DEC=11-ORUGA=A=D

RT-11 System

Reference Manual

For additional copies, order No. DEC-11-ORUGA=-A~D
from Software Distributicn Center, Digital Eguipment
Corporation, Maynard, Mass.

digital equipment corporation - maynard. massachusetts

First Printing, Sept. 1973

The "HOW TO OBTAIN SOFTWARE INFORMATION" page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid "READER'S COMMENTS" form on the last page of this
document requests the user's critical evaluation. All comments
recelved are acknowledged and will be considered when subsequent
documents are prepared.

Copyright (:) 1973 by Digital Equipment Corporation

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

CDP DIGITAL KAlO PS/8
COMPUTER LAB DNC LAB-8 QUICKPOINT
COMTEX EDGRIN LAB-8/e RAD-8
COMSYST EDUSYSTEM LAB-K RSTS

DDT FLIP CHIP OMNIBUS RSX

DEC FOCAL 0s/8 RTM
DECCOMM GLC-8 SABR
DECTAPE IDAC PDP TYPESET 8
DIBOL IDACS PHA UNIBUS

INDAC

PREFACE

The RT-11l System Reference Manual provides the information necessary
for the user of utility programs and the experienced system programmer.

Chapter 1 covers the overview and monitor keyboard commands necessary
to implement user programs. The utility programs (Editor, PIP, MACRO,
Linker, ODT) are described in Chapters 3 through 7.

Chapter 8, Programmed Requests, is of particular interest to the
experienced programmer who wishes to make use of the services of the
monitor in an assembly language program,

Chapters 9 and 10 explain the 8K Assembler and Expand programs. The
Appendices summarize RT-11 commands and error messages previously
described and introduce the PIPC and PATCH programs.

BASIC/RT1l language features are summarized in Appendix L. A more

detailed explanation is available in the BASIC/RT1l Language Reference
Manual, DEC-11-ORBMA=-A=~D.

iii

CHAPTER

CHAPTER

CHAPTER

1.

1.1

l.2

2,

2.1

2.2
2.2.1
2.2.1.1
2,2,1.2
2.2‘103
2.2.1.4
2.2.2
2.2,2.1
2.2.2.2
2.2.2.3
2.2,2.4
262‘2.5
2.2.3
2.2.3.1
2.2.3.2
2.2,3.3
2.3
2.3.1
2.3.2
2.4

3

3.1

3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.2.6
3.2.2.7

CONTENTS

RT=-11 OVERVIEW

HARDWARE CONFIGURATION

SYSTEM SOFTWARE COMPONENTS
MONITOR
START PROCEDURE

KEYBOARD COMMUNICATION

Commands to Allocate System Resources

DATE Command

INITIALIZE Command

ASSIGN Command

CLOSE Command

Commands to Manipulate Core Images
GET Command

EXAMINE Command

DEPOSIT Command

BASE Command

SAVE Command

Commands to Start a Program
RUN Command

START Command

REENTER Cormmand

RT-11 FILE SPECIFICATION
Physical Device Names
File Names and Extensions

ERROR MESSAGES
TEXT EDITOR
CALLING AND USING EDIT

COMMANDS

Key Commands

Editing Commands

Command Repetition

Core Usage

Input/Output Commands

Commands to Move Location Pointer
Search Commands

Commands to Modify the Text
Utility Commands

1-1
1=2
1=2
2=1
2=1

2=3
2=4
2-4
2=4
2-5
2=6
2=-6
2=6
2=7
2=7
2=8
2-8
2-10
2-10
2=-11
2=-11

2-12
2-12
2-13

2-15
3-1
3=1

3=2
3=2
3-3
3-8
3-10
3-10
3-15
3-17
3-19
3=-23

3.3 ERROR MESSAGES 3=27
3.4 EDIT EXAMPLE 3-29
CHAPTER 4 PERIPHERAL INTERCHANGE PROGRAM (PIP) 4-1
4.1 CALLING AND USING PIP 4-1
4.2 PIP COMMANDS 4=2
4.2,1 Copy Commands 4~4
4,2,2 Multiple Copy Commands 4-5
4,2,.3 Delete Command 4=-7
4,2,4 Rename Command 4-8
4,2.5 Extend Command 4-9
4,2.6 Directory List Commands 4-9
4.2.7 Directory Initialization Command 4-11
4,2.8 Compress Command 4-12
4,2.9 Bootstrap Copy Command 4-12
4.2.10 Boot Command 4-13
4.2.11 Version Commmand : 4-13
4.3 ERROR MESSAGES 4-13
CHAPTER. 5 MACRO ASSEMBLER 5-1
5.1 SOURCE PROGRAM FORMAT 5-1
5.1.1 Statement Format 5=2
5.1.1.1 Label Pield 5-2
5.1.1.2 Operator Field 5-3
5.1.1.3 Operand Field 5-4
5.1.1.4 Comment Field 5-4
5.1.2 Format Control 5~4
5.2 SYMBOLS AND EXPRESSIONS : 5=5
5.2.1 Character Set ‘ 5=5
5.2.1.1 Separating and Delimiting Characters 5-6
5.2.1.2 Illegal Characters 5=7
5.2.1.3 Operator Characters 5-8
5.2.2 MACRO Symbols 5-9
5.2.2.1 Permanent Symbols 5=9
5.2.2.2 User-Defined and MACRO Symbols 5-9
5.2.3 Direct Assignment 5=-11
5.2.4 Register Symbols 5-12
5.2.5 Local Symbols 5-13
5.2.6 Assembly Location Counter 5-14
5.2.7 Numbers 5-16
5.2.8 Terms 5-17
5.2.9 Expressions 5~-18
5.3 RELOCATION AND LINKING 5-19
5.4 ADDRESSING MODES 5-20
5.4.1 Register Mode 5-20

vi

e 0o o 0o o
et et Bt et 0 et WO 00 N3 OY UL o W N

[A N T
MW= O

@ ¢ 0 © © & & & 0 o o © 0o O
¢ & o & o o0 & o o

vty o ugitn

® o o

mumuuuununnn

UL BN

¢« &« & o 9 » 0

oottt

e ° ¢ & & ¢ & & O

W WWWWWN I

s o & o & & []
.« & o & ¢ 0

e 8 o * 0 L] L .
¢ o

[]
.

N SN o (W SN N - AU Wi

-

uuuuuIMULULTLLMLTULUTLLLTLTULILLLMLTULTLLLLULTLT LT

¢ o e & & .« o o L] » o & & » * & o L N L)

uuuuuuuuuLUTLLULLLLLKNULLGLLTULLULLTLLLLULTL UL L

e & o & o

ot it o i = WO O O NN ULV B b

i O

W

Register Deferred Mode
Autoincrement Mode
Autoincrement Deferred Mode
Autodecrement Mode
Autodecrement Deferred Mode
Index Mode

Index Deferred Mode

Immediate Mode

Absolute Mode

Relative Mode

Relative Deferred Mode

Table of Mode Forms and Codes
Branch Instruction Addressing
EMT and TRAP Addressing

ASSEMBLER DIRECTIVES

Listing Control Directives

+LIST and .NLIST

Page Headings

+TITLE

« SBTTL

« IDENT

Page Ejection

Functions: .ENABL and .DSABL Directives
Data Storage Directives

+BYTE

+«WORD

ASCII Conversion of One or Two Characters
«ASCII :

.ASCIZ

«RAD50

Radix Control

«RADIX

Temporary Radix Control: +D, to, and +B
Location Counter Control ’

+«EVEN

.ODD

.BLKB and .BLKW

Numeric Control

.FLT2 and .FLT4

Temporary Numeric Control: +F and 1C
Terminating Directives

+END

+EOT

Program Boundaries Directive: .LIMIT
Program Section Directives

+ASECT and .CSECT '

Symbol Control: .BLOBL

Conditional Assembly Directives
Subconditionals

Immediate Conditionals

PAL-11R and PAL-11S Conditional Assembly
Directives

vii

5=21
5=21
5=22
5=22
5=22
5=22
5=23
5«23
5-23
5=24
5=24
5=25
5=25
5=26

5-26
5-27
5=27
5-33
5-33
5-33
5-36
5-36
5-36
5-37
5-38
5-39
5-40
5-40
5-42
5-42
5-43
5-43
5-44
5-45
5-45
5-45
5-46
5-47
5=47
5-48
5-49
5-49
5-50
5-50
5-50
5-52
5-53
5-54
5-56
5-57
5-58

CHAPTER

CHAPTER

W

o o o

o 6 e » 0 e o © & & o
L]

UL & W N

o o o o o
” e o

*

ONAU & WWWWWWWN R
.

°

0 ~ AN OO

(8] 2] vttty otn

.

(<)) [« [=))
D)
N [

.

« o .
Wk =

~ (=) AN (42} G OV O [
.
~J (<)~ 1) wi e S b B W

MACRO DIRECTIVES

MACRO Definition

+« MACRO

« ENDM

«MEXIT

MACRO Definition Formatting

Macroc Calls

Arguments to Macro Calls and Definitions
Macro Nesting

Special Characters

Numeric Arguments Passed as Symbols
Number of Arguments

Automatically Created Symbols
Concatenation

+NARG, .NCHR, and .NTYPE

<ERROR and ,PRINT

Indefinite Repeat Block: .IRP and .IRPC
Repeat Block: ,REPT

Macro Libraries: .MCALL

OPERATING PROCEDURES

ERROR MESSAGES

LINKER

INTRODUCTION

ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS
GLOBAL SYMBOLS

INPUT AND OUTPUT

Object Module

Lovad Moduie

Load Map

USING OVERLAYS

OPERATING PROCEDURES
Command String

Switches

ERROR HANDLING AND MESSAGES
oDpT

RELOCATION

RELOCATABLE EXPRESSIONS

COMMAND SUMMARY

viii

5=59
5=59
5-59
5-59
5=60
5-61
5-=61
5=-61
5=-62
5-63
5-64
5-65
5=65
5-66
5-67
5-68
5-69
5=72
5=72

5-73
5-74
6-1
6-1
6-1
6-2

6-2
6=2

§-2
6=3
&=5
6-9
6-9
6-10
6-15
7-1
7-1

7.4 COMMANDS AND FUNCTIONS 7=6
7.4.1 Printout Formats 7=6
T7.4.2 Opening, Changing and Closing Locations 7=7
7.4.3 Breakpoints 7-12
7.4.4 Running the Program, r;G and r;P 7-13
Te4.5 Single-~Instruction Mode 7=14
7.4.6 Searches 7=15
T4.7 The Constant Register, r;C ;-ig
7.4.8 Core Block Initialization, ;F and ;I =
7.4.9 Calculating Offsets, r;O 7=17
7.4.10 Relocation Register Commands, r;nR, ;nR, ;R 7=17
7o4.11 . The Relocation Calculators, nR and n! 7-18
Todo12 ODT's Priority Level, $P 7=19
7.4.13 ASCII Input and Output, r;nA 7=20
7.5 ERROR DETECTION 7=-20
7.6 PROGRAMMING CONSIDERATIONS 7=-21
7.6.1 Functional Organization 7=21
7.6.2 Breakpoints 7=-24
7.6.3 Search 7=27
7.6.4 Terminal Interrupt 7=28
7.7 OPERATING PROCEDURES 7-28
7.7.1 Return to Monitor, CTRL/C 7-=30
T.7.2 Terminate Search, CTRL/U 7=30
CHAPTER 8 PROGRAMMED REQUESTS g=1
8.1 SYSTEM CONCEPTS 8§=2
8.2 TYPES OF PROGRAMMED REQUESTS 8=7
8.3 PROGRAMMED REQUEST USAGE 8=11
8.3.2 . CLOSE g8=12
8.3.3 +CSIGEN 8-13
8.3.4 «CSISPC 8-15
8.3.5 .DELETE 8=19
8 ° 3 . 6 " e DSTATUS 8-a20
8.3.7 «ENTER 8=21
8.3.8 «BEXIT 8§=23
8.3.9 .FETCH 8=24
8.3.10 .HRESET 8=25
8.3.11 «LOCK . 8=25
8.3.12 « LOOKUP 8=26
80 3.13 QPRINT 8-27
8.3.14 «QSET 8-28
8.3.15 « RCTRLO 8-29
8.3.16 +READ/.WRITE, .READC/.WRITC, .READW/.WRITW 8~30
8.3.17 «RELEAS g8=35
8.3.18 « RENAME 8-36
8.3.19 « REOPEN 8=37

ix

8.3.20 . SAVESTATUS 8~38
8.3.21 QSETTOP 8-39
803.22 QSRESET 8"40
8.3023 .mm/.TTINR ’ 8~4l
8.3.24 «TTYOUT/, TTOUTR 8=42
8 e 3 ° 25 . UNIDOCK 8"’4 4
8 ° 3) 26 . WAIT 8—4 4
8.3.27 «WRITC 8=45
8.3.28 <WRITE 8=46
8 . 3 ° 29 ° WRIW 8-47
CHAPTER- 9 EXPAND UTILITY PROGRAM 9=1
9.1 LANGUAGE - 9-1
9.2 RESTRICTIONS ‘ | . 9-1
9.3 OPERATION 9-3
9.4 ERROR MESSAGES 9-4
CHAPTER 10 ASSEMBL, THE 8K ASSEMBLER 10-1
10.1 OPERATING PROCEDURES 10-1
10,2 ERROR MESSAGES 10-4
APPENDICES
A. RT-11 System Build A-1
B. Physical Device Names B-1
C. Monitor Summary c-1
D. RT-~1l Error Messages D-1
E. MACRO Character Sets E-1l
F. MACRO Assembly Language and Assembler F-1
G. System Macro File =i
H. Summary of Monitor Programmed Requests H-1
I, Editor Summary I-1
J. Linker Summary J-1
K. ODT Summary R-1
L. BASIC/RT~11 Summary L-1
M. Macro Permanent Symbol Table M-1
N. Peripheral Interchange Program--Cassette (PIPC)N-1
0. PATCH Program o-1
P. Fundamentals of Programming the PDP-11 P-1
Q. Cassette Standards Q-1
R. PIP Command Summary R-1
GLOSSARY GLOSSARY-1

INDEX ' X-1

CHAPTER 1

RT~-11 OVERVIEW

The RT=-11 System is a powerful programming and operating system
designed for the PDP-11 series of computers. This system permits the
use of a wide range of peripherals and up to 28K of core. RT=11
offers a versatile Keyboard Monitor which provides complete user
control of the system from the terminal keyboard.

Besides the Monitor facilities, RT=11l includes a 1library of system
programs which allow the user to develop programs using high level or
assembly language. The following is a brief summary of the RT=-11
system programs:

1. The Text Editor, EDIT, is used to create or modify source
files for use as input to language processing programs such
as the assembler or BASIC. EDIT contains powerful text
manipulation cormmands for quick and easy editing of an ASCII
input file.

2. The MACRO-1ll Assembler brings the capabilities of macros to
the RT-11 system. The Assembler accepts source files written
in the MACRO language and dgenerates a relocatable object
module which is processed by the Linker before loading and
execution.

3. EXPAND is used in 8K systems or in larger systems for very
large programs to expand certain macros in an assembly
language program so the program can be assembled by ASEMBL,
the 8K assembler,

4., The Linker essentially fixes (i.e., makes absolute) the
values of global symbols and converts the relocatable object
modules of assembled programs and subroutines into a load
module which can be loaded and executed by RT-11l, The Linker
also produces a load map (which contains the assigned
absolute addresses) and provides automatic overlay
capabilities to very large programs.

5. The Peripheral Interchange Program, PIP, is the RT-11] file
maintenance and utility program and can be used to transfer
files between devices which are part of the RT-11 system, to
rename or delete files and to obtain directory listings.

6. PIPC (Peripheral Interchange Program for Cassettes) is used
to transfer files between cassettes and other RT-11 system
devices, delete cassette files and transfer cassette
directories.

7. ODT (On-line Debugging Technique) aids in debugging assembled
and linked object programs. It can be used to print the
contents of specified locations, execute all or part of the
object program and search the object program for bit
patterns.

8. PATCH is a utility program used to make modifications to core
image files. PATCH can be used on files which do or do not
have overlays.

1.1 HARDWARE CONFIGURATIONS

The minimum RT-11 configuration is a PDP-1ll series computer with 8K of
core, a block-replacable systems device and a terminal.

The following devices are supported by the RT-11 system:
RK11l disk
TCll DECtape
Line printer (LPll or LS1l)
Terminal (LA30, VTO05 or LT33)
PCll High Speed Reader/Punch
The TAll Cassette is supported by the utility program PIPC.
RT-11 operates in environments from 8K to 28K with no user‘interaction
necessary in changing core size. The same system DECtape or disk

operates on any PDP-l1ll family processor with 8K to 28K of core and
makes use of all core available.

1.2 SYSTEM SOFTWARE COMPONENTS

The main software components of the RT-1ll system are:
Resident Monitor (RMON)
Keyboard Monitor (KMON)

User Service Routines (USR) and Command String Interpreter
(Cs1)

Device Handlers

System Programs
The Resident Monitor is the only permanently core resident part of
RT-11. The programmed requests for all services of RT-11 are handled
by RMON., RMON contains:

Terminal service

System device handler

EMT processor

Monitor error routine

Systemrl/o tables and data base

1-2

The Keyboard Monitor provides communication between the user and the
RT-11 executive routines by accepting commands from the terminal
keyboard. The commands enable the user to create logical names for
devices, and run system and user programs. The User Service Routine
performs the following operations: loads device handlers, opens files
for READ or WRITE operations, and creates new files. The Command
String Interpreter is part of the USR and can be called by any program
to obtain command strings and open files for the program. For normal
RT-11 usage, the USR function is unseen by the user and need not be of
concern.

Device handlers for the RT-1l system are treated as files which are
resident on the system device. These handlers transfer data to and
from peripheral devices. New handlers can be added to the system as
files on the systems device and can be interfaced to the system by
modifying a few monitor tables. No program other than PIP should
access these files.

The collection of system programs, as mentioned earlier, contains the
Editor (EDIT), Peripheral Interchange Programs (PIP and PIPC),
assembler (MACRO and ASEMBL), On-line Debugging Technique (ODT),
Linker (LINK), EXPAND, and PATCH,

CHAPTER 2

MONITOR

The Monitor is the hub of the RT-1ll system, providing access to system
and user programs, performing input and output functions.

The user communicates with the Monitor through programmed requests and
keyboard commands.

The keyboard commands are used to load and run programs, start or
restart programs at specific addresses, modify the contents of memory
and assign and deassign alternate device names (refer to paragraph
2.2). .

Programmed requests are program instructions which pass arguments to
the Monitor and request monitor services. These commands allow user
assembly language programs to use available Monitor routines to open,
create and close files (refer to Chapter 8). .

2.1 START PROCEDURE
After the system has been built (refer to Appendix A for build
procedures), the Monitor can be loaded into core from disk or DECtape
with one of the hardware bootstraps as follows:

1. Mount the systems device on unit 0.

2, If a disk is being used, be sure the WRITE protect light is
not 1it.

3. If a DECtape unit is being used, set the WRITE ENABLE/WRITE
LOCK switch to WRITE ENABLE and the REMOTE/OFF/LOCAL switch
to REMOTE.

If the hardware configuration includes the BM792-YB bootstrap:

1, Set the Switch Register to 173100 (the address of the ROM
Bootstrap Loader).

2. Press the LOAD ADDR switch.
3. Set the Switch Register to the address of the word count
register of disk or DECtape on which the Monitor resides
(177406 for RK11/RK05 or 177344 for DECtape).
4, Press the START switch.
If the hardware confiquration includes the MR11-DB bootstrap:
1. Set the Switch Register to

773110 for disk or
773120 for DECtape.

2. Press the LOAD ADDR switch.
3. Press the START switch.

If the hardware bootstrap is not available, enter one of the following
bootstraps via the Switch Register. For either bootstrap, set the
Switch Register to 1000 and press the LOAD ADDR switch. Then set the
Switch Register to the first value shown for the appropriate bootstrap
and press the DEPosit switch. Continue depositing the values shown
being especially careful with those values marked with an asterisk
(*). When all the values have been entered, 1load address 1000 and
press the START switch.

DECtape Disk
12700 . 12700
177344 177406
12710 12710
177400 177400
12740 12740
4002 5%
5710 105710
1003786 100376
12710 5007
3*
105710
100376
12710
5*
105710
1060376
5007

The Monitor loads into core and prints its identification message
followed by a dot (.) on the terminal to indicate it is ready to
accept a command.

The Keyboard Monitor outputs certain characters on the terminal to
indicate that it is ready to accept a command or file specification.
These characters are:

Character Meaning
. the Keyboard Monitor is waiting for a

keyboard command. (Refer to section 2.2.)

* a program is waiting for a file
specification. (Refer to section 2.3.)

The + character is also output on the terminal by RT=-1ll, when the
following devices are being used:

PR: indicates that the paper tape reader is about to
read a tape. Typing any character (which does not
echo) starts tape.

TT: indicates that the program is ready for input from
the terminal keyboard. Type a CTRL/Z, and a
carriage return to mark EOF., TT: does not echo
the characters typed when used for input to EDIT
or BASIC.

If the line printer is off-line for any reason, the system waits for
the user to turn it on-line, Turning the printer on-line is
sufficient to resume (or begin) printer output.

2.2 KEYBOARD COMMUNICATION

The keyboard commands provide the communication with the RT=11 Monitor
and allow allocation of system resources (INITIALIZE, ASSIGN, DEASSIGN
and CLOSE commands), manipulation of core images (GET, EXAMINE,
DEPOSIT, and SAVE commands), starting of programs (RUN, R, START,
REENTER commands). These cormmands are explained in paragraphs 2.2.1
through 2.2.3 and summarized in Appendix C. Keyboard commands can, in
most cases, be abbreviated to the first two characters of the command
if desired. The keyboard commands require a space between the command
and the first argument, Through the keyboard, the user can
communicate with

the monitor,
a user program running under RT-11, or
an RT-1l1 system program (Assembler, Editor, PIP, etc.)

