
DIGITAL -7-2-S 

OIOIT ...... I!:QUIPMENT CORPOR",TION • M ... VN ... "'O, ""' ... S .... C .... USETTS 



PDP-7 FORTRAN II 

PROGRAMMING MANUAL 

DIGITAL -7-2-S 

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS 



Copyright 1966 by Digital Equipment Corporation 

ii 



Chapter 

2 

3 

CONTENTS 

SECTION 1 

PDP-7 FORTRAN II 

INTRODUCTION TO THE FORTRAN II LANGUAGE ..........•..•..•.••.•. 

Introduction ....•.•••••••..•.•••.•...••.••••.......••.•...•..•.••. 

FORTRAN II Language ••••.••.•.•...•.•.•..•....•.••.•.•..•.•...••• 1 

Preparing the FORTRAN Program ••.•.•.••.••.•.••...••..••..•.•• 2 

Required Statements •••.••••.•..•.•..•..•.••...•..•.••.•••..•.. 4 

FORTRAN II Words.. • • • . • • • • . • . • • . • . . • . • • . . . . • . • . . • . • . . • • . • . • . 4 

ARITHMETIC AND DATA-SPECIFICATION STATEMENTS .•..•..•.••.•.....• 

Arithmetic Expressions ••.•..•.•.•.•...•.••.•.•..•.•..•.......•••... 

9 

9 

Evaluation of an Expression...... . .•. .••. .. •• .• .• .• . .• ..• • . .•. .• 11 

Use of Parantheses • • . . • • . . . . • . . . . . . . • . . • • . . . . . . . . . • . . . . • • . • • • . • 11 

The Replacement (Equals) Sign.................................. 12 

Internal Arithmetic Statement.. .• .•• .• .•• .. . .. . •. . . .• . .• . •• .•.•. 12 

Mode of Computation .•....••.•.••..•••.•....•........•....••.• 13 

Data-Specification Statements...................................... 14 

Dimension Statements .....•...•.•.•..•.•....•••.....•....•..•.• 14 

Floating-Point Storage Specifications .•.•.••.•............•..•.•. 15 

PROGRAM CONTROL ••••.........•.•..•......•.•.....•..•.•..•••..... 17 

Branches and Loops •......•.••.•....••.••••.•.•..•....•..•.••••••.. 1 7 

Unconditional GOTO Statements. • • . . . . . • • . • • . • . . . . • . • • . . . • • . • . . 17 

DO Loops.... ...••. ..••.••. .. .. .• .. . .. ...... .• ..... ..•.. ... .. 19 

The CONTINUE Statement .•.....•••.•....••.•.••.•....•...••.. 22 

Computed GOTO .••...•...••.•..•.••...•.......•....•.•..•.•• 22 

Assi gned GOTO .•..••.•..•......•..•..•.••......•.•....•...•. 23 

Program Termination ...••••...••........•.....•....•.......•....•.• 23 

The STOP Statement. • • . . . . . . • . . . . . • . . • . • . . . . • . . . . . . . . . . . . . . . . . 23 

The PAUSE Statement.. .. . . . . .• . . . . . . . ... . •. .. .. . .. . . .. . ... .. . . 24 

iii 



Chapter 

4 

5 

CONTENTS 0 (continued) 

INPUT/OUTPUT STATEMENTS 

Page 

25 

Input/Output Assignments •.••..•...••.•••••. 000.00" 0 0 0 0 0 0 o •• 00.0.00 25 

The I/O Data List o. 00 •• 0 •• 0 0 0 • 0 000 • 0 0 0 0 • 000 000 0 0 0 .' • 000 00 0 0 •• 0 • 0 •• 0 

I/O Specification Statements 000 0 ••• 0 • 0 000. ,.0 •• 0 ••• " • O •• 0 0 •••••• 000. 28 

Data Fie Ids .........................•.......• 41 • • • • • • • • • • • • • • • • 28 

Data Fie Id Formats • 0 O •• 0 0 0 • 0 ••• 0 •• 00 0 0 •• 0 0 • 0 ... 0 0 000 000 • 0 0 0 0 • 0 0 28 

The Format Statement 0" 0 •••• 0 • 0 0 •••••• 0 •• 0 •• 0 " 0 •••••• 0 ••••• " • • 29 

Format Speci fi cattons ••• 0 0 0 • 0 • 0 • 000 .0 0 0 0 0 • 0 0 0 0 " 0
0

" 0 0 0 •• 0 00 ••••• 0 30 

Input/Output Devices ..• 00.00.00000.000000 .. 0 ••• 00." 0 0.00000 •• 0 •• 000 35 

Data Organ izati on . 0 0 0 0 0 •• 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 35 

I/O Operations with Paper Tape and Keyboard 000".00 0 •• 0 0 0 0 0 0 0 0 0 0 38 

I/o Operations with Magnetic Tape • 0 0 0 0 0 0 0 .0 0 0 " 0 0 0 0 0 0 •• 0 00 0 0 00. 39 

I/O Operation with DECtape ." 0 0 00 •• 0 0 •••• 0 00 • " 0 000 0 0 00 0 0 000 0 0 0 41 

SUBPROGRAMS: FUNCTIONS AND SUBROUTINES. 0 0 ••• " 0 • 0 • 0 0 •• 0.0 •• 00. 

Functi ons .•..•..•.••.•.•••..••••••••••••••.••.•. 41 •••••••••••••••• 

43 

43 

The FUNCTION Definition Statement •. 0000.00 ••• ' 0 0 0 •• 00 •• 000000. 43 

RETURN Statements 0000 •• 0' ••• 0 •••••• 000 ••• 0 0 • " 0 ••••• 0 ••• 0 • 0 •• 0 44 

Use of Functions .•...•........•....•.•..•..•. 41 • • • • • • • • • • • • • • • • 44 

Library Functions. 0 • 0 00 0 0 • 0 00 000 0 00 0 0 •• 000 00 .0.' .00 0 0 0 .00 0 0 0 0 0 0 0 45 

S ubrou ti nes .•••••••..••.•••••.••••••••••.••••.•• 41 • • • • • • • • • • • • • • • • 46 

The CALL Statement . 0 0 0 0 0 • 0 0 o •• 00 • 000 0 0 0 0 0 0 ••• ' 0 0 0 0 • 0 •• 0 0 •• o. 0 0 46 

Common Storage 0 0 00 • 0 0 00 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 .0 •• 0 .' 0 • 0 •• 0 000 000 0 0 0 • 47 

Array Names Used in Subroutines 0.000000 0 00' o. 0" o. 0 000 00 0 0 0 0 0 0 • 0 48 

Machine Language Coding in a FORTRAN Context o. ~ 0 .. 0 • 0 00.000000 00 o. 49 

Handling of S Coding ••••.•• 0 0 0.' 0.0 ••••••••• 0.' 0 ••••••• 0 ••••• 00 49 

Compi ler Generated Coding 00 o. 000 0 0 0 o. 0 ••• 0 ••• ' 0 00 0 0 • 0 0 0 00. • • • • 50 

Subprogram Linking •. 0 •• 0 •••• 0 ••• 0 000 O. 0 •• 0 0 .0" ••• 0 0 • 0 • 0 ••• 0 0 0 • 52 

Construction of Dimensioned Variables ..• 0. 0 •••• " •••• 0 ••••••• 0 • 0 • 57 

Allocation of Array Storage and the Subscript Calculator 0 .00 0 0 • • • • • • 57 

I/O Statements .0 •• 0 •••• 0 • 0 ••• 0 ••• 000 •• 0 0 0 0 ••• ' 0 0 0 0 •• 0 • 0 •••• 0 • 0 58 

iv 



Chapter 

6 

7 

8 

Appendix 

2 

3 

Figure 

1 

2 

3 

CONTENTS (continued) 

SECTION 2 

OPERATING PROCEDURES, DIAGNOSTICS, 
AND ERROR MESSAGES 

OPERATING PROCEDURES •......•••••.•.•••........•....•........•.... 

Page 

61 

Procedure for Using FORTRAN with a PDP-7 Paper Tape System ..•....... 61 

DIAGNOSTICS .••.•.••.••.•....•.•.....•......•..•.•...••..........•. 67 

ERROR MESSAGES (FORTRAN ASSEMBLER) .••.•.•.•.............•....•.•. 71 

CHARACTER CODE EQUiVALENCES..................................... 73 

USE OF EXTENDED MEMORY .••.••.•.•..•••..•..•...••.•..........•••. 77 

FORTRAN SUMMARY DESCRIPTION .................................... . 79 

Character Set (ASCII) . . . • • . . • . . • . • . . • . • . • • . . . . . . . . . • . . . . . . . . . . . . . . . 79 

Punched Paper Tape Conventions .•...••.................•..•....•••. 79 

Lega I Elements in Fie Id One ..•.•....•.•..•.•...•...••.....•..•. 79 

Fie Id Two ••••••..•••..•.••.•.....••••.•.••.•.•..•..•.••.•.•.• 79 

Number Representation. . • . • • . • . • . . • • • • . • . . • . • • • • • • • . . . . . . • . . . . • • . . . 79 

Library Functi ons . • . • . • • . • . . • . • • • • . • • • . . • • . • . • • . • . • • . • . . • • • . . . . • . . . 80 

FOR TRAN Statements ..••.••....•..•....•.•....•.....•.•....•....•. 80 

Arithmeti c Statements (V = E) .•.••.•••.••..•.••................. 80 

Control Statements .••••..•..•.••.•••••.••...•..•••..•......... 81 

ILLUSTRATIONS 

A FORTRAN Program .••..•.................•......•..•................ 

Program Section with Comments ..•...................................... 

Example of the Continuation Character .•.........•....................... 

v 

2 

3 

3 



Figure 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Table 

2 

3 

4 

5 

ILLUSTRATIONS (continued) 

Example of a FORTRAN Program ••••.•.••.••.•.••••.••••..••...••••••••••• 

Number Representation, Floating Point .•••••••.•..••••••..••••••••.•••.••• 

Example of Subscripts •••.••.•••..•.•••.••••••.••••••••..•.••••.••••.•••• 

Arithmetic Statement 

Examples of Ari thmeti c Expressions •••••••.•••.•••••••••...•.••••.••.•.•••• 

Schematic Representation of Program Branches ••••••.•.•••..•••••.•••••••••• 

Integer Summation ..••......•.......•.......••.••••.•. 4' •••••••••••••••• 

Use of IF Statement in Integer Summation Problem •••••••.•. , ••.•.••.•.•..••. 

Fibonacci Series ..•.......•.•....•..•........•••.••.. fl' ••••••••••••••• 

Fibonacci Series Calculation Programmed as a DO Loop •••.. ' ••.••..•.••••••• 

Initialization of Array Storage •••••••.••••.•••••••.••••. ' •••••••••.••••.• 

DO Loops .•..•.•...•....•......•.•.•...•.•...••..•.• 41 •••••••••••••••• 

Program Branching in DO Loops .••.•..••.••••••.•••••••..•••••.•••••.•.•• 

I/O Statement .•••••..••••••.••••••••••••••••••••.••• 4' •••••••••••••••• 

FORMA T Statements .................................. 41 •••••••••••••••• 

Function Subprogram ••.•.••.•.•..•....•..•..•.••••••.• 41 •••••••••••••••• 

Example of Factorial Calculator •••••••••••.•••••••.••••. ' •••••••.•••••••. 

Matrix Multiplication Subroutine •••••.•.••••••••••••••• " •••••••••••••••. 

TABLES 

Summary of Format Specification Letters ••••••••••••••••• " •.••.••••••.•••• 

Definition of a Physical Record for I/O Devices .••••••••• " .•.•.••.••.••.•• 

I nput Format ••.•.•••..•.•.•••.•.•••••••. ' .............................. . 

Output Format .••....•••.•••••.•.••••.••.••.•..•.•••• 41 •••••••••••••••• 

Core Representations of the ASCII Characters, A and H Formats .•.•..••••.•• 

vi 

Page 

4 

6 

8 

9 

10 

17 

18 

18 

19 

20 

20 

21 

21 

25 

29 

44 

47 

48 

28 

35 

36 

38 

73 



SECTION 1 

PDP-7 FORTRAN II 





CHAPTER 1 

INTRODUCTION TO THE FORTRAN II LANGUAGE 

I NTRODUCTI ON 

FORTRAN II, like all compilers, relieves the programmer from exercising a detailed knowledge of the 

computer language. It is problem oriented and thus accepts input closely related to the problem and con

verts this input into an executable machine language program. For scientists and engineers, the PDP-7 

FORTRAN II system provides, in easi Iy understood form, the means for writing PDP-7 FORTRAN II programs. 

The compiler accepts input in the form of statements which resemble mathematical formulas, and compiles 

the sequences of instructions needed to perform the procedures specified. Using this system, the program

mer is able to concentrate on the problem rather than on detai led computer codes. 

The PDP-7 FORTRAN II compi ler can compi Ie and run FORTRAN II programs written for other computers 

provided that reasonable restrictions (such as sufficient memory capacity, use of acceptable terms and 

expressions, and availabi lity of required peripheral equipment) are met. Included in the PDP-7 FOR

TRAN II system is a compiler, assembler, operating system, and subroutine library. Each of these sub

sections is described in later chapters. This manual is intended as a reference manual and assumes that 

the reader is familiar with the general principles of FORTRAN II programming. 

FORTRAN II LANGUAGE 

PDP-7 FORTRAN II is composed of symbols which combine to form words or are used as punctuation, and 

grouped into statements. These statements may be classified as follows: 

1. Arithmetic Statements resemble algebraic formulas. They specify the mathe

mati ca I operati ons to be performed. 

2. Program Control Statements direct the sequence of operations of the program. 

3. Specification Statements allocate data storage, determine variable and data 

types, and specify input/output formats. 

4. Input/Output Statements control the transfer of information into and out of 

the computer. 



The rules of FORTRAN are somewhat stylized to permit ease in interpretation by the computer, as shown 

in Figure 1 • 

FACTORIAL PROGRAM 
C TH IS PROGRAM CALCULATES IX FACTORIAL FOR GIVE N IX 
5 VVRITE 2, 100 
10 READ 1, 200, IX 

IFACT = IY = 1 
IF (IX) 5,32,30 

30 IF (lX-IY) 41, 32, 33 
32 WRITE 2, 300, IX, IFACT 

GO TO 10 
33 IFACT = IFACT * (lY = IY + 1) 

GO TO 30 
41 PAUSE 7777 

GO TO 5 
100 FORMAT (/30H PLEASE TYPE A POSITIVE NUMBER/) 
200 FORMAT (14) 
300 FORMAT (/14, 13H FACTORIAL IS, 17/) 

, END 

Figure 1 A FORTRAN Program 

Symbols which are meaningful to FORTRAN include letters, numbers, and v(lrious special characters. 

The complete set is listed in Appendix 3 . Since FORTRAN ignores spaces, t'hey may be used freely (ex

cept for two restrictions which wi II be noted in the text) to make a program Imore readable. 

Preparing the FORTRAN Program 

Each line of a FORTRAN program contains two fields as shown in Figure 2: the first is an identification 

field; the second, the statement proper. 

The Identification Field - This field extends from the left-hand margin to the first tabulation, and may be 

left blank. If not, it may contain in the leftmost position one of the following types of identification: 

1. The first' digit of a statement number, which may be any integer from 1 to 99999, 

inc lusive, identi fying the statement on that I ine for reference by other parts of the 

program. Statement numbers are used for program control or to assi st the programmer 

in identifying segments of his program. 

2. The letter C which identifies the remainder of the line as a comment. Although 

a FORTRAN program, using English words and mathematical symbols, can be read 

and understood more easily than a symbolic language program, comments throughout 

2 



the program explain the procedures being used. Such comments, identified by a 

C in the first position of the identification field, are not interpreted by the com

piler and have no effect on the executable program. Figure 2 is a section of a 

program wi th comments. 

