
PDP-15 SYSTEMS
FP15

DEC-15-HQFA-D

FLOATING POINT PROCESSOR
MAINTENANCE MANUAL
VOLUME 1

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Copyright © 1971 by Digital Equipment Corporation

The material in tbis manual is for information
al purposes and is subject to change without
notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

1 st Edition June 1971

CONTENTS
Page Page

CHAPTER 1 INTRODUCTION 3.7.4 Extended Integer 3-12

3.7.5 Sing Ie -Preci s ion Integer 3-12
1.1 General 1-1

3-14 3.B Interrupt Cycle Interface
1.2 Floating-Point Processor Physical Description 1-1

3-14 3.B.1 INT 1 Cycle
1.3 Functional Description 1-2

3-14 3.B.2 INT 2 Cycle
1.3. 1 Operating Cycles 1-2

3-15 3.9 Interrupt Cycle
1.3.2 Major Register Functional Descriptions 1-3

FP1S/CPU Control 3-17 3.10

CHAPTER 2 MODULE DESCRIPTIONS CHAPTER 4 INSTRUCTION SET

2.1 General 2-1 4.1 Introduction 4-1

2.1.1 M23B Synchronous Up/Down Counter 2-1 4.2 Converting Negative Integers To Sign and Magnitude Format 4-1

2.1.2 M159 Arithmetic Logic Unit 2-1 4.3 Normalize 4-1

2.1.3 M 191 Carry Look -Ahead Generator 2-2 4.3.1 Normal ization (Except Store, Divide, or Reverse Divide) 4-2

2.1.4 M24B Right-Shift Parallel Load Register 2-3 4.3.2 Store, Divide, or Reverse Divide 4-2

2.1.5 M1701 Data Select~r 2-3 4.4 Rounding 4-2

2.1.6 M 1713 16-T 0-1 Data Selector 2-4 4.5 Guard Bit 4-6

4.6' Floating-Point Addition and Subtraction 4-6

CHAPTER 3 FP15/PDP-1S INTERFACE
4.6.1 EXP Cycle 4-6

4.6.2 FUN Cycle 4-B

3. 1 Introduction 3-1 4.6.3 Processing of Subtracted Quantities 4-10
3.2 FETCH Cycle Interface 3-1 4.6.3. 1 Overflow 4-10
3.3 FETCH (Indirect) Cycle Interface 3-3 4.6.4 Processing of Added Quantities 4-10

3.4 FETCH Cycle Description 3-3 4.6.4. 1 Overflow Interrupt Due to Addition or Subtraction 4-10
3.5 OPAND Cycle Interface 3-7 4.6.4.2 Overflow Interrupt Due to Rounding 4-10
3.6 OPAND Cycle Description 3-B 4.6.4.3 Underflow Interrupt Due to Normalizing 4-11
3.6.1 Double-Precision Floating-Point Format 3-B 4.7 Integer Add and Subtract 4-12
3.6.2 Single-Precision Floating-Point Format 3-B 4.7.1 EXP Cycle 4-12
3.6.3 Extended I nteger Format 3-B 4.7.2 FUN Cycle 4-12
3.6.4 Single-Precision Integer Format 3-12 4.7.3 Overflow 4-13
3.7 WRITE Cycle 3-12 4.7.4 Integer Reverse Subtract~on 4-13
3.7.1 Store JEA 3-12 4.B Floating-Point and Integer Multiply 4-13
3.7.2 Double-Precision Floating Point 3-12 4.B.l Calculation of Exponents 4-13
3.7.3 Single-Precision Floating Point 3-12 4.B.2 Determining Sign of Product 4-13

iii

ILLUSTRA TIONS ENGINEERING ORA WINGS

Figure No. Title Art No. Page Drawing No. Title Page

1-1 Cabinet Housing FP15 Logic 15-0568 1-1 D-FD-FP 15-0-45 Fetch Cycle Flow 1 3-4

1-2 System Interconnecting Cabling 15-0575 1-2 D-FD-FP15-0-46 Fetch Cycle Flow 2 3-5

1-3 FP15 Functional Block Diagram 15-0574 1-3 D-FD-FP 15-0-47 Fetch Cycle Flow 3 3-6

2-1 M238 Synchronous Up/Down Counter 15-0573 2-1 D-FD-FP 15-0-48 Opand Cycle Flow 1 3-9

2-2 M159 Arithmetic Logic Unit 15-0571 2-2 D-FD-FP15-0-49 Opand Cycle Flow 2 3-10

2-3 M191 Carry Look-Ahead Generator 15-0576 2-2 D-FD-FP15-0-50 Opand Cycle Flow 3 3-11

2-4 36-Bit ALU, Full-Carry Look-Ahead in Three 15-0577 2-2 D-FD-FP15-0-51 Write Cycle Flow 3-13
Levels D-FD-FP15-0-62 Interrupt Flow 3-16

2-5 M248 Right-Shift Parallel Load Register 15-0572 2-3 D -FD-FP 15-0-58 NOR TS 1 Cycle Flow 4-3
2-6 M1701 Data Selector 15-0569 2-4 D-FD-FP 15-0-59 NOR TS2 Cycle Flow 4-4

2-7 M1713 16-To-1 Data Selector 15-0570 2-5 D-FD-FP 1 5-0-57 Float & Integer Div Fun Cycle 4-5
3-1 Major Signal Interface Diagram 15-0567 3-1 D-FD-FP 1 5-0-52 Add, Sub, Rev Sub, Exp Cycle 4-7
3-2 Memory Interface--FETCH Cycle 3-2 D-FD-FP15-0-53 Add, Sub, Rev Sub, Sub Cycle 4-9

3-3 Memory Interface--FETCH Cycle (Indirect) 3-3 D -FD-FP 15-0-54 Floating Mul & Div Exp Cycle 4-17

3-4 Memory Interface--OPAND Cycle 3-7 D-FD-FP15-0-55 Float & Integer Mul Fun Cycle 4-18
3-5 INT 1 Cycle Interface Diagram 3-14 D-FD-FP 15-0-56 Integer Divide Exp Cycle 4-23

3-6 INT 2 Cycle Interface Diagram 3-15 D-FD-FP15-0-57 Float & Integer Div Fun Cycle 4-24
3-7 CPU;rP15 Sample Program 3-17 D-FD-FP 15-0-60 ASIGN Swap & Float Control 4-27
4-1 Converting Negative Integers to Sign and 15-0578 4-1 D-FD-FP15-0-61 Fix Flow 4-29

Magnitude
D-FD-FP15-0-63 Maint Flow 1 4-32

4-2 Guard Bit and Rounding 4-2
4-33 D-FD-FP15-0-64 Maint Flow 2

4-3 Flow Diagram for Setting Guard 15-0580 4-6

4-4 Multiply Simplified Flow Diagram 15-0581 4-14 TABLES
4-5 Multiply Algorithm 4-15

4-6 Floating-Point Divide Simplified Flow Diagram 15-0582 4-19 Table No. Title Page

4-7 Floating Point Divide Algorithm 4-20 1-1 FP15 System Characteristi cs 1-1
4-8 Integer Divide Algorithm 4-25 1-2 FP15 System Features 1-2
4-9 Branch Instruction Flow Diagram 15-0583 4-30

1-3 Operand Transfer and Cycle Time 1-2
5-1 H963E Cabinet (Bay 1 R), Rear View with Mount- 15-0568 5-1

5-1 FP15 Floating-Point Processor Major Components 5-1
i ng Panel Door Open

5-2 FP15 Indicator Bus Connections 15-0585 5-2
5-2 Signal Cable Connections 5-2

5-3 FP15 Floating-Point Processor Engineering Drawings 5-5

v

CHAPTER 1

INTRODUCTION

1.1 GENERAL

This chapter provides a physical and functional description of the FP15 Floating-Point Processor. The

physical description includes lists of FP15 system parameters and special features.

1.2 FLOATING-POINT PROCESSOR PHYSICAL DESCRIPTION

The FP15 Floating-Point Processor consists of four racks of Medium Scale Integrated logic (MSI) and

TTL logic located as shown in Figure 1-1. The interconnecting cabling associated with the FP15 is

shown in Figure 1-2. The floating-point processor logic uses an operating voltage of +5 Vdc that is

supplied from an H721 Power Supply, with 115V or 220V input and +5 Vdc output fused at 20A. A

716 Power Supply provides the power for the indicator panel. The operating characteristics of the

FP15 are listed in Table 1-1; Table 1-2 includes some of the more significant features of the FP15.

Table 1-1
FP15 System Characteristics

Operating Characteristics

Power Requirements

Power Consumption

Temperature Range

Relative Humidity

Heat Dissipation

115V, ±15%
12A
50 ± 1 Hz, 60 ± 1. 2 Hz
Single Phase

230V, ±15%
6A
50 ± 1 Hz, 60 ± 1. 2 Hz
Single Phase

1.4 kW max

50° - 120°F

10 - 95%

4800 btu/hr

Table 1-1 (Cont)
FP15 System Characteristi cs

Physical Characteristics

Size

Weight

No. of Racks

Type of Logic

BB15 INDICATOR PANEL

FPl ~ INDICATOR PANEL

BB15 OPTION PANEL

DISPLAY (OPTIONAL)

PC05 READER PUNCH

FANS

BA15

DW15 LOGIC

828 POWER RECEPTACLE

FRONT

H963E
BAY lR

19-in. wide by 21-in. high

50lb

4

TTL and MSI

1------------
I-- - - -FP15 LOGIC - - - -

1------------

H721 POWER SUPPLY

734B POWER SUPPLY

BLANK

H721 POWER SUPPLY

841-C POWER CONTROL

BLANK

REAR

, 5-0568

Figure 1-1 Cabinet Housing FP15 Logic

1-1

1-2

716 INDICATOR H721 POWER
P0WER

PANEL I-- SUPPLY
SUPPL Y

1
*BBI5 OPTION FP15 FLOATING PDP-15

MEMORY - --1 ~ POINT CENTRAL

~
, PROCESSOR PROCESSOR ,

i t i lBB CONTROL CABLd i
1 MOL CABLE

MEMORY CONTROL CABLE

4-If BB option is not ,nstalled, cables are directly routed to memory_

15-0575

Figure 1-2 System Interconnecting Cabling

Table 1-2
FP15 System Features

o Directly or indirectly addressable up to 128K of core.

o Performs arithmetic operations on 18- or 36-bit integers and 36- or 54-bit floating
poi nt numbers.

o Allows execution of in-line code--CPU instructions and floating-point instructions
may be interspersed as desired.

o I/O Processor can access memory on a shared basis with the floating-point proces
sor; however, the I/O Processor takes pri ority over the FP15.

o When an undesired condition (Underflow, Overflow, Abnormal Division, or Memo
ry Protect Violation) occurs, the FP15 interrupts the CP stored program and auto
matically identifies the source of the interrupt.

o Worst-case multiplication and division times on normalized operands do not exceed
24ps.

o Possesses ability to convert floating-point numbers to integers and integers to
floating-point numbers.

o Remainder, product, and align bits in FMQ are accessible by appropriate software.

o Unnormalized and unrounded arithmetic may be specified.

o A class of non-memory reference instructions is available. These instructions use
existing contents of FMA and FMB and require no memory reference.

o Built-in maintenance logic (maintenance mode) allows single or multiple substeps of
an instruction. All major registers and control can be examined at the end of each
step.

o Designed to operate with existing PDP-15 options (Memory Protect, Memory Relo
cate, etc.) with no increase in cycle time.

i.3 FUNCTiONAL DESCRiPTiON

The FP15 Floating-Point Processor functional block diagram is shown in Figure 1-3. Before describing

each of the major elements in the diagram, it is necessary to introduce the various operating cycles in

the FP15; they are:

a. FETCH
b. OPAND
c. EXP
d. FUN
e. NOR
f. WRITE
g. INTERRUPT

1.3.1 Operating Cycles

During a floating-point instruction, the FP15 is in one of the operating cycles. Each cycle is approx

imately 900 ns and is divided into three time states (300 ns per time state). The cycles can be ex

tended in time due to shifting and aligning. In turn, each time state is subdivided into four phases

(75 ns per phase). The following paragraphs provide a brief description of the major events that occur

during each cycle.

FETCH - In the FETCH cycle the instruction word (first word) is loaded into the FP15 Instruction Regis

ter (IR) and the address of the operand is loaded into the FP15 Address Register (AR). If indirection

{indirect addressing} is requested, the FP15 remains in the FETCH cycle to obtain the effective address.

OPAND - In the OPAND cycle the operand(s} is transferred from memory to the FP15. The number of

operands transferred depends on the format in Tab I e 1-3.

Table 1-3
Operand Transfer and Cycle Time

Format No. of Operands Cycle Time

Single-precision integer One operand (1) 1.2 ps

Double-precision integer and Two operands (2) 2.4ps
Single-precision floating-point

Double-precision floating-point Three operands (3) 3.6 ps

If non-memory reference instructions are specified, the OPAN D cycle is bypassed and no operands are

transferred from memory to the FP15.

'

I OORE ~I __ ~M~E~M~O~~~B~U~S ________ ~ ___________ ~I PDP-iS

MEMORY I -, CPU

I" ~ .. ~ ~ .. ~ -~-- --~~ ---------,
FP15 FLOATING
POI NT PROCESSOR

'---

'----

12-BIT

I NRS;~I~~~I~N Ie-
(IR)

l7-BIT
ADDRESS
REGISTER

(AR)

la-BIT

EPA

3S-BIT
FMA

1
3S-BIT

FMQ

l 7-BIT J-
DIR

I l5-BIT I-
DAR

CONTROL A SIGN

36-BIT
BUFFERED

MEMORY BUFFER
(BMBl

36~ BIT
ARITHMETIC

LOGICAL
UNIT
(ALU)

ALU
BUS

r-

r

1S-BIT
JEA

REGISTER
(JMSEXIT
ADDRESS)

r--,
I FP15 I TO ALL MAJOR I CONTROL I REGISTERS

L __ J

B SIGN CONTROL

1a-BIT
EPB

35-BIT
FMB

lS-BIT
SHIFT

REGISTER
(SCl

t-

-

L ________________ ~
Figure 1-3 FP15 Functional Block Diagram

EXP ~. In the EXP cycle, during floating-point addition and subtraction, the mantissa with the smaller

exponent is aligned with the mantissa having the larger exponent. Alignment occurs by right-shifting

the smaller mantissa.

In the EXP cycle, during floating-point multiplication and division, the exponent is calculated. In

integer format, negative integers in 2 1s complement format are converted to sign and magnitude num

bers during the EX P cycle.

FUN - In the FUN cycle, the actual arithmetic or logical operatio.. is performed. The cycle time ie-

quireci is the basic 900 ns, pius the additionai time required for shift, muitipiy, and divide operations.

NOR - In the NOR (normalize) cycle, the FMA is normalized by shifting. Rounding may also be re

quested. The basic NOR cycle requires 900 ns, plus an additional 150 ns for each shift necessary to

normalize.

WRITE - During the WRITE cycle, the operands are transferred to memory. The operands transferred

from the FP15 to memory are:

Single-precision integer--one 2 1s complement operand

Double-precision integer--two 2 1s complement operands

Single-precision floating-point--2 I s complement exponent and high-order man
tissa

Double-precision floating-point--2 I s complement exponent and high-order and
low-order mantissas.

Each transfer requi res about 1.2 J-lS.

1.3.2 Major Register Functional Descriptions

Buffered Memory Buffer Register (BMB) - The 36-bit Memory Buffer Register is loaded from the memory

bus 18 bits at a time. The output of this register is connected to the ALU, the instruction register,

and the address register. All inputs from the memory pass through the memory buffer.

Instruction Register (IR) - The 12-bit Instruction Register stores bits 6 through 17 of the instruction

word retrieved from memory during the FETCH cycle. Bits 6 through 17 remain in the IR until another

instruction is fetched from memory.

Address Register (AR) - The 17-bit Address Register stores the effective address used in fetching or

storing operands.

Arithmetic Logic Unit (ALU) - The 36-bit ALU performs both arithmetic and logic operations in the

FP15. The output of the ALU is connected to all major registers via the ALU bus. Most major regis

ters are available as inputs to the ALU.

EPA - The 18-bit EPA is a synchronous up-down counter used to store the 2 1s complement exponent

associated with the mantissa loaded in the FMA. The most significant bit of the EPA represents the

sign of the exponent. For single-precision floating-point format, the most significant bit of the ex

ponent is bit 9. The value of this bit is extended from bit 9 through bit O. The EPA is loaded from

the ALU bus and keeps track of the exponent associated with the mantissa in the FMA.

1-3

FMA - The 35-bit FMA stores an integer operand during integer arithmetic or a mantissa during

floating-point arithmetic. The FMA is loaded from the ALU and can be shifted left or right. The

FMA can also be loaded and shifted simultaneously from the ALU bus during multiplication and divi

sion. The EPA and A SIGN/FMA are the floating-point accumulator.

A SIGN - The l-bit A SIGN register stores the sign of the operand loaded into the FMA. A 1 in this

register indicates a negative number; a 0 indicates a positive number.

FMQ - The FMQ is a 36-bit extension of the FMA or FMB and is used primarily during arithmetic op

erations. Bits shifted out of the FMA or FMB, during alignment for addition and subtraction, are

shifted into the FMQ. The most significant bit in the FMQ is used for rounding, if requested. The

FMQ can be loaded from the ALU bus, or directly from the FMA, and has a shift-left and shift-right

capability.

EPB - The l8-bit EPB register is loaded from the ALU bus and stores the 21s complement exponent asso

ciated with the mantissa loaded in the FMB. The most significant bit of the EPB represents the sign of

the exponent. For single-precision floating-point format, the most significant bit of the exponent is

bit 9. The value of this bit is extended from bit 9 through bit O.

FMB - The 35-bit FMB register stores an integer operand during integer arithmetic or a mantissa during

floating-point arithmetic. Unlike the FMA, the FMB can only be shifted right for alignment. The

FMB is loaded directly from the ALU bus. The EPB and B SIGN/FMB are a second operand register.

1-4

B SIGN - The 1-bit B SIGN register stores the sign of the operand loaded into the FMB. A 1 in this

register represents a negative mantissa; a 0 represents a positive mantissa.

Shift Counter - The shift counter performs the following functions:

a. Keeps track of the number of words to be fetched from memory during the OPAND
cycle.

b. Keeps track of the number of words written into memory during the WRITE cycle.

c. Keeps track of the number of shifts required for multiply and divide operations.

d. Limits the number of shifts during normalizing to a maximum of 35
10

,

e. Controls the number of shifts required during al ignment.

f. Checks for exponents having differences which exceed 35
10

,

JEA - The 15-bit JEA address register points to the interrupt handling routines in core that service the

floating-point interrupts (underflow, overflow, abnormal divide, and FP memory trap). This register

is loaded by software control.

Diagnostic Instruction Register (DIR) - The 7-bit DIR determines the number of steps through which an

instruction is to be sequ~nced.

Diagnostic Address Register (DAR) - The 15-bit DAR specifies the address in core where the contents

of the registers are to be stored.

CHAPTER 2

MODULE DESCRIPTIONS

2.1 GENERAL

This chapter provides descriptions of the following modules used in the FP15 Floating-Point Processor:

M238
M159
M191
M248
M1701
M1713

SYNCHRONOUS UP/DOWN COUNTER
ARITHMETIC LOGIC UNIT
CARRY LOOK-AHEAD GENERATOR
RIGHT -SHIFT PARALLEL LOAD REGISTER
DATA SELECTOR
16-To-l DATA SELECTOR

2. 1 . 1 M238 Synchronous Up/Down Counter

The M238 Synchronous Up/Down Counter consists of two DEC 74193 4-b it synchronous up/down count

ers. Synchronous operation is provided by having all flip-flops in the counter clocked simultaneously

so that the outputs change at the same time. The flip-flops are master-slave flip-flops and the outputs

are triggered by a positive-going transition of one of two count (clock) inputs. One input is desig

nated U (up count); the second input is designated D (down count). The direction of counting is de

termined by the count input that is pulsed while the other count input is high.

The outputs of the flip-flops may be preset to any desired state by entering the data at the data inputs

while the load input (L) is low. The output will change to reflect the input, regardless of the count

pulses.

A clear input (CLR) forces all outputs low on receipt of a high clear input. The clear input is inde

pendent of the count and load inputs.

Both borrow and carry outputs are available for cascading the up-counting and down-counting opera

tions. When counter underflow occurs, the borrow output produces the same width pulse as the down

count input. When counter overflow occurs, the carry output produces the same width pulse as the

count-up input. Cascading is accomplished by connecting the borrow and carry inputs to the count

down and count-up inputs, respectively, of the next counter.

The M238 Counter is used in the EPA, DIR, and DAR registers in the FP15 Floating-Point Processor.

Figure 2-1 i~ an example of how the M238 Counter is used in the DIR register (see drawing

D-BS-FP15-0-14) .

NOTE

The up count is inhibited by +3V in the DIR register,
indicating that this register can only be decremented.

CARRY L E1

DATA INPUTS ~~~; ~~
MO 16

M238
H24

BORROW L Fl

DIR 14 (1) H

H2 D I R 15 (1) H {

02

MO 17 J1

LOAD LO OIR H 01 L

F2 }

L1 OIR 16 (1)H DATA OUTPUTS

L2 01 R 17 (1) H

CLEAR GNO Hl CLR

UP COUNT {+3V H 19 U1 J2
~OWN COUNT 01 R OWN P L ...;,K=2 ____ ----'

15-0573

Figure 2-1 M238 Synchronous Up/Down Counter

2.1.2 M 159 Arithmetic Logic Unit

The M159 4-bit Arithmetic Logic Unit (ALU) contains a single DEC 74181 integrated c:ircuit. Nine of

these ALU modules are used in the FP15 Floating-Point Processor to perform 36-bit arithmetic and logic

operations, as shown on drawings D-BS-FP15-0-19 through D-BS-FP15-0-27.

This integrated c:ircuit performs 16, 4-bit arithmetic operations when the MODE control (MC) input is

low and 16 logic functions when the MC input is high. The functions are selected by applying

2-1

combinations of function select inputs SO through 53. For FP15 applications, the function select and

MC inputs are generated by the ALU control logic shown on drawing D-BS-FP1S-0-33.

Only two arithmetic operations, A plus B and A minus B minus 1, are selected in the FP1S; five logic

functions, A, -A, B, -B, and logical 0 are performed in the FP1S. The combined ALU truth table for

FP1S arithmetic operations and logic functions is listed as follows:

Function Select Inputs
Mode Control Output Function

S3 52 51 50

•
0 1 0 0 1 A plus B (arithmetic operation)
0 0 1 1 0 A minus B minus 1 (arithmetic operation)
0 0 0 a 0 A (logic function)
1 a a 0 0 -A (logic function)
1 1 a 1 a B (logic function)
1 0 1 0 1 -B (logic function)
1 0 0 1 1 Logical 0 (logic function)

In addition, a comparator output, A=B, is provided when the four A inputs are equal to the four B in

puts if the function A=B=l is selected. A full-carry look-ahead provides fast, simultaneous carry gen

eration by the M 191 module.

Figure 2-2 shows the ALU configuration for bits 00 through 03 in the FP15 Floating-Point Processor.

2. 1.3 M 191 Carry Look-Ahead Generator

The M191 Carry Look-Ahead Generator, consisting of two DEC 74182 integrated circuits, is a high

speed generator capable of anticipating a carry through a group of ALUs. A 13-ns delay occurs for

each look-ahead level. The M 191, when used in conjunction with the M159 ALU, provides carry,

generate-carry, and propagate-carry functions for 36-bit words.

Figures 2-3 and 2-4 show how the M 191 is used.

Each carry look-ahead circuit is associated with four ALUs (16 bits). Each circuit generates the an

ticipated carry through its respective group of ALUs, as well as providing a Generate (G) and Propa

gate (P) input to a third carry look-ahead circuit associated with the last ALU; hence, the term full

carry look-ahead in three levels (36 bits).

