UPDATE NOTICE NO. 1

RSX-11M/M-PLUS
Utilities Manual

AD-L681A-T1

April 1983

Insert this page in the RSX-11M/M-PLUS Utilities Manual to maintain an up-
to-date record of changes to the manual.

NEW AND CHANGED INFORMATION
This update reflects software changes and additions made in RSX-11M-PLUS Version 2.1.

Copyright © 1983 Digital Equipment Corporation

INSTRUCTIONS

Add the following pages to the RSX-11M/M-PLUS Utilities Manual as replacements for or additions to
current pages. The changes made on replacement pages are indicated in the outside margin by change
bars (J) for additions and bullets (¢) for deletions. A date at the bottom of the new pages denotes revised
or new information for this update. If a page has a date at the bottom, but no change bars or delete
bullets, all the text on that page is new.

OLD PAGE NEW PAGE
Title Page/Copyright Page Title Page/Copyright Page
iii/iv through xiii/xiv iii/iv through xiii/blank
XiX/xx XiX/Xx
XXi/xxii XXi/Xxii
7-1/7-2 through 7-49/7-50 7-1/7-2 through 7-55/7-56
15-1/15-2 15-1/15-2
— ‘ 15-2.1/blank
15-3/15-4 15-3/15-4
15-19/15-20 15-19/15-20
— 15-20.1/15-20.2
Index-1/Index-2 through Index-11/Index-12 Index-1/Index-2 through Index-11/blank

Reader’s Comments/Mailer Reader’'s Comments/Mailer

RSX-11M/M-PLUS
Utilities Manual

Order No. AA-L681A-TC

Update Notice No. 1 (AD-L681A-T1)

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1

digital equipment corporation - maynard, massachusetts

First Printing, December 1979
Revised, November 1981
Updated, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

]

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (C) 1979, 1981, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 pPDP vT
DECSYSTEM-20 PDT

DECUS RSTS dlilglilt]all
DECwriter

ZK2249

HOW TO ORDER ADDITIONAL DOCUMENTATION

in Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS {CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Huil) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro. Massachusetts 01532

CONTENTS

Page
PREFACE XV
SUMMARY OF TECHNICAL CHANGES xix
CHAPTER 1 INTRODUCTION
1.1 RSX-11M/M-PLUS UTILITY PROGRAMS . . . « + & o » o 1-1
1.1.1 Line Text EAitor (EDI) v v ¢« o ¢ o o o o o « o o« 1=-2
1.1.2 Peripheral Interchange Program (PIP) 1=2
1.1.3 File Transfer Utility Program (FLX) e o e o o o 1-2
1.1.4 Disk Volume Formatter Utility (FMT) « . 1-2
1.1.5 Bad Block Locator Utility (BAD) e e s s o o o o 1-2
1.1.6 Backup and Restore Utility (BRU) « « « & &« « o o 1-3
1.1.7 Disk Save and Compress Utility Program (DSC) . . 1-3
1.1.8 File Structure Verification Utility (VFY) e o« o 1-3
1.1.9 Librarian Utility Program (LBR) . . « « « « « o 1-3
1.1.10 File Dump Utility (DMP) . « ¢« ¢ « ¢« ¢ « o o o o+ 1=3
1.1.11 File Compare Utility (CMP) ¢ ¢« o ¢ « o o o o« o o« 1-3
1.1.12 Source Language Input Program (SLP) . . « « + .« 1-3
1.1.13 Object Module Patch Utility (PAT)« « . . 1-3
1.1.14 Task/File Patch Program (ZAP) . . « ¢« o« « o« « . 1-4
1.2 COMMAND LINES . & 4 o o o o o s s o s s o o s s o 1-4
1.3 FILE SPECIFICATIONS . & & 4 o o o o o o o o o o o 1-4
1.4 INVOKING THE UTILITIES ¢ ¢ 4 ¢ ¢ o o o o o o o o « 16
1.4.1 Invoking Installed Utilities . ¢« & &« ¢« ¢ &« o & o 1=7
l.4.1.1 Invoking a Utility and Returning Control to
MCR 3 . 3 . . . 3 3 Y . . . 1_7
l.4.1.2 Invoking a Utility and Returning Control to
DCL 4 4 s o o o o o o « o o o o o o o o o « o 1-8
1.4.1.3 Invoking and Passing Control to a Utility . . 1-8
1.4.2 Invoking Uninstalled Utilities . . . ¢« ¢« ¢« « « + 1-9
1.5 USING INDIRECT COMMAND FILES . +« ¢« o« « ¢ o o« o « « 1-9
CHAPTER 2 LINE TEXT EDITOR (EDI)
2.1 USING EDI . ¢ ¢ o o o o o o o s o o o o o o e o 2-1
2.1.1 INvoking EDI &« & o o o o o o o o o s o o o « o 2-1
2.1.1.1 Entering File Specifications « . « « . 2=2
2.1.1.2 Defaults in File Specifications 2-2
2.1.2 Control Modes: Edit and Input . . . « ¢« ¢« ¢ « o 2-3
2.1.3 Text Access Modes . . + ¢ o « o o o ¢ o o o o o 2-3
2.1.3.1 Line-by-Line Mode . . ¢ ¢ ¢ ¢ ¢ o o o« o« « « . 2-4
2.1.3.2 Block MOd@ . v 4o o ¢ o o s o « o o o o o o o o 2-4
2.1.3.3 Processing Text in Pages . . « ¢« « ¢ o« o o « « 2=5
2.1.4 Text FileS . ¢ o ¢ o o o o o o o o o o o s o o & 2-5
2.1.4.1 Input and Secondary Files . . « ¢« ¢« ¢« o« & « o« 2-6
2.1.4.2 OQutput FileS o« v o ¢ ¢ o o o o s o o o o o o o 2=6
2.1.5 Terminal Conventions . « ¢« ¢« ¢« o« ¢« o o« o o o o« o« 2-6
2.1.5.1 Character Erase (DELETE or RUBOUT . e o« o« 2-6
2.1.5.2 Line Erase (CTRL/U) e o s o s e s e e e o o o 2=7
2.1.5.3 The RETURN K@Y v ¢ ¢ o o o o o o o o o o o o o 2=7

iii April 1983

Pag

CONTENTS
Terminating the Previous Text Line (ESCape or

2.1.5.4

O OVOVOANAANNNNIILLINONNOOEANNNNOCOO A NMUUNVON~N00RRAONNOC OO AAAHANNNNMMS <P PO
Tl lHAAAA A A AAAAAAA A AAANNNANNNANNNANNANANNNANNMOOOOOMOMNONOMMNOONMONOOOOOMOM
(3 o I I IO B o o I TN Y N T S N J O T T TR U O Y T TN N O U TR N AN N U T J N O Ot J VA N O T T O N A T R T TN U U N T O N O A I |

ANANNNNANNNNNNNNNNANNNNNNNNNNNNANNANANANANANNANANNANNANNANNNANNNNNNNANNNNN

® o o o o o o

@ o ® o & 4 & g & ¢ O 9 * 2 * 2 & g * 9 & g & ¢ 8 ¢ & g * @ & g * ¢ * s 06 g & g 2 9 b 2 * 9 & g & s 0 g * 9 & 3 8 9 ¢ & v ¢ o o

® o 0 o o o 8 5 s o P o * o P o O o 0 o o 4 * g * o o 2 o ® o & o o o o o & g e 4 0 5 & 4 0 4 & o e 4 v g & g & 4 s e o 4 s
1]
* e & o @ ® o o o & o 8 & O o s 4 6 ¢ O 4 ® o 0 4 * o NI e 4 & e B 4 & o & o 6 o O o * o % o * o e e o+ o o 2 & o * e o o & o
n o
® * ¢ S N e * e 4 o s e * e » a2 & o o o & g & o o o o o T ©® a ©® o ® o & 5 © o o o & o & o 0 ¢ o 4 © 4 o 2 s g ©® s o e v s o o
c ~E
® & & ed e 6 o ° o & 4 0 & * o % & 8 o & ¢ * 4 o & v e * e * aDi e * & 6 8 * e & o 0 4 s s P g 0 o o o o g * s ¢ e o o & o
9] (o2} 24
® o & o4 e ® o o o & 4 & s+ o % 4 ® o 0 2 b & ¢ o o o M) e 4 ¢ K[o * 4 ° o o o o o o g4 0 g o o & o o 4 e g & 4 & o o o o o
[©)] + =
e o o o ® ® s e o 8 9 O & 9 o & o 8 g o 4 & 3 0 o o L2 e o @ 2T e ® s * e 6 ¢ 0 ¢ % o o e ° g * o+ o * 2 * e * s o o s+ o
S O O 2
® o o o) e o o e o e & + 2 » o % o o ¢ 0 o ¢ 4 o o % eV ¢ o v LN e 6 s+ e e * o s e * o s e 5 o 0 a2 * o o 2 ° 4 & o s e s o
- 4+
® e * o (J e © o O 2 4 ¢ © o *» 4 * 9 & o & g o s o o b oMM © e * o[1] e & o & o e ¢ ¢ o & o & » 5 o * s * 9 o g e 4 o 2 s e o
Q [N Q
e o o ol o & 4 o o * 0 * s+ g 6 s & 2 & o 0 s o o> e T e e v 2T e S s & s ° 4 O e~ s 4 s s g & & ¢ s * a2 0 o & s s e * o
24 [=f o N = Q
i ® e f1 s e & 6 4 o o o ¢ &t o & s % o o 2 0 ol odod U ¢ +[Y, o o o ¢ o o o o o{) e ® o & 4 s & S e t 2 0 s * e~ 0 * o
N a = [o] = ke /m ~ o
NG . ® e ® e ® o °® o s s & o+ o e 4 v s aF M@ e o iy o o o ¢ o o o .~ o @ ® 8 o s & 3 o s & e o o s,] e o o
Y1 a —~ 0N oo | = © 0N = w0 o ~
e C e & s & & e o ® 4 0 s & 4 e ¢ & 4 o s s N O e £ NI » ¢ o o o ¢ o[x] o] o * o ¢ o o o o o o 2 s o 0 o * o
O~ 0O [=fiie] £ T C 7] B —~ @
o) ®ud 9 8 ® s & 0 o s P 4 et o o 4 o ¢ s & s BT e T O LMO + e s e e o o O QO o o e s ¢ o 0 o & 2 o o g {) e ¢ o
~) e Y o 1 © Oaogm L)m — w1 -
. [} G ® e ¢ o & o ¢ o ¢ o & o ¢ o & o & 0 o o H o~ . EE L] o ¢ s o o ¢ 0N o S, ¢ e e e~ 0 0 2 s 4 o> o s oo
H O X W~ £ £ P EOH ~ 0 [=] Q 3]
SO D> e DU o ¢ o o o s 2 s o o o s 2 e 0 0 s 0 o) e NO *33O0OVVL o~ o o o o o ~r Dl e 0 o s & o[z] ¢ ¢ 4 0o o~ 00 o o
m o~ 0noA 2z T e 2,0 [Q. > O ~ O —
. O M1 Oz o o o o o eFH Dy e 0 s 0 s 8 e D>y e e e DN SL NW B+ el o ¢ o o oMM o St o e Dv e ¢ i 0 o 12O e D
L oo Z 0 O] MO O TILHAO ~ <L B2 2 0 Mm [~HQ =
. O Hed Q5 o o * o SN e & o oF+ s s N e e o CELDLCO I3% . efry o ¢ s MO EIQO o o ¢ o XN, o4 o o, o o mu—-(
- g N E = [44 2z o @ B N] e & <7 Z -1 H o <] ~ 3] <]
—~ ot m O o Z o o s o0, WU o o o o o ¢Z o ¢ s NEOWHWEDD N eZ ¢ 0O o ¢ s OMKE ¢ o0 ¢ o @ o, o o e s M@ o 9
v c Lo N &) H o 24 m AELV~AE3IITA N 0N 2 m a 2B [
T CEWHWCO e fY, o s ¢ e B M o s e e, e & e e e Z O T OO CE e «ZF o o om Z v e v e (@ e[e ofr] * oL o« o
O— £ OO mH a1 (] [CO N0 © < o o 0 WM O 3] D23 [&]
£ £ 0 EQ o EMANGERQY cEHE W B E e o X o= H o = . = | ENMDE ¢ () B ¢ B cOO0OO0MmM
BH~NO OOEM WOUNEBEHM M e Mo = o o] 0EmE WBZMOUMBMHNMRMLCN\NEBHE MmE m [3EoNe)
-1 @ n un o HZJdmm HMEC B ZE > O3 @M N O—-NO HOBHZONNWNO JAMMK w EHEHMRASMOR &K
CEHHDDODOLAABECE A VOHNODXXHIZIOEHLMALADODLOXOA>O00UAQAAQAUOBELCOO0O0ZAA I dACIHHAZANAZNNOOO
[a] HOQOINEHEHNLMOXZOMMHMAENOCHNOO VOOV wmw- 01 AAMJON A IO ZEOXXHHOZHHHAHOQL
23] M.AABCCDDTEILNNPRTRTTMSLTMFDCMAABBBCCCCCCDDEETEEFFFIKLLLLMM
m = m
[Ta} ~ N ™M
. « o 0 O~ NMY WIS O ANMIYPNOMSONOANMP NWESOON
WO WY W0 AN OO RN A A A A A A A A~ NP0 A NN O~NONA A A AAA A~ AN ANANNNNNNN
¢ e s o o ® & 6 & & & & & 2 & 2 0 & 0 * 0+ 0+ 0 e & & & o o e & & & & & & & » 5 s ¢ & & 4 6 & s ¢ s B 0 & o 0 o s 0+

@ ® 8 6 o & o e e 5 8 & s & & 6 o & e O o & % 8 ° 8 6 & 6 6 6 e ° 5 o 8 O S+ B o s 6 & 6 & e o 4 9 0 4 e 5 0 P o e o o s s v .

NANANNANNNNNNNANNANNNANNANNANNNNNANANNNANANNANANNNANNANAANANANNANNNANNNANNANANNNNNNNNNNNSN

iv

CONTENTS

Page
2.4.30 MACRO EXECUTE + & & o« o o o o s o o o o« o« « o« 2-38
2.4.31 MACRO IMMEDIATE . . =« 2 2 o o o o o o o o o o« 2-38
2.4.32 NEXT & o ¢ o o o o o o o a o o o o o o o o« o« o 2-39
2-4.33 NEXT & PRINT 3 2—39
2.4.34 OPEN SECONDARY . «. + 2 o o o o o o s o o o o « 2=39
2.4.35 OUTPUT ON/OFF &+ o ¢ o o o o o o o o o o o o « 2=40
2.4.36 OVERLAY &« ¢ &« ¢ o o s o o o o o s o o o o o o 2-40
2.4.37 PAGE . & ¢ o o o o o s o o o o o o o o o o o o 2-41
2.4.38 PAGE FIND . & &t ¢ o o o o o o o o o 2 o o o« « 2-41
2.4.39 PAGE LOCATE + & o « o o o o o o o o o o o« o o« 2-41
2.4.40 PASTE 4 ¢ ¢ o o o o o o o o o s o s o o o o » 2=42
2.4.41 PRINT o« o s o o o o o o o o a o o o o o o o o 2-42
2.4.42 READ . &+ 4 2 « o o o a s o s s o s s o o o o« o« 2-42
2.4.43 RENEW &+ ¢ o o o o o o o o o o o o o s o o o @ -43
2.4.44 The RETURN Key - 2"43
2.4.45 RETYPE ¢ ¢ o o o o o o o o o o o o o o s o o o 2-43
2.4.46 SAVE ¢ & ¢ o o o o o o o o s o o s o o o« o o o 2=-44
2.4.47 SEARCH & CHANGE . & ¢ o ¢ o o o o o s o o o o 2=44
2.4.48 SELECT PRIMARY . & « o o o o o o s o o o s o o 2=45
2.4.49 SELECT SECONDARY . « o o ¢ o s o o o o o o o o« 2-46
2.4.50 SIZE o o o o o o o o o o o o s s o o o o o o o 2=46
2.4.51 TAB ON/OFF . ¢ o ¢ o o o o o o o o s o « o« o o« 2-46
2.4.52 0P . . e s o s s & e o s s s o o s e o 2=47
2.4.53 TOP OF FILE (TOF) e o s o s s o s o s o & o o 2=47
2.4.54 TYPE o & ¢ &+ 4 o o o o o o o s o o o o o o o o 247
2.4.55 UNSAVE e o s o o o o s e s e e o o 2-48
2.4.56 UPPER CASE ON/OFF e o o o & s o e o o s s o o 2-48
2.4.57 VERIFY ON/OFF &« & ¢ ¢ o« o o ¢ o o o o o o o« « 2=49
2.4.58 WRITE & ¢ 4o o o o o s o o« s o o s o s o o s o« 2-49
2.5 EDI USAGE NOTES &« ¢ ¢ « o o o o o o o o o o o o« 2-50
2.6 SAMPLE EDITING OPERATIONS . +. ¢« « s o ¢ o o« o« o« 2-51
2.6.1 File Editing Sample . & ¢ & « o o o o o« o o » 2-51
2.6.2 SAVE and UNSAVE Sample . « +« « « o « « « o« o« o 2-53
2.6.3 Use of MACRO IMMEDIATE Command . . « « o« « o« o« 2=55
2.6.4 Use of Macro CommandsS . « + « o o o« o s « o« o 2-55
2.7 EDI ERROR MESSAGES . &+ &+ 2 o o « o « o s o« o« s o 2-56
2.7.1 Command Level Information Messages . . « . + . 2-57
2.7.2 File Access Error Messages . . . e ¢« o o o« 2-60
2.7.3 Error Messages Requiring EDI Restart e o s s o 2-61
2.7.4 Fatal Error MessagesS . « « « ¢« o o o« o o« o o« o« 2-64

CHAPTER 3 PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1 PIP COMMAND LINE ¢ 4 4 o ¢ o o o s o o ¢ o o o o o 3-1
3.1.1 PIP Defaults for File Specification Elements . . 3-1
3.1.2 PIP Switches and Subswitches . . . « ¢« ¢« ¢« « « . 3-3
3.1.2.1 SwitChes . . 0 o . . » . . 3 . . 3 . . 3-5
3.1.2.2 Subswitches . . . ¢ ¢ ¢« ¢ 4 ¢ ¢« o ¢« o« o o« « « 3-6
3.1.3 Wildcards . . . e e o e o s e e s o o s o o « 3=7
3.1.3.1 Wildcards in Output File Specifications . . . 3-7
3.1.3.2 Wildcards in Input Specifications 3-8
3.2 PIP COMMAND FUNCTIONS . « o ¢ o o o o s o o o » o 3-8
3.2.1 Copying Files~1ll FileS . « ¢« o« « ¢ o« ¢ o« o« o « « 3-8
3.2.2 Performing File Control Functions 3-14
3.2.2.1 /AP —~ Append Switch . . « « + « ¢« ¢« + « « » 3-14
3.2.2.2 /BS:n —— Block Size Switch . ¢« ¢« &« ¢ ¢« « « « 3-15
3.2.2.3 /CD -- Creation Date Switch 3-16
3.2.2.4 /DD -- Default Date Switch . . ¢« « ¢ ¢« « « « 3-16
3.2.2.5 /DE —=— Delete Switch . & ¢« ¢« ¢ ¢ o o o o « o« 3-17
3.2.2.6 /DF -— Default Switch . ¢« ¢« ¢« ¢« ¢« ¢ &« « « « 3-18
3.2.2.7 /EN —— BEnter SwitCh . ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ « « 23-19
3.2.2.8 /EOF -- End-of-File Switch . « . « ¢« ¢« « « « 3-21
3.2.2.9 EX -- File Exclusion Switch 3=21
3.2.2.10 /FI -- File Identification Switch 3-22

CONTENTS

1 /FR -- Free Switch . . ¢« . « ¢« ¢ « ¢« . .
2 /ID -- Identify Switch
3 /LI —-- List Switch . . .
4 /ME -- Merge Switch . . .
5 /NM -- No Message Switch .
6 /PR -- Protect Switch . .
7 /PU -- Purge Switch . . .
8 /RE -- Rename Switch . . .
9 /RM -- Remove Switch . . .
/RW -- Rewind Switch . . .
1 /SB —-- Span Blocks Switch .
2 /SD —-- Selective Delete Swit
3 /SP —— Spool Switch
4 /SR -- Shared Reading Switch
5 /TD -- Today Default Switch
6 /TR -- Truncate Switch . . .
7 /UF -- User File Directory Sw
8 /UN —- Unlock Switch . .
9 /UP —-— Update Switch . .

PIP ERROR MESSAGES . . ¢ &« « « &
PIP ERROR CODES e e o o o

¢ o
. o
LY
.

C

e @ o o s e e s e e e«
® e o ® o & s e o e o o

e ¢ e o o o o s e o o @

e ® o o 8 o o s o & o e o
® & a2 0 o ¢ 5 & o ¢ o ¢ o
o ®* o * o 8 4 o o * o s ¢ o o

.
.
.
.

(o]

IHeo o o 6 e o o o o o s

tch

NN DN NN

NN NDNONNDNONNDNNDFE e
o

WWWWWwwwWwuwwuwwwwwww ww ww

BWNDNNDNODNNNDNDNDNDNDODNDNDNDNDNDNDNON

“ o o o

. . . L]

. . . o []
L]

. . . .

« o o & »

CHAPTER

-9

FILE TRANSFER PROGRAM (FLX)

FLX COMMAND FORMAT . . &« o « o o ¢ s o o o
FLX SWITCHES . ¢« & ¢ & o o o « s o o &
Volume Format Switches
Transfer Mode Switches
Control Switches
DOS-11 VOLUME DIRECTORY MANIPULATION
Displaying D0OS-11 Directory Llstlngs
Deleting DOS-11 Files . . « +« & & &
Initializing DOS-11 Volumes
RT-11 VOLUME DIRECTORY MANIPULATION .
Displaying RT-11 Directory Listings
Deleting RT-11 Files
Initializing RT-11 Volumes .
FLX TAll/TU60 CASSETTE SUPPORT
Multivolume Cassette Support
FLX Cassette Output Files
FLX Cassette Input Files .,
FLX PAPER TAPE SUPPORT . . .
FORTRAN DIRECT ACCESS FILES
FLX ERROR MESSAGES

e ¢ o « o 0
W N - W N
¢ 4 0 o e

¢ o o o o o

e o o o & o o

*« o
O~JoOoUvTuUuTWnddd BdWwWwwdNNDND -
e o

¢ o o o o o o o

« o s 0
. o o
w N -~
* o o &
* e & o
e o o
.
o o o o
LY

e o o
w N =

L A R~ - e A A o al T S T = -
e o o e

.
I T S B
e ® s e o & 4 o o & o

.

e ® o 0 o ° & ® 6 6 o2 & o e o & ¢ e ¢ @
e ® o ¢ o & o ® & % e 0 o e o o o

e % & o o
-
o ® o o o

CHAPTER

w

DISK VOLUME FORMATTER (FMT)

INITIATING AND TERMINATING
MODES OF FMT OPERATION . .
Normal Operating Mode .
Manual Operating Mode .,
FMT SUPPORTED DISK VOLUMES . ¢« &« ¢ ¢ o o o &
DB:-type Devices (RP04/RP0O5/RP06 Disk Packs)

MT .
DK:-type Devices (RK0S5 Disk Cartridge or RKOSF

wwww W W WN NN

.
N -

¢ o o Ny
* o e o
* o o o
e o o o
¢ o o .
e ¢ o o
* o o o
e o & o

.
.
.
. .
.

(S0 RS, RGN0 I, RS
s e o

L] L .
bW N =

Fixed Media Disks) e e s & @
DL:~type Devices (RLOl/RLOZ DlSk Cartrldges)
DM:-type Devices (RK06/RK07 Disk Cartridges)
DP:~-type Devices (RPR02/RP02/RP03 Disk Packs)

DR:-type Devices (RM02/RM03/RM05/RM80 Disk
PAaCkS) o o o o o o ¢ o o o o o o o o
DY:-type Devices (RX02 Floppy Disks)

[C MO N, G,
¢ o o

~J

FMT SWITCH DESCRIPTIONS
FMT MESSAGES . + « « .« .

