
BUSINESS PACKAGE II

(BUS-PAK II)

REFERENCE MANUAL

PRE L1MI NARY

DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS

BUSINESS PACKAGE II

(BUS-PAK II)

REFERENCE MANUAL

G B Colicell i
Digital Equipment Corporation
January 31, 1965

Copyright 1965 by Digital Equipment Corporation

CONTENTS

Section

System Description. 0 • 0 ••••••••• 0 ••••••••••••••••••••••••••• 0 0 • 0

System Configuration Requirements 00. 0 • 0 • 0 ••••• 0 ••••••••• 0 •••• 0 • 0 2

Available Storage 00 •••••• 0 ••••• 000 ••••••••••••• 0.0 ••• 00 •••• 0 •• 2

Modes of Operation 0 • 0 •• 0 0 0 •• 0 ••••• 0 •••••••••••••••••••• 0 ••• 0.0 3

Address i ng 0 •••••••• 0 ••••••• 0 ••• 0 •• 0 •••••• 0 ••••••••••••• 0 ••••• 0 3

Input-Output Storage Assignments 0 0 •••••• 0 •• 0. 0 ••••••••• 0 .0 •••••• 4

Editing ..••..••..•...••••• 0 •• 0 •••••••••••••••• 0 ••••••••• 0 ••• o. 4

Indexing••.• 0 ••••••••••••••••••••••••••••••••••••••• 0 •••• 4

Indirect Addressing .•..•...•••...•.....•.....••..•• 0 ••••• 0 ••••• 5

Double Precision Arithmetic 00 •••••••••••••••• 0 •• 0 •••••••• 0 •••••• 5

Program Counters•••••..•••••..•••.•••.•.••••..•..•........ 6

Sense Switches••••••..••..•..•••.••••••.....••••.••.•• 0 •• 0 6

Program Swi tches 0 •••• 0 ••••••••••••••••••••••••••••••••• 0 •••••• 6

II Instruction Description .•..•••..••••••.•••.•...•.•...••••••.•••.. 7

Instruction Format .••••••••.•••••.•.••....•.•.••••••..•.•••. 0 •• 8

Detai led Operand Descriptions. 0 •••••••••••••••••••••••••• 9

Indexing 00 •••••••••••••••••••••••• 0 ••••••••••••••••••••••••••• 12

Sing Ie. . • . • . • • • • . • . . • • • . • . . • • . • . • • • • • • • • • • . . . • . • • 12

Double •••.•••••••.•.•.••.••.••.••...•..•••.•....•••••. 13

Indirect Addressing. 0 •••••••• 0 •••••••••••••••••••••••••••••••••• 13

Effective Address Cal cu lations••••...•..•••••••.•....••••..•. 14

III Instruction Set. 0 •••••••••••• 0 •••••••••••••••••••••••••••••••••• 15

Basic Control Instructions•••••.••••••.••••.•••••.••••. 16

Data Manipulation Instructions .••..•..••••••••••.•..•..••• 21

Logical Control Instructions .•.•.•.•.....•..•••••••••...•.. 28

Arithmetic Instructions•..•••......•.•.••..•...•..•. 33

Accumulator Shift Instructions •.• 0 ••••••••••••••••• 0 •••••• 45

CONTENTS (Cont'd)

Ed i ting Feature•......•..•.•.•.•....•.•........ 48

Control Word Format•..............•.•....•... 49

AI phanumeri c Comparison Instructions••......•..•.•... 52

Numeri c Comparison Instructions•.•.........•.••.... 53

Index Control Instructions•..•......•..•.••••........ 54

Input-Output Instructions•..........•......•.......• 56

Teleprinter•...•.•..•.........•.. 56

Punch Card•...•.•..........•......•.....•.. 61

High Speed Pri nter .•......••..••.•..•. '•..•.. 63

Magneti c Tape ..•........•....•....•••.....••••. 65

Micro-Disk•...•.•.•....•....•...•.•••..•.. 79

Storage and Retrieval••.•...••............. 85

Checkpoint and Restart•..•....•......••.••..•. 87

Subroutine Control••.••.•......••..•.•..•.. 90

IV Program Preparation .•..•.•..•.•••••....•.•...•.•.......•••...• 94

V Symbol i c Language. • • • . . . • . . • . • . . • • . . • 96

Pu rpose ..•. . . • • . . . • . • • . . • . • . • . • . . • • . . • • . . • •. 96

Description of the Assembl er System. . . • • • . . • . • . . . • . .. 96

Pseudo Instructions•.•.•....•.•..•..•...• 99

Assembler Features•.•.....•...•..•.....•.•..•....• 100

VI Assembling a Bus-Pak II Program•...••.....•.............•. 101

Loading the Assembler ..•....•...•.....•...........•.•..• 101

Loading the Symbolic Punch Definition Tape•.•...... 101

Assembling a Symbolic Language Tape , ..•....•... 102

"AC" Switch Control•..............•..•....••.•..... 103

Assembler Output•.............•.....•..•.......• 104

CONTENTS (Cont'd)

Stops during Assembly 0 0 0 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 • 0 0 0 •• 0 • 0 0 0 0 1u4

Error Messages. 0 0 • 000 • 00 •• 0 0 0 0 0 • 0 0 •• 0 •••••• 0 0 0 • 0 0 •••• 0 .0104

Loading the Object Program .• 0 •••• 0 0 0 • 0 0 000 • 0 • 0 • 0 0 0 0 0 • 0 o. 107

VII Equipment Operating Features .. 0 0 0000. 0 0 0 0" 0 0 0 0 0 0 0 0.0000 •• 00 0 00108

Card Reader . 0 0 0 •• 0 0 • 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 • 0 0 0 •• 0 108

Card Pun ch o. 0 0 • 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 o. 111

High Speed Printer. 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 0 ••• 0 0 • 0 0 0 • 0 • 0 • • • • • •• 113

Magneti c Tape Transports • 0 • 0 0 ••• 0 0 • 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 0 118

Appendicies

I Character Code Chart

II Bus-Pak II I nstruction List

III Bus-Pak II Error Messages

IV Forbidden Labels

V Bus-Pak II Coding Sheet

VI Programming Examples

SECTION I

SYSTEM DESCRIPTION

Bus-Pak II, in essence, is a new computer designed for data processing

operations. It operates on a character by character basis and its instructions are pow

erfu� and easy to learn and understand. Bus-Pak II offers a variety of powerful program

ming features such as Editing, Two Modes of Indexing and Complete Input/Output Con

trol. The Bus-Pak II programm ing system was developed so that many ()f the manual

record keeping and updating operations could easily be converted to make use of' the

PDP-4 or PDP-7 computing system. Bus-Pak II users need not be awarE~ of all thel

computer intricacies. Through the use of the pseudo-language, one ccm accomplish

most of the functions of a business oriented computer including the handling of the

peripheral in-out. equipment.

This manual has been written so that programmers with minimum exper

ience wi II be able to learn and understand the Bus-Pak II Programm ing Language '.

Reference may also be made to either the PDP-4 or PDP-7 Assembler

writeups but is not a necessity.

Subroutines and other programs written in machine Assembler language

may be used within a Bus-Pak II program provided that the programmer saves the ~:tccumu

lator before execution of a Bus-Pak II instruction, and restores it when re-entering the

mach ine language program where necessary.

SYSTEM CONFIGURATION REQUIREMENTS

The Bus -Pak II Programm ing System will 0 perate on either a PDP -4 or

PDP-7 with the following configurations:

Standard Equipment

aK core storage

Paper tape reader-punch

Teletype input-output

And at least 1 input and 1 output unit shown below

Optional Equipment

Card reader

Card punch

Magnetic tape

DECtape

High speed printer

AVA I LAB LE STORAGE

The Bus-Pak II operating system occupies all of upper memory

(l,0,0,0~ to 17777 a) and locations,0a to 21a of lower memory. The balance of lower

memory is avai lable to the user minus the sum of all the buffer areas assigned to

Magnetic Tape and Micro-Disk units being used.

7777 a - total sum of all buffer areas -1 = last available storage location.

The following formula may be used to determine the additional non

available storage areas.

2

Magnetic Tape {for each un it used}

Maximum length tape record in characters .;. 3 = non -available storage.

Micro-Disk {for each unit used}(l}

{{768 - record length} x record length} 7 3 = non-available storage

{1} Do not use any remainders in calculations

MODES OF OPERATION

Bus-Pak II has two {2} modes of operation. A uRun" mode which is used

for normal execution of the users program and a "Single Instruction II mode for use in

debugging Bus-Pak II programs. The control of the mode of operation is by the AC

switch Zero (%) on the console. When in the down position, Bus-Pak II operates in

the "Run" mode. When in the up position, Bus-Pak II operates in the "single instruc

tion" mode.

In the single instruction mode of operation, Bus-Pak II halts after the

execution of each Bus-Pak II instruction and indicates in the AC lights on the con

sole, the address of the next Bus-Pak II instruction to be executed. When a "GOTO"

{transfer} instruction is executed, Bus-Pak II will not stop until the instruction at the

location indicated by the G OTO instruction is executed.

ADDRESSING

Both instructions and data essential for processing are contained in core

storage. Each core storage location is completely addressable.

Bus-Pak II instructions are variable length type instructions in that not

all the instructions take up the same number of core storage locations.

3

Data fields being processed are also of the variable length type. A data

field length is determ ined by the II N II {number of characters} field in a spec ific instruc

tion.

All data is processed from left to right, for as many characters specified

by the instruction being executed.

Both instructions and data may be interm ixed as long as the data does

not interfere with the normal flow of the program.

INPUT-OUTPUT STORAGE ASSIGNMENTS

No specific input-output areas have been assigned to any input-output

device in the Bus-Pak II system. The assignment of these areas has been left entirely

up to the programmer. In this way, more efficient and less core consuming programs

may be written. Care, though, must be taken so that an area defined for a spec ific

input-output device is large enough for that particular device.

EDITING

In the printing of reports, it is sometimes necessary to punctuate numeric

data by the addition of dollar signs, commas, and decimal points. This punctuation

would take many, many instructions of testing and shifting the data, and inserting the

correct punctuation characters. The editing feature provides th is punctuation of data

automatically based on a control word specified by the user.

Floating dollar sign and asterisk protection is also available for check

writing. Multiple sequential data fields may be edited in one editing operation.

INDEXING

Indexing is a means of address modification without disturbing the

4

original data address in an instruction. Bus-Pak II makes available two modes ()f index

ing, sing Ie indexing and double indexing.

An effective address is calculated for every "TO", uFROM", and II BY"

address field spec ified by an instruction.

In single indexing the contents of the index register specified b>' an

address field is added to the data address and this new effective address is used in the

execution of the instruction.

In double indexing, the contents of the index register specified by the

double index register is also added to the data address and this new address used in

the execution of the instruction.

INDIRECT ADDRESSING

When indirect addressing is specified, the address of the instruct'ion is

interpreted as the address of a register which contains the actual address of the data

to be processed. Multiple levels of indirect addressing are available and each level of

a JlTOu or ItFROMIt address field may use single and/or double indexing.

DOUBLE PRECISION ARITHMETIC

All arithmetic operations on numeric data must be done by the use of

one of the fifteen (15) double precision accumulators available in Bus-Pak II. Each

accumulator is capable of containing a magnitude not exceeding

± 3 4 3 5 9 7 3 8 3 6 7.

An overflow indicator (set when any calculated value exceeds that

limit) is associated with each of the 15 available accumulators. The signs of the

accumulators are computed algebraically depending on the signs of the data being

calculated.

5

PROGRAM COUNTERS

Fifteen (15) programmed counters are available for control of multiple

execution of a particular sequence of instructions.

SENSE SWITCHES

Fifteen (15) sense switches are available through the use of the AC

switches on the console for manual control of program execution.

PROGRAM SWITCHES

Fifteen (15) programmed switches are available for internal control of

program execution.

6

SECTION II

INSTRUCTION DESCRIPTION

For ease in learning and understanding all the instructions, their

descriptions wi II follow the format indicated below:

INSTRUCTION TITLE:

IN STRUCTION FORMAT:

op-code

mnemonic

operands

INSTRUCTION DESCRIPTION:

INSTRUCTION NOTE:

INSTRUCTION EXAMPLE:

Indicates the operation of the instruction.

Indicates the exact format in which the instruction

is to be written.

The actua I mach ine code assembled for the instruc

tion {for reference only}.

The mnemonic code for the instruction.

Indicates the variable operands necessary for the

instruction in the sequence in which they must

appear.

Describes, in detail, the operation of the instruc

tion.

Indicates restrictions, exceptions, and requirements

for that instruction.

Indicates the instruction1s effect on the data fields

showing what the appl icable fields look I ike both

before and after the instruction is executed.

7

INSTRUCTION FORMAT

Bus-Pak II instructions are divided into four distinct fields of information.

Each field must be separated from the other by either a carriage return (.)) or a

tabulation (--t"). The Bus -Pak II coding sheet has been developed for ease of coding

and punching of Bus-Pak II programs. (S~e Appendix V)

FIELD

LABEL

OPERATION

OPERANDS

USE

Used to assign a symbolic name to an instruction or

data for reference by instructions located elsewhere

in the program. A label may vary from one to six

alphanumeric characters in length, beginning with an

alphabetic character. Only the normal alphabetic

characters and the numbers 0-9 may be used in a

label. A comma (,) must immediately follow the

label.

Indicates the operation to be performed by Bus-Pak II.

An instruction mnemonic will normally appear in this

field.

This field is sub-divided into up to four sub-fields.

These fields are used to give Bus-Pak II the informa

tion needed to execute the instruction. Each sub

field must be separated by a tabulation (--r).
All four fields need not be used on all instructions.

See IIDetailed Operand Description II •

8

COMMENT This field may be used to place textual information

about the instruction on the I isting of the program

fer easier understanding of the program coding. A

slash (/) must immediately precede th is field. A

comment may contain any character and is only

term inated by a carriage return (~).

DETAILED OPERAND DESCRIPTION

Following is a detailed description of the different types of information

that may be contained in the operand field of an instruction. A name has been ,assigned

to each type of information for ease in recogn ition. These names will be used in the

description of the instructions, and should be referred to wherever necessary.

NAME

AC

ALT

B

BY

CHAR R?

MEANING AND USE

Indicates the number of the Accumulator being used.

Indicates the alternate tape unit specified for use in

switch ing tape un its on End -of-Tape conditions.

Indicates the blocking factor for magnetic tape

initialization.

Indicates the address of the control word to be used

in an "Editing Operation ". It should be replaced by

the label assigned to the control word. Th is field

may be indexed, double indexed, and indirectly ad

dressed. (See indexing feature).

Used in the character testing and forms control in

structions. Must be written exactly as is with the

9

CTR

FROM

IDX

INST

L

N

SW

T

question mark (?) replaced by the character desired.

Indicates the program counter being used. Should be

replaced by the actual program counter number or

label.

Indicates the address of the data field being worked

with. Should be replaced by the label assigned to the

data field. This field may be indexed, double index

ed, and indirectly addressed (see indexing feature).

Indicates the specific index register being used. It

should be replaced by the actual index number or

label.

Indicates the address or label of an instruction in a

IIGOTOII instruction. This address may be indirectly

addressed, but not indexed. It is separated from the

"GOTOB! command by a space.

Indicates the length of a given record for an input

output device initialization.

Indicates the number of consecutive character loca

tions that a particular instruction is to process.

Indicates either the sense switch or program switch

being used. Should be replaced by the actual switch

number or label.

Indicates the number of times a particular instruction

is to be executed. Can never be negative.

10

TO

u

v

Indicates the address of the data field receiving in

formation. Should be replaced by the label assigned

to the data field. Th is field may be indexed, double

indexed, and indirectly addressed. (See indexing

feature).

Indicates the particular input-output unit being used.

Should be replaced by the actual unit number or

label.

Indicates a value for use with the indexing and pro

gram counter instructions. Should be replaced by an

actual value.

11

INDEXING

SING LE INDEXING

A program sometimes requires that a particular sequence of instructions

be executed repetitively with a change only to the data addresses specified by the

instructions. The act of chang ing the data addresses prior to the execution of the in

struction is referred to as address modification.

The indexing feature of Bus-Pak II performs this address modification

automatically. Making use of this indexing feature reduces the core storage require

ments of a program and provides for faster program execution and simplification of the

programm ing effort.

Bus -Pak II makes ava ilable fifteen (15) index reg isters numbered 1 through

15. These index registers may be cleared, initially loaded with a given value, incre

mented or decremented by a given value, or deposited for the purpose of saving the

contents of the index reg ister •

To make use of the indexing feature, the programmer selects those in

structions wh ich use indexing. He then indicates the indexing operation by plac ing the

symbol (+Xn), where n is the index register to be used, in the address field to be

indexed:

ADDRESS + Xn

Before an instruction is executed, the data addresses specified by that

instruction are exam ined for indexing. If indexing is required, the contents of the pro

per index register are added to the data address to develop an effective address. This

effective address is the actual address used in the execution of the instruction.

12

DOUBLE INDEXING

Indexing is the means of modifying :I specific data address by adding

the contents of a specified index register. Double indexing therefore is the means by

which the contents of a second index register may also be add ed to the data address.