Depending on the selected function of the ALUs, the carry look-ahead circuitry determines whether a

carry will be propagated through the particular ALU, or whether the selected function will generate a

2-2

I NPUTS FROM
M1701 DATA

SELECTORS

r
M2

J 1

F1

51

L2

K1

H1

Ll

E2

FP15-0-19

M159
A3 003

A2 I
Al

AO

FUNCTION ~~: _P_l ___ --'

{

Rl

SELECT Nl
INPUTS 51 H.....:.:....;----~

Ml
SO H ---------'

F3 J2
ADD 00 H 1

F2 N2
Ann. ('\1 u

Fl P2 -~~ ~, 'J OUTPUTS
ADO 02 H

FO R2
ADO 03 H

CN
T2

CNOS CARRY IN

S2
MODE MODE CONTROL

H2
A=B

F2
P CARRY PROPAGAT E

K2
G CARRY GENERATE

15-057 ,

Figure 2-2 M 159 Arithmetic Logic Unit

FP24 P03 L H2

FP 24 G03 L J2

FP25 P02 J 1

FP 25 G02 HI

FP 26 POI L L1

FP26 GOI L Kl

FP 27 POO L K2

FP 27 GOO L L2

FP33 CNOO L Fl

Figure 2-3

FP15-0-28

P3 P F2 FP28 PPOO L

G3 M191 G E2 FP28 GGOO L

P2 E13

G2
Pi CN+Z

02 FP28 CN03 H

01 FP28 CN02 H Gl CN+Y

PO
GO CN+X

El
FP28 CNOI H

CN

15-0576

M 191 Carry Look-Ahead Generator

M1S9-ALU'S
A

~~~--~~~~~~~~--~~ 

M19! 

MI91 

Figure 2-4 36-Bit ALU, Full-Carry Look-Ahead in Three Levels 

rN' I-L!. 

15- 0577 



carry. If a carry is produced, it is directed into the next ALU in line. This seauence is continued for 

each of the four ALUs in the section. The carry look-ahead circuitry then "Iooks" at the G and P sig

nals of all four ALUs and determines whether a carry should be inserted into the next four ALUs and 

into the third level of carry look-ahead. This process is continued for the second section of ALUs 

(next 16 bits). Finally, the third level of carry look-ahead determines whether a carry should be in

serted into the final ALU by examining the resulting G and P inputs of the other two look-ahead cir-

cuits. 

The truth table for the first-stage carry is as follows: 

T rue Carry Insert = L 

POO GOO C
NOO CN+X 

L L L H 

L L H H 
H H H L 
L H L L 

True Carry Insert = Low 

POO GOO C
NOD CN+X 

L L L H 
H L L H 
L H L L 
H H L L 
L L H H 
H L H H 
L H H H 
H H H L 

The following are the logic equations for a carry look-ahead stage: 

CNOl = CNOO * GO + GO * Po 

CN02 = Gl*~ + Po*Go *G J + Gl*GO*C N 

CN03 = P2*G2 + G l *G 2 *Pl +GO+Gl*G2*PO+GO*Gl*G2*CN 

GGOO= P3*G3 + P2*G3 *G2 +Pl*G3*G2*Gl+G3*G2*Gl*GO 

PPOO = P3+P2 + ~+P 0 

where 

C
NXX 

True L 

GXX True H 

PXX = True H 

GGXX = True H 

PPXX = True H 

2.1.4 M248 Right-Shift Parallel Load Register 

The M248 Right-Shift Parallel Load Register consists of two 4-bit DEC 7495 Right-Shift Parallel Load 

Registers connected to allow right-shifting between 4-bit sections. The registers perform load or right

shift operations, depending on the logical input to the MC. When a logical 0 is applied to the MC 

input, the output of each flip-flop is connected to the succeeding flip-flop and right-shift operation 

is performed by clocking at the input designated RS. During this time, the input designated LS is 

inhibited. When a logical 1 is applied to the MC input, the flip-flops are decoupled (to prevent 

right-shift); the register is loaded with parallel inputs when the input designated LS is clocked. The 

register can be configured for left-shift operation by connecting the output of each flip-flop to the 

parallel input of the previous flip-flop. 

The M248 Right-Shift Parallel Load Register is used in the EPB, FMA, FMB, and FMQ registers in the 

FP15 Floating-Point Processor. Each module is capable of handling 8 bits. Figure 2-5 shows a sample 

of the application of this module in the FP15 Floating-Point Processor. 

{

ADD 20 (H) VI A 

ADD 21 (H) V2 B 
DATA INPUTS ADD 22 (H) U2 c 

ADD 23 (H) S2 D 

SERIAL INPUT EPB 01 (HI UI SI 

RIGHT SHIFT EB RS H P2 RS 

EPB LOAD EPB LD N2 LS 

FP15-0-18 

M248 
E07 

MODE CONTROL -EPB Me H R2 Me 

A SI EPB 02 (1) H} 
B Rl EPB 03 (1) H 
C PI EPB 04 (1 I H DATA OUTPUTS 

o NI EPB 05 (1) H 

, 5-0572 

Figure 2-5 M248 Right-Shift Parallel Load Register 

2.1.5 M1701 Data Selector 

The M1701 Data Selector contains two DEC 74153 Dual 4-Line-to-1-Line Data Selector/Multiplexer 

integrated circuits. These integrated circuit modules comprise input multiplexers A and B of the 

2-3 



36-bit ALU in the FP15 Floating-Point Processor. They are also used as input muitipiexers to the shift 

counter, MPO, FMA, and FMQ registers. A complete block schematic of the input multiplexers is 

shown on drawings D-BS-FP15-0-19 through D-BS-FP15-0-27. 

For each section of each IC, one of four data inputs is selected by combinations of address input sig

nals A and B. The selected data input is strobed to the output by a low strobe signal. Refer to the 

following truth table for a typical input multiplexer A section. 

Address Inputs Data Inputs 
Strobe Output 

A B 0 1 2 3 

x x x x x x 1 0 
0 0 0 x x x 0 0 
0 0 1 x x x 0 1 
1 0 x 0 x x 0 0 
1 0 x 1 x x 0 1 

0 1 x x 0 x 0 0 

0 1 x x 1 x 0 1 
1 1 x x x 0 0 0 
1 1 x x x 1 0 1 

x indicates irrelevancy. 

Address input signals A and B are common to both sections of each IC. Figure 2-6 is a typical appli

cation of the M1701 Data Selector in the FP15 Floating-Point Processor. 

FP15-0-19 THRU FPI5-0-27 

H2 MI701 

{ ADO 0'" 
0 A03 

DATA INPUTS FMQ 04 (I) H 
J2 

I F2 
FMA 03 (1) H 

K2 
2 

L2 
3 

Kl 
S 

COMMON { MXBl 
L1 

B OUTPUTS SELECT H1 
INPUTS MXAI A 

{ ADO 02 H 
E2 

0 

INPUTS FMO 03 (1) H 
01 1 02 DATA 
El FMA 02 (1) H 2 
Fl 3 
Jl 

S 

, 5-0569 

Figure 2-6 M 1701 Data Selector 

2-4 

2.1.6 tvH713 16-To-1 Data Selector 

The M1713 16-To-1 Data Selector contains a single DEC 74150 integrated circuit. It is used in the 

output multiplexer section of the FP15 Floating-Point Processor, where up to 16 major register outputs 

are selected for transfer to the common MPO bus. The block schematic of the output multiplexer is 

shown on drawing D-BS-FP15-O-03. 

Data inputs are selected by combinations of data select signals MXA, MXB, MXC, and MXD, which 

are generated by the multiplexer control logic shown on drawing D-BS-FP15-0-05. The strobe inputs 

are wired to ground so that each IC is always enabled. A typical truth table for the 16-to-1 Data Se

lector follows: 

Data Select Inputs 
Data Input* 

MXD MXC MXB MXA 
Selected 

0 0 0 0 DIR12 
0 0 0 1 JEA12 
0 0 1 0 ADD30 
0 0 1 1 ADD12 
0 1 0 0 FMQ30 
0 1 0 1 FMQ12 
0 1 1 0 FMB30 
0 1 1 1 FMB12 
1 0 0 0 EPB12 
1 0 0 1 FMA30 
1 0 1 0 FMA12 
1 0 1 1 EPA12 
1 1 0 0 IR12 
1 1 0 1 BMB30 
1 1 1 0 BMB12 
1 1 1 1 MPI12 

* Signal mnemonics vary as shown on drawing D-BS-FP15-0-03. 



Figure 2-7 is a typical example of the manner in which the M1713 Data Selector is utilized. 

IN PUTS 

SELECT LI NES { 
TO SELECT ONE 

OF 16 INPUTS 

STROBE 

BUSY (1) H 

A SIGN (1) H 

ADD 18 H 

A SIGN (1) H 

FMQ 18 (1) H 

BSIGN(I)H 

FMB 18 (1) H 

B SIGN (1) H 

EPB 00 (1) H 

FMA 18 (I) H 

A SIGN (1) H 

EPA 00 (Il H 

SC12 (1) H 

BMB 18 (1) H 

BMB 00 (1) H 

MPI 00 (1) H 

MXA L 

MXB L 

MXC L 

MXD L 

FPI5-0-03 

S2 
012 

M1713 
T2 

MI 

Nl 

PI 

RI 

SI 

LI 

Fl 

HI 

Jl P2 
MPO 00 L OUTPUT 

Kl 

M2 

L2 

K2 

E2 

F2 

H2 

J2 

N2 

15·0570 

Figure 2-7 M 1713 16-T 0-1 Data Selector 

2-5 





CHAPTER 3 

FP15/PDP-15 INTERFACE 

3.1 INTRODUCTION 

This chapter describes the interface between the CPU, FP15, and memory. This interface is described 

by discussing the major events that occur during the FETCH, OPAND, WRITE, and Interrupt (INT) cy

cles, followed by a flow diagram description of each cycle. The EXP, FUN, and NOR cycles, inter

nal to the FP15, are described in Chapter 4. Figure 3-1 shows the various control signals associated 

with the interface. 

MEMORY 

~ 
(.) 

<I: fo-
f0- Ul 

II) 
~ D:: II) .J (.) 

D:: 
0 

D:: <I: a 
a 1&.1 (J)~ 

j:! 
D:: 

0: D:: .JQ. c... 
~ ~II.. <I: II.. a .... 
Q. ~ Q. ~ D:: 
II.. ~ II.. ~ <1:' 

== 00 ~ 
0 0:0 
IJJ 0: Ul(J) 

~ .J 
0: 0 .J .J 0 

0 0: 0: Q.o D:: 
~ <[ ~ ::!: II.. ~ ~ 

FP15 
CPU FLOATING POINT 

PROCESSOR 

t DIS CP ACT I 
DIS I/O ACT 

DIS CP RD RST 

Figure 3-1 Major Signal Interface Diagram 

3.2 FETCH CYCLE INTERFACE 

Prior to the FETCH cycle, the floating-point instruction from memory is strobed into the FP15 BMB. 

During the FETCH cycle, the operand address is strobed into the FP15 Address Register (AR) (see Fig

ure 3-2). If indirection is specified, a second FETCH cycle is performed to obtain the effective ad

dress. 

Every instruction is monitored by both the CPU and the FP15, which are in parallel on the memory bus. 

Bits 00 through 05 of the instruction are examined for an octal code of 71. The 71 is recognized by 

the CPU as a NOP and by the FP15 as a floating-point instruction. The CPU strobes the instruction 

into the memory input (MI) register and then into the instruction register (IR), while the FP15 strobes 

the instruction into the BMB register. 

The CPU executes the 71XXXXS (NOP) and makes a second memory reference to the next location, as 

if it were fetching the next instruction. This memory request (M REQ) actually fetches the operand 

address that is the second half of the two-word FP15 instruction. The normal interface signals between 

the CPU and memory take place; i.e., the CPU specifies an address, READ cycle, and issues M REQ. 

After M REQ is placed on the memory bus, the contents of the 8MB in the FP15 are strobed into the IR; 

the DIS CP ACT and DIS CP RD RST signals are generated to inhibit the CPU from making further mem

ory requests. Address Acknowledge (ADDR ACK) is returned from memory to clear M REQ in the CPU. 

The memory then places the operand address on the memory data line (MDL) and issues RD RST. The 

operand address is strobed into the 8MB in the FP15. 

The CPU does not see the operand address because DIS CP RD RST prevents RD RST from loading the MI 

and halts the CPU in Time State 3, Phase 3 (TS03*PH03). 

3-1 



SUBCYCLE CENTRAL PROCESSOR FLOATING POINT UNIT MEMORY REMARKS 

M REQ,ADDR, RD 

! 
CPU REQUESTS MEM. CYCLE 

o -M REQ~ I·ADDR ACK MEM. ACKNOWLEDGES ADDRESS 

REMOVE ADDR FROM MDL = 0 .. ADDR ACK CPU REMOVES ADDR FROM MDL 
SET FETCH INSTR ON MDL AND MEM PLACES INSTR. ON MDL 

RD RST ISSUED 

t- 71XXXX S '" MI 71XXXXS ... BMB 71XXXXS RECOGNIZED AS 
~Z MRLS FLOATING POINT INSTR. 
00 I I ·MRLS ACK AND IS STROBED IN BMB OF 0.. _ 

e>U 0- MRLS ~ I 
1--0 - MRLS ACK 

FPU AND MI OF CPU. CPU 
Z=> 

I 

COMPLETES REST OF MEM CYCLE. _0:::: 
t- t-
~tIl 

71XXXXS - IR 71XXXXS STROBED INTO IR OZ 
...,J- (EXECUTED AS NOP) IN CPU u.. 

M REQ DIS CP ACT, DIS RD RST M REQ IS MADE FOR LOCATION 
I i .ADDR ACK CONT AINING OPERAND ADDR. 

til o -M REQ 4 I BMB - IR I CPU RD RST IS DISABLED, WHICH til 
W r-O -ADDR ACK INHIBITS RD RST FROM RESTARTING 0:::: 
0 CPU CLOCK. 0 MOL _ BMB~OPERANO AOOR ON 
~ FP MRDA MDL & RD RST OPERAND ADDR STROBED INTO 0 ~ISSUEO Z BMB. 71XXXXS STROBED INTO 
~ 
0:::: ;.-MRLS ACK IRINFPU. 
w 

REST OF MEM CYCLE COMPLETED. 0.. 
0 ... FP MRDA ... · I . 0 
BMB - AR 

-- 0 - MRLS ACK OPERAND ADDR 
STROBED INTO AR 

REMOVE DIS CP RD RST CPU BECOMES ACTIVE 
0.. FPU ISSUES FP RD RST FP RD RST LOOKS UKE 
::> I-WITH 7100008 ON MOL RD RST TO CPU. CPU t-
w 710000S ... MI .-- STROBES 710000S INTO MI. til 

>-
~ MRLS THE EXECUTION OF THE 710000 
~ ~FP MRLS ACK 

INSTRUCTION WAITING FOR CPU 

I ::> 
0 ... MRLS~ ACTIVE TO SET (WAITING TO ISSUE 0 

--0 ... FP MRLS ACK M REQ) 

Figure 3-2 Memory Interface--FETCH Cycle 

3-2 



The FP15 now issues MRDA (Memory Release and Data Acknowledge) which releases the memory for 

additional requests and acknowledges receipt of the data (operanda ddress). The memory cycle is com

pleted when the memory issues MRLS ACK, clears MRDA in the FP15 which, in tum, clears MRLS ACK 

(Memory Release Acknowledge). The operand address, which was loaded into the BMB, is now strobed 

into the FP15 AR. Since the CPU did not receive the operand address, it is still waiting for data from 

memory. The FP15 places a 7100008 on the MDL, clears DIS RD RST, and sends RD RST to the CPU. 

The CPU loads the 7100008 into the MI and generates MRLS. The FP15 generates MRLS ACK to allow 

the CPU to complete its cycle. 

The CPU executes the 7100008 but is prevented from making a M REO because of DIS CP ACT. The 

CPU waits in TS03*PH02 until completion of the FP15 instruction. The memory interface is now free 

for I/O memory requests. 

3.3 FETCH (INDIRECT) CYCLE INTERFACE 

If bit 00 of the second FP15 word (address) is a 1, specifying indirection, a second FETCH (indirect) . 

cycle is performed. This word, which is in the FP15 AR, and is the address of the effective address, 

is placed on the MDL (see Figure 3-3). The FP15 requests a memory cycle and the contents of the op

erand address (effective address) are accessed from memory, placed on the MDL, and RD RST issued. 

The address is then strobed into the BMB register. The FP15 issues FP MRDA to memory, which re

leases memory for further requests. The effective address, which was transferred into the BMB, is now 

strobed into the AR and represents the address of the first operand. 

If bit 00 of the second FP15 word (address) is a 0, no indirection is specified and this cycle is omitted. 

SU B- CENTRAL 
CYCLE PROCESSOR FLOATING-POINT UNIT MEMORY REMARKS 

V') 
V') 
w 
~ o 
o « 
~ 
6 
w u.. 
u.. 
w 

AR .. MDI.: 
M REO, ADDR, MRD, ADDR ACK 

THIS IS THE INDIRECT CYCLE 
AND THE INDIRECT ADDRESS 
IS STROBED INTO AR. 0" M REO __ 

REMOVE ADDR FROM MD L 
0 .. ADDR ACK OPERAND ADDR PLACED 

DDR ON MOL AND ON MDL AT RD RST. 
RD RST ISSUED REST OF MEMORY 

CYCLE COMPLETED 

0 .. MRLS ACK 
BMB .. AR 

If bit 00 of second word is 0 (Direct Addressing) omit indirect cycle. 

Figure 3-3 Memory Interface--FETCH Cycle (Indirect) 

3.4 FETCH CYCLE DESCRIPTION 

The FP15 detects a floating-point instruction by monitoring MDL bits 00 through 05 for a 71XXXX 

while FP SET FETCH is true (see drawings D-FD-FP15-0-45 through D-FD-FP15-0-47). FP SET FE:CH 

indicates that the CPU is fetching an instruction. When the 71XXXX
8 

is detected, the contents of the 

MDLs are strobed into the FP15 BMB bits 18 through 35 and the floating-point operation is started. 

The PI and API facilities are disabled at this point, to prevent an interrupt during the floating-point 

instruction. 

The CPU executes the 71XXXX
8 

as a NOP and makes a memory request for the next instruction that is 

actually the operand address associated with the floating-point instruction. The FP15 sets BUSY, 

DIS CP ACT I DIS RD RST I and loads the contents of BMB bits 18 through 35, which contain the 

floating-point instruction, into its IR. BUSY starts the floating-point phases and time states and 

DIS RD RST prevents the CPU from seei.ng the RD RST of the memory request for the operand address. 

The CPU waits in TS03*PH03 for RD RST. When RD RST is retumed by memory, the FP15 strobes the 

contents of the MDL into BMB bits 18 through 35 and issues MRDA to memory. The memory responds 

by issuing MRLS ACK which clears MRDA. The FP15 now completes the CPU memory request by clear

ing DIS RD RST, enabling 710000
8 

(NOP) onto the MDL, and issuing FP RD RST, which strobes the 

NOP into the CPUls MI. The CPU responds with MRLS and the FP15 returns MRLS ACK. The CPU be

gins to execute the NOP but cannot issue a M REO because DIS CP ACT holds the CPU in TS03*PH02, 

thus allowing I/O memory requests to be made. 

The FP15 loads BMB bits 18 through 35 (operand address) into the AR and determines if an I/O memory 

request is pending. If one is pending, the FP15 waits; if not, the FP15 determines if indirection has 

been requested. When indirection has not been requested, the FP15 enters the OPAND cycle, if an 

operand FETCH is requested, or the EXP cycle, if no operand FETCH is requested. 

If indirection has been requested, the FP15 places the contents of the AR onto the MDL and issues 

M REO. When RD RST is received from the memory, the contents of the MDL are strobed into BMB 

bits 18 through 35 and then loaded into the AR. The FP15 then enters OPAND or EXP, as described 

above. 

Two other operations are also performed in the FETCH cycle. If the instruction is ADD, SUBTRACT, or 

FIX, the FMO is cleared during TS03 of the FETCH cycle. If the instruction is a Reverse Divide, the 

FMA is loaded into the FMO; if the instruction is a Reverse Subtract I the FMA is loaded into the FMB 

during TS02. 

3-3 



o 

c 

B 

A 

8 
This drawln, and s~dlc:dlOft'. nerem, .,. Ihe prop-

I ;:~"~,E;'.~ ~=:':::'.:'::"~:: I 
thebnISfOtt1'lem.anklf.t:tureDfUleof IWnI'llritttout 
written permlSSla., 

> 

'" 

0 
z: 

" " 0( 
:I: 
U 

'" :I: 
U 

DEC ~ORM NO 

8 ORr) 102_8 

3-4 

7 

FPI 
P SET 

FP¢8 :...D 
8MS 18 -35 

FP/~I DIS 
I/O ,qCT 

F"P3¢ LD sc. 

NOTE SEE Pf:7CH 
PA~E .3 

7 

6 5 .4 

STAR~ 

YES 

FP// MDL EN 

NO 

B 

FP(29 

YeS 

6 5 .4 

3 

FP¢rD FF' RD RSTOLY 

FPI¢ FP 

FPU 
YES IRI¢ • I if 

- STORE 

-;::,TORE YES 
7 

FP3/ 

UNLESS OTHERWISE SPECIFIED 

DECIMALS 

.XXX =.005 

.XX "'.02 

.X ".1 

MATERIAL 

FINISH 

3 

QTY. 

SCALE 

SHEET OF 

2 

r-" 

DESCRIPTION 

PARTS LIST 

('{ (~ E 

ITEM 
NO. 

D 

c 

10 
-;t 

e; I 

~C? 
10 

CL 
LL 

l:i eLL 
~Q 

B 



D 

c 

B 

A 

8 
TI'\ls drawlnland SpieCl"catJoM,lIef'ein •• nth prep. 
el't)l of [hal!.1 Equipment COrporabon and ~.N not be 
reprodl.lClid or copied or uMCIln whole or In ~rt H 

theb''''lfortMomanl.lf.eturwOlU .. ofifllmllwd:hOut 
wntten perml55I011 

10 

I; 
I~ 

'" J: 
u 

DRD 102-8 8 

7 6 5 4 

FP MP.. £Q 

YES 

P¢ 

7 

7 6 5 4 

3 

3 

FIRST USED ON OPTIONIMODEL 

UN LESS OTHE RWISE SPECI F I ED 

DECIMALS 

.XXX-.OO5 

.XX - ,02 

MATERIAL 

FINISH 

DESCRIPTION 

SCALE 
SHEET -O-F-

2 

ITEM 
NO. 

D 

c 

to 
'T 

I 

'" " z I 
'L{) 

0.. 
LL 
~o 
3lL. 
~Q 

B 

3-5 



8 
;1'1'$ Or.*,tl8 .nd s"","",,fo£.'iIOroii. t;lnlir:. ar& thf; ilrn~ 
erty 01 01£""' EqUlpmlEnt Curpor.t"~n Ind VI.II not be 
reprQ(\1,JtC'd or eop'ecI or ayO In ~ or ifl pert e, 
tne- tlU" for tne m"nuflctrJre or UI~ Df ams W/ttHnIt 
"""tte" perm'S'511;tr 

7 6 5 4 3 

D D 

l ONLY FOR I FLOATING RDD 
+ SUB + FIX 

'" IFP¢9 TS ¢ 3 .) IFPII FE:TC-H I 

Y IFP¢Q PH¢3 I c c 

B 

> 

'" 
A 

~ 

" z « 
:I: 
u 

" :I: 
u 

ORO 102-8 

3-6 

8 

hlOT ~, PMA IS ON 
ADD rt¢ -;:'S 

FPr/Jq PH (/l3 

7 

FP31 DIV 

6 

FP33 
S(Il <= H 

51 = H 
S2 " L 
53 .. L 

MODE.: H 

FP3~ (/;-
ADD ¢¢ -35 

5 4 

lFP35 ADD + 
I SU8 eLI< 

(FP32 MLS I 

I ,qDD¢d- 35l __ PMQ 

B 

FIIlST USED ON OPTIONIMOOEl 

UNLESS OTHERWISE SPECIFIED 

DECIMALS 
.xxx" .005 
.xx ,. .02 

X -.1 

MATERIAL 

FINISH SCALE 

SHEET OF 

4 2 



3.5 OPAND CYCLE INTERFACE 

After the FETCH cycle, the FP15 enters the OPAND cycle. If an instruction is specified in which 

operands are not fetched from memory (bit 10 of the floating-point instruction word on a 1), the 

OPAND cycle is omitted completely and no memory reference is made. The current contents of the 

FMA are used as the operand. 

For memory reference instructions, the operand or operands from memory are transferred to the FP15 

during the OPAND cycle. The number of operands is dependent on the format specified and is defined 

in the note associated with the OPAND cycle in Figure 3-4. This description assumes double

precision floating-point format in which the maximum number of operands (three) is transferred from 

memory. The first operand transferred is the exponent. The FP15 requests a memory cycle (M REQ) 

and transfers the effective address in the AR to memory via the MDL. Memory then places the first 

operand (the contents of the address specified) on the MDL and issues RD RST. The FP15 strobes the 

operand into the BMB and releases memory. 

The next operand (high-order mantissa) to be obtained is in the next sequential location (exponent ad

dress plus one). As a result, the address in the AR is incremented so that the next memory access will 

transfer the second operand. The memory cycle is exactly like that described for the exponent operand. 

The third operand (low-order mantissa) is in the next sequential location (high-order mantissa plus 

one). The address in the AR is incremented a second time to obtain the third operand address. The 

memory cycle is like that described for the exponent operand. 

If bit 10 of first word (71XXXXS) is set, the OPAND cycle is omitted completely. If the bit is 00, the OPAND cycle is performed. However, 
certain operations in the OPAND cycle are excluded based on the following format: 

SUBCYCLE 

I-
Z 

Z 
o 
a... 

C5 

« 
V') 
V') 

;::: 
z « 
:E 

'" w 
o 
'" o 

I 
J: 

" s: 

Double-Precision Floating Point - All Operations Performed 
Single-Precision Floating Point - Omit Low-Order Mantissa 
Double-Precision Integer - Omit Exponent 
Single-Precision Integer - Omit Exponent and Low-Order Mantissa 

CENTRAL PROCESSOR FLOATING-POINT UNIT MEMORY 

AR - MDL 
M REO, MRD I .... ADDR ACK 
0- M REO" I 
REMOVE ADDRESS 

FROMMDL ~O-ADDRACK 
EXPONENT ON MDL 

MDL - BMB-------r AND RD RST 
FP MRDA____ I ISSUED 
o _ FP MRDA • .... MRLS ACK 

8MB - EPA ~O - MRLS ACK 
AR + 1 -AR I 
AR - MDL I 
M REO, MRD, &-------+-
~~~~!=-r:~D::~ACK 

I ~ HIGH ORDER MAN-

MDL - BMB d TISSA ON MDL &
RD RST ISSUED

FP MRDA '.MRLS ACK

o - FP MRDA-- -r: 0 _ MRLS ACK
AR + 1 - AR

AR - MDL
M REQ, MRD &- -'-ADDR ACK
0- M REQ • I
REMOVE ADDR FROM MDL~O _ ADDR ACK

1 LOW ORDER MANTISSA
ON MDL & RD RST

MDL - BMB~ISSUED
FP MRDA I ~RLS ACK

o - FP MRDA4!:::: I~ 0 _ MRLS ACK

BMB - FMA 00-35

AR + 1 - AR

Figure 3-4 Memory Interface--OPAN D Cycle

REMARKS

FPU REQUESTS MEMORY CYCLE
WITH CONTENTS OF AR ON MDl.

FPU REMOVES ADDRESS FROM
MDL. FPU WAITS FOR EXPONENT

EXPONENT TRANSFERRED TO
FPU AND STROBED INTO
BMB. MEMORY
CYCLE COMPLETED

ADDR REGISTER INCREMENTED

FP REQUESTS MEMORY
CYCLE WITH INCREMENTED
OPERAND ADDRESS

HIGH-ORDER MANTISSA
STROBED INTO FPU MEMORY
BUFFER

MEMORY
CYCLE COMPLETED

FP REQUESTS MEMORY
CYCLE WITH TWICE-
INCREMENTED OPERAND
ADDRESS

LOW-ORDER MANTISSA
STROBED INTO FP
MEMORY BUFFER

MEMORY CYCLE
COMPLETED

CONTENTS OF BMB 00-35
STROBED INTO FMA

3-7

3.6 OPAND CYCLE DESCRIPTION

During the OPAND cycle, the FMB and/or EPB is loaded from memory jf the instruction specified is an

arithmetic instruction (Add, Subtract, Multiply, or Divide). For other types of instructions {including

Reverse Subtract and Reverse Divide}, the FMA and/or EPA is loaded. For integer format, the EPA is

not loaded.

Drawings D-FD-FP1S-0-48 through D-FD-FP1S-0-S0 are flow diagrams of the OPAND cycle. The cy

cle is initiated when OPAND goes to 1. At TS02*PH01 of this cycle, an FP M REQ is issued.

Since a WRITE operation is inhibited (-ALL WRITE), a memory read will occur. The address of the op

erand, located in the AR, is gated onto the MDL via the output multiplexer (MPO). FP M REQ, after

a delay to allow the MDL to settle, produces M REQ to initiate the memory cycle.

When memory receives the address, it issues ADDR ACK, which clears FP M REQ. The data (operand)

and RD RST are then placed on the MDL by the memory. Before strobing the data into its memory buf

fer, the FP15 waits for FP CYCLE. This signal is delayed by RD RST DLY to allow time for the data to

settle before it is strobed. When the data is strobed into the buffer, the FP15 issues FP MRDA and the

memory responds with MRLS ACK, whi ch clears FP MRDA to complete the memory cycle.

The data format must now be determined. For each format I the shift counter is loaded with one less

than the number of operands to be transferred to the FP15, so that the shift counter will detect a borrow

rather than a 0 condition. For example, in double-precision integer format the shift counter is loaded

with 1. Transferring the first word to memory decrements the counter to 0; transferring the second word

decrements the counter to produce a borrow indicating completion of the transfers.

3.6.1 Double-Precision Floating-Point Format

If double-precision, floating-point format is specified (IR 11 = 1, IR 12 = 1), the shift counter is

loaded, during the FETCH cycle, with a count of 2 (SC 16 = I, SC 17 = 0). A signal designated

-STROBE loads the low-order bits (8MB bits 18-35) of the memory buffer with the operand. The A side

of the ALU is selected. If the instruction is a Fix, Load, Float, Reverse Subtract, or Reverse Divide,

an MA SEL signal is generated that causes the EPA to be loaded. If an arithmetic instruction is speci

fied (Add, Subtract, Multiply, or Divide) MA SEL is not generated and the EPB is loaded.

The shift counter is decremented and, if no borrow is generated, the second memory reference of the

OPAND cycle is initiated.

The second memory reference is similar to the first. The address in the AR has been incremented to ac

cess the next sequential memory location (high-order mantissa). The shift counter is now at a count of

1 (SC 16 = 0, SC 17 = 1). ihe SiROBE signai ioads the high-order bits of the memory buffer (BMB bits

00-17) with the second operand.

3-8

ihe shift counter is decremented a second time to a count of O. ihe third memory reference is simi iar

to the second except that the address is again incremented to fetch the third operand (low-order man

tissa). The -STROBE signal loads the low-order mantissa into the low-order bits of the BMB. If the

instruction is an arithmetic type, the B SIGN/FMB is loaded. If the instruction is a Fix, Load, Float,

Reverse Subtract, or Reverse Divide, the A SIGN/FMA is loaded. The A multiplexer is again selected

after the fetch of the third operand so that the A SIGN/FMA or B SIGN/FMB can be loaded as a

36-bit word from the 36-bit memory buffer.

