

ADDITIONAL COPIES
Additional copies of this handbook may be purchased for $5.00

per copy. Please send your order to the address below. DEC offers
special discounts on quantity orders.

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01754

prepared
by .

small systems technical writing group
programming department
digital equipment corporation

pdp-s handbook series·

FIRST PRINTING, JANUARY 1973

The description and availability of the software products de ..
scribed in this manual are subject to change without notice. The
availability or performance of some features· of the software prod­
ucts may depend on a specific configuration of equipment. Conse­
quently, DEC makes no claim and shall not be liable for the
accuracy of the software products. Distribution of software prod­
ucts shall be in accordance with the then standard policy for each
such software product.

Copyright © 1973
Digital Equipment Corporation

The following are registered trademarks of Digital Equipment
Corporation~ Maynard, Massachusetts:

DEC
DECtape
Digital
EduSystem

FOCAL
OS/8
PDP
RSTS

ERROR REPORTING

If you find any erro!s in this handbook, or if you have any
questions or comments concerning the clarity or completeness oL
this handbook, please direct your remarks to:

Digital Equipment Corporation
Software Information Service, Building 3-5
Maynard, Massachusetts 01754

ADDITIONAL COPIES
Additional copies of this handbook may be purchased for $5.00

per copy. Please send your order to the address below. DEC offers
special discounts on quantity orders.

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01754

11

The computer is an exciting contemporary piece of equipment.
This fact alone explains some of the fascination that a comp~ter
invariably stirs up among students, but it doesn't explain all of it.
The powerful motivational capabilities which the computer dem­
onstrates in every school that. installs one can only be explained
by the way it is used.

The computer is tireless. Unlike a student, it loves to do com­
plex calculations. Separating theory from calculation in school
assignments has always been a problem. Some of the most in­
teresting and challen·ging concepts of math and science involve,
unfortunately, an overwhelming amount of dull calculations. The
student gets bogged down in the" arithmetic and never gets ex­
cited about the idea. Or, worse still, a less important concept is
taught because its calculations come out even. The computer, by
taking on all calculations and doing them quickly and accurately,
opens up new possibilities for classroom study and student interest.

The computer is immediate and unfailingly accurate. It does in
seconds what people take minutes or hours to do. The speed of
its responses make for powerful reinforcement. It challenges the
student to think through the concepts as fast as it grinds through
the calculations.

The computer is anonymous. Real learning occurs when a stu­
dent has an idea and tries it out. At the start, he isn't sure whether
the idea is valid. Some students have no fear of being wrong and
will tell the class their idea. Others are less willing to risk the
ridicule of being wrong; The computer lets all students tryout
their ideas and gain confidence in them. It treats all students alike;
it has no favorites. It waits for the slower user and bounds ahead
quickly for the brighter student. With a computer, a student com­
petes with his past achievements, not with other students.

Above all else, the computer is challenging. Why is it that a
student who quits on a homework problem after trying it once
will work tenaciously to get a program running right? Partly, it's

iii

the immediacy of the computer's response. Partly, it's the ease
with which the student can change his program and try again.
Partly, it's the fun of talking to·a machine and having it respond.
But beyond aU that, there is something about the close interaction
between a user and a fast, willing, logical machine which is tre­
mendously challenging.

In all these ways and more, the computer stimulates the student,
stretches his thinking, provides an immediate andpertinent,appli­
cation for skills learned in class. The impact on the teacher can
be just as great as the impact on the student. Given motivated
students, the dedicated teacher becomes even more dedicated. It
is not unusual for a teacher to stay at school until five o'clock to
give students more time on the computer.

Computers have other uses around the schoo~ than instruction.
For example, a computer can easily be programmed to grade tests,
thereby saving precious teacher time, as well as providing more
immediate feedback to students. Other tedious administrative
chores such as attendance reporting, grade reporting, transcripts,
and payroll can be performed on the computer.

What will the computer mean in your school? Almost cert~inly
it will mean that students learn and improve at a faster rate. Tests
have shown that students who use the computer as part of their
math class improve at four times the rate of those who are taught
in the traditional way-not just honor students, not using a
futuristic curriculum. A cross-section of students-black, white,
Chicano, disadvantaged, rich, middle-class-in regular algebra
classes improved four times as fast with the computer. The com­
puter also means more thorough understanding coupled with tre­
mendous student motivation. It means more dedicated teachers
and an erasing of tedious administrative chores. It means con­
temporary education for today's world.

The computer does not replace the teacher. Nor does the simple
existence of the computer make a poor student into a superior
student. But in school after school, the computer is turning the
bored, lethargic student into an involved, eager student. We at
Digital believe that this is the vital, first step to better education.
And we firmly believe that computers are for all kids, not for a
few geniuses.

IV

EDUSYSTEMS-SCHOOL COMPUTERS THAT
MEET THE CHALLENGE

It takes more than just hardware to make an effective school
computer system. It takes a thoroughly tested combination of
system components and instructional materials designed specif­
ically for classroom use. Recognizing this fact, Digital Equipment
Corporation has designed EduSystems-a complete line of com­
puter systems tailored to the needs of schools and colleges.

The basis of each EduSystem is. a PDP-8/E computer,l a ter­
minal, and a BASIC language processor. All EduSystems utilize
the well-known computer language BASIC. BASIC programs are
simple combinations· of English words and decimal numbers.
Students with no previous computer experience can be writing
meaningful programs after as little as an hour of instruction.

EduSyst~ms are compact, trouble-free, and engineered for use
in the busy school environment. Even the largest EduSystem can
be installed and used right in the classroom. All systems can run
completely unattended (i.e., no operator is necessary). Each Edu­
System is designed to handle a large number of student users.
Time-sharing allows up to 16 students and teachers to work at
the computer simultaneously. Batch processing allows hundreds
of student runs per day.

EduSystems are expandable; as school and student. needs in­
'crease, the configuration of the system may also increase. Starter
systems (EduSystems 5, 10, 15, and 20) grow to be Intermediate
Systems (Edl~Systems 25, 30; and 40); Intermediate Systems grow

1 Certain EduSystems are also availabJe on the PDP-l1 computer.
Write to the Educational Products Group, Building 5-5, Digital Equipment
Corporation, Maynard, Mass. 01754, for more information.

v

to be the Total System (EduSystem 50). The expansion modules
can be installed right at the school. Expandable EduSystems are
always the right size to meet a school's present demands. There is
never the need to start out with too much computer or end up
with too little.

As the EduSystem computer expands, so does the BASIC lan­
guage. Digital's Total Systems2 offer the most powerful BASIC
language processors of any computers in their class. In addition,
EduSystem 50 provides time-shared FOCAL and FORTRAN-D
language processors, a time-shared Assembly Language package,
and system utility programs.

The effectiveness of EduSystems as classroom tools is well
proven. Hundreds of schools starting out with EduSystem 10 or
EduSystem 20 have since expanded to an Intermediate System, or
even a Total System, while many others are continuing to support
excellent programs of computer education without expanding their
facilities at all.

USING THE EDUSYSTEM HANDBOOK
The EduSystem Handbook provides a complete user's guide for

each individual EduSystem and a self -instruction course in the
use of the BASIC language in general. Most EduSystem users will
need to read only two' chapters of this handbook: Chapter 1, and
the chapter concerning the EduSystem being used.

Chapter 1 is a primer on the BASIC language,3 allowing. the
user to teach himself the fundamentals of BASIC and to familiar­
ize himself with the EduSystem terminal keyboard. Many examples
and exercises are included to aid the user in discovering the ele­
ments of the BASIC language. A user familiar with Chapter 1 can
write simple BASIC programs and run them on any EduSystem.·

Once the user knows the fundamentals of BASIC, he refers to
the chapter (chapters 2 through 9) concerning his particular
EduSystem. The individual EduSystem chapters describe the fea­
tures and extended capabilities of BASIC as it is used on the
specific EduSystem. Each chapter also contains detailed operating
instructions and error messages for the EduSystem. In addition,

2 EduSystem 80 is a Total System available only on the PDP-II.
3 Chapter 1 is derived from Teach Yourself BASIC, Volumes I and. II

published by Technica Education Corporation.

vi

each chapter contains a table summarizing the BASIC language
capabilities of the EduSystem being described.

Chapter 9 provides' a detailed description of EduSystem 50 capa­
bilities, not only of the BASIC language but also' of FOCAL,
FORTRAN-D, PAL-D (the assembly language), the EduSystem
50 Monitor, and all the system utility programs. The EduSystem
50 user will also find much helpful information in Introduction to
Programming and Programming Languages, Volumes 1 and 2 of
the PDP-8 handbook series.

The EduSystem Handbook is designed to serve as the primary
guide for users of all EduSystems. Users of each EduSystem will
find many programming examples to facilitate their understanding
of the system. A summary of the BASIC language capabilities of
all Digital EduSystems is provided at the end of Chapter 1.

, COMMON PROGRAMMING TERMS
Such words as loop, jump, nesting, and array have special

meanings to computer programmers. Familiarity with these terms
is a prerequisite to learning the more advanced programming
languages. The Index/Glossary at the end of this handbook defines
many of the commonly used computer programming terms.

vii

V11I

CHAPTER 1 TEAcH YOURSELF BASIC

Introduction 1-1 ••• tI ••••••••••••••••• I •••••••••••••••••• I' •••••••••••••••••••••••••••••••

Teletype Keyboard .. 1-3

Getting Acquainted With BASIC ,................... 1-5
Numerical Expressions ,; 1-9
The PRINT Statement :.................. 1-11
Floating Point Numerals , : 1-15
Printing Messages ,.. 1-17
Exponents-Computing the Power of a Number 1-19

Gathering Speed .. ~ ' 1-20
Variables .. : 1-20
Variable Expressions ; ~ 1-24

Feeding the Beast " 1-26
The INPUT Statement .. 1-26
The GO TO, Statement-.................................. 1-30
READ and DATA Statements ... 1-32
The RESTORE Statement 1-36
More Messages .. 1-37

'You Can Count on It .. 1-39
Loops .. 1-39
Loops Exposed ... 1-41
FOR-NEXT Loops ... : .. 1-45
The STEP Clause , ; 1-50
Variable FOR Statements , 1-52
Extra for Experts ... " 1-55

'IX

Function Junction .. 1-57
The Integer (INT) Function .. 1-57
The Square Root (SQR) Function 1-61

Finding Your Way .. 1-65
Flowcharts .. 1-65
FOR ... NEXT Loops in a Flowchart 1-71

Making Decisions .. 1-73
A Fork in the Road .. 1-73
The IF Statement .. 1-79

Varying Patterns .. ,....................... 1-81.
Rectangular Patterns 1-81
The TAB Function .. 1-86

Meandering .. 1-89
Random Numbers .. 1-89
Constellations .. 1-93

Little Boxes .. 1-97
Subscripted Variables .. 1-97
Generalizing '" 1-1 01
Variable Subscripts .. 1-102
Subroutines .. 1-105

Snoopy and the Red Baron .. 1-107
No Opinion .. 1-111
More Choices .. 1-113
Generation Gap .. u 1-115
Reprise .. 1-119

Kaleidoscope .. 1-123
Coin Tosser 1-123
Dice .. 1-124
23 Matches .. 1-125
Rounding a Number .. 1-127
Miscellaneous Math .. 1-128
Say Something in Trigonometry 1-130
Do It Yourself Functions .. 1-131

Past and Future BASIC .. 1-132

x

CHAPTER. 2 EDUSYSTEM 5

Introduction " ~ , , 2-1
System Components .. 2-2
System Expansion ... 2-2

BASIC Language Capabilities ... 2-2
Line Numbers ,.: 2-2
Single-Character PRINT Command '.............................. 2-2
Multiple Statements Per Line .. 2-2
Immediate Mode '1 •••••••••••••••••••••••••••• , 2-3
INPUT Statement 1 ••••••••••••••••••••••• 2-4

Program Editing -........ , ~ ~-................... 2-5

Error Messages 2-5

Operating Instructions 2-6
Initial Installation .:.. 2;..6
Turning Off the System ... 2-9
Restarting the System .. It 2-9
Reloading the Functions .. 2-9
Saving Programs on Paper Tape .. 2-9
Reloading Program From Paper Tape 2-10

CHAPTER 3 EDUSYSTEM 10

Introduction 3-1
System Components .. 3-1
System Expansion .. 3-2

BASIC Language Capabilities : 3-2
Line Numbers..................... 3-2
Single-Character PRINT Command 3-2
MUltiple Statements per Line '........... 3-2
Immediate Mode .. 3-3
INPUT Statement ,.. 3-4

Program Editing , ~ , .. " ... , , , , 3-6

Error Messages 3-7

xi

Operating Instructions .. 3-8
Initial Installation ~.. 3-8
Turning Off the System .. 3-10
Restarting the System .. 3-11
Reloading the Functions .. 3-11
Saving Programs on Paper Tape 3-11
Reloading Programs From Paper Tape 3-12

CHAPTER 4 EDUSYSTEM 15

Introduction ~ ... ~
System Components

BASIC Language Capabilities
Entering Programs
Using Random Numbers
Listing the Program ... ~
Executing the Program
Privileged Control Commands
DEC tape System Storage Capability ~

Advanced System Capabilities
Running Very Long Programs
U sing a Data File
Character Variables and String Capability

Prograln Editing

Error -Messages
Program Loading Errors
Coding Errors
Program Logic Errors

Operating Instructions
Loading the System

Initialize the DECtape Unit '
Initialize Computer Memory

System Building Dialog
Diagnostic Messages During System Building

Turning off the System
Restarting the System

XJl

4-1
4-1

4-2
4-2
4-2
4-3
4-4
4-4
4-5

4-6
4-6
4-7
4-8

4-11

4-12
4-12
4-13
4-15

4-16
4-16
4-17
4-17
4-19
4-23
4-25
4-25

Saving Programs on Paper Tape 4-25
Reloading Programs from Paper Tape 4-26

CHAPTER 5 EDUSYSTEM 20

Introduction
System Components ... ~
System Expansion. , .. ~.

EduSy~tem 20 BASIC
Abbreviated Commands .. .
Multiple Statements per Line
Immediate Mode
INPUT Statement
Comments 8 ••

Subscripted Variables , -......... .
IF THEN Statement
Truncation Function (FIX)
CHR$ Function -... ; .. .
ON ·GOTO Statement ~
ON GOSUB Statement
RANDOMIZE Statement ~

Error Mess~ges

Program Editing " .. .

Operating Instructions
Loading EduSystem 20 BASIC
Initial Dialog
System Reconfiguration
System Shutdown :
System Restart
Program Storing Procedures

Teletype Paper Tape Punch
High-Speed Punch

Program Reloading Procedures ~
Teletype Paper Tape Reader
High-Speed Reader

xiii

5-1
5-1
5-2

5-2
5-2
5-4
5-5
5-6
5-6
5-7
5-8
5-9
5-9
5-10
5-10
5-11

5-12

5-14

5-16
5-16
5-17
5-21
5-21
5-21
5-21
5-22
5-22
5,-22
5-22
5-22

CHAFfER 6 EDUSYSTEM 25

Introduction " , .. .
System Components ... ,
System Expansion : "

BASIC Language Capabilities
Abbreviated Commands
Multiple Statements per Line
Immediate Mode
INPUT Statement II •• II ••• , ••• , •• I'" II ••• II •• II ••• II •• IIJ"

Comments .. 1> ••••••••••• , ••••••••••••••••••••• , •••••••••••••••••••••••••••••••••••

IF THEN Statement
ON GOTO Statement
ON GOSUB· Statement
RANDOMIZE Statement
Truncation Function (FIX)

Extended System Capabilities
String Variables .. , ,

Reading String Data ,
Printing Strings " , ,
Inputting· Strings
Line Input .. .
Working with Strings
String Functions .. .

. CHR$ Function
MID Function 1 •• I •••••••••••••••••••••

LEN Function , , II
CAT Function I''' ••• II ••• I' •••• II II •••••••••••• I_I •••••

Program Storage/Retrieval
Storing User Programs
Retrieving User Programs
Running Very Long Programs
Deleting Stored Programs
Using Public Library Programs

Data File Storage/Retrieval
Creating Data Files
Reading Data Files

XIV

6-1
6-1
6-2

6-2
6-2
6-2
6-3
6-4
6-4
6-5
6-6
6-6
6-7
6-8

6-8
6-8
6-8
6-9
6-9
6-10
6-11
6-11
6-11
6-12
6-1l
6-13
6~13
6-14
6-14
6-15
6-16
6-17
6-18
6-18
6-20

Listing Data Files .. 6-21
Erasing Data Files .. 6-22
Using Public Data Files :............................ 6-22

Error Messages :.. 6-26

Program Editing' .. 6-28

Operating Instructions .. 6-31
Loading EduSystem 25 .. 6-31

Initialize the DECtape Unit .. 6-31
Initialize Computer Memory 6-31
Answer System Dialog .. 6-32
Establish Terminal Extensions 6-35
Cr~ate Data File Tape .. 6-37

Maintaining the Public Library ~.... 6-38
Protecting DECtape. Files......... 6-39
Storing Programs on Paper Tape 6-39
Reloading Programs from Paper Tape' "'........ 6-39
System Reconfiguration .. 6 ... 40
System ·Shutdown :.. 6-40
System Restart .. 6-40·

CHAPTER 7 EDUSYSTEM 30

Introduction 7-1
System Components ... 7-1
System Expansion ... ~... 7-2

BASIC Language Capabilities ~.............. 7-2
Using Random Numbers ; ... ~............ 7-5
Running Long Programs .. 7-5
Using a Data File 7-6
Character Variables and String Capability 7-8

Using the Interactive Terminal.. 7-11
Entering a Program .. 7 -11
Using Multiple Statements per Line ~........................ 7-12
Listing the Program .. 7 -12
Executing the Program ;...................................... 7-13
Loading a Card ·Program for Interactive Use 7-13

xv

Storing Program~ on Paper Tape
Reloading Programs from Paper Tape :
Privileged Coritrol Commands :
Using th~ System Storage Capability

SAVE and UNSAVE Commands
CATALOG Command
LENGTH Command
OLD Command

Returning to Batch Mode
Program Editing .. ","

Writing and Running Card Programs
Writing a Program on Cards

Line Numbers .. .
BASIC Statements : ... :
Statement Operand
Summary of Card Marking Procedure

Submitting a Program to be Run
The NEW Card
The LIST Card
The RUN Card
Summary

Getting the Results of a Computer Run
Using a Stored Program
Interacting with the Operator
Editing and Rerunning a Program
Inserting Messages in the Program Printout
Sample Program

Problem
Procedures
Printed Results

Executing Card Programs
Normal Batch Operation :
Executing Card Programs Individually
Controlling a Batch Run

BATC!I Command
MAX Command
fIEADER COlnmand
STACK Command
LOG Command

xvi

7-14
7-14
7~14

7-15
7-15
7-16
7-16
7-17
7-17
7-17
7-18
7-18
7-19
7-20
7-20
7-22
7-23
7-23
7-24
7-24
7-24
7-25
7-26
7-27
7-27
7-28
7-28
7-28
7-28
7-29
7-29
7-29
7-30
7-31
7-31
7-31
7-32
7-:32
7-33

Hands-On Interaction Versus Batch ~ 7-33

Enors Messages .. " II •• ~ ••••••••••••••••• ' ••••••••••••••••••••••• ••••••••••

Batch Mode Program LoadiNg Errors
Interactive Mode Program Loading Errors
Coding Errors """"""""""" ~"".""""""""""""""""""""""""""""" .. """"."""."""."""".
Program Logic Errors ;;

Operating Instructions -... .
Loading EduSystem 30

Initialize the DECdisk
Initialize the DECtape Unit
Initialize Computer Memory

System Building .. Dialog :-................ .
Diagnostic Messages During System Build

Turning Off the System :
Turning On the System
Restarting EduSystem 30 ~

DF32 or RF08 Disk
TC01 DECtape
TD8E DECtape ... ~ ..

Using Optional Hardware
LP08 Line Printer ... ;
High-Speed Paper Tape Reader/Punch
Punched Card Input

Calculating Available Storage

CHAPTER 8 EDUSYSTEM 40

Introduction
System Components
System Expansion

BASIC Language Capabilities
Advantages and Applications

EduSystem 20 """"""",,""""""""""""""" t·." ••• ,,"" ••• """"" •••• ,,"",, •• ,,""""" ••••

EduSystem 30

Language Summaries ~
BASIC Statements and Commands

xvii

7-34
7-34
7-35
7-36
7-37

7-38
7-38
7-38
7-38
7-39
7-39
7-43
7-47
7-48
7-48
7-48
7-49
7-49
7-50
7-50
7-50

. 7-51

7-52

8-1
8-1
8-2

8 .. 2
8-2
8-2
8-3

8-4
8-4

Batch Control Cards .. 8-8
BASIC Functions and Arithmetic Operations 8-9

Error Message Summaries .. 8-10
EduSystem 20 .. 8-10
EduSystem 30 .. 8-12

Batch Mode Program Loading Errors ,....... 8-12
Interactive Mode Program Loading Errors 8-12
Coding Errors .. 8-13
Program Logic Errors .. 8-15

Loading and Operating Instructions 8-16
Initializing the DECdisk .. 8-16
Building EduSystem 40 on Disk 8-16
Starting EduSystem 40 .. 8-20

CHAPTER 9 EDUSYSTEM 50

Introduction .. 9-1
User Programs .. 9-2
User Files 9-2
System Configuration ... 9-3
System Expansion .. ' 9-4

EduSystem 50 Monitor .. 9-4
Calling the Monitor ~ ~ 9-4
Logging into EduSystem 50 .. 9-6
Logging out of EduSystem 50 .. 9-8
System Library Program Control 9-10
Communication with Other Users 9-11
System Status Reports .. 9-12
Resource Sharing ... ; 9-12
Error Messages .. 9-16

System Library Programs .. 9-17
General File Characteristics 9-18
Controlling the Execution of System Library Programs .: .. 9-20
Returning to the Monitor ... ; 9-21

XVlll

BASIC ... _ ... 9-23
Truncation Function, FIX(X) .. 9-24
ON· GOTO Statement... 9-24
SLEEP Statement ; .. 9-24
Comments ... " -.. 9-25
Blank Lines ... :. 9-26
Multiple Statements per Line .. 9-26
Editing BASIC Statements ; ~ 9-26
Saving Compiled Programs .. 9-27
File Protection :.: .. 9-27
Project~Program~er Numbers :....... 9-28
Restricted Accounts , 9-28
Catalog ForriI~t : 9-29
Strings in BASIC ,... 9-29

Reading String Data ~ ... 9-29
Printing Strings .. 9-31

- Inputting Strings .. 9-31
Line Input c. ••••••• , •••••••••••••••••••••••• 9-32
Working with Strings .. 9-33
The CHANGE Statement.. 9-34
The CHR$ Functi,on .. 9-36

Program Chaining , ,. ... 9-36
Disk Data Files ... 9-38

File Rec.ords " ... 9-38
Opening a Disk File .. 9-40
Reading/Writing Disk Files .. 9-40
Closing/Deleting Disk Files .. 9-42

DECtape Data Files .. 9-43
DECtape File Records ;.. 9-43
Opening a DECtape File .. 9-44
Reading/Writing DECtape Files 9-45
Closing DECtape Files .. 9-46
Using DECtape Data Files with OS/8 FORTRAN 9-46

Line Printer Output .. 9-47
Paper Tape Output .. 9.-47
Internal Data Codes .. 9-48

Numeric Data .. 9-48
String Data 9-50

Error Messages 9-50

xix

FOCAL .. 9-61
Using FOCAL Commands .. 9-61
FOCAL Overview , ,..................... 9-62
Numbers ... , , 9-63
Variable Names .. 9-63
Arithmetic Operations =.. 9-64

Priority of Arithmetic Operations 9-64
Enclosures .. 9-65

Input/Output Commands 9-66
TYPE Command .. 9-66
ASK Command ~ ... , •...... 9-67

Text Output with ASK .. 9-68
Computational Command. ... 9-68

SET Command .. : 9-68
Control Commands .. 9-68
GO or GOTO Command .. 9-68

IF Command.. 9-69
If with Less Than Three Line Numbers 9-69
Arithmetic Comparison with IF Command 9-70

DO Command .. 9-71
Nested DO .. 9-71

RETURN Command .. 9-72
QUIT Command .-... 9-72
FOR Command .. 9-72 '

FOR with a DO .. 9-73
Nested FOR and DO .. 9-73

Subscripted Variables .. 9-74
COMMENT or CONTINUE Command ; 9-74

Edit Commands , , ... 9-75
WRITE or WRITE ALL Command 9-75
ERASE and ERASE ALL Commands ., 9-76
MODIFY Command .. 9-76

Library Commands , ... 9-78
LIBRARY SAVE .. 9-78
LIBRARY CALL .. 9-78
LIBRARY DELETE ... , 9-79
LIBRARY LIST .. 9-79
Error Messages with Library Commands 9-79

Estimating Program Length _ 9-80
Debuggl'ng 9-81 ,

xx

Using the Error Diagnostics .. 9-81
Using the Trace Feature ~ 9-82

FOCAL Functions ; 9-82
Sine Function (FSIN) .. 9-83
Cosine Function (FCOS) .. 9-83
Exponential Function (FEXP) ~ 9-84
Logarithm Function (FLOG) 9-84
Arctangent Function (FATN) ~ 9-84
Square Root Function (FSQT) 9-85
Absolute Value Function (FABS) 9-85
Sign Part Function (FSGN) .. 9-85
Integer Part Function (FITR) 9-86
Random Number Function (FRAN) 9-86

FOCAL Output Operations ~ 9-86
Control Characters .. 9-87
Reading FOCAL Paper Tapes o _ ... ~ 9-88

FORTRAN-D 9-95
Calling FORTRAN-D ; 9-95
Using FORTRAN-D .. 9-96
Line Format 9-97

Statement Numbers 9-98
Statement Continuation Character 9-98

FORTRAN Statements .. 9-99
Comment Statements : ~.................... 9-99
Character Set .. 9-100
Constants . .. 9-100

Integer Constants .. 9-100
Real Constants .. 9-101
Fixed and Floating-Point Representation 9-101

Variables .. 9-102
Integer Variables ... 9-103
Real Variables 9-103
Scalar Variables .. 9-103
Array Variables .. 9-104

DIMENSION Statement .. 9-104
FORTRAN Arithmetic .. 9-105

Arithmetic Operators .. 9-105
Use of Parentheses .. 9-106

Arithmetic Expressions .. 9-107

XXI

Arithmetic Statements ,................ 9-108
Multiple Replacement " 9-109
Mode Conversion .. 9-110

Functions ... "............. .. 9-110
Program Control 9-111

END Statement .. 9-111
STOP Statement .. 9-111
PAUSE Statement .. 9-112
GO TO Statement .. 9-112
Example of Integer Summation 9-113
IF Statement .. 9-113
DO Loops ... 9-115

CONTINUE Statement.. 9-117
Computed GO TO .. 9-118

FORTRAN Input/Output .. 9-118
Data Formats .. 9-119

ASCII Coded Data .. 9-119
Binary Coded Data .. 9-119

Input/Output Statements .. 9-119
ACCEPT and TYPE Statements 9-120
READ and WRITE Statements 9-121

Variable Specification in I/O Statements 9-121
FORMAT Statement .. 9-123
The A Format Specification .. 9-124
Input Formats .. 9-125

Integer Values-the I Format 9-125
Real Values-the E Format 9-126

Output Formats .. , 9-126
E and I Formats .. 9-126
Format Control Specifications 9-127
Hollerith Output .. 9-127

Imp!ementation Notes .. 9-128
Double Subscripts .. 9-128
Substatement Feature .. 9-129
Error Checking .. 9-130
FORTRAN-D Source Program Restrictions 9-131
FORTRAN-D Compiler and Operating System

Core Map .. 9-131
FORTRAN-D Error Diagnostlcs 9-133

Compiler Compilation Diagnost!cs 9-133

xxii

Compiler Systems Diagnostics 9-135
Operating System Diagnostics...................................... 9-136

~

.PAL-D Assembler .. 9-137
Introduction 9-137

. EduSystem 50 PAL-D : .. 9-137
Example of a PAL-D Program .. 9-138

Utility Programs : 9-145
Symbolic Editor 9-145
Loader ... 9-149
Octal Debugging Technique .. 9-150
Catalog (CAT) .. 9-153
System Status (SYST A T) ,............................ 9-154

Programs for Paper Tape and DECtape Control 9-157
PIP (Peripheral Interchange Program) 9-157

PIP Conventions 9-157
Paper Tape to Disk Transfers 9-157
Disk to Paper Tape Transfers 9-158
High-Speed Reader/Punch Assignments 9-158
BIN Format File Transfers : ~ 9-159
Moving Disk Files : ... \ ... 9-159
Deleting Disk Files 9'-160
BASIC File Transfers .. 9-160
SAVE Format File Transfers 9-160

COpy Program .. 9-161
Using and Calling COpy " 9-161
Loading'Files from DECtape 9-162
Saving Disk Files on DECtape 9-163
Listing Directories .. 9-163
Deleting Files .. ;..... 9-164
Deleting all Existing Files on a Device 9-164
Example of COpy Usage .. 9-165

AdvaDletl Monitor Cootmands .. 9-167
Introduction 9-167
Control of User· Programs .. 9-168
Defining Disk Files .. 9-169

Creating a Disk File : 9-170
Opening and Closing a File ;.......................... 9-170
Extending, Reducing, and Renaming a Disk File 9-171

xxiii

Protection Codes ••••••••••• , ••••••••••••• , •••••••••••••••••••••••••••• II

Error Conditions
Saving and Restoring User Programs
Utility Commands ... "

Writing Assembly Language Programs
Introductioll
Console I/O
Files and Disk I/O :
Assignable Devices , .. .
Program Control " .. .
Program and System Status
PDP-8 Compatibility ... ,

Storage Allocation
Storage Map
File Directories
Prqject-Programmer Numbers ,

APPENDICES

9-171
9-173
9-174
9-177

9-179
9-179
9-180
9-183
9-190
9-195
9-197
9-200

9-205
9-205
9-205
9-206

Appendix A Read-In Mode Loader A-I

Appendix B Character Codes B-1

Appendix C EduSystem 50 Monitor Command Summary C-1

Appendix D EduTest .. D-1

Table 1-1
Table 1-2
Table 1-3~

Table 2-1
Table 3-1
Table 4-1
Table 5-1
Table 5-2
Table 5-3
Table 6-1

LIST OF TABLES

BASIC Statements ,
BASIC Edit and Control Commands
BASIC Functions and Arithmetic Operations
EduSystem 5 BASIC Statement· Summary
EduSystem 10 BASIC Statement Summary
EduSystem 15 BASIC Statement Summary
EduSystem 20 BASIC Statement Summary
EduSystem 20 BASIC Function Summary
EduSystem 20 Error Messages ~.
EduSystem 25 BASIC Statement Summary

XXIV

1-134
1-139
1-144
2-11
3-5
4-26
5-2
5-3
5-12
6-23

:Table 6-2
Table 6-3
Table 7-1
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6

'Table 9-7
Table 9-8
Table 9-9
Table 9-10
Table 9-11

Table 9-12

Table 9-13

Table 9-14
Table 9-15
Table 9-16
Table 9-17
Table 9-18
Table 9-19
Table 9-20
Table 9-21
Table 9-22
Table 9-23
Table 9-24

\

EduSystem 25 BASIC Function Summary
EduSystem 25 Error Messages
EduSystem 30 BASIC Statement Summary
Statements
Edit and Control Commands
Batch Control Cards
Functions
Arithmetic Operations
EduSystem 20 Error Messages
Batch Mode Program Loading Errors
Interactive Mode Pro'gram Load:ng Errors
Coding Errors
Program Logic Errors
LOGOUT Options
Monitor Error Messages-
Internal Data Codes
BASIC Error Messages
Non-Fatal Error Messages
EduSystem 50 BASIC Language Summary ..
FOCAL Command Summary
FOCAL Functions
FOCAL Error Messages
FORTRAN-D Statement Summary
FOR TRAN-D Compiler C6mpil~tion
D· t' , lagnos ICS

FORTRAN-D Compiler Systems
D· st' lagno ICS

FORTRAN-D Operating System
D· t' lagnos ICS

EduSystem 50 Symbol List
P AL-D Error Diagnostics ,
Symbolic Editor Operations Summary
EDIT Command Summary
ODT Command Summary
PIP Option Summary
COpy Option Summary
Monitor Program Control Commands
Monitor Utility Commands
EduSystem 50 Internal Character Set
EduSystem 50 lOT Instruction Summary

xxv

6-26
6-26
7-2
8-4
8-6
8-8
8-9
8-10
8-10
8-12
8-13
8-14
8-15
9-10
9-16
9-49
9-50
9-55
9-56.
9-89
9-92
9-93
9-132

9-134

9-135

9-136
9-139
9-142
9-146
9-147
9-151
9-161
9-165
9-169
9-178
9-192
9-202

Table A-I
Table D-l

Figure 4-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 8-1
Figure 8-2
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure A-I
Figure A-2

RIM Loader Programs A-I
EduTest Error Messages D-I0

LIST OF ILLUSTRATIONS

"System Building Dialog 4-20
EduSystem 30 BASIC Card 7-18
Line Number Example 7-19
Statement. Example 7-20
EduSystem 30 BASIC Template T-21
Marking the Statement Operand 7-22
Completed BASIC Cards 7-23
BASIC Program Deck 7-25
System Building Dialog 7-44
Building EduSystem 40'............... 8-18
Starting EduSystem 40 8-21
Number Representation 9-102
Program Flow .. 9-112
Legal and Illegal Nesting Techniques 9-116
Program Branching in DO 'Loops 9-11 7
EduSystem 50 Storage Map 9-205
File Directories .. 9-206
Loading the RIM Loader A-2
Checking the RIM Loader A-3

XXVI

1
teach yourself:

basic
INTRODUCTION

BASICl is a conversational computer language which enables a
human to carry on a "dialog" with a computer. We will "talk" to
the computer by using a Teletype2 like the one shown below. Your

-terminal may be an alphanumeric cathode ray tube (CRT)
DECterminal or a high-speed DECwriter. Operations with these
terminals are, in most cases, identical w.ith the Teletype, so we .,
will only discuss the Teletype here.

OFF

REL.

B. SP.

ON

START­

STOP­
FREE~

OFF

LINE o LOCAL

1 BASIC (Beginner's All-purpose Symbolic Instruction Code) is a trade­
mark -registered by the Trustees of Dartmouth College.

2 Teletype is a registered trademark of the Teletype Corporation.

1-1

Using the Teletype, we type messages to the computer, request­
ing it to carry out operations. The computer performs the required
operations and prints the results on the same Teletype. If we
make certain mistakes or if we ask the computer to do something
"it cannot do, it may print an error message. For example, if we type

DO THE HOMEwORK ON PAGE 257
(and press the RETURN key)

INHAT1

the computer may respond by printing a message such as
WHAT?

The actual response depends on the EduSystem that you are
usmg.

If you wish to use the computer, you must:
Learn what the computer can do and what the computer can­
not do.
Learn a language, such as BASIC, so that you can instruct
the computer to do things within its capability.

Communcate with the computer by means of the Teletype.

We will begin by assuming that you know little or nothing about
computers and will try to lead you through the following four
levels of "know-how."

1. You know nothing about computers. If you wish to .use a
computer to help you solve a problem, you describe the
problem to Susan. Susan uses the computer and returns the
answer to you.

2. You can operate the computer (Teletype), using a pro­
gram supplied by another person. The program, however,
is gibberish to you-incomprehensible!

3. You can read and understand programs written by others
but are unable to write original programs of your own.

4. Computerland is yours! You can invent your own original
problem-solving pro~edures, write them in the BASIC lan­
guage, check them out on the computer, correct them ("de­
bug" them) if necessary, and obtain the desired results.

This chapter is designed to help you learn the fundamentals of
BASIC. Many examples and exercises are included to aid you in
discovering the elements of the BASIC language.

1-2

Teletype Keybourd

BASIC programs must be written using the symbols that appear
~n the Teletype keyboard. A diagram of the Teletype keyboard
lS shown below:

fT\ f7'\ f7\ ('$\ 17\ fa\ f-"\ CD fl\ f\ '*" f.\ ~
VV'-V-.V\.:.J\'v\'ve\"v\'vVV\V
~ f\ f\ r:;;) ~ ~ () f\ (;;;\ A (@\ ~ {;;\
~\.::J~\':"'\'v\'yY\::..J\.:J\V\:...J~~

8oe~vG)eDOOCDeCD@ee
8 Q()'OOOCDCDOG(D 8

SPACE

No other symbols may be used. For example, the following
symbols are commonly used in mathematics, but may not appear
in a BASIC program because they are not on the keyboard.

a f3 ~ s

On the keyboard diagram, locate the keys with the foHowing
symbols:

Letters:

Digits:

Special:

ABC 0 E F G H I J K L M N
o P Q R STU V w x y z

1 234 567 B 9 0

. . / -

To type any of the above symbols, simply press the appropriate
key. For example, to type the letter S, press the key on which S
appears.

1-3

Here is another copy of the key~oard chart so you won't have

to turn the page back.

e>cbCDC)G)(D0660cbcb©
~(\(\~~~()(\(';;;\:-ff\e0
~ \.V \!..J \.!..) \V.\V v \V \.:J \.V ~ ~

80GJGJG)evQO(D,e: @ee
8 OOOG)O ~ Q)OC)Q) 8

Locate the SHIFT keys. There are two of them, located at the
left and right ends of the bottom row of keys. When we refer to a
character that is typed while the SHIFT key is held down, we will
show it as SHIFT/Character. For e~ample, if we want you to type
a ~ (back arrow) we will tell you to type SHIFT/O.

We have drawn arrows to call your attention to the keys with
tlte following special characters.

It () * t +

To type any of these characters, you must hold either SHIFT
key down and press the key that has the desired character.

The space bar looks like this:

Use it to insert spaces as you type.

Locate the RETURN key:

SPACE

(;;\
~

Now you are ready to start "talking" to the computer.

1-4

\

GETTING ACQUAINTED WITH BASIC

Imagine that we are seated at the teletype and that (perhaps
with some help) we have attracted the attention of the computer.
We will begin with some absurdly simple programs.

If you try these programs; remember to press the
RETURN key at the end of each line that you type. If
you make a mistake, the compu~er may print'an error
message. Ignore it-retype the line.

Here we go!

SCR

10 PRINT 7
99 END

RUN
7

First, we type SCR and' press the
RETURN key. The computer
SCRatches (erases) any old pro­
gram in its memory.

Then we enter our BASIC program,
consisting of two statements. Each
statement is on' a separate line. The
program is in the computer's mem­
ory.

We tell the computer to RUN the
program. It does and 'prints the re­
sult, 7.

The BASIC program is shown again below.

10 PHtNT' 7
99 END

It consists of two statements, a PRINT statement and an END
statement. Each statement begins with a line number. Read on­
it gets better. '

1-5

Let's do something a little more exciting.

SCR

1~ PRINT 3+4
99 END

RUN

1

20 PRINT 3-4
30 PRINt' 3*4
40 PRIIf! 3/4
40 PRINT 3/4

LIST

10 PRINT 3+4
20 PRINT 3-4
30 PRINT 3*4
40 PRIN_T 3/4
99 END

RUN

1
-1

12

First, we SCRatch the preceding
program.

And then enter a new program.
This program also has two state­
ments.

We tell the computer to RUN the
program.

It does, The result is 7 since 3 +
4= 7.

Let's add three more statements.
We use 20, 30 and 40 as line num­
bers.

Then we type LIST and press the'
RETURN key.

The computer LISTs the program
in its memory. Note that there are
five statements and that they are
listed in line number order.

O.K., let's RUN the program.

Here are the four results, one for
each of the first four statements in
the program.

Exercise 1. Examine the preceding program, then write the sym­
bol that is used to tell the computer to perform each of the follow­
ing arithmetic operations. -

OPERATION

Addition
Subtraction
Multiplication
Division

1-6

SYMBOL

Remember these things.

WE TYPE TO TELL THE COMPUTER TO

SCR

RUN

LIST

The statement

10 PRINT 3+4

SCRatch (erase) the program in memory.

RUN the program in memory.

LIST the program in memory.

tells the computer to evaluate the numerical expression 3 + 4 and
print the result. In this case, the result is 7.

The statement

tells the computer to evaluate the numerical expression 3*4 (3
times 4) and print the result. This time, the result is 12.

The statement

99 END

simply marks the end of the program. Every BASIC program
musj have an END statement.

Each statement begins with a line number.' A line number may
be any counting number in the range:

1 ~ line number :::;;; 2046 .

Larger EduSystems permit line numbers to 9999, but 2046 is
plenty for most programs.

Instead of numbering statements with consecutive counting num­
bers (1, 2, 3, etc.) we use 10, 20, 30 and so on. This' gives us
room to insert a new statement between two old statements. For
example, if we had already entered a program using 10, 20, 30,
40 and 99 as line numbers, we could insert a sta,tement between
statement 20 and statement 30 by using 25 as the line number
of the new statement.

1-7

Exercise 2. Do not use the computer to do this exercise. Instead,
pretend that you are the computer. We have entered the following
program into your memory and told you to RUN the program.
Do it.

10 PRINT 12+3
20 PRINT 12-3
30 PRINT 12*3
40 PRINT 12/3
99 END
RUN

We entered this program, consisting
of five statements, into your mem­
ory.

O.K., computer, RUN the program ..
Indicate your answer by filling in
the blanks.

Exercise 3. You are·still the compuer. We will add a statement
to the program we entered in the preceding exercise.

50 PRINT 2*3+4

LIST

RUN-

We add this statement.

LIST the program in your memory.

'-.

Now RUN the program.

1-8

Numerical Expressions

The computer prints the value of a numerical expression as a
decimal numeral. The following table shows examples of computer-.
printed values of numerical expressions. '

EXPRESSION VALUE REMARKS

3.14
-123

2+3+4
5-3+4
2*3*4
2*3/4

2*3 +4
2 + 3*4
35 - 2*3
112+3
2 + 3/4
24/2*3

11(2+3)
(2+3)/4
24/(2*3)

1/3
2/3
100/3
200/3

3.14 A decimal numeral is a
-123 decimal numeral

9" 2+3+4=5+4=9
6 5-3+4=2+4=6
24 2*3*4....:... 6*4 = 24
1.5 2*3/4 = 6/4 = 1.5

10 2*3 + 4 = 6 + 4 = 10
14 2 + 3*4 = 2 + 12 = 14
29 35 - 2*3 = 35 - 6 = 29
3.5 1/2 + 3 = .5 + 3 = 3.5
2.75 2 + 3/4= 2 + .75 = 2.75
36 24/2*3 = 12*3 = 36

.2 . 11 (2 + 3) = 115 = .2
1.25 (2 + 3)/4 = 5/4 = 1.25
4 24/ (2*3) = 24/6 =4

.3333333

.6666667 Value rounded to seven
33.33333 significant digits.
66.66667

NOTES

1. The operations are done in left to right
" order.

2. All multiplications and/ordivisions are done
before any additions and/ or subtractions.
To evaluate 24/2 * 3 the computer first div­
ides 24 by 2, obtaining 12. Then it mUltiplies
12 by 3, obtaining 36.

3. We use parentheses to modify the order in
which operations are done.

1-9

NOTE 1.

NOTE 2.

NOTE 3.

Your turn-but let someone else use the computer while you
work the following exercises.

Exercise 4. You are the guest star on the television program
"Computer for a Day." To win the grand prize (7 microbucks)
you must evaluate each of the following numerical expressions. Go!

(1) 3*4+5 ____ _ (2) 3 + 4*5 ____ _

(3) 3/4 + 5 ____ _ (4) 3 + 4/5 ___ _

(5) 3*4/5 _____ _ (6) 3/4*5 ____ _

(7) 3*(4 + 5) ___ _ (8) 3/(4*5) ___ _

(9) 3/(4 + 5) ___ _ (10) 3/4/5 ____ _

Use your computer to check the answers. Did you win the prize?
If not you can still win by finding a computer that evaluates nu­
merical expressions the same way you do. Good lu~k!

Exercise 5. Complete the following table showing BASIC ex­
pressions that correspond to given mathematical expressions.

MATHEMATICAL EXPRESSION BASIC EXPRESSION

(1) 2 x 3 + 4 -:- 5 2*3 + 4/5

(2) 37(43 - 19) 37*(43 - 19)

(3) 3.14X 5 X 5

(4) 2
3+4

(5) 73 - 25
29 + 53

Back to the computer to check your answers.

1-10

The PRINT Statement

Previously, we used PRINT-statements of the following form: .

n PRINT e

where n = line number
e = numerical expression

For example:

10 PRINT 3+4

Imenumber~
PRINT----------~

numerical expression ___;.t

A PRINT statement of this· form directs the computer to com­
putethe value (simplest form) of the numerical expression e and
to print the result on the Teletype.

The following program illustrates a PRINT statement that has
more than one numerical expression.

SCR As usual, we first SCRatch any left­
over program.

10 PRINT 3+4" 3-4" 3*4~ 3/4 Next, we enter the program. The
99 END PRINT statement includes. four ex-

pressions.

RUN Let's RUN the program.

7 -1 12 .75

Since the PRINT statement has four expressions, the computer
prints four results.

1-11

A more general form of the PRINT statement is shown below.

n PRINT - list of expressions

For example,

10 PRINT 3+4" 3··4" 3*4" 3/4

line number -.J
PRINT----....

list of expressions --------001

Remember these things:

RUN
1
2.4

• A PRINT statement can contain more than one expression.

• One result is printed for each expression in a PRINT state­
ment.

• If a PRINT statement contains more than one expression,
then the expressions must be separated by commas.

• Up to five (5) results per line are printed. If there are more
than five expressions in -the PRINT statement, additional
results are automatically printed on the next line;

For example, the statement

will cause the computer to print the following results.

12 .15 6"

1-12

I

Exercise 6. Do not use the computer for this exercise. Instead,
pretend that you are the computer and RUN each of the follow­
ing programs.

10 PRINT 1,2,3,4,5,6,1,8,9,10,11, 12
99 END

RUN

10 PRINT 1*2,2*3,3*4,4*5,5*6,6*1,1*8,8*9
99 END

RUN

Exercise 7. Each new PRINT statement causes a new line to
be printed. RUN this program.

10 PRINT 1,1*1
20 PRINT 2,2*2
30 PRINT 3,3*3
40 PRINT 4,4*4
50 PRINT 5,5*5
60 PRINT 6,6*6
10 PRINT 1,1*1
99 END
RUN

1-13

Once again ...
Each new PRINT statement
causes a new line to be printed.

If we use a semicolon (;) instead of a comma to separate ex­
pressions, the results will be packed mor,e closely together. For
example, try this one on your computer.

SCR

10 PRINT 3+4;3-4;3*4;3/4
99 END

RUN
7 -1 12 .75

Goodbye, old program!

Note the s(~micolons (;).

Watch the spacing in the results be­
low.

The results are "packed" more
closely together than if we had
used commas.

When we use semicolons to separate expressions, the computer
will print up to 17 results per line. The actual number, however,
depends on the number of digits that it must print. For example,

10 PRINT 1;2;3;4;S;6;7an9; H~ill; 12;1:3; 14: 15; 16; 17; lR.:19
99 END
RUN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19

The first 17 results were printed on
the first line - the 18th result on
the second line.

Let's see what happens as the numbers get larger.

10 PRINT 1112;123;1234'12345;123456;1234567
99 END
RUN

1 12 123 1234 12345 1234056 1.234567E+06

This is a floating point numeral. We describe floating point nu­
merals in the next section.

1-14

Remember these things:

• If a PRINT expression, contains more than one expression,
then the expressions must be separated by commas (,) or
semicolons (;).

• If commas are used for spacing, up to five results per line
are printed. If semicolons are used, the results are ':packed"
more closely together. The actual spacing depends on the
size of the numbers involved.

• If you want to find out more about spacing - experiment!

EXPERlMEN~

Floating Point Numerals

Floating point notation is similar to scientific notation. The com­
puter does it this way.

10 PRINT 10
20 PRINT 100
30 PRINT 1000
40 PRINT 10000
50 PRINT 100000
60 PRINT 1000000
70 PRINT 10000000
99 END

RUN
10
100
1000
10000
100000
1.000000E+06
1.000000E+07

In the program each number is ex­
pressed in "standard" or "common"
notation.

The numerals are printed' in stan­
dard notation, exactly as they are
written in the PRINT statements.

But these are printed as {loating
point numerals.

1-15

The following examples show the same number expressed in
"standard" notation, scientific notation and floating point notation.
If a number is larger than 6 digits, its numeral will be printed in
floating point notation.

STANDARD SCIENTIFIC FLOATING
NOTATION NOTATION POINT

1000000· 1 X 106 1.000000E + 06
10000000 1 X 107 1.000000E + 07
100000000 1 X lOS 1.000000E + 08
1000000000000 1 X 1012 1.000000E + 12

Let's see how BASIC handles small numbers.

10 PRINT .1
20 PRINT .001
30 PRINT .000000001
99 END
RUN

.1
1.000000E-03
1.000000E-09 •

If a number has more than 2 deci­
mal places, its numeral is printed
in floating point notation.

Exercise 8. Complete the following table showing the numerals
in scientific notation and standard notation corresponding to nu­
merals given in floating point notation as they might be printed
by the computer.

FLOATING SCIENTIFIC STANDARD
POINT NOTATION NOTATION

1.00000E + 09 1 X 109 1000000000

1.00000E - 09 1 X 10-9 .000000001

2.00000E + 09 2 X 109 2000000000

2.00000E - 08 2 X 10-8

3.00000E + 12

6.02000E + 23 6.02 X 1023

1.23456E - 16 .000000000000000123456

1-16

Printing Messages
The PRINT statement in the following program directs the com­

puter to print a message.

The "message is enclosed in quotation marks.

10 PRINT "I LIKE PEOPLE"
99 END
RUN Let's RUN the program.

I L IKE PEOPLE The computer types the message.

Here is another example.

10 PRINT ttGOOD MORNING"
99 END
RUN
GOOD MORN ING

Unfortunately, if you RUN this program in the afternoon, the
computer will still print

GOOD MORNING

The next example illustrates the difference between a numerical
expression and the value of a numerical expression.

10 PRINT "3+4-",3+4
99 END
RUN
3+4= 7

READY.

This program directs the computer
to print the message "3 + 4 ="
followed by the value of 3 + 4.

1-17

If you didn't like the spacing in the printed results, you can use
a semicolon instead of a comma to control the spacing.

10 PRINT "3+4:";3+4
99 END
RUN

3+4:7

Semicolon spacing.

Exercise 9. You be the computer. RUN the following program
without using the computer-you do the work and fill in the
blanks.

10 PRINT "IF I WERE. A COMPUTER,,"
20 PRINT "1·'0 DO ARITHMETIC LIKE THIS"
30 PRINT "3+4.";3+4
40 PRINT "3-4-"J3-4
50 PRINT "3*4-"J3*4
60 PRINT "3/4-";3/4
99 END
RUN
IF I WERE A COMPUTER"
I'D DO ARITHMETIC LIKE THIS

Your work is here.

REMEMBER THIS: Anything enclosed in quotation marks in
a PRINT statement is printed exactly as
it appears. No arithmetic is performed.

1-18

Exponents-Computing a Power of a Number
The following program illustrates a new idea - computing a

power of a number.

10 PRINT "5*5-5.2-"J5'2
20 PRINT "2*2*2-2. 3-" ;2"3
30 PRINT ~3*3*3-3'4·"J3'4
99 END
RUN
5*5-5 '2- 25
2*2*2-2'3- 8
3*3*3-3'4- 81

The t is on the bottom row of keys.
Hold the SHIFT down when you
wish to type t.
We' use the t key when we want to.
tell the computer to compute a
power of a number.

In math, we write 23, but in BASIC we write 2 t 3. Remember·
-BASIC notation is not math notation even though there are
similarities.

Here are some examples showing the values of expressions in
which the t is used.

EXPRESSION VALUE

2t5 32
3t2 + 4t2 25
(2 + 3)t4 625

REMARKS

2t5 = 2*2*2*2*2 = 32
3t2 + 4t2 = 9 + 16 = 25
(2 + 3)t4 = 5t4 = 5*5*5*5 = 625

Exercise 10. Write the value of each expression.

EXPRESSIO~

It3
7t2
3t3
4t5

VALUE YOUR REMARKS

Unless parentheses are used to change the order, the computer
does powers first, then multiplications and divisions, then additions
and subtractions. (See Note 2, page 1-9.)

1-19

GATHERING SPEED

Variables
In mathematics, we have great freedom in selecting symbols to

use as variables. We use the letters A - Z of our alphabet, the
letters of the Greek alphabet and, in fact, any symbol that we may
"invent" for this purpose. In BASIC, however, we must restrict
you in your choice of symbols. For now, we impose this rule:

A BASIC variable may be any letter of the
alphabet. That is, any of the following may be
used as a variable:

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

In BASIC, each variable refers to a distinct location in the com­
puter's memory. It may help you to think of the computer's mem­
ory as a set of 26 boxes, labeled A through Z, like this:

A H 0 V

B I P W

C J Q X --
D K R Y

E L S Z

F M T

G N U

We call these boxes locations. Each location can hold one num­
ber at anyone time. This number is the value of the variable
corresponding to the location.

Exercise 11. LET A = 3. In other words, take pencil in hand and
write the numeral "3" in the box labeled "A." Then do the follow­
ing in similar fashion:

(1) LET B = 4 (2) LET P = 3.14

1-20

(3) LET Z =-1

The following example shows how we assign a value to a variable
in a BASIC program.

10 LET A-a
20 PRINT A
99 END
RUN
a

Assign the value 3 to the variable
A. Print the value of A.

And here it is (the value of A, that
is) .

A more general form of the LET statement is shown below.

n LET v e

where n = line number
v = BASIC variable
e = numerical expression

"

For example,

Here is some additional evidence .. You may wish to RUN the
following program.

SCR

10 LET Aa.3·
20 LET' B-4
30 LET C-3+4
40 LET D-3-4
50 LET E-3*4
60 LET.F-3/4
7,0 LET 6-3'4
80 PRINT AJBICJDJEJFJG

:~~/l'\
3 4 7-1 12 .75 81

Don't forget to SCRatch!

(Note.the semicolons.)

1-21

Let's see what happens-blow by blow-. as the computer RUNs
the program. Below is a trace of the program from the preceding
page. The trace shows the value of each variable after the state­
ment on the same line has been carried out by the computer.

STATEMENT A B C D E P G

10 LET A = 3 3

20 LET B = 4 3 4

30 LET C = 3 + 4 3 4 7

40 LET D = 3 - 4 3 4 7 -·1

50 LET E = 3*4 3 4 7 -·1 12

60 LET F =3/4 3 4 7 _. 1 12 .75

70 LET G = 3 t4 3 4 7 -·1 12 .75 81

80 PRINT A'B'C'D'E'P'G , .' , , , , 3 4 7 -·1 12 .75 81

99 END 3 4 7 -1 12 .75 81

The trace is an important idea-from now on, we will depend
on it. Therefore, you had better learn how to (1) read a trace and
(2) do a trace.

Exercise 12. Trace the following program . ..

STATEMENT

10 LET P = 5

20 LET Q = -123

30 LET R = 57.3

40 LET S = 2 *3 + 4* 5

50 PRINT P, Q, R, S

99 END

P Q

1-22

R S

The LET statement directs the computer to compute the value
of the expression to the right of the "=" symbol and assign this
value to the variable that appears to the left of the "=" symbol.
This value replaces any previous value of the variable. For example,

STATEMENT A REMARKS

10 LET A = 1 1 Assign the value 1 to A.

15 PRINT A 1 Print the current value of A.

20 LET A = 2 2 Assign the value 2 to A.

25 PRINT A 2 Print the current value of A.

30 LET A = 3 3 Assign the value 3 to A.

35 PRINT A 3 Print the current value of A.

99 END 3

If we RUN the program above, we obtain the following results.

RUN
1
2
3

Exercise 13. Without using the computer, RUN each of the fol­
lowing programs. (Fill in the blanks.)

10 LET X-3
20 LET X-S
30 LET X-7
40 PRINT X
99 END
RUN

P.S.

10 LET X-3
20 LET Y.S
30 LET Z-7
40 PRINT X;Y;Z·
99 END
Rl,1N

On EduSystems, you don't have to type the word LET in an ex­
pression. In other words,

10 A = 1 is equivalent to 10 LETA = 1

To be consistent with Dartmouth BASIC, we'll use LET in this
manual but you don't have to on your EduSystem.

1-23

Variable Expressions
A variable expression is an expression that contains a variable.

For example, the following are variable expressions:

A A-B 2*X P/Q -c A*(B + C)

A/B + c/n 3.14*R t 2.

We evaluate a variable expression by assigning values to its vari­
able or variables and carrying out-the indicated operations.

For example, A *B is a variable expression with variables A and
B. If A = 3 and B = 4, then the value of A*B is 12. But if
A = -7 and B = 5, then the value of A*B is --35.'

VARIABLE VALUE(S) OF VALUE OF
EXPRESSION VARIABLE(S) EXPRESSION

A A = 3 3
A = -123 -123

A-B A = 12 and B = 7 5
A = 3 and B = 4 -1

2*X X = 3.14 6.28
X =-6 -12

P/Q P = 35 and Q = 5 7
p= 2 and Q = 3 .666667-

-C C=8 -8
C=O 0
c= -12 12

A*(B + C) A = 3, B = 4, C = 5 27

3.14*R t 2 R=3 28.26

1-24

Each of the following programs directs the computer to evaluate
one or more variable expressions and print the result or results.
We use LET statements to assign values to variables.

10 LET A-3
20 LET B-4
30 PRINT A+B
99 END
RUN

7

10 LET A-3
20 LET a-4.
30 PRINT A*B
99: END
RUN

12

Exercise 14. Without using the computer, complete each RUN
by filling the blank with the result.

10 LET A-3
20 LET B-4
30 PRINT A-B
99 END
RUN

10 LET A-3
20 LET B-4
30 PRINT AlB
99 END
RUN

Exercise 15. The following program illustrates the use of variable
expressions. Trace the program by filling in the blanks under the
headings "A" through "G."

PROGRAM

10 LET A= 3

20LETB = 4

30 LETC=A + B

40LETD=A-B

50LETE= A*B

60 LET F = AlB·

70 LET G·= AtB

80 PRINT A;B;C;D;E;F;G

99 END

A B C DEF G

1-25

FEEDING THE BEAST

The INPUT Statement
In this section, we introduce a statement called the INPUT state­

ment. But first, let's solve a problem that may point up the need
for the INPUT statement.

Problem. The area A of a circle of radius R is given by the
formula: .

where 7f' = 3.14

We want to use the computer to compute the areas of three dif­
ferent circles. These circles have radii

R == 2, R == 3, and R ---:- 8.

Here is a step-by-step description of how we could use a com­
puterto solve the problem.

seR

10 LET R-2
20 PRINT R,3.14*Rt2
99 END

RUN

2

10 LET R-3

RUN
3

10 LET R-8

RUN

8

28.26

200.96

First, SCRatch any old program.

Here is our program. It will work
for R = 2.

Let's RUN it.

For R = 2, the area is 12.56.

Do NOT type SCR. Instead, enter
a new Statement 10.

For R = 3~ A = 28.26.

Again-change Statement 10.

And RUN the program.

For R = 8, A = 200.96.

1-26

We can reduce the amount of work required to solve the prob­
lem on the preceding page by using the INPUT statement. Here
is a program that uses an INPUT statement to permit input ofa
value of R.

10 INPUT,R
20 PRINT R,3.14*Rt2
99 END
RUN
1

We enter this program.

And tell the computer to RUN it.
t

The computer types a question
mark and stops.

For a second, we sit and contemplate that question mark. What
does the computer want? Of course! It wants a value for R. So
we enter 2 as the value of R and press the RETURN key. The
computer then prints

2 12.56

O.K., here is a RUN for R = 2, R = 3 and R = 8. Try this one
on your computer.

SCR

1121 INPUT R
2121 PRINT R,3.14'*fif2
99 END
RUN

12
2

RUN

13
3

RUN

18
8

12.56

28.26

21210.96

SCRatch any previous' program.

Enter the program.

RUN the program.

Enter 2 and press RETURN.
For R :::: 2, A := 12.56.

RUN, the program again.

Enter 3 and press RETURN.
For R = 3, A = 28.26~

RUN the program again.

Enter 8 and press RETURN.
For R = 8, A = 200.96.

1-27

The general form of the INPUT statement is

line number

For example,

INPUT list of variables

10 INPut A .. B,C

line number

INPUT

list of variables

Note that only the variables in the list are separated by com~as.
There is no comma following the word "INPUT" and there is no
comma after the last yariable in the list.

The INPUT statement directs the computer to type a question
mark and then stop and wait. Now you must understand that
computers are very patient-if you don't cooperate, the computer
will simply wait-and wait-and wait. To prevent this from hap­
pening, all you have to do is feed the computer-it's hungry-it
wants data.

Remember these things:

• The INPUT statement causes the computer to type a ques­
tion mark.

• When the question mark appears, the pperator must enter
one value for each variable in the INPUT statement. The
values are entered in the same left to right order as the vari­
ables appear in the INPUT statement.

o Don't forget to type commas between values.

o After entering the last number, press the RETURN key. If
you have done everything correctly, the computer will pro­
ceed.

Here is another example.

17 INPUT A"B .. C
23 PRINT A*CB+C)
99 END
RUN
13,,4 .. 5

27

Since there are three variables, we
must enter three values.

If A = 3, B = 4, C = 5, then
A*(B + C) = 27.

1-28

Exercise 16. There is something wrong with each INPUT state­
ment shown below. For each one, circle the mistake and write the
reason.

I~CORRECT STATEMENT REASON

10 INPUT ,A,B,C,

20 INPUT X,Y,

30 IMPUT P,Q,R,S,T

40 INPUT A+B

50 INPUT I;J;K

60 INPUT AA,BB,

70 INPUT AB C

Exercise 17. We ran two simple programs. Here they are but
some things are missing. Complete each RUN by filling in the
blanks.

10 I NPUT A;B, C
20 PRI NT A
.)0 PRI NT B, C
99£ND

RUN
1-2,-3,-4

12 INPUT U,V,W,X
25 PRINT U,U+V
36 PRINT W,W*X
99 END

RUN
1_-

7 12
3 45

1-29

The GO TO Statement
The following program appeared on page 1-27.

10 INPUT R
20 PRINT RI3.14*Rt2
99 END

When we used it, we had to type RUN for each value of R. (See
page 1-27.) To eliminate the need to type RUN for each new
value of R, we add the following GO TO statement.

30 GO TO 10 (This directs the computer to "GO
TO Statement 10.")

Here is a RUN of the modified program. Try it on your com­
puter.

seR

10 1 NPUT R
20 PRINT R,3.14*Rt2
30 GO TO 10
99 END
RUN

12
2 12.56

13
3 28.26

18
8 200.96

1

First, let's SCRatch.

Then enter the program.

Here is our GO TO statement.

Now let's RUN the program.

Each time after printing the results
the computer does a GO TO 10
and automatically restarts at the
INPUT statement.

How do we tell the computer we
are finished? Hold CTRL down,
press C, and release. The computer
will stop.

1-30

The GO TO statement has the general form

line number GO TO line number

The GO TO statement directs the com""
puter to GO TO the statement that has
this

For example:

line number

GO TO

line number

30 GO TO 10

Exercise 18. Do not use the computer to answer this. If you were
a computer and you came to the following statement, what would
you do? .

115 GO TO 45

Exercise 19. Complete the following program to convert from
degrees Centigrade to degrees Fahrenheit.

In math notation, the formula is F = ~ 'C + 32

10 INPUT C
20 LET F-
30 PRINT C"F
40 PRINT
50 GO TO
99 END

RUN
10

0

1100
100

137
37

1

32

212

77

1-31

(You write the formula-in
BASIC.)

(00 TO where?)

If C = 0, then F = 32.

If C = 100, then F = 212.

(Hint: Body temperature)

Give F, what is C?

READ and DATA Statements
Whenever possible, we prefer providing data (values of vari­

ables) by means of the READ and DATA statements. The follow­
ing program is a modification of our "Area of a Circle" friend on
page 1-26.

10 READ R
20 PRINT R,3.14*Rt2

30 DATA 2,3,8

40 GO TO 10
99 END
RUN

2
3
8

12.56
28.26
200.96

DATA ERROR AT LINE 10

The statement

10 READ R

This is a READ statement.

This is a DATA statement.

Here are the results." On each line,
the value of R is on the left and
the value of the area is on the right.

This message may be different or
even omitted. It simply means that
the computer has READ all the
DATA.

tells the computer to read one value of R from the list of values in
the DATA statement. Each time the READ statement is executed,
the computer reads the next value from the DATA statement. In
other word~, the computer remembers what values have already
been read. .

If there is no more data to be read in the DATA statement, the
computer stops automatically.

1-32

Here is another example using the READ and DATA statements:

Four students' named Frodo, Sam, G and alf, and Strider have
each takep three quizzes. Their scores are:

..
STUDENT FIRST SCORE SECOND SCORE THIRD SCORE

Frodo 66 81 75

Sam 91 88 95

Gandalf 78 78 62

Strider 80 83 86

We have written a. program to compute the. arithmetic mean
(average) of three scores and have run it for the above data.

10 READ XIY .. Z
20 LET M-(X+Y+Z)/3
30 PRINT X .. YIZ .. M
40 GO TO 10
90 DATA 66 .. 81 .. 75
91 DATA 91 .. 88 .. 95
92 DATA 78 .. 78 .. 62
93 DATA 80 .. 83 .. 86
99 END

RUN
66
91
78
80

81
88
78
83

We use X, Y, Z to denote the first,
second and third scores.

Frodo's scores.
Sam's scores.
Gandalf's scores.,
Strider's scores.

75
95
62
86

74
91.33333
72.66667
M

DATA ERROR AT LINE 10 ~

, The averages of the three scores are in this column.

DATA statements may be' placed anywhere in the program.
They must, however, have line numbers smaller than the line num­
ber of the END statement.

1-33

The general form of the READ statement is

line number READ list of variables

For example: 10 READ X, Y, Z

line number

READ

list of variables
[

The variables are
separated by
commas.

Exercise 20. There is probablyH something wrong with ~ach of
the following READ statements. For each one, circle the mistake
(if possible) and write the reason.

INCORRECT STATEMENT

10 READ, A,B,C

20 READX,Y

30 REED P,Q,R,S,T

40READA+B

50 READ I;J;K

60 READ AA,BB

70 READ ABC

80 READ 3.14

REASON

The READ statement directs the computer to read one value
from the DATA statement for each variable in the READ state­
ment. If there are two or more DATA statements in a program,
the values in the statement with the smallest line number are used
first, then the data in the statement with the next smallest line
number and so on.

3 Depends on the system ... EXPERIMENT!

1-34

The general form of the DATA statement is:

line number DATA ,list of numerals

For example: 90 DATA 66, 81, 75 .

line number J
DATA··---_

list of numerals ____ ..I

Expressions such as -
2 + 3 are not allowed
in the list.

Exercise 21. There is something wrong with each of the follow­
ing DAT A statements. For each one, circle the mistake and write
the reason.

INCORRECT STATEMENT

10 DATE 1, 2, 3,4

20 DATA 112,2/3,3/4

30 DATA A, B, C, D, E

40 DATA, 3.7, 2.9

50 DATA 3.7,2.9,

REASON

The following three sets of DATA statements are equi\.:alent.

90 DATA 2,3,6,8, 12, 15, 19,27,33,26,47, 59

90 DATA 2,3,6
91 DATA 8,12,15; 19,27
92 DATA 33, 26, 47, 59

90 DATA 2, 3, 6, 8,12,15
91 DATA 19, 27, 33, 26,47, 59

That's right, the numerals in the list are separated by commas.

1-35

The RESTORE Statement
The RESTORE statement allows you to reuse DATA statements,

beginning with the lowest numbered DATA statement in the pro­
gram. An example of the use of the RESTORE statement is shown
below:

10 DATA 2,,3,,6
20 DATA 8,,12,,15
30 READ A"B .. C .. D·
40 PRINT A"B"C"D
50 RESTORE
60 READ E"F
70 PRINT E"F
99 END

RUN
2
2

3
3

The RESTORE statement at line
50 allows the READ statement at
line 60 to obtain values 'from the
DATA statement at line 1 0

6 8

Without the RESTORE statement, an error message would have
occurred, indicating a lack of data for the READ statement at line
60. '

Exercise 22. Without using -the computer, RUN each of the fol­
lowing programs. (Fill in the blanks.) If you wish, check your an­
swers with the computer.

10 DATA 1,,2 10 READ X
20 READ A"B 20 PRINT X
30 PRINT A"B 30 RESTORE
40 RESTORE 40 READ Z
50 DATA 3,,4 50 PRINT Z
60 READ C .. D 60 DATA 4 .. 1 .. 2
70 PRINT C"D 70 DATA 3 .. 5 .. 7
99 END 99 END
RUN RUN

1-36

More Messages

We can make the results more readable by including' a statement
that causes the computer to print a heading. For example

5 PRINT "RADIUS"~"AREA"
10 READR
15 DATA 2~3 .. 8,
20 PRINT R~3\14*Rt2
25 GO TO 10'c

99 EN·D
RUN
RADIUS

2
3
8

AREA
12.56
28.26.
200.96

DATA ERROR AT LINE.10

Print a heading.

Exercise 23. Time to. play computer. Without using the com- .
puter, RUN the following program.

10 PRINT "L·'~ "R" ~ "L* 10+Rtf~ "L*8+R"
13 READ L~R
21 PRINT L~R.L.10+R~L*8+R·
27 GO TO 13
85 DATA 0~7"1.0~1.1.1.1.;'2,,.e .. 1,,7
99 END

RUN

1-37

Headings

Numerical results

Exercise 24. We have written a program to compute the ~rea of
a triangle, given the base B and the height H as data.

AREA'" t BH = BH/2

We want to complete the following table.

B II AREA

7 6

8 12

5 9

23 17

Here is our program. Complete it by filling in the DATA stat.e­
ment. Then, if you can get on the computer, RUN it and cqmplete
the above table.

10 PRINT "B","H","AREA"
20 READ S,H
30 PRINT B~H,B.H/2
~" GOTO 20
90 DATA
99 END

1-38

YOU CAN COUNT ON IT

~oops
Let's teach the computer to count. That is, let's develop a pro­

gram to direct the computer to generate and print consecutive
counting numbers. The counting numbers are:

1, 2, 3,A, 5, 6, 7, 8, ...

Here is our program and a RUN as evidence that it does what
we claim.

Beware! If you RUN the following program,
you may have trouble stopping the computer.
Check with someone who knows how to in­
terrupt your computer.

10 LET K:1
20 PRI NT K
30 LET K :K+l
40 GOTO 20
99 END

RUN

I
2
3
4
5
6
7

and so on.

Assign the value 1 to K.
Print the current value of K.
Increase the vf\lue of K by 1.
Go around again.

Let's RUN the program.

If we don't interrupt the computer,
it will go on and on-printing
counting numbers. We· can inter­
rupt the computer by holding the
CTRL key down and pressing C.

The above program contains a loop. The loop is described below.

10 LET K-1
20 PRINT K
30 LET K-K+l
40 GO TO 20
99 END

This is a loop. The statements in
the loop are repeated indefinitely.
Each time through the loop, the
current .value of K is increased by
1 and the loop is repeated.

1-39

If you are confused by the statement

BEFORE

K

K

K

1

2

3

30LETK = K + 1

STATEMENT

30 LET K=K+ 1

30 LET K=K+ 1

30 LET K=K+ 1

AFTER

K

K

K

2

3

4

Remember the general form of the LET statement.

line number LET variable expreSSIOn

The expression may be any BASIC expression. The LET state­
ment directs the computer to evaluate the expression and then as­
sign the value to the variable. If the-expression is a' variable ex­
pression, it is evaluated using the current values of its variable or
variables.

Therefore, the statement LET K = K + 1 directs the computer
to evaluate the expression K + 1 using the current value of K and
then assign the new value to K.

Exercise 25. Show the value· of the variable after the statement
has been executed.

BEFORE

K

E

25

6

STATEMENT

30 LET K·= 1

40 LET E=E+2

1-40

AFTER

K

E

Loops Exposed
In order to clarify what happens as the computer executes the

program, we will "unwrap" the loop and trace it. The following
trace shows the value of K following the execution of each state­
ment in the program. Under the heading "OUTPUT" we also show
results printed by the computer. We have traced the program seven
times through the loop.

Study this trace carefully. We will ask you to do several such
traces.

STATEMENT K OUTPUT REMARKS

10 LET K = 1 1

20 PRINT K 1 1 First time through the loop.
30 LET K=K+ 1 2
40 GO TO 20 2

20 PRINT K 2 2 Second time through the loop.
30 LET K=K+ 1 3
40 GO TO 20 3

20 PRINT K 3 3 Third time through the loop.
30 LET K = 1 +1 4
40 GO TO 20 4

20 PRINT K 4 4 Fourth time through the loop.
30 LET K=K+ 1 5
40 GO TO 20 . 5

20 PRINT K 5 5 Fifth time through the loop.
30 LET K=K+ 1 6
40 GO TO 20 6

20 PRINT K 6 6 Sixth time through the loop.
30 LET K=K+ 1 7
40 GO TO 20 7

20 PRINT K 7 7 Seventh time through the loop.
30 LET K ,= K + 1 8
40 GO TO 20 8

and so on!

1-41

Exercise 26. Without using the computer, show the first five re­
sults printed by the computer under control of each of the following
programs. (Fill in the blanks.)

10 LET X-I
20 PRINT X
30 LET X-X+2
40 GO TO 20
99 END

RUN

and so on.

10 LET E=2
20 PRINT E
30 LET E=E+2
40 GO TO 20
99 END
RUN

and so on.

Exercise 27. Complete each program (fill in the blanks) so that
when we run the program, the computer will produce the results
shown.

10 LET J- 12 LET P-
20 PRINT J 25 PRINT P
30 LET J. 33 LET p.
40 GO TO 20 41 GO TO
99 END 99 END

RUN RUN

0 1
1 2
2 4
3 8
4 16

and so on. and so on.

1-42

'.

Exercise 28. This is a trace of one of the programs shown in
Exercise 26. Complete the trace for three times through the loop.

STATEMENT X OUTPUT REMARKS

10 LET X = 1 . 1

20 PRINT X 1 1 First time through loop.
30 LET X=X+2 3
40 GO TO 20 3

20 PRINT X Second time.
30 LET X=X+2
40 GO TO 20

20 PRINT X Third time.
30 LET X=X+2
40 GO TO 20

20 PRINT X Fourth time and we quit!
and so on.

Exercise 29. Here are two variations on previously written pro­
grams. For each one, show -the first four results.

1,0 LET K-0
20 LET K-K+l
30 'PRINT K
40 GO TO 20
99 END

RUN

and so on.

10 LET K-l
20 PRINT 2*K
30 LET K-K+l
40 GO TO 20
99 END

RUN

and so on

1-43

Exercise 30. Trace the following program four times through
the loop~

10 LET A-I
17 LET B-1
25 LET C-A+B
30 PRINT A
36 LET A-S
43 LET Bille
50 GO TO 25
99 END

STATEMENT

10 LET A= 1
17 LET B = 1

25 LET C=A+B
30 PRINT A
36 LET A=B
43 LET B =C
50 GO TO 25

25 LET C=A+B
30 PRINT A
36 LET A=B
43 LET B = C
50 GO TO 25

25 LET C=A+B
30 PRINT A
36 LET A=B
43 LET B =C
50 GO TO 25

25 LET C=A+B
30 PRINT A
36 -LET A=B
43 LET B = C
50 GO TO 25

A B C REMARKS

These statements are done once.

First time through loop.

Second time through loop.

Third time through loop.

Fo~rth time through loop.

1-44

FOR-NEXT Loops
The loops we have used so far do not terminate by themselves.

They go on, and on, and on until someone manually interrupts.
Now let's look at a loop that terminates automatically. This loop
makes use of two new statements caned the FOR statement and
NEXT statement.

10 FOR Ka1 TO 5
20 PRINT K
30 NEXT K
99 END
RUN

1
2
3
1&
5

We call this a FOR-NEXT loop.

. Let's Run it and see what happens.

We did not interrupt.

The computer stopped automati~
cally.

Perhaps the following trace will help you understand how a
. FOR-NEXT loop works.

STATEMENT K OUTPUT REMARKS

10 FOR K = 1 TO 5 1 K starts at 1.

20 PRINT K 1 1 First time through loop.
30 NEXT K 2 K~ 5. Do it again.

20 PRINT K 2 2 Second time through loop.
30 NEXT K 3 K ~ 5. D it again.

20 PRINT K 3 3 Third time through loop.
30 NEXT K 4

.
K ~ 5. Do it again.

20 PRINT K 4 4 Fourth time through loop.
30 NEXT K 5 K ~ 5. Do it again.

20 PRINT K 5 5 Fifth time through loop.
30 NEXT K 6 K> 5. Stop the loop!

99 END 6 Everything stops.

1-45

A FOR-NEXT loop consists of three things.

1. A FOR statement

2. A NEXT statement

3. A set of statements between the FOR statement and the
NEXT statement.

A FOR-NEXT loop begins with a FOR statement and ends with
a NEXT statement. The set of statements between FOR and NEXT
is called the body of the loop. Here is a "pictorial" representation
for a FOR-NEXT loop.

10 FOR X_l::J0 12

body of the loop

50 NEXT X

Here is another example.

I
10 FOR N-2 TO 7
20 PRINT N
30 NEXT N
99 END
RUN

2 ...
3
4 _

5
6
7 ----......

The same vari­
able must be used
in both places.

This FOR statement defines a set
of values for N. The set is:

[2, 3, 4, 5, 6, 7]

The body of the loop is executed
repeatedly, once for each value of
N defined by the FOR statement.

Every FOR statement must have a
NEXT statement and every NEXT
statement must have a FOR state­
ment.

Has it occurred to you that the value of tht;: variable increases by
one each time throu'gh,the loop?

1-46

Exercise 31. In each program, circle the body of the FOR­
NEXT loop.

10 PRINT "RADIUS","AREA"
20 FOR R-2 TO 4
30 PRINT R,3.14*Rt2
40 NEXT R
99 END
RUN .
RADIUS

2
3
4

AREA
12.56
28.26
50.24

Remember these things.

10 PRINT ,"RADIUS··,"AREA"
20 FOR R-2 TO 4
25 LET A-3.14*Rt2
30 PRINT R,A
40 NEXT R
99 END

RUN
RADIUS

2
3
4

AREA
12.56
28.26
50.24

• The FOR statement defines a set of values for the variable.

• The body of the loop is executed for each member of the
set.

• The NEXT statement causes the body of the loop to be exe­
cuted again, using the next member of the set. However, if
all members of the set have already been used, then the
NEXT statement directs the computer to move on to the
statement following the NEXT statement.

The following shows the set of values defined for the variable in
each example of a FOR statement. We have omitted line numbers.

FOR Statement Variable Set of Values for the Variable

FOR J = 0 TO 3 J [0, 1, 2, 3]

FOR 1=1 TO 1 I [1 }

FOR A= 3 TO 5 A [3, 4, 5 }

FOR X= -2 TO 2 X [-2, '-1,0, 1, 2 }

FOR B = 1 TO 0 B Empty - the loop is skipped.

Do you see a pattern? Try the following exercises.

1-47

Exercise 32. Complete the following table.

FOR Statement Variable Set of Values for the Variable

FOR N == 1 TO 6 N

FOR C = 0 TO 5 . C

FOR W=-3 TO 0

FOR E= 12 T0.12

FOR T=7 TO 5

The next three are tricky. Be brave-guess!

FOR X =.5 TO 2.5

FOR Y = 1 TO 2.5

FOR Z=.5 TO 3 ..

Exercise 33. Time to play computer. RUN each program as if
you were the computer.

10 fORX=2 TO 4.
20 PRI NT X,X*X
30 NEXT X·
99 END

RUN

12 fOR K:1 IO 3
23 LET P:2tK
30 PHI NI K,P
37 NEXT K
99 END

RUN

1-48

Instead O'f using the cO'mputer to' grind O'ut numbers, let's use it
to' print patterns.

10 FOR Kal TO 8
20 PRINT "**********"
30 NEXT K
99 END
RUN

10 FOR K-I TO 3
20 PRINT "+-+-+-+-+-+-+"
30 PRINT "-+-+-+-+~+-+-"
40 NEXT K
99 END
RUN
+-+-+-+-+-+-+
-+-+-+-+-+-+­
+-+-+-+-+-+-+
-+-+-+-+-+-+_.
+-+-+-+-+-+-+
-+-+-+-+-+-+-

10 FOR K-l TO 7
20 PRINT "XOXOXOXOX"
30 NEXT.K
99 END
RUN
xoxoxoxox
XOXOXOXOX
XOXOXOXOX
xoxoxoxox
XOXOXOXOX
XOXOXOXOX
XOXOXOXOX

10 PRINT "XXXXXXXXX"
20 FOR Kat TO 5
30 PRINT "XOOOOOOOX"
40 NEXT K
50 PRI NT "XXXXXXXXX"
99 END
RUN
XXXXXXXXX
XOOOOOOOX
xooooooox
xooooooox
XOOOOOOOX
xooooooox
XXXXXXXXX

Exercise 34. Write a program to' generate each pattern .

+-+-+-+-+-+-+ . *******
-+-+-+-+-+-+- * *
+-+-+-+-+-+-+ * *
-+-+-+-+-+-+- * *
+-+-+-+-+-+-+ * *
-+-+-+-+-+-+- * *
+-+-+-+-+-+-+ * *
-+-+-+-+-+-+- * *
+-+-+-+-+-+-+ *******

1-49 ..

The STEP Clause

A variation of the FOR statement is shown in the following pro­
gram.

10 FOR K-I TO 9 STEP 2
20 PRINT K
30 NEX1' K
99 END
RUN

I
3
5
7
9

Note the STEP clause.

The STEP 2. clause causes the value
of K to increase by 2 each time.
You can verify this by examining
the printed results.

The following shows the set of values defined for the variable in
each FOR statement. We have omitted line numbers.

FOR Statement

FOR E = OTO 10 STEP 2

FOR E = 0 TO 11 STEP 2

FOR X = 1 TO 3 STEP.5

FOR W = 1 TO 7 STEP 0

Values of the Variable

E= 0, 2,4,6, 8,10

E= 0, 2,4,6, 8,10

X = 1, 1.5,2, 2.5, 3

W = 1,1,1, ...

Exercise 35. Complete the following table.

FOR Statement

FOR T = OTO 6 STEP 3

FOR N = 1 TO 5 STEP 1

FOR K = 100 TO 130 STEP 10

FOR X = OTO 1 STEP .25

Now--be careful on the next two!

Values of the Variable

T=

N=,

K=

X=

FOR E = OTO 0 STEP 2 E=

FOR B = 3 TO 0 STEP-l B=

1-50

In the following example, we use a space-saving trick.

12 t.B'R X-0 TO 12 STEP 2
23 PRINT X,
35 NEXT X
99 END
RUN

o
10

2
12

"

Aha! Note the comma.

II 6 8

Exercise 36. If the PRINT statement ends with a comma, results
are printed across the page, with up to five results per line. Here
is another example-we call it program COUNTDOWN.

10 FOR N=10 TO 1 STEP -1
20 PRINT N ..
30 NEXT N
40 PR):NT "BLAST-OFF I I."
50 FOR K-l TO 55
60 PRINT ">"J
70 NEXT K
99 END

RUN
10 9
5 4

BLAS]" -0 FF I I I

8
3

A semicolon to the rescue~
, .

7
2

6
1

»»»»»»»»»»»»»»»»»»»»»»»»»>,»»

1-51

Be sure to RUN this program on your computer.

Variable FOR Statements
By using variables instead of numerals, we obtain variable FOR

statements such as the one in the following program.

10 INPUT N ~7.::::====Seeit!
20 fOR K=ITO N
30 PRI NT K
40 NEXT K
50 GOTO 10
99 END

Variable FOR-NEXT loop.

RU ... N_-----------We enter 3 as the value of N.

13...... For N = 3, K = 1, 2, 3.
1
2 _ We enter 5 as the value of N. -------------3
15.-4
1

For N = 5, K = 1, 2, 3,4, 5

2
3

" 5
10

and so on.

We enter 0 as the value of N.
The FOR loop is skipped because
1 >N.

Change one statement in the above program.

10 1 NP U T N Here is the change. .
20 FOR K=1 TO N ~
30 PRI NT .. *"~ ---And we added this statement.
4£1 NEXT K· . If you want to know why, RUN
45 PRI NT the program without it.
50 GOTa 10
99 END

RUN
13

17

and so on.

We enter 3 as the value of N.
And the computer prints 3 aster­
isks.

We enter 7 as the value of N.
And the computer prints 7 aster­
isks.

Carryon-you pick the value of N.

1-52

Another example. Study it carefully.

10 INPUT A .. B
20 FOR X-A TO B
30 PRINT XJ
40 NEXT X
50 PRINT
60 GO TO 10
99 END

RUN
13 .. 8

3 4 5 678
11 .. 13

,
The semicolon packs 'em in.

1 2 3 4 5 6 7 8 9 10 11 12 13

Let's trace the above program for- A = 3, B = 8.

STATEMENT

10 INPUT A, B

20 FOR X == A TO B

30 PRINTX;

40 NEXT X

30 PRINT X;

40 NEXT X

30 PRINT X;

40 NEXT X

30 PRINT X;

40 NEXT X

30 PRINT X';

40 NEXT X

30 PRINT X;

40 NEXT X -

50 PRINT

60 GO TO 10

10 INPUT A, B

A B· X OUTPUT REMARKS

3 8

3 8 3

3 8 3

3 8 4

3 8 4

3 8 5

3 8 5

3 8 6

3 8 6

3 8 7

3 8 7

3 8 8

3 8 8

3 8 9

3 8 9

3 8 9

and so on,

1-53

3 First time

X~B

4 Second time

X~B

5 Third time

X~B

6 Fourth time

X~B

7 Fifth time

X~B

8 Sixth time

X> B. Stop the loop!

A carriage return

and a line feed.

Exercise 37. The following program directs the computer to
compute and print the sum and the arithmetic mean of N numbers.
Trace it.

1" READ N
2" LET s."
30 FOR K-l TO-N

"" READ X
50 LET S-S+X
60 NEXT K
70 PRINT N~S .. S/N
90 DATA 3
91 DATA 87 .. 73 .. 95
99 END

STATEMENT

10 READ N

20 LET S= 0

30 FOR K = 1 TO N

40 READ X

50LETS=S+X

60NEXTK

40 READ X

50LETS = S + X

60NEXTK

40 READ X

50 LETS = S+X

60NEXTK

70 PRINT N, S, SIN

99 END

N s

The value of N is in Line 90.

The values of X are in line 91.

Here is the value of N. (See Line
10.) And here are the values of X.
Note that there are N values.

K X OUTPUT

Exercise' 38. How would you modify the two DATA statements
to compute the mean of the numbers: 75, 66, 83, 75, 98?

90 DATA
91 DATA

1-54

Extra for Experts
The examples on this and the following page may help you dis­

cover more things about the FOR statement and how it is used.
We also encourage you to experiment-tryout your own ideas on
the computer. You may wish to guess how something works and

\

then try it out.

10 INPUT A,B,H
20 PRINT. "RADIUS","AREA"
30 FOR R-A TO B STEP H
40-PRINT R,3.14*Rt2
50 NEXT R
55 PRINT
60 GO TO 10
99 END

RUN
12,8,3
RADIUS

2
5
8

AREA
12.56
78.5
200.96

Compare!

(A= 2, B = 8 and H = 3)

The value of R is stepped from 2
to 8 in steps of. 3.

Another example-another idea.

10 READ N
20 FOR K-N*N TO N*CN+l)
30 PRINT KJ
40 NEXT K
50 PRINT
60 GO TO 10
90 DATA 3,7
99 END

RUN

9 10 11 11·

We can use any BASIC expression.

Note the semicolon.

Causes a line space. That is, prints
a blank line since there is no list
following the word PRINT ..

49 50 51 52 53 54 55 56
Results for N = 3
Results for N = 7

DATA ERROFf, AT LINE 10

1-55

We can have a loop within a loop.

10 PRINT ·'I""nJ9'
15 PRINT
20 FOR 1·-1 TO 2]
30 FOR J-l TO 3]
40 PRINT I"J 4!II --Inside loop -41 .. �__-- Outside loop
50 NEXT J
60 NEXT I
99 END

RUN
1

1
1
1
2
2
2

J

i J.. -Inside loop
....... --- Outside loop

... -..-- Inside loop ~1] ..

We can use a loop within a loop to print a pattern of M rows
with N asterisks in each row.

~--N asterisks per row 11-- M rows

Try this program without the
PRINTS in Lines 60 and 80.

(7 rows, 12 asterisks per row)

Here they are. Seven rows of aster­
..... ----- isks with 12 asterisks in each row.

1-56

FUNCTION JUNCTION

The Integer (INT) Function
The integer (INT) function returns the value of the nearest

integer not greater than x. Let's see how it works.

10 PRINT INT(0)~INT(1)~INT(e)~INT(3.14)~INT(7.99)
99 END

RUN

o 1 e 3

From the results, we see that:

INT(O) = 0
INT(3.14) = 3

INT(1.) = 1
INT (7.99) = 7 ..

Here are some rules you can count on.

• If X is a whole number, then INT(X) = x .
. For example,

INT(O) = 0
INT(2)= 2

INT(I)= 1
INT(3)= 3

7

INT(2)= 2

• If X is a positive number or zero, then INT(X) is the
whole number part of X.

For example,

INT(2.99) = 2
INT(O.75) = 0

INT(123.45) = 123
INT(.75) = 0

Exercise 39. Complete the following.

(1) INT(4) = ___ _
(2) INT(12345) = __ _
(3) INT(O.999999) = __

(4) INT(27.0l) = __
(5) INT(12/4) = 4

(6) INT(13/5) = ___ 4

4 Evaluate the numerical expression first, then apply the INT function to
the result. .

1-57

The INT function is useful in solving problems such as the fol- .
lowing.

Let a be a whole number and let b be a natural number. Di­
vide b into a to obtain a whole number partial quotient, q,
and a whole number remainder, r.

For example, let a = 28 and b = 7.

4
7 (28

28
o

Next let's try a = 97 and b =5~

19
5(97

5
47
45

2

Partial quotient, q = 4.

Remainder, r = O.

Partial quotient, q = 19.

Remainder, r = 2.

. Once more - this time a = 29 and b = 32.

o
32/29

o
29

-

Partial quotient, q = O.

Remainder, r = 29.

We can write a mathematical sentence relating a, b, q and r, as
follows.

a = bq + r where 0 ~ r < b.

For example, 97 = 5 x 19 + 2

a = b x q + r Note that r < b.

1-58

Let's solve for r: r = a - bq

And let's remember that q is the whole number part of a/b. Here
is a program to compute q and r given input values of a and b.

10 PRINT ··A"~"B··~"Q"~"R" •
20 READ AlB
30 LET Q-INTCA/B)
40 LET R-A-B*Q
50 PRINT AIB~Q~R .
60 GO TO 20
70 DATA 281719715~29132
99 END

RUN

A
28
97
29

B
7
5
32

DATA ERROR AT LINE 20

Note how we compute q and r.

Q

4
19
o

R
01
2
29

Exercise 40. Complete the following trace of the RUN of the
preceding program.

STATEMENT A B Q R OUTPUT

. 10 PRINT "A","B","Q","R"· A B Q R
20 READ A,B 28 7
30 LET Q = INT (AlB) 28 7 4
40 LET R = A - B *Q 28 7 4 0
50 PRINT A,B,Q,R 28 7 4 0 28 7 4 0
60GO TO 10 28 7 4 0

20READA,B
30 LET Q = INT(A/B)
40 LET R = A - B *Q
50 PRINT A,B,Q,R
60 GO TO 10

20 READA,B
30 LET Q = INT(A/B)
40 LET R = A - B *Q
50 PRINT A,B,Q,R
60GOTO 10

and so on.

1-59

Exercise 41. Let x be a 2-digit whole number. That is, x is a
whole number such that:

10 ~ x ~ 99

We define a number y as follows.

y = sum of the digits 'of x.

For example, if x = 10, then y = 1 + 0 == 1

if x = 25, then y = 2 + 5 =: 7

if x = 99, then y = 9 + 9 =: 18

Complete the following program to compute y for a given value
of x. RUN it for the DATA shown.

10 READ X
20
30
40
50
70 PRINT X"Y
80 GO TO 10
90 DATA 10,,15,23,,37,,40,,99
99 END

Exercise 42. Let z be the number obtained by reversing the digits
of x. For example:

if x = 10 then z = 01 = 1
if x = 37 then z = 73
if x = 99 then z = 99

Modify your program of Exercise 41 so that the computer com­
putes the value of z instead of the value of y.

EXPLORE!

Try the INT function on negative numbers (non-integers as
well as integers). Can you give a general definition of the
INT function?

1-60

The Square Root (SQR) Function
We assume that you know how to compute square roots of num­

bers. Let's find out.

Exercise 43. Complete each of the following:

1. A square root of 4 is _--'--_____________ _

2. Another square root of 4 is _____________ _

Here is how we instruct the computer to compute square roots.

10 PRINT SQR(4)~SQR(25)~SQR(100),SQRC0)
99 END

RUN

5 10 o

If X is any non-negative number (positive or zero), then SQR(X)
is the non-negative square root of X. If you try to take the square
root of a negative number, you may obtain an error message.

10 PRINT SQRC-4)
99 END

RUN Note the error message.

ARGUMENT ERROR AT LINE 10

The symbol SQRO which we use in BASIC corresponds to the
symbol r" which we use in mathematics. Perhaps you recall that,

-Va

is used to mean the non-negative square root of a.

is used to mean the negative square root of a when
a >,0.

1-61

Here is a program to compute the two square roots of a.

10 INPUT A
20 PRINT SQRCA),-SQRCA)
30 GO TO 10
99 END

RUN
14

2
14096

64
10
o

12
1.414214

-2

-64

o

-1.414214

If a = 0, there is no negative square
root.

These answers are approximations
to the square roots of 2.

By using the FOR-NEXT loop~ you can build your own square
root table.

10 FOR X-I TO 10
20 PRINT X,SQR(X)
30 NEXT X
99 END

RUN

1
2
3
4
5
6
7
8
9
10

1
1.414214
1.732051
2
2.236068
2.44949
2.645751
2.828427
3
3.162278

To obtain the square root table of
your choice, modify the FOR state­
ment.

Exercise 44. How would you write the FOR statement to obtain
a square root table with values of X running from 0 to 1 in STEPS
of.2?

1-62

If we know the lengths of two sides of a right triangle, we can
compute the length of the third side by applying the Pythagorean
theorem. For example, suppose c.is the length of the hypotenuse
and a and b are the lengths of the other two sides, as indicated in
the diagram.

Given a and b, we want to comp~te c.

C=,Ia>+~b

Let's use the computer.

10 READ A"B
20 LET C-SQRCAt2+Bt2>
30 PRINT A"B"C
40 GO TO 10
90 DATA 3,,4,,12,,5,,1,,1
99 END

RUN

3
12
1

4
5
1

DATA ERROR AT LINE 10

From the results we see that

a

5
13
1.~14214

If a = 3 b = 4 then c == 5 ,
If a = 12, b = 5 then c = 13

{Data for 3 triangles)

If a= 1, b = 1 then c = 1.41421

Exercise 45. Suppose we know the values of c and a. You write
the program to compute and print the value of b. Then use your
program to obtain the value of b for each of the _ following.

2

- 1-63

LOOK BOTH WAYS

LOOK BOTH WAYS

Look back-where have we been?

Loops SCR LIST INT

FOR NEXT floating point + RUN

SQR expressions t * READ

LET INPUT messages PRINT

variables DATA END RESTORE

Look ahead-more BASIC-· where will it lead?

IF RND

< >

ABS COS

RETURN

ON ... GOTO

Subscripted variables

STOP

ATN DIM

REM Arrays

SGN flow charts

DEF

1-64

LOG

TAN

GOSUB

SIN

EXP

FINDING YOUR WAY

Flowcharts
A flowchart is like a road map. A road map helps you find your

way through unfamiliar terrain-a flowchart helps you find your
way through a computer program. If you want to, use a road map,
you must learn how to read it-true also of a flowchart. We will
start with easy flowcharts and show you how to r.ead them. Here
is a flowchart of'a program to generate 'counting numbers.

When you read a program
follow the line numbers.

10 LET K-l
20 PRINT K
30 LET K-K+l
40 GO TO 20
99 END

./

When you read a flowchart,
follow the arrows.

,,;'
./

,;'
/'

/'

Note that this arrow corresponds to the GO TO statement. In
this flowchart there is no box corresponding to the END statement.

If you prefer, you can draw horizontal flowcharts instead of
vertical flowcharts.

I LETK=1 ~4 _L_E_T...,K_r--K_+_'_~1

~31
"..--...,

1-65

Here is a flowchart with an END box.

H LET A-3.14*R'2 ~ PRINT R,A

~10-LE-!~R-_3~ ~ ~
LET R=3

20 LET A-3.14*Rt2 '
30 PRINT R,A------------~
99 END--------------------------~

In the above flowchart, we showed the END box because it is
actually executed in the program, causing the computer to stop.

What next? An INPUT box.

10 INPUT R
20 LET A-3.14*Rf2
30 PRINT R,A
40 GO TO 10
99 END

\
This END is never actually
executed by the computer; so
we don't show it in the flow­
chart.

Note the shapes of the boxes used in the :Ilowchart so far.

5 From now on, we will usually omit this reminder.

1-66

Confused? More examples may help.

To save space, we might do the
above flowchart like. this

I

13 INPUT A,B
2~ LET Q-INTCA/B)
37 LET R=A-B*Q
~3 PRINT A,B,Q,R
52 GO TO 13
99 END

RUN

779,12
79

7

? and so on.

12

or like this J

INPUT A,B

6

We simply put two LET statements in one
LET box in order to save space. If there

7

are two or more statements in a box, execute
them in order from top to bottom.

1-67

Exercise 46. Below are flowchart boxes in the order in which we
introduc.ed them. Note the shape and write the type of box (IN­
PUT, END, LET, etc.) beneath each shape.

~ 0 C __)

How do we indicate a GO TO statement in a flowchart? ----
..

Exercise 47. Complete the flowchart of the following program.

10 INPUT AID
20 PRINT A
30 LET A-A+D
1&0 GO TO 20
99 END

C--,-_

Exercise 48. Write the program that corresponds to the following
flowchart. Use our line numbers.

LET K= K+1

12

24

36

48

60
----.--------------------

99

What does the program do? That
is, what does it direct the com­
puter to do? Predict the results,
then RUN the program on the
computer.

1-68

We use the same box shape for READ as we do for INPUT.
But there is no flowchart box corresponding to a DATA statement.

10 READ A~B
20 LET C-A*B
30 PRINT A,B .. C
40 GQ TO 10-
90 DATA 3~I&~S~-7
99 END

RUN

3
5

1&
-7

12
-35

DATA ERROR AT LINE 10 -

Let's put the computation
directly into the PRINT
statement (program) or the
PRINT box (flowchart).

10 READ X,N
20 PRINT X~N .. X+N
30 GO TO -10
60 DATA 2 .. 3,10,10
99 END

RUN

2
10

3
10

DATA ERROR AT LINE 10

5
20

Remember: Use C ______) for either INPUT or READ.

1-69

Messages? How do we show them in a flowchart? Easy . . .

10 PRINT "GOOD MORNINGt
'

99 END

Note the quotation marks.

Another example-

10 PRINT "RADIUS", t'AREA"
20 READ R
30 PRINT R,3.11&*Rt2
40 GO TO 20
50 DATA 2,3,8
99 END

RUN

RADIUS
2
3
8

AREA
12.56
28.26
200.96

DATA EUROR AT LINE 20

If you don't like OUf style of flowchart, invent your own. Like ...

~~CATCH
ANSWER

1-70

-
FOR-NEXT Loops in a Flowchart

,
Remember FOR-NEXT loops? We show them in a special way

in a flowchart.

10 FOR Klill TO 5-
- 20 PRINT KJ

30 NEXTK
99 END

RUN

1 2 3 La 5

Another one-this time with
a STEP clause.

FOR
E-0 TO 10
STEP 2

PRINT 'E

I

NEXT E

FOR
K =1 TO 5

PRINT K

NEXT K

10 FOR E-e TO 10 STEP 2
26 PRINT E
39 NEXT E
99 END

RUN

o
2
1.&
6
8
10

We include the END box in the flowchart above because it is
actually executed-stopping the computer after all numbers speci­
fied by the FOR-NEXT loop have been printed.

1-71

Exercise 49. <;omplete the flowchart of the following program.

10 INPUT A.,.B"H
20 FOR X=ATO B STEP H
3~ PRINT X
40 NEXT X
50 GO TO 10
99 END

Exercise 50. Draw··a flowchart of the following program. Draw
your flowchart here. ~

10 INPUT N
20 FOR Kul TO N
30 LET P-KtK
49 PRINT K"P
50 NEXT K
99 END
RUN

15
1
2
3
1&
5

1
4
27
256
3125

K t K increases rapidly,
doesn't it?!

1-72

MAKING DECISIONS

A Fork in the Road
The road divides into two paths ... which way?

... < This way?

--------< , or this way?

You must decide;

In a flowchart we use a diamond shaped box to indicate a de­
cision point based on a condition.

One arrow into the box

We write the
condition inside
the box.

YES

Two arrows out of the box-
NO one labelled "YES" and.

one labelled "NO"

The condition in the box must have exactly two possible out­
comes.

• If the condition in the box is TRUE, follow the arrow
labelled YES.

• If the condition is FALSE, follow the arrow labelled NO.

Examine the condition in the decision box above and complete
the following table showing which path to follow for given values
of A andB.

Value of A

3
5
7
o
o

-2

Value of B

4
2
7
1

,-1
-1

Which Path? (YES or NO)

1-73

Which is larger, 3 or 41

Which is larger, 5 or 21

If A = 3 and B = 4, which is larger, A or B1 .. ______ _

If A = 5 and B = 2 which is larger, A or B1

In the flowchart below, trace the path for A = 3, B = 4 and the
path for A = 5, B = 2. You may wish to mark these paths in two
different colors.

PRINT A

The flowchart directs the
computer to print the larger
of two numbers, A and B.

Suppose you mark the path for A = 3, B =: 4 with a red pencil
and the path for A = 5, B = 2 with a green pencil. Which path
would we follow (red or green) if

A = 1, B = 01 ___ _ . ___ A = 0, B = 21 __ ~ ___ _

A = 7, B:= 71 _______ A = - 1, B == =- 21 ____ _

Let's translate the flowchart into a BASIC program.

1-74

10 INPUT A,B

20 IF A>B THEN 50 ~---t This is an IF statement. It corres-
30 PRINT B~ 40 GO TO 10 ponds to a decision box in a flow-

. 50 PRINT A chart.
60 GO TO 10
99 END
RUN
13,4

4
15,2

5

... Fol1ow me if and only if A> B.
Prove it! RUN the program.

A =3,B.=4.
JJ is larger than A.
A = 5, B = 2.
A is larger than B.