The double index register is loaded with the index register number whose

contents are to be added to the data address when double indexing is specified.

Double indexing is specified by the symbol (+D) in the data address as

follows:

INDIRECT ADDRESSING

TO+D+X1

TO+D

When indirect addressing is specified, the register indicated by the ad

dress in the instruction contains the address to be used as the final data address.

Indirect addressing is specified by placing the symbol +1 following the

address of the data address to be used.

FROM+I

TO+Xl+1

BY+X1~D+1

13

EFFECTIVE ADDRESS CALCULATION

All II FROM" , "TO", and "BY" address fields of instructions calculate

an effective address in the following sequence.

FORMAT OF ADDRESS FIELD

1. Obtain the number in the address part, Y, bits 6-17.

2. If the index field, X, bits 0-3 is non -zero, add the contents of

the specified index register to the number obtained in step 1 •

3. Obtain the double indexing bit, D, bit 5. If it is a zero, go to

step 5. If H is a 1, go to step 4.

4. Add the contents of the index register specified by the double index

register to the result of steps 1 and 2.

5. Obta in the indirect bit, I, bit 4. If it is a zero, the ca Iculation

is done and the result of steps 1, 2, 3, and 4 is the effective address.

If it is a 1, go to step 6.

6. Use the address calculated by steps 1, 2, 3, and 4 to obtain a new

word from memory, and go back to step 1 •

The effective address calculation continues until a word is encountered

with a % in bit 4. At th is point the result of steps 1, 2, 3, and 4 is taken as the effec

tive address for that instruction.

14

SECTION III

INSTRUCTION SET

The Bus-Pak II instruction set has been divided into specific types of instructions.

They wi II be described in the following sequence:

1. Basic Control Instructions

2. Data Manipulation Instructions

3. Logical Control Instructions

4. Arithmetic Instructions

5. Accumulator Sh ift Instructions

6. Editing Instructions

7. Alphanumeric and Numeric Comparison Instructions

8. Indexing Control Instructions

9. Input-Output Instructions

a • Tel eprinter

b. Punched Cards

c. High Speed Printer

d. Magnetic Tape

e. Micro-Disk

f. Storage and Retrieval Instructions

g. Checkpo int and Restart

10. Subroutine Control Instructions

15

BASIC CONTROL INSTRUCTIONS

The following instructions are used to control the Bus -Pak II operating system:

DECIMAL RADIX CONTROL

op-code mnemonic variable operands

DECIMAL

This is an instruction to the assembler to accept all numeric data as decimal

numbers.

NOTE: 1. This instruction must appear after the program IrTitle" and

before any Bus-Pak II instructions.

2. Th is instruction does not occupy any core storage locations.

16

ANELEX CHARACTER MODE

op-code mnemonic variable operands

ANELEX

Th is is an instruction to the assemb ler to accept a II textua I or character informa

tion of the program in "ANE LEX" code.

NOTE: 1. Th is instr uction must appear after the program "Title" and before

any Bus -Pak II instruction.

2. Th is instruction does not occupy any core storage location.

3. All textua I or character information used either in the Bus -Pak II

instructions themselves or as constants necessary in the processing of

the data must be in IIANE LExn code.

4. Textual information (see IITEXT'r pseudo instruction) will be stored

3 characters per word. When expanded to one character pel word

Bus -Pak II assumes the data is in IrAN ELEx rr code.

TELETYPE CHARACTER MODE

op-code mnemonic variable operands

TELETYPE

Th is is an instruction to the assembler to accept all textual or character informa

tion of the program in IITELETYPEII code.

NOTE: 1. This instruction is to be used prior to the defining of textual informa

tion which will only be typed out on the on-line teleprinter.

2. Textual information used for message printing is usually placed at the

end of the program. If it is inserted within the program itself, ItANELEX"

must again be specified to insure correct character conversion for the re

maining part of the program.
17

IN ITIALIZE SYSTEM

op-code

1174,0'1

mnemonic

BEGIN

variable operands

Th is instruction causes the Bus -Pak II operat ing system to be in itia lized •

NOTE: 1. This instruction must be the first instruction executed by the

users program.

2. Initialized the on -line teleprinter by setting it to lower case and

typing a I ine feed and carriage return.

3. Clears all the interrupt flags in the computer and turns the interrupt

to the "ON" state.

4. Resets certain controls in the Bus-Pak II operating system.

5. When the Bus-Pak II system is operating in the single instruction

mode, the system will not stop until the instruction immediately following

th is instruction has been executed.

18

UNCONDITIONAL TRANSFER

op-code mnemonic variable operands

6¢¢¢¢¢ GOTO INST

This instruction causes a transfer of the program control from one sequence of

instructions to another.

NOTE: 1. The "GOTO" and the instruction address IrINSTu must only be

separated by a space.

2. Indirect Addressing may be used with th is instruction. (See

Indirect Addressing).

3. Indexing and Double Indexing may not be used with this instruction.

4. When the Bus-Pak II system is operating in the Single Instruction

Mode, the system will not stop until the instruction at location "INSTrI

has been executed.

NO OPERATION

op-code mnemonic variable operands

74¢¢¢¢ NOP

Th is instruction performs no operation.

NOTE: 1. Th is instruction can be substituted for the operation code and

operand fields of instructions to make the instruction ineffective.

2. When the Bus-Pak II system is operating in the Single Instruction

Mode, the system will not stop until the next Bus-Pak II instruction

immediately following this instruction has been executed.

19

STOP

op-code mnemonic variable operands

1755353 STOP

This instruction will cause the Bus-Pak II system to stop operations.

NOTE: 1. The system will first wait until all input-output operations

have been com pi eted •

2. The address of the next instruction following the STOP command

is displayed on the console AC lights.

3. When the Bus-Pak II system is operating in the Single Instruction

Mode, the system will again stop after the CONTINUE key on the

console is depressed before executing the next instruction.

20

DATA MANIPULATION INSTRUCTIONS

The following instructions are used to manipulate and position input and calculated

data for eventua I output.

CLEAR STORAGE

mnemonic variable operands

CLRSTR N FROM

The "N" consecutive locations starting at address rrFROMrr are cleared to

blanks (2fi1 octal).

NOTE: 1. The original "N" consecutive locations at rrFROMn are lost.

EXAMPLE:

CLRSTR 3

CONTENTS OF before 1 2 5 7 3 %
CORE STORAGE after 1 b b b 3 % - - -
CORE STORAGE 5 5 5

ADDRESSES ~ % %
% 1 5

21

MOVE CHARACTERS

op-code

17411

mnemonic

MV

variable operands

N FROM TO

The II N II consecutive characters starting at address ,rFROMrr are moved from left

to right to the II N II consecutive character positions starting at address "Torr.

NOTE:

EXAMPLE:

1. The original IINII consecutive characters at JrTorr are replaced by

the II N II consecutive characters at "FROM"-. The rrN n consecutive

characters at IIFROMII are left undisturbed.

MV

OF CONTENTS

CORE STORA

CORE STORA

ADDRESSES

GE

GE

3

before

after

47¢

A B

A B

4

7

¢

22

473

C D E F

C A B C

4

7

3

MOVE ZONE

op-code

17412

mnemonic

MVZ

variable operands

N FROM TO

The zone portion only (bits B and A of a character) of the rrN" consecutive

characters with the starting address II FROM II are moved from left to right to the zone

portion only of the "N II consecutive characters with the starting address uTO" .'

NOTE:

EXAMPLE:

1. The original zone portions only of the uNit consecutive

characters at "TOil are replaced by the zone portions only of

II Nil consecutive characters at ItFROMIt. The rrNIt consecutive

characters at "FROM" and the numeric portion only of the uN"

consecutive characters at ItTOIt are left undisturbed.

MVZ 5%2 5%5

+ -
CONTENTS OF before 5 7 6 3 9 1

+ +
CORE STORAGE after 5 7 6 3 9 1

CORE STORAGE 5 5

ADDRESSES % %
2 5

23

MOVE NUMERIC

~)p-code

117413

mnemonic

MVN

variable operands

N FROM TO

The numeric portion only of the uN" consecutive characters with the starting

address "FROM" are moved to the numeric portion only of the rrN" consecutive char

clcters with the starting address "TO".

NOTE:

EXAMPLE:

1. The original numeric portion only of the uN" consecutive

characters at "TO" are replaced with the numeric portion only

of the" N" consecutive characters at rrFROMrr. The n Nrr consecutive

characters at "FROM" and the zone portion only of the rrN" consecu

tive characters at "TO" are left undisturbed.

MVN 3 3¢¢

+ -
CONTENTS OF before 5 7 3 5 2 1

7 3 -CORE STORAGE after 5 5 7 3
-

CORE STORAG E 3 3

ADDRESSES ¢ ¢

¢ 3
i

24

MOVE AND SUPPRESS ZEROS

op-code

17414

mnemonic

MVS

variable operands

N FROM TO

The "N" consecutive characters with the starting address rrFROMu are moved

to the "N" consecutive character positions with the starting address uTOu. As each

character is moved, it is tested for zero. If it is a zero and it is to the left of the

most significant digit (other than zero), the zero is replaced by a blank (2¢ octal).

When the most significant digit is found, zero suppressing is term inated.

NOTE:

EXAMPLE:

1. The orig inal liN II consecutive characters at rrTOIr are replaced

by the liNn consecutive characters at rrFROMIr •

2. All leading zeros up to the most sign ificant dig it are replaced

by blanks.

3. All zones of the rece iving field are lost.

4. The "N" consecutive characters at rrFROMrr are left undisturbed.

5. If a field contains all zeros, the resulting field will be entirely

blank.

MVS 3

+
CONTENTS OF before ¢ ¢ 5 A B C

+
CORE STORAGE after ¢ ¢ 5 b b 5 - -
CORE STORAG E 5 5

ADDRESSES ¢ ¢

¢ 3

25

MOVE AND EXPAND

op-code

17415

mnemonic

MVX

variabl e operands

N FROM TO

The II N II consecutive characters {packed three characters per storage word}

with the starting address "FROM" are moved to the "N" consecutive character

positions {one character per storage word} with the starting address "Ton.

NOTE: 1. The orig ina I II N II consecutive characters at trTO" are replaced

by the "NII consecutive characters with the starting address ItFROMII •

The II N II consecutive characters {packed three characters per storage

word} at "FROM" are left undisturbed.

2. The "N" consecutive characters at HFROM,r mus't be in "ANELEX"

code and packed three characters per storage word ~

3. The pseudo-instructi·on nTEXTrr under rr ANELExrr code control

is used to input the II Nil consecutive characters, packed three characters

per storage word at "FROMrr.

4. This instruction is normally used to expand rrCONSTANTIJ informa

tion used as input to the assembly process so that it can be used by the

Bus-Pak II data manipulation instructions.

26

CHARACTER ZONE MANIPULATION

op-code mnemonic variable operands

TO

These instructions operate on the zone portion only of the character at location

II TO II • Following are the instruction mnemonics and the effect each has on the char-

acter zone.

op-code mnemonic effect --
1742% SETX sets zone to 6% octal (plus)

17421 SETY sets zone to 4% octal (m inus)

17422 CLZ clears the zone to %% octal

NOTE: 1. The numeric portion of the character is left undisturbed.

27

LOGICAL CONTROL INSTRUCTIONS

The follow ing instructions may be used to control the log ica I flow of the program.

Both internal and external control are available.

Internal control may be exercised by the use of program switches, program counters,

ror the actual data being processed.

External control can be exercised by the use of sense switches on the computer

console.

TEST CHARACTER EQUAL

op-code

17456

mnemonic

TCE

variabl e operands

CHAR R? TO GOTO INST

The single character at address IITOII is compared to the character IICHAR R?II

If the single character at address "Ton is identical to the character desired the

instruction 'roTO INSP' will be executed. Otherwise, the program continues in

sequence.

NOTE: 1. Core storage is left undisturbed.

2. The character at address "Ton must be in BCD mode, one character

per storage location.

3. The character being tested for by "CHAR R?1t must be under the

ANELEX mode when being assembled.

4. Bus-Pak II will automatically convert the character desired from

AN E LEX to BCD code before the actua I test is made.

5. Indexing, double indexing I and/or indirect addressing may be used

with the "TOil address.

28

SEARCH FOR CHARACTER

op-code

175%5

mnemonic

SEARCH

variable operands

N CHAR R? FROM GOTO INST

This instruction will cause a search, character by character, of the rrN"

consecutive characters with the starting address rrFROMrr for the character rrCHAR R?It.

If no such character is found within the rrNrr characters being tested the in

struction JIG OTO I NSTH wi II be executed. If the character is found, the program

continues in sequence.

NOTE: 1. Core storage is I eft undisturbed.

2. The count of the number of characters tested before the character

was found will be found in index register #15. {For example, if

the character desired was in the first location searched, index

register #15 would contain zero}.

3. The previous contents of index reg ister #15 are lost.

TEST SENSE SWITCH

op-code

17457

mnemonic

TSS

variable operands

SW GOTO INST

This instruction enables the user to test one of the 15 sense switches on the

computer console. If the switch being tested is in the up position, the rrGOTO INSTil

will be executed. Otherwis e the program continues in sequence.

NOTE: 1. The right most 15 accumulator switches on the console are

defined as sense switches, numbered 1 through 15 respectively.

29

CHARACTER ZONE TESTS

op-code mnemonic variable operands

FROM GOTO INST

These instructions test the two zone bits of the character at location "FROM" •

The following table defines the instruction mnemonic and the condition under which

the IIGOTO INST" wi" be executed.

op-code

17462

17463

Note:

mnemonic

IFX

IFY

condition

Zone portion equal to 60 octal (plus)

Zone portion equal to 40 octal (minus)

1. Core storage is left undisturbed.

LOAD PROGRAM COUNTER

op-code

17454

mnemonic

LDCTR

variable operands

CTR y

This instruction causes program counter IICTR,r to be set to the value "yn.

NOTE: 1. Core storage is left undisturbed.

2. lIyll must not be a negative val ue.

3. If the II TSTCTR" instruction is to be executed prior to the instruc

tions to be repeated, the value 'ryn must be the number of repeats

+1 •

4. Fifteen (15) program counters are available in the Bus-Pak II

system.

30

TEST PROGRAM COUNTER

op-code

17455

mnemonic

TSTCTR

variable operands

CTR GOTO INST

Th is instruction decrements the contents of program counter rrCTRrr and tests the

results. If the result is not zero, the instruction "GOTO INSTrr will be executed.

Otherwise, the program continues in sequence.

NOTE: 1. Core storage is I eft und isturbed •

2. This instruction is normally executed immediately following the

instructions being repeated with the rrGOTorr instruction transferring

to the first instruction being repeated.

PROGRAM SWITCH CONTROL INSTRUCTIONS

op-code mnemonic variable operands

SW

These instructions are used to control the status of the rrsw n internal prognam

switch. Fifteen (15) program switches are available in .he Bus-Pnk II system. The

following table defines the instructions mnemonic to be used and its effect on the

program switches.

op-code

17464

17465

NOTE:

mnemonic

SET

CLEAR

effect

Sets the switch rrsw" to the ON state

Sets the switch rrsw'r to the OFF state

1. If nsw" is zero (¢), the instruction affects all fifteen (15)

program switches.

2. Core storage is left undisturbed.

31

TEST PROGRAM SWITCH

op-code

174613

mnemonic

TPS

variable operands

SW GOTO INST

This instruction tests program switch nsw" and if switch trSW" is set, the

instruction "GOTO INSTil is executed. Otherwise, the program cont inues in

sequence.

NOTE: 1. Core storage is left undisturbed.

TEST ACCUMULATOR OVERFLOW

op-code

17461

mnemonic

TAO

variable operands

AC GOTO INST

The overflow indicator of the accumulator specified by "ACtr is tested. If an

overflow has occurred in the specified accumulator, the instruction "GOTO INST" is

executed. Otherwise the program continues in sequence.

NOTE: 1. The overflow indicator of the spec ified accumulator is

cleared by this instruction.

2. The overflow indicator 'is also cleared when a IVCLRAcn instruction

is executed.

3. If an overflow has occurred on an accumulator operation, the

result of the operation is indeterminate.

32

ARITHMETIC INSTRUCTIONS

All arithmetic operations must be done in one of the 15 accumulators available

in the Bus-Pak II programming system. These accumulators are numbered 1 through 15,

each of which can contain a positive or negative value whose magnitude does not exceed

± 3 4 3 5 9 7 3 8 3 6 7. If the magnitude exceeds the I~ximurn., overflow occurs.

An overflow indicator is associated with each of the 15 accumulators.

The signs of the contents of the accumulators are computed algebraically consistent

with the sign of the data in the accumulator itself and the sign of the data being used in

the computation.

The sign of the data stored in core storage may be found over the un its position of

the data being computed. If the zone of the units position is equal to 40 octal, t·he

value is negative. Otherwise the sign is assumed positive.

The sign when stored into core storage after an accumulation will always be placed

over the units position of the data being stored. A negative sign will be equal tOt 40 octal

and a positive sign will be equal to 60 octal.

Signs over other than the units position of data being used will be ignored.

