
08/8
System Reference Manual

Order No. AA-H607A-TA

ABSTRACT

This document describes 05/8 system conventions,
keyboard commands, and utility programs.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes sections of 05/8 Handbook
(DEC-S8-0SHBA-A-DI and the 05/8 Handbook
Update (DEC-S8-0SHBA-A-DN41.

OPERATING SYSTEM AND VERSION: OS/8V3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DEC net lAS PDT
DATATRIEVE TRAX

CONTENTS

DOCUMENTATION SET FOR OS/8

CHAPTER 1

1.1
1.2
1.3
1.4

CHAPTER 2

2.1
2.2
2.3

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.1.1

3.3.1.2

3.3.1.3

3.3.2
3.3.3

3.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.7
3.8
3.9

3.10
3.10.1
3.10.2
3.11
3.12
3.13
3.14
3.15
3.15.1
3.15.2

OVERVIEW

INTRODUCTION TO OS/8
OS/8 I/O DEVICES
HARDWARE CONFIGURATIONS
SYSTEM SOFTWARE COMPONENTS

SYSTEM CONVENTIONS

PERMANENT DEVICE NAMES
FILE NAMES AND EXTENSIONS
UNITS OF STORAGE

OS/8 KEYBOARD COMMANDS

INTRODUCTION
COMMAND FORMAT
COMMAND AND FILE OPTIONS

Command Options
The Slash Construction -- Single-Letter
Options
The Parenthesis Construction -- Mu1tip1e
Letter Options
The Equal Sign Construction -- Octal
Number Options
File Options
Additional Switch Options -- the Dash
Construction

COMMANDS THAT REMEMBER FILE SPECIFICATIONS
USING WILDCARDS

Wildcards in Input Filenames
Wildcards in ,Output Specifications
Warnings and Suggestions

INDIRECT COMMANDS
USING DEFAULTS
GETTING HELP -- THE HELP COMMAND
ENTERING A COMMAND LINE -- CORRECTING AND
PREVENTING ERRORS
ASSIGN

Canceling a Logical Name
Checking for Duplicate Names

BACKSPACE
BASIC
BOOT
CCL
COMPARE

COMPARE Output
COMPARE Options

iii

Page

xiii

1-1

1-1
1-2
1-3
1-4

2-1

2-1
2-2
2-4

3-1

3-1
3-4
3-4
3-5

3-5

3-5

3-5
3-5

3-6
3-6

- 3-7
3-7
3-7
3-8
3-8
3-9
3-9

3-10
3-11
3-11
3-11
3-12
3-13
3-14
3-15
3-16
3-16
3-17

3.16
3.16.1
3.16.2
3.16.2.1
3.16.2.2
3.16.2.3
3.17
3.17.1
3.17.2
3.17.3
3.17.4
3.17.5
3.18
3.19
3.19.1
3.20
3.21
3.22
3.22.1
3.22.2
3.22.3
3.23
3.23.1
3.23.2
3.24
3.25
3.25.1
3.26
3.27
3.28
3.29
3.30
3.30.1
3.31
3.32
3.33
3.33.1
3.33.2
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.41.1
3.42
3.43
3.44
3.45
3.45.1
3.46
3.47
3.48
3.49
3.50

CONTENTS (Cont •)

COMPILE
COMPILE Input
COMPILE Output
Output File 1 -- the Binary Code
Output File 2 -- the Listing File
COMPILE Options and Errors

COpy
COpy Input
COpy Output
COpy Terminal Display
Predeletion and Postdeletion
COpy Options

CREATE
CREF

CREF Options
DATE
DEASSIGN
DELETE

The Conditional DELETE
DELETE Terminal Display
DELETE Options

DIRECT
DIRECT Output
DIRECT Options

DUPLICATE
EDIT

Recalling Arguments
EOF
EXECUTE
GET
HELP
LIST

LIST Options
LOAD
t-1AKE
MAP

MAP Output
MAP Options

MEMORY
MUNG
ODT
PAL
PRINT
PUNCH
R
RENAME

RENAME Options
RES
REWIND
RUN
SAVE

The Job Status Word
SET
SKIP
START
SQUISH
SUBMIT

iv

Page

3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-22
3-22
3-23
3-23
3-24
3-25
3-25
3-26
3-27
3-28
3-28
3-29
3-29
3-30
3-30
3-30
3-32
3-33
3-33
3-34
3-35
3-36
3-37
3-38
3-38
3-39
3-40
3-41
3-41
3-41
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60

3.51
3.52
3.53
3.53.1
3.54
3.55
3.56
3.57

CHAPTER 4

4.1
4.2
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.4
4.4.1
4.4.2
4.4.2.1
4.4.2.2
4.5
4.6
4.7

CHAPTER 5

5.1
5.2
5.3

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5
6.6
6.7
6.8

CONTENTS (Cont.)

TECO
TERMINATE
TYPE

TYPE Options
UA, UB, and UC
UNLOAD
VERSION
ZERO

THE OS/8 SYMBOLIC EDITOR

INTRODUCTION
CALLING THE EDITOR
MODES OF OPERATION

Text Mode
Command Mode
Input Commands
Listing commands
Output commands
Editing Commands
Search Commands
Special Command Mode Characters

SEARCHING A TEXT
Single-Character Search -- the S Command
The Character String Search
Intrabuffer String Search
Interbuffer String Search -- J Command

EDITOR OPTIONS
EDITOR ERROR MESSAGES
SUMMARY OF EDITOR COMMANDS AND SPECIAL
CHARACTERS

THE COMMAND DECODER

ENTERING I/O SPECIFICATIONS
COMMAND DECODER ERROR MESSAGES
THE CCL AND THE COMMAND DECODER

BATCH

INTRODUCTION
BATCH PROCESSING UNDER OS/8

Input Files
Output Files
I/O Devices
Spooling
Entering File Specifications

BATCH MONITOR COMMANDS
Defining a BATCH Job
Using OS/8 Keyboard Commands
Using the Command Decoder
Additional Features

THE BATCH INPUT FILE
BATCH ERROR MESSAGES
RUNNING BATCH FROM PUNCHED CARDS
RESTRICTIONS UNDER OS/8 BATCH
BATCH DEMONSTRATION PROGRAM

v

Page

3-61
3-62
3-63
3-63
3-64
3-65
3-66
3-67

4-1

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-6
4-8
4-9
4-10
4-12
4-12
4-13
4-13
4-16
4-17
4-18

4-19

5-1

5-1
5-3
5-3

6-1

6-1
6-1
6-2
6-2
6-2
6-2
6-2
6-4
6-4
6-5
6-6
6-6
6-7
6-9
6-11
6-12
6-13

6.9
6.10

6.11

6.12

CHAPTER 7

7.1
7.2
7.3
7.4

CHAPTER 8

8.1
8.2

CHAPTER 9

9.1
9.1.1
9.1. 2
9.2
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.3.12
9.3.13
9.3.14
9.3.15
9.3.16
9.3.17
9.3.18
9.3.19
9.3.20
9.4
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.6

CHAPTER 10

CONTENTS (Cont.)

LOADING AND SAVING BATCH
LOADING AND SAVING PROGRAMS FOR USE UNDER
BATCH
TRANSFERRING THE SYSTEM SOFTWARE FROM
CASSETTE TO THE SYSTEM DEVICE
RUNNING FORTRAN IV UNDER BATCH IN 32K

BITMAP

FILE AND DEVICE SPECIFICATIONS
BITMAP OUTPUT
BITMAP ERROR MESSAGES
ASSEMBLY INSTRUCTIONS

BOOT

BOOTING WITH BOOT
BOOT PRIORITIES

BUILD

OS/8 DEVICE HANDLERS
Cassette Systems
Paper Tape Systems

CALLING AND USING BUILD
BUILD COMMANDS

The Hyphen Construction
PRINT
QLIST
LOAD
INSERT
DELETE
REPLACE
UNLOAD
NAME
ALTER
EXAMINE
DSK
CORE
DCB
CTL
VERSION
SIZE
SYSTEM
BUILD
BOOTSTRAP

BUILD ERROR MESSAGES
BUILD DEVICE HANDLER FORMAT

Header Block
Descriptor Block
Breakdown of DCB Word
Entry Point Offset

CREATING A SYSTEM HANDLER

CASSETTE AND MAGNETIC TAPE POSITIONER
(CAMP)

vi

Page

6-18

6-18

6-19
6-21

7-1

7-1
7-2
7-3
7-3

8-1

8-1
8-2

9-1

9-1
9-3
9-3
9-6
9-7
9-8
9-8
9-9
9-9
9-10
9-11
9-12
9-13
9-13
9-14
9-15
9-15
9-16
9-16
9-17
9-17
9-17
9-17
9-18
9-19
9-20
9-21
9-22
9-22
9-23
9-24
9-25

10-1

CONTENTS (Cont.)

Page

10.1 CAMP COMMANDS 10-1
10.1.1 BACKSPACE Command 10-1
10.1. 2 EOF Command 10-2
10.1.3 HELP Command 10-2
10.1. 4 REWIND Command 10-3
10.1. 5 SKIP Command 10-3
10.1. 6 UNLOAD command 10-4
10.1. 7 VERSION Command 10-4
10.2 CAMP ERROR MESSAGE SUMMARY 10-5

CHAPTER 11 CROSS-REFERENCE PROGRAM (CREF) 11-1

11.1 CALLING AND USING CREF 11-1
11.1.1 CREF Options 11-1
11.1.2 Examples of CREF Usage 11-2
11.2 PSEUDO-OP HANDLING 11-3
11.3 INTERPRETING CREF OUTPUT 11-3
11.4 RESTRICTIONS 11-5
11.5 CREF ERROR MESSAGES 11-6

CHAPTER 12 DIRECT 12-1

12.1 CALLING AND USING DIRECT 12-1
12.1.1 DIRECT options 12-2
12.2 DIRECT EXAMPLES 12-3
12.3 DIRECT ERROR MESSAGES 12-5

CHAPTER 13 DECTAPE COpy AND FORMAT PROGRAMS 13-1

13.1 DTFRMT 13-1
13.1.1 Loading Procedure 13-1
13.1.2 Using the Program 13-1
13.1.3 Error Messages 13-3
13.1.4 Details of DTFRMT Operation and storage 13-4
13 .2 TDFRMT 13-5
13.2.1 Operating Procedures 13-5
13.2.2 Error Messages 13-7
13.2.3 Details of TDFRMT Operation and Storage 13-8
13.3 DTCOPY 13-10
13.3.1 Error Messages 13-11
13.4 TDCOPY 13-12
13.4.1 Error Messages 13-13
13.4.2 Details of Operation 13-15

CFAPTER 14 DUMP 14-1

14.1 FORM FEEDS 14-2
14.2 ADDING THE DUMP HANDLER TO YOUR SYSTEM 14-2
14.3 FORMAT OF THE DUMP 14-2

CHAPTER 15 EPIC 15-1

15.1 LOADING EPIC 15-1
15.2 RESTART PROCEDURE 15-2
15.3 PAPER TAPE FACILITY 15-2
15.4 COMMAND FORMAT 15-2
15.5 DEFAULT OPTIONS 15-3

vii

lS.6
15.7
15.8
15.9
lS.9.1
lS.9.2
15.10
lS.ll
lS.12
lS.13
15.14

CHAPTER 16

16.1
16.1.1
16.1. 2
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.3
16.3.1
16.4

CHAPTER 17

17.1
17.1.1
17.1.2
17.1.3
17.1.4
17.1.S
17.1.6
17.2
17.2.1
17.3
17.3.1
17.3.1.1
17.3.1.2
17.3.1.3
17.3.2
17.3.2.1
17.3.2.2
17.3.2.3
17.3.2.4
17.3.2.5
17.3.2.6
17.3.2.7
17.3.2.8
17.3.2.9
17.3.3
17.3.3.1
17.3.3.2
17.3.4
17.3.4.1

CONTENTS (Cont.)

ERROR CONDITIONS
LOW SPEED I/O
DEVICE CODES
EDITING CAPABILITY

Initial Command Format
Editing Commands

COMPARE CAPABILITY
ERROR MESSAGES
PAPER TAPE FORMAT
LOADING EPIC FROM PAPER TAPE
EPIC ASSEMBLY INSTRUCTIONS

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

CALLING FOTP
Input Specifications
Output Specifications

USING FOTP
Additional FOTP Commands
Advantages of Predeletion
Advantages of Postdeletion
Control Characters

FOTP OPTIONS
Examples of FOTP Specification Commands

ERROR MESSAGES

FUTIL

INTRODUCTION
Special Characters Used in FUTIL
Running FUTIL
Access Method
Referencing Words on the Device
Numeric Item (or Numbers)
Errors and Error Messages

SINGLE-CHARACTER (ODT-LIKE) COMMANDS
Symbolic Output Formats

WORD-TYPE COMMANDS
Output Formats
DUMP
LIST
MODIFY
Search Limits
WORD (Search)
STRING (Search)
SMASK
SET
SHOW
FILE
WRITE
SCAN
REWIND
File Output
OPEN
CLOSE
Batch Operation
IF

viii

Page

lS-4
15-4
15-4
15-5
15-5
15-5
15-8
lS-8
lS-10
lS-11
15-11

16-1

16-1
16-1
16-3
16-3
16-5
16-7
16-7
16-7
16-7
16-10
16-11

17-1

17-1
17-1
17-2
17-3
17-5
17-6
17-7
17-7
17-9
17-11
17-12
17-13
17-13
17-14
17-15
17-16
17-17
17-18
17-18
17-19
17-20
17-22
17-22
17-22
17-23
17-23
17-24
17-24
17-24

17.3.4.2
17.3.4.3
17.3.4.4
17.3.4.5
17.4
17.5
17.6
17.7

CHAPTER 18

18.1
18.1.1
18.2

CHAPTER 19

19.1
19.2
19.3
19.3.1
19.3.2
19.3.3
19.4
19.4.1
19.4.2
19.5
19.6
19.7

CHAPTER 20

20.1
20.1.1
20.1. 2
20.2

20.3

CHAPTER 21

21.1
21.2
21.3
21. 4
21.5

CHAPTER 22

22.1
22.2
22.2.1
22.2.2
22.2.3
22.3

CONTENTS (Cont.)

END
COMMENT
EXIT
EVAL

EXAMPLES
PROGRAM EXECUTION AND MEMORY ALLOCATION
COMMAND SUMMARY
SINGLE-CHARACTER COMMAND OUTPUT FORMAT
SUMMARY

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE
PROGRAM (MCPIP)

CALLING AND USING MCPIP
MCPIP Options

MCPIP ERROR MESSAGES

OCTAL DEBUGGING TECHNIQUE (ODT)

FEATURES
CALLING AND USING ODT
COMMANDS

Special Characters
Illegal Characters
Control Commands

ADDITIONAL TECHNIQUES
Current Location
Indirect References

ERRORS
PROGRAMMING NOTES SUMMARY
SUMMARY OF ODT COMMANDS

PERIPHERAL INTERCHANGE PROGRAM (PIP)

CALLING AND USING PIP
PIP Options
Examples of PIP Specification Commands

ADDITIONAL INFORMATION WORDS IN FILE
DIRECTORIES
PIP ERROR MESSAGES

PIP10

CALLING AND USING PIP10
HOW TO COpy LARGE FILES WITH PIP10 (SR)
PIP10 OPTIONS
PIP10 EXAMPLES
ERROR MESSAGES

RESOURCES (RESORC)

CALLING AND USING RESORC
RESORC OPTIONS

Fast Mode (IF Option)
Limited Mode (/L Option)
Extended Mode (/E Option)

RESORC ERROR MESSAGES

ix

Page

17-24
17-25
17-25
17-25
17-26
17-33
17-34

17-35

18-1

18-1
18-2
18-4

19-1

19-1
19-1
19-2
19-2
19-4
19-4
19-4
19-7
19-7
19-7
19-7
19-8

20-1

20-1
20-1
20-6

20-8
20-8

21-1

21-1
21-2
21-2
21-3
21-3

22-1

22-1
22-2
22-2
22-2
22-3
22-6

CONTENTS (Cont.)

Page

CHAPTER 23 RKLFMT DISK FORMATTER PROGRAM 23-1

23.1 RUNNING THE PROGRAM 23-1
23.2 STANDARD TEST PROCEDURES 23-2
23.2.1 RK05J Drive cartridge Mounting Procedure 23-2
23.2.2 RK05F Drive Setup Procedure 23-2
23.3 FORMAT PROGRAM 23-3
23.4 ERRORS 23-4
23.5 PROGRAM DESCRIPTION 23-4
23.6 CONTROL CHARACTERS 23-5
23.7 MISCELLANEOUS 23-5
23.7.1 Waiting Message 23-5
23.7.2 End of Pass 23-6
23.7.3 Errors 23-6
23.7.4 Location Changes 23-6

CHAPTER 24 RXCOPY PROGRAM 24-1

CHAPTER 25 SET PROGRAM 25-1

25.1 TERMINAL ATTRIBUTES 25-3
25.1.1 Arrow 25-3
25.1. 2 CODE n 25-3
25.1. 3 COLumn n 25-4
25.1. 4 ECHO 25-4
25.1.5 ESCape 25-4
25.1. 6 FILL 25-5
25.1.7 FLAG 25-5
25.1. 8 HEIGHT m 25-5
25.1.9 LC 25-6
25.1.10 PAGE 25-6
25.1.11 PAUSE n 25-6
25.1.12 SCOPE 25-7
25.1.13 TAB 25-7
25.1.14 WIDTH n 25-7
25.2 CARD READER ATTRIBUTES 25-8
25.2.1 CODE n 25-8
25.3 MAGNETIC TAPE ATTRIBUTES 25-8
25.3.1 PARITY x 25-8
25.3.2 FILES 25-8
25.4 SYSTEM ATTRIBUTES 25-9
25.4.1 INITIAL xxxxx 25-9
25.4.2 OS8 25-9
25.4.3 OS78 25-9
25.5 LINE PRINTER ATTRIBUTES 25-10
25.5.1 LA78 25-10
25.5.2 LA8A 25-10
25.5.3 LC 25-10
25.5.4 LV8E 25-10
25.5.5 WIDTH n 25-11
25.6 ANY DEVICE ATTRIBUTES 25-11
25.6.1 FILES 25-11
25.6.2 DVCode nn 25-12
25.6.3 LOCation n=m or LOCation n 25-12
25.6.4 READOnly 25-13
25.6.5 VERSION x 25-13
25.6.6 BLOCK h, LOCation n=m or BLOCK h, LOC n 25-13

x

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

FIGURE

TABLE

26

26.1
26.2
26.3
26.4

A

B

B.l
B.2
B.2.l

C

D

E

E.l
E.2
E.3
E.4
E.5
E.6
E.7
E.8
E.9
E.IO
E.ll

F

6-1
6-2
B-1
B-2
B-3
B-4

2-1
2-2
3-1
3-2
4-1

CONTENTS (Cont.)

SRCCOM

SRCCOM ASSEMBLY INSTRUCTIONS
LOADING SRCCOM
SRCCOM OUTPUT
ERROR MESSAGES

CHARACTER CODES

LOADING PROCEDURES

INITIALIZING THE SYSTEM
LOADERS

Binary (BIN) Loader

OS/8 DEMONSTRATION RUN

OS/8 FILE NAME EXTENSIONS

OS/8 DEVICE HANDLERS

HIGH-SPEED READER/PUNCH
LOW-SPEED READER/PUNCH
TTY HANDLERS
LINE PRINTERS
VR12 SCOPE
CARD READER
DECTAPES
MAGNETIC TAPE
CASSETTES
BATCH HANDLER
DSK AND SYS

OBTAINING OS/8 PROGRAM VERSION NUMBERS

FIGURES

Sample BATCH Input File
Punched Card Input File
Loading the RIM Loader
Checking the RIM Loader
Loading the BIN Loader
Loading a Binary Tape Using BIN

TABLES

Permanent Device Names
OS/8 File Name Extensions
Keyboard Monitor Error Messages
Switch Options
Editor Key Control Commands

xi

Page

26-1

26-1
26-1
26-2
26-4

A-I

B-1

B-1
B-1
B-6

C-l

D-l

E-l

E-l
E-l
E-l
E-2
E-2
E-3
E-3
E-3
E-3
E-4
E-4

F-l

6-7
6-12
B-4
B-5
B-7
B-9

2-1
2-3
3-1
3-6
4-2

TABLE 4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
6-1
6-2
6-3
7-1
8-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7
10-1
11-1
11-2
12-1
12-2
15-1
15-2
16-1
16-2
18-1
18-2
19-1
20-1
20-2
21-1
22-1
22-2
24-1
24-2
25-1
25-2
26-1
A-I
B-1
B-2

CONTENT (Cont.)

TABLES (Cont.)

Editor Input Commands
Editor Listing Commands
Editor Output Commands
Editing Commands: Deletion and Alteration
Editor Search Commands
Editor Special Characters: Command Mode
Aborting Editor String Search Commands
Nonfatal Editor Error Messages
Editor Error Codes
Editor Command and Special Characters
Examples of Output to the Command Decoder
Examples of Input to the Command Decoder
Command Decoder Error Messages
Run-Time Options
BATCH Monitor Commands
BATCH Error Messages
Bitmap Options
BOOT Mnemonics
Standard DEC tape System Device Handlers
Standard Cassette System Device Handlers
Standard Paper Tape System Device Handlers
OS/8 Device Handlers
BUILD Editing Characters
BUILD Error Messages
DCB Word
CAMP Error Messages
CREF Options
CREF Error Messages
DIRECT Options
DIRECT Error Messages
EPIC Commands
EPIC Error Messages
FOTP Options
FOTP Error Messages
MCPIP Options
MCPIP Error Messages
ODT Command Summary
PIP Options
PIP Error Messages
PIPI0 Error Messages
RESORC Device Types
RESORC Error Messages
RXCOPY Options
RXCOPY Error Messages
SET Command Attributes
SET Error Messages
SRCCOM Run-Time Options
ASCII Character Set
RIM Loader for Low-Speed Reader
RIM Loader for High-Speed Reader

xii

Page

4-5
4-6
4-7
4-9
4-10
4-10
4-17
4-18
4-19
4-19
5-1
5-2
5-3
6-3
6-5
6-9
7-2
8-2
9-2
9-3
9-3
9-4
9-7
9-20
9-23
10-5
11-2
11-7
12-2
12-5
15-6
15-9
16-8
16-12
18-2
18-4
19-8
20-1
20-8
21-4
22-3
22-6
24-1
24-2
25-1
25-2
26-2
A-I
B-2
B-3

DOCUMENTATION SET FOR OS/8

OS/8 SYSTEM GENERATION NOTES (AA-H606A-TA)

The System Generation Notes provide the information you need
to get a new OS/8 system running.

OS/8 SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes OS/8 system
conventions, keyboard commands, and utility programs.

OS/8 TECO REFERENCE MANUAL (AA-H608A-TA)

The TECO Reference Manual describes the OS/8 version of this
character-oriented text editing and correcting program.

OS/8 LANGUAGE REFERENCE MANUAL (AA-H609A-TA)

The Language Reference Manual describes all languages
supported by OS/8, including BASIC, FORTRAN IV, and the PAL8
assembly language.

OS/8 ERROR MESSAGES (AA-H610A-TA)

This manual lists in alphabetical order all error messages
generated by OS/8 system programs and languages.

xiii

CHAPTER 1

OVERVIEW

1.1 INTRODUCTION TO 05/8

This manual describes the 05/8 keyboard commands, the 05/8 Editor, and
the 05/8 library of utility programs. These commands and system
programs enable you to develop user-written programs in PAL8 assembly
language, BASIC, FORTRAN IV, and other languages available under 05/8.

The 05/8 library includes the following system programs.

BATCH
The BATCH monitor enables you to prepare a job on punched cards,
high-speed paper tape, or the system device and then leave it for
05/8 to run.

BITMAP

BOOT

BUILD

CAMP

CREF

The BITMAP program produces a table to show the locations that a
binary file occupies in memory.

The BOOT program loads standard hardware bootstraps into memory.

The BUILD program lets you alter the device configuration in your
system to insert new devices or add user-written handlers.

The Cassette and Magnetic Tape Positioner program enables you to
manipulate cassettes and magnetic tapes.

The Cross Reference Program produces a table in assembly listings
that enables you to locate references to symbols and literals.

DIRECT
The DIRECT program produces various types of directories.

DTFRMT, DTCOPY,TDFRMT, TDCOPY

DUMP

EPIC

FOTP

These programs format and copy DECtapes.

The DUMP program sends listings to the LP08 line printer.

The Edit, Punch, and Compare program reads and punches paper
tapes, edits files, and compares files in any format.

The File-Oriented Transfer Program transfers groups of files
between file-structured devices.

1-1

FUTIL

MCPIP

ODT

PIP

PIPIO

OVERVIEW

The File Utility program enables you to examine and modify the
contents of mass storage devices.

The Magtape/Cassette Peripheral Interchange Program
file-transfer program for cassettes and magnetic tapes.

is a

The Octal Debugging Technique enables you to run and debug a
program by typing instructions at the keyboard.

The Peripheral Interchange Program transfers files between
devices and provides file and directory maintenance functions.

This is a file-transfer program that reads and writes ASCII
DECtape files using a TC08 or TD8E DEC tape controller.

RESORC
The RESORC program prints a listing of active device handlers.

RKLFMT
The RKLFMT program formats RKOS disks.

RXCOPY

SET

The RXCOPY program copies diskettes.

The SET program makes it possible for you to modify the operating
characteristics of OS/8.

SRCCOM
The Source Compare program compares two source files line by line
and prints the differences.

1.2 OS/8 I/O DEVICES

OS/8 provides device independence. You can write programs without
concern for specific I/O devices. In running a program, you can
select the most effective I/O devices available. Furthermore, if the
system configuration is altered, you need not rewrite programs to take
advantage of the new configuration.

The OS/8 system controls the copying of data from any medium to any
other medium by means of subroutine calls to execute I/O routines.
Logical names can be assigned to devices within the system to enable
symbolic referencing of devices.

Variable-length I/O buffers can be specified by the user program.
Large buffers ensure efficient use of storage devices and a minimum of
time spent in data-transfer operations by minImIzIng disk and tape
motion. OS/8 takes full advantage of th~ RK8E disk pack for fast bulk
storage, yet full system services are possible with a single DECtape.

1-2

OVERVIEW

1.3 HARDWARE CONFIGURATIONS

The 05/8 system can operate with the following devices as the system
device.

TCOI/TC08 DECtape
LINCtape (PDP-12)
TD8E DECtape
DF32/RF08 disk
RK8E disk
RK8 disk
RXOI diskette

The term system device refers to the device on which the OS/8 system
resides and which it utilizes for system functions. Thus, DECtape
unit 0 is the system device for a DECtape-based system. A nonsystem
device is any peripheral not specifically used for system functions,
such as LPT:, PTR:, DTA2:, etc.

TD8E DECtape can be used either with 12K words of core memory or with
8K words of core memory and 2S6 words of Read-only-Memory (ROM).

If DF32 is the system device, at least 64K (2 platters) must be
available.

The minimum 05/8 configuration is a PDP-8 series computer with 8K
words of memory, one DECtape used as the system device, and a console
terminal. A multiple DECtape system performs appreciably faster than
a single DECtape system. The multiple DECtape system reduces DECtape
motion since it is possible to copy directly (without intermediate
searching) from the system DECtape to another DEC tape (or vice versa)
when editing or assembling.

A typical medium-sized system might contain a PDP-8/E with at least 8K
words of core memory, TD8E DECtape and control, and an RK8E disk pack
and control. A disk system offers the additional convenience of easy
and fast access to files and large amounts of storage.

Up to IS of the following devices can be included in a single 05/8
system:

• As many as 8 DECtape units (TCOI/TUSS,
TD8E/TUS6)

• TA8E/TU60 cassette units

• TM8E/TUIO magnetic tape units

• High-speed paper tape reader/punch

• Up to four RK8E disks

• Up to four RK8 disks

• Up to four RS08 disks

1-3

TC08/TUS6, or

OVERVIEW

• Up to four DF32 disks

• Card reader (optical mark or punched cards)

• Line printer

• PDP-12 LINCtape

• PDP-12 scope

• Any other device for which it is possible to write a device
handler in one or two pages of core

1.4 SYSTEM SOFTWARE COMPONENTS

The main software components of the OS/8 system include

Keyboard Monitor
The Concise Command Language
Command Decoder
Library of system programs
Device handlers
User Service Routine (USR)

The Keyboard Monitor provides communication
executive routines by accepting commands
The commands enable you to create logical
system and user programs, and save programs.

between you and the OS/8
from the console terminal.

names for devices, run

The Concise Command Language (CCL) provides an extended set of Monitor
Commands.

The Command Decoder allows you to communicate with a system library
program by accepting a command string from the keyboard indicating
input/output files. Following your keyboard command to run a system
library program, the Command Decoder prints an asterisk and then
accepts the command line containing device and file specifications.

The library of system programs contains the programs mentioned in
Section 1.1 and any of the extension programs you choose.

Device handlers are subroutines designed to transfer data to and from
peripheral devices. OS/8 is able to interface with as many as 15
different peripherals at a time. During system generation, device
handlers become an integral part of the system~ both system and user
programs have access to any available device. (The BUILD program
allows quick and easy alteration of any available device.)

The User Service Routine (USR) controls the directory operations for
the OS/8 system. A program can use the USR by means of standard
subroutine calls such as those used to activate device handler
subroutines. Some of the functions performed by the USR are loading
device handlers, searching file directories, creating and closing
output files, calling the Command Decoder, and chaining of programs.
The details on the operation and use of the USR are contained in the
OS/8 Software S~~ Manual (DEC-S8-0SSMB-A-D). For normal OS/8
usage, the USR function is unseen by the user and need be of no
concern.

1-4

OVERVIEW

When 05/8 is operating, the Command Decoder, Keyboard Monitor, and USR
are swapped into core from the system device as required. When their
operation has been completed, the previous contents of core are
restored.

The memory-resident portion of 05/8 is extremely small (256 words),
allowing for a maximum uSe of memory by user programs.

1-5

CHAPTER 2

SYSTEM CONVENTIONS

OS/8 observes the following conventions in the names of devices,
files, and units of storage.

2.1 PERMANENT DEVICE NAMES

During configuration, the OS/8 BUILD program assigns permanent names
to the devices in a system. You can change these names by
reconfiguring the system, but you must keep in mind that some CCL
commands and system programs operate on the assumption that certain
names are present. The DIRECT command, for example, uses the name
TTY: as a default device for listings, and the CREF program assumes
LPT: as a default output device. Therefore, it is good practice to
keep the following names always present on the system.

SYS:
DSK:
TTY:
LPT:

Table 2-1 lists all the device names used by OS/8.

Permanent Name

SYS

DTAn

LTAn

DSK

Table 2-1
Permanent Device Names

I/O Device

System device (disk if the
large disk -- RK8 or RF08;

system has a
otherwise DTAO)

DEC tape n, where n is an integer in the
range 0 to 7, inclusive

When using BUILD, LINCtapes may be called
LTA rather than DTA. n is an integer in
the range 0 to 7 inclusive.

Default storage device for all files. The
assignment of DSK is specified at system
generation time. usually DSK is the disk
on a single disk system or DTAO on a
DEC tape system.

(continued on next page)

2-1

Permanent Name

TTY

PTP

PTR

CDR

LPT

CSAn

MTAn

DF

RF

RKAn

TV

BAT

RXAn

RKBn

NULL

DUMP

SYSTEM CONVENTIONS

Table 2-1 (Cont.)
Permanent Device Names

-------- -------------~---~~

I/O Device

Terminal keyboard and printer

Paper tape punch

Paper tape reader (Before accepting input,
the system prints an up-arrow (t), to which
the user replies by typing any key.)

Card reader

Line printer (Performs a form feed before
it begins printing output from a new
program.)

Cassette drive n, where n is an integer in
the range 0 to 7, inclusive

Magnetic tape drive n, where n is an
integer in the range 0 to 7 inclusive

DF32 disk

RF08 disk

RKOl or RKOS disk unit n, where n is an
integer in the range 0 to 3

VR12 scope (PDP-12 only)

Pseudo device which reads from BATCH input
stream (see BATCH section in Chapter 2)

Diskette n (floppy), where n is an integer
in the range of 0-7 inclusive

DECpack n, where n is an integer in the
range 0-1

Device which on input returns an immediate
end-of-file and on output ignores
characters.

Prints contents of device blocks on LPT.

2.2 FILE NAMES AND EXTENSIONS

File names may contain up to six alphanumeric characters, followed
optionally by a period and an extension of two alphanumeric
characters. The extension usually identifies the file by type. For
example, a .PA extension after a file name indicates that the file
contains a PAL8 source program.

2-2

SYSTEM CONVENTIONS

In most cases, you will want to conform to the standard extensions
established for OS/8. If you omit the extension on an output file
specification, some system programs append assumed extensions. PAL8,
for example, will add .PA to an output file. If you specify a file
for input and omit the extension, some system programs will look for a
file with an assumed extension. For example, if you specify a program
called PUMP as input to PAL8, PAL8 looks for PUMP.PA. If it fails to
find it, it looks for the file name and no extension.- Table 2-2 lists
the file name extensions used by OS/8.

.BA

.BI

.BK

.BN

.DA

.DC

.DI

.FT

.HL

.LD

.LS

.MA

.MP

.PA

.RA

.RB

.RL

Table 2-2
OS/8 File Name Extensions

BASIC source file (default extension for a
BASIC input file)

Batch input file

Backup ASCII file (default extension for a
TECO output file)

Absolute binary file
ABSLDR, BUILD, and
also used as default
binary output file)

(default extension for
BITMAP input files;
extension for PAL8

Data file

Documentation file

Directory listing

FORTRAN language source file
extension for FORT input files)

(default

Help file (default extension for HELP input
files)

F4 load mode (default assumed by run-time
system, F4 loader)

Assembly listing output file
extension for PAL8 and SABR)

Macro source file

(default

File containing a loading map (used by the
Linking Loader)

PAL8 source file

RALF assembly language file

Relocatable binary source file

Relocatable binary file (default
for a Linking Loader input file;
as the default extension for an
output file)

extension
also used

8K SABR

(continued on next page)

2-3

.SB

.SV

.Sy

.TE

SYSTEM CONVENTIONS

Table 2-2 (Cont.)
OS/8 File Name Extensions

8K SABR source file

Core image file or SAVE file; appended to
a file name by the R, RUN, SAVE, and GET
Keyboard Monitor commands

System head

TECO macro file (default extension for a
MUNG input file)

.TM Temporary file generated by FORTRAN or SABR
for system use (default extension for CREF
input files and PAL8 output files)

.TX Text files

2.3 UNITS OF STORAGE

OS/8 uses the terms "word", "page", "record", and "block" to describe
units of storage. In directory listings, for example, OS/8 lists file
lengths in blocks or records. The terms are defined thus:

1 block=l record=2 pages=256(decimal) words

A word consists of 12 bits.

2-4

CHAPTER 3

05/8 KEYBOARD COMMANDS

3.1 INTRODUCTION

The OS/8 Monitor and the Concise Command
than fifty

Language
different program -- CCL.SV -- provide

keyboard commands.
you with more

BAD

• The Monitor provides the following commands, which you may
abbreviate to the first two letters.

ASSIGN
DEASSIGN
GET
SAVE
ODT
RUN
R
START
DATE

The Monitor displays a dot to indicate that it is ready to
accept a command.

To execute a command that you have typed, press RETURN or
ALTMODE.

Any error that you make in
the Monitor to print an
wait for you to try again.
messages, see Table 3-1.

the use of these commands causes
error message, display the dot, and

For a description of these error

Table 3-1
Keyboard Monitor Error Messages

Message Meaning

ARGS The arguments to the SAVE command are
not consistent and violate
restrictions listed in 1, 2, 3 under
SAVE command.

BAD CORE IMAGE The file requested was not a
core-image file (it could have been an
ASCII or binary file).

(continued on next page)

3-1

OS/8 KEYBOARD COMMANDS

Table 3-1 (Cont.)
Keyboard Monitor Error Messages

Message Meaning
~--------------------------~r-----------------------~---------------------~

BAD DATE

ILLEGAL ARG.

MONITOR ERROR 2 AT xxxx
(DIRECTORY I/O ERROR)

MONITOR ERROR 5 AT xxxx
(I/O ERROR ON SYS)

MONITOR ERROR 6 AT xxxx
(DIRECTORY OVERFLOW)

name NOT AVAILABLE

name NOT FOUND

NO! !

NO CeLl

SAVE ERROR

The date has not been entered
correctly (using slashes) , or
incorrect arguments were used, or the
date was out of range.

The SAVE command was not expressed
correctly~ illegal syntax used.

Attempt made to output to a WRITE
LOCKed device, usually DECtape~ or an
error has occurred reading/writing a
directory.

An error occurred while doing I/O to
the system device. This error is
normally the result of not
WRITE-ENABLing the system device.

A directory overflow has
(no room for tentative file
directory) .

occurred
entry in

The device with the name given is not
listed in any system table, or it is
not available for use at the moment
(check the device in question), or the
user tried to obtain input from an
output-only device (such as the
high-speed paper tape punch).

The file with the name given was not
found on the device indicated, or the
user tried to input from an
output-only device.

The user attempted to start (with .ST)
a program that cannot be started. The
user must not restart any user program
or system library program that
modified itself while in core (bit 2
of the Job Status Word is set~ see
the GET command for details).

The command was not a legal keyboard
monitor command. It was, however, a
valid CCL command~ but the file
CCL.SV was not found, or an I/O error
occurred while trying to read the
file.

An I/O error has occurred while saving
the program. The program remains
intact in core.

(continued on next page)

3-2

Message

05/8 KEYBOARD COMMANDS

Table 3-1 (Cont.)
Keyboard Monitor Error Messages

Meaning

SYSTEM ERR An error occurred while doing I/O to
the system device. The system should
be restarted at 7600 or 7605. Do not
press CONTinue, as this is sure to
cause futher errors.

TOO FEW ARGS An important argument has been omitted
from a command. For example,

...,LRUN [lSK

would generate this message, as the
program to be run has not been entered
in the command.

USER ERROR 0 AT xxxx An input error was detected while
loading the program. xxxx refers to
the Monitor location where the error
was generated.

abcd? Where abcd is not a legal command~
for example, if the user typed:

~HELLO

the system would echo:

HELLO?

• The Concise Command Language program (CCL) provides an
extended set of Monitor commands. Some of these commands
allow you to call a system program indirectly, perform an
operation, and return automatically to the Monitor. This
method is simpler to use than the standard calling sequence
for a program. For example, the following two-line sequence
causes PAL8 to assemble a source program called SCOOP.PA and
send a binary and listing file to DSK, the default device .

..t.,R PAL8
~SCOOP.BN,SCOOP.LS<SCOOP.PA

You can obtain the same results faster by using the CCL PAL
command with the -LS option .

..!.,.PAL SCOOP.PA-LS

Other CCL commands perform special functions not available
through OS/8 utility programs.

You can write your own CCL commands and add them to the CCL
program. For instructions, see the OS/8 Software Support
Manual.

3-3

OS/8 KEYBOARD COMMANDS

You enter a CCL command the same way you enter a Keyboard
Monitor Command -- in response to the terminal dot. Normally,
you terminate the command line with the RETURN key. Depending
on the characteristics of the command you are using, control
may return to the Monitor when the operation is completed or
may remain within another OS/8 program. To remain under
program control when control would normally return to you,
terminate the CCL command with an ALTMODE. (Note that this
termination procedure is the opposite of the way most OS/8
programs work.)

A special CCL command
Concise Command Language
under it. To reactivate
R command.

called CCL -- deactivates the entire
Program and all the commands that run
the program, you must run it with the

CCL provides the following commands, which you may abbreviate
to the letters printed as capitals:

BACkspace DUplicate PRInt UC
BAsic EDIT PUnch UNLoad
BOot DOF REName VERsion
CCL EXEcute RES ZERO
COMPare HELp REWind
COMpile LIst SET
COPy LOad SKIP
CREate MAKe SQuish
CREF MAP SUbmit
DAte MEMory TEco
DEassign MUNG TYpe
DELete ODT UA
DIRect PAL UB

3.2 COMMAND FORMAT

The general format of ~he command line is

command output:file<input:file/option

where

command is a legal OS/8 command

output: is the name of the device you specify to receive output

file is the name and extension of an output file

input: is the name of the device you specify for input

file is the name and extension of an input file

/option is a command qualifier

Some commands permit multiple file and device specifications; refer
to the descriptions of the command~ you want to use for details.

3.3 COMMAND AND FILE OPTIONS

OS/8 command options let you choose the way
command. File options let you optimize
device.

3-4

you want to execute a
the storage on an output

OS/8 KEYBOARD COMMANDS

3.3.1 Command Options

OS/8 recognizes single letters, letter strings, and numbers as symbols
for command options. All options are defined in this manual along
with the commands they modify.

3.3.1.1 The Slash Construction -- Single-Letter Options -
Single-letter options follow a slash {I} and may appear anywhere in
the command line even in the middle of a filename. For example, this
line

~COPY RXA1:SECOND.EX<RXAO:FIRST.EX/T

and this line

~COPY RXA1:SECOND.EX/T<RXAO:FIRST.EX

both specify the /T option, which causes the system to assign the
current date to the output file.

3.3.1.2 The Parenthesis Construction -- Multiple-Letter Options - If
you use two or more letter options in a command line, you may group
them together as a string within parentheses. This construction may
appear anywhere in the line. For example, this command

~COPY RXA1:0UTPUT.EX<SYS:INPUT.EX(GT)

is the same as typing

~COPY RXA1:0UTPUT.EX<SYS:INPUT.EX/G~T

3.3.1.3 The Equal Sign Construction -- Octal Number Options - An
octal number option, preceded by an equal sign, may occur only once in
a command line. If you place it in the middle of the line, you must
follow it with a separator character (a comma or left-angle bracket)
or another option and a separator character. For example, this line,
which includes an octal 3,

~DIRECT SYS:=3

causes DIRECT to list the directory of SYS: on the terminal in three
columns.

3.3.2 File Options

A file option places an upper limit on the number of blocks an output
file may use. (One block contains 256 words.) This option allows the
system to optimize file storage. For example, this command line

~PAL BINARY[19],LIST[200l<SOURCE.PA

calls for two output files, BINARY and LIST, which may have a maximum
length of 19 blocks and 200 blocks respectively.

3-5

OS/8 KEYBOARD COMMANDS

3.3.3 Additional Switch Options--the Dash Construction

A special set of command options enable you to send output to the
lineprinter or terminal, generate a listing file or a memory map, or
call for a particular compiler or assembler. These options are
described in Table 3-2.

Option

-L

-LS

-MP

-NB

-T

-PA

-FT

Table 3-2
Switch Options

Meaning

Send output to LPT.

Generate a listing file (used with the COMPILE,
EXECUTE, and PAL commands). The listing file is
written onto SYS: if no output device is specified
and is given a .LS extension. The listing filename
is the same as the filename that immediately preceded
the CCL -LS option.

Generate a memory map (used with the
EXECUTE, and PAL commands).

COMPILE,

DO not create a binary file (used with the COMPILE,
EXECUTE, and PAL commands).

Send output to terminal.

Selects the PAL8 compiler when
does not determine it (used
EXECUTE commands).

the files extension
with the COMPILE and

Selects the FORTRAN IV compiler
extension does not determine it
COMPILE and EXECUTE commands).

when the
(used with

file
the

3.4 COMMANDS THAT REMEMBER FILE SPECIFICATIONS

If you omit the device and file specifications in
COMPILE, LOAD, or EXECUTE command, OS/8 assigns
to appear in any command in the group. For
commands

~COMPILE TEST.PA
~EXECUTE

a CREATE, EDIT, PAL,
it the last argument
example, these two

instruct the system to compile TEST.PA, then load and execute it.
When you enter the COMPILE command, the system stores the argument in
a temporary file for later reference by the EXECUTE command. This
feature works only with commands that you enter on the same day.

3-6

OS/8 KEYBOARD COMMANDS

3.5 USING WILDCARDS

Wildcards, which certain OS/8 commands accept, make it
you to refer to a group of related files with
specification. OS/8 provides two wildcards:

possible for
a single file

• the asterisk (*), which replaces an entire filename or
extension

• the question mark (?), which replaces any single character

3.5.1 Wildcards in Input Filenames

The following commands permit both the asterisk and question mark as
wildcards in input specifications.

COpy
DELETE
DIRECT
LIST
RENAME
TYPE

Here are some examples of the various ways you can abbreviate input
specifications with wildcards.

.DEL TE5T1.*

.DIR *.BN

deletes all files on DSK with the name TESTI
and any extension

displays a directory of all files on DSK with
a .BN extension and any name

displays a directory of all files with names
beginning TES and any extension

lists the contents of all DSK files with
names of three characters or less

A filename may not contain embedded asterisks. For example, TE*T.* is
an illegal specification and will produce the following error message:

ILLEGAL *
If you use a wildcard in a command other than the ones listed above,
OS/8 prints the error message

ILLEGAL * OR ?

3.5.2 Wildcards in Output Specifications

You may use the
question mark,
altogether, the
extension.

asterisk wildcard in an output file name. The
however, is illegal. If you omit the output file name
system assumes * * -- that is, all files with any

For example, this command

copies all files from SYS with a PA extension to RXAl, adding the
extension BK.

3-7

OS/8 KEYBOARD COMMANDS

3.5.3 Warnings and Suggestions

Use wildcards in COpy and DELETE
avoid destroying irreplacable
fail-safe measures.

commands with extreme caution to
files. Always observe the following

• Keep a backup copy of the system diskette and all other
important files.

• Use the Q option with COpy and DELETE. The system pauses to
make sure you have specified the file you intended. If you
wish to go through with the operation, type Y in response to
the query. If not, type any other character.

For further discussion of wildcards, see the File-Oriented Transfer
Program (FOTP).

3.6 INDIRECT COMMANDS

You may occasionally wish to refer to the same group of files in
several commands. To avoid typing the same filenames and extensions
in each command line, use the indirect -- @ file -- feature.

An indir~ct file specification has the following format.

where

@device:file.ex

file.ex is a file containing the file specifications you want
to include in the command

To use the @ construction, you must first create a file containing the
list of file names you wish to include in the command line. For
example, assume you have created a file called FLIST.CM that contains
the string

FILEB,FILEC/L,FILED

TO include these names in a COMPILE command, type

~COMPILE FILEA,@FLIST,FILEZ

The system ignores carriage returns and line feeds -- but not
nulls -- within the command line. A null signifies end-of-line.

Command files may not exceed one block in length. If a command line
contains more than 512 characters, the system prints the following
message:

COMMAND LINE OVERFLOW

The following commands will not accept indirect files.

ASSIGN
DEASSIGN
GET
START
R
RUN
SAVE
ODT
DATE

3-8

OS/8 KEYBOARD COMMANDS

3.7 USING DEFAULTS

A default device, file name, or extension is the name the system
assumes if you omit the specification in a command line. You can
often reduce the amount of typing necessary to enter a command by
taking advantage of the following system defaults.

• DSK is the default device for input and output devices in most
commands. This means that you can omit the device whenever
you refer to a file on DSK. For example, the following
command makes a copy of a file called HUMPTY on DSK and calls
it DUMPTY .

• COPY DUMPTY<HUMPTY

• Any device -- stated or assumed in an input specification
becomes the default device for any additional input files in
the command line. For example, this command lists three files
on RXAI .

• LIST RXA1:0NE,TWO,THREE

• Some commands assume special default devices. DIRECT and
TYPE, for example, default to the terminal for output. The
following command will display the directory of DSK on the
terminal .

• DIR

The description of the OS/8 command includes information about the
defaults that each command accepts.

3.8 GETTING HELP--THE HELP COMMAND

To obtain additional information about the use and format of OS/8
commands, use the HELP command. The format is

.HELP command

where

command is the name of any OS/8 command

HELP retrieves and displays a file called HELP.HL, which contains the
information you request.

To obtain a hard copy of the information from the line printer, use
the -L option •

• HELP PAL-L

3-9

OS/8 KEYBOARD COMMANDS

3.9 ENTERING A COMMAND LINE--CORRECTING AND PREVENTING ERRORS

The RETURN key enters a command line and causes the system to take the
action you have called for. Therefore, before you press RETURN, check
the line carefully for errors.

• To correct single-character typing errors, use the DELETE key.

•

This key erases the last character you have typed. Successive
DELETEs will erase characters back to the beginning of the
line.

To remove
key and
display a
command.

an entire line, type CTRL/U by holding down the CTRL
striking U. The monitor will echo the command and
dot to indicate that it is ready to accept another

• To verify the contents of the line you are typing, strike the
LINE FEED key. The system will display whatever characters it
has received so far. Use the LINE FEED key to check a line in
which you have made numerous corrections.

If you enter a command line that you have typed incorrectly, one of
the following will result:

• The system will fail to recognize or accept the command. In
this case, it will display a question mark and a dot and wait
for you to try again.

• The Monitor will accept the command and attempt to execute it.
If you notice your error at this point, type CTRL/C
immediately (simultaneously pressing CTRL and C). Depending
on the type of command and the files involved, this may halt
execution.

3-10

OS/8 KEYBOARD COMMANDS ASSIGN

3.10 ASSIGN

The ASSIGN command assigns a logical name -- that is, a name that you
create -- to one of the available permanent devices. The format of
the command is

ASSIGN perm user

where

perm is the permanent name of the device

user is the one-to-four-character name you want to assign

Note that a device name does not require a colon when it follows the
ASSIGN command.

The following rules apply to the assignment and use of logical names.

• You may assign only one logical name to a device at a time.

• Once you have assigned a name to a device, you may refer to it
by either its logical or permanent name. ASSIGN makes the two
names equivalent.

For example, this command

~ASSIGN RXAl DEV2

assigns the logical name DEV2 to RXAI. You may now refer to the
device by either name in any command line.

3.10.1 Canceling a Logical Name

To cancel a logical name, type the ASSIGN command with the permanent
device name only. For example, to remove DEV2 as a logical name for
RXAl, enter

.,!.ASSIGN RXAl

3.10.2 Checking for Duplicate Names

To determine if a logical name is unique in the OS/8 system, enter the
name by itself in an ASSIGN command line. For example, to see if DEV2
already exists, type

.ASSIGN DEV2

If the name does not appear in any of the system tables, ASSIGN
displays the message

DEV2 NOT AVAILABLE

All 1- and 2-character names are unique in OS/8. You need test only
3- and 4-character names.

ASSIGN is a Monitor command.

3-11

BACKSPACE OS/8 KEYBOARD COMMANDS

3.11 BACKSPACE

The BACKSPACE command runs the OS/8 CAMP program and spaces a magnetic
tape or cassette backward a specified number of files or records.
BACKSPACE is equivalent to the CAMP BACKSPACE command. When CAMP has
completed a BACKSPACE operation, it returns control to the Monitor.

The format is

BACKSPACE dev:nnnn X

where

dev: is the permanent name of a cassette or magnetic tape
drive

nnnn is an unsigned decimal number representing
of records or files you wish to backspace.
the number, BACKSPACE assumes nnnn=l.

the number
If you omit

X is an R or F to indicate records or files. If you do
not specify records or files, BACKSPACE assumes F.

For example, this command

.BACKSPACE CSAO:2 F

positions the cassette mounted on CASO backward two files.

For complete information on the BACKSPACE command, see the chapter on
the CAMP program.

BACKSPACE is a CCL command and runs the CAMP program.

3-12

05/8 KEYBOARD COMMANDS BASIC

3.12 BASIC

The BASIC command invokes the BASIC Editor. The format is

BASIC

As soon as it is ready to accept your first instruction, BASIC prints
the query

NEW OR OLD --

to determine if you want to create a new file or work on an old one.

For example, this command

.BASIC
NEW OR OLD -- NEW STUFF.BA

tells the BASIC Editor to accept a new program called STUFF.BA

For complete information on OS/8 BASIC, see the OS/8 Language
Reference Manual.

3-13

BOOT OS/8 KEYBOARD COMMANDS

3.13 BOOT

The BOOT command makes it possible for you to bootstrap onto another
device or onto another PDP/8 system. The format is

BOOT/dv

where

dv is a mnemonic listed in the BOOT chapter in this manual

If you type BOOT with no argument, BOOT prints a slash to indicate
that you must enter a mnemonic.

For example, this command

~BOOT/RF

bootstraps onto the RF08 disk.

If you wish to halt before doing the bootstrap, type the command, a
mnemonic, and a period. For example:

.BOOT/CA.

The period causes the computer to halt, giving you time to mount a new
device. To continue the operation, press the CONTINUE switch on the
console. This form of the command is useful when only one 'disk or
DECtape drive exists on the system.

For complete information, see the BOOT chapter in this manual.

3-14

05/8 KEYBOARD COMMANDS CCl

3.14 CCL

The CCL command disables the Concise Command Language program on the
system device. The format is

CCL

The command accepts no arguments.

The CCL command totally deactivates the CCL feature of OS/8 so that
the system will not accept any CCL command. If you wish to use CCL
again, you must reactivate it with the R command. To do this, type

.R CCl

3-15

COMPARE OS/8 KEYBOARD COMMANDS

3.15 COMPARE

The COMPARE command makes a line-by-line comparison of two input
source files and sends the results to an output device. In most
COMPARE operations, the two source files are different versions of the
same program. COMPARE prints the editing changes, making it a useful
tool for debugging.

The format is

where

COMPARE output:file<input:filel,input:file2

output:file

input:filel

input:file2

is the file containing the results of the
comparison and the device you want to send it to

is the first input source file for comparison

is the second SOurce file

COMPARE makes the following assumptions:

• If you omit an input or output device, COMPARE assumes DSK

• If you omit the output specification altogether, COMPARE
assumes TTY. (In most cases you will want to see the results
on the terminal.)

For example, this command

.COMPARE RXAl:APPLE.FT,RXAl:0RANGE.FT

compares two FORTRAN source files on RXAI -- APPLE and ORANGE -- and
sends the results to the terminal.

3.15.1 COMPARE Output

COMPARE produces the following output sequence:

1. the current version number of the utility program SRCCOM

2. the header line of both input files (the header is the first
line of the file and usually contains the file name and
creation date)

3. a difference group (see below)

4. additional difference groups, if any, until it reaches the
end of the shorter file

COMPARE reads two input files one line at a time until it encounters
three consecutive matching lines. Then it outputs all lines from both
files up to and including the first matching line. This output is
called a difference group. For a complete description of difference
groups, see the SRCCOM chapter in this manual.

3-16

OS/8 KEYBOARD COMMANDS

For example, consider two files on DSK--NITTY and GRITTY.

NITTY GRITTY

B X
C C
D D
E E
F G
G H
H J
I
J

To compare these two files and have the results displayed on the
terminal, type

.COHPARE NITTY,GRITTY

COMPARE prints the current version number of SRCCOM, the utility
program that does the comparison,

SRCCOH V4A

the header lines

1)NITTY
2)GRffiy

and the results of the comparison in two difference groups

1)002 B
1) C

2)002 X
2) C

1)002 F
1) G
1) H
1) I
1) J

**** 2)002 G
2) H
2) J

If COMPARE discovers two identical files, it prints

NO DIFFERENCES

in the output file.

3.15.2 COMPARE Options

COMPARE provides the following options:

• =k In normal operation, COMPARE outputs lines until it
encounters three consecutive matching lines. To change
the number of lines that interrupt processing, use the
=k option, where k is the number of lines (in octal)
that you want to specify.

3-17

• /C

• /B

• /S

• /T

• /x

OS/8 KEYBOARD COMMANDS

COMPARE ignores comment fields during the comparison of
assembly language source files.

COMPARE treats a blank line as valid input containing
blanks instead of a carriage return.

COMPARE ignores all tabs and spaces
comparison.

during the

COMPARE converts all tabs from the input file to spaces
on the output device.

COMPARE ignores all
comparison and does
device.

comment fields during the
not send comments to the output

COMPARE is a CCL command and runs SRCCOM.

3-18

OS/8 KEYBOARD COMMANDS COMPILE

3.16 COMPILE

The COMPILE command

• assembles a PAL8 source program and outputs an absolute binary
file and a listing file or a CREF file

• compiles and assembles a FORTRAN IV source program and outputs
a relocatable binary file and a listing file

• compiles, loads, and executes a BASIC source program

The format for a PAL8 program is

where

COM output:prog.BN,output:list.LS<input:filel.PA, •.• file9.PA

output:prog.BN

output:list.LS

input:filel, ... file 9

is a PAL8 binary file

is a PAL8 listing file

is a single source program, which you
may enter in up to nine separate files

For example, this command line

~COMPILE RXA1:ACE.BN,RXA1:ACE.LS<RXA1:ACE.PA

assembles a PAL8 source program on RXAI called ACE.PA and produces a
binary file, ACE.BN, and a listing file, ACE.LS.

The format for a FORTRAN source program is

COMPILE output:prog.RL,output:list.LS<input:filel.FT, ••• file9.FT

where

output:prog.RL

output: 1 ist. LS

input:filel, .•. file 9

For example, this command

is an assembled FORTRAN program

is a listing file

is a FORTRAN source program stored in up
to nine files

~COMPILE RXA2:DEUCE.RL,RXA2:DEUCE.LS<RXA1:DEUCE.FT

assembles DEUCE.FT and outputs a binary and a listing file -- DEUCE.RL
and DEUCE.LS.

3.16.1 COMPILE Input

Enter your PAL8, FORTRAN, or BASIC program as an input file or files.
You may include up to nine input files in a single COMPILE command
line. COMPILE assumes that they all contain sections of the same
program.

The extension on the file name identifies the type of program the file
contains and tells the command which assembler or compiler to summon.

3-19

OS/8 KEYBOARD COMMANDS

• .PA identifies a PAL8 source program

• .FT identifies a FORTRAN source program

• .BA identifies a BASIC source program

If you use nonstandard extensions, you must specify the assembler or
compiler your program requires with processor switch options -PA, -FT,
or -BA.

COMPILE makes the following assumptions about input device names:

• If you omit the device in the first input specification,
COMPILE assumes DSK.

• If you omit the device in subsequent input entries, COMPILE
assumes the last device you name.

For example, this command line

~COMPILE PARTl.PA,PART2.PA,PART3.PA

assembles a 3-part PAL8 program on DSK.

3.16.2 COMPILE Output

COMPILE outputs binary and listing files, assigning the names you
specify.

3.16.2.1 Output File 1 -- the Binary Code

• If your input file is a PAL8 source program, COMPILE assigns
the first output file name to the binary code generated by the
assembler, adding a .BN extension if you omit it.

• If your input file is a FORTRAN program, COMPILE assigns the
first output file name to the relocatable binary code produced
by the FORTRAN assembler, adding .RL if you omit the
extension.

If you omit the device, COMPILE assumes DSK. If you omit the file
name, COMPILE assumes the name of the first input file.

For example, this command line

~COMPILE RXAl:SUNDAY(RXA2:MONDAY.FT

compiles and assembles the source program MONDAY.FT and sends it to
RXAl as a binary file called SUNDAY.RL.

In certain COMPILE operations, you may wish to suppress the output
binary file and generate only a listing file. To suppress a binary
file, use the -NB (no binary) switch. For example,

~COMPILE SAMPLEoPA-LS-NB

assembles SAMPLE.PA and produces only a listing file.

3-20

OS/8 KEYBOARD COMMANDS

3.16.2.2 Output File 2 -- the Listing File - You can request a
listing file of a PAL8 or FORTRAN program in two ways:

• Enter a second output file in the COMPILE line. COMPILE
generates the listing and assigns it the name you specify,
adding .LS if you omit the extension.

• Type the -LS switch option after an input file name. COMPILE
generates the listing, gives it the name immediately preceding
the switch, and adds the .LS extension.

For example, this command

~COMPILE PARTY,PARTY~PARTY.PA

and this command

~COMPILE PARTY.PA-LS

both generate a listing file PARTY.LS.

If you use the PAL8 /C option, the second output file is passed to the
CREF program, which produces a cross-reference listing.

3.16.2.3 COMPILE Options and Errors - For a complete description of
COMPILE options and errors, see the sections on PAL8, FORTRAN IV, and
BASIC in the OS/8 Language Reference Manual.

COMPILE is a CCL command.

3-21

COpy OS/8 KEYBOARD COMMANDS

3.17 COPY

The COpy command transfers files from one device to another. The
format is

COpy output:file<input:filel, •.. input:file5

COpy sends files to the output device in exactly the same format and
order in which they appear in the command. Since the operation makes
no changes at all in the files, you may transfer any kind of
file -- memory image, binary, source -- with the COpy command.

3.17.1 COpy Input

You enter the file or files you want to transfer as input in the
command line.

A complete COpy input specification includes a device, a file name,
and an extension. You may enter up to five input files in a command
line. COpy uses the following input defaults:

• If you omit the device name in the first input specification,
COpy assumes DSK.

• If you omit the device name in succeeding
specifications, COpy assumes the last device entered.

input

You may use the wildcards * and? to transfer an entire
related files with a single command. The specification *.*
to transfer all the files on a device.

3.17.2 COPY Output

group of
tells COpy

A complete output specification includes a device, a file name, and an
extension. You may enter only one output specification in a command
line. If you want your transferred file to have a different name from
the original, you must enter that name as the output file.

COpy uses the following output defaults:

• If you omit the device, COpy assumes DSK.

• If you omit the output file name, COpy assumes *.* -- that is,
it assumes that the output file has the same name as the input
file.

You may use only the wildcard *; the question mark (?) is illegal.
Keep in mind that as output the specification *.* tells COpy to give
the output file the same name as the input file.

3.17.3 COPY Terminal Display

During execution, COpy prints on the terminal the names of the files
it has transferred. For example, the following command transfers
three files from DSK to RXAI.

~roPY RXA1:FLOWER.PA<ROSE.PA,DAISY.PA,ZINNIA.PA

3-22

OS/8 KEYBOARD COMMANDS

COpy displays

FII rs COPIED
RO!..l .PA
DAl::>Y.PA
ZINNIA.PA

3.17.4 Predeletion and Postdeletion

Before COPY transfers a file to an output device, it checks the file
name against the output file directory. If it finds a file on the
device with the same name and extension as the file it is going to
transfer, COpy automatically deletes it before it does the transfer.
This operation -- called predeletion -- makes space for the new file
on the output device, which may not otherwise be able to hold another
file. However, it may also cause you to lose a valuable file if for
some reason the input fails. To help protect against such loss, COpy
provides a second method of transfer called postdeletion. In this
mode, COpy deletes any file with the same name as the input file only
after it has completed the transfer. To specify postdeletion, use the
/N option.

3.17.5 COPY Options

• /C

• /F

• IT

• /u

• /V

• /W

• /N

• /0

• /0

COpy transfers all input files with the current date
onto the output device.

A file will not fit on the output device. COpy prints

MOUNT NEW DEVICE

on the terminal. You remove the current device and
mount a new one on the same unit. To continue the
transfer, type any character. If possible, ZERO the
directory of the new device.

As part of the transfer operation, COpy changes the
creation date on the output file to the current date.
Without /T, COPY transfers the original date.

copy transfers input files in the exact order that they
appear in the command line -- not the order in which
they occur on the device.

COpy transfers all files on a device except the ones
you specify in the command line.

COpy prints its current version number.

COpy uses postdeletion.

COpy transfers all files on a device except those with
the current date.

COpy pauses before a transfer to make sure you want to
go through with the operation. If you do, type Y; if
not, type any other character.

COpy is a CCL command and runs FOTP. For complete information on file
transfer, see the FOTP chapter in this manual.

3-23

CREATE OS/8 KEYBOARD COMMANDS

3.18 CREATE

The CREATE command summons the OS/8 Editor to let you open and write a
new file. CREATE accepts no input specifications and only one file
name and device for output. The format is

CREATE output:file

where

output:file is the name of the file you want to create and the
device you want to store it on.