The shift counter is decremented and now produces a borrow which indicates that all operands have

been received. At this point, the OPAND cycle is cleared and the EXP cycle is enabled.

3.6.2 Single-Precision Floating-Point Format

In single-precision Roating-point format OR 11 = 0, IR 12 = 1), the shift counter is loaded in the

FETCH cycle with a count of 1 (SC 16 = 0, SC 17 = 1). A memory reference is made just as for

double-precision floating point and the exponent operand is strobed into the low-order bits of the BMB,

, as a result of -STROBE. The B side of the ALU is selected for the first word of single-precision floating

point format. The first word consists of nine bits of exponent and nine bits of mantissa. The nine bits

of exponent are loaded in the EPA or EPB. The value ?f bit 09 (exponent sign) is extended through

bit 00. The nine bits of the mantissa remain stored in bits 18 through 26 of the BMB, since the

A SIGN/FMA or B SIGN/FMB are loaded 36 bits at a time. The exponent bits in the BMB are cleared

(bits 27 through 35).

At the end of the memory reference, the shift counter is decremented to O. Since no borrow is de

tected, a second memory reference is initiated to fetch the 18 bits of high-order mantissa from memory.

The address in the FP15 AR is incremented to access the next sequential memory location. The 18 bits

of high-order mantissa are loaded into the high-order bits of the BMB by STROBE. The A side of the

ALU is selected and the A SIGN/FMA or B SIGN/FMB is loaded with the 27 bits of mantissa.

At the end of the cycle, the shift counter is decremented and produces a borrow indicating that the op

eration is complete. The OPAND cycle is cleared and the EXP cycle is enabled.

3.6.3 Extended Integer Format

In extended integer format (IR 11 - 1, IR 12 = 0) the shift counter is loaded with a count of 1

(SC i6 = 0, SC i7 = 1) during the FEiCH cycie. ihe normai memory reference is made, and STROBE

causes the 18 bits from memory to be loaded into the high-order bits of the BMB.

D

c

B

A

8
Thu; drillwlnS Ind ~,1Ic.ttons.. her.m, the prop
erty of Dls,ta. EquIpment Corporation arid dlalll'lot I»
reproouce<l orCOPtetl or uMCI in wtlole or In ~rt.s.
tl'1oett..slsfQrthemanuflC'tureorsaleotrtllmsW1thololt
.. ,mtten permiSSion

~I
'-" z
<
l:
U

'" l:
U

DR[) 102-9 8

7

7

6

-=- PI2 -ilL L WP. IT£.

MEM

YES
ME'M 81.1S

YES
IV}E'M 81.1S

FPIf/; DIS CP ACT ."

-RT CP "*
-/iLL 'WRITE

I·
I

FP42
-TRANSFt=R 8

6

5

FPI¢ ill --. FP MREQ.

5

- RD
RST

4

NO

.4

3

3

YE'S

NO FP31

FIRST USED ON OPTIONIMODEL QTY.

MATERIAL

FINISH SCALE

SHEET

2

DESCRIPTION

CYC~ E

OF

ITEM
NO.

D

c

B

3-9

D

c

B

A

8
rl\'$ clnJ ,1'l1 and s~ifteaboM. "" ... n. are 1he prop
II:'rty of OIl11'hll Equipment COf"pon\ton and ~II not be
rotpfOod","ced OJ t:Q~ (l~ ~~ l:'l 'J!I!l* ~r ,,, pollitt II!!

the bU,s tor tfl~ m.nuf.ctu~ or iii. of w.ml WJttJovt
..... rltten perm'$$'('"

8

FP33
S(ZI '" L
51 = H
5C?,. G.
53 = H
MOLJ~ =- H

3-10

7

7

0------

13,
J

FP42 - STOP eL.K

FPIr; Ff> C'rC.LE

ES

NO

6

6

DPI
IR 1/ G I

IRI2-¢

YES

FP31

MPI
SI:L

NO

5

YE:'

5

1

FP3S
8MB OS

I

FP33
54> L
S I I.-

~2 I.-
53 I.-

M ooe L

3

D

FP4C! STOP

/Z~------~

c

B

FIRST USED ON OPTION!Mt.;DEL QTY. DESCRIPTION ITEM
NO.

PARTS LIST

UNLESS OTHERWISE SPECIFIED $AJ,.~/ mamaamo E QUI PM E N T
D TE •• • :'~~~~C:.~A~:I.~~

DECIMALS I~ l
ATE TITLE

A .xxx- .005 5.1 .xx •. 02

OPAND CYl:LE
FLOW 2

MATERIAL

NUMBER

FINISH SCALE

SHEET OF

3 2

D

c

B

A

8
-:-"I,S ilra""riland SDeClflc.at;OI'lS, h.'tnn, iIIre the prop
t'rty a' O'Ii".' EQ-.o,pmentCQrporlt,on al'lCl shall t\Ot be
reorod .. cl!!d :1' :op,ed or uud In no •• or In pari IS

:r~r.:~S'~lr~,~~o~.~ufactl.!r. or Wile 0' Items """tt1out

>

'"

0
z

" z
'" I u,

".
I
u

DRD 102-13 8

7

7

6 5 3

FIRST USED ON OPTIONIMODEl

UNLESS OTHERWISE SPECIFIED

DECIMALS
.xxx".oos
.xx -.Q2

.X -.1

MATERIAL

FINISH

6 5 4 3

D

c

B

QTY. DESCRIPTION ITEM
NO.

PARTS LIST

~t~e;71 mamaDmD E a U I PM E NT •• . ~~~:'y~.~.~~~::~ D~}7
DATE TITLE A s,

OP,ANO CYCLE
FLOW 3

SCALE

SHEET -O-F-

2

3-11

After completing the transfer, the shift counter is decremented to 0, no borrow is detected, the AR is

incremented, and a second memory reference is initiated.

The second memory reference causes the 18 bits in the next sequential memory location to be loaded

into the low-order bits of the BMB by -STROBE. The A side of the ALU is selected and the FMA or

FMB is loaded with the 35-bit integer.

After the transfer of the second word, the shift counter is decremented from 0 to a borrow condition.

The OPAND cycle is cleared and the EXP cycle is enabled.

3.6.4 Single-Precision Integer Format

In singl-precision integer format (IR 11 = 0, IR 12 = 0) only one memory reference is made. The shift

counter is loaded in the FETCH cycle with a count of O. A memory reference is performed to obtain

the operand. The operand is loaded into the low-order bits of BMB 18-35. The value of bit 18 (sign

bit) is entered through bit 00. The A side of the ALU is selected and the A SIGN/FMA or B SIGN/

FMB is loaded.

At the end of the cycle, the shift counter is decremented from 0 to produce a borrow that clears the

OPAND cycle and enables the EXP cycle.

3.7 WRITE CYCLE

If a Store instruction is specified, the WRITE cycle is initiated. During the WRITE cycle the contents

of the desired major registers are written into memory. Drawing D-FD-FP15-0-51 is a flow diagram of

the WRITE cycle. At TS02*PH03 of the NOR cycle, the shift counter is loaded with one less than the

number of words to be transferred to memory.

The FP15 places the contents of the AR on the MDl and issues a delayed FP M REQ that allows for

settling time. The AR contains the address where the first operand is to be stored. Memory receives

the address on the MDL and issues ADR ACK indicating receipt of the address. This signal also clears

FP M REQ and enables the data to be placed on the MDL.

The particular word (depending on the count in the shift counter) is strobed on the MDL. FP MRDA

is delayed by ADDR ACK to allow address settling. The operand is strobed into memory by FP MRDA.

Memory responds with MRlS ACK that clears FP MRDA to complete the cycle.

The number of memory references during the WRITE cycle depends on the instruction and/or data for

mat. When the shift counter produces a borrow, the WRITE cycle is terminated. BUSY and DIS CP

ACT signals are cleared and control is returned to the CPU.

3-12

The various types of store instructions are described below:

3.7.1 Store JEA

If the instruction is Store JEA, the contents of the JEA are transferred to the output multiplexer (MPO)

and then to the MDL.

3.7.2 Double-Precision Floating Point

In double..;precision floating-point format, the shift counter is loaded with a count of 2. The first word

(contents of EPA register) is transferred to the output of the multiplexer. When the shift counter is

decremented to 1, the second word (high-order mantissa ADD 00-17) is transferred to the output of the

multiplexer. When the shift counter is decremented to 0, the third word (low-order mantissa ADD

18-35) is transferred to the output of the multiplexer.

3.7.3 Single-Precision Floating Point

In single-precision floating-point format, the shift counter is 1; EPA bits 09 through 17 and FMA bits

18 through 26 are transferred to the output of the multiplexer. When the shift counter goes to 0, FMA

bits 00 through 17 are transferred to the output of the multiplexer.

3.7.4 Extended Integer

The shift counter is loaded with a count of 1 for this format. When the shift counter is 1, the high

order bits (ADD 00-17) are transferred to the output of the multiplexer and, if the shift counter is 0,

the low-order bits (ADD 18-35) are transferred to the output of the multiplexer. When an Integer

Store instruction is specified, positive or negative integers are transferred from the FMA to the FMB

and are l's complemented during FUN*TS02. At NOR*TS01, the FMB is incremented so the contents

of the FMB are now a 21s complement representation of the integer in the FMA. During the WRITE cy

cle, the sign (A SIGN) of the FMA is examined. If the sign is positive, the integer is a positive inte

ger and the contents of the FMA are stored in memory. If A SIGN is negative, however, the contents

of the FMB are stored in memory, since the FMB is the 2's complement of the FMA and negative inte

gers are 2 1s complemented before being transferred to memory.

3.7.5 Single-Precision Integer

When a single-precision integer Store instruction is specified, the contents of the FMA are transferred

to the FMB and lis complemented during FUN*TS02. At NOR*TSOl, the FMB is incremented and now

D

c

B

A

8
nus dr.ln • .Inc! sp«:11.ationa, nenin, aUI ttl. prop·
.rt)I of o.lIt11 Equipment Corpor.tion and shall not be
'lI9toduced or copted or uled in ~ Of in P8rt ...
tne~"'lfo'U'lem.nufactureorN"ofitMn .. WithOut
written 1)CI,.,., on.

'"

0
z

'" z ..
u

i)RD 102-6 8

7

FP¢"I T3 *- P3

FP42 -STOP eLI<.

7

FP3¢ LOAD Sc..
WITH COUNT
2. = D P1=
1= SPF+ DPI
It ~ SPI + .JE}l

6

S TORE >--,N~O,,-___________ _

6

5

5

FP35
-/7

.4

3

NO

NO

3

NO

FIRST USED ON OPTION/MODEL

DECIMALS

.xxx- .005

.XX -.02

.X - .1

MATERIAL

FINISH

DTY.

SCALE

SHEET OF

2

F'P(/J 3
EPA tJ;9- 17 *
FMA 18 - 2"
......... MPO

DESCRIPTION ITEM
NO.

PARTS LIST

~~JJh ~DmDDmDEQU I PMENT
DATE •• • ;'~~~~.~a~ls~T~

0...-;i""/

WRITE CYCL E
FLOW

NUMBER

D

c

l!)
:0 I

~0
Z I

L[)

CL
1..L

:;:0 eLL
~Q

B

A

3-13

represents the 2's complement of the FMA. During the WRITE cycle, A SIGN is examined. If it is

positive, the contents of the FMA are stored in memory; if it is negative, the 21s complement of the

negative integer are stored in memory. This 2 1s complement is contained in the FMB and, consequently,

the contents of the FMB are stored in memory.

3.a INTERRUPT CYCLE INTERFACE

The following conditions in the FP15 can cause an interrupt in the CPU.

a. Overflow
b. Underflow
c. Abnormal division (divide by zero)
d. Memory violations (trap)

An interrupt generated as a result of an overflow or underflow condition can occur during the FUN

cycle, where the arithmetic operation is being performed, or during the NOR cycle, where the result

of an arithmetic operation is being normalized. An abnormal divide interrupt can occur only during

the FUN cycle; a m~mory violation interrupt can occur during the FETCH, OPAND, or WRITE cycles.

If an interrupt should occur while an FP15/CPU cycle is in progress, the cycle is completed, the re

maining sequence is aborted, and INT 1 and INT 2 interrupt cycles are initiated.

If an interrupt caused by a memory violation occurs in the OPAND cycle while the exponent is being

fetched, this part of the sequence is completed, fetching of the high-order and low-order mantissas is

aborted, and the interrupt occurs. If the interrupt occurs during fetching of the high-order mantissa,

The FP15 completes this part of the cycle and aborts fetching of the low-order mantissa.

3 .a. lINT 1 Cycle

When a floating-point interrupt is raised, the FP15 forces a JMS*O to the CPU by placing 120oo0
a

on

the MDL. Figure 3-5 shows the communication between the CPU and FP15. It is assumed that a mem

ory violation interrupt occurred during the fetching of the high-order mantissa. When the high-order

mantissa has been fetched, the OPAND cycle is aborted and a dummy setup initiated. The FP15 re

moves DIS CP ACT and the CPU is allowed to make a memory request. DIS RD RST is raised and the

FP15 completes the memory cycle. The FP15 then removes DIS RD RST, places 120000
a

(JMS*O) on

the MOL, and issues FP RD RST. The 12ooo0
a

is strobed into the MI in the CPU and then executed.

The remainder of the cycle between the FP15 and CPU is completed.

3-14

SUB- CENTRAL FLOATING-POINT
MEMORY REMARKS

CYCLE PROCESSOR PROCESSOR

0 ... DIS CP ACT CPU CONTINUES FROM TS03*PH02
M REQ·CP ACT r--- CPU MAK ES MEMORY REQUEST

1 + DIS C~C1ADDR ACK FP15 COMPLETES MEMORY CYCLE
~DISRDRST

0 .. M REQ

~I- ADDR ACK
RD RST

..-.. FPMRDA~
::I: w u MRLS ACKJ

0 ... FPMRDAd uot:; >- -Ie LL "0 .. MRLS ACK UV'l>-
-~~ o ... DIS RD RST
I-"""'I~

12oo00a .. MDL Z ~ - e. VFP RD RST
120000a ... MIA' FP15 FORCES JMS*O (120oo0a) ON

MOL AND COMPLETES CPU CYCLE

MRLS~

0 .. MRLS ,-
FP MRLS ACK

~O ... MRLS ACK
MI ... IR 120000a (JMS *0) LOADED IN IR

0 .. DIS CP ACT

Figure 3-5 INT 1 Cycle Interface Diagram

3.a.2 INT 2 Cycle

The FP15 initiates a second dummy setup that forces the CPU to accept the JEA (JMS Exit Address) in

stead of the contents of location 0 (see Figure 3-6). The JEA address is under programmer control and

wi II vary depending on the cause of the interrupt.

EXIT ADDRESS +0 0
+1 JMP OVR /GO TO OVERFLOW
+2 0
+3 JMP UNO /GO TO UNDERFLOW
+4 ° +5 JMP DIV /GO TO DIVIDE
+6 0
+7 JMP TRAP /GO TO MEMORY VIOLATION

In the example presented, where a memory violation caused the interrupt, the JEA address +6 will con

tain the address of the PC (71XXXXa instruction) +3 when the JMS is complete. JEA +7 may contain

a jump instruction to an entry of a service routine associated with the interrupt.

SUB-
CYCLE

J: u
wI--,w
u LL

>->-
u~
N~
I-=>
ZO
-« w ...,

CENTRAL FLOATING MEMORY REMARKS
PROCESSOR POINT UNIT

M REQ·CP ACT- CPU MAK ES MEMORY REQUEST
1 - DIS CP A:1ADDR ACK FP15 COMPLETES MEMORY CYCLE
1 -+ DIS RD RST

O-+MREQ~
J~ - ADDR ACK

~RDRST
FPMRDA~

MRLS ACK
o ... FP MRDA-c1

~ 0 - MRLS ACK
o ... DIS RD RST

JEA +0 OVR} rEA ADDRESS - MDl
2 UND MI FP RD RST FP15 FORCES JEA ADDRESS ON MDL

AND COMPLETES CPU CYCLE 4 DlV
6 TRAP

MRLS~
~FPMRLSACK

0- MRLS
~"'O ... FP MRLS ACK JEA ADDRESS IS ACCEPTED BY CPU

o ... DIS CP ACT AS IF IT WERE CONTENTS OF
LOCATION 0000008•

Figure 3-6 INT 2 Cycle Interface Diagram

3.9 INTERRUPT CYCLE

On entering INT 1, DIS CP ACT is removed; this allows the CPU to continue (see drawing

D-FD-FP15-0-62). When CP Active is clocked high, and a M REQ is made by the CPU to obtain the

next instruction, the FP15 is set up to take control over memory. In addition, DIS RD RST is raised to

inhibit communication between the CPU and memory, and DIS CP ACT is raised to temporarily suspend

the CPU. Memory responds to the CPU M REQ with ADDR ACK, places the contents of the specified

address on the MOL, and issues RD RST. The CPU never sees the contents of the address because of

DIS RD RST. The FP15 issues MROA and the memory responds with MRLS ACK to complete the cycle.

Control is returned to the CPU. The FP15 then initiates a dummy setup that places 1200008 on the

MOL via the input multiplexer (MPI) and output multiplexer (MPO). FP RD RST is also placed on the

MOL. At this point, the FP15 simulates memory and communicates with the CPU to complete the cy

cle. The 1200008 is loaded into the MI register in the CPU. When the CPU receives the 1200008, it

issues MRLS. The FP15 responds with FP MRLS ACK, both are then cleared and the INT 2 cycle is in

itiated •

The INT 2 cycle is similar to INT 1 except that the JEA address, instead of 1200008, is placed on the

MOL, the CPU executes the 1200008 as a JMS*O and makes a second M REQ. The FP15 again sus

pends the CPU with OIS RO RST I gains control of memory, and completes the memory cycle. The JEA

address is placed on the MDL along with FP RO RST. At this point, the FP15 releases control to the

CPU and simulates a memory so the CPU can load the JEA address into the MI register. The CPU can

now complete its cycle which was initially suspended by the FP15. The action is concluded by BUSY

and DIS CP ACT being cleared, thereby retum ing control to the CPU.

3-15

D

c

B

A

8
'hI" gr •• ,nc _nca ~PK,IO(;at>ons, t>e~n. are the ptOJ)

erty 01 Dc'ta' Equ.1JII'Mf't earpo.-.Ibon and wI! not: ~
reorodut"Ki or toOIt'd or uMd on ...tloIeor ," ~rt.s
=r~tt~~S'::r%'~~o~.nuf.C'tl.lr. or salt! of oHms .. ,thou1

>
0:

0
z

'" z ..
:t
U

'" J:
U

DEC ~ORM NO

8 DRO lOlA

3-16

7

7

6

o
I

M RL S

PiCK

2

6

NO

5

MMI5

5

3

FP¢:3 MPI_MFb
M PO _ MLD

120000

._MDL

C P TAKES

OVER HERE

3

MATERIAL

FINISH

~::/ 1'Ir;;;i~~i<7B
---I'MPQ JEA.+
¢;~, 1, ORt<. _MLD

SCALE

SHEET OF

2

DESCRIPTION ITEM
NQ.

D

c

B

3.10 FP15/CPU CONTROL

As an aid in understanding the exchange of control between the CPU and the FP15, Figure 3-7 shows

a typical program describing what instructions the CPU would see and what instructions the FP15 would

see if the program were executed. The first instruction (DAC 500) is recognized by the CPU and the

contents of the accumulator are deposited in location 000500. The second instruction is a floating

point instruction that is recognized by both the CPU and FP15. The next three sequential locations

(000110,000111, and 000112) are recognized by the FP15. The FP15 takes control and forces a

710000 NOP on the MDL so that the CPU does not use the floating-point operand address as an in

struction. Consequently the CPU waits, since the FP15 has control of memory. When the FP15 com

pletes the instruction, both the CPU and FP15 again monitor the next instruction fetched from core.

A similar process can be traced through the remaining steps in the program.

DLD = Double Precision Floating Point Load
DAD = Double Precision Floating Point Add
DST = Double Precision Floating Point Store

000097 040500
000100 713150
000101 000110
000102 716140
000103 000113
000104 713750
000105 000116
000106 200130
000107 740040
000110 XXXXXX
000111 XXXXXX
000112 XXXXXX
000113 XXXXXX
000114 xxx xxx
000115 XXXXXX
000116 XXXXXX
000117 XXXXXX
000120 XXXXXX
000130 77m7
000500 000000

CP SEES

040500
XXXXXX
713150
710000

CP WAITS

716140
710000

CP WAITS

713750
710000

CPU WAITS

200130
777m
740040

DAC SOO
DLD 110

DAD 113

DST 116

LAC 130
HLT
EXP A
HIGH MANTISSA AUGEND
LOW MANTISSA
EXP B
HIGH MANTISSA ADDEND
LOW MANTISSA
EXPONENT }
HIGH MANTISSA SUM
LOW MANTISSA

FPU SEES

713150
000110
XXX XXX
XXXXXX
XXXXXX
716140
000113
XXX XXX
XXX XXX
XXXXXX
713750
000116
XXXXXX
XXXXXX
XXX XXX

Figure 3-7 CPU!FP15 Sample Program

/CPU INSTRUCTION
/FPU INSTRUCTION
/OPERAND ADDRESS
/FPU INSTRUCTION
/OPERAND ADDRESS
/FPU INSTRUCTION
/SUM STORED
/CPU INSTRUCTION
/CPU INSTRUCTION

/CPU INSTRUCTION
/CPU WRITES INTO LOC 500
/FPU INSTRUCTION
/FPU FORCES 710000 TO CP
/FPU SEES CONTENTS
/OF 000110, 000111 & 000112

/FPU INSTRUCTION
/FPU FORCES 710000 TO CP
/FPU SEES CONTENTS
/OF 000113, 000114 & 000115

/FPU INSTRUCTION
/FPU FORCES 710000 TO CP
/FPU WRITES INTO LOC.
/000116,000117 & 000120

/CPU INSTRUCTION
/CONTENTS OF 000130
/PROGRAM HALTS

3-17

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The following paragraphs describe the classes of instruction used in the FP15. Several functions are

applicable to many classes; these will be described first. The flow diagrams of the instructions specify

where these functions occur, if applicable. These functions include: converting negative integers to

sign and magnitude format, normalizing, and rounding.

4.2 CONVERTING NEGATIVE INTEGERS TO SIGN AND MAGNITUDE FORMAT

When a 2's complement negative integer is loaded into the FMA during the OPAND cycle, it is con

verted to sign and magnitude format during the EXP cycle. Two's complement positive integers are al

ready in sign and magnitude format and require no conversion. If the instruction requires no memory

reference, the number in the FMA is in sign and magnitude format. Two's complementing the number

again is undesirable, since it would convert the sign and magnitude number back to a 2's complement

number.

For FMA conversion during TS01 of the EXP cycle, FMA is complemented as a result of COMP MA

(see Figure 4-1). This signal takes the l's complement of the integer in the FMA and puts it on the

ALU bus. During PH03*TS01, the number on the ALU bus is strobed back into the FMA.

When the FP15 sequences to TS02 of the EXP cycle, INCA is generated; this puts the contents of the

FMA plus one on the ALU bus. During PH03*TS02, INCA-P is generated, and the output of the ALU

bus is strobed back to the FMA. The number now in the FMA is the 2's complement of the number in

itially contained there and is a negative number in sign and magnitude format.

For FMB conversion, during T501 of the EXP cycle, the FMB is complemented as a result of COMP MB.

This signal takes the l's complement of the integer in the FMB and puts it on the ALU bus. In

PH03*TS01, COMP MB P is generated which strobes the l's complement integer back into the FMB.

FMA
CONVERSION

NO NO

! C __ DO_N_E __)

EXIT

'5-0576

Figure 4-1 Converting Negative Integers to Sign and Magnitude

In EXP*TS02, INCB is generated which puts the contents of the FMB plus one on the ALU bus. This

number is strobed back to the FMB during PH03*TS02. The number now in the FMB is the 2's comple

ment of the number originally contained there and is a negative number in sign and magnitude format.

4.3 NORMALIZE

Normalizing a mantissa in the FMA consists of left-shifting the FMA until the most significant bit is a

1, which eliminates all leading zeros. For every left-shift of the FMA, the EPA is decremented. If

the specified instruction is a Store or Divide, and normalizing is requested, the mantissa is normalized

during FUN*TS01. Otherwise, the mantissa is normalized in NOR*TS01.

4-1

4.3.1 Normalization (Except Store, Divide, or Reverse Divide)

If the specified instruction is not a Store or Divide type instruction, and normalizing is requested, the

normalizing process occurs in NOR*TSOl. Prior to this time, the shift counter is loaded with 428 {at

FUN*TS03*PH03 Time}. The NOR SEL signal sets up the conditions for the NORM P pulses that actu

ally cause the normalizing. For each NORM P pulse, the FMA is shifted left and the EPA and shift

counters are decremented. If the instruction specified is not a Multiply, zeros are shifted into the

least significant positions of the FMA. If a Multiply instruction is specified, the NORM P pulses shift

the FMQ left as well as the FMA. As a result, FMQ 01 is shifted into FMA 35 and 0 is shifted into

FMQ 35.

When FMA 01 goes to 1 (NORM DONE), or when the shift counter produces a borrow (SC BORROW),

normalizing is terminated and the, logic on FP09 is reset to allow the phases and time states to continue.

A borrow indicates that normalization is not possible because the number is O. Refer to Drawings

D-FD-FP15-0-58 and D-FD-FP15-0-59 for a detailed flow of normalize.

4.3.2 Store, Divide, or Reverse Divide

When a Store or Divide instruction is specified, and normalizing is requested, a NOR SEL signal

(FP40) is generated that enables NORM P to left-shift the FMA and to decrement the EPA for each

left-shift (refer to Drawing D-FD-FP15-0-57). The FP15 sequences to PH03*TSOl of the FUN cycle

and remains IIstopped ll in this state until normalizing is completed.

Before generating NORM P, the shift counter is loaded with octal 43 (35
10

) if the specified instruc

tion is a Divide or Reverse Divide, and is loaded with 428 (34'0) if the specified instruction is a Store.

For each NORM P pulse, the FMA is shifted left and both the EPA and shift counter are decremented.

Zeros are shifted into the least significant positions of the FMA. Normalizing is complete when

FMA 01 goes to a 1 (NORM DONE), or when the shift counter produces a borrow (SC BORROW). In

either case, the logic on FP09 is II reset " and the phases and time states are allowed to continue.

4.4 ROUNDING

The FP15 can specify rounded or un rounded arithmetic by IR14 of the instruction word.

During alignment of the mantissas in floating-point addition, either the FMA or FMB (depending on

whi ch has the smaller exponent) is shifted right. Bits shifted out of either register are shifted into the

FMQ. If rounding is requested, and FMQ 01 is a 1, +1 is added to the least significant bit of the

FMA or FMB, whichever was being shifted.

4-2

A second round can occur during floating-point addition if the addition produced a carry out of the

ALU (see Figure 4-2). When this occurs, the FMA is right-shifted and the EPA is incremented, put

ting the correct number back into the FMA. The bit shifted out of the least significant bit of the FMA

is shifted into a guard bit and, if rounding is requested, +1 is added to the least significant bit of the

FMA.

The following example shows two numbers being added resulting in a carry. The EPA is incremented

and the FMA right-shifted. Since the least signif~cant bit of the FMA is a 1, the guard bit is set.

When rounding is requested, +1 is added to the least significant bit of the FMA.

Example:

.101
2

+ .110
2

= ? Three-bit registers assumed for simplicity.