For decimal point alignment see "Accumulator Shift Instructions lt
• The imaginary

decimal point location must be taken into consideration in all arithmetic operations,

especially in the multiplication and d'ivision operations. The following rules apply:

Multiplication

The number of decimal places in the product will be the sum of the decimal

places of the multiplicand and the multiplier.

33

Division

The number of decimal places in the quotient will be the number of decimal

places of the dividerP minus the number of dec imal places of the divisor.

Addition and Subtraction

When adding or subtracting different values, the decimal point must be aligned

correctly or incorrect results will occ.ur.

CLEAR ACCUMULATOR

op-code

1741,0'

mnemonic

CLRAC

var iab I e operands

AC

The contents of accumulator IIACII are set to plus zero (+,0').

NOTE: 1. The original contents of accumulator rrACtr are lost.

2. The overflow indicator assoc iated with accumulator nACII is

cleared.

3. If uAC" is made zero (iJ), all accumulators are set to plus

zero (+0) and all their associated overflow indicators are

cleared.

34

LOAD ACCUMULATOR

mnemonic

LOADAC

variable operands

AC N FROM

The II N II consecutive characters with the starting address rrFROM II are placed

into the accumulator "AC" •

NOTE:

EXAMPLE;

1. The original contents of accumulator rrAcrr a re lost.

2. The sign of accumulator II AC" is made equa I to the sign

over the units position of the uN II consecutive characters at IIFROM" •

3. Core storage is left undisturbed.

4. The overflow indicator associated with accumulator "AC" is left

und isturbed •

LOADAC 3 3 5,01

-
CONTENTS OF before Q 3 4 -. -
CORE STORAGE after 2 3 4

CORE STORAGE 5

ADDRESSES ,0
1

CONTENTS OF before +35291

ACCUMULATOR after -234

3

35

DEPOSIT ACCUMULATOR

op-code

174¢6

mnemonic

DEPAC

variable operands

AC N TO

The right most II N II consecutive characters of the contents of accumulator "ACII

are deposited into the II N II consecutive characters with the starting address liTO II •

NOTE:

EXAMPLE:

1. The contents of accumulator IIAcn are left undisturbed.

2. The original IIN" consecutive characters at IrTon are lost.

3. The sign of the accumulator is placed in the zone portion of the

units position of the data deposited.

4. The overflow indicator associated with accumulator nACII is left

und isturbed •

DEPAC

CO

CO

NTENTS OF

RE STORAGE
-

RE STORAGE CO

AD DRESSES

CONTENTS OF

ACCUMULATOR

1¢

before

after

before

after

3 5¢1

3 7 9

5 2 1

5

¢

1

-39521

-39521

36

ADD TO ACCUMULATOR

op-code

175fJ3

mnemonic

ADDAC

variable operands

AC N FROM

The "N" consecutive characters with the starting address ffFROM" are algebrai

cally added to the contents of accumulator IIAcn and the result placed in accumulator

"AC" •

NOTE:

EXAMPLE:

1. Core storage is I eft undisturbed.

2. The sign over the units position of the rrN" consecutive characters

at "FROM Il is taken jnto consideration.

3. The original contents of accumulator Ir Acrr are lost.

4. If the result of the addition produced a value whose magnitude

exceeds the capacity of the accumulator I the associated overflow

ind icator wi II be set. The result itsel f is indeterm inate.

5. Zero answers wi II always be made +fJ.

ADDAC 5 3 5fJ1

CONTENTS OF before fJ 5 ~
CORE STORAGE after fJ 5 3

CORE STORAG E 5

ADDRESSES fJ
1

CONTENTS OF before +2fJfJ

ACCUMULATOR after +147
5

37

SUBTRACT FROM ACCUMULATOR

op-code

174,0'3

mnemonic

SUBAC

variable operands

AC N FROM

The II N II consecutive characters with the starting address trFROMn are algebrai

cally subtracted from the contents of accumulator trAcn and the result placed into accu

mulator IlACIl •

NOTE:

EXAMPLE:

1. The original contents of accumulator rrAcn are lost.

2. Core storage is I eft undisturbed.

3. The sign over the un its position of the nNrt consecutive characters

being added is taken into consideration.

4. If the result of the subtraction produces a value whose magnitude

exceeds the capac ity of the accumulator, the associated overflow

ind icator wi II be set. The resu It itsel f is indeterm inate.

SUBAC 5 3 5,0'1

-
-

CONTENTS OF before ,0' 2 5
-

CORE STORAGE after ,0' 2 5

CORE STORAGE 5

ADDRESSES ,0'

1
-

-
CONTENTS OF before -5,0',0'

I

ACCUMULATOR after -475

5

38

MULTIPLY ACCUMULATOR

op-code

174,0'4

mnemonic

MULAC

variab I e operands

AC N FROM

The contents of accumulator II ACII are multipl ied by the nN II consecutive

characters with the starting address "FROMIt and the result placed in accumulator

"AC".

NOTE:

EXAMPLE:

1. The original contents of accumulator nAcrr are lost.

2. Core storage is left undisturbed.

3. If the result of the multiplication produces a value whose

magnitude exceeds the capacity of the accumulator I the associated

overflow indicator will be set. The result itself is indeterminate.

MULAC 3 3 5,0'1

+
CONTENTS OF before ¢ 1 2

+
CORE STORAGE after ,0' 1 2

CORE STORAGE 5

ADDRESSES ,0'

1

CONTENTS OF before +12

ACCUMULATOR after +144

3

39

DIVIDE INTO ACCUMULATOR

op-code

174135
mnemonic

DIVAC

variable operands

AC N FROM

The contents of accumulator II AC" are divided by the nN II consecutive charac

ters with the starting address II FROM". The results are placed in accumulator II AC" •

NOTE:

EXAMPLE:

1. If the "N" consecutive characters with the starting address

II FROM II are greater than the contents of accumulator It ACII I the

result of the division is zero.

2. The integral part of the quotient is taken as the result and the

fractional part (the remainder) is discarded.

3. The original contents of accu mulator rrACIt are lost.

4. Core storage is left undisturbed.

5. Overflow may not be set because of a division.

DIVAC

CONTENTS OF

CORE STORAGE

CORE STORAGE

ADDRESSES

CONTENTS

ACCUMULA

5

OF

TOR

5

before

after

before

after

3 5131

13 13 5

13 13 5

5

13
1

+23

+4

40

ADD TO MEMORY

op-code

17523

mnemonic

ADDMEM

variable operands

AC N TO

The contents of accumulator "AC" are algebraically added to the "N" consecu

tive characters with the starting address II TOil • The results are placed into the "NII

consecutive character positions with the starting address nTO" •

NOTE:

EXAMPLE:

1. The contents of accumulator II ACIt are left undisturbed.

2. The sign over the un its position of the nN n consecutive characters

at II TO II is taken into consideration.

3. The orig ina I liN II consecutive characters at ItTO" are lost.

4. If the result of the addition produced a value whose magnitude

exceeded the capacity of the accumulator I the associated overflow

indicator will be set. The result itself is indeterminate.

5. The sign of the result is placed over the un its position of the II Nil

consecutive characters at nTo·r.

ADDMEM 15 3

+
CONTENTS OF before % 7 5 3 9

CORE STORAG E after 1 1 ~ 3 9

CORE STORAG E 5 5

ADDRESSES % %
1 5

CONTENTS OF before +35

ACCUMULATOR after +35

5

41

SUBTRACT FROM MEMORY

op-code

17522

mnemonic

SUBMEM

variable operands

AC N TO

The contents of accumulator "AC" are algebraically subtracted from the liN"

consecutive characters with the starting address "TOII. The results are placed into

the II Nil consecutive character positions with the starting address "TOil •

NOTE:

EXAMPLE:

1. The contents of accumulator IIAC" are left undis,turbed.

2. The sign over the units position of the IrNIt consecutive characters

at II TOil is taken into consideration ..

3. The original II N II consecutive characters at Irron are lost.

4. If the result of the subtraction produced a value whose magnitude

exceeds the capacity of the accumulator, the associated overflow

indicator will be set. The result itself is indeterminate.

5. The sign of the result is placed over the units position of the

"N" consecutive characters at liTO".

SUBMEM

_ _--_ ...
CONTENTS OF

CORE STORAGE

CORE STORAGE

ADDRESSES

l-.

CONTENTS

ACCUMULA

1,0'

OF

TOR

1,0'

before

after

before

after

42

3 5,0'1

Z ,0' 5 ¢ 9 9

Z 3 5 ,0' 9 9

5 5 5

,0' ,0' ,0'

,0' 1 5

+3,0',0'

+3,0',0'

MULTIPLY MEMORY

?p-code

17524

mnemonic

MULMEM

variable operands

AC N TO

The contents of the II N II consecutive characters with the starting address II TOil

are multipl ied by the contents of accumulator If Acn. The results are placed into the

II Nil consecutive character positions with the starting address nTon.

NOTE:

EXAMPLE:

1. The contents of accumulator II ACIt are left undisturbed.

2. The original II Nil consecutive characters at rrTon are lost.

3. If the result of the multiplication produced a value whose

magn itude exceeded the capac ity of an accumu lator, the assoc iated

overflow indicator will be set. The result itself is indeterminate.

4. The sign of the result is placed over the units position of the "N"

consecutive characters with the starting address rrTO".

MULMEM 4

CONTENTS OF before ~ ~ 1 2

CORE STORAGE after ~ 1 4 4

CORE STORAGE 5

ADDRESSES ~

~

CONTENTS OF before +12

ACCUMULATOR after +12

1~

43

DIVIDE INTO MEMORY

op-code

17525

mnemonic

DIVMEM

variable operands

AC N TO

The II N II consecutive characters with the starting address liTO" are divided by

the contents of accumulator II AC". The result is placed into the rrN n consecutive

character positions with the starting address "Ton.

NOTE:

EXAMPLE:

1. The contents of accumulator tr Acrr are left undisturbed.

2. The orig@nal II N II consecutive characters at n-TOII are lost.

3. The integral part of the quotient is taken as the result and the

fractional part (the remainder) is discarded.

4. If the contents of accumulator "Acrr are greater than the II N II

consecutive characters with the starting address nTO", the result

of the division is plus zero (+91).

5. Overflow may not be set because of division.

DIVMEM

CONTENTS OF

CORE STORAGE
-

CORE STORAGE

ADDRESSES

-

CONTENTS

ACCUMULA

113

OF

TOR

before

after

before

after

44

4

13 1 4 4

13 13 1 2

5

13
%

--
+12

+12

ACCUMULATOR SHIFT INSTRUCTIONS

The following instructions may be used for the alignment of decimal positions in

arithmetic operations.

The imaginary decimal point location must be taken into consideration for (lll

arithmetic operations. (See Arithmetic Instructions).

SHIFT ACCUMULATOR LEFT

op-code

175¢6

mnemonic

SHFTL

variable operands

AC T

This instruction causes the contents of accumulator rrAC" to be shifted left

"T" character positions.

NOTE:

EXAMPLE:

1. The contents of accumulator nAC" are in essence multipl ied

by l¢T.

2. In shifting an accumulator left I the resulting contents of the

accumulator may not exceed the capacity of the accumulator.

3. The sign of the accumulator is left undisturbed.

4. Overflow may be set.

SHFTL 13 3

CONTENTS OF before +321

ACCUMULATOR after +321¢¢¢

13

45

SHIFT ACCUMULATOR RIGHT

op-code

175Jt7

mnemonic

SHFTR

variable operands

AC T

Th is instruction causes the contents of the accumulator rr Acn to be sh if ted right

"T" character positions.

NOTE:

EXAMPLE:

1. The contents of accumulator JrAc·r are in essence divided by

l%T.

2. If the contents of the accumulator being shifted are less in value

than l,0'T, the result of the shift will be plus zero (+¢).

3. The sign of the accumulator is left undisturbed.

SHFTR 1,0' 2

CONTENTS OF before +52173

ACCUMULATOR after +521
1,0'

46

SHIFT ACCUMULATOR RIGHT AND ROUND

op-code

1751.0'

mnemonic

SHFTRR

variable operands

AC T

The contents of accumulator IJ ACII are sh if ted right uT'r character positions.

A five (5) is added to the last character being shifted to increment the resulting contents

of the accumulator by one (l) if the last character was a va lue of five or more.

NOTE:

EXAMPLE:

1. The contents of accumulator IIACII are in essence divided

by l¢T.

2. If the last character be ing sh if ted is equa I to or greater than 5,

a one is added to the units position of the resulting c'ontents of the

accumulator.

3. If the contents of the accumulator being shifted are less than 5 x

l¢T-1, the result of the shift will be plus zero (+¢).

4. The sign of the accumulator is left undisturbed.

SHFTRR 3 3

CONTENTS OF before +725731

ACCUMULATOR after +726
3

47

EDITING FEATURE

Bus-Pak II has the ability to automatically punctuate numeric data for eventual

output on printed reports. Through the use of a control word, any format of punctuation

may be obtained.

In editing, certain laws must be followed to insure correct punctuation of data.

Some of these laws are common to both editing instructions and will be defined below.

The laws not common to both editing instructions will be defined in the description of

their respective edit instruction.

COMMON LAWS

1. The II Nil field of the edit instruction must indicate the length of the

control word being used, not the number of characters being edited.

2. The number of blanks and zeroes contained in a control word must

equal the total number of characters to be edited.

3. The II FROMII address field must always address the first character

to be edited.

4. The IITOII address field must always address the first character of the

control word being used in the output field.

48

CONTROL WORD FORMAT

The control word is made up of certain characters wh ich govern the editing operation.

Follow ing is a I ist of these characters and the ir effect on the editing operation:

Character

~ (blank)

13 (zero)

, (comma)

• (decimal point)

$ (dollar sign)

* (asterisk)

Effect

Is replaced by its corresponding digit of the "N"

consecutive characters being edited. If its corres

pond ing dig it is zero (12 -octa I) and zero suppress ing

is active, the current filler code will replace the

blank.

Is replaced by its corresponding digit of the II Nil

consecutive characters being edited. If its corres

ponding digit is zero (12-octal) and zero suppressing

is active, the current filler code will replace the

zero. Zero suppressing is then made inactive"

Remains in the edited character position where it

was orig ina lIy placed. Is replaced by the current

filler code only if zero suppressing is active •

Remains in the edited character position where it was

orig ina II y placed. Is replaced by the current fi II er

code only if zero suppressing is active.

Remains in the edited character position where it

was originally placed.

Indicates the asterisk protection feature is acHve.

Asterisk (*) is made the current filler code and it

will replace all characters being suppressed. Nor

mally the filler code is blank (20-octal).

49

-.-:~. (floating dollar sign)

CR (Credit Symbol)

- (m inus sign)

EDITING EXAMPLES

Indicates the floating dollar sign feature is active.

Dollar sign ($) is made the current filler code and it

will replace all characters being suppressed. As each

suppressed character is replaced by a dollar sign, the

preceding character is made blank (20-octal). Nor

mally the filler code is blank (20-octal).

Remains in the edited character positions where it

was originally placed only if the sign of the data

being edited is minus. If the sign is plus, the "CRII

is replaced by blanks. Has th is effect on Iy if CR are

the right most two characters in the control word.

Remains in the edited character position where it

was originally placed only if the sign of the data being

edited is minus. If the sign is pi us, the II _II is replaced

by a blank. Has this effect only if the symbol "_"

is the right most character of the control word.

DATA EDIT CONTROL WORD RESULTS
.-

¢¢593¢~ $ ~ ~ , ~ ~ ¢ • b ~ $ b b b - - - 5 9 3 .¢¢
+

¢¢ ¢¢593¢¢ $ b b , ~~¢ b b - $ b b b 5 9 3 b - - -
¢132599 $ b b , ~ ~ ¢ • b b CR $ b 1 , 3 2 5 • 9 9 CR - -
¢¢¢¢¢¢¢ $ b b , ~ ~ ¢ • b b $ b b b b b b .¢¢ - - - - - -4--

%¢¢5278 $ * b !:~¢ b b - $ * * * * 5 2 7 8 b , ,-
¢¢¢¢¢¢5 $ * b !:~¢ b b CR $ * * * * * * ¢ 5 b b ,
¢¢¢7563 .l- b b , !: ¢ b • b b CR $ 7 5 6 3 CR - - - - -
¢¢¢¢325 -.b b , ~¢ b b b - $ ¢ 3 2 5 -

50

EDIT

op-code

17416

mnemonic

EDIT

variable operands

N FROM TO

This instruction causes the numeric data with the starting address IIFROMII to be

moved to and edited by the control word contained in the nNIt consecutive charac:ters

with the starting address II TOil •

NOTE: 1. The numeric data at II FROMn are left undisturbed.

2. The control word to be used in the editing operation must first

be moved to the liNn consecutive characters at nTon.

3. IINII must specify the length of the control word being used.

MOVE AND EDIT

op-code

17417

mnemonic

MVEDIT

variable operands

N FROM TO BY

This instruction operates similarly to the nEDIT'r instruction except that the control

word need not be previously placed into the trNII consecutive characters with the start

ing address II TOil. Th is instruction op erates in the following sequence:

1. The II Nil consecutive characters at ItBY" are moved and expanded to thE:!

II N II consecutive characters with the starting address IrTon.