The special functions of certain terminal keys used to communicate
with the Keyboard Monitor are explained in Table 2-1.

Table 2-1

Special Function Keys

Key Function

CTRL/C (Typed by holding down the CTRL key while typing
the C key.) Echoes t+ C on terminal, Interrupts
execution of the wuser program and returns to
Monitor command level if the program is waiting
for terminal input. Otherwise, CTRL/C must be
typed twice. Monitor cormands run to completion
before a single CTRL/C takes effect. Two CTRL/C's
echo two dots; cause the program being executed to
be aborted and control returns to KMON,

CTRL /O Inhibits printing on the terminal until completion
of current output or until another CTRL/O is
typed., When the first CTRL/O 1is typed, + O is
ocutput on the terminal. The second CTRL/0O
re-enables printing.

CTRL/U Deletes the current line and echoes an tU at the
terminal. CTRL/U does not delete data past the
first CR/LF combination encountered to the left,

RUBOUT Deletes the last character from the current line
and echoes a backslash and the character deleted.
Each succeeding RUBOUT typed deletes and echoes
another character up to the last CR/LF typed.

The Keyboard Monitor has a "type ahead" feature which allows a command
or file specification (up to 80 characters) to be typed while another
command is executing., This terminal input is stored in a buffer and
executed when the previous command is completed. When typing ahead, a
single CTRL/C causes a return to the Monitor when the previous command
completes execution. A douhle CTRL/C returns control to the Monitor
immediately.

If "type ahead" input exceeds 80 characters, a bell rings and no
characters are accepted in the buffer until part of the buffer is
executed or entries are deleted. If "type ahead” is used in
conjunction with an EXIT command from the Editor or BASIC, there is no
terminal echo of the characters but they are stored in the buffer.
"Type ahead" is particularly useful in specifying multiple command
lines to the assembler.

Refer to section 2.3 for a description of the file specification

(device, file names, extensions, etc.) format to be used with certain
keyboard commands.

2.2.1 Commands to Allocate System Resources

2.2.1.1 DATE Cormand
The DATE (DA) command enters the specified date to the system. This
date 1is assigned to new directory entries and listings until a new
DATE command is issued.
The form of the command is:

DATE dd-mmm-yy
followed by the RETURN key.
Where dd-mmm-yy is the day, month and year to be entered. dd is a
decimal number in the range 1-31; mmm is the first three characters of
the name of the month, and yy, 73-99,

Example:

.DA 1-APR=-73 Enter the date 1-APR-~73 as the current system
date.

2.2,1.,2 INITIALIZE Command
The INITIALIZE (IN) command resets all system tables to zero, removes

all user device assignments, sets all handlers non-resident, and
clears the core control block. (The core control block is a monitor

2-4

maintained area in bytes 360-377. It provides the means for
describing into which areas of core a program will load. It is
manipulated by the GET, RUN, R, SAVE and INIT commands. IN also stops
all I/0 in progress by executing a hardware RESET instruction.
The form of the command is:

INITIALIZE

followed by the RETURN key. The INITIALIZE command is generally used
prior to running a user program.

Example:

<IN Initialize system
+RUN PROG1 Execute PROG1l.SAV

2.2.1.3 ASSIGN Command

The ASSIGN (AS) command assigns the specified user-defined device name
as an alternate name for the device specified.

The form of the command is
ASSIGN dev udev
followed by the RETURN key.

Where dev is one of the standard device names. {Refer to
section 2.3.1.) If the standard device name is not
specified, but a user device name (udev) is, an
error message is printed.

udev is 1-3 alphanumeric characters to be used in a
program to refer to the specified device.

If a user device name is not specified, any previous synonym assigned
to the device is eliminated. If neither device nor synonynm is
specified, all previous assignments are eliminated.

The AS command is used when a program refers to a device which is not
available at run time. Only one user-defined name can be assigned per
AS command but several AS commands can be used to assign different
names to the same device.

Examples:

.AS DT1 INP Whenever the program encounters a reference
to device INP, it uses device DT1.

.AS Removes all previous user device name
assignments.

2.2.1.4 CLOSE Command
The CLOSE (CL) command closes all currently open files. This éction
can be used to preserve a tentative output file, which was not closed
by a program. The CLOSE command is most frequently used after the
execution of a single CTRL/C.
The form of the command is

CLOSE
followed by the RETURN key.
The CL command makes temporary entries in a directory permanent.
Exqmple:‘

.CL Close any open files,

(4

2.2.2 Commands to Manipulate Core Images

2.2.2.1 GET Command

The GET (GE) command loads the specified core image file (core image
format, not ASCII or binary) into core from the specified device and
sets the core control block. If a portion of the program being loaded
overlays the Keyboard Monitor, that portion of the program is placed
in the overlay area on the systems device.

£ the GET command is

3
(1]
h
5
4]

GET dev:filnam.ext
fcllowed by the RETURN key,
If a file name extension is not specified to the GET command, the
extension .SAV is assumed. The GET command is typically used to load
a program into core for modification and debugging.
The GET cormmand cannot be used to load overlay seqments of programs;
it may only be used to load the root segment. (Refer to Chapter 6,
Linker.)
Multiple GETs can be used to build a core image of several programs.
Identical 1locations are required by any of the programs, the latest
program overlays the previous one.
Examples:

.GE DT3:FILE1.SAV Loads the file FILEL.SAV into core from
DT3.

.GE NAME1l Loads the file NAMEl.SAV from device DK.

2.2.2.2 EXAMINE Command
The EXAMINE (E) command prints +the contents of the specified
location(s) in octal on the ccnscle terminal. The form of the E
command is:

E location

or

E loczationr m-location n

follove? by tae LETURN b-r,

Where lccation is an ¢¢ . address which is added to the relocation

base val .» (refer to paragraph 2.2.2.4) to get the
actual ress examined., Any non-octal digit is
accepted a terminator of an address.

i more than one locat: ' .8 specified, (location m=location n) the
-ontents of locatior - ihrough location n are printed. If the second
lczaticn specified (1lr-ation n) is not greater than the first location
spzcifiad only the coni.nts of the first location are printed.

If no .ozation iz spe- .fied, the contents of location 0 are printed.
Examination o.J owav' 15 in the monitor area are illegal.

Examples:

LE 1006 Prints contents of location. 1000 (plus the
base if other than 0).
XXXXX K

.E 1001-1012 Prints the contents of locations 1000 (plus
the base if other than 0) through 1013,
XRXAXK XXXXXX XXXXAX XXXXXK XXXXXX XXKXXX

In the above examples xxxxxx represents octal numbers printed by the
monitor.

2.2.2.3 DEPOSIT Command

The DEPOSIT command (D) deposits the specified value(s) starting at
the location given. ’

The form of the D cormand is:

D location=value
or
D location=valuel,value2,...,valuen

followed by the RETURN key.

Where location is an octal address which 1is added to the
relocation base value to get the actual address
where the values are deposited. Any non-octal
digit is accepted as a terminator of an address.

value is the new contents of location,

If multiple values are specified (valuel,...,valuen), they are
deposited beginning at the location specified. The Deposit command
accepts word or byte addresses but executes the command as though a
word address were specified.

Any character that is not an octal digit may be used to separate the
locations and values in a Deposit command.

An error results when the address specified references a location
within the resident monitor.

Examples:
.D 1000=3705
.D 7000=240,240,240

2.2.2.4 BASE Command (B)

The BASE command (B) sets the relocation base. The relocation base is
added to the address specified in an E {examine) or D (deposit)
command to obtain the address of the location to be opened. The form
of the command is

B, ,or B location

Where location is an octal address used to determine the address
of the location to be opened. Note that a space
must follow the B command even if an address 1is
not specified. Any non-octal digit is accepted as
a terminator of an address,

This command is useful when referencing linked modules. The base
address can be set tc the address where the module of interest is
loaded.

Example:

B set base to 0§
B 200 set base to 200

2.2.2,5 SAVE Cormmand

The SAVE {SA) command writes the area(s) of user core specified by the
parameter 1list or by the core control block (if no parameter list is
given) into the named file in save image format.

The SAVEd file can then be referenced with a GET, RUN or R command.

The SAVE command does not write the overlay segments of programs;
rather it saves only the root segment. (Refer to Chapter 6, Linker.)

The form of the command is

SAVE dev:filnam.ext parameters

followed by the RETURN key.

Where dev:

file.ext

parameters

is one of the standard RT=11 block
replaceable device names. If no device is
specified, DK is assumed.

is the name to be assigned to the file being
saved. If the file name is omitted, an error
message is output,

If no file name extension is specified, the
extension L.SAV is automatically added by the
systen.,

are core locations to be saved. RT-11
transfers core in 256-word blocks. If the
locations specified make a block of less than
256 words, enough additional locations are
transferred to make a 256~word block. If no
locations are specified, the number of
locations given in the core control block are
transferred.

Parameters can be specified in the following format:

core area l,...,core area n; start address, stack, JSW

Where core area 1,

ves,area n

start addr

stack

JSW

If any of the parameters
specified; otherwise

0.

If the JSW is set to:

20000 (8)

is an octal number or numbers separated by
commas .

If more than one number is specified, the
second number must be greater than the first.
If the following parameters (start address,
etc.) are to be specified, they must be
separated from the core areas by a
semicolon(;).

user program starting address

user program initial stack (1000 if none
given)

user proqgram Job Status Word

are specified, all parameters should be

those not specified are given the default value

the program is restartable

200 (8) a halt occurs on a hard error

2-9

Examples:

.SA FILEl 10000-11000, 14000-14100
Saves locations 10000(8) through
11777(8) (11000 starts the first word of
a new block, therefore the whole block,
up to 12000, is stored) and 14000(8)
through 14777(8) on DK with the name
FILEl.SAvV, :

+SA DT1:NAM,NEW 10000
Saves locations 10000 through 10777 on
DT1 with the name NAM,NEW,

.SA SY:PRAM 1000~5777; 1000, 10000, O '
Saves locations 1000 through 5777; 1000
is the user program start address; 10000
is the user program initial stack; and
the JSW is set to 0.

2.2,3 Commands to Start a Program

2.,2.3.,1 RUN Command

The RUN (RU) command loads the specified core image file into core and
starts execution at the address specified in the core control block.

The form of the command is
RUN dev:filnam.ext

followed by the RETURN key.

Where dev: is one of the RT=11 standard block
replaceable device names. If dev: is not
specified, the device is assumed to be DK,

filnam.ext is the file to be executed. If a file name
extension 1is not specified, the extension
«SAV is automatically assumed to be included
in the file name.

The RUN command is a combination of the GET command and +the START
command (with no address specified).

Examples:
+RUN DT1:SRCH.SAV Loads and executes the file SRCH.SAV
from DT1.
+RU PROG Loads PROG.SAV from DK and executes the
file.

R Command:

This command is essentially the same as RUN except that the file
specified must be on the system device (SY:).

2-10

The form of the command is
R filnam.ext

and no device is specified. If a file name extension is not
specified, the extension .SAV is assumed.

Examples:
«R X¥1.8AavV Loads and executes XY1.SAV from SY,

+R SRC Loads and executes SRC.SAV from SY,

2.2.3.2 START Command
The START (ST) command begins execution of the program currently in
core at the specified address. The stack pointer is set to the user

stack area as specified in the core control block. START does not
clear and reset core areas.

The form of the command is '
START address
followed by the RETURN key.

Where address is an octal number representing any 16 bit
address.

If the address given does not exist or is not an even address, an
illegal address trap occurs,

If no address is given, the program's start address from the core
contrel block is used,

Example:

+START 10000 Starts execution of the proqram currently in
core at location 10000,

2.2,3.3 REENTER Command
The REENTER (RE) command starts the program at its reentry address
{(the START address minus two). REENTER does not clear or reset any

core areas and is generally used to avoid reloading the same program
for repetitive execution.

The form of the command is
REENTER

and the RETURN key. If the reenter bit ({(bit 13} in the job status
word (location 44) is not set (#1), the RE command is illegal.

The RE command generally reenters the program at the command level.

If desired, the reentry address can be set to a routine in the user
program which will 4initialize the tables and stack, release device
handlers etc. and then continue normal operation.

2.3 RT-11 FILE SPECIFICATION

The format of the general command string file specification for RP=11
is:

dev:filnam.ext[n] ,dev:filnam.ext,...=dev:filnam.ext,.../s/s

where dev: is the two-character device name (refer to section
2.3.1)
filnam.ext is the name of the file (six alphanumeric

characters followed optionally by a three
character extension) (refer to section 2.1.2).

[n] is the 1length (decimal) desired (output files
only).
/S) is one or more switches which may be specified to

the calling program. These switches may be placed
anywhere in the command string.

Up to three output files are specified first, followed by an equal
sign (=) and up to six input files. The left angle bracket (<) can
also be used to separate the output and input files. If no output
files are specified, the = (or <) can be omitted. Each file specified
must be separated from the next by a comma. The [] construction can
only be used to the left of the = sign. This construction allows
‘specification of an output file size, and thus the brackets must
follow immediately after the filnam,ext,

(Refer to the appropriate Chapters for details of file specifications
for each program,)

2.3.1 Physical Device Names

Each device in an RT-11l file specification (dev:) 1is referenced by
means of a standard two-character device name. Table 2-2 lists the
names and related device,

Table 2=2

Permanent Device Names

Permanent Name I/0 Device

S¥n System device, the device and unit from
which the system is bootstrapped. N is
an integer in the range 0-7,

DTn DECtape n, where n is a unit number (an
integer in the range 0 to 7, inclusive).

DK The default storage device for all
files. DK is usually the systems device
but the assignment can be changed with
the Assign Command. Usually DK is the
disk on a single disk system or DTO on a
DECtape system.

TT Terminal keyboard and printer.

LP ~ Line printer.

PP High-speed paper tape punch.

RKn RK disk cartridge drive n, where n is in

the range 0-7 inclusive,

CTn Cassette n where n is 0 or 1. (Used
with PIPC only.)

PR High~speed paper tape reader,

When no device is specified, the last device named on the same side of
the command string is used. If the first file in a list (either input
or output) has no explicit device, DK: is used.

In addition to the fixed names shown in Table 2-1, each device can be
assigned 1logical names. This logical name takes precedence over the
physical name and thus provides device independence. With this
feature a program that is coded to use a specific device does not need
to be rewritten if the device is wunavailable. For example DK: is
normally disk unit 0 but that name could be assigned to DECtape unit 0
with a monitor command.

Refer to Paragraph 2.2.1.3 (Assign command) for details on assigning
logical names to devices.

2.3.2 File Names and Extensions

Files are referenced symbolically by a name of up to six alphanumeric
characters followed, optionally, by a period and an extension of three
alphanumeric characters. In a filename, excess characters (more than
six) cause an error message. The extension to a file name is
generally used as an aid for remembering the format of a file. In
most cases, it is a good practice to conform to the standard file name
extensions for RT-11l. If an extension is not specified for an output
file, some system programs assiqgn default extensions. If an extension
for an input file is not specified, the system searches for that file
name with the default extension. Table 2-=3 1lists the standard
extensions used in RT-11l.

2-13

Table 2=-3

File Name Extensions

Extension Meaning

.BAD Files with bad (unreadable) blocks

« BAK Editor backup file

+BAS BASIC source file (BASIC input)

«DAT BASIC data file

.LDA Absolute binary file

LST MACRO listing file (MACRO output)

«MAC MACRO or EXPAND source file (input)

+MAP Map file (Linker output)

.OBJ Relocatable binary file (Macro output, Linker
input)

.PAL Output file of EXPAND (the macro expander
program)

«SAV Core image or SAVE file; default for R, RUN,
SAVE and GET keyboard monitor commands; also
default for output of Linker

.SYS System files and handiers

Examples:

' RUN DK:PROG

Executes the file PROG.SAV {on device DK), if found.

«RUN DK:PROG.A

Executes PROG.A (on device DK), if found.

If a file name is to be used without an extension where the Monitor or
a utility program assumes a default extension, a . must be entered
after the file name to indicate that the file has no extension. For
example, to run the file TEST type

.RUN TEST.

If the period after the file name is not specified, RT-1l attempts to

run the file TEST.SAV.

2-14

2.4 ERROR MESSAGES

The following error messages can be output by the Keyboard Monitor.

Message Meaning

?ADDR? Address out of range in E or D command.

?DAT? The DATE command had no argument or the
argument was illegal.

?FIL NOT FND? File specified in R, RUN, or GET command
not found.

?FILE? No file named where one is expected.

?HANDLR? Attempting a close with no handler in
core. The file cannot be closed.

?2ILL CMD? Illegal keyboard monitor command or
command line too long.

?ILL DEV? Illegal or nonexistent device,

?0VR COR? Attempt to GET or RUN a file that is too
big.

?PARAMS? Bad save parameters,

?SV FIL I/0 ER? I/0 error on .SAV file in SAVE (output)

or R, RUN, or GET (input) command.

?SY I/0 ER? I/0 error on system device (usually
reading or writing scratch area).

The following messages are output by the RT-11 Monitor when an
unrecoverable error has occurred. Control passes to the Keyboard
Monitor. The program in which the error occurred cannot be restarted
with the RE command. To execute the program again, use the RUN
command.,

The format for Monitor error messages is:

?M=-text?
Message Meaning

?M=-USR ILL? The USR was illegally called from an I/0
completion routine. ’

?M=NO DEV? An I/O operation was requested on a
channel, but no device handler was in
core.

?M=-DIR I/0 ERR? An error has occurred while the USR was
reading/writing a device directory.
Usually due to WRITE LOCKed device, or
there may be a hardware problem. Retry
the operation.

?M=ILL HAND LD? An attempt was made to 1load a device

handler over the USR.

2-15

Message
?M=0VLY ERR?

?M=-HAND LD FAIL?

?M=DIR OVFLO?

Meaning
The system attempted to read an overlay
segment on channel 17 but was
unsuccessful, (can only occur if

program was linked with the overlay
feature requested.)

Failed reading a device handler from the
system device. There may be a hardware
problem, Retry the operation,

No more directory segments are available
for expansion. Occurs when JENTER
causes directory extension.

CHAPTER 3

TEXT EDITOR

The text editor (EDIT) is used to create and modify ASCII source files
so that these files can be used as input to other system programs such
as the Assembler or BASIC, Controlled by user commands from the
keyboard, EDIT reads ASCII files from any device, makes specified
changes and writes ASCII files to any device. The Editor considers a
file to be divided into logical units called pages. A page of text is
generally 50-60 lines long (delimited by form feed characters) and
corresponds approximately to a physical page of a program listing.
The Editor reads one page of text at a time from the input file into
its internal buffer where the page becomes available for editing., The
editing commands are used to: :

Read a "page” of text from the input file.
Locate text to be changed.

Execute and verify the changes.

Output the page to the output file,

Proceed in the same manner to the end of the input file,

3.1 CALLING AND USING EDIT
To call EDIT from the system device type:
R EDIT

and the RETURN key in response to the dot (.) printed by the Monitor,
EDIT responds with an asterisk (*) indicating it is in command mode
and awaiting a user command string. .

To restart the Editor without reloading, type the Monitor REENTER
command as follows:

+C

« REENTER
*

When the REENTER command is executed, the text buffers are
re-initialized and EDIT is ready for another editing session. Using
the REENTER command is equivalent to starting EDIT with the RUN
command, but saves the time and dJdevice motion associated with
reloading the Editor. If several consecutive editing sessions are
planned, it is suggested that the first session be started with a .R
EDIT cormand and the following sessions with REENTER Commands.

3.2 COMMANDS

3.2.1 Key Commands

The EDIT key commands listed in Table 3-1 are the same as those used

for the Monitor,

with the addition of CTRL/X. Control commands are

typed by holding down the CTRL key while typing the appropriate

character.
Table 3-1
EDIT Key Commands
Key Explanation

ALTMODE Echoes $. A single ALTMODE terminates a text
string. A ' double ALTMODE executes the command
string. For example,

*GMOV A,BS~1DSS

CTRL/C Echoes at the terminal as @C and a carriage
return. Terminates execution of EDIT commands and
returns to Monitor command mecde. A double CTRL/C
is necessary when I/0 is in progress. The REENTER
command may be used to restart the editor but the
contents of the text buffers are lost.

4+C
+« REENTER
*

CTRL/O Echoes 40 and a carriage return. Inhibits
printing on the terminal until completion of the
current command string or a second CTRL/O.

CTRL/U Echees 4U and a carriage return. Deletes all the
characters on the current terminal input line.
{Equivalent to typing RUBOUT back to the beginning
of the line.)

RUBOUT Deletes the last character from the current line
and echoes a backslash and the character deleted.
Each succeeding RUBOUT typed deletes and echoes
another character. For example,

CALL ENDMAC ;CLSO\OS\OSE MACRO
The first non=-RUBOUT key typed causes another
backslash to be printed, thereby enclosing the
deleted characters.
~ TAB Spaces to the next tab stop. Tab stops are

positioned every eight spaces on the terminal.

{continued on next page)

Table 3-1 (Cont.)
EDIT Key Commands

Key Explanation
CTRL/X choes *X and a carriags return. CTRL/¥X causes|

the entire command string to be ignored, and EDIT
types another "*", For example,

*TABCDS

EFGH X
- ¥

A CTRL/U would only cause deletionlof EFGH; CTRL/X
erases the whole command,

3.2.2 Editing Commands

EDIT operates in two modes, command mode and text mode. The mode of

operation determines the action performed on the characters in a
command string.

In command mode, EDIT accepts the key commands described in paragraph
3.2.1 or any of the editing commands described in this section.

EDIT automatically enters text mode when it encounters a command which
requires a text string (for example, the Insert cormmand), The next
successive alphanumeric characters in the command are taken as text
until an ALTMODE character is encountered. EDIT then returns to
comnand mode and processes the next characters in the command string
as a command.