For example, this line

.CREATE BIRDY.PA

opens a file called BIRDY.PA on the default device, DSK.

After you press the RETURN key to execute the command, the OS/8 Editor
displays a number sign (t) to indicate that it is ready to receive
your instructions and text. To CREATE a file with the OS/8 Editor,
see Chapter 4 in this manual.

Each time you enter a CREATE command, the Monitor holds
(the device and file name) in a temporary location.
EDIT command later without an argument, EDIT reads the
this location. This convenient feature works only with
CREATE and EDIT on the same day.

CREATE is a CCL command and runs EDIT.SV.

3-24

the argument
If you type an
file name in
files that you

OS/8 KEYBOARD COMMANDS CREF

3.19 CREF

The CREF command assembles a PAL8 program and
cross-reference listing, usually on the line printer.

produces a

The format is

CREF outdev:file.LS<indev:file.PA

CREF makes the following assumptions about
specifications.

output and input

• If you omit the extension on the input file, CREF assumes PA.

• If you omit the extension on the output file, CREF adds LS.

• If you omit the output specifications altogether, CREF sends
the file to the line printer.

3.19.1 CREF Options

• /P

• /u

• IX

• /E

• /M

CREF disables
encounters a $
the /P option,
table.

pass-one listing output until it
in the source program. Thus, if you use
CREF prints a dollar sign and the symbol

CREF disables pass-one listing output and the symbol
table.

CREF does not process literals. This option provides
space for CREF to operate on large programs with many
symbols and literals.

CREF does not eliminate the intermediate CREFLS.TM file
that is output from assembly and used as input to CREF.

CREF cross-references mammoth files in two major
passes. Pass one processes the symbols from A through
LGnnnn; pass two processes the symbols from LHnnnn
through Z and the literals.

CREF is a CCL command and runs PAL8.SV and CREF.SV.

3-25

DATE OS/8 KEYBOARD COMMANDS

3.20 DATE

The DATE command lets you set and inspect the current system date.
You should always set the date as soon as you bootstrap the system.

TO set the date, type

DATE dd-mmm-yy

where

dd is a two-digit number representing the day of the month

mmm are the first three letters of the month

yy are the last two digits of the year

For example:

.DATE 23-MAY-77

TO inspect the current system date, type

,!.DATE

For example:

..t.DA 1-JUN-77
.DA
~WEDNESDAY JUNE 1, 1977

The system uses the current date in directories, newly created files,
and files transferred from one device to another. If you enter the
date after booting, the only valid directory entry dates are those for
the current year and seven years preceding it. The system will print
any earlier date incorrectly.

If you enter the date incorrectly, the Monitor prints an error
message.

BAD DATE

The DATE command runs program CCL.SV.

3-26

OS/8 KEYBOARD COMMANDS DEASSIGN

3.21 DEASSIGN

DEASSIGN invalidates all logical (user-defined) names that you have
given to permanent devices. (See the ASSIGN command.)

The format is

DEASSIGN

For example, the following pair of commands assign the logical name
DEVI to SYS and then cancel it •

• ASSIGN SYS DEV1
:DEASSIGN

The Monitor performs the DEASSIGN function.

3-27

DELETE OS/8 KEYBOARD COMMANDS

3.22 DELETE

The DELETE command removes files from the directory of the device you
specify. The format is

DELETE input:filel, ..• file5

Enter the files -- up to five -
files in the command line.
command line. DELETE makes the
specifications.

that you want to delete as input
You may specify only one device in a

following assumptions about input

• If you omit the device name in the first input specification,
DELETE assumes DSK.

• If you omit the device name in succeeding specifications,
DELETE assumes the last device you entered. For example, this
command

.DELETE RXA1:EAST,WEST,NORTH,SOUTH

deletes four files from RXAI.

Note that DELETE does not actually remove the file from the device.
It simply erases its name from the directory, making the space it
occupies available for a new file. This means that in some cases you
may be able to retrieve a file you have mistakenly "deleted." For
details on retrieving lost files, see the PIP /1 option in this
manual. Also See the SUPERTECO section in the OS/8 TECO Reference
Manual.

You may use the wildcard asterisk (*) to specify file names and
extensions and the question mark (?) to indicate single characters.
Wildcards enable you to remove an entire group of related files with a
single DELETE command. For example, this command

~DELETE *.PA

removes all files with a PA extension from the system device. Use
wildcards with extreme caution to avoid deleting irreplacable files.

3.22.1 The Conditional DELETE

In most DELETE operations you simply list the files you want to remove
from a device as input files. In some cases, however, you may wish to
remove a file only on the condition that some other related file
exists -- a source file, for example, if the device also contains the
program in binary code.

To call for this kind of DELETE, use the following format:

where

DELETE output:file<input:file

output:file

input:file

is the file you wish to delete if file f is
present

is file f

3-28

OS/8 KEYBOARD COMMANDS

This command deletes, for example, any DSK file with a .PA extension,
only on the condition that DSK contains a file with the same name and
a .BN extension .

• DELETE *.PA<*.BN
FILES DELETED:
TESTl.PA
TEST2.PA

Only the wildcard (*) is legal in an out specification. You may not
use the question mark.

3.22.2 DELETE Terminal Display

During execution, DELETE prints on the terminal the names of the files
it has removed. For example:

.DELETE" RXA2:SNOW.BA,RAIN.BA
FI~ES DELETED:
SNOW.BA
RAIN.BA

3.22.3 DELETE Options

You may qualify a DELETE command with the following slash options:

• /e

• /0

• /V

• /0

• /N

DELETE removes only those files that have the current
date.

DELETE removes all files except those with the current
date.

DELETE removes all the files from a device except the
ones you specify in the command line.

DELETE prints a question mark before execution to make
sure that you specified the right files for removal.
If your answer is yes, type Yi if no, type any other
character.

DELETE displays a log of all files it has found for
deletion but does not remove the file names from the
directory.

DELETE causes the execution of program eeL.SV and FOTP.SV with the /D
option. For further information on deleting files, see the FOTP
chapter in this manual.

3-29

DIRECT OS/8 KEYBOARD COMMANDS

3.23 DIRECT

The DIRECT command produces listings of OS/8 device directories. The
format is

DIRECT output:file(input:filel, .•. input:file5

DIRECT prints a directory of all the files on all the devices (up to
5) that you specify in the command line. DIRECT makes the following
assumptions about input and output specifications:

• If you omit the input device, DIRECT assumes DSK.

• If you omit input file names, DIRECT assumes *.* -- that is,
all files with any extension.

• If you omit the output device, DIRECT prints the directory on
the terminal.

• DIRECT automatically adds a DI extension on an output file.

Always use wildcards in your input specifications when requesting a
list of related files on a device. For example, this command calls
for a list of all files on DSK that have a .PA or .BN extension.

You may use wildcards to represent an output file name or extension.

3.23.1 DIRECT Output

The standard DIRECT listing has the following format:

filespec

(file name and
extension)

nnn

(number of blocks used
in decimal)

dd-mmm-yy

(file-creation date)

If you do not enter the current date with the DATE command
boot the system, your directory listings will not
file-creation date.

when you
include a

For examples of DIRECT output, see the DIRECT chapter.

3.23.2 DIRECT Options

DIRECT options enable you to
directories.

produce

• =n DIRECT lists a directory in
number from 1 to 7.

• /C DIRECT lists only files with

• /E DIRECT includes empty files

the following

n columns, where

the current system

in the listing.

special

is a

date.

• /F DIRECT lists only file names, omitting lengths and
dates.

• /M DIRECT lists empty files only.

3-30

• /0

• /R

• /U

· ~
• /W

OS/8 KEYBOARD COMMANDS

DIRECT lists only files with a date other than the
current date.

DIRECT lists the file name you specify and all files
that follow it in the device directory.

DIRECT lists files in the same
them in the command line.
input file specification as
request.

order that you enter
That is, it treats each
a separate directory

DIRECT lists all files on a device except the ones you
specify in the command line.

DIRECT displays its current version number.

3-31

DUPLICATE OS/8 KEYBOARD COMMANDS

3.24 DUPLICATE

The DUPLICATE command copies the entire contents of one diskette to
another diskette. The format is

DUPLICATE output diskette:<input diskette:

You may use DUPLICATE to transfer the contents of diskettes only. For
example, the following command transfers the contents of RXAO to RXAl,
the device specified for output.

~DUPLICATE RXA1:<RXAO:

DUPLICATE is a CCL command and runs the RXCOPY program. For a
description of the options you can use with DUPLICATE, see the RXCOPY
chapter in this manual.

3-32

OS/8 KEYBOARD COMMANDS EDIT

3.25 EDIT

The EDIT command summons the OS/8 Editor to let you retrieve and work
on a source program that you have stored as a file. The format is

where

EDIT output:file<input:filel, .•• input:file9

input:filel ••. 9

output: file

is a program (stored in one to nine files)
you want to work on and the device on which
it is located

is the name of the modified file and the
device you want to send it to

The Editor signals with a number sign (t) as soon as it is ready to
accept your first instruction. For a discussion of these
instructions, see Chapter 4.

3.25.1 Recalling Arguments

The EDIT command can recall arguments from a previous EDIT or CREATE
command entered on the same day. If you enter both an input and an
output file, EDIT remembers only the output specification.

3-33

EOF OS/8 KEYBOARD COMMANDS

3.26 EOF

The EOF (End of File) command runs the CAMP program and writes a
single mark (file gap) on the specified magnetic tape or cassette.
The EOF command has the format

EOF device

where

device is either MTAn or CSAn, signifying the device on
which the file gap mark is to be written

For example, this command

.EOF MTA3

writes an end-of-file mark on the magnetic tape mounted on MTA3.

For a complete description of CAMP commands, see the CAMP chapter in
this manual.

3-34

OS/8 KEYBOARD COMMANDS EXECUTE

3.27 EXECUTE

The EXECUTE command

• assembles or compiles, links, loads, and executes a source
program

• links, loads, and runs an assembled or compiled program

• runs a linked and loaded program

The format is

EXECUTE output:file.bn,file.ls(input:filel, .•• file9

The EXECUTE command is the same as the COMPILE command with the IG
option. The input and output specifications depend on the compiler or
assembler you invoke. For complete information, see the COMPILE
command and the various language chapters in the OS/8 Language
Reference Manual.

3-35

GET OS/8 KEYBOARD COMMANDS

3.28 GET

The GET command loads a memory-image file -- that is, an SV file you
have created with the SAVE command -- back into memory. The format is

GET input:file.SV

If you omit the extension, GET looks for a file with the name you
specify and an .SV extension. You must specify the device; GET does
not assume DSK.

For example, to load into memory a file called JOBCNT.SV on RXAO, type

~GET RXAO:JOBCNT

During execution, GET loads the file and its Core Control Block into
memory, then transfers the CCB to a special area on the system device
for reference and maintenance. GET also places the Job Status Word
into location 7746 of field 0 to indicate what parts of memory the
file uses and how. It loads the block number of the first block of
the file into location 7747.

To run a program that you have loaded into memory with GET, use the
START or EXECUTE command.

The Monitor performs the GET operation.

3-36

OS/8 KEYBOARD COMMANDS

3.29 HELP

The HELP command sends information on OS/8 system
output device, usually the terminal. The format is

HELP output:file<OS/8

where

HELP

programs to an

OS/8 is the name of an OS/8 keyboard command or system
program

The default output device for HELP is TTY, the terminal.

To see a complete listing of keyboard commands, type

.HELP

For information on a specific command, enter the command name as the
argument in a HELP line:

.HELP PAL

To obtain a listing of all legal arguments for HELP, type

~HELP HELP

HELP runs the program HELP.SV, which uses a reference file HELP.HL.
This file, which must be located on the system device, contains a list
of all the HELP subfiles available along with the HELP text itself.

3-37

LIST OS/8 KEYBOARD COMMANDS

3.30 LIST

The LIST command sends to the line printer the contents of the files
(up to five) that you specify as input in the command line. The
format is

LIST input:filel, ••• input:file5

LIST requires no output specification, assuming LPT. If you omit the
input device, LIST looks for the file on DSK.

For example, this command prints the source program PROG.BA, located
on DSK, on the line printer •

• LIST PROG.BA

LIST outputs the contents of each input file in the same order that
you enter the files in the command line.

3.30.1 LIST Options

• /C LIST prints all files with the current date.

• /0 LIST prints all files except those with the current
date.

• /V LIST prints all files except the ones you specify in
the command line.

• /Q LIST displays each file name and a question mark. If
you want to list that file, type Y; if not, type any
other character.

LIST runs CCL.SV and FOTP.SV.

3-38

OS/S KEYBOARD COMMANDS LOAD

3.31 LOAD

The LOAD command lets you load a PALS absolute binary file or a
FORTRAN relocatable binary file into memory.

The extension on the input file determines which loader the command
summons.

• BN identifies a PALS program in absolute binary form and
causes LOAD to summon the ABSLDR.

• RL identifies a FORTRAN program in relocatable code and causes
LOAD to summon the FORTRAN loader.

To LOAD a PALS program, use the following format:

LOAD input:filel.BN, ••• input:file9.BN

where

input:filel.BN, ••. 9.BN is a PALS absolute binary file contained
in 1 to 9 files

If your input file is a PALS program,
specifications.

For example, this command

.LOAD RXA1:TIC.BN,TAC.BN,TOE.BN

places a 3-part program in memory.

LOAD

To LOAD a FORTRAN program, use the following format:

ignores output

LOAD output:image.LD,output:map.LS(input:filel.RL, ••• input:file9.RL

where

output:image.LD

output:map.LS

input:file.RL .•• 9.RL

is an optional loader image file

is an optional loader symbol map

is a FORTRAN program in relocatable
binary form stored in 1 to 9 files

Once you have placed the program in memory, you can

• run it with the START command

• create an .SV file with the SAVE command

• debug the program with ODT

For a list of the options that LOAD accepts, see the chapters on the
PALS ABSLDR and the FORTRAN loader.

3-39

MAKE OS/8 KEYBOARD COMMANDS

3.32 MAKE

The MAKE command runs TECO and opens the file you specify for output.
The format is

MAKE output:file

If you omit the device name and the file extension, MAKE assumes DSK
and .PA.

If the file you specify already exists, MAKE prints the message

7.!3IJPERSFDING -------
For example, this command

.MAKE DTA1:TEXT.TX

is the same as typing

.R TEeD
!EWDTA1:TEXT.TX$$

For further information, see the OS/8 TECO Reference Manual.

3-40

OS/8 KEYBOARD COMMANDS MAP

3.33 MAP

The MAP command produces a map -- usually on the line printer -- of
all the memory locations used by the absolute binary files you specify
in the command line.

The format is

MAP output:file<input:filel, .•• input:file9

MAP accepts a minimum of nine files as input in a single command line.
To specify more than nine files, press the ESCAPE key after the ninth
entry. This causes the Command Decoder to print an asterisk (*),
indicating that you may continue to specify input files, terminating
each with the RETURN key. To execute this command, type another
ESCAPE.

If you omit the extension from an input file name, MAP assumes .BN.
If you omit the output device, MAP sends the map to the line printer.
To display a map on the terminal, use the /T option.

3.33.1 MAP Output

MAP depicts MEMORY as a series of lOa-digit lines (in octal), grouped
in pairs. Each pair of lines represents one memory page~ each digit
in a line represents one memory location. Depending on the contents
of a location, MAP prints the digit 0, 1, 2, or 3.

• a means the program did not load into this location.

• 1 means the location was loaded into once.

• 2 means the location was loaded into twice.

• 3 means the location was loaded into three times.

If you specify the terminal as the output device, MAP prints a set of
octal numbers across the top of the map. Each number -- ranging from
00 to 77 -- is the vertical co-ordinate for the column of digits below
it. To determine the memory address of any entry in the map, add the
line number at the left to the octal number directly above.

For examples of MAP output, see the BITMAP chapter in this manual.

3.33.2 MAP Options

You can modify MAP output with the following options:

• /n

• /R

MAP confines the construction of maps to the field
specify as n.

you

MAP resets the map just constructed in memory to look
as though nothing has been read in. If you specify the
wrong file in a MAP command, use the /R option at the
end of the line.

3-41

• /S

• /T

OS/8 KEYBOARD COMMANDS

MAP reads every absolute binary program in an input
file. In normal operation, MAP accepts only the first
file.

MAP changes the format of the output map -- that is, it
sends a map to the line printer in terminal format and
vice versa.

The MAP command runs CCL.SV and BITMAP.SV.

3-42

OS/8 KEYBOARD COMMANDS MEMORY

3.34 MEMORY

The MEMORY command finds the highest field available in hardware or
limits the fields available in software.

The format is

or

where

MEMORY

MEMORY n

n is an octal number from 0 to 7 representing the number
of fields (each containing 4K words of memory) in
software.

For example, this command line

.MEMORY 3

limits the amount of memory available in the system to 16K words.

The following list shows all the values of n and their meaning:

o all available memory fields
1 8K words of memory
2 12K words
3 16K words
4 20K words
5 24K words
6 28K words
7 32K words

To find the amount of memory currently being used by OS/8, type the
command with no argument. The following output indicates that a
MEMORY 4 command, entered previously, has restricted a 32K system to
only 20K words of available memory •

• MEMORY
201(/32"" MEMORY

If the system is using all available memory, the Monitor prints the
total amount. For example:

• MEMORY
321(MEMORY

The MEMORY command causes the execution of CCL.SV.

3-43

MUNG OS/8 KEYBOARD COMMANDS

3.35 MUNG

The MUNG command lets you call a predefined TECO macro to operate on a
source file. The format is

where

MUNG device:file,text

device:file

text

is a file containing a TECO macro. If you omit
the extension, MUNG assumes .TE. If you type a
period after the file name, MUNG assigns no
extension.

is an argument to the macro.
requires no argument, omit the
command line.

If the macro
comma in the

MUNG reads the first page of the specified file -- the macro -- into
Q-register Y. Then it enters the text into the TECO text buffer.
With the pointer at the end of the buffer, TECO executes the macro in
Q-register Y. If the text argument is too long, MUNG prints the error
message

COMMAND TOO LONG

For complete information on TECO, see the TECO Reference Manual.

3-44

OS/8 KEYBOARD COMMANDS OOT

3.36 ODT

The ODT command enables you to debug the program currently in memory,
control its execution, and make alterations by typing ODT instructions
at the terminal.

The format is

ODT

Once you have entered the command with the RETURN key, you may examine
and modify any memory location of the program currently in memory or
use the breakpoint feature to control program execution.

When using ODT to debug a program, you must call I/O devices by their
permanent names. As long as ODT is in control of the system, all
user-defined names are invalid.

For a complete discussion of ODT, see the ODT chapter.

3-45

P~L OS/8 KEYBOARD COMMANDS

3.37 PAL

The PAL command assembles a PAL8 source file, producing an absolute
binary file with a .BN extension.

The format is

PAL output:binary.BN,output:listing.LS,CREF.LS<input:source.PA

where

output:binary.BN

output:listing.LS

output:CREF.LS

input:source

is an absolute binary file and output
device

is an optional listing file and output
device

is an optional file used by CREF

is a PAL8 program and an input device

If you omit the extension in the input specification, PAL assumes PA.
If you omit the extension from the output files, PAL assumes BN and
LS.

The following example causes PAL to assemble a file called BOOMER.PA
and produce a listing file •

• PAL BOOMER,BOOMER~BOOMER.PA

PAL can recall arguments from any previous COMPILE, LOAD, or EXECUTE
command that you enter on the same day.

The /C option causes PAL8 to chain to the CREF program, which produces
a cross-reference file and assigns it the name of the second output
file.

For a complete list of PAL options, see the PAL8 chapter in the OS/8
Language Reference Manual.

PAL runs CCL.SV and PAL.SV.

3-46

OS/8 KEYBOARD COMMANDS PRINT

3.38 PRINT

The PRINT command runs a program called LPTSPL if you have such a
program on your OS/8 system. LPTSPL can be a user-written program or
a program obtained from DECUS.

3-47

PUNCH OS/8 KEYBOARD COMMANDS

3.39 PUNCH

The PUNCH command runs PIP and punches the file specified on the paper
tape. The format is

PUNCH output:file<input:file

If you omit the output specification, PUNCH sends the file to PTP.

3-48

OS/8 KEYBOARD COMMANDS R

3.40 R

The R command loads and starts a .emory-image file from the system
device. The format is

R file.SV

R writes the block number of the first block in the file in location
7747 in field O.

Since the R command loads files from the system device only, you may
not specify an input device other than DSK in the command line. If
you omit the file extension, R assumes SV.

For example, this command

.R TEST

looks for a program called TEST.SV on the system device and loads
executes it.

The R command differs from the RUN command in that it does not
the Core Control Block to the system device. To save a program
does not have its Core Control Block in the usual place on SYS,
must include all the optional arguments in the SAVE command.

and

send
that

you

Always use R to call a system program, since these do not have to be
resaved. If you want to run a program that you eventually plan to
update (using ODT, for example) and then save, use the RUN and GET
command rather than R.

3-49

RENAME OS/8 KEYBOARD COMMANDS

3.41 RENAME

The RENAME command lets you change ~e name of a file. The format is

RENAME device:newname<device:oldname

where

device:oldname is the file name you want to change and
the device on which it is located

device:newname is the new name and the same device

You must specify the same device for input and output in the command
line.

RENAME changes the input
RENAMED on the screen,
type

file name and prints
followed by the old file

the message FILES
name. Thus, if you

.RENAME RXA1:FILE.PA~RXA1:RECORD.PA

the file RECORD.PA on RXAI becomes FILE.PA. The creation date and the
contents of the input file remain the same.

You may use wildcards with the RENAME command.

3.41.1 RENAME Options

RENAME provides the following options:

• IC RENAME changes the name of the input file only if it
has the current date.

• 10 RENAME changes the name of the input file only if it
does not have the current date.

• IV RENAME changes the name of all files on a device except
the ones specified as input in the command line.

• IT RENAME changes the name of the input file and gives it
the current date.

RENAME runs CCL.SV and FOTP.SV with the IR extension.

3-50

OS/8 KEYBOARD COMMANDS RES

3.42 RES

The RES command runs the RESORC program and lists the device handlers
present on an OS/8 system. The format is

RES output:file<input:file

For a description of the input and output specifications for RES and a
list of RES options, see the chapter on the RESORC program in this
manual.

3-51

REWIND OS/8 KEYBOARD COMMANDS

3.43 REWIND

The REWIND command runs the CAMP program and issues a
to a specified OS/8 device controller. This command
same way as the CAMP REWIND command. For a complete
this command, see the CAMP chapter in this manual.

3-52

rewind command
operates in the
description of

3.44

The
its
the
the

OS/8 KEYBOARD COMMANDS RUN

RUN

RUN command loads a memory image (SV) file into memory, transfers
Core Control Block to the system device, and begins execution at

starting address of the program. It places the block number of
first block in the file into location 7747 of field O.

The format is

RUN input:file

If you enter a file name without an extension, RUN assumes SV. You
must specify a device; RUN does not assume DSK.

For example, the following RUN command GETs and STARTs PROG.SV on
RXAI •

• RUN RXA2:PROG.SV

3-53

SAVE OS/8 KEYBOARD COMMANDS

3.45 SAVE

The SAVE command makes an executable binary file of the program
currently in memory, assigns it a name, and stores it on a device. If
you do not specify the locations in memory that you want to save, the
SAVE command automatically looks for the information on the current
Core Control Block.

The format is

where

SAVE device:file fnnnn-fmmmm,fpppp;fssss=cccc

fnnnn

fmmmm

fpppp

;fssss

=cccc

is a 5-digit octal number representing the
field (f) and starting address of a
continuous portion of memory that you want to
save

is the final address (in the same field) of
that part of memory you intend to save

is a 5-digit octal number representing the
address of one location in memory. A single
address causes SAVE to save the entire page
on which the location occurs

is a 5-digit octal
starting address
save

number representing the
of the program you want to

is a 4-digit octal number representing the
contents of the Job Status Word

If you omit the extension on the file name, SAVE appends SV. If you
omit the other arguments, SAVE finds the locations it requires in the
current Core Control Block.

The SAVE command places the following restrictions on arguments in the
command line.

• You must specify the output device. SAVE does not default to
DSK.

• The beginning and ending addresses of an area in memory
(fnnnn-fmmmm) must both appear in the same field.

• When you specify a location or an area on one page, SAVE takes
the entire page. If you call for another part of that same
page in the same command line, SAVE sends an error message to
the terminal, informing you that it has already saved the
page.

• If you omit the field number, SAVE assumes field O.

•

•

Avoid saving locations 7600-7777 in fields 0-2. The
monitor code resides in these areas of memory.
accidentally destroying a portion of the Monitor,
SAVEs involving 7600 to fields above field 2.

If you specify an address on an odd-numbered page,
save it only if it also saves the preceding page.
does this automatically.

3-54

resident
To avoid
restrict

SAVE can
The system

OS/8 KEYBOARD COMMANDS

3.45.1 The Job Status Word

The Job Status Word, which resides in memory with the file (at
location 7746 in field 0), indicates what parts of the file use memory
and how.

Bit Condition

Bit 0=1

Bit 1=1

Bit 2=1

Bit 3=1

Bit 4=1

Bit 5

Bits 6-9

Bit 10=1

Bit 11=1

Meaning

File does not load into locations 0-1777 in
field 0 (0000-1777).

File does not load into locations 0-1777 in
field 1 (10000-11777).

Program must be
restarted because
execution.

reloaded before it
it modifies itself

can be
during

Program being run will not destroy the BATCH
monitor.

A memory image file that was generated through
the LINKER contains overlays.

Reserved for 05/78 system programs.

Unused, and reserved for future expansion.

Locations 0-1777 in field 0 need not be saved
when calling the Command Decoder overlays.

Locations 0-1777 in field 1 need not be saved
when calling the USR.

The Monitor runs the SAVE command.

3-55

SET OS/8 KEYBOARD COMMANDS

3.46 SET

The SET command enables you to modify the operating characteristics of
OS/8 by specifying certain attributes of system programs in the
command line. Use SET to make frequently required changes in system
programs, especially those with I/O handlers.

The format is

SET device [NO] attribute [argument]

where

device

NO

attribute

argument

indicates the handler of the device you want
to modify

indicates that the following attribute does
not apply

is the characteristic you want to modify

is an optional parameter required by certain
SET commands

For details, see the chapter on the SET program in this manual.

3-56

OS/8 KEYBOARD COMMANDS SKIP

3.47 SKIP

The SKIP command runs the CAMP program and advances over the number of
files or records on a magnetic tape that you specify. The format is

where

SKIP MTAn: nnnn keyword

MTAn

nnnn

keyword

is any magnetic tape drive

is an unsigned decimal number representing the number
of files you want to advance over

specifies FILE, RECORD, or EOD (end-of-data)

If you omit nnnn or EOD, SKIP assumes 1. If you omit the keyword,
SKIP assumes FILE.

For example, this command

~SKIP MTAO:2 RECORDS

advances the tape on MTAO forward two records.

For complete information on the SKIP command, see the chapter on the
CAMP program in this manual.

3-57

START OS/8 KEYBOARD COMMANDS

3.48 START

The START command begins execution
currently in memory at the address
If you omit the address, START uses
current Core Control Block.

The format is

START fnnnn

where

of the memory image program
you specify in the command line.
the starting location in the

fnnnn is a 5-digit octal number representing a field (f) and
the location in memory (nnnn) you want to use as a
starting address

For example, this command

.!.START 10555

starts executing the program currently in memory at location 555 in
field 1.

This command

.START

starts the program at the address contained in the current Core
Control Block.

The Monitor runs the START command.

3-58

OS/8 KEYBOARD CO~NDS SQUISH

3.49 SQUISH

The SQUISH command eliminates any embedded empty files on the device
you specify for input.

The format is

SQUISH device

Before it executes a command, SQUISH prints a message to ask if you
are sure you have specified the right device. For example:

.SQUISH RXA1:

ARE YOU SURE'!'

If you want to continue, type Y. If not, type any other character.

If you specify both an input and an output device in the command line,
SQUISH copies all the files from the input device to the output device
and eliminates any embedded empty files. For example:

~SQUISH RXAO:<RXAl

If the output device is a system device, SQUISH always preserves the
system programs.

NOTE

An error during a SQUISH can corrupt the
entire contents of a device in a way
that may not be immediately apparent to
you. Therefore, do not use SQUISH
unless you have a copy of both the
system programs and your other files.

SQUISH runs CCL.SV and PIP.SV with the /S option.

3-59

SUBMIT OS/8 KEYBOARD COMMANDS

3.50 SUBMIT

The SUBMIT co~and performs batch processing with optional spooling to
a file-structured output device. SUBMIT runs multiple programs and
sequences of system commands that require little or no interaction
with the user or operator.

The format is

where

SUBMIT spool device:<input:file

spool device: is optional

input:file is an input file name and device. If you omit the
device and extension, the system assumes DSK and
B1.

For a complete discussion of the BATCH program, see the BATCH chapter.

SUBMIT runs CCL.SV and BATCH.SV.

3-60

OS/8 KEYBOARD COMMANDS TECO

3.51 TECO

The TECO command summons the TECO editor, opens the files you specify
for input, and creates an output file.

The format is

TECO output:file<input:filel, .•• input:file5

If you omit the output specification, TECO does an edit backup on the
input file you specify. If you omit the input file extension, TECO
assumes PA.

TECO reads the first page of the input file into the text buffer
before it returns control to you.

TECO remembers the name of the output file. Thus, the next TECO
command you enter without arguments will use this file for input.

For complete information, see the TECO section in the OS/8 Language
Reference Manual.

3-61

TERMINATE OS/8 KEYBOARD COMMANDS

3.52 TERMINATE

The TERMINATE command causes the system to emulate a terminal with no
knowledge of disk drives, processor, or memory. The format is

TERMINATE

This command runs eCL.SV.

3-62

OS/8 KEYBOARD COMMANDS TYPE

3.53 TYPE

The TYPE command displays on the terminal the contents of the files
you specify for input. The format is

TYPE input:filel, ••• input:file5
•

TYPE displays the contents of each input file on the terminal in the
same order that you enter them in the command line. Although the
command accepts no more than five files in a line, you can extend this
number with wildcards.

For example, this command displays all files with a BS extension

3.53.1 TYPE Options

TYPE provides the following options:

• /C

• /0

• /V

• /0

TYPE displays only files with the current date.

TYPE displays only files with a noncurrent date.

TYPE displays all the files on a device except the ones
you specify.

TYPE prints each file name on the terminal, followed by
a question mark. To display the file, type Y. To skip
it, type any other character.

TYPE runs CCL.SV and FOTP.SV.

3-63

UA,UB,UC OS/8 KEYBOARD COMMANDS

3.54 UA, UB, and UC

The UA, UB, and UC commands let you store CCL commands and their
arguments in temporary files and recall them for later use. Unlike
other commands that remember arguments, UA, UB, and UC do not forget
command lines that you have entered on previous days. This is because
the system does not delete the files each time the qate changes.

The format is

where

UA I UB
UC

command line

command line is the CCL command with arguments that you want to
recall

For example, this command

.UA COpy RXA1:~DSK:RECALL.BS

stores the COpy command and its arguments in a temporary file. To
execute the command, type

Note that you can store and recall only three commands at a time.

Use UA, UB, and UC to recall command lines that recur throughout a
BATCH job.

3-64

OS/8 KEYBOARD COMMANDS UNLOAD

3.55 UNLOAD

The UNLOAD command

• turns a magnetic tape controller off line and rewinds the
tape, returning to the CAMP program during the rewind. To use
the magnetic tape after the UNLOAD command, you must turn it
on line manually.

• unloads TC08 and TD8E DEC tapes from their reels. UNLOAD
rewinds the DEC tape on the unit you specify, selects a
different unit, and returns control to CAMP for another
command. This DECtape unit cannot be used until you issue
another legal command -- for example, an ASSIGN command -- to
the DECtape controller.

• write-locks an RK8E disk.

The format is

where

~UNLOAD device

device is a magnetic tape, a TC08 or TC8E DECTAPE, an RK8E
disk

UNLOAD runs CCL.SV and CAMP.SV.

3-65

VERSION OS/8 KEYBOARD COMMANDS

3.56 VERSION

The VERSION command prints the version numbers of the OS/8 Monitor and
the CCL program. The format is

VERSION

3-66

OS/8 KEYBOARD COMMANDS ZERO

3.57 ZERO

The ZERO command clears the directory of the device you specify,
creating an empty file directory. The format is

ZERO device

For example, the following example clears the directory of RXAI •

• ZERO RXA1:

Use ZERO only on devices that contain user programs and data files.
If you zero the system device, you will destroy the system programs.
ZERO will not clear the directory of SYS until it has printed a
message to ask if you are sure you want to proceed. If you do, type
Yi if you do not, type any other character.

3-67

CHAPTER 4

THE OS/8 SYMBOLIC EDITOR

4.1 INTRODUCTION

The Editor allows you to create and modify ASCII source files. These
files may contain assembly language programs, FORTRAN and BASIC
programs, or any other information that has the format of character
strings.

The Editor is a helpful tool; however, it must be told precisely what
to do. You direct its operation by typing commands in the form of a
single letter or a letter with arguments and, in most cases, pressing
the RETURN key directly after the command line.

This chapter describes the procedures you follow to create a file and
the commands you use to modify it.

4.2 CALLING THE EDITOR

The CREATE and EDIT commands call and run the OS/8 Editor.

The CREATE command summons the Editor to let you open and write a new
fIle. The format is

CREATE outdev:file

CREATE accepts no input specifications and only one file name and
device for output. You provide the input by typing in text at the
terminal.

After you press the RETURN key to execute the command, the system
Editor displays a number sign (t) on the screen to indicate that it is
ready to receive your first instruction.

Thus,

.CREATE RXA1:RUN1.PA
!

opens a file named RUNl.PA on output device RXAI.

To enter text, you must put the Editor into text mode with the I or A
instruction. (For details on text mode, see Section 4.3.1.)

The EDIT command summons the OS/8 Editor to let you retrieve and work
on a source program previously stored as a file. The format is

EDIT outdev:file=indev:filel, ... indev:file9

4-1

THE OS/8 SYMBOLIC EDITOR

The Editor signals with a number sign (t) as soon as it is ready to
accept your first instruction.

To work on a source program that you have created and stored as a file
(or sequence of files), enter the file or files as input in the EDIT
command line. EDIT will accept up to nine input files in a line.

The Editor allows only one output file in a command line. You must
specify an output file to receive the modified version of your source
program.

For example, the following command opens input file TABLE.FT on RXAO
and a file called FILEl.FT on RXAI for output (The Editor signals when
ready.) :

.EDIT RXA1:FILE1.FT<RXAO:TABLE.FT
t

To cause the Editor to read in the first page of the input file, type
R in response to the number sign. (For details on Editor commands,
see Section 4.3.2.)

4.3 MODES OF OPERATION

The OS/8 Editor operates in two modes: the command mode and the text
mode.

In the command mode, the Editor prints a t on the terminal to indicate
that it is waiting for you to type a command on the keyboard.

In text mode, the Editor accepts anything you type at the keyboard as
part of the file you are creating or modifying.

The key commands in Table 4-1 enable you to transfer between modes or
return control to the Keyboard Monitor.

Command

CTRL/C

CTRL/O

CTRL/L

Table 4-1
Editor Key Control Commands

Mode in Which
Used

Text and Command
Modes

Command Mode

Text Mode

4-2

Meaning

Returns control to the
Keyboard Monitor. All text
that has been edited is lost.
CTRL/C should be used with
utmost caution, since no
output file will be stored.

Stops the listing of text.
Returns control to Command
Mode.

Returns the Editor to Command
Mode.

THE OS/8 SYMBOLIC EDITOR

4.3.1 Text Mode

To put the Editor in text mode so that you can enter a new file -- or
add to one that you have already created -- type the Insert or Append
command. The format is:

I RETURN

or

A RETURN

These commands cause the Editor to place the text that you enter at
the terminal into its text buffer. If you use the Insert command, the
Editor stores the text before the first line of any existing material
in the buffer. The Append command instructs the Editor to place the
text you enter after the last line of existing text in the buffer.

The Editor accepts text in both upper and lower case.

To enter a line of text that you have typed on the terminal, press the
RETURN key.

For example:

II
READ OF THE BUFFER

or

IA
BOTTOM OF THE BUFFER

Before you type RETURN, read the line over for errors. Make
corrections with the DELETE key or the CTRL/U key command. DELETE
erases the last character you typed. CTRL/U deletes the entire line.
(CTRL/U is equivalent to typing DELETE back to the beginning of the
line.)

To correct a line that you have sent to the buffer with RETURN, you
must put the Editor in command mode with CTRL/L and use the
appropriate editing commands (see Section 4.3.2.4).

The buffer holds approximately 5600 characters (decimal). When 256
locations remain, the Editor rings the warning bell on the terminal.
From this point until the buffer is full, typing RETURN causes the
Editor to enter a line of text, then switch to command mode and ring
the terminal bell. You may continue to enter text by this method one
line at a time until the Editor detects the absolute end of its
buffer.

To continue, you must first empty the buffer. The
enables you to send the contents of the buffer

Page command
or any part of

return to command it -- to an output device. To use the Page command,
mode with CTRL/L. The format of the command is

P RETURN

or

nP RETURN

or

m,nP RETURN

4-3

THE OS/8 SYMBOLIC EDITOR

where

n is a line you want to send to an output device.

n,m is a sequence of lines (n through m) that you wish
to send to an output device

The P command automatically appends a form feed to the output, thus
producing a page of text. This allows you to paginate the contents of
your file.

Before you start typing in the next page, make
remains in the buffer. To do this, use the Kill
4.3.2.3), which clears the buffer. Then type the
put the Editor back in text mode) and continue
program.

sure that no text
command (see Section
Append command (to
entering your source

To return to command mode at any point, type CTRL/L.

To end the session -- that is, to place all remaining text in the
output file, close the file, and return control to the Keyboard
Monitor -- use the Exit command. The format is:

E RETURN

4.3.2 Command Mode

In command mode, the Editor performs the operations you specify on the
text in the buffer.

To enter text into the buffer from your input device, use the Read
command. The format is:

R RETURN

The Read command instructs the Editor to read a page of text from an
input device into the buffer -- that is, to read text until it
encounters a form feed character. If the buffer contains text
already, the Editor adds the new page to It.

The Editor provides five types of command: Input, Listing, Output,
Editing, and Search.

Each command consists of a single letter, preceded optionally by one
or two numeric arguments. The letter Indicates the operation: the
arguments in most cases tell the Editor which lines to act upon.

Enter the commands after the number sign prompt in upper case only.
The general format is

X RETURN

or

nX RETURN

or

m,nX RETURN

4-4

THE OS/8 SYMBOLIC EDITOR

where

x is a command

m,n are line numbers (m must be less than n.)

Except for noted exceptions, you terminate the command with the RETURN
key.

4.3.2.1 Input Commands - Input commands instruct the Editor to accept
text from the terminal (text that you type in) or from an input device
(text that you have stored as a file). To execute the commands, type
RETURN key.

Note:

• Special characters, including lower-case letters may be input
to the file. The ESCape character is echoed as a dollar sign
($) for readability.

• In these commands, the Editor ignores ASCII codes 340 through
376. These codes include the codes for the lower-case
alphabet (ASCII 341-372). The Editor returns to the command
mode only after encountering a form feed or when the text
buffer becomes full.

Table 4-2
Editor Input Commands

Command Meaning

A

I

nI

R

Append the text being typed at the keyboard until a
form feed (ASCII 214 or CTRL/L) is encountered. The
form feed returns control to command mode. Text
input following the A command is appended to whatever
is currently in the text buffer.

Insert whatever text is typed before line 1 of the
text buffer. The form feed (CTRL/L) terminates the
insertion process and returns control to the command
mode.

Insert whatever text is typed (until a form feed is
typed) before line n of the text buffer.

Read one page from the input device specified to the
EDIT or CREATE commands, and append the new text to
the current contents of the buffer. If no input file
was indicated or if no input remains, a question mark
(?) is printed and the Editor returns to the command
mode.

4-5

4.3.2.2
or part
execute.

Command

L

nL

m,nL

G

nG

B

THE OS/8 SYMBOLIC EDITOR

Listing Commands - List commands display on the terminal all
of the contents of the text buffer. Type RETURN key to

Table 4-3
Editor Listing Commands

Meaning

List entire contents of the text buffer on the
terminal.

List line n of the text buffer on the terminal.

List lines m through n of the text buffer on the
terminal.

Get and list the next line that has a label
associated with it. A label in this context is any
line of text that does not begin with one of the
following:

space
/
TAB
RETURN

(ASCII 240)
(ASCII 257)
(ASCII 211)
(ASCII 215)

At the termination of a G command, control returns to
the command mode with the current line counter equal
to the line just listed.

Get and list the first line that begins with a label,
starting the search at line n.

Print the number of available memory locations in the
text buffer. The Editor returns the number of
locations on the next line. To estimate the number
of characters that can be accommodated in this area,
multiply the number of free locations by 1.7.

The Editor remains in command mode after a list command and updates
the value of the current line counter to be equal to the number of the
last line prin~ed.

4.3.2.3 Output Commands - Output commands send text from the buffer
to a device you specify for output. Type RETURN key to execute.

4-6

Command

E

P

nP

m,nP

K

THE OS/8 SYMBOLIC EDITOR

Table 4-4
Editor Output Commands

Meaning

Output the current buffer and transfer all remaining
pages of input to the output file: close the output
file and enter it in the directory. When this buffer
is full, the text is output to the indicated output
file. The E command automatically outputs a form
feed after the last line of output, and returns
control to the Monitor.

NOTE

If you do not use the E command to close
a file after editing, any changes,
additions, or corrections will not
appear in the output file. Thus, the E
command should usually be the last
command that you enter in an editing
session (also see Q command).

Write the entire text buffer to the output file.

Write line n of the text buffer to the output file.

Write lines m through n, inclusive, to the output
file.

NOTE

The P command automatically appends a
form feed to its output, thus producing
a page of text. This command allows you
to paginate your listing. However, if
the K command is not used after a P
command, the text remains in the buffer
and is again output with the new text
read in before the next P command.

Kill the buffer. All text is deleted from the text
buffer.

NOTE

The Editor ignores the commands nK or
m,nK, with the result that you cannot
destroy the buffer by mistyping a List
command (m, nL).

(continued on next page)

4-7

Command

Q

N

nN

v

nV

m,nV

THE OS/8 SYMBOLIC EDITOR

Table 4-4 (Cont.)
Editor Output Commands

Meaning

Immediate end-of-file. The Q command causes the text
buffer to be output. The file is then closed
(entered into the directory with the current date as
its creation date), and control returns to the
Monitor.

Write the current buffer to the indicated output file
and read the next logical page. The N command is
equivalent to a P, K, R command sequence.

Write the current buffer to the output file, kill the
buffer, and read the next logical page. This is done
n times until the nth logical page is in the text
buffer. Control then returns to command mode. (The
N command cannot be used with an empty text buffer,
since there is no text to be written. If the buffer
is empty when the N command is attempted, a question
mark (?) is printed.) For example, to read in the
fourth page of a file, give the commands

!R (to read the first page)

and

!3N (to read three more pages)

The V command causes the entire text buffer to be
listed on the line printer. The V command only works
with the LA78 line printer. It does not work with
the LQP78 line printer.

List line n of the buffer on the line printer.

List lines m through n, inclusive, on the line
printer.

4.3.2.4 Editing Commands - The following commands permit deletion or
alteration of text in the buffer. Type RETURN key to execute.

4-8

Command

nC

m,nC

nO

m,nD

nY

m,n$pM

THE OS/8 SYMBOLIC EDITOR

Table 4-5
Editing Commands: Deletion and Alteration

Meaning

Change the text of line n to the line(s) typed after
the command is entered (typing a form feed terminates
the text input). The C command is equivalent to a 0
command followed by an I command.

Delete lines m through n, and replace with the text
line(s) typed after the command is entered. (Typing
CTRL/L indicates the end of the changed lines.)

The C command utilizes the text collector in altering
text.

Delete line n from the buffer.

Delete lines m through n from the buffer.

Yank (read) in n pages from the input file into the
text buffer, without writing any output. For
example,

!5Y

reads through four logical pages of input, deleting
them without producing output. The fifth page is
read into the text buffer, and control automatically
returns to command mode.

NOTE

Use this command with caution; it
irrevocably deletes the contents of the
text buffer.

Move lines m through n directly before line p in the
text buffer. The $ character means that you type the
dollar sign key, not ESCape, ALTMODE, or other
possibilities. The old occurrence of the moved text
is then removed. This command can move one line, but
it needs three arguments. You can provide three
arguments by specifying the same line number twice.
For example,

moves line 6 in front of line 21 .
. ----~-~----~------~.~~~--~

4.3.2.5 Search Commands - Search commands cause the Editor to search
a text for occurrences of characters and strings that you specify.
The Editor sets the current line pointer at the line containing the
characters you want to find.

Search commands are discussed in detail in Section 4.4.

4-9

THE OS/8 SYMBOLIC EDITOR

Tab-Ie 4-6
Editor Search Commands

Command Meaning

S Perform a character search (Section 4.4.1) •

J Perform an interbuffer search for character strings
(Section 4.4.2.2).

F Look for next occurrence of the string currently
being sought.

ESC($) Perform an intrabuffer character string search.

4.3.2.6 Special Command Mode Characters - The Editor recognizes the
following special characters in command mode:

Table 4-7
Editor Special Characters: Command Mode

Character Function

Period (.) The Editor assigns an implicit decimal
number to the line on which it is
currently operating. At any given time
the period, which represents this decimal
number, may be used as an argument to a
command. In the following example, the L
command is used since it allows text to
be listed. Typing

means list the current line. Typing

!.-l,.+lL

means list the line preceding the current
line, the current line, and the line
following it, and then update the current
line counter to the decimal number of the
last line printed. The Editor updates
the current line counter, represented by
the period, as follows:

• After an R (Read page) or A (Append)
command, the period is equal to the
number of the last line in the
buffer.

• After an I (Insert) or C (Change)
command, the period is equal to the
number of the last line entered.

(continued on next page)

4-10

THE OS/8 SYMBOLIC EDITOR

Table 4-7 (Cont.)
Editor Special Characters: Command Mode

Character

Period (.) (Cont.)

Slash (I)

LINE FEED Key

Function

• After an L (List) or S (Search)
command, the period is equal to the
number of the last line listed.

• After a D (Delete) command, the
period is equal to the number of the
line immediately after the deletion.

• After a K (Kill) command, the period
is equal to O.

• After a G (Get and list) command,
the period is equal to the number of
the line displayed by the G.

• After an M (Move) command, the
period is not updated and remains
whatever it was before the command.

The symbol slash (I) has a value equal to
the decimal number of the last line in
the buffer. It may also be used as an
argument to a command. For example,

means list from line 10 to the end of the
buffer.

When the Editor is in command mode,
pressing the LINE FEED key has the same
effect as

•• +lL

which causes the Editor to display the
line following the current one and to
increment the value of the current line
counter (dot) by one. LINE FEED does not
perform this function while in the text
mode.

Right-Angle Bracket (» Typing the right-angle bracket (» while
in command mode is equivalent to typing

•• +lL

and causes the Editor to echo> and then
display the line following the current
line. The value of the current line
counter is increased by one so that it
refers to the last line displayed.

(continued on next page)

4-11

THE OS/8 SYMBOLIC EDITOR

Table 4-7 (Cont.)
Editor Special Characters: Command Mode

Character

Left-Angle Bracket «)

Equal Sign (=)

Colon (:)

ESCape Key

4.4 SEARCHING A TEXT

Meaning

In command mode, typing the left-angle
bracket «) is equivalent to typing

t.-1L

and causes the Editor to echo < and then
print the line preceding the current
line. The value of the current line
counter is decreased by one so that it
refers to the last line printed.

In the command mode, using the equal sign
in conjunction with either the line
indicator period (.) or slash (I) causes
the Editor to display the decimal value
of the argument preceding it. You can
find by this method the number of the
current line (.=nnnn) or the total number
of lines in the buffer (/=nnnn).

The colon performs exactly the
function as the equal sign (=).

same

When the Editor is in command mode,
pressing the ESCape key signals an
intrabuffer character search. It echoes
as a dollar sign ($) on the terminal
screen. When the Editor is in text mode,
the Escape key echoes as a dollar sign,
but it is stored in the file as an ESCape
character (033).

The following search commands enable you to make additions and
corrections in your text. The Editor searches for occurrences of the
single character or character string that you specify.

4.4.1 Single-Character Search -- the S Command

The format of a single-character search is:

where

S RETURN
X

X is the alphanumeric character you want to search
for.

4-12

THE OS/8 SYMBOLIC EDITOR

To specify a line or a sequence of lines that you want to search, use
the following format:

nS RETURN
n,mS RETURN

For example, the following command causes the Editor to search lines
20-40 for an occurrence of the character B:

120, 405
B

The Editor displays the character it is searching for and everything
preceding it in the line. At this point you can perform the following
operations.

• Delete the entire portion of the line not yet displayed and
terminate the line and the search by pressing the RETURN key.

• Delete characters from right to left by typing the DELETE key.

• Insert characters after the last one printed simply by typing
them.

• Insert a carriage return/line feed, thus dividing the line
into two, by pressing the LINE FEED key followed by CTRL/L.

• Continue searching the line to the next occurrence of the
search character by typing CTRL/L.

• Change the search character in the line and continue searching
by typing CTRL/G(BELL) followed by the new search character.
This allows all editing to be done in one pass.

• Type CTRL/G(BELL) twice to terminate the command.

The usual form of the character search command is #.S, followed by the
RETURN key and the character to be located. Use this form of the
command to modify the current line.

4.4.2 The Character String Search

The Editor can search the buffer for any unique combination of
characters. In a character string search, the Editor sets the current
line pointer at the line containing the first occurrence of the
string.

Two types of character string search are available:
interbuffer.

intrabuffer and

4.4.2.1 Intrabuffer String Search - In an intrabuffer search, the
Editor scans the text in the buffer for the string you specify. If it
fails to find an occurrence of the string, it prints a question mark
and returns to command mode.

To initiate an intrabuffer search, type the ESCape key in response to
the Editor's prompt and enter the string. (ESCape echoes as a dollar
sign.) The string must occur in one line.

4-13

THE OS/8 SYMBOLIC EDITOR

If you wish to begin the search at line 1 of the buffer, terminate the
string with a single quotation mark ('). If you wish to begin the
search at the current line + 1, use a double quotation mark (n) to
terminate the string.

The format of an intrabuffer search command is:

or

where

$string' RETURN

$string" RETURN

$

string

I (single quote)

II (double quote)

is a prompt character printed by the Editor

is a group of up to 20 ASCII characters

causes the Editor to begin searching at line
1 of the buffer

causes the Editor to begin searching at
current line +1

NOTE

Do not include single or double
quotation marks in a string because the
Editor recognizes them as instructions.

The Editor places the number of the first line containing the search
string in the current line indicator and displays the prompt sign (I).
To display the number on the terminal, type the indicator dot (.)
followed by an equal sign. The format is:

=

You can use a line number you obtain this way as an argument in any
Editor command.

For example, the following command causes the Editor to search for the
first occurrence of the string CDFIO, beginning at line 1 of the
buffer:

!$CDF10'
!

The response to this command is revealed as line 35:

•• =-35

Command lines can include more than one instruction.
assume that the buffer contains the following text:

ABC DEF GJO
lA2B3C4D5E6
.STRINGABCD

4-14

For example,

THE OS/8 SYMBOLIC EDITOR

To list the line that contains ABC, type

tSABC'L -
The search begins with line 1 and continues until the Editor finds the
string. The Editor sets the current line counter equal to the line in
which the string ABC occurred. The L (List) command causes the line
to be printed as follows:

ABC DEF GJO

The Editor returns to command mode, awaiting further commands. If you
want to find the next reference to ABC, type:

t"L

In this case, the quotation marks (") cause the last string the Editor
searched for to be used again, with the search beginning at the
current line +1. It is not necessary to enter the search string
again. The command may be used several times in succession. For
example, if you want to find the fourth occurrence of a string
containing the characters FEWMET, type

!SFEWMET' """L

This command will list the line which contains the fourth occurrence
of that string. The L command (or any other command code) can follow
either' or". The L command causes the line to be listed if the
Editor finds the string.

To clear the text string buffer, type

tS'

The Editor responds with a question mark and clears the text string
buffer.

The properties of the commands 'and " allow for easy and useful
editing, as the following example illustrates. To change the CIF 20
to CIF 10, enter the following commands:

tSDUM, 'SCIF 20"C
elF 10 INEW FIELD

The above set of instructions first causes the Editor to start at line
1 and search for the line beginning with DUM,. Then it searches for
CIF 20, starting from the line after the line containing DUM,. The
line number of the line containing the string CIF 20 becomes the
current line number. The C command applies the instructions of the
command line to what is typed in the next line -- that is, the string
CIF 10.

Since this search feature produces a line number as a result, any
operations which require a line number will accept a string instead.
For example:

!SSTRING'+4L

lists the fourth line after the first occurrence of the text STRING in
the text buffer.

lists all lines between the two labels, inclusive.

4-15

THE OS/8 SYMBOLIC EDITOR

!$PFlUG'S

performs a character search on the line which contains PFLUG. (Type
the search character after typing the RETURN key that enters the
line.)

In commands that include both strings and explicit numbers, strings
should appear first. For example, the following commands:

!l+$BAD!'L

will not list the next line after the string BAD!
correct syntax is:

t$BAD!'+lL

occurs. The

4.4.2.2 Interbuffer String Search -- J Command - In an interbuffer
search, the Editor scans the contents of the text buffer for the
character string you specify. If it fails to find an occurrence of
the string, it sends the buffer to an output file, clears the buffer,
and reads in the next page of text from the input file. The Editor
then resumes the search at line 1 of the new buffer. When the input
file is exhausted, the Editor prints the number sign prompt (#) and
awaits your next instruction.

If the search is successful, the
indicator equal to the number of
occurrence of the string.

Editor sets the current line
the line containing the first

The format for an interbuffer search is:

where

J RETURN
$string'

$

string

(single quote)

is a prompt character printed by the Editor

is a group of up to 20 ASCII characters

causes the Editor to begin searching at line
1 of the buffer.

To display the number of the line containing the string, type the
current line indicator dot (.) after the Editor's number sign prompt
(#), followed by an equal sign. The format is:

For example, the following command instructs the Editor to make an
interbuffer search for the string WRITE, beginning at line 1 of the
current buffer. The.= construction reveals that line 4 of the
current buffer contains the string.

!J
!WRITE'
!.=0004

4-16

THE OS/8 SYMBOLIC EDITOR

To find further occurrences of the string WRITE, type the F command.
The F command searches the buffer for the last character string
entered, starting from the current line count + 1. The displayed line
following the F command line contains a number prompt sign (I), the
format you type to obtain a line number (.=), and the line number.
The result is:

:l:F

:1:.=0008

This example causes a search for the string WRITE, starting at the
current line + 1. If you have specified no output file, the J or F
command reads the next input buffer without attempting to produce any
output.

NOTE

Use the J command for
searches only. After the J
has processed the entire
execute either an E or
close the output file.

interbuffer
or F command
input file,
Q command to

The following commands may be used to abort the string search command,
once given:

Table 4-8
Aborting Editor String Search Commands

Command Explanation

CTRL/U A CTRL/U will return control to the Editor command
mode if you type it while entering text in a string
search command.

DELETE Pressing the DELETE key while entering tex~ for a
string search causes the text so far entered to be
ignored and allows a new string to be inserted. The
Editor displays a dollar sign ($) in response.

4.5 EDITOR OPTIONS

The Editor provides the following options:

• /B

• /0

The Editor converts two or more spaces to a TAB when
reading from an input device.

The Editor deletes the old_ copy of the output file (if
one exists) before opening the new output file on the
device. If you do not specify /0, the Editor does not
delete the old copy of the output file until you have
transferred all data to the new file with the E or Q
command.

4-17

THE OS/8 SYMBOLIC EDITOR

4.6 EDITOR ERROR MESSAGES

Two types of error messages, nonfatal and fatal, are generated when an
error is made while running the Editor.

Nonfatal errors, such as an incorrect format in a command string or a
search for nonexistent information, cause the Editor to display a
question mark. For example, if a command requires two arguments, and
only one is provided, the Editor will display a question mark (?),
perform a carriage return/line feed, and ignore the command as typed.
Similarly, if you type an illegal or unrecognized command character,
the error message ? will be displayed, followed by a carriage
return/line feed; the command will be ignored. However, if you
provide an argument for a command that does not require one, the
argument may be ignored and the normal function of the command
performed. The following examples illustrate nonfatal errors that you
may encounter while using the Editor.

Table 4-9
Nonfatal Editor Error Messages

Condition/Message Explanation

L The buffer is empty. Nonexistent information is
? requested.

7,5L The arguments are in the wrong order. The
? Editor cannot list backward.

17$lOM This command requires two arguments before the
? $; only one was provided.

H Nonexistent command letter.
?

Major errors cause control to return to the Monitor and may be due to
one of the causes listed in Table 4-2. These errors cause a message
to be printed in the form

?n ~C

where

n is an error code listed in the table

indicates that control has passed to the Monitor.

These errors generally result in complete loss of the output file.

4-18

THE OS/8 SYMBOLIC EDITOR

Table 4-10
Editor Error Codes

Error Code Meaning

o Editor failed in reading a device. Error occurred in
device handler; most likely a hardware malfunction.

1 Editor failed in writing onto a device; generally a
hardware malfunction.

2 File close error occurred. For some reason the
output file could not be closed; the file does not
exist on that device.

3 File open error occurred. This error occurs if the
output device is a read-only device or if no output
file name is specified on a file-oriented output
device.

4 Device handler error occurred. The Editor could not
load the device handler for the specified device.
This error should not normally occur. L-_____________ ~ _____________________________________ .. ____________________ ~

4.7 SUMMARY OF EDITOR COMMANDS AND SPECIAL CHARACTERS

The command and special characters discussed in this chapter are
summarized in Table 4-11.

Command

A

B

C

Table 4-11
Editor Command and Special Characters

Format

A

B

nC

Meaning

Append the following text being typed at
the keyboard until a CTRL/L (form feed)
is typed. The form feed returns control
to the command mode. Text input
following the A command is appended to
whatever is present in the text buffer.

List the number of available memory
locations in the text buffer. The Editor
returns the number of locations on the
next line. To estimate the number of
characters that can be accommodated in
this area, multiply the number of free
locations by 1.7.

Change the text of line n to the line(s)
typed after the command is entered.
(Typing a CTRL/L terminates the input.)

(continued on next page)

4-19

Command

C (Cont.)

D

E

F

G

I

THE OS/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Format

m,nC

nD

m,nD

E

F

Meaning
-~-~-------~-~--~---~------I

Delete lines m through n and replace with
the text line(s) typed after the command
is entered. (Typing CTRL/L indicates the
end of the inserted lines.)

Delete line n from the buffer.

Delete lines m through n from the buffer.

Output the text buffer and transfer all
remalnlng pages of the input file to the
output file, closing the output file and
returning to the Monitor.

Follows a string search. Look for next
occurrence of the string currently being
sought (by the J command).

NOTE

If the search fails while you are using
the F command, further commands cause
the system to prompt with a? The file
must be closed and then reopened.

G that has a
A label in
text that
following:

Get and list the next line
label associated with it.
this context is any line of
does not begin with one of the

space
I
TAB
RETURN

(ASCII 240)
(ASCII 257)
(ASCII 211)
(ASCII 215)

At the termination of a G
control goes to the command mode
current line indicator (.) equal
line just listed.

command,
with the

to the

nG Get and list the first line that begins
with a label, starting the search at line

I

n.

Insert whatever text is typed before line
1 of the text buffer. (Typing CTRL/L
terminates the entering process and
returns control to the Editor command
mode.)

nI Insert whatever text is typed (until a
CTRL/L is typed) before line n of the
text buffer.

(continued on next page)

4-20

Command

J

K

L

M

N

THE OS/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Format

J

Meaning

Interbuffer search command for character
strings (see Section 4.4.2.2 describing
the InterBuffer Character String Search).

NOTE

If the search fails while you are using
the J command, further commands cause
the system to prompt with a? The file
must be closed and then reopened.

K Kill the buffer. Delete all text from
the text buffer.

NOTE

The Editor ignores the commands nK and
m,nK with the result that you cannot
destroy the buffer by mistyping a List
command (m,nL).

L List entire contents of the text buffer
on the terminal.

nL List line n of the text buffer on the
terminal.

m,nL

m,n$pM

N

List lines m through n of the text buffer
on the terminal. Control then returns to
command mode.

Move lines m through n directly before
line p in the text buffer. The $
character represents typing the dollar
sign key, and not other possible keys.
The old occurrence of the moved text is
removed.

Write the current buffer to the output
file and read the next page.

nN Write the current buffer to the output
file, kill the buffer, and read the next
page. This action is repeated n times
until the nth page is in the text buffer.
Control then returns to command mode.

You may not use the N command with an
empty text buffer. A question mark (?)
is printed if you attempt to do this.

L-_~ ___________ ~L-___________ ~ _________________ . ______________________________ -J

(continued on next page)

4-21

THE 05/8 SYMBOLIC EDITOR

Tabl~ 4-11 (Cont.)
Editor Command and Special Characters

---------,--------r- ~~---------------~------_,
Command Format Meaning

P

Q

R

S

v

Y

$(ESC)

P Write the entire text buffer to the
output file. The P command automatically
outputs a FORM character (214) after the
last line of output.

nP Write line n of the text buffer to the
output file and a FORM character.

m,nP

Q

R

S

v

Write lines m through n, inclusive, to
the output file and a FORM character.

Immediate end-of-file. Q causes the text
buffer to be output and the file closed.

Read one page from the input device and
append the new text to the current
contents of the text buffer. If no input
file was indicated or if no input
remains, a question mark (?) is displayed
and control returns to the command mode.

Character search command (see Section
4.4.1) •

List the entire text buffer on the line
printer.

nV List line n of the text buffer on the
line printer.

m,nV

nY

$TEXT'
"

List lines m through n, inclusive, on the
line printer.

Yank (read) in a logical page from the
input file, without writing any output.
For example,

ISY

reads through four logical pages of
input, deleting them without producing
output. The fifth page is read into the
text buffer, and control automatically
returns to the command mode.

Perform a character string search for the
string TEXT. Following a string search,
In causes a search for the next
occurrence of the string (see Section
4.4.2.1 describing the Intrabuffer
Character String Search).

(continued on next page)

4-22

Command

.= or .•
1= or I:

>

<

LINE FEED Key

t

THE OS/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Format

>

<

t

Meaning

Typing these characters obtains the
current line number (.=) and the last
line number (/=) in the text buffer. The
number is printed by the Editor
immediately after you type the equal
sign. (The colon character is equivalent
to the equal sign.)

Equivalent to .+lL, list the next line in
the text buffer.

Equivalent to .-lL, list the preceding
line in the text buffer.

Equivalent to .+lL, list the next line in
the text buffer.

Print the current Editor version number.

4-23

CHAPTER 5

THE COMMAND DECODER

The Command Decoder is a subroutine that OS/8 system programs use to
interpret the I/O specifications for devices and files and for options
that you enter in the command line.

5.1 ENTERING I/O SPECIFICATIONS

When you run a utility program with the R command, the program calls
the Command Decoder, which prints an asterisk to request your I/O
specifications.

