Chapters 5 and
7 fully describe the capabilities of EduSystem 20 and EduSys-
tem 30, respectively.) '

BASIC LANGUAGE CAPABILITIES

EduSystem 10 BASIC includes the language elements shown in
Table 3-1. Normally, these elements are used in programs as ex-
plained in Chapter 1. BASIC usage diffcrences with EduSystem
10 are explained below.

Line Numbers
_EduSystem 10 BASIC does not place an upper limit on the size
of the line number for any statement.

Single-Character PRINT Command

A colon (:) may be used in place of the PRINT command.
This abbreviation may be used in either programmable or imme-
diate mode. The statement format is the same as that of the PRINT
command, for example: ’

1@ :SQRCA+B) is the same as 12 PRINT SQRC(A+B)

Multiple Statements per Line

EduSystem 10 allows more than one command to be typed on a
single line. Commands after the first begin with a back slash
character (\) typed as SHIFT/L on the keyboard. A program is
often more understandable when statements, such as a series of

3-2



LET’s', are grouped into a single line. For example, the prograni

' 108 LET x=2
180 X=2\Y=8\Z=12 . 119 LET Y=8
112 3Y/X*Z .is the same as 12@ LET Z=12
999 END - 138 PRINT Y/XxZ
. 999 END.

and will produce the same result when the RUN command is
typed: '

RUN
48

The multiple-statement capability is helpful when the program
to be written is too big for EduSystem 10. Commands require less
storage in the computer when they are grouped as a single state-
ment. - -

- Immediate Mode . :

- EduSystem 10 allows certain BASIC statements to. be used in
immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Commands commonly
used with immediate mode are PRINT (or:), LET, FOR, and

'NEXT. Immediate mode is a quick way to calculate expressions
and equations. For example, the statement:

s INT(76.,87 + 2.9)

followed by the RETURN key, causes the value of the nearest
integer to be printed immediately, as follows:

79 .

Typing multiple commands per line is especially useful in the
immediate mode. A table of random numbers could, for example,
be generated by typing the following single line and pressing the
"RETURN key:

1Remember that the word LET is optional in the LET statement.
3-3



FOR I=1 TO 20\PRINT RND(®),\NEXT I

?,696209

8,217873 B.29751 0.963794 B.463246
B.767746 0.829399 2.181667 B.159454 6.52568E~2
2, 793194 B.644913 8.927201 0.894656 B.974861
8.884367 8.992458 0.68785 B.619773 0.731568

Although they are rarely used, other BASIC commands are
available in immediate mode. The immediate GOTO command
may be used to start a program at a point other than the beginning.
This is accomplished by loading the program into the computer
memory and typing, for example:

GO TO 35

After the RETURN key is pressed, the program execution will
begin automatically at line number 35. In this case, the RUN
command need not be typed.

INPUT Statement

The INPUT statement described in Chapter 1 allows a number
to be entered from the Teletype as the value for a variable. Edu-
System 10 allows the student to respond to the INPUT query (?)
with a value or a mathematical expression. An expression may con-
tain one or more arithmetic operations and may use any available
BASIC function. For example, the BASIC statement:

1@ INPUT X
could be answered in either of the following ways:

72%8.,4/3 75QR(108) + 2012
This capability could be used to enable one program to solve more
than one problem.

As explained in Chapter 1, the INPUT statement may have
multiple inputs. These inputs may be either mathematical expres-
sions or numeric values. For example, the BASIC statement:

1086 INPUT X,Y,Z
3-4



-

could be answered as follows: -

723, INT(284,978),25+8619

NOTE

When using the INPUT statement in pro-
grams, remember that CTRL/C is used to
stop a program that is running.

Table 3-1. EduSystem 10 BASIC Statement Summary

Statement Description
LET Assign a value to a variable. LET is
optional.
PRINT (or :) Print out the indicated information.
READ Assign values from data list to vari-
‘ ables. - :
DATA Provide data for a program.
GOTO . Change order of program execution.
IF GOTO Conditionally change order of pro-
IF THEN gram execution.
FOR TO STEP Set up a program loop.
NEXT End of program loop.
GOSUB Go to a subroutine. ‘
RETURN Return from a subroutine.
INPUT Get values or expressions from the
Teletype. -
REM(or’) Insert a program comment.
RESTORE Restore the data list,
DEF Define a function. (Availability must
be requested when system is loaded.)
STOP Stop program execution.
END End a program.
DIM Define subscripted variables.
Functions®
ABS(X) Absolute value of x
- ATN(X) Arctangent of x (result in radians)
COS(X) Cosine of x (x in radians)
EXP(X) ex (e =2.718282)
INT(X) Greatest integer of x

2The ABS, INT, and SGN functions are alwa_ys available, Otﬁ'er functions

(and the DEF statement) must be selected when the system is loaded. (See
Initial Installation, step 5.)

3-5



" Table 3-1. (Cont.) EduSystem 10 BASIC Statement Summary

Statement

~ Description

Functions (Cont.)

LOG(X) - Natural logarithm of x
RND(X) Random number
SGN(X) Sign of x (4 1 if positive, — 1 if neg-
ative, O if zero)
SIN(X) Sine of x (x in radians)
- SQR(X) Square root of x
TAN(X)

Editing/ Control Comimands

Tangent of x (X in radians)

LIST List all stored program statements.

LIST n List program statements beginning at
line n.

RUN Run the currently stored program.

SCR Delete the currently stored program.

CTRL/C Stop execution of a program or print-

ing of a listing. CTRL/C is typed by
pressing C while holding down the
CTRL key.

PROGRAM EDITING

There are two times when a program may require editing pro-
cedures. The first occurs while a line is being typed but before
the RETURN key has been pressed. The second occurs when a
line has been completely typed and the RETURN key has been
pressed. Each situation has its own editing procedures.

Procedure 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: ALT MODE
(or ESCAPE), «(back arrow), or RUBOUT.

ALT MODE (or ESCAPE) is used to delete an entire line.
When this key is used, BASIC prints $DELETED, erases
that line from the program, and returns the carriage so that
the line may be retyped.

«(back arrow), SHIFT/0 on the keyboard, or RUBOUT is
used to delete a character from a line. BASIC prints the
back arrow, deleting the last character from that line. More
than one back arrow deletes more than one character, in re-
verse order.

3-6



Procedure 2: After the RETURN key is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, or changed. -

INSERTION: To add a. line to a program, assign a line num-
ber that falls between two existing lines, type the line number
- and text, and press RETURN,

DELETION : To erase a line from compufer memory, type
the line number only and press the RETURN key.

CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one. '

ERROR MESSAGES

EduSystem 10 checks all commands before eXecuting. them: if it
cannot execute a command, it informs the user by printing one of
the following messages and the line number in which the error was

found.
Message -
SYNTAX ERROR

FUNCTION ERROR

TOO-BIG ERROR

SUBSCRIPT ERROR

Explanation

Command does not have correct syn-
tax, Common examples of syntax
errors are misspelled commands, un-
matched parentheses, and other typo-
graphical errors.

The function used was deleted at
system load time and thus is not
available. A DEF statement will pro-
duce this message if the DEF capa-
bility was deleted. ‘

Program and variables exceed com-
puter capacity. Reducing one or the

- other may help. If the program has

undergone extensive revision, try
punching it out, typing SCR, and re-
loading. '

The subscript used is outside the DIM
statement limits. '

3-7



Message Explanation

LINENO ERROR A branch statement (GOTO, GOSUB,
or IF) references a nonexistent line.

FOR ERROR FOR loops are too deeply nested.

NEXT ERROR FOR and NEXT statements are im-
properly paired.

GOSUB ERROR Subroutines are too deeply nested.

RETURN ERROR GOSUB and RETURN statements are
improperly paired.

DATA ERROR No more items are in the data list.

ARGUMENT ERROR A function has been given an illegal
argument, e.g., SQR(—1).

To correct the error indicated by the message, the appropriate
line in the program must be corrected in the manner described
under Program Editing, Procedure 2.

OPERATING INSTRUCTIONS
Initial Installation

When EduSystem 10 is first installed, it must be loaded with a
special software program, the BASIC language processor. Once
this software is loaded, it need not be reloaded. Perform the fol-
lowing steps to load BASIC.

1. Plug the EduSystem 10 computer into a standard 3-prong

electrical outlet, Plug the Teletype into a second standard

- outlet. Turn the key lock on the front of the computer to
POWER and the Teletype swith to LINE. Set all switches
on the SWITCH REGISTER (to the left of the ADDR
LOAD switch) to the “down” position and press the EXTD
ADDR LOAD switch.

2. If the computer does not include a hardware bootstrap
loader, perform the following set of switch manipulations;?
otherwise, proceed to step 3.

In each step, there are 12 figures which correspond to the
12 switches labeled SWITCH REGISTER (SR) on the
front of the computer. The ¢ symbol indicates that the

3If the EduSystem 10 is equipped with a high-speed paper tape reader and
punch, see instructions for the RIM (Read-in-mode) loader in Appendix A.

3-8



-corresponding switch should™ be set to its “up” position.
The ¢ symbol means that the corresponding switch should
be set to its “down” position. The octal instructions which
correspond to this diagram appear on the right.* -

OCTAL
_ SetSRto: @66 @66 6,6 & then pressADDRLOAD 7756
SetSRto: @89 000 9“ O®0 then lift DEP 6032
SetSRto: 880 000 088 0@ thenliftDEP 6031
SetSRto: 80 088 806 68 thenlift DEP 5357
SetSRto: @) 000 8 @0 thenlift DEP 6036
SetSRto: 66 00 Q00 @8O thenlift DEP 7106
SetSRio: @68 Q0O Q00 8 thenlift DEP 7006
SetSRto: 8@ 06 00 COO thenlift DEP 7510
SetSRto: @08 O6® @06 @ then it DEP 5357
 SetSRto: 668 900 900 @O then ift DEP 7006
SetSRto: 689 000 O8® ©O® thenlift DEP 6031
SetSRto: 0@ 086 @60 @68 thenlift DEP 5367
SetSRto: #8Q 000 O®® €00 thenlift DEP 6034
SetSRto: 808 800 080 00O thenlift DEP 7420
Set SR to: 988 606 466 ®é() thenlift DEP - 3776
SetSRto: 0@® O6® &6 8 thenlift DEP 3376
SetSRto: 808 933 606 &6 thenitDEP
and again lift DEP 5356

3. Place the tape labcled EDUSYST_EM—IO in the Teletype
paper tape reader. Position the tape at the single row of
holes punched at the beginning of the tape.

4, If the computer does not include a hardware bootstrap
loader, perform the operations in step 4b. If it has a boot-
strap loader, perform the steps in 4a.

a. Set the SR to. 393 9“ 3@3 “9 (5356) then lower

and lift the switch labeled SW. Proceed to step 6. _

b. Set the SR to 666 666 ‘y‘ “9 (7756); then press
ADDR LOAD.

5. Press the CLEAR switch, then the CONT switch. Push the
paper tape reader switch to the START position. The tape”

4Octal instructions are provided for those familiar with the octal or base 8

number system. An explanation of this system is included in Introduction
to Programming 1972.

3-9



should read in. If it stops before the end of tape, an error
has occurred. Repeat steps 2, 3, and 4. '

When the tape has read in properly, BASIC prints the fol-
lowing message:

SELECT THE SMALLEST SET OF FUNCTIONS NEEDED FROM THE
FOLLOWING CHOICES

ATN P ixtrririi
LOG+EXP Pixixtr 1t 111
SIMCOS+TAN ! IXIXIXI 1 1 1
DEF(FN) T oIxixixixr v 1
SQR PoIXIxIxixixt t
RND PoIxexixrxixixt
OPTION ABCDETFSG

TYPE OPTION LETTER?

At this time, it is possible to delete any functions which will
not be used. In response to the question “TYPE OPTION
LETTER?”, type the letter of the option that represents the
functions needed.

Deleting functions increases the size of the BASIC program
which may be accommodated. If all functions are deleted
(option A), the maximum program size is approximately 60
lines. If all functions are retained (option B), the maximum
program size is approximately 30 lines. _
After the functions have been selected, BASIC prints the

following question:

DO SUBSCRIPTS START AT @ OR 1?

Indicate whether subscripts will begin at 0 or 1. Many
BASIC programs do not use the zero element of an array.
If this is the case, setting subscripts to start at 1 allows larger
programs to be run.

EduSystem 10 is now ready for use. Turn the key lock to
PANEL LOCK and remove the key to prevent the system
from being accidentally disturbed.

Turning Off the System
Perform the following steps to turn off the EduSystem 10:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to OFF.

3-10



Restarting the System
Perform the following steps to restart the EduSystem 10:

1. Turn the key lock to POWER.

2. Press the CLEAR switch, then the CONT switch.

3. EduSystem 10 is now ready for use. Turn the key lock to
PANEL LOCK and remove the key to prevent the sys-
tem from being accidentally disturbed.

Reloading the Functions

If a need arises for functions which were deleted at system load
time, the functions can be reloaded without reloading the entire
system. Perform the following steps to reload the functions:

1. Type CTRL/C to stop any program that is running.

2. Turn the key lock to the POWER position; press the
HALT switch, then raise it again.

3. Follow the procedure for Initial Installation, starting at
step 3. Use the shorter tape labeled EDUSYSTEM-10
FUNCTIONS ONLY instead of the EDUSYSTEM-10
tape. '

Saving Programs on Paper Tape _

Once a program has been typed in correctly, it may be saved on
paper tape so that it may be releaded quickly. To save the pro-
gram, follow this sequence of steps:

Turn the Teletype control knob to LINE.

Type LIST but do not press the RETURN key. -
Turn the Teletype paper tape punch ON,

Turn the Teletype control knob to LOCAL.

Press the HERE IS key to produce some leader tape.
Turn the Teletype control knob to LINE.

Press RETURN. .

When punching is complete, turn the control knob-to
LOCAL.

9. Press the HERE IS key to produce some trailer tape.
10. Turn the Teletype punch OFF.
- 11. Turn the Teletype control knob to LINE.

3-11

® NN LR W~



Reloading Programs from Paper Tape

Programs punched out on paper tape may be reloaded using the
Teletype paper tapc reader. To reload programs, follow this
sequence of steps:

AW

Turn the Teletype control knob to LINE.

Type SCR, then press the RETURN key.

Insert the program tape in the reader.

Turn the Teletype reader to START.

When the tape has read in, turn the Teletype reader to
FREE.

3-12



edusystemts

INTRODUCTION '

EduSystem 15 combines an extended BASIC language with on-
line DECtape storage to provide a reliable, powerful system. Edu-.
System 15 BASIC has all the standard elements of Dartmouth
BASIC plus several extended features. BASIC programs run on
EduSystem 15 can be virtually limitless in size, up to 10,000
lines; due to a chaining feature that allows programs to be written
in sections, then connected. A mini-string feature permits users
to input, manipulate, and output alphanumeric character data, one
_character at a time.

The ability to store programs on the system DECtape and to re-
trieve them when needed eliminates the time required to read in
paper tapes or type in lengthy programs. And EduSystem 15 offers
protection too: a series of privileged commands that control storing
programs on DECtape and deleting stored programs from DEC-
tape. These privileged commands can be used only if the user knows
the secret password. These fcatures and more make EduSystem 15
an extremely useful classroom tool.

System Components _
EduSystem 15 is composed of a table-top computer (PDP-8/F),
4096 words of core memory, a 256-word Read-Only Memory
(ROM) for automatic loading, TD8-E DECtape, and a Teletype
with paper tape reader and punch. Each EduSystem 15 includes
the BASIC language processor and a library of sample programs,
textbooks, and curriculum guides. Optional components for the
EduSystem 15 include a second off-line Teletype for preparation
~ of programs and an optional mark card reader for card processing.
The system can also support high-speed paper tape reader/punch
and line printer. ' :

4-1



BASIC LANGUAGE CAPABILITIES

EduSystem 15 BASIC includes the language elements shown in
Table 4-1 at the end of this chapter. Normally, these elements are
used as explained in Chapter 1. EduSystem 15 also includes many
advanced BASIC features to allow the user to perform more com-
plicated and lengthy problem solving routines. BASIC usage differ-
ences and advanced features are explained in this section.

Entering Programs

EduSystem 15 BASIC expects each program to have an assigned
name. At the beginning of each programming session, the NEW
command should be typed to clear any existing program and define
the name of the new program to be entered.! To use the NEW
command, the user types:

NEW

and the computer asks for:

NEW FILE NAME-=-

The user then types any name of | to 6 characters, followed by
the RETURN key. BASIC assigns that name to the program to be
entered. The user may change the name of the program being en-
tered at any time by typing the NAME command. BASIC again
asks for NEW FILE NAME and assigns a new name to the pro-
gram being entered. The NAME command does not delete the
existing program.

Using Random Numbers

The RND function allows the use of random numbers within a
program. Each time it is used, the RND function returns as its
value a random value between O and 1. Unlike the other functions,
the value returned by RND is not a function of its argument. How-
ever, all functions in BASIC must be followed by an argument.
Therefore, RND should always be followed by a dummy argument,
such as zero, which is enclosed in parentheses.

1If the user does not wish to assign a program name, he can delete any
existing program by typing the SCRATCH command.

4-2



NOTE
Note that it is possible to gencrate random
numbers over any range. For example, the
expression:

(B=A)*¥RND(@)+A

has a random value in the range A <n < B.

Repeated uses of RND in a program return different values be-
tween O and 1. The sequence of numbers is, however, the same
each time the program is run. Thus, the sequence is reproducible
for later checking of the program. The RANDOMIZE statement
allows the user to make the random number sequence returned by
the RND function different each time a program is run. That is,
when executed, the RANDOMIZE statement causes the RND
function to select randomly a new sequence of random numbers.
If RANDOMIZE is used, it normally appears as one of the first
lines in a program.

~ Listing the Program )

The LIST command may be used to list out all or a part of the
current program. LIST prints the program. statcments in their
proper order, regardless of the order in which they were entered.
EduSystem 15°s LIST command has four different forms, as shown
below.

Command Meaning
LIST List the entire program. Precede it by a

header line? giving the name of the program.

LIST n List the program starting at the given line
: number (n). Precede it by a header line. The
line number must be separated from LIST by

two spaces.

LISTNH List the entire program but do not print a
header line.

2A header line consists of the program name followed, on the same line, by
the system name (EDU BASIC). If no program name was assigned, the
system prints “*NONE* EDU BASIC”.

4-3



Command Meaning

LLISTNHn List the program starting at the given line
number (n) but do not print a header line.

NOTE
The programmer may stop a listing at any
time by typing CTRL/C on the keyboard.

Executing the Program

The programmer may execute a program at any time by typing
the RUN command. The existing program is inspected for errors;
if none exist, it is executed. If an error is detected, an error mes-
sage (see Error Messages) is printed. In either case, at the end of
the run, BASIC prints READY, indicating that the program may
now be changed or rerun. There are two types of RUN commands:
RUN and RUN NH. RUN executes the current program, preceding
it by ‘a header line. RUN NH executes the current program but
does not print a header line (RUN and NH must be separated
by a single space). '

Privileged Control Commands

~Several optional commands are available which modify and con-
trol a program run. All of them are considered to be privileged
instructions in the sense that the use of them is restricted. The
privileged commands are available only if the privileged command
capability was selected when EduSystem 15 was loaded. During
normal system operation these commands are locked out; if a user
attempts to use a privileged command, it is ignored and the system
prints WHAT?

A special command, the PRIVILEGE command, is used to un-
lock and make these privileged instructions available. To use it, the
user types PRIVILEGE and then the RETURN key. The system
then waits for the user to type a one to six character password
code. (The typed characters are not printed.) At the time the
system was loaded, a password was typed by the user or assigned
by the system. The characters typed in after the PRIVILEGE com-
mand are compared to this password. If they match, the PRIV-
ILEGE command is successful and all privileged commands may
then be used. If they do not match, the message INVALID PASS-
WORD is printed and all privileged commands continue to be un-
available.

4-4



In short, a user must know the password in order to use any
privileged command. It is important that the password be kept
secret. For this reason, the password is never printed when the user
types it. It is also possible to change the code at any time. The
instruction to change the code, PASSWORD, is, of course, a priv-
ileged instruction. The other privileged commands, SAVE and
UNSAVE, are discussed below.

DECtape System Storage Capability

~ EduSystem 15 allows the system DECtape to be used for per-
manent on-line storage of programs. Programs stored in this way
may be loaded instantly, without the need to load a paper tape or
type in a program. .

Two commands, SAVE and UNSAVE, may be used to change
the contents of the DECtape storage area. Because the amount of
_storage space is limited, and to prevent accidental erasure of
stored programs, both SAVE and UNSAVE are privileged com-
mands. During normal system operation they are disabled. They
may only be used after a successful PRIVILEGE command has
been executed.

The SAVE command stores the current program in the DECtape
~ system storage area and gives it the name specified by the last
NEW, OLD, or NAME command. Any existing program stored
under this name is deleted. Thus, all stored programs have names
which may be used to recall them in the future. If a SAVE is at-
tempted when the privileged commands are locked out, the system

types WHAT? and ignores the command. If a successful PRIV-
ILEGE command has been executed, but the storage area is full,
the message NO SPACE is typed and the program is not stored.
'~ The UNSAVE command is used to delete a program already
stored. UNSAVE must be preceded by a NEW, OLD, or NAME
command which specifies the name of the file to be deleted. The
user must be certain to use exactly the same program name as he
used when he first identified the program. Like SAVE, UNSAVE
will be ignored unless preceded by -a successful PRIVILEGED
command. If the program to be deleted does not exist in the system
storage area, the message NO SUCH FILE will be printed. No
program will be deleted.

The CATALOG command may be used to obtain a list of the
names of all programs available in the system storage area. The

4-5



CATALOG list also includes the number of storage blocks used by
the program.

EduSystem 15 includes 1348 blocks of storage space. The CAT-
ALOG command may be used to determine how many of these
blocks have been used and hence how many are free. If the storage
space is almost full and another program is to bec saved, the
LENGTH command may be used to determine if there is enough
room to store the current program. If enough room is not available,
an existing program must be deleted first. In all cases, the max-
imum number of stored programs, regardless of size, is 62,

The user may load programs stored in the system storage area at
any time by typing the OLD command. After the OLD command
is entered, the system prints OLD PROGRAM NAME. The user
then types the name of the program to be loaded. The user must be
certain to use exactly the same program name as he used when he
first identified the program. -

ADVANCED SYSTEM CAPABILITIES

Some users will want to write programs which are too large or
too complicated to be handled in the normal way. For these users,
the system includes several capabilities for advanced program.

