
'
. input

programs

digital equipment corporation

>

)

CLINICAL LAB-12

INPUT PROGRAMS

Version 7

DEC-12-MCLIA-A-D

First Pr inting August 1970

Revi sed July 1972

Rev ised June 1973

The " HOW TO OBTAIN SOFTWARE INFORMATION" page, locat e d a t the back of

this document , e xplains the v a rious service s available to DIGITAL

software use r s.

The postage prepaid "READER ' S COMMENTS " form on the last page of this

document requests the user's critical e v aluation. All comments

received are acknowledged and will be considered when subsequent

documents are prepared.

Copyright @ 1970, 1972, 1973 by Digital Equipment Corporation

The material in this document is for information purposes only and

is subject to change without notice.

The software described in this document is furnished to the purchaser

under a license for use on a single computer system and can be

copied (with inclusion of DIGITAL'S copyright notice) only for use

in such system, except as may otherwise be provided in writing by

DIGITAL.

DIGITAL assumes no responsibility for the use or reliability of its

software on equipment that is not supplied by DIGITAL. DIGITAL

assumes no responsibility for any errors that may appear in this

document.

The following are trademarks of Digital Equipment Corporation,

Maynard,Massachusetts:

CDP DIGITAL KAlO PS/8
COMPUTER LAB DNC LAB-8 QUICKPOINT
COMTEX EDGRIN LAB- 8/e RAD - 8
COMSYST EDU SYSTEM OMNIBUS RSTS
DDT FLIP CHIP OS/8 RSX
DEC FOCAL OS/11 RTM
DECCOMM GLC-8 PDP SABR
DECTAPE IDAC PHA TYPESET 8
DIBOL IDACS UNIBUS

INDAC

)

PREFACE

This document is written for personnel who wish to

become acquainted with the internal structure of

the system. Complete understanding of the contents

of this manual requires the reader to be familiar

with the PDP-12 System Reference Manual (DEC-12-SRZC-D)

and the CLINICAL LAB-12 System Programmers Manual

(DEC-12-MRDC-D).

Each section of this manual deals with one program

and its associated overlays. A section includes

the user's guide, an internal description, a set of

assembly instructions and a complete set of flow charts.

Associated documents include:

Operator's Handbook, DEC-12-MCLOA-A-D

User's Handbook, DEC-12-MCLUA-A-D

System Programmer's Manual, DEC-12-MRDC-D

Input Programs Manual, DEC-12-UIFB-D

Output Programs Manual, DEC-12-U2FB-D

On-Line Programs Manual, DEC-12-U3FB-D

iii

..

)

CHAPTER 1

CHAPTER 2

2.1

2.2

2.3

2.4

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.8.l
3.8.2

3.9

CHAPTER 4

4.1

4.2
4.2.l
4.2.2

4.3

4.4

4.5

4.6

4.7
4.7.1

4.7.1.1
4.7.1.2
4.7.2
4.7.3

4.8

CONTENTS

INTRODUCTION

ADMINISTRATION UPDATE

ENTERING A NEW PATIENT

MODIFYING INFORMATION ON A PATIENT IN FILE

DETERMINING THE TOTAL NUMBER OF PATIENTS
CURRENTLY ON FILE

ASSEMBLY INSTRUCTIONS

REQUISITION ENTRY

GENERAL DESCRIPTION

FUNCTIONAL DESCRIPTION OF TERMINAL INPUT

TEST PACKAGE

ERROR MESSAGES

INPUT PROCESSING

ASSEMBLY INSTRUCTIONS

FLOW CHARTS FOR REQUISITION ENTRY
(TERMINAL INPUT)

FUNCTIONAL DESCRIPTION OF CARD READER INPUT
Error Messages (Card Reader)
Card Requisition Entry Assembly
Instructions

FLOW CHARTS FOR CARD REQUISITION ENTRY

DELETE DATA (DE)

PRELIMINARY OPE RAT ING PROCEDURE

PHASE I
DELETE Mode Function P or D
EDIT Mode

PHASE 2

PHASE 3 (DELETION)

FUNCTION T OPERATING INSTRUCTIONS

ERROR MESSAGES

INTERNAL DESCRIPTION
P and D Options

DESUB
BMP30

Single Test Deletion Option of DE
Utility Routines

DELETE DATA Flow Charts

V

1-1

2-1

2-1

2-3

2-4

2-4

3-1

3-1

3-2

3-4

3-7

3-10

3-12

3- 13

3-50
3-58

3-59

3-60

4-1

4-1

4-4
4-4
4-5

4-6

4-7

4-7

4-8

4-9
4-9

4-10
4-11
4-12
4-13

4-18

CHAPTER 5

5.1
5.1.1
5.1.2
5.1. 3
5 .1. 4
5 .1. 5
5.1.6

5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.4

5.3
5.3.1
5.3.2

5.4

5.5

CHAPTER 6

6.1

6.2

6.3

6.4

6.5
6.5.1
6.5.2
6.5.3

6.5.4
6.5.5

6.5.6
6.5.7

6.5.8

6.5.9

6.5.10
6.5.11

6.6

CONTENTS

TEST UPDATE

TERMINAL INPUT
Initial Input
Maps Constructed
Patient Identification
Finding Tests in F30 Data
Filing Results
Examples

CARD READER INPUT
Initial Conversation
Verification

Card Identification
Card Result Decoding
Card Verification

Data Filing
Test
Battery

5-1

5-1
5-1
5-2
5-3
5-3
5-4
5-5

Updating the Test Count and Activity Bit
Clearing the Accession Number

5-7
5-7
5-7
5-7
5-8
5-10
5-10
5-11
5-12
5-13
5-13
5-14 Continuing

SPECIAL PACKAGES USED BY TE
Workstations
Card Reader Packages

CARD FORMAT

ASSEMBLY INSTRUCTIONS

MANUAL CALCULATIONS

INPUT/OUTPUT

FUNCTIONAL DESCRIPTION

PROGRAM NAME AND TABLES

MEMORY BANK DIAGRAMS

PREPARATION OF CALCULATION SUBPROGRAM
Calculation Name (pointer A8+2¢¢¢, loc.
Data Field (pointer I8+2¢¢¢, loc 3¢)
Entry Formats (pointer B8+2¢¢¢, loc. 21;
E8+2¢¢¢, loc. 24)
Number of Entries
Floating Point Code (pointer B8+2¢¢¢,
loc 21; E8+2¢¢¢, loc. 24)
Program Patches
Print Results Formats (pointer D8+2¢¢¢,

5-14
5-14
5-15

5-17

5-17

6-1

6-1

6-1

6-6

6-9

6-11
2¢) 6-11

6-11

6-12
6-12

6-12
6-13

loc. 23; G8+2¢¢¢ , loc. 26; H8+2¢¢¢, loc. 27)6-13
List of Result Types (pointer T8+2¢¢¢,
loc. 41)
Accession Number Entry (pointer J8+2¢¢¢,
loc. 31)
English Results (pointer R8+2¢¢¢, loc. 42)
General Directions

FLOW DIAGRAM

vi

6-14

6-14
6-15
6-16

6-16

CONTENTS

Page

6.7 PROGRAMMING 6-16
6.7.1 Floating Point Subroutine 6-18
6.7.2 Floating Point Instructions 6-18
6.7.3 Operand 6-19
6.7.4 Operation Codes 6-19
6.7.5 Floating Point Format 6-24

6.8 SPECIAL ASSEMBLY INSTRUCTIONS 6-26

6.9 FLOW CHARTS FOR MANUAL CALCULATION 6-27

CHAPTER 7 ACCESSION NUMBE R ENTRY 7-1

7.1 INPUT/OUTPUT 7-1

7.2 FUNCTIONAL DESCRIPTION 7-1

7.3 INITIAL CONVERSATION 7-1

7.4 EDIT CONVERSATION 7-2

7.5 FINALIZATION 7-4

7.6 ERROR MESSAGES 7-4

7.7 PROGRAM STRUCTURE 7-8

7.8 ASSEMBLY PROCEDURE 7-10

CHAPTER 8 PATIENT DATA FILER 8-1

8.1 RETRIEVE PATIENT GIVEN AN ACCESSION NUMBER 8-1

8 .2 FILE DATA FOR PREVIOUS GIVEN ACCESSION
NUMBER 8-2

8.3 DESIGN CONSIDERATIONS 8-3

8.4 ASSEMBLY INSTRUCTIONS 8-3

8.5 FLOW CHARTS FOR PATIENT DATA FILER 8-4

)

vii

)

CHAPTER 1

INTRODUCTION

The programs described in this manual fall into two classes, the

first set deals with administrative data and the second with test

data. Also included is a description of DATA-PF, which is a system

program called by other user programs to file patient data.

The first set of programs consists of Administrative Update (AD),

Requisition Entry (RE) and Delete (DE). The AD Program permits

addition, modification, o r deletion of patient administrative data

(name, patient number etc.) in the files on disk. RE is used to

requisition tests and save space on the disk for the test results.

DE permits full or partial deletion of patient data.

The second set of programs consists of Test Update (TE), Manual

Calculations (CA), and Accession Number Entry (AC). TE is the

program which allows the technician to modify test data or to enter

results from an instrument not directly connected to the system.

CA allows the technician to calculate a new result from one or more

pieces of information already in the patients file. AC is used

with on-line data to identify one or more results from an Auto

Analy zer sample with the correct patient.

1-1

CHAPTER 2

ADMINISTRATION UPDATE

The Administration Update (AD) program consists of two separate

routines to perform the functions of entering and modifying patient

administrative data. The technician controls these routines through

a step-by-step cookbook procedure. The goal in coding each routine

has been to make things quick and convenient for the experienced

technician, while guiding the beginner who is attempting to alter

the information in the patient's file without knowing the proper

format.

2.1 ENTERING A NEW PATIENT

The technician, after typing AD and receiving the message E ORM*,

types nE)n which calls this routine. The conversation between the

system and the technician which follows can best be shown in an

example, such as the one given below.

in the example are underlined.

E ORM*
n PATIENTS ON FILE
PATIENT #:
NAME (L F M):
PAT. TYPE:
NEW TYPE. OK?
N.S.:
DR.:
ROC5M #:
SEX:
BIRTHDATE:
CHANGES?
PATIENT#:

All system inspired typeouts

E)

1234.)
JONES, JOHN A.)
su)
Y)
63E)
JOE-;)
C-25
M)
~yo1;1941)

For the experienced operator, the above procedure is sufficient

to add any patient to the patient files.

An editing featur e has been provided for the case in which a tech

nician notices a mistake on a line(s) previously typed in. Rather

than recalling the program by an "E)" and retyping eight lines to

correc t the one errant line, all the technician need do is answer

"YES" to the CHANGES? typed by the system. The enter routine then

enters the correction mode, where a")n by the technician indi

cates the line is correct as it stands, and any other character

indicates the technician is retyping the last line. (See the

example below where the technician wishes to correct both the

physician's code and the patient's name).

2-1

CHANGES?
PATIENT #:
NAMETE-F-M) :
PAT. TYPE :
N .s.:
DR .:
ROC5M #:
SEX:
BIRTHDA'rE:
CHANGES?

YES)
1234*)
JONES, JOHN A. *BARROW CLYDE M.)
su)
6BE*)
JOE* BOB)
C-25)
M*)
~2j07 /1941*)

If no changes are required (NO is typed after "CHANGES?"), the pro

gram asks fo r another patient name.

The technician can exit this program at any time by typing "STOP)"

for any line . The program types "TTY IS FREE" and exits, with no

information for this patient reaching the disk.

Before storing the information given it by the technician, the

routine conducts certain tests on its own; if the information is

not in the proper format, the routine prints an appropriate error

message. The technician then retypes the offending line and, if

all other tests check out, the information is stored in the patient

files . The error messages listed below provide sufficient checks to

catch any error.

1. INVALID INPUT -
TRY AGAIN (AN INVALID CODE HAS BEEN TYPED)

2. PATIENT# IN USE (SOMEONE ELSE HAS THE PATIENT NUMBER
TECHNICIAN IS TRYING TO INSERT)

3. FORMAT IS MONTH/DAY/YEAR (WRONG DATE OF BIRTH FORMAT)

4.

5.

ANSWER YORN

NO MORE ROOM

(IMPROPER ANSWER TO "CHANGE?" WAS GIVEN)

(FILES ARE FULL)

In any of the above cases (except patient# and sex) the technician

could strike a"?" or)for a given line and not receive an error

message . The six character code for"?" (77 octal) followed by all

spaces (character code 40) is then stored in the appropriate file.

2-2

)

All information is written out and read in from the disk by the

routine before being permanently stored there to ensure the QC

curacy of the patient information on the disk. The routine

searches the subfile directory "number" of the first location

containing 7777 octal indicating an open file location. This

"number" is the relative address of the location containing the

7777 octal. The routine uses this "numb e r" to locate the starting

address of the location where each separate line of patient informa

tion should be stored. It does this by multiplying the "number"

by the number of locations necessary to define the given piece of

information, and adds the result to the initial address of the

appropriate file. The information is then stored in this resulting

address. In addition, the number of empty slots is counted, and

if fewer than 50 remain, an appropriate message is output.

2.2 MODIFYING INFORMATION ON A PATIENT FILE

After typing AD and receiving the message "E ORM*", the technician

types "M" to call the modify routine. The message "FOR ITEM TYPE

P, N, T, W, R, D, S, or B PATIENT#:" is printed.

The technician types the patient number of the file to be modified and

then approves the patient's name prii.ted by the system to match the

patient number. If the computer printed patient name does not match

the patient number, INQUIRY (part of the summary program) can be

used to find the problem.

To modify an item, the technician types the appropriate code (P, N, T,

W, R, D, s, B) in response to ITEM* where:

P = Patient Number

N = Name

T = Type

W = Nursing Station

R = Room Number

D = Doctor

S = Sex

B = Birthdate

After the item code is typed, the correction procedure is the same as

described in Section 2.1. An example in which the technician alters

the patient's number is shown below:

2-3

E ORM*

FOR ITEM TYPE P,N,T,W,R,S,O,R,B
PATIENT#:
IS IS BARROW CLYDE M?•
ITEM
PATIENT#: 1234*

2.3 ASSEMBLY INSTRUCTIONS

1234)

~JS)
1236)

The AD and DE programs are listed as one large program so that the

conditional assembly should indicate AD or DE. The assembler builds

the appropriate chain . Blocks 1-15 of the binary are saved as AD.

2.4 INTERNAL DESCRIPTION

When started, AD performs an initialization procedure to determine

the size of file 30 and file 26. The program reads the first 5 words

of file 21 to establish constants for buffer sizes corresponding to

the size of the patient number. This code is located in the disk

buffer and is destroyed when the program starts. The program builds

a mask of 77 or 00 bytes to mask out the reference field of a patient

number when AD is concerned only with the patient number reference

field. The mask code is located in the Teletype buffer and is de

stroyed when AD starts. AD then enters a routine to ask which option

the user wants to run. Possible options includes, M, or E:

"S" transfers control to a "show-me routine;

"M" transfers control to the modify path;

"E" transfers control to the COUNT routine which
counts the number of patients on file and then
transfers to the entry path.

Most of the code for the entry path is shared by the modify path. In

addition, MODIFY sets flags, which affect the course of the program,

so that when the patient file to be modified is specified, the old

information is read from the administrative files. Then instead of

running through a sequence of questions to ask, the modify path has

a list of letters/addresses corresponding to items to be modified

together with the address of the routine for this question.

The ENTRY routine merely consists of a sequence of JMS instruction

to dispatch control to each of the question asking subroutines, or

ASK handlers.

2-4

..

.,

)

Once the user has specified no more changes in the entry path or typed

a carriage return in the modify path after "ITEM*", control is trans

ferred to the FILER routine. If in the entry mode, FILER looks for

the first open slot in file 26 and writes a 7776 there. If the files

are full, "NO MORE ROOM" is typed and the program exits. The sort

file routines (see Section 2.4.1) are then called and when a carriage

return is typed, a sequence of JMS instructions transfers control to

subroutines for filing each piece of administrative data. The

modify path skips the procedure of reading file 26 for the first open

slot. The FILER routine then checks a flag to see whether it should

return to the entry or modify subroutines.

The program maintains buffers in core for each piece of administrative

data. For some data, l i ke patient name or room number, there is only

one buffer. The format is 6-bit ASCII preceded by a constant equal

to the negative of the number of words in the character string. For

some data, like birth date and sex, there are two buffers:

1. One represents the actual binary value to be filed;

2 . The other represents a text string corresponding to the
binary value t o be typed out to the user.

"GET" handlers, the subroutines for getting old information out of

the files for the modify path, also transform the binary value on file

to the text to be typed to the user. "ASK" handlers will ask the

appropriate question, parse the input for validity, and encode the

input text as a new binary val ue, i f necessary. In that case, the

new text typed in will be saved as the new text string to be typed

out in case the user' s responses cause the ASK handler t o be called

again before the data is fi led. " FILE" handlers merely file the data

buffer in the right place and right file on disk. The handlers

(GET 23 , ASKQ5) for room number i nformation exemplify this process

well because there is no syntax checking or parsing involved. This

represents the minimum amount of overhead necessary to handle a data

item. Note that there is no FILE23 s ubroutine, since the code involved

would be exactly the same as in the GET 23 subroutine. The only

difference is that one reads and the other writes. This parameter is

never under the control of an individual handler, however. A global

switch (WRITE) on page O controls reading or writing and thus, the

individual handler will perform the action dictated by the routine

containing the GET sequence of FILE sequence. These handlers are

2-5

designed so that they can be called without regard to order. These

handlers are completely disjoint except for ward/Dr. code and sex/DOB

because these items are combined into records in the same file.

All of the ask handlers begin by using ASKSB as a front end. ASKSB

will put the patients' old data in the buffer before typing the

information. If the program is using the modify option and if a

carriage return is typed, the routine will branch back to call +3.

The format in a handler then is:

ASKX, 0
JMS I ASKSUB
QX
BUFFX
JMP I ASKX

TAD ABUFFX
JMS I PACK
JMP I ASKX

BADQX, JMS I TYPOUT
BOOMS
JMP ASKX + 1

/Jump to front end
/Question text to type out
/Old info. text to type if in modify path
/Do nothing if modify path and C.R. input
/Check for input syntax (optional)
/Convert text to binary value (optional)
/Search for an occurrence of this
/Item already on file (optional)
/Save new text

/Done

/Try again

For further information about a specific ASK, GET or FILE handler see

the flow charts or the program itself.

2.4.1 Sort File Routines

There are four main routines that maintain the sequenced directories.

The routine for deleting a patient file from the directories is common

to AD and DE. When a patient file is entered, the program checks that

the patients file 26 position is not in the sort file. When patient

data is modified, the patient data is removed and then reinserted into

the sort files.

2.4.1.1 MSSORT - This subroutine runs through a list of addresses

which point to parameter lists describing each type of sort to be

done. For each such entry, the SORT routine is called to find the

relative position at which the new file 26 key is to put in each

subfile of the total sortfile. A list of the keys is built. After

all keys are determined, the subroutine INSRT is called for each item

in the list to insert the key into its corresponding subfile of the

sort file.

2-6

•

"

,,

)

2.4.1.2 SORT - This subroutine determines where to put the patient

data in the first (next) subfile. An interval halving method is used

to locate the highest placed key which has corresponding AD data less

than or equal to the AD data of the patient to be admitted. The

high and low boundaries of the subfile which are still under con

sideration are maintained. When their difference (S PAN) becomes less

than 256, that segment of the subfile is read, and f urther fetches

of keys are done from core rather from disk. When the next key is

fetched, the parameter list passed by MSSORT is interpreted to

find which AD data files to read to compare with which core buffer of

new data and which bits or bytes of the records to mask when doing

the comparison. If data from several AD files is to be considered,

the first (next) entry is checked. Subsequent AD data files will not

be checked unless there is a match on the previous data file. The

output of the routine is the position where the patient data is

inserted later.

2. 4 .1. 3 INS RT - This subroutine actually inserts a file 2 6 position

word into a subfile directory. The proper subfile is read beginning

with the position to i nsert the patient into the second through last

words of the core buffer . The key to insert is put in the first wo r d

and the first to second from last word is written back out. The l a st

word of the buffer is put in the first word and the process is repe ate d

until the logical end of the subfile.

2.4.1.4 DESRT - Thi s s ubroutine deletes occurrences of a specified

key or keys which are not less than HOSIZE from all subfiles of the sort

file. The prog ram treats each subfile as a logical entity, and

reads successive buffers of keys from disk. These buffers are then

"collapsed" by removing the above mentioned keys. The buffer is then

written back out only if there has been some change so far, either

in the current bu f fer or in previ ous buffers. This process is con

tinued until either the end of the subfile is reached or until a 7777

key is encountered . A total count of the number of words deleted has

been kept and the buffer is end-filled with 7777 for this many words.

Then this last buffer is written back out.

NOTE

The FILER program (FI), which rebuilds directories, use s
the AD sorting routines intact. When changing the num
ber of directories, one must change the equates in the
beginning of AD+DE and CH, and add appropriate code to
FI for the new directory.

2-7

2.5 ADMINISTRATIVE UPDATE FLOWCHARTS

ENTRY

Set old

Clear flag controlling typiny
out old text information

Set flag for pa t. & handler to
indicate question aski.ncJ mode

Ask p8.t ieilt It

Clear pat. // h~rn,Jler 1'1;:u

Ente r J Jv1 8 sequ(; fJ(;(o- , a.sk
each uestion for FU inf0 .

Use special entry po int
text inf KJ----....!..C:.:,_----< '-----1'>l to A 3K2 to check ii son ·~
flag

Open adm. data files

one with this pat. # has
·ust been enter ed on
another terminal

Yes -._-+A Delete pat. front sort

et this
position ·x1.---.1-..i;:;..;:,'-<

7776

Enter JMS sequence, file
..__ __ ---1-"" record-buffer of adm. info.

Close files

Return

2-8

files ancJ re-enter him

:Jay "no
~-... ~ more

OOYf! II

..

"

)

COUNT

Open files

Read 1st (next) buffer of F26 <!-------

No

Add 1 t o pat. count

Ye s

Convert count to ASCII & append to TTY
buffer. Append "pat. on fEe '' to buffer
& type out

2-9

ASKSt3

I.fr;

Append ques. ex an
asterisk to TTY buffer.
Type out & wait for
input

Yes

No

Return at call +3 to
avoid processing
input.

Appe11d ol
pat. data 8.r1rl ri.sler i sk

to T l'Y buffer. L'ypc
<]------I out and wait: Ior i np11t.

'i/

No

Return at call +4 to
cause processing of
input

2-10

..

0

I

JMS ASKSUB

Pack input into N. S. text buffer ,
replacing 4th character, if present ,
with a blank.

Recombine N. S. and DR. code text
to fo r m File ?.?. buffer .

\ JMS M3KSUB

Pack input into Dr. code text buffer,
r eplacing 4th character, if present,
with a blank.

Recombine N. S. and Dr . code text
to form File 22 buffer .

I Return I

HAS ASY.:S IJB

Pack text into room number
text h11ffer

Return

2-11

ASK 1

ASK 6

I JMS ASKSUB

Pack input intu rnt.. rw.rn e
text buffer.

Retur n

JMS ASKSUB

ls .
,___........__......(Char.

I(. ; ;;J.) II j fl 1/;J.l j/J
t::> lrl fJ fl l"

Put char . into sez t ext buffer ,
with 2nd. char. as blank

Return

2-12

..

0

<>

)

/\S:V.: ~J

·.,;:;E. ;.JC::i0. ~l'.
alue r;f "'(,.

1 f•''

V
Pack 1st. 2 characters
into ternpor ar y buffer

r ans.fer con ents cf
empor ary buffer to pat.

e buffer.

Return

2-13

~:,iy i11v,1.licJ i11 -

.,.._~N~r.,4· :>l :~:::i.y "not on fil e .
OK? "

ASK2 (AD)

F iling time

Return
call+2

Normal Entr

JMS ASKSUB

No

2-14

Say "invalid
""__..,...w..---1r>1 input 11

--'--...,....----"

,ay "pat.
not found 11

Yes

No

No
No

lfo

Jser has enter ec
:an unused pat. I/
n either modify
or entry raUt or
else good fllinq
ti,ric check ·

;~ave pos. ~
where he W8.
ouml

1°:j.r:!-:. input tezt
Yy-----"-~----e.1 rn cy 1e binary b u.tJ

· nto ~).c:cepted pat.
If t111ff

l~cturn

..

M3SORT

)

initialize pointers and
counters

trJ put rJat. in
thi:-~ sort

file.

Heinitlaliz:e
ointer s cJ.nd
c:0unler s

1,~elurn J

JMS INSER T pass this key to
INSRT. It is relative address in
this sort file in which to insert
NEW2f_;µ (pat. F2ti position)

2-1 5

-

Initialize fla s and pointer s

Compute core
address of key ~'
etch fr om core iu--............... ..-.,

No

Error ,
Exit

2-16

Fetch rest of
;ortfile . l~ectd

XJ------i(Hi\Jh- Low) wi,t·d;;

start.irirr ;1 t lnw irit.
c: r1 cr ~ I 11 :_;\·r c ;_; c) ·I

0

•

"

)

HIGH+ DSPTR
TSTIIl~l check
lower half of
revious range

Halve the range

yes
Exit. New pat.
will be inserted

""'-------iDibefore old pat.