If A = 3 and B = 4 the computer executes statements 10, 20,
30 and 40.

If A = 5 and B = 2 the compu.er executes statements 10, 20,
50 and 60. ~

Let's trace the program. We follow the computer as it executes
each statement and show the values of A and B after each state­
ment is carried out. For a PRINT statement, we also show what is
printed under the heading "OUTPUT."

STATEMENT A B OUTPUT REMARKS

10 INPUT A,B 3 4 First case: A = 3,
B = 4.

20 IF A> B THEN 50 3 4 A>B is FALSE.
30PRINTB 3 4 4 Continue with State-

ment 30.
4000 TO 10 Go around again.
10 INPUT A;B . 5 2 Second case: A = 5,

B=2.
20 IF A> B' THEN 50 5 2 A>B is TRUE.
50 PRINT A 5 2 5 Go to Statement 50 and

proceed.
60 GO TO 10 Go aroul1d again.
10 INpUT A,B 7 7 Third case: A = 7,

B = 7.
20 IF A>B THEN 50 7 7 A>B is FALSE.
30 PRINT B 7 7 7 Continue with State-

?

ment 30.
40 GO TO 10
and so on.

1-75

Exercise 51. Complete the following program and flowchart di­
recting the computer to print the smaller of two numbers, A and B.

10 INPUT A,B
20
30 PRINT B
40 GO TO 10
50 PRINT A
60 GO TO 10 PRINT A

99 END
RUN

13.4
3

15 .. 2
2

Exercise 52. We have written a program directing the computer
to print two numbers in ascending order with the smaller on the left
and the larger on the right. You do the flowcbart here;

10 INPUT A.B
20 IF A<D . THEN 50
30 PRINT a.A
40 GO TO 10
50 PRINT A,D
60 GO TO 10
99 END
RUN
13.4

3 4
15.2

2 5

1-76

There is usually another way. In this case, another way to direct
the computer to select and print the larger of two numbers.

First, enter the two numbers.

Guess that A > B and set C = A.

If C ~ B is TR VE, our guess is
correct. In this case, follow the
YES path.

But if C ~ B is FALSE, we were
wrong. We acknowledge our mis­
take and set C = B.

By either path,
C = MAX(A, B) = 'maximum of
A and B. So we print the value of
C.

Again, there are two possible paths through the flowchart. Mark
them in two colors. If you mark the path for A= 3, B = 4 in green
and tne path for A = 5, B = 2 in red, which path (green or red)
should we follow if

A = 2, B = I? ______ .::-- A = 9, B = 10? _____ _

A =7,B= 71 _______ A =O,B= -1 1· ~~ __ _

1-77

O.K., here is the BASIC program to go with the flowchart on the
preceding page.

10 INPUT A, B
20 LET C=A
30 IF C>=B THEN 50
40 LET C=B I
50 PRINT C'"
60 GO TO 10
99 END
RUN

13,4
4

15" 2
5

Note how we write ~ In an IF '
statement.

. Follow me if and only if
C ~ B is TRUE.

A = 3,B = 4.
C=4.

A = 5, B = 2.
C=5.

Your turn ... complete the following trace of the above program.

STATEMENT ABC OUTPUT REMARKS

10 INPUT A,B 3 4

20 LET C;:j A 3 .. ~ "",3

30IFC> ::::tBTHEN50 3 4 3 C ~ B is FALSE.

40LETC =B Yau carryon.

50PRINTC
r

60 GO TO 10

10 INPUT A,B 5 2 "

20LETC-:A 5 ... ~ ,..5

30 IF C > = B THEN 50 5 2 5 TRUE or FALSE?
Where to next?

1-78

The IF Statement

The IF statement directs the computer to examine a relation be­
tween two expressions and then follow one (and only one) of two
paths depending on whether the relationship is TRUE (YES) or
FALSE (NO).

In general, the IF statement looks like this:

where

n IF el r e;! THEN t

n = line number of the IF statement
el = any BASIC expression
e;! = any BASIC expression
r = anyJegal BASIC relation (see below)
t = line ~umbef of th'e statement executed next

if and only if el r e;! is TRUE

Relation between . ~
two expressions, el and e2 ~

For example,

35 IF X INT(X) THEN 60

t t t t t t t
n IF el r e2 THEN t

is TRUE if X is an integer.
X = INT(X)

is FALSE if X is not an integer.

Here is a handy table showing BASIC relations and correspond­
ing mathematical ralations.

MATH BASIC

< <
> >
~ <=
~ >=
:f= <>

1-79

RELATION

Equal to
Less·than
Greater than
Less than or equal to
Greater than or equal to
Not equal to

A Problem. Write a program directing the: computer to tell us
whethe,r a n;umber is positive, negative or zero.

Let's solve it. Since there are three possibilities (X > 0, X < 0,
or X = 0),: we can't solve the problem with a single IF statement.
But we can do it with two IF statements.

For example,

If X > 0 is FALSE, then
X < 0 or X= O. Which
one?

There are three possible paths through the program. Mark them
in three colors.

What color path if X = 7? __ _

What color path if X = - 3? __ _

What color path if X = O? __ _

Exercise 53. Write a BASIC program to go with our flowchart.
RUN nfor X = 7, X = -3 and X = O.

1-80

VARYING PATTERNS

Rectangular Patterns
We wrote a program to print rectangular patterns on the Tele­

type. We ran it ... here is what happened.

I
?12.29~~ __ --------------------

-*****************************

Rows

Columns

Our program lets us specify the
number of rows and columns in this
rectangular pattern.

This pattern has 12 rows and 29
columns. That is, it has 12 rows
and there are 29 asterisks in .each
row.

Using our program, we can direct the computer to print rec­
tangular patterns with as many rows as we want. The number of
columns, however, is limited to 72 since there are only 72 printing
positions across the paper.

In the above pattern, there are

12 x 29 = 348

asterisks in all.

Let's RUN the program again.

13, 10 -------------This time we want 3 rows, 10

columns.

Here they are . . . count them.

Now let's look at the program.

1-81

Below is part of the program. This part directs the computer to
print one row of asterisks with N asterisks in the row.

10 INPUT N
15 PRI NT

30 FOR C: 1 .TO N
40 PRI NT "*";
50 NEXT C

60 PRINT
80 GO TO 1,0
99 END

RUN

110

120

172

N specifies the number of asterisks
to be printed in the row.

Here is the heart of the program. It
causes the computer to print N
asterisks, all in one row because the
PRINT statement ends with a semi­
colon.

This PRINT causes a carriage re­
turn and line feed to occur after all
the asterisks have been printed.

Let's try it.

N = 10, so
the computer prints a row with 10
asterisks.

N=20,

How many asterisks?

N = 72. Computer prints 72 aster­
isks.

N = 73 , . , can't get them all on
one line',

**
175
**
*
The 73rd asterisk ended up h~re.

The computer will print up to 72 asterisks on one line ... but
no more. If N > 72 then the computer prints 72 asterisks on the
first line and continues on the next line. Suppose N = 200. How
many lines will it take to print the "row" of 200 asterisks?

1-82

By adding three statements and changing the INPUT statement
in the preceding program, we get a program to print a pattern con­
sisting of M rows with N asterisks in each row.

10 INPUT M,N
15 PRIr'lT

20 FOR R"l TO M

30 FOR c~ I TO N
40 PRINT n*n.:
50 NEXT C

60 PRINT
70 NEXT R

75 PRINT
80 GO TO 10
99 END
RUN

15,12

**********~*

1 1,7

*
*
*
*
*

*

Which lines did
we add?

One row with· M rows
N asterisks

')

\ This program has a "loop within a
loop."

Does it work? RUN it.

We enter M = 5, N = 12.

The computer prints a rectangular
pattern with 5 rows and 12 col­
umns.

A 1 by 7 pattern (1 row, 7 col­
umns).

And a 7 by 1 pattern (7 rows, 1
column).

We finish with a 1 by 1 pattern.

P .S. How about a null (empty)
pattern?

1-83

Exercise 54. If you are tired of seeing asterisks before your eyes,
change this 'Statement ~

40 PRINT

to this_ 40 PRINT

h
. ~40 PRINT

or t IS---
r

""'''J

"X" J
"I'"

or to the statement of your choice. Then RUN the program again.

Exercise 55. Start with our program on page 1-83. Change the
INPUT statement to

• 10 INPUT M

and change one other statement so that the modified program will
print right triangular patterns, like these.

-------1
RUN ---- I
12Ar

*
**

This pattern ~as 2 rows with, 1
asterisk in Row 1 and 2 asterisks in
Row 2.

!3~·~--------------------------'--~1

** This pattern has 3 rows with 1
*** asterisk in Row 1, 2 asterisks in

Row 2 and 3 asterisks in Row 3. ;4 -~.-______________________________ _

** --,
*** I **** This pattern has 4 rows with 1 as-

terisk in Row 1, . . .

and so on.

For an INPUT value of M, the pattern has M rows with 1 aster- .
isk in Row 1, two asterisks in Row 2, three asterisks in Row 3,
... , M asterisks in Row M.

1-84

In the following program, we use a "brute force" approach to
tell the computer to print a "leaning tower" pattern.

10 PRINT "********"
20 PRINT " ********"
30 PRINT" **"''''****'' Each PRINT statement tells the
40 PRINT" ********" computer to print a certain num-
50 PRINT " **",***",,,,,, ber of spaces followed by 8 aster-
60 PRINT " "''''*'''****'' isks.
70 PRINT .. "'****"'*"'''
80 PRINT " *******"''' .
99 END

spaces

RUN
.... *"'**"'**'"

*"''''**'''''''''
"''''**'''***

\

. ********

spaces

You can use the·" brute force
method to print just about any
pattern you wa~t.

Let's make the tower lean the other way .. '

10 PRINT ..
20 PRINT "
30 PRINT "
40 PRINT "
50 PRINT"
60 PRINT."
70 PRINT"
80 PRINT "
99 END

********"
********"

********"
********" Print 7 spaces, then 8 asterisks.

Print 6' spaces, then 8 asterisks.
And so on.

RUN

********"
",",,,

********"
"'**"'**"'*"

*******'" ",**",,,,*,,,,,,.

"'***"'**'"

"'**"'''''''**
***"'''''''*'''

*******"',

1-85

The TAB Function
Yes, we're leading up to something . . . here is another way to

do the first leaning tower pattern.

10 PHINT TAB(0);"********"
20 PRINT TAB(1);"*** ••••• "
30 PRINT TAB(2);"** •• ***."
40 PRINT TAB(3)J"******.*"
50 PRINT TAB(4);"*.**** •• "
60 PRINT TABCS)}"******.*"
70 PRINT TAB(6);"* •• ***.*"
80 PRINT TAB(7);"****.***"
99 END

RUN

* •• **.**
*.******
.* •• *.**

*.*** •••

***.** ••

We wrote this program primarily ...
to introduce the TAB function.

The TAB function causes the com­
puter to spaee over to the printing
position enclosed in the ().

We hope your version of BASIC provides the TAB function ...
if n9t; you might as well skip the rest of this section. fi If your com­
puter does provide the TAD function, read on!

EXAMPLE

TAB(7)

TAB(25)

EXPLANATION

Space the teletypewriter over to printing Position 7.

Space the teletypewriter over to printing Position 25.

There are 72 printing positions across the page . . . they are
numbered ° through 71.

**

'pOSit jon ° Position 37 Position 71

Your turn ... circle printing Positions 10, 20, 30, 40, 50, 60
and 70 above.

6 EduSystem 10 does not include the TAB function; larger systems do.

1-86

In general, the TAB function looks]ike this

TAB(e)

where e is any BASIC expression. The expression is evaluated and
the computer spaces the Teletype to the position specified by the
value of the expression. If the value of e is not a whole number,
then the computer ~paces the teletype to the whole number part·
of the value of e.

EXAMPLES

TAB(K)

TAB(R - 1)

TAB (2*X + 3)

EXPLANATION

Move to Position K. (0 ~ K ~ 71)

Move to Position R -1. (0 ~ R -1 ~ 71)

Move to Position 2*X + 3. (0 ~ 2*X + 3 ~ 71)

Here is yet another way to print the leaning tower pattern.

10 FOR R= 1 TO 8
20 PRINT TAB(RI. 1).: u********"
30 NEXT R T .
99 EN D . Space over to printing Position
RUN R - 1. When R = 1, this is Posi-
******** tion 0; when R = 2, this is position
******** 1; and so on.

The computer cannot space the
Teletype <E- to the left. So, if it is
already at Position 30, you cannot
space it to Position 20.

There are no negative printing po­
sitions. TAB(-l) is ignored. TAB
(K) is ignored if K < o.

1-87

Exercise 56. By changing one statement in the preceding pro­
gram you can get a program to print the leaning tower in which
the top leans to the right. Do it! Then RUN it..

Exercise 57. Here are two programs. Read them. Figure out
what they do. Without using the computer write down what you
think the computer will print. Then (and not until then) RUN the
programs. (Were you correct?)

20 FOR R= 1 TO 8 20 FOR R= 1 TO 8
30 PRINT TAB(R-l>; 30 PRINT TAB(8-R);
40 FOR C= 1 TO 8 40 FOR Co: 1 TO 2.R-l
50 PRINT U."; 50 PRINT ".";
60 NEXT C 60 NEXT C
70 PRINT 70 PRINT
80 NEXT H 80 NEXT R
99 END 99 END

Exercise 58. By adding an INPUT statement and changing a few
things in the programs of the preceding exercise, you can get a pr<n
gram that will let you specify the size of the pattern. Try it.

Exercise 59. Use the brute force method (page 1-85) to cause
the computer to print a pattern of your choice: SNOOPY, a dove,
a flower, you name it.

1-88

MEANDERING
Random Numbers

Random numbers-what are they? According to one definition,
a random number is a number that .. is chosen by chance from a
given set of numbers. .

• We flipped a coin ten times. If it came up HEADS. we wrote
"1" and if it came up TAILS we wrote "0."
Here is what happened: 1 0 1 1 1 0 1 0 ° 1

• We rolled a die 20 times. Each time we wrote down the num­
ber of spots showing on top.
Here is what happened: 52153 342 1 4

62515 1 3 2 6. 1
In each case we got a random sequence of numbers. Each num­

ber in the seque~ce w.as selected at random from a given set of
numbers.

• When we flip a coin, we select numbers at random from the
set (0,1).

• When we roll a die, we select numbers at rapdom from the
set (1,2,3,4,5,6).

By "select at random" we simply mean that we use a selection
process in which "each member of the set has the same chance of
being selected as any other member of the set. That is, the prob­

"ability of selecting any member of the set is the same as the prob­
ability of selecting any other member.

We can obtain a random sequence of numbers from the set
(0,1,2,3,4,5,6,7,8,9) by using a spinner like the one pictured
below.

1-89

Spin the wheel . . . select
the number at which it stops ..

We show the wheel stopped
at seven.

There is a BASIC function called RND. It generates "random
numbers." Here is a sequence of 50 random numbers.

10 FOR K= 1 TO 50
20 PRINT RNO(0) ..
30 NEXT K
99 END
RUN

.3481899

.6482341

.1159228

.4851633

.6156613

.3196163

.9541609

.05280418

.9848808

.5828625

.9928119

.3615558

.08069808

.4192038

.5921191

.2023254

.2890815

.3859534

.2466345

.1026891

.8231623

.311222

.5008833

.1433537

.01110888

.1914058

.1416765

.8404714

.61588

.91013719

3.666106E-03
.91933
.2190111
.08128169
.1411813
.9635A64
.2482111
.5692836
.4755698
.498A298

.6135392

.1149821

.1661529

.2335421

.3411A8
• 6043R65
.2145411
.8514A56
.31014984
.254R316

Every number in the random sequence is greater than zero but
less than one. In other words,

0< RND(O) < 1.

Every time the computer evaluates RND(O), it generates an­
other random number between zero and one. In the above pro:"
gram, RND(O) occurred in a FOR-NEXT loop and was evaluated
50 times. Therefore, 50 random numbers were printed.

BEWARE!

If you RUN our program,
don't expect to obtain the
same results.

1-90

But what if we want a random sequence in which each number
in the sequence is zero or one? Here is one way.

10 FO R K= 1 TO 20
20 PRINT INTC2*RND(0»
30 NEXT K

Print the integer part of
twice the random number.

99 END
RUN
o 000 o o

I

Why does the computer print only zeros and ones? Because, if
you recal1, -

0< RND(O) < 1.

Therefore, 0< 2*RND(O) < 2

and INT(2*RND(O)) is either 0 or 1.

The RND function is useful when we want to use the computer
to simulate (imitate) a real life activity in which chance plays a
part. Since we can flip a coin to obtain random numbers, why not
use random numbers to simulate coin flipping?

10 FOR 1<= 1 TO 20
20 LET R=INT<2*RND(0»
30 IF R=1 THEN 60J
40 PRINT "TAILS",
50 GO TO 70
60 PRINT "HEADS",
70 NEXT I<
99 END
RUN
HEADS
TAILS
HEADS
TAILS

HEADS
TAILS
TAILS
TAILS

,/R is either 0 or 1.

If . R = 1, "HEADS" is printed.
Otherwise (R = 0) , "TAILS" is
printed.

HEADS
HEADS
TAILS
HEADS

TAILS
HEADS
HEADS
HEADS

HEADS
HEADS
HEADS
HEADS

REMEMBER ... If you
RUN our program you will probably
get a different set of results.

1-91

Exercise 60. Write a program to simulate N tosses of a coin,
where the value of N is entered in response to an INPUT statement.
Here is a RUN of our program for this exercise.

RUN
110
HEADS
TAILS
READY.

and so on.

HEADS
HEADS

TAILS
TAILS

HEADS
HEADS

TAILS
HEADS

Exercise 61. The possibility set for INT(2*RND(0)) is (0,1).
The possibility set is the set of all possible values of the complete
expression. What is the possibility set for each of the following?

(1) INT(3*RND(0)) (2) 3*INT(RND(0))

(3) INT(6*RND(0))

(4) INT(6*RND(0)) + 1

(5) INT(10*RND(0))

(6) INT(10*RND(0))/10

Exercise 62. SimlJ-late something. Write .a program to generate a
random sequence that imitates a real life activity-like rolling one
die, rolling two dice, spinning a spinner like the one shown on
page 1-89, a game of chance, or you name it!

1-92

Constellations

Remember this program? (See page 1-83)

10 INPUT M,N
20 FO R R= 1 TO M
30 FOR C= 1 TO N
40 PRINT "*tI;
50 NEXT C
60 PRINT
70 NEXT R
75 PRINT
80 GO TO 10
99 END
RUN •

17,12

******~*.***

This program prints an M by N
rectangular pattern of "stars."

"l I
We want 7 rows and 12 columns.

This pattern uses 7 X 12 = 84
printing positions~ A "star" is
printed in each printing position.

Now suppose that we print an M X N pattern but instead of
printing a star ("') in each position, we flip a coin . . . if it comes
up HEADS we print a star ... if it comes up TAILS ·we print a
space. Here are some 10 X 20 patterns obained in this mann/

** **** * ** * **** * ** ***
* ** **** ** • * ••••• •• ••
••• * •• •• • .**.. * * * * * •

••• ** •• ** • ****** • ** •
• **.*. * • .*.*. ••• *. • *
• * • * * *.*.** • * ** * ** **

••• • *. ** *.* •• ** • ****
***.* ** ••• *. *.* ••• * *
* * * •••• * • *** * • * * • * ••
*** * * ** ••• ***** ••• * *

1-93

• .* *.*** .***** * * *** *
** **** * • ** • * *.*** ** *
* ** * * ** * ** * ** * * * * *. •
*** •• * .* ** * ** * ** *. * *

**** * • ** * * * ** ** *.* **
* * ** * *** ** *** **.**. *
* * * *.* • ****. *. * *.* *.

** * ** • *** *** * * * • *.**
*** *** • * * **** • **. * **
* * ** * *** ** * * **** ** .*

•

O.K., we didn't actually sit at the Teletype and flip coins. Instead,
we added some statements to our program to generate rectangular
patterns and let the computer do the work. Here it is.

10 INPUT M. N
15 PRINT
20 FOR R- I TO M
30 FOR C- 1 TO N
35 IF INT<2*RND<0»-1 THEN 50

') 40 PRINT .. ";
"---5""'1(PRINT "*";

60 NEXT C
65 PRINT
70
70 NEXT R
15 PRINT
80 GO TO 10
99 END
RUN

110,20

** * * * .* *. ** ** *** * * * •
•• • • • •• * ••• * •• *. ** ...
* * • * .* .* •• ** .** * * •••

• * .* * * ** * * ••• *.*.* * *
.*. ** ***.* ••••• * * •••
• •••• ** * •••••• * •••• *

•• * •••• * •••• *. * •••• *
• •••••• * * • * •••••••••
• * •••••••••• * * ••••• *

We let the computer "flip" the coin.
If it comes up HEADS (1) then
print a "star"; otherwise print a
space.

How many stars were printed in
all?

• • • • .. • • ••••• • ••••• • * the probability of printing a star
is Y2. The probability of printing a

Ivz> space is 1/2 •

,
Let's look more closely at statement 35.

35 IF INT(2*RND(O)) = 1 THEN 50

The possible
values are 0
and 1.----

The following statement will also do the job. Try it!

35 IF RND(O) < 1/2 THEN 50

Because

~RND(O) < .5 is TRUE about V2 the time.
RND(O) <.5 is FALSE about 1;2 the time.'

1-94

In the following pattern the probability of printing a star is 1/10
and the probability of printing a space is 9/10. LOOK FOR CON­
STELLATIONS ... MAKE UP YOUR OWN ... ARE ANY
SIGNS OF THE ZODIAC HERE?

142,65

* -* * ** * * *
** *

* * * * * *
* * * * * **

* * * *
* * * * * * *

* * * * *
* * * * *

* * * * * *
* * * **

* * '" ** * *
** * * * *

** * * *
* * ** * * * * * *
* * * * * * **

* * * * ** *' * * *
* ** * * **

* * * * *
* * * * *

* *** *
* * * *

* * * * * * * *
* * ** * * * * * * *

* * * *
* * * * '" * * *

* >I< * *
** * • * • *.* • * ** * * * * * ** ...

* ** *. * * ** *
** * * * * ... *

** * * ** * • **
* * ... * ,.;

* • * ...
* * ... * ** ... *

* * ... ** ... * ... * • ... *
* * • ••

*
** • * * *

... * * * * ... * ...
... * * *

Did you look at it from the left? The right? The top?

1-95

* **
* ...

Exercise 63 . Write a program to generate random patterns like
-the one on the preceding page. You can do it by changing one
statement in our program on page 1-94. RUN it-look for con­
stellations.

Exercise 64. Modify your program of the preceding exercise so
that the probability of printing a star is 1/20 and the probability
of printing a space is 19/20. RUN it-look for constellations.

Exercise 65. Why not enter the probability of printing a star
along with M and N? Begin your program with the statement

*

10 INPUT M, N, P

where

M is the number of rows,
N is the number of columns, and
P is the probability of printing a star.

But note: P must be entered as a decimal numeral such as .5 or
.1 or .05.

Here is a RUN of our program.

120,65,.1

* * * ** * * * ** * * * * * * * * * * * ** * * * * * * * * * * '" * * * * *
* * * * *

* * * * * *
* * * **

* * * ** * * ** * * '" *
** * * *
* * ** * * * * * *
* * * * * * ** * * * * **

* * * * * ** * * ** * * * * * * * * '" *

1-96

-

LITTLE BOXES
Remember . . . in BASIC, a variable refers to a location in the

computer's memory. You can think of the variable as the name
of the location.

A 1-1_

variable/ :/
location"/'

A location is a "box" in which we
can store a number.

Here is a box (location) with a number in it.

A I 37 Ii
~ The number in the location is the

value of the variable. (The value
of A is 37.)

Subscripted Variables

Po

ks

al

r2

Are you acquainted with subscripted variables?

Here is a sUbscripted variable .. X3

This is the SUbSCriPt------

The symbol 'xa' is read 'x sub 3.'

Here are some additIonal examples of subscripted variables.

C7

Xl

X2

Xa

W9

Y4

Z2

Zl

1-97

Read 'a ' as 'a sub l' 1

Read 'C7' as 'c sub 7'
Read 'r2' as 'r sub 2'
and so on.

In BASIC, we can use subscripted variables, but we write them
in a slightly different way. Like this:

Here is a BASIC subscripted variable--------•• X(3)

This is the subscript ------1
The subscripted variables X (1), X (2) and X (3) each corre­

spond to a location

X(l)D X(2)D X(3)D

Exercise 66. LET X(l) = 73. In other words, take pencil in
hand and write the numeral "73" in the box labelled" X (l) ." Then
do the following in similar fashion.

(l) LET X(2) = 67 (2) LET X(3) = 85

Suppose that X (1), X (2) and X (3) are scores obtained on
three quizzes. Here is a program to compute and print the average
score (the arithmetic mean of the three scores).

1 0 LET X (1)". 7 3
12 LET X(2)=67
14 LET X(3)-85
20 LET S=X(1)+X(2)+X(3)
30 LET M-S/3
40.,."PRINT M
99 END
RUN

75

Quiz 1. The score is 73.

Quiz 2. The score is 67.

Quiz 3. The score is 85.

Add the three scores, then divide
the sum by 3 and print the result.

Yes, we know you can write a
shorter program . . . but did you
learn anything about subscripted
variables?

1-98

Here is a better program.

10 INPUT X(1>.X(2).X(3) ~
20 LET S=X(1)+X(2)+X(3)
30 LET M=S/3 .
40 PRINT M
50 PRINT With this program, we INPUT the
60 GO TO 1 0 three scores.
99 END
RUN
?73.67.85~~.---------------~

75
x (1)1 L.... ___ 7_3 --II
X(2) I L-___ 6_7 1

X (3) 1L-___ 8_5 1

1 -----------O.K., enter your scores.

Exercise 67. Complete the following program to compute and
print the arithmetic mean (average) of four scores:

X (1), X (2), X (3) and X (4)

10 INPUT
20 LET 5= ____ _
~0 LET Me ____ _

40 PRINT M
50 PRINT
60 GO TO·
99 END
RUN

?

1

R UN your program for the follow­
ing sets of data. Each set consists of
four scores.

1-99

73,67,85,83
82,88,97,90

SHOW THE RESULTS
OF THE RUN

Next, let's change our program so that the data is called in by
means of a READ statement instead of an INPUT statement.

10 PRINT "XC 1) It, "XC 2)", "XC 3)", "MEAN'"
15 READ XCl),XC2),XC3)
20 LET S-X(1)+XC2)+XC3)
30 LET M=S/3
40 PRINT X(1),XC2),XC3),M
60 GO TO 15

81 DATA 82,88,97 Four sets of
80 DATA 73,67,85}-

82 DATA 93,89,95 three scores.
8 3 DATA 17, 11 , 61
99 END
RUN
XC 1>

73
82
93
77

X(2)
67
88
89
71

DATA ERROR AT LINE 15

XC 3)
85
97

-95
67

data. Each. set has

MEAN
75
89
92.33333
71.66661

Exercise 68. Change the above program to a program to com­
pute and print the mean of four numbers X (1), X (2), X (3), and
X (4). Show the modified program below along with a RUN for
the following sets of data:

73,67,85,83
82,88,97,90

1-100

Generalizing
But what if there are five scores or six scores or se~en scores?

Shall we write a separate program for each case? Why not write
one program that takes care of any number of scores ... let's try.

We want to write a program to compute the arithmetic mean of
N numbers (quiz scores, golf scores, measurements ... you name
it). Since we have N numbers, let's call them

~

X(l), X(2), ... , X(N).

We tried the following program but it didn't 'work. We kept
,getting error messages.

10 READ N Our computer didn't like these two
20 READ X(1),X(2),. •• ,X(N)::7 statements.
30 LET.S-X(I)+X(2)+ ••• "LI5T
10 READ N
20 READ X(1)"XU3),,000,,'X(N)
30 LET S=X<I)+X(2)+000+X(N)
40 LET M=S/N Note that we want N, Sand
50 PRINT N. 5,M ---------1 M printed, but not the Xs.
60 GO TO 10
70 DATA 3,,73,,67,,85
71 DATA.3,,82,88,97
72 DATA 4,73" 67" 85, 83 ,
73 DATA 5,66,,78,,71,,82,,75
99 END

Each DATA statement has the
value of N followed by the N
values of

X(l), X(2), ... , X(N).

For example

92 DATA l' 73, 61,' 85, 83

r t' "" N X(I) X(2) X(3) X(4)

Our program above didn~t work because we did: not work within'
the rules of the BASIC language. Read on!

1-101

Variable Subscripts

The subscripted variable "X(K)

has a variable subscript- t
If K = 1, then X(K) IS X(I).

If K = 2, then X(K) IS X(2).
•

If K = 3, then X(K) IS X(3).

Got the idea? Let's find out.

A(I) C 8] B(I) I 3.7 I I I 1 I
A(2) I . -6] B(2) I 9.2 '1 J [2 I
A(3) I 10 ~I C(I) [3 ~ K I 3 I
A(4) C 13 J C(2) I 4 I X I 4 I

Write the value of each variable below.

A(1)= 1= A(I)=

A(2) = J= A(J)=

A(K) = A(X) = . B(I) =

B(J) = C(I) = C(J)=

Ready for some slightly more difficult ones?

A(I + 1) = ___ A(I + 2) = A(I + 3) __ _

A(2*I) = A(2*J - 1) = A(X - 3) = __
A(I+J)= A(X-K+J)=_. A(J*K-X)=_

1-102

Here is a program to compute and print the sum and mean of
N numbers X(l), X(2), , X(N).

10 READ N

20 F'OR K= 1 TO N
23 READ XCK) READ X(l), X(2), ... , X(N)
27 NEXT K

30 LET 5-0
33 FOR K-1 TO N
35 LET 5=5+XCK)

LET S = X (l) + X(2) + ... +
X(N)

37 NEXT K

40 LET M=5/N
50 PRINT N" 5"M
60 GO TO 10
70 DATA 3,,73,,67,,85
71 DATA 3,,82,,88,,97
72 DATA 4" 73" 67"85,, 83
73 DATA 5"66,, 78" 71" 82" 75
99 END
RUN

3 225 7~
3 267 89
4 308 77
5 372 74.4

DATA ERROR AT LINE 10

Here is a partial trace of the program, using the first set of data
(the data in Line 70).

STATEMENT N K X(1) X(2) X(3)

10 READ N 3

20FORK= 1 TON 3 1

23 READX(K) 3 1 73
27NEXTK 3 2 73

23 READ X(K) 3 2 73 67
27NEXTK 3 3 73 67

23 READ X(K) 3 3 73 67 85
27NEXTK 3· 4

~
73 67 85

K > N. Therefore the loop terminates.

1-103

Exercise 69. Let's continue the trace that we began on the pre­
ceding page. We will show the statements; you fill in the K, Sand
M columns. Remember ... we left X(1), X(2) and X(3) as
follows.

X(1)[__ 73 __ X(2) ___ 1 __ 67 __ 1 X(3)1 _____ 85_1

STATEMENT N K s M OUTPUT

30LETS=O 3

33 FOR K == 1 3

35 LET S = S + X(K) 3
37 NEXT K 3

35 LET S = S + X (K) 3
37 NEXTK 3

35 LET S = S + X(K) 3"
37NEXTK 3

40 LET M = SIN 3
50 PRINTN, S, M 3
60 GO TO 10 3

and so on.

Exercise 70. For each program segment (portion of a program)
fill in the affected locations.

10 FOR N= 1 TO 4
P(1) D P(2) D

20 LET peN)-2tN
30 NEXT N P(3) C] P(4) D

F(1) C] F(2) D 70 LET F(1)
75 FOR Kc:2 TO 6 F(3) C] F(4) D 80 LET FCK)c:K*F(K-l)
85 NEXT K

F(5) C] F(6) D
1-104

Subroutines
A new idea-subroutines-and three new statements, GOSUB,

RETURN, and STOP. Let's use them in a rewrite of the program
on page 1-103.

10 READ N
......... 20 GOSUB 100

30 LET M-S/N
40 PRINT N .. S .. M
50 GO' TO 10
60 STOP

-.~100 FOR K-l TO N
110 READ X(K)
120 NEXT K
130 LET 5=0
140 FOR Kal TO N
15& LET S=S+X(K)'
160 NEXT K
110 RETURN

300 DATA 3 .. 13 .. 61 .. 85

main program

subroutine

310 DATA 3 .. 82 .. 88",91 data base
320 DATA 4 .. 13 .. 61 .. 85 .. 83
330 DATA 5,66 .. 18 .. 11 .. 82,15
999 END

This program has a main program, one subroutine and a data
base. The subroutine in lines 1 00-170 is called by the GOSUB
in line 20.

Now, RUN the above program. The results should be the same
as for the program on page 1-99.

When the GOSUB in line 20 calls the subroutine, the computer
goes to line' 1 00 and executes the commands from line 100 to 160.
The RETURN statement in line 170 sends the computer to the
line following the GOSUB (line 30) that sent the computer to the
subroutine. The STOP statement in line 60 sends the computer to
the END statement, thus signaling the completion of the program.

A program may contain more than one subroutine. Suppose that
we wish to' print. headings for each of the columns printed by the
above program. We can do this by adding one statement to the
main program and inchidin~ one more subroutine.

1-105

5 GOSUB 200

200 PRINT "N"" "S"" "M"
210 PRINT
220 RETURN

new main program statement

new subroutine

Now LIST the program and then RUN it.

5 GOSUB 200
10 READ N
20 GOSUB 100
40 PRINT N" S" M
50 GO TO 10
60 STOP
100 FOR K- 1 TO N
110 READ X(K)
120 NEXT K
130 LET S"'0
140 FOR K-l TO N
150 LET S-S+X(K)
160 NEXT K
170 RETURN
200 PRINT "N"" "s"" "M"
210 PRINT
220 RETURN
300 DATA 3,,73,,67,,85
310 DATA 3,,82,,88,,97
320 DATA 4,,73,,67,,85,,83
330 DATA 5,,66,,7S,,71,,82,,75
999 END

RUN
N S

3 225
3 267
4 308
5 372

DATA ERROR AT LINE 10

M

(II

0
(II

'"

A program may have many GOSUB's, each .of which go to the
same subroutine; this is especially helpful when the same (or sim­
ilar) statements appear more than once in the same program.

When you use subroutines, keep them distinct from the main
program. This is normally done by placing them after the main
program. Remember that the last statement in the main program
must be a STOP or a GO TO (e.g., GO TO 999-the END
statement) .

1-106

SNOOPY AND THE RED BARON

It is 1976 and the candidates for President of the United States
are Snoopy and the Red Baron. We conducted a poll by asking
29 of our friends to respond to the following question.

Who should be President in 1976?
Circle the number to the left of the
candidate of your choice.

1. Snoopy

2. Red Baron

You guessed it . . . we are going to write a program to direct
the c~mputer to count the votes for each candidate, Snoopy and
the Red Baron. First, let's record the 29 votes in one or more
DATA statements. Remember, each vote is a "1" or a "2."

91 DATA 2,1,2,1,1,2,2,2,1,1,2,2,2,1,1
92 DATA 2,2,1,1,2,2,2,1,2,1,1,1,2,2

Before continuing, we ask you the following questions.

How many votes did Snoopy get? __________ _

How many votes did Red Baron get? __________ _

Add the number of votes obtained by Snoopy and the number
obtained by the Red Baron. The total should be 29 . .'. if not,
check your work.

1/
!

1-107

We think you answered the questions on the preceding page
as follows.

1. You counted the number of "Is" in the two DATA state­
ments. The result is the number of votes obtained by
Snoopy.

2. Then you counted the number of "2s" in the two DATA
statements. The result is the number of votes obtained by
the Red Baron.

That's fine, but we are going to use a different method. First, we
define two subscripted variables and assign the value zero (0) to
each. Like this:

C(I)r=~ C(2) ____ I __ 0 1

Then we read the 29 votes, one by one. If the vote (V) is a "1"
we increase the value of C(1) by one. But if the vote is a "2," we
increase the value of C (2) by one. After we have rea,d all 29
votes, C (1) will contain the number of votes for Snoopy and C (2)
will contain the number of votes for the Red Baron. Here is the
program and the results of a RUN.

10 LET C(1)=0
20 LET C(2)=0
30 FO R K- 1 TO 29
40 READ V
50 LET C(V)=C(V)+1
60 NEXT K
10 PRINT C(I),C(2)

If you don't understand the pro­
gram, study the trace on the next
page.

91 DATA 2 .. 1 .. 2,1, 1,2,2,2,1,1,2,2,2,1,1
92 DATA 2 .. 2,1, 1,2,2 .. 2,1,2,1,1,1,2,2
99 END
RUN

13 16

t .. -------+L-----vote count for Snoopy.

L,---vote count for the Red Baron.

1-108

Exercise 71. Study the following partial trace of our vote count­
, ing program and fill in the missing information under the K, V,
C(1) and C(2) columns.

STATEMENT K v C(1) C(2)

10 LET C(1)= 0 0
20 LET C(2) = 0 - 0 0

30 FOR K = 1 TO 29 1 0 0

40 READ V 1 2 0 0
50 LET C(V) = C(V) + 1 1 2 0 1
60 NEXTK 2 2 0 1

40 READ V 2 1 1 1
50 LET C(V) '= C(V) + 1 2 1 1 1
60NEXTK 3 1 1 1

40 READ V 3 2 1 1
50 LET C(V) = C(V) + 1 3 2 1 2
60NEXTK 4 2 1 2

40 READ V
50 LET C(V) = C(V) + 1
60 NEXT K

40 READ V
50 LET C(V) = C(V) + 1
60NEXTK

40 READ V
50 LET C(V) = C(V) + 1
60NEXTK

40 READ V
50 LET C(V) = C(V) + 1
60NEXTK

and so on.

1-109

Exercise 72. We conducted another poll, asking the same ques­
tion. But this time, we asked 32 people to votle for Snoopy or the
Red Baron. Here are the votes.

1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1

2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2

Use our program to process the above data. You will have to
change Lines 30, 91 and 92.

Exercise 73. Conduct your own poll. Then use our program to
process the data. You will probably have to change Lines 30, 91
and 92.

Exercise 74. Figure out how to use the following program to
count votes. Change it to count the votes of either Exercise 68
or 69.

10 READ N .. - N votes
20 LET C(I)=0 ~
25 LET C(2)=0

30 FOR K=1 TO N ~~~------------------
40 READ V
50 LET C(V)=C(V)+1
60 NEXT K
70 PRINT C(I) .. C(2)
90 DATA 29 ~ - Value of N.
91 DATA 2 .. 1 .. 2 .. 1 .. 112 .. 2 .. 2 .. 1 .. 1 .. 2 .. 2 .. 2 .. 1 .. 1
92 DATA 2 .. 2 .. 1 .. 1 .. 2, 2, 2,1 .. 2,1 .. 1, 1 .. 2, 2
99 END
RUN

13 16

1-110

No Opinion
Here is a slightly different questionnaire.

Who should be President in 1976?
Circle the number to the left of the
candidate of your choice.

1. Snoopy

2. Red Baron

3. No Opinion

We asked 37 people and got the following votes.

1,3,1,.2,3,1, J, 2,3, 1, 1,2,1,1,2, 1,2,2,2

2, 1, 3, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 3, 1, 1, 2, 3

How many votes for Snoopy? ____________ _

How many votes for the Red Baron? _________ _

How many No Opinions?_---------------

TOTAL of above categories? _____________ _

Now we hav.e three categories, so we use three subscripted
variables.

C(l) I ___ ~]C(2) . ~ C(3) I L...--_------'

Snoopy I Red Baron I No Opinion I
Exercise 75. Change our program of Exercise 74 into a program

to process data such as the above (three categories instead of two) .
You will have to add a line to set C(3) to zero, change Line 70
and, of course, change Lines 90, 91 and 92.

1-111

Exercise 76. In a newspaper, the results of a poll might be pre­
sented in a table such as the following.

CANDIDATE

Snoopy

Red Baron

No Opinion

VOTES

17

13

PERCENT

46%

35%

7 19%

(% of total vote)J

Modify your program of Exercise 75 so that the results are
printed in a table like the one shown above.

Exercise 77. But suppose there are three candidates. For exam­
ple, our questionnaire might look like this.

Who should be President in 1976?
Circle the number to the left of the
candidate of your choice.

1. Snoopy

2. Red Baron

3. Lucy

4. No Opinion

Write a program to count votes obtained by using the above
questionnaire. Invent your own data . . . print results in a table
similar to the table in Exercise 76.

1-112

More Choices
We have used questionnaires with two choices, three choices and

four choices. In each case, the choices have been political candi-.
dates or a "No Opinion" category. Our categories don't have to be
political, however. Here are several questionnaires that you can use
to gather data. Do so . < • then use the program on the following
page to compute the results of each of. your polls.

What is your favorite mu­
sical group? Circle the
number to the left of your
choice.

1. Beatles
·2. Blood, Sweat and

Tears
3. Crosby, Stills, Nash &

Young
4. Jefferson Airplane
5. Lawrence Welk
6. Rolling Stones
7. None of the Above

Which breakfast cereal do
you prefer? Circle the
number to the left of your
choice.

1. Trix
2. Total
3. Cheerios
4. No Opinion

What is your favorite individual sport? Circle the num­
ber to the left of your choice.

1. Badminton . 2. Bowling
4. Fencing 5. Golf·
7. Handball

10. Roller Skating
13. Surfing
16. Track
19. None of Those

Listed

8. IceSkating
11. Snow Skiing
14. Swimming
17. Water Skiing

3. Boxing
6. Gymnastics
9. Karate

12. Squash
15. Tennis
18. Wrestling

If someone circles two or mOre choices, throw out their ques­
tionnaire ... our program can't handle this case.

1-113

Here is our program. The lines that begih with the word "RE­
MARK" are remarks! They have no effect on the execution of the
program. You may insert a REMARK line wherever you please.

100 REMARK***THE P~OPLE·S POLL
200 REMARK***M IS THE NUMBER OF CATEGORIES (M<:99)
2110 Dlf1 C (99)~ Let's talk about this below.
220 READ M
-300 R~MARK***SET C(l),C(2), ••• ,C(M) ALL TO ZERO
310 FOR K:l TO M
320 LET C(K):0
330 NEXT K
400 REMARK***PRINT A HEADING
410 PRINT "CATEGORY", "VOTES"
420 PRI NT
500 REMARK***THERE ARE N VOTES
510 READ N
600 REMARK***READ N VOTES AND COUNT BY CATEGORY
610 FOR K:l TO N
620 READ V
63~ LET C(V):C(V)+1
640 NEXT K
7f60 RiMARK***PRINT RESULTS (M LIHES,2, NUMBERS P~R LINE)
710 FOR K:l TO M
720 PRINT K,C(K)
730 NEXT K
900 R Ef1ARK***BEGI N DATA LISTS
901 DA TA ------- Put your value of M here.
902 DATA ... Put your value of N here.
903 DATA ,. Record your votes, beginning here.
999 END Use as many DATA statements as

necessary.

*** O.K., now RUN it! ***

The statement 2.10 DIM C(99)

is a DIMension statement.7 It tells the computer to permit sub­
scripts of C up to and including 99. Without a DIM statement, the
largest permissible subscript is 10. We chose 99 arbitrarily. We
could have c;:hosen 25 or 100 or 150 or any limit we wanted.

7 Not necessary on EduSystems 20 or 25.

1-114

Generation Gap
Snoopy and the Red Baron ... a new questionnaire.

Q1. Who should be President in 1976'1 Circle the
number to the left of your choice.

1. Snoopy
2. Red Baron
3 . No Opinion

Q2. Circle the number to the left of the phrase
that describes your age group.

1. Under 30 years old
2. ·30 years old or older.

The first question has three possible responses (1, 2 or 3) and,
the second question has two possible responses (lor 2). Each
completed questionnaire gives us two numbers. For example,

/1,2

~ L__ t .
A vote for Snoopy ... by a person 30 years old or older.

We conducted a survey. We asked 32 people to vote, therefore
we got back 32 pairs of 'numbers . , .64 numbers in all.

1, 2, 2, 1, 3, 2, 1. 1. 2. 2, 2. 2. 1, 1, 2, 1, 1,2,2,2,2,2, 3, 1

2,2, 1, 1, 1, 1,2,2, 1,2, 3,2,2, 2,2, 1, 1, 1, 1, 1, 1, 1, 1,2

1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1

Begin here and circle or underline each pair of numbers. The first
number in each pair is the vote (1, 2, or 3) and the second number
in each pair is the age group of the voter,

.
How many people under 30 voted for Snoopy?

How many people 30 or older voted for Snoopy?

1-115

· Fortunately, BASIC permits us to use variables with two sub­
scripts.

UNDER 30 30 OR OVER

Snoopy C(1,I) I C(1, 2)

Red Baron C(2, 1) .IC(2, 2)

No Opinion C(3, 1) IC(3,2)

Here is a variable with two subscripts:

First subscript -,----

Second subscript ___ .L

Have you guessed the following?

C (1, 1) = number of votes for Snoopy by people under 30.

C(1,2) = number of votes for Snoopy by people 30 or over.

C(2, 1) = number of votes for Red Baron by people under 30.

Your turn. Complete the following.
C(2, 2) = _______________ _

C(3, 1) = _______________ _
C(3, 2) = _______________ _

Here is our data again, copied from the prec:eding page. Use it to
fill in the boxes (C(1,l), C(I,2), etc.) at the top of the page. We
suggest that you look at each pair of nuinbers and, for each pair,
put a mark in the appropriate box. After you have used all pairs,
simply count the number of marks in each box and write in the
number.

1, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1,2, 2,2,2,2, 3, 1

2,2,1,1,1,1,2,2,1,2,3,2,2,2,2,1,1, 1, 1, 1, 1, 1, 1,2

1, 1, 1,2, 2, 1, 1, 2, 2, 2, 1, 1,3, 1, 1, 1

1-116

Here is a BASIC program to count the votes. We have included
several REMARKS to describe what's happening. '

100 REMARK***SNOOPY~RED BARON AND THE GENERATION GAP
200 REMARK***PUT ZEROS IN THE BOXES
210 FOR 1= 1- TO 3
220 FOR J= 1 TO 2
230 LET .c<I~J)=0
240 NEXT J
250 NEXT I
300 REMARK***READ A NUMBER PAIR AND UPDATE A BOX
310 REMARK***V=VOTE AND A=AGE GROUP
320 FOR K=1 TO 32
330 READ V~A
340 LET C<V~A)=C<V~A)+l
350 NEXT K
400 REMARK***PRINT THE RESULTS
410 PRINT "CANOl DATE"~ "UNDER 312i"~ "30 OR 0 VER"
420 PRINT
430 PRINT "SNOOPY".~ C(1~ 1)~ C(I~ 2)
440 'PRINT "RED BARON"~ C< 2~ 1), C< 2,2)
450 PRINT "NO OPINION"~C<3,1),C<3~2)
900 REMARK***HERE IS THE DATA
901 DATA 1~ 2~ 2, 1,3,2,1,1,2,2,2,2,1, I, 2, 1~ 1,2,2,2,2,2,3,1
902 DATA 2,2,1,1,1,1,2,2, 1, 2~ 3,2,2,2,2, 1, 1, 1~ 1, 1,1,1,1,2
903 DATA 1,1,1.; 2,2,1,1,2,2,2,1,1,3,1,1,1
999 END

RUN
CANDI DATE

SNOOPY
RED BARON
NO OPINION

UNDER 30

10
4
2

30 OR OVER

6
8
2

Study the above program and understand it before you move on.
Perhaps the following comments will help.

If I == 1 and J = 1 then C(I, J) IS C(,I, 1)
If I == 1 and J = 2 then C (I, J) IS

If I == 2 and J = 1 then, C (I, J) is

and so on.

Remember ...
C(V, A)

V = 1, 2, or 3/ ~ = 1 or 2

C(1, 2)

C(2, 1)

If V = 1 and A = 2 then C(V, A) is C(I,2).

1-117

Exercise 78. Modify our program on the preceding page so that
the results are printed as follows.

CANDIDATE UNDER 30

SNOOPY 10
RED BARON ..
NO OPINION 2

30 OR OVER

6
8
2

TOTAL VOTES

16
12
4

Exercise 79. Modify your program of Exercise 78 so that instead
of printing the number of Yotes, the computer prints the percent of
the total number of Yotes, rounded to the nearest whole number
percent. For example, uSing the same data as in Exercise 78, the
computer should print the following results.

CANOl DATE

SNOOPY
RED BARON
NO OPI NI ON

UNDER 31

31 %
13 %
6 %

31 OR OVER

19 %
25 %
6 %

TOTAL

51 %
38 %
12 %

Exercise 80. Change the questionnaire. Add a candidate and
add an age group as follows.

CANDIDATES AGE GROUPS

l. Snoopy l. Under 21

2. Red Baron 2. 21-29

3. Lucy 3. 30 or older

4. No Opinion

Write a program to count yotes and print the results under the
following headings.

CANDIDATE UNDER 21 21-29 31 OR OVER

1-118

Reprise

A BASIC variable may have

no subscript:

one subscript:

two subscripts:

A subscript may be

A, B, C, D, ...

A(3), B(K), C(X + 2), ...

A(1,2), B(I,J), C(X,X + 1), ...

a numeral or a variable or an expression.

A subscript must have a non-negative value. Furthermore, if the
subscript is not a whole number, then the computer uses the whole
number of the subscript. For example:

X(3.7) is interpret~d as X(3).

If K = 2.9 then P(K) is P(2).

The computer permits a subscript value of zero (0).

10 LET A (0) - 100
20 PRINT A(0)
99 END

If a subscript value exceeds 10, you may have to use a DIM
statement. Otherwise, this may happen

10 LET A(10)=110
20 PRINT A(10)

No DIM statement here.

30 LET A(11)-111 ~ ----In Line 30, we used a subscript of
40 PRINT A(11) 11.
99 END
RUN

110

SUBSCRIPT ERROR AT LINE 30

1-119

So let's add a DIM statement

5 DIM A(11) o4II ------This DIM statement tells the com-
10 LET A (10) c 110 puter that the sUbscript of A may
20 PRINT A(10) be at most 11.
30 LET A(11)-111
40 PRINT A(11)
99 END

RUN
110 Now the program works as desired.
111

A DIM statement has the following general form

line number DIM list of subscripted variables

For example: A(20),B(3S),C(20,12)D(5,7>

7
DIM---

list of subscripted variables

The above DIM statement tells the computer that:

The subscript of A must me ~ 20.

The sUbscript of B must be ~ 30.

The first subscript of C must be ~ 20.

The second subscript of C must be ~ 12.

The first subscript of D must be ~ 5.

The second subscript of D must be ~ 7.

If you don't mention a subscripted variable in a DIM statement,
then the computer assumes that its subscript or subscripts must be
less than or equal to 10.

1-120

Below are two programs. RUN each program using the given
data. Describe to yourself. what each program does, then make up
your own data and RUN it again.
10 DIM K(50).Ae50)
15 READ N
20 FO R J- 1 TO N
25 READ KeJ)
30 NEXT J
35 LET S:a0 .
40 FO R J:a 1 TO N
45 READ AeJ)
50 lF AeJ)<>KeJ) THEN 60
55 LET S-5+ 1
60 NEXT J
65 PRINT S
70 GO TO 35
80 DATA 12

Maybe you can figure out what the
program does without a RUN. Try
it!

81 DATA 2.1.2. 3. 4~ 1.3.2. 1.4.4.1
82 DATA 2.1.1.3.4.1.3.1.1.3.4.2
83 DATA 2. 1~ 2. 3. 3. 1. 3~ 2. 1.4.4. 1
84 DATA 1.1.1,3,4.1.3,2.2,4.4,1
85 DATA 3,4.2, 1,4. 1,2,4, 3.4, I, 3
99 END

100 DIM X(30)
200 READ N
210 F'OR K-l TO N
220 READ XC K)
230 NEXT K
300 FOR J-l TO N-l
310 FOR K-J TO N
3~u. xeJ)-X(K)LISL_
100 DIM X(30 ..
200 READ N
210 FOR K=l TO N
220 READ XCK)
230 NEXT K
300 FOR J=l TO N-l
310 FOR K-J TO N
320 IF X(J).<aX(K) THEN.360
330. LET T-X(J)
340 LET X(J)-X(K)
350 LET X(K)-T
360 NEXT K
370 NEXT J
400 FOR K-l TO N
410 PRINT X(KH
420 NEXT "K
900 DATA 20
901 DATA 66.75,59,93,77,85,48,92,67,'7("
902 DATA 83, 47~ 96.70.66,73,59. 75, 8~" 53
999 END

1-121

100
200
210
220
230
240
250
300
310
320
330
340
343
347
350
999

REMARK***DECIMAL MULTIPLICATION
REMARK***GENERATE AND STORE THE
FOR A-I TO 9
FOR B=1 TO 9
LET C(A~ B)-A*B
NEXT B
NEXT A
REMARK***PRINT THE TABLE
FOR A= 1 TO 9
FOR Ba 1 TO 9
PRINT C(A~ B)';

NEXTB
PRINT
PRINT

l'ABLE
TAF4LE

NEXT A
END We avoided A = 0 and B = O.

READY

You may wish to change the pro­
gram to include these values.

RUN

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 ·32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

Exercise 81. Modify the program so that th,e computer prints the
decimal addition table.

Exercise 82. Modify the program so that the computer prints the
octal (base 8) multiplication table. 8 (Remember-the base 8 digits
are: 0, 1,2, 3,4, 5,6 and 7.)

H If you don't understand octal, see Introduction to Programming 1972.

1-122

KALEIDOSCOPE

Coin Tosser
.The following program causes the computer to simulate (imi­

tate) coin tossing. During the simulated tossing, no printout occurs.

Instead, the computer counts the number of heads and tails that

happen. After the required number of tosses have been completed,

the. computer prints the counts.

10 PRINT "HOW MANY TOSSES"J-T is the number of ~osses.-,
15 INPUT T~.'---------------------------------~-------~
20 LET N(1)=0 N(1) = number of HEADS.
25 LET N(2)=0 N('4-) = number of TAILS.
30 FOR K= 1 TO T
40 LET X-INT(2*RNDe0»+1
50 LET NeX)=NeX)+1
60 NEXT K
70 PRINT

1 for HEADS and 2 for TAILS.

80 PRINT "RESULTS:";NClH"HEADS AND";N<2H"TAILS"
85 PRINT
90 GO TO 10
99 END

RUN
HOw MANY TOSSES? 100

RESULTS: 50 HEADS AND

HOw MANY TOSSES? 100

RESULTS: 51 HEADS AND

'HOW MANY TOSSES? 1000

RESUL TS: 500 HEADS AND

HOW MANY TOSSES? 1000

RESUL TS: 499 HEADS AN D

HOW MANY TOSSES? 1000

50 TAILS

49 TAILS

5.00 TAILS

501 TAILS

RESULTS: 501 HEADS AND 499 TAILS
,

HOw MANY TOSSES1~."'----------Your turn. Carryon.

1-123

/

Dice
Next ... a program to simulate rolling a pair of dice. For each

roll, the computer prints the number of spots showing for each die
and the total spots-both dice.

10 PR IN T "HO ItJ MANY ROLL S"; - Let's have T rolls of the pair of
20 INPUT T .. dice.
30 FOR R= ITO T
50 LET B= INRC 6*RNDC 0»+ 1
60 PRINT A~B,A+B
70 NEXT R
80 PRINT
90 GO TO 10
99 END

A = number of spots, die (1).
B = number of spots, die (2).

Total spots, both dice.

Exercise 83. Modify the above program so that the computer
does not print the results of each roll. Instead, after all rolls have
been completed, have it print a frequency distribution showing the
number of times the total number of spots (both dice) came up
2, 3, 4, 5, ... , 12. Here is a printout of our program.

HOW MANY ROLLS? 1000

TOTAL SPOTS NUMBER OF TIMES

2 25
3 55
4 82
5 105
6 135
7 180
8 139

,9 96
10 86
11 65
12 32

1-124

23 Matches
Have you ever played 23 matches? It goes like this ... we start

with 23 matches. You move first. You may take 1, 2 or 3 matches.
Then I move. ; . I may take 1, 2 or 3 matches. You move, I move,
and soon. The one who is forced to take the last match loses. Here
is a program to enable you to, play 23 matches against the com­
puter.Enter it and type RUN.

100 REMARK***23 MATCHES
110 "L ET M= 23
115 PRINT
120 PRINT "\/JE START wITH 23 MATCHES. wHEN IT IS YOUR"
130 PRINT "TURN, YOU MAY TAKE 1,2, OR 3 MATCHES. THE"
140 PRINT "ONE \NHO MUST TAKE THE LAST MATCH LOSES."
150 PRINT
200 REMARK***THE HUMAN MOVES
205 PRINT
210 PRINT "THERE ARE NOW";M;"MATCHES"
215 PRINT
220 PRINT "HOw MANY MATCHES DO YOU TAKE?";
230 INPUT H
240 IF H>M THEN 260
250 IF H=INTCH) THEN 252
251 GOTO 260
252 IF H>0 THEN 254
253 GOTO 260
254 IF H<4 THEN 280
260 PRINT "YOU CHEATED',I 'LL GI \IE YOU ANOTHER CHANCE. Jt

270 GOTO 215
280 LET M=M-H
290 IFM=0 THEN 410
300 REMARK***THE COMPUTER
310 LET R=M-4*INTCM/4)
320 IF R<>1 THEN 350
330 LET C=INT(3*RND(0»+1
340 GOTO 360
350 LET C=(R+3)-4*INT«R+3)/4)
360 LET M=M-C
370 IF M=0 THEN 440
375 PRINT
380 PRINT "I TOOK";C;"MATCHES"
390 GOTO 200

,,400 REMARK***SOMEBODY \/JON (SEE LINES 290 AND 370>
410 PRINT
420"PRINT "I \NON'!' BETTER LUCK, NEXT TIME. It
430 GOTO 100
440 PRINT
450 PRINT "O.K. SO YOU wON. LET'S PLAY AGAIN."
460 GOTO ,100
999 END

We show a RUN on the following page (we lost).

1-125

WE STAHT WITH 23 MATCHES. WHEN IT IS YOUR
TURN, YOU MAY TAKE 1,2, OR 3 MATCHES. THE
ONE wHO MUST TAKE THE LAST MATCH LOSES.

THERE ARE NOW 23 MATCHES

HOW MANY MATCHES DO YOU TAKE?? /
Human (that's me)

3
takes 3 matches.

I TOOK 3 MA TCHES Computer takes 3 matches.

THERE ARE NOW 17 MATCHES

HOw MANY MATCHES DO YOU TAKE?? 2

I TOOK 2 MA TCHES

THERE ARE NOw 13 MATCHES

HOw MANY MATCHES DO YOU TAKE?? 3

I TOOK 1 MATCHES

THERE ARE NOW 9 MATCHES Quite illegal!

HOw MANY MATCHES DO YOU TAKE?? 4/ .
YOU CHEATED! I ILL GI VE YOU ANOTHER CHANCE. We got caught!

HOw MANY MATCHES DO YOU TAKE?? 1

I TOOK 3 MATCHES

THERE ARE NOW 5 MATCHES

HOW MANY MATCHES DO YOU TAKE?? 2

I TOOK 2 MATCHES

THERE ARE NOW 1 MATCHES

HOW MANY MATCHES DO YOU TAKE?? 0

Nice try, but again
/' we got caught.

YOU CHEATED! llLL GIVE YOU ANOTHER CHANCE.

HOW MANY MATCHES DO YOU TAKE?? 2
YOU CHEATED! I'LL GIVE YOU ANOTHER CHANCE.

HOW MANY MATCHES DO YOU TAKE?? 1

I WON"! BETTER LUCK NEXT TIME.

Can you beat the computer? Try it!

1-126

Rounding a Number
Sometimes we want to round a number. If you don't know what

we mean by "round," study the following program and the RUN
of it.

10 REMARK*** ROUND TO THE NEAREST INTEGER
20 PRINT" X X ROUNDED"
30 PRINT
40 READ X
50 LET R-INT<X+.5) .. R = X rounded to nearest integer.
60 PRINT X ... R
70 GOTO 40

-80 DATA 0 ... 1 ... 2 ... 2.78 ... 3.14 ... 8.999 ... 9.5 ... -3.7 ... -3.2
99 END

RUN
X X ROUNDED

o
1
2
2.78
3.14
8.999
9.5

-3.7
-3.2

o
1
2
3
3
9
10

-4
-3

Exercise 84. Modify the program so that X is rounded to two
decimal places instead of to the nearest integer. (To the nearest
penny!) Use the following-DATA statements.

DATA ERROR AT LINE 40

DATA 3.142 ... 2.718 ... 6.555 ... 9.993 .. 7.995
DATA -3.142,-2.718 ... -6.555 .. -7.993 .. -7.995

1-127

Miscellaneous Math
Previously we discussed two BASIC functions (INT and SQR)

that are used to perform mathematical operations. BASIC also in­
cludes other mathematical functions to help you calculate loga­
rithms, exponential equivalents, absolute values, and signs of
values. The following examples illustrate these additional functions.

LOG
The LOO function returns the natural logarithm of X to the

base e (lo~X). Line 20 in the following program contains a LOG
function used to convert several values to tht~ir logarithmic equiv­
alents.

10 READ X
20 PR I NT LOG (X)
30 DATA ~4.59815,22026.47,12345~200,.720049El1
40 GO TO 10
99 END
RUN

4
10
9.42101lJ6
4.60517
25
DATA ERROR AT LINE 10

EXP
The exponential (EXP) function raises the number e to the

power of x.- EXP is the inverse of the LOG function. The following
program prints the exponential equivalents of several values. Note
that the input values below are the output values from the LOG
function example.

10 READ X
20 PRINT [XP(X)
30~ATA 4~li,9.421006,4.60517,25
40 GO TO Ii'
99 END
RUN

54.59815
22026.46
12345
99.99999
7 .200490E+ 10
DATA ERROR AT LINE IIlJ

1-128

ABS
The absolute (ABS) function returns an absolute 'value for

any input value. Absolute value is always positive. In the following
program, various input values are converted to their absolute values
and printed.

10 READ X
20 LET X :ABS (X)
30 PRl NT X
40 DATA -35,.7,2,25EI0,105555567,10.12345
50 GO TO 10
99 END
RUN

35.7
2
2.500000E+l1
1.055556E+08
10.12345
DATA ERROR ,AT L lNE 10

SGN
The sign (SGN) function returns the value 1 if x is a positive

value, ° if x is 0, and - r if x is negative. The following program
illustrates the use of the SGN function.

10 READ A,B,C
2m PRINT "A:"A,"B="B,"C:"C
30 PRINT "SGNCA):"SGNCA),"SGNCB):"SGN(B),"SGNCC):"SGNCC)
40 DATA -7.32,.44,0
50 GO TO 10
99 END
RUN

A:-7.32 B:.44 C:0
SGNCA):-l SGNCS)=1 SGNCC)=0
DATA ERROR AT LINE 10

1-129

Say Something in Trigonometry
If you haven't had trig, just skip this page. But if you do know

something about trig, read on!

Let R be the measure of an angle, given in radians.

10 PRINT "R","SINCR)","COSCR)",,"TANCR)",,"ATNCR)"
20 PRINT
30 REAl) R
40 PRINT R .. SINC.R) .. COSCR) .. TANCR)" ATIIJCR)
50 GOTO 30
60 DATA 0 .. 1 .. 2 .. 3" 3.14159 .. 3.1416 .. 4 .. 5" 6 .. 7 .. 8 .. 100
99 END

READY

RUN
R SINCR) COSCR) TANCR)

0 0 1 0
1 .641471 .5403023 1.557408
2 .9092974 -.4161468 -2.18504
3 .14112 -.9699925 -.1425466
3.14159 2. 666363E- 6 - 1 -2.668363E-6
3.1416 -7. 349700E- 6 - 1 7. 349700E- 6
4 -.7566025 -.6536436 1.157821
5 -.9589243 .2836622 - 3. 380515
6 2794155 .9601703 -.2910062
7 .6569666 .1539022 .8114481
8 .9693582 -.1455 - 6.19S113
100 .i.. 5063656 .8623185 -.5612141

DATA ERROR AT LINE 30

ATN(R)

0
.185398~

1.101149
1.249046
1.262627
1.2626P.8
1.325818
1.313401
1.405648
1.428899
1.446441
1.560197

Exercise 85. The above program requires that the value 'of R be
given in radians. Modify the program so that the data is given in
degrees. Include the following DATA statemlents.

DATA 0,30,45,90,120,135,150,180
DATA 210,225,240,270,300,315,330,360
DATA 1000,2000,3000,3630,3645,3660

1-130

Do It Yourself Functions
When you have mastered BASIC and are writing your own pro­

grams, you may wish to define functions other than those provided
by BASIC. The DEF statement allows you to do this.

To show you how the DEF statement works, we defined as a
function the formula for converting Fahrenheit to Centigrade. We
provided the computer with Centigrade values. We included a
check to ensure that all values were above -273. We used the
formula:

_9 F--C+32
5

to convert Centigrade to Fahrenheit. And we request that the
converted values be printed.

Here is the program we used:
READY

10 DEF FNFCT>=C9/5>*T+32
20 GOSUB 100
30 PRINT FNF'CX>
40 GOTO 10
50 STOP

100 REMARK***READ AND TEST DATA
110 READ X
120 IF X>-273 THEN 140
130 PRINT "INVAL I D DATA"
140 RETURN
200 DATA -'40,0,100,23,9,37,-274
999 END

RUN
-40

32
212
73.4
48.2
98.6

INVALID DATA
-461.2

DATA ERROR AT LINE 110

The DEF statement in line 10 defines a function FNF which
may then be used elsewhere in the program. Defined functions must
have three letter names, starting with FN. The format of the DEF
statement is as follows:

(line number)DEF FNF(T) = (9/5)*T + 32

argument formula argument

1-131

F may be any letter. The argument (T) has no significance but
must be; the same on both sides of the equal sign. The formula may
be expressed in terms of numbers, several variables, other functions
(INT, SQR, etc.), or mathematical expressions.

Om:e the function has been defined, it is called in the same
manner as other BASIC functions, e.g. FNF(X). Only one DEF
statement is permitted in an EduSystem 10 program. The larger
EduSystems allow multiple DEF statements in a program.

Exercise 86. Define a function to find the area of a circle. Re­
member that the formula is:

A = 3.14xR2 or as we say in BASIC A == 3.14*R t 2

Use the function to find the areas of circles with radii of 6, 8,
and 12. Use the computer to check your answers.

PAST AND FUTURE BASIC
Look back ... you have learned a lot about the language called

BASIC.

• Direct Statements9 SCR, RUN, LIST
• Statements: PRINT, END, LET, INPUT, GO TO, READ,

DATA, FOR, NEXT, IF, DIM, REMARK,
GOSUB, RESTORE

• Operations: +, -, *, /, t

• Relations: =, <, >, <=~ >=, <>
• Functions: INT, SQR, TAB, RND
• Also: Numerals, numerical expressions, variables, variable

expressions, traces, messages, loops, flowcharts, sub­
scripted variables

Briefly mentioned:

• The SIN, COS, TAN, and ATN functions
• The LOG, EXP, ABS, and SGN functions

9 A direct statement does not have a line number. It is executed immedi­
ately (when you press RETURN) instead of being stored in the computer's
memory for later execution. Some people use the term "immediate state­
ment" i:qstead of "direct statement."

1-132

Now you can "say" simple things in BASIC, but you are not
yet fluent. As with any language, if you want to become fluent, you
must use the language and also learn more about it.

Look ahead . . . more to learn about BASIC . . . things that
we haven't covered at all or have only mentioned briefly.

• Statements DEF, GOSUB, ON ... GO TO ... , RE­
STORE, RETURN, STOP

• Logical Operations: AND, OR, NOT
• Functions: ABS, ATN, COS, EXP, LOG, SIN, TAN

The above are included in many versions of BASIC. But there
are also some hopped-up versions of BASIC that have additional
features. Look for:

• Strings and String Variables
• String Functions

• Files

Where do you look? For each EduSystem there is a chapter in
this handbook that describes the exact characteristics of the lan­
guage for that EduSystem. The following chart summarizes the
BASIC statements, edit and control commands, and functions and
indicates the EduSystems on which they are available;

1-133

Table 1-1. BASIC Statements

EduSystems
Statement Format Description 5 10 15 20 25 30 40 50

Input/ Output
CLOSE CLOSE Close open ouput data file. x

CLOSE CLOSEf Close file f. x

DATA DATA n1,n2 , ••• nn Numbers n1 through nn are x x x x x x x x
variables for READ.

GET GET f,l,r Read record r, form as in x

- line 1, from file f.
I

INPUT INPUT V1,V2 , ••• vn Get VI' through VII input from - x x x x x x x x w
.;:... Teletype.

INPUT# INPUT#, V Get v (can be numeric and! x
or string variable) from
input data file.

KILL KILL F$ Delete a stored data file x
named by F$.

LINPUT LINPUT v$l! V$2"" v$n Get long character string x x
from Teletype.

LPRINT LPRINT e1,e2 , ... ell Print values of specified text x
or expressions on line printer
or high-speed paper tape
punch.

Table 1-1 (Cont.). BASIC Statements

EduSystems
Statement Format Description 5 10 1,5 20 25 30 40 50

OPEN OPEN f,n$ Open a file named n$ as file f. x
OPEN A$ FOR INPUT Open an existing data file x

named by A$.
OPEN B$ FOR OUTPUT,x Create or reopen an existing x

data file named by B$; x is
number of blocks reserved for
this file.

'""'" OPEN-ELSE OPEN fELSEn Open a file; go to line n if ·x ,
'""'" unavailable. \.;)

VI
PRINT PRINT eH e2 , ••• en Print values of specified text, x x x x x x x x

variables, or expressions.
Format control (, or ;).

PRINT# PRINT#,n Write data (numeric or x
string) onto die output data
file ..

PUT PUT f,l,r Write record r, form as in x
line 1, in file f.

READ READ V1,V2 , ••• vn Read variables v 1 through x x x x x x x X

vn from DATA list.
RESTORE RESTORE Reset DATA pointer to be- x x x x x x x x

ginning value.

Table 1-1 (Cont.). BASIC Statements

EduSystems
Statement Format Description 5 10 15 20 25 30 40 50

RESTORE * RESTORE * Reset DATA pointer for x
numeric data only.

RESTORE$ " RESTORE$ Reset DATA pointer for x
character string data only.

UN SAVE UNSAVEf Delete file from disk storage. x
WRITE WRITE n1 ••• n1l Record data n l through nn on x x x x

mass storage file
I Transfer of Controls
w
0\ GO TO GOTOn Transfer control to line n. x x x x x x x x

IF-GO TO If el r e2 GO TO n If relationship r between e 1 x x x x x: x
and e2 is true, transfer control
to line n.

IF-THEN IF el r e2 THEN n Same as IF-GO TO. x x x x x x x x
IF el r e2 THEN x I f relationship r between e 1 x x

and e2 is true, then perform
executable BASIC statement.

ON-GO TO ON el GO TO 11,12 , ••• l n Computed GO TO. x x x x ,
Loops and Subscripts

DIM DIM v(d1),v(dl'd2) Dimensions, variables sub- x x x x x x "X x
scripted.

Table 1-1 (Cont.). BASIC Statements

EduSystems
Statement Format Description 5 10 1520 25 30 40 50

FOR-TO-STEP FOR v=el TO e2 STEP e3 Set up program loop. Define x x x x x x x x
v values beginning at el to e2,
incremented by e3.

NEXT NEXT v Terminate program loop in- x x x x x x x x
crement value of v until v
(>e2).

Subroutines

GOSUB GOSUBn Enter subroutine at line n. x x x x x x x x
.... ON-GOSUB ON el GOSUB I~,I2'" .In Computed GOSUB. x x I
w RETURN RETURN Return from subroutine to x x x x x x x X -..J

statement following GOSUB
or ON-GOSUB.

STOP STOP Transfer control to END x x x x x x x x.
statement.

Others

CHAIN CHAINn$ Link to next user program. x x. x x x
'CHAIN$ CHAINA Link to public library program x

named in A$.
CHANGE CHANGE v1, TO V2 Change character string to x

array of character codes.
DEF DEF FNA(x)=f(x) Define a function. x x x x x x x x

DEF FNA(x,y)=(x,y)

Table 1-1 (Cont.). BASIC Statements

EduSystems
Statement Format Description 5 10 15 20 25 30 40 50

END END End of program. x x x x x x x x

LET LETv=f Assign value of formula f x x x x x x x x
..... to variable v. The word LET
I is optional. w

00
RANDOMIZE RANDOMIZE Randomizes random number x x x x x x

routine.

RECORD RECORD V1,V2, ••• vll Define the size and composi- x
tion of record.

REMARK REM text Insert a remark or comment. x x x x x x x x

SLEEP SLEEPn Cause program pause for x
n seconds.

Table 1-2. BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50

BYE BYE Leave BASIC Monitor. x

CATALOG CAT List names of user programs. x x x x x
in storage ar~a.

CAT$ CAT$ List names of public library x
programs.

COMPILE CO~name Compile program in core, x
f save on disk. - CTRL/C. CTRL/C Stop program execution, x x x x x x x X

I - return to edit mode.
y.)

\0 DELETE DELn Delete line n. x x x x
n Delete line TI. x x X x x x x x
DELn,m Delete lines n through m x x' x x

inclusive.
EDIT EDIn Search line n for character c. x x x x

(c) (See appropriate chapters for
instructions on use.)

FILELOG FIL List the data files stored by x
this user.

FILEIDG$ FIL$ List the public data files. x
KEY KEY Return. to keyboard mode x x x x x x

after TAPE.

Table 1-2 (Cont.). BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50

LIST LIST List entire program in core. x x x x x x x x
LISTn List program starting at x x x x x

line 11.

LISTn List line n only. x x x x
LIST n,m List lines n through m x x x x

inclusive.
LISTNH List entire program, no x x x

header.
LISTNHn List program starting at line n, x x x

'""" I no header. '""" .j:::..

LLIST LLIST List program to line printer. 0 x
NEW NEW Clear core, request program x x x x x

name.

OLD OLD Clear core, bring program to x x x x x
core from storage area.

OLD$ OLD$ Clear core, request public x
library program name, bring
program to coreo from storage
area.

REPLACE REP Replace old file on disk with x
version in core.

REP name If name not specified, old x
name retained.

Table 1-2 (Cont.). BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50

RUN RUN Compile and run program x x x x x x x x
in core.

RUNNH Same as RUN without header. x x x

SAVE SAVE name Store program named on x x x x x
storage device.

SCRATCH SCR Erase current program from x x X: x x X x x
core.

TAPE TAP Read paper tape; suppress x x x x x x
'""" . printing on Teletype.
I
~ UN SAVE UNSAVEname Delete program named from x x x x x
'""" storage area.

BATCH BATCH Commence batch processing. x x x

~CHO ECHO Switch from printout to non-
,

x x x
printout mode or vice versa.

LPT LPT Print output on line printer. x x x

LENGTH LENGTH Request number blocks to x x x
store current program.

NAME NAME Same as NEW but does not x x x
delete existing program.

PTP PTP Punch entire program on x
paper tape.

Table 1·2 (Cont.). BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 30 40 50

PTR PTR Read paper tape. x

PUNCH PUNCH Punch entire program on x x x
paper tape.

PUNCH n Punch program starting at x x x
line n.

RENAME REN Change name of program in x
core.

I-"

RESEQUENCE RESEQUENCE Renumber program lines. I x x X
.j::>.. TIY TTY Print output on Teletype. tv x x x

PRIVILEGE· PRIVILEGE Enable use of privileged x x x
commands.

(password) Insert password, no echo.

Privileged Control Commands

BATCH BATCHn Same as BATCH, limit pro- x x x
gram runs to n.

HEADER HEADER Change header; type new x x x
(header) header (maximum 12 char-

acters) for next batch run.

LOG LOG Print system log. x x x

Table 1-2 (Cont.). BASIC Edit and Control Commands

EduSystems
Command Format Description 5 10 15 20 25 . 30 40 50

MAX MAXn Set instruction limit n times x x x
200 per program for next
batch run.

..... PASSWORD PASSWORD Change password, no echo. x x x I ..- '. (new password) ..r;:..
w

SAVE SAVE Save program in storage area. x x x

STACK STACK Start unattended batch x x x
operation.

STACKn Same as STACK; limit runsl x x x
program.

UN SAVE UN SAVE Delete program from storage x x x
area.

Table 1-3. BASIC Functions and Arithmetic Operations

EduSystems
Functions Description 5]0 15 20 25 30 40 50

SQR(x) Square root of x(vx) x x x x x x x x
SIN(x) Sine of x (x in radians) x x x x x x x x
COS(x) Cosine of x (x in radians) x x x x x x x x
TAN (x) Tangent of x (x in x x x x x x x x

radians)
ATN(x) Arctangent of x (x in x x x x x x x x

radians; result in radians)
EXP(x) eX (e=2.712818) x x x x x x x x
LOG (x) Natural log of x (lo~x) x x x x x x x x
ABS(x) Absolute value of x (Ixl) x x x x x x x x
INT(x) Greatest integer of x x x x x x x x x

SGN(x) Sign of x (+ 1 if positive, x x x x x x x x
-1 if negativc, 0 if zero)

RND(x) Random number be- x x x x x x x x
twecn 0 and 1

FIX(x) Truncates decimal por- x x x x
tion of x

TAB (x) Controls printing head x x x x x x
position on Teletype

CHR$(x) Converts character code x x x x x x
to character. Used only
with PRINT statement.

1-144

Table 1-3 (Cont.) BASIC Functions and Arithmetic Operations

EduSystems
Functions Description 5 10 15 20 25 30 40 50

MID(A$,M,N) Returns N characters,
starting at the Mth char­
acter of A$.

LEN(A$) Returns the number of
characters in A$.

CAT(A$,B$) Returns a string of A$
concatenated with B$
(maximum of 6 char­
acters returned).

Arithmetic Operations
SYMBOLS

t exponentiation

* multiplication
I division

+ addition
subtraction

ORDER OF EXECUTION

1. Parenthetical expressions

2. Exponentiation

3. Multiplication and Division
4. Addition "and Subtraction

1-145

x

x

x

1-146

2
edusystems

INTRODUCTION
EduSystem 5 is a BASIC-speaking supercalculator--calculator

because it can be used like a calculator to obtain fast, accurate
results, super because it is a computer that ·'uses BASIC and does
much more than calculate. EduSystem 5 has the ability to operate
in two modes: immediate and programmable. Immediate mode
allows the user to perform arithmetic calculations and obtain im­
mediate results without writing programs. The problem and the
solution are printed at the Teletype to provide a hard copy for
future reference. In programmable mode, one uses BASIC to
write programs and type them on the Teletype keyboard. Programs
are stored in computer memory and can be printed via the teletype
and, if desired, punched on paper tape to be used again in the
future.

EduSystem 5 BASIC contains all the elements needed to write
and execute meaningful programs. In addition, it provides several
special features.

• Several commands may be typed on a single line. PrograIll;s
using this feature require less storage in the computer, thus
enabling users to write longer programs.

• A colon (:) may be used in place of the PRINT command
to save time and storage space.

• Typing errors are easily corrected with the use of the AL T
MODE (or ESCAPE), ~ back arrow, or RUB OUT key.

• INPUT statement responses may be either mathematical
expressions or numeric values.

All these features, and more, are yours with EduSystem 5. And
it expands. If your needs grow beyond EduSystem 5, you can
expand it, with a few simple additions, to an intermediate-scale
EduSystem 15.

2-1

System Components
EduSystem 5 is composed of a table-top computer (PDP-8/F)

with 4096 words of core memory and a Teletype with paper tape
reader and punch. An optional off-Jine Teletype with paper tape
reader and punch allows users to prepare paper .tapes of their
programs before coming to the EduSystem 5 and increases the
number of persons who may use it each day. Each EduSystem 5
includes the BASIC language processor, a user's guide, and a
self-teaching workbook for ·learning the BASIC language.

System Expansion .
EduSystem 5 is easily expanded to EduSystem 15 by adding a

DECtape magnetic tape drive (TD8-E), memory extension control,
256 word read-only memory, and an EduSystem 15 software kit.
(See Chapter 4 for a full description of the capabilities of Edu­
System 15.)

BASIC LANGUAGE CAPABILITIES
EduSystem 5 BASIC includes the language elements shown in

Table 2-1. These elements are used as explained in Chapter -1.
Differences jn usage for EduSystem 5 are discussed below.

Line Numbers
In EduSystem 5 BASIC there is no upper limit on the size of

the line number for any statement.

Single-Character PRINT Command
EduSystem 5 permits the use of a colon (:) in place of the

PRINT command. This abbreviation can be used in place
of PRINT in either programmable or immediate mode. The state­
ment format is the same as that of the PRINT command, for
example:

1 eJ : 5+ 10 :is the same as 10 PR I NT 5+ 10

Multiple Statements per Line
EduSystem 5 allows more than one command to be typed on a

single line. Commands after the first begin with a back slash
character ("), typed as SHIFT IL on the keyboard. A program is
often more. understandable when statements, such as a series of

2-2

LET's!, are grouped into a single line. For example, tbe program:

10
20
99

A= 1 \ 8= 4 \ C= 6
: (A+B)*C is the same as
END

10 LET A= 1
20 LET 8=4
32J LET C=6
40 PRI NT (A+8)*C
99 END

and will produce the same result when the RUN command IS

typed:

RUN
30

This capability is helpful when the program to be written is too
big for EduSystem 5. Commands take less storage in the computer
when they are grouped as a single statement.

Immediate Mode
EduSystem 5 allows certain BASIC statements to be used in

immediate mode, that' is, to be issued and ,executed immediately
without being included in a formal program. Commands commonly
used with immediate mode are PRINT, (or:), LET; FOR, and
NEXT. Immediate mode is a quick way to calculate expressions
and equations. For example, the statement

:SIN(l),COS(l),TAN(l)

followed by the RETURN key, causes the sine, cosine, and tangent
of 1 radian to be printed immediately, as follows:

0.841471 0.540302 1.55741

Typing multiple commands per line is especially useful in the
immediate mode. A table of square roots of the .first 10 integers

lRemember that the word LET is optional in the LET statement.

2-3

could, for example, be generated by typing the following single
line and pressing the RETURN key:

FOR 1:1 TO 10\: SQRCI),\NEXT I

1
2.44946

1.41421
2.64575

1.73205
2.82843

2
3

2.23607
3.16228

Although they are rarely used, other BASIC commands are
available in immediate mode. The immediate GOTO command
may be used to start a program at a point other than the beginning.
This is accomplished by loading the program into the computer
memory and typing, for example:

GO TO 200

-
After the RETURN key is pressed, the program execution will

begin automatically at line number 200. In this case, the RUN
command need not be typed.

INPUT Statement
EduSystem 5 allows the student to respond to the INPUT query

(?) with either a mathematical expression or :a numeric value. An
e~pression entered as input may contain one or more arithmetic
operations and may use any available BASIC function. For ex­
ample, the BASIC statement:

10 INPUT X

could be answered in any of the following ways:

? 10 t5+6 1LOG(186) , 1SQR(4f2-2)

As explained in Chapter 1, the INPUT statement may have
multiple inputs. These inputs may be either mathematical expres­
sions or numeric values. For example, the BASIC statement

10 INPUT A,B,C

could be answered as follows:

1512,INT(876.33),7+6t25

2-4

NOTE
Remember that you use CTRL/C to stop

a program that is running.

PROGRAM EDITING
There are two times when a program may require editing ·pro:­

cedures. The first occurs while a line is being typed but before
the RETURN key has been pressed. The second occurs when a
line has been completely typed and the RETURN key has been
pressed. Each situation has its own editing procedures.

Procedure 1: Before the RETURN key is pressed.
Three keys may be used to correct typing ~rrors: ALT MODE

(or ESCAPE), ~ (back arrow), or RUBOUT.
\,

ALT MODE (or ESCAPE) is used to delete an entire line.
When this key is used, BASIC prints $DELETED, erases
that line from the program, and returns the carriage so that
line may be retyped.

~ (back arrow), SHIFTjO on the keyboard, or RUB OUT is
u'sed to delete a character from a line. BASIC prints a back
arrow, deleting the last character from that line. More than
one back arrow deletes more than one character, in reverse

. order.

Procedure 2: After the RETURN key is pressed.
Once aline of the program has been transmitted to computer

memory via the RETURN key, several methods of correction may
be. used. Lines may be inserted, deleted, or changed.

INSERTION: To add a line to a program, assign, a line
number that falls between two existing lines, type the line
number and text, and press RETURN.

DELETION: To erase a line from computer memory, type
the line number only and press the RETURN key.

CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one.

ERROR MESSAGES
EduSystem 5 checks all commands before executing them. If it ~

cannot execute a command, it informs the user by printing one'

2-5

of the following messages arid the line number in which the error
was found,

Message

SYNTAX ERROR

FUNCTION ERROR

TOO-BIG ERROR

SUBSCRIPT ERROR

LINENO ERROR

FOR ERROR

NEXT ERROR

GOSUBERROR

RETURN ERROR

DATA ERROR

Explanation

Command does not have correct syntax.
Common examples of syntax errors are
misspelled commands, unmatched paren­
theses, and other typographical errors.

The function used was deleted at system
load time and thus is not available. A
DEF statement will produce this message
if the DEF capability was deleted.

Program and variables exceed computer
capacity. Reducing one or the other may
help. If the program has undergone ex­
tensive revision, try punching it out, typ­
ing SCR, and reloading.

The subscript used is otltside the DIM
statement limits.

A branch statement (GOTO, GOSUB,
or IF) references a nonexistent line.

FOR loops are too deeply nested.

FOR and NEXT statements are im­
properly paired.

Subroutines are too deeply nested.

GOSUB and RETURN statements are
improperly paired.

No more items are in the data list.

ARGUMENT ERROR A function has been given an illegal argu­
ment, e.g., SQR(-l).

To correct the error indicated by the message, the appropriate
line in the program must be corrected in the manner described
under Program Editing, Procedure 2.

OPERATING INSTRUCTIONS
Initial Installation

When EduSystem 5 is first installed, it must be loaded with a
special software program, the BASIC language processor. Once
this software is loaded, it need not be reloaded. Perform the
following steps to load BASIC.

1. Plug the EduSystem 5 computer into a standard 3-prong

2-6

electrical outlet. Plug the Teletype into a second standard
outlet. Turn the key lock on the front of the computer to the
power position and turn the Teletype to line. Set all switches
on the SWITCH REGISTER (to the left of the ADDR
LOAD switch) to the "down" position and press the EXTD
ADDR LOAD switch.

2. Perform the following set of switch manipulations. In each
step, there are 12 figures which correspond to the 12 switches
labeled SWITCH REGISTER (SR) on the front of the com­
puter. The * symbol indicates that the corresponding switch
should be set to its "up" position. The 9 symboi means that
the corresponding switch should be set to its "down" posi­
tion. The octal instructions which correspond to this diagram
appear on the right.2 OCTAL

Set SR to: *9- "? then pressADDR LOAD 7756

Set SR to: _9 999 9" 9*9 then lift DEP 6032

Set SR to: -9 9??' 9" 99* then lift DEP 6031

Set SR to: *? ?M .?* ... then lift DEP 5357

Set SR to: "9 999 ?" "9 then lift DEP 6036

Set SR to:'" 99. 99'9 "9 then lift DEP 7106

Set SR to:'" 999 999 "9 then lift DEP 7006

SetSRto: ... *9* 99* 999 thenliftDEP 7510

Set SR to: .9- 9" .9_ ... then lift DEP 5357

Set SR to:'" 999 999 -9 then lift DEP 7006

Set SR to: "9999 9" 99* then lift DEP 6031

Set SR to: .9* 9__ _9 ... 'then lift DEP 5367

Set SR to: .. 9 999 9*. * 99 then lift DEP 6034

Set SR to: *- *99 9*9 999 then lift DEP 7420

Set SR to: 9" **9 then lift DEP 3776

SetSRto: 9** ?" ... _9 thenliftDEP 3376

Set SR to: *9* 9" *\2* "9 then lift DEP 5356
and again lift DEP

2The octal instructions are provided for those familiar with the octal, or
base 8, number system. An explanation of this system is included in
Introduction to Programming 1972.

3. Place the tape labeled EDUSYSTEM-5 in the Teletype paper
tape reader. Position the tape at the: single row of holes
punched at the beginnXl;f the tape.

4. Set the SR to9."<? (7756); then press
ADDR LOAD. Press the CLEAR switch, then the CONT
switch. Push the paper tape reader switch to the START
position. The tape should read in. If it stops before the end
of tape, an error has occurred. Repeat steps 2, 3, and 4.

5. When the tape has read in properly, BASIC prints the
following message:

SEL·ECT THE SMALLEST SET OF FUNCTIONS NEEDED FROM THE
FOLLOWING CHOICES
AT N I I X I I I I I I
LOG+EXP I IXIXI I I I I
SIN+COS+TAN I tXIXIXI I ! I
DEF(FN) I IXIXIXIXI I I
SQR I IXIXIXIXIXI I
RND I IXIXIXIXIXIXI

OPTION ABC 0 E F G

TyPE OPTION LETTER?

At this time, it is possible to delete any functions which will
not be used. In response to the question "TYPE OPTION
LETTER 1", type the letter of the option that represents the
functions needed.
Deleting functions increases the size of the BASIC program
which may be accommodated. If all functions are deleted
(option A), the maximum program size is approximately 60
lines; If all functions are retained (option B), the maximum
program size is approximately 30 lines. ..

6. After the functions have been selected, BASIC prints the
following question:

DO SUBSCRIPTS START AT 0 OR I?

Indicate whether subscripts will begin at 0 or 1. Many BASIC
programs do not use the zero element of an array. If this is
the case, setting subscripts to start at 1 allows larger pro­
grams to be run.

7. EduSystem 5 is now ready for use. Turn the key lock to
- PANEL LOCK and remove the key to prevent the system

from being accidentally disturbed.

2-8

Turning Off the System
Perform the following steps to turn off the EduSystem 5:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to OFF.

Restarting the System
Perform the following steps to restart the EduSystem 5:

1. Turn the key locl<: to POWER.
2. Press the CLEAR switch, then the CONT switch.
3. EduSystem 5 is now ready for use. Turn the key lock to

PANEL LOCK and remove the key to prevent the sys­
tem from being accidentally disturbed.

Reloading the Functions
If a need arises for. functions which were deleted at system load

time, the functions can be reloaded without reloading the entire
system. Perform the following steps to reload the functions:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to the. POWER position; press the

HALT switch, then raise it again.
3. Follow the procedure for Initial Installation, starting

at step 3. Use the shorter tape labeled EDUSYSTEM-5
FUNCTIONS ONLY instead of the EDUSYSTEM-5
tape.

Saving Programs on Paper Tape
Once a program has been typed in correctly, it may be saved on

paper tape so that it may be reloaded quickly. To save the pro­
gram, follow this sequence of steps:

1. Turn the Teletype control knob to LINE.
2. Type LIST but do not press the RETURN key.
3. Turn the Teletype pap~r tape punch ON.
4. Turn the Teletype control knob to LOCAL.
5. Press the HERE IS key to produce some leader tape.
6. Turn the Teletype control knob to LINE~
7. Press RETURN.
8. When punching is complete, turn the control knob to

LOCAL.
9., Press the HERE IS key to produce some trailer tape.

2-9

10. Turn the Teletype punch OFF.
11. Turn the Teletype control knob to LINE.

Reloading Programs from Paper Tape
Programs punched out on paper tape may be reloaded using the

Teletype paper tape reader. To reload programs, follow this
sequence of steps:

I.. Turn the Teletype control knob to LINE.
2. Type SCR, then prcss the RETURN key.
3. Insert the program tape in the reader.
4. Turn the Teletype reader to ST ART.
5. When the tape has read in~ turn the Tcletype reader to

FREE.

2-10

Table 2~1.

Statement

LET
PRINT (or:)
READ
DATA
GOTO
IF GOTO}
IF THEN
FOR TO STEP
NEXT
GOSUB
RETURN
INPUT
REM (or ')
RESTORE
DEF

STOP
END

. DIM
Functions:l

ABS(X)
ATN(X)
COS(X)
EXP(X)
INT(X)
LOG(X)

. RND(X)
SGN(X) .

EduSystem 5 BASIC Statement Summary

Description

Assign a value to a variable. LET j,s optional.
Print out the indicated information.
Assign values from data list to variables.
Provide data for a program.
Change order of program execution:
Conditionally change order of program
execution.
Set up a program loop.
End of program loop.
Go to a subroutine.
Return from a subroutine.
Get values of expressions from the Teletype.
Insert a program comment. .
Restore the data list.
Define a function. (Availability must be re~
quested when system is loaded.)
Stop program execution.
End a program.
Define subscripted variables .

Absolute value of x <

Arctangent of x(result in radians)
Cosine of x(x in radians)
eX (e=2.718282)
Greatest integer of x
Natural logarithm of x
Random number
Sign of x(+ 1 if positive, -1 if negative,
o if zero)

SIN (X) Sine of x(x in radians)
SQR(X) Square root of x
TAN (X) Tangent of x(x in radians) .
Editing! Control Commands
LIST List all stored program statements.
LIST n List program statements beginning at line n.
RUN Run the currently stored p,rognim.
SCR Delete the currently stored program.
CTRL/C Stop execution of a program or printing of a'

listing. CTRL/C is typed by pressing C while
holding down the CTRL key.

RThe ABS, INT, and SGN functions are always available. Other functions
(and the DEF statement) must be selected when the system is loaded. (See
Initial Installation, step 5.)

2-11

2-12

3
edusystem 10

INTRODUCTION
EduSystem lOis a mini-EduSystem with maxi-potential. It

speaks a very fluent BASIC with all the standard features and a
few special ones. It provides printed output and paper tape read­
ing and punching. EduSystem 10 even tells you when you make
a mistake and provides simple corrective measures. So why, with
all EduSystem 10 has to offer, do we call it a starter system?
Because EduSystem 10 can expand as your needs expand. It has the
built-in potential to grow into larger Edu.Systems-EduSystem 20
or 30 at first, and as big as you want to go thereafter.

Even though it isn't as powerful as the larger EduSystems,
EduSystem 10 has some features that even some of the big ones
can't duplicate. Two operating modes are available: immediate and
programmable. Immediate mode lets you perform arithmetic cal­
culations without writing program~. Programmable mode lets you
write programs in BASIC, store them in the co~puter., and punch··
them 011 paper tape. Both modes provide the problem and the
solution on printed output. Other features include:

• Multiple statements per line to save computer storage space
and let you write longer programs.

• An abbreviated PRINT command, colon (:).
• Special keys (ALT MODE, RUB OUT, and ~) fot cor­

recting typing errors.
• Mathematical expressions or numeric values as responses to

the INPUT statement.

System Components
EduSystem 10 is composed of a table-top computer (PDP-8/E),

4096 words of cor~ memory, automatic 10Cider (hardware boot­
strap), and a Teletype with paper tape reader and punch. Each

3-1

EduSystem 10 includes a BASIC language processor and a library
of sample programs, textbooks, and curriculum guides. Optional
components for EduSystem 10 include one or more Teletypes for
off-line preparation of paper tape and a high-speed paper tape
reader and punch which facilitates the use of other system capabili­
ties such as FOCAL, FORTRAN, and assembly language.

System Expansion
EduSystem 10 may be easily expanded to either EduSystem 20

or EduSystem 30. To expand to EduSystem 20, add 4096 words
(or more) of core memory, an EduSystem 2:0 software kit, and
as many as 7 additional Teletypes with interfaces. To expand to
EduSystem 30, add one DECdisk or DECtape, an optical mark
card reader, and an EduSystem 30 software kit. (Chapters 5 and
7 fully describe the capabilities of EduSystem 20 and EduSys­
tern 30, respectively.)

BASIC LANGUAGE CAPABILITIES
EduSystem 10 BASIC includes the language elements shown in

Table 3-1. Normally, these elements are used in programs as ex­
plained in Chapter 1. BASIC usage differences with EduSystem
10 are explained below.

Line Numbers
.. EduSystem 10 BASIC does not place an upper limit on the size

of the line number for any statement.

Single-Character PRINT Command
A colon (:) may be used in place of the PRINT command.

This abbreviation may be used in either programmable or imme­
diate mode. The statement format is the same as that of the PRINT
command, for example:

10 :SQR(A+B) is the same as 10 PRINT SQR(A+B)

Multiple Statements per Line
EduSystem 10 allows more than one command to be typed on a

single line. Comma~ds after the first begin with a back slash
character (") typed as SHIFT/L on the keyboard. A program is
often more understandable when statements, such as a series of

3-2

LET's!, are grouped into a single line. For example, the program

100
1l~
999

1"0
X=2\Y=8\Z= 12 • 110
:Y IX*Z . is the same as 120
END 130

999

LET X=2
LET Y=8
LET Z= 12
PRINT Y/y:*Z
END _

and will produce the same result when the RUN command IS

typed:

RUN
48

The multiple..,statement capability is helpful when the program
to be written is too big for EduSystem 10. Commands require less
storage in the computer when they are grouped as a single state­
ment. .

Immediate Mode
EduSystemlO allows certain BASIC statements to be used in

immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Commands commonly
used with immediate mode are PRINT (or:), LET, FOR, and
NEXT. Immediate mode is a quick way to calculate expressions
and equations. For example, the statement:

: INT(76.87 + 2.9)

followed by the RETURN key, causes the value of the nearest
integer to be printed immediately, as follows:

79

Typing multiple commands per line is especially useful in the
immediate mode. A table of random numbers could, for example,
be generated by typing the following single line and pressing the
RETURN key:

lRemember that the word LET is optional in the LET statement.

3-3

rOR I:l TO 20\PRINT RNO(0),\NEXT I

0.217873
0.767746
0.793J94
0.804367

0.696209
0.829399
0.644913
0.992458

0.29751
0.181667
0.927201
0.68785

0.96·3794
0.15:9454
0.894656
0.619773

0.463246
6.52568E-2
r2J.974861
0.731568

Although they are rarely used, other BASIC commands are
available in immediate mode. The immediate GOTO command
may be used to start a program at a point other than the beginning.
This is accomplished by loading the program into the' computer
memory and typing, for example:

GO TO 35

After the RETURN key is pressed, the program execution will
begin automatically at line number 35. In this case, the RUN
command need not be typed.

INPUT Statement
The INPUT statement described in Chapter 1 allows a number

to be entered from the Teletype as the value for a variable. Edu­
System 10 allows the student to respond to the INPUT query (?)
with a value or a mathematical expression. An expression may con­
tain one or more arithmetic operations and may use any available
BASIC function. For example. the BASIC statement:

10 INPUT X

could be answered in either of the following ways:

1SQR(100) + 20t2

This capability could be used to enable one program to solve more
than one problem.

As explained in Chapter 1, the INPUT statement may have
multiple inputs. These inputs may be either mathematical expres­
sions or numeric values. For example, the BASIC statement:

100 INPUT X,Y,Z

3-4

could be answered as follows:
j

?23,INT(284.978),25+86t9
...

NOTE
When using the INPUT statement in pro­

gram~, remember that CTRL/C is used to
stop a program that is running.

Table 3-1. EduSystem 10 BASIC Statement Summary

Statement

LET

PRINT(or :)
READ

DATA
GOTO
IF GOTO}
IF THEN
FOR TO STEP
NEXT
GOSUB
RETURN

. INPUT

REM(or ')
RESTORE
DEF

STOP
END
DIM

Fundions2

ABS(X)
ATN(X)
COS(X)
EXP(X)
INT(X)

Description

Assign a value to a variable. LET is
optional.
Print out the indicated information.
Assign values from data list to vari­
ables ..
Provide data for a program.
Change order of program execution.
Conditionally change order of pro­
gram execution.
Set up a program loop.
End of program loop.
Go to a subroutine.
Return from a subroutine.
Get values or expressions from the
Teletype.
Insert a program comment.
Restore the data list.
Define a function. (Availability must
be requested when system is loaded.)
Stop program execution.
End a program.
Define subscripted variables.

Absolute value of x ,
Arctangent of x (result in radians)
Cosine of x (x in radians)
eX (e = 2.718282)
Greatest integer of x

2The ABS, INT, and SON functions are always available. Other functions
(and the DEF statement) must be selected when the system is loaded. (See
Initial Installation, step 5.)

3-5

Table 3·1. (Cont.) EduSystem 10 BASIC Statement Summary

Statement

Functions (Cont.)
LOG(X)
RND(X)
SGN(X)

SIN(X)
. SQR(X)

TAN (X)

Editing/ Control Commands
LIST
LIST n

RUN
SCR
CrRL/C

PROGRAM EDITING

D(:scription

, N aturallogarithm of x
Random number
Sign of x (+ 1 if positive, - 1 if neg­
ative, 0 if zero)
Sine of x (x in radians)
Square root of x
Tangent of x (x in radians)

List all stored program statements.
List program statements beginning at
line n.
Run the currently stored program.
Delete the currently stored program.
Stop execution of a program or print­
ing of a listing. CTRLI C is typed by
pressing -C while holding down the
CTRL key.

There are two times when a program may require editing pro­
cedures. The first occurs while a line is being typed but before
the RETURN key has been pressed. The second occurs when a
line has been completely typed and the RETURN key has been
pressed. Each situation has its own editing procedures.

Procedure 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: AL T MODE

(or ESCAPE), ~(back arrow), or RUBOUT.

AL T MODE (or ESCAPE) is used to delete an entire line.
When this key is used, BASIC prints $DELETED, erases
that line from the program, and returns the carriage so that
the line may be retyped.
~(back arrow), SHIFT /0 on the keyboard, or RUBOUT is
used to delete a character fro in a line. BASIC prints the
back arrow, deleting the last character from that line. More
than one back arrow deletes more than one character, in re­
verse order.

3-6

Procedure 2: After the RETURN key is pressed.
Once a line of the program has been transmitted to computer

memory via the RETURN key; several methods of correction rna)'
be used. Lines may be inserted, deleted, or changed. \

INSERTION: To add a line to a program, assign a line num­
ber that falls between two existing lines, type the line number
and text, and press RETURN.

DELETION: To erase a line from computer memory, type
the line number only and press th.e RETURN key.

CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one.

ERROR MESSAGES
EduSystem 10 checks all commands before executing thetn: if it

cannot execute a comm.and, it informs the user by printing one of
the following messages and the line number in which the error was
found.

Message

SYNTAX ERROR

FUNCTION E~ROR

TOO-BIG ERROR

SUBSCRIPT ERROR

Explanation

Command doeS' not have correct syn­
tax. Common examples of syntax
errors are misspelled commands, un­
matched parentheses, and other typo­
graphical errors.

The function used was deleted at
system load time and thus is not
available. A DEF statement wili pro­
duce this message if the DEF capa-
bility was deleted. .

Program and variables exceed com­
puter capacity. Reducing one or the
other may help. If the program has
undergone extensive reVISIOn, try
punching it out, typing -SCR, and re­
loading.

The sUbscript used is outside the DIM
statement limits,

3-7

Message Explanation

LINENO ERROR A branch statement (GOTO, GOSUB,
or IF) references a nonexistent line.

FOR ERROR FOR loops are too deeply nested.

NEXT ERROR FOR and NEXT statements are im­
properly paired.

GOSUB ERROR Subroutines are too deeply nested.