Rumning Very Long Programs

EduSystem 15 will run programs of up to 6000 characters or
approximately 250 lines. In some instances, programs which are at
or near the 6000-character limit and which contain many complex
FOR, IF, and GOSUB sections will be too big to be run. In this
- case, the NOLINE command may be used to gain more space. If
NOLINE is.used, the program logic errors which are detected
while the program is executing will cause an error message to be
typed but the line number where they occur will not be typed.
NOLINE allows substantially longer programs to be run.

If the program to be run is substantially longer than the 6000-
character limit, it may still be run by means of the technique
known as chaining. The program is broken down into pieces,
each of which is less than 6000 characters. A chained program may
have many of these pieces and, hence, may be indefinitely long.
Each piece of the program is then stored in the DECtape system
storage area with the SAVE command. The final command to be
executed in all but the last section is a CHAIN statement which

4-6



contains the name of the next section of the program. For example,
the statement:

930 CHAIN "PARTIO™

would cause the system to load and execute the stored program
whose name is PART10.

The name of the next section of the program must be cncoded
in quotation marks and must be exactly six characters long. If the
actual name of the next section is less than six characters, one or
more spaces must be inserted before the second quotation mark to
make a total of six characters. For example, if the next section of
the program is named LINK2, the following CHAIN statement
would be used:

955 CHAIN "LINKZ2 7

Execution of the CHAIN statement loads and executes the
named program. The previous section of the program is deleted.
Thus, the user only needs to load the first section and run it. All
succeeding sections of the chained program are loaded and ex-
- ecuted automatically. | |

‘Using a Data File

Just as some very advanced programs may be too large to be
executed in the normal way, other sophisticated programs may
need to store and use more data than may be accommodated under
normal system operation. If this is the case, data may be tempo-
rarily stored in the system-storage area. Data stored in this way is
referred to as a data file.

The data file is actually a part of the program data which is de-
fined by a program’s DATA statement. All of a program’s data is
gathered from the DATA statements into a DATA list which is
read by READ statements. As items are read from the list, they are
marked as already having been used. A READ statement always
fetches the next item from the list. In fact, the data list may be -
thought of having a movable marker which remembers which item
of the list is next. It starts out marking the first"data item. As
READ statements are executed, this marker moves down the list.
A RESTORE statement moves it back to the top of the list.

4.7



The data file capability allows a program, by means of a WRITE
statement, to change and add to this data list as well as to read it.
The WRITE statement format is the same as the DATA statement
format. Writing a variable puts the value of that.variable in the
next place in the data list. The data item that was there previously
is replaced by the new value. If a WRITE statement follows a
RESTORE, it will change the first item or items in the data list.
If it follows one or more READs (or WRITEs), the WRITE
statement will change data items further down in the data list. The
total number of items which may be put in the data list depends
on the size of the program. Maximum sized BASIC programs may
have up to 1000 items; small programs have room for 2000 items.

Programs which write data out to the data list must keep track
of how much data has been written and the order in which it was
output. If data which has been written is to be subsequently read,
a RESTORE command must be executed to move the marker
back to the top of the data list. If data has been written off the end
of the data list, the program must remember how many items the
data list contains, and be careful not to try to READ more data
items than are there. The normal BASIC check for end of data
does not exist for a written data list. The program must also be
sure that it does not write more data than the data list can contain
(1000-2000 items). Writing too much data causes part of the
user’s BASIC program to be destroyed.

The data file is frequently used in conjunction with chaining
since data written onto the data list by one program section may
be read by the next section. The program section which writes the
data must execute a RESTORE just before the CHAIN statement.
The next section, which will read this, must not have any DATA
statement of its own since this data would destroy the data items
written by the previous section.

Character Variables and String Capability

All of the standard BASIC statements deal only with numbers.
All variables are assumed to be decimal values. In fact, BASIC is
capable of doing many interesting operations on characters or
words instead of numbers. The character handling capability of
BASIC depends on the concept of representing individual char-
acters as numbers. Each character has its own numeric code or
character code, as indicated in Appendix B. When a character is

4-8



input, it is converted to a numeric code. All internal processing of
that character uses this code. Since the code is a number, it may be
used and manipulated with the standard BASIC statements. When
the program outputs a character, it uses the character code and
converts it back into a character. In short, characters stored in a
BASIC program are indistinguishable from numeric values. The
only difference is in the way they are used, i.e., that certain numeric
values actually stand for characters.

The standard INPUT statement is used to input characters. A
dollar sign ($) is placed in front of the variable name to indicate
that a character code is to be input rather than a decimal number,
When the character is typed, its character code is stored in the
indicated variable. It is important not to confuse the inputting of
characters with the inputting of numbers. The potential confusion
lies in the fact that the numeric values are themselves characters.
The value 192 is in fact made up of the three characters 1, 9 and
2. If these three characters were input to a BASIC program as
character variables, they would be entered as three separate nu-
meric (character code) values rather than as the single value 192,
But the physical characters typed at the interactive terminal would
be identical. Again, the difference is entirely in the way that the
input is interpreted.

Unlike the numeric INPUT statement, character lNPUT state-
ments do not cause a question mark to be printed. Therefore, a
series of characters may be typed without intervening question
‘marks. Programs doing character input must therefore indicate, by
PRINT statements, when input is expected. In the following ex-
amples, each program executes an INPUT statement. In the pro-
gram on the left, three characters are entered and three variables
are set up. In the example on the right, a single numeric value is
input.

12 PRINT "ENTER VALUE "3 12 PRINT "ENTER VALUE";
2@ INPUT $x1,$X2,3X3 20 INPUT X

30 PRINT X13X23%3 38 PRINT X

4@ END 40 END

RUN NH " RUN NH

ENTER VALUE 234 58 51 52 EggER VALUE?234

READY READY

4-9



Note that INPUT $A accepts the input character immediately
without a carriage return. Note that the dollar sign is not a part
of the variable name. It is used only in INPUT statements to indi-
cate that typed characters are to be converted to their numeric
character codes before being stored in the variable.

Character codes may be converted back to their respective char-
acters by means of the special PRINT command function CHRS.
CHRS is the opposite of the dollar sign INPUT convention. It is a
function which takes as its argument a single constant or variable
and prints the single character whose character code corresponds
to that value. For example, PRINT CHR$ (65) prints the char-
acter A. CHRS may only be used in PRINT statements.

One of the most frequent uses of the character capability is to
allow words or characters to be entered into BASIC programs in
response to questions. For example, a program might ask the user
if he wants to run the program again with a different set of input

~data. The user responds by typing Y if he wants to run again or

by typing N if not. The program then checks the character code of
the character entered to see if it equals the character code for Y.
If so, it branches back to the beginning of the program. Otherwise,
the program stops. The following program illustrates the use of
character variables in making a run-time decision.

12 PRINT

20 PRINT "WOULD YOU LIKE TO DO THIS AGAIN (Y OR NI?";
38 INPUT %A

40 IF A=#y THEN 10

50 IF A<>#N THEN 958

6@ PRINT

78 PRINT "O.k. IT'S YOUR CHOICE,"

80 STOP

90 PRINT

182 PRINT "Y OR N2%s

116 GOTO 3@

126 END

RUN NH

WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)?Y
WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)?8
Y OR N?7Z

Y OR N?N
O.¥. IT'S YOUR CHOICE,

READY

-

4-10



The comparisons shown in the preceding program are facilitated
by a special BASIC language feature. Pound sign (#) followed
by a single character may be used to indicate the character code of
the single character following pound sign. In line 40 above, using
#Y relieves the programmer of the need to remember or reference
the actual character code for Y.

Often, the character capability is used to input a series, or string,
of characters, such as a last name. The string may be any number
of characters up to a full line. In this case, the program must read
each character and see if it is the carriage return character (char-
acter code 13) which indicates the end of the line. Subscripted
variables are used to store such a series of characters.

12 DIM AC72)

15 PRINT "TYPE YOUR NAME:s"™;
20 FOR I=1 TO 72

3@ INPUT $ACID)

40 IF ACI)=13 THEN 60

58 NEXT I
68 .END

RUN NH

TYPE YOUR NAME:SUPERSTAR
READY

PROGRAM EDITING

There are two times when a program may require editing pro-
cedures. The first occurs while a line is being typed but before the
RETURN key is pressed. The second occurs when a line has been
completely typed and the RETURN key has been pressed. Each
situation has its own editing procedures.

Procedure 1: Before the RETURN key is pressed.

Three keys may be used to correct typing errors: ALT MODE

(or ESCAPE), « (back arrow), or RUBOUT. ALT MODE
(or ESCAPE) is used to delete an entire line. When this key
is used, BASIC prints DELETED, erases that line from the
program, and returns the carriage so that the line may be
retyped.
-« (back arrow), SHIFT/0 on the keyboard, or RUBOUT is
used to delete a character from a line. BASIC prints the back
arrow, deleting the last character from that line. More than
one back arrow deletes more than one character, in reverse
order.

4-11



Procedure 2:  After the RETURN key is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, changed, or renumbered.

INSERTION: To add a line to a program, assign a line num-
ber that falls between two existing lines, type the line number
and text, and press RETURN.,

DELETION: To erase a line from computer memory, type
the line number only and press the RETURN key.
CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one.

RENUMBER: Occasionally, repeated editing and insertions
result in there being no more room in an area of a program
to insert new lines. It is then necessary to spread out the line
numbers so therc is room for new insertions. The RESE-
QUENCE command is used for this purpose. To renumber
a program, type the RESEQUENCE command. This com-
mand changes the first line’s number to 100 and renumbers
each succeeding line with an increment of 10. RESEQUENCE
also automatically changes all GOTO, GOSUB, and IF state-
ments to correspond to the new line numbers.

ERROR MESSAGES

Some programs execute correctly the first time they are tried.
Most others, especially if they are at all complex, have errors in
them. EduSystem 15 checks all statements when they are entered
and before executing them. If it cannot execute a statement it in-
forms the user by printing one of the following types of messages.

Program Loading Errors

As each line is typed, EduSystem 15 checks it for program load-
ing errors. If it finds an error, it prints one of the following error
messages immediately after the erroneous line.

Message Explanation

WHAT? Line does not make sense to the sys-
tem. It does not begin with a line num-
ber and is not a valid system command.

4-12



Message
LINE NO. TOO BIG

LINE TOO LONG
NO ROOM

FILE NOT SAVED

NO SPACE

Bell

I/0 ERROR

INVALID PASSWORD

Coding Errors? |

Explanation

The line number of a line or the argu-
ment of a system command is greater
than 4095.

Line just entered is longer than 80
characters. ’

There is. no room in memory to store
the line just entered.

~ The prograin named as the operand of

an OLD command was not previously
saved on the system device.

There is not enough space on the DEC-
tape to SAVE the current program.

If an invalid character is entered, the
Teletype bell rings and the character is
ignored. )

An mput or output error occurred on
the DECtape unit. Be sure that the unit
is on-line, write-enabled, and the unit
number is set correctly. Retry whatever
was interrupted by the error. If the
problem persists, there is a hardware
problem.

The password typed after a PRIVI-
LEGE command is not the system
password. Privileged mode is not en-
tered.

After the RUN (or RUN NH) command is typed EduSystem
15 checks each statement and command before executing it for
mistakes in the BASIC program coding. If it cannot execute a

3To correct the coding errors indicated by the messages, the appropriate line
in the program must be corrected in the manner descrnbed under Program

Editing, Procedure 2.

4-13



statement or command, it informs the user by printing one of the
following messages and the line number in which the error was
found.

Message Explanation ?
CH There is an illegal character in the line.
EN Program does not have END statement as the last line

in the program.

FN Not enough NEXT statements in the program. There
must be a NEXT statement for each FOR statement in
the program.

FO FOR and NEXT statements do not match. There is a
NEXT statement in the program whose variable is not
the same as the variable in the corresponding FOR
statement.

LI Line contains an improperly written decimal number or
constant. It may, for example, have two decimal points
or have an alphabetic character in it. ~

M1 The program as a whole is too large to be run by the

M2 system. Making the program smaller, reducing the size
of subscripted variables, or using the NOLINE com-
mand may help.

NE Program has too many (more than 8) FOR-NEXT
loops one within another.

PC Line contains an improperly used parenthesis. Gener-
ally, the problem is an expression which does not have
an equal number of left and right parentheses.

RO Statement contains an invalid relational operator (<,
=,>, <=, >=). Relational operators may only be used
in IF statements.

S1 Statement as a whole is not properly written and, as a

S2 result, does not conform to proper BASIC syntax. For
example, a semicolon is allowed in a PRINT statement
but not in a READ or INPUT statement.

4-14



Message
ST

TB

TO

UL

UuQ

Explanation

Statement’s command word is not one of the BASIC
statement types.

The program is too large to be run. Cause is usually an
extremely large number of PRINT statements.

Program is either too large or too complex to be run.
The total number of variables, constants, functions, and
line numbers should be reduced, if possible.

A GOSUB, GOTO, or IF statement contains a line
number which does not exist. :

A quotation mark indicating the beginning of a string of
text does not have a corresponding quotation mark at
the end of the text string.

Program Logic Errors*

Some errors do not show up until the program is actually exe-
cuted. An example of this type of error is an expression which
uses a square root of a variable. If, when this square root is ac-
tually calculated, the variable has a negative value, a program
logic error has occurred. EduSystem 15 prints the following mes-
sages if program logic errors occur.

Message
CH

CO

DA

Explanation

A CHAIN statement tried to chain to a program which
was not available in the DECtape storage area.

Program ran too long and was automatically stopped by
the system.

The program ran out of data. It attempted to do a
READ after all data had been read.

4Some program logic errors may be corrected by the method described
under Program Editing, Procedure 2. Most, however, necessitate the re-
writing of the program.

4-15



Message

DO

FN

GS

LG

RE

Sp
SQ

SS

WR

Explanation

The program attempted to divide by zero. Instead of
dividing by zero, BASIC divides by the smallest possible
number, giving a result of about 105, This error does
not cause the program to stop.

An expression contains a function which was not defined
in a DEF statement.

The program is too complex to be executed. The prob-
lem is generally that too many subroutines have them-
selves executed GOSUB instructions.

number ¢ zero.

Program ﬁttempted to take the logarithm of a negative

A RETURN statement was used outside of a subroutine
or a subroutine was entered by a GOTO instead of a
GOSUB.

See GS.

Program attempted to take the square root of a negative
number. BASIC automatically takes the square root of
the absolute value of the number instead. This error
does not cause the program to stop.

Program used a subscript which was too large for the
variable. The maximum size of a subscript is specified
in a DIM statement.

There is no more room on the DECtape to write data.
The program attempted to do a WRITE statement when
the data list was full. (Note that if this error occurs, the
program text will no longer be intact. A NEW, OLD,
or SCR command must be used to clear the program
area.)

OPERATING INSTRUCTIONS
Loading the System

When EduSystem 15 is first installed, it must be loaded with a
special software program, the BASIC language processor. Once this

4-16



software has been loaded, it need not be reloaded. Perform the fol-
lowing steps to load BASIC.

INITIALIZE THE DECTAPE UNIT
Perform the following steps to prepare the TDS8E DECtape unit
for software loading. '

1.
2.

w AW

% = o

Set the REMOTE/OFF/LOCAL switch to OFF.

Place a DECtape on the left spindle with the DECtape
label out. |
Wind four turns of tape onto the right spindle.

. Set the REMOTE/OFF/LOCAL switch to LOCAL.
. Wind a few turns of tape onto the right spindle with the —

switch to ensure that the tape is properly mounted.
Dial O on the unit selector dial.
Set the REMOTE/OFF/LOCAL switch to REMOTE.

. Set the WRITE ENABLE/WRITE LOCK switch to

WRITE ENABLE. -

INITIALIZE COMPUTER MEMORY
To initialize the PDP-8/F memory, perform the following steps.

1.

Turn the key lock on the front of the computer to
POWER.

Perform the following set of switch manipulations on the
SWITCH REGISTER (to the left of the ADDR LOAD
switch). In each step, there are 12 figures which corre-
spond to the 12 switches labeled SWITCH REGISTER
(SR) on the front of the computer. The @ symbol in-
dicates that the corresponding switch should be set to its
“up” position. The O symbol means that the correspond-
ing switch should be set to its “down” position. The octal
instructions which correspond to this diagram appear on

the right.’

50ctal instructions are provided for those familiar with the octal, or base 8,
number system. An explanation of this system is included in Introduction
to Programming 1972.

4-17



. R OCTAL
SetSRIo Q99 999 999 999 tEhfFDpXSER LOAD 0000

SetSRio. 606 06 395 80 then press ADDR LOAD 7756

SetSRto: 800 000 O@® OO thenlift DEP 6032
SetSRio: @80 000 OO® CO® thenliftDEP 6031
SetSRto: 806 06 3%2 ©6® theniift DEP 5357
SetSRto: @60 000 O®® &0 then lift DEP 6036
SetSRto: 86 0O® 09 @8O thenlift DEP 7106
SetSRto: 88 Q00 000 @8Q thenlift DEP 7006
SetSRto: @80 ©0® 0O® 00O thenlift DEP 7510
SetSRto: 006 (60 € 6 @ thenlift DEP 5357
SetSRto: @8 Q00 O00 @O then ift DEP 7006
SetSRto: @80 000 @@ 00 thenlift DEP 6031
SetSRto: @00 08d &6 8 thenift DEP 5367
SetSRto: 6@Q 000 O@® @00 thenlift DEP 6034
SetSRto: @08 &00 00 00O then lift DEP 7420
SetSRio: 080 &80 $6é &8 thenlift DEP 3776
SetSRto: 00® OG® &b @80 thenlift DEP 3376
SetSRto: @0 @ €0® @0 thenlift DEP

and again lift DEP 5356

3. Place the tape labeled EDUSYSTEM 15 in the Teletype
paper tape reader. Position the tape at the single row of
holes punched at the beginning of the tape. Turn the Tele-
type control knob to LINE,

4. Setthe SRto 666 6 3;5‘ “9 (7756); then press
ADDR LOAD.

5. Press the CLEAR switch, then the CONT switch. Push
the paper tape reader switch to START. The tape should
begin to move: If it does not, repeat steps 2, 3, and 4.

4-18



System Building Dialog

When the EDUSYSTEM 15 paper tape has read in properly,
BASIC prints a series of questions (see Figure 4-1). The user re-
sponds by typing Y for yes and N for no on the Teletype.

STANDARD SYSTEM?

Since EduSystem 15 has optional operating modes and may be
used with optional components, if present, this question is always
answered no (N). o '

The next four questions:

IS SYSTEM DEVICE A DF32 DISK?

TC#1 DECTAPE?
RFP8 DISK?
LINCTAPE?

are always answered no (N) since none of these devices are avail-
able with the EduSystem 15. A response of yes (Y) to any of the
above will result in the following message, and EduSystem 15 will
begin the dialog again.

SYSTEM DEVICE I/0 ERROR

The system’s next question is:

TDgE DECTAPE?

and the user responds Y.

4-19



DO YO
WANT BATCH
CAPABILITIES

YES ORNO
(IF YES, SEE CHAPTER 7)

Figure 4-1. System Building Dialog
4-20



DO YOU WANT
PRIVILEGED
COMMAND
CAPA?ILITY

YES

TYPE
INITIAL
PASS'!VORD

DO THE
FOLLOWING
EXIST:
HIGH- SPEED
, PU§CH

| YES OR NO

LPOB
PRI?TER

CORgECT

YES

BEGINS READING
TAPE AND
BUILDS SYSTEM

READS IN
YES ADDITIONAL
INPUT
NO
WHEN TAPE I3
READ, TYPES |
“"READY"

Figure 4-1. (Cont.) System Building Dialog

4-21



(EduSystcm 15 then asks:

DO YOU HAVE A TDSE ROM?

Answer this Y if the EduSystem 15 has a TD8E Read Only Mem-
ory. If the user answers N, the system asks:

8K OF CORE?

Since the system will have either the Read Only Memory or the 8K
of core memory, answer this question Y. (The question will not be
asked if the user answered Y to the previous question.)

EduSystem 15 then asks:

DO YOU WANT BATCH CAPABILITIES?

If the EduSystem 15 has an optional card reader, answer Y and
refer to Chapter 7 (EduSystem 30) for additional instructions. If
not processing card programs, answer N.

Next the system asks:

DO YOU WANT PRIVILEGED COMMAND CAPABILITY?

The privileged command capability prevents unauthorized users
from executing critical system commands. To establish this pro-
tection, the user types Y. The system then prints:

TYPE INITIAL PASSWORD

The password is a special code which must be known to use priv-
ileged commands. Type a 1 to 6 character password, the first
character of which is alphabetic. If no privileged capability is de-
sired, respond to the original question with N; the system will not
ask for a password.

The system asks if a high-speed paper tape punch and/or line
printer are part of the system.

DO THE FOLLOWING EXIST:
HIGH=-SPEED PUNCH?
LP@8 PRINTER?

4-22



The response to each question must be Y if the device exists; N if
it does not. Normally, an EduSystem 15 will have neither device.
The system’s next question is:

PROGRAM LIBRARY INITIALLY EMPTY?

The user’s response should be Y unless there are programs pre-
viously stored within the system which are to be kept. If this is the
case, N must be typed as the answer and the questions in boxes 1
through 8 of the flowchart must be answered in the same way as
when the system was built when the program library was empty.
When all questions have been answered, the system types:

IS THE ABOVE CORRECT?

If all questions have been answered properly, type Y. The system
will load the rest of the EduSystem 15 paper tape. If any of the
responses were erroncous, type N; the set of questions is repeated.

When the entire tape has been read, EduSystem 15 gives the
user a chance to load additional DEC-supplied system update tapes
by asking: '

MORE INPUT?

If no DEC-supplied update tapes exist, respond N and EduSystem
15 is loaded. If update tapes do exist, load the first one 1nto the
tape reader and type Y to begin loading.

Finally, when all input has been read in, EduSystem 15 indicates
that it is ready to process BASIC programs by printing:

READY
At this time, turn the key lock to PANEL LOCK and remove the
key to prevent the system from being accidentally disturbed.