DSPTR ~
DSPTR - 1

check one

©

DSPTfr' LOW+(HIGH-LOW) /2•------.
'----,---------=ILO'~DSPTR

TSTLOt-1 check

© pper half of
revi01s ran e

2-17

.:xi

©
DSPT1*-DSPTR -1 1

Exit

DESRT Clear counters and flag s for all SUBFILES.

nitialize counters and fla, s for 1st (next) SUJWILE

No

2-18

Yes

No

JMS DESRT4:
rite output buffer
ack out if there

has been a chanc e

Housekeep
ead and wr i Le

addr ess po .i11Lct':;

I::-JSPT

)

st

For this directory, start
r ead in J r]isk from f)•JSi.Li rrn al

whic h h'e i ~; to be inseri,0,rJ in

Rr• .d disk into ?,ncJ throwrh l:J: ;1 word o[~
""""'1......,~-------~-· -------- I

Lnitiali.:;.e poi nte:r,~ ;, rirl
ounter:j for Lhi:~ ric'w l,11r[cr

,-'--------~== --[>

V

No
on~

ith core
buffer?

Yes ~

Write out 1st through
second from last word

of buffer. Put last wor
f buffer into 1st word o

f

Compute where to
continue reading from
on disk.

2-19

Don't have to <JO :rny
urther . Write out lJuffer
frorr~ J st word to current

V
Return

•

)

CHAPTER 3

REQUISITION ENTRY

The functions of the REQUISITION ENTRY (RE) program are summarized

below:

1. Accept keyboard input including an identifying
patient number, test types, and their identify
ing accession number, and the time of day the
sample was (or perhaps will be) drawn.

2. Create entries in thepatientfiles for test
results to be supplied later.

3. Create new b l ocks of test data as needed.

4. Maintain a "running count" o f active tests 1 in
the patient files.

5. Assign new "day headers" and "pointers to today"
in the patient files as needed.

6. Indicate active accession numbers 2 in the Requi
sition Index as new numbers are entered.

7. Sound an alarm to the hospital personnel in the
form of a typewritten message on the calling
terminal when the maximum number of blocks in
the Patient Files is being approached.

3.1 GENERAL DESCRIPTION

Input is received from either a terminal or a card reader.

Output will be to the patient files on the disk and in the case of

card reader input a verification sheet on either terminal or line

printer.

I/0 USED--Teletype and disk. The disk files used are the following:

File No. 20
21
26

PATIENT NAMES
PATIENT NUMBERS
SUBFILE DIRECTORY

Read only
Read only
Read and Write

1Active Test - a test which has been requested but whose results
have not been entered into the patient files.

2 Active accession number - an accession number which has been
requested but whose corresponding test
result(s) has not been entered into the
patient files.

3-1

File No. 27 REQUISITION INDEX Read and Write
30 PATIENT TEST DATA Read and Write
34 DAD MAP Read and Write
35 ALPHA TEST TYPES Read only
36 TEST TYPE PARAMETERS Read only
42 BATTERY TABLE Read only
43 PACKAGE TABLE Read only
46 CARD POINTERS Read only
50 CARD FORMATS Read only

The REQUISITION ENTRY program consists of two essentially disjointed

parts, one for input from a terminal and the other for input from

a card reader. The operator calls in RE and the terminal will

print:

OUTPUT DEVICE, 1 TERMINAL, 2 LINE PRINTER

Typing 1 will cause overlay RF to be read in and the input will

be from the calling terminal. RF will call overlays Rl, R2, R3,

R4, RS and R6 in the course of operation.

Typing 2 will cause RE to continue and input will be from a card

reader with interaction from the calling terminal. RE will call

overlays R7, RB, RO, RG, RH and RI in the course of operation.

The operation of the two parts of the program is completely dif

ferent although they have the same results and functions. See

section 3.2 for terminal input and section 3.8 for card reader input.

3.2 FUNCTIONAL DESCRIPTION OF TERMINAL INPUT

After selection of terminal input, the computer will respond with

the following message on the calling terminal:

ENTER REQUISITIONS AS:

TIME, PATIENT#, TEST TYPE(S), ACC #

Requisitions may now be typed. Examples of the Teletype input

are given below. Computer responses are underscored.

:a:45AM, 12345, GLUC, BUN, 3245)

JONES SAM R* YES)

:2:00P,2369P,BUN)

#3457 SMITH SAM*)

3-2

)

~234567, ELEC, MA12, 570)

BROWN GEORGE* NO)

Commas are the delimiters which separate each field. Redundant

blanks are ignored 1
• A line of input is terminated by RETURN .

An"*" typed by the computer signals that it is ready for a line

of input.

Two options exist for the "time of day" entry:

1. The t ime may be typed in the format (h)h:mmT
where hh is a decimal number in the range 1-12,
mm is a decimal number in the range 00-59, and
T=A (M) or P (M) 2

•

2. The time may be ommited. Omission of the "time
of day" field is assumed if all characters in the
first field are decimal digits.

The number of test types which may be entered on one line is re

stricted only by the physical length of the line. If the accession

number is omitted 3
, the next available accession number is auto

matically assigned by the computer and printed.

Following the accession number, the computer responds by typing

the patient name. At this point, two options exist:

1. The l ine may be accepted by typing Y (ES)

2. The line may be rejected by typing N(O)

The COffiJ?Uter responds by typ ing ti** INPUT REJECTED"
and ig:10res the line of input.

1 Redundant blank= a blank before or after a field, but not within

a field. Thus:

~ M61234M, 6.M6GLUCM6. is legal

~12 6 34,GLUC is illegal

2 Characters enclosed in parentheses are optional and may be omitted.
3 If a test battery includes, say, 12 tests, the count is increased
by 1210·

3-3

Input is terminated when the first four non-redundant characters

of a line are "STOP". The computer then prints the message "RE DONE?

TTY IS FREE".

3.3 TEST PACKAGE

A "test type" is synonymous with the term "battery". The set of

tests which make up a battery are all intended to be identified

with the same accession number in the patient test data. A battery

made up of N test types is said to be of length N. Each test type

is itself a battery of length 1. E.g., the battery (test type)

SMA-12 has a length of 15 and consists of 15 batteries (test types)

all of length 1.

Two separate batteries typed on the same line have the same acces

sion number in the test data. However, the same accession number

typed on two different lines is not accepted so that a duplicate

battery-accession number combination does not enter into the files.

A test package is a set of test batteries, with no duplicate acces

sion numbers,which is placed in the patient test data for billing

purposes.

3-4

.,

A package is i den tified in the Test Data by a unique header fol

lowed by the set of batteries which combine to form the package .

Test batteries within packages are exceptions to the file structure

since space may be allocated for a battery, althoug h the battery

has not yet been requested. A battery is flagged as unrequested

by setting t he two high order bi ts of the accession number to 1.

A package may be requested by typing the package name and the

identifying patient number . The computer will then "lead the

typist by the hand" in identif y ing each battery within the package

and accept ing the corresponding inputs.

The format for a package requisition is shown in the fol l owing

example, where "ADM" is the name of an admittance package ' .

i.

ii .

iii.

iv.

v.

vi.

vii.

viii.

:1 2 34 5 , ADM)

<PKG> J ONES SAM P.. *Y)

PKG REQ. ON 12/31)

TEST, TIME, ACC #; TYPE I TO IGNORE/\ TEST)

CBC *l:15AM, 1234)

OK? YES)

GLUC * I)

BU N *)

#1235 OK?)

VDRL < 2 : 3 5 PM # 6 7 8 9 >)

END OF P /\CKAGI-: .)

Explanation:

line i The format for packag e s is similar to that for bat

teries, with the "time" and "access ion numter" fields

omitted. The computer, upon detecting a code as a

package name , signals it as such by typing " <PKG>"

followed by the patient name. The line may accepted

or rejected as usual. An initial search through the

3-5

line ii

appropriate patient file for the n•quc~.t,·d pil ck.t()l!

header is made. If the header c,xj s Ls, dnd a I. l <:',1St

one battery within the package has not l.,ccn rc"111estl!d,

the computer proceeds to line ii . If the hc .:1d,•r doc•s

not exist, space is allocated in the pati ent [ilo for

each battery in the package at this time; then the

computer proceeds to line ii.

A new package of the same name cannot be requested

until all batteries within the old package have been

requested for that patient, because a package cannot

be unique ly recalled from a patient's file by the

typist.

So long as there remains at least one unrequested

battery within a package , the program reca lls tlwt

package when requested and allows the typi s t to

complete the remaining requisitions.

If a package is recalled from a fil e (that is, at

least one battery remains to be reque s ted for that

package), the computer prints PKG REQ. ON XX/XX ,

where XX/XX is the date on which the package was

first requested.

If it is necessary to lay out a new package, the pro

gram obtains operator approval before proceeding.

Instead of the message printed in line ii, the

following message is typed: NEW PKG. OK? (YORN)*

If Y is typed, the program then lays out the new

package in the file and proceeds to line iii. If

N is typed, the program prints **INPUT RI-:JECTl.:IJ,

cycles back to the beginning, then prints an*

Line iii The first half of line iii shows the format f or

entering data. The second half of the line presents

the I (Ignore) option. If a requisition i s not yet

available, type I and a Carriage RETURN; th e computer

proceeds to the next line.

3-6

)

line iv.

line v.

line vi.

line vii.

line viii.

The computer types the first battery name and waits

for input. The time and accession numbe r for this

test may now be typed in. noth field,.; i:ire 01>l ion,1 l

and both may be omitted ~;imply l,y typ.inq 1:1-:'J'IJI/N .

This signc1ls the computer tn ,1~;:; L<Jn ,in .icct::; :: i on

number, as in Une v. I·:ac h line, of in[Jul i, : Lcr111.i-·

nated by RETURN and accepted or r<!jC!clc•J :1:: u,_; ual

after "OK?" is typed by the computer. l<l,j c·c I. .ion

of a line causes the computer to rc•ty1.;c til e l inc:,

preceded by the me ssag e "INPUT HEJECTJ-;o . " T f the

line is accepted, the computer places the entered

information in the test data; it then proceeds to

the next line.

The GLUC test is not available. l i s typed and the

computer proceeds to the next line .

Here, the accession number ha s been as::;iqn,•d liy the

computer and printed. l\ft e r acccr,tc111cc ol 11,t, numuc1·,

the c omputer proceeds to the next line.

A test which has previously bec:n r<.:quc:stcd wj thin Ll1c

package causes the computer to tyre the Lin~ n n<l ac

cession number enclosed by the chc1racteri, " <"and" > "

thus distingui shing it fr om a line of input.

proceeds to the next line.

It then

This line is typed after the lnst bat te ry in the

package. The compute r is then ready to receive

another line of input.

3.4 ERROR MESSAGES

Appropriate e rror messages arc al so printed.

below.

'!'hey c1re su111m.:1rized

**ILLEGAL TIME FORMAT

**NON-EXISTENT PATIENT#

3-7

~iel f- e xr,J.,111<.1 tc,ry.

Patient number not founcJ in

PAT IENT liUMBER file, o r non

numeric chr.1racte r s . May also

indicate fo rmat for the time of

day is incorrect.

**ILLEGAL TEST TYPE FORMAT

**NON-EXISTENT TEST TYPE XXXX

**DUPLICATION OF TEST TYPE XXXX

**ILLEGAL PACKAGE FORMAT

3-8

Either more than four charac

ters were typed in the test

type field or the tl:,,L tyr,e

field was o~ittcd.

The test type format was legal,

but XXXX could not be found in

the ALPHA TEST TYPE file.

The program checks for dupli

cation of test types which

were e ntered on one line with

the same accession number.

r.ach test within a 1,a t tery, as

well as the battery itself, is

checked for duplicate entries .

Thus, if both the batteries

MA12 and BGLU contain GLUC as

one of the tests within the

battery, al l of the following

entries are illegal :

.. . MA12, BGLU, ...

. . . MA12, GLUC, ...

. . . BGLU, GLUC, ...

... GLUC, GLUC, ...

. . . MA12, MA12, ...

May indicate:

1. More than one package code

on a line.

2. Intcrmixinq of p ,,ckagc cocles

a nd l,atterics (or singl e test

types).

]. "Time of day" field or "accc,c:

sion number" field or Loth

were cnterc,d . Loth fields ,. rc,

illegal in the package format.

(See section " Tcst Pacr:agc:s")

..

•

0

)

**ACC. # NOT UNIQUE A pointer f or the entered acces

sion numb,~r a]ready cxi stt, in

the REQUI SI 'J'IOtJ HIDE:~.

**DISK ERROR. TTY IS FREE. A non-recoverab l e disk error was

detected. The program then exits.

**SORRY

THERE ARE NO AVAILABLE ACC. NUMBERS AT THIS TIME .

EXIT

COMPUTER MUST

In attempting to assign an acces

sion number , no available numbers

were f ound . The prou ram then

exit s .

**WARNING. DISK FILE IS NEARLY FULL

**DISK IS FULL.

This message i s prinlcd when

there arc l ess than 20 10 blocks

available in file 30.

RE IS TERMINATED There are no more available

blocks in file 30. This message

is printed only when the program

tries to assign another block to

a subfile . Thus, it is possible

to en ter more requisitions for

other patients so long as there

is available space in the sub

files for those patients .

**CANNOT ACCEPT TIIE Ll\RGE VOLUME OF TNPU'I'. ~;ucc1,:s·r
l,SS IGNTNG DIFFE HENT l,CC. llUMllE HS '!'() S/\MPI.J ·:

**TEST HAS BEEN DELETED

:-; il,J•.: ci r,:,u11 :;ta nr :r•. 'l ' l,rcc IJl<H:L :;

c, f data mu :; t_ 1, c, crcaL,·d iJ:; d

r esult of cine line c,f rr..: qui :;i L1r,n: ;

for the circumstance to occur .

This message is printed if a pack

age has been deleted duri ng the

time between a package request

entry and the printing of the first

battery of the package.

3-9 .

Except as noted above, "**INPUT REJECTED" wi ll be printed a ft e r

every message.

3.5 INPUT PROCESSING

Each line of input is p roc essed as it is received . The steps in

the processing are summarized as follows:

1 . The time of day is coded to the format in which it will

appear in the t es t data. If no time o f day , the time is

coded as binary l' s . An error message is typed if the

time is out of range.

2. The patie nt number is converted to binary and an error

messag e is typed if necessary. A s e arch through t he

PATIENT NUMBER f ile i s made for t he number i n quest i o n.

If the numbe r t ype d i s not f o und, an error message is

typed. If the number is found, the corresponding name

is r e trieved from the PATIENT NAME fi l e by noting the

relative position of the numbe r in the PATIENT NUMBER

file.

3. A table lookup is made for the binary equivalent of each

test type. If the search is unsuccessful, a n error mes

sage result s . If a package code is typed, the computer

proceeds in the manner descr i bed above .

4. If the acce ss ion number was e ntered, the correspondi ng

pointer is r ead from the REQUISITION I NDFX. If t he

pointer equa ls 7777, i t i s r ep l aced temvorari l y by 7776.

If the pointer is not 7777, a n error nw !~!-; a<J c is t y ped.

If the access ion numb c: r was not c.:nterc.: cl , (1 !; c• i.trch I or

the next avail a ble number in the P.EQUISI'l'ION INlJEX is

made. Then 777 6 is placed into the REQUISI TION I NDEZ .

If the pointer to the SUBFILE DIRECTORY eq uals 7776,

a block must be assigned to the patient . This requires

a search through the DAD fil e for an available b l ock .

A pointer to the assigned block is then p] aced into the

REQUISITION INDEX and SUBFILE DI RECTORY .

3-10

..

)

5. If no errors are detected, the patient name is printed.

If NO is typed following the name, the line is rejected,

and the pointer in the REQUISITION INDEX is again set

to 7777. If the line is accepted the information may now

be placed in the PATIENT TEST DATA. The "current day"

header is found by referencing the pointer in the first

block. "Today's" header is placed in the subfile if

necessary, and the pointer to the current day is updated.

The "active test" count is increased accordingly. 1 Each

battery of length N which was typed results in 3 + (Nx]}

words to be created in the test data. The length of each

battery is found by examining the TEST TYPE Tl\BLJ·:. 'l'he

test type (battery number), accession number, and time

are placed in words N, N+l, and N+2. Each subsequent

three-word entry, consist ing of test status, technician

code, and results, is set to zero, except that the "last

test in battery" bit is set to one in the last three-word

entry. Word 2 of the first block is set to the relative

position of its pointer in the SUBFILE DIRECTORY. The

pointer in the REQUISITION INDEX, temporarily set to 7776,

is now .replaced by the pointer to the first block of the

patient's subfile.

The program assigns new blocks to the patient's subfiles as needed.

Data is placed into each block up to the 256th word , and u vointcr

to the next block is placed there if a new block must be created.

The last word in the file 1s followed by a logical end of file

marker (7777), and the last wor d of that block is s~t to 7777.

Note that the logical end of fiJ0 may not exist if the lost word

happens t o fall in the 255th wo r d of the block . The Dl\n file is

then updated and writ ten back on to the disk. 1 f t ht: numL,,,i~ of

available blocks is less than or equal to 20, a 11,cssac1e is printeu

on the terminal. If no available blocks rema1~ on the disk, an

appropriate message follows .

CALLING PROGRAMS - The program is called by opera tor request only.

PROGRAMS CALLED - Except for prograro overlays , no other program is

.:::a l led.

1 If a test battery includ~s 12 t ests , the count is increased by 12
10

.

3-11

ERRORS - Input ca nnot be edited with th<..! Requisition l::ntry prog rc1111.

If the computer detect s a syntax error , an error message is typed ,

and the current line of input is ignored . Errors detected by the

user can be corrected by calling t h e "DELETE DA'l'A" program;

and d e leting the offending tests, then recal ling the Pcqujsition

Entry program.

3.6 ASSEMBLY INSTRUCTI ONS

The source exists in seven DIAL s e c ti ons : RE(JENT , JU:QEN'1'- l,

REQENT- 2 , REQEN'I'- 3, REQENT- 4, nr:QJ::N'l' - ~), REQ'I'X 'l'. Jrn()EN'l'-1 , - 2 , - 3 ,

-4, and -5 are fir st added to REQEN'l' usinq Ll1c ' /\P l) .lf1L conuncrnd.

These combined sources chain to r~EQTX'l' . Th e, bi.nJr i l: ~ a n, !;avcd in

the following man ne r.

+ add

+=chain

Source

REQENT+REQENTl+REQTXT

REQENT+REQENT 2+REQTXT

REQENT+REQENT3 +REQTXT

REQENT+ REQENT 4+REQTXT

REQENT+REQEN'T5+REQTY.T

REQENT+REQENT5+P.EQTXT

first number
binary of

b l ock blocks

2, 3

2,2

2, 3

2, 3

2,3

1,1~

3-12

name on
start up tape

Rl

R2

RJ

R4

RS

HE

,.

..

..

)

3.7 FLOW CHARTS FOR REQUISITION ENT RY (TERMINAL INPUT)

RQ,0

Yes

.h --
(P~~r)

#2B

ENTER \
FROM TTY\
CALL, j

LOC /

PRI NT TTY:

I "ENTER REQUI
SITIONS AS" etc.

-1

~

ET HOS I ZE 1·
DATE FROM
UMB 3 AND

TORE

IC'--------~--s (~~A~N~~og:::{
\~ERS 1,2,3

~I
!

PRINT TTY:
II *II

IGET INPUT
FROM TTY

J
INITIALIZE
POINTER TO TTY
INPUT BUFR #lA
(XRS)

,0 ~ CARRIAGE RE_: .
TURN FLAG FOR
SUBROUTINE #lS
.0-t'l'TY STATUS
TO INDICATE

j 1ST PASS

#lS ,---·-'--~ #lC WA5>i ther ET THE er ror IPHIN'l' 'l'TY:
"STOP' FIRST F'IEL!

7
J > "TNPU'f REJEC'l'ED"

TYPED OF INPUT ~~~~~~,'~..,.-~~~~~~-

? '

No

Go t o
program
Rl

Carriage
return

PRINT TTY:
"I LLEGAL TIME

FORMAT"

3-13
e

Q
~Return here fr0m

program Rl

quarters 1,2, 3

Go to program 62

e
I Return here

program R2

Load program
R3 into
quarters 1,2,3

from

Go to program
R3 e

e
Return here from

Load program
R4 into
quarters
1, 2, 3

3-14

R3

..

..

)

Return her
from R4 to
call acc_ ______ __,
inter- AVE RETURN
preter. DDRESS(XR17)

#1B+41

#3L

------LOAD
PROGRAM RS

CALL
ACCESSION
INTERPRETE

Return,
no skip

LOAD
PROGRAM RS
INTO QUARTE
1, 2, 3

#1B+41

Return

i skip

Return here from R4 t o
call "TIME" interpreter

.----'I'----~ subrout ine.

,--·~--~Return here from
call acce ssion#

PROGRAM RS
QUARTER

1, 2, 3

#1B+41

No skip

Return, 2 sl:lps

INCREMENT
·T URN(XR1 7

R4

3-15

SAVE RETURN
DDRESS(XR17

LOAD
PROGRAM RS

CALL
ACCESSION
GEN ERATOR

'

PRINT TTY:
"DISK ERROR.
TTY IS FREE."

if disk error

unsuccessful
opening a disk file

BACK UP
RETURN ADDRESS
BY 3.

3-16

..

)

Yes

#5S

Yes

#4S

INITIALIZE
POINTER TO
FIELD BUFR

(XRl)

No

5S

#2U

215 ~
CARRIAGE
RETURN FLAG

76"7FIELD
BUFFER
(XRl)

RE-INITIALIZE
,.._-------------------1porN'rER 'l'O FIELI

I3UFFER (XHl)

3-17

"CARRIAGE
RETURN"--J AC

INCREMENT
POINTER TO

NEXT CHARACTER
IN INPUT
BUFFER (XRS)

First
pass

SET FLAG
INDICATING
SECOND PASS

#6S

3-18

(XRS

MASK
TO

First

GET CHAR.
(XRS)

MASK OFF'
4 HI-ORDER

BITS

..

)

_t__
7777-->-pointer
in Reg . Index

3-19

po inter
7777

REQUISITION ENTRY
Rl

No time
was in ut

Ente r h e r e
from HQ0

"TIME"
INTERPRETE

us

#9A

Error

Carriage

STORE LO
ORDER PATIENT#
(#2H)

OPEN READ
FILE 21,
PATIENT NUMBERS
THEN CLOSE READ

7 FILE 21
BLOCK#

RQ,0

~RELATIVE POSITION I
SUBFILE DIRECTORY

E -
OF CORE LOADS
NEEDED TO CHECK
ENTIRE FILE 21

R6 FROM HOSIZE

No

OF WORDS
REMAINING TO

HECK7XR7
(FROM HOSIZE)

INITIALIZE
TO BEGIN, OF
CORE BUFFER

3-20

,.

#3C

RQ,0

..

)

#SH

I ADD 1
ATIVE

READ LO-ORDER
PATIENT # (XRlii')

#lT~-------~

I BUMP POINTER
(XRlO)

ADD 4
BLOCK

INCREMENT CORE
LOAD COUNT

ADD 1 TO REL. PCS.

3-21

#4 H ~--~-----,
GET HI-ORDER
PATIENT# (XRlO)

/

(

READ TIIE
POINTER IN
SUB. DIR.

LOSE REAr
FILE 26 \

"ILLEGAL TEST
YPE FORMAT"

RQ,0

#SI
------'---,

5J

- 5 """? XRl,0

3-22

,ET A CHA R .
I N FIELD 13 UF

(XRl) Yes

Yes
#3I

CONVERT 8-BIT
TEST NAME TO

6 - BIT

READ I N
TABLE ON
DISK

,0-+XR14
(TES T 13INl\RY C0D·
-# OF TE S T T '{PE
~ XR 13

PT R TO TEST
TY PE BU FP. '/.?7

C•

Yes

RQ.0

..

)

GET FIRST WORD
IN TEST TYPE
TABLE (XR12)

GET WORD 2
(XR12)

No

ADD 1 TO ll OF
TEST TYPES

(#7 K)

SET SWITCH
#4I

3-23

j/JJ

INCR PTR TO
'l'ABLE (XR12)

INCR BIN CODE
(XR14)

RQ.0

~-,LO BITS
OF ACC #
3~ AC

AC7HO BITS
OF ACC. #

TABLE, FILE
36

PTR TO BIN
TEST TYPES7XRl

-#OFTEST TYPES
-,XR2

7777~ #lW
SSUME NOT A PACKAGE

PTR TO CORE
PARAMETER TABLE
#7P-t XR3

#9u,--~~--::==:=:~~~--,
GET NEXT BIN.
TEST TYPE (XRl)

USE IT TO CALCULATE
ADDRESS OF PARAMETER
IN FILE 36 I3UFR ~XR4

GET THE P ARAME'l'E
IN FILE 36 BUFP
(XR4)

STORE IT IN
CORE PARAMETER
TABLE (XR3)

3-24

Yes
lr------t # 4J

2

~-} AC

B

No

)

J3~ # OF
BATTERIES IN
THE PACKAGE(#7K)

Yes

No

Yes

Yes

TABLE #2P+

'l'ABLE # 7P

3-25

LAY OUT TABLES
2P+l AND 7P
TO LOOK LIKE
A SERI ES OF
BATTERI ES

TABLE,
ILE 43

GET POINTER
IN FILE 36

(#7P)

USE IT TO
CALCULATE
ADDRESS OF
PARAMETERS
IN PILE 43
BUFR XH4

#9
+2 ::q.-1f;-·--~-

READ IN
BATTERY
TABLE

FILE 42

PTR TO TABLE
#7P7 XRl

#6C

RQ,0

-# OF
BATTERIES7XR

#9R::;;;~~~~~~~~~~~~~

INCREMENT PTR
0 FILE 42(XR3

BATTERY TABLE
(XRl)

USE THE
POINTER TO
CALCULATE ADORES
OF PARAMETERS
IN FILE 427XR3

~-"' # OF TESTS
IN THIS BATTER

(XRl)

OF
THIS

GET P'rr< IN
ILE 42 (X R3)

3-26

YES

No

Yes, back to
Quarter .0

)

#3T

GET NEXT
CHARACTER

Yes

0 FIELD
BUFR # 2S~XR1

Error return'-~~~~~--'
from #9A in-
dicating #9A .