I/O specifications to the Command Decoder have the following general
format (Device and file names must adhere to the conventions described
in Chapter 2.):

.R utility
*output specs<input specs/options

The Command Decoder accepts 0 to 3 output files and 0 to 9 input
files. Keep in mind, however, that the system programs using the
Command Decoder determine their own I/O requirements and restrictions.
These are described in the chapters on system programs in this manual.

Table 5-1 contains examples of legal output specifications to the
Command Decoder.

Table 5-1
Examples of Output to the Command Decoder

File Format Meaning

EXPLE.EX Output to a file named EXPLE.EX on device
DSK (the default file storage device).

LPT: Output to the LPT. This format generally
specifies a nonfile-structured device.

DTA2:EXPLE.EX Output to a file named EXPLE.EX on device
DTA2.

DTA2:EXPLE.EX[99] Output to a file named EXPLE.EX on device
DTA2. A maximum output file size of 99
blocks is specified.

null No output specified.
-~

5-1

THE COMMAND DECODER

Table 5-2 contains examples of legal input specifications to the
Command Decoder.

File Format

DTA2: INPUT

DTA2:INPUT.EX

INPUT.EX

PTR:

DTA2:

null

Table 5-2
Examples of Input to the Command Decoder

Meaning

Input from a file named INPUT.df on device
DTA2. "df" is the assumed input file
extension specified in the Command Decoder.

Input from a file named INPUT.EX on device
DTA2. In this case .EX overrides the
assumed input file extension.

Input from a file named INPUT. EX. If there
is no previously specified input device in
the command line, input is from device DSK,
the default file storage device;
otherwise, the input device is the same as
the last specified input device.

Input from device PTR; nonfile-structured
devices do not require a file name.

Input from device DTA2 treated as a nonfile
structured device, as, for example, in the
PIP command line:

!.TTV:/L<nTA2:

No LOOKUP operation is performed in the
last two formats because in each case the
device is assumed to be nonfile structured.

Repeats input from the previous device
specified (must not be first in input list,
and must refer to a nonfile-structured
device). For example:

! <.F'TR:"

(two null files) indicates that three paper
tapes are to be loaded.

NOTE

Whenever you omit a file extension from
an input file specification, the Command
Decoder performs a LOOKUP for the given
name to which the system program has
appended an assumed extension If the
LOOKUP fails, a second LOOKUP is made
for the file to which a null (zero)
extension has been appended.

5-2

THE COMMAND DECODER

5.2 COMMAND DECODER ERROR MESSAGES

If the Command Decoder detects an error in the command line, it prints
one of the error messages in Table 5-3. After the error message, the
Command Decoder starts a new line, prints an asterisk (*), and waits
for another command line.

Table 5-3
Command Decoder Error Messages

Error Message

ILLEGAL SYNTAX

TOO MANY FILES

device DOES NOT EXIST

name NOT FOUND

The command
incorrectly.

Meaning

line is formatted

More than 3 output files or 9 input
files were specified (in special mode,
more than 1 output file or more than 5
input files).

The specified
correspond to
name or to any
name.

device name does not
any permanent device
user-assigned device

The specified input file name was not
found on the selected device.

5.3 THE CCL AND THE COMMAND DECODER

The CCL uses its own copy of the Command Decoder instead of the copy
available from the Monitor. Thus, the CCL Command Decoder has several
options not available via standard USR calls to the OS/8 Command
Decoder, for example, multiple default extensions.

For complete information on the Command Decoder, see the OS/8 Software
Support Manual.

5-3

CHAPTER 6

BATCH

6.1 INTRODUCTION

OS/8 BATCH provides PDP-8 users with a batch processing monitor that
is integrated into the OS/8 monitor structure. The system is
organized in such a way that it may be used in either a keyboard input
configuration or as a batch stream processor.

BATCH may be run on any OS/8
memory. A line printer,
BATCH will support up to 32K
present in the system.

system equipped with at least 12K of
although optional, is highly desirable.
of memory and any I/O devices that are

OS/8 BATCH processing is ideally suited to frequently run production
jobs, large and long-running programs, and programs that require
little or no interaction with the user. BATCH permits you to prepare
a job on punched cards, high-speed paper tape or the OS/8 system
device and leave it for the computer operator to start and run.
Output is returned to you in the form of line printer and/or
teleprinter listings that include program output as well as a
comprehensive summary of all action taken by the user program, the
monitor system and the computer operator.

BATCH provides optional spooling of output files. This feature serves
to increase throughput on any system, but it is particularly valuable
when a line printer is not available. BATCH also performs extensive
command analysis and error diagnosis, as well as detailed interaction
with the user/operator to facilitate initializing the system and
establishing system parameters.

Almost any program that runs under interactive OS/8 may also be run
under BATCH. Since BATCH is called from the keyboard in the same
manner as any other system program, interactive users may use BATCH to
execute multiprogram utility routines, even when continuous batch
processing is not desired.

With a few exceptions, BATCH uses the standard OS/8 command set. This
chapter assumes that you are familiar with the operation and use of
OS/8.

6.2 BATCH PROCESSING UNDER OS/8

OS/8 BATCH maintains an input file and an output file. The BATCH
input file may be a punched card, high-speed paper tape, disk, or
DECtape file consisting of a series of BATCH commands. If the input
file is a disk or DECtape file, it must reside on the OS/8 system
device or on a device whose handler is coresident with the OS/8 system
device (e.g., RKBO on RKOS systems).

6-1

BATCH

6.2.1 Input Files

Each command in the BATCH input file occupies one file record. If the
file is a punched card file, each punched card constitutes one record,
which must contain one complete BATCH command. If the file resides on
paper tape, disk, or DECtape, each record consists of one logical line
or of all the characters between two line terminators, including the
second terminator.

6.2.2 Output Files

The BATCH output file is a line printer listing on which BATCH prints
job headers, certain messages that result from conditions within the
input file, an image of each record in the input file, and certain
types of user output. If a line printer is not present in the system,
the output file is printed on the terminal.

6.2.3 I/O Devices

BATCH accepts user input files (i.e., program and data files) from any
device in the OS/8 system; however, high-speed paper tape input files
are not allowed when the BATCH input file also resides on high-speed
paper tape. User output files may be directed to any output device in
the system.

6.2.4 Spooling

You may optionally spool output files with BATCH. When you request
spooling, every output file is assigned a file name from a list of
names maintained by BATCH and directed to a file-structured spool
device instead of to the user-specified device. Spooling of output
files increases BATCH throughput when system resources are scarce and
permits you to postpone slow output operations until a more favorable
time. For example, you may initialize a batch processing run that
generates many output listings so that it reroutes all listings from
the terminal or line printer to a specified DECtape unit. You may
then dump this DECtape onto the appropriate hard copy device after the
run, when more time is available. The spool device may be any
file-structured device you select.

To call OS/8 BATCH from the keyboard, type

.R BATCH

in response to the dot generated by the OS/8 monitor. BATCH then
calls the OS/8 Command Decoder to obtain its parameters, input device,
and file name (if file-structured). If CCL is enabled, you may also
invoke BATCH via the SUBMIT command, in which case the BATCH
parameters, input device, and file name (if file-structured) are
specified on the same line as the SUBMIT command.

6.2.5 Entering File Specifications

The format for a BATCH command string is:

*SPDV: (DEV:INPUT/option/option

6-2

where

SPDV:

BATCH

is the device on which to spool nonfile-structured
output. If you do not specify SPDV:, no spooling is
performed. Note that spooling applies only to
nonfile-structured output devices specified to the
Command Decoder. BATCH does not spool the output of
programs such as FOTP, which use a special mode of the
Command Decoder.

DEV:INPUT is the input device and file if the input is from SYS:
or a device whose handler is coresident with SYS:.

The default extension for BATCH input files is .BI.

The Run-Time Options are used to specify input from the paper tape
reader or the card reader. The Run-Time Options and their meanings
are listed in Table 6-1.

Option

IC

IE

IP

IQ

IT

IH

IU

Table 6-1
Run-Time Options

Meaning

Read the input file from the card reader (CR8/1 or
CR8/E) •

Treat OS/8 Keyboard Monitor and OS/8 Command Decoder
errors as nonfatal errors. If IE is not specified,
OS/8 Keyboard Monitor and OS/8 Command Decoder errors
cause the current job to be aborted.

Read the input file from the paper tape reader.

Do not output a BATCH log. $JOB and $MSG are the
only line output to the terminal.

Output the BATCH log to the terminal. You need only
specify this option when a line printer is available.
If a line printer is not available, the BATCH log is
automatically output to the terminal.

Process the batch input file without echoing and
without sending the $JOB and $END batch monitor
commands to either terminal or BATCH log.

BATCH will not pause for operator response to $MSG
lines. Any attempt to use TTY:, PTR:, or CDR: as
input devices to the Command Decoder in an unattended
BATCH stream will caUSe the current job to be
aborted.

(continued on next page)

6-3

Option

/V

/6

BATCH

Table 6-1 (Cont.)
Run-Time Options

Meaning

Print the version number of OS/8 BATCH on the
terminal.

Accept card input in DEC 026 format. This option
used only when the /C option is specified.
default card input format is DEC 029.

NOTE

When running BATCH, do not move the
input file. In particular, do not
SQUISH the device containing the BATCH
input file. Moving the input file while
BATCH is running produces unpredictable
results. If you must SQUISH SYS under
BATCH, place the BATCH input file at the
beginning of SYS so it will not move.

In addition, avoid moving SYS:BATCH.SV
while BATCH is running.

is
The

6.3 BATCH MONITOR COMMANDS

A BATCH command is a character or string of characters that begins
with the first character of a record in the BATCH input file. If the
input file is a disk, DECtape or paper tape file, each BATCH command
must be followed by a carriage return/line feed combination. If the
input file is a punched card file, each command must begin in the
first column of a punched card. Disk and paper tape files may contain
form feed characters. Form feed characters are ignored by BATCH on
input.

OS/8 BATCH recognizes four monitor level commands. These commands
allow routine housekeeping operations in a multi-job, batch processing
environment and provide communication between the BATCH programmer and
the computer operator. Table 6-2 lists the BATCH monitor commands,
which may be considered as an extension of the OS/8 Keyboard Monitor
command set. Note that the first character of the $JOB, $MSG, and
$END commands is a dollar sign. The BATCH monitor does not recognize
the ALTMODE character.

In the current version, any record that begins with a dollar sign
character but is not one of the BATCH monitor commands listed in Table
6-2 is copied onto the output file and ignored by BATCH.

6.3.1 Defining a BATCH Job

A BATCH processing job consists of a $JOB command record and all the
commands that follow it up to the next $JOB or $END record. Normally,
all the commands submitted by one user are processed as a single job,
and all output from these commands appears under one job header.

6-4

Command

$JOB

$MSG

$END

/

BATCH

Table 6-2
BATCH Monitor Commands

Meaning

Initialize for a new job and print a job header on
the output file. The remainder of the $JOB record is
included in the job header but is ignored by BATCH.
It should be used for identifying jobs, and
correlating output from the teletype, line printer,
and spool device.

Ring the terminal bell and print an image of the
record at the teleprinter. If you do not specify the
/U option, implying that an operator is present,
BATCH pauses until any key is struck at the keyboard.
If you do specify the /U option, processing continues
uninterrupted.

Terminate batch processing and exit to the OS/8
Keyboard Monitor. A $END command record should be
the last record of every BATCH input file.

Copy the record onto the output file, then ignore it.
BATCH assumes that every record beginning with a
slash is a comment.

After BATCH encounters a $JOB command, it scans the input file until
it finds a Keyboard Monitor command. Any records that follow the $JOB
command and precede the first Keyboard Monitor command are written
onto the output file and ignored by BATCH.

NOTE

To abort a BATCH job or a sequence of
jobs, use the console HALT switch and
manually branch to location 7000 in the
highest field. This causes BATCH to
scan its input for the next SJOB
command.

6.3.2 Using OS/8 Keyboard Commands

The first character of every Keyboard Monitor command record is a dot
(.). The rest of the record contains an OS/8 Keyboard Monitor
command, which should appear in standard OS/8 format. However,
commands that would be terminated with an ALTMODE under interactive
OS/8 should be terminated with a dollar sign under BATCH. Every
standard OS/8 Keyboard Monitor command is legal input to BATCH;
however, the ODT command will go to the terminal for input instead of
to the BATCH file. Typing CTRL/C to ODT will terminate BATCH. Type
7600G to ODT to resume the BATCH run.

BATCH executes a Keyboard Monitor command by stripping off the initial
dot character and loading the remainder of the record into the
Keyboard Monitor buffer. BATCH then passes control to the Keyboard
Monitor, which executes the command as though it had been typed at the
keyboard.

6-5

BATCH

Keyboard Monitor commands that return control to the monitor level
should be followed by a BATCH monitor command or another Keyboard
Monitor command. Keyboard Monitor commands that transfer control to
the program level should be followed by a Command Decoder file
specificationwhenever the running program calls the Command Decoder.
All OS/8 V3 CCL commands are legal under BATCH, including the SUBMIT
command (which can be used to chain from one BATCH stream to another).

6.3.3 Using the Command Decoder

Decoder
if so,
file.
file

When a running program c~lls the Command Decoder, the Command
determines whether batch processing is in progress and,
instructs BATCH to read the next record of the BATCH input
BATCH expects this record to contain a Command Decoder
specification.

The first character of every Command Decoder file specification record
is an asterisk (*). The rest of the record contains an OS/8 Command
Decoder file (and/or option) specification, which should appear in
standard OS/8 format. As with BATCH monitor commands and Keyboard
Monitor commands, any Command Decoder specification that would be
terminated with an ALTMODE under interactive OS/8 should be terminated
with a dollar sign under BATCH.

BATCH executes a Command Decoder file specification by stripping off
the initial asterisk character and loading the remainder of the record
into the Command Decoder buffer. BATCH then passes control to the
Command Decoder, which decodes the file specification as though it had
been typed at the keyboard and returns control to the running program.

6.3.4 Additional Features

If BATCH reads a record from the input file, expecting to find a
Command Decoder file specification, and finds a Keyboard Monitor
command instead, BATCH returns control to the monitor level by
recalling the Keyboard Monitor to execute the command. The running
program is thus terminated; control remains at the monitor level. If
BATCH encounters a BATCH monitor command when it expects to find a
Command Decoder specification, it executes the BATCH monitor command
and continues processing the input file. As long as a Command Decoder
file specification is read before the next Keyboard Monitor command,
control will eventually return to the running program, and the file
specification will be executed.

A BATCH monitor command is legal at any level of command execution,
and the BATCH monitor returns control to the level from which it was
entered. Keyboard Monitor commands are also legal at any level (under
BATCH, but not under interactive OS/8); however, the Keyboard Monitor
terminates any program that may be running when it is called and
returns control to the monitor level.

The computer operator may type CTRL/C at any time during a batch
processing run. Typing CTRL/C at the program level causes an
effective jump to location 07600, which recalls the BATCH monitor.
The BATCH monitor then recognizes the CTRL/C and terminates the BATCH
run.

6-6

BATCH

6.4 THE BATCH INPUT FILE

Figure 6-1 shows a listing of a BATCH input file. This listing
represents the output that you obtain by using PIP to transfer the
BATCH input file from disk to the console terminal. Assume that OS/8
BATCH is loaded on a 12K system containing one TU56 dual DEC tape
transport, a line printer, a Teletype terminal, and a disk as the
system device. If you specify the disk file shown in Figure 6-1 as an
input file, BATCH will begin processing by printing a job header and
executing the DATE command.

fJOB OS/8 BATCH PROCESSING EXAMPLE II
.[lATE 3/5/74
.R PIP
/LIST SYSTEM DEVICE DIRECTORY ON TELETYPE
*TTY:<SYS:/F
/NOW LIST THE DIRECTORY OF DECTAPE 13 ON THE LPT
fMSG MOUNT TAPE 13 ON UNIT 1
*LPT: ·.DTAI :/L
/NOW TRANSFER FORTRAN SOURCE PROGRAM
IFROM DISK TO DECTAPE 13 (UNIT 1)
fMSG WRITE ENABLE UNIT 1
*DTA1:FORTS1.FT "DSK:FORTS1.FT

ICOMPILE FORTRAN SOURCE
.R FORT
*DTA1:FORTS1.RL,FORTS1.LS~FORTS1.FT

/THAT CONCLUDES JOB II
fJOB OS/8 BATCH PROCESSING EXAMPLE 12
SMSG MOUNT TAPE 12 ON UNIT 1, WRITE ENABLED
.R PAL8
*PTP:,DTA1:PROG.LSrDTA1:PROG.PA
.RUN DSK CREF
*DTA1:PROG.LS
/END OF EXAMPLF 12 AND END OF INPUT FILE
fEND

Figure 6-1 Sample BATCH Input File

Control remains at the monitor level, so BATCH executes the next
command by calling and starting the Peripheral Interchange Program.
PIP, in turn, calls the Command Decoder, which accepts and decodes the
file/option specification that occupies the next executable record
(following the comment) of the input file. The Command Decoder passes
control to the program level, and PIP lists the short form of the
system disk directory at the terminal.

If spooling is active, BATCH intercepts this output and stores it in a
temporary file on the spool device. Assuming that DTAO is the spool
device and that this listing is the first nonfile-structured output
file intercepted by BATCH, the output is stored in a file named
BTCHAI. BATCH then prints the message:

tSF'{1nL TO F-ILF II rCHIH

6-7

BATCH

on both the console terminal and the
rerouted to the spool device is
successive files are named:

line printer.
assigned the

The next file
file name BTCHA2;

BTCHA3
BTCHA4

BTCHA9
BTCHBO
BTCHBl

BTCHZ9

allowing a total of 260 spool device files, which is more than
adequate in view of the maximum size of the 05/8 file directory (about
240 entries). If output to a spool device file is generated by a
program that appends a default extension to output file names, the
spool device file is assigned a standard default extension. You may
then transfer all the spool device files to the terminal or line
printer by using the program FOTP, with the input file specification
dev:BTCH??*.

Returning to the example of Figure 6-1, PIP executes the file
specification that appears in the fifth record of the input file and
recalls the Command Decoder.

The Command Decoder then instructs BATCH to scan the input file for
the next file specification record. BATCH processes the comment
record by copying it onto the line printer, then processes the $MSG
command by ringing the terminal bell, copying the $MSG record onto the
terminal, and, assuming that an operator is present, pausing until any
key is typed at the terminal.

Once the operator has resumed
BATCH reads the eighth record
Decoder specification record,
Command Decoder.

processing by typing any character,
In the file, recognizes it as a Command
and transfers control back to the

Processing continues in this manner until the third Command Decoder
specification record is reao. When BATCH searches for the next file
specification record, it reads and executes the last $MSG command,
then encounters a Keyboard Monitor command. BATCH passes this command
to the Keyboard Monitor, which terminates PIP and calls the FORTRAN
compiler to load and compile source program FORTSI. Upon completion
of these operations, FORTRAN routes its output to the specified files
and returns control to the monitor level. BATCH then encounters the
second $JOB record, caUSIng it to terminate the current job and print
a new header.

The second job calls PAL8 to assemble a source program from disk. The
output listing is directed to DECtape #2, mounted on unit 1, while the
binary output file is dumped onto high-speed paper tape. The job
concludes by running CREF to produce a cross-referenced listing of the
assembled program.

6-8

BATCH

This job illustrates how you may use OS/8 BATCH to
multiprogram utility routines. If USer #2 is a programmer who
follows a PAL8 assembly by running CREF, job,2 could be a
routine that combines the call to PAL8, the call to CREF,
file specifications into a single software package that you
under batch processing or in an interactive environment.

execute
usually
utili ty

and both
may run

The $END record that appears as the last record in Figure 6-1 serves
as a signal that batch processing has concluded; it causes BATCH to
recall the Keyboard Monitor and reestablish interactive processing
under OS/8. This command is always the last record of the BATCH input
file.

6.5 BATCH ERROR MESSAGES

BATCH generates two types of error messages. The first type is a
run-time error message that appears in the form:

'BATCH ERR

The second type of error message is generated when the Keyboard
Monitor or the Command Decoder recognizes a command error in the BATCH
input file. When this occurs, either the Keyboard Monitor or the
Command Decoder transmits a standard OS/8 error message, and BATCH
will append a "." character to the beginning of the message, so that
it appears in the form:

iSYSTEM ERROR

Any occurrence of a Keyboard Monitor or Command Decoder error normally
causes BATCH to abort the current job and scan the input file for the
next $JOB command. If the /E option was specified, BATCH treats
Keyboard Monitor and Command Decoder errors as nonfatal and continues
the BATCH run.

Table 6-3 lists the BATCH error messages, their meanings, and the
probable cause for the error.

Table 6-3
BATCH Error Messages

MeSSag-e~------~ Meaning

'MONITOR OVERLAYED The Command Decoder attempted to call
the BATCH monitor to accept and
transmit a file specification, but
found that a user program had
overlayed part or all of the BATCH
monitor. Control returns to the
monitor level, and BATCH executes the
next Keyboard Monitor command.

iBAD LINE. JOB ABORTED The BATCH monitor detected a record
in the input file that did not have
one of the characters dot, slash,
dollar sign, or asterisk as the
first character of the record. The
record is ignored, and BATCH scans
the input file for the next $JOB
record.

-.------~~-~-----~(continued-on next -page)

6-9

tSPOOL TO FILE BTCHAI

tMANUAL HELP NEEDED

ULLEGAL INPUT

#INPUT FAILURE

tSYS ERROR

INSUFFICIENT CORE FOR
BATCH RUN

BATCH.SV NOT FOUND ON
SYS:

BATCH

Table 6-3 (Cont.)
BATCH Error Messages

(Where the "A" may be any character of
the alphabet and the "1" may be any
decimal digit.) BATCH has intercepted
a nonfile-structured output file and
rerouted it to the spool device. This
is not, generally, an error condition.
Spool device file names are assigned
sequentially, beginning with file
BTCHAI. Standard default extensions
may be assigned by some system
programs.

BATCH is attempting to operate an I/O
device, such as PTR or TTY, that will
require operator intervention. If the
initial dialogue indicated that an
operator is not present, this message
is suppressed, the current job is
aborted, and BATCij scans the input
file for the next $JOB command record.
If an operator is present, he should
have been notified what action to take
by a $MSG command.

A file specification has designated
TTY or PTR as an input device although
the initial dialogue indicates that an
operator is not available. The
current job is aborted, and BATCH
scans the input file for the next $JOB
command record.

Either a hardware problem prevented
BATCH from reading the next record of
the input file, or BATCH read the last
record of the input file without
encountering a $END command record.
If a hardware problem exists, correct
the problem and type any character at
the Teletype to resume processing.

A hardware problem prevented BATCH
from performing an I/O operation.
Program execution halts, and the
system must be restarted manually.
This message often indicates that the
system device is not write-enabled.

OS/8 BATCH requires
run. Control returns
Monitor.

12K of core to
to the OS/8

A copy of BATCH.SV must exist on the
system device. Control returns to the
OS/8 Monitor.

~------- -------- -------------------- ~-- ---------'

(continued on next page)

6-10

BATCH

Table 6-3 (Cont.)
BATCH Error Messages

r-__________ M __ e_s_s_a_g_e ____________ +r_-_-====~~~~-------IM-e-a-nfng

WRONG OS/8 MONITOR

DEV NOT IMPLEMENTED

ILLEGAL SPOOL DEVICE

OS/8 BATCH requires an OS/8 Monitor no
older than version 3.

BATCH cannot accept input from the
specified input device because its
handler is not permanently resident
(SYS: or coresident with SYS:).
Control returns to the Command
Decoder.

The device specified as a spooling
output device must be file structured.
Control returns to the Command
Decoder.
--------~-------------------------!

6.6 RUNNING BATCH FROM PUNCHED CARDS

The carriage'return and ALTMODE characters are not defined in the
punched card character set. BATCH allows you to omit terminating
carriage return characters from punched card input files. Thus, when
BATCH reads a punched card input file, it appends a carriage return to
the content of each card, immediately following the last character on
the card that is not a space character. As with disk, DECtape or
paper tape input files, BATCH considers the dollar sign character to
be equivalent to an ALTMODE when it appears on a punched card in any
column except the first.

When you run BATCH with a punched card input file, it is possible to
embed your input files in the BATCH input file. You should insert
your input files into the BATCH input file in such a way that BATCH
will never attempt to read a record of the files. That is, your files
should follow a command record that transfers control to the program
level, and the running program must exhaust all records of your file
before returning to the monitor level.

Figure 6-2 illustrates how you may modify the second sample job of
Figure 6-1 to run from a punched card input file with an embedded user
file. In this example, PAL8 reads the punched card user file and
assembles the source program, then returns control to the monitor
level. BATCH reads the next card of the input file, which should
contain the .R CREF command. If PAL8 has not read every record of the
user input file, however, BATCH will encounter a record from this file
rather than the Keyboard Monitor command record. This results in the
message:

tBAD LINE. JOB ABORfED

and causes BATCH to scan the input file for the next $JOB record.

6-11

BATCH

($END

(lEND OF EXAMPLE #2

EMBEDDED ~ *DTA1·PROG LS

USER FILE .RUN DSK CREF

~
. - ~-::-

I ill; r-'(.! I

(*PTP:,DTAl PROG.LS CDR·

1111

,...-

(.R PAL8 -
($MSG MOUNT TAPE ~ ~~ UNIT 1 ~-$JOB OS/8 BATCH PROI l: I~jG EXAMPLE #2

-
-

-
-

-~

Figure 6-2 Punched Card Input File

6.7 RESTRICTIONS UNDER OS/8 BATCH

OS/8 BATCH is a "friendly" system; that is, one that is largely
unprotected from user errors. The BATCH monitor resides in locations
5000 to 7577 in the highest memory field available. BATCH also uses
the following locations in field 0 and the memory field in which it
resides:

Location

07777
N7774-N7777

Used as:

Batch processing flag
Internal pointers

Both the Keyboard Monitor and the Command Decoder check
processing flag whenever they are entered from the program
user program that modifies location 07777 may cause batch
to be terminated prematurely before the next record of the
file is read.

the batch
level. Any
processing

BATCH input

When the Keyboard Monitor is entered from the program level (effective
JMP to 07600 or 07605), it checks the batch processing flag and reads
a new copy of the BATCH monitor into core if batch processing is in
progress. The Command Decoder, however, does NOT perform this
operation. Thus, the Command Decoder must not be called unless the
BATCH monitor is already in core.

This means that you may load large programs over the BATCH monitor as
long as they do not modify the last four locations in the highest
memory field; however, once a user core load has overwritten the
BATCH monitor, execution must remain at the program level until the
Keyboard Monitor has been reentered and a new copy of the BATCH
monitor is read into core. You must not call the Command Decoder
after you have loaded your program over the BATCH monitor.

6-12

BATCH

In general, this restriction applies only to loader programs and only
when the loader calls the Command Decoder more than once while
building a large core load. You can avoid multiple calls to the
Command Decoder when loading large programs during batch processing if
you first build the core load in a stand-alone environment and then
save it for subsequent execution under BATCH.

In conjunction with this, note that it is impossible to save the core
image of any program that overlays the BATCH monitor under BATCH.
After the load operation but before the save is executed, the BATCH
monitor is read back into core, destroying part of the user program~
Thus, the Keyboard Monitor SAVE operation causes part of the BATCH
monitor to be saved instead of that part of the user program that
originally overlayed the BATCH monitor.

6.S BATCH DEMONSTRATION PROGRAM

The following listing was produced by running BATCH on a 12K PDP-S/E
system containing a disk, DECtape and a line printer. Only the
Teletype output is reproduced here, and page breaks were inserted
arbitrarily to divide the listing into convenient segments. The same
BATCH input file has been processed twice, with two different system
configurations.

Notice that the first BATCH processing run begins by listing the BATCH
input file, and that the three demonstration programs are listed
shortly thereafter •

• R BATCH
*SYS:DEMO/U
$JOB OS/8 BATCH DEMO
.MSG BEGIN BY LISTING BATCH INPUT FILE ON TERMINAL:
.R PIP
*TTY: <.DEMO. BI
.DATA 3/5/74
.MSG SYS1EM DEVICE ASSIGNED LOGICAL NAME "IN"
.ASSIGN SYS IN
$MSG MOUNT SCRATCH DEC TAPE ON UNIT 1
.R PIP
IZERO DECTAPE DIRECTORY
.MSG WRITE ENABLE UNIT 1
*DTA1! .: IZ
ILIST SYSTEM DIRECTORY ON LINE PRINTER
*LPT: .. IN!/E
ITRANSFER DEMO PROGRAMS TO DECTAPE
*DTA1! DEM01. PA· ·DEM01. PA
*DTA1:DEM02.FT~DEM02.FT

*[ITA1: DEMtJ3. FT· .. DE"M03. FT
ILIST THE" FIRST DEMO PROGRAM
*TTY: IN:DEM01.PA/T
ILJST THE SE"COND DEMO PROGRAM
*TTY! IN!DEM02.FT/T
ILIsr THE THIRD DEMO PROGRAM
*TTY! .IN:DEM03.FT/T
/ASSEMBLF DEM01.PA
.R PAL8
*IN!DEM01.BN,DEM01.LS :IN:DEM01.PA
IPRINT CROSS REFERENCE LISTING
.R CRE!-="
*LPT! IN!DEM01.LS
ILOAD ASSEMBLED BINARY INTO CORE

6-13

.R ABLSDR
*DEM01.BN$
IRUN FIRST DEMO PROGRAM
.START 200

BATCH

INOW SAVE CORE IMAGE OF DEM01.PA, BUT MUST
IRELOAD FIRST, SINCE DEMOI IS SELF-MODIFYING
.R ABSLDR
*IN:DEM01.BN$
.SAVE SYS DEMOI 0,200
IRUN DEM01.SV TO BE SURE THAT IT WAS SAVED CORRECTLY
.RUN SYS DEMOI
INOW COMPILE FORTRAN MAINLINE PROGRAM
.R FORT
*IN:DEM02.BN,LPT:<IN:DEM02.FT$
ICOMPILE FORTRAN FUNCTION ROUTINE
.R FORT
*IN:DEM03.BN,LPT:<IN:DEM03.FT$
ITRANSFER BOTH BINARY FILES TO DECTAPE
.R PIP
*DTA1:DEM02.BN<DEM02.BN/B
*DTA1:DEM03.BN<DEM03.BN/B
ILOAD AND EXECUTE FORTRAN PACKAGE
.R lOADER
*DEM02.BN,DEM03.BN/G
IRENAME DEM03.BN FOR FUTURE REFERENCE
.R PIP
*FACT<DEM03.BN/I
*DEM03.BN<D
IADD FORTRAN FUNCTION TO FORTRAN LIBRARY
• R LIBSET
*LIB8.BN/S
*FACT$
IFINAllY, DELETE TEMPORARY FILE "FACT"
.R PIP
*FACT·UD
INOW CLEAN UP DISK AREA
*DEM01.BN,DEMOI.SV,DEM02.BN<D
$HSG DEVICE NAMES DEASSIGNED
.DEASSIGN
$END

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME

$MSG MOUNT SCRATCH DEC TAPE ON UNIT 1

$MSG WRITE ENABLE UNIT 1

*10
IR1, 300
*200
START, ClA Cll

TlS
TAD I IRI
JMS TYPE
JMS TEST
JMP .-4

6-14

"IN"

TYPE,

TEST,

M335,
*301

o
TSF
JMP .-1
TLS
CLA
JMP I fYF'E
o
TAD IRl
TAD M335
SZA CLA
JMP I TEST
TSF
JMP .-1
JMP 7600
-335

BATCH

215;212;212;241;241;241;305;330;305;303
325;324;311;317;316;240;303;317;315;320
314;305;324;305;241;241;241;215;212;212

$
C FORTRAN DEMONSTRATION PROGRAM

DIMENSION A(35)
DO 10 N=2,34,2
A(N)=FACT(N)

10 WRITE (1,60)N,A(N)
STOP

6') FORMAT (13, '! = ',E14.7)
END

C FORTRAN FUNCTION TO COMPUTE FACTORIALS
FUNCTION FACT(N)
IF (N-34) 1,5,5
IF (N) 2.4,2

2 M=-N-2
FACT=N
DO 3 /\=l~M

C=N-/\
3 FACT=FACT*C

RETURN
4 FACT=l.

RETURN
5 WRITE (1,6) N

FACT-=O.
RETURN

6 FORMAT (15,'! EXCEEDS CAPACITY OF PROGRAM.')
END

"'EXECUTION COMPLETE'"

! , ! EXECUTION COMPLETE! ! !

2' = 0.2000000E+Ol
4! = 0.2400000E+02
6' = 0.7200000E+03
8! 0.4032000E+05

10! = 0.3628800E+07
12! = 0.4790016E+09
14' = 0.8717829E+ll
16' = 0.2092279E+14
18! = 0.6402374E+16

6-15

20! = 0.2432902E+19
22! = 0.1124001E+22
24' = 0.6204484E+24
26! - 0.4032915E+27
28! = 0.3048883E+30
30' = 0.2652529E+33
32' = 0.2631308E+36

BATCH

"34! EXCEEDS CAPACITY OF PROGRAM.
34' = O.OOOOOOOE+OO

$MSG DEVICE NAMES DEASSIGNED

END BATCH

The next run is initiated via the SUBMIT command •

• SUBMIT SYS:~SYS:DEMO/U/T
$JOB OS/8 BATCH DEMO

$MSG BEGIN BY LISTING BATCH INPUT FILE ON TELETYPE:
.R PIP
*TTY: "~_DEMO. BI

SPOOL TO FILE BTCHAl
.DATE 8/3/72
'MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME "IN"
.ASSIGN SYS IN
$M5G MOUNT SCRATCH DECTAPE ON UNIT 1
.R PIP
IZERO DEC TAPE DIRECTORY
$MSG WRITE ENABLE UNIT 1
*DTA1:</Z
ILIST SYSTEM DIRECTORY ON LINE PRINTER
*LPT:<IN:/E

SPOOL TO FILE BTCHA2
ITRANSFER DEMO PROGRAMS TO DEC TAPE
*DTAl : DEM01. PA"""DEM01. PA
*DTA1:DEM02.FT~DEH02.FT
*DTA1:DEM03.FT~DEM03.FT
/LIST FIRST DEMO PROGRAM
*TTY:'-:IN:DEM01.PA/T

SPOOL TO FILE BTCHA3
/LIST SECOND DEMO PROGRAM
*TTY:~IN:DEM02.FT/T

SPOOL TO FILE BTCHA4
/LIST THIRD DEMO PROGRAM
*TTY:~IN:DEM03.FT/T

SPOOL TO FILE BTCHA5
/ASSEMBLE DEM01.PA
.R PAL8
*IN:DEM01.BN,DEM01.L5 IN:DEM01.PA
/PRINT CROSS REFERENCE LISTING
.R CREF
*LPT:-IN:DEM01.L5

6-16

*SPOOL TO FILE BTCHA6
/LOAD ASSEMBLED BINARY INTO CORE
.R ABSLDR
*DEM01.BN$
/RUN FIRST DEMO PROGRAM
.START 200

II !EXECUTION COMPLETE! ! !

BATCH

/NOW SAVE CORE IMAGE OF DEM01.PA, BUT HUST
/RELOAD FIRST, SINCE DEHOl IS SELF-MODIFYING
.R ABSLDR
*IN:DEM01.BN$
.SAVE SYS DEHOl 0,200
/RUN DEM01.SV TO ENSURE THAT IT WAS SAVED CORRECTLY
.RUN SYS DEMOl

,I IEXECUTION COMPLETE!!!
/NOW COMPILE FORTRAN HAINLINE PROGRAM
.R FORT
*IN:DEM02.BN,LPT: IN:DEM02.FT$

SPOOL TO FILE BTCHA7
/COMPILE FORTRAN FUNCTION ROUTINE
.R FORT
*IN:DEM03.RN,LPT: IN:DEM03.FT$

SPOOL TO FILE BTCHA8
/TRANSFER BOTH BINARY FILES TO DECTAPE
.R PIP
*DTA1:DEM02.BN<DEM02.BN/B
*DTA1:DEM03.BN<DEM03.BN/B
/LOAD AND EXECUTE FORTRAN PACKAGE
.R LOADER
*DEM02.BN,DEM03.BN/G

41
6!
8!

10!
12!
14!
16'
18!
20 1

22!
241
26 1

28 1

=
=

=
=
=
=
=
=

=
=

0.2000000E+Ol
0.2400000E+02
0.7200000E+03
0.4032000E+05
0.3628800E+07
0.4790016E+09
0.8717829E+11
0.2092279E+14
0.6402374E+16
0.2432902E+19
o • 1124001E+22
0.6204484E+24
0.4032915E+27
0.3048883E+30

30 1 0.2652529E+33
32! = 0.2631308E+36

34! EXCEEDS CAPACITY OF PROGRAM.
341 = O.OOOOOOOE+OO

IRENAME DEM03.BN FOR FUTURE REFERENCE
.R PIP
*FACr~DEM03.BN/I
*[lEM03. BN··· /D
IADD FORTRAN FUNCTION TO FORTRAN LIBRARY
.R LIBSET
*LIB8.BN/S
*FAC T$
IFINALLY, DELETE TEMPORARY FILE "FACT"

6-17

.R PIP
*FACT::.ID
INOW CLEAN UP DISK AREA
*DEM01.BN,DEM01.SV,DEM02.BN(/D
$MSG DEVICE NAMES DEASSIGNED
.DEASSIGN
$END

tEND BATCH

6.9 LOADING AND SAVING BATCH

BATCH

.
You may load and save the paper tape binary version of OS/8 BATCH on
the OS/8 system device by typing the following commands in response to
the prompt signs generated by the OS/8 monitor:

.R ABSLDR
iPTR:(9P)$~
~SAVE SYS BATCH

Once the ALTMODE ($) has been entered, the system will print an
uparrow and pause. Load the binary paper tape into the high-speed
reader, turn the reader on, and type any character at the keyboard to
continue.

6.10 LOADING AND SAVING PROGRAMS FOR USE UNDER BATCH

A program that never uses more than 8K of
BATCH monitor. When you are loading
DEC tape system, you can save considerable
/P option.

core can never destroy the
this sort of program from a

time through the use of the

The /p option is a new ABSLDR option designed for use under OS/8
BATCH. It causes the 400 bit of the job status word (location 07746)
to be set and prevents the Keyboard Monitor from reading a fresh
version of the BATCH monitor into core every time the monitor level is
reentered from the program level.

For example, OS/8 PIP never uses more than 8K of core. Thus, the best
method of loading PIP would be:

.R ABSLDR
jPTR:(89P)=13000$
.!.

The /P option is not really necessary on a disk system, because very
little time is required to refresh the BATCH monitor from disk. You
should not use the /P option with any program that occupies or
modifies core above field 1.

6-18

BATCH

6.11 TRANSFERRING THE SYSTEM SOFTWARE FROM CASSETTE TO THE SYSTEM DEVICE

The following BATCH file can be used to transfer the OS/8 System
Software from cassette to the system device .

• JOB JOB TO LOAD SYSTEM CASSETTE 12 TO SYSTEM DEVICE
.R MCPIP
*SYS:CCL.SV-CSAO:CCL.SV
*SYS:DIRECT.SV~CSAO:DIRECT.SV
*SYS:FOTP.SV·~CSAO:FOTP.SV
*SYS;PIP.SV CSAO:PIP.SV
*SYS:LIBS.RL':CSAO:LIBS.RL
*SYS:EDTT.SV:CSAO:EDIT.SV
*SYS:PALB.SV·CSAO:PALB.SV
*SYS:CREF.SV·CSAO:CREF.SV
*SYS:BITMAP.SV~CSAO:BITMAP.SV
*SYS:BOOT.SV·CSAO:~OOT.SV

«SYS:CAMP.SV· CSAO:CAMP.SV
*SYS:RK8FMf.SV ·CSAO:RKSFMT.SV
*SYS: fd,FFM r • SV . CSAO: RKEFMT. SV
HND

.JOB JOB TO LOAD SYSTEM CASSETTE 13 TO SYSTEM DEVICE
.R MCPIP
*SYS: FORT. SV -.CSAl : FORT. SV
*SYS: SABR. SV·"CSA1: SABR. SV
*SYS:LOADER.SV· CSA1:LOADER.SV
*SYS:SRCCOM.SV CSA1;SRCCOM.SV
*SYS:EPIC.SV:CSA1:EPIC.SV
*SYS:PIP10.SV~CSA1:PIP10.SV
*SYS:~ESO~C.SV ·CSA1:RESORC.SV
*SYS:DTCOPY.SV ·CSA1:DTCOPY.SV
*SYS:fDCOPY.SV/CSA1:TDCOPY.SV
*SYS:TDFRMT.SV·:CSA1:TDFRMT.SV
*SYS: DTFRMT. SV· 'eSA1: DTFRMT. SV
SENfi

$,lnB JOB Til LOAD SYSTEM 14 TO SYSTEM DEVICE
.~ MCF IF'
*SY~:rr,08SY.BN CSAO:TCOBSY.BN
*SYS:rnSESY.BN CSAO:TDSESY.BN
*SYS:LINCSY.BN-CSAO:LINCSY.BN
*SYS:nF32SY.BN .CSAO:DF3~SY.BN
*SYS: RFOSSY • BN·. CSAO: RFOBSY • BN
*SYS:R~OBSY.BN· CSAO:R~OSSY.BN

*SYS:R~8ESY.BN~CSAO:RKSESY.BN
*SYS:ROMMSY.BN· CSAO:ROMMSY.BN
tSYS: L INCNS. BN ··CSAO: LINCNS. BN
*SYS:TCOBNS.BN CSAO:TCOSNS.BN
*SYS:R~SENS.BN'CSAO:R~SENS.BN

*SYS:PT8f.BN·rSAO:PTSE.BN
*SYS: LSPT • BN<TSAO: LSPT • BN
*SYS: L645. BN· 'CSAO: L645. BN
*SYS:ASR33.BN CSAO:ASR33.BN
*SYS:R~ORNS.BN·r,SAO:RKOBNS.BN

6-19

*SYS1CR8E.BN(CSAO:CR8E.BN
*SYS1BAT.BN<CSAO:BAT.BN
*SYS:TD8EA.BN<CSAO:TD8EA.BN
*SYS1TD8EB.BN<CSA01TD8EB.BN
*SYS:TD8EC.BN<CSAO:TD8EC.BN
*SYS:TD8ED.BN<CSAO:TD8ED.BN
*SYS:VR12.BN<CSAO:VR12.BN
*SYS1RF08NS.BN<CSA~:RF08NS.BN
*SYS:DF32NS.BN<CSAO:DF32NS.BN
*SYS:KL8E.BN<CSAO:KL8E.BN
*SYS:LPSV.BN<CSAO:LPSV.BN
*SYS:TM8E.BN<CSAO:TM8E.BN
*SYS:CSA.BN<CSAO:CSA.BN
*SYS1CSB.BN<CSAO:CSB.BN
*SYS:CSC.BN<CSAO:CSC.BN
*SYS:CSD.BN<CSAO:CSD.BN
*SYS:DIRECT.HL<CSAO:DIRECT.HL
*SYS:BATCH.HL<CSAO:BATCH.HL
*SYS:SABR.HL<CSAO:SABR.HL
*SYS1PIP.HL<CSAO:PIP.HL
*SYS:FOTP.HL<CSAO:FOTP.HL
*SYS:ABSLDR.HL<CSAO:ABSLDR.HL
*SYS:PIP10.HL<CSAO:PIP10.HL
*SYS:BOOT.HL<CSAO:BOOT.HL
*SYS:LOADER.~L<CSAO:LOADER.HL
*SYS:BITMAP.HL<CSAO:BITMAP.HL
*SYS:EDIT.HL<CSAO:EDIT.HL
*SYS:CREF.HL<CSAO:CREF.HL
*SYS:BUILD.HL<CSAO:BUILD.HL
*SYS:PAL8.HL<CSAO:PAL8.HL
*SYS:ODT.HL<CSAO:ODT.HL
*SYS:SRCCOM.HL<CSAO:SRCCOM.HL
*SYS:CCL.HL<CSAO:CCL.HL
*SYS:TECO.HL<CSAO:TECO.HL
*SYS:FORT.HL<CSAO:FORT.HL
*SYS:LOAD.HL<CSAO:LO.HL
*SYS:LIBRA.HL<CSAO:LIBRA.HL
*SYS:EPIC.HL<CSAO:EPIC.HL
SEND

BATCH

$JOB JOB TO LOAD SYSTEM CASSETTE 15 TO SYSTEM DEVICE
.R MCPIP
*SYS1LIB8.RL<CSA1:LIB8.RL
*SYS:GENIOX.RL<CSA1:GENIOX.RL
*SYS1IOH.RL<CSA1:IOH.RL
*SYS:FLOAT.RL<CSA1:FLOAT.RL
*SYS:INTEGR.RL~CSA1:INTEGR.RL
*SYS:UTILTY.RL<CSA1:UTILTY.RL
*SYS:POWERS.RL~CSA1:POWERS.RL
*SYS1IPOWRS.RL<CSA1:IPOWRS.RL
*SYS:SQRT.RL~CSA1:SQRT.RL

*SYS1TRIG.RL<CSA1:TRIG.RL
*SYS:ATAN.RL~CSA1:ATAN.RL
*SYS:RWTAPE.RL<CSA11RWTAPE.RL
*SYS1IOPEN.RL<CSA1:IOPEN.RL
*SYS:LIBSET.SU<CSA11LIBSET.SU
*SYS:KL8E.PA<CSA11KL8E.PA
.END

6-20

BATCH

$JOB JOB TO LOAD SYSTEM CASSETTE t6 TO SYSTEM DEVICE
.R MCF'IF'
*SYS:CCL.F'A<CSAO:CCL.PA
$END

$JOB JOB TO LOAD OS/8 EXTENSION CASSETTE TO SYSTEM DEVICE
.R MCF'IP
*SYS:BATCH.SV<CSA1:BATCH.SV
*SYS:BASIC.SV<CSA1:BASIC.SV
*SYS:BCOhF'.SV/CSA1:BCOMF'.SV
*SYS:BLOAD.SV~CSA1:BLOAD.SV

*SYS:BRTS.SV<CSA1:BRTS.SV
*SYS:BASIC.AF<CSA1:BASIC.AF
*SYS:BASIC.SF<CSA1:BASIC.SF
*SYS:BASIC.FF<CSA1:BASIC.FF
*SYS:BASIC.UF<CSA1:BASIC.UF
*SYS:EAEOVR.BN<CSA1:EAEOVR.BN
*SYS:RESEO.BA<CSA1:RESEO.BA
*SYS: TECO. SV<.CSAI : TECO. SV
*SYS:MSBAT.SV<CSA1:MSBAT.SV
*SYS:GENIOX.RL~CSA1:GENIOX.RL
$END

6.12 RUNNING FORTRAN IV UNDER BATCH IN 32K

To run FORTRAN IV V3D under BATCH V3D causes a problem because BATCH
allows the use of 32K words of memory, but the FRTS loader restricts
memory to 28K. If you do not have a TD83 ROM and would like to run
FORTRAN IV under BATCH in 32K, install the following patch to FRTS.SV •

• GET SYS FRTS
.ODT
12713/ 5326 7000
~C

~SAVE SYS FRTS

6-21

CHAPTER 7

BITMAP

The BITMAP program constructs a table (map) showing the memory
locations used by given binary files.

BITMAP uses 8K of core to map programs using up to 16K of core, but it
requires 12K of core to map programs using more than 16K of core.

7.1 FILE AND DEVICE SPECIFICATIONS

To call BITMAP from the system device, type

.R BITMAP

The system responds by printing an asterisk (*) in the left margin.
Type the input line to BITMAP, specifying input devices and file name
(if input is from a mass storage device), any options desired, and an
output device and file name (if output is to a mass storage device).

The standard input devices for BITMAP are PTR, DTAn, DSK, and SYS.
Any other device can serve as an input device if a device handler
exists in the system. Do not use TTY because the binary code may
appear to the TTY handler as control characters.

BITMAP accepts only absolute binary files; you may not use
relocatable and core image files. If you do not type an extension to
the input file name, BITMAP defaults to the .BN extension. If more
than one program is present in a file, only the first program is
bitmapped. (This feature allows BITMAP to ignore any noise characters
caused by reading over the end of a paper tape.) The /S switch can
override this feature.

Type the RETURN key at the end of an input specification line to
signal that you wish to continue to input on the next line. When
there is no more input, use the ALT MODE key as a line terminator.
The Command Decoder is not recalled, and control returns to the
Keyboard Monitor. The last line typed specifies the output device on
which the bit map is to be produced. You may specify any legal OS/8
output device, but if you don't specify one, output goes to the
console terminal. For example:

.R BITMAP
iDTA1:FILE1,FILE2,FILE3,FILE4
!LPT:<PTR:$-

If an output file is specified without an extension, BITMAP
.MP extension. The preceding lines cause FILEl, FILE2,
FILE4 from DECtape 1 to be considered. Then a file is read
high-speed paper tape reader. When you press the ALT MODE

7-1

inserts a
FILE3, and

from the
key, the $

BITMAP

character is printed, which indicates a return to the Keyboard
Monitor. A bit map, which combines all the files read, is produced on
the line printer.

The various options BITMAP accepts are listed in Table 7-1.

Option

IR

IS

In

IT

Table 7-1
Bitmap Options

Meaning

Reset internal bit map of BITMAP to look as though
nothing has been input.

Consider all binary programs in the specified input
file (s) (instead of only the first program in each
file, which is normally done) .

Where n is an integer, forces mapping of all files
specified on this input line as if it were initially
in field n.

This is used to change the style of output - i.e.,
put teletype-style output on non-teletype or
non-teletype-style output on teletypes.

Consider the following examples of command lines to BITMAP:

.R BITMAP
iSYS:PROG.Ol
!DTA 1 : MAP-'~DT AS: PATCH. BN

The preceding commands first create a bit map of the combined files
PROG.Ol (on the system device) and PATCH.BN (on DECtape 5) and then
store the output in file MAP.MP on DEC tape 1 •

.!.R BITMAP
!LPT:<A,B,C$

This example combines three binary files (A, B, and C) on device DSK:
to produce a bit map on the line printer •

• R BITMAP
!TTY:<PTR:/S$~

The preceding example reads a binary tape from the high-speed paper
tape reader, combines all binary files on the paper tape, and produces
a bit map of these files on the terminal.

7.2 BITMAP OUTPUT

BITMAP outputs a series of lines, each comprised of a string of
digits. Each digit represents a single core location and has the
value 0, 1, 2, or 3. The value is assigned as follows:

o means that the location was not loaded into.

1 means that the location was loaded into once.

7-2

BITMAP

2 means that the location was loaded into twice.

3 means that the location was loaded into three or more times.

Occurrence of a 2 or 3 may imply a programming error (e.g., two
separate routines are trying to load values into the same location).

Each line of digits represents 100(8) core locations, and lines are
blocked in pairs to represent pages. On teletype output, a set of
octal coordinates that associates one core location to each digit
borders the bit map. Adding the horizontal and vertical coordinates
that lie directly to the left and above the entry determines the
corresponding core location for any given entry in the map.

7.3 BITMAP ERROR MESSAGES

After each error message, control returns to the Command Decoder. You
can repeat the procedure, or reset the program (using the /R option)
and repeat using different inputs.

Message

I/O ERROR
FILE #n

BAD INPUT,
FILE tn

BAD CHECKSUM,
FILE tn

NO INPUT

ERROR ON
OUTPUT
DEVICE

NO /1

Meaning

An I/O error occurred in input file number n.

A physical end-of-file has been reached before a
logical end-of-file, or extraneous characters have
been found in binary file n.

File number n of the
checksum errOr.

input file list had a

No binary file was found on the designated device.

Error occurred while writing on output device,
i.e., output errOr on DECtape write.

Cannot produce a bit map of an image file.

7.4 ASSEMBLY INSTRUCTIONS

Use PAL8 to make BITMAP.BN from BITMAP.PA as follows:

.R PAL8
jDEV:BITMAP:DEV:BITMAP

Use ABSLDR to make BITMAP.SV from BITMAP.BN on a DECtape file:

~R ABSLDR
!DEV:BITMAP~12000/9$

~SAVE DEV BITMA~

To load and save the binary paper tape (DEC-S8-0SYSB-A-PB15):

.R ABSLDR
jPTR:=12000/9$
~SAVE DEV BITMAP

7-3

CHAPTER 8

BOOT

BOOT is an OS/8 program that you use to bootstrap from one PDP-8
system to another and to bootstrap from one device to another by
typing commands on the keyboard. BOOT can run conveniently from OS/8
and COS 300, and can also run from any other PDP-8 monitor system
(e. g., CAPS-8).

8.1 BOOTING WITH BOOT

To run BOOT from COS 300, see Chapter 9 in the COS 300 System
Reference Manual (DEC-08-0COSA-E-D).

To run BOOT from OS/8, type:

.R BOOT/dv

or

.RUN DEV:BOOT/dv

where dv is a
slash. This
bootstrapped.
ready or does

two-character mnemonic that must immediately follow a
mnemonic represents the device type and the system to be

Do not attempt to bootstrap onto a device that is not
not exist.

To run BOOT from an OS/8 device with CCL enabled, type:

• BOOT/dv

If you use this form of call, BOOT.SV must be present on the system
device.

If you type the following:

!oR BOOT

the system responds with a slash, and you can enter the dv mnemonic.

If_ an illegal mnemonic is typed, the system prints:

to allow you to enter a new mnemonic. Type RUBOUT to erase the line,
then enter the correct command.

If a period follows the device mnemonic, the program loads the correct
bootstrap into core and then halts. Press CONT to branch to the
bootstrap.

8-1

BOOT

Table 8-1 lists the legal mnemonics for BOOT.

Mnemonic

CA

DK

DL

DM

DT

LT

PT

RE

RF

RK

TC

TD

TY

VE

ZE

RX

Table 8-1
BOOT Mnemonics

Device

TA8E cassette

Any disk (RF08,
DF32, RK8E, RK8)

LINCtape

RF08 or DF32

Any tape (TC08,
TD8E, LINCtape)

LINCtape

PT8E paper tape

RK8E disk

RF08, DF32 disks

RK8 disk

TC08 DEC tape

TD8E DEC tape

TC08 DEC tape unit 4

RXOI Diskette

System or Comments

CAPS-8

OS/8, COS-300

DIAL-V2, DIAL-MS

Disk Monitor

05/8, COS 300

OS/8, COS 300

Loads BIN/loader into
field 0

05/8, COS 300

05/8, COS 300

05/8, COS 300

05/8, COS 300, Disk Monitor,
DEC library system,
and others

OS/8, COS 30G

Typeset bootstrap

Types BOOT's version number

Zeroes core (field 0)

05/8

8.2 BOOT PRIORITIES

More than one type of device (e.g., disk, DECtape) may be present on
the 05/8 system. When you use the DK or DT mnemonic, BOOT assumes the
following priorities:

Disk DECtap~

1. RF08 or DF32 1. TC08
2. RK8E 2. TD8E
3. RK8 3. LINCtape

8-2

CHAPTER 9

BUILD

BUILD is the system generation program for OS/8 that allows you to:

• Create an OS/8 monitor system from cassettes or paper tapes.

• Maintain and update device handlers in an existing OS/8
system.

• Add device handlers supplied by DIGITAL to a new or existing
system.

• Add your own device handlers to a new or existing system.

with BUILD, you use simple keyboard commands to manipulate the device
handlers that make up the OS/8 peripheral configuration. BUILD allows
you to quickly and easily insert devices not standard on the system.

9.1 OS/8 DEVICE HANDLERS

Each OS/8 configuration has certain device handlers available within
BUILD when the system is supplied by DIGITAL. The handlers supplied
with BUILD depend on the distribution media of OS/8 software, i.e.,
DECtape (LINCtape), cassettes, or paper tape. These device handlers
are detailed for specific distribution media in Tables 9-1, 9-2, and
9-3 (see Appendix (G) for more information).

You must activate the device handlers included with BUILD before the
OS/8 system can use them. The BUILD commands INSERT, REPLACE, and
SYSTEM activate the device handlers. A maximum of 15 handlers,
including the system device (SYS) and the default mass storage device
(DSK), can be made active.

Inactive devices, although included with BUILD, cannot be used on the
system until they are made active by the INSERT command. Thus,
several system handlers may be supplied with BUILD, but only one may
be marked active.

All other OS/8-supported device handlers are supplied with every
configuration. But if they are not included in the original BUILD,
you must load them into BUILD before you can use them. The BUILD
command LOAD accomplishes this. See Table 9-4 for a complete list of
the device handlers available with OS/8.

Two names identify handlers in BUILD. The first is the group name,
assigned to an entire group of handlers of the same type. For
example, the nonsystem TC08 DECtape handler supplied with a DECtape
system, which has four separate internal handlers, has the group name
TC.

9-1

BUILD

The second name is the permanent device name. This is the name by
which OS/8 identifies the physical device. For example, TC08 DECtape
unit 3 has the group name TC and the permanent name DTA3.

When OS/8 software is supplied on DEC tape or LINCtape, BUILD includes
the device handlers shown in Table 9-1.

Table 9-1
Standard DEC tape System Device Handlers

Handler

TC08 DEC tape system handler

TC08 nonsystem DEC tape
drives 0-3

12K TD8E DEC tape system
handler and drives 0 and

8K ROM TD8E DEC tape system
handler and drives 0 and

TD8E nonsystem DEC tape
drives 0 and 1

TD8E nonsystem DEC tape
drives 2 and 3

RK8E disk system handler

RK8E disk nonsystem handler

RK8 disk system handler

RK8 disk nonsystem handler

LINCtape system handler

LINCtape nonsystem handler

RF08 disk system handler

Console terminal (2-page ha

High-speed I/O simulated on
ASR-33 Teletype

High-speed reader/punch

LP08, LS8E, LV8E line print

TA8E cassette drives 0 and

PDP-12 scope

Group
Name

TC08

TC

TD8E
1

ROM
1

TD8A

-TD8B

RK8E

RK05

RK8

RKOI

LINC

LNC

RF08

ndler) KL8E

KS33

PT8E

ers LPSV

1 TA8A

VR12

Permanent
Name (s)

SYS

DTAO-DTA3

SYS, DTAO, DTAI

SYS, DTAO, DTAI

DTAO, DTAI

DTA2, DTA3

SYS ,RKBO

RKAO, RKAl,
RKBO, RKBI

SYS, RKAI

RKAO, RKAI

SYS

LTAO-LTA3

SYS

TTY

PTR, PTP

PTR, PTP

LPT

CSAO, CSAI

TV

The handlers supplied with a DECtape or LINCtape system are on the
System Tape 12 (AL-4712C-BA). To include extra handlers in BUILD,
mount this tape and use the LOAD command.

9-2

BUILD

9.1.1 Cassette Systems

When OS/8 software is supplied on cassettes, the device handlers shown
in Table 9-2 are included in BUILD.

Table 9-2
Standard Cassette System Device Handlers

Handler

RK8E disk system handler

RK8 disk system handler

RF08 disk system handler

DF32 disk system handler

Console terminal (2-page handler)

High-speed I/O simulated
on ASR-33 Teletype

High-speed reader/punch

TA8E cassette drives 0 and 1

LP08, LS8E, LV8E line printers

.

Group Permanent
Name Name(s)

RK8E SYS, RKBO

RK8 SYS, RKAI

RF08 SYS

DF32 SYS

KL8E TTY

KS33 PTR, PTP

PT8E PTR, PTP

TA8A CSAO, CSAI

LPSV LPT
___ ~ __ L----.

These handlers are present on the system cassette AR-4588C-BA. To
include extra handlers in BUILD, build an OS/8 system, use MCPIP to
move specific device handlers onto the system device, then use the
BUILD command LOAD. MCPIP is discussed in detail in Chapter 18.

9.1.2 Paper Tape Systems

When OS/8 software is supplied on paper tape, the device handlers
shown in Table 9-3 are included in BUILD.

Table 9-3
Standard Paper Tape System Device Handlers

Group I Permanent
Handler Name Name(s)

~~----~

RK8E disk system handler RK8E SYS, RKBO

RK8 disk system handler RK8 SYS, RKAI

RF08 disk system handler RF08 SYS

DF32 disk system handler DF32 SYS

(continued on next page)

9-3

BUILD

Table 9-3 (Cont.)
Standard Paper Tape System Device Handlers

Group Permanent
Handler Name Name (s)

Console terminal (2-page handler) KL8E TTY

High-speed I/O simulated KS33 PTR, PTP
on ASR-33 Teletype

High-speed reader/punch PT8E PTR, PTP

TA8E cassette drives 0 and 1 TA8A CSAO, CSAI

LP08, LS8E, LV8E line printers LPSV LPT

Two binary paper tapes provide other OS/8 handlers not included in
BUILD: AK-4660C-BA contains the file-structured handlers;
AK-4671C-BA contains character-oriented handlers. These tapes contain
handlers that you can load into core using the BUILD command LOAD.

The BUILD device handler tapes are composed of separate segments, with
a short length of leader/trailer code between them. (All of these
handlers are in the special format described in BUILD Device Handler
Format in this section.) Table 9-4 contains a list of the handlers
that are included on the tapes. The handlers are listed in the order
in which they appear on the tapes. The TC08 handler is the first
segment on handler tape tl, and the KL8E terminal handler is the first
segment on handler tape 42. The segments should be either labeled or
separated for easier use.

To utilize a binary handler file, place the desired segment into the
paper tape reader. Use the BUILD command LOAD to load that segment as
follows:

$LOAD PTR [:]

$

Handler

Type a colon (:) after the device name if you
loaded BUILD from an OS/8 system device. The A

allows time to place the tape in the reader. Type
any keyboard character to load the tape. When the
$ reappears, the handler has been loaded into
BUILD's table. Type the BUILD command PRINT to
verify that the handler has been loaded.