2. Then the numeric data at II FROM II is moved to and edited by the liN I!I' con

secutive characters at nTO II •

NOTE: 1. The numeric data at ItFROM It is left undisturbed.

2. The control word specified by the ftBYlr address must be defined

using the IITEXTIt pseudo instruction and must also be in ItANELEX" code.

3. The editing operation is affected by the characters previously defined.

51

ALPHANUMERIC AND NUMERIC COMPARISON INSTRUCTIONS

The following instructions are divided into two distinct types of comparisons.

Alphanumeric, which may be used to compare data internally in core storage and

numeric which is used to compare the contents of an accumulator to data in core storage.

ALPHANUMERICAL COMPARISONS

op-code mnemonic variable operands

N FROM TO GOTO INST

With all the alphanumeric comparison instructions, the rrNIt consecutive characters

at the starting address "FROM" are compared alphanumerically to the rrN" consecutive

characters with the starting address "TO". The execution of the rrGOTO INspr is de

pendent on the type of comparison made and its results. The following table indicates

the types of comparisons that can be made and the conditions checked for. The ItGOTO

INSTil is executed only if the condition is met.

op-code mnemonic "G OTO INSP" executed if

17466 CMPEQU "FROM't equal to "TO"

17467 CMPUEQ ItFROM,runequal to rrTorr

17471 CMPGRT "FROM" greater than nTorr

1747% CMPLES "FROMIt less than "To,r

17424 CMPGEQ "FROM,r greater or equal to ,rTorr

174f07 CMPLEQ "FROMrr less or equal to rrTorr

NOTE: 1 • See the collating sequence spec ified in Appendix I.

52

NUMERICAL COMPARISON

op-code mnemonic variable operands

AC N TO GOTO INST

With all the numeric comparison instructions the contents of accumulator II ACII

are compared numerically to the IINII consecutive characters starting at address IITOII.

The following table defines the types of comparisons that can be made. The table indi

cates the instruction mnemonic and the condition that is to be met for the IIGOTO INSTil

instruction to be executed.

o~-code

17472

17473

17475

17474

17477

17476

NOTE:

mnemonic IIGOTO INSTn executed if

EQUAL (tAcn equal to 'tTort

UNEQUAL nAC" unequal to nTO't

GREATER "Acn greater than 'tTO't

LESS IIACII less than "TO't

GRTEQU IlAcn greater or equal to ,rTo n

LESEQU "ACIt less or equal to "Torr

1 • Core storage is left undisturbed.

2. The sign {zone} of the least significant digit of the nN"

consecutive characters at nTO" are taken into consideration.

3. All other zones of the nN n consecutive characters at nTO"

are ignored.

4. The contents of accumulator It AC't are left undisturbed.

53

INDEX CONTROL INSTRUCTIONS

Fifteen (15) index registers are available for address modification in the

Bus-Pak II system. Double indexing is also available. Normal indexing is

not required to make use of double indexing.

LOAD INDEX WITH YALUE

op-code

1745~

mnemonic

LDIDX

variabl e operands

IDX Y

This instruction sets the contents of index register nIDX" to the value "Y".

NOTE: 1. Core storage is left undisturbed.

2. To clear an index register I nyu would be made equal to zero (Jt1).

3. "Y" may be an address or a positive or negative number.

4. The prev ious contents of index reg ister rr I Dxn are lost.

ADD Y ALUE TO IN DEX

op-code

17451

mnemonic

ADDIDX

variable operands

IDX Y

This instruction causes the value ,rvrr to be algebraically added to the

contents of index register nIDx,r.

NOTE: 1. Core storage is left undisturbed.

2. The value IrY" may be a positive or negative number I or address.

3. The previous contents of index register lI'IDXrt are lost.

54

DEPOSIT INDEX

op-code

17453

mnemonic

DEPIDX

variable operands

IDX TO

This instruction deposits the contents of index register uIDX" in the single

storage location liTO".

NOTE: 1. The contents of the index reg ister are left undisturbed.

2. An index register is normally deposited into the "N", IIY",

or address fields of instructions.

lOAD INDEX WITH DECIMAL YALUE

op-code

17452

mnemonic

LDIDEC

variable operands

IDX N FROM

This instruction loads index register trlDxrr with the nl}meric value of the "Nil

consecutive characters with the starting address rrFROMtt •

NOTE: 1. Core storage is I eft undisturbed.

2. The value of the uN" consecutive character at uFROM" may be

positive or negative.

3. The previous contents of index register rrlDxrr are lost.

LOAD DOUBLE INDEX REGISTER

op-code

175%2

mnemonic

LDBLlDX

variable operands

IDX

The index register number ttlDxrr is loaded into the double index register.

NOTE: 1. Core storage is ledt undisturbed.

2. tllDXtI will be the index register number of the index register

to be used whenever double indexing is spec ified.

55

INPUT-OUTPUT INSTRUCTIONS

The following pages contain the input-output instructions to input data to,

or output data from, the Bus -Pak II operat ing system.

TELEPRINTER INPUT -OUTPUT INSTRUCTIONS

The foUowing instructions perm it input from or output to the on -I ine teleprinter

with com pI ete forms control.

TYPE A LINE

op-code

17431

mnemonic

TYPE

variable operands

N FROM

The II N II consecutive characters with the starting address IIFROM" are typed

on the on -line teleprinter.

NOTE: 1. Core storage is I eft undisturbed.

2. The character information to be typed must always be in BCD

code one character per storage location.

3. Indexing, double indexing, and/or indirect addressing may

be used with the address rrFROMrr.

56

TYPE TEXT INFORMATION

op-code

17434

mnemonic

TYPTXT

variable operands

FROM

The textual information with the starting address II FROM" is typed on the

on -I ine teleprinter.

NOTE: 1. Core storage is left undisturbed.

2. The tex tu al information must be defined using the II TEXT"

pseudo instructions.

3. The "TELETYPE" instructions must precede the definition of

the "TEXTH information. (See also rrTEXTIr instruction).

4. Indexing, double indexing, and/or indirect addressing may

be used with the address rrFROMrr •

TYPE TABULATION

op-code

17433

mnemonic

TAB

variable operands

This instruction causes the on -I ine teleprinter to be spaced to the next tab

location.

NOTE: 1. Tabs are assumed 1,0 character positions apart.

2. The number of spaces spaced will be the remaining number of

spaces needed to position the on -I ine teleprinter at the next tab

location.

57

TYPE CARR lAG E RETURN

op-code mnemonic variable operands

17432 TCR

Th is instruct ion causes a I ine feed and carriage return to be typed on the on -I ine

teleprinter.

NOTE: 1. Resets the tabulation control to the first character position on the

on -I ine teleprinter.

TYPE-IN INFORMATION

op-code

175¢4

mnemonic

TYPEIN

variable operands

N TO

This instruction reads in liNn consecutive characters being typed on the on ·-line

teleprinter and places these characters from I eft to right at address II TOil •

NOTE: 1. All characters typed wi II be stored one character per storage

location, in BCD code.

2. All in itial carriage returns typed wi II be ignored and do not occupy

core storage locations.

3. The IIFIGSIt and nLTRSIt' keys may be used whenever necessary and

do not occupy core storage locations.

4. Typing is terminated either when liN" characters have been typed

or when a carriage return is typed.

5. Carriage return does not occupy a core storage location.

6. The IIBELL" key is used for tabulations. Tabs are assumed set 'I¢

character positions apart. The actual spaces spaced will be the re

main ing number of spaces to the next tab locations.

7. The IIBLANKIt' key is used as a n'backspacen key. When depressed,

the character previously typed will be ignored and the next character

typed wi II replace it. If no character is typed, the character back

spaced will remain in the area.

a. Upon -completion of the rJTYPEINIl instruction, a count of the number

of characters typed in may be found ,in index reg ister #15.

9. The prev ious contents of index reg ister # 15 are lost.

10" Indexing, double indexing, and/or indirect addressing may be used

with the address It'TOlt.

59

INQUIRY

op-code

1753%

mnemonic

INQUIRY

variable operands

GOTO INST

Bus -Pak II has avai lable an inquiry feature wh ich provides a direct and immediate

means of communication between the operator and the users program.

The inquiry feature is especially valuable when used with the Micro-Disk system.

It can be used to retrieve data stored on a Micro-Disk record. A personnel record or

inventory stock -status record needed by management can be requested by the operator

and made available to management in a short time.

Inquiries though, may only be made if the IrlNQUIRytr instruction is executed

by the operating program and the carriage return key on the on -I ine teleprinter was

depressed, which sets the inquiry indicator in Bus-Pak II.

Every program written reaches a point in execution when all the data currently

in the machine has been processed and the program is ready to accept more data. At

this point the U INQUIRYIt instruction is executed. If the carriage return key was

depressed, the IIGOTO INSTil will be executed. Otherwise the program continues in

sequence.

60

PUNCHED CARD INPUT -OUTPUT INSTRUCTIONS

The following instructions permit input and output from punched card equipment.

READ A CARD

op-code

17425

mnemonic

RDCRD

variable operands

TO GOTO INST

The 80 columns of information punched on the card in the card reader hopper will

be read and stored at the 80 consecutive locations with the starting address liTO" •

After this information has been stored the reading of the next card in the card

reader hopper is in it ia lized and control is returned to the users program. Th is is done

so that the users program can process the information on the card just read while the next

card is being read. The overlapping of these two functions saves a considerable amount

of time in that the user need not wait the entire three (3) milliseconds necessary to read

a card.

If the End-of-File button on the card reader has been pressed after the last card was

read, the instruction "GOTO INSTlr will be executed. Otherwise the program continues

in sequence.

NOTE: 1. As there are 80 columns on a punched card, 80 columns of information

will always be transferred to the 80 consecutive locations, from left to

right at cddress rrTOlr.

2. See also HCard Reader Operating Features ll
•

3. The character information stored will be in BCD code, one character

per storage location.

4. If, when processing card fi I es, it is necessary to stop the operation of

the program in order to make corrections to erroneously punched cards,

normally the card to be corrected will be the second card from the top

in the card reader stacker. When the correction is made, that card and

the last card in the card reader stacker must be placed in the card reader

hopper, accumulator switch one (l) must be set to the up condition and then

the continue key depressed.

5. Indexing, double -indexing, and indirect addressing may be used with

the address IrTO If •

61

PUNCH A CARD

op-code

17426

mnemonic

PUNCRD

variable operands

FROM

The 80 consecutive characters with the starting address nFROMtr are punched

on the next blank card in the card punch hopper. Control is immeduately returned

to the users program so that processing can continue. The accumulation of the next

card image may be started immediately in the same output area.

NOTE: 1. Core storage is I eft undisturbed.

2. Bus-Pak II will always punch 80 consecutive characters.

3. The character information to be punched must always be in BCD

code, one character per storage location.

4. Indexing, double indexing, and/or indirect addressing may be

used with the address ~tFROMrr •

5. See a Iso ,rCard Punch Operating Features rr
•

6. If a card feed check, card jam, or empty hopper occurs, the

system wi II loop until it has be'en corrected.

62

HIGH SPEED PRINTER OUT-PUT INSTRUCTIONS

The following instruction perm its data located at any location in core storage

to be printed on the high speed printer and also permits complete forms control (spacing)

of the printed data.

PRINT A LINE

op-code

17427

mnemonic

PRNLIN

variable operands

FROM

The 120 consecutive characters with the starting address "FROM" will be printed.

NOTE: 1. Core storage is left undisturbed.

2. Bus-Pak II will always print 120 consecutive characters.

3. The character information to be printed must always be in BCD

code, one character per storage location.

4. Indexing, double indexing, and/or indirect addressing may be

used with the address rrFROMrr.

5. See also rrHigh Speed Printer Operating Features".

63

SPACE PRINTER

op-code

174313

mnemonic

SPACE

variable operands

CHAR R?

Th is instruction causes the high speed printer to space the paper as spec ified

by "CHAR

CHAR

A

B

C

D

E

F

G

H

2

3

4

5

6

7

NOTE:

R? II (when "? II is one of the following characters):

SPACING STANDARD TAPE TIMING

Doubl e space 2 lines 2 x 16 MS

Triple space 3 lines 3 x 16 MS

Four spaces 4 lines 4 x 16 MS

Five spaces 5 lines 5 x 16 MS

Six spaces 6 lines 6 x 16 MS

Seven spaces 7 lines 7 x 16 MS

Eight spaces 8 lines 8 x 16 MS

Nine spaces 9 lines 9 x 16 MS

Ten spaces 10 lines lOx 16MS

Skip to Channell 2 lines 2 x 16 MS

Skip to Channel 2 3 lines 3 x 16 MS

Skip to Channel 3 6 lines 6 x 16 MS

Skip to Channel 4 11 lines 11 x 16 MS

Skip to Channel 5 22 lines 22 x 16 MS

Skip to Channel 6 33 lines 33x 16MS

Skip to Channel 7 Top of form 520 MS for 66 lines

1 • Spac ing is always immed iate •

2. If spacing to a channel is specified, the channel need not be

specified by "CHAR R?n, but may be represented by the channel

number only.

3. The tim ings for channel skipping refer to the use of a standard

carriage control tape.

64

~

MAGNETIC TAPE

ORGANIZATION OF DATA

Information is recorded on magnetic tape character by character in the binary

coded-decimal (BCD) mode. Even parity is maintained for all characters, that is,

if the character being written contains an odd number of bits, the parity bit is recorded

to make the number of bits even. When the character is read and transferred to core

storage, the parity bit is not transferred.

TAPE RECORDS, INTER-RECORD GAPS

A tape record is a sequence of characters physically separated from other

sequences of characters by an inter-record gap. This inter-record gap is approximately

3/4 inches of erased tape. During reading, the sequence of characters starting wiith

the first character sensed after an inter-record gap to the next inter-record gap is read

and placed into core storage where spec ified.

t

, I I I I I
I

ORO ,R Record R Record R Record R Record R Rec

G G G G G
'--

1 1 1 1

Tape Tape Tape Tape
-E- -;a.. ~ ~ ~ '~ ~- --.;>

Record Record Record Record

65

.

BLOCKING

Data records and tape records are quite different. Many data records may be

contained within a tape record. This is done to conserve space and increase storage

capacity on magnetic tape reels.

Block ing is the process of writing two or more data records as a sing I e tape

record.

-- 1 tape record

I Data Data . Data Data Data I

R Record Record Record Record Record R

G G

TAPE MARK (END OF FILE MARK)

{
:7

A tape mark is written on tape to indicate the logical end of a file of information.

The tape mark is a single character, but is considered a tape record because it is preceded

and followed by an inter-record gap. It is also considered a data record when read by

the program.

TAPE FILE

A tape file is a series of tape records related to one another and followed by a

tape mark.

END-OF-FILE

A single tape-reel may contain any number of files of information. A tape

mark would then separate each file of information from another fi Ie of information.

When reading, the program is notified of an End-of-Filecondition so that it may choose

a pre-determ ined sequence of instructions to process such a condition.

66

DENSITY

The density of a magnetic tape is a measure of the number of consecutive char

acters which may be written on one inch of tape. Two densities are available, low

density (200 characters to the inch) and high density (556 characters to the inch).

Instructions are available to set the desired density. If no density is specified, high

density (556 characters to the inch) is assumed.

ALTERNATE TAPES

When alternate tapes are specified, encountering End Point causes Bus-Pak II

to automatically reference the alternate tape spec ified. When End Point on that

tape is encountered, reference to the original tape will be automatic.

67

OPEN MAGNETIC TAPE UNIT

op-code

17435

mnemonic

OPEN

variable operands

U B L

This instruction causes the magnetic tape controls for tape unit II UII to be initialized

to read or write records wh ich contain IIBII number of data records If Lit characters in

length as one tape record.

NOTE: 1. ilL" must be a multiple of three (3).

2. liB" must be at least the value of one (l).

3. Th is instruction does not rew ind the tape.

4. This instruction initializes the tape density to IIHigh Densityll (556 BPI).

5. On the initial OPENing of tape unit IIUII, an internal buffer is as

signed. It is therefore necessary to originally initialize tape unit IIU"

to the largest tape record that may be read or written on that unit.

6. Th is instruction may again be executed to indicate a different block

ing factor and record length next to be read or written.

7. The internal buffers assigned begin at location 77778 and project

down into users memory. The size of each buffer area may be calculated

by the following formula:

B x L = size of buffer assigned
3

8. The last location available to the user may be calculated by using

the following formula:

(4095
10

- (the sum of all the magnetic tap~\ - 1 = the last available users
and micro-disk buffers assigned)) storage location

10

68

SET HIGH DENSITY

op-code

17446

mnemonic

HIDEN

var iabl e operands

U

Th is instruction wi II cause the input -output controls for magnetic tape un it

"un to be set to read or write in high density (556 char/in).

NOTE: 1. If no density is specified, high density (556 char/in) is

assumed.

SET LOW DENSITY

op-code

17447

mnemonic

LODEN

variabl e operands

U

Th is instruction will cause the input -output controls for magnetic tape un it

"un to be set to read or write in low density (2¢¢ char/in).

NOTE: 1. If no density is specified, high density (556 char/in) is

assumed.