Legal return from
#9A indicating Lll.i t
all numbers were
typed and that
"TI ME " field was
omitted.

l
that perhaps~~ ~~~-

SET BITS ,0-8
1--~~~0F #2P TO 1 "TIME" I

field was
typed.

No
No

3-27

#6B

Yes

Yes

Yes

INDICATING A
NULL TIME

Yes

Yes

SAVE CHAR
(#lX+l)

REPLACE IT
WITH DELIMITER

STOR HOUR
BITS j3'-3·,#2P

EXAMINE CHAR
IN #lX+l

Yes

Yes

#7B

REPLACE A OR P
ITH DELIMITER

(XR6)

es

ET NEXT
HARACTER (XR6)

GET NEXT
CHARACTER (XR6)

No

Ye

3-28

Ye s

STORE
INUTES

~-~ITS 4-8
~ #2P

#3X

0

)

INIT IALI7.F. PTR.
TO FT F. LD BUFR .

(XRl)

91\

STORE LO
ACC #(# 2F+3)
STORE HI
ACC # (#2F+ 2)

er r or
~10, 00 0

ok
/

OPP.N WRITE
FILF. 27, RF.AD
P'I'R. TN RF. (i .

NDEX, FILE 27

#S=L __ _

I LE 27
.no !:LOSE WRI 'T'Ej.

#2 F+ 2
-" #7E

#2F+ 3

3-29

ace
no t uniqu P.

NCRE"1F.N'

INCREMENT
ACC #

<1 0,000

SUB. 2 FRO
.f!I NUMBER

(AC)

3-30

0-,#7E

7 10 , 000 O-t#7E+l

es SUB. 34 1 7

•

8

..

)

Enter from RQ.0'

UL . REL. POS

Y 1~10.
[#4E+3]xl0"7
jl6F+2,#6F+3

8-BIT ASCII
AME 70UTPUT
UFR. SPACE ,

*"70UTPUT BUFR.

T PTR. TO
RINT "~PKG >", ___ _

·• ----~"~ D NAME •

3-31

~ ..
,··(

GET INPUT
BUFR.

GE'I' FIRST
CHARACTER

RESET CURRENT
ACCESSION#
#2F+2~#7E
#2F+3-,nE+l

3-32

..

re.iected

RQ,0

..

..

)

#7L

DISK BLOCK#
+4~DISK
BLOCK #

RINT TTY:

TO

"NO AVAILABLE
ACCESSION NUMBER"

#2M

Yes

Yes

ENTER
S/R #6L

(GENERATE
CCESSION

#)

l,0l,0 CORE LOADS

7 XRS

ET CURRENT ACC#
0 BEGIN SEARCH

(7£:, ?f't-1)

USE IT TO
CALCULATE FIRST
BLOCK IN FILE 27
TO BEGIN LOOKING
FOR AN AVAILABLE
ACC. #

USE LOW ORDER
ACC. # BITS 2-11
(7E+l) TO POINT T
FIRST WORD IN
CORE TO BEGIN

E H .

INDEX POINTER
(XR6)

,0 FILE 27
,--~~---tBLOCK # --~~

Yes

3-33>

CALCULll.TE THE FOUND ACC.
FROM THE DISK BLOCK#
AND XR6~2F+2, 2F+3 and
7E,7E+l

NUMBE
27 TO

WRITE IT
ou·r ON

DISK

UT THE ACC.#
INTO THE TTY

JUS-

3-34

)

REQUISITION ENTRY
R3

No

Enter R3
from RQf3

f3 ~ SWITCHES
#2W, 2W+l, 2W+2,
2W+3, 2W+4, 2W+5

PTR. TO TABLE
CONTAINING # OF
TESTS/BATTERY-t-XR

OF BATTERIES
-j XR2
f3 ~ TOTAL # OF
TE STS (#6G)

OF TESTS FOR A
INGLE BATTERY(XRl)
#6G7 #6G

WRITE
FILES 3f3,
TEST DATA,

AND 34,
DAD MAP

SET THE PTR.
IN SUB. DIR.

(#7D)

HELD

Yes

Subfile
already exists

Must create
a subfile

3-35

2,.x----=---::-::-:-~
FIND ~N

AVAILABLE
BLOCK IN
FILE 3f3 FROM

MAP IN DAD
FILE.

BLOCK

3 -t WORD l
INDJCATI i.JG 'I'HA'r

DAY llEADJ-:F
LIES IN \0/0RD

3.

POS. IN

#SG

SET BIT
OF TODAY'S

DATE, NRITE
DATA INTO

WORD 3 (#lG)
#SG

SE'!' SWITCH TO
WRI'l'E OUT PTR.
IN SUBFILE
DIREC'l'ORY
(4f3f3f3 7# 2W+4)

BLOCK# OF FIRST
BLOCK OF PATIENT 'S
SUBFILE~
DISK PARAMETER

#2V+l

READ IN FIRST
BLOCK OF
SUBFILE
(QUARTER 4)

3-36

READ WORD p :
QUARTER 4;
ADD ITS CONTENTS
TO XR1 7
-) XRl 7

.,ET CURRENT
AY HEADER
XR17

UP
DATED OUT
STAND ING TES

OUNT

•

#2H

#3I

Yes

)

INCREMENT
XR17

#3I

#3I

Not E.O.F.

Yes

End of
file'--~

Must be test data

SAVE IT

No

Yes

3-37

REPLACE END
OF FILE MARKE
WITH TODAY'S

DAY HEADER

SET BLOCK#

#7H

ITH HEADER INTO
ORD 0, QUARTER 4

(#7I -tWORD 0)

PTR TO THE WORD
WHERE DAY HEADER
IS IN THAT BLOCK
#7!+1) -7
WORD 1, UARTER 4

SET SWITCH TO
RITE QUARTER

4 ONTO DISK
(40007 2W)

#SG

WRITE ACTIVE
TEST COUNT (#6G
INTO WORD POLLO

ING DAY HEADE

No

#9G

Yes

PACKAGE
EADER INTO
NEXT WORD IN

ATIENT'S FIL·

BLOCK# CONTAINING
PACKAGE HEADER
(#7I)""PlW+l.

WORD # IN THAT
BLOCK 1W+2

-# OF BATTERIES
~XR2

POINTER TO
BATTERY NAMES XR3
PTR TO TABLE CONTAININ

OF TESTS BATTERY~

E
CURRENT BATTERY
(XR4)~XR5

SET BIT 2 OF
AC INDICATINQ
THAT THIS
BATTERY IS PAR
OF A PACKAGE yi....:,.Ac

LOGICAL OR,
AC WITH BATTER
NAME (XR3)

No

INCLUSIVE OR
HI ACC#(#2F+2)
WITH TIME (#2P)

#SG

IT

0~AC

No

#SG

3-38

0

PTR;ro Fl ns·t·
BLOCK OF
SUfH'ILE -+
F lJ...E 30 IH:;1<
Pl\HAME'I'ER l\ND
TO THE POJN'I'ER
IN FILE 27

PTR.TO BEGIN
OF SWITCHES
#2W~XR1
PTR . TO DISK
ADDRESSES ...,-.XR2
- 4~XR3 TO TEST
TllE 4 QUARTERS IN
MEMORY BUFFER

..

..

no

..

)

3-39

RITE OUT
THE BLOC¥:

~=---~ IN CORE 7
ILE 3,0'

RITE OUT
DAD, FILE

yes 34 + CLOS
>--~Im FILE

OPEN FILE -;(26, WRITE
THE POINTER,
+ CLOSE TIIF.

TJ.E

WRITE OUT
PTR. IN REG.
INDEX, FILE

7

#3I

(#9H+3
-+AC

SAVE IT
#9H+3

4

End of
file

3I

EAD STATU
ORD

SAVE IT -
#9I+3

1

2

(#9I+3~AC

#3I

READ LO
ORDER
ACC #

3-4 0

No

#3I

READ HI
ORDER
ACC #

#9D

READ TEST

RQ,0

wr,rTr::
W,3

..

)

2I~ DISK BLOC
XR17 TO BEGI

F' QUARTER 6.

No 2I-t DISK BLOC
~--~~# XR17 TO BEGIN

F QUARTER 7.

3-41

IBAD NEXT
BLOCK INT4--~
QUARTER 5.

CALCULATE DISK
BLOCK# AND WORD
FROM WHICH THE

WORD WAS TAKEN

Yes

C (l\C)""7
#SG+l

#4J
No #SG+l

>----...,,.Ill -j AC

#4L

SAVE IT
~#lH

STORE THE
POINTER TO
NEW BLOCK IN

LAST WORD OF
OLD BLOCK

SET LAST WORD
OF NEW BLOCK
TO 7777

#lH ·~
APPROPRIATE
DISK PARAMETER

3-42

..

..

..,

)

C (AC)-j XRl 7

SET SWITCH 2W,
2W+l, 2W+2, or
2W+3 ACCORDING
TO; RESPECTIVELY,
WHETHER THE WORD
WAS WRITTEN TN
QUARTER 4,5,6 or
7

INCREMENT
XR17

3-43

DETERMINE
WHICH QUARTER
IN CORE (4,5,
6, or 7) TT I S
CURRENTLY POINT
ING 'T'O.

USE 'rHE QUT\RTEH
AS AN INDEX
TO 'T'IIE l\PPROP11\TE
DISK PARAMETER
CONTAINING TllE
BLOCK# RESIDING
IN THAT QUARTER.

DISK BLOCK#
RESIDING IN CUR
RENT MEMORY QUAR
TER-t# 7I.
WORD# IN THE
QUARTER TO WHICH
XR17 IS CURRENTLY
POINTING ·f

#7 I+l.

POINTER
7 XRS

-MAX# OF
DISK BLOCKS
AVAILABLE IN

ILE 3~ FROM
~ OF DA

ROTATE THE WOR
'----'1"--',._-i'"lNCE TO LEFT

6X

C (XR6)7
XR7

SET BIT /J 'l'O 1.
ROTATE 'l'IIE WORD
BACK TO WHERE
IT WAS (XR6)

SET SWITCH TO
WRITE DAD ONTO
DISK (#2W+S)

9F #9\'lr:,-------...... ,........---
#1M=6

Yes
r----;-----1--4~~~ 1 AC

3-44

No

ROTAT· THE WOR
ONCE TO LEFT

No

RQ~
,"-"'----.........
RESET PTR.
N REQ.INDE
IF NECES
SARY

AC7# X
SWITCH=4~~~
IF <. 2~ BLOCKS
LEFT IN FILE 3
=~ IF~ 2f' .J

..

"

"

C(R3)+HXR3

..

no

C(XR4)+HXR4

3-45

READ IN 2
WORDS OF
FILE 35

8

MULTIPLY BATTERY
NAME (BIN CODE)
BY 2 TO GET
INDEX TO FILE 3~

INT TTY:
HEADER INFORMATION
fOR PACKAGE MODE
INTERPRETE-R

BLOCK WHERE
PACKAGE HEADER
LIES (#lW+l)
~DISK PARAMETER

(2V+l)

READ IN BLOCK
CONTAINING PACKAGE
!!EADER INTO

QUARTER 4, UMB6
CLOSE READ

OINTER TO PKG
EADER.:, XRl,0

GET PKG HEADER

No

.0--170-1
(SWITCH TO WRITE
QUARTER 4 BACK

NTO DISK)
=/J, DON'T WRITE

No

ALPHA TEST TYPES,,.._~~~
AND PUT IN
DISK PARAMETER.

3-46

PRINT TTY:
"TEST HAS BEE

DELETED"

..

..

iSK

)

READ IN NEX
BLOCK OF
SUBFILE INTO

QUARTER 5

GET HI
CC # (WORD /3

OF QUARTER 5)

#1B+26

TTY:
NOT
II

#2H

* ALT-) TTY
OUTPUT BUFR

INITIALIZE
S/R #1S

arriage
retur

Neither

Yes

RQ/3

ALL ACC#
INTERPRETE

Error Normal
Return

3-47

777~'rIME
(NULL)

OPEN AND
>--+---fW RITE OUT

QUARTER 4

1

2

No
,,

INTO FILE 3~
HEN CLOSE IT

3-48

SET UP
OUTPUT BUF

SET UP
OUTPUT BUFR

..

•

)

INCREMENT
XRlj1 & READ

EXT WORD
INDIRECTLY
THROUGH XRlj1

STORE C (AC)
INDIRECTLY
THROUGH
XRl,0

SET SWITCH
#70-1 TO 4j1f6,0
TO INDICATE TO
WRITE OUT QUARTER
4 ONTO DISK

RESET PTR TO
,...._~~BEGINNING OF

QUARTER'/-1

GET
END

WRITE OU'!:
QUAR'l'ER 4
ONTO DISK

PTR AT
ND OF BLOCK
UT IT IN

No

DISK PARAMETER

READ

j1 ~SW
#70-1

3-49

3.8 FUNCTIONAL DESCRIPTION OF CARD READER INPUT

After selection of Card Reader input, the computer will respond

with the following message on the calling terminal:

OUTPUT ON 1 TERMINAL, 2 LINE PRINTER

A response of 1 will set location OUTDEV to 0000. A response of

2 will set location OUTDEV to 7777. The value of OUTDEV is trans

ferred between overlays for use by overlay R8.

The program then searches the card type files and forms a list of

RE card codes at TYPTAB in bank 6. The program then opens a

scratch file in which to put the card information. The program

then opens the card reader and prints the following message on

the calling terminal:

LOAD CARDS, HIT STOP, HIT READY, HIT RETURN*

3-50

'

•

•

)

After a key is struck, the program causes three cards to be read

into the buffer CRDBUF in bank 7. The program then initiates a

read of three or more cards and processes the first three cards

while the next are being read (0.9 seconds).

The process continues until 150 cards have been read or the hopper

is empty (a read with no errors occurred and O cards were read, and

hopper empty flag set) •

The information from the cards is partially processed and stored

in a buffer in bank 6. The buffer is in the following format:

1. Card number in binary, 1 word.

2. Card type in 2-character, 6-bit trimmed ASCII.
character is always 22(R), 1 word.)

(Second

3. Patient number in 6-bit trimmed ASCII. (If an odd number
of characters, the last half-word is 00.) The number of
words will vary as to the length of the patient number in
the system.

4 . Accession number in 2-word binary. If accession number is
not entered, the value 7403 7777 is put in. If an error
occurs (internal blanks or illegal characters), the value
4207 7777 is put in.

5. Time in 3-word format. First word is the 2-digit trimmed
ASCII value for the hour . Second word is the 2-digit
trimmed ASCII value for the minutes. Minutes are truncated
to be even if an odd value is entered. Third word is 2000
for a.m., or 4000 for p.m. Null time is entered as all
zeros.

6. Date in the monitor format, 1 word. Error in date is
entered as 4000. No date entered will assume today's
date.

j 1 1 m1 m2 m2 m2 m2 dl dl d2 d2 d2

7. Tests requested l word per test. Bits 0-7 give the column
number and bits 8-11 are the row number. Columns are 1-80,
rows 1-12 .

8. End of card word, 1 word (7777).
to process the card information.
coding is located in bank 4.

3-51

No disk reads are required
All of the processing

After information from all three cards .has been placed in the

buffer in bank 6, the program executes the routine PR0BK6 in bank 6

to process the information further and place it into the scratch

file. The routine looks at the card type. If the card type is

illegal, bit O of the card number is set. Otherwise, the card

number is added to the scratch file, the card type omitted, the

patient number added, a temporary subfile pointer of 7777 added,

the accession number, time and date transferred . The column-row

numbers for the tests are then compared to the list in file 50 for

that particular card and the values which correspond are replaced

by the pointer to the relative position in file 36. The end of

file 7777 is then transferred.

The information in the scratch file for each card is in the format

described above and in the following order:

1. Card number, 1 word, bit O set if invalid.

2. Patient number, length will vary.

3. Downpointer, 1 word (7777)

4. Accession number, 2 words

5. Time, 3 words

6. Date, 1 word

7. Test pointers, 1 word each

8. End of card, 1 word (7777)

When all of the information for all of the cards has been placed

in the scratch file, the program jumps to bank 5 location 20 for

error checking.

The first part of the error checking uses routine PATNUM located

in the last 2 blocks of bank 5 to check the patient number for

validity. The scratch file is read and the patient numbers are

listed with the relative position (downpointer) in a table in

banks 6 and 7. The tape buffer is opened if the number of words

in the patient number is sufficient to require this space . The

patient numbers are read in 4 blocks at a time and all the numbers

from the cards are compared each time. When a match occurs, the

relative position is stored in the downpointer word. The program

3-52

)

continues until all cards are checked. Then, the program makes

another pass through the scratch file and replaces the word fol

lowing the patient number with the correct downpointer or if no

match is found, 7776 is stored in the downpointer word.

The second part of error checking uses routine TEST to process the

test requests. Overlay RG is read into the last two blocks of

bank 5 for the processing. The routine reads in a card information,

sets up a bit map for the tests requested today on the particular

patient in BITMPl. Another scratch file is opened and the infor

mation is transferred to the new file because the new file may be

longer. Each test requested is read in and a check is made as to

whether it was already requested today (a repeat) in BITMPl or

whether the test was previously requested on this card (a duplicate)

in BITMP2. Parts of packages are only checked for repeats as they

are assured against duplications. For single tests and batteries,

the format in the list remains one word. Bit O is set if the test

is a repetition, bit 1 is set if a duplication. For a package, the

one word format is expanded. Bit 2 of the original word is set to

show that a package appears. The following two words are a dummy

7777 7777. Following these, each of the codes for the batteries

within the package appear with bit 2 set and followed by 0000 0000

as dummy words for future accession number. If consecutive cards

are for the same patient, the program will include the previous

cards in determining repetitions.

The routine then closes the first scratch f i le and proceeds to read

in RO for the last part of e rror checki ng.

The third part of the error checking is ACCNUM, which is located

in overlay RO as read into bank 4. The routine makes a pass through

the scratch file and make s a list of t he card numbers and the acces

sion numbers assigned to the cards. The accession numbers, ori

ginally in the form XXXXXXXXXAB CDEFGHIJKLMN are transformed into

the form ABCDXXXXXXAB CDEFGHIJKLMN where the first four bits indicate

the disk read in which the requested accession number can be found.

When a number is found, bit 4 is set in the two word format, the

appropriate word in file 27 is set to 7776 and the number is stored

in a list starting at word 1000 of bank 4. After all of the requests

have been checked, the null values (originally 7403 7777) are

assigned an available accession number. The errors 4207 7777 will

3-53

not be checks as bit 4 is already set. The routine then makes a

pass through the scratch file and places the appropriate value in

the accession number words and then files through the test requests

for packages. In the two words allocated after each part of a

package (except for the first package words which remain 7777 7777)

an assigned accession number is placed. If no tests other than

packages are found, the accession number is set to 7600 0000. The

program then reads in overlay R7 into bank 5 and processing has

been completed.

After the initial processing has been completed, the operating

sequence remains fairly stable. The options for handling are con

trolled through overlay R7 in bank 5 and all other programs return

after completion. The last two blocks of bank 4 always contain the

list of accession numbers saved. The option programs are located in

bank 6 and, if necessary, in bank 7. Any programs needing storage

space use the first two blocks of bank 4 and the available space

in bank 7. If additional space is needed in bank 5, program R7 is

restored. A return without disturbing R7 returns to location 21 of

bank 5. A return after rereading R7 must be to location 20 of

bank 5 with the following values in bank 4. The output device

code (OUTDEV) in location 4, the number of words in the patient

number (COUNT) in location 5, the disk read parameter for the

scratch file (DISK17) in location 6 and the number of cards in the

scratch file NUMCRD in location 7. These four values (OUTDEV,

COUNT,DISK17 and NUMCRD) are common between overlays except that

some may be complemented.

After R7 is read in,the following message will be printed on the

calling terminal:

ENTER CODE*

The operator should type the proper code for one of the options

below:

A to file all cards without errors with the option of typing
in exceptions.

N to file all cards without error as typed in.

L to print mnemonics for error codes appearing on cards.

P to print the card information on the appropriate output
device.

3-54

•

,

•

)

SHOW ME to print an explanation of the options.

STOP to terminate the program .

When option A is selected, the program calls routine GOODLT to

leave a list of card numbers for cards without errors at LISTAB

in bank 4. The first word of the list is the negative of the number

.of card numbers in the list. GOODLT accomplishes its task by

calling routine GETERR to form a list (ERRTAB in bank 7) of card

numbers and their appropriate errors. The error word is as follows:

Bit Set

0

1

2

3

4

5

6

Meaning

Invalid card type

Illegal patient number

Illegal accession number

Illegal time

Illegal date

Duplication of test type

No tests requested

GOODLT then only selects the card numbers whose error word is zero.

The program then asks the operator to type in a list of excluded

cards. This list should be legal card numbers, separated by

corr~as. Cards with errors need not be entered as they will be

rejected anyway. The numbers typed are read and placed in numerical

order by routine GETLST. The exceptions are then removed from the

LISTAB list and R9 is read into bank 6 in order to file the cards

listed.

When option N is selected, the program calls routine GOODLT for a

list of the cards without errors. Then routine GETLST is called

to input a list of cards to be included in the list to be filed.

The two lists are compared and any card that is input and is not

on the list of cards without errors will be typed out as not able

to be filed. The others will be placed in LISTAB and overlay R9

read into bank 6.

When option Lis selected, routine GETERR is called and then the

program calls overlay RH into bank 6. Program RH types the card

number and the single letter code corresponding to any bit set in

the error word. The codes are separated by commas if there are more

than one per card and are as follows:

3-55

Code Error Bit Set Error TlEe
I 0 Card type

N 1 Patient number

A 2 Accession number

T 3 Time

D 4 Date

R 5 Duplication of test type

M 6 No requests

The calling terminal will request whether the operator desires an

explanation of the codes. Entering Y will cause this explanation

to be printed, anything else will cause a return to R7.

When option Pis selected, the program loads overlay R8 into bank 6.

R8 reads the scratch file and prints the information on the selected

output device (OUTDEV). After the cards are printed, the program

returns to R7 in bank 5.

When SH or SHOW ME is typed, an explanation of the options is typed

on the calling terminal.

When STOP is typed, the program uses the list in bank 4 of the

accession numbers and restores the 7776 in file 27 to the original

7777 so that others may use those accession numbers. The program

then closes the scratch file and exits.

Both the A and the N options call R9 the requisition filing routine.

R9 is read into bank 6 and the first block of bank 7. The routine

uses LISTAB to file cards in the list, if possible. The program

first calls routine NUMGET which finds the card in the scratch file,

forms in the correct format the accession number, time and date,

and sets up a list of the number of three-word slots to be allocated

for each test requested in table SLOTTB in bank 7.

The program then calls routine PRELIN which searches the patient's

file and determines the number of blocks of data for the patient

NMBLK, the first block of data for the patient FSTBLK, the block

and word for the end of file word NEDBLK and ENDWRD. A flag,

HEADFL, is set if the current day header is in the file. When

HEADFL is set, locations HEADBL and HEADWD contain the block and

word for the current day header. The program then calls routine

3-56

~

)

CHKLEN which verifies that t he added tests will not exceed the 16

block limit as the length of a patient 's file. CHKLEN adds the

number of words determined by (NUMBLK X 256) + ENDWRD + (sum of

values in SLOTTB) X 3 + 16. I f this value is g reater tha n 4096,

the program continues with the next card. If the v alue is less

than 4096, the program call s routine PROCES to add the tests to the

patient data in file 30.

NUMBLK is checked and if there is no data in the file, a block is

secured by setting a bit in file 34 by routine FILE 34. The correct

header and test count is set up, and then routine FILLIT puts in

the new requests. An end of file is added, complet i ng the f ile.

Routine FILLIT removes the accession numbers from the list in bank

4 by changing the value to 7777 7777 and p laces the proper value in

file 27.

If there is data in the file and the current day is not in the file,

the routine adds the new requisitions at the end, us ing FILLIT and

the pointers in the first block are modified to reflect the change.

When the current day header i s in the file, the new tests are added

to the end of existing tests for that day, with new blocks of data

created. The remainder of the file is then transferred into the

new block chain. Any blocks that are no longer in use will be

released for use. When a card is filed, bit O of the word in

LISTAB is set to 1. AFter all of the requisitions are entered, the

program jumps to routine DELCRD in bank 7 which removes a ll of the

cards filed from the scratch file.

DELCRD then loads overlay RI into bank 6 . RI searches through the

LISTAB list and first print s t h e list of c ards filed, and then

prints the list of t he cards not filed. RI then rereads overlay

R7 into bank 5, sets up the initializa tion of the pointers for R7

and jumps to bank 5.

3-57

3.8.1 Error Messages (Card Reader)

The following error messages will be prin ted during the operation

of the program during card reader input.

MESSAGE

TYPE 1 OR 2

FEED ERROR, CHECK CARD DECK

CARD READER NOT READY

WAITING FOR SCRATCH FILE

DISK ERROR

NO GOOD
ENTER CODE

ILLEGAL CHARACTER IN STRING

NUMBER TOO LARGE

NO CARDS IN LIST

MEANING

A response of 1 or 2 was expected
and was not received.

A feed error was found in reading
cards. Reload deck and press RETURN.

The card reader was not turned on or
the ready button was not lit.

A scratch file counld not be obtained.
The program will wait until a file
is available.

A read or write error was found when
working with the disk . Program will
exit.

An illegal code was typed and
rejected. Only P, L, N and A are
valid .

An illegal code was typed when
entering lists of excluded or
included cards.

A number larger than 150 was entered
in a list of excluded or included
cards.

All cards read have been filed.
Program exits.

3-58

3.8.2 Card Requisition Entry Assembly Instructions ·

All nwnbers are octal.