C CALCULATE PERCEN"):AGE OF CORRECT RESPONSES 
C PERCENTAGE = -1 IF THERE ARE NO ITEMS IN CATEGORY 

DO 47 I = 1, 57 
DO 48 J = 1, 6 
IF (ITEMS (I, J)) 46, 46, 49 

46 PERCEN (I, J) = -1.0 

Figure 2 Program Section with Comments 

3. The letter S, which identifies the remainder of the line as symbolic machine 

instructions. 

4. The continuation character ($), which identifies the statement as a continuation of 

the preceding statement. Frequently a statement may be too long to fit on one line 

(this is especially true of format statements). If the character ($) begins the identi

fication field of a line, the statement field of that line is treated as a continuation 

of a statement on the line above. A statement may be continued on as many lines as 

necessary to complete it, but the maximum number of characters in the statement may 

not exceed 300 (approximately 4-1/2 lines). Figure 3 is an example of the continua

tion character. 

3 X=X+(ARG1+2.* ARG2+2. *ARG3+ 
$ ARG4)/6 

Figure 3 Example of the Continuation Character 

The Statement Field - This field begins immediately after the first tabulation and extends through the next 

carriage return. Thus, no more than one statement can be written on one line, but a single statement can 

extend over one line using the continuation character. (See above.) 

3 



Required Statements 

Figure 4 is an example of a FORTRAN program, consisting of the title, the body of the program, and the 

END statement. 

SUMMATION OF FIRST 50 INTEGERS 
C SET ITOTAL = 0 BEFORE SUMMING 

ITOTAL == 0 
DO 3 I = 1, 50 

3 ITOTAL == ITOTAL +1 
END 

Figure 4 Example of a FORTRAN Program 

The first line of the program is the title, which may be anything the programmer wishes to write to identify 

his program. The title is not incorporated into the final executable program. Note that although a title 

is necessary, it need not be preceded by a C. 

The body of the program is a series of statements, each of which specifies a sequence of mathematical 

operations, controls the flow of the program, or performs other tasks related j"O the proper working of the 

program. 

The END statement is a required statement and must be the last statement of every FORTRAN program. Its 

function is to indicate to the compiler that nothing more connected with the preceding program is to 

follow. 

FORTRAN II Words 

Words fall into three categories: numbers, variables, and commands. Numbers and variables are deter

mined by the programmer and dealt with here, and commands are discussed in succeeding chapters. 

Number Representati on 

In mathematics, there are many ways to categorize numbers. They may be positive or negative, rational 

Qr imaginary, whole numbers or fractions. In PDP-7 FORTRAN II, the treatment of numbers is separated 

into integers and real numbers (single decimals or numbers in decimal exponent form), distinguished as 

follows: 

Integers are constants which are written without a decimal point. Typical integers are: 9, 17, -8192, 

131071. The number 131071 (2
17 

-1) is the largest magnitude that can be expressed as a FORTRAN in

teger. Fractional quantities and numbers larger than ±131071 require real numbers. 

4 



Rea I numbers* have two forms. They are simple decima Is such as: 0.0025, .4, - 57., 2.71828; or they 

are numbers in decimal exponent form, a number multiplied by a power of 10. Examples: 

Mathematical Form 

6.023 x 10
23 

- 1 .66 x 1 0-16 

72 x 1012 

FORTRAN Form 

6.023E23 

-1.66E-16 

72E12 

In general, a real number in decimal exponent form i"s expressed as ±nE±K where n may be an integer or 

simple decimal, and K is an integer exponent from 0 to 99, inclusive. 

Storage Modes - Another difference between PDP-7 FORTRAN II integers and real numbers is the manner 

in which each is represented in core memory. 

A FORTRAN integer is stored as a binary number in one 18-bit computer word. This representation, shown 

schematically in Figure 5a. is called fixed point, because the decimal point is always considered to be 

to the right of the rightmost digit. Negative numbers are stored as the l's complement of their magnitude, 

the leftmost bit being the sign bit. 

A FORTRAN real number is stored as a binary number in floating-point representation. In this form, the 

number consists of two parts: an exponent and a mantissa. The mantissa is a decimal fraction with the 

decimal point assumed to be to the left of the leftmostdigit. The mantissa is always normalized; that is, 

it is stored with leading O's eliminated in its binary form, so that the high order bit is always 1. The ex

ponent as stored represents the power of 2 by which the mantissa is multiplied to obtain the value of the 

number for use in computation. 

There are two versions of the floating-point representation: normal, or three-word, mode and two-word 

mode. They differ in the number of words of core storage required, and, hence, in precision of the number. 

The normal mode requires three 18-bit words of memory for each number. The exponent, a signed 17-bit 

integer (2's complement if negative), is stored in the first word. The mantissa is a 35-bit number stored 

in the second and third words. The sign of the mantissa is kept in the high-order bit of the second word. 

A negative mantissa involves a change of sign. Figure 5b. is a schematic representation of a three-word 

floating-point number. 

*This use of the term real should not be confused with the mathematical usage; in PDP-7 FORTRAN II 
real applies only in the limited sense described above. 

5 



The second floating-point mode requires only two words of memory and can be used where space is at a 

premium and precision can be sacrificed. The exponent and its sign occupy the first nine bits of the first 

word; the mantissa occupies the rest of that word and all of the second. The sign of the mantissa is in the 

high-order bit of the second word. A negative mantissa involves a change of si gn. Figure 5c. is a sche

matic representation of a two-word floating-·point number. 

Sign 
+ 
I I Magnitude Complement of Mag. If Bi t 0 is 1 I 
0 1 17 

a. FORTRAN Integer 

Sign 

+ 
1 I ! Exponent I 

0 1 

(2', comPlemett if negative) 

17 

I 
f I 2 I Mantissa 
I 

3 I Mantissa I 
0 1 17 

b. Normal Floating Point 

Sign 
+ 

[ 
f I 

I 1 , Exponent I Mantissa I 
I I 

0 1 ~ 89 17 

201 = +1 
200 = 0 
177 = -1 

2 I ! 
Mantissa I 

0 1 Floating Point, 2-Word Form 
17 

c. 

Figure 5 Number Representation, Floating Point 

6 



Variable Representation 

The term "variable,1I as used in FORTRAN, means a quantity which may assume different values during 

different executions of a program or at different stages of a program1s execution, hence, a variable name 

is a symbolic representation of this quantity. A variable name is composed of one or more characters 

according to three rules: 

1. The only characters used in a variable name are A through Z and 0 through 9. 

2. The first character must be alphabetic. 

3. Only the first six characters of any variable name are meaningful; all characters 

after the sixth are ignored by the compi ler. 

Some examples of acceptable variables names are K, P51, ROB ROY, and EPSILON. The name ROB ROY 

represents one variable, not two, because blank spaces are ignored by FORTRAN. Thus, ROB ROY, 

ROBROY, or even ROBR OY are identical names and reference the same variable. 

The compiler interprets the name EPSILON as EPSILO, since only the first six characters are meaningful. 

Care is necessary in selecting variable names. For example, the two names, GEORGEl and GEORGE 2 

are considered identical because of the six-character restriction. 

Some incorrect variable names are 9S0RT (first character not alphabetic)and GO#5 (illegal character 

included). 

Since variables represent numeric quantities, the type of representation must be specified. In normal 

programming, variable types are specified using the standard FORTRAN conventions, as follows: 

Integer variable names must begin with one of the letters I, J, K, L, M, or N. 

Real variables are designated by names beginning with any other letter. 

Typical integer variable names are INDEX, KDATA, M359, L1ST8. Typical real variable names are 

XZERO , COUNT, FICA. 

Subscripted Variables - An array is a grouping of data. A column of figures, the elements of a vector, 

a list, and a matrix are all arrays. In mathematics, an element of an array is referenced by a symbol 

denoting the array and subscripts identifying the position of the element. For example, the sixth element 

7 



in a vector v is designated v 6. Likewise, the fourth element in the tenth column of a matrix b is identified 

as b
4 

10· In general, an element of an n-dimensional array m is designated by m. .• • 
, 11'1 2'1 3····,ln • 

In'PDP-7 FORTRAN II, array elements are similarly identified. The array is provided with a name, sub

ject to the same rules as the names of variables. The name determines the mc)de, integer or real, of all 

the elements in the array. The subscripts which identify an element of the array are enclosed in paren

theses and separated by commas. The two elements, v6 and b
4 

10' in FORTRAN would have the following , 
form: 

V (6) B(4,10) 

Subscripts may be quite diverse in form; in fact, a subscript may be any acceptable FORTRAN arithmetic 

expression as long as it is integer-valued (i.e., floating-point quantities are not allowed). 

a. X (3,3) 
b. C(I+1,J+1) 
c. N (1(1), J(1), K(2)) 
d. Y (J/3 + (K-4)) 

Figure 6 Example of Subscripts 

Note that certain subscripts in Figure 6 are themselves subscripted. Subscripting may be carried to four 

levels, although it is unusual to do so to more than two levels. Each subscripted subscript in Figure 6, 

i.e., 1(1), and K(2), is itself treated as a subscripted variable. 

8 



CHAPTER 2 

ARITHMETIC AND DATA-SPECIFICATION STATEMENTS 

The arithmetic statement relates a variable (V) to an arithm~tic expression (E) by means of the equal sign (=), 

thus: 

V=E 

Such a statement looks I ike a mathematical equation, but it is treated differently. The equal sign does 

not merely represent a relation between left and right members, but specifies an operation to be performed; 

namely, replace the value of V with the value of E. A few illustrations of the arithmetic statement are 

given in Figure 7. 

a. VMAX=VO+A* TO 

b. T = 2*PI*SQRTF(L/G) 

c • PI =3. 14159 

d. THETA = OMEGAO*T + ALPHA*Tt2/2 

e. MIN=MINO 

f. INDEX = INDEX +2 

Figure 7 Ari thmeti c Statements· 

ARITHMETIC EXPRESSIONS 

The elements of an arithmetic expression are of four types: constants, variables, functions, and operators. 

An expression may consist of a single constant, a single variable, a function, or a string of constants, 

variables, and functions connected by operators. 

Constants are explicit numerical quantities. They may be integers, decimals, or numbers in decimal ex

ponent form. 

Variables represent quantities whose values are not implicit; they may be redefined during execution of 

the program. 

9 



Functions are special forms of variables consisting of a name immediately followed by an argument enclosed 

in parentheses. The function name represents a mathematical operation to be performed on the argument 

such as finding the square root of a number or determining the sine or cosine of an angle. Certain basic 

functions are provided by the FORTRAN system and are called library functions. A detailed discussion of 

functions is found in Chapter 5. Of interest here, however, is their treatment within an arithmetic ex

pression: . 

Whenever a function is encountered, it is evaluated and the result is treated as a 

variable in the evaluation of the expression in which the function occurs. 

Figure Se. and f. illustrate the use of functions as variables in an arithmetic: expression. Included in 

thes~ examples are SINF(THETA) and COSF(THETA-1 .5), corresponding to the trigonometric functions 

sine and c~sine, and SQRTF(X), the square root operation. 

Operators are symbols representing the common arithmetic operations: 

b. 

c. 

d. 

e. 

f. 

Algebraic Expression 

2 
az + bz + c 

(a2 _b2) 

(a+b)2 

4nr2 
-3-

2 
3z -2 (z+y) 

4.25 

Exponentiation 
Multiplication 
Division 
Addition 
Subtraction 
Equiva lence 

* 
/ 
+ 

FORTRAN Expression 

(A t2-B t2)/(A+B)t 2 

(3*Zt2 - 2* (Z+Y))/4.25 

a sin 9 + 2a cos (9-1.5) 

2rz 
A*SI NF(THETA)+2*A*COSF(THETA-l .5) 

2* SQRTF(Z)/3 -3-

Figure S Examples of Arithmetic Expressions 

10 



The important rule about operators in the FORTRAN arithmetic expression is that every operation must be 

expl icitly represented by an operator symbol. In particular, the multipl ication sign (*) must never be 

omitted. Likewise, since no superscript notation is available, a symbol for exponentation (t) is provided. 

Figure 8 demonstrates the properties of arithmetic expressions. Each expression is shown with its corre

sponding algebraic form. 

Evaluation of an Expression 

Normally, a FORTRAN expression is evaluated from left to right just as an algebraic formula. As in al

gebra, however, there are exceptions. Certain operations are always performed before others, regardl ess 

of order. This priority of evaluation is as follows: 

1. Expressions within parentheses () 

2. Unary Minus* 

3. Exponentiation 

4. Multipl ication 
Division 

5. Addition 
Subtraction 

6. Equivalence 

* 
/ 
+ 

= 

The term "binding strength" refers to an operator's relative position in a table such as the one above. In 

it the operations are I isted in the' order of descending binding strength. Thus, exponentiation has a greater 

binding strength than addition, and multipl ication and division have equal binding strength. 

The left-to-right rule can now be stated a I ittle more precisely: 

Operations are performed in order of decreasing binding strength. A sequence of 

operations of equivalent binding strength is evaluated from left to right. 

Use of Parentheses 

To change the order of evaluation, parentheses are required. Thus, the FORTRAN expression, A-B+C is 

algebraically evaluated as (a-b)+c, whereas A-(B+C) is evaluated as a-(b+c). 

*The unary minus is th~ operator which precedes a quantity whose value is to be negated. A unary minus 
is recognized by the fact that it is preceded by another operator, not by an operand. Example: 

A + B t- 2/C - D 
The first minus (indicating a negative exponent) is unary; the second (indicating a subtraction) is binary. 

11 



The expression is evaluated as 

A/B/C 

A tBtC 

Figure 8d. illustrates the use of parentheses for grouping subexpressions within an expression. In algebra 

several devices are available for distinguishing between levels when nesting subexpressions, such as square 

brackets ([ J) and rococo brackets (i r). In FORTRAN, only parentheses are: available, so the programmer 

must be especially careful to make certain that parentheses are properly paired; that is, in a given expres

si on, the number of left parentheses must be equa I to the number of ri ght parentheses. 

The Replacement (Equals) Sign 

The equal sign has the lowest binding strength of all the operators; the whole of the expression on the 

right is evaluated before the replacement operation is performed. In an arithmetic statement, the value 

of the expression to the right of the equal sign replaces the value of the variable on the left. 

By this definition the statement in Figure 7f. would mean, "Add two to the current value of INDEX. The 

resu It is the new value of INDEX. II 

All variables occurring to the right of an equal sign must have been previously defined. If the variable 

on the left of the equal sign was previously undefined, it will be defined by the arithmetic statement. 

Internal Arithmetic Statement 

The most important result of treating the equal sign as an operator is that it may be used more than once 

in an arithmetic statement. Consider the following: 

Q = A/(V=SQRTF(2* G*Y)) 

The interna I arithmetic statement, V=SQRTF(2* G* Y), is separated from the rest of the statement by paren

theses. The complete statement in this i "ustration is a concise way of expressing the following type of 

mathemati ca I procedure: 

II Let q = a/v 

where v = I29Y7' 
In the single FORTRAN statement, both of these equations are evaluated and values are assigned to Q 

and V. 

12 



Another result of treating the equal sign as an operator is that there may be a series of replacements, 

A=B=C=D, in a single FORTRAN statement. Note that since the operand to the left of an equal sign must 

be a variable, only the rightmost operand, represented by D above, may be an arithmetic expression. 

The statement is interpreted as follows: "Let the value of expression D replace the value of variable C, 

which then replaces the value of variable B" and so on*. In other words, the value of the rightmost 

expression is given to each of the variables in the string to the left. A common use for this construction 

is in setting up initial values: 

VZER O=5ZER O=AZER 0=0 

T=T 1 =T2=T3=60 

P=P0=4*ATM-K 

Mode of Computation 

PDP-7 FORTRAN II does not restrict the use of variable types within an arithmetic expression. Integer and 

real variables and constants may be freely mixed. The order in which the quantities are encountered during 

the left-to-right evaluation determines the mode of computation; however, the result is always stored in 

the mode of the left-hand variable of the arithmetic statement. In general, the following rules apply: 

1. For any expression, computations are carried out in fixed point until a floating

point quantity appears; thereafter, all computations are carried out in floating point. 

2. An expression in parentheses is considered separately from the main computation; 

thus if a subexpression contains only integers, it is evaluated in fixed point. If 

necessary, the result is converted into floating point. 

