
FOCALXVM

LANGUAGE MANUAL

DEC-XV-LFLGA-A-O

FOCALXVM

LANGUAGE MANUAL

DEC-XV-LFLGA-A-D

digital equipment corporation · maynard. massachusetts

First Printing , January 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright 0 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-IO
TYPESET-ll

"

CONTENTS

Chapter

PREFACE

1 INTRODUCTION TO FOCAL

1.1
1.2
1.3
1.4
1.5

Hardware Requirements
Loading Procedure
Restart Procedure
Saving FOCAL Programs
Data Input/Output

2 FOCAL LANGUAGE

3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

FOCAL
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3 .16

Elementary Commands
Output Format
Floating-Point Format
Arithmetic Operations and Symbols
Additional Symbol Information
Subscripted Variables
The Erase Command
Handling Text Output
Indirect Commands
Error Detection
Corrections
Abbreviations
Alphanumeric Numbers

COMMANDS
TYPE
ASK
WRITE
SET
ERASE
GO
GOTO
DO
IF
RETURN
QUIT
COMMENT
FOR
MODIFY
Using the Trace Feature
Internal Functions

4 EXAMPLES OF FOCAL PROGRAMS

4.1 Table Generation Using Functions
4.2 Formula Evaluation for Circles and
4.3 One-Line Function Plotting
4.4 Demonstration Dice Game
4.5 Simultaneous Equations and Matrices
4.6 Interest Payment Program
4.7 Intercept and Plot of Two Functions
4.8 Schroedinger Equation Solver

5 LIBRARY COMMANDS

5.1
5.1.1

Library Output Commands
Library File Initialization

iii

Page

vii

1-1

1-1
1-1
1-2
1-3
1-3

2-1

2-1
2-2
2-4
2-4
2-5
2-6
2-7
2-7
2-7
2-9
2-9
2-11
2-11

3-1
3-1
3-2
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-8
3-8
3-8
3-8
3-10
3-12
3-13

4-1

4-1
Spheres 4-2

4-3
4-5
4-6
4-10
4-11
4-13

5-1

5-1
5-1

Chapter

5.1. 2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.1. 3
5.2
5.3
5.4
5.4.1
5.4.2
5.5

CONTENTS (Cont'd)

Library File Output Operations
Direct Command Output
Single Line Output
Group Output
Program Output
Library File Termination
Library Input Commands
Library .DAT Slot Usage
Common Variables and Arrays
COMMON Format
ERASE COMMON Command
Chaining of FOCAL Programs

6 USER DEFINED FOCAL FUNCTIONS

7

6.1
6.2

DATA

7.1
7.1.1
7.1. 2
7.1. 3
7.2
7.3

APPENDIX A

Example
File FNEW

COMMANDS

DATA Commands
DATA File Initialization
DATA File Termination
DATA Input
DATA .DAT Slot Usage
DATA Command Use

FOCAL Command Summary

APPENDIX B
Error Diagnostics

APPENDIX C
Estimating the Length of User Programs

APPENDIX D
Calculating Trigonometric Functions

APPENDIX E

and Output

.DAT Slot and Handler Assignments System in XVM/DOS

INDEX

iv

Page

5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-4
5-4
5-4
5-5
5-5

6-1

6-1
6-3

7-1

7-1
7-1
7-2
7-2
7-2
7-3

A-1

B-1

C-l

D-l

B-1

Index-l

LIST OF ALL XVM MANUALS

The following is a list of all XVM manuals and their DEC numbers, in

cluding the latest version available. Within this manual, other XVM

manuals are referenced by title only. Refer to this list for the

DEC numbers of these referenced manuals.

BOSS XVM USER'S MANUAL

CHAIN XVM/EXECUTE XVM UTILITY MANUAL

DDT XVM UTILITY MANUAL

EDIT/EDITVP/EDITVT XVM UTILITY MANUAL

8TRAN XVM UTILITY MANUAL

FOCAL XVM LANGUAGE MANUAL

FORTRAN IV XVM LANGUAGE MANUAL

FORTRAN IV XVM OPERATING ENVIRONMENT MANUAL

LINKING LOADER XVM UTILITY MANUAL

MACII XVM ASSEMBLER LANGUAGE MANUAL

MACRO XVM ASSEMBLER LANGUAGE MANUAL

MTDUMP XVM UTILITY MANUAL

PATCH XVM UTILITY MANUAL

PIP XVM UTILITY MANUAL

SGEN XVM UTILITY MANUAL

SRCCOM XVM UTILITY MANUAL
UPDATE XVM UTILITY MANUAL

VPISA XVM GRAPHICS SOFTWARE MANUAL

VTlS XVM GRAPHICS SOFTWARE MANUAL

XVM/DOS KEYBOARD COMMAND GUIDE

XVM/DOS READERS GUIDE AND
MASTER INDEX

XVM/DOS SYSTEM MANUAL

XVM/DOS USERS MANUAL

XVM/DOS VIA SYSTEM INSTALLATION GUIDE

XVM/RSX SYSTEM MANUAL

XVM UNICHANNEL SOFTWARE MANUAL

v

DEC-XV-OBUAA-A-D

DEC-XV-UCHNA-A-D

DEC-XV-UDDTA-A-D

DEC-XV-UETUA-A-D

DEC-XV-UTRNA-A-D

DEC-XV-LFLGA-A-D

DEC-XV-LF4MA-A-D

DEC-XV-LF4EA-A-D

DEC-XV-ULLUA-A-D

DEC-XV-LMLAA-A-D

DEC-XV-LMALA-A-D

DEC-XV-UMTUA-A-D

DEC-XV-UPUMA-A-D

DEC-XV-UPPUA-A-D

DEC-XV-USUTA-A-D

DEC-XV-USRCA-A-D
DEC-XV-UUPDA-A-D

DEC-XV-GVPAA-A-D

DEC-XV-GVTAA-A-D

DEC-XV-ODKBA-A-D

DEC-XV-ODGIA-A-D

DEC-XV-ODSAA-A-D

DEC-XV-ODMAA-A-D

DEC-XV-ODSIA-A-D

DEC-XV-IRSMA-A-D

DEC-XV-XUSMA-A-D

o

PREFACE

FOCAL (Formula CALculator) XVM (FOCAL) is an interactive utility pro

gram designed to solve numerical problems of any complexity. FOCAL

is a component of the XVM/DOS software system.

This manual is designed to allow the reader to master and apply the

FOCAL language within hours.

Chapters 1 through 3 of this manual describe the structure and use of

the FOCAL language (particularly in the formulation and solution of

numeric problems).

Chapter 4 contains demonstration programs which illustrate the many

features and applications of FOCAL. The reader, by running these pro

grams uSing different variables, can more fully realize the power and

flexibility of FOCAL.

Chapters 5 and 6 describe advanced user-library storage and retrieval

functions and user-defined FOCAL functions. The FOCAL library func

tions permit the storage of lengthy programs by the use of "chaining."

User defined functions enable frequently used operations to be called

(requested and performed) by a single command.

Chapter 7 describes FOCAL data functions which permit the user to

store and then retrieve data on auxiliary Input/Output devices other

than the console terminal.

vii

..

,

•

CHAPTER 1

INTRODUCTION TO FOCAL

FOCAL is an on-line, interpretive service program designed to assist

scientists, engineers, and students in solving complex numerical pro

blems. The language consists of concise, imperative statements;

mathematical expressions are typed in standard notation.

FOCAL puts the full calculating power and speed of the computer at the

user's fingertips. With FOCAL, the user can easily generate mathe

matical models, plot curves, solve sets of simultaneous equations in

n-dimensional arrays, and much more. Examples of various problems

that FOCAL is capable of solving are described in Chapter 4.

1.1 HARDWARE REQUIREMENTS

FOCAL can be run on any XVM or PDP-1S computer which runs XVM/DOS soft-

ware.

1.2 LOADING PROCEDURE

FOCAL may be loaded with the Linking Loader after XVM/DOS has been

loaded.

After the bootstrap is loaded XVM/DOS types

XVM/DOS Vnxnnn

$

at the left margin of the console terminal.

The Linking Loader requires assignment of .DAT (Device Assignment)

Table) slots -1 and -4. FOCAL requires assignment of .DAT slots +3,

+7 (input) and +S, +10 (output). (.DAT slot assignments for FOCAL are

summarized in Appendix E.) An example of the required ASSIGN command

is:

$A DPO -1,-4, <SCR> 3,S,7,10.)

On the device assigned to .DAT -1, the Linking Loader, expects to find

the System Library.1 On the device assigned to .DAT slot -4,the

Linking Loader expects to find the relocatab1e binary program, FOCAL

BIN and its external function file, FNEW BIN.

1
The user should be careful to use the non-floating point FORTRAN
library. If FOCAL is to be used on a system with floating point
hardware, the user should rename the non-floating point library to
.LIBRS BIN and assign .DAT -S to the UIC containing .LIBRS BIN.

1-1

Introduction To Focal

FOCAL uses .DAT slot +3 for the library input function and .DAT slot

+5 for the library output function (see Chapter 5 for FOCAL library

commands). FOCAL uses .DAT slot +7 for DATA input function and .DAT

slot +10 for DATA output function. (Refer to Chapter 7 for detailed

information about the DATA commands.)

An example for loading FOCAL follows.

After the .DAT slots are assigned as above, XVM/DOS types another $.

Now type

$GLOAD

and depress the RETURN key. The Loader types

LOADER XVM Vnxnnn or BLOADER XVM Vnxnnn

Now type a P, a back arrow (P+), FOCAL, a comma and FNEW after the

Loader's >,

>P +FOCAL, FNEW

and depress the ALT MODE key.

Teleprinter output format is as follows:

XVM/DOS V1AOOO

$GL..DAD

BL. DADEI:;; XVM V1AOOO
>P ._.FDCAI..., FNEW
p FOCAl... 028 0"71"742
P FNEW 004 0 '7 1:"j:<,-7
p .BH 00~5 O}l473
P D S OI:~T 007 0"71402
P D~:;IN 001 0 "7 1367
P DCO !:; 002 07:1.:346
P DATAN 00:1. 0 7 :1. 3 :.3:3
P [lE XP 00:1. O? 1320
P DI ... DG 004 0"71 2 72
F' .DD 006 Ol1.:l.24
P .DB 004 071004
P .DE 00:3 0}O70:3
P .DF 001 0 7 0~)44

P .DC 001 0 07 047::j
P .DA 012 0 07 04 2 0
p .CAll 000 0 "7 03~5:3

P DClUBLE 004 070:1.50
P HEI ... Et-.E lOP 06 07 0:5 :I.
f" .Cf! 0()4 06 07 0207

BFOCAI... XVM V1AO()O

1.3 RESTART PROCEDURE

Restart is accomplished by the use of CTRL P (echoes tP). However

this may not work if it is typed while output is underway to the tele

printer.
1-2

.~

Introduction To Focal

1.4 SAVING FOCAL PROGRAMS (Refer to Chapter 5 for full description)

To save the current FOCAL program, type the following sequence of

commands; where necessary, wait for FOCAL to type an * on the next

line.

* *LIBRARY OUT NAME
*LIBRARY WRITE ·ERASE ALL
*LIBRARY WRITE ALL
LIBRARY WRITE "
*LIBRARY CLOSE

*
This sequence does not destroy the current program. Execute an ERASE

ALL before starting the program to clear all variables and prevent

placing previous programs in the library along with the current pro

gram during current library storage (refer to Sections 3.5 and 5.4.2).

When a program is to be saved, Loader assignment must be to the proper

output device. The assignment described in Section 1.2 will output the

program on DECtape.

To load a saved FOCAL program, type:

*LIBRARY IN NAME

1.5 DATA INPUT/OUTPUT (Refer to Chapter 7 for full description)

To use auxiliary I/O devices for data storage and retrieval, type the

following sequence of commands:

*DATA OUT NAME

*DATA CLOSE

*DATA IN NAME

This sequence will initialize and enter the named file for the data on

a mass storage device, close the named file on that device, and then

initialize a device under the given filename for data retrieval.

1-3

II

•

•

CHAPTER 2

FOCAL LANGUAGE

After FOCAL has been loaded, the program types out

FOCAL XVM Vnxnnn

*
to indicate that it is ready to accept commands from the user. Each

time the user terminates a typed line by depressing the RETURN key, or

after FOCAL has performed a command, an * (asterisk) is typed to tell

the user that FOCAL is ready for another command.

2.1 ELEMENTARY COMMANDS

One of the most useful commands in the FOCAL language is TYPE 1 which

inst.ructs FOCAL to "type out the result of the following expression."

Then, the user types an expression after TYPE (following the asterisk

which FOCAL typed) such as

*TYPE 123.456+9.8765

and presses the RETURN key; FOCAL types the answer.

133.3325*

SET is another useful command, which instructs FOCAL to "store this

symbol and its numerical value; then when this symbol is used in an

expression, insert the numerical value." Thus, the user may type

*SET A=3.141592; SET B=23.572; SET C=485.5

and then use these symbols to identify the values defined in the SET

command.

*TYPE A+B+C

512.2136*

Symbols may consist of one, two, or three alphanumeric characters.

The first character must be a letter, but must not be the letter F

which refers to function names (Refer to Section 3.16).

1Any number appearing in a TYPE command must have its magnitude repre
sented in 35 bits of mantissa, otherwise, FOCAL will type the ?27
error message and ignore your request. This error message will occur
with an 11 or 12 digit or longer number, depending on the magnitude
of the number. The same is applicable for the ASK command.

2-1

Focal Language

FOCAL always checks user input for syntax errors (e.g., invalid com

mands, illegal formats, etc.). When an error is detected, FOCAL types

an error message in the form of a question mark and code number to

indicate the type of error. In the following example,

* :.t.
kHEL..P
no
HYPE 2++4
?2l

HELP is not a valid command and two plus signs (double operators) is

an illegal operation. The complete list of error messages and meanings

is given in Appendix B.

2.2 OUTPUT FORMAT

The FOCAL program is originally set to produce results showing up to

eight digits, four to the left of the decimal pOint (the integer part)

and four to the right of the decimal point (the fractional part) •

Leading zeros are suppressed, and spaces are shown instead. Trailing

zeroes are included in the output to the limits of the format, as

shown in the examples below •

.};

*SET A=77.77; SET B=111111.1111; SET C=39
*TYPE A,B,C

77.7700 111111.11 39.0000*

*
The output format may be changed if the user types

*
*TYPE %x.yz

Where the percent sign (%) is the format operator symbol,x is the

total number of digits to be output and yz is the number of digits to

the right of the decimal pOint. The values x and yz are positive

integers, and the value of x cannot exceed 63 digits. The value yz is

always written as a 2 digit number, (e.g., 03). For example, if the

desired output format is 2 places to the left of the decimal point and

five to the right, the user types

tTYPE %7.05. 12.222222+2.37184

and FOCAL types

',1.' /,..

Y 14. :'.'j?406*

2-2

tI

•

Focal Language

Notice that the format operator (%x.yz) must be followed by a comma,

and that until the user changes the output format all results will be

typed in the last specified format, i.e. %7.05.

The results are calculated to nine digits. In some circumstances since

rounding may place some uncertainty on the 9th place, the user may

need to account for the rounding. If the user types

It'

* 'lTYPE %9.04. 1.234~56. '7B9

FOCAL types

1. 234~.)f.). ?D?*
:+:

*
Of the 9 available digits, priority is given to those to the left of

the decimal point.

In the following examples, the number 2848.5363 is typed out in several

formats.

~<f:)FT A::::284B. ~~)36:'l)
*TYPE %7.03. A

2B4B. ~.'j36*
:+:TYPE %B.04. A

2B4B. ~5363:+:
*TYPE %9. O~:.). A

2B4B. ~:.'i3f.)3()*

*
If the user does not indicate the number of places in the fractional

part of the number, only the integer part is printed.

If the specified output format is too small to contain the integer

portion of the number, FOCAL converts the number to floating pOint

form, O.LE+mn, where E+mn indicates the mnth power of 10 of the num

ber L printed as a number between 0.0 and 1.0 (refer to Section 2.3).

* *TYF'F %3. A
(). 2f:!~::jE+04*

*
If the specified format is larger than the number, FOCAL inserts

leading spaces up to, but not including, the asterisk column.

* *TYPE % 1 :1.. A
21:149*

*
Leading blanks and zeros in integers are always ignored by FOCAL,

except for numbers between 0.0 and 1.0, where a zero precedes the

decimal point ..

2-3

Focal Language

* *
*rYPE %8.04, 001 6 , 0. 0 16 v ., 0070 0

16.0000 0. 0 160 0 . 0000 700. 0000*

2.3 FLOATING-POINT FORMAT

The user may request output in exponential form which is called float

ing-point or E format. This notation is frequently used in scientific

computations and is the format in which FOCAL performs its internal

computations. The user requests floating-point format by including a

% followed by a comma in a TYPE command. FOCAL will print out 0, a

decimal point, a 9-digit number, the letter E, and the number of places

to move the decimal point for standard notation. Until the user spec

ifies another output format, all results are typed out in floating

point format.