ADDITION
FMA FMB

I I 0 I I 1 I 0
\

¥

I

t t

.
Carry, I 0 I I I

'G~~0Q and increment EPA

ROUNDING

o

Figure 4-2 Guard Bit and Rounding

D

c

B

A

8
nil. dr~""'jnl and speclfiutiQns. tMllWin the pl'Oj).
erty of ol,lla! EQUipment CorporatIon anC! Shall nat be
r~proc:luced or copted or uHd In whole or in p.rt as
th. baSIS tor tM manufacture or sale Of ltaml WIthOut
written permtS$lOI"I

>
a:

0 z

<:J
Z
«
:I:
u

'" :I:
u

DRO 102-B 8

7 6
INITIALL Y :IN THE ~UN C. YC LE

FPII FUN (1\ H FIX

YES

NO

LEFT SHrFTED
AS IlN FMF! EXTENSlQ.

7 6

5

5

NOR CYCL.E TS

-I/(THIS IS ACTUALLY A O.S+I
C,OMPLE,ING THE a's COMPLS"ME"NT
FORMATJNG - TilE 1'5 COMPLcMd'"/VT
WAS PERFORMc/) .ElY THe r-(/N (!YC!t€.
OURItVG .2"/vT~G£P. .571:1Rc INSmUcrIOIJ/S,
THE FM/9 COIVTI9IN.5 Th'E /yOIll eOM.&I!E~/'IrE"/)
RcSVt..T PAID T/{~ rUB C ONTI9I/IIS 7;f€
z's COMPt'.cMC'/I/TcD RcSCI£T

3

FP¢? PHIJSE 2.

PP32..

TO WRITE C'I"CL.E

o

IF ROUNDING

" 3

A S

B L S

FPf$9 PH¢3 (I) H

FIRST USED DN DPTIONIMODEL aTY.

UNLESS OTHERWISE SPECIFIED

DECIMALS
.XXX-.OO5
.xx -.02
.x - .1

MATERIAL

FINISH SCALE
SHEET OF

2

DESCRIPTION

PARTS LIST

AUA I W/ .. /iCH
PL.ACEi. 40()
ON aSIDE

OF Rc.u

ITEM
NO.

~DmDDmD E QUI P MEN T •• ., =~!!:'-M<;.~A~~~<;:~
TITLE

NOR TSI CYCLE
FLOW

D

c

B

A

4-3

D

c

B

A

8

I' Tms era n'!! /Inc specifications, ",erern, Ire trte.p"'PI'
'="rty;;,i o.g'bi Equ,pl'T'ent Corporation InG snail not be
-"produ::ed or ~cpll!d cr used H'! whole or In part IS
t'e bas,s for the Manul.,<;'turt orW't of items\\Ilthout

r--"" I

~

g
w

" :l
0

'" J:
U

DEC FORM HO.

S ORO 100

4-4

7

NO
:rs

A=8
~

IFP" NOR (I) H J

IFP¢9 rs 2 U'I H~r-_-....c-v
IPH ~3 (/) H J

ON FP3,

lNOR Ta P3 J

lFp32 FPTe

7

6

CHECK OF FM A

PHASE :3 (I)

6

5

NOR T 5 2..

YES

FPII NOR 8 H

5

3 II 6g 0 -Sld::J~I::JlaI2
~18"nN !3Qoolz,sI

1-----------IIIIF~Pp:3~~;:--(c:iN\I;lif;i(¢~L:-1 ~~~ 1~~:~A;~~ AG,1~'bDDrV;~s.,,5~I ~~/';~~~)

FPI3 IR I "t (til

FP"'/O RND

P+¢ FIX +t=LOFtT FP~'1 PHASE .3 (I)

4 3

FOR MULTIPLY OR DIVIDE OR FIX

T WiNG

UNL£SS OlHERWlSE SPECIRED
DlM£HIION IN IfOiO

TOlERANCES
DICIIMU ~ -.a
;t:..aa5 .::t1164 :!:OIJO'

fIlIAl IUttFACI QU.WTY I __ 0 ... _ '

COINt"

RNISH

:# FLOATING POINT IIIJSTRUCTToN

FP¢9 PHASE 3(1

IFP2"f -8RFlNC H+ INrJ

I-FPII C STORE~FPII NOR (I) HI

SHEET OF

2

IFP" ex IT NOR I

DESCRIPTION

CYCLE
FLO\A/

ITEM
NO.

D

c

B

D

c

B

A

8
Th,scir_.rll.lrlC SpotC,"catlons, ner.,n . .lr. tNt prop
11ft)' ot Cli,fll EQu,l)menf Corpor.llon .nd shill ntlt be
r.prO(iucecl or copied or us.ed In wl\ole or ,n Pitt IS
the o.as,s. lor the m~nutactur. or sale 0' 118m, wIthOut
.... nneo perm'aslon.

I .

'~. -~--:::z-;:-;;c:.--I ~= 4-.5

f,;f': ~OR\" ~o
DRC'JOZA 8

I

FP43

----'------, ,-P4 3

.---------''-------, F P; j

r------;--'-----=_ F P /I

r----L------, F P / /

..,
TO INTERRUPT

FLOW

FP38

FF'.32

FP39

FP32

FP32

7

7

:=.rt ;51, MODE
(l--> p,:.. U BUS

I

>i(

PHA SE 2
MQ7. P

6

r---....--lI~-----, FP3 ¢

,----P-U-
N
.....3f:.-

T
-]-. -P-2 --, F P 3'1

~OAD sc

6

5

,------'1<'--------, FP3¢

FP4-3

r-----~L------.FP43

5

4

.4

.-------'''------, FP 38

.-------'''-----,FP32

M)(,q; PMA It
FMQ ARE

SHIFTED LEFT

r-------~~----; FP38

r-----~~-----,FP32

3

.--------'''-------, FP 38

....------'''----= FP 2. 7

FP39

FP32

3

UNLESS OTHERWISE SPECIFIED

UNLESS OTHERWISE SPECIFIED
DIMENSION IN INCHES

TOLERANCES
OECIMALS FRACTIONS ANGLES

:!: .005 ~ 1/64 :: 0"30'

REMO:~~RS~t:~E ~~~~~H£P
CORNERS

MATERIAL
((

) ,
FINISH / ;'

r---------:---;-----, FP 4.3

r----:L-------, F P 4 3

r---~"------'FP4

DESCRIPTION

PARTS LIST

PART NO, ITEM
NO.

D

c

~
1.0

~ I
~~
i1 r

10

0:
lJ...
~O
8lJ...
~Q

B

"O"-OO"-D E QUI P MEN T

I~~~~~_~~~~u~:·~-~----~--~_~_N~_.~~_~~~~~ .. ~~-~~~o_"-~--J A
!;; TITLE

I='i"'l~"---~""" FLOAT
DIV

A-ML-FP 15

SCALE

SHEET OF

2

&. INTEGER
FUN C::YC LE

4-5

If the +1 added to the FMA causes a carry out of the ALU, the FMA is right-shifted and the EPA is in

cremented.

For floating-point Multiplication and Division, rounding can occur. If the multiplication or Division

operation causes FMQ 01 to go to a 1, the guard bit is set. With this bit set,and rounding requested,

+ 1 is added to the least significant bit of the FMA.

For a Fix instruction, bits in the FMA and FMQ are right-shifted. If, upon termination of the shifting

process, FMQ 01 is set, the guard bit is set. A rounding request will then ~ause +1 to be added to the

least significant bit of the FMA.

4.5 GUARD BIT

The guard bit is used to determine whether rounding should occur if rounding is requested (see Figure

4-3). This bit is set under the following conditions:

a. During floating-point Addition, when a carry is produced out of the ALU, the FMA
is right-shifted and, if the least significant bit of the FMA is a 1, the guard bit is
set.

b. During floating-point multiplication and division, if FMQ 01 is a 1 after the multi
plication or division operation, the guard bit is set.

c. During a Fix instruction, upon completion of the shifting process, if FMQ 01 is a
1, the guard bit is set.

d. The contents of the guard bit are saved in bit 01 of the JEA word on a Store JEA
instruction •

e. The Load JEA instruction restores the guard bit to a 1 if bit 01 of the JEA operand
fetched from memory is set.

When the next instruction is specified (provided it is not a Floating-Point Test, Load JEA, Store JEA,

or Branch), the guard bit is cleared.

4.6 FLOATING-POINT ADDITION AND SUBTRACTION

The FP15 can perform floating-point addition, subtraction, and reverse subtraction for both single

and double-precision floating-point numbers. The manner in which these arithmetic operations are

implemented is similar and will be described, with differences pointed out as they occur.

In floating-point subtraction, the minuend is loaded into the EPA/A SIGN/FMA via the Load instruc

tion and the subtrahend is loaded into the EPB/B SIGN/FMB via the subtract instruction. If, as a re

sult of some previous computation, the proposed subtrahend for the next subtraction is in the FMA, a

Reverse Subtract instruction can be issued. In this event, the contents (subtrahend) of the

4-6

MULTIPLY OR DIVIDE OR FIX

FP12(NOR.T1)*FP40(FLOAT'" FIX)

FP31 MP,(+ DIV + FIX FMOOl (1)
LOAD JEA

BMB BIT 19 (1)

ADD OR SUBTRACT

FP36 ADD+ SUB SEL
I

I~-o~eo

Figure 4-3 Flow Diagram for Setting Guard

EPA/A SIGNjl=MA are transferred to the EPB,/B SIGN/FMB during the FETCH cycle and the Reverse

Subtract instruction loads the minuend into the EPA/A SIGN/FMA.

4.6.1 EXP Cycle

The first function performed in the EXP cycle for floating-point addition or subtraction is a check to

determine if the specified instruction is an Add, Subtract, or Reverse Subtract (see ,Drawing

D-FD-FP15-0-52). If it is a Reverse Subtract, A-0-1 is transferred to the ALU bus where A represents

the FMA and 0 indicates that the FMB is disabled from the ALU. A test is now made to determine if

A=B; if so, the FMA is known to be 0 and STOP AUGN (1) is set. If the specified instruction is Add

or Subtract, 0-B-1 is transferred to the ALU bus, where 0 indicates that the FMA is disabled from the

ALU and B represents the FMB. A test is made to determine if A=B; if it does, the FMB must be equal

to 0 and STOP ALIGN (1) is set. In effect, then, no alignment will occur for a zero FMA or zero

FMB and the FUN cycle is initiated. Also, if the difference between the EPA and EPB is greater than

42
8

, STOP AUGN (1) is generated, no alignment occurs, and the FUN cycle is initiated. However ..

if the FMA and FMB are non-zero and the difference between the EPA and EPB is less than 42
8

, align

ment is initiated. EPA-EPB-1 is placed on the ALU bus and, if the exponents are equal, the mantissas

are already aligned and the FUN cycle is initiated.

If the exponents are not equal, the sign of the result of EPA-EPB is determined. A negative sign

(ADD18H) indicates that the EPB is greater than the EPA and the FMA must be aligned. A positive

sign (ADD18L) indicates that the EPA is larger than the EPB and the FMB must be aligned. At this

point, the shift counter is loaded with EPA-EPB-1, if the EPA is larger than the EPB or with EPA-EPB-l

D

c

B

A

8
This cI;.w,nll and .. i'~" MNin tbt ~ral)
my Clf DI&flIiI EquipmUlt Cocporaticn and ~II not IN
reproduc.d or copied or uMd In ~ .or In ~rt :I,
the bas" fer me manufKture Of Nle 01 ittms withOut
written PlrmiSSlOl'l.

'"

~

'" z

~

'" :r:
u

DfC~OFlM NO

8 ORO 10;" ...

7

31

TO FUN eye LE

7

6

6 5

NO

DURING THE OPAND
CYCLE OF ROD OR SUB
"THE FIdS IS LOADED
WITH ,I-IE ARGUMENT
FOR REV 51)8 THE
FMA I5 LOADED

3

FP37 SA 1-1
EPA IS SMIlLLER
THAN EPa
FMA SELECTED

FOR SHlF,ING

UNLESS OTHERWISE SPECIFIED

UNLESS OTHERWISE SPECIFIED
DIMENSION IN INCHES

TOLERANCES
OECtJlALS fRACTIONS ANGLES

:t: .005 ::!: 1/64 ::': O~30'

RE~~"~R~~R~~E a~~~T;Hip
CORNERS

MATERIAL

FINISH SCALE

FP37 58 H
EPa IS SMALLE
THAN EPA
FMB 'SE"LECTED

FOR SHIFTING

COUNTER, FM8
SHIFT RIGH~

FMB SS-FMQ ¢/

YES

DESCRIPTION

SHEET OF

3 2

~P37 STOP ALIGN
WILL BE SET IF
FP32 A ZERO OR FP.
B ZERO IS SET OR-IF
EPA - [;PB>'3S /0

ITEM
NO

D

c

N
L()

~ I
~@

~ I
L()

0...
1..L

00
81..L
~Q

B

4-7

and carry insert (EPA-EPB+l-1) if the EPB is larger than the EPA. This is to set up the shift counter so

the proper amount of shifts are performed to align the exponents.

T a determine whether the FMA or FMB is to be selected for shifting, the signs of EPA and EPB are ex

amined, in addition to the sign (ADD1S) of the result of EPA-EPB. The three cases, in which the FMA

is selected for shifting, are listed below:

a. Positive EPA, positive EPB, and a negative sign as a result of EPA-EPB. With both
quantities positive and a negative result for EPA-EPB, the EPA is smaller than the EPB.

Example: +3 EPA
-(+5) EPB

-2 EPA-EPB

b. Negative EPA, negative EPB, and a negative sign for EPA-EPB. In this case, EPA
is smaller (more negative) than EPB in order for a negative sign to occur.

Example: -5 EPA
-(-3) EPB

-2 EPA-EPB

c. EPA negative and EPB positive. The sign in this case is always negative indicating
that the EPB is larger (more positive) than the EPA.

Example: -5 EPA
-(+2) EPB

. -7 EPA-EPB

For all other possibilities, the FMB is selected for shifting. Up to this point, the FMA and FMB have

been examined to see if either is OJ the shift counter has been loaded with EPA-EPB (if EPA < EPB) or

EPA-EPB-l (if EPA> EPB) to provide an accurate count of the number of shifts required to align expo

nents; and the mantissa register associated with the smaller exponent has been selected for shifting.

If STOP ALIGN is set, this indicates that mantissa alignment is not necessary as a result of one of the

following conditions:

a. Zero FMA
b. Zero FMB, or
c. EPA-EPB> 35

10

If STOP ALIGN is not set, alignment is performed, and either the FMA or FMB is selected for shifting.

The mantissa with the smaller exponent is selected for shifting. If the EPA is less than the EPB, SA H

is generated and the FMA is shifted. The shift counter is loaded with EPA-EPB, which will be a nega

tive number in this case. The counter will be incremented with each shift until an SC CARRY is de

tected (counter going from all ones to all zeros). For example, if the EPA contained +2 and the EPB

contained +4, the shift counter is loaded with -2. The first shift of the FMA increments the counter

4-8

to -1 and the second to ol! zerosT which is detected as en SC CARRY. This indicates termination of

mantissa alignment.

If the FMB is selected for shifting as a result of EPB being smaller than EPA, SA will be low and the

shift counter is loaded with EPA-EPB-l. This quantity is a positive number and the counter is decre

mented for each shift until an SC BORROW is detected; this is why EPA-EPB-1 is required rather than

EPA-EPB. For example, assume that the EPA contains +3 and the EPB contains +1. The shift counter

is loaded with EPA-EPB-l or 1. The first shift of the FMB decrements the counter to zero, and the

second shift of the FMBdecrements the counter to all ones, which is detected as SC BORROW to con

clude the alignment.

Since the exponent associated with the mantissa not being shifted is the true exponent of the result, it

is necessary to load the EPB into the EPA, if the FMA was selected for shifting. While alignment is

taking place, the time state generator is disabled. On completing the alignment process, the time

state generator is restarted, and the FUN cycle is initiated.

4.6.2 FUN Cycle

In the FUN cycle, the A side of the ALU is disabled if the FMA is 0 and the B side of the ALU is dis

abled if the FMB is 0 (see Drawing FP15-0-53). When the EPA differs from the EPB by more than 35
10

,

the side of the ALU associated with the smaller exponent is disabled. This prevents additional shifting

and is time saving. For example, if EPB is greater than EPA by 1000, EPA has to be shifted 1000

times and is, thus, a very small number compared to EPB. In fact, the number is so relatively small it

can be considered O. Consequently, the B side of the ALU is disabled, the 1000 shifts are prevented,

and the time necessary to perform these shifts is saved.

The following two rules of addition and subtraction with respect to the sign are used.

a. During addition, quantities with like signs are added, while quantities with unlike
signs are subtracted.

Examples: +5
+(+2)

+7

-5
+(+2)

-3

NOTE

In the example on the right the two quantities are sub
tracted although the operation specified is addition.

b. During subtraction, quantities with like signs are subtracted, while quantities with
un I ike si gns are added.

(continued on page 4-10)

o

c

B

A

8
This dr-.". and ~s. MNm." the PI'DP'
ettYOfDiaitalEQUiPMMCoIlIorationand llnotbe
repftlducedor copied Q(U:MCI in wfIoM« ~Pllrt ...
the bMif, ftJI the manulKlUr.,. of MmSWdbaUt
..ntt:.n parml$llion.

7

FP33 j

E B SIDE (FMS)CFTH
,£9U:'; WILL BE fl

,-OGIeAI.. ZERO THROUGH
-rHE FLiN CyC.L.E

NO

NO

6

FP37
SA H

YES

FP3"3 AUS 1-1
,HE" A SlDE (FMA'; OFTII.

IN. U WILL BE A
LOGICAL ZERO THROLiGH
THE FUN eye I..E

NO

FP3G>

r---__ -'-N-'-O~NRD+ I L
NRD -fI L WII..t. 8e
7RVc W.I,IC"/v /?OUNDIM fzS NOT /i'Eo,VE.:5TcD
O.R IF FMQ i2l1 (e)
OR IF S8('

2

>

'"

0

'"
'" z
'" " u

x:
:I:
u

o[e ~ORM NO

8 7 6 DRO lOlA

5 .4

,0 NO R. eye L.E

5

IF Th'ERE W,<JS
OVeR}",: 0 W T#t!i"
If'eS<.i{. T IS TWo'S
COMPU! MENT€"D

3

NRD+I FMAL WILL
BE TRuE WHEN

~g~0r;I!i~D IS 0;:07
FMQ ¢ I ({ill)

NO
FP27

ADD 35
H

UNLESS OTHERWISE SPECIFIED

UNLESS OTHERWISE SPECIFIED
OIMUtSION IN INCHES

TOLERANCES
DECIMALS FRACTiONS ANGLES

:::!:: .005 :::!: 1/54 ~ OQ3Q'

REMO:~N:~R~~R::~E B~~~~T;~ip
CORNERS

M~TERI~L

FINISH

QTY.

SCALE

SHEET OF

3 2

TO INT CYCLE

DESCRIPTION

TS ~j
PH!j .3

ITEM
NO.

D

c

B

4-9

b. Examples: +5
(cont) -(+2)

+3

+5
-(-2)

+7

NOTE

In the example on the right the two quantities are
added although the operation specified is subtraction.

Referring to the flow diagram again, quantities with unlike signs during addition and like signs during

subtraction are actually subtracted. Thus A-B-l is put on the ALU bus for these cases. Conversely,

quantities with like signs during addition and unlike signs during subtraction are actually added. In

these cases, A+B is put on the ALU bus.

4.6.3 Processing of Subtracted Quantities

If the quantities are being subtracted and the FMB contains the mantissa with the smaller exponent, it

must be determined if rounding has been requested and whether FMQ 01 is a 1. If both conditions are

true, A-B-1 is put on the ALU bus. An additional 1 is subtracted to account for the rounding of the

FMB (A-B-1 =A-[B+1]). This is accomplished by putting A-B-1 on the ALU bus rather than just A-B.

If rounding has not been requested, or FMQ 01 is a 0, a carry insert of +1 is added and A-B-l+1, or

simply A-B, is put on the ALU bus. This quantity, in both cases, represents the result that is loaded

into the FMA. However, if overflow occurs, it indicates a wrong assumption was made and the result

in the FMA is incorrect. This is explained in detail in the following paragraphs.

4.6.3. 1 Overflow - For quantities that are actually subtracted (addition with unlike signs or subtrac

tion with like signs), the sign of the result is assumed to be the same sign as in the FMA. If no over

flow occurs, the sign of the result is correct. If overflow occurs, it indicates an incorrect sign has

been assumed. If this occurs, the assumed sign is complemented and the actual result is 2's comple

mented. Two examples follow--the first shows that the assumed sign is correct, the second shows that

the assumed sign is incorrect.

Example:
(no overflow) +6

-3

+3

4-10

Sign
o
1

o

o 1 1 0
o 0 1 1

FMA
FMB

o 0 1 1 = +3

t
No overflow, sign
correct, resu I t correct

Sign
Example: -3
(with overflow) -(-6)

+3

o
t

Sign complemented

o 0 1 1
o 1 1 0

1 1 0 1

t

FMA
FMB

Overflow, 2's complement
result, complement sign

o 0 1 1 = +3
t
2's complement of result

If rounding is not requested or FMQ 01 is a 0, 1 is added to the FMA to compensate for the incorrect

result. The result is then loaded into the FMA.

4.6.4 Processing of Added Quantities

When two quantities are to be added (addition with like signs or subtraction with unlike signs), A+B is

put on the ALU bus as described previously. If FMQ 01 is a 1 and rounding is requested, +1 is added

to the least siglificant bit of the FMA.

A check is now made for an overflow condition. A floating-point overflow causes a signal designated

GRT to be issued. The FMA is right-shifted to transfer the overflowed bit back into the FMA; the EPA

is incremented to compensate for the shift. ADD 35 is examined prior to the right-shift--if this bit is

a 1, FMQ 01 becomes a 1 after the right-shift and the guard bit is set. The FMA is now loaded with

the results of A+B on the ALU bus. If no overflow occurs, the FMA is not right-shifted, the guard bit

is not set, the EPA is not incremented, and the FMA is loaded directly with A+B from the ALU

bus.

4.6.4.1 Overflow Interrupt Due to Addition or Subtraction - If the addition or subtraction operation

results in an exponent greater than 217_1 (3777778)' a temporary overflow occurs. The result con

tained in the EPA, after the overflow, is no longer the true result. However, the true result can be

calculated by adding the contents of the EPA, after the overflow, to 217. The contents of

A SIGN/FMA are unchanged.

4.6.4.2 Overflow Interrupt Due to Rounding - If rounding is requested, and the rounding operation

produces a carry out of the ALU, the ~MA is right-shifted and the EPA is incremented. If the EPA

contains 3777778 and is incremented, an overflow interrupt occurs and the interrupt cycle is initiated.

4.6.4.3 Underflow Interrupt Due to Normalizing - Normalizing is accomplished by left-shifting the

FMA and decrementing the EPA for each left-shift. If, during this process, the EPA contains 4000008

and is decremented to 377m 8' an underflow interrupt occurs. The contents of the A SIGN/FMA are

correct. The EPA no longer contains the true result; however, this can be obtained by adding _2 18 to

the contents of the EPA after the underflow occurs.

Example: EPA 400000
8

-1

Result left in EPA 3777778
18

True result = -2 + 3777778

It is possible for the underflow to eliminate the condition that causes the temporary overflow during the

addition or subtraction. If underflow does not remove this condition, the overflow interrupt becomes a

permanent interrupt and enters an interrupt cycle (see Parcigraphs 3.8 and 3.9).

4-11

4.7 INTEGER ADD AND SUBTRACT

The FP15 can perform addition, subtraction, and reverse subtraction using either single-precision or

extended-precision data formats. Addition, subtraction, and reverse subtraction are performed in a

similar manner and will be explained using Drawings D-FD-FP15-0-52 and D-FD-FP15-0-53 for refer-

ence.

4.7.1 EXP Cycle

In the EXP cycle, negative integers (stored in memory in 2's complement format) are converted to sign

and magnitude format. For example, if the specified instruction is a Load or Reverse Subtract with a

negative argument, the argument is converted to sign and magnitude format and loaded into the FMA.

If the instruction is an Add or Subtract, with a negative argument, the argument is converted to sign

and magnitude format and loaded into the FMB. The negative integers are converted from 2's comple

ment to sign and magnitude format by l's complementing and incrementing the 2's complement integer.

For example, the number -58 in 2's complement format is 1.011. One's complementing and increment

ing this number yields 1.101, which represents -58 in sign and magnitude format.

4.7.2 FUN Cycle

In the FUN cycle, the signs of the operands are compared. If the specified operation is an integer

add and the signs are unlike or an integer subtract and the signs are alike, the ALU is selected for

A-B-1 operation (a straight A-B function is not possible). The -1 is compensated for by a carry insert

which puts +1 in the ALU bus along with the contents of the FMA. Actually, the ALU performs an

A-B-1+1 function which reduces to A-B. A represents the FMA, and B represents the FMB. The FMB

is subtracted from the FMA and the result is loaded into the FMA.

If the specified operation is an integer add and the signs are alike or an integer subtract and the signs

are unlike, the AlU is selected to perform an A+B f,mction which really adds the contents of the FMA

to the FMB and puts the results into the FMA.

If the two quantities are positive and added together, it is possible for an integer overflow to occur.

This is detected as a carry out of the ALU (ADD 00 high). If this occurs, the FP15 goes into an inter

rupt cycle.

4-12

One of the last things performed in integer addition or subtraction is to determine the sign of the resuit.

This is accomplished by assuming the previous sign of the FMA is correct. If so, there is no carry gen

erated out of the ALU, and the addition or subtraction of the FMA or FMB is done in the normal man

ner. The A SIGN represents the sign of the result and the contents of the FMA yield the true number.

However, if a carry occurs out of the ALU, this indicates that the sign has been assumed incorrectly.

I f this is the case, the existing contents of the FMA are 2's complemented and the A SIGN is comple

mented. Several simplified examples follow that illustrate this concept. Note that a bad assumption

can only be made when the ALU is specified to do an A-B function.

Example: Bad Assumption (Integer Add)

A SIGN QJ 0

B SIGN 0+ 0

0 1 0

t
Bad assumption (ADD 00 H)

(2' s comp I ement FMA)

(Complement A SIGN)

A SIGN ~ 0

Example: Good Assumption (Integer Add)

A SIGN QJ 0

B SIGN QJ + I 0

~ 0 0

Good assumption (ADD 00 L)

(Do not 2's complement FMA)

(Do not complement A SIGN)

0

0

o

FMA -2
8

FMB +(5
8

)

I Result ?
(i ncorrect)

Result +3
8

(correct)

FMA -2
8

Result -3
(correct) 8

ALU Performing
A-B Function

ALU Performing
A+B Function

Example: Bad Assumption (Integer Subtract)

A SIGN ~ 0 FMA +5
8

ALU Performing

B SIGN 0 0 FMB -(+6
8

) A-B Function

D 1 Result ?

t (i ncorrect)

Bad assumption (ADD 00 H)

(2's complement FMA)

(Complement A SIGN)

QJ 0 0 Result -1
(correct) 8

Example: Good Assumption (Integer Subtract)

A SIGN GJ 0 FMA -6
8

ALU Performing
B SIGN G 0 0 FMB -(+1

8
) A+B Function

0 [2J 0 -7

t 8

Good assumption (ADD 00 L)

(Do not 2's complement FMA)

(Do not complement A SIGN)

4.7.3 Overflow

If the addition or subtraction operation results in a magnitude greater than 2
35

-1, an overflow inter

rupt will occur. The result contained in the FMA, after the overflow, is no longer the correct result.

4.7.4 Integer Reverse Subtraction

Integer reverse subtraction and integer subtraction are similar to each other except for the fact that, in

integer reverse subtraction, the contents of the FMA are transferred to the FMB during the FETCH cycle

and the FMA is loaded with the subtrahend when the integer reverse subtraction is specified. During

the EXP and FUN cycles, operation is similar since the subtrahend is in the FMA and the minuend is in

the FMB for both integer reverse subtraction and integer subtraction.