3. The value of an expression on the right of an equal sign is converted to the mode 

of the left-hand variable before storage, if necessary. 

The following example illustrates the method of performing calculations in an arithmetic statement. 

*This may seem at first to violate the left-to-right rule. Whenever an equal sign is encountered in scan-
n ing a statement, it cannot be executed until all operations of higher binding strength have been performed. 
Thus, execution of each equal sign (replacement) is deferred until the expression on the right has been 
evaluated. The replacements then occur in reverse order as the evaluation works back to the leftmost 
variable. 

13 



In evaluating the statement 

A = C*V* (J+2) 

let Tl = C*V floating point 

T2 = J+2 fixed 

the resu It, T2, is converted to floating point; then 

A = T1*T2 floating 

DATA-SPECIFICATION STATEMENTS 

Data-specification statements fall into two categories: those relating to data handl ing and storage; and 

those deal ing with input/output operations. This section discusses the first clctegory (except for the 

COMMON statement which is directly related to subprograms and is describE~d in Chapter 5); the other 

is discussed in Chapter 4. 

Dimension Statements 

Array names must be identified as such to the FORTRAN compiler. Three items of information must be 

provided in any program using arrays: 

1. Which are the subscripted variables? 

2. How many subscripts does each have? 

3. What is the maximum dimension of each subscript? (When an alrray is used, a 

certain amount of storage space must be set aside for its elements, hence, this 

requirement. ) 

All the above information is provided by the following specification statement type: 

DIMENSION A(I,J,K,L), B(I,J,K,L), C(I,J,K,L), .... 

where A, B, and C are array names, and the integer constants I, J, K, L, are the maximum dimensions 

of each subscript. 

The rule governing the ~se of array names and the DIMENSION statement is as follows: All array names 

must appear in a DIMENSION statement, and the DIMENSION statement must precede the first use of 

any of the names appearing in its list. 

DIMENSION LlST2 (30), MAT3(10,20), RE GRES(2, 2, 5) 

In the statement above (under normal FORTRAN variable naming conventions), the names LlST2 and MAT3 

designate integer arrays; that is, each element is an integer. The third name, RE GRES, designates a real 

14 



array. The first array is a I ist of 30 el ements maximum, so that 30 words of storage are set aside for its use. 

The second array is a matrix of 10 rows and 20 columns, making a total of 200 elements requiring 200 words 

of space. The third array is three-dimensional and real. There are 2 x 2 x 5 = 20 elements, each requiring 

3 words of storage for floating-point representation, so that 60 words will be set aside for the array. A 

maximum of 4000 words is normally set aside for storage of arrays. 

If a subscript is subscripted, the name of the higher-level subscript must also appear in a DIMENSION 

statement. For example, a program in which the following statement appears: 

A(I(l), J(2), K(l 0)) = B(I(l 0), J(2), K(l)) 

could contain a DIMENSION statement like the following: 

DIMENSION A (5,5, 10),B(10,5,5),1(10),J(10),K(10) 

If an array name is to be passed as an argument from one program to another (e. g., a subroutine provides 

values to a variable array in the call ing program), both the call ing program and the subroutine must agree 

in floating point storage mode (three-word or two-word). This restriction does not apply when the argument 

is a specific array element rather than an array name. 

When referencing dimensioned variables, use the correct number of subscripts. For example: 

DIMENSION A(lO, 10, 10) 

A(3,4,6) = 42 (correct). 

A(705) 

A= 3. 

42. (will cause haphazard 
results at object time) . 

. (will also cause undesired 
resul ts). 

Floating-Point Storage Specification 

Unless otherwise indicated, all real numbers in a given program are stored in three-word form where 35 bits 

are reserved for the magnitude of each variable or constant. If the two-word form is desired (27 bits re

served for magnitude), the following specification statement must appear as the first statement of the pro

gram to which it appl ies: 

2WORD 

The two modes may not be mixed within anyone program or subprogram, and they may only be mixed be

tween programs when the level (depth) of call is at most one; e. g., a subprogram does not call other 

subprograms. (Refer to page 5 for a discussion of storage modes.) 

15 





CHAPTER 3 

PROGRAM CONTROL 

Ordinari Iy, FORTRAN statements are executed in the order in which they are written unless contrary 

instructions are given. The instructions provided by the program control statements a II ow the programmer 

to alter the sequence, repeat sections, suspend operations, or halt the program. 

BRANCHES AND LOOPS 

Unconditional GOTO Statements 

There are various ways in which program flow may be directed. As shown schematically in Figure 9, a 

program may have a straight-line sequence a. , branch to an entirely different sequence b., return to an 

earlier point c. I or skip to a later point d. 

c. 

b • ....------1 

d. 

a. 

Fi gure 9 Schematic Representation of Program Branches 

All of the branches can be performed in several ways, but the simplest is by the statement 

GOTO n 

where n isa statement number used in the program. This statement is described in the following example, 

which also illustrates the construction of a loop, the name given to program branches of the type shown 

in Figure 9c. 

17 



SUM OF FIRST N INTEGERS BY ITERATION 
KSUM=O 
INUM=l 

2 KSUM=INUM+KSUM 
INUM=INUM+1 
GOTO 2 
END 

Fi gure 10 Integer Summati on 

In Figure 10, the sum of successive integers is accumulated by repeated additiion. The main computation 

is provided by the three-instruction loop beginning with statement 2. The statements preceding this loop 

provide the starting conditions; this is called the initialization. The partial sum (KSUM) is set to 0, and 

the first integer is given the value of 1. The loop then proceeds to add the integer value to the partial 

sum, increment the integer, and repeat the operation. 

The IF Statement 

The program shown in Figure 10 performs the required computation, but there is one flaw: the loop is 

endless. To get out of the loop, iteration must be stopped an~ the next step must be determined. 

The IF statement fulfills both requirements. It has the following form: 

IF(e)k,l,m 

where e is any arithmetic expression, and k, I, and m are statement numbers. The IF statement is inter

preted in this way: 

If the value of e is less than 0, go to statement k. 
If the value of e is equal to 0, go to statement I. 
If the value of e is greater than 0, go to statement m. 

Thus, the IF statement makes the decision of when to stop by evaluating an expression, and also provides 

program branch choices which can depend on the results of the evaluation. Figure 11 illustrates the use 

of the IF statement in the integer summation problem of Figure 10. 

SUM OF THE FIRST 50 INTEGERS 
KSUM=O 
INUM:=l 

2 KS UM:=I N UM+KS UM 
INUM:=INUM+l 
IF (lNUM-50) 2,2,3 

3 STOP 
END 

Figure 11 Use of IF Statement in Integer Summation Pr()blem 

18 



In this example, the initialization and main loop are the same as for Figure 10, except that the GOTO 

statement of the earlier program has been replaced by an IF statement. This statement says: If the value 

of the variable INUM is less than or equal to 50 (which is the same as saying that the value of the ex

pression INUM-50 is less than or equal to 0), go to statement 2 and continue the computation. If the 

value is greater than 50, stop. 

A loop may also be used to compute a series of values. The following example is a program to generate 

terms in the Fibonacci series of integers, in which each succeeding member of the series is the sum of 

the two members preceding it: k =k l+k ·2. n n- n-

FIBONACCI SERIES, 100 TERMS 
DIMENSION FIB (100) 
FI B (1)=1 
FIB (2)=1 
K=3 

5 FI B(K)=FI B(K ... l) + FI B(K-2) 
K=K+l 
I F (K - 1 00) 5, 5, 1 0 

10 STOP 
END 

Figure 12 Fibonacci Series 

In this program, initialization includes a DIMENSION statement to reserve space in memory for the re

sults, and two statements which provide the starting values necessary to generate the series. Each time 

a term is computed, the subscript is indexed so that each succeeding term is stored in the next location in 

the table. As soon as the subscript becomes greater than 100, the calculation stops. 

DO Loops 

Iterative procedures such as the loop in Figure 12 are so common that a more concise way of implementing 

them is warranted. In that example, three statements were required to initialize the subscript, increment 

it, and test for termination. The DO statement combines a II these functions: 

DO n i=kl,k2,k3 

where n is a statement number, i is a simple integer variable, and kl, k2, and k3 are simple integer var

iables or constants used as indexing parameters to provide, respectively, the initial values of i, the final 

(terminating) value of i, and the indexing increment of i. The DO statement may be paraphrased as: 

liDO through statement n for i = kl; after statement n is completed, increment i by k3; if i is less than or 

equal to k2, repeat the sequence; otherwise exit from the DO loop and continue on in the program. II 

Upon normal exit from a DO loop, the value of the DO variable (i) will be the one generated at the final 

test, that is, greater than k2. If k3 is equal to 1, it may be omitted. Figure 13 shows the Fibonacci series 

calculation programmed using a DO loop. 
19 



FI BONACCI SERIES, 100 TERMS 
DIMENSION FIB(100) 
FIB (1 )== 1 
FI B (2)==1 
DO 5 K=3, 100 

5 FI B(K)=FI B(K -1 )+FI B(K-2) 
STOP 
END 

Figure 13 Fibonacci Series Calculation Programmed as a DO Loop 

The DO statement is interpreted thus: Do the sequence of statements up to and including statement 5, 

then index K by 1. If the new value of K is greater than 100, go to the statement following statement 5. 

DO loops are commonly used in computations with multiple- subscripted variables. In these cases, it is 

usually necessary to perform loops within loops. Such nesting of loops is permitted in FORTRAN. A 

simple illustration is the initialization of array storage, shown in Figure 14. 

Initialize two 30 x 50 matrices and one 30-element vector, by setting the allotted storage space to O. 

Note that in PDP-7 FORTRAN II, the initial condition of variable storageisneverimplicitly cleared. 

C INITIALIZATION OF STORAGE 
DIMENSION MATl (30,50), MAT2(30,50), VEC~3(30) 
DO 20 1=1, 30 
DO 10 J=l, 50 
MA Tl (I, J)=O 

.10 MAT2(1,J)=0 
20 VEC3(1)=0 

Figure 14 Initialization of Array Storage 

This sequence causes storage to be cleared in the inner loop column by column for each matrix, while the 

outer loop advances the column index and clears the elements of the vector. 

Genera I Ru I es for DO Loops 

The following general rules about DO loops must be observed: 

1. DO loops may be nested, but they may not overlap. Nested loops may end on 

the same statement, but an inner loop may not extend beyond the IOlst statement 

of an outer loop. Figure 15 schemcltically illustrates permitted and forbidden 

arrangements. 

20 



Those in 150. are permitted; loops 5, 6, and 7 end on the same statement. 

The arrangements in 15 b. are not permitted; loop 2 ends on a DO statement, 

loop 3 extends beyond outer loop 1 • 

1 
2 

~~ ,....--- 2 

~>---3· 
II"" 

a. b. 

Figure 15 DO Loops 

2. A program branch may not occur from a point outside a DO loop to a point inside, 

or from an outer DO to within an inner DO. Branches out of DO loops are permissible, 

however. Figure 16 illustrates this rule. 

4 l~ 

[I) 
r;, .... ~I-------' 
~~ 

6) 
7 

Figure 16 Program Branching in DO Loops 

Branches 2, 5, 6, and 7 are permitted; branches 1, 3, and 4 are not. 

3. A DO loop may not end on a program branching stat~ment (GOTO, IF) or another 

DO statement. 

21 



The CONTI NUE Statement 

Since a DO loop may contain alternate courses of action (such as branches tOI other parts of the loop, or 

out of the loop entirely), programmers frequently wish to make the last executable statement of the loop 

a test to determine which of the alternatives is to be taken. However, rule ~3 of the above section forbids 

a DO loop to end on an IF or GOTO statement. To avoid this, the CONTINUE statement is provided as 

a dummy statement. It performs no action or computation, but provides a termination for any DO loop: 

n CONTINUE 

where n is the statement number specified by the DO statement that initiated the loop. 

A CONTI NUE statement is not restricted to terminating DO loops; it may be used anywhere in a program; 

e.g., to provide points at which future program segments may be inserted. 

Computed GOTO 

The GOTO statement described previously is unconditional and provides no c:dternatives. The IF state

ment offers a maximum of three branch points. One way of providing a greater number of alternatives is 

by using the computed GOTO, which has the following form: 

GOTO (k 1, k2, k3, ..• kn), i 
where the k's are statement numbers, and i is a simple interger variable which may take on values of 1, 

2, 3, ••• n according to the results of some previous computation. For example, 

GOTO (5,7,5,7,5,7,10), IVAR 

causes a branch to statement 5 when IVAR=l, 3, or 5, to statement 7 when IVAR=2, 4, or 6, and to state

ment 10 when IVAR=7. If IVAR is not one of the possible (legal) values, the GOTO will be ignored and 

control wi II pass to the next statement. 

If an argument of a subroutine is used as the argument of a computed GOTO statement in the subroutine, 

the argument must be redefined (with a different name) in the subroutine; e. g.: 

CALL SUB(JAY) 
SUBROUTI NE SUB(KAY) . 
MAY = KAY 

GO TO (1,2), MAY 

Otherwise, the address of JAY wi II be used rather than the contents of JAY. 

22 



Assigned GOTO 

A slightly different way of providing a multibranched switch is by the assigned GOTO, which has the 

following form: 

where i is a simple integer variable and the k's are statement numbers. In use, the variable i is assigned 

a value of one of the numbers in the list by an ASSIGN statement of the form 

ASSIGN k to i 
where k is one of the statement numbers in the list. The ASSI GN statement must precede the GOTO in 

order of execution. For example, 

ASSIGN 30 TO IFORK 

25 GOTO IFORK (20,30,40,50) 
30 ASSIGN 40 TO IFORK 

GOTO 25 
40 A=B+C 

The first time statement number 25 is executed, the program branches to statement 30 where I FOR K is 

altered so that the next execution of statement 25 initiates a branch to statement 40. An alternate form 

of the ASSIGNED GOTO dispenses with a list of statement numbers. It consists of the following: 

GOTO i 
where i is an integer variable whose value is established by an assign statement. This value must corres

pond to one of the statement numbers in the program. 

PROGRAM TERMINATION 

The STOP Statement 

A program which is arranged so that the last written statement is the final and only stopping place needs 

no specia I termination indicator. The END statement automatically produces the fina I ha I t. Most pro

grams, however, contain loops and branches so that the last executed statement is often somewhere in the 

middle of the written program. Often, there may be more than one stopping point. Such terminations 

are indicated by the statement: 

STOP 

23 



This causes a final, complete halt; no further computation is possible. If mOire than one final halt is 

possible, each can be identified by a number as follows: 

STOP n 

where n is an octal integer which is displayed in the console ACCUMULATOR lights when the program 

stops. This feature is very useful when several stops are possible, such as stops in error routines, and it 

is desirable to know which one was reached. 

The PAUSE Statement 

The PAUSE statement allows suspension of operation for a time and then restal"ting the program by manual 

control. This is frequently necessary when the operator loads and unloads tapes in the middle of a program. 

This kind of temporary halt is provided by the following statement: 

PAUSE n 

The octal integer n appears in the AC lights when the pause is effected. Depressing the CONTINUE 

switch on the console resumes operation of the program. 

24 



CHAPTER 4 

INPUT/OUTPUT STATEMENTS 

In previous examples, all necessary information has been in the computer memory. Of course, these 

programs are read in by a spec ial loader, but the programmer must provide for the input of data and the 

output of results associated with his program. 

For any input or output procedure, several items of information must be specified: 

1. The direction of transfer (READ or WRITE). 

2. The I/O device. 

3. The amount, type, and location of the information to be transferred. 

4. The arrangement of the data. In FORTRAN terms, the order and format of the in

coming or outgoing data must be specified. 

To provide a" of the information listed above, two statements are required for every data transfer between 

core memory and an external device. The first three items are suppl ied by the input/output statement, an 

example of which is shown in Figure 17; the fourth is specified by the FORMAT statement. 

device 
data list 

number + 
~ A __ _ 

READ 3, 100, tA, B(5) ,I, ((C(J, K) ,J=M, N, I), K=M, N)\ 

L Format Statement 
t 

operation 
Number 

Figure 17 I/o Statement 

INPUT/OUTPUT ASSIGNMENTS 

The direction of the data transfer is desi gnated by the first word in the I/O statement. A" incoming 

transfers are initiated by a READ statement; all outgoing transfers by a WRITE statement. 