For example,

* *TYPE X,1111
O.111100000Et04*

*
is interpreted as .1111 times 10 4 or 1111. Exponents can be used to

±999. The largest number that FOCAL can handle is +0.999999983

times 10998 , and the smallest is -0.999999983 times 10 999 .

If the absolute value of the exponent is 1000 or greater a colon (:)

will replace the higher order digits of the exponent. (An exponent

of 1021 comes out as :21). For example, see the description of FEXP

in Section 3.16.

The user should furthermore note that for systems having EAE only

eight places of accuracy can be guaranteed for numbers larger than

1.0E43. (In fact, for numbers near 1.0E+998 or 1.0E-999 you only get

7-place accuracy.)

To demonstrate the ability of FOCAL to compute large numbers, find the

value of 449 factorial by typing the following commands:

*SET A= l
FOR 1 =1.449 ; SET A=A 1
* r YPE %.A

0.385 193052E t 998*

The FOR statement, which will be explained later, is used to set I

equal to each integer from 1 to 449.

2.4 ARITHMETI~ OPERATIONS AND SYMBOLS

FOCAL performs the usual arithmetic operations (addition, subtraction,

multiplication, division, and exponentiation). These operations are

written by using the following symbols:

2-4

SYMBOL

t Exponentiation

* Multiplication

/ Division

+ Addition }

Subtraction

Focal Language

MATH NOTATION

equal

priority

3'3

3-:-3

3+3

3-3

3t3 (Power must be a
positive integer)

3*3

3/3

3+3

3-3

These operations may be combined into expressions. When FOCAL evalu

ates an expression comprising several arithmetic operations, the pri

ority follows the above list.

Note that addition and subtraction have equal priority. Expressions

with these two operators are evaluated from left to right.

A+B*C+D is A+(B*C)+D not (A+B) * (C+D) nor {A+B)*C+D

A*B+C*D is (A*B)+(C*D) not A*(B+C)*D nor (A*B+C)*D

X/2*Y is ~ not (:) Y
2Y 2

2 t 2 t 3 is 4 3 not 28

-A To perform exponentiation to a negative power, X ,use FEXP{A*FLOG<X».

Expressions (except IF) to be evaluated by FOCAL may be enclosed in

any properly paired parentheses, square brackets, or angle brackets.

The IF statements, however, must be enclosed in parentheses .
•

For expressions without IF statements:

SET Al = (A+B)<M+N>*[X+Y]

The left bracket ([) and the right bracket (]) enclosures which do not

appear on certain teletypewriter keys are typed using the SHIFT and K

keys and the SHIFT and M keys, respectively.

For expressions that are nested, FOCAL computes the value of the inner

most expression first and then works outward.

*TYPE %, (2+ < 3 - [1 * 4] + 5 > - 2)

O.400000000F+OI*

Note that this number is expressed in floating-point format, as spec

ified by the unmodified % symbol.

2.5 ADDITIONAL SYMBOL INFORMATION

The value of a symbolic name or identifier is not changed until the

expression to the right of the equal sign is evaluated by FOCAL.

Therefore, before it is evaluated, the value of a symbolic name or

2-5

Focal Language

identifier can be changed by retyping the identifier and assigning

it a new value.

*SET Al=3t2; SET Al=Al+l

*TYPE %2, Ai

10*

Symbolic names or identifiers must not begin with the letter F.

(Refer to Section 3.16)

The user can request FOCAL to type out all user defined identifiers,

in the order of definition, by typing a dollar sign ($) after a TYPE

command. (Refer to Section 3.1)

*TYPE %7.2,$

The user's symbol table is typed out in the following manner:

A@@(OO)= 0.3851931E+998
8@@(00)= 111111.1
C@@(OO)= 39.00000
K@@(OO)= 0.000000
I@@(OO)= 450.0000
Al@(OO)= 10.00000
M@@ (OO)= 0.000000
N@@(OO)= 0.00 0000
X@@(OO)= 0.000000
Y@@(OO)= 0.000000

NOTE

"A" and "I" defined in a previous example (on page
2-3) were not erased before going on to the present
example.

If an identifier consists of less than three letters, an @ is inserted

as the second/third character in the symbol table printout, as shown

in the example above. An identifier may be longer than three char

acters, but only the first three are recognized by FOCAL and stored

in the symbol table.

2.6 SUBSCRIPTED VARIABLES

FOCAL always allows identifiers, or variable symbols, to be further

identified by Single subscripts in the range ±131071 (2 17_1), which

are enclosed in parentheses immediately following the identifier.

For example, the following identifiers are subscripted:

A(I) B(3)

A subscript may also be an expression:

*SET Al(I+3*J)=2.33

*SET X2(S+3*J)=8.20

2-6

..

Focal Language

The ability of FOCAL to compute subscripts is especially useful in

generating arrays for complex programming problems. A convenient way

to generate linear subscripts is shown in Section 4.5.

2.7 THE ERASE COMMAND

To delete all of the symbolic names which are defined in the symbol

table, except those in the COMMON area (refer to Section 5.4), type

ERASE. As FOCAL does not clear the user's symbol table area in core

memory when it is first loaded, it is good programming practice to type

an ERASE command before defining any symbols .

2.8 HANDLING TEXT OUTPUT

Text strings are enclosed in quotation marks (" ... ") and may include

most teletypewriter printing characters and spaces. The carriage

return, line feed, and leader-trailer characters are not allowed in

text strings. To instruct FOCAL to type an automatic carriage return

line feed at the end of a text string, the user inserts an exclamation

mark (1).

*TYPE"ALPHA" 1 "BETA" 1 "GAMMA" 1

ALPHA

BETA

GAMMA

*
If only a carriage return without a line feed is desired at the end of

a text typeout, the user inserts a number sign (#).

*TYPE 1" X Y Z"#"

X+Y = Z

*

+ =11#11 /"1

The number sign operator is useful in formatting output and in plotting

another variable along the same coordinate (Refer to Section 4.7).

2.9 INDIRECT COMMANDS

Up to this point, only direct commands, executed immediately by FOCAL,

have been discussed. In contrast, commands may be delayed to alter

sequences, assign all variables or generate a lengthy program. These

delayed execution statements are called indirect commands which are

prefixed by a line number and are stored by FOCAL for later execution,

usually as part of a sequence of commands. Line numbers must be in the

range 1.01 to 99.99. The number to the left of the point is called

the group number; the number to the right is called the step number.

(The numbers 1.00, 2.00, etc., are illegal line numbers; they are used

to indicate an entire group of lines.) For example,

2-7

1'<
.,K

.:; F I'i (1 ~:; I. ,<\ L L
>i J "I c:;[r (1 <'~

*1.,'::" !'~[T p",n
*l.J TYP[%2. AtB
»:

Focal Language

To execute indirect commands the user types one of the direct com

mands GO, GOTO, and DO.

The GO command causes FOCAL to go the lowest numbered line to begin

executing the program. If the user types a direct GO command after

the indirect commands above, FOCAL will start executing at line 1.1.

,GO

11*

The GOTO command causes FOCAL to start the program by executing the

command at a specified line number.

:+UOTO 'I.. ::.:.'
I.:! *

FOCAL started executing the program at line, 1.2 SET B=8, in the above

example, and then continued to line 1.3.

The DO command is used to transfer control to a specified step, or

group of steps, and then return automatically to the command following

the DO command.

).,1:

)j(FR,~SE ALI
*1.1 SFT A=l;SET B=2
*1.2 TYPE STARTING·
)I(1.:5 [II) ~;; .,'

*2.1 TYPE' FINISHED'
*3.1 SET A=3; SET B=4
*3.2 TYPE %1, AtB
*GO

STARTING ~ FINISHED 7*

*
When the DC command at line 1.3 was reached, the command TYPE %1, A+B

was performed and then the program returned to line 2.1 and continued

-[L'om there.

ThE' DO cormnand can also cause FOCAL to jump to a group of commands and

~hen return automatically to the normal sequence.

2-8

o

•

o

Focal Language

* *ERASE ALL
*1.1 TYPE "A"
*1.2 TYPE "B"
*1.3 TYPE "C"
*1.4 DO 5.0
*1.5 TYPE" END "; GOTO 6.1
*5.1 TYPE "D~
*5.2 TYPE "E"
*6.1 TYPE "."
*GO
ABCDE END .*

*
When the DO command at line 1.4 was reached, FOCAL executed the group 5

lines and then returned to line 1.5. An indirect command, with the

proper sequential line number, can be inserted in a program at any time

before the direct execute command. For example,

*
*ERASE ALL
*4.8 SET A=1; SET B=2
*6.3 TYPE %8.3, B/C+A
*4.9 SET C=3.4581
*GO

1.5783523*

where line 4.9 will be executed before line 6.3 and after line 4.8.

FOCAL arranges and executes indirect commands in numerical sequence

by line number.

2.10 ERROR DETECTION

FOCAL checks all input commands for a variety of errors. If an error

is detected, FOCAL types a question mark, followed by an error code

and the appropriate line number if the error is in an indirect com

mand. A complete list of these error codes is shown in Appendix B.

The WRITE command without an argument causes FOCAL to print out the

entire indirect program so that the user may check it for errors.

The trace feature of FOCAL is valuable in program debugging. Any

part of an indirect statement or program can be enclosed in question

marks, and when that part of the program is executed, the portion

enclosed in question marks will be printed out. If only one question

mark is inserted the program is printed out from that point until

completion. The trace feature is also used to follow program control

and to create special formats (Refer to Section 3.15).

2.11 CORRECTIONS

If the user types the wrong character, or several wrong characters,

the RUBOUT key, which echoes a backs lash (') for each RUBOUT typed,

is used to delete one character to the left each time the RUBOUT key

is depressed.

2-9

* *ERASE ALL..
*1.1 RYPE\\\\TYPE X-Y
*1.2 SET X=:12\3
*WRITE

C FOCAL XVM V1AOOO
01.10 TYPE X---Y
01 .20 BET X::: 1 :-5

Focal Language

Typing CTRL U (echoes an @) deletes everything which appears to its

left on the same line.

*1.3 TYPE A,B,C@
*WRITE

C FOCAL XVM V1AOOO
01.10 TYPE X--Y
01.20 SET X==:L3

A line can be overwritten. Repeat the same line number and type the

new command. For example, the second instance of line 14.99 replaces

the first:

*
* *
*14,';'9 ~:;ET C9(N+3)"::I.~::j

*
*

:1<

*
*14.?? TYPE C9/Z~)---2

*WRITE :1.4.99
14.'Y9 TYPE C9/Z~_:_i----2

When WRITE is typed after corrections are made, FOCAL will print the

indirect program as altered. With this feature, commands can be

checked and a "clean" program printout can be obtained. Remember that

all indirect input is printed when WRITE is typed. Therefore, it is

useful to type ERASE ALL at the start of a new sequence. (Refer to

Chapter 5 for storing programs.) The ERASE command with an argument

will delete a line or group of lines. For example, to delete line

2.21, the user types

* *ERASE 2.21

*

2-10

...

o

o

Focal Language

To delete all of the lines in group 2, the user types

* *ERASE 2.0

*
Used alone, without an argument, the ERASE command causes FOCAL to

erase the user's entire symbol table. FOCAL does not zero memory

when loaded; consequently, it is good practice to type ERASE before

defining symbols. The command ERASE ALL erases all user input, except

COMMON variables.

The MODIFY command is another valuable feature. It may be used to

change any number of characters in a particular line, as explained

in Section 3.14.

2.12 ABBREVIATIONS

All FOCAL commands (except COMMON and DATA) may be abbreviated to the

first letter of the command. Thus,

*TYPE 10,!
0.lE+02

*
is equivalent to

*
*T 10,!

0.IE+02

*
2.13 ALPHANUMERIC NUMBERS (Using Letters as Numbers)

Numbers must start with a numeral but may contain letters. FOCAL

interprets as a number any character string beginning with a numeral

(0 through 9). An alphanumeric number is a string of alphanumeric

characters (excluding symbols) which starts with a numeral. For

example,

* *OABC
?02

23BAT 2836Al

Each letter in an alphanumeric number is taken as a number (A through

Z correspond to 1 through 26, respectively) except for E (which denotes

exponentiation) .

2-11

Focal Language

NOTE

E denotes exponentiation; consequently, the number 5
cannot be represented in alphanumeric form.

A=l
B=2
C=3
D=4
E=(exponentiation)
F=6
G=7
H=8
1=9

J=10
K=ll
L=12
M=13
N=14
0=15
P=16
Q=17
R=18

S=19
T=20
U=21
V=22
W=23
X=24
Y=25
Z=26

An easy way to give FOCAL numerical valued letters is to start the

number with 0, as in the following example.

* *TYPE %.OA[l
0.120000000E+02*

*
After 0, A=l and B=2; thus, OAB=12. Alphanumeric characters may be

used in arithmetic operations.

,.

::<TYPE %. OAIHOC
0.150000000E+02*

*
The letter E denotes exponentiation to base 10 when used in a number.

Alphanumerics after the letter E are taken as the exponent of the

preceding alphanumerics.

Only one E is allowed in anyone alphanumeric number.

* * *TYPE ~:'O,()AEn

10000*
*1YI::'[%B, OSEe

19000*

*
*
*

Alphabetic characters may be used when assigning numerical values to

identifiers or variables in response to an ASK statement (Refer to

Section 3.9 for a use of this feature and lines 3.20 and 3.30 of

"Intercept and Plot of Two Functions" "in Section 4.7 for an application).

2-12

o

•

o

3.1 TYPE

CHAPTER 3

FOCAL COMMANDS

The TYPE command is used to compute and type out a text string, the

result of an expression, or the value of an identifier. For example,

* * *4.14 TYPE 3.2*6-(36.2*65)/2.348
*4.15 TYPE 3~6+(7.23/4.2753)*73.4

* *
Several expressions can be computed by a single TYPE commandi commas

are used to separate each expression.

*1.1 TYPE ~6.03, A1*2, 2~12, 2.28*83.636
*no 1.1

*
*
*

0.000 4096.00 190.690*

The output format (%) can be included in the TYPE statement as shown

in the example above and as explained in Section 2.2.

The user may request a typeout of all identifiers which he has defined

by typing TYPE $ and pressing the RETURN key. This causes FOCAL to

type out the identifiers with their values, in the order in which they

were defined. The $ can follow other statements in a TYPE command,

but must always be the last operation on the line.

* * *ERASE ALL
*SET L=33; SET B=22; SET Q=385
*SET A3=94.3; SET A7T=2.485
*TYPE ~5.03,$

l.@(H 00) = 33.000
B@@(OO)= 22.000
Q@@(OO)= 385.00
A3@(00)= 94.300
A7T(00)= 2.485

*

3-1

Focal Commands

A text string enclosed in quotation marks can be included in a TYPE

command, and a carriage return can replace the closing quotation mark:

* * *TYPE ·X SQUARED
X SQUARED*
*

A text string or any FOCAL command or group of commands cannot exceed

the capacity of a teletype line (72 characters for KSR33 Teletype1).

A command cannot be continued on the following line. To print out

extended text, each line must start with a TYPE command.

FOCAL does not automatically perform a carriage return after executing

a TYPE command. To insert carriage return-line feed characters type

an exclamation mark (1). To insert a carriage return without a line

feed, type a number sign (#). To insert spaces, enclose them in quo

tation marks. These operations are useful for format output.

3.2 ASK

The ASK command is normally used in indirect commands to allow the

user to input data at specific points during the execution of the pro

gram. The ASK command is written in the form:

~

*11.99 ASK X.Y.Z,

*
When step 11.99 is encountered by FOCAL, it types a colon (:). Then,

the user types a value in any format for the first identifier, followed

by a carriage return or ALT MODE. The ALT MODE key continues the text

on the same line. FOCAL then types another colon, and the user types

a value for the second identifier. This continues until all the iden

tifiers or variables in the ASK statement have been given values.

*11.99 ASK X,Y,Z
*DO 11.99
:4:4:8*
* * *

In the above example, the user typed 4,4 and 8 as the values, respec

tively, for X,Y,Z.

FOCAL recognizes each value when its terminator (i.e., carriage return

or ALT MODE) is typed. Therefore a value can only be changed before

its terminator is typed. This is done by using RUBOUT or CTRL U.

1Teletype is a registered trademark of the Teletype Corporation.

3-2

Focal Commands

A text string can be in~luded in an ASK statement if the string is en

closed in quotation marks.

* * *ERASE ALL
*1.1 ASK "HOW MANY APPLES DO YOU HAVE?" APPLES
*DO 1.1
HOW MANY APPLES DO YOU HAVE?:25
*TYPE APP
2~j. 000*

*
The identifier APP (FOCAL recognized only the first three characters

of the identifier APPLES.) now has the value 25. When APP is used, it

will equal 25. Its value may be reassigned if it is asked for again.

