
u 
A 

USE'S 

o 
c 

ANU 

EDUCOMP CORPORATION 
298 PARK ROAD 
WEST HARTFORD) CONNECTIC UT 



Copyright (§) 1973 EDUCOMP Corporation 



TABLE OF CONTENTS 

1. AN OVERVIEW 

1.1 EDUCOMP BASIC IS ITSELF A PROGRAM 

1.2 BASIC AS A PROGRAMMING LANGUAGE 

1.2.1 Statements and Commands 

1.2.2 Running BASIC 

1.3 THE ENVIRONMENT 

1.4 CONVENTIONS USED IN THIS MANUAL 

1.5 SPECIAL TERMINAL KEYS 

1-1 

1-2 

1-2 

1-3 

1-4 

1-4 

1-6 

2. FUNDAMENTALS OF EDUCOMP RASIC 
2.1 SAMPLE BASIC PROGRAM 

2.2 LINE NUMBERS 

2.3 STATEMENTS 

2-1 

2-1 

2-3 

2.3.1 Multiple Statements on a Single Line 2-3 

2.3.2 Continuation of a Single Statement 
onto Another Line 2-3 

2.4 CHARACTER SET 

2.5 EXPRESSIONS 

2.5.1 Numbers 

2.5.2 Variables 

2.5.3 Mathematical Operators 

2.5.4 Relational Symbols 

2-4 

2-4 

2-5 

2-6 

2-7 

2-8 

3. ELEMENTARY BASIC STATEMENTS 
.. 

3.1 LET STATEMENT 

3.2 PROGRAMMED INPUT AND OUTPUT 

3.3 UNCONDITIONAL BRANCH, GOTO STATEMENT 

3.4 CONDITIONAL BRANCH, IF-THEN STATEMENT 

~.4.1 Logical IF-THEN 

3.5 PROGRAM LOOPS 

3-1 . 

3-2 

3-5 

3-6 

3-9 

3-10 

3.5.1 FOR and NEXT Statements 3-12 

3.5.2 Subscripted Variables and the DIM 
Statement 3-15 



3.6 MATHEMATICAL FUNCTIONS 

3.6.1 Examples of Particular Intrinsic 
Functions 

3.6.2 RANDOMIZE Statement 

3.7 SUBROUTINES 

3.7.1 GOSUB Statement 

3.7.2 RETURN Statement 

3.7.3 Nesting Subroutines 

3.8 STOP AND END STATEMENTS 

3.9 REMARKS AND COMMENTS 

3.10 ON-GOTO STATEMENT 

3.11 ON-GOSUB STATEMENT 

4. CHARACTER STRINGS 
4.1 CHARACTER STRINGS. 

4.1.1 String Constants 

4.1.2 Character String Variables 

4.1.3 Subscripted String Variables 

4.1.4 String Size 

4.1.5 Relational Operators 

4.2 STRING INPUT 

4.3 STRING OUTPUT 

5. DATA STORAGE CAPABILITIES 
5.1 FILE STORAGE 

5.2 OPEN STATEMENT 

5.2.1 Formatted ASCII I/O 

5.2.2 File-Structured Vs. Non-File
Structured Devices 

5.2.3 Opening the User Terminal as an 
I/O Channel 

5.3 OUTPUT TO VARIOUS DEVICES 

5.4 INPUT FROM VARIOUS DEVICES 

5.5 VIRTUAL DATA STORAGE 

5.5.1 Virtual Core DIM Statement 

5.5.2 Virtual Core String Storage 

5.5.3 Opening a Virtual Core File 

3-'18 

3-19 

3-22 

3-23 

3-25 

3-25 

3-25 

3-26 

3-27 

3-28 

3-28 

4-1 

4-2 

4-2 

4-3 

4-4 

4-5 

4-7 

4-9 

5-1 

5-2 

5-3 

5-4 

5-6 

5-7 

5-9 

5-10 

5-l0 

5-11 

5-12 



5.6 CLOSE STATEMENT 

5.7 KILL STATEMENT 

5.8 CHAIN STATEMENT 

6. EDUBASIC GENERALIZED INPUT AND OUTPUT OPERATIONS 
6.1 READ AND DATA STATEMENTS 

6.2 RESTORE STATEMENT 

6.3 INPUT STATEMENT 

6.4 PRINT STATEMENT 

6.4.1 PRINT-USING Statement 

6.4.2 PRINT Functions 

7i EDUBASIC COMMANDS' 
7.1 INTRODUCTION 

7.2 CREATING A PROGRAM 

7.3 CALLING AN EXISTING PROGRAM 

7.3.1 Calling Data Files 

7.3.2 OVerlaying A Program 

7.4 EDITING PROGRAMS 

7.4.1 The EDIT Command 

7.4.2 The RESEQUENCE Command 

7.4.3 DELETE Command 

7.4.4 LIST Command 

7.4.5 SEARCH 

7.5 MANIPULATING USER PROGRAMS 

7.5.1 RUN Command 

7.5.2 EXECUTE Command 

7.5.3 SAVE Command 

7.5.4 SAVE Without Line Numbers 

7.5.5 UNSAVE Command 

7.5.6 RENAME Command 

7.5.7 REPLACE and NREPLACE 

7.5.8 COMPILE Command 

7.6 LENGTH COMMAND 

7. 7 CATALOG COMMAND 

5-13 

5-14 

5-14 

6-1 

6-2 

6-2 

6-4 

6-6 

6-9 

7-1 

7-1 

7-3 

7-4 

7-5 

7-6 

7-7 

7-8 

7-9 

7-10 

7-11 

7';"12 

7-12 

7-13 

7-14 

7-16 

7-16 

7-17 

7-17 

7-17 

7-19 

7-19 



7.8 COMMANDS FOR INPUT/OUTPUT DEVICES 

7.8.1 TAPE Command 

7.8.2 KEY Command 

7.8.3 PUNCH and NPUNCH 

7.8.4 MARGIN Command 

7.9 SPECIAL CONTROL CHARACTERS 

7.9.1 RETURN Key 

7.9.2 LINE FEED Key 

7.9.3 RUB OUT Key 

7.9.4 CTRL/C 

7.9.5 CTRL/P 

7.9.6 CTRL/U 

7.9.7 CTRL/O 

7.9.8 TAB Character 

7.9.9 CTRL/Z 

8. DETAILS OF VIRTUAL ARRAYS 

7-20 

7-20 

7-21 

7-21 

7-22 

7-22 

7-22 

7-23 

7-23 

7-24 

7-24 

7-24 

7-25 

7-25 

7-25 

8.1 INTRODUCTION 8-1 

8.2 ARRAY STORAGE 8-4 

8.3 TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE 
ADDRESSES 8-4 

8.4 ACCESS TO DATA IN VIRTUAL ARRAYS ·8-8 



CHAPTER 1 

AN OVERVIEW 

1.1 EDUCOMP BASIC IS ITSELF A PROGRAM 

The computer language called BASIC is, itself, a computer 

program. It is a very complex program written in a dif

ferent kind of comput~r language ("machine" language), 

one that requires great detail when writing a program. 

Use of this great detail permits the construction of the 

language BASIC, which will let you write programs using a 

few English words and mathematical symbols. Because BASIC 

itself is a computer program, it has a limited number of 

ways of accepting instructions (statements and commands). 

Thus, the major effort in learning the language must be to 

master the rules for giving instructions and learning what 

the instructions do for you. (The error message uILLEGAL 

SYNTAX" may be somewhat disconcerting in a computer-oriented 

endeavor but BASIC is a "language".l 

Historically, the original development of BASIC was done at 

Dartmouth College by Drs. John Kemeny and Thomas Kurtz and 

it may properly be considered to have a bias toward an edu

cational environment. (Dr. Kemeny was later made President 

of Dartmouth College.) BASIC is an acronym for Beginners 

All-purpose Symbolic Instruction Code. The objective in de

veloping BASIC was to provide an easily learned computer 

language that would run on a computer in an interactive mode. 

The plan was to bring the computer to the student and pro

vide instant service by means of terminals placed around the 

campus rather than require the student to go to the computer 

and face a lengthy wait to get his program run. Although 

BASIC has been considerably extended, and several versions 

exist, the few fundamental instructions are common to all 

1-1 



versions and are easy to learn. 

1.'2 . BASIC AS A PROGRAMMING LANGUAGE 

BASIC is one of the simplest of all programming languages 

because of its small number of powerful but self-explanatory 

statements and commands and its easy application in solving 

problems. Its wide use in scientific, business, and educa

tional installations attests to its value and straightfor

ward application. 

BASIC is similar to many other programming languages in 

various respects (and is, consequently, very easy for the ex

perienced programmer to learn), but is especially suited for 

time-sharing because of its conversational nature. A conver

sational language is one which allows the user to communicate 

with the language processor by typing on the terminal key

board. BASIC responds by printing on the terminal printer, 

providing for an interactive man/machine relationship. 

EDUCOMP BASIC contains both elementary statements used to 

write simple programs and advanced programming techniques 

and statements to write complex and efficient programs. 

The key word here is not complex, but efficient. As the user 

progresses and gains programming experience, he will naturally 

find himself becoming more efficient and able to use the more 

sophisticated data manipulations. Almost any problem can 

be solved with the simple BASIC statements. Later in the 

user's programming experience, the advanced techniques can 

be added. 

1.2.1 STATEMENTS AND COMMANDS 

Instructions in BASIC are one of two types: 

or (2) commands. 

1-2 

(1) statements 



Statements are the instructions which make up the user program. 

They give the details of how the program is to perform the 

Job to be done, i.e., solve your problem. Learning BASIC 

means learning what each statement does. As,you learn how 

to combine the various kinds of statements in different ways 

you will find that writing a program becomes progressively 

easier and, for many people, a fascinating activity much 

like solving a puzzle. In BASIC, each statement starts with 

a line number. Each statement also includes a key word in 

English which indicates what the statement is to do. 

Commands, in BASIC, are the instructions that tell BASIC how 

to act upon, or with, your program. Commands are external 

to the program which consists of statements. Because com

mands direct BASIC to work with the program, they are used 

in writing, editing, running, debugging and finally, storing 

your program. EDUCOMP BASIC is particularly rich in commands 

designed to make programming easier. An example of a BASIC 

command is RUN. RUN causes BASIC to start the sequence of 

events which, if the program is syntactically correct will 

result in execution of your program. Note that commands use 

no line numbers, and are executed immediately after they are 

typed. 

1.2.2 RUNNING BASIC 

When the RUN command is given, BASIC attempts to complete a 

two-phase operation: (1) compilation and (2) execution. 

Compilation is the process by which BASIC translates the pro

gram coding you have written (in BASIC) into a form "under

stood" by the computer (machine language). The compiler checks 

the program to make certain that all the rules of the language 

are obeyed. When the statements are correct with respect to 

the syntax of BASIC, the conversion to machine language takes 

place and the second phase of running a program begins. EDUCOMP 

BASIC is an incremental compiler which partially compiles the 

1-3 



user's program. This partial compilation is to be compared 

with a pure interpreter which is much slower in running programs. 

Execution is the actual operation of the program to perform 

its assigned task (solve your problem). During execution the 

computer is performing the operations it was instructed to 

perform in the manner specified by the program. The computer 

can do only what it is instructed to do by the program! 

1.3 THE ENVIRONMENT 

The environment under which EDUCOMP BASIC functions is an ex

tremely complex arrangement of interrelated programs. This 

particular manual is designed only to convey the constructs 

of the EDUCOMP BASIC language and it is assumed that the 

reader is (or will become) familiar with Digital Equipment 

Corporation's operating system OS/8. 

We make the assumption here that the user is always in the 

language BASIC. Briefly, obtaining EDUBASIC requires (1) 

getting OS/8 on the air, i.e., starting the system, and (2) 

typing 

.R BASIC 

at the terminal in response to the dot 

EDUBASIC responds with 

READY 

" " printed by OS/8. 

to indicate that the system is in BASIC and 'READY' to per

form for you. 

1.4 CONVENTIONS USED IN THIS MANUAL 

Certain documentation conventions are used throughout this 

manual to clarify examples of BASIC syntax. Each BASIC 

1-4 



statement is described at least once in general terms using 

the following conventions: 

a. Words appearing in capital letters are the key words 
and indicate what the statement is expected to do 
with the data found after the key word, if any. For 
example: 

line number READ list 

b. Square brackets indicate that the bracketed item is 
optional. For example: 

line number [LET] variable = expression 

c. Items in lower case type (formula, variable, list, 
etc.) are supplied by the user according to rules 
explained in the text. Items in capital letters 
(END, IF, READ, etc.) must appear exactly as shown 
because they form the BASIC language. 

d. The term line number used in examples (as in (b) 
above) indicates that any line number is valid. 

The use of some terms in this document may be unfamiliar to 

the new user. The following definitions and explanations 

are valid throughout this manual: 

a. BASIC (that is, the computer) prints on the tele
printer whereas the user types on the keyboard. 

h. A statement is a line (or part of a line or mul
tiple lines in some cases) within a user program 
containing a BASIC language instruction. Each 
line is terminated by typing the RETURN key. 

c. Commands cause BASIC to perform some operation or 
task immediately and are not preceded by a line 
number. Commands are always terminated with the 
RETURN key. 

d. User programs consist of a series of statements 
written by a person using the system in the BASIC 
language. 

e. The terminal is in most cases an ASR-33 Teletype 1 • 

However, we can accommodate virtually any type
writer type device. The user terminal is alter
natively referred to as terminal, teleprinter, or 
keyboard, depending upon what part or whether the 
whole device is indicated. 

ITeletype is a registered trademark of the Teletype Corporation. 

1-5 



1.5 SPECIAL TERMINAL KEYS 

Throughout this manual, reference is made to typing various 

special keys on the terminal. In many cases, these keys are 

not mentioned, but assumed. The user will quickly learn the 

use of the more important control keys on the terminal. As 

an introduction, the user is directed to consider the keys 

explained below. 

The RETURN key causes two operations to be performed: 

a. An automatic carriage return/line feed operation 
is executed. The printing head returns to the 
beginning of the line (carriage return) and the 
paper is advanced one line (line feed). 

b. The data preceding the typing of the RETURN key 
is entered into the system for evaluation. All 
commands to BASIC and lines in a user program 
are terminated by typing the RETURN key. 

The RUBOUT key is used to correct typing mistakes. Typing 

this key once causes the last character typed to be deleted 

from the terminal input buffer (remember that an entire line 

is entered at once when the RETURN key is typed). Pressing 

the RUBOUT key N times causes the last N characters of the 

current line to be deleted. 

The CTRL key (or control key) is used in combination with cer

tain letter keys to cause BASIC to perform special operations. 

These combinations are performed by the user holding down the 

CTRL key while typing the desired letter key, then releasing 

both keys. CTRL/U and CTRL/C are examples of these combina

tions. Some of the CTRL/key combinations are introduced , 

below for use when working through this manual. All usable 

combinations are described in Chapter 11. 

a. CTRL/U is used to delete an entire line up to the 
last point at which the RETURN or ESCAPE key was 
last typed. BASIC responds with a carriage re
turn/line feed so that the user can continue typing 

1-6 



on a fresh line. 

b. CTRL/P is used to interrupt the execution of a 
program and return to the interact~ve BASIC pro
cessor. When typed by the user, CTRL/P causes 
the system to echo tP when BASIC is in command 
mode and the system prints READY. When used to 
interrupt the execution of a progrfu~, CTRL/P is 
not printed, but the message STOP IN LINE xxx 
followed by READY is printed. 

c. CTRL/C returns control of the terminal to the OS/8 
monitor. 

The LINE FEED key reprints the current line, free of rubouts. 

It does not enter the line into the program. The carriage 

return is needed to perform that function. 

1-7 



CHAPTER 2 

FUNDAMENTALS OF EDUCOMP BASIC 

2.1 SAMPLE BASIC PROGRAM 

The program in Figure 2.1 is an example of a user program 

written in the BASIC language. It illustrates the syntax* 

and elements of the language as well as standard formatting 

of statements and the appearance of terminal output. 

The user program (the lines numbered 10 through 999) may at 

this time mean little, although the remark in the first line 

(line 5) and the printed results (following the word RUN) 

clearly show that the program performs payroll calculations. 

A user program is composed of lines of statements containing 

instructions to BASIC. Each line of the program begins with 

a line number that serves to identify that line as a state

ment and to indicate the order in which statements are to be 

evaluated for execution. Each statement starts with a 'key' 

word which specifies the type of operation to be performed • 

. 2. 2 LINE NUMBERS 

Each line of a user program must be preceded by a line number. 

Line numbers have the following characteristics: 

1. They indicate the order in which statements 
are normally evaluated; 

2. The numbers serve as 'tags' to enable the norm
al order of evaluation to be changed; that is, 
the execution of the program can branch or loop 
through designated statements (this is explained 
further in the sections on the GOTO, GOSUB, and 
IF-THEN statements in Chapter 3); and 

3. Line numbers enhance program editing by permitting 
modification of any specified line without affect
ing any other portion of the program. 

*Syntax refers to the rules which specify how the programming 

language elements are combined. 

2-1 



Line numbers. are in the range 1 to 4094. It is good pro

gramming practice to number lines in increments of 5 or 10 

when first writing a program, to allow for insertion of 

forgotten or additional lines to complete the program. 

LISTNH 
5 REMARK -PAYROLL CHECKSTUBS SIMULATION W/DATA 
US PRINT "COMPLETE PAYROLL DEMONSTRAT.ION": PRINT: PRINT 
15 G=0:READ E 
17 IF E=-999 THEN 999 
20 READW"H"D"Y"V 
22 PRINT "EMPLOYEE NUMBER"; E 
24 PRIN T "HO URS tvO RKED="'; li 
26 PRINT "HOURL Y WAGE="Hl: PRINT 
30 0=0: IF- H<=40 THEN 60 
35 LET T=H-40 
40 LET O=T* (1. 5*W) 
50 LET G=O 
55 LET H=H-T 
60 LET R=W*~: LET G=G+R 
80 LET Y=Y+G 
90 IF Y-G>=9200 THEN 150 
100 GO TO 1310 
,110 LET F=(G-(Y-92CijCij»*5.2CijCij0CijE-02:GOTO 160 
130 LET F=G*5.200CijCijE-Cij2:GO TO 160 
150 LET, F=0 
160 LET 1= (G-(D*13.5»*.14 
1'70 LET N;::G- (I+F+V) . 
'180 PRINT "EMP NO",,"REG WAGE",,"O .T WAGE""",,"GROSS" 
r90 PRINT E" R" 0"" G: PRINT 
200 PRINT"ITW"" "FI CA"" "VOL DEDUCT"" "YTD EARNINGS"" "NETPAY" 
210 PRINT' I"F~V;Y"N -. 

'220 DATA 15722,,3,,410,,1,,501010,,12,,-999 
230 GOTO 15 
999 END 

READY 
. " : 

RUNNH 
COMPLETE PAYROLL DEMONSTRATION 

'EMPLOYEE NUMBER 15722 
HOURS WORKED= 410 
HOURLY WAGE= 3 

EMP NO 
15722 

lTV 
14.91 

,READY 

REG 'WAGE 
120 

FICA 
6.24 

o T WAGE 
. ·s 

VOL· DEDUCT 
12 

2-2 

, i 

GROSS 
120 

YTD EARNINGS NETPAY 
5120 86.85 



When the program is executed (with the use of the RUN command), 

BASIC evaluates the statements in the order of their line 

numbers, starting with the smallest line number and going to 

the largest (regardless of the order in which they were typed 
or entered). 

2.3 STATEMENTS 

Each line number is followed by an English word (key word) • 

The word identifies the type of statement and informs BASIC 

what to do or how to treat the data (if any) which follows 

the word. 

2.3.1 Multiple Statements on a Single Line 

More than one statement can be written on a single line as 

long as each statement (except the last) is terminated with 

a colon. Thus only the first statement on a line can (and 

must) have a line number. For example: 

19 PRINT "EDUCOMP BASIC" 

is a single statement line, while 

2g LET X=l: PRINT X,Y,Z: IF X=2 THEN l~ 

is a multiple statement line containing three statements: a 

LET, a PRINT, and an IF-THEN statement. 

Any statement can be used anywhere in a multiple statement 

line except as noted in the discussion of the individual 

statements. 

2.3.2 Continuation of a Single Statement onto Another Line 

A single statement can be continued on the next line of the 

program. To type more than 72 characters (not including 

line numbers) on a line, simply continue typing after 72 

characters. EDUBASIC will automatically perform a carriage 
return, line feed, tab, and allow you to ypte more characters. 

These two lines will be treated as one for GOTO's, IF-THEN, 

etc. The length of a multiple line statement is limited to 

124 characters. 

2-3 



2.4 CHARACTER SET 

User program statements are composed of individual characters. 

Allowable characters corne from the following character set: 
A through Z 

~ through 9 

and the following special symbols: 

Symbol 

$ 
n 

• · 
· · 
t 

, 
· , 

() 

+ - = 
* / t 

< t 
> 

Function 

Used in specifying string variables. 

Used to delimit string constants, i.e., 
text strings. 

Begins comment part of a line (section 3.9). 

Separates multiple statements on one line. 

Denotes a device or filename, or is used 
as an output format effector. 

Output format effector and list terminator 

Output format effector. 

Used to group arguments in an arithmetic 
expression. 

Arithmetic operators. 

spaces can be used freely throughout the program to make 

statements easier to read. For example : l' LET Cl = H * R 
instead of: 

l~LETCl=H*R 

Both of the above statements mean the same thing to BASIC 

and are stored exactly the same within the computer when 

the program is executed. If a program is too large, spaces 

may be removed to decrease the size because each space is 

a character and takes up space in the computer's memory. 

2.5 EXPRESSIONS 

An expression is a group of symbols which can be evaluated 

by BASIC. Expressions are composed of numbers, variables, 

functions, or a combination of these, separated by arithmetic 
or relational operators. Expressions are created by the 

2-4 



programmer and inserted into the standard BASIC statements 

in order to perform the various operations which comprise 

the user program. 

The following are examples of expressions acceptable to EDUCOMP 
BASIC. 

4 

A7*(Bt2+l) 

X<Y 

Not all kinds of expressions can be used in all statements, 

as is explained in the sections describing the individual 

statements. In the following sections the reader is intro

duced to the elements which compose BASIC expressions. 

2.5.1 Numbers 

Numbers"called numeric constants because they retain a con

stant value throughout a program, can be positive or negative 

and can contain up to six digits. Numeric constants are 

written using decimal notation, as follows: 

2 

-3.675 

1234.56 

-12345.6 

-.000078 

The following forms are not acceptable numbers in BASIC: 

14 
3 
r.r 

However, BASIC can find the decimal expansion of those two 

mathematical formulas as shown below: 

lj is expressed as 14/3 

~is expressed as SQR(7) 

These formats are explained further in later sections. 

A number representation using the letter E allows further flex

ibility. If numbers were limited to six digits, a computer 

2-5 



would not be able to solve many problems involving large 

numbers. Consequently, rather than saying that BASIC can 

only accept numbers with a maximum of six digits, we say 

that BASIC has six digits of precision. Larger numbers 

can be written using the letter E to indicate "times ten 

to the power", thus: 

.999123456 can be written in BASIC as l23.456E-6 

-1234569~. can be written in BASIC as -1.23456E7 

This E format representation of numbers is very flexible 

in that the number .001 can be written as lE-3, OlE-I, 

lOOE-5, or any number of ways. If more than six digits are 

generated during any computation, the result of that comp

utation is automatically printed in E format. (If the ex

ponent is negative, a minus sign is printed after the Ei 

if the exponent is positive, a plus sign is printed: 

lE-94i lE+94. 

The combination E7, however, is not a constant, but a var

iable. The term lE7 is used to indicate that 1 is multiplied 

by 107 • 

Numbers are specified according to the following rules: 

a. line numbers are unsigned decimal integers in the 

range 1 to 4094. 

b. numbers have the range lE-6l6!n~E6l6. 