EDIT commands fall into five categories:

Category Commands

Input/Output - Edit Backup
Edit Read
Edit Write
End File
Exit
List
Next
Read
Verify
Write

Pointer location Advance
Beginning
Jump

Search Find
Get
Position

Text modification Change
Delete
eXchange
Insert
Kill

Category Commands

Utility Execute Macro
Macro
Save
Unsave
Edit Version

The general format for EDIT commands is:
argument command text $
where argument can be:

An integer in the range =16383 to +16383 and
may be preceded, except where noted, by a +
or -, If no sign is wused, the number is
assumed to be positive. Where a number is
expected but not specified, it is assumed to
be 1.

A 0 to represent "the beginning of the
current line"”,

A / to represent "the end of the current
buffer”.

An = to represent -n where n is the length of
the last text argument used.

command is a one~ or two-letter command as described in
the following sections.

text is a string of successive ASCII characters
terminated by a single ALTMODE character (echoed
as $).

All EDIT command strings are terminated by two successive ALTMODE
characters. Spaces, carriage returns and line feeds within a command
string are ignored unless they appear in a text string. Commands such
as Insert or eXchange can contain text strings that are several lines
long. Each line is terminated with a CR/LF and the command is
terminated with a double ALTMODE.

Several commands can be strung together and executed in sequence. For
example,

text object text object
————— e ——
*BGMOV PC,R0$=-2CR1S5KGCLR @R2§$

[,

N ——
First commaLd —J
Second command
Third command

Fourth command
Fifth command

Command
string

Execution of a command string begins whén the double ALTMODE is typed
and proceeds from left to right.

With the exception of ALTMODE, all characters are legal in a text
string. Carriage return and line feed characters in text strings do
not terminate that command string. Two successive ALTMODE's must be
typed in to terminate a command string.

Upon receipt of the double ALTMODE, EDIT begins execution of the
command string. Prior to executing any commands, the Editor first
Scans the entire command string for errors in command format (illegal
arguments, illegal combinations of commands, etc.). If an error of
this type is found, an error message of the form

?ERROR MESSAGE?

is printed and no commands are executed. If the command string is
syntactically correct, execution is started. Execution errors are
still possible (buffer overflow, I/0 errors, etc.), and if such an
error occurs, a message of the form

?*ERROR MESSAGE*?

is printed; note the asterisks. In this case, all commands preceding
the one in error are executed, while the command in error and those
following are not executed.

Except when part of a text string, spaces, carriage return, line feed,
and single ALTMODES are ignored and may be used to enhance the clarity
of command strings. For example,

*BGMOV RO$=CCLR R1$AVSS
may be typed as »

*BS GMOV ROS
=CCLR R1$
AS V$$

with equivalent execution.

If a command being typed is within ten characters of exceeding the
command space available, the message

CB ALMOST FULL

is typed. (CB = Command Buffer.,) If the command can be completed
within ten characters, finish typing the command; otherwise, type the
ALTMODE key to execute the command 1line already completed. The
message repeats each time a character is entered in one of the last
ten spaces.

Most EDIT commands require one or more arguments which specify the
location where the command is to be executed and the number of times
it is to be executed. For instance, the List command needs a
specification of the number of lines to be listed and the Delete
cormand needs a specification of where and how many characters to
delete.

Most EDIT commands function with respect to a current character
pointer. This character pointer is normally located between the most
recent character operated upon and the next character in the buffer.
Most commands use this pointer as an implied argument. Certain EDIT
commands change the current position of the pointer.

NUMERIC ARGUMENTS

Edit commands are line-oriented or character-oriented depending on the
arguments they accept. Line oriented commands operate on entire lines
of text. Character-oriented commands operate on individual characters
independent of what or where they are.

For character oriented commands, a numeric argument specifies the
number of characters that are involved in the operation., Positive
arguments represent the number of characters in the forward direction
(towards the end of the buffer); negative arguments the number of
characters in the backward direction (towards the beginning of the
buffer). Carriage return and line feed characters are treated the
same as any other character. N

MOV #VECT,R2 (CR) (LF)
JCLR @R2(CR) (LF)

where ; repesents the current position of the pointer, and the spaces
(4) between MOV and # represent a TAB character.

The EDIT command =-2J(jump) backs up the pointer two characters.

MOV #VECT,RZ(CR)(LF)
CLR @R2(CR) (LF)

The command 10J(jump) advances the pointer ten characters and places
it between the CR and LF characters foliowing the second line.

MOV $VECT ,R2 (CR) (LF)
CLR @R2(CRKLF)

Finally, to place the pointer after the "C" in the first 1line, a
-14J (jump) command is used.

MOV #VECT, R2 (CR) (LF)
CLR @R2 (CR) (LF)

For line oriented commands, a numeric arqument represents the number
of lines involved in the operation. Positive arguments represent the
number of lines forward (toward the end of the buffer); this is
accomplished by counting carriage return/line feed combinations
beginning at the pointer. Hence, if the pointer is at the beginning
of a line, a line-oriented command argument of +1 represents the
entire line between the current pointer and the terminating line feed.
If the current pointer is in the middle of the line, an argument of +1
represents only the portion of the line between pointer and the
terminating line feed.

For example, assume a buffer of

Mov PC,R1 (CR) (LF)

ADD #DRIV-.,R1(CR) (LF)
MoV #VECT,R2 (CR) (LF)
CLR @R2 (CR) (LF)

The command to advance the pointer one line (1lA) causes the following
change:

MOV PC,R1(CR) (LF)

+ADD #DRIV-. ,R1l (CR) (LF)

MOV #VECT, R2 (CR) (LF)

CLR @R2 (CR) (LF)

The command 2A{advance) moves the pointer over 2 carriage return/line
feed combinations:

Mov PC,R1(CR) (LF)

ADD #DRIV=-.,R1{CR) {LF)
MOV #VECT, R2 (CR) (LF)
4CLR @R2 (CR) (LF)

Negative line arguments reference 1lines in the backward direction
(toward the beginning of the buffer). This is accomplished by
counting backwards from the pointer across n carriage return/line feed
combinations and starting the reference immediately after the n+l
CRLF, i.e., at the beginning of the =nth line. This means that if you
are at the beginning of the line, a line argument of -1 means "the
previous line", but if the pointer is in the middle of a 1line, an
argument of -1 means the preceding 1 1/2 lines. Assume the buffer
contains

MOV PC,R1(CR) (LF)

ADD #DRIV-, ,R1(CR) (LF)
Mov #VECT,R2 (CR) (LF)
CLR¢ @R2 (CR) (LF)

A command of ~lA(advance) backs the pointer up 1 1/2 lines.
MOV PC,R1(CR) (LF)
ADD #DRIV=-. ,R1 (CR) (LF)
Q«TV #VECT ,R2 (CR) (LF)
CLR @R2 (CR) (LF)

Now a command of ~lA(advance) backs it up only 1 line.

MOV PC,RL(CR) (LF)

4 ADD $DRIV-. ,R1(CR) (LF)
MOV #VECT,R2(CR) (LF)
CLR @R2 (CR) (LF)

NON-NUMERIC ARGUMENTS

Besides numeric arguments, both line-oriented and character-oriented
commands allow the general arguments

0) Beginning of Current Line = Used with a command to
operate on text from the pointer to the beginning
of a line or to move the pointer to the beginning
of the current line.

/ End of Text Buffer - Used with a command to
operate on buffer contents from the pointer to the
end of the buffer or move the pointer to the end
of the buffer,

Length of Last Text Cbject - Equal to -n where n
is the length of the last text argument executed,
(Legal only with Jump, Delete and Change
commands) .

3.2.2.1 Command Repetition

Portions of a command string may be executed more than once by
enclosing the desired portion in angle brackets (<>) and preceding the
left angle bracket with the number of iterations desired. The
structure is

commandl command2 n<command3 command4> command5 $§

In the above example, commands 1 and 2 are executed, then 3 and 4 are
executed n times one after the other. Finally, command 5 is executed
once and the command line is finished. The iteration argument must be
a positive number {1 to 16,383), and if not specified is assumed to be
1. If the number is negative or too 1large, an error message is
printed. Iteration brackets may be nested up to 20 levels. Command
lines are checked to make certain the brackets are correctly used and
match prior to execution,

Essentially, enclosing a portion of a command string in iteration
brackets is equivalent to typing that portion of the string n times,
where n is the iteration argument. For example

*BGAAAS 3<~DIBS=J>VS$$
is equivalent to typing

*BGAAAS-DIBS$~J~DIB$~-J~DIBS~JVSS
and

*B3<2<AD>V>$
is equivalent to typing

*BADADVADADVADADVSS

The following bracket structures are examples of legal usages

<K>OLKLKL>L3>>>

<LL>>>5K5LK>

The following bracket structures are examples of illegal combinations
and cause an error messagde:

<><>
<LK<>>

Command execution proceeds left to right remembering the iteration
counts until a right bracket is encountered. EDIT then returns to the
last left bracket encountered, decrements the counter and executes the
commands within the brackets. When the counter is decremented to 0,
EDIT looks for the next iteration count to the left and repeats the
same procedures. The overall effect is that EDIT works its way to the
inner most brackets and then works its way back again, The most
common use for iteration commands is for commands, such as Unsave,
which do not accept repeat count8., For example:

}u>ss

As an example, assume a file called SAMP (stored on device DK) is to
be read and the first four occurrences of the instruction MOV #200,R0
on each of the first five pages changed to MOV #244,R4. The following
command line is entered.
. o)W
ERSAMPS$S5<R 4 <BGMOV #200,R08=J 3<GO$=C4>7>$$
—— "

A B SN

v A S P

"

The command line contains three 'sets' of iteration loops (A,B,C) and
is executed as follows:

Execution initially proceeds from left to right; the file SAMP is
opened for input, and the first page is read into memory. The pointer
is moved to the beginning of the buffer and a search is initiated for
the character string MOV $#200,RO0. When the string is found, the
pointer is positioned at the end of the string, but the =J command
moves the pointer back so that it is positioned immediately preceding
the. string. At this point, execution has passed through each of the
first two ‘'sets' of iteration loops (A,B) once. The innermost loop
{C) is next executed three times, changing the 0's to 4's. Control
now moves back to pick up the second iteration of loop B, and again
moves from left to right. When loop C has executed three times,
control again moves back to loop B. When loop B has executed a total
of 4 times, control moves back to the second iteration of loop A, and
so forth until all iterations have been satisfied.

3.2,2.2 Core Usage

The core area available to EDIT is divided into four logical buffers
as follows:

MACRO BUFFER

SAVE BUFFER

FREE CORE

COMMAND INPUT
BUFFER

TEXT BUFFER

The Text Buffer contains the current page of text being edited.

The Command Input Buffer holds the command currently being typed at
the terminal.

The Save Buffer contains text stored with the Save (S) command.

The Macro Buffer contains any command string macro entered with the
Macro (M) command.

The Macro and Save Buffers are not allocated space until an M or §
command is executed, Once an M or S command is executed, a OM or 0U
(Unsave) command must be executed to return that space to the free
area.

The size of each buffer automatically expands and contracts to
accommodate the text being entered; if there is not enough space
available to accommodate required expansion of any of the buffers, a
"?*NO ROOM*?" error message is typed.

3.2.2.3 Input/Output Commands

These commands allow files to be created, opened for editing, listed
or closed. Pages of the files can be read into memory for processing.
Once editing is completed and the page is written to the output file,
that page of text is unavailable for further editing until the file is
closed and reopened.

EDIT READ

The Edit Read command opens an existing file for input, and prepares
it for editing.

The form of the command is:

ERdev:filnam.ext$
The string argument (dev:filnam.ext) is limited to 19 characters and
specifies the file to be opened. If no device is specified, DK: is

assumed. If any file is currently open for input, that file is
closed.

3-10

Edit Read does not input a page of text nor does it affect the
contents of the Save buffer.

Edit Read can be used repetitively on the same file to reposition EDIT
at the beginning of the file., The first Read command following any
Edit Read command inputs the first page of the file.
Examples:

*ERDT1 : SAMP ,MACS$ Opens SAMP.MAC on device DTl: for input.

*ERSOURCES $ Opens SOURCE on device DK: for input.

EDIT WRITE

The Edit Write command sets up a new file for output of edited text.
Any current output files are closed and a new file with the specified
name is opened on the specified device.

The form of the command is
EWdev:filnam.ext{n]$

The string argument (dev:filnam.ext[n]) is limited to 19 characters
and is the name to be assigned to the output file being opened, If
dev: 1is not specified, DK: is assumed. [n] is optional, and
represents the length of the file to be opened. If not specified, the
largest possible space is used,

If a file with the same name already exists on the device, the old
file is destroyed when an EXit, End File or another Edit Write command
is executed.

The EW command does not output any text nor does it affect the
contents of any of the buffers.

Examples:

*EWDK : TEST .MACS $ Opens the file TEST.MAC on device DK:
, for output.

*EWFILE1.BAS[11]$$ Opens the file FILE1l.BAS (1l blocks) on
the device DK: for output.

EDIT BACKUP

The Edit Backup command is used to open a file for editing without
deleting the o0ld copy while assigning the same name to the new copy.
The name and extension specified in the command is assigned to the new
output file and the old version is preserved with the name specified
and the extension .BAK. When an Exit or End File command is executed,
any existing file with the current name and the extension .BAK is
deleted. The input file (now the o0ld version) is assigned the
extension .BAK. The output file is closed and assigned the name
specified in the EB command. This renaming of files takes place
whenever an Exit, End File, Edit Read, Edit Write or Edit Backup
command is executed after a previous EB command has been successfully
executed.

3-11

The format of the command is:
EBdev:filnam.ext[n]$

The device designation, file name and extension are 1limited tc 19
characters. If dev: is not specified, DK: is assumed.

Examples:

*EBSY:BAS1.MACSS Opens BAS1.MAC on SY, When editing is
complete, the old BAS1.MAC becomes
BAS1.BAK and the new file Dbecomes
BAS1.MAC. Any previous version of
BAS1.BAK is deleted.

*EBBAS2,.BAS[15]$$ Opens BAS2.BAS on DK (15 blocks). When
editing is complete, the old BAS2.BAS is
labeled BAS2.BAK and the new file
becomes BAS2.BAS, Any previous version
of BAS2.BAK is deleted.

In EB, ER and EW commands, leading spaces between the command and the
file name are illegal (the file name is considered to be a text
string). All dev:file.ext specifications for EB, ER and EW commands
conform to the RT-11 conventions for file naming and are identical to
file names used in command strings to the other system programs.

READ

The Read command (R) moves the next page of text from the input file

{previougly gpecified in 2an ER or ER command) and apperids it to the

----- =3 245

current contents, if any, of the text buffer.
The form of the command is:
R

There are no arguments to the R command and the pointer is not moved.
Read inputs text until one of the following conditions is met.

1. A form feed character, signifying the end of the page, 1is
encountered. At this point, the form feed will be the last
character in the buffer.

2. The text buffer is within 500 characters of being full. When
this condition occurs, Read inputs up to the next carriage
return/line feed (CR/LF) combination.

3. An end~of-file condition is detected.

An error message is printed if the READ exceeds the core available, or
if no input is available,

The maximum number of characters which can be brought into core with a

R command is approximately 6,000 for an 8K system. Each additional 4K
of core allows approximately 8,000 additional characters to be input,

3-12

WRITE

The Write command moves lines of text from the text buffer +to the
output file (specified in the EW or EB command). The format of the
command is :

nW Write n lines of text to the output file.

0W Write the text from the beginning of the current 1line
to the pointer.

/W Write the text from the pointer to the end of the
buffer,

Write accepts all legal line-oriented arguments and does not move the
pointer, If the buffer is empty when the write is executed, no
characters are output.

Examples:

*5WSS Write the next 5 lines of text starting
at the pointer, to the current output
file,

*~2WSS Write the previous 2 1lines of text,
starting at the pointer, to the current
output file.

*B/WSS Write the entire text buffer to the
current output file.

NEXT

The Next command writes the current text buffer to the output file,
clears the buffer and reads in the next page of the input file. This
command is equivalent to a combination of the Beginning, Write, Delete
and Read commands (B/W/DR). The Next command can be repeated n times
by specifying an argument before the command. The command format is:

nN

Next accepts only positive arguments (n) and leaves the pointer at the
beginning of the buffer. An error message is printed if fewer than n
pages are available on the input file., Next can be wused to space
forward, in page increments, through the input file.

Examples:

*2NSS Write the contents of the current text
buffer to the output file. Read and
write the next page of text. Then read
another page into the text buffer.

LIST

The List command prints the specified number of lines on the terminal.
The format of the command is:

3-13

nL Print n lines on the terminal beginning
at the pointer.

oL Print from the beginning of the current
line up to the pointer,

/L Print from the pointer to the end of the
buffer.

List accepts all legal line-oriented arguments and does not move the
pointer.

Examples:

*=2LS$S Print the previous 2 lines.

*4LSS Print 4 lines beginning at the pointer.
Assuming the pointer location as follows:

MOVB 5(R1),€R2
ADD+ Rl' (R2)+

the command:

*~1LS Prints the previous 1 1/2 1lines up to
the pointer.

MOVB 5(Rl),@R2
ADD

VERIFY

The Verify command prints the current text line on the terminal. The
position of the pointer within the line has no effect and the pointer
does not move, The command format is:

v

and there are no legal arguments. The V command is equivalent to a
0LL (List) command.

Example:
*yS$S The command causes the current line of
text to be printed.
ADD Rl, (R2)+
END FILE

The End File command closes the current outpute file. The End File
does no input/output to the text buffers and does not move the
pointer. The buffer contents are not affected.

3-14

The form cf the command is:
EF

There are no legal arguments for the EF command. EF is used when the
output file is to be closed as it stands, with no further output
desired. Note that an implied EF command is included in EW. and EB
commands.

EXIT

The Exit command is used to terminate editing and return control to
the Monitor. It performs consecutive Next commands until the end of
the input file is reached, then the input and output files are closed.

The command format is:

EX

There are no legal arguments for the EX command. Essentially, EXit is
used to copy the remainder of the input file into the output file and
return to the monitor. EXIT is legal only when there is an output
file open. If an output file is not open and it is desired to
terminate the editing session, return to the Monitor with CTRL/C.

NOTE

An EF or EX command is necessary in order to make an output
file permanent. If CTRL/C is used to return to the Monitor
without a prior execution of an EF command, the current
output file is not saved.

As an example of the contrasting uses of EF and EX commands, the input
file, SAMPLE, which contains several pages of text can be edited to
make the first and second pages of the file into separate files called
SAM1 and SAM2 as follows:

*EWSAM1S$S
*ERSAMPLES S
*RNEFS$S
*EWSAM2$$
*NEFS$S
*EWSAMPLESEXSS

3.2.2.4 Commands to Move Location Pointer
BEGINNING

The Beginning command moves the current location pointer to the
beginning of the text buffer. The command format is:

B

and there are no arguments.

3-15

Example:

Assuming the buffer contains:
MOVB 5(Rl),@R2
ADD Rl, {(R2)+
CLR @RrR2
MOVB+ 6 (R1) ,@R2

the -command:
*B$S

moves the pointer to:

4MOVE 5(Rl1),@R2

JUMP

The Jump command moves the pointer over the specified number of
characters in the text buffer. The form of the command is:

nJd Move the pointer n characters.

0J Move the pointer to the beginning of the current
line (equivalent to 0A).

/3 Move the pointer to the end of the text buffer
(equivalent to /A). '

=J Move the pointer backward n characters, where n
equals the length of the last text argument used.

Jump accepts all legal character-criented arguments, Negative
arguments move the pointer toward the beginning of the buffer,
positive arquments toward the end. Jump treats CR, LF and form feed
characters the same as any other character, counting one buffer
position for each.

Examples:
*3J88 Moves the pointer ahead three characters
*~4J$S Moves the pointer back four characters
ADVANCE

The Advance command moves the pointer the specified number of lines
and leaves it at the beginning of the line.

The form of the command is:

nA Advance the pointer over n carriage
return/line feeds.

0A Advance the pointer to the beginning of
the current line. (Equivalent to 0J)

3=-16

/A Advance the pointer to the end of the
text buffer. (Equivalent to /J)

Advance accepts all legal line-oriented arguments. Advance and Jump
commands perform the same function, but the first is line oriented,
while the second is character-oriented.

Examples:

*3A8S Move the pointer ahead three lines

Assuming the buffer contains:

CLR @3?

the command
*0ASS Moves the pointer to
CLR @R2

3.2.2.5 Search Cormands

GET

The Get command starts at the pointer and searches the current text
buffer for the nth occurrence of the specified text string. If the
search is successful, the pointer is left immediately following the
nth occurrence of the text string. If the search fails, an error
message is printed and the pointer is left at the end of the text
buffer. The format of the command is:

nGtexts$

The arqument (n), if specified, must be positive. The text string may
be any length and immediately follows the G command. The search is
made on the portion of the text between the pointer and the end of the
buffero

Example:
Assuming the buffer contains:

p MOV PC,R1
ADD $DRIV=-.,R1l
MoV #VECT,R2
CLR @rz
MOVB 5(R1) ,@R2
ADD R1l, (R2)+
CLR @r2
MOVB 6 (R1) ,@R2

The command:

*GADDSS

positions the pointer at:

ADD+ $DRIV=~, ,R1
The command:
*3G@R2S$S

positions the pointer at:

ADD R1l, (R2)+
CLR @R2,

To position the pointer at the beginning of the desired text, use the
GET command in combination with the =J command:

*GTEST$=J$$

This command combination places the pointer before instead of after
the text.