RETURN ERROR GOSUB and RETURN statements are
improperly paired.

DATA ERROR No more items are in the data list.

ARGUMENT ERROR A function has been given an illegal
argument. e.g., SQR(-]) .

To correct the error indicated by the message, the appropriate
line in the program must be corrected in the manner described
under Program Editing, Procedure 2.

OPERATING INSTRUCTIONS
Initial Installation

When EduSystem lOis first installed, it must be loaded with a
special software program, the BASIC language processor. Once
this software is loaded, it need not be reloaded. Perform the fol­
lowing steps to load BASIC.

1. Plug the EduSystem 10 computer into a standard 3-prong
electrical outlet. Plug the Teletype into a second standard
outlet. Turn the key lock on the front of the computer to
POWER and the Teletype swith to LINE. Set all switches
on the SWITCH REGISTER (to the left of the ADDR
LOAD switch) to the "down" position and press the EXTD
ADDR LOAD switch.

2. If the computer does not include a hardware bootstrap
loader~ perform the following set of switch manipulations;3
otherwise, proceed to step 3.
In each step, there are 12 figures which correspond to the
12 switches labeled SWITCH REGISTER (SR)· on the
front of the computer. The • symbol indicates that the

3If the EduSystem 10 is equipped with a high-spf:ed paper tape reader and
punch, see instructions for the RIM (Read-in-mode) loader in Appendix A.

3-8

,corresponding switch should' be set to its "up" position.
The ? symbol means that the corresponding switch should
be set to its "down" position. The octal instructions which
correspond to this diagram appear on the right. 4 '

OCTAL

Set SR to: ...
iii _r_

'i "~ then pressADDR LOAD 7756

SetSRto: "9 999 9" 9-9 then lift DEP 6032

Set SR to: "9 999 9" 99- then lift DEP 6031

Set SR to: -9- 9" -9- ... then lift DEP 5357

Set SR to: "9 999 9" "9 then lift DEP 6036

SetSRto: ... 99- 999 "9 then lift DEP 7106

Set SR to: ... 999 999 "9 then lift DEP 7006

SetSRto: ... -9-99- 999 then lift DEP 7510

Set SR to: -9- 9" es;- then lift DEP 5357

Set SR to: ... 999 999 "9 then lift DEP 7006

Set SR to: "9 999 9" 99- then lift DEP 6031

Set SR to: _ 9_ 9" '"9 ... then lift DEP 5367

Set SR to: "9 999 9" -99 then lift DEP 6034

Set SR to:'" -99 9-9 999 then "lift DEP 7420

Set SR to: 9" "9 then lift DEP 3,776

Set SR to: 9" 9- ... "9 then lift DEP 3376

Set SR to: -9- 9" ~- -9 then lift DEP
and again lift DEP 5356

3. Place the tape labeled EDUSYSTEM-IO in the Teletype
paper tape reader. Position the tape at the single row of
holes punched at the beginning of the tape.

4. It the computer does not include a hardware bootstrap
loader, perform the operations in step 4b. If it has a boot­
strap loader, perform the steps in 4a.
a. Set the SR to-9- 9" -9- "s:(5356); then lower

and lift the switch labeled SW. Proceed to step 6.

b. Set the SR to... ... -9- .. ~ (7756); then press
ADDRLOAD.

5. Press the CLEAR switch, then the CONT switch. Push the
paper tape reader switch to the START position. The tape'

40ctal instructions are provided for those familiar with the octal or base 8
number system. An explanation of this system is included in Introduction
to Programming 1972.

3-9

should read in. If it stops before the end of tape, an error
has occurred. Repeat steps 2, 3, and 4.

6. When the tape has read in properly, BASIC prints the fol­
lowing message:

SELECT THE SMALLEST SET OF' F'UNCTIONS NEEDED F'ROM THE
F'OLLOWING CHOICES
ATN I IX I I I I I I
LOG+EXP I IX1XI I I I I
SIN+COS+TAN I IXIXIXI I I I
DEFCF'N) I lX1XIX1XI I I
SQR I IXIXIX1XIXl I
RHD I IXIXIXIXIX1XI

OPTION ABC D E F' G

TyPE OPTION LETTER?

At this time, it is possible to delete any functions which will
not be used. In response to the question "TYPE OPTION
LETTER?", type the letter of the option that represents the
functions needed.
Deleting functions increases the size of the BASIC program
which may be accommodated. If all functions are deleted
(option A), the maximum program size is approximately 60
lines. If all functions are retained (option B), the maximum
program size is approximately 30 lines.

7. After the functions have been selected, BASIC prints the
following question:

DO SUBSCRIPTS START AT 0 OR I?

Indicate whether subscripts will begin at 0 or 1. Many
BASIC programs do not use the zero element of an array.
If this is the case, setting subscripts to start at 1 allows larger
programs to be run.

8. EduSystem 10 is now ready for use. Turn the key lock to
PANEL LOCK and remove the key to prevent the system
from being accidentally disturbed.

Turning Off the System
Perform the following steps to turn off the EduSystem 10:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to OFF.

3-10

Restarting the System
Perform the following, steps to restart the EduSystem 10:

1. Turn the key lock to POWER.
2. Press the CLEAR switch, then the CONT switch.
3. EduSystem lOis now ready for use. Turn the key lock to

PANEL LOCK and remov~ the key to prevent the sys­
tem from being accidentally disturbed.

Reloading the Functions
If a need arises for functions which were deleted at system load

time, the functions can be reloaded without reloading the entire
system. Perform the following steps to reload the functions:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to the POWER position; press the

HAL T switch, then raise it again.
3. Follow the procedure for Initial Installation, starting at

step 3, Use the shorter tape labeled EDUSYSTEM-10
FUNCTIONS ONLY instead of the EDUSYSTEM-I0
tape.

Saving Programs on Paper Tape
Once a program has been typed in correctly, it may be saved on

paper tape so that it may be reloaded quickly. To save the' pro­
gram, follow this sequence of steps:

1. Turn the Teletype control knob to LINE.

2. Type LIST but do not press the RETURN key.

3. Turn the Teletype paper tape punch ON.

4. Turn the Teletype control knob to LOCAL.

5. Press the HERE IS key to produce some leader tape.

6. TUrn the Teletype control knob to LINE.

7. Press RETURN.
8. When punching is complete, turn the control knob, to

LOCAL.

9. Press the HERE IS key to produce some trailer tape.

10. Turn the Teletype punch OFF;

11. Turn the Teletype control knob to LINE.

3-11

Reloading Programs from Paper Tape
Programs punched out on paper tape may be reloaded using the

Teletype paper tape reader. To reload programs, follow this
sequence of steps:

1. Turn the Teletype control knob to LINE.
2. Type SCR, then press the RETURN key.
3. Insert the program tape in the reader.
4. Turn the Teletype reader to START.
5. When the tape has read in, turn the Teletype reader to

FREE.

3-12

edusystem15

INTRODUCTION
EduSystem 15 combines an extended BASIC language with on­

line DECtape storage to provide a reliable, powerful system. Edu-.
System 15 BASIC has all the standard elements of Dartmouth
BASIC plus several extended features. BASIC programs run on
EduSystem 15 can be virtually limitless in size, up to 10,000
lines; due to a chaining feature that allows programs to be written
in sections, then connected. A mini-string feature permits users
to input, manip1.J1ate, and output alphanumeric character data, one
character at a time.

The ability to store programs on the systemDECtape and to re­
trieve them when needed eliminates the time required to read in
paper tapes or type in lengthy programs. And EduSystem 15 offers
protection too: a series of privileged commands that control storing
programs on DECtape and deleting stored programs from DEC­
tape. These privileged commands can be used only if the user knows
the secret password. These features and more make EduSystem 15
an extremely useful classroom tool.

System Components
EduSystem 15 is composed of a table-top computer (PDP-8jF) ,

4096 words of core memory, a 256-word Read-Only Memory
(ROM) for automatic loading, TD8-E DECtape, and a Teletype
with paper tape reader and punch. Each EduSystem 15 .includes
the BASIC language processor and a library of sample programs,
textbooks, and curriculum guides. Optional components for the
EduSystem 15 include a second off-1ine Teletype for preparation
of programs and an optional mark card reader for card processing.
The system can also support high-speed paper tap& reader/punch
and line printer.

4-1

BASIC LANGUAGE CAPABILITIES
EduSystem 15 BASIC includes the language elements shown in

Table 4-1 at the end of this chapter. Normally, these elements are
used as explained in Chapter 1. EduSystem 15 also includes many
advanced BASIC features to allow the user to perform more com­
plicated and lengthy problem solving routines. BASIC usage differ­
ences and advanced features are explained in this section. .

Entering Programs
EduSystem 15 BASIC expects each program to have an assigned

name. At the beginning of each programming session, the NEW
command should be typed to clear any existing program and define
the name of the new program to be entered. 1 To use the NEW
command, the user types:

NEW

and the computer asks for:

NEW FILE NAr1E--

The user then types any name of 1 to 6 characters, followed by
the RETURN key.· BASIC assigns that name to the program to be
entered. The user may change the name of the program being en­
tered at any time by typing the NAME command. BASIC again
asks for NEW FILE NAME and assigns a new name to the pro­
gram being entered. The NAME command does not delete the
existing program.

Using Random Numbers
The RND function allows the use of random numbers within a

program. Each time it is used, the RND function returns as its
value a random value between 0 and 1. Unlike the other functions,
the value returned by RND is not a function of its argument. How­
ever, all functions in BASIC must be followed by an argument.
Therefore, RND should always be followed by a dummy argument,
such as zero, which is enclosed in parentheses.

IIf the user does not wish to assign a program name, he can delete any
existing program by typing the SCRATCH command.

4-2

NOTE
Notc that it is possible to generate random

numbers over any range. For example, the
cxpression:

(B- A) *R ND (0)+A

has a random value in the range A < n < B.

Repeated uses of RND in a program return different values be­
tween 0 and 1. The sequence of numbers is, however, the same
each time the program is run. Thus, the sequence is reproducible
for later checking of the program. The RANDOMIZE statement
allows the user to make the random number sequence returned by
the RND function different each time a program is run. That is,
when executed, the RANDOMIZE statement causes the RND
function to select randomly a new sequence of random numbers.
If RANDOMIZE is used, it normally appears as one of the first
lines in a program.

J-Jisting the Program .
The LIST command may be used to list out all or a part of the

current program. LIST prints the program statements in their
proper order, regardless of the order in which they were entered.
EduSystem 15's LIST command has four different forms, as shown
below.

Command·

LIST

LIST n

LISTNH

Meaning

List the entire program. Precede it by a
header line2 giving the name of the program.

List the program starting at the given line
number (n).. Precede it by a header line. The
line number must be separated from LIST by
two spaces.

List the entire program but do not print a
header line.

2 A header line consists of the program name followed, on the same line, by
the system name (EDU BASIC). If no program name was assigned, the
system prints "*NONE* EDU BASIC". .

4-3

Command

LISTNHn

Meaning

List the program starting at the given line
number (n) but do not print a header line.

NOTE
The programmer may stop a listing at any
time by t.yping CTRL/C on the keyboard.

Executing the Program
The programmer may execute a program at any time by typing

the RUN command. The existing program is inspected for errors;
if none exist, it is executed. If an error is detected, an error mes­
sage (see Error Messages) is printed. In either case, at the end of
the run, BASIC prints READY, indicating: that the program may
now be changed or rerun. There are two types of RUN commands:
RUN and RUN NH. RUN executes the current program, preceding
it by 'a header line" RUN NH executes the current program but
does not print a header line (RUN and NH must be separated
by a single space). -

Privileged Control Commands
. Several optional commands are available which modify and con­

trol a program run. All of them are considered to be privileged
instructions in the sense that the use of them is restricted. The
privileged commands are available only if the privileged command
capability was selected when EduSystem 15 was loaded. During
normal system operation these commands are locked out; if a user
attempts to use a privileged command, it is ignored and the system
prints WHAT?

A speci~ll command, the PRIVILEGE command, is used to un­
lock and make these privileged instructions available. To use it, the
user types PRIVILEGE and then the RETURN key. The system
then waits for the user to type a one to six character password
code. (The typed characters are not printed.) At the time the
system was loaded, a password was typed by the user or assigned
by the system. The characters typed in after the PRIVILEGE com­
mand are compared to this password. If they match, the PRIV-
1LEGE command is successful and all privileged commands may
then be used. If they do not match, the message INVALID P ASS­
WORD is printed and all privileged commands continue to be un­
available.

4-4

In short, a user must know the password in order to use any
privileged command. It is important that the password be kept
secret. For this reason, the password is never printed when the user
types it. It is also possible to change the code at any time. The
instruction to change the code, PASSWORD, is, of course, a priv- .
ileged instruction. The other privileged commands, SAVE and
UNSAVE, are discussed below.

DECtape System Storage Capability
. EduSystem 15 allows the system DECtape to be used for per­
manent on-line storage of programs. Programs stored in this way
may be loaded instantly, without the need to load a paper tape or
type in a program. .

Two commands, SAVE and UNSA VE, may be used to change
the contents of the DECtape storage area. Because the amount of
storage space i~ .limited, and to prevent accidental erasure of
stored programs, both SAVE and UNSA VE are privileged. com­
mands. During normal system operation they are disabled. They
may only be used after a successful PRIVILEGE command has
been executed.

The SAVE command stores the current program in the DECtape
system storage area and gives it the name specified by the last
NEW, OLD, or NAME command. Any existing program stored
under this name is deleted. Thus, all stored programs have names
which may be used to recall them in the f\lture. If a SAVE is at-

. tempted when the privileged commands are locked out, the system
types WHAT? and ignores the command. If a successful PRIV-
1LEGE command has been executed, but the storage area is full,
the message NO SPACE is typed and the program is not stored.
, The UNSA VE command is used to delete a program already
stored. UNSAVE must be preceded by a NEW, OLD, or NAME
command which specifies the name of the file to be deleted. The
user must be certain to use exactly the same program name as he
used when he first identified the program. Like SAVE, UNSA VE
will .be ignored unless preceded by ·a .successful PRIVILEGED
command. If the program to be deleted does not exist in the system
storage area, the message NO SUCH FILE will be printed. No
program will be deleted.

The CATALOG command may be used to obtain a list of the
names of all programs available in the system storage area. The

4 .. 5

CATALOG list also inc1udes the number of storage blocks used by
the program.

EduSystem 15 includes 1348 blocks of storage space. The CAT­
ALoG command may be used to determine how many of these
blocks have been used and hence how many are free. If the storage
space is almost full and another program is to be saved, the
LENGTH command may be used to determine if there is enough
room to store the current program. If enough room is not available,
an existing program must be deleted first. In all cases, the max­
imum number of stored programs, regardless of size, is 62.

The user may load programs stored in the system storage area at
any time by typing the OLD command. After the OLD command
is entered, the system prints OLD PROGRAM NAME. The user
then types the name of the program to be loaded. The user must be
certain to use exactly the same program name as he used when he
first identified the program.

ADVANCI:D SYSTEM CAPABILITIES
Some users will want to write programs which are too large or

too complicated to be handled in the normal way. For these users,
the system inc1udes several capabilities for advanced program.

Running Very Long Programs
EduSystem 15 will run programs of up to 6000 characters or

approximately 250 lines. In some instances, programs which are at
or near the 6000-character limit and which contain many complex
FOR, IF, and GOSUB sections will be too big to be run. In this

. case, the NOLINE command may be used to gain more space. If
NOLINE is. used, the program logic errors which are detected
while the program is executing will cause an error message to be
typed but the line number where they occur will not be typed.
NOLINE allows substantially longer program8' to be run.

If the program to be run is substantially longer than the 6000-
character limit, it may still be run by means of the technique
known as chaining. The program is broken down into pieces,
each of which is less than 6000 charaCters. A chained program may
have many of these pieces and, bence, may be indefinitely long.
Each piece of the program is then stored in the DECtape system
storage area with the SAVE command. The final command to be
executed in all but the last section is a CHAIN statement which

4-6

contains the name of the next section of the program. For example,
the statement:

950 CHAIN "PART10"

would cause the system to load and execute the stored program
whose name is PARTIO.

The name of the next section of the program must be encoded
in quotation marks and must be exactly six characters long. If the
actual name of the next section is less than six characters, one or
more spaces must be inserted before the second quotation mark to
make a total of six characters. For example, if the next section of
the program is named LINK2, the following CHAIN statement
would be used:

955 CHAIN "LINK2 "

Execution of the CHAIN statemc:nt loads and executes the
named program. The previous section of the program is deleted.
Thus, the user only needs to load the first section and run it. All.
succeeding sections of the chained program are loaded and ex­
ecuted automatically.

Using a Data File
Just as some very advanced programs may be too large to be

executed in the normal way, other sophisticated programs may
need to store and use more data than may be accommodated under
normal system operation. If this is the case, data may be tempo­
rarily stored in the system ·storage area. Data 'stored in this way is
referred 10 as a data file.

The data file is actually a part of the program data which is de­
fined by a program's DATA statement. All of a program's data is
gathered from the DATA statements into a DATA list which is
read by READ statements. As items are read from the list, they are
marked as already having been used. A READ statement always
fetches the next item from the list. In fact, the data list may be
thought of having a movable marker which remembers which item
of the list is next. It s.tarts out marking the first" data item. As
READ statements are executed, this marker ni.oves down the list.
A RESTORE statement moves it back to the top of the list.

4-7

The data file capability allows a program, by means of a WRITE
statement, to change and add to this data list as well as to read it.
The WRITE statement format is the same as the DATA statement
format. Writing a variable puts the value of that. variable in the
next place in the data ·list. The data item that was there previously
is replaced by the new value. If a WRITE statement follows a
RESTORE. it will change the first item or items in the data list.
If it follows one or more READs (or WRITEs), the WRITE
statement will change data items further down in the data list. The
total number of items which may be put in the data list depends
on the size of the program. Maximum sized BASIC programs may
have up to 1000 items; small programs have room for 2000 items.

Programs which write data out to the data list must keep track
of how much data has been written and the order in which it was
output. If data which has been written is to be subsequently read,
a RESTORE command must be executed to move the marker
back to the top of the data list. If data has been written off the end
of the data list, the program must remember how many items the
data list contains, and be careful not to try to READ more data
items than are there. The normal BASIC check for end of data
does not exist for a written data list. The program must also be
sure that it does not write more data than the data list can contain
(l000-2000 items). Writing too much data c'auses part of the
user's BASIC program to be destroyed.

Th~ data file is frequently used in conjunction with chaining
since data written onto the data list by one program section may
be read by the next section. The program section which writes the
data must execute a RESTORE just before the CHAIN statement.
The next section, which will read thiS", must not have any DATA
statement of its own since this data would destroy the data items
written by the previous section.

Character Variables and String Capability
An of the standard BASIC statements deal o~ly with numbers.

All variables are assumed to be decimal values. In fact, BASIC is
capable' of doing many interesting operations on characters or
words instead of numbers. The character handling capability of
BASIC depends on the concept of representing individual char­
acters as numbers. Each character has its own numeric code or
character code, as indicated in Appendix B. When a character is

4-8

input, it is converted to a numeric code. All internal processing of
that character uses this code. Since the code is a number, it may be
used and manipulated with the standard BASIC statements. When
the program outputs a character, it uses the character code and
converts it back into a character. In short, characters stored in a
BASIC program are indistinguishable from numeric values. The
only difference is in the way they arc used, i.e., that certain numeric
values actually stand for characters.

The standard INPUT statement is used to input characters. A
dollar sign ($) is placed in front of the variable name to indicate
that a character code is to be input rather than a decimal number.
When the character is typed, its character code is stored in the
indicated variable. It is important not to confuse the inputting of
characters with the inputting of numbers. The potential confusion
lies in the fact that the numeric values are themselves characters.
The value 192 is in fact made up of the three characters 1, 9 and
2. If these three characters were input to a BASIC program as
character variables, they would be entered as three separate nu­
meric (character code) values rather than as the single value 192.
But the physical characters typed at the interactive terminal would
be identical. Again, the difference is entirely in the way that the
input is interpreted.

Unlike the numeric' INPUT statement, character INPUT state­
ments do not cause a question mark to be printed. Therefore, a
series of characters may be typed without intervening question

. marks. Programs doing character input must therefore indicate, by
PRINT statements, when input is expected. In the following ex­
amples, each program executes an INPUT statem,ent. In the pro­
gram on the left, three characters are entered and three variables
are set up. In the example on the rig~t, a single numeric value is
input.
10 PRINT
20 INPUT
30 PRINT
40 END

RUN NH

,"ENTER VALUE ";
$X 1 ,$X2, $X3
Xl;X2;X3

ENTER VALUE 234 50 51 52

READY

4-9

10 PRINT "ENTER
20 INPUT X
30 PRINT X
40 END

RUN NH

ENTER VALUE?234
234

READY

VALUE" ;

Note that INPUT $A accepts the input character immediately
without a carriage return. Note that the dollar sign is not a part
of the variable name. It is used only in INPUT statements to indi­
cate that typed characters are to be converted to their numeric
character codes before being stored in the variable.

Character codes may be converted back to their respective char­
acters by means of the special PRINT command function CHR$.
CHR$ is the opposite of the dollar sign INPUT convention. It is a
function which takes as its argument a single constant or variable
and prints the single character whose characte:r code corresponds
to that value. For example, PRINT CHR$ (65.) prints the char­
acter A. CHR$ may only be used in PRINT st.atements.

One of the most frequent uses of the character capability is to
allow words .or characters to be entered into BASIC programs in
response to questions. For example, a program might ask the user
if he wants to run the program again with a different set of input
data. The user responds by typing Y if he wants to run again or
by typing N if not. The program then checks the character code of
the character entered to see if it equals the character code for Y.
If so, it branches back to the beginning of the program. Otherwise,
the program stops. The following program illustrates the use of
character variables in making a run-time decision.

10 PRI NT
20 PRINT "WOULD YOU LIKE TO DO THIS AGAIN <Y OR N)7";
30 INPUT $A
40 IF A:ly THEN 10
50 IF A<>IN THEN 90
60 PRI NT
10 PRINT "O.K. IT'S YOUR CHOICE."
80 STOP
90 PR INT
100 PRINT "y OR N7";
110 GOTO 30
120 END
RUN NH
\~OULD YOU LIKE TO DO THIS
\JOULD YOU LI J(E TO DO THIS
Y OR N1Z
Y OR N1N
O. K. IT'S YOUR CHOICE.

READY

AGAIN <Y
AGAIN CY

4-10

OR N)?Y
OR N)?8

. ..

The comparisons shown in the preceding program are facilitated
by a special BASIC language feature. Pound sign (#) followed
by a single character may be used to indicate the character code of
the single character following popnd sign. In line 40 above, using
Y relieves the programmer of the need to remember or reference
the actual character code for Y.

Often, the character capability is used to input a series, or string,
of characters, such as a last name. The string may be any number
of characters up to a full line. In this case, the program must read
each character and see if it is the carriage return character (char­
acter code 13) which indicates the end of the line. Subscripted
variables are used to store such a series of characters.
10 DIM A(12)
15 PRINT "TYPE YOUR NAME:";
20 ~OR 1= 1 TO 12
30 INPUT $ A(1)
40 I~ A(I)=13 THEN 60
50 NEXT I
60 ,END
RUJ NH
TyPE YOUR NAME:SUPERSTAR
READY

PROGRAM EDITING
There are two times when a program may require editing pro­

cedures. The first occurs while a line is being typed but before the '
RETURN key is pressed. The second occurs when a line has been
completely typed and the RETURN key has been pressed. Each
situation has its own editing procedures.

Procedure 1: Before the RETURN key is pressed.
Three keys may be used to correct typing errors: ALT MODE

(or ESCAPE), ~ (back arrow), or RUBOUT. ALT MODE
(or ESCAPE) is used to delete an entire line. When this key
is used, BASIC prints DELETED, erases that line from the
program, and returns the carriage so that the line may be
retyped.
~ (back arrow), SHIFT /0 on the keyboard, or RUB OUT is
used to delete a character from a line. BASIC prints the back
arrow, deleting the last character from that line. More than
one back arrow deletes more than' one character, in reverse
order.

4-11

Procedure 2: After the RETURN key is pressed.
Once a line of the program has been transmitted to computer

memory via the RETURN key, several methods of correction may
be used. Lines may be inserted, deleted, changed, or renumbered.

INSERTION: To add a line to a program, assign a line num­
ber that faUs between two existing lines, type the line number
and text, and press RETURN.
DELETION: To erase a line from computer memory, type
the line number only and press the RETURN key.
CHANGE: To change an individual line, simply retype it.
The old instruction is replaced by the new one.
RENUMBER: Occasionally, repeated editing and insertions
result in there being no more room in an area of a program
to insert new lines. It is then necessary to spread out the line
numbers so there is room for new insertions. The RESE­
QUENCE command is used for this purpose. To renumber
a program, type the RESEQUENCE command. This com­
mand changes the first line's number to 100 and renumbers
each succeeding line with an increment of 10. RESEQUENCE
also automatically changes all GOTO, GOSUB, and IF state­
ments to correspond to the new line numbers.

ERROR MESSAGES
Some programs execute correctly the first time they are tried.

Most others, especially if they are at all complex, have errors in
them. EduSystem 15 checks all statements when they are entered
and before executing them. If it cannot execute a statement it in­
forms the -user by printing one of the following types of messages.

Program Loading Errors
As each line is typed, EduSystem 15 checks it for program load­

ing errors. If it finds an error, it prints one of the following error
messages immediately after the erroneous line.

Message

WHAT?

Explanation

Line does not make sense to the sys­
tem. It does not begin with a line num­
her and is not a valid system command.

4-12

Message Explanation

LINE NO. TOO BIG The line number of a line or the argu­
ment of a system command is greater
than 4095.

LINE TOO LONG Line just entered is longer than 80
characters.

NO ROOM There is no room in memory to store
the line just entered.

FILE NOT SAVED The program named as the operand of
an OLD command was not previously
saved on the system device.

NO SPACE There is not enough space on the DEC­
tape to SA VB the current program.

Bell If an invalid character is entered, the
Teletype bell rings and the character is
ignored.

I/O ERROR An input or output error occurred on
the DECtape unit. Be sure that the unit
is on-line, write-enabled, and the unit
number is set correctly. Retry whatever
was interrupted by the error. If the
problem persists, there is. a hardware
problem.

INVALID PASSWORD The password typed after a PRIVI­
LEGE command is not the system
password. Privileged mode is not en­
tered.

Coding Errors3

After the RUN (or RUNNH) command is typed, EduSystem
15 checks each statement and command before executing it for
mistakes in the BASIC program coding. If it cannot execute a

,

3To correct the coding errors indicated by the messages, the appropriate line
in the program must be corrected in the manner described under Program
Editing, Procedure 2.

4-13

statement or command, it informs the user by printing one of the
following messages and the line number in which the error was
found.

Message Explanation

CH There is an illegal character in the line.

EN Program does not have END statement as the last line
in the program.

FN Not enough NEXT statements in the program. There
must be a NEXT statement for each FOR statement in
the program.

FO FOR and NEXT statements do not match. There is a
NEXT statement in the program whose variable is not
the same as the variable in the corresponding FOR
statement.

LI Line contains an improperly written decimal number or
constant. It may, for example, have two decimal points
or have an alphabetic character in it.

Ml The program as a whole is too large to be run by the
M2 system. Making the program smaller, reducing the size

of subscripted variables, or using the NOLINE com­
mand may help.

NE Program has too many (more than 8) FOR-NEXT
loops one within another.

PC Line contains an improperly used parenthesis. Gener­
ally, the problem is an expression which does not have
an equal number of left and right parentheses.

RO Statement contains an invalid relational operator «,
=,>, <=, >=). Relational operators may only be used
in IF statements'.

S 1 Statement as a whole is not properly written and, as a
S2 result, does not conform to proper BASIC syntax. For

example, a semicolon is allowed in a PRINT statement
but not in a READ or INPUT statement.

4-14

Message Explanation

ST Statement's command word is not one of the BASIC
statement types.

TB The program is too large to be run. Cause is usually an
extremely large number of PRINT -statements.

TO Program is either too large or too complex to be run.
The total number of variables, constants, functions, and
line numbers should be reduc~d, if possible.

UL A OOSUB, OOTO, or IF statement contains a line
number which does not exist.

UQ A quotation mark indicating the beginning of a string of
text does not have a corresponding quotation mark at
the end of the text string.

Program Logic Errors4

Some errors do not show up until the program is actually exe­
cuted. An example of this type of error is an expression which
uses a square root of a variable. If, when this square root is ac­
tually calculated, the variable has a negative value, a program
logic error has occurred. EduSystem 15 prints the following mes­
sages if _program logic errors occur.

Message Explanation

CH A CHAIN statement tried to chain to a program which
was not available in the DECtape storage area.

CO Program ran too long and was automatically stopped by
the system.

DA The program ran out of data. It attempted to do a
READ after all data had been read.

4Some program logic errors may be corrected by the method described
under Program Editing, Procedure 2. Most, however, necessitate the re­
writing of the program.

4-15

Messag~

DO

FN

GS

LG

RE

Explanation

The program attempted to divide by zero. Instead of
dividing by zero, BASIC divides by the smallest possible
number, giving a result of about 10500• This error does
not cause the program to stop.

An expression contains a function which was not defined
in a DEF statement.

The program is too complex to be executed. The prob­
lem is generally that too many subroutines have the!D­
selves executed GOSUB instructions.

Program l.ttempted to take the logarithm of a negative
number df zero.

A RETURN statement was used outside of a subroutine
or a subroutine was entered by at GOTO instead of a
GOSUB.

SP See GS.

SQ Program attempted to take the square root of a negative
number. BASIC automatically takes the square root of
the absolute value of the number instead. This error
does not cause the program to stop ..

SS Program used a subscript which was too large for the
variable. The maximum size of a subscript is specified
in a DIM statement.

WR There is no more room on the DECtape to write data.
The program attempted to do a WRITE statement when
the data list was full. (Note that if this error occurs, the
program text will no longer be intact. A NEW, OLD,
or ~CR command must be used to clear the program
area.)

OPERATING INSTRUCTIONS
Loading the System

When EduSystem 15 is first installed, it must be loaded with a
special software program, the BASIC language processor. Once this

4-16

software has been loaded, it need not be reloaded. Perform the fol­
lowing steps to load BASIC.

INITIALIZE THE DECT APE UNIT
Perform the following steps to prepare the TD8E DECtape unit

for software loading. '

1. Set the REMOTE/OFF/LOCAL switch to OFF.
2. Place a DECtape on the left spindle with the DECtape

label out.
3. Wind four turns of tape onto the right spindle.
4. Set the REMOTE/OFF/LOCAL switch to LOCAL.
S. Wind a few turns of tape onto the right spindle with the ~

switch to ensure that the tape is properly mounted.
6. Dial 0 on the unit selector dial.
7. Set the REMOTE/OFF/LOCAL switch to REMOTE.
8. Set the WRITE ENABLE/WRITE LOCK switch to

WRITE ENABLE.

INITIALIZE COMPUTER MEMORY
To initialize the PDP-8/F memory, perform the following steps.

1. Turn the key lock on the front of the computer to
POWER.

2. Perform the following set of switch manipulations on the
SWITCH REGISTER (to the left of the ADDR LOAD
switch). In each step, there are 12 figures which corre­
spond to the 12 switches labeled SWITCH REGISTER
(SR) on the front of the computer. The • symbol in­
dicates that the corresponding switch should be set to its
"up" position. The <? symbol means that the correspond­
ing switch should be set to its "down" position. The octal
instructions which corresp'ond to this diagram appear on
the right. 5

50ctal instructions are provided for those familiar with the octal, or base 8,
number system. An explanation of this system is included in Introduction
to Programming 1972.

4-17

Set SR to: 999 999 999 999 then pmss OCTAL
EXTD ADDR LOAD 0000

SetSRto: ...
eM _~,_

~ "9 then pressADDR LOAD 7756

Set SR to: "9 999 9" 9-9 then lift DEP 6032

Set SR to: "9 999 9" 99_ then lift DEP 6031

Set SR to: _9_ 9" .~ eM then lift DEP 5357

Set SR to: _9 999 9 _9 then lift DEP 6036

Set SR to: ... ?9- 99S? "9 then lift DEP 7106

SetSRto: ... YS?9 999 "Y then lift DEP 7006

SetSRto: ... -Y- 99- 999 then lift DEP 7510

Set SRto: -9- 9- -y. ... then lift DEP 5357

SetSRto: ...):99 999 .. 9 then lift DEP 7006

SetSRto: "9 999 9M 99i then lift DEP 6031

Set SR to: _ (?_ 9" My iii then lift DEP 5367

SetSRto: "Y Y9<? 9-- -99 then lift DEP 6034

Set SR to: ... -9(;(9-9 999 then lift DEP 7420

Set SR to: 9" My then lift DEP 3776

SetSRto: y" 9 _ 9 then lift DEP 3376

Set SR to: -9- S?- -9- -9 then lift DEP
and again lift DEP 5356

3. Place the tape labeled EDUSYSTEM 15 in the Teletype
paper tape reader. Position the tape at the single row of
holes punched at the beginning of the tape. Turn the Tele­
type control knob to LINE.

4. Set the SR to '~~i' .. ~ (7756); then press
ADDRLOAD.

5. Press the CLEAR switch, then thj~ CONT switch. Push
the paper tape reader switch to START. The tape should
begin to move: If it does not, repeat steps 2, 3, and 4.

4-18

System Building Dialog
When the EDUSYSTEM 15 paper tape has read in pf(;)perly,

BASIC prints a series of questions (see Figure 4-1). The user re­
sponds by typing Y for yes and N for no on the Teletype.

STANDARD SYSTEM?

Since EduSystem 15 has optional operating modes and may be
used with optional components, if present, this question is always
answered no (N). '

The next four questions:

IS SYSTEM DEVICE A DF32 DISK?
TC01 DECTAPE?
RJ4"08 DISK?
LINCTAPE?

are always answered no (N) since none of these devices are avail­
able with the EduSystem 15. A response of yes (Y) to any of the
above will result in the following message, and EduSystem 15 will
begin the dialog again.

SYSTEM DEVICE 1/0 ERROR

The system's next question is:

TOg E DECTAPE?

and the user responds Y.

4-19

Figure 4-1. System Building Dialog

4-20

D)-------.../

BEGINS READING
TAPE AND

BUILDS SYSTEM

WHEN TAPE IS
READ, TYPES

"READY"

READS IN
ADDITIONAL

INPUT

Figure 4-1. (Cont.) System Building Dialog

4-21

I EduSystcm 15 then asks:

DO YOU HAVE A TD8 E 'HOM?

Answer this Y if the EduSystem 15 has a TD8E Read Only Mem­
ory. If the user answers N, the system asks:

8 Y. OF' CORE?

Since the system will have either the Read Only Memory or the 8K
of core memory, answer this question Y. (The question will not be
asked if the user answered Y to the previous question.)

EduSystem 15 then asks:

DO YOU WA~T BATCH CAPABILITIES?

If the EduSystem 15 has an optional card reader, answer Y and
refer to Chapter 7 (EduSystem 30) for additional instructions. If
not processing card programs, answer N.

N ext the system asks:

DO you WANT PRIVILEGED COMMAND CAPABILITY?

The privileged command capability prevents unauthorized users
from executing critical system commands. To establish this pro­
tection, the user types Y. The system then prints:

TYPE I~ITIAL PASSWORD

The password is a special code which must be known to use priv­
ileged commands. Type a 1 to 6 character password, the first
character of which is alphabetic. If no privileged capability is de­
sired, respond to the original question with N; the system will not
ask for a password.

The system asks if a high-speed paper tape punch and/or line
printer are part of the system.

DO THE FOLLOWING EXIST:
HIGH-SPEED PUNCH?
LPfi18 PRINTER?

4-22

The response to each question must be Y if the device exists; N if
it does not. Normally, an EduSystem 15 will have neither device.

The system's next question is:

PROGRAM LIBRARY INITIALLY EMPTY?

The user's response should be Y unless there are programs pre­
viously stored within the system which are to be kept. If this is the
case, N must be typed as the answer and the questions in boxes 1
through 8 of the flowchart must be answered in the same way as
when the system was bui~t when the program library was empty.,

When all questions have been answered, the system types:

IS THE ABOVE CORRECT?

If all questions have been answered properly, type Y. The system
will load the rest of the EduSystem 15 paper tape. If any of the
responses were erroneous, type N; the set of questions is repeated.

When the entire tape has been read, EduSystem 15 gives the
user a chance to load additional DEC-supplied system update tapes
by asking:

MORE INPUT?

If no DEC-supplied update tapes exist, respond Nand EduSystem
15 is loaded. If update tapes do exist, load the first one into the
tape reader and type Y to hegin loading.

Finally, when all input has been read in, EduSystem 15 indicates
that it is ready to process BASIC programs by printing:

READY

At this time, turn the key lock to PANEL LOCK and remove the
key to prevent the system from being accidentally disturbed.

DIAGNOSTIC MESSAGES DURING SYSTEM BUILDING
The following error messages are printed when errors are de­

tected during the building of EduSystem 15.

TAPE READY?

4-23

This message is typed whenever the system is waiting for the
paper tape reader to be loaded. It may appear by itself, usually due
to a tape tear or reader jam, or it may appear as the last line of an­
other diagnostic message.

ACTION:
1. The portion of the paper tape which is read after the sys­

tem building dialog has distinct blocks of information
about two and one-half tape fanfolds long. The start of
such a block is indicated by nine blank tape frames fol­
lowed by a frame with all positions punched. .

Back up the tape several fanfolds to the beginning of a
previously read block. Position the tape such that the
blanks at the beginning of the block are over the read
station.

2. Type Yon the interactive terminal.

BAD PLACE TO START TAPE
TAPE READY?

This message means that after a previous message the user did
not correctly position the tape to the beginning of a data block.
(See discussion under TAPE READY? message.)

ACTION:
1. Correctly position the tape.
2. Type Y on the interactive terminal.

CHECKSUM ERROR
TAPE READY?

A checksum error occurred while the most recent data block
was being read.

ACTION:
1. Back up the tape to the beginning of the block.
2. Type Y to reread the data.

SYSTEM DEVICE I/O ERROR

4-24

If this message occurs before the dialog has been completed, the
dialog will automatically begin again. If an I/O error occurs after
the dialog is completed the TAPE READY message will appear.

ACTION:
1. Make sure that the system device is on line and write­

enabled and the unit number is set correctly.
2. Respond appropriately to the question which follows the

message.

Turning Off the System
The system may be powered down when it will not be used for

extended periods of time, such as overnight. The procedure is as
follows:

1. Type CTRL/C to stop any program that is running.
2. Turn the key lock to OFF; turn the DECtape unit and

Teletype to OFF.

Restarting the System
The system may be restarted at any time without reloading by

the following procedure:

1. Initialize the DECtape unit.
2. Turn the key lock to POWER and the Teletype to LINE.
3. Set the SR to ••• •• C? 999 9~9 (7600); then press

ADDRLOAD.

4. Press CLEAR switch, then the CONT switch.
5. EduSystem 15 is now ready for use. Turn the key lock to

PANEL LOCK and remove the key to prevent the system
from being accidentally disturbed.

Saving Programs on Paper Tape
Once a program has been typed in correctly, it may be saved on

paper tape so that it may be reloaded quickly. To save the program,
perform the following steps:

1. Turn the Teletype (TTY) control knob to LINE.
2. Type LISTNH but do not press the RETURN key.
3. Turn the TTY paper tape punch ON.
4. Press SHIFT /CTRL, type "PPPPPP" to produce some

leader tape. ,
5. Press the RETURN key.

4-25

6. When punching is complete, press SHIFT /CTRL, type
"PPPPPP" to produce some trailer tape.

7. Turn the TTY punch OFF.

Reloading Programs from Paper Tape
Programs punched out on paper tape may be reloaded using the

Teletype (TTY) paper tape reader. The TAPE command is used
to load programs from paper tape. To reload programs, perform
the following steps:

1. Insert the paper tape in the TTY reader.
2. Turn the TTY control knob to LINE.
3. Type NEW, then press the RETURN key.
4. Type the program name.
S. Type TAPE, press the RETURN key.
6. Tum the TTY paper tape reader to ST ART.
7. When the tape has read in, turn the TTY reader to FREE.

A special control command, ECHO, may be used with TAPE to ,
prevent the program from being listed while it is being read. The
first time it is used, ECHO inhibits all printout. A second ECHO
command restores normal printout.

Table 4-1. EduSystem 15 BASIC Statement Summary

Statement

LET
PRINT

. READ
DATA
RESTORE
WRITE
GOTO
IF GOTO}
IF THEN
FOR TO STEP
NEXT
DIM
GOSUB
RETURN
INPUT
REMARK (REM)
RANDOMIZE

DEF

Description

Assign a value to a variable. LET is optional.
Print out the indicated information.
Assign values from data list to variables .
Provide data for a program.
Restore the data list.
Record data on DECtape storage file ..
Change order of program Fxecution.
Conditionally change order of program
execution.
Set up a program loop.
End a program loop.
Define subscripted variables.
Go to a subroutine.
Return from a subroutine.
Get values from the Teletype.
Insert a program comment.
Cause RND function to randomly select new
sequence of random numbers between 0 and 1.
Define a function.

4-26

Table 4-1. (Cont.)

Statement

CHAIN

NOLINE

STOP
END

EduSystem 15 BASIC Statement Summary

De~cription

Link to next_section of .a program which is
stored within the system.
Do not print out the line number in which pro­
gram logic errors are found. (Allow larger-than­
normal programs to be run without chaining.)
Stop program execution.
End a program.

Editing and Control Commands
LIST List all stored program statements.
LIST n List program starting at line n.
LISTNH List all program statements but do not print a

LISTNHn

RUN
RUN NH
SCRA TCH(SCR)

CTRL/C

TAPE

ECHO

RESEQUENCE
NEW
OLD

NAME
CATALOG
(or CAT)
LENGTH

PRIVILEGE
(or PRI)

header line.
List program starting at line n but do not print
a header line.
Execute the current program.
Same as RUN without header line.
Delete the currently stored (in memory) pro­
gram.
Stop execution of a program or printing of a
listing. CTRLI C is typed by pressing C while
holding. down the CTRL key.
Read a program from paper tape. Ignore any
line which does not begin with a line number.
Switch from 'printout to non-printout mode or
vice versa.
Renumber program lines.
Clear memory, request program name.
Clear memory, bring program to memory from
storage area.
Same as NEW but does not clear memory.
Print out the names of programs in storage area.

Print out the number of blocks needed to store
the current program.
Enable use of privileged commands. To be suc­
cessful, this command must be followed by the
correct password. This command is recognized
only if the privileged command capability was
selected at system load time.

4-27

· Table 4.~. (Cont.) EduSystem 15 BASIC Statement Summary

Statement Description

Privileged CQmmands6

PASSWORD Change the password code.
SA VE Save the current program in the system storage

UNSAVE

Functions
ABS(X)
ATN(X)
COS (X)
EXP(X)
INT(X)
LOG (X)
RND(X)
SGN(X)

SIN(X)
SQR(X)
TAN (X)
TAB (X)
CHR$(X)

area.
Delete the named program from the system
storage area.

Absolute value of x.
Arctangent of x (result in radians).
Cosine of x (x in radians).
eX (e=2.718282).
Greatest integer of x.
N aturallogarithm of x.
Random number.
Sign of x (+ 1 if positive, -1 if negative, 0 if
zero).
Sine of x (x in radians).
Square root of x.
Tangent of x (x in radians).
Controls printing head position on Teletype.
Converts character code to character. Used
only with the PRINT command.

6The privileged commands may only be used after a successful PRIVILEGE
command has been executed.

4-28

5
-

edusystem 20

INTRODUCTION
EduSystem 20. is a multi-user BASIC system. The system is

composed of from one to eight terminals connected on-line to a
PDP-8/E computer. This means that, depending on the number of
on-line terminalS, EduSystem 20 allows up to eight different BASIC
programs to be run at the same time. EduSystem 20 terminals need
not be in the same room, or even in the same building as the com­
puter. They may be placed in remote locations and connected to
the computer by regular telephone lines.

In addition to letting several persons use BASIC aCthe same
time, EduSystem 20 allows users to operate BASIC in two different
modes: immediate and programmable. Immediate mode allows the
user to perform arithmetic calculations without writing programs.
Programmable mode enables programs to be written in BASIC,
stored in computer memory, and, if desired, saved on paper tape.
Both modes provide a printed copy of the problem and the solution.

EduSystem 20 BASIC also includes advanced features that en­
able a user to perform more complex programming tasks. These
features include the ability to enter a subroutine if certain condi­
tions are met, to write multiple statements per line, and to use a
search character to edit a program line.

System Components
EduSystem 20 is composed of a PDP-8/E computer with 8192

words of core memory, power fail protection, auto~atic loader
(hardware bootstrap), and up to 4 terminals and their associated
interfacing. Each EduSystem 20 includes the BASIC language pro­
cessor and a library of sample programs, textbooks, and curriculum
guides. An additional 4096 words of core memory enable Edu­
System 20 to handle up to 4 more terminals (for a total C?f 8).
One or more off-line terminals may also be added for paper tape

5-1

preparation. The system can also support a high-speed paper tape
reader/punch.

System Expansion
EduSystem 20 may be easily expanded to intermediate-sized

EduSystems 25 or 40, or to the total school computer system, Edu­
System 50. To expand to EduSystem 25, add 4096 words of core
memory, DECtape, and an EduSystem 25 software kit. Expansion
to EduSystem 40 requires a DECdisk or DECtape, an optional
mark card reader, and an EduSystem 30 softwan~ kit. (Chapters 6
and 8 fully describe the capabilities of EduSystem 25 and Edu­
System 40, respectfully.)

EDUSYSTEM 20 BASIC
EduSystein 20 BASIC has all the standard elements of .Dart­

mouth BASIC plus several extended features. Tables 5-1 and 5-2
summarize the system's BASIC language capabilities. The extended
features are discussed below.

Abbreviated Commands
All commands and statement keywords can be abbreviated to the

first three letters, as shown in Table 5-1.

i

Table 5-1. EduSystem 20 BASIC Statement Summary .

Command
(Abbreviation)

LET
READ(REA)
DATA(DAT)
PRINT(PRI)

REStORE(RES)
GOTO(GOT)
IF THEN (IF THE)

FOR TO STEP.
(FOR TO STE)
N EXT(N EX)
GOSUB(GOS) ,
RETURN(RET)
ON GOTO(ON GOT)

Explanation

Assign a value to a variable. LET is optional.
Assign values from data list to variables.
Provide data for a program.
Print out the indicated information on the
Teletype.
Restore the data list.
Change order of program execution.
Conditionally perform specified operation or
conditionally change order of program execu­
tion.
Set up a program loop.

End of program loop.
Go to a subroutine.
Return from a subroutine.
Conditionally change order of program execu­
tion according to evaluation of formula con-
4tained in statement.

5-2

Table 5-1 (Cont.). EduSystem 20 BASIC Statement Summary

Command
(Abbreviation)

ON GOSUB
(ON GOS)
INPUT(INP)
REMARK(REM or ')
RANDOMIZE
(RAN or RANDOM)
DEFFN
STOP (STO)
END

Explanation

Conditionally go to a subroutine according to
. evaluation of formula contained in statement.
Get values or expressions from the Teletype.
Insert a program comment.
Cause RND function to randomly select new
sequence of random numbers between 0 and 1.
Define a function.
Stop program execution.
End a program.

Editing/ Control Commands
LIST(LIS) List entire program in memory.
LIST n(LIS n)List line n.-
LIST n, ni(LIS n, m) List lines n through m inclusive.
DELETE n(DEL n) Delete line n.
DELETE n, m Delete lines n through m inclusive.
(DELn, m)
EDIT n(EDI n)
KEY
RUN
SCRATCH(SCR)
TAPE(TAP)

PTR

PTP

CTRL/C

BYE
NEW

Search line n for the character typed.
Return to KEY (normal) mode.
Execute the current program.
Erase the current program from memory.
Read a program from the Teletype paper tape
reader or punch a program on the Teletype
paper tape punch.
Read a program from the high-speed paper
tape reader.
Punch a program out on the high-speed paper
tape punch.
Stop a running program, print STOP, and
then READY. CTRL/C is typed by pressing
C while holding down the CTRL key.
Same as SCRATCH.
Same as SCRATCH.

Table 5-2. EduSystem 20 BASIC Function Summary

Function

ABS(X)
ATN(X)
COS(X)
EXP(X)
INT(X)

Description

Absolute value of x
Arctangent of x (result in radians)
Cosine of x (x in radians)
eX (e=2.712818)
Greatest integer of x

5-3

Table 5-2 (Cont.). EduSystem 20 BASIC Fundion Summary

Function

LOG (X)
RND(X)
SGN(X)
SIN (X)
SQR(X)
TAN (X)
TAB (X)
TAB (X)
CHR$(X)

Description

Natural logarithm of x
Random number
Sign of x (+ 1 if positive,-l if negative, 0 if zero)
Sine of x (x in radians)
Square root of x
Tangent of x (x in radians)
Controls printing head position on Teletype.
Truncates decimal portion of x.
Converts character code to character. Used only with
PRINT statement.

Multiple Statements per Line
EduSystem 20 allows more than one statement to be typed on a

single line. Statements after the first begin with a back slash char­
acter ("-.) whibh is SHIFT /L on the keyboard. A program is often
more understa:ndable when statements, such as a series of LET's,
are grouped into a single line. For example, the program:

10 X=82\Y=75\Z=98
20 PRINT (X+Y+Z)/3

is the same as

10 LET X=82'
20 LET Y=75 :
30 LET Z=98 ,
40 PRINT (X+Y+Z)/3

and will produce the same result when the RUN command is
typed:!

RUN
85

READY

Since Ed1JSystem 20's memory is being shared by several users,
this multiple-statement capability is helpful when writing long pro­
grams. Statements require less storage in the computer when they
are grouped as a single statement.

! Notice that EduSystem 20 BASIC does -not require the use of an END
statement.

5-4

Immediate Mode
EduSystem 20 allows· certain BASIC statements to be used in

immediate mode, that is, to be issued and executed immediately
without being included in a formal program. Statements commonly
used with immediate mode are PRINT, LET, FOR, and NEXT.
Immediate mode is a quick way to calculate expressions and equa­
tions. For example, the statement:

PR I NT SQR (144)

followed by the RETURN'key, causes the square root of 144 to be
printed immediately, as follows:

12
READY

BASIC then prints READY to indicate that another immediate
mode statement or a program may be entered. Immediate mode
statements are not stored in computer memory.

Typing multiple statements per line is especially useful in the im- .
mediate mode. A table of random numbers could, for example, be
generated by typing the following single line and pressing RE­
TURN:

F'OR D= 1 TO
.2431684
.04493979
.2373254
.9882844

READY·

20\PRINT RND(0),\NEXT D
.2988412 .7295008 .3125257
.4834217 .4961024 .5010026
.3046887 .1923863 .9121199
.2587987 .03323189 .8701425

.3095865

.04103271

.241212

.9218898

Nearly all the BASIC statements and commands may be exe­
cuted in immediate mode. This is an excellent way to introduce
students to the BASIC language, as the statements and commands
can be exercised and understood before the student begins pro­
grammmg:

Immediate. mode statements can also be used with programs.
For example, an immedJate GOTO statement may be used to start
a program at a point other than the beginning. This is accom-:...,
plis~ed by lo.,,:?ing the,jJE9,~ram into computer mem~
f'pr}~~Jl~l

GOTO 50

After the RETURN key is pressed, the program execution will
begin automatically at line number 50. In this case, the RUN
command need not be typed.

INPUT Statement
The INPUT statement described in Chapter 1 allows a number,

or numbers, to be entered from the TTY as values for variables.
EduSystem 20 allows the user to respond to the INPUT query (?)
with a value or mathematical expression. An expression may con­
tain one or more arithmetic operations and may use any BASIC
function. For example, the statement:

. ~([((c" 'I~) is i (\' r.i.Jn#"
100 INPUT A (Jl~J-D.I' VU1"V'\N

. oVW~ .~~dYv ~nlAfte
could be answered in any of the following Ja;~~ v - -

748 I'" iN pJ-((ex. S .VALVe i 01~. A
710*{146+128)/3 v' .
755t2+SQR<:') I¢ iNP, 'A's ~L ',x "y'S \JAf fAO(sVS); y
This capability co~u~ enable one program to solve more
than one problem.

As explained in Chapter 1, the INPUT statement may have mul­
tiple inputs. These inputs may be either mathematical expressions
or numeric va!ues. For example, the statement:

10 INPUT A,B,e

could be answered as follows:

133,LOG(33),33t5

Comments
Previously~ the use of the REMARK (or REM) command to

introduce a comment on a single line was discussed. Comments
may also be appended to any line by starting the comment with a
single apostrophe ('). All characters typed afier the apostrophe on

5-6

a single line are ignored when the program is executed. For ex­
ample:

10 LET X=4 'SET X TO ITS INITIAL VALUE
20 GOTO 10"LOOP BACK TO START

When included' within a PRINT statement message, the apos­
trophe is not considered as the start of a comment. For example:

12 PRINT "X'S VALUE IS";X

prints

X'S VALUE IS 4

When responding to an INPUT statement, the user may add a
comment which will print on the Teletype but have no effect on
the running program. For example:

10 I NPUT A
20 PRINT A
RUN

" Subscripted Variables
In chapter 1, the DIM statement is used to permit subscripts of

more than 10. EduSystem 20 BASIC defines all variables as they
occur, so the DIM statement is not neeessary~ The system imposes
the following limits on subscript size:

• Single subscripts: 0 to 2047
• Double subscripts: 0 to 63 for each subscript

Consider the following . example. Notice that a variable has a
value of 0 until it is assigned a value.

5-7

10 REM· MATRIX CHECK
20 FOR 1=0 TO 6
22 L ET A (I , 0): I
25 FOR J:0 TO 10
28 LET A (0, J) : J
30 PRINT A(I,J);
35 NEXT J
40 PRINT
45 NEXT I
RUN

PROGRAM

'" 1 2
1 0 '"
2 0 0
3 '" 0
4 0 0
5 0 0
6 0 0

3 4 5 6 7 8 9 10
0000000 0
o 0 0 0 0 0 0 0
00000 000
o 0 0 0 0 0 0 0
0000000 0
00000 0 0 0

(~~~y ttJ ~ tWv/uMrJ tikut ~I; 1- /L4>:: /
(ffJ /vv.,- , ~- ~ lr;t~ T vb (s \ evllow&b) cry 0 .. G ~ X b] ptQAfifJ'"\ t: I4t ~ JUvl., ~c..~ ulitllJ<.. ~ IILtft b)I ~ SireJ

IF THEN Statement
The IF THEN statement described in Chapter 1 is used to trans­

fer conditionally from the normal order of program execution. For
example:

50 l~ X>Y THEN 200

transfers control to]ine 200 if X is greater than Y. If X is not
greater than Y, control transfers to the line following line 50. Edu­
System 20 BASIC uses the IF THEN statement in this way to
change the order of program execution. It also allows the IF THEN
statement to, conditionally perform an operation without changing
the order of program execution. For example:

50 I~ X>Y THEN PRINT "X>Y"

If X is greater than Y, BASIC prints X> Y. Whether or not X
is greater than Y, the next statement executed is the one following
line 50. IF THEN used in this manner does not change the order
of program execution.

5-8

The IF THEN statement can also be used to transfer control to
a subroutine. For example:

25 I If' A+B=C THEN. GOSUB 100

If A + B equals C, control is transferred to the subroutine at line
100.

Truncation Function (FIX)
EduSystem 20 BASIC includes all the functions discussed in

Chapter 1 (see Table 5-2). In addition, it includes the truncation
function (FIX) which returns the integer part of x. For example:

PRI FIXC-842.756)
-842

Notice that FIX is like INT for positive arguments. In fact, FIX
could be defined as:

f/J /} lIu FIX(X)==SGN(X)*INT (ABS(X» _ l .-+.:-:- _//

ac~~. ~ dtfoitd~ <1~ f!ht UJai::~} ~:V·Lf~
CHR$ Function !,..''-IT 4Ak'~fv.1;D VA ~ fJr I X . JD Wlt tit. .

Occasionally, it is desir-~l~ to type a character other than the
printing ASCII set (see Appendix B) or to convert ASCII char­
acter codes t? their respective characters. A special PRINT state­
ment function, CHR$, is used for this purpose: This function
takes as its argument a single constant or variable and prints the
single character whose character code corresponds to that value.
For example:

10 FOR 1=0 TO 9
20 PRINT CHRS(I+48)J
30 NEXT I
RUN
0123456789
READY

/It ~S()
"IN,) ur Clf'R.- 'Ii' (J l{)<,

J' ~ MA l(\f?~ .
.. ~~ ~ -tiM w etvui tfO LA/'

~J ~~-rA1?
This program prints "0123456789" because 48 to 57 are the
ASCII values for the characters 0 through 9. The following spe­
cial characters can also be printed using the CHR$ function:

rtD PR iAJ7 ('NUL L (/ 5-9fke GH1(~· C 2-5 ~)

Bell
Line feed
Carriage return
Quote (")
Back arrow (~)
Form feed

CHR$(7)
CHR$(10)
CHR$(13)
CHR$(34)
CHR$(95)
CHR$(12)

For each ASCII character there is a second acceptable form of
CHR$ function. The second code is obtained by adding 128 to the
ASCII code given in Appendix B. For example, both CHR$(65)
and CHR$(193) cause the character A to be output.

ON·GOTO Statemenl
The ON-OOTO statement permits the program to transfer con­

trol to one of a set of lines depending on the value of a formula.
The statement is of the form:

line number ON formula OOTO line number, line number . ..

The formula is evaluated and then truncated to an integer. This
integer is used as an index to tell which of the line numbers re­
ceives control. If the integer is 1, the first line number is used; if it
is 2, then the second is used; etc. Obviously, the formula after
truncation cannot be zero or negative or greater than the number
of line numbers in the list. For example:

10 ON A+2 GOTO 100,200,300,400

If A is 2, then control is passed to line 400. The range A can have
in this example is -1 to 2.

ON GOSUB Statement
The OOSUB and RETURN statements are used to allow the

user to transfer control to a subroutine and return from that sub­
routine to the normal course of program execution (see Chapter 1).
The ON GOSUB statement is used in the same manner as the ON
OOTO statement described previously. The statement is of the
form: '

line number ON formula OOSUB line number, line number . ..

5-10

' '

The formula is evaluated and then truncated to an integer. De­
pending on the value of the integer, control is transferred to the
subroutine which begins at one of the line numbers listed. When
the RETURN statement is encountered, control transfers to the
line following the ON GOSUB line. For example:

50 ON X GOSUB 200,300,400

If X is 1, 2, or 3) control will transfer to line 200, 300, or 400
re:;pectively. If X is not equal to 1, 2, or 3, line 50 is ignored .9

7 fLAA i<Jr;:rryr'C~-, ------ ------ --- - -.--

/lfo t-RAUfl qCLtfJIJ~J.~ t, /
-ERROR 21litr50 ~ tJU)tJ ,

RANDOMIZE Statement
The random number (RND) function produces a random num­

ber between 0 and 1, as describ~d in Chapter 1. A given program
that uses the RND function always produces the same random
numbers each time it is run. If ~he user wants the random number
generator to calculate different random numbers every time the
program is run, EduSystem 20 BASIC provides the RANDOMIZE
statement. RANDOMIZE is normally placed at the beginning of a
program which uses the RND function. When the program is exe­
cuted, RANDOMIZE causes the RND function to choose a random
starting value. so that the same program will give different results
each time it is run. For example:

10 RANDOMIZE
20 P R I NT R ND (0)

prints a different number each time it is run. For this reason,
it -is good practice to debug (detect, locate, and correct mistak(!s)
a program completely before inserting the RANDOMIZE statement.

1:,9 demonstrate the effect of the RANDOMIZE statement on
two runs_-9f the same program, the RANDOMIZE statement was
inserted as line 15 in the following example:

5-11

15 _ RANDOM
2(21 FOR 1=1 TO 5
25 PRINT ~VALUE~ I ftIS~ RND«(2I)
3(21 NEXT I
RUN
VALUE 1 ts .2431684
VALUE 2 IS .2988412
VALUE 3 IS .7295(21(218
VALUE 4 IS .3125257
VALUE 5 IS .3(2195865

READy

RUN
VALUE 1 IS .6181684
VALUE 2 IS .4238412
VALUE 3 IS .1(2145008
VALUE 4 IS .4375257
VALUE 5 IS .6845865

READy

ERROR MESSAGES

/

EduSystem 20 checks all statements and commands before exe­
cuting them. If it cannot execute a statement or command, it in­

. forms the user by printing an error message and the line number
in which the error was found. Error messages for EduSystem 20
are shown in Table 5-3.

Message

WHAT?

ERROR 1
ERROR 2
ERROR 3
ERROR 4
ERROR 5
ERROR 6
ERROR 7

Table 5-3. EduSystem 20 Error Messages

Explanation

Immediate mode statement or command not under­
stood. It does not begin with a line number and is not
a valid system command.
Log of negative or zero number was requested.
Square root of negative number was requested.
Division by zero was requested.
Overflow-exponent greater than approximately +38.
Underflow-exponent less than approximately-38.
Line too long or program too big.
Characters are being typed in too fast; use . TAPE
command for reading paper tapes.

5-12

Table 5-3 (Cont.). EduSystem 20 Error Messages

Message.

ERROR 8
ERROR 9

ERROR 10
ERROR 11
ERROR 12
ERROR 13
ERROR 14 ,
ERROR 15

ERROR 16
ERROR 17
ERROR 18
ERROR 19

ERROR 20
ERROR 21
ERROR 22

ERROR 23

ERROR 24
ERROR 25
ERROR 26
ERROR 27
ERROR 28
ERROR 29
ERROR 30
ERROR 31
ERROR 32
ERROR 33
ERROR 34
ERROR 35
ERROR 36
ERROR 37
ERROR 38