* * *ERASE ALL.
*ASI, APP
:30
*TYPE APP

30.000*

Alphabetic characters can be used if numerical values are assigned to

identifiers or variables:

*1.1 ASK A; TYPE %4,A
*DO 1.1
:ABCD

1234*

* * * *
When the user typed ABCD and RETURN, FOCAL typed the numerical value

of ABCD (Refer to "Alphanumeric Numbers", Section 2.13).

Alphabetic responses are especially useful for keyboard responses to

FOCAL statements. A YES or NO answer can be typed by the user during

program execution in response to a program question, as explained in

Section 3.9.

3.3 WRITE

A WRITE command without an argument causes FOCAL to write out all

indirect statements which the user has typed. Indirect statements

are those preceded by a line number.

A group of line numbers, or a specific line, can be typed out with the

WRITE command using arguments, as shown below.

:+:7.97 WFnTE 2.0
*7, ';>8 WF,ITE 2.1
*7.9';> WRITE

*
3-3

Focal Commands

3.4 SET

The SET command is used to define identifiers. When FOCAL executes

a SET command, the identifier and its value, are stored in the user's

symbol table. When the identifier is encountered in the program, the

value is substituted for the identifier.

* *ERASE AL.L.
*4.1 SET A=394.83; SET B=4.373
*4.2 TYPE :r.,AtB
*GO

0.399203000Et03*

* * *
An identifier can be set equal to previously defined identifiers,

which, can be used in arithmetic expressions.

* *3.7 SET G=(A+B)*2~6

*
3.5 ERASE

An ERASE command without an argument is used to delete all identifiers

and their values except those in COMMON (Refer to Section 5.4 for the

ERASE COMMON command.) from the symbol table.

If the ERASE command is followed by a group number or a specific line

number, a group of lines or a specific line is deleted from the pro

gram.

* *ERASE 2.0
*ER,~SE 7. 11

*
The ERASE ALL command erases all the user's input. In the following

example, an ERASE command is used to delete line 1.50.

*
* *ERASE AL.L
U.2 SET B=2
U.3 SET C=34
U.4 TYPE BtC
U.5 TYPE C-B
*ERASE 1.5
*WRITE

C FOCAL V3AOOO
01.20 SET B=2
01.3() SET C=34
01.40 TYPE BtC

3-4

Focal Commands

The ERASE ALL command is generally used only in immediate mode because

it returns to command mode upon completion.

3.6 GO

The GO command is used to execute the program which starts with the

lowest numbered line. The remainder of the program is executed in line

number sequence. Line numbers must be in the range 1.01 to 99.99.

3.7 GOTO

The GOTO command causes FOCAL to transfer control to a specific line

in an indirect program. It must be followed by a specific line number.

After executing the command at the specified line, FOCAL continues to

the next higher line number, executing the program sequentially.

* * * *ERASE Al.l.
*1.1 TYPE
*1.2 TYPE
*1.3 TYPE
U.4 TYPE
*GOTO 1 '0)

3.8 DO

"A"
"B"
"C"
"[I"

The DO command transfers control momentarily to a single line, a group

of lines, or an entire indirect program. If transfer is made to a

Single line, the statements on that line are executed, and control is

transferred back to the statement following the DO command. Thus, the

DO command makes a subroutine of the lines to which control is trans

ferred, as shown in the following example:

*
*
*ERASE Al.L
*1.1 TYPE "F"
*1.2 [10 2.3; TYPE "C"
*1.:3 TYPE "A"
*1.4 TYPE "l."
U.5 (WIT
*2.:3 TYPE "a"
*GO
FOCAl.*

* * *

If a DO command transfers control to a group of lines, FOCAL executes

the group sequentially and returns control to the statement following

the DO command.

3-5

Focal Commands

If DO is written without an argument, FOCAL executes the entire in

direct program in the same manner as a GO command.

DO commands cause specified portions of the indirect program to be

executed as closed subroutines. These subroutines can also be ter

minated by a RETURN command.

A GO TO or an IF statement within a DO subroutine modifies the program

execution sequence.

3.9 IF

To transfer control after a comparison, FOCAL contains a conditional

IF statement in the form IF (m)x,y,z; m is an expression or variable,

and x,y,z,are three line numbers. The expression is evaluated, and

the program transfers control to the first number, x, if the expression

is less than zero; to the second line number, y, if the expression

equals zero; or to the third line number, z, if the value of the ex

pression is greater than zero.

* * * 2. 1 TYPE "LESS THAN ZERO"; QUIT
* 2. 2 TYPE "EQUAL TO ZERO"; QUIT
* 2 .3 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25) 2 .1 .2 .2~2 . 3

EQUAL TO ZERO*

* *
In the above example, the parenthetical expression equals zero; con

sequently, line 2.2 is executed. Note that an IF statement must be

enclosed in parentheses.

The IF statement can be shortened by terminating it with a semicolon

or carriage return after the first or second line number. If a semi

colon follows the first line number, the expression is tested, and

control is transferred to that line if the expression is less than

zero. If the expression is not less than zero, the program continues

with the next statement.

* *2.20 IF(X)1.8;TYPE ·C·

*
In the above example, when line 2.20 is executed, if X is less than

zero, control is transferred to line 1.8. If not, C is typed out.

3-6

o

* * *3.19 IF(B)1.8,1.9
*3.20 TYPE B

* *

Focal Commands

In the above example, if B is less than zero, control goes to line 1.8,

if B is equal to zero, control goes to line 1.9. If B is greater than

zero, control goes to the next statement (in this case, line 3.20), and

the value of B is typed.

In programs that require a keyboard response (as in Section 4.7 line

3.2), it is useful to determine if the answer by the user to an ASK

question is YES or NO. Alphabetic responses used with an IF statement

permit one of two possible commands to be executed, depending on the

user's answer. For example:

IF (answer-OYes)1.1,2.1,1.1

where answer is YES or NO, as typed by the user. The next command

depends on whether answer is YES (in which case, answer-OYES equals 0,

and line 2.1 is executed) or NO (producing a nonzero result and moving

program execution to line 1.1).

For example,

*1.1 TYPE "DO YOU WANT A LINE?",!
*1.2 ASK "TYPE YES OR NO",ANS,!
*1.3 IF (ANS-OYES) 2.1,2.2,2.1
*2.1 QUIT
*2.2 TYPE "-------------------",!
*2.3 GOTO 1.1
*GO
DO YOU WANT A LINE?
TYPE YES OR NO:YES

DO YOU WANT A LINE?
TYPE YES OR NO:NO

If a GOTO or an IF command is executed within a DO subroutine, two

actions are possible:

a. If a GOTO or IF command causes transfer to a line inside the

DO group, the remaining commands in that group are executed as in

any subroutine before returning to the command following the DO

command.

3-7

Focal Commands

b. If transfer is to a line outside the DO group, that line is

executed and control is returned to the command following the DO

command unless that line contains another GOTO or IF.

* *
*
*ERASE ALL
*1.1 TYPE "A"; SET X=-l; DO 3.1; TYPE "D"; DO 2
*1.2 DO 2.0
*2.1 TYPE "G"
*2.2 IF (X) 2.5,2.6,2.7
*2.5 TYPE "H"
*2.6 TYPE "I"
*2.7 TYPE "J"
*2.8 TYPE "K"
*2.9 TYPE % 2.01,X; TYPE" "; SET X=Xtl
*3.1 TYPE "B"; GOTO 5.1; TYPE "F"
*5.1 TYPE "C"
*5.2 TYPE "W"
*GO
ABCDGHIJK-l.0 GIJK 0.0 GJK 1.0 BCW*

* * * * *
3.10 RETURN

The RETURN command is used to exit from a DO subroutine. When a

RETURN command is encountered during execution of a DO subroutine,

the program exits from its subroutine status and returns to the com

mand following the DO command that initiated the subroutine status.

3.11 QUIT

A QUIT command causes the program to halt and return control to the

user. FOCAL types an asterisk and the user can type another command.

3.12 COMMENT

Beginning a command string with the letter C (except for COMMON) will

cause the remainder of that line to be ignored to allow insertion of

comments into the program. Such lines are skipped over when the pro

gram is executed, but are typed out by a WRITE command. A program

that is well documented with comments is more meaningful and easier

to understand than one without comments.

3.13 FOR

This command is used for convenience in setting up program loops and

iterations. The general format is

*FOR A=B,C,D; (COMMANDS)

3-8

o

Focal Commands

The identifier A is initialized to the value B. Then, the commands

following the semicolon up to the line terminator are executed. When

the commands have been executed, the value of A is incremented by C

and compared to the value of D. If A is less than or equal to D, the

commands after the semicolon are executed again. This process is re

peated until A is greater than D; then, FOCAL goes to the next sequen

tial line.

The identifier A must be a single variable. B,C, and D can be either

expressions, variables, or numbers. If a comma and the value Care

omitted, it is assumed that the increment is one. If C,D is omitted,

it is handled like a SET statement and no iteration is performed.

The computations involved in the FOR statement are done in floating

point arithmetic, and it may be necessary, in some circumstances to

account for this type of arithmetic computation.

Example 1 below is a simple example of how FOCAL executes a FOR com

mand. Example 2 shows the FOR command combined with a DO command.

Example l:

* *ERASE ALL
*3.11 SET A=383.383
*3.12 FOR B=20,10,70; TYPE ~7.03, "B IS " BfA,!
*60
B IS
B IS
B IS
B IS
B IS
B IS

* *
Example 2

*1.1
*1.2
*2.1
*2.2
*2.3
*3.1
*60

403.383
413.383
423.383
433.383
443.383
453.383

FOR X==1,2.9; [10
GOTO 3.1
TYPE ! " -i!5,
SET A==X+100.00
TYPE I " "~5,

QUIT

X 1
A 101
X 3
A 103
X 5
A 105
X 7
A 107
X 9
A 109*

2.0

"X" X

"A" A

3-9

Focal Commands

If two FOR statements are put on one line, the second FOR statement

is performed in full for each incrementation in the first FOR state

ment. Any number of FOR statements may appear on one line.

3.14 MODIFY

Frequently, only a few characters in a particular line require changes.

To facilitate this job, and to eliminate the need to replace the en

tire line, FOCAL has a MODIFY command. For example, to modify the

characters in line 5.41, the user types MODIFY 5.41 and then depresses

the RETURN key. The program then waits for the user to type the char

acter he wishes to modify. After the user has typed the search char

acter, the program types out the contents of that line until the search

character is typed.

At this point, the user has seven options:

a. Type in new characters in addition to the ones that have

already been typed out.

b. Type ALT MODE to continue the search to the next occurrence,

if any, of the same search character.

c. To change the search character, type CTRL BELL and the new

search character as at the beginning of the MODIFY command.

d. Use the RUBOUT key to delete one character to the left each

time RUBOUT is depressed.

e. Type a CTRL U to delete the line over to the left margin,

but not the line number.

f. Type carriage return to terminate the line at that point,

removing the text to the right.

g. Type a LINE FEED to save the remainder of the line.

3-10

o

Focal Commands

The MODIFY command is generally used only in immediate mode because it

returns to command mode upon completion.

During command input, CTRL U deletes the line numbers as well as the

text if the CTRL U is the right-most character on the line. However,

when using the MODIFY command the line number is not deleted by the

use of CTRL U. Note the error in line 7.01.

~

~

*7.01 JACK AND HILL WRNT UP THE GILL
*MODIFY 7.01
H JACK AND H\JRIll WR\EGNT UP THE G\H

ILL
*WRITE 7.01
07.01 JACK AND JILL WENT UP THE HILL

*ERASE ALL

* ~
To modify line 7.01, the user typed an H to indicate the character to

be changed. FOCAL stopped typing when it encountered the search

character H. The user typed the RUBOUT key to delete the H, and then

typed the correct letter, J. The user then typed the CTRL BELL key

followed by the R, the next character to be changed. The RUBOUT

deleted the R and the user typed E. Again a search was made (this

time for the G), and the G was changed to H. The user typed a line

feed to save the remainder of the line.

When the MODIFY command (or another command which alters the stored

indirect program) is used, the values in the user's symbol table

(except those defined as COMMON) are reset to zero. Therefore, if

the user defines his symbols in direct statements and then uses a

MODIFY command, the values of his symbols are erased and must be re

defined.

However, if the user defines his symbols by indirect statements prior

to using a MODIFY command, the values are not erased because these

symbols are not entered in the symbol table until the statements

defining them are executed.

In the following example, notice that the values of Y and Z were set

using direct statements. The use of the MODIFY command resets their

values to zero and lists them after the defined symbols:

3-11

Focal Conunands

*ERASE ALI...
*SET Z=9
*SET Y=8
U.1. SET X=::3
*1..2 SET W::::4
*1.3 TYPE W+X+Y+Z; TYPE!; TYPE $
*MODIFY 1..1.
S SET X::::5

X@(~ (O(» ::::

W@(~ (O(» :":

Y(~(~ (00) ::::

zr~)(() (O(» :":

* *

4
()

()

3.15 USING THE TRACE FEATURE

As noted in Section 2.10, the trace feature is useful in checking an

operating program. Those parts of the program which are enclosed in

question marks are printed out as they are executed.

In the following example, parts of three lines are printed.

* * *ERASE ALL
U.1 SET A=2
U.2 SET 8=5
U.3 SET C=3
*1.4 TYPE ~2, ?A+B-C?,!
*1.5 TYPE ?8+A/C?,!
*1.6 TYPE ?8-C?
*1.6 TYPE ?B-C/A?
*60
A+B-C 4
B+A/C 6
B-C/A 4*

*
Also, GO? will trace the program starting with the lowest numbered

line, provided no other question marks are present in the program.

3-12

o

Focal Commands

3.16 INTERNAL FUNCTIONS

The internal functions provide extended arithmetic capabilities. User

defined external functions are described in Chapter 6. A standard

function call consists of four letters, beginning with the letter F,

and followed by a parenthetical expression.

The following are the internal functions:

a. The square root function (FSQT) computes the square root of

the expression within parentheses.

* * *TYPE %,FSQT(43.489)
0.659461902E+Ol*

*TYPE FSQT(2.333)
0.152741612E+Ol*

*TYPE FSQT (371. 8)
0.609754049E+02*

* *
b, The absolute value function (FABS) outputs the absolute or

positive value of the number in parentheses.

* * *TYPE %, FABS(-394)
0.394000000E+03*

*TYPE FABS (""-.93)
0.930000000[+00*

*TYPE FABS(73)
0.730000000E+02*

* *
c. The sign part function (FSGN) outputs the sign part (+ or -)

of a number and the integer part becomes a 1. Zero is con

sidered a positive number.

* *TYPE %. FSGN(-283.3)
-0.100000000E+Ol*
HYPE FSGN(O.OO)

0.100000000E+Ol*
*TYPE FSGN(-0.38)
-0.100000000E+Ol*

*
* *
*

3-13

Focal Commands

d. The integer part function (FITR) outputs the integer part of

a number up to ±131071(217_1).

* * *TYPE %,FITR(- 34.8)
- 0 . 340000000E+02*
*TYPE FITRCO.73)

O.OOOOOOOOOE+OO*
*TYPE FITR(374.92)

0.374000000E+03*

* * *
e. The random number generator function (FRAN) computes a non

statistical pseudo-random number between -1 and +1 (most

numbers fall in the range 0 to +1.). Another random number

generator function (FRNO) is provided in the external function

file FNEW and is described in Section 6.2.

*
*
*TYPE %, FRAN()

0.719269147E- 02*
*TYPE FRANC)

0.549454402E-01*

* *
*

f. The exponential function (FEXP) computes e (e=2.718281) to

the power within parentheses.

*
* *
*TYPE Z, FEXP(27)

0.532048241E+12*
*TYPE FEXP(2.348)

0.104646196E+02*
*TYPE FEXP (0.374)

0.145353715E+01*

* * *
In floating-point format (%) you only get correct results for

FEXP(X) if 2300?X~-2302. If X is not between these limits the expon

ent of the result will not be between ± 999, and a colon will replace

its high order digits as described in Section 2.3.

Example:

T FEXP (2300)0.7538907IE+999

*T FEXP (2301)0.20492876E+:00

3-14

o

(.

()

Focal Commands

The 727 error message does not appear as it applies only to mantissas

with more than 35 binary bits (11 or 12 decimal digits) while the above

limitation relates to exponents, not mantissas.

g. The sine function (FSIN) calculates the sine of an angle

expressed in radians.

)I(

* *
*TYPE Z, FSINC3.10)

0.415806618E-01*
*TYPE FSINCO.278)

0.27443::.'<?86E+OO*
*TYPE FSINC1.272)

O. 9~:j!::j691 !::i07E+OO*

* *
FOCAL requires that angles be expressed in radians~ thus, to find a

function of an angle in degrees, the conversion factor n/180, must be

used. To find the sine of 10 degrees:

* *SET PI =3.14159; TYPE rSINC10*PI/180)
O· 1736 4D033E+OO*

h. The cosine function (FCOS) calculates the cosine of an angle

expressed in radians.