•• ASSEMBLY CHAINS TO PRODUCES START AT NUMBER OF ON STARTUP
PROGRAM PROGRAMS BINARY BLOCKS BLOCK BLOCKS TAPE AS

RE RE-1 15 1 12 RE

RE - 2 13 2 RG

RE-3

R7 None 5 1 4 R7

RS None 6 1 5 RS

R9 None 7 1 6 R9

RO None 3 1 2 RO

RH None 3 1 2 RH

RI None 3 1 2 RI

3-59

3. 9 FLOW CHARTS FOR CARD REQUISITION ENTRY

~
STS ';'

ASK f OH TNPllT
DEVICE

ASK FOR
OUTPUT DEVICE

~
s~

SET UP POINTERS
FROM PATIENT

NUMBER
FILE

SET UP TABLE
OF POINTERS
FOR LEGAL
CARD TYPES

OPEN A
SCRATCH FILE

OPEN CARD
READER BUFFE

READ 3 CARDS

3-60

OUT DEV
=7777

TERM I NAL
INPUT

0--+

)

WAIT FOR
READ

START READ
OF 3 MORE

CARDS

SET UP AND
STORE CARD NO . .__ ______ _

PRONUM

®

WHYNO

CHECK
S'l'ATUS t----P'

WORD

PROCESS CARD TYPE

PROCESS PATIENT NUMBER

PROCESS ACCESSION NUMBER

PROCESS TIME

PROCESS DATE

PROCESS REQUESTS

READING FINISHED

MAIN CARD READER AND INITIAL DATA PROCESSING

3-61

STORE
AN EXTRA

7777

PROBK6

G

PROCESS INFORMATION FROM
BANK 6 TO SCRATCH FILE

READING FINISHED

CARD READER TERMINAT ION LOOP

3-62

..

PROTYP

GET COLUMN
FOR TYPE

GET TYPE

CODE

CHANGE TO
TRIMMED ASCII
AND ADD RAS

2ND CHAR

STORE WORD
IN BANK 6

0 EXIT

ROUTINE TO PROCESS CARD TYPE CODE

3-63

LOAD
7777

PRONUM

?
GET COLUMN
TO START

READING

GET WORD

CHANGE TO
ASCII

y

STORE WORD
IN BANK 6 1<>-~~~~~~~--'

STORE AN EXTRA
HALF WORD OF

00

G<I-----.......
ROUTINE TO PROCESS

EXIT PATIENT NUMBER FROM CARD

3-64

C

..
GET COLUMN TO

NOT ENTERED

y STORE 7403
>------t>I 7777 IN

BANK 6

CLEAR NUMBER
AND FLAGS

MULT mJM BY

GET WORD

CHANGE TO
BINARY

ADD TO
NUMBER

NOT ENTERED

0 EXIT

ERROR

STORE 4207
7777 IN BANK

6

STORE 7403
7777 BANK a-------•>0 EXIT

I GEOTF NUMBER
. BLANKS

f-----1[>

ROUTINE TO PROCESS ACCESSION NUMBER

3-65

STORE NUMBER
IN BANK 6

PROTIM

9
GET COLUMN
TO START ON

TIME NOT ENTERED

PUT IN O FOR
-.-~~~----~blALL 3 TIME

WORDS 1-----r,,6 EXIT

GET WORD

CHANGE TO
BINARY

CHANGE TO
ASCII

GET AM OR
PM

LOAD
ASCII ~

GO BACKANDh

L_RE_S_T_O_R_E_A_S_ - ALL 0'S

STORE HALFWORD
Q=AM l=PM

6

ROUTINE TO PROCESS TIME

3-66

EXIT

,,

u

)

SEE ROUTINES
MONTH AND

DAY

PRODAT

GET COLUMN TO
START DN

CHECK MONTH AND DAY
MONTH, DAY IF EURDAT=~
DAY, MONTH IF EURDAT=l

NO DATE ON CARD

STORE TODAY'S
DA'l'E 1------00 EXIT

PUT IN 4000

PUT
HEADER
TOGETHER

AS ERROR DATE 1--~..J

ROUTINE TO PROCESS DATE

3-67

PUT IN
TODAY'S

DATE

1----b® EXIT

e

MONTH

9
GET FIRST

DIGIT

CHANGE TO
BINAR

STORE IN
MONl

GET SECOND
DIGIT

CHANGE TO
BINARY

STORE IN
MON2

CLEAR

CLEAR

?

PUT 77
IN MONl

ERROH

0 EXIT

ROUTINE TO PROCESS MONTH
PART OF PRODAT ROUTINE

3-68

,___N _....o 1-:X IT

ERROR

EX IT

...

)

DAY

9
GET DIGIT

CHANGE TO
BINARY

STORE IN
DAYl

GET NEXT

CHA NGE TO
BI AR

CLEAR

CLEAR

STORE I N 4-·~~~~~-
DAY2

N

ERROR

PUT 77 IN
DAY!

ROUTINE TO PROCESS DAY
PART OF PRODAT ROUTINE

3-69

EXIT

PROTST

GET COLUMNS
TO START AND
END ON

...---91CHECK A

® EXIT

GET COL
AND ROW

STORE
IN

BANK 6

ROUTINE TO INTERPRET NON-COLUMN MARKINGS AS TEST REQUESTS

3-70

COL B 0-7
ROW B 8-11

BANK 5 OF RE

~
PROCESS PT
NUMBERS
PATNUM

READ IN
OVERLAY RG

PROCESS
TESTS

REQUESTS
TEST

WRITE OUT
LAST OF

SCRATCH

CLOSE FIRST
SCRATCH

CHECK IF ANY
SINGLE TESTS
REQUESTED

NOTEST

BANK 4
LCC 20

LOOP FOR ADDITIONAL ERROR CHECKING

3-71

PTNUM

GET CARD
TYPE

PUT IN 7777

TRANSFER
PT

NUMBER

READ FILE
21

GET A PT
NUMBER

PUT 7776 AS
DWNPTR

PUT IN
POINTER

ROUTINE TO ENTER FILE 26 POSITION FROM PATIENT NUMBER

3-72

)

READ TEST NAME
FILE INTO BANK 7

Q CLEAR BIT MAP
~ FOR THIS PT.

SET BIT MAP
FOR TEST ALREADY
REQUESTED

' FIND A TEST
CODE

CHECK FOR
DUPLICATION
AND REPETITION

ADD FLAGS
AND STORE

WORD

N

GET PART OF
PACKAGE

GET PART OF
BATTERY

OVERLAY RG

CHECK FOR
DUPLICATION

CHECK FOR
DUPLICATION

SAVE
FLAGS

OVERLAY TO CHECK TESTS FOR DUPLICATION AND REPETITION AND SET APPROPRIATE FLAGS

3-73

WRITE ALL 7777' S
IN BLOCK 2,3 BK 4

GET A LIST 0
ACC !!UMBERS

8

SET POINTER
TO 7776

0·--

OVERLAY R/3

PUT NUMBER
IN RESERVED

LIST

READ ANOTHER
>-y~~~~

1
~4 BLOCK OF

FILE 27

N

OVERLAY TO RESERVE ACCESSION NUMBERS

3-74

y

GET AN
ACC

GE'I' TEST
CODE

READ IN
OVERLAY

R7

N

y

BANK 5

ASSIGN
A

NUMBER

OVERLAY R~ (cont.)

ASSIGN NUMBER
TO THIS PART
OF PACKAGE

3-75

RESTORE .REGISTERS
FOR PARAMETERS

~ ASK FOR OPTION - (A\
~1--~~-c_o~o_E~~~~---'~

COMPLAIN

PRINT LIST
OF OPTIONS

y

y

N

FILE
ALL

ALFILE

FILE NONE
NOFILE

LIST
ERRORS

ELIST

PRINT
CARDS?

PRCARD

OVERLAY R7

G

G

-0

-G

N

RELEASE
ALL
ACCESSION
NUMBERS

MAIN COMMAND LOOP FOR DATA VERIFICATION AND STORAGE

3-76

8 EXIT
.,

..

..

)

ALFILE

GET LIST OF
CARDS WITHOUT
ERRORS

V

ASK FOR LIST
OF EXCEPTIONS

i
GET A CARD

READ IN OVERLAY <1

R9

G EXIT BANK 6

ALFILE and NOFILE
Set up list of cards to be
read.
PRCARD reads in overlay RB
to print card images.

STORE IN
LISTAB

3-77

NOFILE cp
GET LIST OF
CARDS WITHOUT

ERRORS

ASK FOR LIST
OF INCLUDED

CARDS

GET A
CARD

PRCZ\RD

y
READ IN
OVERLAY RB

EXIT
BANK 6

STORE IN
LISTAB

SET BIT 4
of WORD

ELIST

9
GET LIST OF
CARDS AND
ERROR TYPES
(GETERR)

LOAD OVERLAY

RH

G BANK 6

GET DATE

GETERR

GET A CARD
NUMBER AND
PUT IN TABLE

GF.T DWN
PTR

GET ACC
NUM

SET BIT J;l
OF ERROR

WORD

SET BIT l

OF WORD

SE'l' BIT 2

~------ GET TEST ~
'---~---c)

SET BIT 6
OF WORD

SET BIT 5
OF WORD

STORE
ERROR

l GET 'l'TME

SET BIT 3
OF WOPD

·-8
ROUTINE TO GET A LIST OF CARDS
AND ERROR TYPES FOR EACH CARD.

3-78

)

OVERLAY RH
LIST ERRORS

GET CARD

CHANGE TO ASCII AND
PUT I N OUTPUT BUFFER

-

GET
ERROR
CODE

PRINT
BUFFER

+

0

y

N

PRINT
EXPL/\N/\'T' I ON.
OF CODES

PUT IN THE
CORRESPONDING
LETTER FOR
THI S BIT

8

3-79

ASK IF THEY
WANT EXPLANATION

N

R7 BANK 5

PUT IN CARD
NUMBER

y

1

LOAD IN PT
NUMBER

GET DWNPTR

N

y

STORE IN
"INVALID RE

CARD" IN BUFFER

PUT IN
"PT NOT
FOUND"
IN BUFFER

READ PT NAME AND
LOAD IN BUFFER

l
~

OVERLAY R8
PRINT CARDS

GET ACC NUM

PUT NUM.
IN BUFFER

PUT "IN
USE" IN
BUFFER

PUT "ERR"
IN BUFFER

1 GET TIME r-- ------------
1

PUT TIME
IN BUFFER

0

y

N

BLANK
TIME

PUT "ERROR"
IN TIME

OVERLAY TO PRINT CARDS INFORMATION

3-80

"

, ASSEMBLE DATE '.

PUT 5 BLANK
IN BUFFER N

y

BIT

R8 (CONT.)

I PUT *~I.
---. , AFTER I

TEST I

PUT* R

• AFTER
TEST

E SEV~' T
. ~~F~~T IN _] ~~' y

S? >--__,
PRINT
LINE AND
CLEAR

, TES;E~r 1----------l.---~__JL N

y

-.(0

~ y !SN PKG. I ~KIP OVE1·
-- ~G 1 -. CC NUM.

·~~~- WORDS

N

PUT TEST
IN BUFFER

PRINT CARD ROUTINE (CONT.)

3-81

- ,

8-~
~ IRST PASS? y

PRINT LINE
AND CLEAR
BUFFER

. I GET (EST~ I ~ ---------

PUT IN PACKAG
_., NAME AND **

PRINT BUFFER
AND CLEAR

PUT IN ALL NUM~
AND TEST NAME ____ .
PRINT BUFFER
.AND CLEAR

RB (CONT.)

PRINT RE
PEAT EXPL

ATION

...

l
I
I

RETURN TO
R7 BANK 5

PRINT CARD ROUTINE (CONT.)

3-82

..

I

~ BANK 6 y
I GST A cj' RD.

~
SET UP WORDS ;;:N~-
RELIST FROM
SCRATCH FILE

. + --· -· -------J
GET WORDS AND
POINTERS TO

PATIENJ FILE .

CHECK LENGTH OF]
FILE WITH NEW
REQUESTS

J

FILE NEW
REQUESTS

SET BIT FOR CARD -1
FILED

y ~~~ CARDS TO
ILE? N

CLOSE FILE 30 PT.
D

[RllA~~~RLAY I
8 BANK 6

OVERLAY R9

SEE NUMGET

SEE PRELIM

SEE CHKLEN

SEE PROCESS

OVERLAY TO ENTER DATA INTO PATIENT'S FILE

3-83

NUMGET

NUM Sf
UMBER

[i~:"~
__ T __ _
IS~ N GO -~~ -;O

HE Ri~~~~~ THE NEXT
ARD CARD

y

GET AND STORE
DWNPTR

GET AND STORE
TIME

GET AND STORE
DATE FILDAT)

GET TEXT L
CODE~~~~~~~~~ ----r-- -

FIND NUMBER OFJ
SLOTS FOR

THIS rT y

MORE~
TESTS /

N

SET UP
LOCATIONS FOR
START

1
OF T,;STS

PUT DWNPTR _IN AC'

ROUTINE TO INITIALIZE PATIENT DATA FOR A CARD

3-84

R9

•

•

•'

PRELIM

0
READ IN

SUBFILE
POINTER

ANY N - ~~~ ------- F_S_T_B_L_K~-~~7_73--7 REQUESTS - NUMBLK p

YET? y DATBLK

READ BLOCK
OF PATIENT
DATA

INDEX
BLOCK COUNT

GET A
DATE

SET UP PTRS
TO BEFORE
FIRST DATE

y

N

'f

N

SET UP
LOCATION OF
DATE HEADER

EXIT

EXIT

ROUTINE TO ANALYZE PATIENT'S FILE BEFORE STORING REQUESTS

3-85

0
J

GET POINTER FROM
SLOT TABLE

MULTIPLY BY 3

ADD TO SUM

CHECK FOR OVERFLOW

ADD AN EXTRA WORD
FOR EACH BLOCK

ADD NUMBER OF WORDS
IN LAST DATA BLOCK

ADD NUMBER OF WORDS
IN FUY, BLOCKS

y

N

8

CHKLEN R9

~
~FACTOR I ADD IN WORD

r-----
I

0

0 EXIT TO NEXT
INSTRUCTION

EXIT TO FILE 2
(PATIENT NOT FILED)

ROUTINE TO CHECK IF NEW REQUISITIONS WILL OVERFLOW
MAXIMUM ALLOlTED SPACE FOR THIS PATIENT

3-86

•

)

q PROCES-

UET A BLOCK~ ADD
0 USE AND TESTS
ET A FILE FILLIT
4 BIT

N

PROC2

PROC:),

GET LOG ADD
OF END TESTS
OF THIS r-t> FILL IT

DAY

ET LOG ADD
FEND 1-- -~~-....-- TES TS
F FILE FILL IT

FILL IT

Q
IGET TEST CODE =1

i
P UT IN AND CLEAR ACC
NUMBER TIME IN 3 WORDS

i
i

GE'!' SLOT NUMBER ::JD
PUT IN (SLOT-1)*3
BLANKS

PUT I N 4000 , 0000,0000
AS LAST SLOT

y 0 EXIT

PUT INr
- END PT

FILE

MOVE UP
REST OF
FILE

SET UP
TEST CNT

- AND PT
TO DAY

6 EXIT

ROUTINE TO ENTER DATA IN A PATIENT'S FILE

3-87

DELCRD

BANK 6

GET CARD NUMBER
FROM SCRATCH

N

8-

N

TRANSFER ALL IN
FORMATION FOR THIS
CARD AND SCRATCH
FILE

PASS THROUGH
THE DATA FOR
THIS CARD

OVERLAY RI

OVE~LAY TO PRINT A LIST OF CARDS FILED AND NOT FILED

3-88

,.

GET CARD NUMBER

y

Y.

GET CARD
NUMBER

BANK 6

PRINT NUMBER

I PRINT

BANK 5

3-89

N

N

OVERLAY RI (CONT.)

PRINT l
"CARDS F • ILE·~-~

PRINT
"CARDS NOT FILED"

4

5

6

7

4

5

6

7

CQRE MAPS FOR CARD REQUISITION ENTRY

A

RE

1000

400
t--C-R_D_B_U_F---rl O O O
t------'-=---11400

TAPE B

I

READ CARDS
TO B

E

ACC. NOS.

R7 I
R8 I
BUFFERS

TAPE BUF.

!PRINT CARDS
TOD

1000

B

BUFFERS

RE 1

'
RG '

BUFFERS

BUFFERS

TAPE BUF. 1400

CHECK TESTS
TO C

F

LISTAB i:>
IJ.

ACC.NOS.

R7 l
RH t

4

BUFFERS

TAPE BUF.

LIST ERRORS
TOD

so
000

00

C

RO J
ACC. NOS.

BUFFERS

-

BUFFERS

BUFFERS

'l'Jl.PE HTTR

CHECK ACC.#
TOD

G

LISTAB
1
!
I

ACC. NOS. J

R7

1
'

R9

BUFFERS

TAPE BUF.

FILE CARDS
TOH

l
I

I
I

!
I
I
I

I
I
I

3-90

1000

1400

550
1000

400

D

TER BUF.

ACC. NOS.

R7 1
BUFFERS

BUFFERS

'1'1\PR HTTR

OPTIONS TO
E, FOR G

H
·-

LISTAB

ACC. NOS. ----

BUFFERS

RI l --.
-

BUFFERS

TAPE BUF.

1000

1400

550
1000

400

LIST FILED CARDS
TOD

0

CHAPTER 4

DELETE DATA (DE)

The DELETE DATA program offers a choice of four options to delete

patient data:

1. delete all test data for a specific patient,

2. remove all of the patient's test and administrative
data,

3. remove all of the patient files for a spe cific patient
type,

4. delete a test, battery, or package from a patient's
file {refer to section 4.5).

Refer to the Sample DE dialogue illustration in Figure 4-1. The

program operates in three phases for the first three items above:

In Phase l you select the patient files whose data is to
be deleted (either by individual or by type). The com
puter will then put all the patient files to be deleted
in a "delete" status but will not actually delete them
yet. If desired, you may request a list of patients' files
in the "delete status" and then edit this list by removing
files placed on it in error and then adding other files
to be deleted.

During Phase 2, any tasks, e.g., final summaries, can be
run on the files in the "delete status". When Phase 2 is
finished, the system automatically moves into the third
phase which is the actual deletion of the patient data
selected above. Once the program is in phase 3, there is
no way to stop the deletion process (not even CTRL/S);
however, in phases 1 and 2 you may restore the patient
files by simply typing STOP.).

4 .1 PRELIMINARY OPERATING PROCEDURE

1. Type CTRL/C to alert the system for a program call.
Note that the DE program can only be run on one
terminal.

2. Type DE) •

3. 0bserve the terminal for this message:

ENTER FUNCTION, STATUS, ACTIVITY (,DATE-MONTH/DAY)
ENTER CODE*

4-1

DE
ENTER FUNCTION, STATUS, ACTIVITY (,DATE-MONTH/DAY)

ENTER CODES* P,C,A,12/1
DELETE MODE

* T,IN

* P,724887

*
EDIT MODE EL OR C * L
OUTPUT DEVICE (1-TTY, 2-LPT, 3-SCOPE)
TYPE 1, 2 OR 3 * 1

DELETION LIST 7/12/1972 PAGE 1

PAT. NAME TYPE WARD ROOM DR.

ZIMMERMAN HAROLD

HONGISTO FRED

EL OR C * E
PATIENT# : 721345
PATIENT # :
EL OR C *
DELETE MODE

* P, 7213,02

*

IN 4W

OP MEM

EDIT MODE EL OR C * L

123

OUTPUT DEVICE (1-TTY, 2-LPT, 3-SCOPE)
TYPE 1, 2 OR 3 * 1

RDF

DELETION LIST 7/12/1972 PAGE 1

PAT. NAME TYPE WARD ROOM DR.

HONGISTO FRED OP MEM

JOHNSON MARY ss MAT 1/3 KLP

EL OR C * C
BEGINNING DELETION
TTY IS FREE

PAT . NUMBER

721345

724887

PAT. NUMBER

724887

7213.02

Figure 4-1 Sample DE Dialogue

4-2

)

4. Type SHOW ME) to ask the computer to explain the
optionals available. The following message is printed:

"FUNCTION"
P-DELETE PT.
D-DELETE ALL TEST DATA FOR A PT.
T-DELETE A SINGLE TEST/BATTERY/PKG .
"STATUS "
C-DELETE ONLY IF ALL TESTS COMPLETE
I-IGNORE STATUS
"ACTIVITY"
A-DELETE ONLY IF NO ACTIVITY SINCE LAST SUMMARY
I-IGNORE ACTIVITY
"DATE" (OPTIONAL)
DELETE ONLY I F NO REQUISITIONS SINCE SPECIFIED DATA
ENTER CODE *

5. Choose the " FUNCTION" op tion:

"P" if you wi s h t o d e lete ent i rely all data for an
individual pati ent or a l l data for patients of a
certain type, e.g . , all outpatients. That is to
say , this opt.ion removes a ll the administrative
and test data so t hat the selected patient data will
no longer exist on the lab files.

"D" if you wish to delete just the test result data
from the files for a particular patie nt or for all
patients of a certain t ype. This option leaves the
patient administrative data intact so that you may
add new test results.

NOTE

P a nd D functi ons cannot be "mixed". You must
f i n ish one f unct ion first and then run the
program again for t he s e cond function.

"T" if you wi s h t o del ete only a s ing l e test,
ba t tery, or p ackage, e.g . , if a te s t wa s accidentally
requested in e rro r . Note that thi s opt i on does not
require a STATUS or ACTI VITY as do opt i ons P and D
above . See s ection 4 .5 for fur ther instructions.

6 . Choose a "STATUS" option for only t he P a nd D functions
above :

"C" s tatus wi l l de l ete data on l y for those patients
selec ted whose tests are all complete.

"I" statu s will d e l ete data for all the selected
patie n t s, whether o r n o t the tests are complete.

4-3

7. Choose an "ACTIVITY" for options P and D above:

"A" a ctivity will delete the p a t ient data only if
there has been no activity (requis i tions} since
the last SUMMARY.

"I" activity allows t he data to be deleted whether
or not new activity has occurred since the last
SUMMARY .

8. If you wish to delete those files which have had no
ne w requisit i ons since a c ertain date, enter that
date. The date may be a ny month and day in the
current year. No t e t h a t if a new year has just begun,
the compute r wil l accept a December date from the
previous year but not a November or ealier date.
The date may also appear as a day/month if this format
was chosen durin g installation. Type RETURN to omit
the date .

9. Type the choices made in Steps 5-8 above, using the
format:

FUNCTION, STATUS, ACTIVITY (,DATE-MONTH/DAY})

Example: If on December 16 you wish to delete all
the data for out-patients whose doctor
has not requested any new tests since
December 1, whether or not all their
tests are complete, type the following
line :

P,I,I,1/1)

4.2 PHASE 1

4.2.1 DELETE Mode Function P or D

1. If function P or D was chosen above, the computer
prints this message:

DELETE MODE
*

and waits for your reply.

2. Type SHOW ME) to obtain the f o llowing list of
valid replies for the P option:

P,PT. #-DELETE SPECIFIED PT.
T,TYPE-DELETE PTS. OF SPECIFIED TYPE
*

or this message fo r the D option :

P,PT . #-DELETE DATA FOR SPECIFIED PT.
T,TYPE-DELETE DATA FOR PTS. OF SPECIFIED TYPE.
*

4-4

)

3. a. Type in P, and the patient number) if you
wish to de l ete the data for a specific individual

b. and go on to Step 4; or, type T and the
2-character patient type code) if you want
to delete the data for all the patients of that
type; e.g., T, OP). Proceed to Step 5.

You may also press the RETURN key which causes the
program to enter EDIT MODE (see Section 4.2.2) .

4. The computer responds by checking that the pat ient
number you specified meets the criteria of STATUS
and ACTIVITY . If the patient specified does not
fulfill the criteria, the following message is
typed:

PT. DOES NOT MEET SPECIFIED CRITERIA.

Or, if the patient does meet the STATUS and ACTIVITY
criteria specified, the computer responds with an
asterisk i ndicating that the patient's files have
been flagged for deletion and that you should continue
on with the next patient number to be deleted.

5. If T,TYPE was chosen in Step 3, there will be no
response except for an asterisk, which means that
t he data for patients of that type is flagged for
deletion. You may now continue entering type
codes for deletion.

6. When you have finished Steps 4 and 5, press RETURN
to enter EDIT mode.

NOTE

If you accidentally try to delete a patient
file both i ndividually and then JJy type, no
harm is done. That patient file will not be
printed twice on the delete list . No error
message is printed.

4.2.2 EDIT Mode

1. In response to the RETURN above, the computer prints
the following:

2.

EDIT MODE
E L OR C *

Type SHOW ME) to ask the computer for an explanation .
The following message is printed:

E-EDIT: REMOVE PATIENT FROM DEL. LIST
L-LIST ALL PTS. IN DELETE STATUS
C-CONTINUE

4-5

3. Type L) to generate a list of patient files on the
delete status. The delete listing will be in the
same chronological order as you requested deletion.

4. The computer reacts by printing out this message:

OUTPUT DEVICE (l-TTY,2-LPT,3-SCOPE)
TYPE 1 , 2 OR 3 *

5. Choose the device desired and press RETURN. If
the line printer is chosen and is in use, the
computer will print: LPT IN USE. In this case,
the message EL OR C * is again displayed. You
may again select Land then choose another device.

6. A listing is now printed on the device specified.
The first two printed lines have the following format:

DELETION LIST mm/dd/yyyy
PAT. NAME TYPE WARD

PAGE n
ROOM DR. PAT. NUMBER

7. When the listing is done, the message EL OR C* is
again displayed. You may choose the E option now by
typing E

8. The computer will respond with an asterisk indicating
that you may type in any patient number and a RETURN
to remove that patient number from the delete status
list.