However, the correct result can be computed by adding 2
35

to the existing contents of the FMA after

the interrupt. The A SIGN remains unchanged.

Example: A SIGN (0)

B SIGN (0)

A SIGN (1)

Result left in FMA

Correct Result = 235
+

FMA 3000078

FMB 07m7
8

400006
8

000006
8

000006
8

4.8 FLOATING-POINT AND INTEGER MULTIPLY

In order to multiply two numbers in floating-point format, the following basic functions are performed:

calculation of exponent, determination of the sign of the product, and multiplication of the mantissas.

These are described in the following paragraphs.

4.8.1 Calculation of Exponents

During the EXP cycle, the contents of the EPA and EPB are gated into the ALU where the EPA is added

to the EPB (see Figure 4-5). The sum is strobed back into the EPA. In floating-point multiplication

operations, recall that the exponents are added while the mantissas are multiplied. In integer multi

plication, there is no exponent calculation.

4.8.2 Determining Sign of Product

The sign of the product is determined in the EXP cycle before the mantissas are multiplied. If the mul

tiplier and multiplicand have the same sign, the sign of the product is positive. If the signs differ,

the resultant sign of the product is negative. In either case, the resultant sign is strobed into the

A SIGN. Negative integers are converted to sign and magnitude format; positive integers are already

in sign and magnitude format.

4.8.3 Multiplication of the Mantissas

The mantissas are multiplied by a series of additions and right-shifts of the FMA during the FUN cycle.

Before the actual multipli cation occurs, however, the shift counter is preloaded with a constant of

428 (34
10

), the contents of the FMA are transferred to the FMQ, and the FMA is then cleared. The

rules for multiplication of the mantissas are:

4-13

1. Test the least significant bit of the FMQ.

a. If FMQ 35 is a 1, add the contents of the FMB to the contents of the
FMA and shift and load the FMA and shift the FMQ right as one 70-bit
register.

b. If FMQ 35 is a 0, do not load the FMA with A+B, but merely shift the
FMA and FMQ right.

2. Decrement the shi ft counter and test for a borrow.

a. If a borrow is detected, the multiplication is complete.

b. If no borrow is detected, repeat the fj rst step.

3. After a borrow has been detected, the multiplication is complete if it is a floating
point multiply. If it is an integer multiply, the contents of the FMA and FMQ are
swapped and the multiplication is complete.

Figure 4-4 shows a simplified flow diagram of the above rules. For floating-point multiplication, the

most significant bits of the product are retained in the FMA. For integer multiplication, as a result of

the swap, however, the most significant bits of the product are retained in the FMQ.

4.8.4 Multiply Algorithm

In order to depict the multiply algorithm, Figure 4-5 Shows a simplified example where the number 5

(101
2
) is to be multiplied by the number 4 (1002), EPA and EPB are both equal to 3, so in the final

product, the binary number will be shifted six places to the right. Initially, the shift counter is

loaded with 2, the FMA is transferred to the FMQ, and the FMA is cleared.

NOTE

The shift counter is loaded with one less than the num
ber of stages in the FMQ. Since the example uses a
three-stage FMQ, a count of 2 is pre loaded into the
shift counter. In the case of the FP15, the shift count
er is loaded. with 428 (3410), actually 3510 shifts may
occur before a borrow is produced.

In the first step, the least significant bit of the FMQ is tested. Since it is a 1, the contents of the

FMB are added to the contents of the FMA and the entire FMA and FMQ are shifted right as one 6-bit

register. Each time a shift occurs, the shift counter is decremented. The shift counter now contains a

count of 1 •

In Step 2, the least significant bit of the FMQ is tested again. Since it is a a in this case, the FMA

and FMQ are merely shifted right. The shift counter is again decremented (this time to 00).

4-14

EXP CYCLE

FUN CYCLE

NOTE:

Shift counter loaded
with 3410_ However,
3510 counts will occur

before borrow is produced. L..----r--~

NOTE·

No EXP cycle for Integer Multiply.

NO

YES

DONE

NOTE:
Floating point multiply
most significant bits-FMA

Integer multiply-
most significonl bils-FMQ

Figure 4-4 Multiply Simplified Flow Diagram

1~-Q58'

Initial Conditions:

1002 x 1012 = ?

410 x 510 = 2010

EPA = 3
EPB = 3
FMB = 100
FMA = 101
FMQ = 000

After Swap

FMA = 000
FMQ = 101

After Swap
FMA = 000
FMQ = 101

Step 1

Test least significant bit
(LSB of FMQ)