¢« o o .

v ovn
e o o
Ul s W
* o o o
* ¢ o o

. e o o .

vi

(U
VU WWwN -

(S, 00, WO T, WS WY,
1

gaunon
[

(S S N
11

ONId S A

w
—

CONTENTS

Page
CHAPTER 6 BAD BLOCK LOCATOR UTILITY (BAD)
6.1 BAD COMMAND FORMAT . 4 ¢ 4« « o o s o o o o o o o o« 6-1
6.2 BAD SWITCHES @« « ¢ o o o o o o o o o o o o o s o« o 6-1
6.3 BAD AND INDIRECT COMMAND FILES . « ¢ « o o o« o o« o« 6-2
6.4 PROCESSING BAD BLOCK DATA . . + &+ o « o« o » o o« o 6-3
6.4.1 Verifying Devices . . ¢ ¢ ¢ ¢ ¢ o « o o o« o « o 6-3
6.4.1.1 BAD and Non-Last-Track Devices . . « « « « o+ o« 6-3
6.4.1.2 BAD and Last-Track Devices . + + « &« o ¢« o « o 6-3
6.4.2 Format of Bad Block Descriptor Entries 6-4
6.4.3 The INI Command and BAD . « « « o « o o o o« o« o 6-4
6.5 USING BAD « & « o s s o s o o s o o s o o o o s « 6-4
§.5.1 Programming Considerations . « « ¢« ¢ ¢ ¢« &« ¢« o o« 6-5
6.5.1.1 Use of Block Ze€ro . . ¢« ¢ « o« o o o o o« o « « 6-5
6.5.1.2 Device Controller EIrOrS . « o« « « « s+ o« o o o 6-5
6.6 BAD SWITCH DESCRIPTIONS . . . e o« o o o+ 6=-5
6.6.1 Switches for Both Task and Stand Alone Versions
of BAD . . . e e e e e o o o o o 4 o o e o 6=5
6.6.2 The /MANUAL, /ALLOCATE and /UPDATE Switches:
EXamMPlesS ¢ « o o« o o o o o o o o s o o o o o o o 6=7
6.6.3 Switches for Stand-Alone System Version Only . . 6-8
6.7 DEVICES SUPPORTED BY BAD . 4 o « ¢ s s o o« o o o« o« 6-9
6.8 BAD MESSAGES . &« o o o « o o« o o o s o o s o o « ©6-10
CHAPTER 7 BACKUP AND RESTORE UTILITY (BRU)
7.1 ON-LINE BRU DISK AND TAPE DEVICE INFORMATION . . . 7-1
7.1.1 Backup Sets e o o o e s 8 o o o o o o 1-3
7.1.2 Tape Sets and Disk Sets e ¢ s ¢ e s & o e o « o« 1-3
7.1.2.1 Tape and Disk Backup Operations 7-3
7.1.2.2 Full and Selective Backup Operation 7-3
7.1.2.3 Conventional Backup Operation « . . 7~4
7.1.2.4 Image Backup to Disk Operation 7-4
7.1.3 Multivolume Tape and Disk Operations 7-4
7.1.4 Supported Devices ., . . + ¢ ¢ o o o o o e o 7-5
7.2 COMMAND LINES & & ¢ ¢ o o o o o o o o o o s o o o 1=5
7.2.1 Command Line SYyNtaX =« « « o o o o o o o o o« o o« 1-6
7.2.2 Command Line Parameters . « « o« « o« « « « o o o« 1=6
7.2.2.1 Wildcards in Input Specifications 7-7
7.2.2.2 Continuation Lines . . &+ ¢« ¢ &+ &« « o o« o o« « o 71-8
7.3 SUMMARY OF COMMAND QUALIFIERS, OPTIONS, AND
DEFAULTS « o o + o o o o o s o s o o o o o o o o o 1-8
7.3.1 Command Qualifier Functions . ¢« ¢« ¢« ¢ o « o « 7-11
7.4 DESCRIPTIONS OF COMMAND QUALIFIERS . ¢« ¢« « o & o 7~12
7.5 STAND-ALONE BRU . . + « « « &« & e e o o o o o 1=22
7.5.1 Locating and Booting Stand- Alone BRU 7-23
7.6 ON-LINE BRU BAD BLOCK PROCESSING . . « « « « « o 7-24
7.6.1 Using the AUTOMATIC Option . « + ¢« ¢ &« &« « o« o 7-25
7.6.2 Using the OVERRIDE Option . ¢« « ¢ ¢« &« « « « « 17-25
7.6.3 Using the MANUAL Option . ¢« « v v &« ¢« « &« « « 1-25
7.7 USING BRU TO COPY DISKS CONTAINING SYSTEM IMAGES 7-26
7.7.1 Copying an Unsaved (Virgin) System 7-26
7.7.2 Copying a Saved System . « « « « « o« o o« o« « o« 1-26
7.7.2.1 Copying to a Smaller Disk . . . e o o o 126
7.7.2.2 Copying to a Different Controller Type « o o 1-26
7.8 BRU FILE TREATMENT . . . &« ¢ ¢ o o o o o o o« o o« 1-26
7.8.1 Creation and Revision Dates of Files 7-27
7.8.2 File HeAders « v o « o o o o o o o o o o o o o 1=27
7.8.3 File Synonyms . . ¢ ¢ ¢ ¢ o ¢ o« o o o o o o o 1-27
7.8.4 LosSt FileS 4 v v ¢ o o o o o o o o« o o o o » o 1-27
7.9 EXAMPLES 4+ &« o o o o« o o o o o o o o o o o o« o o 1=27
7.10 MESSAGES . « « o o s o o o o o s o o o o o« o « o 1-34

vii April 1983

CONTENTS

Page
CHAPTER 8 DISK SAVE AND COMPRESS (DSC)
8.1 DSC—-SUPPORTED VOLUMES . « ¢ &+ « o o o s s o« o« « « 8-4
8.2 INITIATING AND TERMINATING ON-LINE DSC . . . 8-5
8.3 INITIATING AND TERMINATING STAND-ALONE DSC 8-5
8.4 DSC COMMAND FORMAT . &+ « o ¢ o o o s o ¢ o« o o« o« o« 8=5
8.5 DSC FILE LABELS, SWITCHES, AND OPTIONS 8-6
8-5.1 File Label - 3 8"8
8.5.2 /Append Switch . . . « ¢ ¢ ¢« ¢ & ¢ ¢ ¢« ¢ + + o o 8-9
8.5.3 /Bad Block Switch . . . ¢« « ¢ ¢ ¢« ¢« ¢ ¢ &« « » « 8-9
8.5.3.1 Obtaining Bad Block Information 8-12
8.5.3.2 Conversion to Logical Block Numbers 8-12
8.5.4 /Block Factor Switch « & ¢ ¢ o o« o o o« o« o« « « 8-12
8.5.4.1 Using the /BL Switch . . . e s o o B8-12
8.5.4.2 System-Dependent Requ1rements for /BL Switch 8-13
8.5.5 /Compare Switch ¢« ¢ ¢« ¢« o « ¢« « » « « 8-14
8.5.6 /Density Switch . . & ¢« ¢ & ¢ o ¢« ¢« o« « « « » 8-14
8.5.6.1 1600 bpi Option . + &« ¢« ¢« ¢« ¢« ¢« ¢ o s« o« « » 8-15
8.5.6.2 Split Density Option . . + + ¢ ¢« ¢« ¢« &« « « « 8-15
8.5.7 /Rewind Switch ¢ ¢ ¢« ¢« ¢« ¢« ¢« &« « « 8-15
8.5.8 /Verify Switch . . . ¢ « « ¢ + ¢« ¢« ¢« &+ ¢« « « . 8-18
8.6 DSC OPERATION OVERVIEW + ¢ ¢ o « « o« « o« 8-19
8.7 STAND-ALONE DSC — DSCSYS.SYS . . « ¢« « « o « « o 8-19
8.7.1 /Control Status Register Switch 8-21
8.7.2 /TMO2 Switch o & & ¢ ¢ ¢ o o o o« o o o o o o » 8=22
8.7.3 /Unit Switch . . e o s e o s s o o e o o o 8-22
8.7.4 /Vector Address Sw1tch e o o s s e s s o s o« o 8-23
8.8 STAND-ALONE DSC - DSC64K.SYS . « « « « o o « o » 8-23
8.9 DSC DATA TRANSFERS &+« « + « « & « « o « « o o« o« o B8-24
8.9.1 Data Transfer from Disk . . . ¢« ¢ « ¢« ¢« « « « 8-25
8.9.2 Data Transfer to Tape . « « « o o « « o« « o« o« 8-25
8.9.3 Data Transfer from Tape . « « o« « « « « « « « 8-26
8.9.4 Data Transfer to Disk . . . &« ¢« ¢« « ¢ o« « « . 8=27
8.10 DSC MESSAGES &+ « &« « 2 o o o o« o o s s o« « o o« » 8-28
8.10.1 DSC General Messages . . « o « o o o o« o « » » 8-29
8.10.2 DSC I/0 MESSAgeS + « o o o s o o o o o o o o o« 8-42
8.10.3 Stand-Alone DSC MeSSAgeS .+ « o « o o o« « o« o o 8-44
CHAPTER 9 FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.1 VFY COMMAND FORMAT . &+ « o o o o o o o o o s o o o 9=2
9.2 VFY MODE OF OPERATION . & & ¢ « o « o o o o o o o« 9-3
9.3 VFY VALIDITY CHECK &+« & ¢ ¢ s o o o o o s o o o o o« 9-3
9.4 VFY SWITCHES . . . e s s s o o s s e o o o e & 9=3
9.4.1 Delete Switch (/DE) e o s+ o e o o o o o o o o o 9-4
9.4.2 Directory Validation Switch (/DV) . « ¢« « « + . 9-5
9.4.3 Free SwitCh (/FR) « ¢ ¢ o o o s o o o o o o o « 9-5
9.4.4 Header Delete Switch (/HD) . . . « + ¢ ¢« « ¢« « « 9-5
9.4.5 List Switch (/LI} v o « ¢ o o o o o o o o« o o« « 9-6
9.4.6 Lost Switch (/LO) e e o o s s o s s e o e o o « 9-6
9.4.7 Read Check Switch (/RC) .+ ¢ ¢ o« ¢ o o o ¢ o o o 9=7
9.4.8 Rebuild Switch (/RE) ¢ ¢ ¢ ¢ o o o o o« o o o o o« 9-7
9.4.9 Update Switch (/UP) . ¢ ¢ ¢ ¢« o o o o« o o« o o« « 9-8
9.5 FILE ERROR REPORTING .+ &« « 2 « o o o « o o o o o » 9-8
9.5.1 Files Marked-for-Delete . . e o o o o o o 59
9.5.1.1 Restoring a File Marked—for-Delete e ¢« s o « 9-10
9.5.1.2 Deleting a File Marked-for-Delete . . 9-10
9.5.2 Deletion of Bad File Headers . . . e s e o o 9-10
9.5.3 Deletion of Multiply-Allocated Blocks e o« o« o+ 9-10
9.5.4 Elimination of Free BlocksS . « &« « ¢ o« &« « « o 9-11
9.5.5 Recovering Lost Blocks . . + + &« & ¢« « ¢ « « o« 9-11
9.6 VFY ERROR MESSAGES . « &+ ¢ o o o o o o o o » o « 9-11

viii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10

10.1

10.1.1
10.1.2
10.1.3
10.1.4
10.2

10.3

10.4

10.5

10.5.1
10.5.2
10.5.3
10.5.4
10.5.5
10.5.6
10.5.7
10.5.8

10.5.9

10.5.10
10.5.11
10.5.12

10.5.13
10.5.14
10.5.15
10.5.16
10.6
10.7
10.7.1
10.7.2

11

11.1
11.2
11.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.6

12

12.1
12.2
12.2.1
12.2.2
12.2.3
12.3

13.1

13.1.1
13.1.2
13.1.3
13.1.4

CONTENTS

LIBRARIAN UTILITY PROGRAM (LBR)

FORMAT OF LIBRARY FILES
Library Header
Entry Point Table .
Module Name Table .
Module Header . . .

LBR RESTRICTIONS . .

LBR COMMAND LINE . . e o o o
DEFAULTS FOR LBR FILE SPECIFIERS
LBR SWITCHES
Compress Switch (/CO) . .
Create 8witch (/CR) e o o
Delete Switch (/DE) . . .
Default Switch (/DF) . .
Delete Global Switch (/DG)
Entry Pcint Switch (/EP} . . .
Extract Switch (/EX)
Insert Switch (/IN) for Object
Libraries
Insert Switch (/IN) for Unlversal L1brar1es
List Switches (/LI, /LE, /FU) .« ¢« ¢ ¢ « o «
Modify Header Switch (/MH) . . « + « ¢« « « &
Replace Switch (/RP) For Macro and Object
Libraries . ¢ & ¢« ¢ ¢ o« o o o & e o o o
Replace Switch (/RP) for Un1versal Libraries
Spool Switch (/SP) « « « . . e o e e a4 s
Selective Search Switch (/SS) e e o v s s
Squeeze Switch (/SZ) +v ¢« v ¢ ¢« o ¢ o o =
COMBINING LIBRARY FUNCTIONS . ¢« ¢ « o o o
LBR ERROR MESSAGES . ¢« « ¢ @+ ¢ o o o o o o
Effect of Fatal Errors on Library Files
LBR Error MesSsSadesS . . « « &« « o« o « o+

» s 0 e e o e
.

e o o 0

* o ° o »

e o ® o P o * o » e e
® 4 © &+ 2 e o & o

¢ o o o

Macro

.
.
an

¢« Que o o o o ¢ s o

« ® o o o
« ® o o o

FILE DUMP UTILITY (DMP)

FILE MODE
DEVICE MODE
DMP COMMAND FORMAT .

DMP SWITCHES . . .

DMP EXAMPLES . . .
A Multiple Format Dum
A Record Dump . . .
A Header Dump . . .

DMP ERROR MESSAGES . .

.
.

© o o o o o

* o * o o o

* o * ¢ e o

¢ o o o o o

e o T e o o o o

THE FILE COMPARE UTILITY (CMP)

CMP SWITCHES e e s e e s e .
FORMATS OF CMP OUTPUT FILES . .
Differences Format
Change Bar Format

.
.
.
.
.
.

SLP Command Input Format
CMP MESSAGES . « « ¢« « o+ &

* o ¢ o
* o o o
* o & o
.
¢« o o o
e o * o
o o o o
e o o o
e o * o

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP INPUT AND OUTPUT FILES
The Input File
Command Input
The SLP Listing File .
The SLP Output File .

. . . .
. [} . .
[]] . .
e o o o
L] L[] L] .
. . L] .
. . . .
L] L] . .
e e o o
e o o o
. . . .

ix

e ® o o o

Page

10-2
10-2
10-2
10-2
10-2
10-8
10-8
10-8
10-9
10-10
10-1i2
10-13
10-14
10-15
10-16
10-18

10-19
10-20
10-21
10-22

10-23
10-27
10-29
10-29
10-30
10-32
10-33
10-33
10-34

11-1
11-2
11-2
11-3
11-8
11-8
11-10
11-10
11-12

13-2
13-2
13-2
13-3
13-3

CHAPTER

CHAPTER

CONTENTS

13.2 HOW SLP PROCESSES FILES « ¢ « ¢ o« ¢ o o o &
13.3 USING SLP o v e e s s .
13.3.1 Specifying SLP Edlt Commands e e e o o o
13.3.2 Entering SLP Edit Commands « « & o
13.3.2.1 Entering SLP Commands Interactively . .
13.3.2.2 Entering SLP Commands Using Indirect
Command Files . . v o ¢ ¢ ¢ ¢ ¢ o o o &
13.3.2.3 Using SLP Operators . . e e s e e e
13.3.3 Updating Source Files With SLP o o o o o s
13.3.3.1 Generating a Numbered Listing
13.3.3.2 Adding Lines to a File « ¢« &« «
13.3.3.3 Deleting Lines from a File . . . « +« « &
13.3.3.4 Replacing Lines in a File . . . « « +
13.3.4 Creating Source Files Using SLP
13.4 CONTROLLING SLP . & ¢ ¢ & o o o o« o o o o @
13.4.1 SLP Switches e o e e o e s
13.4.2 Controlling the Audlt Trall . . o o e .
13.4.3 Setting the Position and Length of the Aud
Trail « e e e e .
13.4.4 Changing the Value of the Audlt Tra11 . .
13.4.5 Temporarily Suppressing the Audit Trail .
13.4.6 Deleting the Audit Trail . . « + ¢ « & o« &
13.5 SLP MESSAGES . . &« o o « o o o o o o o s o o«
13.5.1 SLP Information Message . . . ¢ « o « o &
13.5.2 SLP Error MesSsagesS . « « « o s o o o o o o
14 OBJECT MODULE PATCH UTILITY (PAT)
14.1 SPECIFYING THE PAT COMMAND LINE &
14.2 HOW PAT APPLIES UPDATES . ¢ ¢ o o ¢ s o o o
14.2.1 The Input File . & v v ¢ o o ¢ ¢ o o o «
14.2.2 The Correction File
14.2.3 How PAT and the Task Bu1lder Update Object
Modules . & ¢ ¢« & o o o o & e e e =
14.2.3.1 Overlaying Lines 1in a Module « e e e
14.2.3.2 Adding a Subroutine to a Module . .
14.2.4 Determining and vValidating the Contents of
File o v v v 4 o v v 6 o o o o o o o o o
14.3 PAT MESSAGES ¢ & v o ¢ o o o s o s o
14.3.1 Information Messages . . . « ¢« ¢« ¢« ¢« o . &
14.3.2 Command Line Errors . . « « « o« o o« o o =
14.3.3 File Specification Errors « « « &
14.3.4 Input/Output EXrors . . « o« o o o o o o
14.3.5 Errors in File Contents or Format
14.3.6 Internal Software Error e e e
14.3.7 Storage Allocation Error . . « « +« o o s o«
15 TASK/FILE PATCH PROGRAM (ZAP)
15.1 ZAP OPERATING MODES AND SWITCHES . o« « o+ o« o
15.1.1 The List Switch (/LI) ¢ ¢ o ¢ o o o o o «
15.1.1.1 The /LI Switch and Regular Task
Files e o+ s e o s 4 s o o o s s s e o
15.1.1.2 The /LI Switch and Multiuser Tas
Image Files « ¢ ¢« o ¢ o 4« o o o o o &
15.1.1.3 The /LI Switch and Resident Libraries

15.1.1.4 The /LI Switch and I- and D-Space Tasks
15.2 ADDRESSING LOCATIONS IN FILES

15.2.1 Relocation Biases . « & 4+ o o o o o o o &
15.2.2 ZAP Addressing Modes . . . o« o
15.2.2.1 Using the Task Image Addre551ng Mode . .
15.2.2.2 Using the Absolute Addressing Mode . . .
15.3 INVOKING AND TERMINATING ZAP . . & « « o o o

e o * o & s © o e e o o« o o o ® o ® o o o o (t e o

Image

.

k

e o o o o o

.

Page

13-4
13-5
13-5
13-7
13-7

13-8
13-9
13-9
13-9
13-10
13-12
13-13
13-14
13-14
13-14
13-16

13-17
13-17
13-18
13-19
13-20
13-20
13-20

14-1
14-3
14-3
14-3

14-4
14-4
14-5

14-6
14-7
14-8
14-8
14-9
14-10
14-11
14-13
14-13

15-3

15-3
15-3
15-3
15-4
15-4
15-4
15-5
15-5
15-5

X April 1983

15.3.1
15.4
15.4.

15.5.3.1
15.5.3.2
15.5.3.3
15.5.3.4
15.5.3.5

15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.6.5
15.6.6
15.7
15.8

APPENDIX A

H O 00~JO0UTd Wk -

gl B g i B B B

A.15.1

CONTENTS

Page
Using Indirect Command Files with ZAP 15-6
THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS . 15-6
ZAP Commands e o . o o . - . 15_7
Open/Close Location Commands . « « « « « « o 15-7
General Purpose Commands . « « « o + o« 15-7
RETURN K€Y ¢ « ¢ o o o o o o o o o o o o o o 15=7
ZAP Internal Registers . . . « ¢ ¢« ¢ ¢ « « . . 15-8
ZAP Arithmetic Operators . . .« « ¢ « ¢« o« o« o o 15-8
ZAP Command Line Element Separators 15-9
ZAP Command Line Location-Specifier Formats . 15-10
The Current Location Symbol 15-10
Byte Offset Format e o+ e o o « o 15=10
Block Number:Byte Offset Format e e o« s+ o o 15-10
Relocation Register,Byte Offset Format . . . 15-10
USING ZAP OPEN AND CLOSE COMMANDS . . « . « - » 15-11
Opening Locations in a File « « . « o 15-12
Changing the Contents of a Location 15-13
Closing Locations in a File . . . e ¢ o o o 15-13
Closing a Location and Openlng the
Preceding Location o o o o o s . s o o 15-13
Closing a Location and Opening an Offset
Location e o o o o o o e o o s o o o o o o 15-14
Closing a Location and Opening an Absolute
Location e o o o s & e s e s e e o e o o o 15-14
Closing a Location and Opening a Branch
Target Location & « ¢ ¢ v « « « « o 15-14
Closing a Location and Opening a Previous
Location« . e « o o o o« o 15-15
USING ZAP GENERAL PURPOSE COMMANDS s o s s s s » 15-15
The X Command . « « « o o o o o o o s o o o o 15=-16
The K Command . . ¢« « « o« « « o o « o « « o o« 15-16
The O Command . . . ¢ ¢ ¢ ¢ ¢ o« o o« o « o o+ o« 15-17
The Equal Sign (=) Command « « « & « « 15-17
The V Command . « . &« & « « &+ o « o o o & o« o 15-17
The R Command . . +« « « o o o o o« o o o« « o« « 15-18
EXAMPLES ¢ . ¢ ¢ o ¢ o ¢ o o o o o s o« s o o« o« o 15-18
ZAP ERROR MESSAGES e o o o o & o 15-23
COMMANDS AND SWITCHES
INTRODUCTION o ¢ & o « o o o s o o s o o o o o o« o« A-1
EDI COMMAND SUMMARY . ¢ ¢ ¢ o « o o o « o o o « o A-1
PIP COMMAND SUMMARY . &+ ¢ 4« & s s s o o s o o« « « A5
FLX COMMAND SUMMARY . & 4 &« « o« o o « o o« o« o o« o A-9
FMT COMMAND SUMMARY . . . ¢ ¢ « ¢ o o« o « o« « « A-11
BAD COMMAND SUMMARY . « ¢ 4 ¢ o o o o o o o o o« A-12
BRU COMMAND SUMMARY . . © o o o s o o o & o o A-13
DSC COMMAND SUMMARY . . e o o e s s e s &« o . A-16
VFY COMMAND SUMMARY . « ¢ ¢ o o o o o o o o« o« «» A-17
LBR COMMAND SUMMARY . « .« ¢ & ¢ &« « o « o » « o A-18
DMP COMMAND SUMMARY . « ¢ & ¢ s o « o « » s« « « A-20
CMP COMMAND SUMMARY . ¢ ¢« + « « o o « o « o« « o« A=-22
SLP COMMAND SUMMARY . « « o « o o o o o o o« o« o A-23
PAT COMMAND SUMMARY . . . e e e o o s o o o o A-24
ZAP COMMAND AND SWITCH SUMMARY e +« o s o o o o o A=-25
ZAP Open/Close CommandS . . + « « « &« « « « « A=25
ZAP General-Purpose Commands . « + « o« « « « o A-26
ZAP Switches ¢ & ¢ ¢« ¢ ¢« ¢« o+ o o . o A-27
THE CROSS-REFERENCE PROCESSOR (CRF)
HOW CRF PROCESSES DATA . . ¢ « « o s « o s« o o o« » B-1
MACRO-11 or Task Builder Processing B-1

xi April 1983

CONTENTS

1.2 CRF Processing . . ¢« « ¢ ¢ « ¢« ¢ ¢t o « o o o +» B=3
2 THE CRF SYMBOL TABLE FILE . . . ¢« ¢ ¢« ¢« o« o« « &« « B=3
3 THE CRF SEND PACKET . . ¢ ¢ ¢ o o o o o o o s « « B-4
4 CRF ERROR MESSAGES . + ¢ o o o « « o o o o o« o« o« o« B=5

EXAMPLES

EXAMPLE 2-1 Line Printer Position for the TYPE Command and
the PRINT Command . . . o« e o o e o o . 2-18
11-1 Dumping Virtual Blocks 1n Hexadec1ma1, Radlx—So,
and Decimal Format e e o o s o « o 11-9
11-2 Dumping Virtual Records in ASCII and Decimal
Word Format e o o o s & o o o « » 11-10
11-3 Dumping the File Header of a File . . . « « o . 1l1-11

FIGURES
FIGURE 3-1 Results of Copy Command With and Without /NV

Specified e o o o o 3-13
3-2 Sample Directories Before and After Executlon . 3-20
3-3 Directory Listing Examples . « ¢« ¢« « « & o « o « 3-27
3-4 Format of Protection Word « « « + » . 3=-31
3-5 Use of the Purge Switch 3-32
3-6 Results of Rename Switch With and W1thout /NV

Specified « o o s o o o o o o o & 3-35
4-1 DOS-11 Directory L1st1ngs . o e . e s o s o« s 4-9
4-2 RT~11 RKO05 Cartridge Disk Dlrectory Llstlng . o 4-11
8-1 Data Transfer for DSC Copy Operation . . . + « . . 8-2
8-2 Data Transfer for DSC Compare Operation 8=3
10-1 General Format for Object and Macro Library Files 10-3
10-2 Universal Library File Format 10-4
10-3 Contents of Library Header . . . e s e o o o o 10-5
10-4 Format of Entry Point Table Element e e o o o o 10-6
10-5 Format of Module Name Table Element 10-6
10-6 Module Header Format for Object and Macro

Libraries . . e s s s s e s e s s o e « 10-6
10-7 Module Header Format for Universal Libraries . . 10-7
10-8 Sample Files Used in LBR Examples 1-4 10-25
10-9 Output Library File After Execution of Example 1 10-26
10-10 Output Library File After Execution of Example 2 10-26
10-11 Output Library File After Execution of Example 3 10-27

10-12 Sample Files for Universal Library Replace

Exam‘»’)le - - - - o o 10-28
10-13 Output Library F11e After Execution of Universal

Library Replace Example . . . « ¢« « o o « & . 10-28
10-14 MACRO Listing Before and After Running LBR w1th

/SZ Switch . ¢ ¢ ¢« o ¢ o & o & . o o o . o 10-32

13-1 Input Files and Output Files Used Durlng SLP

Process . « « o« o o« o« . e e e s s . e o 13-4
14-1 Processing Steps Requ1red to Update a Module

Using PAT . . . e s e e . e« e o o 14-2
B-1 How MACRO-11, the Task Builder, and CRF Generate

Cross-Reference Listings e o o o o o o o B-2
B-2 Format of the CRF Symbol Table F11e e« « « « « . . B-4
B-3 Format of the CRF SEND Packet ¢« « « « . « B=5

xii

CONTENTS

Page
TABLES

TABLE 2-1 EDI Default File Specifications . . . « « &« « « o 2-3
2-2 Line-by-Line and Block Mode Differences 2-5
2-3 Basic EDI Commands « « « o s o o o o o o o o o « 2=10
2-4 EDI Setup Commands . ¢ o « o o o o o o o o o o o« 2=21
2-5 EDI Locator CommandsS . « « « o o o o o o o o o o 2-22
2-6 EDI Text Modification and Manipulation Commands 2-23
2-7 EDI Macro CommandsS . « « o o « o o o o o o o o o 2=25
2-8 EDI Input/Output Commands . « « « « o o« « o « o 2-25
2-9 EDI Device Output CommandS . « « o o« o o ¢ o o o 2=26
2-10 EDI Close Operation Commands . . « + o o« o« o« o« o 2-27
3-1 PIP Default File Specifications + + « o+ 3-2
3-2 PIP Switches and Subswitches . . . e o » s ¢ o 3-3
3-3 PIP Copy Command and Merge Subsw1tches e e o o o 3-11
3-4 List Subswitches . & . ¢« « ¢ o o ¢ o o o o o« « o 3-25
3-5 Response Choices for the Selective Delete Switch 3-38
3-6 PIP Error CodeS . o« o « o « o o o o o o o o o o« 3-54
4-1 FLX Transfer Mode Switches . . + ¢« o ¢« o o « o« o o+ 4-5
4-2 FLX Control Switches . . ¢« ¢« ¢ ¢« ¢ &+ o o o o s & » 4-6

4-3 Differences Between Files~11l and D0S-11 Cassette

Files Format . ¢« o ¢ 4 o o o o o o o o o o« o » o 4-13
5-1 Ranges for Manual FMT Operations . . . « « « « « . 5-4
5-2 FMT-Supported Disk Volumes . . « ¢« « « ¢« « « « « « 5-5
6-1 BAD Switches . . . e s o s e o o s o 6-2
6-2 Devices Supported by Stand-alone BAD . «. . « « « « 6-9
7-1 Mounting and Initializing Volumes 7-2
7-2 Devices Supported by On-Line BRU . « &« ¢ o « & &« « 7=5"
7-3 Summary of BRU Command Qualifiers 7-8
8-1 DSC-Supported Devices . . ¢« ¢ ¢ « o« « 2« o« o« o « » 8-4
8-2 DSC Switches and Options e o o o o o o o 8=7
8-3 Operating System Limits for DSC Block Factor . . §8-13
8-4 The /Rewind Switch and DSC Operations 8-17
8-5 Stand-Alone DSCSYS.SYS Switches « . 8-20
8-6 System—-Generated CSR and Vector Addresses . . . 8-21
8-7 General Error and 1/0 Error Message Codes . . . 8-29
9-1 VFY Switches and Functions . . « « ¢« ¢« & &« o « « » 9-4
10-1 LBR File Specifiers Defaults . « + 4« +« ¢« &« « « o 10-8
10_2 LBR Swi tcheS . . . Y 3 10-10
11-1 DMP Switches e o o e o o o o o« 11-3
12-1 Summary of CMP Default Swltch Settings 12-4
13-1 SLP OperatorS . o & o o o o o o o o o s o o o« « 13-9
13-2 SLP Switches .« « ¢ ¢ &« ¢ o &+ o« o o o o o o o o o« 13-15
15-1 ZAP Arithmetic Operators . . « o ¢ o o « o & . 15-9
15-2 ZAP Command Line Element Separators . . . « « . 15-9
15-3 ZAP Open and Close CommandS .« +. « « « « &« + « o 15-11
15-4 ZAP General Purpose CommandsS . . + « « + o« « o o 15=15

xiii

10-1
10-2
11-1
12-1
13-1
13-2
15-1
15-2
15-3
15-4

LBR File Specifiers Defaults
LBR Switches e o o o e s o o s o »
DMP Switches . « ¢+ ¢ ¢ ¢ & o o o« o« &
Summary of CMP Default Switch Setting
SLP Operators . . ¢ « ¢ ¢ ¢ o o o &
SLP Switches . « . ¢ ¢ ¢« ¢ & &« o o &
ZAP Arithmetic Operators
ZAP Command Line Element Separators
ZAP Open and Close Commands
ZAP General Purpose CommandsS . « « « =

e o o o o N e o o

xiv

e » o e ¢ o ¢ o o o

e o o & e o e e o

e * e ® o * o e o

" e o & e & o e »

* o o o ¢ o s o

Page

10-8
10-10
11-3
12-4
13-9
13-15
15-9
15-9
15-11
15-15

MANUAL OBJECTIVES

The RSX-11M/M-PLUS Utilities Manual is a reference manual describing

the use

of 15 utilities supported on the RSX-11M and RSX-11M-PLUS
operating systems.