9. When you are finished removing any patient numbers
which should not be deleted at this time, you may
wish to type RETURN to return to the EL OR C *
message and then generate another list to double-
check the numbers to be deleted. If you wish to delete
more patient data, type E in response to the EL OR
C * message to put the computer again in "delete"
mode and identify more patients to be put in "Delete
Status". You may alternate between EDIT Mode and
DELETE Mode as many times as necessary.

10. When the list of deletes is completely satisfactory,
type c) to continue to Phase 2.

4.3 PHASE 2

During this phase, you may run any program (such as final summary)

necessary on the patient files to be deleted.

4-6

l. The computer reacts to step 10, section 4.2.2, by
printing an asterisk. If you wish to go directly
into the deletion process (Phase 3), type NONE).
However, if you wish to request final programs on the
"delete status" files, type the 1- to 4-character
alphanumeric program code name (defined at installation)
and RETURN . This code name instructs the system to
automatically run the list of final programs which
your lab has selected. There may be more than one
code if your lab handles different type of discharges.

2. When the programs have finished running, the system
proceeds automatically into Phase 3.

4.4 PHASE 3 (DELET ION)

1. When phase 3 starts, the system notifies you of that
fact by printing:

BEGINNING DELETION

2. There is a fairly lengthy pause while the system
completes the deletion process. When the process
is complete, the program prints TTY IS FREE and exits.

4.5 FUNCTION T OPERATING INSTRUCTIONS

1. If function Twas typed in Step 9 of the preliminary
operation (Section 4.1), the terminal will print the
following question:

PAT. #:

2. Enter the patient number associated with the test
which you pla~ to delete and press RETURN.

3. The terminal then prin t s the question:

TEST NAME*

4. Type the test, battery, or package code you wish to
delete and press RETUPN .

5. The following message is printed:

REQ. DATE*

6. Type the requisition date in the fomat rnrn/dd or
dd/rnrn (depending on which one was selected during
installation in your lab) and press RETURN.

7. If a test or battery name was used in step 4, above,
the computer will ask for the accession number by
printing the message:

) ACC. NUM*
4-7

8. Type in the accession number for the test or
battery to be deleted and press RETURN.

9. The system proceeds to check the information; and, if
it finds no errors, deletes the test and prints:

DELETED

If there is more than one occurrence of the same test
with the same accession number on the same day on
file, the following message is printed:

x OCCURRENCES ON FILE (x = number found)
RUN SUMMARY FOR THIS PT. ON THIS DAY
CHOOSE OCCURRENCE BY ORDER ON SUMMARY

This means that when a summary is run for the patient's
file, the duplicate tests will be printed out in a
certain order. If you wish to delete the second occur
rence of a duplicate test, for example, use the number 2.
You may need to run a ward report also for this patient
on that day if you are not certain which occurrence to
delete because the patient has so many occurrences of
that test.

10. Press RETURN and then continue adding tests to be deleted.

4.6 ERROR MESSAGES

MESSAGE

DELETE RUNNING AT
ANOTHER TERMINAL

FILE 3 OVERFLOW

INVALID INPUT

NOT FOUND

PAT. NOT FOUND

PLO ERROR

WAITING FOR LPT

MEANING

DE may be run only
on one terminal at
a time.

Too many patient files
in delete status.

Some invalid format has
been used.

Test name or accession
number is not in the
file.

This patient number was
not in the files.

The programs needed
cannot be found on
the disk.

Line printer is mal
functioning or turned
off.

4-8

ACTION

Consolidate
the processing.

Notify your
supervisor.

Try again using
the correct
format.

If the name or
number was
typed incorrectly,
try again.

If you mistyped
the number, try
again.

Notify your
supervisor.

Check the line
printer for the
problem.

)

4.7 INTERNAL DESCRIPTION

When started, DE performs an initialization procedure to determine the

size of file 30 and file 26. The program reads the first 5 words of

file 21 to establish constants for buffer sizes corresponding to the

size of the patient nwnber. The code is located in the disk buffer

and is destroyed when the program starts. The program builds a mask

of 77 or 00 bytes to mask out the reference field of a patient number

when DE is concerned only with the patient number reference field.

This mask code is located in the Teletype buffer and is destroyed

when DE starts.

4.7.l P and D Options

The code at PASS1 is executed to build a dayheader with todays date

and control is transferred to PASS1M. File 3 is opened for write and

left open for the res t of the program. File 3 is "cleared" by writing

7777 in the first few words. The user is then asked to pick the

criteria for deletion and the delete function at PASS1A. If the T

option is chosen, DT is loaded and control transfers to PASS1L/

When called , DE will always take the PASS1 path. When DE is reloaded

by some other program (e.g., after the user has run programs using a

file 3 built by DE) and the necessary flags have been restored, DE

will find STAGE2 flag set and proceed directly to PASS2. PASS2 is a

subroutine that reads successive words from file 3 and uses them as

file 26 positions just as if the user had directly entered a file

26 position instead of a patient number. The d2letion is actually

done.

The code at PASS1L asks for individual patients or types of patients

to delete. Each time a patient file is entered, control passes to

DEPAT and then back when done. Each time a type is entered, control

passes to BATCH and back when done. The code in PASS1L allows the user

to build a deletion list. Typing carriage return passes control to

PASS1F. This allows the user to get a hardcopy listing of the deletion

list and to edit it (remove patient files from it). Typing carriage

return again transfers control back to PASS1L, to allow the user to

enter more patient files for the deletion list. Transfers back and

forth between PASS1L and PASS1F can occur as many times as is necessary.

4-9

When the user finally types a C as input to PASS1F, the STAGE 2 flag

is set and a PLD loads a chaining program which will generate reports

for the records in file 3. An address of a list of items to be saved

and restored when DE is reloaded is passed to the chaining program.

The edit routine (to remove patient data in file 3) uses the DELSRT

subroutine. It can do this because in the startup of PASS1 changes

are made to DELSRT to make it look at file 3 instead of file 2. The

BATCH subroutine does just the same thing that DEPAT does, except

that it does it repeatedly on file 25 instead of asking for a single

patient number.

The code for generating listings of the delete status file consists

of three sections:

1) The INQURY subroutine that checks a list of addresses of

GET subroutines to get the administrative data needed

and then checks a list of addresses of buffers to put

t ogether to make a text line to send to a logical

output device for successive file 3 entries.

2) GET subroutines that are copied directly from the

AD program.

3) A set of subroutines that allow the program to print

information through a logical output device.

Once the user has identified a patient file or type to delete, DESUB

determines if the patient file should be deleted and completes the

actual deletion process.

4.7.1.1 DESUB

This routine examines the file 30 data of a given patient to find out

if the patient file should be deleted. It uses the criteria that have

been established from the preliminary dialogue to decide whether this

patient is a candidate for deletion. While examining the file, DESUB

builds a list of the file 30 blocks in use and another list of acces

sion numbers that were assigned to tests still incomplete. Only the

first 128 accession numbers are kept. Any more are ignored, and would

not be cleared in file 27 later. Only the first 19 blocks of a file

will be examined and saved. The 20th block is treated as a logical

end of file. When the end of a patients data file occurs, control

4-10

...

passes to QOBATCH if,according to the deletion criteria established

in the preliminary dialogue, the file is to be de l eted. If the

program is in PASS1 {building a delete status file) the subroutine

WRITF3 will be called. The new file 26 position will be appended to

the end of file 3. If the program is in PASS2, the patient file will

now actually be deleted. Note that DESUB has to go through just as

much work in PASS1 or PASS2, building the same kinds of core lists

and rechecking this patient's criteria.

In PASS2, accession numbers in the list are cleared one at a time

from file 27. If the patient had some file 30 data, all of file 34

is read into core. The bits are cleared for blocks in the block list,

and the whole file is written back out. This is all that is necessary

to satisfy the "D" option. The subroutine now checks to see if the

"D" option was chosen. If so, it returns. If not, DELSRT is called

to de lete the patient file from the sort files . Then DELAO is called

to delete patients administrative data. The DELAO subroutine is

simple and generalized so that if non-standard pieces of data are

added for a particular site, it is merely necessary to add four

words of data to a parameter list to delete the information in that

file. The process described in this routine is then s ufficient to

handle the "P" and "D" functions. The calling subroutines for the

different options do all of the preparatory work to get a file 26

position of a patient file to delete. DESUB does the work of deciding

whether the file ought to be deleted and then may or may not do the

ac'!:ual work of deleting it. If the criteria imply the f ile is not

to be deleted, contra] is transferred to Q2BATCH. If the program is

in PASS1 and no .: in batch mode, the user will be notified that this

patient file will not be d0l e t ed .

4.7 . 1.2 BMP30

This subroutine allows calling subroutines to treat the patient's

file 30 data as if it were one contiguous file. If called with AC

equal to 0, BMP30 initializes itself and reads the firs t block from

the file. If called with AC not O, this number is used to move

through the file. The blocks found are stored in a block list in case

th~ calling routine needs to use them later. Before the next block

in a string is read, the W30FLG flag on page O is checked to see if

the current block should be written back out first. If an invalid

forward pointer, or too many blocks, or a 7777 occurs, there is an

4-11

indirect jump through the end of file trans fer address END30 on page O.

Otherwise, when the routine returns, the AC contains the value of the

word to which it was specified to move. It is not necessary to save

this word since the buffer in core still contains the block that it

was found in, and APOS30 on page O contains the absolute address of

this word in the buffer. Note that the P and D options always use

the same end of file jump address, but that this is modified several

times on each pass with the T option.

4.7.2 Single Test Deletion Option of DE

The code and text for this option comprise 4 blocks and are in overlay

DT. A good deal of this code exists to take into consideration the

possibilities that multiple occurrences of the same day header can

occur in file 30 and that multiple occurrences of tests with the same

accession number can occur in each of these day headers.

For each new item to delete, it is necessary to enter the patient num

ber, the test name, the day on which it was requisitioned, and if the

test is not a package, the accession number that was assigned to it.

Two lists of interest are kept. One list contains up to eight

occurrences of dayheaders (the same value) of the one specif ied.

More than eight is treated as a logical end of file. The entries

in the list contain three words. The first word is the "sequence

number" of the occurrence of a candidate for deletion. The next two

words contain the file 30 block and word in which the dayheader

occurred. The other list contains two word entries containing the

block and word in which the test or package occurred. The nth entry

in this list is "sequence number" n. After these lists are built,

they are examined to see how many entries occurred. Normally , there

will only be one dayheader and one entry. If there are no entries,

the program types "NOT FOUND" and prepares for the next input. If

there is more than one entry, it is up to the user to now specify

which occurrence to delete. The program types a message telling the

user to run a summary for this patient on this day, and to choose the

sequence number of the proper entry to delete.

A summary should reflect the order within the actual data file that

multiple occurrences of a given test under disjoint occurrences of the

same dayheader are present. The user must determine under which

accession numbers the occurrences were entered. It may take some

4-12

•

)

time to determine which occurrence to pick, so if the user does not

want to make a choice, typing a carriage return will escape back to the

beginning of the "T" option. Once the proper sequence number has

been typed, the entry will be deleted, picking the proper dayheade r and

entry from the two lists.

The program now reexamines the entry to be deleted, If the entry to

be deleted is a test or battery, it is examined to see how many in

complete results are present. This number will be used to adjust the

test count later . The accession number then becomes the only entry

of an accession number list. If the entry is a package, t h is process

must be repeated for every test and battery in the package. Up to

128 entries can be put into the accession number list. The test

count is then adjusted . Then the file 30 entry is changed to re f lect

its new delete status. After this, the data in the dayheader is

reexamined for incomplete results. If a test with an i ncomplete result

is found, the program checks for its accession number in the accession

number list and removes it from the list. When this process is done,

the remaining accession numbers in the list will be deleted f rom file

27. The program then returns to the beginning of the "T" option.

4.7.3 Utility Routines

There are a number of utility subroutines at the beginning of the

programs. The code developed by source modules AD+DE.l and AD+DE.2

is common to both programs. Generally these routines have their own

unique constants associated with them, even though there may be s ome

duplication oi values, program modu:i..ari ty is more i mportant. The

routines for terminal /0 use registers RS, R6, and R7 destructively

and do not require their contents to be maintained between calls of

the routines .

TYPIN

This subroutine performs some initial processing of a terminal buffer

already input. The 48 word i nput buffer is unpacked into a 72 word

buffer. A carriage returr. is put in the 73rd word. The left most

4 bits of all 73 words are cleared. If the firs t word of the buffer

is a carriage return, CRFLAG flag is set. If not, leading blanks are

eliminated. If the first non-blank character is a c arriage return,

both CRFLAG and BLANKF flags are set. If a non-blank character is

4-13

found before carriage return, the next five characters are checked for

"STOP" followed by a carriage return. If found, the program exits. If

not, control is returned to calling program and R7 points to the word

before the first word containing non-blank input.

TYPERl

Word following ca.11 contains address of a packed ASCII string. UNPACK

is called to unpack it, and a carriage return is put at end of the

buffer. TYPMSG is called to type it out, with AC equals two for TMX.

TYPER2

Works exactly like TYPERl except that an altmode instead of carriage

return is put at end of buffer and AC equals three for TMX.

TYPER3

Works like TYPERl except that nothing is put at end of buffer and

control returns inunediately without typing anything out.

LFEED

Appends a carriage return to the output buffer and calls TYPMSG to type

out buffer, with AC equal to two for TMX.

UNPACK

AC contains address of packed text string. Text is unpacked and

appended to TTY buffer and followed by a blank. Unless TYPER3 has

been called since the last time TYPERl or TYPER2 was called, this will

amount to unpacking the text into the beginning of the TTY buffer.

PACKBF

This subroutine packs a string of 8-bit ASCII characters into a buffer

of 6-bit characters. Upon entry, the AC contains the address of a

core buffer whose first word is the two's complement negative of the

number of words in the buffer. Register R7 (when incremented) points to

the address of the string of text to be packed. The characters will

be stripped and packed until either 1) a carriage return is encountered

4-14

)

or 2) the destination buffer is full, whichever comes first. If

carriage return occurs first, the buffer will be filled to the end with

blank bytes (octal 40).

BINSUB

This subroutine converts a binary double precision number into a

packed 6-bit ASCII text buffer. The calling JMS+l contains the address

of the first word of the two word source buffer; calling JMS+2 contains

the destination buffer address, the first word of which is the nega

tive of the maximum size of the buffer in words.

TYPMSG

Contents of the AC is used for the TMX after the TTW. KRUNCH is called

first to pack the 72-word buffer into a 48-word buffer in monitor

format.

SUDEV

Asks user to specify an output device. Linecount constnat and logical

device indicator (OUTDEV) are established. Page count is set to 1.

ODOPEN

The device indicated by OUTDEV is opened. If open is unsuccessful,

control returns at call+l, else it returns at call+2. A form feed is

done on the logical output device.

ODCLOS

The device indicated by OUTDEV is closed .

DVOUT

Whatever is in the output buffer is sent out via the device specified

by OUTDEV . If the output buffer is empty , this will result in a line

feed on that device. The line count is incremented and compared to the

report length. If they are not equal, control returns at call+l.

If they are equal, a form feed is done on the logical output device,

and control returns to call+2.

4-15

OOFD

A logical formfeed is done on the device specified by OUTDEV. The

current line count is reset to 1.

DMULT

The contents of LHMUL and RHMUL considered a double precision integer

are to be multiplied by the contents of the AC, the results being put

in LHRES and RHRES by successive additions.

CMDPTR

This subroutine calculates absolute addresses in the sort file using

the formula (HOSIZE + 1) *DIRNUM.DIRNUM is the current directory being

worked on and DSPTR is the relative address with that directory.

OFILE

This subroutine opens a list of files. The word following calling JMS

contains the address of the list of files to open. The next word

contains the trap command, either DKR or DKW. If all the files in the

list cannot be opened, it closes all files that it has opened so far,

does an unconditional TMX, and tries again to open the list.

CFILE

This subroutine closes all files currently open.

DECSUB

This is a double precision decimal to binary conversion subroutine.

On entry, AC equals O and contents of R7, when incremented, point to

string of ASCII digits followed by a carriage return. Calling JMS + 1

contains address of first word of a two word buffer. If there are

seven or less digits followed by a carriage return, conversion is

made and control is returned to calling location +3. Otherwise,

return is made to calling location 2.

4-16

DISK!

This subroutine allows disk access in block mode. The three parameters

following the calling JMS are:

1) 2000 plus 2 times the file to be accessed,

2) the block to access,

3) the quarter and number of blocks to access.

DISK2

This subroutine allows disk access in word mode. The three parameters

following the calling JMS are:

1) 3001 plus 2 times the file number,

2) the core buffer address to use~

3) the size of the transfer minus 1.

The disk address within the specified file will always be taken from

the double precision buffer on page O (LHRES and RHRES).

Both disk routines use the switch WRSWCH to determine whether reading

or writing is to be done. If monitor returns at the error return, the

program will exit inunediately.

LPOUT

The output buffer is packed into the lineprinter buffer. The constant

at the beginning of the buffer (which is necessary for the PACK

subroutine) is converted temporarily to the form that monitor expects.

LPSEND is called to actually do the trap. Control will not return to

LPOUT until the line is sent.

SEARCH

A specified file is searched for a specified bit pattern in each

successive logical record. (The logical record length is also

specifies). If such an entry is found, control returns a call+l and

the relative position of the record is contained in F26POS. If not,

control returns at call+2.

4-17

4.8 DELETE DATA Flow Charts

ASK2 (DE)
Entry point for T option
& DIT mode of P or D option

Delete JMS CHK21:
mode P--<> parse input, mak
or D option FMTD binary
entry point'-----.----..

Yes

,,_ __ N_o ____ .,,. Say "invalid
input"

Return call+l

4-18

..

No

DESUB

open files, read 1st block

..

No

Save Vctlue of current d. h. & skip test count

Must be test or battery; save accn.

N

) Yes

JMS WRITF3:
append pat. to

3

\Return l

Clear
Ace# fr o.en
F27

4-20

ell user that pt.
doesn't meet del
criteria

Fetch 1st next
rom F30 block
ist. el ear corr.
it in bitmap

4-21

JMS DELSRT to
delete pat. from
s;crt files .TM~;
DELAD to delete

pat. from adm .
data files.

J..J'J

Write 7777 in J.o'2C W2ffe '/'/'/f; ir1

Return

BMP 30

Return

Write F~30
block buffer
>8.C:k out

4- 22

ut current bloc: k
·nto b l ock list, re;:i.rJ
next blw: k . Reset
countersand prlintr:rr::

..

DSUB

Search for test in F3 .

No

. ead F36 to find out if test is a pkg.

Yes

.---11> Ask accn. #

Close
~---1files

pen files.

Initialize counters, porn ers,
transfer address. set u

®

4-23

--------1'1uet 1st (next) case from F30 buffer <1

<l--

Save block & word in whic <] No
it was found. Skip test -~~----

Save current F30 location tern oraril,

4-24

1'/!rJve to end
of battery

E

r·

)

Bump count of number of occurrences foun,.14'------

Yes

ut sequence no
of occurrence &
ay header F30
ocation in day

i

Save battery (or pkg.) F30
ocation in test list.

4-25

Skip
words

Say "invalid
input"

Close files

Convert number of occurrences]
ut

Say "run summary for this person on this
da " "choose occurrence b order on sumrnar ' "

Convert input to binary

et up pointers to fetch dayheade
location and test (pkg) entry
location from previously built

®

4 -26

Initialize pointer, counters & fl ags
open files, read F30 block in which
test (pkg) occurred. T urn on write
switch for BMP30 sub.

~

--;: c·,Yes 1~7; de;le

,~r~
N----....... ""------a battery st't'lf i~_ .

Save accn. # temporarily I ~J-_:-----· J tfo
r----------C>t CD

Get 1st (next) result set

No

4-27

Skip
. test
"Ount

Skip to end
of battery

No

I

4-28

Close fies +----l>@
say "deleted'.

Yes

Get 1st (next)
.-----1">1accn. # in accn .

list

Clear r:orre~:nond i Wf
word in 1"~'1

Close files .
ay "deleted"

@

}

SEARCH

Found.
Return at
call+1

No

Read 1st buffer of info.
fr om disk fi le

For 1st (next) PT: compare
1st (next) lo<Jical recor d fro
buffer with patter n searchin
for

Read next disk buffer reiniti
lf'l.----------lalize pointer:-:; int0 huffer and

f r counter

4-29

ump F26P0S to
next patient recor

,.

)

CHAPTER 5

TEST UPDATE

The Test Update (TE) program allows the technician to enter or edit

results in the patient test data file (file 30). New test results

may be entered through either terminal or card reader input; pre

viously entered results may be edited using the terminal.

The program is divided into two major sections, one handling terminal

input, the other handling card reader input. Program TE is

initially loaded and immediately asks for the input device.

If input is through the card reader, T3 is loaded and jumped to.

TE handles terminal input.

5.1 TERMINAL INPUT

5.1.1 Initial Input

TE asks three initial questions: mode of operation, tech code and

test/workstation name. Once these have been specified, they can

not be changed without leaving the program and re-entering .

TE first requests the mode of operation, ENTER, MODIFY, or STOP .

STOP terminates the program immediately. ENTER and MODIFY differ

in the way in which a pointer to the first block of patient data

is obtained. For ENTER, the accession number must be active so

file 27 provides an immediate pointer to the first block of data.

For MODIFY, the accession number may no longer be assigned to the

patient for whom data is bei ng filed, so the patient number is used

to obtain a pointer to the first block of data.

Once mode is established, TE requests the tech code, a number from

~ to 63, for the results being entered. The six-bit binary number

thus obtained is stored in bits 6-11 of the status word of each

result which is updated .

TE then asks for the test/workstation for which test results are

being entered. Input may be a test name, a battery name, or,

when operating in the ENTER Mode, a workstation package name .

a. If a test is entered, instances of that test
requested as a single test within the patient
data will be found.

5-1

b. If a battery is entered, instances of that battery
requested within the patient data will be found.
Also, any instance of a request for a single test
which is part of the battery will be found.

c. If a workstation is entered, every request for a
single test which is part of the workstation will
be found. In addition, for every battery in the
workstation, each result within the battery for a
test which is explicitly part of the workstation will
be found. For tests within the battery which are
not themselves part of the workstation, results will
not be found.

5.1.2 Maps Constructed

TE constructs two core resident tables on the basis of the test/

workstation name entered. The first is a test map in bank 6/quarter 2.

It contains a 6-bit slot for every test/battery/package in the

system, in the order in which they were defined in TABDATA.

a. If a test is requested, its slot is given a 1 and
all others are set to 77[NULL].

b. If a battery is requested, its slot is given a 40,
each slot corresponding to a test in the battery
is given a number equal to its position in the
battery, starting with 1 and all others are set to
77[NULL]. The battery may have no more than 37

8 tests in it.

c. If a workstation is requested, all slots correspond
ing to tests in the workstation are given sequential
values starting with 1, all slots corresponding to
batteries in the workstation are given sequential
values starting with 40, and all other slots are
set to 77[NULL]. The workstation may have no more
than 37

8
tests mentioned in it. It may also have

no more than 37
8

batteries ment ioned in it. And the
sum total of all the t ests mentioned within all the
batteries, including duplications, may be no more
than 340

8
•

The second map is an image of file 42 for each battery which has a

non-null value in the test map, residing in bank 6/quarter 1. The

map is divided into two sections. The first section is 40~loca-,,

tions long and contains in each location a pointer to the second

section of the map. For each battery in the test map, identified

by an entry between 40 and 76, the entry points to a location in

this index to the battery map: 40 points to location 1, 41 to

location 2, etc. The entry in the battery map index points to

the initial location in the second section of the map, where an

exact copy of the file 42 pointers for the battery associated with

5-2

)

that index location may be found. The second section of the

battery map is 340 8 locations long.

5.1.3 Patient Identification

After the test and battery map have been constructed, TE is ready

to start filing data. The technician must identify the patient

for whom the data is to be stored.

In the ENTER mode, the accession number associated with the test

results to be filed must be active and must still be assigned to

the patient for whom those tests were requested. TE saves the

accession number for test identification and gets a pointer to

the first block of data for the patient in question from file 27.

The first block of file 30 is then read and location 2 of that

block provides a pointer to file 26 which is used to get the

patient name.

In the MODIFY mode, the accession number associated with the

results to be edited may be free or may have been reassigned,

so the technician must provide the patient number. The patient

number provides a pointer into file 26 which in turn provides

a pointer to the first block of patient data in file 30. The

accession number is also requested to provide identification of

the test result in question.

Once the accession# or patient #/accession number combination

has been provided, TE types out the patient name for the techni

cian to verify. If the technician rejects the name, TE goes back

and asks for the next patient identification. If the name is

accepted, TE is ready to file results. It loads overlay T2

into bank 5 and jumps to it.

5.1.4 Finding Tests in F30 Data

T2 starts at the beginning of the patient's file 30 data and searches

for a match on accession number and test type. A match on test

type for an individual test is a non-null entry in the correspond

ing slot of the test map. For a match on test type for a battery,

the slot corresponding to the battery in the test map must be non

null. T2 then goes to the battery map locations for the battery.

Each location contains a pointer to a test. For each test pointer

5-3

in the battery map, T2 looks at the slot in the test map corre

sponding to that test. A non-null value in the test slot constitutes

a match on test type.

5.1.5 Filing Results

As T2 moves through the file 30 data, it saves the most recently

encountered day header and the l ocation - block number and locat ion

within the block - of the outstanding test counts. When a match

on test type/accession number is encountered in the file, T2 types

out the date of the test and the test name from file 35. If the

test result is already complete , T2 decodes the result and prints

that out also. On numerical results, T2 checks the abnormal bit

(status word bit 3) and,if it is set, prints out a message that the

result is abnormal. T2 then waits for the technician to input the

new test result.