* *TYPE %. FCOSC2*PI)
O.100000000E+01*

*TYPE FCOS(.3628)
0.934?06 7B9E+OO*

>nYPE FeDS C j, .:37)
().19 9 44<17211::+00*

*
i. The arctangent function (FATN) calculates the angle in radians

the tangent of which is the argument within parentheses.

j .

tTYPE %. FATNC1.000)
(). 7B5~598164E+()O*

.TYPE FATNC23.44)
O.152816007E+01*

*TYPE FATNCO.728)
0.629271798E +00*

*
The logarithm function (FLOG) computes the natural logarithm

(loge) of the number within parentheses.

*TYPE %, FLOG(238.48467)
o t 547430!,)03E+OU

*TYPE FLDGCO.2876)
- 0.124618465E+Ol*
*TYPE Fl..DGC1.23)

O.207014169E+00*

3-15

o

•

CHAPTER 4

EXAMPLES OF FOCAL PROGRAMS

4.1 TABLE GENERATION USING FUNCTIONS

The ability to evaluate simple arithmetic expressions and to generate

values with the aid of internal functions is one of the first benefits

to be derived from learning the FOCAL language. In the example that

follows, a table of sine, natural logarithm, and exponential values

is generated for a series of arguments. As the user becomes more

familiar with these functions, he can easily combine them with stand

ard arithmetic operations and evaluate any given formula for a single

value or for a range of values.

In this example, line *1.01 outputs the desired column headings.

Line *1.10 is the loop to generate values for I, beginning with the

value 1.00000000 and continuing in increments of .00000010 through the

value 1.00000100; the DO 2.05 command at the end of this second line

causes the various functions to be executed for the I arguments. The

output format %9.08 in line 2.05 specifies that all output results up

to the next % symbol are to appear in fixed-point format with one digit

position to the left of the decimal point and eight digit positions

to the right; the second % symbol reverts the output mode back to

floating point for the remaining values FLOG and FEXP.Line 01.20

(optional) returns control to the user.

The following techniques are apparent in line *2.05 of this example:

a. FOCAL commands can be abbreviated to the first letter of the

command followed by a space, as shown by the use of T instead

of TYPE. This technique can be used to shorten command

strings.

b. Arguments can be enclosed in various ways. This feature is

useful in matching correctly when a number of enclosures

appear in a command.

c. Spaces can be inserted in an output format by enclosing the

appropriate number of spaces within quotation marks. This

procedure is recommended to improve the readability of the

output results.

d. The use of very small loop increments (in this example

.0000001) eliminates the need to interpolate between table

values of trigonometric functions. FOCAL is usually accur

ate to eight significant digits but rounding in certain cases

may place some uncertainty on the 8th place. Thus, the user,

in some circumstances, may need to account for the rounding.

4-1

Examples Of Focal Programs

*1.01 T" I SINE LOG
*1.10 FOR I=1,.0000001, 1 .000001; DO 2.05
*1.20 QUIT
*2.05 T %9 . 08,I,· ",FSINCI)," ",%,FLOG< I) • ",FEXPEIJ.l

*

I SINE LOG L
1.00000000 0.84147099 0.806929521E-10 0.27 1828183E+01
1.00000010 0.84147104 0.999785677[-07 0.27 1828210Et01
1.00000020 0.84147109 0.1998 76442[-06 0.271828237E+01
1.00000030 0.8 4147115 0.2997339 7 1E-06 0.271828264Et01
1.00000040
1.00000050
1.00000060
1.00000070

0.84147120 0.399631845[-06
0.84 147126 0.499529720[-06
0.84 14713 1 0 .599427595E-06
0.8414 7136 0.6992851 23[-0 6

0.271828292[t01
0.271827319Et01
0.271828346E+01
0.271828373[t01

1 . 00000080 0.84147142 0.799182998[-06 0.271828400[+01
1.00000090 0.84147147 0.899040526[-06 0.271828427[+01
1.00000100 0.84 147153 0.998978747[-06 0.271828454[+0 1

4.2 FORMULA EVALUATION FOR CIRCLES AND SPHERES

[" 1

In this example, FOCAL is used to calculate, label, and output geo

metric values for an indefinite number of radii typed in by the user.

Given a radius, R, FOCAL can calculate such values as:

a.

b.

c.

d.

e.

circle diameter: 2R

circle area: nR2

circle circumference: 2nR

sphere volume: 4nR 3/3

sphere surface area: 4nR2

Although inches are used in this example, conversions to other systems

(metric, for example) could be easily incorporated into the program,

without the need for hand-calculated conversions.

The program is very straightforward. ASK is used to allow the user to

type in the radius value to be used in the calculations. SET is used

to supply the value of n. TYPE is used for all calculations and out

put. If a value (e.g., nin this example) is to be entered once and

then used in repeated calculations, it should be entered by a SET

command which is outside the calculation loop; otherwise, the variable

must be set at the beginning of each pass through the loop. If the

value of the variable changes during each iteration, however, then it

must be calculated either by a SET or TYPE command within the loop.

The use of the GOTO command (line *1.50) results in an infinite loop

of lines *1.10 through *1.50. This technique is used when the number

of desired repetitions is not known. The looping process can be ter-

4-2

o

()

..

o

Examples Of Focal Programs

minated at any time by typing CTRL P. If, however, the number of

desired repetitions is known (e.g., 10), the following method can

be used.

:t.f..,ET PI""3 .1.4l~:)9
*:1. ,:I. (.l~:"< ,.,

* * !::L.6 TYPE I!! I !
*FDR I = 1,10; DO l

The ability to choose between these methods provides great flexibility

in actually running FOCAL programs •

~c FOCAL XVM V1AOOO
*1.01 SET PI=3.14l59
*:1..10 ASK" A RADIUS OF ·,R, ·INCHES"
* 1.20 TYPE %B. 04, I.' GENEF~ATE~; {., CIRCLE OF: ',!
*l •. :':!:J. TYPE " [lIAMETEI:~", 2*F~,' INCHES·,!
*1.30 TYPE· AREA", PI*R-2,' SQUARE INCHES',!
*1.31 TYPE· CIRCUMFERENCE", 2*PI*R,· INCHES·,!
* 1.40 TYPE I, ",;ND A SPHEF~E DF:·.!
U .47 TYPE" VOLUME". (4/3)*F·I*F~r·3,· CUBIC INCHES', I
*1.50 TYPE! I I I I; GOTD 1.1
~(GO

A RADIUS OF :26.39INCHES
GENERATES A CIRCLE OF:

D I t,r1ETEF~ :';i2 • 7800 I NCI .. tI::~:;
AREA 21B7.9041 SQUARE INCHES
CIRCUMFERENCE 165.8131 INCHES

AND ,; SPHEI~E OF:
VOLUME 769B5.053 CUBIC INCHES

A RADIUS OF :0.73INCHES
GENERATES A CIRCLE OF:

DIAMETER l.4600 INCHES
AREA :1..6742 SQUARE INCHES
CIRCUMFERENCE 4.5867 INCHES

(iND ,; ~:;PI"IEF(E OF:
l)OLI..JI'lE :1..6295 CUBIC INCHES

4.3 ONE-LINE FUNCTION PLOTTING

This example demonstrates the use of FOCAL to present, in graphic

form, some given function over a range of values. In this example,

the function used is

y=30+l5[sin(x)]e- O • 1X

4-3

Examples of Focal Programs

with x ranging from 0 to 15 in increments of .5. This damped sine

wave has many physical applications, especially in electronics and

mechanics (for example, in designing automobile shock absorbers).

In the actual coding of the example, the variables I and J were used

in place of x and y, respectively; any two variables could have been

used. The single line 1.10 contains a set of nested loops for I and

J. The J loop types spaces horizontally for the y coordinate of the

function; the I loop prints the * symbol and the carriage return and

line feeds for the x coordinate. The function itself is used as the

upper limit of the J loop, again showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any

desired function. Although the * symbol was used here, any legal

FOCAL character is acceptable.

*1.1 F I~O •• 5.15; T "*D,!; F J=O.30t15*FSINCI)*FEXPC-.1*I); T • •
*DO 1.1

*

* *
*

*

*

* * * *

*

*

*

* *

4-4

*

*

*

*

*

* * *

*

*

*

* * *

* * *

o

Examples Of Focal Programs

4.4 DEMONSTRATION DICE GAME

Occasionally, the computer user will apply the computer to tasks solely

for his own enjoyment. Because such pastimes are usually keyboard

oriented, FOCAL lends itself nicely to these ends. The following exam

ple uses the random number generator, FRAN (), to produce dice com

binations, as well as IF logic to check bets and winning combinations.

Note again the use of initials to abbreviate commands throughout the

example (remember that each such abbreviation must be followed by a

space) •

The random number generator must be modified for use with statistical

or simulation programs to achieve true randomness. However, it is

sufficiently random for most applications in its present form.

NOTE

DEC does not assume any responsibility for the
use of this routine or any similar routines.

C FOCAL XVM VIAOOO
01.10 S B=O;T ""DICE GAME"' ,"HOUSE LIMIT IS 51000"
01 • 13 T ". MIN. BET I ~3 51.00" I I

01.20 ASK "YOUR BET IS"A;I (1000-A) 3.10
01.22 I (A-1)3.40.1.26.1.26
01.26 IF (A-FITR(A»)3.50.1.30.3.50
01.30 ASK M;DO 2;SET D=C;DO 2;T • ";SET D=DtC
01.32 I (D-7)1.42,3.20,1.42
01.40 I (D-2)1.50.3.30.1.50
01.42 I (D-11)1.40,3.20.1.40
01.50 I (D-3) 1.60.3.30,1.60
01.60 ASK M;DO 2;S E=C;DO 2;T " ";S E=EtC
01.72 I (E-7) 1.74.3.30,1.74
01.74 I (E-D) 1.60.3.20.1.60
02.10 SET C=FITR(10*FABSCFRANC»));IF (C-6)2.20,2.20.2.10
02.20 I CC-l)2.10~T %1." "C; RETURN
03.10 T "HOUSE LIMITS ARE 51000" I I; G 1.20
03.20 ~:; B""B+A;T %6.0. '"YOU WIN. YOUI'~ l')INNINGf:; t'iI:~F ".D.II.G 1.;:'
03. 30 ~:; B""B"-A.-r %6.0. I" f:;ol:my YOU I",DE'I":. YOl.m WI NN ING!:; Al'n:' ". n, I I ; G 'I. :.:,'
03.40 T "MIN. BET IS 51"' I;G 1.2
03. ~,)O T "NO PENN IE!:;, PLEA!:;E" I I ; GOTO 1.::>'

4-5

Examples of Focal Programs

I1ICE GAME
HOUSE LIMIT IS $1000. MIN, BET IS $1.00

YOUR BET IS: .50
MIN. DET IS $1.

YOUR BET IS: 1 '" '"
"" f::" .
.J .,J .
"" '"

ro:o

'" YOU WIN. YOUI:~ WINNINGS AI'~E :1, ~.';

YOUR BET IS: ~j

0::-

'"
1::-

'" :
r::"

'"
l::'
"J

YOU WIN. YDUF~ WINNING~:; AI:;:E 20

YOUf(BET IS:3

0:.-
,,)

r,
",::.

YOU WIN. YDUI:~ WINNINGS AI:;:E

YOUR BET IS:l'LL QUIT WHILE I'M AHEAD. THANKSI

4.5 SIMULTANEOUS EQUATIONS AND MATRICES

Many disciplines use subscripted variables for vectors in one, two, or

more dimensions to store and manipulate data. A common use is the 2-

dimensional array or matrix for handling sets of simultaneous equations.

For example,

Given lX l + 2X 2 + 3X3 4

4X l + 3X2 + 2X 3 = 1

Find: The values of Xl' X2 , and X3 to satisfy all three equations

simultaneously.

The solution can be reduced to simple mathematics between the various

elements of the rows and columns until correct values of X are found.

Each individual quantity in an array is referred to in terms of its

position within the array. This identifier is a subscript. The

notation A(I) refers to element I of array A.

FOCAL uses only a single subscript. Thus, the handling of two or more

dimensions requires the generation of a linear subscript which repre

sents the correct position if it were stored in normal order, i.e.,

leftmost subscript moving fastest.

4-6

o

Examples of Focal Programs

In one dimension:

ARRAY (0)

(1)

(2)

(3)

(4)

In two dimensions:

A

B

C

D

E

For example:

Element D could be represented as

ARRAY (3); any element in this array

can be represented by a subscript in

the range 0 through 4. The first ele

ment in an array always has a subscript

of O.

ARRAY (row,column) or A(I,J)

This must be reduced to the form A(G). Because subscripts are lin

ear, G is a function of I and J; that is, A(I,J)=A(G). Consider the

diagram

I 0

1

2

3

4

J=

o
0

1

2

3

4

1 2

5 10

6 11

7 12

8 13

9 14

This array has five rows and three columns; thus, two values can be

defined:

IMAX 5

JMAX 3

To generate the number (G) in any box, using the corresponding values

of I and J, the formula

G=I+IMAX*J or A(G)=A(I+IMAX*J)

can be used. Each element in a 2-dimensional array represents an

area. The example for solving simultaneous equations, above, uses

this algorithm for subscripts, merely by replacing I, IMAX, and J

with J, L, and K, respectively, to form the equation

A (J+L*K)

In three dimensions

ARRAY (row,column,plane)=A(I,J,K)=A(G)

4-7

Examples of Focal Programs

Three dimensions can be illustrated as a rectangular solid.

K=O

~ 0

2 2

3 3

4 4

JaO 2

This rectangular solid has dimensions of five rows, three columns,

and four planes; thus, IMAX=5,JMAX=3, and KMAX=4. Each plane is

numbered exactly as in the 2-dimensional example, except 15 times

K (with K = the number of planes back from the first) is added to

each subscript in the first plane.

Example:

Upper lefthand square, back one plane from the first 15

I=Q,J=Q,K=1;I+(IMAX*J)+(IMAX*JMAX*K)=15=G

or

A(Q,Q,1)=A(15)

In four dimensions:

ARRAY (row,column,plane,cube)=A(I,J,K,L)=A(G)

Assign the values for IMAX, JMAX, KMAX; a method similar to the one

above yields

G=I+(IMAX*J)+(IMAX*JMAX*K)+(IMAX*J~~X*KMAX*L)

This process can theoretically be extended indefinitely to n-dimensions.

4-8

o

Examples of Focal Programs

C FOCAL XVM V1AOOO
01.02 TYPE '"ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X"'
01.04 ASK "ENTER DIMENSION OF A, THEN
01.05 TYPE "ENTER COEFF'S ACJ,K) ••• A(J,N> AND B(J)',
01.10 ASK L,';SET N=L-l; SET 1=-1
01.11 FOR K=O,N; SET RCK)=K+l
01.12 FOR J=O,N; TYPE'; FOR K=O,L; ASK ACJ+L*K)
01.14 SET M=lE-6
01.16 FOR J=O,N; FOR K=O,N; DO 4
01.17 SET R[Pl=O.
01.18 FOR K=O,L; SET A[P+L*Kl=A[P+L*Kl/M
01.20 FOR J=O,N; DO 5
01.22 SET 1=1+1
01.23 IF CI-N) 1.14, 1.26 , 1.14
01.26 FOR J=O,N; FOR K=O,N; DO 7
01.28 FOR K=O,N;TYPE 'X2,'XC'K,") ·,X8.05,X(K)
01.29 TYPE "; GoTo 1.02
04.05 IF (R{J» 0, 4.3, 4.1
04.10 IF (FABSCA(J+L*K» - FABS[M]) 4.3;
04.20 SET M=A(J+L*K)
04.22 SET P=J; SET Q=K
04.30 RETURN
05.10 IF (J-P) 5.2,5.4,5.2
05.20 SET D=A(J+L*Q)
05.30 FOR K=O,L; SET A{J+L*K)=A{JtL*K)-A{PtL*K>*D
05. 40 RETUF~N
07.10 IF (lE-6-FABS[A(JtL*K)]) 7.2; RETURN
07.20 SET X(K)=A(JtL*L)

ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X
ENTER DIMENSION OF A, THEN
ENTER COEFF'S A(J,K) ••• A(JyN) AND B(J)
:3

X(0)
X (1)

X(2)

o + 2~500()

1.75000
o. 7~5000

ROUTINE TO SOLVE MATRIX EQ. AX=B FOR X
ENTER DIMENSION OF A, THEN
ENTER COEFF'S A(J,K) ••• A(J,N) AND B(J)
:3

X(0)
X (1)

X(2)

~j. OO()()O
4.00000
1 • ~:)OOOO

4-9

Examples of Focal Programs

4.6 INTEREST PAYMENT PROGRAM

This is an example of a business-oriented FOCAL program. It is desig

ned to completely describe the payments to be made on a loan, with

interest, on an installment plan basis.