Table 9-4
OS/8 Device Handlers

File Name
on DECtape,

Group Permanent LINCtape, or
Name Name (s) Cassette

TC08 DEC tape system handler TC08 SYS, DTAO TC08SY.BN

12K TD8E DEC tape system TD8E SYS, DTAO, DTAI TD8ESY.BN
handler

8K ROM TD8E DEC tape ROM SYS, DTAO, DTAI ROMMSY.BN
system handler

(continued on next page)

9-4

BUILD

Table 9-4 (Cont.)
OS/B Device Handlers

File Name
on DECtape,

Group Permanent LINCtape, or
Handler Name Name(s) Cassette

LINCtape system handler LINC SYS, LTAO LINCSY.BN

RKBE disk system handler RKBE SYS, RKAO, RKBO RKBESY.BN

RKB disk system handler RKB SYS, RKAO, RKAI RKOBSY.BN

RFOB disk system handler RFOB SYS RFOBSY.BN

DF32 disk system handler DF32 SYS DF32SY.BN

TDBE DECtape drives 0 and I TDBA DTAO, DTAI TDBEA.BN

TDBE DECtape drives 2 and 3 TDBB DTA2, DTA3 TDBEB.BN

TDBE DECtape drives 4 and 5 TDBC DTA4, DTA5 TDBEC.BN

TDBE DECtape drives 6 and 7 TDBD DTA6, DTA7 TDBED.BN

TCOB DEC tape drives 0-7 TC DTAO-DTA7 TCOBNS.BN

LINCtape drives 0-7 LNC LTAO-LTA7 LINCNS.BN

RKBE disk nonsystem handler RK05 RKAO-3, RKBO-3 RKBENS.BN

RKB disk nonsystem handler RKOI RKAO-RKA3 RKOBNS.BN

RFOB disk nonsystem handler RF RF, NULL RKOBNS.BN

DF32 disk nonsystem handler DF DF DF32NS.BN

RXOISY disk system handler RXBE SYS RXOISY.BN

RXOINS disk nonsystem handler RXOI RXAO.RXAI RXOINS.BN

VT50 VT-50 input handler VT50 LST VT50.BN

LQP line printer handler LQP LPT LQP.BN

Octal block DUMP handler DUMP DUMP DUMP.BN

RX7BB disk nonsystem RXOI RXA2, RXA3 RX7BB.BN
handler (for VT-7B only)

Console terminal (2-page KLBE TTY KLBE.BN
handler)

Console terminal (I-page AS33 TTY ASR33.BN
handler)

(continued on next page)

9-5

BUILD

Table 9-4 (Cont.)
OS/B Device Handlers

-~----;--

Group Permanent
Handler Name Name (s)

--

High-speed I/O simulated on KS33 PTR, PTP
ASR-33 Teletype

High-speed reader/punch PTBE PTR, PTP

LPOB, LSBE, LVBE line LPSV LPT
printers

Anelex 645 line printer L645 LPT

Card reader CRBE CDR

BATCH handler BAT BAT

PDP-12 scope VRl2 TV

TUIO magnetic tape drives 0-7 TMBE MTAO-MTA7

TABE cassette drives 0 and I TABA CSAO, CSAI

TABE cassette drives 2 and 3 TABB CSA2, CSA3

TABE cassette drives 4 and 5 TABC CSA4, CSA5

TABE cassette drives 6 and 7 TABD CSA6, CSA7

9.2 CALLING AND USING BUILD

File Name
on DECtape,
LINCtape, or
Cassette

LSPT.BN

PTBE.BN

LPSV.BN

L645.BN

CRBE.BN

BAT.BN

VRI2.BN

TMBE.BN

CSA.BN

CSB.BN

CSC.BN

CSD.BN

BUILD is distributed as both a binary paper tape or cassette and as a
core image file (BUILD.SV) on the system DECtape or LINCtape. You
should load and save the binary BUILD file on the system device when
you build the initial system (see OS/B System Generation Notes). To
use the BUILD.SV file on the system aevice, type the following command
in response to the dot the OS/B Keyboard Monitor prints:

.RUN SYS BUILD

NOTE

It is important that you specify the RUN
command, rather than the R command, when
loading BUILD into core. This will
allow the use of the SAV command without
specifying SAVE arguments.

BUILD responds by printing a $, signaling that it is ready to accept
commands.

BUILD uses a keyboard monitor similar to the one contained in the OS/B
system. Text is input from the terminal and interpreted by BUILD.
Table 9-5 lists the special characters that are available for editing.

9-6

Character

ALT MODE key

CARRIAGE RETURN

CTRL/C

CTRL/O

CTRL/U

LINE FEED key

RUBOUT key

BUILD

Table 9-5
BUILD Editing Characters

Function

Terminate
execution.
generated.

command; begin command
No carriage return/line feed is

Terminate command; begin
execution. Also generate
return/line feed combination.

command
carriage

Terminate command; return immediately to
the OS/8 Keyboard Monitor.

Terminate printing;
BUILD.

return control to

Ignore line; the line may be typed again.

Examine contents of the command line.

Delete the last typed character from the
command.

The standard characters permitted in a BUILD command line are:

A-Z, 0-9, SPACE, PERIOD, =, COMMA, COLON, HYPHEN

Typing any other character causes the error message:

SYNTAX ERROR

9.3 BUILD COMMANDS

The commands available in BUILD are:

ALTER INSERT
BOOT LOAD
BUILD NAME
CORE PRINT
CTL QLIST
DCB REPLACE
DELETE SYSTEM
DSK UNLOAD
EXAMINE VERSION

The general format of the command string is:

$command args

9-7

BUILD

where command represents a legal command
represents a file name, device, group
associated with the command. You can type
abbreviate it to the first two characters.

$PRINT

and

$PR

from the list
name, or other
the command in
For example:

and args
argument
full or

are the same. If you attempt to issue an illegal command, BUILD
replies by printing the illegal command preceded by a? Thus the
illegal command ERASE would appear:

fERASE
?ERASE r-"

9.3.1 The Hyphen Construction

Certain BUILD commands (DELETE, INSERT, REPLACE) allow the use of the
hyphen construction to specify more than one permanent name. These
permanent names must be four characters long and must differ only in
the last character. You can insert permanent names that meet this
restriction with the hyphen construction, so long as the last
characters form a sequence of consecutive ASCII characters.

For example, if you wish to delete DEC tape handlers DTAO, DTAl, DTA2,
and DTA3, type:

$DELETE DTAO,DTA1.DTA2,DTA3

or you can use the hyphen construction and type:

$DELETE DTAO-3

9.3.2 PRINT

Syntax:

$PRINT or $PR

Function:

Prints detailed list of the BUILD devices tables.
example shows five handlers.

RFOS: SYS
RKSE: *SYS *RKBO
Kl HE : *TTY
P11I1": PTR *PTP
LF"bV: LPT

The following

Group names are printed first in each line, followed by a colon.
Following the group name is the list of permanent names available with
each group. If one of the permanent names in a group is SYS, then
this handler can be a system handler. An OS/8 system must have just
one system handler. Some system handlers have other coresident
handlers.

9-8

BUILD

Any handler that is active is marked with an asterisk to the left of
its permanent name (RKBO, TTY, PTP in the printout), and the devices
will be included in the new OS/8 system (i.e., these handlers were
inserted with the INSERT, SYS, or REPLACE commands. Other commands
are available for removing, loading, and deactivating handlers). The
preceding printout indicates that RK8E is the system device. The
handler RK8E:RKBO is also marked as being active.

After printing the list of available handlers, the PRINT command might
also print some additional information. If, for example, you
specified RK8E:RKBO with the DSK command, the following is printed:

DSK=RKSE:RKBO

If you specified the core command to restrict the core to 12K, the
message:

CORE=2

is printed, indicating that field 2 is to be the highest core field
available to the OS/8 system.

9.3.3 QLIST

Syntax:

$QLIST or $QL

Function:

List the active permanent names on the system. No * is printed and
the system device is the only group name printed. For example:

$QLIST
~TR DTA3 RKOS:SYS LPT DTA4

9.3.4 LOAD

Syntax:

$LOAD activename or $LOAD dev:filename

Function:

Use LOAD to load a new device handler into BUILD. This handler can be
one supplied by DIGITAL or one you have written. See the OS/8
Software Support Manual (DEC-S8-0SSMB-A-D) for instructions on writing
device handlers.- This handler is input into BUILD as a binary file or
image.

If you are running BUILD stand-alone, e.g., to create an initial OS/8
system, the LOAD command has the form:

$LOAD activename

where activename is the permanent name of an input device handler that
the INSERT, REPLACE, or SYSTEM command has made active. It must be a
handler for a non-file structured device. For example, to load a new
handler from a binary paper tape with the PTR handler already in
BUILD, type:

!LOAD PTR

9-9

BUILD

If you are running BUILD under control of OS/8, the LOAD command has
the form:

$LOAD dev:filename

where dev is an input device handler that exists in the current OS/8
system. (These are not the same as the handlers that BUILD marks
active.) If no dev: is specified, DSK: is assumed.

If dev: is non-file structured (i.e., paper tape), you may
filename. The filename has the form:

name.extension

omit the

Filename is the binary file of the new handler to be loaded. The
default extension is .BN. If you use no extension, you may omit the
dot (.).

Example:

$LOAD DTA3:HANDLR.03 Load a file named HANDLR, with
extension of 03, from DTA3.

an

You may specify several files that you are loading on one line.
Separate the files by commas. You must specify a device for each
file, or DSK will be assumed. If multiple files are specified, each
file must contain a separate handler to be loaded. For example:

$LOAD DTA3:FILE1,DTAS:FILE2

Once you have successfully issued the LOAD command, the new device
handlers become available for further manipulation. The new handlers
will appear in the PRINT output, but will not be marked as active.

9.3.5 INSERT

Syntax:

$INSERT gname,pname

Function:

After a LOAD command has made a handler or group of handlers available
for insertion into the OS/8 system, use the INSERT command to make
particular entry points active. The INSERT command uses two
arguments; gname and pname. Gname is the group name of the handler,
for example, the gname for TC08 DECtape is TC. Pname is the permanent
name by which the device is currently known to BUILD. See Table 9-4
for a complete list of permanent device names. TC08 DECtape thus has
the group name TC and the permanent names DTAO-DTA7.

Examples:

$IN "'L8E.TTY
,!IN TC08.SYS

If you specified no permanent name (and no :), the first name in the
device group is assumed. For example:

$INSERT TC

would assign DTAO as the permanent name.

9-10

BUILD

You can insert several handlers in the same group
command by separating the permanent names with commas.

SIN TC,DTAO,DTA3,DTA7

If several permanent names (each four characters long)
the last character, you can insert them simultaneously
construction so long as the last characters form
consecutive ASCII characters.

Example:

!INSERT TC,DTA2-5

is the same as

$INSERT TC,DTA2,DTA3,DTA4,DTA5

and

~INSERT RK01,R~AO-2

is the same as

$INSERT RK01,RKAO,RKA1,RKA2

into the same
For example:

differ only in
with the hyphen
a sequence of

If the permanent name specified is not part of the group name
specified, or if the group name does not exist, the following message
is printed:

name NOT FOUND

If disk is the device you are inserting, you can follow the group name
with a construction of the form:

pname=n

Where n is a digit in the range 1 to 7 and represents the number of
platters available. Use this option for the RF08 and DF32 disks. For
example:

.!IN RF,RF=2

If you specify no such option, =1 is assumed. If n is too large for
the device specified, the following message is printed:

9.3.6 DELETE

Syntax:

$DELETE aname

Function:

DELETE takes a device that is currently marked as active and makes it
inactive. (Active devices are marked with an * in the PRINT command
output and are printed by the QLIST command.)

The argument for DELETE is the permanent name of the device. You can
obtain the current permanent name from the PRINT or QLIST output. The
major function of DELETE is to make device slots available to BUILD.

9-11

BUILD

For example, assume that the QLIST command output is:

DTAO DTAl RKBE:SYS RKBO TTY LPT CSAO CSAl CSA2 CSA3

If the following command is issued to BUILD:

$DELETE CSAO,CSA1,CSA2,CSA3

CSAO, CSAl, CSA2, and CSA3 will no longer be permanent devices, and
the slots used by the TA8A and TA8B device groups will be made
available to BUILD. The QLIST output after the above command will be:

DTAO DTAl RKBE:SYS RKBO TTY LPT

Note, as previously explained, that you can use the hyphen
construction in DELETE to remove a sequence of devices. Therefore,
you can type the command to make the cassette handlers inactive as
follows:

!DELETE CSAO-3

9.3.7 REPLACE

Syntax:

$REPLACE pname=gname, pnamel

Function:

REPLACE combines the functions of DELETE and INSERT to delete one
device and activate another in a single step. The arguments for
REPLACE are:

pname The permanent name of the device to be deleted.
(Same as the argument of the DELETE command.)

gname, pname2 The group name and permanent name of the
particular device to be inserted into the system
(see INSERT for more details).

Example:

Assume the PRINT output is:

RKAl RKBl

Use REPLACE to delete the card reader (CDR) and to insert the RK05
group handler for RKAO:

!REPLACE CDR=RK05,R~AO

The output of PRINT after this REPLACE is:

P11:!t) *PTP *PTR
CRII F· "'-: ---':''':'''C-'D'':'R--:''':'''''':'':''';'
RKOS: *RKAO RKBO RKAl RKBt

9-12

BUILD

Use the hyphen construction with REPLACE to delete and insert more
than one device handler. For example, assume you are replacing the
LINCtape handlers LTAO, LTAI, LTA2, and LTA5 with DEC tape handlers
DTAO, DTAI, DTA2, and DTA5. The following command accomplishes this:

$REPLACE LTAO-2,LTAS=TC,DTAO-2,DTAS

9.3.B UNLOAD

Syntax:

$UNLOAD gname, or $UNLOAD gname, pname

Function:

Use UNLOAD to delete a handler group (gname)
(pname) from the BUILD system. (This differs
not physically eliminate a device.) Use UNLOAD
ROOM error occurs during a LOAD command.

or a permanent name
from DELETE, which does
primarily when the NO

For example, assume you are removing the entire group of LINCtape
handlers. Type the command:

!UNLOAD LNC

This command unloads the LINCtape handler LNC and all permanent names
(LTAO, LTAI, LTA2, LTA3, etc.) associated with it.

To remove a particular permanent name from BUILD, e.g., DTA3, type:

$UNLOAD TC:DTA3

This command unloads only the entry point name.

To remove several permanent names, but not the entire group, use the
UNLOAD command, with commas separating the permanent names. For
example:

$UNLOAD TC:DTAO,DTA2

You cannot use the hyphen construction with the UNLOAD command.

9.3.9 NAME

Syntax:

$NAME pname=pnamel

Function:

The NAME command allows you to alter the device name that will be used
by OS/B. The first argument, pname, must be the current name of a
device marked active in the PRINT output. Pname2 is the name you wish
to call this device. You may use only 4-character device names in the
NAME command. If you enter longer names, all characters beyond the
first four are ignored. After you use the NAME command, pname2
becomes the current permanent name; pname is unknown to BUILD.

9-13

BUILD

Example:

Assume that the PRINT output is:

Tr *nTAO *DTAl DTA:! DTA3
R"~iE: :-- .+(;YS *RKBO
KUII" : *TTY
P1I:IE: *PTP *PTR

To change the paper tape reader so that it is recognized by the
permanent name READ, use the following command:

$NAME PTR=READ

The output from PRINT would then be:

TC *DTAO *DTAl DTA2 DTA3
R"'"BE" : *SYS *RKBO
KKBf: *TTY
PT-SE"; *PIP *READ

If the permanent name specified as pname is not a currently active
device, the message:

pname NOT FOUND

is printed. If this message appears, check the PRINT output to
determine the correct permanent name.

9.3.10 ALTER

Syntax:

$ALTER gname, loc=newvalue

Function:

The ALTER command allows you to change locations in device handlers.
The arguments are:

gname

loc

newvalue

Group name of the handler.

Alter relative octal location. If the handler is
a I-page handler, loc must be an octal number in
the range 0-0177. If it is a 2-page handler, loc
must be an octal number in the range 0-0377.

An octal number specifying the new contents of the
location specified by loco If you do not enter
=newvalue, BUILD prints the old value of loc
followed by a slash. You can then enter newvalue
or type a carriage return to retain the old value.

9-14

BUILD

9.3.11 EXAMINE

Syntax:

$EXAMINE gname, loc

Function:

EXAMINE allows you to examine, but not modify, a location within a
device handler. See the ALTER command.

9.3.12 DSK

Syntax:

$DSK=gname,pname or $DSK=aname

Function:

Use the DSK command to specify which device
DSK, the default storage device for OS/8.
of the command, i.e.,

$DSK=gname,pname

you are designating as
If you use the first form

the gname is the group name of the device, and pname is the permanent
name. For example:

$DS~=TC08:DTAO

assigns DTAO as the device called DSK.

When you issue the DSK command, you need not enter the permanent name.
However, you must enter the permanent name, via an INSERT, REPLACE, or
SYSTEM command before you issue the BOOT command.

If you use the second form of the command, i.e.,

$DSK=aname

aname must be a permanent name BUILD marks as active. For example,
the following command specifies the already active device RKAO as the
default device DSK:

$DS~=RKAO

If you enter no DSK command, or if you issue the command without an
argument, i.e.,

$DS~=

or

$DS~

BUILD specifies SYS as DSK when you issue a BOOT command.

9-15

BUILD

9.3.13 CORE

Syntax:

SCORE n

Function:

You use the CORE command to specify the highest core field available
to the OS/8 system being built. The n is an octal number in the range
o to 7. If n is 0 or omitted, or if you do not use the CORE command,
the built system will use all of the available core. If n specifies
more core than is available, the following message is printed:

?CORE

The value of n for the available core sizes is as follows:

Value of n

o
1
2
3
4
5
6
7

Core

all available core
8K
12K
16K
20K
24K
28K
32K

For example, a system that is to use only 24K of a 32K system requires
the following CORE command:

$CORE 5

9.3.14 DCB

Syntax:

$DCB aname or $DCBaname=newvalue

Function:

The DCB command
associated with
DCB words) •

allows you to examine or modify the DCB word
a permanent name (see Section 9.5 for information on

The DCB word is the first word that appears after the permanent name
in a description (from the handler header information words). Aname
must be the permanent name of a device currently marked as active in
the PRINT output.

Example:

!DCB DTA4=6160

changes the DCB of DTA4 so that this handler becomes a read-only
device. You could also type this command as:

!DCB DTA4
4160/6160

9-16

BUILD

9.3.15 CTL

Syntax:

$CTL aname=loc

Function:

The CTL command allows you to modify the control word that appears
after the DCB word in the handler header block. For example:

!CTL LTA3=24

changes the entry point of the LTA3 handler to relative location 24.

9.3.16 VERSION

Syntax:

$VERSION or $VE

Function:

The VERSION command prints BUILD's version number on the terminal.

9.3.17 SIZE

Syntax:

$SIZE aname or $SIZE aname=new value

aname must be the permanent name of a device currently marked as
active.

Example:

!SIZE RF08=-1777

changes the length of the RFOB handler to 1777.

Function:

The SIZE command modifies word ten of a handler header block. Word
ten specifies the size, in blocks, of a single platter on a system
device.

9.3.lB SYSTEM

Syntax:

$SYSTEM sname=n

Function:

The SYSTEM command specifies devices that are system handlers or that
are coresident with system handlers. The number n reflects the number
of platters included in the system device (valid only for multiple
platter RFOB and DF32 disks). (Table 1-6 lists the available system

9-17

BUILD

handlers and their associated values for n.) The argument sname must
be one of the legal device system names. If it is not, BUILD prints:

'!'SYS

thereby requesting a new system specification.

Action is not taken on the SYSTEM command until you give the BOOTSTRAP
command, so you may respecify a device with SYS. The system device
used is the last one issued prior to the BOOT command. Specifying a
new system device is not always necessary. For example, if you wish
to insert new peripheral handlers, then this command is not needed.
If you do not issue it, the OS/8 resident system is not affected
beyond having altered device tables.

BUILD includes the SYSTEM command only so it will be compatible with
older versions of BUILD. You can specify the system device with the
INSERT command. For example, the command:

!SYS RFOS=2

is the same as the command:

!INSERT RFOS,SYS=2

If the device specified in the SYS command is not the current system
device, you will have an opportunity to have a zero directory placed
on your new system device. If the system device is the same as the
current system device, no new directory will result.

9.3.19 BUILD

Syntax:

$BUILD or $BU

Function:

You use the BUILD command only when building an initial OS/8 system
from cassettes or paper tape. When you type the BUILD command, BUILD
prints:

LOAD OS/S:

to which you must respond by typing the device that contains the new
OS/8 monitor, e.g.,

BUILD then loads and writes the various parts of OS/8 onto the system
device. After writing OS/8, BUILD prints:

to which you respond with the appropriate device, or with a carriage
return to specify that the device is the same as the one specified in
the LOAD OS/8: message. BUILD loads the Command Decoder and writes
it onto the system device.

Do not use the BUILD command at any time other than while building an
initial OS/8 system. When you type this command, OS/8 assumes that
you are building a new OS/8 system. It automatically zeroes the
system device directory. Refer to the OS/8 System Generation Notes
for instructions on building an initial system.

9-18

BUILD

9.3.20 BOOTSTRAP

Syntax:

$BOOTSTRAP or $BO

Function:

BOOTSTRAP is the command that finally implements all the changes that
you made with BUILD. BOOT rewrites all relevant Monitor tables and
device handlers to reflect the updated system status. The devices
BUILD had marked active now become device handlers in the system.

Before you type a BOOTSTRAP command,
device with either the SYSTEM or
specified, the message:

SYS NOT FOUND

is printed.

you must specify
INSERT command.

the system
If no SYS is

If the system device specified is different from the current system
device, BUILD copies the system from the current system device to the
new system device. After the copy is complete, BUILD asks:

WRITE ZERO DIRECT?

to determine whether a new (zero) directory is to be
new system device. If the reply is YES, the system
directory on the device. Any other reply causes the
the old directory.

NOTE

written on the
will place a zero
system to retain

Exercise care if you want the old
directory retained. The directory must
be one of an OS/8 system device.

After you answer this question, BUILD updates the system and prints:

SYS BUILT

Control returns to the Keyboard Monitor. When the BOOTSTRAP command
has performed its functions and the Keyboard Monitor is once again
active, save the copy of BUILD just used. This way, an image of the
current system status is preserved, and you can use the saved copy of
BUILD again. When it is used again, the devices initially marked
active remain marked active. To save BUILD, type:

.SAVE SYS BUILD

in response to the dot printed by the Keyboard Monitor. This assumes
that you originally loaded BUILD into core with a RU or RUN command.

9-19

BUILD

9.4 BUILD ERROR MESSAGES

The following is a list of error messages that may appear when using
BUILD. These messages usually indicate a syntax or user error.

Message

?BAD ARG

?BAD INPUT

?BAD LOAD

?BAD ORIGIN

?CORE

?DSK

?HANDLERS

I/O ERR

?NAME

NO ROOM

name NOT FOUND

?PLAT

?SLOTS

Table 9-6
BUILD Error Messages

Explanation

No device name was included in the LOAD
command.

An error was detected in the
it is not a proper input
command.

binary file;
for the LOAD

An attempt was made to load a binary
handler that is not in the correct format.

The origin in a binary file is not in the
range 200-577.

A CORE command specified more memory than
is physically available, or the BOOT
command was issued on an 8K system with a
2-page system handler active. Two-page
system handlers require at least 12K of
core to be present on the OS/8 system.

The device specified in a DSK command is
not a file structured device.

More than 15 handlers, including SYS and
DSK, were active when a BOOT command was
issued.

An error occurred while reading from an
input device during a LOAD command.

A device or file name was not designated in
a command that requires one to be present.

Too many device handlers
the system when a LOAD or
typed. The UNLOAD command
remove a handler before
loaded.

were present on
BUILD command was

must be used to
another can be

The device or file name designated in the
command was not found.

The =n in a SYS command is too large for
the device specified, e.g., RF08=5.

More than eight groups of non-system
handlers were inserted. Each slot may have
more than one entry point. To correct,
delete PNAMES until there are eight or
fewer nonsystem handlers.

(continued on next page)

9-20

Message

BUILD

Table 9-6 (Cont.)
BUILD Error Messages

Explanation
~-------------------~--------------------------~--------------~--;

?SYNTAX

?SYS

SYS ERR

SYS NOT FOUND

An illegal character was typed in a BUILD
command line. The line must be retyped.

One of the following conditions exists:

a. A permanent name in a SYS command was
not a system handler or coresident with
one.

b. A BOOT command was issued when two or
more system handlers were active.

c. A BOOT command was issued when an
active handler that must be coresident
with a SYS handler did not have the
system handler active.

An I/O error occurred with a system
handler. The computer halts. Press CONT
to retry or restart the BUILD procedure
from the beginning. Do not assume that a
valid OS/8 system remains in core.

No active handler with the name SYS was
present when a BOOTSTRAP command was
issued.

~-------------------~---~

9.5 BUILD DEVICE HANDLER FORMAT

Use the BUILD command LOAD to load device handlers not provided by
BUILD into core. They can then be inserted into the OS/8 system. The
format of the input to LOAD is a binary file containing the handler as
well as a header block that contains information pertaining to the
devices included in that file. You should code the handler in PAL8
machine language. The structure of the source for a BUILD device
handler is:

*0
HEADER BLOCK

*200
BODY OF DEVICE

HANDLER

The origins at 0 and 200 are vital to BUILD. The *0 is an important
part of the header block. If you omit this, you cannot load. The
*200 is also necessary for loading. If the handler contains an origin
outside the range 200-577, BUILD generates an error message and then
aborts the load.

9-21

BUILD

9.5.1 Header Block

The header block contains the following information:

Word 1:

Words 2-9:

Words 10-17:

-x, where X is the number of separate handlers
contained in this file. Thus a handler for TC08
has the first word equal to -lO(octal).

Descriptor block for the first handler in the
group.

Descriptor block for second handler in the group.

Descriptor block for the last handler in the
group. If the handler is a system handler, the
length of the bootstrap and the bootstrap itself
follows.

Thus, each handler in the group must have an eight-word block
describing its characteristics. If more than twelve handlers are in a
group, an error generates during the LOAD.

9.5.2 Descriptor Block

Each eight-word descriptor block contains the following information:

Words 1,2:

Words 3,4:

Word 5:

Word 6:

Device type name. This name is the group name, or
type, of all the handlers in this group. It is
usually designated by the DEVICE pseudo-oPe

Example: DEVICE RK8

OS/8 device name.
name) by which
recognized in the
can alter it.

This is the name (permanent
the particular device will be
OS/8 system. The NAME command

Example: DEVICE RKAO

Device Control Block. This word reflects the type
of device, in accordance with Table 9-7. Bits
9-11 specify the maximum number of platters on the
device (0=1).

Example: 4050

Entry point word. This word must contain the
entry point offset in bits 5-11 (see Section
9.5.4). Bit 0 should be a 1 if the handler is a
two-page handler. Bit 1 should be a 1 if the
entry point is SYS. Bit 2 should be a 1 if the
entry point is coresident with SYS.

Example: 0020

9-22

BUILD

Word 7: Must be O.

Word 8: Must be 0, except for a system handler that uses
it to specify the block length of the device as a
negative number.

As an example, consider the handler for the nonsystem RKOS handlers.
This file contains four separate handlers; the source code would
appear as follows:

*0
-4 /4 DEVICES

DEVICE RKOS; DEVICE RKAO; 40S0; 0020; ZBLOCK 2
DEVICE RKOS; DEVICE RKBO; 40S0; 0021; ZBLOCK 2
DEVICE RKOS; DEVICE RKAl; 40S0; 0022; ZBLOCK 2
DEVICE RKOS; DEVICE RKBl; 40S0; 0023; ZBLOCK 2

*200

(HANDLER BODY)

The device type of the group is RKOS (Words 1-2). The permanent
device names are RKAO, RKBO, RKAl, RKBI. Since each device is RKOS,
the device control block (DCB) word for each is identical.

The entry point word indicates where the entry point
particular device occurs relative to the top of the page.
the above example, RKAO enters at the 20th location from the
the page, RKBO at the 21st, etc.

for that
Thus, in

top of

It is vital that this information is accurate. If errors exist in
this data, unpredictable results occur when you generate the system.

9.S.3 Breakdown of DCB Word

The DCB word for a device provides specific information that is used
in the OS/8 Monitor. Table 9-7 details its structure.

Table 9 7
DCB Word

r--~------.---.-------------------
Bit

o 1

1 1

2 1

3-8 00
01 =
02 =
03 =
04

Meaning

if file structured device

if read-only device (e.g., PTR)

if write-only device (e.g., LPT)

Device Type

console terminal
high-speed paper tape reader
high-speed paper tape punch
card reader
line printer

-------------------~

(continued on next page)

9-23

Bit

3-8 05 =
(Cont.) 06 =

07 =
10 =
11 =
12 =
13 =
14 =
15 =
16 =
17 =
20 =
21 =
22 =
23 =
24 =
25 =
26 =
27 =
30 =

31-35 =
36 =
37 =

40-77 =

9-11

BUILD

Table 9-7 (Cont.)
DCB Word

Meaning

Device Type

RK8 Disk
RF08 (1 platter)
RF08 (2 platter)
RF08 (3 platter)
RF08 (4 platter)
DF32 (1 platter)
DF32 (2 platter)
DF32 (3 platter)
DF32 (4 platter)
TC08 DEC tape
LINCtape
TM8E magnetic tape
TD8E DEC tape
BAT - BATCH handler
RK8E disk
NULL - NULL handler
RXOI diskette
Unused
TA8E cassettes
PDP-12 scope
Unused by DIGITAL
Dump Handler
Unused by DIGITAL
Reserved for user-written

Used only by OS/8 Monitor

handlers

Whenever you insert a device into OS/8, follow this structure to
obtain correct results.

9.5.4 Entry Point Offset

Word 6 of each device descriptor block specifies the relative entry
point of that particular handler. Devices supplied by DIGITAL have a
fixed set of entry points, described below.

Use care when coding new device handlers for insertion into the
system. The entry point offset for the new handler must not be the
same for any other file structured device in the system. For example,
OS/8 currently uses relative entry points 7-24 for file structured
devices. No new handler should have entry points at 7 to 24 of the
page. If this occurs, the system may perform incorrectly.

9-24

BUILD

Current file device and entry point offsets appear below:

Device

TC08 DEC tape
TD8E DEC tape
LINCtape
System device
RK8/RK8E disk
RF/DF disk
RXAO
RXAI

Entry Relative to Top of Page

10-17
10-17
10-17

7
20-23

24
30
34

Thus, the user-coded file devices should use entry points other than
7-24, 30, 34.

If you add a new file structured user device to the system, alter the
device-length table in PIP to permit zeroing of the device directory.
To do this, use ODT as follows:

.GET SYS PIP

.ODT
136nn/0000 xxxx
~C (user types CTRL/C)
.SAVE SYS PIP

The nn represents the two-digit device Table 9-12 indicates. The xxxx
is the negative of the last block number on the device. Both nn and
xxx x are octal numbers.

For example, if you assign the new device a code of 40 (currently the
first unused entry), and the last OS/8 block on the device was block
1000, PIP would change as follows:

.GET SYS PIP
70DT
13640/0000 7000

...!.SAVE SYS PIP

9.6 CREATING A SYSTEM HANDLER

When you create a new system handler, observe
restrictions:

the following

• The length of a bootstrap must be greater than or equal to 21
(octal) locations. You must pad a bootstrap shorter than 21
locations, otherwise BUILD results are unpredictable.

• The length of the bootstrap must be less than or equal to 177
(octal) locations.

• If the system handler is a one-page handler, only the first 47
(octal) locations of the bootstrap are significant. The
remaining locations are ignored and not written on the system
device. Also, no handler may have more than 20 (octal) entry
points.

• If a system handler is two pages long, relative location 12 of
the first page must contain a 3. The second page loads into
location 27600 and is stored on block 66 of SYS:.

9-25

CHAPTER 10

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

The CAMP program positions cassettes, magnetic tapes, and certain
other devices. To call CAMP from the system device, type:

.R CAMP

in response to the Keyboard Monitor dot. CAMP prints a i to indicate
it is ready to receive a command. You may terminate the command line
you enter with a carriage return (CAMP retains control) or an ALTMODE
(control returns to the Keyboard Monitor).

10.1 CAMP COMMANDS

Each CAMP command begins with a keyword consisting of two or more
letters. You need not type the full CAMP command; however, each
command has letters that are required. The CAMP commands appear below
in alphabetical order. Letters not required are underlined.

BACKS.PACE
EOt
HELP
REWIND
SKIP
UNLOAD
VERSION

10.1.1 BACKSPACE Command

The BACKSPACE command spaces a magnetic tape or cassette backward a
specified number of files or records. You may also issue this command
indirectly with the CCL BACKSPACE command.

The BACKSPACE command has the form:

Records
BA dev: nnnn

Files

Where "dev:" is the permanent name of a cassette or magnetic tape
drive. The "nnnn" is an unsigned decimal number representing the
number of records or files to backspace. This number must be in the
range 0-4095. If you enter no number, nnnn=l is assumed. A keyword
beginning with either an R, indicating records, or an F, indicating
files, follows this number. If neither F nor R is entered, F is
assumed.

10-1

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

Examples:

~BA CSAO: 2 F

positions the cassette mounted on CSAO backward two files.

tBA MTAl:

positions the magnetic tape mounted on MTAl backward one file.

If a file mark is read before the tape has spaced over the proper
number of records, the message:

% CAN'T - AT BOF

appears and the device is moved forward one record. This leaves the
device positioned at the beginning of the file (just before a data
record) .

The file where the device is currently positioned is not counted when
you make an attempt to backspace a number of files. For example, the
command:

tBA MTAl: 3 F

moves the tape backward over four file marks and then moves it forward
one record. The tape is then positioned at the beginning of the file.
If nnnn=O, the tape backspaces to the beginning of the file where it
is currently positioned.

10.1.2 EOF Command

The EOF command writes a single file mark (file gap) on the magnetic
tape or cassette you have specified. You may also issue this command
indirectly with the CCL EOF command.

The EOF command has the form:

EOF dev:

where "dev:" is the permanent name of a cassette or magnetic tape
drive.

Example:

tEOF CSAl:

10.1.3 HELP Command

The HELP command prints a short message on
reminding you of the CAMP command syntax.
is:

~HELP

10-2

the console terminal,
The form of this command

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

10.1.4 REWIND Command

The REWIND command issues a rewind command to one of the following
OS/8 device controllers: cassette, magnetic tape, or TC08 DECtape.

The REWIND command form is:

REWIND dev:

where "dev:" can be any OS/8 file structured device. If "dev:" is a
cassette, control returns to CAMP while the cassette is rewinding:
CAMP prints another I, indicating it is ready to receive another
command. If "dev:" is magnetic tape or TC08 DECtape, the device
rewinds immediately, and control returns to the OS/8 Keyboard Monitor
while the device is rewinding. If you issue a REWIND command to any
other OS/8 device (e.g., LINCtape), control returns to CAMP after the
device is rewound.

Example:

tRE DTA1:

10.1.5 SKIP Command

The SKIP command advances over the number of
specified on a magnetic tape. You may
indirectly with the CCL SKIP command. You do
command for cassettes.

The SKIP command has the form:

#SKIP MTAn:
nnnn Records

Files
EOD

files or records you
also issue this command
not implement the SKIP

where MTAn: may be any magnetic tape drive, depending upon the number
of magnetic tape drives on the OS/8 system. The "nnnn" is an unsigned
decimal number representing the number of files or records you are
advancing over. This number must be in the range 0-4095. EOD
indicates that the tape is to advance to the end of data. The end of
data on a magnetic tape is a point between two file marks. If the
tape is already past the end of data, rewind it before you issue the
EOD command. If you have specified neither "nnnn" nor EOD, nnnn=l is
assumed.

If you have specified a number, a keyword beginning with R (for
records) or F (for files) may follow. If neither F nor R is entered,
F is assumed.

Examples:

tSKIP MTAO: 2 RECORDS

advances the magnetic tape on MTAO: forward two records.

tSKIP MTA1: 6 F

advances the magnetic tape on MTAl: forward six files.

10-3

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

If a file mark is read before the tape has advanced over the proper
number of records, the warning message:

% CAN'T - AT EOF

appears and the tape moves backward one record to the end of the file
(just after the last data record but before the file mark). If
nnnn=O, nnnn=l is assumed when skipping records.

The file where the tape is currently positioned is counted when you
attempt to advance over a number of files. Thus nnnn=l means to
advance to the beginning of the next file. If nnnn is greater than 0,
the tape is positioned at the beginning of a file (just after a file
mark but before any data records). If nnnn=O, the tape advances to
the end of the file where currently positioned (before a file mark,
but after all data records).

If you encounter the end of data before you have skipped the specified
number of files, the warning message:

% CAN'T - AT EOn

appears and the tape is positioned at the end of data. If a tape is
already positioned at the end of data, the SKIP command produces
meaningless results.

10.1.6 UNLOAD Command

The UNLOAD command rewinds a magnetic tape controller and turns it off
line. As the tape is rewinding, control returns to CAMP for another
command. You will have to manually turn the magnetic tape on line for
use after you have issued an UNLOAD command.

You may also use the UNLOAD command to unload TC08 and TD8E DECtapes
from their reels. When used on DECtapes, the UNLOAD command rewinds
the DECtape on the unit specified, selects a different unit, and
returns control to CAMP for another command. This DECtape unit cannot
be used until another legal command, e.g., the Keyboard Monitor ASSIGN
command, is issued to the DECtape controller.

You can also use the UNLOAD command to write-lock an RK8E disk.

The UNLOAD command form is:

tUNLOAD dev:

where "dev:" may be anyone of the following:

magnetic tape
TC08 DEC tape
TD8E DEC tape
RK8E disk

10.1.7 VERSION Command

The VERSION command prints the version number of CAMP on the terminal.
This command form is:

tVERSION

10-4

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

10.2 CAMP ERROR MESSAGE SUMMARY

The error messages listed in Table 10-1 may appear during a CAMP
operation.

Table 10-1
CAMP Error Messages

Messages

% CAN'T - AT BOF

? CAN'T - AT BOT

% CAN'T - AT EOD

% CAN'T - AT EOF

? CAN'T - DEVICE DOESN'T EXIST

? CAN'T - DEVICE IS READ-ONLY

? CAN'T - DEVICE IS WRITE-ONLY

? CAN'T FOR THIS DEVICE

? CAN'T I/O ERROR

? NUMBER TOO BIG

? SYNTAX ERROR

Explanation

A file mark was read before the
specified number of records were
read over in a BACKSPACE command.
The device is moved forward so
that it is positioned at the
beginning of the file.

A BACKSPACE command cannot move
the device backward the specified
number of files because the
device is positioned at the
beginning of the first file.

The specified number of files
cannot be advanced over because
the end of data was encountered.
The tape is positioned at the end
of data.

A file mark was read before the
specified number of records were
advanced over in a SKIP command.
The tape is moved backward one
record to leave it positioned at
the end of the file.

The device specified in a CAMP
command is not present on the
OS/8 system.

The device specified in a CAMP
command is a read-only device,
e.g., PTR.

The device specified in a CAMP
command is a write-only device,
e.g., TTY.

The operation specified does not
make sense for the device
specified, e.g., REWIND LPT:.

An input/output error has
occurred, and a brief explanation
will follow.

The "nnnn" specified in a
BACKSPACE or SKIP command is
greater than 4095.

An illegal character was typed in
a CAMP command or a command was
formatted incorrectly. The
command must be retyped.

10-5

CHAPTER 11

CROSS-REFERENCE PROGRAM (CREF)

CREF aids you in writing, debugging, and maintaining assembly language
programs by pinpointing all references to a particular symbol. CREF
operates on output from either the PALS, SABR, or RALF assembler.

11.1 CALLING AND USING CREF

To call CREF from the system device, type

.R CREF

in response to the Keyboard Monitor dot. This loads the Command
Decoder, which replies by printing an asterisk in the left margin.
Enter one output file specification and one input file specification.

NOTE

The input to CREF must be the listing
pass output from either the PALS, SABR,
or RALF assembler. If this is not the
case, CREF will not operate properly.
RALF is not fully supported by CREF.

If you specify no output file, CREF assumes you are sending the output
to the line printer. If you specify no input or output file
extension, the extension .LS is assumed. If you specify no input
file, control returns to the Command Decoder until an input file is
specified. The CREF version number is printed at the end of the CREF
table in the form Vn, where n is the current version number.

11.1.1 CREF Options

The following options are available to you. The optlon and the file
specification are placed in the command string.

11-1

CROSS-REFERENCE PROGRAM (CREF)

Table ll-l
CREF Options

Option Code I--~----
-----~--~----~-~--

Meaning

/P

/U

/R

/Q

IX

/A

/M

Disable pass 1 listing output. The output is
reenabled when $ (or END for SABRE) is
encountered. Thus the $ (END) and symbol table
are printed if you use the /P option.
Inoperable for RALF output.

Disable pass 1 listing output and the symbol
table. Inoperable for RALF output.

Interpret input as RALF code.

Interpret input as SABR code. Signal CREF to
accept special SABR characters. If you use the
/Q option, the /X option is forced on.

Do not process literals. For programs with too
many symbols and literals for CREF, this option
may create enough space for CREF to operate.

Do not eliminate the file CREFLS.TM. If you do
not specify the /A option, and if CREF was
chained to from PAL8, the file CREFLS.TM is
eliminated.

Cross-reference mammoth files in two major
passes. Pass 1 processes the symbols from A
through LGnnnn; pass 2 processes the symbols
from LHnnnn through Z and literals. This
permits significantly large files to be
cross-referenced. If the /M option is used, the
file CREF.SV must be on the system device.

11.1.2 Examples of CREF Usage

Examples of calling and using CREF are given below.

Example 1:

.R CREF
iF-TEMP

The Command Decoder prints an * CREF assigns LPT: as the output
device. The input file is PTEMP, assumed to be on device SYS, with
the extension .LS. If you do not find the file SYS:PTEMP.LS, a search
for SYS:PTEMP is attempted.

Example 2:

~R CREF
!.SBRLS/R

Given to the Command Decoder, this command string causes output to be
sent to the line printer. The input is expected to be a SABR listing
file named SBRLS.LS or SBRLS from device SYS:.

11-2

CROSS-REFERENCE PROGRAM (CREF)

Example 3:

.R CREF
iDTA1:LIST~DTA3:PALIST/X

This command string causes output to be sent to DEC tape unit 1, as a
file named LIST.LS. Input is expected to be a PALS listing file
called PALIST.LS or PALIST. No literals appear in the CREF output
table.

Example 4:

.R CREF
iDTA2:LIST<SYS:BIGLST

The source listing, symbol table, and cross-reference of symbols in
the file BIGLST or BIGLST.LS on SYS is in the file LIST.LS on DTA2.
To list the CREF output you may now run PIP.SV as follows:

.R PIP
.!LFT:-::DTA2:LIST.LS

11.2 PSEUDO-OP HANDLING

The PALS and SABR assemblers have certain pseudo-ops that cause CREF
to perform actions similar to those taken by the assembler whose
output is being processed. These pseudo-ops are described below:

PALS Pseudo-Op

EXPUNGE

FIXTAB

TEXT

$

Action Taken by CREF

CREF purges its current symbol table of all
permanent and user-defined symbols. If any
literals were in the symbol table, they are
not deleted.

Causes all symbols (except literals) to be
marked as permanent symbols. After a FIXTAB,
no references will be reported by CREF.

Ignores characters between delimiters.

End-of-input signal.

11.3 INTERPRETING CREF OUTPUT

The output of CREF consists of two
the input file CREF generates a
The sequence numbers are decimal.
part of the output.

parts. On the first pass through
sequentially numbered listing file.
The IP and IU options disable this

The cross-reference table appears after the listing. This table
contains every user-defined symbol and literal, sorted alphabetically.
An underline (or back-arrow on most DEC terminals) indicates each
literal, and it is followed by the field and address where the literal
ocCUrs. For each symbol and literal there appears a list of numbers
specifying the line in which each is referenced.

11-3

CROSS-REFERENCE PROGRAM (CREF)

If CREF finds too many references to fit into core at one time,'
multiple passes are required to process all symbols. The minimum
number of passes is two. The maximum number of passes depends on the
size of the input file and on the amount of core available. CREF
calculates the number of core fields available and uses all available
space for reference tables. If there is not enough core available,
three or more passes are required. For example, the current OS/8 SABR
assembler (5518 source lines, 849 symbols) requires four passes
through CREF on an 8K machine.

The following example illustrates a program that PAL8 has assembled
and CREF has listed. Form feeds on the terminal have been converted
to a series of carriage return/line feed combinations followed by a
dotted tear line. Notice the line in the CREF table where a t follows
the defined symbol. All literals and symbols defined by OPDEF or
SKPDF in SABR do not have a t following them.

/EXAMPLE PROGRAM

/

3
4

{.

7

8
9

10
11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34
35

EXAMPLE PROGRAM PAL8-V9B 03/05/74 PAGE

00200
00201
00202
00203
00204
00205
00206
00207
00210
00376
00377

00400
00401
00402
00403
00404
00405
00406
00407

00576
00577
00177

10200
10201
10202
10203
10377

EXAMPLE PROGRAM /
/
/

ILLUSTRATING DETAILS OF LISTING FORMAT
USING PALS AND CREF

*200 0200
7300
1207
1777'
1177
1376
3777'
5610
0011
0400
0003
0407
0400

START, CLA CLL
TAD A
TAD B
TAD [2
TAD (3
DCA LINK
JMP I ADDRP2

A, 0011
ADDRP2, P2

1207 P2,
1377
1177
1377
3207
6213
5776'
0000 LIN",
0407
0200
0003
0002
0001 FIELD
1377 FLD1,
1177
6203
5200
0003

$

TAD LIN"
TAD (3
TAD [2
TAD (3
DCA B
CDF CIF 10
J!'!P FLDl
o
!i-LIN"

TAD (3
TAl. [2
CIF CDF 0
JMP START

/CURRENT PAGE SYMBOL
/OFF-PAGE SYMBOL, LIN" GENERATED
/FAGE ZERO LITERAL
/CURRENT PAGE LITERAL
/OFF-PAGE SYMBOL, LIN" GENERATED
/USER CREATED LIN"

/INDIRECT ADDRESS

/PAGE 2 START
/NOTE THAT THIS IS A NEW LITERAL
/NOTE THAT THIS IS SAME OLD LITE~AL
/SAME AS CURRENT PAGE LITERAL
/CURRENT PAGE SYMBOL
/CHANGE FIELDS
/OFF PAGE SYMBOL. LIN" GENERATED

/FIELD 1, DEFAULT TO PAGE 1 *200
/NEW LITERAL, BECAUSE IN PAGE 0 OF NEW FIELD
/CHANGE FIELDS AGAIN
/NO LIN" GENERATED, SAME FAGE, OTHER FI~Ln

36 10177 0002

11-4

CROSS-REFERENCE PROGRAM (CREF)

/ EXAMPLE PROGRAM

A
ADDRP2
B
FLDl
LINK
P2
START

0207
0210
0407
0200
0407
0400
0200

ERRORS DETECTED: 0
LINKS GENERATED: 3

A 6 12:1:
ADDRP2 11 13:1:
B 7 21 25:1:
FLDl 23 30:1:
LINK 10 17 24:1: 25
P2 13 17:1:
START 5* 33
_00177 8 19
_00377 9
_00577 18 20
_10177 31
_10377 30

V3

11.4 RESTRICTIONS

CREF has the following restrictions:

• CREF can handle a maximum of
major pass. (In 8K, PAL8 is
is limited to fewer than 800
896 symbols, it generates an

PAL8-V9B 03/05/74 PAGE 2

896 (decimal) symbols in one
limited to 897 symbols while SABR
symbols.) If CREF finds more than
error message.

• If any symbol in the input file has more than 2044 (decimal)
references, an error message appears.

• If more than 8192 (decimal) source lines are input, sequence
numbers return to 4096, not O.

• If you use the /0 option in PAL8 (to generate a DDT-compatible
symbol table) and you put the output listing through CREF, no
symbol table listing will appear.

• Use of semicolons - This is a restriction that, when not
observed, could cause errors in the CREF table. You should
follow these suggestions when preparing source files in order
to insure a proper CREF listing. Do not use semicolons on
lines with pseudo-ops. In particular, do not use a
combination such as the following:

£3000
TEST :r.ERROR:r. TAD [42

EXPR=O

11-5

CROSS-REFERENCE PROGRAM (CREF)

In this case, CREF does not process the page zero literal
properly. It generates a literal derived from the expanded
TEXT message. No error message generates, but the literal
table entry is meaningless. As a general rule, do not use
semicolons as line terminators inside conditional assembly
brackets «». For example:

EXOR=O
IFNZRO EXOR<CLA;TAD B; HLT \ERROR>
\THIS IS THE NEXT LINE PAST IFNZRO

The conditional code is not assembled; but because CREF does
not realize this, it tries to process the bracketed
instructions. As a result of the semicolons, extra symbols
may be processed and some valid references missed. However,
if the code had been assembled CREF would operate properly.
There are two ways around this:

a. Write straight-line code:

EXOR=O
IFNZRO EX OR <
CLA
TAD B
HLT ERROR

b. Use XLIST around conditional code, in the preceding
example:

IFZERO EXOR <XL 1ST>
IFNZRO EX OR <CLA;TAD B; HLT\ERROR>
IFZERO EXOR <XLIST>

XLIST turns off the listing, if the code does not assemble,
and turns it back on after the conditional code.

• Formats - There are several output formats you can use in
generating a PAL8 listing file:

/T Form feeds converted to carriage return/line feeds.
/H No heading or form feeds generated.
/0 DDT-compatible symbol table is generated.

For best results with CREF, use none of
generates a heading and form feed
automatically converts form feeds to
feeds if output is to the terminal.

these switches. This
in the output. CREF
carriage return/line

• PAL8-generated links are not recognized by CREF. CREF
processes only literals specifically generated with (and [.

11.5 CREF ERROR MESSAGES

CREF errors are nonrecoverable errors, and control returns to the
Keyboard Monitor through location 07605 (no core saved). Table 11-2
lists the error messages printed by CREF.

11-6

Error Message

SYM OVERFLOW

ENTER FAILED

OUT DEV FULL

CLOSE FAILED

INPUT ERROR

DEV LPT BAD

2045 REFS

HANDLER FAIL

CROSS-REFERENCE PROGRAM (CREF)

Table 11-2
CREF Error Messages

Meaning

More than 896 (decimal) symbols and literals
were encountered during a major pass.

Entering an output file was
unsuccessful - possibly output was specified to
a read-only device.

The output device is full (directory devices
only) .

CLOSE on output file failed.

A read from the input device failed.

The default output device, LPT, is not available
on this system.

More than 2044 (decimal) references to one
symbol were made.

This is a fatal error on output; it can occur
if either the system device or the selected
output device is WRITE-LOCKed.

11-7

CHAPTER 12

DIRECT

DIRECT is an OS/8 program that produces listings of OS/8 device
directories. The directories produced vary depending upon the options
you specify in the DIRECT command line. The standard directory
listing consists of the following columns: file name, file name
extension, length (decimal) in blocks written, and creation date.

DIRECT supports the wild card construction, accepting * in place of
the file name or extension, or? in place of a character. See the
FOTP chapter for a description of wild card construction.

12.1 CALLING AND USING DIRECT

To call DIRECT from the system device, type:

.R DIRECT

in response to the Keyboard Monitor dot. You may also call DIRECT via
the CCL command DIR. The Command Decoder prints an asterisk in the
left margin, indicating it is ready to accept a line of I/O files and
options. You can enter one output specification, and one to five
input specifications in a DIRECT command line. You may terminate the
I/O command line with a carriage return (DIRECT retains control) or
with an ALTMODE (control returns to the Keyboard Monitor).

The output specification consists of a device upon which you can
produce the directory, a file name, and a file name extension. All
parts of the output specification are optional, as is the output
specification itself. You should specify a file name and extension if
you desire to save the directory for listing at a later time. If you
specify no output device, TTY is assumed. If you give a file name
without an extension, the extension .DI is assumed. The wild card ?
and * are not permitted in DIRECT output file names and extensions.

A DIRECT input specification consists of a device, an optional file
name, and an optional extension. The wild cards * and? are
permitted in input specifications. If you specify an input device
with no file name or extension, *.* is assumed. DIRECT determines
which files have the form specified and prints a directory listing of
just those files.

NOTE

If you want to include the date in your
directory listing, you must enter it
first with the DATE command.

12-1

DIRECT

12.1.1 DIRECT Options

The following table lists the options you can use in a DIRECT I/O
specification line. Examples of the use of these options are shown
after Table 12-1.

Option

/8

/C

/E

/F

/1

/L

/M

=n

/0

/R

/U

/V

/W

Table 12-1
.DIRECT Options

Meaning

Incl~de the starting block numbers (octal) for
each file in the directory.

List only files with the current date, i.e., the
date entered with the most recent DATE command.

Include empty file spaces in the directory
listing.

List a short form of the directory, omitting
file lengths and dates.

List additional information words in octal,
other than the first that is listed as the date.

List the standard form of the
including file name, extension,
blocks, and creation date. The /L
assumed if none is specified.

directory,
length in
option is

List only the empty spaces in the directory.

Use n columns in the directory listing. This
option allows you to specify the number of
directory entries per line of output. The Un"
must be in the range 0 to 7. The =n option is
useful when a wide column printer, e.g., 132
columns, is being used.

List only files with other than the current
date.

List the remainder of the files after the first
one found. This option causes DIRECT to find
the first file that matches the specifications
given and then list a directory that includes
the first matching file and all files that
follow it on the device. The /C and /0 options
are still considered when listing these
remaining files. If /R and /V are used in the
same command, only the first file of the form
specified is listed.

Treat each input specification separately. The
/U option creates a separate directory listing
for each input specification.

List files not of the form specified.

Print the version number of DIRECT.

'---_._---- --------- ------------------------ ------

12-2

DIRECT

12.2 DIRECT EXAMPLES

The following are legal command strings to DIRECT and the resultant
DIRECT output. To facilitate understanding of the DIRECT options, the
same device (DTAO) is used for each of the examples. The current date
is 21-JAN-74.

When DIRECT has completed an operation, control returns to the Command
Decoder for additional input.

Example 1:

This example shows a directory of all the files on DTAO, listed in two
columns on the terminal (TTY) .

• R DIRECT
*DTAO:=2

21-JAN-74

MTP~A.PA
MTPALB.PA
WNTSTC.BA
WNPPPA.PA
WNP,ALB.PA
WNXX .BA

1 18-JAN-74
1 18-JAN-74
1 19-JAN-74
1 19-JAN-74
1 21-JAN-74
1 21-JAN-74

718 FREE BLOCKS

Example 2:

WNTSTA.BA 1 18-JAN-74
WNTSTB.BA 1 19-JAN-74
WtWALA.PA 1 19-JAN-74
WNTSTD.BA 1 21-JAN-74
MTPALC.PA 1 21-JAN-74
WNXY .BA 1 21-JAN-74

This example shows all files that have a file name beginning with WN,
have any file extension, and do not have the current date. The
directory is listed in two columns on TTY.

21-JAN-74

WNTSTA.BA
WNTSTC.BA
WNPPPA.PA

1 18-JAN-74
1 19-JAN-74
1 19-JAN-74

718 FREE BLOCKS

Example 3:

WNTSTB.BA
WNPALA.PA

1 19-JAN-74
1 19-JAN-74

This example shows files that have any file name, have a .BA
extension, and have the current date. TTY lists the directory in a
single column.

21-JAN-74

WNTSTD.BA
WNXX .BA
WNXY .BA

1 21-JAN-74
1 21~JAN-74
I""::fl.-'::' JAN - 7 4

718 FREE BLOCKS

12-3

DIRECT

Example 4:

This example demonstrates the use of the /U option to produce separate
directories for each input specification. The command specifies that
all files beginning with WN and having .BA extensions appear first,
and that all files beginning with WN and having .PA extensions appear
next. The short form of the directory is to be listed on the line
printer (LPT) in three columns .

.!LPT:<DTAO:WN1111.BA,WN1111.PA/F/U=3

21-JAN-74

WNTSTA.BA
WNTSTD.BA

WNTSTB.BA
WNXX .BA

718 FREE BLOCKS

21-JAN-74

WNPALA.PA WNPPPA.PA

718 FREE BLOCKS

Example 5:

WNTSTC.BA
WNXY .BA

WNf'ALB.PA

This example demonstrates the use of the /V option to print files not
of the specified form and the use of the /0 option to exclude files
with the current date. TTY is to print in a single column all files
except those beginning with WN.

21-JAN-74

MTf'ALA.PA
I'1Tf'ALB.PA

1 18-JAN-74
1 18-JAN-74

718 FREE BLOCKS

Example 6:

This example demonstrates the use of the /R option to list part of the
directory. DIRECT finds the first file that begins with WN and has a
.PA extension; that file and all files that follow are listed. TTY
lists the directory in two columns.

21-JAN-74

WNPALA.F'A
WN~I STD. BA
MTf'ALC.f'A
WNXY .BA

1 19-JAN-74
1 21-JAN-74
1 21-JAN-74
1 21-JAN-74

718 FREE BLOCKS

WNf'PPA.PA
WrH ALB.FA
WU:a.X • BA

12-4

l' 19-JAN-74
1 21-JAN-74
1 21-JAN-74

DIRECT

12.3 DIRECT ERROR MESSAGES

The following error messages may appear when running the DIRECT
program.

Table 12-2
DIRECT Error Messages

Message

BAD INPUT DIRECTORY

DEVICE DOES NOT HAVE A
DIRECTORY

EQUALS OPTION BAD

ERROR CLOSING FILE

ERROR READING INPUT
DIRECTORY

ERROR WRITING FILE

ILLEGAL *

ILLEGAL ?

NO ROOM FOR OUTPUT FILE

THERE IS NO HOPE - THERE IS NO
TTY HANDLER IN YOUR SYSTEM!

Meaning

This message occurs when the
input device has a bad directory,
e.g., the device is not an OS/8
device, or a DEC tape has not been
zeroed.

The input device is a
non-directory device, e.g., PTR.
DIRECT can only read directories
from file structured devices.

The =n option is not in the range
0-7.

System error.

An error occurred while reading
the directory.

An error occurred while writing
the output file.

An asterisk (*) was included in
the output file specification or
an illegal * was included in the
input file name.

A question mark (?) was included
in the output file specification.

The output device does not have
sufficient space for the
directory to be written.

A command was issued to print a
directory on the terminal when no
TTY handler is present on the
OS/8 system. Use BUILD to insert
a TTY handler in the system.

~ __________________________ ~~ __ -L _____________________________________ ____

12-5

CHAPTER 13

DECTAPE COpy AND FORMAT PROGRAMS

The following programs enable you to format and copy DECtapes.

13.1 DTFRMT

This program records the required timing and mark tracks on a DECtape
mounted on the TCOI-TU55 unit or a TC08-TU56 DECtape unit.

The program interacts with you via the terminal to obtain the
necessary data for each set of DECtapes to be formatted. As soon as
one set of tapes is formatted, the program is ready to format another
set.

Two full passes are required to completely format each DECtape, and up
to eight DEC tapes may be formatted at a time (assuming that you have
eight tape transports). with a minimum of operator-program
communication, you can mount and format new tapes in the same fashion
upon completion of a cycle.

13.1.1 Loading Procedure

Load the program into core using the standard Binary Loader.

13.1.2 Using the Program

To start the program from the console, key 1000
REGISTER. Depress LOAD ADDRESS and depress START.
on the terminal.

into
DTA?

the SWITCH
is printed

Mount the DECtapes to be marked onto the tape transports, with just
enough tUrns of tape on the right-hand reel of each transport to
provide a grip. Make sure that no two tape units are set to the same
unit number. Set the RDMK-WRTM-NORMAL switch located on the TCOI
maintenance control panel to the WRTM position. For each transport to
be used, set the WRITE ENABLED-WRITE LOCK switch to WRITE ENABLED, and
the REMOTE-OFF-LOCAL switch to REMOTE.

To run the program from the terminal, type:

.R DTFRMT

in response to the Keyboard Monitor dot. You now converse with the
program. The printout:

13-1

DECTAPE COpy AND FORMAT PROGRAMS

asks which DECtape units you are using. Type a unit number or series
of unit numbers, corresponding to the DECtape units with mounted
tapes. For instance, if you have mounted tapes on units 2, 5, 7, and
8, type 2 5 7 8 followed by a carriage return. Spaces are ignored, so
it makes no difference if you type spaces between the unit numbers.
Only one specification of a unit is significant, i.e., typing 2 2 5 7
7 5 8 2 8 has the same effect as typing 2 5 7 8.

Once you have specified the units you wish to use, the program types:

DIRECT?

Respond by typing:

MARK 0 r MARK XXXX

If you type:

MARK

the program assumes 201(8) words, 2702(8) blocks (standard PDP-8
format). Otherwise, XXXX is accepted as a decimal number of words per
block, and must be divisible by 3. Note that typing MARK 384 will
cause the program to generate a standard PDP-IO format DEC tape
(1102(8) blocks of 600(8) words, which is equivalent to 1102(8) blocks
of 200(8) words, where each word is 36 bits rather than 12 bits).

The program now types:

XXXX WORDS, YYYY BLOCKS OK? (YES OR NO)

This serves as a final check for block count. XXX X and YYYY are octal
values representing the final outcome of a formula solved by the
program. They determine the number of blocks you may write on a
DECtape, given a specified number of words. If you give a NO answer,
the program reverts to DIRECT? If YES, the tape on the first unit
specified begins to move.

Once all of the tapes specified have been marked, the printout:

SET SWITCH TO NORMAL

appears. Return the RDMK-WRTM-NORMAL switch to NORMAL, and strike the
RETURN key on the terminal, starting the second pass. Note that
during the second pass with multiple DECtape units, as soon as one
tape stops and the next tape starts, the first tape is completed and
may be replaced with a fresh tape in preparation for recycling.

The program continues by itself until completed.
printout occurs. Typing:

SAME·::

Now the DIRECT?

repeats the entire process with the original constants. The new
DECtapes must be mounted and ready to write timing and mark tracks
before you type SAME. Also, in response to DIRECT?, typing RDR causes
the printout of the unit numbers of the DECtapes and the last twelve
block numbers. RDF causes the printout of the unit numbers and the
first twelve block numbers. RESTART returns the program to DTA?
Unit numbers are printed as NOOO, where N is the unit number (0 means
DECtape unit 8). Once formatting begins, control C will cause the
program to restart at DTA? If you wish to return to the monitor,
type control C.

13-2

DECTAPE COpy AND FORMAT PROGRAMS

Following are several examples of successful operation. The program
prints the underlined portions. A carriage return should follow all
responses.

1. Create a standard tape on unit 4.

l!I.A1 4
DIRECT? MARK
0201 WO"RDS, 2702 BLOCKS O"? YES OR ~
YES
SET SWITCH TO NORMAL
DIRECT'!'

2. Create 16 standard PDP-IO format tapes - eight at a time, on
units 1-8.

DTA'!' 12345678
DIRECT? MARK 384
0600 WORDS, 1102 BLOCKS OK'!' YES OR NO
YES
SET SWITCH TO NORMAL (TYPE <CR»
DIRECT? SAME
"SE rSwiTCH TO NORMAL (TYPE <CR»
DIRECT?

13.1.3 Error Messages

Errors typed to DTA? and DIRECT? revert back to DTA? or DIRECT?

Error messages for response to MARK XXXX:

NOT DECIMAL A character in XXXX is not 0-9.

NOT DIVISIBLE BY 3 XXXX cannot be divided evenly by 3.

TOO MANY WORDS The number of words plus 15 exceeds 7777(8).

TOO MANY BLOCKS The number of blocks generated by
exceeds 7777 (8) .

XXXX

Error messages for response to YES (after message - revert back DTA?):

SETUP? Indicates an error in the DEC tape setup:

unit in WRITE-LOCK
nonselectable unit
switch not in WRTM position

Error messages for marking and verifying a tape:

XXXX SHOULD BE YYYY BLK ERROR PHASE X
XXXX SHOULD BE YYYY DATA ERROR PHASE X
END TAPE ERROR PHASE X
MARK TRACK ERROR PHASE X
PARITY ERROR PHASE X
SELECT ERROR PHASE X
TIMING ERROR PHASE X
LAST INT NOT END ZONE

Although an error message should cause doubt concerning the entire
process, you can restart by phases (except when in phase 0) by typing
RETRY<. Type RESTART< to return to DTA?

13-3

PHASE 0:
PHASE 1:
PHASE 2:
PHASE 3:

DECTAPE COPY AND FORMAT PROGRAMS

MARK TRACK WRITE
WRITING LAST REVERSE BLOCK NUMBER FORWARD
WRITING BLOCK NUMBERS AND DATA IN REVERSE
READING AND CHECKING BLOCK NUMBERS AND DATA

The error message LAST INT NOT END ZONE indicates an interrupt
occurred between the first or last block number and the end zone.

You can restart the entire program at 1000(8) any time.

13.1.4 Details of DTFRMT Operation and Storage

The program writes timing and mark tracks on a DECtape. It then
inserts block numbers and parity correct information, checking the
results of all operations.

The number of block frames the program writes is a function of the
number of words per block. The formula

212080
blocks per tape ------ +2

NW+15

(where NW equals the number of words the program writes) is used by
the program to compute the number of blocks. But thi's number 1S
adjusted by the program to provide the standard PDP-8 format of 129
(12-bit) words, 1744 blocks, and standard PDP-IO format of 128
(36-bit) words, 578 blocks.