FIND

The Find command starts at the current pointer and searches the entire
input file for the nth occurrence of the text string. If the nth
occurrence of the text string is not found in the current buffer, a
Next command is automatically performed and the search is continued on
the new text in the buffer. If the search is successful, the pointer
is left immediately following the nth occurrence of the text string.
If the search fails (i.e., the end-of-file is detected for the input
file and the nth occurrence of the text string has not been found), an
error message is printed and the pointer is left at the beginning of
an empty text buffer,

The form of the command is:

nFtext$
The argument (n), if specified, must be positive.
An F command specifying a nonexistent search string can be used to
copy all remaining text from the input file to the output file,
instead of the EXIT command (which returns to the Monitor when
execution is complete).

Find is a combination of Get and Next commands.

Example:
*2FMOVB 6 (R1) ,@R2SS Searches the entire input file
for the second occurrence of
the text string. Each

unsuccessfully searched buffer
is written to the output file.

3-18

POSITION

The Position command searches the input file for the nth occurrence of
the text string. If the desired text string is not found in the
current buffer, the buffer is cleared and a new page is read from the
input file. The format of the command is:

nPtext$

The argument (n), if specified, must be positive, When a P command is
executed the current contents of the buffer are searched from the
location of the pointer to the end of the buffer. If the search is
unsuccessful, the buffer is cleared and a new page of text is read and
the cycle is continued.

If the search is successful, the pointer is positioned after the nth
occurrence of the text, If it is not, the pointer is left at the
beginning of an empty text buffer.

The Position command is a combination of the Get, Delete and Read
commands.,

The Position command is most useful as a means of placing the location
pointer in the input file. For example, if the aim of the editing
session is to create a new file out of the second half of the input
file, a Position search will save time.

The difference between the Find and Position command is that Find
writes the contents of the searched buffer to the output file while
Position deletes the contents of the buffer after it is searched.

Example:

*PADD R1, (R2)+$$ Searches the entire input file for the
specified string ignoring the
unsuccessfully searched buffers.

3.2.2.6 Commands to Modify the Text
INSERT

The Insert command inserts the specified text in the text buffer,
starting at the current pointer position. The location pointer is
positioned after the last character of the insert. The command format
is:

Itext$
There are no arguments to the Insert command, and the text string is
limited only by the size of the text buffer and the space arailable.
All characters except ALTMODE are legal in the text string. ALTMODE
terminates the text string.

NOTE

Forgetting to type the I command will cause the
text entered to be executed as commands.

EDIT automatically protects against overflowing the text buffer during
an Insert, If the I command is the first command in a multiple
command line, EDIT ensures that there will be enough space for the
Insert to be executed at least once.

If repetition of the command exceeds the available core, an error
message is printed.

Example: .
* MOV #BUFF,R2 Inserts the specified text at
MoV #LINE,R1 the current 1location of the
MOVB -1(R2) ,R0S$S pointer and leaves the pointer
after RO.
*
DELETE

The Delete command removes the specified number of characters from the
text buffer. Characters are deleted starting at the pointer and upon
-completion the pointer is positioned at the first character following
the deleted text.
The form of the command is:

nD Delete n characters.

0D Delete from pointer to beginning of

: , :
urrent line {egquiwvalent toc JK}.

/D Delete from pointer to end of text
buffer (equivalent to /K).

=D Delete n characters to the left of the
pointer, where n equals the length of
the last text argument used.
Delete accepts all legal character-oriented arquments, Positive
arguments delete toward the end of the buffer, negative arguments
toward the beginning,
Example:

*-2DS$ Deletes the two characters immediately
preceding the pointer.

Assuming a buffer of:

ADD Rl, (R2)+
CLR 4+@R2

the command:

*0DS$S
would leave the buffer with:

ADD R, (R2)+
L @R2

To delete a given item, combine a search with the =D cormand:

*FMONEY$=D$$

deletes the next occurrence of "money® from the file being edited.

KILL

The Kill command removes n lines from the text buffer, Lines

are

deleted starting at the location pointer and the pointer is positioned
at the beginning of the line following the deleted text. The command

format is:

nkK Delete n lines from the text buffer.

0K Delete from the beginning of the current
line to the pointer (equivalent to 0D).

/K Delete from the pointer to the end of

the text buffer (equivalent to /D),

Kill accepts all legal line-oriented arguments.. Positive arguments
Kill toward the end of the buffer; negative arguments toward the

beginning.
Examples:

*2KSS Deletes two 1lines starting at
current location of the pointer.

Assuming a buffer of:

ADD Rl,(R2)+
CLR @Rr2
MO 6 (R1l) ,@R2

The command:
*/KSS

Alters the contents of the buffer to:

ADD - R1,(R2)+
CLR
*

Kill and Delete commands perform the same function, except that
is line oriented and Delete is character oriented.

3-21

the

Kill

CHANGE

The Change command replaces n characters, starting at the pointer,
with the specified text string.

The form of the command is:
nCtext$ Replace n characters with the specified text.
0Ctext$ Replace the characters from the beginning of the
line up to the pointer with the specified text
(equivalent to 0X).

/Ctexts$ Replace the characters from the pointer to the end
of the buffer with the specified text (equivalent
to /X).

=Ctext$ Replace n characters to the left of the pointer
with the indicated text string, where n represents
the length of the last text argument used.

The size of the text is limited only by the size of the text buffer
and the space available. All characters are legal except ALTMODE
which terminates the text string.

The Change command is identical to a Delete followed by an Insert
{(nDItext$), and accepts all legal character-oriented arguments,

If there is space available so a Change command can be typed in, it
will be executed at least once. (It must be the first command of
string). If repetition of the command exceeds the available core, an
error message is printed.

Examples:

*SCHVECTSS Replaces the £five characters to the
right of the pointer with #VECT.

Assuming a buffer of:

CLR @Rr2
MOV, 5(R1),@R2

the command:
*QCADDBSS
would leave the buffer with:

CLR @Rr2
ADDB4 5(R1) ,@R2

To replace a given text string with another, combine a search with the
=C command.

*GAAAA$=CBBBBSS

replaces the next occurrence of "AAAA" with "BBBB".

3-22

EXCHANGE

The Exchange command replaces n lines with the text string starting at
the pointer.

The form of the command is:
nXtext$ Replace n lines with the specified text,

0Xtext$ Replace the current line from the beginning to the
pointer with the specified text (equivalent to
0Cc).

/Xtexts Replace the lines from the pointer to the end of
the buffer with the specifed text (equivalent to
/C) .

All characters are legal in the <text string except ALTMODE which
terminates the text.,

The Exchange command is identical to a Kill command followed by an
Insert (nKItext$), and accepts all legal line-oriented arguments,

If there is space available so the X command can be typed in, it will
be executed at least once provided it is the first command in the
string. If repetition of the command exceeds the available core, an
error message is printed.

Example:
*2XADD R1l,(R2)+ Replaces the two lines to
CLR ar2 the right of the pointer location
$S with the text string.
*

The Change and Exchange commands perform the same function; Change is
character oriented, Exchange is line oriented.

3.2.2.7 Utility Commands
SAVE

The Save command starts at the pointer and copies the specified number
of lines into the Save Buffer.

The form of the command is:

nsS
The argument (n) must be positive.
The pointer position does not change and the contents of the text
buffer are not altered, Each time a Save is executed, the previous
contents of the Save Buffer, if any, are destroyed. If the Save

command causes the Save Buffer to exceed the core available, an error
message is printed.

Example:

Assuming the text buffer contains the following assembly language
subroutine,

45 SUBROUTINE MSGTYP

sWHEN CALLED, EXPECTS RO TO POINT TO AN

7ASCII MESSAGE THAT ENDS IN A ZERO BYTE,
;TYPES THAT MESSAGE ON THE USER TERMINAL

«ASECT
«=1000 :

MSGTYP: TSTB (%0) sDONE?
BEQ MDONE : YES=RETURN

MLOOP: TSTB @#177564 ;NO=-IS TERMINAL READY?
BPL MLOOP s NO=-WAIT
MOVB (%0)+,@#177566 ;YES PRINT CHARACTER
BR MSGTYP : LOOP

MDONE: RTS %7 s RETURN

The command:
*14S

Stores the entire subroutine in the Save Buffer, so it may be inserted
in a program when needed.

The Save command is useful for moving blocks of text or inserting the
same block of text in several places.

UNSAVE

The Unsave command inserts the entire contents of the Save Buffer in
the text buffer at the pointer location. The pointer is positiocned
following the inserted text,

The form of the command is:

U Insert in the text buffer the contents of the Save
Buffer.

0U Clear the Save Buffer and reclaim the area for text.
Zero is the only legal argument to the U command.

The contents of the Save Buffer are not destroyed by the Unsave
command and may be Unsaved as many times as desired.

If the Unsave command exceeds the core available, an error message 1is
displayed.

MACRO

The Macro command is a special case command which inserts a command
string into the EDIT Macro Buffer. The Macro command is of the form:

M/command string/

where / represents the delimiter character. The delimiter is always
the first character following the M command, and may be any character
which does not appear in the macro command string.

Starting with the character following the delimiter, EDIT places the
macro command string characters into its internal Macro Buffer until
the delimiter is encountered again. At this point, EDIT returns to
command mode.

The Macro command does not execute the macro string; it merely allows

specification of the macro for later execution by the Execute Macro
{EM) command, Macro does not affect the contents of the Text Ruffaer

i3] (840 L1381 -0 ¢ 0} fag =10 4 == e S a e Wil S —aals aTh - [o4SRERE D} 4

or Save Buffer.

All characters except the delimiter are 1legal macro command string
characters, including single ALTMODE's to terminate text commands.
All commands, except the M and EM commands, are 1leqal in a command
string macro. That is, EDIT macro operations are not recursive.

3-25

All arguments except 0 are illegal with the M command. A OM command
clears the macro buffer and reclaims the space for use as part of the
text buffer.

Typing the M command immediately followed by two identical characters
{assumed to be delimiters) and two ALTMODE characters also clears the
Macro Buffer, For example:

M//$8
Example:
*M/GR0S-C1S$/$$ Stores a macro to change RO to Rl.
Note

Be careful to chose infrequently used characters
as macro delimiters; use of frequently used
characters can lead to inadvertent errors. For

example,
*M GMOV RO$=CADD R1l$ $$

It was intended that the macro be GMOV RO$=CADD
R1S but since the delimiter character (the
character following the M) is a space, the space
following MOV is the second delimiter, terminating
the macro, EDIT then returng an error when the
0$= becomes an illegal command structure.

EXECUTE MACRO

The Execute Macro command executes the command string specified in the
last Macro command.

The form of the command is:
nEM
The argument (n) must be positive.

The macro is executed n times and control returns to the next command
in the string.

Examples:
*M/BGRO$=-C1$/5$
*B1000EMSS Executes the MACRO stored in
2*SRCH FAIL IN MACRO*? the previous instruction,

which returns an error message
when the end of buffer is
reached, The macro
effectively changed all
occurrences of RO in the text
buffer to R1.

3-26

*IMOV PC,R1$2EMICLR @R2S$S Inserts MOV PC,Rl; executes
the command in the MACRO
buffer twice, then inserts
CLRu..4@R2.

EDIT VERSION

The Edit Version command displays the version number of the Editor on
the console terminal,

The form of the command is
EVSS
Example:

*EVS$
Vo1l-24
*

3.3 ERROR MESSAGES
Prior to execution, EDIT checks the command string £for syntactical
errors. If any errors exist, they are reported with a message of the
form

?message?
If no syntactical errors are found, execution of the commands begins.
If errors are found during command execution, the form of the message
output is

?*message*?
If the error is detected within a command macro, the message format is

?message IN MACRO?

or
?*message IN MACRO*?

depending on when it is detected.

Table 3=-2 lists the EDIT error messages.

3=27

Table 3-2

EDIT Error Messages

Message Explanation

?CB FULL? Command exceeds the space allowed for a
command string.

?2ILL ARG? The arqument specified was illegal with that
command . A negative argument was specified
where a positive one is expected or argument
exceeds the range + or - 16,383.

?ILL CMD? EDIT does not recognize the command
specified.

2ILL MAC? Delimiters were improperly used, or an

?*DIR FULL*?

2*EOF*?

?2*FILE FULL*?

?*FILE NOT FND*?

?*HDW ERR*?

2*ILL DEV*?

?*ILL NAME*?

?*NO FILE*?

?2*NO ROOM*?

?*SRCH FAIL*?

?"<>"ERR?

attempt was made to enter an M command, or an
EM command within a macro.

No room in device directory for output file.

Attempted a Read, WNext or file searching
command and no data was available.

Available space for an output file is full,
Type a CTRL/C and a Close command to save the
data already written.

Attempted to open a nonexisting file for
editing.

A hardware error occurred during I/0. May be
caused by WRITE LOCKed device., Try again.

Attempted to open a file on an illiegal

P -
aevice,

File name specified in EB, EW, or ER is
illegal.

Attempted to read or write when no file is
open,

Attempted to Insert, Save, Unsave, Read,
Next, Change or Exchange when there was not
enough room in the appropriate buffer.
Delete unwanted buffers to create more room
or write text to the output file.

The text string specified in a Get, Find or
Position command was not found in the
available data.

Iteration brackets are nested too deeply or
used illegally or brackets are not matched.

3-28

3.4 EDIT EXAMPLE

The following example illustrates the use of some of the EDIT commands
to change a program stored on the device DK. Sections of the terminal
output are coded by letter and corresponding explanations follow the
example,

AG

H.

.R EDIT

*ERDK :TEST1.MACSS
*EWDK:TEST2,MACSS$
*RS

(*/L$$
;TEST PROGRAM

START: MOV £#1000,%6 s INITIALIZE STACK
MOV #MsSG,%0 s POINT RO TO MESSAGE
{) JSR PC,MSGTYP ;s PRINT IT
HALT : STOP
MS5G: +«ASCII/IT WORKS/
+BYTE 15
.BYTE 12
\ «BYTE 0

*B 1J 5DS$$

*GPROGRAMSS

*0LS$S

;PROGRAM *I TO TEST SUBROUTINE MSGTYP. TYPES
;"THE TEST PROGRAM WORKS"

;ON THE TELETYPE\EPYTELET\TERMINALS$S

" [*F,ASCII/SS
*§CTHE TEST PROGRAM WORKSSS

*P ,BYTE 0SVS$

{*P.BYTE +X
.BYTE 0

(*T
«END
$B/LSS
+sPROGRAM TO TEST SUBROUTINE MSGTYP,., TYPES
s"THE TEST PROGRAM WORKS"
;ON THE TERMINAL

{START: MOV £#1000,%6 F;INITIALIZE STACK

MOV $#MSG, %0 ;POINT RO TO MESSAGE
JSR PC,MSGTYP ;PRINT IT
HALT ; STOP
MSG: .ASCII/THE TEST PROGRAM WORKS/
.BYTE 15
.BYTE 12
.BYTE 0
. .END

{*Ex$$

3=-29

The EDIT program is called and prints an *., The input file is
TEST1.MAC; the output file is TEST2.MAC and the first page of
input is read.

The buffer contents are listed,

Be sure the pointer is at the beginning of the buffer, Advance
pointer one character (past the ;) and delete the "TEST ".

Position p01nter after PROGRAM and verify the p051t10n by listing
up to the pointer,

Insert text. RUBOUT used to correct typing error.

Search for .ASCII/ and change "IT WORKS"™ to "THE TEST PROGRAM
WORKS",

CTRL/X typed to cancel P command. Search for ".BYTE 0" and
verify location of pointer with V command.

Insert text. Return pointer to beginning of buffer and 1list
entire contents of buffer.

Close input and output files after copying the current text

buffer as well as the rest of input file into output file. EDIT
returns control to the Monitor.

3-30

CHAPTER 4

PERTPHERAL INTERCHANCE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is the file transfer and
maintenance utility for RT=11. PIP is used to transfer files between
devices, merge and delete files, and 1list, zero, and compress
directories.

4,1 CALLING AND USING PIP
To call PIP from the system device type:
R PIP

in response to the dot printed by the Keyboard Monitor. The Command
String Interpreter then prints an asterisk at the left margin of the
terminal and waits to receive a 1line of I/0 files and command
switches. PIP accepts up to six input file names and three output
file names; command switches generally are placed at the end of the
command string but may follow any file name in the string.

Since PIP performs file transfers for all file types (ASCII, formatted
binary, image or SAVE format), there are no assumed extensions
assigned by PIP to file names for either input or output files. All
extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command String
Interpreter again prints an asterisk at the left margin and waits for
another PIP I/0 specification line. Typing CTRL/C returns control to
the Keyboard Monitor.

PIP follows the standard file specification syntax explained in
paragraph 2.2 with one exception=--the asterisk character (*) can be:
used in a file specification to replace a file name or extension.

The asterisk may be used to replace a file name and/or extension as
follows:

Specification
to be
replaced Form
file name * ext
extension filnam.*
file name and *, %
extension

Use of the asterisk (called the "wild card") in a file specification
means "all". For instance, "*.MAC" means all files with the extension
.MAC. The wild card character is legal only in the following cases:

Input file specification for the copy and multiple copy
commands (no switch, /I, and /A). For example,

FILE= ,MAC/I
*SOURCE ., MAC=*_,MAC/A

File specification for the delete and extend commands (/D and
/T). For example,

TEST./D
DATA,.[100]=/T

Input and output file specifications for the rename command
(/R). For example,

**,TST=* ,BAK/R.

Input and output file specifications for the multiple copy
cormand (/X). For example,

DTO:,*=DT1:*, */X

Operations on files specified by the * are performed in the order the
files appear in the directory.

System files with the extension .SYS are ignored when the wild card
character is used unless the /Y switch is specified.

Examples:

4,2 PIP

** BAR/D Causes all files with the extension .BAK
to be deleted regardless of their file
names,

PILEA./D/Y Causes all files with the name FILEA to
be deleted, regardless of extension.

*k k=k */X/Y Transfers all files regardless of file
name or extension.

COMMANDS

The various cormands allowed on a PIP 1I/0 specification 1line are
summarized in Table 4-1, If no command switch is specified, PIP
assumes the operation is a file transfer in image mode.

4-2

Table 4-1

PIP COMMANDS

Switch

Explanation

/A

/B
/D
/E

/F
/G
/I or no

switch

/L

/0
/R
/S

/T
/U

/v

/X

/2

Copies file(s) in ASCII mode (ignores nulls;
converts to 7-bit ASCII).

Copies files in formatted binary. ffaquuuﬁ LD i

Deletes file(s) from specified device.

Lists the entire directory including unused spaces
and their sizes.,

Prints the short directory (file names only) of
the specified device.

Ignores any input errors which occur during a file
transfer and continues copying.

Copies file(s) in image mode (byte by byte) .
Iists the entire directory of the specified
device.

Used with /Z to specify the number of directory
blocks to allocate to the directory.

Bootstraps the specified device (DTO or RKO only).
Renames the specified file.

Compresses the file on the specified directory
device so all free area is combined.

Extends number of blocks allocated for a file.

Copies the specified bootstrap file into absolute
blocks 0 and 2 of the specified device.

Outputs the version number of the PIP program
being used to the terminal.

Copies files individually (without concatenation).

Causes system files to be operated on by the
cormand specified. Attempted modifications orj
deletions of .SYS files without /Y are null
operations, and cause the message ?NO SYS ACTION?
to be printed.

Zeroces (initializes) the directory of the
specified device and allows specification of
directory size and directory entry size when used
with /N.

4.2,1 Copy Commands

A file specification without a cormand switch copies files onto the
destination device in image mode (byte by byte) and is used to
transfer core image (Save format) files and any files other than ASCII
or formatted binary. For example:

*ABC<XYZ Copies XYZ onto the same device (DK) and
assigns the name ABC,

*SY :BACK<PR:/I Transfers a tape from the paper tape
reader to the system device under the
name BACK.,

The /A switch is used to copy file(s) in ASCII mode as follows:

*DT1:F1<F2/A Copies F2 onto device DT1 in ASCII mode
and assigns the name F1.

Nulls are ignored in an ASCII mode file transfer. The /B switch is
used to transfer formatted binary files. The formatted binary copy
switch should be used for .0BJ files produced by the assembler and
.LDA files produced by the Linker. When doing formatted binary
transfers, PIP verifies checksums and prints the
message ?CHK SUM? if a check sum error occurs.

*DK:PIP.OBJ<PR:/B Transfers a formatted binary file from
the papertape reader to device DK and
assigns the name PIP.OBJ.

To concatenate more than one file into a single file use the following
format:

*DK :AA<DT1:BB,CC,DD/I
Trangfers files BB, CC and DD to the
device DK as one file and assigns the
name AA,

*DT3:MERGE<DT2:FILE2,FILE3/A
Merges ASCII files, FILE2 and FILE3, on
DT2 into one ASCII file, MERGE, on
device DT3.

Errors which occur during the copy operation (such as a parity error)
cause PIP to output an error message and return for another command
string.

The /G switch is used to copy files and ignore input errors. For
example:

*ABC<DT1:TOP/G Copies file TOP in image mode from
device DTl to device DR and assigns the
name ABC,

*DT2 :COMB<DT1:F1,F2/A/G
Copies files Fl and F2 in ASCII mode
from device DTl to device DT2 as one
file with the name COMB. Ignores input
errors,

The wild card character may be used in the input file specification of
transfer operations, Be sure to use the /Y switch if System files
(.SYS) are to be copied. For example:

DT1:PROGl<,SAV/I Copies, in image mode, all files with
the ,.SAV extension from device DK to
device DTl assigns the name PROGI.

*DT2 :MN3<ITEM1., *, ITEM2/A
Copies, in ASCII mode, all files labeled
ITEM1 and file ITEM2 from device DK to
device DT2 assigns the name NN3. . SYS
files are ignored.

MARK<DT3:,*/G/Y Copies, in image mode, all files from
device DT3 to device DK; assigns the
name MARK; ignores any input errors,

The file allocation scheme for RF-1l normally allots half the largest
available space for a new file, Therefore, although the directory for
a given device may show a free area of 200 blocks, PIP may return an
?0UT ER? message when a transfer is attempted to that device with a
file greater than 100 blocks long. Transfers in this situation can be
accomplished in either of two ways:

1. Use the [n] consruction on the output file to specify the
desired length,

2, Use the /X switch during the transfer to force PIP to
allocate the correct number of blocks for the output file.