Under program control, the computer requests as input the amount of a

loan, the percentage of interest on that loan, and the length of time

over which the loan is to be paid. The computer than calculates and

types the amount of monthly payments to be paid, the total amount of

interest to be paid, and a table showing interest paid, amount applied

to principal, and balance due after each payment.

C FOCAL XVM V1AOOO
01 + 02 TYPE I I, %7.0::'.
01.20 TYPE" THIS PROGRAM WILL COMPUTE MONTHLY PAYMENTS AND THE"
01+21 TYPE" CONTRIBUTION OF EACH"
01.22 TYPE I 'PAYMENT TO INTEREST AND PRINCIPAL. PLEASE ANSWER THE"
01.23 TYPE" FOLLOWING:"?! I
01.:30 A!3K "',.JHtIT I!:) THE (lhOUi··1T OF THE PF~INCIP(:ii .. "''' PF~INCIP(l!...

01.31 ASK "WHAT IS THE RATE OF INTEREST"'" INTEREST
01.32 ASK "WHAT IS THE TERh OF THE LOAN IN MONTHS?" TERM
01.33 TYPE I I

01.40 SET D=1t({INTEREST/12>*.01)
01.41 FOR A=1.1.TERM; DO 1S.99
01.42 !3ET C"'PF~:;:NCIF(lL/.F{

OS+01 SET BALANCE~PRINCIPAl.
05.02 TYPE "PRINCIPAL"
05.03 TYPE PRINCIPAL; TYPE"
05.04 TYPE "PAYMENTS"; TYPE C; TYPE
OS.OS TYPE· PAYMENT"; TYPE"
OS.06 TYPE "INTEREST"; TYPE"
OS.07 TYPE "PRINCIPAL"; TYPE·

I I I

05.08 TYPE "BALANCE"; TYPE"
06.01 FOR M=1,1.TERM; DO 7.00

"; TYPE

06.02 TYPE I I !; ·fYPE "
06.03 TYPE "TOTAL INTEREST",%6.02
06.04 TYPE TOT INTEREST
06.0!"j TYPE I I I

06.06 G()TO :1.02

II ., •

07.0:1 SET CINTEREST=BALANCE*(INTEREST/l::'.)*.01
07.0::'. SET TOTINTEREST=10TINTEREST t CINTEREST
07.03 SET CPRINCIPAL=C-CINTEREST
07.04 SET BALANCE=BALANCE-CPRINCIPAL
07.0S TYPE %7.02,h.%14.02
07+07 TYPE CINTEREST,CPRINCIPAL.BALANCE, I

15.99 SET B=Bt(1/{D>~A)

THIS PROGRAh WILL COMPUTE MONTHLY PAYMENTS AND THE CONTRIBUTION OF
EACH PAYMENT TO INTEREST AND PRINCIPAL. PLEASE ANSWER THE FOLLOWING:

WHAT IS THE AMOUNT OF THE PRINCIPAL?:2000
WHAT IS THE RATE OF INTEREST?:6.4
WHAT IS THE TERM OF THE LOAN IN MONTHS"':1::'.

PRINCIPAL 2000.00 PAYr1ENT~:) 1."72 + ~::.iO

4-10

"

PAYMENT
1.()()
2.00
3.()0
4.00
~;j <- 00
6.0()
'7 . 0()
O.()O
r,' • 00

:l (). O()
:1.:1.00
12.00

Examples of Focal Programs

INTEF~EGT

10.6'7
9.DO
B.94
B.06
'7.19
6.31
~.'i. 42
4. ~5:'5
3.63
2.7:'5
:I. • f:l ::~
O. (12

TOTAL INTEF<E!3T

PI:;:INC I PAl...
16:1. .134
1 (',2.70
163.~.)'1

164.44
165.:32
1M,.20
:L67.00
167.97
:1.6,8.137
:l69. '7'7
:L 70.613
171.~5(1

70.0:1.

4.7 INTERCEPT AND PLOT OF TWO FUNCTIONS

BALANCE
:1.13 :3 f:l • :1. '1
:L675.47
:I ~:):I. :1. • ('Y 0
:1.:347.47
:L :LO::!. :I.~)

:1.01~5.%

0413.B7
6BO.90
512.03
342.26
:L 71.5(1

0.00

Values are first computed and printed for two monotonic functions.

Then these curves are plotted within specified limits. Non-monotonic

functions must be plotted using the method of residuals.

C FOCAL XVH V1AOOO
01..()1 T /.8.04
01.02 ASK "LOWER LIMIT",LL,' "UPPER LIHIT",UL, , "INCREHENT",IN, I

01.10 SET Yl=O; SET Y2=O;
01..20 FOR X=LL,IN,UL; SET Yl=-X-3; SET Y2=3t4*X- X-2; DO 2.0
02.10 IF (Y2-Yl) 2.3,2.2,2.3
02.20 TYPE "THE POINT OF INTERSECTION IS ""
02.30 TYPE "Xl:",X," ","Yl=",Yl, ',"X2=",X," ","Y2=",Y2,"
03.10 TYPE "DO YOU WANT A PLOT?"
03.20 A!:11\ "(TYPE Y FOF~ YES + TYPE N FOF~ NO) ", AN, , ,
03.30 IF (AN-OY)9.1,4.1,9.1
04.10 FOR X=LLyIN,UL; DO 5.0
05.01 IF (X) 5.1.5.02y5.1
O~j. 02 TYPE • Y ••••• , ••• + • + •••••••••••••••••••••••••••• Y" , t
05.10 FOR Y=O.30; TYPE· •
05.20 TYPE ",n.t
05.30 FOR Y=O.30t(-X-3); TYPE
05.40 TYPE "*",t
05.50 FOR Y=0.30t(3+4*X-X~2); TYPE
0:'5.60 TYPE "*".,
09.:1. () CHJIT

4-11

Examples of Focal Programs

*GO
L.OWEf~ LIMIT: ··· lO

UF'F' Ef~ LIMIT: lO

INCRE~1ENT: 1

Xl ::::-' lO.OOOO Y:t.:::: 7.00()O
X2= ··· lO.O()()O Y2::::···· :tT? ,OO O()

Xl ::::"· 9.0000 Y1:::: 6.0000
X2::: ·· 9.0000 Y2::::···· :1. :I. 4.0000

Xl. ::: ..• 8.00()O Yl. :::: :~;. O()OO
X 2 :::·'· 8.0000 Y? ::::···· 93.00()O

Xl ::::'·' ?OOOO Y:I. :::: 4.0()OO
X2 ::: ···· 7.()00O Y2::::···· 74.000()

X 1:::·- 6.0000 Yl:::: 3.0000
X2:::···· 6.0000 Y2::::···· ::.:;-; ' • 0000

Xl =·- 5.0000 Yl. :::: ?O()OO
X2=- 5. ()O()() Y2=·- 4 2 .0()()O

Xl :::: 4.0()()0 Yl.:::: :1 . • O()OO
X2::: 4. ()()()() Y2= ?9.0000

Xl:::: 3.()OOO Y:I.:::: 0.0000
X 2=::"" :3.00()O Y2 :::: If.l.OO()O

Xl "::.- 2.0000 Yl :::: ... 1 .0000
X2 :::: 2.000() Y2 :::: CJ . O()O O

THE POINT OF INTERSECTION IS
Xl =- l..OOOO Yl=- ?OOOO
X2=- :t..OOOO Y? =- ?OOOO

Xl:::: O,OO()() Y:I. :::: :,':1,0000
X2= O.O()OO Y2=:: 3.0000

Xl:::: :t. .()OOO Yl:::: 4.00()()
X2:::: 1 .OO()() y;?:::: 6.0()OO

Xl ,,:: 2.0000 Y1:::: ~,:;, 0000
X2::: 2.0()O() Y?:::: "'J .O() O() I

Xl:::: :,'~ • 000 () Y:I. :::: 6,OO()()
X2:::: :·' .O()OO '(2:::: 6,0000 ~

Xl:::: 4,()()()O yl:::: '7 ,O ()()O
X;.~::: 4. ()()()O Y2:::: :·} .OOO O

Xl:::: :::;.O()()O 'i1:::: 0.0000
X;:'>:::' ~.:; • 0000 Y2 :::: 2.()O()O

Xl :::: 6.00()() y1::" ?O()()()
X2":: 6.0()O() y;?::" 9.0000

Xl"" ?OO()O y:I.:::: lO.O()()()
X2=" .. , .O()OO Y2:::: 1G,OO()() /

4-12

•

Examples of Focal Programs

Xl ,,: 8.00()() Y:I.:::: ·"· I.I.OOOO
X2"" 8.0()O() Y 2:::: "" ::'.9.000()

X 1. :::: <f.O()()O YI. ::::"- 12. ()()()O
X2"7. 9.000() Y2::::·- 42.()OOO

Xl I::: 1.0. ()()OO Y:I.::::"" :1.:3 • O()OO
X2= IO.()()()() Y2::::"" ~)? • O()OO

Xl:::: 11.00()() Yl ::::-.. :L3.0()()()
X2= 1.1..00()() Y 2:::: " .. ~.)? 0000

DO YOU WANT A PLOT?(T¥PE Y FOR YES. TYPE N FOR NO) :Y

* * * *
* *
*

* * * *

*

* . * .*
* * *. * .

*

* * *

y •••••••••••••••• * * Y

* * * * * * * . *
* * * * * * * * *

4.8 SCHROEDINGER EQUATION SOLVER

This program is designed to aid the user in searching for possible

energy-states of an electron in a potential well. This is one of the

most compex equations yet written in FOCAL. It calculates and plots

the energy levels of an electron within specified boundary conditions.

C FOCAL XVM V1A000
01 01 T ' ." SCH~: (iE[O I NCiEf;: EG~'-'FIT I ON SOL\"EF: _."., '
01. 02 T ' ., " -[:'ELSG~'-'FtPEC' F'S I + FI:': :t: P::; I :: E :+: PS I "., ' ,
O~ 0:: A " T I L TED SG'UAPE ~<IELL Pf':OE:LEM ~"ITH ~,~ I C'HI" ., :« 1 .. '
1~11. 0::: A "~'4E L L TI LT SLOPE FI" ., F11 ., " "TI;: I FIL. ENE~:(;'T' E" ., E:1,. ,
01.09 A "NUt'1E:EF: OF STU'S"., NT ., '
01. 11 S VF=0; S SL=l
01 70 S P (0) =0, S DX=XO/NT; S P (1) =SL:+:[OX; S PO=0
(11 . 75 .:' t,/F=(1
1~1 1. :::0 :; p(1=e
01 . 90 F N=e, 1 , NT-2; D 6
til 9 : T ' ., " PS I ZEF:OS" :.;;2 . I). PI;1
1211 . 95 GOTO 7 . 02

4-13

Examples of Focal Programs

05. 10 T I., ~.;::;:. ~), p:.:., " P~; I "., ~';., P (F':':)., ". "
~)5. 20 ::' PZ=F I H::: Pt'1*SC).; S PE=:F I TP{': P(P:':]+Pt1) *::;C>
05. 3:0 F ::<=1 .. 1 ., PZ-1.; T " "
~j5. 4~~1 T " . "., #.; F ::<=1.,1 .. , F'E+;;::.:L T " "
~;15. 5~;1 TII:+:".i ~~

06.10 S P(N+2)=«-B1+A1*DX*[N+1J)*DX~2+2>*P(N+1)-P(N)
06.20 I (NT-N-2) 12.90.6.9.6.}
06. 3:0 S F:E:=F' (N+2) *F' (N+1).; I .: F:E:) 0:;. 4. 6. 4. 0:;. 9
06. 40 S F'0=F'0+1; P
~J6. 90 CO/HINUE
(17 .
~J7.

02
05

S CF=(F'(NT>/F'<1»~2; T" CONY IND"%. CF
A" ND~ E '~'" N'T'
I (NY-9) 7 . 9.7.08.7. 9

07. 08 I (VF) 7. 09. 7. 8. 7. 09
07.09 I (CF-100) 7.1.7.1.7. 8

(17. ~)7

~j7. 10 S F:2=F' <tH) :t:',iF,; I (F:2) 7'. 7:1: " 7, :::0. 7, ::::;
07. 73 S 08=-0. 5*DB; GOTO 7. 85
(17. ::a~1 S 08=(1. 1
07. :::5 S E:1=E:1:t: (1-+(:OE:).; T E:1; :.=; ',iF (NT).; G 1. :::(1
07 90 DO 14; GOTO 12. 01
12. 01 T I ., I " "E I GEN E" E:l.; ~; HF'=:E:1,··' (FI1.:.:::<(1)
12. 20 T" EN,··· t'1FI:x: F'OT" HF' ., I

:12. 9~~1 C~UIT

14.10 S F'M=(1; S F'F'=(1; F PX=1.1.NT; D 15
14. 20 S PS=F'M+F'F'; S SC=45/PS
14. 3:0 T '! I.; F F'::<=L 1., 7(1.; T ". "
14.40 F F'X=0.1 . NT; D 5
14. 50 T ,; F P::<=1., L 7(1.; T ". "
14. 6(1 T I J .; P
15.10 I (F'(PX]) 15.2 .. 15.9.15.5
15.20 I (F'M+F'(PX» 15.3.15.4.15. 4
15.30 S F'M=FABS(F'(F'X])
15. 40 PETUPN
15.50 I (P(PX>-PP) 15.9.15. 9.15. 6
15. 60 S PP=P'; P::-:)
15. 9(1 F:ETUF.:N

:+:130

SCHROEDINGER EQUATION SOLVEP -

-DELSQUAPED PSI -I- AX * PSI = E * PSI

TILTED SQUARE WELL PROBLEM WITH WIDTH 1

WELL TILT SLOPE A: 40

TRIAL ENERGY E . 50

NUMBER OF STEPS : 15

PSI ZEROS 1 CONY IND 0.501}26462E+01 NEW E?Y

4-14

Examples of Focal Programs

o PSI 0. 000000000E+00.
1 PSI 0. 666666667E-01.
2 PSI 0. 119308642E+00.
3 PSI 0. 148265643E+00.
4 PSI 0. 149546390E+00.
5 PSI 0. 124684213E+00.
6 PSI 0. 795031267E-01.
7 PSI 0. 223082351E-01.
8 PSI-0. 379932849E-01.
9 PSI-0. 934541789E-01.

10 PSI-0. 138115924E+00. *
11 PSI-0. 168454535E+00. *
12 PSI-0. 183320286E+00~
13 PSI-0. 183520414E+00~
14 PSI-0. 171213965E+00. *
15 PSI-0. 149268805E+00. *

*

EIGEN E 0. 500000000E+02 EN/MAX POT 0. 125000000E+01

4-15

*
*

*
*

*
*

*

•

•

CHAPTER 5

LIBRARY COMMANDS

FOCAL LIBRARY commands allow the user to save and then call programs

by name. These commands cause files consistent with the XVM/DOS file

format to be produced and accepted. These files, which use lOPS ASCII

data mode, can be manipulated by other XVM/DOS programs such as PIP

and EDITOR. In addition to the library commands, a COMMON command and

an ERASE COMMON command are available. These commands allow the effec

tive segmentation (chaining) of FOCAL programs, with the COMMON area

defining those variables which are to be used by all segments.

5.1 LIBRARY OUTPUT COMMANDS

Three operations are required to produce a file with the FOCAL library

commands:

a. File initialization

b. File output

c. File termination

5.1.1 Library File Initialization

The command

* *LIBRARY OUT NAME

*
initializes a file' on the output device associated with .DAT slot 5.

If the device is directoried (i.e., has named files), then the file

name NAME is used. NAME can be up to six alphanumeric characters

and is terminated by a carriage return. The extension FCL is supplied

by the system.

5.1.2 Library File Output Operations

Commands of the form

*
*LIBRARY WRITE nnn
*

cause information to be entered into the library file. The character

string nnn can take four forms which are explained below.

5.1.2.1 Direct Command Output

If the character string nnn, in the example above, begins with quo

tation marks ("), the command indicates that the character string

following the quotation marks is to be inserted into the file. This

character string may be any FOCAL command.

5-1

Library Commands

For example, the command here is an *, a FOCAL symbol typed by the

user to signal termination of input from the device associated with

.DAT slot 3.

* *LIBRARY WRITE "*; GO

*
causes the command

to be inserted into the library file as a direct command. This will

start the program when the file is later called for execution by a

library input command.

5.1.2.2 Single Line Output

If the character string nnn is a legal line number which is present in

the program in core, this command causes a single line to be inserted

into the file. For example, the command

* *LIBRARY WRITE 10.02

*
causes line 10.02 to be inserted into the currently opened output file.

5.1.2.3 Group Output

If the character string nnn is a legal group number, this command

causes the entire group of lines to be inserted into the file. For

example, the command

*
*LI8RARY WRITE 2 00

causes all group 2 lines to be inserted into the current output file.

5.1.2.4 Program Output

If the character string nnn is ALL or A, then the entire indirect pro

gram is inserted into the current output file.