Two full passes are required to mark and verify a tape.

Pass 1

Pass 2

Marks the ~ape forward, inserts block numbers and
parity correct date in reverse.

Reads and checks block numbers and data forward and
reverse.

During the forward direction of the first pass, the TCOI switches into
WRITE TIMING AND MARK TRACKS, CONTINUOUS MODE, FORWARD. The program
manipulates data it is writing by monitoring the word count register
and the DTF, (DECtape flag). Initially, the program writes ten feet
of end-zone code, and abutting the end zone are about two standard
block lengths of interblock sync. To the TCOl, this interblock sync
acts as no operation, but guarantees that at turn-around time, block 0
is read f1rst (or 2701 if turning out of the forward end zone). Now
the program writes the remainder of the tape, creating block frames.
The formula above determines the number of such frames. Upon
complet1on of the block framing, another extended interblock sync zone
is written, as well as ten feet of end zone.

Pass 1 forward is now complete (timing and mark tracks are written).
The program orders the tape to MOVE in reverse for three seconds, thus
moving it out of the end zone and onto the marked section. The tape
once again moves forward, and the program writes the last REVERSE
BLOCK NUMBER until it senses the forward end zone. The tape now turns
out of the end zone in SEARCH, and the program waits for a block
interrupt (first reverse block number). When the DTF rises, the TCOI
switches into WRITE ALL, CONTINUOUS, REVERSE. Thus DTFRMT
synchronizes the system and writes all block numbers and data, until
the forward end zone is sensed. This completes the marking and
blocking of the tape. Pass 2 in CONTINUOUS MODE checks the data and
block numbers to be certain they are correct. When you specify
multiple DECtape units, Pass 1 forward ends for each tape before Pass
1 reverse begins.

13-4

DECTAPE COpy AND FORMAT PROGRAMS

13.2 TDFRMT

The TD8-E DEC tape formatter program records the timing and mark tracks
on a DEC tape mounted on the TU56 DEC tape transport.

TDFRMT interacts with you via the terminal to obtain the necessary
data for each set of rECtapes the program will format. As soon as one
set of tapes is formatted, the program is ready to format another set.

The program requires three full passes to completely format each
DECtape, and it can format up to two DEC tapes at a time (units 0 and
1). Upon completion of a cycle, the program can mount and format new
tapes in the same way, with a minimum of operator-program
communication. Excluding tape setup time, the program formats one
tape in three minutes from start to finish.

Mount the DECtapes to be marked onto the tape transports with just
enough turns of tape on the right-hand reel of each transport to
provide a grip. Make sure that no two tape units are set to the same
unit number. Set the switch on the TD8-E to WTM position. For each
transport you are using, set the WRITE ENABLED-WRITE-LOCK switch to
WRITE ENABLED, and the REMOTE-OFF-LOCAL switch to REMOTE.

13.2.1 Operating Procedures

Type:

...!oR TIIFRMT

in response to the Keyboard Monitor dot. ,You are now set to converse
with the program. The printout:

UNIT?

asks which DEC tape units you are using. Type one or two unit numbers
corresponding to the DEC tape units with mounted tapes. For instance,
if you have mounted tapes on units 0 and 1, type 0 1. Spaces are
ignored, so it makes no difference if you type spaces between the unit
numbers. Only one specification of a unit is significant, i.e.,
typing 000111 has the same effect as typing 01.

Once you have specified the unit(s) you wish to use, the program
types:

FORMAT?

Respond by typing:

MARK or MARK XXX X

If you type:

MARK

the program assumes 201 words, 2702 blocks (standard PDP-8
Otherwise the program accepts XXXX as a decimal numb~r of
block that must be divisible by 3. Note that typing MARK
cause the program to generate standard PDP-IO format DECtapes
blocks of 600 words, which is equivalent to 1102(8) blocks
words, where each word is 36 bits rather than 12 bits).

13-5

format) .
words per
384 will

(1102 (8)
of 200

DECTAPE COPY AND FORMAT PROGRAMS

The program now types:

XXXX WORDS, YYYY BLOCKS OK? (YES OR NO)

This serves as a final check for block count. XXXX and YYYY are octal
values representing the final outcome of a formula solved by the
program. This determines the number of blocks the program can write
on DECtape, given a specified number of words. If you give a NO
answer, the program reverts to FORMAT? If YES, the program types out
SET SWITCH TO WTM. Hit carriage return on the teletype and the tape
on the first unit specified begins to move, if you have set the
switch.

Once the program has marked all of the specified tapes, the printout
SET SWITCH TO OFF appears. Reset the WTM switch to off, and strike
the return key on the terminal, starting the second pass. Note that
during the second pass with multiple DECtape units, as soon as one
tape stops and the next tape starts, the first tape is completed. You
may replace it with a fresh tape in preparation for recycling.

The program continues by itself until it is completed. At this point
the FORMAT printout occurs. Typing:

SAME<

repeats the entire process with the original constants. Make sure you
have mounted the new DEC tapes before you type a carriage return in
response to the message SET SWITCH TO WTM. The tapes should be ready
to write timing and mark tracks. Also, in response to DIRECT?, typing
RDR causes the printout of the unit number of the DECtape and the last
22 block numbers. RDF< causes the printout of the unit number and the
first 22 block numbers. RESTART< returns the program to UNIT? Unit
numbers are printed as OOON, where N is the unit number.

Following are several examples of successful operations. The program
prints the underlined portions. A carriage return should follow all
responses.

1. Create a standard PDP-8 tape on unit 1.

UNIT'!' 1
FURMAT'!' MARK
O~Ol WORDS, 2702 BLOCKS, OK? (VES OR NO)
YE!..i
SET SWITCH TO WTM
SET SWITCH TO OFF
FORMAT'!'

2. Create four standard PDP-IO format tapes, two at a time on
units OIl.

UNIT? 01
FORMAT? MARK 384
0600 WORDS, 1102 BLOCKS OK? (VES OR N02
YFS
SET SWITCH TO WTM
SET SWITCHTO orF
~gRMAT! SAME -
G~T SWITCH TO WTM
s~r SWITCH TO U.F
FORMAT?

13-6

DECTAPE COPY AND FORMAT PROGRAMS

13.2.2 Error Messages

Errors typed to UNIT and FORMAT revert back to UNIT? or FORMAT?

Error messages for response to MARK XXXX:

NOT DECIMAL A character in XXXX is not 0-9

NOT DIVISIBLE BY 3 XXXX cannot be divided evenly by 3

TOO MANY WORDS The number of words plus 15 exceeds 7777(8)

TOO MANY BLOCKS The number of blocks generated by
exceeds 7777

XXXX

Error messages for response to SET SWITCH TO WTM:

SETUP?
Indicates an error in the DECtape setup. One of
the units specified is in write-lock position, not
selected, or the write flip-flop is unable to be
set, or there may be a timing error. (After
message revert back to UNIT.)

Switch not set to WTM or single-line flag failed to set.
Set switch to WTM.

RECOVERY:

This typeout says that either the switch on the
M868 modules is not set to the WTM position or the
timing generator for writing the mark and timing
tracks is not setting the single-line flag.

If you did not set the switch to WTM position, set
the switch and hit carriage return on the
teletype.

If the switch was set to WTM position and this
type out occurred, try again or examine the timing
generator circuit.

Error messages for marking and verifying a tape:

PC XXX X MARK TRACK ERROR PHASE Y
PC XXX X BLOCK NUMBER ERROR PHASE Y
PC XXX X DATA ERROR PHASE Y
PC XXX X CHECKSUM ERROR PHASE Y
PC XXXX TIMING ERROR PHASE Y
PC XXX X WRITE ERROR PHASE Y

XXXX equals the program counter at time of the failure. Y equals the
number of the pass involved.

Although an error message should cause doubt concerning the entire
process, you can restart the phase (except in phase 0) by typing
RETRY<. Type RESTART< to return to UNIT?

PHASE 0: WRITE TIMING AND MARK TRACK FORWARD

PHASE 1: READS MARK TRACK REVERSE

PHASE 2: WRITE DATA, FORWARD BLOCK AND REVERSE BLOCK NUMBERS
FORWARD AND WRITES THE CHECKSUMS

13-7

DECTAPE COPY AND FORMAT PROGRAMS

PHASE 3: DISPLAYS BLOCK NUMBERS IN AC REVERSE

PHASE 4: READS DATA, FORWARD BLOCK AND REVERSE BLOCK NUMBERS
FORWARD AND CALCULATES THE CHECKSUM

PHASE 5: READS REVERSE BLOCK NUMBERS IN REVERSE

You can restart the entire program at 0200 any time.

13.2.3 Details of TDFRMT Operation and Storage

The program writes timing and mark track in a forward direction on a
DEC tape with the WTM switch set. Then it reads the mark track in the
reverse direction with the switch set to off. The program checks all
of the mark track once it is in sync. When it finishes reading the
mark track reverse, it bounces off the end zone and starts writing
zeroes to the first block mark. The program is now in sync.

The program now continues writing forward block numbers,
checksum, data, checksum, and reverse block numbers for the
the tape. When it sees the end zone, it turns around. It
displaying the reverse block number in the accumulator until
the end zone again.

reverse
rest of
starts

it hits

At this point the tape turns around and starts reading and comparing
all forward block numbers; reverse checksum; all data, checksum, and
reverse block numbers that were written in Phase 2. This comparison
is made on all blocks until the end zone is reached. The tape turns
around in the end zone and starts looking for reverse block numbers
and comparing them all the way down the tape to the end zone. The
formatting is now complete, the tape stops, and FORMAT is typed out
waiting for new directions.

The number of block frames to be written is a function of the number
of words per block.

The program uses the formula

BLOCKS PER TAPE [(212080)/(NW+15)]+2

(where NW equals the number of words to be written) to compute the
number of blocks, but it is adjusted by the program to provide the
standard PDP-8 format of 129(10) (12-bit) words, 1474(10) blocks, and
standard PDP-IO format of 128(10) (36-bit) words, 578(10) blocks.

The writing of the mark track is done through AC bits 0, 3, 6, and 9.
The following description shows how the program writes the mark track.

1. Install the tape with enough turns to create a pull. The
reverse end zone requires a sequence of three data words for
its pattern.

4044
0440
4404

In the mark track the words appear at 101101101101101
(5555(8». The reverse end zone should cover about 10 feet
of tape. Write the above three words 4096(10) times.

2. Write the three words in point 3, or expand code 99 times.

13-8

DECTAPE COpy AND FORMAT PROGRAMS

3. Expand code, three words of expand code should immediately
follow each block.

0404
0404
0404

In the mark track the words appear as 010101010101 (2525(8».

4. The forward block mark and reverse guard require three words.

0404
4004
4040

Which appear on the mark track as 010110011010 (2632(8».

5. The lock mark, reverse checksum, reverse final, reverse
prefinal consist of six PDP-8 memory words.

0040
0000
4000
0040
0000
4000

These words appear on the mark
001000001000001000001000 (10101010(8».

6. Mark track code for data is generated by

4440
0044
4000

track as

These three words appear as 111000111000 (7070(8» and are
repeated 41(10) times for a 129-word block.

7. The prefinal, final, checksum, and reverse lock consist of
six PDP-8 words.

4440
4444
4044
4440
4444
4044

These words appear on the mark
111011111011111011111011 (73737373(8».

track

8. The guard and reverse block mark consist of three words

4040
0440
0404

which appear as 101001100101 (5145(8».

as

9. Generate 2702(8) block patterns. Repeat 3 through 8 2702(8)
times.

13-9

DECTAPE COPY AND FORMAT PROGRAMS

10. 100 expand codes (see 3).

11. The end zone pattern consists of three words,

0400
4004
0040

which appears on the mark track as 010010010010 (2222(8».
Repeat these three words 4096(10) times.

13.3 DTCOPY

A dialog on the terminal controls the TCOl, TC08, and TU-55 Copy
Program. Your responses to the questions are in the form of octal
numbers followed by a carriage return. Separate the answers with
semicolons when more than one is required. Alphabetic or other
illegal characters will cause an error message to be generated and the
question to be repeated. If you type too many digits for the expected
response, only the last ones typed will be used. If the response was
to be either 0 or 1 (YES or NO), a non-zero final digit will be
assumed to be 1.

Before answering the dialog's questions, you should make s~re that all
the DECtapes involved are mounted on their respective drives and all
drives set to REMOTE. You may set the input drive to WRITE-LOCK or
WRITE ENABLE~ all output drives must be set to WRITE ENABLE. No two
drives may have the same unit number.

Type:

.R DTCOPY

in response to the Keyboard Monitor dot. The program prints:

DECtape COpy V10A

For each set of copies, the dialog is as follows:

DECTAPE COPY V10A
FROM UNIT 0

TO UNIT :2

FIRST BLOCK TO COpy (OCTAL) 0

FINAL BLOCK TO COpy (OCTAL) 700

PDP-8 WORDS PER BLOCK 0201

VERIFY OUTPUT? (O=YES, 1=NO): 0

When all specified copies have been finished, the tapes are rewound
and the dialog continues:

rHINE
DEC TAPE COpy V10A
n::OM UNIT

You may return to the monitor by typing CTRL/C at any time.
characters are not echo printed.)

13-10

(Control

DECTAPE COpy AND FORMAT PROGRAMS

13.3.1 Error Messages

DTCOPY produces the following error messages:

ILLEGAL RESPONSE

SELECT ERROR UNIT n

Your response to the dialog was not correct;
for exanple, an alphabetic character was
typed or carriage return was typed before an
octal number was given. The question will be
restated and any previous answer ignored.
Type nothing until the terminal has stopped
printing.

During attempted data transfer, unit n was
not found. The program waits for you to
correct the cause of the error. You should
check to see that:

1. when unit n is an output drive, it is
set to WRITE ENABLE.

2. unit n is set to REMOTE.
3. there is only one unit n.
4. all units are set to numbers

appropriate to their TD8E internal
wiring.

When you have corrected the cause of the
error, you may type CTRL/R to resume transfer
or type CTRL/S to restart the dialog.

TAPE ERROR BLOCK x UNIT n
During attempted transfer, a parity error or
timing error was detected, or too great a
block number was requested near block x on
the tape on unit n. The tapes are rewound
and the dialog is automatically restarted at
DONE, REPEAT (YES=l, NO=O).

VERIFY ERROR BLOCK x UNIT n
The data on the input tape does not match the
data that was written on block x of the
output tape on unit n. You may type CTRL/R
to ignore the error and continue with the
transfer, CTRL/T to try the last transfer
again and continue if the error does not
recur, or CTRL/S to restart the dialog.

ILLEGAL FORMAT UNIT n
Indicates one of two situations: Either the
number of words per block on unit n does not
agree with the number of words per block on
the input unit; or, when the number of
blocks on the tape was calculated from the
block length of the input tape, the length
was found to be illegal. The number of
blocks is only calculated if you request the
whole tape copy option. In either case, when
the error has been corrected, you may type
CTRL/R to check the formats of all tapes
again and continue, or CTRL/S to restart the
dialog.

13-11

DECTAPE COpy AND FORMAT PROGRAMS

13.4 TDCOPY

A dialog on the terminal controls TD83 Copy. Your responses to the
questions are ln the form of octal numbers followed by a carriage
return. Separate the answers with semicolons when more than one is
required. Alphabetic or other illegal characters will cause an error
message to be generated and the question to be repeated. If you type
too many digits for the expected response, only the last ones typed
will be used. If the response was to be either 0 or 1 (YES or NO), a
non-zero final digit will be assumed to be 1.

Before answering the dialog's questions, make sure that all the
DEC tapes involved are mounted on their respective drives and all the
drives set to REMOTE. You may set the input drive to WRITE-LOCK or
WRITE ENABLE; all output drives must be set to WRITE ENABLE. No two
drives may have the same unit number.

Type:

.R TDCOPY

in response to the Keyboard Monitor dot. The program prints:

TD8E COpy V4A
HIGHEST FIELD AVAILABLE:

Respond with the number of the highest field you want used for buffer
space. This response may allow data to be preserved in any higher
field or may make full use of the available memory. This question is
asked only once: immediately after you have loaded the program. To
change the response, you must execute the program again. If you want
to use 4K of memory, respond with a 0; if 8K, respond with a 1, and
so forth.

For each set of copies, the dialog is as follows:

FROM UNIT: 0

FIRST INPUT BLOCK: 100

FIRST OUTPUT BLOCK: 200

Comments

You may specify one unit number.

You may specify up to seven unit
numbers, separated by semicolons.

You may supply any legal DEC tape
block number.

You may supply any legal DEC tape
block number.

NUMBER OF BLOCKS TO COPY: 50 You may supply appropriate number
of blocks.

VERIFY OUTPUT (YES=l, NO=O): 1

0201 12-BIT WORDS PER BLOCK Determined by program from tape on
input unit.

The program checks the block length of all the specified tapes. If
any are found to be different from the input tape, the ILLEGAL FORMAT
UNIT n error message is generated.

13-12

DECTAPE COPY AND FORMAT PROGRAMS

When the program has finished all specified copies, it rewinds the
tapes and the dialog continues:

REPEAT (YES=l, NO=O):

If you want to copy more tapes with the same set of
you should place them on the drives before typing
previous operation. If you desire a different set of
type 0 to restart the dialog.

specifications,
1 to repeat the
specifications,

Occasionally a TDSE drive will not stop fast enough after the tapes
have rewound, causing the end of the tape to spin off the reel. If
this should happen, you can set the drive to OFF and stop the reel by
hand. This will not affect the validity of the copy. If the dialog
does not continue properly after one or more tapes have spun off, you
can restart the program.

In response to any question in the dialog, type CTRL/S to restart the
dialog at REPEAT (YES=l, NO=O) or CTRL/C to exit the monitor. You may
also type either CTRL/S or CTRL/C during a small amount of further
motion. If you type CTRL/S during the dialog, you answer NO to the
REPEAT question; this option is mainly for cases where a complete set
of specifications is already available.

A unique component in the dialog allows you to copy the entire input
tape onto the output tape with a minimum of effort. This feature
eliminates the need to specify the starting block numbers and number
of blocks to copy. In this case, the answer to FIRST INPUT BLOCK: is
only a carriage return. The shortened dialog is as follows:

TDBE COp-r:
FROM UNIT: 0
TO UNITS: 1;2;3;4;5;6;7
FIRST INPUT BLOC~:
VERIFY OUTPUT (YFS=l, NO=O): 1

0"20112':"lff'TWORII'; PER BLOC"

The preceding sample dialog will cause the entire tape on unit 0 to be
copied onto the other seven tapes and verified.

13.4.1 Error Messages

TDCOPY produces the following error messages:

ILLEGAL RESPONSE
Your response to the dialog was
improper: for example, you typed an
alphabetic character or carriage return
before a required octal number. The
questions will be restated and any
previous answer ignored. Type nothing
until the terminal has stopped printing.

13-13

DEC TAPE COPY AND FORMAT PROGRAMS

SELECT ERROR UNIT n

TAPE ERROR BLOCK x UNIT n

During attempted data transfer, unit n
was not found. The program waits for
you to correct the cause of the error.
Check to see that:

1. when unit n is an output drive,
it is set to WRITE ENABLE.

2. unit n is set to REMOTE.
3. there is only one unit n.
4. all units are set to numbers

appropriate to their TD8E
internal wiring.

When you have corrected the cause of the
error, type CTRL/R to resume transfer or
CTRL/S to restart the dialog.

During attempted transfer, a parity
error or timing error was detected, or
too great a block number was requested
near block x on the tape on unit n. The
tapes are rewound and the dialog
automatically restarts at DONE, REPEAT
(YES=l, NO=O).

VERIFY ERROR BLOCK x UNIT n

ILLEGAL FORMAT UNIT n

The data on the input tape
match the data written on the
the output tape on unit n.

does not
block x of

Type CTRL/R to ignore the error and
continue with the transfer, CTRL/T to
try the last transfer again and continue
if the error does not recur, or CTRL/S
to restart the dialog.

Indicates one of two situations: Either
the number of words per block on unit n
does not agree with the number of words
per block on the input unit; or when
the program calculated the number of
blocks on the tape from the block length
of the input tape, the length was found
to be illegal. The number of blocks is
calculated only if you request the whole
tape copy option. In either case, when
the error has been corrected, type
CTRL/R to check the formats of all tapes
again and continue, or CTRL/S to restart
the dialog.

13-14

DECTAPE COpy AND FORMAT PROGRAMS

13.4.2 Details of Operation

After the answers to the dialog have been stored, use the following
procedure:

1. The number of words per block is determined from the input
tape. All output tapes are checked to see if they have the
same format as the input tape. If you used the shortened
dialog option, the number of blocks on the tape is determined
using the formula:

of blocks = (636,160/(words per block + 17» + 2 (octal)

or

of blocks = (2l2,080/(words per block + 15» + 2 (decimal)

2. The response to the VERIFY question is checked. The copying
loop is set up to verify or not, as was requested.

3. The loop that copies the input tape is entered, using the
same set of specifications for each output tape.

a. The buffers are filled from the input tape.
b. All output tapes are written with the contents of the

buffers.
c. If verification was requested, a separate set of

buffers is filled from the output tape and the two
sets of buffers are compared. If there are any
discrepancies a VERIFY ERROR has occurred.

d. If more blocks remain to be copied, the loop is
entered again.

4. When all the specified blocks have been copied onto the
output tapes, all the tapes are rewound.

5. The REPEAT option is offered.

The number of fields to be used for buffer space is determined
immediately after loading. As soon as you have answered the question,
it is removed from the program.

If you verify the output tape, each available field, including that
part of field ° not occupied by the program, is divided in half. The
lower half is used as the input and output buffer; the upper half is
used for verification. The output tape is read back into the upper
half and the two halves are compared. If they are not identical, a
VERIFY ERROR has occurred.

13-15

CHAPTER 14

DUMP

The DUMP handler is a new OS/8 2-page handler that obtains blocks of
binary data on file-structured devices and sends them to the LP08 line
printer to produce a listing. This listing is called a DUMP.

Format:

or

.COpy DUMP:<dev:filename.ex

.R PIP
*DUMP:<dev:filename.ex/I

Example:

.COPY DUMP:<SYS:FL2

After typing the command line, followed by a carriage return, type the
initial block number of the area in the specified file you want
dumped. This automatically dumps block number 0000 of the file. In
addition, the DUMP routine skips to the block number specified and
dumps it and any block numbers greater than it.

Because the DUMP handler contains a routine that interacts with the
keyboard monitor, you can change the block number previously entered
by typing a new block number on the keyboard. When you type a new
block number, the current block number is dumped before the new block
number takes effect.

If you enter a carriage return after the command line and do not
supply a block number, the DUMP handler starts at block number 0000 of
the file and dumps all the remaining block numbers in the specified
file.

Each block of data (2 memory pages) sent to the LP08 line printer
results in a printed page of data followed by a form feed. If an
uneven number of pages is sent to the line printer during the DUMP
operation, the odd numbered page printed on the line printer will show
only half a block (one memory page) of data.

If you type an illegal character (excluding 0-7, carriage return, and
CTRL/C) while entering the block number, a question mark (?) echoes on
the terminal. Any digits typed before it are ignored, and you can
type in a new block number. If you type CTRL/C while the DUMP handler
is running, control returns to the keyboard monitor.

In addition to the CCL format shown using the COpy command, there is a
-D option. When specified, this option forces the output device to be
DUMP:. You can use this option with any CCL command.

14-1

DUMP

14.1 FORM FEEDS

A form feed on the LP08 line printer occurs before block 0 data is
sent to the handler and after the handler is called to do a close
(page count of 0).

14.2 ADDING THE DUMP HANDLER TO YOUR SYSTEM

You can add the DUMP handler to your system through the BUILD program.
Its group name, as well as its entry point name, is DUMP: and the
current version of the handler is A. This handler does not directly
interact with the keyboard monitor, but rather contains a routine that
performs that function. It is a 2-page handler and it has no
coresident handler. The keyboard monitor runs completely overlapped
with the LP08 handler.

14.3 FORMAT OF THE DUMP

The top left of every printed page in the DUMP listing has a 4-digit
octal number. This number is the relative file block number of the
data that is printed on that page. The first column of 4-digit octal
numbers represents line numbers. Each line number is followed by a
slash (I), which distinguishes the line number from the remalnlng
eight columns. The remaining eight columns represent the actual data
words located within a specific block in a file. The next column
containing 16 characters is a representation of the eight data words
on that line. Two 6-bit characters are packed in one word (that is,
two ASCII characters represent each data word) .

The last column containing 12 characters is another representation of
the eight data words on that line. Three 8-bit characters are packed
in two words: that is, every two data words are represented by three
ASCII characters. Some of the spaces in this column could represent
non-printable characters. Any character that is not on the line
printer can be referred to as a non-printable character.

The following listing is an example of a single printed page from a
DUMP listing.

14-2

DUMP

0004

0000/ 7733 2213 0000 1720 7777 1322 0506 6300 ? [KK@@QP'1?KREF3@ [p R F@
0001/ 1501 6264 7653 1322 0506 6300 2202 6264 MA24>+KREF3@R824 A4<+R F@ 4L
0002/ 7767 1420 2326 0000 0216 8304 7777 2213 ?7LPSV@@BN3D??RK V@D
0003/ 0502 1404 2326 6354 7737 0425 1520 0000 EBLDSV3,? DUMP@@ B VL P 0
0004/ 0215 6314 7776 0681 0000 0000 1501 6314 BN3L?>FI~3L L I AL<
0005/ 7777 0662 0000 0000 1501 6314 7777 0664 ??F2@@@@MA3L??F4 2 AL< 4
0006/ 0000 0000 1501 6314 7777 0425 1520 0000 @.@@!@MA3L??DUMP@@ AL< P 0
0007/ 2001 6304 7761 2425 1520 6200 2001 6314 PA3D?IDUMP2@PA3L DL P < LL
0010/ 7762 0663 0000 0000 1501 6314 7777 0665 ?2F3@@:@@MA3LTIF5 3 AL< 5
001I/ 0000 0000 1521 6314 7777 0363 0000 0000 @@@@MA3L??C3@@@@ AL<
0012/ 1601 6314 7777 0361 0000 0000 1501 6314 MA3L ??C I@@@@MA3L AL< AL<
0013/ 7777 0362 0000 0000 1501 6314 7777 0364 ??C2@@@@MA3L??C4 AL<
0014/ 0000 0000 1501 6314 7777 2262 0000 0000 @@@@MA3LTIR2@@!@@ AL<2
0015/ 1501 6314 7777 2261 0000 0000 1501 6314 MA3L??R 1@CtL@.'@MA3L AL< I AL<
0016/ 7777 2263 0000 0000 1501 6314 7777 0365 ??K3@@@@MA3L ??C5 3 AL<
0017/ 0000 0000 1501 6314 7777 0425 1520 6300 ~MA3L??DUMP3@ AL< P@<
0020/ 2001 6324 7762 0425 1520 6300 0216 6324 PA3T?2DUMP3@BN3T TL P@< T
0021/ 7776 2266 8070 1623 0216 6324 7777 0425 ?> RF08NSBN3T??DU 8 C T
0022/ 1520 6400 0216 6324 7776 0425 1520 0000 MP4@BN3P>DUMP@@ P = T P 0
0023/ 2320 6334 7774 0425 1520 6500 2001 6334 SV3\ ?<DUMP5@PA3\ V\L P@= \L
0024/ 7762 0425 1520 6600 2001 6354 7761 0425 ?2DUMP6@PA3,?lDU P = L
0025/ 1520 6500 0216 6354 7776 0425 1520 6400 MP6@BN3,?>DUMP4@ P = P =
0026/ 2001 6324 7762 0425 1520 6500 0216 6334 PA3T?2DUMP5@BN3\ TL P@= \

0027/ 7776 1501 0363 6500 0216 6354 7735 1501 ?>MAC35@BN3,?]MA A @]A
0030/ 0363 6500 2001 6354 7400 0617 1700 0000 C35@PA3,<@FOO@@@ @ L @O

0031/ 1320 6354 7775 1501 0363 6500 1520 6354 MP3,1=MAC35@MP3, P < A @ P<
0032/ 7744 0000 7252 1501 0363 6500 1423 6354 ?$@@ *MAC35@LS3, *A @ <
0033/ 5654 0000 7271 6300 0001 6264 7653 1322 2,@@ 93@PA24>+KR , @9@ 4L+R
0034/ 0300 6300 0216 6264 7767 3000 0000 0000 EF3@BN24?7X@@@@@ F@ 4
0035/ 1501 6264 7777 7252 7277 7304 7440 5300 MA24?? * ?;D< +@ A4< * ?D @
0036/ 7666 1234 4000 7235 7241 2422 7666 1234 >61\@.) '!TR>61\ 6 6
0037/ 4000 7235 7241 2422 4000 7235 7241 2422 @:) 'TR@'):!TR

14-3

CHAPTER 15

EPIC

EPIC, the Edit, Punch and Compare utility program for OS/8, performs
the following functions:

• Read and punch tape files and patches

• Edit arbitrary files

• Compare files in any format

These functions are discussed in the next few pages.
assumes you have an elementary knowledge of OS/8.

The discussion

15.1 LOADING EPIC

To load the EPIC program, type:

.R EPIC

in response to the Keyboard Monitor dot. Specify the EPIC function
you want by including one of the following numeric options in the file
command line:

.R EPIC

*TRANS.AS(/O$

• R EPIC

*DTA1:FILEA.SV(/1$

.R EPIC

o paper tape

1 edit
2 compare

*DS~:ABC.SV<DTA1:XYZ.SV/2$

punch the file TRANS stored on
SYS .

fetch FILEA from DTAI
editing

for

compare file ABC on the disk
with file XYZ on DTAI and
output block numbers and
locations of each non-match on
the Teletype.

After you have included one of these numeric options in a command, you
do not have to specify it again in subsequent sequential commands
requiring the same option. Specifying the number puts EPIC in a mode
in which it remains until another number is specified. Initially,
EPIC is set to option o. You use the character ALTMODE, which appears
as a $ on the terminal, to end a command that includes a numeric
option.

15-1

EPIC

15.2 RESTART PROCEDURE

You can restart EPIC at location 0200. Default options remain active.
The default options are discussed later in this section.

15.3 PAPER TAPE FACILITY

EPIC's paper tape option (/0) punches OS/8 files and file patches onto
paper tape, and creates OS/8 files from paper tapes. Whole files or
patches (blocks) of files can be read or punched. Parity checks are
punched to ensure accurate reads. Because of the paper tape format
used, tapes must be both punched and read by EPIC. A file punched by
PIP, for example, is not acceptable to EPIC.

15.4 COMMAND FORMAT

To request the paper tape facility, specify option o. Your response
to the command decoder's * determines whether a tape is to be punched
or read. In both cases, no input files or devices are specified. To
punch a tape, specify the file name; to read a tape, you need not
enter a file name (that information is encoded on the paper tape).
The command line specifying the mode of EPIC is terminated by ALTMODE.

To punch a tape, respond with:

*dev:name</O/other options$

To read a tape, respond with:

*dev:</O/other options$

If a file name is specified, EPIC looks up the name on the specified
device and punches the file (including the file name) onto paper tape.
If no file name is specified, EPIC reads in a paper tape and enters it
onto the output device under the name it read in from the tape.

The other options for handling paper tape are:

/L Use low speed paper tape reader or punch

/E Do not punch end of tape upon completion

/P Punch or read a patch (instead of the whole file)

/z Set relative block to 0

/=n Punch relative block n

/Y Clear default name

You can combine these options to achieve the desired results:

/L If the /L option is not specified, EPIC assumes a
high-speed paper tape device. Thus, SYS:</O means
read a tape from the high-speed reader to device
SYS, but SYS:</O/L means read it from the
low-speed device.

15-2

/E

/P

/Y

EPIC

The /E option can be used to punch a series of
patches to a file for all patches except the last
one. With the /E option the end of tape mark is
not punched. The end of tape must have the "end
of tape" punch, a 377 punch and a length of
leader/trailer tape.

The /P option is required to indicate the tape to
be read or punched is a patch, not an entire file.
Generally, the command required to read in a patch
is simply dev:</P. File name and block
specification are already punched on the tape.

Option /Z or =n must be used with
indicate punching block 0 or
(relative block n), respectively.
read on top of an existing file
output device, that is, modifying
creating a new one.

the /P option to
some other block

The patch is
on the specified
an old file, not

The /Y option is used to clear the default file
name when switching from punching to reading paper
tape and when reading more than one paper tape.

15.5 DEFAULT OPTIONS

Throughout EPIC, if you do not specify options, files, or devices, the
program defaults to the last such item specified. There is an initial
default device: SYS is assumed if no output device is specified. No
options are assumed initially, except for relative block O. Note that
device and file name options carry between EPIC modes 0, 1 and 2.
Specifying an option (that is, L, P, E, Z, etc.) in a command string
disables default to any options from the previous command (except 0,
1, 2).

For example, to punch blocks 0, 1 and 30 of the file TRANS on the SYS
device and read them back onto that file on DTA3, the commands are:

• R EPIC
*TRANS ,:lP /E/Z$

...!.=1
*=30/P
*DTA3: . /Y

Punch block 0 of TRANS on high-speed punch
with no end of tape punch. Because EPIC
defaults to the paper-tape option initially,
o is not required in this case.

Punch block 1 of file TRANS with no
end-of-tape character on high-speed device .

Punch block
high-speed
disables E).

30 of the
punch. Punch

file TRANS
end of tape

on
(P

Read the tape from the high speed device and
put out to file whose name is encoded in the
patch on device DTA3 until end of tape is
reached. File name and relative block are
punched on the tape so this information is
not necessary. Y clears the default name
(TRANS) .

15-3

EPIC

15.6 ERROR CONDITIONS

If an error occurs while reading a block of paper tape, EPIC outputs
an error message (the e~ror messages are listed at the end of this
section), and halts. You should reposition the paper tape to the
leader/trailer just in front of the block just read before continuing
(refer to Section 15.12, Paper Tape Format). Three consecutive read
errors terminate the command. When EPIC is reading in a non-patch
file it checks the initial block read of every tape and block that is
reread because of error. This is done to determine if the read was
accurate up to name and block number. If the wrong block number or
file name is read, EPIC outputs an appropriate message indicating the
type of error. It then halts with AC=7777 to allow you to reposition
the tape over the correct block or to enter the correct tape before
continuing.

15.7 LOW SPEED I/O

The execution of EPIC differs for low-speed I/O. Before starting a
low-speed punch, EPIC halts with 7777 in the AC to allow you to turn
on the low-speed punch and then press the CONT key on the computer
console. Upon completion of a punch command, EPIC halts with the AC=O
to allow you to turn off the punch. When you press the CONT key, EPIC
recalls the command decoder. For low-speed input EPIC halts only upon
completion of the read.

If a file or a series of files to be punched exceeds 32 blocks, EPIC
segments it by punching end of tape after 32 blocks. This end-of-tape
punch, done automatically and independently of the E option, keeps
tapes short enough to fit into a paper tape tray. Upon physical end
of tape, EPIC halts with the AC=O if the low-speed punch 1S being
used. This is done to allow you to turn off the punch before
cont1nuing. As soon as the punch is turned off, EPIC outputs the
message END OF TAPE ENTER NEXT and then halts with the AC=7777 to
allow both high- and low-speed users to remove the paper tape. Note
that low-speed users get both halts, but high-speed users get only the
7777 halt. In general, a halt with AC=O means to turn paper tape
device off, and a halt with AC=7777 means to turn device on. All
halts are terminated by depressing the console CONTinue key. If EPIC
encounters end of tape while reading a non-patch file, it outputs the
message END OF TAPE ENTER NEXT and halts with AC=7777. This indicates
that the file is segmented across a number of tapes and that you
should enter the next tape.

15.8 DEVICE CODES

Most of the execution time is spent waiting for paper tape devices.
During I/O wait, EPIC holds the device code and version number in the
AC. The device code is in bits 3-5 and the version number is in bits
6-11. The codes are as follows:

1 high-speed reader
2 high-speed punch
3 low-speed reader (console TTY)
4 low-speed punch (console TTY)

If you forget to turn on the high-speed reader, EPIC hangs with lxx in
the AC. You can always restart EPIC at 0200. The OS/8 CTRL/C is
normally in effect; the exceptions are when EPIC is waiting for a
paper tape device or when input is from the low-speed reader.

15-4

EPIC

NOTE

When input is from the low-speed reader,
EPIC forces the output device to be SYS
because it is the only OS/8 I/O handler
that does not check for CTRL/C.

Thus, if you were to enter the command:

.DTA2:</L

EPIC would force it to be

.SYS:</L

15.9 EDITING CAPABILITY

Option 1 of EPIC is the file editing and searching facility. With
this feature, you can add patches directly to the file by specifying
relative blocks and locations in the file.

15.9.1 Initial Command Format

The general format of a command for the editing option is:

.R EPIC
*DEV: NAME</OF'TIONS/l $

The /1$ specifies edit mode for EPIC.

As with the paper tape option, default conditions apply. If you have
not specified a device and/or file name, the last one mentioned is
used. When editing, the only option available in the initial command
is:

/Y Clear default name (if one exists)

Editing is performed one block at a time. The relative block you are
currently processing is known as the current block; the location you
are currently processing is known as the current location (0-377).
Relative block 0 is the first block of the file if a file name is
specified or block 0 of the device if no file name is specified.

15.9.2 Editing Commands

After the initial (file specification) command, you use a series of
keyboard commands to perform the editing. The general format of an
editing command is:

x

or

x,nl,n2

where x is a command letter and nl,n2 are octal numeric arguments. If
you use a numeric argument, the letter is followed by a comma. You

15-5

EPIC

can type up to 32~10 characters on a line. Default conditions apply
to these commands as well. If carriage return is the only character
typed as an editing command, the last command specified is executed.
The commands are listed and explained in Table 15-1.

Command

E

R, n

W

S, nl, n2

Table 15-1
EPIC Commands

Meaning

Exit to command decoder; write out current
block of file if it has been modified.

Read relative block n (octal) of file and set
current location to O. Do not write current
block. If n is not specified, the current block
is read. If the relative block is out of range,
a? is printed. There are 1341 blocks per OS/8
tape and 6260 per RK8 disk platter.

Write the current block of file if it has been
modified and read in the next sequential block
of the file. If the current block -is the last
block of the file, a? is printed and the
current location is unmodified.

Search the current block for the value nl with
the mask n2. If either nl or n2 or both are
omitted, the last value specified is used. The
initial mask is 7777. Masking is performed in a
logical AND fashion. If the S command is
terminated by the RETURN key, the search is for
the current block only. If the S command is
terminated by the LINE FEED key, the search
continues to the end of the file. If the search
fails (either in the block or to the end of the
file), EPIC prints a? If the search is
successful, EPIC prints:

ml m2
m3 /

where ml is the relative block, m2 is the
relative location within the block, and m3 is
the contents of the location (ml is omitted if a
previous match was found in the same block). To
change the contents, type the new contents (in
octal) after the slash. To continue the search,
type the LINE FEED key; to terminate the
search, type the RETURN key. (If the contents
are not to be changed, type one of the
terminators.)

(continued on next page)

15-6

Command

EPIC

Table 15-1 (Cont.)
EPIC Commands

Meaning

0, n Open location n of the current block. If n is
not specified, the last opened location is the
default. If there is no default, location 0 is
opened. EPIC responds with

C

ml /

which is the contents of location n. This
location may be modified as in search.
Terminating with the LINE FEED key closes the
current location and opens the next. If the
current location is the last one in the block,
location 0 of the next block is opened, and the
current block is written out as if it had been
modified.

Print current status, as:

ml (F or B) m2 m3 m4

where ml is the current block, m2 is the current
location, m3 is the search word, and m4 is the
mask word. If you type F, the file has been
modified since option 1 was requested: B
indicates the current block has been modified.
Once a modified block has been written to the
file, the F is the only code output.

~ ______________ L-__ __

Thus a reasonable sequence is:

• R EPIC
*nSKtISOMER<:/1$
R,2
S,3126,7770

>
0004 0110
3124 /3121
,,7777

000-1 0132
3126 / 3127
C
0004 B 0132 3126 7777

w
...1

R,2
0, 10
1367 /1364
3324 •

E

*

Call EPIC .
Edit file ISOMER on DSK.
Read block 2.
Search for a 312x in that block.
Not there.
Search for it throughout the file.
Found at block 4, location 110.
Change contents to 3121.
Search for 31xx throughout the rest
of the block (locations 110-377).
Found at location 132 of block 4.
Contains 3126. Change to 3127.
Check status.
At location 132 of block 4 which
has been mOdified; the current
search word is 3126 and mask is
7777.
Write block 4.
Block 4 written but file is only
four blocks long, no block 5 to
read.
Read block 2.
Open location 10.
Contains 1367. Change to 1364.
Check next location. No
modifications.
Exit editing option.

15-7

EPIC

15.10 COMPARE CAPABILITY

A third feature of EPIC is file compare (/2). Because EPIC uses an
absolute compare technique, there are no limitations in the data
format or the length of the file. The files you are comparing must
reside on the system device.

COMMAND FORMAT

Option 2 of EPIC requires only one command, specified as follows:

SYS:filel<SYS:file2/options/2$

Specify the first file to be compared
bracket, the second file to the right.

to the left of
The options are:

/A Abort when the first non-match is found.

the angle

/B List physical block number for each file where a non-match
exists.

If you specify no options, the block numbers and locations of each
non-match are listed on the terminal.

For example, to compare files PYTHGI and PYTHG2 and find all unequal
locations, the sequence is as follows:

..!.SYS: PYTHG 1 <SYS: PYTHG21'2$
SYS:0174
0152 7450
0153 5741
0154 3421
~

SYS:0631
3421
2021
3022

To compare them and list unequal blocks, the command is:

~SYS:PYTHG1SYS:PYTHG2/B/2$

If this block match followed the preceding locations match command, a
sufficient command and its results are:

~/B
SYS;0174 SYS:0631

To abort after the first non-match, use the sequence:

.:!/A
SYS:0174 SYS:0631

15.11 ERROR MESSAGES

EPIC can print certain
(option 0) operations.

error messages when
(See Table 15-2.)

15-8

performing paper tape

Message

EPIC

Table 15-2
EPIC Error Messages

Explanation

~--------------------4--------------------.------------------- ---------

BAD =BLK

END OF TAPE

END OF TAPE
ENTER NEXT

I/O ERROR

L/T ERROR

NEED:namel
FOUND name2

NEED: nlFOUND: n2

When EPIC is punching a patch, it checks
the block specified by "=n" to see if it is
within range. If the block is out of
range, EPIC outputs this error message and
returns to the command decoder. For
example, if a file JOE were two blocks long
and you requested:

SYS:JOE</P=3

the error message would be printed.

EPIC was expecting a block of tape
found end of tape instead. EPIC halts
AC=7777 to allow you to reposition
tape. When you depress the CONT key,
attempts to read the block.

and
with

the
EPIC

When EPIC is reading a file that is
segmented across a number of paper tapes
and encounters the end of a segment, it
outputs this message and halts with AC=7777
to allow you to enter the next segment of
paper tape. Press the CONT key to continue
reading.

If EPIC encounters an error while reading
or writing a mass storage device, or if a
paper tape read fails three consecutive
times, EPIC outputs this error message,
deletes the output file if one exists, and
returns to the command decoder.

EPIC was expecting leader trailer and found
non-leader trailer while attempting to read
a block. The program prints this error
message and halts with AC=7777 to allow you
to reposition the tape, then press the CONT
key.

EPIC read a block of tape for the file
NAME2 when it was expecting a block of the
file NAMEI. This error typically occurs
when you come to the end of a segment for
NAMEI and enter some segment of NAME2
instead of the next segment for NAMEI.
EPIC halts with AC=7777 to allow you to
enter the correct paper tape.

EPIC read block n2 of the file when it was
expecting block nl of the file. EPIC halts
with AC=7777 to allow you to reposition the
paper tape. This error typically occurs
when you reposition the tape to the wrong
block after a read error.

(continued on next page)

15-9

Message

PARITY ERROR

PTR:NAME IS TOO
BIG FOR dev:

USR n dev:name

EPIC

Table 15-2 (Cont.)
EPIC Error Messages

Explanation

EPIC failed to read a block correctly, for
example, the reader dropped some bits.
EPIC halts with AC=7777 to allow you to
reposition the tape so that it can try the
read again.

The paper tape file NAME will not fit on
the specified output device DEV:. EPIC
aborts the command and returns to the
command decoder. EPIC makes the check for
size before writing on the output device.

The USR encountered an error while
attempting to perform a fetch, lookup,
enter, or close on the file NAME on device
DEV. n=l is a fetch, n=2 is lookup, n=3 is
enter, n=4 is close. EPIC aborts the
command and returns to the command decoder.
For example, if you request EPIC to punch a
file on SYS that does not exist:

SYS:NILL·{

EPIC outputs the message

USR 0002 SYS:NILL

indicating that it could not find the file
NILL on the device SYS.

15.12 PAPER TAPE FORMAT

Paper tapes punched by EPIC have the following format:

2 DATA 8 DATA 8 2
FEET INCHES INCHES FEET

BLOCK BLOCK
LIT LIT LIT LIT

LSTART OF BLOCK~ END OF tAPE
PUNCH

Leader trailer is any string of 0 or
200 punches; leader
indicates the start of
data block is 377,
following format:

trailer is
a data block.
which is end

---.------r---r-------~-r-----:-r:lI

~H_:_:_:_:_R~. p :::: _~ .. ~~:1+

PUNCH

200 punches; usually it is just
terminated by a 201 punch, which

The first punch after the last
of tape. Each data block has the

DATA P CRC CRC
BYTE

15-10

EPIC

Each byte is 12 punches (96 bits) and corresponds to eight 12-bit
words; each byte is followed by an even-odd parity punch of the eight
words in the byte. Each block is terminated by two CRC punches of
longitudinal parity.

The header byte contains information about the file for example, file
name and relative block number. The data bytes constitute the actual
data of the block; each 256-word block has 32 data bytes.

15.13 LOADING EPIC FROM PAPER TAPE

If you use receive EPIC on paper-tape, use the following procedure to
load the tape and save it on a mass storage device.

.R.ABSLIIR
*PTRa~

.SA SYS EPIC 0-7577;0200=0

15.14 EPIC ASSEMBLY INSTRUCTIONS

Use ABSLDR
Read from reader;
output, type any
reader

after
key to

is
start

Save on mass storage with starting
address of 200

Use the PAL8 (version 9) assembler to assemble EPIC as follows:

..,!.R PAL8

.!.IIEV:EPIC.BN,IIEV:EPIC.LS<IIEV:EPIC.PA

To create the save file, use ABSLDR:

..,!.R ABSLIIR
*IIEV:EPIC.BN$
~SA IIEV EPIC 0-7577;0200=0

Call ABSLDR •
Load EPIC.BN on device specified.
Save EPIC on device specified.
0-7577 = area in core used during
execution. 0200 = restart address.

15-11

CHAPTER 16

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

FOTP transfers files from one device to another, deletes files from a
device, and renames files. FOTP is significantly faster than PIP and
performs certain functions not available with PIP. For example, FOTP
can transfer files longer than 256 blocks and can perform multiple
file transfers and deletions without requiring multiple accesses of
the directory.

FOTP copies files in the image mode, that is, it copies the file word
for word, character for character, without making any changes in the
file. (This corresponds to the /1 option in PIP.) Thus you may use
FOTP to copy core image and binary files as well as ASCII files,
without specifying options to identify the type of file.

16.1 CALLING FOTP

To call FOTP from the system device, type:

.R FOTP

in response to the Keyboard Monitor dot. (You can also call FOTP
indirectly with several CCL commands. See the CCL section of Chapter
1.) The Command Decoder prints an asterisk in the left margin and
waits to receive a line of I/O files and options. FOTP accepts one
output specification and up to five input specifications. The I/O
specification line may be terminated with a carriage return (FOTP
retains control) or with an ALTMODE (control returns to the Keyboard
Monitor) .

16.1.1 Input Specifications

FOTP input specifications consist of a device, a file name, and a file
name extension. Input specifications are optional but must be present
if you do not include an output specification.

Within the input specification, FOTP allows you to use a wild card
construction. This means that the file name or the extension may be
replaced totally with an asterisk or partially with a question mark to
designate certain file names or extensions. You can use the asterisk
as a wild field to designate the entire file name or extension. For
example:

TESTl.*

*.BN

.

All files with the name TESTI and any extension.

All files with a BN extension and any file name.

All files.

16-1

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

The question mark serves as a wild character to designate part of the
file name or extension. Use a question mark for each character you
want to match; for example, PR?? matches on four characters or
fewer. Some examples follow.

TEST2.B? All files with the name TEST2 and any extension
beginning with B.

TES??PA All files with a PA extension and any file name up to
five characters beginning with TES.

???? All files with file names of two characters or less.

You can specify the asterisk and the question mark together in the
same command line.

???* All files with file names of three characters or less.

The following are examples of legal FOTP input specifications:

DSK:
SYS:A
LTA3:TESTIA
DTA7:A.BN
FILE
FILE3.DA
4
NAME?TX,NAM??BN
N?ME.
??????D?

*
*.BN
PRN:*.??
?W?B?Z.?A

A specification may not contain embedded asterisks; for example,
A*B.* is an illegal specification. The following are illegal input
specifications:

A,B,C
A:B:C
A?*.B
.AB
DAT:A.*B
A?B:C
*:BIN

If no device is explicitly given for an input specification, the
device associated with the previous specification is assumed. If no
device is explicitly given for the first specification, the DSK: is
assumed. Thus, the following input specifications are equivalent:

DSK:B
SYS:B.*,C.*,D.*
B.*,DTAO:,SYS:*.BN

B
SYS:B.*,SYS:C.*,SYS:D.*
DK:B.*,DTAO:,SYS:*.BN

You can include as many as five input specifications in a single
command line. If all the files are on the same device, the input
device need be specified only once. For example:

DTAO:*.BN,*.SV,*.RL

refers to files on DTAO that have .BN, .SV, or .RL extensions with any
file name.

16-2

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

16.1.2 Output Specifications

FOTP
file
wild
mark

output specifications consist of a device, a file name, and a
extension. Output specifications are optional. You can use the

card asterisk in output specifications, but use of the question
is illegal.

If no output device is specified but a file name is given, then
is assumed. If no file name is specified, then *.* is assumed.
the following output specifications are equivalent:

DSK:
Thus

A
A. *
DTA3:

16.2 USING FOTP

DSK:A
DSK:A.*
DTA3:*.*

Since FOTP performs file transfers in a different manner than other
OS/8 transfer programs, the following is a detailed description of the
way FOTP works. One of the main uses of FOTP is to copy files from
one device to another. The following examples show how FOTP examines
each aspect of a command to determine what operation will take place.

Example 1:

To copy the file SMILE.PA from DTA3 to DTAS,
FROWN.PA, type the following command in
Decoder *:

*DTA5: FROWN. F'A·:.DTA3: SMILE. F'A

changing
response

its name to
to the Command

1. If FOTP does not find the file SMILE.PA on DTA3, the
following message appears and no transfer is made:

*NO FILES OF THE FORM SMILE.PA

2. FOTP examines DTAS to determine whether it already contains a
file FROWN.PA. If FROWN.PA is already on DTAS, FOTP deletes
it before beginning the transfer. This process is known as
predeletion.

3. The /N option specifies that no predeletion is desired. Thus
the command:

~DTA5:FROWN.F'A~DTA3:SMILE.F'A/N

begins to copy SMILE.PA to DTAS without deleting the old
FROWN.PA. FOTP does this by opening a tentative file named
FROWN.PA on DTAS. When the command completes the transfer
operation, it closes the tentative file. Closing this
tentative file makes it a permanent file and deletes any old
files of the same name. This process is called postdeletion.

4. FOTP assigns the creation date of SMILE.PA to FROWN.PA. This
is an advantage over PIP, which would assign the current date
to the new file. If you always transfer files with FOTP, you
preserve the original creation date of the file. Thus this
feature of FOTP allows you to differentiate between versions
of a file since the more recent version should have a later
date.

16-3

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

5. Use the /T option of FOTP to assign the current date to a
file. For example, if SMILE.PA is undated, FOTP assigns the
current date to the newly created FROWN.PA.

6.

-.!IrTAS:FROWN.PA-:':IrTA3:SMILE.PA/T

You may be using the additional information words
OS/8. This feature allows you to associate
information (other than the creation date) with
entry in a device directory. FOTP transfers such
information words from SMILE.PA to FROWN.PA. (PIP
perform this function.)

feature of
additional
each file
additional
does not

If the file structure on DTAS has space for more information
words than with SMILE.PA, then those extra words are set to
o.

If the file structure on DTAS does not have enough space for
all the additional information words associated with
SMILE.PA, then FROWN.PA is given as many as can fit (from the
left) . Excess information words (on the right) are not
transferred.

Example 2:

Normally, you copy files from one device to another without changing
the file name. For example, to copy the file TEST.PA from DTAI to
DTA2, type:

*IrTA2:TEST.PA<DTAI:TEST.PA

in response to the asterisk printed by the Command Decoder. Since
this transfer operation is so common, FOTP allows the output file name
to be abbreviated to *.*. The *.* means that you use the input file
name as the output file name. Thus you could type the preceding
command as:

Since the *.* specification is so frequently used, it is the default,
that is, if no output file name is specified, *.* is assumed. So you
can further simplify the preceding command to:

...!.IrTA2: <DTAI: TEST. PA

Example 3:

One feature of FOTP allows you to use the same command line to
transfer multiple files from one device to another. For example, to
transfer five FORTRAN source files from SYS to RKA2, type:

-.!RKA2: *. *-:"SYS: DATAl. FT, DATA:!. FT, DATA3. FT, DATM. FT, DATAS .FT

The wild card characters * and ?, explained previously, are
particularly useful when doing multiple file transfers. For example,
to transfer all FORTRAN II source files from SYS to RKA2, type:

The specification *.FT stands for files with any name that have the
.FT extension.

To copy all files from DTAI to DSK, type:

16-4

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Note that the *.* specification has a different meaning when it
appears on the left side of the < than it does when it appears on the
right. When used on the output (left) side, *.* means that the output
file name is the same as the input file name. When used on the input
(right) side, *.* means transfer or consider all files on this device.
For example:

*RKA2:<SYS:TEST1.PA,TEST2.PA,TEST3.PA

copies three files from SYS to RKA2. PIP would require three commands
to perform the same operation. Each command transfers one file.

In the preceding example, no output file name is specified, so *.* is
assumed. No device is specified for the files TEST2.PA and TEST3.PA,
so the device specified as the previous input device (SYS) is assumed.

Frequently, you will copy several files with similar names (as above)
from one device to another. In many cases, you can reference these
files by a single file specification, using the ? wild character.
For example, the command:

transfers all files on DTAI that have the extension .PA and that have
names beginning with TEST followed by one other character.

16.2.1 Additional FOTP Commands

Here are some additional FOTP commands that you may find useful.

To transfer the file X.Y from disk to DECtape:

..!DTAO:<X.Y

To transfer the files A, B, C, D and E from SYS: to DTA3:

To transfer all FORTRAN source files from one DECtape to another,
producing a log of those copied:

To list all FORTRAN and BASIC files on the line printer in order of
appearance on DSK:

.!.LPT: <*.FT, *. SA

To list all FORTRAN and BASIC files on the line printer, listing all
FORTRAN files before all BASIC files:

To copy all files other than .SV and .BN files from DTA3: to DSK:,
then copy all files other than those whose names begin with a K from
DTA2: to DSK:. Log all files copied:

16-5

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

To copy the file A.B from DSK: to DTAl:, changing its name to C.D.
Give the new file today's date:

*DTA1:C.D<A.B/T

To copy all files from LTA2: that have the extension .PA to SYS:,
changing the extension to .PL and allocating storage on SYS: without
doing predeletions:

To find all files on RKA2: with the name FOO and any extension but
those that have today's date, and copy them to SYS:, changing the file
name to WXYZ yet keeping the extension:

To delete all disk files (except those with today's date) that either
have the extension .LS, .TM, or .BK and those whose file name begins
with TMP:

To delete each .BN file for which there is a corresponding .PA file:

**.BN<*.PA/D

To delete all .LS files on DTA3: for which there is a file on RKAO:
with the same name but with an extension of either .PA or .RA or with
no extension:

To delete all files on the disk for which there are already copies on
one of the four DECtape drives:

To produce a log of all files on DTAl: that have the file name FOO
and an extension which is the same as any file on SYS: that has a one
or two-character file name beginnlng with a "T". Do not perform any
transfers or deletions:

lICDTA 1 : FOa. lIC· 'SYS: T'!' • *IN/D/L

To change the name of the file DSK:FILE.PA to FILE2.PA:

*FILE2.PA<FILE.PA/R

To rename all files on DTA6: with a .PA extension to a .PB extension:

To change the extension from .RL to .OL of all files on DTAl: that
correspond to files on DSK: with the same name and today's date:

16-6

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

16.2.2 Advantages of Predeletion

The default mode (and the recommended one) of FOTP is the use of
predeletion when copying files. Predeletion creates space on the
output device for the new file. Suppose that, in Example 1 above
(Section 16.2), DTA5 were almost full. There might not be enough
space on DTA5 for SMILE.PA. Deleting FROWN.PA first could create
enough space for SMILE.PA.

Predeletion normally places the new file in the space occupied by the
file you are replacing. In Example 1 above, if FROWN.PA is first
deleted, the space where it resided is empty. You could then use this
empty space for the new copy of FROWN.PA (the former SMILE.PA). If
you did not use predeletion, the new tentative file for FROWN.PA would
probably be placed at the end of the tape. This procedure would
create a gap (EMPTY) when the old copy of FROWN.PA was deleted; thus
the files on DTA5 would be ordered differently.

16.2.3 Advantages of Postdeletion

Postdeletion is a slightly safer method of transferring files because
you do not delete the original file until you complete a transfer.
Suppose that, in Example 1 above, SMILE.PA is an updated version of
the FROWN.PA, existing on DTA5, and that these are the only two copies
of a certain source file. If you perform predeletion and SMILE.PA is
discovered to have a permanent input error, that source file will have
ceased to exist because SMILE.PA will be unreadable and FROWN.PA will
have been deleted. The use of postdeletion in this case would save
the original copy (FROWN.PA) even though the updated version
(SMILE.PA) could not be read.

16.2.4 Control Characters

You can use the special characters CTRL/C and CTRL/P to terminate FOTP
operations. When you type CTRL/C, FOTP continues operation until the
files on the output device are the same as those in the output device
directory. Control then returns to the OS/8 Keyboard Monitor.

CTRL/P causes FOTP to terminate the current operation but to still
retain control. The output device directory is updated to reflect the
operations completed before the termination occurred. FOTP prints an
asterisk and can receive another I/O specification line.

If you type CTRL/C or CTRL/P when deleting (/D) or renaming (/R), no
FOTP operations are performed and the following message appears:

ORIGINAL DIRECTORY PRESlRVED

16.3 FOTP OPTIONS

The options listed in Table 16-1 may be used in a FOTP specification
line.

16-7

.....-------~-----

Option

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1
FOTP Options

Meaning
!----------1------------- --

/C

/D

/F

Current date. Consider only those input files
with the current date when performing a FOTP
operation. For example, if you type the
command:

FOTP transfers from DTAO to DSK only those input
files that have the current date.

Do not perform any I/O transfers, that is,
perform only deletions. /D is not an
abbreviation for delete although it usually
performs that operation. This option compares
the input specification with the output
specification, if any, for matching files. If a
match is made, FOTP performs as though
transferring the file, and then deletes the
transferred file.

If no transfer occurs, no postdeletion occurs.
Predeletion might still occur unless you include
the /N option. If you specify no output device,
FOTP assumes the first input device specified as
the output device. If you specify no output
files or extensions, that is, *.* is specified
or assumed, the input file names become the
output file names. If you specify no input
files, no deletion takes place.

Failsafe. The /F option protects files during a
transfer operation. It is particularly useful
when transferring a great number of files from
disk to DECtape. The /F option allows you to
mount a new volume if a large file will not fit
on the output device or if all files will not
fit on the output device. If, for example, you
wish to transfer all .BN files from DSK to DTAO,
type:

*[lTAO: ·:.[lSK: *. BN/F

If the output device
transfer is complete
not fit), FOTP prints:

becomes full before
(or if a large file will

~MOUNT NExT OUTPUT VOLUME:

Dismount the current tape and mount a new tape
on the same unit. Type any character to
continue. The device mounted must have a good
OS/8 directory. FOTP then continues the
transfer on the new volume and updates the
directories of both volumes.

(continued on next page)

16-8

Option

/L

/N

/0

/Q

/R

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1 (Cont.)
FOTP Options

Meaning

List on the terminal the names of files affected
during the FOTP operation. Note that neither
the device nor the output file is listed.

No predeletion. Delete output file names after
a successful I/O transfer occurs. If an I/O
transfer proceeds, any other files of the same
name will automatically be deleted when the file
is closed.

Other than the current date. Consider only
those input files with a date other than the
current date when performing a FOTP operation.

Query the user about each relevant file name to
determine whether you want the specified
operation to occur for that file. This relevant
file name could be either an input or output
file name depending upon the type of FOTP
operation being performed. For example, if you
are renaming input files, FOTP prints the
affected input file names. If you are deleting
output files, FOTP prints the output files that
will be affected. FOTP prints each relevant
file name on the terminal and waits for you to
respond. A response of Y causes the specified
operation to be performed. Any other response
causes that file to be ignored, and FOTP prints
the next relevant file name.

Rename the output file without performing any
transfer. Perform this operation by specifying
the same device as both the input and output
device. For example:

*DSK:TEST3.PA<DSK:TEST2.PA/R

would change the name of the DSK file TEST2.PA
to TEST3.PA without performing any transfer.

(a) The rename option (/R) now looks at the /T
switch. If /T is typed, then not only is
the file renamed, but the new file receives
today's date. Without /T, the new name has
the same date as the old name.

(b) The rename option (/R) now allows you to
rename a file to its own name. This was
not previously permitted. It is not very
useful unless you include some other
switch, for example /T.

(continued on next page)

16-9

Option

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1 (Cont.)
FOTP Options

I Meaning
r-----------------T-------------- -----------------------------~

/R (cont.)

/T

/U

/V

/w

(c) If you have specified no output file with
/R, the FOTP assumes the same name as the
first input file.

Example:

To redate all files on a DEC tape to Jan.
1, 1976:

*DATE 1/1/76
RENAME DTAO:.*/T

Assign the current date to the corresponding
input file.

Treat each input specification separately. This
option causes FOTP to find files in the same
order as they are entered in the input
specifications. For example, the command:

*DTAO:<DSK:TEST.PA,DATA1.FT,TEST2.PA/U/L

TEST.PA
DATA1.FT
TEST2.Pf1

finds the files in the order that they were
specified in the command, not in the order in
which they may appear on DSK.

Consider only input files which do not have the
form specified by the input specifications. For
example, the command:

transfers to DTAO all files on SYS other than
those with .SV or .HL extensions.

Print the version number of FOTP
terminal.

on the

16.3.1 Examples of FOTP Specification Commands

The following are legal command strings to FOTP. When FOTP has
completed an operation, control returns to the Command Decoder for
additional input, unless you use ALTMODE to terminate the FOTP command
line.

Example 4:

*DTAO: -::A.B

This command string transfers the file A.B from the device DSK to
DTAO.

16-10

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Example 5:

This command string transfers the files A, B, C, D, and E from the
system device to DTA3.

Example 6:

This command string transfers all FORTRAN source files from DTA5 to
DTA2, producing a log of those copied.

Example 7:

~LPT:<*.FT,*.BA/U

This command string lists all FORTRAN files, then all BASIC files on
the line printer.