ERROR 39
ERROR 40
ERROR 41
ERROR 42
ERROR 43

Explanation

System overload ca~sed character to be lost.
Program too complex or too many variables. (GO­
SUB, FOR, or user defined function calls are too
deeply nested.)
Missing or illegal operand or double operators.
Missing operator before a left parenthesis.
Missing or illegal number.
Too many digits in number.
No DEF for function call.
Missing or mi~matched parentheses or illegal dummy
variable in DEF.
Wrong number of arguments in DEF call.
Illegal character in DEF expression.
Missing or illegal variable.
Single and double subscripted variables with the same
name.
Subscript out of range.
No left parenthesis in function.
Illegal user defined' function-not FN followed by a
Jetter and a left parenthesis.
Mismatched parentheses or . missing operator after
right parenthesis.
Syntax error in GOTO.
Syntax error in RESTORE.
Syntax error in GOSUB.

~~~:xQ~~r~; :;Ii~nN. N~ ( fry It1A~~~ fv ~ t 
Syntax error in RETURN. <+;0,d trzIi, .tid' if tt 
RETURN without GOSUB. uVUJ!! 
Missing left parenthesis in TAB function. 
Syntax error in PRINTo 
An unavailable device was requested by the user. , 
Missing or illegal line number. 
Attempt to GOTO or GOSUB to a nonexistent line. 
Missing or illegal relation in IF. 
Syntax error in IF. 
Missing equal sign. or improper variable left of the 
equal sign in LET or FOR. 
Subscripted index in FOR. 
Syntax error in FOR. 
FOR without NEXT. 
Syntax error in LET. 
Syntax error in NEXT.. 

5-13 



Table .5-3 (Cont.). ,EduSystem 20 Error Messages 

--
M~ssage Explanation 

NEXT without FOR. ERROR 44 
ERROR 45 Too much data typed in or illegal character in DATA 

or the data typed. 
ERROR 46 
ERROR 47 
ERROR 48 

Illegal character or function in INPUT or READ. 
Out of data. 
Unrecognized command: RUN mode. 

NOTE 
To correct the error indicated by the mes­
sage, the appropriate line in the program 
must be corrected in the manner described 
in the Program Editing Section. 

PROGRAM EDITING 
There are two times when a program may require editing proce,· 

dures. The first occurs while a line is being typed but before the 
RETURN key is pressed. The second occurs when a line has been 
completely typed and the RETURN key has been pressed. Each 
situation has its own editing procedures. 

Situation 1: Before the RETURN key is pressed. 
Three keys may be used to correct typing errors: ~ (SHIFT/O), 

RUBOUT, or ALT MODE (or ESC). 

~ (back arrow), SHIFT/O on the keyboard, or RUBOUT 
is used to delete a character from a line. BASIC prints the 
back arrow, deleting the last character from that line. More 
than one back arrow deletes more than one character, in re­
verse order. 
AL T MODE (ESC on some Teletypes) is used to delete all 
entire line. When this key is used, BASIC prints $DELETED, 
erases that line from the program, and returns the carriage so 
that the line may be retyped. 

Situation 2: After the RETURN key is pressed. 
Once a line' of the program has been transmitted to computer 

memory via the RETURN key, several methods of correction may 
be used. Lines may be inserted, deleted, or changed. 

5-14 



INSERTION 
To add a line to a program, assign aline number that falls be­

tween two existing lines, type the line number and text, and press 
RETURN. . 

DELETION 
To erase a line. from co.mputer memory, type the line number 

only and press the RETURN key; The DELETE command may 
also be used to erase Jines from memory. To erase a single line, 
type DELETE and the line number and press RETURN. DELETE 
followed by two line numbers separated by a COmma erases all lines 
between and including the two given. For example: 

DELETE 10,20 

erases lines 10 through 20. 

CHANGE 
Old instructions may be replaced by new ones by retyping the 

line. This procedure is adequate for changing simple lines. When, 
however, the line contains a complex formula or a long message to 
be printed, it may be changed with the EDIT command. The EDIT 
command allows the user to access a single line and search for the 
character or characters to be changed. To use this command, type: 

EDIT line number 

and press the RETURN key. BASIC waits for a search character 
to be typed (BASIC does not print this search character when it is 
typed). This searclJ. character is one that already exists on the line 
to be changed. After the search character is typed, BASIC prints 
out the contents of that line until the search character is printed. At 
this point, printing stops and the user has the following options: 

• Type in new cha'racters;BASIC inserts them following the 
ones already printed. 

• Type a form feed (CTRL/L) to cause "the search to pro­
ceed to the next occurrence, if any, of the search character. 

• Type a bell (CTRL/ G) to signal a change of search 
character, then type a new search character. 

• Use the RUBOUT or ~ key to delete one character to the 
left each time the key is pressed. 

5-15 



• Type the RETURN key to terminate editing of the line at 
that point, deleting any text to the right. 

• Type the AL T MODE key to delete all the characters to 
the left except the line number. 

• Type the LINE FEED key to terminate editing of the line, 
saving the remaining characters. 

When the EDIT operation is complete, BASIC prints READY. 
Note that line num~ers cannot be changed with the EDIT com­
mand. 

The following example demonstrates the EDIT command. An 
incorrect line was typed: 

60 PRINT wPI=3.14146 ABOU7.!" 

The line' was edited as follows: 

EDIT 60 
PRINT "PI=3.14146~~59 ABOU7.~TI" 

First 6 was entered as the search character. BASIC printed the line 
to the 6, and the RUB OUT key was typed twice to remove the two 
incorrect digits (46) and 59 was inserted in the line. CTRL/G was 
typed and another search character (%) was entered. BASIC 
printed characters to the % which was removed with a RUB OUT 
and replaced with aT. The LINE FEED key was typed to termi­
nate the edit and save the remaining characters. If the line is listed, 
the following is printed on the Teletype. 

LIST 60 

60 PRINT wPI:3.14159 ABOUT!" 

READY 

OPERATING INSTRUCTIONS 
Loading EduSystem 20 BASIC 

A paper tape labeled EDUSYSTEM 20 BASIC is provided with 
the system. This tape, called the system tape, rilUst be loaded into 
computer memory when the system is installed. Once this system 
tape is loaded, it need not be reloaded. 

5-16 



The system tape may be loaded in one of two ways: with an 
automatic loader (hardware bootstrap) or with the Read-In Mode 
(RIM) loader program. The following loading instructions ar.t? for 
an EduSystem 20 that includes a hardware bootstrap. If the Edu­
System 20 does not have a hardware bootstrap, see Appendix A for 
instructions on using the RIM loader. 

1. Turn the key lock on the computer console to POWER. 
2. Turn all Teletypes to LINE. 
3. Set all Teletype tape readers to FREE. 
4. Place the system tape (or configurator tape) in the appro­

priate reader (high-speed or (:onsole Teletype) with the 
leader code (ASCII 200) over the reader head. 

5. Set the SWITCH REGISTER (SR) to 5356 (octal).2 
6. Press and raise the HALT switch. 
7. Turn on the appropriate paper tape reader. 
8. Press and raise the SW switch. 

The system tape should begin to read in. If it does not, ensure 
that the correct tape is being used and repeat the above procedures. 
When the tape has read in, the message: 

EDlISYSTEIVJ 20 HAS I C 

prints on the console Teletype. If this message is not printed, the 
system tape did not read in correctly and _ the loading procedures 
must be repeated. 

When EDUSYSTEM 20 BASIC is printed, perform the fol­
lowing: 

9. Remove the tape from the tape reader and turn the reader 
off. 

10. Answer BASIC's initial dialog as explained below. 

Initial Dialog 
When BASIC has been loaded correctly and has printed the 

identific~tion message (EDUSYSTEM 20 BASIC), it begins to ask 

2An explanation of the octal, or base 8, nlJ,mber system is included in 
Introduction to Programming 1972. 

5-17 



certain questions which the user must answer. The first question. 
printed two lines below the identification message, is: 

NUMBJ:o:R OF USERS (I TO 8)? 

The user responds with a single digit from 1 to S, depending on 
the number of Teletype terminals to be used. If the number of 
users is 1, BASIC asks whether the user has a high-speed reader 
or punch and concludes the dialog. In this case, the entire dialog 
might read as follows: 

NUMBER 01" USERS (I TO 8>? 1 
DO YOU HAVE A HIGH SPEED PUNCH {Y OR N)?Y 
00 YOU HAVE A HIGH SPEED READeR (Y OR 1'J)7Y' 
IS THE ABOVE CORRECT (Y OR N)?Y 

If the number of users is more than 1, BASIC continues the dialog 
by asking: 

PDP-8/L COMPUTER <Y OR N)? 

If the EduSystem 20 computer is a PDP-S/L, respond Y. When 
the computer is not a PDP-S/L, respond N; a response of N to 
this question prompts the following dialog: 

STANDARD REMOTE TELETYP~ CODES (Y OR N)? 

Standard PTOS or KLS-E device codes are 40, 42, 44, 46, SO, 
52. and 54. When a system using PTOS or KLS-E interface units 
is first installed, determine the specific device code for each Tele­
type and label each Teletype with its specific device code. If device 
codes are standard, enter Y for this question and BASIC assumes 
the standard device codes and continues the dialog. If device 
codes are not standard, enter N; BASIC then asks: 

TELETYPE 11 DEVICE CODE? 

BASIC asks this question for each Teletype to be used, up to seven 
times for an S-user system. Respond with the specific 2-digit device 
code for each Teletype. 

5-1S 



When the device codes have been determined, or if the com­
puter is a PDP-8/L, the dialog continues as follows: 

DO yOU HAVE A HIGH SPEED PUNCH (Y OR N)? 

Respond Y if a high-speed paper tape punch is present, N if not; 
BASIC then asks: 

\ 

DO YOU HAVE A HIGH SPEED READER (Y ORN)? 

Respond Y if a high-speed paper tape reader is present, N if not. 
If 1 was specified as the number of user.s, this question completes 
the BASIC dialog. However, for more than one user, BASIC asks 
the following question: 

SAME AMOUNT or STORAGE FOR ALL USERS?N 

The above question requires the user to decide whether to parti­
tion the available core equally among the users· on the EduSystem 
20. If Y is the response, BASIC determines the size of the. core 
memory on the system and divides it equally among the users and 
ends the dialog. If N is the response, BASIC determines the size . 
of the core memory on the EduSystem 20, subtracts the amount 
used by EduSystem 20 software (4 K), and prints the highest core 
field according to the following: 

Field 7-32K core memory 
Field 6-28K core memory 
Field 5-24 K core memory 
Field 4-20K core memory 
Field 3-16K core memory­
Field 2-12K core memory 
Field 1- 8K core memory 

For explanation purposes, the following dialog is written for a 
12K, 8-user EduSystem 20. The system core is to be allocated as 
follows: 

User 1-9 blocks (user 1 is the console terminal) 
User 2-4 blocks 
User 3-3 blocks 

5-19 



User 4--4 blocks 
User 5-3 blocks 
Uscr 6-3 blocks 
User 7-3 blocks 
User 8-3 blocks 

Each core field contains 16 blocks; a core field may be divided 
among several users, but no user may be allotted blocks in more 
than one core field. To determine the number of blocks, BASIC 
prints the following,.dialo~ and the J.lser answers a~own: l. }} 

FIELD 2 \ ~ y..ry.. f~ I:b. tatt-- 'ttt(l.t ~ ~ ~,a v\,~9L't , -
THERE ARE 16 BLOCKS LEFT I~HIS FIELD. 

YOUR ALLOCATION FOR USER #1 WILL HE HOW MANY BLOCKS?9 
THERE ARE 07 BLOCKS LEFT I THIS FIELD. 

YOUR ALLOCATION FOR USER *2 WILL HE HOW MANY BLOCKS?4 
THERE ARE ~3 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATIOl\l FOR USER *3 WILL Rf"; HOW lVlANY BLOCKS?3 
FIELD 1 
THERE ARE 16 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER #4 WILL BE HOW MANY BLOCKS?4 
THERE ARE 12 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER *5 WILL BE HOW MANY BLOCKS?3 
THERE ARE ~9 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCAT ION FOR USER #6 WILL BE HOW 11ANY BLOCKS? 3 
THERE ARE ~6 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER #7 WILL BE HOW t1ANY HLOCKS?3 
THERE ARE ~3 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCAT ION FOR USER #8 WILL 8E HOW t<IAI\IY BLOCKS? 3 

When an invalid response is made to any of BASIC's questions, 
an error message is printed and the question is repeated. For ex­
ample: 

STANDARD REMOTE TELETYPE CODES <Y OR N)?4 
INVALID RESPONSE 

STANDARD REMOTE TELETYPE CODES (Y OR N >? 

When all responses have been entered, BASIC asks: 

IS THE ABOVE CORRECT <Y OR N)? 

If an incorrect response was made, answer N and BASIC begins 
the dialog again. A response of Y ends tht: dialog and BASIC 
prints: 

l=:ND OF DIALOGUE 

READY 

5-20 



BASIC prints READY on each of the Teletypes associated with 
the specified device codes. EduSystem 20 is now ready to process 
BASIC programs. At this time, turn the key lock to PANEL 
LOCK and remove the key to prevent the system from being dis­
turbed. 

System Reconfiguration 
The EduSystem 20 Configura tor Tape is used to change the 

number of users, allocation of core fields, etc., without compl~tely 
reloading the System tape. To use the Configurator tape, the system 
must be inactive, i.e., BASIC must not be running a program and 
no user typing. CTRLjC is typed to stop a running program or the 
listing of a program. To ensure that no one starts typing, turn all 
Teletypes to OFF. When the system is inactive, load the Config­
urator Tape as explained under Loading the System.3 

System Shutdown 
If power failure detection hardware is available on the system, 

simply turn the console key lock to OFF. Otherwise, to shut the 
system down, for overnight or any reason, ensure that the system is 
inactive, as explained above. Then press the HALT switch and turn 
the key lock to OFF. 

System Restart 
If power failun~ detection hardware is available on the system, 

simply turn the key lock to PANEL LOCK. Otherwise, perform the 
following procedures. 

1. Turn the key lock to POWER. 
2. Set the SR to 0000 and press EXTD AD DR LOAD. 
3. Set the SR to 0200 and press ADDR LOAD. ~ 

4. Press the CLEAR switch, then the CONT switch. 
5. Turn the appropriate Teletypes to LINE. 
6. Turn the key lock to PANEL LOCK. 

EduSystem 20 is now ready to process BASIC programs. 

Program Storing Procedures 
Once a program has been typed in correctly, it may be saved on 

paper tape so that it may be reloaded quickly. Programs may be 

3If a program other than EduSystem 20 BASIC has been loaded into 
memory since the last use of BASIC, the system tape must be reloaded. 

5-21 



punched on the Teletype (TTY) or high-speed punch. To save the 
program, perform the following procedures. 

TELETYPE PAPER TAPE PUNCH 
1. Turn the TTY control knob to LINE. 
2. Type TAPE; press RETURN. 
3. Turn the TTY paper tape pU.nch.ON .. 
4. Type LIST; press RETURN. 
5. When punching is complete, turn TTY punch OFF. 
6. Type KEY; press RETURN. 

HIGH-SPEED PUNCH ) 
1. Turn the TTY control knob to LINE. 
2. Type PTP; press RETURN. 
3. Turn high-speed punch to ON. _ 
4. When punching is complete, turn punch OFF. 
S. Type KEY; press RETURN. 

Program Reloading Procedures 
Programs saved on paper tape may be reloaded using the Tele­

type (TTY) or high-speed paper tape reader. To reload programs, 
perform the following procedures. 

TELETYPE PAPER TAPE READER 
1. Turn the TTY paper tape reader to FR~E. 
2. Turn the TTY control knob to LINE. 
3. Insert tape in the reader. 
4. Type TAPE; press RETURN. 
S. Turn the TTY reader to START. 
6. When the tape- has read in, turn the TTY reader to FREE. 
7. Type KEY; press RETURN. 

HIGH-SPEED READER 
1. Turn the high-speed reader to ON. 
2. Turn the TTY control knob to LINE. 
3. Insert tape in the reader. 
4. Type PTR;pressRETURN. 
5. When the tape has read in, turn the high-speed reader OFF. 
6. Type KEY; press RETURN. 

-S-22 



6 
edusystem 25 

INTRODUCTION 
EduSystem 25 is amulti""user system for up to eight persons 

using an extended B~8IC language called BASIC-E: III a liMe­
~hatrrrg errviffinm~~ers ~ore programs and data on DEC­
tape'tor the RK8-E disk 1, greatTy reducing the time involved in 
loading and punching paper tape and making available more access 
time to a gr.eater number of ~udents. The system operates in either 
immediate or program~'mode and allows multiple statements 
per line for more efficient coding. In addition, extended BASIC 
features enable the use of alphanumeric strings, program chaining, 
and numerous other extensions to Dartmouth standard BASIC. 

EduSystem 25 also allows a maximum of 5 persons at a time 
to use the FOCAL language, though not simultaneously with 
BASIC-E . ..A.nd.,...}Ypen operated as a one-user system, EduSystem 
25 runs FORTRAN, assembly language, and all of the OS/8 
utility programs. (OS/8 is the operating system for the PDP-8.) 

. System Components 
EduSystem 25 is composed of a PDP-8/E computer with 12,288 

(12K) words of core memory, powerfail protection, automatic 
loader (hardware bootstrap), DECtape, and up to five terminals 
with their associated interfacing. Each standard EduSystem 25 in­
c1ud~s the BASIC-E language processor on DECtape, a library of 
sample programs, textbooks, and curriculum guides. An additional 

. 4096 (4K). words of core memory enable EduSystem 25 to handle 
. up to three more termirtals (using BASIC-E) for a total of eight! 

Additional core memory (up to 32K) can be added to provide 
larger user program area s .. The system can support an RK8E Disk 
and TD8-E DECtap{;~glace ~.T.C08 _D~tape:_~ ~ 

1 Version 1 of EduSystem 25 supports only 5 users. 

6-1 
·~~C~/1;~j 
An / ~ 
'p~;~c-( 



~ ~ QSRJL-~~oY-- JWMlfz~ 0Mb 
j)tsTA~t~ ~ &-~~ rna, ~\ _. __ ._-.... ,-._ .. __ ._.-

System Exp.ansion 
EduSystem 25 grows to EduSystem 45 2 with the addition of an 

optical card reader and an EduSystem 30 software kit. To expand 
EduSystem 25 to an· eight-user EduSystem 50 time-sharing system, 
add RF /RS08 DECdisk, 4096 (4K) words of core memory, and 
the necessary terminals. 

BASIC LANGUAGE CAPABILITIES 
EduSystem 25 includes all the standard elements of BASIC as 

explained in Chapter 1. Tables 6-1 and 6-2- summarize the Edu­
System 25 BASIC-E language capabilities. The system also includes 
some additional features not discussed in Chapter 1. These addi­
tional features are discussed below. 

Abbreviated Commands 
All commands and statement keywords can be abbreviated to 

the first three letters, as shown in Table 6-1. 

Multiple Statements Per Line 
EduSystem 25 allows more than one statement to be typed on a 

single line. Subsequent statements begin with a backslash character 
("'-), which is SHIFT /L on the keyboard. A program is often more 
understandable when statements are grouped together on the same 
line. The following are examples of multiple statements per line.:~ 

10 FOR 1=1 TO 10\PRINT IISQRCI)\NEXT I 

10 PRINT "WHAT IS YOUR NUMBER""INPUT X ,nJ V ~ 
3fi11 PRINT\GOTO 10 I .. ' 20 PRINT "THE SQUARE ROOT IS"J SQR(X(dw JUJ) / 

,VLDJ ~ 
The only restriction to t f multiple statements per line 

is that when a NEXT 0 GO atement is used it must be the 
last statement on the Ii. ce the EduSystem 25 memory is 
shared by several users, this multiple-statement capability is help­
ful when writing long programs. Statements require less storage 
when they are grouped on a single line. 

2 EduSystem 45 is a combination of EduSystems 25 and 30, capable of run­
ning in either batch or multi-user mode. 

3 Notice that EduSystem 25 does not require the END statement. 

6-2 



Immediate Mode 
EduSystem 25 allows most BASIC statements to be used in 

immediate mode, that is, to be issued and executed immediately 
without being included in a formal program. Nearly all BASIC 
statements can be executed in immediate mode. This is an excellent 
way to introduce students, to the BASIC language, as the state­
ments can be used and understood individually before the student 
begins programming. 

For example, the statement: 

PRINT 2*5+SQR(7.8314) 

followed by the RETURN key~ causes the problem solution to be 
printed immediately. BASIC then prints READY to indicate that 
another immediate mode statement or a program may be entered. 
Immediate mode statements are.,not stored in computer memory. 

Typing multiple statements "pei,) line is especially useful in~ 
immediate mode. A table of tanaom numbers could, for example, 
be generated by typing the following single line and pressing 
RETURN: 

FOR 0-1 TO 20\PRINT RNO(0)" \NEXT 0 

.2431684 .2988412 .7295008 .3125257 .3095865 

.04493979 .4834217 .4961024 .5010026 .04 f032'71 

.2373254 .3046887 • 1923863 .9121 199 .241212 
.9882844 .2587987 .03323189 .8701425 .9218898 

Immediate mode statements can also be used with programs. 
For example, an immediate GOTO statement may be used to start 
a program, at some point other than the beginning. This is accom­
plished by loading the program into computer memory and typing, 
for example: 

G0l'k75~~ ~ d9MVf}5IM{-dr-~ 
After the RETURN key is pressed, the program execution begins 
automatically at line number 75. In this case, the RUN command 
need not be typed. This immediate GOTO command is especially 
helpful in debugging by halting a running program, examining the 

6-3 



values of variables (and possibly changing them), and then restart­
ing the program at any point. 

INPUT Statement 
The INPUT statement described in Chapter 1 allows a number, 

or numbers, to be entered from the Teletype as values for variables. 
EduSystem 25 allows the user to respond to the INPUT query (?) 
with a value or mathematical expression. An expression may con­
tain one or more arithmetic operations and may use any BASIC 
function. This capabiHty could be used to enable one program to 
solve more than one problem. For example, the statement: 

100 INPUT X 

could be answered with any of the following values or expressions: 

148 \ _~A 
17*SQRC49S) QGAt ~~' 
1SINC8.4221> v{ ",-v..{\-t~l ,J 

V\A)"\L \ i~~ ',J 

As explained in Chapter 1, the INPUT statement may have 
multiple inputs. These inputs may be either mathematical expres­
sions or numeric values. For example, the statement: 

10 INPUT AlBIC 

could be answered as follows: 

148148'SISQR(48) 

Comments 
Previously, the use of the REMARK (or REM) statement to 

introduce a comment on a single line was discussed. Comments 
may also be appended to any line by starting the comment with a 
single apostrophe ('). All characters typed after the apostrophe 
are ignored when the program is executed. For example: 

10 LET X=4 'SET X TO ITS INITIAL VALUE 
20 GOTO 1~ 'LOOP BACK TO START 

6-4 



When responding to an INPUT statement, the user may add a 
comment which prints on the terminal but has no effect on the 
running program. For example: 

UJ INPUT X 
20 PRINT X 
RUN . 
? 2 'LET X BE 2 

2 

READY 
.'~ . 

IF THEN Statement 
The IF THEN statem~nt described in Chapter 1 is used to trans­

fer conditionally from the normal ?rder of program execution. For 
example: 

25 IF A<-B THEN 100 

transfers control to line 100 if A is less than or equal to B. If A 
is greater than B, control transfers to the line following line 25 .. 
BASIC-E uses the IF THEN statement in this way to change the 
order of program execution. It also allows THEN to be followed 
by an executable BASIC statement. This statement is executed 
onl if the IF relation is true; otherwise control passes to the next 
separate statement. or example: 

50 IF 2+2=4 THEN LET A=7'PRINT A 

Since the statement (2+2=4) is true, BASIC prints 7. The next 
. statement executed is the one following line 50. IF THEN used 
in this manner does not change the order of program execution. 

The IF THEN statement can also be used to transfer control to 
a subroutine. For example: 

25 IFA+B=C THEN GOSUB 100 

If A+B equals C, control is transferred to the subroutine at line 
100. Otherwise, the next statement executed is the one following 
line 25. ' 

6-5 



ON-GOTO Statement 
The ON-GOTO statement permits the program to transfer 

control to one of a set of lines depending on the value of a formula. 
The statement is of the form: 

line number ON formula GOTO line number,line number . .. 

The formula is evaluated and then truncated to an integer. This 
integer is used as an index to tell which of the line numbers re­
ceives control. If the integer value of the formula, is 1, the first 
line number is used; if the value is 2, then the second is used; etc. 
Obviously, the formula after truncation cannot be zero or negative 
or greater than the number of line numbers in the list. For example: 

If X is 2, then control passes to line 400. The allowable range of 
X in this example is -1 to 2, so that the range of the formula 
value is 1 to 4. 

ON GOSUB Statement 
The GOSUB and RETURN statements are used to allow the 

user to transfer control to a subroutine and return from that sub­
routine to the normal course of program execution (see Chapter 1). 
The ON GOSUB statement is used in' the same manner as the 
ON GOTO statement described previously. TlJ.e stateme~!_ i~of", 
the form: -

line number ON formula GOSUB line number, line number . .. 

The formula is evaluated and then truncated to an integer. De­
pending on the value of the integer, control is transferred to the 
subroutine which begins at one of the line numbers listed. When 
the RETURN statement is encountered, control transfers to the 
line following the"ON GOSUB statement. For example: 

If X is 1, 2, or 3, control transfers to line 200, 300, or 400, re­
spectively. If X is not equal to 1,2, or 3, line 50 is ignored. 

6-6 



RANDOMIZE Statement 
The random number (RND) function produces a random num­

ber between 0 and 1, as described in Chapter 1. A given program 
using the RND function produces the same random numbers each 
time it is run. If the user wants the random number generator to 
calculate different random numbers every time the program is run, 
EduSystem 25 BASIC provides the RANDOMIZE statement. 
RANDOMIZE is normally· placed at the beginning of a program 
which uses the RND fmiction. When the program is executed, 
RANDOMIZE causes the RND function to choose a random start­
ing value so that the same program gives different results each 
time it is run. For example: 

10 RANDOMIZE 
20 PRINT RND(0) 

prints a different number each time it is run. For this reason, it is 
good practice to debug (detect, locate, and correct mistakes) a 
program completely before inserting the RANDOMIZE sta~ement. 

To demonstrate the effect of the RANDOMIZE statement on 
two runs of the same program, the RANDOMIZE statement was 
inserted as line 15 below: 

15 RANDOM 
20 FOR 1=1 TO 5 
25 PRINT "VALUE" I "IS" RND(0 ) 
30 NEXT I 
RUN 
VALUE 1 IS .3808637 
VALUE 2 IS .7119271 
VALUE 3 IS .9687586 
VALUE 4 IS .03029916 
VALUE 5 IS .4629068 

READY 

RUN 
VALUE I IS .8916059 
VALUE 2 IS .2441537 
VALUE 3 IS .3154383 
VALUE 4 IS .07033823 
VALUE 5 IS .583024 

READY 

6-7 



Truncation Function (FIX) 
EduSystem 25 BASIC includes all the functions discussed in 

Chapter I (sce Table 6-2). In addition, EduSystem 25 includes the 
truncation function (FIX) which returns the integer part of the 
function argument. For example: 

PRI FIX(82+100.677S, 
182 

PRJ FIX(SQR(85.54621» 
9 

Notice that FIX is like INT for positive arguments. In fact, FIX 
could be defined as: 

FIX(X)=SGN(X) *INT(ABS(X)) 

EXTENDED SYSTEM CAPABILITIES 
In addition to the BASIC language features previously dis­

cussed, EduSystem 25 has several extended features that allow the 
user to write longer, more complex programs. These features in­
clude the ability to store programs on DECtape, create and manipu­
late data files on DECtape, and link program segments together 
to al10w longer user programs. Another extended capability allows 
character strings to be input, manipulated, compared, and output. 
These extended features are discussed below. 

String Variables 
EduSystem 25 BASIC has the ability to manipulate alpha­

numeric information (commonly called strings). A string is a 
sequence of six or fewer printing ASCII characters (see Appendix 
B). If a string contains more than six characters, only the first six 
are retained. A string variable is signified by one letter followed 
by the dol1ar sign ($) character and, optionally, by one or two 
subscripts. The following are all acceptable string variables: 

A$ 
B$(l) 
C$(2,5) 

READING STRING DATA 
Strings of characters may be read into string variables from 

DATA statements. Each string data element is composed of one 
to six characters enclosed in quotation marks. The quotation marks 
are not part of the actual strings. For example: 

"'~.~~. p ~ \JZ.o.t ~ \o.P~ ~ '~Lt 6-~ E:~t- s-tr.) i U Rtp,.{)kf 

~ d. OJ'.. fA, f; ~ , }..fA }/'f. 



10 READ AS,SS,CS 
20 DATA "JONES","SMITH","TAYLOR" 

The string JONES is read into A$, SMITH into B$, and TAYLOR 
into C$. If the string contains more than six characters, excess 
characters are ignored. 

PRINTING STRINGS 
The normal PRINT statement may be used to print string in­

formation. If a semicolon is used to separate string variables in a 
PRINT command, the strings are printed with no intervening 
spaces. For example, the program: 

10 READ AS,SS,CS 
20 PRINT CSJSS'AS 
30 DATA ttlNG" ,·"SHAR", ttT IME-" .-/ 
RUN . '~Z:""" 

causes the following to print : 

10 READ AS,BS,CS 
20 PRINT CSJBSAS 

h-
10 READ AS, Bslcs 
20 PRINT CSJBSICS 

READY 

DELETED 

DELETED 

INPUTTING STRINGS 

'-

I 

// 
--~ 

String information may be .entered into a BASIC program by 
means of the INPUT command. Strings typed at the keyboard 
may contain any of the standard BASIC characters except back 
arrow (~) and quotation mark. Back arrow, as always, is used to 
delete the last character typed. Commas ar~ used to separate string 
variables, as with numeric data. If a string contains a. comma, the 
entire string must be enclosed in quotation marks. The following . 
program demonstrates string input: 

10 INPUT AS,BS,CS 
20 PRINT AS,BS,CS 
RUN 
1 JONES,SMITH,TAYLOR 
JONES SMITH 

READY 

TAYLOR 

6-9 



Strings and numeric information may be combined in the same 
INPUT statement as in the following example. Note that if an 
input string contains more than six characters, only the first six are 
retained. 

10 INPUT AIASIB$ 
20 PRINT ASIBS1A 
RUN 
? 01754IMAYNARDIMASS. 
MAYNAR MASS. 

READY 
co,) I lie: , 

1754 

The numeric variable A is set to 1754 (leading zeroes are not 
printed). The string MAYNAR is put in the string variable A$, 
and the string MASS. is put into the string variable B$. 

LINE INPUT 
Strings of more than six characters may be entered by means of 

the LINPUT (line input) statement. A LINPUT statement is fol­
lowed by one non-subscripted variable, e.g., A$. The following 
program illustrates the use of the LINPUT statement: 

10 LINPUT AS 
20 Z=-AS(0) 
30 FOR I-I TO INTCZ/6+.9) 
40 PRINT ASCI); 
50 NEXT 1 
60 PRINT 
RUN 

? MAYNARDI MASS. 01754 
MAYNARDI MASS. 01754 

READY 

This program inputs the entire line of type from the terminal and 
stores the characters so that the values of the string variables are, 
effectively: 

A$(1) = MAYNAR 
A$(2) = D, MAS 
A$(3)=S. 01 
A$(4) = 754 
A$ (0) = total number of characters stored 

Commas and quotation marks are treated as ordinary characters 
and, hence, are stored in the string variables. LINPUT accepts a 
line of characters up to a carriage return. 

6-10 



) 

WORKING WITH STRINGS 
Strings may be used in both LET and IF THEN statements. For 

example: 

10 LET YS="YES" 
20 IF B$<DS THEN PR INT "WHOOPEE" 

The first statement stores the string YES in the string var~able Y$. 
The 'second prints WHOOPEE if B$ is less than (alphabe,tically 
prior) to D$. If B$ = "TED" and D$ =: "MARY", the expression 
B$<D$ is false and the PRINT statement is not executed. For two 
strings to be equal, they must contain the same characters, in the 
same order, and be the ~ame length. In particular, trailing spaces 
are significant as they change the length of the string. "YES" is 
not equal to "YES". . 

The relational operators <, >, >=, <=, <> are used with string 
variables to represent alphabetic order; they could be used to al­
phabetize a list of strings .. The arithmetic operations (+, -, *, /, t) 
are not defined for strings. Thus, statements such as LET A$ = 3 * 5 
and LET C$ = A$+ B$ have no meaning and should never be used 
in a BASIC program. Such statements do not cause an error mes­
sage to be printed; however, the results of such operations are 
undefined. ' 

STRING FUNCTIONS 
EduSystem 25 'BASIC contains several functions for use with 

character strings. These functions allow the program to access part 
of a string (MID), generate a numeric string or value (CRR$), 
determine the number of characters in a string (LEN), and link 
two strings together ( CAT) . 

CHR$ Function 
Occasionally, it is desirable' to type a character other than the 

printing ASCII set (see Appendix B) or to convert ASCII char­
acter 'codes to their respective characters. A special PRINT state­
ment function, CRR$, is used for this purpose. This function 
takes as its argument a single constant or variable and prints the 
single character whose character code corresponds to that value. 

6-11 



1" FOR 1=" TO 9 
2" PRINT CHRS(I+46); 
30 NEXT I 
RUN 
0123456769 
READY 

This program, prints "0123456789" because 48 to 57 are the ASCII 
values for the characters 0 through 9. The following special char­
acters can also be printed using the CHR$ function: 

Bell 
Line feed 
Carriage return 
Quote (") 
Back arrow (~) 
Form feed 

CHR$(7) 
CHR$(10) 
CHR$(13) 
CHR$(34) 
CHR$(95) 
CHR$(12) 

For each ASCII character there is a second acceptable form of 
CHR$ function. The second code is obtained by adding 128 to the 
ASCII code given in Appendix B. For example, both CHR$« 65) 
and CHR$ (193) cause the character A to be output. 

MID Function 
The MID function is used to obtain a portion of a character 

string. The format of this function is: 

MID(A$,M,N) 

BASIC accesses the characters in the string variable A$ and 
returns N characters, beginning with position M. Characters in a 
string are numbered 1 through 6. Consider the following example: 

10 LET AS·"UVWXYZ" 
20 PRINT MID(AS,3,3) 
RUN 
WXY 

READY 

6-12 



LEN Function 
The LEN function returns the number of characters in the string 

argument. Characters in a string are numbered 0 thro'ugh 6. For 
example: 

10 RS.tfRANDOM" 
20 PRINT LEN(RS) 
RUN 

6 

READY 

CAT Function 
The CAT function returns a string of characters which are the 

result of the concatenation (1i~king) of two other character strings. 
A maximum of six characters can be returned by the CAT func­
tion; if the first string to be linked contains six characters, only 
those six characters are returned. For example: 

10 AS."01234S"\BS="678910" 
20 PRINT CAT(ASIBS) 
RUN 
01234S 

READY. 
"-

If the first string contains less than six characters, they are linked 
as shown in the following program. 

10 A$="EDU"\B$="-2S" 
20 PRINT CAT(A$IBS) 

\ RUN 
EDU-2S 

READY 

Program. Storage / Retrieval 
EduSystem 25 allows the system DECtape to be used for per­

manent on-line program storage. Programs stored in this way may 
be loaded instantly without handling a paper tape or typing a 
lengthy program. 
STORING USER PROGRAMS 

User written programs may be stored on DECtape. Each pro­
gram to be saved must have an assigned name, entered at the be­
ginning of the programming session. The NEW command is given 
to clear any existing program and define the name of the new pro­
gram to be entered. To use the NEW command, the user types: 

6-13 



NEW 

and presses RETURN. The system then asks for: 

NAME--

The user then types any name of 1 to 6 characters (the first ·of 
which must be alphabetic) and presses RETURN. BASIC assigns 
that name to the program to be entered. The user may change the 
name of the program at any time by typing the RENAME com­
mand. BASIC again asks for NAME- and assigns the new name 
to the program being entered. RENAME does not delete the exist­
ing program as does NEW. 

Once a program has been named and typed correctly, it may be 
stored on DECtape with the SAVE command. Any existing pro­
gram stored under the same name is deleted when a SAVE com­
mand is issued. Thus all stored programs have unique names which 
may be used to recall them in the future. To store a program, the 
user, having named and entered a program, types: 

SAVE 

and presses RETURN. BASIC stores the program on DECtape 
under the name specified with an extension identifying the user 
terminal from which the program was saved. For example, a pro­
gram named ALPHA that is saved from ter'minal .E2 (see Starting 
EduSystem 25) is stored as ALPHA .E2. Extensions protect the 
programs from access by other terminals, i.e., terminal .E1 can­
not access a program stored by terminal .E2. 

When the program has been stored, BASIC prints READY. At 
this time, the program still resides in computer memory; storing· 
does not erase computer memory. A NEW or SCR command must 
be typed to erase the program from memory after it has been 
stored on DECtape. 

RETRIEVING USER PROGRAMS 
User programs stored on DECtape are brought into memory 

with the OLD command. Only programs stored from the same 
user terminal can be retrieved at that terminal. When recalling a 
program with the OLD command, the user must give exactly the 

6-14 



same name as was used 'when the program was stored. To use the 
OLD command, the user types: 

OLD 

and presses the RETURN key. The system then asks for NAME-. 
The user can also use the OLD command and the program name 
(e.g., ALPHA) on the same line as follows: 

OLD ALPHA 

BASIC brings the stored program into memory but does not 
erase the program from DECtape. If the user wishes to modify the 
program, he can make the necessary modifications, then issue an­
other SAVE command. This procedure replaces the original stored 
program on DEC tape with the modified version of the same name. 

The user can obtain a listing of all programs stored from his 
terminal by using the CATALOG command. CATALOG, like 
all other program storage/retrieval commands, is an immediate 
command. It is used by typing CATALOG and pressing RE­
TURN. BASIC immediately prints a listing, without extensions, 
of all programs stored by the terminal from which the CATALOG 
command was issued. 

RUNNING VERY LONG PROGRAMS 
EduSystem 25 accommodates BASIC programs up to 250 lines 

long. If a program is any longer, it may be necessary to break it 
into several segments. A program that has been broken into more 
than one piece is called a chained program. 

Each part of a chained program is saved on DECtape as a sep­
arate program, complete with name and system-assigned extension. 
The last statement of each part to be executed is- a CHAIN state­
ment specifying the name of the next 'section of the program. For 
example, a program named ALPHA is segmented into three parts: 
ALPHA, BETA, and GAMMA. ALPHA is loaded with the OLD 
command. 

250 CHAIN "BETA" 

6-15 



The last statement in ALPHA is a CHAIN statement. 
or 

250 CHAIN as 

The string variable (B$) may be used if the segment name was 
previously assigned to it, for example: 

248 BS="BETA" 

When this CHAIN statement is reached, the BET A segment of the 
program is loaded and executed. The BET A segment then chains 
to the next (GAMMA) segment of the program with a statement 
such as: 

399 CHAIN "GAMMA" 

Each separate part of the program links automatically to the next 
part of the program. 

The CHAIN command may also be used to branch to a stored 
program -from a working program. For example: 

10 INPUT "WHAT LESSON DO YOU WANT" A$ 
20 CHAIN A$ 
RUN 
WHAT LESSON DO YOU WANT? DELTA 

would cause BASIC to retrieve, load, and execute the program 
named DELTA. 

DELETING STORED PROGRAMS 
The UNSA VE command is used to delete a program already 

stored. UNSA VE must either be preceded by a NEW, OLD, or 
RENAME command which specifies the name of the program to 
be deleted or the command must be typed as: 

UNSAVE ALPHA 

specifying the name (e.g., ALPHA) of the program, on DECtape, 
to be deleted. The user must use exactly the same name used when 

6-16 



the program was stored. Only programs which were saved from 
the terminal being used may' be deleted by a user at that terminal, 
e.g., a user at terminal .Bl may delete only those programs stored 
with an extension of .El. (These are programs listed in response 
to the CATALOG command.) 

USING PUBLIC LIBRARY PROGRAMS 
Programs stored by' the System Manager with the extension 

.EB may be accessed by all users. These programs are collectively 
called the public library. To obtain a listing of the available public 
library programs, the user types: 

CATS 

and presses the RETURN key. A listing of the public library pro­
grams is printed. A sample listing is shown below: 

ROCKET 
LUNAR 
POLUTE 
ELECT 
SNOOPY 
GAMBLE 

READY 

The user can access any program in the public library by typing 
OLD$ and the desired program name. For example, the user types: 

OLOS SNOOPY 

The library program SNOOPY is loaded into memory and the 
system prints READY. The user can then execute SNOOPY by 
typing RUN or, if desired, can obtain a listing of SNOOPY by 
typing LIST. User may access the public library but cannot SAVE 
or UNSA VE the library programs. These programs are protected 
by the .EB extension. 

The user can also access public library programs by chaining to 
them from a program. For example, the _user can access the public 

6-17 



Iibraryprogram ELECT by including the following statement in his 
program: 

55 CHAINS f9ELECT" 

, or by including the following statements: 

50 ES."ELECT" 
55 CHAINS ES 

Data File Storage1Retrievai 
Just as some programs may be too large to be executed as a 

single p.rogram, other programs may need to store and use more 
data than may be contained in DATA statements within the pro­
gram. If this is the case, data may be stored on DECtape. Data 
stored in this way is called a data file. 

EduSystem 25 allows users to read and write OECtape data 
files. These data files may contain numeric or string data. Data files 
are the perfect way to test student programs. The instructor may 
create a data file which all student programs must use and then 
answers may be stored in another file which may be checked 
automatically. 

Data files are stored automatically by EduSystem 25 on the 
DEC tape mounted on DECtape drive 1. Data files are stored with 
an extension similar in principle to that previously discussed for 
programs. Terminal .El data files have the extension .Dl, .E2 
data files use .D2, etc. The system manager's extension (.ES) 
uses .DS data files. Normally, .DS files can only be read; users 
are limited to reading only by placing DECtape drive 1 on WRITE 
LOCK. 

CREATING DATA FILES 
When the user desires to store data on DECtape, he must create 

a data file, or use an existing data file. Data files are created with 
the OPEN FOR OUTPUT command. For example, the user wishes 
to create a data file named DATAI0 (date file names, like pro­
gram file names, can be 1 to 6 characters long, the first character 
of which must be alphabetic). The data file name can be used in 
the OPEN statement or a string variable can represent it. A data 

6-1S 



file would be created when the following statement was executed 
In a program: 

10 OPEN "DATA10" FOR OUTPUTI12 

The data file name must be enclosed in quotation marks. This state­
ment could also be coded as: 

10 OPEN AS FOR OUTPUTI12 

if A$ has been set equal to DAT Al O. The 12 at the end of the 
statement indicates that 12 blocks are to be reserved for this file. 
Any number of blocks up to 64 may be reserved in this manner. 
If no blocks are res~fved in the OPEN FOR OUTPUT statement, 
the system assumes that the file is to be 10 blocks long. 

When the data file has been created, or reopened, the user may 
write data into the file with the PRINT # statement. This state­
ment may contain either numeric or string data separated by 
commas or semicolons. For example, a single data item can be 
entered by typing the following: 

20 PRINT II 248 

This statement writes 248 and a carriage return/line feed onto a 
data file that has been opened for output. Several data items may 
be included in a PRINT # statement, with commas printed as 
separators between data items on each line of the output file. The 
commas must be enclosed in quotation marks to have them print 
on the output file. For example: 

writes each of the above items on the data file as separate data 
items as follows: 1, 2, 3, 4, 5 and a carriage return/line feed 
exactly as the items would be input from the terminal. 

6-19 



Character strings are used in the PRINT # statement in the 
same manner, for example: 

25 A$="JONES"\8$="SMITH"\C$="TAYLOR" 
30 PRINT#IA$IB$IC$ 

would write three separate character strings onto the DECtape as 
follows: JONES, SMITH, TAYLOR and a carriage return/line 
feed. Writing PRINT # statements with multiple operands (data -
jtems) saves space on the DECtape data file because fewer car­
riage return/line feeds need to be stored. 

When al1 data has been entered with PRINT # statements, the 
output file should be closed with the CLOSE statement. Since 
EduSystem 25 allows only one output file to be opened at a time, 
the CLOSE statement is used to close the output file. For example: 

3~ CLOSE 

READING DATA FILES 
When the user wishes to usc data stored on DECtape data files, 

he opens a previously created file with the OPEN FOR INPUT 
statement. If, for example, the user wishes to read data stored in 
a file named DATAlO, he can reference this name in the OPEN 
statement or use a string variable t<;> represent. it. The data file 
would be opened when the following statement was executed in 
a program: 

40 OPEN "DATf\l~" FOR INPUT 

The data file name must be enclosed in quotation marks. The above 
statement could also be coded as: 

35 BS="DATA10" 
40 OPEN BS FOR INPUT 

When the data file has been opened for input, the user may read 
data from the file with the INPUT # statement. The INPUT # 
statement searches the file for a carriage return/line feed char­
acter and inputs the next data item, or items. This statement may 
contain either alphabetic or string variables separated by commas 
or semicolons. For example, the statement: 

6-20 



searches for a carriage return/line feed character and inputs the 
next five separate data items· (separated by either a comma, a 
semicolon, or a carriage return/line feed ) from a data file. 

The following program uses the examples in this section to 
demonstrate data file usage: 

10 X$="DATA10" 
15 OPEN X$ FOR OUTPUT~12 

-20 PRINT*~1~2~3~4~5 
, 25 A$="JONES"'B$="SMITH"'C$="TAYLOR" 

30 PRINT#~A$~H$IC$ 
35 CLOSE 
40 OPEN X$ FOR INPUT 
50 INPUT#~A~H~C~D~E 

55 INPUT#~A$~B$~C$ 
60 PRINT 
65 PRINT A~H~C~D~E 
70 PRINT 
75 PRINT A$~B$~C$ 

RUN 
1 
JONES 

2 
SMITH 

LISTING· DA T A FILES 

3 
TAYLOR 

The user can obtain a listing of the data files for his terminal 
by typing the FILELOG command. This immediate mode com­
mand is typed as: 

FILELOG 

or 
FIL 

and produces a listing of the data file names without extensions. 
For example: 

FILELOG 
DATAl'" 
NUMBER 
CIRCLE 
TIMER 

READY 

6-21 



ERASING DATA FILES 
Data files can be deleted from DECtape with the KILL com­

mand. If, for example, the user wishes to erase a file named 
DATAIO, he types: 

KILL DATA lei 

when the RETURN key is pressed, BASIC deletes DATAIO from 
the data file and prints READY. The KILL command and the file 
name must be separated by a space. This command deletes only 
those data files entered from the same terminal, i.e., with the same 
extension. 

USING PUBLIC DATA FILES 
Data files stored by the System Manager with the extension .08 

may be accessed by all users. To obtain a listing of the available 
public data files, the user types: 

FILELOGS 

FILS 

and presses the RETURN key. A listing of the public data files· is 
printed. A sample listing is shown below: 

FILS 
TESTell 
TESTI1J2 
DATASI1J 
DATASS 
DATA611J 

The user can use the data in any public data file by opening the 
file for input. For example, to use the data in a public file named 
DATA55, the user types: 

911J OPENS "DATASS" FOR INPUT 

Included in a program, the above statement would make the data 
in DATA55 available to the user program. The user can manipu­
late this data in his program but cannot change the data file in any 
way. Public data files are protected by the .08 extension. 

6-22 



Table 6-1. EduSystem 25 BASIC Statement Summary 

Command (Abbreviation) 

Input/Output Statements 
. LET 

READ(REA) 

. PRINT(PRI) 

DATA(DAT) 
RESTORE(RES) 
INPUT(INP) 

LINPUT(LIN) 

'GOTO(GOT) 

'IF THEN(IF THE) 

. FOR TO STEP(FOR TO STE) 
'NEXT(NEX) 
GOSUB(GOS) 
RETURN(RET) 
ON GOTO(ON GOT) 

ON GOSUB(ON GOS) 

Explanation 

Assign a value to a variable. 
The word LET is optional. 

'j Assign values from data list to 
variables. 
Print out the indicated infor­
mation on the Teletype. 
Provide data for a program. 
Restore the data list. 
Get values or expressions from 
the Teletype. 
Get long character string from 
the Teletype. 
Change order or program ex­
ecution. 
Conditionally perform speci,,: 
fied operation or conditionally 
change order of program ex­
ecution. 
Set up a program loop . 
End of program loop. 
Go to a subroutine. 
Return from a subroutine. 

, Conditionally change order of 
program execution according 
to evaluation of formula con­
tained in statement. 
Conditional1y go to a subrou­
tine according to evaluation of 
formula contained in statement. 
Insert a program comment. 

'REMARK(REM or ') 
RANDOMIZE(RAN or RANDOM) 

Cause RND function to ran­
domly select new sequence of 
random numbers between 0 

DEF FN 
STOP (STO) 
END 

Editing/Control Commands. 
LIST(LIS) 
LIST n(LIS n) 

6-23 

and 1. 
Define a function. 
Stop program execution. 
End a program (not required 
with EduSystem 25). 

List entire program in memory. 
List line n. 



Table 6-1 (Cont.). EduSystem 2S BASIC Statement Summary 

Command (Abbreviation) 

'. LIST n,m(LIS n,m) 

DELETE n(DEL n) 
DELETE n,m(DEL n,m) 

EDIT n(EDI n) 

KEY 
RUN 
'SCRATCH(SCR) 

BYE 
TAPE(TAP) 

,CTRL/C 

Program Storage/Retrieval Commands 

Explanation 

List lines n through m inclu­
sive. 
Delete line n. 
Delete lines n through m in­
clusive. 
Search line n for the character 
typed. 
Return to KEY (normal) mode. 
Execute the current program. 
Erase the current program 
from memory. 
Same as SCRATCH. 
Read a program from the Tele­
type paper tape reader or 
punch a program on the Tele­
type paper tape punch. 
Stop a running program, print 
STOP, and then READY. 

'NEW Clear memory, request program 

'RENAME(REN) 

'SAVE 

CHAIN A$ 

CHAIN$ A$ 

'OLD 

VNSAVE 

6-24 

name. 
Chan&e the name of the pro­
gram currently in core mem­
ory. 
Store program in memory on 
DECtape, using the name spe-
cified by NEW, RENAME, or 
OLD and an extension deter­
mined by the user's terminal. 
Erase memory, retrieve, load 
and begin execution of the 
stored program named in A$. 
Used to segment a large pro­
gram into workable sections~ 
Chain to public library pro­
grams. 
Clear memory, request pro­
gram name, bring named pro-
gram to memory from DEC­
tape. 
Delete from DECtape the pro­
gram named in most recent 



Table 6-1 (Cont.). EduSystem 25 BASIC Statement Summary 

Command (Abbreviation) 

'CATALOG(CAT) 

'CAT$ 
'OLD$ 

Data File Commands 
OPEN A$ FOR OUTPUT,X 

OPEN B$ FOR INPUT 

OPENS B$ FOR INPUT 
INPUT # 

PRINT # 

CLOSE 
FILELOG(FIL) 

FILELOG$(FIL$) 

KILL A$ 

Explanation 

NEW, RENAME, or OLD 
command. 
List names of stored programs 
for this user (extensions are 
not printed). 
List public library programs. 
Request public library program 
name, bring named program to 
memory from DECtape. 

Create a DECtape file named 
by A$, If the file already ex­
ists on DECtape, this command 
reopens it. X determines the 
number of blocks reserved for 
this file. It may be any integer 
up to 64. If no X is entered, 
lOis assumed. 
Open the existing file named 
by B$. If no such file exists, ' 

. -;() an error ~ssage is printed. :! Open a· .EOJfile named by A$. 

6-25 

Read variables (numeric and/ 
or string) from the input file 
previously opened. 
Write data (numeric and/ 
or string) onto the output file 
previously opened. 
Close open output file. 
Catalog the data files stored by 
this user (used only in immedi­
ate mode). 
Catalog the data files stored by 
the System Manager with the 
extension ,DO. 
Delete a DECtape data file 
named by A$. 



Table 6-2. EduSystem 25 BASIC Function Summary 

Function 

"ABS(X) 
ATN(X) 
COS(X) 
EXP(X) 
INT(X) 
LOG (X) 
RND(X) 
'SGN(X) 
SIN(X) 
'SQR(X) 
TAN (X) 
TAB (X) 
FIX (X) 
CHR$(X) 

MID(A$,M,N) 

LEN(A$) 
CAT(A$,B$) 

Description 

Absolute value of x. 
Arctangent of x(result in radians). 
Cosine of x(x in radians). 
eX (e=2.718282). 
Greatest integer of x. 
Natural logarithm of x. 
Random number. 
Sign of x (+ 1 if positive, -1 if negative, 0 if zero). 
Sine of x (x in radians) . 
Square root of x. 
Tangent of x (x in radians) . 
Controls printing head position on Teletype. 
Truncates decimal portion of x. 
Converts character code to character. Used only 
with the PRINT command. 
Returns N characters, starting at the Mth char­
acter of A$. 
Returns the number of characters in A$. 
Returns a string of A$ concatenated with B$ 
(maximum of 6 characters returned). 

ERROR MESSAGES 
EduSystem 25 checks all statements and commands before ex­

ecuting them. If a statement or command cannot be executed, the 
system informs the user by printing an error message and the line 
number (if available) in which the error was found (see Table 
6-3 ). Procedures used to correct errors are described under Pro­
gram Editing. 

Message 

WHAT? 

ERROR 1 
ERROR 2 
ERROR 3 
ERROR 4 
ERROR 5 
ERROR 6 
ERROR 7 

Table 6-3. EduSystem 25 Error Messages 

Explanation 

Immediate mode statement or command not under­
stood. It does not begin with a line number and is 
not a valid system command. 
Log of negative or zero number was requested. 
Square root of negative number was requested. 
Division by zero was requested. 
Overflow, exponent greater than approximately +38. 
Underflow, exponent less than approximately-38. 
Line too long or program too big. 
Characters are being typed too fast; use TAPE com­
mand for reading paper tapes. 

6-26 



Table 6·3 (Cont.). EduSystem 25 Error Messages 

Message 

ERROR 8 
ERROR ~ 

ERROR 10 
ERROR 11 
ERROR 12 
ERROR 13 
ERROR 14 
ERROR 15 

ERROR 16 
ERROR 17 
ERROR 18 
ERROR 19 

ERROR 20 
ERROR 21 
ERROR 22 

ERROR 23 

ERROR 24 
ERROR 25 
ERROR 26 
ERROR 27 
ERROR 28 
ERROR 29 
ERROR 30 
ERROR 31 
ERROR 32 
ERROR 33 
ERROR 34 
ERROR 35 
ERROR 36 
ERROR 37 
ERROR 38 

ERROR 39 
ERROR 40 
ERROR 41 
ERROR 42 

Explanation 

System overload caused character to be lost. 
Program too complex or too many variables. 
(GOSUB, FOR, or user defined function calls are too 
deeply nested.) 
Missing or illegal operand or double operators. 
Missing operator before a left parenthesis. 
Missing or illegal number. 
Too many digits in number. 
No DEF for function call. 
Missing or mismatched parentheses or illegal dummy 
variable in DEF. 
Wrong number of arguments in DEF call. 
Illegal character in DEF expression. 
Missing or illegal variable. 
Single and double subscripted variables with the same 
name. 
Subscript out of range. 
No left parenthesis in. function. 
Illegal user defined function, not FN followed by a 
letter and a left parenthesis. 
Mismatched parentheses or missing operator after 
right parenthesis. 
Syntax error in GOTO. 
Syntax error in RESTORE. 
Syntax error in GOSUB. 
Syntax error in ON. 
Index error out of range in ON. 
Syntax error in RETURN. 
RETURN without GOSUB. 
Missing left parenthesis in TAB function. 
Syntax error in PRINT. 
Writing past end-of-file. 
Missing or illegal line number. 
Attempt to GOTO or GOSUB to a nonexistent line. 
Missing or illegal relation in IF. 
Syntax error in IF. 
Missing equal sign or improper variable left of the 
equal sign in LET or FOR. 
Subscripted index in FOR. 
Syntax error in FOR. 
FOR without NEXT. 
Syntax error in LET. 

6-27 



Table 6-3 (Cont.). EduSystem 25 Error Messages 

Message Explanation 

ERROR 43 
ERROR 44 
ERROR 45 

ERROR 46 
ERROR 47 
ERROR 48 
ERROR 49 
ERROR 50 
ERROR 51 

ERROR 52 
ERROR 53 
ERROR 54 
ERROR 55 
ERROR 56 

Syntax error in NEXT. 
NEXT without FOR. 
Too much data typed or illegal character in DATA 
or the data typed in. 
Illegal character or function in INPUT or READ. 
Out of data. 
Unrecognized command: RUN mode. 
Bad file name or file not found. 
Syntax error in LINPUT. 
String error, argument is incorrect type or out of 
bounds. 
String function error, missing or illegal argument. 
File not open or bad syntax after #. 
Reading past end of file. 
Bad syntax in OPEN. 
No room for file on DECtape. 

PROGRAM EDITING 
There are two times when a program may require editing pro­

cedures. The first occurs while a line is being typed but before 
the RETURN key is pressed. The second occurs when a line has 
been completely typed and the RETURN key has been pressed. 
Each situation has its own editing procedures. 

Situation 1: Before the RETURN key is pressed. 
Three keys may be used to correct typing errors: ~ (SHIFT /0), 

RUBOUT, or ALT MODE (or ESC). 

~ (back arrow), SHIFT/O on the keyboard, or RUBOUT 
is used to delete a character from a line. BASIC prints the 
back arrow, deleting the last character from that line. More 
than one back arrow deletes more than one character, in 
reverse order. 
ALT MODE (ESC on some Teletypes) is used to delete an 
entire line. When this key is used, BASIC prints $DELETED, 
erases that line from the program, and returns the carriage 
so that the line may be retyped. 

6-28 



Situation 2: After the RETURN key is pressed. 
Once a line of the program has beer.t transmitted to computer 

memory via the RETURN key, several methods of correction may 
be used. Lines may be inserted, deleted, or changed. 

INSERTION 
To add a line to a program, assign a line number that falls be­

tween two existing lines, type the-line number and text, and press . 
RETURN. 

DELETION 
To erase a line from computer memory, type the line number 

only and press the RETURN key. The DELETE command may 
also be used to erase lines' from memory. To erase a single line, 
type DELETE and the line number and press RETURN. DE­
LETE followed by the two line numbers separated by a comma 
erases all lines between and including the two given. For example: 

DELETE 10,,20 

erase~ lines 10 through 20. 

CHANGE 
Old instructions may be replaced by new ones by retyping the 

line. This procedure is adequate for changing simple lines. When, 
however, the line contains a complex formula or a long message to 
be printed, it may be changed with the EDIT command. The EDIT 
command allows the user to access a single line and search for 
the character or characters to be changed. To use this command, 
type 

EDIT line number 

and press the RETURN key. BASIC waits for a search character 
to be typed (BASIC docs not print this search character when it 
is typed). This search character is one that already exists on the 
line to be changed. After the ,search character is typed, BASIC 
prints the contents of that line until the search character is printed. 
At this point, printing stops and the user has the following options: 

• Type new characters; BASIC inserts them following the 
ones already printed. 

• Type a form feed (CTRL/L) to cause the search to pro­
ceed to the next occurrence, if any, of the search character. 

6-29 



• Type a BELL (CTRL/G) to signal a ~hange of search 
character, then type a new search character. 

• Use the RUBOUT or ~ key to delete one character to the 
left each time the key is pressed. 

• Type the RETURN key to terminate editing of the line at 
that point, deleting any existing text to the right. 

• Type the AL T MODE key to delete all existing characters 
to the left except the line number. 

• Type the LINE FEED key to terminate editing of the line, 
saving all the remaining characters on that line. 

When the EDIT operation is complete, BASIC prints READY. 
Note that line numbers cannot be changed with the EDIT com­
mand. The following example demonstrates the EDIT command. 
An incorrect line was typed and entered to the system as follows: 

60 PRINT "PI=3.14146 ABOU~'" 

The line was edited as follows: 

EDIT 60 
PRINT .. PI=3.14146 .... S9 ABOUI"T'" 

First 6 was entered as the search character. BASIC printed the 
line to the 6, and the RUBOUT key was typed twice to remove the 
two incorrect digits (46) and 59 was inserted in the line. CTRL/G 
was typed and another search character (%) was entered. BASIC 
printed characters to the % which was removed with a RUB OUT 
and replaced with aT. The LINE FEED key was typed to ter­
minate the edit and save the remaining characters. If the line is 
listed, the following'is printed on the Teletype. 

LIST 60 

60 PRINT "PI=3.141S9 ABOUT'" 

READY 

6-30 



OPERATING INSTRUCTIONS 
Loading EduSystem 25 

EduSystem 25· software is supplied on a DECtape. This tape, 
called the system DECtapet must be used to create the system 
when the system is installed. Perform the following procedures to 
activate EduSystem 25. ' 

INITIALIZE THE DECT APE UNIT 
Perform the following steps to prepare the DECtape unit for 

loading software: 

1. Set the WRITE ENABLE/WRITE LOCK switch to 
.WRITE LOCK. 

2. Set the REMOTE/OFF/LOCAL switch to OFF. 
3. Place the system DECtape on the left spindle with the 

DECtape label out. 
4. Wind four turns of tape onto the right spindle. 
5. Set the REMOTE/OFF/LOCAL switch to LOCAL. 
6. Wind a few turns of tape onto the right spindle with the 

~ switch to ensure that the tape is properly mounted. 
7. Dial 0 on the unit selector dial. 
8. Set the REMOTE/OFF/LOCAL switch to REMOTE. 

INITIALIZE COMPUTER MEMORY 
The system may be activated in one of two ways: with an auto­

matic loader (hardware bootstrap) or with an OS/8 bootstrap 
loader. The following instructions are for an EduSystem- 25 that 
includes a hardware bootstrap. If the EduSystem does not have a 
hardware bootstrap, see Introduction to Programming'1972, Chap­
ter 9, for OS;8 bootstrap loading instructions. 

1. Turn the key lock on the computer console to POWER. 
2. Turn all Teletypes to LINE. 
3. Mount the EduSystem 25 system DECtape on drive 0 as 

described above. 
4. Set the SWITCH REGISTER (SR) to 0600 (octal).4 
5. Press and raise the HAL T switch. 
6. Press and raise the SW switch. 

The EduSystem-25 DECtape spins and the system indicates that 
it is active by printing a period (.) on the console Teletype. If the 

4 An explanation of the octal, or base 8, number system is included in Intro­
duction to Programming 1972. 

6-31 



system is not CJctivated, ensure that the correct DEC tape is being 
used and repeat the above procedures. 

Immediately following the period printed by the system, the 
user enters the characters shown below: 

.R EDU25 

The period is printed by the OS/8 Keyboard Monitor. The user 
types R to request the running of a program, in this case, Edu­
System 25.r. When the RETURN key is pressed, the system prints: 

TO BOOTSTRAP HACK OS/8 MONITOR: 
LOAD ADDRESS 07600 
AND START 

This message means that EduSystem 25 (or other OS/8 programs) 
can be started by setting the SR to 7600 and pressing ADDR 
LOAD, CLEAR, and CONT. The OS/8 Monitor prints another 
period, to allow the user to request a program. If, for example, 
the user types an incorrect response to the ensuing system dialog, 

. he can restart the dialog by reloading (bootstrapping back) the 
OS/8 Monitor from location 7600 and again requesting that Edu­
System 25 be run.· 

ANSWER SYSTEM DIALOG 
When the system has been activated correctly, it prints the iden­

tification message: 

EUUSYSTEM 25 HASIC 

and begins to ask certain questions which the user must answer 
to establish the system configtlration. The first question is: 

NUMBER OF USERS (l TO 5)7 

The user responds with a single digit from 1 to 5, depending on the 
number of terminals to be used. If one user is specified, this ques-

[) Refer to Introduction to Programming 1972, Chapter 9, for a complete 
explanation of the OS/8 Operating System. 

6-32 



tion ends the initial BASIC dialog. If more than one user is indi­
cated, BASIC continues the dialog by asking: 

PDP-B/L COMPUTER (Y OR N>? 

The user responds Y if the EduSystem 25 computer is a PDP-8/L, 
N if not. An N response to this question prompts the next question: 

STANDARD REMOTE TELETYPE CODES (Y OR N)? 

BASIC is asking for a PT08 or KL8E device code for each Tele­
type to be used (excluding the console Teletype). Standard PT08 
·or KL8E device codes arc 40, 42, 44, 46, 50, 52, and 54. When 
a system using PT08 or KL8E interface units i~ first installed, the 
user determines the specific device code for each Teletype and 
labels each Teletype with its specific device code. If device codes 
are standard, the user responds Y to this question and BASIC 
assumes the standard device codes and continues the dialog. If 
device codes are not standard, the user enters N; BASIC then asks: 

TELETYPE 11 DEVICE CODE? 

BASIC asks this question for each Teletype to be used, up to 
seven times for a~ 8-user system. The user responds with the spe­
cific 2-digit device code for each Teletype. 

When the device codes have been determined, or if the computer 
is a PDP-8/L, BASIC asks the following question: 

SAME AMOUNT OF STORAGE FtiR ALL USERS? 

The '!bove question requires the user to decide whether to partition 
the available core equally among the users on the EduSystem 25. 
(Since EduSystem 25 software 'uses 4K of core, the available core 
is always 4K less than the total core on the system.) If the user 
responds Y to this question, BASIC determines the size of the core 
memory available and divides it equally among the users, then ends 
the dialog. If Nis the response, BASIC determines the amount of 
available core storage and prints the highest core field according 
to the following: 

6-33 



Field 7-32K core memory 
Field 6-28K; core memory 
Field 5-24K core memory 
Field 4-20K core memory 
Field 3-16K core memory 
Field 2-12K core memory 
Field 1- 8K core memory 

. For explanation purposes, the following dialog is written for a 
16K, 5-user EduSystem 25. The available core is to be allocated as 
follows: 

User 1-10 blocks (user 1 is the console terminal) 
. User 2-- 6 blocks 

User 3-- 8 blocks 
User 4-- 4 blocks 
User 5-- 4 blocks 

Each core field contains 16 blocks; a core field may be divided 
among several users, but no user may be allotted blocks in more 
than one core field. To determine the number of blocks, BASIC 
prints the following dialog and the user answers as shown: 

FIELD 3 
THERE ARE 16 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCAT IUN FOR USER !If I WILL 91=: nU!,.' l'IAI\IY HLUCKS? 19.1 
THERE ARE 06 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCAT 10111 FOR USER *2 1" ILL BE HOW MANY BLOCKS? 6 
FIELD 2 
THERE ARE 16 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER '3 WILL BE HOW MANY BLOCKS?8 
THERE ARE 08 BLUCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER #4 WILL BE HUW .MANY' BLOCKS?4 
THERE ARE ~4 BLOCKS LEFT IN THIS FIELD. 

YOUR ALLOCATION FOR USER *5 WILL BE HUW MANY BLOCKS?4 

When an invalid response is made to any of BASIC's questions, 
an error message is printed and the question is repeated. For 
example: 

STANDARD REMOTE TELETYPE CODES <Y OR N)?4 
INVALID RESPONSE 

STANDARD REMOTE TELETYPE CODES <Y OR N)? 

6-34 



When all responses have been entered, BASIC prints: 

IS THE ABOVE CORRECT <Y OR N)? 

If an incorrect response was made, answer N and BASIC begins 
the dialog again. A response of Y ends the dialog and BASIC 
prints: 

END OF DIALOGUE 

READY 

BASIC prints READY on each of the Teletypes associated with 
the specified device codes. 

EST ABLISH TERMINAL EXTENSIONS 
When EduSystem 25 is active, the user can write a simple, 

uniquely named program for each terminal (including the console 
terminal) and save the program from the terminal. To do this, the 
user: 

1. Sets DECtape drive 0 to WRITE ENABLE. 
2. Types the following programs, for example, on the ter­

minals in the sequence given: 
First Terminal 

NEW 
NAME--ALPHA 

READY 

10 PRINT "TERMINAL ALPHA" 
20 END 
SAVE 

READY 

Second Terminal 

NEW 
NAME-- BR AVO 

READY 

10 PRINT "TERMINAL BRAVO" 
20 END 
SAVE 

READY 

6-35 



Third Terminal 

NEW 
NAME--CLOVER 

READY 

10 PRINT "TERMINAL CLOVER" 
20 END 
SAVE 

READY 

The user repeats this process, using a unique name, for each re­
maining terminal. 

When the user has saved a uniquely named program ~rom each 
terminal, he performs the following actions: 

1. Set DECtape drive 0 to WRITE LOCK. 
2. Press and raise the HALT switch. 
3. Set the SR to 7600; press ADDR LOAD switch. 
4. Press the CLEAR switch, then the CaNT switch. 

The OS/8 Monitor responds by printing a period, and the user 
types: 

.R PIP 

PIP is the OS/8 Peripheral Interchange Program which is used to 
transfer files between devices, merge and delete files, and list, zero, 
and compress directories.6 In this example, it is being used to ob­
tain a directory. listing. After the user types PIP and presses RE­
TURN, PIP responds with an asterisk and the user types: 

to request a directory listing. This example would produce a listing 
similar to the following: 

EDU25 .SV 
PIP • SV 
ALPHA .El 
BRAVO .E2 
CLOVER.E3 

6 Refer to Introdltction to Programming 1972, Chapter 9, for a complete 
explanation of OS/8 PIP. 

6-36 



The EDU25 .SV and PIP .SV files are executable core images of 
these two system software programs. ALPHA .El , BRAVO .E2, 
and CLOVER .E3 are the programs the user wrote and saved OQ 

DECtape. Now that the user knows the correct extensions for each 
Teletype, he can use a marker, e.g., a permanent-ink felt tip 
marker, to write the appropriate extension on each Teletype. The 
Teletype extensions will thus be clearly identified for each user. 
To return to the OS/8 Monitor, the user types CTRL/C and the 
Monitor again prints a period. 

CREATE DATA FILE TAPE 
DECtape drive 1 is used for EduSystem 25 data files. When the 

system is first installed, the user should create a tape for data file 
storage in the following manner: 

1. ,Mount a blank DECtape on drive 1; set the drive to 
WRITE ENABLE. 

2. Type R PIP after the OS/8 Monitor period. When PIP 
responds with an asterisk, type the following: 

*DTAll</Z 

This message instructs PIP to create a zeroed OS/8 direc­
tory on the DECtape. The user should create this zeroed 
directory on each data DECtapefile he establishes. 

3. Press CTRL/C; the OS/8 Monitor responds with its 
period and EduSystem 25 can be restarted by typing; 

.R EDU25 

pressing RETURN, and answering the dialog as before. 

When the data file tape has been created, EduSystem 25 is ready 
for use. Turn the key lock to PANEL LOCK to prevent the system 
from being disturbed. 

Maintaining the Public Library 
As previously explained, EduSystem 25 has a public library of 

programs which all users can access. Public library programs are 
stored or ,deleted by the system manager under the .E8· extension. 
The system manager can access all stored files and insert programs 

6-37 



into the library using PIP. For example, assume that a user on 
terminal .E2 has developed a program that the system manager 
feels all users would like to access. This program, named PEACE, 
could be inserted into the public library by the system manager as 
follows: 

1. Turn key lock to POWER. 
2. Set DECtape drive 0 to WRITE LOCK. 
3. Press and raise the HALT switch. 
4. Set the SR to 0600. 
5. Press and raise the SW switch. 
6. The OS/8 Monitor prints a period on the console terminal 

( .E ~ ). The user types: 

.R PIP 

7. Set DECtape drive 0 to WRITE ENABLE. 
8. When PIP responds with an asterisk, type : 

PIP prints the directory listing of the EduSystem 25 sys­
tem DEC tape , for example: 

EDU25 .SV 
PIP .SV 
ALPHA .E 1 
TEST .E0 
GAMBLE.E! 
ROCKET. E0 
BRAVO .E2 
PEACE .E2 

9. Stop the directory printout by typing CTRL/O (press 0 
while holding ,down the CTRL key). PIP responds with an 
asterisk. The user then types: 

*DTA~:PEACE.E8<DTA0:PEACE.E2 

and presses RETURN. 

6-38 



.10. PIP copies the program PEACE and affixes the .ES ex,;. 
tension to the copy. PEACE has been placed in the public 
library. 

11. Type CTRL/C. The OS/S Monitor responds by typing 
a period. EduSystem 25 can he restarted. 

12. Turn the key lock to PANEL LOCK. 

Protecting DECtape Files 
Programs, or data files, stored under the system manager's ex­

tension. (.ES or .DS) are protected by simply locking the com­
puter console. This information can still be accessed by all users 
but cannot be erased from the DECtape or manipulated in any 
way. Program and data files created under user extensions can be 
manipulated and deleted as previously described. The system man­
ager can protect user extensions, limiting them to read-only opera­
tions by setting the appropriate DECtape unit (drive 0 to 1) to 
WRITE LOCK. DECtape drives should also be set to WRITE 
LOCK when: 

1. Starting up any DECtape system .. 
2. Shutting down any DECtape'system. 

Storing Programs on Paper Tape 
If ASR-33 Teletypes (TTY) are available, programs may be 

saved on paper tape to save storage space on the system DECtape. 
Once a program has been typed correctly, it may be saved by per­
forming the following procedures: 

1. Turn the TTY control knob to LINE. 
2. Type TAPE; press RETURN. 
3. Turn the TrY paper tape punch ON. 
4. Type LIST; press RETURN. 
S. When punching is complete, turn the TTY punch OFF. 
6. Type KEY; press RETURN. 

Reloading Programs from Paper Tape 
Programs saved on paper tape may be reloaded using the Tele­

type (TTY) paper tape reader. To reload programs, perform the 
following procedures. 

1. Turn the TTY paper tape reader to FREE. 
2. Turn the TTY control knob to LINE. 

6-39 



3. Insert tape in the reader. 
4. Type TAPE; press RETURN. 
5. Turn the TTY reader to ST ARt. 
6. When the tape has read in, tUfn the TTY reader to FREE. 
7. Type KEY; press RETURN. 

System Reconfiguration 
If the user desires to change the EduSystem 25 configuration at 

any time, he simply performs the procedures used for loading the 
system initially and answers the dialog again to reflect the new 
configuration. A reconfiguration would, be needed, for example, 
if new terminals were added, thus changing the number of users. 
EduSystem 25 must be inactive to be reconfigured. To ensure that 
the system is inactive, the user types CTRL/C to stop a running 
program or the listing of a program and turns all the terminals 
OFF. He can then proceed with the reconfiguration. 

System Shutdown 
If power failure detection hardware is available on the system, 

the system can be shut down by simply turning the console key 
lock to OFF. Otherwise, to shut the system down, overnight or for 
any reason, the user ensures that the system is inactive, as explained 
above; he then presses the HALT switch and turns the key lock 
to OFF. 

System Restart 
If power failure detection hardware is available on the system, 

it can be restarted by simply setting all DECtape drives to WRITE 
LOCK and turning the key lock to PANEL LOCK. Otherwise, the 
following procedures are necessary: 

1. Turn the key lock to POWER. 
2. Set the SR to 7600 and press ADDR LOAD. 
3. Press the CLEAR switch and the CONTswitch. 
4. Turn the appropriate Teletypes to LINE. 
5. Turn the key lock to PANEL LOCK. 

EduSystem 25 responds by printing the OS/8 Monitor period. The 
user can then request EduSystem 25 as described previously. 

6-40 



~-

7 
edusystemao 

INTRODUCTION-' 
EduSystem 30 is a powerful l3ASIC-speaking system. that 

adapts to ,the loner or to the crowd. The system, op~rates in two 
modes: batch" and interactive. In batch mo~ the system 'reads 
programs prepared on specjaul' formatted optical m(irk cards. 
Cards are marked with .aD. ordinaq pendl QLke~unched. Rtmniftg-­
programs in batches, EduS¥steJll 30 Can process hundreds of $tU­
dent programs per day. When operated in interaclive mode, Edu­
System 30 allows one person at a time to interact with the com­
puter through the Teletype. 

In either mode, the system provides a powerful BASIC lan­
guage with advanced features such as string variables, program -
chaining, and data files. Programs can be stored on a magnetic 
storage device (DECdisk or DECtape) and retrieved when needed 
-a great time-saving feature. In addition, EduSystem 30 keeps a 
log of all programs it runs, providing an exact record of how stu­
dents are using the computer. Also available is a unique capability 
for automatic testing (and grading) of student programs. 

System Components 
EduSystem 30 is compose<;l of a PDP-8/E! computer with 4096 

(4 K) words - of core memory, powerfail protection, I automatic 
loader (hardwar~ bootstrap), 32,768 (32K) word DECdisk, optical 
mark card reader, and computer terminal (Teletype) with paper 
tape reader/punch. Each EduSystem 30 includes the BASIC lan­
guage processor with batch capabilities and a library of sample 
programs, textbooks, and curriculum guides. DECtape may be 
substituted for DECdisk. A punched card reader ~_ay be used -in 
place of the marked card- reader. The system also supports a high­
speed paper tape reader/punch and a line printer. 

7-1 



System Expansion , 
. EduSystem 30 expands easily to EduSystem 40 and, witl\ addi­

tional.memoryand DECtape, may be used to run the OS/8 Oper­
ating System, DEC's programming system for the PDP-8 computer. 

• To expand to EduSystem 40, add 4K words of core memory, 
plus up . to seven additional computer, terminals and their 
associated interfaces' (12K words of core memory are 
recommended for more than five terminals), and an Edu~ 
System 20 software set., 

., To run OS/8,add 4K words of COre memory (providing the 
system includes DECtape). 

BASIC LANGUAGE c~liiLITIES _ 
,- EduSystem 30 BpsIe'includes the language elements shown in 

Table 7-1.~The r-SYStem also includes many advanced features to 
~,~o perform more complicated and lengthy problem­
solving operations. Features which pertain to either the inter­
a<;:tive mode or the batch mode are discussed in separate sections. 
This section explains the advanced features that can be used in 
both modes . 

. Table 7-1. EduSystem 30 BASIC Statement Summary 

Statement Description 

Input/ Output Statements 
·LET Assign a value to a variable. The word LET 

PRINT 
READ 
DATA 
RESTORE 

"'WRITE 
GOTO 
IFGOTO} 
IF THEN 
FOR TO STEP 
NEXT 
DIM 
GOSUB 
RETURN 
INPUT 
REMARK (REM) 

. is optional for interactive programs. 
Print out the indicated information. 
Assign values from data list to variables. 
Provide data for a program. . 
Restore the data list. 
Record data on DECtape storage file.' 
Change order of program execution. 
Conditionally change order of program exe­
cution. 
Set up a program loop. 
End of program loop. 
Define sub'scripted variables. 
Go to a ·subroutine. 
Return from a subroutine. 
Get values from the Teletype. 
Insert a program comment. 

7-2 



Table 7-1 (Cont.). 

Statement 

RANDOMIZE 

-DEF 
CHAIN 

NOLINE 

STOP 
. END 

EduSystem 30 BASIC Statement Summary 

Description 

Cause RND function to randomly select new 
sequence of random numbers between 0 and 
1. 
Define a function. 
Link to next section of a program which is 
stored within the system. 
Do not print out the line numbers in which 
program logic errors are found. (Allow longer­
than normal programs to be run without 
chaining.) 
Stop program execution. 

_ End a program . 

Editing/ Control Commands 
LIST 

·LIST n 
LISTNH 

LISTNHn 

RUN 
RUNNH 
SCRATCH (SCR) 

CTRL/C 

TAPE 

ECHO 

PUNCH 
PUNCH n -

LPT 
TrY 
BATCH 
RESEQUENCE 
NEW 
OLD 

14AMB 

List all stored program statements. 
List program starting at line n. 
List all program statements but do not print 
a header line. 
List program starting at line n but do not 
print a header line. 
Execute the current program. 
Same as RUN without header line. 
Delete the currently stored (in memory) 
program. 
Stop execution of a program or printing of 
a listing. CTRLI C is typed by pressing C 
while holding down the CTRL key. 
Read a program from paper tape. Ignore 
any line which does not begin with a line 
number. 
Switch from printout to non-printout mode 
or vice versa. 
Punch a program on the high-speed punch. 
Punch a program on high-speed punch, start­
ing at line n. 
Print output on line printer. 
Switch back to Teletype from line printer. 
Begin processing car~ programs. 
Renumber program hnes. 
Clear memory, req~est program ;~::,e~emory 
Clear memory, bnng progra 

from storage area. d . t clear memory. 
Same as new but oes no 

7-3 



Table 7-1 (Cont.). EduSystem 30 BASIC Statement Summary 

Statement 

CATALOG (or CAT) 

LENGTH 

PRIVILEGE 

Privileged Commands1 

PASSWORD 
SAVE 

UNSAVE 

HEADER 

LOG 
:MAX 

BATCHn 
STACK 
STACKn 
Functions 
ABS(X) 
ATN(X) 
COS(X) 
EXP(X) 
INT(X) 
LOG(X) 
RND(X) 
SGN(X) 

SIN (X) 
SQR(X) 
TAN (X) 
TAB(X) 
CHR$(X) 

Description 

Print out the names of programs in storage 
area. 
Print out the number of blocks needed to 
store the current program. 
Enable use of privileged commands. To be 
successful, this command must be followed 
by the correct password. This command is 
recognized only if the privileged command 
capability was selected at system lead time. 

Change the password code. 
Save the current program in the system stor­
age area. 
Delete the named program from the system 
storage area. 
Change the system header; type new header 
(maximum 12 characters) for next batch 
run. 
Print system Jog. . 
Set instruction limit n times 200 . per pro­
gram for next batch run. 
Same as BATCH; limit runs (n) per program. 
Start unattended batch operation. 
Same as STACK; limit runs. (n) per program. 

Absolute value of x. 
Arctangent of x (result in radians). 
Cosine of x (x in radians) . 
eX (e=2.712818). 
Greatest integer of x. 
Natural logarithm of x. 
Random number. 
Sign of x (+ 1 if positive, ·-1 if negative, 
o if zero). 
Sine of x (x in radians) .. 
Square root of x. 
Tangent of x (x in radians) . 
Controls printing head position on Teletype. 
Converts character code to character. Used 
only with the PRINT command. 

~ The privileged commands may only be. used after a successful PRIVI­
LEGE command has been executed. 

7-4 



Using Random Numbers 
The RND function allows the use of random numbers within a 

program. The RND function returns a random value between zero 
and one. Unlike the other functions, the value returned by R~D 
is not a function of its argument. However, all functions in BASIC 
must be followed by an argument. Therefore, RND should always 
be followed by a dummy argument, such as zero, which is en­
closed in parentheses. 

Notice that it is possible to generate random numbers over any 
range. For example, the expression: 

(B-A)*RND(O)+A 

has a random value in the range A<n>B. 
Repeated uses of RND in a program return different values be­

tween zero and one. The sequence of numbers is, however, the same 
each time the program is run. Thus, the sequence is reproducible 
for later checking of the program. The RANDOMIZE statement 
allows the user to make the random number sequence returned by 
the RND function different each time a program is run. That is, 
when executed, the RANDOMIZE statement causes the RND 
function to select randomly a new sequence of random numbers. If 
RANDOMIZE is used, it normally appears as one of the first lines 
in a program. 

Running Long Programs 
EduSystem 30 runs programs of up to 6000 characters in inter­

active mode and up to 5000 characters in batch mode. These 
limits correspond to roughly 2.00' and 250 lines per program, 
respectively. In some cases, interactive programs which are at or 
near the 6000 character limit and which contain many complex 
FOR, IF, and GOSUB sections are too large to be run. If this is 
the case, the NOLINE command may be used to gain more space. 
If NOLINE is used, program logic errors· which are detected 
while the program is executing cause an error message to be 
printed, but the line number of the error is not printed. NO LINE 
allows substantially longer programs to be run. 

If the program to be run is substantially longer than the 6000-
character limit,. it may still be run by means of a technique known 
as chaining. The program is written in sections, each of which is 

7-5 



less than 6000 characters. A chained program may have many of 
these program sections and, hence, may be indefinitely long. Each 
section of the total program is then stored in the system storage 
area with the SAVE command under a separate name. The final 
command to be executed in all but the last section is a CHAIN 
statement containing the name of the next section of the program. 
For example, the statement 

950 CHAIN "PART10" 

would cause the system to load and execute the stored program 
whose name is PARTIO. 

In the CHAIN statement, the name of the next section of the 
program must be encoded in quotation marks and must be 
exactly six characters long. If the actual naml~ of the next section 
is less than six characters, one or more spaces must be inserted 
before the second quotation mark to make a total of six characters. 
For example, if the next section of the program is named LINK2, 
the following CHAIN statement would be used: 

955 CHAIN "LINK2" 

~. 

Execution of the CHAIN statement loads and executes the 
named program. The previous section of the program is deleted. 
Thus, the uSer only needs to load the first section and run it. All 
succeeding . sections of the chained program load and execute 
automatically. 

Using a Data File 
Just as some programs may be too large to be executed in one 

piece, other programs may need to store and use more data than 
may be accommodated under normal system operation. If this is 
the case, data may be temporarily stored in the system storage 
area. Data stored in this way is referred to as a data file. 

7-6 



The data file is actually a part of the program data which is de- . 
fined by a DATA statement. All data within a program is gathered 
from the DATA statements into a data list which is then read by 
READ statements. As items are read from the list, they are marked 
as already having been used. A READ statement always fetches 
the next item from the list. In fact, the data list may be con­
sidered to have a movable marker which remembers the next item 
of the list. The marker initially marks the first data item. As READ 
statements are executed, the marker moves down the list. A RE­
STORE statement moves the marker back to the top of the list. 

The data file capability allows a' program, by means of a 
WRITE statement, to change and add to this data list as well as 
to read it. The WRITE statement format is the same as the DATA 
statement format. Writing a variable puts the value of that variable 
in the next place in the data list. The data item that was there pre­
viously is replaced by the new value. If a WRITE statement fol­
lows a RESTORE, it changes the first item or items in the data 
list. If it follows one or more READs (or WRITEs), the WRITE 
statement changes data items further down in the data list. The 
total number of items' which may be put in the data list depends 
on the size of the program. Maximum sized BASIC programs 
may have up to 1000 items; small programs have room for 2000 
items. 

Programs which write data on the data list must keep track of 
how much data has been' written and the order in which it was 
output. If data which has been written is to be subsequently read, 
a RESTORE statement must be executed to return the marker 
to the top of the data list. If data has been written off the end of 
the data list, the program must remember how many items the data 
list c~i1tains, and be careful not to try to READ more data items 
than are there. The normal BASIC check for end of data does not 
exist for a written data list. The program must also be sure that 
it does not write more data. than the data list can contain (1000-
2000 items). Writing too much data causes part of the user's 
BASIC program to be destroyed. 

Data files are frequently used in conjunction with chaining 
since data written onto the data list by one program section may 
be read by the next section. The program section which writes the 

7-7 



data must execute a RESTORE just before the CHAIN state­
ment. The next section, which reads the data list, must not have 
any DATA statements since this data would destroy the data 
items written by the previous section. 

Character Variables and String Capability 
Standard BASIC statements deal only with numbers, assuming 

all variables to be decimal values. However, BASIC is also capa­
ble of performing many useful operations on characters or words 
(strings of characters) instead of numbers. The character handling 
capabilities of BASIC depend on the representation of individual 
characters as numbers. Each character has its own numeric code 
(or character code), as indicated in Appendix B. When a character 
is input, by an INPUT statement, it is converted to a numeric 
code. All internal processing of that character uses this code. Since 
the code is a number. it can be used and manipulated' with any 
BASIC statement. When a user program is to output a character, 
BASIC converts the numeric code back into a character and 
prints the character. In short, characters stored in a BASIC pro­
gram are indistinguishable from numeric values: The only differ­
ence is in the way they are used, i.e., that certain numeric values 
actually represent characters. 

The INPUT statement is used to input characters. A dollar sign 
($) is placed before a variable name to indicate that a character 
code is to be input rather than a decimal number, e.g., INPUT $A. 
When the character is typed, its character code is stored in the 
indicated variable. It is important not to confuse character input 
with numeric input. A potential confusion lies in the fact that the 
numeric values are themselves characters. For example, the value 
234 is composed of the three characters 2, 3, and 4. If these three 
characters were input to a BASIC program as character variables, 
they would be' entered as three separate numeric (character code) 
values rather than as the single value 234. Whether the input 
is character code or numeric, the physical characters typed at the 
terminal are identical; the difference is entirely in the way that the 
program interprets the input. In the following examples, each 
program executes an INPUT statement. In the program on the 
left, three characters are entered and three variables are set up. In 
the example on the right, a single numeric value is input. 

7-8 



10 PRINT "ENTER VALUE "; 
20 INPUT $Xll$X21$X3 
30 PRINT.Xl;X2JX3 
40 END 
RUN NH 

ENTER VALUE 234 50 51 52 

READY 

10 PRINT "ENTER VALUE"; 
20 INPUT X 
30 PRINT X 
40 END 
RUN NH 

ENTER VALUE?234 
234 

READY 

Note that character INPUT statements do not cause a ques­
tion mark to be printed. Therefore, a series of characters may be 
typed without intervening question marks. Programs doing char­
acter input must therefore indicate, by PRINT statements, when 
input is expected. Also note that the $ is not part of the variable 
name. It is used only in INPUT statements to indicate that typed 
characters are to be converted to their numeric character codes 
before being stored in the variable. 

Character codes may be converted to their respective characters 
by means of the special PRINT statement function CHR$. CHR$ 
is the inverse of the dollar sign INPUT convention. The CRR$ 
function takes, as its argument, a single constant or variable and 
prints the single character whose code corresponds to that value. 
For example: 

50 PRINT ChR$(65) 

prints the character A. CHR$. may only be used in PRINT 
statements. 

One of· the most frequent uses of the character capability is to 
enter words or characters into BASIC programs in response to 
questions. For example, a program might ask the user if he wants 
to run the program again with a different set of input data. The 
user responds by typing Y if he wants to run again or by typing N 
if not. The program then compares the code of the character' en­
tered with the character code of Y to determine if they are equal. 
If so, it branches back to the beginning of the program. If not, the 
program executes the remaining statements. The following program 
illustrates the use of character variables in making a run-time 
decision. 

7-9 



10 PRINT 
2~ PRINT "WOULD YOU LIKE TO DO THIS AGAIN (Y OR N)1"; 
3~ INPUT SA 
40 IF A=#Y THEN l~ 

5~ IF A<>#N THEN 9~ 

60 PRINT 
70 PRINT "O.K. IT'S YOUR CHOICE." 
8~ STOP 
90 PRINT 
1~0 PRINT "Y OR N1"'; 
110 GOTO 3~ 

120 END· 
RUN NH 

WOULD YOU LIKE TO DO 
WOULD YOU LIKE TO DO 
Y OR N'?Z 
Y OR N'?N 

THIS 
THIS 

O.K. IT'S YOUR CHO ICE. 

READY 

AGAIN <Y 
AGAIN (Y 

OR N)1Y 
OR N)18 

The comparisons shown in the preceding program are facilitated 
by a special BASIC language feature. Pound sign (#) followed 
by a single character may be used to indicate the character code 
of the single character following the pound sign. In line 40 above, 
using # Y relieves the programmer of the need to remember or 
reference the actual.character code for. Y. 

Often, the character capability is used to input a series (or 
string) of characters, such as a last name. The string may be any 
number of characters up to a full line (72 characters on a Teletype 
line). In this case the program must read each character and de­
termine whether it is the carriage return character (character code 
13) which indicates the end of the line. Subscripted variables are 
used to store such a series of characters. The following program 
illustrates character string input: 

.-
10 DIM A(72) 
20 PRINT "TYPE YOUR NAME:"; 
3~ FOR 1=1 TO 72 
40 INPUT $A(I) 
50 IF A(I)=13 THEN 70 
60 NEXT I 
70 END 



USING THE INTERACTIVE TERMINAL 
When EduSystem 30 is not processing card programs, it may be 

used interactively from the Teletype. In this mode of operation, 
programs and commands are typed directly at the keyboard without 
being marked on cards first. Individual program lines may be 
changed, deleted, or adde9. without having to read the whole pro­
gram again. Listings and program output are produced at the 
terminal (or line printer) as always. 

The system is ready for interactive use whenever it prints 
READY. If a batch run has just been completed and the system 
has typed MORE CARDS?, the user responds by typing N to in­
dicate that no more card programs are to be run. The system then 
prints READY. The word READY always indicates that the sys­
tem can accept commands from the Teletype. 

Entering Programs 
Programs are entered in the computer by the user typing at the 

Teletype keyboard. Each statement in the program must begin 
with a line number between 1 and 4095. In interactive mode', all 
lines of input are terminated when the RETURN key is typeq. 
Statements need not be entered in order. BASIC automatically 
arranges program lines in their proper order. 

EduSystem 30 BASIC expects each program to have an assigned 
name. At the beginning of each interactive session, the NEW com­
mand should be typed to clear any existing program in core ,and 
define the name of the new program to be entered .. 2 To use the 
NEW command, the user types 

NEW 

and the system asks for: 

NEW FILE NAME--

The user then types any name of 1 to 6 characters (the first of 
which must be a letter), followed by the RETURN key. BASIC 
assigns that name to the program to be entered. The user may 

2 If the user does not wish to assign a program name, he can delete any 
existing program by typing the SCRATCH command. 

7-11 



change the name of the program being entered at any time by 
typing the NAME command. BASIC again asks for NEW FILE 
NAME and assigns a new name to the program being entered. The 
NAME command does not delete the existing program. 

Using Multiple Statements per Line 
EduSystem 30 allows more than one statement to be typed on a 

single line. Statements after the first begin with a back slash char­
acter ("-) which is SHIFT /L on the keyboard. A program is often 
more understandable when statements, such as a series of LET's, 
are grouped into a single line. For example, the program: 

10 A=3\8=8\C=13 
20 PRINT (A+B+C>*5\END 

is the same as 

10 LET A=3 
20 LET B=8 
30 LET C=13 
40 PRINT (A+B+C>*5 
50 END 

and will produce the same result when the RUN command IS 

typed:." 

RUN NH 

120 

READY 

This multiple-statement capability is helpful when writing long pro­
grams since statements require less storage in the computer when 
they are grouped as a single statement. 

Listing the Program 
The LIST command may be used to list all or part of the current 

program. LIST print'S the program statements in their proper order, 
regardless of the order in which they were entered. The 'EduSystem 
30 LIST command has four different forms, as shown below. 

7-12 



Command Meaning 

LIST List the entire program. Precede it by a header line3 

giving the name of the progran:t. 
LIST n List the program starting at the given line number 

(n). Precede it by a header line. The line number 
must be separated from LIST by two spaces. 

LISTNH List the entire program, but do not print a header 
line. 

LISTNHn List the program starting at the given line number 
(n), but do not print a header line. 

NOTE 
The programmer may stop a listing at any 
time by typing CTRLjC on the keyboard. 

Executing the Program 
The programmer may execute a program at any time by typing 

the ,RUN command. The existing program is inspected for errors; 
if none exist, it is executed. If an error is detected, an error mes­
sage (see the section on Error Messages) is printed. In either case, 
at the end of the run, BASIC prints READY, indicating that the 
program may now be changed or rerun. There are two types of 
RUN. commands: RUN and RUN NH. RUN executes the current 
program, preceding it by a header line. RUN NH (NH means no 
header) executes the current program but does not print a header 
line. RUN and NH must be separated by a single space. The user 
may terminate program execution at any time by typing CTRLjC. 

Loading a Card Program for Interactive Use j/O 

Programs previously written on cards may be loaded for use in 
interactive mode. The progr~p1 'Cleck is pr;e~eded by a NEW card 
and followed by a KEY c,artl. The ,U:~er mounts this deck in the 
card reader in the normal'way (# Executing Card Programs for 
instructions) and types the BA H command. Cards are processed 
in normal batch fashion u the KEY card is read. The KEY 
card switches the system, interactive mode. The program is then 
available for execution J;. editing from the interactive terminal. 

3 A header line consists of the program name followed, on the same line, 
by the system name (EDU BASIC). If no prograin name was assigned, 
the system prints "*NONE* EDU BASIC". 

7-13 



After two RUN commands (or after some number of RUNs if the 
privileged BATCH command is used), the system automatically 
returns to processing any additional card program in the reader. 

Storing Programs on Paper Tape 
Once a program has been entered or read correctly, it may be 

saved on paper tape for quick reloading, as follows: 
1. Turn the Teletype control knob to LINE. 
2. Type LISTNH but do not press the RETURN key. 
3. Turn the Teletype paper tape punch ON. 
4. Press SHIFT /CTRL, type "PPPPPP" to produce some 

leader tape. 
5. Press the RETURN key. 
6. When punching is complete, press SHIFT /CTRL, type 

"PPPPPP" to produce some trailer tape. 
7. Turn the Teletype punch OFF. 
8. Carefully rip tape off punch. Notice that an arrow head is 

at the beginning of the program and an arrow tail a't the 
end. 

Reloading Programs From Paper Tape 
Programs punched on paper tape may be reloaded using the 

Teletype (TTY) paper tape reader. The TAPE command is used 
to load programs from paper tape as follows: 

1. Insert the paper tape in the TTY reader, with the arrow 
head facing out of the reader. 

2. Turn the TTY control knob to LINE. 
3. Type NEW, then press the RETURN key. 
4. Type the program name. 
5. Type TAPE, press the RETURN key. 
6. Turn the TTY paper tape reader to ST ART. 
7. When the tape has read in, turn the TTY reader to FREE. 

Remove the paper tape. 

A special control command, ECHO, may be used with TAPE 
to prevent the program from being listed while it is being read. The 
first time it is used, ECHO inhibits all printout. A second ECHO 
command restores normal printout. 

Privileged C.ontrol Commands 
Several optional commands are available which modify and con­

trol a program run. All· of these commands are considered to be 

7-14 



privileged in the sense that their use is restricted. The privileged 
commands are available only if the privileged command capability 
was selected when EduSystem 30 was loaded. During normal sys­
tem operation these commands are disabled. If' a user attempts to 
use a privileged command, it is ignored and the system prints 
WHAT? 

A special command, the PRIVILEGE command, is used to make 
these privileged commands available. To use PRIVILEGE, the 
user types PRIVILEGE and the RETURN key. The system then 
waits for the user to type a one to six character password code. 
(The typed characters are not printed.) At the time the system was 
loaded, a password was typed into the system. The characters typed 
after the PRIVILEGE command are compared to this password. 
If they match, the PRIVILEGE command is successful and all 
privileged commands may then be used. If they do not match, the 
message INVALID PASSWORD is printed and all privileged com­
mands continue to be unavailable. 

In short, the user must know the password in order to use any 
privileged command. It is' important that the password be kept 
secret. For this reason, the password is never printed when the user 
types it. It is possible to change the password code at any time. The 
command, PASSWORD, which. changes the code is, of course, a 
privileged instruction. Certain privileged commands are used only 
when processing card programs; these commands are discussed 
under Executing Card Programs. The other privileged commands, 
SAVE and UNSA VE, are discussed below. All privileged com­
mands must be typed at the terminal; they cannot be entered on' 
cards. 

Using the System Storage Capability 
EduSystem 30 allows the system device (DECdisk or DECtape) 

to be used for permanent on-line storage of programs. Programs 
stored in this way may be loaded instantly, without the need to load 
a paper tape or card deck or type a program. 

SAVE AND UNSA VE COMMANDS' 
Two commands, SAVE and UNSA VE, may be used to change 

the contents of the system storage area. Because the amount of stor­
age space is limited, and to prevent accidental erasure of stored 

7-15 



programs, both SAVE and UN SA VE are privileged commands. 
During normal system operation they are disabled. SAVE and UN­
SAVE may only be used after a successful PRIVILEGE command 
has been executed. 

The SAVE command stores the programs currently in memory 
on the system storage area (DECtape or DECdisk) and gives it the 
name specified by the last NEW, OLD, or NAME command. Any 
existing program stored under this name is deleted. Thus, all stored 
programs have names which may be used to recall th,em in the fu­
ture. If a SAVE is attempted when the privileged commands are 
disabled, the system prints WHAT? and ignores the command. If 
a S'Uccessful PRIVILEGE command has been executed, but the 
storage area is full, the message NO SPACE is printed and the 
program is not stored. 

The UNSA VE command is used to delete a program already 
stored. UNSA VE must be preceded by a NEW, OLD, or NAME 
command which specifies the name of the file to be deleted. The 
user must be certain to use exactly the same program name as he 
used when be first identified the program. Like SAVE, UNSA VE 
is ignored unless preceded by a successful PRIV ILEGE command. 
If the program to be deleted does not exist in the system storage 
area, the message FILE NOT SAVED is printed and no program 
is deleted. 

CATALOG COMMAND 
The CATALOG command may be used to obtain a list of the 

names of all programs available in the system storage area. The 
CATALOG list includes the number of storage blocks used by the 
program. A standard EduSystem 30 includes 116 blocks of storage 
space (for nonstandard systems, see Calculating Available Stor­
age). The CATALOG command may be used to determine how 
many of these blocks have been used and, hence, how many are 
free. 

LENGTH COMMAND 
If the system storage space is almost full and another program is 

to be saved, the LENGTH command may be used to determine if 
there is room to store the current program. If space is not available, 
an existing· program must be deleted. In all cases, the maximum 
number of stored programs, regardless of size or storage device, 
is 62. 

7-16 



OLD COMMAND 
The user may load programs stored in the system storage area at 

any time by typing the OLD command. After the OLD command 
is entered, the system prints OLD PROGRAM NAME. The user 
then types the name of the program to be loaded. The user must 
be certain to use exactly the same program name as he used when 
he first identified the program. 

Returning to Batch Mode 
At the end of an inte.ractive session, the system is ready for 

further batch processing. When the system prints READY, the 
BATCH or STACK command may be used to begin a batch run. 

Program Editing 
There are two times when a program may require editing pro­

cedures. The first occurs while a lirie is being typed but before the 
_ RETURN key is pressed. The second occurs when a line has been 

completely typed and the RETURN key has been pressed. Each 
situation has its own editing procedures. 
Procedure 1 : Before the RETURN key is pressed. 

Three keys may be used to correct typing errors: ALT MODE 
(or ESCAPE), -E- (back arrow), or RUBOUT~ 

AL T MODE (or ESCAPE) is used to delete an entire line. 
When this key is used,BASIC prints DELETED, erases that 
line from the program, and returns the carriage so that the 
line may be retyped. 
-E- (back arrow), SHIFT /0 on the lceyboard, or RUBOUT is 
used to delete a character from a line. BASIC prints the back 
arrow, deleting the last character from that line. More than 
one back arrow deletes more than one character, in reverse 
order. 

Procedure 2: After .the RETURN key is pressed. 
Once a line of the program has been transmitted to computer 

memory via the RETURN key, several methods of correction may 
be used. Lines may be i~serted, deleted, changed, or renumbered. 

INSERTION: To add a line to a program, assign a line num­
ber that falls between two existing lines" type the line number 
and text, and press RETURN. 

7-17 



DELETION: To erase a line from computer memory, type 
the line number only and press the RETURN key. 
CHANGE: To change an individual line, simply retype it. 
The old instruction is replaced by the new one. 
RENUMBER: Occasionally, repeated editing and insertions 
result in there being no more room in an area of a program 
to insert new lines. It is then necessary to spread out the line 
numbers so there is room for new ins~rtions. The RESE­
QUENCE command is used for this purpose. To renumber a 
program, type the RESEQUENCE command. This command 
changes the first line's number to 100 and renumbers each 
succeeding line wjth an increment of 10. RESEQUENCE also 
automatically changes all GOTO, GOSUB, and IF statements 
to correspond to the new line numbers. 

WRITING AND RUNNING CARD PROGRAMS 
·W:riting a ]~r()gram on Cards 

Programs to be submitted to Edu~ stem 30 are first transcribed 
onto specially formatted BASIC carl s. These cards are preprinted 
with a series of small rectangular b xes. Each card has 39 columns 
of boxes, with the column num r printed along the lower edge. 
Figure 7-1 illustrate,s a BASIC cfd. 

""II"""""""""'1""T Irnrnrnrnrnrnrnillillillrnillrnrnrnrnrnrnrnrnrnrnillrnrnrnrnrnrnillillmill~ 
Irnrnrnrnrnillrnillrnrnillrnrnrnrnrnmrnrnrnillrnillillrnillrnrnrnillillillill~ 

~~~D~D~"-' ~ ... h'~~~~~ffiffi~ffiffiffiffi~ffiffiffiffiffi~ffi~ffiffi~ffiffi~~~ffiffiffiffi~ 
fiJ [iJ [i] "J ~ 'I ~ (j] ~m. IJ leu ernrnu oo..fiiJ 91ft;] m [ilJ [ij] (j] ~ [1] ill [1] ~ ~
:lJ W ru 'J ·f,.'1 ['fj [jJ l] , ilbD:lllj I)] I ern to OJ tdlUlJ ~l Ell L'll [] [jJ Ell OJ ~l ~ ~
I] m 3 ... , ,f· llj ~ rll ~ ~ ~ [j] ~J ~ 00 Ell ~J [1J ~ Ell t~ ~ rn ~ !1l E!l 00 E!l ~ ru crJ ~ [ij] [ij] Ell EiJ [!!J t!l f1] 8

. 00 4. ")"',,,f, 'n EiJ BJ I1l EiJ D Im~~ fl] B .oltn E!J tlj ffi ~ EiJ EiJ EiJ EiJ EiJ t:!] Ell ~
ill@] @J "" F 'IJ f1] f1J Ell ~ I!lftifiJtn1I~ ~l MOftU ffi Ell ~ [t l'lJ ~ Ell Ell Ell ~ ~ 8
~OOOO- ~~ffi~BJBJBJmm~ffi~~ffi~~BJEiJBJ~~~~~~~ffi~BJ~~~~~~~
00 7 r~~1~~E!lE!l~mmE!lm[ij]OOrnE!lffirn(j][ij][ij]rllE!l~ffirnffi~~[ij][ij](j]~E!lE!l[ij]S
l!lOO 8 "'''.&, ffi~~~[;Jffiffi~OO~~~~~~ffi~~~l1]fj]l1]~~OO~~~~l1]~~~ ~
@]~ 9 .' 'ffi~~~ffiffi~]ffiOO~~[;][;]OO~~OO~~[j]ffi~[;j~OO[;J~~ffi~~~~ *
I 2 3 4 • 1 IU II II 12 1l!J4!J5IJIII1!J1I 1m! 211221231241251211211211211301311321331341 351311311311311

Figure 7-1. EduSystem 30 BASIC Card

Program statements are written onto e BASIC cards by mark­
ing these boxes with ordinary lead penc . Each box is marked with
a single heavy line, drawn either verti ally or diagonally. It is not
necessary to fill in the entire box. Av, id making any stray marks,

7-18 f
f

as the- computer reads all marks on the card, whether or not they
occur inside a box. Any stray marks cause the computer to misread
the card. A program to be submitted to EduSystem 30 is marked
on a series of these cards; each program statement is placed on a
separate card.

LINE NUMBERS
The first item of each program statement to be marked on the

card is the line number. All program statements must have line
. numbers from 1 to 999. The line number is marked in the leftmost
three columns of the card. In each of these columns are 10 boxes
containing the digits 0 through 9. (Above these numbered boxes
are six other bo:xes which are never marked as part of a program
statement. They are used as control cards and are explained later.) -

The user marks an appropriate digit in each of three columns.
If the line number is only one or two digits, it can be marked in
any of the three columns. Blank line number columns are ignored.
Figure 7-2 shows a card marked with the line number 120~

Figure 7-2. Line Number Example

Line numbers should be marked on cards in "the order in which
program statements are to be executed: the lowest line number on
the first cay;d, the highest line number (the END statement) on the
last card. If the cards are not physically qrdered by line number
within the card deck, EduSystem 30 still executes the program in
line-number order. The only time when- the order of the cards is
important is when two cards have the same line number. In that

7-19

case, only the last card in the deck which has that line number is
used in the program.

BASIC STATEMENTS
BASIC statement types are marked after the line number, in

column 4 or 5, within the outliI1ed area. Each box in this area
represents a single BASIC statement; thus, one mark in the approp­
riate box indicates the corresponding statement type. It is not nec­
essary to spell out the statement. Since each statement is marked
on a separate card, each program card should have only one mark
in column 4 or 5. In Figure 7-3, the LET box has been marked.
Line 120 is, therefore, a LET statement. (The implied LET can­
not be used with card programs.)

Figure 7-3. Statement Example

STATEMENT OPERAND
The line number and statement type are marked in specific sec­

tions of the card. The remaindec of a statement, the statement
operand, is marked in a different manner in columns 6 through 39.
The first step in this process is to write the remaining characters of
the line in the boxes across the top of the card, one character to a
box, starting in column 6. The boxes below each of these cqaracters
are then marked with the aid of the BASIC template, a~ shown in
Figure 7-4.

7-20

+ - II I t

$&OEFIA()<>

o? ! G H 110 B -It; 0

: J K L IG E C'II , 1

2 M N 0 1 J H F \ 2

3 paR 1 M K I [3

4 STU 1 P N L $ I 4

5 + V w· x 1 sao 7 & 5

Il - (y z . 1 v T R : ! 6

7 ...) - . 1 Y W U 7 .
8 I < It ." 1 . z X 8

9 t > ; , \ I . 9

• •

EDUSYSTEM-30
BASIC TEMPLATE

momODma
Maynard, Massachusetts

Figure 7-4. EduSystem 30 BASIC Template

The template has a column of holes down the center with the
characters used in writing an operand printed on either side. All
characters are printed twice on the template, once on the left and
once on the right. The top hole in the template corresponds to the
blank boxes at the top edge of the card where the characters of the
operand were written. The bottom pair of holes correspond to
the row of heavy black marks along the lower edge of each card.
The twelve holes in between correspond to the twelve boxes in
eachcard column.

The following procedure is used to mark the statement operand
characters:

11, Place the template on the card so that the character to
be marked appears in the top box of the template and the
two black marks appear in the bottom pair of holes.

2 .. If the character is a digit (0 to 9), find that digit on
either side of the template and mark the one box which
is beside that digit.

7-21

3. If the character is not a digit, find the two occurrences
of that character on the template, one on the left and one
on the right. Mark the two boxes which are beside these
characters.

4. If the character is a space, make no marks.

An example of the marking procedure is shown in Figure 7-5.

EDUSYSTEM-30
BASIC TEMPLATE (

mamDDma
Maynard. Massachusetts

Figure 7-5. Marking the Statement Operand

,I'

SUMMARY OF CARD MARKING PROCEDURE
A completed card is :tnarked in three places:

1. Columns 1 through 3 to mark the lin.e number.
2. Column 4 or 5 to indicate the BASIC statement type.
3. Columns 6 through 39 to indicate the statement operand,

as w!itten across the top of the card.

Figure 7-6 shows two examples of completed cards.

7-22

Figure 7-6. Completed BASIC Cards

Submitting a Program to be Run
When all statements of a program have been marked on cards,

the cards are collected into a single deck for submission to the
computer. However, in addition to the deck of program cards,
the computer must be given the program name and explicitly in­
structed to execute the program. Special cards, called control
~ards, are added to program deck for this purpose. Control cards
are not part of the actual program. They do not have line numbers
and are placed ~t the beginning and end of the program deck.

7-23

THE NEW CARD
The first card of any deck submitted to the computer must be a

NEW card or an OLD card4 (see Using a Stored Program), which
contains the name of the program. Any cards in a deck which
come before a NEW, or OLD, card are ignored. If no NEW, or
OLD, card is included in the deck, the entire program is ignored.
A NEW card has a single mark in the NEW box in the upper
left-hand corner of the card. It has no other marks in columns 1
through 5. The name of the program, which can be 1 to 6 char­
acters long, is marked using the template and starting in column 6.
The remaining columns of the NEW card, starting in column 12,
should be used to mark identifying information such as the name
of the programmer.

THE LIST CARD
When the computer reads a program, it reads the marks in the

columns rather than the characters printed across the top of the
card. If the columns below each character are accurately marked,
the computer reads the card as intended. Erroneous marks, how­
ever, cause, the computer to read the statements incorrectly. It is
useful to obtain a printed listing of the program exactly as it
was read by the computer. The LIST command instructs the com­
puter to print such a listing. A LIST card contains a single mark in
the LIST box, the topmost box in column 3. The LIST card
should be placed after the program deck,· immediately before the
RUN card.

THE RUN CARD
Each program deck submitted to the computer must have a

RUN card following the last program card. A RUN card has a
single mark in the RUN box, the topmost box in column 2. The
RUN card is the signal for the computer to execute the program.
If a program deck has no RUN card, the program is loaded into
the computer but never executed. The RUN card is normally the
last card in the deck.

4 Since the NEW (or OLD) card is the first card in the deck, it is often
marked on a colored card to make it easy to spot the beginning of sepa­
rate programs in a stack of many programs. Control cards can be easily
identified if the system manager runs a felt-tip marker over the tops of a
box of cards and makes these cards available to students for use as con­
trol cards.

7-24

SUMMARY
~

A complete program deck, ready to be run by the computer,
consists of the complete set of program cards preceded by a NEW·
card and followed by a LIST and/or a RUN card. If other con­
trol cards are being used, they may be iriserted as necessary. Con­
trol cards should be placed before or after the program deck,
not inserted within it. This complete deck is then submitted to the
computer operator to be run. (If there is no system operator, each
student must run his own program through the computer as
described under Executing Card Programs.) Figure 7-7 shows a
BASIC program deck. .

0

'" 2
UJ
t-
V>
>-
III
:::>
CI
UJ

.,:

'" 0

.,: u,

'"
,..:

0 11.
U 0

'" ,..: -' 11. < 0 !:: '" -' £!
< Q

t3
i5

Figure 7-7. BASIC Program Deck

Getting the Results of a Computer Run
Whenever EduSystem 30 processes a card program, it prints

the results of that run on the Teletype. The ,format of this output
is as follows:

\

1. Beginning of Output-A row of dashes (- - - -'- -)
is printed to indicate the beginning of program output
and thus separate each program from the output of the
previous program.

2. Identification Line-The information on the NEW card
is printed at the top of the first page of output. This in­
formation usually includes the name of the program and
the name of the programmer.

7-25

3. Program Listing-If a LIST card is included directly
after the program deck, a listing of all statements in the
program is printed. It is preceded by a header line which
includes the name of the program and a short message
selected by the system operator.

4. Program Output-If a RUN card is included at the end
of the deck, the program is executed. The results of all
PRINT statements are printed as program output. The
printed program output is preceded by the same header
as the program listing.

Using a Stored Program
In all previous examples the program to be executed is sub­

mitted on a card deck. The NEW card at the front of the deck
indicates that the program to be run is a new one (i.e., a pro­
gram the computer does not already have stored away) and that
it is contained in the cards which follow the NEW card. The
computer is also capable of storing programs for future use.
Stored programs are considered -to be old programs. They do not
have to be submitted on cards each time they are run.

An OLD card is used to call a program which has been stored
in the system previously. The OLD card has a single mark in the
OLD box in column 1 of the card. All programs stored within
the system have names. The name of the old program to be used
must be marked starting in column 6. The user must be certain
to use exactly the same program name as he used when he first
identified the program. For example, blanks which preceded the
program name or appear in the name itself must be included. The
OLD card is used instead of a NEW card; it is, therefore, the first
card in the deck. Like the NEW card, it should have identifying
information coded in the columns after the program name. (Like
the NEW card, OLD is often marked on a colored card.)

Since the program is already stored in the system, the OLD
card need not be followed by a program deck. The next card
can be the RUN card. Two cards, an OLD card followed by a
RUN card, are all that is needed to run a stored program. If the
user wishes to supply some of his own input data to an OLD
program, this data is marked as regular DATA statement cards.
These DATA cards are placed between the OLD card and the

7-26

RuN card. They 'are merged into the stored program before it is
executed. 5

Interacting With the Operator
If card programs are being run under the supervision of a sys­

tem operator, he may be requested to perform certain functions,
such as entering data or making minor modifications to the
program.

An OPR card is used to communicate with the operator. An
OPR card has a single mark in the OPR box in column 4 of the
card. Any message can be marked in columns 6 through 39. When
an OPR card is encountered in a program deck, the· message in
columns 6 through 39 is printed and a bell rings to alert the
operator.

Normally, the OPR card is used to request the operator to per­
form some function which a card user cannot perform directly.
Operations such as saving programs in the system storage area
can only be done by typing commands at the Teletype.

A KEY card is used to have the computer pause so that the
operator can type one or more commands. The KEY card con­
tains a 'single mark in the KEY box in column 2 of the card; it
should be the last card in the deck. KEY should, of course, be
preceded by one or more OPR cards, telling the operator what
to do when the computer pauses. For example, BASIC programs
can request data from the operator. An INPUT statement is used
to request data from the Teletype, such as the current date.

Editing and Rerunning a Program
After a program has been executed by means of a RUN card,

it is still available in core memory and may be modified and/or
run a second time. New lines, or new data, may be added to the
program, or, may replace existing program statements. Any pro­
gram lines to be added should follow the first RUN card. After
these new cards, a second RUN card should be included. The

5 The DATA statements submitted on cards must have line numbers which
differ from the line numbers of the stored program. Otherwise, these
DATA statements will replace program statements. Also a stored pro­
gram which is to be used with card data should have no DATA state­
ments of its own.

7-27

number of RUN cards allowed per deck IS set by the system
operator and is normally two.

Inserting Messages in the Program Printout
One line messages can be inserted into program output by

using an MSG card. An MSG card has a single mark in the MSG.
box in column 3 of the card. Columns 6 through 39 can contain
any message. This message is printed as part of the program output.

Sample Program
The following sample program demonstrates the use of Edu­

System 30 as a computational tool by students who have no knowl­
edge of computer programming. The program is already stored in
the computer.

PROBLEM
Students in a physics class are performing a lab experiment

whose results require very lengthy data reduction. Rather than
have each student perform these· calculations manually, the in­
structor wrote a program to do it and stored the program under
the name LAB3 7. This program has no line numbers between
900 and 950. Each student is to prepare a deck containing his
data, in some predefined order with line numbers between 900
and 950, and submit it to the computer.

PROCEDURES
Each student prepares a deck containing his data and submits

it to the computer. The decks are prepared in the following manner:

1. Each student writes his lab data values across the top
of one or more cards, starting in column 6. Values on any
one card are separated by a comma.

2. When all data values have been obtained, the student
completes the marking of the data cards. The DATA
box in column 5 of each card is marked. The first card
is marked with line number 900 in columns 1 to 3. Suc­
ceeding cards are given line numbers 901, 902, etc.
Finally, using a template, the student fills in the boxes in
columns 6 through 39.

3. An OLD card is marked with a single mark in the OLD
box, the program name LAB37 in col.umns 6-10, and the
student's name after column 11. The OLD card is placed

7-28

before the data deck. Next a RUN card, with a single
mark in RUN box is placed behind the deck. These cards
are then submitted to the computer.

PRINTED RESULTS
The following is a sample printout of the results of one student's

input to the LAB37 _program:

OLD LAB37 A. EINSTEIN

RUN

LAB37 EDUBASIC

DATA SET I 1

SAMPLE SIZE = 12
SUM = 444
MEAN = 37
STD. DEVIATION = 7.51665

DATA SET /I 2

SAt1PLE SIZE = 8
SUM = 32.7
MEAN = 4.0875
STD. DEVIATION

PHYSICS 1

~~,~
,

"if -_/- I
/

EXECUT -.-.'
- Once" EduSystem 3 as een oaded"and started, it is available

for processing program decks (if the batch capability was retained
at system load time). It is not necessary to reload or restart the
system each time it is used.
-~--,.,. "'>

~---------- \
Perform the following operations to process batch (multiple'

programs) of marked cards. Collect all programs to be run into a i
single deck. Any number of programs may be included so long as I
the deck fits into the card reader (maximum of 400 cards). ,i

i
1. Arrange all cards so that they face in the same direction. f
2. Place the deck in the reader, face down with the row of !

black marks on the bottom of each card placed inward ,r

toward the back of the reader.

7-29

3. Ensure that the reader power switch is ON, then press
the START button. At this time, all red lights on the
card reader conttol panel should be off; the single green
light should be on.

4. Type BATCH. The BATCH command is used to com­
mence processing of the entire batch of programs loaded
into the reader.

Once a batch run is initiated, it continues until all cards have been
processed. EduSystem 30 then asks:

MORE CARDS?

5. Type N if no more programs are to be executed during
this run. EduSystem 30 concludes the batch run by typing
READY. If more programs are to be executed, con­
tinue at steR 6.

6. Place the. additional program cards in the reader, then
press S!ART. Respond to the MORE CARDS? question
by typing Y. The batch operation restarts.

All output from a batch is printed at the Teletype (or possibly
on a line printer, see Using Optional Hardware). The output of
individual programs is separated by rows of dashes (- - - - - -) ..

Executing Card Programs Individually
EduSystem 30. may be used as a system in which each user

loads and executes his own card program. The system is started
exactly as it is for a batch run; the BATCH command is typed,
even though no cards are in the reader. The system, finding no
cards, asks:

MORE CARDS?

At this time the system is ready to accommodate a single user
with a card deck. The single user can proceed with the op-erating
procedures· described under Normal Batch Operation. When all "
cards have been processed, the system again asks:

MORE CARDS?

7-30

The user may then tear off his program output and leave the sys­
tem ready for the next user.

Controlling a Batch Run
A batch operator may control the execution of card programs.

CTRL/C may be typed at any time to terminate a program run
and automatically continue with the next program. CTRL/C does
not interrupt the loading of a program, only its execution or list­
ing. When CTRL/C is used to terminate program execution, the
message STOPPED BY OPERATOR is printed.

The AL T MODE key (labeled ESC on some terminals) may
be used to interrupt the system while it is reading cards (i.e., halt
the batch operation) and allow the operator to type commands
at the Teletype. The operator can then type BATCH to begin
processing of the next program in the deck.

Several optional commands (BATCH, MAX, 'HEADER,
ST ACK, and LOG) are available to modify and control a batch
run. All of these commands are privileged commands (see Privi­
leged Control Commands). They can be used only if privileged
command capability was retained at system load time and if the
user knows the correct password.

BATCH COMMAND
In the privileged mode, the BATCH command may be followed

by a single space and an integer which is less than 4000. For
example:

BATCH 20

This number is the maximum number of RUN commands which
may be executed by any single program deck. If privileged com­
mands are not enabled or if no number is specified, the BATCH
command is executed and 2 is the number of RUN commands
(cards) allowed per program.

\, MAX COMMAND
Occasionally, a program is submitted which does not terminate.

It will run indefinitely (in a loop) and delay the execution. of
other programs until the operator stops it The MAX command
can be used to automatically terminate programs which run too
long. MAX defines the maximum number of BASIC program

7-31 •

statements which may be executed in a program. The system
counts instructions in units of 200. Thus, the limit set by the
MAX command is the number of 200 instruction units which are
allowed per program. If very small programs are being run, a
MAX of 10, allowing execution of 2000 statements, is reasonable.
This command is typed as follows:

MAX 10

More complex programs need to execute more than 2000 state­
ments. In this case, a correspondingly higher limit should be set.
If no MAX is set, or if the operand of MAX is 0, programs may
be run indefinitely. A MAX limit is only in effect for the suc­
ceeding batch run. If the program being run executes a CHAIN
instruction, the instruction count is restarted.

HEADER COMMAND
Before running or listing a program, the system prints a header

line consisting of the name of the program followed by the message
EDU BASIC. The HEADER command may be used to change
this message to any new header composed of 1 to 12 characters.
The new header is then used for all programs in the next batch
run. Thus, this command can be used to identify the programs in
that batch. For example, if a batch consists of all the programs

\ from a given class, the name of the class or of the instructor might
be used for the header. To use the HEADER command, type
HEADER and press RETURN; then type the new header message
and press RETURN again. For example:

HEADER
PHYSICS 101

STACK COMMAND
The KEY command and the INPUT statement may be used by

a card program to interact with the operator, as described pre­
viously. When a batch is being processed unattended, these com­
mands stop program execution. Therefore, the STACK command
is available to start up an unattended batch run. The STACK
command makes all INPUT and KEY instructions illegal and
causes processing of card programs to begin. Like the BATCH
command in privileged mode, the STACK command may be fol­
lowed by a space and an integer which specifies the number of

• 7-32

RUN commands allowed per program. For example, if the STACK
command is typed as: ..

STACK 4

it allows any program to be executed four times. This number is
2 by default if not explicitly specified or if the system is not in
privileged mode. Execution of BATCH, STACK, NEW, or OLD
commancis automatically locks out the privileged instructions. Sub­
sequent privileged instructions must be preceded by a successful
PRIVILEGE command.

LOG COMMAND
As programs are run, a system log is created which contains

a record of all the programs which have been run. More specif­
ically, the log retains all information included on the NEW or OLD
card which precedes each program deck. NEVv' or OLD cards
generally contain such information as the name and cl.ass of the
student who submitted the program. The privileged command LOG
may be used to obtain a printed listing of this log.

If a very large number of programs are run before the log is
printed, or if the amount of space reserved for the log when the 1\
system was loaded is small, the log may become full; if this hap- (\) i

pens, the log is automatically printed at that time without a LOG:\
command being given. .._, _. __ .. __ ~.. (. \\

~- --'---.',-----.. ' .. ,., ' ·'-~---l'··~
Hands-On Interaction Versus Batch

If the user wishes to get maximum throughput of student pro- ,
grams, he should use the ST ACK command. However, if the I
user wishes' to allow hands-on student int(~raction with a hign f
throughput, he uses the BATCH command and implements the I
plan outlined below. I

Most student interaction in programming occurs during debug- I
ging. The EduSystem 30 BATCH command allows the user to I
mix hand-on use with high throughput. Typing BATCH with no
following number allows each program to be run a maximum of
two' tiines. A programming class use of EduSystem 30 is op­
timized by ,entering cards in the following order:

NEW program name student, class
caId deck

7-33

LIST card
RUN card
KEY card

EduSystem 30 reads 'the deck, lists the program, and attempts
execution. The student's error messages print at this time, if errors
occur, and the KEY card allows the student to sit down at the
terminal and correct the errors on-line. When errors have been
corrected, the student types his second RUN,. getting his second
attempt at execution. Upon completion of the second RUN, Edu­
System 30 automatically reads the next student's cards.

This use of BATCH with the KEY cards allows each student
two successive attempts at a successful RUN and brings much
of the excitement of interaction into the EduSystem 30 batch
operation.

ERROR MESSAGES
Some programs execute' correctly the first time they are tried.

Most others, especially if they are at all complex, have errors in
them. EduSystem 30 checks all statements and commands when
they are entered (on cards or from the interactive terminal) and
before executing them. If it cannot execute a statement or com­
mand, the system informs the user by printing one of the following
types of messages. .

Batch Mode Program Loading Errors
The following messages are printed if errors occur while BASIC

is loading a card program.

Message . Explanation

BAD CHARACTER One or more characters on a card were· not
understood. The character % replaces any
unreadable character. The information on the
card is processed if possible. This error does
not cause any subsequent RUN commands

I to be ignored.
BAD CHARACTER- Same as BAD CHARACTER message except
LINE NOT USED that the information on the card is ignored.

This error does cause subsequent RUN com-
mands to be ignored. .

WHAT? Line does not make sense to the system. It
does not begin with a line number and is not
a valid system command or statement;

7-34

Message

NO ROOM

FILE NOT SAVED

FILE TOO BIG
FOR BATCH MODE

Explanation

The program is too large to be loaded, i.e.,
it is greater than 5000 characters. Larger pro­
grams should be run in interactive mode or
CHAINed.
The progra~ named on an OLD control card
is not available in the system storage area.
The program named on an OLD card is too
large to be run in batch mode. It mus(be run
interactively.

Interactive Mode Program Loading ErrorsH

As each line is typed, EduSystem 30 checks it for program load­
ing errors. If it finds an eqor, it prints one of the following error
messages immediately after the erroneous line.

Message

WHAT?

LINE NO. TOO BIG

LINE TOO LONG
NO ROOM
FILE NOT SAVED

NO SPACE

Bell

I/O ERROR

INVALID
PASSWORD

Explanation

Line does not make sense' to the system. It
does not begin with a line number and is not
a valid system command.
The line number of a line or the' argument of
a system command is greater than 4095.
Line just entered is longer than 80 characters.
There is no room to store the line just entered.
The program named as the operand of an
OLD command was not previously saved on
the system device.
There is not enough space on the DECtape
to SAVE the current program.
If an invalid character is entered, the Tele­
type bell rings and the character is ignored.
An input or output error occurred on the
DECtape unit. Be sure that the unit is on-line,
write-enabled, and the unit number is set cor­
rectly. Retry whatever was interrupted by the
error. If the problem persists, there is a hard­
ware problem. Contact the system adminis­
trator or DEC field service.
The password typed after a PRIVILEGE
command is not the system password. Privi­
leged mode is not entered.

6 To correct program loading and coding errors indicated by these messages,
the appropriate line in the program must be corrected in the manner de­
scribed in the Program Editing section, Procedure 2.

7-35

Coding Errors 7

After the RUN (or RUNNH) command is entered, EduSystem
30 checks each statement before executing it for mistakes in the
BASIC program coding. If the system cannot execute a statement,
it informs the user by printing one of the following messages and
the line number in which the error was found.

Message

CH
'EN

FN

Fa

LI

M1
M2

NE

PC

RO

S1
S2

ST

TB

Explanation

There is an illegal character in the line.
Program does not have an END statement as the last line
in the program.
Not enough NEXT statements in the program. There must
be a NEXT statement for each FOR statemellt in the pro­
gram.
FOR and NEXT statements do not match. There is a
NEXT statement: in the program whose variable is not the
same as the variable in the corresponding FOR statement.
Line contains an improperly written decimal number or
constant.. It may, for example, have two decimal points or
have an alphabetic character in it.
The program as a whole is too big to be run by the sys- .
tern. Making the program smaller, reducing the size of .
subscripted variables, or using the NOLINE command
may help.
Program has too many (more than 8) FOR-NEXT loops
one within another.
Line contains an improperly used parenthesis. Generally,
the problem is an expression which does not have an equal
number of left and right parentheses.
Statement contains an invalid relational operator _ «, =,
>, <=, >=). Relational operators may only be used in IF
statements.
Statement as a whole is not properly written and, as a re­
sult, does not conform to proper BASIC syntax. For ex­
ample, a semicolon is aHowed in a PRINT statement but
not in a READ or INPUT statement.
Statement word is not one of' the legal BASIC statement
types.
The program is too big to be run. Cause is usually an ex­
tremely large number of PRINT statements.

7 To correct the program loading and coding errors indicated by the
messages, the appropriate' line in the program must be corrected in the
manner described in the Program Editing section, Procedure 2.

7-36

Message

TO

UL

UQ

Explanation

Program :is either too large or too complex to be run. The
total number of variables, constants, functions, and line
numbers should be reduced, if possible.
A GOSUB, GOTO, or IF statement contains a line number
which does not exist.
A quotation mark indicating the beginning of a 'String of
text does not have a corresponding quotation mark at the
end of the text string.

Program Logic Errors8

Some errors do not show up until the program is actually exe­
cuted. An example of this type of error is an expression which uses
a square root of a variable. If, when this square root is actually
calculated, the variable has a negative value, a program logic error
has occurred. EduSystem 30 prints the following messages if pro­
gram logic errors occur.

Message Explanation

CH A CHAIN statement tried to chain to a program which
was not available in the DECtape storage area.

CO Program ran too long and was automatically stopped by
the system.

DA The program ran out of data. It attempted to do a READ
after all data had been read.

DO The program attempted to divide by zero. Instead of divid­
ing by zero, BASIC divides by the smallest possible num­
ber, giving a result of about 10500• This error does not
cause the program to stop.

FN An expression coptains a function which was not defined
in a DEF statement.

GS The program is too complex to be executed. The problem
is generally that too many subroutines have themselves
executed GOSUB instructions.

LG Program attempted to take the logarithm of a negative
number or zero.

RE A RETURN statement was used outside of ;a subroutine
or a subroutine was entered by a GOTO instead of a
GOSUB.

SP See GS.

8 Some program logic errors may be corrected by the method described
in the Program Editing section, Procedure 2. Most, however, necessitate
the rewriting of the program.

7-37

Message Explanation

SQ Program attempted to take the square root of a negative
number. BASIC automatically takes the square root of the
absolute value of the number instead. This error does not
cause the program to stop.

SS Program used a sUbscript which was too big for the vari­
able. The maximum size of a subscript is specified in a
DIM'statement.

WR There is no r,oom to write data. The program attempted to
do a WRITE statement when the data list was full. (Note
that if this error occurs, the program text will no longer
be intact. A NEW, OLD, or SCRATCH command must
be used to clear the program area.)

OPERATING INSTRUCTIONS
Loading EduSystem 30'

The EduSystem 30 software is supplied on a paper tape. This
tape must be loaded into computer memory when the system is first
installed. Once loaded, the software need not be reloaded. Perform
the following procedures to load the EduSystem 30 software.

INITIALIZE THE DECDISK
If the system device is DECdisk, perform the following steps to

prepare the disk for software loading:

1. Ensure that the disk unit is on (red light illuminated in­
side the back of the computer cabinet) .

2. Ensure that all disk protect switches (located inside the
front of the computer cabinet) are III the off (down)
position.

INITIALIZE THE DECT APE UNIT
If the system device is a DECtape unit, perform the following

steps to prepare the unit for software loading.

1. Set the REMOTE/OFF/LOCAL switch to OFF.
2. Place a DECtape on the left spindle with the DECtape

label out.
3. Wind four turns of tape onto the empty reel on the right

spindle.
4. Set the REMOTE/OFF/LOCAL switch to LOCAL.
S. Wind a few turns of tape onto the right spindle reel with

the ~ switch to ensure that the tape is properly mounted.

7-38

6. Dial 0 on the unit selector dial.
7. Set the REMOTE/OFF/LOCAL switch to REMOTE.
8. Set the WRITE ENABLE/WRITE LOCK switch to

WRITE ENABLE.

INITIALIZE COl\1PUTER MEMORY
The EduSystem 30 software tape may be loaded into memory in

one of two ways: with an automatic loader (hardware bootstraps)
or with the Read-In Mode (RIM) loader program. The following
loading instructions are for an EduSystem 30 that includes a hard­
ware bootstrap. If the EduSystem does not have a hardware boot­
strap, see Appendix A for instructions on using the RIM loader.

1. Turn the key lock on the computer console to POWER.
2. Turn the Teletype to LINE.
3. Place the EduSystem 30 tape in the appropriate reader

(high-speed or Teletype) with the leader code (ASCII
. 200) over the read head.

4. Set the SWITCH REGISTER (SR) to 5356 (octal).9
5. Press and raise the HALT switch.
6. Turn on the appropriate paper tape reader.
7. Press and raise the SW switch.

The tape should begin to move. If it does not, ensure that the
correct tape is being used and that tape is positioned. over the read
head. Repeat the above procedures.

System Building Dialog
When a portion of the EDUSYSTEM-30 paper tape has been

read, BASIC prints a series of questions (see Figure 7-8) con­
cerning the system configuration. The user responds by typing Y
for yes and N for no, followed by the RETURN key. The first
question is:

STANDARD SYSTEM?

EduSystem 30 has several optional operating modes and may be
used with a variety of hardware components. A response of Y to
the above question causes EduSystem 30 to build a system as it

9 An explanation of the octal. or base 8, number system is included in
Introduction to Programming 1972.

7-39

would if the following answers were given to the other system
building questions:

IS SYSTEM DEVICE A DF32 IHSK?Y
HOW MANY DISKS?1
DO YOU WANT BATCH CAPABILITIES?Y
HOW MANY BLOCKS FOR LOG?6
BATCH INPUT ON PUNCHED CARDS?N
DO YOU WANT PRIVILEGED COMMAND CAPA8ILITY?Y
TYPE INITIAL PASSWORD (EDU-BASIC)
DO THE FOLLOWING EXIST:

HIGH-SPEED PUNCH?N
LP08 PRINTER?N

Basic then asks:

PROGRAM LIBRARY INITIALLY EMPTY?

The user respondsY if there are no programs to be saved on the
system device. If programs are to be saved, the response must be
N and the questions in boxes 1 through 8 of Figure 7-8 must be
answered in the same way as \Yhen the system was built.

If the user types N in response to the question STANDARD
SYSTEM?, EduSystem 30 recognizes that a nonstandard system is
being loaded and asks the following questions:

IS SYSTEM DEVICE A DF32. DISK?

f TC01 DECTAPE?

RF(ilJ8 DISK?

LINCTAPE?

TO BE DECTAPE?

This series of questions is asked only until a response of Y is
typed. If the device being described is not the one being used in
the system, the user responds ,by typing N. If the system device is
a disk, either DF32 or RF08, the system asks:

HOW MANY DISKS?

The user responds by typing the number of disk surfaces available
in the system (1, 2, 3, or 4) and then typing the RETURN key.

If the system device is TD8E DECtape, the system asks:

7-40

DO YOU HAVE A TDBE ROM?

Respond Y if the system has a TD8E Read-Only Memory. If the
response is N, the system asks:

8K OF CORE?

If the system device is DECtape, the system must include either
a TD8E ROM (TD8E DECtape only) or 8K of core memory. If
the response to the previous question was Y, this question is not
asked.

EduSystem 30 then asks:

DO YOU WANT BATCH CAPABILITIES?

If. the system is to process card programs, respond Y. If it is only
to be used as an interactive system, respond N. If batch capability
is selected, the system then asks:

HOW MANY BLOCKS FOR LOG?

The log is a stored record of system usage which records the
name of all programs submitted for execution. The larger it is:. the
more program runs may be recorded before the log becomes full
and must be printed. The log may be from 0 (no log at all) to 22
blocks of disk storage. Each block will hold the record of approxi­
mately 10 to 20 programs. Respond by typing the number of blocks
to be reserved for the batch log, then typing the RETURN key. The
system then asks:

BATCH INPUT ON PUNCHED CARDS?

Respond N if the batch input is to be coded with the EduSystem
30 template on the standard 39-column EduSystem 30 mark-sense
cards. Respond Y if input will be on cards punche4 using a key­
punch.

The system then asks:

MAXIMUM DATA COLUMNS PER CARD?

7-41

The maximum allowable response to this question depends upon
the type of reader used: the punched-card reader has a maximum
of 80 columns per card; the mark-sense reader maximum is 40
columns per card. See Using Optional Hardware for more infor­
mation on preparing cards using a keypunch.

Next, the system asks:

DO YOU WANT PRIVILEGED COMMAND CAPABILITY?

The privileged command capability prevents unauthorized users
from executing certain critical system commands. To establish this
protection, type Y.

The system then prints:

. TYPE INITIAL PASSWORD

The password is a special code which must be known in order to
use privileged commands. It is up to six characters long. Respond
by typing the desired system password. If it is less than six char­
acters, type the RETURN key after the last letter of the password.
To protect their secrecy, the characters typed are not printed. If
no privileged capability is desired, the response to the original
question is N. (A standard sys~em keeps the privileged capability
and sets the initial password to BASIC.)

Finally, the system asks if a high-speed paper tape punch and/or
line printer are part of the system by printing:

DO THE FOLLOWING EXIST:
HIGH-SPEED PUNCH?
LPc;,8 PRINTER?

The response to each question must be Y if the device exists, N
if it does not. A standard system assumes that neither device exists.
(See Using Optional Hardware for a discussion of how these de­
vices are used.)

When all questions have been answered, the system asks:

IS THE ABOVE CORRECT?

If all questions were answered properly, type Y. The system then
loads the rest of the EduSystem 30 papet tape. If any of the re-

7-42

sponses were incorrect, type N; the complete set of questions is
repeated.

When the entire tape has been read, EduSystem 30 gives the
user a chance to load additional DEC-supplied system update tapes
by asking:

MORE INPUT?

If no DEC-supplied ,update tapes exist, respond Nand EduSystem
30 is completely loaded. If update tapes do exist, load the first
one into the tape reader and type Y to obtain loading.

Finally, when all input has been read, EduSystem 30 indicates
that it is ready to process BASIC programs by printing:

READY

At this time, turn the key lock to PANEL LOCK and remove the
key to prevent the system from being accidentally disturbed.

DIAGNOSTIC MESSAGES DURING SYSTEM BUILD
The following error messages are printed when errors are de­

tected during the building of EduSystem 30.

TAPE READY?

This message is printed whenever the system is waiting for the
paper tape reader to be loaded. It may appear by itself, usually
due to a tape tear or reader jam, or it may appear as. the last line
of another diagnostic message.

ACTION:

1. The portion of the paper tape which is read after the
system building dialog has distinct blocks of information
about two and one-half tape fanfolds long. The start of
such a block is indicated by nine blank tape frames fol­
lowed by a frame with all positions punched.
Back up the tape several fanfolds to the beginning of a
previously read block. Position the tape such that the
blanks at the beginning of the block are over the read .
station.

2. Type Y on the interactive terminal.

7-43

N

1-4

Figure 7-8. System Building Dialog

7-44

o l-------'

Figure 7-8 (Cont.). System Building Dialog

7-45

BEGINS READING
TAPE AND

BUILDS SYSTEM

WHEN TAPE
IS READ,

TYPES "READY
u

YES READS IN
·ADDITIONAL

INPUT

Figure 7-8 (Cont.). System Building Dialog

7-46

BAD PLACE TO START TAPE
TAPE READY?

This message means that after a previous message the user did
not correctly position the tape to the beginning of a data block.
(See discussion under TAPE READY? message.)

ACTION:

1. Correctly position the tape.
2. Type Y on the interactive terminal.

CHECKSUM ERROR
TAPE READY?

A checksum error occurred while the most recent data block
was being used.

ACTION:

1. Back up the tape to the beginning of the block.
2. Type Y to reread the data.

SYSTEM DEVICE liD ERROR

If this message occurs before the dialog has been completed, the
dialog automatically restarts.

If an I/O error occurs after the dialog is completed,. the TAPE
READY message is printed.

ACTION:

1. Make sure that the system device is on-line and writt!­
enabled and that the unit number is set correctly.

2. Respond appropriately to the question which follows the
message.

Turning Off the System
If power failure detection is available on the EduSystem 30,

simply turn the console key lock to OFF. Otherwise, to shut the
system down, overnight or for any reason, ensure that the system
is inactive by:

7-47

1. Typing CTRL/C to stop any program that is running.
2. Turning the key lock to POWER, and pressing and raising

the HALT switch.
3. Turning the key lock to OFF.

NOTE
Turning off the computer does not turn off
the disk unit. Disk power should never be
turned off.

Turning On the System
If power failure detection is available on the EduSystem 30,

simply turn the key lock to PANEL LOCK. Otherwise, perform
the following procedures.

1. Ensure~ that the hardware is properly initialized as ex-
plained previously.

2. Turn the key lock to POWER.
3. Set the.5R to 0000 and press EXTD ADDR LOAD.
4. Set the SR to 7600 and press ADDR LOAD.
5. Turn the Teletype to LINE.
6. Turn the key lock to PANEL LOCK.

EduSystem 30 is now ready to process BASIC programs.

Restarting EduSystem 30
If EduSystem 30 has been loaded onto the system device but the

computer memory has been used to run other programs (which do
not write on the system device), then the following device-de­
pendent programs may be used to start up the system. Instructions
for these programs are given in octal numbers. If unfamiliar with
the octal, or base 8, number system, refer to Introduction to Pro­
gramming 1972.

DF32 OR RF08 DISK
With hardware bootstrap:

1. Press and raise the HALT switch.
2. Set the SR to 5350.
3. Press and raise the SW switch.

Without hardware bootstrap:

1. Press and raise the HALT switch.

7-48

2. Set the SR to 7750 and press ADDR LOAD.
3. Set the SR to 7600 and lift DEP.
4. Set the SR to 6603 and lift DEP.
5. Set the SR to 6622 and lift DEP.
6. Set the SR to 5352 and lift DEP.
7. Set the SR to 5752 and lift DEP.
8. Set the SR to 7750 and press ADDR LOAD.
9. Press the CLEAR switch, then the CONT switch.

TCOIDECTAPE
With hardware bootstrap:

1. Press and raise the HALT switch.
2. Set the SR to 0600.
3. Press and raise the SW switch.

Without hardware bootstrap:

1. Press and raise the HALT switch.
2. Set the SR to 7742 and press ADDR LOAD.
3. Set the SR to 1353 and lift DEP.
4. Set the SR to 6766 and lift DEP.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

Set the SR to 6771 and lift DEP.
Set the SR to 5344 and lift DEP.
Set the SR to 1352 and lift DEP.
Set the SR to 5343 and lift DEP.
Set the SR to 7752 and press ADDR LOAD.
Set the SR to 0220 and lift DEP.