2.5.2 Variables 

A variable is a data item whose value can be changed by the 

programmer. A rLumeric variable is denoted by a single letter 

or by a letter followed by a single digit. Thus BASIC inter

prets E8 as a variable, along with A; X, N5, L9, and 01. 

(Subscripted and character string variables are described in 

later sections.) All variables are set equal to zero (9) 

2-6 



before program execution. Consequently it is only necessary 

to assign a value to a variable when an initial value other 

than zero is required, but it is good programming practice 

to initialize any variable. 

2.S.3 Mathematical Operators 

BASIC automatically performs the mathematical operations 

of addition, subtraction, multiplication, division, and 

exponentiation. Formulas to be evaluated are represented 

in a format similar to standard mathematical notation. 

There are five arithmetic operators used to write such 

formulae: 

O~erator Example Meaning 

+ A+B Add B to A 
A-B Subtract B from A 

* A*B Multiply A by B 

I AlB Divide A by B 

t A~B Calculate A to the 

When more than one operation is to be performed in a single 

formula, as is most often the case, rules are observed as 

to the precedence of the above operators. The arithmetic 

operations are performed in the following sequence, with 

(1) having the highest precedence: 

1. Any formula inside parentheses is evaluated before 
the parenthesized quantity is used in further com
putations. Where parentheses are nested, as in 

(A+(B*(~2») 

the innermost parenthetical quantity is calculated 
first. 

2. In the absence of parentheses in a formula, BASIC 
performs operations as follows: 

1. exponentiation 
2. unary minus 

2-7 

B power~AB 



3. multiplication and division 
4. addition and subtraction 

For example, -3t2=-(3)t2=-9 

3. . In absence of parentheses in a formula involving 
more than one operation on the same level in (2) 
above, the operations are performed left to right, 
in the order that the formula is written. For 
example: 

AtBtC is evaluated as {AtB)tC 

A*B/C is evaluated as {A*B)/C 

The formula (or expression) A+B*CtD is evaluated as follows: 

first, 

second, 

third, 

C is raised to the D power 

the result of the first operation is multiplied by B 

the result of the previous operation is added to A. 

Parentheses are used to indicate any other order of evaluation. 

For example, if it is the product of Band C that is to be 

raised to the D power, the expression would look as follows: 

A+(B*C)tD 

If it is desired to multiply the quantity A+B by C to the 

D power: 

(A+B) *ct D 

The user is encouraged to use parentheses even where they 

are not strictly required in order to make the formulae 

easier to read. Ambiguities exist only in the programmer's 

mind, the computer always performs the operations as explained 

above. 

2.5.4 Relational Symbols 

Relational symbols are used in IF-THEN statements (see section 

~.4) where it is necessary to compare values. The relational 

symbols are as follows: 

2-8 



Mathematical BASIC 

Symbol Symbol Example Meaning 

= = A=B A is equal to B 

< < A<B A is less than B 

< <= A<=B A is less than or equal to B 

> > A>B A is greater than B 

> >= A>=B A is greater than or equal to B 

t- <>or # A<>B, A#B A is not equal to B 

2-9 



CHAPTER 3 

ELEMENTARY BASIC STATEMENTS 

The simplest forms of the more elementary BASIC statements, 

are sufficient, by themselves, for the solution of most 

problems. Once these statements are mastered, the user can 

investigate the more advanced applications of these state

ments and the additional statements and features explained 

in later chapters. 

The reader should understand that any problem which can be 

solved with the more advanced techniques can also be solved 

with the simpler statements, although the solution may not 

be as efficient. As long as the user understands the details 

of his problem he can represent it in BASIC on a number of 

levels ranging from the simple to the sophisticated. 

3.1 LET STATEMENT 

The LET statement assigns a numeric value to a variable. 

Each LET statement is of the form: 

line number[LET] variable = expression 

This statement does not indicate algebraic equality, but 

performs the calculations within the expression (if any) 

and assigns the numeric .value to the indicated variable. 

For example: 

19 LET X=X+l 
2g LET W2=(A4-Xt3) * (Z-A/B) 

In line 10, the old value of X is increased by one and be

comes the new ~alue of X. In line 20, the formula on the 

right hand side is evaluated and the numeric value assigned 

to W2. 

The LET statement can be a simple numerical assignment, such 

as 

sg LET A=3S 

3-1 



or require the evaluation of a formula so long that it is 

continued on the next line (see Section 2.3.2). 

EDUCOMP BASIC allows the user to completely omit the word 

LET from the LET statement. The user may find it easier 

to type: 

l~ X=12* (S+7) 

than 

l~ LET X=12*(S+7) 

This convenience does not alter the effect of the statement. 

The LET statement can be used anywhere in a multiple state

ment line, for example: 

l~ X=44: Y=Xt2+Yl: B2=3.5*A 

The LET statement allows the user to assign a value to 

multiple variables in the same statement. For example: 

l~ LET X=Y=Z=5.7 

causes each of the three variables to be set equal to 5.7. 

3.2 PROGRAMMED INPUT AND OUTPUT 

This section describes the techniques used in performing 

BASIC program input and output (I/O). The most elementary 

forms of the PRINT, INPUT, READ, and DATA statements are 

described here so that the user is able to create simple 

BASIC programs. 

Using the LET statement; already described, and the follow

ing executable statements, the user can easily write a viable 

BASIC program of the simplest sort. If he should want to 

try his program, these simple I/O statements will provide 

a means of doing so and obtaining tangible output. 

These statements are described in detail at the end of this 

chapter and additional, more advanced, I/O techniques are 

described in later chapters. 

3-2 



The PRINT statement is used to output program results. The 

PRINT statement has the basic form: 

line number PRINT [list] 

-where the optional list can consist of messages to be printed 

or numeric values, or both. Without the list, the PRINT 

statement 

111 PRINT 

causes a carriage return/line feed to be performed at the 

teleprinter. In order to print numeric values, the word 

PRINT is followed by the variable or expression whose numeric 

value is to be printed. The PRINT statement, like the LET 

statement, can perform numeric calculations. For example: 

1$1 LET A=2: LET B=4 
211 PRINT (A+B)*2 

causes the number 12 to be printed when line 20 is executed. 

A message can be easily output on the teleprinter by enclos

ing the text to be printed in quotation marks, as follows: 

7$1 PRINT .. STUDENT NUMBER = "; X 

This statement causes the following to be printed (where 

X=7744): 

STUDENT NUMBER =7744 

The READ and DATA statements are used to input data to a 

.' program during execution. A DATA statement contains values 

which are assigned to the variables within a READ statement. 

When the execution of the program encounters a READ statement 

of the form: 

line number READ list 

the BASIC processor assigns to the first variable in the 

list the first available value encountered in the pool of 

DATA statements within the program. The second variable is 

3-3 



assigned the second value in the DATA pool, and so on. Var

iable names are separated by commas. 

A DATA statement looks as follows: 

line number DATA list 

DATA statements are usually grouped together toward the end 

of a program. All of the DATA statements in a given program 

are considered to be one data pool from which subsequent 

READ statements obtain values. (The values in the list are 

separated by commas.) The DATA statements are referenced 

in the order of their line numbers. For example: 

l~ READ A,B,C 
2~ READ D,E,F 
3~ READ A,B,C 
4~ DATA 1~2,3,4 
5~ DATA 5,6,7,8,9 

results in the following assignments being made: 

A=l 
B=2 when line l~ is executed 
C=3 

D=4 
E=5 when line 2~ is executed 
F=6 

A=7 
B=8 when line3~ is executed 
C=9 

The INPUT statement allows the user to enter data to the 

program from the terminal keyboard while the program is 

being executed. The data is typed by the user as BASIC asks 

for it. For example: 

111 INPUT A,B,C 

causes BASIC to pause during execution, print a question 

mark, and wait for the user to type three numerical values. 

The numbers must be separated by commas and terminated with 

the RETURN key. BASIC keeps printing question marks until 

3-4 



it obtains the desired number of numeric inputs from the 

keyboard. For example, line l¢ above would cause: 

? 

to be printed. The user could type: 

?15,24 

followed by the RETURN key. BASIC would reply: 

?15,24 
? 

and wait for the user to enter a third value. Any values 

entered beyond the number required (three in the above case) 

would be ignored. INPUT statements are used only when small 

amounts of data are to be entered, or when data can only 

be supplied while the program is running. 

3.3 UNCONDITIONAL BRANCH, GOTO STATEMENT 

The GOTO statement is used when it is desired to unconditionally 

transfer to some line other than the next sequential line in 

the program. In other words, a GOTO statement causes an 

immediate jump to a specified line, out of the normal con

secutive line number order of execution. The general format 

of the statement is as follows: 

line number GOTO line number 

The line number to which the program jumps can be either 

greater than, equal to, or less than the current line number. 

It is thus possible to jump forward or backward within a 

. program. 

Consider the following simple example: 

/ 

10 L:ET A=2 
20 GOTO 50 
30 LET A=SQRCA+14) 
50 'PRI NT A~ A*A 
60 END 

3-5 

'. 



When executed, the above lines cause the following to be 

printed: 

2 4 

When the program encounters line 20, control transfers to 

line 50; line 50 is executed, control then continues to the 

line following line 50. Line 30 is never executed. Any 

number of lines can be skipped in either direction. 

When written as part of a multiple statement line, GOTO 

should always be the last statement on the line, since any 

statement following the GOTO on the same line is never 

executed. For example: 

ll~ LET A=ATN(R2): PRINT A: GOTO 5~ 

3.4 CONDITIONAL BRANCH, IF-THEN STATEMENT 

The IF-THEN is used to transfer conditionally from the normal 

consecutive order of statement numbers, depending upon the 

truth of some mathematical relation or relations. The 

basic format of the IF statement is as follows: 

line number IF condition 
THEN statement 
THEN line number 

The specified condition is tested. If the relationship is 

found false, then control is transferred to the line follow

ing the IF statement (the next sequentially numbered line). 

If the condition is true, the statement following THEN is 

executed or control is transferred to the line number 

given after THEN. 

The deciding condition is a simple relational expression 

in which two m~thematical expressions are separated by a 

relational operator. For example: 

Relational Expression 

A+2~B 

3-6 



The condition, when evaluated, is either true or false; no 

numeric value is associated with the result of an IF state

ment. The relational operators are described in Section 2.5.4 

and are presented in Appendix A for reference. 

75 IF A*B =B*(B+l) THEN LET 04=04+1 

In the above line the quantities A*B and B*(B+l) are compared. 

If the first value is greater than or equal to the second 

value, the variable D4 is incremented by 1. If B*(B+l) is 

greater than A*B, 04 is not incremented and control passes 

tmmediately to the next line following line 75. 

When a line number follows the word THEN, execution is the 

same as if a GOTO statement followed the word THEN. The 

word THEN can be followed by any BASIC statement, including 

another IF statement. For example: 

25 IF A'>B THEN IF B:::>C THEN PRINT ".A7B?C" 

The preceding line would perform the following operation: 

if B is both less than A and greater than C, the message 

A>B>C 

is printed, otherwise the line following line 25 is executed • 

. (The above example, line 25, is the same as "IF A>B AND B~C 

THEN PRINT "~B>C". This last form is not permitted in EDUCOMP 

BASIC. ) 

In the following example, the IF-THEN statement in line 20 

is used to limit the value of the variable A in line 10. 

Execution of the loop continues until the relationship A>4 

is true, then immediately branches to line 55 to end the 

program. (A program loop is a series of statements which 

are written so that, when the statements have been executed, 

control transfers to the beginning of the statements. This 

process continues to occur until some terminal condition is 

reached. ) 

3-7 



LISTNH 
10 'LET A=A+ 1: X=At2 
20 IFA>4 TH&~ 55 
25 PRINT X 
30 PRINT "VALUE OF A IS";A 
40 GOTO 10 
55 END 

READY 

When the above loop is executed, the following is printed: 

.RUNNH 
1 

VALUE OF A IS 1 
4 

VALUE OF A IS 2 
9 

VALUE 0 F A IS 3· 
16 

VALUE OF A IS 4 

READY 

(The novice BASIC programmer is advised to follow the oper

ation of the computer through these short example programs.) 

In IF statements, the following priorities are associated 

with each operator, in order to provide unambiguous· evalu

ation of the conditions specified (where a. has the highest 

priority): 

a.expressions in parentheses 

b. intrinsic functions 

c. exponentiation (t) 

d. unary minus (-), that is, a negative number 
or variable such as -3, -A, etc. 

e. multiplication and division (* and /) 

f. addition and subtraction (+ and -) 

g. relational operators (=,<,(=,),>=, # ,<» 

Within the operators indicated in anyone group above, oper

ations proceed from left to right. 

3-8 



Examples of IF-THEN statements follow 

1~ IF A)B THEN 1~¢ 

2¢ IF A>B THEN A=-B 

! SIMPLE COMPARISON 

ASSIGNMENT BY A LET STATEMENT 

An IF statement would normally be the last statement on a 

multiple statement line (to avoid confusion); however, the 

following rules govern the transfer path of the IF statement 

in other positions: 

a. The physically last THEN clause is considered to 
be followed by the next statement (or statements) 
on the line: 

l¢ IF A=l THEN PRINT Ai :PRINT "TRUE CASE": GOTO 2¢ 
15 PRINT "NOT = 1" 

where A~l, the following line is printed: 
NOT = 1 
where A=l, the following line is printed: 
1 TRUE CASE 

b. All other THEN clauses are considered to be followed 
by the next line of the program: 

2¢ IF A>B THEN· IF B>C THEN PRINT "B> C": GOTO 3¢ 
25 PRINT "A<=B" 

Only in the case where "B>C" is printed is the 
statement GOTO 3¢ seen and executed. 

3.4.1 LOGICAL IF-THEN 

It is sometimes useful to have available a somewhat different 

form of the IF-THEN statement. The following variation is 

called a logical IF-THEN; 

IF variable THEN statement 

If the value of the variable is zero, the statement is false 

and control is transferred to the next sequential line. If 

the value of the variable is anything other than zero, the 

statement is true and the specified exp!.ession is executed. 

For example, 

3-9 



-110 INPUT A 
115 IF A THEN PRINT "A<>0": GOTO 110 
120 PRINT "A=0" 
200 END 

READY 

RUNNH 
? 5 
A<>0 
? -2 
A<>0 
? .246 
A<>0. 
? 0 
A=0 

READY 

3.5 PROGRAM LOOPS 

Loops were first mentioned in the section on the IF-THEN 

statement. Programs frequently involve performing certain 

operations a specific number of times. This is a task for 

which a computer is particularly well suited. with simple 

tasks, such as computing a list of prime numbers between 

1 and 1,000,000, a computer can perform the operations and 

obtain correct results in a minimal amount of time. To 

write a loop, the programmer must ensure that the series 

of statements is repeated until a terminal condition is 

met. 

Programs containing loops can be illustrated by using two 

versions of a program to print a table of the positive in

tegers 1 through 100 together with the square root of each. 

Without a loop, the first program is 101 lines long and reads: 

3-10 



.-

,. , 

UJ PRINT 1" SQR( 1) 

20 PRINT 2" SQR(2) 
30 PRINT 3" SQR(3) 

• , --• 
• 

990 PRINT 99" SQR(99) 
1000 PRINT 100~ SQR(100) 
101ft} END 

With the following program example, using a simple loop, 

the same table is obtained with fewer lines: 

. -

10 LET X=1 
20 PRINT X"SQRCX> 
30 LET X=X+l 
40 IF X<=1ft}0 THEN 2ft} 
50 END 

Statement 10 assigns a value of 1 to X, thus setting up the 

initial conditions of the loop. In line 20, both 1 and its 

square root are printed~ In line 30, X is incremented by 1. 

Line 40 asks whether X is still less than or equal to 100; 

if so, BASIC returns to print the next value of X and its 

square root. This process is repeated until the loop has 

been executed 100 times. After the number 100 and its square 

root have been printed, X becomes 101. The condition in 

line 40 is now false so control does not return to line 20, 

but goes to line 50 which ends the program. 

All program loops have four characteristic par.ts: 

a. initialization, the conditions which must exist 
for the first execution of the loop (line 10 above); 

b. the body of the loop in which the operation which 
is to be repeated is performed (line 20 above); 

c. modification, which alters some value and makes 
each execution of the loop different from the 
one before and the one after (line 30 above); 

d. termination condition, an exit test which, when 
satisfied, completes the loop (line 40 above). Ex
ecution continues to the program statements follow
ing the loop (line 50 above). 

3-11 



3.5.1 FOR and NEXT Statements 

The FOR statement is of the form: 

line number FOR variable = expression TO expression [STEP expression 

For example: 

19 FOR K=2 TO 2~ STEP 2 

which causes program execution to cycle through the designated 

loop using K as 2, 4, 6, 8, •.. , 20 in calculations involv

ing K. When K=20, the loop is left behind and the program 

control passes to the line following the associated NEXT state

ment. The variable in the FOR statement, K in the preceding 

example, is known as the control variable. 

The control variable must be unsubscripted, although a common 

use of such loops is to deal with subscripted variables using 

the control variable as the subscript of a previously defined 

variable (this is explained in further detail in Section 3.5.2). 

The expressions in the FOR statement can be any acceptable 

BASIC expression as defined in Section 2.5. 

The NEXT statement signals the end of the loop which began 

with the FOR statement. The NEXT statement is of the form: 

line number NEXT variable 

where the variable is the same variable specified in the 

FOR statement. Together the FOR and NEXT statements describe 

the boundaries of the program loop. 

If the STEP expression is omitted from the FOR statement, +1 

is the assumed value. Since +1 is a common STEP value, that 

portion of the statement is frequently omitted. 

The expressions within the FOR statement are evaluated once 

upon initial entry to the loop. The test for completion 

of the loop is made prior to each execution of the loop. 

(If the test fails initially, the loop is never executed.) 

3-12 



The control variable can be modified within the loop. When 

control falls through the loop, the control variable retains 

the last value used within the loop. 

The following is a demonstration of a simple FOR-NEXT loop. 

The loop is executed 10 times; the value of I is 10 when 

control leaves the loop; and +1 is the assumed STEP value: 

10 FOR I : 1 TO 10 
20 PRINT I 
30 NEXT I 
40 PRINT I 

The loop itself is lines 10 through 30. The numbers 1 through 

10 are printed when the loop is executed. After 1=10, con

trol passes to line 40 which causes 10 to be printed again. 

If line 10. had been: 

l~ FOR I = l~ TO 1 STEP -1 

the value printed by line 40 would be 1. 

10 FOR I = 2 TO 44 STEP 2 
20 LET I = 144 

30 NEXT 1 

The above loop is only executed once since the value of 1=44 

has been reached and the termination condition is satisfied. 

If, however., the initial value of the variable is greater 

than the terminal value, the loop is not executed at all. A 

statement of the format: 

l~ FOR I = 2~ TO 2 STEP 2 

can not be used to begin a loop, although a statement like 

the following will initialize execution of a loop properly: 

l~ FOR 1=2~ TO 2 STEP -2 

For positive STEP values, the loop is executed until the 

control variable is greater than its final value. For 

negative STEP values, the loop continues until the cont

rol variable is less than its final value. 

3-:13 



FOR loops can be nested but not overlapped. The depth of 

nesting depends upon the amount of user storage space avail

able (in other words, upon the size of the user program and 

the amount of core each user has available). Nesting is 

a programming technique in which one or more loops are 

completely within another loop. The field of one loop 

(the numbered lines from the FOR statement to the correspond

ing NEXT statement, inclusive) must not cross the field of 

another loop. 

An 

ACCEPTABLE NESTING 

TECHNIQUES 

Two Level Nesting 

OR II = 
[ FOR I2 = 

NEXT I2 
[ FOR I3 = 

NEXT I3 
NEXT II 

I TO Ira' 
I TO Ira' 

I TO Ira' 

Three Level Nesting 

FOR II = 
FOR I2 = 

rFOR I3 = 
LNEXT I3 
r-FOR I4 = 
L..NEXT I4 

EXT I2 
NEXT II 

I TO Ira' 
I TO Ira' 
I TO 1~ 

I TO l~ 

example of nested FOR-NEXT 

S DlM 
/ xes .. un 

10 FOR A=1 TO 5 
20 FOR B=2 TO 10 

loops 

STEP 
3S LET XCA .. i3>= A+B 
1&0 NEXT B 
S0 NEXT A 
5S PRINT xes .. 10> 

is 

2 

UNACCEPTABLE NESTING 

TECHNIQUES 

cS0R II = 
FOR I2 = 

EXT II 
EXT I2 

II = 
FOR I2 = 
~OR I3 = 

EXT I3 
[!OR I4 = 

EXT I4 
NEXT II 

EXT I2 

shown below: 

.. -' ,. ~~ -'.-

I TO Ira' 
I TO Ira' 

I TO Ira' 
I TO Ira' 
I TO Ira' 

I TO Ira' 

Upon execution of the above statements, BASIC prints 15 when 

line 55 is processed. 

3-14 



It is possible to exit from a FOR-NEXT loop without the control 

variable reaching the termination value. A conditional or 

unconditional transfer can be used to leave a loop. Control 

can only transfer into a loop which had been left earlier 

without being completed, ensuring that termination and STEP 

val~es are assigned. 

Both FOR and NEXT statements can appear anywhere in a multi

plestaternent line. For example: 

lfl FOR I=l to If} STEP 5: NEXT I: PRINT "I="; I 

causes: 

I= 6 

to be printed when executed. 

The FOR nor NEXT statement can be executed conditionally 

in an IF statement. The following statements are correct: 

15 IF I<>J THEN NEX~ I 
16 IF I=J THEN FOR I=l to J 

3.5.2 Subscripted Variables and the DIM statement 

In addition to the simple variables which were described 

in Chapter 2, BASIC allows the use of subscripted variables. 

Subscripted variables provide the programmer with additional 

computing capabilities for dealing with lists, tables, 

matrices, or any set of related variables. In BASIC, 

variables are allowed one or two subscripts. 

The name of a subscripted variable is any acceptable BASIC 

variable name followed by one or two integer expressions 

in parentheses. For example, a list might be described as 

A(I) where I goes from 1 to 5 as shown below (all matrices 

are created with a zero element, even though that element 

is never specified) : 

3-15 



A(~), A(l), A(2), A(3), A(4), A(S) 

This notation allows the programmer to reference each of 

six elements in the list, which can be considered a one 

dimensional algebraic matrix as follows: 

A(~) 

A(l) 

A(2) 

A(3) 

A(4) 

A(S) 

A two dimensional matrix B(I,J) can be defined in a similar 

manner and graphically illustrated as follows: 

B (~ , 1) B(~,2) B(~,3) B(~,J) 

B(l,~) B(1,I) B(I,2) B(1,3) B(l,J) 

B(2,~) B(2,1) B(2,J) 

B(3,1) B (3, J) 

Subscripts used with subscripted variables throughout a 

program can be explicitly stated or be any legal expression. 

It is possible to use the same variable name as both a 

subscripted and an unsubscripted variable. Both A and A(I) 

are valid variables and .can be used in the same program. 

However, BASIC does not accept the same variable name as 

both a singly and a doubly subscripted variable name in 

the same program. If A(I) and A(I,J) are used in the same 

program, an error message 'ILLEGAL SUBSCRIPTING' results. 

A dimension (DIM) statement is used to define the maximum 

number of elements in a matrix. {"Matrix" is the general 

3-16 



term used in this manual to describe all elements of a sub

scripted variable.) The DIM statement is of the form: 

line number DIM variable (n), vari able (n ,m) 

where the variables specified are indicated with their 

maximum subscript value(s). 

For example: 

1~ DIM X(5), Y(4,2), A(l.0,l~) 
12 DIM 14(1.0.0) 

Only integer values (such as 5 or 5070) can be used in DIM 

statements to define the size of a matrix. Any number of 

matrices can be defined in a single DIM statement as long 

as their representations are separated by commas. 

, . . . 