For example:

Assume we know from prior directory listings that there is a 200 block
<unused> space on DT1l, and that File A is 150 blocks long.

.R PIP
*DT1:A=A
?0UT ER? File longer than 100 blocks.
*DT1:A[150]=A
or Either command will cause a transfer.

DT1:A=A/X
*

4,2,2 Multiple Copy Cormmands

The /X switch allows the transfer of several files at a time onto the
Amevde s vamde s smen - PR RN - 4 At ern Aee £ T~ Ml = Y Pl /T a3 7
QESTLIIACTLION aevice as Andaividauas LI1LES., 1ne FELY FASY) /b and /x

switches can be used with /X.
Examples:

*FILE1l,FILE2,FILE3<DT1:FILEA,FILER,FILEC/X
Copies, in image mode, FILEA, FILEBR and
FILEC from device DTl to device DK as
separate files called FILEl, FILE2 and
FILE3.

4-5

#DT2:FL. *<F2,*/X Copies, in image mode, all files named
F2 from device DK to device DT2 (except
files with .SYS or .BAD extensions) as
separate files; assigns the name Fl and
keeps the old extensions.

DT1:, *<DT2:*,*/X Copies, in image mode, all files on
device DT2 to device DTl (except files
with .SYS or .BAD extension) as separate
files keeping the same names and
extensions,

DT1:FILEl,FILE2<FILEA./A/G/X

Copies, in ASCII mode, all files named
FILEA (except files with .SYS or .BAD
extension) from device DK to device DT1
as’ separate files; assigns the names
FILEl and FILE2, The files are
transferred in the order they are
encountered in the directory; if there
are more than two files named FILEA, no
transfer takes place and PIP returns to
command mode. .

DT0:,SYS<* ,SYS/X/Y
Copies the system files from device DK
to device DTO.

File transfers performed via normal transfers place the new file in
the largest available area on the disk. The /X switch, however,
places the copied files in the first free place large enough to
accommodate it. Therefore, use the /X switch when it is desired to
place a file in the first slot available.

For example, /X would be wuseful as an alternative to a (]
specification to transfer a 150 block file into a 200 block area:

*A[150]=
*A/X=B

Example:

Directory of DT1:

9-MAY-73
MONITR.SYS 32 5-MAY=-73
<UMUSED> 2
PR, SYS : 2 5-MAY-73

<UNUSED> 438
To copy file PP.SYS (2 blocks long) from DTO: to DTl:, the
command :

*DT1:PP.SYS=DTO:PP.SYS/Y

can be entered, and the new directory is:

9=MAY-=73
MOMITR, SYS 32 5=-MAY=73

<UNUSED> 2
PR, SYS 2 5-MAY-73
PP, SYS 2 9-MAY-73

<UNUSED> 436
If the command:
*DT1:PP,.SYS=DT0:PP.SYS/¥/X

is entered, the new directory is

9-MAY-73
MONITR, SYS 32 5-MAY=-73
PP.S5YS 2 9=-MAY=-73
PR, SYS 2 5-MAY=73

<UNUSED> 438

4.2.3 Delete Command

The /D switch is used to delete one or more files from the specified
device. The wild card character (*) can be used in the file
specification in a Delete command.

Only six files can be specified in a delete operation if each file to
be deleted is individually named (i.e., if the wild card character is
not used).

When a file is deleted, the information is not destroyed, the file
name is merely removed from the directory. If a file has been deleted
but not overwritten, it can be recovered with the /T switch by
specifying a command of the form

x[n}=/T

where x is the name desired and n is the length of the deleted file.

For example,

*/E
4-JUN=-73
A +MAC 18 3=-JUN=73
B +MAC 17 3-JUN=-73
C +MAC 19 3=-JUN=-73
<UNUSED> 512 3=-JUN=-73
512 FPREE BLOCKS
*B,MAC/D
*/E
" 4=-JUN=73
A <MAC 13 2=JUN=73
<UNUSED> 17 3=JUN=-73
C +MAC 19 3=-JUN=-73

529 FREE BLOCKS
File B.MAC could now be recovered by

*B.MAC[17}=/T

The /T switch 1looks for the first unused area large enough to
accomodate the requested file length, If the file to be recovered is
in the first area large enough to accomodate the size specified, the
above is sufficient. 1If not, all larger unused spaces preceding the
desired file would have to be given dummy names before the recovery
could be made. The dummy names would be given as above.

For instance, assume the above example with the exception that A.MAC
has a 33 block unused file before it.

*/E

4=JUN=-73
<UNUSED> 33
A. MAC 18
<UNUSED> 17
c. MAC 512

A recovery of B.MAC would require

*DUMMY [33]=/T
*B.MAC[17]=/T

If the 33 block unused area were not named prior to B.MAC, the first
17 blocks of the 33 block area would have become B.MAC.

Examples:
*FILE1l.SV/D Deletes FILEl.SV from device DK.

DT1l:,*/D Deletes all files from device DTl except
those with the .S¥YS or .BAD extension.
If there 1is a file with = a . SYS
extension, the message ?NO SYS ACTION?
is printed to remind the user that .SYS
files have not been deleted.

** MAC/D Deletes all files with the <MAC
extension from device DK.

*DT1:B1,DT2:R1,DT3:AA/D
Deletes the files specified from the
associated device,.

% _*/D/Y Deletes all files from dewvice DK,

4,2.4 Rename Command

The /R switch is used to rename the file given as input with the name
given in the output specification. Only one file may be renamed in a
Rename operation unless the wild card character is used. The /Y
switch must be used in conjunction with /R to rename .SYS files.,

The Rename command is particularly useful when a file on disk or
DECtape c¢ontains bad blocks. By renaming the file with a .BAD
extension, the file permanently resides in that area of the device.
Once a file is given a .BAD extension it can not be renamed or moved

during a compress operation. .BAD files are not renamed in wild card
operations.

Examples:
*DT1:F1<DT1:FO0/R Renames F0 to Fl on device DT1.

PILE1,<FILE2.*/R Renames all files on device DK with the
name FILE2 to FILEl (except files with
.SYS or .BAD extension), retaining the
original extensions,

4,2,5 Extend Command

The /T switch is used to increase the number of blocks allocated for
the specified file. The /T switch requires a numeric argument of the
form [n] where n is a decimal number which specifies the number of
blocks in the file at the completion of the extend operation,

The format of a /T switch is:
dev:filnam.ext [n]=/T
A file can be extended only if it is followed on the specified device

by an unused area of sufficient size to accommodate the additional
length of the extended file.,

It may be necessary to create this space by moving other files on the
device (use PIP's /X switch).

Using the /T switch when specifying a file that does not currently
exist creates a file of the specified length.

Error messages are printed if the /T command would make the specified
file smaller (?EXT NEG?) or if there is insufficient space following
the file (2ROOM?).

Examples:

*ABC[{200]=/T Assigns 200 blocks to file ABC on device
DK.

DT]:X¥Z.[100]=/T Assigns 100 blocks to all files named
XY¥Z on device DTI.

4,2,6 Directory List Cormmands

The /L switch lists the entire directory of the specified device. The
listing contains the current date, all files with their associated
lengths and dates, and total free blocks on the device. The file
lengths and number of free blocks are decimal values.

If no output device is specified, the directory is output to the
terminal (TT:).

Examples:

*DT1:/L Outputs full directory of device DT1 to

the terminal.

*DIRECT<DT3:/L Outputs full directory of device DT3 to
a file, DIRECT, on the device DK.

** MAC/L Lists a directory of files with the .MAC
extension.

The /E switch lists the entire directory including the unused areas
and their sizes in blocks (decimal).

Examples:

*/E Outputs to the terminal a complete
‘ directory of the device DK including
size of unused areas.

*LP:<DT1:/E
Outputs to the line printer a complete
directory of device DTl including size
of unused areas.

The /F switch lists only the current date, file names and total free
blocks in the directory, omitting the file lengths and associated
dates,

Examples:

*/F Outputs a file name directory of the
device DK to the terminal.

*LP:</F Outputs file name directory of the
device DK to the line printer,

The /L, /E and /F commands have no effect on the files on the
specified device. .

Use of the asterisk (*) or file names in a file specification with an
/L, /F, or /E switch 1lists those files from the directory of the
specified device.

If a file which exists on the device specified is included in a
command with a /L, /BE or /F switch, the file name and optionally the
date and file length are output. For example,

Fl.SaV/L
causes
4-JUN-73
Fl «SAV 18 3-JUn-73
<UNUSED> 512

512 FREE BLOCKS

to be output if the file exists on device DK:

Directory listings of directories with multiple segments contain blank
lines at segment boundaries.

4,2,7 Directory Initialization Command

The /Z switch clears and initializes the directory on the specified
device,. The /2 should always be used to create an empty file
directory before using a DECtape or disk for the first time.

The form of command is:
/2Z:n

where n is an octal number specifying the number of extra words per
directory entry. If n is not specified, no extra words are allocated,
and 70 entries can be made in a directory block. When extra words are
allocated, the formula for determining the number of entries per
directory block is:

507+ ({# of extra words)+7)

For example, if the switch /Z:1 is used, 63 entries can be made per
block.

When /2 is specified, PIP replies:
device/Z ARE YOU SURE?
For example,
DT1:/2 ARE YOU SURE?

Answer Y and a carriage return. If answer begins with a character
other than Y it is considered to be no.,

Example:

DT1:/2

*DT1:/2 ARL YOU SURE?Y
Zeros the directory on device DT1, and
allocates no extra words for the
directory.

The /N switch is used with /2 to specify the number of directory
blocks to allocate to the directory. The form of the switch is:

/N:n
where n is an octal number. If n is not specified, four blocks are
allocated. The maximum number of blocks which can be allocated is
37 ..
8
Example:
*/2:2/N:6 Zeroes the directory on device DK,
allocates two extra words per directory

entry and allocates six directory
blocks.

4-11

4.2,8 Compress Cormand

The /S switch is used to compress the directory and files on the
specified device so all the free (unused) blocks are condensed into
one area. /S can also be used to copy DECtapes and disks (/S will not
copy the bootstrap file in absolute blocks 0 and 2).

/S does not move files with the .BAD extension. This feature provides
protection against reusing bad blocks which may occur on a disk.
Files containing bad blocks can be renamed with the .BAD extension and
then left in place when a /S is executed.

If a compress operation is performed on the systems device, the
message

?REBQOT?
is printed to indicate that it may be necessary to reboot the system,

If .SYS files were not moved during the compress operation, it is not
necessary to reboot the system.,

Rebooting the system in response to the ?REBOOT? warning message
should ONLY be done AFTER the operation which generated the message is
complete. ?REBOOT? does not signify that the system should be
rebooted irmediately; the user should wait for the "*" signifying that
PIP is ready for another command before rebooting.

If the command attempts to compress a large device to a smaller one,
an error results and the directory of the smaller device is zeroed.

Examples:
*SY:/S Compresses the files on the system
device SY:
*DT1:A<DT2:/S Transfers and compresses the files from

device DT2 to device DTl. Device DT2 is
not changed. The file name A is a dummy
specification required by the Command
String Interpreter.

4.2.9 Bootstrap Copy Command

The bootstrap copy command (/U) copies the bootstrap portion of the
specified file into absolute blocks 0 and 2 of the specified device.

Examples:
*DK:A<DK:MONITR.SYS/U
Writes the bootstrap file MONITR.SYS in

blocks 0 and 2 of the device DK. A is a
dummy file name.

4-12

*DT0 :F2<DK:MONITR,SYS/U

4.2.10 Boot Command

Writes the bootstrap file MONITR.SYS
into blocks 0 and 2 of the device DTO.
The file name F2 is a dummy
specification required by the Command
String Interpreter.

The boot command reboots the system, reinitializing monitor tables and
returning the system to the monitor level. The boot command performs
the same operation as a hardware bootstrap.

Example:

*DK: /0 Reboots the device DK.

If a boot command is specified on a non=file structured device, the

message
?BAD BOOT?

is printed.

4.2,11 Version Command

The Version command (/V) outputs a version number message to the

terminal of the form

PIP V00-00

4.3 ERROR MESSAGES

The following error messages can be output by PIP,

Errors

?BAD BOOT?

?2CHK SUM?

?COR OVR?

?DEV FUL?

?ER RD DIR?

Meaning

Attempted to bootstrap a non-file
structured device.

A checksum error occurred in a formatted
binary transfer.

Core overflow - too many devices and/or
file specifications (usually * %

operations) and no room for buffers.
No room on device for file.
Unrecoverable error reading directory.

Make sure device is ready. Try
reformatting device,

4-13

Errors
?ER WR DIR?

?EXT NEG?

?FIL NOT FND?

?ILL DEV?
?2ILL SWT?

?2IN ER?

?20UT ER?

20UT FIL?

2 ROOM?

Meaning

Unrecoverable error writing directory.
Try again,

A /T command attempted to make file
smaller.

File not found in delete, ecopy, rename
operation,

Illegal or nonexistent device,
Illegal switch or switch combination.

Unrecoverable error reading f£file, Try
again (This error is ignored during /G
operation.) '

Unrecoverable error writing file.
Perhaps a hardware or checksum error;
try recopying file. Also, caused by an
attempt to compress a larger device to a
smaller one or not enough room when
creating a file. The system takes the.
largest space available and divides it
in half before attempting to insert the
file. Try the [] construction or /X
switch,

Illegal output file specification or
nissing output file,

Insufficient space following file
specified with a /T switch.

The following warning messages are output by PIP.

?NO SYS ACTION?

?REBOOT?

The /Y switch was not included with a
command specified on a .SYS file. The
cormand is executed for all but the .SYS
files. A *.,* transfer is most likely to
cause this message.

.5YS files have been transferred,
renamed, compressed or deleted from the
systems device. It may be necessary to
reboot the system. If any of the .SY¥S
files in use by the current system
(MONITR.SYS and handler files) have been
physically moved on the system device,
it is necéssary to reboot the system
irmediately. If not, this message can
be ignored. If the cause of the message
was a /S operation, the system need be
rebooted only if there was an empty
space before any of the ,SYS files. The
need to reboot can be permanently
avoided by placing all .SYS files at the
beginning of the systems device, then
avoiding their involvements in PIP
operations by aveoiding the /Y switch.

CHAPTER 5

MACRO ASSEMBLER

MACRO is the RT-1ll Assembler for system configqurations of 12K or more.
Users with 8K configurations must use ASEMBL and EXPAND and should
read this chapter and Chapters 9 and 10 before using ASEMBL and
EXPAND.. The MACRO features not supported by ASEMBL are indicated in
this chapter. Many of the features not available in ASEMBL are
supported by EXPAND.

Some notable features of MACRO are:

1. Program control of assembly functions.

2. Device and file name specifications for input and output
files

3. Error listing on command output device
4., Alphabetized, formatted symbol table listing
5. Relocatable cbject modules
6. Global symbols for linking between object modules
7. Conditional assembly directives
8. Program sectioning directives
9. User defined macros
10. Comprehensive set of system macros
11, Extensive listing control
5.1 SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement. Each line is
terminated by a line feed character (which increments the 1line count
by 1) or a form feed character (which increments both the line count
and page count by 1).

Since Edit automatically appends a line feed to every carriage return
character, the user need not concern himself with the statement
terminator. However, a carriage return character not followed by a

Sk adamarnd =y 7 ad A ranawabacs)
statement terminator generates an error flag. A legal statement

terminator not immediately preceded by a carriage return causes the
Assembler to insert a carriage return character for listing purposes.

An assembly language 1line can contain up to 132(10) characters
(exclusive of the statement terminator). Beyond this limit, excess
characters are ignored and generate an error flag.

5.1.1 Statement Format

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACRO-11 assembly language statement is:

label: operator operand ; comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words or performing
an assembly process. A statement contains one of these fields and may
contain all four types. Blank lines are legal.

Some statements have one operand, for example:
CLR RO
while others have two, for example:
MOV #344,R2
An assembly language statement must be complete on one source line.
No continuation lines are allowed. (If a continuation is attempted

with a line feed, the Assembler interprets this as the statement
terminator.) '

MACRO source statements may be formatted with Edit such that use of
the TAB character causes the statement fields to be aligned. For
example:

Label Operator Operand Comment
Field Field Field Field
MASK==10 ; REGISTER EXPRESSION
REGEXP: ;MUST BE ABSOLUTE

ABSEXP
REGTST: BIT #MASK , VALUE ;3 BITS?

BEQ REGERX ;YES, OK
REGERR: ERROR R ;NO, ERROR
REGERX: MOV $DEFFLG! REGFLG,MODE

BIC #MASK , VALUE

BR ABSERX

’

5.1.1.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute or relocatable,
depending on whether the location counter value is currently absolute
or relocatable. In the latter case, the absolute value of the symbol
is assigned by Link, i.e., the stated relocatable value plus the
relocation constant.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100(8), the statement:

ABCD: MOV A,B

assigns the value 100(8) to the label ABCD. Subsequent reference to
ABCD references location 100(8). In this example if the location
counter were relocatable, the final value of ABCD would be 100(8)+K,
where K is the location of the beginning of the relocatable section in
which the label ABCD appears.

More than one label may appear within a single label field; each label
within the field has the same value. For example, if the current
location counter is 100 (8), the multiple labels in the statement:

ABC: $DD: - A7.7: MOV 2,B

cause each of the three labels ABC, $DD, and A7.7 to be equated to the
value 100(8). (By convention, $ and . characters are reserved for
use in system software symbols.)

The first six characters of a label are significant. An error code is
generated if different labels share the same first six characters.

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a label results in an error flag in the
assembly listing.

5.1.1.2 Operator Field

An operator field follows the label field in a statement, and may
contain a macro call, an instruction mnemonic, or an assembler
directive. The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment. Leading
and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the instruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an Assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally terminated by a space, tab, or any
non-alphanumeric character (symbol component).

Consider the following examples

MOV A,B (space terminates the operator MOV)
MOveaA,B (@ terminates the operator MOV)

When the statement line does not contain an operand or comment, the
operator is terminated by a carriage return followed by a line feed or
form feed character.

A blank operator field is interpreted as a .WORD assembler directive
(See Section 5.5.3.2).

5.1.1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation). When multiple
operands appear within a statement, each is separated from the next by
one of the following characters: comma, tab, space or paired angle
brackets around one or more operands (see Section 5.2.1.1). An
operand may be preceded by an operator, label or another operand and
followed by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement, For example: -

LABEL: MOV A,B ;COMMENT

The space between MOV and A terminates the operator field and begins
the operand field; a comma separates the operands A and B; a semicolon
terminates the operand field and begins the comment field. .

5.1.1.4 Comment Field

The comment field is optional and may contain any ASCII characters
except null, rubout, carriage return, line feed, vertical tab or form
feed. All other characters, even special characters with a defined
usage, are ignored by the Assembler when appearing in the comment
fieid.

The comment field may be preceded by one, any, none or all of the
other three field types. Cormments must begin with the semicolon
character and end with a statement terminator.

Comments do not affect assembly processing or program execution, but
are useful in source 1listings for later analysis, debugging, or
documentation purposes.

5.1.2 Format Control

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII text; or unless they are used as the operator field terminator.-
Thus, these characters can be used to provide an orderly source
program. A statement can be written:

LABEL:MOV(SP) +,TAG; POP VALUE OFF STACK

or, using formatting characters, it can be written:

5-4

LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK
which is easier to read in the context of a source program listing.

Vertical formatting, i.e., page size, is controlled by the form feed
character. A page of n lines is created by inserting a form feed
(type the CTRL/FORM keys on the keyboard) after the nth 1line, (See
also Section 5.5.1.6 for a description of page formatting with respect
to macros and Section 5.5.1.3 for a description of assembly listing
output,)

5.2 SYMBOLS AND EXPRESSIONS

This section describes the various components of legal MACRO
expressions; the Assembler character set, symbol construction,
numbers, operators, terms and expressions.

5.2.1 Character Set
The following characters are legal in MACRO source programs:

1. The letters A through 2. Both upper and lower case letters
are acceptable, although, upon input, lower case letters are
converted to upper case letters. Lower case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, .ASCIZ, ' (single
quote) or " (double quote) statements if .ENABL LC is in
effect.

2. The digits 0 through 9.

3, The characters . (period or dot) and § (dollar sign) which
are reserved for use in system program symbols.

4, The following special characters:

Character Designation Function

carriage return formatting character

line feed

form feed source statement terminators

vertical tab

H colon label terminator

= equal sign direct assignment indicator

% percent sign register term indicator

tab item or field terminator

space item or field terminator

3 number sign immediate expression indicator
@ at sign deferred addressing indicator
(" left parenthesis initial register indicator

) right parenthesis terminal register indicator

Character

A wew

L

T N\

Designation

comma

semicolon

left angle bracket
right angle bracket
plus sign

minus sign

asterisk
slash
anmpersand
exclamation
double quote
single quote
up arrow

backslash

Function

operand field separator
comment field indicator
initial argument or expression
indicator

terminal argument or
expression indicator
arithmetic addition operator
or auto increment indicator
arithmetic subtraction
operator or auto decrement
indicator

arithmetic multiplication
operator

arithmetic division operator
logical AND operator

logical inclusive OR operator

double ASCII character
indicator

single ASCII character
indicator

universal unary operator,
argument indicator

macro numeric argument

indicator (not available in
ASEMBL)

5.2.1.1 Separating and Delimiting Characters

Reference is made in the remainder of the chapter to legal separating

characters

and legal

below in Tables 5-1 and 5=-2,

Table 5-=1

argument delimitera. These terms are defined

Legal Separating Characters

Character

Definition

Usage

space

one or more spaces
and/or tabs

comma

A space is a legal separator
only for argument operands.
Spaces within expressions are
ignored (see Section 5.2.8),

A comma is a legal separator
for both expressions and
argument operands,

Table 5=2

Legal Delimiting Characters

Character Definition Usage

Cese? paired angle brackets Paired angle brackets are used
to enclose an argument,
particularly when that
argument contains separating
characters. Paired angle

brackets may be used anywhere
in a program to enclose an
expression for treatment as a

term.
tN\eoo\ Up arrow construction This construction is equiv-
where the up arrow alent in function to the
character is followed paired angle Dbrackets and
by an argument is generally used only where
bracketed by any paired | the argument contains angle
printing characters. brackets.