INTENDED AUDIENCE

This manual is for all users of the RSX-11M and RSX-11M-PLUS operating

systems.

STRUCTURE OF THIS DOCUMENT

Chapter

1 describes

enter command lines

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

2 describes
3 describes
4 describes
5 describes
6 describes
7 describes
8 describes

9 describes

brie
and

the
the
the
the
the
the
the

the

fly each of the utilities, and explains how to
how to invoke and use the utilities.

Line Text Editor (EDI).

Peripheral Interchange Program (PIP).

File Transfer Utility Program (FLX).

Disk Volume Formatter Utility (FMT).

Bad Block Locator Utility (BAD).

Backup and Restore Utility (BRU).

Disk Save and Compress Utility Program (DSC).

File Structure Verification Utility (VFY).

10 describes the Librarian Utility Program (LBR).

11 describes
12 describes
13 describes
14 describes

15 describes

the
the
the
the

the

File Dump Utility (DMP).

File Compare Utility (CMP).

Source Language Input Program (SLP).
Object Module Patch Utility (PAT).

Task/File Patch Program (ZAP).

Xv

PREFACE
Appendix A is a summary of the commands and switches for the
utilities.

Appendix B describes the Cross-Reference Processor (CRF).

ASSOCIATED DOCUMENTS

The RSX-11M/M-PLUS MCR Operations Manual describes the Monitor Console
Routine (MCR) and 1its commands. The utilities can be invoked from
MCR. This manual provides background information about MCR.

The RSX-11M-PLUS Command Language Manual describes the DIGITAL Command
Language (DCL) and its commands. Most of the utilities can be invoked
from DCL. This manual provides background information about DCL.

CONVENTIONS USED IN THIS DOCUMENT

Use of Red Ink

User input appears in red. Lines and prompting characters output by
the system appear in black.

Use of UPPERCASE Characters

Uppercase characters in a command line indicate characters that must
be entered as they are shown. For example, utility switches must
always be entered as they are shown 1in format specifications. An
exception is the @& symbol, which denotes the RETURN key.

Use of Lowercase Characters

Lowercase characters in a command line indicate wvariables for which
the user must substitute a word or value. For example:

filename.filetype;version
This command indicates the values that comprise a file specification;
values are substituted for each of these variables as appropriate.
Command Abbreviations
Where short forms of commands are allowed, the shortest form
acceptable 1is represented by uppercase characters. The following
example shows the minimum abbreviation allowed for the EDI WRITE
command:

Write

This notation means that W, WR, WRI, WRIT, and WRITE are all valid
specifications for the WRITE command.

xvi

PREFACE

Use of Square Brackets ([])

Square brackets indicate optional entries in a command line or a file
specification. Note that when an option is entered, the brackets are
not included in the command line.

Square brackets also are a part of the User File Directory (UFD) and
User Identification Code (UIC) syntax ([group,member]). When you use
a UIC or UFD (in a file specification, for example), brackets are
required syntax elements; that 1is, they do not indicate optional
entries.

Use of Braces ({})

Braces indicate a choice of required entries for a command line. You
can use any of the entries enclosed 1in the braces, but you must
specify one of them.

Use of Commas (,)

Commas are used as separators for command 1line parameters and to
indicate positional entries on a command line. Positional entries are
those elements that must be in a certain place in the command line.
Although you might omit elements that come before the desired element,
the commas that separate them must still be included.

Use of At Sign (@)

The at sign (@) invokes an indirect command file. The at sign
immediately precedes the file specification for the indirect command

file:

@filename[.filetype;version]

Use of Periods (.)
Periods in the file specification separate the file name and file

type. When the file type is not specified, the period may be cmitted
from the file specification.

Use of Semicolons (;)
Semicolons in the file specification separate the file type from the

file wversion. If the version is not specified, the semicolon may be
omitted from the file specification.

Use of Slashes (/)

Slashes precede switches and subswitches in the command line. When
shown in the command line format, they should be specified as shown.

A horizontal ellipsis indicates that the preceding item(s) can be
repeated one or more times.

xvii

PREFACE

HEEY

The symbol CRLX) indicates that you must press the key labeled CTRL
while vyou simultaneously press another key, for example, mo
CEO , CRIZ).

Command lines are terminated by pressing the RETURN key unless
otherwise indicated in the text. The form used to denote the RETURN
key is

Use of Shading

Shaded portions of text describe only one operating system. Pink
shading indicates that the text describes only RSX-11M operating
systems. Gray shading indicates that the text describes only
RSX-11M-PLUS operating systems. The smallest shaded portion of text
is a paragraph. The text that is not shaded describes both operating
systems.

xviii

SUMMARY OF TECHNICAL CHANGES

The following is a 1list of the technical changes (such as new
functionality, and new and revised switches) by utility, in the order
in which the utility appears in this manual.

Peripheral Interchange Program (PIP)
ANSI magnetic tapes are now supported.

& - Ampersand (new) - Separates each command when several
commands are specified in the same command line.

$ - Wildcard (new) - Denotes exactly one character in the file
name and/or file type of an input file specification.

/CD - Creation Date switch (revised) - Can be set as the default
(instead of /-CD). ’

/DD - Default Date switch (new) - Restricts file searches to
files created during a specified period of time.

/DF - Default switch (revised) -~ Specified with no arguments, it
returns the default device to SY0O: and the UFD to the UIC from
which PIP was invoked.

/EX - File Exclusion switch (new) - Excludes one file
specification's worth of files during a file search.

/FR - Free Blocks switch (revised) - Displays the amount of
available space on a specified volume, the largest contiguous
space on that volume, and the number of available file headers.

/ID - Identity switch (revised) - Identifies the version of PIP
being used and if PIP is linked to ANSI FCS.

/TD - Today switch (new) -~ Restricts file searches to files
created on the current day.

File Transfer Utility Program (FLX)
The TU78 magnetic tape is now supported.

/DNS:6250 - Density switch (revised) - Specifies a density of
6250 bpi to support the TU78 magnetic tape.

SUMMARY OF TECHNICAL CHANGES

Disk Volume Formatter Utility (FMT)

The RM05 disk is fully supported. FMT treats the RM05 as a
larger RMO3.

DL:-type devices are supported, and some corrupted DL:-type disk
cartridges can be made usable again.

/VE ~ Verify switch (revised) - is now the default operation.

/-VE, /NOVE, /-VERIFY, /NOVERIFY - No Verify switch (new) -
Inhibits the default verification operation.

/DENSITY, /MANUAL, /VERIFY (new) - Switch synonyms for /DENS,
/MAN, and /VE respectively.

Bad Block Locator Utility (BAD)

A multiheader BADBLK.SYS file 1is now supported. The maximum
allowable retrieval pointers 1in the bad block descriptor file
have been expanded from 102 to 126 for non-last-track devices,

The updated stand-alone version of BAD supports the following
devices: the RM05, RM80, and RP07 disk packs, and the RA80 fixed
media disk.

/ALO:volume label - Allocate switch (new) - Prompts for blocks to
be allocated to BADBLK.SYS and to be entered in the bad block
descriptor file.

/PAT=m:n - Pattern switch (new) - Specifies the double-word data
pattern used to locate bad blocks.

Backup and Restore Utility (BRU)

BRU now supports multivolume backup and restore operations using
the /IMAGE switch.

BRU now supports the following devices: RA60/RA81/RC25/RD51/RX50
disks, RL11/RL02 cartridge disks, RH70/RM0O5/RM80/RP07 disk packs,
UDAS0/RP0O7 disk packs, TM78/TU78 magnetic tapes, ML1ll electronic
memory, and TS11/TSV05/TU80 magnetic tapes.

Disk volumes with multiheader index files (structure level 402)
are supported.

There are now two stand-alone BRU systems. BRU64K 1is the
stand-alone version for the RSX-11M and BRUSYS is the stand-alone
version for RSX-11M-PLUS.

/DENSITY - Density switch (revised) - For TU78 magnetic tapes,
you can specify a density of 1600 or 6250 bpi (6250 is the
default bpi).

/IMAGE:option - Image switch (new) - Specifies that you want to
do a multiple disk-to-disk backup or restore operation.

/UFD - User File Directory switch (new) - Directs BRU to create a
UFD (if it does not already exist) on a mounted ocutput volume,;

and then to copy into it the files from the same UFD on the input
volume.

XX April 1983

Disk

File

File

SUMMARY OF TECHNICAL CHANGES

Save and Compress Utility Program (DSC)

There are two new stand-alone versions of DSC: DSCSYS and
DSC64K.

DSCSYS is a combination of DSCS8 and DSCS16. This version
requires 28K words to run and a maximum blocking factor of 4.
DSCSYS supports the following new devices: the RP07 disk, the
RAO8 fixed media disk, and the TU78 magnetic tape.

DSC64K is essentially an RSX~11lM system with BAD, FMT, DSC, and
CNF fixed 1in memory. The maximum blocking factor is 4 and DT,
DX, DY, DD, DF, and DS devices are not supported.

DSC now supports up to 64K files on a volume,

/BAD=0OVR - Override option (new) - Ignores the bad block
descriptor area and accesses the last good block on the next to
last track of the disk to obtain the data to create BADBLK.SYS.

/BAD=MAN:0OVR - Manual Override option (new) - Allows manual entry
of bad block data to the bad block file BADBLK.SYS.

/DENS=6250 - Density switch (revised) - Creates magnetic tapes at

6250 bpi. The /DENS:6250 option is valid with TU78 magnetic
tapes only.

Structure Verification Utility Program (VFY)

/DV - Directory Validation switch (new) - Validates directories
against the files they 1list,.

/HD - Header Delete switch (new) - Recognizes and deletes bad

file headers on a volume. The /AL subswitch allows bad headers
to be automatically deleted with no user intervention.

Dump Utility Program (DMP)

Multiple-format dumps are supported. Any or all of the format
switches can be specified in a command line.

ANST magnetic tapes are supported.

/LC - Lower Case switch (new) - Specifies that the data should be
dumped in lowercase characters.

/OCT - Octal switch (new) - Specifies that the data should be
dumped in octal format in addition to other formats.

/SB:n or /SB:-n - Specifies the number of blocks DMP space Blocks
switch (new) - Spaces forward or backward on a tape.

/SF:n or /SF:-n - Space Files switch (new) - Specifies the number

of end-of-file (EOF) marks DMP spaces forward or backward on a
tape.

xxi

SUMMARY OF TECHNICAL CHANGES

File Compare Utility (CMP)
CMP's default output device/file is now TI:.

Any unspecified portions of the second input file specification
default to the specifications for the first input file,

Source Language Input Program (SLP)

/8Q -~ Sequence switch (new) - Sequences the lines in the output
file so that they reflect the line numbers of the original input
file.

/RS ~ Resequence switch (new) - Resequences the 1lines 1in the
output file.

/NS - No Sequence switch (new) - Does not sequence lines 1in the
output file. New lines are indicated by the audit trail.

Task/File Patch Program (ZAP)
Four types of task image files are supported:

e Regular task image files (including those mapped to resident
and supervisor mode libraries)

e Multiuser task image files (RSX-11M-PLUS only)

e I- and D-space (instruction and data space) tasks
(RSX-11M-PLUS only)

® Resident libraries

Resident libraries can be changed in task image mode. ZAP finds
the segments and allows you to make changes in both absolute mode
and task image mode.

/LI - List switch (revised) - Includes read-only segments of a
task in 1its segment table. ZAP finds the starting address and
allows you to make changes in both absolute mode and task image
mode. For I- and D-space tasks, the /LI switch lists the
starting block number and the address boundaries of each segment.

xxii April 1983

CHAPTER 1

INTRODUCTION

The RSX-11M and RSX-11M-PLUS operating systems provide several kinds
of wutilities for your use. Utilities are programs that allow you to
work with different kinds of files and the contents of those files,
and also with different kinds of media (such as disks, magnetic tapes,
and cassettes). The RSX-11M/M-PLUS utility programs are 1listed and
described briefly in Section 1.1; reference information for each
utility is presented in a separate chapter of this manual. Two
appendixes are also included to provide you with a summary of commands
and switches for the utilities and to describe the Cross-Reference
Processor (CRF), which 1is wused with the MACRO-11 assembler and the
Task Builder.

In addition to summarizing the RSX-11M/M-PLUS utilities, this
introduction:

e Describes how to enter RSX-11M/M-PLUS command lines and file
specifications (Sections 1.2 and 1.3)

e Describes how to invoke utilities and enter command 1lines to
them (Section 1.4)

e Describes how to use indirect command files (Section 1.5)

1.1 RSX-11M/M-PLUS UTILITY PROGRAMS

This manual provides reference information for the following
RSX-11M/M-PLUS utilities:

Line Text Editor (EDI)

Peripheral Interchange Program (PIP)

File Transfer Utility Program (FLX)

Disk Volume Formatter Utility (FMT)

Bad Block Locator Utility (BAD)

Backup and Restore Utility (BRU)

Disk Save and Compress Utility Program (DSC)
File Structure Verification Utility (VFY)
Librarian Utility Program (LBR)

File Dump Utility (DMP)

INTRODUCTION

File Compare Utility (CMP)
Source Language Input Program (SLP)
Object Module Patch Utility (PAT)
Task/File Patch Program (ZAP)
The following sections briefly describe each utility.

Note that the utilities described in this manual are not the only
programs on RSX-11M and RSX-11M-PLUS that are used as or considered to
be utilities. TKB, CDA, and MAC are examples of other utility-like
programs. Some programs, such as the editor EDT, are common across
different operating systems. These other programs are documented
elsewhere in the RSX-11M/M-PLUS documentation set. Refer to the
RSX~-11M/RSX-11S or RSX-11M-PLUS Information Directory and Index for
information on what programs are available and where they are
described.

1.1.1 Line Text Editor (EDI)

EDI is a line-oriented, interactive editor used to create and maintain
text and source files. (The RSX-11M/M-PLUS Guide to Program
Development gives specific information about using EDI to create and
maintain program source files.)

1.1.2 Peripheral Interchange Program (PIP)

PIP copies files and performs several file control functions, such as
concatenating, renaming, spooling, listing, deleting, and unlocking.

1.1.3 File Transfer Utility Program (FLX)

FLX is a file transfer and format conversion program that transfers
files between DOS-11, RT-11, and Files-1l1 volumes, with some
restrictions.

1.1.4 Disk Volume Formatter Utility (FMT)

FMT formats and verifies several types of Files-11 disks. FMT writes
and verifies sector headers, sets the density for flexible disks, and
allows spawning of the Bad Block Locator Utility (if your system
allows spawned tasks).

1.1.5 Bad Block Locator Utility (BAD)

BAD determines the number and location of bad blocks on a volume. The
information gathered from running BAD on a volume can be used in
different ways when that volume is initialized.

INTRODUCTION

1.1.6 Backup and Restore Utility (BRU)

BRU transfers files from a Files-11 volume to one or more backup
volumes (including non-Files-11 volumes) and retrieves files from the
backup volume (or volumes). BRU 1is faster than DSC (see Section

1.1.7) in most areas. Also, BRU compresses data, the volumes do not
have to be initialized, and incremental backups are possible.

1.1.7 Disk Save and Compress Utility Program {DSC)
DSC copies Files-11 disk files to disk or tape and from DSC-created
tape back to disk. While copying the files, DSC alsoc consclidates the

data storage area and writes files in contiguous blocks unless it
encounters a bad block. DSC can be run either on-line or stand-alone.

1.1.8 Pile Structure Verification Utility (VFY)

VFY is a disk verification program that verifies the consistency and
validity of the file structure on a Files-11 volume.

1.1.9 Librarian Utility Program (LBR)
LBR is a library maintenance program that creates, displays, and

modifies 1library files. LBR can process macro, object, and universal
libraries.

1.1.10 File Dump Utility (DMP)
DMP is a file listing program that allows you to examine the contents

of a file or volume of files. DMP also provides options that control
the format of the contents.

1.1.11 File Compare Utility (CMP)

CMP compares two text files, record by record, and 1lists the
differences between the two files.

1.1.12 Source Language Input Program (SLP)

SLP is a noninteractive editing program that is used to maintain and
audit source files.

1.1.13 Object Module Patch Utility (PAT)

PAT updates, or patches, relocatable binary object modules.

1-3

INTRODUCTION

1.1.14 Task/File Patch Program (ZAP)

ZAP is a patch utility that examines and directly modifies 1locations
in a task image file or data file.

1.2 COMMAND LINES

The general format for command lines in most of the RSX-11M/M-PLUS
utilities is:

outfile[...,outfilel=infilel...,infile]

The variables outfile and infile are file specifications for the
output and input files to be operated on by the utility. (File
specifications are described in Section 1.3.)

This general format varies from utility to utility. Some wuse the
entire command 1line and others use abbreviated forms of the command
line. For some other utilities (such as BRU), the format is
different. The syntax for each utility is described in the chapter
that describes that utility. Most of the wutilities also accept
indirect command files containing command lines to the utility, as
described in Section 1.5.

1.3 FILE SPECIFICATIONS

In the command line format described in Section 1.2, outfile and
infile represent file specifications. The number of file
specifications you can enter depends on the wutility. The maximum
terminal line length depends on the size of the output buffer for your
terminal (the default length is 80 characters).

The format for entering file specifications is:
ddnn:[g,m] filename.type;version/switch.../subswitch...
ddnn:

The physical or 1logical device unit containing the desired
volume. The name consists of two or three ASCII characters
followed by an optional 1-, 2-, or 3-digit octal number and a
colon, for example, DMO:, or TTllé:.

The default is the user's system device, SY:.

The User File Directory (UFD) listing the desired file or files.
The wvariables g and m are octal numbers from 0 to 377 that
represent the group and member numbers, respectively, of the
file's owner. The brackets are a mandatory part of the UFD
syntax.

The default is the current UIC (User Identification Code) to
which your terminal is set.

See the RSX-11M/M-PLUS MCR Operations Manual or the
RSX-11M/M-PLUS Command Language Manual for more information on
UICs and UFDs.

1-4

INTRODUCTION

filename

The name of the file. File names can be from one to nine
characters in length.

If you want to include special characters in the file name (for
example, semicolons or exclamation marks), place double quotation
marks around the name. If you use only one double quctation
mark, MCR or DCL assumes an American National Standard X.327-1978
file name. (See the RSX-11M/M-PLUS I/0 Operations Manual for
more information on double gquote support.) Note that not all
utilities or other tasks allow special characters.

There is no default.

type

The file type of the file. The file type provides a convenient
means for distinguishing different forms of the same file. For
example, a FORTRAN source program file might be named COMP,.FTN
and the object file for the same program might be named COMP,OBJ.
In this way, the file type identifies the nature of the contents
of the file.

File type and file name are separated by a period. The file type
may not be specified or can be up to three alphanumeric
characters in length. The default for a file type depends on the
utility or task you are working with and if the file is an input
or output file.

See the RSX-11M/M-PLUS MCR Operations Manual or the
RSX-11M/M-PLUS Command Language Manual for a list of standard
file types.

version

An octal number that specifies different versions of the same
file. For example, when a file is created, it is assigned a
version number of 1 by default. Thereafter, each time the file
is opened and unless you specify otherwise, the file system
creates a new file with the same file name and file type, but
with a version number incremented by 1. Version numbers range
from 1 through 77777(8). However, you can also use 0 to specify
the highest numbered version and -1 to specify the lowest
numbered version (0 is the default). If a file has a version
number of 77777, no more versions of it can be created.

Version number and file type are separated by a semicolon. The
default is the latest version.

/switch (also /qualifier)

An ASCII name specifying a switch (or qualifier in BRU)
associated with a function to be executed by the utility. Most
utility functions are implemented by means of switches and
subswitches. Switches can take one of three forms:

/sw invokes the switch function
/-SwW negates the switch function
/NOsw negates the switch function

Switches can also take values in the form of ASCII strings and
numeric strings. The values modify the function of the switch.

INTRODUCTION

Most numeric values are octal by default. To specify a decimal
number, terminate the number with a decimal point. Values
preceded by a pound sign (#) are octal; this optional notation
provides explicit specification of octal values. Any number can
be preceded by either a plus (+) or minus (-) sign; plus is the
default. Where explicit octal notation (#) is used, the sign, if
specified, must precede the pound sign.

The following are examples of valid switch specifications:
/SW:27, :MAP: 29,
/-SW
/NOSW:-#50: SWITCH
/subswitch
An ASCII name specifying a subswitch associated with a switch.
Subswitches provide a subset of functions related to the main
switch function. The following is an example of a subswitch
specification:
PIP>[200,200]*.*; */PR/FO @D
In this example, /FO is a subswitch applied to the /PR switch.

Syntactically, subswitches are identical to switches. The rules
for entering switches also apply for entering subswitches.

1.4 INVOKING THE UTILITIES

You invoke a utility from the command 1line interpreter (CLI)
environment. The CLI can be the Monitor Console Routine (MCR), the
DIGITAL Command Language (DCL), or an alternate user-written CLI. For
more information on MCR, see the RSX-11M/M-PLUS MCR Operations Manual.
For more information on DCL, see the RSX-11M/M-PLUS Command Language
Manual.

To determine whether you are using MCR or DCL or another CLI, type
CTRL/C, which returns the explicit monitor prompt: MCR> or DCL> or
CLI>.

You can work with a utility directly (interactively) or by means of
indirect command files. For systems in which all utilities are
installed, you can use any of three methods to invoke a utility.
Sections 1l.4.1 describes these methods. For systems in which not all
utilities are installed, you can use the method described in Section
1.4.2.

Section 1.5 describes how to invoke a utility that can then accept
commands from an indirect command file.

You can invoke a utility when MCR or DCL prompts you. The MCR prompts
are:

> or (if you type CTRL/C first) MCR>
The DCL prompts are:

> or {if you type CTRL/C first)

[w}
(@]
Nl
v

INTRODUCTION

In MCR, the utilities are always invoked by their 3-character names.
DCL, however, has commands that access utilities transparently to the
user. You do not have to explicitly specify the utility to wuse it.
For example, the DCL command DIFFERENCES invokes the File Compare
Utility (CMP); and the DCL commands COPY, DELETE, and PURGE invoke
the Peripheral Interchange Program (PIP). This transparent access to
utilities covers most common utility needs for DCL users. If you use
these DCL commands, the general format for specifying files is:

>command [/qualifiers] infile outfile

DCL users can also use any MCR command forms by using the DCL command
MCR (or MC).

1.4.1 Invoking Installed Utilities

RSX-11M/M-PLUS systems provided in distribution kits do not have any
utilities 1installed. Once the system has been generated, the system
manager usually installs any commonly used utilities. Use the MCR TAS
or DCL SHOW TASKS /INSTALL commands to see which utilities are
currently installed in the system. If the utility you want to use is
not installed, any privileged user can install it with the MCR or DCL
INSTALL command. Once the utility is installed, you can invoke it.

The following sections describe the three primary methods you can use
to invoke installed utilities.

1.4.1.1 1Invoking a Utility and Returning Control to MCR - Use one of
the following forms of command lines to invoke a utility to execute a
function and then return control directly to MCR:

>utilityname command-line

or

MCR>utilityname command-line
Using this method to invoke the utility allows you to enter a single
command for execution. The utility 1is 1installed, the command is
executed, and control returns to MCR. (The method described in the
following section allows you to enter more than one command line
because control returns to the utility rather than to MCR.)
Two exceptions to this command format are the SLP and ZAP utilities.,
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.1.3., (However, you can specify

>SLP @indirectcommandfile

or

>ZAP @indirectcommandfile

See Section 1.5 for more information.)

INTRODUCTION

1.4.1.2 1Invoking a Utility and Returning Control to DCL - Use one of
the following forms of command lines to invoke a utility to execute a
function and return control directly to DCL:

>commandname command-line

or

>MCR utilityname command-line
Using these methods to invoke the utility allow you to enter a single
command for execution. The wutility 1is 1installed, the command is
executed, and control returns to DCL. With the first method, the ©DCL
command transparently accesses the utility (see Section 1.4).
Two exceptions to this command format are the SLP and ZAP utilities,
You must first invoke these utilities and then enter the command lines
as described in Section 1.4.1.3. (However, you can specify

>SLP @indirectcommandfile

or

>ZAP @indirectcommandfile

See Section 1.5 for more information.)

1.4.1.3 1Invoking and Passing Control to a Utility - Use one of the
following forms of command lines to invoke an installed utility and
pass control to it:

For MCR:
>utilityname
For DCL:
>MCR utilityname
These commands do not execute a function; rather, they make a utility
available for execution of more than one function without returning
control to MCR or DCL, When invoked using one of these forms, the
utility responds with the prompt:
utilityname>
You can then enter the command line that specifies the function vou
want executed. For example, if you are executing a PIP function, PIP
displays the prompt:
PI P>

To terminate the utility and return to MCR or DCL, type CTRL/Z.