DIAGNOSTIC MESSAGES DURING SYSTEM BUILDING

The following error messages are printed when errors are de-
tected during the building of EduSystem 15.

TAPE READY?
4-23



This message is typed whenever the system is waiting for the
paper tape reader to be loaded. It may appear by itself, usually due
to a tape tear or reader jam, or it may appear as the last line of an-
other diagnostic message.

ACTION: :

1. The portion of the paper tape which is read after the sys-
tem building dialog has distinct blocks of information
about two and one-half tape fanfolds long. The start of
such a block is indicated by nine blank tape frames fol-
lowed by a frame with all positions punched.

Back up the tape several fanfolds to the beginning of a
previously read block. Position the tape such that the
blanks at the beginning of the block are over the read
station.

2. Type Y on the interactive terminal.

BAD PLACE TO START TAPE
TAPE READY?

This message means that after a previous message the user did
not correctly position the tape to the beginning of a data block.
(See discussion under TAPE READY? message.)

ACTION:
1. Correctly position the tape.
2. Type Y on the interactive terminal.

CHECKSUM ERROR
TAPE READY?

A checksum error occurred while the most recent data block
was being read.

ACTION:
1. Back up the tape to the beginning of the block.
2. Type Y to reread the data.

SYSTEM DEVICE I/O-ERROR_
| 4-24



If this message occurs before the dialog has been completed, the
dialog will automatically begin again. If an 1/O error occurs after
the dialog is completed the TAPE READY message will appear.

ACTION:
1. Make sure that the system device is on line and write-
enabled and the unit number is set correctly.
2. Respond appropriately to the question which follows the
. message.

Turning Off the System

The system may be powered down when it will not be used for
extended periods of time, such as overnight. The procedure is as
follows:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to OFF; turn the DECtape unit and
Teletype to OFF.

Restarting the System
The system may be restarted at any time without reloadmg by
the following procedure:

1. Initialize the DECtape unit.

2. Turn the key lock to POWER and the Teletype to LINE.,

3. Set the SR to 09& 359 Q92 ©9¢ (7600); then press
ADDR LOAD.

4. Press CLEAR switch, then the CONT switch.

5. EduSystem 15 is now ready for use. Turn the key lock to
PANEL LOCK and remove the key to prevent the system
from being accidentally disturbed.

Saving Programs on Paper Tape :

-Once a program has been typed in correctly, it may be saved on
paper tape so that it may be reloaded quickly. To save the program,
perform the following steps:

Turn the Teletype (TTY) control knob to LINE.

Type LISTNH but do not press the RETURN key.

Turn the TTY paper tape punch ON.

Press SHIFT/CTRL, type “PPPPPP” to produce some
leader tape.

5. Press the RETURN key.

4-25

B



6. When punching is complete, press SHIFT/CTRL, type
“PPPPPP” to produce some trailer tape.
7. Turn the TTY punch OFF.

Reloading Programs from Paper Tape

Programs punched out on paper tape may be reloaded using the
Teletype (TTY) paper tape reader. The TAPE command is used
to load programs from paper tape. To reload programs perform
the following steps:

NoOUA WD~

Insert the paper tape in the TTY reader.

Turn the TTY control knob to LINE.

Type NEW, then press the RETURN key.

Type the program name.

Type TAPE, press the RETURN key. =

Turn the TTY paper tape reader to START.

When the tape has read in, turn the TTY reader to FREE.

A spemal control command, ECHO, may be used with TAPE to
prevent the program from being listed while it is being read. The
first time it is used, ECHO inhibits all printout. A second ECHO
command restores normal printout. '

Table 4-1. EduSystem 15 BASIC Statement Summary
Statement Description
LET Assign a value to a variable. LET is optional.
PRINT Print out the indicated information.
‘READ Assign values from data list to variables.
DATA Provide data for a program.
RESTORE Restore the data list.
WRITE Record data on DECtape storage file.
GOTO Change order of program gxecution.
IF GOTO Conditionally change order of program
IF THEN execution.
FOR TO STEP Set up a program loop.
NEXT End a program loop.
DIM Define subscripted variables.
GOSUB Go to a subroutine.
RETURN Return from a subroutine.
INPUT Get values from the Teletype.
REMARK (REM) Insert a program comment.
RANDOMIZE Cause RND function to randomly select new
sequence of random numbers between O and 1.
DEF Define a function.

4-26



Table 4-1. (Cont.) EduSystem 15 BASIC Statement Summary

Statement Description
CHAIN Link to next.section of a program which is
‘ stored within the system.

NOLINE Do not print out the line number in which pro-
gram logic errors are found, (Allow larger-than-
normal programs to be run without chaining.)

STOP Stop program execution. '

END End a program.,

Editing and Control Commands

LIST List all stored program statements.

LIST n List program starting at line n.

LISTNH List all program statements but do not print a
header line. o

LISTNHn List program starting at line n but do not print
a header line.

RUN Execute the current program.

RUN N H Same as RUN without header line.

SCRATCH(SCR) Delete the currently stored (in memory) pro-
gram,

CTRL/C Stop execution of a program or printing of a
listing. CTRL/C is typed by pressing C while
holding down the CTRL key.

TAPE Read a program from paper tape. Ignore any
line which does not begin with a line number.

ECHO Switch from printout to non-printout mode or
vice versa.

RESEQUENCE Renumber program lines.

NEW Clear memory, request program name.

OLD Clear memory, bring program to memory from
storage area.

NAME Same as NEW but does not clear memory.

CATALOG ‘Print out the names of programs in storage area.

(or CAT) _

LENGTH Print out the number of blocks needed to store
the current program.

PRIVILEGE Enable use of privileged commands. To be suc-

(or PRI) cessful, this command must be followed by the

‘correct password. This command is recognized

only if the privileged command capability was
selected at system load time.

4-27



- Table 4.1. (Cont.)

EduSystem 15 BASIC Statement Summary

Statement

Description

* Privileged Céommands“
PASSWORD
SAVE '

UNSAVE

Functions
ABS(X)
ATN(X)
COSX)
EXP(X)
INTX)
LOG(X)
RND(X)
SGNX)

SIN(X)
SQR(X)
TAN(X)
TAB(X)
CHR$(X)

Change the password code.

Save the current program in the system storage
area.

Delete the named program from the system
storage area,

Absolute value of x.

Arctangent of x (result in radians).

Cosine of x (x in radians).

eX (e=2.718282).

Greatest integer of x.

Natural logarithm of x.

Random number.

Sign of x (+1 if positive, —1 if negative, 0 if
ZEero),

Sine of x (x in radians).

Square root of x.

Tangent of x (x in radians).

Controls printing head position on Teletype.
Converts character code to character. Used
only with the PRINT command.

6The privileged commands may only be used after a successful PRIVILEGE
command has béen executed.

4-28



edusystem2o

INTRODUCTION _
- EduSystem 20 is a multi-user BASIC system. The system is
composed of from one to eight terminals connected. on-line to a

'PDP-8/E computer. This means that, depending on the number of
on-line terminals, EduSystem 20 allows up to eight different BASIC
programs to be run at the same time. EduSystem 20 terminals need
not be in the same room, or even in the same building as the com-
puter. They may be placed in remote locations and connected to
the computer by regular telephone lines. ~

In addition to letting several persons use BASIC at the same
time, EduSystem 20 allows users to operate BASIC in two different
modes: immediate and programmable. Immediate mode allows the
user to perform arithmetic calculations without writing programs.
Programmable mode enables programs to be written in BASIC,
stored in computer memory, and, if desired, saved on paper tape.
Both modes provide a printed copy of the problem and the solution.

EduSystem 20 BASIC also includes advanced features that en-
able a user to perform more complex programming tasks. These
features include the ability to enter a subroutine if certain condi-
tions are met, to write multiple statements per llne, and to use a
search character to edit a program line.

System Components

EduSystem 20 is composed of a PDP- 8/E computer with 8192
words of core memory, power fail protection, automatic loader
(hardware bootstrap), and up to 4 terminals and their associated
interfacing. Each EduSystem 20 includes the BASIC language pro-
cessor and a library of sample programs, textbooks, and curriculum
guides. An additional 4096 words of core memory enable Edu-
System 20 to handle up to 4 more terminals (for a total of 8).
One or more off-line terminals may also be added for paper tape

5-1



preparation. The system can also support a high-speed paper tape
reader/punch.

System Expansion

EduSystem 20 may be easily expanded to intermediate-sized
EduSystems 25 or 40, or to the total school computer system, Edu-
System 50. To expand to EduSystem 25, add 4096 words of core
memory, DECtape, and an EduSystem 25 software kit. Expansion
to EduSystem 40 requires a DECdisk or DECtape, an optional
mark card reader, and an EduSystem 30 software kit. (Chapters 6
and 8 fully describe the capabilities of EduSystem 25 and Edu-
System 40, respectfully.) ‘

EDUSYSTEM 20 BASIC ,

EduSystein 20 BASIC has all the standard elements of Dart-
mouth BASIC plus several extended features. Tables 5-1 and 5-2
summarize the system’s BASIC language capabilities. The extended
features are discussed below.

Abbreviated Commands
All commands and statement keywords can be abbreviated to the
first three letters, as shown in Table 5-1.

Table 5-1. EduSystem 20 BASIC Statement Summary -

Command :

(Abbreviation) Explanation

LET 5 Assign a value to a variable. LET is optional.

READ(REA) - Assign values from data list to variables.

DATA(DAT) Provide data for a program.

PRINT(PRI) Print out the indicated information on the
 Teletype.

RESTORE(RES) Restore the data list.

GOTO(GOT) Change order of program execution.

IF THEN(IF THE) Conditionally perform specified operation or
; conditionally change order of program execu-

tion.
FOR TO STEP. ~ Set up a program loop.
(FOR TO STE) '
NEXT(NEX) End of program loop.
GOSUB(GOS) | Go to a subroutine.
RETURN(RET) Return from a subroutine.

ON GOTO(ON GOT) Conditionally change order of program execu-
' : tion according to evaluation of formula con-
“tained in statement.

5-2



Table 5-1 (Cont.).

EduSystem 20 BASIC Statement Summary

Command .

(Abbreviation) Explanation

ON GOSUB Conditionally go to a subroutine according to

(ON GOS) _evaluation of formula contained in statement.

INPUT(INP) Get values or expressions from the Teletype.

REMARK(REM or’) - Insert a program comment.

RANDOMIZE Cause RND function to randomly select new

(RAN or RANDOM) sequence of random numbers between 0 and 1.

DEF FN Define a function.

STOP(STO) Stop program execution.

END ‘ End a program.

Editing/ Control Commands

© LIST(LIS) List entire program in memory

LIST n(LIS n) List line n.- ,

LIST n, m(LIS n, m) List lines n through m inclusive.

DELETE n(DEL n) Delete line n.

DELETE n, m Delete lines n through m inclusive.

(DEL n, m) ‘

EDIT n(EDI n) Search line n for the character typed.

KEY Return to KEY (normal) mode.

RUN Execute the current program.

SCRATCH(SCR) Erase the current program from memory.

TAPE(TAP) Read a program from the Teletype paper tape

: reader- or punch a program on the Teletype
paper tape punch. :

PTR Read a program from the high-speed paper
tape reader. :

PTP Punch a program out on the high-speed paper
tape punch.

CTRL/C Stop a running program, print STOP, and
-then READY. CTRL/C is typed by pressing
C while holding down the CTRL key

BYE Same as SCRATCH.

NEW Same as SCRATCH.

Table 5-2. EduSystem 20 BASIC Function Summary

Function Description

ABS(X) ‘Absolute value of x

ATN(X) Arctangent of x (result in radians)
COS(X) Cosine of x (x in radians)
EXP(X) e* (e=2.712818)

INT(X) Greatest integer of x

5-3



Table 5-2 (Cont.). EduSystem 20 BASIC Function Summary

Function Description

LOG(X) Natural logarithm of x
RND(X) Random number

SGNX) Sign of x (41 if positive, —1 if negative, 0 if zero)
SIN(X) Sine of X (x in radians)

SORX) Square root of x

TAN(X) - Tangent of X (x in radians)

TAB(X) Controls printing head position on Teletype.
TAB(X) Truncates decimal portion of x.

CHR$(X) Converts character code to character. Used only with
: PRINT statement.

Multiple Statements per Line

EduSystem 20 allows more than one statement to be typed on a
single line. Statements after the first begin with a back slash char-
acter (\\) which is SHIFT/L on the keyboard. A program is often
more understandable when statements, such as a series of LET’s,
are grouped into a single line. For example, the program:

10 X=82\Y=75\Z=98
20 PRINT (X+Y+Z)/3

is the same as

18 LET X=82
28 LET Y=75
30 LET Z=98
40 PRINT (X+Y+2)/3

and will produce the same result when the RUN command is
typed:1 '
RUN

85
READY

Since EduSystem 20’s memory is being shared by several users,

this multiple-statement capability is helpful when writing long pro-
grams. Statements require less storage in the computer when they
are grouped as a single statement.

1 Notice that EduSystem 20 BASIC does not require the use of an END
statement.

5-4



Immediate Mode

EduSystem 20 allows certain BASIC statements to be used in
immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Statements commonly
used with immediate mode are PRINT, LET, FOR, and NEXT.
Immediate mode is a quick way to calculate expressions and equa-
tions. For example, the statement: |

PRINT SQR(144)

followed by the RETURN key, causes the square root of 144 to be
printed immediately, as follows:

12

READY

BASIC then prints READY to indicate that another immediate
mode statement or a program may be entered. Immediate mode
statements are not stored in computer memory.

Typing multiple statements per line is especially useful in the im- -
mediate mode. A table of random numbers could, for example, be
generated by typing the following single line and pressing RE-
TURN: '

FOR D=1 TO 28\PRINT RND(2),\NEXT D

«2431684 .2988412 « 71295008 .3125257 3895865
.BP4493979 .4834217 4961024 5018026 .04103271

«2373254 »3846887 - ,1923863 «9121199 241212
. 9882844 «2587987 83323189 .8701425 «9218898

READY

Nearly all the BASIC statements and commands may be exe-
cuted in immediate mode. This is an excellent way to introduce
students to the BASIC language, as the statements and commands
can be exercised and understood before the student begins pro-
gramming; '

Immediate mode statements can also be used with programs.
For example, an immedjate GOTO statement may be used to start
a program at a point other than the beginning. This is accom-_
plished by loading the program into computer memory“and typing;
for example:,



GOTO 50

After the RETURN key is pressed, the program execution will
begin automatically at line number 50. In this case, the RUN
command need not be typed.

INPUT Statement

The INPUT statement described in Chapter 1 allows a number,
or numbers, to be entered from the TTY as values for variables.
EduSystem 20 allows the user to respond to the INPUT query (?)
with a value or mathematical expression. An expression may con-
tain one or more arithmetic operations and may use any BASIC
function. For.example, the statement:

: P e :
' s lY\quW .
190 INPUT A N(—) ((/ T% 1S
= S{W«M AMMAL L
could be answered in any of the following ways:

748 kj (N PUT (%KCVALUeiS?X\

?710%(146+128)/3 :
?5512+SQR 121D 1 (NP, Y X 'S NAL X "y'& VA(" T’A’()CM);\/

This capabil?t%ould geluész%%/enable one program to solve more
than one problem.

As explained in Chapter 1, the INPUT statement may have mul-
tiple inputs. These inputs may be either mathematical expressions
or numeric values. For example, the statement:

18 INPUT A,B,C

could be answered as follows:

733,L0G(33),3315

Comments

Previously, the use of the REMARK (or REM) command to
introduce a comment on a single line was discussed. Comments
may also be appended to any line by starting the comment with a
single apostrophe (*). All characters typed after the apostrophe on

5-6



a single line are ignored when the program is executed. For ex-
ample: |

18 LET X=4 *SET X TO ITS INITIAL VALUE
20 GOTO 1@ °'LOOP BACK TO START

When included within a PRINT statement message, the apos-
trophe is not considered as the start of a comment, For example:

12 PRINT "X°S VALUE IS";X
prints

X'S VALUE 1S 4

When responding to an INPUT statement, the user may add a
comment which will print on the Teletype but have no effect on
the running program. For example:

18 INPUT A
20 PRINT A
RUN

- Subscripted Variables :

In chapter 1, the DIM statement is used to permit subscripts of
more than 10. EduSystem 20 BASIC defines all variables as they
occur, so the DIM statement is not necessary. The system imposes
the following limits on subscript size:

e Single subscripts: 0 to 2047
® Double subscripts: O to 63 for each subscript

Consider the following example. Notice that a variable has a
value of O until it is assigned a value.

5-7



18 REM - MATRIX CHECK PROGRAM
20 FOR 1=8 TO 6

22 LET ACI,@8)=I

25 FOR J=8 TO 19

28 LET A(8,J)=J

30 PRINT ACI,J);

35 NEXT J
49 PRINT
45 NEXT I
RUN |
6 1 2 3 45 6 7 8 9 10
1 ¢ 0 8 8 0 2 8 0 @ ©
> @ 0 2 @ 8 © @ @ 0 @
3¢ 00 00 2 0 @8 8 0
4 2 6 0 0 0 2 0 @ B 0
5 2 p 8 60 0 @ P 0 O
€ 2 0 2 0 @ 2 0 @ © O
it b ot
READY //{M Wﬂﬂéﬁ“ﬂ 44"’
SomL ypetd W el b, 0. 63X €3 mahix’
, e 2gv¥ vbls, alloweo) avo.

basie ke thics pan, o fullin ditio (eund us o U i)

IF THEN Statement

The IF THEN statement described in Chapter 1 is used to trans-
fer conditionally from the normal order of program execution. For
example:

58 IF X>Y THEN 200

transfers control to line 200 if X is greater than Y. If X is not
greater than Y, control transfers to the line following line 50. Edu-
System 20 BASIC uses the IF THEN statement in this way to
change the order of program execution. It also allows the IF THEN
statemeiit to conditionally perform an operation without changing
the order of program execution. For example:

5@ IF X>Y THEN PRINT "X>Y"

If X is greater than Y, BASIC prints X > Y. Whether or not X
is greater than Y, the next statement executed is the one following
line 50. IF THEN used in this manner does not change the order
of program execution.

5-8



The IF THEN statement can also be used to transfer control to
a subroutine. For example:

25 IF A+B=C THEN GOSUB 109

If A+ B equals C, control is transferred to the subroutine at line
100.

Truncation Function (FIX)

EduSystem 20 BASIC includes all the functions discussed in
Chapter 1 (see Table 5-2). In addition, it includes the truncation
function (FIX) which returns the integer part of x. For example:

PRI FIX(-842,756)
-842

‘Notice that FIX is like INT for positive arguments. In fact, FIX
could be defined as:

FIX(X)=SGN (X)*INT (ABS(X))

actuelly the ﬂ(éﬁwﬂ/h i e offln Wy A, uama%
CHRS$ Function TNT 4 U™ Fix, o 1*5}‘4/7

Occasionally, it is desirable to type a character other than the
printing ASCII set (see Appendix B) or to convert ASCII char-
acter codes to their respective characters. A spec1al PRINT state-
ment function, CHRS, is used for this purpose. This function
takes as its argument a single constant or variable and prints the
single character whose character code corresponds to that value.
For example:

10 FOR 1=0 TO 9 A LSO Y
B T o R FOY)X
RUN
#123456789 e T@@\(Mf\‘m “\[?d-

READY -t ‘/\, &» “M-/‘
d,oﬁo

This program prints “0123456789” because 48 to 57 are the
ASCII values for the characters O through 9. The following spe-
cial characters can also be printed using the CHR$ function:

TO PR(NT “ULL" sotag CHRX(256)



- NoTes USUL -dpfoniDfunction difiition ans
D/*TF\ watwwvj WN"‘?(W 5\’\&&”‘2 ) .

Bell CHRS(7) -
Line feed CHR$(10)
Carriage return CHRS$(13)
Quote () CHR$(34)
Back arrow (<) CHR$(95)
Form feed CHR$(12)

For each ASCII character there is a second acceptable form of
CHRS$ function. The second code is obtained by adding 128 to the
ASCII code given in Appendix B. For example, both CHR$(65)
and CHR$(193) cause the character A to be output.

ON-GOTO Statement

The ON-GOTO statement permits the program to transfer con-
trol to one of a set of lines depending on the value of a formula.
The statement is of the form:

line numbér ON formula GOTO line number, line number . . .

The formula is evaluated and then truncated to an integer. This
integer is used as an index to tell which of the line numbers re-
ceives control. If the integer is 1, the first line number is used; if it
is 2, then the second is used; etc. Obviously, the formula after
truncation cannot be zero or negative or greater than the number
of line numbers in the list. For example:

18 ON A+2 GOTO 100,200,300,400

If Ais 2, then control is passed to line 400. The range A can have
in this example is —1 to 2.

- ON GOSUB Statement

The GOSUB and RETURN statements are used to allow the
user to transfer control to a subroutine and return from that sub-
routine to the normal course of program execution (see Chapter 1).
The ON GOSUB statement is used in the same manner as the ON
GOTO statement described previously. The statement is of the
form: :

line number ON formula GOSUB line number, line number . . .

5-10



The formula is evaluated and then truncated to an integer. De-
pending on the value of the integer, control is transferred to the
subroutine which begins at one of the line numbers listed. When
the RETURN statement is encountered, control transfers to the
line following the ON GOSUB line. For example:

5@ ON X GOSUB 208,300,480

If Xis 1, 2, or 3, control will transfer to line 200, 300, or 400
respectively. If X is not equal to 1, 2, or 3, line50is 1gnored >

Thna dgTovreet
NO ERRITE 1 @J /
ERROR 28 IN 5B
RANDOMIZE Statement

The random number (RND) function produces a random num-
ber between O and 1, as described in Chapter 1. A given program
that uses the RND function always produces the same random
numbers each time it is run. If the user wants the random number
generator to calculate different random numbers every time the
program is run, EduSystem 20 BASIC provides the RANDOMIZE
statement, RANDOMIZE is normally placed at the beginning of a
program which uses the RND function. When the program is exe-
cuted, RANDOMIZE causes the RND function to choose a random
starting value so that the same program will give different results
each time it is run. For example:

18 RANDOMIZE
20 PRINT RND(@)

prints a different number each time it is run. For this reason,
it is good practice to debug (detect, locate, and correct mistakes)
a program completely before inserting the RANDOMIZE statement.