25 



The use of a device number, which follows the first word and specifies the external device involved in the 

transfer, eliminates the need for additional commands such as PUNCH, PRINT, etc. These device num

bers are as follows: 

Device 
Number 

3 

5 

INPUT 

Device 

Keyboard 

Perforated Tape Reader 

Card Reader 

Device 
Number 

2 

4 

6 

7 

OUTPUT 

Device 

Teleprinter 

Perforated Tape Punch 

PDP-4 Line Printer 

PDP-7 Line Printer 

The numbers 100-999 are assigned to magnetic tape; DECtape (microtape) is clssigned the numbers from 

1000 up. These two devices require special forms of an I/o statement, described later in this section. 

The format statement number is the third item in the I/O statement. It refers to a FORMAT statement 

which determines the arrangement of the data being transferred. The format statement number is separated 

from the device number and from succeeding items by commas. Except for trcJnsfers of binary data to or 

from magnetic tape or DECtape all I/O transfers must be accompanied by a FORMAT statement. The re

maining items in the I/O statement are components of the data list. 

THE I/O DATA LIST 

The last part of the I/O statement is a list, the elements of which spec ify the locations in memory and the 

number of data elements being transferred. These elements, separated by commas, may be of four types: 

Variables (unsubscripted) 

Array elements (subscripted variables) 

Array transfer express ion 

Constants (output lists only) 

The list in the statement in Figure 17 contains four elements. These are, in order, a real variable, an 

array element, an integer variable, and an array transfer expression enclosed in parentheses. 

The array transfer expression transfers whole arrays or sections thereof, under control of a single I/O 

statement. The expression consists of an array name with subscripts and a series of internal arithmetic 

26 



statements which specify the lower and upper I im its of each subscript and the increment between elements. 

The upper limit must not exceed the maximum value for that subscript given in the DIMENSION statement 

in which that array name appears. If the increment is 1, it may be omitted. 

The function of the array transfer expression is shown in the I/O statement in Figure 17. The elements 

of array C are to be read into core. Every element in the K dimension between the limits M and N, and 

every Ith element in the J dimension between the I imits of M and N, are read into the computer. When 

the loops are exhausted, the reading stops. The limit parameters I, M, and N, must be defined before 

they can be used in the expression. 

The array transfer expression is a sequence of nested DO loops; the operations described in the preceding 

paragraph would have to be programmed as follows if the array transfer expression were not available: 

DO 15 K=M, N 
DO 15 J=M, N, I 

15 READ 3, 100, C(J,K) 

The following forms produce the indicated results: 

READ 3,100, (C(I,J), 1=1, 10) 

Result C(l, 1) C(2,2) C(3,3) 
C(4,4) ... C(l 0, 10) 

READ 3, 100, (CC(I), B(I), 1=1, 10) 

Result FORTRAN diagnostic errors 

Ordering of Data Within an Array 

In the language of matrix algebra, the data ordering specified by this array transfer expression is by columns. 

If M=l, N=5, and 1=2, the elements of C must be ordered: 

Note that should one reverse the left-to-right arrangement of the arithmetic expressions defining K and J 

in the array transfer expression of Figure 17, the data must be ordered by columns: 

That is, the ordering of the subscript defining expressions in an array transfer expression is independent 

of the subscript ordering in the array variable. The subscript encountered in the first definition expression, 

proceeding from left to right, varies most. 

27 



I/O SPECIFICATION STATEMENTS 

Data Fields 

The space allotted to an item of data is called t~e data field. The width of the data field is the number 

of character positions occupied by the item. The width may be greater than jrhat required to hold all the 

characters of the item of data including the sign, but no more than one item may appear in a field. For 

example, a five-digit integer may appear in a field eight positions wide {empty positions are denoted by 

the letter b, for blank}: 

bbb34729 

An item of data may be numeric {numbers}, non-numeric {alphanumeric test or coded characters}, or blank. 

Data Field Formats 

Information may be read in or written out in one of six data field formats: three numeric and three non

numeric. Each format is designated by a single letter contained in the format specification. The format 

specification indicates the type of data field {numeric or alphanumeric}, the length of the data field, the 

form of the item it contains, and the storage mode of the item in the computer. The properties of the six 

format specification letters are summarized in Table 1; each specification type is described in detail in 

this chapter. 

TABLE 1 SUMMARY OF FORMAT SPECIFICATION LETTERS 

Format Type of 
Input 

Storage 
Output 

Spec. Letter Field Mode 

E numeric decimal, floating point decimal exponent 
decimal exponent number 

F numeric decimal, floating point decimal, 
decimal exponent number decimal exponent 

numeric integer fixed point integer 
number 

X non-numeric any characters none blank space 
and/or blanks 

H non-numeric text packed Flexowriter text 
FIODEC 

A non-numeric text packed Line Prinl"er text 
FIODEC 

28 



The Format Statement 

Each format specifi cation provides informati on about one data fie Id. To determi ne the arrangement of these 

fields, for both input and output, the format specifications must be combined in a FORMAT statement, as 

shown in Figure 18. 

a. 100 FORMAT (2E 12 .2,3X, F5 .2) - numeric fields 

b. 200 FORMAT (8HRAW DATA,5A3) - alphanumeric fields 

Fi gure 18 FORMAT Statements 

Following the word FORMAT is a statement list made up of format specifications, separated from each other 

by commas, and the whole enclosed in parentheses. Formats of all six types may be freely combined; how

ever, the format specification, the item of data, and (H, X expected) the variable type in the I/O state

mentl ist must all correspond. 

If successive data fields have identical formats, it is not necessary to write out each specification in full; 

instead, the format specification may be preceded by a repetition count, equal to the number of identical 

data fields. The repetition count may not be larger than 15. For example, the first member of the I ist in 

Figure 18a. is: 

2E12.2 

This indicates that the next two data fields have identical E-formats. Likewise, 3X indicates three suc

cessive characters of X-format. However, groups of more than one data field may not be repeated by 

preceding the group with a repetition number. For example 6(F5 .2, 3X) is illegal. 

Every FORMAT statement must be identified by a statement number so that it can be referenced by an 

I/O statement. When an I/O statement is executed, its data I ist and the list of format specifications in 

the corresponding FORMAT statement are scanned from left to right. Each item of data is matched with 

a format specification and transferred according to the format specified. This procedure continues until 

the I/O data I ist is exhausted. If the format I ist runs out before the I/O operation is completed, the 

format scan returns to the last previous left parenthesis and continues from that point. 

If there are no internal parentheses in a format list, the scan would return to the beginning and repeat 

the format I ist. If the I/O I ist is exhausted before the format list, the remainder of the format I ist is 

simply ignored. 

29 



Format Spec ifications 

The following paragraphs discuss the properties of each data field format, and the form of data permitted 

to each. The three numeric formats are described first, followed by the three non-numeric formats. The 

letter r in all cases symbol izes the optional repetition count which can precedle the format specification. 

Integers: I-Format 

Integer fields are specified by the letter I. The general form of the specificaf'ion is 

rlw 

where r is number of times specification is to be used and w denotes the field width including one position 

for the sign, whether or not it appears; that is, w-l digits are allowed; e.g., 15, 417. If the field width 

is greater than 7 it will be set to 7. On input, the field must contain a FORTRAN integer not exceeding 

a magnitude of 131071. The integer may be signed or unsigned and may be placed anywhere within the 

field as long as there are no blanks embedded in the number. Input is converte!d to fixed point for storage. 

The following are examples of I-format input. 

Specification 

15 

Acceptable Input 

32 
+5012 

-317 

Unaccep'tabl e Input 

34729 (too many characters) 
50b31 (embedded blank) 
3 .57b (not an integer) 

On output, integers are right justified within the field. Positive integers are unsigned. If an integer is too 

large to fit in the field, least significant digits are truncated. The storage mode for I-format output must 

be fixed-point. 

Real Numbers: F- and E-Formats 

Real number fields are specified by the letters F and E. The general forms are! 

rFw.d rEw.d 

where w denotes the total field width inc! uding the dec imal point, exponent, and sign, and d spec ifies 

the number of digits to the right of the decimal point. w is limited to a maximum of 31 characters; d can 

be as large as 15. If an exponent is to be specified in input data, the charac'ter E must be present. 

Both format specifications permit the same type of input. An incoming numbelr may be in one of three forms: 

1. A simple decimal: 95.34729; -7.132 

2. A decimal exponent: 1 .66E-16; -6.032E+23; 1.66-16; -6.032B23 (-6.032+23) 

3. A string of digits with no indication of magnitude: 9534729; -6032E-23 

30 



Incoming numbers may be signed or unsigned and placed anywhere within the field. As with integers, 

there may be no embedded blanks though a blank preceding an exponent is allowed, thus: 1. 32E 36. 

If the incoming number contains an explicit decimal point, the fraction delimiter (d) of the format specifi

cation is ignored. If there is no explicit decimal point, the number must be followed by either an ex

ponent or the end of the field, but not by blanks. A decimal po int is inserted in the number, independently 

of the exponent value according to the d specification only if there are at least d digits in the number. If 

there are fewer than d digits, the decimal point is placed to the right of the number, regardless of d. The 

following illustrates the effect of the fraction del im iter. 

If the specification is 

E12.2 

F10.5 

E10.2 

El0.2 

Fl0.5 

And the' incoming 
fie Id appears as 

bbbbb9534729 

bb953.4729 

b+l.66E-16 

bbb166E-16 

bbbbbbb222 

The magnitude of 
the number is 

95347.29 

953.4729 (explicit 
decimal point over
rides) 

1.66E-16 

1.66E-16 

222.0 (less than 5 digits 
input) 

Both E- and F-format causes the incoming data to be converted to floating-point for storage. 

The two formats differ only in the form of output each produces. E-format output always appears as a 

decimal exponent with the exponent signed and the E omitted. The number is right justified in the field. 

Positive numbers are not signed. The following illustrates E-format output. 

If the specification is 

E10.3 

E12.5 

E12.2 

And the magnitude 
of the stored number is 

1.66 x 10-16 

-1.324 x 10
23 

- 1 .324 x 1 0
23 

The important points to observe in these examples are: 

The output appears as 

bbb.166-15 

bb- • 1 3240 24 

bbbbb- • 1 3 24 

1. The printed number is normalized; that is, scaled so that it is less than 1 .0 and no 

zeros appear immediately to the right of the decimal point. 

31 



2. The E representing the exponent is missing, and the exponent itself is signed whether 

it is positive (blank) or negative (-). 

3. If the fractional part is too large to fit in the space reserved for it, the least signifi

cant digits are truncated. 

F-format output is in the form of a simple decimal. The number is right justified in the field, and the 

decimal point is placed according to the format spec ification. Positive numbers are unsigned. Fractional 

parts are truncated if they would overflow the space reserved. 

If the specification is 

F9.4 

F12.5 

F10.2 

And the magnitude of 
the stored number is 

953.4729 

.•• 007315 x 1 0
4 

55.9328 

The output appears as 

b953.4729 

bbb-73.15000 

bbbbb55.93 

If F-format is specified, and the number to be printed is so large that the intE~gral part would not fit in 

the available space, the number is automatically printed under E-format. For example, 

If the format specification is 
and the stored number has a value of 
the format is interpreted as 
and the number wi II appear as 

F10.5 
57329.46 
E10.5 
.5732905 

For both formats, stored data must be in floating-point form for output. The Field width w must include 

one position each for the sign and the decimcJI point; and in the case of E-format, three positions for the 

signed exponent. 

Non-numeric Fields: X-Format 

One way to separate items of data for readability is to provide wide enough fields in the format specifi

cations so that there wi" be some I eading blanks. Another way to separate items is by using the X-format 

specification, whose only function is to indicate the presence of a blank position. A string of blank 

spaces is indicated by a repetition count before the X: 

rX 

32 



On input, an X-format specification causes the input scan to skip ahead the number of spaces specified 

by the repetition count and continue reading input from that point using the succeeding format specifica

tions in the list. 

On output, the X-format causes the number of spaces indicated by the repetition count to be inserted be

tween the preceding and following items of data. For example, the specification 

F5.2, 3X, F5.2 

causes the output of two items of dec imal data to be separated by three blank spaces. 

When reading FORTRAN produced paper tape input, a 1X format specification may be used wherever a 

slash V) appears in the output format statement which produced the tape. The slash causes a carriage re

turn to be punched following the last field. This is read as a blank item (f1) unless the X specification 

skips the carriage return character. A more detailed description of field del imiters appears on page 36. 

Non-numeric Fiel ds: H-Format (Hollerith) 

The output of text such as table headings, captions, instructions to the computer operator, and descriptive 

information is done by including the text expl ic itly within the FORMAT statement, using the H-format, 

which specifies that the characters immediately following the H are to be taken as an item of textual data. 

To handle a string of text, the total number of characters, including blanks, is counted and substituted 

for the repetition count. An error will result if the number of characters is counted incorrectly. Fig-

ure l8b. shows a FORMAT statement which contains an H-format specification. Note that the field 

count 8 corresponds exactly to the number of characters and blanks in the field. 

The programmer may mix H-format with other specifications in a format I ist. On output, the I/O data 

list scan is suspended when an H-format specification is encountered, the text in the Hollerith field is 

printed, and the data I ist scan resumes. If an output statement is to transfer H-format information only, 

the data I ists may be om itted. Hollerith text is packed three characters to a word and stored in Flexo

writer FIODEC code. Alphanumeric (A-format) information is stored 1, 2, or 3 characters per word, right 

justified, in line printer FIODEC code (see PDP-7 Users Handbook, F75, page 178 and Appendix 1). 

The information in the following format statement 

50 FORMAT (41 HSATELLITE TRACKING DATA, CAMBRIDGE, MASS./ 
$ 23HTELOS I, SEPTEMBER 1964) 

would be printed on the teleprinter by the statement 

WRITE 2, 50 

33 



and would appear as follows: 

SATELLITE TRACKING DATA, CAMBRIDGE, MASS 
TELOS I, SEPTEMBER 1964 

Non-numeric Fields: A-Format 

Frequently, it is desirable to vary text analogous to data. For example, a bill ing program may process a 

larger number of accounts in the same manner with identical output format fc)r each except for the name 

of the person associated with the account. It would be burdensome to write a long sequence of FORMAT 

statements with Hollerith fields and make frequent corrections simply to store all the account names. 

The A-format specification allows the user to both REA.D and WRITE textual information. Its general form 

is 

rAn 

where r designates the number of 18-bit words required to store the charactelrs of text in the data field. 

On input, characters are read and packed 1, 2, or 3 to a word depending on the count n. On output, 

the stored words contain packed text, and 1, 2, or 3 characters are printed from each according to the 

count n. (The number of characters is r x n.) In the I/O statement, the paclked text is designated by an 

integer variable name. If a repetition coun"t accomodates a long string of text, the variable name is 

subscripted; the value of the subscript, r, is the number of words of packed text. Such an array name must 

appear in a DIMENSION statement. Since r ,:S15, n ,:S3, the format specific:ation cannot be greater than 

15A3. To read a large number of characters, FORMAT (A3) is sufficient sinl:e the specification may be 

indefinitely repeated. 

To illustrate the use of A-format, take a hypothetical billing program. Assume that input is from paper 

tape and output is on the teleprinter. The first item on paper tape for each (]ccount is the name of the 

account in the first 36 character positions and no other information. To read this information, the follow

ing two statements would suffice (here r x n==36, the number of characters): 

READ 3, 300, (NAMACC(I), 1=1, 12) 

300 FORMAT (12A3) 

The information in the 36 character positions is read into the 12 locations designated by the array name, 

NAMACC; the text is packed 3 characters to a word. 

To print out A-format, the following statement is necessary: 

WRITE 2, 300, (NAMACC(I), 1=1, 12) 

34 



The A-format is also useful when the same program runs over a long period of time and the date of each 

run is recorded. A date can be provided with the input, a location reserved for it, and the information 

transferred using an A-format specification. 