Where argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument(s). The character <
and the characters t+\, where \ is any printing character, can be
considered unary operators which cannot be immediately preceded by
another arqument. For example:
+MACRO TEM <AB>C
indicates a macro definition with two arguments, while
«MACRO TEL C<AB>
has only one argument. The closing >, or matching character where the
up arrow construction 1is used, acts as a separator. The opening
argument delimiter does not act as an argument separator.
Angle brackets can be nested as follows: .
<AC>
which reduces to:
AC

and which is considered to be one argument in both forms.

5.2.1.2 1Illegal Characters
A character can be illegal in one of two ways:
1. A character which is not recognized as an element of the

MACRO character set is always an illegal character and causes
immediate termination of the current line at that point, plus

2.

the output of an error flag in the assembly 1listing. For
example:

LABEL«*A: MOV A,B

Since the backarrow is not a recognized character, the entire
line is treated as a:

+WORD LABEL
statement and is flagged in the listing,

A legal MACRO character may be illegal in context. Such a
character generates a Q error on the assembly listing.

5.2.1.,3 Operator Characters

Legal unary operators under MACRO are as follows:

Unary .
Operator Explanation Example
+ plus sign +A (positive value of A,
equivalent to A)
- minus sign -3 (negative, 2's
complement, value of A)
4 up arrow, universal +F3.0 (interprets 3.0 as a
unary operator one word floating-point
(this usage is number) .

described in

greater detail

in Sections +C24 (interprets the one's

5.5.4.2 and 5.5.6.2). complement of the binary
representation of 24(8))

+Dp127 (interprets 127 as a
decimal number)

+034 (interprets 34 as an
octal number)

+B11000111 (interprets 11000111 as a
binary wvalue)

The unary operators as described above can be used adjacent to each
other in a term. For example:

+Ct012
-4+05

Legal binary operators under MACRO are as follows:

Binary

Operator Explanation Example
+ addition A+B
- subtraction A=B
* multiplication A*B (16=-bit product returned)
/ division A/B (16-bit quotient returned)
& logical AND A&B
] logical inclusive OR AlB

All binary operators have the same priority. Items can be grouped for
evaluation within an expression by enclosure in angle brackets. Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right. For example:

«WORD 1+2%3 ;IS 11 OCTAL

+WORD 14<2%3> ;IS 7 OCTAL

5.2.2 MACRC Symbols

There are three types of symbols: permanent, user-defined and macro.
MACRO maintains three types of symbol tables: the Permanent Symbol
Table (PST), the User Symbol Table (UST) and the Macro Symbol Table
(MST) . The PST contains all the permanent symbols and is part of the
MACRO Assembler load module. The UST and MST are constructed as the
source program is assembled; user-defined symbols are added to the
table as they are encountered.

5.2.2,1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (Appendix F,
paragraph F.3) and assembler directives (sections 5.5 and 5.6,
Appendix F, paragraph F.4). These symbols are a permanent part of the
Assembler and need not be defined before being used in the source
program.

5.2.2.2 User-Defined and MACRO Symbols

User-defined symbols are those used as labels (Section 5.1.1.1) or
defined by direct assignment (Section 5.2.3). These symbols are added
to the User Symbol Table as they are encountered during the first pass
of the assembly. Macro symbols are those symbols used as macro names
(Section 5.6.1). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined and macro symbols can be composed of alphanumeric
characters, dollar signs, and periods only; any other character is
illegal.

The $ and . characters are reserved for system software symbols

(e.g., .READ, a system macro) and it is recommended that $ and . not
be inserted in user-defined or macro symbols.

5-9

The following rules apply to the creation of user-defined and macro

symbols:

1. The first character must not be a number (except in the case
of local symbols, see Section 5.2.5).

2., Each symbol must be unique within the first six characters.

3. A symbol can be written with more than six legal characters,
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler,

4, Spaces, tabs, and illegal characters must not be embedded
within a symbol.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be any one of the three symbol types. To
determine the value of the symbol, the Assembler searches the three
symbol tables in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table
A symbol found in the operand field is sought in the

1. User-Defined Symbol Table

2, Permanent Symbol Table

in that order. The Assembler never expaects to find a macro name in an
operand field.

These search orders allow redefinition of Permanent Symbol Table
entries as user-defined or macro symbols. The same name can also be
assigned to both a macro and a label.

User-defined symbols are either internal or external (global). All
user-defined symbols are internal unless explicitly defined as being
global with the ,GLOBL directive (see Section 5.5.10).

Global symbols provide links between object modules. A global symbol
which is defined as a label is generally called an entry point (to a
section of code). Such symbols are referenced from other object
modules to transfer control throughout the load module (which may be
composed of a number of object modules).

Since MACRO provides program sectioning capabilities (Section 5.5.9),
two types of internal symbols must be considered:

1. symbols that belong to the current program section; and
2. symbols that belong to other program sections.
In both cases, the symbol must be defined within the current assembly;

the significance of the distinction is critical in evaluating
expressions involving type {2) above {see Section 5.2.9).

5-10

5.2.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When
a direct assignment statement defines a symbol for the first time,
that symbol is entered into the user symbol table and the specified
value is associated with it. A symbol may be redefined by assigning a
new value to a previously defined symbol. The latest assigned value
replaces any previous value assigned to a symbol,

The general format for a direct assignment statement is:

symbol = expression
Symbols take on the relocatable or absolute attribute of their
defining expression. However, if the defining expression is global,
the symbol is not global unless explicitly defined as such in a .GLOBL
directive (see Section 5,5.10).

For example:

A=1 ;THE SYMBOL A IS EQUATED TO THE
;VALUE 1.
B = 'A-1&MASKLOW ;THE SYMBOL B IS EQUATED TO THE
;VALUE OF THE EXPRESSION
C:s D=3 ;s THE SYMBOL D IS EQUATED TO 3.
E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED TO THE

;s LOCATION OF THE MOV COMMAND
The following conventions apply to direct assignment statements:

1. an equal sign (=) must separate the symbol £from the
expression defining the symbol value.

2, A direct assignment statement is wusually placed in the
operator field and may be preceded by a label and followed by
a comment.

3. Only one symbol can be defined by any one direct assignment
statement,

4., Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X=X
Y=2
z2=1

X and Y are both undefined throughout pass 1. X is undefined
throughout pass 2 and causes a U error flag in the assembly listing.

5-11

5.2.4 Register Symbols

The eight general registers of the PDP-11l are numbered 0 through 7 and
can be expressed in the source program as:

%0
31

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer create and use symbolic names
for all register references. A register symbol may be defined in a
direct assignment statement, among the first statements in the
program. A register symbol can not be defined after the statement
which uses it. The defining expression of a register symbol must be
absolute., For example:

RO=%0 ; REGISTER DEFINITION
Rl=%1 .

R2=%2

R3=%3

R4=%2

RS=%5

SP=%6

PC=%7

The symbolic names assigned to the registers in the example above are
the conventional names used in all PDP-1l system programs. Since
these names are fairly mnemonic, it is suggested the user follow this
convention. Registers 6 and 7 are given special names because of
their special functions, while registers 0 through 5 are given similar
names to denote their status as general purpose registers,
All register symbols must be defined before they are referenced. A
forward reference to a register symbol causes phase errors in an
assembly.
The % character can be used with any term or expression to specify a
register. (A register expression 1less than 0 or greater than 7 is
flagged with an R error code.) For example:

CLR %3+1
is equivalent to

CLR %4
and clears the contents of register 4, while

CLR 4

clears the contents of memory address 4.

In certain cases a register can be referenced without the use of a
register symbol or register expression; these cases are recognized
through the context of the statement. An example is shown below:

JSR 5,SUBR sFIRST OPERAND FIELD MUST ALWAYS BE A
s REGISTER

5.2.5 .Local Symbols

Local symbols are specially formatted symbols used as labels within a
given range.

Local symbols provide a convenient means of generating labels for
branch instructions, etc. Use of 1local symbols reduces the
possibility of multiply-defined symbols within a user program and
separates entry point symbols from local references. Local symbols,
then, are not referenced from other object modules or even from
outside their local symbol block.

Local symbols are of.Ehe form n$ where n is a decimal integer from 1
to 127, inclusive, and can only be used on word boundaries. Local

symbols include:

13
273
59¢

104s

Within a local symbol block, local symbols can be defined and
referenced, However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

Local symbols 64$ through 127$ can be generated automatically as a
feature of the macro processor (see Section 5.6.3.5 for further
details). When using local symbols the user is advised to first use
the range from 1$ to 63S$.

A local symbol block is delimited in one of the following ways:
1. The range of a single local symbol block can consist of those
statements between two normally constructed symbolic labels.
(Note that a statement of the form
LABEL=,

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.) '

2. The range of a local symbol block is terminated upon
encountering a .CSECT directive.

3., The range of a single local symbol block can be delimited
with the LENABL LSB and the first symbolic label or .CSECT
directive following the .DSABL LSB directives. The default
for LSB is off.

5-13

For examples of local symbols and local symbol blocks, see Fiqure 5-1.

The maximum offset of a local symbol from the base of its local symboel
block is 128 decimal words. Symbols beyond this range are flagged
with an A error code,

5.2.6 Assembly Location Counter

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of the first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

A MOV #.,RO i« REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
s MOV INSTRUCTION,

(# is explained in Section 5.4.9).

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the 1location counter symbol has a mode
associated with it, either absolute or relocatable. However, the mode
cannot be external. The existing mode of the location counter cannot
be changed by using a defining expression of a different mode.

Line
Numbe

r

Octal

Expansion

1
2
3
4
5
6
7
8

(v~}

10
11
12

13
14

15
16
17
18
19

21

Assembly Source Listing of MACRO Code Showing -

000000
000000
000000
00000
00000

00004
00006

00012
00000
00000

00004
00006

00012
00000
00000

00004
00006

00012

000000°*
IMPURE:

000000*
IMPPAS:

000000°*
IMPLIN:

000000°*
XCTPRG:
012700
000000°*
005020 1%:
022700
000040*
101374

000000
XCTPAS:
012700
000000"*
005020 1$:
022700
000040"
101374

000000°*
XCTLIN:
012700
000000
005020 18S:
022700
000040"
101374

000000"

Source Code

Comments

SECTOR INITIALIZATION

. «SBTTL
.CSECT IMPURE
.CSECT IMPPAS
.CSECT IMPLIN
.CSECT XCTPRG
MOV #IMPURE, RO
CLR (RO) +
cMP #IMPTOP , RO
BHI 1$
.CSECT XCTPAS
MOV #IMPPAS, RO
CLR (RO) +
cMP #IMPTOP , RO
BHI 1s
.CSECT XCTLIN
MOV #IMPLIN,RO
CLR (RO) +
CcMP #IMPTOP,RO
BHI 1s
.CSECT MIXED

Figure 5-1

; IMPURE STORAGE AREA
;CLEARED EACH PASS

:CLEARED EACH LINE

: PROGRAM INITIALIZATION

:CLEAR IMPURE AREA

;PASS INITIALIZATION

;CLEAR IMPURE PART

; LINE INITTALIZATION

;MIXED MODE SECTOR

Local Symbol Blocks

The mode of the location counter symbol can be changed by the use of
the .ASECT or .CSECT directive as explained in Section 5.5.9.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:
.ASECT

.=500 ;SET LOCATION COUNTER TO
;ABSOLUTE 500

FIRST: MOV ,+10,COUNT ;THE LABEL FIRST HAS THE VALUE
:500(8)
;.+10 EQUALS 510(8). THE
s CONTENTS OF THE LOCATION
$+510(8) WILL BE DEPOSITED
; IN LOCATION COUNT,

«=520 ;THE ASSEMBLY LOCATION COUNTER

;NOW HAS A VALUE OF
sABSOLUTE 520(8).

SECOND: MOV . ,INDEX ;THE LABEL SECOND HAS THE
s VALUE 520(8)
s THE CONTENTS OF LOCATION
:520(8), THAT IS, THE BINARY
:CODE FOR THE INSTRUCTION _
; ITSELF, WILL BE DEPOSITED IN
: LOCATION INDEX,

«CSECT

;SET LOCATION COUNTER TO
 RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION,

THIRD: -WORD 0. :THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statement

«=.+100

reserves 100(8) bytes of storage space in the program. The next
instruction is stored at 1100.

5.2.7 Numbers

The MACRO Assembler assumes all numbers in the source program are to
be interpreted in octal radix unless otherwise specified. The assumed
radix can be altered with the .RADIX directive (see Section 5.5.4.1)
or individual numbers can be treated as being of decimal, binary, or
octal radix (see Section 5,5.4.2).

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a decimal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number,

Negative numbers are preceded by a minus sign (the Assembler
translates them into two's complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too large to fit into 16 bits (177777<n) is
truncated from the left and flagged with a T error code in the
assembly listing.

Numbers are always considered absolute quantities (that is, not
relocatable) .

The single-word floating-point numbers which can be generated with the
AF operator (see Section 5.5.4.2) are stored in the following format:

15 14 7 6 B
@ } l & !
sign bit 8-bit exponent 7-bit mantissa

Refer to PDP-11/45 Processor Handbook for details of the
floating=-point format.

5.2.8 Terms

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in Section 5.2.7, whose l16=-bit value is
used.

2. A symbol, as defined earlier. Symbols are interpreted
according to the following hierarchy:

a. a period causes the value of the current location counter
to be used,

b. a permanent symbol whose basic value is used and whose
arguments (if any) are ignored,

c. user defined symbols,

d. an undefined symbol is assigned a value of =zero and
inserted in the user-~defined symbol table.

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character or a double quote followed by two
ASCII characters which results in a word containing the 7-bit
ASCII wvalue of the character(s). (This construction is
explained in greater detail in Section 5.5.3.3.)

4. A term may also be an expression or term enclosed in angle

brackets. Any quantity enclosed in angle brackets is
evaluated before the remainder of the expression in which it

5-17

is found. BAngle brackets are used to alter the left to right
evaluation of expressions (to differentiate between A*B+C and
A*<B+C>) or to apply a unary operator to an entire expression
(-<aA+B>, for example).

5.2.9 Expressions

Expressions are combinations of terms joined together by binary
operators and which reduce to a 16-bit wvalue. The operands of a ,BYTE
directive (see Section 5.5.3.1) are evaluated as word expressions
before truncation to the low-order eight bits. Prior to truncation,
the high-order byte must be zero or all ones (when byte wvalue is
negative, the sign bit is propagated). The evaluation of an
expression includes the evaluation of the mode of the resultant
expression; - that is, absolute, relocatable or external. Expression
modes are defined further below.

Expressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+=A
is equivalent to:
- =A>>
A missing term, expression or external symbol is interpreted as a
zero. A missing operator is interpreted as +. A Q error flag is
generated for each missing term or operator. For example:
TAG ! LA 177777
is evaluated as
TAG ! LA+177777
with a Q error flag on the assembly listing line.
The value of an external expression is the value of the absolute part
of the expression; e.g., EXT+A has a value of A. This is modified by
the Linker to become EXT+A.
Expressions, when evaluated, are either absolute, relocatable, or
external. Por the programmer writing position-independent code, the
distinction is important.
l. An expression is absolute if its value is fixed. An
expression whose terms are numbers and ASCIT conversions will
have an absolute value., A relocatable expression minus a

relocatable term, where both items belong to the same program
section, is also absolute.

5-18

2. An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added when
linked. Expressions whose terms contain labels defined in
relocatable sections and periods (in relocatable sections)
will have a relocatable wvalue.

3. An expression is external (or global) if its value is only
partially defined during assembly and is completed at link
time. An expression whose terms contain a global symbol not
defined in the current program is an external expression.
External expressions have relocatable values at execution
time if the global symbol is defined as being relocatable or
absolute if the global symbol is defined as absolute.

5.3 RELOCATION AND LINKING

The output of the MACRO Assembler is an object module which must be
processed by Link before loading and execution. (refer to Chapter 6
for details.) The Linker essentially fixes (i.e., makes absoclute) the
values of external or relocatable symbols and turns the object module
into a load module.

To enable the Linker to fix the value of an expression, the Assembler
issues certain directives to the Linker together with required
parameters., In the case of relocatable expressions, the Linker adds
the base of the associated relocatable section (the location in memory
of relocatable 0) to the value of the relocatable expression provided
by the Assembler. 1In the case of an external expression, the value of
the external term in the expression is determined by the Linker (since
the external symbol must be defined in one of the other object modules
which are being linked together) and adds it to the value of the
external expression provided by the Assembler.

All instructions that are to be modified (as described in the previous
paragraph) are marked with an apostrophe in the assembly listing (see
also Appendix P, section P,2)., Thus, the binary text output looks as
follows:

005065 CLR EXTERNAL(S)

000000"* ;VALUE OF EXTERNAL SYMBOL
;ASSEMBLED ZERO; WILL BE
;MODIFIED BY THE LINKER.

005065 CLR EXTERNAL+6(5) ;THE ABSOLUTE PORTION OF THE

000006"' : ;EXPRESSION (000006) IS ADDED
;BY THE LINKER TO THE VALUE
;OF THE EXTERNAL SYMBOL

005065 CLR RELOCATABLE(S5) ;ASSUMING WE ARE IN A

000040' ; RELOCATABLE
s SECTION AND THE VALUE OF
:RELOCATABLE IS RELOCATABLE 40

5.4 ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e.,, the
address of the next instruction to be executed, or the second or third
word of the current instruction,

In order to understand how the address modes operate and how they
assemble, the action of the program counter must be understood. The
key rule is:

Whenever the processor implicitly uses the program counter
to fetch a word from memory, the program counter is
automatically incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (Sections 5.4.7, 5.4.9 and 5.4.11) the
processor uses the program counter to fetch the base from memory.
Hence, using the rule above, the PC increments by two, and now points
to the next word.

The following conventions are used in this section:
1. Let E be any expression as defined in section 5.2.
2, Let R be a register expression. This is any expression

containing a term preceded by a % character or a symbol
previously equated to such a term.

Examples:
RO = 30 ;GENERAL REGISTER 0
KL = RO+1 ;s GENERAL REGISTER 1

R2 = 1+%1 ;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
0 to 7 inclusive,

4. Let A be a general address specification which produces a

6-bit mode address field as described in Sections 3.1 and 3.2

of the PDP-11 Processor Handbook (both 11/20 and 11/45
versions).

The addressing specifications, A, can be explained in terms of E, R,

and ER as defined above. Each is illustrated with the single operand
instruction CLR or double operand instruction MOV,

5.4.1 Register Mode
The register contains the operand,
Format for A: R

Examples: RO=%0 ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER 0

5-20

5.4.2 REGISTER DEFERRED MODE
THE REGISTER CONTAINS THE ADDRESS OF THE OPERAND.
FORMAT FOR A: @R OR (ER)
EXAMPLES : CLR @Rl sBOTH INSTRUCTIONS CLEAR

CLR (1) ;THE WORD AT THE ADDRESS
s CONTAINED IN REGISTER 1

5.4.3 Autoincrement Mode

The contents of the register are incremented immediately after being
used as the address of the operand. (See note below.)

Format for A: (ER)+

Examples: CLR (RO)+ ;EACH INSTRUCTION CLEARS
CLR (RO+3)+ ¢THE WORD AT THE ADDRESS
CLR (2)+ ;CONTAINED IN THE SPECIFIED

:REGISTER AND INCREMENTS
; THAT REGISTER'S CONTENTS
:BY TWO

NOTE

Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register
before its use on the PDP=11/20 and 11/05 (but not
on the PDP-11/40 or 11/45). In double operand
instructions of the addressing form &R,(R)+ or
3R,-(R) where the source and destination registers
are the same, the source operand is evaluated as
the autoincremented or autodecremented value; but
the destination register, at the time it is used,
still contains the originally intended effective
address. In the following two examples, as
executed on the PDP-11/20, RO originally contains
100.

MOV RO, (0)+ s THE QUANTITY 102 IS MOVED
;TO LOCATION 100

MOV RO,-(0) ;THE QUANTITY' 76 IS MOVED
;TO LOCATION 76

The use of these forms should be avoided as they
are not compatible with the PDP-11/05, 11/40 and
11/45.

A 2 error code is printed with each instuction which is not compatible
among all members of the PDP-11 family. This is merely a warning
code,

5-21

S.4.4 Autoincrement Deferred Mode

The register contains the pointer to the address of the operand. The
contents of the register are incremented after being used.

Format for A: @(ER) +
Example: . CLR @(3)+ ;CONTENTS OF REGISTER 3 POINT
+TO ADDRESS OF WORD TO BE

;CLEARED BEFORE BEING
s INCREMENTED BY TWO

5.4.5 Autodecrement Mode

The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode).

Format for A: =(ER)

Examples: CLR -(R0) ; DECREMENT CONTENTS OF
CLR - (R0+3) :REGISTERS 0, 3 AND 2 BY TWO
CLR =(2) :BEFORE USING AS ADDRESSES OF

$WORDS TO BE CLEARED.