To demonstrate the effect of the RANDOMIZE statement on

" i

5-11



15 RANDOM
20 FOR I=1 TO 5
25 PRINT "VALUE" I "IS"™ RND(®)

30 NEXT
RUN

VALUE
VALUE
VALUE
VALUE
VALUE

D DD

READY

RUN

VALUE
VALUE
VALUE
VALUE
VALUE

VI B NP -

READY

I

IS
IS
1S
IS
IS

IS
IS
Is
IS
Is

«2431684
«2988412
. 712950068
3125257
« 3095865

.6181684
« 4238412
« 1045008
«4375257 /
.6845865

ERROR MESSAGES

EduSystem 20 checks all stateménts and commands before exe-
cuting them. If it cannot execute a statement or command, it in-
~ forms the user by printing an error message and the line number
in which the error was found. Error messages for EduSystem 20
are shown in Table 5-3.

_ Table 5-3. EduSystem 20 Error Messages

Message - Explanation

WHAT? Immediate mode statement or command not under-
stood. It does not begin with a line number and is not
a valid system command.

ERROR 1 Log of negative or zero number was requested.

ERROR 2 Square root of negative number was requested.

_ERROR 3 Division by zero was requested.

ERROR 4 Overflow—exponent greater than approximately -38.

ERROR 5 Underflow—exponent less than approximately —38.

ERROR 6 Line too long or program too big. .

ERROR 7 Characters are being typed in too fast; use TAPE

command for reading paper tapes.

5-12



X

Table 5-3 (Cont.). EduSystem 20 Error Messages

Explanation

Message |
ERROR 8 System overload caused character to be lost,
ERROR 9 Program too complex or too many variables. (GO-
SUB, FOR, or user defined function calls are too
deeply nested.)
ERROR 10 Missing or illegal operand or double operators.
ERROR 11 Missing operator before a left parenthesis.
ERROR 12 Missing or illegal number.
ERROR 13 Too many digits in number.
ERROR 14 . No DEF for function call. _ :
ERROR 15 Missing or mismatched parentheses or illegal dummy
variable in DEF. :
ERROR 16 Wrong number of arguments in DEF call.
ERROR 17 Illegal character in DEF expression.
ERROR 18 Missing or illegal variable.
ERROR 19 Single and double subscripted variables with the same
name.
ERROR 20 Subscript out of range.
ERROR 21 No left parenthesis in function.
ERROR 22 Illegal user defined function—not FN followed by a
: letter and a left parenthesis.
ERROR 23 Mismatched parentheses or ‘missing operator after
, right parenthesxs
ERROR 24 Syntax error in GOTO.
ERROR 25 Syntax error in RESTORE.,
ERROR 26 Syntax error in GOSUB.
ggggl}i %g Syntax error in ON, Ad z T y f!/(, ms’ﬂ fo
adexout-efrange LI Bt ot
ERROR 29  Syntax error in RETURN. ﬁmf{ M
ERROR 30 RETURN without GOSUB. 9! /:
ERROR 31 Missing left parenthesis. in TAB function.
ERROR 32 -Syntax error in PRINT.
ERROR 33 An unavailable device was requested by the user.
ERROR 34 Missing or illegal line number.
ERROR 35 Attempt to GOTO or GOSUB to a nonexistent line. -
ERROR 36 Missing or illegal relation in IF.
ERROR 37 Syntax error in IF,
ERROR 38 Missing equal sign or improper variable left of the
equal sign in LET or FOR.
- ERROR 39 Subscripted index in FOR.
ERROR 40 Syntax error in FOR.
ERROR 41 FOR without NEXT.
ERROR 42 Syntax error in LET.
ERROR 43 Syntax error in NEXT,

5-13



Table 5-3 (Cont.). . EduSystem 20 Error Messages

Message Explanation

ERROR 44 NEXT without FOR.

ERROR 45 Too much data typed in or illegal character in DATA
or the data typed.

ERROR 46 Illegal character or function in INPUT or READ.

ERROR 47 Out of data.

ERROR 48 Unrecognized command: RUN mode.

NOTE
To correct the error indicated by the mes-
sage, the appropriate line in the program
must be corrected in the manner described
in the Program Editing Section.

PROGRAM EDITING

There are two times when a program may require editing proce-
dures. The first occurs while a line is being typed but before the
RETURN key is pressed. The second occurs when a line has been
completely typed and the RETURN key has been pressed. Each
situation has its own editing procedures.

Situation 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: < (SHIFT/0O),
RUBOUT, or ALT MODE (or ESC).

« (back arrow), SHIFT/O on the keyboard, or RUBOUT
is used to delete a character from a line. BASIC prints the
back arrow, deleting the last character from that line. More
than one back arrow deletes more than one character, in re-
verse order.

ALT MODE (ESC on some Teletypes) is used to delete an
entire line. When this key is used, BASIC prints $DELETED,
erases that line from the program, and returns the carriage so
that the line may be retyped.

Situation 2:  After the RETURN key is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, or changed.

5-14



INSERTION |

To add a line to a program, assign a line number that falls be-
tween two existing lines, type the line number and text, and press
RETURN. ' ‘

DELETION

To erase a line from computer memory, type the line number
only and press the RETURN key. The DELETE command may
also be used to erase lines from memory. To erase a single line,
type DELETE and the line number and press RETURN. DELETE
followed by two line numbers separated by a comma erases all lines
between and including the two given. For example:

DELETE 10,20

erases lines 10 through 20.
CHANGE

Old instructions may be replaced by new ones by retyping the .

line. This procedure is adequate for changing simple lines. When,
however, the line contains a complex formula or a long message to
be printed, it may be changed with the EDIT command. The EDIT
command allows the user to access a single line and search for the
character or characters to be changed. To use this command, type:

EDIT line number

and press the RETURN key. BASIC waits for a search character
to be typed (BASIC does not print this search character when it is
‘typed). This search character is one that already exists on the line
to be changed. After the search character is typed, BASIC prints
out the contents of that line until the search character is printed. At
this point, printing stops and the user has the following options:

' Type in new characters; BASIC inserts them following the
ones already printed.

® Type a form feed (CTRL/L) to cause the search to pro-
ceed to the next occurrence, if any, of the search character.

~ o Type a bell (CTRL/G) to signal a change of search

character, then type a new search character.

¢ Use the RUBOUT or < key to delete one character to the
left each time the key is pressed.

5-15



. Typé the RETURN key to terminate editing of the line at

that point, deleting any text to the right.

¢ Type the ALT MODE key to delete all the characters to
the left except the line number.

® Type the LINE FEED key to terminate editing of the line,
saving the remaining characters.

When the EDIT operation is complete, BASIC prints READY.
Note that line numbers cannot be changed with the EDIT com-
mand.

The following example demonstrates the EDIT command. An
incorrect line was typed:

68 PRINT "PI=3,14146 ABOUZ!"™

The line was edited as follows:

EDIT €0
PRINT "PI=3.14146+¢59 ABOUZT!"

First 6 was entered as the search character. BASIC printed the line
to the 6, and the RUBOUT key was typed twice to remove the two
incorrect digits (46) and 59 was inserted in the line. CTRL/G was
typed and another search character (% ) was entered. BASIC
printed characters to the % which was removed with a RUBOUT
and replaced with a T. The LINE FEED key was typed to termi-
nate the edit and save the remaining characters. If the line is listed,
the following is printed on the Teletype.

LIST &0
68 PRINT "PI=3,14159 ABOUTI"
READY

OPERATING INSTRUCTIONS
Loading EduSystem 20 BASIC

A paper tape labeled EDUSYSTEM 20 BASIC is provided with
the system. This tape, called the system tape, must be loaded into
computer memory when the system is installed. Once this system
tape is loaded, it need not be reloaded.

5-16



The system tape may be loaded in one of two ways: with an
automatic loader (hardware bootstrap) or with the Read-In Mode
(RIM) loader program. The following loading instructions are for
an EduSystem 20 that includes a hardware bootstrap. If the Edu-
System 20 does not have a hardware bootstrap, see Appendix A for
instructions on using the RIM loader. :

1. Turn the key lock on the computer console to POWER.
- 2. Turn all Teletypes to LINE,

3. Set all Teletype tape readers to FREE.

4. Place the system tape (or configurator tape) in the appro-
priate reader (high-speed or console Teletype) with the
leader code (ASCII 200) over the reader head.

5. Set the SWITCH REGISTER (SR) to 5356 (octal).?

6. Press and raise the HALT switch.

7. Turn on the appropriate paper tape reader.

8. Press and raise the SW switch,

The system tape should'begin to read in. If it does not, ensure
that the correct tape is being used and repeat the above procedures.
When the tape has read in, the message:

EDUSYSTEM 2@ BASIC

prints on the console Teletype. If this message is not printed, the
“system tape did not read in correctly and the loading procedures
must be repeated. |

When EDUSYSTEM 20 BASIC is printed, perform the fol-
lowing:

9. Remove the tape from the tape reader and turn the reader
off. .
10. Answer BASIC’s 1n1t1a1 dlalog as explamed below.

Initial Dialog
When BASIC has been loaded correctly and has printed the
identification message (EDUSYSTEM 20 BASIC), it begins to ask

2An explanation of the octal, or base 8 number system is included in
Introduction to Programming 1972. :

5—17



certain questions which the user must answer, The first question,
printed two lines below the identification message, is:

NUMBER OF USERS (1 TO 8)7?

The user responds with a single digit from 1 to 8, depending on
the number of Teletype terminals to be used. If the number of
users is 1, BASIC asks whether the user has a high-speed reader
or punch and concludes the dialog. In this case, the entire dialog
might read as follows:

NUMBER OF USERS (1 TO 8)7?1

DO YOU HAVE A HIGH SPEED PUNCH (Y OR N)?Y
DO YO HAVE A HIGH SPEED READER (Y OR N)?Y-
IS THE ABOVE CORRECT (Y OR N)?Y

If the number of users is more than 1, BASIC continues the dialog
by asking:

PDP-&/L COMPUTER (Y OR N)?

If the EduSystem 20 computer is a PDP-8/L, respond Y. When
the computer is not a PDP-8/L, respond N; a response of N to
this question prompts the following dialog:

STANDARD REMOTE TELETYPE CODES (Y OR N)?

Standard PTO8 or KL8-E device codes are 40, 42, 44, 46, 50,
52, and 54. When a system using PT08 or KL8-E interface units
is first installed, determine the specific device code for each Tele-
type and label each Teletype with its specific device code. If device
codes are standard, enter Y for this question and BASIC assumes
the standard device codes and continues the dialog. If device
codes are not standard, enter N; BASIC then asks:

TELETYPE #1 DEVICE CODE?

BASIC asks this question for each Teletype to be used, up to seven
times for an 8-user system. Respond with the specific 2-digit device
code for each Teletype.

5-18



When the device codes have been determined, or if the com-
puter is a PDP-8/L, the dialog continues as follows:

DO YOU HAVE A HIGH SPEED PUNCH (Y OR N)>?

Respond Y if a high-speed paper tape punch is present, N if not;
BASIC then asks:

DO YOU HAVE A HIGH SPEED READER (Y OR, N)?

Respond Y if a high-speed paper tape reader is present, N if not.
If 1 was specified as the number of users, this question completes
the BASIC dialog. However, for more than one user, BASIC asks
the following question:

SAME AMOUNT OF STORAGE FOR ALL USERS?N

The above question requires the user to decide whether to parti-
tion the available core equally among the users on the EduSystem
20. If Y is the response, BASIC determines the size of the core
memory on the system and divides it equally among the users and
ends the dialog. If N is the response, BASIC determines the size -
of the core memory on the EduSystem 20, subtracts the amount
used by EduSystem 20 software (4K), and prints the highest core
field according to the following: '

Field 7—32K core memory
Field 6-—28K core memory
Field 5—24K core memory
Field 4—20K core memory
. Field 3—16K core memory
‘Field 2—12K core memory
Field 1— 8K core memory

For explanation purposes, the following dialog is written for a
12K, 8-user EduSystem 20. The system core is to be allocated as
follows:

User 1—9 blocks (user 1 is the console terminal)
User 2—4 blocks
User 3—3 blocks

5-19



User 4—4 blocks
User 5—3 blocks
User 6—3 blocks
User 7—3 blocks
User 8—3 blocks

Each core field contains 16 blocks; a core field may be divided
among several users, but no user may be allotted blocks in more
than one core field. To determine the number of blocks, BASIC

prints the following dialog and the &fer answers as shown: }
THERE ARE 16 BLOCKS LEFT IyATHIS FIELD.

YOUR ALLOCATION FOR USER WILL BE HOW MANY BLUCKS?9
THERE ARE @7 BLOCKS LEFT IN”THIS FIELD.

YOUR ALLOCATION FOR USER #2 WILL BE HOW MANY BLOCKS?4
THERE ARE #3 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #3 WILL BE HOW MANY BLUCKS?3
FIELD |

THERE ARE 16 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #4 WILL BE HOW MANY BLOCKS?4
THERE ARE 12 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #5 WILL BE HOW MANY BLOCKS?3
THERE ARE @9 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #6 WILL BE HOW MANY BLOCKS?3
THERE ARE #6 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #7 WILL BE HOW MANY BLOCKS?3
THERE ARE #3 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #8 WILL BE HOW MANY BLOCKS?3

When an invalid response is made to any of BASIC’s questions,
an error message is printed and the question is repeated. For ex-
ample:

STANDARD REMOTE TELETYPE CODES (Y OR N)?4
INVALID RESPONSE

STANDARD REMOTE TELETYPE CUDES (Y OR nN)?

When all responses have been entered, BASIC asks:

IS THE ABOVE CORRECT (Y OR N)?

If an incorrect response was made, answer N and BASIC begins
the dialog again. A response of Y ends the dialog and BASIC
prints:

END QOF DRIALOGUE

READY
5-20



BASIC prints READY on each of the Teletypes associated with
the specified device codes. EduSystem 20 is now ready to process
BASIC programs. At this time, turn the key lock to PANEL
LOCK and remove the key to prevent the system from being dis-
turbed.

System Reconfiguration

The EduSystem 20 Configurator Tape is used to change the
number of users, allocation of core fields, etc., without completely
reloading the System tape. To use the Configurator tape, the system
must be inactive, i.e., BASIC must not be running a program and
no user typing. CTRL/C is typed to stop a running program or the
listing of a program. To ensure that no one starts typing, turn all
Teletypes to OFF. When the system is inactive, load the Config-
urator Tape as explained under Loading the System.?

System Shutdown

If power failure detection hardware is available on the system,
simply turn the console key lock to OFF. Otherwise, to shut the
system down, for overnight or any reason, ensure that the system is
inactive, as explained above. Then press the HALT switch and turn
the key lock to OFF. “'

System Restart

If power failure detection hardware is available on the system,
simply turn the key lock to PANEL LOCK. Otherwise, perform the
following procedures.

Turn the key lock to POWER.

Set the SR to 0000 and press EXTD ADDR LOAD.
Set the SR to 0200 and press ADDR LOAD.

Press the CLEAR switch, then the CONT switch.
Turn the appropriate Teletypes to LINE.

Turn the key lock to PANEL LOCK.

Sk =

EduSystem 20 is now ready to process BASIC programs.

Program Storing Procedures
Once a program has been typed in correctly, it may be saved on
paper tape so that it may be reloaded quickly. Programs may be

3If a program other than EduSystem 20 BASIC has been loaded into
memory since the last use of BASIC, the system tape must be reloaded.

5-21



punched on the Teletype (TTY) or high-speed punch. To save the
program, perform the following procedures.

TELETYPE PAPER TAPE PUNCH

Turn the TTY control knob to LINE.

Type TAPE; press RETURN. -

Turn the TTY paper tape punch. ON.

Type LIST; press RETURN.

When punching is complete, turn TTY punch OFF.
Type KEY; press RETURN.,

H-SPEED PUNCH \
Turn the TTY control knob to LINE,
Type PTP; press RETURN.
Turn high-speed punch to ON. :
When punching is complete, turn punch OFF.
Type KEY; press RETURN.

HI

S":P“':*’!"':"‘C) A Sl M

Program Reloading Procedures _

Programs saved on paper tape may be reloaded using the Tele-
type (TTY) or high-speed paper tape reader. To reload programs,
perform the following procedures.

TELETYPE PAPER TAPE READER

Turn the TTY paper tape reader to FREE.

Turn the TTY control knob to LINE.,

Insert tape in the reader. =~

Type TAPE; press RETURN.

Turn the TTY reader to START.

When the tape- has read in, turn the TTY reader to FREE.
Type KEY; press RETURN :

H-SPEED READER |
Turn the high-speed reader to ON.
Turn the TTY control knob to LINE.
Insert tape in the reader.
Type PTR; press RETURN.
When the tape has read in, turn the high-speed reader OFF.
Type KEY; press RETURN.

HI

QUBWNER NOUNAWD =

-5-22



edusystem 25

INTRODUCTION ,
~ EduSystem 25 is a multi-user system for up to eight persons
using an extended BASIC language called BASIC-E. In 73 Tiffie-
sha‘gg‘emni-penm msers cgy store programs and data on DEC-
tape tor the RKS8- E dlsk) greatly reducing the time involved in
loading and punching paper tape and making available more access
time to a greater number of sfudents. The system operates in either
immediate or programmable mode and allows multiple statements
per line for more efficient coding. In addition, extended BASIC
features enable the use of alphanumeric strings, program chaining,
and numerous other extensions to- Dartmouth standard BASIC.
EduSystem 25 also allows a maximum of 5 persons at a time
to use the FOCAL language, though not simultaneously with
BASIC-E. -And,-when operated as a one-user system, EduSystem
25 runs FORTRAN, assembly language, and all of the OS/8
utility programs. (OS/8 is the operating system for the PDP-8.)

‘System Components

EduSystem 25 is composed of a PDP-8/ E computer with 12,288
(12K) words of core memory, powerfail protection, automatic
loader (hardware bootstrap), DECtape, and up to five terminals
with their associated interfacing. Each standard EduSystem 25 in-
cludps'the BASIC-E language processor on DECtape, a library of
sample programs, textbooks, and curriculum guides. An additional
4096 (4K) words of core memory enable EduSystem 25 to handle
--up to three more terminals (using BASIC-E) for a total of eight!
- Additional core memory (up to 32K) can be added to provide
larger user program areas. The system can support an RK8E Disk
and TD8-E DECtape in place of TCO8 DECtape -~

L » .
1 i ) ¥ ! ~
Version 1 of EduSystem 25 suppgrts only 5 users. ‘n &_‘Z ) 7/ .
6-1 ;Y agl

»‘F'A .
[isr it §



l/uﬁlfﬂ VM - WM@« A%mm’ﬁm cwb

System Expansion

EduSystem 25 grows to EduSystem 452 with the addition of an
optical card reader and an EduSystem 30 software kit. To expand
EduSystem 25 to an eight-user EduSystem 50 time-sharing system,
add RF/RS08 DECdisk, 4096 (4K) words of core memory, and
the necessary terminals. ‘

BASIC LANGUAGE CAPABILITIES 7

EduSystem 25 includes all the standard elements of BASIC as
explained in Chapter 1. Tables 6-1 and 6-2 summarize the Edu-
System 25 BASIC-E language capabilities. The system also includes
some additional features not discussed in Chapter 1. These addi-
tional features are discussed below.

Abbreviated Commands
All commands and statement keywords can be abbreviated to
the first three letters, as shown in Table 6-1.

Multiple Statements Per Line

EduSystem 25 allows more than one statement to be typed on a
single line. Subsequent statements begin with a backslash character
(\), which is SHIFT/L on the keyboard. A program is often more
understandable when statements are grouped together on the same
line. The following are examples of multiple statements per line.?

18 FOR I=] TO 1@\PRINT I,SQR(IX\NEXT I

16 PRINT “WHAT 1S YOUR NUMBER":;\INPUT X
20 PRINT “THE SQUARE ROOT 15": SQR(X
33 PRINT\GOTO 1@

The only restriction to t .f multiple statements per line
is that when a NEXT oy’ GOSUB_ statement is used it must be the
last statement on the lie—Sifice the EduSystem 25 memory is
shared by several users, this multiple-statement capability is help-
ful when writing long programs. Statements require less storage
when they are grouped on a single line.

2 EduSystem 45 is a combination of EduSystems 25 and 30, capable of run-
ning in either batch or multi-user mode.
3 Notice that EduSystem 25 does not require the END statement.

6-2



Immediate Mode

EduSystem 25 allows most BASIC statements to be used in
immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Nearly all BASIC
statements can be executed in immediate mode. This is an excellent
way to introduce students to the BASIC language, as the state-
ments can be used and understood individually before the student
begins programming.

For example, the statement:

PRINT 2%5+SQR(7.8314)

followed by the RETURN key, causes the problem solution to be
printed immediately. BASIC then prints READY to indicate that
another immediate mode statement or a program may be entered.
Immediate mode statements are not stored in computer memory.
Typing multiple statements-‘per}line is especially useful inhe” -
immediate mode. A table of ﬁﬁﬁm numbers could, for example,
be generated by typing the following single line and pressing
RETURN: |

FOR D=1 TO 2@\PRINT RND(@),\NEXT D

«2431684 «2988412 « 72950308 «3125257 + 3895865

«B4493979 «4834217 24961024 «5010026 v 341083271

«2373254 « 3046887 1923863 «9121199 241212
+9BB2844 « 2587987 +A3323189 + 8701425 -9218898

Immediate mode statements can also be used with programs.
For example, an immediate GOTO statement may be used to start
a program-at some point other than the beginning. This is accom-
plished by loading the program into computer memory and typing,
for example:

302217%061lcubﬁuur,ggﬂug&hit,amﬁa?b&Uﬂ%fﬁédfCyéﬁﬂﬁﬁ’é |

After the RETURN key is pressed, the program execution begins
automatically at line number 75. In this case, the RUN command
need not be typed. This immediate GOTO command is especially
helpful in debugging by halting a running program, examining the

6-3



values of variables (and possibly changing them), and then restart-
ing the program at any point.