-
i
<o

INTRODUCTION

1.4.2 1Invoking Uninstalled Utilities

You can use the following method to invoke an wuninstalled utility.
This method 1is useful for smaller systems in which not all utilities
are installed. This method uses either the MCR RUN command or the DCL
RUN command to invoke the utility.

The method invokes the utility by means of the following command:
S>RUN Sutilityname

The dollar sign ($) directs MCR or DCL to search the system directory
for the utility and to bring it into storage. On RSX~-11M-~PLUS, if the
utility is not in the system directory, MCR or DCL then searches in
the library directory and invokes the utility from there.

When the utility gains control, it displays the prompt:
utilityname>

Then it waits for you to enter a command line. The utility continues
to prompt you after each command line is executed. To terminate the
utility, enter CTRL/Z. Control is then returned to MCR or DCL.

A variation of this method allows the utility to run under a UIC other
than the current UIC:

For MCR:

>RUN $utilityname/UIC=([g,m]
For DCL:

>RUN/UIC: [g,m] $utilityname

When the utility gains control, it prompts for functions to execute
until you enter CTRL/Z.

1.5 USING INDIRECT COMMAND FILES

An indirect command file normally contains a sequence of command lines
that are interpreted by a task (usually a system-supplied task such as
a utility, the MACRO-11 assembler, or the Task Builder). These
command lines appear in the indirect command file exactly as you would
enter them from your terminal.

The command lines contained in the indirect command file are executed
when the indirect command file is invoked. If you invoke the file
from MCR or DCL, each command line must begin with the name of the
utility or command you want to use. If you invoke the file from the
utility itself, the command lines do not begin with the name of the
utility, but they must all be legal for that utility.

For example, an indirect command file might contain the following
series of PIP command lines:

=DB2:[303, 24]TESTPREP.CMD
TESTPREP.*; */LI
TESTPREP.*/PU: 2

*_.CMD/SP

1-9

INTRODUCTION
To invoke the indirect command file (PIPCMDS.CMD), enter one of the
following sets of commands:
For MCR:
>PIP @PIPCMDS.CMD @D
or

>PIP
PIP>@PI PCMDS

or

>RUN $PIP
PIP>@PIPCMDS

For DCL:

SRUN S$PIP GED
PIP>@PI PCMDS GED

or

>MCR PIP @PIPCMDS @)

or
S>MCR PIP G
PIP>@PI PCMDS

In this example, PIP is invoked and accesses the file PIPCMDS.CMD,
which contains the sequence of PIP command lines. Because PIP is
invoked first, the command lines in the file do not have to begin with
PIP. PIP executes the command lines and returns control to MCR, DCL,
or PIP, depending on which command set you use.

RSX-11M and RSX-11M-PLUS also allow you to use indirect command files
that contain MCR or DCL commands. The command lines do not begin with
MCR or DCL; they must only be legal for the CLI, You invoke the
indirect command file by entering only the file specification preceded
by the at sign (@) in respocnse to the prompt (in this case, the MCR
prompt) :

>@indirectcommandfile
The default values for indirect command file specifications are:

e device - 8SY:

e [g,m] - the current UIC

e file name - no default; must be specified

e file type - .CMD

e version - the latest version of the file

For complete information on how to use indirect command files, see the
RSX-11M/M-PLUS MCR Operations Manual.

1-10

CHAPTER 2

LINE TEXT EDITOR (EDI})

EDI is a line-oriented editor that allows you to create and modify
text files. EDI operates on most ASCII text files. It is frequently
used to create and maintain FORTRAN or MACRO-11 source files.

EDI accepts over 50 commands that determine its mode of operation and
control its actions on input files, output files, and working text
buffers. The commands fall into the following seven categories:

e Setup commands select operating conditions, c¢lose and open
files, and select data modes.

o Locator commands control the position of the current 1line
pointer and thus determine which text line is acted upon.

e Text modification commands change text lines.

e Macro commands define, store, recall, and use sequences of EDI
commands.

e PFile input and output commands transfer text to and from
input, output, and saved files.

e Device output commands send output to a terminal or a printer.
e Close and exit commands terminate editing operations.

Commands are categorized 1in this chapter as Basic EDI Commands
(Section 2.2), EDI Commands: Function Summary (Section 2.3), and EDI
Commands: Detailed Reference Summary (Section 2.4). Restrictions,
system device considerations, and error messages for these commands
are discussed in Sections 2.5 and 2.6.

2.1 USING EDI

This section gives background information about EDI that is important
for you to know before you read the command descriptions.

2.1.1 Invoking EDI

You can invoke EDI using any of the methods for invoking a utility
described in Chapter 1. If any format except ">EDI filespec™ is used,

EDI issues the following prompt:

EDI>

LINE TEXT EDITOR (EDI)

At this point, you must enter the file specification for the file to
be edited.

2.1.1.1 Entering File Specifications - Enter a file specification in
the following format:

ddnn: [ufd] filename.filetype;version

The abbreviation "filespec" is used throughout this chapter to denote
a file specification that you supply.

If the file specification is a new file (that is, the file specified
cannot be found on the specified device), EDI assumes that you wish to
create a new file with the given file name. EDI then prints the
following comment lines:

[CREATING NEW FILE]
INPUT

and enters input mode. (EDI control modes are described in Section
2.1.2.)

If the message FILE DOES NOT EXIST is printed, it means that the User
File Directory corresponding to the specified UIC is nonexistent.

EDI does not accept indirect command file specifications.
If you specify an existing file name, EDI prints:

f{000Onn LINES READ IN]
PAGE 0]
*

and waits in edit mode for you to issue the first command.

If the ">EDI filespec" format is used, the prompt (EDI>) is not issued
and EDI starts up in either input or edit mode, depending on the file
name specified -- input mode if the file name is new, edit mode if the
file name already exists.

After EDI has identified the input file and created the output file,
it is ready for commands. In edit mode, the first line available for
editing is one line above the first line of the input £file or the
block buffer. Therefore, you can insert text at the beginning of the
input file or the block buffer by 1issuing an INSERT command. To
manipulate the first line of text, on the other hand, you must issue a
NEXT command to make that line available.

2.1.1.2 Defaults in File Specifications - EDI uses a default 1if any
of the elements of the file specification, except the input file name,
is omitted. 1In general, EDI processing creates an output file. When
you are modifying an existing £file, EDI uses that file and your
modifications to create an output file. When the editing session is
complete, the output file usually has the same file specification as
the input file, except the file system renumbers the version to one
greater than the previous version. The default values for input and
output files are listed in Table 2-1.

LINE TEXT EDITOR (EDI)

Table 2-1
EDI Default File Specifications

Default Value Default Value
Element for Input File for Output File
ddnn: SYO0: Same as input device
[ufd] UFD under which EDI Same as input [ufd]

is currently running

filename No default -- nmust Same as input file name
be specified

filetype Unspecified Same as input file type

;version Latest version Latest version + 1

2.1.2 Control Modes: Edit and Input
EDI runs in two control modes:
e Edit mode (command mode)
e Input mode (text mode)
Edit mode is invoked automatically when you specify an existing file.

In edit mode, EDI issues an asterisk (*) as a prompt. EDI acts upon
commands and data to open and close files; to bring lines of text
from an open file; to change, delete, or replace information in an
open file; or to insert single or multiple lines anywhere in a file.

Input mode is invoked automatically at program startup if you specify
a nonexistent file.

When in input mode, EDI does not issue an explicit prompt. Lines that
you enter at the terminal are treated as text and are inserted into
the output file. When you complete each input line by pressing the
RETURN key, EDI sends a line feed to the terminal.

To switch from edit mode to input mode, enter the INSERT command and
press the RETURN key. To return to edit mode, press the RETURN key as
the only character on an input line. EDI will 1issue the asterisk
prompt, signifying edit mode.

2.1.3 Text Access Modes

EDI provides two modes you can use to access and manipulate 1lines of
text 1in the input file. (A line is defined as a string of characters
terminated by pressing the RETURN key.) The two modes are:

e Line-by-Line Mode allows access to one line of text at a time.
Backing up is not allowed.

e Block Mode allows free access within a block of 1lines, on a
line-by-line basis. Backing up within a block is allowed.
Backing up to the previous block is not allowed.

Block mode is the default text access mode.

2-3

LINE TEXT EDITCR (EDI)

In addition to these two text access modes, EDI provides a way to
process text "pages." This feature is described in Section 2.1.3.3.

2.1.3.1 Line-by-Line Mode - In this mode, a single line is the unit
of the input file available for modification. Line-by-line mode is
entered by issuing a BLOCK OFF command and is terminated by issuing a
BLOCK ON command.

The single available 1line--the current 1line--is specified by a
pointer, which you can move sequentially through the file, starting
just before the first line in the file. You can manipulate the 1line
pointer using the 1locator commands and the text modification and
manipulation commands discussed later in this chapter. However, you
cannot easily direct the pointer backward within the file.

When you open a file at the beginning of an editing session, you can
specify that the first line be brought into memory and made available
for modification. This line remains in memory until you request that
a new line be brought in. The pointer then moves down the file until
the line you requested is encountered. That 1line is brought into
memory and, as the current line, can be modified. When a new line is
brought in, the previous line is written into the output file, as are
all lines that may be passed over in reaching the new current line.

Once the pointer moves past a line, that line is no longer accessible
unless you. enter a TOF or TOP command (described in Section 2.4). TOF
causes the input and output files to be closed, and the output file to
become the new input file. TOF also ends line-by-line mode.

2.1.3.2 Block Mode - In this mode, a portion of the input file Iis
held in a buffer for editing until you request that the contents of
the buffer be added to the output file.

In block mode, you can access lines of text backward as well as
forward within the buffer. Thus, you can back up to a previously
edited line Wwithout having to reprocess the entire block or file and
without having to issue. a TOF command.

When you finish editing a block, you can write it out and read in the
next block with the RENEW command. However, you cannot access a
previously edited block except by using TOF.

EDI buffer space is computed dynamically at run time. The number of
lines initially read into the buffer is computed by using the formula:

buffersize/132

A block is the number of lines read into the buffer by a RENEW or READ
command. This number is either:

1. Specified with the SIZE command (default is 38 lines 1if the
SIZE command is not issued),

or

2. Determined by the presence of a form feed at a point in the
text where the number of lines is less than that specified in
the SIZE command (or its default value, if SIZE was not
issued).

LINE TEXT EDITOR (EDI)

When the current 1line pointer reaches End-0f-Block, the message
[*EOB*] is displayed and the current line pointer points to the last

line in the block. To move the current line pointer to the top of the
block, use TOP.

Table 2-2 briefly summarizes the differences between line-by-line and
block mode. Regardless of the editing mode, the line pointer always
points to the first character in the line.

Table 2-2
Line-by-Line and Block Mode Differences

Line-by-Line Mode Block Mode
One line is available for A block of lines is available
modification at a time. for modification at a time, on

a line-by-line basis.

Lines can only be Lines can be accessed forward
accessed forward through and backward within a block.
the file.

Search commands can Search commands can search only
search the entire file. the block in memory. To search

more data, you must read in
another block.

2.1.3.3 Processing Text in Pages - EDI provides features that allow
you to access portions of a text file by page. A page is a segment of
text delimited by form feed characters (the last page in a file Iis
terminated by the end-of-file marker).

Two commands are provided to handle paged text: FF, which defines a
page boundary by inserting a form feed, and PAGE, which accesses a
page of text. (The commands PAGE FIND and PAGE LOCATE do not refer to
form feed-delimited pages-~they are actually global searches.)

EDI handles paged text in block mode. If block mode is not already in
effect, it is entered when you issue a PAGE command.

If a form feed 1is encountered in text during a READ or RENEW
operation, the page thus delimited, for purposes of the READ or RENEW
command, is interpreted as a block.

The message [PAGE n], issued after a READ or RENEW operation, gives
the wvalue of EDI's page counter. If your text contains no form-feed
characters, the count is zero until the last block in the file is read
into the buffer. Upon encountering the end-of-file (EOF), EDI
increments the page count to 1.

2.1.4 Text Files

The fcollowing sections describe how data may be added to files and the
operations performed on output files.

LINE TEXT EDITOR (EDI)
2.1.4.1 1Input and Secondary Files - EDI accepts input from the
following:
e The input terminal (that is, commands and text entries)
e Files-11 volumes that contain any of the following:

The file to be edited

A secondary file

A save file
-~ A macro file

The input file is always preserved.l Any system failure, EDI failure,
or lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. In cases of failure,
the output file 1is not completely destroyed. Instead, it becomes a
truncated version of the input file containing all of the edits to the
point of failure.

In general, the current block buffer is not written to disk when an
error of this type occurs.

2.1.4.2 Output Files - The output file defaults to the input file
device, directory file name, and file type specifications. The
version number is incremented by one.

If you wish to change any of these parameters (except device and

directory), specify a new file specification when closing a file or
exiting at the end of an EDI session.

2.1.5 Terminal Conventions

RSX-11M/M-PLUS and EDI provide terminal keyboard functions that allow
you to:

e Delete characters on an input line

e Delete an entire input line

e Move the current line pointer forward in a file
e Move the current line pointer backward in a file

e Terminate an editing session and return control to your CLI
(for example, MCR or DCL)

2.1.5.1 Character Erase (DELETE or RUBOUT; CTRL/R) - Pressing the
DELETE key (marked RUBOUT on some terminals) deletes individual
characters if used before the RETURN key is pressed. During editing
operations, DELETE does not affect previously prepared text.

l. To delete the input file, use the CLOSE-AND-DELETE command or the
EXIT-AND-DELETE command, or use PIP (see Chapter 3).

2-6

LINE TEXT EDITOR (EDI)

When the DELETE key is pressed, it is echoed first as a backslash (\}
and 1is followed by the previously typed character. Each successive
DELETE results in the echo of an earlier typed character. When the
first non-DELETE character 1is typed, it 1is echoed as a backslash
(closing the DELETE sequence) followed by the typed character. For
example:

First DELETE typed MISTKAE\E
Second DELETE MISTKAE\EA
Third DELETE MISTKAE\EAK
First non-DELETE MISTKAE\EAK\AKE

For some CRT terminals, DELETE (or RUBOUT) works in a more obvious
way. Each DELETE causes the cursor to backspace, erasing the previous
character. Your CRT terminal may work this way if a certain option
was selected when your system was generated.

Another useful system generation option is CTRL/R. If this option was
selected, your system responds to CTRL/R by printing the incomplete
input line. It is typed by holding down the CTRL key and pressing R.
CTRL/R echoes "R and 1is followed by a return and line feed. For
example, at a hardcopy terminal you enter:

MISTKAE CRUR)
The echoed result is:

MISTKAE\EAK "R
MIST

2.1.5.2 Line Erase (CTRL/U) - CTRL/U deletes the line being input, if
typed before the line is terminated with the RETURN key. It is typed
by holding down the CTRL key and pressing U. CTRL/U echoes as "U and
is followed by a return and line feed.

2.1.5.3 The RETURN Key - The RETURN key has the following effects,
depending on how it is used:

e When issued in place of an input file specification, the
RETURN key causes EDI to terminate.

e When issued in edit mode, the RETURN key causes the next 1line
to be printed. That line becomes the current line.

e When issued in input mode as the only character in an input
line, the RETURN key causes a return to edit mode.

e When issued alone after an INSERT command, the RETURN key
invokes input mode.

2.1.5.4 Terminating the Previous Text Line (ESCape or ALTmode) - When
EDI is 1in edit mode, pressing the ESCape (or ALTmode) key causes the
previous text line to be printed. That line becomes the current line.
ESC can be used this way only in block mode, not in line-by-line mode.

When EDI is in input mode, ESC acts as a return and terminates the
line. If ESC is the first character of an input line, EDI exits from
input mode.

LINE TEXT EDITOR (EDI)

2.1.5.5 Terminating EDI (CTRL/Z) - CTRL/Z causes EDI to terminate.
EDI writes the remainder of the input file into the output file and
then closes both files before terminating. Use CTRL/Z to terminate
EDI in edit mode and input mode. CTRL/Z erases your last input line
if you enter the command as a line terminator.

2.1.6 EDI Command Conventions

EDI uses asterisks (*) and ellipses (...) in special ways. The
following sections describe these and also the notation convention
used to define EDI command abbreviations.

2,1.6.1 Use of Asterisk (*) - The asterisk (*) can be used in place
of any numeric argument. It evaluates to 32767(10).

Example

The following command results in the printing of the remainder of
the block buffer or file.

PRINT *

2.1.6.2 Use of Ellipsis (...) in Search Strings - In a number of the
EDI commands, you must identify a string of characters to be located
and/or changed. To reduce the necessary terminal entries, you can use
the following special string constructs. In these special cases, the
ellipsis (...) represents any number of intervening characters.

Case 1. stringl...string2 Any string that starts with stringl
continues with any number of intervening
characters and ends with the first
occurrence of string2.

Case 2. ...string Any string that starts at the beginning
of the <current 1line and ends with the
first occurrence of string.

Case 3. string... The first string that starts with string
and ends at the end of the current line.

Case 4. ... The entire current line.

Examples
In the following examples, the CHANGE command is wused with the
four cases of special string constructs. In each case the
current line reads:
THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 1. cC /S A...E 0/S AN EXAMPLE O

results in

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

LINE TEXT EDITOR (EDI)

Case 2. C/...SPEC/JHERE IS AN EXAMPLE OF SPEC
results in
HERE IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.
Case 3. C /STRING.../EDI STRING CONSTRUCTS.
results in
HERE IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.
Case 4. C /.../EXAMPLES OF SPECIAL EDI CONSTRUCTS.
results in

EXAMPLES OF SPECIAL EDI CONSTRUCTS.

2.1.6.3 Command Abbreviations - EDI permits the wuse of truncated
commands. Where these shorter forms are allowed, the command format
specifications represent the shortest acceptable form 1in uppercase
letters. The lowercase letters may be entered optionally. The
following example shows the abbreviations allowed for the VERIFY
command. The command format specification is:

Verify
The following truncations are valid for the VERIFY command:

\'2

Ve

Ver
Veri
Verif
Verify

2.2 BASIC EDI COMMANDS

The basic EDI commands listed in Table 2-3 allow you to create a file,
to modify a file by adding, deleting, or changing its contents, and to
exit after the desired operations have been completed. A more
detailed description of each command follows the table. These
commands are the most important EDI commands. As you become familiar
with EDI operations, the additional commands listed in Section 2.3 and
described 1in Section 2.4 will allow you to wuse all of EDI's
capabilities.

LINE TEXT EDITOR (EDI)

Table 2-3

Basic EDI Commands

Command Command Format Description

ADD Add string Append string to current line.

ADD & PRINT AP string Append string to current 1line
and print resulting line.

BOTTOM BOttom Move the current 1line pointer
to the bottom of the current
block (in block mode) or to the
bottom of the file (in
line-by-line mode).

CHANGE [n]Change /stringl/ Replace stringl with string2

string2[/] n times in the current line.

CRL2) Type a Control Z Close files and terminate
editing session.

DELETE Delete [n] Delete current 1line and n-1

or lines if n is positive; delete
Delete [-n} n lines preceding current line
if n is negative. [-n]

operates in block mode only.

DELETE & DP [n] or DP [-n] Same as DELETE, except new

PRINT current line is printed.

€SO Type the ESC (or ALT)| Print previous line, make it

key new current line and exit from
input mode (block mode only).
Same as NP-1.

EXIT EXit [filespec] Close files, rename output
file, and terminate editing
session.

INSERT INsert [string] Enter the string immediately
following the current line. If
no string 1is specified, EDI
enters input mode.

LOCATE [nJLocate string Locate nth occurrence of
string. In block mcde, search
stops at end of current block.

NEXT Next [n] or Establish new current line n

NEXT & PRINT

PRINT

Next [-n]

NP [n] or NP [-n

Print[n]

lines away €from current line.

Establish and print new current
line.

Print current line and the next
n-1 1lines. The 1last printed
line is the new current line.

a2 P -

{continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-3 (Cont.)
Basic EDI Commands

Command

Command Format

Description

RENEW

RETYPE

TOP

TOP OF FILE

RENew(n]}

Press the RETURN key

Retype string

Top

TOF

Write current block to output
file and read new block n from
input file (block mode only).

Print the next 1line, make it
new current line, exit from
input mode. Same as NP+l.

Replace current line with
string or delete current line
if string is not given.

Move the current 1line pointer
to the top of the current block
(in block mode) or top of file
(in 1line-by-line mode). TOP
creates a new version of the
file each time it is invoked in
line-by-line mode.

Return to top of input file and
save all pages previously
edited. TOF creates a new
version of the file each time
it is invoked. TOF reads in a
new block after writing the
previous block to the output
file.

2.2.1 ADD

This command causes the specified string to be appended to the current

line.

Format

Add string

Example

The following command completes the line HAPPY DAYS ARE HERE

*A AGAIN.

Note that the space after the A is the command terminator. EDI

will not
precede AGAIN.,

insert the space into

A® AGAIN.

2-11

the 1line. If a space is to

the command should be:

2.2.2 ADD & PRINT

This command performs the same function as the ADD command except that
the new line is printed.

Format
AP string
Example

Using the same line used for the ADD command, the following
command causes the new line to be printed as follows:

*AP AGAIN.
HAPPY DAYS ARE HERE AGAIN,

2.2.3 BOTTOM

This command moves the current line pointer to the beginning of the
last 1line of the current block (in block mode) or to the beginning of
the last line of the file (in line-by-line mode). In block mode, the
only processing EDI performs is 1line pointer positioning. In
line-by-line mode, all the lines are copied from the input file to the
output file until EOF is reached. If VERIFY ON is specified, the last
line of the file block is displayed. Note, however, that 1f you
deleted the 1last 1ine before you issued BOTTOM, the pointer will be
located past the text, and thus the last line will not be printed.
BOTTOM performs the same function as END (see Section 2.4.14).

Format
BOttom
Example

*V ON
*BO
THIS IS THE LAST LINE

In this example, the current line pointer is moved to the bottom
of the block buffer and the last line is printed.

2.2.4 CHANGE

This command searches for stringl in the current line and, if found,
replaces it with string2. 1If stringl is given, but cannot be located
in the current line, EDI prints [NO MATCH] and returns an asterisk
prompt. If stringl is not given, string2 is inserted at the beginning
of the line. 1If string2 is not given, stringl 1is deleted from the
current line.

The search for stringl begins at the beginning of the current line and
proceeds across the line until a match is found.

LINE TEXT EDITOR (EDI)

The characters that delimit stringl and string2 are normally slashes
/). However, any matching characters not contained in the specified
string may be used. The first character following the command is the
beginning delimiter, the next matching character ends the string.
Thus, characters used as delimiters must not appear 1in the string
itself. The closing delimiter is optional.

If you precede the command with a number n, the first n occurrences of
stringl are changed to string2. After each replacement of stringl
with string2, scanning restarts at the first character in the 1line.
This allows you to dgenerate a string of characters as shown in the
following example.

If no match occurs, a [NO MATCH] message is displayed.
Format

[n]Change /stringl/string2[/]
Example

TO SEPERATE THE THOUGHTS, USE SEPERATE SENTENCES.

2C/SEPE/SEPA/

TO SEPARATE THE THOUGHTS, USE SEPARATE SENTENCES.

2.2.5 CTRL/Z

Typing CTRL/Z (holding the CTRL key down while typing the letter Z)
terminates the editing session. 1If an output file is open when CTRL/Z
is typed, all remaining lines in the block buffer and the input file
are transferred (in that order) into the output file, all files are
closed, and EDI exits. These actions occur whether EDI is in edit or
input mode. If EDI is prompting for another file specification when
CTRL/Z is entered, all files are closed (including any open secondary
input file), and EDI exits. If you enter CTRL/Z as an input line
terminator, that line is erased.

2.2.6 DELETE

This command causes lines of text to be deleted 1in the following
manner:

e If n is given and is a positive number, the current 1line and
n-1 following lines are deleted. The new current line is the
line following the last deleted line.

e If n is given and is a negative number, the current 1line is
not deleted, but the specified number of lines that precede it
are deleted. The line pointer remains unchanged. A negative
value for n can be used only in block mode.

e If n is not given, the current line is deleted, and the next
line becomes the new current line.

Format
Delete [n]
or
Delete [-n]
Example

To delete the previous five lines in the block buffer, type the
following command:

*D -5

2.2.7 DELETE & PRINT

This command performs the same function as the DELETE command except
that the new current line is printed when all lines have been deleted.

Format

DP [n]
or
DP ([-n]

If n is not specified, +1 is assumed. A negative value for n can
be used only in block mode.

Example
If the following lines are contained in a file:

THIS IS LINE

THIS IS LINE

THIS IS LINE
THIS IS LINE

=W N

and the line pointer is at the first line, the following command
obtains the results shown below it:

*DP 2
THIS IS LINE 3

2.2.8 The ESCape Key

This command prints the previous line in the block (block mode only).
That 1ine becomes the current l1ine. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command).

2.2.9 EXIT

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If a file specification is used, the
output file is renamed to the specified file name.

2-14

LINE TEXT EDITOR (EDI)

Format
EXit [filespec]
Example
The command
*EX

terminates the editing session without renaming the output file.
It causes EDI to display:

[EXIT]
The output filename.filetype 1is the same as the input

filename.filetype. The wversion number is one greater than that
of the input file.

2.2.10 INSERT

This command inserts a string immediately following the current 1line.
The string becomes the new current 1line. If a string 1is not
specified, EDI enters input mode.

Format

Insert [string]

Example

*1 TEXT INSERT IN EDIT MODE Insert a line of text
immediately after the current
line.

*1 An I followed by a RETURN

TEXT INSERT 1 IN INPUT MODE causes EDI to switch to input

TEXT INSERT 2 IN INPUT MODE mode. A series of new lines

ETC. may be input following the
current line.

* A RETURN or ESC as the only

character in an input 1line
causes EDI to return to edit
mode and to prompt for a new
command.

2.2.11 LOCATE

This command causes a search for a string, beginning at the 1line
following the current line. The string may occur anywhere in the line
sought. The line pointer is positioned to the 1line containing the
match. When the 1line 1is located, it is printed if VERIFY ON is in
effect.

If a string is not specified, the line following the current 1line Iis
considered a match, and the line pointer is positioned there. 1If n is

LINE TEXT EDITOR (EDI)

LOCATE applies to the block buffer if EDI is in block mode and to the
input file if in line-~by-line mode.

Format
[n]Locate [string]
Example

The following command can be used to locate the line HAPPY DAYS
ARE HERE AGAIN,

*L. PPY

EDI searches the file or block buffer and if VERIFY ON is
specified prints the line when it is located. The current line
pointer is set to the located line.