L

Set the SR to 0600 and lift DEP.
Set the SR to 7577 and lift DEP, then lift DEP again.
Set the SR to 7742 and press ADDR LOAD.:
Press the CLEAR switch, then the CaNT switch.

TD8E DECTAPE
With TD8E ROM:

1. Press and raise the HALT switch.
2. Set the SR to 7470.
3. Press, in order, the ADDR LOAD, EXTD ADDR LOAD,

CLEAR, and CONT switches.

Without TD8E ROM:

1. Press and raise the HALT switch.

7-49

2. Set the SR to 0011.
3. Press the EXTD ADDR LOAD switch.
4. Set the SR to 7470 and press ADDR LOAD.
S. Press the CLEAR switch, then the CONT switch.

Using Optional Hardware
LP08 LINE PRINTER

If the EduSystem 30 includes an LP08 line printer, perform the
following procedures to produce output on the -line printer rather
than at the Teletype.

1. Turn the LP08 power switch to ON.
2. Turn the ON-LINE/OFF-LINE switch to ON-LINE.
3 .. Type LPT and press RETURN.
4. When printing is complete, type TTY and press RETURN.
5. Turn the LP08 power switch to OFF.

An LPT command causes all subsequent output associated with
LIST, LOG, RUN, CATALOG, BATCH, or STACK commands
to be printed on the LP08 printer. A TTY command returns con­
trol to the Teletype from the line printer. The user may tempo­
rarily interrupt printing by turning the ON-LINE/OFF-LINE
switch to OFF-LINE; he may continue printing by turning it to
ON-LINE. When batch processing terminates, the output device
is automatically reset back to the Teletype.

HIGH-SPEED PAPER TAPE READER/PUNCH
If a high-speed punch is available, the PUNCH command may

be used to punch the current program on paper tape .. PUNCH
may be used with or without an argument. It is similar to LIST in
that the entire program is punched if no argument is used and, if
an argument is used, only those lines numbered greater than or
equal to that argument are punched. Perform the following pro­
cedures to use the high-speed punch:

1. Turn the TTY control knob to LINE.
2. Turn the high-speed punch ON.
3. Press FEED to produce some leader tape.
4. Type PUNCH and press RETURN.
5. When punching is complete, press FEED to produce some

trailer tape.
6. Turn the high-speed punch OFF.

7-50

Punching tp.ay be stopped at any time by typing CTRL/C.
If a high-speed reader is available, the TAPE command may be

used to load BASIC programs previously punched on tape. Perform
the following procedures to use the high-speed reader:

1. Turn the high-speed reader ON.
2. Turn the TTY control knob to LINE.
3. Insert tape in the reader.
4. Type TAPE and press RETURN.
5. When the tape has read in, turn the high-speed reader

OFF.
6. Type KEY; press RETURN.

A KEY command returns control to the Teletype.

PUNCHED CARD INPUT
Programs loaded and run via the card reader may be prepared

using a standard DEC 029 keypunch or be marked with a lead
pencil arid the EduSystem 30 template. If punched cards are used,
the system building dialog questions must be answered appropri­
ately.

Punch program statements on cards just as if they were being
typed at the interactive terminal. The seven control commands
(NEW, RUN, LIST, OLD, KEY, MSG, and aPR)· available in
batch mode are used by punching the command name starting in
column 1. Information normally marked starting in column 6 must
begin in column 5.

The number of data columns on each card which is read by , .

EduSystem 30 is specified in the system building dialog. Thus the
system can be made to ignore the latter portion of a batch input
card. These ignored columns then may be used to hold sequence
numbers or other information which will not be processed by
EduSystem 30.

Programs .punched with a keypunch may be read by either the
regular DEC punched card reader (CR8 series) or the DEC
mark-sense reader (CM8 series). With the punched card reader,
standard 80-column cards may contain up to 80 columns of data.
Cards to be read by the mark-sense reader must be· punched on
cards which have the special marks along the bottom edge of the
card and which conform to other rigid specifications.

The mark-sense cards may be made to contain up to forty

7-51

columns of data per card. The simplest, and recommended, method
for using 'punched mark-sense cards involves using the standard
EduSystem 30, cards. Ignore the information printed on the card.
Prepare a keypunch' drum card· which will cause the punches to
occur only in keypunch columns 1, 3, 7, 11, 13, ... , that is in
all the odd numbered columns except column 9. All other columns
should be automatically skipped. The user may now punch Edu­
System 30 cards as if they were normal cards. The drum card will
correctly position the punches. Note that the BASlC commands
must be punched in their entirety.

CALCULATING AVAILABLE STORAGE
The number of storage blocks initially available on the syst€m

device is calculated according to the following rules:

1. System' Device

DF32 Disk
DECtape
RF08 Disk
LINCtape

Availabie Blocks

131
1348
1922
1348

2. If batch capabilities are included in the system, subtract 10
blocks from the basic number of blocks. If the number of
blocks specified for use by the batch log is greater than one,
subtract one less than that number from the current total.

3. If the system device is a disk and the hardware configuration
includes more than a single disk surface, add the appropriate
number of blocks for each additional disk surface.

System Device

DS32 ,

RS08

7-52

Available Blocks <

255
2046

8
edusysten 40

INTRODUCTION
EduSystem 40 offers a combination of the language capabilities

of EduSystem 20 and EduSystem 30 by allowing the user to nm
either system, but not both simultaneously. The purchaser of an
EduSystem 40 is obtaining an extremely versatile system-one
which can accommodate not only a large and varied number of
users, but a tremendous number of program runs per day. Work­
ing with EduSystem 20, the beginning student, who is unfamiliar
with a computer system and who may be learning a computer lan­
guage for the first time, can develop his skills while as many as
seven other students may also be using the system at equal or
more advanced levels of learning. If the problem is complex or the
student desires the use of commands not present in EduSystem 20,
then EduSystem 30 is available as a stand-alone system. In ad­
dition, using the batch capabilities of EduSystem 30 permits ex­
tremely large numbers of user programs on cards to be executed
every day.

With the varied services provided by EduSystem 30 and, alter,..
nately, the time-sharing capabilities of EduSystem 20, the user
obtains a complete system which can be put to use continuously
for maximum produetivity.

System Components
EduSystem 40 is composed of a PDP-8/E computer with 8192

words of core memory (12,288 words of core memory are recom­
mended if the syste:m includes 5 or more terminals); automatic
loader (MI8-EF or MI8-EO hardware bootstrap, MI8-EC for
TD8-E DECtape with ROM'; 32,768 word DECdisk (DF32
or RF08) or DECtape; optical mark sense card reader; and as
many as eight Teletype termipals with low-speed paper tape reader
and punch units. Each EduSystem 40 contains two BASIC Lan­
guage processors (EduSystem 40-20 and EduSystem 40-30) and
a library of "sample programs, textbooks and curriculum guides.

8-1

Optional components include a high-speed line printer, high-speed
paper tape reader and punch, and additional core memory to in­
crease program SIZe.

System Expansion
By adding 4096 words of core memory; a high-speed paper

tape reader; 262,000 word DECdisk and control; additional com­
puter terminals and their associated interfacing; and an EduSystem
50 software set, EduSystem 40 may be expanded to EduSystem 50.
(Chapter 9 provides information concerning the EduSystem 50
TSS-8 time-sharing system.)

If the system includes DECtape, the PDP-8 Operating System
(OS/8) m!ly be run. This system contains a keyboard monitor,
machine language. assemblers, debugging tools, and FORTRAN,
and is described in Chapter 9 of Introduction To Programming
1972. .

BASIC LANGUAGE CAPABILITIES
Advantages and Applications

EduSystem 40 provides the user with two BASIC systems­
EduSystem 40-20 and EduSystem 40-30. Both systems are fairly
compatible in language capabilities-they share a large number of
common statements and commands. However, there are certain
features peculiar to each EduSystem which may make it advan­
tageous for the user to choose one over the other. A short sum­
mary' of these features is included here. (The user is directed to
Chapters 5 and 7 for complete details concerning the use of the
language capabilities of EduSystems 20 and 30).

EDUSYSTEM 20
EduSystem 20 provides an immediate mode for fast and accu­

rate calculations of expressions and equations. Statements used in
this mode are not stored in memory.

There are certain commands available in EduSystem 20 which
are either not pres~nt in EduSystem 30 or are used in a different
way. The more important of these are EDIT, INPUT. DIM.
IF THEN, ON GOTO, and ON GOSUB.

, The EDIT command speeds the editing procedure by eliminat­
ing the need to retype complete lines. The user simply searches
for the character(s) he wishes to change and, using the options
available, makes the necessary corrections.

8-2

The INPUT statement allows a number or numbers to be en­
tered from the Teletype as values for variables. Using EduSystem
20, the user response may be a value, or a mathematical expres­
sion which may contain arithmetic operations and a ~ASIC func­
tion (see Tables 8-4 and 8-5).

The DIM statement is not necessary in EduSystem 20 as the
system sets limits on subscript size (single subscript: 0-2047; dou­
ble subscript: 0-63 for each subscript), and defines all variables
as they occur. .

The IF THEN statement, in addition to conditionally altering
the order of execution by effecting transfer of control, may in­
clude another BASIC statement, thus causing an operation to be
performed without changing the order of execution.

The ON GOTO and ON GOSUB statements allow conditional
transfer to another statement or subroutine depending upon the
integer value of the formula following ON. After execution of a
subroutine, control returns to the statement following the ON
GOSUB statement.

It has already been mentioned that EduSystem 20 is a multi­
user BASIC, and as far as the school system is concerned, this is
probably its greatest asset. As many as eight users may be work­
ing simultaneously on one computer. Terminals may be situated
in different rooms, even different buildings, to serve a greater
number of users and applications.

EDUSYSTEM 30
EduSystem 30 is a true batch system allowing either interactive

or "hands-off" batch operation. Specially formatted mark cards
provide a means by which students can easBy code programs and
submit a deck for later execution. An operator can gather all in­
dividual program decks into one large deck, to be run consecu­
tively and automatically by the system. Commands are available
which allow operator intervention during runs.

EduSystem 30 makes available to the user a single mass storage
device-DECdisk (or DECtape). The user can store data files or
sections of very long programs which will later be chained to­
gether. He can also save programs which may be used later or
which may be called more than once. Several special commands
called Privilege Control Commands are associated with the mass
storage device. Among them are commands which will save and

8-3

delete programs, determine the amount of available core, list pro­
grams in storage, arid list the number of blocks in use.

EduSystem 30 includes a CHAIN command which makes pro­
gr~m chaining possible and allows th~ running of' programs of any
length. Each section of the entire program must be 6000 char­
acters or less and is stored on the mass storage device. Data files
may be used in a similiar manner by allowing temporary storage
of data on the mass· storage device. Using WRITE statements,
data may be written onto files; data stored in these files is called
into a program via READ statements.

EduSystem 30 includes a character-handling feature which al­
lows words or characters to be entered into a BASIC program in
response to questions. The special .characters # and $ are used to
facilitate this procedure. Characters are stored as their respective
numeric codes and. therefore may be used and manipulated with
standard BASIC commands. The ASCII codes for these characters
may be found in Appendix B.

For detailed· information concerning the features mentioned in
this section, and all other available language capabilities, the user
should refer to Chapter 5 when using EduSystem 20 and Chapter
7 when using EduSystem 30.

Language Summaries and Error Message Summaries follow.

LANGUAGE SUMMARIES
BASIC Statements and Commands

Table 8-1 lists the statements available in EduSystems 20 and
30; Table 8-2 summarizes the editing and control commands. These
tables are abbreviated forms of those contained in Chapters 5
and 7.

Statement
& Format

Input! Output

DATA n1' n:! •.. nn

Table 8·1. Statements

Description

Nllmbers n1 through nn equal
variables in a READ

Get VI through Vn input from
TrY

8-4

EduSystem
20 30

x x

x x

Table 8·1. (Cont.) Statements

Statement
& Format

RESTORE

WRITE n1, n2' .. nn

Transfer of Control

GOTOn

IF el r e;! GO TO n

~f el r e;! THEN n

ON el GO TO n 1,

ON el GOSUB n1,

n;!. n:\

Loops and Subscripts

DIM v(nl), v(n2' n;:)

FOR v=el TO e;!
STEP e:\

NEXT v

Description

Print values of specified text,
variables or expressions; also
used for format-control

Read variables VI through Vn
from DATA list

Reset DATA pointer to be­
ginning value

Record DATA nl through nn
on mass storage file

Transfer control to line
number n

If relatio'nship r between el and
e2 is true, transfer control to
line number n

Same as IF GO TO; under
EduSystem 20 n may be a
statement

Conditionally change order of
program execution according
to evaluation of formula el
(if integer of el =1 transfer
control to nl; if integer of
e1 =2, transfer to n:h etc.)

Conditionally change order of
program execution according
to evaluation of formula el
(if integer of el = 1 transfer
control t6 subroutine n t ; if
integer of el =2 transfer to
subroutine n:!; if integer of el =3
transfer to subroutine n;)

Define subscripted variables

Set up program loop; define v
values beginning at e1 to e2
incremented by ea

Termipate program loop; incre­
. ment valu~ of v until v>e;!

(in FOR statement)

8-5

EduSyste:m
20 30

x x

x x

x x

x

x x

x

x x

x

x

x x

x x

x x

..

Table 8.1 (Cont.) Statements

Statement
& Format

EduSystem
20 30

Description

Subroutines

GOSUB n

RETURN

STOP

Others

CHAIN on' $

Enter subroutine at line .
number n

Returnfrom subroutine to state­
ment following GOSUB

Transfer control to END
statement

DEF FNA (x) =f(x)
DEF FNA (x, y)=

f(x, y)

Link to next section of a
program which is stored'
within the system as file n

Define a function

END
LETv=f

-RANDOMIZE

REM text
NOLINE

End of a program
Assign value of formula f to v
Randomizes random number

routine
Insert a remark or comment
Suppress printing of line numbers

in which program logic errors
are found

Table 8-2. Edit and Control Commands

Command Description
& Format

CAT List names of programs in storage.
area

CTRL/C Stop program execution: return to
edit phase

DELn Delete line n
n Delete line n

DELn,m Delete lines n through m inclusive
EDln c Search line n for character c typed

following carriage return
KEY Return to keyboard mode after

TAPE (EduSystem 30-HSR only)

8-6

x x

x x

x x

x
x x

x x
x x

x x
x x

x

EduSystem
20 30

x

x x
x
x x
x

x

x x

Table 8-2. (Cont.) Edit and Control Commands

Command
& Format

LIST

LISTn
LISTn
LISTn,m
LISTNH

LISTNH n

NEW
OLD

RUN
RUNNH
SCR
BYE
TAPE

BATCH
"'BATCHn

ECHO

LPT

LENGTH

NAME

PUNCH
PUNCHn
PTP

PTR
RESEQUENCE
TTY

Description EduSystem

List entire program in core (If low­
speed punch is on, EduSystem 20

20 30

will cause a tape to be punched) x x
List program starting at line n x
List line n only x
List lines n through m inclusive x
List program; no header (If low-

speed punch is on, program will
be punched on paper tape) x

List program beginning at line n;
no header x

Clear core; request program name x x
Clear core; bring program to core

from storage area x
Compile and run program in core x x
Same as RUN; no header x
Erase current program from core x x
Same as SCR x
Read paper tape from low-speed

reader; suppress printing on TTY
(also used with high-speed reader
under EduSystem 30) x x

Commence batch processing x
Same as BATCH; limits runs to n

per program x
Switch from typeout to non-typeout

mode or vice versa when using
low-speed reader x

Print output on lineprinter, if
available x

Request number of blocks to store
current program x

Same as NEW but does not delete
existing program x

Punch entire program on paper tape x
Punch program starting at line n x
Punch a program out on the high-speed x
paper tape punch.
Read program from high-speed reader x
Renumber program lines x
Print output on TTY x

8-7

Table 8-2. (Cont.) Edit and Control Commands

Command
& Format

Description EduSystem
20 30

PRIVILEGE
(password)

Enable use of privileged commands
Insert password, no echo

x

* HEADER
(header)

*LOG
*MAXn

Change header; type new header
(max. 12 characters) for next
batch run

Print system10g
Set instruction limit n times 200 per

x
x

* PASSWORD
program for next batch run

Change password
x
x

(new· password)
* SAVE

Type new password, no echo
Save program in storage area x

x * STACK
*STACK n

*UNSAVE

. Start unattended batch operation
Same as STACK; limit runs per

program
Delete program from storage area

x
x

>I< Privileged Mode Command

Batch Control Cards
The control cards in Table 8-3 are used when running an Edu­

. System 30 batch card deck. The user must mark the appropriate
box in the upper left hand corner of the EduSystem 30 mark card.
Each control card is explained in detail in Chapter 7.

Control
Card

NEW

OLD

MSG

OPR

Table 8-3. Batch Control Cards. ..

Description

Indicates a new program; contains the new program name;
must be first card in the deck-any cards appearing before·
this card are ignored.

Indicates an old program; contains the name of the pro­
gram to be caned; must be first card in the deck-any cards
appearing before this card are ignored.

Columns 6-39 contain a message which is printed as part
of program output.

Message marked in columns 6-39; when encountered in
program execution rings bell to alert operator and prints
message on TTY.

~-8

Control
Card

KEY

LIST

RUN

Table 8··3. (Cont.) Batch Control Cards

Description

Temporarily halts the batch operation and turns control
over to the console terminal.

Instructs computer to print a listing of the program on the
TTY. Should be placed at the end of the card deck before
the RUN card.

Normally the last card in the deck; instructs the computer
to begin execution.

BASIC Functions and Arithmetic Operations
Table 8-4 lists the functions available in EduSystem 20 and 30.

Table 8-5 is true for all EduSystems.

Table 8-4. Functions

EduSystem
Function Description 20 30

SQR(x) Square root of x (Yx) x x
SIN(x) Sine of x (x in radians) x x
COS(x) Cosine of x (x in radians) x x
TAN(x) Tangent of x (x in radians) x x
ATN(x) Arctangent of x

(x in radians)
(result in radians)

EXP(x) eX (e=2.712818) x x
LOG(x) Natural log of x (logex) X X

ABS(x) Absolute value of x (Ixl) x x
INT(x) Greatest integer of x x x
SGN(x) Sign of x (+ 1 if positive, -1 if negative,

o if zero) x x
RND(x) Random number between 0 and 1 x x
FIX(x) Truncates decimal portion of x x
TAB(x) Controls printing head position on TTY. x x
CHR$(x) Converts character code to character.

Used only with PRINT command. x x
I

8-9

Table8~5. Arithmetic Operations

Symbols Meaning

t
'"
/

+

Order of Execution
1. parenthetical expressions
2. exponentiation
3. multiplicatio~ and division
4. addition and subtraction

exponentiation
multiplication
division
addition
subtraction

ERROR MESSAGE SUMMARIES
EduSystem 20

EduSystem 20 checks all commands be(ore execution. If an error
is found, it prints one of the error messages in Table 8-6 and the
number of the line in which the error occurred.

Message

WHAT?

ERROR 1
ERROR 2
ERROR 3
ERROR 4
ERROR 5
ERROR 6
ERROR 7

ERROR 8
ERROR 9

ERROR 10
ERROR 11
ERROR 12
ERROR 13
ERROR 14

Table 8·6. EduSystem 20 Error Messages

Explanation

Command not understood. It does not begin with a
line number and is not a valid system command.
Log of negative or zero number was requested.
Square root of negative number was requested.
Division by zero was requested.
Overflow--exponent greater than approximately +38.
Underflow---exponent less than approximately -38.
Line too long or program too big.
Characters are being typed too fast; use TAPE com­
mand for reading paper tapes.
System overload caused character to be lost.
Program too complex or too many variables. (GOSUB,
FOR, or user-defined function calls are too deeply
nested.) .
Missing or illegal operand or double operators.
Missing operator before a left parenthesis.
Missing or illegal number.
Too many digits in number.
No DEF for function call.

8-10

Table 8.6. (Cont.) EduSystem 20 Error Messages

Message

ERROR 15.

ERROR 16
ERROR 17
ERROR 18
ERROR 19

ERROR 20
ERROR 21
ERROR 22

ERROR 23

ERROR 24
ERROR 25
ERROR 26
ERROR 27
ERROR 28
ERROR 29
ERROR 30
ERROR 31
ERROR 32
ERROR 33

ERROR 34
ERROR 35
ERROR 36
ERROR 37
ERROR 38

ERROR 39
ERROR 40
ERROR 41
ERROR 42
ERROR 43
ERROR 44
ERROR 45

ERROR 46
ERROR 47
ERROR 48

Explanation

Missing or mismatched parentheses or illegal dummy
variable in DEF.
Wrong number of arguments in DEF call.
Illegal character in DEF expression.
Missing or illegal variable.
Single and double subscripted variables with the same:
name.
Subscript out. of range.
No left parenthesis in function.
Illegal user-defined function-not FN followed by a
letter and a left parenthesis.
Mismatched parentheses or missing operator after
right parenthesis.
Syntax error in GOTO.
Syntax error in RESTORE.
Syntax error in GOSUB.
Syntax error in ON.
Index out of range in ON.
Syntax error in RETURN.
RETURN without GOSUB.
Missing left parenthesis in TAB function.
Syntax error in PRINT.
An unavailable device was requested by the user-­
the device is either not present in the system, or in
use.
Missing or illegal line number.
Attempt to GOTO or GOSUB to a nonexistent line.
Missing or illegal relation in IF.
Syntax error in IF.
Missing equal sign or' improper variable left of the
equal sign in LET or FOR.
Subscripted index in FOR.
Syntax error in FOR.
FOR without NEXT.
Syntax error in LET.
Syntax error in NEXT.
NEXT without FOR.
Too much data typed or illegal character in DATA
or the data typed in.
Illegal character or function in INPUT or READ.
Out of data.
Unrecognized command during execution.

8-11

· 0 ERRORS . If
EduSystem 3 DE PROGRAM LOADING d b fore execution.
BATCH MO h cks all cornman s e· . f s the

EduSystem 30 also c e d 'EduSystem 30 1U orm
cute a cornman, 7 it is unable to exe es in Table 8- .

user by printing one of the error messag

TableS-'. Batch Mode Program Loading Errors

Message

BAD CHARACTER

BAD CHARACTER­
LINE NOT USED

WHAT?

NO ROOM

FILE NOT SAVED

FILE TOO BIG FOR
BATCH MODE

Explanation

One or more characters on a card could not
be understood. The character % replaces
any unreadable character. The information
on the card is processed if possible. This
error does not cause any subsequent RUN
commands to be ignored.

Same as BAD CHARACTER message ex­
cept that the information on the card is
ignored. This error does cause any subse­
quent RUN commands to be ignored.

Line does not make sense to the system. It
does not begin with a line number and is not
a valid system command.

The program is too big to be loaded, i.e. it
is greater than 5000 characters. Larger pro­
grams should be run in interactive mode.

The program named on an OLD control
card is not available in the system storage
area.

The program named on an OLD card is too
big· to be run in batch mode. It must be run
interactively.

INTERACTIVE MODE PROGRAM LOADING ERRORS
As each line is typed, a check is made for program loading er­

rors. If an error is found, one of the messages in Table 8-8 is
printed immediately after the line containing the error.

8-12

Table ,8-8. Interactive Mode Program Loading Errors

Message Explanation

WHAT? Line does not make sense to the system.
It does not begin with a line number and
is not a valid system command.

LINE NO. TOO BIG The line number of a line or the argumem
of a system command is greater than 4095 ..

LINE TOO LONG . Line just entered is longer than 80 char··
acters.

NO ROOM There is no room to store the line just
entered.

FILE NOT SA VED The program named as the operand of an
OLD command was not previously saved
on the system device.

NO SPACE There is not enough space to SAVE the
current program (DECtape Systems).

Bell If an invalid character is entered, the Tele ..
type bell rings and the character is ignored.

II 0 ERROR An input or output error occurred on the
DECtape unit. Be sure that the unit is on·
line, write-enabled, and the unit number is
set correctly. Retry whatever was inter­
rupted by the error. If the problem persists,
there is a hardware problem (DECtape
Systems).

INV ALID PASSWORD The password typed after a PRIVILEGE
command is not the system password. Priv··
ileged mode is not entered.

CODING ERRORS
After the RUN or RUNNH command, but before execution,

EduSystem 30 checks for mistakes in the BASIC program coding.
,If an error is found, one of the following messages and the ap­
propriate line number is printed.

8-13

Table '8-9. ,Coding Errors

Message Explanation

CH There is an illegal character in the line.

EN Program does not have an END statement as the last line
in the program.

FN - Not enough NEXT statements in the program. There
must be a NEXT statement for each FOR statement in
the program.

Fa FOR and NEXT statements do not match. There is a
NEXT statement in the program whose variable is not
the same as the variable in the corresponding FOR
statement.

LI , Line contains an improperly written decimal number or
constant. It may, for example, have two decimal points
or have an alphabetic character in it.

M 1 The program as a whole is too big to be run by the sys-
M2 tern. Making the program smaller, reducing the size of

subscripted variables, or using the, NOLINE command
may help.

NE Program has too many (more than 8) nested FOR-NEXT
loops. '

PC Line contains an improperly used parenthesis. Generally,
the problem is an expression which does riot have an
equal number of left and right parentheses.

RO Statement contains an invalid relational operator «, =,
>, <=, >=). Relational operators may only be used in
IF statements.

SI Statement as a whole is not, properly written and, as a
S2 result, does not conform to proper BASIC syntax. For

example, a semicolon is allowed in a PRINT statement
but not in a READ or INPUT statement.

ST Statement cbmmand word is not one of the BASIC state­
ment types.

TB The program is too big to be run. Cause is usually an
extremely large number of PRINT statements.

TO Program is either too big or too complex to be run. The
total number of variables, constants, functions, and line
numbers should be reduced, if possible.

8-14

Message

UL

UQ

Table 8-9. (Cont.) Coding Errors

Explanation

A GOSUB, GOTO, or IF statement contains a line num­
ber which does not exist.

A quotation mark indicating the beginning of a string of
text does not have a corresponding quotation mark at the:
end of the text string.

PROGRAM LOGIC ERRORS
If a program logic error occurs, EduSystem 20 prints one of the:

messages in Table 8-10 after execution.

Message

CH

co

DA

DO

FN

GS

LG

RE

SP

SQ

Table 8·10. Program Logic Errors

Explanation

A CHAIN statement tried to chain to a program which
was not available in the DECtape storage area.

Program ran too long and was automatically stopped by
the system.

The program ran out of data. It attempted to do a READ
after all data had been read.

The program attempted to divide by zero. Instead of
dividing by zero, BASIC divides by the smallest possible
number, giving a result of about 10500• This error does
not cause the-program to stop.

An expression contains a function which was not defined
in aDEF statement.

The program is too complex to be executed. The problem
is generally that too many subroutines have themselves
executed GOSUB instructions.

Program attempted to take the logarithm of a negative;:
number or zero.

A RETURN statement was used outside a subroutim~
or a subroutine was entered by a GOTO instead of a
GOSUB.

Same as OS.

Program attempted to take the square root of a negative
number. BASIC automatically takes the square root of
the absolute value of the number instead. This error does
not cause the program to stop.

8-15

Table 8-10. (Cont.) Program Logic Errors

Message Explanation

SS Program used a sUbscript which was too big for the vari­
able. The maximum size of a subscript is specified in a
DIM statement.

WR There is no more room to write data. The program at­
tempted to execute a WRITE statement when the data list
was full. (Note that if this error occurs, the program text
will no longer be intact. 'A NEW, OLD, or SCRATCH
command must be used to clear the program area.)

LOADING AND OPERATING INSTRUCTIONS
The software for EduSystem 40 is distributed on five paper tapes

-. EduSystem 40-20 and EduSystem 40-30 for Disk Systems, and
individual EduSystem 20 and EduSystem 30 tapes for DECtape
Systems. The us'er with a DECtape System should refer to Chapters
5 and 7 for loading and oper'lting instructions as the following in­
structions refer only to the standard Disk System. The EduSystem
40-20 and 40-30 tapes are used to build the EduSystem 40 system
on DECdisk (either DF32 or RF08) when the system is installed.
The building procedure is outlined below.

Initializing the DECdisk
Initialize the DECdisk by ensuring thai the disk unit is turned on

~nd that all disk protect switches are in the off position.

Building EduSystem 40 on Disk
The system tapes may be loaded into memory by use of either

the RIM Loader (refer to Appendix A) or with the automatic
loader (hardware bootstrap MI8-EF or MI8-EG).

1. Turn the key Jock on the computer console to POWER.
2. Turn the Teletype to LINE.
3. Place the EduSystem 40-20 tape in the appropriate reader

(high or low-speed) with the leader code (ASCII 200)
over the read head.

4. If the system contains a hardware bootstrap, set the
SR == 5356; press and raise the HALT switch; press and
raise the SW switch.

8-16

5. If using the RIM loader, set the SR = 7756: press and
raise ADDR LOAD, CLEAR and CONT.

6. Turn the reader on.

The tape should begin to move (if it does not, be sure the correct
tape is being used and repeat the above procedure). When the tape
has been read completely, the system prints the following message
on the Teletype:

IS SYSTEM DEVICE A DF32 DISK?

The user should respond Y or N. If the response is N, the system
asks:

IS SYSTEM DEVICE AN RF08 DISK?

The answer here should be Y; otherwise the system will repeat both
questions until the answer to one of them is Y. When the correct
system device has been specified, the system prints:

EDUSYSTEM 20 BASIC

NUMBER OF USERSCl TO 8)?

At this point halt the computer by pressing and raising the HALT
switch. (If the above messages are not printed, the above procedure
should be repeated before continuing the building process.)

7. Place the EduSystem 40-30 tape in the appropriate reader.
8. If the system contains a hardware bootstrap, set the

SR = 5356; press and raise the SW switch.
9. Otherwise, set the SR = 0000; press EXTD ADDR

LOAD; then set the SR = 7756; press ADDR LOAD,
CLEAR and CONT.

Approximately one-third of the tape should be read before the
standard EduSystem 30 dialogue begins. The system will print:

STANDARD SYSTEM?

Build EduSystem 30 as detailed in Chapter 7 and summarized be­
low. The user is at point A on. the flowchart in Figure 8-1 and
should continue with the dialogue presented in the flowchart. (If Y
is typed as a response to this question, the system assumes the
responses contained in brackets on the flowchart.)

8-17

N

HOW MANY DISKS
?

(USER RESPONDS
FROM 1-4)

[1]

HOW MANY BLOCKS
FOR LOG ?

(USER RESPONDS
FRO~~-22)

MAXIMUM DATA
COLUMNS PER CARD

'?
(USER RESPONDS

FROM 0-80)

N

[N]

Figure 8-1. Building EduSystem 40

8-18

TAPE READS

TYPE INITIAL
PASSWORD (USER
TYPES A WORD
OF 6 OR LESS
CHARACTERS) (BASIC)

Figure 8-1. (Cont.) Building EduSystem 40

8-19

When EduSystcm 40 prints READY on the Teletype, the disk
is completely built and ready to bc used, with EduSystem 30
runmng.

Starting EduSystem 40
Once EduSystem 40 has been bullt on the disk, it can be stopped

and restarted by performing the following operations.

1. Press and raise the HALT switch.
2. A. If the system does not have a hardware bootstrap, the

following instructions must be manually loaded:

~ Set SR=7750 and press ADDR LOAD.
Set SR=7600 and lift DEP.
Set SR=6603 and lift DEP.
Set SR=6622 and lift DEP.
SetSR=5352 and lift DEP.
Set SR=5752 and lift DEP.
Set SR=7750 and press ADDR LOAD, CLEAR and

CONT.
B. If the system contains a hardware bootstrap set the SR=

5350 and press and raise the SW switch.

The system should respond by printing:

EDUSYSTEM 40-SELECT (1=20,2=30):

If thc system does not respond in this manner, repeat the starting'
instructions; if the system does respond as it should, the user is at
point A on the flowchart in Figure 8-2 and should continue with
the dialogue in that flowchart. ,

8-20

YORN

s)

NU~ER Of
USERS (1-8)

USER RESPONDS
RO~~

Figure 8-2.

EDUSYSTEM 40
SELECT{1-20,2-3O)'

?

TELIiTYPE <It n
DEVICE CODE ? BASIC A.<;j(-S ------]
(USER RESPONDS -_·UDtVICE CODE]
WITH DEVICE fOR EACH TTY(n) CODE! _____ _

~
8ASIC RESPONDS WI'H
HIGHEST AVAILABLE
fiElD (N), AND <It OF

- -- BLOCKS (X) AND
J\SK FOR USER
r,UMBER(Y) AND
BLOCK ALLOCATION

Starting Edusystem 40

EduSystem 40-20 or 40-30, whichever has been chosen, is now
ready for use. To take either system down and start the other, the
user need only repeat the starting iristructions from step 1.

8-21

8-22 '

9
edusystem 50

INTRODUCTION
EduSystem 50 is a general purpose, time-sharing system for

PDP-8 computers that offers up to 16 users (24 in certain appli­
cations) a comprehensive library of System Programs. These
programs provide facilities for editing, assembling, compiling,
debugging, loading, saving, calling, and executing user programs
on-line. An extended BASIC language provides users with the
ability to use strings, files, and program chaining. Two higher­
level languages, FOCAL and FORTRAN, are also provided. All
languages and utilities may be used simultaneously. One group of
users may be working in BASIC while another is using assembly
language. EduSystem 50 serves all levels of users simultaneously.

By separating the central processing operations from time­
consuming interactions with human users, the computer can, in
effect, work on a number of programs simultaneously. Cycling
between programs and giving only a fraction of a second at a
time to each program or task, the computer can deal with many
users seemingly at once. The appearance is created that each user
has the computer to himself. The execution of various programs is
done without their interfering with each other and without lengthy
delays in the response to individual users.

The heart of EduSystem 50 is a complex of subprograms called
the Monitor. The Monitor coordinates the operations of the vari­
ous programs and user consoles, ensuring that the "User is always
in contact with his program. The EduSystem 50 Monitor alIo-·
cates the time and services of the computer to the various users;
it grants a slice of processing time to each job, and schedules
jobs in sequential order to make most efficient use of the system
disk. The Monitor handles user requests for hardware operations
(reader. punch, etc.), swaps (moves) programs between memory
and disk. and manages the user's private files.

9-1

User Programs
When the user is working with EduSystem 50, it appears to'

him as though he had his own 4K (4096 word) PDP-8 computer.
He then has the capability of doing anything which can be done
in a 4K computer pluS' the capabilities of the Monitor. Several
users can run different programs at virtually the same time be­
cause Monitor controls the scheduling of execution times. The
Monitor brings a program into core from the disk, allows it to
execute for a short time, and takes note of the state at which
execution is stopped. The user is allotted a 4K block of core that
contains his particular program; this 4K block is swapped (moved)
from core onto a 4K area of disk when the Monitor needs to
bring another user program into core to be executed. -

After the user's program has been executed for a period of time,
it is placed at the end of the queue (line) of user programs wait­
ing to be run. If only one program is ready to fun, it is allowed to
do so without interruption until another program is ready. If a
user wishes to maintain a permanent copy of his program, he can
save a copy within the file area of the disk (an area separate from
the swapping area) or on DECtape or paper tape.

User Files
A user is any person logged into EduSystem 50. Each user has

an account number and password assigned to him by the System
Manager. The account number and password allow the user to
gain access to the computer. The account number is also used to
identify whatever files the user may owl1 within the EduSystem 50
file system. .

The system disk is divided into logical areas called files. A user
can store programs or data in files on the system disk. The user
can further specify which users may access his files and for what
purpose (read, write, or both). Parts of the disk are used to store
system files, those programs which, are accessible to anyone using
the system. A major portion of tpis chapter deals with how to
use the system files, generally called System Library Programs.

With the appropriate Monitor commands, the user can create
new files and manipUlate old files (extend, reduce, or delete them).
These commands are summarized in Appendix C. Most individual
System Library Programs are able to handle user files as input or

9-2

output with commands issued from the user's console. Such com­
mands are described in this chapter under the section on the appro­
priate System Library Program.

System Configuration
Depending on the hardware configuration of a particular Edu­

System 50, as many as 16 users may work on the system simul­
taneously. The standard configuration is designed to service 16
users and includes the following hardware components:

• PDP-8/E computer with 24,576 (24K) words of core
memory, power failure protection, and an automatic loader
(hardware bootstrap).

• High-speed paper tape reader.
• 262,000 word high-speed disk.
• Dual DECtape transports and controller.
• 16 computer terminals and their associated interfaces.

NOTE
EduSystem 50 is also available in an 8-user
configuration with 16,384 (16K) words of
core memory and without DECtape trans­
ports. All other system components and
capabilities remain the same.

Software provided with the standard EduSystem 50 includes the
following:

• General-purpose time-sharing Monitor system.
• Time-shared BASIC language processor.
• Time-shared assembly language package including text

editor, symbolic assembler, loader, and utility debugging
program.

• Time-shared FORTRAN-D and FOCAL language pro-
cessors.

• System utility programs, such as PIP and DECtape COPY.
• Library of sample programs, textbooks, and curriculum

guides.
EduSystem 50 may optionally include a high-speed line printer.

Also optional are additional core memory, disk storage unts, or
DECtape transports for added system storage capacity.

9-3

System Expansion
EduSystem 50 may be expanded to EduSystem 55 by adding a

card reader to the configuration. EduSystem 55 includes all the
features of EduSystem 50 and allows EduSystem 30 to be run as
one of the time-shared jobs-. (See Chapter 7 for a detailed expla­
nation of EduSystem 30.)

EDUSYSTEM 50 MONITOR
EduSystem 50 Monitor controls the allocation and use of hard­

ware resources. Many of these functions of the Monitor are in­
visible, and of no concern to the user, for exam pie, the way it
allows many users to run programs on a single computer. In other
instances, the user explicitly tells the Monitor what he would like
to do by typing one or more of the Monitor commands described
in this chapter.

The Monitor commands described in the first half of this section
are those needed to log into the system, to utilize the System
Library Programs, and to log out of the system. All users must be
familiar with these commands. The commands described in the
last half of this section are not needed to run System Library Pro­
grams such as BASIC or FOCAL but are frequently useful. The
Advanced Monitor commands described at the end of this chapter
are primarily useful for' creating assembly language programs and
files.

NOTE
All Monitor commands must be terminated
by typing the RETURN key. ,All words
within a Monitor command line are sepa­
rated by one or more spaces.

Calling the Monitor
The user enters commands to system programs, such as BASIC

and FOCAL, in exactly the same way that he enters commands to
the Monitor (i.e., by typing them at the keyboard); therefore, the
system must have some way of distinguishing between the two
cases. If does so by defining two modes of console operation:
Monitor mode and program mode. When a user's, console is in
Monitor mode, all input is interpreted as being commands to the
Monitor. Otherwise, all input is assumed to be to the user program
or system program which is being run by the user.

A special character, CTRL/B (obtained by striking B with the

9-4

CTRL key held down and echoed on the Teletype as i B), is
used to unconditionally place the user's console in the Monitor
mode. Typing CTRL/B tells the system that the command to fol­
low is a Monitor command, regardless of the current console mode.
Generally, the command which follows the CTRL/B will be the
S command.

iB
iBiBS

Return to Monitor mode.
Return to Monitor mode from a program
which is printing. (The two CTRL/B's
stop the printout, allowing the S command
to be typed.)

It is not necessary to precede each Monitor command with
CTRL/B. Onc~ in the Monitor mode, a console stays in that mode
until a command is entered to start a system program. To signify
that the console is in the Monitor mode, the system prints a
dot (.) at the left margin of the console printer paper. This dot
indicates that the characters entered next are to be treated as a
Monitor command. Thus, the CTRL/B capability is important
when a user is running a program and wishes to issue a Monitor
command. He may, for example, be using one language (or sys­
tem program) and want to change to another, as shown below:

.R FOCAL

SHALL I RETAIN LOG~ EXP~ ATN ?:NO

SHALL I RETAIN SINE~ COSINE ?:NU

PROCEED.

*TYPE 6+11il-3-1
= 12.0000*
*TYPE 25+5*2+5
:: 41i!.IilIil00*

*tBS

.R BASIC

NEW OR OLD--NEW
NEW PROGRAM NAME--

9-5

Notice that the Monitor responds to BS by printing a dot at the
left-hand margin.

Logging into EduSystem 50
To prevent unauthorized usage and to allow the Monitor to

maintain a record of system usage, EduSystem 50 requires that
each user identify himself to the system before using it. Before
attempting to lo.g into the system, t~e user should ensure that the
console LINE/OFF/LOCAL knob is set to LINE and then
press the RETURN key. If the console is connected to Edu­
System 50 and is not already in use, the Monitor rolls the console
paper up two lines and prints a dot at the left margin of the
paper. The dot indicates that the system is in Monitor mode and
that the Monitor is waiting for a command. The LQGIN command
allows the user to gain access to EduSystem 50.

The used types LOGIN followed by an account number and
password. Providing the console is free (not already logged in),
the 'Command, account number, and password are not printed on
the console paper as the keys are typed. If the command name
letters are being printed, stop typing the command; instead, strike
the RETURN key, log out using the LOGOUT command (see
Logging out of EduSystem 50). At this point,a successful LOGIN
can be accomplished. The LOGIN command is formatted as shown
below:

.LOGIN 1234 ABeD (only the dot is printed)

The dot (.) is printed by the Monitor, LOGIN is the"command
name~ 1234 represents the user account number, and ABCD repre­
sents the password.

NOTE
A command word and each parameter (ex­
cept the last) is always followed by a space.
Command lines are always terminated with
the RETURN key. The RETURN key en­
ters the full command line to the system.

9-6

When a user types something other than a valid LOGIN com·­
mand, the Monitor responds in one of the following ways:

System Response

HELLO?

LOGIN PLEASE?

ILLEGAL REQUEST

.LOGIN 4771 DEMO
ALREADY LOGGED IN

UNAUTHORIZED ACCOUNT

Explanation

(user typed HELLO)

(user typed ASSIGN D 3)

(user typed LOGIN ABCD
ABCD)

(user typed valid LOGIN on an
already logged in console)

(user typed an incorrect
account number or password)

In the first example, HELLO is not a command, so it is repeated
with a question mark by the Monitor. In the second example:,
ASSIGN D 3 is a valid command but is not appropriate until the
user is logged into the system. In the third example, the Monitor
finds that the LOGIN command is improperly formatted (the first
parameter must be a 1- to 4-digit number); .the console printout
tens the user that he has made an ILLEGAL REQUEST. When
the console is already logged in and the user types the LOGIN
command, the characters typed echo at the console and the Monitor
informs the user that the console is occupied with the message
ALREADY LOGGED IN.

If the user attempts to u'se an incorrect account number or pas~­
word, the Monitor replies UNAUTBORIZED ACCOUNT. Thus
the Monitor can distinguish an invalid- command from a valid
command; it can also distinguish whether the valid command is
appropriate when issued, whether the command is properly for­
matted, and whether the account number and password are accept­
able. In all the preceding examples, Monitor ignores the command
and prints another dot. '

When the Monitor finds the LOGIN command properly for­
matted and the account number and password acceptable, it re­
sponds by identifying the version of the system being used, the
job number assigned to the user, the number of the console being

9-7

used, and the time-of-day in hours, minutes, and seconds. This in­
"formation· is usually followed by a note from the System Manager
concerning the system. For example:

TSS/8.22B JOB 01 17:05:40

YOU ARE NOW LOGGED INTO THE BHS,EDUSYSTEM 50.
PROCEED AT YOUR OWN SPEED •
•

The Monitor then prints another dot and waits for the user to
issue the next command. The job number assigned is an internal
number by which the system identifies each on-line user; the user
need not remember this number.

Logging out of EduSystem 50
The LOGOUT command indicates to the Monitor that the user

is finished and ready to leave his terminal. When Monitor receives
a LOGOUT command, it disconnects the user terminal from the
system and records the amount of computer time used during the
session and the total real time of the session. It also notes any user
files deleted or saved. For example:

.LOGOUT

JOB 01# USER (1234#ABCD) LOGGED OFF K~~ AT 1912~119 ON 02-28-73
DELETED 1 FILES (1. DISK BLOCKS)
SAVED 11 FILES (;38. DISK BL06KS)
RUNTIME 0"':~0124 (. 7. CPU UNITS)
ELAPSED TIME ~2:14:39
PLEAS~ TURN OFF YOUR TTY.

Computer processing time used in this example was 24 seconds,
while the elapsed time between LOGIN and LOGOUT ~as 2
hours, 14 minutes, and 39 seconds.

When typing the LOGOUT command, the user may follow it
with a colon and an option to initiate some action by the system.
These options and their functions are described in Table 9-1. To
specify an option, the user types, for example:

.LOGOUT:K

9-8

If no option is specified, the S option is assumed; similarly if a
user is simultaneously logged in at two (or more) consoles, no
files will be deleted until he logs off his last job .

• LOCOUT:?

TYPE f C TO ABORT LOG -OUT; OR''-­
TYPE ONE OF THE FOLLOWING (A~D CAR RET):

K TO KILL' JOB AND DELETE ALL UNPROTECTED FILES;
L TO LIST YOUR DISK DIRECTORY;
S TO SAVE ALL (NON-TEMPOAR~) FILES; OR
I TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS:

AFTER EACH FILE NAME IS LISTED, TYPE:
P TO SAVE AND PROTECT,
S TO SAVE WITHOUT PROTECTING, OR
CAR RET ONLY TO DELETE.

CCNFIRM: L
FIE .BIN < 17> 1 • BLOCKS
BAS000. TMP < 17> 1 • BLOCKS
BAS100.TMP <"17> 1 • BLOCKS
INTER .BAS < 1 7> 1 • BLOCKS
PROG • FCL <12> ·2. BLOCKS

CONFIR~: I
FIE .BIN < 17> 1 • BLOCKS :S
BAS00 .TMP < 17> 1 • BLOCKS DELETED
INTER .TMP <17> 1 • BLOCKS DELETED
INTER .BAS <17> 1 • BLOCKS
PRO,C .FCL <12> 2. BLOCKS S

JOB I. USER (3,13) LOGGED OFF K00 AT 10:46:07 ON 9 JUN 70
DELETED 3 FILES (3. DISK BLOCKS>
SAVED 2 FILES (3. DISK BLOCKS)
RUNTIME 00:00:25 (2. CPU UNITS)
ELAPSED TIME 00:06:12

In the previous example, the user typed a question mark to
check the LOGOUT options. When LOGOUT completed the
printed explanation, it printed CONFIRM: and waited for a user
reply. In this case, the user requested a listing of his files. LOG­
OUT followed this listing with a second CONFIRM: to which the
user replied I. When using the 1 option, the user is advised not to
type his reply to individual entries until printing stops. DELETED
is printed automatically by the system to show that the temporary
files are deleted without user intervention. The user saved binary
file FIE and the FOCAL file PROG. The BASIC file INTER
was deleted by typing the RETURN key.

9-9

Table 9-1. ,LOGOUT Options

Option Function

:S Save all nontemporary files. A temporary file is one of the
following:

BASOnn
BASlnn
TEMPnn

where nn is the console number at which the user is logged
into the system. A temporary file is created by a System
Library Program and listed in CATALOG listings. A tem­
porary file is also considered to be any file with a .TMP
extension. If no option is specified in the LOGOUT com­
mand, :S is the default.

: K Delete all unprotected files from disk.

:L List the user's file dire~tory. After listing the files, the sys­
tem prints CONFIRM: and the user replies with one of
the options.

:1 Allow the user to individually decide which files to save
or delete. Temporary files are deleted automatically.

:? Print a listing of the available options and their functions.

An optional method of logging out of the system is to type K
in response to the Monitor dot or K followed by a colon and an
option designation. For example:

.K

JOB 01 1 USER (1234,ABCD) LOGGED OFF K13 AT 14:28:02 ON 02-28-73
SAVED 3 FILES (.4. DISK BLOCKS)
RUNTIME 00:00:07 (1. CPU UNITS)
ELAPSED TIME 00:13:57

System Library Program Control
Once logged into the system, the user can call any EduSystem

50 System Library Program.' To call a library program, the user

9-10

types the command R (meaning run) followed by one or more
spaces and the program name. For example:

.R BASIC

NEW OR OLD--

The Monitor fetches the BASIC language processor from the
System Library and starts it. BASIC begins its dialog by asking
if the user wishes to work on a new program or retrieve an old
one from disk storage. Notice that once BASIC begins, the con­
sole is no longer in ~.1onitor mode. Dots are no longer printed at
the margin. An input is now processed by the BASIC language
processor.

If the user types a program name which cannot be found in the
System Li,Qrary, the Monitor responds with an error message and
returns the console to the Monitor mode, as follows:

.R BASICK
FILE NOT FOUND?
•

The exact contents ofa System Library may vary from instal­
lation to installation. The System Manager may choose to make any
number of programs available to a11 users.

Communication with Other Users
Although EduSystem 50 gives each system user the impression

that she is the only user of the system, it is actually supporting many
users ata time. Often it is useful to communicate with another
user or with the system operator; this is done with the TALK com­
mand. The TALK command requests the Monitor to print a mes­
sage on another system terminal. For example, a user at terminal
7 can ask the system operator to turn on the high-speed punch by
typing the following command (the initial dot is printed by the
Monitor) :

.TALK e PLEASE TURN ON THE HIGH-SPEED PUNCH.

The above command causes the following to be printed at console O .

.. **Ke7** PLEASE TUI=iN ON THE HIGH-SPEED PUNCH.

9-11

K07 indicates that terminal 7 sent the message. Any ter­
minal can initiate a message to any other terminal. However, if the
destination terminal is printing at that time, the message will not
be sent. The initiating terminal would, in this case, receive the mes­
sage BUSY as a response.

System Status Reports
The command SYST AT initiates a printout of the full status of

EduSystem 50, how many users are on-line, what they are doing,
etc. The command SYST AT is equivalent to typing R SYST AT.
The format of the status report is described in the section on
Utility Programs.

The user can obtain information on the amount of computer
time used by him, the amount used by another user, or obtain
the time of day with the TIME command. The TIME command
can be issued in one of the following three forms:

TIME

. TIME 0

TIMEn

For example:

.TIME
00100100
.TIME 0
17121106
.TIME UJ
00100134

Resource Sharing

Returns the elapsed processor time of the
user issuing the TIME command since he
logged into the system.

Returns the time of day .

Returns the amount of processor time used
by job n since logging into the system.

All system users, when logged into the system, have access to
the System Library, disk storage, a virtual 4K PDP-8, and the
EduSystem 50 Monitor. The Monitor handles disk resource re­
quests automatically. The Monitor also maintains a pool of avail­
able devices which are assigned to users upon request on a
first-come, first-served basis. Devices such as the high-speed paper-

9-12

tape reader cannot, by their very nature, be assigned to severa:l
programs simultaneously. Therefore, the Monitor grants individuall
users exclusive access to these devices when needed. Deviees such
as the system disk, and sometimes DECtapes, are not assigned
since they can be used by more than one user simultaneously.

All systems include a high-speed paper-tape reader in the pool
of available devices. Many systems also include a high-speed paper··
tape punch, high-speed line printer, and one or more DECtapes"
These assignable devices are normally used with the System Library
Programs PIP and COpy to store programs or data on paper tape
or as DECtape flies.

When a device is assignable (present on the system) and avail··
able (not being used), the ASSIGN command may be used to
reserve the desired unit or units for exclusive use by the console
issuing the command. The valid ASSIGN commands are for··
matted as shown below:

ASSIGN R
ASSIGN P

ASSIGN 0
ASSIGN L

Assign the high-speed paper-tape reader.
Assign the high-speed paper-tape punch
and line printer.
Assign a DECtape unit.
Assign the line printer and high-speed
punch.

If other devices are assignable, the System Manager will inform
the user of the appropriate device designator. The following is an
example of using an invalid device designator:

.ASS I GN X
ILLEGAL REQUEST

The Monitor ignores the request, responds with the appropriate
message, and prints another dot. When a valid ASSIGN command
is issued, the Monitor checks the availability of the device and re·­
sponds accordingly. For example:

.A.SSIGN R
R ASS I GNED
.A.SSIGN P
JOB 02 HAS P

9-13

When the system contains multiple units of a device, the user
simply specifies the device; the Monitor assigns an available unit
and responds with the unit number. For example:

.ASSIGN D
D 0 ASSIGNED

If all DECtape units are busy, the Monitor prints the message
shown below:

.ASSIGN D
DEVICE NOT AVAILABLE

A specific unit can be requested by leaving a space between the
device designator and the device number. For example:

.ASSIGN D "
D " ASSIGNED

NOTE
If the user assigns a device with a nonexis­
tent device number, that device will not be
assigned; an error message does not result
because that device is not busy. An error
message only results when the device is al­
ready assigned.

The ASSIGN command assigns only one device at a time. There­
fore, when multiple devices are to be assigned, each must be as­
signed separately. The following will not accomplish the desired
assignments, either with or without the illegal commas .

• ASSIGN R, D 2, 'D
R ASSIGNED

The Monitor accepted the first device designator and ignored the
rest of the command. If device R is unavailable, the Monitor prints

9-14

the appropriate message. The following commands complete the
desired assignments (assuming available devices) :

.ASSIGN D 2
D 2 ASSIGNED
.ASSIGN D 1
D 1 ASSI GNED
•

When the user has finished working with an assigned device, he
should use the RELEASE command to terminate the assignment
and allow other users access to the device. (When a user logs out
of the system, any devices still assigned to him are automatically
released.) A particular device is released when the user enters
the RELEASE command, a space, and the device designator (and
unit number if required), as shown below:

.RELEASE R

.RELEASE D 3

In the previous example, the high-speed reader and DECtape
unit 3 are released. The Monitor prints a dot on the next line if
the release is accomplished; otherwise, it prints a message. If, for
example, a request is made to release a device which has not been
assigned to the issuing console, the following happens:

.RELEASE D 2
ILLEGA L REQUEST
•

The Monitor printed ILLEGAL REQUEST after it checked and
found that the specified device was not assigned to the console
issuing the command.

NOTE
All commands must be formatted properJy;
ILLEGAL REQUEST is printed if the user
fails to separate the device designator and
unit number with a space.

9-15

When multiple device units were reserved by a user, each must
be individually released. For example:

.RELEASE D 1

.RELEASE D 2

.RELEASE R
•

The Monitor does not perform checking when releasing a device
as it does when assigning a device. The user may have two device
units (e.g., two DECtape units) assigned and Monitor would not
know which to release; therefore, device numbers are necessary
with a RELEASE command. When only one unit of a specific
device (one high-speed reader or punch, etc.) is on the system,
the device designator alone is sufficient.

Error Messages
An appropriate error message is printed whenever:, a Mon,itor

command cannot be perf01med at the time it is requsted, a typing
error is made, or the command is illegal (or nonexistent). Follow­
ing. each error message, the Monitor ignores the command and
prints another dot, after which the user can issue another com­
mand. Table 9-2 is a list of the Monitor error messages.

Table 9-2. Monitor Error Messages

Message Explanation

S1 The System Interpreter does not
understand the command. S 1 =
command.

LOGIN PLEASE? The user attempted to use a con­
sole which is not logged into the
system.

UNAUTHORIZED ACCOUNT Tile user attempted to log into the
system with an invalid account
number or password.

ALREADY LOGGED IN? The user tried to log in on a con­
sole which is already in use.

FULL The system is full. Another user
cannot log in until one of the pres­
ent users logs out. /

9-16

Table 9-2 (Cont.). Monitor Error Messages

Message Explanation

TYPE tBS FIRST The user attempted to use a sys·,
tern command which cannot pres·
ently be honored due to the status
of the user's program. The message
may appear even after the user has

. typed tBS, since his program may
continue until the 110 in progress.
at the time of the halt is completed.
The user should wait a few seconds.
and then type his command a sec·,
ond time.

ILLEGAL REQUEST The user requested an illegal com·,
mand. This error usually results
when some parameter has been
given an incorrect value or' th(;:
request refers to a facility not
owned by the user.

BUSY The user attempted to talk to a
console which is currently print··
jng or on which another user IS

typing.

SYSTEM LIBRARY PROGRAMS
The System Library contains a comprehensive set of user pro·

grams for a wide range of applications. Language processors, such
as BASIC and FOCAL, allow the user to code and run programs.
in interactive languages. FORTRAN-D compiles and executes
programs written in FORTRAN language. A complete assembly
language system allows programs to be written in PAL-D, assem··
bled, and run. Various utility programs perform special functions ..
The DEC-supplied System Library consists of the following pro··
grams.

• BASIC-an easily learned interactive language originally
developed at Dartmouth College.

• FOCAL-DEC's own interactive language for on-line
problem solving, designed especially for use on mini­
computers.

9-17

• FORTRAN-D-a modified version of FORTRAN II.
• EDIT-a line-oriented text editor, used to create and

modify source programs (such as FORTRAN) and data.
files.

• P AL-D-a 2-pass symbolic assembler.
• LOADER-a binary loader used to load assembled pro­

grams for execution.
• ODT-Octal Debugging Technique for testing and modi­

fying assembly language programs.
• PIP-Peripheral Interchange Program for transferring

files between the system disk and paper tape.
.. COPY-a utility program used to transfer files between

the system disk and DECtape.
• CAT-used to list all the files which a user has stored in

his library.
• SYSTAT-(System Status) a utility program that prints

a brief description of the system status.

A more detailed description of each of the above System Library
Programs is presented in the following sections.

General' File Characteristics
A fundamental feature of the Monitor is its ability to save pro­

grams or other data for each user in his own private library. These
individual user libraries are maintained on the system disk. In­
dividual entries in the library are called files, whether they contain
programs or data. Within the library itself, there is no distinction
between types of files by their contents. Each file is identified with
a file name by which it is known ~nd called into use.

The user does not directly create and update the files in his li­
brary. He uses the System Library Programs for this purpose. For
example, he can use the SAVE command in BASIC. The SAVE
command takes the BASIC program named and saves it as a file
in the user's library for future use. Similarly, EDIT can be used
to modify an existing file, resulting in the creation of a new file ..
Therefore, although the Monitor provides the actual file storage
capability, most file 'manipulation is done while System Library
Programs are being run.

The System Library Programs which operate on these files must
know which file to use, when to create a new file, and what to call .
it. Each Library Program has its own method of determining

9-18

whether a user wishes to use an old file or create a new one; this
is explained in the sections on individual library programs.

Example 1:
.R BASIC

NEW OR OLD--OLD
OLD PROGRAM NAME--PRIME
READY

Example 2:

.R FORT

INPUT,TYPE
QUTPUT:BTYPE

For most of his work, the user requires access to only his own
library. However, it is often a useful feature to be able to obtain
a program from another user's library, allowing a single file to be
shared by several users. To access a program from another user's
library, the user must tell the system in which individual library
the file is stored. The user tells the system by entering the account
number of the library's owner. (In the absence of an account
number, the user's own library is the assumed source.) To get a
file from the System Library, type an asterisk immediately after
the file name.

Example 1:

.R SASIC
NEW OR OLD--OLD
OLD PROGRAM NAME--HOSSR*
READY

Example 2:

.R PALO
INPUT:NOTPIP 544~
OUTPUTIBINI

NOTE
Most examples in the discussions of indi­
vidual System Library Programs use file
names within the user's own library. The
user is free (file protect permitting) to use
files from other user's libraries.

9-19

Access to another user's files is gained only with his permission.
A user may "protect" his files against other users, i.e., prevent
them from gaining access to his files, eve_n' though they know his
program name and account number. Library Programs never per­
mit a user to write in another user's files.- Specifying a file which
is' protected, or specifying a nonexistent file, is an error that is
detected immediately. An error message is printed and the file
name is requested again.

The user places his output in a single file; however, it is often
useful to input several files together. (For example, the user may
wish to assemble two parts of a PAL-D program together.) To
specify more than one input file, separate the file names by com-'
mas. No Library Program allows more than three input files.
FORTRAN is limited to two; BASIC allows only one.

BASIC is a self-contained programming system, with an editor,
compiler, and run-time system. It also has a distinctive file format.
Files created by BASIC are not compatible with files created by
other Library Programs. All other Library Programs depend on
each other; therefore, all other Library Programs use the same
format for their disk files. Consequently, files created by the
Editor can be used as input to PAL-D or FORTRAN-D, and
numerical files created with the use of the Editor can be read by
FORTRAN programs as data files.

Up to this point, only files that exist within the time-sharing
system, i.e., on the system disk, have been described; however,
EduSystem 50 provides two othe~ means of file storage: paper
tape and DECtape. The Library Program PIP can be used to trans­
fer files between paper tape and disk. The Library Program
COpy allows files to be transferred between disk and DECtape.

Controlling the Execution of System Library Programs
EduSystem 50 provides the user with two options for stopping

the system. CTRL/C (C with the CTRL key held down) allows
the user to stop his BASIC program and return to the beginning
of that program without returning to the Monitor. For example, if
the user begins to run a BASIC program that has an endless loop,
he can type CTRL/C to stop it. BASIC responds to tC wi\h
READY. All other Library Programs respond in a similar manner.

CTRL/B is used to stop the Library Program most recently

9-20

called. CTRL/B fo11owed by S and the RETURN key uncondi­
tionally rcturns the user to the Monitor mode; the user can then
call anothcr Library Program. If the system is printing, two
CTRL/B's and the S (tRiBS) arc required to stop the system.

RUBOUT is another useful character that deletes the la.st typed
character. Some Library Programs respond by printing '" or +­

while others print the deleted character. If the RUBOUT key is
typed while entering file names for input or output to a Library
Program, RUBOUT deletcs the whole line. The request for input
or output is then rcpeatcd.

Returning to the Monitor
The user can stop the execution of a System Library Program

at any time by typing CTRL/B followed by S and the RETURN
key. The System Library Programs can also initiate a return to
the Monitor. When the System 'Library Programs initiate a re­
turn, tBS is printed just as though the user had terminated the
program. For example, BASIC returns to the Monitor when the
user types the BYE command:

READY

BYE
1'85

FORTRAN returns to the Monitor after completing execution of
a program. CAT and SYST AT rcturn afer printing their particular
data output. PAL-D returns aftcr complction of an assembly,
LOADER at the end of a normal load, and EDIT after com­
pletion of an EDIT. FOCAL, BASIC, ODT, PIP, and COpy
never return to the Monitor; these programs must be tcrminated
by the user with CTRL/B and S. Somc System Library Programs
return to the Monitor when a fatal error condition is dctected.

9-21

9-22

BASIC
EduSystem 50 BASIC is a time-sharing version of the BASIC

language. It allows even the beginning computer user to write
and run meaningful programs. In addition, EduSystem 50 BASIC
has advanced language features such as strings, files, and program
chaining. This section describes the BASIC language capabilities
not discussed in Chapter 1. llable 9-6 contains a complete sum­
mary of the EduSystem 50 BASIC language.

To call BASIC, the user types:

.R BASIC

After the user logs into EduSystem 50, and calls BASIC in the
above manner, BASIC prints NEW OR OLD-. The user then
types the appropriate adjective: NEW (if he wants to enter a new
program) or OLD (if he wants to retrieve a program that was
previously filed) .

BASIC then asks NEW PROGRAM NAME-· (or OLD PRO­
GRAM NAME-) and the user types any combination of six
letters or less. If the user is recalling an old program file from the
disk, he must use exactly the same name as when he originally
instructed BASIC to save it. .

BASIC prints READY to signal the start of the editing phase;
the user then begins to type the new program. If the user types
a line consisting of only a line number followed by the. RETURN
key, that line is d€1eted. Each line must begin with a line num­
ber greater than 0 and less than 2047 and which contains no non­
digit characters. To enter an entire line to the computer, the user
must press the RETURN key.

If the user makes a typing error while typing a statement and
notices it immediately, he can correct it by typing the RUBOUT
key (right-hand side of the keyboard), or the back arrow key
(SHIFT /0). Typing either key deletes the character in the pre­
ceding space and prints a back arrow (<f-) character for each char­
acter erased. The user can then type the correct characters. Typing
the RUBOUT key a number of times erases one character from
the current line (spac~s are characters) to the left for each RUB­
OUT typed.

While BASIC is in the editing phase, certain additional com­
mands (which must not have line numbers) are available. The

9-23

commands are described in Table 9-6 under Edit/Control Com­
mands.

Truncation Function, FIX(X)
The truncation function returns the integer part of X. For

example:

10 PRINT "rIX(10.2):" rIX(10.2)
20 END
RUN
FIXC10.2):10

. FIX is like INT for positive arguments, and can be defined as: ..

FIX(X) = SGN(X) >Ie INT(ABS(X))

ON GOTO Statement
The ON .. ; GOTO statement may be used to provide a many­

way branch. The general form of the ON ... GOTO is:

On expression GOTO line number, line number

If the value of the integer part of the expression is 1, a GOTO is
performed to the first statement. If the value of the integer part of
the expression is 2, a GOTO to the second statement number is
performed, etc .. If the value is less than one, or greater than th.e
number of statement numbers, the program terminates and an
error message is printed. Examples of ON GOTO are shown
below:

SLEEP Statement
The SLEEP statement causes a BASIC program to pause for a

specified interval, then continue running. SLEEP is followed by
the number of seconds the program is to pause. For example:

222 SLEEP 30

or

9-24

22~ LET N=15
222 SLEEP 2*N

causes a 30 second delay in the program.
The SLEEP statement is a useful way for a program to wait

for a>device (DECtape or line printer) which is busy. The ELSE
clause in the OPEN statement can go to a routine which pauses
for a while, then retries the OPEN. When the current user finishes
with the device and releases it, the program may then proceed to
OPEN and use it. This capability is especially useful when many
users may be looking up information on a single DEC tape file. It
may also be used to allow two programs to communicate with each
other. Each writes information on a tape file for the other, or
others, to read.

SLEEP should always be used when waiting for a device. While
the program is sleeping it i~ not using any processor time. A SLEEP
time of 30.to 60 seconds is recommended. It is particularly im­
portant that the program not wait by repetitively retrying the
OPEN. To do so wastes computer time' and slows down other
users. The integer, part of the argument is used to determine the
number of seconds to delay. This value must be between o and
4095.

Comments
An entire statement of comments may be included in the BASIC

program by means of the REM statement. Often comments are
easier to read if they are placed on the same line with an executable

., statement rather than in a separate REMARK statement. This
can be accomplished by ending an executable statement with an
apostrophe. Everything to the right of the apostrophe up to the
statement terminator (carriage return or backslash) is ignored
(unless the apostrophe occurs within a print literal or string
constant.) For example:

10 LET X=Y 'THIS ISA COMMENT'
2~ PRINT "BUT THIS IS NOT A COMMENT"
3A LET X$="A'B"

Thus, a comment is added to line 1 0 with an apostrophe, but in
lines 20 and 30 the apostrophe is treated as a valid character.

9-25

Blank Lines
To make BASIC programs easier to read, blank lines can be

inserted anywhere in a BASIC program. These can be used to
break a program into logical sections, or (as is often done) to

. insert ren1arks with the apostrophe feature. For example:

I~ 'PROGRAM WRITTEN BY SAM JONES
100

Note that to insert a blank line, you must type one or more spaces
after the line number; typing the line number alone will just de­
lete that line from the program.

Multiple Statements per Line
As many statements as will fit may be typed on a single pro­

gram line~ E~ch statement must be separated by the backslash
character ""-" (SHIFT /L) . The only statement requiring a line
number is the initial one. For example:

I"" FOR 1=1 "TO 10\PRINT I\NEXT I

Note that the backslash character acts as a statement terminator
and thus cannot be included in a comment statement.

Editing BASIC Statements
If a program line is incorrect, it can be corrected by retyping

it. Minor errors in statements can be corrected by using the EDIT
command. The user types EDIT followed by the line number of
the statement to be edited. BASIC responds by printing a left
bracket ([). The user then types a search character. BASIC prints
a close bracket and prints the statement through the first occur­
rence of the specified search character. The user may then:

1. Type new characters which are inserted at that point
in the statement.

2. Type one or more back arrows (~) to delete characters
to the left of the search ·character.

3. Type the ALT MODE key to delete the entire line up
to that point (but not the line number).

4. Type CTRL/L to continue to the next occurrence of the
search character.

9-26

5. Type CTRL/G to specify a new search character.
6. Type LINE FEED to finish the edit, keeping the re­

mainder of the line unchanged.
7. Type RETURN to finish the edit, deleting the remainder

of the line.

Saving Compiled Programs
BASIC compiles the current program each time it is run. If,

however, a program will be used frequently without being changed,
it may be stored in its compiled form. A compiled program can
be retrieved and executed faster than a BASIC source program.
To save a compiled program, the user types:

COMPILE FAME

The program is saved on the disk under the specified name
(FAME). If a file by that name exists, BASIC prints DUPLI­
CATE FILE NAME and does not compile that program,

Once a program has been compiled, it may be retrieved and
run just like an ordinary BASIC source program. It may not,how­
ever, be listed, saved, or changed. If an attempt is made to do
any of these things, the message EXECUTE ONLY is printed.
The compile capability may therefore be used to protect programs
from unauthorized listing or changing. Since only BASIC source
programs can be edited, the user may wish to store both a source
and a compiled version of a given program.

Compiled files are distinguished from regular BASIC programs
by their file extensions. BASIC source programs have an exten­
sion of .BAS. Compiled files have an extension of .BAC. These
extensions are printed along with the flle name when a catalog
is requested.

File Protection
EduSystem 50 permits a user to specify a protection code for

each file. (See the section on Advanced Monitor Commands for
a full description of protection codes.) The commands which write
disk files (SAVE, REPLACE, COMPILE) also permit the user'
to specify what protection is to be given to a file. This is done

9-27

/

by following the file name with the protection code In angle
brackets. For example:

SAVE DEMO < lei>

will create and save a file named DEMO.BAS having a protection
code of 10. When no prot~ction is specified, a protection of 12 is
automatically assumed.

Project-Programmer Numbers
In specifying the Account Number prior to requesting an OLD

file, the user may optionally type a Project-Programmer number
(giving the Account Number as two 2-digit numbers separated
by commas instead of a single 4-digit number). In this way, the
user may RUN files from another user's disk area. For example,
both of the following are acceptable:

OLD PROGRAM NAME--FILE 13,3

where 13 is the Project Number and 3 is the Progtammer Num­
ber, or:

OLD PROGRAM NAME--FILE 1303

where 1303 is the account number. The two file name indications
are equivalent.

Restricted Accounts
As an added system protection, BASIC checks to see if an

attempt is being made .to run BASIC under Accounts 1 or 2. If so,
BASIC prints the error message:

IMPROPER ACCOUNT *
ABORT
tBS

thus preventing BASIC from interfering with the System Direc­
tories or the System Libr~ry.

9-28

Catalog Format
The CATALOG command prints file names and file extensions,

file size, and file protection codes for the specified account (the ac-'
count under which the user logged into the system). For example:

CATALOG

NAME
TEMPeJ0
BASeJ00.TMP
BASI00.TMP
IBOLD .BAC
DEMO .BAS

SIZE PROT
1 12
1 1 7
1 1 '1

12
10

Strings in BASIC
EduSystem 50 BASIC has the ability to manipulate alphabetic

information (or strings). A string is a sequence of characters,
each of which is a printing ASCII character (see Appendix B).
EduSystem 50 strings consist of one to six characters; strings of
more than six characters are truncated on input to six characters.

Variables can be introduced for simple strings, string arrays, and
string matrices. A string variable is denoted by following the vari­
able name with the dollar sign character ($). For example:

Al$
V$(7)
M$(1,l)

A simple string of up to six characters.
The seventh strin~ in the array V$(n).
An element of a string matrix M$ (n,lll) .

When string arrays or matrices are used, a DIM statement is
required. For example:

reserves space for eleven 6:-character strings for the array V$, and
space for 36 6-character strings for the matrix M$.

READING STRING DATA
Strings of characters may· be read into string variables from

DATA statements. Each string data element is a string of one to
six characters enclosed in quotation marks. The quotation marks
are not part of the actual string. For example:

10 READ AIBIC$
200 DATA "JONJ::S"I"SMITH"I"HOWE"

9-29

The string JONES is read into A$, SMITH into B$, and HOWE
into C$. If the string contains more than six characters, the ex­
cess characters are ignored. The following program:

10 READ A$
20 PRINT A$
30 DATA "TIME-SHARIN.G"
40 END
RUN

causes only

TIME-S

to be printed.
String and numeric elements may be intermixed in DATA

statements. A READ operation always fetches the next element
of the appropriate type. In the followi!lgexample:

10 READ AIA$IB
20 DATA "YES"12.51 "NO"11

2.5 is read into A, YES into A$, and 1 into B.
The standard RESTORE statement (as described in Chapter 1)

resets the data pointers for both string and numeric elements. Two
special forms of the RESTORE command, RESTORE* and
RESTORE$, may be used to reset just the numeric or string data
list pointers, respectively. For example:

10 READ AIA$IH
20 DATA "YES"12.51"NO"11
30 PRINT AIA$IB
40 RESTORE*
50 READ A1A$IB
60 PRINT AIA$IB
70 END

RUN

would print:

• 2.5
2.5

YES
:\10

9-30

If line 40 -Were changed to RESTORE, this program would print:

YES
YES

since the numeric as well as string data lists would be reset.

PRINTING STRINGS
The. BASIC PRINT statement ~ay be used to print string in­

formation. If the semicolon character is used to separate string
variables in a PRINT command, the strings are printed with no
intervening spaces. For example, the program:

10 READ AIBIC$
20 PRINT CJBJA$
30 DATA ,"ING"I "SHAR"I "TIME-"
40 END

causes the following to be printed:

TIME- SHARING

INPUTTING STRINGS
String information may be entered into a BASIC program by

means of the INPUT command. Strings typed at the keyboard
may contain any of the standard ASCII characters on the user ter­
minal except back arrow (<<-) and quotation mark ("). Back
arrow is used in BASIC to delete the last character typed. Com­
mas are used as terminators just as with numeric input. If a string
contains a comma, the entire string must be enclosed in quota­
tion marks. The following program demonstrates string input.

10 INPUT AIBIC$
20 PRINT CIBIA$
30 END
RUN

? JONES1SMITH1HOWE
HOWE SMITH

READY

JONES

Strings and numeric information may be combined in the same
INPUT statement as in the following example. Note that if an

9-31

input str~ng contains 'more than six characters, only the first six
are retained.
10 INPUT A"A$"B$
20 PRINT A$"B$"A
30 END
RUN
? 01754"MAYNARD" MASS.
MAYNAR MASS. 1754

The numeric variable A is set to 1754 (leading zeros are de­
leted), the string MA YNAR is put in the string variable A$,and
the string MASS. is put into the string variable B$. To print the
number 01754, the number could be input and output as a char­
acter string.

LINE INPUT
Strings of more than six characters may be entered by means

of the LINPUT (line input) statement. A LINPUT statement is
followed by one or more string variables. For example:

The first six characters to be typed are stored in the first string
variable, the next six in the second, and so until the line of input
is terminated by a carriage return.

Commas and quotes are treated as ordinary characters and
hence are stored in the string variables. For example, if the follow­
ing line were typed in response to the above LINPUT command:

?MAYNARD" MASS. 01754

then the values of the string variables would be as follows:

A$ (1) = "MA YNAR"
A$(2j = "D, MAS"
A$(3) = "s. 017"
A$(4) = "54"
A$ (6) = " "1

1. Strings may consist of zero characters. Such a string is empty (or null).
If printed, it causes nothing to be output. The null string is usually repre­
sented by a pair of- quotes with nothing between (""). The null string
should not be confused with" a string of one or more spaces.

9-32

In the above example, the maximum number of characters
which could be typed would be 30. Any additional chara~ters would
be ignored. In all cases, the maximum number of characters
which may be typed in response to LIN PUT is 50. If a longer line
is typed, the message LINE TOO LONG is printed. The input
line is ignored and must be reentered.

It is possible to mix numeric and string variables in a LINPUT
statement, but this practice is not recommended. As an illustration
of how this might be done, consider the example given earlier:

where the user might type:

? 01754 1 MAYNARDI MA

This still sets the numeric variable A to 1754 (when used in
LIN PUT statements, numeric input remains unchanged). How­
ever, the string variable A$ would now be MAYNAR, and the
string variable B$ would be D, MA. . .
When inputting strings with LINPUT, the error messages: MORE?
and TOO MUCH INPUT, EXCESS IGNORED cannot occur.

WORKING WITH ·STRINGS
Strings may be used in both LET and IF statements. For

example:

10 LET Y$="YES"
20 IF Z$="NO" THEN 100

The first statement stores the string YES in the string variable Y$.
The second branches to statement 100 if Z$ contains the string
NO. For two strings to be equal, they must contain the same
characters in the same order and be the same length. In particular,
trailing blanks are significant since they change the length of the
string. "YES" is not equal to "YES ".

The relational operators < and> may also be used with string
variables. When used with strings. these operators mean "earlier
in alphabetic order" or "later in alphabetic order", respectively.

9-33

They may be used to alphabetize a list of strings, for example ..
The relation operators >=, <=, and <> may be used in a similar
manner. The arithmetic operations (+, -, *, /, t) are not defined
for strings. Thus, statements such as LET A$ = 3:1< 5 and LET
C$ = A$+ B$ have no meaning, and should not be used in a
BASIC program. They will not cause a .diagnostic to be printed;
however, the results of such operations are undefined.

THE CHANGE STATEMENT
The CHANGE statement may be used to access and alter indi­

vidual characters within a string. Every string character has~ a
numeric ASCII code (see Appendix B), a number which is used
to indicate that particular character. The CHANGE statement
converts a string into an array of numbers, or vice versa; The
CHANGE statement has the form:

100 CHANGE A TO A$

or

100 CHANGE A$ TO A

where A$ is any string variable (or an element of a subscripted
string variable) and A is an array variable with at least six ele­
ments. Any array variables used in CHANGE statements must
have appeared ina DIM statement with a dimension of at least
SIX.

The following program illustrates the use of the CHANGE
statement by changing a string variable into an array of numbers.

10 DIM A(6)
20 READ A$
30 CHANGE A$ TO A
40 PRINT A(0)JA(1)JA(2)JA(3)JA(4)JA(5)JA(6)
50 DATA "ABCD)
50 DATA "ABCD"
60 END
RUN

4 65 66 67 68 0 0

The CHANGE statement takes each character of the string and
stores its corresponding numeric (ASCII) code in elements one to
six of the array. Remaining array elements are -set to zero. The

9-34

length of the string (0-6 characters) is stored in the zero element
of the array. In the example above, the character codes for A~
B, C, and D are stored in A(1) to A(4). A(5) and A(6) are set
to zero. The number 4 is stored in A (0) since the string A$ is
four characters long. .

CHANGE may also be used to change an array of numeric:
codes into a character string as in the following program:

10 DIM A(6)
20 FOR I=~ TU 5
30 READ A(I)
40 NEXT I
50 CHANGE A TO A$
60 PH INT A$
70 DATA 5169~6818515314H
80 END
RUN

EDU50

The length of the resulting string is determined by the zero e1e··
ment of the array. In the previous example, the string is five char··
acters long. The elements of the array, starting at subscript 1, are:
assumed to be numeric character codes; these are converted to
characters and are stored in the string. If any codes encountered'
are not valid character codes, or if an invalid string length is
given, the message BAD VALUE IN CHANGE STATEMENT
AT LINE n is printed, and execution is stopped.

A BASIC string of less than six characters always has the re­
maining character positions filled with zeros. For this reason,
when such a string is changed to an array, the first six array ele­
ments are set to zero. The CHANGE statement always fills six
array elements, even though the strings may not be six characters
long. The user should be careful to dimension the array used in a
CHANGE statement to at least six. If a string of characters is
transformed into an array of less than six elements, an undetected
error will occur.

The CHANGE statement is usable with strings not created by
BASIC. It may, for example, be used to access files other than
BASIC data files. Each string variable corresponds to three PDP-8
words. The CHANGE statement treats these three words as six
6-bit bytes, converts each 6-bit byte to its numeric character code
equivalent and stores it in the corresponding array element. The

9-35

zero element of the array, the string length; is set equal to the
number of bytes (characters) before the first zero byte. When -
reading unspecified data, there may be non-zero bytes following
this zero byte. If so, they will be transferred to the array as ,~ell.

THE CHR$ FUNCTION
Occasionally, it is desirable to type a character other than

those in the printing ASCII set, or to compute the value of a
character to be printed. For this purpose, the CHR$ function can
be used in a PRINT statement. The argument of the CHR$ func­
tion is sent as an ASCII character to the Teletype'. For example:

10 FOR 1=121 TO 9
2121 PRINT CHR$(1+48);
30 NEXT I
40 END

prints 0123456789, since 48 to 57 are the ASCII values for the
characters 0 to 9. The following special characters can also be
printed using the CHR$ function:

Bell CHR$ (7)
-Line feed CHR$ (10)
Carriage return CHR$ (13)
Quote (") CHR$ (34)
Back arrow (~) CHR$(95)
Form feed CHR$(12)

The Teletype will accept characters from 0 to 255 (decimal),
many of which do nothing on most kinds of teletypes. Some of
the special (non-printing) characters should not be used. For ex­
ample, CHR$ (4) causes a Dataphone to disconnect.

For each ASCII code there is a second acceptable form per­
mitted in CHANGE and CHR$. The second code is obtained by
adding 128 to the code given in the table in Appendix B. For ex­
ample, CHR$ would type A in response to either 65 or 193 as
an argument.

Program Chaining
Most programs are easily accommodated by EduSystem 50

BASIC. If a program becomes very long, however, it may be
necessary to break it into several segments. Typ~cally, programs of
more than two to three hundred statements must be split into more

9-36

than one file. A program that has been broken into more than
one piece is commonly called a chained program.

Each part of a chained program is saved on the disk as a sep­
arate file. The last statement of each part to be executed is a
CHAIN statement specifying the name of the next part of the
program. The next file is then loaded and executed. It may in turn
chain to still another part of the program. The general form of
the chain command is:

414 CHAIN "NAM E"

or

414 CHAIN Ai

where NAME is the name of the next segment to be executed (one
to six characters enclosed in quotation marks). The name of the
next segment may also be contained in a string variable. In either
case, the file of that name is loaded and run. Thus, the statement:

999 CHAIN "SEG2"

is eq uivalent to:

OLD

OLD PROGRAM NAME--SEG2

RUN

except that it happens automatically. Each separate part of the
program automatically links to the next part of the program chain.

The individual sections of a chained program may be either
regular source files (.BAS) or compiled files (.BAC). If the sec-·
tions arc source files, they must be compiled before they are runo
A chained program runs more efficiently if all its sections have
been compiled. Source and compiled files cannot be mixed in
program files.

If an error occurs while compiling or running a chained pro-­
gram, the name of the section containing the error is printed as

9-37

part of the error message. In all cases, whether a program ter­
minates by an error or a STOP or END, BASIC returns to the
first program in the chain. This is the one which is available for
.editing and rerunning when BASIC prints READY.

Most chained programs require that information from one sec­
tion be passed to the next. The first section may, for example,
accept input values and perform some preliminary calculations. The
intermediate results must then be passed to the next section of
the programs. This p~ssing· of values is done by means of data
files which are explained in tbe next section. Whenever a CHAIN
operation is performed, program data which has not oeen saved
in a file is lost. Variable and array values are not automatically
passed to the next program.

Disk Data Files
The standard BASIC language provides two ways of handling

program data items. They may be stored within the program (in
OAT A ·stater,nents) or they may.be typed from the terminal. OAT A
statements, however, allow for only a limited amount of data.
Also, the data is accessible only to the program in which it is em- .
bedded. Typing data from the terminal allows it to be entered
into any program, but this is a time-consuming process. In either
case, the data or results of calculations cannot be cOliveniently
stored for future use. All these limitations m'ay be overcome by the
use of disk data files.

A data f)·le is separate from the program or programs which
use it. It is a file on the disk similar to a saved program, but it .
contains numbers or strings rather than program statements.
This information may be read or written by a BASIC program.
(I nformation in a data file is stored in a coded format; therefore,
it cannot be listed by the BASIC Editor or EDIT.) (The maximum
size of a data file is about 350,000 characters.) String and nu­
meric information may be combined in a single data file. The num­
ber of data tllcs a user may have is limited to about 100, space
allowing. When a file is first created, its contents are undefined.

FILE RECORDS
A data file is made up of logical units called records. A record

may be as small as a single numeric or string variable. More typi­
cally, it is a group of variables or arrays. The design of the pro­
gram lIsually dictates the most efficient size of the record. If, for

·9-38

,
example, the program manipulates a series of 5 by 5 matrices,
each record could contain one such matrix. If the program op­
erates on 80-character alphanumeric records, 14 string variables
might comprise a record.

The size and composition of a record are defined with a
RECORD statement. Like the DIM statement,RECORD is fol­
lowed by a series of variables. They may, however, be unsub­
scripted as well as subscripted. For example:

10 RECORD A(S"S>
10 RECORD B$(14)
10 RECORD A,,B,,C$(8),,D,,E(S>

J:he set of variables mentioned in a RECORD statement, taken
together, constitute a record. Each element within the : record is a
field. Numeric and string information may be mixed to comprise a
more convenient record.

Variables mentioned in a RECORD statement should not appear
in a DIM statement. 'The RECORD statement reserves variable
space exactly as a DIM statements does. The difference is that the
variables are also identified as being used for file Input and output.
Non-subscripted variables appearing in RECORD statements must
not have been used previously in a program; therefore RECORD
statements should always be the first statements in a program.

Records may be any length. A long record is typically more effi­
cient since more information is transferred in a single operation.
Records should, however, be only as long as necessary since excess
variables lengthen the file. In particular, it is important to remem­
ber that all arrays and matrices have zero elements. The array
A(5,5) has 36 elements, not 25. If A appears as part of a record,
all 36 elements should be used.

It is also useful to try to make record sizes 43 variables long,
or a multiple of 43. Each RECORD statement reserves program
variable space in units of 43 whether or not the record is that big.
Unless the record fills this area, some program variable space is
wasted. It is not worthwhile, however, to make an inherently small
record 43 variables long just to conform to this convention; this
would make the file unnecessarily large.

9-39

OPENING A DISK FILE
Disk data files are completely separate from the programs

which use them. Therefore, the program must specify which file or
files it will use. The OPEN command is used for this purpose.
OPENing a disk data file associates it with an internal file num­
ber, either 8 or 9. (A program may have two disk data files open
at one time.) For example:

100 OPEN 9 .. "DATA10"
11210 OPEN 8 .. A$

The name of the file to be opened may be explicitly stated in the
OPEN commpnd. If i,t is, it must be contained in quotation marks.
The file name may also be .contained in a string variable, allowing
the program to decide which file to open, perhaps on the basis
of input from the program's user. In either case, the name of the
file is preceded by the internal file number, either 8 or 9. This
argument may also be an expression whose value is either 8 or 9.

When a file is opened on an internal file ,number which has a
file already open, the previously opened file is closed and the new
file opened. •

If no file of that name exists, the file is created. In .either case,
once the file is open, it is available for both reading and writing.
BASIC disk data files are assigned an extension of .DAT which
need not be spes}fied as part of the file name in the OPEN state­
ment.

READING/WRITING DISK FILES
Once open, files may be read and written, one record at a time,

using the G~T and PUT statements. GET statements read one
record of information directly into the variable in the RECORD
statement. PUT statements write the present values of the variables
in the RECORD statement. Both GET and PUT statements are
followed by the internal file number (8 or 9 or an expression),
the line number of the RECORD statement 'containing the vari­
ables to be transferred, and the name of a control variable. For
example:

100 RECORD A .. B .. C$(30)"D(8)
110 OPEN 8" "FILE1"
120 LET 1=0
130 GET 8 .. 100 .. 1

9-40

The control variable specifics the file record to be transferred.
I n the example above, Fl LE 1 is opened as internal file 8. The
value of the control variable, L is zero. The GET statement C in
Ii ne 130 reads the first record (record ()) of FI LE I into A, B,
and the arrays ('$ and D. Single nlimeric values arc read into A
and B, 3 I strings arc read in C$, and 9 numeric values are read
into D. After each transfer, whether it is a GET or a PUT, -the
value of the control variable is automatically incremented. Suc­
cessive GET's or PUT's automatically proceed to the next record
of the file.

The PUT statement has a similar format. For example, if line
130 or the preceding program had been:

130 PUT 8~100~I

the present values of A, B. C$, and D would have been written
to the first record of FI LE I.

File records may be accessed randomly by setting the control
variable to the desired record number before doing the GET or
PUT. Single records may be read. changed. and then written with­
,out proces_sing the entire lile. When reading a file, the record ref­
erenced in the GET statement must. of course, be the same as
the record referenced in the PUT statement which- wrote the data
onto the file. The total length of the record and the relationship
of string and numeric fields within the records used for the GET's
and PUT's must be the same. If they arc not. improper informa­
tion will be read and written.

New files may be created by openiri'g a file which docs not
alreadv exist. As successive records are written onto the file. its . - -
length is extended as necessarv. When a new file is created. it is

~ .
usct"ul to immediately write an end-of-file code in the last record.
W.riting the last recl)rd first forces the entire file to be allocated.
making sure that enough disk space is available. It also provides an
end-or-file mark. Programs which read this file may then check

~ .
for this end-or-file mark to avoid readil~g past the end of the data
file which results in an error. .

Existing flies may be enlarged by writing a new record farther
out. If the program do~s not know how big the file will be. it may
simply write records to the file in sequcncc.

9-41

The file will be automatically ex~ended. When all the records have
been written, one final end-of-file mark can be added.

In general,all records read or written on a specific file should
be the same length, i.e., contain the same number of variables.
However, if the user is careful he may intermix records of differ­
ent lengths in a file. Suppose the following statement is executed:

40 PUT 8 .. 100 .. N

and the value of N is n and the record specified by statement 100
is of length m. The PUT statement will write m variables in the
file starting at the m*n variable. The simple rule for computing
the first variable c in the .file to' be accessed is the record length
times the record number" (Remember the first record is record
number zero.)

CLOSING/DELETING DISK FILES
When all work has be~ncompleted on a data file, it should be

closed with a CLOSE statement. Once the file is closed, it may
not be read or written unless it is reopened. The file does, how­
ever, remain on the disk and is available for future use. The
CLOSE statement is followed by the interna,l file number to be
closed (B or 9). For example:

950 CLOSE 8

If the 'disk file was just created for temporary' scratch use (to
pass parameters during a CHAIN, for example), it should be
deleted at the end of the program instead of closed. The UNSA VE
statement is used to delete files. For example:

The file opened on internal file number 9 is deleted from the disk.
Both CLOSE and UNSAVE may ,be followed by an expression
e.quating to 8 or 9 instead of a constant.

Open disk data files are automatically closed at the end of the
program, unless the program CHAINs to another program. In this
case, all open files remain open and the new program may access
them without executing an OPEN statement.

9-42'

DECtape Data Files
Large permanent data files are best stored on DECtape rather

than on disk. Each DECtape holds up to 380,000 characters of
information. DECtape data files may be dismounted for safe­
keeping, thereby insuring their privacy. Data files on DEC tape
are similar to files on disk except that they do NOT have filenames.
Each reel of DECtape is treated as a discrete data file. When the
tape is mounted on a DECtape drive, records may be read and

. written *ectly onto the tape.
A D~tape data file may be used by only one user at a time.

Once a DECtape unit is assigned, a single user has exclusive
access to it until he releases it. Each DECtape drive has a WRITE
LOCK switch which physically prevents any write operations to
that unit. If the WRITE LOCK switch is set, programs may not
write on the tape even if the unit is assigned.

DECtape data files may be used in a variety of ways. Programs
which need large data files should use DECtape to avoid con­
suming large disk areas. Administrative files, such as student or
employee records, are best stored on DECtape. Since they are
removable and can be write-locked when mounted, their use can
be tightly controlled. DECtapes are also useful for information
retrieval. A data tap'e may be ~~pt permanently mounted but
write-locked. Individual users may run programs which assign and
query that file, then release it for others to use.

DECT APE FILE RECORDS
Records for DECtape data files are specified the same way as

for disk data files: with a RECORD statement. All rules for disk
records apply to DECtape records. In fact, the same RECORD
statement may be used for both a DECtape and disk file .. (This.
is useful when transferring a tape file to a disk file for processing.
Access to disk data files is considerably faster than to DECtape
data files.)

it is possible to specify any record length for a DECtape data
file, but a size of 43 -variables is' suggested, even more strongly
than for'disk data files. DECtapes are physically structured into
blocks, each of which holds exactly 43 variables. If the record
specified by the program is, for example, 44 variables, it requires
two full blocks on the tape.

Records which are multiples of 43 variables are efficient in

9-43

utilizing DECtape space but are not efficient in speed. Such records
are written in consecutive DECtape blocks. The tape unit cannot
read or write consecutive blocks without stopping the tape and
rewinding it slightly (rocking). This tape rocking also occurs
when single block records (43 variables or less) are read or writ­
ten as consecutive DECtCl.pe records. (In this case, each DECtape
file record corresponds to a physical tape block.)

The most efficient way to utilize DECtape is to make records
43 variables in length and write them onto every tenth record in
the file (records 0, 10, 20, etc.). When the entire length of the tape
has been traversed (the last block of the tape is number 1473),
write next into records 1, 11, 21, etc. In this way, every record
is eventually filled. Programs which will be used repeatedly should
access the tape in this manner.

OPENING A DECTAPE FILE
DECtape data files, like disk files, are completely separate from

the programs which use them. Therefore, the program may specify
which tape, or tapes, it will use. The OPEN statement is used for
this purpose. Since DECtape files do not have names,2 the OPEN
statement specifies the DECtape unit number to be used. It is
assumed that the proper tape reel has been mounted. If the file
is to be updated, the uni_t shou18 be write-enabled. If not, it should
be write-locked. The OPEN statement is followed by the unit
number to be used (0-7).

100 OPEN 2
100 OPEN 7

The unit number could be an expression. Making the unit num­
ber a variable is very useful since it is hard to predict which units
will be available at the time the program is run: When the unit
specification is a variable, the user may mount the file on any
free unit, then INPUT the number into the program.

When the OPEN statement is executed, the indicated DECtape
unit is automatically assigned to the user. It cannot subsequently
be assigned to any other user. Thus, it is possible to try to open,

2 It is important to note that BASIC data file DECtapes are not the same
as the file-oriented DECtapes used by COPY. There is no directory on a
BASIC DECtape file. Each tape is considered to be one file of data.

9-44

hence assign, a unit which is already assigned. If, in the above
examples, units 2 and 7 were already assigned to the current user
or any other user, the program would be terminated arid an error
message printed.

An alternative form of the OPEN statement allows the pro­
gram itself to handle this situation. OPEN statements may include
an ELSE clause which specifies a line number. If the OPEN
statement fails, BASIC automatically performs a GOTO to this
line number. For example:

100 OPEN 2 ELSE 900

If unit 2 is available, it is assigned and BASIC goes on to execute
the next statement. If unit 2 is not available, statement 900 is exe­
cuted next. Statement 900 could print a message and perhaps ask
for an alternate unit number.

READING/WRITING DECTAPE FILES
DECtape data files are read and written using the same GET and

PUT statements as are used for disk data files. The internal file
number is a number between a and 7, or an expression. Unlike
disk data files, DECtape data files are of a constant length equal
to the capacity of the tape. The exact number of records per reel
depends on the record size as follows:

Record Size

1-43 variables
44-86 variables
87-129 variables

Tape Capacity

1474 records
737 records
491 records

,
As indicated in the section on DECtape data records, a record

size of 43 variables or less is recommended since it conforms to
the physical blocking of the tapes themselves. It is also desirable
to space the records along the tape so that the tape does not waste:
time rocking. The following subroutine could be used to write:
1474 records on the tape in this fashion. It assumes that R is set
to zero before it is called the first time and that the unit number
is in U.

9-45

500 REM SUBROUTINE TO WRITE RECORDS ALONG TAPE
510 REM WRITES ONE RECORD EACH TIME CALLED
515 PUTU"10,,R 'REMEMBER THIS INCREMENTS R
517 LET R=R+9 'SPACE OUT 10 BLOCKS
524 IF R<1474 THEN 550 'OK TO RETURN
530 IF R=1479 THEN 560 'TAPE IS'FULL
540 LET R=R-1479
545 IF R>0 THEN 550
547 LET R=R+10
550 RETURN
560 STOP 'TAPE IS FULL

The following function may also be used to convert a logical
record number (0 to '1469) to a physical record block spaced
along the tape. This function does not use blocksO-3. These blocks
are, therefore, available for a header or label. Both the subroutine
above and the function below assume a record length of 43 vari­
ables or less.

FNC(X) = (X-INT(X/147)*147)*10 + INT (X/147)+4

Once opened, any record on the tape may be read. The tape
unit must, however, be write-enabled if it is to be written. Trying
to' PUT to a write-Iock.ed tape is an error.

CLOSING OECT APE FILES
Once all work on a OECtaQ.e data file has been completed it may

be closed. Closing a file releases the tape unit and makes it avail­
able to other users. Thus, if the tape contains important information
(and especially if it is write-enabled) the CLOSE should not be
done until the tape reel has been removed. If no CLOSE statement
is encountered in the program) the unit remains assigned after
the program has finished. The OECtape unit remains assigned
until a Monitor RELEASE command is executed or the user logs
out. An example of a CLOSE statement follows:

IIVl(i'J CLOSE 6

USING OECT APE OAT A FILES WITH OS/8 FORTRAN
Numeric OECtape data mes written by BASIC may be read by

OS/8 FORTRAN with the FORTRAN RT APE and WT APE
subroutines. and vice-versa. (String and Hollerith variables use
different character codes.) Thus, it is possible to use BASIC to

9-46

prepare an input or update tape for a stand-alone FORTRAN pro­
gram. This provides a conyenient way to do big jobs in ofl·hours,
without having to leave the time-sharing mode for very long.

Line Printer Output
If a line printer is "available, it may be used both to list BASIC

programs and to serve as an output device for the programs
themselves. The line printer may only be used by one ,,!ser at a time.
The statements associated with line printer output are LLIST
and LPRINT.

LLIST is similar to the LIST command except that the program
listing is output to the line printer rather than to the Teletype. The
LLIST command assumes that no other user has the line printer
assigned and "responds by typing WHAT? if the line printer is not
available. After the listing is complete, the line printer is released
and is available to any user.

BASIC programs may use the line printer as an output device
during execution by means of the LPRINT statement. LPRINT is
exactly like PRINT except that the information goes to the line
printer rather than to the Teletype. All formatting conventions
of the PRINT statement are available with LPRINT. In particular,
CHR$ (12) may be" used to skip to the top of the next form
(page). "

The LPRINT statemeht also assumes that no other user has the
line printer assigned. However, using this statement when the line
printer is not available causes the program to terminate. Once
LPRINT successfully assigns the line printer, it remains assigned
until the program terminates. .

The OPEN and CLOSE statements may be used to assign and
release the line printer. An OPEN statement with a device number
of 11 assigns the line printer, or if it is not available and an ELSE
clause is specified, transfers control to the line number specified
in the EI;..SE clause. CLOSE 11 releases the line printer.

Paper Tape Output
The high-speed paper tape punch 1Jlay also be used as an output

device. Like the line printer, the paper tape punch may only be
used by one user at a time. OPEN and CLOSE statements with an
internal file number of 10 will, respectively, assign and release
the paper tape punch as shown in the following example:

9-47

10 OPEN 10 ELSE 100 'GOTO 100 IF ?UNCH UNAVAILABLE
20 CLOSE 10

Here too, a GOTO statement in combination with an ELSE clause
can be used to transfer program control if the paper tape punch
is unavailable.

The LPRINT statement causes output to the paper tape punch
when this device has been assigned. For example:

10 OPEN 10
20 LPRINT "THIS GOES TO PTP."

causes the statement THIS GOES TO PTP. to be punched onto
paper tape. If the paper tape punch is not released with a CLOSE
statement, it remains assigned after the program terminates.

Internal.Data Codes
Using the file I/O capabilities and the CHANGE statement, it

is possible to examine data which was written on a DECtape or
disk file by a program other than BASIC. There are two data for­
mats: numeric and string.

NUMERIC DATA
Each numeric value in BASIC is three PDP-8 words long. The

storage format for numeric data is as follows:
o I 8 9 II

WORD I L-I -;--L--'-l---'------L.......--'------'----'-__ L-.J..... ---0.'----1

SIGN -.-J '-' ----..:....,r~----J '---.------'t
BINARY EXPONENT •
HIGH ORDER MANTlSSA------------I

o II

WORD 2 LI ______________ _
MANTISSA

o

WORD 3 LI.'--_____________ -.--J
LOW ORDER MANTISSA

A one in the SIgn bit means that the number IS negative. The
•

exponent is kept in excess 200 form where:

200~ is 2°
201 R is 21
1778 is 2-1

9-48

The assumed deci~al point is be,tween bit 8 ~nd bit 9 of word].
AlSo, the number IS always normalized, meaning that bit 9 is aJ.­

ways 1 unless the number is zero. (Zero is represented by thre~~
zero words.) Note that this format is the same as the fprmat used
by FORTRAN-D.

Table 9-3. 'BASIC Internal Data Codes

6-Bit 6-Bit
Byte Byte ASCII Byte Byte ASCII
Octal Decimal Char. Octal Decimal Char.

00 0 NULL 40 32 ?
01 1 SPACE 41 33 @
02 2 42 34 A
03 3 " 43 35 B
04 4 # 44 36 C
05 5 $ 45 37 D
06 6 % 46 38 E
97 7 & 47 39 F
10 8 50 40 G
11 9 .(- 51 41 H
12 10) 52 42 I
13 11 * 53 43 J
14 12 + 54 44 K
15 13 55 45 L
16 14 56 46 M
17 15 57 47 N
20 16 / 60 48 0
21 17 0 61 49 P
22 18 1 62 50 Q
23 19 2 63 51 R
24 20 3 64 52 S
25 21 4 65 53 T
26 22 5 66 54 U
27 23 6 67 55 V
30 24 7 70 56 W
31 25 8 71" 57 X
32 26 9 72 58 y
33 27 .. 73 59 Z
34 28 74 60 [
35 29 < 75 61 '" 36 30 76 62]
37 31 > 77 63 t

9-49

DATA STRING '. . . DP-8 words long. Each word
Each string v~nable IS th~ee ~ers If a string .variable is filled

contains two 6-blt bytes or c. ahra . t written by a BASIC pro-
GET f a source whlc . was no

by a . romC' ay examine the data in the variable b. Y
ram a BASI program m ' "n be

~erfO'rming a CHANGE on that variable. The SlX bytes WI

translated as if they were internal character codes for BA.SIC
string characters. Table 9-3 shows how this translation interprets
the 64 possible types. Note that after such a CHANGE, the
Oth element of the an:ay contains a count of the number of char­
acters occurring before the first null.

Error Messages
Most programs, especially if they are at all complex do not exe­

cute correctly the first time they are tried. EduSystem 50 checks'
all BASIC statements when they are entered and before executing'
them. If it cannot execute a statement, it informs the user by print­
ing one of the error messages shown in Table 9-4, followed by the
lihe number, if present, in which the error occurred.