If a subscripted variable is used without appearing in a DIM 

statement, it is assumed to be dimensioned to length 10 in 

each dimension (that is, having eleven elements in each dim

ension, ~ through 1.0). 'However, all matrices should be 

correctly dimensioned in a program. DIM statements are 

usually grouped together among the first lines of a 

program. 

The first element of every matrix is automatically assumed 

to have a subscript of zero. Dimensioning A(6,10) sets 

up room for a matrix with 7 rows and 11 columns. This 

zero element is illustrated in the following program: 

LISTNH 
10 REM - MATRIX CHECK PROGRAM 
20 DIM A(6~leJ) 

30 FOR 1=0 TO 6 
40 LET A(I,,0) = I 
50 FOR J=0 TO 10 
60 LET A(0~J) = J 
70 PRINT A( I" J) J 
80 NEXT J: PRINT: NEXT I " 90 END 

READY 

3-17 



RUNNH 
e 1 2 3 " 5 6 7 8 9 10 
1 e 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 

" 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 13 0 13 

READY 
\ 

Notice that a variable has a value of zero until it is 

assigned a value. 

If the user wishes to conserve core space he may make use 

of the extra variables set up within the matrix. He could, 

for example, say DIM A(5,9) to obtain a 6 x 10 matrix 

which would then be referenced beginning with the A(~,~) 

element. 

The size and number of matrices which can be defined depend 

upon the amount of user storage space available. 

A DIM statement can be placed anywhere in a multiple state

ment line. A DIM statement can appear anywhere in the prog

ram and need not appear prior to the first reference to an 

array, although DIM statements are generally among the first 

statements of a program to allow them to be easily found 

if any alterations are later required. 

3.6 MATHEMATICAL FUNCTIONS 

Within the course of a user's programming experience, he 

encounters many cases where relatively cornmon mathematical 

operations are performed. The results of these cornmon 

operations can often be found in volumes of mathematical 

tables; i.e., sine, cosine, square root, log, etc. Since 

it is this sort of operation that computers perform with 

speed and accuracy, such operations are built into BASIC. 

The user need never consult tables to obtain the value of 

the sine of 23° or the natural log of 144. When such values 

are to be used in an expression, intrinsic functions, such as: 

3-18 



SIN(23*PI/1BO) 
LOG(144) 

are substituted. 

The various mathematical functions available in. EDUCOMP BASIC 

are detailed in Table 3.1. 

Function 
Code 

ABS (X) 
SGN (X) 

INT(X) 

COS (X) 
SIN (X) 
TAN (X) 
ATN(X) 
SQR(X) 
EXP(X) 
LOG (X) 
PI 
RND(X) 

Table 3.1 

Mathematical Functions 

Meaning 

returns the absolute value of X 
returns the sign function of X, a value 

of 1 preceded by the sign of X, SGN(¢)=¢ 
returns the greatest integer in X which is 

less than or equal to X, (INT(-.5)=-1) 
returns the cosine of X in radians 
returns the sine of X in radians 
returns the tangent of X in radians 
returns the arctangent (in radians) of X 
returns the square root of X 
returns the value of e~X, where e=2.71B2B ••• 
returns the natural logarithm of X, log X 
has a constant value of 3.41593. 
returns a random number between ¢ and li 

the same sequence of random numbers is 
generated each time a program is run 
requiring the use of the random number 
generator. The value of X is ignored. 

Most of these functions are self-explanatory. Those which 
are not are explained in the following section. 

3.6.1 Examples of Particular Intrinsic Functions 

Sign Function, SGN(X) 

The sign function prints the value 

1 if X is positive 
-1 if X is negative 
Oif X is zero. 

3-19 



Ff'r exa,Itlple:-
i-. --

-LISTNH 
10 REM - SGN FUNCTION EXAMPLE 
20 READ-A6B 
25 PRINT "A="lA6"B="1B 
30 PRINT "SGNCA)="1SGNCA)6"SGNCB)="':SGNCB) 
40 PRINT "SGNCINT(A»="':SGNCINTCA» 
50 DATA -7.326 .44 

-·'60 END 

READY 

RUNNH 
-A=-7.32 B= .44 
SGN(A)=-l SGNeB)= 1 
SGNCINT(A) )=-1 

R_EADY , - -" . 

Integer Function, INT(X) 

The integer function returns the value of the greatest integer 

not greater than X. For example, INT(34.67) = 34. INT can 

be used to round numbers to the nearest integer by asking 

for INT(X+.5). For example, INT(34.67+.5) = 35. INT can 

also be used to round to any given decimal place, by asking 

for 

INT(X*l~t D+.5)/l~to 

where D is the number of decimal places desired, as in the 

following program: 

LISTNH 
10 REM- INT FUNCTION EXAMPLE 

- 20 PRINT "NUMBER TO BE ROUNDED"': 
30 INPUT A 
40 PRINT "NO. OF DECIMAL PLACES" 1 
50 INPUT D 
60 LET B=INT(A*10-tD+.5)/10fD 
70 PRINT "A ROUNDED- =-'"'1B 
80 GOTO 20 
90 END 

READY . I 

3-20 

..... --.... ": 



RUNNH 
NUMBER TO BE ROUNDED? 55.6534 
NO. OF DECIMAL PLACES? 2--
A ROUNDED = 55.65 
NUMBER TO BE ROUNDED? 78.375 
NO. OF DECIMAL PLACES? -2 
.A ROUNDED = 100 
NUMBER TO BE ROUNDED? 67.89 
NO. OF DECIMAL PLACES? -1 
A, ROUNDED = 70 
NUt·iBER TO BE ROUNDED? 
STOP AT LINE 30 
READY 

For negative numbers, 

number is a negative 

value. For example: 

the largest integer contained in the 

number with the same or a larger absolute 

INT(-23) I but INT(-14.39) = -15. 

NOTE 

+P in the above program terminates 
program execution. 

.~:.. .. 

Randon Number Function, RND(X) 

The random number function produces a random number between 

o and 1. The numbers are reproducible in the same order 

for later checking of a program. The argument X in the RND(X) 

function call can be any number, as that value is ignored. 

L·ISTNH 
.10 REli - RANDOM NtJr1BER EXAMPLE 
25 PRINT '-RANDOM NUt/lEERS" 
30 FOR 1=1 TO 30 
40 PRINT RND(0)1 
50 NEXT I 
60 END 

READY 

·RUNNH 
RANDOM NUt1BERS 
.770032.728066 
~395189 ~751974 
~425557 ~913388 
~281333 ~566656 
3.972J8E-02 ~724634 
.867253 ~-7306_64 

READY 
,:'; /"" 

.438103 
~-955142 

~-650321 
-.-867935 

. -'-990309 
~-57871 

3-21 

~076028 
-'-963083 
~681433 
-'-107712 
-.-420146 
-'-896285 

.51324 
~-182217 

-'-235705 
-'-834855 
~-608095 

·.-169325 

-",:'~ " "' 



In order to obtain random digits from 0 to 9 , change line 

40 to read: 

4~ PRINT INT(l.0*RND(O» , 

and tell BASIC to run the program again. This time the re-

sults are: 

t 
RUNNH 
RAN DOH Ntn1BERS 

7 7 II " 5 
3 7 9 9 1 
4 9 6 6 2 

,2 S 8 1 8 

" 7 9 II 6 
8 7 5 8 1 

READY t 
~ • , 
• , 

It is possible to generate random numbers over any range. 

For example, if the range (A,B) is desired, use: 

(B-A)*RND(.0)+A 

to produce a random number in the range A<n<B. 

3.6.2 RANDOMIZE Statement 

The RANDOMIZE statement is written as follows: 

line number RANDOMIZE 

or, alternatively: 

line number RANDOM 

! 
~. 

, , 
} 

If the random number 

random numbers every 

statement is used. 

generator is to calculate different 

time a program is run, the RANDOMIZE 

RANDOMIZE is placed before the first 

use of random numbers (the RND function) in the program. 

When executed, RANDOMIZE causes the RND function to choose 

a random starting value, so that the same program run 

twice gives different results. For this reason, it is 

good practice to debug a program completely before insert

ing the RANDOMIZE statement. 

3-22 



To demonstrate the effect of the RANDOMIZE statement on two 

runs of the same program, we insert the RANDOMIZE statement 

as statement 15 in the following program: 

LISTNH 
15 RANDOM I ZE' 
20 FOR "1=1 TO 5 .-, 
25 PRINT "VALUEII; I oil IS"; RND(0) I 

30 NEXT I 
35 END 

READY 

RUNNH j 
VALUE 1 IS .808118 
VALUE 2 IS -.1342323 
VALUE 3 IS ".-780877 
VALUE 4 IS -'-104348 
VALUE 5 IS -'-598201 

READY 

~UNNH 
VALUE. 1 IS .572767 
VALUE 2 IS -'-136269 
VALUE 3 . IS -'-662712 
VALUE 4 IS -.-749856 
VALUE 5 IS -.-534725 

READY " 

--.,~ -- . 

The output from each run is different. 

3.7 SUBROUTINES 

A subroutine is a section of code performing some operation 

required at more than one point in the program. Sometimes 

a complicated I/O operation for a volume of data, a math

ematical evaluation which is too complex for a user-defined 

function, or any number of other processes may be best per

formed in a subroutine. 

More than one subroutine can be used in a single program, 

in which case they can be placed one after another at the 

end of the program (in line number sequence). A useful 

3-23 



practice is to assign distinctive line numbers to subroutines; 

for example, if the main program uses line numbers up to 199, 

use 200 and 300 as the first numbers of two subroutines. 

LISTNH 
1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN 
2", INPUT ~ B" C 
3'" GOSUB 100" 
40 LET A=ABSCINTCA» 
50 -_ LET B=ABS CINTCB» 
60 LET C=ABSCINTCC» 
70 PRINT 
80 GOSUB 100 
9'" STOP 

1-

1"'0 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS 
11'" REM - OF THE EQUATION: AXf2 + BX + C = 0 
12'" PRINT uTHE EQUATION IS It; A ;n*Xf2 + n; B ;"*X + n; C 
13'" LET D=B*B - 4*A*C 
14'" IF 0<>0 THEN 170 
15'" PRINT "ONLY ONE SOLUTION ... X "; -B/C2*A) 
16'" RETURN ~ 
17'" IF 0<0 THEN 200 
180 PRINT "TWO SOLUTIONS ••• X =n; 
185 PRINT C-B+SQRCD»/C2*A); "AND X ="; C-B-SQRCD»/C2*A) 
19'" RETURN 2"'''' PRINT "IMAGINARY SOLUTIONS ••• X = Cn ; 
2"'5 PRINT -B/ C2*A) ; It" It;_ SQRC -DY/C 2*A) ; It) AND Cit J 
2"'7- PRINT -B/C2*A) ;";''';-SQR(-D)/C2*A) ;ft)" 

21'" RETURN 
.9"'0 END 

. READY 

RUNNH 
? 1#.5" -.5 
THE" EQUATION IS 1 *Xf2 + .5 *X + -.5 
TWO SOLUTIONS ••• X = .5 AND X =-1 

THE EQUATION IS 1 *Xf2 + 0 *X + 1 
IMAGINARY SOLUTIONS ••• X = C '" " 1) AND C 0 .. -1 ) 

STOP AT LINE 90 
READY 

Lines 100 through 210 constitute the subroutine. The sub

routine is executed from line 30 and again from line 80. 

When control returns to line 90 the program encounters the 

STOP statement and terminates execution. 

3-24 



3.7.1 GOSUB Statement 

Subroutines are usually placed physically at the end of a 

program before DATA statements, if any, and always before 

the END statement. The program begins execution and cont

inues until it encounters a GOSUB statement of the form: 

line number GOSUB line number 

where the line number following the word GOSUB is the first 

. line number of the subroutine. Control then transfers to 

that line in the subroutine. For example: 

5~ GOSUB 2~~ 

Control is transferred to line 2~~ in the user program. 

The first line in the subroutine can be a remark or any 

executable statement. 

3.7.2 RETURN Statement 

Having reached the line containing a GOSUB statement, control 

transfers to the line indicated after GOSUB; the subroutine 

is processed until the computer encounters a RETURN state

ment of the form: 

line number RETURN 

which causes control to return to the statement following 

the original GOSUB statement. A subroutine is always exited 

via a RETURN statement. 

Before transferring to the subroutine, BASIC internally records 

the next sequential statement to be processed after the GOSUB 

statement; the RETURN statement is a signal to transfer 

control to this statement. In this way, no matter how many 

subroutines or how many times they are called, BASIC always 

knows where to go next. 

3.7.3 Nesting Subroutines 

Subroutines can be nested: that is, one subroutine can call 

another subroutine. If the execution of a subroutine encounters 

3-25 



a RETURN statement, it returns control to the line following 

the GOSUB which called that subroutine. Therefore, a sub

routine can call another subroutine, even itself. Subroutines 

can be entered at any point and can have more than one 

RETURN statement. It is possible to transfer to the begin

ning or any part of a subroutine; multiple entry points and 

RETURNs make a subroutine more versatile. 

The maximum level of GOSUB nesting is dependent on the size 

of the user program and the amount of core storage available 

at the installation. 

3.8 STOP AND END STATEMENTS 

The STOP and END statements are used to terminate program 

execution. The END statement is the last statement in a 

BASIC program. The STOP statement can occur several times 

throughout a single program with conditional jumps deter

mining the actual end of the program. The END statement 

is of the form: 

line number END 

The line number of the END statement should be the largest 
line number in the program, since running a program with 

line numbers greater than that of the END statement results 

in the following error message being printed: 

·1 END I NOT LAST 

and execution is halted. 

NOTE 

A program will execute without an END statement; 
however, the following error message is printed: 
NO 'END' STATEMENT. 

The STOP statement is of the form: 

line number STOP 

3-26 



and causes: 

STOP AT LINE line number 
READY 

to be printed when executed. 

Execution of a STOP or END statement causes the message: 

READY 

to be printed by the teleprinter. This message signals that 

the execution of a program has been terminated or completed, 

and BASIC is able to accept further input. 

3.9 REMARKS AND COMMENTS 

It is often desirable to insert notes and messages within 

a.user program. Such data as the name and purpose of the 

program, how to'use it, how certain parts of the program 

work, and expected results at various points are useful 

things to have present in the program for ready reference 

by anyone using the program. 

There are two ways of inserting comments into a user program: 

a. the REMARK statement, and 
b. use of the exclamation mark (1). 

The REMARK statement must be preceded by a line number. 

The word REMARK can be abbreviated to REM for typing con

venience, and the message itself can contain any printing 

character on the keyboard. BASIC completely ignores any-

thing on a line following the letters REM. (The line num-

ber of a REM statement can be used in a GOTO or GOSUB state

ment; see sections 3.4 and 3.8.1, as the destination of a 

jump in the program execution.) Typical REM statements 

are shown below: 

l~ REM - THIS PROGRAM COMPUTES THE AMOUNTS 
11 REM - AND WRITES THE CHECKS 

3-27 



The exclamation mark is used to terminate the statement part 

of a line and begin the comment part of the line. For 

example: 

125 LET Pl=(H-4.0')*R !SET EQUAL TO OVERTIME PAY 
130 PRINT P + PI !PRINT SUM OF OVERTIME AND 

BASIC ignores everything on the line after encountering the 

exclamation mark. 

Messages in REMARK statements are generally called remarks, 

those after the exclamation mark, comments. Remarks and 

comments are printed when the user program is listed but 

do not affect program execution. It is good programming 

practice to include REMARKs and comments in all programs, 

unless space requirements are critical. 

3.10 ON-GOTO STATEMENT 

The simple GOTO statement allows the user to unconditionally 

transfer control of the program to another line number. The 

ON-GaTO statement allows control to be transferred to one 

of several lines depending on the value of an expression 

at the time the statement is executed. The statement is 

of the form: 

REGULAR PAY 

line number ON expression GOTO list of line numbers 

The expression is evaluated and the integer part of the ex

pression is used as an index to one of the line numbers in 

the list. For example 

5.0' ON X GaTO 1.0'.0',2.0'.0',3.0'.0' 

transfers control to line number 1.0'.0' if the value of X is 1, 

to line number 2.0'.0'if X is 2, and to 3.0'.0' if X is 3. Any other 

values of X (other than 1,2, or 3 in this example) would 

cause a transfer to the next line. 

3.11 ON-GaSUB STATEMENT 

The GOSUB and RETURN statements are used to allow the user to 

3-28 



transfer control of his program to a subroutine and return 

from that subroutine to the normal course of program exec

ution (see Section 3.7 for details). The ON-GOSUB state-

ment is used to conditionally transfer control to one of 

several subroutines or to one of several entry points to 

one (or more) subroutine(s) . The statement is of the 

form: 

line number ON expression GOSUB list of line numbers 

Depending on the integer value (truncated if necessary) of 

the expression, control is transferred to the subroutine 

which begins at one of the line numbers listed. Encounter

ing the RETURN statement after control is transferred in 

this way allows the program to resume execution at the line 

following the ON-GOSUB line. 

An example of the statement follows: 

8~ ON X-Y GOSUB 9~~,933,1~14 

When line 80 is executed, the value of X-Y being either 1, 

2, or 3 causes control to transfer to line 900, 933 or 1014, 

respectively. If the quantity X-Y is not equal to 1, 2 or 3, 

control is transferred to the next line. 

Since it is possible to transfer into a subroutine at dif

ferent points, the ON-GOSUB statement could be used to deter-

mine which portion of the subroutine should be executed. 

3-29 



CHAPTER 4 

'CHARACTER STRINGS 

4.1 CHARACTER STRINGS 

The previous chapters describe the manipulation of numerical 

information; however, EDUCOMP BASIC also processes information 

'in the form of character strings. A string, in this context, 

is a sequence of characters treated, as a unit. A string can 

be composed of any combination of the ASCII characters in 

Table 4-2. 

Without realizing it, the reader has already encountered 

character strings. Consider the following program which 

prints the name of a month, given its number: 

LISTNH 
10 PRINT "TYPE A NUMBER BETWEEN 1 AND 12"; 
12 INPUT N 
15·IF N>l THEN IF N<12 THEN IF N=INTCN) THEN 20 
17 PRINT "NUMBER OUT OF RANGE": GO TO 10 
20 IF N>3 THEN PRINT "THE";NJ nTH MONTH IS"; 
25 IF N= 1 THEN PRIN T "THE FIRST MON TH I S JANUARY" 

'30 IF N=2 THEN PRINT "THE SECOND MONTH IS FEBRUARY" 
35 IF N=3 THEN PRINT "THE THIRD MONTH IS MARCH" 

, 40 IF N=4 THEN PRINT "APRIL" 
45 IF N=5 THEN PRINT ''rIAY'' " I 

50 IF N=6 THEN PRINT "JUNE" 
55 IF N=7 THEN PRINT "JULY" 

. 60 IF N=8' THEN PRINT "AUGUST" 
65 IF N=9 THEN PRINT "SEPTEr-1BER" '. 
70 IF N=10 THEN PRINT ·'OCTOBER'" 
75 IF ~= 11 THEN PRINT ·'NOVEMBER" 
80 IF N= 12 THEN PRINT "DECEl1BER',' 
as END 

, RUNNH 

TYPE A NUMBER BETWEEN 1 AND 121 2 
THE SECOND MONTH I S FEBRUARY 

READY 

'" I "., J 

4-1 



In Chapter 3 the INPUT and PRINT statements were shown print

ing messages along with the input and output of numeric values 

(see lines 10 and 15 above). These messages consist of char

acter string constants (just as 4 is a numeric constant). In 

a similar way, there are character string variables and 

functions. 

4.1.1 String Constants 

Just as numbers can be used as constants or referenced by 

variable names, EDUCOMP BASIC permits character string con

stants. Character string constants are delimited by double 

quotes. For example: 

1.5 LET Y$ = "FILE4" 

8' IF A$ = "YES" THEN 25~ 

where "FILE4" and "YES" are character string constants. 

4.1.2 Character String Variables 

Variable names can be introduced for simple strings and for 

lists composed of strings (which is to say one dimensional 

string matrices). Any single letter followed by a dollar 

sign($) character is a legal name for a string variable. 

For example: 

A$, C$, Z$ 

are simple string variables. Any single letter list var

iable name followed by the $ character denotes the string 

form of that variable. For example: 

V$(N), C$(M) 

are list string variables, (where M and N indicate the pos

ition of that element of the matrix within the whole) • 

The same name can be used as a numeric variable, as a string 

variable and as a one dimensional array in the same program. 

For example: 

A A$ A(N) 

4-2 



can all be used in the same program, but 

A(N) and A(M,N) 

cannot both occur in the same program. 

Just as numeric variables are automatically initialized to 

f1 when a program is run, string variables are initialized 

to a null string containing zero characters (the character 

. string constant ""). 

4.1.3 Subscripted String Variables 

String lists are defined with the DIM statement, as are 

numerical lists and matrices. For example: 

1tl DIM S$(5) 

indicates the S$ is a string matrix with six elements, 

S${~) through S$(5), which can be separately accessed. If 

a DIM statement is not used, a subscripted string variable 

is assumed to have a dimension of 10 (11 elements including 

the zero element) in each direction. Note that the dimension 

of a string array specifies the number of strings and not 

the number of characters in anyone string. For example, if 

10 FO R 1= 1 TO 7 
20 LET B$C I )="PDP-S" 
30 NEXT I 

they would cause a list B$(n) to be created having 11 

accessible elements, B$(~) through B$(l~). The elements 

B$(l) through B$(7) are set equal to "PDP-8" and the others 

would be null strings (have no characters). As a general 

rule, all lists should be dimensioned to the maximum size 

being referenced in the program. 

4-3 



4.1.4 String Size 

A character string can contain almost any number limited 

usually by the amount of memory storage available. In 

EDUCOMP BASIC the upper limit on string size is 2050 characters. 

The DIM statement is used not only to define an array, but also 

to indicate the length (number of characters) of a string. In 

EDUBASIC, strings longer than fifteen (15) characters must be 

dimensioned before they are accessed. For example: 

l~{l A$ = "f,J123456789.0'123456789" 

2~.0' END 

The above example will generate an error message when executed, 

STRING OVERFLOW IN LINE 1.0'f,J. In the above example, line 9f,J 

should be added, 

9' DIM A$ = 2.0' 

Strings must be dimensioned for the maximum length which they 

will assume in the user's program. However, a string may 

contain fewer characters than the number specified in the DIM 

statement. For example, 

l~' DIM A $ = 5f,J 
ll~ A $ = "EDUCOMP" 
l2~ . END 

The length of A$ will be seven after this program is executed. 

If no length is specified for stri~g variables, a length of 

fifteen is assumed. The. following line is an example of 

DIMensioning for string arrays: 

Iflfl DIM A.$ = 3.0'{l, B $(1f,J) , C.$(12) = 24 

The above statement would reserve space in memory for 

1. A character string of length 3.0'.0', 

2. Eleven strings of length fifteen, and 

3. Thirteen strings with twenty-four characters. 

4-4 



, 

4.1.5 Relational Operators 

When applied to string operands, the relational operators 

indicate alphabetic sequence. For example: 

55 IF A$(I) < A$(I+1) GOTO l~~ 

When line 55 is executed the following occurs: A$(I) and 

A$(I+1) are compared; if A$(I) occurs earlier in alphabetical 

order than A$(I+l), execution continues at line 100. Table 

4-1 contains a list of the relational operators and their 

string interpretations. 

Operator 

= 

< 

<= 

> 

>= 

<>,# 

Table 4-1 

Relational Operators Used With 

String Variables 

Example 

A$ = B$ 

A$ < B$ 

A$ <= B$ 

A$ > B$ 

A$ >= B$ 

A$ # B$ 

Meaning 

The strings A$ and B$ are equivalent. 

The string A$ occurs before B$ in alpha

betical sequence. 

The string A$ is equivalent to or occurs 

before B$ in alphabetical sequence. 

The string A$ occurs after B$ in alpha

betical sequence. 

The string A$ is equivalent to or occurs 

after B$ in alphabetical sequence. 

The strings A$ and B$ are not equivalent. 