If 1, add FMB to FMA

and

Sh ift FMA and FMQ right

and

Decrement Shift Counter

Step 2

Test LSB of FMQ

If 0, shift FMA and FMQ right

and

Decrement Shift Counter

Step 3

Test LSB of FMQ

If 1, add FMB to FMA

and

Shift FMA and FMQ right
and

Decrement Shift Counter

FMA FMQ . .
0 0 0 r 0

+ I 0 0 FMB

FMA I I 0 I 0 I 1 I 0 I I FMQ

FMA 10'l,"G I'a I"~~MQ
I I 0 I Shift Counter

I 0 I I Shift Counter

FMA I 0 I 1 I 0 I 0 I 1 I 0 I FMQ

~~~~~~ 
FMA ! 0 I 0 I 1 I 0 I 0 I 1 I FMQ 

I 0 I I Shift Counter 

I 0 I 0 I Sh ift Counter 

o o o o 

+ I 0 0 I 

I I 0 I I 0 I 0 I I 

I 0'1,'10'1,1: ~ ~ 
o o 

EPA + EPB = 3 + 3 = 6 

SC Borrow 

Multiply Complete 

Answer = .010100 x 26 
= 10100

2 
= 248 = 20

10 

Figure 4-5 Multiply Algorithm 

In Step 3, the least significant bit of the FMQ is tested again and is a 1. Consequently, the contents 

of the FMB are added to the contents of the FMA and the FMA and FMQ are shifted right. The shift 

counter is again decremented to 11, indicating a borrow condition. This signi fies that the multiplica

tion is complete and the product is .010100 x 26. This number is 010100. in binary after the binary 

point has been shifted six places to the right. 

If this were an integer multiply, the FMA and FMQ would be swapped. In the example presented, a 1 

is contained in the FMQ after the swap. For integer multiply, any 1 contained in the FMQ after the 

swap results in an overflow interrupt. Therefore, a product up to a maximum of 35 bits in length 

(length of the FMA) is possible in the FP15 for integer Multiplication. Drawings D-FD-FP15-0-54 and 

D-FD-FP15-0-55 represent flow diagrams of multiplication in the EXP and FUN cycles, respectively • 

4-15 



4.8.5 F!oating-Point Overflow 

The following paragraphs describe the interrupt exceptions which can occur during floating-point mul

tiplication. An overflow or underflow in the EXP cycle is temporary, since it can be removed by an 

underflow or overflow I respectively, in the FUN cycle. 

4.8.5. 1 Overflow Interrupt - EXP Cycle - A temporary overflow can occur if a positive EPB is added 

to a positive EPA with a negative result. An example of this is: 

EPA 00 
.. (SIGN) 

377m8 EPA 0.11 111 111 111 111 111 

0000018 EPB 0.00 000 000 000 000 001 

400000 = Result 1.00 000 000 000 000 000 
t.SIGN 

The overflow condition is detected as a result of the sign bit (EPAOO) going from 0 to 1. 

It is possible that this temporary overflow can be eliminated during the NOR cycle if normalize is re

quested. Decrementing the EPA during normalize may reduce the number so that it can be contained in 

the EPA. If so, the temporary overflow condition is eliminated. If the condition is not removed, an 

overflow interrupt will occur at NOR*TS03. 

4.8.5.2 Underflow Interrupt - EXP Cycle - A temporary underflow can occur if a negative EPB is 

added to a negative EPA with a positive result. An example of this is: 

EPA 00 
f (SIGN) 

400000 EPA 1.00 000 000 000 000 000 

400000 EPB 1.00 000 000 000 000 000 

1000000 Result 10.00 000 000 000 000 000 
l.SIGN 

4-16 

It is possible that this temporary underflow can be eliminated during the NOR cycle if rounding is re-

quested. ihis is possibie only if the EPA just underfiowed, since rounding can oniy increment the EPA 

once and only if a carry was generated out of the ALU. If the underflow condition is not removed, an 

underflow interrupt wi" occur at NOR *T 502. 

In effect, two negative quantities are added with a result too small to be shown in the register. The 

change of sign in the EPA from negative to positive is detected as an underflow. The bit (EPA 00 go

ing from a 1 to a 0) is preserved until the NOR cycle, where it is possible for rounding, if requested, 

to eliminate the condition causing the interrupt. 

4.8.5.3 Overflow Interrupt - NOR Cycle - At. NOR*TS02, the guard bit is examined. If the bit is 

set, and rounding is requested, 1 is added to the least significant bit of the FMA. If this operation 

produces a carry out of the most significant stage of the ALU, the FMA is right-shifted and the EPA is 

incremented. If the EPA contains 377m 8 before it is incremented, an overflow interrupt will occur 

and the interrupt cycle is initiated. 

It is possible during rounding that incrementing the EPA will remove the condition causing the tempo

rary underflow in the EXP cycle. If the condition is not removed, the interrupt flag is raised. For ex

ample, assume that the EPA contained 3m77S in the EXP cycle due to underflow and that a rounding 

request was made. The rounding caused a carry out of the ALU that necessitated right-shifting the 

FMA and incrementing the EPA. Incrementing the EPA to 400000 removed the temporary underflow. 

4.8.5.4 Underflow Interrupt - NOR Cycle - If normalize is requested, it is performed during the 

NOR cycle for floating-point multiplication. As the mantissa is being left-shifted, the EPA is being 

decremented. During normalize, if the EPA should be decremented from 400000 to 377777, an under

flow interrupt wi II occur at NOR*TS03 and the interrupt cycle is initiated. This is detected as a re

sult of EPA 00 going from 1 to a O. 

It is possible during normalize that decrementing the EPA will remove the condition causing the tem

porary overflow in the EXP cycle. If the condition is not removed, the interrupt flag is then raised. 



o 

c 

B 

A 

8 
T'I" dr"w"" ill"ld spec,flc.ttons. h.~n. IIr. the prop
to-tyo! DISltal EquipmentCorpor.r.onanc! sn,lIlIotbe 
'tprodl.lc:ed or copted or uNCI In whole or '" part as 
the bu" for the manlJf.ctul't or s.ale of Items without 
.... ntten p'Tml~llon. 

> 

'" 

g 

'" z 
'" I 
U 

'" I 
U 

DEC FORM NO 

8 ORO 100 

7 

7 

6 

FP38 
MPY -r DI V NO 
ODD SIGNS /'-----., 

FPC 

TO FUN CYCLE 

6 

5 

5 

4 

FP.,.3 
1-+ UND SYNC. 
SRVe UNDERFLOW 
FOR pOs"rBLE lNT
ER.RU r IN NOR, 

TO FVNCYCLE. 

4 

3 

I
FP37 EPA :t>,,(~) 
EPB ¢1J (t;) 

ADD 18 

o 

c 

70 FUN cYC.LE 

FIRST USED ON OPTION MODEL DO NOT SCALE DRAWING 

3 

UNLESS OTHERWISE SPECIFIED 
DalEHSIOtIIN INCHES 

TOlERANCES 
DECI...... fMCTIONS .... OUS 
;t: .005 :!;: 1/64 ~ 0-30' 

FINAL SUIIFACE QUAUTt / 
JIDIOV£ MJRftS AND .IM $tWtP 

CORNERS 

MATERIAL 

DESCRIPTION 

PARTS UST 

ITEM 
NO. 

q-
Lf) 

I~ 
10 

Q.. 
LL 

1"10 
8LL 

~Q 

B 

IID-DU-OEau I PM ENT 

b~~~~~~~~~nu~:---~-----gu----~-~-·~-~~~-~~~~··~~-~~~O_&T-~--lA TITLE 

I=:::-!"!~¥--~"-IF LOAT I r'<C rv u L ~ J Iy' 

~Xp CYCLE 

SCALE 

SHEET OF 

2 

4-17 



0 

C 

B 

A 

8 

I
ThISdfaw.n'andt.pICl1'tcabonl.~n .• ,.dteProp-l 
crty 01 Dille.: Equlpmen' Cor'JIQrati(lft and ..... 11 not be 
feflr<ldUt"tod or co~ (If <Iud In II1I'I. or in PoIrt as. 
=!r!~'::~,:O~."ufKtl.lI'9 or ... 0' itMna wrthout 

> 
II: 

8 

4-18 

7 

FUN 

FP.38 

FP32. 

FP~q. 

FP33 

FP38 

FP:32 

FP,39 

7 

6 5 .4 

FP¢9 

FP38 

FP.33 

FP.33 

FP39 FP.39 

FP32 

FP3<J FP39 

FP39 FP3'J 

FP32 FP32. 

,------'"------, F P J0 

80RROW>-------------------~ 

6 5 

3 

3 

TO NOR CYCLE 

IFIR5TU~EOONOP MOD 

PDPI5 
UN E 

UNLESS OTHERWISE SPECIFIED 
OfW(NSIOH I-N INC"tES 

TOLERANCES 
[)(CIMALS FRACTIONS ANGLES 
~ .DD5 ~ 11M ~ 0-]0' 

FtE~OV~N:~R:,.~:OE 8~~~~~H£P 
CORNERS 

MATERIAL 

I 
I 

I 
( 

FINISH 
I t 

I I 
SCALE 
SHEET Of 

2 

FP.38 

FP.32 

DESCRIPTION 

LOAT & INTEGER 
V1UL FU N CYCLE 

ITEM 
NO. 

REV. 

0 

C 

B 



4.8.5.5 Integer Overflow - The only interrupt possible during integer multiply is an integer over

flow. After the FMA and FMQ are swapped, the FMQ is examined. If the FMQ is not zero, an over

flow interrupt occurs and the interrupt cycle is initiated. 

4.9 FLOATING-POINT DIVlSION 

To perform floating-point division in the FP15, both the dividend and divisor must be normalized. The 

dividend is normalized in the FUN cycle. The basic functions performed in the division process in

clude calculation of exponents, determination of the sign of the quotient, and division of the mantis

sas. These are described in detail in the following paragraphs. Refer to Figure 4-6 which represents 

a simplified flow diagram of floating-point division. 

4.9. 1 Calculation of Exponents 

During the EXP cycle, the contents of the EPA and EPB are gated onto the ALU where the EPB is sub

tracted from the EPA. The difference is loaded back into the EPA. In floating-point division, the 

exponent associated with the divisor is subtracted from the exponent associated with the dividend. 

4.9.2 Determining Sign of Quotient 

The sign of the quotient is determined in the EXP cycle before the mantissas are divided. If the divi

dend and divisor have the same sign, the sign of the quotient is positive. If the signs are different, 

the quotient is negative. In either case, the sign of the quotient is stored in A SIGN. 

4.9.3 Division of the Mantissas 

The dividend mantissa is divided by the divisor by a. series of subtractions and left-shifts of the FMA. 

This process is performed in the FUN cycle and can be reduced to the following rules: 

1. Normalize the dividend and divisor. If the divisor is not normalized, an abnormal 
divide interrupt will occur. To keep track of the number of shifts as a result of 
normalize, the shift counter is loaded with an octal count of 438 (3510). Each 
shift decrements the counter and, on completion of normalize, the counter is dis
abled. If more than 35 shifts occur and the number is not normalized, the FMA is O. 

2. Subtract the FMB from the FMA and test the sign of the difference (located in 
ADD 00): 

a. If the sign is positive, 

• 'Shift a 1 into the least significant bit of the FMQ. 

. Left-shift and load the FMA with the difference just obtained. 

(continued on page 4-20) 

LEFT SHIFT 
AND LOAD FMA 
WITH RESULT 
OF SUB
TRACTION 

NOR CYCLE 

DISABLE 
SHIFT 
COUNTER 

Figure 4-6 Floating-Point Divide Simplified Flow Diagram 

15- 0582 

4-19 



a. {continued} 

NOTE 

If this is first subtraction, and a 0 sign is produced, 
the EPA is incremented. This condition applies only 
to the first subtraction. 

b. If the sign is negative, 

. Shift a 0 into the least significant bit of the FMQ. 

Left-shift the FMA. 

3. Test whether the most significant bit of the FMQ is a 1. 

a. If the bit is 1, the division function is complete. Before this fact is de
tected, the FMA is left-shifted and loaded (if a negative sign) or left
shifted (if a positive sign) and should not have been. It is therefore nec
essary to shift the FMA right. Otherwise the bit shifted out of the MSB 
of the FMA will be lost. . 

b. If the bit is 0, repeat Steps 2 and 3. 

4. Swap the FMA and FMQ. The FMA will now contain the quotient and the FMQ 
will contain the remainder. 

4.9.4 Divide Algorithm 

Drawings D-FD-FP15-0-54 and D-FD-FP15-0-57 are flow diagrams of the EXP and FUN cycles during 

floating-point division. Figure 4-7 is an example of how the divide algorithm is implemented. The 

number 0.111 2 (0.875 10) is divided by 0.101 2 (0.625 10), These numbers are loaded in the FMA and 

FMB, respectively. According to the rules just described, the first step is to subtract the FMB from the 

FMA, since both numbers are already normalized. The first subtraction produces a 0 sign which causes: 

a. the EPA to be incremented, 
b. a 1 to be shifted into the FMQ, and 
c. the result of the subtraction to be left-shifted and loaded into the FMA. 

The most significant bit of the FMQ is not a 1, so the process continues. The second subtraction 

(FMA-FMB) produces a sign of 1 which causes: 

a. a 0 to be shifted into the FMQ, and 
b. the FMA to be shifted left. 

The most significant bit of the FMQ is still not a 1, so the process continues. The third subtraction 

produces a 0 sign which causes: 

a. a 1 to be shifted into the FMQ, and 
b. the result of the subtraction to be left-shifted and loaded into the FMA. 

4-20 

Example: O. 111 ~ 0.101 = ? NOTE 
(.875 ,0 ~ .625

10 
= 1. 4) 

FMA 0.111 
Exponent calculation and sign of result are deter
mined in EXP cycle and are not shown here. 

FMB 0.101 
EPA 0 
EPB 0 
FMQ = 0 

STEP 1 I o· I FMA 

Subtract FMB from FMA 
Test sign 10. 1 10 I FMB 
If 0, (a) increment EPA (only for first subtraction) 

(b) shift 1 into LSB of FMQ .1 0. I 0 I 1 I 0 Difference 

(c) left shift and load difference - FMA , SIGj/1 / 
___________ ~~(~~ 1)/-/- -/ ____ _ 
STEP 2 I o. I I 0 I 0 I New FMA 
Subtract FMB from new FMA 
Test sign 
If 1, (a) shift 0 into LSB of FMA 

(b) left shift FMA (no load) 

- I o. I I 0 I 
til.l I I 

__ ....---~.:..... SIGN 
FMQ(. 11 10) 

I I 

Difference 

FMA 

Left-shi fted 
FMA 

STEP 3 I 1. I 0 I 0 0 New FMA 
Subtract FMB from FMA 
T est sign 
If 0, (0) shift 1 into LSB of FMQ 

(b) left shift and load difference - FMA 

SIGN 

- I o. o FMB 

rio. 0 

SIGN 

Difference 

* - , 
FMQ (.1 0 1 ) I ° I 1 I 1 I o:J:ew FMA 

~ToJ>0 I FMAaf~, 

FMB;FMQ after swap 

FMA FMQ 

....... 0---.L1_1--r......' _0 -L.---.JI ....... , _0 ....L.--0~---'----I 

NOTE 

EPA was incremented due to 0 sign from first subtraction. 
The binary point is thus relocated from. 101 to 1.01

2 
or 

1.2510' The true answer should be 1.4 but this number 
cannot be represented with three binary bits. The clos
est answer without exceeding the true answer is 1.2510, 

---------------------* MSB of FMQ = 1 Division complete 

Figure 4-7 Floating Point Divide Algorithm 

right shift 



This condition causes a 1 to appear in the most significant bit of the FMQ indicating the division is 

complete. However, the FMA has been left-shifted and loaded with the result of the last subtraction. 

This occurred before it was detected that the divide was complete. As a result, a bit was shifted out 

of the MSB erroneously. Consequently, the FMA is right-shifted to restore the bit and then the con

tents of the FMA and FMQ are swapped. The FMA now contains the quotient and the FMQ contains 

the remainder. 

Since the EPA was incremented in the first step. the final answer of " 101 2 if the FMA is adjusted to 

1.01 2 " This yields a decimal number of 1.2S, whereas the true answer should be 1.4. However, with 

three bits it is impossible to represent 1.4 in binary form; the closest approximation to this number 

without exceeding it is 1" 2S. Much greater accuracy is obtained in the FP1S which uses 36-bit man-

tissas. 

During the NOR cycle, several additional events happen (refer to Drawing D-FD-FP1S-0-S9). If the 

MSB of the FMQ is a 1 after the FMA and FMQ are swapped, the guard bit is set r and rounding is re

quested, +1 is added to the least significant bit of the FMA. If the guard bit is 0, the FMA is checked 

at NOR*TS02 to see if the FMA is O. This is done by selecting the ALU for A-B-1 operation, where A 

represents the FMA, and B = 0 (by being disabled from the ALU). If A = B is true, FMA = O. In this 

case, EPA/A SIGN is cleared. With the guard bit set, the zero check of the FMA is not performed. 

4.9.S Interrupts 

Five possible interrupt exceptions can occur during floating-point Division: EXP cycle overflow and 

underflow and FUN cycle overflow, underflow, and abnormal di vide. The conditions causing each 

type are described below. 

4.9.S.1 Overflow Interrupt - EXP Cycle - An overflow interrupt can occur if a negative EPB is sub-

tracted from a positive EPA with a negative result. An example of this is: 

,SIGN 
3000028 = EPA = 0.11 000 000 000 000 010 

4000008 EPB = 1.00 000 000 000 000 000 

7000028 = Result 1.11 000 000 000 000 010 

The sign bit (EPA 00) going from 0 to 1 is preserved until the FUN cycle. If normalize is requested, it 

is possible that decrementing the EPA during normalize will remove the overflow condition. If so, an 

overflow interrupt will not occur. If the overflow condition is not removed, an overflow interrupt will 

occur at NOR*TS03. 

4.9.S.2 Underflow Interrupt - EXP Cycle - An underflow interrupt can occur if a positive EPB is 

subtracted from a negative EPA with a positive result. An example of this is: 

(EPA 00) 
fSIGN 

477777 EPA 100 111 111 111 111 111 

377777 EPB 011 111 111 111 111 111 

1 07m6 000 111 111 111 111 110 
t. SIGN 

In effect, two negative quantities are added with a result too small to be shown in the register. The 

change of sign in the EPA from negative to positive is detected as an underflow. The sign bit (EPA 00 

going from a 1 to a 0) is preserved until the NOR cycle where it is possible (if rounding is requested) 

to eliminate the condition causing the underflow. This is possible only if the EPA underflowed by 1 

since rounding only increments the EPA once and only if there was a carry generated out of the ALU. 

If the underflow condition is not removed, an underflow interrupt will occur at NOR*TS02. 

4.9.S.3 Overflow Interrupt - FUN Cycle -It is possible to get an overflow interrupt during the first 

shift of the divide operation. If the first subtraction produced a 0 SIGN, the EPA is incremented. If 

the EPA contained 3777778 and is incremented to 4000008, an overflow interrupt will occur at 

NOR*TS03.- This is detected as a result of the sign bit (EPA 00) going from a 0 to 1 condition. 

4.9.S.4 Underflow Interrupt - FUN Cycle - If normalize is requested, it is performed during the 

FUN cycle for floating-point Division. As the mantissa is left-shifted, the EPA is decremented. Dur

ing normalizer if the EPA should be decremented from 400000 to 377777, an underflow interrupt will 

occur at NOR*TS03. This is detected as a result of EPA 00 going from a 1 to a O. 

4.9 .S. S Abnormal Divide - FUN Cycle - If the most significant bit of the divisor (FMB) is not a 1, 

an abnormal divide interrupt is initiated indicating an unnormalized or 0 FMB. This interrupt is not 

delayed unti I NOR*TS03 as is the case with overflow and underflow interrupts. The interrupt is raised 

immediately at FUN*TS01. 

4.10 FLOATING POINT REVERSE DIVIDE 

In a Divide instruction, the dividend is loaded into the FMA by a Load instruction and the divisor is 

loaded into the FMB by the Divide instruction. However, assume that as a result of some previous op

eration, a number which is to be used as a divisor is left in the FMA. In this case, a Reverse Divide 

instruction can be issued that gates the divisor from the EPA/A SIGN;1=MA to the EPB/B SIGN/FMB 

during the FETCH cycle and loads the dividend into the EPA/A SIGN;1=MA. 

4-21 



4.11 iNiEGER DiVISION 

Integer division in the FP15 is accomplished during the EXP and FUN cycles. The most significant bits 

of the dividend and divisor must be 15 (normalized) before the actual division can be performed. Be

cause of the integer divide algorithm, the dividend must be larger than the divisor for integer division; 

otherwise, the quotient is fractional and the FMA is ultimately zeroed. 

The dividend is loaded into the A SIGN/FMA as a result of the Load instruction; the divisor is loaded 

into the B SIGNj1=MB as a result of the Integer Divide (IDV or EDV) instruction. If the divisor is 

negative, it is converted to sign and magnitude format. 

4.11.1 EXPCycle 

Normalization of the dividend and divisor is performed in the EXP cycle. The FMA contains the divi

dend and the FMB contains the divisor; the contents of the FMB are then transferred to the FMQ. 

If the most significant bits of the FMA and FMQ are ls, nothing further occurs during the EXP cycle 

except that the contents of the FMQ are transferred back to the FMB. Three other possible conditions 

that can occur are: 

4-22 

a. If the MSB of the FMA is a 1 and the MSB of the FMQ is not a 1, the FMQ is shifted 
left. Each left-sh ift causes the EPA to be incremented. The process is terminated 
when the MSB of the FMQ becomes a 1. 

Example: 
EPA FMA FMQ 

o 0 0 o 0 o 0 

o o o o o o 

o o o o o o 

b. If the MSB of the FMQ is a 1 and the MSB of the FMA is not a 1 the FMA will be 
cleared since the divisor is larger than the dividend. No integer divide will occur. 

c. If neither the MSB of the FMA nor FMQ is a 1 both are shifted left. If the MSB of 
the FMQ becomes a 1 before the MSB of the FMA, this relates back to Step 2 and 
no integer divide can occur. If the MSB of the FMA becomes a 1 before the FMQ, 
the FMQ will continue to be shifted left; however, the EPA is incremented for each 
left-shift of the FMQ not accompanied by a left-shift of the FMA. 

When both the MSB of the FMA and FMQ are 1s, the contents of the FMQ are trans
ferred back to the FMB and the EXP cycle is concluded. 

4.11.2 FUN Cycle 

In the FUN cycle, the actual division process consists of a series of subtractions which, depending on 

the sign of the difference, cause the FMA to be (l) left-shifted or (2) left-shifted and loaded with the 

difference just obtained. Again, depending on the sign, FMQ 35 is set temporarily storing the quo

tient. The algorithm can be reduced to the fol lowing set of rules: 

a. Load the shift counter with the value of the EPA obtained during the EXP cycle. 

b. Clear the FMQ. 

c. Subtract the FMB from the FMA. 

1. If the sign of the difference (AD 00) is positive: 

· Transfer 1 to the LSB of the FMQ 

· Left-shift and load the FMA with the difference obtained 

· Increment the EPA, if this is the first subtraction. This increment of the 
EPA is performed merely as a matter of routine for integer divide, and is 
primarily used for floating-point Division. 

2. If the sign is negative: 

· Transfer a 0 to the LSB of the FMQ 

· Left-shift the FMA 

d. If the division is integer, decrement the shift counter and check for a borrow. 

1 • I f no borrow occurs, go back to Step 3 and repeat the process. 

2. If a borrow is generated, the divide function is completed. However, the last 
left-shift or left-shift and load was performed before the borrow was detected; 
this causes the MSB to be shifted out of the FMA and an erroneous remainder 
would resu!t. The FMA is shifted right to correct the condition. 

e. Swap the contents of the FMA and FMQ. The quotient is now in the FMA and the 
remainder in the FMQ. 

4.11.3 Divide Algorithm 

Drawing D-FD-FP15-0-56 is a flow diagram of integer divide during the EXP cycle and Drawing 

D-FD-FP15-0-57 show~ the flow during the FUN cycle. A better understanding of integer divide can 

be obtained by reviewing the rules just described using the flow diagram for reference. An example 

of integer divide using two 3-bit numbers is shown in Figure 4-8. For clarity, only those registers 

that change as a result of a particular action are shown. 



o 

C 

B 

A 

8 
Tt'li. dr.wln, and 19KificIItioM. MrWn .• re the prop. 
.tty 01 0IQfbI1 Eqt.1IDmtnt Cotpcntion _ ""11 not be 
ntpCOduoIdorcopillclorUMdin .... orinPllrt •• 
ttl. Mild for aM m.nutKtu .. or .... or ....... wiIhOUt 
wn""n potrmlMion. 

o 
z 

'" r 
(j 

DEC FORM NO 

8 

7 

EXP B 

FP39 

r----.:I<~--...., FP3¢ 

r------'~---- FP3f 

FP54 

':P33 

FP34 
FP.3e 

T51/J2 

FFj4 

FP33 

FP.34 

FP32 

7 

6 5 3 

FP3J 

FP34 

FP33 

FP.34-
FP!J2. 

T5¢Z 

FP34 FP39 
FP.39 

FP33 FP.33 

FP34 FPJ9 

FP38 FP32 

FP3e 

FPtf>9 

TO FUNCYCLE 

6 5 3 

FP.:39 

FP.32. 

FP3e 

FP3fj 

FP4-3 

FPj9 

St:=7Z:cRO 
FP43 

TOP St'{ZFTING 
ANSWER ~ ZERO 

FP43 

TO FUN CYCLE 

DESCRIPTION 

UNLE S THERWI E SPECIFIED 

UNLESS OTHERWISE SPECIFIED t,;;.~=:.==--+.;,~~ 
DIMENSION IN INCHES 

TOLERANCES 
OfelMALS fRACTIONS ANGLES 
:: .005 =: 1/64 =. 0·30' 

AEMO~N:;A:R~:£ .~~~ip 
CORNERS 

MATERIAL 

/ 

AN ISH 
;' /' 

SCALE 
SHEET 

2 
Of 

INTEGE R DrVI DE 
EX? CYCLE 

ITEM 
NO. 

o 

C 

~ 
10 

iii I 
~(S.> 
Z I 

~ 
a... 
LL 

:!: 
8LL 
~O 

B 

4-23 



o 

c 

B 

A 

8 
Th'$ ml.,nl lnO spocritcdlonS. MIreuI. Ire the prop 
ertyo' Chcltlil EquipmentCorl)Ofl110n Inc! $haIll'IOtbe 
reproduced or copw:<l tiT used in whole or In part.s 
theb.a$"jorthemanu'acturtlor~oilt.rn,wttiwui 
wnnen perrmSSlOn 

FF43 

,----'------, ,"'P4-3 

a 
z 

DEC tOR~ NO 
DQD !02A 8 

.-----'----, F F /I 

.-----'-----, F PI/ 

.-----'----, F P II 

TO INTERRUPT 
FLOW 

FPJ8 

FP32 

FP39 

FP32 

FP3i!. 

4-24 

,----:-"'-::-----, FPJ8 

7 

6 5 

.--__ ---'L--__ --, F P3 9 .------>"------, FP3fP 

.--__ .....JI~ __ __, FP3¢ L-___ ,--__ --' 

FUN-TI' P2 
'-Ol/OSC 

6 

FP39 

,-----------, FP43 

r---~L-----, FP4S 

5 

4 

r-----'~----, f:P38 

.----~~--...., FP32 

MX,q; FMA It. 
FMQ ARE 

SHIFTED LEFT 

r------'~-----,FPJ9 

,--__ ---'L-__ --, FP:J8 

r------'''-----,FP32 

3 

FP:J9 

FP32 

3 

NLE 

UNLESS OTHERWISE SPECIFIED 
DlM1NSlON IN INCHES 

TOlERANCES 
DECIMALS ntACTtorIS ANGlES 
:- .00& ::: 1/64 ;:; Q"3O' 

ItE ... cr:":':R::[ .=~H'P 
CQRNfRS 

MATERiAl 
( I 

} I 

FINISH , ( ; I 

r-------,---, FP 43 

,-------''------, F P 4 3 

DESCRIPTION 

2 

ITEM 
NO. 

&, I \jTEC~~ 
FUN Sye LE 

o 

c 

t>-
Ui 

" I 
;~ 
i11 

\() 

CL 
LL 

:::0 
8LL 
~Q 

B 



4.11.4 Interrupt Exception - Abnormal Divide 

The only interrupt that can occur as a result of performing integer division is abnormal divide. Ab-

EXP CYCLE normal divide occurs if the most significant bit of the FMB is 0 (FMB 01=0). The abnormal divide in-
EPA FMQ FMA FMB 

0 0 0 II 0 0 0 II 0 II 0 0 
terrupt flag is raised immediately at FUN*TS01. 

FMB .. FMQ I 0 0 I 4.12 INTEGER REVERSE DIVISION 

0 0 II 0 0 
In a Divide instruction the dividend is loaded into the FMA with a Load instruction and the divisor is 

Shift FMQ left 
Increment EPA loaded into the FMB by a Divide instruction. If, as a result of some previous computation, the pro-

FMQ .. FMB 0 0 posed divisor is in the FMA, a Reverse Divide instruction can be issued. This instruction causes the 

divisor to be gated from the FMA to the FMB during the FETCH cycle and causes the dividend to be 

FUN CYCLE loaded into the FMB. 

SC FMQ FMA FMB 

EPA .. SC 0 0 II 0 0 0 /I 0 II b 0 4.13 INTEGER STORE 
0- FMQ 

I 0 0 I For single-precision Integer Store instructions, A SIGN and bits 19 through 35 of the FMA are stored 

in 2 1s complement format at the argument address (refer to Drawing D-FD-FP15-0-58). For extended 

I 0 0 integer Store, A SIGN and bits 01 through 35 of the FMA are stored in 21s complement format in two 

II 
locations starting at the argument address. If the result of an arithmetic operation resulted in a nega-

Increment EPA 0 0 0 II 0 0 0 0 
tive answer, the answer is converted to 2 1s complement format prior to being written into memory. 

1 .. FMQ 
Left shift and load FMA with I 0 0 

Twols complementing is accomplished by lis complementing the negative answer in FUN*TS02 and in-
difference crementing this value in NOR*TS01. No operands are fetched from memory during a Store instruction. 

Decrement SC 

0 0 0 

II I- II 
4.13. 1 Overflow Interrupt 

1 .. FMQ 0 0 0 0 
Left shift and load FMA with If any of the high-order bits (bits 00-18) are a 1 during a single Integer Store, an overflow interrupt is ~ 

difference 
initiated at FUN*TS01. No interrupts are possible with double Integer Store instructions. 

Decrement SC 

Right shift FMA 0 0 0 

• 4.14 FLOATING-POINT STORE 
Swap FMA and FMQ 0 0 0 II 0 I 1 I 

For single-precision floating':'point Store instructions, the first word is stored in 2 1s complement format 

Remainder Quoti ent = 011
2 

3
10 at the argument address and consists of bits 09 through 17 of the EPA register and bits 18 through 26 of 

the FMA. The second word consists of A SIGN and bits 01 through 17 of the FMA and is stored in the 

Figure 4-8 Integer Divide Algorithm argument address plus one. For double-precision floating-point instructions, the first word is stored in 

the argument address and consists of bits 00 through 17 in the EPA register. The second word is stored 

in the argument address plus one and consists of A SIGN and bits 01 through 17 of the FMA. The third 

word is stored in the argument address plus two and consists of bits 18 through 35 of the FMA. 

Floating-point Store instructions require no fetch from memory. 

4-25 



Normalize, if requested, occurs at FUN*TS01 and rounding, jf requested, OCCUiS at NOR*TS01. 

Rounding of double-precision floating-point Store instructions cannot be specified. If rounding is re

quested for a single-precision floating-point Store instruction, bit 27 of the FMA is examined. If it is 

a 1, 1 is added to the FMA, bit 26. If bit 27 is a 0, no rounding occurs. Bits 27 through 35 are then 

zeroed. The following interrupt exceptions can occur during a single-precision floating-point Store 

instruction. The only interrupt exception that can occur during a double-precision floating-point 

Store instruction is an underflow interrupt due to normalize, which occurs at NOR*TS03. 

4.14. 1 EPA Underflow or Overflow Interrupt 

During a single-precision floating-point Store instruction, either an EPA overflow or EPA underflow 

interrupt can occur at NOR*TS02*PH03. If the EPA is positive, the high-order bits (bits 01 through 

08) of the EPA are checked. A 1 in any of these bit positions initiates a temporary overflow. If the 

EPA is negative, then the high-order bits of the EPA are checked for Os. A 0 in anyone of these bit 

positions initiates a temporary underflow. 

4.14.2 Underflow Interrupt Due to Normalize 

If normalize is requested, the FMA is left-shifted and the EPA is decremented. If the EPA contains 

400000
8 

and is decremented to 377777
8

, an underflow interrupt occurs at NOR*TS03. It is possible 

that the condition causing the EPA overflow interrupt at NOR*TS03*PH03 is eliminated when the EPA 

is decremented during normalize. If so, no interrupt is raised. If not, the temporary EPA overflow 

interrupt becomes permanent and is raised at NOR*TS03. The normalize underflow interrupt can occur 

for both single- and double-precision floating-point Store instructions. 

4.14.3 Overflow Interrupt Due to Rounding 

If rounding is requested, for a single-precision floating-point Store instruction, FMA bit 27 is ex

amined. If it is a 1, 1 is added to FMA bit 26. Should a carry occur out of the ALU as a result of 

this operation, the FMA is right-shifted and the EPA is incremented. If the EPA contained 0003778 

and is incremented to 000400
8

, an overflow interrupt is raised at NOR*TS03. 

It is possible that the condition causing the EPA underflow interrupt at NOR*TS02*PH03 can be elimi

nated if the EPA is incremented during a rounding request. This condition can occur only if the EPA 

just underflowed as the EPA can only be incremented once due to rounding. 

4-26 

4.15 SWAP, LOAD AND SWAP 

The Swap instruction swaps the contents of the FMA and the FMQ. I f the instruction is a load and 

Swap, the operand from memory is loaded into the FMA and then the contents of the FMA and FMQ 

are swapped. 

Drawing D-FD-FP15-0-60 is a flow diagram of the Swap instruction. The swap occurs at 

FUN*TS01 *PH03. The contents of the FMQ are gated to the A side of the ALU bus, and the contents 

of the FMA are gated into the FMQ. The A side of the ALU bus is enabled through the ALU by de

fault (nothing specified), and the ALU output is strobed into the FMA completing the swap. 

4. 15. 1 Underflow Interrupt 

If, as a result of normalize, the EPA is decremented from 400000
8 

to 377777
8

, an underflow interrupt 

will occur and the interrupt cycle is initiated. 

4.16 FLOAT, LOAD AND FLOAT FMA 

The two basic types of Float instructions are: 

a 0 Load and Float FMA, and 
b. Float FMA 

The Float class of instructions convert integer format to floating-point format. The Load and Float in

structions require a memory reference cycle(s) to fetch an operand(s) from memory. The Float FMA in

struction merely floats the existing contents of the FMA with no operand fetch involved. Floating an 

integer is accomplished simply by loading the EPA with 43
8

, which effectively relocates the binary 

point to the left of the number. The integer is thus converted to a floating-point number--the mantissa 

is contained in the FMA and the exponent of 35
10 

is contained in the EPA. The following example 

shows the integer 58 being converted to a floating-point number. The EPA is loaded with 3 since a 

3-bit integer and 3-bit EPA and FMA have been shown for simplicity. 

EPA=~ FMA = I 0.101 I = 0.101 2 x 2
3 

= 58 

Drawing D-FD-FP15-0-60 is a flow diagram of the Float instruction. If a Float instruction is specified, 

a signal called FLOAT SELECT is generated at FUN*TS01. At FUN*TS01*PH03, a Float Select P sig

nal causes the EPA to be loaded from the ALU bus with a constant of 43
8 

(35
10

). 



o 

-

c 

B 

-

A 

8 I 7 1 6 1 5 

- ~.- -- - .- - - - - - -- - - - - - - - - - - - - - - - - - - - - - I 

'-r-
> 
cr 
I-

0 
z z 
0 
in t'J 

~ 
Z 

'" :I: 
U 

!-
DEC ~ORM NC 

8 DRO IOZ-B 

SWAP FM A ,c,ND FMQ 

IFPI2. FiJN ~ TI 

irP31 SWAP I 'I 
I 
i 

IPP41 SWAP M~ 

/FP¢q PH (t 3 ~ 

I 
IFP.,., SWrlP M~ 

1 I 
IFP32. MXB1 [FP33 AURI 

.------L.I--, I 
IFP.32 ALS I IFPn MI..S I 

COMP 
IF< II<:. (I) 

ASIGN 
IF< If (I ') 

fPI3 IRf(,,(')-/-.TR 17 (I) 

I 

FMPt _ FMQ. J MXBI, NILS 

F M Q --.. A S I DE OF ADDER; A l.I fl 
FMGI,_IlDD£R OI)TPUT BY DEFAULT 

ADDcR .... FMA BY DFFflIJL7" ~ filS 

IFP3:2. pPTS t FP/2 FUN ~ T'3 "* p~ J 
FP3B. 

I A S I GN-t- ¢ J 
FP3c: 

I 

I eLK PULS,E 

YE~ 

7 I 6 I 

I 

,--
I 
I 
I 
I 

I 
I 
I 
I 

IFP32 FPTB 

5 

4 1 3 

FLOAT 

[FP31 FLOAT 

\FPI2 FUN *- TI r 

IFP41 FLOAT SEl 

I 
IFP41 FIX +FLOFjT 5J:L I 

I 
IFP41 FLOATSfLB I 4 3 13 ,0 B A Lv.. J 

IFP.33 B TO A l.u. I 
IFP32 EPA LD 

PI SIGN POS 
If<. 1 " (¢) IR. 17 (j) 

,q SIGN CONTROL IFP/3. IRI7 (I~ 

eLK Pl.ILSE 

[FP32 A 5JGN-I' ~ 

FPI2 FUN * T.3 J 
rFPI3 ZRII. (I) I 

! \FPI3 IR '" (I) r 

lJE'1:a*~ J FPI:2. FUN 

YP/3 IR f"7 (~) I 

eLK PULSE 
PI7TA 

[FP.32. AS/GN+ J I 

FIRST USED ON OPTIONIMODEL QTvj DESCRIPTION I PART NO. 

PARTS LIST 

MATERIAL NEXT HIGHER ASSV. 

SI;l~;' NUMBER 
DFDFPI5-2) -

FINISH SCALE 
SHEET OF DIST., I I , , I I 

t 4 I 3 I 2 I 1 

l iTEM 
NO. 

~I REV. Oe 
I I J 

o 

c 

~ 
<.0 

I 

B 

4-27 



In order to load the constant into the EPA, it is first specified at the input to the B multiplexer by a 

FIX or FLOAT SEL signal. An AUA1 signal enables the 43
8 

to the output of the ALU. This is accom

plished by forcing SO and S2 low and Sl, S3 and MODE high. 

4.17 FIX, LOAD AND AX 

The Fix or Load and Fix instructions convert floating-point format to integer format. If the instruction 

is a Fix, no memory reference is required. An example of this is the FIX EPA (FMA) instruction that 

converts the existing contents of the FMA to integer format. If the instruction is a Load and Fix, a 

memory reference is required to load the FMA with the operand from memory. 

Drawing D-FD-FP15-0-61 is a flow diagram for the Fix type instruction. The diagram is divided into 

two major branches--one for a positive EPA and one for a negative EPA. If the EPA contains a nega

tive number, the floating-point number is a fraction that cannot be converted to an integer and the 

FMA is cleared. 

NOTE 

At FUN*TS01, FIX ZERO is generated if the EPA is neg
tive. This signal forces a logical zero on the ALU bus 
and at Phase 2, a FIX ZERO P signal strobes the ALU 
output (zero) to the FMA resulting in a zero FMA. 

If the EPA is positive, the floating-point number can be converted to an integer and the Fix operation 

is initiated. The ALU is selected for A-B-1 operation during the FUN cycle. IIA II represents the 

EPA, and IIB" represents a special constant that is 35
10 

for a Fix instruction. At this point a test is 

made to determine if the EPA is equal to 43
8

, If so, the Fix operation is completed, If not, 43
8 

is 

subtracted from the EPA and the difference is loaded into the shift counter from the ALU bus. If the 

difference is positive (EPA 43
8

), the number cannot be fixed since 35
10 

or more shifts would shift the 

number completely out of the FMA; in this case, a Fix Overflow is generated and the Fix operation 

ceases. An interrupt sequence is initiated due to the overflow resulting from EPA 43
8

, The interrupt 

sequence consists of INT 1 and INT 2 cycles that lead to a service routine in the CPU associated with 

the overflow. The interrupt sequence is described more fully in Chapter 3, 

If the difference between the EPA and 43
8 

is negative, the operand can be converted from floating

point to integer and the Fix operation proceeds. The shift counter is loaded with the negative quan

tity that results from EPA-43
8 

(where EPA < 43
8

), Logic on FP09 causes the FP15 to stop in TS02*PH03 

4-28 

of the FUN cycle. At this time: the FMA and FMQ right-shifting process is initiated. Shifting is 

accomplished by the FIX SHMA P signal that is generated for each shift. 

The shift counter is incremented each time a shjft occurs. The counter is tested after each shift to see 

if a carry is generated. If not, the FMA and FMQ are shifted until a carry is generated. At this 

point, the FMA and FMQ have been shifted the required number of places to fix the floating-point 

number. The operation is concluded by "resettingll the logic on FP09 to allow continuation of the 

phase and ti me states. 

4.18 LOAD JEA AND STORE JEA 

The Load JEA instruction loads the JEA register (bits 07-17) from bits 21-35 of the BMB. The guard 

bit is loaded from BMB 19. 

The JEA register is loaded by a LD JMS P signal that occurs during FUN*TS01. 

The Store JEA instruction occurs during the WRITE cycle where the operand is written into memory 

(see Paragraph 2.10). JEA bits 03-17 are gated to MPO bits 03-17, and the A SIGN and guard bits 

are gated to MPO bits 00 and 01, respectively. 

4.19 BRANCH 

The Branch instruction provides the programmer with a means of altering the program sequence. Bits 

13-17 of the instruction word are used as a mask to test for certain conditions such as zero or non-zero 

FMA, positive or negative A SIGN, and FMA carry. Figure 4-9 is a simplified flow diagram of the 

instruction. As an example, assume the programmer wishes to test for FMA = 0 and to branch if it is. 

The test mask would have bit 17 on a 1 to test the FMA. If the FMA is 0 and a Branch instruction has 

been specified, the Branch test is successful. If indirection has been specified, the indirect cycle 

must be completed. This is indicated by CHANGE H which occurs when no indirection is specified or 

when indirection is specified and has been completed. The FP15 enters an INT 1 cycle that forces the 

CPU to begin execution of a JMP*O instruction. The INT 2 cycle is initiated and the FP15 forces the 

CPU to accept the contents of the address register that contains the address specified by the Branch in

struction. If the Branch is not successful, the instruction is exited, and is cleared at the end of 

FETCH*TS03*PH03. Indirection, if specified, must be completed before BUSY is cleared. The INT 2 

cycle is completed at INT 2*TS03*PH03 to complete the instruction. The Branch instruction can be 

microprogrammed on an inclusive OR basis. 



8 I 7 I 6 I 5 l 4 I 3 I I,," I 19:.~N- 9 I d Jrg~3~J 2 I I 
Th" ."w ....... ...,'" ...... : .... ". an tho ..... : I .rry 0/ OI&.t.1 EQUJ~ Corpomion Ind ..,.11 not be 
reproduc.cl or c:o~JId or u.sed 1ft whole or In part "' 
tt.. DI'II for tht m.nuf.:tu,. or .... Of iIIIm. wtttw:ut 
written pemuqlon. 

FIX FMA 

! FPSI FIX ! 

D IFPllrUN(I)H 
1 D 

~ YEi;i; 
EPA NeG? 

1 P41 

r FIX Z!ERO I 
I rP4/ FIX SEL 1 I 

b PH '''-1'' - I FP3f? /9 LS I }-
L D S F'"MA WITH 

%!.t:ROS 
! FIX Z! E R 0 F' FP41! 

r l 0 GIC,qt, (2J --~L(j ! 
EP;t:i - 438 

! ~ c I AUA AUB 1 ! I ! FIX +- FLOAT ,sELl ! PH0:;:1 (/) '" l~ .."., l- FP31 A I P-P33 eN ¢ ¢ L t='"P+1 FP~9 =B H C 

EP,t:? - 4~B IS NOT I I FP"'f1 r/X COUNT-I! FP~t1J INoR* T~e:* GU/7RD (cP)! 
NcGr:JTIVe I I I A U A I, R(.I8119 I 

A- 8- I FP3'3 

~ 1-9 
;:-.P~O ! c '- R EPA I 

I C;~t; I ! ;~e: (!) 

r -nDD 18 
FPq.3 l ¢ ...,. /? SIGN ! 

r P:~~(I) IrP-+1 F'JX 5H M A ! 
~ 

IFP 4.3 F-IX OVA' I FPI7 r ~ ~ EP/9 I !..-
! rP~' FIX P I I---

I FP 4-3 OVIT I ~ 

! LrDp :;:IS¢C I ! ..sET H l I I I I 
f---

F"P1Z'9 Fps8 MM c. FPSa. AMC. 

I I='P <;L3 INr I SHIFT COVNTcR t,0190 tC 
WIT/-! &.P~ - <:f3a 

I l-..t"--[ ! e I 
FPC HFPC 

~~ 
B ll ... ST FHA!::>£: I ! /PIx.. SHMA PI LO 

F,.,.,.' -
FP09 0.... 

LL 

1 m 
, ;9;'f'S /V1;'f'S 

sa I 
",0 

~ 
f.2--

NO UP COV/vT TNe 
IOOC C.;RR >' 

B 
Y€.s 

I I< SET S YIVC. I - rF'~9 ~ 

"I ICZl- 57 PHASE 
FFeJ9 ! 

FIRST USED ON OPTION/MODEL QTv·1 DESCRIPTION I PART NO. liTEM 
NO. 

PARTS LIST 

I--r--~ - UNLESS OTHERWISE SPECIFIED ~~~ DATE 

~DmDDmDEQU IPMENT > DIMENSION IN INCHES. ;/_&0_)1 

~ 
TOLERANCES c~~;g; /tb..v .. ~ I;>J~~1 •• - ~~!;~"~S~A~':~::~ 

A DECIMALS ANGLES TITLE 

.XXX-.OO6 I toO 30' ENGCJ ~ l~t~~1J A 
'" 0 

.xx ".02 

Ir~.l~/, ~~~h z z .X -.1 

~ t5 FIX F~OW 
~ g 

REMOVE BURRS AND BREAK SHARP 

r~):,G--.. ~t~h/ OORNERS SURFACE QUALITY V 

MATERIAL NEXT HIGHER ASSV. 

l-
I I 

SI;r;l! NUMBER r . 
I REV 

'" 
/ D 0 FPI5- 0 -Ci 

J: FINISH J l SCALE NC N E l-ri U r ) SHEET / OF I DIST·l 1 1 1 I I 1 1 
DEC ~ORM NG 

DRO 102-8 8 I 7 , 6 I 5 f 4 I 3 I 2 I 1 

4-29 



YES 

FP31 BRANCH 

FP32 FMA" 0 

FP13 IRI7 (1) 

FP32 NEGATIVE ASIGN 

FP13 IRI6 (I) 

FP32 POSITIVE ASIGN 

FP13 IRIS (I) 

FP32 NON ZERO Frv:A 

FP13 IRI4 (1) 

FP40 GUARD" I 

FP13 IR13 (1) 

Figure 4-9 Branch Instruction Flow Diagram 

4-30 

FORCE CPU 
TO BEGIN 

EXECUTING 
JMP*O 

FORCE CPU 
TO ACCEPT 

CONTENTS OF 
FPI5 AR 

DO NOT BRANCH 
CLEAR BUSY AT 
FETCH * T3 * P3 

'~·O~83 

4.20 MODIFY FMA 

The class of instructions used to modify the FMA are: 

a. Zero EPA (A SIGN) FMA 
b. Normalize EPA (A SIGN) FMA 
c. Make A SIGN positive 
d. Make A SIGN negative 
e. Complement A SIGN 

The flow diagram for control of A SIGN is shown in Drawing D-FD-FP15-O-58. This diagram is ap

plicable to making the A SIGN positive or negative, or complementing the A SIGN. If IR16 and IR17 

of the instruction word are a 0 and 1, respectively, the A SIGN becomes 0 (positive) at 

FUN*TS03*PH03. If IR16 is a 1 and IR17 is a 0, the A SIGN becomes a 1. If both IR16 and IR17 are 

ls, the A SIGN is examined and complemented at FUN*TS03*PH03. 

4.20.1 Underflow Interrupt Due to Normalization 

The only possible interrupt for this class of instructions is an underflow interrupt as a result of normal

ize EPA/A SIGN./FMA. If the exponent of the result is less than 400000
8 

(_2'7), an underflow inter

rupt occurs since the resultant exponent cannot be correctly represented in the EPA. 

4.21 DIAGNOSTIC INSTRUCTIONS 

The FPl5 maintenance mode provides the user with the capability of sequencing through any floating

point instruction step by step. Each instruction contains a number of steps determined by the format I 

type of instruction, and operand values. One step is counted at each of the following times. 

FETCH * TS03 * PH03 
FETCH * TS03 * PH03 
OPAND * TS03 * PH03 
OPAND * TS03 * PH03 
OPAND * TS03 * PH03 
EXP * TSOl * PH03 
EXP * TS02 * PH03 

EXP * TS03 * PH03 
FUN * TS01 * PH03 
FUN * TS02 * PH03 

FUN * TS03 * PH03 
NOR * TSOl * PH03 

NOR * TS02 * PH 03 
NOR * TS03 * PH03 

(if indirection) 
(if not immediate) 

} 
Depends on data format 
(1, 2, or 3 words) 

(FMA and FMB aligned - 1 step count for every 
align shift.) 

(FMA and FMB are multiplied or divided here--
1 step count per shift. FMA also fixed here--
1 step count per every fix shift.) 

(FMA normalized here--l step count per every 
normalize shift.) 

(continued on page 4-31) 



WRITE 
WRITE 
WRITE 

* TS03 * PH03 
* TS03 * PH03 
* TS03 * PH03 

(i f a Store type) 
(i f a Store type) 
(i f a Store type) } 

Depends on data format 
(1, 2, or 3 words) 

For example, if a single-precision floating-point Add instruction was specified, a step is counted at 

the following times: 

FETCH * TS03 * PH03 
OPAND * TS03 * PH03 
OPAND * TS03 * PH03 
EXP * TSOl * PH03 
EXP * TS02 * PH03 
EXP * TS03 * PH03 
FUN * TS01 * PH03 
FUN * TS02 * PH03 
FUN * TS03 * PH03 
NOR * TS01 * PH03 
NOR * TS02 * PH03 
NOR * TS03 * PH03 

Two OPAND cycles 

(1 step count for every align shift) 

No. of Steps 

1 to 35* 
1 
1 
1 
1 

1 to 35* 
1 
1 

In the preceding example, the number of steps ranges from 11 to 79 and, depending on how many align 

shifts and normalize shifts, must be performed. 

The FP15 maintenance mode is initiated by a DMN (Diagnostic Mode On) instruction. CPU instruc

tions are handled in the normal manner and are not affected by the FP15 at this point. 

Drawings D-FD-FP15-0-63 and D-FD-FP15-0-64 are flow diagrams of the events occurring during 

maintenance mode. The first floating-point instruction received after the FP15 is in maintenance 

mode is handled in a manner similar to that described in the memory interface; in other words, the in

struction is loaded into the CPU instruction register and the FP15 instruction register. The next word 

(operand address) is loaded into the FP15 8MB; a dummy cycle is initiated to prevent the CPU from 

sensing the operand address as an instruction. DIS RD RST prevents the CPU from accepting the oper

and address and the CPU is idle waiting for RD RST. The FP15 forces a 710000 NOP on the MDL; the 

FP15 now simulates memory to complete the CPU/memory reference. The operand address is then 

* Depends on operand va lues. 

strobed into the FP15 address register. The FP15 executed instruction stops in TS03*PH03 of the 

FETCH cycle. When the dummy cycle is complete and stop clock is present, the signals that were pre

viously inhibiting the CPU are cleared and control is returned to the CPU. At this time, BUSY is a 1, 

the instruction has stopped executing at TS03*PH03 of the FETCH cycle, stop clock is present, and 

maintenance mode is enabled. 

The next floating-point instruction fetched from core should logically be a maintenance instruction, 

such as a Diagnosti c Read or Diagnostic Step and Read. Since BUSY is a 1, any floating-point in

struction wi II be treated as a maintenance instruction. The instruction from core is now loaded into 

the DIR and the next word is loaded into the DAR. The CPU is again disabled by DIS CP RD RST and 

waits in TS03*PH03 for the next RD RST to occur. 

The CPU/memory reference cycle is completed, DIS CP RD RST is removed, the FP15 places a 710000 

NOP on the MDL, the CPU strobes the NOP in the MI register, and the memory cycle is completed. 

Upon completion of the memory cycle, the FP15 goes into diagnostic operation. 

4.21. 1 Diagnostic Read 

If bit 11 in the DIR is a 0, the instruction in the DIR is interpreted as a Diagnostic Read instruction. 

The FP15 instruction is only partially complete at this point; the contents of sixteen 18-bit words are 

transferred one at a time from the FP15 to memory starting at the argument address. The words are 

transferred in the f.ollowing order: 

1. 8MB 00-17 {Buffered Memory Buffer} 
2. BMB 18-35 
3. SC 12-17 and IR 06-17 (Shift Counter and Instruction Register) 
4. EPA 00-17 
5. A SIGN and FMA 01-17 
6. FMA 18-35 
7. EPB 00-17 
8. B SIGN and FMB 01-17 
9. FMB 18-35 

10. B SIGN and FMQ 01-17 
11. FMQ 18-35 

4-31 



D 

c 

B 

A 

8 
Ttll'; cr,wlr1l .nd ~fl~ion$, tMQin, are the proJI

@~ofo.lilrt.l[quoI)nWntCO'potatlon.ndlJl.Rnotbe 
ff'prOOiJt:ed Qf f;;"~ IJf UMIQ In wt.w IJf iii ~ .. ft 

~~$I;.!%:~o~."uf.etv,.. or sa5e of amI WIthout 

> 

'" 

o 
z 

" z 
'" I 
U 

" I 
U 

DEC ~OR"'" NO 

ORD 102-e 

FPQ!f.D MR:"'S AC K t------~ 

:3 

8 

4-32 

7 

71731() WAS IS 5 U£ D 
N,j,l NT MODE FLOP 
FPlP=1 RETLRNfiD 
CP FOR NEXT I NST 

6 

FP/¢ -DCH SYNC FP¢! /) SET Fi.7CH 

NO 

NO 

7 6 

5 

2~----------~~--------------~ 

5 

FP.,.2 srop eLK 1---.... 

RETURNS CONTROL 70 C,P 
W/7H t!JLlSY :; I, FETCH:: I 
STOP eLK::: I J MlllNT MODE = I 

3 

3 

~9- 0 -g I d.::l 
1f3BWnN 

D 

F"Pf/i D CH SYNC 

FP?.?. I~ SEL DIAG 

c 

B 

FIRST USED ON OPTIONIMOOEL 

UNLESS OTHERWISE SPECIFIED 

MATERIAL 

FINISH _L_~_ SCALE 

SHEET OF 

2 



D 

c 

B 

> 

A 
I 

~ I 

'-' z 
:;! '" is 

'" J: 
u 

ORD 102·8 8 

DIR /I 
== I 
FP/2. 

NO 

7 

8 

ENTER NEW 

rErCH +OPA N D 

+~XPt F"UN+

NOR+INT+ 
STORE+CL..R 

BUSY 

7 

6 

YES 

YES 

YES 

YES 

7 

-£xc. 
"TS 1/l3". 

Pf.l¢2. 

EXC-
'J( FPC-A*' 
PH~2. 

FP+2 

NO 

'ALIGN 
MAP 
FP-ta 

NO 

BRS 
FP42. 

NO 

INT 
DIY P 
F"P4e. 

NO 

YES SHMA 
FP4 e. 

NO 

6 

5 4 

5 4 

3 

YES 

NO 

YES 

YES. 

NOTE 

FIRST USED ON OPTIONIMODEL 

UNLESS OTHERWISE SPECIFIED 
DIMENSION IN INCHES. 

TOLERANCES 

DECIMALS ANGLES 

.XXX"".OO6 ±Oo30' 

.xx ".02 

AEMOVE BURRS AND BREAK SHARP 

CORNERS SURFACE QUALITY """" 

MATERIAL 
I 

I 
/ 

I 

FINISH 
( 

I I 

3 

RANS, 
EN 

QTY. 

SCALE \J0N E 
SHEET 

2 
OF 

YES 

DESCRIPTION 

RE"r()~N TO c:. p 

F"o R N I: X TIN sr. 
NOT€: = MAr N 7" MOD E. 
=1, BUSY MAY OF< 
MAY NOT-I, THIS 
DETERMINES POiNT" 

OF £ N T ~ Y. @ 0 R 

BTA R'T 

PARTS LIST 

FLOW 2 

ITEM 
NO. 

D 

c 

B 

4-33 



12. ADD 00-17 (ALU) 
13. ADD 18-35 
14. JEA 00-17 (JM5 Exit Address) 
15. 5T A 00-17 (see following Note) 
16. AR 00-17 (Address Register) 

A memory cycle is initiated for each transfer. Each time a word is transferred, the MPO counter is in

cremented. 

NOTE 

The 5T A 00-17 is a status word comprised of the fol
lowing information: 

5TA 00 
STA 01 
STA 02 
STA 03 
STA 04 
STA 05 
STA 06 
STA 07 
STA 08 
STA 09 
5TA 10 
STA 11 
STA 12-17 

FP15 BUSY 
FETCH CYCLE 
OPAND CYCLE 
EXP CYCLE 
FUN CYCLE 
NOR CYCLE 
WRITE CYCLE 
INT 1 
INT2 
TIME STATE 1 
TIME STATE 2 
TIME STATE 3 
DIR 12-17 

The DAR is also incremented; thus, the sixteen 18-bit words are transferred to 16 sequential memory 

locations starting at the argument address. When a count of 16 is reached, the MPO counter generates 

a carry that sets TRANS EN. TRANS EN clears the FP15 and control is returned to the CPU for the 

next instruction. The Diagnostic Read instruction may be executed indefinitely without affecting the 

partially completed instruction. 

4.21.2 Diagnostic Step and Read 

If bit 11 of the word in the DIR is a 1, the instruction is handled as a Diagnostic Step and Read. The 

instruction is sequenced through one or more steps and, depending on instruction type, format, and 

operand values, a new cycle may be entered. For example, if indirection is specified, the instruction 

is sequenced through another FETCH cycle; if a non-memory reference instruction is specified with no 

4-34 

indirection, the OPAND cycle is bypassed; if the instruction is integer, the EXP cycle is bypassed, 

etc. The FP clock, which was halted at TS03*PH03, is restarted (see D-FD-FP15-O-64). At this 

point, the flow sequences through a decision network that determines whether a step has occurred. 

The FP15 is stopped if any of the following conditions occur: 

-EXC*T503*PH02 

EXC*FPCA*PH02 

ALIGN MA P 

BR5 

CARRY P 

INT DIVIDE P 

SHMA P 

NORM P 

When FP15 is in TS03*PH02 and is not in the EXP I 
NOR, or FUN cycle. 

When FP15 is in PH02, FP clock is present and an 
EXP, NOR, or FUN cycle is specified. 

When FP15 is doing an alignment to align mantissas. 

When the FMB is doing a right shift. 

During each shift that occurs in a multiply or divide 
operation. 

During an integer divide operation. 

When the FMA is being shifted during a Fix instruc
tion. 

When a normalize operation is taking place. 

For each of the preceeding steps that occurs, the DIR is decremented. The Diagnostic Step and Read 

is initially loaded with a value 710100+0, where n is the desired number of steps. If the number of 

steps completed is less than n, -the logic determines whether the FP15 is at the end of the NOR, or 

WRITE cycle, or in an interrupt sequence. If the FP15 is not in any of these states, the Diagnostic 

Step and Read causes another step to be performed • 

If the FP15 is at the end of a NOR or WRITE cycle or in an interrupt sequence, and the instruction is 

not completed (BUSY=1), the clock is stopped and the current contents of the registers are transferred 

to memory. If the FP15 is at the end of a NOR or WRITE cycle or in an interrupt, and the instruc

tion has been completed, the clock is not stopped and the current contents of the registers are trans

ferred to memory. When the 16 words have been transferred, an MX CARRY is generated, the memory 

cycle is completed, the FP15 cleared, and control is returned to the CPU for the next instruction. If 

the FP15 instruction is not completed (BUSY=1), the point of entry is via the diagnostic instruction 

path. If the instruction has been completed, (BUSY=O) the point of entry is through the initial path. 



CHAPTER 5 

INSTALLATION AND MAINTENANCE 

5.1 INSTALLATION 

The FP15 Floating-Point Processor is installed in the H963E Cabinet (Bay lR) of the PDP-15/20/30/40 

Systems. This cabinet contains the PC15 and BA15 and may also include the BB15. When the FP15 is 

included in a new system, it is completely installed and tested at the factory before the system is 

shipped. The following paragraphs describe how to install, interconnect, and test an FP15 that is to 

be installed in an existing PDP-15 System. Table 5-1 summarizes the major components supplied as 

part of the FP15 Floating-Point Processor. A complete list is provided on drawing D-UA-FP15-0-0. 

Figure 5-1 shows the general location of the major components installed in the H963E Cabinet. 

Table 5-1 
FP15 Floating-Point Processor Major Components 

Quantity Item Part Number 

1 
1 
1 
1 

FP 15 Wi red Assemb I y D-AD-7007243-o-o 
FP15 Indicator Panel D-UA-7006331-0-0 
H721 Power Supply H721 
716 Indicator Power Supply 716 

NOTE 

If the FP15 is to be installed in early PDP-15 Systems 
with 783 Power Suppl ies mounted on the rear door of the 
H963E cabinet, an H950-C 19-in. mounting panel door 
will be included and substituted for the original rear 
door of the H963E Cabinet. 

{~ ------------
7161NDICATOR 
POWER SUPPLIES I--

FP15 - - - FP15 LOGIC - --
~ 

------------

H721 POWER SUPPLY 

H734B POWER SUPPLY 

BLANK 

H721 POWER SUPPLY 

841-B POW ER CONTROL 

BLANK 

REAR CABINET REAR DOOR 

Figure 5-1 H963E Cabinet (Bay 1R), 
Rear View with Mounting Panel Door Open 

15-0568 

5.1.1 Field Insta"ation Procedures 

Step 

2 

3 

4 

Procedure 

Remove the H950-P (5-1/4 in.) Cover Panel below the BB15 Indica
tor Panel. Install the FP15 Indicator Panel in this location. 

Install the 716 Indicator Power Supply on the inside right wall of 
the cabinet (as viewed from the rear). Mount the 716 directly be
low the existing 716 that provides power to the BB15 Indicator Pan
el. 

Install the H721 Power Supply on the rear door of the cabinet di
rectly above the existing 734D Variable Power Supply. 

Locate the FP15 logic wired assembly directly above the H721 Pow
er Supply on the rear door of the cabinet. Fasten securely to the 
rear door with the mounting hardware supplied. Be sure to use the 
spacers. 

5-1 



5.1.2 indicator Panel/power Supply Wiring 

Connect the FP15 Indicator Panel and associated 716 Indicator Power Supply as follows: 

Step 

2 

3 

4 

Procedure 

Connect black wire between the FP15 Indicator Panel ground tab 
and the cabinet chassis ground. 

Connect orange wire between the +6.5V tab on the FP15 Indicator 
Panel and the orange tab on the 716 Power Supply. 

Connect both 716 Power Suppl ies to cabinet chassis ground. 

Connect a red and white twisted pair between the AC tabs on the 
716 Power Supplies. 

5. 1.3 H721 Power Supply Wiring 

Step 

2 

3 

Procedure 

Connect the red and white twisted pair from the 841 B Power Control 
to the H721 Power Supply ac input terminals (TB2-1 and 2). Refer 
to D-CS-H721-0-1 for internal connections. 

Connect a black wire from TB2-8 to cabinet chassis ground. 

Disconnect the console power switch lead from the existing H721 
Power Supply (TB2-6) and connect it to the added 721 Power Supply 
at TB2-6. Connect a wire from TB2-6 on the original H721 to 
TB2-7 on the added H721. These connections wi II connect both 
H721 thermostat circuits in series with the console power switch. 

5.1.4 Signal Cable Connections 

Table 5-2 is a signal cable connection chart that indicates how to connect the FP15 into an existing 

PDP-15 System. 

NOTE 

The connections place the FP15 between the KP15 and 
the BB15. 

When the system does not include certain BB15 options (KM, KT, or MP), ignore the BB15 cable con

nections and connect the FP15 directly to the MM15A as indicated in the table. 

5.1.5 Indicator Bus Cable Connections 

Connect the FP15 Indicator Bus cables to the FP15 wired assembly indicator cable connector card lo

cations (J03, J04, J05, and J06) as designated in Figure 5-2. Dress the indi cat or bus cables between 

the FP15 wired assembly and the H721 Power Supply. 

5-2 

Table 5-2 
Signal Cable Connections 

Connector Locations 

Cable 
KP15 FP15 BB15 MM15A Remarks Function 

OUT IN OUT IN OUT IN 

Memory J02 H29 J29 B02 A02 B02 If BB15 does not con-
Data lines tain KM15, KTl5, or 

MP15, connect FP15-
J29 to MM15A-B03. 

Memory J03 H30 J30 B03 A03 B03 Under conditions Iist-
Control lines ed above, connect 

FP15-J30 to MM15A-
B02. 

API Control H03 H31 J31 B05 -- -- This cable is not re-
qui red to be connect-
ed to memory. 

FP15 INDICATOR PANEL VIEWED FROM REAR 

15-0585 

Figure 5-2 FP15 Indicator Bus Connections 

5.1.6 Handwire list 

The KP15 must be modified per handwire list supplied in the FP15 Installation Kit. 



5.1.7 Postinstallation Checks and Tests 

Make a final check of the completed installation to ensure that: 

a. 

b. 

c. 

All modules are correctly installed in the FP15 wired assembly. 

Major components are securely mounted in the cabinet. 

Cable and wired connections are correct, and cables and harnesses are dressed and 
fastened within the cabinet. 

Apply primary power to the cabinet by closing the circuit breaker on the 841B Power Control. Test for 

+5V at any of the G829 modules. 

Run the FPU 01 Random Exerciser diagnostic program to test FP15 Floating-Point Processor operation. 

As a further test to ensure that the FP15 is correctly installed and operational, load and run the In

struction Test diagnostic program MAINDEC-15-DOTA. 

5.2 MAINTENANCE 

The FP15 Floating-Point hardware includes built-in diagnostic hardware that allows any floating-point 

instruction to be sequenced through step-by-step and allows the user to obtain a printout of each reg

ister as each step of an instruction is performed. An indicator panel, also supplied with the FP15, 

providing a visual display of the major registers. The stepping of the instruction and the printout is 

accomplished under software control. The diagnostic programs assume that the CPU and memory are 

functioning and operating properly, and are designed to minimize actual troubleshooting since mal

functions can be isolated before troubleshooting techniques have to be used. The following paragraphs 

describe the FP15 Indicator Panel and the diagnostic programs used. 

5.2.1 FP15 Indicator Panel 

The FP15 Indicator Panel is used as a maintenance aid and is located directly above the BB15 Option 

Panel. The indicator panel consists of the following indicators. 

EPA 

JEA 

A SIGN, FMA 

Denotes the state of the 18 bits in the EPA 
register. 

Bit 00 denotes the state of A SIGN, bit 01 
denotes the state of the GUARD bit; bit 02 
is not used; bits 03 through 17 denote the 
JEA exit address in memory. 

A SIGN denotes sign of operand in the FMA; 
FMA 1 through 35 represents the value of the 
operand in the FMA. 

B SIGN, FMQ 

MAJOR STATE, TIME STATE 

DIR 

STAL 

TS4 

ST PHAS 

MDL EN 

L MIT 

MAINTENANCE 

MAT 

MANT MODE 

SEL DIAG 

DIAG 

TRNS EN 

B SIGN denotes the sign of the FMB; FMQ 1 
through 35 denotes the value of the quantity 
stored in the FMQ. 

Denotes the current major state and time 
state of the FP15. The FP15 could be in the 
FETCH, OPAND, EXP, FUN, NOR, WRITE, 
INT 1, or INT 2 major states and in TS01, 
TS02, or TS03. The BUSY indicator indicates 
that the FP 15 is in the process of perform i ng 
some function which it has not yet completed. 
For example, the FP15 may be sequenced 
through an instruction in Diagnostic Mode. 

The DIR indicators denote the number of 
steps to be sequenced through for an instruc
tion in Diagnosti c Mode. The value repre
sented by the indicators is decremented for 
each step which occurs. 

The STAL indicator denotes that a 71XXXX8 
floating-point instruction has been detected 
by the FP15. 

The T54 indicator, when on, denotes that 
the FP15 has control of memory and, when 
off, indicates that the FP15 is simulating a 
memory. 

This indicator denotes that the FP15 is tem
porarily halted and is not advancing through 
the various phases, time states, and major 
states. 

This indicator denotes that the MDL lines 
are enabled and that data is about to be 
p I aced on these lines. 

This indicator denotes that the FP15 is in the 
second FETCH cycle (indirection). 

The indicator panel has five maintenance 
indicators that perform the following func
tions: 

This indicator denotes that a Maintenance 
(Diagnostic) instruction has been decoded. 

This indicator denotes that the FP15 is in 
Maintenance (Diagnostic) mode. 

This indicator denotes that a Diagnostic in
struction has been selected. 

This indicator denotes that a Diagnostic in
struction is being executed. 

This indicator denotes that the sixteen 18-
bit words representing the contents of the 
various registers have been written into mem
ory. 

(contin~ed on page 5-4) . 

5-3 



DISABLES 

RD RST 

CP ACT 

I/O ACT 

FP MEMORY CONTROL 

COND 

M REQ 

RD RST 

MRDA 

MRLS ACK 

5.2.2 Diagnostic Programs 

The FP15 indicator panel is equipped with 
the following three disable indicators: 

This indicator denotes that the CPU is inhib
ited from using the RD RST from memory. 

This indicator denotes that the CPU is tempo
rarily suspended from sequencing through 
phases and time states. 

This indicator denotes that the FP15 is doing 
a memory reference cycle (FETCH, OPAND, 
or WRITE). 

The FP indicator panel has five indicators as
sociated with the FP15 Memory Interface. 
These indicators are described below. 

This indicator denotes that an FP memory re