Example 8:

This command string copies from DTA3 to DSK all files other than core
image (.SV) and binary (.BN). It then copies from DTA2 to DSK all
files other than those with names beginning with K. A listing is
printed of all files copied.

Example 9:

*DTA1!C.D<A.B/T

This command copies the file A.B from DSK to DTAl, changing its name
to C.D, and assigns the current date to the file.

Example 10:

This command copies from LTA2 to the system device all files with .PA
extension, changing the extension to .PL.

Example 11:

This command string deletes any disk file that has an extension of
.LS, .TM, or .BK or a name beginning with TMP if the file does not
have the current date.

16.4 ERROR MESSAGES

The FOTP error messages are listed in Table 16-2.

16-11

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Message

Table 16-2
FOTP Error Messages

Meaning

ALREADY EXISTS (file name) An attempt waS made to rename an
output file with the name of an
existing output file.

BAD INPUT DIRECTORY

BAD OUTPUT DEVICE

BAD OUTPUT DIRECTORY

DELETES PERFORMED
ONLY ON INPUT
DEVICE GROUP 1
CAN'T HANDLE
MULTIPLE DEVICE
DELETES

ERROR ON INPUT DEVICE,
SKIPPING (file name)

ERROR ON OUTPUT DEVICE,
SKIPPING (file name)

ERROR READING INPUT
DIRECTORY

ERROR READING
OUTPUT DIRECTORY

ERROR WRITING
OUTPUT DIRECTORY

ILLEGAL *

ILLEGAL ?

NO FILES OF THE
FORM xxxx

The directory on the specified input
device is not a valid OS/8 device
directory.

Self-explanatory. This
usually appears when you
non-file-structured device
output device.

message
specify a

as the

The directory on the specified output
device is not a valid OS/8 device
directory.

You specified more
device with the /D
included no output
(device or file name).

than one input
option when you

specification

The file specified is not transferred,
but any previous or subsequent files
are transferred and indicated in the
new directory.

The file specified is not transferred,
but any previous or subsequent files
are transferred and indicated in the
new directory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

You entered an asterisk as an embedded
character in a file name, for example,
TMP*.BN.

You entered a question mark in an
output specification.

No files of the form (xxxx) specified
were found on the current input device
group.

(continued on next page)

16-12

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Message

Table 16-2 (Cont.)
FOTP Error Messages

Meaning
~------------------------~--~

NO ROOM, SKIPPING
(file name)

SYSTEM ERROR-CLOSING
FILE

USE PIP FOR NON-FILE
STRUCTURED DEVICE

No space is available on the output
device to perform the transfer.
Predeletion may already have occurred.

Self-explanatory.

An input device specified
file-structured device, for
PTR.

16-13

is not a
example,

CHAPTER 17

FUTIL

17.1 INTRODUCTION

FUTIL enables you to examine and modify the contents of mass storage
devices. It is the only program currently available that you can use
to patch programs containing overlays (F4/LOAD outputs). Other
possible uses include examination and repair of OS/8 directories; bad
block checking and correction; decimal/octal conversion of double
precision numbers; output of the Core Control Block (CCB) of .SV
files and the HEADER of .LD files; and the creation of special
directories. Supporting these functions is signed double-precision
arithmetic expression evaluation that you can use in the command
syntax whenever you need a numeric value.

FUTIL commands are divided into two groups. The first group uses
single letters to direct the program in the examination and
modification of single words on the device specified. The second
group of commands uses command words to direct the program in the
dumping, listing, modifying and searching of the device on a
block-by-block basis. Also included in this group is a series of
commands to direct the program in some auxiliary functions including
setting and resetting switches and variables within the program,
showing current FUTIL parameters.

Several examples appear in Section 17.4. The first two examples are
especially simple and well-documented and can acquaint you with the
features of FUTIL. You may want to look at them at this point to get
a better understanding of the material that follows.

17.1.1 Special Characters Used in FUTIL

Several characters, when keyed, cause immediate action from the
program. Typing either CTRL/P or CTRL/C will immediately cause the
program to stop whatever it is doing. CTRL/P then causes the program
to go back to command input mode and wait for you, while CTRL/C
returns control to the OS/8 Monitor. CTRL/S and CTRL/Q control
program execution (including all I/O). Typing CTRL/S at any time will
cause the program to pause and wait for either CTRL/C, CTRL/P or
CTRL/Q. Typing CTRL/Q will then allow program execution to resume.
Any other characters entered at this point will be simply ignored. If
a CTRL/Q is typed by itself at any time, it is simply ignored.

17-1

FUTIL

NOTE

CTRL/S and CTRL/Q are active at all
times, not just during console output.
The result is that both input from the
console and program execution with no
console interaction (such as SCAN, WORD
and STRING command execution) will pause
and restart with these keys.

During console terminal input, three other keys help with editing the
input string of characters. These keys are RUBOUT, CTRL/U and CTRL/R.
The action of RUBOUT and CTRL/U is exactly the same as for the OS/8
Monitor and Command Decoder (including usage of "scope mode" operation
to change the action of the RUBOUT key from echoing the rubbed out
characters between backslashes to erasing the characters from the
screen). The action of CTRL/R is the same as that of the LINE-FEED
key for the Monitor and Command Decoder.

If you have upper-lower case terminals, the program translates all
lower case characters received from the keyboard to upper case. The
characters are echoed and handled internally as upper case characters.
While this makes use easier, it does not allow any lower-case
characters to be input directly.

In those cases where you need lower-case codes in the modification of
a file, either use the codes directly or use a text editor. This
translation occurs only on input. Lower-case characters in a file
will be printed to the best ability of the output device. This may
produce incorrect results on upper-lower case line printers.

All of the commands are taken in context. This means that many of the
characters in the single character command set will not be considered
to be commands if they are included in a line that begins with a
command word or if they are embedded within expressions.

The carriage-return always starts command execution and terminates all
word-type command lines.

17.1.2 Running FUTIL

To run FUTIL, type:

.R FUTIL

or

.RU dev:FUTIL

When started, FUTIL is set up to access the system device, the ERROR
message output mode is set to LONG, the access MODE is set to NORMAL,
and no file is known. To access some other device, type:

SET DEVICE dev

To set the ERROR mode to SHORT, type:

SET ERROR SHORT

17-2

FUTIL

To use some other access mode, type:

SET MODE <mode>

command with a <mode> of LOAD, OFFSET or SAVE. When in OFFSET mode,
the OFFSET to be used can be specified by the command SET OFFSET nnnn.
Lastly, a file lookup can be performed by giving a FILE command (with
three default extensions).

17.1.3 Access Method

The program accesses the OS/8 device one OS/8 block (256 words) at a
time. For every location specified, the real block and word are
determined and compared with the current block in memory. If the
desired block and current block are not the same, the
<something-changed> flag is checked to see if anything has been
changed in the current block. If nothing has been changed, the new
block is read in.

If something has been changed, the current (modified) block is first
written out and then the new block is read in. This action happens
correctly even when the access mode is changed because it is done at
the level of the OS/8 block number just before calling the current
device handler. The status of the <something-changed> flag can be
determined by simply SHOWing ABS, REL or ODT locations. If the flag
is set, the word MOD will be output following location information.

The contents of the OS/8 device, therefore, do not change unless the
block in which changes are made is written out either implicitly, as
described above, or explicitly, using the WRITE command (discussed
near the end of the section on word-type commands). The result is
that typing CTRL/C before writing out the current block (assuming it
has been modified) will return to the Monitor without modifying the
contents of the device.

Note, also, that only
program. Should an
example, write-locked
to actually write out

one implicit write
error occur when

device), an explicit
the block.

attempt is made by the
the write is attempted (for
WRITE command must be given

If you change the words within
<something-changed> flag can be
reset the device (described further
device currently being used. This
flag, the current block in memory,
core-control-block/header-block (if
command) •

some blocks accidentally, the
reset by using the SET command to
along in this writeup) to the same
will reset the <something-changed>

and the file start block and
they had been set by a FILE

The resetting of the current block in memory will cause the next
access to the device to read in the block desired. The resetting of
the file information will require a new file command to be given to
set it back up. If you cannot remember the current setting of the
device, use SHOW DEVICE first and then set it the same.

Files stored on an OS/8 mass-storage device generally fall into one of
four categories. The program has four corresponding modes for
accessing the device. The current mode of the program can be set by
the SET command or by chaining (as described previously) and examined
by the SHOW command (to be described later).

17-3

FUTIL

The four categories and their corresponding modes are:

1. General (binary, ASCII and data) files - NORMAL mode

2. Core image (save) files - SAVE mode

3. FORTRAN IV load modules - LOAD mode

4. System overlays - OFFSET mode

The actual operation of the program for each of these modes is as
follows:

NORMAL

SAVE

LOAD

OFFSET

The high order 7 bits of the 15 bit address are
to the current block number to get the actual
number. The low 8 bits of the 15 bit address are
to specify the desired word within that block.

added
block

used

The file to be examined must be set up by a FILE
command. Block numbers are used to specify an overlay
number (future MACREL/LINK support) and must be exactly
zero (0) for files without overlays (generated by the
monitor SAVE command). The core segment data (pages
and fields) from the file's CCB (core-control-block) is
used to determine where on the device the desired word
is located. This is done by first determining the
correct block from the file's CCB and then using the
low 8 bits of the address to specify the desired word
within that block. Specifying a nonexistent address or
overlay for one of the single-character (ODT) commands
will cause an error. Specifying a nonexistent address
or overlay for any of the word-type commands will cause
the program to ignore the address and access no data.

The file to be examined must be set up by a FILE
command. Block number specifications are actually
taken as FORTRAN IV overlay specifications and must be
contained within the file. You use the information
from the OIT (overlay-information-table) in the header
block of the file to determine where on the device the
desired word is located. Nonexistent addresses are
handled the same way as for SAVE mode.

NOTE

Because the block part of the location
specification changes definition depending on
the mode in use, it is recommended that the
first operation following a switch to SAVE or
LOAD mode explicitly specify a block part of O.
Otherwise a previously specified block part
will be taken to mean a non-existent overlay
number, causing an error.

The 12-bit OFFSET (set by the SET command and examined
by the SHOW command) is subtracted from the low order
12 bits of the address and then the same arithmetic as
with the NORMAL mode is used. This mode is used mostly
with system overlays whose start block number and
actual loading address is known. By setting the OFFSET
to the loading address (which can only be a 12 bit
number), the 12 bit actual addresses of the overlay can
be used.

17-4

FUTIL

The SAVE and LOAD modes are mentioned together throughout this chapter
as MAPPED modes because their method of address translation uses a
descriptor block from the file of interest to control access to the
file in a noncontiguous manner.

NOTE

For all access modes, the OS/8 block
number for the block to be read is
stored (for display) in the computer MQ
register (if present). The value is
stored before checking if the current
block needs to be written. It is
particularly useful for following the
progress of the SCAN command.

17.1.4 Referencing Words on the Device

The words on the OS/8 device are referenced by their location (often
abbreviated as <1». This location consists of an optional block or
overlay number (which must be followed by a "." if present), and an
address or displacement. The block/overlay number is a 12-bit number
which must be in the range 0 thru 7776 (octal), or 4094 (decimal) •
Block number 7777 (or 4095, decimal) does not exist under OS/8, and
the program will ignore this number.

The overlay number is further limited to the number of overlays at a
given address. Whenever the block/overlay part of the location is not
used, the program will use the last specified value. The
address/displacement is a 15 bit number (5 octal digits), but leading
O's need not be specified. Thus, the forms and their corresponding
examples are as follows:

Form Example

<block>.<displacement> 1201.37524

3.57633

15721

<overlay>.<address>

<address>

<displacement> 223

CAUTION

Neither this program nor the OS/8 device
handlers generally incl.ude checking for
legal block numbers. It is assumed that
all accesses to the device will be done
after checking with the directory for
legal file start blocks and lengths,
which is the normal mode of operation
under OS/8. This can have very
interesting results with this program;
for example, the RK8/E handler, given a
block number greater than 6257 (octal)
on device RKAO, will continue on into
device RKBO.

17-5

FUTIL

For the rest of this document, unless otherwise stated, block will
mean block or overlay and address will mean <address> or
<displacement>, depending on usage. Therefore the definition will be:

[block.]address=<location>=<l>

Since these location references
characteristics described next
locations.

17.1.5 Numeric Item (or Numbers)

are numeric
can also be

input, all of the
used when specifying

The program uses two switches, CTRL/D and CTRL/K, to allow the input
of octal, decimal or mixed numeric input wherever numeric input is
used. Each new command line always resets the input mode to octal.
The character CTRL/D switches the input mode to decimal. The
character CTRL/K switches the input mode back to octal. These two
switches may be located anywhere in numeric input.

For example, when inputting a string of numbers, the input would be
alternately decimal and octal if it were

Two other characters, the double quote (") and the apostrophe ('), may
be used for numeric input. The double quote functions the same way in
this program as it does in PAL8: the 8-bit ASCII value of the
following character is used as a number. As with all character input,
the special characters described earlier cannot be used. The
apostrophe functions in the same way that the TEXT pseudo-op operates
in PAL8: the following two characters are masked to 6 bits each and
packed into a 12-bit word. Two characters must always follow the
single quote. If you desire to pack one half of the word with a 6-bit
00, use the character "@". For example, a string equivalent to the
file name PIP.SV would be represented by the following string:

'PI,'P@,O,'SV

Expressions may also be used for numeric input when enclosed in
parentheses. Use parentheses for each expression, thereby making all
the options of the EVAL command available for numeric input. For
example, the contents of the switch register can be used for a number
by the expression (S), or the current block number +5 could be used by
the expression (B+5). See the discussion of the EVAL command for the
other options available.

NOTE

Parentheses must surround the
expression. Neither digits nor the
switch characters may be outside of the
parentheses or an error will result.
This is required because many of the
non-alphabetic characters have multiple
meanings (commands or operators) so the
use of parentheses eliminates ambiguity.

17-6

FUTIL

17.1.6 Errors and Error Messages

Whenever the program recognizes an error, it outputs an error message.
The message tells both what went wrong and where in the command line
the error occurred. Depending on the setting of the ERROR mode
switch, either short or long messages are output:

?<ee>at<cc><error messdge>

or

?<ee>at<cc>

where <ee> is the error code, <cc> is the number of the column in the
command line where the program stopped scanning, and <error message>
is the message itself. There are currently 45 error conditions with
corresponding codes and messages to assist you. The error codes and
their messages can be printed out by the SHOW ERRORS command. The
ERROR mode is set by the SET command.

The error messages are swapped with the USR but not in the normal
manner, allowing write-locked startup with the loss of the message
text (see Section 17.5 for more information).

17.2 SINGLE-CHARACTER (ODT-LIKE) COMMANDS

These commands allow you to modify and examine words on an OS/8 device
in the same way that ODT allows you to modify and examine main memory.

In all of the following commands where the numeric item <n> is
specified, the operation of closing the location is to place the value
of <n> into the word, if open. If the current location is not open,
or if <n> is not specified, no change takes place. Refer to
Introduction to Pr~ammi~ and to Chapter 19, on ODT, for more
information. Note that [<n>] (with the following commands) means that
a numeric item may be supplied optionally.

<1>/

/

[<n>]t

[<n>]$
(dollar sign)

[<n>]%

[< n>] &

[<n>] :

Open and output the contents of location <1> in
the current OUTPUT mode.

Reopen the last location opened by one of these
commands and output its contents in the current
OUTPUT mode.

Close the current location, reopen it
its contents in BCD (3-digit
dec imal) .

and output
binary-coded

Close the current location, reopen it and output
its contents in OS/8 ASCII.

Close the current location, reopen it and output
its contents in BYTE octal (8 bits with OS/8
packing) .

Close the current location, reopen it, and output
its contents in XS240 format packed ASCII.

Close the current lcoation, reopen it, and output
its contents in SIGNED decimal.

17-7

[<n>]<

[<n>] =

[<n>]>

[<n>] ?

[<n>]@

[< n>] [

[<n>] \

[<n>]]

[<n>]$

FUTIL

Close the current location, reopen it, and output
its contents in OCTAL.

Close the current location, reopen it, and output
its contents in UNSIGNED decimal.

Close the current location, reopen it, and output
its contents in PDP (symbolic).

Close the current location, reopen it, and output
its contents in DIRECTORY format [negated DECIMAL,
DATE (see "@" next) and packed (ASCII)].

Close the current location, reopen it, and output
its contents in DATE format: dd-mmm-yy 2 digits
each for the day and year and 3 alphabetic
characters for the month (except for illegal month
numbers, which are output as a space and 2 decimal
digits) .

Close the current location, reopen it, and output
its contents in ASCII.

Close the current location, reopen it, and output
its contents in FPP (symbolic).

Close the current location, reopen it, and output
its contents in packed ASCII.

(" ALTMODE" or
"ESCAPE" key)

Close the current location, reopen it, and type
its contents as specified by the current FORMAT.

[<n>]<cr>

[<n>] :

Close the current location.

Close the current location and open the next
sequential location. Neither address nor contents
are output, but one space is echoed.

NOTE

The ";" command advances through
addresses without outputting their value
in octal when some other format is more
helpful. For example, when examining a
directory, the file name and extension
can be output using the "]" command
(PACKED ASCII), the date can be output
using the "@" command, and the file
length can be output using the ":"
command. All of this information can be
made to appear on one line by using the
";" command. This does the incrementing
between each of the output commands.
The result would look similar to this:

17-8

FUTIL

For the following commands, the location of the newly opened word is
output before the contents are output. This location is composed of
the 12-bit block number (4 octal digits), a "." for a separator, and
the 15 bit address (5 octal digits). This is immediately followed by
a slash (I) to separate the contents from the address.

[<n>] <line feed>

[< n>] !

[<n>]A(circumflex
or up-arrow)

[<n>] (backarrow
or underline)

<1>+

<1>-

Close the current location; open and output
the contents of the next sequential location
in the current OUTPUT mode.

Close the current location; open and output
the contents of the previous sequential
location in the current OUTPUT mode.

Close current location; open the location
(that would have been referenced if the
contents were a PDP-8 memory reference
instruction), and output the contents of the
new location in the current OUTPUT mode.
This command works like the stand-alone
version of ODT (not like the OS/8 version).
Even if bit 3 of the word is set, this
command will not do the equivalent of an
indirect reference.

Close the current location, take its contents
as an address, open that location, and print
its contents in the current OUTPUT mode.
This operates as an indirect address into the
current field. The field currently being
examined (the high octal digit of the 5-digit
location) will not be changed by this
operation.

Open the location <1> locations forward from
the current location, and output its contents
in the current OUTPUT mode. 15-bit
arithmetic is used and the block part is
ignored, so this will operate across field
boundaries, that is, within a 32K area.

Open the location <1> locations backward from
the current location and output its contents
in the current OUTPUT mode. Same
restrictions as with the '+' command.

The current OUTPUT mode has been mentioned several times above. The
program will output the contents of a location either as a four-digit
octal number or as a four-digit octal number with two spaces and the
symbolic representation (PDP or FPP) of the word. See the SET and
SHOW commands (Sections 17.3.2.4 and 17.3.2.5) and the following
section.

17.2.1 Symbolic Output Formats

The symbolic typeout is in nearly the same format that input to an
assembler would need to be to generate the contents of the current
location. It is assumed that these contents are either a PDP-8 or an
FPP-12/8A instruction, depending on the output selected. If the word
to be output is not an instruction (as is the case for the second word
of all 2-word instructions), the decoding will be meaningless.

17-9

FUTIL

For PDP-8 instructions, decoding into mnemonics is done for all memory
reference instructions, for all legal operate instructions (including
8/E EAE instructions except for SWAB), for all 8/E processor, extended
memory and memory parity lOT's, for teletype and high-speed paper-tape
lOT'S, for 8/E redundancy check option lOT'S, for programmable
real-time clock lOT's and for FPP lOT's.

There are currently a total of 96 lOT'S, and the program has space for
an additional 32 lOT codes and their mnemonics. These can be patched
directly into the program using itself. The first word of each
four-word entry is the lOT code (for example, 6221 for CDF 20),
followed by 3 words containing up to 6 packed ASCII characters padded
with trailing O's.

No attempt is made to decode any micro-coded lOT's. Either an exact
match for the current contents will be found in the table or the
program will output:

lOT nnnn

where nnnn is the octal typeout of the low 9 bits of the code.

The next free location in the table (in field 1) is pointed to by the
contents of location 10000. The table is terminated by the first 0
for an lOT code, so additions must be contiguous and added directly at
the current end of the table.

For FPP instructions, the full FPP-8/A instruction set is decoded
except for IMUL, which is actually an integer mode LEA. For the data
manipulation instructions, the op-code mnemonic is followed by a "t"
for the long-indexed format, by a "%" for the indirect-indexed format,
and by a space for the base addressing format.

For the indirect-indexed and base addressing formats, the operand
address is output as:

B+nnn

where nnn is the 3-digit octal value of the displacement (3 or 7 bits)
multiplied by 3. These formats are those used by the RALF assembler.
This is also true for LEA instructions (that is, LEAl is decoded as
LEA%) .

Both jump and load-truth instruction decoding is done as a single
mnemonic whose last two characters indicate the specified condition.
All instructions that use two words are decoded with an asterisk in
the location in the normal assembler format where the value of the
second word would go.

Index register number and "+" for auto-increment (if used) are also
shown in the assembler format. Any combinations that are not in the
FPP-8/A instruction definitions are output as unused.

NOTE

For both of these output formats, the
use of the mapped access modes (and the
OFFSET mode for PDP decoding) allow the
use of the actual addresses when
decoding the instruction.

17-10

FOTIL

17.3 WORD-TYPE COMMANDS

These commands are grouped by function, as follows:

Group 1:

DUMP
LIST
MODIFY

Group 2:

WORD
STRING
SMASK

Group 3:

SET
SHOW
FILE
WRITE
SCAN
REWIND

Group 4:

OPEN
CLOSE

Group 5:

IF
END
COMMENT
EXIT

Group 6:

EVAL

type/list out the contents of one or more blocks.
type/list out the contents of one or more locations.
modify one or more locations.

word search
string search
set up string search mask

set up program switches and variables
show settings of program switches and variables
look up file(s) on device
write out current buffer
scan for bad blocks
move device to block 1 and reset directory segment

open an output file on a file-structured device
close the open output file

cause command skipping based on expression value
resume command execution after unsatisfied IF
pass user commentary to output device
exit to OS/8 (same as CTRL/C)

evaluate a signed, double-precision expression.

Command words may always be abbreviated to their first two characters,
as with the Monitor and BUILD, and some of the commands and their
options may also be abbreviated to only one letter. When this is the
case, the command forms given will include the one-letter form. The
option forms will give the one-letter form directly under the full
word form.

NOTE

In many cases, two or more words start
with the same letter. In these cases,
only one of these words may be
abbreviated to one letter.

The descriptions for each command include each of the possible forms
of the command; an example of that form follows it on the same line.

17-11

FUTIL

17.3.1 Output Formats

The FORMAT option is used to SET up the output format for the "$"
(ALTMODE or ESCAPE) command, described earlier, and the default format
for the DUMP, LIST and MODIFY commands, described below. The syntax
of this command is shown with the other SET commands, but is described
here to make the descriptions of the following three commands more
understandable. The format may be one of the following:

ASCII
A

PACKED
P

OS

XS240

BYTE

UNSIGNED
U

SIGNED
S

OCTAL
o

BCD
B

PDP
FPP

DIRECTORY

output each word as a single ASCII character.

Output each word as two 6-bit trimmed and packed
ASCII characters. This is the format of PAL8 TEXT
strings.

Output each word as 1
characters. The even
character and the odd
characters.

or 2 OS/8 packed ASCII
address words output 1
address words output 2

Output each word as two 6-bit packed
characters by adding a space (240 octal)
contents of each 6-bit byte. This is the
of PAL12 SIXBIT strings.

ASCII
to the
format

Output each word as 1 or 2 OS/8 packed bytes of 8
bits each as 3-digit octal numbers. The even
address words output 1 number and the odd address
words output 2 numbers.

Output each word as an unsigned decimal number.

Output each word as a signed decimal number.

Output each word as a 4-digit octal number.

Output each word as 3 BCD digits. The digits 0
through 9 are followed by":" (10), ";" (11), "<"
(12), "=" (13), ">" (14), and "?" (15).

Output each word as an octal number, followed by
2 spaces and its mnemonic representation, assuming
it to be a PDP-8 or an FPP-8A instruction. See
the symbolic output description.

Output each word in octal, decimal (signed), date
(see "@" command) and packed ASCII formats.

The FORMAT is initialized to packed ASCII.

The output from the DUMP and LIST commands for each of these formats
is set up as follows:

1. At the beginning of each line the current location is output
in location format with a 4 digit block number and a 5 digit
address, both in octal, as

<block>.<address>:

For example, 1271.17205: - location 17205(8) relative to
block 1271(8).

17-12

FUTIL

2. The maximum number of words per line is set up as follows:

a. The four character formats output 16 words per line with
no extra characters.

b. The five numeric formats output 8 words per line with 2
spaces between each number.

c. The symbolic and directory formats output 1 word per
line.

For LIST with A or B, the first line may be shorter than succeeding
lines to force the second and following address outputs to be even
multiples of 10 (octal).

17.3.1.1 DUMP - The DUMP command outputs one or more whole 256-word
device blocks in the default or an optionally supplied format. This
command has the following forms:

DUMP [<format>] <block string>

DUMP <block string>
D <block string>
DUMP <format><block string>
D <format><block string>

DU 100,200-213,250
D (B)-(B+10),(S)
DU PA 212
D OS 514

where the optional <format> is one of those given for the FORMAT
option above, and the <block string> is one or more numeric items
separated by commas and dashes. The dash is used when it is desired
to dump a group of blocks, and is used as

<start block>-<end block>

the comma separates single blocks or groups of blocks if there is more
than one per line.

NOTE

In a mapped mode (SAVE or LOAD), the
DUMP command cannot dump any block
except that block containing location O.
To eliminate the confusion that this
would produce, the command will simply
output an error message reminding you
that the proper command to use in a
mapped mode is the LIST command.

The output from the DUMP command is sent to the DDEV (dump device),
which can be either the console terminal, the line printer, or a file.
See the SET command for setting the dump device and output mode.

17.3.1.2 LIST - The LIST command outputs the contents of one or more
words on the device in the default or in an optionally supplied
format. This command has the following forms:

LIST [<format>] <location string>

LIST <location string>
L <location string>
LIST <format><location string>
L <format><location string>

17-13

LI 123.200-517,200.0
L 312.10-17,100-117,176
LI UN 200-227
L SI 200-277

FUTIL

where the optional <format> is one of those given for the FORMAT
option above, and the <location string> is one or more locations,
separated by commas. When it is desired to list a group of words, the
dash is used to separate the start and end addresses as

[<block>.]<start address>[-<end address>]

If the block part is not specified, the last block number specified to
the program will be used. If an end address is specified, the start
address is assumed to be in the same field as the end address (that
is, the highest octal digit of the 5-digit address), so a maximum of
4096 words can be specified by each group.

As with the DUMP command, the output from the LIST command is sent to
the DDEV. For more information see the last paragraph of the DUMP
command, the SET command, and Section 17.5.

17.3.1.3 MODIFY - The MODIFY command allows a string of locations on
the device to be easily changed. Specify the format of the input,
letting the program do the work of storing the data properly. This
command has the following forms:

MODIFY [<format>] <location string>

MODIFY <location string>
M <location string>

MO 200.0-17,35-43
M 32745-32777

MODIFY <format><location string>
M <format><location string>

MO PA ~2342-12360
M AS 367.7261-7275

where the <location string> has exactly the same format as for the
LIST command (the <format> options are shown below). If the <format>
is not specified (as with the first form), the program will pick the
format that corresponds to the current setting of the FORMAT option.
The formats are shown below.

MODIFY format

ASCII
A

PACKED
P

OS

XS240

FORMAT setting and MODIFY action.

ASCII - one character of input is stored in
each word to be modified.

PACKED - two characters of input are packed
as trimmed 6-bit characters, padded with
trailing OO's. Control characters (those
with codes less than 240 octal) are packed as
a 6-bit 77 (flag) and the low-order 6-bits of
the character. Note that this means that "@"
is packed as a terminator (00) and that "?"
is not unique.

packed
In this

even and

OS - three characters of input are
into two words to be modified.
format, the start address must be
the end address must be odd.

XS240 - a space (240 octal) is subtracted
from each character and then it is packed as
6-bit bytes. Control characters are handled
as with PACKED format.

17-14

NUMERIC
N

FOTIL

SIGNED & UNSIGNED decimal, BCD, OCTAL, BYTE,
PDP, FPP and DIRECTORY formats - the input is
a string of numeric items which are stored
one per 12-bit word. See the section on
numeric items. Note that bcd, byte,
directory and symbolic are not included, that
decimal or octal input are determined by the
CTRL/D and CTRL/K switches and that signed
numbers must be input enclosed in
parentheses, for example, 17, (-10), A D2 00 ,
(-AK3 1 2), 40, (-AD35*129).

For each location or group of locations specified by the <location
string>, the program will prompt for the input by printing the start
location in the same format as described under the output format
options above.

CAUTION

The program always modifies exactly the
number of words specified by each item
in the <location string>. If you input
extra characters for the character
formats or extra numeric items for the
numeric format, they will be ignored.
If you do not input enough characters or
items, the rest of the words to be
modified will be set to the FILLER value
(see the SET command). The program will
not output any message if either of
these things takes place. This does,
however, make it possible to fill from 1
to 16 blocks on a device with zero or
some other value by specifying all the
words to be filled in NUMERIC format and
then responding to the prompt with a
single F (the value of the FILLER) and
RETURN.

Input to the program is always terminated by a carriage-return. It is
not possible to insert a carriage-return into a word using this
command. All of the editing keys are available for use during input,
so the CTRL/C, CTRL/Q, CTRL/S, CTRL/R, CTRL/P, CTRL/U and RUBOUT
characters cannot be entered using this command. For all of the
character input formats, spaces (excluding leading spaces, which are
ignored) and tabs in the input string are packed as they are seen.
For numeric input, spaces are ignored and the numeric items must be
separated by commas.

You can always abort the command by CTRL/P if you change your mind
before you press the RETURN key.

17.3.2 Search Limits

The program has two search commands: the WORD search and the STRING
search. Both search from a lower limit to an upper limit. The limits
are either the LOWER and UPPER limits set by the SET command (the
default) or the limits set up by the FROM <1> and/or TO <1> clauses
that can optionally follow the command word. FROM <1> overrides the
lower limit, and TO <1> overrides the upper limit. Leaving out the

17-15

FUTIL

block parts of either of the two temporary limits will cause the
program to use the block part of the corresponding default limit set
by the SET command. In a mapped (SAVE or LOAD) access mode, searching
through non-existent locations or overlays will never produce a match.
Whenever a match is found, the program outputs the location where the
match occurred, followed by the word or string that matched.

NOTE

You cannot search through more than one
overlay per search command. To do so
would require different and separate
handling of the block and address parts
of the limits when in the mapped modes,
including the resetting of the address
part. The result is that, in the mapped
modes, the block parts are used to set
the overlay to be searched (lower limit
only), and only the address parts are
used in the determination of the number
of words to be searched.

17.3.2.1 WORD (Search) - The WORD search command searches for a word
or words which, masked by the MASK (which is set by the SET command) ,
will match the search word (also masked). This command and its five
options follow:

WORD [UNEQ] [ABS] [MEM] [FROM <1>] [TO <1>] <n>

WORD <n>
W <n>
WORD UNEQUAL <n>
WO U <n>
WORD ABSOLUTE <n>
W A <n>
WORD MEMREF <n>
WO M <n>
WORD FROM <l><n>
W F <l><n>
WORD TO <l><n>
W T <l><n>

WO 217
W (5)
W UN 0
WO U (C&377>
WO AB 7402
W A 7000
WOR HEH 41
WO H 40
WO FR 213.0 2317
W F 1.35 (5)
W TO 213.345 1111
WORD T 6257.377 7777

... and any combination and order of the above options.

In this command and its options, <n> is the bit pattern being searched
for, UNEQUAL means that all words which are not equal to <n> under the
mask do match, and the temporary limits clause is as described above.
ABSOLUTE means that the location where the match occurred is to be
output as an absolute block number and displacement rather than as a
relative location. MEMREF means that only words whose high-order
octal digit is 0 thru 5 (that is, the PDP-8 memory reference op-codes)
are allowed to match, independent of the setting of the MASK.

When you want to search for those words that reference a specific
location, set the MASK to 377 (octal) and then use the MEMREF option.
This will exclude all Operate (op-code 7) and lOT (op-code 6)
instructions from the output. This will make it easier to find the
desired information (for example, you will not output the location of
every CIA, 7041 octal, when you are looking for references to location
41 octal).

17-16

FUTIL

NOTE

UNEQUAL has a higher priority than
MEMREF, so first each word is tested
under the mask for equal/UNEQUAL and if
the specified condition is true, then
the word is tested for the MEMREF
condition.

17.3.2.2 STRING (Search) - The STRING search command searches for a
string of numbers (bit patterns) under an optional string mask. This
command has four options and has the forms:

STRING [MASKED] [ABS] [FROM<l>] [TO<l>] <numeric string>

STRING <numeric string>
STRING MASKED <numeric string>
ST M <numeric string>
STRING ABSOLUTE <numeric string>
ST A <numeric string>
STRING FROM <l><numeric string>
STR F <l><numeric string>
STRING TO <l><numeric string>
ST F <1> T <l><numeric string>

ST 4557,0,0
ST HA 4577,0,1203
ST H 5566,0
ST AB 'PI,'P@
ST A "A, "B
STR FR 100 1,4000,2
ST F 123.4567 (S),(-S)
~TR T 7577 'ER, 'RO, 'R@
ST F 1.0 T 7.0 'FO, 'TP

... and any combination and order of the above options.

In this command and its options, the numeric string is simply a string
of numeric items separated by commas. MASKED specifies that the
search is to be done under the string mask. ABSOLUTE is as for the
WORD search, and the temporary limits clause is as described above.

When the MASKED option is used, each item of the numeric string is
masked by a separate mask word from the string mask. If the string
mask is shorter than the search string, it is used in a circular
fashion (the first word follows the last) as many times necessary to
mask all of the items of the search string. If the string mask is
longer than the search string, the extra words are not used. This
feature allows for very complex searches to be done.

For example, you want to find all calls to a certain subroutine in a
file and also see their arguments. This could be done as follows:

FILE FUTIL
FUTIL.SV 6070-6120 ~P
SE HODE SAVE
SHASK (-1),0,0
ST H 4547,0,0

-look up file to be searched
-you stop typeout
-set access mode to mapped
-set mask for 2 arguments per call
-search for 4547 and 2 dummies

The output will give the address of the subroutine call (which
requires an exact match due to the mask of 7777) and the contents of
the two following words (which can be anything, since they are masked
by O).

Using the mask specified above, a search could be made for an exact
match, 2 "don't care words" and another exact match by simply
specifying a search string with 4 arguments. The first item of the
string mask will be used to mask both the first and the last items of
the search string.

This command can be particularly useful when trying to find certain
kinds of references in programs for which no CREF listing (or perhaps
no listing at all) is available.

17-17

FUTIL

17.3.2.3 SMASK - The SMASK command sets up the string mask.
the following form:

It has

SMASK <numeric string> SM (-1),0,0,7000,0

where the numeric string is the same as for the STRING search command
above. The current contents of the string mask may be examined by the
SHOW command.

17.3.2.4 SET - The SET command sets up various switches and variables
within the program. It has many options, each the name of the switch
or variable, and is always followed by a word or number describing how
it is set. All items are separated by spaces. The command has the
following two forms:

SET <option(s»
S <option(s»

SE OU PDP ERR LONG MODE SAV
S LO 100.0 UP 123.377 lDEV LPT

where the options are as follows:

OUTPUT
OUTPUT
o
o
OUT
o

ERROR
E
E
ERROR

OCTAL
o
PDP
P
FPP
F

SHORT
S
LONG
L

FORMAT <format>

OFFSET <1>

FILLER <n>

LOWER <1>

UPPER <1>

Set the output mode
single-character commands.
to OCTAL.

for the
Initialized

Set the mode for error message output.
The SHOW ERRORS command will list
all error messages. Initialized to
LONG. Also set to SHORT by
write-locking system device.

Set output format for LIST,
The formats have been
previously. Initialized
ASCII.

DUMP, etc.
described

to PACKED

Set the offset to the low 12 bits of
<1>. Initialized to O.

Set the filler to the low 12 bits of
<n>. Initialized to O.

Set the lower search limit. Initialized
to 0.200.

Set the upper search limit. Initialized
to 0.17577.

DEVICE <device name[:]> Set up the OS/8 device for access. The
handler is fetched at this time.
Initialized to SYS (device 01). ":" In
<device name[:]> is optional. <device
name> is an assigned or permanent OS/8
mass storage device name.

DDEV <device name[:]> Set up the dump device. Initialized to
SYS. See also DMODE below and OPEN and
CLOSE' commands.

17-18

MODE
MODE
MODE
MODE
MO
MO
MO
MO

DMODE
DMODE
DMODE

MASK
M

TEMP

NORMAL
N
SAVE
S
LOAD
L
OFFSET
0

NONE
PART
ALL

<n>
<n>

<n>

FUTIL

Set up the device access mode. These
have been described previously.
Initialized to NORMAL.

Set up the dump output mode.
Initialized to NONE, which sends all
output to console only. PART sends
DUMP, LIST and SHOW ERRORS output to the
DDEV (perhaps to a file). ALL sends all
output to both the console device and to
the DDEV. (See section on file output.)

Set the WORD
bits of <n>.

search mask to the low 12
Initialized to 7777.

Set the TEMP storage to the 24-bit value
of <n>. Value is returned by subsequent
use of the T in expressions.

As many options as desired may be specified on one
separated by spaces. In the event of an error, none
past the point where the error occurred will have been
have any question, use the SHOW command.

command line,
of the options
set. If you

17.3.2.5 SHOW - The SHOW command lists the current setting of any of
the program switches and variables set by the SET command and other
information. The program outputs either words or numbers to best
describe the current settings. As with the SET command, as many of
the options for this command as desired may be specified on single
command line, separated by spaces. This command has the form:

SHOW <option(s» SH BL CCB LOW UP ODT REL ABS

where the options are as follows:

BLOCK
B

CCB
C

HEADER
H

Output in octal the start block number of the last
file specified by the last FILE command.

Output the core control block of the last file
specified by the FILE command. If the file is not
a SAVE file, an error will occur. The start
address of the file is output as a 5-digit octal
number, the job status word (JSW) is output in
octal, and the core segments are output as 5-digit
octal addresses.

Output the header block information for the last
file specified by the last FILE command. If the
file is not a LOAD file, an error will occur. The
start address is output as a 5-digit octal number,
followed by the next free address as a 5-digit
octal number, the loader version number in octal
and a message if Extended Precision is required.
Then, for each level, a line is output with the
number of overlays, the 5-digit start address, the
relative start block and the length of the
overlays (in blocks) for this level.

17-19

ABSOLUTE
A

RELATIVE
R

ODT

LOWER

UPPER

FILLER

MASK
M

SMASK

OFFSET

MODE

DEVICE

DDEV

OUTPUT
o

FORMAT
F

VERSION

ERRORS
E

FUTIL

Output the absolute location of the last word
accessed on the device in <location> format (a 4
digit octal block number, an" and as-digit
octal address) and the word MOD if the current
block has been changed (the <something-changed>
flag is set).

Output the relative location (what you specified)
of the last word accessed on the device in <1>
format and the word MOD if the current block has
been changed.

Output the relative location of the last word
accessed by one of the special-character commands
in <1> format and the word MOD if the current
block has been changed ..

Output the search lower limit in <1> format.

Output the search upper limit in <1> format.

Output the value of the filler in octal.

Output the WORD search mask in octal.

Output the current contents of the STRING search
mask as a string of octal numbers.

Output the value of the offset in octal.

Output the name of the current setting of the
device access mode switch (NORMAL, SAVE, LOAD or
OFFSET) .

Output the 05/8 deivce name and number.

Output the name of the dump device.

Output the name of the current single-character
(ODT) command OUTPUT mode (OCTAL, PDP or FPP).

Output the name of the current output format.

Output the current version number of FUTIL.

Output a complete list of all error codes and
their corresponding messages. Note: this list is
output to the DDEV (dump device) so that it can be
output using the LPT handler for your system.
Note that Version number is also output with
errors.

17.3.2.6
sets up
CCB, etc.

FILE - The FILE command locates files on the OS/8 device and
the start block of a file for the mapped access modes, SHOW
This command has the forms:

FILE <file name string>
F <file name string>

FI FUTIL PIP.SV
F MICRO.LD

where the <file name string> is a string of one or more OS/8 file
names, separated by spaces. Any other characters except "." will be

17-20

FUTIL

taken as part of the file names. The program assumes extensions of
.SV, .LD and null (in this order) when looking up the file. This can
lead to a substantial amount of time when a large directory is
searched three times for a file that does not exist. Specifying an
extension will cause only one lookup attempt to be made. A null
extension, if desired, may be specified by making the "." the last
character of the file name. The program does one or more separate
lookups for each file name specified and outputs either

<file name> ssss-eeee 0000 (dddd) b.lll dd-mmm-yr

or

<file name> ssss-eeee 0000 (dddd) b.lll

or

<file name> LOOKUP FAILED

where "ssss" is the start block of the file in octal, "eeee" is the
last block of the file in octal, "0000" is the length of the file in
octal, "dddd" is the length of the file in decimal, "b. Ill" is the
block (segment) and location within that block of the first word of
the file entry (the first two characters of the name) in the
directory, and dd-mmm-yy is the file date. If the directory does not
contain the extra word required for the date or the date word of the
file is 0, the second form with no date will be output rather than the
first form. The LOOKUP FAILED message means either that the file name
was not found on the device or that the device is a write-only device.

The actual lookup operation is performed by the OS/8 USR, which is
swapped as needed (see section on program execution). Since the USR
keeps track of the current device once the first FILE command is
given, it will have the wrong directory in memory if the medium (tape
or disk) is changed on the physical device. This can be solved one of
three ways:

1. Use the REWIND command to rewind the device being removed and
clear the directory segment from the USR.

2. Do a SHOW ERRORS and abort the output when the message output
begins. This will have swapped out the USR. If messages are
not available, use 1 or 3.

3. Use EXIT or CTRL/C to return to OS/8 and then directly
restart FUTIL with the OS/8 START command. This will have
swapped out both error messages and USR from memory.

Any of these methods should be followed by a SET command to reset the
device and the rest of the I/O parameters desired.

The last file name specified that did not have a LOOKUP FAIL will be
the file used in the mapped access modes, SHOW CCB, etc. The program
is initialized with no known file, so attempting to access any
location in a mapped access mode or attempting to SHOW CCB or SHOW
HEADER without giving a valid FILE command will cause an error.

17-21

FUTIL

17.3.2.7 WRITE - The WRITE command forces the program to write out
the block currently in memory. It has the form:

WRITE [<block>]

where the optional <block> overrides the default number of the block
that was read to specify where the current block is to be written.
This dangerous operation does allow a limited amount of copying in a
special situation, e.g., allowing a directory to be backed up by
moving a copy to the end of the device (see the examples section) or
copying a single block from one device to another by changing the
DEVICE and then doing a WRITE (with or without an argument). Again,
as stated in the section on accessing the device, caution must be used
because attempting to write beyond the end of a device may not be
checked by the handler.

17.3.2.8 SCAN - The SCAN command does a rapid scan for read errors on
the current device. It has the form:

SCAN <block string> SC 0-6257

where the block string is of the same form as for the DUMP command.
Each block is simply read. If an error occurs, it is reported as:

0000 BAD BLOCK

where "0000" is the block number in octal, and the scan continues.
This is the only FUTIL command that will continue on a read error. If
the current block has been changed, and if any other blocks are
included in the scan, an implicit write will be attempted by FUTIL.
An error on this implicit write will be reported and then the command
will be aborted. This is the only time that this command will attempt
a write. The command can then be repeated if desired and it will
execute (only one implicit write attempt is ever made by FUTIL).

NOTE

The OS/8 actual block number for the
block to be read is stored for display
in the computer MQ register, if present.
It is particularly useful for following
the progress of this command. The value
is stored before checking if the current
block needs to be written.

17.3.2.9 REWIND - The REWIND command is used to move a tape back to
block 1 and to reset the USR directory segment. It has the form:

REWIND

and must
of the
memory) .
read.

be terminated by the RETURN key. It causes a read of block 1
device and resets the directory segment in the USR (if in

Any subsequent FILE command will cause the directory to be

17-22

FUTIL

17.3.3 File Output

Output to file-structured or non-file-structured dump devices is
provided through two commands, OPEN and CLOSE, and two SET options,
DDEV and DMODE. They can be used to simply make fast hard copy output
from the DUMP, LIST and SHOW ERRORS commands, to provide a hard copy
log of all operations carried out with a video terminal, to provide an
ASCII file output of some data for later processing by another
program, etc.

Output to file-structured and to non-file-structured devices (serial
devices) is handled in two separate ways. Output to the
file-structured device is done by first setting the DDEV and DMODE and
then OPENing an output file. No output to the device will be done
until the file is open (to protect your directories), and then output
will be done one block at a time. When output to the file is
complete, CLOSE your file to make it a permanent file (properly
terminated with a CTRL/Z and padded with nulls).

Output to a non-file-structured device is done by simply setting the
DDEV and DMODE. Output to the device will be done one line at a time,
as soon as specified by the DMODE, and neither the OPEN nor the CLOSE
commands are needed. The output is done by padding the buffer with
nulls after each line is ready and then calling the output device
handler, so the handler used should ignore nulls (which leaves out the
PTR: handler, for example).

17.3.3.1 OPEN - The
structured devices
has the form:

OPEN <file name>

OPEN command opens an output file on file
for partial or total output from the program. It

where the file name should be a standard 05/8 file name. The
extension defaults to .DU (for dump) if none is supplied.

WARNING

FUTIL gives significance only to the
characters space, carriage-return and
"." when scanning file names. It is
your responsibility not to include
characters that are not legal to other
OS/8 programs or the files will be able
to be accessed only through FUTIL or the
CCL command decoder.

This command must be given after the dump device is SET by the DDEV
option. The output specified by the DMODE will then be sent to this
file, one block at a time (packed only 8 bits per word), until either
the DMODE is changed or the file is closed.

Files can be opened at will without closing any previous file. This
gives the user additional flexibility, but at the expense of possibly
losing an output file if it is not closed.

Should an error occur on the output device while doing output, the
file is simply thrown away (it cannot be closed).

17-23

17.3.3.2
opened.

FUTIL

CLOSE - The CLOSE command closes an output
It has the form:

CLOSE

file previously

and must be on a line by itself. If given with no file open, it is
simply ignored.

17.3.4 Batch Operation

Operation of FUTIL under BATCH allows repeated operations to be done
without re-entry. All of the operations provided under interactive
operation are provided except that the RUBOUT character is simply
ignored, input is taken directly from the BATCH stream and console
output goes to the log output device.

Four commands have been added specifically to support use of FUTIL
under BATCH: IF, END, COMMENT and EXIT. These commands are also
available for interactive use, but are not as important in that mode.

17.3.4.1 IF - The IF command was implemented specifically to allow
FUTIL, when operating under BATCH, to be sure that the correct
operations are proceeding before modifying something incorrectly. It
has the form:

IF(expression> IF C-3575

where (expression> is a general expression of the same form as used by
the EVAL command. If the expression evaluates to exactly zero (as a
24-bit integer), command execution will continue as though the command
had not been seen. If the result is not exactly zero, command
skipping will begin and will continue until a line containing the
single word END is found. Command execution will then resume.

This command was set up to test only for zero under the assumption
that a test is to be made for some exact quantity. However, the
capabilities of the expression evaluator can be used to generate
sufficiently complex expressions for other tests. For example:

IF 40000000&(•...••) will test for positive
IF -(40000000&(... »-1 will test for negative
IF 10000&(-(77770000! (... ») will test for l2-bit non-zero

17.3.4.2 END - The END command re-enables command execution following
an unsatisfied IF command. It has the form:

END

and must be on a single line by itself. When encountered during
command execution, it is ignored. The IF/END commands cannot be
nested because the first END found will re-enable command execution
for any number of previous IF commands. For example:

IF .. .
IF .. .
IF .. .
END will terminate all three.

17-24

FUTIL

17.3.4.3 COMMENT - The COMMENT command allows optional comments in
command input which will simply be ignored during execution. It has
the forms:

COMMENT [<comment>]
C [<comment>]

COMMENf THIS IS ONE
C

where [<comment>] is an optional comment. Note that blank lines may
also be used for formatting of the output log but that they will also
close any open location.

17.3.4.4 EXIT - The EXIT command provides a method of return to OS/8
other than CTRL/C. It has the form:

EXIT

and the rest of the line is ignored. Exit does not write out the last
block modified. Use WRITE to make changes permanent.

17.3.4.5 EVAL - The EVAL command evaluates a parenthesized expression
of signed double-precision integers. It has the forms:

EVAL <expression>
E <expression>

~v S*~D4096tD

E B*400tL

where the <expression> follows the normal rules for arithmethic
expressions. Legal operators, in their order of precedence are:

(
I
*

+
&

evaluate inner expression
signed division
signed multiplication
subtraction
addition
logical product ("and")
logical sum ("or")
expression end

Besides 24-bit numeric input (which can be octal, decimal or mixed
octal and decimal) under the control of the CTRL/D and CTRL/K switches
and ASCII and packed ASCII using" and " the following variables may
be used:

C current contents (of location L).
L current location (15 bit, same value as is output by the

SHOW RELATIVE command).
B current block number (as for L).

F contents of FILLER (12 bits).
T contents of TEMP (24 bits).

S contents of the console switch register.

R the remainder of the last division or the high product of
the last multiplication. (24 bits, the sign may not be
correct.)

D contents of OS/8 Monitor date word.

17-25

FUTIL

Overflow on addition, subtraction and multiplication are ignored, but
trying to divide by 0 will cause an error.

If no errors occur, the program evaiuates the expression and types out
the results in the form:

=00000000 (sddddddd)

where "00000000" is the double precIsIon result in octal and
"sddddddd" is the signed double precision result in decimal (the sign
is either a dash or a space).

17.4 EXAMPLES

These examples help provide an overview of the use of the program.
The first two examples are discussed in detail to illustrate the
mechanics of the operations, while the following examples are intended
primarily to show what can be done with the program. Should questions
arise on the mechanics, review the first two examples and the
discussions of the commands in question.

Example 1:

Assume that you would like to know what CeL remembers of your last .UA
command. What it remembers is stored on block 65 (octal) of the
system device. As described in the source of CCL, each unit of what
it remembers is allocated 40 (octal), or 32 (decimal) words in this
block. The first four of these words contain binary information, and
the last 34 words contain the last input command, stored as packed
ASCII characters. The lines contain the inputs for the commands as
follows: TECO and MAKE (line 0), EDIT and CREATE (line 1), COMPILE
and EXECUTE and PAL (line 2), UA (line 3), UB (line 4), and UC (line
5) . Thus, the saved .UA command can be listed by outputting the
contents of the 4th through 37th words of area 3 in block 65 as packed
ASCII characters as follows:

• R FUTTL -call FUTIL from OS/8

EVA 3*40+4
~00000144 (0000100)

-calculate start displacement
-of the 3rd line (=144[8])

Now list the words of this line with the LIST command, specifying
the output format to be PACKED ASCII characters and the words to
list to be block 65 locations 144 (from above) through 144+33
(the expression for the location of the last word of this line).
FUTIL responds with the start location and a line of characters,
and the next location with a multiple of 10[8] as an address and
a line of characters.

I T<";r PAChE[I "''').144-(144+33) -list the words wanted

')Oc-. r-}.O,'L4'l! TIU,; FUFlll'i''i''i'.*/E/R=3
u0A~.00LAO: -that's it!

NOTE

For the examples above and below, the
symbol <cr> is used to show that you
need to terminate your command lines
with a carriage return. All other lines
above are output by the program.

17-26

FUTIL

Example 2:

Now assume that you would like to make the simple patch for OS/8
FORTRAN IV users with an FPP-8/A to use the lockout feature of the
FPP-8/A (from the August 1976 DIGITAL Software News) . This requires
changing the contents of location 15776 of FRTS (the Fortran Run Time
System) from 400 to 410 (which adds the lockout bit). You also want
to update the date word of the directory entry for FRTS (the 4th word
beyond the start of the entry) to show that the file has been updated.
This is done as follows:

.R FUTIL -call it

SET MODE SAVE
FILE FRTS

-set FUTIL to a mapped mode
-look up the file to map

1.327 31-DEC-75 FRTS.SV 0671-0722 0032(0026)
-1.327 is start of entry!

Now use ODT command / to open and change one word.

15776/0400 410 -add LOCKOUT bit

SET MODE NORMAL -switch to unmapped

Now use ODT command / with an expression to open the date word,
command @ to output it in date format and then put today's date
(as an octal value) in its place.

1.(327+4)/6375
@31-DEC-75(D) -change file date to today's date

WRITE

Example 3:

-send out this change

NOTE

First the file FRTS.SV is changed, and
then the OS/8 directory is updated to
the current date. Changing the address
desired from FRTS to the directory
automatically writes out the modified
block of FRTS before reading in the
directory segment that contains the file
name. However, the changed directory
segment must be written out explicitly
because there are no other blocks to
examine for this example.

While doing a /S transfer with PIP, PIP gives a read error in your
file SOURCE.PA. Attempting to read it with EDIT causes EDIT to type
?O~C and return to the Monitor. Find out what is wrong as follows:

.R FUTIL

FISOURCE.PA -look up the file
SOURCE.PA 0243-0351 0107 (0071) 2.005 30-AUG-74

SE MASK 0 La 243.0 UP 351.377 -set up mask & limits

W UNE 0 -search the file

17-27

FUTIL

?ee AT
[Note:

08 FATAL READ ERROR -here is the problem
Pee" may change with version, so is left out.]

-find out where it is SH ABS
ABS.LOC=0271.00000

WR

DU OS (B+L/400)

0271.00000: ..•. ~P

W UN FR 272.0 0

~C

-attempt to clear error

-it worked, now dump it

-change your mind

-check the rest of the file

-ok, now go fix the source

This sequence can also be carried out using the SCAN command as
follows:

.R FUTIL
Fl SOURCE.PA - use CCL to call & lookup

SOURCE.PA 0243-0351 0107 (0071) 2.005 30-AUG-74
SCAN 243-351 - scan the area

0271 BAD BLOCK - here is the problem!

271.0/ ?ee AT 07 FATAL READ ERROR - get block with trouble

WR

DU OS (B+L/400)

0271.00000: ~P

~C

- attempt to clear error

- it worked, now dump it

- change your mind

- ok, now go fix the source

If the error had been of some type other than a clearable error, the
WR command might also have failed.

Example 4:

After using BUILD to change your system, find out the device number
for DTAl:

.R FUTIL

SE DEV DTAI
SHOW DEV
DEVICE = DTAI (06)

Example 5:

- fetch the device handler

- number is decimal

By accident you zero a DECtape directory which contains the only copy
of a file you need. You have the PIP /E listing of the directory but
only want to re-build it enough to get the wanted file. The name of
the file is LOST.FI:

.R FUTIL

SE DEV DTAI
EV ~D5+14+11+10+16+13+8+5
= 00000122 (0000082)
EV ~D730- ~K61- ~D82-25

= 00001076 (0000574)

- it was here
- lengths of all preceding
- files
- rest of DEC tape room

17-28

1.01 7777 (-3)
41 7777
0001.00005\ 0000 'DU
0001.00006\ 7556 'MM
0001.00007\ 1752 'Y@
0001.00010\ 3451 0
0001. 00011\ 6234 (D)
0001.00012\ 4235 (-~D82)
0001.00013\ 5761 'LO
0001.00014\ 3341 'ST
0001.0015\ 2371 0
0001.00016\ 1107 'FI
0001.00017\ 1366 (D)
0001.00020\ 3015 (-~D25)
0001.00021\ 3415 0
0001.00022\ 2713 (~D574)

WRITE
~C

FUTIL

- now 3 files
- 1 extra word per entry
- set up a "DUMMY" file
- over the old <EMPTY>

- a null extension
- put in today's date
- length
- the desired file

- the extension

- its length
- an <EMPTY> to end it
- the rest of the tape

- now write it out
- & exit to use it

The LINE-FEED key was used to advance through the words.

The above example is exactly the same as hand calculating the required
length of the DUMMY file and then doing the following sequence using
PIP:

.R PIP
*DTAl:DUMMY</I=122
*DTAl:LOST.FI</I=31
*~C

- enter the DUMMY file
- enter the LOST.FI

Note that the lengths of the files are specified for PIP in octal.

Example 6:

Search for the end of each page of text in the file WRITE. UP. Since
the file is an OS/8 ASCII file, which has two characters packed in the
low 8 bits of two words and a third character packed in the high 4
bits of both of the two words, the form-feed character (~L) may be
packed as the third character in some cases. So it is necessary to
search both through the low 8 bits of each word and through the high 4
bits of each pair of words. Do it as follows:

.R FUTIL

FI WRITE.UP
WRITE.UP 0301-0437 S~P
SE MA 377
SE'LO 301.0 UP 437.377

••••.•• typeout occurs here

SMASK 7400,7400

ST M A ("~L*20), ("~L*400)

•••.... more typeout here

- typeout stopped

- char mask & limits set

- search for form-feed

- set up string mask

- search for 3rd char f-f

- only even addresses are real
- parts of form-feed pair!

In the string search, both the string and the data searched are masked
by the string mask.

17-29

FUTIL

Example 7:

You just assembled and saved PROG.SV but forgot to use the IP switch
to ABSLDR. Fix the CCB (core control block) as follows:

.R FUTIL
FI PROG.SV
PROG.SV 0341-+P
341.11 6203
0341.00002\ 6400
0341.00003\ 0000 400

WR

SHOW CCB
CCB:

SA 06400,JSW = 0400
CORE ~P

Example 8:

- stop output
- the "CDF CIF" part &
- the address
- change the JSW

- write the new CCB

- check it this way

- ok, output stopped

The CREF listing file for your source file is about 732 blocks long
(just over one full DECtape). If you do want to CREF the file onto a
DECtape, you must do it either with the IX (do not process literals)
switch or else you could use FUTIL to set up the directory with 735
blocks (by starting at block 2) as follows:

~R pip
*dtal:</z
*~C

.R FUTIL

- zero the directory

SE DEV DTAI
1.11 0007 2
61 6446 (C-5)
WR

- ** see WARNING below **
- change first block number
- 5 more blocks
- write it out

~C - now CREF it •.••

WARNING

Do not copy files onto a device that has
been fixed this way with FOTP (COpy
command) because it writes out a
directory of six blocks after the
transfers are finished and this will zap
blocks 2 through 6 (the first 5 blocks
of the first file) after the copy is
done. PIP and other processors do not
monkey around with the directory and
will handle this correctly.

17-30

FUTIL'

Example 9:

Something is wrong in your system and you have been losing your
directory repeatedly. After fixing it up with both PIP and FUTIL, you
just want to back it up while you generate your output files onto
another device. Since your system device has a total of 6260 (octal)
blocks (an RK8E) you back up the directory as follows:

.R FUTIL
1.0/ 7714 WR 6251
2.0/ 7740 WR 6252
3.0/ 7770 WR 6253
4.0/ 0000 3.2/ 0000
~C

- transfer blocks up by
- 6250 blocks

- block 3 was last, so
- all done

Shortly after this, everything crashes totally, i.e., directory
smashed, system gone from disk. Rebooting from DECtape you use PIP to
restore the system area and then use FUTIL to restore the directory:

.R FUTIL
SET DEV RKAO
6251.0/ 7714 WR 1
6252.0/ 7740 WR 2
6253.0/ 7770 WR 3

SCAN 0-6250

Example 10:

- load non-system device
- transfer by 6250 blocks
- the other way
- the last one

- do a SCAN for good luck

During a SCAN of a device a bad block is found in an important data
file and you would like to know just how far the read of that block
really succeeded (e.g., on a DECtape, the type of error will determine
whether the read will abort immediately or wait until the end of the
physical block). The following commands assume that the block number
is "bbbb" and set the input/output buffer in FUTIL to zeros before
doing the read:

bbbb.O/ ?ee AT 07 FATAL READ ERROR - do read to set up

MOD NUM 0-377
bbbb.OOOOO: 0 - set whole buffer to 0

SET DEV same - set to device now in use

/ ?ee AT 01 FATAL READ ERROR force the read again

DUMP OC bbbb - dump & examine the block

This example makes use of the fact that changing the DEVICE resets the
status of the buffer without changing its contents. This status
includes the block number known and the <something-changed) flag.
Therefore the next access to the block causes the block to be re-read
without attempting to write it out. Following the second error, as
much of the block as possible will have been read into memory and can
now be examined for non-zero values (assuming that the data itself was
not all zeros). If the read terminated before the end of the block,
there should be an obvious separation between the zero and non-zero
values.

17-31

FUTIL

Example 11:

Your system has a line printer that can output 132 characters per line
and 6S lines per page and you would like to change PALS and CREF to
make use of this to use less paper. Allowing two lines at the bottom
of the page, the lines per page should be set to 66 (call this nl).
Three changes need to be made to PALS to change the global numberr of
lines per page (nl), the number of items per column of the symbol
table (-nl+l) and the number of symbols per page (3*[nl-l]). One
change needs to be made to CREF to change the number of lines per page
(nl) and three changes need to be made to change the number of items
per line of cross references. Since CREF uses 10 characters for the
symbol name and six characters per line number, 19 references can
comfortably fit on one line (19*6+10= 124). The following changes to
these two programs will increase the number of lines per page and the
numbers of items per line in the cross-reference outputs and then
update the dates of the two programs in the directory:

.R FUTIL FILE PALS.SV

PALS.SV 0200-0217 0020 (0016)
SET MODE SAVE
1104/ 0070 ~D66

1256/ 7711 (-~D65)

1273/ 0245 (3*~D65)

FILE CREF
CREF.SV 0220-0234 0015 (0013)

2564/ 7704 (-~D66)

2017/ 1102 1366> TAD 2166

2132/ 1102 1366> TAD 2166

2166/ 0077 (-~D19)

SET MODE NORM

1. (57+4)/ 2036 (D)

(65+4)/ 0624 (D)

WRITE

Location 2166 was not used previous
first reference to the word in CREF
modified in PALS to be written out.
the directory will cause the last
be written out.

1.057 03-APR-76

- global lines per page

symbol table column size

- symbols per page

- ** SEE NOTE BELOW **
1.065 lS-JAN-74

- lines per page as above

- change instructions here

- and here to get new

- references per line

- reset access mode

- change dates of PALS

- and CREF.

- output the last changes

to this patch. Note that the
will cause the last block that was
Similarly, the first reference to

block that was modified in CREF to

NOTE

These patches were empirically
determined and applied to PALS V9H and
CREF V3C. They have been applied to
some other versions of both programs but
have not been tested with OS/S V3D. USE
THESE WITH CAUTION!

17-32

FUTIL

17.5 PROGRAM EXECUTION AND MEMORY ALLOCATION

The start address is 06400. When the program is started here, it
resets the internal CCB buffer, resets the start address to 00200,
tests the scope mode status (changing the action of RUBOUT if it is
set), performs initialization for the extended date format, attempts
to write out the error messages (resetting the ERROR mode control if
unsuccessful) , tests the BATCH-in-progress status (changing all
console I/O to BATCH I/O if it is set) and jumps to 00200. If you
want to manually re-start the program after it has been loaded,
re-start it at 00200.