In any string comparison, trailing blanks are part of the 

string. That is to say "YES" is not equivalent to "YES II. 

A null string (of length zero) is considered to be completely 

blank and is less than any string of length greater than zero. 

4-5 



Table 4-2 

ASCII Character Codes 

ASCII ASCII ASCII 
Decimal Char- RSTS Decimal Char- RSTS Decimal Char- RSTS 
Value acter Usage Value acter Usage Value acter Usage 

91 NUL FILL character 43 + 86 V 
1 SOH 44 , 87 W 
2 STX 45 - 88 X 
3 ETX CTRL/C 46 . 89 y 
4 EOT 47 / 991 Z 
5 ENQ 48 91 91 [ 
6 ACK 49 1 92 \ 
7 BEL BELL 591 2 93 ] 
8 BS 51 3 94 " or + 
9 HT HORIZONTAL TAB 52 4 95 _ or 04-

191 LF LINE FEED 53 5 96 .. Grave accent 
11 VT VERTICAL TAB 54 6 97 a 
12 FF FORM FEED 55 7 98 b 
13 CR CARRIAGE RETURN 56 8 99 c 
14 SO 57 9 19191 d 
15 SI CTRL/O 58 : 1911 e 
16 DLE 59 J 1912 f 
17 DC1 691 < 1913 g 
18 DC2 61 = 1914 h 
19 DC3 62 > 1915 i 
291 DC4 ·63 ? 1916 j I 
21 NAK CTRL/U 64 @ 1917 k 
22 SYN 65 A 1918 1 
23 ETB 66 B 1919 m 
24 CAN 67 C 1191 n 
25 EM 68 D III 0 

26 SUB CTRL/Z 69 E 112 P 
27 ESC ESCAPE l 791 F 113 q 
28 FS 71 G 114 r 
29 GS 72 H l1S s 
391 RS 73 I 116 t 
31 US 74 J 117 u 
32 SP SPACE 75 K 118 v 
33 ! 76 L 119 w 
34 II 77 M 1291 x 
35 # 78 N 121 Y 
36 $ 79 0 122 z 
37 % 891 P 123 { 
38 & 81 Q 124 I Vertical Line 
39 I 82 R 125 
491 ( 83 S 126 - Tilde 
41 ) 84 T 127 DEL RUBOUT 
42 * 85 U 

lALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appea~ on some terminals are 
translated internally into ESCAPE. 

-

NOTE 

The decimal values 128 through 255 can appear in character 

strings. For most practical purposes, the characters repre-

4-6 



sented by N and N+128 (decimal) are the same. The characters 

CHR$(N) and CHR$(N+128) test as equal if compared. Users 

should be careful when performing output of these values 

since they may have some significance in certain device

dependent operations. 

4.2 STRING INPUT 

The READ, DATA and INPUT statements can be used to input string 
variables to a program. For example, 

19 READ A$, B, C, D 

29 DATA 17, 14, 13.4, CAT 

causes the following assignments to be made: 

A$ = the character string "17" 

B = 14 
C = 13.4 

reading D as CAT causes the message BAD INPUT IN LINE 19 

to be printed. EDUBASIC then tries to read the next 

number for D. In this example, no number exists after 

CAT so another error message is printed OUT OF DATA IN 

LINE 19. 

Quotation marks are necessary around string items in DATA 

statements only if the string contains a comma or if leading 

blanks within the string are significant. Quotes are always 

acceptable around string items, even though not always 

necessary. For example, the items in line 40 in the following 

program are all acceptable character strings and would be read 

as printed. EDUBASIC will recognize imbedded and trailing 

blanks even though there are no quote marks around the string. 

The comma, carriage return, or second qUvte is the end of the 

string. 

4-7 



.. 
10 READ AS .. BS" C$ .. OS .. E$ 
29 PRINT A$;B$;C$;D$;E$ 
39 PRINT A$ .. B$ .. C$ .. D$ .. E$ 
49 DATA "MR;' JONES .... MISS 
50 END 

SMITH .. "HRS. BROlJt·,p'" 
I 

READY 

RUNNH 
MR. JONESMISS SMITHMRS. BBOWNMISSMR 
MR~ JONES . MISS SMITH ·MRS. BROWN MISS 

/ 

A READ statement can appear anywhere in a multiple statement 

line, but a DATA statement must be the last statement on a 

line. 

NOTE 

The data pool composed of values from 
the programmed DATA statements is stored 
internally as an ASCII string list. 
Where a numeric variable is read, the 
appropriate ASCII to numeric conversions 
are performed. Where a string variable 
is read, the string is used as it appears 
in the DATA statement. If the item did 
not appear in quotes, leading spaces 
are ignored. If the item did appear in 
qUotes, the string variable is equated 
to the entire string within the quotes. 

A feature of the INPUT statement when used with character 

string input is the INPUT LINE statement of the form: 

line number INPUT LINE string variable 

For example, 

l~ INPUT LINE A$ 

MR 

causes the program to accept a line of input from the terminal 

with punctuation characters or quotes. Any characters are 

acceptable in a line being input to the program in this 

manner. The program can then treat the line as a whole or in 

smaller segments as explained in Section 4.4 which describes 

string functions. 

An INPUT LINE statement reads the entire line as typed by 

the user, excluding the line terminating character. The 

4-8 



line terminator is a carriage return/line feed, generated 

by typing the RETURN key. 

4.3 STRING OUTPUT 

When character string constants are included in PRINT state

ments, only those characters within quotes are printed. No 

leading or trailing spaces are added. For example, 

LlSTNH 
10 X= 1. 0:Y=2. 01: A$="A=" 
29 PRINT A$.nO "B="';Y 
30 PRINT "DONE" 
40 END 

READY 

RUNMH 
A= 1 B= 2.01 
OOME 

READY 

Character string output can also contain the string functions 

described in the next section. 

4.4 STRING FUNCTIONS 

Like the intrinsic mathematical functions (e.g., SIN, LOG), 

EDUCOMP BASIC contains various functions for use with charac

ter strings. These functions allow the program to concatenate 

two strings, access part of a string, determine the number 

of characters in a string, and perform other usefull operations. 

(These functions are particularly useful when dealing with 

whole lines of alphanumeric information input by an INPUT LINE 

statement). The various functions available are summarized in 

Table 4-3. 

4-9 



Function Code 

MID(A$,Nl,N2) 

LEN (A$) 

+ 

CHR$(N) 

ASCII (A$) 

Table 4-3 

String Functions! 

Meaning 

Indicates a substring of the string A$ 
starting with character Nl, and N2 characters 
long (the characters between and including 
the Nl through N1+N2-1 characters of the 
string A$). For example: 

100 PRINT MID(A$,lS,S) 
110 END 

RUNNH 
OPQRS 

Indicates the number of characters in the 
string A$ (including trailing blanks) • 
For example: 

100 PRINT LEN(A$) 
110 END 

RUNNH 
26 

Indicates a concatenation operation on two 
strings. For example "ABC"+IIDEF" is . 
equivalent to IIABCDEF". 1112"+"3411+"56" is 
equivalent to "123456". 

Generates a one-character string having the 
ASCII value of N (see Table 4-2). For 
example: CHR$(65) is equivalent to IIAII. 
Only one character can be generated. 

Generates the ASCII value of the first 
character in A$. For example, ASCII (IIX") 
is equivalent to 88, the ASCII equivalent of 
X. If B$ = IlXABII, then ASCII (B$) = 88. 

lA$ in the 'MID' and 'LEN·' examples is assumed 
to be "ABCDEFGHIJKLL\1NOPQRSTUVWXYZ". 

4-10 



CHAPTER 5 

DATA STORAGE CAPABILITIES 

5.1 FILE STORAGE 

Thus far, techniques have been presented for entering data 

into a program as it is written (via READ and DATA statements) 

or when it is executed (via the INPUT statement). Both of 

these techniques pose operational problems when the amount of 

data a program reads or writes is increased beyond a few items. 

'In order to alleviate these problems, EDUBASIC provides the 

user with a facility to define Input/Output files. 

An EDUBASIC file consists of a sequence of 'data which is trans

mitted to (or from) a BASIC program from (or to) an external 

Input/Output device. The external device can be the user's 

terminal, the OS/S system disk, a line printer, magnetic tape, 

or high-speed paper tape equipment. Each file has both an 
• 

external name by which it is known within the system and an 
• 

~ternal file designator (a number used to refer to the file -
Within the program). An OPEN statement is used to associate 

an external name with an internal designator. ---
-

An external file name is completely specified with the following 

information: 

device:filename.extension 

where the device can be one of the following: 

SYS: 
DSK: 
DTA~ to DTA7: 
PTR: 
PTP: 
LPT: 
CDR: 
TTY: 
RKA~ 
RKAI 
RKA2n-2: 
RKA2n-l: 

system device 
default device 
DECtape units 0 to 7 
high-speed paper tape reader 
high-speed paper tape punch 
line printer 
card reader 
user's terminal 
system halt of an RKSe disk 
other half of an RKSe disk 

RKSe uni ts for n=2, 3 , 4' 

5-1 



The filename is a six character (maximum) alphanumeric name. The 

extension is a two character (maximum) alphanumeric file name 

extension usually specifying the type of file. The extensions 

used by the system are as follows (the user can create his own 

extensions): 

.BA BASIC source program, ASCII format 

.BC Compiled BASIC program, 'binary' format 

.DA Data file (sequential) 

.BR BASIC Random access data file (virtual file) 

A user can have up to 4 files open (with internal designators 

I through 4) for access at any given time. Each open file 

consumes a buffer within core storage. The buffer sizes for 

various devices are all 256 words under OS/8. If a buffer -cannot be created for a file, due to a lack of storage space 

in core, then the file cannot be opened. (The process of 

opening a file is described in section 5.2). 

5.2 OPEN STATEMENT 

The OPEN statement is used to associate a file on a bulk 

storage device or an I/O device with an internal file desig-

nator. This statement allows the file to be readily referenced ~ 
in INPUT, PRINT, and (in some cases) DIM statements. The K~ 
format of the OPEN statement is as follows: _ -:-4-> ~ 

line number OPEN INPUT J 
OUTPUT 

V / 
/! l 

AS FILE expression 

r, 
The string field is a character string constant, variable orj;Y-

expression that contains the €xterna-r-file specificati6i:1)--of -"~'.~~" '-'.-.,,~,---,,-.,,~,".----,,~~-,~-......--,-.- '"." .,,-,-.--....... ,-~~-~. -~, -'" ' -,- ,,-.,. -,.~.""""-) 

the file to be opened. The AS FILE expression must have an 

~teger value between I and 4, corresponding to the internal 

channel number on which the field is being opened. 

There are three distinct forms for the OPEN command: 

5-2 



OPEN<string> FOR INPUT 

OPEN<string> FOR OUTPUT 

OPEN<string> 

The form of the OPEN statement used determines whether an 

existing file is to be opened or a new file created. 

a. An OPEN FOR INPUT statement causes a search for an 

already existing file (since the statement indicates 

the file is an input file). If no file is found, the 

FILE NOT FOUND error occurs. In the following 

examples the extensions .DA are assumed unless the 

extensions are provided. 

5~ OPEN "FILE" FOR INPUT AS FILE I 

b. An OPEN FOR OUTPUT statement causes a search for an 

already existing file which, if found, is deleted. 

A new file is then created. 

75 OPEN "DATA" FOR OUTPUT AS FILE 3 

c. An OPEN statement without an INPUT or OUTPUT desig

nation attempts to perform an OPEN FOR INPUT operation 

as described above. If this fails, a new file is 

created. 

l~~ OPEN "MATR.BR" AS FILE 4 

The extension .BR is assumed if not specified. 

EDUBASIC permits access to data files by two methods: 

a. Formatted ASCII and 

b. Virtual core arrays. 

5.2.1 Formatted ASCII I/O 

Formatted ASCII data files are the simplest method of data 

storage, involving a logical extension of the PRINT and INPUT 

statements to be used in conjunction with the OPEN statement. 

5-3 



The formats for INPUT and PRINT statements to be used with 

the OPEN statement are as follows: 

line number 

line number 

INPUT # expression , list 

PRINT # expression , list· 

where the expression has the same value as the expression in 

the OPEN statement (the internal file designator) and the list 

is a list of variable names, expressions, or constants as 

explained in the Sections describing the PRINT and INPUT state

ments. (The virtual array dimension statements reference OPEN 

statements without the FOR INPUT or FOR OUTPUT phrase, as 

explained later.) 

For example, 

116 OPEN "CDR:" FOR INPUT AS FILE Nl 

216 INPUT #Nl, A$ 

Line number 116 above causes the card reader to be opened as 

an input source with the internal file designator whose value 

is contained in the variable Nl. Line number 216 causes input 

to be accepted from logical I/O channel Nl; and the input is 

associated with the variable A$. (Nl must have a value between 

1 and 4.) 

5.2.2 File-Structured Vs. Non-File-Structured Devices 

OS/S distinguishes between file-structured (disk, DECtape and 

magtape) devices and non-file-structured (all other) devices. 

When a file is to be found or created on a file-structured 

device, the file specification string in the OPEN statement 

must include both a device designation and a filename. On 

non-file-structured devices, the device name alone identifies 

a file (filename and extension, if specified, are ignored.) 

For example: 

DTAl: is insufficient information to specify a 
file 

5-4 



DTAl:FRED 

PTP: 

PTP:FILE 

is sufficient to specify the file 
FRED on DEC tape unit 1 

uniquely specifies the high-speed 
punch 

produces the error message FILE NOT 
FOUND IN LINE xxx 

File specification syntax is such that the default device need 

not be specified. For example: 

DSK:QUIZ 

is equivalent to: 

QUIZ 

When a device is not specified, a file name alone always in

dicates a disk or DECtape as a default storage device. To 

store a file on DECtape (other than the default device) the 

device would be specifically indicated: 

DTA4:FOO 

The following sequence is useful and allows for easy change in 

the device to be used before program execution begins: 

111 LET I$ = "PTR:" 

211 OPEN I$ FOR INPUT AS FILE 1 

311 INPUT #1, A$ 

If a file being opened for input does not exist, an error 

message is returned. If a file being opened for output does 

not exist, it is created. If a file for output already exists 

it is deleted and recreated. 

If an assignable device is referenced in any OPEN statement and 

that device is unavailable for assignment, an error message 

is printed. 

5-5 



, I 

File names used in an OPEN statement are composed of up to six 

alphanumeric characters with an extension of up to two alpha

numerics. Thus, an output file could be created as follows: 

19 OPEN "DSK:SCRTCH.TM" FOR OUTPUT AS FILE N1 

Thereafter, reference can be made to file SCRTCH.TM on device 

DSK: as follows (notice that the internal file designator is 

represented as a variable, although its value must still be 

between 1 and 4): 

199 PRINT #Nl, A$, B$ 

5.2.3 Opening the User Terminal as an I/O Channel 

The internal file designator (following the # character in the 

INPUT or PRINT statements) is always in the range I to 4. File 

designator g is, by defiz:1,ition, always open as the user's ter-
, 

minal. Internal file designator ~ cannot be closed or opened. 

, Use of file #g is indicated below (no OPEN #~ statement is 

necessary or allowed). 

1~ INPUT #~, A$ 

is equivalent to: 

l' INPUT A$ 

It is sometimes useful to be able to request keyboard input 

without having the "?" prompting character printed first. This 

can be accomplished by opening the user's terminal ("TTY:") on 

some internal file designator other than~. The? character 

is only generated for input requests on file #~,' as shown in the 

following example: 

/ 

5 DIM A$=50 
FO RINPUT AS FILE 1 
USE OF INTERNAL_ FILE DESIGNATOR" 

10 OPEN "TTY~·' 

20 PRINT "WI TH 
39 PRINT "TYPE 
40 INPUT ill" A$ 
59 PRINT: PRINT 

YOUR NAME" FOLLOWED BY A RETURN KEY" AND A CTRL/Z" 

610 PRINT "FOR COMPARISON,,' VITHOUT FILE DESIGNATOR" 
79 PRINT "TYPE YOUR NAME FOLLOWED BY A RETURN KEY" 

,89 INPUT A$ 
99 END 

.l " \ .• " 

5-6 



., . 

RUNNH 
WITH USE OF INTERNAL FILE DESIGNATOR 
TYPE YOUR NAME" FOLLOlvED BY A RETURN KEY" AND A CTRL/Z 
J. P. clONES 

\ 

FOR COMPARISON" WITHOUT FILE DESIGNATOR 
TYPE YOUR NAME FOLLo\.JED BY A RETURN KEY 
? cl. P. JONES 

READY 

. \ 

If a file is being opened for both input and output or to be 

referenced as virtual arrays the form: . 

Line number OPEN string AS FILE expression 

.is used. If the file indicated by the name "string" is found, 

it will be used and, if it is not found, it will be created. 

When a program used a statement such as: 

511 OPEN "Faa" AS FILE 4 

it can perform input and output to that file. However, such a 

file (Faa on the system device) can only be referenced in a 

sequential fashion. If data is already in the file, it can be 

read via INPUT statements similar to the manner in which a 

READ statement pulls data from the DATA statement pool. Any 

attempt to use a PRINT statement with the file Faa will work 

only if there is nothing already in that file. If data already 

exists in the file Faa, a PRINT statement will begin to write 

over any data beyond the point where the INPUT stopped. This

is not a recommended technique since the entire file may be 

garbled and useless. 

5.3 OUTPUT TO VARIOUS DEVICES 

In order to direct output to a device other than the user 

terminal, the PRINT command is formatted as follows: 

5-7 



line number PRINT # expression , list 

where the expression is the internal file designator of a 

previously opened output file (see section 7.2). The list of 

information to be output can include any of the output infor

mation described as applicable to the PRINT statement. For 

example: 

1~ OPEN "DATAl" FOR OUTPUT AS FILE 1 

2~ PRINT #1, "START OF DATA FILE" 

The above lines open a file called DATAl on the system device 

with internal file designator #1 (of 4 possible open files 

available in the system). The first line in that file reads: 

START OF DATA FILE. 

To output a table of square roots on the line printer, the 

following program could be used: 

110 LET I $~ltLPT: It 
20 OPEN I$- FOR OUTPUT AS FILE 1 
310 FOR I = 1 TO 5: PRINT #l~ II SQRCI): NEXT I 
4fO-END 

READY 

The results would appear on the line printer as follows: 

{ 

2 
3 
4 
5 

1 
1.41421 

_ 1'-732105 
2-
2.23607 

It is. advisable to print 'only one character string per PRINT 

statement because terminators are not automatically introduced. 

5-8 



The carriage return serves as the delimiter. A MID function 

may be used to separate the fields as desired. 

5.4 INPUT FROM VARIOUS DEVICES 

Like the PRINT statement, the INPUT statement can operate upon 

devices other than the user terminal. The form: 

line number INPUT # expression , list 

causes input to be accepted from the previously opened file or 

"device indicated in the expression (see section 5.1). As long 

as the value of the expression is non-zero, the specified file 

is read through one of the available user I/O buffers (internal 

file designators). If the expression is zero, or missing 

completely, input is from the user terminal. No? character 

is printed on the terminal paper when input is requested from 

a device other than the terminal, opened on file #~. For 

example: 

l~ OPEN "PTR:" FOR INPUT AS FILE 3 

2~ INPUT #3, A$ 

causes the string A$ to be read from the high-speed paper tape 

reader. 

Note that spaces are ignored in numeric input data. Commas 

are inserted automatically when printing out to a data file. 

When inputting from a data file, a comma or carriage return is 

taken as a terminator. 

Once a file is opened it can be closed (a CLOSE statement must 

be used) with a second OPEN statement. Closing and reopening 

the file moves the positioned pointer within the file back to 

the beginning of the file, so that the entire file becomes 

available again for sequential referencing. These operations 

serve much the same function as a RESTORE statement would to 

the pool of DATA statement. 

5-9 



5.5 VIRTUAL DATA STORAGE 

Many applications require a capability to individually address 

and update records on a disk file in a random (non-sequential) 

manner. Other applications may require more core memory for 

data storage than is economically feasible. EDUBASIC fills 

both these requirements with its easy-to-use random access 

file system, called virtual core. 

The EDUCOMP BASIC virtual core system provides a mechanism for 

the programmer to specify that a particular data array is not 

to be stored in the computer's core memory, but within the OS/8 

file system, instead. Data stored in files external to the 

user program will survive, even after the user leaves his ter

minal, and can be retrieved by name at a later session. Items 

within the file are individually addressable, as are items 

within core arrays. In fact, it is the similar way in which 

data are treated in both core and random-access files which leads 

to the name virtual core. 

The matrix format is used to store data because in a normal 

data file, described earlier, the PRINT and INPUT statements 

deal only with the next sequential data element. A normal data 

file, then, is much more limited in its applications and de

pends upon a strictly sequential treatment of I/O. With 

virtual data storage, the user can reference any element of the 

file, no matter where in the file it resides. This random 

access of data allows the user program to perform non-sequential 

referencing of the data for use in any BASIC statement (which 

is to say that the virtual core arrays need not be read into 

core to be available to the program for use) • 

5.5.1 Virtual Core DIM Statement 

In order for an array of data to exist in virtual core, it must 

be declared in a special form of the DIM statement (places in 

program sequence somewhere after the corresponding OPEN state-

5-10 



merit). This special statement is as follows: 

line ~umber DIM # expression ,. list 

where the expression is an integer constant between 1 and 4 

and corresponds to the internal file designator on which the 

program has opened an internal file. The variable list appears 

as it would for a normal core resident array DIM statement. 

Thus, a 100 by 100 matrix could be defined as: 

l~ DIM #2, A(l~~ ,l~~) 

Numbers and strings can both reside in virtual core arrays. 

More than one array can be specified in one virtual core file. 

For example: 

25 DIM #1, A(l~~~) , C$(25~~) 

which allocates space for 1000 numbers and 2500 character 

strings (15 characters long each). 

5.5.2 Virtual Core String Storage 

One of the few differences in data handling between core and 

virtual arrays occurs in the storage of strings within string 

matrices in virtual core. Strings in virtual core are of 

fixed length (all elements having a particular name are of 

the same length.) This length can be defined by the programmer 

and varies from 1 character to 2000 characters. The system 

forces lengths to be a multiple of 3: 

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 

If the user indicates other than one of these values, he will 

receive the next higher size. Thus: 

l~ DIM #1, X$(l~)= 65 

is the same as: 

l~ DIM #1, X$(l~}= 66 

If no lertgth is specified, a default length of 15 characters 

is assumed. The length attribute of virtual core strings (as 

well as ordinary strings) is specified in the DIM statement, 

using the notation: 

5-11 



15 DIM #1, A$(l~~) = 32, B$(1~~)=4, C${l~~) 

where 

A$ consists of 101 strings of 33 characters each; 

B$ consists of 101 strings of 6 characters each; 

C$ consists of 101 strings of 15 characters each; 

5.5.3 0Eening a Virtual Core File 

In order for the user to reference his virtual core file, he 

must first associate one of his files (known by name) with an 

internal file designator from 1 to 4 (which is then used in 

the virtual DIM deqlaration). This is normally done with the 

following OPEN statement: 

line number OPEN string AS FILE expression 

where the string is the name of a file and the expression 

specifies an internal file designator; thus: 

35 OPEN "PAY" AS FILE 1 

associates the file named "PAY" with internal file 1. If "l?AY" 

already exists, then the existing file is used; if there is no 

file named "PAY" one would be created. The extension .BR is 

assumed. 

Sophisticated users are urged to read Chapter 8 ~Thich 

describes the system implementation of the virtual core 

processor. A mastering of this information will produce 

programs which utilize the system resources in a highly 

efficient manner. 

As an example of virtual core usage, consider the problems of 

implementing an information retrieval system for a small or

ganization. There might be 1000 employees, each needing a 

300-character record containing the name, home address, phone, 

work station, and phone extension of the employee. Rather 

than order the records in the file, it is decided to 

5-12 



maintain a separate index file containing only badge numbers. 