INPUT Statement ,

The INPUT statement described in Chapter 1 allows a number,
or numbers, to be entered from the Teletype as values for variables.
EduSystem 25 allows the user to respond to the INPUT query (?)
with a value or mathematical expression. An expression may con-
tain one or more arithmetic operations and may use any BASIC
function. This capability could be used to enable one program to
solve more than one problem. For example, the statement:

168 INPUT X

could be answered with any of the following values or expressions:

748 W
?77%SQR(495) Q(,,o’(

7SIN(8.4221) o Wt
WL RCHI |
As explained in Chapter 1, the INPUT statement may have
multiple inputs. These inputs may be either mathematical expres-
sions or numeric values. For example, the statement:

109 ;NPUT A:B,C

could be answered as follows:
748, 4815, SQAR (48)

Comments

Previously, the use of the REMARK (or REM) statement to
introduce a comment on a single line was discussed. Comments
may also be appended to any line by starting the comment with a
single apostrophe (’). All characters typed after the apostrophe
are ignored when the program is executed. For example:

12 LET X=4 'SET X TO ITS INITI1AL VALUE
20 GOTO 1@ °'LOOP BACK TO START

6-4



When responding to an INPUT statement, the user may add a
comment which prints on the terminal but has no effect on the
running program. For example: |

18 INPUT X

20 PRINT X

RUN

? 2 'LET X BE 2
2

READY

-

IF THEN Statement

The IF THEN statement described Ain'Chapter 1 is used to trans-
fer conditionally from the normal order of program execution. For
example: ‘

25 IF A<=B THEN 100

transfers control to line 100 if A is less than or equal to B. If A
is greater than B, control transfers to the line following line 25. -
BASIC-E uses the IF THEN statement in this way to change the
order of program execution. It also allows THEN to be followed
by an executable BASIC statement. This statement is executed
only if the IF relation is true; otherwise control passes to the next

Eepa_rate stateme@ or example:

5@ 1F 2+2=4 THEN LET A=7\PRINT A

Since the statement (2+2=4) is true, BASIC prints 7. The next
‘statement executed is the one following line 50. IF THEN used
in this manner does not change the order of program execution.

The IF THEN statement can also be used to transfer control to
a subroutine. For example: '

25 IF A+B=C THEN GOSUB 104

If A+B equals C, control is transferred to the subroutine at line
100. Otherwise, the next statement executed is the one following
line 25. -

- 6-5



ON-GOTO Statement

The ON-GOTO statement permits the program to transfer
control to one of a set of lines depending on the value of a formula.
The statement is of the form:

line number ON formula GOTO line number,line number., . .

The formula is evaluated and then truncated to an integer. This
integer is used as an index to tell which of the line numbers re-
ceives control. If the integer value of the formula is 1, the first
line number is used; if the value is 2, then the second is used; etc.
Obviously, the formula after truncation cannot be zero or negative
or greater than the number of line numbers in the list. For example:

13 ON X+2 GOTO 100,200,300,400

If X is 2, then control passes to line 400. The allowable range of
X in this example is —1 to 2, so that the range of the formula
value is 1 to 4.

ON GOSUB Statement

The GOSUB and RETURN statements are used to allow the
user to transfer control to a subroutine and return from that sub-
routine to the normal course of program execution (see Chapter 1).
The ON GOSUB statement is used in the same manner as the
ON GOTO statement described previously. The statement is of
the form: -

line number ON formula GOSUB line number,line number., . .

The formula is evaluated and then truncated to an integer. De-
pending on the value of the integer, control is transferred to the
subroutine which begins at one of the line numbers listed. When
the RETURN statement is encountered, control transfers to the
line following the’ON GOSUB statement. For example:

50 ON X GOSUB 209,300,400

If X is 1, 2, or 3, control transfers to line 200, 300, or 400, re-
spectively. If X is not equal to 1, 2, or 3, line 50 is ignored.

6-6



RANDOMIZE Statement

The random number (RND) function produces a random num-
ber between 0 and 1, as described in Chapter 1. A given program
using the RND function produces the same random numbers each
time it is run. If the user wants the random number generator to
calculate different random numbers every time the program is run,
EduSystem 25 BASIC provides the RANDOMIZE statement.
RANDOMIZE is normally placed at the beginning of a program
which uses the RND function, When the program is executed,
RANDOMIZE causes the RND function to choose a random start-
ing value so that the same program gives different results each
time it is run. For example: |

186 RANDOMIZE
20 PRINT RND(@)

prints a different number each time it is run. For this reason, it is
good practice to debug (detect, locate, and correct mistakes) a
program completely before inserting the RANDOMIZE statement.

To demonstrate the effect of the RANDOMIZE statement on
two runs of the same program, the RANDOMIZE statement was
inserted as line 15 below:

15 RANDOM
26 FOR I=1 TO 5
25 PRINT "VALUE" I "IS" RND(@)

30 NEXT 1

RUN

VALUE 1| IS .3888637
VALUE 2 IS .7119271
VALUE 3 IS .9687586
VALUE 4 IS .03029916
VALUE 5 1S .4629068
READY

RUN

VALUE 1 IS .8916859
VALUE 2 1S .2441537
" VALUE 3 IS .3154383
VALUE 4 IS .07833823
VALUE 5 1S .583024
READY



Truncation Function (FIX)

EduSystem 25 BASIC includes all the functions discussed in
Chapter 1 (sce Table 6-2). In addition, EduSystem 25 includes the
truncation function (FIX) which returns the integer part of the
function argument. For example:

PRI F1X(82+100.6775/
182

PRI FIX(SQR(85.54621))
9

Notice that FIX is like INT for positive arguments. In fact, FIX
could be defined as:

FIX(X)=SGN(X)*INT(ABS(X))

EXTENDED SYSTEM CAPABILITIES

In addition to the BASIC language features previously dis-
cussed, EduSystem 25 has several extended features that allow the
user to write longer, more complex programs. These features in-
clude the ability to store programs on DECtape, create and manipu-
late data files on DECtape, and link program segments together
to allow longer user programs. Another extended capability allows
character strings to be input, manipulated, compared, and output.
These extended features are discussed below.

String Variables

EduSystem 25 BASIC has the ability to manipulate alpha-
numeric information (commonly called strings). A string is a
sequence of six or fewer printing ASCII characters (see Appendix
B). If a string contains more than six characters, only the first six
are retained. A string variable is signified by one letter followed
by the dollar sign ($) character and, optionally, by one or two
subscripts. The following are all acceptable string variables:

AS$

B$(1)

C$(2,5)
READING STRING DATA

Strings of characters may be read into string variables from

DATA statements. Each string data element is composed of one
to six characters enclosed in quotation marks. The quotation marks
are not part of the actual strings. For example:

Mada PV’G \Q;»Lw \anl 681 _@_\;3")— S'}\‘_\““QQRQ}OM
fon a DATA 1&, UP;ST\[,



12 READ A$,B%,C$
2@ DATA '"JONES',"SMITH","TAYLOR"

The string JONES is read into A$, SMITH into B$, and TAYLOR
into C$. If the string contains more than six characters, excess
characters are ignored.

PRINTING STRINGS

The normal PRINT statement may be used to print string in-
formation. If a semicolon is used to separate string variables in a
PRINT command, the strings are printed with no intervening
spaces. For example, the program:

. £ . ; i
14 READ A$,B$,CS$ S { (.79’""‘
20 PRINT C$;B$;AS T &
38 DATA "ING".-"SHAR";"TIME-"$-——" E}
RUN , e : R
. ..\ F ’ "La
.
causes the following to print : -7 f
i ( /
18 READ AS$,B$,C$ S j.!
20 PRINT C$;B$A$ DELETED 7 . /
4? ' prac e Y A -/
18 READ AS$,B$,C$ ' @ /

20 PRINT C$:B$3C$ DELETED ) e
READY

INPUTTING STRINGS

String information may be entered mto a BASIC program by
means of the INPUT command. Strings typed at the keyboard
may contain any of the standard BASIC characters except back
arrow (<) and quotation mark. Back arrow, as always, is used to
delete the last character typed. Commas are used to separate string
variables, as with numeric data. If a string contains a.comma, the
entire string must be enclosed in quotation marks. The following
program demonstrates string input: |

13 INPUT AS$,BS$,CS
20 PRINT A$,B$,C$

RUN

? JONES,SMITH,TAYLOR

JONES SMITH TAYLOR
READY



Strings and numeric information may be combined in the same
INPUT statement as in the following example. Note that if an
input string contains more than six characters, only the first six are
retained.

13 INPUT A,AS$,B$
23 PRINT A$,BS$.,A

RUN

7 -01754,MAYNARD,MASS.

MAYNAR MASS. 1754
READY

"The numeric variable A is set to 1754 (leading zeroes are not
printed). The string MAYNAR is put in the string variable A$,
and the string MASS. is put into the string variable BS.

LINE INPUT

Strings of more than six characters may be entered by means of
the LINPUT (line input) statement. A LINPUT statement is fol-
lowed by one non-subscripted variable, e.g., A$. The following
program illustrates the use of the LINPUT statement:

18 LINPUT AS

20 Z=AS8(d)

3@ FOR 1I=1 TO INT(Z/6+.9)
43 PRINT A$(1)3

5@ NEXT 1

6@ PRINT

RUN

7 MAYNARD, MASS. @1754
MAYNARD, MASS. 81754

READY

This program inputs the entire line of type from the terminal and
stores the characters so that the values of the string variables are,
effectively:

A$(1) = MAYNAR

A$(2) =D, MAS

A$(3)=S. 01

A$(4) =754 ‘

AS$(0) = total number of characters stored

Commas and quotation marks are treated as ordinary characters
and, hence, are stored in the string variables. LINPUT accepts a
line of characters up to a carriage return.

6-10



WORKING WITH STRINGS
Strings may be used in both LET and IF THEN statements. For

example:

18 LET Y$="YES"
28 IF B$<D$ THEN PRINT “WHOOPEE"

The first statement stores the string YES in the string variable Y$.
The 'second prints WHOOPEE if B$ is less than (alphabetically
prior) to D$. If B$ = “TED” and D$ = “MARY”, the expression
B$<DS$ is false and the PRINT statement is not executed. For two
strings to be equal, they must contain the same characters, in the
same order, and be the same length. In particular, trailing spaces
are significant as they change the length of the string. “YES” is
not equal to “YES ”. ‘

The relational operators <, >, >=, <=, <> are used with string
variables to represent alphabetic order; they could be used to al-
phabetize a list of strings. The arithmetic operations (+, —, *, /, 1)
are not defined for strings. Thus, statements such as LET A$ = 3*5
and LET C$ = A$-+B$ have no meaning and should never be used
in a BASIC program. Such statements do not cause an error mes-
sage to be printed; however the results of such operations are
undefined.

STRING FUNCTIONS

EduSystem 25 BASIC contains several functions for use with
character strings. These functions allow the program to access part
of a string (MID), generate a numeric string or value (CHRS),
determine the number of characters in a string (LEN), and link
two strings together (CAT).

CHRS$ Function

Occasionally, it is desirable to type a character other than the
printing ASCII set (see Appendix B) or to convert ASCII char-
acter codes to their respective characters. A special PRINT state-
ment function, CHRS, is used for this purpose. This function
takes as its argument a single constant or variable and prints the
* single character whose character code corresponds to that value.

6-11



I €425 CHRE(B) prechucts el

m

Am2p 7 am howe € \ee C‘MJCZSQ

For eXa

14 FOR 1=0 TO 9

20 PRINT CHRS$(I+48);
3@ NEXT 1

RUN

#123456789

READY

This program, prints “0123456789” because 48 to 57 are the ASCII
values for the characters O through 9. The following special char-
acters can also be printed using the CHR$ function:

Bell CHRS$(7)

Line feed CHR$(10)
Carriage retyrn CHR$(13)
Quote () CHR$(34)
Back arrow (<) CHRS$(95)
Form feed CHR$(12)

For each ASCII character there is a second acceptable form of
CHRS function. The second code is obtained by adding 128 to the
ASCII code given in Appendix B. For example, both CHR$(65)
and CHR$(193) cause the character A to be output.

MID Function
The MID function is used to obtain a portion of a character
string. The format of this function is:

MID(A$,M,N)

BASIC accesses the characters in the string variable A$ and
returns N characters, beginning with position M. Characters in a
string are numbered 1 through 6. Consider the following example:

13 LET AS$=""UVWXYZ"
20 PRINT MID(AS$,3,3)
RUN

wXY

READY

6-12



LEN Function ,

The LEN function returns the number of characters in the string
argument. Characters in a string are numbered O through 6. For
example:

18 R$="RANDOM"
2@ PRINT LEN(RS)

RUN
6

READY

CAT Function

The CAT function returns a string of characters which are the
result of the concatenation (linking) of two other character strings.
A maximum of six characters can be returned by the CAT func-
tion; if the first string to be linked conmtains six characters, only
those six characters are returned. For example:

13 A$="@12345"\B3="67891a"
20 PRINT CAT(AS$,B$)

RUN

712345

READY

If the first string contains less than six characters, they are linked
as shown in the following program.

18 A$="EDU*''\B§$=""-25"
28 PRINT CAT(A$,BS$)
RUN

EDU-25

READY

Program:Storage/Retrieval

EduSystem 25 allows the system DECtape to be used for per-
manent on-line program storage. Programs stored in this way may
be loaded instantly without handling a paper tape or typing a -
lengthy program.
STORING USER PROGRAMS

User written programs may be stored on DECtape. Each pro-
gram to be saved must have an assigned name, entered at the be-
ginning of the programming session. The NEW command is given
to clear any existing program and define the name of the new pro-
gram to be entered. To use the NEW command, the user types:

6-13



NEW

and presses RETURN. The system then asks for:
NAME--

The user then types any name of 1 to 6 characters (the first of
which must be alphabetic) and presses RETURN. BASIC assigns
that name to the program to be entered. The user may change the
name of the program at any time by typing the RENAME com-
mand. BASIC again asks for NAME— and assigns the new name
to the program being entered. RENAME does not delete the exist-
ing program as does NEW.

Once a program has been named and typed correctly, it may be
stored on DECtape with the SAVE command. Any existing pro-
gram stored under the same name is deleted when a SAVE com-
mand is issued. Thus all stored programs have unique names which
may be used to recall them in the future. To store a program, the
user, having named and entered a program, types:

SAVE

and presses RETURN. BASIC stores the program on DECtape
under the name specified with an extension identifying the user
terminal from which the program was saved. For example, a pro-
gram named ALPHA that is saved from terminal .E2 (see Starting
EduSystem 25) is stored as ALPHA .E2. Extensions protect the
programs from access by other terminals, i.e., terminal .E1 can-
not access a program stored by terminal .E2.

When the program has been stored, BASIC prints READY. At
this time, the program still resides in computer memory; storing
does not erase computer memory. A NEW or SCR command must
be typed to erase the program from memory after it has been
stored on DECtape. '

RETRIEVING USER PROGRAMS
User programs stored on DECtape are brought into memory
with the OLD command. Only programs stored from the same
user terminal can be retrieved at that terminal. When recalling a
program with the OLD command, the user must give exactly the

6-14



same name as was used when the program was stored. To use the
OLD command, the user types:

OLD

and presses the RETURN key. The system then asks for NAME—.
The user can also use the OLD command and the program name
(e.g., ALPHA) on the same line as follows: '

OLD ALPHA

BASIC brings the stored program into memory but does not
erase the program from DECtape. If the user wishes to modify the
program, he can make the necessary modifications, then issue an-
other SAVE command. This procedure replaces the original stored
program on DECtape with the modified version of the same name.

The user can obtain a listing of all programs stored from his
terminal by using the CATALOG command. CATALOG, like
all other program storage/retrieval commands, is an immediate
command. It is used by typing CATALOG and pressing RE-
TURN, BASIC immediately prints a listing, without extensions,
of all programs stored by the terminal from which the CATALOG
command was issued. '

RUNNING VERY LONG PROGRAMS ,

EduSystem 25 accommodates BASIC programs up to 250 lines
long. If a program is any longer, it may be necessary to break it
into several segments. A program that has been broken into more
than one piece is called a chained program.

Each part of a chained program is saved on DECtape as a sep-
arate program, complete with name and system-assigned extension.
The last statement of each part to be executed is. a CHAIN state-
ment specifying the name of the next 'section of the program. For
example, a program named ALPHA is segmented into three parts:
ALPHA, BETA, and GAMMA. ALPHA is loaded with the OLD
command.

250 CHAIN *'BETA"

6-15



The last statement in ALPHA is a CHAIN statement.
or :

250 CHAIN BS

The string variable (B$) may be used if the segment name was
previously assigned to it, for example:

248 B$='""BETA"

When this CHAIN statement is reached, the BETA segment of the
program is loaded and executed. The BETA segment then chains
to the next (GAMMA) segment of the program with a statement
such as:

399 CHAIN "GAMMA"™

Each separate part of the program links automatically to the next

part of the program.
The CHAIN command may also be used to branch to a stored

program from a working program. For example:

1@ INPUT “WHAT LESSON DO YOU WANT" A$
230 CHAIN AS ‘

RUN

WHAT LESSON DO YOU WANT? DELTA

would cause BASIC to retrieve, load, and execute ‘the program
named DELTA.

DELETING STORED PROGRAMS

The UNSAVE command is used to delete a program already
stored. UNSAVE must either be preceded by a NEW, OLD, or
RENAME command which specifies the name of the program to
be deleted or the command must be typed as:

UNSAVE ALPHA

specifying the name (e.g., ALPHA) of the program, on DECtape,
to be deleted. The user must use exactly the same name used when

6-16



the program was stored. Only programs which were saved from
the terminal being used may be deleted by a user at that terminal,
e.g., a user at terminal .E1 may delete only those programs stored
with an extension of .E1. (These are programs listed in response
to the CATALOG command.)

USING PUBLIC LIBRARY PROGRAMS

Programs stored by the System Manager with the extension
.E8 may be accessed by all users. These programs are collectively
called the public library. To obtain a listing of the available public
library programs, the user types:

CATS

and presses the RETURN key. A listing of the public library pro-
grams is printed. A sample listing is shown below:

ROCKET
LUNAR
POLUTE
ELECT
SNOOPY
GAMBLE

. READY

The user can access any program in the public library by typing
OLDS$ and the desired program name. For example, the user types:

OLD$ SNOOPY

The library program SNOOPY is loaded into memory and the
system prints READY. The user can then execute SNOOPY by
typing RUN or, if desired, can obtain a listing of SNOOPY by
typing LIST. User may access the public library but cannot SAVE
or UNSAVE the library programs. These programs are protected
by the .E8 extension.

The user can also access public library programs by chaining to
them from a program. For example, the user can access the public |

6-17



- library program ELECT by including the following statement in his
program: |

S5 CHAINS& "ELECT"

‘or by including the following statements:

54 ES="ELECT"
55 CHAINS ES$

Data File Storage/Retrieval

Just as some programs may be too large to be executed as a
single program, other programs may need to store and use more
data than may be contained in DATA statements within the pro-
gram. If this is the case, data may be stored on DECtape. Data
stored in this way is called a data file.

EduSystem 25 allows users to read and write DECtape data
files. These data files may contain numeric or string data. Data files
are the perfect way to test student programs. The instructor may
create a data file which all student programs must use and then
answers may be stored in another file which may be checked
automatically.

Data files are stored automatically by EduSystem 25 on the
DECtape mounted on DECtape drive 1. Data files are stored with
an extension similar in principle to that previously discussed for
programs. Terminal .E1 data files have the extension .D1, .E2
data files use .D2, etc. The system manager’s extension (.E8)
uses .D8 data files. Normally, .D8 files can only be read; users
are limited to reading only by placing DECtape drive 1 on WRITE
LOCK.

CREATING DATA FILES

When the user desires to store data on DECtape, he must create
a data file, or use an existing data file. Data files are created with
the OPEN FOR OUTPUT command. For example, the user wishes
to create a data file named DATA10 (date file names, like pro-
gram file names, can be 1 to 6 characters long, the first character
of which must be alphabetic). The data file name can be used in
the OPEN statement or a string variable can represent it. A data

6-18



file would be created when the following statement was executed
in a program: - ’

14 OPEN "DATA1@'" FOR QUTPUT.,12

The data file name must be enclosed in quotation marks. This state-
ment could also be coded as: |

14 OPEN A$ FOR OUTPUT,12

if A$ has been set equal to DATA10. The 12 at the end of the
statement indicates that 12 blocks are to be reserved for this file.
Any number of blocks up to 64 may be reserved in this manner.
If no blocks are reserved in the OPEN FOR OUTPUT statement,
the system assumes that the file is to be 10 blocks long.

When the data file has been created, or reopened, the user may
write data into the file with the PRINT # statement. This state-
ment may contain either numeric or string data separated by
commas or semicolons. For example, a single data item can be
entered by typing the following:

20 PRINT #, 248

This statement writes 248 and a carriage return/line feed onto a
data file that has been opened for output. Several data items may
be included in a PRINT # statement, with commas printed as
separators between data items on each line of the output file. The
commas must be enclosed in quotation marks to have them print
on the output file. For example:

20 PRINT#,1,2,3,4,5

writes each of the above items on the data file as separate data
items as follows: 1, 2, 3, 4, 5 and a carriage return/line feed
exactly as the items would be input from the terminal.

6-19



Character strings are used in the PRINT # statement in the
same manncr, for example:

25 A$="JONES"\B$="SMITH"NC$="TAYLOR"
33 PRINT#,A%,.B%,C3

would write three separate character strings onto the DECtape as
follows: JONES, SMITH, TAYLOR and a carriage return/line
feed. Writing PRINT # statements with multiple operands (data -
items) saves space on the DECtape data filec because fewer car-
riage return/line feeds need to be stored. '

When all data has been entered with PRINT # statements, the
output file should be closed with the CLOSE statement. Since
EduSystem 25 allows only one output file to be opened at a time,
the CLOSE statement is used to close the output file. For example:

38 CLOSE

READING DATA FILES -

When the user wishes to usc data stored on DECtape data files,
he opens a previously created file with the OPEN FOR INPUT
statement. If, for example, the user wishes to read data stored in
a file named DATAI10, he can reference this name in the OPEN
statement or use a string variable to represent.it. The data file
would be opened when the following statement was executed in
a program:

43 OPEN "DATA1@'" FOR INPUT

The data file name must be enclosed in quotation marks. The above
statement could also be coded as:

35 B$="DATAlg"
49 OPEN BS$ FOR INPUT

When the data file has been opened for input, the user may read
data from the file with the INPUT # statement. The INPUT #
statement searches the file for a carriage return/line feed char-
acter and inputs the next data item, or items. This statement may
contain either alphabetic or string variables separated by commas
or semicolons. For example, the statement:

5@ INPUT #,A,B,C,D,E
6-20



searches for a carriage return/line feed character and inputs the
next five separate data items (separated by either a comma, a
semicolon, or a carriage return/line feed) from a data file.