If the technician types just Carriage RETURN, T2 simply skips over

this test and goes on to look for the next test type/accession

number match in the file. Typing just a dash (-) deletes the test

by storing an English result pointer of~ as the test result a nd

marking the test as complete. A test deleted in this manner can

be restored at any time through TE.

If the technician types a numerical or English result and possibly

a dash followed by a modifier, TE decodes the result, checks for

legality of the entire result, and stores it.

A numerical result may be in the range 0-2047000 and may have up to 7

decimal places. Ignoring decimal places, for numbers in the range

0-2047, four significant digits plus a scale factor are saved. For

results above this range only three significant digits plus a scale

factor are saved. T2 checks to see if the result is within the

normal range, and if it is not, T2 prints a mes sage and sets the

abnormal bit (status word bit 3) for that result.

An English result or a modifier must have been defined in TABDATA.

The four character code for the resu lt is typed in and T2 searches

file 44 for an exact match. A pointer to the result position in

file 44 is stored as the test result. A modifi e r to a numerical

result must be one of the first 511
10

English results defined in

TABDATA (since a pointer to a modifier is only 9 bits long).

5-4

Any English result code may be used as a modifier to an English

result. Bit~ of the second word of the two-word result identifies

the result type:

bit~=~

=l

numerical result

English result

Any error in the result or the modifier causes the entire input to

be rejected. T2 then retypes the date/test name/previous result

and waits for new input.

When a result has been accepted and properly formatted, T2 stores

the two result words in the proper two wo rds of the file 30 data

in core. The new tech code and abnormal bit (if required) are

added to the old status word , the result complete bit is set, and

T2 stores the status word too. Then the block of F30 data in core

is written back onto the disk. If the result for this test was

incomplete when T2 began, T2 then reads the block of F30 data

containing the outstanding test count into core, subtracts 1 from

the count and writes the block back onto the disk. T2 then reads

in the first block of patient data, sets the new results activity

bit, bit 1 of word 1, and writes the block back onto the disk. T2

then returns to TE to ask for the next patient identification.

5.1.6 Examples

Below is a sample conversation with TEST UPDATE in the ENTER and

the MODIFY modes. In the first example , input is in the ENTER mode

and is for workstation WSAD which contains individual t ests NA, K,

CL, CO2, and PH. In the second example , input is in the MODIFY mode

and is for the test GLUC. In the examples, terminal output from TE

is underlined.

5-5

TE

INPUT DEVICE l-TELETYPE 1 2-CARD READER
TYPE 1 OR 2* 1

EM ORS* E
TECH CODE* 12
TEST/WORKSTATION NAME* WSAD

ACC # * 31 FAWCETT MICHAEL y

,08/24 NA 137.

,08/24 K

,08/24 CL 1,02.

,08/24 CO2 NREQ

,08/24 PH 6.8

OUTSIDE NORMAL RANGE

ACC # * STOP

TTY IS FREE

TE

INPUT DEVICE 1-TELETYPE 2-CARD READER
TYPE 1 OR 2 * 1
EM ORS* M
TECH CODE* 12
TEST/WORKSTATION NAME* GLUC

CANN ALLISON y

PAT#* 826,0,0

ACC # * 5864

,08/24 GLUC 168. (ABNORMAL) :

PAT # * 395721,0

ACC # * 65 WINCHELL SUSAN Y

,08/24 GLUC

PAT#* STOP

TTY IS FREE

256. - SEE

1 Teletype is a registered trademark of the Teletype Corporation.

5-6

I

5.2 CARD READER INPUT

The card reader portion of TEST UPDATE is divided into two parts,

the reading in and verification of the cards and the actual filing

of the data contained on the cards. Input is assumed to be in

the ENTER mode, and no result is filed unless there is an empty

slot available for it.

5.2.1 Initial Conversation

The initial conversation is handled by T5. T5 first asY. s for the

output device for listing the cards, terminal or line printer. It

then instructs the technician to load the cards into the card reader

and make sure the card reader is ready before going on with the

program. T5 then selects the first scratch fil e it finds available -

out of files 10-15 - on which to store the images of the cards read

in. Once this conversation has been completed, it is never repeated.

5.2.2 Verification

5.2.2.1 Card Identification - T3 initiates a read of three cards.

If for some reason three cards cannot be read, either because the

cards ran out or because of some hardware problem with the card

reader, T3 records the fact, to be dealt with later, and processes

all those cards which were read in correctly.

To process a card, T3 checks the first three fields of the card to

be sure it is a valid card. Field 1, column 1, contains the card

reader package identification. Rows 12 and 11 must be blank, identi

fying the card as a TEST UPDATE card. Rows 0-5 contain the six-bit

ASCII code of the third character of the card reader package name,

CD*T. T3 searches file 46 for a match on the package name. When a

match is found, T3 gets the pointer to the file 50 definition of

the package and stores it on top of column 1 in the card image. If

any portion of field 1 is not valid, the card is rejected and its

number in the pack of cards being read is printed out on the appropri

ate device, along with a message about why the card was rejected.

Field 2, columns 2-5, contains the accession number for the data

on the card. T3 removes the four columns, converting them to

six-bit ASCII and storing the characters packed in columns 2 and 3 of

the card image. The ASCII is then converted to a binary accession

5-7

number which is stored in the card image columns 4 and 5 in the order

low accession number/high accession number. T3 gets a pointer to tile

first block of data for the patient using this accession numoer from

file 27, and from word 2 of the first block of data gets a pointer to

file 26 for retrieving the patient name. The pointer to the first

block of data in file 30 is stored on top of column 6 of the card

image. The ASCII accession number and the patient name are stored

in an output buffer for the card. If any error occurs, e ither

because the accession number contains a nonnumeric character (a

numeric character is a single punch in a column/rows 0-9) or i s

completely blank (leading and trailing blanks are ignored), or

because the accession number is not in use, the card is r e jected

and the appropriate message is output.

Field 3, columns 6-7, contains the technician code for the date

on the card. T3 takes the two columns, converts them first to ASCII

and then to binary, and stores the binary on top of column 7 of the

card image. T3 checks the tech code to be sure it is between O and

63 and adds the ASCII to the output buffer. If any error occurs

in the tech code format, either because of a nonnumeric character

or an all blank field, or because the tech code is not in the range

0-63, the card is r ejected and the appropriate message is output.

When the three fields have been decoded as much as possible (when an

error is encountered, processing is terminated), the number of the

card in the pile plus as much information as was processe d plus an

error message, if necessary, is output on the chosen device.

If the card is rejected, T3 does not decode any information, but

simply goes on to decide what to do for the next card. Jf the card

is not rejected, TE goes on to decode the information on the r e

mainder of the card.

5.2.2.2 Card Result Decoding - T3 looks at each result field of

the card as defined by file 50. A blank result fi e ld, one in which

there are no marks/punches in any columns, is ignored. For a non

blank field, T3 gets the test/battery name for the result and then

decodes the result field. No result error checking is done; T3

simply interprets the card image and prints what it sees.

5-8

For a numerical field, eac h column is converted to an ASCII char

acter. The ASCII characters are stored, packed, on top of the

first half of the numerical field in the card image. For each

column, no mark is a blank, a mark in rows 0-9 is a digit, a

mark in row 11 or 12 is a decimal point, more than one mark in a

single column is a question mark. The test/battery name and the

result are added to the output buffer.

For an English field, there can be more than one result in the

column. T3 checks each row that could contain a result, as de

fined by file 50, and for each result it finds filled in, adds

the test/battery name and the English result code from file 44 to

the output buffer. Ma rks i n rows which do not correspond to

English results are ignored. For an English result field, T3

makes no changes to the binary card image.

T3 prints out one test result per line. When the end of this card

is reached, T3 sets a bit in a card bit map corresponding to the

number of this card in the stack of cards to indicate that so far

the data on this card is to be filed.

(If a card was rejected, T3 resumes here.) T3 then writes the

image of the card in core onto the next 80 words of the scratch

file. T3 looks to see if all the cards read properly on the

current read -word 361 8 of the card reader buffer contains a count -

have been processed and if they have not, simply returns to process

the next card. If all the good cards have been filed, T3 looks at

the status word, word 360
8

of the card reader buffer, to determine

if any errors occurred on the read. If no error bits are set, three

cards were correctly read and processed and T3 returns to initiate

the next read. An erro r bit is set if T3 runs out of cards in the

card reader. In this case, T3 se ts a flag to indicate that there arc

no more cards to process and goes directly to the card verification.

If any o ther error occurs, T3 informs the user of the problem (feed

error, motion error, light/dark error, word count overflow) and re

quests that the user eitl1er terminate now or fix tl1c problem and con

tinue reading cards. If the user e l ects to terminate, T3 sets the

flag to process no more cards and goes to the card verification for

those cards which were read. If the user fixes the card reader

problem, T3 returns to initiate the next card read.

5-9

T3 has room to store 48 card images on the scratch file. It

reads 46-48 ca~ds, depending upon whether there are any errors

during reading, before going to the card verification.

5.2.2.3 Card Verification - When all the cards (up to 48) have

been read and printed out on the appropriate device, the technician

can verify the cards and decide whether or not to file all the cards

which were listed. If all cards are to be filed, T3 loads T4 into

bank 4 and jumps to it. If not all cards are to be filed, T3 asks

whether any cards are to be filed or whethe r only selected cards

are to be filed. If no cards are to be filed, T3 looks to see if

any cards remain to be read and, if cards r emain, initiates a new read.

If the technician wants to selectively file some cards, he can type

in the numbers of the cards which are not to be filed (a card number

accompanies the output of each card) and as each number is entered,

T3 clears the bit for that card in the card bit map. When all

cards which are not to be filed have been entered, T3 loads T4 and

jumps to it to file the remaining cards.

T4 attempts to file all the data on every card which has not been

rejected either by T3 or by the technician. The technician can

either file or not file a particular card but cannot select informa

tion within a single card to be filed or not filed.

5.2.3 Data Filing

T4 attempts to file all information on each c a rd which has its

corresponding bit set in the card bit map. To file a card, T4 first

checks file 27 to be sure that the accession number of the card

has not been freed or reassigned, in which case the card is

rejected. T4 then begins to scan the patient data looking for the

last group of tests within the data which ar e using the current

accession number. Within this group of tests/batteries are found

all the open result slots for this accession number. And when

another accession number, day header, or end of file is encountered,

this accession number does not appear anywhere farther down in the

file. (This is known because an accession number can only be as-

signed to a group of tests and batteries if it is currently free,

and when it is assigned, all the tests result slots are set up

in consecutive locations of file 30 data.) Once this group of tests

is located in the file 30 data, T4 is ready to file the results

5-10

0

)

on the card. T4 first locates the next nonblank result field

on the card and then attempts to fil e the result. Card results

are filed differently depending upon whether the card result

field is defined for a test or a battery.

5.2.3.l Test - T4 searches the appropriate portion of file 30

data looking for a match on accession number/test type/incomplete

result slot. A test which was ordered as part of a battery will

be found. If no result slot is found, T4 rejects the entire result

field, printing out the test name and the result decoded in the

same way as T3 decoded it on the terminal. If the result slot is

found, T4 decodes the result and saves it for storing in file 30.

If the result field is numeric it must be in legal format, i.e.,

no internal blanks, no nondigit characters, at most one decimal

point, and it must be within the acceptable range for a TE result

(as defined under TE terminal input). If no decimal point appears

within the number, it is assumed to be to the right of the last

digit. If the result is legal, it is converted to a binary man

tissa plus scale factor and saved for later storing. T4 then

checks to see if the result is inside the normal range and if it

is not,T4 prints an appropriate message and sets the abnormal flag

(status word bit 3).

If the result field is English, T4 looks at the result field from

top (bit 0) to bottom (bit 11) and saves as the English result the

file 44 pointer corresponding to the first legitimate mark it en

counters. It is possible to have two legitimate marks in a single

column. This is in the case where the second English result, that

is, the one farther down in the column, is a modifier (one of the

first 511 English results defined in TABDATA for a numerical result;

any English result for an English result.) In this case, the file

44 pointer correspond ing to that row is saved as a modifier to the

English result. If there are more than two results in a column or

if the second result is not a modifier, the entire result field

is rejected.

If the result field is legal, and if no modifier has been entered

as above, T4 looks for a modifier to the English or numeric result

in the next full result field on the card. (If the r esult field

happens to be numerical and illegal, T4 searches for a modifier

and if it finds one, rejects that along with the numerical result.

5-11

This is to prevent storing the modifier as the l egal result for

the test in question. The same problem does not arise in the

case of an English field.) In order to be interpreted as a modifier

the result field must a) be in the next full result field follow-

ing the current test result field (that field must naturally be

defined for the same test type as the current test), b) be an English

result field, c) have only one mark/punch in it, and d) have a

mark/punch which corresponds to a modifier. If there is a modifier

to the result, according to the above conditions, the result is

interpreted as a file 44 pointer and is saved. If there is no

modifier, the new result field is processed l a ter in the same

manner as the current result field is being processed.

If a legal result, with or without modifier, has been saved, T4

stores the two word result in the empty result slot which was

found. The result complete bit and the new tech code are added to

the result status word. If the abnormal result bit applies, it

is also set. The block of file 30 data is then written onto t he

disk. T4 also increments the count of test results which have

been saved since the last time the curre nt test count was updated.

If the result field is illegal for some reason, T4 prints out the

accession number, test name, and result(s) in the field, along with

the appropriate error messages on the terminal.

After the result field(s) has been processed, T4 returns to process

the next full result field on the card.

5.2.3.2 Battery - If the result field is for a battery, T4 searches

the file 30 data for a match on accession number/battery type. Once

the battery is found, T4 looks for the first empty result slot within

the battery. The result is filed in this result slot.

If the field is numeric, it must be legal as described for a test.

Theres.ilt is decoded and stored in the appropriate s lot in the

file 30 data in core. A check is made for abnormality, as in a test .

If the result field is English, there ma y be as many results in the

field as desired. The first result in the field is stored in the

first result slot in the battery. T4 then looks t o see if there

if there is another empty result slot within the battery. If there

is, T4 stores the next English result in the field in that slot.

5-12

T4 continues in this manner until either the end of the battery

or the end of the r esul t field is reached. If the end of the

battery is reached and there are still results in the result

field, the remaining results are rejected. Modifiers are never

stored in a battery. Every English result is stored as a separate

result for a test within the battery.

If the end of the result field is reached and there are more empty

slots in the battery, T4 looks at the next non-blank result field

on the card. If it is defined for the same battery as the present

one, T4 proceeds to file the results in the next free slots, as above.

When the battery is full, or when there are no more consecutive

nonblank result fields for the battery or when an illegal result

field (numeric) is encountered, T4 writes all the battery results

in core onto the disk. For each result that is updated, the count

of results filed is incremented by 1.

Results which are illegal or results for which there are no open

result slots are rejected.

5.2.3.3 Updating the Test Count and Activity Bit - The outstanding

test count is updated when the end of a card is reached. T4 reads

in the block containing the test count for the test results which

were updated (they all appear under one day header), subtracts the

number of results updated, and writes the block back onto file 30.

T4 also updates the test count as above if an illegal result field

is encountered. Before exiting for terminal output, T4 updates

the test count for all lega l results which have been filed so far.

When a card is completed, T4 checks to s ee if any results from

that card were filed. If any were, T4 reads in the first block

of patient data, sets the new results activity bit (bit 1 of word

and writes the block back out on the disk.

1),

5.2.3.4 Clearing the Accession Number - When the end of a card has

been reached and the test count updated, T4 makes a final scan of

the file 30 data (beginning where the last instance of the accession

number was found initially and going to the end of the data) look

ing for incomplete result slots with the current accession number.

If none are encountered, the test update for the current accession

5-13

number is finished. T4 checks file 27 to be sure the accession number

still belongs to the same patient and if it does, T4 clears the

accession number in file 27. T4 then returns to process the next

card to be filed.

5.2.4 Continuing

When T4 has finished filing all the cards which are l egal, it checks

the flag set by T3 to see if there any any more cards waiting to be

read and filed. If there are, T4 loads T3 and jumps to it. If

there are no more cards to be read, T4 terminates.

5.3 SPECIAL PACKAGES USED BY TE

TE uses two types of special packages during its operation, one

during terminal input - workstations, the other during card reader

input - TE card reader packages.

5.3.1 Workstations

Workstation packages, of the form WSab, can appear anywhere in the

second segment of TABDATA. "WS" identifies the package as a work

station and a is a letter identifying the workstation. bis not used

by TEST UPDATE.

For example:

///WSAD - AUTOMATED ELCT - ~~-~~
NA
K
CL
CO2
ELCT
NAK

Assume battery ELCT consists of the tests

NA
K
CL
CO2
PH
OSMO
PC02

If a technician chose workstation WSAD to update, he would be able

to update all individual tests NA, K, CL, and CO2, all NA's and K's

ordered as part of the NAK battery, and all NA's, K's, CL's and

C02's ordered as part of an ELCT battery. TE would not allow

5-14' .

)

the user to update the PH, OSMO, or PC02 of the ELCT. It would

also not find any instances of an NA, K, CL, or CO2 ordered as

part of a battery other than NAK or ELCT.

The technician would not need to know how the tests were actually

requested in the data file, and TE would not indicate.

5.3.2 Card Reader Packages

TE card reader packages, of the form CD*T, can appear anywhere in

the second segment of TABDATA. "CD" identifies the package as a

card reader package, "T" identifies it as a TE package and* is

an alphabetic character identifying the package .

The first line of the package definition is of the form

///COAT - CARD 1 - .0.0 . .0.0

Following that is a definition of each field on the card, one field

per line.

For a numeric field, the format is:

test/battery code-beginning column of field-# of columns in field
(8-80) (1-9)

For an English result the format is:

test/
battery
name

column
of field

(8-8,0)

number of
results in

column
(1-12)

row of
result 1

code of
result 1

row of
result 2

For example:

///COAT-CARD 1 - .0.0 • .0.0
NA - 30 - 7

K - 40 - 7

K - 50 - 1 - SEE - 3 - NR - 5 - WR - 7 - R

CL - 60 - 7

CO2 - 70 - 7

s-1s·

code of
result 2

The numerical result for NA is in columns 30-36. The numeral

result for K is in columns 40-46. K also could have an English

result (if the numerical field of the card is blank) or a modifier

(if the numerical field of the card is full). The column contain

ing the result is 50. A mark in row 1 corresponds to English

result code SEE, a mark in row 3 corresponds to English result

code NR, and so forth. CL and CO2 are numerical result fields

in columns 60-66 and 70-76 respectively.

The TABDATA input is translated into a package definition in

file 50. For each result field on the card, the package defini

tion contains a group of words where:

word 1: bit 0 1 for last test/battery in card reader package
0 otherwise

bits 1-11 = pointer to test/battery type in file 36

for a numerical result:

word 2: bit O = 0 for numerical

bits 1-7 column where result begins

bits 8-11 = width in columns of result

for an English result:

word 2: bit O = 1 for English

word 3:

word n+2

bits 1-7 column where result lies

bits 8-11 number of different English results in this
column (1-12)

bits O - 3 = row of this result

bits 4 - 11 = pointer to this result in file 44

bits O - 3 = row of nth result

bits 4 - 11 = pointer to this result in file 44

5-16

0

..

5.4 CARD FORMAT

The TE card format is as follows:

column 1: rows 12-11

rows 0-5

rows 6-9

blank

= 6 bit ASCII character which is
third character of TE package
name

ignored

columns 2-5: four digit accession number, one digit per column

columns 6-7: two digit technician code, one digit per column

columns 8-80: results to be filed, as defined in the file 50
card reader package definition

for a numeric result

rows 12-11

rows 0-9

decimal point

= digits 0-9 respectively

for an English result

rows 0-11, numbered from top to bottom
of card, as defined in file 50

5.5 ASSEMBLY INSTRUCTIONS

The TE source is broken up into four parts:

TE-T2 which chains to Tl, and T4 which chains to T3-T5 which chains

to T6. The binaries are stored on the start up tape according to

the following scheme.

first number
Overlay Name block of

Source on Startup tape number blocks

TE-T2, Tl TE 1, 4
Tl 11, 2
T2 5, 4

T4, T3-TS, T6 T3 5, 4
T4 1, 4
TS 11, 3
T6 15, 1

5-17

0

)

CHAPTER 6

MANUAL CALCULATIONS

The function of the MANUAL CALCULATION (CA) progr.am is to accept raw

data from the terminal, perform the calculation of final test results

(answers), and automatically transfer the calculated results along

with the appropriate raw data to the patient file when the acces

sion number(s) is entered. The program can be thought of as a desk

calculator interfaced directly to the patient files.

6.1 INPUT/OUTPUT

Only terminal and disk are used. The terminal is used to obtain

input from the user, type replies for the user, and type reports

on request. The disk files are used as follows:

FILE NAME USAGE

00 PROGRAM FILE read only

35 TEST TYPE CODES read only

44 ENGLISH RESULT CODES read only

Files 20, 27, 30, 36, and 42 are used through DATA-PF as described

in Chapter 7, Patient Data Filer.

6.2 FUNCTIONAL DESCRIPTION

The user calls f or manual calculations by typing tC and entering

CA). The terminal response is:

CALCULATION NAME IS*

A 4-character name for t h e calculation is entered. If an incorrect

name is entered, the terminal prints:

NO SUCH NAME
1. TRY AGAIN
2. SHOW LIST
3. STOP

SELECT*

6-1

The number of the option selected is entered. Entering 3)causes

the CA program to terminate and the terminal prints:

CA PROGRAM DONE

The CA program may also be stopped at any time by enter ing STOP).

The above message is printed and the program terminates .

Selecting number 2 causes a list of available calculations to be

printed as follows:

CALC NAMES ARE
ELCT
CCLR

etc.

The same list is printed when SHOW ME is entered for a calculation

name. After printing the list or after selection of option 1, a

calculation name is again requested:

CALCULATION NAME IS*

When a correct code name is entered for a calculation code the

terminal responds with the full calculation name, date and time and

asks for the TECH CODE. For example, entry of CCLR) results in the

following printout:

CREATININE CLEARANCE
DATE XX/XX/XX
XXXX HRS
TECH CODE IS*

The tech code can be 1-63. If an incorrect number is entered, the

message:

ERROR - TECH CODE 0-63

is printed out and the code is requested again.

6-2

)

After a legal tech code is entered, the terminal prints the data

entry format for the calculation. For Creatinine Clearance, for

example, the format is:

ENTRY FORMAT

U-VOL, PERIOD, U-CRET, P-CRET

The data for urine volume (U-VOL), period in hours (PERIOD), urine

creatinine (U-CRET), and plasma creatinine (P-CRET) are entered

after the* on one line separated by commas. For example, a set of

data might be:

*2173, 24, 65, 2.3

The data are entered in the ORDER SPECIFIED IN THE ENTRY FORMAT.

Data may be any number up to five digits with or without a decimal

point. Thus, 65 and 65.0 are the same number. If a data line is

entered in incorrect format any one of several e rror messages may

be printed, as follows:

MESSAGE MEANING

ERROR-DATA OVER 5 DIGITS a number is too large

ERROR-TOO MANY may be too many entries on a data
line

ERROR-NOT ENOUGH may be not enough entries on a
data line

ILLEGAL CHARACTER-ONLY., & 0-9 probably an alpha character entered

ERROR-MULTIPLE DECIMAL POINTS a number has more than one decimal
point

ERROR-BLANK DATA an entry was made without digits

After the data are entered, the calculated result(s) arc pr inted :

CCLR - XX.XX

6-3

Next, an English result will be requested if it is required.

For example:

SPECIMEN TYPE IS*

A nonexistent English result causes the message

NO SUCH CODE

and the result is requested again. Any legal Engl ish result (from

File 44) may be entered. (SPFL for spinal fluid, SER for serum,

etc.). If the particular calculation type does not require an

English result, the question is not asked.

Finally, an accession number(s) is requested for the calculated

results:

PLASMA ACC # *

Five types of entries can be made for the accession number.

ENTRY

xxxx)

ACTION

When a valid accession number (1-9999) is
entered, the terminal responds with the
patient's name:

(PT NAME) OK?*

Enter y) or N) to accept or reject the name:.
Y) causes the data to be filed. n) causes th e:
ACC# to be requested again.) is treated as an
N). After filing the results, the terminal
prints:

FILED

NEXT CALC

*

and waits for new data to be entered.

6-4

..

I

_xxxx, R)

)

An accession number followed by a comma and
R treats the accession the same as above , but
after the results are filed a formatted final
report with the patient's name and nursing
station is typed for the calculation before
going to NEXT CALC as above.

When R alone is entered , the terminal prints:

DATE XX/XX/XX
NAME*
N.S. *

waiting after each* for name and nursing
station to be typed on the terminal. When the
second.) is pushed the formatted calculation
report is printed and the program proceeds to
NEXT CALC. No data is filed.

Entering N) causes the program to proceed
directly to NEXT CALC. No results are filed.

A) alone skips the current accession number
and proceeds to the next accession number or,
if there are no more, to the NEXT CALC . Results
for any valid accession number are filed.

Accession number entries may result in the following error messages

MESSAGE

NO REQUISITION FOR THIS ACC#

(name) NOT SAME PATIENT

TTTT ALREADY FILED

TTTT NOT REQUESTED

MEANING

No requisition was entered or all
results have been filed for it
already.

if more than one valid accession
number is entered, subsequent
number(s) did not belong to same
patient as first entry.

results already in patient's file
for test (TTTT) indicated.

accession number was OK but test
indicated (TTTT) was not requested.

As before, whenever STOP) is entered, the CA program terminates.