The order of employee. records in the master file is the same 

as the badge number sequence in the index fil~. Thus, to 

extract information on an employee with badge n, we find his 

badge number in the index file and use the index found to 

retrieve his data from the master file. Since the number of 

employees is small, numeric data can be used in the badge 

file; only alphanumeric data is stored in the master file. 

A program to print an employee's name, given his badge number, 

might appear as follows: 

LISTNH 
5 DIM R$=300 
1.0! PRO GRAM TO LOOK UP NAMES IN MASTER 
20 OPEN "BADGE" AS FILE 1 
30 OPEN' "MASTER" AS FILE 2 
40 DIM OIl B(1000) 
50 DIM 62i A$(1000)=300 
55 
60 PRINT "INPUT BADGE NuMBER";: UJPUT E 
70 FOR 1=1 TO 1000: IF B(I)=E THEN 100 
75 NEXT I 
80 PRINT "NO SUCH EMPLOYEE": GOm 60 
100 nIE NOW, HAVE INDEX INTO FILEI I 
110 R$=A$(I) 
J20 PRINT "NAME IS";MID(R$11011S) 
'130 ,GOTO 60 
200 END 

READY 

5.6 CLOSE STATEMENT 

FILE 
IBADGE FILE 
!MASTER FILE 
! 1000 BADGE NUMBERS' 
11000 RECORDSI EACH 300 
!CHARACTERS LONG 
! GET EMPLOYEE Nm-mER FOR!of TTY 
US BADGE II IN FILE? 

!NO 
!YES 
!BRING RECORD INTO CORE 
! NAME IS FROH COL UMN 10 TO 25 
INEXT ••• 

The CLOSE s~atement is used to terminate I/O to or from a device. 

~nce a file has 'been closed, it can be reopened for reading 

or writing on any internal file designator. All files are 

automatically closed at the end of program execution. The for

mat of the CLOSE statement is as follows: 

line number CLOSE expression 

5-13 



Any number of files can be closed with a single CLOSE statement; 

if more than one, they are separated by commas. The expression 

indicated is the same expression used in the OPEN statement 

and indicates the internal file designator. By choosing a 

file with the CLOSE statement, the user frees more core storage 

space to open other files (a maximum of 12 depending upon the 

space available). For example: 

255 CLOSE 2, 4 

345 CLOSE 3 

Line 255 above closes the files opened on internal device 

designators 2 and 4. Line 345 closes the file open on internal 

device designator 3. 

5.7 KILL STATEMENT 

The KILL statement is of the form: 

line number KILL string 

and causes the file named string to be deleted from the user's 

file area. For example, when the user has completed all work 

with the file XYZ.DA on the system disk, he could remove the 

file from storage by executing the following statement: 

455 KILL "XYZ.DA" 

When using the KILL statement, extensions must be used. 

Otherwise no error statement is given but the file is not deleted. 

5.8 CHAIN STATEMENT 

If a user program is too large to be loaded into core and run 

in one operation, the user can segment the program into two or 

more separate programs. Such programs are called into core 

for execution by means of a CHAIN statement. Each program 

section is assigned a name and control can be transferred be

tween any two programs. A CHAIN statement is of the form: 

5-14 



line number CHAIN string [line number] 

and causes the program named by the string to be called, com

i1ed (if necessary), and executed. The line number, if 

specified, designates the line at which the program is to be 

started. If the line number is omitted, the program is started 

at the lowest numbered line (as though a RUN command had been 

used). The CHAIN statement is the last statement executed in 

each program segment other than the last segment. For example: 

1~~~ CHAIN "MAIN'~ 2~~ 

. causes the program MAIN to be loaded and started at line 2~~. 

Chaining to precompiled program files (.BC files) is consid

erably more efficient than chaining to BASIC source program 

files since .BA files require compilation upon each call. 

Communication between chained programs is performed by means of 

the user's file area. 

If no extension is given, EDUBASIC looks for a .BC file. 

If no .BC file is found, EDUBASIC looks for a .BA file. 

If no .BA file is found, an error message results. 

When the CHAIN statement is executed, all open files for the 

current program are kept open, the new program segment is 

loaded, and execution continues. Virtual files should be closed 

and reopened across a chain. 

The significance of not having to close and reopen a sequential 

data file is that the file pointer will not be reset (see 

section 5.4). In other words, a PRINT statement in the 

chained-to program will add information to the end of the file. 

This significance is not present when working with virtual files. 

5-15 



CHAPTER 6 

EDUBASIC GENERALIZED INPUT AND OUTPUT OPERATIONS 

6.1 READ AND DATA STATEMENTS 

A READ statement is used to assign to a list of variables values 

obtained from a data pool composed of one or more DATA statements. 

The two statements are of the form: 

line number READ list of variables 

line number DATA list of values 

The list of variables c~n include numeric, subscripted, or 

character string variables. The list of values must correspond 

in type with the variables to which the value will be assigned, 

(although they are stored according to the type of the variable.) 

The data pool consists of all DATA statements in a program. 

Values are read starting with the DATA statement having the 

lowest line number and continuing to the next higher, etc. 

The location of DATA statements in a program is irrelevant, 

although for simplicity they are usually kept together toward 

the end of the program. (The DATA statements must occur in 

the proper numeric sequence, however.) A DATA statement must 

be the only statement on a line, although a READ statement can 

occur anywhere on a line. Comments are not permitted at the 

end of a DATA statement. 

If a READ statement is unable to obtain further data from the 

data pool, an error message is printed and program execution 

is terminated. 

Quotes are necessary in DATA statements only around string items 

which contain a comma or where leading blanks within the string 

~e significant. The data pool, composed of values from the 

6-1 



program's DATA statements, is stored internally as an ASCII 

string list. When a numeric variable is read, the appropriate 

ASCII to numeric conversions are performed. When a string 

variable is read, the string is used as it appears in the DATA 

statement. If the item did not appear in quotes; leading 

spaces are ignored. If the item did appear in quotes, the 

string variable is equated to the entire string within the 

quotes. 

6.'2 RESTORE STATEMENT 

The RESTORE statement reinitializes the data pool of the pro

gram's DATA statements. This makes it possible to recycle 

through the DATA statements beginning with the lowest numbered 

DATA statement. The RESTORE statement is of the form: 

line number RESTORE 

For example: 

85 RESTORE 

causes the next READ statement following line 85 to begin reading 

data from the first DATA statement in the program, regardless 

of where the last data value was found. See Section 3.3.1 for 

an'example program using the RESTORE statement. 

The RESTORE statement can be placed in any position on a multiple 

statement line. 

6.3 INPUT STATEMENT 

The INPUT statement allows data to be entered to a running 

program from an external device, the user's keyboard, disk, 

DECtape, paper tape reader, etc. The full form for this state

ment is: 

li'ne number INPUT[:fI: expression,] variable list 



In many cases the simpler form: 

line number INPUT variable list 

is used. This last form causes a ? to be printed at the ter

minal and the system then waits for the user to respond with 

the appropriate values. If sufficient values are not typed, 

the system prints another ?i if too many values are typed, 

excess values are ignored. 

The format: 

line number INPUT # expression, variable list 

causes input to be read from the file or device indicated, in 

the expression, by the internal file designation number given 

when the file was opened. If the value of the expression is 

non-zero and the specified file is open to the user terminal 

as an input device, then no ? character is printed at the ter

minal when input is requested. For example: 

75 OPEN "TTY:" FOR INPUT AS FILE 2 

816 INPUT #2,A 

The system then pauses while the user types a numeric value for 

the variable A, although no prompting ? or character string 

message is printed on the terminal. 

Another format of the INPUT statement allows for the entering 

of an entire line of data as a single character string entity, 

regardless of punctuation. This statement is different from 

the normal mode of string input, where the comma and double 

quote characters have special significance. The format is: 

line number INPUT LINE[# expression ,] string variable 

For example, the statement 

25 INPUT LINE A$ 

6-3 / 



would print a question mark and wait for the user to enter a 

line followed by the RETURN. As another example: 

2f1 OPEN IF2" FOR INPUT AS FILE 4 

25 INPUT LINE #4, B$ 

These lines cause the system to open a file F2 on the system 

disk on channel #4 (of 4 possible channels) to input a line of 

characters up to the next RETURN character. 

6.4 PRINT STATEMENT 

In its simplest form, the PRINT statement: 

lirie number PRINT 

causes a carriage return/line feed to be performed on the user 

terminal. The format: 

line numb~r PRINT list 

causes the printing of the elements in the list on the user 

terminal. An element in the list can be any legal expression. 

When an element is not a simple variable or constant, the ex

pression is evaluated before a value is printed. The list can 

also contain character strings between quotes which are printed 

exactly as typed between quotes. 

Elements in the list are separated by commas or semicolons. 

For example: 

l~ A=l: B=2: C=3 

15 PRINT A; A+B+C, C"-A, "END" 

when executed causes the following line to be printed: 

1 6 2 END 

A terminal line is considered to be divided into five l print 

zones of fourteen spaces each. Use of these zones involves 

lThe actual number of print zones is INT (n/l4), where n is the 
size of the print line. 

6-4 



the comma character which causes the print head to move to the 

next available print zone (from 1 to 14 spaces away). If the 

fifth print zone on a line is filled, the pri~t head moves to 

the first print zone on the next line. 

The.semicolon character functions as follows: 

a. if a numeric variable or expression is followed by 
a semicolon, the value is printed with a preceding 
minus sign if the number is negative, or a preceding 
space if it is positive. The number is then followed 
by a single space. 

b. character strings and string variables followed by a 
semicolon are printed with no preceding or trailing 
spaces .. 

Any PRINT statement which does not end with a semicolon or 

comma character causes a skip to the next line after printing 

the elements in the list. The presence of the punctuation 

character at the end of the PRINT list causes the next PRINT 

statement to continue on the same line under the conditions 

already defined. 

In general, the output rules for the PRINT statement are 

a. suppression of leading and 
right of a decimal point. 
represented as an integer, 
point is also suppressed. 

trailing zeros to the 
Where a number can be 
printing of the decimal 

b. at most six significant digits are printed. 

c. most numbers are printed in decimal format. Numbers 
too large or too small to be printed in decimal 
format are printed in exponential format. 

d. character string constants are printed without leading 
or trailing spaces. 

e. extra commas cause print zones to be skipped. 

Output can be directed to a device other than the user terminal 

with the following command: 

6-5 



line number PRINT # expression , list 

The expression is the number of a previously opened output file. 

For example: 

l~ OPEN "PTP:" FOR OUTPUT AS FILE 3 

5~ PRINT #3, B,D,A+7,FNX(B) 

causes four values to be punched onto paper tape by the high 

speed punch which is opened for output as file 3, of 4 possible 

files. As many as four possible virtual files may be open at 

once (for input or output). 

6.4.1 PRINT-USING Statement 

In order to perform formatted output, the following statement 

is used: 

line number PRIN~[# expression ,lUSING .string , list 

where the expression (which is optional) indicates the file or 

device which is the destination of the output; the string is 

either a string constant, string variable, or string expression 

which is an exact image of the line to be printed; and the list 

is a list of items to be printed. All characters in the 

string are printed as they appear except for the special for

matting characters and character combinations described on 

the following pages... The string, or portions of the string, 

are repeated until the list is exhausted. The string is con

structed according to the following rules: 

Exclamation Point 

An exclamation point identifies a one character string field. 

The string is specified in the list within the PRINT statement. 

For example: 

l~ PRINT USING "!!!", "AB ", "CD", liEF" 

which causes: 

ACE 

6-6 



to be printed at the user's terminal. The first character 

from each of the three string constants or variables is 

printed. Any other characters beyond the first are ignored. 

String Field 

A variable string field of two or more characters is indicated 

by spaces enclosed between backslashes. The backs lash character 

~) is produced by typing SHIFT/L on the Teletype keyboard. 

Enclosing no spaces indicates a field two columns wide, etc. 

For example: 

2~ PRINT USING "\ \\ \ ", "ABeD", "EFGHI" 

causes 

ABEFGH 

to be printed at the user's terminal. The first two backslashes 

have no spaces enclosed, hence permit the printing of two char

acters (AB). The second two backslashes enclose two spaces and 

permit the printing of four characters (EFGH). No spaces 

are printed unless specifically planned. 

Numeric Field 

Numeric fields are indicated with the # character. Any decimal 

point arrangement can be specified and rounding is performed 

as necessary (not truncation). For example: 

3~ PRINT USING "###.##", 12.346' 

causes 

12.35 

to be printed on the user's terminal, while 

4~ PRINT USING "####", 12.345 

5~ PRINT USING "####.", 12.345 

6~ PRINT US'ING "##", l~~ 

causes 

* 

12 

12. 

to be printed on the user's terminal. Numeric fields are right 

justified; that is, if a number does not fill the allotted 

6-7 



space, leading blanks precede the number. When the field 

specified is too small for a constant or variable to be printed, 

an asterisk is printed for each alloted space. 

If the format field specifies a digit as preceding the decimal 

point, at least one digit is always output before the decimal 

point. If necessary, that digit is zero. 

Exponential Format 

When the exponential form of a number is desired, the numeric 

. field is followed by the string tttt (four t characters) which 

allocates space for E-xx. Any arrangement of decimal points 

is permitted. For example: 

5 F$="llltttt ilill#" 

19' A=l~J:rf1f1. 

2~ PRINT USING F$,A,A 

causes 

19'E + 9'3 lJ:rJ:r~~ 

to be printed at the user's terminal. 

All format positions are used to output a number with an ex

ponent. The significant digits are left justified and the 

exponent is adjusted. 

PRINT Statement Punctuation 

When the PRINT-USING statement is used, the usual PRINT state

ment punctuation characters (commas and semicolons) have no 

effect on the output format, except that a semicolon at the 

end of the PRINT list does inhibit termination of the printed 

line. 

l~ PRINT USING "II 
prints the following: 

123 

II II", 1;2,3 

6-8 



As another example: 

l' PRINT USING """#.##", 2;5: 

2' PRINT "X" 

prints 

2.5,X 

As another example: 

1, LET A=1.321l1: B=2.45457 

15 LET F$ = "A=##.##B=##.##" 

2' OPEN "LPT:" FOR OUTPUT AS FILE 4 

25 PRINT #4, USING F$, A,B 

would cause: 

A= ; /32B= 2.A5 

to be printed on the line printer. 

6.4.2 PRINT Functions 

In order to aid in formatting simple and complex PRINT state

ments the following functions are provided: 

Function 

POS(X) 

TAB (X) 

For example: 

Meaning 

Returns the current position on the output 
line; where X is the I/O channel number. 
POS(~) returns the value for the user's 
terminal. 

Tab to position X in the print record. 
For example, a standard Teletype has 72 
printable columns numbered ¢ through 71. 
TAB (4) causes sufficient spaces to be 
output to move the print head to column 4. 
If the print head is currently past position 
4, no spaces are output. 

1, PRINT "X";TAB(l¢);POS(¢) 

causes the following to be printed: 

Xl ~ 1[1 
position i ~ position 1[1 

6-9 



CHAPTER 7 

EDUBASIC COMMANDS 

7.1 INTRODUCTION 

We have discussed the st~tements in EDUCOMP BASIC which are 

available to the programmer to solve the problem. However, 

equally important are the commands or immediately executed 

key words in BASIC which permit you to perform the tasks of 

creating your program, debugging it, running the program, 

and finally, saving the statements. All of these steps are 

greatly eased with the rich vocabulary of commands in EDUCOMP 

BASIC. 

The user is assumed to be familiar with OS/8 and how to start 

up an OS/8 system. In response to the dot (.) given by the 

OS/8 command decoder, type 

.R BASIC 

EDUCOMP BASIC responds with 

READY 

7.2 CREATING A PROGRAM 

In order to create a new user program, at any time a user can 

issue the NEW command as follows: 

NEW 

followed by the RETURN key. The system responds by printing: 

NEW FILE NAME--

7-1 



to which the user responds by typing the name of the new pro

gram (no more than six characters). When typing a new BASIC 

program, the file name extension .BA (for BASIC) is added to 

the name by the system. 

Alternatively, the user can give the command NEW followed by 

the program name, to avoid having the system prompt the 

typing of the program name: 

NEW CALPPB 

is equivalent to 

NEW 
NEW FILE NAME--CALPPB 

When the NEW command is given, it: 

a. Deletes any program currently in core, and 

b. Causes BASIC to remember the new program name. 

NEW DTAI:CALPPB 

is meaningless. All checking for duplicate files occurs 

when the SAVE command is given. 

Following the creation of a new file with an acceptable 

file name, the user can begin to type his program, begin

ning each line with a line number. 

If the user doesn't type NEW either he will get the program 

name given to the previous program or BASIC will create a 

file called NONE (if no previous name has been given) which 

can be referenced later as NONE. At any time, this name can 

be changed (see section 7.5). Only one file with the name 

NONE can exist at anyone time. 

7-2 



7.3 CALLING AN EXISTING PROGRAM 

When the user desires to recall the source file of an old 

BASIC program (previously saved on a storage device), he 

gives the OLD command as follows: 

OLD 

to which the system replies: 

OLD FILE NAME--

The user then types the name of the old BASIC. file containing 

the program. Alternatively, the user can indicate the old 

file name without prompting, as follows: 

OLD TAXES 

which calls the old file TAXES from the disk. If the file 

is not available on the disk or if it is protected against 

that user, an appropriate message is printed. 

There is a more general form for the OLD command which allows 

the user to specify the particular OS/8 device on which the 

OLD program exists. 

OLD device:file name.extension 

If the program ALUM is to be called from DECtape number 1, 

the command string is 

OLD DTAI : ALUM 

where the extension .BA is assumed. 

OLD may also be used to read in a program (or data file) 

7-3 



from a non-file structioned device (TTY:, PTR:, CDR:, etc.). 

In this case, only the device is specified since these de

vices have no directory and do not store more than one file 

at a time. As an example, 

OLD CDR: 

reads a program from the card reader. 

NOTE: When accepting input from non-file structional devices, 

CTRL/Z is used as an end-of-file character. This 

character may be typed at the console or may occur 

at the end of the file on the particular device used. 

OS/8 automatically inserts a CTRL/Z at the end of a 

paper tape reader file. 

7.3.1 CALLING DATA FILES 

A further generalization of the OLD command occurs in EDUBASIC 

for use with data files. Certainly a data file may be called 

into memory with the previously described versions of the OLD 

command. 

However, many times it is very convenient to be able to 

append line numbers to the elements in a data file to ease 

editing the information. The full form of the OLD command is 

OLD device:file name.extension line number, increment 

As an example, 

OLD RKA2:STUDNO.DA 100, 5 

brings in the data file STUDNO from the second RK8e disk and 

numbers each element starting with line number 100 in incre

ments of 5. New elements may be added, deleted, or modified 

7-4 



easily and the file may be stored again without the line num

bers by using the NSAVE command (section 7.5). 

7.3.2 OVERLAYING A PROGRAM 

Sometimes it is necessary to append a subroutine or series of 

statements to an already existing program. The OVERLAY com

mand works exactly like OLD except that the program already 

in memory is not destroyed. 

OVERLAY deviceifile name.extension line number, increment 

As an example, file BX on SYS contains 

49 PRINT "TELL ME AGAIN" 
59 GO TO 1.0' 

The program (LOVE) in memory is 

III PRINT "IF YOU LOVE ME, TYPE A 7" 
29 INPUT A 
311 IF A #7 THEN PRINT "I DON'T LOVE YOU EITHER": GO TO 6~ 
611 END 

If the command is now given, 

OVERLAY BX 

BX now contains lines 1.0' through 6.0'. 

LISTNH 
lJa' 
2[0 
39 
4Ja' 
5fO 
69 

PRINT "IF YOU LOVE ME, TYPE A 7" 
INPUT A 
IF A #7 THEN PRINT "I DON'T LOVE YOU EITHER": GO TO 6[0 
PRINT "TELL ME AGAIN" 
GO TO 1[0 
END 

The OVERLAY command is very useful for adding a subroutine to 

a program. 

Both the OLD and OVERLAY commands may be used only to call 

7-5 



ASCII files into memory (e.g., not compiled or .BC files). 

Any file called with OLD or OVERLAY may be edited by the 

user at the terminal. 

7.4 EDITING PROGRAMS 

During the course of typing a program at the terminal or after 

a program is seen to be incorrect, changes can be made in the 

text of a program. These changes are made in what is called 

the editing phase of BASIC, between the time when the system 

prints READY and the time when the user types RUN. (During 

this time, commands can be executed.) 

The simplest type of correction is done during the typing of 

a line before the line is entered to the system with the RE

TURN key. For example: 

l~ PRHNT 

If the user realizes he has typed PRH instead of PRI, he can 

type the RUBOUT key once for each character to be erased. The 

RUBOUT key causes the erased character to be echoed on the 

user terminal between back slashes as they are erased. For 

. example: 

ABC<RUBOUT> <RUBOUT>DEF 

Typing the above is printed on the terminal as follows: 

ABC\CB\DEF 

If the RETURN key is typed at the end of the above line, the 

system would receive it as follows: 

ADEF 

The letters Band C have been erased. 

7-6 



If the user decides that his easi~st course is to delete the 

~ntire line, and he has not yet typed the RETURN key, then 

he can type CTRL/U (hold down CTRL and U keys), which performs 

this function. If the RETURN key has been typed, then the 

line may merely be retyped; the second version will replace 

the first in the computer memory. 

7.4.1 THE EDIT COMMAND 

One of the most useful commands in EDUBASIC is the EDIT com

mand. This search command permits the user to modify a com

pleted line or statement which is already contained within 

the memory of the computer. Thus, EDIT should be contrasted 

with the use of the RUBOUT key where the latter is used for 

changing a line already completed, i.e., RETURN has not been 

typed. 

EDIT tells the computer to find a given line number, and to 

th'en search for a particular in that line. As an example, 

READY 
EDIT 12.0 
(character) 

When you type the character to be searched for, this character 

is not printed, but the line requested is immediately printed 

out to the character which you have typed. If there are sev

eral occurrences of this character, the first one is printed 

and printing ceases. At this point you have several options: 

a. Type a RUBOUT to delete the last character printed; 
type two RUBOUTs to delete the last two characters 
printed; and so on. 

b. Type in new characters to take the place of any 
you rubbed out; or, of you have not typed any 
RUBOUTs, to add to the text already there. 

c. Type CTRL/L; the computer will now search for the 
next occurrence of the same search character. 

7-7 



7.4.3 DELETE COMMAND 

The DELETE command is used to remove one or more lines from 

the user program currently in core. For example: 

DELETE l~~ 

causes line number 100 to be deleted. (The user should first 

be certain that no other line references line number 100 un

less that line is to be replaced.) 

DELETE 1~~-2~~ 

causes all the program lines between and including line num

bers 100 and 200 to be deleted. If 100 and/or 200 do not 

exist in the program, any lines within the range from 100 

to 200 are deleted. 

If several groups of lines are to be deleted, then the user 

can type: 

DELETE 1~~-2~~, 3~~-4~~, l~~~-ll~~, l62~ 

which deletes all lines between 100 and 200, 300 and 400, 

1000 and 1100, and line number 1620. 

Individual lines may be deleted with the following form: 

DELETE l~, 33, 976 

This command deletes only lines 10, 33 and 976. 

If only one line is to be deleted it may be more convenient 

merely to type the line number and the RETURN KEY: 

which is equivalent to: 

DELETE l~ 



d. Type a BELL code (CTRL/G)i now type a new search 
character (which is not printed). The computer 
will now print out the line until it meets this 
new character. 

e. Type the ALT MODE keYi the left half of the line, 
up to and including the last character printed, is 
erased. The line number, however, is not erased. 

f. Type the RETURN key. All the line to the right of 
the last character printed is dropped. The left 
side of the line is saved and the RETURN indicates 
that the EDIT command is complete. 

g. Type the LINE FEED key. The whole line, in its 
present condition (including any changes you have 
made) will be printed but not saved. To save the 
line you must type RETURN.-:LINE FEED may be typed 
as many times as you like. 