The following program uses the examples in this section to
demonstrate data file usage:

13 X$="DATALlA"

15 OPEN X$ FOR OUTPUT. 12
20 PRINT#,1,2+3,4,5

25 A$="JONES"\BS$=""SMITH"\C$="TAYLOR"
3% PRINT#,A%,B%.C%

35 CLOSE .

4% OPEN X$ FOR INPUT

54 INPUT#,A,B,C,D.E

55 INPUT#,A$,8B%,C%

63 PRINT

65 PRINT A,B,C,DLE

74 PRINT

75 PRINT A$,B3%,C%

RUN
1 2 3

JONES SMITH TAYLOR

LISTING DATA FILES

The user can obtain a listing of the data files for his terminal
by typing the FILELOG command. This immediate mode com-
mand is typed as:

FILELOG
or
FIL

and produces a listing of the data file names without extensions.
For example:

"FILELOG
DATA1®
NUMBER
CIRCLE
TIMER

READY
6-21



ERASING DATA FILES

Data files can be deleted from DECtape with the KILL com-
mand. If, for example, the user wishes to erase a file named
DATAI1O, he types: '

KILL DATA 1@

when the RETURN key is pressed, BASIC deletes DATA10 from
the data file and prints READY. The KILL command and the file
name must be separated by a space. This command deletes only
those data files entered from the same terminal, i.e., with the same
extension.

USING PUBLIC DATA FILES .

Data files stored by the System Manager with the extension .D8
may be accessed by all users. To obtain a listing of the available
public data files, the user types:

FILELOGS
FIlLs

and presses the RETURN key. A listing of the public data files is
printed. A sample listing is shown below:

FILS

TEST@1
TEST@2
DATAS@
DATASS
DATA69

~ The user can use the data in any public data file by opening the
file for input. For example, to use the data in a public file named
DATASS, the user types:

99 OPENS$ "“DATASS5"™ FOR INPUT

Included in a program, the above statement would make the data
in DATASS available to the user program. The user can manipu-
late this data in his program but cannot change the data file in any
way. Public data files are protected by the .D8 extension.

6-22



Table 6-1.

EduSystem 25 BASIC Statement Summary

Command (Abbreviation)

Explanation

Input/QOutput Statements -
-LET :

READ(REA)
'PRINT(PRI)
DATA(DAT)
RESTORE(RES)
INPUT(INP)
LINPUT(LIN)
‘GOTO(GOT)

'IF THEN(F THE)

"FOR TO STEP(FOR TO STE)
NEXT(NEX)

GOSUB(GOS)

RETURN(RET)

ON GOTO(ON GOT)

ON GOSUB(ON GOS)

'REMARK(REM or )

RANDOMIZE(RAN or RANDOM)

DEF FN
STOP(STO)
END

Editing/Control Commands,
LIST(LIS)
LIST n(LIS n)

623

Assign a value to a variable.
The word LET is optional.
Assign values from data list to
variables. -

Print out the indicated infor-
mation on the Teletype.
Provide data for a program.
Restore the data list.

Get values or expressions from
the Teletype.

Get long character string from
the Teletype.

Change order or program ex-
ecution.

Conditionally perform speci-
fied operation or conditionally
change order of program ex-
ecution.

Set up a program loop.

End of program loop.

Go to a subroutine,

Return from a subroutine.

' Conditionally change order of

program eXecution according
to evaluation of formula con-
tained in statement.
Conditionally go to a subrou-
tine according to evaluation of
formula contained in statement.
Insert a program comment.
Cause RND function to ran-
domly select new sequence of
random numbers between 0
and 1,

Define a function.

Stop program execution.

End a program (not required
with EduSystem 25).

List entire program in memory.
List line n.



Table 6-1 (Cont.).

EduSystem 25 BASIC Statement Summary

Command ( Abbreviation)

Explanation

"LIST n,m(LIS n,m)

DELETE n(DEL n)
DELETE n,m(DEL n,m)

EDIT n(EDI n)
KEY

RUN
'SCRATCH(SCR)

BYE
TAPE(TAP)

‘CTRL/C

Program Storage/Retrieval Commands

‘NEW

‘RENAME(REN)

'SAVE

CHAIN A$

CHAINS AS$

OLD

TUNSAVE

6-24

List lines n through m inclu-
sive.

Delete line n.

Delete lines n through m in-
clusive.

Search line n for the character
typed.

Return to KEY (normal) mode.
Execute the current program.
Frase the current program
from memory.

Same as SCRATCH.

Read a program from the Tele-
type paper tape reader or
punch a program on the Tele-
type paper tape punch. _
Stop a running program, print
STOP, and then READY.

Clear memory, request program
name,

Change the name of the pro-
gram currently in core mem-
ory.

Store program in memory on
DECtape, using the name spe-
cified by NEW, RENAME, or
OLD and an extension deter-
mined by the user’s terminal.
Erase memory, retrieve, load
and begin execution of the
stored program named in AS$.
Used to segment a large pro-
gram into workable sections.
Chain to public library pro-
grams.

Clear memory, request- pro-
gram name, bring named pro-
gram to memory from DEC-
tape.

Delete from DECtape the pro-
gram named in most recent



Table 6-1 (Cont.).

EduSystem 25 BASIC Statement Summary

" Command (Abbreviation)

Explanation

‘CATALOG(CAT)

"CAT$
"OLD$

Data File Commands _
OPEN A$ FOR OUTPUT,X

OPEN B$ FOR INPUT

OPENS$ B$ FOR INPUT
INPUT #

PRINT #

CLOSE
FILELOG(FIL)

FILELOG$(FIL$)

KILL A$

NEW, RENAME, or OLD

~command.

o

List names of stored programs
for this user (extensions are
not printed).

List public library programs,
Request public library program
name, bring named program to
memory from DECtape.

Create a DECtape file named
by A$. If the file already ex-
ists on DECtape, this command
reopens it. X determines the
number of blocks reserved for
this file. It may be any integer
up to 64. If no X is entered,
10 is assumed.

Open the existing file named
by BS. If no such file exists,
an error mgssage is printed.
Open a-.EQ/file named by AS.
Read variables (numeric and/
or string) from the input file
previously opened.

Write data (numeric and/
or string) onto the output file
previously opened.

Close open output file.

| Catalog the data files stored by

this user (used only in immedi-
ate mode). ' :
Catalog the data files stored by
the System Manager with the
extension ,DO0.

Delete a DECtape data file
named by AS.

6-25



Table 6-2. EduSystem 25 BASIC Function Summary

Function Description

sABS(X) Absolute value of x.

ATNX) Arctangent of x(result in radians).

COS(X) Cosine of x(x in radians).

EXP(X) e* (e=2.718282).

INT(X) Greatest integer of x.

LOGX) Natural logarithm of x.

RND(X) Random number.

'SGNX) Sign of x (41 if positive, —1 if negative, 0 if zero).

SINX) Sine of x (x in radians).

'SQR(X) Square root of x.

TANX) Tangent of X (x in radians).

TAB(X) Controls printing head position on Teletype.

FIX(X) Truncates decimal portion of x.

CHR$X) Converts character code to character. Used only
with the PRINT command.

MID(A$,M,N) Returns N characters, starting at the Mth char-
acter of AS. <

LEN(AS) Returns the number of characters in AS$.

CAT(AS$,B%) Returns a string of A$ concatenated with B$

(maximum of 6 characters returned).

ERROR MESSAGES
EduSystem 25 checks all statements and commands before ex-
ecuting them. If a statement or command cannot be executed, the
system informs the user by printing an error message and the line
number (if available) in which the error was found (see Table
6-3). Procedures used to correct errors are described under Pro-
gram Editing.
Table 6-3. EduSystem 25 Error Messages

Message Explanation

WHAT? ~ Immediate mode statement or command not under-
stood. It does not begin with a line number and is
not a valid system command.

ERROR 1 Log of negative or zero number was requested. .
ERROR 2 Square root of negative number was requested.
ERROR 3 Division by zero was requested.

ERROR 4 Overflow, exponent greater than approximately +38.
ERROR 5 Underflow, exponent less than approximately —38.
ERROR 6 Line too long or program too big.

ERROR 7 Characters are being typed too fast; use TAPE com-

mand for reading paper tapes.

6-26



Table 6-3 (Cont.). EduSystem 25 Error Messages

Message: Explanation

ERROR 8 System overload caused character to be lost.

ERROR 9 Program too complex or too many variables.
(GOSUB, FOR, or user defined function calls are too
deeply nested.) _

ERROR 10 Missing or illegal operand or double operators.

ERROR 11 Missing operator before a left parenthesis.

ERROR 12 Missing or illegal number,

ERROR 13 Too many digits in number.

ERROR 14 No DEF for function call.

ERROR 15 Missing or mismatched parentheses or illegal dummy
variable in DEF. ,

ERROR 16 Wrong number of arguments in DEF call.

ERROR 17 Illegal character in DEF expression.

ERROR 18 Missing or illegal variable.

ERROR 19 Single and double subscripted variables with the same

: name,

ERROR 20 Subscript out of range.

ERROR 21 No left parenthesis in. function.

ERROR 22 Illegal user defined function, not FN followed by a
letter and a left parenthesis.

ERROR 23 Mismatched parentheses or missing operator after

- right parenthesxs

ERROR 24 Syntax error in GOTO.

ERROR 25 Syntax error in RESTORE.

ERROR- 26 Syntax error in GOSUB.

ERROR 27 Syntax error in ON.

ERROR 28 Index error out of range in ON,

ERROR 29 Syntax error in RETURN,

ERROR 30 = RETURN without GOSUB,

ERROR 31 Missing left parenthesis in TAB function.

ERROR 32 Syntax error in PRINT.

ERROR 33 Writing past end-of-file.

ERROR 34 Missing or illegal line number. : ‘

ERROR 35 = Attempt to GOTO or GOSUB to a nonexistent line.

ERROR 36 Missing or illegal relation in IF,

ERROR 37 Syntax error in IF. ~

ERROR 38 stsmg equal sign or improper varlable left of the

_ equal sign in LET or FOR.

ERROR 39 Subscripted index in FOR.

ERROR 40 Syntax error in FOR.

ERROR 41 FOR without NEXT,

ERROR 42 Syntax error in LET.

6-27



Table 6-3 (Cont.). EduSystem 25 Error Messages

Message Explanation

ERROR 43 Syntax error in NEXT.

ERROR 44 NEXT without FOR.

ERROR 45 Too much data typed or illegal character in DATA
or the data typed in.

ERROR 46 Illegal character or function in INPUT or READ

ERROR 47 Out of data.

ERROR 48 Unrecognized command: RUN mode.

ERROR 49 Bad file name or file not found.

ERROR 50 Syntax error in LINPUT.

ERROR 51 String error, argument is incorrect type or out of
bounds.

ERROR 52 String function error, missing or illegal argument.

ERROR 53 File not open or bad syntax after #,

ERROR 54 Reading past end of file.

ERROR 55 Bad syntax in OPEN,

ERROR 56 No room for file on DECtape.

PROGRAM EDITING

There are two times when a program may require editing pro-
cedures. The first occurs while a line is being typed but before
the RETURN key is pressed. The second occurs when a line has
been completely typed and the RETURN key has been pressed.
Each situation has its own editing procedures.

Situation 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: < (SHIFT/ 0),
RUBOUT, or ALT MODE (or ESC).

< (back arrow), SHIFT/0 on the keyboard, or RUBOUT
is used to delete a character from a line. BASIC prints the
back arrow, deleting the last character from that line. More
than one back arrow deletes more than one character, in
reverse order.

ALT MODE (ESC on some Teletypes) is used to delete an
entire line. When this key is used, BASIC prints $DELETED,
erases that line from the program, and returns the carriage
so that the line may be retyped.

6-28



Situation 2: After the RETURN Kkey is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
~ be used. Lines may be inserted, deleted, or changed.

- INSERTION
To add a line to a program, assign a line number that falls be-

tween two existing lines, type the line number and text, and press .
RETURN.

DELETION

To erase a line from computer memory, type the line number
only and press the RETURN key. The DELETE command may
also be used to erase lines-from memory. To erase a single line,
type DELETE and the line number and press RETURN. DE-
LETE followed by the two line numbers separated by a comma
erases all lines between and including the two given. For example:

DELETE 16,20

erases lines 10 through 20.

CHANGE .

OId instructions may be replaced by new ones by retyping the
line. This procedure is adequate for changing simple lines. When,
however, the line contains a complex formula or a long message to
be printed, it may be changed with the EDIT command. The EDIT
command allows the user to access a single line and search for
the character or characters to be changed. To use this command,

type
EDIT line number

and press the RETURN key. BASIC waits for a search character
to be typed (BASIC does not print this search character when it
is typed). This search character is one that already exists on the
line to be changed. After the search character is typed, BASIC
prints the contents of that line until the search character is printed.
At this point, printing stops and the user has the following options:

e Type new characters; BASIC inserts them following the
ones already printed.

® Type a form feed (CTRL/L) to cause the search to pro-
ceed to the next occurrence, if any, of the search character.

6-29



e Type a BELL (CTRL/G) to signal a change of search
character, then type a new search character.

e Use the RUBOUT or <« key to delete one character to the
left each time the key is pressed.

e Type the RETURN key to ternlinate editing of the line at
that point, deleting any existing text to the right.

* Type the ALT MODE key to delete all existing characters
to the left except the line number. ‘

e Type the LINE FEED key to terminate editing of the line,
saving all the remaining characters on that line.

When the EDIT operation is complete, BASIC prints READY.
Note that line numbers cannot be changed with the EDIT com-
mand. The following example demonstrates the EDIT command.
An incorrect line was typed and entered to the system as follows:

63 PRINT "PI1=3.14146 ABOUZ!"

The line was edited as follows:

EDIT 60
PRINT "PI=3.14146-«59 ABOUZ~T!"

First 6 was entered as the search character. BASIC printed the
line to the 6, and the RUBOUT key was typed twice to remove the
two incorrect digits (46) and 59 was inserted in the line. CTRL/G
was typed and another search character (% ) was entered. BASIC
printed characters to the % which was removed with a RUBOUT
and replaced with a T. The LINE FEED key was typed to ter-
minate the edit and save the remaining characters. If the line is
listed, the following is printed on the Teletype.

LIST 6@
60 PRINT "PI=3.14159 ABOUT!"

READY

6-30



OPERATING INSTRUCTIONS
Loading EduSystem 25

EduSystem 25 software is supplied on a DECtape This tape,
called the system DECtape, must be used to create the system
when the system is installed. Perform the following procedures to
activate EduSystem 25,

INITIALIZE THE DECTAPE UNIT
Perform the following steps to prepare the DECtape unit for
loading software:

1. Set the WRITE ENABLE/WRITE LOCK switch to
WRITE LOCK.

2. Set the REMOTE/OFF/LOCAL switch to OFF.

3. Place the system DECtape on the left spindle with the
DECtape label out.

4. Wind four turns of tape onto the right spindle.

5. Set the REMOTE/OFF/LOCAL switch to LOCAL.

6. Wind a few turns of tape onto the right spindle with the
- switch to ensure that the tape is properly mounted.

7. Dial O on the unit selector dial.

8. Set the REMOTE/OFF/LOCAL switch to REMOTE.

INITIALIZE COMPUTER MEMORY
The system may be activated in one of two ways: with an auto-
matic loader (hardware bootstrap) or with an OS/8 bootstrap
loader. The following instructions are for an EduSystem-25 that
includes a hardware bootstrap. If the EduSystem does not have a
hardware bootstrap, see Introduction to Programming 1972, Chap-
ter 9, for OS/8 bootstrap loading instructions.
1. Turn the key lock on the computer console to POWER.
2. Turn all Teletypes to LINE.
3. Mount the EduSystem 25 system DECtape on drive O as
described above.
4. Set the SWITCH REGISTER (SR) to 0600 (octal)
5. Press and raise the HALT switch.
6. Press and raise the SW switch.
The EduSystem-25 DECtape spins and the system indicates that
it is active by printing a period (.) on the console Teletype. If the -

4 An explanation of the octal, or base 8, number system is included in Intro-
duction to Programming 1972.

6-31



system is not activated, ensure that the correct DECtape is being
used and repeat the above procedures.

Immediately following the period printed by the system the
user enters the characters shown below:

«R EDU25

The period is printed by the OS/8 Keyboard Monitor. The user
types R to request the running of a program, in this case, Edu-
System 257 When the RETURN key is pressed, the system prints:

TO BOOTSTRAP BACK 0S/8 MONITOR:
LOAD ADDRESS @766“
AND START

This message means that EduSystemn 25 (or other OS/8 programs)
can be started by setting the SR to 7600 and pressing ADDR
LOAD, CLEAR, and CONT. The OS/8 Monitor prints another
period, to allow the user to request a program. If, for example,
the user types an incorrect response to the cnsuing system dialog,
_he can restart the dialog by reloading (bootstrapping back) the
0S/8 Monitor from location 7600 and again requesting that Edu-
System 25 be run..

ANSWER SYSTEM DIALOG
When the system has been activated correctly, it prints the iden-
tification message:

EDUSYSTEM 25 BASIC

and begins to ask certain questions which the user must answer
to establish the system configuration. The first question is:

NUMBER OF USERS (1 TO 5)>7

The user responds with a single digit from 1 to 5, depending on the
number of terminals to be used. If one user is specified, this ques-

5 Refer to Introduction to Programming 1972, Chapter 9, for a complete
explanation of the OS/8 Operating System.

6-32



tion ends the initial BASIC dialog. If more than one user is indi-
cated, BASIC continues the dialog by asking: '

PDP-8/L COMPUTER (Y OR N)?7?

The user responds Y if the EduSystem 25 computer is a PDP-8/L,
N if not. An N response to this question prompts the next question:

STANDARD REMOTE TELETYPE CODES (Y OR N)?

BASIC is asking for a PT08 or KL8E device code for each Tele-
type to be used (excluding the console Teletype). Standard PT08
or KL8E device codes are 40, 42, 44, 46, 50, 52, and 54. When
a system using PTO8 or KL8E interface units ig first installed, the
user determines the specific device code for each Teletype and
labels each Teletype with its specific device code. If device codes
are standard, the user responds Y to this question and BASIC |
assumes the standard device codes and continues the dialog. If
device codes are not standard, the user enters N; BASIC then asks:

TELETYPE #1 DEVICE CODE?

BASIC asks this question for each Teletype to be used, up to
seven times for an 8-user system. The user responds with the spe-
cific 2-digit device code for each Teletype.

When the device codes have been determined, or if the computer
is a PDP-8/L, BASIC asks the following question:

SAME AMOUNT OF STORAGE FOR ALL USERS?

The above question requires the user to decide whether to partition
the available core equally among the users on the EduSystem 25.
(Since EduSystem 25 software uses 4K of core, the available core
is always 4K less than the total core on the system.) If the user
responds Y to this question, BASIC determines the size of the core
memory available and divides it equally among the users, then ends
the dialog. If N -is the response, BASIC determines the amount of
-available core storage and prints the highest core field according
to the following:

6-33



Field 7—32K core memory
Field 6—28K core memory
Field 5—24K core memory
Field 4-—20K core memory
Field 3—16K core memory
Field 2—12K core memory
Field 1-— 8K core memory

.For explanation purposes, the following dialog is written for a
16K, 5-user EduSystem 25. The available core is to be allocated as
follows: '

User 1—10 blocks (user 1 is the console terminal)
+ User 2— 6 blocks

User 3-— 8 blocks

User 4— 4 blocks

User 5— 4 blocks

Each core field contains 16 blocks; a core field may be divided
among several users, but no user may be allotted blocks in more
than one core field. To determine the number of blocks, BASIC
prints the following dialog and the user answers as shown:

FIELD 3

THERE ARE 16 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #1! WILL BE HUV MANY BLOCKS?12
THERE ARE 86 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #2 WILL BE HOW MANY BLOCKS?6
FIELD 2
THERE ARE 16 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER #3 WILL BE HOVW MANY BLOCKS?S&
THERE ARE 48 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FOR USER »4 WILL BE HOW MANY BLOCKS?74
THERE ARE @4 BLOCKS LEFT IN THIS FIELD.

YOUR ALLOCATION FUOR USER #5 WILL BE HOW MANY BLOCKS?4

When an invalid response is made to any of BASIC’s questions,
an error message is printed and the question is repeated. For
example:

STANDARD REMOTE TELETYPE CODES (Y OR N)?4
INVALID RESPONSE

STANDARD REMOTE TELETYPE CODES (Y OR N)?
6-34



When all responses have been entered, BASIC prints:

1S THE ABOVE CORRECT (Y OR N)?

If an incorrect response was made, answer N and BASIC begins
the dialog again. A response of Y ends the dialog and BASIC
prints:

END OF DIALOGUE

READY

BASIC prints READY on each of the Teletypes associated with
the specified device codes.