In addition, the system checks for non-fatal execution errors
and notifies the user that he performed a computational range
error. When errors of this type occur, the messages shown in
Table 9-5 appear, followed by the line number in which the error
occurred.

Table 9-4. BASIC Error Messages

Message Explanation

WHAT? The editor cannot understand the com­
mand given.

SYSTEM 1-0 ERROR

PROGRAM TOO LARGE

NO END STATEMENT IN
PROGRAM

ILLEGAL INSTRUCTION

BASIC was unable to perform the
desired dis.k 110.

The program js too large to be exe­
cuted. Make it smaller.

All programs must have an END
statement.

A statement was used which is not
one of the legal ,BASIC statements.

9-50

Table 9-4 (Cont.). BASIC Error Messages

Message

ILLEGAL SYNTAX

DEF STATEMENT
MISSING

FOR WITHOUT NEXT

NEXT WITHOUT FOR

ILLEGAL CHARACTER

ILLEGAL LINE NUMBER

ILLEGAL OPERATION

STACK OVERFLOW

ILLEGAL CONSTANT

OUT OF DATA

ILLEGAL FORMAT

DIMENSION TOO LARGE

UNDEFINED LINE
NUMBER

BAD FILE NAME

Explanation

The expression in a statement does
. not agree with the BASIC syntax.

A function needing a DEF statement
exists in the program.

There is an unmatched FOR state­
ment in the program.

The NEXT statement indicated has no
preceding FOR statement.

The user attempted to use an illegal -
character in the statement being pro­
cessed.

The format of the line number being
used in a GOTO or IF statement is
not acceptable.

The expression being processed doecs
not agree with the BASIC rules (this is
probably due to unmatched paren­
theses) .

The user programmed a situation in
which the expression is too compli­
cated :to be executed.

The format of a constant in the state­
ment being processed is not valid.

A~ attempt was made to READ more
data than was supplied by the user.

The structure of the statement does
not agree with BASIC syntax.

Too large an array to fit in the avail­
able core.

The line number appearing in a
GOTO or an IF-THEN statement does
not appear in the program.

The file name used is not valid, e.g.,
it does not begin with a letter.

9-51

Table 9-4 (Cont.). BASIC Error Messages

Message

SUBSCRIPT ERROR

Explanation

A negative subscript was used for an
array.

MISUSED TAB The TAB function was used in an in­
valid manner . TAB can appear only
in PRINT statements.

GOSUB-RETURN ERROR Subroutines are too deeply nested or
a RETURN statement exists outside
a subroutine.

ILLEGAL FOR NESTING

ILLEGAL VARIABLE

DISK FULL

IMPROPER ACCOUNT #
ABORT
tBS

BAD FILE FORMAT

MISUSE OF CHR$

BAD VALUE IN CHANGE
STATEMENT

TIME LIMIT EXCEEDED

FOR-NEXT loops are too deeply
nested or NEXT appears before FOR.

An illegal variable was used in an
array.

There is no more storage space on the
system disk.

A user logged in under account num­
bers 1 (system account) or 2 (system
library) and tried to run BASIC. This
is prohibited.

The program specified in response to
OLD PROGRAM NAME was not
acceptable to BASIC. This is gener­
ally caused by: (1) trying to load an
obsolete compiled (.BAC) file, or (2)
trying to load a non-BASIC (FOR­
TRAN or PAL-D) program.

The CHR$ functi~n was used in an
invalid manner. CHR$, like TAB,
can appear only in PRINT state-·
ments.

While performing CHANGE A TO
A$, one of the elements of the array
A was found to contain an illegal
value.

The number of statements executed
by a job has exceeded the maximum
established by the system manager.
Generally, some error was made and
the program is caught in a loop.

9-52

Table 9-4 (Cont.). BASIC Error Messages

Message

PROGRAM IS "progname"

PROGRAM NOT FOUND

BAD SLEEP ARGUMENT

ARRAY OR RECORD
USED BEFORE
DEFINITION

IMPROPER DIM OR
RECORD STATEMENT

CAN'T CREATE FILE

CAN'T DELETE FILE

UNOPEN DISK UNIT

Explanation

This message may immediately fol­
Iowan error message, to identify the
current program ina series of
CHAINed programs. If there is no
CHAIN, this message will not occur.

The file which the user tried to ac­
cess with a CHAIN statement does
not exist in his disk area. The PRO­
GRAM IS message will also occur.

The argument of the SLEEP state­
ment must have a number greater
than or equal to 0, and less than or
equal to 4095.

The RECORD statement must occur
before any reference to it is made.
A DIM statement must occur before
an array is used. (RECORD and
DIM are placed at the beginning of
a program.)

Syntax error in DIM or RECORD
statement, or an array name that was
previously dimensioned is reu:~ed.
(Replaces IMPROPER DIM STATE­
MENT IN LINE n).

An OPEN statement tried to create
a file, but there is: (a)· no disk space
available, (b) no file name speciHed,
or (c) a null string has been given
as the file name.

UNSAVE cannot delete a file. This is
usually due to the fact that another
user has the file open, or the file is
protected with a code ~20.

The user tried to do a GET, PUT, or
UNSA VE to device 8 or 9, without
a file being previously opened on the
device.

9-53

Table 9-4 (Cont.). BASIC Error Messages

Message

DEVICE BUSY

INVALID RECORD NO.

ON INDEX OUT OF
RANGE

INVALID DEVICE NO.

GET BEYOND END OF
FILE

GET/PUT ERROR

CHAIN TO BAD FILE

Explanation

The user tried to OPEN DECtapes
0-7, line printef, or paper tape punch,
but the device was unavailable, and
there was no ELSE clause in the
OPEN statement.

The record number must be ,a num­
ber which is greater than or equal to
o and less than or equal to 4095. For
DECtape II 0 the maximum record
number is limited further by the
DECtape size.

The value of the index is less than
one, or greater than the number of
statement numbers.

The device number' in the file II 0
statement is not between 0 and I I in­
clusive, (or X and 11 inclusive where
X is a number set by the system
manager) .

Disk data file is too small to have
a record with the number specified in
the GET statement at line n.

A hardware error occupied in GET
or PUT. (This is usually due to a
DECtape unit being write-locked.)

The file specified by the CHAIN has
an invalid format: it is not a BASIC­
format file. The "PROGRAM IS ... "
message will follow this error mes­
sage. The program name will be the
name of the bad file.

9-54

Message

/0

OV

UN

. LN

SQ

PW

Table 9-5. Non-Fatal Execution Errors

Explanation

Zero divide-an attempt was made to divide by zero.
The largest possible number is used for the result.
Overflow-the result of a calculation was too large
for the computer to handle. The largest possible
number is used for the result.
Underflow-the result of a calculation was too small
for the computer to handle. Zero is used for the
result.
An attempt was made to compute the logarithm of
zer~ or. a negative number. Zero is used for the
reKllt.
An attempt was made to compute the square root of
a negative number. The square root of the absolute
value is used for the result.
An attempt was made to raise a negative number
to a fractional power. The absolute. value of that
number raised to the fractional power is used.

9-55

Statement

Input/ Output Statements
CLOSE
DATA
GET
INPUT
LINPUT

\0
LPRINT ,

VI
0"1

OPEN
OPEN-ELSE
PRINT
PUT
READ
RESTORE
RESTORE *
RESTORE$
UNSAVE

Table 9-6. EduSystem 50 BASIC Language Summary .

Format

CLOSE f
DATA nl,n2, ... nn
GET f,l,r

INPUT VI'2, ... Vn

LINPUT v$1,V$2, ... V$n

LPRINT el,e2, ... el~

OPEN f,n$
OPEN fELSEn
PRINT e1,e2, ... en
PUT f,l,r
READ VI,V2, ... vn
RESTORE
RESTORE *
RESTORE$
UNSAVEf

Explanation

Close file f.
Numbers nl through nn = variables in READ statement.
Read record r from file f into the variables in line i.
Get VI through Vn ,input from the Teletype.
Get long character 'string input from Teletype (up to 50
characters) .
Print values of specified text or expressions on line printer
or high-speed paper tape punch.
Open a file named n$ as file number t.­
Open a file, go to line n if unavailable.
Print values of specified text, variables, or expressions.
Write record r, formatted as in line 1, into file f.
Read variables v through v from DATA list.
Reset DATA pointer to beginning value.
Reset DATA pointer for numeric data only.
Reset DATA pointer for character string data only.
Delete file f from disk storage.

1.0
I

VI
-.l

Statement

Transfer of Controls
GOTO
IF-GOTO

IF-THEN
ON-GOTO
Loops and Subscripts
DIM
FOR-TO-STEP

NEXT

Subroutines
GOSUB
RETURN

STOP
Others
CHAIN
CHANGE

Table 9-6 (Cont.). EduSystem 50 BASIC Language Summary

Format

GOTO 1
IF e1 r e:! GOTO 1

IF e l r e:! THEN 1

ON e GOTO II,l:!, ... l;;

DIM v(d1), v(d1,d;l)
FOR v=e1 TO e:! STEP e;;

NEXT v

GOSUB 1
RETURN

STOP

CHAIN n$
CHANGE VI TO V2

Explanation

Transfer control to line number 1.
If relationship r between el and e2 is true, transfer con­
trol to line number 1.
Same as IF-GOTO.
Computed GOTO.

Dimensions, variables subscripted.
Set up program loop. Define v values beginning at el to
e2 • incremented by e3 •

Terminate program loop. (Increment value of v until
v>e2·)

Enter subroutine at line 1.
Return from subroutine to statement following GOSUB
statement.
Transfer control to END statement.

Link to next program.
Change character string to array of character codes or
vice versa.

Statement

DEF
END
LET
RANDOMIZE
REMARK
SLEEP
Edit/ Control Commands
BYE

'P. CATALOG
VI
00 COMPILE

CTRL/C
DELETE

EDIT

KEY
LIST

Table 9-6 (Cont.). EduSystem 50 BASIC Language Summary

Format

DEF FNA(x)=f(x)
END
LET v=f
RANDOMIZE
REM. text
SLEEP n

BYE
CAT
COM name
CTRL/C
DELn
n
DEL n,m
EDln
(c)

KEY
LIST
LISTn
LISTn,m

Explanation

Define a function.
End of program.
Assign value of formula f to variable v ..
Randomize random number routine.
Insert a remark or comment.
Cause program to pause for n seconds.

Leave BASIC Monitor.
List names of programs in storage area.
Compile program in core and save it on disk.
Stop program execution; return to edit phase.
Delete line n.
Delete line n.
Delete lint;:s n through m, inclusive.
Search line n for character c.

Return to keyboard mode after TAPE.
List entire program in core.
List line n only.
List lines n through m, inclusive.

Table 9-6 (Cont.). EduSystem 50 BASIC Language Summary

Statement Format Explanation

LLIST LLIST List program to line printer.
NEW NEW Clear core, request program name.
OLD OLD Clear core, bring program to core from storage area.
REPLACE REP Replace old file on disk with version in core. If name

REP name is not specified, old name is retained.
RUN RUN Compile and run program in core.
SAVE SAVE name Store program named on storage device.
SCRATCH SCR Erase current program 'from core.

\0 TAPE TAP Read paper tape; suppress printing on Teletype.
I

VI UNSAVE UN SAVE name Delete program named from storage device. \0

Functions
ABS ABS(x) Absolute value of x.

ATN ATN(x) Arctangent of x (result in radians).

COS COS(x) Cosine of x (x in radians)

EXP EXP(x) e (e=2.712818).
INT INT(x) Greatest integer of x.

LOG LOG(x) Natural logarithm of x.

RND RND(x) Random number.

SGN SGN(x) Sign of x (+ 1 if positive, -1 if negative, 0 if zero).

SIN SIN (x) Sine of x (x in radians).

\0
I
0\ o

~t~tement .

SQR
TAN
TAB
FIX
CHR$

Table 9-"6 (Cont.). EduSystem 50 BASIC Language Summary

Format

SQR(x)
TAN(x)
TAB(x)
FIX(x)
CHR$(x)

Explanation

Square root of x.
Tangent of x (x in radians). .
Controls printing head position on Teletype.
Truncates decimal portion of x.
Converts character code to character. Used only with the
PRINT statement.

FOCAL
FOCAL (FOrmula CALculator) is an on-line~' interactive,

service program for the PDP-8 family of computers, designed to
help scientists, engineers, and students solve numerical problems.
The language consists of short imperative English statements
which are easy to learn. FOCAL is used for simulating mathe­
matical models, for curve plotting, for handling sets of simultaneous
equations, and for many other kinds of problems.

To call FOCAL, type:

.R FOCAL

FOCAL enters its initjal dialogue, and asks if its extended func­
tions are to be retained. The extended functions are exponential,
sine, cosine, arctangent, and logarithm. If the FOCAL program
to be run uses any of these functions, the user responds YES.
If not, the user responds NO to free more space for the user pro­
gram. Without the extended functions, there is room for approxi­
mately 1800 characters of program. If the extended functions are
retained, there is room for approximately 1100 characters.

Using FOCAL Commands
Whenever FOCAL prints any asterisk, it is in command mode,

and the user may type any of the FOCAL commands in response
to the asterisk. FOCAL commands may be direct or indirect. A
direct command is typed directly after the asterisk and is .executed
immediately. The format for direct commands is:

*COMMAND

An indirect command is always identified by a line number.
Indirect commands are not executed until program control passes
to the line number associated with the command. The format for
indirect commands is:

*GG.ss COMMAND

When the user is typing indirect commands, he may use any
line number in the range 1.01 to 31.99, except those ending in
.00. Numbers such as 1.00 or 31.00 are illegal as line numbers;

9-61

,they are used to identify an entire group of line numbers. Line
numbers. are typed in the format:

GG.ss

where GG is the group number and ss is the step number. It is
not necessary to type two digits after the" decimal; e.g., 2.1 is
equivalent to 2.10.

All FOCAL commands must be followed immediately with a
space. All FOCAL command lines must be terminated with the
RETURN key.

FOCAL Overview
FOCAL consists of 12 commands which are all the beginner

needs to write programs. FOCAL commands may be typed in their
entirety or abbreviated. The FOCAL commands are:

Command

TYPE

ASK

SET

GO or GOTO

IF

DO

RETURN

QUIT

FOR

Explanation

Used to print text, results of cal­
culations, and values of variables.

Used to assign values to variables
from the keyboard.

Used to define variables and eval­
uate expressions.

Used to direct program control to
the lowest line number, or to some
specific line number.

Used to direct program control
conditionally after a comparison.

Used to cause a specific line or
group of lines "to be executed.

Used to terminate DO routines.

Used to halt program execution
and return control to user.

Used to increment a number and
execute a user-specified command
for each value of the number in­
cremented.

9-62

Command

COMMENT or
CONTINUE

ERASE or
ERASE ALL

MODIFY

Explanation

Used for comments or non-ex­
ecutable program steps.

Used to erase part of a program
or an entire program.

Used to edit words or characters
on a program line.

These commands are explained in detail with actual computer
output in this section. For the convenience of the user, a detailed
FOCAL command summary is included in Table 9-7.

Numbers.
A FOCAL number may be any decimal number between -1 onl"

and 10615
• Numbers may be written signed (+ or -) or unsigned,

either with a decimal point and a fractional part or in exponential
format (see Data Formats) with a mantissa and exponent. In
FOCAL, all numbers are internally represented in exponential
format, retaining up to six significant digits. If more than six
digits are specified, the number will be rounded to six digits. The
following numbers are identical in FOCAL:

Variable Names

60
60.00
6E10
600E-I0
60.00003

FOCAL variable names may consist of ei ther one or two char-·
acters. The first character must always be alphabetic; however, it
cannot be an F becaluse FOCAL reserves that character for func-·
tion names (see FOCAL Functions). The second character may
be either alphabetic or numeric. The user may write variable names
consisting of more than two characters, but FOCAL uses only the
first two characters to identify the variable. a Therefore, the first
two characters must be unique.

3 A variable is represented internally as a binary fraction with an ex­
ponent. See Data Formats.

9-63

*SET A=56789
*SET B=123456
*SET Cl=15
*SET C2=30
*SET DEPTH=10
*SET DISTANCE=Cl+C2

Variables may also be sUbscripted. For a discussion of what
subscripted variables are and how they are used, see Subscripted
Variables.

Arithmetic Operations
To print the· results of arithmetic calculations, the user types

the FOCAL command TYPE followed by a space and the data
to be calculated. Then he presses the RETURN key, and FOCAL
prints the answer. For example:

*TYPE 6+10-3-1
= 12.0000*

The above example shows two of the arithmetic operati9lls
(+ and -) performed by FOCAL. Arithmetic operations are per­
formed from left to right except when the operation to the right
has priority or when enclosures are used. (See Enclosures.)

*TYPE 6+5; TYPE 5+2-3; TYPE 10-6
= . 11. 0eJ00= 4.0000= 4.0000*

NOTE
Several commands may be typed on· the
same line if they are separated by semi­
colons (;). This is true for all FOCAL com­
mands .except the LIBRAR Y commands.

Unless indicated otherwise, FOCAL mathematical computations
retain an accuracy of six. significant digits.
PRIORITY OF ARITHMETIC OPERATIONS

The . FOCAL arithmetic operations priorities are:

First priority -exponentiation (t) 4

Second priority -multiplication (*)

4 When exponentiation is performed by FOCAL, the power to which a
number is raised must be a positive integer. If a calculated exponent ex­
ceeds the limits of size, no error message is given. The result will go to
zero.

9-64

Third priority

Last priority

--division (I)

1
addition (+)
subtraction (-)

When FOCAL evaluates an expression which includes several
arithmetic operations, the above order of priority is followed.
Therefore, FOCAL evaluates .

to have a value of

because multiplication (*) has a higher priority than addition (+).

ENCLOSURES
The order of executing arithmetic operations is also influenced by

enclosures. Three kinds of enclosures may be used with FOCAL:
parentheses (), square brackets []~, and angle brackets <>.
FOCAL treats them all the same. For example, the result of the
expressIon:

is the same as the result of:

TYPE <A+B><C+D>*<E+F>

If the expression contains enclosures within enclosures (called
nesting), FOCAL executes the contents of the innermost enclo··
sures first and works outward.

TYPE <5<2+3>-5>t2
= 400.0000*

5 [and] are typed by SHIFT/K and SHIFTn"1;, respectively.

9-65

Input/ Output Commands
TYPE COMMAND

The TYPE command is used to print results of calculations,
values of variables, text or character strings, and variable tables.
TYPE may also be used to print combinations of text and variables.

Example I-Result of a Calculation:

*TYPE 1+1
= 2.eleleleI*

Example 2-Value of a Variable or Variables:

*SET N=5+5: SET M=3e1
*TYPE N~M
= 10.0000=

Example 3-Text:

*TYPE "THIS IS A LINE OF TEXT"~ ,6
THIS IS A LINE OF TEXT

*
Example 4-Variable Tables:

*TYPE $
N(H eleI) =
Mi(eleI)=

*
The user may command FOCAL to print all of the user-defined

variables (variable table) by using the TYPE command and a
dollar sign ($).

If a variable consists of only one letter, an at sign (@) is in­
serted as a second character in the variable table printout, as shown
in the example above.

*SET N=25
*TYPE "N IS"~N

N 15= 25. eIeI 115 115*

NOTE
Any variable, constant, or expression in a
TYPE or ASK command must be followed
by a comma, semicolon, or carriage return.

(l The exclamation mark (!) causes a carriage return and line feed.

9-66

ASK COMMAND
The ASK command is normally used in indirect commands to

enable the user to input numerical data during the execution of his
program. The ASK command is similar to the TYPE command in
form, but only single variable names, not expressions, are use:d;
and the user-types the values in response to a colon (:) printed by
the ASK command.

When FOCAL encounters line 11.99 in the above example, it
prints a colon and waits for the user to type a value (in any
format) and a terminator7 for the first variable. This process con­
tinues until all the variables in the ASK command have been given
values.

The value is assigned to the variable when the user types a termi­
nator; so any time before the terminator is typed, the value can be
changed. If the user types back arrow (~ or SHIFT /0) immedi­
ately after the value and before he types a terminator, he can then
type the correct value and a terminator.

:6

:8"7
*TYPE X" ! " Y" !" Z
= 5.13131313
= 6.13131313
= 7.13131313*

User typed 5 and RETURN key.
User typed 6 and RETURN key.
User typed 8, ~, 7 and RETURN
key.

The AL T MODE key is a special non-spacing terminator which
enables the user to have a previously assigned value unchanged.

:3
: : 12
*TYPE x .. I" Y .. !" Z
= 3.13131313
= 6.13131313
= 12.13131313*

User typed ALT MODE because
he did not want to change the
value of Y.

7 Terminators are SPACE, comma, ALT MODE, and RETURN keys. If
the user types the RUBOUT key, it is ignored.

9-67

Text Output with ASK
The ASK command, just as the TYPE command, may be used

to print text. Carriage return and line spacing are controlled the
same as with the TYPE command (see Data Formats).

*ASK "WHAT IS YOUR AGE?"- AGE
WHAT IS YOUR AGE?:19

*
The word following the text in the command line (AGE, in this
example) is the variable.

Computational Command
SET COMMAND

The SET command enables the user to assign a numerical value
to a variable and store both the value and the variable. Then, when
he uses the variable in an expression,8 FOCAL automatically sub­
stitutes ·the numerical value that the user previously specified:

*SET E=2.71828
*SET PI=3.14159
*TYPE "PI TIMES E"I PI*E
PI TIMES E= 8.5397*

The value of a variable may be changed at any time by another
SET command.

*SET Al= 3' 2
*SET Al=Al+l
*TYPE Al
= 10.0000*

Control Commands
GO OR GOTO COMMAND

. The GO command causes FOCAL to go to the lowest numbered
line in the program and begin executing the indirect commands.

* 1. 1 SET A= 1
* 1.3 SET B=2
* 1.5 TYPE AlB
*GO
= 1.0000= 2.0000:

8 An expression is a combination of arithmetic operations or functions
which may be reduced to a single number by FOCAL.

9-68

In the above example the GO command caused execution to begin
at line 1.1.

The GOTO command causes FOCAL to go to a specific line in
the program and begin executing the indirect commands in ascend­
ing line number order.

*ERASE
* 1. 1 SET A= 1
*1.3 SET B=2
*1.5 TYPE A .. B
*GOTO <1.3
= 0.0000=

:ERASE

*

2'. (iH?J00:

In the preceding example, A and B are equal to zero at the start
of the program. The ERASE and ERASE ALL commands are used
to ensure that all variables are equal to zero until they are assigned
a specific value. Since the GOTO command causes program exec:u­
tion to begin at line 1.3, line 1.1 is never executed and A is not set
to 1.

IF COMMAND
The IF command is a conditional command used to transfer pro­

gram control after a comparison. The normal IF command format
IS:

IF space (expression) line1, line2, line3

The expression or variable is evaluated, and program control is
transferred to the first line number if the value of the expression
is less than zero, to the second line number if the value is zero, or
to the third line number if the value is greater than zero.

The program below transfers control to line number 2.1, 2.3, or
2.5, according to the value of the expression in the IF command.

*2.1 TYPE "LESS THAN ZERO"; QUIT
*2.3 TYPE "EQUAL TO ZERO"; QUIT
*2.5 TYPE "GREATER THAN ZERO"': QUIT
*IF <25-25>2.1 .. 2.3 .. 2.5
EQUAL TO ZERO*

IF with Less Than Three Line Numbers
The IF command format can be altered to transfer program con­

trol to one or two lines. For example, if a semicolon or a carriage

9-69

return is immediately after the first line number, control. goes to
the first line number if the value of the expression is less than zero.
If the value is not less than zero, control goes to the next sequential
command. For example:

*2.20 IF (X)I.8;TYPE"Q"

When line 2.20 is executed, program control goes to line 1.8 if X
is less than zero. If Xis not less than zero, Q is typed.

If a semicolon or a carriage return follows the second line num­
ber, control goes to the first or second line number, depending upon
whether the value of the expression is less than zero or equal to
zero. If the value is greater than zero, control goes to the next
sequential command. For example:

*3.19 IF (B)I .. I.9
*3.20 TYPE B

If B is less than zero, control goes to line 1. 8; if B equals zero,
control goes to 1.9; and if it is greater than zero, control goes to the
next sequential command, in this case line 3.20, and the value of B
is printed.

Arithmetic Comparison with IF Command
The IF command can be used with all the arithmetic operations

of FOCAL. -
Example I-Addition:

Example 2-Subtraction:

* 5. 1 6 I F (A - 8.) 1 • 6; T Y P E "X"

Example 3-Division:

*3.10 IF (M/N)5.5 .. 5.6;
*3.15 TYPE "GREATER THAN ZERO"

Example 4-Multiplication:

* 7. 20 I F (P* I) 8. 1;
*7.25 TYPE P*I

9-70

Example 5-Exponentiation:

DO COMMAND
The DO command is used to make subroutines of single lines or

groups of lines. Control is returned to the line following the DO
command after the subroutine is executed.

*1.1 SET A=I; SET B=2
*1.2 TYPE "STARTING"
*1.3 DO 3.2
*2.1 TYPl:; "FINISHED"
*3.1 SET A=3; SET B=4
*3.2 TYPE A+B
*GO
STARTING= 3.0000FINISHED=

*
If the user types a command such as DO 3, the DO command

treats the group of program lines beginning with 3 as a subroutine.
Control proceeds in ascending order through the group numbers
until the end of the group is reached, or until a RETURN com­
mand is executed.

Nested DO
DO commands may be nested as shown in the following example:

* 1 • 1 TYPE "BEGIN" .. !
* 1. 2 DO 2
*1.3 TYPE "END" .. !;

*
*2.1 DO 5. 1;
*2.2 DO 5.2;
*2.3 DO 7.5;
*
*5. 1 SET A=1
*5.2 SET A=2
*
*7.5 SET A=3
*GO
BEGIN
= 1.0000
= 2.0000
= 3.0000
END

*

TYPE
TYPE
TYPE

QUIT

A .. !
A .. !
A.. !

9-71

The number of nested DO commands is limited only by the
amount of core memory available after storage is allocated for
program and variables.

RETURN COMMAND
The RETURN command is used to exit from a DO subroutine.

When a RETURN command is encountered during execution of a
DO subroutine, the program exists from its subroutine status and
returns to the command following the DO command that initiated
the subroutine status.

QUIT COMMAND
When the QUIT command is executed, FOCAL prints an

asterisk and retuf11s to j;ommand mode.

FOR COMMAND
The FOR command is used to set up program loops and iterative

procedures. The general command format is:

*FOR A = B,C,D; commands
*FOR A = B,D; commands

The variable A is initialized to the value B, then the command
or commands following the semicolon are executed: When the com­
mands have been executed, the value of A is incremented by C and
compared to the value of D. If A is less than or equal to D, the
command after the semicolon is executed again. This process is
repeated until A is greater than D, at which time FOCAL goes to
the next sequential line. The command or commands will always be
executed at least once.

A must be a single variable. B, C, and D may be expressions,
variables, or numbers. If the value C is omitted,it is assumed that
the increment is one. If C and D are omitted, the FOR command is
handled like a SET command and no iteration is performed. A
FOR command may be used with a DO command and nested:

9-72

FOR with aDO

*ERASE ALL
* I. 1
* 1.2

* *2. 1
*2.2
*2.3
*GO

FOR X=I .. I .. 51 DO 2
QUIT

TYPE fit
SET A=X+100
TYPE !It

X= 1.0000
A= 101.0000
X= 2.0000
A= 102.0000
X= 3.0000
A= 103.0000
X= 4.0000
A= 104.0000
X= 5.0000

X" .. X

AIt .. A

A= 105.0000*

Nested FOR and DO

* 1. 1 FOR Z=I .. 3; TYPE It

* 1. 2 TYPE !
*1.5 FOR A= I .. 3J DO 3
*1.7 QUIT
*
*3. 1 FOR B= I .. 3J DO 4
>I<

A B C

*4.1 FOR c= I .. 31 TYPE % I .. A .. B .. C .. It

*4.2 TYPE
*GO

A B C A B C A B C
= 1= 1= 1 = 1= 1= 2 = 1= 1= 3
= 1= 2= 1 = 1= 2'" 2 = 1= 2= 3
= 1= 3= 1 = 1= 3= 2 = 1= 3= 3
= 2= 1= 1 = 2= 1= 2 = 2= 1= 3
= 2= 2= 1 = 2= 2= 2 = 2= 2= 3
= 2= 3= 1 = 2= 3= 2 = 2= 3= 3
= 3= 1= 1 = 3= 1= 2 = 3= 1= 3
= 3=·2= = 3= 2= 2 = 3= 2= 3
= 3= 3= = 3= ~J= 2 = 3= 3= 3
*

It

It

Another way of handling the same program is:

*1.1 FOR Z=1 .. 3.:TYPE" A 8 C ..
*1.2 FOR A=1 .. 3;FOR 13= 1 .. 3.: TYPE !;FOR C=1 .. 3JTYPE %~ .. A .. 8 .. C .. "
*0'0

9-73

Subscripted Variables
Variables may be further identified by subscripts which are en­

closed in parentheses immediately following the variables. For
example:

*SET AB(0)=S
*SET AB(I)=10
*SET AB(2)=IS
*SET AB(3)=20
*SET AB(4)=2S
*SET AB(S)=30
*FOR X=0 I S; TYPE AB(X)I!
= S
= 0.1E+02
= 0.2E+02
= 0.2E+02
= 0.3E+02
= 0.3E+02

*

In the above example, sUbscripts are used to set up an array
cal1ed AR. Any element in the array can be represented by a sub­
script in the range 0 to 5. The first element in an array always has a
subscript of O. A sUbscript may be a number, another variable., or
an expression. If it is a number, it must be in the range ±2047. In
order to be properly represented by the TYPE $ command, sub­
script numbers must be positive integers in the range from 0 to 99.
The TYPE $ command will· print subscripts greater than 99 as two
random characters, although their contents will be correct as as­
signed by the program.

COMMENT OR CONTINUE COMMAND
The COMMENT or CONTINUE command (abbreviated as C)

causes the program line to be ignored by FOCAL. The user may
use the C command to insert comments into the program, or he
may use the C command line as a. non-executable program step.
In either case, program lines beginning with C are skipped wh~n
the program is executed. However, comments are printed in re­
sponse to a WRITE q)mmand.

9-74

*ERASE ALL
*1.1 C INITIALIZE VARIABLES
* 1.2 SET A= 5
*1.3 SET B=6
* 1. 4 SET C= 7

* *2.1 C PERFORM CAL.CULATION
*2.2 TYPE A+B+C

*
Edit Commands
WRITE OR WRITE ALL COMMAND

The WRITE or WRITE ALL command causes FOCAL to
print a program line, a group of lines, or an entire indirect program
on the Teletype.

*WRITE 2.1
*WRITE 2
*WRITE

Print a single line.
Print a group of lines.
Print an entire program.

Once the program is completed, the user may want to save it by
putting it on paper tape. The procedure for saving a FOCAL pro­
gram on-line is as follows:

1. Make sure FOCAL is in command mode.
2. Type WRITE
3. Set low-speed punch to ON position.
4. Type RETURN key.

FOCAL will punch the entire program onto the paper tape and
simultaneously print it on the Teletype.

Whenever the user wants to run, the program he has saved on .
paper tape, he does the following:

1. Makes sure FOCAL is in command mode.
2. Puts the program tape in low-speed reader.
3. Switches the low-speed reader to ST ART.

The program will be put into core the same as it would if the
user were typ~ng it on the Teletype keyboard. When the entire
program has been read into core, the user should type CTRL/C
since the asterisk printed when the WRITE command is finished
is also punched and may be interpreted as a command. CTRL/C
ensures that FOCAL returns to command mode.

9-75

ERASE AND ERASE ALL COMMANDS
The ERASE command de1etes symbolic names, lines, or groups

of lines. .

*ERASE 2.2
*ERASE 2

Delete all names defined in
symbol table.
Delete line 2.2
Delete all lines in group 2.

The user can check to see if the line(s) has been deleted by
typing the WRITE command after the ERASE command. This is a
useful procedure for checking commands and also for obtaining a
clean printout of the current program.

The ERASE ALL command deletes the entire indirect program.
It is good programming practice to type ERASE ALL before start­
ing to type a new program. The ERASE ALL command is gen­
erally used only with direct commands because it returns control
to command mode upon completion.

MODIFY COMMAND
The MODIFY command is used to change characters within a

line without changing the entire line. The format for MODIFY is:

MODIFY line number RETURN key Search character

The search character is not printed. After the user has typed the
line number, RETURN key, and search character, FOCAL prints
the contents of the specified line until it encounters the search char­
acter. When the search character is read and printing stops, the
user has anyone or more of the following options:

1 .. Type new characters in addition to those already printed.
2. Type a form feed (CTRL/L). This causes the· search to

proceed to the next occurrence, if any, of the search char­
acter.

3. Type CTRL/BELL; The user can then change the search
character he specified in the MODIFY com1J1and.

4. Type the RUB OUT key. This causes FOCAL to delete a
character, starting with the last character printed and de­
leting one character to the left each time RUBOUT is
typed.

9-76

5. Type the back arrow (~) key. This causes FOCAL to
delete everything between the back arrow and the line num­
ber.

6. Type the RETURN key. This causes FOCAL to terminate
the line at that point, deleting everything to the right.

7. Type the LINE FEED key. This is normalJy done after the
user has exercised one or more of the above options. After
the user has modified the line, he may type LINE FEED
and cause the remainder of the line from the search char­
acter to the end to be printed and saved.

*7.01 JACK AND BILL W$NT UP THE HILL
*MODIFY 7.01
JACK AND B\JILL W$\ENT UP THE HILL

In the above example, B was typed as the search character for
line 7.01. (Note that the search character did not print.) FOCAL
stopped printing when it encountered the search character (B), and
the user typed the RUBOUT key ("') to delete the B. Then he
typed the correct letter J. Next he typed CTRLjBELL and the $
key to change the search character. FOCAL continued to print the
line until the new search character was encountered. The user typed
R UBO UT to delete the $ and then typed the correct character (E).
He then typed the LINE FEED key and the remainder of the line
was printed.

CAUTION
When any text editing is done. the values in
the user's symbol table are reset to zero.

If the user defines his symbols in direct statements and then uses
a MODIFY command, the values of his symbols are erased and
must be redefined. However, if the user defines his symbols by
means of indirect statements prior to using a MODIFY command,
the values will not be erased because these symbols are not entered
in the symbol table until the statements 4efining them are executed.
Notice in the example below that the values of A and B were set
using direct statements. The use of the MODIFY command reset
their values to zero and listed them after the defined symbols.

9-77

*ERASE ALL
*SET A=1
*SET B=2
* 1.1 SET C=3
*1.2 SET D=4
*1.3 TYPE A+B+C+D; TYPE !1 TYPE $
*MODIFY 1.1
SET C= 3\5
*GO
107.22 @ 01.10

* *MODI FY 1. 1
SET C= 3\5
*GO
::: 9
C@(00)= 5
D8(00)= 4
Aie (0)= 0
B@(00)= 0

*
Library Commands

In addition to the basic FOCAL commands, there are four
special commands to perform the library functions: storing and
retrieving data from the system disk. All commands following the
LIBRARY command on the same line are ignored. Names of files
may be from 1 to 4 characters long. Only alphanumeric characters,
letters, and numbers should be used in file names. The library com­
mands, like other FOCAL commands, may be abbreviated.

LIBRARY SAVE
This command copies the current program into the user's area

on disk and gives it the name specified. For e,xample, the command:

*L S TRUE

will cause the current program to be stored on disk under the name
TRUE. The program will also remain in the user's area.

LIBRARY CALL
This command copies the named program from disk into the user's
area. For example, the commands:

*L C TRUE
*w
will cause the program TRUE to be recalled from the disk.into the
user's area and listed on the Teletype. Any program currently in

9-78

the user's area will be erased. The program TRUE can then be
executed with a GO command.

If the LIBRARY CALL command is given a line number and
stored, it must have at least one numbered command following it.
In this case, the LIBRARY CALL command will cause the named
program to be called into the user's area and executed as if GO
had been typed. For example:

*3.10 L C TRUE
*3.11 C

If the above commands are included in a program, they w~ll
cause TRUE to be brought in and executed at that point. If there
are lines beyond 3.11 remaining to be executed, they will be deleted.
This procedure allows the user to chain FOCAL programs as in
BASIC.

LIBRARY DELETE
This command deletes the named program from the disk direc­

tory. For example, the command:

*L D TRUE

will remove TRUE from the disk.

LIBRARY LIST
This command causes the names of all the FOCAL programs

stored on the disk to be listed on the Teletype, ten names to a line,
followed by the total number of free blocks remaining on the disk.
The LIBRARY LIST command removes the contents of the user's
area with an ERASE ALL command.

ERROR MESSAGES WITH LIBRARY COMMANDS
When the .. LIBRARY commands are used, five errors are pos­

sible. These are also listed iIi the error code summary in Table 9-9
at the end of this section.

9-79

Command

?30.71

?30.<0

?31.42

?31.43

?31.44

Explanation

The command appeared to be a LI­
BRARy command but was not, for ex­
ample:

LIBRARY OPEN

No action is taken; the command should
be retyped.

Either an unacceptable file name was
specified or no name was specified where
one was required.

The file name specified does not match
any name currently in the user's disk
directory. This error will only occur with
the LIBRARY CALL and LIBRARY
DELETE commands.

There is already a program with the spe­
cified name in the directory. This error
will only occur with the LIBRARY
SAVE command.·

This user's disk directory is full. The cur­
rent program cannot be saved until others
have been deleted. This error will only
occur with the LIBRARY SAVE com­
mand.

Estimating Program Length
FOCAL permits approximately 1060 (decimal) locations to be

used for the user program and variables without the extended math
functions, and approximately 670 locations with the ext~nded func­
tions (sine, cosine, log, exponential, etc.). Since FOCAL requires
five locations for each variable stored in the variable table and one
location for each two characters of stored program, the approx­
imate length of a program may be determined by the formula:

9-80

C
Length of program = 5S + 2 + 2L

where

S = number of variables
C= number of characters in program
L = number of lines

If the total program area or variable table area becomes too
large, FOCAL prints an error message (06.54 or 1-0.: 5). The fol­
lowing routine allows the user to find out how many core locations
are left for his use:

*ERASE

? 06. 54 (Disregard error code.)
*TYPE %4"I*5,,"LOCATIONS LEFT"
= 1075LOCATIONS LEFT*

*
*

Debugging
USING THE ERROR DIAGNOSTICS

Whenever FOCAL detects an illegal command or improbable
condition within a user's program, the execution of the program
stops and an error message is printed in the form ?XX.XX@GG.ss,
where ?XX.XX is the error message and GG.ss is the line at which
the error occurred. (See Table 9-9 for the complete list of error
messages.)

Depending upon the type of error detected, the user may ignore
the error message or make program changes before continuing. For
example, if the user types CTRL/C to terminate a loop, the error
message ?01.00 is printed and program control goes to command
mode; so, in this case, the user ignores the message and, types his
next command. !fa program stops and the message ?03.05 is
printed, the user must examine his program to determine which
command line is wrong. In the following program, line 1.3 contains
the instruction to transfer to a nonexistent line number.

9-81

*ERASE ALL
*1.10 SET A=2; TYP~ "A"IAI!
*1.20 SET B=4; TYPE; "B"IBI!
*1.30 GOTO 1.01
*1.40 TYPE "A+B"IA+B
*GO
A= 2
B= 4
?03.05 @ 01.30

*

USING THE TRACE FEATURE
The trace feature is used to check the logic in part of a FOCAL

program. To imp.lement the trace feature, the user inserts a ques­
tion mark (?) into a command string at any point. FOCAL prints
each succeeding character as it is executed until another question
mark is encountered or until the program returns to command
mode. For example, the trace feature is used to print parts of 3
lines in the following program:

*ERASE ALL
* 1 • 1 SET A= 1
*1.2 SET 8=5
*1.3 SET C=3
*1.4 TYPE ?A+B-C?I!
*1.5 TYPE ?B+A/C?I!
*1.6 TYPE ?B=C/A?

A+B-C= 3
B+A/C= 5
8=C/A= 2*

NOTE
The WRITE command disables the trace
feature.

FOCAL Functions
The FOCAL functions improve and simplify arithmetic capabil­

ities. In general, the FOCAL functions may be used anywhere a
number or a variable is legal in a mathematical expression. A
standard function call consists of three or four letters beginning
with the letter F and followed by an expression in parentheses. The
FOCAL functions are summarized in Table 9-8.

9-82

The functions must be used with a legal FOCAL command. They
cannot be used alone as commands. For example:

*SET Z=A+FSQT(FSIN(X»

Within a normal range of arguments, at least five significant
digits of accuracy may be expected for the trigonometric, exponen­
tial, and logarithmic functions. The following functions are avail­
able to FOCAL users.

SINE FUNCTION (FSIN)
The sine function (FSIN) is used to calculate the sine of a

user-specified angle in radians. The format for FSIN is:

FSIN (angle)

*TYPE FSIN(3.14159/4)
= 0.7071*

The format for calculation the sine of an angle in degrees is:

FSIN (degrees * 3.14159/180)

*TYPE FSIN(30*3.14159/1R~)
0.5~~~~*

COSINE FUNCTION (FCOS)
The cosine function is used to calculate the cosine of a user­

specified angle in radians. The format for FCOS is:

FCOS (angle)

*TYPE FCOS(2*3.141592>
= 1 .0el00*
*TYPE FCOS(.50000>
= 0.8776*
*TYPE FCOS<45*3. 141592/180>
= 0.7071*

9-83

EXPONENTIAL FUNCTION (FEXP)
The exponential function. (FEXP) is us.ed to compute e

(e=2.71828) to a power specified by the user. The format for
FEXP is:

FEXP (power)

*TYPE FEXP C 1)
= 2.7183*
*TYPE FEXP(0)
= 1.0000*
*TYPE FEXPC-1-23456>
= 0.0000*

LOGARITHM FUNCTION (FLOG)
The logarithm function (FLOG) is used to compute the natural

logarithm (loge) of a number specified by the user. The format for
FLOG is:

FLOG (number)

~TYPE FLOGCl.(0000)
= 0.0000*
*TYPE FLOG(I.98765)
= 0.6870*
*TYPE FLOGC2.(65)
= 0.7251*

The following formulas are useful for finding logarithms to base
10:

logloX=10geX/1oge 1 0=0.434294 10geX

ARCTANGENT FUNCTION (FATN)
The arctangent function (FATIN) is used to calculate the angle

in radians of a user-specified tangent. The format for FA TN is:

F ATN (tangent)

*TYPE FATN C 1 •)
= 0.7854*
*TYPE FATN(.31305)
= 0.3034*
*TYPE FATN(3. 141592)
= 1.2626*·

9-84

SQUARE ROOT FUNCTION (FSQT)
The square root function (FSQT) is used to compute the square

root of an expression. The format for FSOT is:

FSQT (expression)

*TYPE FSQT(4)
= 2.00(i"~*
*TYPE FSQT(9)
= 3.0000*
*SET Z=FSQT(144);TYPE Z
= 12.0000*

ABSOLUTE VALUE FUNCTION (FABS)
The absolute value function (FABS) is used to indicate the

absolute (positive) value of an expression. The format for FABS
IS:

*TYPE FABS(-66)
= 66.0000*
*TYPE FABS(+23)
= 23.0000*
*TYPE FABS(-99.05)
= 99.0500*

FADS (expression)

SIGN PART FUNCTION (FSGN)
The sign part function (FSGN) is used to output the. sign part

(+ or -) of a number with a value of 1. FSGN (0) = 1. The
format for FSGN is:

FSGN (expression)

*TYPE FSGN(6-4)
= 1.0000*
*TYPE FSGN (0)
= 1.0000*
*TYPE FSGN (-7) ..
=- 1.0000*

9-85

INTEGER PART FUNCTION (FITR)
The integer part function (FITR) is used to output the integer

part of a number. The format for FITR is:

FITR (expression)

For positive numbers, FITR(X) is the greatest integer function.
For negative numbers, FITRC-X) is the integer part of ,-X. The
greatest integer function for negative numbers is obtained by
FITR(-X)-l. For example:

*TYPE FITR(5.2)
= 5.0000*
*TYPE FITR(55.66)
= 55.0000*
*TPE
*TYPE FITR(-4.1)
=- 4.0000* .

RANDOM NUMBER FUNCTION (FRAN2
The random number function (FRAN) is used to generate hon­

statistical pseudo-random numbers in the range 0.5000 tQ 0.9999.
No argument is used with the FRAN function. The format for
FRAN is:

*TYPE FRAN ()
= 0.7376*
*TYPE FRAN ()
= 0.8959*

FRAN ()

FRAN can be used to produce a less biased number. For ex­
ample:

*SET A=FRAN()
*SET H=A=VITR(A)

The value assigned to B is a random number in the range 0.0000
to 0.9999.

Focal Output Operations
The following is a description of symbols used in FOCAL output

operations:

, 9-86

Symbol

To set output format, TYPE %x.y

I?xplanation

Where x is the total
number of digits,
and y is the number
of digits to the right
of • the decimal
point.

TYPE %6.3, 123.456 FOCAL prints:
=+123.456

TYPE %

To type symbol table, TYPE $

Control Characters

Resets output for­
mat to floating
point.

Other statements
may not follow on
this line.

FOCAL control characters and their explanations are shown
below:

% Output format delimiter
Carriage return and line feed

Carriage return
$ Type symbol table contents

() Parentheses 1
[] , Square brackets (mathematics)
<> Angle brackets
" " Quotation marks (text string)
?? Question marks (trace feature)
* Asterisk (high-speed reader input)
SPACE key (names) 1
RETURN key (lines) (nonprinting)
ALT MODE key (with ASK statement)
Comma (expressions)
Semicolon (c:ommands and statements)

9-87

Reading FOCAL P3per Tapes
To ensure ~hat FOCAL paper tapes are read without error, they

should be read silently. To do this, type tB (CTRL/B) followed
by UNDUPLEX just prior to reading the tape. This Monitor com­
mand suppresses the printing of the program as it is read. As each
line is read, a line feed and FOCAL's asterisk are printed,. indicat­
ing that the line is properly stored. After the tape has been com­
pletely read, type tB DUPLEX to restore FOCAL to its normal
mode. An example is shown below:

*ERASE ALL
*tBUNDUPLEX

*
*
*
*
*
*
* *tBDlIPLEX

*WRITE ALL
C-FOCALI1969

IIIl.(il5 C PROGRAM TO CALCULATE THE HYPOTENUSE OF A
01.06 C RIGHT TRIANGLE GIVEN THE TWO SIDES
(ill.10 ASK "SIDES OF TRIANGLE ARE" AlB
(ill.2(il SET C=FSQT(At2+Bt2)
01.30 TYPE "HYPUTNEUSE
01.30 TYPE "HYPOTENUSE IS" CI!
01.40 GUTO 1.1

*

9-88

Table 9-7. FOCAL Command Summary

Command Abbreviation Example of Form Explanation

ASK A ASK X, Y,Z FOCAL prints a colon· for each variable;
the user types a value to define each variable.

COMMENT C COMMENT If a line begins with the letter C, the re-
mainder of the line will be ignored.

CONTINUE C C .. Dummy lines.
DO D D04.1 Execute line 4.1; return to command fol-

lowing DO command.
\0 D DO 4.0 Execute all group 4 lines; return to com-
I

00 mand following DO command, or when a
\0

RETURN is encountered.
DA DO ALL Execute all program lines, until a RETURN

is encountered.
ERASE E ERASE Erases the symbol table.

ERASE 2.0 Erases all group 2 lines.
ERASE 2.1 Erases line 2.1.
ERASE ALL Erases all user input.

FOR F FOR i=x,y,z; (commands) Where the command following is executed
at each new value.
x=initial value of i.
y=value added to i until i is greater than z.

\0
I
\0
o

Command

GO

GO?

GOTO

IF

LIBRARY CALL
LIBRARY DELETE
LIBRARY LIST
LIBRARY SAVE

Table 9·7 (Cont.). FOCAL Command Summary

Abbreviation

•
G

G?

G

I

LC
LD
LL
LS

Example of Form

GO

GO?

GOTO 3.4

IF (X) Ln, Ln, Ln
IF (X)Ln, Ln; (commands)
IF (X) Ln; (commands)

LIBRARY CALL name
LIBRARY DELETE name
LIBRARY LIST
LIBRARY SAVe name

Explanation

Starts indirect program at lowest numbered
line number.
Starts at lowest numbered line number and
traces entire indirect program until another
? is encountered, until an error is' encoun­
tered, or until completion of program.
Starts indirect program (transfers control to
line 3.4). Must have argument. '
Where X is a defined identifier, ,a value, or
an expressio,n, followed by three line num­
bers. If X is less than zero, control is trans­
ferred to the first line number. If X is equal
to zero, control is to the 'second line num­
ber. If X is greater than zero; control is to
the third line number.
Calls stored program from the disk.
Removes program from the disk.
Prints directory of stored program names.
Saves program on the disk.

Command

MODIFY
QUIT
RETURN

SET

\0 TYPE
I
\0
~

WRITE

Table 9-7 (Cont.). FOCAL Command Summary

Abbreviation

M
Q
R

S
T

W
WA

Example of Form

MODIFY n
QUIT
RETURN

SET A=5/B*C~
TYPEA+B-C;

TYPE A-B, C/E;

TYPE "TEXT STRING"

WRITE
WRITE ALL
WRITE 1.0
WRITE 1.1

Explanation

Enables editing of any character on line n.
Returns control to the user.
Terminates DO subroutines, returning to
the original sequenc~.
Defines identifiers in the symbol table.
Evaluates expression and prints = and re­
sult in current output format.
Computes and prints each expression sep­
arated by commas.
Prints text. May be followed by ! to gen­
erate carriage return-line feed, or # to
generate carriage return.
FOCAL prints the entire indirect program.

FOCAL prints all group 1 lines.
FOCAL prints line 1.1.

Table 9·8. FOCAL Functions

Function Format

Square Root FSQT(x)

Absolute Value FABS(x)

Sign Part FSGN(x)

Integer Part FITR(x)

Random Number FRAN (x)
Generator

9Exponential FEXP(x)

9Sine FSIN(x)

9Cosine FCOS(x)

9Arctangent FATN(x)

9Logarithm FLOG(x)

Interpretation

Where x is a positive number or
expression greater than zero.

FOCAL ignores the sign of x.

FOCAL evaluates the SIgn part
only, with 1.0000 as integer.

FOCAL operates on the integer
part of x, ignoring any fractional
part.

FOCAL generates a random num­
ber. The value of x is ignored.

FOCAL generates e to- the power x.
(2.71828X

)

FOCAL generates the sine of x in
radians.

FOCAL generates the cosine of x
in radians.

FOCAL generates the arctangent
of x in radians.

FOCAL generates loge (x).

9 These are extended functions and may be chosen or deleted when
FOCAL is loaded.

9-92

Message

?OO.OO
?OO.OO
?01.40
?01.78
?01.96
?01.:5
?01.;4
?02.32
?02.52
?02.79
?03.05
?03.28
?04.39
?04.52
?04.60
?04.:3
?05.48
?06.06
?06.54
?07.22
?07.38
?07.:9
?07.;6
?08.47
?09.11
?10.:5
?11.35
?20.34
?23.36
?26.99
?28.73
?30.05
?31.<7

?30.71
?30.<0
?31.42
?31.43
?31.44

Table 9-9. FOCAL Error Messages

Explanation

Manual start gjven from console.
Interrupt from keyboard via CTRLI C.
Illegal step or line number used.
Group number is too large.
Double periods found in a line number.
Line number is too large.
Group zero is an illegal line number.
Nonexistent group referenced by DO.
Nonexistent line referenced by DO.
Storage was filled by push-down list.
Nonexistent line used after GOTO or IF.
Illegal command used.
Left of= in error in FOR or SET.
Excess right terminators encountered.
Illegal terminator in FOR command.
Missing argument in display command.
Bad argument to MODIFY.
Illegal use of function or number.
Storage is filled by variables.
Operator missing in expression or double E.
No operator used before parenthesis.
No argument given after function call.
Illegal function name or double operators.
Parentheses do not match.
Bad argument in ERASE.
Storage was filled by text.
Input buffer has overflowed.
Logarithm of zero requested.
Literal number is too large.
Exponent is too large or negative.
Division by zero requested.
Imaginary square roots required.
Illegal character, unavailable command, or unavailable
function used.
Undefined library command.
Bad argument or missing argument to library command.
No such name in library directory.
Attempt to enter a duplicate name in the directory.
Library directory is full.

9-93

9-94

FORTRAN-D
FORTRAN-D compiles an,d runs programs written in the PDP-8

version of FOR~RAN II. Programs (usually created and stored
with the Symbolic Editor) are compiled in a single pass and exe­
cuted (automatically) immediately following compilation.

Calling FORTRAN-D

To use FORTRAN-D, type:

.R FORT

FORTRAN requests the name of the input file, i.e., the file con­
taining the FORTRAN program to be compiled and run. The user
responds with the file name and the RETURN key. FORTRAN
then requests the name of an output file in which to store the com­
piled version of the program. For normal usage, just the RETURN
key need by typed. FORTRAN places the compiled code in a file
of its own, then proceeds to run the program. .

If a file name is entered for output, FORTRAN creates a per­
manent file in which the compiled binary program is saved. It is
then possible to rerun this program without recompiling it. To run
an already compiled program, call the FORTRAN operating sys­
tem directly by typing:

.R FOSL

FOSL requests the name of an input file. Enter the name of the
file containing the compiled binary. For example, if the user types:

.R FORT

INPUT:MTRIX
OUTPUT:

FORTRAN compiles and executes the program MTRIX but does
not save the compiled binary.

FORTRAN compiles and executes the program MTRIX and

9-95

then leaves the compiled. binary in the file named. BMTRIX when
the user types:

.R FORT

INPUT:MTR1X
OUTPUT:BMT~lX

The FORTRAN binary program BMTRIX is executed without
first being compiled when the user types:

.R FCiSL

INPIJT:BMTRIX

All FORTRAN programs return to the Monitor when they have
completed execution.

Using FORTRAN-D
Differing versions of PDP-8 FORTRAN offer slightly different

features. FORTRAN-D differs in the way it is called into use
(described above), and in its more powerful I/O capability (de­
scribed below). FORTRAN-D allows three data formats:

I Integer format
E Exponential format
A Alpha format, ASCII value of a character is stored as an

integer value.

The standar~ device for READ and WRITE statements is the
Teletype, which is assigned device code 1. Because the Teletype
is so frequently ~sed, FORTRAN-D includes two special input/
output instructions, ACCEPT and TYPE. These instructions imply
use of the Teletype; therefore, the device code need not be specified.
ACCEPT is especially convenient if data is to be entered. at the key­
board because this instruction automatically supplies a line fe·ed
when the RETURN key is typed. Also, the user can correct an
erroneously typed value by striking the RUBOUT key.

A FORTRAN-D program can also utilize the high-speed reader
. and punch for I/O. These devices are assigned code 2. Because the
high-speed reader and punch are shared by all users, it is necessary
to assign them if they are to be used. Assign the appropriate devices
and mount tapes in the reader before running FORTRAN-D. An

9-96

automatic DEASSIGN is performed by FORTRAN before it re­
turns to the Monitor; therefore, the user must reassign the devices
before each run.

FORTRAN.;D also allows programs to read and write data files
on the disk. These data files are completely separate from the pro­
gram files. Data files are read and written by standard READ and
WRITE statements within the FORTRAN-D program. The device
code for the disk is 3. Because programs using the disk are treated
differently by FORT (the FORTRAN-D compiler), it is necessary
to identify programs which use the disk. These programs are iden­
tified by a DEFINE DISK statement as the first statement in any
such FORTRAN-D program including a READ or WRITE state­
ment with device code 3.

Just as FORT itself must ask for the name of its input and output
files, so must a FORTRAN program ask for the names of its disk
files. FORTRAN-D programs do this by typing INPUT: and
OUTPUT: a second time. The user responds by typing the name
of the files to be read or written by the program. FORTRAN-D
asks for both input and output for all programs which include a
DEFINE DISK statement. If only input (or output) is to be used,
the user responds to the other by typing the RETURN key.

Line Format
FORTRAN programs consist of a series of lines, each a string

of 72 characters or less (the width of the Teletype paper from
margin to margin). Each line contains two fields: the first, which
begins at the left margin, is an identification field; the second con­
tains the statement field. Termination of a line is indicated to the
computer by a carriage return, accomplished by typing the RE­
TURN key.

The identification field can be blank and extends from the left­
hand margin up to and including a semicolon character. This field
can contain one of the following types 'Of identification:

1. A Statement number. This number, which can be any posi­
tive integer from 1 to 2047 inclusive, identifies the state­
ment on that line for reference by other parts of the pro­
gram. Statement numbers are used for program control or
to assist the programmer in identifying segments of his
program.

9-97

2. The letter,. C. This identifies the remaind~r of the line as a
comment.

Although the identification field may be left blank, it cannot be
omitted entirely. The statement field begins immediately after a
blank space and extends through the next carriage return. A sample
FORTRAN program is shown below:

C THIS PROGRAM CALCULATES FACTORIALS
5 TYPE 200
10 ACCEPT 300#N

I FACT= 1
30 IF (N-I> 5 1 32#33
32 TYPE 400#N#IFACT

GO TO 10
33 DO 35 l=l#N

IFACT=IFACT*I
35 CONTINUE

GO TO 32
200 FOR.'1AT (1# "PLEASE TYPE A POS I T I VE NUMBER" # I)

300 FORMAT (I)
400 FORMAT (/# 1#" FACTORIAL IS·· .. IFACT)

END

FORTRAN source programs are generated using the Symbolic
Editor Program. The Editor will facilitate formatting lines by use
of a tab character, .permittingautomatic movement to an indented *

second field.

ST ATE~ENT NUMBERS
Each statement cart have a positive, nonzero integer (0-2047) as

its number. The statement number is used to reference that par-
. ticular statement elsewhere in a program. A statement number con­
sists of one to four digits beginning at the left hand margin and is
followed by a semicolon. Statement numbers can be assigned non­
sequentially; however, no two statements can have the same num­
ber. There must be no more than 40 statement numbers in a given
program, and they must have a value of 2047 (decimal) or less.

STATEMENT CONTINUATION CHARACTER
Frequently, a statement is too long to fit on one line. If the

character single quote (') appears as the last character of a line
before the carriage return, the next line ~s treated as a continuation
of the preceding statement. A statement may be continued on as
many lines as necessary to complete it, but the maximum number of

9-98

characters in the statement cannot exceed 128 (about two for­
matted lines). For example:

l~ A=H**2-(4.*A*C/(B**2+1.5*A*C»*4.3'
~B**2+«SQTF(C)*SQTF(D»/(B**2+1.5*A*C»

is e:quivalent to the formula:

A=B2-

- Although the continuation character, ('), allows a single state­
ment to extend over two or more lines, no more than one statement
can be written on one line.

}'ORTRAN Statements
FORTRAN statements are of several types with various func­

tions distinguished as follows:

1. Comment statements allow a programmer to insert notes
within the program.

2. Arithmetic statements resemble algebraic formulas. They
define calculations to be performed.

3. Control statements govern the sequence of statement exe­
cution within a program. These statements reference pro­
gram line numbers.

4. Specification statements allocate data storage and specify
input/ output formats.

5. Input/output statements control the transfer of information
into and out of the computer.

COMMENT STATEMENTS
The character C, at the left margin of a line, designates that line

as a comment line. A comment has no effect upon the compilation
process but can serve as a guide to program logic for later debug­
ging, etc. There is no limit to the number of comment lines which
can appear in a given program. A comment cannot be continued by
use of the continuation character, ('), but must be continued in a
second comment statement. For example:

C THIS IS AN EXAMPL~

C OF A COMMENT

9-99

CHARACTER SET
The following characters are used in the FORTRAN language:

1. The alphabetic characters, A through Z.
2. The numeric characters, 0 through 9.
3. The control characters:

semicolon
period
single quote

" double quote
comma

4. The operators:
* * exponentiation
+ addition

subtraction

CR
LF

(
)

/
*

carriage return
line feed
left parenthesis
right p"arenthesis

division
multiplication
replacement

All other characters are ignored by the Compiler except as
Hollerith information found in FORMA T statements (where all
Teletype chara(?ters are legal). The SPACE character has no
grammatical function (it is not a delimiter) except in FORMAT
stat~ments and can be used freely to make a program easier to
read.

CONSTANTS
Constants are explicit numeric values appearing in statements.

Two types of constants, integer and real, are permitted in FOR­
TRAN.

Integer Constants
Integer (fixed-point) constants are represented by a string of

one to four decimal digits~ written with an optional sign and with­
out a decimal point. An integer constant must fall within the' range
±2047. For example:

47
+47 (+ sign is optional)
-2
0434 (leading zeros are ignored)
-0 (same as zero)

9-100

Real Constants
Real constants are represented by a digit string, an explicit deci­

mal point, and are written with an optional sign.1o Real constants
can also be written in exponential notation with an integer exponent
to denote a power of ten (i.e., 7.2 x loa is written 7.2E+3). A real
constant may consist of any number of digits but only the leftmost
six digits appear in the compiled program. Real constants must ,
fall within the range 0.14 x 10-38 to 1.7 X 1038• For example:

+4.50
4.50

-23.09
--3.0E14

7

(plus sign is optional)

(same as -3.0 x 1014)

(saved as 7.00000, not the same as the integer. 7)

Fixed and Floating-Point Representation
The diffe.r:ence between integers and real numbers in FORTRAN

is the way in which each is represented in core memory. Both
types of numbers are' converted to binary to be stored in the com­
puter.

A FORTRAN integer is stored in one 12-bit computer word.
The sign of the number is kept in the high-order bit and the
magnitUde (the integer value) in the remaining 11 bits. This rep­
resentation, shown schematically in Figure 2-1,. is called fixed
point, because the decimal point is always considered to be to
the right of the rightmost digit. A FORTRAN integer may not
exceed the range of ± 2047. All integers greater than ± 2047 are
taken moaulo 2048 (i.e., 2049 is considered to be 1; 4099, to
be 3).

The floating-point format consists of two parts: an exponent
(or c:haracteristic) and a mantissa. The mantissa is a binary frac­
tion with the radix point assumed to be to the left of bit one of
the mantissa. The mantissa is always normalized; meaning it is
stored with leading zeros eliminated so that the leftmost bit is
always significant. The exponent represents the power of two by
which the mantissa is multiplied to obtain the true value of the

10 Where a number is to be identified as being negative, a minus sign (-)

must be used. A plus sign (+) is optional; with no sign, a number is con­
sidered positive.

9-101

number for use in computation. The. exponent and mantissa are
both stored in two's complement form.

SIGN

~
MAGNITUDE I

o
Q. FORTRAN INTEGER 11

SIGN OF EXPONENT

~
I. EXPONENT

SIGN OF 0 11
MANTISSA

2., ~ --~------------M-A-N-T-IS-S-A----------------~

o 11

3. I~ ________________ M_A_N_T_IS_S~A ________________ ~
b. FLOATING POINT

Figure 9-1. Number Represe!ltation

Users should not attempt to input floating point constants of
mor~ than six decimal digits, either in the FORTRAN source
program or via the run-time ACCEPT statement.

Integers cannot appear in floating-point expressions except as
exponent or subscripts. Some examples of illegal and legal expres­
sions are as follows:

Expression Legal Mode

A(I)*B(J)**2 Yes Floating
I(M) *K(N) Yes Fixed
16.*B Yes Floating
(K+16)*3 Yes Fixed
A**(1+2)/B . Yes Floating
8*A No
4.*1 No
I+D No

VARIABLES
A variable is a symbol whose value may change during execu­

tion of a program. The name of a variable consists of one or more
alphanumeric characters, the first of which must be alphabetic.

9-102

Only the first four characters are interpreted as defining the vari­
able name; the rest are ignored. For example, the name EPSILON
would be interpreted by the Compiler as EPSI. Since only the
first four characters are meaningful, the two names XSUM1 and
XSUM2 would be considered identical.

Spaces, as mentioned earlier, are ignored. The name EX IT
represents one variable, not two. Thus, EX IT, EXIT, or even
EXI T are identical names as far as the Compiler is. concerned,
and they all refer to the same numerical quantity.

The type (or mode) of a variable (integer or real) is determined
by the first letter of the variable name.

1. Integer variables begin with the letters:
I, J, K, L, M, or N

2. Real variables begin with any letter other than those above.

Variables of each type may be either scalar or array variables, as
explained below.

Integer Variables
Integer variables undergo arithmetic calculations with automatic

truncation of any fractional part. For example, if the current value
of K is 5 and the current value of J is 9, then J /K would yield 1
as a result.

Real Variables
A variable is real when its name begins with any character other

than I, J, K, L, M, or N. Real variables undergo no truncation in
arithmetic calculations. Real variables may be converted to integer
variables, and vice-versa, across an equal sign.

Scalar Variables
A scalar variable, which may be either integer or real, represents

a single number, as opposed to an array (below)- representing
a collection of numbers. For example, the following are scalar
variables:

LM
02
A
TOT AL (considered to be TOT A by the computer)
J

9-103

Array Variables
An array variable represents a single element of a one-dimen­

sional array of quantities. The variable is denoted by the array
name followed by a subscript enclosed in parentheses. The sub­
script may be any combination of integer variables and integer
constants forming a valid expression, as follows:

" (V) (V+C) (V-C) (C)

where V is a fixed point (integer) variable, and C is a fixed-point
constant (not equal to 0).

The value of the expression in parentheses determines the ref­
erenced array element. For example, the row matrix, AI, would
be represented by the subscripted variable A (1), and the second
element in the row would be represented by A(2). Examples of
array variables are:

Legal Forms
Y(1)
A(K+2)

DIMENSION STATEMENT·

Illegal Forms
A(2+1)
B(C)

Array names must be identified as such to the FORTRAN Com­
piler. Two items of information must be provided in any program
usmg arrays:

1. Which are the subscripted variables?
. 2. What is the maximum value of the subscript?· (When an

array is used, a certain amount of storage space must be
set aside by the Compiler for the array elements.)

This information is provided by the DIMENSION statement:

where A and B are array names, and the integer constants 20 and·
15 ar:e the maximum dimensions of each subscript.

The rules governing the use of array variables and the DIMEN­
SION statement are as follows:

1. All array names must appear in a DIMENSION state­
ment.

9-104

2. DIMENSION statements may be used more than once
and may appear anywhere in the FORTRAN program,
provided that the DIMENSION of an array appears be­
fore any statement which references the array.

3. Any number of arrays can be defined in a single DIMEN­
SION statement.

4. For notes on how to implement double subscripts (i.e.,
A(I,J», see the section on Implementation Notes.

Array variables may be either integer or real, depending upon
the initial letter of the array name.

DIMENSION LIST(3~)~MAT(1~~)~REGR(2~)

In the statement above; the names LIST and MAT designate
integer arrays; that is, all elements of both arrays are integers.
The third name, REGR, designates a floating point, or real array.
The first array is a list containing a maximum of 30 elements;
the second array has a maximum of 100 elements.

The third array is a floating-point array and there are a maxi­
mum of 20 elements in it. Not all elements of an array need be
used in the course of a program; but, if using the DIMENSION
statement the variable LIST (3.1) could not be referenced without
the occurrence of an error message.

FORTRAN Arithmetic
ARITHMETIC OPERATORS

The arithmetic operators are symbols representing the common
arithmetic operations. The important rule about operators in the
FOR TRAN arithmetic expressions is that: every operation must
be explicitly represerit'ed by an operator. In particular, the multi­
plication sign must never be omitted. A symbol for exponentiation
is also provided since superscript notation is not available on a
Teletype.

Normally, a FORTRAN expression is evaluated from left to
right. like an algebraic formula. There are exceptions to this rule;
certain operations are always performed before others, regardless
of order. This priority of evaluation is as follows:

9-105

1. Expressions within parentheses
2. Unary minus
3. Exponentiation
4. Multiplication or Division
5. Addition or Subtraction

()

**
* or I
+or-

The term "binding strength" is frequently used to refer to the
relative position of an operator in a table such as the one above,
which is in order of descending binding strength. Thus, exponentia­
tion has a greater binding strength than addition, and multiplica­
t;on and division have equal binding strength.

The unary minus is the arithmetic operator which indicates
that a quantity is less than zero, such as -53, -K, -12.3. It
refers only to the constant or variable which it precedes as opposed
to a binary operator, which refers to operands on either side of
itself as In the expression A-B. A unary minus is recognized by
the fact that it is preceded by another operator, not by an operand.
For example:

A + B**-2 I C-D

The first minus sign (indicating a negative exponent) is unary;
the second (indicating subtraction) is binary. At present it is not
possible to raise an integer variable or integer constant to an
integer value with FORTRAN-D. Only real values can be raised
to integer powers.

The left-to-right rule can be stated more precisely: A sequence
of operations of equal binding streng~h is evaluated from left to
right. To change the order of evaluation, parentheses are required.
Thus. the expression A--B*C is evaluated as A-.(B*C), not
(A-B)*C. Examples of the left-to-right rule follow:

, The expression:

A/B*C
AlBIA
A**B**C

'Use of Parentheses

Is evaluated as:

(A/B)*C
(A/B)/C
(A**B)**C

Note the use of parentheses in the example below. They are
used to enclose the subscript of the dimensional variable, D; to

9-106

,
specify the order of operations of the expression involving A, B,
and C; and to enclose the argument of the function SINF.

D(I) + (A+B)**C + SINF (X)

In algebra there are several devices, such as square brackets [],
rococo brackets 1 r, etc., for distinguishing between levels when
expressions are nested. In FORTRAN, only the parentheses are
available, so the programmer must be especially careful to pair
parentheses properly. In any given expression, the number of
left parentheses must be equal to the number of right parentheses,

An easy way to check the proper pairing of parentheses is by
counting out, illustrated in the following example:

(Z+AM* (AM+1.))/((X**2+C**2)*P)
1 2 10 12 1 0

The procedure is this: Reading the expression from left to right,
assign the number, 1, to the first left par~nthesis (if you encounter
a right parenthesis first, the expression is already wrong). Increase
the count by one each time a left parenthesis is read, and decrease
the count by one when a right parenthesis is found. When the
expression has been completely scanned, the count should be zero.
If it becomes less than zero during the scanning, there are too
many right parentheses. If it is greater than zero at the end of an
exp.ression, there are excess left parentheses.

ARITHMETIC EXPRESSIONS
An algebraic formula such as:

Sa + 4b(x2 - xu)

represents a relationship between symbols (a, b, x, xtJ and con­
stants (S, 4, 2) indicated by mathematical functions and arithmetic
operators (+, -, multiplication, exponentiation). This same for­
mula can be written as a FORTRAN arithmetic expression _with
very little change in appearance:

(S.*A + 4.*B* (X**2 - XZRO)

The construction of both expression~ is the same; the differences
are notational.

Elements of an arithmetic expression are of four types: con­
stants, variables, operators, and functions. An expression may con­
sist of a single constant or variable or a string of constants, vari­
ables, and functions connected by operators.

9-107

Examples of arithmetic expressions follow; each expression is
shown with its corresponding algebraic form.

Algebraic Expression

2v'X
3

3x1l" -2(x+y)
4.25

a-sin 0 +2a cos(O -45)

FORTRAN Expression

2. *SQTF(X) /3.

(3.*X*PI-2.* (X+Y)) /4.25

A *SINF(THTA) +2. * A *COSF­
(THTA-0.78540)

(A**2-B**2) / (A+B)**2

ARITHMETIC STATEMENTS
The arithmetic statement relates a variable, V, to an arithmetic

expression, E, by means of the replacement operator, (=):

V-E

Such a statement looks like a mathematical equation, but is treated
differently. The equal sign is interpreted in a special sense; it does
not represent a relationship between left and right members, but
rather specifies an operation to be performed.

In an arithmetic statement, the value of the expression to the
right of the equal sign replaces the value of the variable on the left.
This means that the value of the left-hand variable will change
after the execution of an arithmetic statement. A few illustrations
of arithmetic statements are given below:

1. VMAX=VO+AXT
2. T = 2. *PI*SQTF(l./G)
3. PI = 3.14159
4. THTA= OMGA + ALPH*T* *2/2.
5. MIN=MINO
6. INDX = INDX + 2-

With the interpretation of the equal sign stated above, Example
6 becomes meaningful as an arithmetic statement. If, for example,
the value of INDX is 40 before the statement is executed, its value
will be 42 after execution.

9-108

In arithmetic expressions, a binary operator requires an operand
on its left and right. The equal sign of an arithmetic statement is
also considered to be a binary operator, as demonstrated in the
following revised table of operators:

Operator Use Interpretation

- (Unary) -A negate A
** A**B raise A to the B th power
* A*B multiply A by B
I AlB divide A by B
+ A+B add B to A
- (Binary) A-B subtract B from A

A=B replace the value of A with
the value of B

The replacement operator is considered to have the lowest bind­
ing strength of all the operators~ therefore, the expression on the
right is evaluated before the operation indicated by the egual sign
is performed.

Multiple Replacement
An important result of treating the equal sign as an operator is

that operations can be performed in sequence. Just as there can
be a series of additions, A+ B+C, there can also be· a series of
replacements:

A=B=C=D

Notice that because the operand to the left of an equal sign
must be a variable, only the rightmost operand, represented by D
in the example, may be an arithmetic expression. The statement is
interpreted as follows: "Let the value of the expression D replace
the value of the variable C, which then replaces the value of the
variable B" and so on. In other words, the value of the rightmost
expression is given to each of the variables in the string to the
left. A common use for this construction IS In setting up initial
values:

XZRO=SZRO=AXRO=O
T=Tl =T2=T3=60
P=FP=4. *ATM-AK

9-109

Only simple variables will compile correctly in this manner. For
example, statements of the type A(1) =A(2) =R(1) =0.123 are not
allowed and will not compile properly (subscripted variables may'
not be used in multiple replacement statements).

Multiple replacement done in a single statement must not contain
mixed mode variables. That is:

A=B=C=10
1=1-7
A=J=-7

Mode Conversion

compiles correctly
compiles correctly
does not compile correctly

Another useful result in treating the equ?l sign as an operator
is that the value of an expression on the right of an equal sign is
converted to the mode of the left-hand variable, if necessary, before
storage. For example:

A=lVl Stores the value of M as a floating-point number in A
K=B Stores the value of B (truncated) as an integer number in K

1f B = 4.75 and M = 7, the conversion above will result in the
foHowing values being assigned:

FUNCTIONS

A = 7.00000
K=4

Functions are used in FORTRAN just as they are in ordinary
mathematics, acting as variables in arithmetic expressions. The
function name represents a call to a special subprogram which
performs the calculations to evaluate the function; the result is used
in the computation of the expression in which the function oc­
curs. FORTRAN-D provides several mathematical functions:
square root, sine, cosine, arctangent, exponentiation, and natural
logarithm.

The argument of a function can be a simple variable, a· sub­
scripted variable, or an expression. The argument must be in a

. floating-point format. FORTRAN recognizes a symbol as a func­
tion when it is a predefined symbol ending in F and followed by an
argume~t enclosed in parentheses (if the F is' missing from the
term, the symbol is treated as a subscripted variable). The argu­
ment of a function can consist of another function or groups of
functions. For example, the expression:

9-110

LOGF(SINF(X/2)/COSF(X/2))

is equivalent to log tan(~)
FORTRAN-D contains the following functions:

Function Name

SQTF(X)
SINF(X)

COSF(X)

ATNF(X)

EXPF(X)
LOGF(X)

Program Control

Meaning

Square root of X
Sine of X, where X is
expressed in radians
Cosine of X, where X is
expressed in radians
Arctangent X, where X is
expressed in radians
Exponential of X
Logarithm of X

In this section, FORTRAN statements are discussed in the con­
text of program sequences. FORTRAN statements are executed
in the order in which they are written unless instructions are given
to the c,ontrary by use of the program control statements. These
statements allow the programmer to alter sequence, repeat sections,
suspend operations, or bring the program to a complete halt.

END STATEMENT
END occurs alone on a line and indicates the physical end of

the program to the FORTRAN Compiler. It can be preceded by a
line number. Every program must contain an END statement.

STOP STATEMENT
A program arranged so that the last written statement is the final

and only stopping place needs no other terminating indication; the
END statement automatically determines the final halt. Many pro­
grams, however, contain loops and .branches so that the last ex­
ecuted statement can be somewhere in the middle of the written
program. Frequently there is more than one stopping point. Such
terminations are indicated by the STOP statement. This causes
a final, complete halt; no further computation is possible, although
the program may be completely restarted from the beginning.

9-111

When a STOP is encountered during program execution, the
system signifies that a STOP has occurred by outputting an exclama­
tion point (!) to the Teletype or high-speed punch, whichever is
being used as the output device. -

PAUSE STATEMENT
The STOP statement prevents further coniputation after it has

been executed. There is a way, however, to suspend operation for
a time and then restart the program. This procedure is frequently
necessary when the user must do such tasks as loading and unload­
ing paper tapes in the middle of a program. This kind of temporary
halt is provided by the PAUSE statement. The PAUSE statement
halts the program and returns control to the EduSystem 50 Moni­
tor. The user may then perform any necessary manipulations and
restart the program by typing the Monitor command START.

GO TO STATEMENT
There are various ways in which program flow may be directed.

As shown schematically in Figure 9-2, a program may be a straight­
line sequence (1), or it may branch to an entirely different se­
quence (2), return to an earlier point. (3), or skip to a later point
(4). The blocks represent sections of FORTRAN code. The lines
indicate the path which control takes as the program executes.

Figure 9-2. Program Flow

9-112

All of these branches can be performed in several ways, the
simplest of which uses the statement:

GOTOn

where n is a statement number in the program. The use of this
statement is described in the following example, which also
illustrates the construction of a loop, the name given to program
branches of the type shown in the example above.

EXA1~PLE OF INTEGER SUMMATION
In the following example, the sum of successive integers is

accumulated by repeated addition. The main computation is pro­
vided by the three-instruction loop beginning with Statement 2.
The statements preceding this loop provide the starting conditions,
called the initialization. The partial sum is set to zero, and the
first integer is given the value of one. The loop then adds the in­
teger value to the partial sum, increments the integer, and repeats
the operation.

C SUM DF FIRST N INTEGERS BY ITERATION
KSUM=0
INUM=!

2 KSUM=INUM+KSUM
INUM=INUM+l
GO TO 2
END

IF STATEMENT
The program shown in the preceding example performs the re­

quired computation, but note that the loop is endless. To get out
of th{: loop the user must know when to stop the iteration and
what to do afterwards.

The IF statement fills both requirements. It has the following
form:

IF(E) K,L,M

where E is any variable name, arithmetic expression, or arithmetic
statement, and K, L. and M are statement numbers. The state­
ment :is interpreted in this way:

If the value of E < 0, GO TO statement K
E = 0, GO TO statement L
E > 0, GO TO statement M

9-113

Thus, the IF statement decides when to stop a loop by evaluating
an expression. It also provides program branch choices with the
transfer of control, depending on the results of the evaluation of E.
For example:

C SUM OF THE FIRST 50 INTEGERS
KSUt1= 0
INUM= 1

2 KSUM=INUM+KSUM
INUM=INUM+l
IF (INUM-50)2 1 21 3

3 STOP
END

In the foregoing example, the initialization and mC}.in loop are
the same ~s for the example in Figure 9-2 except that the GO TO
staterpent of the earlier program has been replaced by an IF state­
ment. The IF statement says., "if the value of the variable INUM
is less than, or equal to, 50 (which is the same as saying that if the
value of the expression INUM-50 is less than or equal to zero),
transfer control to Statement 2 and continue the computation. If
the value is greater than 50, stop." (See the section on Implemen-
tation Notes for an alternate solution.) J

A loop may also be used to compute a series of values. The fol­
lowing illustration is an example of a program to generate terms in
the Fibonacci series of integers, in which each succeeding mem­
ber of the series is the sum of the two members preceding it:

C FIBONACCI SER'IESI 100 TERMS
DIMENSION FIB(100)
FIBC1>=1.0
FIB(2)=1.0
K=3

5 FIB(K)=FIB(K-l)+FIBCK-2)
6 K=K+ 1

IF CK-100)515iI0
10 STOP

END

In this program, the initialization includes a DIMENSION
statement which reserves spa<;e in storage, and two statements
which provide the starting values necessary to generate the series.
Each time a term is computed, the subscript is incremented so

9-114

that each succeeding term is stored in the next location of the table.
As soon as the subscript is greater than 100, the calculation stops.

DO LOOPS
Iterative procedures such as the program loop are so common

that a more concise way of presenting them is warranted. Three
statements are required to initialize the subscript, increment it,
and test for termination. The following type of statement combines
all these functions:

DO n l=Kl, K2, K3

here n is a statement number, I is a simple (non-subscripted)
integer variable, and Kl, K2, and K3 are simple integer variables
or integer constants which provide, in order, the initial value to
which 1 is set, the maximum value of I for which the loop will be
executed, and the amount by which 1 is incremented at each return
to the beginning of the loop. If K3 is omitted from the statement
it is assumed to be one (1). Statement n must be a CONTINUE
statement.

C FIBONACCI SERIES~ 11210 TERMS
DIMENSION FIBCletet)
FIBCl)=l.f2I
FIB(2)=1.0
DO 5 K=3~ If2lf21
FIB(K)=FIB(K-l)+FlB{K-2>

. 5 CONTINUE
STOP
END

In words, the DO statement says "Execute all statements
through Statement 5 with K=3; when Statement 5 is encountered,
perform the following test: If K + 1 is less than or equal to 100,
set K:=K + 1 and continue the program by executing the first state­
ment after the DO statement. If K + 1 is greater than 100, the next
sequential statement following Statement 5 is executed."

DO loops are commonly used in computations with subscripted
variables. In such cases, it is usually necessary to perform the
loops within loops. Such nesting of DO loops is permitted In

FORTRAN.

9-115

C FIRST LOOP
DO 10 1= 1" 20
X(I)=0

C NESTED LOOP FOLLOWS
DO 5 K=2" 40",2
X(I)=X(I)+B(K)-Z(K»**2

5 CONTINUE
C END OF NESTED LOOP

A(I)=X(I)**2+C(I)
10 CONTINUE

Sequential elements in the array X(l) are formed by summing
the square of the difference of every second element in the Band
Z arrays. Then the array A(l) is formed by summing every ele­
ment in the array C (1). and the square of every element in the
array X(l). The algebraic expression for the loop is as follows:

Ai=X12 :- C i for i=1,2,3, ... 20

where
40

Xi= ~ (bk-zk)2

k=2
for k=2,4,6, .. .40

The following three rules about DO loops must be observed:

1. DO loops may be nested, but they may not overlap.
Nested loops may end on the same statement, but an
inner loop may not extend beyond the last statement of
an outer loop. Figures 9-3 schematically illustrates per­
mitted and forbidden arrangements.

DO

DO

DO

CONTINUE

CONTINUE

DO

DO

DO

CONTINUE

CONTINUE

~
[G

LEGAL NESTING
TECHNIQUES

DOCE DO .

CONTINUE .

CONTINUE

ILLEGAL NESTING
TECHNIQUES

Figure 9-3. Legal and Illegal Nesting Techniques

9-116

2. If the user transfers into the range of a DO loop, the
value to be incremented (1, for example) is not auto­
lllatically initialized as specified in the DO statement.
Transferring into the range of a DO loop is allowed as
long as:
a. Control was originally transferred out of the DO loop

by some means other than by completing it.
b. Incrementing and testing start with the current value of

I at the time control returns to the loop.
3. A DO loop must end on a CONTINUE statement.

DO

DO

CONTINUE

DO

CONTINUE

CONTINUE CONTI NUE L--,--_

ACCEPTABLE ILLEGAL .
BRANCHING BRANCH ING

Figure 9-4. Program Branching in DO Loops

CONTINUE Statement
A special statement (CONTINUE) is provided which is not

an ex~cutable statement itself, but provides a termination for all DO
loops. DO loops must be terminated on a CONTINUE statement.
The CONTINUE statement is identified with the line number given
in the DO statement. For example:

IrO 37 MM= 11 1 fIj
IF (X(MM)-10f1j.) 37 1 42 1 37

37 CONTINUE
GO TO Iflj2

42 STOP

9-117

A single CONTINUE statement can be referenced more than
once in a single DO loop or can serve as the terminating line for
two or more nested DO loops. :

COMPUTED GO TO
The GO TO statement previously described is unconditional and

provides no alternatives. The IF statement offers a maximum of
three branch points. One way of providing a greater number of
alternatives is by using the computed GO TO, which has the fol­
lowing form:

GO TO (Kl,K2,K3, ... ,Kn),J

where KII is statement number, and J is a simple integer variable,
which takes on values of 1 ,2,3, ... n according to the results of some
previous computation. For example:

IVAR=14*J/2+K
GO TO (5.1 7.1 5.1 7.1 5.1 7.1 10).1 I VAR

causes a branch to Statement 5 when IV AR= 1, 3, or 5; to State­
ment 7 when IV AR=2, 4, or 6; and to Statement 10 when
IVAR=7. When IVAR is less than 1 or greater than 7, the next
sequential statement after the GO TO is executed.

FORTRAN Input/ Output
So far, we 'have assumed that all information (programs, data,

and sub-programs) is in memory, withoul regard to how it is put
there. Programs are read by a special loader, but the programmer
is responsible for the input of data and the output of results by
including directions for I/O operations in his program.

For any input/output procedure, several questions must be
answered:

1. In which direction is the data going? The data coming in
is being read into memory; information going out is being
written on whatever medium is specified.

2. Which device is being used? Information may be trans­
ferred between core and whatever input/output devices
are available; each 1/0 operation must specify the device
involved.

9-118

3. Where in core memory is the data coming from or going
to? The amount of oata and its location in the computer
storage must be specified.

4. In what mode is the data represented? In addition to
floating and fixed-point modes for numeric data, there
is the Hollerith mode for transferring alphanumeric or
text information.

5. What is the arrangement of the data? The format of in­
coming or outgoing data must be specified.

For every data transfer between core memory and an external
device, two statements are required to provide all of the informa­
tion listed above. The first three items are specified by the input/
output statement, and the last two items are determined by the
FORMAT statement.

DAT A FORMATS
. FORTRAN-D provides for communication of data to and from

a program in the fol1owing ways:

ASCII Coded Data
The Teletype can be used to transfer data to the program

either via the keyboard (in which case the user types the data)
or from previously punched paper tape (read via the Teletype
tape reader). Data can be output from a program to the Tele­
type, producing a printed copy with or without the corresponding
punched paper tape. The high-speed reader and punch can also
be used for data transfer via punched paper tape. No printed
copy is made when output is to the high-speed punch.

Binary.Coded Data
Disk and DECtape can also be used for data transfer, in which

case the data is stored as a core image on tape in 128-word
blocks of 12-bit binary words. Integers are read and written as
single 12-bit words, floating-point numbers as three words. Alpha­
numeric information is transmitted as 8-bit ASCII coded char­
acters right-justified in 12-bit words (one character per word).

INPUT/OUTPUT STATEMENTS
Input/Output statements control the transfer of information. As

illustrated below, I/O statements consist of three basic items of
information: the device being accessed and the direction of transfer,

9-119

the number of the FORMAT statement controlling the arrangement
of data, and the list of variable names whose values are to be
output or changed by new input.

. NOTE
There is a restriction on subscripted vari­
ables when used with I/O statements. Sub­
scripts to be used with· I/O statements
must be of the form: LL" where each L is
a letter, and not of the form LD, where
D is a digit. For example:

DO 10 Ll=1,4
ACCEPT 7,A(L1)

will not store information correctly. 'The
statement should read:

DO 10 LL=1,4
ACCEPT 7,A(LL)

ACCEPT N,V(l),V(I+1),V*1+2
\ =y- J

t List of variable
names

1-- Statement number of
FORMAT statement

Device Selection and direction of
transfer

ACCEPT and TYPE Statements ,
ACCEPT and TYPE transfer information between the Tele-

type and EduSystem 50. ACCEPT causes information to be read
into core memory from either the keyboard, the Teletype paper
tape reader, or the high-speed reader if it is assigned before calling
FORTRAN-D. ACCEPT is especially convenient if data is to be
entered at the keyboard since it automatically supplies line feed
when the RETURN key is typ~d. Also,. the user may correct an
erroneously typed value by typing the RUB OUT key.

TYPE causes information to be transferred from core memory
to the Teletype printer, the Teletype paper tape punch, or the
high-speed punch if it is assigned before calling FORTRAN.;.D.

9-120

If the user needs the high-speed reader and punch for I/O, he
must assign the devices for his use before calling the FORTRAN
compiler (FORT) or operating system (FOSL). Once logged into
EduSystem 50, he replies to Monitor's dot with the appropriate
assign statements. For example:

.ASSI GN P
'p ASSIGNED

.ASSIGN R
R ASSIGNED

The Monitor replies with P ASSIGNED and R ASSIGNED in
re:sponse to the user. If the device requested is not available (being
used by someone else), Monitor replies JOB XX HAS X, where
XX is the job number assigned the device X. The high-speed
reader/punch is device code 2. If running several programs, the
user should reassign the devices before each run.

READ and WRITE Statements
EduSystem 50 FORTRAN also allows programs to read and

write data files on disk. These data files are completely separate
from program files. Data files are read and written by standard
READ and WRITE statements within the FORTRAN program.
The device code for the disk is 3. Since programs which use disk
are treated differently by FORT from those which do not use disk,
it is necessary to identify programs which do. This is done by
placing a DEFINE DISK statement as the first statement in any
FORTRAN program which includes a READ or WRITE state­
ment with a device code of 3.

Just as FORT must ask for the names of its input and output
files~ so must a FORTRAN program ask for the names of its disk
files. FORTRAN programs do this by typing INPUT: and OUT­
PUT: a second time. The user responds by typing the names of
the data files to be read or written by the program. FORTRAN
will ask for both INPUT and OUTPUT for all programs which

•
include a DEFINE DISK statement. If only one is to be used,
respond to the other by typing the RETURN key.

VARIABLE SPECIFICATION IN I/O STATEMENTS
Following the instruction that selects the device and direction of

transfer is the statement number of the FORMAT statement that

9-121

controls the arrangement of the information being transferred. For
example:

ACCEPT 10 .. A
10 FORMAT (E)

Every I/O statement must have a reference to a FORMAT state­
ment.

The final item specified in the I/O statement is the list of
. variables. This is a sequential list of the names of variables and
. array elements whose values are to be transferred in the order in­
dicated. There is no restriction on"the number of names which may
appear in the list of an I/O statement, as long as the total state­
ment length does not exceed 128 ·characters. The modes of the
variables named 'need not agree with the corresponding FORMAT
statement; however, the modes specified in the FORMAT state­
ment take precedence. For example, where A=3.2, J-:27, KAL=
302, and BOB=7.58:

TYPE 23 .. A .. J .. KAL .. BOB
23 FORMAT (I .. E .. I .. E)

The decimal portion of A is dropped and the number 3 is
printed as an integer; the value of J is printed as a normalized
number; KAL is printed as an integer; and ,BOB is printed as a
normalized number. The output would look like the following:

+ 3 +0.270000E+2 + 302 +0.758000E+01

. NOTE
In READ and ACCEPT statements~ al­
though the number is read according to the
FORMA Tstatement, it is stored according
to the mode of the variable. For example:

5 ACCEPT l~,A

10 FORMAT (1)

causes. the number 12.3 typed by the user
to be read as 12 and stored as 0.120000E+2 ..

9-122

Array names included in I/O lists must be subscripted in one
of the following forms:

A(V) A(V+C) A(V-C) A(C)

where A is the array name, V is a simple integer variable and C
is a positive nonzero integer constant.

TYPE10IAIIIBIC(I+I>IN(J+I>
HI FORMAT (EII1E1 />

If the list contains more names than there are elements in the
FORMAT statement, the FORMAT statement is reinitialized when
the elements are exhausted. The first element in the FORMAT
state:ment then corresponds to the next name in the list. For in­
stance, in the preceding example when the value of the variable, B,
is printed in the E format, the control character, slash (/), causes
a carriage return/line feed to occur. Then the FORMAT statement
is reinitialized, and the array element, C(I+K), is printed in the E
format and the array element N(J+L) in the I format.

The list does not have to exhaust the elements of a FORMAT
statement. If there are fewer names in the list than there are ele­
ments in the FORMAT statement, the program completes the I/O
operation and proceeds to the next sequential FORTRAN state­
ment. If this next statement is another I/O statement that references
a previously unexhausted FORMAT statement, that FORMAT
statement is reinitialized. FORMAT statements are reinitialized
when they are referenced or when all of their elements are ex­
hausted.

FORMAT STATEMENT
The FORMAT statement controls the arrangement and mode

of the information being transferred. The values of names appear­
ing in the I/O statement list are transferred in the mode specified
by the corresponding element in the FORMAT statement. These
controlling elements consist of the characters E, I, A, slash (/),

9-123

and quote ("). The set of elements must be enclosed in parentheses
and separated by commas. For example:

FORMAT (AI E" 11'" "HOLLERI TH")

The control elements E and I are used for defining the mode of
the data being transferred. When a variable is transferred in the E
format, it is stored or output in floating-point form. If the variable
is transferred in the I format, it is stored. or output in fixed-point
or integer form. Mode conversion on input or output can be ac­
complished because the elements in the FORMAT statement define
the mode of the data. The mode of the original variable is over­
ridden where necessary. For example:

TYPE 10"A
i0 FORMAT (I)

The variable, A, is printed as an integer, and the fractional part
of A is truncated. If A has a value of 14.96, only the integer part,
14, is printed. If A has an absolute value of less than one, zero is
printed.

THE A FORMAT SPECIFICATION
The control element, A, is used for defining the alphanumeric

mode of data I/O. When a variable is to be assigned an alpha­
numeric value, data is read one character per variable. FORTRAN
ignores CTRL/C, blank tape, RUBOUT, and 0200 code (leader/
trailer tape) . FORTRAN does not see the form-feed character
when input is from the disk. The decimal equivalent of the ASCII
value of the character is assigned to the variable. For example: .

A = 301 (ASCII) = 192 (decimal)

Any variable assigned the. alphanumeric value, A, would be set
equal to 192.

It is possible to do arithmetic with integer variables assigned
alphanumeric values. For. example:

DO 10 J= 1" 5
ACCEPT 12" KCJ>
IF CKCJ)-141> 10,,40,,100

10 CONTINUE
12 FORMATCA)

9-124

where the IF statement tests to see if the last character read is a
carriage return (which is ASCII 215 or 141 decimal); if so, con­
trol transfers to Statement 40; if not, control stays within the DO
loop.

It is not possible to do arithmetic with real variables assigned
alphanumeric values. Output in alphanumeric format converts the
value of the variable into an ASCII character and prints that char­
actt~r. For example:

12 FORMATCA)
DO 20 I = I" 5
TYPE 12" A(J)

20 CONT INUE

If the variables A (1) through A (5) were not originally assigned
alphanumeric values, the results of the output can be meaningless.

INPUT FORMATS
Input data words can only consist of a sign, a decimal value, an

exponent value if the data is floating-point, and' a field terminating
character such as space. Any character that is not a number,
decimal point, sign, or E can be used to terminate a field except
the RUBOUT character. When typing data, any number of spaces
or other nonnumeric characters can be typed before the sign or
decimal value in order to make the hard copy more readable.

Input data can be transferred into core memory from either the
Teletype paper-tape reader, the keyboard, the high-speed reader,
or DECtape. Input can be entered in either fixed- or floating-point
modes (integers or decimal numbers). The mode in which data is
stored in core memory is controlled by the first letter of the vari­
able name. The characters read into core are determined by the
corresponding element in the FORMAT statement.

Integer Values-the I Format
An integer data field consists of signll and up to six decimal

characters. Some examples of integer values are as follows:

11 Plus sign can be represented by a plus or space character. Minus is
represented by a minus character. If a sign character is absent from the
data word, the data is stored as positive.

9-125

Typed Numbers

-2001
-40
-0040

16
-2041

Real Values-the E Format

Values Accepted

-2001
-0040
-0040

0016
2047

A floating-point input word consists of a sign, the data value up
to six decimal characters, an E if an exponent is to be included, the
sign of the exponent, and the exponent (i.e., the power of ten by
which the data word is multiplied). For example:

ddd.dddEnn

The d's represent numerical characters in the data and the n's
represent the 2-digit power of ten of the exponent (preceded by a
sign). Either the sign, the decimal point, or the entire exponent
part can be omitted. If the sign is omitted, the number is assumed
to be positive; if the decimal point is omitted, it is assumed to ap­
pear after the rightmost decimal character. If the exponent IS

omitted, the power of ten is taken as zero.
Some examples of floating-point values are as follows:

Typed Numbers

16.
.16E02
1600.E-02

OUTPUT FORMATS
E and I Formats

Values Accepted

0.16 x 10:!
0.16 X 102

0.16 X to:!

Integer values are always printed as the sign and 'a maximum
number of four cha~acters with spaces replacing leading zeros. On
output, integers are left justified within the stated field. Sufficient
trailing spaces are printed to fill the field followed by one additional
space.

Floating-point values are printed in a floating-point format which
consists of sign, leading zero, decimal point, six decimal characters,
the character E, the sign of the exponent (minus or plus), and an
exponent value of two characters. For example:

9-126

Integer Values

-1043
-0016
+0016

Output Format

-1043
16

+ 16

Floating-point values are printed as follows:

SO.ddddddEsnn

where: S represents the sign, minus sign, or space

dddddd represents six decimal digits of the data word
E indicates exponential representation
s represents the sign of the exponent value
nn represents the exponent value

Some examples of floating-point output are:

Decimal Value

-8,388,608.0
-.000119209

Output Format

-0.8388608E+07
0.119209E-03

FORMAT Control Specifications
In most cases when data is to be presented, it must be labeled

and arranged properly on a data sheet.]n order that this can be
accomplished with FORTRAN-, a provision has been made so that
text information and spacing can be printed along with the data
words. These features are provided by the special FORMAT con­
trol elements quote (") and slash (/). The slash character causes
a return to the left margin.

Hollerith Output
When text information is enclosed in quotes and is contained as

part of a FORMAT statement, it is output to the specified device
as it appears in the statement. This output occurs when a TYPE
or WRITE statement references a FORMAT statement containing
text, and all other elements of the FORMAT statement previous to
the text have been used. All legal Teletype characters (other than
the quote character itself) can be contained within quotes and out­
put as text.

9-127

TYPE 10
10 FORMAT(/,,"THIS IS HOLLERITH""/)

TYPE 100"AMIN"AMAX
100 FORMAT (I" "MIN IMUM="" E" I" "MAXIMUM="" E" I)

TYPE 210
210 FORMAT(/"I,," CUMULATIVE DISTRIBUTION""I"I'

.. INCREMENTS FREQUENCY"" I)

DO 220 K=I" 100
TYPE 250"K"VALUCL)"VALU(K+l)"COUNT(K)
CONTINUE

250 FORMAT (I" "E" .. ""E"/)

Implementation Notes
DOUBLE SUBSCRIPTS

This version of FORTRAN does not have the facility for double­
sUbscripted variables. To accomplish dO,uble subscripting, the pro- ,
grammer has to include indexing statements in the source program
as illustrated below. In this example, the matrices are stored col­
umnwise in memory; that is, sequential locations in memory are
used as follows:

Element

all
a21
a31
a41
a51
a61

a12
a22

a56
a66

Relative Position
in Memory (1NDX)

I
2
3
4
5
6

7
8

35
36

If referencing Element a56 in the array, M=5, N=6, (1=6 for
a 6 by 6 array), and INDX=M+1*(N-1)=S+I*5=35. If ref­
erencing Element a22, INDX=2+6* 1=8.

9-128

C MATRIX MULTIPLY PROGRAM
DIMENSION A(36)IB(36)IC(36)

C ACCEPT DIMEl'.JSION OF ARRAY
ACCEPT III
FORMAT (I)
DO 10 M= 1 I I
DO 10 N= 1 # I
I N DX = M + I * (N - 1)

C ACCEPT FIRST MATRIX
ACCEPT I~A(INDX)

2 FORMAT(E)
10 CONTINUE

TYPE 15
15 FORHAT(/I/#/)

DO 20 t1= 11 I
DO 20 N=111
INDX=M+U(N-l)

C ~CCEPT SECOND MATRIX
ACCEPT IIB(INDX)
C (IN DX) = QJ

20 CONTINUE
C MULTIPLY MATRICES

DO 30 M=I,1
DO 30 N= 1 I I
DO 30 K=I,I
IC=N+I*U1-1)
IA=K+l*(:1-1>
I B= K+ 1 * (K- 1)
C(IC)=C(lC)+A(IA)*B(IB)

30 CONTINUE
TYPE 15

C PRINT RESULTS IN MATRIX FOP~
TYPE 21
DO 40 i1= 1 # I
TYPE 21
DO 40 N= 1, 1
IN DX= N + I * (11- 1)
TYPE 11 C (INDX)

40 CONTINUE
21 FORMAT (/)

TYPE 15
END

SUBSTATEMENT FEATURE
The most important result of treating the equal sign as a binary

operator (as explained in the section on Arithmetic Statements)
is that it may be used more than once in arithmetic statement. In
addition to simple replacement operations (see section on Multiple
Replacement), consider the following;

CPRM = (CKL - CKG) / (CPG = P*(Q-I-l))

9-129

The internal arithmetic statement (or substatement). CPG p*
(Q+ 1). is set off from the rest of the statement by parentheses.
The complete statement isa concise way of expressing. the following
common type of mathematical procedure:

Let: Cl = Ck1 -C1i/.;,

Cpg

Where: Cv!;' = p.(q+1) .

The stating of a relation followed by the conditions for eval­
uating any of the variables can be expressed in a single arithmetic
statement in FORTRAN.

A second use of the equal sign is shown below. For background
on this short program, see the discussion of the same problem in
the section on the IF statement.

C SUM OF THE FIRST 50 INTEGERS'
KSUM=0
INUM 50

2 KSUM=INUM+KSUM
I F (IN UM + IN UM - 1) 3" 3.1 2

3 STOP

In this example, the sum is formed by counting down, but the
same results are achieved as in the section on the IF statement.
The initialization is changed so that INUM starts with the value of
50 instead of 0, and the statement, INUM=INUM+ 1, is no longer
required.

ERROR CHECKING
Because of the extremely compact nature of the FORTRAN-D

Compiler, either FORTRAN features or error checking will suffer.
In the case of FORTRAN-D, checking for .certain errors is not as
important as preserving the language. Therefore, the programmer
is advised to follow the rules as stated in this manual and carefully
check his program for mistakes. For example, the statement

A = B + C -

will compile, although at execution time it will give unpredictable
results.

9-130

It should be noted that data areas must not extend below loca­
tion 5600 in FORTRAN-D. No diagnostic is issued unless program
and data areas actually overlap. A maximum of 89610 words- are
available for data. Care should be taken not to exceed the limits
through use of large arrays, etc. Similar obvious errors are accepted
by the Compiler; their effects are often unpredictable.

FORTRAN-D SOURCE PROGRAM RESTRICTIONS
The following limits are imposed upon all FORTRAN-D source

programs:

1. Not more than 896 data cells. This includes all dimen­
sional variables, user-defined variables, constants, and all
constants generated by the usage of a DO loop.