Note that EDIT cannot be used to change a line number. The 

only way to move a line to a new position in the program is 

to retype it, complete with its new line number. The old line 

should then be deleted. The RESEQUENCE command (next section) 

is useful for creating the space to add new lines. 

7.4.2 THE RESEQUENCE COMMAND 

The RESEQUENCE command simply renumbers the line numbers in 

the user program. The general form of this command is 

RESEQUENCE line number, increment 

If only the word RESEQUENCE is typed and no line number and 

increment are specified, the program is renumbered starting 

with line number 100 in'increments of 10. 

Note that only the program (or data file) currently in memory 

is resequenced and that if you wish to SAVE the new version 

or REPLACE the old version, these commands must be given (see 

section 7.5). 

7-8 



~IST Command Meaning 

LIST List the entire user program as it currently exists. 

NLIST Same as LIST, but without line numbers. 

LISTNH Same as LIST, but without a program header. 

NLISTNH Same as NLIST, but without a program header. 

LIST n List line n, without a program header. 

LIST m,n,p List lines m,n,p without a program header. 

NLIST m,n,p List lines m,n,p without line numbers. 

LIST n1-n2 List lines n1 through n2, inclusive, without a 
program header. 

LIST LPT; Lists the user program on the line printer (if 
one exists on the system). 

7.4.5 SEARCH 

One of the most powerful editing features in EDUBASIC is the 

SEARCH command. The first form is 

SEARCH nl-n2/string A/ 

This SEARCH command lists all lines in the range nl to n2 in

clusive that contain string A anywhere in the line. If no 

line numbers are specified, the entire text buffer is searched. 

Note that string A may be a variable name (A$) or a group of 

characters (ABCD) without quotation marks unless the quote 

marks are part of the string. 

The second form of the SEARCH command is 

SEAR~H nl-n2 /string A/string B/list 

This form of the SEARCH command replaces all occurrences of 

string A with string B in the range nl-n2. If the optional 

word list is specified at the end of the command, all line 

numbers in which replacement was performed are listed. If no 

line numbers are specified, the entire text buffer is searched. 

7-11 



7.4.4 LIST COMMAND 

. 
The LIST command is used to obtain a clean printed copy of 

all or part of the user's current program. This listing is 

especially useful during and after an editing session in 

which the original program is changed. 

In order to obtain a printed copy of the entire program as 

it currently exists within the system, type: 

LIST 

In order to list a single line, type: 

LIST lfAfA 

to type line 100. 

". 
(LIST 100, 300 lists both lines 100 and 300.) 

In order to list a section of the program, type: 

LIST lfAfA-2fAfA 

which will cause the listing of the entire program from line 

number 100 to line number 200 inclusive. 

The above LIST commands list both statements and line numbers. 

If the user wishes a listing without line numbers, the command 

NLIST is available. NLIST may be used similarly to the three 

cases above, but the lines listed will have no line numbers. 

In the first of the above cases, BASIC prints a program header 

containing the program title and data. If this header is not 

desired (as it might not be for normal editing), the command 

may be given as LISTNH to delete the header material. To sum

marize: 

7-10 



EXAMPLE: File in memory contains: 

l~ PRINT "SEARCH COMMAND USAGE" 
2~ INPUT B 
3~ IF B=S THEN 2~ 
4~ B=B+l 
S~ PRINT B 
6~ GO TO 2Y1 
7Y1 END 

SEARCH 30-60/20/ 

3Y1 IF B= S THEN 2Y1 
6Y1 GO TO 2Y1 

SEARCH /B/C/LIST 

2Y1 INPUT C 
3Y1 IF C=S THEN 2Y1 
4Y1 C=C+l 
SY1 PRINT C 

SEARCH PRINT/PRINT Bi/ 

The file in memory now contains: 

l~ PRINT Bi "SEARCH COMMAND USAGE" 
2~ INPUT C . 
3Y1 IF C=S THEN 20 
4~ C=C+l 
SY1 PRINT C 
6Y1 GO TO 2Y1 
7~ END 

(In order to permit the slash (/) to be part of the string, an 

alternate form of the SEARCH command allows replacement of the 

slash by any non-numeric character -- e.g., SEARCH A/A*A re

places all slashes with asterisks.) 

7.S MANIPULATING USER PROGRAMS 

The commands in this section enable the user to compile, save, 

. run, and rename his files. These are all operations performed 

on a program as a whole (either in core or as a file) and are 

used once a complete program has been prepared at the terminal. 

7.S.1 RUN Command 

The RUN command is used to cause the execution of any source 

7-12 



BASIC program. (Source programs are stored as the user typed 

,them; compiled programs are files described in section 7.5.2.) 

In order to run the program currently in core, the user simply 

types: 

RUN 

This command causes the execution of the program in core. A 

program header is printed after the RUN command is given, con

sisting of the program name, date and language. If this in

formation is not desired, the command 

RUNNH 

should be given. RUNNH executes the current program without 

printing the header material. 

7.5.2 EXECUTE Command" 

When it is desired to run a program not in memory, the EXECUTE 

command is used. 

EXECUTE device:file name.extension line number 

This command causes BASIC to search for file name on the device, 

load it, compile it (if necessary), and run it if it is found. 

If no extension is specified and both the .BA (source) and .BC 

(compiled) versions exist, BASIC will execute the compiled 

form because it requires less time. In order to retrieve and 

execute the source, it is necessary to specify the extension 

.BA after the file name. An alternate approach is to give the 

OLD command followed by the RUN command. This approach is not 

equivalent to the EXECUTE command because EXECUTE will save 

the file currently in core (before EXECUTE is typed), execute 

the program called for, and then restore the previous file 

into memory. 

7-13 



Compiled (.BC) files can only be executed with the EXECUTE 

Command. 

If only the source version of a file exists on a device, the 

EXECUTE command serves as a combination of the OLD and RUN 

commands, except with the restoring of the previous file 

noted above. For example, if the program STOCK is stored 

on DECtape 1, it may be called into memory and executed 

with the following single command string: 

EXECUTE DTA1:STOCK, l~~ 

where execution starts at line number 100. (Perhaps lines 

1 through 99 contained instructions not required for the 

running of the program.) As another example, 

EXECUTE CDR: 

reads a BASIC program from the card reader and runs it. 

7.5.3 SAVE Command 

The SAVE command is used to store BASIC source programs on 

the disk as follows: 

SAVE 

The program currently in core is saved under its file name 

with the extension .BA. If a file of the same name exists, 

then SAVE returns the error message: 

DUPLICATE FILE NAME 

Where the current name of the file is not the desired name, 

the format: 

SAVE GRADE 

7-14 



can be used, which saves the program currently in memory under 

the name GRADE.BA. 

In cases where the desired storage device is not the default 

device, the format: 

SAVE device:fiie name.extension ni,n2-n3,n4 

is used where device indicates the device designation. The 

file is stored as FILE NAME.BA. For example: 

SAVE DTA4:ACCPAY 

saves the whole file ACCPAY.BA on DECtape 4. The numbers (ni, 

n2-n3,n4) are used if only part of the file in memory currently 

is to be saved. As an example: 

SAVE DTA4:ACCPAY l~, 1~~-36~ 

saves only lines 10 and 100 through 360 of the file ACCPAY on 

DTA4. 

The SAVE command is used only with source files and cannot 

be used with compiled files. When a program is saved, under 

some name, the program is still in core to be used or ignored 

as the user wishes. 

To obtain a listing of his program on the line printer, the 

user can type: 

SAVE LPT: 

. To punch a tape of his program, the user can type: 

SAVE PTP: 

7-15 



7.5.4 SAVE Without Line Numbers 

The NSAVE command saves the file currently in memory but 

without line numbers. 

NSAVE device:file name nl,n2-n3,n4 

This particular command is very useful during the editing 

of a data file. The file may be called into memory with the 

OLD command and at the same time line numbers may be appended. 

OLD DTAl:PARTFL l~~,l~ 

After editing has occurred (adding, deleting, or changing the 

items in the file), the NSAVE command is used to save the file 

without line numbers. 

NSAVE DTA2:PART2 1~~-95~ 

The above command string saves only lines 100 through 950 

of the new data file (PART 2) on DTA 2. 

7.5.5 UNSAVE Command 

The UNSAVE command is used to remove a file from a storage 

device. The form: 

UNSAVE device:file name.extension 

removes the file name from the device. 

Any number of files may be .removed. Each name must be sepa

'rated from the following name by commas. As an example 

UNSAVE PARTl, PART 2 , PART3 

If no extension is given .BA is assumed. If no file name is 

7-16 



given, BASIC responds wit~ FILE ~AME ~- and waits for the 

user to input a file name. 

7.5.6 RENAME Command 

The RENAME command causes the name of the program currently 

in core to be changed to the specified name. For example: 

RENAME COLGNO 

The old name of the program in core is discarded and it is 

now known as COLGNO. If the SAVE command is given: 

SAVE 

the file COLGNO.BA would be stored on the systems device. 

7.5.7 REPLACE and NREPLACE 

The REPLACE command is used when the program in memory has 

the same name as a file on the same device and the user wishes 

the program in memory to become the new file with that name. 

The command is simply of the form: 

REPLACE device:file name.extension nl,n2-n3 

where nl,n2-n3 indicate that only these lines may be saved. 

REPLACE is/ like SAVE, but destroys without notice the old 

copy of the same file, if it exists. 

NREPLACE is the same as REPLACE except that the file is saved 

'without line numbers. 

7.5.8 COMPILE Command 

Normally BASIC reads each line of a user's program as it 

is typed and, if acceptable, translates the line into a form 

7-17 



more easily understood by the computer. When lines within 

the user's program are altered"al,;L _lines which are in the 

program need to be recompiled (i.e., translated). When the . 
SAVE command is given, only the source version of the pro-

gram (i.e., the text that is typed in response to the LIST 

command) is retained in the specified place. In response 

to the OLD command, BASIC reads the text from a file and 

compiles it in much the same manner as is done when the pro

gram is read from the user's keyboard. 

Once a program is completely developed and debugged, it may 

be desirable to avoid the time-consuming practice of compiling 

the program every time it is fetched from the library. For 

this reason, the COMPILE command has been provided. This 

command permits the user to save an image of his compiled 

program, rather than (or in addition to) the source text of 

the program. This compiled program may be called and executed 

with a minimum of overhead by use of the EXECUTE command (see 

section 7.5.2). 

Due to the transformation which takes place when a program 

is compiled, a file with the extension .BC can only be execu

ted, it cannot be edited. Therefore, the user can issue the 

EXECUTE command with respect to these compiled files, but the 

file cannot be brought into core with the OLD command. 

If the current file name (i.e., that which is typed in the 

heading of a listing) is INVCTL, then the command 

COMPILE 

will save the compiled program in a file named INVCTL.BC. 

If another name is desired for the compiled file, it may be 

specified. 

COMPILE INVCL4 

will generate a file named INVCL4.BC while the source file 

7-18 



in the above example will be saved as INVCTL.BA. 

7.6 LENGTH COMMAND 

The LENGTH command returns the length of the user's current 

program in memory. For example: 

LENGTH 
710 CHARACTERS (2 BLOCKS) 

The LENGTH command may also be used to give the length of 

lines in a program, by specifying the line numbers after the 

work LENGTH. As an example, 

LENGTH 1~f1-2~f1 
354 CHARACTERS (1 BLOCK) 

The maximum size of a program to be run depends upon the num

ber of variables in the program as well as the amount of text. 

This size varies between about 13 and 18 blocks. An 18 block 

file will not always execute, but may be edited. 

7.7 CATALOG COMMAND 

Giving the CATALOG command causes the user's file directory 

to be printed on the console. For example: 

CATALOG 
PPB .BA 4 
+ + + 

name extension size 

3/29/71 
+ 

creation date 

To obtain a CATALOG of files on a device other than the 

systems device, one can give the command 

CATALOG DEV: 

For example: 

CATALOG DTA4: 

7-19 



lists the files on DECtape unit 4. 

7.8 COMMANDS FOR INPUT/OUTPUT DEVICES 

EDUBASIC has several commands specifically for I/O. However, 

it should be remembered that OS/8 handles all I/O (except the 

console) for EDUBASIC and many system commands should be 

given while under the monitor (e.g., ASSIGN). 

7.8.1 TAPE COMMAND 

The TAPE command is used to disable the terminal echo feature 

when reading a paper tape with the low-speed (terminal) 

reader. The command is given as follows: 

TAPE {initial line number, step} 

EDUBASIC will add line numbers to a file if no line numbers 

exist on the tape (especially data files). The tape is in

serted in the low-speed reader and the reader control switch 

set to START. 

Prior to giving the TAPE command, the user would set up con

ditions such that the system expects the program. TAPE does 

not scratch memory. For example, giving the following com

mands: 

NEW ADDREC 
TAPE 

causes the system to await the new program file ADDREC which 

is to be entered to the system via the terminal tape reader. 

Giving the TAPE command disables the echo feature so that 

the program is not listed on the terminal as it is read. The 

same function would be served by the following commands: 

OLD ADDREC 
TAPE 

7-20 



7.8.3 PUNCH and NPUNCH 

It is sometimes necessary to produce a paper tape using the 

low speed punch on the console teletype. The PUNCH (and 

NPUNCH) is used to create this tape. 

PUNCH nl,n2-n3 

NPUNCH nl,n2-n3 

These commands punch a copy of the file currently in memory; 

the latter command produces no line numbers. The line num

bers may be used to indicate which lines are to be punched. 

The user types the word PUNCH, types a carriage return, and 

turns on the paper tape punch. Typing LISTNH, turning on the 

paper tape punch, and then typing a RETURN accomplishes ap

proximately the same result, with the exception that leader 

is not punched and READY is punched after the program has 

been punched. PUNCH also punches the program name, extension, 

and date on the paper tape, which may be read by the user. 

Note that when reading in a tape, the name, extension, and 

date punched by PUNCH should not read in. Place the tape in 

the reader after this information. 

7-21 



7.8.4 MARGIN COMMAND 

The maximum line length can be changed using the margin 

command. The margin command is of the form: 

MARGIN number 

The above statement changes the line length on all output 

devices from 72 to the specified number. MARGIN is in ef

fect until another MARGIN command is given. Even leaving 

BASIC and then calling it in again or re-bootstrapping will 

not change the margin back to 72. 

The maximum line number is in effect for all commands and all 

output devices. It is not in effect for character string out

put. 

The following description will help the user to more fully 

understand the MARGIN command. The user may continue typing 

his line of text or command until the specified margin is 

reached. At this point an automatic Carriage RETURN/LINE FEED 

is performed and the user is allowed to keep typing. Only by 

striking the RETURN key does the user enter his command. No 

commands are affected by the margin command, i.e., operation 

of BASIC is the same with a line of 72 characters or a line 

of 5 characters. Even though a single statement may be printed 

as 10 lines with the new margin, those 10 lines are considered 

as 1 line to the computer. 

7.9 SPECIAL CONTROL CHARACTERS 

Some characters previously discussed are reviewed here. Addi

tional control characters are available from OS/8. 

7.9.1 RETURN KEY 

Typing the RETURN key echoes as a carriage return/line feed 

7-22 



operation on the terminal, as long as the terminal is not in 

TAPE mode. RETURN is used to indicate the end of a line typed. 

~he RUBOUT key is of no use for corrections on the line just 

typed after the RETURN is typed. The line has been entered 

into the 'source' buffer. 

7 .,9 • 2 LINE FEED KEY 

The LINE FEED key causes the current line to be echoed, free 

of rubouts, up to the point at which the user typed LINE FEED. 

A RETURN must be typed to cause execution (command) or enter 

the line (BASIC statement). As an example, 

199 PRNT\TN\INT "MY NME\EM\AME IS LAH\HAL\HAL" (LINE FEED) 

199 PRINT "MY NAME IS HAL" 

where the carriage position (next position to be printed) is 

after the last quotation mark. Additional characters-may be 

added to the line or the RETURN key may be typed to accept 

the line as is. 

7.9.3 RUBOUT KEY 

. The RUBOUT key is used as an eraser for the current line. 

If typed in TAPE mode, the RUBOUT key is ignored; otherwise, 

it causes the character most recently typed to be deleted. 

The erased characters are shown on the terminal paper between 

back slashes. For example, 

19 LEF X=X*X 

could be corrected by typing the RUBOUT key 7 times (to remove 

the F) and typing the remainder of the line correctly. The 

line would look as follows on the terminal pap~r: 

19 LEF X=X*X\X*X=X F\T X=X*X 

7-23 



and would appear to the system as: 

l~ LET X=X*X 

In cases where the mistake is toward the beginning of a line, 

it may be easier to simply retype the entire line. For exam

ple, 

l~ LEF X=X*X 
l~ LET X=X*X 

Once the second line is entered into the system, the first 

line numbered 10 is deleted. 

7.9.4 CTRL/C 

CTRL/C returns control to the OS/8 keyboard monitor. BASIC 

may be recalled by typing R BASIC in response to the dot given 

by OS/8. START may also be typed and in most cases returns 

the user to EDUBASIC and into the program upon which he was 

working before CTRL/C was typed. 

7.9.5 CTRL/P 

By typing a CTRL/P (hold down the CTRL key and type the P key, 

release both), the user causes BASIC to return to command mode, 

where commands can be given or editing done. CTRL/P stops 

whatever BASIC was doing at the time and returns control of 

the system to the user. 

7.9.6 CTRL/U 

The CTRL/U combination deletes the current input line. This 

combination is useful when a long command has been typed and 

is no longer wanted. Rather than use the RUBOUT key repeatedly, 

CTRL/U cancels the entire line. This feature can be used when 

typing either commands or statements. The entire physical 

line is deleted. 

7-24 



7.9.7 CTRL/O 

~he CTRL/O combination suppresses output on the Teletype 

until the next time CTRL/O is typed (or CTRL/P is typed). 

When a program produces a large amount of output (usually 

in tabular form), the user may not wish to wait for the 

pr~nting of the complete information. CTRL/O enables the 

user to monitor the output while not stopping it completely. 

Typing CTRL/O while output is occurring still allows the 

computer to output the data, but the Teletype does not print 

it. This speeds up the output process, since the Teletype 

is a rather slow device. The second time CTRL/O is typed, 

the output is again sent to the Teletype for as long as the 

user wishes. 

CTRL/P, on the other hand, will completely stop the output. 

Think of CTRL/O as a switch, the first setting of which cre

ates a condition and the second setting releases the condition. 

7.9.8 TAB CHARACTER 

The TAB character or CTRL/I combination allows the user to 

insert a tabular format into his typed material. When entering 

a program to the system, the TAB character allows formatting. 

The BASIC editor considers each line as being broken into tab 

stops eight spaces apart across the line. Typing the TAB 

character causes the printing head to move to the next of 

those stops on the line. 

If using a model 33 Teletype, the TAB echoes as spaces. The 

model 35 Teletype has built-in hardware tabs. 

7.9.9 CTRL/Z 

The CTRL/Z combination is used to mark the end of a file; when 

inputting data from a file, a CTRL/Z character marks the end 

of the recorded data. 

7-25 



CHAPTER 8 

DETAILS OF VIRTUAL ARRAYS 

8.1 INTRODUCTION 

The virtual array facility provides the means for an EDUCOMP 

BASIC program to operate on data structures that are too 

large to be accommodated in memory at one time. To accom

plish this, BASIC uses the disk or DECtape file system for 

storage of data arrays, and only maintains portions of these 

files in memory at any given time. 

An essential difference between real arrays and their virtual 

counterparts is the order in which array elements are refer

enced. In real arrays, the referencing algorithm has no effect 

on the time it takes to accomplish the references; while for 

virtual arrays, this order can have a significant effect on 

the program execution time. This chapter gives the user an 

in-depth look at the algorithms used in the virtual array 

processor, in order that users concerned with efficiency can 

optimize their use of this facility. 

Each DECtape or disk file appears to the user program as a 

contiguous sequence of 256-word records. Any position in a 

file can be specified internally with a two-component address; 

the first part being the relative record within the file, and 

the second being the position of the item within the block. 

One of the functions of the virtual array processor is to 

transform, or map, each virtual array reference into its 

corresponding file address. This virtual array processor is 

invisible to the user and BASIC performs all mapping functions 

automatically. 

Virtual arrays are stored as unformatted binary data. This 

8-1 



format means that no I/O conversions (internal form-to-ASCII) 

need be performed in storing or retrieving elements in virtual 

·storage. Thus, there is no loss of precision in these arrays, 

and no time wasted performing conversions. 

All references to virtual arrays are ultimately located via 

file addresses relative to the start of the file. No symbolic 

information concerning array names, dimensions, or data types 

is stored wi thin the file. Thus, different progra:ns may ~e_. 

differen~ray names to refer to the data contained within a ------ ~------'----'-"'----'-'-'--'~"-' ..... -------- ... _._. __ . __ .. _ ...... -- , .. _,--.... ~--,. ....... -
single virtual array file. The user must be cautious in such 

---. -----_. -----,,--:--
operations, since it is his responsibility to ensure that all 

programs referencing a given set of virtual arrays are refer

encing the same data. Consider ~he following example: 

Program ONE contains 

1~ OPEN "FILE" AS FILE 1 

2~ DIM.il,X(l,) ,Y(lJ) 

Program TWO contains 

l~ OPEN "FILE" AS FILE 1 

2~ DIM il,Z(l,) ,X(lJ) 

Whenever program TWO references the array Z, it is using the 

data known to program ONE as array X. Both' X and Z are the 

first arrays in their declarations, both contain numeric data, 

and both are 11 elements (X(J) , .•• ,X(l,» long. These two 

arrays, then, correspond in position, type, and dimension. 

References to the array X (in ONE) and to the array X (in TWO) 

do not refer to the same data, even though both are using the 

same virtual file (FILE). The concept of using relative posi

tion, rather than name, to identify data items is familiar to 

users of the FORTRAN COMMON facility. 

8-2 



Within a single EDUBASIC program it is possible to redefine 

a single virtual array file on the same channel for the pur

pose of reallocating the data within the file. For example: 

145 OPEN "DATA" FOR INPUT AS FILE 1 
15~ DIM #1, A$(1~)=4 
155 DIM #1, B$(4)=16 

The program now has access to the file DATA through both the 

array A$ and the array B$. Each element of B$ contains four 

elements of A$ (B$(~) is equivalent to the elements A$(~) 

through A$(3), etc.). Note that the file is open for input 

only and that the two DIM statements reference that file on 

a single channel number (#1 in this case). 

Note also that the two statements: 

75 DIM #1, A(l~) 
8~ DIM #1, B(l~) 

are not equivalent to the statement: 

9~ DIM #1, A(l~) ,B(l~) 

In the first case the arrays A and B are equivalent to each 

other and constitute the first array in the file open on 

channell. In the second case the arrays A and B are defined 

as both existing in the file open on channell. 

CAUTION 

The user is advised not to open a single 
file under two different channel numbers. 
For example: 

5~ OPEN "VALUES" AS FILE 1 
55 OPEN "VALUES" AS FILE 2 

l~~ DIM #1, X$(2~) 
1~5 DIM #2, Y$(2~) 

8-3 



causes two buffers to be created for the 
storage of input to/from channel 1 and 
to/from channel 2. Data output to chan
nellis not available to channel 2, etc. 

8.2 ARRAY STORAGE 

Numbers (floating point) are stored in four words (8 charac

ters) in virtual files so that an integer number of numbers 

may be contained in one segment (256 words). The only limit 

on the number of elements in a numeric virtual array is the 

size of the device. 

Virtual array elements are limited to a length of 2046 charac

ters (bytes). The number of data elements stored in each disk 

or DECtape segment is a function of the size of each element. 

For virtual strings, the number of elements is also related 

to the maximum string length specified in the DIM statement. 

The size of a virtual string is defaulted to 15 characters, 

and can be specified as a multiple of three: 3, 6, 9, 12, 

15, 18, •.••.•• 2046. 