The error messages are swapped with the USR, but not in the normal
manner, allowing write-locked startup with the loss of the message
text. When the program starts execution, it writes the messages onto
the system device in the same area used by the USR in swapping. Once
this has been done, the USR or error messages need only be read into
memory, as needed. In the case where it is not possible to write on
the system device, that is, it is write-locked, the messages are
discarded, SHORT mode is set permanently, and execution continues
without a hitch. Similarly, if an error occurs when reading the
messages, SHORT mode is set permanently, and an error is given to warn
that this has happened (with no message) •

The program uses almost all of the available memory in an 8K PDP-8.
It is allocated as follows:

00000-06237
06240-06577
06400-06777
06600-07177
07277-07577
10000-11777
12000-12577
12600-15700
15700-16377
16400-16577
16600-17177
17200-17577

program proper
buffer for arguments
- once only code for chaining
dump device handler area, 2 pages
device handler area, 2 pages
USR area & error messages (swapped)
CCB/header input and test, file output
text strings, lists
string mask, command buffer stack
CCB buffer, 1 page
"dump" device buffer, 2 pages
I/O buffer, 2 pages

The buffer for arguments in field 0 is defined long enough to store 45
numeric string items. The string mask buffer, in field 1, is 66 words
long, and the command buffer, also in field 1, is 140 characters long.
These lengths were chosen in anticipation of input from console
devices with up to 132 characters per line. No checking of any kind
is done to protect against overflow of any of these buffers under the
assumption that these buffers are large enough for any reasonable
input to this program~ however, the arrangement of the buffers is set
up in such a way that the most valuable data is the farthest distance
from a variable buffer.

The expression evaluation stack buffer uses the area in field 1 from
the end of the command buffer (approximately location 16130) to the
beginning of the CCB buffer (location 16377). This should provide
ample room for any expression to fit on one line. Again, no checking
to prevent overflow is done.

17-33

FUTIL

17.6 COMMAND SUMMARY

SINGLE-CHARACTER commands: ([<n>] = optional <item»

[<1>]/ <1>+ <1>-
[<n>] wi th t $: % & < = > ? @ [\]
$ (ESCAPE) RETURN; LINE FEED ! A

WORD-TYPE commands: (And modifiers, many of which are optional)

ASCII
DIR

DUMP
LIST
MODIFY

ASCII

WORD

STRING

SMASK

SET

SHOW

FILE
WRITE
SCAN
REWIND

OPEN
CLOSE

IF
END
COMMENT
EXIT

EVAL

PACKED OS XS240 UNSIGNED SIGNED BCD BYTE OCTAL PDP FPP

[<format>] <block string>
[<format>] <location string>
[<format>] <location string>

PACKED OS XS240 NUMERIC

<option(s» <n>

([<format>]s above)
([<format>]s above)
([<format>]s below)

UNEQUAL ABSOLUTE MEMREF FROM <1> TO <1>
<option(s»<number string>
MASKED ABSOLUTE FROM <1> TO <1>
<number string> e.g., 1,34,0,7700,0, (-1) ,377

<option>
OUTPUT
ERROR
FORMAT
OFFSET
LOWER
UPPER
DEVICE
DDEV
MODE
DMODE
MASK
FILLER
TEMP
<option(s»

<setting>
OCTAL PDP FPP
LONG SHORT
<format>
<1>
<1>
<1>
<device name[:]>
<device name[:]>
NORMAL SAVE LOAD
NONE PART ALL
<n>
<n>
<n>

OFFSET

BLOCK CCB ABSOLUTE RELATIVE ODT LOWER UPPER
MASK SMASK OFFSET MODE DEVICE OUTPUT FORMAT
HEADER FILLER VERSION ERRORS DDEV
<file name (s) >
[<block>]
<block string>

<file name>

<expression>

[<comment 1 ine>]

<expression> e.g., (l! (S+A DI7»*AKIS +)C&7600)
! & + - * / () C L B F T S R D

Numeric Input:

AD AK <digits> "<1 character> '<2 characters>
(.•• all eval options •••)

Control Characters:

17-34

FUTIL

17.7 SINGLE-CHARACTER COMMAND OUTPUT FORMAT SUMMARY

([<n>] = optional numberic item)

Output in octal or octal & symbolic (PDP or FPP):

<1>/
<1>+

/
<1>-

[<n>]LINE-FEED [<n>]! [<n>]A [<n>]

Output in a specified format:

[<n>]'
[<n>]$
[< n>] :
[<n>]%
[<n>] &
[<n>]<
[<n>]=
[<n>]>
[<n>]?
[<n>]@
[<n>] [
[<n>]\
[< n>]]
[<n>]$

No output: [<n>];

BCD
OS/8 ASCII
SIGNED decimal
BYTE octal
XS240 format packed ASCII
OCTAL
UNSIGNED decimal
PDP symbolic
DIRECTORY
DATE format (extended, in alpha)
ASCII
FPP symbolic
PACKED ASCII
(ESCAPE) As SET by last SET FORMAT x

17-35

CHAPTER 18

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

You may use MCPIP to transfer files between standard cassettes or
magnetic tapes and other OS/8 system devices, delete those files, and
transfer directories. MCPIP allows you to read or write any standard
cassette file on a cassette or magnetic tape. In particular, MCPIP
can read or write any file created by or to be used by the CAPS-8
system or by the OS/8 system (using any OS/8 device handler). MCPIP
can also read or write any magnetic tape file that is in standard
cassette file format, that is, a file created by MCPIP or CAPS-8.

You may run MCPIP on any
memory and TA8E cassette
any OS/8 system device.
cassette or magnetic
Generation Notes.

OS/8 system equipped with at least 8K of
or TM8E magnetic tape drives. MCPIP supports
Before running MCPIP, you must load the OS/8

tape handlers as described in the OS/8 system

18.1 CALLING AND USING MCPIP

To call MCPIP from the OS/8 system device, type:

.R MCPIP

in response to the Keyboard Monitor dot. The Command Decoder then
prints an asterisk in the left margin of the terminal and waits to
receive a line of I/O files and options. MCPIP accepts one input file
and performs output to a single output file. It transfers the
contents of the input file to the output file in image mode. In
response to the asterisk, type an I/O specification of the following
form:

*outfile<infile/(options) size

Each file specification consists of a device and an optional file name
(for file-structured devices). To perform I/O on a given cassette
drive, your OS/8 system should be configured with an OS/8 cassette
handler for that drive.

The permanent device names for cassettes are CSAO-CSA7. Magnetic
tapes have the permanent device names MTAO-MTA7. Permanent device
names for other OS/8 devices are listed in the Keyboard Monitor
section of Chapter 1. You use these device names in the I/O
specification, along with any file name that is necessary. For
example, to transfer a CAPS-8 file named DATAOI to the disk, type:

*nSK:DATA01<CSA1:DATAOl

if you have mounted the standard cassette on drive 1 and if your OS/8
system has a handler for drives 0 and 1 (unit 0) with entry point

18-1

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

names of CSAO and
file name, MCPIP
the cassette as a
reader or punch.

CSAI. If you specify a cassette handler without any
uses the handler without modification, i.e., it uses
non-file structured device similar to a paper tape
Thus, the command:

*CSA2:<DSK:SI SCD.BN

would perform the same operation with MCPIP as the command:

*CSA2:<SI SCD.BN/I

would perform with OS/8 PIP.

If you specify a magnetic tape handler with a file name, MCPIP
considers the magnetic tape as a file-structured device and assumes
that it has the same format as a standard cassette.

Since MCPIP performs file transfers for all types, there are no
assumed extensions assigned by MCPIP to file names for either input or
output files. ·,You must explicitly specify all extensions, where
present, except when using the /B option.

Following completion of a MCPIP operation, the Command Decoder again
prints an asterisk in the left margin and waits for another MCPIP I/O
specification line. You can return to the Keyboard Monitor by typing
CTRL/C or by ending a MCPIP specification line with an ALTMODE.

18.1.1 MCPIP Options

Table 18-1 details the options allowed on a MCPIP I/O specification
line.

Option

/B

[]

Table 18-1
MCPIP Options

Meaning

Transfer files in special CAPS-8 binary format. If
you use the /B option and no extensions are
specified, MCPIP assumes .BN for OS/8 files and .BIN
for cassette files. If input is from PTR:
(high-speed paper tape reader), you must position the
paper tape on the leader.

The square bracket "[]q option allows you to specify
a decimal file type on a cassette output file. The
notation in brackets does not refer to the file sizes
in this case. Hence, to create a file with the name
CAS50.BI on cassette drive 1 and give it a file type
of 3, type:

*CSA1:CA550.BI[3J<

For output files other than cassette, square brackets
have the same meaning as in OS/8 PIP. For
information on file types, see the Cassette
Programming System User's Manual (DEC-8EOCASA-B-D),
Appendix E.

(continued on next page)

18-2

Option

/0

=n

/1

/0

/L

/z

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Table 18-1 (Cont.)
MCPIP Options

Meaning

Delete the file specified from the output cassette or
magnetic tape. The /0 option is valid only if the
output device is a cassette or magnetic tape. For
example:

*MTA1:0FILE</D

will delete OFILE from the magnetic tape on drive 1.

Specify in the low order 12 bits
words (characters) per record
cassette or magnetic tape output
12 bits of the n specification
1000 (octal), inclusive. If not
assumed.

of n the number of
that occur in the

file. The low order
may be between 0 and
specified, 200 is

You need not specify the = option for cassette or
magnetic tape input files because MCPIP will
determine the record size from the file's header
record. If the output record size specified is
greater than 1000 or if an input record size is 0,
MCPIP prints an error message since it cannot handle
variable-length records. The high order 11 bits of
the = option are used to specify the version number
for the file. The = option is ignored if the output
file is not a cassette or magnetic tape file.

Assume the input device is a cassette drive. You
must also specify an input device on the command
decoder line, but it is ignored. Use this option
when there are no cassette handlers configured into
your system. The drive number is specified as an
option, for example, /1 represents drive 1. Do not
use the /1 and /0 options in the same command line.

Assume the output device is a cassette drive. You
must also specify an output device on the command
decoder line, but it is ignored. Use this option
when there are no cassette handlers configured into
your system. You specify the drive number as an
option. Do not use the /1 and /0 options in the same
command line.

Read the input cassette or magnetic tape directory
and write it onto the output file. Notice that in
this case the input file itself is not transferred,
only the directory. The /L option applies only if
the input device is a cassette or magnetic tape.

If you have not specified a file name, you should
zero the cassette or magnetic tape on the drive
specified as output by writing a sentinel file on it.
Every magnetic tape or cassette should be zeroed
before you use it for the first time. If you specify
a file name (for a cassette or magnetic tape drive),
write a sentinel file after the file specified.

18-3

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Although cassette or magnetic tape file names may have 3-character
extensions, OS/8 allows only 2-character extensions. Thus, when
looking up a cassette file, although all three characters may be
specified, only the first two are significant. For example,
CSAO:FILE.PAL might match a file called FILE. PAT. All files on a
standard cassette must be unique with respect to the file name and the
first two characters in the extension. On output, the third character
of the extension is always a space (unless you specify the /B option).

NOTE

If you type CTRL/C while a write
operation is in progress on a cassette
or magnetic tape, MCPIP writes an
end-of-file before returning to the
Keyboard Monitor.

18.2 MCPIP ERROR MESSAGES

Error messages that appear while MCPIP is running are listed in Table
18-2. If you specify an output file on a cassette or magnetic tape
and ~~ile by that name already exists, the file on the output drive
is deleted before any transfer is performed. If MCPIP detects an
error while a cassette or magnetic tape output file is open, it tries
to close the output file by writing a sentinel file on the output
cassette or magnetic tape.

Message

CANNOT HANDLE VARIABLE
LENGTH RECORDS

CLOSE ERROR

device DOES NOT EXIST

ENTER ERROR

FETCH ERROR

Table 18-2
MCPIP Error Messages

Meaning

The records on the input and output
files specified are not the same size.
MCPIP cannot handle variable length
records.

MCPIP is not able to close the file.
A bad file just created on magnetic
tape or cassette must be removed by
placing a sentinel file after the
preceding file. (See the /Z option.)

The device specified does not exist on
the OS/8 system. "Device" is a set of
four characters given when MCPIP
expected an OS/8 device name such as
DTAO.

Error occurred while trying to enter
an output file. This message usually
means that the cassette or magnetic
tape has no sentinel file.

Error occurred while trying to fetch
an OS/8 device handler.

(continued on next page)

18-4

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Message

Table l8-2 (Cont.)
MCPIP Error Messages

Meaning

-------------------------+--~

file NOT FOUND

ILLEGAL * OR ?

ILLEGAL SYNTAX

INPUT ERROR

NO INPUT FILE

NO OUTPUT FILE

OUT-IN

OUTPUT DEVICE FULL

OUTPUT ERROR

RECORD SIZE TOO BIG

TOO MANY FILES

The file specified cannot be found.
"File" is the actual name of the file
that was not found.

Wild card * or? was specified in a
MCPIP command line. MCPIP does not
accept the wild card construction.

The command line to the Command
Decoder contains an illegal character
or was incorrectly formatted.

An input error occurred while reading
the file.

No input file was specified when one
was required.

No output file was specified when one
was required.

Both the input and output devices were
specified as the same cassette or
magnetic tape drive.

Either the device or the directory
lacks room.

Output error - possibly a WRITE LOCKed
device, parity error, or attempt to
output to a read-only device.

The output record size is greater than
1000 or an input record size is O.

More than one output device or more
than one input device was specified.

18-5

CHAPTER 19

OCTAL DEBUGGING TECHNIQUE (ODT)

aDT allows you to run your program on the computer, control its
execution, and make alterations to the program by typing instructions
on the keyboard.

19.1 FEATURES

aDT features include location examination and modification, and
instructions breakpoints to return control to aDT (breakpoints). aDT
makes no use of the program interrupt facility and is invisible to
your program.

The breakpoint is one of aDT's most useful features. When debugging a
program, allow it to run normally up to a predetermined point, where
you may examine and possibly modify the contents of the accumulator
(AC), the link (L), or various instructions or storage loca~ions
within your program, depending on the results you find. To accomplish
this, aDT acts as a monitor to the program.

You decide how far you wish the program to run, and aDT inserts an
instruction in your program which, when encountered, causes control to
transfer back to aDT. aDT immediately preserves in designated storage
locations the contents of the AC and L at the breakpoint. It then
prints out the location where the breakpoint occurred and the contents
of the AC at that point. aDT will then allow you to examine and
modify any location of your program (or those locations containing the
AC and L). You may also move the breakpoint and request that aDT
continue running your program. aDT will restore the AC and L, execute
the trapped instruction, and continue in your program until it
encounters the breakpoint again or terminates the program normally.

19.2 CALLING AND USING ODT

Call aDT into use by typing:

.aDT

in response to the Keyboard Monitor dot. Before you call aDT, you
should have a running version of your program in memory. Running aDT
disturbs none of your memory because the sections of the program aDT
may occupy when in memory remain on the system device and swap back
into memory as necessary. aDT uses the Job Status Word of the
particular program to determine whether or not swapping occurs. If
the program does not use locations 0-1777 in field 0, less swapping
occurs during use of the breakpoint feature.

19-1

OCTAL DEBUGGING TECHNIQUE (ODT)

If you are typing any amount of program directly into memory (in
octal), the memroy control block of the program may not reflect the
true extent of the program. If you make octal additions below
location 2000 in field 0, ODT may give erroneous results. You can
correct this condition by correcting the Job Status Word, which is
location 7746 of field O. You can examine and change this by using
ODT. Location 7745 of field 0 is the l2-bit starting address of the
program in memory, and location 7744 contains the field designation in
the form 62n3 (where n is the field designation of the starting
address) .

When using the breakpoint feature of ODT, you should keep the
following operating characteristics in mind:

• If a breakpoint is inserted at a location which contains an
auto-indexed instruction, the auto-indexed register is bumped
immediately after the breakpoint is hit. Thus, when control
returns to you in ODT, the contents of the register will be
incremented by one. The breakpoint instruction is executed
properly, but the index register, if examined, may appear to
contain one greater than it should.

• ODT keeps track of the TTY flag and restores the TTY flag when
it continues from a breakpoint.

• The breakpoint feature uses locations 4, 5, and 6 in the
memory field where the breakpoint is set.

• The breakpoint feature of ODT uses the table of user-defined
device names as scratch storage, destroying any device names
you may have created. After a session with ODT in which you
use breakpoints, give a DEASSIGN command to clear out the
user-device name table.

• Do not set breakpoints in the Monitor, in the device handlers,
or between a CIF and the following JMP instruction.

You should not use user-defined device names in programs being
developed with ODT breakpoints.

If you attempt any operations in non-existent memory, ODT ignores the
command and types "?". Thus, if the machine in use has 8K (fields 0
and 1) and you attempt to examine locations in field 2 and above, ODT
responds with ?

ODT should not be used to debug programs that use interrupts. Typing
CTRL/C returns control to the Keyboard Monitor; you can save the
program on any device.

19.3 COMMANDS

19.3.1 Special Characters

Slash (I) - Open Preceding Location

The location examination character (I) opens the location addressed by
the octal number preceding the slash and prints its contents in octal.
You can then modify the open location by typing the desired octal
number and closing the location. ~ny octal number from one to five

19-2

OCTAL DEBUGGING TECHNIQUE (ODT)

digits long is legal input. If you enter more than five digits, only
the last five entered are accepted by ODT. Typing / with no preceding
argument opens the location named last, for example:

400/1540
400/1540 2468?
400/1540 02345
102345

Return - Close Location

If you have typed a valid octal number after ODT has printed the
content of a location, typing the RETURN key causes the binary value
of that number to replace the original contents of the opened location
and the location to be closed. If you typed nothing, the location
closes but the content of the location does not change, for example:

400/6046 location 400 is unchanged.
400/6046 2345 location 400 is changed to contain 2345.
12345 6046 replace 6046 in location 400.

Typing another command will also close an opened register, for
example:

400/6046 401/6031 2346
40/6046 401/2346

location 400 is closed and unchanged
and 401 is opened and changed to 2346.

Line Feed - Close Location, Open Next Location

The LINE FEED key has the same effect as the RETURN key, but it also
opens the next sequential location and prints its contents, for
example:

400/1540
is

00401 12345
00402 17650

location 400 is closed unchanged and 401

opened. User types change, 401 is closed
containing 1234 and 402 is opened.

~ (Shift /N) - Close Location, Take Contents as Memory Reference and
Open Same

The up arrow will close an open location just as the RETURN key does.
Further, it will interpret the contents of the location as a memory
reference instruction, open the referenced location and print its
contents, for example:

404/3270 ~
00470 14512 0000

3270 symbolically is "DCA, this page,
relative location 70," so ODT opens
location 470.

< (Shift /0) Close Location, Open Indirectly

The back arrow will close the location that is currently open, and
then interpret its contents as the address of the location whose
contents it will print and open for modification, for example:

3<,>~j/~5;:!03 ~

00203 / 3~j7:~
03~.1/:'" /0.216

19-3

OCTAL DEBUGGING TECHNIQUE (ODT)

19.3.2 Illegal Characters

Any character that is neither a valid control character nor an octal
digit causes the program to ignore the current line and to print a
question mark, for example:

4U?

406/1136 67K?
/1l36

19.3.3 Control Commands

ODT opens no location.

ODT ignores modification and closes
location 406.

nnnnG - Transfer Control to User at Location nnnn

Clear the AC then go to the location specified before the G. The
program will initialize all indicators and registers and insert the
breakpoint, if any. Typing G alone will cause a jump to location o.

nnnnB - Set Breakpoint at User Location nnnn

Instructs ODT to establish a breakpoint at the location specified
before the B. If you type B alone, ODT removes any previously
established breakpoint and restores the original contents of the break
location. You may change a breakpoint to another location whenever
ODT is in control by simply typing nnnnB, where nnnn is the new
location. Only one breakpoint may be in effect at one time;
requesting a new breakpoint removes any previously existing one.

You may not set a breakpoint on any of the floating-point instructions
that appear as arguments of a JMS.

The breakpoint (B) command does not make the exchange of ODT
instruction your instruction, it only sets up the mechanism for doing
so. The actual exchange does not occur until you execute a "go to" or
a "proceed from breakpoint" command.

When, during execution, your program encounters the location
containing the breakpoint, control passes immediately to ODT (via
location 0004). ODT saves the C(AC) and C(L) at the point of the
interruption in special locations accessible to ODT. Your instruction
that the breakpoint was replacing is restored before the address of
the trap and the content of the AC are printed. ODT has not yet
executed the restored instruction. It will not until you give the
"proceed from breakpoint" command. Any user location, including those
containing the stored AC and Link, can now be modified in the usual
manner. You can also move or remove the breakpoint at this time.

An example of breakpoint usage follows the section "Continue and
Iterate Loop .•. "

A - Open C(AC)

When ODT encounters the breakpoint it saves the C(AC) and C(L) for
later restoration. Typing A after having encountered a breakpoint
opens for modification the location in which the AC was saved and
prints its contents. You may now modify this location in the normal
manner (see Slash), and the modification will be restored to the AC
when you give the "proceed from breakpoint" command.

19-4

OCTAL DEBUGGING TECHNIQUE (ODT)

Open C (L)

Typing L opens the Link storage location for modification and prints
its contents. You may modify the Link location as usual (see Slash) ,
and that modification will be restored to the Link when you give the
"proceed from the breakpoint" command.

C - Proceed (Continue) from a Breakpoint

Typing C after ODT encounters a breakpoint causes ODT to insert the
latest specified breakpoint (if any), restores the contents of the AC
and Link, executes the instruction trapped by the previous breakpoint,
and transfers control back to your program at the appropriate
location. Your program then runs until ODT encounters the breakpoint
again.

NOTE

If you do not encounter a breakpoint set
by ODT while ODT is running your
program, the instruction that causes the
break to occur will not be removed from
the program.

nnnnC - Continue and Iterate Loop nnnn Times Before Break

You may wish to establish the breakpoint at some location within a
loop of your program. Since loops often run to many iterations, some
means must be available to prevent a break from occurring each time
ODT encounters the break location. This is the function of nnnnC
(where nnnn is an octal number). After ODT encounters the breakpoint
for the first time, this command specifies how many additional times
the loop will repeat before another break is to occur. The section on
the B command describes the break operations.

The following program, which increases the value of the AC by
increments of 1, illustrates the use of the Breakpoint command.

*200

0200 *200
00200 7300 ClA Cll
00201 1206 A, TAD ONE
00202 2207 B, ISZ CNT
00203 5202 JMP B
00204 5201 JMP A
00205 7402 HlT
00206 0001 ONE, 1
00207 0000 CNT, 0

$
*200

A 0201
B 0202
CNT 0207
ONE 0206
0201B
200G
00201 (0;0000
C
00201 (0;0001
C
00201 (0;0002
4C
00201 (0;0006

19-5

OCTAL DEBUGGING TECHNIQUE (ODT)

You have now loaded and started ODT. ODT inserts a breakpoint at
location 0201. Execution stops here, showing the AC initially set to
0000. The Proceed command (C) executes the program until ODT
encounters the breakpoint again (after one complete loop), and shows
the AC to contain a value of 0001. Execution continues again,
incrementing the AC to 0002. At this point, use the command 4C,
allowing execution of the loop to continue 4 more times (following the
initial encounter) before stopping at the breakpoint. The contents of
the AC have now incremented to 0006.

M - Open Search Mask

Typing M opens for modification the location containing the current
value of the search mask and prints its contents. Initially the mask
is set to 7777. You may change it by opening the mask location and
typing the desired value after the value that ODT printed, then
closing the location.

M Line Feed - Open Lower Search Limit

The word immediately following the mask storage location contains the
location where the search will begin. Typing the LINE FEED key to
close the mask location opens the lower search limit for modification
and prints its contents. Initially the lower search limit is set to
0000. You may change it by typing the desired lower limit after the
one ODT printed, then closing the location.

M Line Feed - Open Upper Search Limit

The next sequential word contains the location where the search will
terminate. Typing the LINE FEED key to close the lower search limit
opens the upper search limit for modification and prints its contents.
Initially, the upper search limit is the beginning of ODT itself,
7577. You may also change it by typing the desired upper search limit
after the one ODT printed, then closing the location with the RETURN
key.

nnnnW - Word Search

The command nnnnW (where nnnn is an octal number) will conduct a
search of a defined section of memory, using the mask and the lower
and upper limits you have specified, as indicated above. Use the word
searching operations to determine if a given quantity is present in
any of the locations of a particular section of memory.

The search operates as follows: ODT masks the expression nnnn you
type preceding the W, and saves the result as the quantity it is
searching for. (Do all masking by performing a Boolean AND between
the contents of the mask word, C(M), and the word containing the
instruction ODT will mask.) ODT then masks each location within your
specified limits and compares the result to the quantity it is
searching for. If the two quantities are identical, ODT prints the
address and the unmasked contents of the matching location, and the
search continues until ODT reaches the upper limit.

A search does not alter the contents of any location. The following
example is for a search of locations 3000 to 4000 for all ISZ
instructions, regardless of what location they refer to (that is,
search for all locations beginning with an octal 2).

19-6

OCTAL DEBUGGING TECHNIQUE (ODT)

M/777? 7000 Change the mask to 7000, open lower
7453/5273 3000 search limit.

Change the lower limit to 3000, open upper
limit.

7454/1335 4000 Change the upper limit to 4000, close
:!ooow location.
00005 12331 Initiate the search for ISZ instructions.
00006 12324 This section of core has 4 ISZ
00033 1:!575 instructions.

19.4 ADDITIONAL TECHNIQUES

19.4.1 Current Location

ODT remembers the address of the current location, or last location
examined, which remains the same, even after you type the commands G,
C, and B. You may open this location for inspection by typing the
slash (I) character.

19.4.2 Indirect References

When ODT encounters an indirect memory reference instruction or an
address constant, open the actual address by typing A and < (SHIFT IN
and SHIFT 10, respectively).

19.5 ERRORS

The only legal inputs are control characters and octal digits. Any
other character will cause ODT to ignore the character or line and to
print a question mark. Typing G alone is an error. You must precede
G with an address to which control will be transferred. Typing G by
itself will cause control to be transferred to location O.

19.6 PROGRAMMING NOTES SUMMARY

ODT will not turn on the program interrupt, since it does not know if
your program is using the interrupt. It does, however, turn off the
interrupt when it encounters a breakpoint, to prevent spurious
interrupts.

Breakpoints are fully invisible to "open location" commands; however,
you may not place breakpoints in locations your program will modify in
the course of execution, or ODT will destroy the breakpoint. Use
caution in placing a breakpoint between a call to USR function code 10
and the following call to USR function code 11.

If your program does not encounter a trap that ODT set, the breakpoint
instruction will remain.

You can use ODT to debug programs using floating-point
because the intercom location is 0004 and because
breakpoints on a JMS with arguments following.

19-7

instructions
you can set

OCTAL DEBUGGING TECHNIQUE (ODT)

19.7 SUMMARY OF ODT COMMANDS

Table 19-1 presents a brief summary of the ODT commands. You can
input all addresses as 5 digits; they are printed as 5 digits.

Command

nnnnn/

/

nnnn;

RETURN key

LINE FEED key

n+

n-

t or A

(up-arrow or
circumflex)

Table 19-1
ODT Command Summary

Meaning

Open location designated by the octal number
nnnnn, where the first digit represents the
memory field. ODT prints the contents of the
location and a space, and waits for you to
enter a new value for that location or close
the location.

Reopen latest opened location.

Deposit nnnn in the currently opened
location, close that location, and open the
next sequential location for modification.
You can deposit a series of octal values in
sequential locations through use of the ;
character. Multiple ;'s skip a memory
location for each; typed and prepare to
insert subsequent values beyond the one(s)
skipped.

Close the previously opened location.

Close location; open the next
location for modification, and
contents of that location.

sequential
print the

Open the current
modification and
location.

location plus n for
print the contents of that

Open the current location minus n
modification and print its contents.

for

Close location, take contents of that
location as a memory reference, and open
the location referenced, printing its
contents.

NOTE

No distinction is made between
instruction op-codes when using •
Thus, all op-codes (0-7) are
treated as memory reference
instructions. Also, exercise great
care when using with indirectly
referenced auto-index registers.
If you use A in this case, the
contents of the auto-index register
are incremented by one. Check to
see that the register contains the
proper value before proceeding.

(continued on next page)

19-8

Command

+ or
(back-arrow
or underline)

nnnnnG

nnnnnB

B

A

L

C

nnnnC

M

M LINE FEED

M LINE FEED

nnnnW

D

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 19-1 (Cont.)
ODT Command Summary

Meaning

Close location, take contents of that
location as a 12-bit address, and open that
address for modification, printing its
contents.

Transfer control of program to location
nnnnn, where the first digit represents the
memery field.

Establish a breakpoint at location nnnnn,
where the first digit represents the memory
field. ODT allows only one breakpoint at
any given time.

Remove the breakpoint.

Open for modification the location where
ODT stored the contents of the accumulator
when it encountered the breakpoint.

Open for modification the location where
ODT stored the contents of the link when it
encountered the breakpoint.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past
the breakpoint nnnn times before
interrupting your program at the breakpoint
location.

Open the search mask, initially set to
7777, which you can change by typing a new
value.

Open the lower search limit. Type in the
location (4 octal digits) where the search
will begin.

Open the upper search limit. Type in the
location (4 octal digits) where the search
will terminate.

Search the portion of core as defined by
the upper and lower limits for the octal
value nnnn. Search can only be done on a
single memory field at a time. See the F
command.

Open for modification the word containing
the data field which was in effect at the
last breakpoint. Contents of D always
appear as multiples of 10(8) - i.e., 10
means field 1, 20 field 2, etc.

(continued on next page)

19-9

Command

CTRL/O

F

RUBOUT key

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 19-1 (Cont.)
ODT Command Summary

Meaning

Stop any printing currently in progress.

Open for modification the word
the field used by ODT in the
command, in the < and A

addressing) commands, or in
breakpoint (depending upon which
most recently. The contents
always expressed as multiples of
in the D command).

containing
W (search)

(indirect
the last
was used

of Fare
10 (8) (as

Cancels previous number typed, up to the
last non-numeric character typed.

19-10

CHAPTER 20

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Use PIP to transfer files between devices, to merge and delete
files, and to list, zero, and compress directories.

20.1 CALLING AND USING PIP

To call PIP from the system device, type:

.R PIP

in response to the Keyboard Monitor dot. The Command Decoder then
prints an asterisk in the left margin of the teleprinter paper and
waits to receive a line of I/O files and options. PIP accepts up to
nine input files and performs output to a single output file; you
generally place options at the end of the command string.

Since PIP performs file transfers for all file types (ASCII, Image
or SAVE format, or Binary), there are no assumed extensions PIP
assigns to file names for either input or output files. You must
specify all extensions.

Following completion of a PIP operation, the Command Decoder again
prints an asterisk in the left margin and waits for another PIP I/O
specification line. You can return to the Keyboard Monitor by
typing CTRL/C or by terminating the specification line with the
ALTMODE key.

20.1.1 PIP Options

Table 20-1 details the options allowed on a PIP I/O specification
line. Generally, you indicate /A, /B, or /1 for each transfer; if
you have specified none of these, the system proceeds as if you had
typed /A.

Option

/A

Table 20-1
PIP Options

Meaning

Transfer files in ASCII mode. PIP modifies the file as
it copies it: it deletes embedded blank tape and
rubouts and it reduces leader/trailer code to a
standard length. PIP may also do some editing of the
input file under control of the /C and /T options (see
below) •

(continued on next page)

20-1

Option

/B

/C

/D

/E

/F

/G

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Meaning

Transfer files in Binary mode (used for absolute and
relocatable binary files). PIP reduces leader/trailer
code to a standard length, but it does not recalculate
the checksum.

NOTE

If you combine several absolute binary files
into one, indicate the /S option to the
Absolute Loader in order for the files to load
properly. (The Linking Loader will not load
combined files.)

Eliminate trailing blanks. Valid in ASCII mode only.

Delete the old copy of the output file before doing any
data transfer. If you do not use /D, PIP will not
delete the old copy until it has processed all input.
For example:

*DTA1:0FILE<DTA2:NFILE/D

will first delete file OFILE on DTAl, and then transfer
the data from NFILE to a new OFILE. /D is useful when
the output device does not have room for both the old
file and the new file.

You may also use /D to delete up to three files at a
time by specifying the files to be deleted as output
files and not specifying any input files. For example:

*OLDABC,DTA3:FILES/D~

This command string deletes OLDABC from DSK and FILES
from DTA3.

List directories in extended form (the lengths of the
empty files are also listed).

List directories in short form (file names only).

Ignore any errors that occur during a file transfer and
continue copying.

(continued on next page)

20-2

Option

/1

=n

/0

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Meaning

Transfer files in image mode. Used to transfer core
image (SAVE format) files, and any other files which
do not fall into either ASCII or Binary categories.

This option always opens the output file even if you
specified no input files. Thus, the /1 combined with
the =n option allows you to substitute a named file
for an empty one. For example, suppose you
accidentally deleted a 23-block file named IMPORT.PA.
You can recover it with the following command:

*IHPORT.PA[23J(/I=27

Note that 23(10) = 27(8).

Save n extra words per file entry in the directory to
contain descriptive information about the file (only
the 2 low order octal digits on nnnn are
significant). For use with the /Z and /S options
only. Typing =1 allows PIP to automatically store
the date of the file creation in the directory. (=1
is assumed after /Z or /S options unless otherwise
specified. Specifying =0 will still reserve one
extra word per entry.) Specifying =100 will reserve
no extra words per entry.

If you include an = option with an image mode (/1)
transfer, the low order 12-bits of the = option
specify the desired length with which to close the
output file. PIP gives the output file this length
except in the following two cases:

1. If the data written is greater than the specified
length, PIP gives the output file its correct
size.

2. If the length specified is greater than the empty
space available, PIP transfers the data but does
not close the file. PIP prints the error
message:

.!1!!.rJI TOR ERROR 6 AT x;·: x;·:
(UIRECTORY OVERFLOW)

and control returns to the Keyboard Monitor. PIP
does not destroy data in the file following the
EMPTY.

Okay to compress files or to zero
When used with the /S or /z option,
messages ARE YOU SURE? and ZERO SYS?
The system assumes you want the /S or

the directory.
/0 prevents the

from printing.
/z option.

(continued on next page)

20-3

Option

/5

/T

/V

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Meaning

Move all files from the input device to the output
device, eliminating any embedded empty files. You
should explicitly state all device names, as no
default devices are assumed. The directory of the
output device will contain only those files that
appeared on the input device. Whenever a /5 is
initiated, PIP asks:

ARE YOU SURE?

Respond with a "Y" if you want the compression;
typing any other character aborts the command.

NOTE

When you use the /5 option, PIP reads the
output device directory to determine whether
it is a system directory. If a system exists
on the output device, PIP will preserve that
system on the /5 transfer. To eliminate the
system directory, perform a /Z before the /5.

In addition to compressing directories,
means of copying one device to another.
DECtapes, for example, by compressing
onto another tape.

Perform the
characters:

following conversion

/5 provides a
You can copy
one DEC tape

of special

Character Is Converted To:

TAB

Vertical
TAB

FORM FEED

enough spaces to reach the next TAB
stop (every eighth position)

5 LINE FEEDs

9 LINE FEEDs

IT option is valid in ASCII mode only.

Print the current version number of PIP. You should
include this option in the first command line entered
after you call PIP. PIP prints the version number on
the console terminal.

(continued on next page)

20-4

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

,------,--------------------------"---------,
Option

IY

IX

Meaning

Copy the OS/8 System Area (records 0, 7-67) between
the output and first input file. Both devices must
be file-structured devices. If you specified no file
name after a device name, the System Area of that
device is assumed. If you use the IZ option with IY,
PIP places a zeroed system directory on the output
device before the system transfer takes place. A
system directory indicates that file storage starts
at record 70 rather than record 7.

Zero directory of output device before file transfer.
Before using a DECtape for the first time, always use
the IZ option to create an empty file directory. No
input files are specified, for example:

*DTA2: fZ"".=!

PIP uses one extra word per entry if yo~ specify no
"_H. Thus, the DATE word is always left available in
a new directory.

If you attempt to zero the directory of the system
device, the message:

ZERO SYS?

appears. A response of 'Y' will zero the directory;
any other response will abort the command and return
control to the Command Decoder.

NOTE

PIP does not ask the question ZERO SYS for a
handler that is co-resident with the SYS:
handler. For example, if both SYS: and DTAO
are LINCtape 0, a request to zero LINCtape 0
will not produce the question. This is a
potentially dangerous command.

No data transfer occurs if you do not specify any
input files. Thus, as mentioned previously, you can
use IZ to zero a directory, and 10 to delete a
permanent file without creating a file. For the
three directory listing options (IE, IF, IL), if you
do not specify an output device, the device TTY: is
assumed. If you do not specify an input device,
device DSK: is assumed.

20-5

PERIPHERAL INTERCHANGE PROGRAM (PIP)

20.1.2 Examples of PIP Specification Commmands

The following are legal command
completed an operation, control
additional input.

strings to PIP. When PIP has
returns to the Command Decoder for

Example 1, ASCII Transfer:

.R PIP
iSYS:BLACK<PTR:

This command string transfers a tape from the paper tape reader to a
file on the system device under the name BLACK. PIP assumes that the
input tape is in ASCII format. (Control returns to the Command
Decoder; therefore, you need to give the .R PIP command only once.)

Example 2, ASCII File Merge:

~DTA3:MERGE<DTA1:FILE1,FILE2

This command string instructs PIP to merge the ASCII files FILEI and
FILE2 on DTAI into one ASCII file, MERGE, on DTA3.

Example 3, Binary Transfer:

*BIN.BN<PTR:/B

The above command reads a binary paper tape from the paper tape reader
and creates a binary file BIN.BN on the device DSK.

Example 4, Image Transfer:

*SYS:GAG.SV~PAL8.SV/I

PIP transfers the core image file PAL8.SV from the device DSK to
GAG.SV on the system device.

NOTE

A problem occurs when you transfer files
longer than 255 blocks in Image Mode
from a directory device. If you attempt
this, the transfer will not end with the
real end-of-file, but will continue
until you reach the output limit; an
error message will occur. For example,
trying to transfer FORT.PA or SABR.PA
from the directory device using Image
Mode will cause this error. Use ASCII
mode for all PIP transfers of this type,
or use the FOTP program.

Example 5, Directory Listing:

*TTY: :'/E

This command string produces an extended listing of the device DSK on
the Teletype. An extended listing contains all files with their
associated lengths and all empty spaces in the directory. For
example, an extended listing might appear as follows. (The current

20-6

PERIPHERAL INTERCHANGE PROGRAM (PIP)

date appears before the file listing provided you have given the DATE
command; see the section concerning the Keyboard Monitor for a
description of the DATE command.}

2/17/72
EDIT .SV 12 1/10/72
T[ST2 4 1/10/72
AileD .DA 1 2/17/72
::"EMPTY> 7
TEST2 .RL 4 1/10/72
<EMPTY> 702
~O~ FREE BLOCKS

The file lengths and number of
values. The date of file
additional information word is
section Additional Information

Example 6, Directory Listing:

*/F

free blocks are designated as decimal
creation is printed if at least one
present in the directory (refer to the
Words in File Directories) .

This command produces a directory listing of file names only. Thus,
the preceding directory would appear on the teleprinter as follows:

2/17/72
EDIT .S~
TEST2
AFIr.D • DA
H'.T2.RL

709 FREE BLOCKS

Example 7, System Area Transfer:

*DTA1 :HEAD"""/Y

PIP transfers records 0 and 7-67 from SYS: to a file named HEAD on
DTA1.

Example 8, System Area Transfer:

*SYS::DTA1:HEAD/Y

PIP transfers the contents of the file HEAD on DTAl to the System Area
(records 0 and 7-67) of the system device. It also checks the input
file for validity before the transfer occurs.

Example 9, System Transfer with Directory Zero:

*DTA1:-:DTAO:<YZ>

This first creates a zero system directory on DTA1, and then transfers
the system area from DTAO to the System Area on DTA1. A system
directory indicates that file storage begins at record 70 rather than
record 7.

Example 10, System Area Transfer:

*DTA1:TRAN<DTA2:TRAN/Y

This command string instructs PIP to transfer TRAN from DTA2 to DTA1.
Since you used the /Y option, TRAN must be a copy of the OS/8 System
Area. However, since transfers of this type involve files on both the
I/O devices and not the System Area, PIP treats the transfer as an
image transfer, and you can use either the /Y or /1 options.

20-7

PERIPHERAL INTERCHANGE PROGRAM (PIP)

20.2 ADDITIONAL INFORMATION WORDS IN FILE DIRECTORIES

If a device has any additional information words specified in its
directory, OS/8 automatically enters the last date specified in a DATE
command into the first of the additional information words when you
create a file on that device. Dates put into these additional words
appear in directory listings. Words after the first are not used by
the OS/8 system.

Whenever you give a /Z or IS, you can specify additional words by a
/Z=n or /S=n construction. You can change the number of additional
words by compressing a device onto itself. The system uses the first
additional information word for the file's creation date.

NOTE

DIGITAL initially creates the system
with one additional word in the file
directory.

20.3 PIP ERROR MESSAGES

Table 20-2 lists the PIP error messages and their meanings.

Message

ARE YOU SURE?

BAD DIRECTORY ON
DEVICE i n

BAD SYSTEM HEAD

CAN'T OPEN OUTPUT
FILE

Table 20-2
PIP Error Messages

Meaning

Occurs when using /S option. A
response of Y will compress the files.

Occurs when:
1. PIP is trying to read the

directory, but it is not a OS/8
directory.

2. The output device does not have a
system directory; that is, file
storage begins at record 7 (occurs
during a /Y transfer).

n is the number of the file in the
input file list.

Occurs when you use the /Y option and
the area being transferred does not
contain OS/8.

Occurs when:
1. Output file is on a read-only

device.
2. No name has been specified for the

output file.
3. A /Y transfer to a non-directory

device has been attempted.
4. Output file has zero free blocks.

(continued on next page)

20-8

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Message

DEVICE t n NOT A
DIRECTORY DEVICE

DIRECTORY ERROR

ERROR DELETING
FILE

ILLEGAL BINARY
INPUT,FILE i n

INPUT ERROR,
FILE i n

10 ERROR IN (file name)
-CONTINUING

LINE TOO LONG IN
FILE t n

NO ROOM FOR
OUTPUT FILE

NO ROOM IN (file name)
-CONTINUING

OUTPUT ERROR

PREMATURE END OF
FILE,FILE i n

Table 20-2 (Cont.)
PIP Error Messages

Occurs when:

Meaning

1. Trying to list the directory of a
non-directory device.

2. The input designed in a /Y
transfer is not on a directory
device.

n gives the number of the device in
the input list.

Indicates an
reading or
during a /S
aborted;
garbled.

error has
writing

option.
output is

occurred while
the directory

The option is
likely to be

You attempted to delete a file that
does not exist. Check that the device
name was explicitly given for all
files.

Self-explanatory; n is the number of
the file in the input file list.

An input error occurred while reading
file number n in the input file list.

An error has occurred during
transfer. The name of the file
transferred is indicated.

a /S
being

In ASCII mode a line has been found
greater than 140 characters. Make
certain the file is an ASCII file. n
is the number of this file in the
input list.

Either the device or the directory
lacks room.

Occurs during use of the /S option.
The output device cannot contain all
of the files on the input device. The
message is printed for each file which
will not fit into the output device.
The file name is indicated.

Output error - possibly a WRITE LOCKed
device, parity error, or attempt to
output to a read-only device.

Occurs in 8inary Mode (/8) only.
PIP found a physical end-of-file
before the final leader/trailer.

(continued on next page)

20-9

Message

SORRY - NO
INTERRUPTIONS

ZERO SYS?

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-2 (Cont.)
PIP Error Messages

Meaning

Occurs if:
1. You type

compressing
the transfer

AC (CTRL/C) while
a file onto itself;
continues.

2. You do a /Y transfer with system
device as the output device, or if
the transfer has both input and
output on the same device.

If you make any attempt to zero the
system device directory, this message
occurs. Responding with Y causes the
directory to be zeroed. Responding
with other character aborts the
operation.

20-10

CHAPTER 21

PIPIO

PIPIO is designed to provide file compatibility with the DECsystem-10
computer. PIPIO is capable of transferring files to and from
DECsystem-10 formatted DECtapes, and it provides the facilities for
transferring ASCII, Image (PALlO binary output), and sequenced ASCII
(LINED output) files.

PIPIO uses
optimizes
does, thus
storage.

an internal DECsystem-10 DEC tape routine. This routine
file storage in the same way that the DECsystem-10 Monitor
resulting in the most efficient algorithm for block

PIPIO has the following features:

• Automatically determines which of the specified DECtapes is a
DECsystem-10 tape (384(10) words/blocks).

• Works interchangeably on TC08 and TD83 DECtape controllers.

• Reads and writes to DECsystem-10 tapes in both forward and
reverse directions on TC08 tapes, forward only on TD83 tapes.

• Keeps the DECsystem-10 DECtape directory in core during the
file-copying operations of PIPIO, thus eliminating the
necessity for rereading the directory. The directories are
purged from core when PIPIO reads another command line.

• Permits transfers between two OS/8 devices as well as
transfers between two DECsystem-10 tapes.

• Zeroes DECsystem-10 DECtape directories, deletes DECsystem-10
files, and lists DECsystem-10 directories.

You cannot use PIPIO while running the OS/8 BATCH program.

21.1 CALLING AND USING PIPIO

To use PIPIO, type:

.R PIP10

PIPIO responds with an asterisk and waits to receive a command line of
I/O files and options. The command line must have one output
specification and may have from zero to nine input specifications.
PIPIO merges multiple input files unto the output file.

A DECsystem-10 file name may have a 0- to 3-character file extension:
an OS/8 file name may have a 0- to 2-character extension.

21-1

PIPIO

Since PIPIO automatically determines which DECtape mounted is a
DECsystem-IO tape, no indication for DECsystem-IO is necessary.

Following completion of a PIPIO operation, the PIPIO command decoder
again prints an asterisk in the left margin and waits for another
PIPIO I/O command line. To return to the Keyboard Monitor, type
CTRL/C.

NOTE

PIPIO uses its own command decoder, not
that of the standard OS/8; however, the
command decoders are functionally the
same.

21.2 HOW TO COpy LARGE FILES WITH PIPIO (SR)

The DIGITAL version of PIPIO V3 cannot copy an OS/8 file greater than
255 blocks long in image mode.

The following patch creates a program called PIPIOX (with version
number X3): you may use it to copy large OS/8 files in image mode.
However, this patch prevents you from copying concatenated input
files. Do not use this patch if you are concatenating several OS/8
input files. Concatenate them first with PIP, then use PIPIOX.

~GET SYS PIP10
.DDT

3236/1034
4317/4026
~c

.SAVE SYS PIP10X

21.3 PIPIO OPTIONS

6201;1642;6211,5244;5700
4030

The following table details the various options allowed on a PIPIO I/O
command line. The general format for PIPIO command lines is the same
as that for the standard OS/8 Command Decoder.

Option

/B

Meaning

Transfer files in DECsystem-IO binary mode.
device must be a DECsystem-lO DECtape.

The output

/D Delete the old copy of the output file before continuing the
transfer. If you do not use /D, PIPIO copies the file before
it deletes the old copy.

/F List the short form of DECsystem-IO DECtape directory.

/I Copy in Image mode (compatible with PALlO binary files)
rather than ASCII mode.

/L List the directory of the input device. This input device
must be a DECsystem-IO DECtape. If you specify no output
device, TTY is assumed to be the output device.

/P Preserve LINED sequence numbers in DECsystem-IO format.

/Z

Sequence numbers are normally deleted.

Zero the output device directory.
DECsystem-IO DECtape.

21-2

The output must be a

PIPIO

21.4 PIPIO EXAMPLES

The following examples assume that you have mounted a DECsystem-lO
DECtape on DTA7. In an actual operation, you may use any unit since
PIPIO can access any of the tape drives.

Example 1:

*ItTA7:FILE.EXT<FILE.EX/Z

The command line in Example 1 zeroes the DECsystem-lO directory on
DTA7 and transfers FILE.EX from DSK to the DECsystem-lO DECtape on
DTA7. If you do not use /Z, make sure that the DECsystem-lO tape has
a valid directory on it before you attempt transfers.

Example 2:

...!ItTA7:FILE.E~T·: .. ItTAl :Pl ,PTR: "DTA7:PARZ,TTY:

Example 2 merges five input files onto
(FILE.EXT) . The first input file is
second and third files are read from
fourth is a DECsystem-lO file named
from the terminal. This example shows
all OS/8 or all DECsystem-lO.

Example 3:

*DTA1:FILE.BN[10]~ItTA7:FILE.BIN/I

one DECsystem-lO output file
an OS/8 file (PI) on DTAl; the
the paper tape reader; the
PARZ on DTA7; and the fifth is
that input files need not be

The command line in Example 3 copies the DECsystem-lO file (FILE.BIN)
in Image mode since the DECsystem-lO file is a binary file. You must
use /1 to copy DECsystem-lO binaries. Note the use of square brackets
[] in the command; they have the same meaning as in the OS/8 command
decoder.

Example 4:

~DTA7:FILE.EXT</D

Example 4 indicates the deletion of a DECsystem-lO file (FILE.EXT)
from a device.

Example 5:

-.lDTA7: IL

If DTA7 has a DECsystem-lO DECtape mounted, the command line in
Example 5 will produce a directory listing of the device.

21.5 ERROR MESSAGES

All errors cause PIPIO to abort the current command and print another
asterisk. You can then enter the command correctly. (See Table
21-1.)

21-3

Message

DEVICE FULL

ERROR DELETING FILE

FILE NOT FOUND

I/O ERROR

NO SUCH DEVICE

PIPIO

Table 21-1
PIPIO Error Messages

Meaning

DECsystem-lO ran out of space on the
output file during a transfer.

The output file of a
not found, or an
file.

/D command was
error deleted the

The requested file was not found on
the specified device.

I/O device error, for example, parity,
write lock, out of paper.

Device name is not legal in this OS/8
system.

NOT OS8 FILE The output device specified with a /L
or /F option was not an OS/8 device or
file.

NOT PDP-IO FILE The output device specified with a /Z
option was not a DECsystem-lO tape, or
the input device specified with a /L
or /F option was not a DECsystem-lO
tape.

OUTPUT FILE OPEN ERROR PIPIO could not open the output file.
Check output directory to ensure that
enough space exists on the device.

PIPIO CANNOT BE CHAINED TO Self-explanatory.

SYNTAX ERROR Invalid PIPIO command line.

21-4

CHAPTER 22

RESOURCES (RESORC)

Using RESORC, you can determine the device handlers present on a given
OS/8 system. Other information about the handlers is available
through the use of RESORC options.

22.1 CALLING AND USING RESORC

To call RESORC from the system device, type:

.R RESORC

in response to the Keyboard Monitor dot. You may also call RESORC via
the CCL command RES (see the CCL section in Chapter 1). The Command
Decoder prints an asterisk in the left margin and waits to receive a
line of I/O files and options. RESORC accepts up to nine input files
and performs output to a single output file; you generally place
options at the end of a command string.

The output specification is the device where you are sending the
RESORC listing (specifying a file name and extension is optional). If
you do not specify an output device, TTY is assumed. If no file name
is specified, RE is assumed. If you do not specify a file name
extension, .LS is assumed.

The input specification may be one of three types:

• No input specification
If you do not enter an input specification, the OS/8 system
device is assumed.

• A device name only (dev:)
If the input specification is a device name only, the device
must be file-structured and is presumed to contain a valid
OS/8 directory and Keyboard Monitor. The device handlers
built into the system on that device are the ones RESORC
lists. These handlers are not available to you unless you
bootstrap onto the specified device (see the BOOT program in
this chapter).

• A device and a file name (dev:file.ex)
If you use this type of input specification, the file must be
a system-head file. (The /Y option in PIP creates such files
which are copies of the system portions of devices.) If you
specify no file name extension, the extension .SY is assumed.
RESORC prints the -handlers in the system that were saved on
the specified file. System-head files are 50 (decimal) blocks
long.

22-1

RESOURCES (RESORC)

22.2 RESORC OPTIONS

RESORC has three operating modes specified by options in the command
line. These modes are:

Option Mode

/E
/F
/L

Extended mode -- detailed handler information
Fast mode -- I-line printout (default)
Limited mode -- 3-column printout

22.2.1 Fast Mode (/F Option)

If you specify the /F option in a RESORC command line, or if you
specify no options, RESORC prints the permanent device names for
handlers on the system. If RESORC cannot determine the ASCII device
name for one of the devices, it prints the internal octal
representation of the device name and encloses it in parentheses.
(The OS/8 Software Support Manual includes this octal representation.)
For example:

.R RESORC
*/F
SYS,DSK,DTA2,DTAO,DTA1,(4667),TTY,LPT

The first two devices are always SYS and DSK. When you use the fast
mode, the devices are separated by commas and listed in order of their
internal device numbers.

22.2.2 Limited Mode (/L Option)

If you use the /L option in a RESORC command line, RESORC prints the
handler information in three columns. For example:

.R RESORC
*/L

128 FREE BLOCKS

NAMF TYPF USER
~:; -m :·w
[IS'" R"'81:. IN
DTA0 rC08 0
TTY TTY
LPT LPTR LPT

OS/8 V3F

Preceding the table of device names, RESORC prints the number of free
blocks on the device. This information is not available for
system-head.

The first column (NAME) lists the permanent names of devices on the
system. The second column (TYPE) lists the physical type of the
handler. OS/8 assigns a unique number to each type of device. RESORC
associates this number with a name as listed in Table 22-1. Note that
different devices which are similar in function have the same internal
type code. For example, line printers LP08, LS8E, and L645 have an
internal code of 04.

22-2

RESOURCES (RESORC)

The third column (USER) lists the name given to the device with the
Monitor ASSIGN command. If RESORC cannot determine the name from the
internal octal, it prints the octal code enclosed in parentheses.

Internal
Type Code

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
27
30

Table 22-1
RESORC Device Types

RESORC
Name Explanation

TTY Console terminal
PTR Paper tape reader
PTP Paper tape punch
CR8E Card reader
LPTR Line printer
RK8 RK8 disk
RF08 RF08 disk (1 platter)
RF08 RF08 disk (2 platter)
RF08 RF08 disk (3 platter)
RF08 RF08 disk (4 platter)
DF32 DF32 disk (1 platter)
DF32 DF32 disk (2 platter)
DF32 DF32 disk (3 pl'atter)
DF32 DF32 disk (4 platter)
TC08 TC08 DECtape
LINC LINCtape
TM8E Magnetic tape
TD8E TD8E DEC tape
BAT Batch input handler
RK8E RK8E disk
NULL NULL handler
TA8E Cassette
VR12 PDP-12 scope

DIGITAL reserves codes 25-26 and 31-37 for future use.
are reserved for user handlers.

Codes 40-57

22.2.3 Extended Mode (IE Option)

When you use the IE option in a command line, RESORC provides more
detailed information about the handlers configured into the system.
The IE option produces a table with the following headings.

Heading

NAME

TYPE

MODE

Meaning

Internal device number for the handler. If a number is
missing, there is no internal number for this handler.

Permanent device
cannot determine
coding.

Type of device as

One or more of the

R The handler may

name
the

listed

for the
name, it

in Table

handler.
prints

22-l.

following three letters:

be used for reading.
W The handler may be used for writing.

If RESORC
the internal

F The handler controls file-structured devices.

22-3

Heading

SIZ

BLK

KIND

U

Kind

AS33
KL8E
KS33
PT8E
KS33
PT8E
026
029
LP08
LS8E
LPSV

LV8E

L645

RESOURCES (RESORC)

Meaning

The size of the device in decimal OS/8 blocks. This is
only applicable for file-structured devices.

The block on the system device where this handler
resides. If this number is followed by a +, this
indicates that the handler is two pages long. If this
entry is SYS, the handler is permanently resident in
core location 07600.

This entry tries to differentiate the handler more
specifically than the TYPE column. Since several
devices of the same type have the same device code,
there may be several handlers for the same device. If
the device type has only one handler, this entry may be
blank. The KIND specification has no meaning for
user-written handlers. The kinds of handlers that may
be on the system are as follows.

Type Description How Identified

TTY I-page handler by number of pages
TTY 2-page handler by number of pages
PTR low-speed reader by lOT codes
PTR high-speed reader by lOT codes
PTP low-speed punch by lOT codes
PTP high-speed punch by lOT codes
CR8E DEC-026 card codes by table codes
CR8E D~C-029 card codes by table codes
LPTR old LP08 handler location dependent
LPTR old LS8E handler location dependent
LPTR LP08/LS8E/LV8E location dependent

handler
LPTR LPSV altered for location dependent

LV8E
LPTR Anelex line printer location dependent

Unit -- the particular unit number of a multiple unit
device handler. For example, the RK8E disk can have as
many as four physical drives (0, 1, 2, 3) on an OS/8
system. OS/8 considers the disk cartridge in each
drive as two logical units. The lower half is the A
unit and the upper half is the B unit. Thus drive 2
consists of two logical units called A2 and B2.

Since the U column in the printout has space for only
one character, RESORC numbers the logical units from 0
to 7. The following table shows the correspondence
between the U printout, the logical unit, and the
physical device, for RK8E.

Logical Physical
U Unit Device

0 AO 0
1 BO 0
2 Al 1
3 Bl 1
4 A2 2
5 B2 2
6 A3 3
7 B3 3

22-4

v

ENT

USER

RESOURCES (RESORC)

Version number (letter) of handler. No entry means the
handler predates OS/8 Version 3. Version numbers are
of the form A-Z. The 6-bit of the ASCII representation
of the handler version letter resides in the handler's
entry point location. For example, a handler with a
version A has a representation of 01. (See Appendix A
for a list of the 6-bit octal codes.)

The relative entry point of the handler.

Same as for IL option. Your current name for the
handler as assigned by the Monitor ASSIGN command.

In addition to the preceding,
following information. If you
system-head file, RESORC prints:

the IE option also provides the
specified a device, as opposed to a

• number of files in directory

• number of blocks used

• number of directory segments used

• number of free blocks

• number of empties or a blank to indicate a single empty

• number of additional information words

RESORC also lists the following:

• number of free device slots

• number of free block slots

• version number of Monitor if device is a system device

.R RESORC
*/E

164 FILES IN 1025 BLOCKS USING 6 SEGMENTS
2167 FREE BLOCKS (14 EMPTIES)

t NAME TYPE" MODE SIZ BLK KIND U V ENT USER
01 SYS RKElE:. RWF 3248 SYS 0 B 07
02 DSK RMlt RWF 3248 SYS 0 B 07
03 DTAO TD8E RWF 737 16+ TD8A 0 A 10
04 DTAl TD8E:RWF 737 16+ TD8A 1 A 14
05 RKBO RK8E RWF 3248 SYS 1 B 21
06 TTY TTY RW 17+ KLBE C 176
07 PTP PTP W 20 PT8r A 00
10 PTR PTR R 20 PTal A 112
11 LPT LPTR W 21 LPSV B 03

FREE DEVICE SLOTS: 06, FRE.E BLOCK SLOTS: 04
OS/8 V3F

22-5

RESOURCES (RESORC)

22.3 RESORC ERROR MESSAGES

Table 22-2 lists messages that may appear during a RESORC operation.

Message

?BAD DIRECTORY

%BAD MONITOR

%DEV IS NOT FILE
STRUCTURED

?INPUT ERROR

%NON SYSTEM DEVICE

%NOT A SYSTEM HEAD

?OUTPUT DEVICE FULL

?OUTPUT DEVICE IS
READ ONLY

?OUTPUT ERROR

?TTY DOES NOT EXIST

Table 22-2
RESORC Error Messages

Meaning

Input device directory cannot be read.

The input device may be a system device but
the Monitor cannot be accessed.

The input device specified is not a file
structured device, e.g., PTR.

An input error occurred during a RESORC
operation.

The input device specified in a RESORC
command line is not an OS/8 system device.

The file name specified
system-head file.

is not a

The output device specified does not have
enough room to copy the RESORC file.

The output device specified is a read-only
only device, for example, PTR.

An error occurred while attempting
output during a RESORC operation.

to

You did not specify an output device in the
RESORC command line, and the TTY handler
does not exist on the OS/8 system. See the
BUILD chapter for instructions on inserting
TTY handlers.

22-6

CHAPTER 23

RKLFMT DISK FORMATTER PROGRAM

The RK8E/RK8L disk formatter program writes and checks the format of
the complete disk cartridge. Only standard DIGITAL surface format is
available (that is, sectors numbered in the normal numerical sequence
0, 1, 2, 3, 4, 5, etc.). RKLFMT occupies locations 0000 to 4177 of
the current field.

The RK8L control, which can control up to 8 drives, will not run with
the DW8E bus adapter; the RK8L control uses IOTO for extended drives
4-7 (not available on the DW8E).

RKLFMT requires the following hardware:

• PDP-8/E, 8/F, 8/M or 8/A Computer
Other family of 8-compatible computer with necessary DW8E bus
adapter for RK8E control only.

• At least 4K of read/write memory, and at least 8K of memory is
needed for operation of the console package.

• ASR-33 teletype or equivalent

• RK8E disk control or RK8L disk control

• RK05J or RK05F disk drive(s)

NOTE

The RK05F drive operates as two separate
units. When answering questions for
each separate unit, specify: DSKO?,
DSKl?, DSK2?, etc.

23.1 RUNNING THE PROGRAM

To format an RK05, type the following command:

.R RKLFMT

Mount the disk (write enabled) and enter the instructions that follow.

If the formatter program fails to operate correctly, run the following
programs:

• All basic and extended memory diagnostics

• For the RK8E control, run the RK8E diskless control test and
the RK8E drive control test.

• For the RK8L control, run the RK8L instruction test.

23-1

RKLFMT DISK FORMATTER PROGRAM

23.2 STANDARD TEST PROCEDURES

To run the formatter program, follow the procedure in Section 23.3.
The following two procedures describe the drive setup procedure for
the RKOsF and the drive cartridge mounting procedure for the RKOsJ.

23.2.1 RK05J Drive Cartridge Mounting Procedure

The cartridge mounting procedure for the RKOsJ disk drive is listed
below. Any deviation results in an error condition.

1. Set switch labeled RUN/LOAD to the LOAD position.

2. Turn AC power on.

3. Check that the light labeled PWR is on.

4. wait for the light labeled LOAD to come on.

5. Verify that the lights labeled RDY, ON CYL, FAULT, WT, and RD
are off.

6. Open access door.

7. Insert cartridge.

8. Close access door.

9. Set switch labeled RUN/LOAD to the RUN position.

10. Wait for lights labeled RDY and ON CYL to come on.

11. Toggle the switch labeled WT PROT and check that the light
labeled WT PROT goes on and off.

12. Toggle the switch labeled WT PROT until light labeled WT PROT
goes off.

13. Check that the lights labeled FAULT, WT, RD, and LOAD are
off.

23.2.2 RK05F Drive Setup Procedure

The drive setup procedure for the RKOsF disk drive follows. Any
deviation results in an error condition.

1. Set switch labeled RUN/LOAD to the LOAD position.

2. Turn AC power on.

3. Check that the light labeled PWR is on.

4. Wait for the light labeled LOAD to come on.

5. Check that the lights labeled RDY, ON CYL, FAULT, WT and RD
are off.

6. Set switch labeled RUN/LOAD to the RUN position.

7. Wait for the lights labeled RDY and ON CYL to come on.

23-2

RKLFMT DISK FORMATTER PROGRAM

S. Toggle the switch labeled WT PROT and verify that the light
labeled WT PROT goes on and off.

9. Toggle the switch labeled WT PROT until the light labeled WT
PROT goes off.

10. Verify that the lights labeled FAULT, WT, RD, and LOAD are
off.

23.3 FORMAT PROGRAM

1. Make all drives ready to be formatted:

For RK05J drives, use the RK05 drive mounting procedure
(23.3.1) .