ASSIGN ALTERNATE TAPE

op-code

17526

mnemonic

ALTTAPE

variable operands

U AlT

This instruction will assign tape unit rrALTrr as an alternate tape unit for

NOTE: 1. The alternate tape feature may only be eliminated by the re-execution

of a OPEN or BEG IN instruction.

69

REWIND TAPE REEL

op-code

1744%

mnemonic

REWIND

variabl e operands

U

Th is instruction causes the tape reel on tape un it nu" to rewind to load

point.

NOTE: 1. Rewinding of tape reels must be done either before any or

after a II data records and end of fi I es have been processed.

Records may be lost or extra records read if a REW ~N D operation

is performed other ,than as stated above.

70

READ MAGNETIC TAPE

op-code

17436

mnemonic

RDTAPE

variabl e operands

U TO GOTO INST

Th is instruction causes one data record from tape un it "u" to be placed in the

storage locations with the starting address nTon. If an End-of-File or end-point on

tape is encountered, the "GOTO INST"-- instruction will be executed. Otherwise,

the program continues in sequence.

NOTE: 1. If end -po int is encountered during a read operation, and

an a Iternate tape un it was spec ified, Bus -Pak II wi II automatica lIy

reference the alternate tape unit whenever unit nun is referenced.

2. When end-point is encountered on the alternate tape, Bus-Pak II

will automatically re-reference tape unit rrUlt.

3. The instruction JrGOTO INSTrr will be executed when end-point

is encountered even though an alternate tape was spec ified so that

header labels may be checked on the alternate tape unit.

4. An internal buffer is assigned to tape unit rrun and each data

record read will be extracted from th is buffer area. Only when the

buffer is empty wi II tape be moved to read the next tape record into

the buffer area.

5. Indexing, double indexing and indirect addressing may be use~d

with the "'laIr address.

6. The detection of octal 17 1s on reading the tape indicates an

End-of-File. The tape will be positioned after the "EOFII.

71

WRITE MAGNETIC TAPE

o.p-code

17437

mnemonic

WRTAPE

variable operands

U FROM GOTO INST

This instruction will cause one data record to be taken from core storage at

the starting address "FROMIt and place it in the internol buffer for tape unit '''U''.

When the buffer is ful', a tape record wi II be written. If end point is encountered

during the writing of a tape record, the rrGOTO INSP', instruction will be executed.

Otherwise, the program continues in sequence.

NOTE: 1. If end -point is encountered during a write operation and

an a I ternate ta pe un it was spec i fi ed, Bus -Pak II w ill automat ica II y

reference the alternate tape whenever unit rr-u" is referenced.

2. When end-point is encountered on the alternate tape, Bus-Pak "

will automatically re-reference tape unit ItU".

3. The instruction uGOTO INST,r will be executed when end-point

is encountered even though an alternate tape was specified so that

heading records may be written on the alternate tape.

4. An internal buffer is assigned to tape unit ItU" and each data

record written will be accumulated in this buffer area. When the

buffer is fu", one tape record is written onto tape.

5. Indexing, double indexing, and indirect addressing may be used

with the ItFROM,r address.

72

WRITE AND COMPARE MAGNETIC TAPE

op-code

17533

mnemonic

WRTCMP

variable operands

U FROM GOTO INST

This instruction will cause one data record to be taken from core storage at

the starting address ltFROMII and place it <io the internal buffer for tape unit·HU H
•

When the buffer is full, a tape record will be written, backspaced, and then

compared to insure that the tape record was written correctly. If an end-point is

encountered during the writing of a tape record, the instruction IIGOTO INSTil will

be executed. Otherwise, (however the record has been written successfully) the

program continues in sequence.

NOTE: 1. If end-point is encountered during a write operation and an

alternate tape unit was specified, Bus-Pak II will automatically

reference the alternate tape unit whenever unit nUll is referenced.

2. When end-point is encountered on an alternate tape, Bus-Pak II

will automatically re-reference tape unit "UII.

3. The instruction rrGOTO INspr will be executed when end

point is encountered even though an alternate tape was specified so

that heading records may be written on the alternate tape.

4. An internal buffer is assigned to tape un it HUff and each data

record written will be accumulated in th is buffer area. When the

buffer is ful', one tape record is written. Th is tape record wi II then

be backspaced and read for comparison to insure correct writing of

data on ta pe •

5. Indexing, double indexing, and indirect addressing may be

used with the ItFROMlt address.

73

SPACE RECORD

op-code

17444

mnemonic

SPCREC

variable operands

U T

Th is instruction spaces HT" data records on tape un it II U" •

NOTE:

EXAMPLE:

Data

R Record

G

1. Magnetic tape may not move if the data records be ing

spaced are contained in the internal buffer at the time the

instruction is executed.

2. An end-of-file (tape mark) is counted as one data record.

3~ Jape records in the new file must be in the current format if

spacing over an End-of -File mark. If not, the data records

after the End-of-File will be spaced incorrectly.

4. If no tape records are contained after the End-of -File mark,

spac ing continues indefin itel y.

SPCREC U 3

Data Data I Data Data Data I

Record Record R Record Record Record R

G G
~ data record to be read ~ data record to be read

before instruction execution. after instruction execution.

74

SPACE FILE

op-code

17445

mnemonic

SPCFILE

variable operands

U

This instruction will space over one file of information on tape unit !lU".

NOTE: 1. Bus-Pak II will position itself at the inter-record gap

immediately following the first End-of-File encountered.

2. Spacing a file which will encounter the tape end-point is

not recommended as the next operation to be performed wi II

cause the tape to run off the reel or not executed.

75

BACKSPACE RECORD

op-code

17442

mnemonic

BKSREC

variable operands

U T

Th is instruction backspaces UT" data records on tape un it II un.

NOTE:

EXAMPLE:

I Data

R Record

G

1. Magnetic tape may not move if the data records backspaced

are contained in the internal buffer at the time the instruction

is executed.

2. An End -of -Fil e (tape mark) is counted as one data record.

3. If an End-of-File is encountered during a backspace operation,

Bus-Pak II will position itself at the next available data record

location of the previous tape-record if that tape record was not

completely full when written.

4. If a backspacing operation is attempted which will encounter

load point, the backspac ing operation will not position itself

correctly.

BKSREC u 3

Data Data I Data Data Data I

Record Record R Record Record Record R

G G

~data record to be ! data record to be read before

read after 'instruction execution instruction execution

76

BACKSPACE FILE

op-code

17443

mnemonic

BKSFILE

variable operands

U

Th is instruction wi II backspace one fil e of information on tape un it II U" •

NOTE: 1. When an End-of-File (tape mark) is encountered, Bus-Pak II

will position itself at the first data record location in the tape

record preceding the End-of-File that has not been used.

2. If load point is encountered during the backspace file

operation, Bus -Pak II wi II be positioned at the first data record

on the tape.

TEST END POINT

op-code

17527

mnemonic

ENDPOINT

variable oeerands

U GOTO INST

On reading magnetic tape, the rrGOTO INspr instruction associated with

the IJRDT APEIl instruction will be executed if either an End-of-File or end-point

is encountered on tape un it rrUIt •

This instruction when executed, tests to see if the IIGOTO INSTil instruction

was executed because of an end-point on tape unit "U". If it was, the ItGOTO INSTil

above will be executed. Otherwise, the program continues in sequence.

77

WRITE END-OF-FILE

op-code

17441

mnemonic

WREOF

variable operands

U

This instruction accompl ishes two things - it writes the data r3cords (if any)

still left in the internal buffer on tape unit nu" and then writes an End-of-File

(tape mark).

NOTE: 1. Th is instruction must be executed after a II data records

are written or records may be lost.

2. If a record is to be written onto tape, the "WRTC MP" instruction

is used.

3. If the internal buffer is not full when nWREOF" is executed, the

remaining locations are filled with octal 17 1s.

4. The detection of octal 17 1s on reading the tape indicates an

End -of -Fi Ie. The tape will be positioned after the" EOF" •

78

MICRO-DISK

By the use of DECtape, Bus-Pak II is able to simulate a random access disk

file. This means that files of information contained on Micro-Disk may be pro

cessed randomly by input information as it is received. Pre-sorting of transactions

affecting the Micro-Disk file has been eliminated.

79

INITIALIZE MICRO-DISK

op-code

17515

mnemonic

OPENDISK

variable operands

U L

This instruction causes the input-output controls for Micro-Disk unit "U"

to be initialized to acceptltLU consecutive characters as one record of information.

One DECtape reel has the capac ity of 576 blocks, each of wh ich contains

768 alphanumeric characters. Bus-Pak II automatically packs as many records

(II L" characters long) as poss ibl e into one block. Each record is then ass igned an

address relative to its sequential location on the Micro-Disk. The first record

on Micro-Disk is always assigned address 1.

When a record is requested, Bus-Pak II automatically calculates the block

address in wh ich the record may be found and a Iso wh ich record it is in that block.

As there may be more than one record per block on Micro-Disk, Micro-Disk may

not always be moved when a IfSEEKlt rrRDDISK n
, or rrWRDISK" instruction is executed

because the block previously requested which is stored in core storage, may contain

the record desired.

NOTE: 1. II L" must be defined as a multiple of three (3).

2. Th is instruction must be executed before any processing may

be done with Micro-Disk unit nu".
3. The mark t rack on the DECtape reel being used must be set

for 256-3 character words.

4. The following formula determ ines the maximum number of

records that may be stored on one Micro-Disk.

(76S) X 576 =: number of records per micro-disk reel.
L I

5. Records may only be referenced by the addresses assigned to them.

6. This instruction must never be executed a second time unless the

II BEG IN Ir instruction a Iso is executed.

80

SEEK A RECORD

op-code

17516

mnemonic

SEEK

variable operands

U

This instruction will cause Bus-Pak II to search Micro-Disk unit "U"

for the record whose address was previously loaded into accumulator 15. Control

is then returned to the users program so that the processing of data already available

to the program may be overlapped with the Micro-Disk search operation.

If the record being searched for is in the block of information already read

into core storage, Micro-Disk will not move.

NOTE: 1. The address of the record desired must have previously been

loaded into accumulator 15.

2. No other input -output dev ice can be runn ing, during a search

operation.

3.. If an attempt is made to input or output data the program will

hang up until the search operation is over.

81

READ A RECORD

op-code

17517

mnemonic

RDDISK

variable operands

U TO

This instruction will read a record, whose address is specified in accumulator

15, from Micro-Disk unit IJU n and place it into the !fLU (defined in the "OPENDISK"

instruction for Micro-Disk un it 'tU") consecutive characters with the starting address

NOTE: 1. The address of the record desired must have previously

been loaded into accumu lator 15.

2. No processing can be done during a read Micro-Disk

operation.

3. If the record desired is contained in the block previously

read, Micro-Disk will not be moved.

4. If an attempt is made to input or output data the program will

hang up until the search operation is over •

. 82

WRITE A RECORD

op-code

1752%

mnemonic

WRDISK

variable operands

U FROM

Th is instruction will write the II LII (defined in the II OPEND ISK II instruction

for Micro-Disk unit IIU") consecutive characters with the starting address IIFROMII

as a record, whose address is specified in accumulator 15, onto Micro-Disk unit

HUll •

NOTE: 1. The address of the record being written must have previously

been loaded into accumulator 15.

2. No processing can be done during a write Micro-Disk operation.

3. If the record be ing written is contained in the block previous'y

read or written, Micro-Disk will not be moved.

4. The block of information contained in core storage wi II not

be written onto Micro-Disk until either a n'SEEKII, IIRDDISKII,

IIWRDISK't, or ItCLOSE DISK" instruction is executed in which

the record being read or written is not contained in the block in

core storage.

5. If an attempt is made to input or output data the program will

hang up until the search operation is over.

83

CLOSE MICRO-DISK

op-code

17521

mnemonic

CLOSEDISK

variable operands

U

This instruction causes the input -output controls for Micro-Disk un it II UII

to check the block of information contained in core storage pertaining to Micro

Disk unit IIUII to see if a IrWRDISKIt operation was performed. If so, that block of

information is written on Micro-Disk. If not, it is disregarded.

NOTE: 1. This instruction need only be executed if a writing

operation was performed in a Micro-Disk unit.

2. No processing can be done during a rrCLOSEDISKII

operation.

3. The buffer area assignment for Micro -Disk unit "U II is not

reset.

4. If an attempt is made to input or output data the program wi II

hang up until the search operation is over.

84

STORAGE AND RETRIEVAL

The following instructions were designed to extend the available storage of

the computer. By making use of DECtape, data and complete subroutines may be

stored on DECtape and retrieved when necessary for their execution.

In this way, more than one subroutine may occupy the same storage location.

Each of the subroutines occupying the same locations would first be written on

DECtape with the IrDUMp rr instruction; then, as each subroutine is needed for

execution, it would be reloaded into those locations by the "RETRIEVEIf instruction.

This will help preserve core storage whenever necessary.

DUMP DATA

op-code

17532

mnemonic

DUMP

variabl e operands

FROM TO

This instruction writes out on DECtape Unit 8' the storage locations between

address "FROMn and address rrTorr, inclusive.

NOTE: 1. The starting block number on which to write the data must have been

previously loaded into index register 15.

2. No indexing, double indexing, or indirect addressing may be used

with either the ItFROMrr or rrTorr addresses.

3. Bus-Pak II will store 256 locations on one block on tape. Successive

blocks wi II be used if necessary to store a II the data.

4. This instruction does not require any of the Micro -Disk instructions

to be executed.

85

RETRIEVE DATA

?p-code

17531

mnemonic

RETRIEVE

variable operands

FROM TO

This instruction reads from DECtape Unit 8 and places the data read into the

storage locations between address rrFROMrr and address uTOrl I inclusive.

!NOTE: 1. The starting block number on wh ich the data is contained must

have been previously loaded into index register 15.

2 ~ No indexing I double indexing I or indirect address ing may be

used on either the ,rFROMIT or IrTo·r addresses.

3~ This instruction does not require any of the Micro-Disk instruc

tions to be executed.

LOAD PROGRAM

mnemonic variable operands

LDPROG

Th is instruction causes a transfer of control to the R 1M loader wh ich wi"

load the program tape in the paper tape reader.

Th is may be used to control the loading of subroutines for storing them on

DECtape.

86

CHECKPOINT AND RESTART

The Checkpoint and Restart feature perm its a job to be restarted at an interme

d iate point after an interruption in processing.

The use of th is feature requires that at lease one D ECtape and control be part

of the input output equipment available on the operating system.

The use of th is feature would depend greatly on the complexity and runn ing time

of the particular job. It would reduce the time and data lost due to machine failure,

power failure, and operator error. It would also give the ability to stop the running of

a program, take it off the machine and resume it later.

87

WRITE CHECKPOINT RECORD

op-code

17534

mnemonic

CHECKPOINT

variable operands

This instruction causes a checkpoint record to be written onto DECtape unit 8.

The contents of the checkpoint record would be as follows:

I. The users program and its status at the time the checkpoint was written.

2. The status of all program switches, program counters, double index

register, and index registers.

3. The contents of all accumulators and the status of their respective overflow

indi cators.

4. The input/output controls for all magnetic tape and DECtape files being used.

5. The transfer location to restart the program.

NOTE: I. Each time a checkpoint record is written, "CKP" will be typed

on the on-I ine teleprinter. If punched cards are either being read

or punched, the system will stop to permit the operator to indicate

on the card decks the position of the last checkpoint. If no cards

are being processed, the system wi II not stop.

2. The transfer location for restarting the program stored on the

checkpoint record wi II be ·the location of the instruction immediately

following the "CHECKPOI NT" instruction being executed.

3. The checkpoint record written on unit 8 will occupy blocks I ·18

of the tape.

88

RESTART PROGRAM FROM CHECKPOINT

op-code mnemonic variable o~erands

17535 RESTART

This instruction will cause the checkpoint record written on DECtape unit 8 to

be read and the following operations performed:

1. Restore the status of the users program to what it was at the time the

checkpoint record was written.

2. Restore all program switches, program counters, double index register,

and index reg isters •

3. Restore all accumulators and their respective overflow indicators.

4. Restore the input/output controls for all magnetic and DECtape files.

5. Re -position all tape files (magnetic and DECtape) on the basis of record

counts and other identifying information contained in the checkpoint record.

6. Transfer control to the appropriate instruction to resume the program.

NOTE: 1. If punched cards were being read at the time the checkpoint

record was written, the cards from the time of the checkpoint must

be inserted into the card reader. If the wrong card deck is placed

in the card reader the restart may be in error.

2. If an error in restart occurs, the program may aga in be

restarted providing another checkpoint was not written before the

error was detected.

89

SUBROUTINE CONTROL

Subroutines are used to code a spec ial sequence of instructions that would nor-

mally be repeated many times in different locations in a program. The use of sub-

routines reduces the over-all coding effort involved in coding a solution to a given

problem and also conserves core storage.

There are two methods of defin ing a subroutine in the Bus-Pak II system.

METHOD NO 1

The following instructions may be used to transfer control to a given subroutine

and, upon completion of that subroutine, return to the next storage location following

the transfer.