5.4.6 Autodecrement Deferred Mode

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Example: CLR @-(2) ;s DECREMENT CONTENTS OF
+REGISTER 2 BY TWO BEFORE
;USING AS POINTER
;TO ADDRESS OF WORD TO BE
; CLEARED,

5.4.7 1Index Mode

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

Format for A: E(ER)

Examples: CLR X+2(Rl) ;EF?ECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1,
CLR =2(3) ;EFFECTIVE ADDRESS IS -2 PLUS

;THE CONTENTS OF REGISTER 3.

5.4.8 1Index Deferred Mode
An expression plus the contents of a register gives the pointer to the
address of the operand.

Format for A: @E(ER)

Example: CLR @14(4) ;IF REGISTER 4 HOLDS 100 AND

s LOCATION 114 HOLDS 2000,
s LOCATION 2000 IS CLEARED.

5.4.9 Immediate Mode

The immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
autoincrement of register 7, the PC.,

Fformat for A: #E

Examples: MOV #100,RO sMOVE AN OCTAL 100 TO REGISTER
;0
’
MOV #X, RO sMOVE THE VALUE OF SYMBOL X TO

;s REGISTER 0O
The operation of this mode is explained as follows:
The statement MOV #100,R3 assembles as two words. These are:
012703
0001100

Just before this instruction is fetched and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch
the operand (the second word of the instruction) before being
incremented by two, to point to the next instruction,

5.4.10 2Absolute Mode

Absolute mode is the equivalent of immediate mode deferred, Q4E
specifies an absolute address which is stored in the second or third
word of the instruction. Absolute mode is assembled as an
autoincrement deferred of register 7, the PC.

Format for A: Q#E

Examples: MOV @#100,R0 sMOVE THE VALUE OF THE
;CONTENTS OF LOCATION 100 TO
;s REGISTER 0.
CLR @#X ;CLEAR THE CONTENTS OF THE
; LOCATION WHOSE ADDRESS 1S X.

5.4.11 Relative Mode
Relative mode is the normal mode for memory references.
Format for A: E

Examples: CLR 100 ;CLEAR LOCATION 100,
MOV X,Y s MOVE CONTENTS OF LOCATION X
;TO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X=-PC, which is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20:

01
Location 22: 00

6 703
005 4
The processor fetches the MOV instruction and adds twe to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the designated register. That is, BASE+PC=54+24=100,
the operand address. .

Since the Assembler considers "." as the address of the first word of
the instructicn, an equivalent index mode statement would be:

MOV 100-.-4 (PC) ,R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC, If the operator and
its operand are moved in memory so that the distance between the
operator and data remains constant, the instruction will operate
correctly anywhere in core.

5.4.12 Relative Deferred Mode

Relative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: QE
Example: MOV @X,R0 ;MOVE THE CONTENTS OF THE

;LOCATION WHOSE ADDRESS IS IN
;X INTO REGISTER 0.

5.4.13 Table of Mode Forms and Codes

* Bach instruction takes at least one word. Operands of the first six
forms 1listed below, do not increase the length of an instruction.
Each operand in one of the other modes, however, increases the
instruction length by one word.

Form Mode Meaning
R On Register mode
@R or (ER) in Register deferred mode
{(ER) + 2n Autoincrement mode
, @ (ER) + 3In Autoincrement deferred mode
= (ER) 4n Autodecrement mode
= (ER) Sn Autodecrement deferred mode

where n is the register number,

Any of the following forms adds one word to the instruction length:

Form Mode Meaning

E (ER) en Index mode

QE(ER) n Index deferred mode

#E 27 Immediate mode

@#E 37 Absolute memory reference mode

E 67 Relative mode

QE 77 Relative deferred reference mode

where n is the register number. Note that in the last four forms,
register47 (the PC) is referenced.

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is equivalent to QO({ER).

The form @4E differs from the form E in that the
second or third word of the instruction contains
the absolute address of the operand rather than
the relative distance between the operand and the
PC. Thus, the instruction CLR @#100 clears
absolute location 100 even if the instruction is
moved from the point at which it was assembled.
See the description of the .ENABLE AMA function in
Section 5.5.2, which directs the assembly of all
relative mode addresses as absolute mode
addresses.

5.4.14 Branch Instruction Addressing

The branch instructions are one word instructions. The high byte
contains the op code and the low byte contains an 8~bit signed offset
(7 bits plus sign) which specifies the branch address relative to the
PC. The hardware calculates the branch address as follows:

l. Extend the sign of the offset through bits 8-~15.

5-25

2, Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC 1is pointing to the word following the branch
instruction; hence the term =2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits,
Since PC = ,+2, we have
Byte offset = (E-.-2)/2 truncated to eight bits.
NOTE

It is illegal to branch to a location specified as
an external symbol, or to a relocatable symbol
from within an absolute section, or to an absolute
symbol or a relocatable symbol or another program
section from within a relocatable section.

5.4.15 EMT and Trap Addressing

The EMT and TRAP instruction do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers
in the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big (>377(8)) it is truncated to eight bits and a T
error flag is generated. '

5.5 ASSEMBLER DIRECTIVES

Directives are statements which cause the Assembler to perform certain
processing operations.

Assembler directives can be preceded by a label, subject to
restrictions associated with specific directives, and followed by a
comment, An assembler directive occupies the operator field of a
MACRO source line. Only one directive can be placed on any one line.
Zero, one, or more operands can occupy the operand field; 1legal
operands differ with each directive and may be either symbols,
expressions, or arguments.

5-26

5.5.1 Listing Control Directives

5.5.1.1 .LIST and .NLIST

Listing options can be specified in the text of a MACRO program
through the ,.LIST and .NLIST directives. These are of the form:

LIST arg
.NLIST arg

where: arg represents one or more optional arguments.

When used without arguments, the listing directives alter the 1listing
level count, The 1listing 1level count causes the 1listing to be
suppressed when it is negative. The count is initialized to zero,
incremented for each .LIST and decremented for each ,NLIST. For
example:

«MACRO LTEST s LIST TEST
;A=-THIS LINE SHOULD LIST
+NLIST
;B=THIS LINE SHOULD NOT LIST
+NLIST
;C~THIS LINE SHOULD NOT LIST
«LIST
sD=-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO 2ZERO)
« LIST
;E-THIS LINE SHOULD LIST (LEVEL BACK TO ZERQ)
« ENDM
LTEST ;CALL THE MACRO

sA-THIS LINE SHOULD LIST
;E=-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

The primary purpose of the level count is to allow macro expansions to
be selectively listed and yet exit with the level returned to the
status current during the macro call.

The use of arguments with the listing directives does not affect the
level count; however, .LIST and .NLIST can be used to override the
current listing control. For example:

«MACRO XX
.LIST ; LIST NEXT LINE
«NLIST ;DO NOT LIST REMAINDER
. ;OF MACRO EXPANSIOHN
.ENDM
.NLIST ME ;DO NOT LIST MACRO EXPANSIONS
XX
X=,

5-27

Allowable arguments for use with the listing directives are as follows
(these arguments can be used singly or 'in combination:

Argument Default

SEQ

LoC

BIN

SRC

coM

MEB

list

list

list

list

list

list

list

list

no list

no list

list

no list

Function

Controls the 1listing of source 1line
sequence numbers.,

Controls the 1listing of the location
counter (this field would not normally
be suppressed).

Controls the listing of generated binary
code,

Controls listing of binary extensions;
that is, those locations and binary
contents beyond the first binary word
(per source statement), This is a
subset of the BIN argument,

Controls the listing of the source code.

Controls the listing of comments. This
is a subset of the SRC argqument and can
be used to reduce 1listing time and/or
space where cormments are unnecessary.

Controls listing of macro definitions
and repeat range expansions (has no
effect in ASEMBL),

Controls 1listing of macro calls and
repeat range expansions (has no effect
in ASEMBL).

Controls 1listing of macro expansions
{has no effect in ASEMBL).

Controls 1listing of macro expansion
binary code, A LLIST MEB causes only
those macro expansion statements
producing binary code to be listed.
This is a subset of the ME argument (has
no effect in ASEMBL).

Controls the 1listing of unsatisfied
conditions and all «IF and LENDC
statements. This argument permits
conditional assemblies to be listed
without including unsatisfied code.

Controls listing of all listing
directives having no arguments (those
used to alter the listing level count).

Argument Default Function

TOC list Control listing of table of contents on
pass 1 of the assembly (see Section
5.5.,1.4 describing the « SBTTL

directive). The full assembly listing
is printed during pass 2 of the

assembly.
TT™M Teletype Control 1listing output format (has no
mode effect in ASEMBL). The TTM argument

(the default case) causes output lines
tc be truncated to 72 characters.
Binary code is printed with the binary
extensions below the first binary word.
The alternative (.NLIST TTM) to Teletype
mode is line printer mode, which is
shown in Pigure 5-2.

SYM list Controls the listing of the symbol table
for the assembly. '

An example of an assembly listing as sent to a 132 column line printer
is shown in Figure 5-2, Notice that binary extensions for statements
generating more than one word are spread horizontally on the source
line. An example of an assembly listing as sent to a terminal is
shown in Figure 5-3., Notice that binary extensions for statements
generating more than one word are printed on subsequent lines.

Figure 5-4 illustrates a symbol table listing. With the exception of
local symbols and macro names, all user-defined symbols are listed in
the symbol table. The characters following the symbols listed have
special meanings as follows:

= the symbol is assigned in a direct assignment
statement,

3 the symbol is a register symbol,

R the symbol is relocatable,

G the symbol is global.

The final value of the symbol is expressed in octal, If the symbol is
undefined six asterisks are printed in place of the octal number.

CSECT numbers are listed if the symbol is in a named CSECT. All

CSECTs are listed at the end of the table with their lengths and
corresponding number.

5-29

0€-g

«MAIN, RT-11 MACRO VM01l-01 22-JUL~73 PAGE 28
1 001766 GETLIN: 3GET AN INPUT LINE
2 001766 SAVREG
3 001772 016700 000020° 15 Mov FFCNT, RO ;ANY RESERVED FF'S?
4 001776 001420 BEQ 31s% ; NO
5 002000 060067 000022° ADD RO , PAGNUM ;YES, UPDATE PAGE NUMBER
6 002004 012767 177777 000026 Mov #-1,PAGEXT
7 002012 005067 000012° CLR LINNUM ;i INIT NEW CREF SEQUENCE
8 002016 005067 000020 CLR FFCNT
9 002022 005067 000016" CLR SEQEND
10 002026 005767 000000° TST PASS
11 002032 001402 BEQ 318
12 002034 005067 000010° CLR LPPCNT
13 002040 012702 001712° 315 MoV #LINBUF, R2
14 002044 010267 000012 MOV R2,LCBEGL iSET UP BEGINNING
15 002050 012767 002116° 000014° Mov #LINEND,LCENDL ; AND END OF LINE MARKERS
16 «IF NDF XSML
17 002056 005767 000200° TST SMLCNT s IN SYSTEM MACRO?
18 002062 001145 BNE 408 1 YES, SPECIAL
19 «ENDC
20 « IF NDF XMACRO
21 002064 016701 002214° Mov MSBMRP ,R1 ;ASSUME MACRO IN PROGRESS
23 « IFTF
22 002070 001166 BNE 10% sBRANCH IF SO
24 002072 012701 000756" Mov #5SRCBUF,R1
25 002076 +WAIT #SRCLNK
26 002104 005267 000012' INC LINNUM
27 002110 116700 000753" MOVB SRCHDR+3, R0 3GET CODE BYTE
28 002114 032700 000047 BIT #047,R0 $ANYTHING BAD?
29 002120 001403 BEQ 32¢ ; NO
30 002122 ERROR L $YES, ERROR
31 002130 106100 32¢: ROLB RO ;EOF?
32 002132 100014 BPL 28 ;3 NO
33 002134 056767 000006 000004° BIS CSISAV,ENDFLG
34 002142 001003 BNE " 34%
Figure 5-2

Example of MACRO Line Printer Listing
(132 column Line Printer)

;GET AN INPUT LINE
3sANY RESERVED FF'S?

s NO
:YES, UPDATE PAGE NUMBER

; INIT NEW CREF SEQUENCE

3SET UP BEGINNING

s AND END OF LINE MARKERS

;s IN SYSTEM MACRO?

;YES, SPECIAL

;ASSUME MACRO IN PROGRESS

sBRANCH IF SO

;GET CODE BYTE

; ANYTHING BAD?

ERROR

.Eﬂq:é\.
Z0MmaZ
0"3010

«MAIN, RT-11 MACRO VMO1l-01 22=-JUL-73 PAGE 28

-1 001766 GETLIN:

2 001766 SAVREG

3 001772 016700 1S: MOV FFCNT, RO
000020"

4 001776 001420 BEQ 31s

5 002000 060067 ADD RO, PAGENUM
000022°

6 002004 012767 MoV #=1,PAGEXT
177777
000026°

7 002012 005067 CLR LINNUM
000012°

8 002016 005067 CLR FFCNT
000020°

9 002022 005067 CLR SEQEND
000016"'

10 02026 005067 TST PASS
000000°

11 02032 001402 BEQ 318

12 02034 005067 CLR LPPCNT
000010"

13 02040 012702 31$: MoV #LINBUF,R2
001712

14 02044 010267 MOV R2 ,LDBEGL
000012*

15 02050 012767 MOV #LINEND,LCENDL
00211s6"
000014°

16 «IF NDF XSML

17 02056 005767 TST SMLCNT
000200°*

18 02062 001145 BNE 408

19 .ENDC

20 «IF NDF XMACRO

21 02064 016701 MoV MSBMRP,R1
002214"°

22 02070 001166 BNE 108

23 . +«IFTF

24 02072 012701 MoV #SRCBUF,R1
000756

25 02076 <WAIT #SRCLNK

26 02104 005267 INC LINNUM
000012°

27 02110 116700 MOVB SRCHDR+3 ,R0O
000753"

28 02114 032700 BIT #047,R0
000047

29 02120 001403 BEQ 328

30 02122 ERROR L

31 02130 106100 3258: ROLB RO

32 02132 100014 BPL 28

33 02134 056767 BIS CSISAV,ENDFLG
000006"°*
000004"

34 02142 001003 BNE 343

Figure 5-3 Example of Page Heading from MACRO Terminal

Listing (same format as for 80-column line printer)

5-31

RYEXEC
SYMBOL TaBLE

ABSEXPS wenuwe G
BINDAT Q@2122R
BUFTBL Q202360RG
CMILENe PRDB123
CORERR 221148R
CRFBUF 0202866R6
CRFDAT 0Qp2jser
CRFLENs Q22214
CRPPNT . 00Q060R
CRPTST 000008RG
DATTIM 2R1084RG
DNC . esanes G
EMTERRe 2Q002%2
ENOSWT Q08334R
ERRCNTS ssases
FINMSG 0QQ1217R
FINPY B028206R
FRECOR nQBREeR
GSARG = eavsvwe §
IMPURS aROUORR
INIP2 3025720
IoFTBL @Qegi2Re
10,ERRs 7282102 6
LCMASKS esswen
LINBUFs sezaan G
LeP s 3¥00ra
LSTOAT 0202112R
MACPY & savens G
MCEXECs ngoRee
MOYEYTs sevnes G
OCTLEN® 300080
PIN 20173aR
PRGLIM 0g022a3R
PUTKS = saswew G
RECNUM 240B2OR
RLDBUF 281e6T4R
R3 «3092089
R3 1890003
SAVREGS evedwe
SMDBLK Q220328R
SMLCHNe 220010
ML aaeeieR
SRCBUF 2@1128R
SRCLEN® M@0208
STKLIN QeQleo2R
SwiLOOK R095S14R
SwRD 302438R
SwRN 223%4620
SWTOON 222332R
SWTPLG @20e89R
TaB . gg@dll
TTLLENS 202280
WIN3T » 1Da2eg
LEQCDRs AR220Q
SCLOUT Q02202%2RC
SNALT QQ20ASREG

RTEXEC
SYMBOL TABLE
. 483, docR0e
202000
2eepee
200374
2282176
egecae
secoee
200042
202130
DETECTEDS

DPURE
DPURES
MIXEDS
ELAE 1 4]
SWTSEC
IMPURS
MAINS
ERRORS

FREE COREJ 12864, WwORDS

[].1]
0e3

o1e
eva
vea

1]
a7
eoa

210

o2a
(31
ee?

ea7
v1e
ea7

eeq

a1
0o3

ea7
(.11}

o3

(124
ovs

a9e
|33]
ete
ate

- 3%]
ea?

[21
e1e

(11
201
ez
[-L2]
e84
eas
[10]
eer
210

RTell MACRO VMQ2e233

ASSEM
BLXTRL
CHAN
CNTTRL
cPL
CRFC
CRFE
CRFM
CRFY
cTLYBL
CEFEXT
EUMASK
ENDPY
ERK

F#
FINMS]
FInP2
GETPLI
RORTTL
INICF
INTSMY,
1o0LT8L
10,NNY
LCMCET
LINLEN
LSTBUF
CSTLEN
MaCP2
MONL Ow
08JBUF
Pal3s
PID
PROSWH
PUTKEL
RELCHN
RLDLEN
R1

L1}
SERROR
SMLBLK
SMLDAT
14
SRCCHN
BTANRT
STKSAYV
SWNEXT
SnRE
SwTAAR
SWTEND
SYsylc
THMPCNT
USRLOC
X8An
XEDPIC
SREAD
SNNITE

RTe{]l MACRD VMO2s03

29%AlUbk=73- PAGE 29«

8 swanee

s QQ2110R eos
nuY2162R (.12
29AJ4L4RG ens

. Pu0l2e

s AQeuvRe

s Q00vaQ

© 2uAnde

" pyoRe2
2ozengR ¢03
apa23en 293

s enemne §

e vceswde G
eeiieer 331

s PARte
AGIR4LR [l
PonL26R ale
22117¢RG [-21°]
BR1871RG (1.1}
20%876R 210
eB1272R6 eie
Pen33eR 203

s 2paeal

s esdvee §

s Bp028¢
AT132eR [dd]

s BUA2eS

s enrenwe

s 0PA0Sa
Bolvlok ore

e spesen
PeL752R (A1)

s saenes

s sewsed

» 20000%

o 00PUS2

23300001

sxpenune
detiier ele
AQLYBLR (1.1
QU2142R ofa

2X000026

s gyoede
QuAVRARRG el1e
200030k efra
UARTYR elp
B0R4a3AR [31
auaaaaR 208

s Pod224R eal

s 00040}

® 200218

» 2¥QRab

s PoQ92Y

» dpaana
ev1Ss2nre 10
221386R6 e1e

2904UG»T73 PAGE 29«

AINCHNS
BEME »
CHRENTS
CONT

CRr s
CRFCHNS
CRFFLG
CHFP ¢
CRFTAB
DATE
DETAB
EOMCSIs
ENDP2 »
EnAp
FIN
FINmS2
FINSML
GETHS2s
IMPURT
INIPY
INITT
10,k0F®
10,1T¥s
LF »
LNTAR
LSTCuNs
MACPR® ©
MAXCHNS
MONTEL,
OBJLENS
PC
POUT
PTRTBL
PYUTLP »
RELDAT
ATiL =
L

4]
SETOMN
SMLOBUF
SMLLENSs
SPACE =
SRCOATY
STKFDGe
STLLENa
SwRC
SwiRi
SwTRL
SWTERR
SYTTOPs
TSTSTK
vT L]
XEDABSS
XMITD «
SHEADN
SwRITw

Figure 5~4 Symbol Table

5-32

LLLITLY
20r020
tesown G
ARPL3IURG
Agoets
ngoele
AQ0Q22R
seaeie
agae2eR
reRe30R
feoi6an
vowges G
owneve G
QAT 2R
20103606
fRIRSTR
A0 336RG
saoeer
agapacn
2p0a5&2R
AYRLDUR
fQeeda G
Agaed2 G
raop12
Roapeew
L1-T0 1]
(21731 BN
Agegle
aem24aeR
20m0%2

syAgaRa7

221 734R
202106R
sxante G
182132k
200nenp

2200002
2X02000%

PP@TsaR
QYLTaLR
agni2e
agaesp
apiow
ep0RTa
30189
oQaaTeR
220366R
aap2iae
aga3aen
A2AP80RG
22111606
eQnels
ogerave
saeare G
PR1532RG
2Q1386RG

619

ear

ve3
vie
1K

'2Y°]
¥lo
LI
(21

w27
"2 Y]
ele

403

uas

810
1.1}

"1-14

8l
are

"L 1]

e1e
uar

e1e
984
210

eie
Q19

5.5.1.2 Page Headings
The MACRO Assembler outputs each page in the format shown in Pigure
5=3 (Terminal 1listing). On the first line of each listing page the
Assembler prints (from right to left):

1. title taken from .TITLE directive

2, assembler version identification

3. the date (not in 8K version)

4., page number

The second line of each 1listing page contains the subtitle text
specified in the last encountered .SBTTL directive.

5.5.1.3 OTITLE

The .TITLE directive is used to assign a name to the object module.
The name is the first symbol following the directive and must be six
Radix-50 characters or less {any characters beyond the first six are
ignored. Non Radix-50 characters are not acceptable. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG
(this name 1is distinquished from the filename of the object module
specified in the command string to the Assembler).

If there is no TITLE statement, the default name assigned to the first
object module is

+MAIN.

The first tab or space following the .TITLE directive is not
considered part of the object module name or header text, although
subsequent tabs and spaces are significant,

If there is more than one ,TITLE directive, the last ,TITLE directive
in the program conveys the name of the object module.

5.5‘1.4 QSBML

The ,SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the

2 ___ 2 s __ 3 __ At e a

directive is printed as the second 1line of each of the following
assembly listing pages until the next occurrence of a .SBTTL
directive. For example:

«SBTTL CONDITIONAL ASSEMBLIES

5-33

The text
CONDITIONAIL ASSEMBLIES

is printed as the second line of each of the following assembly
listing pages.

During pass 1 of the assembly process, MACRO automatically prints a
table of contents for the listing containing the line sequence number
and text of each ,SBTTL directive in the program. Such a table of
contents is inhibited by specifying the .NLIST TOC directive within
the source.