5.1.3 Library File Termination

After using the appropriate library output commands, it is necessary

to issue the command

*LI8RARY CLOSE

to complete file output and enter the file name into the directory

5-2

Library Commands

of the mass storage unit of the system. The LIBRARY CLOSE command

allows an input or output file to be closed. An error message "?35"

will be printed if a file has not be opened. If the LIBRARY CLOSE

command is not issued, the user remains in library mode and all other

commands are illegal. However, to leave library mode without actually

finishing the output file, the command

*
*
*L I E: F.: A F.:'T' f< ILL

is used. After using this command, the user is in command mode, and

the file which had been started by the library output commands is

lost.

5.2 LIBRARY INPUT COMMANDS

To load a library file which has been output from FOCAL or which has

been prepared off-line, the command

*
* *LIE:RARY IN NAME

is used where NAME follows the conventions used for library output.

The library input from the device associated with .DAT slot 3 is ter

minated by an end of file or end of tape condition on the input file.

It is also terminated by the presence of a direct command of asterisk

(*), supplied during a LIBRARY WRITE command within the library file.

If none of these three conditions occurs, FOCAL assumes that subsequent

input (e.g., for ASK command) will corne from the device associated

with .DAT slot 3. This direct command can be a multiple command

which can provide automatic program starting. For example, a direct

command to terminate input and to start a program at line number 8.21

would be

. .;,

*
"".; GOTO :::. 21

This command can be inserted at the end of the library output by the

command

,t,

""
LIBRARY WRITE "; GOTO 8. 21

5-3

Library Commands

5.3 LIBRARY .DAT SLOT USAGE

The FOCAL LIBRARY commands assume input on .DAT slot 3 and output on

.DAT slot 5, and the FOCAL DATA commands assume input on .DAT slot 7

and output on .DAT slot 10. The recommended assignment to the Linking

Loader is the System Library located on system disk unit O.

The following table shows a typical set of device assignments where

the system software is on disk pack unit 0, input is from DECtape

unit 1 and output is to DECtape unit 2.

.DAT Slot Contents SamQle Assignment

.DAT -1 System Library DPO

.DAT -4 FOCAL binary program DPO
plus FNEW binary

.DAT 3 FOCAL library input DTI

.DAT 5 FOCAL library output DT2

.DAT 7 FOCAL data input DTl

.DAT 10 FOCAL data output DT2

FOCAL data commands are described in Chapter 7, and .DAT slot assign

ments are again summarized in Appendix E.

5.4 COMMON VARIABLES AND ARRAYS

The COMMON command allows the user to define permanent FOCAL variables

and arrays which are saved with their current values when the user

modifies the stored indirect program. Thus, the caution at the MOD

IFY command (refer to Section 3.14) does not apply to COMMON variables.

The COMMON command is legal only if no other variables have been de

fined in the symbol table. Thus, it is good programming practice to

precede a COMMON definition by an ERASE command to clear the symbol

table. If any non-COMMON variables have been defined when the COMMON

command is executed, it will be treated as a COMMENT and ignored.

5.4.1 COMMON Format

Three types of variables can be defined in a COMMON command as the

following example shows.

""
*
:+:COt-lI'10N 11 .. E: 0:: 5 :' ., (C .. L L J:::-

The first variable, A, defines a single non-subscripted variable. The

second variable, B(5), defines a single array element to be COMMON.

All other elements of the array B are non-COMMON. The third variable

(C.l.I.3) defines a series of array elements as COMMON by using a

5-4

Library Commands

notation similar to the FOR statement. Thus, the command

* *COMMON (C,1,1.5)

*
is equivalent to the command

*'
*' *CONt'10N C(1) .. C(2).· C(]:) .. (:(4) .. (:(5)

but much shorter. Note that, because COMMON and COMMENT both have the

initial letter C, the COMMON command must not be abbreviated.

5.4.2 ERASE COMMON Command

The ERASE COMMON command must be used to clear the COMMON area if a

user wishes to define a completely new COMMON area. It will clear

both the COMMON area and all variables in the symbol table, but not

the program itself. If, however, the user simply wants to add to the

current COMMON area, it is only necessary to erase any non-COMMON

variables by using ERASE. The ERASE ALL command has no effect on the

COMMON area variables and does not change their values.

5.5 CHAINING OF FOCAL PROGRAMS

For FOCAL programs that exceed the capacity of user's core memory, it

is possible to segment the program. By combining the library input

and COMMON commands, one segment can call another by name. ALL COM

MON variables are retained in core memory for access to them from

all segments of the program. New COMMON variables can be added to

the permanent table from any segment. The command LIBRARY IN NAME

brings in the next segment to core memory and provides access to the

COMMON table for the operations in this segment of the program.

NOTE

Ensure that a segment does not exceed its alloted
memory location or the overflow will begin to
erase the compiler core.

The following example shows three FOCAL segments and the operations

required to provide the segments with linkage capability. The first

segment, named CH1, defines a COMMON area and initializes the varia

bles. If CHl is called again, it checks for the values in the second

part of the COMMON area which were defined in CH2 and QUITS. The

second-segment, CH2 defines more COMMON variables, checks the original

COMMON values created in CH1, and initializes the additional COMMON

variables. The third segment checks all the COMMON values and calls

the first segment again.

5-5

Library Commands

*WRITE

C FOCAL XVM ~lA000
01.05 TYPE "CH1 READY·,
01. H3 COMMON A., 8, C, (AE:C, 1. 5)
01.20 IF (A) 20.1,1.3,20.1
01. 30 SET A=l
01. 40 SET 8=2; SET C=3
01. %} FO~: X=1. 5.; SET AE:C (:.:) =:·: :.:113
~31. 55 T'T'PE "CHi NINE CALLI NI3 CH2·., !
01.60 LIBRARY IN CH2
20 . 10 IF (0-10) 20.2,20.],20. 2
2~3 . 20 T'T'PE "CIJt1t10N E~:~:(lR ON 2N[;o CAL.L OF CH1", !
2~3. 30 T'T'PE "ALL DONE", ,; G~ U IT

*LIBRARY OUT CHi
*LIBRARY WRITE "ERASE ALL
*LI BRAR'T' WI<: I 11::. f"il L
:.'L I BRA":'T' WI': I T E ":.:; 130

*

*HRITE ALL

C FOCAL XVM V1A000
~::11. 1~::1 P,'PE "CH2 I<:EAC,'T'''., !
01.20 COMMON Q, (ABC,5,1,10)
01.30 FOR X=6,10; S ABC(X)=X*10
01.40 FOR X=l, 10; DO 25.0
01.50 IF (A+B+C-6) 1.6,1. 7,1. 6
01 . 60 TYPE "CH2 COMMON ERROR - SUM = ",A+B+C,
01 . 70 TYPE "CH2 DONE
81. 80 LIBRARY IN CH3

CALL I NI3 CHJ: N., !

25. 10 IF CABC(X)-10*X) 25. 2,25. 3,25.2
25. 20 TYPE "ERROR AT X = ",X," ABC ARRAY = ",ABC (X), I

25. 3:~::1 I<:ETUI<:N

*LIBRARY OUT CH2
*LIBRARY WRITE "ERASE ALL
*LIBRARY WRITE ALL
LIBRARY WRITE "; 130
*L I B~:AR'T' CLOSE
*

*WRITE ALL

C FOCAL XVM V1A000
01. 10 TYPE "CH] READY",
01.20 FOR X=l, 10; DO 25.0
01. 3:(1 SET G~=l(1

~31 . 4~3 T','PE 10 CH3: C'ONE CALl. I NCi CHl AI3A IN"., I

01 . 50 LIBRARY IN CHl
25. 10 IF CABCCX)-10*X) 25.2,25. 3, 25. 2
25. 2(1 T','PE 10 E F:I<: 01<: AT :x: "., :X: ., " AE:C AI<: ~:A'T' = "., AE:C (:X:)., !
25. 3:(1 I<:ETURN

5-6

Listing
of CHl

Library
Output
of CHl

Listing
of CH2

Library
Output
of CH2

Listing
of CH3

•

Library Commands

*lI8RARY OUT CHJ
*lIBRARY WRITE "ERASE 1 . 00
*lIBRARY WRITE 1 . 00
lIBRARY WRITE "; GO
*l I E:I':AI':'T' CLOSE
*

BFOCAl XVM V1A000
*ERASE COm'lON
*l 181':AR'T' IN CH1

CHi I':EACo'T'
CH1 [)ONE CALLING CH2
CH2 REACo'T'
CH2 C'ONE CALL I NG (:H3:
CH]: REACo'T'
CH3: CoONE CALLING (:Hi AGAIN
CH1 I':EAC,'T'
All CoONE
*T'T'PE f.
A 11'11' «(10) =
811'11' (0(1) =
CI]lI]I (OO)=
A8C «(11)=
A8C(02)=
A8(:«(1})=
A8C(134)=

1. (1(1(1(1
2 . 0(11)(1
] :. (1(11)(1

1(1. (1(1(11)
20. (1(11;11;1
3:0 . 1)(1(11)
4 O. (1 (11;11;1

A8(: (05)= 50. 0000
Q@@(OO) = 10. 0000
A8(: (06)= 60. 0000
A8(:(07)= 70. 0000
A8(: (08)= 80. 0000
A8(: (09)= 90. 0000
A8(:(10)= 100. 0000

*

5-7

Library
Output
of CH3

Library
Input and
Execution of
Chained Pro
grams CHI,
CH2 and CH3

Dump of
COMMON
Symbols

•

CHAPTER 6

USER DEFINED FOCAL FUNCTIONS

The ability to write FOCAL functions in MACRO assembly language and

subsequently interface these functions with the FOCAL interpreter is

an important feature which allows real-time use of FOCAL. These func

tions are processed in the same way as the normal internal functions

supplied with the interpreter (i.e., FSIN,FITR,etc.). Some external

functions are provided in the FNEW file (Refer to Section 6.2). User

defined functions can be incorporated into the source file of FNEW

and then reassembled by MACRO. The process is described in the XVM/

DOS System Installation Guide. The interface of external functions is

accomplished by:

a. Use of a function table which contains the three letter

function name in .SIXBT (6-bit ASCII) and a jump to the

function processor.

b. Use of .GLOBL definitions which allow the function pro

cessors to use character processing and expression eval

uation routines which are in the interpreter.

The following detailed example shows the operations necessary to

write an external FOCAL function in MACRO assembler language and to

merge it into the external function file, FNEW, described in Sec

tion 6.2.

6.1 EXAMPLE

A scope routine has been generated to display characters at a given

point on a scope. This routine is called from FOCAL as a function by

XYC (X,Y,SHOW). Here, X and Yare expressions to be used as display

coordinates for the start of SHOW.

First, the function name and transfer instruction must be added to

the .NEWF function table within FNEW. Refer to page 6-6.

.SIXBT

J~

/XYC/

SETXYC

When control arrives at SETXYC, the X has already been evaluated.

SETXYC JMS*

DXL

.AX

6-1

/make 18 bits

/set X coordinate

User Defined Focal Functions

Now, check for the second argument and give an error if no second

argument is given.

JMS*
SAD
JMP
.DEC
LAW
.OCT
JMP*

Move past the separating comma.

JMS*

Evaluate the second argument.

LAC

DAC
JMS*
XX

XSPNOR
(254

+3

1

FUNERR

UTRA

EVAL

+2
XPUSHJ

/skip spaces
/is it a comma?
/yes

/?Ol error

/function error

/address of evaluation
routine

The second argument must be made into an lS-bit quantity and the y

coordinate set:

Test for a

JMS*
DYL

comma~

JMS*
SAD
JMP
.DEC
LAW
.OCT
JMP*
JMS*

if present,

.AX

bypass it to get to the character string.

XSPNOR /skip spaces
(254 lis it comma?
+3 /yes

1 /?Ol error

FUNERR /error return
UTRA /skip comma

Now, pick up the single ASCII characters and display them. (This

example assumes the character display routine is called DYCHAR.):

DCLOOP LAC *
JMS
JMS*
SAD
JMP*
JMP

CHAR
DYCHAR
UTRA
(251
EFUN3
DCLOOP

6-2

/get character
/display it
/get next char
lis it end?
/yes-return
/no-go display next

character

..

User Defined Focal Functions

6.2 FILE FNEW

The following functions are supplied in FNEW (where N cannot be

another function):

FUNCTION

FDXS(N) Set
FDIS (M) Set

MEANING

the x coordinate of the 34H display
the y coordinate of the 34H display
and itensify the point

FDXY(N,M) Set the x and y coordinates and intensify.
the multiplexer of the A/D converter

and perform one conversion
FADC (N)

FDAC (N)

Set

Set the D/A converter to the specified
value.

FRLE(N,M) If N=-l, clear the relay buffer (M should
not be specified)

FRND(N)

If N=O to 17, set the appropriate bit of
relay buffer according to the value
of M(O or 1).

Start a sequence of random numbers in the
range of -1.0 less than or equal N
less than or equal +1.0 based on the
value of N. The value N may be any
valid arithmetic expression. FRND
always generates the same number for
the same value of N. If N is either
o or L....I (a space), a random number
will be generated based upon the
previously generated number. The
first time FRND is called, if with a
o or L....I argument, it produces a value
of 1.0000.

The following points should be noted:

1, Other names for the 34H display are the RM503 Scope or the

VP15E Scope.

2. The proper way to use these functions is as follows:

SET J FDXY (N,M)

(What J will be set to is immaterial, and other letters

may be used in place of J.) You cannot use:

FDXY (N,M)

3. The 34H display is a refresh-type scope. This fact, combined

with the time it takes to interpret and execute the graphics

functions, limits them to a maximum of 75-100 points on the

screen, before the first point put out begins to diappear.

Hence, they are suitable for putting out graphs consisting

of a set of points. They are not suitable for putting out

"continuous line" drawings, in which many points spaced close

together look like a continuous line.

6-3

User Defined Focal Functions

The functions are supplied to provide the user with additional exam

ples in the method of coding external functions.

The listing that follows is representative of the source code in the

file FNEW is supplied by DEC but may not exactly match what is avail

able •

. /

/D()'v'E i...EN::: ·(

,... EDIT O(){~

v GL. .nf:L.. /.F;'U~:)H ..l
.. Gi ... UE-; I... l<;:"U~:;;·-:{.1

.:. Ci i ... Cj :c.; L. F' D ::.::

.. GLUF{L F L;i\!i:::F.:F;~
;::·:;: ... l ::iI:~ L.. i:::r:' UN:'::)

~. Ci i ... C) B i... 1'" 1\1 ,

~ Cii...ChL. C d {:: ;::~

.~ ;3 LC)f·:L. Ei)()! ...

,. t~l: . D ~:,:.: ~

,. C;I .U:C';i ..
... L •.. U:C.;L. ~. H L ..

i , r ,'. ,' .1. <'!' . j '!

r:

i-- t-"iUi ... ·::,:) I,) !.. .. = : I

~:: n I i .. ,.l:: ii(;<j() : '.

r: (.! f) i:;~ ;;:: ? 0 <> () C 0

,/

~ .. { I C:.
DHC

:'.) (,i...

./ I::' l ... t ~::: ;"1 ',." .,: i'I, "

• ' " :;. : ' -' I •

.,/i: '· . ", :' J

.. ::~H 'r HE:: H(~;:~ Dt"I(:·Jr;.:E (iCCij('-iUL (:: 'r t::!F: (F>t.!';::: H (:'; j

~.1 r-.'! ::::. ?i< >< F' U ~:~ H {:i

I,"
.1

6-4

;,,"

•

User Defined Focal Functions

/
IPUSH FLOATING ACCUMULATOR (PUSHF.AA)
/ LAC .AA
/ DAC .+2
/ JMS* PD2
/ XX
/P OP FLOATING ACCUMULATOR (POPF .AA)
I I...f~C • AA
/ DAC .+2
/ JMS* PD3
/ XX
/
I PUSH FLOATING VARIABLE (PUSHF VAR)
/ JMS* PD2
/
/~

,l

/ POP FLOATING VARIABE (POPF VAR)
/ JMS* PD3
/
/
I FETCH CURRENT CHARACTER
/ LAC* CHAR

IFETCH NEXT CHARACTER (GETC)
I JMS* UTRA
,/

/ WHERE VAR IS THE FIRST OF
ITHREE(3) REGISTER BLOCK

/S AME AS FOR PUSHF VAR

IC HARACTER IN BOTH CHAR AND AC

IIG NORE LEADING SPACES AND ZEROS (SP NOR)
/ JMS* XSPNOR INEXT CHARACTER IN BOTH CHAR AND AC
./

I INDICATE A FUNCTION ERROR (ERROR NN)
/ , DEC
" ,

./

i.Jl~J
.OCT
,..1 111"'*

/ RETURN FROM FU NCTIO N (RETURN)
,/ EFUN3

"

i

/NN=TWO DIGIT (DECIMAL) ERROR CODE

I ERROR WILL HAVE DOUBLE QUESTION MARK

iV ALUE OF FUNCTION IN FLOATING AC

! E~TER FLOA TING POINT INTERPRETER (JMS FIN T)
/ Jh~:;*: IN T /TFWI'i HEF~E UN (.I, .. ; .. , INf:;nWCTIONS
i FNN A /AR E ASSUMED TU BE FLOATING POINT
/ FNN:t:
,/

FXIT
,/

C
/ UNTIL FXIT IS REACHED - FNN
I REF ERS TO FLOATING POINT OPERATIONS
/L I~;;TED NEXT.