TRANSFER AND SAVE RETURN ADDRESS

op-code mnemonic variable operands

1%%%%% GOTOSV INST

Th is instruction transfers the control of the program to the subroutine at

location II INSTil • It requires that the subroutine be defined in the foUowing manner:

INST,

(lNST +1) First instruction of subroutine

The address of the location following the rrGOTosvn instruction is saved in

location JlINSTu and control is transferred to location trlNST +1 If •

90

RETURN FROM SUBROUTINE

op-code mnemonic variable operands

62%%%13 RETFROM INST

Th is instruction is used to return control of the program to the instruction following

the IIGOTosyn instruction.

NOTE: 1. uINSTII' must be the same subroutine name used in the IIGOTOSY

INSTIt used to enter the subroutine.

91

METHOD NO 2

The following instructions provide a means of transferring to a subroutine

with optional return locations upon completion of the execution of the subroutine.

SUBROUTINE

~)p-code mnemonic variable operands

INST

By placing the name of the subroutine being called in the operation portion of

the instruction, a transfer will be made to that subroutine, enabling optional return

locations.

II\.JOTE:

EXAMPLE:

1 ~ No indexing, double indexing, or indirect addressing may

be used in the address n-'NSTrr.

2 II nGOTOlt instructions normally follow the name of the subroutine

being transferred to. These rrGOTorr instructions are placed in such

a sequence so as to transfer control of the program to other routines I

depending on the return location of the subroutine.

TSTCHR

GOTO LAB

GOTO LAB 1

GOTO LAB 2

GOTO LAB 3

/transfer to routine to test character

/return here if It AIr (normal return)

/return here if ItB"

/return here if nc,,'
/return here if other etc

92

EXIT FROM SUBROUTINE

op-code mnemonic variable operands

The table below lists the instruction mnemon ics used to exit from the subroutine

and the location "to wh ich control is returned.

oE-code mnemonic return location

637511 EXIT norma I return

637512 EXIT 1 norma I return + 1

637513 EXIT 2 norma I return +2

637514 EXIT 3 norma I return +3

93

SECTION IV

PROGRAM PREPARATION

A Bus-Pak II program is prepared in FlO-DEC code on 8 channel punched

paper tape, using either a FlO-DEC flexowriter or the tape editor CANUTE on the

computer. The mechanics of using a flexowriter or CANUTE for paper tape preparation

are described elsewhere and only the formats which apply to Bus-Pak II will be described

here.

In general, a program should begin with about two feet of tape feed, to allow

easy placement in the reader. Deletes and tape feed may be used freely throughout

the tape, and will always be ignored.

The program tape itself consists of three sections, described below.

TITLE

All text between the first character other than a carriage return, and the second

carriage return is taken as the title of the tape. Each tape must have a title. This

title will be printed on the printer or teleprinter at assembly time, as well as punched

in readable format on the front of the object (binary) tape.

PROGRAM BODY

The text consisting of the program itself follows the title. Redundant carriage

returns and tabs are ignored, and may be used for formatting.

A suggested format is to place address tags (labels) at the left margin, indent

the instruction mnemonic to the first tab stop, and indent each instruction field and/or

comments further to subsequent tab stops.

94

The character "stop codell may be used as a page separator (both with the tope

editor I and flexowriter) I although pages have no mean ing to the assembler. New pages

should begin with a carriage return.

Deleted characters, tape feed, and stop codes are always ignored by the assembler

during processing.

Except in text strings, the characters upper case and lower case are filtered out

of the input string, and are used only to inform the assembler of the case of the charac

ters on input, therefore except for spec ia I characters or comments I a II typing is normal I y

done in lower case.

START BLOCK

The last section of a program is the start block, consisting of the pseudo-instruction

start, or eause, followed by either the starting address of the program I or by a carriage

return. In either case, a carriage return must appear on the tape after the start block.

The pseudo-instruction start indicates the end of the symbolic program, and

causes an instruction to be punched which will be executed when the loading of the

object program is completed. If start is followed by an address, then a i!!P to that ad

dress will be assembled, causing execution of the program to begin when the program is

loaded.

If start is not followed by an address, then an hit instruction will be assembled,

halting the loader after the object program is loaded.

Constants will be stored starting at the current address location at the time start

was encountered on the last source tape.

Pause performs the same function as start, but will always cause the loader to

halt before executing the instruction "indicated by pauseII'.

95

SECTION V

SYMBOLIC LANGUAGE

PURPOSE

The use of symbolic languages has become a standard practice in the programm ing

of computers. A symbolic language permits a programmer to code in a more convenient

language than the language that the machine understands. A processor (Assembly Pro

gram) translates the programmer's source language to the machine language. The advan

tages are widely recognized ~ Instruction codes with high mnemonic value are used instead

of numeric codes. Instructions or data may be referred to by symbol ic name {label},

without knowing or even caring about the actual machine address. Decimal or alpha

betic data may be expressed in a more convenient form than in a binary number system.

Programs may be altered without extensive changes in the source language, and debug

ging is considerably simplified.

DESCRIPTION OF THE ASSEMBLER SYSTEM

The Assembly program accepts a symbolic source language program on punched

paper tape, translates it and produces a binary tape. (See also Assembler writeups

for both the PDP-4 or PDP-7 computers) ~

The Assembler performs this function in one pass. That is, the source language

lrape is processed only once to produce the object language tape.

The object language tape consists of the binary version of the source program

c:md a binary loader.

96

NOTATIONS

Spec ia I Characters

Syllables

Character

b

+

,

Number

(tab)

(carriage return)

(space)

(space)

(m inus)

(comma)

Meaning

field del im iter

field delimiter

punctuation character

punctuation character

punctuation character

label delimiter

Any sequence of digits delimited by field delimiters or punctuation

characters.

Exam~les

< i,' 123-\ >
< -~ 567) >

<) 56+ >

Labels

Any sequence of alphanumeric characters delimited by a comma

and field del im iters or punctuation characters. The first character

must be an alphabetic character, the label may be any length, but

all characters after six are ignored.

Examples

<.J A, --\ >

< -4 Harry, J >

<) AB 12,-, >

97

Expressions

An expression is a sequence of labels and/or numbers connected by punctuation

characters and delimited by field delimiters.

Examples

<-\ A , > ,.
<-f A + 3-": >

< J AB LE + 21 ~ >

98

PSEUDO INSTRU CTIONS

variables

A label used in the program, with one of its characters overbarred (the oV~3rbar

needs to be indicated only once in any of its appearances) and not explicitly defined

elsewhere, is a variable. Variables will be assigned a register location following the

occurrence of the pseudo-instructio n "variable". In addition, should any variable remain

undefined at the termination of the assembly, these will be automatically defined follow

ing the program.

Example:

< ~ WHAT ->~ >
<-~ A123 . >

I-

text

TEXT b Z ABC ••••••••••• CZ

The pseudo-instruction "text" indicates the characters between the first occurrence

of the character Z and the next occurrence of the character Z is to be converted to char

acter codes and stored three to a word in successive registers. The character Z may be

any single character desired. If the text information is to be typed on the on-line tele

type by the TYPTXT instruction liTE LETYPE" must precede the II TEXT" pseudo inst:ruction.

After the text has been written, AN E LEX must follow.

The uTEXTu pseudo instruction should always be used to define constant information

and the program should move and expand this information in the initialization of the

program.

99

ASSEMBLER FEATURES (See also Assembler Program Writeup)

Current Address Indicator

The character period (.) has the va lue of the current address when standing alone

between field delimiters and/or punctuation characters, otherwise it is regarded as an

alphabetic character.

Address Assignment

The expression preceding a slash (/) will be taken as a new current address. If

no expression precedes the slash, then the slash initiates a comment statement. This

may be used to assign consecutive core locations to a given label.

Example:

Parameter Ass ignments

< ABLE, ABLE +10/>

This assigns 1% consecutive locations

to the label ABLE.

A parameter may be defined by use of the equal (=) sign. The label to the left of

the equal sign will be assigned the value of the expression to the right of the equal sign.

If the expression to the right of the equal sign is not terminated by a tab or carriage re

turn, the error message, IFP (Illegal Format in Parameter Assignment) will occur. An

undefined label appearing in the expression to the right of the equal sign will cause

the error print UPA (Undefined Parameter Assignment).

Example:

AREA, AREA +80/

TAX = AREA + 15

Whenever TAX is referenced, the address

AREA + 15 will be used.

100

SECTION VI

ASSEMBLING A BUS-PAK II PROGRAM

The following steps are those to follow to assemble a Bus-Pak II Program on

the computer. Each statement is fol lowed by the number of the next step to be

executed. Normally, the sequence will continue to the next step.

I. LOADING THE ASSEMBLER

1. Obtain the binary tape of the Assembler from the files.

2. Place the binary tape to be loaded into the paper tape reader.

3. Set the address switches on the console to 1777~ and depress the Hstart"

switch. The read -in mode loader (see Appendix I) must be in core at th is time.

4. When the loading of the binary tape is completed remove the tape from

the paper tape reader.

5. Replace the Assembler tape into the file.

6. Go to Step II.

II. LOADING A SYMBOL PUNCH DEFINITION TAPE

1. Obtain the Bus-Pak II Symbol Punch definition tape from the files.

2. Place the symbol punch definition tape into the paper tape reader.

3. Set the address switches on the console to 4 and depress the "startlr switch.

4. When the loading of the Symbol Punch definition tape is completed, remove

the tape from the paper tape reader.

5. Replace the Bus-Pak II Symbol Punch definition tape in the files.

6. If other Symbol Punch defin ition tapes are to be loaded, execute Steps 2, 3

and 4 above for each Symbol Punch tape.

7. Go to Step III.

101

III. ASSEMBLING A SYMBOLIC LANGUAGE TAPE

1. Place the Symbolic source language tape of the program to be assembled into the

paper tape reader. Make sure paper tape punch is loaded as well as printer if sym

bois are to be printed.

2. Set the address switches on the console to 2~.

3. At this point the operator may choose to command the assembler by use of

the AC switches (see IV) or begin a normal assembly.

3A To begin a normal assembly, depress the nContinue" switch.

3B To give the assembler an AC switch command, set the AC

switches desired and depress the "startU switch.

4. When the pseudo-instruction START is encountered at the end of the source

language tape, the assembl er w ill stop w ith -~ (777777) in the AC.

4A If more tapes are to be processed at this time, place each

tape in the paper tape reader and depress Itstart u
•

4B To complete the assembly of the program depress the ncontinue lt

switch. The assembler will punch the variable definitions, punch

the undefined symbol definitions listing these symbols on the on

line teletype or line printer, punch the starting block, the loader,

and the title in readable form.

5. When the assembly is complete, the assembler will stop with -~ (777777) in

the AC.

5A To print symbol definitions, set the AC switches and depress the

"continue" swItch. The AC switches have the following meanings:

AC Switch Meaning

11

15

16

17

Print on I ine printer

Restore permanent Symbol table

Numeric Print

Alphabetic Print

102

5B To assemble another program, saving the present symbol table,

put the new tape in the paper tape reader and depress the trst~:lrt"

switch and go to 111-4.

6. When the symbol print is complete the assembler will stop with +¢ (~

in the AC.

6A To restore the symbol table and start a new assembly, go to

111-1.

6B To start a new assembly saving the present symbol table, place

the new symbol ic language tape into the paper tape reader, depress

the "start" switch and go to 111-4.

IV. AC SWITCH CONTROL

Whenever the "start" switch is depressed with 2¢ in the address switches, the

AC switches wi II be exam ined. If bit ¢ is a zero, then the AC switches are ignored.

However, if bit ¢ is a one, the remaining AC switches have the following meanings.

Bit a "One"

2

3

4

5

Meaning

Suppress punching

Punch symbols for DDT-4

Take this title

Restore the assembler

Take first address from AC switches 6-17

103

V. ASSEMBLER OUTPUT

The assembler punches the object tape as it reads the symbol ic source language

tape. During assembl y, error messages may be typed on -I ine • (See Error Messages)

VI. STOPS DURING ASSEMBLY

The following is a I ist of all possible stops during Assembly, the cause, and the

action which may be taken.

AC

-0

-0

+0

character

status reg ister

Cause

start or pause encountered

assembly complete

symbol print request satisfied

illegal parity

offensive interrupt

When a device other than the reader, punch or teletype causes a program interrupt,

the Assembler will halt with the status register displayed in the AC. II Continue" will

clear some standard device flags not including those of the devices used by the Assembler,

and proceed.

If th is fails to clear the offending device's flag, the other action must be taken.

When the device is disabled, pressing "continue" wi II perm it Assembly to continue

correctly.

VII. ERROR MESSAG ES

A list of the error messages may be found below. VVith the exception of

~ (storage capacity exceeded) and'!!p (illegal parity), assembly continues automatically

after the error message has been printed. An error message may occur in one of three

formats.

104

Format A

The appearance of a diagnostic printed in format A:

ERROR PREVIOUS VALUE SYMBOL NEW VALUE

Whether the new value was actually incorporated into the symbol table depends

upon the particular error.

ERR

mdt

rps

rda

Format B

Meaning

the symbol was redefined with a comma

a permanent symbol was redefined

an attempt to redefine a symbol was made. The

symbol was not redefined.

The appearance of a format B diagnostic is:

ERROR OCTAL ADDRESS SYMBOLIC ADDRESS

The general error message is printed in Format B.

ERR

ifp

ifc

mdt

tua

lit

if I

ifs

ifi

sce

Meaning

illegal format in parameter assignment

illegal format in a comma assignment

the value and address disagree in an address assignment

too many undefined symbols in an address assignment

i Ilega I term inator in a pundef list

illegal format in a pundef list

illegal format in a start (or ~ause)

illegal format in an input pseudo-instruction

storage ca pac ity exceeded

105

Format C

The appearance of a format C diagnostic is:

ERROR OCTAL ADDRESS SYMBO lIC ADDRESS CAUSE

Format C is an expanded version of Format B. CAUSE is additional information

to help the programmer ascertain the cause of the error. For example, in the

case of an error caused by an undefined symbol, the symbol wi II be printed.

ERR

ilp

ust

uaa

upa

ich

Ius

ubr

CAUSE

character

symbol

symbol

symbol

character

symbol

symbol

Undefined Symbol Assignments

MEANING

illegal parity (place correct character in

ACS and ·continue·).

undefined symbol in a start or pause

undefined symbol in an absolute address

assignment

undefined symbol in a parameter assignment

illegal character

undefined symbol in a pundef list

undefined symbol in a bar Eseudo-instruction

At the end of assembly, before the loader is punched, any undefined symbols

will be automatically defined. Each undefined symbol which was used in a storage

word w ill be defined as the address of a reg ister at the end of the program, and the

defin ition printed. If the symbol was not used in a storage word, then the symbol wi II

be printed but not defined.

106

VIII. LOADING THE OBJECT PROGRAM

1. Obtain the object tape of the Bus-Pak II program from the file.

2. Place the object tape into the paper tape reader.

3. Set the address switches on the console to 1777¢ and depress the

"start" switch. The read-in mode loader (see Appendix I) must be in

core at th is time.

4. When loading is completed, the loader will stop.

5. Remove the ob ject tape from the paper tape reader and replace it

into the files.

6. Place the object tape of your program into the paper tape reader.

7. Execute 3 above.

8. When loading is completed, the machine is under control of your

program.

107

Keys and lights

Power ON

Power OFF

Not Ready

Read Check

Feed Check

Validity Check

Validity ON

Reset

End of File

Start

Stop

SECTION VII

EQUIPMENT OPERATING FEATURES

CARD READER

Depress ing th is key suppl ies power to the card reader and

I ights the power ON key.

Depress ing th is key turns off the power suppl y to the card

reader.

Th is I ight is I it whenever the card reader is in a not ready

condition.

Th is I ight is I it when a read check occurs.

Th is I ight is I it when a feed check occurs.

This light is lit when a validity error has occurred and the

Validity ON key is lit.

Depressing this key turns on the Val idity checking feature

for alphanumeric input and lights this key.

Th is key is depressed to reset a feed check, read check, or

validity check condition.

When all the cards have been read, depressing this key

informs the computer of an End-of-File condition on the card.

reader and lights.

Depressing this key, when all conditions are right, makes the

card reader ready to read cards.

Depressing this key puts the card reader in a not ready condition.

108

Loading the Card Reader

1. Depress the power ON key.

2. Place the cards to be read into the card read hopper face down - 12 edge toward the

operator.

3. Depress the Validity ON key to the ON condition (when on, it is lit).

4. If either the Read check, Feed check, Validity check, or End-of-File indicators

are I it, depress the reset key.

5. Depress the Start key.

Restart Procedures

Not Ready Condition Only.

1. Remove the cards from the card read stacker.

2. Be sure to place these cards in back of previously removed cards.

3. If there are more cards to read go to Step 5 below.

4. If no more cards are to be read, depress the End-of-File Key. This will signal the

computer of this fact. The End-of-File key is lit. Proceed no more.

5. Place the cards to be read into the card read hopper, face down - 12 edge toward

the operator.

6. Depress the start key.

109

Feed Check

1. Remove the cards in the card read hopper.

2. Repunch the first few cards that caused the feed check.

3. Replace these cards in front of the cards removed from the read hopper.

4. Place these cards into the card feed hopper; face down - 12 edge toward the

operator.