INPUT/OUTPUT DEVICES 

Data Organization 

Records 

In every I/O device, data is organized into records. Because of the dissimilarity of devices, the defini

tion of a record varies. Table 2 lists the I/O devices and the definition of a record for each. 

TABLE 2 DEFINITION OF A PHYSICAL RECORD FOR I/O DEVICES 

Device Physical Record Definition 

Keyboard and Teleprinter The information typed on a single I ine (maximum 72 
characters) . 

Perforated Tape Reader, Punch 

Line Printer 

Magnetic Tape and DECtape 

The information punched between two carriage returns 
(practical maximum 72 characters, for compatibil ity with 
other devices). 

120 characters (one line). 

The information contained between two record gaps 
(blocks for DECtape and delimiters for magnetic tape; 
maximum record length is 256 characters or 256 binary 
words). One character per field and one character for 
an end of record must be allowed for overhead on all 
tape records. 

Normally, one FORMAT statement corresponds to one record and the programmer must be careful that the 

total number of characters in the format specifications, including repetitions, does not exceed the maxi

mum for one record on the respective device. 

Multirecord Formats 

To make the arrangement of output data as flexible as possible, a single FORMAT statement can specify more 

than one record. The method can best be illustrated by an example. The following FORMAT statement, 

50 FORMAT (F12.2, 5X, 316, 2E15.5, 17) 

35 



causes the associated output to be printed on a single line. If the statement is changed to read 

50 FORMAT (F12.2, 5X, 316/2E15.5, 17) 

the insertion of a slash (/) in place of the comma after the third specification causes the remaining data 

to be written as a new record on the next line. 

In general, whenever a slash appears in a FORMAT (other than an H-format) statement, it terminates the 

record. If two slashes appear in succession with no interven ing spec ifications, the effect is the same as 

if an empty record were transferred. For example, if two slashes were inserted instead of one in the 

illustration: 

50 FORMAT (F12.2, 5X, 316//2E15.5, 17) 

and the data were written on the teleprinter, the result would be a line of delta, a blank line, then another 

I ine of data. Use of multirecord formats greatly increases the flexibil ity with which the programmer may 

arrange tabular data for output. Tables 3 and 4, respectively, indicate the leffects and I imitations of 

multirecord formatting for input and output operations. 

TABLE 3 INPUT FORMAT 

Cards Paper Tape Teletype Magn~etic Tape DECtape 

Field Delimiters1 Apostrophe Tab Tab Tab equivalent Tab equivalent 
code code 

Effect of Terminates Terminates Terminates Terminates Terminates 
Field Delimiter current field current field current field curren:~ field current field 

if reached if reached if reached if reached if reached 
before the before the before the before the before the 
count in the count in the count in the count iin the count in the 
format state- format state- format state- format state- format state-
ment runs out. ment runs out. ment runs out. format runs out. format runs out. 

Record De- $ Carriage Carriage re- Carria!~e return Carri age return 
Iimiter2 return turn-I ine equivalent code equivalent code 

feed 

1 Field del imiters are never required on inpu1' but will have the indicated effE~ct if present. They are 
always ignored when the first character of any field (except in A-format where they should never be used; 
the only legal characters for A-format are the Anelex character set). 

2 Record del imiters are never required on input except for magnetic and DECtape where they were produced 
by the system, or where needed for the correct operation of the slash fu~ction as when using paper tape. 

36 



TABLE 3 INPUT FORMAT (continued) 

Cards Paper Tape Teletype Magnetic Tape DECtape 

E ffec t of Re- Terminates the Terminates Terminates Term i nates the Term ina tes the 
cord Delimiter current field the current the current current fie Id current fie Id 

if reached field if field if if reached if reached 
before the reached be- reached be- before the before the 
count in the fore the fore the count in the count in the 
format state- count in the count in the format state- format state-
ment runs out format state- format state- ment runs out ment runs out 
and terminates ment runs out. ment runs out. and terminates and terminates 
the card. the tape record. the tape record. 

Other If 80 columns None None None None 
Delimiters have been read, 

the current fie Id 
and card are 
terminated as if 
reading $. 

Effect of Slash Causes the Causes the None Causes the Causes the 
in Format next requested next field re- next fie Id re- next field re-
Statement3 field to be quested to be quested to be quested to be 

taken from the taken from i n- taken from the taken from the 
next card. formation after next tape next tape 

the next car- record. record. 
riage return on 
the pa per ta pe • 

3 Successive slashes are ignored in all cases. This can be visual ized logically since the slash merely sig
nifies that the current buffer is empty and does not cause the next record to be read. No implicit slashes 
are assumed at the end of an input format statement; i. e., all characters appear as one long string, irre
spective of the input device except where the slash is used expl icitl y. 

In all cases the unit record consists of the characters requested between slashes in the output format state

ment or by the entire statement if no slashes are used. As noted above, the end of an output format state

ment is taken as an impl icit slash. The maximum record which can be requested in any case is 256-{N+ 1} 

characters where N equals the number of fields desired. All requested characters above that figure are 

lost. The following additional I imitations apply: 

1. For the I ine printer, a request of more than 120 characters per un it record destroys 

the program. 

2. For the paper tape punch, a request of more than 72 characters per unit record pro

duces a tape which cannot be read off-line. If that restriction is not applicable the 

maximum size record (256-(N+ 1) characters} can be used. 

37 



3. For the Teletype, all characters requested after the 72nd characlrer per unit record 

type over the 72nd character. 

4. For magnetic and DECtape the maximum size record can be used. Magnetic tape 

records always consist of 85 words packed 3 characters per word with the end of record 

del im iter in the proper place. DECtape blocks always consist of 256 unpacked charac

ters with the end of record delimiter in the proper place. 

TAB LE 4 OUTPUT FORMAT 

Line Printer Paper Tape Teletype Magnetic Tape DECtape 

Field Delimiters None None None Place TAB Place TAB 
Generated equivale,nt equivalent 

code in record. code in record. 

Cause of None None None E nd-of-c:urrent End-of-current 
Generated field field 
Field Delimiter 

Record Spaces line Carriage Carriage Carriage return Carriage return 
Delimiters printer 1 line return (plus return- equiva lent code equivalent code 
Generated line feed in line feed 

ASCII mode) 

Effect of Slash Output the Output the Output the Generah~ end Generate end 
in Format present con- present con- present con- of record indi- of record indi-
Statement tents of the tents of the tents of the cator and write cator and write 

buffer, if any, buffer, if any, buJfer, if any, record i nI buf- record in buf-
and always and always and always fer, if any. fer, if any. 
generate the generate the generate the Will not wri te Will not write 
end of record end of record end of record an empty record. an empty record. 
indicator. indicator. indicator. 

Effect of Implicit Implicit Implicit Implicit Implicit 
End of Format Slash Slash Slash Slash Slash 
Statement 

I/O Operations with Paper Tape and Keyboard 

Use of FORTRAN with paper tape and a keyboard permits a relaxation of some of the constraints on input 

formats for floating-point numbers. With paper tape or keyboard, an item of data being read can be de

lim ited by a tabluation of a carriage return-I ine feed combination (for keyboard), or a carriage return (for 

paper tape), which overrides the field width allotted in the format specificaticm. The I imits on maximum 

38 



field widths still apply, however: 7 for integer fields and 31 for real number fields. The number of 

characters in a field must be less than or equal to the width specified or the overflow will be considered 

another field. 

60 FORMAT (214, E9.2) 

will accept input from a keyboard thus: 

176 -20 + 16742E13 ) ~ (I ine feed-carriage return) 

or analogous paper tape input. 

Also when using the keyboard for input, incorrect characters can be erased by striking the blank key. 

The blank key erases the last character; successive blanks erase the next previous character. Thus to 

erase the last three characters, strike the blank key three times. However, no changes in data may be 

made after typing a tab or carriage return since this processes the data. 

I/O Operations with Magnetic Tape 

There are two kinds of I/O operations with magnetic tape: those which perform data transfers and those 

which do not. 

Data Transfers 

Data transfers are effected as described in the last section. The device number is made up of the tape 

unit number (0-7) added to a control number to specify the direction of data transfer. A control number 

of 100 indicates a read operation; a control number of 200 indicates a write operation. Although actual 

read/write operations are performed ordinarily in low-density (200 bpi), high-density (556 bpi) may be. 

forced by adding 10 to the unit number when forming the effective device number. 

When reading records written by a FORTRAN program, the I/O lists for the two operations should corre

spond. 

When writing, output information is stored internally until a slash is encountered in the output statement, 

for exampl e: 

WRITE 207, 37, «MATX(J, K), J==1,.5), K==1,5) 

37 FORMAT (516/) 

Since MATX has 25 elements and the FORMAT statement specifies 5 per record, there would be 5 physical 

records on the output tape corresponding to the array, MATX. The programmer must be careful when 

manipulating tapes to keep track of their contents. 

39 



The upper limit to one physical record is 256 characters. A practical way tel avoid specifying oversized 

records is to keep the product of items-per-record and field-width-plus-one less than 256. 

In the example given, 5 items are processed before the slash i; encountered; hence, there are 5 items per 

record and the field width of 6 plus 1 is 7; hence 36 characters per physical record (one character marks 

the end of record). The character added to field width is an item separator. 

The entire array matrix could be forced into one physical (and logical) record by the following: 

37 FORMAT (1516, 1016/) (note the upper I im it of 15 on the repetition count) 

since 15 x 7 plus 10 x 7= 175 characters, well within the limit of 256. 

If the output given in the example is to be read by a FORTRAN program, the following should be noted: 

READ 107, 45, «MATX(J, K), J=l, 5)K==1, 5) 

The READ statement causes the next physical record from tape unit 7 to be rE!ad into core. Should all 

items be used from this record before the I/O I ist is exhausted, the next physical record automatically is 

read from tape unit 7 until the list is exhausted. Therefore the correspondence of FORMAT statement 

45 to FORMAT statement 37 is not critical. 

Binary records (maximum length = 256 words) may be written or read by omitting the FORMAT statement 

number in a WRITE or READ statement. 

Non-Data Transfers 

In addition to read and write, the following operations have been assigned control numbers: 

For example: 

Number 

300 
400 
500 
600 
700 
800 
900 

READ 302 
WRITE 302 

WRITE 402 

Operation 

rewind 
write end-of-file 
backspace one record 
backspace one file 
skip one file (forward) 
skip one record (forwcJrd) 
unassigned 

Rewi nd the tape on un it 2. 

Write end-of-file on unit 2. 

40 



Note that control operations require neither FORMAT statement number nor data list. In addition, since 

the device number determines the operation, it makes no difference whether READ or WRITE is used. 

When writing end-of-file one could say, READ 402, although WRITE 402 is more readily understood. The 

function of READ and WRITE in control operations is to transfer control to that portion of the object-time 

system which processes device numbers. 

There are two other characteristics of normal magnetic tape usage which have been provided for in the 

FORTRAN system: recording sense level and IBM compatible BCD. 

Recording Sense Level 

Where appl icable (Type 521 and 522 Controls), tape sense level is normally set to high (AC bit 7 = 0 in 

the control command). To set sense level low, the following statement should occur in the FORTRAN 

program: 

ISVL=l 

where the normal value for ISVL is zero. ISVL is the name of an internal location in the object-time 

system. 

IBM Compatible BCD 

Records are ordinarily written in FIODEC codes. To write IBM compatible BCD codes, the following 

statement should occur in the FORTRAN program: 

IBM=16 

where the normal value for IBM is zero. IBM is the name of an internal location in the object-time system. 

Note, however, that every tape record contains a BCD code 13 to del imit fields and a BCD code 14 to de

I imit the logical record since the physical record length actually written is fixed at the maximum. 

I/O Operation with DECtape 

The device number for data transfers to or from DECtape is formed by designating the operation and tape 

unit number in the following format: 

COO U 

where 

C is the desired operation (see below) 

00 are always O's 

U is the DECtape unit number (1-8). 

41 



Operation codes: 

1. Read 

2. Write 

3. Rewind 

4. Write end-of-file 

5. Backspace one record 

6. Backspace one file 

7. Skip forward one file 

8. Sk i p forward one record 

9. Unassigned 

There are 576 fixed-length records (256 l8-bit words) on a reel of DECtape. 

WRITE 2004, 100, A, B,CVAR 

causes the three variables to be written on the next block of DECtape unit 4 according to FORMAT state

ment 100. Since record lengths and correspondence are fixed, the user must be careful when reading pre

viously written records to have both the I/O I ist and FORMAT statements correspond. The most effic ient 

use of DECtape storage dictates record lengths as close as possible to the maximum. The next block is 

determined by the last operation on DECtape unit 4. The treatment is complet"ely analogous to IInext 

record II on magnetic tape. 

Binary Transfers 

Another facility of PDP-7 magnetic tape operations with standard tape or DECtape is the ability to use 

binary records. The number of items written per record will vary from 255 for fixed-point variables to 

85 (255/3) for three-word floating-point variables. * To write or read a binary record, merely omit the 

FORMAT statement number in the READ/WRITE command. For example: 

READ 1 004, A, B,CVAR 

transfers the three variables from the next block on DECtape un it 4 into core CIS binary words. 

*One word of each record's 256-word capacity serves as word counter of binary words entered in the record. 

42 



CHAPTER 5 

SUBPROGRAMS: FUNCTIONS AND SUBROUTINES 

The programmer may employ separate subprograms to perform a sequence of operations required in the 

solution of the problem or to evaluate functions. For example, whenever a function occurs in an arith

metic expression, a subprogram is called into operation to evaluate the function using as data the 

arguments provided. The resulting single value is then returned to be used in the computation of the ex

pression in which the function appears. A second type of subprogram, the subroutine, is used when a 

sequence of statements is used repeatedly or when it is necessary to generate more than one result (a matrix 

operation, for example). 

Since a subprogram is a separate program, communication with the main program must be establishedi that 

is, an entry to the subprogram from the main program and an exit from the subprogram back to the main 

program must be provided. In the case of a function, entry is effected by the use of the function name 

in an arithmetic expression. In the case of a subroutine, entry is effected by the CALL statement. The 

RETURN statement provides an exit from both types of subprograms. A subprogram cannot come to a fu II 

stop (though subroutines may include pauses) but must always return control to the colling program. 

FUNCTIONS 

In addition to the library functions supplied with FORTRAN, the user can write his own as needed. The 

writing of a function subprogram follows the rules for writing any sort of program, in that there must be 

a title, a body, and an END statement. In addition, two special statements are required: FUNCTiON 

definition and RETURN. 

The FUNCTION Definition Statement 

The FUNCTION definition statement identifies the subprogram and has the following form: 

FUNCTION f (d l' d
2

, d
3

, ••• , dn) 

where f is the name of the function and d is a dummy name which represents the main program arguments 

of the function. The function and dummy names follow the rules given for variables in Chapter 1: they 

are restricted to the same character set, the first character must be alphabetic, and only the first six 

characters are signi ficant. A main program argument can be a constant, a variable, or any legitimate 

arithmetic expression. It may itself include functions. At least one argument is required with a function 

subprogram. 

43 



Because a function is an element of an arithmetic expression, it must always return a value to the main 

computation. To do this, there must be at least one arithmetic statement in the function subprogram, in 

which the function name appears as the left-hand variable. This also defines the mode of the return value. 

A function returns an integer-value if its name is defined as an integer variable, or a real-value if its 

name is defined as a real variable. Exceptions to this rule are: 1) a function whose name begins with the 

letter X is integer valued; 2) if a function name does not begin with X but ends with F, the function re

turns a real value. A function name cannot represent an array. STOP or PAUSE cannot be used in a 

function. 

RETURN Statements 

The statement 

RETURN 

terminates the subprogram (function or subroutine) and transfers control to the calling program. There may 

be more than one RETURN statement in a subprogram, corresponding to alterncJtive exits. Figure 19 

illustrates the writing of a function subprogram which calculates the factorial of an integer ~: 

n! = 2·3·4· •.• (n-2) (n-1) (n) 

.. 