/ FLOATING POINT OPERATION S (USE * FOR INDIRECT)

,/

•. /

/

F'FD~!

Ft,DD
r::;UB
FhUL
FDIlJ
i::'GET
FPL.!T
Fi-"'jDh:
FXIT

',H~h

lJ(d:;:

\,-'(d:(

',)(.~F:

V{1i:~

')(~F(

'.)(1"':

I NEGAfE THE FLOATING ACCUM UL ATOR
,,/

/

/ RAISE F.P. AC TO VAR/CONSTANT
/A DD F.P. VARIABLE/CONSTANT TO F.P. AC
IS UBTRACT FROM F.P. AC
/ MULTIPLY THE F.P. AC
I DIVIDE INTO THE F.P . AC
/ LOAP INTO THE F.P. AC
/S TORE THE F.P . AC
INO RMALI ZE THE F.P. AC
/ EXIT FROM FLOATING POINT MODE

~ FIX THE FLOAT ING ACCUMULATOR INTO THE HARDWARE ACCUMULATOR
./

6-5

User Defined Focal Functions

I
IFLOAT THE HARDWARE ACCUMULATOR INTO THE FLOATING ACCUMULATOR
I JMS* .AW
I
I
IEXTERNAL FUNCTION TABLE FORMAT
I WORD 0: TWO'S COMPLEMENT COUNT OF NUMBER OF ENTRIES
I WORDS 1 TO 2N: N TWO WORD ENTRIES
I EACH ENTRY: WORDO: .SIXBT THREE LETTER FUNCTION NAME
I WORD1: JMP TO FUNCTION ADDRESS
I
I

.EJECT
I
ITABLE OF NAME S OF EXTERNAL FUNCTIONS
I
.NEWF .NEWFE-.-1/2\777777+1

.NEWFE=.
I

.SIXBT
JMP
.SIXBT
JMP
.SIXBT
JMP
.SIXBT
JMP
. SIXBT
JMP
.SIXBT
JMP
.SIXBT
JMP

I I OT DEFI NIT IONS
I
DYL=7006 06
DXS=700546
AD SF=701301
ADSC =701304
ADRB= 70 1312
AD SM=70 11 03
DAL1=70550 1
ORC=702101
ORS =702 104
I

SETX

SETYl

.EJECT
JM S*
DA C
JMP*
JMS*
DYL
LAC
DXS
JMP*

SETXYI JMS*
DAe
JMS
JMP

SETADC JM S*
ADSM

IOF
I SA +l 0
ADSC
ADSF

IDXSI
SETX
IDISI
SETYI
IDXYI
SETXYI
I ADC I
SETADC
IDACI
SETDAC
IRLBI
SETRLB
IRNDI
RAND

.AX
XCDORD
EFUN3
.AX

XCODRD

EFUN3
.AX
XCO ORD
GETARG
SETYI
.AX

ITWO'S COMP COUNT OF NAMES

IS £T X COORDINATE

ISET Y COORDINATE AND INTENSIFY

ISET X AND Y AND INTENSIFY

15ET MULTIPLEXER AND CONVERT

ILOAD DIA CONVERTER

18£T RELAY BUFFER

IRANDOM NUMBER ROUTINE

ILOAD Y COORDINATE
I LOAD X COORDINATE AND INTENSIFY
15KIP ON AID FLAG
ISE LECT AND CONVERT
IREAD AID BUFFER
ISE1 MULTIPLEXER
ILD AD D/A CHANNEL ONE
ICLEAR RELAY BUFFER
/8ET RELAY BUFFER

ISET X COORDINATE
ISAVE
I RE TURN
ISET Y COORDINATE
ILOAD REG WITH Y

ILOAD WITH X AND INTENSIFY
/RETURN
/5ET X COORDINATE
ISA VE

I NOW SAME AS FDIS
IGET MULTIPLEXER CHANNEL
INOTE: WILL USE LOW ORDER
I SIX BITS AS CHANNEL NUMBER
ITURN OFF INTERRUPT SYSTEM

/SELECT AND CONVERT
/WAIT FOR FLAG

6-6

User Defined Focal Functions

.II'll'" :1.

ADRB I READ AID BUFFER
II//C ODE REMOVED WHICH PROPAGATED SI GN BI T AUSUM. 12 BIT AID
I//WAD AUGUST 1969 •••

':: 400000

ION

. (~)(
Dt1i. .. :i.
..)1'11"'* [FUN::>

SETr'::LB Jh~" *

/

GI'iA
J~lP .+4
DZi'i F~EL(~YB
OI:;:C
..JhP*
Cl"i(.i
D(.le
.DEC
Tr.)!:'
,OCT
~:; r1A

..JMP
.DEC
L(\W
. DCT

EFUN3

TEMF

(10

,.,
.,,;:,

,.J I"iP* FUNEj:;:f;:
[Lt, ' eLL.. ' ChL
1:(Af;:
1 ~:;Z
,j f'lP
D(~C

..Jh~:;

LAC
Ci"iA

TEhP
,."\ •.... .::.

TEMP
GE'rf:\i'(G
TE1'il':'

,'~ND I'(EI...(\YB
D(.\C F:EI...(,YD
..JH~:;* • (\)(

LAC lEi"!!'"
XDh: F([I...J"\Y·I)
D(.~C F;:El...t·, ··,.,B
DF(~:;

.Jr1P* EFUN3

~3(1D

..Jr-lP
.DEC
L.. (')l~
. OCT
,.J HP*
,.Jf''I~:;*
1...(\[

Di~C

,.JhS*
XX
..Jl'1P*

.+3

:I.

FUNEF(I:(
UTW~
EV(~I...

.+2
XPUSH.J

xcoc:mD ()
I,(EI...f-IYB ()
TEMP 0
I

/F LCl ,~;T f(ESULT
ITURN ON INTEVVUPT SYSTEM

/i'a:l um'~
/G~, VALUE AS iNTEGER

IUE l V (.1 L .. U::::
.. ' I ::) IT l'i 1 NU!:)
I NC - UD ~INr ~[T POSITION

/YES - CLEAR WHOLE RELAY BUFF ER
/F;:ETU;:(f'.!
I FOf(M ONE: !:) COMF
/~:;{" l.JE t,~; CClUrH

/MUST BE RELAY 0 fa 17

/IS IT LEGAL POSITION

INC)

/'O"i'0 2 EHF~D!';:

,/INITI(.\i...IZE '!lC

/PUT BI T IN kLGHf

/SAVE BIl POSITION

/CLEAR OLD RELAY VALUE

I CLEAR OR SET RELAY
/11' i'iClN lEI:::!) SET

./L.D(\D DU;::·F!::.F;:
/'F(ETUF:N

/GET ("f(GUMENT
if;I<JP ~:;F(\C[~:;

/ I !:j 1 T (', cm-1M":1?
/YE::>

INCl 'i' TO!. Ef::I:Wf(

iEXTEf(NAL FUNCTION [Rf(Of(
/~:;I< I I'" C(Jr-jM(~

ICAlL EXPf(ESSIDN EVAI...UATOf(

IF(ETUf(N

IX COOf(DINATE STORAGE
/ HEI...AY BUFFER STORAGE
ITEMPORARY STORAGE

6-7

User Defined Focal Functions

IROUTINE TO GENERATE A RANDOM NUMBER I!DEC. 1970
INUMBER SEGUENCE CAN BE INITIALIZED
IBY HAVING A NON-ZERO FUNCTION ARGUMENT
/
IUSES A SIMULATED 18BIT SHIFT REGESTER
/WHICH IS SHIFTED 1 BIT RIGHT WITH FEEDBACK
IFROM THE 7'TH&18'TH STAGES TO THE l'ST STAGE
ITHROUGH AN EXCLUSIVE BR GATE
I
RAND

STGEN

BITSAV
RANPT
I

JMS*
SZA
JMP
LAC
SNA
LAW
DAC
RCF~

DAC
GLK
DAC
LAC
RTR
RTR
RTR
RTR
RTR
AND
XOR
SZA
TAD
TAD
DAC
DAC*
DZM*
DZM*
JMF'*
0
0

.END

.AX

STGEN
RANPT

-- 1
RANPT

RANF'T

BITSAV
RANF'T

(1
BITSAl)

(377777
RANPT
F<ANPT
.AB
.AA
.,:'.jC
EFUN3

IGET AFWUMENT
lIS IT 0
I NO GENERATE
I YES IS LAST

IYES

IN AC

RANDOM NUMBER
RANF'T 0

INITIriLIZE RANF'T
ISTA RT TO GENERATE
I NEW RANDOM NUMBER
IBY SHIFTING ONE BIT RIGHT
IGET BITl7 AND STORE (STAGE18)

I GET 8IT6 (STAGE 7)
ISETUP TO FEEDBACK TO BITO
!(STAGE 1) THROUGH XOR GATE

IFEEDBACK {O, ONE
/MAKEUP NEW RANDOM NUMBER
/STORE FOR FUTURE USE
/SET SIGN AND HIGH ORDER MANTISSA
IS ET EXPDNENT"'O
ISET LOW ORDER MANTISSA =O
IEXI T TO FUNCTION RETURN

6-8

•

(J

CHAPTER 7

DATA COMMANDS

FOCAL data commands allow the user to store and then retrieve sub

stantial amounts of data through the use of auxiliary Input/Output

devices other than the Teletype. The steps for processing the data

need not be incorporated in the FOCAL program itself. The commands

cause files consistent with the XVM/DOS format to be produced and

accepted: and as with the library commands, the files can be manipu

lated by other XVM/DOS programs such as PIP and EDITOR, as may be

noted from the examples at the end of this chapter.

Data commands are used with other FOCAL commands and follow the

same conventions with only minor exceptions. The DATA command,

because of the conflict with the DO command, cannot be abbreviated.

Also, under some conditions, library commands are illegal as with

DATA OUT or DATA CLOSE (see 7.1.1 and 7.1.2).

7.1 DATA COMMANDS

Three operations are required to produce a file with the FOCAL data

commands:

a. file initialization

b. file output

c. file termination

7.1.1 DATA File Initialization and Output

The command

*DATA OUT NAME

initializes and enters a filename on the device associated with .DAT

slot 10. The name can be up to six alphanumeric characters and is

terminated by a carriage return. The extension FCL is supplied by

the system.

Every TYPE or WRITE command issued after DATA OUT NAME will output

data to the device assigned to .DAT slot 10. For example with the

following .DAT slots assigned:

$A DPO -1,-4/DT1 3,5,7,10

data is output to .DAT 10 on DECtape unit 1, until a DATA file ter

mination command is given.

If a LIBRARY command is issued while in the DATA OUT mode, error

message "?31" will be output to the teletype. What has already been

output to the DATA file can then only be saved if a DATA CLOSE com

mand is issued.

7-1

Data Commands

7.1.2 DATA File Termination

After the appropriate DATA output commands are used, it is necessary

to issue the command

*DATA CLOSE

to complete file output and enter the filename and data into the device

associated with .DAT slot 10. DATA CLOSE commands allow input or out

put files to be closed. If a file has not been opened, FOCAL will

output the "?35" error message on the teletype. The DATA CLOSE com

mand also returns the user to the teletype mode.

If the command is not issued, the user remains in the data mode. How

ever, to leave the data mode without finishing the output file the

user may type

*DATA KILL

which aborts the output file and returns the user to the teletype mode.

The file started by the DATA output command is lost when DATA KILL is

issued.

7.1.3 DATA Input

The command

*DATA IN NAME

function is related to its use in indirect programs. When DATA IN

NAME is used in an indirect program (e.g., 1.10 DATA IN filename), it

initializes the device associated with .DAT slot 7 for data input

from an ASK command. Recall that the ASK command is normally used in

indirect commands and that its use is to input data at specific points

during the execution of an indirect program. Thus, when a line num

ber and a DATA IN command such as

*1.10 DATA IN filename

is inserted in a program, .DAT slot 7 is initialized for data input

when an ASK command such as

*2.10 ASK X,Y,Z

is encountered during program execution.

7.2 DATA .DAT SLOT USAGE

Data commands, as previously stated, assume input on .DAT slot 7 and

output on .DAT slot 10. The recommended assignment to the Linking

Loader is the system library located on unit O. Recommended FOCAL

7-2

o

Data Commands

program and user input/output assignments for DECtape and Disk are:

,DAT Slot

.DAT -1

.DAT -4

contents

System Library

Sample Assignment

DPO
DPO FOCAL binary program

.DAT 3

.DAT 5

.DAT 7

.DAT 10

plus FNEW binary
FOCAL library input
FOCAL library output
FOCAL DATA input
FOCAL DATA output

DTO
DTO
DTO
DTO

7.3 DATA COMMAND USE

Some of the data commands so far described are used in the following

examples. Also demonstrated are the commands for loading FOCAL with

the Linking Loader and for use of PIP for a Directory listing and out

put of data on the teletype.

XVM/DOS Vnxnnn

$A DPI -4,3,5,7,10

$GLOAD

LOADER XVM Vnxnnn

FOCAL

FOCAL XVM Vnxnnn

*1.10 DATA IN INDISK

*1.20 ASK A,B,C,D,E

*1.30T A+B+C+D+E,!

*GO

15,0000

*LO SHOW

*LWA

*LC

*LI Show

*WA

C FOCAL XVM Vnxnnn

01.10 DATA IN INDISK

01.20 ASK,A,B,C,D,E

01.30 T A+B+C+D+E, !

*GO

15,0000

*TA

1. 0000*

*TB, !

2,0000

7-3

/Prior .. DAT slot assignment

/Type indirect program

/File INDISK contains the input
Data.

/See PIP listing of INDISK below.

/Save indirect program.

/Recall indirect program

/List program on the teletype.

Data Commands

* DATA OUT OUTDT

*TA

*TB

*TC

*TD

*TE,l

* DATA CLOSE

* C

XVM/DOS Vnxnnn

SPIP

XVM Vnxnnn

PIP XVM Vnxnnn

LTT DT1

DIRECTORY LISTING

1042 FREE BLKS

4 USER FILES

10 SYSTEM BLKS

INDISK

FOCAL

SHOW

OUTDT

FCL

BIN

FCL

FCL

1 1

2 23

3 1

4 1

T TT DT1 INDISK FCL(A)

1.0

2.0

3.0

4.0

5.0

C FOCAL XVM Vnxnnn

01.10 DATA IN INDISK

01.20 ASK A,B,C,D,E

01.30 T A+B+C+D+E.!

T TT DT1 OUTDT FCL(A)

1. 0000 2.0000

C

XVM/DOS Vnxnnn

$

/Output data onto DECtape using

/the TYPE command

/Close the output file.

/Examination of files created
and input

3.0000 4.0000 5.0000

7-4

•

Corrunand

ASK

COMMENT

COMMON

CONTINUE

DATA

DO

.") ERASE

1Has no effect

Abbre
viation

A

C

none

C

none

D

E

APPENDIX A

FOCAL COMMAND SUMMARY

Example of Form

ASK X,Y,Z

COMMENT

COMMON A,B,
(C,1,2,20)

C

DATA OUT NAME

DATA CLOSE
NAME

DATA KILL

DATA IN NAME

DO 4.1

DO 4.0

DO ALL

ERASE

ERASE 2.0

ERASE 2.1

ERASE ALL

ERASE COMMON

A-1

Explanation

FOCAL types a colon for
each variable, user then
types a value to define each
variable.

If a line begins with the
letter C, but not COMMON,
the remainder of the line is
ignored during program ex
ecution.

Assigns COMMON variables to
be stored in indirect pro
gram.

Durruny lines.

Initializes the device
assigned to .DAT 10 and, if
file-oriented, enters the
filename in the file direct
ory.

Closes the output file and
returns the user to the
teletype mode.

Aborts the output file and
returns the user to the
teletype mode.

Initializes the device
assigned to .DAT 7 and
reads in the file named.

Execute line 4.1, return to
corrunand following DO com
mand.

Execute all group 4 lines,
return to corrunand following
DO corrunand, or when a RE
TURN is encountered.

Execute entire indirect
program

Erases 1user 's entire symbol
table

Erases all lines in group 21

Erases line 2.1 1

Deletes all . 1 user lnput

Deletes all COMMON variables

Corronand

FOR

GO

GO?

GOTO

IF

LIBRARY

Abbre
viation

F

G

G?

G

I

L

Appendix A (Cont'd)

Example of Form

FOR I=X,Y,X,
(corronands)

GO

GO?