5. Set AC switch 1 in the up position.

6. Depress the Reset Key.

7. Depress the Start Key.

Read Check

1. Remove the cards from the card feed hopper.

2. Remove the top card in the card read stacker.

3. Check card and re-punch if necessary.

4. Place th is card in front of the cards removed from the card read hopper.

5. Place these cards into the card feed hopper I face down - 12 edge toward the

operator.

6. Set AC switch 1 in the up position.

7 • Depress the Reset Key.

8. Depress the Start Key.

Validity Check

Do the same operations as for the Read Check above.

110

Keys and lights

Power ON

Start

Stop

Continue

Loading the Punch Hopper

CARD PUNCH

Placing this switch in the ON position supplies power

to the punch.

Depressing this key initiates a 2-card read-in cycle.

Depressing this key will cause the card mechcmism to

be shut off after a delay of approximatly 3 seconds.

Depressing this key turns the card mechanism ON but

does not initiate a 2-card read-in cycle.

1. Set the Power switch to the ON position.

2. Depress the Start key to insure that no cards were lef t in the punch mechan ism from

a prev ious run ..

3. Insert blank cards, face down - 12 edge first into the punch feed hopper.

4. Depress the Start key.

5. When punch idles, release key. It is ready to receive information from the cc:>mputer.

Servic ing the Punch

1. Remove punched cards from the card punch stacker.

2. Be sure to place these cards in back of previously removed cards.

3. Insert blank cards, face down - 12 edge first into the punch feed hopper.

4. Depress the Continue key.

111

Emptying the Punch

1. Remove blank cards from the punch feed hopper.

2. Depress the Start key to allow the 2 cards in the card mechanism to be fed into

the punch stacker.

3. Remove punched cards from the card punch stacker.

4. Be sure to place these cards in back of previously removed cards.

5. Place the power ON switch in the OFF position.

112

HIG H SPEED PRINTER

Operating Controls

Four operating controls, mounted on the top and front of the printer tare

provided as follows:

Paper Tension knob - controls the distance between corresponding sprockets

on the upper and lower tractors to increase or decrease the tension on the

paper.

Form Positioning knob - provides a means of adjusting the paper tractor sproc~

up and down to vary the vertical position of the printed line on the paper.

Character Phasing knob - controls the time interval between the occurrence (

the character pulse and the appearance of the corresponding row of character

directly opposite the print hammers. When this knob is properly positioned,

the hammers strike directly over the characters on the print wheel, and un if 01

printing results.

Penetration Control knob - provides fine adjustment of the spacing between

print hammers and print wheel to vary the density of printing and accomm l:>datE

different paper th icknesses.

Loading the Paper

Thread the paper over the lower paper feed tractors, under the paper hold -do~

and ribbon, and over the upper paper feed tractors. Use the penetration control cral

to lower the print hammer module assembly if necessary. Return the hammer module

sembly to printing position. Use the scales and individual adjustment screws provide

accomplish proper positioning of the paper feed tractors. The paper should press fin

against the platen but should not be taut enough to cause elongation of the perforatt

113

Replac ing Ribbon

To replace the ribbon, proceed as follows:

1. Remove ribbon cover.

:2. See that ribbon is feeding onto inner roll. Switch power OFF as soon as direction of

ribbon travel reverses.

3. Slacken ribbon by manually turning outer roll several forward revolutions.

4. Grasp outer roll and push toward right side of printer. The left end of the roll will

disengage its drive cap, permitting removal of outer roll.

5. Unwind remaining ribbon from outer roll.

b. Remove inner roll by pushing to the right until left end of roll disengages its

drive cap. Pull inner roll toward front of printer, drawing free end of ribbon

through print aperture. Discard worn ribbon and roll.

7. Place empty roll in the inner position. Be sure slot on left end of roll engages drive

cap pin.

8. Insert two sheets of paper through the print aperture. Attach the leader of a fresh

roll of ribbon between these two sheets. Draw paper and ribbon through the aperture

tOW(lrc front of printer.

9. Detach ribbon leader from paper. Pull ribbon leader under inner roll and fasten it

to the roll. Wind a few turns onto the roll.

10. Place new roll of ribbon in outer roll position, taking up slack by rotating roll

several revolutions. Be sure slot in left end of roll engages drive cap pin.

11. Turn on power. Observe that ribbon moves at a steady rate and winds evenly.

114

Control of Vertical Format

a. Preparing Format Tape - the following procedure is suggested for the preparation

of a printer format tape. Since formats differ from application to application, this

procedure is intended to serve only as a guide for those lacking previous experience

in tape preparation.

The following special tools and materials are recommended for the preparation of

a format tape:

1. Roll of Anelex (or equivalent) format tape - laminated

2. Tape punch. Anelex No 52026

3. Pliobond cement (or equivalent)

b. Procedure -

1 • Determ ine the tota I number of lines conta ined on the entire form., Th is

is done by multiplying the number of inches (length) of the form by the

number of lines of paper feed per inch. Most Anelex printers 'hove ver

tical spacing of 6 lines per inch. An ll-inch form will have 66 Ilines

{6 x 11)i a 17 -inch form 102 lines, etc.

2. Take a sample form and rule in all the lines. Number each line.

3. Cut off a strip of format tape containing three more sprocket holes than

the total number of lines on the form (always cut at the midpoint between

the holes). Each sprocket hole on the tape corresponds to a I ine on the

form, so a tape for a 66 line form should have 69 sprocket holes. The

extra holes will be used for splicing purposes. In cases of small f~:lrms,

such as a 3-inch, 18-1 ine form, it is a common practice to format the

form a multiple number of times onto a single tape. For example" an

18-line form may be formatted three times on a tape containing 57 sprocket

holes. In any case, the tape must be long enough to loop around the format

drum loosely.

115

4. Hold the tape in a vertical position with the column of sprocket holes

appearing towards the right. Visualize the location of the eight possible

channels wh ich may be punched onto the tape.

5. Determ ine the format{s} desired and indicate on the sample form by

placing a mark on every line where printing is desired. The first line

of print is generally considered as the top of form.

6. Insert the tape into the puncher, aligning the first hole to be punched

beneath the punch guide holes

NOTE

When inserting the tape into the puncher, you will note that

the sprocket pins are spaced to engage every 8th sprocket hole

on the tape, and that the eight punch guide holes are exactly

eight sprocket hole spaces from the nearest engaged sprocket hole

{counting the engaged hole also}. Knowing this, the alignment of

the punch ing position of the tape beneath the punch guide holes is

readily obtained. If, for example, top of form {first line of printing}

is to appear on the th ird I ine of the form, count down to the 11 th sprocket

hole on the tape {3 + 8} and engage that hole with the nearest sprocket

pin to the punch guide holes. The third hole in the tape, which as

noted previously corresponds to the third line of the form, will

fall exactly beneath the punch guide holes.

7 • Punch the format hole{s} into the tape by push ing the punch ing pin

through the desired guide hole.

8. Carefully I ift the tape off the sprocket pins and advance it through the

puncher until the next punching position is reached. Small grease

pencil markings made at strategic places on the tape, may help prevent

losing hole count during tape advancement. Markings should be wiped

116

off after the entire tape is punched.

9. Repeat subparagraphs (7) and (8) until all channels have been

punched. If format holes have been punched adjacent to the

first sprocket hole, they should be duplicated adjacent to the

last or 67th sprocket hole.

10. Carefully remove the tape from the puncher and turn the end of the!

tape containing the 67th hole in so that the bottom side of the tape

becomes the top side. Channel No 1 shvuld still appear on the right

side of the sprocket hole column. With the tape reversed in this

manner, engage the 67th sprocket hole with the center sprocket pin

of the puncher. Also engage the first sprocket pin with a corresponding

hole. This will keep the tape even and aligned for the next step.

11 • Apply a thin coat of pliobond cement (or equivalent) across the

width of the tape adjacent to the 67th sprocket hole. Application

may be made with a toothpick.

12. Holding the middle section of the tape firm against the flat portion

of the puncher, bring the free end of the tape with the first sprockE~t

hole over and place it above the cemented end. Engage the first sprocket

hole with the same sprocket pin protruding through the 67th hole. Align

any holes which may have been punched adjacent to the first and 67th

sprocket holes so that they complement each other perfectly.

13. Apply pressure to the union until it is held firm.

14. Clean excess cement from tape punch.

117

MAGNETIC TAPE TRANSPORT

Manual Control Panel

This panel includes four switches with three associated indicators and eight

independent I ights that indicate various tape un it conditions when I it.

Transport Power

This switch has two stable positions, OFF and REMOTE, and a momentary

contact position, ON. When OFF, power cannot be applied to the transport.

Pushing the switch to the momentary ON position turns on the transport; it then stays

on even if the switch is returned to REMOTE. However, under no circumstances can

power be applied to the transport (by either the TRANSPORT POWER switch or the 822

power control) unless the transport interlock is closed.

The indicator above TRANSPORT POWER does not indicate a switch position,

but instead I ights whenever power is actually appl ied to the transport.

Mode

Two-position switch with associated AUTO and MAN indicators. In AUTO the

tape un it is on I ine and all operations are in itiated from the tape control. ',In MAN

the unit is off line; reading and writing are disabled and transport motion signals are

generated from the rewind and direction switches on the control panel.

Unit

Eight-position thumbwheel which determines the address of the tape unit. For

example, if the tape control addresses unit 5, only that unit whose UNIT thumbwheel

is set to 5 responds. If desired, the operator can cause the tape control to write on

two tapes simultaneously by giving both units the same address.

118

Manual Rewind

Three-position momentary contact switch with a stable center off position.

Pushing this switch to START RWD sets the rewind flip-flop, causing the tape to run

in reverse at high speed. Pushing the switch to STOP RWD clears the rewind flip·-flop,

halting the tape.

Manua I Direction

Three-position momentary contact switch with a center off position. Forward

tape motion is produced while this switch is held in FORWARD; reverse motion while

held in REVERSE.

Selected

With the Type 52 Control, th is I ight indicates that the tape un it has been

selected. However, with the Type 51 Control, the light indicates that the tape unit

has been selected and commanded to operate.

Ready

Indicates that the unit is ready for on-line operation. This requires that thE:!

un it be in AUTO mode, that transport power be on and that the tape be stationary'.

Write Lock

Indicates that the supply reel does not contain a write enable ring. Leavin!9

the ring out of the reel protects the information contained on the tape.

Rewind

Indicates that the tape is rewinding.

Load Point

Indicates that the beginning-of-tape reflective strip is at the photosensor.

119

Full Reel

Indicates that less than 100 feet of tape are on the takeup reel.

Low Reel

Indicates that less than 100 feet are left on the supply reel.

End Point

Indicates that the end -of -tape reflective strip is at or has passed the

photosensor.

Tape Loading

1 • Turn TRANSPORT POWER switch to OFF.

2. Take the unit off line by turning the mode switch to MAN.

3. Rotate tape load handle 1800 clockwise. This brings the tension arms inside

the bridge rollers.

4. Lock low tape sensors by pushing them against the stop blocks.

5. Mount an empty reel on the lower hub.

6. Mount a full reel of i'ape on the upper hub so that the free end of the tape hangs

down from the right side of the reel, shiny side out. The groove for the write

enable lockout ring should be on the back of the reel. If the tape contains data

that must be protected, make certain there is no write enable ring in the reel.

7. Unwind about 6 feet of tape from the reel.

8. Open buffer cover and head cover.

9. Thread tape.

10. Close buffer cover but not head cover.

11 • Wind one turn of tape around the takeup reel in a clockwise direction.

120

CAUTION

Do not sl ip free end of tape into slot in reel core and do not secure the

free end to the reel in any manner.

12. Hold free end of tape to core of takeup reel with finger.

13. Turn supply reel until tape slack is taken up.

14. Wind about four turns of tape on takeup reel by rotating both reels

manually. Make sure the tape is not slipping on the takeup reel.

15. Unwind about 2 feet of tape from each reel to provide slack for the tension arms.

16. Release tape load handle by rotating 1800 counterclockwise. The tension arms

swing toward normal position, taking up tape slack.

17. Inspect to see that tape is properly positioned within all guiding rollers and the

guide trough.

18. Close head cover.

19. Release low tape sensors.

20. Make sure the tape is seated properly by running the transport from the manual

control panel.

121

Manual Control

After loading a tape, the operator should check out the tape un it from the manual

control panel to make sure that the tape is seated correctly and that the transport is run

ning properly. Apply power to the transport by turning ON the TRANSPORT POWER

switch. It is not necessary to put the 822 power control into LOCAL. It can be left

in REMOTE provided the tape unit is off line (i .e. the mode switch is in MAN). How

ever, transport power cannot go on unless the transport interlock is closed.

The interlock opens whenever the tape load handle is turned to the load position

bringing the tension arms inside the bridge rollers. It also opens whenever the tension

arms swing all the way out to the tension arm bumpers. The former condition prevents

the transport from being turned on while tape is being loaded; the latter turns off the

transport if the tape should break or run off the reel.

With power on and the unit off line, check the effect of the direction and rewind

switches at the right of the control panel. These switches function only when the un it

is off line. Check the forward motion of the tape by holding the direction switch in

FORWARD. Wind enough tape on the takeup reel so that both reverse and rewind can

be checked. Run the tape in reverse for a short distance. Then push the rewind switch

to START RWD and let the rewind go to the beginning of the tape. The tape should halt

when the LOAD PO INT indicator goes on.

Operator1s Check List

After loading a tape and checking tape motion, the unit should be readied for

on -I ine operation. Check the following:

1. If computer power is off, turn 'TRANSPORT POWER to REMOTE.

2. If computer power is on, is the transport also on? If not, push TRANSPORT

POWER to ON, then return it to REMOTE. The indicator at the upper left should

light.

122

3. Is the tape unit on -line? The AUTO indicator should be lit.

4. Is the READY indicator lit? The LOAD POINT and FULL REEL indicat()rs

should also be on.

5. If the tape conta ins data that must not be destroyed, make sure the write

enable ring is not in the reel. The WRITE LOCK indicator should be lit.

6. Is the UN IT selector set to the correct address? If the computer is to rE~ad

the tape, make sure no other unit is set to the same address.

123

APPENDICES

APPENDIX I

CHARACTER CODE CHART

COLLATING SEQUENCE

A T A T
B N E B N E
C E L CARD DEFINED AS CODE C E L CARD DEFINED AS CODE
D L E D L E

Space 01 00 00 + + & 12 Plus 11 00 PQ.
-A -=-. A A 12-1 11 00 O!: / / I 0-1 Slash 01 00 lel

B B B 12-2 11 00 !Q -- ----~.-.--~--... ---.-----~---~---~ ... - .. -.-.. ~--.-~- ~ ... ' .- f-·-

C C C 12-3 11 00 II
S S S 0-2 01 00 1Q. _._-f--- _.- ~~---r-~'-

T T T 0-3 01 00 III . __ --"'_ ~ ..•......... ~ --
D D D 12-4 11 01 00 U U U 0-4 01 01 pO
E E E 12-5 11 01 01 V V V 0-5 01 01 01
F F F 12-6 11 01 10

.. ------ --~ ..• -

W W W 0-6 01 01 10
----- --.-~---- .----~.---.-

G G G 12-7 11 01 11 X X X 0-7 01 01 11
H H H 12-8

.--~-.~-.---

IIi to ()O ---- --- - .. -~-.-- ... -.~.-- ~~.- ----_ - -~-.--- ~-~ ..• -... ~ -
oi -:::- -~ 00 y y y 0-8 10

I I
.. - -12-9 III 10 01 I Z Z Z '--~r 0-9 01 10 01

'- -- _.
~--~-

III & ? 12-.0 Plus Zero 10 10 $?
-.. -

....... 0-2-8 Negation 01 10 10
'--_. ---

-12-3~-cf Period
.- "r'''-

11 . . · 11 10 I I I 0-3-8 Comma 01 10 11
) -}) 12-4-8 ifLgh-t--Paren-·:···············~·~·-· Iii 11 00 '-r --C' l-'-'- ." ' .. _"."".~~ . __ .. __ ".h_ -... -~- -- .. _ _---... _.------ .

11 0-4-8 Left Paren. 01 00
.-~

t: C. $ (12-5"':S
r-::--.. ------~----..

Iii Ii 5r Left Bracket " $/ 01 11
I-- ..

V 0-5-8 Or 01
<- $:'~-

_.
Than '--li i1 llG < 12-6-8 Less /\ 1\ $# 0-6-8 And 01 11 to

~ ~ $; 12-7-8 Arrow III 11 11
- -'-"~-' .-.--.~ ---.---.. -,~.~-" ..