When more than o ne accession number is required, for example, urine

and plasma for a CCLR package, eac h is requested. Any parts of a

package can be filed by skipping accession numbers with) as described

6-5

above. Whenever a disk error is detected, the telepr inter prints:

DISK ERROR, CA PROG TERMINATED

The CA program terminates automatically. The program may be called

int o the computer aga in and the operation retried.

30 is not available, the computer prints:

If file 27 or

WAITING FOR FILE 27 OR 3~

unti l th~ file becomes available .

6. 3 PROGRAM NAME AND TABLES

The basic Manual Calculation program consi s ts of five routines in

the pro gram file:

ROUTI NE DIAL
FILE MSC
NAME NAME

CA CAPROG

FP LBCM5-FP

CT CATEXT

COMMENTS

Only routine called from TTY. CA is basic
control program for the system.

Floating point routine for LABCOM 5 .

The CT program first tries to load the spec
ified calculation from the disk program file.
If the disk load i s unsuccessful, the Tape
Loader (TA) program i s read into bank 6. ThL,
CT program tape loader modify subro utine tem
porarily modifies the Tape Loader (TA) progr~m
to allow the Tape Loader (TA) program to run
in bank 6 and to load the specified calcu
lation from the UJ2E tape into bank 6. The
Manual Calculation program then proceeds . If
the specified calculation isn't found on the
UJ2E (unit 5) tape,

CANNOT LOAD

TTY IS FREE

is printed on the calling terminal as the
CA program exits. The CT program was assembled
with the tape loader modify subroutine and with
a seventeen program calculation name table
(maximum 21). A calculation to be loaded by
the tape loader is restricted to a maximum of
three blocks. The CT program was also assembled
without the tape loader modify subroutine and
with the seventeen program calculation name
table (maximum 34). This table starts at
location 1060.

6-6

)

ROUTINE
FILE
NAME

CF

PF

DIAL
MSC

NAME

CALCFILE

PF

COMMENTS

Asks for English results, accession numbers ,
and files results in patient file through
DA'rA-PF.

Files 1 result in patient data f i le . Also
used by ACcession number entry.

In addition to the above five routines, each calculation has a

CALCULATION SUB PROGRAM which specifies the formats, LINC and

floating point code, and procedures to be used. Each sun PROGRAM

is filed as follows:

SUBPROGRAM
FILE
NAME

Cl

C2

C3

C4

C9

K5

K4

K2

C5

CG

C7

ca

K3

KG

K7

K8

K9

Kl

DIAL
MSC

NAME

CRCL

ELPR

STCl

STC2

UREC

PSPE

OEST

BRSC

UCAL

UUNA

UUCL

UUKK

ALGR

ESTR

PRPH

HEME

CPKS

MECA

FULL NAME

Creatinine Clearance

Electrophoresis

Urinary Hydroxy Steroids

Urinary Keto Steroids

Urea Clearance

PSP Excretion Test

Urinary Oestriol Test

Bromo Sulphthalein Clearance

Urinary Calcium

Urinary Sodium

Urinary Chlorine

Urinar y Potassium

A/G Ratio

Estriol

Porphyrin

Hematin

Creatinine Phosphokinase

Manual Entry Calculation

6-7

A t ab le of the available calculations is at the end of the

CATEXT manuscript (Location 1~6~) . It has the format:

#lL
('

C 4 char name in ASCII
L
R

?l c:; EOL in ASCII
r I l Prag file name, stripped ASCII

F.

T
('

4 char name in ASCII

'T'

215 EOL
C I 2 Prag file name, stripped ASCII

pf-("'

7777 End of List

(6 words per calculation code)

When a calculation name is entered by a user, this table is searched

for a name match. The CT program first tries to load the specified

calculations sub program Cl, C2, etc. from the disk program file into

bank 6. If the disk load is unsuccessful, the Tape Loader (TA) pro

gram is read into bank 6 and modified to load the calculation sub

p r ogram from the UJ2 tape which resides on unit fi ve. If tne spec

i f ied calculation isn't found on the UJ2 tape,

CANNOT LOAD

TTY IS FREE

is printed on the calling terminal and the CA program exits. A

calculation sub program which is designed to be loaded from the UJ2

tape must be less than 4 blocks long. If it is stored on the UJl tape

it may be 4 or less blocks long.

Two p r o cedures are necessary to implement a new calculation program .

1 . Prepare a SUB PROGRAM manuscript for the calculation and put
the new SUB PROGRAM in the program file.

2. Put the new calculation SUB PROGRAM name (e.g. CCLR) and
program file name (e.g. C4) in the table of available calcu
lations in the CATEXT manuscript.

6-8

)

Putting a new name in the CATEXT table will be obvious from

looking at the CATEXT manuscript. The preparation of a new

CALCULATIONS SUB PROGRAM is explained in detail in section 6.5.

6.4 MEMORY BANK DIAGRAMS

The following gives the memory bank snapshots during various

stages of the calculation procedure.

NOTE

7

6

5

4

illill
LOWER MEMORY BANK UPPER MEMORY BANK

-- -- -

SETUP TO CALCULATE

-- - - - -~ ----
C'f

~ ., u.
;

i

CA called from CT asks for CALC
terminal. CA name, loads the
loads CT. Trans-CALC SUB PROGRAM
fers control and looks up all
to CT. test types in

File 35. Returns
control to CA.

6-9

fl
,ii
I

~ ""-JIUn.HUl'I

~~ =3Zl£: -------·

CA prints CALC name,
date, time, requests
TECH CODE. Prints
ENTRY FORMAT. FP
may be LMB during
ASCII to FLT PT
conversions.

7

6

5

4

7

6

5

4

CT

FP

_ _ ::CA __

Enter data
line on
terminal

CT

FP

- -CA -·-

Print re
sults (also
see FLT PT
to ASCII
conversion)

-S-

ENTER DATA AND CALCULATE

CT

SUB
PROG

-=-TE -

Convert
ASCII to
FLT PT or
FLT PT to
ASCII

------- -
CT

--
-- SUB
'TRoG

) I! ~J !ill
CA

Execute LINC
code in SUB
PROG

PRINT AND FILE RESULTS

Enter
English re
sults. CF
use TTY
buffer in CA

Enter ACC#
and file
results

6-10

CT

FP

CA

Execute
floating point
code in SUB PROG

PF

SUB
PROG

---1~:=...:....__

-= ·· -cL ...:··
---·· ---·--

Exit. If sum
mary reports,
CL loaded in
Bank 4 and
started at l oc .2

)

6.5 PREPARATION OF CALCULATION SUBPROGRAM

The basic calculation programs (CA, CT, CF , and FP) operate from

information in the SUB PROGRAM. To unde rstand the use of information

in the SUB PROGRAM is to understand the calculation system . A flow

diagram is provided at the end of thi s chapter. The order in which

information is used in the SUB PROGRAM implies the order of operation

of the basic calculation programs, although it is not exact in some

cases.

Implementing a "new" calculation requires the development of a new

SUB PROGRAM, The following sections provide descriptions of the in

formation requirements in the SUB PROGRAM. When reading this descrip

tion it is assumed the reader is referring to examples in manuscripts

(e.g., CCLR, ELCT). All pointers referred to can be found at the

beginning of the SUB PROGRAM manuscript.

6.5.1 Calculation Name (pointer A8+2~~~' loc. 2~)

The full calculation name to be printed when the SUB PROGRAM is

called is put in as an ASCII string at tag AB. 72 characters maximum.

6.5 .2 Data Field (pointer I8+2~~~' loc . 3~)

The data field contains~ data (constants, raw data, answers, English

results, etc,) in six word formats:

WORD l ABC XXX XXX XXX

* A Precalculation input data if = 1

* B Main calculation input data if 1

C no t used

X test type code number

WORD 2 ENM MMM sss PPP

* E result is English if 1

N not used

M English modifier

s scale factor for result

* p no. decimal places in result

(same as channel storage word 4)

6-11

WORD 3 RRR RRR RRR RRR

R numeric result or English pointer

(same as channel storage word 5)

WORD 4-6 floating point word

For each datum in the calculation there must be a corresponding

6 word data format in the data field. Only the bits indicated by*

need to be set in each data format. Other information is provided

automatically by the basic programs.

6.5.3 Entry Formats (pointerBS+2,0,0,0, loc. 21; ES+2,0,0,0, loc. 24)

The entry format is entered as an ASCII string at tags BB and ES , Up

to 72 characters are permitted. The line "ENTRY FORMAT" is always

printed by the basic programs before printing the ASCII string.

6.5.4 Number of Entries

The number of data inputs required for the precalculation is put in

SUB PROGRAM location 34, the main calculation number is put at loca

tion 35. Both are in octal. These numbers are used by the basic

program to check for the correct number of inputs.

6. 5. 5 Floating Point Code (pointer BS +2,0,0,0, loc, 21; EB +2,0,0,0, loc. 2 4)

The floating point operations are entered by executing the JMP CS at

location 22 for the precalculation and the JMP FS at location 25 for

the main calculation. If there is no code for a calculation the tags

CS or FS must have a return to bank 4 at exit+l. For example:

CS, LDA LOAD RETURN

.0
STC .+2

LMB4

JMP /RETURN .+l

Actually,any code, whether LINC or floating point, can be executed

at CS or FS as long as the JMP return is saved. Upon entry at CS or

FS, bank 5 contains the floating point subroutine (LBCM-SFP) for

6-12

LABCOM 5 set to return to the SUB PROGRAM in bank 6 after each use.

6.5.6 Program Patches

Program patch 1 (JMP KB, lac. 32) and patch 2 (JMP LB, loc 33) are

provided for additional insertion of program operations. (Refer

to the flow chart Main Calculation at the end of this chapter.)

As for the floating point codes (CB, FB), the tags IB and LB

must contain at least a program to return to bank 4 at exit+l.

Upon entry to patch 1 or 2, the floating point program is in

bank 5 set to operate from bank 6.

6.5.7 Print Result Formats (pointers DB+2~~~, lac. 23; GBt2~~~, lac.
26; HBt2~~~, loc. 27)

Free formatted text reports for data can be generated at three times

-1) after precalculation, 2) after main calculation, 3) at end of

procedure. These reports are specified freely through the use of ASCII

characters, tags, and appropriate delimiters. The general format is:

TAG, ASCII TEXT

7777
data tag J.
ASCII TEXT

7777
data tag 2

215
ASCII TEXT

7777
data tag 3
ASCII TEXT

etc.

7777
7777

(a 7777 mean s result tag follows)
(tag for data in data field)

(end of line)

(two 7777's means end of report)

6-13

The basic program transfers the text string to the terminal buffer

until a 215 (EOL) is encountered. Data formatted in ASCII is inserted

automatically whenever a tag following a 7777 is encountered. When

constructing a text line one should allow for the length of the r esult

so that more than 72 characters are not generated on a single line .

If a line exceeds 72 characters it is truncated . A data tag~ not

refer to an English result. Only numeric results are automatically

formatted for calculation output.

6.5.8 List of Result Types (pointer T8r2~~~' loc. 41)

All results in the data field which are to go to the patient file

are listed at TB in the following format:

TB, AA (four character stripped ASCII name
AA as in file 35)
data tag (associated tag in data field 18)
BB (second name)
BB etc.
data tag
7777 (end of list)

The result types in list BT are looked up in file 35 and the nume ric

test types inserted in each data word 1 in field IB each time the

SUB PROGRAM is called, 'I'hus, the data names must correspond to the

correct names in file 35.

If a name is changed in file 35 it must also be changed in the calcu

lation SUB PROGRAM. The list should also include any result in file

35 which has an English answer (e.g., SPEC, specimen type). The

English result is looked up automatically in file 44 when it is

entered.

6,5.9 Accession Number Entry (pointer J8 :r2~~~' loc. 31)

Text for accession number entry is similar to the report format s with

the addition of two locations for the accession number.

6-14

)

Example:

J8, ASCII TEXT

375
~
~

data tag 1
data tag 2

7777

etc.
7777
7777

(ALT MODE)

locations for ACC number
list of data tags to be
filed with ACC #
(end 1st ACC #)

text, etc. for another number

two 7777's end ACC #
entry procedure

The basic programs type the text up to ALT MODE, accept the accession

number, and file the associated data for the tags listed with each

number.

6.5.10 English Results (pointer R8+2~~~. loc. 42)

English results are accepted by placing text at 8R as follows:

R8, ASCII TEXT

375
data tag l
ASCII TEXT

375
data tag 2

etc.
7777

(ALT MODE)
(only~ data tag)

(end of English results)

The English result response entered on the terminal is looked up in

file 44 and the numeric code inserted in the data result word by the

basic programs. The English result~ (not answer) is assumed to

be in the file 35 list at T8.

6-15

6.5.11 General Directions

Making all of the above entries in the SUB PROGRAM allows a new

calculation procedure to be implemented. The syste m allows specifi

cation of the operational formats, the results for the patient file,

numeric and English result types, and combinations of LINC and floating

point code. It is assumed that ne w calculations will b e implemented

at the SUB PROGRAM level of programming.

6.6 FLOW DIAGRAM

A rough flow diagram for a typical calculation i s shown be low. The

precalculation can be used to enter a set of standard test r e sults

which can be referred to by a series of calculations applying to

different patients.

6.7 PROGRAMMING

NEXT
CALC

START

PRECALC

MAIN
CALC

ACCESSION
ENTRY

D FILING

Refer to a typical calculation listing to see the general layout.

The pointer table at the beginning of the program is standard for all

calculations (except for the numbers of input data).

6-16

)

Some of the program sections need not appear in a particular program

- e.g. precalc entry and output formats, final report format and

English result text. When these are omitted, the corresponding

symbol tags for these sections do not appear in the body of the pro

gram, and error messages are displayed during assembly. All the other

standard program sections should be included (with dummy entries if

necessary) to ensure correct operation of the calculation control

programs.

"Program patches land 2" are executed immediately before and after

the main calculation, respectively. LINC coding can be inserted in

these places if desired (after the STC instruction).

The precalculation and main calculation can include mixed floating

point and LINC coding - e.g.,

(LINC instructions)

LIF 5
JMP 2~

(floating point instruc tions)
(last instruction 2 digits only)
(LINC instructions)

LIF 5
JMP 2~

(floating point instructions)
(last instruction 2 digits only)
(LINC instructions)

LIF 4
(return jump instruction)

Care needs to be taken when writing the floating point coding - so

that, for example, integer-operand instructions are not used with

floating point operands, and vice versa.

6-17

In addition to writing the calculation sub-programs, the programmer

must: -

1. Write the programs on a startup tape using t h e System Build
option (the usual directory code names for calculation pro
grams are Cl to C9).

2. Alter, assemble and re-write the CATEXT (CT) program to in
clude a directory of calculation codes (four letters and/or
numbers - no blanks) and the corresponding two-character
codes used on the startup tape.

3. Include in TABDATA the calculations which involve filing of
r e sults in patient files. The calculation four-character
code name is used as the code name of a calculation battery,
and ite ms within the batte ry are r esults or data for filing.
The four-character codes for the latter must also appear in
the calculation sub-program unde r "res ult s fo r filing".

There are at present some errors in the calculation control programs.

Consequently: -

1. Accuracy in most calculations is limited to about three
significant decimal figures.

2, The single-line formats (e.g. for data entry) are limited
to about 48 characters.

6.7.1 Floating Point Subroutine

The floating point package is a combination of the 1966 version of

the Stanford Floating Point package (DFPF66) and a special driver

package by Arthur A. Eggert. The package occupies LINC Bank 5 and

executes the code in the calling bank. The calling bank is assumr..:d

to be bank 4, but can be changed per instructions in th8 LBCM- 5FP

manuscript. (See also the subroutines Bl and B2 in CAP ROG.)

6.7.2 Floating Point Instruction s

Floating point is used by inserting a ser ies of two-word instructions.

The first word is the oFerand and the second the operation. The

calling sequence is:

6-18

)

LIF 5
JMP 2~
operand l
operation l
operand 2
operation 2
operand 3
operation 3

operand n
operation n
return from subroutine

6.7.3 Operand

/ LMB TO BANK 5
/ ENTER SUBROUTINE

The operand specifies an address in three form s :

1) Direct Address: 5~~, for example, is interpreted as the
address of the number to be used in the operation. If the
number is an integer, then only location 5~~ is used. If
the number is in floating point format, locations 5~~' 5~1
and 5~2 would be used.

2) Indirect Address: Setting the 4~~~ bit refers to an address
for the number required. For example, 45j~ means the address
of the required number is in location 5j~. Any location may
be used as an indirect address (not restricted to the LINC
index registers).

3) Zero: A zero operand refers to the floating point accumula
tor.

6.7.4 Operation Codes

A complete list of operation codes is given b e low. The cod~s below

4~ 8 are the standard codes for the Stanford package. The operation

codes 4~ 8 and above are special transcendental functions. All opera

tions, including transcendental functions, use less than 0.5 seconds.

The Floating Point driver will do a TMX after any lengthy transcen

dental operation. Note that the transcendental operations do not

use the address field (operand) since Xis assumed to be in the

Floating Point Accumulator (FAC).

6-19

The 4~~~ bit set in an operation code means another code follows.

If it is not set the subroutine returns to execute LINC code. For

example:

LIF 5
JMP 2~
operand
4~~~+operation code
operand
4~~~+operation code
operand
operation code
return here from Floating Point

6-20

•

"

"

oe Code

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

)

oeeration

compute square root of the value in operand.
Leave result in FAC

clear FAC and add operand lo Fl\C (LOAD
operand.

add operand to FAC

complement operand and leave result in FAC

multiply operand by FAC; result in FAC

divide FAC by operand; result in FAC

divide the operand by FAC; result in FAC

add an integer operand to FAC; result in FAC

multiply an integer operand by FAC; result in
FAC

divide the FAC by an integer operand

divide an integer operand by the FAC

convert FAC to an integer; leave in LINC
accumulator

convert an integer to a floating point word;
l eave in FAC

clear FAC and operand

compare size of operand with FAC; larger
left in FAC

compare size of operand with FAC; smaller
left in FAC

check the sign of the operand; depending on
whether it is positive, negative or zero,
leave in the LINC accurnulator+l, -1 or zero.

add FAC to operand and store in operand, i.e.,
add to memory

subtract operand from FAC; leave result in
FAC

store Fl\C in operand; also, leave in PAC

6-21

24

25

26

40

41

42

43

44

set sign of operand positive; leave in FAC

set sign of operand minus; leave in FAC

subtract integer operand from FAC. Result
in FAC

Xn , raise value X to integer power n; n is
in operand field, result in FAC

xY, raise value X to floating point power y.
Operand is address of floating point number y.
Result in FAC.

ex, raise e to power of x; xis in FAC;
result l eft in FAC; operand field not used.

Log 10x, take log of X to base 10, X in FAC;
result left in FAC; operand not used.

Log X, take log of X to base y. X in FAC;
opefand is address of floating pointy;
result left in FAC

(For all the following operations, Xis put in FAC before exe

cuting the code. Result is left in the FAC. Operand field is

not used, but location must be allocated. User may use operand

location.)

45 ln X

46 sin X

47 cos X

50 Tan X

51 arcsin X

52 arccos X

53 arctan X

54 hypersin X

55 hypercos X

56 hypertan X

6-22

"

..

Certain limitations concerning the transcendental functions

{codes 40 and over) should be taken into account. Except for

the Xn routine, whose speed is proportional to [n), the

routines are relatively slow. This is because they require

summations of series, and although the summations have been

modified to cut down on the number of terms, it shculd not

be assumed that they are instant. The longest routines are

tan X and all the arcfunctions. Moreover, due to the extensive

modification necessary to get the arcfunctions lo run, t hey

are inaccurate to the extent of 1 part in 100,000 for especially

bad cases, though they are usually better. Other functions arc

good to at least one part in a million, usually 1 part in 10

million or more.

The transcendental function package also contains useful

floating point constants, which can be access ed by the user.

Constant Address

rr/2
'TT

ln2
e

10

All angles are expressed in radians.

degrees " x radians
18.0

6-23

in Bank 5

751
767
746
772
744

Remember that:

6.7.5 Floating Point Format

The following explanation of the floating point word is

reproduced from the Stanford description of floating point .

The use of double pre cision floating po int
arithmetic seems essential if the LINC i s
to serve as a statistical proce ssor. In
using this type of arithme tic, th e progr a m
mer trades speed and space for e as e in deal
ing with large numbe rs. Programs which ar e
extremely laborious to write and de bug may
become rather trivial using thes e routines .

A. A form of double precision floating point number:

:ii<f> . M 1.1. ;,;f-'

l l i i 111 1 I I tnJl rrrr~i:111111 m1:111rn-n 1

Exponent High Order Low Ord~r

Mantissa

Word 1 Word 2 Word J

B. Floating an integer involves shifting th e number right

across the binary points until it is a fraction, and

;

then counting the number of shifts to make up the e xpo ne nt.

In the above case, 5 = 101.000 in binary. Three shifts

right produce 000.101. Since the binary point is always

located between bits 23 and 22, the floating point number

contains 101 in bits 22, 21 and 20. The e xponent equals 3.

Another way of representing this binary numbe r is .101 x 2 3 .

6-24

0

I

C. Normalized floating point numbers always contain their

most significant bit in bit 22. The above number could

be represented in an unnormalized mode, such as .010 x 2 4 .

But it' is never represented this way in the floating point

routines, since this would waste precision out at the

right end. In its normalized mode, .101 x 23 , the number

contains 23 bits of precision. This corresponds to more

than 7 decimal digits.

D. Fixing a floating point number is the reverse of the

float. It is shifted left across the binary point until

the exponent equals zero. The fractional part remaining,

if any, is either discarde d or used for rounding off the

integer.

E. Negative numbers are represented as the one's complement

of positive numbers as in standard LINC integers. The

mantissa (high and low order words) is merely complemented.

Note that there is no sign bit in the low order word.

F. Negative expone nts indicate that the nwnber is less than

one and has been shifted left until it is normalized.

The sign of the exponent should not be confused with

the sign of the mantissa. .101 X 2-3 is no more a

negative number than is 5 X 10- 3 . In the former the

minus exponent indicates that if the numbe r were fixed

it would be .000101. The floating point routines would

give a zero if r eq uested to fix this numbe r.

G-25

6.8 SPECIAL ASSEMBLY INSTRUCTIOUS

The driver package (LBCM5-FP)) man uscr ipt is assembleJ under DIAL for

the first 512 10 words (two blocks) of Bank 5 . The two blocks of the

DPFP66 (Stanford Floating Point) are avai lable onl y as binary at

present. The package is stored on the start up tape as 4 blocks under

the name FP. The first two blocks are LBCM5-FP and the second two are

DPFP66.

FP:

1777 ,-----------"T

DPFP66
Binary

LBCM5 - FP
Binary

,0 ________ __._

512 1.0 words

5121 .0 words

The rest of the overlays are assembled and store d in the program file

as follows:

Startup Tape DIAL No . Bi nary
File Name File Name Blocks

CA CAP ROG 5
CF CALCFILE 5

CT CATEXT 4

There are equate statements at the end of CAPROG which reference

addresses in CATEXT.

6-26

<J

•

)

6.9 FLOW CHARTS FOR MANUAL CALCULATIONS

TO MAIN
CALC B
PAGE
D-3

CALCULATION SUBPROGRAM

FLOW DIAGRAM

ENTRY

PRINT FULL
CALCULATION
NAME

EQUEST TEC
ODE, PUT I
oc. 36

CA IN BANK 4 WITH
SUBPROG IN BANK 6

POINTER A8 +2~0,fl
LOC. 21'

POINTER Y8+2.0Rl.0
LOC. 37

L()C . 3 6 HOLDS
TECH CODE

POINTER B8+2,0,0,fl
LOC. 21 1-----

no
NOTE: if taq B8 is undr! f i necl in

s 1mr1mr;, t tv·n l nc 21 --= 2,0~..0
a nd Uir, r<• i ~; no J• HJ·:C /\LC
u,xL.

TO PRE CALC

6-27

PRECALCULATION

PRINT PRE
CALC ENTRY
FORMAT

ENTER DATA
LINE

J---..,--~~~~---;i XFER TO

DATA FIELD

no

no

MAIN CALC

POINTER B8 +2,0;0,0
LOC. 21

POINTER I8 +2.0,00
LOC. 3/J
(also see section on data format)

Check Loe. 34 for
CORRECT NO. ENTRIES

EXECUTE JMP BC
at Loe. 22

POINTER D8 t-2,01'~
Loe. 23

6-28

.,

v·

D

MAIN CALCULATION

EXECUTE
PROGRAM
PATCH 1

PRINT. MAIN
CALC ENTRY
FORMAT

ENTER DATA
1--~~--~~~~LINE, XFER

TO DATA
FIELD

no

EXECUTE
PROGRAM
PATCH 2

PRINT Ml\IN
RESULTS

TO ENGLISH RESULT ENTPY

6-29

execute JMP K8
loc. 32

pointer E8+2¢1'~
loc. 24

pointer I8+2,.0,0,.0
loc. 3.0
(see section on data format)

check loc. 35 for
correct no. entries

execute JMP F8
loc. 25

execute JMP L8
loc. 33

pointer C 8 + 2,l,.0fl
loc. 26

ACCESSION
ENTRY
page D-5

no

yes

ENGLISH RESULT ENTRY

ACCESSION#
ENTRY

6-30

if no English , tag RB
will be undefined and
loc. 42 will =2 ()1'1'

pointer RB +2,0JJ~
loc. 4 2.

look up 1 to 4 char
entry in fil e 44.

pointer IB+2"'J;n
loc. 3J

..

•

..

..