ESTABLISH TERMINAL EXTENSIONS -

When EduSystem 25 is active, the user can write a simple,
uniquely named program for each terminal (including the console
terminal) and save the program from the terminal. To do this, the
user:

1. Sets DECtape drive 0 to WRITE ENABLE.
2. Types the following programs, for example, on the ter-
minals in the sequence given:
First Terminal

NEW
NAME=-=ALPHA

READY
18 PRINT "TERMINAL ALPHA"

2@ END
SAVE

READY

Second Terminal

NEV
~ NAME--BRAVO

READY

16 PRINT “"TERMINAL BRAVOT™
29 END

SAVE

READY

6-35



Third Terminal

NEV
NAME-~CLOVER

READY

10 PRINT "TERMINAL CLOVER"™

20 END
SAVE

READY

The user repeats this process, using a unique name, for each re-
maining terminal.
When the user has saved a uniquely named program from each
terminal, he performs the following actions:
1. Set DECtape drive 0 to WRITE LOCK.
2. Press and raise the HALT switch.
3. Set the SR to 7600; press ADDR LOAD switch.
4. Press the CLEAR switch, then the CONT switch.
The OS/8 Monitor responds by printing a period, and the user

types:
R PIP

PIP is the OS/8 Peripheral Interchange Program which is used to
transfer files between devices, merge and delete files, and list, zero,
and compress directories.® In this example, it is being used to ob-
tain a directory. listing. After the user types PIP and presses RE-
TURN, PIP responds with an asterisk and the user types:

*/F

to request a directory listing. This example would produce a listing
similar to the following: '

EDU25 .SV
PIP «SV
ALPHA .EIl
BRAVO (E2
CLOVER,.E3

6 Refer to Introduction to Programming 1972, Chapter 9, for a complete
explanation of OS/8 PIP.

6-36



The EDU25 .SV and PIP .SV files are executable core images of
these two system software programs. ALPHA .E1, BRAVO .E2,
and CLOVER .E3 are the programs the user wrote and saved on
DECtape. Now that the user knows the correct extensions for each
Teletype, he can use a marker, e.g., a permanent-ink felt tip
marker, to write the appropriate extension on each Teletype. The
Teletype extensions will thus be clearly identified for each user.
To return to the OS/8 Monitor, the user types CTRL/C and the
Monitor again prints a period. |

CREATE DATA FILE TAPE

DECtape drive 1 is used for EduSystem 25 data files. When the
system is first installed, the user should create a tape for data file
storage in the following manner:

1. ‘Mount a blank DECtape on drive 1; set the drive to
WRITE ENABLE. '

2. Type R PIP after the OS/8 Monitor period. When PIP
responds with an asterisk, type the following:

*DTA1:</Z

This message instructs PIP to create a zeroed OS/8 direc-
tory on the DECtape. The user should create this zeroed
directory on each data DECtape file he establishes.

3. Press CTRL/C; the OS/8 Monitor responds with its
period and EduSystem 25 can be restarted by typing:

.R EDU25

pressing RETURN, and answering the dialog as before.

When the data file tape has been created, EduSystem 25 is ready
for use. Turn the key lock to PANEL LOCK to prevent the system
from being disturbed.

Maintaining the Public Library

As previously explained, EduSystem 25 has a public library of
programs which all users can access. Public library programs are
stored or deleted by the system manager under the .E8 extension.
The system manager can access all stored files and insert programs

6-37



into the library using PIP. For example, assume that a user on
terminal .E2 has developed a program that the system manager
feels all users would like to access. This program, named PEACE,
could be inserted into the public library by the system manager as
follows:

1. Turn key lock to POWER.

2. Set DECtape drive 0 to WRITE LOCK.
3. Press and raise the HALT switch.
4. Set the SR to 0600.
5. Press and raise the SW switch.
6. The OS/8 Monitor prints a period on the console terminal
(.E@). The user types:
.R PIP
7. Set DECtape drive 0 to WRITE ENABLE.
8. When PIP responds with an asterisk, type :
*/F
PIP prints the directory listing of the EduSystem 25 sys-
tem DECtape, for example:
EDU25 ,SV
PIP .SV
ALPHA El
TEST L.EP
GAMBLE.E!
ROCKET.EQ
BRAVO .E2
PEACE .E2

9. Stop the directory printout by typing CTRL/O (press O
while holding down the CTRL key). PIP responds with an
asterisk. The user then types:

*DTAGsPEACE.E8<DTA@:PEACE.E2

and presses RETURN.
6-38



. 10. PIP copies the program PEACE and affixes the .E8 ex-
tension to the copy. PEACE has been placed in the public
library. |

11. Type CTRL/C. The OS/8 Monitor responds by typing
a period. EduSystem 25 can be restarted.
12. Turn the key lock to PANEL LOCK.

Protecting DECtape Files
- Programs, or data files, stored under the system manager’s ex-
tension (.E8 or .D8) are protected by simply locking the com-
puter console. This information can still be accessed by all users
but cannot be erased from the DECtape or manipulated in any
way. Program and data files created under user extensions can be
manipulated and deleted as previously described. The system man-
ager can protect user extensions, limiting them to read-only opera-
tions by setting the appropriate DECtape unit (drive 0 to 1) to
WRITE LOCK. DECtape drives should also be set to WRITE
LOCK when: _

1. Starting up any DECtape system.
2. Shutting down any DECtape system.

Storing Programs on Paper Tape

If ASR-33 Teletypes (TTY) are available, programs may be
saved on paper tape to save storage space on the system DECtape.
Once a program has been typed correctly, it may be saved by per-
forming the following procedures:

1. Turn the TTY control knob to LINE.

2. Type TAPE; press RETURN.,

3. Turn the TTY paper tape punch ON.

4. Type LIST; press RETURN.

5. When punching is complete, turn the TTY punch OFF.
6. Type KEY; press RETURN.

Reloading Programs from Paper Tape

Programs saved on paper tape may be reloaded using the Tele-
type (TTY) paper tape reader. To reload programs, perform the
following procedures.

1. Turn the TTY paper tape reader to FREE.
2. Turn the TTY control knob to LINE.

6-39



Insert tape in the reader.

Type TAPE; press RETURN,

Turn the TTY reader to START.

When the tape has read in, turn the TTY reader to FREE.
Type KEY; press RETURN,

System Reconfiguration

If the user desires to change the EduSystem 25 configuration at
any time, he simply performs the procedures used for loading the
system initially and answers the dialog again to reflect the new
configuration. A reconfiguration would- be needed, for example,
if new terminals were added, thus changing the number of users.
EduSystem 25 must be inactive to be reconfigured. To ensure that
the system is inactive, the user types CTRL/C to stop a running
program or the listing of a program and turns all the terminals
OFF. He can then proceed with the reconfiguration.

Nownksw

System Shutdown

If power failure detection hardware is available on the system,
the system can be shut down by simply turning the console key
lock to OFF. Otherwise, to shut the system down, overnight or for
any reason, the user ensures that the system is inactive, as explained
above; he then presses the HALT switch and turns the key lock
to OFF.

System Restart

If power failure detection hardware is available on the system,
it can be restarted by simply setting all DECtape drives to WRITE
LOCK and turning the key lock to PANEL LOCK. Otherwise, the
following procedures are necessary:

1. Turn the key lock to POWER.

2. Set the SR to 7600 and press ADDR LOAD.

3. Press the CLEAR switch and the CONT switch.
4. Turn the appropriate Teletypes to LINE.

5. Turn the key lock to PANEL LOCK.

EduSystem 25 responds by printing the OS/8 Monitor period. The
user can then request EduSystem 25 as described previously.

6-40



edusgsl:emao

INTRODUCTION

EduSystem 30 is a powerful BASIC-speaking system  that
adapts to.the loner or to the crowd. The system. operates in two
modes: batch and interactive. In batch mods, the system reads -
programs prepared on specially formatted optical mark cards.
Cards are marked with an ardinary peacil or keypunched. Rustning -
programs in batches, EduSystem 30 ¢ rocess hundreds of stu-
dent programs per day. When operated in interacfive mode, Edu-
System 30 allows one person at a time to interact with the com-
puter through the Teletype.

In either mode, the system provides a powerful BASIC lan-

guage with advanced features such as string variables, program

chaining, and data files. Programs can be stored on a magnetic
storage device (DECdisk or DECtape) and retrieved when needed

—a great time-saving feature. In addition, EduSystem 30 keeps a
log of all programs it runs, providing an exact record of how stu-
dents are using the computer. Also available is a unique capability -
for automatic testing (and grading) of student programs.

System Components

EduSystem 30 is composed of a PDP-8/ E/ computer wnth 4096
(4K) words of core memory, powerfail protection, - automatic
loader (hardware bootstrap), 32,768 (32K) word DECdisk, optical
mark card reader, and computer terminal (Teletype) with paper
tape reader/punch. Each EduSystem 30 includes the BASIC lan-
guage processor with batch capabilities and a library of sample
programs, textbooks, and curriculum guides. DECtape may be
substituted for DECdisk. A punched card reader may be used in
place of the marked card reader. The system also supports a high-
speed paper tape reader/punch and a line printer.

7-1



System Expansnon ;
'EduSystem 30 expands easnly to EduSystem 40 and w1th addl-

_ tional ‘memory and DECtape, may be used to run the OS/8 Oper-

o ating System, DEC’s programming system for the PDP-8 computer.

e To expand to EduSystem 40, add 4K words of core memory,
plus up to seven additional computer ‘terminals and their

. associated interfaces: (12K words of core memory are
recommended for more than five terminals), and an Edu:
System 20 software set.

® To run OS/8, add 4K words of core memory (providing the
system includes DECtape)

BASIC LANGUAGE CAPABILITIES

EduSystem 30 BA mcludes the language elements shown in
Table 7-1.-The system also includes many advanced features to
allow t_llgllget/fo perform more complicated and lengthy problem-
solvmg operations. Features which pertain to either the inter-
active mode or the batch mode are discussed in separate sections.

This section explains the advanced features that can be used in
both modes.

. Table 7-1. EduSystem 30 BASIC Statement Summary

~ Statemernit | | Description
- Input/ Olltput Statements ' ‘
LET _ Assign a value to a variable. The word LET
) . -is optional for interactive programs.
PRINT - Print out the indicated information.
READ _ Assign values from data list to vanables
DATA » Provide data for a program.
RESTORE " Restore the data list.
*WRITE Record data on DECtape storage file.
GOTO ' - Change order of program execution.
- IF GOTO Conditionally change order of program exe-
IF THEN cution.
FOR TO STEP Set up a program loop.
NEXT End of program loop.
DIM : Define subscripted varlables
GOSUB Go to a subroutine, '
~ RETURN - Return from a subroutine.
INPUT B Get values from the Teletype.

REMARK (REM) Insert a program comment.
7-2



Table 7-1 (Cont.).

EduSystem 30 BASIC Statement Summary

Statement Description
RANDOMIZE Cause RND. function to randomly select new
+ sequence of random numbers between 0 and
1 _ ._ ]

"DEF Define a function.

CHAIN Link to next section of a program which is
stored within the system. )

NOLINE Do not print out the line numbers in which
program logic errors are found. (Allow longer-
than normal programs to be run without
chaining.)

STOP Stop program execution.

.END

~End a program.

Editing/ Control Commands

LIST
‘LIST n
LISTNH -

LISTNHn

RUN

RUN NH
SCRATCH (SCR)

CTRL/C
TAPE

ECHO

PUNCH
PUNCH n .

LPT

TTY

BATCH |
RESEQUENCE
NEW

OLD

NAME

List all stored program statements.
List program starting at line n.

- List all program statements but do not print

a header line.
List program starting at line n but do not
print a header line.

Execute the current program.

Same as RUN-: without header line. :
Delete the currently stored (in memory)
program,.
Stop execution of a program or printing of
a listing. CTRL/C is typed by pressing C
while holding down the CTRL key.
Read a program from paper tape. Ignore
any line which does not begin with a line
number.
Switch from printout to non-printout mode
or vice versa. _
Punch a program on the high-speed punch.
Punch a program on high-speed punch, start-
ing at line n. '
Print output on line printer.

Switeh back to Teletype from line printer.
Begin processing cars programs.

Renumber program lines.

semory, request program name.

811221; nmemzy, bring program to memory
from storage arca.
Same as new but

71-3

does not clear memory.



Table 7-1 (Cont.).

EduSystem 30 BASIC Statement Summary

Statement

i4
Description

CATALOG (or CAT)
LENGTH

PRIVILEGE

Privileged Commands!
PASSWORD
SAVE

UNSAVE
HEADER

LOG
MAX

BATCH n
STACK
STACK n

Functions
ABS(X)
ATN((X)
COS(X)
EXP(X)
INT(X)
LOG(X)
RND(X)
SGN(X)

SIN(X)
SQR(X)
TAN(X)
TAB(X)
CHRS$(X)

Print out the names of programs in storage
area.

Print out the number of blocks needed to
store the current program.

Enable use of privileged commands. To be
successful, this command must be followed
by the correct password. This command is
recognized only if the privileged command
capability was selected at system lead time.

Change the password code.

Save the current program in the system stor-
age area.

Delete the named program from the system
storage area.

Change the system header; type new header
(maximum 12 characters) for next batch
run.

Print system log. )
Set instruction limit n times 200 per pro-
gram for next batch run.

Same as BATCH; limit runs (n) per program.
Start unattended batch operation.

Same as STACK; limit runs. (n) per program.

Absolute value of x.

Arctangent of x (result in radians).

Cosine of x (x in radians).

ex (e=2.712818).

Greatest integer of x.

Natural logarithm of x.

Random number.

Sign of x (41 if positive, —1 if negative,
0 if zero).

Sine of x (x in radians).

Square root of x.

Tangent of x (x in radians).

Controls printing head position on Teletype.
Converts character code to character. Used
only with the PRINT command.

1 The privileged commands may
LEGE command has been executed

only bg used after a successful PRIV]-

7-4



Using Random Numbers

The RND function allows the use of random numbers within a
program. The RND function returns a random value between zero
and one. Unlike the other functions, the value returned by RAND
is not a function of its argument. However, all functions in BASIC
must be followed by an argument. Therefore, RND should always
be followed by a dummy argument, such as zero, whlch is en-
closed in parentheses.

Notice that it is possible to generate random numbers over any
range. For example, the expression:

(B—A)*RND(0)+A

has a random value in the range A<n>B.

Repeated uses of RND in a program return different values be-
tween zero and one. The sequence of numbers is, however, the same
each time the program is run. Thus, the sequence is reproducible
for later checking of the program. The RANDOMIZE statement
allows the user to make the random number sequence returned by
the RND function different each time a program is run. That is,
when executed, the RANDOMIZE statement causes the RND
function to select randomly a new sequence of random numbers. If
RANDOMIZE is used, it normally appears as one of the first lines
in a program,

Running Long Programs

EduSystem 30 runs programs of up to 6000 characters in inter-
active mode and up to 5000 characters in batch mode. These
limits correspond to roughly 200 "and 250 lines per program,
respectively. In some cases, interactive programs which are at or
near the 6000 character limit and which contain many complex
FOR, IF, and GOSUB sections are too large to be run. If this is
the case, the NOLINE command may be used to gain more space.
If NOLINE is used, program logic errors- which are detected
while the program is executing cause an error message to be
printed, but the line number of the error is not printed. NOLINE
allows substantially longer programs to be run.

If the program to be run is substantially longer than the 6000-
character limit, it may still be run by means of a technique known
as chaining. The program is written in sections, each of which is

7-5



less than 6000 characters. A chained program may have many of
these program sections and, hence, may be indefinitely long. Each
section of the total program is then stored in the system storage
area with the SAVE command under a separate name. The final
command to be executed in all but the last section is a CHAIN
statement containing the name of the next section of the program.
For example, the statement

95@ CHAIN *'PARTI1@"

would cause the system to load and execute the stored program
whose name is PART10.

In the CHAIN statement, the name of the next section of the
program must be encoded in quotation marks and must be
exactly six characters long. If the actual name of the next section
is less than six characters, one or more spaces must be inserted
before the second quotation mark to make a total of six characters.
For example, if the next section of the program is named LINK2,
the following CHAIN statement would be used: '

955 CHAIN "L INKZi'\

Execution of the CHAIN statement loads and executes the
named program. The previous section of the program is deleted.
Thus, the user only needs to load the first section and run it. All
succeeding sections of the chained program load and execute
automatically.

Using a Data File

Just as some programs may be too large to be executed in one
piece, other programs may need to store and use more data than
may be accommodated under normal system operation. If this is
the case, data may be temporarily stored in the system storage
area. Data stored in this way is referred to as a data file.

7-6



The data file is actually a part of the i)rogram data which is de-
fined by a DATA statement. All data within a program is gathered

from the DATA statements into a data list which is then read by
READ statements. As items are read from the list, they are marked
as already having been used. A READ statement always fetches
the next item from the list. In fact, the data list may be con-
sidered to have a movable marker which remembers the next item
of the list. The marker initially marks the first data item. As READ
statements are executed, the marker moves down the list. A RE-
STORE statement moves the marker back to the top of the list.

The data file capability allows a program, by means of a
WRITE statement, to change and add to this data list as well as
to read it. The WRITE statement format is the same as the DATA
statement format. Writing a variable puts the value of that variable
in the next place in the data list. The data item that was there pre-
viously is replaced by the new value. If a WRITE statement fol-
lows a RESTORE, it changes'the first item or items in the data
list. If it follows one or more READs (or WRITEs), the WRITE
statement changes data items further down in the data list. The
total number of items which may be put in the data list depends
on the size of the program. Maximum sized BASIC programs
may have up to 1000 items; small programs have room for 2000
items.

Programs which write data on the data list must keep track of
how much data has been written and the order in which it was
output. If data which has been written is to be subsequently read,
a RESTORE statement must be executed to return the marker
to the top of the data list. If data has been written off the end of
the data list, the program must remember how many items the data
list contains, and be careful not to try to READ more data items

~ than are there. The normal BASIC check for end of data does not

exist for a written data list. The program must also be sure that
it does not write more data than the data list can contain (1000-
2000 items). Writing too much data causes part of the user’s
BASIC program to be destroyed.

Data files are frequently used in conjunction with chaining
since data written onto the data list by one program section may
be read by the next section. The program section which writes the

7-7



data must execute a RESTORE just before the CHAIN state-
ment. The next section, which reads the data list, must not have
any DATA statements since this data would destroy the data
items written by the previous section.

Character Variables and String Capability

Standard BASIC statements deal only with numbers, assuming
all variables to be decimal values. However, BASIC is also capa-
ble of performing many useful operations on characters or words
(strings of characters) instead of numbers. The character handling
capabilities of BASIC depend on the representation of individual
characters as numbers. Each character has its own numeric code
(or character code), as indicated in Appendix B. When a character
is input, by an INPUT statement, it is converted to a numeric
code. All internal processing of that character uses this code. Since
the code is a number, it can be used and manipulated with any
BASIC statement. When a user program is to output a character,
BASIC converts the numeric code back into a character and
prints the character. In short, characters stored in a BASIC pro-
gram are indistinguishable from numeric values. The only differ-
ence is in the way they are used, i.e., that certain numeric values
actually represent characters.

The INPUT statement is used to input characters. A dollar sign
($) is placed before a variable name to indicate that a character
code is to be input rather than a decimal number, e.g., INPUT $A.
When the character is typed, its character code is stored in the
indicated variable. It is important not to confuse character input
with numeric input. A potential confusion lies in the fact that the
numeric values are themselves characters. For example, the value
234 is composed of the three characters 2, 3, and 4. If these three
characters were input to a BASIC program as character variables,
they would be entered as three separate numeric (character code)
values rather than as the single value 234, Whether the input
is character code or numeric, the physical characters typed at the
terminal are identical; the difference is entirely in the way that the
program interprets the input. In the following examples, each
program executes an INPUT statement. In the program on the
left, three characters are entered and three variables are set up. In
the example on the right, a single numeric value is input.

7-8



19 PRINT “ENTER VALUE ‘; 19 PRINT “ENTER VALUE':

20 INPUT $X1,$X2,8X3 - 2¢ INPUT X

30 PRINTg X13X23X3 ' 30 PRINT X

43 END ‘ 49 END

RUN NH _ : RUN NH

ENTER VALUE 234 54 S1 52 ENTER VALUE?234
234

READY
READY

Note that character INPUT statements do not cause a ques-
tion mark to be printed. Therefore, a series of characters may be
typed without intervening question marks. Programs doing char-
acter input must therefore indicate, by PRINT statements, when
input is expected. Also note that the $ is not part of the variable
name. It is used only in INPUT statements to indicate that typed
characters are to be converted to their numeric character codes
before being stored in the variable.

Character codes may be converted to their respective characters
by means of the special PRINT statement function CHR$. CHR$
is the inverse of the dollar sign INPUT convention. The CHRS$
function takes, as its argument, a single constant or variable and
prints the single character whose code corresponds to that value.
~ For example:

53 PRINT ChR$(65)

prints the character A. CHRS$ may only be used in PRINT
statements.

One of the most frequent uses of the character capability is to
enter words or characters into BASIC programs in response to
questions. For example, a program might ask the user if he wants
to run the program again with a different set of input data. The
~user responds by typing Y if he wants to run again or by typing N
if not. The program then compares the code of the character en-
tered with the character code of Y to determine if they are equal.
If so, it branches back to the beginning of the program. If not, the
program executes the remaining statements. The following program
illustrates the use of character variables in making a run-time
decision.

7-9



18 PRINT

20 PRINT "“WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)>7?';
33 INPUT %A

49 IF A=#Y THEN 14

5@ IF A<>#N THEN 94

6@ PRINT

74 PRINT "0O.Ke IT'S YOUR CHOICE."
83 STOP

9@ PRINT

184 PRINT "Y OR N7?"3

114 GOTO 3@

128 END

RUN NH

WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)?7Y
WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)>?8
Y OR N?Z

Y OR N?N

O«Ke IT'S YOUR CHOICE.

READY

The comparisons shown in the preceding program are facilitated
by a special BASIC language feature. Pound sign (#) followed
by a single character may be used to indicate the character code
of the single character following the pound sign. In line 40 above,
using #Y relieves the programmer of the need to remember or
reference the actual character code for. Y.

Often, the character capability is used to input a series (or
string) of characters, such as a last name. The string may be any
number of characters up to a full line (72 characters on a Teletype
line). In this case the program must read each character and de-
termine whether it is the carriage return character (character code
13) which indicates the end of the line., Subscripted variables are
used to store such a series of characters. The following program
illustrates character string input:

-

13 DIM AC72) :

20 PRINT “TYPE YOUR MNAME:";
334 FOR I=1 TO 72

49 INPUT SACI)

54 IF AC1)>=13 THEN 7@

63 NEXT 1

7@ END

7-10



USING THE INTERACTIVE TERMINAL _

When EduSystem 30 is not processing card programs, it may be
used interactively from the Teletype. In this mode of operation,
programs and commands are typed directly at the keyboard without
being marked on cards first. Individual program lines may be
changed, deleted, or added without having to read the whole pro-
gram again. Listings and program output are produced at the
terminal (or line printer) as always. -

The system is ready for interactive use whenever it prints
READY. If a batch run has just been completed and the system
has typed MORE CARDS?, the user responds by typing N to in-
dicate that no more card programs are to be run. The system then
prints READY. The word READY always indicates that the sys-
tem can accept commands from the Teletype.

Entering Programs

 Programs are entered in the computer by the user typing at the
Teletype keyboard. Each statement in the program must begin
with a line number between 1 and 4095. In interactive mode, all
lines of input are terminated when the RETURN key is typed.
Statements need not be entered in order. BASIC automatically
arranges program lines in their proper order.