2. Not more than 20 undefined forward references to unique
statement numbers per program. An undefined forward
reference is a reference to any statement label that has
not previously occurred in the program. Multiple refer- -
ences to the same undefined statement numbers are con­
sidered as one reference.

3. Not more than 64 different variable names per program.
4. Not more than 128 characters per input statement.
5. Not more than 40 numbered statements per program.

FORTRAN-D COMPILER AND OPERATING SYSTEM
CORE MAP

The Compiler occupies the following core locations:

0003-7600
7200-7600

Compiler plus tables
Compiler tables (undefined forward ref­
erence tables, etc.)

The Operating System occupies locations:

0000-5200
0000-6000

Operating System for paper I/O
Operating System for disk I/O

Locations 5201 through 7576 are available for the user's pro­
gram when using paper tape input/output.

9-:131

Table 9-10. FORTRAN-D Statement Summary

Statement and Form Explanation

Arithmetic StatemenJs

v=e

Control Statements

v is a variable (possibly subscripted); e is
an expression.

GO TO n n is a statement number.

GO TO (n1 ,n2, ... ,n ll),i nl, ... ,nn are statement numbers; i is a non­
subscripted integer variable.

IF (e) nl,n2,rl3 e is an expression; nl,n2,n3 are statement
numbers.

DO n i=kb k2,ka n is the statement number of a CON­
TINUE; i is an integer variable; k1 ,k2,kB

are integers or nonsubscripted integer vari­
ables.

CONTINUE Proceed

PAUSE Temporarily suspend execution.

STOP Terminate execution.

END 'Terminate compilation; last statement III

program.

Specification Statements

DIMENSION v1(n1),

v2(n2) , ... ,vn (nn)

DEFINE device

COMMENT

Input/ Output Statements

ACCEPT f, list

TYPE f, list

Vl, ... ,vn are variable names; nl, ... ,nn are
integers.

Device is DISK or TAPE.

s is a data field specification.

Designated by C as first character on line.

f is a FORMAT statement number; list is
a list of variables; input is from the Tele­
type.

f is a FORMAT statement number; list is
a list of variables; output is to the Teletype.

9~132

Table 9-10 (Cont.). FORTRAN-D Statement Summary

Statement and Form Explanation

READ u,f, list u is an integer representing the device
which data is to be read: 1 =Teletype, 2=
high-speed reader, 3=disk; f is a FORMAT
statement number; list is a list of variables.

WRITE u,f, list u is an integer representing device onto
which data will be written: 1 =Teletype,
2=high-speed punch, 3=disk, f is a FOR­
MAT statement number; list is a list of
variables.

FORTRAN-D Error Diagnostics
Diagnostic procedures are provided in the Compiler to assist the

programmer in program compilation. When the compiler detects
errors in a FORTRAN source program, it prints the error mes­
sages on the user termimil. These messages indicate the source of
the errors and direct the programmer's efforts to correct them. To
speed up the Compiler process, the Compiler prints only an error
code. The programmer then looks up the error message correspond­
ing to the code in Tables 9-11 through 9-13 and takes the appro­
priate corrective measures.

COMPILER COMPILATION DIAGNOSTICS

xxxx xx
Format of Diagnostics

XX

L The identifying condition
code

'----The number of statements since the ap­
pearance of a n\1mbered statement (octal
value).

L..--....;The statement number of the last numbered statement.

9-133

For example:

10 A=I(.J+l)
H=A*(H+SINF(THTA)

. During compilation of the prevIOUS statements, the following
error code would be printed:

1:,1 0 1 1 1

indicating that a statement which occurs one statement octal. (one
decimal) after the appearance of Statement 10 is in error. The
message corresponding to Code 11 shows that the number of left
and right parentheses in the statement is not equal.

If a statement number is referenced but does not appear in the
source program, the diagnostic code will be printed as follows:

xxxx 77 20

where the number usually reserved for the last numbered statement
(xxxx) is replaced by the missing statement, e.g.

GO TO lCilCil

The diagnostic would appear as follows where Statement 100 is
never defined.

IV'lCi'l 77 ~Iil

Table 9·11. FORTRAN·D Compiler Compilation Diagnostics

Error
Code

00
01
03
04
05
06
07
)0
).)

Explanation

Mixed mode arithmetic expression
Missing variable or constant in arithmetic expression
Comma was found in arithmetic expression
Too many operators in this expression
Function argument is in fixed-point mode
Floating-point variable used as a subscript
Too many variable names in this program
Program too large, core storage exceeded
Unbalanced right and left parentheses

9-134

Table 9-11 (Cont.). F'ORTRAN-D Compiler Compilation Diagnostics

--Error
Code Explanation
---12 . Illegal character found in this statement

13 Compiler cQuld not identify this statement
14 More than one statement with same statement number
15 Subscripted variable did not appear in a DIMENSION

statement
] 6 Statement too long to process
17 Floating-point operand should have been fixed-point
20 Undefined statement number
21 Too many numbered statements in this program
22 Too many parentheses in this statement
23 Too many statements have been referenced before they

appear in the program
25 > DEFINE statement was preceded by some executable

statement
26 Statement does not begin with a space, tab, C, or number

--
COJvlPILER SYSTEMS DIAGNOSTICS

Certain errors can make it impossible for the Compiler to pro­
ceed in the normal manner. These errors occur before the Com­
piler has been loaded into core. They may be caused by improp­
erly loading the Compiler, by not having an END statement on a
source file, bya machine malfunction, or by other errors. These
errors, referred to as system errors, are explained in Table 9-12.

Error
Code

0240

3100
3417
6145

6223
6226
6257
6724
6746
7114

Table. 9-12.. FORTRAN-D Compiler Systems Diagnostics

Explanation

System file error. One of the FORTRAN components can­
not be found or the disk is full, preventing FORTRAN
from proceeding. Try recalling FORT.
Illegal operator on compiler stack.
Preprecedence error.
Could not find FOSL on system device; if the error occurs,
it may be necessary to reload FORT and FOSL.
Error: while loading the Compiler.
Same as above.
Same as above.
No END statement on source device.
Same as above.
Same as above.

9-135

OPERATING SYSTEM DIAGNOSTICS
Not all errors are detected by the Compiler. Some errors can

only be detected by the operating system (FOSL). Also there are .
some conditions which indicate errors on the part of the Compiler
and/ or operating system. When such an error occurs during run­
ning of a program, the computer. prints out an error message con­
taining the word TILT or ERROR and an error number. The
computer then halts. If the CONTINUE switch is pressed, the com­
puter takes the action listed in Table 9-13.

ErrQr
CQde

01
02
04
05
06
11
12
13
14
15

I 16
17
20
21
22
40
41
76
77

Table 9·13. FORTRAN·D Operating System Diagnostics

ExplanatiQn

Checksum'errQr Qn FORTRAN binary input
Illegal Qrigin Qr data address Qn FORTRAN binary input
Disk input-Qutputerrorl2

High-speed reader errQr
Illegal FORTRAN binary input device
Attempt to' divide by zero
FIQating-PQint input data conversiQn error
Illegal QP cQde
Disk input-Qutput error1,2

NQn-FORMAT statement used as a FORMAT
Illegal FORMAT specification
FIQating-PQint number larger than 2047
Square rQQt Qf a negative number
EXPQnential negative number
LQgarithm Qf a number less than O'r equal to' zerO'
Illegal device code used in READ Qr WRITE statement
System ,device full, eQuId nQt cQmplete a WRITE statement
Stack underflO'w errQr13

Stack Qverflow errQr13

12 May be caused by machine malfunction or operating system error.
13 May be caused by source program or loading error; to correct, do the

following in descending order.
a. Use Diagnose to determine where the error occurred.
h. Recompile the source program.
c. Examine source program (in particular the arithmetic statements

and subscripted variables).

9-136

PAL-D ASSEMBLER
IlIltroduction

The EduSystem 50 Assembly System is composed of the PAL-D
Symbolic Assembler, LOADER, and ODT. The PAL-D Assem­
bler is used to translate the user's source program into an object
program (binary or machine code). LOADER is used to transfer
the user's object program from the disk into core for debugging
or execution. ODT (Octal Debugging Technique) is used to dy­
namically debug the object program which has been loaded into
core using LOADER.

The PAL-D Assembler is fully documented in Programming
Languages 1972, Chapter 14. PAL-D source programs are usually
written on-line using the EDIT program, which stores them in
disk files. The Assembler checks for assembly language syntax
errors and for undefined user symbols. To call the PAL-D Assem­
bler, the user types:

.R PALD

PAL-D responds by requesting INPUT: Type the name of the
source program or programs to be assembled. A maximum of
three files can be assembled together. PAL ... D then requests OUT­
PUT: Type the name of the new file in which PAL-D will store the
assembled program in executable binary form. PAL-D then re­
quests OPTION: For a normal assembly, press the RETURN key.
If an assembly listing is not desired, respond to OPTION with N.

PAL-D then proceeds to assemble the program: any errors
in the program are indicated; the program symbol table is printed;
and finally, an assembly listing of the source program is printed.
When the listing is completed and the assembly finished, ~ontrol
is returned to the Monitor.

EduSystem 50 PAL-D
Because of the necessary hardware changes made for time­

sharing on EduSystem 50, PAL-D has been revised in the fol­
lowing ways (as differing from PAL-D on a non-timeshared
PDP-8) :

A. P AL-D, under EduSystem 50, allows 245 (decimal) user
symbols in addition to the permanent symbols listed in

9-137

Table 9-14. Allsymt>ols reside in locations 5200 through
7777. The permanent s·ymbol table has beeR revised to
include all instructions peculiar to the time-sharing system.

B. A CTRL/C (tC) from the ·Teletype terminates the assem­
bly, and halts.PAL-D, sending the user back to the Monitor.

Example of a PAL-D Program

.R PALD

INPUT:TYPE2
OUTPUT: B IN2
OPT IO~:

COt:NT
CRLF
Leep
OUT
REG
START

0400
0401
041iJ2
0403
0404
0/.105
0406
0407
0410
0Lll1
011 12
0413
01114
0415
0416

0417
0420
0421
0422
0/123
0424

0425
0426
01127
0430
0431
0432
0574
0575
0576
0577
ISS

·0415
0417
0406
0425
0416
0400

7200
4217
1377
3215
1376
3216
1216
4225
2216
2215
5206
4217
7402
0000
0000

0000
1375
4225
1374
4225
5617

0000
6046
6041
5227
7200
5625
0212
0215
0260
7766

/PROGRAM TO TY·PE OUT "0123456789"
*0400
START, CLA

JMS CRLF
TAD (- 1 2'>
DCA COUNT
TAD (260) /ASC I I CODE FOR ZERO (0)
DCA REG

LOOP, TAD REG
JMS OUT
ISZ REG
ISZ COUNT
JMP LOOP
Jr.-'s CRLF"
HLT

COU:\JT, 0
REG, 0

CRLF, 0
TAD (215) /ASC I I FOR CARRIAGE RETUR:\J
JMS OUT
TAD (212) /LINE FEED
J~S OUT
JMP I CRLF

OUT, 0
TLS
TSF
JMP .-1
CLA
JMP I OUT

9-138

Table 9-14. EduSystem SO Symbol List

Mnemonic Code Operation

Memory Reference Instructions
AND 0000 Logical AND
TAD 1000 Twos complement add
ISZ 2000 Increment & skip if zero
DCA 3000 Deposit & Clear AC .
JMS 4000 Jump to subroutine
JMP 5000 Jump
GlrOUP 1 Operate Microinstructions
NOP
lAC
RAL
RTL
RAJ{
RTR
CML
CMA
CLL
CLA

7000
7001
7004
7006
7010
7012
7020
7040
7100
7200

No operation
Increment AC
Rotate AC & link left one
Rotate AC & link left two
Rotate AC & link right one
Rotate AC & link right two
Complement link
Complement AC
Clear link
Clear AC

Group 2 Operate Microinstructions

Event Time

1
3
3
3
3
3
2
2
1
1

.HL T 7402 Halts the computer 4
05T 7404 Inclusive OR switch register

with AC 3
SKP 7410 Skip unconditionally 1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SZA 7440 Skip on zero AC 1
SNA 7450 Skip on nonzero AC 1
SMA 7500 Skip on minus AC 1
SPA 7510 Skip on plus AC (zero is positive) 1
Combined Operate Microinstructions
CIA 7041 Complement & increment AC 1
STL 7120 Set link to 1 1,

GLK 7204 Get link (put link in AC, bit 11) 1
STA 7140 Set AC=-1 1
LAS 7604 Load AC with switch register 1

PSEUDO-OPERATORS
DECIMAL OCTAL
EXPUNGE PAGE
FIELD PAUSE
FIXTAB TEXT
I XLIST

Z

9-139

Table 9-14 (Cont.). EduSystem 50 Symbol List

Mnemonic Code Operation Event Time

lOT Microinstructions

PROGRAM INTERRUPT
lOT 6000 (See Introduction to Programming

KEYBOARD READER
KSF 6031
KCC 6032
KRS 6034
KRB 6036,

KSB
SBC
KSR

6400
6401
6030

1972, Chapter 6.)

Skip if keyboard/ reader flag = 1
Clear AC & keyboard/reader flag
Read keyboard/ reader buffer
Clear AC & read'keyboard buffer,
& clear keyboard flag
Set keyboard break
Set buffer control flags
Read keyboard string

TELEPRINTER/PUNCH

1
2
3

2,3

TSF 6041 Skip if teleprinter/punch flag = 1 1
TCF 6042 Clear teleprinter/punch flag 2
TPC 6044 Load teleprinter/punch buffer, 3

Select & print
TLS 6046 Load teleprinter/punch buffer, 2,3

Select & print, and clear
Teleprinter/punch flag

SAS 6040 Send a string

HIGH-SPEED READER (TYPE PC02)
RSF
RRB
RCF
RRS

6011 Skip if reader.flag = 1 1
6012 . Read reader buffer & clear flag 2
6014 Clear flag & buffer & fetch character 3
6010 Read reader string

HIGH-SPEED PUNCH (TYPE PC03)
PSF 6021 Skip if punch flag = 1 1
PCF 6022 Clear flag & buffer 2
PPC 6024 Load buffer & punch character 3
PLS 6026 Clear flag & buffer, load & punch 2,3
PST 6020 Punch string

DECTAPE TRANSPORT (TYPE TU55)
AND CONTROL (TC01)
DTXA 6764 Load status register A 3
DTSF 6771 Skip on flags 1
DTRB 6772 Read status register B 2

9-140

Table 9-14 (Cont.). EduSystem SO Symbol List

Mnemonic Code

PROGRAM CONTROL
URT 6411
TOD 6412
RCR 6413
DATE 6414
STM 6415
T5S 6420
USE 6421
SSVV 6430
CKS 6200
ASD 6440
REL 6442
DUP 6402
CON 6422

FILE CONTROL
WHO 6616
SIZE 6614
RFILE 6603
VVFILE 6605
ACT 6617
REN 6600
OPEN 6601
CLOS 6602
PROT 6604
CRF 6610
EXT 6611
RED 6612
FINF 6613

Operation

User run time
Time of day
Return clock rate
Date
Quantum synchronization
Skip on TSS/8
User
Set switch register
Check status
Assign device
Release device
Duplex
Console

Who
Segment size
Read file
VVrite file
Account number
Rename file
Open file
Close file
Protect file
Create file
Extend file
Reduce file
File information

9-141

Event Time

Table 9-15. PAL-D Error Diagnostics

Error Code Explanation

BE Two PAL-D internal tables have overlapped-This
situation can usually be corrected by decreasing the
level of literal nesting or number of current page
literals used prior to this point on the page.

DE System device error-An error was detected when
trYing to read or write onto the system device; after
three failures, control is returned to the Monitor.

DF Systems device full-The capacity of the systems
device has been exceeded; assembly is terminated
and control is returneQ to the Monitor .

. -.~-,-

IC Illegal character-An illegal character was encoun­
tered other than in a comment or TEXT field; the
character is ignored and the"assembly continued.

ID Illegal redefinition of a symbol-An attempt was
made to give a previously defined symbol a new value
by means other than the equal sign; the symbol. was
not redefined.

IE Illegal equals-An equal sign was used in the wrong
context.

Examples:
TADA+=B
A+B=C

the expression to the left of (he
equal sign is not a single symbol
or, the expression to the right of
the equal sign was not previously
defined

11 Illegal indirect-An off-page reference was made; a
link could not be generated because the indirect bit
was already set.

9-142

Table 9-15 (Cont.). PAL-D Error Diagnostics

Error CO'de ExplanatiO'n

ND The prO'gram terminatO'r, $, is missing.

PE Current nO'nzerO' page exceeded-An attempt was
made to':

a. O'verride a literal with an ins tructiO'n , O'r
b. O'verride an instructiO'n with a literal; this can be

corrected by
(1) decreasing the number O'f literals O'n the page

O'r
(2) decreasing the number O'f instructiO'ns O'n the

page.

PH Phase errO'r-P AL-D has received input files in an
incO'rrect O'rder; assembly is terminated and cO'ntrO'I
is returned to' the MO'nitO'r.

SE SymbO'l table exceeded-Assembly is terminated and
cO'ntrol is returned to' the MO'nitO'r; the symbO'I table
may be expanded to' cO'ntain up to' 1184 user symbO'ls
by saving a file named .SYM O'n the system device.

US Undefined symbO'I-A symbO'I has been prO'cessed dur­
ing pass 2 that was nO't defined befO're the end O'f
pass 1.

ZE Page 0 exceeeded-Same as PE except with refer­
ence to' page O.

9-143

9-144

UTILITY PROGRAMS
Symbolic Editor

The EduSystem 50 Symbolic Editor (EDIT) provides the user
with a powerful tool for creating and modifying source files on­
line. Its precise capabilitif;S and commands are detailed in Intro­
duction to Programming 1972, Chapter 5. EDIT allows the user
to delete, insert, change, and append lines of text, and then obtain
a clean listing of the updated file. EDIT also contains commands
for searching the file for a given character.

EDIT considers a file to be divided into logical units, called
pages. A page of text is generally 50-60 lines long, and hence cor­
responds to a physical page of program listing. A FORTRAN-D
program is generally 1-.3 pages in length; a program prepared for
PAL-D may be several pages in length. EDIT operates on one
page of text at a time, allowing the user to relate his editing to the
physical pages of his listing. EDIT reads a page of t.ext from the
input file into its internal buffer where the page becomes available
for editing. When a page has been compl~tely updated, it is writ~
ten onto the output file and the next page of the input file is made
available. EDIT provides several powerful commands for paging
through the source file quickly and conveniently.

NOTE
The end of a page of text is marked by a
form feed (CTRL/L) character. Form feed
is ignored by all EduSystem 50 language
processors.

To call the Editor, type:

.R EDIT

EDIT responds by requesting INPUT: Type and enter the
name of the source file to be edited. If a new file is to be created
using EDIT, there is no input file. In this case, strike the RETURN
key" EDIT then requests OUTPUT: Type the name of the new,
edited., file to be created. The name of the output file must be
different from the name of the input file. If EDIT is being called
to Ust the input file, there is no need to create an output file; strike

9-145

the RETURN key. When EDIT sets up its internal files and is
ready for a command, it rings the bell on the Teletype.

For example:

.R EDIT
INPUT: WXZOL.D.
OUTPUT:XYZNEft:

(Bell rings at this point.)

Table 9-16.< Symbolic Editor'Operations Summary

Special Characters

Carriage Return
(RETURN Key)

Back Arrow (~)

Rubout (".) .

Form Feed
(CTRL/FORM
Combination)

Period (.)

Slash (!)

Line Feed (J,)

Function

Text Mode-Enter the line in the
text buffer.

Command Mode-Execute the com­
mand.

Text Mode-Delete from right to
of text, continue typing on same
line.

Command Mode-Cancel com­
mand. Editor issues a ? and car­
riage return I line feed.

Text Mode-Delete from right to
left one, character for each rubout·
typed. Does not delete past th~ be­
ginning of the line; Is not in effect
during a READ command.

Command-Mode-' Same as back
arrow;

Text Mode-End of inputs return
to command mode.

.
Command Mode-Current line
counter used as argument alone or
in combination with + or - and a
number (.,.+5L).

Command Code-Value equal to
number of last line in buffer. Used
as argument (I-5,LI).

Text Mode-Used in SEARCH
command to insert a CRI LF com­
bination into the line being
searched.

9-146

Table 9-16 (Cont.). Symbolic Editor Operations Summary

Special Characters Function
--

Right Angle Bracket (»

Left Angle Bracket «)

Equal Sign (=)

Tabulation
(CTRLI TAB Key
Combination)

Command Mode-List the next
line (equivalent to .+lL).

Command Mode-List the previous
line (equivalent to . -1 L) .

.
Command Mode-Used in con-
junction with. and I to obtain their
value (.=27).

Text Mode-Produces a tabulation
which, on output, is interpreted as
spaces· if bit 1 of the switch reg­
ister is set to 0, or as a tab char­
acter I rubout combination if bit]
is set to 1.

Table 9-17. EDIT Command Summary

--Command Format Meaning --
READ R Read text from the input file and

append to buffer until a form feed
is encountered.

APPEND A Append incoming text from key-
board to any already in the buffer
until a form feed is encountered.

LIST L List the entire buffer.

nL List line n.

m,nL List lines through n inclusive.

PROCEED P Output the contents of the buffer to
the output file, followed by a form
feed.

nP Output line n, followed by a form
feed.

m,nP Output lines m through n inclusive
followed by a form feed.

TERMINATE T Close out the output file and return
to the Monitor.

9-147

Table 9-17 (Cont.). EDIT Command Summary

Command

NEXT

KILL

DELETE

INSERT

CHANGE

MOVE

GET

SEARCH

Format

N

Meanin~

Output the entire buffer and a form
feed, kill the buffer and read the
next page.

nN Repeat the above sequence n times.

K

nD

m,nD

I

Kill the buffer (i.e., delete all text
lines) .

Delete line n of the text.

Delete lines m through n inclusive.

Insert before line 1- all the text from
the keyboard until a form feed is
entered.

nI Insert before line n until a form
feed is entered.

nC

m,nC

Delete Hne n, replace it with any
number of lines from the keyboard
until a form feed is entered.

Delete lines m through n, replace
from keyboard as above until form
feed is entered.

m,n$kM Move lines m through n inclusive
to before line k.

G Get and list the next line beginning
with a tag.

S Search the entire buffer for the
character specified (but not echoed)
after the carriage return. Allow
modification when found. Editor
outputs a slash (/) before begin­
ning a SEARCH.

nS Search line n, as above, allow modi­
fication.

m,nS Search lines m through n inclusive,
allow modification.

9-148

Table 9-17 (Cont.). EDIT Command Summary

Command

END

tC

Loader

Format Meaning

E Output the contents of the buffer.
Read any pages remaining in the in­
put file, outputting them to the
output file. When everything in tHe
input file has been moved to the
output file, close it out and return
to the Monitor. E is equivalent to a
sufficient number of N's followed
by a T command.

CTRLI C Stop listing and return to Command
Mode.

LOADER is used to load programs in BIN format from a disk
file into the user's core area for execution. These files in BIN for­
mat can be created by P AL-D in the course of an assembly or they
can be loaded from paper tape using PIP (see the PIP section for

. special instructions on loading BIN format tapes).
To call LOADER, type:

.R. LOADER

LOADER responds by asking for INPUT: Respond by entering
the" name of the file or files to be "loaded. Although many System
Library Programs allow mUltiple input files, the L6ADER uses
this feature to special advantage. Because it loads the files in the
order they are typed, LOADER can be used to load patches and
overlays. After it has requested INPUT, LOADER requests OP­
TION: For normal operation strike the RETURN key; LOADER
is able to load into any part of core below 7750. If the program
to be loaded is to be debugged, respond to OPTION: with D.
This will cause ODT to be loaded along with the input files and
started. ODT indicates that it is ready by printing a second line
ft!ed. ODT uses locations 7000 through 7577; and if loaded along
with a program which uses any of these locations, the result of the
load is unpredictable.

9-149

EXAMPLE 1: NORMAL OPERATION

.R LOADER
INPUT:MAIN" PATCHl" PATCH2
OPTION:
'BS

EXAMPLE 2: 'LOAD OnT WITH INPUT FILE

.R LOADER
INPUT:PROGl
OPTION: 0

As seen in the first example, LOADER returns control to
Monitor when it is finished. The user can then start the program
by using the Monitor command 'START. For example, LOADER
can be used to load and run the short program given as an exam­
ple in the section on PAL-D .

• P. LOADER

INPUT: BIN2
OPTION:
'BS
.START 400

0123456789
'BS

NOTE
All BIN format files loaded by LOADER
include a checksum. If LOADER detects a
checksum error while loading, it prints
LOAD ERROR and terminates the load.

Octal Debugging Technique (ODT)
ODT is a powerful octal debugging tool for testing and modify­

ing PDP-8 programs in actual machine language. It allows the
user to control the execution of his program and, where necessary,
make immediate corrections to the program without the. need to
reassemble.

9-150

Th.e .complete command repertoire of ODT is documented in
Introduction to Programming 1972, Chapter 5. ODT (on Edu­
System 50) is the high-core version which resides in locations
7000 through 7577. The paper-tape output commands of regular
ODT are not available in EduSystem 50 ODT. To call ODT, the
user types:

.LOAD 2 ODTKI 0 7000
• STAHT 7000

If ODT is to be used to debug a program being loaded with
LOADER, ODT can be loaded and started directly by specifying
the Debug (D) option to LOADER.

ODT executes an SRA (Set Restart Address) as part of its ini-
.tialization process. As a result, typing CTRL/C always returns
control to ODT. If the program being debugged sets up its own
restart address, typing CTRL/C transfers control to the new
restart address. It is necessary to type tBS followed by START
7000 to force control back to ODT. Every time ODT regains
control, it puts the Teletype in duplex mode. Users debugging
programs which do not operate in duplex mode, should be aware
of this fact.

ODT saves the state of the delimiter mask, when it regains con­
trol via a breakpoint. The state of this mask is restored on a
Continue (C) command, but not on a GO (G) command.

Table 9-18. ODT Command Summary

Command Meaning

nnnn/

/

RETURN

LINE FEED

UpArrow (t)
(SHIFT / N)

Open register designated by the octal num­
ber nnnn.

Reopen latest opened register.

Close previously opened register.

Close register and open the next sequential
one for modification.

Close register, take contents of that register
as a memory reference and open it.

9-151

Table 9-18 (Cont.). ODT Command Summary

Command Meaning

Back Arrow (-E-) Close register open indirectly.
(SHIFT./O)

Illegal Character Current line typed by user is ignored, ODT
types ?CRILF.

nnnnG Transfer program control to location nnnn.

nnnnB Establish a breakpoint at location nnnn.

B Remove the breakpoint.

A Open for modification, the register in which
the contents. of AC were stored when the

. breakpoint was encountered.

C Proceed from a breakpoint.

nnnnC Continue from a breakpoint and iterate past
the breakpoint nnnn times before interrupt­
ing the user's program at the breakpoint
location.

M Open the search mask register, initially set
to 7777. It may be changed by opening the
search mask register and typing the desired
value after the value typed by ODT, then
closing the register.

LINE FEED Close search mask register and open next
register immediately following,. containing
the location at which the search begins. It
may be changed by typing the lower limit
after the one typed by ODT, then closing
the register.

LINE FEED Close lower search' register, open next reg­
ister containing the upper search limit ini­
tially set to 7000 or 1000 (location of
ODT). It may be changed by typing the
desired upper limit after the one typed by
ODT and closing the register with a car­
riage return.

nnnn W Search the portion of core as defined by the
upper and lower limits for the octal value
nnnn.

9-152

Catalog (CAT)
The Monitor ma;ntains a library of disk files for each user. The

System Library Program CAT is used to obtain a catalog of the
contents of this library. For each file, CAT prints the size of the
file in units of disk segments. The size of a disk segment may vary
among installations. Generally, it is 256 (decimal) words of disk
storage. The protection code for the file is also given. (See the
section on Advanced Monitor Commands for a precise explanation
of protection codes.) If the program was created by any of the
System Library Programs, it has a protection code of 12, mean­
ing that other users can read the file, but only the owner can
change it. To call CAT, type:

.R CAT

The CAT program then prints a listing similar to the one shown
below and concludes by printing tBS and exiting to the Monitor.

.R CAT

DISK FILES FOR USER 3,,13 ON 9-JU~-70

~AME SIZE PROT DATE
FIE .BI~ 1 1 7 3-JU~" 70
PROG • FCL 2 12 9-JUN-70
INTER .BAS 1 1 7 9-JUN-70
BAS000.TMP 1 17 9-JU~-70

BAS100.TMP 1 1 7 9-JUN-70
INT2 .BAC 1 ' 37 9-JUN-70
FCLPRG.FCL 2 12 9 - JUt\ -70

TOTAL DISK SEGME~TS: 9

rBS

9-153

System Status (SYSTAT)
It is frequently useful to know the status of the system as a

whole; how many users are on-line, where they are, what they
are doing, etc. The SYSTAT program provides this capability.
To call SYSTAT, type:

.SYSTAT

or

.R SYSTAT

SYST AT responds by printing on the first line: 'the version of
the Monitor being run, the time, and the date: SYST AT then re­
ports the uptime which is the length of time in hours, minutes, and
seconds since the system was last put on-line.

SYST AT then lists all on-line users. Each user is identified by
his account number. The job number assigned to him and the
number of the console he is using are indicated, as is the particular
System Program he is running. The exact running state of each
user, whether he is actually running (RUN), typing (KEY) or
printing (TTY), doing input/output on another system devke
(10 or FIP), or not running (tB), is indicated. The amount of
computer time used by each user since he logged in is given.

If more users are on-line than the system has core fields to
hold them, the fact that the system is swapping is reported. The
number of free core blocks used internally by the Monitor for
Teletype buffering and various other purposes is printed. Then
SYST AT reports any unavailable devices, i.e., devices which are
assigned to individual users. The job to which they are attached
and their status (AS if they are assigned but not active, AS+INIT
if they are assigned and active) is also indicated. Finally, the
number of available segments of disk storage is reported.

9-154

A sample SYSTAT listing is shown below. SYSTAT terminates
by printing tBS and exiting to the Monitor.

.R SYSTAT

STATUS OF TSS/8.21 DEC PDP-8 II AT 16: 32: 52 ON 2 JUN 70

UPTIME 08:55:52

.. JOE, WHO WHERE WHAT STATE RUNTIME

1 10 .. 10 K00 COpy 'B 00:00=06
2 3 .. 13 K15 SYSTAT RUN 00:00:05
3 0 .. 10 Kl1 BASIC KEY 00:00:02
4 0 .. 10 K22 BASIC KEY 00:00:01

AVAILABLE CORE 0K FREE CORE=222

BUSY DEVICES

DEVICE JOB WHY

D0 1 AS+INT
Dl 1 AS'+INT
D2 1 AS
D3 1 AS
D6 3 AS+INT

119 FREE DISK SEGMENTS

TSS
•

9-155

9-156

PROGRAMS FOR PAPER TAPE AND DECTAPE CONTROL
PIP (Peripheral Interchange Program)

All System Library programs discussed in previous sections
operate only on files which are on the disk. Disk is a convenient
storage medium for many files; however, it may be more useful to
keep some programs on paper tape. PIP provides a convenient
means of transferring files between disk and paper tape, for those
users who wish to preserve copies of their files off-line.

PIP CONVENTIONS
PIP may be considered a link between disk file storage and

paper-tape devices. To punch a desired file, PIP obtains that file
from the. disk and punches it on paper tape. Similarly, to load a
paper tape, PIP inputs the tape from the reader, then outputs it
to a disk file.

The way files are named is important to PIP. Files on disk are
always named. Paper tapes, on the other hand, have no names as
far as the system is concerned (although the user can label the
physical tape in any manner he chooses). Paper tapes never have
file names; therefore, PIP uses the absence of a file name to indi­
cate a paper tape (absence of a file name is indicated by striking
the RETURN key).

The way in which INPUT: and OUTPUT: is indicated provides
the means for determining the direction of file transfer. If PIP
is to get its input from the disk, the input is a file name; if the
input is from a paper tape, no file name is given. Similarly, if PIP
is to output to the disk, the file name is indicated; if output is to
paper tape, no name is given. To call PIP, type:

.R.PIP

PAPER TAPE TO DISK TRANSFERS
So >oJ "IVY\,; U pdpC:1 ldpt: to OlSK, stnk:e the RETURN key when

PIP requests INPUT: Since PIP must output to the disk, respond
to OUTPUT: by typing a file name. When PIP requests OPTION:

9-157

type T to indicate that the paper tape is being loaded from the
Teletype' reader. For example:

.R PIP

INPUT:
OUTPUT: FILEl
OPTION:T

The paper tape in the low-speed reader is read and stored in the
system as FILE t.

DISK TO PAPER TAPE TRANSFERS
To move a disk file onto paper tape, the use of file names is

reversed since PIP must input a disk file and output it to paper
tape. The option remains the same. For example:

.R PIP

INPUT:FILEl
OUTPUT:
OPTION:T

The contents of FILEt are then punched at the Teletype.

HIqH-SPEED READER/PUNCH ASSIGNMENTS
, 'PIP can also be used with high-speed paper-tape devices. The

format of the INPUT: and OUTPUT: responses is the same.
However, for the high-speed reader, the option is R and for the
punch it is P.

Since the reader and punch are assignable devices, they are not
always available (other users may have one or both assigned).
Therefore, Whenever PIP is given a command which utilizes one of
these devices, it checks t6 make sure that the device is available.
If it is, PIP automatically assigns it (thus, it is not necessary to
assign the device before running PIP). If the device is unavail­
able, PIP informs the user. For example:

INPUT:
OUTPUT: ABeD
OPTION:R

PIP reads the paper tape in the high-speed reader and stores it in
the system as ABCD.

9-158

INPUT:ABCD
OUTPUT:
OPTION:P

PIP punches out file ABCD on the high-speed punch.

INPUT:ABCD
OUTPUT:
OPTION:P
DE:VICE NOT AVAILABLE

The punch is assigned to another user, or there is no punch on the
EduSystem 50, or there is one but it is turned off.

BIN FORMAT FILE TRANSFERS
The examples above work for all ASCII file transfers (except

BASIC programs, explained below.) They are also valid for punch­
ing BIN files with either high- or low-speed devices. Loading BIN
format tapes, however, is a special case.

BIN format tapes must end with trailer codes. The easiest way
to ensure that they do is to cut off the tape near the end of the
trailer code. Failure to do this (or cutting it off very unevenly)
does not prevent PIP from loading tape into the disk file. How­
ever, later attempts to load the file with LOADER will result in
load errors.

NOTE
Some installations do not allow any BIN
format tapes to be loaded from the low­
speed reader.

lVIOVING DISK FILES
PIP can be used to move the contents of one file into another.

This is often useful in copying a file from another user's library
(providing the file is not protected) into your own library. To
copy from disk file to disk file, specify a file name for both input
and output. Reply to OPTION: by striking the RETURN key.
For example:

I N PUT: F n r: A L ;~

OUTPUT: F()I~{\LX
OPTIO:--J:

PIP gets FOCAL from account number 2's library and moves it
into the file FOCALX.

9-159

DELETING DISK FILES
One of the principal reasons for punching files on paper tape

is to free disk space. Once punched, the disk file is no longer
needed. PIP offers a convenient means of deleting files, the Delete
option:

INPUT:ABCD
OUTPUT:
OPTION:D

PIP deletes file ABCD, provided that the file is not protected
against being changed.

BASIC FILE TRANSFERS
BASIC stores its programs in a unique file format. Therefore,

it is not possible to load 'or punch BASIC files in the usual way.
To provide a convenient means of handling BASIC programs, the
B option is available in ~IP. The B option is used for both reading
and punching BASIC programs. The responses to INPUT: and
OUTPUT: indicate the' direction of the transfer; the high-speed
reader or punch is always assumed for the B option. (To read
or punch tapes at low-speed, use BASIC itself.)

PIP assumes that any BASIC tapes it loads are clean and·error­
free. Only tapes actually created by -BASIC should be loaded with
PIP. Tapes created off-line, and thus liable to contain errors,
should be loaded low-speed by BASIC itself with the TAPE
command.

SAVE FORMAT FILE TRANSFERS
Another special file format is that of the SAVE files, those pro- .

grams directly executed by EduSystem 50. (The System Library
Programs are examples of SAVE format files.) PIP provides the
S option, to allow these files to be punched on paper ~ape. SAVE
format tapes make sense only to PIP. They cannot be input to

/

any other System Program.
The responses to INPUT: and OUTPUT: indicate the direction

of the transfer; the high-speed reader or punch is always assumed
for the S option.

9-160

NOTE
SAVE format tapes include a checksum.
If PIP detects an incorrect read, it prints
LOAD ERROR, and terminates the load,
repeating the request for input.

Table 9-19. PIP Option Summary

---------------------..... -----------------------------------Option Explanation

--
T Transfer a file between the disk and the Teletype

reader or punch. The response to INPUT: and OUT­
PUT: indicates the direction of the transfer.

R Read a tape from the high-speed reader and store it
as a disk file.

P Punch the contents of a disk file on the high-speed
punch.

D Delete the file specified for input.

B Transfer a BASIC program file between the disk and
the high-speed reader or punch. The response to in­
put and output indicates the direction of the transfer.

S Transfer a SAVE format file between the disk and
the high-speed reader or punch. The response to
INPUT: and OUTPUT: indicates the direction of the
transfer.

COpy Program
Many EduSystem 50 installations' include one or more DEC­

tapes. For these installations. DECtape provides a convenient
and inexpensive means of file storage. The COPY program is used
to transfer files between disk and DECtape.

USING AND CALLING COpy
COpy is thc intermediary betwecn disk and DECtape. To write

a disk file out to DECtape. COpy inputs the file from the disk.
then outputs it to the DECtape. To bring a DECtape file onto
the disk, COpy inputs from the DECtape. then outputs to the
disk.

9-161

Files kept on DEC tape have file names just as they do on the
disk. To avoid confusion, the user must tell COpy where the file
is to be found. If it is on DECtape, the DECtape designation and
the number of the DECtape unit must preface the file name. The
DECtape number is always separated from the file name by a
colon. Thus DI :FILEI means the file name FILEI on the DEC­
tape which is currently mounted on DECtape unit number one.
The number of available tape units varies among installations.
The maximum is eight (numbered 0-7). If a file name is not
prefaced by a DECtape number, the file is assumed to be on the
system disk.

Files stored on DECtape do not have protection codes in the
sense that disk files do. They are, however, protected against
unauthorized access. When a DECtape is not mounted, it is not
available to any user. When it is mounted, it is available only to
the user who has assigned the DECtape unit on which it is mounted.
Even then it can not be altered unless the DECtape unit is set to
WRITE ENABLE. Users should be sure to assign a DECtape
unit before mounting their tape, and dismount the tape before
releasing the device. Normally, the DECtape unit to be used
should be assigned before calling COPY.

To call COpy, type:

.R COpy

COPY responds by asking which option the user wishes to em­
ploy. The COPY options are discussed below and summarized
in Table 9-20.

LOADING FILES FROM DECTAPE
To load a file onto the disk from DECtape, use the COPY op­

tion. When COPY requests OPTION, respond with COpy, or C,
or strike t~e RETURN key (the COPY option is assumed).
When COPY requests INPUT, type the number of the DEC tape .
unit on which the file can be found (DO, DI, D2, D3, D4, D5; D6, .
or D7) followed by a colon and the name of the file on the
DECtape. When' COpy requests OUTPUT, type and enter the
name to be given to the output file on the disk. COPY then
moves the DECtape file onto the disk. '(Wilen using COPY, it is

9-162

not mandatory to insert a space between the device designator
and tht~ device number.) For example:

OPTION- COpy
INPUT - D4:PQR
OUTPUT - PQR

If for any reason, COpy cannot find the DECtape file speci­
fied for input (the specified DECtape is unavailable or nonexistent,
or the file name does not exist on that DECtape), COpy prints
a ? and repeats the request for input. If the disk file specified
for output already exists, COPY prints a ? and repeats the request
for output. COPY does not overwrite an existing file. For example:

OPTION - C
INPUT - D9:PQR
?INPUT - D4:PQR~
?INPUT - D4:PQR
OUTPUT - FILEl
?OUTPUT - PQR

SAVING DISK FILES ON DECTAPE
Savjng a disk file on DECtape is very similar to loading one.

The option is still COPY. For input, respond with the name of the
file on the disk. For output, type the DECtape unit number, colon,
and the name to be given to this file. For example:

OPTIO:\l - C
I!'JPUT - ABeD
OUTPUT - D4:ABCD

If Copy cannot find the file on the disk, or if it is protected,
COpy prints a ? and repeats the request for input. If COpy can­
not create the desired DECtape file (the specified DECtape does
not exist or is unavaihlble, or it is not WRITE ENABLED, or a
file by that name already exists on the tape) COpy prints a ?
and repeats the request for output.

LISTING DIRECTORIES
COpy can be used to list the directory of a device. To list a

directory, respond to OPTION by typing LIST, or just L. COpy
then asks which device directory it is to list. To list a DECtape

9-163

directory, respond with the device name (DO, ... ,D7). Do not
follow it by a colon. For example:
.R COpy

OPTION- LIST
INPUT- D 1

1372. FREE BLOCKS

DATE
9-MAR-70
2-MAR-70
1-MAR-70

NAME SIZE
BASIC .SAV 66
FACTAL.BAS 10
CONVER. BAC- 6
PALD .SAV 32 31-MAR-70

The unit of DECtape storage is the block, which is 128 (deci­
mal) words. Because the unit of disk storage, the segment, is
generally 256 words, a file occupies twice as many blocks of
DECtape storage as· it did segments on the disk.

COpy can also be used to list the user's disk directory. Use the
LIST option, but respond to DEVICE by simply striking the
RETURN key. The directory listing is similar to the listing ob­
tained by running the CAT program.

DELETING FILES
COpy can be used to delete files, either on the disk or on a

selected DECtape. To delete a file, respond to OPTION by typing
DELETE, or just D. Respond to INPUT by typing the name of
the file to be deleted. If the file is on a DECtape, preface the

. file name with the DECtape unit number and a colon. For example:

OPTION - DELETE
INPUT - D4 :ABCD

If COpy cannot find the file to be deleted, or having found it,
cannot delete it (it is a protected disk file or a DECtape file on .
a unit which is not WRITE ENABLED), COPY prints a ? and
repeats the request for INPUT.

DELETING ALL EXISTING FILES ON A DEVICE
COpy can be used to delete all existing files on a device. To do

so, respond to OPTION by typing ZERO, or just Z. When COPY
requests INPUT respond with the name of the device. To delete
all files on the disk, strike the RETURN key. The ZERO option

9-164

should also be used to format a blank DECtape before attempting
to copy any files onto it. For example:

OPTION - ZERO
INPUT - D4

OPTION - Z
INPUT -

COpy cannot delete files from a DECtape unless it is WRITE
ENABLED. -It cannot delete disk files which are write protected.

Table 9-20. COpy Option Summary

Abbre-
Option viation Explanation

LIST ~ C Transfer a file between disk and DECtape.

COpy L List a directory.

DELETE D Delete a file.

ZERO Z Delete all files.
--

EXAMPLE OF COPY USAGE

.ASSIG~ D 5
D ·5 ASSIGNED
.R COpy

OPTXON - ZERO
DEVICE - DS

OPTION ~ LIST
DEVICE - DS

1462. FREE BLOCKS

~AME SIZE

OPTION - LIST
DEVICE: -

DATE

DISK i~ILES FOR USER 54,40 ON 27-MAY-70.

NAME SIZE PROT DATE
SOLVE .BAS 1 12 27-MAY-70

TOTAL DISK-SEGMENtS: 1

9-165

OPTION - COpy
.INPUT - SOLVE
OUTPUT - DS: SOLVE

OPTION - DELETE
INPUT - SOLVE

OPTION - LIST
DEVICE - D5

1460. FREE BLOCKS

:JAME
SOLVE

SIZE
2

~) PT IO ~ - LIS T
DEVICE-

DATE
27-MAY-70

DI SI-(FILES FOR USER 5 /l,40 ON 27-MAY-70'.

NAME SIZE PROT
/

TOTAL DISK SEGMENTS:

OPTIO\\:- COpy
INPUT- D5:S0LVE
OUTPUT- ABCD

OPTION- LIST
DEVICE-

DISK FILES FOR

NAME
ABCD

SIZE
1

USER

PROT
12

TOTAL DISK SEG~ENTS:

OPTION- RENAME
INPUT- ABCD
OUTPUT- FIE.BIN <17>

OPTION- LIST
DEVICE--

0

54,40

DATE

ON 27 - MAY - 70 •

DATE
27-MAY-70

DISK FILES FOR USER 54,40 ON 27-MAY-70.

NAME SIZE
FIE • BIN 1

OPTION- 'BS
.RELEASE 0·5

PRO'T
1 7

DATE
27-MAY-'70

9-166

ADVANCED MONITOR COMMANDS
Introduction

The fundamental Monitor commands described previously are
those needed to utilize existing System Library Programs. The
EduSystem 50 Monitor also provides powerful commands for
~sers who wish to create their own library programs.

To use the System Library Programs described previously, it was
not necessary to be familiar with the actual machine that runs
them, the PDP-8/E. To create new library programs for Edu-'
System 50, this is necessary because they are written in the PDP ... 8
assembly language. The user codes his programs for a 4K PDP-8,
subject to the time-sharing conventions discussed in this section.
The programs are created with EDIT, then assembled by PAL-D
and loaded by LOADER. Only at this point are the programs
able to be run by EduSystem 50. In the course of this program
development, the same program exists in many formats.

The source program is a disk file containing ASCII characters
in an Editor format. P AL-D reads the file and translates it into
a second file, the assembled program in BIN format. Neither of
these files is capable of being executed directly by EduSystem 50.
The BIN format tape must be loaded into core by LOADER be­
fore it can actually be executed.

At this point it is possible to save the program in a file format
that is directly executable by EduSystem 50. Such a file, caned
a SAVE format file, contains an image of the user's core area
after the program has been loaded by LOADER. These SAVE
format files differ from, all the files which are created by System
Library Programs and cannot be executed directly by EduSystem
50. Thus, it is not possible to save a BASIC program (e.g., FILEt
while running BAS]C), then return to Monitor, type R FILEt,
and get meaningful results. The program in FILEt must be ex­
ecuted under control of the BASIC language processor. Only
SAVE format files can be called into execution directly by the R
command. (All System Library Programs are stored in SAVE
format and can be run with the R command.)

9-167

NOTE
In the following examples, Sn, Cn, and Dn
are used to stand for alphanumeric strings
(such as file names), octal numbers, and
decimal numbers, respectively.

A number of Monitor command conventions are available to
make the commands easier to use. First, more than one com­
mand may be typed on a line. Individual commands are separated
by a' semi-colon (;). Second, only enough characters of a com­
mand to uniquely specify it need be typed. Thus, DEPOSIT can
be abbreviated DE or DEP .

• LeAD FILEl; DEP 20 7000; ST 200

is exactly equivalent to:

.LOAD FILEl

.DEPOSIT 20 7000

.START 200

These conventions are available for the elementary Monitor
commands as well. They are, however, especially convenient for
the advanced commands.

Control of User Programs
Once a P AL-D program has been loaded by LOADER, several

Monitor commands are available for controlling its execution.
These commands are shown in Table 9-21.

It is possible to give these utility commands while a user pro­
gram is running. The CTRL/B character (tB) gets the attention

. of the Monitor without stopping program execution. (tB followed
by the S command stops the program.) tB can be. used together
with the WHERE command to follow program execution. After
executing these commands, Monitor does not put the Teletype
back into Monitor mode.

9-168

Table 9-21. Monitor Program Control Commands

Command

START Cl

START

DEPOSIT Cl C2 ... Cn

EXAMINE Cl

EXAMINE Cl D 1

WHERE

. Defining Disk Files

Explanation

Start execution of a user program at
location Cl. When a program is
started, keyboard input is no longer
interpreted as commands to Monitor.
Input characters are passed to the
running program. START Cl c1ears
the user's AC and link.

Restart execution of a user program
where it was interrupted (either by ex­
ecution of an HLT or by tBS typed at
the keyboard) . When the START
command is given, the program's state
is restored.

Deposit the octal values C2 to Cn in
the locations starting at C 1. DE­
POSIT is used to make small octal
modifications to a liser program. No
more than 10 decimal locations can
be modified by a single DEPOSIT
instruction.

Print the octal contents of location Cl.

Print the contents of Dl locations
starting at Cl.

Print the present status of the user
program. The user's AC, PC, and
LINK are printed. If the processor
includes the extended arithmetic ele­
ment, two additional registers, the SC
and MQ are printed.

The Monitor allows the user to save core images of his pro­
gram on the disk for future use. However, before saving such a
core image, the user must define a disk file in which to save it.

Disk files, like the user's core, are made up of 12-bit words.
Unlike the user's core, which is always 4K in size, a file can be
any s,ize. The unit of disk file storage is the segment; in most in­
stallations a segment is 256 (decimal) words but: can be from

9-169

128 to 1024 words long. Files are at least one segment long
when created and g~ow by appending additional segments to the .
end of the file. In defining a file, the user first creates it, then
extends it to whatever length he needs. To have a whole 4K image
ona system with a. segment size of 256 (decimal) words, a 16
segment file is required. If only part of the contents of the user's
core is to be saved, a correspondingly smaller file can be used.

A file can be created at any time. However, to modify or rede­
fine it in any way, the file must be open. Up to four files can be
open for a user simultaneously. Opening a file connects it to an
internal open file number (0, 1, 2, or 3). Once a file is open,
'it is referenced by this internal file number rather than by its file
name.

CREATING A DISK FILE
The CREATE command defines em area of· disk space and

associates it with the name given in the command line.
The file name can be ohe to six alphanumeric characters of

which the first must be a letter .. Creating a file deletes any exist­
ing file of the same name, unless that file is write protected. When
created, files are always one segment in size. A new file is arbi­
trarily assigned a protection code of 12, meaning that other users
may access it but only the owner may change it. Until it bas been
written, the contents of a newly defined file are undefined.

OPENING AND CLOSING A FILE
To use a file, it must first be 9pened with the OPEN command.

A file can be opened on any of four internal file numbers: 0, 1,
2, or 3. A user can have up to four files open at a time. If a file
is open on an internal file number for which a file is already open,
that file is first closed. For example:

.CREATE An

.Op·F:--J 1 AB

AB is now an open file and can be referenced as file 1.
An open file can be closed at any time by means of the CLOSE

command. Once closed, a file cannot be accessed in any way until
it is reopened. It is possible to close more than one file with a

. single command. For example:

9-170

.CLOSE: (3 1 2 3

EXTENDING, REDUCING, AND RENAMING
A DISK FILE

'When created, a file is one segment long. If a larger file is
needed, the original file can be extended. For example, the com­
mand:

.. EXTENU Cl Dl

extends the file presently open on internal file Cl by Dl segments.
Extending a file adds one or more segments to the end of that file.
The contents of the old part of the file are not changed. Until
written, the contents of the newly added, segments are unspecified.
An existing file may be reduced in size by means of the REDUCE
command. For example, the command:

.. RE:UUCr.: C 1 Dl

reduces the file presently open on internal file Cl by Dl seg­
ments. Reducing a file deletes the number of segments indicated
from the end of the file. The contents of remaining segments of
the file are unchanged. If a file is reduced to zero segments, or if
D 1 is greater than the number of segments in the 'file, it is deleted
entirely. An example of the creation and deletion of a 4K file:

• CREATE FOURK
• OPEN 3 FOUHK
.' EXTEND 3 1 5
.REDUCE :3 16

Existing opened files can be renamed. Renaming a file does not
c:hange its contents in any way. For example, the command:

.RENAME,Cl 51

-
renames as S 1 the file open on internal file number C 1.

PROTECTION CODES
The user can protect his files against unauthorized ac£ess. He

.canalso specify the extent of -access certain other users can have

9-171

to his files. For example, a user's associates can be permitted to
look at the data of certain files but not permitted to alter that data.

When it is created, a file is assigned a protection code of 12. This
protection code is defim~d below and can be changed (see Storage
Allocation), but only by the owner of that file. For example, the
command:

.PROTECT Cl C2

gives the protection code C2 to the file open on internal file num­
ber Cl.

The protection code is actually a 5-bit mask. Each bit specifies
a unique level of protection. (See the PROTECT lOT command
for the meaning of each bit.)

File protection masks (C2) are assigned as follows:

1 Read protect against users whose project number differs
from owner's.

2 Write protect against users whose project number differs
from ownet;'s.

4 Read protect against users whose project number is same
as owner's.

10 Write protect against users whose project number is same
as owner's.

,20 Write protect against owner. To change the program the
owner must change the protect code.

Protection codes are determined as the unique sum of any of
the above codes. Some of the more common protection codes are
as follows:

Command

PROTECT 1 12

PROTECT'1 17

PROTECT 1 37

Explanation

Allow other users to access the
file but not change it.

Allow only the file owner to read
the file. He can also change it.

Allow only the file owner to read
the file. He cannot, however,
change it. (To change it, he
must first change the protection.)

9-172

Code

.PROTECT 1 0

Explanation

Allow other users to access the
file and change it.

Finally, .. the user can ask what file is open on a given internal
fik number by means of the F (File information) command. For
example, the command:

-,F' C 1

prints the following information about the file presently open on
an internal file C 1 :

a. Account number of file owner.
b. Name of file.
c. Protection code.
d. Size of file in segments (decimal).

For example:

• F 1
0010 TYPE 0012 2

ERROR CONDITIONS
There are a number of error conditions which prevent the ex-.

ecution of the file definition commands (as previously described).
One of the following error messages is printed by Monitor if an
error condition is detected:

Message Explanation

FILE NOT OPEN An EXTEND, REDUCE, PRO­
TECT, or RENAME command
has been issued for an internal
file number for which no file is
open.

PROTECTION
VIOLATION

An attempt has been made to
change a file which is write pro­
tected against the user.

9-173

Message

FILE IN USE

DIRECTORY
FULL

FILE NOT
FOUND

FAILEDBYn
SEGMENTS

Explanation

An EXTEND, REDUCE, PRO­
TECT, or RENAME command
has been issued for a file .which
is in use elsewhere by another
user. Because changing a file
which is being used (i.e., has
been opened) could disrupt an­
other user'& work, under these
conditions such a change is pro­
hibited.

A CREATE command· has been
issued, but the user's directory is
full. He can delete any of his
files to make room for the new
file.

the user has attemped to OPEN
a nonexistent file.

The user has attempted to extend
a file, but the system has run out
of disk segments. The number
of segments requested, but not
available, is printed.

Saving and Restoring User Programs
Once a file has been defined, the user can save all or any part

of his Jlser core in the file. Files and user core are addressed in
the same way, by 12-bit words. The user can transfer his file into
any part of core.

The SAVE command requires one to five parameters.· The
name of the file to be written into must always be given. If the
file is not in the user's own library, the appropriate account
number is entered before the file name. (Writing into a file owned
by another user is subject to file protection.) In either case, the

9-174

parameters are separated by spaces. The SAVE command writes
the indicated section of core out into the indicated file.

H no parameters follow the file name, Monitor starts at loca­
tion zero of the user's core and saves it in location zero of the
disk file. It continues to write core locations into the disk file until:
(a) it has written the whole 4 K or (b) it has filled the file. Either
condition completes the SAVE.

The user can further define his SAVE command by indicating
parts of core to be saved in specific parts of the disk file. He does
this by typing one to three parameters following the file name. The
first parameter following the file name indicates a specific disk file
address at which to begin writing. The second parameter following
the file name indicates a specific core address at which to ter­
minate the transfer. If only the first two parameters are typed, the
transfer terminates when either the end of core or the end of file
is reached.

Command

SAVE SI
SAVE Cl SI

Explanation

Assuming that a disk file S 1
exists, and th~tit is not write pro­
tected, the contents of core are
saved in S 1. In the first case, S 1 is
assumed to be in the library of the
user giving the command. In the
second case, it is assumed to be in
the library of the user whose ac­
count number is Cl.

SAVE Cl C2 C3 C4 Localions C3 to C4 (inclusive)
are saved in file SI starting at disk
file location C2. SI is assumed to
be in the user's own library. If S1
is preceded by the parameter C 1 ,
it IS assumed to be in the library
of the user whose account number
is Ct.

Once a core image has been saved in a disk file, it can be re­
stored to core by means of the LOAD command. It should be
noted that the Monitor command LOAD is very different from

9-175

the System Library Program LOADER. LOADER loads a BIN
format file (created by PAL-D) into the user's core. LOAD loads
a SAVE format file (created by a previous SAVE command) into -
core.

The LOAD command requires from one to five parameters. The
name of the- file to be loaded must always be given. If the file is in
the user's own library, this file name is typed after the SAVE
command itself. If it is in another user's library, his account num­
ber is entered before the file name. (Reading another user's file
is subject to file protection.) In either case, the parameters are
separated by spaces.

Command

LOAD

LOAD SI
LOAD Cl SI

Explanation

Read the indicated section of a
disk file into the indicated section'
of core.

Assuming that a disk file SI exists,
and that it is not read protected,
_ the contents of the file S 1 are
loaded into core. In the first case
S 1 is assumed to be in the library
of the user giving the command.
In the second case, it is assumed
to be in 'the • library of the user
whose accounJ number is D 1.

The user can further define his LOAD command by using the
same optional parameters discussed in the section on the SAVE
command.

Command

LOAD SI C2 C3 C4

LOAD NEWF 5 10 17

Explanation

Locations C3 to C4 (inclusive) are
loaded from file SI starting at file
location C2.

Words 5 to 14 (inclusive) of the file
named NEWF are loaded into loca­
tions 10 to 17 of the user's core.

9-176

It is not necessary to open a file before using it in a LOAD or
SAVE command. Both commands automatically open the spec­
ified file on internal file number 3 before performing the transfer.
After completion of the command, the file remains open on file
number 3.

A special macro-command, RUN, exists to allow a program to
be loaded and started all in one command.

Command

RUNS1
RUN Cl S1

Explanation

Load file S 1 into core from the
disk and start execution af loca­
tion O.
In the first example, file S 1 is as­
sumed to be in the user's own
library. In the second, it is as­
sumed to be in the library of the
user whose account number is C1.
RUN S 1 is exactly equivalent to
LOAD S1; START O. RUN Cl
SI is exactly equivalent to LOAD
Cl S1; START O.

The R command (see the section EduSystem 50 Monitor) is a
special case of the RUN command. For example, the command:

.R 51

loads file S1 from the System Library (account number 2) and
starts at location O. R SI is exactly equivalent to RUN 2 S1.

Utility Commands
The Monitor provides a number of special purpose commands

to aid in program development and use. The Monitor utility com­
mands are summarized in Table 9-22.

9-177

Table 9-22. Monitor Utility Commands

Command Explanation

USER

USER Cl

SWITCH Cl

BREAK

BREAK C]

DUPLEX

Print the number of the job connected with this
user and the console number of the job.

Print the console numbers of job C 1.

Set the user's switch register to Cl. Monitor
maintains a switch register for each user. When
his program executes on OSR (OR the switch
register into the AC) this value is the one which
is loaded.

Print the current value of the user's delimiter
mask.

Set the user's delimiter mask to C 1. (The use
of the delimiter mask is discussed in the chapter
on assembly language programming.

Place the user's Teletype in duplex mode. All
characters typed at the keyboard are automati­
cally printed as they are entered.

UNDUPLEX Take the user's Teletype out of duplex mode.
Input characters are received by the Monitor
and by the user program without their being
printed at the console.

RESTART Cl Set the user program restart address to Cl. If
CTRLI C is typed at the keyboard, Monitor
forces a jump to location Cl in the user's pro­
gram.

VERSION Print the version of the Monitor being used.

9-178

WRITING ASSEMBLY LANGUAGE PROGRAMS
Introduction

In addition to tlIe higher-level programming languages available
in the EduSystem 50 library, the user can also code and run pro­
grams written in the PDP-8 assembly language, PAL-D (Program
Assembly Language). These programs are prepared with EDIT,
assembled with P AL-D, then loaded with LOADER. For those
users unfamiliar with assembly language programs, Introduction to
Programming 1972 is a useful guide.

A user can program EduSystem 50 just as he would any other
4K PDP-8. (Assembly language programs must fit in 4K of core.)
All memory reference instructions (AND, TAD, ISZ, DCA, JMS,
and JMP) function as on a stand-alone PDP-8. All operate instruc­
tions (instruction code 7) also function as on a regular PDP-8
(except that microcoding HL T or OSR with any other operate
instruction but CLA gives unpredictable results).

The major difference between EduSystem 50 programming and
regular PDP-8 programming is in the lOT (input/output transfer)
instructions. Some instructions which are valid on stand-alone
PDP-8s, such as CDF, CIF, ION, IOF are considered illegal in­
structions under timesharing. There are a great many new lOTs
within EduSystem 50 that are not valid on a regular PDP-8. Fi­
nally, there are lOTs which operate on EduSystem 50 in the same
manner as on stand-alone PDP-8s. (Table 9-24 is a summary of
EduSystem 50 lOT Instructions.)

The way EduSystem 50 actually executes an lOT instruction is
also different. Non-lOT instructions (except HLT and OSR) are
executed by the hardware, while lOTs (and HLT and OSR) are
executed. by the EduSystem 50 Monitor.

In general, EduSystem 50 provides the programming capabilities
of a 4K PDP-8 and allows programs of consideral?ly greater com­
plexity to be run within the constraints of each user's 4K of core.
System Library Programs, all of which were written in assembly
language and make use of the EduSystem 50 lOTs dealt with be­
low, are examples of programs which can be run on EduSystem 50.

9-179

Console I/O
User programs handle console (Teletype) I/O in almost the

same way as stand-alone PDP-8 programs. Tlie KRB instruction
is ~sed to input a character, the TLS instruction to output a char­
acter. The KSF and TSF (followed by JMP. -1) can be used but
are not needed. Monitor handles all timing problems whether these
skip lOTs are present or not.

EduSystem 50 differs from the stand-alone PDP-8 in that under
EduSystem 50 the user program interacts with multi-character in­
put and output buffers (maintained by Monitor) rather than with
single character registers. Depending on the state of the system,
these buffers may have one, many, or no characters in them. During
normal program execution, this fact is of no consequence. User
programs still send and receive characters one at a time. There are
times, however, when it is useful to clear out any and all characters
in the buffers; a special lOT exists for this purpose (SBC).

On a stand-alone system, characters are input as soon as they
are typed, whether they are of immediate interest or not. Usually,
these characters are stored by the program until a terminating (or
delimiting) character is found. At this time, the whole line of char­
acters is processed. On a swapping, time-sharing. system such as
EduSystem 50, this mode of operation is wasteful. It is far more
efficient to allow input characters to accumulate in the Monitor
input buffer until a delimiter is fouOd. There is an lOt to specify
which characters are to be considered delimiters (KSB).

EduSystem 50 also allows programs to input and output strings
of characters. The read string (KSR) and send string (SAS) in­
structions provide a convenient and efficient means of doing lengthy
transfers.

All keyboard input uses full-duplexed hardware; there is no
wired connection between the keyboard and printer (Le., characters
are not printed on the console as typed). Input characters are
echoed to' the console under program control rather than by hard­
ware. Because input characters are allowed to accumulate in buffers
before being pass~d to the user program, it is important to have
Monitor perform the echoing rather than user programs. There is
an lOT (DUP) to .set up this automatic echoing as well as an lOT
(UND) to inhibit echoing for such operations as reading tapes.

9-180

Read Keyboard Buffer (KRB) Octal Code: 6036

Operation: Read the next input character into bits 4-11 of the AC.

Load Teleprinter Sequence (TLS) Octal Code: 6046

Operation: The ASCII character in AC bits 4-11 is printed on the
user's console.

Skip on Keyboard Flag (KSF) Octal Code: 6031

Operation: The next instruction is skipped if there is a delimiter
character in the user's input buffer.

Read Keyboard String (KSR) Octal Code: 6030

Operation: Execution of this instruction initiates a transfer of one
or more characters from th~ user's keyboard to a designated core
area. Before executing KSR, load the AC with the address of a
two-word block, where:

Word 1: negative of the number of characters to be trans­
ferred.

Word 2: address of the core area into which characters are to
be placed minus one.

The transfer is terminated when either:

a. the indicated number of characters have been input or
b. a dclimiter is seen. At the end of the transfer, the word count

and core address are updated and the AC is cleared.

Send A String (SAS) Octal Code: 6040

Operation: Before executing an SAS, load the AC with the address
of a two-word block, where:

Word 1: contains the negative of the number of characters to
be sent.

Word 2: contains the address -1 of the first word of the string.

The characters are stored one per word right justified starting at
the address specified by word 2. Upon execution of SAS, the system
takes only as many characters as will fit in the output buffer. It
then makes the appropriate adjustment to word 2 to indicate a new

9-181

starting address and to word 1 to indicate the reduced character
count; it returns to the instruction following the SAS. If the char­
acter count is reduced to zero, the instruction following SAS is
skipped. The instruction following the SAS should contain a JMP
. - 2 to continue the block transfer of Teletype characters. The
AC is clearly by SAS.

Set Keyboard Break (KSB) Octal Code: 6400

Operation: Rather than activate a user's prog~am to receive each
character as it is typed, EduSystem 50 accumulates input charac­
ters until a certain character, or characters, is seen. To tell the
Monitor which characters to look for (these characters are referred
to as delimiters), load the AC with a 12-bit mask before executing
a KSB. For each bit in the mask which is set, Monitor considers
the corresponding character or characters to be delimiters.

Bit Specifies

o 0 = check rest of mask
1 = any character is break.

1 301-332 (alIletters)
2 260..,271 (all numbers)
3 211 (Horizontal tab)
4 212-215 (line feed, vertical tab, form feed,

RETURN)
5 241-273 (! " # $ % & I () * + , - . / : ;)
6 240 (space)
7 274-300 « = >? @)
8 333-337 ([/ Jt ~)
9 377 (RUBOUT)

10 375 (ALT MODE)
11 anything not in bits 1-10

Duplex (DUP) Octal Code: 6402

Operation: DU£> informs Monitor that the user wishes each char­
acter typed at the console to be echoed on that console's printer as
it is received by Monitor. The DUP instruction does not affect the
user's registers.

9-182

Unduplex (UND) Octal Code: 6403

Operation: . UND informs Monitor that the user wishes to suppress
character echoing. This can be done for reasons of privacy or be­
cause'a program does its own character echoing. The user's registers
are unaffected by UND.

Set Buffer Control (SBC) Octal Code: 6401

Operation: SBC permits the user program to clear its Teletype in­
put and/or output buffer. Before executing SBC set bits 0 and 1
of the AC as indicated below:

Bit 0
Bit 1

Clear output buffer.
Clear input buffer.

Files and Disk 1/0
All user programs can gain access to disk storage: The time­

sharing Monitor maintains a pool of available disk space which is
allo~ated in units referred to as segments. (The size of. a disk seg­
ment varies among installations. Segm.ents may be 128, 256, 521,
or 1024 words each.) These segments are used to make up user
files on the disk. Monitor also maintains, for each user, a directory
of all files which he has defined.

The lOTs which allow the user to access the disk are of two
types: those which define files on the disk and those which transfer
data between a defined file and the user's core.

NOTE
CREATE and OPEN require that a user
set up a file name in core. FINF and WHO
return file names to core. Each must be
specified in internal code (excess 40 code)
as shown in Table 9-23. Characters are
packed two to a word.

The first step in defining a file is to create it. Creating a file re­
serves a single segment of disk storage and associates it with a
name. This file can then be extended to any length desired. Ex­
tending a file appends more segments to it. Similarly, a file can be
reduced by any number of segments. Reducing a file removes th.e

9-183

last segment or segments from the file. Reducing a file to zero seg­
ments deletes it entirely. Once created, a file can be protected,
thereby restricting access to it. When created, a file can be read by
any user, but only the creator can write in it. This protection can
be reset if desired. Finally, it is possible to rename an existing file.

None of these actions affect the contents of the file-they only
reserve space on the disk Until it has been written in, the actual
content of a file is unspecified. Extending a file does not alter the
content of the file as it previously existed. Once defined, files can
be used to read and write data. Any number of words (1 to 4096)
can be moved from any p'art of the user's core to any part of a file
(subject to file protection). The user program specifies a location
in core and a word count. This indicates how many words are to
be transferred and from (or to) where in core they are to be
moved. Also specified is a disk file address indicating what part of
the file is involved. This address is the address of a word in the
file. Files are addressed in the same manner as core: in 12-bit
words. -Unlike core, however, files can be longer than 4K. To ad­
dress these files provision is made for a 24-bit disk file address,
containing the high-order and lpw-order file addresses.

File addresses are independent of any consideration of segments.
The file address is meaningfuJ only in defining files. Files can be
read and written across segment boundaries without restriction.
(The user cannot read or write beyond the last segment boundary.)

When it exec'utes a file read or write lOT, the system updates the
core address and word count and places an error code in the error
word (see RFILE) if any error is detected. (The error word must
be cleared before execu'ting the lOT.) At the end of a successful
transfer, the word count is set to zero and the ,core address set to
the last word transferred. If the transfer cannot be completed for
some reason, the word count and core address indicate how much
of the transfer was successful; the error word indicates the cause of
the failure. All file operations except CREATE (and OPEN) re­
quire that the file be open. Up to four files can be open at a time.
The process of opening a file associates it with one of four internal
file numbers '(0, 1,2, or 3). All file lOTs except CREATE and
OPEN, are specified in terms of one of these internal file numbers,
rather than a fiJe name. lOTs operate on the file which is indicated
by that internal file number at the time. It is therefore possible to

9-184

write file handling programs which are independent of the actual
file (s) they operate on. '

File lOTs, that are successfully completed, return with the AC
cleared. If an error was found which prohibited execution of the
lOT, one of the following error codes is returned:

Code Explanation

4000 There was no file opened on the specified in­
ternal file number.

4400 Attempting to redefine a file which is open to
another user.

5000 Attempting to create a tIle for a user whose
directory is full.

6000 File protection violation.

6400 I nvalid file name.

7000 Attempting to open a nonexistent file.

7400 Disk is full.

Create a File (CRF) Octal Code: 6610

Operation: The user can request the system to create a new file' of
one segment. The user program provides the new name for the file.
Load the AC with the beginning address of a 3-word block, where:

Words 1 through 3: contain the 6-character name.

If there is some reason why the request cannot be granted, the
system will return a non-zero error code in the AC. The protection
code of a newly created file is 12. '

Extend A File (EXT) Octal Code: 661 1

Operation: To extend the length of an existing tlle, that file must
be currently open. Load the AC with the beginning address of a
2-word block, where:

Word I: contains the internal file number of the file to be ex­
tended.

9-185

Word 2: contains the number of segments the system should
append to the file.

If for some reason the request to exte~d a file cannot be granted,
the AC will contain 4000, 4400, 6000, or the number of segrrients
it failed to append.

Reduce A File (RED) Octal Code: 6612

Operation: To reduce the length of an existing file, that file must
be currently open. Load the AC with the beginning address of a
2-word block, where:

Word 1: contains the internal file number of the file to be
reduced.

Word 2: contains the number of segments to be removed.

This request is granted unless !he file to be reduced is currently
opened to another user or if the file is write protected against the
user.

Rename A File (REN) Octal Code: 6600

Operation: REN is used to change the name of a ,file. Load the
AC with the address of a 4-word block where:

Word 1: contains the internal file number associated with
the file whose name is to be· changed.

Words 2-4: contains the new name. This name IS III 6-bit
characters packed two in a word.

Protect A File (PROT) Octal Code: 6604

'. Operation: The owner of a file can protect his file from unauthor­
ized attempts to access it by uSing this instruction. Before. executing
PROT, load theAC with:

Bits 5 and 6 Internal file number ,of the reserved file to be
protecteQ.

Bit 7

Bit 8

Write protect against owner.

Write protect against users whose project num­
ber is same as owner's.

9-186

Bit 9

Bit 10

Bit 11

Read protect against users whose project number
is same as owner's.

Write protect against users whose project num­
ber differs from owner's.

Read protect against users whose project number
differs from owner's.

A file must be opened before it can be protected. PROT is legal
only when performed by the file owner, i.e., the user who created
the file. All attempts to access the file which violate any of the pro­
tection flags are considered illegal. (For further information on
project numbers, see the section on Storage Allocation.)

Open A File (OPEN) Octal Code: 6601

Operation: OPEN is used to associate a file with an internal file
number, which is necessary because all file operations are in terms
of the internal file numbers. Before executing the OPEN lOT, load
the AC with the beginning address of a 5-word block, where:

Word 1:

Word 2:

contains the internal file number.

contains the account number of the owner of the
file. If 0, the account number of the current user
is specified.

Word 3-5: contain the name of the file to be opened. This
name is in 6-bit characters packed two to a word.

If there was another file associated with the internal file number
before the execution of the OPEN lOT, it is closed automatically
before the new file is associated with the internal file number.

Close A File (CLOS) Octal Code: 6602

Operation: CLOS terminates the association between files and their
internal file numbers. Before executing ci..os, load the AC with a
selection pattern for the internal file numbers whose associated
files are to be closed. The file is closed if bit I is 1, where I = bit 0,
1, 2, or 3.

9-187

READ File (RFILE) and Write File (WFILE) Octal Code:
6603 & 6605

Operation: Once the association of a file with an internal file num­
ber has been made, these lOTs allow the actual file reference to be
made. They are illegal on a file that has not been opened (asso­
ciated with ail internal file number).
To read or write a file, load the .AC with the address of a6-word
block, then execute the lOT. The format for the 6-word block is:

Word 1: contains the high-order file word address.

Word 2: contains the internal file number.

Word 3: contains the negative of the number of words for the
operation. This number is either the number of
words to be read or the number of words to be
written.

Word 4: contains a pointer to the beginning address -1 of a
buffer located in the user program. On a read oper­
ation this buffer receives the information from the
file: on a write operation this buffer holds the infor­
mation that is to be sent to the file;

Word 5: contains the least significant 12 bits of the initial file
word address to begin the operation.

Word 6: contains an error code:
o if no error
1 if parity error
2 if file shorter than word count
3 if file not open
4 if protection violated

The read or write .begins at the word specified by. words 1 and 5.
For example:

TAD x
WFILE

x., .+1
(II

1
-200
6477
200

9-188

means: write 200 (octal) words starting at word 200 of the file
that is associated with internal file number one from a core area
starting at location 6500.
After completion of the transfer, the word count (word 3) and
core address (word 4) are updated. If an error was detected the
appropriate error code is placed in word 6.

File Information (FINF) Octal Code: 6613

Operation: FINF enables a user program to determine what file,
if any, is associated with an internal file number. Load the AC with
the beginning address of a 7 -word block, where:

Word 1:

Words 2
through 7:

Word 2:

contains the internal file number for which the
user program wishes information.

contain the information that the system returns
after executing FINF.

contains the account number of the owner or zero
if no file is associated with the internal file number,
that is, the file is not open.

Words 3-5: contains the name of the file in 6-bit code.

Word 6:

Word 7:

contains:

Bit 1 Means

7 write protected against owner

8 write protected against users whose
project number is same as owner's

9 read protected against users whose
project number is same as owner's

10 write protected against users whose
project number differs from owner's

11 read protected against users. whose
project number differs from owner's

contains the number of segments which compose
the file.

9-189

Assignable Devices
. Users can access bqth their own Teletype and the disk; with the

remaining system devices (referred to _ as the assignable devices)
this is not true. One function of the Monitor is to ensure that de­
vice usage never conflicts. Only one user at a time can access the
high-speed paper-tape reader or punch, or anyone of the DEC­
tapes. To ensure that only one user can access a device, EduSystem
50 requires that the device be assigned before it is used. After a
device is assigned, it is not available until it is released by its owner.

Once assigned, the device is programmed exactly as on a stand­
alone PDP-8. The RRB instruction is used to read a character from
the high-speed reader; the PLS instruction is used to punch one on
the high ... speed punch. The skip lOTs (RFS and PSF) can be used
(followed by JMP .-1) but are not necessary. For block transfers,
there are two string transfer commands: RRS and PST.

The DEC tape instructions have been simplified. A single instruc­
tion, DTXA, initiates the transfer of a block of data. The DTRB
instruction is then used to determine if the transfer was successful.
The skip instruction, DTSF, can be used (followed by JMP .-1)
but is not necessary.

Executing any of the assignable device lOTs without first as­
signing the device gives the following results: (a) If the device is
assigned to another user, the instruction is considered illegal; pro­
gram execution is now terminated and an error message printed;
(b) If the device is available it is automatically assigned before
execution of the lOT. Th(~ device then belongs to this user until he
releases it.

Because these devices are shared by all users, the Monitor must
ensure that they are operable at all times. In particular, the Monitor
must ensure that a user is not waiting for a device which is not
available. This situation can arise when trying to use the punch
when it is turned off, or when the reader has read off the end of a
tape. All these conditions, known as "hung devices" are considered
to be system errors. If the program doing the transfer has been en­
abled for system errors (by executing an SEA), control transfers
to the error routine indicated which must clear the error flag in the
status word before continuing (See Program and System Status).
If the user program has not been enabled for system errors, a hung
device causes the program to be terminated and an error message
is printed.

9-190

Assign Device (ASD) Octal Code: 6440

Operation: If the device specified by the content of the AC is
available, it is. assigned to the user program and the AC is cleared.
Otherwise, the number of the job owning the device is placed in
the AC. If the device does not exist, 7777 is returned in the AC.

4000
4001
4005 + N

Paper-tape reader
Paper-tape punch
DECtape unit N

The assignment is in effect until a corresponding REL instruction
or LOGOUT.

Release Device (REL) Octal Code: 6442

Operation: The device specified by the contents of the AC is re­
leased (providing it was owned by the user executing the REL).
The AC is cleared. Releasing a device makes it available to other
users.

Skip on Reader Flag (RSF) Octal Code: 6011

Event Time: 1

Operation: The reader flag is sensed, and if it contains a binary 1,
the contents of the PC are incremented by one so that the next .se­
quential instruction is skipped. The reader flag is bit 8 of status .
register 1, and has a value of 1 if the reader buffer is not empty.

Read Reader Buffer (RRB)

Event Time: 2

Octal Codes: 6012 &

6016

Operation: The contents of the reader buffer are transferred into
bits 4 through 11 of the AC and the reader flag is cleared if the
reader buffer is empty. This instruction does not clear the AC. If
the reader buffer is empty, the user program is dismissed until the
reader flag is 1 or an end-of-tape condition is detected.

9-191

Table 9·23. EduSystem 50 Internal Character Set

6-Bit14 8-Bit 6-Bit14 8-Bit
Character Octal Octal Character Octal Octal

Space 06 240 @ 40 300
! 01 241 A 41 301
" 02 242 B 42 302
03 243 C 43 303
$ 04 244 D 44 304
% 05 245 E 45 305
& 06 246 F 46 306

07 247 G 47 ' 307
(10 250 H 50 310
) 11 251 I 51 311 -
* 12 252 J 52 312
+ 13 253 K 53 313

14 254 L 54 314
15 255 M 55 315
16 256 N 56 316

I 17 257 0 57 317
0 20 260 P 60 320
1 21 261 Q 61 321
2 22 262 R 62 322
3 23 263 S 63 323
4 24 264 T 64 324
5 25 265 U 65 325
6 26 266 V 66 326
7' 27 267 W 67 327
8 30 270 X 70 330
9 31 271 Y 71 331

32 272 Z 72 332
33' 273 [73 333

< 34 274 '" 74 334
35 275] 75 335

> 36 276 t 76 336
? 37 277 ~ 77 337

14 The 6-bit octal code is used to store passwords and file names only_

9-192

Reader Fetch Charact.er (RFC) Octal Code: 6014 .

Event Time: 3

Operation: The reader flag and the Monitor reader buffer are both
cleared, the reader is started to fill the Monitor reader buffer and
the reader flag is set after the buffer is full or the end of tape is
detected.

Read Reader String (RRS) Octal Code: 601.0

Operation: This instruction initiates a transfer from the high-spe(!d
reader to a selected area in the user's core. Before executing RRS,
load the AC with the address of a 2-word block, where:

Word 1: minus the number of characters to be transferred.

Word 2: the address of the user core area minus one.

The transfer is terminated by either of two conditions: (a) the
word count is zero indicating that the required number of char­
acters have been read or (b) the reader has read off the end of the
tape (a system error condition). In either case, the word count and
core address are updated. RRS clears the AC.

Load Punch Buffer Se:quence (PLS) Octal Code: 6026

Operation: The ASCII character is in AC bits 4 through 11 and
is transmitted to the high-speed punch. PLS does not clear the
accumulator.

Skip on Punch Flag (PSF) Octal Code: 6021

Event Time: 1

Operation: The punch flag is sensed, and if it contains a binary 1,
the contents of the PC is incremented by one so that the next se­
quential instruction is skipped. The punch flag is bit 9 of status
register 1, and has a value of 1 if the punch buffer is not full. If
the punch flag is 0, the program is dismissed until the punch flag
is 1.

~9-193

Punch String (PST)' Octal Code ': 6020

Operation: PST allows a user program to punch a string of char­
acters. Before executing PST, load the AC with the beginning ad­
dress of a 2-word block, where:

Word 1: contains the negative of the number of characters to
be punched.

Word 2: contains the beginning address -1 of the string to be
punched; the characters should be right justified one
per word.

After execution of PST, the system takes only as many characters
as fit in the punch buffer; it then makes the appropriate adjustment
to word 2 to indicate a new starting address and to word 1 to .in­
dicate the reduced character count. It returns to the instruction
following the PST which should be a JMP . - 2 to continue the
transfer. If the character count is reduced to zero, the instruction
following PST is skipped. The AC is cleared by PST.

Load Status Register A (DTXA) Octal Code: 6764

Operation: DTXA allows a user program to read and write records
(129-wordblocks) on DECtape. Load the AC with the beginning
address of a 3-word block, where:

Word 1: contains:

Bit 1 Means

0-2 contains the transport unit select number,

3-5 0,

6-8 ~ 2 for read data function,

4 for write data function,

9-11 O.

Word 2: '. contains the DECtape blo'ck number.

Word 3: contains the beginning core address -1 of record
buffer.

9-194

After DTXA is given, the DECtape request is placed in the DEC­
tape request queue. After the completion of any DECtape request,
the DECtape flag in status register 2 is turned on. DTXA does not
update word 3. The AC is cleared by DTXA.

Skip on Flags (D~SF) Octal Code: 6771

Operation: The content of both the error flag and the DECtape
flag is sampled, and if either flag contains a binary 1, the content
of the PC is incremented by one to skip the next sequential instruc­
tion. If both flags are zero, the user program is dismissed until the
skip is satisfied.

Read Status Register B (DTRB) Octal Code: 6772

Operation: The content of DECtape status register B is loaded
into the AC by an OR transfer. The AC bit assignments are:

Bit Assignment

o error flag
1 mark track error
2 end of tape
3 select error
4 parity error
5 timing error
6-10 unused
11 DECtape flag

Program Control
There are a number of ways thatthe status of a running program

can be changed. The program can be terminated in one of three
ways: by execution of a HLT, by the user typing tBS to force a
program halt, or by a program error which forces Monitor to ter­
minate the program after printing an error message.

It is also possible for the status of a running program to change
without it being terminated. First, the user program can request
that it handle its own program error conditions. In this case, Mon­
itor does not terminate a job on an error; instead, it transfers con­
trol to a user error handler. This error handler then determines
what the error was, by a CKS instruction and takes appropriate
action. Monitor also provides the program with an interrupt key,
tC. If the user types a tC, the Monitor unconditionally transfers

9-195

control to. a restart address. Thus, the user program can handle its
own restarts.

Halt (HLT) Octal Code: 7402

Operation: This instruction is used to stop the user program and
. return control to Monitor. Executing HLT is equivalent to typing
tBS followed by RETURN.

Set Restart Address (SRA) Octal Code: 6417

Operation: This instruction allows the user to specify an address
to which control is transferred when an tC is typed on the user's
console. Load the AC with the restart address and execute SRA.
If tC is detected, the program's input and output buffers are
cleared, the AC and Link are cleared and control goes to the re­
start address.

Set Error Address (SEA) Octal Code: 6431

Operation: This instruction allows the user to specify an address
to which control is transferred in the event of a system error. Load
the AC with an address before executing SEA. If a system error is
detected, Monitor simulates a JMS to the error address. The pro­
gram counter is stored in the error address and control transferred
to the error address + 1. AC, Link, and input! output buffers are
not affected. The error code of the system error is in STRO bits
9-11. Bit 10 of STRI is set. The error" routine must read these bits
(by a CKS) to determine the cause of the error, then clear them
by means of a CLS.
The only error code that occurs in the course of normal system
usage is due to a hung device. This error occurs when the user at­
tempts to use a punch not already turned on, access a DECtape
not yet selected, or allows the paper-tape reader to run off the end
of a tape. The error routine must release the device to clear the
error condition. The illegal lOT error probably means that an as­
signable device lOT was executed without the device first being
assigned. Swap and file errors occur if a hardware error is detected
while Moni~or is swapping user program.s or while reading or
writing file directories. These are system malfunctions from which
there is no recovery.

9-196

Program and System Status
Because EduSystem 50 programs run under control of a time­

sharing Monitor, it is important for them to determine their status
within the system and the status of the system as a whole. Several
lOTs, listed below, have been defined for this purpose.

Check Status (CKS) Octal Code: 6200

Monitor maintains for each user a complete set of status informa­
tion, his program's running status and the state of his input/output
devices. This status information, stored in three words, can be ac­
cessed by a running program with the CKS instruction. Before
executing a CKS, load the accumulator (AC) with the address of
a three-word block. Executing CKS stores the three status words
(STRO, STR1, and STR2) in the three-word block and clears the
AC. Information about the status of individual devices can also be
checked by the skip lOTs.
The formats of these registers are:

STRO Bits

o
1

2-4
5
6
7
8

9-11

STR1 Bits

o
1
2
3
4

Run Bit
Error Enable

JSIOT
JSIOTC
JSEXON

Error Code

Timer
File 0
File 1
File 2
File 3

User program is in the run state
Program handles its own errors
Unused
System use only
System use only
System use only
Unused
System detected error condition
1 Illegal lOT
2 Swap read error
3 Swap write error
5 Disk file error
6 Hung device

Time is up
Jnternal file 0 is not busy
Internal file 1 is not busy
Internal file 2 is not busy
Internal file 3 is not busy

9-197

STR1 Bits

5

6
7
8
9

10

11

STR2 Bits

0-8
9

10
11

Delimiter

Teleprinter
Reader
Punch
Error

Wait

DECtape
Error
DEC tape

There is a delimiter in the input
buffer
Unused
Output buffer is not full
Character in reader buffer
Punch buffer is not full
System error detected, code in bits 7
through 11 of STRO
Job is not waiting

Unused
DECtape transfer requested
DECtape error
DECtape flag

Each user has available to him a 12-bit switch register just as he
does on a stand-alone PDP-8. This switch register can be manipu­
lated by means of the Monitor command SWITCH or under pro­
gram control.

OR With Switch Register (OSR) Octal Code: 7404

Operation: The content of the user's switch register is inclusively
ORed into the AC.

Set Switch Register (SSW) Octal Code: 6430

Operation: The content of the AC is stored in the user's switch
register. The AC is cleared. Assembly language programs run
under control of the Monitor. The following lOTs are defined to
allow a program to determine the status of the system as a whole.

Segment Size (SIZE) Octal Code: 6614

Operation: The segment is the basic unit ·of on-line file storage.
Different EduSystem 50's have differing segment sizes. SIZE allows
a program to determine the segment size. The segment size 'is re­
turned in the AC.

9-19g

Segment Count (SEGS) Octal Code: 6406

Operation: The number of available disk segments is returned in
the AC.

Account (ACT) Octal Code: 6617

Operation: The account number (of the job number given) is re­
. turned in the AC. If AC is 0, the account number for the cur­
rent job is returned. If the requested job does not exist, zero is
returned.

Who (WHO) Octal Code: 66-16

Operation: The account number and password of the current job
are returned to the 3-word block whose address is in the AC and

. the AC is cleared.

User (USE) Octal Code: 6421

Operation: Return in the AC the number of the current job.

Console (CON) Octal Code: 6422

Operation: Return in the AC the console unit number assigned to
the job whose numbe! is in the AC, if that console number does
not exist, -1 is returned.

User Run Time (URT) Octal Code: 6411

Operation: Load the AC with the address of a 3-word block,
where word 1 contains the number of the job for which the run
time is sought. ·The run time is returned in the last two locations
of the block. If job ° is specified, the run time of the current job
is returned. The AC is cleared.

Time-of-Day (TOD) Octal Code: 6412

Operation: Returns the value of the System Clock in military
time (using a 24-hour cycle) in the two locations starting at the
location of the addl:ess in the AC. The AC is cleared.

Return Clock Rate (RCR) Octal Code: 6413
.t.

Operation: The number of clock ticks per second is returned in
the AC.

9-199

Octal Code: 6414

Operation: Returns the date in the AC. The format of this 12-bit
number is:

DATE= ((YEAR-1964) * 12+ (MONTH-I)) * 31 + DA Y-l

Skip on EduSystem 50 (TSS) Octal Code: 6420

Operation: This instruction is used by programs which run under
both EduSystem 50 and on a standard PDP-8. Under EduSystem
50, the instruction following TSS is skipped and the Monitor ver-

. sion number is returned in the AC.On a standard PDP-8, the
lOT has the effect of an NOP instruction.

Quantum Synchronization (SYN) Octal Code: 6415

Operation: Upon execution of this instruction, the system dis­
misses the user program and sets it in the run state so that it will
be run again in turn. Ordinarily, this instruction is used to ensure
a full time quantum to perform some critical operation.

Set Time (STM) Octal Code: 6416

Operation: The system provides a clock time for each user pro­
gram. By means of this lOT, the time can be set to "fire" after a
specified number of clock ticks have elapsed. Load the AC with
the time (in seconds) to prime the timer. Upon execution of the
STM instruction, the system sets the time to "fire" in the specified
number of seconds and turns the time bit (bit 0) in status reg­
ister 1 to 0, clears the AC, and dismisses the job. After the speci~
fled time has elapsed, the system turns bit 0 back to 1, and the
job is restarted.

PDP-8 Compatibility
Programming EduSystem 50 in assembly language is very sim­

ilar to programming a stand-alone PDP-8. All instructions except
the lOTs 'operate identically in either case. As discussed pre­
viously, programming such devices as the Teletype and high-speed
reader/punch for EduSystem 50 is somewhat simpler. EduSystem
50 runs programs which include timing loops:. It also properly
executes the JOTs not mentioned in this manual, e.g., TCF, PCF,
etc. Thus,' programs written for stand~alone PDP-8s with Teletype

9-200

and high-speed reader or punch will run on EduSystem 50, al­
though generally not as efficiently as programs which are written
specifically for EduSystem 50.

The same is not true for disk and DECtape operations because
EduSystem 50 uses a simplified programming structure for these
devices. The actual differences in coding are very small. It is a
simple task to adapt previously written code for EduSystem 50 disk
and DECtape.

There are a few standard changes which users generally make
in adapting PDP-8 code to EduSystem 50. Monitor does the
echoing rather than the user program. The TLS which does the
echo can be deleted and a DUP instruction added somewhere
near the start of the program. Also, for efficiency, the EduSystem
50 delimiter capability can be used. A KSB in the program deter­
mines what the delimiters are.

Many PDP-8 programs execute a reader and punch lOT early
in the program, to initialize the device, whether they are actually
to be used or not. If the devices are free, they can be assigned and
thus made unavailable to other users. If they are unavailable, the
program terminates on an illegal lOT. Thus, it is important not to
execute these lOTs randomly. If disk or DECtape is involved, the
actual transfer code must be altered to conform to EduSystem 50.
(The fact that core page 37, locations 7600 through 7777, is
available to EduSystem 50 programs is useful in making these
changes. New code can be placed in the area normally reserved
for the Binary Loader.)

The most difficult code to convert is that code which operates
under interrupt. To be run under Edu~ystem 50, these programs
must be recoded so as not to use the interrupt.

lOTs for nonexistent devices are ignored as are CDFs and CIFs
to field zero. (Other CDFs and CIFs are illegal.) It must be re­
membered that many lOTs have been redefined for use as special
EduSystem 50 instructions. In all other situations, EduSystem 50
remains compatible with stand-alone systems whenever possible.

9-201

Table 9-24. EduSystem 50 lOT Instruction Summary

Number Instruction Function

Program Control
6200 CKS Check Status
6402 DUP Duplex Console
6403 UND Unduplex Console
6405 CLS Clear Status
6411 URT User Run Time
6412 TOD Time of Day
6413 RCR Return Clock Rate ,
6414 DATE Date·
6415 SYN Quantum Synchronization
6416 STM Set Timer

·6417 SRA Set Restart Address
6420 TSS Skip on TSS/8
6421 USE User
6422 CON Console
6430 SSW Set Switch Register
6431 SEA Set Error Address
6440 ASD Assign Device
6442 REL Release Device
7402 HLT Halt
7404 OSR OR With Switch Register

File Control
6406 SEGS Segment Count
6600 REN Rename File
6601 OPEN Open File
6602 CLOS Close File
6603 RFILE Read File
6604 PROT Protect File
6605 WFILE Write File
6610 CRF Create File
6611 EXT Extend File
6612 RED Reduce File
6613 FINF File Information
6614 SIZE Segment Size
6616 WHO Who
6617 ACT Account Number

9-202

Table 9-24 (Cont.). EduSystem 50 lOT Instruction Summary

Number Instruction Function

Input Buffer Control
6030 KSR Read Keyboard String
6031 KSF Skip On Keyboard Flag
6032 KCC Clear Keyboard Flag
6034 KRS Read Keyboard Buffer Static
6036 KRB Read Keyboard Buffer Dynamic
6400 KSB Set Keyboard Break
6401 SBC Set Buffer Control Flags

Output Buffer Conn"ol
6040 SAS Send A String
6041 TSF Skip On Teleprinter Flag
6042 TCF Clear Teleprinter Flag
6044 TPC Load Teleprinter and Print
6046 TLS Load Teleprinter Sequence

High-Speed Paper Tape Reader and Control (Type PC02)
6010 . RRS Read Reader String
6011 RSF Skip On Reader Flag
6012 RRB Read Reader Buffer
6014 RFC Reader Fetch Character

High-Speed Paper Tape Punch and Control (Type PC03)
6020 PST Punch String
6021 PSF Skip On Punch Flag
6022 PCF Clear Punch Flag
6024PPC Load Punch Buffer and Punch Character
6026 PLS Load Punch Buffer Sequence

, DECtape Control (Type TCOl)
6764 DTXA Load Status Register A
6771 DTSF Skip On Flags
6772 DTRB Read Status Register B

9-203

9-204

STORAGE ALLOCATION
Storage Map
The system's storage allocation is illustrated below.

DISK STORAGE

CSI _r~~J~~~~-~I~;:;B 0) (R~~\- ~::J::1 fOB ~ I FI~EJ fJ
~-------MONITOR ~I.. SWAPPING AREA-+-FILE AREA------l

Figure 9-5. EduSystcm 50 Storage Map

File Directories
There are two direCtories on the disk: the Master File Directory

(MFD) referenced mainly by the system, and the User File Direc­
tory (UFO), referenced by the user. One of the functions of the
MFD is to service the UFO. A UFO is a particular user's file
directory containing thc names of programs he has created on the
disk.

The UFO is a file like any other file except that its filename is
the project-programmer number and password. When a user is
logged in under a specific number and references the disk, he is
actually referencing his own file area on the disk through the UFD
which has his project-programmer number as its name. He can
specifically code hiS routine to reference UFDs of other users or
the MFO; whether he is successful or not depends on the type
of protection that has been specified for the area he is trying to
reference.

9-205

MASTER FILE DIRECTORY USER FILE DIRECTORY

WORD 1 PROJECT NO. IPROG. NO. (1 CHAR.) FI LE (1 CHAR.)

(1 CHAR.) PA SS (1 CHAR.) (1 CHAR.) NA ME (1 CHAR.)

(1 CHAR.) WO RD (1 CHAR.) (1 CHAR.) WO RD (1 CHAR.)

LINK TO NEXT ENTRY LINK TO NEXT ENTRY

UNUSED I PROTECTED BITS UNUSED PROTECTED _.' BITS

CONSOLE TIME SEGMENT Co,UNT

CPU TIME DATE OF CREATION

POINTER TO RETRIEVAL WORD 8

(C
0

POINTER TO RETRIEVAL

LINK TO NEXT RETRIEVAL BLOCK.

SEGMENT #1 SEGMENT #1

SEGMENT #2 'SEGMENT #2

SEGMENT #3 SEGMENT #3

SEGMENT #4 SEGMENT #4

SEGMENT #5 SEGMENT #5

SEGMENT #6 SEGMENT #6

·SEGMENT #7 SEGMENT .#7

Figure 9-6. File Directories

Project-Programmer Numbers .
System account numbers are a combination of project number

and programmer number. The account number (always written in
octal) has a binary equivalent. When expressed~s a 12-bit binary
number, the project number is formed by the leftmost 7 bits and
the programmer number is the rightmost 5 bits. For example, the
account number 623 (octal) equals 000 110 010 011 (binary).
The left 7 bits (leading zeros included if any) are 0001100
(binary) and equal 14 (octal) which is the project number. The
programmer number is 10011 (binary) or 23 (octal). Therefore
a user with account number 623 has: project number 14 and pro­
grammer number 23.

9-206

a
character codes

ASCII 1 Character Set

Decimal Decimal
8-Bit 6-Bit Equivalent 8-Bit 6-Bit Equivalent

Character Octal Octal (AI Format) Character Octal Octal (AI Format)

A 301 01 96 241 41 -1952
B 302 02 160 242 42 -1888
C 303 03 224 # 243 43 -1824
D 304 04 288 $ 244 44 -1760
E 305 05 352 % 245 45 -1696
F 306 06 416 & 246 46 -1632
G 307 07 480 247 47 -1568
H 310 10 544 (250 50 -1504
I 311 11 608) 251 51 -1440
J 312 12 672 >I< 252 52 -1376
K 313 13 736 + 253 53 -1312
L 314 14 800 . 254 54 -1248
M 315 1~ 864 255 55 -1J84
N 316 16 928 256 56 -1120
a 317 17 992 / 257 57 -1056
P 320 20 1056 272 72 -352
Q 321 21 1120 273 73 -288
R 322 22 1184 < 274 74 -224
S 323 23 1248 275 75 -160
T 324 24 l312 > 276 76 -96
U 325 25 1376 ? 277 77 -32
V 326 26 1440 @ 300 32
W 327 27 1504 [333 33 1760
X 330 30 1568 "- 334 34 1844
Y 331 31 1632] 335 35 1888
Z 332 32 1696 t(1\)2 336 36 1952
0 260 60 ,-992 ~(_f.l 337 37 2016
1 261 61 -928 Leader/Trailer 200
2 262 62 -864 LINE FEED 212
3 263 63 -800 Carriage RETURN 215
4 264 64 -736 SPACE 240 40 -2016
5 265 65 -672 RUBOUT 377
6 266 66 -608 Blank 000
7 267 -67 -544 BELL 207
8 270 70 ,-480 TAB 211
9 271 71 -416 FORM 214

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Teletypes.

A-I

A-2

a
read .. in mode loadep

The Read-In Mode (RIM) Loader is the first program loaded
into an EduSystem computer.1 This program is loaded by toggling
17 instructions into core memory using the console SWITCH
REGISTER (SR). The RIM Loader instructs the computer to
receive and store, in core, data punched on paper tape in RIM
coded format-primarily the EduSystem system tapes.

There are two RIM Loader programs: one is used when the in­
put is to be from the low-speed (Teletype) paper tape reader; the
other is used when input is to be from the high-speed paper tape
reader. The locations and corresponding instructions for both pro­
grams are listed in Table A-I. The procedure for loading (toggling)
the RIM program into core is illustrated in Figure A-I. The RIM
Loader is loaded into field zero of core.

Table A-t. RIM Loader Programs

INSTRUCTION
Location Low-Speed High-Speed

7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

1 The RIM Loader is not needed if the EduSystem has a hardware boot­
strap.

A-I

LOAD RIM
INTO FIELD 0

Figure A-t. Loading the RIM Loader

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure A-2, which also shows
how to correct an incorrectly stored instruction.

A-2

When loaded, the RIM Loader occupies absolute locations 7756
through 7776. EduSystems do not use the RIM locations; there­
fore, RIM need not be reloaded unless the contents of the RIM
locations have been altered by the user.

Figure A-2. Checking the RIM Loader

A-3

A-4

b
character codes

The ASCIP character codes shown in the following table are
used by EduSystems as the argument in the CHR$ function. For
each ASCII code a second acceptable form is permitted in CHR$.
The second code is obtained by adding 128 to the code given in
the following table. For example, CHR$ would print A in response
to either 65 or 193 as an argument. These codes are also used with
the CHANGE statement in EduSystem 50.

ASCII Code No. ASCII Code No.
Character . (Decimal) Character (Decimal)

linefeed 10
form feed 12

RETURN 13
space 32 @ 64

! 33 A 65
34 B 66

35 C 67
$ 36 D 6R

% 37 E 69
& 38 F 70

39 G 71
(40 H 72
) 41 I 73

'" 42 J 74
+ 43 K 75

44 L 76
45 M 77
46 N 78

J 47 0 79
0 48 P 80
1 49 Q 81
2 50 R 82
3 51 S 83

--"> 4, (~:-S2>-- T 84
5 53 U 85
6 54 V 86
7 55 W 87
8 56 X 88
9 57 y 89

58 Z 90
59 [91

< 60 "- 92
61] 93

> 62 t 94
? 63 <E- 95

1 An abbreviation for American Standard Code for Information
change.

B-1

1nter-

B-2

c
edusystem 50

-monitor' command
summary

MONITOR COMMANDS
A Monitor command is a string of characters terminated by a

'semicolon (;), a colon (:), or a carriage return (RETURN key).
Parameters of commands can be octal numbers, decimal numbers,
character strings, or single letters. In the following summary, pa­
rameters are coded as follows:

Cl, C2, .. .
Dl, D2, .. .
Sl, S2, .. .
Ll, L2, .. .

Logging In and Onf
LOGIN Cl Sl

LOGOUT

TIME Cl

Device Allocation
ASSIGN Ll

represent octal numbers
represent decimal numbers
represent character strings
represent single letters

Request to login:
C I = user's account number
S 1 = user's password

Request to logout: processing and
console time are printed.

Request printout of processing time:
C 1 = job number

Without C I, current job is assumed:
before logging in and without C 1,
time-of-day is typed out; If Cl == job
0, time-of-day is printed.