2.2.12 NEXT

This command moves the current line pointer backward and forward in
the file. A positive number moves the current line pointer n lines
beyond the current line. A negative number moves the current 1line
pointer backward n lines.
Format

Next [n]

or
Next [-n]

If n is not specified, a value of +1 is assumed. A negative for
n can be used only in the block mode.

Example

In block mode, the following command moves the current 1line
pointer back five lines:

*N -5

2.2.13 NEXT & PRINT

This command has the same effect as the NEXT command except that the

new current line is printed.
Format

NP [n}
or
NP [-n]

The following conventions can be used in place of issuing an NP
command :

@ Pressing the RETURN key is the same as an NP+l command.
® Pressing the ESCape {or ALTmode) key while in the block mode
is the same as an NP-1 command.

@ If n is not specified, then a value of +1 is assumed.

2-16

LINE TEXT EDITOR (EDI)

Example

Assume the following four lines are contained in the file and the
line pointer is at the first line.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI returns the following
printout:

*NP 2
LINE 3 OF THE FILE
* (ED
LINE 4 OF THE FILE
* 50
LINE 3 OF THE FILE
* {E5Q
LINE 2 OF THE FILE

2.2.14 PRINT

This command prints the current line and the next n-1 1lines on the
terminal. The last line printed becomes the new current line. If it
is not specified, a value of 1 is assumed.

Format

Print [n]

LINE TEXT EDITOR (EDI)

Example

Example 2-1 illustrates both the PRINT and the TYPE commands:

Example 2-1 Line Pointer Position for the
TYPE Command and the PRINT Command

Before
File A File B
C>| Line 1 C>| Line 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 Line 5
*TYPE 5 *PRINT 5
Line 1 Line 1
B Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 Line 5
* *
After
File A File B
Ej> Line 1 Line 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 [$> Line 5

> is the Line Pointer
ZK-173-81

LINE TEXT EDITOR (EDI)

2.2.15 RENEW

This command writes the current block buffer into the output file and
reads a new block from the input file. The optional value n is a
repetition count: 1if you specify n, the process is repeated n times.
The 1intermediate blocks are written into the output file and the last
block is left in the block buffer. If n is not specified, a single
RENEW process 1is performed. This command may be used only in block
mode. Refer to Section 2.1.3 for information on how EDI block buffers
are processed.

Format
RENew [n]
Example
*RENEW 10

Ten blocks are transferred consecutively from the input file to
the block buffer. The initial contents of the block buffer and
the next nine blocks are transferred consecutively to the output
file. The current line pointer points to the first line in the
tenth block, which is currently in the block buffer.

2.2.16 The RETURN Key

In edit mode, this command prints the next line in the file or block
buffer. That 1line becomes the current 1line. Thus, you can scan
through a file or block, one line at a time, by pressing a series of
RETURNs. This command is equivalent to NP+l (NEXT & PRINT command).

In input mode, a RETURN causes EDI to return from input mode to edit
mode.

2.2.17 RETYPE

This command replaces the current line with a string. If a string Iis
not specified, the line is deleted.

Format
Retype [string]
Example

*R THIS IS A NEW LINE

The string THIS IS A NEW LINE replaces the current line.

2.2.18 TOF

This command creates a new version of the file and returns the current
line pointer to the first line of the file. TOF processing copies the
input file into the output file, closes both, then opens the 1latest
version of the file as the input file. If you issue this command when
in line-by-line mode, EDI switches to block mode after saving the
edited data. The first block is read into the block buffer.

2-19

Format
TOF
Example
*TOF
This command writes the previously edited pages into the output

file, resets the current 1line pointer to the top of the input
file, and reads the first block into the block buffer.

2.2.19 TOP

This command sets the current line pointer to the top of the current
block (in block mode) or to the top of the file (in line-by-line
mode). When the current line pointer is positioned with TOP, you can
enter lines preceding the first line in the block or file.

TOP differs from TOF in the following ways:

e¢ In line-by-line mode, TOP creates a new file and moves the
current line pointer to the top of the file. Unlike TOF, it
does not cause EDI to return to block mode.

e In block mode, TOP moves the current line pointer to the top
of the current block and does not create a new output file.

TOF moves the current line pointer to the top of the file and
creates a new output file.

Format
Top
Example
*TOP

This command directs the current line pointer to the top of the
current block in block mode.

2.3 EDI COMMANDS: FUNCTION SUMMARY

EDI commands can be arranged by functional similarity. For example,
all the commands vou use to locate a string can be grouped under the
function heading "Locator Commands." This section contains summaries
of the following command categories:

e Setup commands select operating conditions, <close and open
files, and select data modes.

e Locator commands control the position of the current 1line
pointer and thus determine which text line is acted upon.

e Text modification commands change text lines.

e Macro commands define, store, recall, and use sequences of EDI
commands.

LINE TEXT EDITOR (EDI)

e File input/output commands transfer text to and from
input/output, and save files.
® Device output commands send output to a terminal or 1line
printer.
e Close and exit commands terminate editing operations.
2.3.1 Setup Commands
The setup commands allow you to enable or disable certain special
features of EDI. 2mong these features are the block and line-by-line
text access modes, and the automatic verification of LOCATE commands.
Setup commands are listed in Table 2-4.
Table 2-4
EDI Setup Commands
Command Format Description
BLOCK ON/OFF BLock [ON] or Switch text access modes.
BLock OFF
CONCATENATION CC [letter] Change concatenation character
CHARACTER to specified character (default
is &).
OPEN SECONDARY OPens filespec Open specified secondary file.
OUTPUT ON/OFF OUtput ON or Continue or discontinue
OUtput OFF transfer to output file
(line-by-line mode).
SELECT PRIMARY SP Reestablish primary file as
input file.
SELECT SECONDARY Ss Select opened secondary file as
input file.
SIZE SIZE n Specify maximum number of lines
to be read into block buffer.
TAB TAb [ON] or Turn automatic tabbing on or
TAb OFF off.
UPPER CASE UC [ON] or Enable or disable conversion of
ON/OFF UC OFF lowercase characters entered
from terminal to uppercase
characters.
VERIFY ON/OFF Verify [ON] or Select whether 1locator and
Verify OFF change commands are verified.

2-21

2.3.2 Locator Commands (Line-Pointer Control)

During editing operations, EDI maintains a pointer that identifies the
current 1line (that 1is, the 1line to which any subsequent editing
operations refer). Commands that modify the line pointer's 1location
are called locator commands. These commands are listed in Table 2-5.

The locator commands allow you to:

e Set the line pointer to either theﬂtop or bottom of the input
file or block buffer.

e Move the line pointer a specified number of 1lines away from
its current position.

e Move the line pointer to a 1line containing a given text
string.

In edit mode, the RETURN and ESCape (or ALTmode) keys act to relocate
the 1ine pointer. A RETURN moves the pointer to the next line. 2an
ESCape moves the line pointer back one line (in block mode only). In
each case, the line is printed.

If VERIFY ON is in effect, the located line is printed after a BOTTOM,
END, FIND, PAGE FIND, PAGE LOCATE, or SEARCH & CHANGE command.

Table 2-5
EDI Locator Commands

Command Format Description
BEGIN or Begin Set current 1line to the line
TOP Top preceding top 1line in

buffer (block mode) .

in line-by-line mode.
commands are equivalent.

END End in file or block buffer.
commands are equivalent.

{(line-by~-line mode) or block
Both
commands create copies of the
file each time they are invoked

BOTTOM or BOttom Set éurrent line to last line

EsC Press ESC (or ALT) Print previous 1line, make it

(or ALTmode)

FIND

LOCATE

key

[n1Find [string]

[n]Locate string

new current line, or exit from
input mode (Block mode only.)

Search current block or input
file, beginning at line
following current line for the
nth * occurrence of string.
String must begin in column 1.
Set line pointer to located
line.

Locate nth occurrence of
string. In block mode, search
stops at end of block.

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-5 (Cont.)
EDI Locator Commands

NEXT & PRINT

PAGE
{Block
Mode only)

PAGE FIND
(Block
Mode only)

PAGE LOCATE
(Block
Mode only)

SEARCH &
CHANGE

NP [n] or NP [-n]

PAGe n

[n]PFind string

[n] PLocate string

Press RETURN Key

SC /stringl/string2{/j}

Command Format Description
NEXT Next [n] Establish new current 1line n
Next [-n] lines away from current line.

Establish and print new current
line.

Enter block mode. Read page n
into block buffer. If n is less
than current page number, do
TOF first. Pages are delimited
by form feed characters.

Search successive blocks for
the nth occurrence of string.
String must start in column 1.

Search successive blocks for
the nth occurrence of string.
String may occur anywhere in
line.

Print the next 1line, make it
the current 1line, exit from
input mode.

Locate stringl and replace it
with string2.

2.3.3 Text Modification and Manipulation Commands

The text modification and manipulation commands enable you to modify
text. Table 2-6 lists these commands.

Table 2-6

EDI Text Modification and Manipulation Commands

Command Format Description

ADD Add string Append string to current
line.

ADD & PRINT AP string Append string to the
current line and print
resulting line.

CHANGE [n]Change/stringl/ Replace stringl with

string2[/]

string2 in the <current
line n times.

2-23

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-6 (Cont.)

EDI Text Modification and Manipulation Commands

Command

Format

Description

DELETE

DELETE & PRINT

ERASE

FORM FEED

INSERT

LINE CHANGE

OVERLAY

PASTE

TOP OF FILE

UNSAVE

Delete [n}] or
Delete [-n]

DP [n] or DP [-n]

ERASE [n}

FF

Insert string

[n]LC/stringl/
string2(/]

Overlay [n]

PAste/string 1/
string2[/]

TOF

UNSave [filespec]

Delete current line and
n-1 lines if n is
positive; delete n lines
preceding current line if
n is negative. [-n]
operates in block mode
only.

Same as DELETE except new
current line is printed.

Erase the current line if
in line-by-line mode.

Erase the current block
buffer and the next n-1
blocks if in block mode.

Insert form feed into
block buffer (used to
delimit a page).

Enter string following
current line or enter
input mode if string is
not specified.

Change all occurrences of
stringl in current line
(and n-1 lines) to
string2.

Delete n lines, enter
input mode, and insert
new line(s) as typed in

place of original
line(s).
Search all remaining

lines in file or block
buffer for stringl and
replace with string2.

Replace the current 1line
with string or delete the
current line if string is
not given.

Return to the top of the
input file and save all
pages previously edited.

Insert all lines from
specified file following
current line. If filespec
is not given, SAVE.TMP is
used.

LINE TEXT EDITOR (EDI)

2.3.4 Macro Commands

These commands allow you to define, store, recall, and use macros. A
macro 1is a series of EDI commands that, once defined, can be executed
repeatedly. Table 2-7 lists the macro commands.
Table 2-7
EDI Macro Commands
Command Format Description
MACRO MACRO x definition Define macro number x. The
value x may be 1, 2, or 3.
MACRO CALL MCall Retrieve macro definitions
stored in file MCALL;n.
MACRO EXECUTE [nI1Mx [a] Execute macro x [n] times,
while passing numeric

argument [a].

MACRO [n] <definition> Define and execute a macro n

IMMEDIATE times. Store it as macro
number 1.

2.3.5 File Input/Output Commands

Input/output commands control the movement of text to and from

input/output files, and save files.

Table 2-

Table 2-8

lists these commands.

8

EDI Input/Output Commands

Command

Format

Description

FILE

READ

RENEW

FILe filespec

REAd ([n]

RENew [n]

Transfer lines from input file
to both the output file and the
specified file until a form
feed or end-of-file is
encountered. (Line-by-line
mode only.)

Read next n blocks of text into
block buffer. If buffer
contains text, new text is
appended to it.

Write the current block to the
output file and read new block
from the input file.

2-25

(continued on next page)

LINE TEXT EDITOR (EDI)

Table 2-8 (Cont.)
EDI Input/Output Commands

Command Format Description

SAVE SAve [n] ([filespec] Save current line and the next
n-1 lines in the specified
file. If filespec is not
given, 1lines are saved in file
SAVE. TMP. SAVE puts the
temporary £file in the UFD on
the device for the file you are
editing. You can override the
default by specifying a
different device and UFD.

WRITE Write Write contents of block buffer
to output file and erase block
buffer.

2.3.6 Device Output Commands
These commands direct output to your terminal or to a pseudo device
(CL:). They are listed in Table 2-9.

Table 2-9
EDI Device Output Commands

Command Format Description
LIST ON TERMINAL LIst Print on the terminal all 1lines
remaining in block buffer (block
mode) or input file

¢(line-by~line mode), beginning
at current line.

LIST ON PSEUDO- LP Same as LI, except that printing

DEVICE is performed on the pseudo
device CL:.

PRINT Print [nl Print the current line and the
next n-1 iines. The 1last
printed line is the new current
line.

TYPE TYpe [n] Print next n lines. In

line-by-line mode, identical to
PRINT command. In block mode,
line npointer remains at current
line wunless end-of-block was
reached.

LINE TEXT EDITOR (EDI)

2.3.7 CLOSE and EXIT Commands

The CLOSE and EXIT commands terminate EDI operations and write the
remainder of the input file into output file. Table 2-10 lists these
commands.

Table 2-10
EDI Close Operation Commands

Command Format Description

CLOSE CLose [filespec] Transfer remaining 1lines in
block buffer and input file to
output file and close files.
If file specification is used,
output file is renamed. EDI>
prompt is issued.

CLOSE SECONDARY CLOSES Close secondary file.

CLOSE & DELETE CDl [filespec] Same as CLOSE except that input
file 1is deleted. EDI> prompt
is issued.

Type a control Z Close files and terminate EDI.
EXIT EXit [filespec] Close files, rename output

file, and terminate EDI.

EXIT & DELETE EDx [filespec] Transfer remaining 1lines in
block buffer and input file to
output file and close file.
Rename file if file
specification is given. Delete
input file and terminate EDI.

KILL KILL Close input and output files,
delete output file. EDI>
prompt is issued.

2.4 EDI COMMANDS: DETAILED REFERENCE SUMMARY

This section lists each EDI command in alphabetical order. Each
command description comprises the function of the command and the
command format. Most descriptions 1include examples and usage
information. The exceptions are the basic commands, which are

described in detail in the preceding section. 1In this section, only
the function and format of basic commands are described.

2.4.1 ADD
ADD causes the specified string to be appended to the current line.
Format

Add string

For examples and information describing how to wuse ADD, refer to
Section 2.2.1.

LINE TEXT EDITOR (EDI)

2.4.2 ADD & PRINT (AP)

ADD & PRINT performs the same function as ADD except that the new line
is printed.

Format
AP string

For examples and information describing how to use ADD & PRINT, refer
to Section 2.2,2.

2.4.3 BEGIN

BEGIN sets the current line pointer to the beginning of the £file in
line~by-line mode, or to the beginning of the block buffer in block
mode. The current line is one line preceding the top line in the file
or block buffer. Thus, you can insert text at the beginning of a file
or block.

If EDI is in line-by-line mode, BEGIN copies the input file into the
output file, closes both, then opens the latest version of the file.
BEGIN performs the same function as TOP.

Format
Begin
Example

*B

In this example, the current line pointer is moved to the top of
the block buffer (block mode is assumed).

2.4.4 BLOCK ON/OFF

This command allows you to switch between block mode and line-by-line
mode. When you enter BLOCK ON, block mode becomes active and the next
block of text is brought into the block buffer. When you enter BLOCK
OFF, the current block being processed is written to the output file
and line-by-line mode becomes active. The first line from the next
sequential block in the input file becomes the current line.

If you enter an unnecessary BLOCK command (for example, BLOCK ON when
EDI is already in block mode), the command is ignored.

BLOCK ON is the default text access mode. It is assumed when neither
ON nor OFF is specified.

Format
BLock [ON]

or
BLock OFF

LINE TEXT EDITOR (EDI)

Example

*BLOCK ON

This command causes EDI to switch to block mode. The next block
of text is read into the block buffer.

2.4.5 BOTTOM

BOTTOM sets the current line pointer to the beginning of the last line
of the block (in block mode) or of the input file (in line-by-line
mode) .
Format

BOttom

For examples and information on how to use BOTTOM, refer to Section
2.2.3,

2.4.6 CHANGE

CHANGE searches for stringl in the current 1line and, 1if found,
replaces it with string2.

Format
In] Change /stringl/string2([/]

For examples and information on how to use CHANGE, refer to Section
2.2.4.

2.4.7 CLOSE

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file and closes both files.
If a file specification is included, the output file is renamed to the
file spec. EDI then returns to its initial command sequence, prompts
with EDI>, and waits for you to type another file specification.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format
CLose [filespec]
Example

*CL
EDI>

This command closes both input and output files, and EDI returns
tc t

imdi+rial ~omms A samiian
he initial command seduence.

LINE TEXT EDITOR (EDI)

2.4.8 CLOSE SECONDARY (CLOSES)

Use this command when you have finished extracting text from a
secondary input file. You must enter CLOSES before you can use
another secondary file as input.

Format

CLOSES

2.4.9 CLOSE & DELETE (CD)

This command transfers all remaining lines in the block buffer and the
input file (in that order) into the output file, and closes both
files. The input file is then deleted. If a file specification is
included, the output file is renamed to the file spec. This command
acts like CLOSE except that the input file is deleted.

If a secondary file was opened during the editing session and was not
closed, it remains open.

Format

CDl [filespec]

2.4.10 CONCATENATION CHARACTER (CC)

The concatenation character allows you to give commands on one input
line. By default, the concatenation character is the ampersand (&).
To reference text containing an ampersand (for example, in LOCATE or
CHANGE commands), you must change the concatenation character to some
other character.

If the CC command is used without an argument, the concatenation
character is changed to the ampersand.

Format
CC [letter]
Example

*CC :

*L A&B:C /A&B/ABC/

CONCATENATION TEST CONTAINING A&B.
CONCATENATION TEST CONTAINING ABC.

*CC
In this example, the string to be located contains an ampersand.
Therefore, the concatenation character must be changed to a
different character before EDI can locate the line.

The first command 1line changes the default concatenation
character from the ampersand to the colon.

2-30

LINE TEXT EDITOR (EDI)

The second command line instructs EDI to locate the string AgB
and change that string A&B to ABC. (Note: this line contains
two commands that are concatenated by the new concatenation
character, the colon.)

The third command line changes the concatenation character back
to the normal default value, &.

2.4.11 CTRL/Z

CTRL/Z is a Command Line Interpreter (CLI) function that terminates
EDI. For usage information on CTRL/Z, refer to Section 2.2.5.

2,4.12 DELETE
DELETE deletes a specified number of iines from a file.
Format

Delete n

For examples and information on how to use DELETE, refer to Secticn
2.2.6.

2.4.13 DELETE & PRINT (DP)

DELETE & PRINT performs the same function as DELETE, except that it
displays the new current line after the specified lines are deleted.

Format
DP n

For examples and information on how to use DELETE & PRINT, refer to
Section 2.2.7.

2.4.14 END

END sets the current line pointer to the beginning of the last line of
the block or input file. If EDI is in block mode, only line pointer
positioning occurs. 1In line-by-line mode, all lines are copied from
the input file to the output file until EOF is reached. The last line
in the block or file is displayed if VERIFY ON is in effect. Note,
however, that if the last line was deleted before you issued END, the
pointer will be located past the text, and thus the last line will not
be printed. END performs the same function as BOTTOM.

Format

End

2-31

LINE TEXT EDITOR (EDI)

Example

*y ON
*END
THIS IS THE LAST LINE

This command moves the current line pointer to the bottom of the
block buffer (block mode is assumed).

2.4.15 ERASE
In line-by-line mode, this command erases the current line. In this
mode, n can only be 1. 1In block mode, this command erases the current
block buffer and the next n-1 blocks. If n is not specified, +1 is
assumed.
Format

ERASE [n]
Example

*ERASE 5
This command causes the contents of the current block buffer and

the next 4 blocks to be erased. These blocks are not written
into the output file.

2.4.16 The ESCape Key

This command prints the previous line in the block (block mode only).
That 1line becomes the current line. Thus, you can back up through a
block, one line at a time, by pressing a series of ESCapes. Pressing
ESCape is equivalent to typing NP-1 (NEXT & PRINT command).

If EDI is in input mode, ESC acts like RETURN and terminates a line of

input. ESC also exits from input mode if it is the first character of
the line.

2.4.17 EXIT

EXIT writes all remaining records to the output £file, closes the
files, and terminates EDI.

Format
EXIT [filespec]}

For examples and information on how to use EXIT, refer to Section
2.2.9.

2.4.18 EXIT & DELETE (ED)

This command functions in the same way as the CLOSE & DELETE command
except that EDI also terminates.

LINE TEXT EDITOR (EDI)

Format
EDx [filespec]
Example

*EDX NEWFILE.DOC
[EXIT]
>

2.4.19 FILE

This command--legal in line-by-line mode only--transfers 1lines from
the input file to both the output file and a specified file, beginning
with the current line, until a form feed character is encountered as
the first character in a line or until end-of-file is reached. At
that time, the specified file is closed. The form feed character Iis
not included in the specified file. During the transfer, the original
file remains intact (that is, all lines written to the specified file
are also written to the normal output file, including the form feed).
When the command is complete, the current line in the input file Iis
one line beyond the form feed.

BLOCK OFF must be in effect for FILE to work properly.
If the specified file does not already exist, a new file 1is created.
If the specified file does exist, the latest version of the file
contains the new data.
Format

FILe filespec
Example

*#*FIL SEC.DAT

EDI writes the contents of the input file, from the current 1line
to the end, into both the output file and the file SEC.DAT.

2.4.20 FIND

This command searches the block buffer or input £file for a string,
beginning at the 1line following the current line. The string must
begin in column 1 of the line matched. The line pointer is positioned
at the line containing the match. When the line containing the string
is found, it is printed if VERIFY ON is in effect.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

If a string is not specified, the line following the current 1line is
considered a match. If n 1is specified, the nth occurrence of the
string is found.

Format

[n]Find [string]

2-33

LINE TEXT EDITOR (EDI)

Example

*V ON
*F LOOK

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a
line that begins with LOOK and prints the line when it is found.

2.4.21 FORM FEED (FF)
This command allows you to insert form feeds into the text to delimit
pages. The form feed is inserted after the current line. The line
containing the form feed then becomes the new current line.
Format
FF

Example

*p

THIS IS THE LAST LINE ON THE PAGE

*FF

In this example, a form feed is inserted into the text £following
the current line.

2.4.22 INSERT

INSERT inserts a string immediately following the current line. The
string becomes the current line.

Format
Insert ([string]

For examples and information on how to use INSERT, refer to Section
2.2.10.

2.4.23 KILL

This command returns EDI to the 1initial command sequence without
retaining the output file. When this command is executed, the input
file is closed and the output file is deleted.

Format

LINE TEXT EDITOR (EDI)

In this example, the output file is deleted and EDI displays the
prompt:

EDI>

At this point, you can return control to your CLI by means of
CTRL/Z or enter a file specification for a file to be edited.

2.4.24 LINE CHANGE (LC)

This command is similar to CHANGE except that all occurrences of
stringl in the current line are changed to string2. A numeric value n
preceding the command changes the current line and the next n-1 lines.
If string2 is not given, all occurrences of stringl are deleted. New
lines are printed if the VERIFY ON command is in effect.

If stringl is given, but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns the asterisk prompt.

Format
[n]LC /stringl/string2[/]
Example
If the current line is:
THES ES THE LINE TO BE ESSUED.

The following commands would correct the errors:

*V ON
*L.C /ES/IS
THIS IS THE LINE TO BE ISSUED

2.4.25 LIST ON TERMINAL (LI)

This command prints on your terminal all remaining lines in the block
buffer (block mode) or all remaining 1lines 1in the input file
(line-by-line mode), beginning at the current line. At the end of the
listing, the <current 1line pointer is repositioned to the top of the
input file or block buffer.

If terminal host synchronization is installed at system generation,
you can control printing functions using CTRL/O, CTRL/S, and CTRL/Q.
To suppress printing at any point, type CTRL/O. Printing can be
suspended temporarily with CTRL/S and resumed with CTRL/Q.
Format

LIst
Example

*LI

This command causes all remaining lines in the block buffer or
all remaining 1lines in the 1input file to be printed on the
terminal.

LINE TEXT EDITOR (EDI)

2.4.26 LIST ON PSEUDO DEVICE (LP)

This command functions in the same manner as the LIST ON TERMINAL
command except that the remaining lines in the block buffer (block
mode) or the remaining lines of the input file (line-by-line mode) are
listed on the pseudo device CL:. In most systems, CL: is set to the
system line printer.

Format
LP
Example
*LP

This command causes all remaining lines in the block buffer or
all remaining lines in the input file to be printed on the pseudo
device CL:.

2.4.27 LOCATE

LOCATE searches for a string beginning at the 1line following the
current line. The string can occur anywhere in the lines searched.

Format
[n] Locate string

For examples and information on how to use LOCATE, refer to Section
2,2,11,

2.4.28 MACRO

This command is used to define macros. Space is available for three
macro definitions. The definition can be any legal EDI command or
string of legal EDI commands connected by the concatenation character.

If a numeric argument is to be passed to the macro at execution time,
a percent sign (%) must be inserted in the macro definition at the
point where the numeric argument is to be substituted. Then the value
passed with the MACRO EXECUTE command replaces the percent sign when
the macro is executed.

A MACRO definition may n more than one p
does, the single nu ic wvalue given in a
replaces each percent sign. However, a macro ma
independent arguments.

et }

ercent sign. If it

MACRO EXECUTE command
y not have two or more

5
4

Format

MACRO x definition

Specifies the macro number (1, 2, or 3).

2-36

LINE TEXT EDITOR (EDI)

Examples

To find the nth occurrence of the string ABC in the current block
and replace that occurrence and all remaining occurrences within
the block with the string DEF, the following macro could be used:

*MACRO 1 %L ABC&PA /ABC/DEF

The following command executes the macro and searches for the
tenth and succeeding occurrences of ABC.

*M 1 10

The following macro definition and subsequent invocation could be
used to change all occurrences of the strings ABC and GHI to DEF
and JKL, respectively. The substitution is made in the current
block and the next four blocks (five blocks in all).

*MACRO 1 PA /ABC/DEF/s&PA /GHI/JKL/&RENEW (MACRC command)
*5M 1 (MACRO EXECUTE command)

2.4.29 MACRO CALL (MC)

This command allows you to retrieve up to three macro definitions
previously stored in a file. The macro definitions must contain only
the "definition" portion of the MACRO command. The macro definitions
are stored in successively numbered macros: the first definition
becomes macro 1, and so on.

The file used to store the macro definitions must be the 1latest
version of file MCALL -- that is, MCALL;n. The file type must be null
or blank. If the macro definitions to be loaded are in a file of
another name, you can use PIP with the /NV switch, to rename the file.
(Refer to Chapter 3 for descriptions of PIP commands.)

Format
MCall
Strings of concatenated EDI commands can be written as EDI macro
definitions, and up to three EDI macro definitions can be stored
in file MCALL;n. The MC command is wused to call the 1latest
version of file MCALL and move the three definitions into the
macro storage area. Then you can execute the desired macro
without having to type the complete command.
Macro calls may not be nested.

The concatenation character may precede, but not follow, a macro
call.

Example
*MC

This command retrieves the macro definitions stored 1in file
MCALL;n, where n represents the latest version of the file MCALL.

2-37

LINE TEXT EDITOR (EDI)

2.4.30 MACRO EXECUTE

This command executes a macro n times while passing it an optional
numeric argument a. If a macro numeric argument is defined with the
percent sign (%) in the macro definition, the numeric argument
contained in this command is passed for each execution of the macro.
Before a macro can be executed, it must either have been defined by
means of a MACRO command or called with a MACRO CALL command.

Use the MACRO EXECUTE command to execute any one of the three macro
definitions stored in the EDI macro storage area any number of times.

Format
[nIMx [a]
n
Specifies the number of times the macro 1is to be
executed.
X
Specifies the macro number (1, 2, or 3).
a
Specifies the numeric argument to be passed when the
macro is executed (ignored 1if the argument % is not
present in macro definition).
Examples
*2M1

Execute macro number 1 twice.

*3M2 5

Execute macro number 2 three times, passing the numeric argument
5 each time the macro is executed.

The example in Section 2.6.4 illustrates how to use the EDI macro
commands in editing a file.

2.4.31 MACRC IMMEDIATE

This command defines and executes a macro in one step. The definition
is enclosed within angle brackets and is identical to that of the
MACRO command. The definition is copied into the macro 1 storage area
and immediately executed n times. The macro may also be subsequently
executed by entering an Ml command. The command is equivalent to the
two macro commands:

MACRO 1 definition
nMl1

Format

n<definition>

LINE TEXT EDITOR (EDI)

Example
*<L ABC&C /ABC/DEF>
This command causes EDI to search the current block buffer for
the string ABC and, when it locates ABC, to change the string to

DEF. This macro is stored as macro number 1.

The example in Section 2.6.3 illustrates the use of the MACRO
IMMEDIATE command.

2.4.32 NEXT

NEXT moves the current line pointer backward and forward in the file.
A positive number moves the current line pointer forward, a negative
current line number moves it backward.

Format
Next [n]
or

Next [-n]

For examples and information on how to wuse NEXT, refer to Section
2.2.12.

2.4.33 NEXT & PRINT

NEXT & PRINT performs the same function NEXT performs except that the
new current line is displayed.

Format
NP [n]
or

NP [-n]

For examples and information on how to use NEXT & PRINT, refer to
Section 2.2.13.

2.4.34 OPEN SECONDARY
This command opens the specified secondary input file. The primary
input file, if any, remains open. Subsequent text is read from the
primary input file until the secondary input file is selected by means
of the SELECT SECONDARY command (SS) for input.
Format
OPens filespec

Example

*OPENS RICKS.MAC

*SS

*READ 1

The file RICKS.MAC is opened as a secondary input file, then the
first block is read in.

LINE TEXT EDITOR (EDI)

2.4.35 OUTPUT ON/OFF
This command, used only in the 1line-by-line mode, allows you to
continue or discontinue the transfer of text to the outpit file.

OUTPUT ON is the default condition. It is automatically reestablished
each time a CLOSE command is issued.

Format
OUtput ON
or
OUtput OFF
If neither ON or OFF is specified, ON is assumed.
Example
*BLOCK OFF
*QUTPUT OFF
*N 5
*QUTPUT ON

This example shows how to bypass five lines of text in the input
file so that these lines are not written into the output file.

The first command sets line-by-line mode.

The second command disables the transfer of text to the output
file.

The third command bypasses five consecutive lines of text from
the input file.

The fourth command reenables the transfer of text to the output
file.

2.4.36 OVERLAY

This command deletes n lines and replaces them with any number of
lines that vyou type. If n 1is not specified, the current line is
deleted and replaced with the lines typed. When you enter the OVERLAY
command, EDI enters input mode. All text that you type goes into the

file until you enter a carriage return as the only character in an
input line.

Format
Overlay [n]
Example
*0 2

This command deletes two lines and causes EDI to enter input
mode.

2-40

LINE TEXT EDITOR (EDI)

2.4.37 PAGE

This command causes EDI to enter block mode, if not already in it, and
read page n into the block buffer. A page is delimited by form feeds.
If n is less than the current page number, a TOF command is performed
first. TOF processing writes the input file to the output file,
closes both files, then opens the latest version of the file.

If n is greater than the current page number, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format
PAGe n
Example

*PAG 1

[00050 LINES READ IN]
(00050 LINES READ IN]
[00050 LINES READ IN]
[00050 LINES READ IN]
[00017 LINES READ IN]
[PAGE 1]

*

This example shows a quick way to get to the last block in a file
that contains no form feed page delimiters. EDI's page count is
not incremented unless it encounters form feed characters or an
end-of-file mark. Thus, in a file without form feeds (that is,
most files), EDI renews the block buffer until it encounters an
end-of-file mark. Note that the final block contains 17 lines of
text.

2.4.38 PAGE FIND

This command performs the same function as the FIND command except
that successive blocks are searched until the nth occurrence of the
string has been found. The contents of the block buffer and the
blocks Dbetween the current block and the block in which the nth
occurrence of the string is located are copied into the output file,

The string must begin in column 1 of the matched line. The 1line is
printed if VERIFY ON is in effect. This command can be used only in
block mode.

Format

[n]PFind string

2.4.39 PAGE LOCATE

This command causes a search of the current block, starting at the
line following the <current line, and of successive blocks until the
nth occurrence of the string has been located. Text from the current
block buffer 1is written into the output file. The string can occur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect. This command can be used only in block mode.

2-41

LINE TEXT EDITOR (EDI)

Format
[n]PLocate string
This command is used in the same manner as the LOCATE command
except that the specified string can be in a block other than the
current block.

PL leaves the current line pointer at end-of-file if it cannot
locate the string.

2.4,40 PASTE
This command is identical to the LINE CHANGE command except that all
lines remaining in the input file or block buffer are searched and all
occurrences of stringl are replaced with string2. Modified lines are
printed if the VERIFY ON command is in effect., If stringl is given,
but no match is found, EDI returns the asterisk (*) prompt. When the
command completes, the 1line pointer is at the top of the buffer or
input file.
Format

PAste /stringl/string2[/]
Example

If the lines remaining in the block buffer contain the following
text:

YIGER, YIGER, BURNING BRIGHY
IN YHE FORESYS OF YHE NIGHY

they can be corrected with the following command:
*PA/Y/T

If the VERIFY ON command is in effect, all corrected 1lines are
printed. To discontinue printing, type CTRL/O.

2.4.41 PRINT

PRINT displays the current 1line and the next n-1 1lines at the
terminal. The last line printed becomes the current line.

Format
Print [n]

For examples and information on how to use PRINT, refer to Section
2,2.14,

2.4.42 READ

This command reads the next n blocks of text into the block buffer.
If a block is already in the buffer, the new block(s) is (are)
appended to it.

EDI must be in block mode before this command can be executed.

2-42

LINE TEXT EDITOR (EDI)

A READ command cannot exceed the buffer capacity. If you issue a READ
that 1is too large, EDI fills its buffer and then issues the following
message:

[BUFFER CAPACITY EXCEEDED BY]

<offending line>

[LINE DELETED]
You may get this message after issuing a READ n command, where n is 2
or larger, unless you have used the SIZE command to reduce the number
of lines per block below its initial number.
Format

REAd [n]

If n is not specified, a value of 1 is assumed. The value of n
must be positive.

Example

*SIZE 15
*READ 4

This example reads four 15-line blocks of the input file into the
block buffer.

2.4.43 RENEW

RENEW writes the current block buffer into the output file and reads a
new block from the input file. Renew is used only in block mode.

Format
RENew [n]

For examples and information on how to use RENEW, refer to Section
2.2.15,

2.4.44 The RETURN Key

In edit mode, the RETURN key represents the return that displays the
next 1line in the file or block buffer. In input mode, entering the
RETURN returns EDI to edit mode. For information on EDI command

modes, refer to Section 2.1.2. For information on the RETURN key,
refer to Section 2.2.16.

2.4.45 RETYPE
RETYPE replaces the current line with string.
Format

Retype [stringl]

For information on how to use RETYPE, refer to Section 2.2.17.

LINE TEXT EDITOR (EDI)

2.4.46 SAVE

This command causes the current line, and the next n-1 1lines, to be
saved in the specified file. If the file already exists, a new
version is created.

If no file 1is specified, the save file generated has the name
SAVE. TMP. SAVE puts the temporary file in the UFD on the device for
the file you are editing.

The input file or buffer information that is transferred to the SAVE
file remains intact. The new current line is the last line saved.
The SAVE command does not delete lines in the block buffer or input
file.

Format
SAve[n] [filespec]
Example

You can save and later insert small groups of 1lines in several
places in an output file by using the SAVE and UNSAVE commands.
For example, a file called EDIT.MAC contains six lines that vyou
want to insert at several points in another file called HELP.MAC.
The procedure is:

l. Start an editing session using EDIT.MAC as the input
file.

2. Locate the lines to be inserted into HELP.MAC.

3. Issue a SAVE 6 command. (This copies the six 1lines to
be saved into the file SAVE.TMP.)

4. Issue a KILL command to terminate the editing session.

5. Start a new editing session using HELP.MAC as the input
file.

6. Locate each place the six lines are to be inserted and
issue the UNSAVE command.

7. Make further edits to the input file, as desired, or
EXIT.

EDI does not delete the save file. It remains on the specified
volume until deleted.

2.4.47 SEARCH & CHANGE

This command causes a search for stringl in the block buffer (block
mode) or input file (line-by-line mode), beginning at the current
line. The string may occur anywhere in the 1line. When stringl is
located, it is replaced by string2, The located line becomes the
current line.

If stringl is not specified, EDI prints the error message for illegal
string construction. The new current line is printed if the VERIFY ON
command is in effect. If stringl is given, but EDI cannot locate the
string, EDI returns the asterisk (*) prompt and the line pointer is

- 2 2 - - | - T o~ P | -~ 21 -~
positioned at the end-of-file or the bottom cf the block buffer.

Format

LINE TEXT EDITOR (EDI)

SC /stringl/string2{/]

Example

If the following incorrect 1line 1is contained in the current

block:

THES IS THE LINE TO BE ISSUED.

the following commands can correct the error:

*V ON

*SC /THES/THIS/
THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is in

effect.

2.4.48 SELECT PRIMARY

This command selects the primary file for input. It allows you to
reestablish the ©primary input £file as the file from which text is

read.
Format
Sp

Example

* OPENS SECOND.MAC

*8Ss

*RENEW 10
*CLOSES

*Sp

This example directs EDI to:

Open the secondary file SECOND,MAC.

Select SECOND.MAC as the secondary input file.

Read ten consecutive block buffers from the secondary
input file into the block buffer. The first nine blocks
are automatically transferred to the output file.

Close the secondary input file SECOND, MAC, The
secondary file need not be closed before the primary
file is reselected for input.

Reselect the primary input file for input.

LINE TEXT EDITOR (EDI)

2.4.49 SELECT SECONDARY
With this command, you select the secondary file as the input file.
Format

ss
Example

To add text to the output file from a secondary input f£file, you
must first open the secondary input file and select it for input.
The use of the SS command is illustrated in the example presented
in Section 2.4.28.

2.4.50 SIZE

This command allows you to specify the maximum number of lines to be
read into the block buffer on a single READ or RENEW command. The
default value for SIZE depends on your exact system configuration.
Initially, EDI determines how much buffer space it has and divides
that by 132(10), the maximum line size, to set the number of 1lines
read in. In no case can it be 1less than 38 lines. (See the
discussion of block mode in Section 2.1.3.)

Format
SIZE n
Example
*SIZE 50

This command conditions EDI to read 50 1lines into the block
buffer during a single READ or RENEW command.

2.4.51 TAB ON/OFF

This command turns automatic tabbing on or off. The automatic tab
feature is useful for MACRO-11 language input. TAB OFF is the default
at the start of an editing session. When TAB ON is in effect, a tab
{(equivalent to eight spaces) 1is automatically inserted at the
beginning of each input line unless the 1line either begins with a
label followed by a colon or contains a semicolon in the first column.

Format
TAb [ON]
or
TAb OFF

If neither ON nor OFF is specified when a TAB command is issued,
ON is assumed.

LINE TEXT EDITOR (EDI)

Example

*TAB ON

*1

; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB

l: THIS ONE DOESN'T

END

*TAB OFF

*N -3

*P 4

; THIS IS A SAMPLE OF TABBING.
THIS LINE GETS A TAB

1: THIS ONE DOESN'T

END

2.4.52 TOP

TOP sets the current line pointer to the top of the block buffer (in
block mode) or to the top of the file (in line-by-line mode). 1In
line-by-line mode, TOP creates a new version of the file. When the
current 1line pointer 1is positioned by means of TOP, you can insert
lines preceding the first line in the file.

Format
Top

For examples and information on how to wuse TOP, refer to Section
2.2.19.

2.4.53 TOP OF FILE (TOF)

TOF returns the current line pointer to the first line of the file and
leaves vyou 1in block mode. TOF copies the input file to the output
file, closes both, and opens the latest version of the file as the
input file.

Format
TOF

For examples and information on how to wuse TOF, refer to Section
2.2.18.

2.4.54 TYPE

This command is similar to the PRINT command (Section 2.2.14). In
line-by-line mode, the two are identical. In block mode, TYPE does
not move the line pointer after displaying the requested text unless
end-of-block is encountered. In this case, the line pointer remains
at the last line before the end-of-block.

If n is not specified, a value of 1 is assumed.

LINE TEXT EDITOR (EDI)

Format
TYpe [n]
Example

See the example of the PRINT command (Section 2.2.14).

2.4.55 UNSAVE

This command retrieves all the lines in a specified file and copies
them after the current 1line. If no file is specified, the default
file is SAVE.TMP. The new current line pointer is positioned at the
last 1line retrieved from the file. The file used in this command can
be any text file. It is often the file created with a SAVE command.

Format
UNSave [filespec]
Example

File SEC.DAT;1 contains a group of lines to be inserted after the
current line. The following command performs the desired
operation.

*UNS SEC.DAT;1

Section 2.6.2 contains an example using the SAVE and UNSAVE
commands.

2.4.56 UPPER CASE ON/OFF

This command allows you to enter lowercase characters from a terminal
and have them converted to uppercase characters. If UPPER CASE OFF is
issued, all input characters are accepted as they are entered,
including the EDI commands.

Format

uc ([ON)
or
UC OFF

If neither ON nor OFF is specified, then ON is assumed.
Example

*UC OFF

*I this line is entered in lowercase
*UC ON

*I this line is converted to uppercase

Assuming that the input terminal is capable of generating
lowercase input, the commands in the example would create the
following lines in the output file.

this line is entered in lower case
THIS LINE IS CONVERTED TO UPPER CASE

LINE TEXT EDITOR (EDI)

However, in both instances, the characters are converted to
uppercase before the file is closed.

To create a file containing lowercase characters, use the MCR SET
/LOWER=TI: or the DCL SET TERM LOWER command and the EDI UC OFF
command .

2.4.57 VERIFY ON/OFF

This command controls the display of lines specified by the LOCATE and
CHANGE commands. Use VERIFY ON to display a line located by the
LOCATE command or to display a line changed by the CHANGE command.
Use VERIFY OFF to inhibit the display of these lines. VERIFY ON is
the default when EDI is started.

Format

Verify {[ON]
or
Verify OFF

If neither ON nor OFF is specified, ON is assumed.
Example

*V OFF

*L VERIFY

*p

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
N -2

*V ON

*L. VERIFY

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to demonstrate that
the desired 1line has been located when VERIFY is OFF, but when

the LOCATE command is reissued with VERIFY ON, EDI automatically
prints the line.

2.4.58 WRITE

This command causes the entire contents of the block buffer to be
written into the output file. The block buffer is then erased.

EDI must be in block mode before this command can be executed.
Format

Write
Example

*W
*REA 2

In this example, the block buffer is written into the output file

and the block buffer is erased. Then, the next two blocks are
read into the block buffer.

2-49

LINE TEXT EDITOR (EDI)

2.5 EDI USAGE NOTES

The

following points contain general information involving

restrictions on use of EDI, system device considerations, and general
usage rules.

EDI can operate only on Files-11 format files and rejects all
other file formats.

The output file generated by EDI always resides on the same
device as the input file. The output file cannot be directed
to another device. For example, to edit a file on DECtape and
store the resulting file on disk, do one of the following:

~ Transfer the file to disk and perform the editing there.

- Edit the file on DECtape and then use PIP or FLX to transfer
the file to disk.

To use a device other than SY¥:, mount it with the MOUNT
command .

To edit a version of a file other than the 1latest one,
explicitly state the desired version number in the file
specification. This file is opened as the input file. The
version number of the output file is one greater than the
latest version of the file.

Some EDI commands (such as TOF and TOP, when it 1is wused in
line-by-line mode) implicitly generate multiple versions of a
file. 1In the execution of such commands, EDI copies the
remainder of the input file into the output file and closes
both of them. It then opens the latest version of the file
and wuses it as input. This ensures the editing of the latest
version of the file and provides periodic backup. To delete
any unwanted versions, use PIP with the /PURGE switch or the
DCL DELETE command.

EDI accepts variable-length input 1lines up to 132(10)
characters long.

The record type of output files edited by EDI 1is always
variable-length.

EDI preserves the record attributes of the input file. For
example, the FORTRAN carriage control attribute is preserved
in the output file.

Line feed characters may be entered in files, but are
interpreted by EDI as termination characters. You should
avoid using them since they cause unpredictable results when
the file is edited a second time.

EDI cannot process a file that contains embedded carriage
control characters, such as PIP directory listings and TKB map
files. To reformat such a file for EDI processing, copy the
file to a DOS-11 volume and then back to your original wvolume
using FLX. EDI can then process the file.

2.6 SAMPLE EDITING OPERATIONS

LINE TEXT EDITOR (EDI)

Sample editing operations are included in this section to illustrate
how the various EDI commands can be used:

e A file is edited using a few basic EDI commands.

e Two save files are generated, modified, and appended to the

original file.

Any closed file may be appended to or inserted

within an open file in the manner shown in the second example.

® An immediate macro command is defined and executed in a single

step.

e A file containing errors is edited using the macro commands.

2.6.1 File Editing Sample

>EDI PRTBLD.CMD

[PAGE 1]
xp *

COMMAND FILE TO BUILD

PRNT SYMBIONT
FOR RSX-11M MAXXED SYSTEM

1,54)PRT/MM/~-CP, LP: =PRTBLD/MP

* we Ne my e N6 N Ne e Ne

OPTIONS

STACK=40
PAR=PARK:0:1000L
UNITS=4
TASK=PRT...
ASG=C0:2,LP:3
PRI=60

uc={10,1]

SPECIFY

SPECIFY FLAG WHICH CONTROLS

FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE
GBLPAT=PRT;S$DELET:1

TO INHIBIT DELETION USE

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENARBLED

Ne we W5 Ne N6 Me Ne Ne Ve Mo Ne N e we

GBLPAT=PRT:$DELET
/

[*EOB*]

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

N

9
10

The
to be printed.

PRNT should be PRINT.
MAXXED should be MAPPED.
/-CP should be /CP.

INPUT should be appended to the line containing the
word OPTIONS.

PARK should be PAR4K.

UC should be UIC.

The line containing ; SPECIFY should be deleted.

The comment line containing the format used to inhibit
deletion is missing.
ENARBLED should be ENABLED.

A :1 should be appended to the line following the
word $DELET.
end of buffer is reached and EDI causes the EOB message

*TOoP

[PAGE 1]

*PL PRNT

i PRNT SYMBIONT

*C/RN/RIN/
PRINT SYMBIONT

C/XX/PP/
FOR RSX-11M MAPPED SYSTEM
*NP 3
[1,54]PRT/MM/~-CP, LP:=PRTBLD/MP
*c,/-CP,/CP,
[1,54]PRT/MM/CP,LP: =PRTBLD/MP
*PL PAR=
PAR=PARK:0:10000
*C/RK/R4K/
PAR=PAR4K:0:10000
*NP -3
; OPTIONS
*AP INPUT
; OPTIONS INPUT
*pPL UC
uc=[10,1]
*C/UC/UIC/
UI1c=[10,1]
*

i
*
; FOR RSX-11M MAXXED SYSTEM
*
i

SPECIFY

P

SPECIFY FLAG WHICH CONTROLS
PL INH

TO INHIBIT DELETION USE
I

Hwe Nme W e

-~

GBLPAT=PRT:$DELET:0

*PL RB
; FILE DELETION ENARBLED
*C/R//
FILE DELETION ENABLED

* e #e

GBLPAT=PRT:S$DELET
*AP :1
GBLPAT=PRT:SDELET:1
* TOF

[PAGE 11

P

COMMAND FILE TO BUILD
PRINT SYMBIONT
FOR RSX-11M MAPPED SYSTEM

. w we e e e

LINE TEXT EDITOR (EDI)

A TOP command is issued to move the line pointer to top of
file and editing is started.
1 - A PAGE LOCATE command is issued to locate the first

10

line in error and the line is printed automatically.

A CHANGE command is issued to correct the line

and the corrected line is displayed automatically.

A RETURN is entered following the prompt to

move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

A NEXT PRINT 3 command is issued to locate the

next line in error and the line is printed. A CHANGE
command is issued to correct the line and the corrected
line is displayed automatically.

A PAGE LOCATE command is issued to locate the next

line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is displayed automatically.

A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
the line

A PAGE LOCATE command is used to locate the next line
in error and the line is printed automatically.

A CHANGE command is issued to correct the line and

the corrected line is displayed automatically.

The line pointer is moved down two lines by means

of a RETURN option to locate the next

line in error. A DELETE AND PRINT command is issued to
delete the line contdining ; SPECIFY and print

the next line.

A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines

are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a RETURN as

the first character in the line.

A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is displayed
automatically.

The line pointer is moved down two lines using two
RETURNS to locate the last line in error.

An ADD AND PRINT command is issued to append

:1 following the word $DELET.

The necessary corrections are complete, so the line pointer
is moved to the top of the file by means of a TOF command.
A PRINT * command is issued to print the complete file

with all corrections

[1,54]1PRT/MM/CP, LP:=PRTBLD/MP

; OPTIONS INPUT
STACK=40
PAR=PAR4K:0:10000
UNITS=4
TASK=PRT...
ASG=C0:2,LP:3
PRI=60

UIC=[10,1]

Ge Mo e W e NE We e Ns Ne W

~. we Se e

GBLPAT=PRT:$DELET:1
/

[*EOB*]
*EX
[EXIT]

2,6.2 SAVE and UNSAVE Sample

*LI

THIS IS LINE 1 PAGE
THIS IS LINE 2 PAGE
THIS IS LINE 3 PAGE
THIS IS LINE 4 PAGE
THIS IS LINE 5 PAGE
[*EOB*]

*T

*SA 5 SAV1.DAT

*T

*SA 5 SAV2.DAT

*CL

EDI> SAV1.DAT

{PAGE 1]

*LI

THIS IS LINE 1 PAGE
THIS IS LINE 2 PAGE
THIS IS LINE 3 PAGE
THIS IS LINE 4 PAGE
THIS IS LINE 5 PAGE

[*EOB*]

SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE
GBLPAT=PRT:$DELET:1

TO INHIBIT DELETION USE
GBLPAT=PRT:$DELET: 0

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENABLED

[y

[

LINE TEXT EDITOR (EDI)

An EXIT command is issued to close the file and
terminate the editing session.

The file to be used in this example is
printed using the LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.

A second SAVE command is used to generate

a second saved file. The primary input file is closed.
The first save file is opened and a

LIST command is used to display the file.

LINE TEXT EDITOR (EDI)

*PA/PAGE 1/PAGE 2/ A PASTE command is used to change
THIS IS LINE 1 PAGE 2 PAGE 1 to PAGE 2 in all lines.
THIS IS LINE 2 PAGE 2

THIS IS LINE 3 PAGE 2

THIS IS LINE 4 PAGE 2

THIS IS LINE 5 PAGE 2

*CL The first save file is closed.
EDI>SAVE2.DAT The second save file is opened.
[PAGE 1]

*LI The LIST command is used to display
THIS IS LINE 1 PAGE 1 the contents of the file.

THIS IS LINE 2 PAGE 1

THIS IS LINE 3 PAGE 1

THIS IS LINE 4 PAGE 1

THIS IS LINE 5 PAGE 1

[*EOB*]

*PA/PAGE 1/PAGE 3/ A PASTE command is used to change
THIS IS LINE 1 PAGE 3 PAGE 1 to PAGE 3 in all lines.
THIS IS LINE 2 PAGE 3

THIS IS LINE 3 PAGE 3

THIS IS LINE 4 PAGE 3

THIS IS LINE 5 PAGE 3

*CL The second save file is closed.
EDI>START.DAT The original input file is opened again.
[PAGE 1]

*BO

THIS IS LINE 5 PAGE 1 The last line in the file is located.
*UNS SAV1.DAT Two UNSAVE commands are used to
*UNS SAV2.DAT append the two save files to the
*T original input file.

*LI A LIST command is used to

THIS IS LINE 1 PAGE 1 display the contents of the

THIS IS LINE 2 PAGE 1 combined file.

THIS IS LINE 3 PAGE 1

THIS IS LINE 4 PAGE 1

THIS IS LINE 5 PAGE 1

THIS IS LINE 1 PAGE 2

THIS IS LINE 2 PAGE 2

THIS IS LINE 3 PAGE 2

THIS IS LINE 4 PAGE 2

THIS IS LINE 5 PAGE 2

THIS IS LINE 1 PAGE 3

THIS IS LINE 2 PAGE 3

THIS IS LINE 3 PAGE 3

THIS IS LINE 4 PAGE 3

THIS IS LINE 5 PAGE 3

[*EOB*]

*EX

[EXIT]

LINE TEXT EDITOR (EDI)

2.6.3 Use of MACRO IMMEDIATE Command

*LI

ABC IN LINE 1 - ABC
ABC IN LINE 2 - ABC
ABC IN LINE 3 - ABC
ABC IN LINE 4 - ABC
ABC IN LINE 5 - ABC

ABC IN LINE N - ABC
[*EOB*]
*4<F ABC&C/ABC/DEF/>

ABC IN LINE 1 - ABC
DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 - ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 - ABC

*

2.6.4 Use of Macro Commands

*LI

THIS LITTLE FILE HAS

MANY CONNON ETTORS SO

WE CAN SHOW YOU HOW

YHE MACRO CONNANDS CAN

BE USED.

FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND

IS ISSUED TO COTTECT YHE
ETTOR

[*EOB*]

*MACRO 1 C/NN/MM/

*MACRO 2 SC/TT/RR/

*MACRO 3 PA/YHE/THE/

*M3

THE MACRO CONNANDS CAN
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
WITH AN ETTOR, AND THEN, THE
IS ISSUED TO COTTECT THE
*N P2

MANY CONNON ETTORS SO

*M1

MANY COMMON ETTORS SO

*M2

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to find the first
four lines that start with ABC
and change the first occurrence
of the string ABC to DEF.

The FIND command causes the line
to be printed before the change.
The CHANGE command causes

the line to be printed after

the change.

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1. The string NN is used in place
of MM ([see macro 1l).

2. The string TT is used in place
of RR (see macro 2).

3. The string YHE is used in place
of THE (see macro 3).

The three macro definitions that will
correct the errors are typed.

Macro 3 is used to change all YHE
strings to THE.

NP2 is used to locate a line with errors.

M1 is used to change NN to MM.

M2 is used to change TT to RR.

2-55

MANY COMMON ERRORS SO
*NP2

THE MACRO CONNANDS CAN
*M1

THE MACRO COMMANDS CAN

*M2
WITH AN ERROR; AND THEN, THE
*

MACRO EXECUTE CONNAND
*M1

MACRO EXECUTE COMMAND
*M2

IS ISSUED TO CORRECT THE
*M2

ERROR

*T

*LI

THIS LITTLE FILE HAS

MANY COMMON ERRORS SO

WE CAN SHOW YOU HOW

THE MACRO COMMANDS CAN

BE USED.

FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
POINTER IS MOVED TO A LINE
WITH AN ERROR; AND THEN, THE
MACRO EXECUTE COMMAND

IS ISSUED TO CORRECT THE
ERROR.

[*EOB*]

2.7 EDI ERROR MESSAGES

NP2 is used to locate the next line in error.
M1l is used to change NN to MM.

M2 is used to locate the next TT string
and change it to RR.

A RETURN is used here to locate the next line
in error.

M1 is used to change NN to MM.

M2 is used to locate
change it to RR.

the next TT string and

M2 is used to locate the last error in the
file and correct it.
After all lines have been corrected, the

file is printed using the LIST command.

The four classes of EDI error messages are:
o Command level information messages
e File access error messages

o Error messages requiring EDI to restart

e Fatal error messages

The following sections describe all the messages that can be displayed

in each class.
user action is given.

If the recovery procedure is not evident, a suggested

LINE TEXT EDITOR (EDI)

2.7.1 Command Level Information Messages

Messages in this class indicate information that is designed to be
helpful to you or to identify errors that were encountered in the
previous command. All messages in this <c¢lass are enclosed within
square brackets and are followed by a prompt for a new command. For
example, the following output occurs if a DELETE command encounters an
end-of-buffer in block mode:

[*EOB*]
*

The messages in this class follow.

[BUFFER CAPACITY EXCEEDED BY]
offending line
[LINE DELETED]

Explanation: A READ, UNSAVE, INSERT, or OVERLAY command has
exceeded the capacity of the block buffer. The line that caused
the overflow is displayed and deleted.

User Action: If a new file is being created, empty the buffer
with a WRITE command and continue the editing session.

If an existing file is being edited, it may be possible to
continue by using a RENEW or WRITE command. Otherwise, use the
CLOSE command to close the output file and save all edits.
Reopen the output file as the input file and, using the SIZE
command, reduce the number of lines read into each buffer. Then,
using the PAGE LOCATE command, search to the position in the file
where editing is to continue.

Occasionally, this message results when you try to open a file
that was not created by EDI. You can overcome this difficulty by
using the SIZE command procedure that follows:

1. Type KILL.

2, When EDI prompts for a new file specification, enter a
nonexistent file name. EDI creates a new file and enters
input mode.

3. Use the RETURN key to enter edit mode.

4. Using the SIZE command, reduce the number of lines read into
each buffer.

5. Use the KILL command to abandon the file.
6. When EDI prompts for a new file specification, enter the name
of the desired file.
[CREATING NEW FILE]
INPUT
Explanation: The input file specified with the command does not

exist and EDI has created a new file. EDI automatically enters
input mode and waits for the input of text lines.

[ILL

[ILL

[ILL

LINE TEXT EDITOR (EDI)

User Action: 1If you intend to <create a new file, continue
entering new 1lines as required. Otherwise, enter edit mode by
pressing RETURN and use the KILL command to delete the undesired
new file. When EDI prompts for a new file specification, enter
the correct file specification.

CMD]

Explanation: Either EDI does not recognize the command or you
have entered a command that is not compatible with the current
mode (for example, a READ command in line-by-line mode).

NUM]

Explanation: Either you have supplied a nonnumeric character
when a numeric 1is required or you have given a negative number
when a positive number is required.

STRING CONST]

Explanation: A search string specified in a CHANGE, LC, PASTE,
or SC command does not contalin a matching string termination
character (for example, PASTE /ALPHABETA, instead of PASTE
/ALPHA/BETA) .

[ILLEGAL IN BLOCK ON MODE]

Explanation: You have tried to execute a command that is illegal
in block mode, such as FILE or OUTPUT ON/OFF.

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]

or

[FILE WAS NOT RENAMED]

Explanation: A syntactically incorrect file specification was
given in a CLOSE or EXIT command, the attempt to rename the
output file failed, or the attempt to EXit or Close to rename the
file to another device failed.

User Action: Use the PIP /RE switch or the DCL RENAME command to
rename the file, if desired.

[MACRO NOT DEFINED]

Explanation: You have tried to execute a macro with the M
command, but the specified macro has not been defined.

User Action: Use the MACRO command to define the desired macro
and then execute it with the M command.

LINE TEXT EDITOR (EDI)

[MACRO NUMERIC ARG UNDEFINED]

Explanation: You have tried to execute a macro without supplying
a numeric argument. The macro definition contains a percent (%)
character and thus demands a numeric argument.

User Action: Reenter the command line, specifying the
appropriate numeric argument.

[MCALL FILE DOES NOT EXIST]

Explanation: You have issued an MCALL command to retrieve a set
of macros, but the file MCALL cannot be found.

User Action: The desired set of macro definitions may exist
under another User File Directory. If this is the case, use PIP
or the appropriate DCL commands to copy or rename the MCALL file
into the current directory.

[NO INPUT FILE OPEN]

Explanation: You have issued a PAGE, READ, or RENEW command
while a new file 1is being created (that is, while there is no
input file). These commands can be executed only when an
existing file is being edited.

[NO MATCH]

Explanation: You have issued a CHANGE command with a string to
be changed that is not in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Explanation: You have issued a MACRO command that redefines a
previously defined macro. This message lets you know that the
previous definition is no longer in effect.

[SAVE FILE DOES NOT EXIST]

Explanation: The file specified in an UNSAVE command cannot be
located.

User Action: If you provided a file specification, make sure it
is <correct. If you did not provide a file specification, this
message means that no previous SAVE command (without file
specification) was issued.

[SECONDARY FILE ALREADY OPEN]

Explanation: You may have tried to open a secondary 1input file
while another secondary file is still open. Or you may have a
secondary file open when you issue a CLOSE or KILL command, or
when EDI encounters an error and 1is forced to restart. The
former case represents an error. The latter informs you that you
still have a secondary file open.

User Action: Close the secondary input file wusing the CLOSES
command and then open the desired secondary file with the OPENS
command .

LINE TEXT EDITOR (EDI)

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]
Explanation: You have issued a CLOSE or KILL command or an error
has caused EDI to restart when a secondary input file is open and
selected for input.

User Action: Issue an SP command, then a CLOSES command.

[SYNTAX ERROR]

Explanation: You entered a command that is syntactically
incorrect.

[TOO MANY CHARS]

Explanation: A CHANGE, LC, PASTE, SC, or ADD command has
resulted in a line that contains too many characters. EDI limits
the length of a line to 132(10) characters.

User Action: Reenter the command line to ensure that the line is
valid.

[*BOB*]
Explanation: You have reached the beginning-of-buffer. The
current line pointer is positioned just before the first line in
the buffer. Thus, new text lines can be entered before the first
line.

[*EOB*]
Explanation: You have reached the end-of-buffer. The current
line ©pointer now points to the end of the buffer. Thus, if new
lines are inserted, they appear after the last text in the
buffer.

[*EQF*]
Explanation: You have reached the end-of-file on the input file.
User Action: If the editing session is complete, use the CLOSE

or EXIT command to close the output file. Otherwise, use the TOF
command to return to the first block in the file.

2.7.2 File Access Error Messages
Messages in this class mean that you have tried to access directories,

files, or devices that are not present in the host system. Each
message is prefixed with:

EDT —-
Lisa =

After the message is displayed, EDI returns to command 1level and
prints an asterisk to request input.

The messages in this class follow.

LINE TEXT EDITOR (EDI)

EDI -- BAD FILE NAME

Explanation: EDI did not accept the file name. The most common
error is a file name containing embedded blanks.

User Action: Make sure that the file name 1is correct, then
reenter it.

EDI -- DEVICE NOT IN SYSTEM
Explanation: You have given a FILE, OPENS, ©SAVE, or UNSAVE
command and specified a device that does not exist in the host
system.
User Action: Reenter the command line, specifying only devices
available in the system.

EDI -- FILE DOES NOT EXIST

Explanation: You have given a FILE or SAVE command and specified
a User File Directory that does not exist on the specified

volume.
NOTE

The remaining error messages 1in this
class should not occur and represent
failures in EDI. If such errors
persist, submit a Software Performance
Report (SPR).

EDI -- BAD DEVICE NAME

EDI -- DEVICE NOT READY

EDI -- FILE ALREADY OPEN

EDI -- RENAME NAME ALREADY IN USE

EDI -- RENAME ON TWO DIFFERENT DEVICES

EDI -- WRITE ATTEMPT TO LOCKED UNIT

2.7.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
that make it impossible for EDI to continue the current editing
session. EDI closes all open files (with the exception of any open
secondary input file), reinitializes, and then prompts for the next
file to be edited.

LINE TEXT EDITOR (EDI)

As with file access messages, each message in this class is prefixed
with:

EDI --

After the appropriate message has been displayed, EDI prompts with:

EDI>

You may terminate the editing session at this point by pressing RETURN
or CTRL/Z, or you may continue by entering another file specification.
If a secondary file was open when the error condition was encountered,
it remains open.

The messages in this class follow.

EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE

Explanation: The record type defined in the header block of the
input file (primary input, secondary input, UNSAVE, or MCALL) is
not supported by the File Control Services (FCS). Thus, the file
cannot be used for input to EDI.

User Action: The referenced file has been created without using
FCS or the file structure on the volume is damaged. 1In the
latter case, verify the file structure with the wverification
utility (VFY) to determine the extent of the damage. VFY is
described in Chapter 9.

EDI -- FILE IS ACCESSED FOR WRITE

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) is currently being written by another task.

User Action: Wait for the write to complete, then reenter the
command line.

EDI -- FILE IS LOCKED TO WRITE ACCESS
Explanation: The output file (text output, FILE, or SAVE) |is
currently accessed for read by one or more tasks and is locked
against all writers.
User Action: Wait for all reads of the file to finish, then

reenter the command line.

EDI -— ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE

=1

Explanation: The record attributes defined in the header block
of the input file (primary input, secondary input, UNSAVE, or
MCALL) are not supported by FCS. Thus, the file cannot be used
for input to EDI.

User Action: The referenced file has been created without wusing
FCS or the file structure on the volume is damaged. 1In the
latter case, run the file structure verification utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
9.

LINE TEXT EDITOR (EDI)

EDI -- PRIMARY FILE NOT PROPERLY CLOSED

Explanation: When the primary input file was 1last written, a
close check was specified and the writing task did not properly

close the file (for example, the task was aborted). Thus,

the

file attributes were not written and the file may contain

inconsistent data.

User Action: Exit from EDI by pressing RETURN or CTRL/Z.

Use

the PIP /UN switch to unlock the file. Reinitiate EDI and try to

recover the data in the file.

EDI -- PRIVILEGE VIOLATION

Explanation: A privilege violation occurred during a file access

for one of the following reasons:

1. The specified volume is not mounted.

2. The UIC under which EDI is running does not possess

necessary privileges to access the specified directory.
3. The UIC is not privileged to access the specified file.

User Action: If the volume is not mounted, then mount it

the

using

the MOUNT command. Otherwise, reinitiate EDI under a UIC that
has appropriate access privileges to both the specified directory

and file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

Explanation: The input file (primary input, secondary input,
UNSAVE, or MCALL) being accessed was not created by EDI (or SLP)
and contains records that are too large. The maximum record

length supported by EDI is 132(10) bytes.

EDI -- SECONDARY FILE NOT PROPERLY CLOSED -~ NOT USABLE

Explanation: When the secondary input file was last written, a
close check was specified and the writing task did not properly

close the file (for example, the task was aborted). Thus,

the

file attributes were not written and the file may contain

inconsistent data.

User Action: Use the PIP /UN switch to unlock the

Reinitiate EDI and try to recover the data in the file.
EDI -- BAD DIRECTORY SYNTAX

Explanation: Directory field ([g,m]) is in improper format.

NOTE

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, submit a Software Performance
Report (SPR).

file.

LINE TEXT EDITOR (EDI)

EDI -- DUPLICATE ENTRY IN DIRECTORY

EDI -- END OF FILE

EDI -~ ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE
EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE

2.7.4 Fatal Error Messages
The fatal error messages represent system and/or hardware conditions
that make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. The output file may be
truncated. Each error message is prefixed with:

EDI --
and followed by the exit message:

[EXIT]
on the next line.
You may work with the following procedures on the truncated version of
an output file to save the editing performed before the fatal error

occurred.

1. Use the PIP /RE switch or the DCL RENAME command to rename
the truncated version of the output file to avoid confusion.

2. Restart the editing session to the original input file.

3. Issue an OPENS command, specifying the renamed £file as the
secondary file.

4, Issue an SS command to select the secondary file for input.

5. Issue an ERASE command to erase the first block of the input
file (unless the truncated output file did not contain the
entire first block).

6. Issue as many READ 1 and WRITE commands as necessary to reach
the EOF on the secondary file.

7. 1Issue an SP command to select the primary file for input.
8. Issue a CLOSES command to close the secondary file.

9. Issue a WRITE command to ensure that the 1last block was
written into the output file.

10. Issue as many READ 1 and ERASE commands as necessary to
bypass all input file blocks that are complete in the renamed
file.

11. Continue the normal editing session.

The

EDI

EDI

EDI

EDI

EDI

LINE TEXT EDITOR (EDI)

messages in this class follow.

-— CALLER'S NODES EXHAUSTED

Explanation: System dynamic storage has been depleted and
insufficient space 1is available to allocate the control blocks
necessary to open, close, read, or write a file.

User Action: This probably is a system failure, but it could
also represent a transient overlocad condition. Wait until system
load has diminished and reinitiate EDI.

-— DEVICE FULL

Explanation: Insufficient space exists on the output volume to
extend an output file (text output, FILE, or SAVE).

User Action: Determine which volume is being written to. If it
is required that the specified file be written on this volume,
then space must be made available. Use PIP to purge (/PU) or
delete (/DE) unwanted files, or use the DCL PURGE and DELETE
commands.

— FILE HEADER CHECKSUM ERROR

Explanation: An input file (primary input, secondary 1input,
UNSAVE, or MCALL) has a header block that does not contain a
proper checksum.

User Action: The file structure on the specified volume Iis
damaged. Run the File Structure Verification Utility (VFY) to
determine the extent of the damage. VFY is described in Chapter
9.

—— FILE HEADER FULL

Explanation: Insufficient retrieval pointer space exists in the
header block to extend an output file (text output, FILE, or
SAVE) .

User Action: Split the file into two or more files and process
them separately.

-- FILE PROCESSOR DEVICE WRITE ERROR

Explanation: This error message may indicate that the device
specified for an output file is write-locked.

User Action: Unlock the device if it is write-locked.
Otherwise, a hardware problem may exist. Consult your DIGITAL
Field Service representative.

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

EDI

LINE TEXT EDITOR (EDI)

—-- INDEX FILE FULL

Explanation: The file header block is not available to create an
output file (text output, FILE, or SAVE). When a volume is
initialized, the maximum number of files that may be created on
the wvolume 1is established. Your write request would have
exceeded this maximum.

User Action: Determine which volume is being referenced. If it
is required that the specified file be created on this volume,
then space must be made available. Use PIP to purge (/PU) or

delete (/DE) unwanted files, or use the DCL PURGE or DELETE
commands.

NOTE

The following error messages signify
hardware problems. If possible, remove
all important files from the volume,
then contact your 1local DIGITAL Field
Service representative.

-— BAD BLOCK ON DEVICE

-- FILE PROCESSOR DEVICE READ ERROR

-- HARDWARE ERROR ON DEVICE

~— PARITY ERROR ON DEVICE

NOTE

The remaining error messages in this
class should not occur and represent
failures in EDI. If such a failure

occurs, contact your local DIGITAL Field
Service representative.

-— BAD DIRECTORY FILE

—-— BAD PARAMETERS ON A QIO

—— INVALID FUNCTION CODE ON A QIO

—— NO BLOCKS LEFT

—-— REQUEST TERMINATED

LINE TEXT EDITOR (EDI)

EDI ~- UNEXPECTED ERROR - EDITOR WILL ABORT

EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR

TASK "...EDI" TERMINATED

CHAPTER 3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is a file utility program
that transfers data files from one standard Files-11 device to
another. PIP also performs file control functions. Some of the
functions PIP performs are:

o Copying files from one device to another

e Deleting files

® Renaming files

e Listing file directories

e Setting the default device and UIC for PIP operations
e Unlocking files

e Spooling files

You invoke the PIP utility using any of the methods for invoking a
utility described in Chapter 1. You invoke PIP file control functions
by means of switches and subswitches.

3.1 PIP COMMAND LINE

You request PIP functions by entering PIP command lines through the
initiating terminal or by means of an indirect command file. The
maximum nesting level for indirect command files is four. (Using
indirect command files is described in Chapter 1l.) The format of PIP
command lines differs for each function. Therefore, the command 1line
formats are described in separate sections.

3.1.1 PIP Defaults for File Specification Elements

With the exception of the version number, PIP generally uses the 1last
value encountered in the command line as the default. That is, PIP
uses values you enter to set defaults and changes the default when you
change the value. Exceptions to this are noted in the descriptions of
each switch.

In the following example, T1.MAC;5 sets the defaults for the
subsequent file specificaticns in the command 1line. Then, T2 is
specified and overrides Tl as the default filename; however, .MAC
remains the default file type. Finally, .TSK is specified, which

overrides .MAC as the default, while T2 remains the default file name.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Note, in this example, that the version number does not default.
PIP>T1.MAC;5,T2,.TSK/BR
T1.MAC;5
T2.MAC;1
T2.TSK; 3
Table 3-1 summarizes the rules PIP uses to set defaults.

Table 3-1
PIP Default File Specifications

Element Default Value

dev: For the first file specification, the unit on which
the wuser's system disk is mounted (SY0:) or the
default that you specify with the /DF switch (see
Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
device or PIP assumes the device from the previous
specification.

fufd] For the first file specification, your current User
Identification Code or UIC (that is, the UIC under
which you log on), the UIC you specify with the SET
command, or the default you specify with the /DF
switch (see Section 3.2.2.6). For subsequent file
specifications, either you explicitly specify a new
User File Directory or PIP assumes the UFD from the

previous specification. Only the asterisk
specification is valid as a wildcard (see Section
3.1.3).

filename No default for the first file specification. For

subsequent file specifications, the last file name
that you explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3).

.filetype No default for the first file specification. For
subsequent file specifications, the last file type
that vyou explicitly specified. Asterisk and/or
percent sign specifications are valid as wildcards
(see Section 3.1.3).

;version The default for input files is the most recent
version number. The default for cutput files is the
next higher version number, or version 1 if the file
does not exist in the output directory. An
exception is the PIP file delete function, which
requires that a version number be specified.

An explicit version number is defined to be of the
form ;n where n is greater than 0. A version number
of ;-1 may be used to specify the oldest version of
a file. A version number of ;0 or ; may be
specified to signify the most recent version. In
certain cases, just the asterisk (wildcard) may be
specified, as described in Section 3.1.3.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.2 PIP Switches and Subswitches

PIP provides several file control switches and subswitches. A switch
specification consists of a slash (/) followed by a 2- or 3-character
switch name. The switch specification is optionally followed by a
subswitch name separated from the switch name by a slash. The switch
or subswitch can have arguments that are separated from the switch or
subswitch name by a colon (:).

To allow several commands to be performed consecutively, more than one
command can be specified 1in a line. To separate each command, the
ampersand character (&) is used.

Most of the PIP switches operate on lists of file specifications. The
exceptions are /DD, /DF, /ID, and /TD, which are used by themselves.

Table 3-2 lists PIP switches and subswitches and summarizes the
functions performed by them. The subswitches are listed with their
respective switches. The switches and subswitches are described in
detail in Section 3.2.2.

Table 3-2
PIP Switches and Subswitches

Switch Subswitch Function
/AP Appends file(s) to the end of an existing
file.
/FO Specifies the file owner for a file.
/BS:nl.] Defines the blocksize for magnetic tape.
/CD Allows the output file to take the <creation

date of the input file rather than the date
of transfer.

/DE Deletes one or more files.
JLD Lists the deleted files.
/DD Restricts file searches to files created

during a specified period of time.

/DF Changes PIP's default device and/or UFD.
/EN Enters a synonym for a file in a directory
file.
/NV Forces the version number of a file to one

greater than the latest version.

/EOF [:block:byte] Specifies the end-of-file pointer for a
file.
/EX Excludes one file specification's worth of

files during file searches.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)

PIP Switches and Subswitches

Switch

Subswitch

Function

/FI:filenum:segnum

/FR

/ID

/LI

/ME

/NM

/PR

/BR

/FUl:n[.1]

/TB

/BL:n[.]

/CO

/FO

/NV

/SU

/FC

/GR[:RWED]

/OW{:RWED]

/SY[:RWED]

/WO [:RWED]

Accesses a file by its file identification
number (file-ID).

Displays the amount of available space on
the specified volume, the largest contiquous
free space on that volume, and the number of
available file headers.

Identifies the version of PIP being used.
Lists directory files.

Lists a directory file in brief format (an
alternate mode for the /LI switch).

lists a directory file in full format (an
alternate mode for the /LI switch).

Lists the total number of blocks used for a
directory, along with the total number
blocks allocated and the number of files in
that directory (an alternate mode for the
/LI switch).

Concatenates two or more files 1into one
file.

Allocates a number (n) of contiguous blocks.

Specifies that the output file(s) be
contiguous.

Specifies the file ownership for a file.

Forces the version number of a file to one
greater than the latest version.

Supersedes (replaces) an existing file.
Suppresses certain PIP error messages.
Changes the protection status of a file.
Specifies the ownership for a file.

Sets the read/write/extend/delete protection
at the group level.

Sets the read/write/extend/delete protection
at the owner level.

Sets the read/write/extend/delete protection
at the system level.

Sets the read/write/extend/delete protection
at the world level.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-2 (Cont.)
PIP Switches and Subswitches

Switch Subswitch Function
/PUl:n[.]] Deletes obsolete version(s) of a file.
/LD Lists the deleted files.

/RE Renames a file.

/RM Removes a file entry from & directory.

/RW Rewinds a magnetic tape.

/SB Specifies that records may span disk block
boundaries when copied from magnetic tape.

/SD Selectively deletes files by prompting for
your response before deleting.

/SPl:n[.1] Spools files to the 1line printer for
printing.

/SR Allows shared reading of a file that has

already been opened for writing by another
user or task.

/TD Restricts file searches to files created on
the current day.

/TR Truncates files to logical end-of-file.

/UF Creates a User File Directory entry on the
volume to which a file is being transferred.

/UN Unlocks a file.
/UP Updates (rewrites) an existing file.
/FO Specifies the owner for a file.

Switches and subswitches are described in the following sections.

3.1.2.1 Switches - PIP accepts some switches with no file
specification. However, when you use a switch in a command line, it
must follow the file or UFD specification. It cannot come before the
device name, the UFD, the file name, file type, or version of the file
on which it is to operate.

You may specify a switch once for a list of file specifications. For
example:

filespecl,filespec2,filespec3/DE

The /DE switch applies to all of the file specifications. PIP deletes
every specified file from its UFD.

3-5

PERIPHERAL INTERCHANGE PROGRAM (PIP)

You specify switch arguments as octal (default), decimal, or
alphabetic characters, depending on the switch. The sections that
explain the individual PIP switches discuss these values.

3.1.2.2 Subswitches - You can apply subswitches to one or more file
specifications, depending on the placement of the subswitch.
Subswitches can appear in either the output file specification or the
input file specification.

If you place the subswitch in the output file specification, the
subswitch applies to the entire list of input file specifications.
For example, the Contiguous Output switch (/CO) 1is applied to both
TEST.TSK and SAMP,.DAT. (The /CO switch 1is wused with the Copy
function. See Section 3.2.1.)

PIP>/CO=TEST.TSK;1,SAMP.DAT;1

PIP copies TEST.TSK;1l and SAMP,DAT;1 such that the copies, TEST.TSK;2
and SAMP.DAT;2, are contiguous.

If you place the subswitch in the input file specification, it usually
applies only to the file specification that immediately precedes it.
In the following example, the New Version subswitch (/NV) 1is applied
to the file ASDG.MAC. (The /NV subswitch is being used with the
Rename switch, /RE.)

PIP>*,SMP=PRT2. QRT, ASDG.MAC/NV, KG.MAC/RE
PIP renames the files PRT2.QRT and KG.MAC, but they maintain their
associated wversion numbers. File ASDG.MAC is also renamed, but the
version number is forced to a number one greater than the 1latest
version of file ASDG.SMP (assuming a version of ASDG.SMP already
exists).
When you explicitly apply a subswitch to a file specification, you
implicitly apply the switch with which the subswitch is associated.
On a command line with more than one file specification, the explicit
subswitch affects only the file to which it is applied. The implicit
switch affects all the files on the command line.
Example

PIP>ILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW
This command is equivalent to:

PIP>ILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW/PR

The command results in the fo

pmd

lowing file protection:

a. FILE1l SYSTEM -- Unchanged
MEMBER -- Unchanged
GROUP -— Read access
WORLD -- No access

b. FILE2 SYSTEM -- Unchanged
MEMBER -- Unchanged
GROUP -- Read/write access
WORLD -—- Unchanged

(For more information on altering the protection level of a file, see
Section 3.2.2.16.)

3-6

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.1.3 Wildcards

PIP allows you to specify wildcards 1in file specifications. The
wildcard characters are the asterisk (*) and the percent sign (%)
characters. You can use both wildcards 1in place of explicit
specifications for file names, and types and Jjust the asterisk
wildcard in place of file directories and version numbers.