GOTO 3.4

IF (X)Ln,Ln,Ln

IF (X)Ln,Ln;
(corronands)

IF (X)Ln;
(corronands)

LIBRARY OUT
NAME

LIBRARY WRITE
NNN

LIBRARY WRITE
2.01

LIBRARY WRITE
2.00

LIBRARY WRITE
ALL

A-2

Explanation

Where the corronand following
is executed at each new
value.

X=initial value of I.

Y = value added to I until
I is greater than Z.

Y 1, if not defined.

Starts indirect program at
lowest numbered line number.

Starts at lowest numbered
line number and traces en
tire indirect program until
another question mark (7) or
an error is encountered, or
until completion of program.

Starts indirect program
(transfers control to line
3.4); must have argument.

Where X is a defined iden
tifier, a value or an ex
pression, followed by three
numbers/corronands.

If X is less than zero, con
trol is transferred to the
first line number.

If X is equal to zero, con
trol is transferred to the
second line number or com
mand.

If X is greater than zero,
control is transferred to
the third line number or
corronand.

Initializes a file on the
output device.

Inserts NNN in library out-
put file.

Inserts line 2.01 in output
file.

Inserts group 2 lines in
library output file.

Inserts entire indirect pro-
gram in library output file.

tI

,..

Command

MODIFY

QUIT

RETURN

SET

TYPE

WRITE

FOCAL Operations

Operation

Abbre
viation

M

Q

R

S

T

w

To set output format

Appendix A (Cont'd)

Example of Form Explanation

LIBRARY CLOSE Causes file name to be en
tered in directory.

LIBRARY KILL Returns user to command mode
& file is deleted.

LIBRARY IN NAME Loads library file NAME.

MODIFY 1.15

QUIT

RETURN

SET A=5/B*C

TYPE A+B - C

TYPE A-B,C/E

TYPE "TEXT
STRING"

WRITE
WRITE ALL

WRITE 1.0

WRITE 1.1

Command

TYPE% x.yz

TYPE % 6.3,
123.456

TYPE %

A-3

Enables editing of any char
acter on line 1.15 (see
below) •

Returns control to the user.

Terminates DO subroutines,
returning to the original
sequence.

Defines identifiers in the
symbol table. Each occur
rence of A is replaced by
the value of the expression.

Evaluates expression and
types out result in current
output format.

Computes and types each ex
pression separated by commas.

Types text, can be followed
by exclamation point (!) to
generate carriage return
line feed or by # to gener
ate carriage return only.

FOCAL types out the entire
indirect program.

FOCAL types out all group
1 lines.

FOCAL types out line 1.1

Explanation

Where x is the total number
of digits, and yz is the
number of digits to the
right of the decimal point.

FOCAL types: 123.456

Resets output format to
floating pOint.

Operation

TO type symbol table

To produce carriage
return-line feed

Carriage return only

Modify Operations

Appendix A (Cont'd)

Command

TYPE $

Explanation

Other statements may not
follow on this line.

After a MODIFY command, the user types a search character, and FOCAL

types out the contents of that line until the search character is

typed. The user can then perform any of the following optional oper

ations.

a. Type in new characters. FOCAL adds these to the line at the
point of insertion.

b. Type an ALT MODE. FOCAL proceeds to the next occurrence of
the search character.

c. Type a CTRL BELL. After this, the user can change the search
character.

d. Type RUBOUT. This deletes characters to the left; one char
acter for each time the user strikes the RUBOUT key.

e. Type CTRL U. Deletes the line over to the left margin, but
not the line number.

f. Type RETURN. Terminates the line, deleting characters over
to the right margin.

g. Type LINE FEED. Saves the remainder of the line from the
point at which LINE FEED is typed over to the right margin.

Summary of Internal Functions

Function

Square Root

Absolute Value

Sign Part

Integer Part

Random Number
Generator

Exponential
Function (eX)

FOCAL Repre
sentation

FSQT(x)

FABS(x)

FSGN(x)

FITR(x)

FRAN (

FEXP (x)

A-4

Operation

Focal computes ..Jx where x is a
positive number or expression
greater than zero.

FOCAL ignores the sign of x.

FOCAL evaluates the sign part
only with 1 as integer.

FOCAL operates on the integer
part of x, ignoring any frac
tional part.

FOCAL generates a random number.

FOCAL generates e to the power
x. (2. 718281828x) .

('

Function

Sine

Cosin

Arc Tangent

Logarithm

Appendix A (Cont'd)

FOCAL Repre
sentation

FSIN(x)

FCOS (x)

FATN(x)

FLOG (x)

A-5

Operation

FOCAL generates the sine of angle
x expressed in radians.

FOCAL generates the cosine of
angle x expressed in radians.

FOCAL generates the arc tangent
of angle x expressed in radians.

FOCAL generates log (x).
e

•

CODE

700
701
702
703
704
705

~ 706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
77nn

•

APPENDIX B

ERROR DIAGNOSTICS

MEANING

Function not implemented
Illegal character at beginning of line
Group number illegal as line number
Group number too large
Illegal type/ask format
Too many periods
Line number too large
Line number missing
Illegal group number
Push-down list overflow
Illegal command
Illegal IF format
Left of equals in error on FOR or SET
Excess right parenthesis
Illegal FOR format
Illegal variable name
Text/variable buffer overflow
Illegal expression format
Operator missing before parenthesis
Missing left parenthesis
Illegal function name
Double operator
Parenthesis error
ERASE or WRITE argument error
Negative line number
Zero argument for log
Input overflow
Number too large
Negative power illegal
Division by zero illegal
Square root of a negative number
Illegal command during library or data output
Illegal library command
Illegal file name
File not found
No file open
.OTS error from arithmetic package
COMMON statement format error
User defined function error

B-1

•

APPENDIX C

ESTIMATING THE LENGTH OF USER PROGRAMS

FOCAL requires five words for each identifier stored in the symbol

table, and one word for each three characters of stored program.

This may be calculated by

where

5s+(1 ·1.01) = length of user's program

s = Number of identifiers defined

c = Number of characters in indirect program

If the total program area or symbol table area becomes too large,

FOCAL types the error message

116

The following routine allows the user to find out how many core

locations remain for his use.

tEOR I ~ 1.50 0 0; SET A(I) = I
?1 6
tTYPE %4. It5. "LOCATIONS LEFT"

8 160 LOCA1IONS LEFT*

(Wait for FOCAL to type
the error message.)

At the end of this routine, use ERASE to clear all the variables A(I)

from the symbol table.

NOTE

The upper limit on I varies with the
amount of core memory in the user's
system.

C-1

•

•

APPENDIX D

CALCULATING TRIGONOMETRIC FUNCTIONS

FOCAL Argument Function
Function Representation Range Range

Sine FSIN(A) O.:;.IAI <10 t 4 O~IFI~l
Cosine FCOS (A) 0~IAI<10t4 O~IFI~l
Tangent FSIN(A)/FCOS(A) 0< IA' <10t4 0~IFI<10t6

I A ~ (2N+1hr/2
1s.IFI<10t6 Secant l/FCOS (A) O~ I AI <10t4

IAI~(2N+1)1T/2
1~IFI<10t6 Cosecent l/FSIN (A) 0~IAI<10t4

IAI~2N1T
Cotangent FCOS(A)/FSIN(A) 0~IAI<10t4 0~IFI<10t440

FATN(A/FSQT(1-A t 2)
IAI~2N1T

0~IFI~1T/2 Arc sine O~ 'AI <1
Arc cosine FATN(FSQT(1-At2)/A) O<IA .s..1 0S.IFIS.1T/2
Arc tangent FATN (A) 0S.As.10t6 0S.F<1T/2
Arc secant FATN(FSQT(At2-1» 1S.A<10t6 0S.F<1T/2
Arc cosecant FATN(1/FSQT(At2-1» 1 <A<lO BOO 0<F<1T/2
Arc cotangent FATN (l/A) 0<A<10t615 0<F<1T/2
Hyperbolic sine (FEXP(A)-FEXP(-A»/2 0S.IAI<700 0S.IFIs.5*10t300
Hyperbolic (FEXP(A)+FEXP(-A»/2 0S.IAI<700 1~F<5*10BOO

cosine
Hyperbolic (FEXP(A)-FEXP(-A»/ 0S.IAI<700 OS.IFIs.l

tangent (FEXP(A)+FEXP(-A»
Hyperbolic 2/(FEXP(A)+FEXP(-A» 0S.IAI<700 O<F~l

secant
Hyperbolic 2/(FEXP(A)-FEXP(-A» 0<IAI<700 0<IFI<10t7

cosecant
Hyperbolic (FEXP(A)+FEXP(-A»/ 0<IAI<700 1~IFI<10t7

cotangent (FEXP(A)-FEXP(-A»
Arc hyperbolic FLOG(A+FSQT(At2+1» -10t5<A<10t600 -12<F<1300

sine
Arc hyperbolic FLOG(A+FSQT(At2-1» l:::A<lOBOO 0S.Fs.700

cosine
Arc hyberbolic (FLOG(1+A)-FLOG(1-A»/2 O~IAI<l 0S.IFI<8.31777

tangent
Arc hyperbolic FLOG«1/A)+FSQT«1/Af2)-1» O<IAI~l 0S.F<700

secant
Arc hyperbolic FLOG«1/A)+FSQT«1/At2)+1» 0<IAI<10t300 0S.IFI<1400

cosecant
Arc hyperbolic (FLOG(X+1)-FLOG(X-1»/2 1S.A<10t616 0S.F<8

cotangent

D-1

•

..

APPENDIX E

.DAT SLOT AND HANDLER ASSIGNMENTS

SYSTEM IN XVM/DOS

The .DAT slots to be assigned with FOCAL are

.DAT Function Typical Device Assignments*

-1 System Library DPO <SYS>

-4 FOCAL binary program DPO <SYS>
plus FNEW binary

3 Library input DPO <UIC>

5 Library output rDPO <UIC>

7 Data input DPO <UIC>

10 Data output DPO <UIC>

*Here the system disk is assumed to be disk pack. If it is cartridge
disk, substitute RK for DP in the assignments. Similarly, for fixed
head disk, substitute DK for DP.

E-l

•
,

Abbreviated commands, 2-1], 4-1
Absolute value function (FABS),

3-13
Addition, 2-5
Alphanumeric characters, 2-12
Alphanumeric numbers, 2-11
Angle brackets, 2-5
Arctangent function (FATN),

3-15
Arithmetic operations and

symbols, 2-4
Arrays, COMMON, 5-4
ASK command, 3-2, 3-3, 7-2
* (asterisk) usage, 2-1, 3-8

as plotting character, 4-4
@ (at sign) used in symbol

table, 2-6
Auxiliary I/O devices, 1-3

Brackets, 2-5

Chaining, 5-5
Character deletion, 2-9
Characters, alphanumeric, 2-12
Circles and spheres, formula

evaluation for, 4-2
(colon) usage, 3-2

Commands,
abbreviations for, 2-11, 4-1
data input, 7-2
data output, 7-1
library input, 5-3
library output, 5-1

Commands,
ASK, 3-2, 3-3, 7-2
COMMON, 5-1, 5-4
DATA CLOSE, 7-1, 7-2
DATA IN, 7-2
DATA KILL, 7-2
DO, 2-8, 3-5
ERASE, 2-7, 2-10, 2-11, 3-4
ERASE COMMON, 5-1, 5-5
FOR, 3-8
GO, 2-8, 3-5
GOTO, 2-8, 3-5, 3-7

INDEX

Commands (cont.),
IF, 3-7
LIBRARY CLOSE, 5-3
LIBRARY WRITE, 5-3
MODIFY, 2-11, 3-10
RETURN, 3-8
SET, 2-1, 3-4
summary, A-I
TYPE, 2-1, 3-1, 7-1
WRITE, 2-9, 2-10, 3-3, 7-1

COMMENT lines, 3-8
COMMON command, 5-1, 5-4

format, 5-4
variables, 5-5

Corrections in typing, 2-9, 2-10,
3-11

Cosine function (FCOS), 3-15
CTRL P, 1-2
CTRL U, 2-10, 3-11

DATA CLOSE command, 7-1, 7-2
Data commands, 7-1, 7-3
DATA IN command, 7-2
Data input/cutput, 1-3
Data I/O .DAT slots, 1-2
DATA KILL command, 7-2
.DAT slots, 1-1, E-l

data, 7-2
library, 5-4

Deleting characters, 2-9
Deleting lines, 2-10
Device assignment table, 1-1
Dice game, 4-5
Direct command output, library, 5-1
Division, 2-5
DO command, 2-8, 3-5

EAE number accuracy, 2-4
E format, 2-4
Equations, 4-6
ERASE command, 2-7, 2-10, 2-11, 3-4
ERASE CO~~ON command, 5-1, 5-5
Error detection, 2-9
Error diagnostics, B-1
Errors,

syntax, 2-2

Index-l

Errors (cont.),
typing, 2-9

Examples of FOCAL programs, 4-1
Exponential function (FEXP),

3-14
Exponentiation, 2-4, 2-5, 2-12
Expressions, 2-5

File initialization,
data, 7-1
library, 5-1

File termination,
data, 7-2
library, 5 -- 2

Floating-point
arithmetic, 3-9
format, 2-3, 2-4, 3-14
hardware, 1-1

FNEW functions, 6-3
FOR command, 3-8
Formula evaluation for circles

and spheres, 4-2
FORTRAN library, 1-1
FOCAL language, 2-1
Functions,

FNEW, 6-3
internal, 3-13
names of, 2-1
trigonometric, D-l
user-defined, 6-1

GO command, 2-8, 3-5
GOTO command, 2-8, 3-5, 3-7
Group output, library, 5-2

Hardware, 1-1

IF command, 3-7
IF statement, 3-6
Indirect commands, 2-7
Initialization of library file,

5-1
Input commands,

data, 7-2
library, 5-3

Integer part function (FITR),
3-14

Intercept and plot of two
functions, 4-11

Interest payment program, 4-10
Internal functions, 3-13

Leading zeros, 2-2

Length of program, C-l
LIBRARY CLOSE command, 5-3
Library .DAT slot usage, 1-2, 5-4
Library files,

initialization, 5-1
output, 5-1
termination, 5-2

Library, FORTRAN, 1-1
LIBRARY WRITE command, 5-3
Line deletion, 2-10
Line numbers, 2-7
Linking loader, 1-1
Loading, 1-1, 1-3
Logarithm function (FLOG), 3-16
Looping process, 4-2

Matrices, 4-6
MODIFY command, 2-11, 3-10
Multiplication, 2-5

Names of
symbols, 2-1
functions, 2-1

Nested expressions, 2-5
Non-subscripted variable, 5-4
Number representation in TYPE

command, 2-1
Numbers, alphanumeric, 2-11
Number sign (#) usage, 2-7

One-line plotting, 4-4
Operators, arithmetic, 2-5
Output,

data files, 7-1
library files, 5-1

Output format, 2-2

Parentheses, 2-5, 3-6
Percent sign (%) usage, 2-2, 3-1
Plotting, 4-4
Program chaining, 5-5
Program length, C-l
Program output,

data, 7-1
library, 5-2

Question marks in program, 2-9
Quotation marks, 4-1

in command string, 3-2
in text output, 2-7

Index-2

Random number generator function Table generation using functions,
4-1 (FRAN), 3-14

Restart, 1-2
RETURN command, 3-8
Rounding, 2-3, 4-1
RUBOUT, 2-9

Saving programs, 1-3
Schroedinger equation solver,

4-13
Scope routine example, 6-1
Semicolon in IF statement, 3-6
SET command, 2-1, 3-4
Sign part function (FSGN), 3-13
Sine function (FSIN), 3-15
Single line output, library,

5-2
Spheres, formula evaluation for

circles and, 4-2
Square brackets, 2-5
Square root function (FSQT),

3-13
Statement, IF, 3-6
Subroutines, 3-6
Subscripted variables, 2-6, 4-6
Subtraction, 2-5
Symbol names, 2-1
Symbols, arithmetic, 2-5
Symbol table, 2-6
Symbol table values, 3-11
Syntax errors, 2-2

Termination of
data files, 7-2
library files, 5-2

Text output, 2-7
Trace feature, 2-9, 3-12
Trailing zeros, 2-2
Trigonometric functions, D-l
TYPE command, 2-1, 3-1, 7-1

User-defined functions, 6-1

Variables,
nonsubscripted, 5-4
subscripted, 2-6, 4-6

WRITE command, 2-9, 2-10, 3-3,
7-1

Zeros in output format, 2-2

Index-3

•

•

•

READER'S COMMENTS

FOCAL XVH Language Hanual
DEC-XV-LFLGA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name Date _____________ _

Organization ________________________________ _

Street ___ __

City ___________________________ S ta te ____________ Z ip Code _____________ _

or
Country

If you require a written reply, please check here. 0

---Fold lIere--

-- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

momoomo
Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

~"'NTEO IN u.s.A.