For RK05F drives, use the RK05 drive setup
(23.3.2) •

procedure

2. Set switch labeled RUN/LOAD to the LOAD position on all
drives that you are not formatting.

The TTY will type the following program name, information,
and questions.

RKSE/RKSL DISK FORMATTER PROGRAM

For each question type Y for YES or N for NO.

FORMAT DISK O? (type Y or N)

FORMAT DISK I? (type Y or N)

FORMAT DISK 2? (type Y or N)

FORMAT DISK 3? (type Y or N)

FORMAT DISK 4? (type Y or N)

FORMAT DISK 5? (type Y or N)

FORMAT DISK 6? (type Y or N)

FORMAT DISK 7? (type Y or N)

The program then types the following question on the TTY:

ARE YOU SURE?

3. Typing N repeats all the previous questions.
executes the operation selected.

Typing Y

4. Program execution is approximately SO seconds for each disk
drive. After the program has formatted and checked all disks
selected, the TTY types the following pass-complete message
and question.

RKSE/RKSL DISK FORMATTER PASS COMPLETE
FORMAT SAME DISK(S) AGAIN?

5. If you want to repeat the operation selected, type Y. Typing
N repeats the initial start-up questions.

23-3

RKLFMT DISK FORMATTER PROGRAM

23.4 ERRORS

When a recoverable error occurs, the TTY prints an ERROR HEADER and
error information pertaining to the failure. Possible error headers
are:

DISK DATA ERROR
READ STATlIS f '·J'"OR
""'dTE STAlII'; ERROR
,;·rCALIBRAH. STATUS ERROR

After the TTY types the error header, it prints some of the following
error information pertaining to the failure.

pc: Program Location of Failure
GD: Expected Information
EX: Extended Drive Bit
CM: Software Command Register
ST: Contents of Status Register
DA: Software Cylinder, Surface, and Sector Register
CA: Initial Current Address
AD: Address of Data Break
DT: Data Found During Data Break

After the TTY types the error information, it types one of the
following questions, asking the error recovery desired.

1. If the error was a recalibrate error, TTY types the following
question.

TRY TO RECAlIBR~TE SAME DIS~ AGAIN?

Typing a Y repeats the recalibrate sequence on the disk in
error. Typing N moves the program to the next available
disk.

2. If the error was a write error the TTY types the following
question:

TRY TO FORMAT SAME CYLINDER AGAIN?

Typing Y repeats the write sequence on the current cylinder.
Typing N moves the program to the next sequential cylinder.

3. If the error was a read or check error, the TTY types the
following question:

TRY TO CHECK SAME CYLINDER AGAIN?

Typing a Y repeats the read and check sequence on the current
cylinder. Typing N moves the program to the next sequential
cylinder.

23.5 PROGRAM DESCRIPTION

The formatting is actually a function of the RK8E or RK8L control and
drive logic. The program writes data on every sector in the WRITE ALL
mode, then checks the data while in the READ DATA mode to verify that
the header words written on every sector are also correct. The READ
DATA MODE automatically performs a check header function.

23-4

RKLFMT DISK FORMATTER PROGRAM

The first two words of every sector are set to the absolute disk
address (that is, command register bits 9-11 and cylinder, surface,
and sector bits 0-11, respectively). The remainder of the data area
is set to all zeros when the data is written. Only the first two
words of every sector (that is, the addressing information) are
checked when data is read in the READ DATA mode.

23.6 CONTROL CHARACTERS

Use control characters to give the operator the ability to perform the
following functions.

CTRL/C

CTRL/R

CTRL/E

CTRL/L

CTRL/D

CTRL/S

CTRL/Q

NOTE

The program will respond to the control
character in five seconds or less.

Starts the monitor at location 7600.

Restarts the program.

Continues the program from an error if allowed by the
diagnostic or from a waiting statement.

Switches the terminal messages from the display to a
line printer. To restore the messages on the terminal,
type CTRL/L again. If no printer is available and you
type CTRL/L, the console package will wait for CTRL/C
or CTRL/R. The CTRL/L sends output to the line printer
and the program attempts to continue as if you typed a
CTRL/E.

Allows you to change the switch register during program
operation. Typing this character results in an
interrogation of the switch register question.

Stops program execution and waits in a loop for a
continue. The only way to continue is to type a
CTRL/Q, R or C. This is a nonprinting character.

Causes continuation of a program after you type a
CTRL/S. This is a nonprinting character.

23.7 MISCELLANEOUS

23.7.1 Waiting Message

The waiting message gives you time to decide what control character to
type. This message appears at the end of a pass message if the
halt-on-pass bit is set. You may now use the control characters to
perform the needed function.

The waiting message
halt-on-error bit is
characters.

is printed after
set. Here again

an error
you may

message if the
use the control

The waiting message is printed if operator intervention is required.

23-5

RKLFMT DISK FORMATTER PROGRAM

23.7.2 End of Pass

The normal program pass complete as described in Section 23.4 is used.

23.7.3 Errors

The standard error reports described in Section 23.5 are used.

23.7.4 Location Changes

You can change the following location to meet the specific need to
modify the diagnostic.

3637 Is the location set for the number of filler characters
after a CRLF set to four (4)

23-6

CHAPTER 24

RXCOPY PROGRAM

You can use the RXCOPY program to copy or transfer the entire contents
and system head of one RX floppy disk to another RX floppy disk. Use
this program only with RX permanent device names or a user-defined
name that you have assigned to an RX device. Specifying file names in
the I/O specification line results in an error message.

To load and run RXCOPY, type:

.R RXCOPY
*output dev:<input dev:/options

Example:

.R RXCOPY
iRXA1:<SYS:

When you have loaded RXCOPY and entered the I/O specification line at
the keyboard, the program copies the input device to the output device
on a sector-by-sector basis. When the operation is complete, the
Monitor dot appears on the screen, and the specified output device
becomes an exact duplicate of the input device.

Table 24-1 lists the options for use with the RXCOPY program.
options modify the RXCOPY operation.

These

Option

/p

/N

/M

/R

/V

Table 24-1
RXCOPY Options

Meaning

Pause and wait for your response before and after
execution of RXCOPY program.

Copy the contents of one device to another but don't
check them for identical contents unless otherwise
specified.

Check both devices for identical contents and list the
tracks and sectors that do not match but do not perform
a transfer unless otherwise specified.

Read every block on the specified device and list the
bad tracks and sectors but do not perform a transfer
unless otherwise specified.

Print the current version number of the RXCOPY program.

24-1

RXCOPY PROGRAM

If you specify no options, RXCOPY assumes both the IN and 1M options.

If an error occurs during the execution of RXCOPY, RXCOPY aborts the
current job and control returns to the Monitor.

Table 24-2 lists the RXCOPY error messages and their meanings.

Table 24-2
RXCOPY Error Messages

Message

NO INPUT DEVICE

CAN'T LOAD INPUT DEVICE

CAN'T LOAD OUTPUT DEVICE

COMP~RE ERROR

INPUT DEVICE READ ERROR

OUTPUT DEVICE READ ERROR

OUTPUT DEVICE WRITE ERROR

Meaning

No input device is specified.

The name of the input device specified
in the command line is not a permanent
device name.

The name of the output device
specified in the command line is not a
permanent device name.

When using the 1M option all the areas
that do not match are printed as
COMPARE ERRORS. Since this is a
non-fatal error, the RXCOPY operation
continues.

Bad input, bad tracks or sectors.
Since this is a non-fatal error, the
RXCOPY operation continues.

Bad data on output device, tracks and
sectors bad. Since this is a
non-fatal error, the RXCOPY operation
continues.

Fatal output error. Since this is a
non-fatal error, the RXCOPY operation
continues.

24-2

CHAPTER 25

SET PROGRAM

with the SET program you can modify the operating characteristics of
OS/8 according to the attributes you specify, and you can make
frequently required standard changes to system programs, especially
I/O handlers. You can identify these changes by specifying certain
attributes in the SET command string, which has the following format:

.R SET
tSET device [NO] attribute [argument]

where:

SET

device

[NO]

attribute

[argument]

is the operation you are performing.

indicates the handler of the device you want
modified.

indicates that the attribute specified does not
apply. You cannot use [NO] with every attribute.

is the characteristic you are modifying.
Table 25-1.)

(See

is an optional parameter that you must supply for
certain SET commands.

SET error messages are listed in Table 25-2.

Table 25-1
SET Command Attributes

TTY Card Reader Mag Tape SYS LPT Any Device

ARROW CODE n PARITY x INIT xxxxx LA78 FILES
CODE n FILES OS8 LA8A DVCODE
COL n OS78 LC LOCATION n=m
ECHO LV8E READONLY
ESCAPE WIDTH n VERSION x
FILL BLOCK b
FLAG
HEIGHT m
LC
PAGE
PAUSE n
SCOPE
TAB
WIDTH n

25-1

SET PROGRAM

Table 25-2
SET Error Messages

Message

?SYNTAX ERROR

?UNKNOWN ATTRIBUTE FOR DEVICE dev

?CAN'T -- DEVICE IS RESIDENT

?CAN'T -- OBSOLETE HANDLER

?CAN'T -- UNKNOWN VERSION OF THIS HANDLER

?ILLEGAL WIDTH

?NUMBER TOO BIG

?CAN'T -- DEVICE DOESN'T EXIST

?I/O ERROR ON SYS:

25-2

Meaning

Incorrect format
in SET command
specified when
allowed.

used
or NO

not

An illegal attribute
was specified for the
given device.

No modifications are
allowed to the system
handler.

The handler has an old
version number.

The version
handler is
recognized,
because it
version.

of the
not one
possibly

is a newer

A width of 0 or a width
too large was
specified: or, for the
TTY, a width of 128 or
one not a multiple of 8
was specified.

The number specified
was out of range.

A nonexistent device
was referenced.

SET PROGRAM

25.1 TERMINAL ATTRIBUTES

25.1.1 Arrow

Specifying this attribute causes each control character the KL8E
handler typed to be printed in the form:

where:

indicates that you are typing a control character, and

x specifies which control character you are typing (100 + code
for control character).

Format:

.SET TTY [NO] ARROW

Example:

~SET TTY ARROW

If you type a CTRL/E character, by the KL8E handler, an AE is printed
on the terminal. Note that ARROW is the default.

Using this attribute with the NO modifier causes each control
character the KL8E handler typed to print with no modification.

Example:

.SET TTY NO ARROW

Now if the KL8E handler types a CTRL/E character,
CTRL/E (ASCII code 5) to the terminal. The
character is printed.

NOTE

it will send a
result is that no

On some terminals, the arrow (A) is
replaced by the circumflex (A).

25 . 1. 2 CODE n

where n is an octal number in the range

1 <n<77

This command changes the internal lOT code for keyboard to n. The
internal device code for the teleprinter is set to n+l. For example,
if you have a VT05 hooked to your system with device codes of 40 and
41, you would type SET TTY CODE 40. SET will not permit the NO
restriction.

Example:

~SET TTY CODE 3

25-3

SET PROGRAM

25.1.3 COLumn n

Specifying this attribute changes the default number of columns used
to print the directory (using the DIRECT command) to the decimal
number you specify as n. The initial default number of columns is
equal to one and the decimal number you specify should be in the range
of 1-7.

Format:

.SET TTY COL n

Example:

.SET TTY COL 3

Specifying this attribute does not change the behavior of the KL8E
handler. Also, you may not use the NO modifier with this attribute.

25.1.4 ECHO

Specifying this attribute causes all TTY characters typed at the
keyboard as input or received on the terminal as output to be printed.
Specifying this attribute affects the KL8E handler only and does not
affect character echoing by the Keyboard Monitor.

Format:

.SET TTY [NO] ECHO

Example:

.SET TTY ECHO

If you do not want character
modifier in the command line.
characters on input or output
terminal screen.

Example:

.SET TTY NO ECHO

25.1.5 ESCape

echoing to take place, use the NO
If you specify the NO modifier, all TTY

are not printed and do not appear on the

Specifying this attribute causes the escape character (ASCII code 33)
to print as a control character (see also ARROW attribute) •

Format:

.SET TTY [NO] ESC

Example:

.SET TTY ESC

Specifying the NO modifier in the command line causes escape to print
as a dollar sign ($).

25-4

SET PROGRAM

Example:

.SET TTY NO ESC

The ARROW attribute can also affect escapes. Specifying NO ARROW
sends escapes to the terminal with no modification. This is useful
for sending escape sequences to a CRT terminal.

25.1. 6 FILL

Specifying this attribute types two fill characters following a tab.
You should use this attribute only with the TAB attribute.

Format:

.SET TTY [NO] FILL

To remove these fill characters, use the NO modifier in the command
line.

Example:

.SET rTY NO FILL

25.1. 7 FLAG

When you specify this attribute,
characters on output by printing
preceded by a quote.

Format:

.SET TTY [NO] FLAG

Example:

.,!.SET TTY FLAG

the
them

handler flags
as upper-case

lower-case
characters

If you want to remove the quote preceding upper case characters, use
the NO modifier in the command line.

Example:

.SET TTY NO FLAG

25.1.8 HEIGHT m

Specifying this attribute changes the number of lines that are printed
on the terminal between pauses. The default value of m is 24 lines.

Format:

.SET TTY HEIGHT m

Example:

.SET TTY HEIGHT 12

This attribute has no meaning unless you also specify the PAUSE
attribute.

25-5

SET PROGRAM

25.1. 9 LC

When you specify this attribute, the KL8E handler accepts lower case
characters on input.

Format:

.SET TTY [NO] LC

Example:

.:.SET TTY LC

Specifying the NO modifier in the command line converts lower-case
characters on input to upper case.

Example:

..,!.SET TTY NO LC

25.1.10 PAGE

Specifying this attribute adds both the CTRL/S and CTRL/Q features to
the keyboard monitor.

Format and Example:

~SET TTY PAGE

When used with the NO modifier, this attribute removes the CTRL/S and
CTRL/Q features.

Example:

..,!.SET TTY NO PAGE

25.1.11 PAUSE n

Specifying this attribute sets the pause time between terminal output
frames to the decimal number you specify as n. The time depends on
the cycle time of your machine.

Format:

.SET TTY PAUSE n

Example:

~SET TTY PAUSE 5

If you want no pause to take place, specify either the NO modifier in
the command line or zero as n.

Example:

~SET TTY NO PAUSE

or

~SET TTY PAUSE 0

25-6

SET PROGRAM

25.1.12 SCOPE

When you specify this attribute, the characters you erase with the
rubout or delete key disappear from the CRT screen. You should not
specify this attribute if you do not have a CRT.

Format and Example:

.SET TTY SCOPE

25.1.13 TAB

When you specify this attribute, the handler prints real tabs (ASCII
code 211). You can use this only if your handler has the TAB feature.

Format:

.SET TTY [NO] TAB

Example:

~SET TTY TAB

If your handler does not have the TAB feature, use the NO modifier in
the command line. When you specify the NO modifier, the handler
simulates all tabs as spaces.

Example:

~SET TTY NO TAB

25.1.14 WIDTH n

Specifying this attribute changes the width of the terminal to the
decimal number you specify as n. The decimal number you specify
should be a multiple of eight and in the range of 1-255. However, n
must not be 128. If your TTY handler does not have the tab feature,
the width you specified in the command line may not be your final
result. You may not use the NO modifier with this attribute. Placing
an equal sign (=) between the attribute and the decimal number you
specify is optional.

Format:

.SET TTY WIDTH n

Example:

.SET TTY WIDTH 64

25-7

SET PROGRAM

25.2 CARD READER ATTRIBUTES

25.2.1 CODE n

When you specify this attribute, the card reader uses the card code
you specify.

Format:

.SET CDR CODE n

where:

n is a decimal number having a value of either 026 or 029.

Example:

.SET CDR CODE 026

You may not use the NO modifier with this attribute.

25.3 MAGNETIC TAPE ATTRIBUTES

25.3.1 PARITY x

When you specify this attribute, the parity check becomes either even
or odd.

Format:

.SET MTxx:PARITY x

Example:

~SET HTAO:PARITY EVEN

You may not use the NO modifier with this attribute.

25.3.2 FILES

When you specify this attribute, the handler will not issue an
automatic rewind when referencing block O.

Format:

.SET MTxx [NO] FILES

Example:

...1.SET HTA1:FILE

If you want the automatic rewind to take place when block 0 is
referenced, use the NO modifier in the command line.

25-8

SET PROGRAM

Example:

.SET HTAO:NO FILES

25.4 SYSTEM ATTRIBUTES

25.4.1 INITIAL xxxxx

When you specify this attribute, the system devicel executes the
command you specify as when the system is bootstrapped. This command
can contain a maximum of five characters excluding a RETURN key.

Format:

.SET device INIT xxxxx

Example:

~SET SYS INIT HELP

If you do not specify xxxxx, @INIT is assumed, and the system executes
the command in the file INIT.CM when bootstrapped. You must create
the INIT.CM file prior to bootstrapping.

If you do not want the system to execute special commands at system
bootstrap, use the NO modifier in the command line. When you specify
the NO modifier, the system prints the monitor dot immediately after
bootstrapping.

Example:

.SET SYS NO INIT

If you specify an initial command and you have bootstrapped the
system, this command destroys anything previously in memory.

25.4.2 OS8

Specifying this attribute modifies the system handler to be OS/8.

Format and example:

~SET SYS OS8

You may not use the NO modifier with this attribute.

25.4.3 OS78

Specifying this attribute modifies the system handler to be OS/78.

Format and example:

.SET SYS OS78

You may not use the NO modifier with this attribute.

25-9

SET PROGRAM

25.5 LINE PRINTER ATTRIBUTES

25.5.1 LA78

Specifying this attribute modifies the LPSV handler to handle an LA78
line printer.

Format and example:

.SET LPT LA7B

25.5.2 LA8A

Specifying this attribute restores the LPSV handler to its original
state.

Format and example:

...!.,SET LPT LABA

25.5.3 LC

When you specify this attribute, the handler prints lower-case
characters. You may use this attribute only with line printers that
can print lower-case characters.

Format:

.SET LPT: [NO] LC

Example:

...!.,SET LPT:LC

Specifying the NO modifier in the command line converts lower-case
characters to upper case prior to printing.

Example:

.SET LPT:NO LC

25.5.4 LV8E

Specifying this attribute modifies the LPSV handler to work on an LV8E
line printer.

Format:

.SET LPT: [NO] LV8E

Example:

.SET LPT:LVBE

When you specify the NO modifier in the command line, this command
will work on an LP08 and LS8E line printer.

25-10

SET PROGRAM

Example:

.SET LF'T:NO LV8E

25.5.5 WIDTH n

Specifying this attribute sets the width of the line printer to the
decimal number you specify as n.

Format:

.SET LPT WIDTH n

where:

n is a decimal number in the range of 1-256.

Example:

~SET LF'T WIDTH 80

You may not use the NO modifier with this attribute.

25.6 ANY DEVICE ATTRIBUTES

25.6.1 FILES

When you specify this attribute, the handler handles a file-structured
device.

Format:

.SET device [NO] FILES

Example:

...,!.SET MTAO:FILES

If you want the handler to handle non-file structured devices, use the
NO modifier in the command line.

Example:

.SET DTA1:NO FILES

NOTE

This attribute remains in effect until
the next time you bootstrap, when the
original status will be restored.

25-11

SET PROGRAM

25.6.2 DVCode nn

Specifying this attribute sets the lOT device code the handler uses to
the decimal number you specify as nne This number should be from
30-77.

Format:

.SET device DVC nn

Example:

.SET RXAO DUe 64

You could use this example if you hooked up your diskettes to the
non-standard device code of 64. You may not use the NO modifier with
this attribute.

25.6.3 LOCation n=m or LOCation n

Specifying the first argument changes the contents of the location in
the handler you specify as n to contain the value you specify as m.
Both nand m are octal numbers.

where:

n is an octal number from 0-177 for one-page handlers and from
0-377 for two-page handlers.

m is an octal number from 0-7777.

Format:

.SET device LOC n=m

Example:

.SET LPT LOC 37-1234

When you specify the second argument, the system prints the current
contents of the location in the handler you specify as n. Follow this
with a slash. Enter a new value in that location by typing that value
followed by a carriage return. If you want to leave the contents of
that location unchanged, type a carriage return only.

Format:

.SET device LOC n

Example:

.SET PTP LOC 144

25-12

SET PROGRAM

25.6.4 READOnly

When you specify this attribute, the device specified becomes a
read-only device. Therefore, any output sent to this device causes an
error message informing you that the output device is a read-only
device.

Format:

.SET device [NO] READO

Example:

.SET TTY READO

To remove the READONLY attribute, use the NO modifier in the command
line.

Example:

.SET TTY NO READO

NOTE

The READONLY attribute remains in effect
only until the next time you bootstrap,
when its original status will be
restored.

25.6.5 VERSION x

Specifying this attribute changes the version number of the handler to
the letter you specify as x.

Format:

.SET device VERSION x

Example:

.SET TV:VERSION G

You may not use the NO modifier with this attribute.

25.6.6 BLOCK b, LOCation n=m or BLOCK b, LOC n

Specifying the first attribute changes the contents of the location in
the handler you specify as n, located in the block you specify as b.
The contents of that relative location changes to the value you
specify as m.

25-13

SET PROGRAM

where:

b is an octal number

n is an octal number from 0-177 for one-page handlers and from
0-377 for two-page handlers.

m is an octal number from 0-7777.

Format:

.SET device Lac n=m

Example:

.SET RKBI Lac 10 = 2420

When you specify the second attribute, the system prints the current
contents of the location in the handler you specify as n, located in
the block you specify as b. Follow this with a slash. Enter a new
value in that location by typing that value followed by a carriage
return. If you want to leave the contents of that location unchanged,
type a carriage return.

Format:

.SET device Lac n

Example:

.SET LPT LOC 175

25-14

CHAPTER 26

SRCCOM

SRCCOM compares two source files line by line and prints all their
differences. Usually, the two files are different versions of a
single program. In this case, SRCCOM prints all the editing changes
that transpired between the two versions, making it a useful debugging
tool.

26.1 SRCCOM ASSEMBLY INSTRUCTIONS

To make SRCCOM.BN from SRCCOM.PA, type:

.R PAL8
*dev:SRCCOM (,dev:SRCCOM.LS) <dev:SRCCOM

The listing file shown in parentheses is optional.

To make SRCCOM.SV from SRCCOM.BN, type:

.R ABSLDR
*dev:SRCCOM$
.SAdevSRCCOM

To load and save the binary papertape (DEC-S8-0SYSB-A-PB17), type

.R ABSLDR
*PTR:$- (Type any character in response to -)
.SAVE dev SRCCOM

26.2 LOADING SRCCOM

To use SRCCOM, type:

.R SRCeOH
*OUTPUT<INPUT1,INPUT2

INPUTI and INPUT2 are both the source files you are comparing and the
input devices. You must specify both files, and they must be
non-empty. If you omit an input device, it is assumed to be DSK.

OUTPUT specifies the output file and device where the program will
list the differences. If you specify an output file name, the default
output device is DSK. If the output device is non-file structured, a
file name is unnecessary. If output is to a file-structured device,
you must specify an output file name. If no output specification
exists, TTY is assumed.

26-1

SRCCOM

Table 26-1 lists the run-time options accepted by SRCCOM.

Option

/C

/S

/T

/8

/X

Examples:

Table 26:-1
SRCCOM Run-Time Options

Meaning

Do not count differing
difference.

comment fields as a

Do not compare tabs and spaces when considering lines
different.

Convert tabs to spaces on output.

Count blank
considered
SRCCOM does
combination

lines in the comparison. A blank line is
as a carriage return only. In particular
not treat a space and carriage return
under /S/8 as a blank line.

Like /C but does not print comment fields on the
output file.

.R SRCCOH
~DSK:DIFFIL<DTA1:0RIG,DTA2:COPY

Compare the source file ORIG on DTAl and COpy on DTA2, and store the
differences on DSK as DIFFIL .

• R SRCCOH
*DIFFIL<FIRST,SECOND

Compare the source files FIRST and SECOND on DSK, and output the
differences to DIFFIL on DSK •

• R SRCCOH
*LPT:<DTA1:FILE1,PTR:
~

Compare source file FILE 1 on DTAl and one from the high-speed paper
tape reader, and output the differences to the line printer.

26.3 SRCCOM OUTPUT

The first line of output printed by SRCCOM is "SRCCOM Vx", where x
is the current version number, then two header lines followed by as
many difference groups as necessary. The header lines are printed
as follows:

file 1)
file 2)

header line of file 1
header line of file 2

26-2

SRCCOM

A difference group has the form:

1) nnn line 1, file 1
1) line 2, file 1
1) line 3, file 1

1) line n, file 1

2) nnn line 1, file 2
2) line 2, file 2

2) line m, file 2

where nnn is the number of the page in the PAL listing. Lines 1
through n-l of file 1 and 1 through m-l of file 2 did not agree.
SRCCOM compares areas of the two programs, and prints differences
until it finds 3 lines that agree. The last lines printed (line n
of file 1 and line m of file 2) are the first lines that agreed.
You can change the number of consecutive lines to check for
agreement to any number (k) with the option =k in the command line.

Example:

File 1 File 2 SRCCOM OUTPUT

file 1) A
A A file 2) A
B X 1) B
C C 1) C
D D ****
E E 2) X
F G 2) C
G H ********
H J 1) F
I 1) G
J 1) H

1) I
1) J

2) G
2) H
2) J

Occasionally, a decimal number appears following the close
parenthesis after the file number. This decimal number indicates
the source page in this file from which this line and all following
lines (until the next such number) come.

If the two files are identical, SRCCOM prints the message:

NO DIFFERENCES

in the output file.

26-3

SRCCOM

26.4 ERROR MESSAGES

SRCCOM error messages are of the form:

?n

where n is a single digit. The meaning of the various digits are:

?O

?l

?2

?3

?4

?5

Insufficient core; this means that the
between the files are too large to
effective comparison. Use of the IX
alleviate this problem.

differences
allow for

option may

Input error on file I or less than 2 input files
specified.

Input error on file 2.

Output file too large for ou~put device.

Output error.

Could not create output file

26-4

8-Bit 6-Bit
Character octal octal

A 301 01
B 302 02
C 303 03
D 304 04
E 305 05
F 306 06
G 307 07
H 310 10
I 311 11
J 312 12
K 313 13
L 314 14
It 315 15
N 316 16
0 317 17
P 320 20
Q 321 21
R 322 22
S 323 23
T 324 24
U 325 25
V 326 26
W 327 27
X 330 30
y 331 31
z 332 32
0 260 60
1 261 61
2 262 62

APPENDIX A

CHARACTER CODES

Table A-I
ASCII* Character Set

Decimal
Equivalent
(AI Format) Character

96 !
160 .
224 I
288 $
352 ,
416 &
480

,
544 (
608)
672 *
736 +
800 ,
864 -
928 .
992 /

1056 :
1120 i
1184 <
1248 =
1312 >
1376 ?
1440 @
1504 [
1568 \
1632 J
1696 A(A)**
-992 <-(-)**
-928 Leader/Trailer
-864 LINE FEED

3 263 63 -800 Carriage RETURN
4 264 64 -736 SPACE
5 265 65 -672 RUBOUT
6 266 66 -6d8 Blank
7 267 67 -544 BELL
8 270 70 -480 TAB
9 271 71 -416 FORM

* An abbreviation for American Standard Code
Interchange.

for

8-Bit 6-Bit
Octal octal

241 41
242 42
243 43
244 44
245 45
246 46
247 47
250 50
251 51
252 52
253 53
254 54
255 55
256 56
257 57
272 72
273 73
274 74
275 75
276 76
277 77
300
333 33
334 34
335 35
336 36
337 37
200
212
215
240 40
377
000
207
211
214

Information

** The character in parentheses is printed on some Teletypes.

A-l

Decimal
Equivalent
Oil Format)

-1952
-1888
-1824
-1760
-1696
-1632
-1568
-1504
-1440
-1376
-1312
-1248
-1184
-1120
-1056
-352
-288
-224
-160

-96
-32

32
1760
1824
1888
1952
2016

-2016

APPENDIX B

LOADING PROCEDURES

B.l INITIALIZING THE SYSTEM

Before using the computer system, it is good practice to initialize
all units. To initialize the system, make sure that all switches and
controls are as specified below.

1. Main power cord is properly plugged in.

2. Terminal is turned OFF.

3. Low-speed punch is OFF.

4. Low-speed reader is set to FREE.

S. Computer POWER key is ON.

6. PANEL LOCK is unlocked.

7. Console switches are set to O.

S. SING STEP is not set.

9. High-speed punch is OFF.

10. DEC tape REMOTE lamps are OFF.

The system is now initialized and ready for your use.

B.2 LOADERS

READ-IN MODE (RIM) LOADER

When you receive a computer in the PDP-S series, it is nothing more
than a piece of hardware; its core memory is completely demagnetized.
The computer "knows" absolutely nothing, not even how to receive
input. However, you can manually load data directly into core using
the console switches.

B-1

LOADING PROCEDURES

The RIM Loader is the first program you load into the computer, and
you load it using the console switches. The RIM Loader instructs the
computer to receive and store, in core, data punched on paper tape in
RIM-coded format. You use the RIM Loader to load the BIN Loader
described below.

There are two RIM loader programs: you use one when you want to input
from the low-speed paper tape reader, and the other when you want to
input from the high-speed paper tape reader. The locations and
corresponding instructions for the low-speed reader are listed in
Table B-1. Information for the high-speed reader is listed in Table
B-2.

For each step in the table, place each of the PDP-8/E console SWITCH
REGISTER switches numbered 0 to 11 either in the up position if the
corresponding table entry is 1, or in the down position if the
corresponding table entry is O. When all 12 switches have been set to
correspond to a line in the table, follow the instructions in the
right-hand column and proceed to the next line. The tables also
include octal values of the binary switch settings for the benefit of
users familiar with octal numbers.

Table B-1
RIM Loader for Low-Speed Reader

Step Octal Switch Register And Then
i Values Setting

012 345 678 91011
1 0000 000 000 000 000 press EXTD AD DR LOAD
2 7756 III III 101 110 press ADDR LOAD
3 6032 110 000 011 010 lift DEP key
4 6031 110 000 011 001 lift DEP key
5 5357 101 011 101 III lift DEP key
6 6036 110 000 011 110 lift DEP key
7 7106 III 001 000 110 lift DEP key
8 7006 111 000 000 110 lift DEP key
9 7510 111 101 001 000 lift DEP key

10 5357 101 011 101 111 lift DEP key
11 7006 111 000 000 110 lift DEP key
12 6031 110 000 011 001 lift DEP key
13 5367 101 011 110 III lift DEP key
14 6034 110 000 011 100 lift DEP key
15 7420 111 100 010 000 lift DEP key
16 3776 011 111 111 110 lift DEP key
17 3376 011 011 III 110 lift DEP key
18 5356 101 011 101 110 lift DEP key

B-2

LOADING PROCEDURES

Table B-2
RIM Loader for High-Speed Reader

Step Octal Switch Register And Then
t Values Setting

012 345 678 91011
1 0000 000 000 000 000 press EXTD ADDR
2 7756 111 111 101 110 press ADDR LOAD
3 6014 110 000 001 100 lift DEP key
4 6011 110 000 001 001 lift DEP key
5 5357 101 011 101 111 lift DEP key

~ 6016 110 000 001 llli lift DEP key
7106 111 001 000 110 lift DEP key

11 7006 111 000 000 110 lift DEP key
9 7510 111 101 001 000 lift DEP key

10 5374 101 011 III 100 life DEP key
11 7006 111 000 000 110 lift DEP key
12 6011 110 000 001 001 lift DEP key
13 5367 101 011 110 111 lift DEP key
14 6016 110 000 001 110 lift DEP key
15 7420 111 100 010 000 lift DEP key
16 3776 Oll 111 111 110 lift DEP key
17 3376 011 011 111 110 lift DEP key
18 5357 101 011 101 III lift DEP key

After you have loaded RIM, it is good programming practice
that all instructions were stored properly. You can
performing the steps illustrated in Figure B-2, which also
to correct an incorrectly stored instruction.

LOAD

to verify
do this by
shows how

When loaded, the RIM Loader occupies absolute locations 7756 through
7776.

B-3

LOADING PROCEDURES

-DECTAPE USERS SHOULD
LOAD RIM INTO AELD 0

(INITIALIZE)

SET ROTARY
SELECTOR SWITCH

TOMD

SET SWITCHES 6-8
TO DESIRED

INSTRUCTION FIELD-

SET SWITCHES 9-11
TO DESIRED

DATA FIELD-

PRESS
EXT LOAD ADDR

PRESS
ADDR LOAD

SETSR =
FIRST INSTRUCTION

SET SR =
NEXT INSTRUCTION

NO

Figure 8-1 Loading the RIM Loader

8-4

PRESS
ADDR LOAD

LOADING PROCEDURES

NO

SET ROTARY
INDICATOR

SWITCH TOMD

SET SWITCHES 6-8
TO FIELD IN

WHICH RIM HAS
BEEN LOADED

PRESS
EXT ADDR LOAD

PRESS
ADDR LOAD

YES

Figure B-2 Checking the RIM Loader

B-5

NO

RIM IS LOADED

LOADING PROCEDURES

B.2.l Binary (BIN) Loader

The BIN Loader is a short utility program that, when in core,
instructs the computer to read binary-coded data punched on paper tape
and store it in core memory. Use BIN primarily to load the programs
furnished in the software package (excluding the loaders and certain
subroutines) and your binary tapes.

BIN is furnished to you on punched paper tape in RIM-coded format.
Therefore, RIM must be in core before BIN can be loaded. Figure B-3
illustrates the steps necessary to properly load BIN. Note that when
you load BIN, you should use the same input device (low- or high-speed
reader) as when you loaded RIM.

B-6

LOADING PROCEDURES

----------1 SeeF~resB1.B2

HIGH-SPEED READER LOW-SPEED READER

Figure B-3 Loading the BIN Loader

B-7

LOADING PROCEDURES

When stored in core, BIN resides on the last page of core, occupying
absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it would
always be available for use -- the programs in DEC's software package
do not use the last page of core (excluding the Disk Monitor). You
must be aware that if you write a program that uses the last page of
core, BIN will be wiped out when that program runs on the computer.
When this happens, you must load RIM and then BIN before you can load
another binary tape.

When loading binary tapes, start on the leader-trailer code (Code
200), otherwise zeros may be loaded into core, destroying previous
instructions.

Figure B-4 illustrates the procedure for loading binary tapes into
core.

B-8

LOADING PROCEDURES

-- ------f
L
__ See_ F_igu_re_B3 __

HIGH-SPEED READER lOW-SPEEO READER

Figure B-4 Loading a Binary Tape Using BiN

B-9

APPENDIX C

05/8 DEMONSTRATION RUN

The following pages present a demonstration of the use of the OS/8
system. The terminal output is set off by letters (to the left) that
correspond to the textual explanations on the facing page. This
demonstration illustrates the procedures involved and the use of many
of the OS/8 system programs and commands.

C-l

OS/8 DEMONSTRATION RUN

A Use the CCL command to zero the DECtape on Unit 1,
specifying one additional information word in the directory.

B You then type the DATE command to set the system date to
April 10, 1974.

C Use the ASSIGN command to give DTAI the additional name IN.
All subsequent references to IN refer to DTAI.

o DIRECT is called to list the directory of DECtape Unit 1. A
directory listing of DTAI is produced.

E Use the Keyboard Monitor GET and SAVE commands to copy EDIT
from the system device to DTAI.

F Run the FORTRAN compiler via the CCL command COMPILE to
compile and execute the program TESTI on the device DSK:.
An output relocatable binary file named TESTI is saved by
SABR on DECtape Unit 1. The program has an error in it.
Control is returned to the Keyboard Monitor after execution
and the error message printed on the terminal.

G Use the program EDIT, located on DTAl, to correct the error
in TESTI. Input the old program, TESTl, to the Editor, and
the new (corrected) program, TEST2, is written by the Editor
onto DTAI. The first page is yanked into core.

H You have noticed a misspelled word in FORMAT line 35 and
used the string search feature of the Editor to correct it.
An END statement is appended to the program.

C-2

05/8 DEMONSTRATION RUN

A .ZERO DTA1:=1

B .DA 4/10/74

C .AS DTA1 IN
.DIR IN:

10-APR-74

D

730 FREE BLOCKS

E {. GET SYS EDIT

.SAVE IN EDIT 0-5000;200=2001

F / CALL EXI!

{

.COMPILE IN:TEST2(IN:TEST2

NO END STATEMENT

G *IN:TEST2.FT(TEST1.FT
{

.RUN IN EDIT

H

iY

i/:0055
#$35 'L
35 FORMAT ('THE AVERATE IS' F20.2/)

i.S
35 FORMAT ('THE AVERAT/GE IS' F20.2/)

i.L
35 FORMAT ('THE AVERAGE IS' F20.2/)

ilL

fA
CALL EXIT

END

C-3

OS/8 DEMONSTRATION RUN

You instruct the Editor to list the entire FORTRAN program.

J Note the use of implied DO loops in the READ and WRITE
statements

K and device independent I/O. A file named ABCD.DA is opened
on the default device DSK and data is written into it. When
all the data is entered, the file is closed. Later, this
file is again opened, and the data is read and used by the
program.

L An S in column 1 of a FORTRAN line indicates that the line
contains SABR code.

M Use CALL EXIT to return control to the Keyboard Monitor
after execution.

N After listing the program, the E command to the Editor
closes the file and returns control to the Keyboard Monitor.

C-4

iL
C
C
C
C

C
C

K{ 5

10

J{ll
15

K{

L

C
C
C

25

30

35

C
C
C
C

40
SX,
S
S
S
S
S

OS/8 DEMONSTRATION RUN

THIS PROGRAM PRESENTS A FEW OF THE FEATURES
OF OS/8 FORTRAN; SPECIFICALLY IT INCLUDES IM
PLIED DO LOOPS, DIRECT INSERTION OF SABR CODE
AND EXPANDED 1/0.

THIS SECTION READS DATA FROM THE TTY AND WRITES
IT ONTO THE DSK AS AN ARRAY.

DIMENSION A(10)
CALL OOPEN (' DSK ' , , ABCD ')
WRITE (1,10)
FORMAT ('ENTER 10 NUMBERS IN F6.2 FORMAT. ')
WRITE (I,ll)
FORMAT ('FOLLOW EACH WITH A CARRIAGE RETURN: 'II)
READ (1,15) (A(N), N=1,10)
WRITE (4,15) (A(N), N=1,10)
FORMAT (F6.2)
CALL OCLOSE

THIS SECTION ADDS THE NUMBERS STORED ON THE DSK
AND AVERAGES THEM, PRINTING BOTH RESULTS ON
THE TELETYPE.

SUM=O.O
DO 20 1=1,10
A(I)=O.O
CALL IOPEN (' DSK ' , 'ABCD ')
READ (4,15) (A(N), N=1,10)
DO 25 N=1,10
SUM=SUM+A(N)
CONTINUE
WRITE (1,30) SUM
FORMAT (/'THE SUM IS' F20.2)
AVR=SUM/10.
WRITE (1,35)AVR
FORMAT ('THE AVERAGE IS' F20.2/)

THE SABR CODE FOLLOWING CHECKS FOR A CARRIAGE
RETURN CHARACTER TO INITIATE REPEATING THE
PROGRAM. ANY OTHER CHARACTER TERMINATES THE
PROGRAM.

WRITE (1,40)
FORMAT ('TO REPEAT, TYPE A CARRIAGE RETURN. 'II)
KSF
JMP X
KRB
TAD MYES
SZA
JMP \50
GO TO 5

SMYES, -215
50 WRITE (1,60)
60 FORMAT (/'PROGRAM DONE'II) Me CALL EXIT

END

H{ IE

C-5

OS/8 DEMONSTRATION RUN

o Use the ASSIGN command to change the assigned name of DTAI
from IN to OUT. The FORTRAN compiler is called again, and
the program is loaded. An output relocatable binary file
named TEST2 is saved by SABR on DECtape Unit 1.

P The FORTRAN program is executed via the CCL command EXECUTE.
The /G, /1, and /0 options cause automatic loading and
execution of the program and the device independent I/O, and
results are calculated and returned. Execution is not
repeated.

Q Use the DEASSIGN command to delete all device names you have
assigned. The ASSIGN command then gives the name X to DTAI.

R The CCL command DIR obtains a directory listing of DEC tape
Unit 1. TEST2.RL is the relocatable binary output file from
the FORTRAN compilation.

S Next, use the CCL command DIR to print the directory of the
system device on the line printer. ABCD.DA is the FORTRAN
data file created in the preceding program.

T The CCL command DEL deletes the unwanted files PROG3 and
PROG4 from the system device. Then the ASCII file TEST2 is
copied from DECtape Unit 1 to the system device with the CCL
command COPY.

C-6

o

p

OS/8 DEMONSTRATION RUN

{
• AS DTAI OUT
.COMPILE OUT:TEST2<OUT:TEST2

.EXECUTE OUT:TEST2/G/I/0

ENTER 10 NUMBERS IN F6.2 FORMAT.
FOLLOW EACH WITH A CARRIAGE RETURN:

16.23
32.00
171. 45
2.15
22.10
77.35
2.91
66.00
.46
27.50
THE SUM IS
THE AVERAGE IS

418.15
41.81

TO REPEAT, TYPE A CARRIAGE RETURN.

PROGRAM DONE

Q {.DEA

.AS DTAI X

.DIR X:

R

10-APR-74

EDIT .SV
TEST2 .FT
TEST2 .RL

12 10-APR-74
4 10-APR-74
4 10-APR-74

710 FREE BLOCKS

C-7

S

OS/8 DEMONSTRATION RUN

.DIR LPT:<SYS:

10-APR-74

ABSLDR.SV 5 15-JAN-74
CCL .SV 17 26-FEB-74
DIRECT.SV 7 1S-JAN-74
FOTP .SV S 1S-JAN-74
PIP .SV 11 1S-JAN-74
LIBS .RL 29 1S-JAN-74
EDIT .SV 10 1S-JAN-74
PALS .SV 16 1S-JAN-74
CREF .SV 13 1S-JAN-74
BITMAP.SV 5 1S-JAN-74
FORT .SV 25 1S-JAN-74
SABR .SV 24 1S-JAN-74
LOADER.SV 12 1S-JAN-74
SRCCOM.SV 5 1S-JAN-74
BOOT .SV 5 1S-JAN-74
BUILD .SV 33 1S-JAN-74
EPIC .SV 14 1S-JAN-74
PIP10 .SV 17 1S-JAN-74
RESORC.SV 10 1S-JAN-74
DTFRMT.SV 7 1S-JAN-74
TDFRMT.SV 9 1S-JAN-74
RKSFMT.SV 9 1S-JAN-74
RKEFMT.SV 6 1S-JAN-74
CAMP .SV S 1S-JAN-74
MCPIP .SV 13 1S-JAN-74
DTCOPY.SV 5 1S-JAN-74
TDCOPY.SV 7 1S-JAN-74
LIBSET.SV 5 1S-JAN-74
CCL .PA 130 26-FEB-74
TEST1 .BK 4 11-APR-74
TEST1 .RL 4
TEST1 .FT 4 10-APR-74
TEST2 .RL 4 10-APR-74
ABCD .DA 1 10-APR-74
PROG3 . 1 10-APR-74
PROG4 1 10-APR-74

2295 FREE BLOCKS

.DEL PROG3,PROG4
FILES DELETED:
PROG3.

T PROG4 •

• COPY SYS:TEST2.FT<X:TEST2.FT

C-S

APPENDIX D

OS/8 FILE NAME EXTENSIONS

This appendix lists the file name extensions used in OS/8.

Extension Meaning

.BA BASIC source file (default extension for a BASIC input
file)

.BI Batch input file

.BK Backup ASCII file (default extension for a TECO output
file)

.BN Absolute binary file (default extension for ABSLDR, BUILD,
and BITMAP input files; also used as default extension
for PAL8 binary output file)

.DA Data file

.DC Documentation file

.DI Directory listing

.FT FORTRAN language source file (default extension for FORT
input files)

.HL Help file (default extension for HELP input files)

.LD F4 load mode (default assumed by run-time system, F4
loader)

.LS Assembly listing output file (default extension for PAL8
and SABR)

.MA Macro source file

.MP File containing a loading map (used by the Linking Loader)

.PA PAL8 source file

.RA RALF assembly language file

D-l

Extension

.RB

.RL

.SB

OS/8 FILE NAME EXTENSIONS

Meaning

Relocatable binary source file

Relocatable binary file (default extension for a Linking
Loader input file; also used as the default extension for
an 8K SABR output file)

8K SABR source file

.SV Core image file or SAVE file; appended to a file name by
the R, RUN, SAVE, and GET Keyboard Monitor commands

.SY System head

.TE TECO macro file (default extension for a MUNG input file)

.TM Temporary file generated by FORTRAN or SABR for system use
(default extension for CREF input files and PAL8 output
files)

.TX Text files

D-2

APPENDIX E

OS/8 DEVICE HANDLERS

Most of the the device handlers supplied with the OS/8 system have
simple operating characteristics that require no action from you.
Some device handlers perform additional operations when you are
performing I/O on a given device. This appendix gives a brief
description of the OS/8 device handlers. See the OS/8 Software
Support Manual (DEC-S8-0SSMB-A-D) for more detailed information
concerning device handlers.

E.I HIGH-SPEED READER/PUNCH

The device handler for the high-speed paper tape reader, before
reading a tape, prints an uparrow (~) and waits for the user to type
any single character at the keyboard. This gives you time to check
the reader to ensure that the tape is loaded correctly, and it
facilitates reading multiple tapes (e.g., a PAL8 source tape must be
loaded three times for the three passes of the assembler). Characters
are read from the paper tape and packed into an input buffer. The end
of the paper tape or a full input buffer causes the buffer to be free
for your program. Typing CTRL/C while the tape is moving causes a
return to the Keyboard Monitor.

The handler for the high-speed paper tape punch unpacks characters
from the output buffer and punches then on paper tape. Typing CTRL/C
causes a return to the Keyboard Monitor. You must manually turn on
the punch before trying to output to that device.

E.2 LOW-SPEED READER/PUNCH

In addition to the handler for the high-speed reader/punch, a similar
handler is available for the ASR-33 Teletype low-speed reader/punch.
If you do not have high-speed I/O, you can still read and punch binary
format tapes by using this handler. (The standard TTY handler cannot
be used for binary format tapes, because the binary format can appear
as control characters to the handler.) The operation of this handler
is exactly the same as that for the high-speed reader/punch except
that the uparrow is not printed.

E.3 TTY HANDLERS

There are two TTY (console terminal) handlers available: a one-page
handler and a two-page handler. Both handlers perform I/O transfers
between the terminal keyboard and an input buffer, or between an
output buffer and the terminal.

E-l

OS/8 DEVICE HANDLERS

The one-page handler echoes all terminal input and performs a line
feed operation after any typed carriage return. A CTRL/O typed while
output is being printed terminates printing of the current output
buffer. A CTRL/C typed at any time during input or output causes a
return to the Keyboard Monitor. Typing CTRL/Z as input terminates
input and gives an end-of-file indication to the calling program. You
should not use the TTY handler to read binary tapes from the low-speed
reader.

You may use the two-page TTY handler only to read or write ASCII
files; results are unpredictable with non-ASCII files. In addition
to the features included in the one-page handler, this handler has the
ability to delete the previous character, through the RUBOUT key, and
to echo it either as a backslash (\) or as the character rubbed out.
Other features have the ability to delete the current line, through
CTRL/U, and to output the correct number of spaces to bring the text
to the start of the next tab stop (through the TAB key).

The two-page TTY handler also includes approximately 30 free locations
so that you may conditionalize certain nonstandard features. See the
OS/8 Software Support Manual for a complete list of these features.

E.4 LINE PRINTERS

The OS/8 line printer handler is a one-page handler for the LP08,
LS8E, and LV8 line printers. The handler performs a form feed
operation before beginning an output task. The characters are
unpacked from the output buffer and printed. A form feed is also
produced following the completion of an output task. Typing CTRL/C
while the line printer is in operation causes a return to the Keyboard
Monitor. A CTRL/Z found in the output buffer causes printing to
terminate and a form feed to be produced. Tabs and line overflow are
handled; nulls are ignored.

Relative location 0 of this handler specifies the width of the line
printer. You may patch this location using the ALTER command in
BUILD. Set the location to the one's complement of the width desired.
Initially, set this location to 7573 (octal), which corresponds to a
132-column printer. For example, to indicate an 80-column printer,
set location 0 to 7657 (octal).

E.5 VRl2 SCOPE

The VRl2 scope handler for OS/8 (running on a PDP-12) displays
characters on the VRl2 scope on both channels. When the scope is
full, the handler stops reading characters from the buffer and
displays what is known as a scope page. The screen is considered full
whenever the end of the buffer is reached, a CTRL/Z is encountered in
text, or when the number of lines displayed become equal to the
maximum number you specify. You can advance to the next scope page by
typing any character other than CTRL/C.

When you type CTRL/C, control
Control does not return to the
typed at a point when the handler
a particular buffer load.

returns to the Keyboard Monitor.
calling program until a character is
is displaying the last scope page of

E-2

OS/8 DEVICE HANDLERS

To use the VR12 handler, set the number of lines desired in a single
scope page via the switch register (right switches). Set the switch
register to the negative of the number of lines to be displayed in a
scope page. When text reaches the right margin of the scope face, it
is continued on the next physical line of the scope.

A line feed or form feed character causes succeeding text to continue
on the next physical line. Carriage return characters have no effect
on the display.

E. 6 CARD READER

The device handler for the card reader reads cards in alphanumeric
format from either a punched card reader or an optical mark card
reader. Card format can have up to 80 characters per card; trailing
blanks are deleted from each card. Blank cards cause a carriage
return/line feed to be entered into the data stream. Typing CTRL/C
while cards are being read terminates reading and returns control to
the Keyboard Monitor. Typing CTRL/Z terminates further reading and
performs as though an end-of-file card was read. (An end-of-file card
contains an arrow character in column I (0-8-5 punch) with the
rema1n1ng columns blank. Either CTRL/Z or the end-of-file card is
necessary to terminate reading.) It is not possible 'to RUN or GET a
program from the card reader because these commands assume a directory
device.

E. 7 DECTAPES

You may interrupt any DECtape other than the
system is a DECtape system) with a CTRL/C,
Keyboard Monitor. You must never WRITE LOCK
DEC tape system while it is operating OS/8.

E.8 MAGNETIC TAPE

system device (if the
returning control to the

DEC tape unit 0 on a

The handler for magnetic tape reads and writes either 7- or 9-channel
magnetic tape with odd parity at 800 bpi. This handler is non-file
structured, but you may alter it to read and write files. CTRL/C
returns control to the Keyboard Monitor, but its use is not
recommended since it leaves the tape without an end-of-file indicator.

E.9 CASSETTES

The cassette handler performs character I/O transfer between the
cassettes and the buffer. It treats cassettes as non-file structured
devices. Data appears on cassette in 192-byte records. Typing CTRL/C
returns control to the Keyboard Monitor.

E-3

OS/8 DEVICE HANDLERS

/
E.IO BATCH HANDLER

The OS/8 batch handler is used from a BATCH job to read from the BATCH
stream. This is a one-page handler for read-only, non-file structured
devices. If you use this handler when BATCH is not running, it
generates a fatal error. The BATCH handler reads characters from the
BATCH stream, ignoring line feeds, and creating a line feed after a
carriage return. When the handler encounters a line beginning with a
dollar sign, it pads the buffer with CTRL/Z and nulls, and takes the
end-of-file return.

E.II DSK AND SYS

The DSK and SYS device handlers work automatically without any user
intervention.

E-4

APPENDIX F

OBTAINING OS/8 PROGRAM VERSION NUMBERS

When you receive new OS/8 software or when you wish to report problems
with the software, you must know the version number of the OS/8
program in question. Most OS/8 system programs have version numbers
that you can obtain by typing a command to the OS/8 Command Decoder *
or to the called program. Some system programs print the version
number at the beginning of the output listing. The following table
shows how to obtain version numbers for most OS/8 system programs.

Program

ABSLDR
BASIC
BATCH
BITMAP
BOOT
BUILD
CAMP
CCL
Command Decoder
CREF
DIRECT
EDIT
EPIC
F4 Compiler
F4 Loader (LOAD)
FLAP
POTP
FRTS

Keyboard Monitor
MCPIP
ODT
PAL8
PIP
PIP10
RALF
RESORC
SRCCOM
TECO

How to Obtain Version Number

Internal only.
Printed in program heading.
Type Iv in BATCH command string.
Printed at top of output listing.
Type VE to the / printed by BOOT.
Type VE to the $ printed by BUILD.
Type VE to the i printed by CAMP.
Type VER to the Keyboard Monitor.
Internal only.
Printed at end of CREF output listing.
Type /W to the * printed by DIRECT.
Type i to the i printed by EDIT.
Internal only.
Printed in heading of output listing.
Printed in heading of loading map.
Printed in heading of output listing.
Type /W to the * printed by FOTP.
Type IV to the * printed by FRTS (to
implemented later).
Type VER to the Keyboard Monitor.
Type /V to the * printed by MCPIP.
Internal only.
Printed in heading of output listing.
Type Iv to the * printed by PIP.
Printed in heading of directory listing.
Printed at heading of output listing.
Type /V to the * printed by RESORC.
Printed in heading of output listing.
Type CTRL/V to the * printed by TECO.

F-l

be

Aborting a program,
CTRL/C, 3-10

Angle bracket «), usage,
command decoder, 1-45, 5-1

Assembly instructions,
BITMAP, 7-3
EPIC, 15-11
SRCCOM, 26-1

ASSIGN command, keyboard
moni tor, 3-11

Asterisk (*) usage,
command decoder, 5-1
wild card, 3-7

At sign (@) construction, CCL,
1-56, 3-8

BACKSPACE command, CCL, 3-12
BASIC command, 3-13
BATCH, 6-1

demonstration program, 6-13
error messages, 6-9
input file, 6-2
loading and saving, 6-18
mOn1tOr commands, 6-4 to 6-6
output file, 6-2
restrictions, 6-12
running from punched cards,

6-11
run-time options, 6-3
transferring software from

cassette, 6-19
BITMAP utility program, 7-1

assembly instructions, 7-3
error messages, 7-3
hardware/software requirements,

7-1
loading, 7-1
options, 7-2
output, 7-2

BOOT command, CCL, 3-14
BOOT (bootstrap utility program),

8-1
mnemonics, 8-2

Breakpoints, 19-4
BUILD, (system generation

program), 9-1
cassette device handlers, 9-3
commands, 9-7 to 9-19
DECtape device handlers, 9-3
device handler format, 9-21
device handlers, 9-1
editing characters, 9-7
error messages, 9-20
paper tape device handlers,

9-3

INDEX

CAMP (Cassette and Magnetic
Tape positioner program) ,
10-1

commands, 10-1 to 10-4
error messages, 10-5

Cassette and Magnetic Tape
Positioner -- see CAMP

Cassette transfer program, 18-1
CCL (Concise Command Language) ,

3-3
command, 3-15

Character deletion, 3-10
Character search, Symbolic

Edi tor, 4-12
Character string search,

Symbolic Editor, 4-13 to
4-16

Command Decoder, 5-1
called from BATCH, 6-6
error messages, 5-3
file specifications, 5-1
input string, 5-1

Command mode, Editor, 4-4
Commands,

CCL, 3-4
keyboard, 3-1, 3-11 to 3-67
monitor, 3-1

Command string examples,
Command Decoder, 5-1

Command string format, BATCH,
6-2

Command summary, ODT, 19-8
COMPARE command,

CCL, 3-16
EPIC, 15-8

COMPILE command, CCL, 3-19
COpy command, CCL, 3-22
CREATE command, CCL, 3-23
CREF command, CCL, 3-25
Cross-Reference Program (CREF) ,

11-1
error messages, 11-6
options, 11-1
output, 11-3
pseudo-op handling, 11-3
restrictions, 11-5

CTRL/C, 3-10
CTRL/U, 3-10
Current location, ODT, 19-7

DATE command, 3-26
DEASSIGN cOmMand, 3-27
DECtape copy and format

programs, 3-1

Index-1

INDEX (Cont.)

DECtape file for BATCH input,
6-1

DECtape systems, BUILD, 9-1

DELETE command, CCL, 3-27
Deletion of characters, 3-10
Demonstration program,

BATCH, 6-13
Descriptor block, BUILD, 9-22
Device codes for paper tape,

EPIC, 5-4
Device Control Block (DCB)

word, BUILD, 9-23
Device entry points, 9-24
Device handlers, 05/8, 9-1
Device handlers, RESORC, 22-1
Device names,

assignment of, 3-11
deassignrnent of, 3-29
permanent, 2-1

Device types, RESORC, 22-1
DIRECT command, 3-30
DIRECT utility program, 12-1

error messages, 12-5
examples, 12-3
options, 12-2
wild card construction, 3-7

Disk file for BATCH input, 6-1
Dollar sign ($),

BATCH usage, 6-4
DOT (.) character,

monitor response, 3-1
DTCOPY, 13-10
DTFRMT, 13-1
DUMP utility program, 14-1
Duplicate command, 3-32

EDIT command, CCL, 3-33
EDIT editing program, 4-1
Editing characters, BUILD, 9-7
Editing commands, EPIC, 15-4
Edit, Punch and Compare (EPIC)

utility program -- see EPIC
Entry point offset, BUILD, 9-24
EOF command, CCL, 3-34
EPIC (Edit, Punch and Compare)

utility program, 15-1
assembly instructions, 15-11
command format, 15-2
compare commands, 15-8
editing commands, 15-5
error conditions, 15-4
error messages, 15-8
loading, 15-1
loading from paper tape, 15-11
low-speed I/O, 15-4
paper tape format, 15-10

Equal sign (=),
octal number options, 3-5

Error conditions,
EPIC, 15-4
ODT, 19-7

Error messages,
BATCH, 6-9
BITMAP, 7-3
BUILD, 9-20
CAMP, 10-5
Command Decoder, 5-3
CREF, 11-6
DIRECT, 12-5
Editor, 4-18
EPIC, 15-8
FOTP, 16-11
MCPIP, 18-4
Monitor, 3-1
PIP, 20-8
PIPIO, 21-3
RESORC, 22-6
SRCCOM, 24-6

EXECUTE command, CCL, 3-35
Extension for BATCH input file,

6-2
Extensions, CCL compiler

assembler, 3-19
Extensions to file names, key

board monitor, 2-2

File names, 2-2
File Oriented Trasnfer Program

(FOTP), 16-1
error messages, 16-11
input specifications, 16-1
options, 16-7
output specifications, 16-3

File specifications,
Command Decoder, 5-1

File transfers, DECsystem-lO,
21-1

FOTP -- see File Oriented
Transfer Program

FUTIL utility program, 17-1

GET command, 3-35

Handlers -- see Device handlers
Header block, BUILD, 9-22
HELP command, CCL, 3-37
Hyphen construction in BUILD,

9-8

Index-2

INDEX (Cont.)

Indirect commands, CCL, 3-8
Indirect references, ODT, 19-1
Input files,

BATCH, 6-2
Editor, 4-1

Input/output,
low speed, with EPIC, 15-4

Input/output specifications,
CCL, 3-1 to 3-10
Command Decoder, 5-1
DIRECT, 12-1
FOTP, 16-1 to 16-3
RESORC, 22-1

Input string, Command Decoder,
5-1

Inter-buffer character string
search, Editor, 4-16

Intra-buffer character string
search, Editor, 4-13

Keyboard commands, 3-11 to
3-67

LOAD command, CCL, 3-39
Loading,

BATCH, 6-18
BITMAP, 7-1
EPIC, 15-1
EPIC from paper tape, 15-11
SRCCOM, 26-1

Low-speed I/O with EPIC, 15-4

Magnetic tape file names, 18-4
Magtape/Cassette peripheral

Interchange Program (MCPIP),
18-1

error messages, 18-4
options, 18-2

MAP command, CCL, 3-41
MCPIP -- see Magtape/Cassette

peripheral Interchange
Program

Memory command, 3-41
Mnemonics for devices, BOOT,

8-2
MUNG command, CCL, 3-44

Octal Debugging Technique (ODT),
19-1

commands, 19-2
errors, 19-7
special characters, 19-2
techniques, 19-4

ODT -- see Octal Debugging
Technique

ODT command, keyboard monitor,
3-45

Options, 3-4 to 3-6
Output,

BITMAP, 7-2
CREF, 11-1
SRCCOM, 26-2

Output files,
BATCH, 6-2
Editor, 4-6

Output specifications,
DIRECT, 12-2
FOTP, 16-1
RESORC, 22-1

Paper tape system loading, 1-20
Period (.) character -- see DOT

(.) character
peripheral Interchange Program,

(PIP), 20-1
error messages, 20-8
examples of specification

commands, 20-6
options, 20-1

Permanent device names, 2-1
PIP -- see Peripheral Interchange

Program
PIP10 utility program, 21-1

error messages, 21-3
options, 21-2

Postde1etion, FOTP, 16-7
Prede1etion, FOTP, 16-7
PRINT command, 3-47
Pseudo-op handling, CREF, 11-3
Punch and Compare program

see EPIC
PUNCH command, CCL, 3-48
Punched cards, 6-11

Question mark,
wild character, 3-7

RENAME command, CCL, 3-50
RES command, CCL, 3-51
RESORC utility program, 22-1

device types, 22-3
error messages, 22-6
handlers, 22-3
options, 22-2

REWIND command, CCL, 3-52
RKLFMT disk formatter program,

23-1

Index-3

INDEX (Cont.)

RUN command, keyboard monitor,
3-53

RXCOPY utility program, 24-1

SET utility program, 25-1
Single character search,

Editor, 4-12
SKIP command, 3-57
Source Compare Utility Program '

(SRCCOM), 26-1
error messages, 26-4
loading, 26-1
options, 26-2
output, 26-2

Spool device files, BATCH,
6-2

Square brackets ([]) characters,
Command Decoder, 3-5

SQUISH command, CCL, 3-59
SRCCOM -- see Source Compare

Utility program
START command, keyboard

monitor, 3-58
Stopping execution,

CTRL/C, 3-10
SUBMIT command, CCL, 3-60

System conventions, keyboard
monitor, 7-1

System devices, 2-1

TDCOPY, 13-10
TDFRMT, 13-5
Terminate command, 3-62
Text mode, Editor, 4-3
TYPE command, CCL, 3-63

UA, UB, UC commands, CCL, 3-63
UNLOAD command, CCL, 3-65

VERSION command, 3-66

Wild card construction, 3-7

ZERO command, CCL, 3-67

Index-4

· QI
s::

C)
s:: o

"'0 -:>
u
II)

'" o
QI

a:::

READER'S COMMENTS

OS/8
System Reference
Manual
AA-H607A-TA

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[J Assembly language programmer

[J Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

[J Student programmer

[J Other (please specify) __________ _

Name Date ______________ _

Organization

Street __ _

City ____ ~ ___________ ~ ___ State ___ ~ Zip Code_~_~ __
,or

Coilntry

FOLD HERE
--

I II II I

BUSINE$ REPLY A1iIIL
FIRST CLASS PERMIT NO. 33 MAYNARD, MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
SOFTWARE DOCUMENTATION
146 MAIN STREET - ML5-5/E39
MAYNARD, MASSACHUSETTS 01754

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

, .. ~
Ii

•

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	21-01
	21-02
	21-03
	21-04
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01
	24-02
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	26-01
	26-02
	26-03
	26-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB

