

MAC11 XVM ASSEMBLER
LANGUAGE MANUAL

DEC-XV-LMLAA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (S) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-ll

1/76-15

PREFACE

CHAPTER 1

1.1
1.1.1
1.1. 2
1.1. 3
1.2
1.3
1.4
1.5
1. 5.1
1. 5.2
1.6

CHAPTER 2

2.1
2.1.1
2.1. 2
2.1. 3
2.1. 4
2.2

CHAPTER 3

CHAPTER

3.1
3.1.1
3.1. 2
3.1. 3
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.ll

CONTENTS

FUNDAMENTALS OF PROGRAMMING THE PDP-II

MODULAR PROGRAMMING
Commenting PDP-II Assembly Language Programs
Localized Register Usage
Conditional Assemblies
REENTRANT CODE
PREFERRED ADDRESSING MODES
PARAMETER ASSIGNMENTS
SPACE VS. TIMING TRADEOFFS
Trap Handler
Register Increment
CCNDITIONAL BRANCH INSTRUCTIONS

SOURCE PRCGRAM FORMAT

STATEMENT FORMAT
Label Field
Operator Field
Operand Field
Comment Field
FORMAT CONTROL

SYMBOLS AND EXPRESSIONS

CHARACTER SET
Separating and Delimiting Characters
Illegal Characters
Operator Characters
MACll SYMBOLS
Permanent Symbols
User-Defined and MACRO Symbols
DIRECT ASSIGNMENTS
REGISTER SYMBOLS
LOCAL SYMBOLS
ASSEMBLY LOCATION COUNTER
NUMBERS
TERMS
EXPRESSIONS

ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTO INCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT DEFERRED MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
RELATIVE MODE

iii

Page
ix

1-1

1-1
1-2
1-2
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6

2-1

2-1
2-1
2-3
2-3
2-3
2-4

3-1

3-1
3-2
3-4
3-4
3-5
3-5
3-5
3-6
3-7
3-8
3-10
3-11
3-11
3-12

4-1

4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-5

4.12
4.13
4.14

CHAPTER 5

CHAPTER

CHAPTER

5.1
5.1.1
5.1. 2
5.1. 3
5.1. 4
5.1. 5
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.4
5.4.1
5.4.2
5.5
5.5.1
5.5.2
5.5.3
5.6
5.6.1
5.7
5.7.1
5.7.2
5.7.3

6

6.1
6.1.1
6.1. 2
6.1. 3
6.1. 4
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.5
6.6
6.7

7

7.1
7.2
7.3

CONTENTS (Cant.)

RELATIVE DEFERRED MODE
TABLE OF MODE FORMS AND CODES
BRANCH INSTRUCTION ADDRESSING

GENERAL ASSEMBLER DIRECTIVES

LISTING CONTROL DIRECTIVES
.LIST and .NLIST
Page Headings
.TITLE
.SBTTL
Page Ejection
FUNCTIONS: . ENABL AND . DSABL DIRECTIVES
DATA STORAGE DIRECTIVES
.BYTE
.WORD
ASCII Conversion of One or Two Characters
.ASCII
.ASCIZ
.RAD50
RADIX CONTROL
.RADIX
Temporary Radix Control: AD, AO, and AB
LOCATION COUNTER CONTROL
.EVEN
.ODD
.BLKB and .BLKW
TERMINATING DIRECTIVES
.END
CONDITIONAL ASSEMBLY DIRECTIVES
Subconditionals
Immediate Conditionals
PAL-IIR Conditional Assembly Directives

MACRO DIRECTIVES

MACRO DEFINITION
.NACRO
. .ENDM
.MEXIT
MACRO Definition Formatting
MACRO CALLS
ARGUMENTS TO MACRO CALLS AND DEFINITIONS
Macro Nesting
Special Characters
Numeric Arguments Passed as Symbols
Number of Arguments
Automatically Created Symbols
Concatenation
.NARG, .NCHR, AND .NTYPE
.ERROR AND .PRINT
INDEFINITE REPEAT BLOCK: .IRP AND . IRPC
REPEAT BLOCK: .REPT

OPERATING PROCEDURES

LOADING MAC 11
COMMAND INPUT STRING
PAPER TAPE SOURCES

iv

Page

4-5
4-5
4-6

5-1

5-1
5-1
5-3
5-3
5-5
5-7
5-7
5-8
5-8
5-9
5-10
5-11
5-12
5-12
5-14
5-14
5-14
5-15
5-15
5-16
5-16
5-17
5-17
5-18
5-20
5-21
5-22

6-1

6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-6
6-7
6-7
6-8
6-9
6-10
6-11
6-13

7-1

7-1
7-1
7-2

APPENDIX A
A.l
A.2

APPENDIX B
B.l
B.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.3.5
B.3.6
B.3.7
B.4

APPENDIX C

APPENDIX D
D.l

INDEX

FIGURE 1-1
1-2

3-1

5-1
5-2
6-1

TABLE 3-1
3-2

CONTENTS (Cont.)

APPENDICES

MACII CHARACTER SETS
ASCII CHARACTER SET
RADIX-50 CHARACTER SET

MACII ASSEMBLY LANGUAGE AND ASSEMBLER
SPECIAL CHARACTERS
ADDRESS MODE SYNTAX
INSTRUCTIONS
Double-Operand Instructions
Single-Operand Instructions
Operate Instructions
Trap Instructions
Branch Instructions
Register Destination
Subroutine Return
ASSEMBLER DIRECTIVES

PERMANENT SYMBOL TABLE

ERROR MESSAGE SUMMARY
MACll ERROR CODES

FIGURES

Problem-Oriented Tree-Structure
Segment of PDP-II Code Showing 1,
3-Word Instructions

2,

Assembly Source Listing of MACII Code
Local Symbol Blocks
Example of ~~Cll Line Printer Listing
Assembly Listing Table of Contents
.IHP and . IRPC Example

TABLES

Legal Separating Characters
Legal Delimiting Characters

v

Page

A-I
A-I
A-4

B-1
B-1
B-2
B-3
B-4
B-4
B-6
B-7
B-8
B-9
B-9
B-lO

C-l

D-l
D-l

INDEX-l

1-3
and

1-3
Showing

3-9
5-4
5-6
6-12

3-3
3-3

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in

cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL

DDT XVM UTILITY MANUAL

EDIT/EDITVP/EDITVT XVM UTILITY MANUAL

8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL

MACll XVM ASSEMBLER LANGUAGE MANUAL

MACRO XVM ASSEMBLER LANGUAGE MANUAL

MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VP1SA XVM GRAPHICS SOFTWARE MANUAL

VT1S XVM GRAPHICS SOFTWARE MANUAL

XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READER'S GUIDE AND MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS ViA SYSTEM INSTALLATION GUIDE

XVM/RSX SYSTEM ~ffiNUAL

XVM UNICHANNEL SOFTWARE MANUAL

vii

DEC-XV-OBUAA-A-D

DEC-XV-UCHNA-A-D

DEC-XV-UDDTA-A-D

DEC-XV-UETUA-A-D

DEC-XV-UTRNA-A-D

DEC-XV-LFLGA-A-D

DEC-XV-LF4MA-A-D

DEC-XV-LF4EA-A-D

DEC-XV-ULLUA-A-D

DEC-XV-LMLAA-A-D

DEC-XV-LMALA-A-D

DEC-XV-UMTUA-A-D

DEC-XV-UPUMA-A-D

DEC-XV-UPPUA-A-D

DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D

DEC-XV-GVTAA-A-D

DEC-XV-ODKBA-A-D

DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D

DEC-XV-ODMAA-A-D

DEC-XV-ODSIA-A-D

DEC-XV-IRSMA-A-D

DEC-XV-XUSMA-A-D

PREFACE

This manual describes the PDP-II MACRO-II Assembler (MACII) and
Assembly Language and discusses briefly how to program the PDP-II
computer. It is recommended that the reader have copies of the PDP-II
Processor Handbook and, optionally, the PDP-II Peripherals and
Interfacing Handbook. References are made to these documents
throughout this manual (although this document is complete, the
additional material provides further details). The user is also
advised to obtain a PDP-II pocket Instruction List card for easy
reference. (These items can be obtained from the Digital Software
Distribution Center.)

This MACRO-II Assembler operates under the XVM/DOS (Disk Operating
System) in conjunction with PIREX, a multiprogramming executive
running on a PDP-II in the XVM UNICHANNEL configuration system.

Some notable features of MACII are:

1. Device and filename specifications for input

2. Error listing on command output device

3. Alphabetized, formatted symbol table listing

4. Conditional assembly directives

5. User defined macros

6. Extensive listing control

Associated Documents:

PDP-II/05/10/35/40 Processor Handbook

PDP-II Peripherals and Interfacing Handbook

XVM UNICHANNEL Software Manual

XVM/DOS Users Manual

EDIT/EDITVP /EDITVT XVM Utili ty ~lanual

PIP XVM Utility Manual

The MACII assembler, a subset of the standard MACRO-II assembler for
the PDP-II, is specifically written for the VXM system. Programs
written for the MACRO-II assembler will not necessarily assemble
correctly with MACII, and programs written for MACII will not
necessarily assemble correctly with MACRO-II.

The MACII assembler generates only absolute binary output.

ix

CHAPTER 1

FUNDAMENTALS OF PROGRAMMING THE PDP-II

This Chapter presents some fundamental software concepts essential to
efficient assembly language programming- of the PDP-II computer. A
description of the hardware components of the PDP-II family can be
found in the two DEC paperback handbooks:

PDP-II Processor Handbook

PDP-li Peripherals and Interfacing Handbook

No attempt is made in this document to'describe the PDP-II hardware or
the function of the various PDP-II instructions. However, it is
recommended that the reader become familiar with this material before
proceeding.

The new PDP-II programmer is advised to read this Chapter before
reading further in this manual. The concepts in this Chapter will
create a conceptual matrix within which explanations of the language
fit. Since the techniques described herein work best with the PDP-II
and are used in PDP-II system programs, they should be considered from
the very start of your PDP-II programming experience.

1.1 MODULAR PROGRAMMING

The PDP-II family of computers lend themselves most easily to a
modular system of programming. In such a system the programmer must
envision the entire program and break it down into constituent
subroutines. Modular development forces an awareness of the final
system. Ideally, this should cause all components of the system to be
considered from the very beginning of the development effort rather
than patched into a partially-developed system. This provides for the
best use of the PDP-II hardware (as discussed later in this Chapter) ,
and results in programs which are more easily modified than those
coded with straight-line coding techniques.

To this end, flowcharting of the entire system is
to coding rather than during or after the
programmer is then able to work on small portions
time. Subroutines of approximately one or two
desirable.

best performed prior
coding effort. The
of the program at a
pages are considered

Modular programming practices maximize the usefulness of an
installation's resources. Programmed modules can be used in other
programs or systems having similar or identical functions without the
expense of redundant development . Also software modules developed as

1-1

FUNDAMENTALS OF PROGRAMMING THE PDP-II

functional entities are more likely to be free of serious logical
errors as a result of the original programming effort. The use of
such modules will simplify the development of later systems by
incorporating proven pieces.

Modular development provides for ease of use and modification rather
than simplifying the original development. While care must be taken
in the beginning to ensure correct modular system development, the
benefits of standardization to the generation of maintenance
programmers which deal with a given assembly are many. (See also the
notes under Commenting Assembly Language Programs.)

PDP-II assembly language programming best follows a tree-like
structure with the top of the tree being the final results and the
base being the smallest component function. (The Assembler itself is
a tree structure and is briefly described in Figure 1-1.)

1.1.1 Commenting PDP-II Assembly Language Programs

When programming in a modular fashion, it is desirable to heavily
comment the beginning of each subroutine, telling what that routine
does: its inputs, outputs, and register usage.

Since subroutines are short and encompass only one operation it is not
necessary to tell how the subroutine functions, but only what it does.
An explanation of how a subroutine functions should be documented only
when the procedure is not obvious to the reader. This enables any
later inspection of an unclear subroutine to disclose the maximum
amount of useful information to the reader.

1.1.2 Localized Register Usage

A useful technique in writing subroutines is to save all registers
upon entering a subroutine and restore them prior to leaving the
subroutine. This allows the programmer unrestricted use of the PDP-II
registers, including the program stack, during a subroutine.

Use of registers avoids 2- and 3-word addressing instructions. The
code in Figure 1-2 compares the use of registers with symbolic
addressing. Register use is faster and requires less storage space
thatn symbolic addressing.

1-2

FUNDAMENTALS OF PROGRAMMING THE PDP-II

Source
Program
Input

Line
'I'erminator

I.
') ,.: ..
:3

00000:1.
O()OO()~;

Figure 1-1
Problem-Oriented Tree-Structure

Operand

Macro
Processor

-4 ;EXAMPLE OF MANIPULATION WITH SYMBOLIC ADDRESSING.
1::"

'"' 6 OOO()()O 06 2767 BEGIN: ADD 1 3,VALUE
O()0003

;3 WORD INSTRUCTION.

"7 000006

B O()OO:l.4
9 O()O()16

to 00024

:1 1 000:30
1 ;.' 000:32

13

() 0 () 0 ~::; ;:,
0;:.'6767
OO()046
OO()046
0014()3
0 :1. 6"767
O()()036
000036
OO~:;167 NEXT:
OOOO::l2
.1.0()01 2
OO~:)06?

O()0024

CMP VA LU E,KEEP ;3 WORDS.

BEG NEXT
MOV VALUE,KEEP ;3 WORDS.

COM I<EEP

BPI... DONE
CI...F(KE EP

14 ;NOW DO THE SAME THING WITH REGI STERS.
1 ~:j
16 00036 062?Ol

OO()()03
17 00042 020102
:ttl 00044 O()I.40J
:1.9 O()()46 010:1.02
20 OO()50 005:1.0 2 NEXT:I.:
21 ()()O~:'j2 .I. OO()O:l.
2~'. O()O~:'j4 OO~:'j002

24 00056 O()OO():I. DONE:

AD D

eMP
BEn
110l)
COM
DPI ...
CI...F(

I..,JAIT

:11:] • f~ :I.

F':I. , F,2
NEXT1
F:: 1 , F(::>'
F" ·) '"

DONE
F~2

Figure 1-2

; 2 lJ f:; 3 l'JD h: D~:;

; :I. l) ~:; :5 ~JnF::D~:>

[; 1 l.} ~:; ··X ,., ~JDRD ~:;

• 1 t) ~:) ::.:: IAIOF<D ~:;

, :I. l,h; ,", l.JDF(D~:)

Segment of PDP-1l Code
Showing 1, 2, and 3-Word Instructions

1-3

0: L INE

(L INE

(L IHE
(I.. INE

(L Ii'lE

6 • (.lBDl)E

"/) .
':?) .
10) .
1::)) ,.

) .

FUNDAMENTALS OF PROGRAMMING THE PDP-II

1.1.3 Conditional Assemblies

Conditional assemblies are valuable in macro definitions. The
expansion of a macro can be altered during assembly as a result of
specific arguments passed and their use in conditionals. For example,
a macro can be written to handle a given data item differently,
depending upon the value of the item. Only a single algorithm need be
expanded with each macro call. (Conditionals are described in detail
in Section 5.7.)

Conditional assemblies can also be used to generate different versions
of a program from a single source. This is usually done as a result
of one or more symbols being either defined or undefined. Conditional
assemblies are preferred to the creation of a mUltiplicity of sources.
This principle is followed in the creation of PDP-II system programs
for the following reasons:

1. Maintenance of a single source program is easier, and
guarantees that a change in one version of the program, which
may affect other versions, is reflected automatically in all
possible versions.

2. Distribution of a single source program allows a customer or
individual user to tailor a system to his configuration and
needs and continue to update the system as the hardware
environment or programming requirements change.

3. As in the case of maintenance, the debugging and checkout
phase of a single program (even one containing many separate
modules) is easier than testing several distinct versions of
the same basic program.

1.2 REENTRANT CODE

Both the interrupt handling hardware and the subroutine call
instructions (JSR, RTS, EMT, and TRAP) facilitate writing reentrant
code for the PDP-II. Reentrant code allows a single copy of a given
subroutine or program to be shared by more than one process or task.
This reduces the amount of core needed for multi-task applications
such as the concurrent servicing of peripheral devices.

of
of
of

On the PDP-II, reentrant code depends upon the stack for storage
temporary data values and the current processing status. Presence
information in the stack is not affected by the changing
operational control from one task to another. Control is always
to return to complete an operation which was begun earlier but
completed.

able
not

1.3 PREFERRED ADDRESSING MODES

Addressing modes are described in detail in Chapter 4. Basically, the
PDP-II programmer has eight types of register addressing and four
types of addressing through the PC register. Those operations
involving general register addressing take one word of core storage,
while symbolic addressing can use up to three words. For example:

MOV A,B
MOV RO,Rl

;THREE WORDS OF STORAGE
:ONE WORD OF STORAGE

1-4

FUNDAMENTALS OF PROGRAMMING THE PDP-II

The user is advised to perform as many operations as possible
register addressing modes, and to use the remaining addressing
to preset the registers for an operation. This technique saves
and time over the course of a program.

1.4 PARAMETER ASSIGNMENTS

with
mod e s
space

Parameter assignments should be used to e nable a program to be easily
followed through the use of a s ymbolic cross reference (CREF listing).
For example:

SYM=42

MOV #SYM,RO

Another standard PDP-II convention is to name the general registers as
follows:

RO
Rl
R2
R3
R4
RS
SP
PC

%0
%1
%2
%3
%4
%S
%6
%7

(processor stack pointer)
(program counter)

1.S SPACE VS. TIMING TRADEOFFS

On the PDP-ll as on all computers, some techniques lead to savings in
storage space and others lead to decreased execution time. Only the
individual user can determine which is the best combination of the two
for his application. It is the purpose of this section to describe
several means of conserving core storage and / or saving time.

1.S.1 Trap Handler

The use of the trap handler and a dispatch table conserves core
requirements in subroutine calling, but can lead to a decrease in
execution speed due to indirect transfer of control. To illustrate, a
subroutine call can be made in either of the following ways:

1. A JSR instruction which generally requires two PDP-ll words:

JSR RS,SUBA

but is direct and fast.

2. A TRAP instruction which requires one in-line PDP-ll word:

TRAP N

but is indirect and slower. The TRAP handler must use N to
index through a dispatch table of subroutine addresses and
then JMP to the Nth subroutine in the table.

l-S

FUNDAMENTALS OF PROGRAMMING THE PDP-II

1.5.2 Register Increment

The operation:

CMPB (RO)+,(RO)+

is preferable to:

TST (RO)+

to increment RO by 2, especially where the initial contents of RO may
be odd.

1.6 CONDITIONAL BRANCH INSTRUCTIONS

When using the PDP-II conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

SIGNED

BGE
BLT
BGT
BLE

UNSIGNED

BHIS (BCC)
BLO
BHI
BLOS (BCS)

A common error is to use a signed branch (e.g., BGT) when comparing
two memory addresses. A problem occurs when the two addresses have
opposite signs; that is, one address goes across the 16K (100000(8))
boundary. This type of coding error usually appears as a result of
reI inking at different addresses and / or a change in the size of the
program.

1-6

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement. Each line is
terminated by either a line feed or a vertical-tab character (which
increments the line count by 1) or a form-feed character (which
increments both the line count and page count by 1).

Since the MACll Interface automatically appends a line feed at the end
of every logical input line, the user need not concern himself with
the statement terminator. However, a carriage return character not
followed by a statement terminator generates an error flag. A legal
statement terminator not immediately preceded by a carriage return
causes the Assembler to insert a carriage return character for listing
purposes.

An assembly language line can contain up to 80(10) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACll assembly language statement is:

label: operator operand ;comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A statement must contain one of these fields and
may contain all four types. Blank lines are legal.

Some statements have one operand, for example:

CLR RO

while others have two,

MOV #ERR,R2

An assembly language statement must be complete on one source line.
No continuation lines are allowed.

2-1

SOURCE PROGRAM FORMAT

r~ I T
I{ F O

F: F U F I;~ I;~;~ J i"i F'
F:FGFI(>(: ,./iCl()

nIe
E~F(

'II' M ()~:; I \ , (J (:,I ... UE
I;~EGE I;.::X:

1;~EI(F(U i :;:

'II'DEFFLU I F;:EGFI...G " i"l ODE
'lI' f/i t ,::,I<" '·')(:;I.l..IF
t , E{ ~ ::; L I:: ::0<

2.1.1 Label Field

~ :':) B I T ~:;'!>

;; YF~:; , ' ClI\ ,
; 1'·10, EF<F< UF;:,
; ~:;ET MODE "

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The value of the label is absolute.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent reference to
ABCD references location 100 (8) .

More than one label may appear within a single label field: each
label within the field has the same value. For example, if the
current location counter is 100(8), the multiple labels in the
statement:

ABC: $00: A7.7: MOV A,B

cause each of the three labels ABC, $00, and A7.7 to be equated to the
value 100(8).

The first six characters of a label are significant. An error code is
generated if more than one label share the same first six characters.

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a label results in an error flag in the
assembly listing.

2-2

SOURCE PROGRAM FORMAT

2.1.2 Operator Field

An operator
contain a
directive.
labels and
Leading and

field follows the label field in a statement, and may
macro call, an instruction mnemonic, or an assembler
The operator may be preceded by none, one or multiple

may be followed by one or more operands and/or a comment.
trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an Assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally
non-alphanumeric character

terminated by a space,
(symbol component).

Consider the following examples:

MOV A,B (space terminates the operator MOV)

MOV@A,B (@ terminates the operator MOV)

tab, or any

When the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed,
vertical tab or form feed character.

A blank operator field is interpreted as a .WORD assembler directive
(see Section 5.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation). When multiple
operands appear within a statement, each is separated from the next by
one of the following characters: comma, tab, space or paired angle
brackets around one or more operands (see Section 3.1.1). An operand
may be preceded by an operator, label or other operand and followed by
a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV A,B ;COMMENT

The space between MOV and A terminates the operator field and begins
the operand field; a comma separates the operands A and B; a
semicolon terminates the operand field and begins the comment field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII
except null, rubout, carriage return, line feed, vertical
feed. All other characters, even special characters with
usage, are ignored by the Assembler when appearing in
field.

2-3

characters
tab or form

a defined
the comment

SOURCE PROGRAM FORMAT

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
character and end with a statement terminator.

Comments do not affect assembly processing or program execution, but
are useful in source listings for later analysis, debugging, or
documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII texti or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABEL:MOV(SP)+,TAGiPOP VALUE OFF STACK

or, using formatting characters, it can be written:

LABEL: MOV (SP)+,TAG iPOP VALUE OFF STACK

which is easier to read in the context of a source program listing.

The XVM Edit program can be used to achieve the desired format.

Vertical formatting, i.e., page size, is controlled by the
character. A page of n lines is created by inserting
(type the CTRL/ FORM keys on the keyboard) after the nth
Section 5.1.5 for other methods of vertical formatting.

2-4

form feed
a form feed
line. See

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MACll
construction, expressions: the Assembler character set, symbol

numbers, operators, terms and expressions.

3.1 CHARACTER SET

The following characters are legal in MACll source programs:

1. The letters A through Z. Both upper and lower case letters
are acceptable although, upon input, lower case letters are
converted to upper case letters. Lower case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, .ASCIZ, I (single
quote) or II (double quote) statements if .ENABL LC is in
effect.

2. The digits 0 through 9.

3. The characters. (period or dot) and $ (dollar sign),

The special characters are as follows:

Character Designation Function

carriage return formatting character

:::: :::: t
vertical tab)

source statement terminators

colon label terminator

equal sign direct assignment indicator

% percent sign register term indicator

tab item or field terminator

space item or field terminator

number sign immediate expression indicator

3-1

Character

@

<

>

+

*

/

&

t

\

SYMBOLS AND EXPRESSIONS

Designation Function

at sign deferred addressing indicator

left parenthesis initial register indicator

right parenthesis terminal register indicator

comma operand field separator

semi-colon comment field indicator

left angle bracket initial argument or expression
indicator

right angle bracket terminal argument or expression
indicator

plus sign

minus sign

asterisk

slash

ampersand

exclamation

double quote

single quote

up arrow

backslash

arithmetic addition operator or
auto increment indicator

arithmetic subtraction operator
or autodecrement indicator

arithmetic multiplication operator

arithmetic division operator

logical AND operator

logical inclusive OR operator

double ASCII character indicator

single ASCII character indicator

universal operator,
argument indicator

macro numeric argument indicator

3.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the manual to legal separating
characters and legal argument delimiters. These terms are defined in
Tables 3-1 and 3-2.

3-2

Character

space

Character

< ... >

t\ ... \

SYMBOLS AND EXPRESSIONS

Table 3-1
Legal Separating Characters

Defini tion Usage

one or more spaces A space is a legal separator only
and/or tabs for argument operands. Spaces

within expressions are ignored.

comma A comma is a legal separator for
both expressions and the argument
operands.

Table 3-2
Legal Delimiting Characters

Definition

paired angle brackets

Up arrow construction
where the up arrow
character is followed
by an argument
bracketed by any
paired printing
characters.

Usage

Paired angle brackets are used to
enclose an argument, particularly
when that argument contains
separating characters. Paired
angle brackets may be used anywhere
in a program to enclose an
expression for treatment as a term.

This construction is equivalent in
function to the paired angle
brackets and is generally used only
where the argument contains angle
brackets.

Where argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument(s). The character <
and the characters t \ , where \ is any printing character, can be
considered unary operators which cannot be immediately preceded by
another argument. For example:

.MACRO TEM <AB>C

indicates a macro definition with two arguments, while

.MACRO TEL C<AB>

has only one argument. The closing > , or matching character where the
up arrow construction is used, acts as a separator . The opening
argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

<AC >

which reduces to:
AC

and is considered to be one argument in both forms.

3-3

SYMBOLS AND EXPRESSIONS

3.1.2 Illegal Characters

A character can be illegal in one of two ways:

1. A character which is not recognized as an element of the
MACll character set is always an illegal character and causes
immediate termination of the current line at that point, plus
the output of an error flag in the assembly listing. For
example:

LABEL+-: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

.WORD LABEL

statement and is flagged in the listing.

2. A legal MACll character may be illegal in context. Such a
character generates a Q error on the assembly listing.

3.1.3 Operator Characters

Legal unary operators under MACll are as follows:

Unary
Operator Explanation Example

+

t

plus sign +A

minus sign -A

up arrow, AC24 (8)
universal unary
operator (this
usage is described AD127
in greater detail
in Section 5.4.2) .

A 034

(positive value
equivalent to A)

(negative,
val ue of A)

2's

of A,

complement,

(interprets the l's complement
value of 24 (8))

(interprets 127 as a decimal
number)

(interprets 34 as an octal
number)

ABIIOOOlll (interprets 11000111
binary value)

as a

The unary operators as described above can be used adjacent to each
other in a term. For example:

-%5
tCt012

3-4

SYMBOLS AND EXPRESSIONS

Legal binary operators under MACll are as follows:

Binary
Operator

+

*
I
&

Explanation

addition
subtraction
multiplication
division
logical AND
logical inclusive OR

A+B
A-B
A*B
AlB
A&B
AlB

Example

(16-bit product returned)
(16-bit quotient returned)

All binary operators have the same priority. Items can be grouped for
evaluation within an expression by enclosure in angle brackets. Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right. For example:

.WORD

.WORD
1+2*3
1+<2*3>

iIS 11 OCTAL
iIS 7 OCTAL

3.2 MACll SYMBOLS

There are three types of symbols: permanent, user-defined and macro.
MACll maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST) and the Macro Symbol Table
(MST) . The PST contains all the permanent symbols. The UST and MST
are constructed as the source program is assembledi user-defined
symbols are added to the table as they are encountered.

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appendix B.3)
and assembler directives (Chapters 5 and 6, Appendix B.4). These
symbols are a permanent part of the Assembler and need not be defined
before being used in the source program.

3.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 2.1.1) or
defined by direct assignment (Section 3.3). These symbols are added
to the User Symbol Table as they are encountered during the first pass
of the assembly. Macro symbols are those symbols used as macro names
(Section 6.1). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined
characters,
illegal.

and macro symbols can be composed of alphanumeric
dollar signs, and periods onlYi any other character is

The following rules apply to the creation of user-defined and macro
symbols:

1. The first character must not be a number.

2. Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are only checked

3-5

SYMBOLS AND EXPRESSIONS

for legality, and are not otherwise recognized by the
Assembler.

4. Spaces, tabs, and illegal characters must not be embedded
within a symbol.

The value of a symbol depends upon its use in the program.
in the operator field may be anyone of the three symbol
determine the value of the symbol, the Assembler searches
symbol tables in the following order:

A symbol
types. To
the three

1. Macro Symbol Table
2. Permanent Symbol Table
3. User-defined Symbol Table

A symbol found in the operand field is sought in the

1. User-defined Symbol Table
2. Permanent Symbol Table

in that order. The Assembler never expects to find a macro name in an
operand field.

These search orders allow redefinition of
entries as user-defined or macro symbols.
assigned to both a macro and a label.

Permanent Symbol Table
The same name can also be

All user-defined symbols are internal and must be defined within the
current assembly.

3.3 DIRECT ASSIGNMENTS

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table and the specified
value is associated with it. A symbol ma y be redefined by assigning a
new value to a previously defined symbol. The latest assigned value
replaces an y previous value assigned to a symbol.

The general format for a direct assignment statement is:

symbol = expression

Symbols tak e on the absolute attribute of their defining expression.
For example:

A 1 ;THE SYMBOL A IS EQUATED TO THE
;VALUE l.

B= I A-l&MASKLOvl ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE EXPRESSION.

C: D = 3 ;THE SYMBOL D IS EQUATED TO 3.

E: MOV #l ,ABLE ;LABELS C AND E ARE EQUATED TO THE
;LOCATION OF THE MOV COMMAND.

3-6

SYMBOLS AND EXPRESSIONS

The following conventions apply to direct assignment statements:

1. An equal sign (=) must separate the symbol from the
expression defining the symbol value.

2. A direct assignment statement is usually placed in the
operator field and may be preceded by a label and followed by
a comment.

3. Only one symbol can be defined by anyone direct assignment
statement.

4. Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

x y
Y Z
Z 1

X and Yare both undefined throughout pass 1. X is undefined
throughout pass 2 and causes a U error flag in the assembly listing.

3.4 REGISTER SYMBOLS

The eight general registers of the PDF-ll are numbered 0 through 7 and
can be expressed in the source program as:

%0
%1

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer create and use symbolic names
for all register references. A register symbol is defined in a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute.
example:

000000
000001
000002
000003
000004
000005
000006
000006
000007
000007

RO=%O
Rl=%l
R2=%2
R3=%3
R4=%4
R5=%5
R6=%6
SP=%6
PC=%7
R7=%7

iREGISTER DEFINITION

For

The symbolic names assigned to the registers in the example above are
the conventional names used in all PDP-ll system programs. Since

3-7

SYMBOLS AND EXPRESSIONS

these names are fairly mnemonic, it is suggested the user follow this
convention. Registers 6 and 7 are given special names because of
their special functions, while registers 0 through 5 are given similar
names to denote their status as general purpose registers.

All register symbols must be defined before they are referenced. A
forward reference to a register symbol is flagged as an error.

The % character can be used with any term or expression to specify a
register. (A register expression less than 0 or greater than 7 is
flagged with an R error code.) For example:

CLR %3+1

is equivalent to

CLR %4

and clears the contents of register 4, while

CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the use of a
register symbol or register expressioni these cases are recognized
through the context of the statement. An example is shown below:

JSR 5,SUBR iFIRST OPERAND FIELD MUST ALWAYS BE A REGISTER

3.5 LOCAL SYMBOLS

Local symbols are specially formatted symbols used as labels within a
given range. Use of local symbols can achieve considerable savings in
core space within the user symbol table. Core cost is one word for
each local symbol in each local symbol block, as compared with four
words of storage for each label stored in the user symbol table.

Local symbols provide a convenient means of generating labels for
branch instructions, etc. Use of local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local references. Local symbols
are not referenced from outside their local symbol block.

Local symbols are of the form n$ where n is a decimal integer from 1
to 127, inclusive, and can only be used on word boundaries. Local
symbols include:

1$
27$
59$

104$

Within a local symbol block, local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

3-8

SYMBOLS AND EXPRESSIONS

Local symbols 64$ through 127$ can be generated automatically as a
feature of the macro processor (see Section 6.3.5 for further
details). When using local symbols, the user is advised to first use
the range from 1$ to 63$.

A local symbol block is delimited in one of the following ways.:

1. The range of a single local symbol block can consist of those
statements between two normally constructed symbol labels.
(Note that a statement of the form

2.

LABEL=.

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.)

The range of a single local symbol block can be delimited
with the .ENABL LSB and the first symbolic label. The
default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 3-3.

Ln.
No.

I

Octal
Expansion

000004 005020 ;~

\) O()()():J.:? J () 1 :::~:/ ",~

12 00020 005020 1+:

xc. fL.. I:···.!

Source Code Comments

eii:':
C:('iF:>

Ii·

i .. i".:t)) '("

ei i t,

C':i'! I

::' h:
C(O,!::'

Hili 1+

Figure 3-1
Assembly Source Listing of MACll Code

Showing Local Symbol Blocks

3-9

SYMBOLS AND EXPRESSIONS

The maximum offset of a local symbol from the base of its local symbol
blocks is 128 decimal words. Symbols beyond this range are flagged
with an A error code.

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

A: MOV #.,RO ,. REFERS TO LOCATION A,
iI.E., THE ADDRESS OF THE
iMOV INSTRUCTION.

(# is explained in Section 4.9.)

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of binary data generated. However, the location of the
stored binary data may be changed by a direct assignment altering the
location counter .

. =expression

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

.=500

FIRST: MOV .+lO,COUNT

. =520

SECOND: MOV .,INDEX

. =.+20

THIRD: . WORD 0

iSET LOCATION COUNTER TO ABSOLUTE
i500

iTHE LABEL FIRST HAS
i.+lO EQUALS 510(8).
iTHE LOCATION 510(8)
iIN LOCATION COUNT .

THE VALUE 500(8)
THE CONTENTS OF

WILL BE DEPOSITED

iTHE ASSEMBLY LOCATION COUNTER NOW
iHAS A VALUE OF ABSOLUTE 520(8).

iTHE LABEL SECOND HAS THE VALUE 520(8)
iTHE CONTENTS OF LOCATION 520(8), THAT
iIS, THE BINARY CODE FOR THE INSTRUCTION
iITSELF, WILL BE DEPOSITED IN LOCATION
iINDEX .

iSET LOCATION COUNTER TO ABSOLUTE 540 OF
iTHE PROGRAM SECTION .

iTHE LABEL THIRD HAS THE VALUE OF
iABSOLUTE 540.

3-10

SYMBOLS AND EXPRESSIONS

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

.=.+100

reserves 100(8) bytes of storage space in the program.
instruction is stored at 1100.

The next

3.7 NUMBERS

The MACll Assembler assumes all numbers in the source program are to
be interpreted in octal radix unless otherwise specified. The assumed
radix can be altered with the .RADIX directive (see Section 5.4.1) or
individual numbers can be treated as being of decimal, binary, or
octal radix (see Section 5.4.2).

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler
translates them into 2's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too
truncated from the
assembly listing.

large
left and

to fit into
flagged with

16
a

bits (177777 <n) is
T error code in the

3.8 TERMS

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in Section 3.7, whose 16-bit value is
used.

2. A symbol, as defined earlier in the chapter. Symbols are
interpreted according to the following hierarchy:

a. a period causes the value of the current location counter
to be used.

b. a permanent symbol whose basic value is used and whose
arguments (if any) are ignored.

c. an undefined symbol is assigned a value of zero and
inserted in the user-defined symbol table.

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character or a double quote followed by two
ASCII characters which results in a word containing the 7-bit
ASCII value of the character (s) . (This construction is
explained in greater detail in Section 5.3.3.)

4. A term may also be an expression or term
brackets. Any quantity enclosed in

3-11

enclosed in angle
angle brackets is

SYMBOLS AND EXPRESSIONS

evaluated before the remainder of the expression in which it
is found. Angle brackets are used to alter the left to right
evaluation of expressions (to differentiate between A*B+C and
A*<B+C » or to apply a unary operator to an entire expression
(-<A+B > , for example).

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit value. The operands of a .BYTE
directive (see Section 5.3.1) are evaluated as word expressions before
truncation to the low-order eight bits. Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated) .

Expressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+-A

is equivalent to

-<+ <-A »

A missing term, expression, or external symbol is interpreted as a
zero. A missing operator is interpreted as +. A Q error flag is
generated for each missing term or operator. For example:

TAG: LA 177777

is evaluated as

TAG: LA+177777

with a Q error flag on the assembly listing line.

The value of an expression is the value of the absolute part of the
expressionj e.g.,

A 5
20

TAG: MOV TAG+A,RO jSET RO TO 25 (8).

3-12

CHAPTER 4

ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand how the address modes operate and how
assemble, the action of the program counter must be understood.
key rule is:

Whenever the processor implicitly uses
the program counter to fetch a word from
memory, the program counter is
automatically incremented by two after
the fetch.

they
The

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memorYi and, if an
instruction uses indexing (Sections 4.7, 4.8 and 4.11) the processor
uses the program counter to fetch the base from memory. Hence, using
the rule above, the PC increments by two, and now points to the next
word.

The following conventions are used in this Section:

1. Let E be any expression as defined in Chapter 3.

2. Let R be a register expression.
containing a term preceded by
previously equated to such a term.

Examples:

RO
Rl
R2

%0
RO+l
1+%1

iGENERAL REGISTER 0
iGENERAL REGISTER 1
iGENERAL REGISTER 2

This is any expression
a % character or a symbol

3. Let ER be a register expression or an expression in the range
o to 7 inclusive.

4. Let A be a general address specification which produces a
6-bit mode address field as described in Sections 3.1 and 3.2
of the PDP-II Processor Handbook.

The addressing specifications, A, can be explained in terms of E, R,
and ER as defined above. Each is illustrated with the single operand
instruction CLR or double operand instruction MOV.

4-1

ADDRESSING MODES

4.1 REGISTER MODE

The register contains the operand.

Format for A: R

Examples: RO=%O
CLR RO

4.2 REGISTER DEFERRED MODE

iDEFINE RO AS REGISTER 0
iCLEAR REGISTER 0

The register contains the address of the operand.

Format for A:

Examples:

4.3 AUTO INCREMENT MODE

@R or (ER)

CLR @Rl
CLR (1)

iBOTH INSTRUCTIONS CLEAR
iTHE WORD AT THE ADDRESS
iCONTAINED IN REGISTER 1

The contents of the register are incremented immediately after being
used as the address of the operand. (See note below.)

Format for A:

Examples:

(ER) +

CLR (RO)+
CLR (RO+3)+
CLR (2)+

NOTE

iEACH INSTRUCTION CLEARS
iTHE WORD AT THE ADDRESS
iCONTAINED IN THE
iSPECIFIED REGISTER AND
iINCREMENTS THAT
iREGISTER'S CONTENTS BY
iTWO.

Both JMP and JSR instructions using
non-deferred autoincrement mode,
auto increment the register before its
use on the PDP-ll / 20 but afterwords on
the PDP-ll / 45 or 11 / 05. In double
operand instructions of the addressing
form %R,(R)+ or %R,-(R) where the source
and destination registers are the same,
the source operand is evaluated as the
auto incremented or autodecremented
valuei but the destination register, at
the time it is used, still contains the
originally intended effective address.
In the following two examples, as
executed on the PDP-ll / 20, RO originally
contains 100.

MOV RO, (0) + iTHE QUANTITY 102 IS
iMOVED TO LOCATION 100

4-2

ADDRESSING MODES

MOV RO,-(O) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 76

The use of these forms should be avoided
as they are not compatible across the
PDP-ll family.

A Z error code
compatible among
warning code.

is printed with each instruction which is not
all members of the PDP-II family. This is merely a

4.4 AUTO INCREMENT DEFERRED MODE

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format for A:

Example:

4.5 AUTODECREMENT MODE

@(ER)+

CLR @(3)+ ;CONTENTS OF REGISTER 3
;POINT TO ADDRESS OF WORD
;TO BE CLEARED BEFORE
;BEING INCREMENTED BY TWO

The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode) .

Format for A:

Examples:

- (ER)

CLR - (RO)
CLR -(RO+3)
CLR -(2)

4.6 AUTODECREMENT DEFERRED MODE

;DECREMENT
;REGISTERS 0,
;TWO BEFORE
;ADDRESSES OF
;CLEARED.

CONTENTS OF
3, AND 2 BY

USING AS
WORDS TO BE

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format for A:

Example:

4.7 INDEX MODE

@- (ER)

CLR @- (2) ;DECREMENT CONTENTS OF
;REGISTER 2 BY TWO BEFORE
;USING AS POINTER TO
;ADDRESS OF WORD TO BE
;CLEARED.

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

4-3

Format for A:

Examples:

4.8 INDEX DEFERRED MODE

ADDRESSING MODES

E (ER)

CLR X+2 (Rl)

CLR -2(3)

;EFFECTIVE ADDRESS IS X+2
;PLUS THE CONTENTS OF
; REGISTER l.
;EFFECTIVE
;ADDRESS IS -2 PLUS THE
;CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format for A:

Example:

4.9 IMMEDIATE MODE

@E (ER)

CLR @14(4) ;IF REGISTER 4 HOLDS 100
;AND LOCATION 114 HOLDS
;2000, LOCATION 2000 IS
;CLEARED.

The immediate mode allows the operand itself
second or third word of the instruction.
autoincrement of register 7, the PC.

to be stored as the
It is assembled as an

Format for A: #E

Examples: MOV #100, RO
MOV #X, RO

;MOVE AN OCTAL 100 TO
;REGISTER O. MOVE THE
;VALUE OF SYMBOL X TO
;REGISTER O.

The operation of this mode is explained as follows.

The statement MOV #100,R3 assembles as two words. These are:

o 1 2 7 0 3
o 001 0 0

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus the PC is used as a pointer to fetch the
operand (the second word of the instruction) before being incremented
by two, to point to the next instruction.

4.10 ABSOLUTE MODE

Absolute mode
specifies an
word of the
auto increment

is the equivalent of immediate
absolute address which is stored
instruction. Absolute mode is

deferred of register 7, the PC.

mode deferred. @#E
in the second or third

assembled as an

Format for A: @#E

Examples: MOV @#100,RO

CLR @#X

4-4

;MOVE THE VALUE OF THE
;CONTENTS OF LOCATION 100
;TO REGISTER O. CLEAR
;THE CONTENTS OF THE
;LOCATION WHOSE ADDRESS
;IS X.

ADDRESSING MODES

4.11 RELATIVE MODE

Relative mode is the normal mode for memory references.

Format for A: E

Examples: CLR 100
MOV X,Y

iCLEAR LOCATION 100.
iMOVE CONTENTS OF
iLOCATION X TO LOCATION
i Y .

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X-PC, which is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20:
Location 22:

a 1 6 7 a 3
a a a 054

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67i that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=lOO,
the operand address.

Since the Assembler considers "." as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100-.-4(PC} ,R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC. If the operator and
its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in core.

4.12 RELATIVE DEFERRED MODE

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: @E

Example: MOV @X,RO

4.13 TABLE OF MODE FORMS AND CODES

iMOVE THE CONTENTS OF THE
iLOCATION WHOSE ADDRESS IS
iIN X INTO REGISTER O.

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other modes, however, increases the instruction
length by one word.

4-5

ADDRESSING MODES

Form Mode Meaning
R On Register mode
@R or (ER) In Register deferred mode
(ER)+ 2n Autoincrement mode
@(ER)+ 3n Autoincrement deferred mode
- (ER) 4n Autodecrement mode
@-(ER) Sn Autodecrement deferred mode

where n is the register number.

Any of the following forms adds one word to the instruction length:

Form Mode Meaning

E (ER) 6n Index mode
@E (ER) 7n Index deferred mode
#E 27 Immediate mode
@#E 37 Absolute memory reference mode
E 67 Relative mode
@E 77 Relative deferred reference mode

where n is the register number. Note that in the last four forms,
register 7 (the PC) is referenced.

NOTE

1. An alternate form for @R is (ER) .
However, the form @(ER) is equivalent to
@O(ER) .

2. The form @#E differs from the form E in
that the second or third word of the
instruction contains the absolute
address of the operand rather than the
relative distance between the operand
and the PC. Thus, the instruction
CLR @#100 clears absolute location 100
even if the instruction is moved from
the point at which it was assembled.

4.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are I-word instructions. The high byte
contains the op code and the low byte contains an 8-bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction; hence the factor -2 in the calculation.

Byte offset = (E-PC) / 2 truncated to eight bits.

4-6

ADDRESSING MODES

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big (>377(8)) it is truncated to eight bits and a T
error flag is generated.

4-7

CHAPTER 5

GENERAL ASSEMBLER DIRECTIVES

5.1 LISTING CONTROL DIRECTIVES

5.1.1 .LIST and .NLIST

Listing options can be specified in the
through the .LIST and .NLIST directives.

text of a MACll program
These are of the form:

where:

.LIST arg

.NLIST arg

arg represents one or more optional arguments.

When used without arguments, the listing directives alter the listing
level count. The listing level count causes the listing to be
suppressed when it is negative. The count is initialized to zero,
incremented for each .LIST and decremented for each .NLIST. For
example:

.MACRO LTEST
iA-THIS LINE SHOULD LIST

.NLIST
iB-THIS LINE SHOULD NOT

.NLIST
iC-THIS LINE SHOULD NOT

.LIST
iD-THIS LINE SHOULD NOT

.LIST
iE-THIS LINE SHOULD LIST

.ENDM
iLTEST

iA-THIS LINE SHOULD LIST
.NLIST
. LIST

iLIST TEST

LIST

LIST

LIST (LEVEL NOT BACK TO

(LEVEL BACK TO ZERO)

iCALL THE MACRO

iE-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

ZERO)

The primary purpose of the level count is to allow macro
expansions to be selectively listed and yet exit with the level
returned to the status current during the macro call.

The use of arguments with the listing directives does not affect
the level counti however, use of .LIST and .NLIST can be used to
override the current listing control. For example:

5-1

.MACRO XX

.LIST
X= .
. NLIST

.ENDM

.NLIST HE
XX
.LIST
X=.

GENERAL ASSEMBLER DIRECTIVES

iLIST NEXT LINE

iDO NOT LIST REMAINDER
iOF MACRO EXPANSION

iDO NOT LIST MACRO EXPANSIONS

iLIST NEXT LINE

Allowable arguments for use with the listing directives are as follows
(these arguments can be used singly or in combination):

Argument Default

SEQ list

LOC list

BIN list

BEX list

SRC list

COM list

MD list

HC list

HE no list

MEB no list

Function

Controls the listing of source line sequence
numbers. Error flags are normally printed on
the line preceding the questionable source
statement.

Controls the listing of the location counter
(this field would not normally be
suppressed) .

Controls the listing of generated binary
code.

Controls listing of binary extensionsi that
is, those locations and binary contents
beyond the first binary word (per source
statement) This is a subset of the BIN
argument.

Controls the listing of the source code.

Controls the listing of comments. This is a
subset of the SRC argument and can be used to
reduce listing time and / or space where
comments are unnecessary.

Controls listing of macro definitions and
repeat range expansions.

Controls listing of macro calls and repeat
range expressions.

Controls listing of macro expansions.

Controls listing of macro expansion binary
code. A .LIST MEB causes only those macro
expansion statements producing binary code to
be listed. This is a subset of the ME
argument.

5-2

GENERAL ASSEMBLER DIRECTIVES

Argument Default Function

CND

LD

TOC

TTM

SYM

list

no list

list

Teletype
mode

list

Controls the listing of
conditions and all .IF and .ENDC
This argument permits conditional
to be listed without including
code.

unsatisfied
statements.
assemblies

unsatisfied

Control listing of all listing directives
having no arguments (those used to alter the
listing level count).

Control listing of tables of contents on pass
1 of the assembly (see Section 5.1.4
describing the .SBTTL directive). The full
assembly listing is printed during pass 1 of
the assembly.

Controls listing output format. The TTM
argument (the default case) causes output
lines to be truncated to 72 characters.
Binary code is printed with the binary
extensions below the first binary word. The
alternative (.NLIST TTM) to Teletype mode is
line printer mode, which is shown in Figure
5-1.

Controls the listing of the symbol table for
the assembly.

An example of an assembly listing is shown in Figure 5-1.

5.1.2 Page Headings

The MACII Assembler outputs each page in the format shown in Figure
5-1, Line Printer Listing. On the first line of each listing page the
Assembler prints (from right to left):

1. title taken from .TITLE directive.

2. assembler version identification

3. page number.

The second line of each listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

5.1.3 .TITLE

The .TITLE directive is used to assign a name to the listing output.
The name is the first symbol following the directive and must be six
Radix-50 characters or less (any characters beyond the first six are
ignored). Non-Radix 50 characters are not acceptable. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the listing output of the assembled program to be named PROG
(this name is distinguished from the filename of the binary output
specified in the command string to the Assembler).

5-3

GENERAL ASSEMBLER DIRECTIVES

PIRt:X.149
LINt: PRINTt:R
1

MACll XVM V1AOOO PAGE 29
DKIVER FUR LP11/15

LP INTERRUPT t:NTRANCt:
2
3 007604
4 007604

5 007612

6 007616
7 007620

B 007624
9
10 07626

11 u7632
12 07634

042767
000100
1677u2
004067
172222
000004
016700
177510
001511

005"167
167662
1004~4

005067
171560

LPINT:

13 07640 LPLOP:

BIC

JSR

'* "IUV

Tsr

1:l1~ 1
CLR

14 07640 105767 ISTB
1676~0

15 07644 100043 BPL
16 07646 105767 TSTB

000342
17 076~2 100421 BMI
18 07654 005367 Dt:C

000332
19 07660 100424 d~I

LU 07662 105777 ISla
U00322

21 07b66 lU0400 B~I
22 07670 117767 MUVS

000314
167620

23 07676 005267 INC
0003U6

24 07702 000756 BR
25
26 07704 117767 bS: MOVB

00u300
000302

27 07712 005267 INC
000272

28 07716 105267 4$: INCB
000272

29 07722 112767 MOVB
000040
167566

30 07730 000743 BR
31 07732 105767 5$: rSTH

000260
32 07736 001403 8t:Q
33 07740 116767 MUVB

1100,LPCSR

RO,R.SAVt:

LP-2,KO

LPXT

LPCSR

LPERR
LP.CL

LPCSR

LPS'flL
LP'fAB

'IS
LPBTCl

5$
@LPl3u,'f

6$
@Lf'BUFf',LPBUF

LPLOP

@LPBUt'f,LPTAB

LPBUFf'

LPTAB

HO, LPBUf

LPLUP
LPWL

7$
LPEOL,LPBUF

;DISABLt: LP INf~RRUPT

;SAVE REGISTERS

;fASK CUDt:
;GET TCB POINTt:k

;IGNUR~ It' ITS ALREADY I:lEEN STOPPED BY
A STOP 1/0 Rt:QUES'f.

;CHt:CK fLlR ERROR

;tt:S
;CLt:AR UU'f ANY Pt:NDING TIMER Rt:QUEST rOR US.

;IS f'RIN'fER CURRENTLY GOING?

IrES: fOHGEr :HAR FUR NU.
;IN TAb EXPANSION TD SPACt:S?

;Yt:S
;Dt:CH :::HAR COU'H

;wENT TO -1, MAKE CH III FINISH LINt:
;4INUS BYf~ IS fAB EXPANSIUN CLlUNf

;IS ONt:, GU St:f UP
:SfICK CrlAK INfLl LINE PHINTt:R dUFt'ER

;MOVt: PUIN'ft:R ILl Nt:XT CHAk

;GU LJU Nr~XT

;S£T UP fAb COUNT (MINUS, A LA 15)

;COIJNT A SPACt: fOR TbiS rAB

;SPACt: TO LINE PRINTER

;GU DU Nt:XT
; I'1AGt: Ok ASC II

;IMAGt:, DON'T FORCE <CR>
;ASC!l, HERE IS <CARRIAGE ~ETURN>

Figure 5-1
Example of MACll Line Printer Listing

(132-column line printer)

5-4

GENERAL ASSEMBLER DIRECTIVES

If there is no .TITLE statement, the default name assigned to the
first listing output is

.MAIN.

The first tab or space following the .TITLE directive is not
considered part of the listing output name or header text, although
subsequent tabs and spaces are significant.

If there is more than one .TITLE directive, the last .TITLE directive
in the program conveys the name of the listing output.

5.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second line of each of the following
assembly listing pages until the next occurrence of a .SBTTL
directive. For example:

.SBTTL CONDITIONAL ASSEMBLIES

The text

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly
listing pages.

During pass 1 of the assembly process, MACll automatically prints a
table of contents for the listing containing the line sequence number
and text of each .SBTTL directive in the program.

An example of the table of contents is shown in Figure 5-2. Note that
the first word of the subtitle heading is not limited to six
characters since it is not a module name.

5-5

MACRO VIA

5- 1
7- 1

12- 1
14- 1
16- 1
26- 1
36- 1
40- 1
41- 1
48- 1
50- 1
51- 1
59- 1
68- 1
72- 1
74- 1
75- 1
78- 1
79- 1
80- 1
88- 1
92- 1
93- 1
99- 1

103- 1
109- 1
114- 1
116- 1
135- 1

GENERAL ASSEMBLER DIRECTIVES

MACRO VIA
TABLE OF CONTENTS

SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
PARAMETERS
ROLL DEFINITIONS
PROGRAM INITIALIZATION
ASSEMBLER PROPER
STATEMENT PROCESSOR
ASSIGNMENT PROCESSOR
OP CODE PROCESSOR
EXPRESSION TO CODE-ROLL CONVERSIONS
CODE ROLL STORAGE
DIRECTIVES
DATA-GENERATING DIRECTIVES
CONDITIONALS
LISTING CONTROL
ENABL/ DSABL FUNCTIONS
CROSS REFERENCE HANDLERS
LISTING STUFF
KEYBOARD HANDLERS
OBJECT CODE HANDLERS
LISTING OUTPUT
I / O BUFFERS
EXPRESSION EVALUATOR
TERM EVALUATOR
SYMBOL/ CHARACTER HANDLERS
ROLL HANDLERS
REGISTER STORAGE
MACRO HANDLERS
FIN

Table of Contents text is taken from
directive. The associated numbers are
numbers of the .SBTTL directive.

the text of each .SBTTL
the page and line sequence

Figure 5-2
Assembly Listing Table of Contents

5-6

GENERAL ASSEMBLER DIRECTIVES

5.1.5 Page Ejection

There are several means of obtaining a page eject in a MACll assembly
listing:

1. After a line count of 58 lines, MACll automatically performs
a page eject to skip over page perforations on line printer
paper and to formulate terminal output into pages.

2. A form feed character used as a line terminator
only character on a line) causes a page eject.
macro definition a form feed character causes a
A page eject is not performed when the macro is

(or as the
Used within a

page eject.
invoked.

3. More commonly, the .PAGE directive is used within the source
code to perform a page eject at that point. The format of
this directive is

. PAGE

This directive takes no arguments and causes a skip to the
top of the next page.

Used within a macro definition, the .PAGE is ignored, but the
page eject is performed at each invocation of that macro.

5.2 FUNCTIONS: .ENABL AND .DSABL DIRECTIVES

Several functions are provided by MACll through the .ENABL and .DSABL
directives. These directives use 3-character symbolic arguments to
designate the desired function, and are of the forms:

where:

.ENABL arg

.DSABL arg

arg is one of the legal symbolic arguments defined below.

The following table describes the symbolic arguments and their
associated functions in the MACll language:

Symbolic
Argument

CDR

LC

LSB

Function

The statement .ENABL CDR causes source columns 73 and
greater to be treated as comment. This accommodates
sequence numbers in card columns 72-80.

Enabling of this function causes the Assembler to
accept lower case ASCII input instead of converting it
to upper case.

Enable or disable a local symbol block. While a local
symbol block is normally entered by encountering a new
symbolic label, .ENABL LSB forces a local symbol block
which is not terminated until a label following the
.DSABL LSB statement is encountered. The default case
is .DSABL LSB.

5-7

PNC

GENERAL ASSEMBLER DIRECTIVES

The statement .DSABL PNC inhibits binary output until
an .ENABL PNC is encountered. The default case is
.ENABL PNC.

An incorrect argument causes the directive containing it to be flagged
as an error.

5.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characters:

.BYTE

. WORD

"
.ASCII
.ASCIZ
.RAD50
tB
tD
to

These facilities are explained in the following Sections.

5.3.1 .BYTE

The .BYTE directive is used to generate successive bytes of data. The
directive is of the form:

.BYTE exp

.BYTE expl,exp2, ...

iWHICH STORES THE OCTAL EQUIVALENT
iOF THE EXPRESSION exp IN THE NEXT
iBYTE.

iWHICH STORES THE OCTAL EQUIVALENTS
iOF THE LIST OF EXPRESSIONS IN
iSUCCESSIVE BYTES.

where a legal expression must have an absolute value (or contain a
reference to an external symbol) and must result in eight bits or less
of data. The 16-bit value of the expression must have a high-order
byte (which is truncated) that is either all zeros or all ones. Each
operand expression is stored in a byte of the object program.
Multiple operands are separated by commas and stored in successive
bytes. For example:

SAM=5
.=410
.BYTE tD48,SAM i060 (OCTAL EQUIVALENT OF 48 DECIMAL)

iIS STORED IN LOCATION 410, 005 IS
iSTORED IN LOCATION 411.

If the high order byte of the expression equates to a value other than
o or -1, it is truncated to the low-order eight bits and flagged with
a T error code.

5-8

GENERAL ASSEMBLER DIRECTIVES

If an operand following the .BYTE directive is null, it is interpreted
as a zero. For example:

.=420

.BYTE "

5.3.2 .WORD

iZEROES ARE STORED IN BYTES 420,
421, AND 422.

The .WORD directive is used to generate successive words of data. The
directive is of the form:

.WORD exp

.WORD expl,exp2, ...

iWHICH STORES THE OCTAL EQUIVALENT
iOF THE EXPRESSION exp IN THE NEXT
iWORD

iWHICH STORES THE OCTAL EQUIVALENTS
iOF THE LIST OF EXPRESSIONS IN
iSUCCESSIVE WORDS.

where a legal expression must result in sixteen bits or less of data.
Each operand expression is stored in a word of the object program.
Multiple operands are separated by commas and stored in successive
words. For example:

SAL=O
.=500
.WORD 177535,.+4,SAL iSTORES 177535, 506, AND 0 IN

iWORDS 500, 502, AND 504.

If an expression equates to a value of more than sixteen bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero. For example:

.=500
Word ,5, iSTORES 0, 5, AND 0 IN LOCATIONS 500

i502, AND 504.

A blank operator field (any operator not recognized as a macro call,
op-code, directive or semicolon) is interpreted as an implicit .WORD
directive. Use of this convention is discouraged. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator.
For example:

.=440
LABEL: +MOV,LABEL

iTHE OP-CODE FOR MOV, WHICH IS 010000,
iIS STORED ON LOCATION 440.
;440 IS STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive. Therefore, if an instruction
mnemonic, macro call or assembler directive is misspelled, the .WORD
directive is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B

5-9

GENERAL ASSEMBLER DIRECTIVES

Two error codes result: Q occurs because an expression operator is
missing between MOR and A, and a U occurs if MOR is undefined. Two
words are then generated: one for MOR A and one for B.

5.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
word in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte. For example:

MOV #'A,RO

results in the following sixteen bits being moved into RO:

15 8 7 o

o 101

t
octal ASCII value of A

The' character is never followed by a carriage return, null, rubout,
line feed or form feed. (For another use of the' character, see
Section 5.3.6.)

STMNT:
GETSYM
BEQ
CMPB
BEQ
CMPB
SEQ

4$
@CHRPNT,#':
LABEL
@CHRPNT,#'=
ASGMT

iCOLON DELIMITS LABEL FIELD.

iEQUAL DELIMITS
iASSIGNMENT PARAMETER.

A double quote followed by two characters results in a word in which
the 7-bit ASCII representations of the two characters are placed. For
example:

MOV #"AB,RO

results in the following word being moved into RO:

15 8 7 o
102 101

f f
octal ASCII value of B octal ASCII value of A

5-10

GENERAL ASSEMBLER DIRECTIVES

The" character is never followed by a carriage return, null, rubout,
line feed or form feed. For example:

iDEVICE NAME TABLE

DEVNAM: .WORD "DF i RF DISK
.WORD "DK iRK DISK
. WORD "DP iRP DISK

DEVNKB: .WORD "KB iTTY KEYBOARD
. WORD "DT iDECTAPE
.WORD " LP iLINE PRINTER
.WORD "PR iPAPER TAPE READER
.WORD "PP iPAPER TAPE PUNCH
.WORD "CR iCARD READER
.WORD "MT iMAGTAPE
. WORD 0 iTABLE'S END

5 . 3 . 4 . ASC II

The .ASCII directive translates character strings
.ASCII equivalents for use in the source program .
. ASCII directive is as follows:

into their 7-bit
The format of the

where:

.ASCII

character
string

/ /

/ character string/

is a string of any acceptable printing ASCII
characters. The string may not include null
(blank) characters, rubout, carriage return,
line feed, vertical tab, or form feed.
Nonprinting characters can be expressed in
digits of the current radix and delimited by
angle brackets. (Any legal, defined
expression is allowed between angle
brackets.)

these are delimiting characters and may be
any printing characters other than i, < ,
and = characters and any character within the
string.

As an example:

A: .ASCII /HELLO/

. ASCII ABC/<15><12>/DEF/

. ASCII /<AB >/

iSTORES ASCII REPRESENTATION OF THE
iLETTERS H,E,L,L,O IN CONSECUTIVE
iBYTES .

iSTORES A,B,C,15,12,D,E,F IN
iCONSECUTIVE BYTES .

iSTORES <,A,B, >
iBYTES.

IN CONSECUTIVE

The i and = characters are not illegal delimiting characters, but are
pre-empted by their significance as a comment indicator and assignment

5-11

GENERAL ASSEMBLER DIRECTIVES

operator, respectively. For other than the first group,
are treated as beginning a comment field. For example:

semicolons

ASCII string
Example Generated

.ASCII ;ABC; / DEF/ A B C D E F

.ASCII / ABC / ;DEF; A B C

.ASCII / ABC/ =DEF= A B C D E F

.ASCII =DEF=

5.3.5 .ASCIZ

Notes

Acceptable, but not a recomm e nded
procedure.

; DEF; is treated as a comment and
ignored.

Acceptable, but not recommended
procedure.

The assignment

. ASCII=DEF

is performed
generated upon
second

and a Q-error
encountering

is
the

The .ASCIZ directive is equivalent to the .ASCII directive with a zero
byte automatically inserted as the final character of the string. For
example:

When a list or text string has been created with a .ASCIZ
directive, a search for the null character can determine the end
of the list. For example:

X:

MOV
MOV
MOVB
BNE

#HELLO,Rl
#LINBUF,R2
(Rl)+,(R2)+
X

HELLO: .ASCIZ <15 >< 12 >/MACll VIA/ <15> <12> ;INTRO MESSAGE

5.3.6 . RAD50

The .RAD 50 directive allows the user the capability to handle symbols
in Radix-50 coded form (this form is sometimes referred to as MOD40) .
Radix-50 form allows three characters to be packed into sixteen bits;
therefore, any 6-character symbol can be held in two words. The form
of the directive is:

.RAD50 / string/

5-12

where:

/ /

string

GENERAL ASSEMBLER DIRECTIVES

delimiters can be any printing characters
other than the =, < , and; characters.

is a list of the characters to be converted
(three characters per word) and which may
consist of the characters A through Z, 0
through 9, dollar ($), dot (.) and space ().
If there are fewer than three characters (or
if the last set is fewer than three
characters) they are considered to be
left-justified and trailing spaces are
assumed. Illegal nonprinting characters are
replaced with a? character and cause an I
error flag to be set. Illegal printing
characters set the Q error flag.

The trailing delimiter may be a carriage return, semicolon, or
matching delimiter. For example:

.RAD50

.RAD50

.RAD50

.RAD50

/ ABC
/ AB/
//
/ ABCD/

;PACK ABC INTO ONE WORD.
;PACK AB (SPACE) INTO ONE WORD.
;PACK 3 SPACES INTO ONE WORD.
;PACK ABC INTO FIRST WORD AND
;0 SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix-50 equivalent as indicated
in the following table:

Character

(space)
A-Z

$

0-9

Radix-50 Equivalent (octal)

o
1-32
33
34
36-47

Note that another character could be defined for code 35, which is
currently unused.

The Radix-50 equivalents for characters 1 through 3 (Cl, C2, C3) are
combined as follows:

Radix 50 value ((Cl*50)+C2)*50+C3

For example:

Radix-50 value of ABC is ((1*50)+2)*50+3 or 3223

See Appendix A for a table to quickly determine Radix-50 equivalents.

Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RAD50
statements whenever leaving the text string to insert special codes.
For example:

.ASCII <101> ;EQUIVALENT TO .ASCII/A/

. RAD 5 0 / AB / <3 5 > ;STORES 3255 IN NEXT WORD

5-13

GENERAL ASSEMBLER DIRECTIVES

CHRl=l
CHR2=2
CHR3=3

.RAD50<CHRl><CHR2><CHR3> iEQUIVALENT TO .RAD50/ABC/

5.4 RADIX CONTROL

5.4.1 .RADIX

Numbers used in a MACll source program are initially considered to be
octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX directive, of the form:

.RADIX n

where:

n is one of the acceptable radices.

The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (octal). For example:

.RADIX 10 iBEGINS SECTION OF CODE WITH DECIMAL RADIX

.RADIX iREVERTS TO OCTAL RADIX

In general, it is recommended that macro definitions not contain nor
rely on radix settings from the .RAOIX directive. The temporary radix
control characters should be used within a macro definition. (to, to,
and tB are described in the following Section.) A given radix is valid
throughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the user specify values using the
temporary radix controls.

5.4.2 Temporary Radix Control: to, to, and tB

Once the user has specified a radix for a section of code, or has
determined to use the default octal radix, he. may discover a number of
cases where an alternate radix is more convenient (particularly within
macro definitions). For example, the creation of a mask word might
best be done in the binary radix.

5-14

GENERAL ASSEMBLER DIRECTIVES

MACll has three unary operators to provide a single interpretation in
a given radix within another radix as follows:

tDx
tOx
tBx

(x is treated as being in decimal radix)
(x is treated as being in octal radix)
(x is treated as being in binary radix)

For example:

tD123
to 47
tB 00001101
to<A+3 >

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes. Where a term or
expression is to be interpreted in another radix, it should be
enclosed in angle brackets.

These numeric quantities may be used any place where a numeric value
is legal.

PAL-IIR contains a feature, which is maintained for compatibility in
MACll, allowing a temporary radix change from octal to decimal by
specifying a decimal radix number with a "decimal point". For
example:

100.
1376.

128.

(144 (8))
(2540(8))
(200 (8))

5.5 LOCATION COUNTER CONTROL

The four directives which control movement of the location counter are
.EVEN and .000 which move the counter a maximum of one byte, and .BLKB
and .BLKW which allow the user to specify blocks of a given number of
bytes or words to be skipped in the assembly.

5.5.1 .EVEN

The .EVEN directive ensures that the assembly location counter
contains an even memory address by adding one if the current address
is odd. If the assembly location counter is even, no action is taken.
Any operands following a .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ / THIS IS A TEST/

.EVEN iASSURES NEXT STATEMENT

iBEGINS ON A WORD BOUNDARY .

. WORD XYZ

5-15

GENERAL ASSEMBLER DIRECTIVES

5.5.2 .000

The .000 directive ensures that the assembly location counter is odd
by adding one if it is even. For example:

;CODE TO MOVE DATA FROM AN INPUT LINE
;TO A BUFFER

N=5

.000

.BYTE
BUFF: . BLKW

MOV
MOV
MOVB

AGAIN: MOVB

DONE:

LINE:

BEQ
DEC
BNE

CLRB

.ASCIZ

N*2
N

#BUFF,R2
#LINE,Rl
1(R2),RO
(Rl)+,(R2)+
DONE
RO
AGAIN

- (R2)

;BUFFER HAS 5 WORDS

;COUNT=2N BYTES
;RESERVE BUFFER OF N WORDS

;ADDRESS OF EMPTY BUFFER IN R2
;ADDRESS OF INPUT LINE IS IN Rl
;GET COUNT STORED IN BUFF-l IN RO
;MOVE BYTE FROM LINE INTO BUFFER
;WAS NULL CHARACTER SEEN?
;DECREMENT COUNT
;NOT = 0, GET NEXT CHARACTER

;OUT OF ROOM IN BUFFER, CLEAR LAST
;WORD

/ TEXT/

In this case, .000 is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT BUFF-2

BUFF

5.5.3 .BLKB and .BLKW

Blocks of
directives.
word blocks .

storage can be reserved using the .BLKB and .BLKW
.BLKB is used to reserve byte blocks and .BLKW reserves
The two directives are of the form:

. BLKB exp

.BLKW exp

5-16

where:

GENERAL ASSEMBLER DIRECTIVES

exp is the number of bytes or words to reserve. If no
argument is present, 1 is the assumed default value.
Any legal expression which is completely defined at
assembly time and produces an absolute number is legal.

For example:

1 000000 PASS: .BLKW
2 ;NEXT GROUP MUST STAY TOGETHER
3 000002 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR
4 000006 MODE:
5 000006 FLAGS: .BLKB 1 ;FLAG BITS
6 000007 SECTOR: .BLKB 1 ; SYMBOL/EXPRESSIONS TYPE
7 000010 VALUE: .BLKW 1 ;EXPRESSION VALUE
8 00012 RELLVL: .BLKW 1
9 .BLKW 2 ;END OF GROUPED DATA
10
11 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
12 00024 CLCFGS: .BLKB 1
13 00025 CLCSEC: .BLKB 1
14 00026 CLCLOC: .BLKW 1
15 00030 CLCMAX: .BLKW 1

The .BLKB directive has the same effect as

.=.+exp

but is easier to interpret in the context of source code.

5.6 TERMINATING DIRECTIVES

5.6.1 .END

The .END directive indicates the physical end of the source program.
The .END directive is of the form:

where:

.END exp

exp is an optional argument which, if present, indicates
the program entry point, i.e., the transfer address.

At the conclusion of the first assembly pass, upon encountering the
END statement, MACll prints:

END OF PASS 1

and attempts to reread the source file(s) to perform pass 2. If the
source file is on a disk, DECtape, or magtape device no further

5-17

GENERAL ASSEMBLER DIRECTIVES

operator action is necessary. If the source file is on paper tape an
lOPS 4 message is printed; the user is expected to reposition the
tape in the reader and type tR (for CONTINUE).

5.7 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives provide the programmer with the
capability to conditionally include or ignore blocks of source code in
the assembly process. This technique is used extensively to allow
several variations of a program to be generated from the source
program.

The general form of a conditional block is as follows:

where:

.IF cond,argument(s) ;START CONDITIONAL BLOCK
;RANGE OF CONDITIONAL
;BLOCK

.ENDC

cond

argument(s)

range

;END CONDITIONAL BLOCK

is a condition which must be met if the block
is to be included in the assembly. These
conditions are defined below.

are a function of the condition to be tested.

is the body of code which is included in the
assembly or ignored depending upon whether
the condition was met.

The following are the allowable conditions:

5-18

GENERAL ASSEMBLER DIRECTIVES

Conditions

POSITIVE COMPLEMENT ARGUMENTS ASSEMBLE BLOCK IF

EQ

GT

LT

OF

B

IDN

Z

G

NE

LE

GE

NDF

NB

DIF

NZ

L

expression

expression

expression

symbolic argument

macro-type argument

two macro-type
argument$ separated
by a comma

expression

expression

NOTE

expression=O (or 1"0)

expression>O (or <0)

expression<O (or ~O)

symbol is defined (or
undefined)

argument is a blank (or
not blank)

arguments identical
(or different)

same as EQ/NE

same as GT/LE

A macro-type argument is
angle brackets or within
construction (as described
6.3). For example:

enclosed in
an up-arrow
in Section

<A,B,C>
~/124/

For example:

.IF EQ ALPHA+l iASSEMBLE IF ALPHA+l=O

.ENDC

Within the conditions DF and NDF the following two operators are
allowed to group symbolic arguments:

& logical AND operator
logical inclusive OR operator

For example:

.IF DF SYMI & SYM2

.ENDC

assembles if both SYMI and SYM2 are defined.

5-19

GENERAL ASSEMBLER DIRECTIVES

5.7.1 Subconditionals

Subconditionals may be placed within conditional blocks to indicate:

1. assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
be assembled.

2. assembly of a non-contiguous body
conditional block depending upon
conditional test to enter the block.

of code within
the result of

the
the

3. unconditional assembly of a body of code within a conditional
block.

There are three subconditional directives, as follows:

Subcond i tional

.IFF

.IFT

.IFTF

Function

The code following this statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditional
block was false.

The code following this statement up to the next
subconditional or end of the conditional block is
included in the program providing the value of the
condition tested upon entering the conditional
block was true.

The code following this statement up to the next
subconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the
conditional block.

The implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer level conditional blocks. Subconditionals are
ignored within nested, unsatisfied condition blocks. For example:

.IF OF

.IFF

. IFT

. IFTF

. ENDC

SYM iASSEMBLE BLOCK IF SYM IS DEFINED

iASSEMBLE THE FOLLOWING CODE ONLY IF
iSYM IS UNDEFINED .

iASSEMBLE THE FOLLOWING CODE ONLY IF
iSYM IS DEFINED .

iASSEMBLE THE FOLLOWING CODE
iUNCONDITIONALLY .

5-20

However,

.IF OF

.IF OF

.IFF

.IFT

.ENDC

.IF OF X

.IF OF Y

.IFF

• 1FT

.ENDC

GENERAL ASSEMBLER DIRECTIVES

x
Y

iASSEMBLY TESTS FALSE
iTESTS FALSE
iNESTED CONDITIONAL
iIGNORED

iNOT SEEN

iTESTS TRUE
iTESTS FALSE
iIS ASSEMBLED

iNOT ASSEMBLED

5.7.2 Immediate Conditionals

An immediate conditional directive is a means of writing a I-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the line containing the
conditional directive. Immediate conditions are of the form:

.IIF cond, arg, statement

where:

cond

arg

statement

For example:

.!IF OF

is one of the legal conditions defined for
conditional blocks in Section 5.7.

is the argument associated with the condition
specifiedi that is, either an expression,
symbol, or macro-type argument, as described
in Section 5.7.

is the statement to be executed if the
condition is met.

FOO,BEQ ALPHA

5-21

GENERAL ASSEMBLER DIRECTIVES

this statement generates the code

BEQ ALPHA

if the symbol Faa is defined.

A label must not be placed in the label field of the .IIF statement.
Any necessary labels may be placed on the previous line:

LABEL:
.IIF OF FPP,BEQ,ALPHA

or included as part of the conditional statement:

• IIF OF FOO,LABEL: BEQ ALPHA

5.7.3 PAL-IIR Conditional Assembly Directives

In order to maintain compatibility with programs developed under
PAL-IIR, the following conditionals remain permissible under MACll.
It is advisable that further programs be developed using the format
for MACll conditional assembly directives.

Directive Arguments Assemble Block if

.IFZ or .IFEQ expression expression=O

.IFNZ or .IFNE expression expression=O

.IFL or . IFLT expression expression<O

.IFG or .IFGT expression expression >O

. IFLE expression expression < or =0

.IFGE expression expression > or =0

.IFDF logical expression expression is true (defined)

.IFNDF logical expression expression is false
(undefined)

The rules governing the usage of these directives are now the same as
for the MACll conditional assembly directives previously described.
Conditional assembly blocks must end with the .ENDC directive and are
limited to a nesting depth of 16(10) levels (instead of the 127(10)
levels allowed under PAL-llR).

5-22

CHAPTER 6

MACRO DIRECTIVES

6.1 MACRO DEFINITION

It is often convenient in assembly language programming to generate a
recurring coding sequence with a single statement. In order to do
this, the desired coding sequence is first defined with dummy
arguments as a macro. Once a macro has been defined, a single
statement calling the macro by name with a list of real arguments
(replacing the corresponding dummy arguments in the definition)
generates the correct sequence or expansion.

6.1.1 . MACRO

The first statement of a macro definition must be a .MACRO directive.
The .MACRO directive is of the form:

where:

.MACRO name, dummy argument list

name

dummy
argument
list

is the name of the macro. This na~e is any legal
symbol. The name chosen may be used as a label
elsewhere in the program.

represents any legal separator (generally, a comma
or space).

zero, one, or more legal symbols which may appear
anywhere in the body of the macro definition, even
as a label. These symbols can be used elsewhere
in the user program with no conflicts of
definition. Where more than one dummy argument is
used, they are separated by any legal separator
(generally a comma).

A comment may follow the dummy argument list in a statement containing
a .MACRO directive. For example:

.MACRO ABS A,B ;DEFINE MACRO ABS WITH TWO ARGUMENTS

A label must not appear on a .MACRO statement. Labels are sometimes
used on macro calls, but serve no function when attached to .MACRO
statements.

6-1

MACRO DIRECTIVES

6.1.2 .ENDM

The final statement of every macro definition must be an .ENDM
directive of the form:

where:

.ENDM name

name is an optional argument, being the name of the macro
terminated by the statement.

For example:

.ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise, the statement is
flagged and processing continues. Specification of the macro name in
the .ENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

.MACRO TYPMSG MESSGE iTYPE A MESSAGE
JSR R5,TYPMSG
.WORD MESSGE
.ENDM

6.1.3 .MEXIT

In order to implement alternate exit points from a macro (particularly
nested macros), the .MEXIT directive is provided. .MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the complications of conditional nesting and
alternate paths. For example:

.MACRO ALTR N,A,B

.IF EQ,N iSTART CONDITIONAL BLOCK

.MEXIT

.ENDC

.ENDM

iEXIT FROM MACRO DURING CONDITIONAL BLOCK
iEND CONDITIONAL BLOCK

iNORMAL END OF MACRO

In an assembly where N=O, the .MEXIT directive terminates the macro
expansion.

6-2

MACRO DIRECTIVES

Where macros are nested, a .MEXIT causes an exit to the next higher
level. A .MEXIT encountered outside a macro definition is flagged as
an error.

6.1.4 MACRO Definition Formatting

A form feed character used as a line terminator on a MACll source
statement (or as the only character on a line) causes a page eject.
Used within a macro definition, a form feed character causes a page
eject. A page eject is not performed when the macro is invoked.

Used within a macro definition, the .PAGE directive is ignored, but a
page eject is performed at invocation of that macro.

6.2 MACRO CALLS

A macro must be defined prior to its first reference. Macro calls are
of the general form:

where:

label: name, real arguments

label

name

real
arguments

represents an optional statement label.

represents the name of the macro specified in
the .MACRO directive preceding the macro
definition.

are those symbols, expressions, and values
which replace the dummy arguments in the
. MACRO statement. Where more than one
argument is used, they are separated by any
legal separator.

Where a macro name is the same as a user label, the appearance of the
symbol in the operation field designates a macro call, and the
occurrence of the symbol in the operand field designates a label
reference. For example:

ABS: MOV @RO,Rl ;ABS IS USED AS A LABEL

BR ABS ;ABS IS CONSIDERED A LABEL

ABS #4,ENT,LAR ;CALL MACRO ABS WITH 3 ARGUMENTS

Arguments to the macro call are treated as character strings whose
usage is determined by the macro definition.

6-3

MACRO DIRECTIVES

6.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments within a macro definition or macro call are separated from
other arguments by any of the separating characters described in
Section 3.1.1. For example:

. MACRO REN A,B,C

REN ALPHA,BETA,<Cl,C2>

Arguments which contain separating characters are enclosed in paired
angle brackets. An up-arrow construction is provided to allow angle
brackets to be passed as arguments. Bracketed arguments are seldom
used in a macro definition, but are more likely in a macro call. For
example:

REN <MOV X,Y>#44,WEV

This call would cause the entire statement:

MOV X,Y

to replace all occurrences of the symbol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity until their use in the
macro expansion.

The up-arrow construction could have been used in the above macro call
as follows:

REN t / MOV X,Y/ ,#44,WEV

which is equivalent to

REN <MOV X,Y>,#44,WEV

Since spaces are ignored preceding an argument, they can be used to
increase legibility of bracketed constructions. The form:

REN #44,WEVt/MOV X,Y/

however, contains only two arguments: #44 and WEV t/MOV X,Y/ (see
Section 3.1.1) because t is a unary operator.

6.3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one macro
includes a call to another macro, causes one set of angle brackets to
be removed from an argument with each nesting level. The depth of
nesting allowed is dependent upon the amount of core space used by the
program. To pass an argument containing legal argument delimiters to
nested macros, the argument should be enclosed in one set of angle
brackets for each level of nesting, as shown below.

. MACRO
LEVEL2
LEVEL2

LEVELl
DUMI
DUM2

DUMl,DUM2

6-4

MACRO DIRECTIVES

.ENDM

. MACRO LEVEL2 DUM3
DUM3
ADD #10,RO
MOV RO, (Rl) +
.ENDM

A call to the LEVELl macro:

LEVELl « MOV X,RO»,«CLR RO »

causes the following expansion:

MOV X,RO
ADD #10,RO
MOV RO, (Rl) +
CLR RO
ADD #10, RO
MOV RO, (Rl) +

where macro definitions are nested (that is,
entirely contained within the definition of
definition is not defined as a callable macro
has been called and expanded. For example:

.MACRO LVI A,B

.MACRO LV2 A

.ENDM

.ENDM

a macro definition is
another macro) the inner
until the outer macro

The LV2 macro cannot be called by name until after the first call to
the LVI macro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

6.3.2 Special Characters

Arguments may include special characters without enclosing the
argument in a bracket construction if that argument does not contain
spaces, tabs, semi-colons, or commas. For example:

.MACRO PUSH ARG
MOV AR.G, - (SP)
.ENDM

PUSH X+3(%2)

generates the following code:

MOV X+3(%2) ,-(SP)

6-5

MACRO DIRECTIVES

6.3.3 Numeric Arguments Passed as Symbols

When passing macro arguments, a useful capability is to pass a symbol
which can be treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a number in
the current radix. The ASCII characters representing the number are
inserted in the macro expansionj their functions are defined in
context. For example:

INC A,B
A, \ B

CNT A,B
A'B:

8=0
.MACRO
CNT
B=B+l
.ENDM
.MACRO
.WORD
.ENDM

JSEE SEC.6.3.6 FOR EXPLANATION OF 'B.

INC X,C

The macro call would expand to:

XO: .WORD

A subsequent identical call to the same macro would generate:

Xl: .WORD

and so on for later calls. The two macros are necessary because the
dummy value of B cannot be updated in the CNT macro. In the CNT
macro, the number passed is treated as a string argument. (Where the
value of the real argument is 0, a single 0 character is passed to the
macro expansion.)

The number being passed can also be used to make source listings
somewhat clearer. For example, versions of programs created through
conditional assembly of a single source can identify themselves as
follows:

.MACRO lOT SYM

.ASCII /SYH/

.ENDM

. MACRO OUT ARG
lOT OOSA'ARG
.ENDM

OUT \ ID

The above macro call expands to:

.ASCII /OOSAXX/

jASSUME THAT THE SYMBOL 10 TAKES
iON A UNIQUE TWO DIGIT VALUE FOR
jEACH POSSIBLE CONDITIONAL ASSEMBLY
JOF THE PROGRAM

jWHERE OOSA IS THE UPDATE
jVERSION OF THE PROGRAM
jAND ARG INDICATES THE
jCONDITIONAL ASSEMBLY VERSION.

where XX is the conditional value of 10.

Two macros are necessary since the text delimiting characters in the
.ASCII statement would inhibit the concatenation of a dummy argument.

6-6

MACRO DIRECTIVES

6.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IFB and .IFNB can be used within the macro to detect
unnecessary arguments.

A macro can be defined with no arguments.

6.3.5 Automatically Created Symbols

MACll can be made to create symbols of the
decimal integer number such that 64<n <127.
local symbols between 64$ and 127$. (For
symbols, see Section 3.5.) Such local
Assembler in numerical order; i.e.:

64$
65$

126$
127$

form n$ where n
Created symbols are

a description of
symbols are created

is a
always
local

by the

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must otherwise be explicitly stated
as an argument with each macro call or the same label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

The range of these local symbols extends between two explicit labels.
Each new explicit label causes a new local symbol block to be
initialized.

The macro processor creates a local symbol on each call
whose definition contains a dummy argument
the? character. For example:

. MACRO ALPHA A, ?B
TST A
BEQ B
ADD #5,A

B:
.ENDM

of a macro
preceded by

Local symbols are generated onl y where the real argument of the macro
call is either null or missing. If a real argument is specified in
the macro call, the generation of a local symbol is inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above.

6-7

MACRO DIRECTIVES

GENERATE A LOCAL SYMBOL FOR MISSING ARGUMENT:

64$:

ALPHA
TST
BEQ
ADD

%1
%1
64$

#5,%1

DO NOT CREATE A LOCAL SYMBOL:

XYZ:

ALPHA
TST
BEQ
ADD

%2,XYZ
%2
XYZ
#5,%2

These Assembler-generated symbols are restricted to the first sixteen
(decimal) arguments of a macro definition.

6.3.6 Concatenation

The apostrophe or single quote character (') operates as a legal
separating character in macro definitions. An' character which
precedes and/or follows a dummy argument in a macro definition is
removed and the substitution of the real argument occurs at that
point. For example:

A'B:
.MACRO
.ASCIZ
.WORD
.ENDM

DEF A,B,C
/C/

"A" 'B

When this macro is called:

DEF X,Y,<MACll>

it expands as follows:

XY: .ASCIZ
.WORD

/MACll/
'X'y

In the macro definition, the scan terminates upon finding the
first' character. Since A is a dummy argument, the' is removed.
The scan resumes with B, notes B as another dummy argument and
concatenates the two dummy arguments. The third dummy argument is
noted as going into the operand of the .ASCIZ directive. On the next
line (this example is purely for illustrative purposes) the argument
to .WORD is seen as follows: The scan begins with a ' character.
Since it is neither preceded nor followed by a dummy argument,
the ' character remains in the macro definition. The scan then
encounters the second' character which is followed by a dummy
argument and is discarded. The scan of the argument A terminated upon
encountering the second ' which is also discarded since it follows a
dummy argument. The next ' character is neither preceded nor followed
by a dummy argument and remains in the macro expansion. The

6-8

MACRO DIRECTIVES

last 'character is followed by another dummy argument and
were necessary

is
to discarded. (Note that the five' characters

generate two' characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

6.4 .NARG, .NCHR, AND .NTYPE

These three directives allow the user to obtain the number of
arguments in a macro call (.NARG), the number of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE). Use
of these directives permits selective modifications of a macro
depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call, and is of the form:

where:

label: .NARG symbol

label is an optional statement label

symbol is any legal symbol whose value is equated to the
number of arguments in the macro call currently
being expanded. The symbol can be used by itself or
in expressions.

This directive can occur only within a macro definition.

The .NCHR directive enables a program to determine the number of
characters in a character string, and is of the form:

where:

label: .NCHR symbol, <character string>

label

symbol

<character
string >

is an optional statement label.

is any legal symbol which is equated to the
number of characters in the specified character
string. The symbol is separated from the
character string argument by any legal
separator.

is a string of printing characters which should
only be enclosed in angle brackets if it
contains a legal separator. A semi-colon also
terminates the character string.

This directive can occur anywhere in a MACII program.

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label: .NTYPE symbol, arg

6-9

where:

MACRO DIRECTIVES

label is an optional statement label.

symbol is any legal symbol, the low-order 6-bits of which
are equated to the 6-bit addressing mode of the
argument. The symbol is separated from the argument
by a legal separator. This symbol can be used by
itself or in expressions.

arg is any legal macro argument (dummy argument)
defined in Section 6.3.

as

This directive can occur only within a macro definition.
of .NTYPE usage in a macro definition is shown below:

An example

.MACRO SAVE

.NTYPE SYM,ARG

.IF EQ,SYM&70
MOV ARG,TEMP
.IFF
MOV #ARG,TEMP
.ENDC
.ENDM

ARG

;REGISTER MODE

;NON-REGISTER MODE

6.5 .ERROR and .PRINT

The .ERROR directive is used to output messages to the command output
device during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
.ERROR directive is as follows:

label:

where:

label

expr

text

.ERROR expr;text

is an optional statement label.

is an optional legal expression whose value is
output to the command device when the .ERROR
directive is encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output.

is the string to be output to the command device.
The text string is terminated by a line
terminator.

Upon encountering a .ERROR directive anywhere in a MACll program, the
Assembler outputs a single line containing:

1. the sequence number of the .ERROR directive line,
2. the current value of the location counter,
3. the value of the expression if one is specified, and
4. the text string specified.

6-10

MACRO DIRECTIVES

For example:

.ERROR A;UNACCEPTABLE MACRO ARGUMENT

causes a line similar to the following to be output:

512 5642 000076 ;UNACCEPTABLE MACRO ARGUMENT

This message is being used to indicate an inability of the subject
macro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 70) with the stack pointer (%6) used as
the index register.

The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it is not
flagged with a P error code.

6.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

An indefinite repeat block is a structure very similar to a macro
definition. An indefinite repeat is essentially a macro definition
which has only one dummy argument and is expanded once for every real
argument supplied. An indefinite repeat block is coded in-line with
its expansion rather than being referenced by name as a macro is
referenced. An indefinite repeat block is of the form:

label: .IRP arg,<real arguments>

(range of the indefinite repeat)

.ENDM

where:

label

arg

<real argument>

range

is an optional statement label. A label may
not appear on any .IRP statement within
another macro definition, repeat range or
indefinite repeat range, or on any .ENDM
statement.

is a dummy argument which is successively
replaced with the real arguments in the .IRP
statement.

is a list of arguments to be used in the
expansion of the indefinite repeat range and
enclosed in angle brackets. Each real
argument is a string of zero or more
characters or a list of real arguments
(enclosed in angle brackets). The real
arguments are separated by commas.

is the block of code to be repeated once for
each real argument in the list. The range

6-11

MACRO DIRECTIVES

may contain macro definitions, repeat ranges,
or other indefinite repeat ranges. Note that
only created symbols should be used as labels
within an indefinite repeat range.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block). Indefinite repeat arguments
f o llow the same rules as macro arguments.

1 .TITLE IRPTST
2 .LIST MD,MC,ME

000000 RO= % 00
000001 Rl= % 01
000002 R2= % 02
000003 R3=% 03
000004 R4= % 04
000005 R5= % 05
000006 R6= % 06
000007 R7= % 07
000006 SP= % 06
000007 PC= % 07
177776 PSW= 0177776
177570 SWR= 0177570

3 000000 012/00 MOV #TABLE,RO
000050

4
5 .IRP X, (A,B,C,D,E,F >
6
7 MOV X, (RO) +
8
9 .ENDM

00004 016720 MOV A, (RO) +
00003 2

00010 016720 MOV B,(RO)+
000030

00014 016720 MOV c, (RO) +
000026

00020 016720 MOV 0, (RO) +
000024

00024 016720 MOV E, (RO) +
000022

00030 016720 MOV F, (RO) +
000020

12
13 .IRPC X,ABCDEF

Figure 6-1
.IRP and IRPC Example

6-12

14
15
16
17

00034 101

00035 102

00036 103

00037 104

00040 105

00041 106

18
19
20 00042 041101
21 00044 041502
22 00046 042103
23 00050 042504
24 00052 043105
25 00054 043506
26 00056
27
28 000001

MACRO DIRECTIVES

.ASCII Ixl

.ENDM

.ASCII IAI

.ASCII I BI

.ASCII ICI

.ASCII IDI

.ASCII lEI

.ASCII I FI

A: .WORD "AB
B: .WORD "BC
C: .WORD "CD
D: .WORD "DE
E: .WORD liEF
F: . WORD "FG
TABLE: .BLKW 6

.END

Figure 6-1 (Cont.)
.IRP and .IRPC Example

A second type of indefinite repeat block is available which handles
character substitution rather than argument substitution. The .IRPC
directive is used as follows:

label: .IRPC arg,string

(range of indefinite repeat)

.ENDM

On each iteration of the indefinite repeat range, the dummy argument
(arg) assumes the value of each successive character in the string.
Terminators for the string are: space, comma, tab, carriage return,
line feed, and semi-colon.

6.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate a block of code a number of
times in-line with other source code. This is performed by creating a

6-13

MACRO DIRECTIVES

repeat block of the form:

label:

where:

label

expr

range

.REPT expr

(range of repeat block)

.ENDM JOR .ENDR

is an optional statement
directive may not have
occurring within another
repeat block, or macro
label associated with it.

label. The .ENDR or .ENDM
a label. A .REPT statement
repeat block, indefinite
definition may not have a

is any legal expression controlling the number of
times the block of code is assembled. Where expr <O,
the range of the repeat block is not assembled.

is the block of code to be repeated expr number of
times. The range may contain macro definitions,
indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a
statement. The .ENDR
previous assemblers.

repeat
statement

block can be an .ENDM or .ENDR
is provided for compatibility with

The .MEXIT statement is also legal within the range of a repeat block.

6-14

CHAPTER 7

OPERATING PROCEDURES

This MACll Assembler assembles one ASCII source file containing MACll
statements at a time into a single absolute binary output file. The
output of the Assembler consists of an absolute binary file on a paper
tape, and an assembly listing followed by the symbol table listing on
the device assigned to .DAT-12.

7.1 LOADING MACll

MACll is loaded under VXM/DOS by typing:

i MACll (followed by a carriage return or altmode)

(Characters printed by the system are underlined to differentiate them
from characters pr inted by the user.) The Assembler responds by
identifying itself and its version number, followed by a > character
to indicate readiness to accept a command input string:

HACll XVM Vnxnnn
~

7.2 COMMAND INPUT STRING

In response to the > printed by the Assembler, the user types the
switch options followed by the input filename; the switch options and
the filename are separated by a '+' or underbar. Command input can be
terminated by a carriage return to restart MACll, or by an altmode to
return to the monitor at the end of assembly.

where:

>SW+FILNAM

sw is the switch option(s); can
assembly with no output,) or 'B'
or 'L' (for listing) or both.

be null (for an
(for binary output)

FILNAM is the input filename from .DAT -11. Default
extension is 'SRC'. The filename can consist of up
to six characters followed by a spacers) and not
more than a 3-character extension (additional
characters cause the message 'NAME ERROR/TOO LONG'
to be printed on the command input device). All of

7-1

Examples:

.?+FILNAM ..}

OPERATING PROCEDURES

the legal printing characters can be used in any
order. The first non-space character to be typed
after the first left-arrow (+) or underbar is
recognized as the first character of the filename.
Similarly, the first non-space character after the
filename (other than carriage return or altmode) is
recognized as the first character of the extension.

assembly with no output of a file called
'filnam SRC'; restart MACll

.?+FILNAM EXT..} assembly with no output of a file called
'FILNAM EXT'; restart MACll .

.?B+FILNAM EXT (ALT) assemble 'FILNAM EXT' with an absolute binary
output to paper tape; return control to the
monitor at the end of the assembly.

~L+FILNAM EXT (ALT) assemble 'FILNAM EXT' with a listing output
to .DAT -12; return to the monitor.

>LB+Xl Y2 E~~.J assemble 'XIY2 EOO with an absolute binary
output to paper tape and a listing output to
.DAT -12; restart MACll.

If an error is made in typing the command string, typing the RUBOUT
key erases the immediately-preceding character. Repeated typing of
the RUBOUT key erases one character for each RUBOUT up to the
beginning of the line. Typing CTRL/U erases the entire line. Both
can only be used if the command has not been terminated by a carriage
return or altmode.

A syntactical error detected in the command string causes the
Assembler to print a? character. The Assembler then reprints
the> character and waits for a new command string to be entered. If
the input file is not found or the name and / or the extension is
illegal, the message:

NAME ERROR/TOO LONG

is printed.

7.3 PAPER TAPE SOURCES

If the source file is on disk, DECtape or magtape, no operator
intervention is necessary at the end of Pass 1. If, however, it is on
tape, an IOPS4 message will be printed on the console device at the
end of Pass 1; the operator must reposition the tape in the reader
and type tR to continue.

7-2

APPENDIX A

MACll CHARACTER SETS

A.l ASCII CHARACTER SET

EVEN
PARITY
BIT

o
1

1

o

1

o

o
1
1

o
o

1
o

1

1

o

1
o

o

1

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

022

023

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ

ACK
BEL
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DCl

DC2

DC3

REMARKS

NULL, TAPE FEED, CONTROL/SHIFT/P.
START OF HEADING: ALSO SOM, START
OF MESSAGE, CONTROL/A.
START OF TEXT; ALSO EOA, END OF
ADDRESS, CONTROL/B.
END OF TEXT; ALSO EOM, END OF
MESSAGE, CONTROL/C.
END OF TRANSMISSION (END); SHUTS
OFF TWX MACHINES, CONTROL/D.
ENQUIRY (ENQRY); ALSO WRU,
CONTROL/E.
ACKNOWLEDGE; ALSO RU, CONTROL/F
RINGS THE BELL. CONTROL/G.
BACKSPACE; ALSO FEO, FORMAT
EFFECTOR. BACKSPACES SOME
MACHINES. CONTROL/H.
HORIZONTAL TAB. CONTROL/I.
LINE FEED OR LINE SPACE (NEW LINE) ;
ADVANCES PAPER TO NEXT LINE,
DUPLICATED BY CONTROL/J.
VERTICAL TAB (VTAB). CONTROL/K.
FORM FEED TO TOP OF NEXT PAGE
(PAGE). CONTROL/L.
CARRIAGE RETURN TO BEGINNING OF
LINE. DUPLICATED BY CONTROL/M.
SHIFT OUT; CHANGES RIBBON COLOR TO
RED. CONTROL/N.
SHIFT IN; CHANGES RIBBON COLOR TO
BLACK. CONTROL/O.
DATA LINK ESCAPE. CONTROL/B (DCO).
DEVICE CONTROL 1, TURNS TRANSMITTER
(READER) ON, CONTROL/Q (X ON) .
DEVICE CONTROL 2, TURNS PUNCH OR
AUXILIARY ON. CONTROL/R (TAPE,
AUX ON) .
DEVICE CONTROL 3, TURNS TRANSMITTER
(READER) OFF, CONTROL/S (X OFF) .

A-I

MACll CHARACTER SETS

0 024 DC4 DEVICE CONTROL 4, TURNS PUNCH OR
AUXILIARY OFF. CONTROL/ T (AUX OFF) .

1 025 NAK NEGATIVE ACKNOWLEDGE; ALSO ERR,
ERROR. CONTROL/U.

1 026 SYN SYNCHRONOUS FILE (SYNC) . CONTROL/V.
0 027 ETB END OF TRANSMISSION BLOCK; ALSO

LEM, LOGICAL END OF MEDIUM.
CONTROL/ W.

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

0 030 CAN CANCEL (CANCL) . CONTROL/X.
1 031 EM END OF MEDIUM. CONTROL/ Yo
1 032 SUB SUBSTITUTE. CONTROL/ Z.
1 033 ESC ESCAPE. CONTROL/SHIFT/K.
1 034 FS FILE SEPARATOR. CONTROL/SHIFT/L.
0 035 GS GROUP SEPARATOR. CONTROL/SHIFT/M.
0 036 RS RECORD SEPARATOR. CONTROL/ SHIFT/ N.
1 037 US UNIT SEPARATOR. CONTROL/ SHIFT/ O.
1 040 SP SPACE.
0 041
0 042
1 043 #
0 044 $
1 045 %
1 046 &
0 047 ACCENT ACUTE OR APOSTROPHE.
0 050 (
1 051)
1 052 *
0 053 +
1 054
0 055
0 056
1 057 /
0 060 0
1 061 1
1 062 2
0 063 3
1 064 4
0 065 5
0 066 6
1 067 7
1 070 8
0 071 9
0 072
1 073 ;
0 074 <
1 075
1 076 >
0 077 ?
1 100 @
0 101 A
0 102 B
1 103 C
0 104 D
1 105 E
1 106 F
0 107 G

A-2

MACll CHARACTER SETS

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

0 110 H
1 III I
1 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 P
1 121 Q
1 122 R
0 123 S
1 124 T
0 125 U
0 126 V
1 127 W
1 130 X
0 131 Y
0 132 Z
1 133 [SHIFT/K.
0 134 \ SHIFT/L.
1 135 1 SHIFT/M.
1 136 t
0 137 +-

0 140 ACCENT GRAVE.

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 9
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 rn
1 156 n
0 157 0
1 160 P
0 161 g
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 171 y
1 172 z

0 173
1 174
0 175 THIS CODE GENERATED BY ALTMODE.
0 176 THIS CODE GENERATED BY PREFIX KEY

(IF PRESENT).
1 177 DEL DELETE, RUBOUT.

A-3

MAC 11 CHARACTER SETS

A.2 RADIX-50 CHARACTER SET

ASCII Octal Radix-50
Character Equivalent Equivalent

space 40 0
A-Z 101 - 132 1 - 32

$ 44 33
56 34

unused 35
0 = 9 60 = 71 36 = 47

The maximum Radix-50 value is, thus,

47*50(2) + 47*50 + 47 = 174777

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic
performed in octal) :

X 113000
2 002400
B 000002

X2B 115402

MACll CHARACTER SETS

Translation of ASCII Character Set
to Radix-50 Equivalents

Single Char.
or Second Third

First Char. Character Character

A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
0 014400 0 000240 0 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027

A-4

MACll CHARACTER SETS

Single Char.
or

First Char. Character Character

X 113000 X 001700 X 000030
y 116100 y 001750 y 000031
Z 121200 Z 002020 z 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034

unused 132500 unused 002210 unused 000035
0 135600 0 002260 a 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

APPENDIX B

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

B.l SPECIAL CHARACTERS

Character

form feed

line feed

carriage return

vertical tab

%

tab

space

@

, (comma)

+

*

Function

Source line terminator

Source line terminator

Formatting character

Source line terminator

Label terminator

Direct assignment indicator

Register term indicator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminal register indicator

Operand field separator

Comment field indicator

Arithmetic addition operator or
auto increment indicator

Arithmetic subtraction operator or
autodecrement indicator

Arithmetic multiplication operator

B-1

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Character Function

/ Arithmetic division operator

& Logical AND operator

Logical OR operator

" Double ASCII character indicator

(apostrophe) Single ASCII line indicator

Assembly location counter

< Initial argument indicator

> Terminal argument indicator

t Universal unary operator
Argument indicator

\ MACRO numeric argument indicator

B.2 ADDRESS MODE SYNTAX

n is an integer between a and 7 representing a register. R is a
register expression, E is an expression, ER is either a register
expression or an expression in the range a to 7.

Format

R

@R or (ER)

(ER)+

@(ER)+

- (ER)

@- (ER)

Address
Mode Name

Register

Deferred
Register

Autoincrement

Deferred
Autoincrement

Autodecrement

Deferred
Autodecrement

Address
Mode Number

On

In

2n

3n

4n

5n

B-2

Meaning

Register
operand.

R contains the
R is a register

expression.

Register R contains the
operand address.

The contents of
specified by
incremented after
as the address of

the register
ER are

being used
the operand.

ER contains the pointer to the
address of the operand. ER is
incremented after use.

The contents of register ER
are decremented before being
used as the address of the
operand.

The contents of register ER
are decremented before being
used as the pointer to the
address of the operand.

/

MACH ASSEMBLY LANGUAGE AND ASSEMBLER

Address Address
Format Mode Name Mode Number Meaning

E (ER) Index 6n E plus the contents of the
register specified, ER, is the
address of the operand.

@E(ER) Deferred Index 7n E added to ER gives the
pointer to the address of the
operand.

#E Immediate 27 E is the operand.

@#E Absolute 37 E is the address of the
operand.

E Relative 67 E is the address of the
operand.

@E Deferred 77 E is the pointer to the add-
Relative ress of the operand.

B.3 INSTRUCTIONS

The instructions which follow are grouped according to the operands
they take and the bit patterns of their op-codes.

In the instruction-type format specification, the following symbols
are used:

OP
R
E
ER
A

Instruction mnemonic
Register expression
Expression
Register expression or expression O<ER<7
General address specification

In the representation of op-codes, the following symbols are used:

SS

DD

xx

R

Source operand specified by a 6-bit address mode.

Destination operand specified by a 6-bit address
mode.

8-bit offset to a location (branch instructions).

Integer between 0 and 7 representing a general
register.

Symbols used in the description of instruction operands are:

SE
DE
I I
()

....

Source Effective Address
Destination Effective address
Absolute value of
Contents of
Becomes

The condition codes in the processor status word (PS) are affected by
the instructions. These condition codes are represented as follows:

N Negative bit: set if the result is negative

Z Zero bit: set if the result is zero

8-3

MACII ASSEMBLY LANGUAGE AND ASSEMBLER

V oVerflow bit: set if the operation caused an overflow

C Carry bit: set if the operation caused a carry.

In the representation of the instruction's effect on the condition
codes, the following symbols are used:

*

o
1

Conditionally set
Not affected
Cleared
Set

To set conditionally means to use the instruction's result to
determine the state of the code (see the PDP-II Processor Handbook).

Logical operations are represented by the following symbols:

Inclusive OR
Exclusive OR

& AND
(used over a symbol) NOT (i.e., lIs complement)

B.3.1 Double-Operand Instructions

Instruction type format: Op A,A

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N Z V

OlSSDD MOV MOVe (SE) (DE) * * 0
llSSDD MOVB MOVe Byte

02SSDD CMP CoMPare (SE)-(DE) * * *
12SSDD CMPB CoMPare Byte

03SSDD BIT BIt Test (SE)&(DE) * * 0
13SSDD BITB BIt Test Byte

04SSDD BIC BIt Clear (SE)&(DE)~DE * * 0
14SSDD BICB BIt Clear Byte

05SSDD BIS BIt Set (SE) ! (DE)~DE * * 0
15SSDD BISB BIt Set Byte

06SSDD ADD ADD (SE)+(DE)~DE * * *
16SSDD SUB SUBtract (DE)-(SE)~ E * * *

B.3.2 Single-Operand Instructions

Instruction-type format: Op A

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N Z V

005000 CLR CLear 0 DE 0 1 0
105000 CLRB CLear Byte

B-4

C

*

*
*

C

0

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N Z V C

005100 COM COMplement (DE) DE * * 0 1
105100 COMB COMplement Byte

005200 INC INCrement (OE)+l DE * * *
105200 INCB INCrement Byte

005300 DEC DECrement (OE)-l DE * * *
105300 OECB DECrement Byte

005400 NEG NEGate (OE)+l DE * * * *
105400 NEGB NEGate Byte

005500 AOC ADd Carry (OE)+(C) DE * * * *
105500 AOCB ADd Carry Byte

005600 SBC SuBtract Carry (OE)-(C) DE * * * *
105600 SBCB SuBtract Carry Byte

005700 TST TeST (OE)-O DE * * 0 0
105700 TSTB TeST Byte

c 15 ° 006000 ROR ROtate Right ro-- I ~ * * * *

even or odd byte
106000 RORB ROtate Right cD: ~ * * * *

Byte

006100 ROL ROtate Left cD --1 ~ * * * *

even or odd byte
106100 ROLB ROtate Left c=D --J h * * * *

Byte
c 15 14 I ° 006200 ASR Arithmetic 0

~*I ~~ * * * *
Shift Right Y

even or odd byte
106200 ASRB Arithmetic 0

t ~~I ~~ * * * *
Shift Right
Byte Q

c
00630D ASL Arithmetic ~2; Z:/:o * * * *

Shift Left

even or odd byte
106300 ASLB Arithmetic

~:I : (?(o * * * *
Shift Left
Byte

000100 JMP JuMP DE PC

000300 SWAB SWAp Bytes * * 0 0

006700 SXT Sign eXTend 0 DE if N bit *
clear

-1 OE if N bit
is set

B-5

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation FN FZ FV FC

070700 NEGO NEGate Double -(FOE) FOE * * 0 0

170400 CLRO CLeaR Double 0 FOE 0 1 0 0

170500 TSTO TeST Ooubel (FOE)-O FOE * * 0 0

1706DO ABSO make ABSolute FOE FOE 0 * 0 0

B.3.3 Operate Instructions

Instruction-Type format: Op

Op-Code Mnemonic Stands for Operation N Z V C

000000 HALT HALT The computer stops
all functions.

000001 WAIT WAIT The computer stops
and waits for an
interrupt.

000002 RTI ReTurn from The PC and PS are * * * *
Interrupt popped off the SP

stack:

((SP))->-PC
(SP)+2->-SP
((SP)) ->-PS
(SP)+2->-SP

RTI is also used
to return from a
trap.

000005 RESET RESET Returns all I/O
devices to power-on
status.

000241 CLC CLear Carry bit O->-C 0

000261 SEC SEt Carry bit l->-C 1

000242 CLV CLear oVerflow bit O->-V 0

000262 SEV SEt oVer flow bi t l->-V 1

000244 CLZ CLear Zero bit O->-Z 0

000264 SEZ SEt Zero bit l->-Z 1

000250 CLN CLear Negative bit O->-N 0

000270 SEN SEt Negative bit l->-N 1

B-6

MACII ASSEMBLY LANGUAGE AND ASSEMBLER

Status Word
Condition Codes

Op-Code Mnemonic Stands for Operation N Z V

000243 CVC Clear oVerflow and O~V 0
Carry bits

000254 CNZ Clear Negative and O+N 0 0
Zero bits O+Z

000257 CCC Clear all O+N 0 0 0
Condition Codes O+Z

O+V
O+C

000277 SCC Set all l+N 1 1 1
Condition Codes l+Z

l+V
l+C

000240 NOP No OPeration

B.3.4 Trap Instructions

Instruction-type format: Op or Op E where 0 < E < 377(8)
*OP (only)

Status Word

C

0

0

1

Condition Codes
Op-Code Mnemonic Stands for Operation N Z V C

000003 BPT BreakPoint Trap Trap to location * * * *
14. Reserved for
system usage.

*000004 lOT Input/Output Trap Trap to location * * * *
20. This is used
to call system
routines.

104000- EMT EMulator Trap Trap to location * * * *
104377 30. Reserved for

for system usage.

104400- TRAP TRAP Trap to location * * * *
104777 34. This is used

to call any routine
desired by the
programmer.

B-7

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.5 Branch Instructions

Instruction-type format: Op E where -128(10) < (E-.-2) / 2 < 127(10)

Op-Code Mnemonic Stands for

0004XX

OOlOXX

0014XX

0020XX

0024XX

0030XX

0034XX

1000XX

1004XX

1010XX

1014XX

1020XX

1024XX

1030XX

1034XX

BR

BNE

BEQ

BGE

BLT

BGT

BLE

BPL

BMI

BHI

BLOS

BVC

BVS

BRanch always

Branch if Not
Equal (to zero)

Branch if EQual
(to zero)

Branch if
Greater than or
Equal (to zero)

Branch if Less
than (zero)

Branch if
Greater than
(zero)

Branch if Less
than or equal
(to zero)

Branch if PLus

Branch if MInus

Branch if
HIgher

Branch if LOwer
or Same

Branch if
oVerflow Clear

Branch if
oVerflow Set

BCC Branch if Carry
(or BHIS) Clear (or

Branch if
Higher or Same)

BCS Branch if Carry
(or 8LOS) Set (or Branch

if Lower

8-8

Condition to be
met if branch
is to occur

Z=O

Z=l

N V=O

N V=l

Z! (N V) =0

Z! (N V) =1

N=O

N=l

C Z=O

C Z=l

V=O

V=l

C=O

C=l

MACII ASSEMBLY LANGUAGE AND ASSEMBLER

B.3.6 Register Destination

Instruction type format: Op ER,A

Op-Code Mnemonic Stands for

004RDD JSR Jump to SubRoutine

Status Word
Condition Codes

Operation N Z V C

Push register on
the SP stack, put
the PC in the
register.

DE TEMP (TEMP=
temporary storage
register internal
to processor.)

(SP)-2 SP
(REG) (SP)
(PC) REG
(TEMP) PC

The following instruction is available only on the PDP-II/45:

074RDD XOR eXclusive OR

B.3.7 Subroutine Return

Instruction type format: Op ER

Op-Code Mnemonic Stands for

00020R RTS ReTurn from
Subroutine

B-9

(R) DE DE * * 0

Status Word
Condition Codes

Operation N Z V C

Put register in
PC and pop old
contents from SP
stack into register

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

B.4 ASSEMBLER DIRECTIVES

Form

~ Bn

~Dn

~On

. ASCII string

. ASCIZ string

. 6LKB exp

Operation

A single-quote character
(apostrophe) followed by one
ASCII character generates a
word containing the 7-bit
ASCII representation of the
character in the low-order
byte and zero in the high
order byte.

A double-quote character
followed by two ASCII
characters generates a word
containing the 7-bit ASCII
representation of the two
characters.

Temporary radix control;
causes the number n to be
treated as a binary number.

Temporary radix control;
causes the number n to be
treated as a decimal number.

Temporary radix control;
causes the number n to be
treated as an octal number .

Generates a block of data
containing the ASCII
equivalent of the character
string (enclosed in
delimiting characters) one
character per byte .

Generates a block of data
containing the ASCII
equivalent of the character
str ing (enclosed in
delimiting characters) one
character per byte with a
zero byte following the
specified string .

Reserves a block of storage
space exp bytes long.

8-10

Described
in Manual
Section

5.3.3

5.3.3

5.4.2

5.4.2

5.4.2

5.3.4

5.3.5

5.5.3

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

FORM

.BLKW exp

.BYTE expl,exp2, ...

.DSABL arg

.ENABL arg

.END

.END exp

.ENDC

.ENDM

.ENDM symbol

.ERROR exp,string

.EVEN

. IF cond,argl,arg2, ...

.IFF

Described
in Manual

Operation Section

Reserves a block of storage 5.5.3
space exp words long.

Generates successive bytes of 5.3.1
data containing the octal
equivalent of the expression(s)
specified.

Disables the assembler 5.2
function specified by the
argument.

Provides the assembler 5.2
function specified by the
argument.

Indicates the physical end 5.6.1
of source program. An
optional argument specifies
the transfer address.

Indicates the end of a 5.7
conditional block.

Indicates the end of the 6.1.2
current repeat block,
indefinite repeat block, or
macro. The optional symbol,
if used, must be identical to
the macro name.

Causes a text string to be 6.5
output to the command device
containing the optional
expression specified and the
indicated text string.

Ensures that the assembly 5.5.1
location counter contains an
even address by adding 1 if
it is odd .

Begins a conditional block of 5.7
source code which is included
in the assembly only if the
stated condition is met
with respect to the
argument(s) specified.

Appears only within a 5.7.1
conditional block and
indicates the beginning of a
section of code to be
assembled if the condition
tested false.

B-ll

MACll ASSEMBLY LANGUAGE AND ASSEMELER

Form

.IFT

.IFTF

.IIF cond,arg,statement

.IRP sym, <argl,arg2, ... >

. IRPC sym,string

.LIST

.LIST arg

.MACRO sym,argl,arg2, ...

.MEXIT

.NARG symbol

Described
in Manual

Operation Section

Appears only within a 5.7.1
conditional block and
indicates the beginning of
a section of code to be
assembled if the condition
tested true.

Appears only within a 5.7.1
conditional block and
indicates the beginning of
a section of code to be
unconditionally assembled.

Acts as a l-line conditional 5.7.2
block where the condition is
tested for the argument
specified. The statement
is assembled only if the
condition tests true.

Indicates the beginning of 6.6
an indefinite repeat block
in which the symbol specified
is replaced with successive
elements of the real argument
list (which is enclosed in
angle brackets) .

Indicates the beginning of an 6.6
indefinite repeat block in
which the s ymbol specified
takes on the value of
succ essive characters in the
character string.

Without an argument, .LIST 5.1.1
increments the listing level
count by one. With an
argument .LIST does not alter
the listing level count but
formats the assembly listing
according to the argument
specified.

Indicates the start of a 6.1.1
macro named sym containing
the dummy arguments specified.

Causes an exit from the
current macro or indefinite
repeat block.

Appears only within a macro
definition and equates the
specified symbol to the
number of characters in the
string (enclosed in
delimiting characters).

8-12

6.1. 3

6.4

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Form

.NCHR sym,string

.NLIST

.NLIST arg

.NTYPE sym,arg

.000

. PAGE

.PRINT exp,string

.RADIX n

.RAD50 string

.REPT exp

. SBTTL string

Operation

Can appear anywhere in a
source program; equates the
symbol specified to the
number of characters in the
string (enclosed in
delimiting characters).

Without an argument, .NLIST
decrements the listing level
count by 1. With an argument,
.NLIST deletes the portion of
the listing indicated by the
argument.

Appears only in a macro
definition and equates the
low-order six bits of the
symbol specified to the
six-bit addressing mode of
the argument.

Ensures that the assembly
location counter contains an
odd address by adding 1 if it
is even.

Causes the assembly listing
to skip to the top of the
next page.

Causes a text string to be
output to the command device
containing the optional
expression specified and the
indicated text string.

Alters the current program
radix to n, where n can be 2,
4, 8, or 10.

Generates a block of data
containing the Radix-50
equivalent of the character
string (enclosed in
delimiting characters).

Begins a repeat block.
Causes the section of code
up to the next .ENDM or
or .ENDR to be repeated
exp times .

Causes the string to be
printed as part of the
assembly listing page header.
The string part of each .SBTTL
directive is collected into

B-13

Described
in Manual
Section

6.4

5.1.1

6.4

5.5.2

5.1. 5

6.5

5.4.1

5.3.6

6.7

5.1. 4

MACll ASSEMBLY LANGUAGE AND ASSEMBLER

Form

.TITLE string

.WORD expl,exp2, .•.

Operation

a table of contents at the
beginning of the assembly
listing.

Assigns the first symbolic
name in the string to the
object module and causes the
string to appear on each page
of the assembly listing. Only
one .TITLE directive should
be issued per program.

Generates successive words
of data containing the octal
equivalent of the
expression(s) specified.

B-14

Described
in Manual
Section

5.1. 3

5.3.2

APPENDIX C

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACll XVM PAGE 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

000020 DRl=
000100 DR2=

000020 DFLGEV=
000010 DFLGBM=
000004 DFLCND=
000002 DFLMAC=

.TITLE PST PERMANENT SYMBOL TABLE

COPYRIGHT 1975 DIGITAL EQUIPMENT CORPORATION

200 iDESTRUCTIVE REFERENCE IN FIRST
100 iDESTRUCTIVE REFERENCE IN SECOND

020 iDIRECTIVE REQUIRES EVEN LOCATION
010 iDIRECTIVE USES BYTE MODE
004 iCONDITIONAL DIRECTIVE
002 iMACRO DIRECTIVE

.IIF DF X45, XFLTG= 0

.IIF DF XMACRO, XSMCAL= 0

.MACRO

.IF NB

.IF DF

.MEXIT

.ENDC

.ENDC

.RAD50

.BYTE

.GLOBL

.BYTE

.WORD

.ENDM

. MACRO

.IF NB

.IF DF

.MEXIT

.ENDC

.ENDC

OPCDEF NAME, CLASS, VALUE, FLAGS, COND
<COND>
COND

/NAME/
FLAGS+O
OPCL'CLASS
200+0PCL'CLASS
VALUE

DIRDEF NAME, FLAGS, COND
<COND >
COND

C-l

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACll XVM PAGE 2

44 .GLOBL NAME
45 .RAD50 /. 'NAME/
46 .BYTE FLAGS+O
47 .BYTE 0
48 .WORD NAME
49 .ENDM
50
51 00000 PSTBAS: ;BASE

1 000020 OPCDEF <ADC > , 01, 005500, DRI
2 000030 OPCDEF <ADCB > , 01, 105500, DRI
3 000040 OPCDEF <ADD > , 02, 060000, DR2
4 000110 OPCDEF <ASL > , 01, 006300, DRI
5 000120 OPCDEF <ASLB > , 01, 106300, DRI
6 000130 OPCDEF <ASR > , 01, 006200, DRI
7 000140 OPCDEF <ASRB > , 01, 106200, DRI
8 000150 OPCDEF <BCC > , 04, 103000,
9 000160 OPCDEF <BCS > , 04, 103400,
10 000170 OPCDEF <BEQ > , 04, 001400,
11 000200 OPCDEF <BGE > , 04, 002000,
12 000210 OPCDEF <BGT > , 04, 003000,
13 000220 OPCDEF <BHI > , 04, 101000,
14 000230 OPCDEF <BHIS > , 04, 103000,
15 000240 OPCDEF <BIC > , 02, 040000, DR2
16 000250 OPCDEF <BICB > , 02, 140000, DR2
17 000260 OPCDEF <BIS > , 02, 050000, DR2
18 000270 OPCDEF <BISB > , 02, 150000, DR2
19 000300 OPCDEF <BIT > , 02, 030000,
20 000310 OPCDEF <BITB > , 02, 130000,
21 000320 OPCDEF <BLE > , 04, 003400,
22 000330 OPCDEF <BLO > , 04, 103400,
23 000340 OPCDEF <BLOS > , 04, 101400,
24 000350 OPCDEF <BLT > , 04, 002400,
25 000360 OPCDEF <BMI > , 04, 100400,
26 000370 OPCDEF <BNE > , 04, 001000,
27 000400 OPCDEF <BPL > , 04, 100000,
28 000420 OPCDEF
 , 04, 000400,
29 000430 OPCDEF <BVC > , 04, 102000,
30 000440 OPCDEF <BVS > , 04, 102400,
31 000450 OPCDEF <CCC > , 00, 000257,
33 000470 OPCDEF <CLC > , 00, 000241,
34 000500 OPCDEF <CLN > , 00, 000250,
35 000510 OPCDEF <CLR > , 01, 005000, DRI
36 000520 OPCDEF <CLRB > , 01, 105000, DRI
39 000550 OPCDEF <CLV > , 00, 000242,
40 000560 OPCDEF <CLZ > , 00, 000244,

C-2

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACll XVM PAGE 3

1 000570 OPCDEF <CMP > , 02, 020000,
2 000600 OPCDEF <CMPB >, 02, 120000,

CMZ 00 000254,
3 000630 OPCDEF <COM > , 01, 005100, DRI
4 000640 OPCDEF <COMB > , 01, 105100, DRI
5 000650 OPCDEF <DEC > , 01, 005300, DRI
6 000660 OPCDEF <DECB > , 01, 105300, DRI
7 000670 OPCDEF <EMT > , 06, 104000,
8 000730 OPCDEF <HALT > , 00, 000000,
9 000740 OPCDEF <INC > , 01, 005200, DRI
10 000750 OPCDEF <INCB > , 01, 105200, DRI
II 000760 OPCDEF <lOT > , 00, 000004,
12 000770 OPCDEF <JMP > , 01, 000100,
13 001000 OPCDEF <JSR > , OS, 004000, DRI
14 001010 OPCDEF <MOV > , 02, 010000, DR2
15 001230 OPCDEF <MOVB > , 02, 1l0000, DR2
16 001240 OPCDEF' <NEG > , 01, 005400, DRI
17 001320 OPCDEF <NEGB > , 01, 105400, DRI
18 001330 OPCDEF <NOP > , 00, 000240,
19 001360 OPCDEF <RESET>, 00, 000005,
20 001370 OPCDEF

C-3

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACll XVM PAGE 4

1 001400 OPCDEF <ROL > , 01, 006100, DRI
2 001410 OPCDEF <ROLB > , 01, 106100, DRI
3 001420 OPCDEF <ROR > , 01, 006000, DRI
4 001430 OPCDEF <RORB > , 01, 106000, DRI
5 001440 OPCDEF <RTI > , 00, 000002,
6 001450 OPCDEF <RTS > , 03, 000200, DRI
7 001470 OPCDEF <SBC > , 01, 005600, DRI
8 001500 OPCDEF <SBCB > , 01, 105600, DRI
9 001510 OPCDEF <SCC > , 00, 000277,
10 001520 OPCDEF <SEC > 00, 000261,
11 001530 OPCDEF <SEN > , 00, 000270,
12 001600 OPCDEF <SEV > , 00, 000262,
13 001610 OPCDEF <SEZ > , 00, 000264,
14 002020 OPCDEF <SUB > , 02, 160000,
15 002050 OPCDEF <SWAB > , 01, 000300, DRI
16 002070 OPCDEF <TRAP > , 06, 104400,
17 002100 OPCDEF <TST > , 01, 005700,
18 002110 OPCDEF <'I'STB > , 01, 105700,
19 002140 OPCDEF <WAIT > , 00, 000001,

C-4

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBCL TABLE MACll XVM PAGE 5

1 002160 DIRDEF <ASCII>, DFLGBM
2 002170 DIRDEF <ASCIZ>, DFLGBM
3 002210 DIRDEF <BLKB >,
4 002220 DIRDEF <BLKW >, DFLGEV
5 002230 DIRDEF <BYTE > , DFLGBM
6 002250 DIRDEF <DSABL > ,
7 002260 DIRDEF <ENABL>,
8 002270 DIRDEF <END > ,
9 002300 DIRDEF <ENDC >, DFLCND
10 002310 DIRDEF <ENDM >, DFLMAC, XMACRO
II 002320 DIRDEF <ENDR > , DFLMAC, XMACRO
12 002340 DIRDEF <ERROR > ,
13 002350 DIRDEF <EVEN > ,
14 002420 DIRDEF <IF > , DFLCND
15 002430 DIRDEF <IFDF > , DFLCND
16 002440 DIRDEF <IFEQ > , DFLCND
17 002450 DIRDEF <IFF > , DFLCND
18 002460 DIRDEF <IFG > , DFLCND
19 002470 DIRDEF <IFGE > , DFLCND
20 002500 DIRDEF <IFGT > , DFLCND
21 002510 DIRDEF <IFL > , DFLCND
22 002520 DIRDEF <IFLE > , DFLCND
23 002530 DIRDEF <IFLT > , DFLCND
24 002540 DIRDEF <IFNDF > , DFLCND
25 002550 DIRDEF <IFNE > , DFLCND
26 002560 DIRDEF <IFNZ > , DFLCND
27 002570 DIRDEF <1FT > , DFLCND
28 002600 DIRDEF <IFTF > , DFLCND
29 002610 DIRDEF <IFZ > , DFLCND
30 002620 DIRDEF <!IF > ,
31 002630 DIRDEF <IRP > , DFLMAC, XMACRO
32 002640 DIRDEF <IRPC > , DFLMAC, XMACRO
33 002660 DIRDEF <LIST > ,

C-5

PERMANENT SYMBOL TABLE

PST PERMANENT SYMBOL TABLE MACll XVM PAGE 6

1 002670 DIRDEF <MACR >, DFLMAC, Xr-1ACRO
2 002700 DIRDEF <MACRO>, DFLMAC, XMACRO
3 002720 DIRDEF <MEXIT>, XMACRO
4 002730 DIRDEF <NARG >, XMACRO
5 002740 DIRDEF <NCHR >, XMACRO
6 002750 DIRDEF <NLIST >
7 002760 DIRDEF <NTYPE>, XMACRO
8 002770 DIRDEF <ODD > ,
9 003000 DIRDEF <PAGE >,
10 003010 DIRDEF <PRINT>,
11 003020 DIRDEF <RADIX>,
12 003030 DIRDEF <RAD50>, DFLGEV
13 003040 DIRDEF <REM > ,
14 003050 DIRDEF <REPT >, DFLMAC, XMACRO
15 003060 DIRDEF <SBTTL >,
16 003070 DIRDEF <TITLE >,
17 003100 WRDSYM:
18 003100 DIRDEF <WORD >, DFLGEV
19
20
21 003110 PSTTOP: ,TOP LIMIT
22
23 000001 .END

C-6

•

APPENDIX D

ERROR MESSAGE SUMMARY

D.l MACll ERROR CODES

MACll error codes are printed following a field of six asterisk
characters and on the line preceding the source line containing the
error. For example:

******A
26 00236 000002' .WORD REL1+REL2

The addition of two relocatable symbols is flagged as an A error.

Error Code

A

B

D

E

I

L

M

N

Meaning

Addressing
instruction
relocation
necessarily

error. An
is incorrect.
error. This

address
Also

within the
may indicate a

reflect a coding
message

error.
does not

Bounding error. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive
generated.)

Illegal character
which are also
on the listing.

not found. (A listing is

detected. Illegal characters
non-printing are replaced by a ?

The character is then ignored.

Line buffer overflow; i.e., input line greater
than 132 characters. Extra characters on a line
(more than 72(10)) are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal
missing.

D-l

point

Error Code

o

P

Q

R

T

U

z

ERROR MESSAGE SUMMARY

Meaning

Op-code error. Directive out of context.

Phase error. A label's definition of value varies
from one pass to another.

Questionable syntax. There are missing arguments
or the instruction scan was not completed or a
carriage return was not immediately followed by a
line feed, form feed, or vertical tab.

Register-type error. An invalid use
reference to a register has been made.

of or

Truncation error. A number generated more than 16
bits of significance or an expression generated
more than 8 bits of significance during the use of
the .BYTE directive.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol is assigned a value of zero.

Instruction which is not compatible among all
members of the PDP-II family.

0-2

Absolute mode, 4-4
Addition, 3-5
Addition operator, 3-2
Addressing, branch instruction,

4-6
Address modes, 1-4, 4-1, 6-9

syntax, B-2
Address, negative, 1-6
Ampersand (&), 3-2
AND operator, 3-2, 3-5
Angle brackets «», 2-3, 3-3,

5-13
Apostrophe ('), 3-2, 6-8
Arguments \"i thin a macro

definition, 6-4
ASCII character conversion, 5-10
ASCII character indicator, 3-2
ASCII characters, 2-3, A-l
.ASCII directive, 5-11
.ASCIZ directive, 5-12
Assembler directives, 2-3, 3-5,

B-10
Assemblies, conditional, 1-4
Assembly listing example

(figure), 5-4
Assembly listing table of

contents (figure), 5-6
Assembly location counter, 3-10,

5-15, 5-16
Asterisk (*), 3-2
At sign (@), 3-2
Autodecrement deferred mode, 4-3
Autodecrement mode, 4-3
Autoincrement deferred mode, 4-3
Autoincrement mode, 4-2

Backarrow (~) usage, 7-1
Backslash (~), 3-2, 6-6
Binary operators, 3-5, 3-12
Blank lines, 2-1
.BLKB directive, 5-16
.BLKW directive, 5-16
Branch instruction addressing,

4-6
Branch instructions, B-8
.BYTE directive, 5-8

Carriage return, 2-1, 3-1
Character deletion, 7-2
Characters,

ASCII, 2-3, A-l
delimiting, 3-3
illegal, 3-4
~ACll legal, 3-1

INDEX

Characters (cont.),
Radix-50, A-4
separating, 3-3
special, B-1

Code, reentrant, 1-4
Code segment (figure), 1-3
Colon (:) usage, 2-2, 3-1
Comma (,), 2-3, 3-2, 3-3
Command input string, 7-1
Comments, 1-2, 2-3, 6-1

field indicator, 3-2
Concatenation, 6-8
Conditional assembly, 1-4

directives, 5-18
PAL-llR directives, 5-22

Conditional branch instructions,
1-6

Condition codes, B-3
Continuation lines, 2-1
Core Storage, 1-5, 3-8

Data generation, 5-9
Data storage directives, 5-8
Deferred addressing indicator,

3-2
Deletion of characters or lines,

7-2
Delimiting characters, 3-3
Direct assignment indicator, 3-1
Direct assignments, 3-6
Directives, assembler, 2-3, 3-5,

B-10
conditional, 5-18
immediate conditional, 5-21
MACRO, 6-1
PAL-llR conditional assembly,

5-22
subconditional, 5-20
terminating, 5-17

Dispatch table, 1-5
Division, 3-5

operator, 3-2
Double-operand instructions, B-4
Double quote ("), 3-2
.DSABL directive, 5-7

.ENABL directive, 5-7

.END directive, 5-17

.ENDM directive, 6-2

.ENDR statement, 6-14

.ERROR directive, 6-10
Error message summary, D-l
Errors, typing, 7-2
Equal sign (=), 3-1

Index-l

INDEX (Cont.)

.EVEN directive, 5-15
Exclamation (!), 3-2
Expression indicator, 3-2
Expressions, 3-12

Fields in statements, 2-1
comment, 2-3
label, 2-2
operand, 2-3
operator, 2-3

Field terminator, 3-1
Format control, 2-4
Form feed, 2-1, 3-1, 6-3
Forward referencing, 3-7

Hierarchy operator, 3-12

Illegal characters, 3-4
.IFF directive, 5-20
.IFT directive, 5-20
.IFTF directive, 5-20
Immediate conditional directive,

5-21
Immediate expression indicator,

3-1
Immediate mode, 4-4
Indefinite repeat block: .IRP

and . IRPC, 6-11
Index deferred mode, 4-4
Index mode, 4-3
Indicators, 3-2
Initial register indicator, 3-2
Instructions, 2-3, 3-5, B-3

conditional branch, 1-6
([igure), 1-3

Item terminator, 3-1

Label field, 2-2
Label terminator, 3-1
Line deletion, 7-2
Line feed, 3-1
Line formatting, 2-4
Line printer listing (figure),

5-4
Line terminators, 2-1
.LIST directive, 5-1
Listing level count, 5-1
Loading MACll, 7-1
Local symbol blocks (Figure),

3-9
Local symbols, 3-8

Location counter control, 5-15
Logical operations, B-4

.MACRO directive, 6-1
Macros,

calls, 6-3
definition formatting, 6-3
directives, 6-1
nesting, 6-4
numeric argument indicator, 3-2
symbols, 3-5

Mask word, 5-14
Message output, 6-10
.MEXIT directive, 6-2
.VillXIT statement, 6-14
Hinus sign (-), 3-2
Hode forms and codes, 4-5
Modes of address, 4-1
Modular programming, 1-1
Multiplication, 3-5
Multiplication operator, 3-2

.NARG directive, 6-9

.NCHR directive, 6-9
Negative address, 1-6
Negative numbers, 3-11
Nested angle brackets, 3-3
Nested macros, 6-2, 6-4
.NLIST directives, 5-1
.NTYPE directive, 6-9
Null arguments, 6-7
Number of arguments in a macro

call, 6-7, 6-9
Number of characters in string,

6-9
Numbers, 3-11, 5-14
Number sign (#), 3-1
Numeric arguments, 6-6

Octal radix, 3-11
.000 directive, 5-16
Offset, 3-10, 4-6
l's Complement, 3-4
Op-codes, B-3
Operand field, 2-3, 3-2
Operands, B-3
Operate instructions, B-6
Operating procedures, 7-1
Operator field, 2-3
Operator hierarchy, 3-12
Operators, 3-2
OR operator, 3-2, 3-5
Output, 7-1

Index-2

INDEX (Cant.)

.PAGE directive, 5-7, 6-3
Page eject, 5-7, 6-3
Page headings, 5-3
PAL-llR conditional assembly

directives, 5-22
Paper tape sources, 7-2
Parameter assignments, 1-5
Parentheses (), 3-2
Pass 1, 7-2
PC register, 1-4
PDP-ll code segment (figure),

1-3
Percent sign (%), 3-1, 3-8
Period (.), 3-10
Permanent symbols, 3-5
Permanent symbol table, C-l
Plus sign (+), 3-2
Processor status word (PS), B-3
Program counter (PC), 4-1
Program stack, 1-2

.RAD50 directive, 5-12
Radix controls, temporary, 5-14
.RADIX directive, 3-11, 5-14
Radix-50, 5-13

character set, A-l
Reentrant code, 1-4
Register addressing, 1-4
Register deferred mode, 4-2
Register destination, B-9
Register increment, 1-6
Register mode, 4-2
Register names, 1-5
Register symbols, 3-7
Register term indicator, 3-1
Register usage, 1-2
Relative deferred mode, 4-5
Relative mode, 4-5
Repeat block: .REPT,6-13
Rubout key, 7-2

.SBTTL directive, 5-5
Semicolon (;) usage, 2-3, 3-2
Single-operand instructions, B-4
Single quote ('), 3-2, 6-8
Slash (/), 3-2
Source file, 7-2
Source program format, 2-1
Spaces, 2-3, 3-1, 3-3
Special characters, B-1
Special characters within

arguments, 6-5
Statement format, 2-1
Statement terminator, 2-1, 3-1
Storage area, reserved, 3-11
Storage space, 1-5

Subconditional directives, 5-20
Subroutine return, B-9
Subroutines, 1-2
Subtraction, 3-5
Subtraction operator, 3-2
Symbolic addressing, 1-2
Symbols,

automatically created, 6-7
local, 3-8
user-defined, 3-5

Table of contents for assembly
listing, 5-6

Tabs, 2-3
Temporary radix controls, 5-14
Terminal register indicator, 3-2
Terminating directives, 5-17
Terminators, 3-1
Terms in expressions, 3-11, 3-12
.TITLE directive, 5-3
Trap handler, 1-5
Trap instructions, B-7
Truncation, 3-11, 4-7, 5-8, 5-9
2's complement, 3-4, 3-11

Unary operators, 3-4, 3-12, 5-15
Underbar () usage, 7-1
Up arrow (t), 3-2, 3-3
User-defined symbols, 3-5
User Symbol Table, 3-5, 3-8

Vertical formatting, 2-4
Vertical tab, 2-1, 3-1

.WORD directive, 2-3, 5-9

Index-3

READER'S COMMENTS

MACll XVM Assembler
Language Manual
DEC-XV-LMLAA-A-D

NOTE: This form is for document COIT~ents only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-programmer interested in computer concepts and capabilities

Name Date ________________________ ___

Organization __ __

Street __ __

City ____________________________ State _____________ Zip Code ______________ _

or
Country

If you require a written reply, please check here. []

"--Fold flere---"

"--- Do Nut Tear - Fuld Here and Staple --"

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Pustage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT 1\0. 33

MAYNARD. MASS.

digital equipment corporation

~"'NTEO IN u.s.A.