FACTORIAL CALCULATOR 
FUNCTION NFACT (N) 
NFACT = 1 
DO 10 J=l, N 

10 NFACT = NFACT * J 
RETURN 
END 

Figure 19 Function Subprogram 

In Figure 19, the name NFACT specifies an integer-valued function. The dummy name N denotes an in

teger argument. The body of the subprogram is a loop which calculates the falctorial. Statement 10 pro

vides for the value to be returned, since the function name appears as a lefthcmd variable. Finally, the 

RETURN statement transfers control to the calling program. 

Use of Functions 

Dummy names do not have to agree in mode with the function name or with eaich other. They must agree, 

however, with the mode (integer, floating two-or three-word) of cot'respondinB arguments in the calling 

program. For example, the factorial function above may be called this way (the dots represent parts of 

an arithmetic statement): 

44 



•••. + NFACT(15)/ •••• 

but not this way: 

•... + NFACT{15.0)/ •..• 

because the argument is not an integer. 

Library functions which require real arguments such as SQRTF I COSF I are treated as floating point 

variables in arithmetic expressions. No diagnostic check occurs during compilation to insure that the 

arguments specified by the programmer are in fact real. For example: 

A=SQRTF(I* K 2.2) 

compi les correctly since the real nature of the exponent forces the entire parenthesis to be real. 

However I 

A=SQRTF(I* K/2) 

must be wri tten as 

A=SQRTF{T=I*K/2) 

or some equivalent form if correct compi lation is expected. 

Library Functions 

Several common functions are provided with the FORTRAN system to save the programmer the necessity 

of writing them. These library functions are named according to the following conventions: 

1. Every library functions name ends with the letter F. 

2. A function whose name begins with the letter X is integer-valued; otherwise it is 

rea I-va I ued • 

Library functions may be used by the programmer without any special preparation; they are placed in 

memory from a library tape which is read prior to run time. 

The library functions are: 

Function Name 

SQRTF{A) 
SINF{A) 
COSF{A) 
ATANF{A) 
LOGF{A) 

Operation Performed 

square root: v..;a-
sin a (argument in radians) 
cos a (argument in radians) 
arc tan a 
log a 

e 

45 



Function Name 

CLOGF(A) 
EXPF(A) 
ABSF{A) 
XABSF{N) 

Operation Performed 

10910 a 
e a 

absolute value: lal 
absolute value (integer): I n I 

XABSF is the only integer-valued library function. 

SUBROUTINES 

It is often desirable to write whole procedures, not as functions (which can return only a single qUal_til'y) 

but as complete subprograms which compute multiple -quantities for use by the main program. Such a suh-· 

program is called a subroutine. Its definition statement is: 

SUBROUTINE s (d
1

, d
2

, d
3
,·· .,d

n
) 

where s is the subroutine name, and d. are dummy arguments. 
I 

Like a function subprogram, a subroutine must have at least one RETURN statement. Unlike Ll ftHtcticm 1 

however, a subroutine does not directly return a value to the calling program; instead results are stc,"ed 

in locations designated by the main program, where they are available to the main program. A suLrolJhd~ 

name differs from a function name in that it may not appear as the left-hand v(lriable in an arithnleti"c 

statement of the subprogram. A subroutine differs further from a function in that no arguments or.:; requii"eO n 

When arguments are present, they obey the same rules as those for functions wIth regard to mode. 

The CALL Statement 

To call a subroutine into operation, the following statement is used: 

CALL s (a
1
, a

2
, a

3
, ••• ,an) 

where s is the subroutine name, and a. are arguments, if any. 
I 

The argument list of the CALL statement must be simi lar to the argument list in the subroutine. 

The factorial calculator written as a function in Figure 19 may be written as a subroutine (15 ShOV';'.II(, 

Figure 20. In this example, the main calculation is the same as before, but to make the result ':':I~iiilt,.,kde 

to the calling program, another argument has been provided. If a program were to use this stJbrOljtiL"~ E. 

calculate, for instance, the factorial of an integer variable K, the following statement might be IJSf:Ji~ 

CALL FACT (K, KPROD) 

46 



FACTORIAL CALCULATOR 
SUBROUTINE FACT (N,NPROD) 
NPROD=l 
DO 10 J=l,N 

10 NPROD = NPROD * J 
RETURN 
END 

Figure 20 Example of Factorial Calculator 

The value of the resulting product, assigned the dummy name NPROD in the subroutine, is given to the 

variable KPROD in the calling program. 

Common Storage 

As Figure 20 shows, information can be transmitted between a calling program and a subprogram via the 

argument list. Information can also be passed between programs through a special section of memory set 

aside as common data storage. Space in this area is assi gned by the following specification statement: 

COMMON vl, v2, v3, ••• ,vn 

where each v represents a variable name, either simple or subscripted. Each simple variable is assigned 

a location (or group of locations, depending on the storage mode) beginning at the end of avai lable 

memory and working backward. Arrays are assigned enough locations to store the maximum number of 

elements, as indicated by the DIMENSION statement. For example, if an integer array which appears 

in a DIMENSION statement 

DIMENSION MATRIX (20, 40) 

also appears in a COMMON statement 

COMMON MATRIX 

there wi II be 20 x 40 == 800 locations set aside in common storage. 

Programs which have common data must each have a COMMON statement in which the variables are as

signed in correct order and storage mode, although the names do not have to be identical from program to 

program. For example, two programs could share three variables if one program contained the statement 

COMMON VARL, INDEX, AVAL 

and the second program contained the statement 

COMMON VARX, ITEST, AR GL 

The first program uses the name VAR L, and the second V ARX, but both names refer to the same quanti ty. 

Likewise, INDEX and ITEST are corresponding names, and so on down the line of variables. 

47 



Array Names Used In Subroutines 

Array names may be transmitted between a cCllling program and a subroutine either as arguments or as 

variables in common storage. The two methods require different treatments. 

1. If an array is placed in common, it must be dimensioned in both programs and must 

appear in a COMMON statement in both programs. The names need not be the same 

but they must correspond in number and order in the COMMON statements. For example, 

if an array appears in the calling program as follows: 

DIMENSION ARRAY (lO, 10, 30) 

COMMON VAR1, VAR2, ARRAY, IVAR 

and is referred to in a subroutine by the name ARR2, this name must appear in the 

subroutine in statements such as these: 

DIMENSION ARR2 (10, 10, 30) 

COMMON Xl, X2, ARR2 

Here, the array name appears in the common list, following two real variables just 

as the corresponding name does in the calling program. 

MATRIX MULTIPLICATION SUBROUTINE 
SUBROUTINE MATMUL (ID, JD, KD) 
DIMENSION DA(10, 10), DB(10,10), DC(10, 10) 
COMMON DC, DA, DB 
DO 10 1=1, 10 
DO 10 J=l, 10 

10 DC(I, J)=O 
DO 20 J=l, JD 
DO 20 1=1, ID 
DO 20 K=l, KD 

20 DC(I, J)=DC(I, J) + DA(I, K) * DB(K, J) 
RETURN 
END 

Figure 21 Matrix Multiplication Subroutine 

48 



In Fi gure 21, the three arrays necessary for the ca Iculation are placed in common. A 

main program using this subroutine to multiply matrices of dimensions 5 x 10 and 10 x 7, 

respectively, must contain statements such as the following: 

DIMENSION AMTX(10, 10), BMTX(10, 10), CMTX(10, 10) 
COMMON CMTX, AMTX, BMTX 

CALL MATMUL (5,7,10) 

2. If array names are to be transmitted as arguments, they must appear, unsubscripted, 

in a DIMENSION statement in the subroutine. For example, the names of the matrices 

required by the subroutine of Figure 21 could be used as arguments in this manner: 

MATRIX MULTIPLICATION SUBROUTINE 
SUBROUTINE MATMUL (lD, JD, KD, DA, DB, DC) 
DIMENSION DA, DB, DC 

END 

The calling program could then have statements as follows: 

DIMENSION AMTX (10, 10), BMTX (10, 10), CMTX (10, 10) 

CALL MATMUL (5,7,10,AMTX, BMTX,CMTX) 

Note that the array names appear without subscripts in the subroutine call also. 

MACHINE LANGUAGE CODING IN A FORTRAN CONTEXT 

Since the symbolic output of the compi ler is in the language of the assembler, fami liarity with that 

language is basic to a thorough understanding of the topics discussed. Information on the assembler 

language can be obtained from the PDP-7 Symbolic Assembler (Digital-7-3-S) and the PDP-7 Users 

Handbook (F-75). 

Handling of S Coding 

As mentioned in Chapter 1, whenever the letter S (for symbolic) appears in the identification field, the 

remainder of the line is transferred to the object program exactly as written. No error diagnosis is made 

for an S-coded line. Unless the programmer is absolutely certain that he can omit them in safety, all 

S coding should be bracketed (preceded and followed) by CONTINUE statements. Example: 

49 



READ 402 
CONTINUE 

S LAS 
SAND {7 
S DAC J. 

CONTINUE 

Compi ler Generated Codi ng 

The FORTRAN compiler generates an object program of symbolic machine instructions and pseudo

instructions from the FORTRAN statements it reads. In general, each statemEmt is processed individually 

without reference to previous or subsequent statements; as a consequence, errors such as the duplication 

of statement numbers are not detected by the diagnost-ic routines of the compi ler. Coding to test the 

iteration variable of a DO loop is not generclted unti I after the last statemen1' in the DO loop. 

Symbolic Conventions 

To avoid conflicts with symbols which appear in the FORTRAN source program and symbols which appear 

in the assembler permanent symbol table (machine language instructions and clssembly pseudo instructions), 

or symbols which reference permanent locations in the FORTRAN object time system, special conventions 

are established: 

1. Symbols which appear in the FORTRAN source program and whic:h are five characters 

or less are modified by appending the period (.) character. 

2. Statement numbers are transformed into symbols by prefixing the period (.) character 

to the statement numbers. 

3. All symbols generated interna lIy by FORTRAN are four character symbols: the 

period (.) character followed by three letters. 

The period (.) character is not a permissible character for symbols which 
appear in FORTRAN source programs. It is a permissible character for sym
bols in the object program as input to the assembler. A consequence is that 
FORTRAN source program symbols (names) and the symbols whic:h are part of 
the compiled object program ordinarily differ. For example: 

genera tes the code 

1=2 

LAC {2 
DAC I. 

hence the variable name I must be referenced as I. if it occurs in a line of 
S coding. 

50 



The conventions established for symbols insure that all symbols which appear in the FORTRAN object 

program contain a period except those which are machine language instructions, mnemonics, assembler 

pseudo instructions, FORTRAN object-time system references or six-character symbols from the source 

program. To avoid conflicts, the following six-character symbols should not appear in the FORTRAN 

source program: 

DECIMA 
ANALEX 
NOSYMB 
EXTERN 
EXPUNG 
FIODEC 
NOINPU 
NINDIG 

Floating Point Commands 

VARIAB 
LlBFRM 
PUNDEF 
TELETY 
SYMBOL 
INTERN 
NARITH 
LOGCOM 

SECPRG 
MODSET 
MODRES 
EFMTEM 
EXTADD 
EARITH 
SARITH 
SIXDIG 

Instructions generated by the FORTRAN compi ler may use fixed- or floating-point operands. Standard 

machine instructions, i.e., directly executable instructions, are generated when the operands are fixed 

point. When the operands are floating point (rea!), the instructions generated must be interpreted since 

the PDP-7 does not have such instructions in its instruction set. 

The floating-point interpreting program is an integral part of the FORTRAN object-time system. It is 

entered by the pseudo instruction EFM (enter floating mode) which initializes the interpretive program 

counter. Instructions are interpreted and executed sequentially until a transfer of program control (sub

program call) or the pseudo instruction LFM (leave floating mode) is encountered. The compiler generates 

an E FM or LFM for each executab Ie statement number to insure that a II i nterna I program transfers are i tl 

the proper arithmetic mode. EFM's or LFM's are also generated whenever they are needed; example: 

I = 1 
A=1. 

When the instruction sequence is in floating mode, the following mnemonics, which are the same as the 

standard PDP-7 machine instruction mnemonics, are interpreted as floating mode commands: 

LAC 
ADD 
DAC 
JMP 
JMS 

load floati ng accumu lator 
floating add 
deposit floating accumulator 
floating imp 
floating ims 

In addition, the following mnemonics are used only in the floating interpretive system: 

FCS 
FSB 

floating clear and subtract 
floati ng subtract 

51 



FMP 
FDV 
CAS 

Two instructions which may be generated are:: 

FXA 

FLO 

floating multiply 
floating divide 
floating compare accumulator to storage 

fix the floating accumulator and 
leave floating mode 

float the fixed accumulator cmd 
enter floating mode 

Notice that FXA carries an implicit LFM and that FLO carries an implicit EFM. 

CAL instructions are handled by a program in the object-time system called the CAL Handler (see 

DEC-7-46-U). The CAL Handler saves all relevant information in a push-down stack, and the CAL 

executes in fixed point. 

Subprogram Linking 

Implicit Subprogram Calls 

An implicit subprogram call occurs when implementation of a feature included in the source language 

requires an internal subsection of the object time system or use of the FORTRAN library exponential 

function. An example of the latter case is the generation of a JMS XPN fixE~d-point operand or JMS EXP 

floating-point operand in response to the appearance of the exponential opertJtor (t). 

The appearance of an array name in a DIMENSION statement generates an implicit subprogram call of 

the following form: 

NAME, JMS CALSB 
LAW TWO 
LAW THREE 
LAW INTDIM 
.GS 

The example above supposes a three-dimensicmal array. CALSB is the name of the subscript calculating 

section of the ob ject-time system. TWO and THREE stand for the actua I va IUles of the second and third 

bounds. The initial bound is not needed for subscript calculation but generat,es storage allocation for the 

array. INTDIM will be 1, 2, or 3 for, respectively, fixed point, 2-word or 3-word floating point. It 

specifies the number of memory locations required for each array element. The symbol • GS stands for 

52 



the generated symbol which actua lIy defines the address of the array. NAME is the actual array name. 

(Refer to Construction of Dimensioned Variables, page 57.) Four additional implicit subprograms which 

may be called in a FORTRAN object program are: 

GOTO 
CALST 
GTARG 

SET2W 

computed go to 
to initialize the CAL Handler 
to get arguments of a subroutine 
or function 
to initialize 2-word floating point 
data storage 

Explicit Subprogram Calls - Explicit subprogram calls are generated by the following features of the 

FORTRAN language: 

1. A library function reference 

2. A CALL statement (subroutine) 

3. Reference to a subscripted variable 

4. An I/O control statement 

The code generated by items 1, 2, and 3 conforms to a general form; the code generated by item 4 is 

slightly different and is discussed under I/O statements. 

A normal subprogram call generates 

CAL A 

where A is the name of the subprogram. If the subprogram has arguments (a function must have arguments; 

a subroutine mayor may not have arguments; the arguments of a subscripted variable reference are its 

subscripts), the CAL instruction is followed by code of the following form: 

ARz • GS 

where ARz is ARX for fixed point mode or ARF for floating mode. The argument name of • GS is the 

memory location (if floating point, the first of two or three words). 

When passing an array name to a subroutine, subscripts are omitted and the array name appears as an 

argument: 

ARz NAME. 

When CAL is processed, the CAL Handler saves the mode (fixed or floating point), the corresponding 

accumu lator, and the return address. It then transfers control to the address indicated in the CAL in

struction. Control is returned to the calling program by means of the return portion of the CAL Handler 

which restores the accumulator and mode and transfers control back to the instruction following the 

calling sequence. 

53 



Function Linkage 

A function is always used in an arithmetic expression. It acts like a variable which is equal to the value 

of the function with the given arguments. 'Nhen the function name occurs to, the left of the equal sign 

(in the body of the function) the value of the arithmetic expression to the right of the equal sign is inter

preted by the compiler to be the value of the function. 