)

ACCESSION NUMBER ENTRY

PRINT ERRO
MESSAGES

PRTNT PA.:_ .. l
TIENT NAMF.
XFER ACC N.

pointer J8 +2,00(,J
lac. 31

go direct to
print report
page D-6

ACC NO. 1-9999, check
if requisition exists ,
if~first no., check if
same patient

pointer
lac, 31
flag if
ACC # •

J8 +2,e.f')0
set print
"R" follows

to file and print

6-31

next
page
D-2

FILE RESULTS AND PRINT REPORT

yes

LOAD CL &

RINT SUM
RIES

1. pointer IB +2000, loc. 30
(data field containing
results)

2. pointer TB +2fJfJRJ, lac. 41
(list of results for
patient)

3. pointer JB +2.0,0yJ, lac. 31
(accession numbers and
data tags)

pointer HB +2lHl.0
lac. 27
note: if no name has
been put in heading
text, it will pause
for type in auto
matically (see CALC
FILE)

pointer

NORMAL
STOP

'-----,.---"MB + 2JMJJ

PMX

lac 4,0' is PT
ordinals for
summary

6-32

PMX

0

"

..

•

CHAPTER 7

ACCESSION NUMBER ENTRY

The Accession Number Entry (AC) program enables the technician to

enter accession numbers as well as to obtain the computer calculated

results of a given test from the channel storage area, edit them,

and store the final results in the appropriate slot in the patient's

test data file. The program utilizes a conversational format with

the technician which is designed to promote a complete exchange of

information in the minimum amount of time.

7.1 INPUT/OUTPUT

Only terminal and disk are used. The terminal is used to obtain

input from the user, type replies for the user, and to type reports

on request. Disk files are used as follows:

File Name Usage

00 PROGRAM FILE read only
20 PATIENT NAME FILE read only
22 N. S./DR. FILE read only
27 REQUISITION INDEX read and write
30 TEST DATA read and write
32 CONTROL/SCHEDULE BLOCKS read only
33 CHANNEL STORAGE read and write
35 TEST TYPE CODES read only
36 TEST PARAMETERS read only
40 TEST NAMES read only
41 ENGLISH RESULT FILE read only
44 ENGLISH RESULT CODES read only

7.2 FUNCTIONAL DESCRIPTION

AC consists of three phases: (1) initial conversation, (2) edit

conversation, (3) finalization .

7.3 INITIAL CONVERSATION

Call AC. The program responds:

ACC # ENTRY hhmm HOURS mm/dd/yy
TECH CODE*

7-1

The user responds with a number 1-63. He may type STOP at any time.

He is then asked:

AUTO. NAME(S) *

The user responds with the names of the automatic instruments which

he wishes to edit. If more than one, the names must be s eparated

by commas and the instruments must have been collated when set up.

If he requests more than one instrument or if the requested instru

ment has more than one result, the user is asked :

CONSIST. DEL. *

The user may type in one or more result codes (separated by commas)

for those results which are not to be filed. The user is then in

formed and queried in one of two ways:

or

HIGHEST CUP EDITED IS NNN. START AT CUP*

HIGHEST EDITED IS PLATE NNN, CUP NNN. START AT
(PLATE, CUP) *

The user responds with the cup number or the plate number, comma,

cup number. The program then enters the edit phase.

7.4 EDIT CONVERSATION

AC searches for the next filable result or control , automatically

skipping standards and special cups. When one is found, it types

either:

xx s *

for a sample, or:

XX C *

for a control. The user then may type any of the following:

7-2

0

)

I,)

/XX,)

AAAA,)

)

AAAA,)

XX. X,)

#XXXX.)

Move to the next cup.

Move to cup XX.

where AAAA is a test name.
Move to that result.

Move the next result.

where AAAA is an English modifier.
Modify the whole cup. 1

where AAAA is an English result.
Replace the whole cup. 1

where XX.Xis a nwnber. Replace the
whole cup only if there is only one
result per cup.

Print a formatted report.

Assign an accession number to this cup . 1

(replies "FILED").

FOR CONTROLS ONLY: accept the control
(replies "AC CEPTED")

After moving to a result within the cup, the following O[,tions (lisll.:d

above) work differently:

-AAAA..J

AAAA)

xx. x,)

where AAAA is an English modifier.
Modify this result only. 1

where AAAA is an English result.
Replace this result only. 1

where XX.Xis a nwnber.
Replace this result only.

In addition, after moving to a result within the cup, the following

option is available

? Delete a result from channel storage
and do not file it in the paLient tile

The above operations may be combined on one line.: by ser,c1rc1ti fl'J the

elements with a corruna. 'l'he line.: is scanned from l e ft to rirJhl.

Anything to the right of:

1)
or: 2)
or: 3)

an error
I
/XX

is ignored.
1Not applicable to controls. 7-3

7.5 FINALIZATION

When the user types STOP or a terminal error has occurred (see below)

the program terminates by typing:

AC DONE

7.6 ERROR MESSAGES

Error messages arise from two situations: user errors, and system

or hardware errors. When an error occurs, one of the messages

below is typed out.

Regardless of the cause, errors can be classified as:

a) Terminal - Terminal errors cause AC to exit as if STOP
had been typed .

b) Non-terminal - Non-terminal errors do not cause AC to stop.
The program continues in the usual way.

User Errors (a ll user e rrors are non-termi nal)

USE DIGITS 0-9

CODE 0-63 ONLY

XXXX NOT SETUP

XXXX BEING EDITED

NOT A COLLATED SET

ALL RESULTS MAY NOT BE
DELETED

NO CODE NAME (XXXX).
RETYPE LINE.

A non-digit was found in a
numeric field.

A number greater than 63 was
given for the TECH CODE.

The specified instrume n~ XXXX,
ha s not been SETUP on-line .

The specified instrume nt, XXXX,
is being edited from another
terminal

The instrument names qive n were
not SETUP together (CO LLATED)
a nd he nce cannot be e nited to
qether .

The user has requested to consist
ently delete all results.

The user has specified a non
existent cocl.e name. ()nly this
item and ones to the ri?ht must
be r e typed.

7-4

0

•

)

CODE NAME (XXXX) TOO
LONG. RETYPE LINE

CODE NAME (XXXX) TOO LONG

TOO MANY CUPS

REQUESTED CUP BEYOND
LAST DATA

XXXX CANNOT BE A MODIFIER

XXXX CANNOT BE CHANGED

NUMBER CANNOT REPLACE
WHOLE CUP

MULTIPLE DEC. POINTS FOR
xxxx

RESULT FOR XXXX TOO BIG

RESULT FOR XXXX TOO SMALL

ENTIRE CUP MAY NOT BF.
DELETED

ACC. # TOO BIG

TYPE ONLY# FOR ACCEPTING
CONTROLS

The user specified a code name
of more than 4 characters. The
first 4 are shown in the message.
The entire line must be retyped.

The user specified a code name of
more than 4 characters. The first
4 are shown in the message. Only
this item and the ones to the
right must be retyped .

The user has specified a cup
number greater than 2047.

The cup specified by the user is
nnt yet available . This mes sage
occurs when a specific rc~uest
is too hiqh and when the user
has reachc~ the end 0f the avail
ab le data.

The indicated code name can be
used as an English replacement
only, not as a modifi er .

The user has attempted to enter
a new result for XXXX which either
has already been filed or is pre
marked as "do not file." This
error occurs when trying to give
an English result to a control.

The user has typed a numeric
replacement at the cup level for
a cup with more than nne result.

Two decima l points were typed.

The numeric replaceme nt ~ive n fnr
result XXXX was qrcatcr than 2047000.

The numeric replacement given for
result XXXX was less than .0000001.

The user has typed the delete charac
ter (?) at the cup l eve l for a cup
with more than one result. If a cup
is not desired, simply move to the
next cup.

The user has typed an accession number
larger than 9999.

The user typed more than just"#" to
accept a control. This ofter hap?ens
when an accession number is typed h,
fTlistake.

7-5

NON-DIGIT IN ACC. #

NO SUCH ACC . #

PREVIOUS ACC. # GI VEN

NO REQ. FOR:
xxxx,

xxxx,

PREV. DATA FOR:
xxxx,

xxxx,

System Errors: Non-Termin a l

WAITING FOR FILE XX

SKIPPING CUP XXXX: DISK
ERROR FILE 33

DISK ERROR FILE XX

The user typed a character o ther
than 0-9 in the accession numbe r.

The accession number given by the
user is not active at thi s time.
That is, there are n o incomplete
results identified by the specific
accession number.

The user has already s~ccified an
accession numher for this cup and
verified the n ame. No other number
may be given .

The specified accessio n number did
not include reques ts for the listed
result typ e s.

'T·he specified access ion number
inc luded a request for the listed
result types, but the data has
already b ee n e nte r ed into the
patient file.

The specified disk file is not
immediately available, thus the
proqram waits until it becomes
available. An e rror in the system
may be indicated if the program
does not proceed b eyond this point
within a reasonable timr, .

The indi ca te<l cup numhe:r (XXXX) i ,.
beinq skippe<l ber,ause ()f a disl-: <,rr,Jr.

A disk read error occurred whil e
reading file XX during a non-critical
operation. This error may be non
terminal in the fi l es shown below.
The following values of XX have
effects as fo llows:

xx
20
22
36
40
41
44

may mean error in:
Patient Name printout
Nursinq Station Printout
Units ~ame p rint;ut
Test Na~e printout
En~li sh Result printout
Test (:r,dr:, tl;:irnr; pr in trJll l

7-6

"

NO FILE NAME F'OH XXXX

System Errors: Terminal

SUMMARY TABLE FULL

DISK ERROR FILE XX

NO PROGRAM Al AND/OR PF

NO PROGRAM /\X

·rh<; code: no1rn,• XXXX i :: 11:.,,<1 i 11 I 1i,.
0 n-line s:,,:;Lc!m a~.; th<· n;,,n,, nf o1

r esult but the pilti_cnl. filinq ~:yst< !rn
has no such file name. llencc , result.:;
for XXXX are not filed in the
patient fil e when an accession number
is given . This message usually indicates
a logical error in the for~ation of the
Control Blocks or the Test Type Code
Table.

This mess age does not indicate a real
e rror condition. However, the list
of patient s on whom all tests ilrc
c0mrlcte has fi ll ed the availi1bl1; s !,ac,, .
/\C will quit as if the user had t·;p,,d
STOP . After summaries c1rc: print,·d ,
the user may a<J,1 in ca 11 l\C u nrl con Lin u,• .

l\ disk error occurred while reading
or writing file XX during a critical
operation. This error may b e terminal
in t he file s shown below. The following
are the possible files XX:

xx
20
27
30
32
33
35
36
42
44

Name
Patient Name
Requisition Index
Patient Test Data
Control/Schedule Blocks
Channel Storage
Test Type Codes
Test Parameters
Battery Table
English Result Codes

The program /\land/or PF' could not
be loaded from the disk. /\C will
quit as if STOP had been typed .
Sec Note 1.

Th<c rrngram /\X (where Xis a diqit
2 t0 5) c0uld n0t be 10::idcd from th e
disJr. /\C ' Jui_ts as th0uqh STOP had
been typed . Sc1e Note l.

Note 1: A "NO PROGRAM" message may be caused by one of two
conditions.

a) The indicated program may not be in the program file.
If so, software personnel should be notified .

bl The indicated program may actua lly be in the 9rogram file,
but it could not be read without er ror. If so, notify
hardware maintenance 9ersonnel.

7-7

7.7 PROGRAM STRUCTURE

Calling AC causes Banks 4 a nd 5 to be l oaded. Bank 5 is transfcrrc ~
to Bank 7.

Bank 7

6

5 }
4 AC

LOAD

INITIAL CONVERSATION

AC
MESSAGES

PERMANENT
TABLES

TEMPORARY
BUFFER

AREA

AC

RESTRUCTURE

During the initial conversation q uarters 2 and 3 of Bank 6 a re l aid 0ut
as permanent buffer a nd table space. A complete descriptio n of this ar~a
can be found in the attached diagram.

At the end of the initial conversation two programs are loaded: Al, the
resident edit control, into Bank 4 and PF, the data filer, into Q0 and 1
of Bank 7. All further requests from the terminal are handled by Al and
usually cause an overlay (A2-AS) into Bank 5. The special ca lculation
routines are loaded into Q0 and 1 of Bank 6 if needed.

7-8

0

•

)

Bank 7

6

s

4

PF

PERMANENT
TABLES
SPECIAL

CALCULATIONS

OVERLAYS
A2 - AS

Al

EDIT PHASE

All inp ut in the edit nhase (excu11L ve rification of patient name)
uses the input buffe r in Bank 6. Al s t a rt s scanning the buffe r
to determine what the us e r requested . If an overlay i s needed,
it is loaded. After executing the overlay, Al continues to scan
the buffer until the last item has been processed . Listed below
are the functions of e ach section Al through AS.

Al

A2

A3

A4

AS

Read cup from channe l storage, l o ad ove rlays,
decode input buffer, handl e requests/ , /XX ,
and STOP .

Print formatte d r eport r eques t ed by R. Jf no
accession # has been given the user is asked
for nurs ing station a nd name. The user's
reply is simp l y ignored , not read.

Modify or replace a cup or r es ult . All inputs
of th e type AAAJ\ nr -l\.11.l\l\ cause thLs rriuti ne tn
be l oaded . If the input is Al\l\A hut nnt an
English result, the move to result rnuti_ne (A4)
is l oaded on the assump t ion th~t AAll.A may baa
r esult name . Any input of the type XY.X . X or ?
also cause A3 to be loaded.

Move to a result. Any input of AAAA which is
not an English result cause s A4 t o be loaded.
Also an input of just) (carriage return) causes
A4 to be loaded. A4 sets up a line to type
consisting of the test name, the result, any
modification, etc.

File results and controls. Any input starting
with# causes AS to be loaded.

7-9

7.8 ASSEMBLY PROCEDURE

Assemble AC,Al,A2,A3,A4, and PF under DIAL and store on the start up

tape in the following manner:

Source Name

AC

Al

A2

A3

A4

AS

PF

Number of
Assembled

11

s
s
4

3

s
3

Blocks

7-10

Name on Blocks to be
Start up Tape Stored (1st block,

number of blocks)

AC 1, 7

Al 1,4

A2 1,4

A3 1,3

A4 1,2

AS 1,4

PF 1,2

)

LOCATION

1000

1113

1317

1336

PERMANENT BUFFER $ '!'ABLES FOR AC

BANK 6

BTNZIRV TEC:T TYPE

4 CHAR TEST CODE NAME

LO NORMAL

HI NORMAL
BINARY TEST TYPE

4 CHAR TEST CODE NAME

LO NORMAL

HI NORMAL

LO NORMAL

HI NORMAL

0123 ~ RESULT # 1

0123 I RESULT # 2

0123 I RESULT # 15.

CHAR. 1
CHAR. 2

CHAR.73

A9, CONTROL BLOCK TRAILERS

RESULT #1

RESULT #2

RESULT #15 10

B9, CHANNEL STATUS BLOCKS

. "' LLOWANCE FOR 8 COLLATED C:J.lllt\TNl".T,

C9, RESULT TJ\BLE

.BIT O=l IF FIRST RESULT ON CHANNEL

. BIT l=l IF THIS RESULT NOT REQUESTED

.BIT 2=1 IF THIS RESULT IS A CONSISTENT
DELETION

.BIT 3=1 IF DELETE THIS RESULT THIS
CHANNEL

E9, TTY INPUT BUFFER

.UNPACK ROUTINE PUTS 8 BITS PER WORD,
ADDS A CR. JUST IN CASE, SQUEEZES
OUT 0,100.200.240 AND 300, DESTROYS
STATUS WORD, LOOKS FOR STOp).

7-11

LOCATION

1447

1527

1642

1755

1762

1776

: CHAR ,_C..,H,...A""'R,__l.._ ____ ~_
I 49 I CHAR 2 r----,~~, ·~-~-~~

I
I I I I

I I I

I n
,_

CHAR 48

_, __ _
RESULT=l IN 5-WORD

CHANNEL STORAGE
FORMAT

RESULT# 15

RESULT #1 IN 5-WORD
CHANNEL STORAGE

FORMAT

I

RESULT #15

EOP-3 f FILE 33

.. ~ qa

DISK ADDRESS

WORD COUNT-1

I

11

1

F9,

G9,

H9,

J9,

K9,
L9,
M9,
N9,
P9 1

Q9,
R9,
tJ9,

V9,

TTY OUTPUT BUFFER

CHANNEL ST()RAGE BUFF'EP I\

75 10 LOCATIONS

CHANNEL STORAGE BUFFER B

75
10

LOCATIONS

READ/WRITE CH. STATUS

TECH CODE
NEXT CUP TO EDIT
-#RESULTS/COLLATED SET
-#CHANNELS/COLLATED SET
PLATE SIZE
HIGHEST CUP EDITED

7-12

CURRENT RESULT W/IN CUP
READ/WRITE 0-1. STORAGE A ORR

PATIENT ORDINAL Tl!IS CUP

'

CHAPTER 8

PATIENT DATA FILER

The Patient Data Filer (DATA-PF) program is a pair of LINC s ubroutinus

to store results into the patient file. The s ubroutines are writte n

to occupy Quarters 0-2 of Bank 7. The data to be filed may be any

where in banks 4-7. The subroutines are filed under PF in the program

file. They are currently used by Accessions number entry and manual

CAlculations.

I/0 Used:

Disk - as follows

File 20 Patient Names

File 27 Requisition Index

File 30 Patient Test Data

File 36 Test Type Parameters

File 42 13atte ry Table

Read only

Read/Write

Rcad/Wrilc

Read only

I/cad nnly

8.1 RETRIEVE PATIENT GIVEN AN ACCESSION NUMBER

The first subroutine determines, given an accession number, the

patient ordinal and name. The calling sequence is shown below.

LOA I
LIF X [where X

LIF 7

JMP 2fJ

current bank]

ACCESSION NUMBER, HI (fJ-2 8)

ACCESSION NUMBER, LO (fJ-7777 8)

TECHNICIAN CODE (fJ-77 8)

DISK ERROR RETURN

ACC. # ERROR RETURN

NORMAL RETURN

If a disk error occurs, the subroutine returns at the indicated

location. The accumulator contains the file number where the error

occurred. The calling program prints an error message and exits.

8-1

If no requisition has been entered for the given accession number,

the ACC. # ERROR RETURN will be taken.

If the requisition does exist, the NORMAL RETURN is executed .

After a NORMAL RETURN the patient ordinal is found in the accumu

lator. The patient name (20 10 characters in stripped ASCII) is

stored starting at location 1000 i n Bank 7, packed two to a word.

8.2 FILE DATA FOR PREVIOUS GIVEN ACCESSION NUMBER

To file data for a given accession number , use the following

calling sequence. This call must be given after the call

described in paragraph 8.1 and must originate in the same bank.

The address of the data as given in the calling sequence refers

to the upper 4K of memory (field 1). The address is independent

of the LMB and UMB indicators. All data to be filed must b~

within a bank, i.e., it can not lap over bank boundaries. The

data to be filed has a three word format:

WORD N

WORD N+l

WORD N+2

Result type (0-776
8

)

Same as channel storage word 4

Same as channel storage word 5

The calling sequence is:

OPEN WRITE FILE 27

OPEN WRITE FILE 30

LIF 7

JMP 23

ADDRESS OF FIRST DATA WORD (0-777 8)

NUMBER OF RESULTS TO FILE (1-525 8)

DISK ERROR RETURN

NORMAL RETURN

The subroutine closes both files 27 and 30 before ei ther r e turn

is executed, thus the calling program must re-ope n the disk files

for each filing operation.

If any disk error occurs, the subr o utine returns ;:is incJici.ltrcd. T lw

accumulator contains the file number where the error occurred. The

calling program prints an error message and exits.

8-2

)

After a NORMAL RETURN, the accumulator must be inspected. If

bit 0=1, then at least one result was not filed. If bit l=l,

then the summary printout table is full and "CL" must be loaded.

After a NORMAL RETURN, only those sets of data where bit 0=1

in word N have been filed. In those sets where bit 0=0, the

calling program may inspect bit 1 of \'lord N to determine the

cause of failure to file. Bit 1=0 means no result of this

type was requested. Bit l=l means the result type was requested

but the data had already been filed.

Restrictions: The largest battery is assumed to be 32 10 results

or less. Longer batteries cause serious malfunction. Tl1e 20 10
character name read by ci1e first subroutine is destroyed by

the second. The summary printout table isl.Ji<:; enough for only

about 35 10 patients.

8.3 DESIGN CONSIDERATIONS

The following assumptions have been made in the coding of these

subroutines:

tnd-of-file can occur only at specific places:

1) as the 4th word of the first data block

2) just after the outstanding test count

3) just after a package header

4) just after the last result in a battery or

5) as the continuation pointer (last pllysical word

in a block)

If the 4th word of the first data block is not an end-of-file ,

then it is automatically assumed to be a day header. A

requisition cannot request results for two or more day,-; with

a single accession number. This is not to say that an

accession number cannot be reused, but that a given active

accession number can have results for one day only. If all

results for the given accession number are filled , then t he

appropriate word in the requisition index is reset to 7777.

Disk writes are not checked.

8.4 ASSEMBLY INSTRUCTIONS

Set the conditional assembly parameter in PF to tne size of core for

the system being assembled. Patient Data Filer is assernulcd from a

DIAL source named PF and blocks 1,2 of the binary are stored on tnc

start up tape under the name PF.

8-3

8. 5 FLO~v CHARTS FOR PATIENT DA'rA FILER
DATA - PF

XFER ACC #,
TECH. CODE

READ 1 WOR
FROM REQ.
INDEX

READ FIRST
DATA BLOCK

SAVE PATIENT
ORDINAL

EAD PATIEN
NAME

RTN

GIVEN ACC #:
RETRIEVE PATIENT ORDINAL

no

FLOW - 1

8-4

0

,,

•

..

es

..

)

1 6,023

XFER DATA
ADDRESS &
RESULTS

READ FIRST
DATA BLOCK,
INITIALIZE

READ WORD
,0,0 3

failed

yes

8-5

DA'rA - PF

FILE DAYA
FOR PREVIOUS
GIVEN ACC. #

TP.MPORA.RY
EXIT

SCAN TO NEXT
DAY HEADER

FJ,OVI - 2

RETURN
(*+1)

SAVE THE
TEST COUNT
AND ITS
POINTERS

READ
A WORD

no

CLOSE FILE
h----r ND LOAD

FLAGS

8-6

EWRITE
HE OUT
TANDING
EST COUNT

' REWRITE
CURRENT
BLOCK IF
NEEDED

DATA - PF

no

no

ENTER I3LOCK
>--...._c_s~~~~-llNUMI3ER TN

SUMMARY
TABLE

~-----'
RESET REQ.
INDEX= 7777
IF ACC # NOW
IS FULL

FLOW - 3

•

)

DATA - PF

yes

no
OVE TO END
F THIS

"'-"-----....,ATTF.RY

MAKE LIST OF
TYPES WITHIN
BATTERY

no

OVE TO
'----1NEXT TEST

!THIN
BATTERY

yes

es

NOTE 1: AT THIS POINT WE MUST 111\VE, BY
ELIMINATION , THE FIRST WORD OF
A BATTERY.

8-7

FILE ONE
RESULT,

~-----1 MARK AS
yes

no

FILED

DECREASE
OUTSTANDIN
TEST COUNT

FLOW - 4

•

)

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems,

and documentation corrections are published by Software Information Service in the following

news I etters.

Digital Software News for the PDP-8 and PDP-12
Digitol Software News for the PDP-11
Digital Software News for 18-bit Computers

These newsletters contain information applicable to software available from Digital's Software

Distribution Center. Articles in Digital Software News update the cumulative Software Per

formance Summary which is contained in each basic kit of system software for new computers. To

assure that the monthly Digital Software News is sent to the appropriate software contractat your

installation, please check with the Software Specialist or Sales Engineer at your nearest Digital

office.

Questions or problems concerning Digital's software should be reported to the Software Specialist.

In coses where no Software Specialist is available, please send a Software Performance Report

form with details of the problems to :

Digital Equipment Corporation
Software Information Service
Programming Deportment
Maynard, Massachusetts 01754

These forms, which ore provided in the software kit, should be fully filled out and accompanied

by Teletype output as well as listings or tapes of the user program to facilitate a complete inves

tigation. An answer will be sent to the individual and appropriate topics ofgeneral in

terest wi II be printed in the newsletter.

Orders for new and revised software manuals, additional Software Performance Report forms, and

software price lists should be directed to the nearest Digital Field office or representative. USA

customers may order directly from the Software Distrihution Center in Maynard. When ordering,

include the code number ond a brief description of the software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a cata

log of programs as well as the DECUSCOPE magazine for its members and non-members who request

it. For further information, please write to:

Digital Equipment Corporation
DECUS
Progrommir.g Deportment
Maynord, Massachusetts 01754

..

•

•

)

READER'S COMMENTS

CL IN LC/\L L/\U U
l W'U'l' PHUCJ</\M!.;

UEC-12-MCLl/\-A-U

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness
of its publications. To do this effectively we need user feedback -- your critical evaluation of

this manual.

Please comment on this manual's completeness, accuracy . organization, usability . and read

ability.

Did you find errors in this manual? If so, specify by page.

How con this manual be improved?

Other comments?

Please state your position. Dote: --------------------- --------

Name:------------------ Organization:--------------

Street: ------------------ Department: ---------------

City:------------ State:----------- Zip or Country ______ _

- - - - - - - - - - - - - - - - Fold Here

- - - - - - - - - - - - Do Not Tear· Fold Here and Staple - - - - - - - - ___ _

HUSINF.SS RF.PLY MAIL

NO POSTAGE STAMP NECESSARY II MAILlD IN ·1 t1l l IN 111 I> ST A I l ':,

Po,tagc will be paid by

mamaamn
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-S
Maynard, Massachusetts 01754

FIRST CLASS

PERMll NO 3l

MAYNARD, MA'>'>