Access device:
L 1 = R for paper tape reader

P for paper tape punch
D for any DECtape unit
L for line printer

C-I

ASSIGNDC1

RELEASEL1

RELEASEDC1

File Handling
OPEN C1 S1 C2

CLOSE S1

CREATES1

RENAMEC1 S1

REDUCE C1 D1

EXTEND C1 D1

PROTECT C1 C2

Access DECtape unit;
D :::; DECtape
C 1 :::; device number

Release device:
L1 :::; R, P (see ASSIGN L1)

D :::; DECtape unit
C 1 :::; DECtape number

Establish association between internal
file number and file:

C1 :::; internal file number
S 1 :::; file name
C2·:::; account number

Close files:
S 1 :::; list of internal file numbers

Create new file:
S 1 :::; name of new file

Rename a file:
C1· ' internal file number
S 1:::; new name of file

Reduce length of file:
C1 '= internal file'number
D 1 = number of segments to be re­

moved from end of file

Extend length of file: '
C1 :::; internal file number
D 1 = number of segments to be

added to end of file

Protect a file:
C1,= internal file number
C2 = new file protection mask

C-2

1 read protect against users
with different project
number

FC1

Control of User Programs
START C1

START

RESTARTC1

2 write protect against
users with different
project number

4 read protect against users
with same project
number

10 write protect against
users with same project
number

20'write protect against
owner or the sum of any
combination

Print association between internal file
numbers and files:

C 1= internal file number

Execute user program:
C 1= starting location

Restart user program.

Set program restart address.

DEPOSIT C1 C2 ... Cn Store in core memory:

EXAMINE C1 D1

Utility Commands
SAVE Sl
SAVE C1 S1 C2
SAVE C1 S1 C2 C3
SAVE C1 S1 C2 C3 C4

Cl = location
C2 = contents to be stored
Cn = location C 1 +n-1

n ~ 10 decimal

List specified contents:
C 1 .= first location
D1 = number of location to be

listed D 1 ~ 10 decima1

Save core image:
C1 = owner's account number
S 1 = name of file
C2= file address of first word to

be saved; if not specified, en­
tire 4 K is saved

C-3

'LOAD Cl Sl
LOAD Cl Sl C2
LOAD C1 Sl C2 C3
LOAD C1 Sl C2C3 C4

RS1

RUNS1

RUN C1 Sl

S

WHERE

USER

USE.R C1

SWITCHC1

C3 = core address of first word to
be saved; if not specified, en­
tire core is saved

C4 = core address of last word to
be saved; if not specified,
entire core is saved

Load core .image:
C1 = owner's account number
S 1 = name of file

. C2 =. file address of first word to be
loaded; if not specified, entire
4K is loaded

C3 . core address of first word to
be loaded, if not specified,
entire core is loaded

C4 = core address of last word to
be loaded; if not specified,
entire core is loaded

Run system file:
S 1= name of file

Run user file:
S 1 -:- name of file

Run user file:
Cl= owner's account number
S 1 = name of file

Stop execution.

Print contents of location counter, ac­
cumulator, link, and switch register.

Print number of the job and devices
owned.

Print device numbers:
Cl = user's account number

Set switch register:
Cl = word to be set

C-4

BREAKC1

DUPLEX

UNDUPLEX

TALKCl Sl

Set keyboard break mask:
C1 = new mask

Echo typed characters on printer.

Ignore previous DUPLEX command.

Send a message to console C 1 :
C1 = destination console
S1 = message

C-5

C-6

d
OOuJtest

user's guide
INTRODUCTION

EduTest is a system for grading and analyzing test responses.
The EduTest system is designed to run on a minimum configura­
tion of EduSystem 30 or EduSystem 40. EduTest offers two bene­
fits to teachers:

1. Less work in grading tests and analyzing results.
2. Increased information on student performance, question

difficulty, and class response patterns.

TEACHER'S GUIDE
Test Characteristks

Any teacher-made multiple choice test can be scored, analyzed,
and graded with EduTest. The program handles a maximum of
100 questions with a choice of five answers labeled A through E.
Tests in excess of 25 questions are subdivided into parts of 25
questions each.

A, B, C, D, and E are the available choices for each answer.
The types of questions may vary; True-False questions (answers
A and B) and multiple choice questions (using A through E an­
swers) may be intermixed.

EduTest Output
The EduTest System produces a variety of output reports help­

ful in analyzing test results and evaluating a test and its answers.
The standard statistical measures of mean, median, and stan4ard
deviation are automatically calculated and a score distribution
graph printed. A student response matrix indicating each student's
response to each question is produced as well as item and quc~s­
tion analyses which can be used to evaluate the validity of the
questions and the available answers.

EduTest allows a teacher to weight questions so that a correct

D-1

response to some questions is worth more than correct responses
for others. One simple method of weighting is to give each "aver­
age" question a weight of 1, then a weight of 2 means a question
is worth twice the points of an average question. EduTest permits
a user to weight questions with any value and automatically cal­
culates the ratio to a scale of 100.

At user option EduTest also allows grade specification accord­
ing to numeric value and displays the resulting grade distribution.
Grade assignment may be redone until the desired distribution
curve is achieved. At the conclusion of the run, EduTest prints
a list of students by grade achieved.

Teacher. Resppnsihilities
The teacher writes a test of no more than 100 questions .. Be­

cause a maximum of 25 responses can be recorded on a single
answer card, a test in excess of 25 questions., must be divided
into parts, i.e. a maximum of four parts. Each part except the last
must contain 25 questions, e.g., an 80 question test is numbered:

Part I-Questions 1-25
Part 2-Questions 26-50
Part 3-Questions 51-75
Part 4-Questions 76-80

To use EduTest, the teacher must also assign a unique two
digit student number to each member of the class. Student num.,.
ber 00 is reserved for the teacher and is used to identify' the key
cards containing the correct answers.

Key Card Preparation
Key cards are prepared to input the correct answers to EduTest.

To prepare key cards for EduTest:

1. Leave the first Student Number columns blank ..
2. ·Mark the part number corresponding to that part of the

test for which the key is prepared.
3. In the second Student Number columns:

• Place a mark through the EN in the word STUDENT.
• Mark the 6 directly below this EN.
• Mark the 9 in the next column.

4. Mark the correct· answers with a firm vertical mark within
the appropriate· box.

D-2

5. Repeat steps 1 through 4 for the remaining parts of the
test.

The following is a correctly marked key card for Part 1.

Student Answer Cards
Each student answer card may contain a maximum of 25 test

question answers. Cards must be marked in accordance with the
following rules:

.....
(;
z

1. Use a Number 2 pencil
2. Write name and class information on the right end of

the card-STAY BELOW THE QUESTION 25 LINE

RIGHT

eJ~Iffl ~~lIl \,
EI @] El @I) ~ LID =
Ei!l1l!J Iii! [!!J IJEHm .,
EI @] El @I) G;J [:I]

WRONG
--- .
o EJ !!!J @] ~ [!E] rm):

E1@]El~~CID :a
EJ [!!] Ei!!H!!lJE 1%1 .,

NAME EtL~~~ ~tJ ~ ~ INSTRUCTOR ,~ L :
COURSE AuiWJI n OA~J£..i.!L..

3. To mark a box-make a firm vertical mark within the
box.

RIGHl

~m 0[!]~l00
00 ~~~~~
!0~ ~[lI~l[ll~
00 @][£]~[£]@]

4. Mark Student Number in both Student Number columns.,

D-3

5. Mark the .appropriate parf' nu1ri1Se~'box a,t~ordilig"to
which part of the test is being answered:

Questions 1-25 Part 1.
Questions 26.;.50 Part 2
Questions 51-75 Part 3
Questions 76-100 . Part 4

6. Answering the test:

• Cross out all unanswered questions by marking the
corresponding boxes.

NOTE ',.
EduTest r~a9.s~; th~ answer:. c~rd,s i iW blocks
of five questions. This technique necessitates
crossing out any "leftover". questions in a
block. Giving an 18 question test means that
the fourth· block of answers (questions 16,
1 7, 18, 19; and 20) is marked only through
question 18. Students. must be instructed
to cross out questions 19 and 20 .

• Mark only ONE answer for each question.
• Erase. completely 'to change the answer.
• Recheck the answer card to make certain that no col­

umn contains two marks.
7. Repeat the above procedure for each part of th~ test.
8. Male no stray marks or doodling on the card.

A correctly marked card for an 18 question test. is illustrated
below:

i- ell_Ita. will g:ll
liii EDUSYSTEM TEST SCORING ANSWER CARD • •
IlIm [!J 1!1 [!J ill 9 1!3 I!I ~ ~ .[ij II

00 00 00 00 00 00 00 I!J 00 00 1M
!!I !!I ~ 00 00 [ij 00 00 I!I 00 ~
~ ~ lID ID ~ @I @I I!I ~ @ @I
~ @] 00 00 ~ I!I 00 00 I!l @] @]
I!l I!l I!l I!l I!l I!l I!l I!l I!l • • I • • I

MARK ONLY ONE ANSWER PER

D-4'

OPERATING INSTRUCTIONS
Storing EduTest

The 'EduTest programs 'must be permanently stored on your
EduSystem disc or DECtape before the EduTest System can be
run.

The following procedure stores the programs for use and must
be performed only once for each EduSystem.

1. Load EduSystem 30 according to the instructions in
Chapter 7 for EduSystem 30 or Chapter 8 for EduSystem
40.

2. Type: NEW
NEW FILE NAME-EDTEST

3. EduSystem 30 responds with READY.
Read EDTEST paper tape from the reader by typing
TAPE.

4. When reading is complete TTY responds with READY.
Type: PRI

Passford (password does not echo)
5. Type: SAVE

(EDTEST, will be permanently stored on disc or DEC­
tape).

6. Repeat steps 2 through 5 for each of the following pro-
grams:

EDTST2
EDTST3
EDTST4
EDTST5
EDTST6

7. Continue with' the instructions in the section on Operating
EduTest.

Preparing.EduTest Input
Three control cards are required to run·' EduTest. These cards

contain the marks for OLD -EDTEST, LIST, and RUN;
The OLD EDTEST control card is placed before., the student

answer cards; the answer cards are followed by the key cards, and
the LIST and RUN control cards. The student answer :cards may
be in any sequence, i.e., they need not be in order by student
number.

1. A card marked OLD EDTEST.-

2. A card,marked LIST.

3." A card marked RUN.

D-6

, Arrange the control cards in the following order.

(RUI\I

I YOUR KEY CARDS

(STUDENT ANSWER CARDS

OLD EDTEST

1--

I--

f--

Operating EduTest
If the computer is not currently reading cards, do the following:

1. Place a blank card at the front of the desk of control
cards, and place the answer cards and key cards deck in
the card reader:
• Face down
• Top edges toward the front

2. Turn the reader on and press the READY (or START)
button.

3. Turn the switch on the console Teletype to LINE.
4. Hold down the CTRL key and strike C.
5. Strike the RETURN key.
6. Type SCRATCH and strike the RETURN key.
7. The Teletype should respond with READY. (If not, re­

peat steps 3 through 6.)
8. Type BATCH and strike the RETURN key.

,After the computer reads the deck of cards, it prints:

OLD EDTEST, and then
LIST

D-7

The computer then prints listing of the key, cards and the stu­
dent answer cards. (The 'program considers such input cards as
data.) After all the DATA statements have been printed (State..;
ment #292, in the sample on page 16 is the last one),. type
CTRL/C.

The computer types:

RUN

," after reading the last control cards.

Console Messages and Responses_
If EduTest detected errors or .inconsistencies in the input data,
error messages are printed as shown in Table D-J.

Modifying EduTest '
As delivered,· EduTest is dimensioned for 50 questions a'nd

35 students. Using' EduTest for more students' and fewer ques­
tions .' requires, that the· user redimension EDTST2, EDTST3,
EDTST4 and EDTST5. The DIM statement.in each of these pro­
grams is line 140.

To redimension EduTest type your entry in Entry column, Edu­
Test in Response column.: '.

Entry.

OLD
EDTST2
LIS1NH140
SAVE

Response

OLD FILE NAME
READY
140 DIM K(50),N{36),R(5),V(50)
CTRL/C

Retype line 140 with the new subscripts, noting that N must be '
dimensioned 1 greater than the number of students, and .save the
redimensioned version. Repeaewith EDTST3 ,·etc.

Letting Q=# questions; and: S:-#" students, . the subscripted
variables are:

EDTST2:
EDTST3:
EDTST4:
EDTSTS:

K(Q),N(S+1),R(5),V(Q)
C(S) ,K(Q) ,R(5) ,T(S) ,V (Q)
K(Q)~A(25,6)

E(Q) ,F(20) ,K(Q) ,T(S) ,V (Q)

D-8

Errors: SS Redimensioning not accomplished
GS,SP Not enough room-use smaller groups of students

or delete the V routines.
EduSystem-30 utilizes only 4K words of core memory. This

restricted program area limits EduTest to the following mixes of
questions and students:

25 questions x 50+students
50 questions x 35 students
75 questions x less than 10 students

More space may be obtained by deleting the non-equal weighting.
routine, V (I) in all programs.

D-9

o
I

Message

HOW MANY QUESTIONS IN
THE TEST?

HOW MANY STUDENTS TOOK
THE TEST?

KEY CARD X HAS BAD ID
(where X is test part number)

o BAD MARKS ON KEY CARD X
(where X is test part number)

STUDENT NUMBER X HAS
MISMATCHED 1.p. ON CARD
Y (where X is student number and
Y is test part number).

Table D-l. EduTest Error Messages

Explanation

Key card for Part X is incorrectly
coded in second student number
zone or key cards not in sequence
at end of deck.

Key card for part X has at least
one blank column where question
answer is required.

In a test requiring Y or more an­
swer cards, student number X has
not submitted enough answer cards
or has incorrectly marked his stu­
dent number on an answer card.

Reply! Action

Type total number of questions in
test (e.g. 25, 80); strike RETURN
key.

Type number of students; strike
RETURN key.

Correct card or sequence and re­
start from Step 1, Operating Edu­
Test.

Correct card and restart from Step
1, Operating .EduTest.

Answer N to the SHALL WE GO
ON question. Locate student X's
Part Y card and correct his mark­
ing of the second number zone or
make up a Part Y card with stu­
dent number and add it to the deck.
(EduTest scores zero for that
part). Restart at Step 1, Operating
EduTest.

Message

STUDENT NUMBER X HAS IN­
SUFFICIENT MARKS ON CARD
Y.

NOT ENOUGH STUDENTS
HERE-THERE ARE X STU­

tj DENTS. (Where X is total number
~ of input students).
,.....

TOO MANY CARDS FOR X
STUDENTS. (Where X is total
number of input students).

END OF CARD CHECK­
SHALL WE GO ON (Y OR N)?

Explanation

Student number X has not marked
all columns on card Y. Examine
data output of student number X
for blanks.

A warning message. Number of
students actually processed is
smaller than number entered from
console at start of run.

Too many student answer cards for
number of students specified.

- Reply/Action

Answer N to SHALL WE GO ON
question. Find answer card. If stu­
dent did not answer questions,
cross out corresponding question
number box. If the column is
marked, darken the mark with a
pencil. Restart at Step 1, Operat­
ing EduTest.

If no students have been omitted,
Answer Y to SHALL WE GO ON
question. If students were omitted;
find cards and restart at Step 1,
Operating EduTest.

Restart at Step 1, Operating Edu­
Test and input correct number of
students being processed.

If you have not received any error
messages, answer Y. If you have
received MISMATCHED 1.0., IN­
SUFFICIENT MARKS or TOO
MANY CARDS messages, strike
N and restart at Step 1, Operating
EduTest after correcting cards in
error.

Message

ARE THE QUESTIONS EQUAL­
LY WEIGHTED (Y OR N)?

t? DO YOU WISH TO SPECIFY
N GRADES (Y OR N)?

DO YOU WISH TO RESPECIFY
GRADES CY OR N)?

Explanation '. Reply/ Action

Y-. If questions are of equal value
e.g., 5 points for each of 20 ques­
tions. N-if you want to weight
questions. Specify weight factor
after each question number.

Y-: to specify cut-off levels for
grades A to D. Type in numeric
value for each. grade level. ,
N:-terminate EduTest run. ..:~~:

'.
Y-'" to enter new values for eaCh
grade level.
N-, terminate run. List of students
organized by grade is typed."

.<t,'

..

EDUTEST PROGRAMS
The EduTest system is comprised of six programs:

NAME FUNCTION

EDTEST Reads answer cards and writes data onto
disk or DECtape.

EDTST2 Checks answer car.ds for inconsistent I.D.
numbers, missing ,marks, etc.

EDTST3 Produces the Student Response Matrix.

EDTST4 Produces··the Item Analysis.

EDTST5 Produces the Question Analysis and Dis-
tribution of Scores.

EDTST6 Calculates the Statistical Measures, and
Produces Grading, if desired.

All . programs make extensive use of multiple statements per
line. The separator between statements on the same line is
SHIFT /L which prints ·as " on the teletype, and is shown as 0
on the sample listing. The following pages contain a listing of the
BASIC programs that make up EduTest. Comments are limited
to describing the function of sets of code.

Sample Output
.The following copy is produced by the LIST card. Lines 1 and

2. are the key cards, Jines 101 and 102 are student number 10's cards
for parts ·1 and 2, etc. Note that the second student number in
each line appears as DATA, and that Edu-30 BASIC, interprets
the marks as:

Question unanswered (crossed out) - 1
Answers: A - 2

B-3
C - 4
D - 5
E - 6

Blank - no mark

Note also that each block of five questions is read as one five digit
number.

D-13

EDTEST EDU BASIC

1 DATA -9,44326,22425,53524,52262,43342
2 DATA -9 .. 23456 .. 54323 .. 45654 .. 32345 .. 654'.32
101 DATA 10 .. 44322i22324 .. 53523 .. 42262 .. 43452
102 DATA IA .. 23356 .. 54333 .. 45654 .. 32245 .. 65432
111 DATA 11 .. 44326 .. 22424 .. 53524 .. 52242 .. 43242
112 DATA 11 .. 23456,54422 .. 45654,32345 .. 66432
121 DATA 12 .. 44325 .. 22425 .. 53523 .. 52264 .. 43342
122 DATA 12 .. 23466 .. 53322 .. 45634 .. 32345,66433
2AAA REM "EDTEST" FIRST PROGRAM INEDlJTEST
2040 DIMN(55A)
2A41 FOR 1=1 TO 55A\READ N(I)\IF N(I)=-2 THEN 2A42\NEXT·I
2042 FOR J=ITOI-I\WRITE N(J)\NEXT J
2A43 RESTORE\CHAIN "EDTST2"
2045 DATA -1 .. -1 .. -1,-1 .. -1 .. -1 .. -2
2A46 END

EUTEST EDU HASIC

HOW MANY QUEST IONS IN THE TEST? 5c" your responses
HOW MANY STUDENTS TOOK THE TEST13
**********CHECKING ANSWER CARDS FOR MISSENTRIES.
END OF CARD CHECK - SHALL WE GO ON <Y OR N)1Y .. , . " ~

ARE THE QUESTIONS EQUALLY WEIGHTED (Y UR N)1N
ENTER THE WEIGHT FACTOR FOR E'ACH QUESTION.

PART 1
QUESTION (I 1 12
QUESTION (I 2 12
QUESTION , 3 14
QUESTION (I 4 14
QUESTION " 5 1 1
QUESTION (I 6 12
QUESTION , 7 ? 1
QUESTION , R 12
QUESTION " 9 12
QUESTION " lA ? I
QUEST ION (I 1 1 13
QUESTION " 12 13
QUESTION II 13 ? 1
QUESTION , 14 13
QUESTION (I 15 1 I

D-14

QUESTION {I 16 1 1
QUESTION /I 17 12
QUEST ION (I 1 B 14
QUESTION II 19 7 1
QUESTION (I 20 13
QUESTION (I 21 12
QUESTION * 22 12
QUESTION (I 23 1 1
QUESTION # 24 1 1
QUESTION II 25 1 1

PART 2
QUESTION (I 1 74
QUESTION * 2 13
QUESTION " 3 14
QUESTION II 4 72
QUESTION *·5 12
QUESTION # 6 12
QUESTION II 7 12
QUESTION II B 13
QUESTION (I 9 7:4
QUESTION II 10 12
QUEST lON (I 1 1 13
QUESTION (I 12 13
QUESTION , 13 1 1
QUESTION (I 14 7 I
QUESTION , 15 13
QUESTION ., 16 73
QUESTION II 17 14
QUESTION , lR 12
QUESTION (1 19 72
QUESTION ;I 20 12
-QUESTION , 21 12
QUESTION (I 22 13
QUESTION II 23 14
QUESTION (I 24 12
QUESTION ;I 25 1 1

D-15

t;:j
I

""'""" 0\

. . ' ,

STUDENT RESPONSE MATRIX

• ••••••••• CORRECT RESPONSES ARE ,INDICATED BY -
•••••••••• INCORRECt RESPONSES ARE LISTED
••••••••• A NO-RESPONSE IS INDICATED B~ *

PART I
STUDENT QUESTION
ItiMBER NUMBER

o 0 0 0 0 0 000 1 I 1 1 1 I 1 I I 2 222 2 2
I 234 567 890 1 234 567 890 1 234 5

10 - - - - A - - B - C - - B C - - - - - - C D -

1 1 - - - - - - - - - C - - - - - - C - A - -

12 - - - - D - - - B - - C ...;

KEY C C B A E A A CAD D B D A C D A A E A C BB C A

NUMBER CUM X
RIGHT GRADE

18 36.8

22 41.2

22 39.5

PART 2
STUDENT QUESTION NUMBER CUM %
mMBER NUMBER RIGHT GRADE

" 0 0 " 0 0 " 0 0 1 1 1 1 1 1 1 1 222 2 2 2
1 234 5 6 7 890 1 234 5 6 7 8 9 ~ 1 2 345

.8 - - B - - - - - B - - - - - - - - A - - - - - 22 84.2

tJ I I - C - A - - - - - - - E - - -. 22 9~h4 I
-l

12 - E - - B - - A - - - B - - - - - - - E - - B 19 86

KEY ABC D E D C B ABC D E DeB ABC D E DeB A

•

ITEM ANAL.YSIS

•••••••••• NUMBERS SHOWN ARE TO THE NEAREST PERCENT
•••••••••• CORRECT CHOICES ARE INDICATED BY *

PART I
QUESTION ANSWER ANS~ER ANSWER ANSWER ANSWER NO
NUMBER ACI) SCI) C·C I·) DCI> ECI) RESPONSE

I " 0 10" * 0 0 0
2 " 0 I"" * " 0 " 3 0 I"" * " " " " 4 I"" * " " " " " 5 33 " " 33 33 * " 6 -I "0 * " " " " " 1 I"" * " " " " " 8 " 33 61 * " " " 9 1"0 * " " " " " I" " 0 61 33 * 0 " I I 0 " " I"" * IIJ " 12 " 1"0 * 0 0 " '" 13 " " " I"" * " " 14 HJ" * " " 0 " " 15 " 61 33 * " " IIJ
16 0 0 33 61 * " " .7 1"" * " " Ii) " " 18 .,," * " Ii) " " 0
19 '" '" 33 '" 61 * 0
20 61 * " 33 '" " " 21 " Ii) 1"" * " " 0
22 0 I"" * Ii) " " " 23 33 33 * 33 '" " '" 24 " " 67 * 33 " " 25 1"" * '" " " " "

D-18

PAI=tT 2
QUESTION ANSWER ANSWER ANSWER ANSWER ANSWER NO
NUMBER A(X) B(X) C(X) D(~) EU) RESPONSE

I 100 ,. 0 0 0 0 (iJ

2 0 100 * 0 '" '" '" 3 0 33 67 * '" 0 0

4 0 0 0 67 * 33 0

5 0 0 0 0 100 * 0

6 0 0 '" 100 * 0 0

7 0 33 67 * '" 0 0

8 0 67 * 33 0 '" 0

9 67 * 33 0 '" 0 0

10 67 33 * 0 0 0 0

I 1 0 0 100 * '" 0 0

12 0 0 0 100 * 0 0

13 0 0 0 0 100 * 0

14 0 33 0 67 * 0 0

15 0 '" 100 * 0 0 0

16 '" 100 * 0 0 0 0

1 7 100 ,.: 0 0 0 0 0

18 33 67 * 0 0 0 0

19 0 0 100 * 0 '" 0

20 0 0 0)jill 0 * 0 0

21 0 0 0 0 10'" * 0

22 0 0 0 33 * 67 0

23 0 0 100 * 0 0 0

24 0 100 * 0 0 0 0

25 67 ,.: 33 0 0 0 0

...................................... ~

D-19

QUESTION
PART I

I
2
3
4
5
6
7
8
9
1(}J
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

PART 2
1
2
3
4
5
6
7
R
9
lYt
11
12
13
14
15
16
17
lR
19
20
21
22
23
24
25

VALUE

1.75
1.75
3.51
3.51
.R8
1.75
.88
1.75
1.75
.RR
2.63
2.63
.R8
2.63

.RR
1.75
3.51
.88
2.63
1.15
1.75
.88
.88
.88

3.51
2.63
3.51
1 .75
1.75
1.75
1.75
2.63
3.51
1 .75
2.63
2.63

.88
2.63
2.63
3.51
1 .75
1.75
1.75
1.75
2.63
3.51
1.75
.88

QUESTIONANALYSrS

PERCENT
COR'RECT

1(}J(}J

iV}Cil

10'"
1(}J(}J

33.3
1 vt~
lYtYt
66.7
I(}JYt
33.3
lItl0
IYtYt
IYHJ
100
33.3
66.7
10Yt
I(}J(}J

66.7
66.7
l.YtYt
100
33.3
66.7
1YtYt

CORRECT
10VJ
100
66~7

66.7
HI(Ij

lYt0
66.7
66.7
66.7
33.3
10Yt
lVJ0
lVJ0
66.7
100
lVJYt
10Yt
66.7
lYtYt
100
lYt0
33.3
1(}J0

TIM E S MIS 5 E D

I
I
I
I
IXX
I
I
IX
I

~xx Note the actual decimal
I value assigned to each
I response as a result
I . of Jhe individualized
~ ~x weighting factors.
I
I
IX
IX
I
I
IXX
IX
I

I
I
IX
IX
I
I
IX
IX
IX
IXX
I
I
I
IX
I
I
I
IX
I
I
1
IXX
I
I
IX

This chart gives you
the quickest look at
what the most difficult
questions were.

..
D-20

D ISTR 1 BUT ION OF SCORES

RANGE NUMBER
1~0 ~ I
95 TO 99.99 0 1
90 TO 94.99 IX
85 TO 89.99 IX
80 TO 84.99 IX
75 TO 79.99 0 1
70 TO 74.99 '" 1
65 TO 69.99 (if 1
60 TO 64.99 0 1
55 TO 59.99 0 1
5!i'J TO 54.99 0 1
45 TO 49.99 0 1
4!i'J TO 44.99 !i'J 1
35 TO 39.99 !i'J 1
30 TO 34.99 !i'J 1
25 TO 29.99 0 1
20 TO 24.99 !i'J 1
15 TO 19.99 0 1
10 TO 14.99 !i'J 1
5 TO 9.99 0 1
0 TO 4.'99 0 I ~ . ~ ~ .

STATISTICAL MEASURES

•••••••••• THE MEAN (AVERAGE) SCORE IS 86.8419
•••••••••• THE MEDIAN (MIDDLE) SCORE IS 85.965
•• ~ ••••••• THE STANDARD DEVIATION IS 2.58237

•••••••••••••••• ~ •• eo ••••••• e· ••••••••••••••••• ~ ••••. 9 ••

DO YOU WISH TO SPECIFY GRADES (Y OR N)1Y

A FOR THOSE SCORES EQUAL ~O OR GREATER THAN195
B FOR REMAINING SCORES EQUAL TO OR GREATER THAN?85
C FOR REMAINING SCORES EQUAL TO OR GREATER THAN?75
D FOR REMAINING SCORES EQUAL TO OR GREATER THAN?!i'l

GRADE NUMBER·

A 0 1

B 2 IXX

C IX

D ~ 1

F (Ij 1

D-21

DO YOU WISH TO RESPECIFY THE GRADES CY OR N)?Y

A FOR THOSE SCORES EQUAL TO OR GREATER THAN?85.965
B FOR REMAIN ING SCORES EQUAL TO OR GREATER THAN·? 80
C FOR REMAINING SCORES EQUAL TO OR GREATER THAN?60
D FOR REMAINI-NG SCORES EQtJAL TO OR GREATER THAN?30

GRADE NUMBER

A IX
-

B 2 IXX

C 0 . I

D 0 I

F 0 I

DO YOU WISH TO RESPECIFY THE GRADES (Y OR N)1N

A GRADES ARE:
STUDENT II II

B GRADES ARE:
STUDENT * 10
STUDENT * 12

C GRADES ARE:

D GRADES ARE:

F GRADES ARE:

THIS IS THE END OF THE EDUTEST RUN.
THANK YOU.

D-22

EDTEST

The key cards and the student answer cards are imbedded in
EDTEST as a mass of data statements. EDTEST is just the barest
of programs necessary to read and write this data onto the disk
(DECtape) and CHAIN to the next program, EDTST2. This
technique allows EDTST2 to have much more 'working' program
and to pull in data as it is required.

The 4K version of EduSystem-30 allows either 6,000 char­
acters of program and no variables, 600 variables and no pro­
gram, or some trade-off in between.

This version of EduTest allows you approximately:

2~00 REM ~EnTEST" FlRST PROG~AM IN fOUTEST
2010 REM COP~RIGHT 1972 DIGITAL EQUIPMENT CORPOR~TION
2020 REM MAVNARO, MASSACHUSETTS
203~ REM EOUSVSTEMS 30 AND 40
2040 DIM N(S50)
~0~1 FOR 1-1 TO 5Se\REAO NCI'\IF N(1)-·2 THEN 2042\NEXT I
2~~2 FOR J.l TO I-1\WRITE N(J)\NEXT J
20~3 RESTORE\CHAIN "EOTST2"
20~5 DATA -1,-1,-1,-1,-1,-1,-2
204& END

25 questions x 50+ students
50 questions x 35 students
75 questions x less than 10 students.

The quickest way to significantly expand these limits is to delete
the Unequal Weighting Option of EDTST2 and all handling of
V (1) thereafter. If done, 100/ Q is the value of each question.

D-23

EDSTS2

100 ~EM "EDTST2" SECOND PROGRAM IN EOUTEST
110 REM COPYRIGHT 1972 D1GITAL EQUIPMENT CORPORATION
120 REM MAVNARD, MASSACHUSETTS
130 REM EOUSYSTEMS 30 AND·40
1~0 DIM K(50"NC36)i~(S),VC50)
15~ PRINT "HOW MANV QUESTIONS IN THE TEST", , ,

~60 INPUT Q
170 C.INT(CQ-l)/2S1'1
180 FOR l a l 'TO C
190 READ N\IF,Na.9 THEN 200\PRINT "KEY CARD",I,"HAS ,BAD I.D."\STOP

~ 2~0 READ 81,82,a3,B4,BS\NEXT I\RESTORE
N 2;0 FOR 1-1 TO C\READ N
~ 220 ~OR J-l TO 5\READ B\GOSU8 1000

230 FOR K.t TO 5\~((I-l)*25+CJ.l)*5+K)aR(K)
2~0 IF (I~1)*25+(J.l)~~+~aQ THEN 210
250 IF R(K)»>al TMEN 260\PRINT"ttAD MARKS ON I<EY CARD"II\STOP
2&0 NEXT K\NEXTJ\NEXT'I
270 F.OR I-INT((Q-l,/5)+2 T05*C\READ S\NEXT I
280 PRINT "HOW ~ANY SfUDENTS TOOK THE TEST""
29~ INPUT S. '
j00 PRINT "~'*~******CHECK~NG ANSWER CARDS FOR MISSENTRIES.".
310 C.INT«(Q.l)/2~)+1
320 FOR r-l TO j~ .
330 Z.0\M-0
340 READ NCO
350 IF NeI)»>-1 THEN 380
3b0 PRINT "NOT ENOUG~ STUDENTS HERE • THERE 'ARE"lI-U"STUDENTS"
370 S-I-l\GO TO 600

Q= # students
C=# cards/ student

This set of code
checks the key cards
for hlanksand sets
K (1) to the correct

. key.

s= # students

Z=# marks counted,
M=# missing marks
end of file?

t;;
I
tv
V'I

38~
3q0
4f10
410
420
43~
440
450
4&0
470
480
4q0
500
510
520
530
540
550
5&121
510
58121
59121
&0121
&10
&20
630
&40
&50
6&0
670
&80
690

J.l
,'OR K-t TO 5
READ 8
GOSUB 1000
NEXT "-
IF Z>.Q THE'" 560

Read a 5 digit answer
block.

GOSUB 9&0 This loop is entered
FOR J-i, TO C only when each student
READ Ni . h d
IFNi aN (I) THEN 500 enteiS mor~ t an 1 car
PRINT "*******.*.STUOENT NUH8ER",N(1)," HAS MISMATCHED 1=0 0 ", (>25 questIons).
PRINT" ON CARO",J
FOR K_t TO 5
REAU ~\GOSUB 10~0
NEXT I(

IF Z>.Q THEN 5b0
GOSU8 960
NEXT J
NEXT I
READ N
IF N •• l THEN 600
PRINT "TOO ~ANV CARDS FOR",S,"STUDENTS"

This set of code con­
tinues to check for
missing marks, and
also matches the I.D.
numbers of cards 2, 3,
etc. against the stu­
dent's first card.

PRINT "END OF CARD CHECK • SHALL ~E GO ON (Y OA N)1"r\INPUT SA\PAINT
IF A.jV THEN bia'IF AC>,N THEN 600\STOP
FOR I-t TO 65\PRINT ".",\NEXT I\PRINT
PRINT
PRINT
PRINT\PRINT "ARE THE QUESTIONS EQUALLY WEIGHTED CY OR ~)1"'
INPUT SA\PRINT
IF Aa,V THEN 840\IF AC>.N THEN 650
PRINT "ENTER THE WEIGHT FACTOR FOR EACH QUESTION."
fiCA 1-1 TO C'

This is the code which
allows unequal weight­
ing and generates Vi'
the decimal value of
each question.

7021
7U'I
720
730
740
750
7~0
770
780
790
800
810
820
830
840

t:1 850
I
tv 8621
0\ 870

880
8q21
9~11~

910l
92~
930
q40
950
9f,0
971i~

9a0
990

PRINT
" P R I ~ T " P A R'T "fI '

FOR Ja1 TO 25
PRI~T "QUESTIUN ."1J,
O-eI-1l*25+J
INPUT Yeo)
TaT+V(O)
IF O-Q THEN 8fcl0
NEXT J
NEXT 1
FOR Ial TO Q
V(I)aV(I)*100/T
NEXT I
GO TO 870
FOR 1-=1 TO Q
V(I)a100/Q
NEXT I
PRINT
PRINT
AESTORE\FOA Ia~.C.(S+l)+~ TO 1 STEP -3\FOR J a l TO 1/3
READ 81,B2,B3\NEXT J\WRITE Bl,B2,83\RESTORE\NEXT I\WRITE C,Q,S
FOR 1-1 TO 6*C.CS+l)+b\READ B\NEXT I\~OR 1.1 TO Q\WRITE K(I)\NEXT I
FOR 1.1 TO Q\wRITE VCI)\NEXT I\FOR 1-1 TO S\W~ITE N(I'\NEXT I
PRINT
RESTOHE'
CHAIN "EOTST3"
IF Z+M.25*J THEN q90
PRINT "**********STUOENT NUMBER"IN(I)'" HAS INSUFFICIENT "'
PRINT "MARKS ON CARD",J\MaM+25*J-Z
RETURN

Subroutine to match
total marks against
questions.

tj
I

tv
.......:J

1P.100 R(0)a"
1010 FOR X-I TO 5
1020 B.B-R(X-l)*1~·(6-X)
1030 R(Xl-INT(B/1~·(5.X»)
1~4e IF R(X)a0 T~EN 1010
10150 Z.Z.l

This subroutine takes
the 5 digit answer block
and breaks it into five
separate digits: Rio R2,

Ra, R", and R;;.
It also checks for a
zero digit (no mark)
and increments Z for
each good mark,

1060 NEXT X
1070 RETURN
108~ END

Lines 890 and 900 shift the entire data file up 3 spaces, and
insert C, Q and S at the front. Lines 910 and 920 write the ·new
data at the end of the data file.

If Vi routines are deleted to gain space, each routine which
reads the data file must be changed to reflect the absence in
EduTest 2, 3, 4, and 5.

EDTST3·

Hl0
lHl
1?0
130
140
150
lbe
170
1813
19V1

O· 20~
I··, 21 PI
~ 22~

23"
240
2'50
2~0
i70
28Q!
2q~

300
310
3~0
330
34e,
35'"
3M')
370

REM "EOTST3" THIRD PHtiGRAM IN EOUlEST
REM·COPYRIGHT 1972 OIGITAL EQuIPMENT CORPORATION
REM MAYNARO, MASSACHUSETTS
REM eOUSVSTEMS 30 AND 40
OIM C(35)r~(5~"R(5),T(35),V(50)
FOR lal TO 65\PRINT ".",\NEXT t\PRINT
REA[lC,Q,S
FOR lal T06*C*(S+1)+b\READ 8\NEXT 1
FOR la1 TO Q\HEAO kC!)\NE~T !\FOR 1-1 TO Q\MEAb V(!)\NEXT I
R£STORE\FOR I~t TO &-C+3\READ 8\NEXT I
PRIN1\P.RtNT
PRINT TA8(20);nSTUOENT RESPONSE MATRIX"
PRINT
PRINT " •••••••••• CORRECT RESPONSES, ARE INDICATED BY -"
PRINT " •••••••••• INCORREC T RESPONSES ARE LISTED"
pAINT ~ •••••••••• A NO-RESPONSE IS INDICATED BY *"
FOR 1-1 TO C
PRINT
PRINT TA8(2b);"PAHT",I
PRINT "STUOENT",TAB(25)'''QUESTION'',TA8C58),"NUMBER",TA8C66),
P~tNT "CUM %"\PRINT "NUMBER"'T'BC2&)'~NUM8ER",TA8(58)'"RIGHT"'
p~rNT TA8C&6)'"GRADE"\PRINT TAB(8),
'OR Jal TO 2S\PkINT CHRSCINTeJ/10)+48)'" ""NEXT J
PRIN1\PRI~T TAB(8)' .
FOR J., TO 25\PRINT CHRSCJ-lNTCJ/10)*10+08)," "'\NEXT J
PRINT
PRINT
FOR Jiq TO S

Dummy read to the
teacher's key.

l 000 2
Prints f 1 2 3 ... ·5

38~ C(J):II~
3'H'l READ N
4~~ PRINT NIT.R(7);
410 FOR 1<=1 TO 5
420 READ,B
430 GOSLJB 7q0
4"~ FOR L=1 TO 5
4S~ O-CI-l1*2S+(K-l)*5+L
4h0 IF R(L).~(O) fHEN 490
470 IF'Hella1 THEN 480\PHINT " "'C~RS(RCL)+b3)"GO TO 510
480 PRINT ~ *"'\GO TO 510
49et PRl-NT " _'I,
500 C(J)-CeJ)+1\T(J)_T(J)+V(D)
51~ IF OaW THEN 5J0

, 52~ NEXT l'~EXT K
9 530 FOR MaK+l TO ~\READ 8\NEXT M
~ 5a~ TSINT(T(J)w10+.S)/10

55~ N~INT(lOGCC(J)+.5)/LOG(10))+1\P.INT(LOG(T+,5)/LOG(10')+1
555 IF C(J)c>0 THEN Sb0\NaN+l\p.P+l
Sb0 PRINT TAB(&1-~)'CCJ)'TAB(&8.P)'T
51V1 FOR Ma2 TO C
580 HEAD N,Bl,B2,~3,B4,85
5Q~ IF N<>-l THEN &10
&0~ IF laC THEN 7~0
&10 NEl(l H
,.?~ NEXT J
&30 RESTORE\FOR .pat TO &*C+3\~EAD B\NEXT P
~40 FOR H=1 TO I
&50 READ N,Bl,R2,b3,B4,B5
&&0 NEXT M
&70 PRINT "KEY"JTAB(8)I
&8~ FOR J=l TO 2S\L-CI-l)*2S+J\PRINT CMRS(K(L)+&3)I" ",

This set of code prints
the student response
matrix.

How many digits? '

Dummy read to the
next student's card.

Rewind the data file
and get ready for the
next part.

U
I

!.;J
o

6ge IF LC~ THEN 7~0\NEXT J\PRINT
7~·~ NEXT 1
7 1 ~., GOT 0 7 '" 0
7?~ PRINT "KEY"ITABCe)1
75~ FOR J-CI-l'*2~+1 TO Q\PRINT CHRS(K(J'+63)," ",\NEXT J\PRINT
7,,~ PRINT\PRINT
7~~ RESTO~E\FOH 1-1 TO 6*~*(S+1)+2*Q.S+9\REAO 8\NEXT I
7b~ FOR I=1 TO S\WRITE TC!)\NEXT I
770 RESTOwe:
7Ae CHAIN "EOTST"'"
7Cjll- R(0)a0
8010 FOR X-I TO 5
R10 8.R~R(X·l)*10-(b·X)
8~0 R(X).INT(~/10-C~-X»)
830 NEXT X
R"'~ RETURN
A5e. END

Note that line 500 calculates each student's score; If deleting.
the Yi routines to gain room, replace the Yen) of line 500 with
100/Q. ~

Dummy read to end
of file.
Write new data.

EDTST4

100 REM "EOTST4" FOURTH PROGRAM IN EOUTEST
110 REM COPYRIGHT 1972 DIGITAL EQUIPMENT CORPORATION
120 REM MAYNARD, MASSACHUSETTS
130 REM EOUSYSTEMS $0 AND 40
1~0 D(M K(S0),A(25,6)
150 FOR 1-1 TO 65\PRINT ".",\NEXT I\PRINT\PRINT\PRINT
1~0 READ C,Q,S
170 FOR 1-1 TO ~*C*(S+1)+~\R!AD B\NEXT I
180 FOR 1-1 TO Q\READ KCI)\NEXT I\RESTORE
190 PRINT TA8(i0)1"lTEM ANALYSIS"\PRINT
200 PRINT " ••••••• , •• NUMBERS SHOWN ARE TO THE NEAREST PERCENT"

9 210 PRINT It •••••••••• CORRECT CHOICES ARE INDICATED BY *"
~ 220 FOR 1-1 TO C
. 230 FOR J-1 TO 25

240 'ORK-1 TO ~\A(J,K'.0\NEXT ~
250 NEXT J
2~0 PRINT\PRINT\PRINT T_8(26),npART"'I
270 PRINT "QUE8TION",
280 FOR J.l TO 5\PRINT TAB(J*7+S)'"ANSW~R"r\NEXT J
290 PRINT TAB(49)1"NO"
300 PRINT "NU~BER"JTA8(13)'"A(I)"'TAB(20)'"BCX)"'TABC27),MCCX)"'
310 PRINT TAB(34)1"O(X)"JTA8(4t)'"£CI)",TA8(G6,,"RESPONSE"
320 R~STO~E\READ C,Q,S"OR J-1 TO C\REAO N,Bi,Bi,B3,84,85\NEXT J
330 FOR J.1 'TO I-l\READ N,Bl,B2,83,84,8S\NEXT J
3~0 FOR J.l TO S\READ N
350 FDA Ka1 TO 5
360 REAO B\GOSUB 640
370 FOR L-t TO S\X-L+S*CK-1)

Zero the counters.

This set of code counts
the number of times
each part of each
question is chosen.

380 FOR Ma1 TO 5
390 IF RCL)c~M+l THEN 400\A(X,M).A(X,M)+1\GO TO 410
400 NEXT M\A(X,&)aAeX,&)+l
410 IF 25*CC-l)+X.Q THEN 450
420 NEXT L
430 NEXT I(

,,,0 GO TO "h0
4~0 FOR L.K+l TO 5\READ B\NEXT L
460 FOR La1 TO C-l\REAO N,81,B2,B3,B4,8S\NEXT L
470 NEXT J
480 FOR J~l TO 25
490)(1I2\PRINT'J;
500 FOR K.t TO &\Z.INTCA(J,~)/S*100+.5)\GOSUB 590 9 510 PRINT TA8((K+l)*1.D)'Z'~IF K.& TMEN Si0\GOSUB &20\NEXT K

~ 520 IF K(25*(I-l)+J)c2 THEN ~30\PRINT\GO TO 540
5)'" PRINT "*"
540 IF 25*CI-1)+JIIQ THEN 580
550 NEXT J
5b~ RESTORE\FOR J=l .TO &*C+3\REAO B\NEXT J
570 NEXT,I
580 PRINT\RESTORE\CHAIN "EOTST5 P

5913 .IF ZC~0 TMEN b00\O.1\GO TO 610
6~0 O.INT(LtiG(Z)/LOG(10»+1
610 RETURN
&20 IF XC~K(25*(I-1)+J' THEN &30\PRINT "*"1
&30 X.X+1\RETURN
&40 R(0).0
&50 FOR Vat TO 5

"

Here these counts
are converted to
percentage points
and printed.

How many digits?
Subroutine.

Is this the correct
answer?
Subroutine.

~~0 8.B.R(V.l)*10-(~.Y)
610 RCV).!NT(B/10~(S.V))
fl80 NEXT Y
6q0 RETURN
7(11121 END

t? The A(25,6) dimensioned in line 140 is used to count the
~ number of times each of the six possible marks (crossed out, A,

B, C, D, E) is chosen for each of the twenty five questions in
each part of the test. Line 500 is where the complete count is
converted to a percentage point prior to printing.

EDTST5

lP~ REM "EnTST~" FIFT~ PROGRAM IN EOUTEST
11~ REM COPV~IG~T 1972 DIGITAL EQUIPMENT CORPORATION
1?0 REM MAYNARD, MASSACIoIUSETTS
13FREM EOUSYSTEMS J0 AND 40
1~r, DIM E(50),F(~~),K(~0),T(35"V(50)
15~ FOR 1-1 to 65\PWINT ".",\NEXT l\PRINT
1 Hl' REA DC, fJ , S
170 FOR 1-1 TO 6*L.(S.1).~\REAO 8\NEXT I
180 FOR 1-1 TO Q\REAO K(I)\NEXT I
190 FOR !-1 TO Q\~EAD VCI)\NEXT I
2~0 FOR 1-1 TO S\k£AO B\NEXT I

9 21~ FOR 1-1 TO S\~EAD T(I)\NEXT I\RESTORE
~ 2?~ PkINT TAB(23),"QUESTION ANALYSIS"\PRINT
~ 230 PRINT "QUESTIUN"'TAB(13),UVALUEP'TAH(i0,,"PERCENT",

240 PRINT TA8(30);"T I M E S MIS S E 0"
250 FOR 1-1 TO b*C+J\REAn B\NEXT I
2~0 FOR Ial TO S\~OR J-l TO C\REAO N
270 FOR ~.1 TO 5\kEAO 8\GOSUB 700
?be FOR La1 TO 5\U.(J-l)*25+(K-l)*5+L
2q0 IF R(L).K(D) THEN 31~\E(O).E(O)+1
3~e IF O.Q T~EN 3c0
310 .NEXT L\NExT K
32~ FOR M.K+l TQ5\READ 8\NEXT M
33e NEXT J\NEXT 1
3t.1Vi FOR r-l TO C
350 PRINT PPART"'I~TAB(20)'"CORRECT"

Count the number of
times each question was
missed. E i·=# misses
on Ith question.

U
I

V-)

VI

3~e FOR J~l TO 25
371i'1 O-CI-l)*2S+J
360 PRINT J'TA8(lj)'INT((V(O)+.0~5)~1~0)/100'TAB(20)'
390 PRI~T I~T«((S-E(O»/S+.0005)*1000)/10'TA6(30),E(O)'
401i'1 PRI~T 1A8(35)I"I"I
410 IF E(O)a0 THE~ ~50
420 FOR Kat TO EtO)
430 PRINT 11)(11,

"40 NEX'T ~
45121 PRINT
4&0 IF u-~ THEN 49~
47~ NEXT J
'-I 8 V'! NEXT 1
490 PRINT\PIHNT
5~~ FOR 1-1 TO b5\PWINT ".",\NEXT I\PRINT\PRINT
51~ PRINT TAB(21)i"UISTRIHUTION OF SCORES"
52~ FOR Isl TG S
530 J.INT(T(I)+.~05)/5)
'54~ F(J)-F(J)+l
5~0 TaT+T(I)
St-0 NElt'T I
570 PRINT
580 PRINT "HANGE","NUMBER"
5q~ PRINT 1~0,FC2C',"I"'
bli'lli'l FOR 1-1 TO F(20)\PRINT "X"'\N~XT I\PRINT
bl~ FOR 1-95 TO 0 STEP -5
b20 PHINT 1'"TO"ll+LI.9Q,F(I/5),"I"I
b]e FORJ-' TO FCl/5)\PRIhT "X"'\NEXT J\PRINT\NEXT 1
b41i'1 RESTORE\WRITE S,T\FOR t-l TO S\~RITE l(I)\NEXT I -

b~0 FOR 1-1 TO b*C*(S+1)+2*Q+7-S\R~KU e\NtXf 1
b~1i'I FOR 1-1 TO S\~EAO T(I)\NEXT I\RESTORE
b7~ FOR 1=1 TO S+2\REAO 8\NEXT 1

Print question number,
value, percent correct,
times missed, and
bar chart of times
missed.

Set F(O)=# scores
between 0 and 4.99
F(1) =# scores
between 5 and 9.99,
etc.
T=total of all scores

Print the bar chart
for the distribution
of scores.

tj
I

W
0\

680 FOR 1-1 TO S\wRITE TCI)\NEXT I\RESTORE
hQ0 CH.1N "~DTST6"
7re R(0)a0
71~ FOR Y~l TO 5
720 S-B-R(Y-ll*10-Cb-Y)
73~ RCy)apJl(B/10-(S"Yl)
7al2l NEXl Y
750 RETURN
7H'I END

EDTST6
/

100 REM ~EDTST6" $IXTH PROGRAM IN fDUTEST
110 REM COPYRIGHT 197i DIGITAL EQUIPMENT CORPORATION
120 REM· MAYNARD, MASSACHUSETTS
130 REM EDUSYSTEMS J0 AND 40
140 DIM NC&0),TC&0),Z(&0)
150 FOR 1-1 TO &5\PRINT "."I\NEXT I\PRINT\PRINT
1&0 READ S\READ 1.
170 FOR 1-1 TO S\kfAD TCI)\NfXT I
180 FOR Iel TO S\RfAD NCI)\NEXT I

190
200
21121
2221
230
2~0
250
2b~'
270
it80
290
300
310
32121

tJ 330
I 340
~ 35121

3b0
370
38121
39121
400
410
42121
43121
u40
450
4&121
w.,~

48121
49121
51210

PRINT
PRI~T TAB(24),"STATISTICAL MEASURES­
PRINT
MaTIS
PRINT " •••••••••• THE MEAN (AVERAGE) SCORE IS",M
FOR 1-1 TO S\leX)aTCI)\NEXT I
FOR Ial TO S\FOR JaI TO S
IF Z(l)c.ZCJ) THEN 28121
O-ZeI)\ZeI)aZlJ)\ZCJ)aO
NEXTJ\NEXT·I
IF INTCS/2).S/2 THEN 310 -----------------,

This set of code sets
the dummy Zi=Ti .

Sorts the Z! into as_
cending order and
renumbers the sub,
script i accordingly. M2aZ((S-1)/2+1)\GO TO 32121

M2·(Z(S/l)+Z(S/i.1»/2
~2aINTe(M2+.0005)*1000)/1000

'------ The median score is

PRINT " •••••••••• THE MEDIAN C~IDOLE) SCORE IS",M2
FOR t-l TO S--,
VaV+CM-TCI"'"'i:!
NEX" I
VaV/S
P~INT " •••• , •••• ,THE STANDARD DEVIATION IS",SQR(V)
PRINT\PRINT
'.OR 1-1 TO &5
PRINT "."'
NEXT I
PRINT\PAINT\PRINT
PAINT "00 YOU WISH TO SPECIFY GRADES CV OR N)?";
IN"UT SA\PAINT
IF ' •• V TH!N 4~0\IF Ac~'N TMEN 44121
F~INT\FRINt "THIS IS THE END D~THE fOUTEST RUN.~
PRINT "THANK YOU."\STOP
PRINT\PRINT I'A FOR THOSE SCORES EQUAL TO OR GREATER THAN"'
INPUT G(1)\FO~ Gla2 TO 4

then the middle Score
if S is odd, or half,
way between the two
mnermost scores If S
is even.

V =variance,
i.e. u:!=~ (u-x):l

x~ S

Begin letter grading

510
520
530
5"0
550
5&0
570
58~
59121
M~0

6UJ
~20

. &30
f,~~

&50
o &60
W ~&7e'
oc .&8121.

&40
7~~

710
72~
73~
7,,0
75C
7&0
770
7t1e
790
8ee
811Z
82~

PRINT CMRSCG1+6~),n FOR PEMAINING SCOPES EQUAL TO OR GREATER TMAN"'
INPUT G(Gl)\NEXT Gl\LET G(5)-0
PRINT\PRINT\FOR 1.1 TO S\FCI).0\NEXT I
FOR 1-1 TO S
FOR (;181 TO 5
IF T(I)cG(Gl) TMEN 580
F(G1).F(G1)+1\GO TO 590
NEXT Gl
NExT r
PRINT\PRINT "~RADE",nNUMRE~"\PRINT
FOR l-l TO 5 ,c

Gl-64+1\IF lc~ TMEN 630\G1-70
PRINT" "'CH~S(Gl)," ",f(I),"I"'
FOR J-t TO F(l)\PRINT "X"I\NEXT J
PRINT\PRINT\NEXT I
PRINT\PRINT
PRINT "DO VOU WISH TO RESPECIFY TME GRAOES (Y OR N)?"I
INPUT 'A\PRINT
IF A •• ' THEN 49121\IF Ac~.N THEN 67121
PRINT\P~INT

FOR Gi:r1 TO '5
IF G1<5 THE~ 130\PRINT "F",\GO TO 7~0
PRINT CHRSCG1+b~)'
PRINT" GRADES AR~:"
FOR 1:11 TO 5
IF T(I)<G(Gl) THEN 190
PRINT "STUDENT ,n,NCI)
T(I)c-5
NEXT I\PRINT
NEXT (;1
PRINT\PRINT\GU TO 47121
END

Sets F(J) =# A grades
F(2) =# B grades
etC.

Prints bar chart for
distribution. of letter
grades.

This set of code prints
the ·1.0. numbers of
those students who
received an A grade,
etc.

V
I
Vl
\0

EduTest Data File Layout

EDT EST PASSES TO EDTST 2

[~TI-SI6-lolll-15116-20121-25171IJ·D·II-516-1()111-15116-20121-2511f I J.D·II-S!6-lolll-15116-20121-251-1 I-I I-I I-I I-I I-I IlENGTH'6*C*IS+I)+6ITEMS

'- ------- -~
STUDENT 1 CARD I

\. J \.. J

KEY CARD I STUDENT S CARD C END OF FILE

EDTST2 PASSES TO EDTST3

I C 1 0 1 5 110 11-5 j6-10jlH5116-20121-251171-1 -I I KI ! K21 K3!J I KQ I VI I V2! V31 JJ I VQ I NI I N21 N31 §I r~s I ~E.~~1~1;+2.0+S+91~EM5
~\) \. It It....,.. __ .. _J

ADDED SAME AS ABOVE o CORRECTS ANSWERS o WEIGHT VALUES S STUDENT l.D.

EDTST 3 PASSES TO EDTST 4

COS: 1.0. I -I -I -I KI K2 K3 G I [E] LENGTH'
TI I T2 I T3 I Ts 6.C.'S+lj+2.0'2.S+9ITEMS : I I ,

.------~.,..-----------------) '------
SAME AS ABOVE S STUDENT SCORES

EDTST 4 PASSES TO EDTST 5

[- ______ ------...- I LENGTH'SAII'f AS ABOVE

SAME AS ABOVE)

EDTST 5 PASSES TO EDTST 6

S NI 1 N2 N31» INs 1 TI T2 T3 I ~ LENGTH'2·S+2 ITEMS

----~v----J,
~. ____ J

S STUDENT SCORES 5 STUDENT 1.0',

D-40

A

A (alphanumeric) format specifica~
tion, FORTRAN-D, 9-124

Abbreviated commands,
EduSystem 20, 5-2
EduSystem 25, 6-2

Absolute value function
ABS, BASIC, 1-29
FABS, FOCAL, 9-85

Account (ACT), 9-199
ACCEPT statement, FORTRAN-D,

9-120
Address: A label, name, or number

which designates a location where
information is stored.

Advanced Monitor commands, Edu­
System-50, 9-167

Advanced system capabilities, Edu­
System 15, 4-6

Alphanumeric: Pertaining to a char­
acter set that contains both letters
and numerals, and usually other
characters.

ALT MODE key, FOCAL, 9-67.
Apostrophe used to start comment,

EduSystem 25, 6-4
Arctangent function (FATN) , FO­

CAL, 9-84
Argument:

1. A variable or constant which
is given in the call of a sub­
routine as information to it.

2. A variable upon whose value
the value of a function de­
pends.

3. The known reference factor
necessary to find an item in a
table or array (i.e., the index).

Arithmetic expressions, FORTRAN·
0,9-107

Arithmetic operation, FOCAL, 9-64
Arithmetic operations summary, 8-

10
Arithmetic operators, FORTRAN-D,

9-105

Arithmetic statements, FORTRAN-
0,9-108

Array: A set or list of elements usu-
ally variables or data.

ASCn character codes, B-1
ASK command, FOCAL, 9-67
Assemble: To translate from a sym-

bolic program to a binary pro­
gram by substituting binary opera­
tion codes for symbolic operation
codes and absolute or relocatable
addresses for symbolic addresses.

Assembler: A program which trans­
lates symbolic operation codes
into machine language and as­
signs memory locations for vari­
ables and constants.

Assembly language programs, Ed~
System 50, 9-179

ASSIGN command, EduSystem 50,
9-13

Assign Device (ASD), 9-191

BASIC
calling, 9-23

B

error messages, EduSystem 50, 9-56
exponents, 1-19
expressions for mathematical rela-

tionships, 1-79
file transfers, 9-160
floating point notation, 1-15, 1-16
functions, 1-57
incrementing variable, 1-50
line number, 1-7
locations, 1-20
looping, 1-39, 1-45
numerical expressions, 1-9
printing messages, 1-17
random numbers, 1-89
stepping, 1-50
subroutines, 1-105
variable expressions, 1-24
variable subscripts, 1-102
variables, 1-20

BASIC commands

Index-l

BATCH, 7-30, 7-31
BYE,9-21
CATALOG, 4-5, 6-15, 7-16, 9-29
CAT$,6-17
COMPILE, 9-27
CTRL/B,9-20
CTRL/C, 1-30
DELETE, 5-15, 6-29
ECHO, 4-26, 7-14
EDIT, 5-15; 6-29, 8-2, 9-26
FILELOG, 6-21
FILELOG$,6-22
HEADER,7-32
KILL,6-22
KEY, 5-22, 6-39, 7-51
LENGTH, 4-6, 7-16
LIST, 1-6,4-3, 7-12
LISTNH, 4-3, 7-13
LLIST,9-47
LOG,7-33
LPT,7-50
MAX, 7-31
NAME, 4-2, 7-14
NEW, 4-2, 6-13, 7-14, 9-23
NOLINE, 4-6, 7-5
OLD, 4-5, 6-14, 7-14, 7-17, 9-23
OLD$,6-17
PASSWORD, 4-5, 7-16
PRIVILEGE, 4-4, 7-15
PTP, 5-22
PTR,5-22
PUNCH,7-50
RENAME,6-14
REPLACE, 9-27
RESEQUENCE,7-18
RUN, 1-5,4-4
RUN NH, 4-4, 7-13
SAVE, 4-5, 6-14, 7-16, 9-27
SCRATCH, 1-5
STACK, 7-32, 7-33
Summary, 1-139 to 1-143
TAPE, 4-26, 5-22, 6-39, 7-14, 7-51
TTY, 4-26
UNSAVE, 4-5, 6-16, 7-14, 9-56

BASIC functions
Absolute value (ABS), 1-129
Arctangent (ATN), 1-130
Character conversion (CHR$), 4-

10, 5-9, 6-11, 7-9, 9-36
Concatenate (CAT), 6-13
Cosine (COS), 1-130

Exponential (EXP), 1-128
Integer (lNT), 1-57, 1-58
LEN,6-13
LOG,I-128
M1D,6-12
Random (RND), 1-90
Sign (SGN), 1-129
Sine (SIN), 1-130
Square root (SQR), 1-61
Summary, 1-144
Tabulate (TAB), 1-86
Tangent (TAN), 1-130
Truncation (FIX), 5-9, 6-8, 9-24

BASIC statements
CHAIN, 4-6, 6-15, 7-6, 8-4, 9-37
CHAIN$,6-18
CHANGE, 9-34
CLOSE, 6-20, 9-42, 9-46
DATA, 1-32
DEF, 1-131
DIM, 1-114, 5-7, 8-3
END, 1-5, 1-7
FOR, 1-45 STEP clause, 1-50
GET,9-40
GOSUB, 1-105
GO TO, 1-30
IF GO to, 1-136
IF THEN, 1-79, 5-8, 6-5, 8-3
INPUT,. 1-26, 2-4, 3-5, 4-9, 5-6
INPUT #, 6-20
LET, 1-23, 1-40
LINPUT, 6-10, 9-32
LPRINT, 9-47
NEXT,I-45
ON GOSUB, 5-10, 6-6, 8-3
ON GO TO, 5-10, 6-6,8-3, 9-24
OPEN, 6-18, 6-20, 9-40, 9-44,

ELSE clause, 9-45
PRINT, 1-5, 1-11, 1-12, 1-18
PRINT#, 6-19
PUT,9-40
RANDOMIZE, 4-3, 5-11, 6-7, 7-5
READ, 1-32
RECORD, 9-39, 9-43
REMARK, 1-113, 5-6,.9-25
RESTORE, 1-'36
RESTORE *, 9-30
RESTORE$, 9-30
RETURN,1-105
SLEEP, 9-24
STOP, 1-105

Index-2

Summary, 1-134 through 1-138
WRITE, 4-8, 7-7

BASIC summaries
EduSystem 5,2-11
EduSystem 10, 3-5
EduSystem 15,4-26
EduSystem 20, 5-2
EduSystem 25, 6-23
EduSystem 30,7-2
EduSystem 40,8-4
EduSystem 50, 9-56

BASIC template, 7-21
BATCH command, 7-29, 7-31,7-33
Batch system, 8-3
control cards summary, 8-8, 8-9
errors, 7-34
operation, 7-29
program loading errors, 8-12

Binary: Pertaining· to the number
system with a radix of two.

Binary code: A code that makes use
of exactly two distinct characters, ° and 1.

BIN format file transfers, 9-159
Bit: A binary digit. In the PDP-8

computers, each word is composed
of 12 bits.

Block: A set of consecutive machine
words, characters, or digits han­
dled as a unit, particularly with
reference to I/O.

Bootstrap: A technique or device
designed to bring a program into
the computer from the input de­
vice.

Branch: A point in a routine where
one of two or more choices is
made under control of the routine.

Buffer: A storage area.
Bug: A mistake in the design or im­

plementation of a program.
Building EduSystem 40 on disk, 8-16
Byte: A group of binary digits usu­

.ally operated upon as a unit.

C
Call: To transfer control to a speci­

fied routine.
Card program, EduSystem 30, 7-18
editing, 7-27
execution, 7-29

loading, 7-13
running, 7-23
writing, 7-18
summary, 7-24

Cards
DATA,7-26
KEY, 7-27
LIST, 7-24, 7-26
MSG,7-28
NEW, 7-23, 7-26
OLD, 7-23, 7-26
OPR,7-27
RUN, 7-24, 7-26

CATALOG ·command
EduSystem 15,4-5
EduSystem 25, 6-15
EduSystem 30,7-16
EduSystem 50, 9-29

CAT function, EduSystem 25, 6-13
CATALOG program, 9-153
Chained program: A program that

has been broken into more than
one piece.

CHAIN statement
EduSystem 15,4-6
EduSystem 25, 6-15
EduSystem 30,7-6
EduSystem 50, 9-37

CHANGE statement, EduSystem 50,
9-34

Character: A single letter, numeral,
or symbol used to represent infor­
mation.

Character codes, ASCII, B-1
Character-handling feature, 8-4
Character set, FORTRAN-D, 9-100
Character variables

EduSystem 15,4-8
EduSystem 30, 7-8

Check Status (CKS), 9-197
CHR$ function,

EduSystem 15,4-10
EduSystem 20, 5-9
EduSystem 25, 6-11
EduSystem 30,7-9
EduSystem 50, 9-36

Close a File (CLOS), 9-187
CLOSE statement

EduSystem 25, 6-20
EduSystem 50, 9-42, 9-46

Codes, device, 6-33

Index-3

Coding: Instructions written for a
computer using symbols meaning­
ful to the -computer or to an as­
sembler, compiler, or other lan­
guageprocessor.

Coding errors
EduSystem 15,4-13
EduSystem 30, 7-36, 8-13 to 8-15

Command: A user order to a com­
puter system, usually given through
a Teletype keyboard.

Commands, see specific program or
system

Commands, privileged, 7-14
Comments, EduSystem 50, 9-25
Comment statements, FORTRAN-D,

9-99
Compile: To produce a binary-coded

program from a program written
in source (symbolic) language, by
selecting appropriate subroutines
from a subroutine library, as di­
rected by the instructions or other
symbols of the source program.
The linkage is supplied for com­
bining the subroutines into ',a
workable program, and the sub­
routine and linkage are translated
into binary code. .

COMPILE command, EduSystem
50,9-27

Compiler: A program which trans­
lates statements and formulas
written in a source language into
a machine language program, e.g.,
a FORTRAN compiler. Usually
generates more than one machine
instruction for each statement.

Concatenation, EduSystem 25, 6-13
Console (CON), 9-199
Console I/O, EduSystem 50, 9-180
Constants, FORTRAN-D, 9-100
CON:rINUE command, FOCAL, 9-

74
CONTINUE statement, FORTRAN­

D,9-117
Continuation character, FORTRAN-

D,9-98
. Control characters, FOCAL, 9-87
Control commands, FOCAL, 9-68
COpy program, EduSystem 50, 9;..

161

calling, 9-162
option summary, 9-165

Core memory: The main high-speed
storage of a computer in which
binary data is represented by the
switching polarity of magnetic
cores.

Core partitioning, EduSystem 25,
6-33 ,

Cosine function (FCOS), FOCAL,
9-83

Create a File (CRF), 9-185
CREATE command, EduSystem 50,

9-170

D

Data: A -general term used to de­
note any or' all facts, numbers,
letters, and symbols. It connotes
basic elements of information
'which can be processed or pro­
duced by a computer.

DATA cards, 7-26
Data files

DECtape, EduSystem 50, 9-43
disk, EduSystem 50,.9-38
EduSystem 30, 7-6, 8-4
storage retrieval, EduSystem 25, 6-

18
tape, EduSystem 25,6-37

Data formats, FORTRAN-D, 9-119
DATA statements, BASIC, 1-32
Date (DATE), 9-200
Debug: To detect, locate, and cor­

rect mistakes in a program.
Debugging

FOCAL, 9-81
with ODT, 9-150

DECdisk initialization, 8-16
DECtape data files, EduSystem 50,

9-43
with OS/8 FORTRAN, 9-46

DECtape file protection, 6-39
DECtape files loaded with COPY,

9-162
DECtape unit loading, EduSystem

15,4-17
DEFINE DISK statement, FOR":

TRAN-D, 9-121
DEF statement, BASIC, 1-131
DELETE command

·Index-4

EduSystem 20,5-15
EduSystem 25,6-29

Deleting
disk files, 9-160
files with COPY, 9-164

Device codes, 6-33
Devices, assignable, EduSystem 50,

9-190
Digit: A character used to represent

one of the non-negative integers
smaller than the radix, e.g., in
binary notation, either 0 or 1.

Digital computer: A device that op­
.. erates on discrete data, perform­

ing sequences of ,arithmetic and
logical operationS' on this data.

DIMENSION statement, FOR-
TRAN-D, 9-104

DIM statement, BASIC, 1-114
Disk data files, EduSystem 50, 9-38,

9-169 to 9-171
Disk I/O, EduSystem 50, 9-183
Disk to paper tape transfers, 9-158
Dollar sign ($) preceding variable

name, 7-8, 8-4
DO command, FOCAL, 9-71
DO statement, FORTRAN-D, 9-115
Double subscripts, FORTRAN-D;

9-128
Dummy: Used as an adjective to in­

dicate an artificial address, instruc­
tion, or record of information in­
serted solely to fulfill· prescribed
conditions, as in "dummy" vari­
able. E.g., in the BASIC function
·RND(x) where x has no signifi­
cance.

. Duplex (DUP), 9-182

E

ECHO command
EduSystem 15, 4-26
EduSystem 30, 7-14

Edit and control commands, BASIC,
1-139

EDIT eommand,
EduSystem 20, 5-15
EduSystem 25, 6-29
EduSystem 40, 8-2
EduSystem 50, 9-26

Edit commands, FOCAL, 9-75

Editor, symbolic, EduSystem 50. 9-
145

EDIT program, EduSystem 50, 9-
145

EduSystem: A combination of sys­
tem components and instructional
materials designed specifically for
classroom use.

EduSystem 5, 2-1
BASIC language capabilities, 2·2
error messages, 2-6
operating instructions, 2-6
program editing, 2-6

EduSystem 10, 3-1
BASIC language capabilities, 3·2
error messages, 3-7
operating instructions, 3-9
program editing, 3-6

EduSystem 15,4-1
advanced system capabilities, 4··6
BASIC language capabilities. 4 .. 2
error messages, 4-12
operating instructions, 4-16
program editing, 4-11

EduSystem 20, 5-1
BASIC language capabilities, 5··2
error messages, 5-12
operating instructions, 5-16
program editing, 5-14

EduSystem 25, 6-1
BASIC language capabilities, 6-2
error messages, 6-26
extended system capabilities, 6-8
operating instructions, 6-31
program editing, 6-28

EduSystem 30, 7-1
BASIC language capabilities. 7-2
card program execution, 7-29
card programs, writing and run-

ning, 7-18
error messages, 7 .. 34
interactive terminal, 7-11
operating instructions. 7-38

EduSystem 40, 8-1
BASIC language capabilities, &-2
error message summaries, 8-10
language summaries, 8-4
loading and operating instructions,

8-16
EduSystem 50, 9-1

BASIC language capabilities, 9-23
FOCAL language capabilities, 9-61

Index-5

FORTRAN-D language capabili-
ties, 9-95

internal character set, 9-192
lOT instruction summary, 9-202
Monitor, 9-4
Monitor command summary, C-l
storage allocation, 9-205
symbol list, 9-139
system expansion, 9-4
system library programs, 9-17

EduSystem 50 Monitor commands
ASSIGN, 9-13
CLOSE, 9-170
CREATE,9-170
LOAD, 9-175, 9-177

. LOGIN, 9-6
~OGOUT, 9-8
OPEN,9-170
R (Run), 9-177
RELEASE, 9-15
SAVE, 9-·174
SYSTAT,9-12
TALK,9-11
TIME,9-12

EduSystem 50 system library pro-
grams

BASIC, 9-23
CAT,9-153
COPY, 9-162
EDIT,9-145
FOCAL,9-61
FORTRAN-D, 9-95
LOADER, 9-149
ODT,9-151
PAL-D,9-137
PIP, 9-157
SYSTAT (System status), 9-154

EduSystem 55, 9-3
Edutest, EduSystem 30-40, 0-1
data file layout, D-39
error messages, 0-10
modification, 0-8
operating instructions, 0-5
programs, D-13

E (exponential) format spedfica­
tion, FORTRAN-D, 9-126

END statement
BASIC, 1-5, 1-7
FORTRAN-D, 9-111

ERASE ALL command, FOCAL,
9-76

ERASE command, FOCAL, 9-76

Error checking; FORTRAN-D, 9-
130

Error diagnostics,
FOCAL, 9-81 .
FORTRAN-D. 9-133
PAL-D, 9-142

Error messages
BASIC, EduSystem 50, 9-51
Batch mode program loading, 8-12
EduSystem 5, 2-5
EduSystem 10, 3-7
EduSystem 15,4-12
EduSystem 20, 5-12, 8-10, 8-11, 8-

15,8-16
EduSystem 30, 7-34, 8-12 through

8-15
FOCAL,9-93
interactive mode program loading,

8-13
Execute: To carry out an instruc­

tion or run a program on the
computer.

Exponential function
EXP, BASIC, 1-128
EXPF, FORTRAN-D, 9-111
FEXP, FOCAL, 9-84

Exponents, BASIC, 1-19
Expressions, variable, BASIC, 1-24
Extend a File (EXT), 9-185
Extended system capabilities, Edu-

System 25, 6"'8

F

File: A collection of related records
treated as a unit.

File characteristics, EduSystem 50,
9-18

File deletion with COPY, 9-164
File directories, EduSystem 50, 9-

205
File Information (FINF), 9-190
FILELOG· command, EduSystem 25,

6-21
Filename: Alphanumeric characters

used to identify a partic:ular file.
Filename extension: A short append­

age to the filename used to iden­
tify the type of data in the file;
e.g., BIN, signifying a binary pro­
gram.

Filename extension, 6-14

Index-6

File protection, EduSystem 50, 9-27
Files, disk, EduSystem 50, 9-170
Files and disk I/O, EduSystem 50,

9-183
Files also see "DECtape" and "Disk"
File' transfers

BASIC, 9-160
BIN format, 9-159,
disk files, 9-159

FIX function, EduSystem 20, 5-9
Floating point: A form of number

representation in which quanti­
. ties are represented by a number

multiplied by the number base
raised to a power.

Floating point numerals, BASIC, 1-15
Flowchart: A graphical representa­

tion of the operations required to
carry out a data processing opera­
tion ..

Flowchart, 1-65
FOR-NEXT loops, 1-71

FOCAL, 9-61, 9-62
arithmetic operations, 9-64
calling, 9-61
computational command, 9-68
control commands, 9-68
debugging, 9-81
edit commands, 9-75
error messages, 9-93
functions, 9-82, 9-92
110 commands, 9-66
library commands, 9-78
output operations, 9-86
paper tape reading, 9-88
program length, 9-80

FOCAL commands
ASK,9-67
CONTINUE,9-74
00,9-71
ERASE,9-76
ERASE ALL, 9-76
FOR,9-72
GO,9-68
GO TO, 9-69
IF,9-69
LIBRARY CALL, 9-78
LIBRARY DELETE, 9-79
LIBRARY SAVE, 9-78
MODIFY, 9-76
QUIT,9-72
RETURN,9-72

SET,9-68
summary, 9-90
TYPE,9-66
WRITE, 9-74, 9-75
WRITE ALL, 9-75

FOCAL functions
absolute value (F ASS). 9-85
arctangent (FATN). 9-84
cosine (FCDS). 9-83
exponential (FEXP). 9-84
integer part (FITR), 9-86
logarithm (FLOG), 9-84
random number (FRAN). 9-86
sign part (FSGN). 9-85
sine (FSIN), 9-83
square root (FSQT), 9-85

FOR command, FOCAL, 9-72
Format: The arrangement of data.
Format control specifications, FOR-

TRAN-D,9-127
FOR-NEXT loop, BASIC, 1-45
in flowcharts, 1-71

FOR statement, 1-45
FORTRAN-D, 9-95

arithmetic, 9- i 05
calling, 9-95
error diagnostics, 9-133
I/O, 9-118
line format, 9-97
program control, 9-111
service program restrictions, 9-131
statements, 9-99

FORTRAN-D functions, 9-110
FORTRAN-D statements
ACCEPT,9-120
CONTINUE, 9-117
DEFINE DISK, 9-121
DIMENSION, 9-104' .
DO, 9-115
GO TO, 9-112
IF,9-113
IND,9-111
PAUSE, 9-112
READ, 9-121
STOP, 9-111
TYPE,9-120
WRITE, 9-121

Functions
BASIC, 1-57, 1-128 to 1-130, 1-144
FOCAL, 9-82, 9-92
FORTRAN-D, 9-110
see also the specific program

Index-7

G
GET statement, EduSystem 50, 9-40
GO command, FOCAL, 9-68
GOSUB statement, BASIC, 1-105
GO TO command, FOCAL, 9-69
GO TO statement

BASIC, 1-30
FORTRAN-D, 9-112

H
Halt (HLT), 9-196

, Hardware: Physical equipment; e.g.,
mechanical, electrical, or elec­
tronic devices.

HEADER command, 7-32
Heading, BASIC program to print,

1-37
_ High-speed paper tape reader/punch,

7-50
High-speed reader/punch assign­

ments, 9-158
Hollerith ,output, FORTRAN D,

9-127

I
IF command, FOCAL, 9-69
IF statement
BASIC, 1-79
FORTRAN-D,9-113

IF THEN statement
EduSystem 20,5-8, 8-3
EduSystem 25,6-5 _

I (integer) format specification,
FORTRAN-D, 9-125, 9-126

Immediate mode
EduSystem 5, 2-3
EduSystem 10, 3-3
EduSystem 20, 5-5
EduSystem 25, 6-3

Initializing the DECdisk, EduSys-
tern 40, 8-16

Input formats, FORTRAN-D, 9-125
INPUT statement, BASIC, 1-26
INPUT # statement, EduSystem 25,

6-20
Input/Output commands, FOCAL,

9-66
Input/Output, FORTRAN-D, 9-118,

9-119
Input/Output statements, variable

-specification in,FORTRAN-D,
9-121

Instruction: A command which
causes the computer or system to
perform an operation. Usually one
line of a source program.

Integer (INT) function, BASIC,
1-57, 1-58 '

Integer part function (FITR), FO­
CAL,·9-85

Interactive mode program loading
errors, EduSystem 30, 7:35, 8-12,
8-13

Interactive terminal,' EduSystem 30,
7-11

Internal character set, EduSystem
50, 9-192

Internal data codes, Edu8ystem 50,
·9-48

I/O, see Input/output
lOT instruction summary, EduSys­

tern 50, 9-202

J

Jump: A departure from the normal
sequence of executing instructions
in a computer.

K

K: An ,abbreviation for the prefix
kilo, i.e., 1000 in decimal nota­
tion.

Keyboard, Teletype, 1-3
KEY card, 7-27
KEY command, EduSystem 30, 7-51
KILL command, EduSystem 25, 6-22

L

Language, assembly: The machine
oriented programming language
used by an assembly system, e.g.,
PAL-D.

Language capabilities, BASIC
EduSystem 5, 2-2
EduSystem 10, 3-2
EduSystem 15,4-2
EduSystem 20,5'-2
EduSystem 25, 6-2
EduSystem 30, 7-2
EduSystem 40, 802
EduSystem 50, 9-23

Index-8

Language, computer: A systematic
means of communicating instruc­
tions and information to the com­
puter.

Language, machine: Information that
can be directly processed by the
computer, expressed in binary no­
tation.

Language, source: A computer lan­
guage such as FOCAL, in which
programs are written and which
requires extensive translation in
order to be executed by the com­
puter.

LEN function, EduSystem 25, 6-13
, LENGTH command, BASIC

EduSystem 15,4-6
, EduSystem 30,7-16

LET statement, BASIC, 1-23, 1-40
LIBRA~Y CALL command, FO­

CAL,9-78
Library commands, FOCAL, 9-78
LIBRARY DELETE command, FO­

CAL,9-78
LIBRARY LIST command, FOCAL,

9-79
LIBRARY SAVE command, FO­

CAL, 9-78
Line format, FORTRAN-D, 9,-97
Line number: In' source languages

such as FOCAL, BASIC, and
FORTRAN, a number which be­
gins a line of the source program
for purposes of identification.

Line numbers, BASIC, 1-7
LIN PUT statement .

EduSystem 25, 6-10
EduSystem 50, 9-32

LIST card, 7-24
LIST command, BASIC, 1-6
Listing directories with COPY, 9-163
LISTNH command, EduSystem 15,

4-3
EduSystem 15,4-3
EduSystem 30, 7-13

LLIST statement, EduSystem 50, 9-
47

LOAD command, EduSystem 50, 9-
175

LOADER program, EduSystem 50,
9-149 .

Loading files from DECtape with

COPY, 9-162
Loading the system

EduSystem 15,4-16
EduSystem 20, 5-16
EduSystem 25, 6-31
EduSystem 30, 7-38
EduSystem 40, 8-16

Load Punch Buffer Sequence (PLS),
9-193

Load Status Register A (DTXA),
9-194

Load Teleprinter Sequence JTLS),
9-181 .

Location: A place in storage or
memory where a unit of data or
an instruction may; be stored.

Location, BASIC, 1-20
Logarithm function (FLOG) , FO-

CAL,9-84
LOG command, EduSystem 30, 7-33
LOG function, BASIC, 1-128
LOGIN command, EduSystem 50,

9-6
LOGOUT command, EduSystem 50,

9-8 •
LOGOUT option&, EduSystem 50,

9-10
Loop: A sequence of instructions

that is executed repeatedly until a
terminal condition prevails.

Loops, BASIC, 1-39, 1:-71
nested, 1-56

LPRINT statement, EduSystem 50,
9-47

LPT command, EduSystem 30, 7-50
LP08 Line Printer, 7-50

M

Mark cards, 8-3
Mass storage: Pertaining toa device

such as disk or DECtape which
stores large amounts of data
readily accessible to the computer.

Mathematical expression, BASIC,
1-9

Matrix: A rectangular array of ele­
ments, Any table can be con­
sidered a matrix.

MAX command, 7-31
Memory:

1. The alterable storage in a com­
puter.

Index-9

1
2. Pertaining to a device in which

data can be stored and from
which it can be retrieved.

Messages, printing BASIC, 1-17
MID function, EduSystem 25, 6-12
MODIFY command, FOCAL, 9-76
Monitor: The master control pro-

gram that observes, supervises,
controls, or verifies the operation
of a system.

Monitor, 6-32
Monitor command summary, Edu­

System 50, C-1
Monitor, EduSystem 50, 9-4

calling, 9-4
error messages, 9-16
program control commands, 9;, 169
returning to, 9-23
utility commands, 9-177, 9-178

MSG card, 7-28
Multiple statements per line
EduSystem 5, 2-2
EduSystem 10, 3-2
EduSystem 20, 5-4
EduSystem 25,6-2
EduSystem 30, 7-12
EduSystem 50, 9-26

Multiuser BASIC, 8-3
Multiuser system
EduSystem 20, 5-1
EduSystem 25, 6-1

N
NAME command, BASIC
EduSystem 15,4-2
EduSystem 30, 7-16

Nested loops, BASIC, 1-56
Nesting:

1. Including a program loop
within another program loop.
Special rules apply to the nest­
ing of FORTRAN 0 DO
loops.

°2. Algebraic nesting, such as
(A+B*(C+D», where exe­
cution proceeds from the in­
nermost to the outermost level.

Nesting of DO loops, FORTRAN-D,
9-116

NEW card, 7-23, 6-26
NEW Command, BASIC

EduSystem 15,4-2
EduSystem25,6-13
EduSystem 30, 7-16

NEXT statement, BASIC, 1-45
NOLINE command, BASIC
EduSystem 15,4-6
EduSystem 30, 7-5

Numbers, FOCAL, 9-63
Numbers, random, 1-89
Numerals, floating point, BASIC,

1-15
Numerical expressions; BASIC, 1-9

o
Object program: The binary coded

program which is the ·output after
translation of a source language
program.

Octal: Pertaining to the number sys­
tem with a radix of eight.

Octal Debugging Technique (ODT),.
P AL-D, 9-150

command summary, 9-151
OLD card, EduSystem 30, 7-23,

7-26
OLD command, BASIC

EduSystem 15,4-5
EduSystem 25, 6-14
EduSystem 30; 7-16, 7-17
EduSystem 50, 9 23

ON GOSUB statement
EduSystem 20, 5-10, 8-3
EduSystem 25, 6-6

ON GOTO statement
EduSystem 20, 5-10, 8-3
EduSystem 25, 6-6
EduSystem 50, 9-24

Open a File (OPEN), EduSystem
. 50, 9-187
OPEN FOR INPUT statement, Edu­

System 25, 6-20
OPEN FOR OUTPUT statement,

EduSystem 25, 6-18
OPEN statement, EduSystem 50,

9-40, 9·44
Operand:

1. A quantity which is affected,
manipulated, or operated upon.

2. The· address, or symbolic
name, portion of an assembly
language instruction.

Index-tO

Operating instructions
EduSystem 5, 2-6
EduSystem 10, 3-8
EduSystem 15,4-16
EduSystem 20, 5-16
EduSystem 25, 6-31
EduSystem 30, 7-38
EduSystem 40, 8-16

Operators, FORTRAN·D arithmetic,
9-105

OPR card, 7-27
OR with Switch Register (OSR),

9-198
Optional hardware, EduSystem 30,

7-50
Output: Information transferred

from the internal storage of a
computer to output devices or ex­
ternal storage.

Output formats, FORTRAN-D, 9-
126

Output operations, FOCAL, 9-86

P

P AL-D Assembler, 9-137
calling, 9-137
error diagnostics, 9-142

Paper tapes
reading FOCAL, 9-88
storing/ reloading programs
EduSystem 5, 2-9
EduSystem 10, 3-11
EduSystem 15, 4-25
EduSystem 20, 5-21
EduSystem 25, 6-39
EduSystem 30, 7-14
EduSystem 50, 9-47

Paper tape to disk transfers. 9-157
PASSWORD command

EduSystem 15, 4-5
EduSystem 30,7-15

PAUSE statement, FORTRAN-D.
9-112

PDP-8 compatibility, EduSystem 50,
9-200

Peripheral equipment: In a data
processing system, any unit of
equipment distinct from the cen­
tral processing unit which may
provide the system with outside

storage or communication, e.g.,
DECtape.

Peripheral Interchange Program
(PIP),9-157

option summary, 9-161
PIP: The OS/8 Peripheral Inter­

change Program used to transfer -
files between devices, merge and
delete files, and Jist, zero, and
compress directories.

Possibility set, 1-92
Pound sign (£) feature
EduSystcm 15, 4-11
EduSystem 30, 7-10, 8-4

Printing messages, BASIC, 1-17
PRINT statement, BASIC, 1-15, 1-

11,1-12 \
PRINT statements, single character

EduSystem 5, 2-2
EduSystem 10, 3-2

PRINT # statement, EduSystem 25.
6-19

PRIVILEGE command
EduSystem 15, 4-4
EduSystem 30, 7-15

Privileged control commands
EduSystem 15,4-4
EduSystem 30, 7-14, 8-3

Program: The complete sequence of
instructions and routines necessary
to solve a problem.

Program and system status, Edu­
System 50, 9-197

Program control, EduSystem 50, 9-
195

Program editing,
EduSystem 5,2-5
EduSystem 10, 3-6
EduSystem 15,4-11
EduSystem 20, 5-14
EduSystem 25, 6-28
EduSystcm 30, 7-17

Program length, FOCAL 9-80
Program loading errors

EduSystem 15,4-12
EduSystem 30, 7-35

Program logic errors
EduSystem 15,4-15
EduSystem 30, 7-37, 8-15

Program storage/retrieval, EduSys­
tern 25, 6-13

Index-l1

Program storing procedures, ·Edu­
System 20, 5-21

Program-see also entries under spe­
cific program names

Project-Programmer numbers,. Edu­
System 50, 9-28, 9-206

. Protect a File (PROT), 9-186
Protecting DECtape files, EduSys­

tern 25, 6-39
Protection codes, EduSystem 50, 9-

171
Public data files, EduSystem 25,

6-22
Public library programs, EduSystem

25,6-17,6-37,6-38
Punched cardinput, 7-51
Punch String (PST), 9-194
PUT statement, EduSystem 50, 9-40

Q
Quantum Synchronization (SYN),

9-200
Queue: A waiting list. In time,.

sharing, the Monitor maintains a
queue of user programs waiting
for processing time.

QUIT command, FOCAL, 9-72

R
Radix: The base of a number sys­

tem, the number of digit symbols
required by a number system.

RANDOMIZE statement.
EduSystem 15,4-3
EduSystem 20, 5-11
EduSystem 25, 6-7
EduSystem 30, 7-5

Random number function (FRAN),
FOCAL,9-85

Random numbers, BASIC, 1-89
Reader Fetch Character (REC), 9-

194
Reader/punch assignments, high

speed,9-158
Read File (RFILE), 9-188
Read-in Mode (RIM) Loader, A-I
Read Keyboard Buffer (KRB), 9-

181
Read Reader Buffer (RRB), 9-191
Read Reader String (RRS}, 9-193
READ statement

BASIC, 1-32
FORTRAN-D,9-121

Read Status Register B (DTRB), 9-
195

Record:- A collection of related items
of data treated as a unit .

RECORD statement, EduSystem 50,
9-39,9-43

Reduce a File (RED), 9-186
RELEASE command, EduSystem

50, 9-15
Release Device (REL), 9-191
Reloading functions

EduSystem 5,.2-9
EduSystem 10, 3-11

REMARK statement, BASIC, 1-113
Rename a File (REN), 9-186
RENAME command, EduSystem 25,

6-14
RESEQUENCE command, EduSys­

tern 30, 7-18
Resource sharing, 9-12
Restarting system
EduSystem 5, 2-9
EduSystem 10, '3-11
EduSystem 15, 4-25
EduSystem 20, 5-21
EduSystem 25, 6-40
EduSystem 30, 7-48

RESTORE statement
BASIC, 1-36
EduSystem 50, 9-30

Restricted accounts, EduSystem 50,
9-28

Return Clock Rate (RCR), 9-199
RETURN command, FOCAL, 9-72

- RETURN key on Teletype, 1-5, 1-6
RETURN statement, BASIC, 1-105
RIM loader, A-I
RNO function, BASIC, 1-91
Rounding numbers, 1-128
Routine: A set of instructions ar­

ranged in proper sequence to·
cause the computer to perform a
desired task. A program or sub­
program.

Run: A single continuous execution
of a program.

R (RUN) command, EduSystem 50,
9-177

RUN card, 7-24, 7-26
RUN command, BASIC, 1-5

Index-12

RUN NH command
EduSystem 15,4-4
EduSystem 30, 7-13

S
SA VE command, BASIC

EduSystem 15,4-5
EduSystem 25,6-14
EduSystem 30, 7-16
EduSystem 50, 9-27

SA VE command, EduSystem 50
'Monitor, 9-174

SA VE format file transfers, 9-160
Saving disk files on DECtape with

COpy program, 9·,163
Scientific notation, 1-16

, SCRATGH command, BASIC, 1-5
Segment Count (SEGS), 9-199
Segment Size (SIZE), 9-198
Segment:

1. That part of a long program
which may be resident in core
at anyone time.

2. To divide a program into two
or more segments or to store
part of a routine on an ex­
ternal storage device to be
brought into core as needed.

3. A unit of disk storage under
EduSystem 50.

Semicolon usage in BASIC, 1-14
Send a String (SAS), 9-181
Set Buffer Control (SBC), 9-193
SET command, FOCAL, 9-68
Set Error Address (SEA), 9-196
Set Keyboard Break (KSB), 9-182
Set Restart Address (SRA), 9-196
Set Switch Register (SSW), 9-198
Set Time (STM), 9-200
SHIFT keys, Teletype, 1-4
Sign' part function (FSGN), FO­

CAL, 9-85
Sign (SGN) function, BASIC 1-129 '
Simulate: To reflresent the function

of a device, system, or program
with another device, system, or
program.

SINE function (FSIN), FOCAL,
9-83

Single character PRINT statement
EduSystem 5, 2-2
EduSystem 10, 3-2

Skin on EduSystem 50 (TSS), 9-200
Skip on Flags (DTSF), 9-195
Skip on Keyboard Flag (KSF), 9-

181
Skip on Punch Flag (PSF), 9·,193
Skip on Reader Flag (RSF), 9-191
SLEEP statement, EduSystem 50, 9-

25
Software: The collection of pro­

grams and rout~nes associated
with a computer.

Source language: see Language,
source.

Source program: A' computer pro­
gram written in a source lanl~uage.

Source program restrictions~ FOR­
TRAN-D,9-131

Square root (SQR) function, BASIC,
1-61

Square root function (FSQT), FO-
CAL,9-85

STACK command, 7-32, 7-33
Standard notation, 1-16
Starting EduSystem 40,8-20
Statement: An expression or instruc-

tion in a source language such as
BASIC.

Statement numbers, FORTRAN-D,
9-98

Statement summaries
BASIC, 1-134 to 1-143
EduSystem 5, 2-11
EduSystem 10, 3-5
EduSystem 15,4-26
EduSystem 20, 5-2
EduSystem 25, 6-23
EduSystem 30, 7-2
EduSystem 40, 8-4
EduSystem 50, 9-56 '
FORTRAN, 9~99, 9.;132
see also BASIC statements

FORTRAN7D statements
STEP clause, BASIC,' 1~50
String: A connected sequence of en­

tities such as characters in a com­
mand string.

String capability, . EduSystem 30, 7-8
String functions, EduSystem 25" 6-11
Strings in BASIC, EduSystem 50, 9-

29 '.
String variables, EduSystem 25, 6-8
STOP statement

Index-13

BASIC, 1-105
FORTRAN-D,9-111

Storage allocation: The assignment
of blocks of data and instructions
to specified blocks of storage.

Storage allocation, EduSystem 50,
9-205

Storage, calculating· available, Edu­
System 30, 7-52

Storage capability: The amount of
data that can be contained in a
storage device.

Storage device: A device in which
data can be entered, retained, and
retrieved.

Stored programs, EduSystem 30, 7-
26

Store: To enter data into a storage.
device.

Subroutine: A sequence of program
instructions that must be called
by another instruction in the pro­
gram.

Subroutines, BASIC, 1-105
Subscript: A number or set of num­

bers used to specify a particular
item in an array.

Subscripted variables
BASIC, 1-97
EduSystem 20, 5-7
FOCAL,9-73

SUbscript size limits, 8~3
Subscripts, variable, BASIC, 1-102
Substatement feature, FORTRAN-D,
. 9-129

Swapping: In EduSystem 50's time­
sharing environment, the action
of either temporarily bringing a
user program into core or storing
it on the system device.

Symbolic Editor: An EduSystem 50
library program which helps users
in the preparation and modifica­
tion of source language programs
by adding, changing, or deleting
lines of text.

Symbolic Editor, EduSystem 50, 9-
145

command summary, 9-147
operations summary, 9-146

Symbol list, EduSystem 50, 9-139
Symb~ls, Teletype, 1-3

Symbol table: A table in which sym­
bols and their corresponding
values are recorded.

System: A combination of software
and hardware which performs spe­
cific processing operations.

System building dialog
EduSystem 15,4-19
EduSystem 30, 7-39

SYST AT command, EduSystem 50,
9-12

SYSTAT,9-154
System components

EduSystem 5, 2-2
. EduSystem 10, 3-1
EduSystem 15,4-1
EduSystem 20, 5-1
EduSystem 25, 6-1
EduSystem 30, 7-1
EduSystem 40, 8-1

System configuration, EduSystem 50,
9-3

System dialog
EduSystem 20, 5-17
EduSystein 25, 6-32

System expansion
EduSystem 5, 2-2
EduSystem 10, 3-2
EduSystem 20, 5-2
EduSystem 25, 6-2
EduSystem 30, 7-2
EduSystem 40, 8-2
EduSystem 50,. 9-2

System library program control,
EduSystem 50,9-10

System library programs EduSystem
50,9-17,9-20

System reconfiguration,
EduSystem 20, 5-21
EduSystem 25, 6-40

System status reports, EduSystem 50,
9-12

System Status (SYSTAT) program,
9-154

System storage,· EduSystem 30, 7-15

T

TAB function, BASIC, 1-86
Table: A collection of data stored

for ease of reference, generally as
an array.

Index-14

TALK command, EduSystem 50, 9-
11

TAPE command
EduSystem 15,4-26
EduSystem 30, 7-14

TD8E DECtape unit loading, Edu-
System 15, 4-17

Teacher's Guide, EduTest, 0-1
Teletype, paper tape reader, 4-26
Teletype keyboard, 1-3
Terminal: A peripheral device in a

system through which data can
enter or leave the computer.

Terminal extensions, 6-35
Time-of-Day (TOO), 9-199
Timesharing: A method of allocat-

ing central processor time and
other computer resources to mul­
tiple users so that the computer,
in effect, processes a number of
programs simultaneously. EduSys­
tern 50 is a timesharing system.

Toggle: To use switches to enter
data into the computer memory.

Trace feature, FOCAL, 9-82
Tracing

a BASIC loop, 1-41
a BASIC program, 1:-22

Translate: To convert from one lan­
guage to another.

Truncation: The reduction of pre­
cision by dropping one or more
of the least significant digits; e.g.,
3.141592 truncated to four deci­
mal digits is 3.141.

Truncation function (FIX)
EduSystem 20, 5~9
EduSystem 25, 6-8
EduSystem 50, 9-24

TYPE command, FOCAL, 9-66
TYPE statement, FORTRAN-D, 9-

120

U
Unduplex (UNO), 9-183

. UNSA VE command,
EduSystem 15,4-5
EduSystem 25, 6-16

EduSystem 30, 7-14
EduSystem 50, 9-56

User files, EduSystem 50, 9-2
User program control, EduSystem

50, 9-168
User: Programmer or operator of

a computer.
User programs, EduSystem 50, 9-2

saving and restoring, 9-174
User Run Time (URT), 9-199
User (USE), 9-199
Utility programs, EduSystem 50, 9-

145

V
Variable: A symbol whose value

changes during execution of a
program.

Variable expressions, BASIC, 1-24
Variable FOR statement, BASIC,

1-52
Variable specification in I/O state-

ments, FORTRAN-D, 9-121
Variable subscr:,ipts, BASIC, 1-102
Variables, BASIC, 1-20
Variables, subscripted

BASIC, 1-97
EduSystem 20, 5-7
FOCAL,9-23
FORTRAN-D,9-102

W
Who (WHO), 9-199
Word: In tpe PDP-8, a 12-bit unit

of data which may be stored in
one addressable location.

Write: To transfer information from
core memory to a peripheral de­
vice or to auxiliary storage.

WRITE ALL command, FOCAL,
9-75

WRITE command, FOCAL, 9-74,
9-75

Write File (WFILE), 9-188
WRITE statement

EduSystem 15,4-8
EduSystem 30, 7-7
FORTRAN-D,9-121

Index-IS

.-__ ~" I

DIGI~AL EQUIPMENT CORPORAT10N, Maynard, Massachusetts, Telephone: (617) 897-5111 • ARIZONA, Phoenix • CALIFORNIA,
Sunnyvale, Santa Ana, Los Angeles, Oakland, San DIego and San Franclsoo (MountaIn View) • COLORADO, Denver. CONNECTICUT,
Meriden • DlSmlCT OF COLUMBIA, Washington (Riverdale, Md.) • FLORIDA, Orlando • GEORGIA, Atlanta • ILLINOIS, Chicago
• INDIANA. Indianapolis • LOUISIANA, New Orleans • MASSACHUSETTS, Cambridge and Waltham • MICHIGAN, Ann Arbor and
Detroit (Southfield) MINNESOTA, Minneapolis MISSOURI, SI. Louis • NEW JERSEY, Englewood, Metuchen, Parsippany
and Princeton' NEW MEXICO, Albuquerque • NEW YORK, Centereach (LI.), Manhattan, Syracuse and Rochester • NORTH
CAROLINA, Durham/Chapel Hili • OHIO, Cleveland and Dayton • OKLAHOMA, Tulsa • OREGON, Portland • PENNSYLVANIA,
Philadelphia lind Pittsburgh • TENNESSEE, Knoxville • TEXAS, Dallas and Houston • UTAH, Salt lake City • WASHINGTON,
Seattle • WISCONSIN, Milwaukee • ARGENT1NA, Buenos Aires • AUSmALlA, Adelaide, Brisbane, Melbourne, P6rlh and Sydney
• AUSmlA, Vienna • BELGIUM, Brussels • BRAZIL, Rio de Janeiro, Siio Paulo and Porto Alegre • CANADA, Clligary, Alberta;
Vancouver, British Columbia; Ottawa and Toronto, Ontario; and Montreal, Quebec CHILE, Santiago • DElli MARK, Copenhagen

FRANCE, Grenoble and PariS • GERMANY, Cologne, Hannover, Frankfurt, Munich and Stuttgart • INDt A, Ekri'rIblJy • ITALY,
Milan • JAPAN, Tokyo • MEXICO, Mexico City • NETHERLANDS, The Hague • NEW ZEALAND, Auckland • NORWAY, Oslo •
PHILIPPINES, Manila • PUERTO RICO, Miramar • SPAIN, Barcelona and Madrid • SWEDEN, Stockholm • SWITZERLAND,
Geneva and Zurich UNITED KINGDOM, Birmingham, Edinburgh, London, Manchester and Reading • VENEZUElA, Caracas

083 .00173 .2306
H-09-25

Printed ir U.S.A.

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	9-001
	9-002
	9-003
	9-004
	9-005
	9-006
	9-007
	9-008
	9-009
	9-010
	9-011
	9-012
	9-013
	9-014
	9-015
	9-016
	9-017
	9-018
	9-019
	9-020
	9-021
	9-022
	9-023
	9-024
	9-025
	9-026
	9-027
	9-028
	9-029
	9-030
	9-031
	9-032
	9-033
	9-034
	9-035
	9-036
	9-037
	9-038
	9-039
	9-040
	9-041
	9-042
	9-043
	9-044
	9-045
	9-046
	9-047
	9-048
	9-049
	9-050
	9-051
	9-052
	9-053
	9-054
	9-055
	9-056
	9-057
	9-058
	9-059
	9-060
	9-061
	9-062
	9-063
	9-064
	9-065
	9-066
	9-067
	9-068
	9-069
	9-070
	9-071
	9-072
	9-073
	9-074
	9-075
	9-076
	9-077
	9-078
	9-079
	9-080
	9-081
	9-082
	9-083
	9-084
	9-085
	9-086
	9-087
	9-088
	9-089
	9-090
	9-091
	9-092
	9-093
	9-094
	9-095
	9-096
	9-097
	9-098
	9-099
	9-100
	9-101
	9-102
	9-103
	9-104
	9-105
	9-106
	9-107
	9-108
	9-109
	9-110
	9-111
	9-112
	9-113
	9-114
	9-115
	9-116
	9-117
	9-118
	9-119
	9-120
	9-121
	9-122
	9-123
	9-124
	9-125
	9-126
	9-127
	9-128
	9-129
	9-130
	9-131
	9-132
	9-133
	9-134
	9-135
	9-136
	9-137
	9-138
	9-139
	9-140
	9-141
	9-142
	9-143
	9-144
	9-145
	9-146
	9-147
	9-148
	9-149
	9-150
	9-151
	9-152
	9-153
	9-154
	9-155
	9-156
	9-157
	9-158
	9-159
	9-160
	9-161
	9-162
	9-163
	9-164
	9-165
	9-166
	9-167
	9-168
	9-169
	9-170
	9-171
	9-172
	9-173
	9-174
	9-175
	9-176
	9-177
	9-178
	9-179
	9-180
	9-181
	9-182
	9-183
	9-184
	9-185
	9-186
	9-187
	9-188
	9-189
	9-190
	9-191
	9-192
	9-193
	9-194
	9-195
	9-196
	9-197
	9-198
	9-199
	9-200
	9-201
	9-202
	9-203
	9-204
	9-205
	9-206
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	D-35
	D-36
	D-37
	D-38
	D-39
	D-40
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	zBack