An example of the table of contents is shown in Figure 5-5., Note that

the first word of the subtitle heading is not limited to six
characters since it is not a module name.

5-34

<MAIN,

RTell MACKO VME2-23 29«AlGa73

TABLE OF CONTENTS

i=

i=

ew

3

Q=

S=

Te
1@=
iie
12«
13-
14w
iSe
1o
17w
8=
i9e
2d=
2l=
2d=
23~
24w
25~
26w
2T
29

is
25

P Gt Gy Pl o B Pt Jeh G P o G s Js g i (Y] [\ &S 88 gt g0 & Bo

RTmiy MACKO PARAMETER FILE

CUMMON PAKAMETER FILE
ASSEMBLY COPTIOQONS
VARIABLE PANAMETERS
GLOBALS
SECTOR INITIALIZATION
SUBROUTINE CALL DEFINITIONS
MISCELLANEQUS MACRG DEFINITIONS

MCIOCH o I/0 CHANNEL ASSIGNMENTS

svnwEXECHrew

PROGRAM STARY

INIT QUTPUTY FILES

SKITCH WANDLERS

ENDeOFaPASS ROUTINES

SWITCH AND DATE DATA AREAS

INIT QUTPUTY FILES (CONTINUED)

FINISH ASSEMBLY AND RESTARY

MEMORY MANAGEMENT

GET PHYSICAL SOURCE LINE

SYSTEM MACRD HMANDLERS

WRITE ROUTINES

READ ROUTINE

COMMON 1/0 ROUTINES

MESSAGES

I1/0 TABLES

FINIS

Figure 5=5 Assembly Listing Table of Contents

Table of Contents text is taken from the text of each .SBTTL
directive, The associated numbers are the page and line numbers of
the .SBTTL directives. ’

5,5.1.5 JIDENT

The ,IDENT directive is a NOP.

5.5.1.6 Page Ejection

There are several means of obtaining a page eject in a MACRO assembly
listing: .
1. After a line count of 58 lines, MACRO automatically performs
a page eject to skip over page perforations on line printer
paper and to formulate terminal output into pages.

2. A form feed character used as a line terminator (or as the
only character on a line) causes a page eject. Used within a
macro definition a form feed character causes a page eject.
A page eject is not performed when the macro is invoked.

3. More commonly, the .PAGE directive is used within the source
code to perform a page eject at that point. The format of
this directive is

- PAGE

This directive takes no arguments and causes a skip to the
top of the next page.

Used within a macro definition, the .PAGE is ignored, but the
page eject is performed at each invocation of that macro.

5.5.2 PFunctions: .ENABL and .DSABL Directives

Several functions are provided by MACRO through the .ENABL and .DSABL
directives, These directives use three-character symbolic arguments
to designate the desired function; and are of the forms:

.ENABL arg
+DSABL arg

where: arg is one of the 1legal symbolic arguments defined
below.

The following table describes the symbolic arguments and their
associated functions in the MACRO language:

5-36

Symbolic Punction

AMA Enabling of this function directs the
' assembly of all relative addresses (address
mode 67) as absolute addresses {address mode
37). This switch is useful during the
debugging phase of program development.

FPT Enabling of this function (has no effect in
ASEMBL) causes floating point truncation,
rather than rounding, as is otherwise
performed. +DSABL FPT returns to floating
point rounding mode.

ic Enabling of this function causes the
Assembler to accept lower case ASCII input
instead of converting it to upper case (has
no effect in ASEMBL).

LSB Enable or disable a local symbol block (has
no effect in ASEMBL). While a local symbol
block is normally entered by encountering a
new symbolic label or .CSECT directive,
.ENABIL LSB forces a local symbol block which
is not terminated until a label or .CSECT
directive following the .DSABL LSB statement
is encountered. The default case is .DSABL
LSB.

PNC The statement ,DSABL PNC (has no effect in
ASEMBL) inhibits binary output until an
.ENABI, PNC is encountered. The default case
is .ENABL PNC.

An incorrect argument causes the directive containing it to be flagged
as an error.

5.5.3 Data Storage Directives

A wide range of data and data types can be generated with the
following directives and assembly characters:

+BYTE
« WORD
.

-ASCII
+ASCIZ
«RAD50
1B
+D
t+0

These facilities are explained in the following sections.

5-37

5.5.3.1 'BYTE

The .BYTE directive is used to generate successive bytes of data. The
directive is of the form:

«BYTE exp sWHICH STORES THE OCTAL
. : ;EQUIVALENT OF THE EXPRESSION
jexp IN THE NEXT BYTE.

<BYTE expl,exp2,... ;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSION IN SUCCESSIVE BYTES.

where a legal expression must have an absolute value (or contain a
reference to an external symbol) and must result in 8 bits or less of
data. The 1l6~bit value of the expression must have a high-order byte
(which is truncated) that is either all zeros or all ocnes. Each
operand expression is stored in a byte of the object program,
Multiple operands are separated by commas and stored in successive
bytes. Por example:

SAM=5

.=410

«BYTE ¢D48,SAM ;060 (OCTAL EQUIVALENT OF 48
;DECIMAL) IS STORED IN LOCATION
;410, 005, IS STORED IN
;s LOCATION 411.

If the high-order byte of the expression equates to a value other than
0 or -1, it is truncated to the low-order 8 bits and flagged with a T
error code. If the expression is relocatable, an A-type warning flag
is given.

At link time it is likelyv that relocation will result in an expression
of more than 8 bits, in which case, the Linker prints an error code.
For example:

S
it
ey

+BYTE 23 :STORES OCTAL 23 IN NEXT BYTE.
A:
«BYTE A ; RELOCATABLE VALUE CAUSES AN "A"
:ERROR FLAG,
«GLOBL X
X=3
«BYTE X ;STORES 3 IN NEXT BYTE.

In the case where X is defined in another program:

+GLOBL X
«BYTE X

If an operand following the .BYTE directive is null, it is interpreted
as a zero, For example:

«=420
«.BYTE ,, ;ZEROS ARE STORED IN BYTES 420, 421, AND 422.

5-38

5.5.3.2 .WORD

The .WORD directive is used to generate successive words of data. The
directive is of the form:

+WORD exp sWHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSION
sexp IN THE NEXT WORD,

«WORD expl,exp2,... sWHICH STORES THE OCTAL
sEQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE
s WORDS,

where a legal expression must result in 16 bits or less of data. Each
operand expression is stored in a word of the object program.
Multiple operands are separated by commas and stored in successive
words., For example: :

SAL=0

=500 ‘

.WORD 177535, .+4,SAL ;STORES 177535, 506 AND 0 IN
;WORDS 500, 502 AND 504.

If an expression equates to a value of more than 16 bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero. For example:

.=500
.WORD ,5, ;STORES 0, 5, AND 0 IN LOCATIONS
3500, 502, AND 504.

A blank operator field (any operator not recognized as a macro call,
op-code, directive or semicolon) is interpreted as an implicit .WORD
directive. Use of this convention is discouraged. The first term of
the first expression in the operand field must not be an instruction .
mnemonic or assembler directive unless preceded by a + or - operator.
For example:

.=440 ;THE OP-CODE FOR MOV, WHICH
;IS 010000, IS STORED IN
LABEL: +MOV , LABEL ; LOCATION 440. 440 IS

;STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive, Therefore, if an instruction
mnemonic, macro call or assembler directive is misspelled, the .WORD
directive 1is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B
Two error codes result: Q occurs because an expression operator is

missing between MOR and A, and a U occurs if MOR is undefined. Two
words are then generated; one for MOR A and one for B,

5-39

5.5.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
term in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte. For example:

MOV #'A,RO
results in the following 16 bits being moved into RO:
0000000001000001
The ' character is never followed by a carriage return, null, RUBOUT,

line feed or form feed. (For another use of the ' character, see
Section 5.6.3.6.)

STMNT: .
GETSYM
BEQ 43
CMPB @CHRPNT, #': ;COLON DELIMITS LABEL FIELD.
BEQ LABEL
CMPB @CHRPNT, #'= :EQUAL DELIMITS
BEQ ASGMT ;ASSIGNMENT PARAMETER.,

A double quote followed by two characters results in a term in which
the 7-bit ASCII representations of the two characters are placed. For
example:

MOV #"AB,RO
results in the following word being moved into RO:

0100001001000001

The " character is never followed by a carriage return, null, rubout,
line feed or form feed. For example:

;DEVICE NAME TABLE

DEVNAM: +«WORD "RF ;RF DISK
«WORD "RK sRK DISK

DEVNKB: «WORD »oT ; TERMINAL KEYBOARD
«WORD DT ; DECTAPE
+«WORD "LP ;LINE PRINTER
«WORD "PR ;s PAPER TAPE READER
+WORD "PP ;PAPER TAPE PUNCH
- WORD 0 ;TABLE'S END

5.5.3.4 .ASCII
The ,ASCII directive translates character strings into their 7-bit

ASCII equivalents for use in the source program. The format of the
.ASCII directive is:

5-40

-ASCII /character string/

where: character string is a string of any acceptable printing
ASCII characters including spaces. The
string may not include null characters,
rubout, return, line feed, vertical tab,
or form feed. Nonprinting characters
can be expressed in digits of the
current radix and delimited by angle

brackets. {Any legal, defined
expression is allowed between angle
brackets.)

/ / these are delimiting characters and may

be any printing characters other than ;
< and = characters and any character
within the string.

As an example:

Ar -ASCII /HELLO/ s STORES ASCII REPRESENTATION OF
:THE LETTERS H.E.L.L.QO IN
;CONSECUTIVE BYTES.

.ASCII /ABC/<15><12> /DEF/
s STORES
$101,102,103,15,12,104,105,106 IN
sCONSECUTIVE BYTES.

.ASCII /<AB>/ ;s STORES 74,101,102,76 IN
3CONSECUTIVE BYTES

The ; and = characters are not illegal delimiting characters, but are
preempted by their significance as a comment indicator and assignnment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field. For example:

DIRECTIVE RESULT EXPLANATION
«ASCII sABC; /DEF/ ABCDETF Acceptable, but not
recommended procedure.
.ASCII /BABC/;DEF; ABC :DEF; is treated as a comment
' and ignored.
JASCII /ABC/=DEF= ABCDETF Acceptable, but not
recommended procedure.
+ASCII =DEF= The assignment
+ASCII=DEF

is performed and a Q error
generated upon encountering
the second =,

- ’ 5-41

5.5.3.5 .AsCIZ

The ,ASCIZ directive is equivalent to the .ASCII directive with a zero
byte automatically inserted as the final character of the string., For
example:

When a list or text string has been created with a
.ASCIZ directive, a search for the null character
can determine the end of the list. For example:
CR=15

LF=12

L]

MOV #HELLO,R1
MOV #LINBUF,R2

Xs MOVB (R1l)+,(R2)+
BNE X

HELLO: .ASCIZ <CR><LF>/MACRO~11 VOOlA/<CR><LF> ;INTRO MESSAGE

5.5.3‘6 .RADSO

The .RAD50 directive allows the user the capability to handle symbols
in Radix-50 coded form (this form is sometimes referred to as MOD40
and is used in PDP-1l system programs). Radix-50 form allows three
characters to be packed into sixteen bits; therefore, any 6-character
symbol can be held in two words. The form of the directive is:

.RADS0 /string/

where: / / delimiters can be any printing
characters other than the =, <, and ;

characters.
string is a 1list of the characters to be

converted (three characters per word)
and which may consist of the characters
A through 2z, 0 through 9, dollar ($),
dot (.) and space (). If there are
fewer than three characters (or if the
last set is fewer than three characters)
they are considered to be left justified
and trailing spaces are assumed.,
Illegal nonprinting characters are
replaced with a ? character and cause an
I error flag to be set. Illegal
printing characters set the Q error
flagqg,

The trailing delimiter may be a carriage return, semicolon, or
matching delimiter. For example:

«RADS0 /ABC sPACK ABC INTO ONE WORD,
- RADS0 /AB/ ;PACK AB (SPACE) INTOC ONE WORD.
«RAD50 /7 ;PACK 3 SPACES INTO ONE WORD.

5-42

.RAD50 /ABCD/ sPACK ABC INTO FIRST WORD AND
:D SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix=-50 equivalent as indicated
in the following table:

Character Radix=50 Equivalent (octal)
(space) 0

A=Z 1-32

$ 33

. 34

0~9 36=47

Note that another character could be defined for code 35, which is
currently unused.

The Radix=-50 equivalents for three characters (Cl,C2,C3) are combined
in one l6-bit word as follows:

Radix 50 value = ((Cl*50)+C2)*50+C3
For example:

Radix=-50 value of ABC is ((1*50)+2)*50+3 or 3223
See Appendix E for a table to quickly determine Radix-50 equivalents.
Use of angle brackets is encouraged in the .ASCII, .ASCIZ, and .RAD50

statements whenever leaving the text string to insert special codes.
For example:

.ASCII <101> ;EQUIVALENT TO .ASCII/A/
.RAD50 /AB/<35> :STORES 3255 IN NEXT WORD
CHR1=1
CHR2=2
CHR3=3

»

+RADS0<CHR1><CHR2><CHR3> :EQUIVALENT TO .RADS0/ABC/
5.5.4 Radix Control

5.5.4.1 LRADIX

Numbers used in a MACRO source program are initially considered to be
octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX>directive, of the form:
«RADIX n
where: n is one of the acceptable radices.

The argdhent to the .RADIX directive is always interpreted in decimal
radix. Pollowing any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program, and the argument
assumed if none is specified, is 8 (octal). For example:

+RADIX 10 ;BEGINS SECTION OF CODE WITH
;DECIMAL RADIX

«RADIX ;REVERTS TO OCTAL RADIX

In general it is recommended that macro definitidns not contain or
rely on radix settings from the .RADIX directive. The temporary radix
control characters should be used within a macro definition, (+D, tO,
and *B are described in the following section.) A given radix is valid
throughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the user specify values using the
temporary radix controls.

5.5.4.2 Temporary Radix Control: +p, +0, and 4B

Once the user has specified a radix for a section of code, or has
determined to use the default octal radix he may discover a number of
cases where an alternate radix is more convenient (particularly within
macro definitions). For example, the creation of a mask word might
best be done in the binary radix.

MACRO has three unary operators to provide a single interpretation in
a given radix within another radix as follows:

+Dx (x is treated as being in decimal radix)
tox (x is treated as being in octal radix)
*Bx (x is treated as being in binary radix)

For example:

+D123

+0 47

+B 00001101
+0<A+3>

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
the number by spaces or tabs for formatting purposes. Where a term or
expression is to be interpreted in another radix, it should be
enclosed in angle brackets.

5-44

These numeric quantities may be used any place where a numeric value
is legal.

PAL-11R contains a feature, which is maintained for compatibility in
MACRO, allowing a temporary radix change from octal to decimal by
specifying a decimal radix number with a "decimal point”. For
examples

100. (144(8))
1376, (2540(8))
128, (200(8))

5.5.5 Location Counter Control

The four directives which control movement of the location counter are
.EVEN and .ODD which move the counter a maximum of one byte, and .BLKB
and .BLKW which allow the user to specify blocks of a given number of
bytes or words to be skipped in the assembly.

5.5.5.1 .EVEN

The .EVEN directive ensures that the assembly location counter
contains an even memory address by adding one if the current address
is odd. If the assembly location counter is even, no action is taken.
Any operands following a .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ /THIS IS A TEST/

.EVEN ;ASSURES NEXT STATEMENT
:BEGINS ON A WORD BOUNDARY.

+WORD XY2

5.5.5.2 .0DD

The .0ODD directive ensures that the assembly location counter is odd
by adding one if it is even. TFor example:

;CODE TO MOVE DATA FROM AN INPUT LINE
;TO A BUFFER

N=5 : BUFFER HAS 5 WORDS
.0ODD
.BYTE N*2 ; COUNT=2N BYTES
BUFF: .BLKW N ;RESERVE BUFFER OF N WORDS
MoV #BUFF,R2 ;ADDRESS OF EMPTY BUFFER IN R2
Mov #LINE,RL ;ADDRESS OF INPUT LINE IS IN Rl

MOVB -1(RrR2),RO ;GET COUNT STORED IN BUFF-1 IN RO
AGAIN: MOVB (R1)+,(R2)+ ;MOVE BYTE FROM LINE INTO BUFFER

BEQ DONE ;WAS NULL CHARACTER SEEN?
DEC RO . ;DECREMENT COUNT
BNE AGAIN ;NOT = 0, GET NEXT CHARACTER.
CLRBE =(R2) ;OUT OF ROOM IN BUFFER, CLEAR LAST
DONE : : WORD
LINE: (ASCIZ /TEXT/

In this case, .ODD is used to place the buffer byte count in the byte
preceding the buffer, as follows:

COUNT RN\ BUFF-2

BUFF

5.5.5.3 .BLKB and .BLKW

Blocks of storage can be reserved using the .BLKB and +« BLKW
directives. .BLKB is used to reserve byte blocks and ,BLKW reserves
word blocks. The two directives are of the form:

«BLKB exp
- BLKW axp
where: exp is the number of bytes or words to reserve. If no

argument is present, 1 is the assumed default
value. Any legal expression which is completely
defined at assembly time and produces an absolute
number is legal.

For example:

1 000000" «CSECT IMPURE

2

3 000000 PASS: « BLKW

4 :NEXT GROUP MUST STAY TOGETHER
5 000002 SYMBOL: .BLKW 2 : SYMBOL ACCUMULATOR

6 000006 MODE:

7 000006 FLAGS: .BLKB 1 sFLAG BITS

8 000007 SECTOR: ,BLKB 1 s SYMBOL/EXPRESSION TYPE
9 000010 VALUE: .BLKW 1 ;EXPRESSION VALUE

10 00012 RELLVL: .BLKW 1

11 « BLKW 2 END OF GROUPED DATA

12

5-46

13 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
14 00024 CLCFGS: ,BLKB 1
15 00025 CLCSEC: .BLKB i
16 00026 CLCLOC: .BLKW 1l
1l

17 00030 CLCMAX: .BLKW
The .BLKB directive has the same effect as
«=.+exp

but is easier to interpret in the context of source code.

5.5.6 Numeric Control

Several directives are available to provide software complements to
the floating=-point hardware on the PDP-1ll. '

A floating-point number is represented by a string of decimal digits.
The string (which can be a single digit in length) may optionally
contain a decimal point, and may be followed by an optional exponent
indicator: in the form of the letter E and a signed decimal exponent.
The list of number representations below contains seven distinct,
valid representations of the same floating-point number:

3
30

3.0
3.0E0
3E0
.3El
300E=-2

As can be quickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, .03E2, etc.). A leading plus sign is ignored (e.g.,
+3,0 is considered to be 3.0). Leading minus signs complement the
sign bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating=-point number representations are only valid in the contexts
described in the remainder of this Section.

Floating=-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order excess bit is added to the low-order
retained bit. For example, if the number were to be stored in a
2-word field, but more than 32 bits were needed for its value, the
highest bit carried out of the field would be added to the least
significant position. 1In order to enable floating=-point truncation,
the .ENABL FPT directive is used and .DSABL FPT is used to return to
floating-point rounding (see Section 5.5.2).

5.5.6.1 LFLT2 and .FLT4

Like the ,WORD directive, the two floating-point storage directives
cause their arguments to be stored in-line with the source program
(have no effect in ASEMBL). These two directives are of the form:

.FLT2 argl,arg2,...
FLT4 argl,arg2,...

where: argl,arg2,... represents one or more floating point numbers
separated by commas.

+FLT2 causes two words of storage to be generated for each argument
while .FLT4 generates four words of storage.

The following code was assembled with the 4-word floating-point math
package:

006010' 037314 146314 146314 ATOFTB: LFLT4 1.E-1 ;10t=1
006016' 146315

006020' 036443 153412 036560 .FLT4 1.E=2 :104=2
006026°' 121727

006030"' 034721 133427 054342 +FLT4 1.E~4 $110+=4
006036"' 014545

006040' 031453 146167 010604 .FLT4 1.E-8 ;104-8
006046' 060717

006050' 022746 112624 137304 +FLT4 1.E-16 :104+=-16
006056' 046741 .

006060' 005517 130436 126505 .FLT4 1.E=-32 ;104=32

006066' 034625

5.5.6.2 Temporary Numeric Control: +F and 4C
Like the temporary radix control operators, operators are available to
specify either a one-word floating-point number (+F) (not available in

-ASEMBL) or the one's complement of a one=word number (4C). For
example:

FL3,7: +F3.7

creates a one-word floating=point number at location FL3.7 containing
the value 3.7 as follows:

15 14 : 7 6 g

sign y
bit S exponent mantissa

This one-word floating=-point number is the first word of the 2- or
4-word floating-point number format shown in the PDP-11 Processor
Handbook, and the statement:

CMP151: +C151

stores the one's complement of 151 in the current radix (assume
current radix is octal) as follows:

5-48

15 g

177626

Since these control operators are unary operators, their arguments may
be integer constants or symbols, and the operators may be expressed
recursively. For example:

+F<1.2E3>
+C4tD25 or +C31 or 177746

The term created by the unary operator and its arqument is then a term
which can be used by itself or in an expression. For example:

+C2+6
is equivalent to:

<4+C2>+6 = or 17777546 or 000003
For this reason, the use of angle brackets is advised. Expreésions
used as terms, or arquments of a unary operator must be explicitly

grouped.

An example of the importance of ordering with respect to unary
operators is shown below:

fPl. 0
fF-’lo 0

020400
120400

-4F1l.0 = 157400
-tF=1.0 = 057400

The argument to the 4F operator must not be an expression and should

be of the same format as arquments to the .FLT2 and ,FLT4 directives
(see Section 5.5.6.1).

5.5.7 Terminating Directives

5.5.7.1 .END

The .END directive indicates the physical end o