-MIi1"u-s·~-.. -----····-·-~··-·~·----·-·
110 0"0 06 11

~ ::> $, 0-7-8 Implies 01 11 11
.~- -j3' i)'--- ro----- -~-------.. -----

00 10 10
J J J 11-1 10 00 01j 1 1 1 1 00 00 01

. __ .,-
K K K 11-2 110 00 10 2 2 2 2 00 00 10
L L L 11-3 110 00 11 3 3 3 3 08 00 11
M M M 11-4 110 01 oP 4 4 4 4 0: 01 00
N N N 11-5 110 01 01 5 5 5 5 08 01 01
0 0 0 11-6 110 01 1~ 6 6 6 6 0: 01 1~

110
. ~ r-

p P P 11-7 01 11 7 7 7 7 08 01 11
Q Q Q 11-8 10 10 Po 8 8 8 8 0: 10 Op

- - .•. -- __ ._- _. __ ••• '<-

110 Pl R R R 11-9 10 -, t •
.. -- _._-1-.- ~ --, • 11-0 Minus Zero 10 10 10

9 9 9 9 08 10 O~
N/A 08 00 Op

$ $ $S 11-5-8 Dollar Sign 10 10 11 = = $: 3-8 Equal 08 10 1~

* x # 11-4-8 Asterisk 10 110 @ I I 4-8 At 00 11 Op
.1 .J $) 11-5-8 Right Bracket 10 11 01 : - : 5-8 Colon 0: 11 O~ , ------ ~-~- -.. ----

10 10 ; ; 11-6-8 Semicolon 11 '> ') $& 6-8 Greater than 08 11 Ib
6 11-7-8 Delta 10 11 11 7-8 EOF OC 11 11

APPENDIX II

BUS-PAl< II INSTRUCTION LIST

BASIC CONTROL INSTRUCTIONS PG ARITHMETIC INSTRUCTIONS PG
DECIMAL 16 1741¢ CLRAC AC 34
ANELEX 17 175¢1 LOADAC AC N FROM 35
TELETYPE 18 175¢6 DEPAC AC N TO 36

174¢1 BEGIN 18 175¢3 ADDAC AC N FROM 37
6¢¢¢¢¢ GOTO 19 174¢3 SUBAC AC N FROM 38
74¢¢¢¢ NOP 19 174¢4 MULAC AC N FROM 39
175¢¢ STOP 2¢ 174¢5 DIVAC AC N FROM 4¢

17523 ADDMEM AC N TO 41
DATA MANIPULATION INSTRUCTIONS 17522 SUBMEM AC N TO 42
17423 CLRSTR N FROM 21 17524 MULMEM AC N TO 43
17411 MV N FROM TO 22 17525 DIVMEM AC N TO 44
17412 MVZ N FROM TO 23
17413 MVN N FROM TO 24 ACCUMULATOR SHIFT INSTRUCTIONS
17414 MVS N FROM TO 25 175¢6 SHFTL AC T 45
17415 MVX N FROM TO 26 175¢7 SHFTR AC T 46
1742¢ SETX TO 27 1751¢ SHFTRR AC T 47
17421 SETY TO 27
17422 CLZ TO 27 EDIT INSTRUCTIONS

17416 EDIT N FROM TO 51
LOGICAL CONTROL INSTRUCTIONS 17417 MVEDIT N FROM TO BY 51
17456 TCE CHAR TO GOTO 28
175¢5 SEARCH N CHAR FROM GOTO 29 ALPHANUMERIC AND NUMERIC COMPARE INSTRUCTIONS
17457 TSS SW GOTO 29
17462 IFX FROM GOTO 3¢ ALPHANUMERIC COMPARE
17463 IFY FROM GOTO 3¢ 17466 CMPEQU N FROM TO GOTO 52
17454 LDCTR CTR V 3¢ 17467 CMPUEQ N FROM TO GO TO 52
17455 TSTCTR CTR GOTO 31 17471 CMPGRT N FROM TO GOTO 52
17464 SET SW 31 1747¢ CMPLES N FROM TO GO TO 52
17465 CLEAR SW 31 17424 CMPGEQ N FROM TO GOTO 52
1746¢ TPS SW GOTO 32 174¢7 CMPLEQ N FROM TO GOTO 52
17461 TAO AC GOTO 32

BUS-PAK II INSTRUCTION LIST CONT'd.

NUMERIC COMPARE MAGNETIC TAPE IN/OUT INSTRUCTION cont'd.
17472 EQUAL AC N TO GOTO 53 1744¢ REWIND U 70

17473 UNEQU~L AC N TO GOTO 53 17436 RDTAPE U TO GOTO 71

17475 GREATER AC N TO GOTO 53 17437 WRTAPE U FROM GOTO 72
17474 LESS AC N TO GOTO 53 17533 WRTCMP U FROM GO TO 73
17477 GRTEQU AC N TO GO TO 53 17444 SPCREC U T 74
17476 LESEQU AC N TO GOTO 53 17445 SPCFILE U 75

17442 BKSREC U T 76
INDEX CONTROL INSTRUCTIONS 17443 BKSFILE U 77
174$'0 LDIDX IDX V 54 17527 ENDPOINT U GOTO 77
17451 ADDIDX IDX ..-T 54 17441 WREOF U 78 v

17453 DEPIDX IDX TO 55
17452 LDIDEC IDX N FROM 55 MICRO-DISK IN/OUT INSTRUCTIONS
175¢2 LDBLIDX IDX 55 17515 OPENDISK U L 8¢

17516 SEEK U 81
TELEPRINTER IN/OUT INSTRUCTIONS 17517 RDDISK U TO 82
17431 TYPE N FROM 56 1752¢ WRDISK U FROM 83
17434 TYPTXT FROM 57 17521 CLOSEDISK U 84
17433 TAB 57
17432 TCR 58 STORAGE AND RETRIEVAL INSTRUCTIONS
175¢4 TYPE IN N TO 59 17532 DUMP FROM TO 85
175¢3 INQUIRY GOTO 60 17531 RETRIEVE FROM TO 86

17536 LDPROG 86
PUNCHED CARD IN/OUT INSTRUCTION
17425 RDCRD TO GOTO 61 CHECKPOINT AND RESTART INSTRUCTIONS
17426 PUNCRD FROM 62 17534 CHECKPOINT 88

17535 RESTART 89

HIGH SPEED PRINTER OUTPUT INSTRUCTIONS
17427 PRNLIN FROM 63 SUBROUTINE CONTROL INSTRUCTIONS
1743¢ SPACE CHAR 64 1¢¢¢¢¢ GOTOSV 9¢

62¢¢¢¢ RETFROM 91

MAGNETIC TAPE IN/OUT INSTRUCTIONS 637511 EXIT 92

17435 OPEN U B L 68 637512 EXIT1 92
17446 HIDEN U 69 637513 EXIT2 92

17447 LODEN U 69 6375.14 EXIT3 92
17526 ALTTAPE U ALT 69

MESSAGE

BOC

CKP

CMP

NSR

PAR

PAW

PNR

PRC

RIC

RWD

SRR

SRW

TEP

APPENDIX III

BUS PAK II ERROR MESSAGES

CAUSE

Bad op-code

Checkpoint record has
been wri tten

Compare error on Magneti c
tape

No such record on disk

Parity during read of
Magneti c Tape

Parity during write of
Magneti c tape

Card punch not ready

Parity during read-compare
on Magneti c tape

Read incorrect card in card
reader

Error in reading or writing
of Micro-Disk

Short record read on Magneti c
tape

Short record 'M'itten on
Magnetic tape

Tape at end-point, no end
of file written

ACTION

Cannot be restarted

Indicate location of chec:kpoint
on cards (input or output) and
press continue

Does not stop

Press continue to bypass error
record and continue processing

Does not stop

Does not stop

Fix error condition, set switch 2
up if card is to be repunc:hed,
press continue

Does not stop

Fix card and replace in c:ard
hopper, set AC switch I iin the up
position and press continue.

Check unit and fix, press continue
to try again

Press continue to back space and
try again.

Press conti nue to back space and
try again

Does not stop

MESSAGE

TME

TNI

TP

TUD

APPENDIX III Cont'd

BUS -PAK II ERROR MESSAGES

CAUSE

Too many EXIT's

Too many tape un its defined

Tape unit is write protected

Either tape unit or Micro-Disk
un i t is not defined

ACTION

Cannot be restarted

Cannot be restarted

Correct and press continue

Cannot be restarted

APPENDIX IV

FORBIDDEN lABELS

ADD D ION MMEF OPENDI SKP
ADDAC DAC 10RS MMlC OPR SKR
ADDIDX DCF lOT MMRD PAUSE SMA
ADDMEM DECIMA ISZ MMRS PCF SMl
AND DEPAC JMP MMSE PlS SNA
ANElEX DEPIDX JMS MMWR PRNLIN SNL
BAR DIVAC KRB MNC PSF SPA
BEGIN DIVMEM KSF MRC PUNCH SPACE
BKSFll D3B lAC MRCA PUNCRD SPCFll
BKSPC DSF lAM MRD PUNDEF SPCREC
BKSREC DUMP lAS MRl RAl SPl
BSR DXl lAT MRM RAR START
CAL DXS lAW MRR RCBH STl
CCl DYl lDBLlD MRS RCBl STOP
CHAR DYS lDCTR MSC RCDH SUBAC
CHECKP DZM lDIDEC MSCR RCDl SUBMEM
ClA ENDPOI lDIDX MSEF RCl SYMBOL
ClC EQUAL lESEQU MSF RCR SZA
CLEAR EXIT lESS MSI RDCRD SZl
Cll EXITI lOADAC MSUR RDTAPE TAB
ClOF EXIT2 lODEN MSWF REST AR TAD
ClON EXIT3 lPCF MTC RETFRO TAO
CLOSED EXPUNG lPlD MTRS RETRIE TCE
CLRAC FIODEC lPSE MTS REW TCF
ClRSTR FIX l7SF MUlAC REWIND TCR
ClSF FLEX lSCF MUlMEN RRB TELETY
ClZ GCl 3S3S MV RSA TEXT
CMA GlF lSSF MVE RSB TlS
CMl GlK 4CA MVN RSF TPS
CMPEQU GOTO MCC MVS RTBH TSF
CMPGEQ GOTOSV MCD MVX RTBl TSS
CMPGRT GPl MCEF MVZ RTDH TSTCTR
CMPLEQ GPR MCI MWC RTDl TYPE
CMPLES GREATE MCWF MWl RTR TYPEIN
CMPUEQ GRTEQU MDEF MWM SAD TYPTXT
CPCF GSF MDWF MWR SEARCH UI'~EQUA
CPlR GSP MEEF NOINPU SET VARIAB
CPSE HIDEN MEWF NOP SETX WEF
CPSF HlT MtEF NOSYMB SETY WREOF
CRRB I MIWF NOT SHFTl WRTAPE
CRSA IFX MLI OAS SHFTR WRTCMP
CRSB IFY MMBF OCTAL SHFTRR WTBH
CRSF 10F MMDF OPEN SHIFT WTBl

WTDH
WTDL
XCT
XOR

XX
XI
XI

APPENDiX \ V Cont'd.

FORBIDDEN LABELS

XII
XI2
XI3

XI4
XI5
X2

X3
X4
X5

X6
X7
X8

BUS-PAK" CODING SHEET

Program Name No. Author

Label Operation Variable Operand Field

~-

I ,
I I
I I
I
I I

I I
I
I

I
I

I I
I

I
i

I I

J
I
I

I
I

I
I I

I I

I I

I

I
I

I I

I I
I

I I
I

I I

I
I I

I
I
I I

I I ,
I

I I ,
I I
I I

, ,
I ,
I

I
I
I

I

I
I

I
I
I
I

I
I
I

I
I
I
I

I

I

,
!

Sheet~f __

Date !.. !..

Comments

•

» -u
-u
m
Z
o
X
<

Example I:

card-to-tape

anelex

decimal

strt,

rdcd,

ceof,

begin

open

c I rstr

stop

rewind

rdcrd

wrtcmp

goto rdcd

wr.eof

rewind

goto strt+8

tep; typtxt

stop

goto rdcd-2

cda, cda+81/

teletype

ms I, text /

tape is at end point

81

cda

msl

APPENDIX VI

PROGRAMMI NG EXAMPLES

cda

goto ceof

cda

81

goto tep

load next tape, press continue

/
start strt

/ set anelex code input

/ set decimal radix

/ initialize Bus-Pak II

/ open unit I w/I¢ x 81 rec

/ clear card area

/ stop machine

/ rewind unit I

/ get card info cda

/ write card from cda

/ go back and read next card

/ write end-of-file on unit I

/ rewind unit I

/ go stop machine

/ type end-point message

/ stop machine

/ go rewind new tape

/ defi ne card area

/ set teletype code input

Example 2:

tape-to-card

anelex

decimal

strt, begin

open

stop

rewind

rdt, rdtape

puncrd cda

goto rdt

teof, endpoint goto tep

rewind

goto strt + 5

tep, typtxt msl

stop

goto rdt-2

cda, cda + 81/

teletype

msl, text /

tape ~t end-point.

load next tape, press continue.

/

start strt

I¢ 81

cda goto teof

/ set anelex code input

/set decimal radix

/ initialize Bus-Pak II

/ open unit I w/I¢ x 81 rec

/ stop mach ine

/ rewind unit I

/ read record from tape

/ punch card

/ go read next record

/ test if eof or end-point

/ eof - rewind un it I

/ go stop machine

/ type end- point message

/ stop mach ine

/ go rewind new tape

/ define card area

/ set teletype code in put

Example 3:

tape-to-printer

strt,

rdt,

teof,

tep,

pta,

ms, ,

anelex

decimal

begin

open

cl rstr

stop

rewind

rdtape

prnlin

goto rdt

endpoint

rewind

goto strt + 8

typtxt

stop

goto rdt - 2

pta + 12,0 I

tel etype

text I
tape at end-point.

I

12,0

pta

goto tep

msl

load next tape, press continue.

I

start strt

81

pta

pta goto teof

I set anelex code input

I set decimal radix

I initial ize Bus-Pak II

I open unit I wi 1,0 x 81 rec

I clear print area

I stop mach ine

I rewind unit I

I read rec from unit I

I print record

I go read next record

I test if end-point or eof

I eof - rewind unit I

I go stop machine

I type end-point message

I stop mach ine

I go rew ind new tape

I set up print area

I set teletype code input

Example 4:

card -to-tape, tape-to-card, tap-to-printer

anelex

decimal

strt, begin

clear

tstssw, stop

tss goto ctt

tss 2 goto ttc

tss 3 goto ttp

goto tstssw

/ set sense switch I up for cart-to-tape operation

ctt, open 153 81

set

loop I, rdcrd cda goto deof

wrtcmp cda goto tieof

tss goto .+3

clear

tps 2 goto 100p2

tss 2 goto ttc

tps 3 goto loop 3

tss 3 goto ttp

tps goto loop I

goto tstssw-2

/ set sense switch I down to stop card-to tape operation

ceof, wreof

stop

tss goto ett

/ initialize Bus-Pak II

/ clear all prog sw

/ stop mach ine

/ card-to-tape op

/ tape-to-card op

/ tape-to-printer op

/ test sw's again

/ card -to-tape open

/ set prog sw I

/ rd card

/ write card

/ test ssw I

/ no-clear prog sw I

/ test for tape-to'~ card

/ test start tape-to-card

/ test for tape ~to-printer

/ test start tape-to-pJrinter

/ test sti II card-to-tape

/ term inate operations

/ write eof on unit I

/ stop machine

/ test continue cit

goto loop I + 7

tieof, typtxt msl

stop

goto loop I + 7

/ set sense switch 2 up for tape- to-card operation

ttc, open 2 1,0' 81

set 2

loop 2, rdtape 2 pcha goto t2eof

puncrd pcha

tss 2 goto .+3

clear 2

tps 3 goto loop 3

tss 3 goto ttp

tps goto loop I

tss goto ctt

tps 2 goto loop 2

goto tstssw - 2

/ set sense switch 2 down to stop tape-to-card operation

t2eof, endpoint

stop

tss

gon loop 2 + 6

/ type end-point message

t2ep, typtxt

stop

goto loop 2

goto t2ep

2 goto ttc

msl

/ set sense switch 3 up for tape-to-printer operation

ttp, open

cl rstr

3
12,0'

1,0' 81

pta

/ no

/ type end-point mess

/ stop machine

/ continue

/ open tape-to-card

/ set prog sw 2

/ read tape

/ punch card

/ test ssw 2

/ clear prog sw 2

/ test tape-to-printer

/ test3tort ttp

/ test card-to-tape

/ test start ctt

/ test continue ttc

/ test if end-point

/ no-stop machine

/ test continue ttc

/ no

/ tape-to-printer open

/ clear print area

set 3

loop 3, rdtape 3 pta goto t3eof

prnlin pta

tss 3 goto .+3

clear 3

tps I goto loop I

tss I goto ctt

tps 2 goto loop 2

tss 2 goto ttc

tps 3 goto loop 3

goto tstssw

/ set sense switch 3 down to stop tape-to-printer operation

t3eof, endpoint

stop

tss

goto loop 3 + 6

/ type end-point message

t3ep, typtxt

stop

goto loop 3

/ in put - out put areas

cdQ,

pcha,

prt,

cda + 81/

pcha + 81/

prt + 12,0/

/ te letype out put message

teletype

msl, text /

tape at end-point

goto t3ep

3

msl

load next tq:> e, press continue.

/
start strt

goto ttp

/ set prog sw 3

/ read tape

/ print line

/ test continue ttp

/ no - clear prog sw ~~

/ test card-to-tape

/ test start ctt

/ test tape-to-card

/ test start ttc

/ test continue ttp

/ no

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141