quest is being made. The indicator remains 
on during the memory cycle. 

This indicator denotes that an FP memory re
quest is initiated. 

This indicator denotes that the FP15 is simu
lating memory and has placed data on the 
MDl. 

This indicator denotes that the FP15 has re
ceived data from memory and is releasing 
memory for additional requests. 

This indicator denotes that memory is free to 
accept additional memory requests. 

In addition to the bui It-in diagnostic hardware and indicator panel, the following test programs are 

available. 

Instruction Test - Part 1 

Instruction Test - Part 2 

Instruction Test - Part 3 

Floating-Point Diagnostic 
Random Exerc iser 

Diagnostic Mode Stepping 

FPIT 01 

FPIT 02 

FPIT 03 

FP STEP 

MAINDEC-15-DOTA 

MAINDEC-15-DOUA 

MAINDEC-15-DOVA 

MAINDEC-1S-DOWA 

MAINDEC-1S-DOSA 

These test programs are described in the following paragraphs. Before these programs are run, the 

System Exerciser should be run on a daily basis for preventive maintenance. 

5-4 

5.2.3 Instruction Tests 

The instruction tests perform the following major functions: 

a. Verify that the diagnostic instructions are operating correctly. 
b. Provide loop information for debugging. 
c. Check whether a II FP 15 reg i sters can be cleared and then set to a Ills. 
d. Exercise the FP15 instructions in Diagnostic Mode in a general fashion. 
e. Run automatically until an error is detected. 

The error is identified at a 6-digit location (address of program listing). A copy of the contents of the 

major registers can be obtained at the time of the error. For further isolation of a malfunction caus

ing the error condition, a scope loop is utilized. 

In order to run the instruction test, the program FPSTEP I which is a separate independent program, 

must be preloaded in core. The FPSTEP program allows diagnostic mode stepping of any FPU instruc-' 

tion. The operator must specify the instruction to be stepped and must specify either an argument or 

data to be used with the instruction. 

The FP STEP program can perform the following major functions: 

a. Scope loop any FP 15 instruction at any step rate. 

b. Automatically step any FPU instruction to completion using a pre-set step rate, 
with or without typeouts of the FPU registers. 

c. Step any FP15 instruction with complete control over step rate and register typeouts 
between steps. 

d. Restart at any time without affecting the program. 

5.2.4 Random Exerciser 

The FP15 Floating-Point Processor Random Exerciser is a test program to simulate system usage for pre

ventive maintenance. A PDP-15 Computer with 8,192 word memory and an FP15 Floating-Point Pro

cessor are necessary to run the program. The complete FP15 Instruction Test Hardware Diagnostic 

series should be run prior to running the random exerciser. The following system parameters are se

lected: 

a. 50 or 60 Hz power 
b. API or no API 
c. The amount of memory to be initialized 

After system parameter selection, the instruction and data format are selected. Hardware operations 

and software calculations can then be performed on specified operands or on randomly selected func

tions. 



The random exerciser contains a real-time clock (RTC) routine to keep track of time and uses a 24 hour 

clock (for example, 2:00 p. m. is 14:00). The program will print: 

Disable RTC 
Type in time 
When time is reached enable RTC 
Time 

Errors are detected in the random exerciser program by comparing a software calculated arithmetic re

sult to the actual FPU completed result. Occurrence of an error condition causes an error typeout 

format to be printed. 

5.3 ENGINEERING DRAWINGS 

Engineering drawings pertinent to the FP15 Floating-Point Processor are listed in Table 5-3 and in

cluded in a separate volume entitled FP15 Floating Point Processor, Engineering Drawings. 

Table 5-3 
FP15 Floating-Point Processor Engineering Drawings 

Drawing No. No. of 
Title 

Sheets 

D-UA-FP15-0-0 2 Floating Point Processor 
A-PL-FP15-0-0 1 Floating Point Processor 
D-DI-FP15-0-67 1 Drawing Index List (FP15) 
D-AD-7007243-0-0 2 Wired Assy (FP15) 
A-PL-7007243-0-0 1 Wired Assy (FP15) 
D-MU-FP15-0-66 2 Module Utilization 
A-PL-FP15-0-66 2 Module Utilization 
D-BS-FP15-0-0l 1 Memory Interface Cables 
D-BS-FP 15-0-02 1 Memory Dri vers 
D-BS-FP15-0-03 1 Output Multiplexer (MPO) 
D-BS-FP15-0-04 1 Multiplexer Inputs (MPI) 
D-BS-FP15-0-05 1 Multiplexer Control 
D-BS-FP15-0-06 1 Memory Receivers 
D-BS-FP15-0-07 1 Buffered Mem Bits 00-17 
D-BS-FP15-0-08 1 Buffered Mem Bits 18-35 
D-BS-FP15-0-09 1 Ti me State Generator 
D-BS-FP15-0-10 1 Memory Interface Ctrl 1 
D-BS-FP15-0-11 1 Memory lnterface Ctrl 2 
D-BS-FP15-0-12 1 Memory Interface Ctrl 3 
D-BS-FP15-0-13 1 Instruction Register (IR) 
D-BS-FP15-0-14 1 Diagnosti c Inst Reg (DIR) 
D-BS-FP15-0-15 1 Address Register (AE) 
D-BS-FP15-0-16 1 Diagnostic Address Reg (DAR) 
D-BS-FP15-0-17 1 A Exponent Register (EPA) 
D-BS-FP15-0-18 1 B Exponent Register (EPB) 

Drawing No. 

D-BS-FP15-0-19 
D-BS-FP15-0-20 
D-BS-FP15-0-21 
D-BS-FP15-0-22 
D-BS-FP15-0-23 
D-BS-FP15-0-24 
D-BS-FP15-0-25 
D-BS-FP15-0-26 
D-BS-FP15-0-27 
D-BS-FP15-0-28 
D-BS-FP12-0-29 
D-BS-FP15-O-30 
D -BS -FP 15-0-31 
D-BS-FP15-O-32 
D-BS-FP15-0-33 
D -BS -FP 15 -0-34 
D-BS-FP15-0-35 
D-BS-FP15-0-36 
D -BS -FP 15-0-37 
D-BS-FP15-0-38 
D-BS-FP15-0-39 
D-BS-FP15-O-40 
D-BS-FP15-O-41 
D-BS-FP15-0-42 
D-BS-FP15-O-43 
D -BS -FP 15-0-44-
A-SP-FP15-0-70 
A-SP-FP15-O-71 
A-SP-FP15-O-72 
D -CS -H721-0-1 
C-CS-716-0-1 
D-FD-FP15-0-45 
D-FD-FP 15-0-46 
D-FD-FP15-0-47 
D-FD-FP 15-0-48 
D-FD-FP15-0-49 
D-FD-FP15-0-50 
D-FD-FP 15-0-51 
D-FD-FP 15-0-52 
D-FD-FP15-0-53 
D-FD-FP 15-0-54 
D-FD-FP15-0-55 
D-FO-FP15-0-56 
D-FD-FP 15-0-57 
D-FD-FP 15-0-58 
D -F D-FP 15-0-59 
D-FD-FP15-0-60 
D-FD-FP15-0-61 
D-FD-FP15-0-62 
D-FD-FP 15-0-63 
D-FD-FP 15-0-64 

Table 5-3 (Cont) 

No. of 
Sheets 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

10 
12 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

I 

Title 

Arith Logic Unit 00-03 
Arith Logic Unit 04-07 
Arith Logic Unit 08-11 
Arith Logic Unit 12-15 
Arith Logic Unit 16-19 
Arith Logic Unit 20-23 
Arith Logic Unit 24-27 
Arith Logic Unit 28-31 
Arith Logic Unit 32-35 
Carry Look Ahead 
JMS Exit Address Reg (JEA) 
Shift Counter (SC) 
Instructi on Decoder 
Manti ssa & Exponent Ctrl 
Adder Control 
Load & Store Control 1 
Load & Store Control 2 
Add & Subtract Ctrl 1 
Add & Subtract Ctrl 2 
Multiply & Divide Ctrl 1 
Multiply & Divide Ctrl 2 
Normalize Control 
Misc Inst Control 
Diagnosti c Control 
Error Check 
Indicator Cables 
Acceptance Specification 
Insta lIati on Speci fi cation 
FP15 Hand Wire List 
H721 Power Supply 
716 Power Supply 
Fetch Cycle Flow 1 
Fetch Cycle Flow 2 
Fetch Cycle Flow 3 
Opand Cycle Flow 1 
Opand Cycle Flow 2 
Opand Cycle Flow 3 
Write Cycle Flow 
Add, Sub, Rev Sub, Exp Cycle 
Add, Sub, Rev Sub, Sub Cycle 
Floating Mul & Div Exp Cycle 
Float & Integer Mul Fun Cycle 
Integer Divide Exp Cycle 
Float & Integer Div Fun Cycle 
NO R TS 1 Cycle Flow 
NOR TS2 Cycle Flow 
ASIGN Swap & Float Control 
Fix Flow 
Interrupt Flow 
Maint Flow 1 
Maint Flow 2 

5-5 





APPENDIX A 

SIGNAL GLOSSARY 

Signal Mnemonic Logic Print 

AA + PC FP15-0-05 

ADDA FP15-0-36 

ADD 00-17 SEl FP1S-0-3S 

ADD S FP15-0-36 

ADD lS-3SSEl FP1S-0-3S 

ADR ACK (1) B FP1S-0-01 

ALIGN MA FP15-0-37 

ALIGN MB FP15-0-37 

ALL WRITE FP15-0-12 

-ALL ZEROS FP15-0-37 

AR LOAD FP15-0-15 

A SEL, B SEL FP1S-0-0S 

A SIGN, B SIGN FP1S-0-32 

AUA, AUB FP15-0-33 

AUA1, AUB1 FP1S-0-33 

AUS FP1S-0-33 

AUS1 FP1S-0-33 

A ZERO, B ZERO FP15-0-32 

BIT 00-01 DIS FP15-0-04 

Function 

Address Acknowledge or Power Clear. 

Indicates an addition of two quantities with like signs. 

Used for selecting MPO address lines during a Store instruction. 

Indicates addition of two quantities with unlike signs (actually 
a subtraction). 

Used for selecting MPO address lines during a Store instruction. 

Notifies the peripheral devices of receipt of MREQ, memory ad-
dress, and mode of operation (read or write). 

Indicates that FMA is to be aligned during addition or subtrac-
tion. Also indicates that the exponent associated with the FMA, 
in this case, is less than the exponent associated with the FMB. 

Indicates that FMB is to be aligned during addition or subtrac-
tion. Also indicates that the exponent associated with the FMB, 
in this case, is less than the exponent associated with the FMA. 

Indicates that the FP15 is in a WRITE cycle or a diagnostic rou-
tine. 

Indicates that the difference between EPA and EPB is not great-
er than 3510, 

A signal used to load the AR at FETCH*T3*P3. 

Used to select one of four inputs to be gated through M 1701 
Data Selector. 

The sign bits of the FMA and FMB, respectively. 

Address lines for selecting the A side of AlU. 

Address lines for selecting the B side of ALU. 

Strobe line for multiplexer connected to the A side of ALU. 

Strobe line for multiplexer connected to the B side of AlU. 

Used to detect whether the FMA or FMB registers, respectively, 
are cleared. (Equal to Zero.) 

Sets bits 00 and 01 to indicate jump type instruction. 

Signal Mnemonic logic Print Function 

BIT 02 SEl FP15-0-04 Sets bit 02 to indicate JMS type instruction. 

BMB 00-3S FP1S-0-3S Used for loading the FMA during a non-arithmetic function and 
for loading the FMB during an arithmetic function. This signal 
generates AUB on D-BS-FP1S-0-33 to select the A side of the 
AlU. 

BRANCH EN FP1S-0-41 Indicates that a successful branch test has occurred. 

BMB 27-35 SEL FP15-0-35 A signal used to load bits 27 through 35 of the BMB into the 
EPA or EPB when single-precision floating-point format is speci-
fied. 

BRANCH TEST FP15-0-41 Indicates a successful branch test was made and a branch is to 
be performed. 

BRS FP15-0-37 In EXP cycle during addition or subtraction, BRS (FMB Right 
Shift) causes shifting of FMB to align mantissas. 

BUSY FP15-0-11 Indicates that the FP15 is busy and sets up certain conditions 
for floating-point operation. 

CARRY P FP1S-0-39 Generates the strobe that loads the FMA or FMQ after each 
sh ift. 

C DIY (Combined FP1S-0-31 This signal represents the OR of Divide and Reverse Divide. 
Divide) 

C DIY INT P FP1S-0-38 Used in the EXP cycle of Integer Divide for negative integers 
to increment the FMB containing the negative integer. 

CHANGE FP15-0-1l Indicates that the FP15 has finished the FETCH cycle. 

CHECK EN FP1S-0-37 Determines whether format is floating-point or integer addition 
or subtracti on. 

CLK 00-17 FP1S-0-07 A signal used to clock bits 00 through 17 of the BMB. 

CLK lS-35 FP15-0-08 A signal used to clock bits lS through 35 of the BMB. 

CLR BMB 00-17 FP15-0-35 Clears bits 00-17 when a positive 2's complement single-
precision integer number is loaded into the BMB. 

CLR EPA P FP15-0-40 During normalize, FMA is checked to see if it is O. If so, 
ClR EPA P clears EPA and A SIGN. 

A-I 



Signal Mnemonic 

ClR EXC 

CaMP 

CaMP MA 

CaMP MB P 

CaMP SUB 

CN 00 

CN 01-08 

COND 

COUNT A IT P 

CP ACT DIS 

CP RD RST DIS 

C SUB 

DAR ClK 

DATA ACK l 

DCH SYNC 

DlAG 

DlRDWN 

DIS CP ACT 

DIS I/o ACT 

DIS RD RST 

DIV ADD SH 

DlV ASH 

DlV COUNT P 

A-2 

Logic Print 

FP1S-O-29 

FP1S-0-36 

FP1S-0-34 

FP1S-0-34 

FP1S-0-36 

FP1S-0-33 

FP1S-0-28 

FP15-0-11 

FP1S-0-39 

FP1S-0-0l 

FP1S-0-0l 

FP1S-0-31 

FP1S-0-16 

FP1S-0-0l 

FP1S-0-06 

FP1S-0-42 

FP1S-0-42 

FP1S-0-10 

FP15-0-10 

FP15-0-10 

FP15-0-38 

FP1S-0-38 

FP1S'-0-39 

Function 

A signal used to clear EXP I FUN I or NOR cycle upon receipt 
of an interrupt or Branch instruction. 

Indicates that an overflow has occurred during subtraction. 

Used during integer arithmetic when a negative 2 1s complement 
number is used. This number is converted to sign and magnitude 
by complementing and incrementing the FMA. CaMP MA com
plements the FMA. 

Used during integer arithmetic when a negative 2 1s complement 
number from memory is used. The number is converted to sign 
and magnitude format by complementing and incrementing the 
FMB. CaMP MB complements the FMB. 

Complements the result if an overflow occurred during a sub
traction . 

Indicates a carry inpuf to the least significant stage of the AlU. 

Carry inputs to each AlU from the carry look-ahead generator. 

Indicates that the FP1S is making a memory request. 

Shifts FMA and FMQ left during EXP cycle of Integer Divide. 

Disables CPU cycle to allow FPU to communicate with memory. 

Inhibits CPU from seeing data on MDl. 

This signal represents the OR of Subtract and Reverse Subtract. 

A signal used to increment the Diagnostic Address Register dur
ing Maintenance Mode. 

N oti fies memory that it may remove the data from the bus. 

Indicates I/O Processor wants memory access. 

Indicates next instruction fetched from core will be interpreted 
as a Diagnostic instruction 0 

Decrements the DIR for each step of a Diagnostic Step and Read 
instruction 0 

Used to disable the CPU in order to allow the FP1S to gain con
trol of memory. 

Used to prevent I/O from gaining control of memory bus during 
floating-point operations. 

Used to disable the CPU from seeing a RD RST signal and allow
ing the FP1S to gain control of memory. 

Produces MXB during Divide if subtraction produces positive re
suit. MXB shifts subtracted result left on inputs to FMA. 

Produces MXA during Divide if subtraction produces negative 
result. MXA enables FMA to be shifted left. 

Used to increment the EPA and left-shift the FMQ in the EXP 
cycle of Integer Divide. 

Signal Mnemonic 

DIV COUNT SEl 

DIV EXP 

DlV EXP P 

DIVlDE(1)H 

DIV INC P 

DlVMQ 

DlV MQ SH 

DIV P 

DlV SHRT P 

DlV SWAP P 

DlV ZERO 

DUMMY EN 

EPA GRT 

EPA lD 

EPA MOVE P 

EPA UP 

EPB SEl 

EXC 

Logic Print 

FP15-0-39 

FP1S-0-39 

FP1S-0-39 

FP1S-0-43 

FP1S-0-38 

FP1S-0-38 

FP1S-0-38 

FP1S-0-38 

FP1S-0-38 

FP1S-0-38 

FP1S-0-43 

FP1S-0-0S 

FP1S-0-36 

FP1S-0-32 

FP1S-0-35 

FP1S-0-32 

FP1S-0-37 

FP1S-0-11 

EXIT INT + BRANCH FP1S-0-41 

EXP FP1S-0-11 

EXP EXC FP1S-0-37 
(Exponent Exception) 

EXP ONES FP1S-0-37 

EXP SEl FP15-O-33 

EXP ZEROS FP1S-0-37 

Function 

Enables EPA to inputs of shift counter during FUN cycle of In
teger Divide. 

Initiates EXP cycle during floating-point division. 

Used in detecting possible overflow or underflow in the EXP cy
cle during division. 

Indicates abnormal divide has been detected. 

Used to produce EPA UP on first shift of divide if first subtrac
tion result is positive. 

Produces AUA to enable FMQ to AlU bus for subsequent swap 
of the FMA and FMQ at the end of the divide. 

Produces MXA 1 which enables FMQ to be shifted left in the 
FUN cycle during division. 

A pulse used to produce AlS and MlS during division in order 
to strobe the FMA and FMQ. A DIV P pulse is produced for 
each shift during Divide. 

Produces ARS which shifts the FMA right one place at the end 
of the divide process and prior to the swap. 

Produces AlS and MlS which causes the contents of the FMA 
and FMQ to be swapped. 

A divide-by-zero operation has been attempted. 

A signal used in the dummy fetch of the FETCH cycle. 

Increments the EPA during a floating-point or Fix instruction 
due to a carry out of the AlU. 

A signal that loads the EPA. 

Used during Reverse Divide or Reverse Subtract to load the con
tents of the EPA into the EPB. 

A signal (that increments the EPA). 

Selects EPB to be inputted to B side of AlU when calculating 
exponent during multiplication and division. Also used to trans
fer EPB to EPA if EPB > EPA during addition or subtraction. 

Indicates that the FP1S is in the EXP I FUN, or NOR cycle, 
which are all internal cycles within the floating-point processor. 

Indicates completion of interrupt or Branch instruction. 

Denotes exponent cycle which is used to align or calculate ex
ponents of the operands. 

Used during exponent alignment and indicates that difference 
between exponents is too large to be aligned. 

Indicates EPB - EPA is greater than positive 3S. 

A signal used to enable the EPA during shifting operations. 

Indicates EPA - EPB is greater than positive 35. 



Signal Mnemonic Logic Print Function Signal Mnemonic Logic Print Function 

FETCH FP1S-0-1l Denotes FETCH cycle where the instruction is strobed into the INCA P FP1S-0-34 Used during integer arithmetic when a negative 2 1s complement 
FP1S Instruction Register. number from memory is used. This number is converted to sign 

FIX COUNT FP1S-0-41 Establishes the number of shifts required to fix the floating- and magnitude by complementing and incrementing the FMA. 

point numbers. INCA increments the FMA. 

FIX + FLOAT SEL FP1S-0-41 Indicates a Fix or Float instruction has been selected. INCB P FP1S-0-34 Used during integer arithmetic when a. negative 2 1s complement 
number from memory is used. Th is number is converted to sign 

FIX P FP1S-O-41 Used to load the shift counter with the difference between 3SlO and magnitude by complementing and incrementing the FMB. 
and the EPA and indicates the number of shifts required to fix INCB increments the FMB. 
the number. 

INT FP1S-0-43 Indi cates an interrupt has been detected. 
FIX SHMA FP1S-0-41 Upcounts the shift counter and right shifts the FMA and FMQ 

INT + API ST FP1S-0-OS Indi cates that a Trap has been found. during a Fix instruction. 

FIX SEL FP1S-0-41 Indicates a number greater than 1 which can be fixed. INT CHECK 1 FP1S-O-43 Check for overflow of negative integer during single-precision 
Integer Store instruction. 

FIX ZERO FP1S-O-41 Indicates a Fractional number that cannot be fixed. A SIGN 
and EPA are cleared. INT CHECK 2 P FP1S-O-43 Checks for overflow of positive integer during single-precision 

Integer Store instruction. 
FLOAT + RX FP1S-0-40 Designates floating-point instruction or Fix instruction. 

INT COMP P FP1S-O-3S Loads the complement of the FMA into the FMB during Integer 
FLOAT SEL P FP1S-0-41 Loads 438 in the EPA during a Float instruction. Store. 

FLOCK FP1S-0-11 Used to set up the FETCH cycle during the start of a floating INT DIV P FP1S-0-39 Used during integer divide to generate signals indicating wheth-
point operation. er FMA, or FMQ, or both, are to be left-shifted. 

FMA STROBE FP1S-0-36 This signal causes the FMA to be reloaded if an overflow occurs INT DIV STOP FP1S-0-39 Generated when both FMA and FMQ are normalized during In-
out of the ALU. teger Divide. 

FPCA, FPC FP1S-O-09 Floating-point clock outputs. INT INC P FP1S-0-3S Used for incrementing the FMB during an Integer Store. 

FP MRDA FP1S-O-1O Memory Release, Data Acknowledge. Used to indicate to mem- INT MPY OVR FP1S-0-43 Indicates an overflow has occurred during Integer Multiply. 
ory that cyc Ie is completed and data has been accepted. 

I NTRP SYNC (1) H FP15-0-10 Used to disable program interrupt and API w~en STALL is set. 
FP MREQ FP1S-O-l0 A memory-request made by the FP15. Memory senses the re-

INT 1, INT 2 FP1S-0-ll This signal is raised during an overflow, underflow, or divide quest as ~ CPU memory request. 
by zero condition to indicate entry to a Service routine in the 

FP MRLS ACK FP1S-0-10 Used to simulate MRLS ACK generated by the memory to com- CPU. 
plete memory cycle. 

I/O ACT DIS FP1S-0-0l Disables I/O processor to allow FP1S to communicate with mem-
FP RD RST FP1S-0-10 Used to simulate Central Processor in order to complete memory ory. 

cycle. 
IR CLK FP1S-O-13 A signal used to clock the IR. 

FP WAIT FP1S-0-09 Locks floating-point processor in TS03*PHOl during the dummy 
JMS SEL FP1S-0-43 Forces JMS exit address onto MDL I ines-: FETCH. 

FUN FP1S-0-11 Denotes function cycle whi ch includes the actual instruction to LD DIV COUNT FP1S-0-39 Causes shift counter to be loaded with 438 in the EXP cycle dur-

be executed. ing Integer Divide. 

GG 00, GG 01 FP1S-0-28 Carry generate outputs from carry look-ahead logic used to LD EPA, LD EPB FP1S-0-3S Used to load the EPA or EPB register, respectively, during the 

speed up carry propagation through the ALU. OPAND cycle. 

G01-G07 FP1S-O-20 Carry generate outputs of one of the 4-bit ALU circuits used in LD IR FP1S-0-08 A strobe signal used to load the DIR when a floating-point in-

through -26 carry look-ahead circuitry. struction has been detected. 

GRT FP1S-0-36 Generated (greater than) when a carry occurs out of the MSB of LD JMS P FP1S-0-41 A pulse used to load JMS during FUN*TS1. 

the ALU during addition, subtraction, or rounding. LD MA FP1S-0-35 Used to load theFMA during the OPAND cycle when a non-

GUARD FP1S-0-40 Indicates that rounding is possible. 
arithmetic or reverse arithmetic instruction is issued. 

LD MB FP1S-0-3S Used to load the FMB during the OPAND cycle when an arith-
HFPC FP1S-O-40 A clock pulse used for normalizing numbers - two HFPC pulses metic instruction (except for Reverse Subtract or Reverse Divide) 

(half FPC) are required per shift during normalize. is issued. 

A-3 



Signal Mnemonic Logic Print 

LD NORM COUNT FP15-0-40 

LD SC P FP15-0-37 

LIK E FP15-0-36 

LIMIT FP 15-0-11 

MA CH ECK FP 15-0-37 

MB CHECK FP15-0-37 

MAINT MODE (1) H FP15-0-41 

MA MOVE P FP15-0-35 

MAT CLR FP15-0-10 

M CLR FP15-0-41 

MDL EN FP15-0-11 

MDl OO-MDl 17 FP15-0-0l 

MPIOO-17 FP15-0-04 

MPO 00-17 FP15-0-03 

M PWR-OK FP15-0l 

MPY + DIV EXP P FP1S-0-39 

MPY + DIV ODD FP15-0-38 

MPY + DIV OVR P FP1S-0-43 

MPY + DIV UND P FP15-0-43 

MPY EXP P FP15-0-39 

MPY P FP15-0-39 

MPY SEL FP 15-0-38 

MPY SHAD FP15-0-39 

A-4 

Function 

Used to load the shift counter with 438 to limit the number of 
shifts during normalize. 

A pulse used to load the shift counter to check the number of 
shifts needed for alignment of mantissas. 

Indicates A SIGN and B SIGN are both positive or both nega
tive. 

Allows FP15 to perform only one level of indirection. 

Check to see if FMA is equal to O. 

Checks to see if FMB is equal to O. 

When set, this signal indicates maintenance instructions are to 
be performed. 

Used during Reverse Divide or Reverse Subtract to load the con
tents of the FMA into the FMB. 

Indi cates that the maintenance instruction is complete and the 
register contents have been written into memory. 

Indi cates a Debreak instruction or a Power Clear condition. 

Enables data from the FP15 to be placed on the MDL. 

18 memory data lines providing bidirectional transfer of address 
and/or data from memory. 

Each MPI line can receive one of four different input signals. 
Data on the output line is determined by select signals MOA 
and MOB. 

18 output multiplexer lines that transfer one of sixteen 18-bit 
words to memory. 

Memory power is applied to the memory circuits. 

Used to produce EPS LD which strobes ALU contents into EPB in 
the EXP cycle of Multiply or Divide. 

This signal indicates negative quotient. 

Indicates an overflow has been detected during multiplication 
or division. 

Indicates an underflow has been detected during multiplication 
or division. 

Used in detecting possible underflow or overflow in the EXP cy
cle during multiplication. 

Used to produce ALS and MRS in order to load the FMA and 
shift FMQ right during multiplication. 

Produces A+B which strobes FMA + FMB into the ALU. 

Produces MXA and MXB during floating-point and Integer Mul
tiply which causes the added result to be shifted right at inputs 
to FMA and also enables FMQ for right-shift. 

Si gna I Mnemon i c 

MPY SHRT 

MPY SWAP P 

MQ INT 

MQINTP 

MRD 

MRDA 

MREQ 

MRLS 

MRLS ACK (1) B 

MRS 

MWR 

MXA, MXB 

MXA, MX B, MXC I 
MXD 

MXA1, MXB1 

NOR 

NOREN 

NORM DONE 

NORM P 

NOR SEL 

ODD 

OtJAND 

OPAND DWN P 

OVR (1) H 

POl-P07 

Logic Print 

FP15-0-39 

FP15-0-38 

FP15-0-39 

FP15-0-39 

FP15-0l 

FP15-0l 

FP15-0l 

FP15-0l 

FP15-0-32 

FP15-0l 

FP15-0-32 

FP15-0-0S 

FP1S-0-32 

FP15-0-11 

FP15-0-32 

FP15-0-40 

FP15-0-40 

FP1S-0-40 

FP15-0-36 

FP1S-0-11 

FP15-0-12 

FP15-0-43 

FP15-0-20 
through -26 

Function 

During floating-point or Integer Multiply, this signal causes 
FMA and FMQ to be right-shifted. 

Produces ALS and MLS in order to zero the FMA and strobe the 
FMA into the FMQ at the beginning of the FUN cycle in mul
tipli cati on. 

Used in Integer Divide during the EXP cycle to enable the FMB 
to the ALU bus. 

Produces MLS which strobes the FMB into the FMQ. 

Selects read/restore memory cycle. 

Memory Release, Data Acknowledge. Issued by the FP15 to in
dicate data has been received and to allow additional memory 
requests. 

The signal is generated by the CPU requesting start of a memory 
cycle. 

The CPU issues this signal to release memory for additional re
quests. 

Notifies device that memory has accepted data and is terminat
ing memory cycle. 

A signal that causes the FMQ to be right-shifted. 

Selects clear/write memory cycle. 

Used as select signals to supply data from one of four sources to 
the FMA. 

Select lines to select one of 16 possible inputs to MPO. 

Used as select signals to supply data from one of four sources of 
the FMQ. 

Denotes normalize cycle, where an operand is to be normalized. 

A signal which causes normalize to occur when requested. 

Indicates FMA 01 is on a 1 and normalize is completed. 

Pulse used for normalizing FMA. A NORM P pulse is generated 
for each normalize shift. 

Indicates normalization has been requested. 

Indicates sign bits (A SIGN and B SIGN) are not equal. 

Denotes OPAND cycle in which the operand(s) is fetched from 
memory. 

Down counts the shift counter during the OPAND cycle. Up to 
three down counts are possible depending on number of operands 
requ i red from memory. 

Indicates an overflow has been detected. 

Carry propagate outputs from the ALU where a carry is propa
gated at the output of a 4-bit ALU circuit. 



Signal Mnemonic Logic Print Function Signal Mnemonic Logic Print Function 

PPOO, PP01 FP15-0-2S Propagate output from the carry look-ahead circuitry used to in- STALL RESET FP15-0-10 Used to reset the STALL fl ip-flop as a result of a PI or API 
dicate a carry was propagated from previous stage. break. 

PREP SC FP15-0-3S Used to inhibit the stepping of the shift counter during floating- STALL STB FP15-0-06 Monitors MDl lines and strobes data into FP15 when 71XXXXS 
point Divide (FUN cycle). PREP SC loads the shift counter at has been detected. 
NOR*T3. STEP P FP15-0-42 Indicates first step of Diagnostic Step and Read instruction. 

RD RST (1) B FP15-01 Notifies the CPU that the data from memory is on the bus and STOP ALIGN FP15-0-37 Used during EXP cycle of addition or subtraction when exponent 
ready to be strobed into the MI register. 

difference is greater than 35 and denotes that alignment is com-

RND FP15-0-40 Indicates that rounding has been requested and is about to take pleted or no al ignment is to be performed. 
place. STOP ClK FP15-0-42 Halts the FP15 Clock to allow sixteen lS-bit words to be trans-

RND+l FP15-0-36 Occurs during addition at FUN*T1 as a result of mantissa align- ferred to memory during a Diagnostic Step and Read or Diagnos-
menta tic Read instruction. 

ROUND MA P FP15-0-40 Indicates FMA is to be rounded if guard is set. STOP DIV FP15-0-3S Stops the division process when the divisor is normalized. 

R SET (1) H FP15-0-09 A signal that clears R SET SYNC which allows ST PHASE to re- STORE COMP FP15-0-35 Indicates that the contents of the FMB are written into memory. 
set in order to start the phase and time state generator. This signal is raised for a negative integer. 

R SET SYNC FP1S-0-09 Used to reset ST PHASE in order to reset the FP clock. STORE JEA FP1S-0-41 Used to store the JEA. 

RT CP FPlS-O-ll Allows CPU to complete cycle since the FPl5 simulates an NOP 
STORE OVR P FP15-0-43 Indicates that overflow has been detected during normalization 

which is transmitted to the CPU. 
of a single-precision floating-point Store instruction. 

SC ADDR A, FPl5-0-30 Selects one of two address lines on the M170l Data Selector 
STORE RND P FP15-0-35 Used to round on a single-precision floating-point Store instruc-

SC ADDR B wh i ch is outputted to the sh ift counter. 
tiona 

STORE SEL FP1S-0-35 Used to select inputs to the multiplexer during a WRITE cycle. 
SEL A, SEL B FP15-0-37 SEL A is ~enerated when the absolute value of EPA-EPB is great-

er than 2 7. SEL B is generated when the absolute value of STORE UND P FP15-0-43 Indicates that underflow has been detected during normalization 

EPA-EPB is greater than 217_1. of a single-precision floating-point Store instruction. 

SEl C, SEl D FP15-0-37 SEL C is generated when EPB is more positive than EPA and both ST PHASE FP1S-0-09 Used to stop the phase during arithmetic operations. 

are positive quantities. SEL D is generated when EPA is more SUB A FP1S-0-36 Indicates a subtraction of two quantities with unlike signs (ac-
negative than EPB and both quantities are negative. tual Iy an addition). 

SEL DIAG FP15-0-42 Maintenance mode is enabled and the instruction on which SUB S FP1S-0-36 Indicates a subtraction of two quantities with like signs. 
maintenance is to be performed was loaded. SWAP MQ P FP15-0-41 Used to swap the contents of the FMA and FMQ. 

SET BMB 00-17 FP15-0-35 Sets bits 00 through 17 to all l's when a negative 2's comple- TRANSFER FP15-0-42 Enables Transfer P which initiates transfer of sixteen 1S-bit 
ment single-precision integer number is loaded into the BMB. words to memory. 

SET FP FP1S-0-10 Indicates that the CPU is fetching the address of the argument. TRANS EN FP15-0-10 Used during Maintenance mode to indicate completion of trans-

SET OVR FP1S-0-43 Detects overflow during multiplication or division. 
fer of data from sixteen registers to memory. 

TRANS EPB FP1S-0-37 Transfers contents of EPB into EPA during exponent alignment 
SET SC 17 FP1S-0-30 Used to indi cate the number of operands or the number of write when the EPB is greater than the EPA. 

cycles to be performed. 
TRANSFER P FP15-0-42 Initiates transfer of sixteen lS-bit words to memory during Main-

SET UND FP15-0-43 Detects underflow during multiplication or division. tenan ce mode. 

SET ZERO FP1S-0-39 Indicates a zero quotient and also that shifting is halted. TS 1 (1), TS 2 (1), FP15-0-09 Various time state of the time state generator. 

SKIP ZERO FP15-0-39 Decreases amount of time between carry pulses for multiplica-
TS 3 (1) 

tion when a shift rather than an add and shift is to be performed. UND (1) H FP15-0-43 Indi cates an underfl ow has been detected. 

SO, 51, S2, S3 FP1S-0-33 Address selection lines used to specify arithmetic or logical op-
UND SYNC (1) H FP1S-0-43 Used for storage of temporary underflow condition. 

erations to be performed by ALU (see FP15-0-33). WRITE FP15-0-11 Denotes WRITE cycle in which data is written into memory. 

STALL FP15-0-10 Generated during detection of a 71XXXXS op code denoting an WRITE DWN P 
FP instruction. 

FP15-0-02 Down counts the shift counter during the WRITE cycle. Up to 
three down counts are possible. 

A-S 


	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	A-1
	A-2
	A-3
	A-4
	A-5