Strings in virtual storage occupy pre-allocated space in the 

virtual file, and thus differ from strings in core storage, 

where space is allocated dynamically. A segment containing 

virtual strings can be considered to be a succession of fields, 

each of the maximum string length. When a virtual string is 

assigned a new value, it is stored left-justified in the appro

priate field. If the new string value is shorter than the 

maximum length, the remainder of the field is filled with 

zeros. When the string is retrieved, its length is computed 

as the maximum string length minus the number of zero-filled 

bytes. 

8.3 TRANSLATION OF ARRAY SUBSCRIPTS INTO FILE ADDRESSES 

In order to translate an array subscript into a file address, 

8-4 



EDUBASIC computer Ca) the relative distance from the specified 

item to the first item in the array, and then adds (b) the 

relative distance from the first element of the array to the 

first item in the file. The first quantity Ca) is computed 

from the array subscript and the number of elements per block. 

The second number (b) is a constant for each array in a file, 

and is computed from the parameters specified in the DIM 

statement. 

Since the DIM statement contains the only information used to 

define the structure of a file, it is possible for the user 

to specify different accessing arrangements for the same file 

in one or more programs. For example, the user can reference 

the same data as either a series of 16-byte strings (A$) or 

32-byte strings (B$), with the following statements: 

l~ OPEN 'FILl' AS FILE 1 
2~ DIM #l,A$(l,~g) = 16 
3~ DIM #1,B$(5g,) = 32 

!VIRTUAL ARRAY FILE. 
!16 CHARACTER STRINGS. 
!32 CHARACTER STRINGS. 

The user should keep in mind that in EDUCOMP BASIC, as in most 

BASICs, array subscripts begin with g, not 1. An array with 

dimension n, or (n,m) actually contains n+l, or [(n+l)*(m+l)] 

elements. 

User programs may define two-dimensional virtual arrays (ex

cept for string arrays) as well as singly dimensioned ones. 

Two-dimensional arrays are stored on disk or DECtape (and in 

core) linearly, row-by-row. Thus, in the case of an array 

X(1,2), the array appears logically as: 

X(~,~) XCg,l) XCg,2) 

X(l,,) XCl,l) X(l,2) 

8-5 



while physically it is stored as: 

X(~,~) lowest address 

X(l,~) 

X (2 ,~) 

X(~,l) 

X(l,l) 

X (2,1) highest address 

If ~ virtual array is to be referenced sequentially, it is 

usually preferable to reference the rows, rather than the 

columns, in sequence. Consider the case in which it is 

necessary to compute the sum of each row and column in a 

two dimensional virtual array. Program MATI below does 

this far more efficiently than program MAT2 below: 

,. 

10 RE!1 PROGRAt·! '!<!A1't' TO CONPUTE SUHS EFFICIENTLY 
20' REM 'AR' CONTAINS VIRTUAL ARRAY 
30 REM RC Il IS SUN OF ROV I 
40 REN C(J) I S SUN OF COLUMN J 
50 OPEN nAB". AS FI LE .1 
60 DIN # 1 1 A C 1 1.3 1 51.3 ) 
70 DIM R(10)1 CC51.3) 
80 FOR R=l TO 10:RCR)=0:NEX1' R 
90 FOR C= 1 1'0 50: C ( C) =10: NEXT C 

J00 FOR J =J 'I'~ S0 
J10 FOR I = 1 TO 10 
120 R(I) = RCI) + ACIIJ) 
J30 CeJ) = CeJ) + AeIIJ) 
140 NEXT I 
J S1.3 NEXT J. 
160 FOR B=l TO 10: PB! NT R( RH : NEXT R ' 
170 FOR C=l TO C:PRIN'I' CCC).;:NEXT C 
999 END 

READY 

' .. 
"~: ".:., ", .-,"'. 

8-6 

!~PEN VIRTUAL FILE 
!1!.3 ROWS 1 50 COLUMNS 

! I NI 'I' tALI Z E SuriIS 

!OPERA'I'EJONE COLUMN AT A 
! AND EACH RQT;r IN COLUI-lN 
!'I'OTAL ACROSS ROW 
!TOTAL DO~N COLUMN 
! NEXT Rm~' INC OLm1N 
!NEX'I' COLUHN 
IPRIN'I' ROW TOTALS 
!PRINT COLUHN TOTALS 

TH1E 



10 REB PROGRAM 'HP.T2' HA~ INEFFICIENT 
20 REM 'AP' CONTAINS VIRTUAL ARRAY 
30 REM RCI) IS SUM OF ROW I 
40 REN C( J) IS SillI OF. COLm'iN J 
50 OPEN ~'AR". AS FI LE 1 
610 D 11-1 tfil;.A e 10 .. 50 ) 
710 DIN ReID) .. C(50) 

,80 FOR R=l TO 10:PCP)=0:NEXT R 
.90 FOR C=l TO 50:CCC)=0:NEXT C 
100 • FOR I = J TO 10 
JIQl FOR J = 1 TO 50 
1210 RCI) = RCI) + ACI .. J) 

130 ce~) = CCJ) + ACI .. J) 

.IL10 NEXT J 

.150 NEXT" I 
1610 FOR R=l TO 10:PRINT RCR)~:NEXT R 
170 FOR C=l TO C:PRINT CCC);:NEXT C 
999 END 

READY 

USE OF VIRTUAL CORE 

LOPEN VIRTUAL FILE 
!10 ROWS .. 50 COLUMNS 

! I NI TIALI Z E SU!-lS 

! OPERATE ROi,T BY RO~'! 

!DO EACH COLUl1N IN ROt} 
!TOTAL ACROSS ROW 
! TOTAL DOFN COLDr1N 
! NEXT COLUHN IN ROV 
! NEXT ROH 
!PRINTROWTOTALS 
!PRINT COLUHN TOTALS 

In virtual arrays it is permissible to have two (or more) 

That is, the following DIM arrays sharing the same file. 

statement is perfectly legal: 

l~~ DIM #1,A(l~~~),B(999) ,C(l~~~) 

The matrix B begins immediately after the lOOOth element 

of A and the matrix C begins immediately after B(999). 

Therefore, the disk layout is as follows: 

8-7 



A(~) 

A( 1) 

· 
~~ · ~ 

· 
A(999) 

A(l~~~) 

B (~) 

B (1) 

· 
~~ · r~ 

· 
B (998) 

B(999) 

C (~) 

C (1) 

· 
~r' · ~~ 

· 
C(999) 

C(l~~~) 

Figure 8-1 Virtual Array File Layout 

8.4 ACCESS TO DATA IN VIRTUAL ARRAYS 

Only a portion of a virtual array is in memory at any given 

time. This data is transferred directly between the disk 

and an I/O buffer in the user core area, created when the 

OPEN statement is executed. This buffer is 256 words (one 

segment) long. For each virtual array file, EDUBASIC 

notes (1) the segment of the file in the buffer, and (2) 

whether or not the data in the buffer has been modified 

since it was read into core. 

8-8 



After BASIC translates a virtual. array address into a file 

address, it checks whether or not the segment containing 

'the referenced item is currently in the buffer. If the 

necessary segment is present the reference proceeds; but 

if not, another portion of the file is read into the 

buffer. If the current data in the buffer has been altered, 

it, is necessary to rewrite this data on the disk prior to 

reading new data into the buffer. 

The referencing algorithm, which minimizes the number of 

disk memory accesses generated when handling virtual arrays, 

is flowcharted in Figure 8-2. 

8-9 



Virt:ual Array 
l:;;efer::;.nc;e ) 

'rranslate SUD-
I script into File 
.... ! _____ ~ .... A""<;l"'"q e s s 

1 

in File .. j 

No 

Set: I Modified I 
,--_...:1::;.:" x~l(;.;.l;:;.i c~a..:;;t..:;;o~r __ ..1 

f"-----II 
"'-1-'-r-o-,,-': (-} (-'~'~--\V-j-, t-:J~] 

Opl'I'.:ILion ..... _ .. _. __ .... .-.................. _ .. .. 

I" i. iJ \ I \', i II "", >~ 



A.I 

APPENDIX A 
LANGUAGE SUMMARY 

SUMMARY OF VARIABLE TYPES 

~ Variable Name 

Numeric (floating point) single letter 
optionally followed by 
a single digit 

Character String any letter 
name.followed by a 
$ character 

. Numeric Matrix any numeric variable 
name followed by one 
or two dimension ele
ments in parentheses 

Character String any character string 
Matrix variable 

A.2 

~ 

Arithmetic 

Relational 

String 

name followed by a one 
dimension element in 
parentheses 

SUMMARY OF OPERATORS 

t 
*,/ 
+,-

= 
< 
(= 

> 
>= 
() ,# 

+ 

Operator 

unary minus 
exponentiation 
multiplication ,division 
addition, subtraction 

equals 
less than 
less than or equal to 
greater than 
greater than or equal to 
not equal to 

concatenation 

Examples 

A 
I 
X3 

M$ 
R/.$ 

S (4) E(5,1) 
N2 (a) va (3,3) 

C$ (1) 

Operates Upon 

numeric variables 
and constants 

string or 
numeric variables 
and cons tan ts 

string constants 
and variables 



A.3 EDUCOMP BASIC STATEMENT SUMMARY 

The following summary of BASIC statements defines the general 
format for the statement and gives a brief explanation of its 
use. 

CHAIN dev:filnam.ex,line number 
Terminates execution of user program, 
loads and executes the specified pro
gram 'starting at the line number if 
included. 

CLOSE n Closes the logical file specified. 
If no file number is specified, closes 
all files which are open. 

DATA data list Used in conjunction with READ to in
put data into an executing program. 

DIM variable(n), variable (n,m) 
Reserves space for lists and tables 
according to subscripts specified 
after variable name. 

END Placed at the physical end of the 
program to terminate program execu
tion. 

FOR variable = expressionl TO expression2 STEP expression 3 
Sets up a loop to be executed the 
specified number of times. 

GOSUB line number Used to transfer control to the first 
line of a subroutine. 

GO TO line number Used to unconditionally transfer con-
trol to other than the next sequential 
line in the program. 

IF expression rel.op. expression THEN line number 
Used to conditionally transfer control 
to the specified line of the program. 

IF expression rel.op. expression THEN statement 
Used to conditionally execute the 
statement after the THEN. 

\ 



IF variable THBN .t.t~m~~t 
?or the logical 'IF', when the 
~ftriable is zero, the statement 
i:s not executed. 

INPUT list V:sed to input data from the terminal 
:~yboard or papertape reader. 

INPUT #exprsssion, Jist ~nputs from a particular device. 

INPUT LINE string Inputs a record at a time. Accepts 
.s::pmmas and quotes, and recognizes 
-t.be RETURN as the delimiter. 

INPUT LINE #sxpression, string 
lnputs a record from a specified 
~vice. 

KILL file ~nsaves the file. File may be of 
~he form dev:filnam.ex or a scalar 
~-tring variable. (Must have an ex
-tension. ) 

[LET] variable ~ expression 
~:sed to assign a value to the speci
fied variable(s). 

NEXT variable Placed at the end of a FOR loop to 
return control to the FOR statement. 

ON expression GOTO list of line numbers 
The formula is evaluated and control 
t.ransfers to the first, second, third, 
~tc., line number depending on whether 
the truncated evaluation is 1,2,3, etc. 
If the magnitude of the index is 
greater than 2047, an error is genera
ted. Otherwise, if the index is out 
of range, control passes to the next 
!It..a temen t • 

ON expression GOSUB list of line numbers 
Same as the ON-GOTO statement except 
t.hat a GOSUB is generated. 

OPEN file FOR !INPUT l AS FILE #n 
'pUTPUTj Opens a sequential file for input or 

output. File may be of the form 
4ev:filnam.ex or a scalar string 
variable. Variables must be DIMen
!lional in a separate statement. 

PRINT list Used to output data to the terminal. 
The list can contain expressions or 
text strings. 

\. 



?~~~~ t@~t Used to print a message or a string 
Of characters. 

?~:~ j@~p%@§§ion, li$t Outputs to a particular output de
vice, as specified in an OPEN state
ment. 