This value is placed in an internal location named RES, and when the return statement is encountered, 

the address RES returns to the return portion of the CAL Handler. This address is placed in a location 

called TEMAD (temporary address storage) internal to the object-time system, and the value of the function 

is then accessed indirectly through this locaf'ion. Should another function cell I occur before this address 

is referenced by the calling program, the compiler generates <;1 code to retrieve the previously calculated 

function value. Dimensioned variable references are effected through location TEMAD as though they 

were functions. 

For example, the statement 

100 A=SIN (B)+C 

generates the fol lowing object code: 

A function definition statement: 

generates the following code: 

.100, EXTERNAL SIN. 
CAL SIN. 
ARF B. 
LAC I TEMAD 
ADD C. 
DACA. 

FUNCTION FNAME (A,B,I) 

FNAME ., 

A., 
B. , 
I., 
• GS, 

INTER NAL FNAME. 
JMS GTARG 
JMP .GS 
o 
o 
o 

where • GS is a symbo I generated by the FORTRAN compi ler. The GTAR G r()uti ne, when executed, 

wou Id place the addresses of the dummy arguments A., B., and I. in the loccltions reserved for them. 

Note the use of pseudo instructions EXTERNAL and I NTERNAL. When EXTERNAL is encountered by the 

assembler, it generates information to the loader requiring that all references to the accompanying symbol 

54 



(or symbols since more than one may occur with EXTERNAL) be saved by linking unti I the occurrence of 

a definition of that symbol; this is signaled by the occurrence of INTERNAL and one accompanying sym

bol (only one symbol may occur with INTERNAL). 

For example, consider a factorial calculator function which returns a floating-point value. 

FACTORIAL CALCULATOR 
FUNCTION FACT(N) 
FACT=l 
DO 10 J=l ,N 

10 FACT=FACT*J 
RETURN 
END 

The compiler generates the following code: 

FACTORIAL CALCULATOR 
DECIMA* 

FACT. , 

N., 

• AAA, 

• AAB, 
. 10, 

FIODECt 
INTERNAL FACT. 
JMS GTARG 
JMP .AAA 
o 

LAC (l 
FLO 
DAC RES 
LFM 
LAC (1 
DAC J . 

LFM 
LAC J. 
FLO 
FMP RES 
DAC RES 

LFM 
LAC J. 
ADD (l 
DAC J. 
CMA 
ADD I N. 
ADD (l 
SMA 

/GTARG PICKS UP ARZ ADDRESS 
lAND PLACES IT IN N . 

IFLOATING POINT RESULT STORED 
/IN RES 

*DECIMA indicates that all subsequent numbers will be interpreted in decimal radix rather than in octal 
radix. 

tFIODEC indicates that all character translations are to FIODEC code; i.e., H-format in format statements. 

55 



TEM, 
TEM+O/ 
START 

Subroutine Linkage 

JMP .AAB 
LAW RES 
RETUR 
HLT 

/ ADDRESS OF RES IS RETURNED 

The code generated by the control word SUBROUTI NE is very simi lar. Since a subroutine need not return 

a value, the user must establish storage for results either by passing the argument{s) to the subroutine in 

the call statement or by establishing them in a common statement. 

The following is a possible version of the factorial calculator written as a subroutine: 

FACTORIAL CALCULATOR 
SUBROUTINE FACT (N,R) 
R=l 
DO lOJ=l,N 

10 R=R*J 
RETURN 
END 

where R contains factorial N in floating point. 

The compi ler generates the following code: 

FACTORIAL CALCULATOR 
DECIMA FIODEC 

FACT. , 

N. , 
R. , 
.AAA 

• AAB, 
• 1 0, 

INTERNAL FACT. 
JMS GTARG 
JMP .AAA 
o 
o 

LAC (l 
FLO 
DAC I R. 
LFM 
LAC (l 
DAC J . 

LFM 
LAC J. 
FLO 
FMP I R. 
DAC I R. 
LFM 

56 



TEM, 
TEM+O/ 
START 

LAC J. 
ADD (l 
DAC J. 
CMA 
ADD IN. 
ADD (l 
SMA 
JMP .AAB 
RETUR 
HLT 

Construction of Dimensioned Variables 

When dimensioned variable references occur in the FORTRAN source language, the code generated is 

very similar to that generated by a function call. A DIMENSION statement generates an internal function 

which has the name of the variable. When the function is called, its value is the address of the element 

of the array specified by the va lues of the subscripts at the time of the call, and that address is placed in 

location TEMAD. For example, the statement 

generates the object code 

On the other hand, the statement 

generates the ob ject code 

Z=A(I) 

CAL A. 
ARX I. 
EFM 
LAC I TEMAD 
DAC Z. 

A(I)=Z 

CALA. 
ARX I. 
EFM 
LAC Z. 
DAC I TEMAD 

Allocation of Array Storage and the Subscript Calculator 

A simple example of array storage allocation is the two-dimensional array A(2,2). A two-dimensional 

array is stored sequentially by rows indexed by columns (in this case): 

A(l,1) 
A(1 ,2) 

57 



A(2, 1) 
A(2,2) 

or in general, an n-dimensional array is stored with the first dimension varying least. The standard object

time system subscript calculation program accommodates up to four dimensions.. Higher dimensions may be 

provided for upon request. 

An I/O statement of the general form 

generates the following code 

I/O Statements 

RW n,m,a,b,i 

RW 
JMS .IOX 
N 
FOR .M 
ARF A. 
ARF B. 
ARX I. 
ENOIO 

where RW is READ or WRITE, .IOX designates the corresponding I/O device IProcessor. X may be 1-9, 

.101 IV keyboard input, .107 corresponds to ASCII I ine printer output etc.j devices 8 and 9 are presently 

unassigned. Normal tape IV .1057 A, OECtape IV .1 OOEC. (N is the device number (n)), and the next 

location designates the address (. M) of the accompanying format statement. Succeeding entries contain 

the addresses (A., B., I.) of the referenced variables (a, b, c). Code genercJted by an array transfer 

expression is fairly complicated but simi lar f'o the code generated by an explicit DO loop. ENDIO is 

the address of that section of the object-time system which terminates I/O operations. Note that Hollerith 

text is stored with the object program code sequence generated by the corresponding FORMAT statement. 

58 



SECTION 2 

OPERATING PROCEDURES 

DIAGNOSTICS 

AND 

ERROR MESSAGES 





CHAPTER 6 

OPERATING PROCEDURES 

This chapter details standard operating procedures for the PDP-7 FORTRAN system. PDP-7 FORTRAN is 

written for a machine having SK of memory but significantly different hardware configurations; one an 

exclusively paper-tape configuration and the other a configuration which includes minimally two tape 

units (either normal magnetic tape or a dual DECtape unit). In an SK system approximately 460010 loca

tions are available for program and data. 

The principal subsections of the FORTRAN system for paper tape are: 

Compiler 

Assembler 

Operating System 

Library 

The compiler accepts input in the FORTRAN language and produces an object program output in computer 

source language (see page 55) acceptable to the Assembler. The Assembler accepts the compi ler output 

and produces a binary relocatable version of the program and a binary version of the Linking Loader. When 

the user is ready to run the program, he loads his main program and any subprograms followed by any built

in functions called -from the library. Once the total program is in memory, he loads the operating system 

and executes his program. The operating system contains an interpreter for floating-point arithmetic, an 

interpreter for FORMAT statements, red tape routines such as fix a floating number and vice versa, and 

the I/O routines. The operating system must be in memory when a FORTRAN program is executed. 

PROCEDURE FOR USING FORTRAN WITH A PDP-7 PAPER TAPE SYSTEM 

The Bootstrap loader with starting address 17770
S 

(for SK machines) is ca lied the readin mode, or RIM, 

Loader. Pressing the START switch on the console with 17770
S 

in the ADDRESS switches is referred to 

as RIM start. 

Step 1 Prepare programs to be compiled in accordance with the conventions described 

in the precedi ng section. Each program or subprogram on paper tape must be 

followed by the three-character sequence 

carriage return-I ine feed 

carriage return-I ine feed 

form feed 

61 



Step 2 Place the paper tape labeled FORTRAN Compiler in reader, set ADDRESS switches 

to 177708' and press START. 

Step 3 Position ACCUMULATOR switches 9 and 10 as follows to indicate tape formats 

for, respectively, the intermediate object program (assembller source) tape and 

the compiler source tape: AC9 {intermediate object tape} .• up for ASCII, down 

for FIODEC. AC10 (compiler source) - up for ASCII, down for FIODEC. Turn 

on the tape punch. Place the program tape to be compiled in the reader and 

press CONTI NUE. FORTRAN punches out the intermediah~ object program tape. 

Step 4 If other programs are to be compiled, repeat Step 3. If an accidental error 

occurs at any time, such as the punch running out of paper tape before com

pilation is completed, the compilation procedure may be rE~started by replacing 

the source tape in the reader, placing 228 in the ADDRESS switch, and de

pressing START. 

Step 5 If an error occurs in the source language, the compiler typ1es a three-letter plus 

two-digit code on the teleprinter followed by the current ('last encountered) 

statement number. The compiler also prints the offending line with the errant 

character flagged by a I ine feed. See Chapter 8 for the assoc iated error con

ditions. As a rule, a source language error prevents proper execution of the 

compiled program. The error must be corrected and the prc)gram compiled again. 

However, compilation should be completed to uncover all lerrors in the same 

program. 

Step 6 When all necessary compilations have been successfully completed, remove the 

output tape(s} from the punch. 

Step 7 Place the paper tape labeled FORTRAN Assembler in the reader, set ADDRESS 

switches to 177708' and depress START. Set ACCUMULATOR switch 10 as 

follows: up if assembler source tape is ASCII, down if it is, FIODEC. 

NOTE: The setting of AC1 ° should be identical to the setting of AC9 in Step 3, 
above. 

Step 8 Place the first program to be assembled in the reader. If several programs were 

compiled together they will be separated from each other by a short length of 

62 



blank tape. The punch must be on. Depress CONTI NUE. The Assembler 

punches a partial binary output, displaying all ACCUMULATOR lights ON 

when it is finished. Should an error occur during the assembly procedure, the 

Assembler prints a message on the teleprinter. For a summary see Chapter 8 

An error printed by the Assembler usually is the result of an original program 

not detected by FORTRAN. 

Step 9 Depress CONTI NUE to finish punching the binary output. Undefined symbols 

in the source program (symbols which never appear on the left-hand side of an 

arithmetic statement, in an input statement or as the argument of a subroutine 

call, or in aCOMMON statement) are printed with a relative location auto

matically assigned by the Assembler. Any statement number which is referred 

to but never used as a statement label will be printed also. When finished, all 

ACCUMULATOR lights will again be ON. If an error occurs during this step, 

repeat the assembly process (Step 8) before accepting the error diagnosis. 

Step 10 If a printout of the relative locations of program symbols is desired, put the 

ri ghtmost switch of the ACCUMULATOR switches (bit 17) to the up position 

and press CONTINUE. If the printout is not desired, leave the switch in the 

down position and press CONTI NUE to restore the Assembler for the next 

assembly. The ACCUMULATOR lights will all be OFF at this stage. 

Step 11 If more programs are to be assembled, place the next tape in the reader and 

return to Step 8. If severa I programs were compi led together, be sure that 

the blank tape area separating them is under the reader light before continuing. 

Since the Assembler uses a buffered loader, the end of one program and the 

beginning of the next program are likely to be read into the same buffer. It is 

usually necessary to withdraw a portion of tape which has already been read in 

order to start reading at the beginning of the second and succeeding programs on 

the same paper tape. 

Step 12 Remove the assembled programs from the punch. Each program will have its 

title punched in readable format at the beginning. Since the FORTRAN 

Assembler is a one-pass assembler, the title wi II be the last item punched on 

the tape. 

63 



NOTE: The following steps describe the loading process. After each tape is 
loaded into memory the ACCUMULATOR I ights will display the first memory 
address not used. 

Step 13 Load the main program through R 1M start. It is important that the main program 

be loaded first since the Linking Loader is punched on the main program tape 

only. The loader is a lengthy strip of tape immediately following the title 

with the eighth hole punched in every line. The RIM Loadler, through use of 

a Bootstrap Routine, loads the Linking Loader which, in turn, loads the main 

program. 

Step 14 Place any subprograms in the reader {readable title is always in the leader}, 

and load through RIM start. The Linking Loader will handlle the problems of 

I inking between programs. The first instruction executed by the RIM Loader 

is a jump to an entry in the Linking Loader. 

Step 15 To obtain a printout of the absolute locations in memory of subprogram symbols 

and/or to determine if library subroutines are required, place 58 in the 

ADDRESS switches and depress START. If a subroutine or I ibrary function has 

been called but not yet loaded, its symbol will be preceded on the line by a 

minus sign followed by the address of the first reference to this symbol. If 

further subprograms are needed, they should be loaded as in Step 14 above. 

Step 16 Load the LIBRARY I/O tape; i. e., place the I ibrary tape in the reader, set 

ADDRESS switches to 6
8

, and depress START. If any subro·utine names are 

preceded by 11 __ ,11 load the 6DD or 9DD LIBRARY tape,; i.e., set ADDRESS 

switches to 6
8 

and depress START. When all called functions have been loaded, 

the loader halts, perhaps part way through the I ibrary tape. 

Step 17 Load the tape labeled IIFORTRAN Operating System II through RIM start. If 

paper tape input to the FORTRAN program is used, this sh()uld be ready in the 

reader. 

Step 18 Place 228 in the ADDRESS switches and depress START to execute the program. 

NOTE: The Linking Loader does not detect when the user has loaded a program 
over common storage {assigned backward from the last address in memory}. To 
guarantee an overlay has not occurred, the first program address not used as 

64 



indicated in the AC I ights after loading should always be equal to or smaller 
than the lowest address in common storage necessary to store the arrays and 
common variables used in the program. 

General Notes: 

1. The first word of every FORTRAN program (main or subroutine) has a relative address 

of 1
8

, 

2. The initial relocation constant is 21
8

, 

3. After each program is loaded, the AC I ights display the address of the next free 

location. This address is also the relocation of the next program to be loaded. (One 

location is unused between programs.) 

65 





CHAPTER 7 

DIAGNOSTICS 

The following diagnostics may be printed during compl iations followed by the offending statement with a 

line feed after the last character processed. Each diagnostic is identified by a three-letter name, and a 

two-digit number. For a" errors except those which indicate storage capacity exceeded, processing con

tinues. The diagnostic error print (below) is followed by the current statement number. 

As previously noted the occurrence of an error wi" necessitate correction of the error and recompilation. 

Error Error 
Reason for Error 

Name Number 

CON CONTROL STATEMENT 

Illegal control statement. 

2 Upper case character in control statement. 

COM COMMON STATEMENT 

III ega I entry in list. 

2 Symbol appears twice in COMMON. 

ASG ASSIGN 

N not a fixed-point number. 

2 Number not followed by litO. II 

3 No fixed-point variable. 

4 Illegal format - variable. 

SUB SUBROUTINE AND FUNCTION 

Name not a variable. 

2 Dummy symbol not a variable. 

3 Dummy symbol used twice. 

DIM DIMENSION 

Array name not a variable. 

2 Array dimensioned twice. 

3 Dimension not a fixed-point number. 

67 



Error Error 
Reason for Error 

Name Number 

DO DO STATEMENT 

First two I etters not do. 

2 No statement number. 

3 No end test value specified. 

4 Too many characters. 

ILF ILLEGAL FORMAT 

Nonstatement number at left margin. 

2 Missing left parenthesis. 

3 Missing right parenthesis. 

4 Missing left parenthesis. 

5 Missing right parenthesis. 

6 Comma missing in goto. 

7 Variable missing in arithmetic: statements. 

11 Illegal device number in input or output statement. 

12 III egal format in accept statement. 

17 Extra right parenthesis. 

20 Extra characters in statement" 

22 Comma missing in repetitive element in I/O list. 

24 Illegal format in I/O I ist element. 

26 Illegal format statement number in an I/O statement. 

ICH ILLEGAL CHARACTER 

1 III ega I character. 

2 Illegal upper-case character. 

4 No more characters after an illegal one. 

DIT Miscellaneous errors. Cannot proceed. 

Logic error. 