EduSystem 30 BASIC expects each program to have an assngned
name. At the beginning of each interactive session, the NEW com-
mand should be typed to clear any existing program in core and
define the name of the new program to be entered.? To use the
NEW command, the user types

NEW
and the system asks for:
NEW FILE NAME--
The user then types any name of 1 to 6 characters (the first of

~ which must be a letter), followed by the RETURN key. BASIC
assigns that name to the program to be entered. The user may

21If the user does not wish to assign a program name, he can delete any
existing program by typing the SCRATCH command.

7-11



change the name of the program being entered at any time by
typing the NAME command. BASIC again asks for NEW FILE
NAME and assigns a new name to the program being entered. The
NAME command does not delete the existing program.

Using Multiple Statements per Line

EduSystem 30 allows more than one statement to be typed on a
single line. Statements after the first begin with a back slash char-
acter (\) which is SHIFT/L on the keyboard. A program is often
more understandable when statements, such as a series of LET’s,
are grouped into a single line. For example, the program:

14 A=3\B=8\C=13
20 PRINT (A+B+C)*5\END

is the same as

14 LET A=3

20 LET B=8

38 LET C=13

4@ PRINT (A+B+GC)*5
S@ END

and will produce the same result when the RUN command is
typed:

RUN NH

120

READY

This multiple-statement capability is helpful when writing long pro-
grams since statements require less storage in the computer when
they are grouped as a single statement.

Listing the Program

The LIST command may be used to list all or part of the current
program. LIST prints the program statements in their proper order,
regardless of the order in which they were entered. The EduSystem
30 LIST command has four different forms, as shown below.

7-12



Command Meaning

LIST List the entire program. Precede it by a header line?
giving the name of the program.
LIST n List the program starting at the given line number

(n). Precede it by a header line. The line number
must be separated from LIST by two spaces.
LISTNH List the entire program, but do not print a header
line.
LISTNHn List the program starting at the given line number
(n), but do not print a header line.

NOTE
The programmer may stop a listing at any
time by typing CTRL/C on the keyboard.

Executing the Program :

The programmer may execute a program at any time by typing
the RUN command. The existing program is inspected for errors;
if none exist, it is executed. If an error is detected, an error mes-
sage (see the section on Error Messages) is printed. In either case,
at the end of the run, BASIC prints READY, indicating that the
program may now be changed or rerun. There are two types of
RUN commands: RUN and RUN NH. RUN executes the current
program, preceding it by a header line. RUN NH (NH means no
header) executes the current program but does not print a header
line. RUN and NH must be separated by a smgle space. The user
may terminate program execution at any time by typing CTRL/C.

Loading a Card Program for Interactive Use -~

Programs previously written on cards may be loaded for use in
interactive mode. The program deck is preceded by a NEW card
and followed by a KEY car‘d The uer mounts this deck in the
. card reader in the normal way ( ercutmg Card Programs for
- instructions) and types the BAPCH command. Cards are processed

in normal batch fashion ya\%?le KEY card is read. The KEY

card switches the system K interactive mode. The program is then
available for execution or editing from the interactive terminal.

3 A header line consists of the program name followed, on the same line,
by the system name (EDU BASIC). If no program name was assigned,
the system prints “*NONE* EDU BASIC”,

7-13



After two RUN commands (or after some number of RUNs if the
privileged BATCH command is used), the system automatically
returns to processing any additional card program in the reader.

Storing Programs on Paper Tape
Once a program has been entered or read correctly, it may be
saved on paper tape for quick reloading, as follows:

Turn the Teletype control knob to LINE.

Type LISTNH but do not press the RETURN key.
Turn the Teletype paper tape punch ON.

Press SHIFT/CTRL, type “PPPPPP” to produce some
leader tape.

Press the RETURN key.

When punching is complete, press SHIFT/CTRL, type
“PPPPPP” to produce some trailer tape.

Turn the Teletype punch OFF.

8. Carefully rip tape off punch. Notice that an arrow head is
at the beginning of the program and an arrow tail at the
end. '

Reloading Programs From Paper Tape

Programs punched on paper tape may be reloaded using the
Teletype (TTY) paper tape reader. The TAPE command is used
to load programs from paper tape as follows:

AW

o

N

1. Insert the paper tape in the TTY reader, with the arrow
head facing out of the reader.

Turn the TTY control knob to LINE.

Type NEW, then press the RETURN key.

Type the program name.

Type TAPE, press the RETURN key.

Turn the TTY paper tape reader to START.

When the tape has read in, turn the TTY reader to FREE.
Remove the papcr tape.

A special control command, ECHO, may be used with TAPE
to prevent the program from being listed while it is being read. The
first time it is used, ECHO inhibits all printout. A second ECHO
command restores normal printout.

Nk wd

Privileged Control Commands
Several optional commands are available which modify and con-
trol a program run. All of these commands are considered to be

7-14



privileged in the sense that their use is restricted. The privileged
commands are available only if the privileged command capability
was selected when EduSystem 30 was loaded. During normal sys-
tem operation these commands are disabled. If ‘a user attempts to
use a privileged command, it is ignored and the system prints
WHAT?

A special command, the PRIVILEGE command, is used to make
these privileged commands available. To use PRIVILEGE, the
user types PRIVILEGE and the RETURN key. The system then
waits for the user to type a one to six character password code.
(The typed characters are not printed.) At the time the system was
loaded, a password was typed into the system. The characters typed _
after the PRIVILEGE command are compared to this password.
If they match, the PRIVILEGE command is successful and all
privileged commands may then be used. If they do not match, the
message INVALID PASSWORD is printed and all privileged com-
~ mands continue to be unavailable.

In short, the user must know the password in order to use any
privileged command. It is important that the password be kept .
secret. For this reason, the password is never printed when the user
types it. It is possible to change the password code at any time. The
command, PASSWORD, which changes the code is, of course, a
privileged instruction. Certain privileged commands are used only
when processing card programs; these commands are discussed
under Executing Card Programs. The other privileged commands,
SAVE and UNSAVE, are discussed below. All privileged com-
mands must be typed at the terminal; they cannot be entered on
cards.

Using the System Storage Capability

EduSystem 30 allows the system device (DECdisk or DECtape)
to be used for permanent on-line storage of programs. Programs
stored in this way may be loaded instantly, without the need to load
a paper tape or card deck or type a program.

SAVE AND UNSAVE COMMANDS

Two commands, SAVE and UNSAVE, may be used to change
the contents of the system storage area. Because the amount of stor-
age space is limited, and to prevent accidental erasure of stored

7-15



programs, both SAVE and UNSAVE are privileged commands.
During normal system operation they are disabled. SAVE and UN-
SAVE may only be used after a successful PRIVILEGE command
has been executed.

The SAVE command stores the programs currently in memory
on the system storage area (DECtape or DECdisk) and gives it the
name specified by the last NEW, OLD, or NAME command. Any
existing program stored under this name is deleted. Thus, all stored
programs have names which may be used to recall them in the fu-
ture. If a SAVE is attempted when the privileged commands are
disabled, the system prints WHAT? and ignores the command. If
a successful PRIVILEGE command has been executed, but the
storage area is full, the message NO SPACE is printed and the
program is not stored.

The UNSAVE command is used to delete a program already
stored. UNSAVE must be preceded by a NEW, OLD, or NAME
command which specifies the name of the file to be deleted. The
user must be certain to use exactly the same program name as he
used when he first identified the program. Like SAVE, UNSAVE
is ignored unless preceded by a successful PRIVILEGE command.
If the program to be deleted does not exist in the system storage
area, the message FILE NOT SAVED is printed and no program
is deleted.

CATALOG COMMAND

- The CATALOG command may be used to obtain a list of the
names of all programs available in the system storage area. The
CATALOG list includes the number of storage blocks used by the
program. A standard EduSystem 30 includes 116 blocks of storage
space (for nonstandard systems, see Calculating Available Stor-
age). The CATALOG command may be used to determine how
many of these blocks have been used and, hence, how many are
free.

LENGTH COMMAND

If the system storage space is almost tull and another program is
to be saved, the LENGTH command may be used to determine if
- there is room to store the current program. It space is not available,
an existing program must be deleted. In all cases, the maximum
number of stored programs, regardless of size or storage device,
is 62.

7-16



OLD COMMAND o~ ]

The user may load programs stored in the system storage area at
any time by typing the OLD command. After the OLD command
is entered, the system prints OLD PROGRAM NAME. The user
then types the name of the program to be loaded. The user must
be certain to use exactly the same program name as he used when
he first identified the program.

Returning to Batch Mode

At the end of an interactive session, the system is ready for
further batch processing. When the system prints READY, the
BATCH or STACK command may be used to begin a batch run.

Program Editing
There are two times when a program may require editing pro-
cedures. The first occurs while a lirie is being typed but before the
RETURN key is pressed. The second occurs when a line has been
completely typed and the RETURN key has been pressed. Each
situation has its own editing procedures.
Procedure 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: ALT MODE
(or ESCAPE), « (back arrow), or RUBOUT.

ALT MODE (or ESCAPE) is used to delete an entire. line.
When this key is used, BASIC prints DELETED, erases that
line from the program, and returns the carriage so that the
line may be retyped.

« (back arrow), SHIFT/O on the keyboard, or RUBQUT is
used to delete a character from a line. BASIC prints the back
arrow, deleting the last character from that line. More than
one back arrow deletes more than one character, in reverse
order.

Procedure 2:  After the RETURN key is pressed.

Once a line of the program has been transmitted to computer
memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, changed, or renumbered.

INSERTION: To add a line to a program, assign a line num-
ber that falls between two existing lines, type the line number
and text, and press RETURN. :

7-17



DELETION: To erase a line from computer memory, type
the line. number only and press the RETURN key.
'CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one. |
RENUMBER: Occasionally, repeated editing and insertions
result in there being no more room in an area of a program
to insert new lines. It is then necessary to spread out the line
numbers so there is room for new insertions. The RESE-
QUENCE command is used for this purpose. To renumber a
program, type the RESEQUENCE command. This command
changes the first line’s number to 100 and renumbers each
succeeding line with an increment of 10. RESEQUENCE also
automatically changes all GOTO, GOSUB, and IF statements
- to correspond to the new line numbers.

WRITING AND RUNNING CARD PROGRAMS
‘Writing a Program on Cards

Programs to be submitted to EduSystem 30 are first transcribed
onto specially formatted BASIC carffs. These cards are preprinted
with a series of small rectangular bgxes. Each card has 39 columns
of boxes, with the column numbér printed along the lower edge.
Figure 7-1 illustrates a BASIC cz(rd.

20 A A
|nmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmg

Y _NINEEOnuannnpruoeiopnpnppoenuoonnem 3
“mﬂ@@@@E@DEDEDEIEEBD@DEEEEEEE@@@E@E@8

N0 G i @[ﬂ@ mmm BI npEuEmamee s
512 s A P ] R i fil M mumnn 2
3\ () (lfe- -0 ) ) ) ] 30 ) (5] 6 B0 ) ) ) ) ) ) 3 O ) ) 3] ) B P o) s ) O L O 0 ) 2
- (0] (30 0 0 [ G | I TRl
EIENE Sl TN o B B ) ) s ] 1 ) ] ) ) ) G
&@@w'mﬂEI@DEDEEBD@E@D@@@@@EEEBEED@D@E@EEE
ulufu sged Oiololuloiofnininioioolooieiooinooiojofofoofoloi oo
Wy AEAARNARNNENAEEENENNENIAGEENENAENE =
@ggfmwgEEEEEEB@EE@EEEEE@E@EEEE@EE@@E@@E@%
J1.2)3)4 1 s18da)88sie|u)zfiafra)is]ie] i) sfisf2 22] 23] 24} 25]28] 27] 20§ 28] 30] 3132] 33} 341 35{36]37] 38]38) |

Figure 7-1. EduSystem 30 BASIC Card

~ Program statements are written onto fhe BASIC cards by mark-
ing these boxes with ordinary lead pencjl. Each box is marked with
a single heavy line, drawn either vertidally or diagonally. It is not
necessary to fill in the entire box. Avgid making any stray marks,

718 |



as the computer reads all marks on the card, whether or not they
occur inside a box. Any stray marks cause the computer to misread
the card. A program to be submitted to EduSystem 30 is marked
on a series of these cards; each program statement is placed on a
separate card.

LINE NUMBERS _ ,

The first item of each program statement to be marked on the
card is the line number. All program statements must have line
-numbers from 1 to 999. The line number is marked in the leftmost
three columns of the card. In each of these columns are 10 boxes
containing the digits O through 9. (Above these numbered boxes
are six other boxes which are never marked as part of a program
statement, They are used as control cards and are explained later.) -

The user marks an appropriate digit in each of three columns.
If the line number is only one or two digits, it can be marked in
any of the three columns. Blank line number columns are ignored.
Figure 7-2 shows a card marked with the line number 120.

T
ool
INNEONADRNENR0AN0NERNRE0ENRE0D 2
AANENANNAAIAIRANR N NNANEARRNAMA o
'. n,ﬂg o1y dolioiololuiglals
U 01 BERARNE g
1 f ) [l u@@@@@@g
ilo gﬁ ARAORT .
A ANANARARARE &
AANERNINAEANRANNAA A AIAAAARAARE ;
NANENNENANNNNRENENEAENERAANANE 3
ANAAANAEAARNAANARAAAAGAERANAEAE 2
AARRANAAAEAAAEANAIAANARAANAAAE S
101 11}128130141151 181170 18] 18] 200 21} 221 23] 24} 251 28] 271 28] 281 30] 31] 32] 33] 34} 35] 38132138138

Figure 7

2. Line Number Example

Line numbers should be marked on cards in‘the order in which
program statements are to be executed: the lowest line number on
the first card, the highest line number (the END statement) on the
last card. If the cards are not physically ordered by line number
within the card deck, EduSystem 30 still executes the program in
line-number order. The only time when the order of the cards is
important is when two cards have the same line number. In that

7-19



case, only the last card in the deck which has that line number is
used in the program.

BASIC STATEMENTS

BASIC statement types are marked after the line number, in
column 4 or 5, within the outlined area. Each box in this area
represents a single BASIC statement; thus, one mark in the approp-
riate box indicates the corresponding statement type. It is not nec-
essary to spell out the statement. Since each statement is marked
on a separate card, each program card should have only one mark
in column 4 or 5. In Figure 7-3, the LET box has been marked.
Line 120 is, therefore, a LET statement. (The implied LET can-
not be used with card programs.)

: URIRBARERRREREREEREEEEREEEE

|ummmmmmmmmmmmmmmmmmmmmummammmmmmmm%

i Dicitiojoioinioioioiciooojoloioin oo ololni ool clnln Y Ol ORO
'mﬂ@DE@E@@EE@EI@EEIEEEEED EEDED@@EEES

AT : 'IDD][E\H%M NAEDmEQTan &
2 A e L) 1l () ) L DU ] ) ) 6 4] ) g ) ) 52
@@frumﬂE@E@@@@D@@E@D@@D@EID@D@@D@@@@H@@@§
{a] (4 (ol o) ] i ] 50 IF 4 b (1] 4] 9] O (O ) 41 (0 (0 )
5108 (e ) B G P ) i (] [ ) I A CI I al A S
6 + ] ) () 0 ) D ) D Ca) R0 0 D ) GO 0 D D D o
@Iﬂ"hmB@@@@@@@I@@@@@@@@@@@@@D@@@@@@@@@@@ﬁ-
Ojo]a Sge® Dlluuloluialdulaulaoaiaiatoiaaloiaato ool lofu il
(5] o] (oS -ﬂEEEEEEEE@E@EEEEE@EEEED@EEE@E@E@@E8
1021314 | Si81I1a)amin)iz|i3peliLsgiili 11281281 3] 31132]33] 34} 351 36137] 38| |

Figure 7-3. Statement Example

STATEMENT OPERAND

The line number and statement type are marked in specific sec-
tions of the card. The remainder of a statement, the statement
operand, is marked in a different manner in columns 6 through 39.
The first step in this process is to write the remaining characters of
the line in the boxes across the top of the card, one character to a
~ box, starting in column 6. The boxes below each of these characters
. are then marked with the aid of the BASIC template, as shown in
- Figure 7-4.

7-20



[]ABCI-!-—*/f

ssoeErflacr< >

oc?2!'!aH i Boe=14% ;0
1 :9xitBoECT '
2 mno BunE \ 2
3 PaRPIMKI T 3
4 sTUullPNLS 1 4
6+ vwx @saqo? a5
e -(vyz.QBvir: e
7* )=, Bywu 7
s/<s" B, zx 8
9t >; '\ . 9
BN

EDUSYSTEM-30
BASIC TEMPLATE

clildliltlall

Maynard, Massachusetts

Figure 7-4. EduSystem 30 BASIC Template

The template has a column of holes down the center with the
characters used in writing an operand printed on either side. All
characters are printed twice on the template, once on the left and
once on the right. The top hole in the template corresponds to the
blank boxes at the top edge of the card where the characters of the
operand were written. The bottom pair of holes correspond to
the row of heavy black marks along the lower edge of each card.
The twelve holes in between correspond to the twelve boxes in
each card column, :

The following procedure is used to mark the statement operand
characters: .

1., Place the template on the card so that the character to
be marked appears in the top box of the template and the
two black marks appear in the bottom pair of holes.

2. If the character is a digit (O to 9), find that digit on
either side of the template and mark the one box Wthh
is beside that digit.

7-21



3. If the character is not a digit, find the two occurrences
of 'that character on the template, one on the left and one
on the right. Mark the two boxes which are beside these
characters.

4. 1If the character is a space, make no marks.

An example of the marking procedure is shown in Figure 7-5.

WVI!IIIIIIIIIII!Illlllll
TTABCcT+—xyt Djojojnjmoininoinninloloyn|n

Namomm ¢
S4DEFQA() <> puEEonunonnLDENREmNLLneaa s
°0716HIfDB=4 ;0 ifaaaialab i diafafa ol fulogldes
toreKLBeECH % NINEENOAM 3
2 MNOflsHF 2 (i) bl Ft) a1 o] e e ) ) ) 2
3 PQRAMKIC 3 P P i ) ] (3] (3] (o] o 0 ) ) ) o o o ] ) o) ) ) 3
4 STUfPNLS 14 [1 (1 By R Fi 1) ) () ) (I () (T D O )
5+ YWxfsao?as ofal o 2 ™ FI ) A O o F B D
8- (YZ.AVTR: 1o Hi B ) Bl (3] ]l (o) o) ) 0 R0 o o ) ] ) 6O () ) o
Ty LAYWU 7 ulafeloolnalololo ool ojoofofofojo oo
s/<e" PB.2Zx 8 HEARAANEANAENAAEEAREEE 2
RS K o B 3] (3] (0 o0 (3} (o] [ P 3] o] (3] (5] (0 (o 0 9] O 9] ) 2
13 18419] 28 23] 22 7]
EDUSYSTEM-30
BASIC TEMPLATE .
dliloliftlal}
Maynard, Massachusetts

Figure 7-5. Marking the Statement Operand

SUMMARY 6]:7 CARD MARKING PROCEDURE
A completed card is marked in three places:

1. Columns 1 through 3 to mark the line number.

2. Column 4 or 5 to indicate the BASIC statement type.

3. Columns 6 through 39 to indicate the statement operand,
as written across the top of the card.

Figure 7-6 shows two examples of completed cards.
7-22




JOr=IgNAT=TARIAMCT TV TV T T VT T T T TV TV T T T 1T 1T 717711

lml llllmm

EB=EE
(== =]
===
===
===
B=E
BE=

=E ==
BEEEIEEEREEREE

g

=

(=
=
=

=
=
EEREEERE

HEEEREEEEEE
EEEEEEARE

L= (=] (=] =

HEEEEEERE
EEEEEEEEE
HEEREEEE

DIGITAL EQPT. CORP EDUSYSTEM-30 BASIC

el II@@@@I@I@@@@@@@@@
i o EIEE]EI]@E]EEIEEIEE[‘IIEJE@E!E
? IEIEIE]EIE]E]E@E]EIEE]E@@

112]13]4 § 81 sfisj nji2113114]15]16) 171 1818

==
EE == =
== =
EDEEEE
e = =
===

o o o e 9

R0 E) =) = = E ==
8= (= (=) =] = [F) (=)

§

=]

= (=

@

=

=]

)

=

& =)

=

S =

=]

=

=]

==

-

=1

[E]rgﬂ
R ) ek = =
= =) = =&
Bl (=) =] =)

4

3
-l
.
N
-
&
=3
€
-~

)I—WSﬂflﬂlllTYfl‘lll'llYllllf!fl'll
8 ool el OO
1 ool
e DIl aln
i ; »l“ll M“

E
EEEE

§2255
==l ===

=]
= == =)
== oo
= (& = =] = = = [F)

=)
=]
=
[==1
(==
=
=Y
=g
==
=g
=
=
=
=l
=
(=)
¥ =
(=)
=)
==
E=EEEEEE

FHEEEEEEEEEEE

[ (1 [
Ea 1 I

nnnnnnn

- b O ) D
-] G0 1 1) 1 2 ol
[ LPAAAAEA

) Al 0 1 [ ) )

E ) |
13125314 | S1e|2]18f9])wjuji2

fﬁ
=2 =
-

= = = =)

CEEEEEEREEEEEE
tEEEEEEEEEEEE
SEEEEEEEREEEEE

FEEEEEEEEEREE
L= (2 (=) (= (=] (=] = E [ = ==
tEHEEEEEEEESEEE

DIGITAL EQPT. CORP. EDUSYSTEM-30 BASIC

B = = = -
EEE S i = =
=S

= o = o o

B [ = = & =
R EEEEEE
EEEEE

|
EIEHEDEIEIEEIE!]EI
0 ) ) ] ) o o) o) )
F a1 ] (o) o) B o) ) )
P a3 ) ) () ] 4
i3p4lisfishiagigan el nn

B8] (=] [=)
2 = =)
=
=

=
o

Figure 7-6. Completed BASIC Cards

Submitting a Program to be Run

When all statements of a program have been marked on cards,
the cards are collected into a single deck for submission to the
computer. However, in addition to the deck of program cards,
the computer must be given the program name and explicitly in-
structed to execute the program. Special cards, called control
cards, are