P~J~~ j:'jM3 (~) Used to space to the specified 
column unless the column is already 
passed in which case TAB is ignored. 

~~~JZ~ Causes the random number generator 
to calculate different random num
bers every time the program is run. 

nAP -vg%ii#b1.@ l.i$t Used to assign the values listed in 
a DATA statement to the specified 
v{f1ri {f1bles • 

Used to insert explanatory comments 
into a BASIC program. 

Used to reset data block pointer so 
the same data can be used again. 

Used to return program control to 
the statement following the last 
C;OSUB statement. 

Used at the logical end of the pro
gram to terminate execution. 

\ 



A,4 EDUCOMP BASIC COMMAND SUMMARY 

COMMAND 

CATALOG 

COMPILE 

DELETE nl,n2-n3,n4 

EDIT line number 

EXPLANATION 

Returns the user's file directory. 
Unless another device is specified 
following the term CAT or CATALOG, 
the 'DSK' is the assumed device. 

Allows the user to store a compiled 
version of his BASIC program. The " 
file is stored with the current name 
and the extension .BC. Or, a new 
file name can be indicated and the 
extension .BC will still be appended. 

Removes line numbers nl and n4, as 
well as lines n2 through n3 inclu
sive, from the program currently in 
memory. 

After EDIT followed by a line number 
and RETURN is typed, EDUBASIC waits 
until the search character is typed 
(but not printed). The specified 
line is then listed until the first 
occurrence of the search character. 

EXECUTE dev:filnam.ex,line number 

LIST dev:nl,n2-n3 

NLIST dev:nl,n2-n3 

LISTNH dev:nl,n2-n3 

MARGIN line number 

) 

Runs the specified program. Compiled 
or .BC programs are tried first. 

Prints out the current program on the 
device specified (console assumed). 
Prints out the specified program line(s) 
if given. 

Same as LIST but without line numbers. 

Lists the lines associated with the 
specified numbers but does not print 
a header line. 

Changes the maximum line length on 
all output devices. 



CoMMAND EXPLANATION 

NEW rilnam Does a SCRatch and sets the current 
program name to the one specified. 

OLD dev:filnam.ex line number,step 
Does a SCRatch and inputs the pro
gram from the specified file. Line 
numbers are added (if specified) 
to ASCII files not already containing 
them. 

OVERLAY dev:filnam.ex,increment 
Works like OLD but does not scratch. 

PUNCH nl,n2-n3 Punches the current program on the 
fastest available papertape punch. 

NPUNCH nl,n2-n3 Same as PUNCH but no line numbers 
are punched. 

RENAME filnam Changes the current program name to 
the one specified. 

REPLACE dev:filnam.ex nl,n2-n3 
Replaces the specified file with the 
current program. Parts of the pro
gram may be replaced by specifying 
particular line numbers. 

NREPLACE dev:filnam.ex nl,n2-n3 
Same as REPLACE but line numbers are 
not saved. 

RESEQUENCE line number, increment 
Renumber the lines in a program and 
changes appropriate GOTO, IF-THEN, etc. 
If line number is not specified, starts 
at 100 with increments of 10. 

RUN Executes the program in memory. 

RONNE Executes the program in memory but does 
not print a header line. 

SAVE dev:filnam.ex nl,n2-n3 
Outputs the program in memory as the 
specified file. 

NSAVE dev:filnam.ex nl,n2-n3 
Like SAVE but does not save line numbers. 

SCRatch Erases the entire storage area. 

) 



COMMAND 

SEARCH nl·n2/stringA/ 

EXPLANATION 

Lists all lines in the range nl to 
n2 that contain string A anywhere 
in the line. 

SEARCH nl-n2/stringA/stringB/LIST 

TAPE line number,increment 

String B replaces all occurrences of 
string A and these lines are listed 
if LIST is specified. 

Like OVERLAY, but the file comes from 
the fastest available papertape reader. 

SPECIAL CONTROL CHJ\RACTER SUMMARY 

CONTROL CHARACTER 

CTRL/C 

CTRL/P 

CTRL/O 

CTRL/U 

CTRL/Z 

LINE FEED Key 

RETURN Key 

RUBOUT Key 

TAB or CTRL/I 

) 

EXPLANATION 

Causes the system to return to the 
os/a monitor. 

Returns BASIC to the READY mode. 

Used as a switch to suppress/enable 
output of a program on the user ter
minal. Echoes as to. 

Deletes the current typed line, echoes 
as tu and performs a carriage return/ 
line feed. 

Used as an end-of-file character. 

Used to list the current line. 

Enters a typed line to the system, re
sults in a carriage return/line feed 
operation at the user terminal. 

Deletes the last character typed on 
that physical line. Erased characters 
are shown on the teleprinter between 
back slashes. 

Performs a tabulation to the next of 
nine tab stops (eight spaces apart) 
which form the terminal printing line. 



A.6 SUMMARY OF FUNCTIONS 

Under the Function column, the function is shown as: 

Y=function 

where the character '$' is appended to Y if the value returned 
is a character string. 

Function 

Y=ABS (X) 
Y=ATN (X) 
Y=COS (X) 
Y=EXP(X) 
Y=INT(X) 

Y=LOG(X) 
Y=PI 
Y=RND(X) 
Y=SGN (X) 

Y=SIN(X) 
Y=SQR(X) 
Y=TAN (X) 

Y=POS (X) 

Y$=TAB(X) 

Y=ASCII (A$) 

. Y$=CHR$ (X) 

Y$=MID(A$,Nl,N2) 

Y=LEN(A$) 

) 

Explanation 

returns the absolute value of X. 
returns the arctangent of X in radians. 
returns the cosine of X in radians. 
returns the value of etx, where e=2.7l828. 
returns the greatest integer which is' 

less than or equal to X. 
returns the natural logarithm of X, log eX. 
has a constant value of 3.141593. 
returns a random number between ~ and 1. 
returns the sign function of X, a value 

of 1 preceded by the sign of X. 
returns the sine of X in radians. 
returns the square root of X. 
returns the tangent of X in radians. 

returns the current position of the print 
head for I/O channel X, ~ is the user's 
Teletype. 

moves print head to position X in the cur
rent print record, or is disregarded if 
the current position is beyond X. (The 
first position is counted as ~.) 

returns the ASCII value of the first char
acter in the string A$ • 

returns a character string having the 
ASCII value of X. Only one character 

.. '. is generated. 
returns a substring of the string A$ 

starting with the Nl and being N2 
characters long (the characters betw'3en 
and including the Nl to Nl+N2-1 characters). 

returns the number of characters in the 
string A$, incluQing trailing blanks. 

./ ' 



APPENDIX B 

ERROR MESSAGES 

The error messages appearing onthe following pages are 
designed to specifically to help the use pinpoint the 
'bug' in his program quickly. An arrow' (+) is used in 
many statement to point to the offending syntax and in 
most error messages the line number of the statement 
in error is given. 



B.1 

MESSAGE 

CAN'T 'IF' VIRTUAL CORE STRING 

CHARACTERS AFTER STATEMENT END 

COMPILER ERROR 

'ENO' NOT LAST AT L1NE 11, 

COMPILER ERRORS 

EXAMPLE 

1flfl OPEN "CORE" AS FILE 1 
. 11' DIM #1,A$=3', 
12' IF A$="ONE"THEN 
13' END 
RUNH 

PRINT "ONE" 

12f,Y IF A$="ONE"THEN PRINT"ONE" 
t 

1', INPUT LINE A$,B$ 
11' END 
RUNH 

10' INPUT LINE A$,B$ 
t 

1'11 DIM A$(3,2) 
11' END 
RUNH 

l~fl O!M A$(3t~) 
+ 

U8f1 PIUNT "'A .... 
ll~ I5:ND 
1.216 GO TO 198_ 
RUNa 

EXPLANATION 

Us~r cannot have a virtual core 
string in an 'IF' statement. 

Statement has unrecognized 
characters at the end of it. 

The user has used a legal 
statement in an illeqal 
manner .. 

'The 1-a~st ~tat.~~n.t l'ftu.'st b~ ~n 
'END' :slt-abe\'l\'enlt" 

(/ 



MESSAGE 

EXTRA OPERATOR 

EXTRA • (. 

EXTRA ')' 

FILE TOO LARGE 

'FOR' WITHOUT 'NEXT' AT LINE 1~~ 

EXAMPLE 

2~~ IF A==B THEN 3~~ 
3~~ END 
RUNH 

2~~ IF A==B THEN 3~~ 
t 

1~~ Y=( (A+B)/5 
11~ END 
RUNH 

1~~ Y= ( (A+B) /5 
t 

1~~ Y=(A+B»/5 
11~ END 
RUNH 

1~~ Y=(A+B»/5 
t 

1~~ OPEN "DTA1:HALT" AS 
11~ DIM #l,Q(l~~~~~~) 
12~ END 
RUNH 

11~ DIM #l,Q(l~~~~~~) 
t 

1~~ FOR I=l TO 5~ 
12~ END 
RUNH 

EXPLANATION 

The statement contains an 
extra operator. 

Line has one more left 
parenthesis than right 
parenthesis. 

Line has one more right 
parenthesis than left 
parenthesis. 

FILE 1 A file is dimensioned too 
large for any device. 

,/ 

A variable used as the index 
in a 'FOR" statement does 
not appear in a corresponding 
'NEXT' statement. 



MESSAGE 

ILLEGAL ASSIGNMENT 

ILLEGAL CONSTANT 

) 

ILLEGAL INTEGER 

ILLEGAL STRING VARIABLE 

ILLEGAL SUBSCRIPTING 

:rLLEGAL SYNTAX 

EXAMPLE 

l~~ Y=88888888888 
ll~ END 
RUNH 

l~~ Y=88888888888 
t 

l~~ DIM A$="3~" 
ll~ END 
RUNH 

l~~ DIM A$="3~" 
t 

l~~ Al$="PDP" 
ll~ END 
RUNH 

l~~ Al$="PDP" 
t 

l~~ PRINT A(S 
ll~ END 
RUNH 

l~~ PRINT A(S 
t 

l~~ A$=7 
ll~ END 
RUNH 

\ 

EXPLANATION 

The assignment made is not 
acceptable to BASIC 

A number inside the program 
cannot be longer than 10 
digits. A number that is 
input can be any length. 

A string's length must be 
an integer number. 

A string variable must be a 
single letter followed by a 
, $ , • 

A subscripted variable has 
been dimensioned or used 
incorrectly. 

A string variable has been 
used where a numeric variable 
should have been used. 



MESSAGE 

ILLEGAL USE OF FUNCTION 

( ILLEGAL VARIABLE 

INCONSISTENT SUBSCRIPTING 

MISPLACED , OR 

MISSING '=' 

MISSING , 

EXAMPLE 

l~~ Y = LOG l~ (X) 
ll~ END 
RUNH 

l~~ Y = LOG l~ (X) 
t 

l~~ PRINT FI 
ll~ END 
RUNH 

l~~ PRINT FI 
t 

l~~ DIM A$(l~) 
ll~ PRINT A$(l,l) 

2~~~ END 
RUNH 

ll~ PRINT A$(l,l) 
t 

l~~ A=5 
ll~ END 
RUNH 

l~~ A=5, 
t 

l~~ Y-5 
ll~ END 
RUNH 

l~~ Y-5 
t 

EXPLANATION 

A function must be followed 
by an open parenthesis, an 
argument and then a closed 
parenthesis. 

A variable must be one letter 
or one letter followed by a 
number. 

A string variable has been 
dimensioned as a one-dimen
sional variable and utilized 
as a two-dimensional variable. 

A comma or semicolon doesn't 
belong where it was placed. 

Statement requires an equal 
sign. 

The syntax requires a comma 
\n the designated position. 



MESSAGE 

MISSING OPERATOR 

MISSING I (I 

MISSING QUOTE 

MISSING VARIABLE 

MIXED MODE EXPRESSION 

EXAMPLE 

111 PRINT "TESTl""TEST2" 
211 END 
RUNH 

I' PRINT ITEST1"ITEST2" 
t 

1" DIM A$(4)=211 
II, A$=5 
12' END 
RUNH 

II' A$=5 
t 

1', PRINT II ABC 
II' END 
RUNH 

l'ft PRINT "ABC 
t 

I, PRINT TAB();X 
211 END 
RUNH 

111 PRINT TAB();X 
t 

1', Y="ABCD" 
II' END 
RUNH 

1" Y="ABCD" 
t 

EXPLANATION 

The statement is missing an 
arithmetic or relational 
operator, or a punctuation 
mark. 

Subscripted variable has been 
used as a non-subscripted 
variable. 

A string variable assignment 
statement must have the 
assigned value surrounded 
by quotes. 

The statement is missing a 
numeric variable or constant. 

A numeric variable was used 
where a string variable should 
be used. 

\ 



MESSAGE EXAMPLE 

'NEXT' WITHOUT 'FOR' AT LINE 11. 1" FOR I=l TO 5. 
11~ NEXT A 
12~ END 
. RUNH 

NO 'END' STATEMENT l~~ PRINT "ABC" 
RUNH 

NON-BASIC STATEMENT l~~ DEF FNA(X)=X+2 
ll~ END 

PROGRAM TOO LONG 

RUNH 

l~~ DEF FNA(X}=Xt2 
t 

'READ' WITHOUT 'DATA' ON LINE l~~ l~~ READ A 
2~~ END 
RUNH 

TOO MANY ARRAYS AT LINE 11~ l~~ DIM A(2~~~) 
11f1 END 
RUNH 

TOO MANY LITERALS 

TOO MUCH DATA AT LINE 31 

EXPLANATION 
. 

A variable used as the index 
in a 'NEXT' statement does 
not appear in a corresponding 
'FOR' statement • 

Program must have an 'END' 
statement. 

BASIC does not understand the 
statement. 

Program. is too long for BASIC 
to compile. 

The program contains one or 
more 'READ' statements and no 
,'DATA' statements. 

Not enough space in core for 
all of the subscrip.ted 
variables in the program. 

The program has too many 
literals for BASIC to handle. 

Program has too much data in 
its DATA statements for BASIC 
to handle. 

\ 



MESSAGE EXAMPLE 

UNDEFINED LINE NUMBER AT LINE l~~ l~~ GO TO l5~ 
ll~ END 
RUNH 

VARIABLE DIMENSIONED TWICE l~~ DIM A$=l5 
ll~ DIM A$=2~ 
l2~ END 
RUNH 

ll~ DIM A$=2~ 
t 

EXPLANATION 

Any statement which references 
a non-existent line (GOTO, 
GOSUB, ON-GOTO, ON-GOSUB, 
IF-THEN) • 

A variable must appear in 
only one dimension statement. 



B.2 

MESSAGE 

ARRAY OF WRONG SIZE IN LINE l~~ 

BAD FILE FOR CHAIN IN LINE l~ 

BAD INPUT IN LINE l~~ 

RUNTIME ERRORS 

EXAMPLE 

9~ OPEN "A" AS FILE 1 
l~~ DIM #l,A(l~~~) 

2~~~ END 
RUNH 

l~ CHAIN "CDR3.DA" 
2Y1 END 
RUNH 

lY1Y1 INPUT A 
llY1 END 
RUNH 
? l~P 

EXPLANATION 

A virtual file cannot be 
dimensioned larger than at 
the time it was created un
less the original is deleted. 

Only a BASIC program can be 
chained. 

Numeric variables may have 
only numbers as input. 

CAN'T OPEN OUTPUT FILE IN LINE l~~ lY1~ OPEN "CDR:" FOR OUTPUT AS FILE 1 
lll~ END 

A sequential access 
file cannot be opened 
because the device 
specified is full or 
there is a mistake in 
the 'OPEN' statement. 

RUNH 

CHANNEL NOT OPEN FOR INPUT IN LINE lY1~ 

lf1~ INPUT #l,A 
llY1 END 
RUNH 

CHANNEL NOT OPEN FOR OUTPUT IN LINE lY1~ 

lY1Y1 PRINT #l,A 
llY1 END 
RUNH 

No file or device has been 
opened under the specified 
channel number. 

No file or device has been 
opened under the specified 
channel number. 



MESSAGE 

CHANNEL OUT OF RANGE IN LINE l~~ 

DEVICE ERROR 

DEVICE FULL IN LINE 2~ 

DEVICE NOT AVAILABLE IN LINE l~~ 

DIVISION BY ZERO IN LINE 7~ 

END OF FILE IN LINE 2~ 

ERROR CLOSING FILE IN LINE l~~ 

EXAMPLE 

l~~ OPEN "EDU" AS FILE 5 
ll~ END 
RUNH 

l~ OPEN "AFILE" AS FILE 1 
2~ DIM #1,A(5~~~~) 

2~~ END 
RUNH 

l~~ OPEN "AAA:RISK" AS FILE 1 
ll~ END 
RUNH 

711 PRINT T/Y 
21111~ END 
RUNH 

5 DIM A$=1211 

EXPLANATION 

Files can only be opened 
under numbers 1-4. 

A device that the system has 
been configured for has been 
used in an illegal manner. 

Device specified doesn't 
have enough contiguous 
blocks to contain file. 

Any device for which the 
system is not configured 
cannot be accessed. 

Division by zero is an 
undefined operation. 

111 OPEN "CDR" FOR INPUT AS FILE 1 
211 INPUT LINE #1, A$ 

An input device or 
file has no more 
elements remaining. 

30 GO TO 2(1 
ll1~ END 
RUNH 

l~~ OPEN "K" FOR OUTPUT AS FILE 1 
llfi1 PRINT #l,A 
115 GOTO ll~ 
l2~ END 
RUNH 

A sequential access 
file cannot be closed 
because the specified 
device is full. 



MESSAGE 

ERROR READING FILE 

FILE ALREADY OPEN IN LINE 1~' 

FILE NOT FOUND IN LINE 1" 

FUNCTION ARG TOO BIG IN LINE 1~~ 

LINE NOT FOUND IN LINE 2~~ 

MID ERROR IN LINE 2~ 

NEGATIVE OR ZERO LOG IN LINE 1~' 

EXAMPLE EXPLANATION 

1" OPEN"READ"FOR INPUT AS FILE 1 
11g END 

Input from device or 
file contains an un
recognizable error. RUNH 

1~11 OPEN"LOAN"FOR OUTPUT AS FILE 1 
1115 A=l~ 

A file or device which 
the program attempts to 
open has previously been 
opened. 

11~ PRINT #l,A 
12~ GOTO.1~~ 
4ftlftl END 
RUNH 

Iftlftl CHAIN ftINFORTW,2" 
11.f.J END 
RUNH 

1f111 Y=2t1.f.J.f.J~~ 
11.f.J END 
RUNH 

2f1f1 CHAIN "PLOT",12 
2f1f1r1 END 
RUNH 

111 A$="ABCD" 
2~ B$=MID(A$,Sg,S) 
3g END 
RUNH 

1~11 Y=LOG(g) 
llg END 
RUNH 

File specified does not 
'exist. 

BASIC cannot manipulate the 
function with the specified 
arguments. 

There is no such line in the 
.program chained. 

A MID function must have a 
positive integer for its 
length specification, it must 
have at least one character 
to 'MID', and it must not 
'MID' past the dimension 
of the string. 

The LOG function requires 
a positive argument. 



MESSAGE 

NO CLOSING QUOTE IN LINE 1~' 

NOT A BINARY FILE IN LINE 1~' 

OUT OF DATA IN LINE 1" . 

OUT OF STORAGE IN LINE 5' 

RETURN WITHOUT GOSUB IN LINE 1" 

SQR OF NEGATIVE ARG IN LINE 1', 

STEP OF , IN LINE 1" 

EXAMPLE 

1'~ INPUT A$ 
11' END 
RUNH 
? "ABC CR. 

1'~ DIM #4,A$(l')=2' 
ll~ END 
RUNH 

l~~ READ A, B, C, D 
ll~ DATA 4,7,2 
l2~ END 
RUNH 

l'~ RETURN 
ll~ END 
RUNH 

l~~ Y=SQR (-'9) 
ll~ END 
RUNH 

l~~ FOR 1=1 TO l' STEP X 
2~~ NEXT I 
4"~ END 
RUNH 

EXPLANATION 

A string variable must have 
a closing quote if it has 

.an opening quote. 

A virtual file must be 
opened before it is 
dimensioned. 

A READ statement has no 
more data available to 
read. 

Program has run out of 
storage performing an 
operation. 

A RETURN statement must only 
be accessed after a GOSUB 
command has previously been 
executed. 

The SQR function requires 
non-negative argument. 

The step of a FOR-NEXT loop 
must be a non-zero number. 



MESSAGE EXAMPLE 

STOP AT LINE 15' 15' STOP 
2" END 
R~H 

STRING OVERFLOW IN LINE 11' 1~~ DIM A$=4 
11~ A$="1234s6" 
12~ END 

SUBSCRIPT OUT OF BOUNDS IN LINE ll~ 

RUNH 

1~~ DIM A(s) 
ll~ PRINT A(6) 
12~ END 
RUNH 

TAN OF PI/2 IN LINE 45 45 PRINT TAN(PI/2) 

UNDEFINED ERROR IN LINE 25 

ZERO TO ZERO POWER IN LINE l~ 

2~~fJ END 
RUNH 

l~ PRINT xtx 
2~~fJ END 
RUNH 

EXPLANATION 

Execution has been halted 
by BASIC at the line indi
cated. 

A string must not be set 
equal to a length greater 
than its demension state
ment. 

A subscript of a subscripted 
variable has exceeded its 
DIMension. 

The tangent of PI/2 does not 
exist. 

An error has occurred which 
'BASIC does not know how to 
handle. 

Zero to the zero power does 
not exist. 

, } 



B.3 

MESSAGE 

DEVICE ERROR 

DEVICE NOT AVAILABLE 

ERROR DELETING FILE n 

ERROR READING FILE 

filnam.ex ALREADY SAVED 

filnam.ex NOT FOUND 

ILLEGAL FILE NAME 

LINE NOT FOUND 

COMMAND ERRORS 

EXAMPLE 

SAV PTR: 

SAV PTT: 

UNSAVE COMP 

OLD PAYROL 

SAVE 

OLD COMP 

OLD A-5 

EDIT ll~ 

EXPLANATION 

If you try to use a device 
the system is configured for 
in an illegal manner, this 
error statement will result. 

System is not configured for 
the specified device. 

File n not found. 

An error has occurred in 
calling a previously saved 
program into core. 

The specified file already 
exists on the specified 

o device. 

File specified is not found 
on specified device. 

File name must be less than 
six characters, consisting of 
alphanumeric characters, and 
starting with a letter. 

When using the EDIT command, 
the line specified does not 
exist. 



MESSAGE EXAMPLE 

LINE NUMBERS MISSrNG ON filnam.ex OLD A.DA 

LINE TOO LONG 

NOT A FILE DEVICE 

NUMBER OUT OF RANGE 

PROGRAM TOO LONG TO RESEQUENCE 

SEQUENCE NUMBER OVERFLOW 

TEXT BUFFER IS FULL 

TOO FEW ARGS 

TOO MANY LINES 

WHAT?? 

UNSAVE PTP:AA 

l~~~~END 

RESEQUENCE 

l~~PRINT "A" 
ll~ PRINT "B" 
l2~ PRINT "c" 
l3~ PRINT "D" 
l4~ END 
RESEQUENCE l~~~,l~~~ 

OLD LCARDS.DA l~,l 

SEARCH 1~~-2~~/A 

OLD CARD.DA l~,l~ 

MISTNH 

EXPLANATION 

File called in is missing 
some or all line numbers. 

Line greater than 124 charac
ters. 

The specified device can't 
be used to save files. 

Line numbers must be in the 
range 1-4094. 

File in core contains too 
many characters for BASIC 
to resequence. 

Specified command needs more 
arguments than were given. 
When trying to resequence, a 
line number became greater 
than 4094. 

File is too big to fit into 
core or too large to be able 
to use the SEARCH command. 

Specified command needs more 
arguments than were given. 

User tried to type in or call 
in a file with more lines 
than is acceptable to BASIC. 

BASIC does not recognize the 
command. 



ABS function, 3-19, A-8 
Arithmetic operators, 2-7, A-l 
Array storage, 8-4 
Array variables, 3-15 

character string, 4-3 
default values, 3-17 
virtual core, 5-10, 8-1 
zero elements, 3-17, 8-5 
see also matrices 

ASCII 
DATA statement, 4-8, 6-2 
formatted I/O, 5-3 
table, 4-6 . 

ASCII function, 4-10 
Assignment, see LET 

BASIC 
conventions, 1-4 
history, 1-1 
language, 1-1 
start-up, 1-4 

Brackets, 1-5 
Buffer, 8-8 

Capital letters, 1-5 
CATALOG command, 7-19, A-5 
CHAIN statement, 5-14, A-2 
Channel numbers, see Internal 

file designators 
Characters, 2-4 
Character strings, 4-1 

constants, 4-2 
functions, 4-9, A-8 
output by PRINT, 4-1, 4-8 
relational operators, 4-5, 

A-l 
size, 4-4 
string input, 4-7 
string output, 4-9 
subscripted variables, 4-3 
variables, 4-;2 
virtual core arrays, 5-11, 

8-4 
CHR$ function, 4-10 
CLOSE statement, 5-9, 5-13, A-2 
Colon, 2-4 
Commands, 1-3, 1-5 

summary, A-5, see Chapter 7 
for specific commands 

INDEX 

Commas 
in DATA, 4-7 
in INPUT LINE, 6-3 
in PRINT, 6-4 
in PRINT-USING, 6-8 

Comments, 3-27 
DATA statement, 6-1 

Common statement 
similarity to, 8-2 

Compilation, 1-3 
Compiled files, 7-2, 7-13, 7-17 
COMPILE command, 7-17, A-5 
Concatenation, 4~10 
Conditional branch, 3-6 
Conditions, 3-6 

see also relational expressions 
Constants 

character string, 4-2 
numeric, 2-5 

Control characters 
summary, A-7 

CONTROL key, 1-6 
Control variable, 3-12, 3-15 
Conventions, manual, 1-4 
COS function, 3-19, A~8 
Creating a program, 7-1 
CRTL key, 1-6 
CTRL/C, 1-7, 7-24, A-7 
CTRL/G, 7-28 
CTRL/I, 7-25, A-7 
CTRL/L, 7-7 
CTRL/O, 7-25, A-7 
CTRL/P, 1-7, 7-24, A-7 
CTRL/U, 1-6, 7-7, 7-24, A-7 
CTRL/Z, 7-25, A-7 

Data files, see files, data 
Data pool, 3-3, 4-8, 6-1 
DATA statement, 3-3, 4-7, 6-1, A-2 

character strings in, 4-7, 6-1 
comments, 6-1 
data pool storage, 3-3, 4-8, 6-1 
placement in line, 4-8, 6-1 
simplest form, 3-4 

DELETE command, 7-9, A-5 
Device designator, see Internal file 

designator 
Devices, OS/8, 5-1 

x-l 



DIM statement, 3-17, 4-3, A-2 
placement on line, 3-18 
placement in program, 3-18 
virtual files, 5-10 . 

Disk files, 8-1, 8-4, 8-8 
Dollar sign ($), 2-4 

EDIT command, 7-6 
Editing programs, 7-6 
E format numbers, 2-5 
END statement, 3-26, A-2 
Error messages, Appendix B 
Example BASIC program, 2-2 
Exclamation mark (1), 2-4, 3-27, 

6-6 
EXECUTE command, 7-13, 7-18, 

A-5 
Execution, 1-4, 2-3 
EXP function, 3-19 
Exponential format output, 6-8 
Exponentiation, 2-7, 3-8 
Expressions, 2-4, 2-7, 3-6 

arithmetic, 2-4, 2-7 
relational, 2-8,3-6 

Extensions, file, 5-2, 7-2 

Filename format, 5-1 
Filename specification, 

complete, 5-1 
Files, data, 9-1 

calling into memory, 7-4 
formatted data, 5-3 
random access, 5-10 
see also virtual array files 

Files, DECtape, 8-1, 8-4 
Files, disk, 8-1, 8-4, 8-8 
File-structured devices, 5-4 
Formatted ASCII I/O, 5-3 
Formulas, see expressions 
FOR statement, 3-12, A-2 

nesting loops, 3-14 
placement on line, 3-15 

Functions 
mathematical, 3-8, 3-18 
print, 6-9 
string, 4-9 
summary, A-8 

GOSUB statement, 3-24, A-2 
GOTO statement, 3-5, A-2 

IF-THEN statement, 2-8, 3-6, A-2 
logical, 3-9 
placement online, 3-9 

Implicit dimensions 
numeric, 3-17 
string, 4-3 

Input 
character strings, 4-7 
see also READ, INPUT, and INPUT 

LINE 
INPUT LINE statement, 4-8, 6-3, A-3 
INPUT statement, 3-4, 5-4, 5-9, 6-2, 

A-3 
character string input, 4-8 
from data files, 5-4 
from non-terminal devices, 5-4, 

5-9, 6-2 
simplest form, 3-4, 6-3 

Internal file designators, 5-1, 5-4, 
5-6 

user terminal, 5-6 
virtual array, 5-7, 5-11 

Intrinsic functions, see functioning 
INT function, 3-19, A-8 
I/O, basic operations, 3-2 

complete discussion, Chapters 5 
and 6 

see also individual entries 

Kemeny, John, 1-1 
KILL statement, 5-14, A-3 
Kurtz, Thomas, 1-1 

LENGTH command, 7-19 
LEN function, 4-10, A-8 
LET statement, 3-1, A-3 

multiple variables, 3-2 
omitting LET, 3-3 
placement on line, 3-3 

Line, 1-5, 2-1, 7-23 
multiple statements on single, 2-3 
single statement on multiple, 2-3 

LINE FEED key, 1-7, A-7 
Line terminators, 4-8 
LIST command, 7-10, A-5 
LIS.TNH command, 7-10, A-5 
LOG function, 3-19 
Logical IF-THEN statement, 3-9 
Loops, 3-7, 3-10 

x-2 

characteristic parts, 3-11 
nested, 3-14 



Lower case type, 1-5 

Mapping, 8-1 
MARGIN command, A-8 
Mathematical functions, 3-18, 

A-8 
table, 3-19, A-8 

Mathematical operators, 2-7, 
A-l 

Matrices, 3-15 
implicit dimensions, 3-17 
virtual core, 5-10, 8-5 

Memory, conserving, see programs 
Message output 

by PRINT, 3-3 
MID function, 4-10, A-8 
Minus sign (-), 2-7, 3-8 
Multiple lines per statement, 

2-3 
Multiple statements per line, 

2-3 

Nesting 
loops, 3-14 
subroutines, 3-25 

NEXT statement, 3-12, A-3 
placement on line, 3-15 

NLIST command, 7-10, A-5 
NLISTNH command, 7-11 
None, assumed filename, 7-2 
NPUNCH command, 7-21, A-6 
NREPLACE command, 7-17, A-6 
NSAVE command, 7-16, A-6 
Null string, 4-3, 4-5 
Number format, output by PRINT 

statement, 3-3 
Numbers, 2-5 

E format, 2-6 
Number sign (#), 2-4, 6-7 

OLD command, 7-3, A-6 
ON-GOSUB statement, 3-28, A-3 
ON-GOTO statement, 3-28, A-3 
OPEN statement, 5-2, 8-8, A-3 

FOR INPUT, 5-3, 5-9 
FOR OUTPUT, 5-3, 5-8 
user terminal, 5-6 
virtual array file, 5-3, 5-12 

Operators 
mathematical, 2-4, 2-7 
relational, 2-8, 3-8 
summary, 5-1, 5-4, A-l 

OS/8, 1-4, 1-7, 4-5, 5-2, 7-1, 7-20, 
7-22 

Output 
character strings, 4-9 
see also PRINT 

OVERLAY command, 7-5, A-6 

Parentheses, 2-4, 2-7, 3-8 
PI, 3-19 
Plus sign (+), 4-10 
Pound sign (#), 2-4, 2-9, 6-7 
Precedence rules 

complete, 3-8 
mathematical, 2-7, 2-8 

PRINT functions, 6-9 
PRINT statement, 3-3, 6-4, A-3 

character string format, 4-1, 4-9 
comma, 6-4 
message output, 3-3 
number format, 6-5 
output rules, 6-5 
performing calculations, 3-3 
semicolon, 6-5 
simplest form, 3-3, 6-4 
to data files, 5-4, 5-8, 6-6 
to non-terminal devices, 5-4, 5-8, 

6-6 
without arguments, 3-3, 6-4 

PRINT-USING statement, 6-6 
exclamation point, 6-6 
exponential format, 6-8 
numeric field, 6-7 
punctuation, 6-8 
string field, 6-7 

Print zones, 6-4 
Priorities, see precedence rules 
Programs, 1-5 

creating, 7-1 
conserving memory space, 2-4, 3-18 
line, 1-5 
running, 1-3, 7-12 

PUNCH command, 7-21, A-6 

Question mark (?), printed by INPUT, 
3-4, 6-3 

Quote ("), 2-4, 4-7, 6~l, 6-3 

Random access files, see virtual 
array files 

RANDOM statement, 3-22, A-4 
RAN'DOMIZE statement, 3-22, A-4 

x-3 



READ s·tatement, 3-3, 4-7, 6-1, 
A-4 

placement in line, 4-8, 6-1 
simplest form, 3-3 
string input, 4-7 

Relational 
expressions, 2-8, 3-6, 4-5, 

A-l 
operators, 2-8, 3-8, A-l 
operators with character 

strings, 4-5, A-l 
REMARK statement, 3-27, A~4 
RENAME command, 7-17, A-6 
REPLACE command, 7-17, A-6 
RESEQUENCE command, 7-8, A-6 
RETURN key, 1-6, 4-9, 6-4, 7-22 
RETURN statement, 6-2, A-4 
RND function, 3-19, 3-21, A-8 
RUBOUT key, 1-6, 7-6, 7-23· 
RUN command, 7-13, A-6 
RUNNH command, 7-13, A-6 
Running BASIC, 1-3 

Sample BASIC program, 2-2 
SAVE command, 7-14 
Scientific notation, 2-6 
SCRATCH command, A-6 
SEARCH command, 7-11, A-7 
Semicolon (i) 

in PRINT, 6-4 
in PRINT-USING, 6-8 

SGN function, 3-19, A-8 
SIN function, 3-19, A-8 
Single statement on multiple 

lines, 2-3 
Space, conservation of, see· 

programs 
Spaces, 2-4, 4-7, 4-9 
Square brackets ([]), 1-5 
Statements 

elementary, 3-1 
multiple on single line, 2-3 
single on multiple lines, 2-3 
summary, A-2 

STEP expression, 3-12, A-2 
STOP statement, 3-26, A-4 
String, see character string 
Subroutines, 3-23 

GOSUB, 3-25 
nesting, 3-25 
ON-GOSUB, 3-28 

Subscripts, 3-15 
character string variables, 4-3 
default values, 3-17, 4-3 
zero elements, 3-17, 4-3 

Syntax, 1-4, 2-1 

Tabs, 7-25 
TAN function, 3-19, A-8 
TAPE command, 7-20, A-7 
Tapes, paper 

punching, 7-20 
reading, 7-20 

Terminal input, see INPUT and 
INPUT LINE 

Terminals, 1-5, 5-1, 5-6 

Unary minus, 2-7, 3-8 
Unconditional branch, 3-5 
Up-arrow (t), 6-8, 8-1 

Variables 
character string, 4-2, A-l 
initial value, 2~7 
numeric, 2-5, A-l 
subscripted, 3-15, 3-17, 4-3 
subscripted and unsubscripted 

in same program, .3.-16, 4-2 
summary, A-l 

Virtual array files, 5-10 
example, 5-12 
opening, 5-12 
see also Chapter 8 
Virtual data storage, see 

virtual array files 

Zero, assumed value, 2~6, 3-18 
Zeroth element 

numeric, 3-15, 3-17 
string, 4-3 

x-4 