2 Wrong place in table. 

3 Dispatch number too big. 

10 Too many calls. 

11 Illegal cal. 

12 Too many ex its. 

If any of the errors labeled DIT occurs, correct all other errors and recompile; if DIT 
errors still occur, note any pertinent data and send to DEC Programming Group. 

68 



Error Error 
Reason for Error 

Name Number 

UFX UNSEEN FIXED POINT 

Fixed-point number expected; punctuation 
character or no character appeared. 

2 Floating point quantity appeared where fixed-
point number expected. 

3 Fixed-point number expected; decimal number 
appeared. 

FOR FORMAT STATEMENT 

1 Character missing. 

2 Illegal format. 

3 Characters missing. 

4 III ega I contro I character. 

5 Illegal punctuation. 

6 Specification letter other than I,F,E,X,H. 

7 N too large in H format 

IFU ILLEGAL FUNCTION USAGE 

Function name on left side outside function 
definition. 

SCE STORAGE CAPAC lTV EXCEEDED 

Processing may not proceed. 

Pol ish stack exhausted. 

2 Table exceeded. 

3 Table exceeded. 

4 Symbol generator exhausted. 

5 Table exceeded. 

6 Statement too long. 

7 Push down stack exceeded (too many nested do's). 

69 





CHAPTER 8 

ERROR MESSAGES (FORTRAN ASSEMBLER) 

The following error messages refer to the object program code generated by the compiler. Familiarity 

with this code is necessary for an understanding of this chapter. See the Assembler Program Description 

(Digital-7-3-S) for details. 

With the exception of SCE (storage capacity exceeded) and ILP (illegal parity), assembly continues after 

the error message has been printed unless assembl ing a I ibrary tape. An error message may occur in one 

of three formats. 

Format A 

ERROR PREVIOUS VALUE SYMBOL NEW VALUE 

Format A indicates errors in the redefinition of symbols. ERROR represents a three-letter code for the 

particular error. Whether the symbol was redefined depends upon the particular error. 

Error Mean i ng 

MDT The symbol was redefined with a comma. 

RSP A permanent symbol was redefined. 

RDA An attempt to redefine a symbol was made. 
The symbol was not redefined. 

Format B 

ERROR OCTAL ADDRESS SYMBOL IC ADDRESS 

The general error message is printed in Format B. It includes both the octal address and the symbol ic 

address at which the error occurred. 

Error Mean i ng 

IFP Illegal format in parameter assignment. 

IFC Illegal format in a symbolic address tag. 

IFQ Illegal format in library list. 

IFY Illegal format in internal declaration. 

IFZ More than one symbol in internal declaration. 

LlQ Illegal term punctuation in library list. 

71 



Format C 

Error Mean i ng 

MDT Thf3 location counter and address disagree in an 
address assignment. 

TUA Too many undefined symbols in a symbol ic address 
tag. 

IL F III egal format in a pseudo-instructic:m. 

LIT Illegal terminator in a PUNDEF or IEXTERNAL list. 

IFL Illegal format in a PUNDEF or EXTIERNAL list. 

I FS "I egal format in a START. 

IFI Illegal format in an input pseudo-instruction. 

SCE Storage capacity exceeded. 

INS A nonsymbol appeared in a PUNDEF list. 

IFX External symbol preceeded external declaration. 

ERROR OCTAL ADDRESS SYMBOLIC ADDRESS CAUSE 

Format C is an expanded version of Format B. CAUSE is additional informaticm to help the programmer 

ascertain the cause of the error. For example, in the case of an error caused by an undefined symbol, 

the symbol will be printed. 

Error Cause 

ILP character 

UST symbol 

UAA symbol 

UPA symbol 

ICH character 

SYS symbol 

UPN symbol 

Undefined Symbol Assignment 

Meaning 

"legal parity (place correct character in ACS and press 
CONTINUE). May also be caused by reading tape in 
backward order. 

Undefined symbol in a START or PAUSE. 

Undefined symbol in an absol ute address assignment. 

Undefined symbol in a parameter as!;ignment. 

" I ega I c haracte r . 

Previously defined symbol in interncll declaration. 

Undefined symbol in a punch pseudc~-instruction. 

At the end of assembly before the loader is punched, the undefined symbols and their definitions are 

printed. Each undefined symbol used in a storage word wi" be defined as the address of a register at the 

end of the program, and the definition printed. If the symbol was not used in a storage word, the symbol 

is printed and not defined. An example of the latter is a symbol which appears to the right in a parameter 

assignment only. 

72 



APPENDIX 1 

CHARACTER CODE EQUIVALENCES 

The two text handl ing modes (A, H) use character code sets for which the octal equivalents differ in some 

respects for the two formats. Under A format, characters are stored in a 6-bit, 64-character code called 

III ine printer FIODECII (PDP-7 Users Handbook, F-75, page 178). Under H format, characters are stored 

in a code called flexowriter FIODEC, which includes a case shift, indicated by u in the table. The 

upper case escape code is 74; the return code, 72. 

When providing a dummy string of text for a READ Hollerith operation, the user must remember that the 

code is compiled directly into the format control list. This requires that the number of core locations 

occupied by the dummy text correspond exactly to the text read in at run time. Since th is may vary in 

content, the following rules are necessary: 

1. The dummy string and the input string must be the same length. 

2. Corresponding characters in each string must agree in case; i.e., both the 

characters in the dummy string and the character in the input string must be from the 

set which is flagged by a u orboth be from the set which is not flagged. 

NOTE: If a character equivalence is indicated by NA in the table, the char
acter is not available for use in the indicated format. On the model 33, a 
shift with the letters M, L, K produces the characters] ,\, [ respectively. 

TABLE 5 CORE REPRESENTA nONS OF 
THE ASCII CHARACTERS, A AND H FORMATSt 

Character ASCII IAI Format IHI Format 

Space 240 0 o 
241 15 u 05 

II 242 32 u 01 

# 243 56 56 

$ 244 60 u 40 

0/0 245 NA NA 

tThis table applies when typing a FORTRAN program either off-line or using the Symbolic Tape Editor. 

73 



TABLE 5 CORE REPRESENTATIONS OF 
THE ASCII CHARACTERS, A AND H FORMATSt (continued) 

Character ASCII IAI Format IHI Format 

& 246 NA NA 

247 12 u 02 

250 57 57 

251 55 55 

* 252 72 u 73 

+ 253 74 u 54 

254 33 33 

255 54 54 

256 73 73 

/ 257 21 21 

0 260 20 20 

1 261 01 01 

2 262 02 02 

3 263 03 03 

4 264 04 04 

5 265 05 05 

6 266 06 06 

7 267 07 07 

8 270 10 10 

9 271 11 11 

272 NA NA 

273 NA NA 

< 274 17 u 07 

= 275 53 u 33 

> 276 34 u 10 

? 277 37 NA 

@ 300 NA NA 

a 301 61 61 

b 302 62 62 

c 303 63 63 

d 304 64 64 

tThis table appl ies when typing a FORTRAN program either off-I ine or using "the Symbol ic Tape Editor. 

74 



TABLE 5 CORE REPRESENTATIONS OF 
THE ASCII CHARACTERS, A AND H FORMATSt (continued) 

Character ASCII IAI Format IHI Format 

e 305 65 65 

f 306 66 66 

g 307 67 67 

h 310 70 70 

311 71 71 

i 312 41 41 

k 313 42 42 

I 314 43 43 

m 315 44 44 

n 316 45 45 

0 317 46 46 

p 320 47 47 

q 321 50 50 

302 51 51 

s 323 22 22 

324 23 23 

u 325 24 24 

v 326 25 25 

w 327 26 26 

x 330 27 27 

y 331 30 30 

z 332 31 31 

[ 333 77 u 57 

\ 334 76 NA 

] 335 75 u 55 

336 35 u 11 

337 NA NA 

tab 211 NA 36 

carriage return 215 NA NA 

tThis tabl e appl ies when typing a FORTRAN program either off-I ine or using the Symbol ic Tope Editor. 

75 





APPENDIX 2 

USE OF EXTENDED MEMORY 

The FORTRAN system operates autonomously within one 8K core bank. However, fac iI ities have been 

provided to allow the accessing of data outside the operative memory bank, with the restrictions that all 

such data must be stored as arrays and common storage may not be used. For purposes of discussion, we 

shall refer to data stored outside the operative core bank as being an extended array. Such arrays must 

be declared in a dimension statement before they are referenced, and the dimension statement must be 

accompanied by an extend-mode statement which is analogous to a common statement with the exception 

that its variable I ist must contain only the names of extended arrays. 

One of the definitions assigned for the FORTRAN Assembler is XND which defines the top of storage for 

extended arrays. The normal definition for XND is 37777
8

, the equivalent of an extra 8K core bank. 

This definition may be changed at the discretion of the programmer either by changing the definition in 

the assembler's permanent symbol table or by an S-coded parameter assignment in the FORTRAN program. 

For example: 

TITLE 

SXND = OCTAL 27777 DEC IMAL 

DIMENSION KV(25), PKV(25), VK(25, 25) 

EXTEN D MODE KV, VK 

will declare KV and VK (but not PKV) as extended arrays. 

Since the FORTRAN system always enables extend mode (EEM) in the hardware sense, S-coded subroutines 

must be carefully programmed when referencing indirect addresses since 15 bits will be interpreted rather 

than the usual 13 (see PDP-7 Users Handbook, F-75, page 71). 

77 





APPENDIX 3 

FORTRAN SUMMARY DESCRIPTION 

In the following description of the language used by the PDP-7 FORTRAN compiler, some fami! iarity with 

existing FORTRAN dialects is assumed. 

CHARACTER SET (ASCII) 

Basic: A-Z 0-9 I + I · I 
Special: Space, tab, carriage return, dollar sign, parentheses, line feed, (form feed used with 

paper tape) 

PUNCHED PAPER TAPE CONVENTIONS 

At most, one statement with two fields may occur per line. Field one is delimited by the left-hand margin 

and on the right by a tabulation; field two begins at the tabulation and Is terminated by a carriage return

I ine feed. 

Legal Elements in Field One 

Statement numbers. 

Dollar sign ($) is the continuation character for FORTRAN statements which are too long for one physical 

line. 

S, the letter, causes the remainder of the I ine to be copied fnto the output program verbatim. This allows 

machine language programming in the source language tape. 

C, the letter, initiates a comment. 

Field Two 

Fie'd two constitutes the FORTRAN statement proper. 

NUMBER REPRESENTATION 

Fixed-point numbers are allocated one storage word only and appear as integers, n, where 

o ~ I n I ~ 131071. 

79 



Floating-point numbers have two internal representations possible: a packed version with approximately 

six-digit accuracy requiring two storage words; a!1d an unpacked version with approximately nine-digit 

accuracy requiring three storage words. Norrnal representation is three-word, with two-word representa

tion available by definition. 

LIBRARY FUNCTIONS 

Functions presently in the library are: XABSF, ATANF, SINF, COSF, EXPF, LOGF, SQRTF, and the 

variant CLOGF which returns the common log of its argument. The argument may be a simple variable, 

an array element, or an arithmetic expression. A function may be used as are variables; all are floating 

point except XABSF. 

FORTRAN STATEMENTS 

There are four basic categories of FORTRAN statements: arithmetic, control, specification, and input/ 

output. Arithmetic statements are of the form V = E where V is a variable and E a computable expression. 

Control statements, such as IF, GOTO, DO, are those which (in general) direct program flow. Specifi

cation statements such as DIMENSION and SUBROUTINE supply information lro the compiler. I/O state

ments direct information transfers and are divided into two subcategories: those which describe the 

particular transfer desired (READ/WRITE), and those which describe the organization of the information 

transferred (FORMAT). 

Arithmetic Statements (V = E) 

V must be a variable, either simple or subscripted (an array element). E cons,ists of terms connected by 

operators, where legal terms are: 

a constant 

a simple variable 

a subscripted variable 

a function call 

an arithmetic statement enclosed in parentheses 

and the I egal operators are: 

+ plus 

/ 
* 

= 

minus 

divide 

multiply 

exponentiation 

replacement 

80 



For example: 

D (I, J, 3)= (A+ B)* (J=T+ 1.)/T 

Use of Parentheses 

Note the uses of parentheses in the example just given. They enclose the subscripts of the dimensioned 

variable D; specify the concatenation of A, B (without the pair (A + B) the expression would mean 

A + (B * J/T)); and del imit the internal arithmetic statement J = T + 1 • 

Order of Computation 

When a choice is possible, operations are performed in the following order: 

Modes 

expressions in parentheses 

unary minus* 

exponent iat ion 

multipl ication and division 

plus and minus 

replacement (equal sign) 

The modes within an arithmetic statement may be mixed floating point and fixed point. The expression 

J = T + 1. could be safely written J = T + 1 without the (floating) decimal point. If possible, combine 

the fixed-point operands using fixed-point arithmetic; for example, in the statement: 

A = B + (I + J + K)/2, 

I, J, K is added in fixed point before the conversion to floating point occurs. 

Available Statements 

GOTO 

ASSIGN 

IF 

Control Statements 

*A unary minus is preceded by an operator and has only one operand; e.g., A = -A + (C * -D) - E is the 
same as A = (-A) + (C * (-D)) - (E). The third minus is a proper (binary) minus. 

81 



GOTO 

DO 

CONTINUE 

CALL 

RETURN 

PAUSE 

STOP 

Unconditional transfer 

GOTO n: n is a statement number 

Computer GOTO - GOTO (n 1, n2, n3, .. nn), I: transfer to statement nj where j is the value of the 

fixed point variable I. 

Assigned GOTO Type One - GOTO I (n1, n2, n3, ... nn): transfer to statement nj where nj was assigned 

to I by an ASSIGN statement. 

Assigned GOTO Type Two - GOTO I: where the value of I is the statement number last assigned to I by 

an ASSIGN statement. 

ASSIGN 

ASSIGN n to i: n must be a statement number. 

IF 

IF (A) n 1, n2, n3: A may be a variable or an expression. n 1, n2, n3 are the numbers of statements to 

which control will be transferred when the value of A is < 0, = 0, > 0, respectively. 

DO 

The general form of the DO statement is: 

DO n I = m 1, m2, m3 

and it may be paraphrased as: II DO through statement n for I = m 1; after statlement n is completed, in

crement I by m3; if I is less than or equal to m2, repeat the sequence; if not, continue on in the program. II 

An om itted increment (m3) will be taken to be 1 . 

82 



DO Loop Nesting - DO loops may appear within DO loops; however, the innermost DO must end on the 

same statement (or one which occurs earlier) as that which terminates the next level (outer) DO loop. 

Upon normal exit from a DO loop, the value of the DO variable (I) will be the one generated at the final 

test, i. e., greater than m2. 

CONTINUE Statements 

Since a DO loop may not end on a statement which initiates a control transfer (such as an IF statement), 

the CONTINUE statement has been provided. Though it does not cause instruction compilation by FOR

TRAN, it may be labeled with a statement number and used to terminate DO loops (q.v.). It may be used 

also as a dummy statement anywhere in the FORTRAN source program. 

Subprogram CALLS 

The CALL statement calls subroutines. The general forms are: 

1. CALL NAME 

2. CALL NAME (ARG1, ARG2, ..• ARGN) 

where NAME is the name of the subroutine being called and the ARGi are the (variable) arguments of the 

subroutine. The arguments may be arbitrary arithmetic expressions but must agree in type with those ex

pected by the subroutine. 

RETURN Statements 

The RETURN statement has meaning only within a subroutine or function and indicates the point or points 

at which control returns to the calling program. RETURN does not imply END. 

PAUSE, STOP Statements 

The general form of the PAUSE statement is: 

PAUSE N 

where N is an octal number which may be omitted. When the statement is encountered during the execu

tion of a program the computer will halt, displaying N in the accumulator lights. Depressing the CON

TINUE switch on the console restarts the program. STOP is equivalent to PAUSE except that program 

operation cannot be resumed. 

83 



mO·DDma 
EQUIPMENT 
CORPORATION 
MAYNARD. MASSACHUSETTS 

5598 PRINTED IN U.S.A. " 10-3/66 


	0000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	back