The asterisk can denote zero or more characters in the field vyou
specify it in, while the percent sign character can denote exactly one
character in the fields. (Correct syntax must be followed, however.
See Section 3.1.3.2.)

Wildcards are restricted in some cases. The following sections
describe and give examples of wildcards 1in input and output file
specifications.

3.1.3.1 Wildcards in Output File Specifications - Wildcards in the
output file specifications are restricted. For the following PIP
functions, the output file specification cannot have any wildcards:

e Concatenating files to a specified file

e Appending files to an existing file

e Updating (rewriting) an existing file

e Listing a directory
If you use wildcards in the output file specification for any of these
functions, the meaning of the command line would be ambiguous. For
example:

PIP>LIST.*=[200, 200] /LI

You have incompletely specified the output file specification. PIP
returns an error message.

When you make copies of several files, the output specification must
be *.*;* or defaulted from the input file specification(s).

For the Rename (/RE) and Enter (/EN) switches, the output
specification may have wildcards (asterisk only) mixed with specified
fields. For either switch, the equivalent field of the input file
specification is used.

For all cases in which wildcards are allowed in the output file
specification, the wildcard UFD form [*,*] (but not [n,*] or [*,n]) is
used to indicate that the output UFD is to be the same as the input
UFD.

NOTE

The percent sign (%) cannot be used in
output file specifications.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
3.1.3.2 Wildcards in Input Specifications - PIP provides the
following wildcard features for input file specifications:
e *_*;%* means all versions of all files.
e *_DAT;* means all versions of all files of file type .DAT.

e *.,D*;* means all versions of all files with file types
beginning with D.

e TEST.*;* means all versions of all types of files named TEST.

e T* *;* means all versions of all types of files with names
beginning with T.

e TEST.DAT;* means all versions of file TEST.DAT,

e TEST.D%T;* means all versions of files named TEST with
three-character file types beginning with D and ending with T.

e T%N.*;* means all versions of all file types of all
three-character file names beginning with T and ending with N.

e *.* means the most recent version of all files.

e *_DAT means the most recent version of all files of file type
.DAT.

e *%.DAT means the most recent version of all files that have at
least one character in their names and have the file type of
.DAT.

e TEST.* means the most recent version of all file types for
files named TEST.

PIP also provides the following wildcard UFD features:

e [*,*] means all group,member number combinations (1 to 377
octal).

e [nl,*] means all member numbers under group nl.

e [*,n2] means all group numbers for member n2.

NOTE

The percent sign (%) character cannot be
used in the UFD.

3.2 PIP COMMAND FUNCTIONS
PIP copies Files-11 files and performs file control functions. The

copying function and file control functions are described in the
following sections.

3.2.1 Copying Files-11 Files

copy Files-11 files, you can enter the PIP command 1line without
cifying any switches.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The simplest format for the PIP command line is:
outfile=infile
outfile

The output file specification. If the output £file name, file
type, and version are either defaulted or *.*;*, the input file
name, file type, and version are used for the output file (see
/NV and /SU subswitches). If you explicitly specify any portion
of the output file specification (file name, file type, or
version), wildcards cannot be wused in this specification.
Similarly, for a copy command, if you enter any portion of the
output specification, you can enter only one file as the input

file.
infile

The input file specification. 1If the file name, file type, and
version fields are not specified, then *.*;* is the default.

One switch that you can specify when copying Files-11 files 1is the
Merge switch. The Merge switch (/ME) creates a new file from two or
more existing files. PIP assumes /ME when you explicitly specify an
output file, two or more input files, and no switches. Because the
basic copy function and the Merge switch are 1logically related, the
Merge switch 1is described here rather than below with the other
switches.

The general format of the PIP command line is:
outfile=infilel[,infile2...,infilen] [[/ME] [/subswitch]]
outfile

The output file specification.

infile

The input file specification.

/ME

The Merge switch.

/subswitch

Specifies any of the subswitches that you can enter as part of
the basic command 1line or with the Merge switch. (Table 3-3
describes these subswitches.) Subswitches can appear in either
the output or input file specification. If you place the
subswitch in an input file specification, it applies only to that
file. If you place the subswitch in the output file
specification, it applies to the entire list of input
specifications.

3-9

Examples

1.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>DK1:SAMP,DAT=DK2:TEST.DAT

Copies the latest version of file TEST.DAT (in the current
UFD) from DK2: to DKl:, naming it SAMP.DAT.

PIP>DKI1: [*,*]=DKO0: [11,*)]

Copies all files from all members in group number 11 of DKO:
to DKl:. The files are copied to the same UFD on DKl: that
they were in on DK0O:. Note that the user must have write
access to all group number 11 UFDs on DKl:.

PIP>LP:=%*,LST

Copies the latest version of all files with a type of .LST in
the current UFD to the line printer. If the Print Spooler is
installed on your system, use the /SP switch instead of this
command. The command line using /SP is in the format:

PIP> *,LST/SP

PIP>DK1:SAMP,DAT=DK2:TEST.DAT;1,NEW.DAT; 2/ME

Concatenates version 1 of file TEST.DAT and version 2 of file
NEW.DAT from DK2:, generating file SAMP.DAT on DKl:, using
the current UFD. Note the result would be the same 1if the
/ME switch was not specified.

PIP>DK1:=DB2: TESTPROG.MAC, .O0BJ

Copies the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from DB2: to DKl:, using the current UFD for both DB2: and
DKl:.

PIP>DK1:=DKQ:*,DAT; *

Copies all versions of all of the files of file type .DAT 1in
the current UFD from DKO: to DKl:.

PIP>DT0:=[200,10]* . %; *

Copies all files under [200,10] from the default device (SY:)
to DTO:, using the current UFD.

PIP>DP0: [200,10]=DTO0:* *
Copies the latest versions of all files from DTO: in the

current UFD to DP0:[200,10]. ©Note that the user must have
write access to {200,10].

3-10

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3
PIP Copy Command and Merge Subswitches

Subswitch

Description

/BL:nl.]

/CO

/-CO

/FO

Blocks Allocated -- This subswitch specifies the
number of blocks (n) to allocate initially to the
output file. You can specify n as either an octal
or decimal value (decimal values must be followed by
a decimal point). You can use the /BL:n subswitch
when you are copying a contiguous file and changing
its size.

Contiguous Output -- This subswitch specifies that
the output file be contiguous. When you are copying
contiguous files from magnetic tape (for example,
task 1images), specify both /CO and /BL:n. You must
specify /BL:n because PIP cannot determine the
length of the input file when copying from tape.
(PIP allocates file space before the copy operation
is executed. The 1length of magnetic tape input
files is on the trailing label for the file.)

Noncontiguous Output -- This subswitch specifies
that the output file does not have to be contiguous.

If you do not specify the /BL:n subswitch, the /CO
subswitch, or the /-CO subswitch, PIP defaults to
the size and attributes of the input file.

Set File Ownership -- This subswitch specifies that
the owner of the output file will be the same as the
output UFD. If you do not specify /FO, the UIC of
all new files is the UIC under which PIP is running,
regardless of which directory the files belong to.
You can use this subswitch with both copy and merge
commands.

Examples
1. 1If PIP is running under the UIC [1,1],
DKO: [200, 200]1=DK1:[200, 220} TEST.DAT

creates a new file in the [200,200] directory on
DKO:, but the file is owned by UIC [1,1].

However,
DKO: [200, 200} =DK1: [200, 220] TEST.DAT/FO
creates a file owned by UIC [200,200]. When you

specify /FO, PIP must be running under a UIC
that has write access to all output directories.

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-3 (Cont.)
PIP Copy Command and Merge Subswitches

Subswitch

Description

/FO0 (Cont.)

/SU

/NV

2. DKl:([*,*]/FO=DP0O:[13,10],[32,10],[34,10]

Copies all the files from the specified input
directories to the corresponding directories on
DK1l:. The file owners are the output
directories.

3. DKl:([*,*]=DKO0:[*,10]*.MAC/FO

Copies all the .MAC files from all group numbers
with member 10 to DKl:, preserving the UFD and
setting the file owner for each £file to that
UFD.

Supersede —-- This subswitch allows you to copy one
or more input files to a file whose file name, file
type, and version may already exist in a UFD. The
existing file 1is deleted and a new one is created
with the data from the input file(s). If the file
does not already exist, it is created.

The output file's name, type, and version number
remain the same, but its file identification number
(file-ID) may be different. Also, the attributes
for the output file are taken from the first input
file and the number of blocks allocated to the
output file can be different (less than or more
than) the number of blocks allocated to the existing
file.

New Version -- This subswitch forces the output
version number of the file being copied to become
one greater than the 1latest version of the file
already in the output directory. If the file does
not already exist in the output directory, a version
number of 1 1is assigned. Figure 3-1 shows the
results when you specify /NV. (Specifying /NV is
not necessary when both the input and output files
are under the same file directory.)

3-12

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COPY

INPUT DIRECTORY OUTPUT DIRECTORY
(291,201] (1g99,109]
RICK.DAT;1 RICK.DAT; 2

RICK.DAT; 4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
(2p1,2p1) [(12p,1p9]
RICK.DAT;1 RICK.DAT;?2
RICK.DAT; 4
RICK.DAT;1

The command used was:

DK1:(169,1pp) = DK2:[2@1,2@81) RICK.DAT; 1,

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
(291,201) (1p0,189)]
RICK.DAT;1 RICK.DAT;2
RICK.DAT; 4
RICK.DAT;5

The command used was:

DK1:[14@,18@) =DK1:[2@1,2@1]RICK.DAT;1/NV

NOTE

The version specified with the /NV sub-
switch must be explicit or default; no
wild cards allowed.

ZK-174-81

Figure 3-1 Results of Copy Command With and Without /NV Specified

3-13

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2 Performing File Control Functions

PIP provides several switches and subswitches for file control
processing. These switches and subswitches perform such functions as
deleting files, displaying the contents of a User File Directory, and
specifying file protection values.

You can specify several PIP switches in a command line with no file
specifications (that is, they may be entered by themselves). These
switches include /DD, /DF, /ID, and /TD.

You can specify one or more commands in a line. When wusing multiple
commands, the ampersand character (&) separates each command. For
example:

PIP>TEST.DAT; 2=SAMP.DAT;2/SU, SAMP,DAT; 1&TEST.DAT; */FU&SAMP.DAT/PU/LD

1. PIP merges SAMP.DAT;2 and SAMP.DAT;1 into TEST.DAT;2. The
/SU subswitch causes TEST.DAT's file name, file type, and
version number to remain the same, but TEST.DAT;2's contents
are replaced with the input file's contents.

2. The /FU switch causes PIP to do a full format listing of all
versions of the file TEST.DAT.

3. The /PU switch causes PIP to purge SAMP.DAT and the /LD
subswitch causes PIP to list the deleted files.

The values that you specify with the switches and subswitches default

to octal. You can specify decimal values by adding a decimal point
after the value.

3.2.2.1 /AP -- Append Switch - The Append switch (/AP) opens an

existing file and appends the input file(s) to the end of it. Specify

the /AP switch in the following format:
outfile=infilel[,infile2...,infilen] /AP[/FO0]

outfile
The output file specification. Wildcard specifications are not
allowed 1in the output file specification. The file type and the
record attributes for the output file remain the same after the
input file(s) have been appended to it. The file name and file
type for the output file must be specified explicitly.

infile
The input file specification. If the £
version are not specified, then #*.*;* i

/AP

The Append switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/FO

The Set File Ownership subswitch, which specifies that the owning
UIC of the output file is the same directory to which the input
file belongs. If you do not specify /FO, the owning UIC of the
output file is unchanged, regardless of which directory the input
files belong to. See Section 3.2.1 for examples of using /FO.

Example

PIP>DK1:FILE1.DAT;1=FILE2.DAT;1,FILE3.DAT;1,FILE4.DAT;1/AP

Opens FILE1l.DAT;l1 on DKl: and appends the contents of
T

FILE2,DAT;1, FILE3.DAT;1 and FILE4.DAT;1 to it.

Note that if the output file is contiguous before the appending,
it may not be contiguous afterwards.

3.2.2.2 /BS:n —-- Block Size Switch - The Block Size switch (/BS:n)
defines the block size for magnetic tapes. This switch allows you to
read or write bigger blocks onto magnetic tape, thereby saving ‘some of
the space taken by interrecord gaps. The default block size is
512(10) bytes per block. Specify the /BS switch using the following
format:

outfile/BS:n=infile

outfile

The output file specification.

/BS:n[.]
The Block Size switch, where n is an octal or decimal number
specifying the number of bytes in a block.
infile
The input file specification.
The /BS switch specifies the block size of the output file. If the
block size specified 1is smaller than the actual block size, an I/0
error occurs.
Example
PIP>MT:BA,.DOC,/BS: 2048, =AMBER, DOC

This command increases the block size of the output file, BA.DOC,
to 2048(10) bytes per block.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.3 /CD —-- Creation Date Switch - The Creation Date switch (/CD),
used in a file transfer command, allows the output file to take the
date on which the input file was created rather than the date of
transfer. You cannot use this switch with the explicit or implicit
Merge switch (/ME) and/or with an output magnetic tape device.
Specify the /CD switch in the following format:

outfile/CD=infilel(,infile2...,infilen]

or

outfile=infilel/CD[,infile2...,infilen]
outfile

The output file specification.
infile

The input file specification.
/CD

The Creation Date switch.
Example

PIP>/LI

DIRECTORY DB1l: [200,200]
21-NOV-80 14:02

FILE.DAT;7 12. 6-0CT-80 16:13

PIP>TEST.DAT/CD=FILE.DAT/LI
DIRECTORY DB1l:[200,200]
21-NOV-80 14:05

FILE.DAT;7 12. 6-0CT-80 16:13
TEST.DAT;1 12. 6-0CT-80 16:13

The command creates a new file, TEST.DAT, from FILE.DAT and gives
it the creation date of FILE.DAT rather than the transfer date.

3.2.2.4 /DD —-- Default Date Switch - The Default Date switch (/DD)
restricts file searches to files created during a specific period of
time. OSpecify the /DD switch in the following format:
/DD:startdate:enddate
/DD
The Default Date switch
startdate

The beginning date of the specified time period in the form
dd-mm-yy. May be unlimited by using the wildcard character (*).

PERIPHERAL INTERCHANGE PROGRAM (PIP)

enddate

The ending date of the specified time period 1in the form
dd-mm-vy. May be unlimited by using the wildcard character (¥*).

Specifying the wildcard for both startdate and enddate negates the /DD
switch:

/DDz* %

The date restrictions for the file searches are now disabled.

Examples
1. PIP>/DD:01-JUN-80:01-JUL-80/LI
Lists all files created from 1 June 1980 through 1 July 1980.
2. PIP>/DD:*:1-JUN-80/LI
Lists all files created on or before 1 June 1980.
3. PIP>/DD:1-JUN-80:%*/LI

Lists all files created on or after 1 June 1980.

3.2.2.5 /DE -- Delete Switch - The Delete switch (/DE) deletes files
from a UFD. Optionally, vyou can specify that the deleted files be
listed on your terminal. Specify the /DE switch in the following
format:

infilel[,infile2...,infilen] /DE[/LD]
infile

The input file specification.
/DE

The Delete switch.
/LD

The List Deleted files subswitch.

You must specify a version number or a wildcard in 1its place when
using the Delete switch.

Use a version number of ;-1 to specify the oldest version of a file.
Use a version number of ;0 or ; to specify the most recent version.
Examples
l. PIP>TEST.DAT;-1/DE
Deletes the oldest version of file TEST.DAT.
2. PIP>TEST1.DAT;0,TEST2.DAT;/DE

Deletes the latest version of files TEST1.DAT and TEST2.DAT.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
Wildcards in the file name or file type fields are 1illegal when a
version of ;-1, ;0, or ; 1is specified.

You must issue the file specification because an unspecified file
name, file type, and version does not default to *.*;*,

The input file specification can take all the usual forms, 1including
wildcards (even in [ufd]l). The only special requirement is that the
version field must always be specified.

Examples

1. PIP>TEST.DAT;S/DE

Deletes version 5 of file TEST.DAT from the current default
directory on the default device.

2. PIP>TEST.DAT;1,;2/DE

Deletes versions 1 and 2 of file TEST.DAT from the current
default directory on the default device.

3. PIP>*,0OBJ;*,*,TMP; */DE/LD
Deletes all versions of all files of the file type .0OBJ and
.TMP from the current default directory on the default
device. Lists all deleted files of both file types.

4, PIP>*,0BJ;*/LD,*,TMP; */DE
Deletes all versions of all files of the file type .OBJ and

.TMP from the current default directory on the default
device. Lists all deleted files of both file types.

3.2.2.6 /DF —- Default Switch - The Default switch (/DF) changes the
default device and/or UFD for the current PIP task.

The usual default device of PIP is the user's system device (SY0:).
The usual default UFD is the UIC under which PIP is currently running.
The /DF switch alters only the default UFD. It does not affect the
UIC under which PIP is running, nor does it circumvent file
protection.
Specify the /DF switch in one of the following formats:
dev: [ufd] /DF
or
dev:/DF
or
[ufd] /DF

or

/DF

PERIPHERAL INTERCHANGE PROGRAM (PIP)

dev:
If specified, the new default device to be applied to subsequent
PIP command lines.

[ufd]
If specified, the new default UFD to be applied to subsequent PIP
command lines.

/DF

The Default switch.
The /DF switch specified with no arguments returns the default device

to the user's system device (SY0:) and the default UFD to the UIC from
which PIP was invoked.

Examples
1. PIP>[27,27]/DF
Sets the default UFD to [27,27].
2. PIPXK1:/DF
Sets the default device to DKl:.

3. PIP>K1:[27,27]/DF

Sets the default device to DKl: and the default UFD to
[27,27].

4. PIP>/DF

Returns the user's default device to SYO: and the default
UFD to the UIC from which PIP was invoked.

3.2.2.7 /EN —- Enter Switch - The Enter switch (/EN) lets you enter a
synonym for a file in a directory or directories on the same device.
This allows the file to be accessed by more than one name. Also
provided 1is a subswitch, New Version (/NV), which forces the version
number of the file being entered into the directory to a number one
greater than the latest version of the file. Specify the Enter switch
in the following format:

outfile=infilel[,infile2...,infilen] /EN[/NV]

outfile
The file specification of the new directory entry. The output
file specification has a special property in that the file name,
file type, or version may be explicit, wildcard (*), or
defaulted. A file name, file type, or version field that is
either wildcard (*) or default (null) means that the
corresponding field of the input file is to be used.

infile
The file specification for the input file in the format:

dev:[ufd] filename.filetype;version/EN[/NV]

/EN

PERIPHERAL INTERCHANGE PROGRAM (PIP)

If you specify a device 1in either the 1input or output file
specification, that device sets the default for the other side.
If you do not specify a device on either the input or output
side, the current default device is assumed to be the default
device. If both the input side and the output side explicitly
reference different devices, PIP returns an error message that
requests that the line be reentered.

The default input file specification is *.*;*,

The Enter switch.

The New Version subswitch. The /NV subswitch may appear on
either side of the equal sign. If it appears on the output side,
all of the files being entered are forced to a version number one
greater than the 1latest version of the file. 1If it appears on
the input side, only files that have the /NV subswitch appended
to them are forced to a number one greater than the latest
version. (Specifying the /NV subswitch is not necessary when
both the 1input and output files are under the same file
directory.)

Example (see Figure 3-2)

PIP>[101,101]TWIG/EN={200,200]RICK.DAT;1

Before
DIRECTORY [200,200] DIRECTORY [101,101]
RICK.DAT;1 JEN.OBJ; 2
LAU.OBJ;3
After
DIRECTORY ([200,200] DIRECTORY [101,101]
RICK.DAT;1 JEN.OBJ; 2
LAU.OBJ;3
TWIG.DAT;1
NOTE
The directory items for RICK.DAT;l1 and
TWIG.DAT;1 both reference the same file.

ZK-175-81

Figure 3-2 Sample Directories Before and After Execution

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2,8 /EOF -- End-of-File Switch - The End-of-File switch (/EOF)
allows vyou to specify where the file's end-of-file will be. This
helps in certain situations (for example, system crashes) when a file
contains useful information but its EOF pointers are wrong, preventing
you from obtaining the information.

EOF is an unprotected file attribute. If you are the file owner or
have a system-level UIC, you do not need read or write access to read
or change this attribute. If you are classified group or world to the
file owner's UIC, you need read access to read the attribute and write
access to change it.

Specify the /EOF switch in the following format:
infilel/EOF [:block:byte] [,...infilen/EOF [:block:bytel]
infile
The input file specification.

The file specification must be issued because an unspecified file
name, file type, and version do not default to *.*;%,

block

The block number where the EOF pointer is to be placed. Usually,
the EOF pointer cannot be placed beyond the highest number of
blocks allocated to the file. However, if all the bytes of the
allocated blocks are used, the EOF pointer can be placed in the
first byte of the next block (/EOF: blocks allocated plus
one:0). The block number can be octal or decimal.

byte
The byte location of EOF is the first unused byte of the
specified block. The byte number can be octal or decimal. The
maximum value for byte is 777(8).
If you do not enter either of the wvalues for block and byte, PIP
places EOF past the last byte of the last block allocated to the file.
If you specify a value for either block or byte that is greater than
the maximum value allowed, PIP returns an error message.

Note that the /EOF switch is local to each file specification and
therefore does not default from left to right.

Example
PIP>A,TMP/EQOF:17:253,AA.TMP/EOF
is equivalent to
PIP>A, TMP/EOQOF:17:253,AA.TMP/EOF:23: 0

where the file AA.TMP has 22 blocks allocated.

3.2.2.9 /EX —-- File Exclusion Switch - The File Exclusion switch
(/EX) excludes one file specification's worth of files during file
searches. You can exclude any field in the file specification. The

fields can have in them characters and/or wildcards. Specify the /EX
switch in the following format:

filespec/EX

PERIPHERAL INTERCHANGE PROGRAM (PIP)

filespec

The file specification. The file name and/or the file type
and/or the version number can be a wildcard, but not all three
fields. Also, you cannot specify devices or UFDs.

/EX
The File Exclusion switch.
Specifying the /EX switch by itself negates it.
PIP> /EX
Example
PIP> *,CMD; */EX/LI
DIRECTORY DB1l:[301, 7]
8-JUL-81 14:50
* ,CMD; *EXCLUDED
EXECM.MAC;23 45, 23-FEB-80 14:23
RUN. TSK; 46 5. 29-0CT-80 11:59
FRANK.OBJ;16 33. 02-MAY-80 13:58
DEBBIE.COR; 2 5.0. 14-JAN-81 12:01
Excludes all files of the type .CMD from the search done 1in
* k. %/LT.
3.2.2.10 /FI — Pile Identification Switch - The File Identification

switch (/FI) allows you to access an existing file by its file
identification number (File-ID). Specify the /FI switch in the
following format:

outfile=/FI:filenum:segnum
/FI

The File Identification switch.
filenum

The file number.
segnum

The sequence number of the file.
The file identification number (file-ID) is assigned by RSX-11 when
the file 1is created. To find the file identification number of a
file, use the Full List switch (/FU). The /FU switch displays the
file identification and sequence numbers and other information
describing the file.

Examples

1. You can use the /FI switch to create a directory entry for a
file.

PIP>XYZ.TSK=/FI:301:27/EN

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2. You can copy a file using the /FI: switch.
PIP>A.B=/FI:301:27

3. To 1list entries in the directory file whose file
identification is 1275,47, use the /FI switch in the format:

PIP>/FI:1275:47/L1

DIRECTORY DR2: FILE ID 001275,000047,0
8-AUG-81 15:58

MCR.CMD 1. 29-NOV-80 13:22
DCL.CMD 1. 29-NOV-80 13:24

3.2.2.11 /FR -- Free Switch - The Free switch (/FR) displays the
amount of available space on a specified volume, the largest
contiguous space on that volume, the number of available file headers,
and the number of file headers used. Specify the /FR switch in the
following format:

[dev:]/FR
If you do not specify dev:, PIP defaults to SYO0:.
The format of the information from the /FR switch is shown below.
dev: HAS xxxx. BLOCKS FREE, yyyy. BLOCKS USED OUT OF zzzz.
LARGEST CONTIGUOUS SPACE = nnnn. BLOCKS
aaaa. FILE HEADERS ARE FREE, bbbb. HEADERS USED OUT OF cccc.
Usually, the number of free file headers corresponds to the number of
files that can be created. However, fragmented files and files that

are too large for one file header must be allocated more than one file
header.

The number of file headers will not exceed the number of files that
can be created.

Example
PIP>db7:/FR
DB7: HAS 10662. BLOCKS FREE, 330008. BLOCKS USED OUT OF 340670.

LARGEST CONTIGUOUS SPACE = 4189, BLOCKS
9025. FILE HEADERS ARE FREE, 11931. HEADERS USED OUT OF 20956.

3.2.2.12 /ID -- Identify Switch - The Identify switch * (/1ID)
identifies the wversion of PIP being used. Specify the /ID switch in
the following format:

/1D

When you specify this switch, the version number 1is 1listed on the
input terminal as follows:

PIP VERSION Mvvee {ANSI)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

vv
The version number.
ee
The edit number.
(ANST)
If PIP is 1linked to an ANSI FCS, this field will appear.
Otherwise, it is blank.
Example
PIP>/ID
PIP -- PIP VERSION M1340 (ANSI)
3.2.2,13 /LI -- List Switch - The List switch (/LI) lists one or more

files contained in a UFD, along with their status information. Three
alternate mode subswitches (/BR, /FU, and /TB) allow you a choice of
directory 1listing formats. Table 3-4 describes these switches.
Specify the /LI switch in the following format:
[listfile=linfilel{,infile2...,infilen] /LI [/subswitch]
listfile
The file specification to be listed in the format:
dev:[ufd]filename.filetype;version
If listfile is not specified, it defaults to TI:.
infile
The input file specification in the format:
dev:[ufdlfilename.filetype;version
The default for infile is *.*;*,
/LI
The List switch. This switch lists the following information:

1. filename.filetype;version

2. number of blocks used (decimal)

3-24

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3. file code:

(null) = noncontiguous
C = contiguous
L = locked

4, creation date and time

5. summary 1line, which includes the number of blocks
used/allocated and files printed.

/subswitch
The alternate mode subswitch of the List switch (described in
Table 3-4).
Table 3-4
List Subswitches
Subswitch Description
/BR Specifies the brief form of directory listing. This
switch 1lists only the file name, file type, and
version.
/FU[:n[.]] Specifies the full directory format.

Because the /FU format uses protected file
attributes, you may need read access to get a full
directory listing of a file. If you are the file
owner or have a system-level UIC, you do not need
read access. If you are classified group or world
to the file owner's UIC, you need read access to
read the protected attributes of the file. (To
change the protection level attribute, see Section
3.2.2.16.)

If specified, n is the number of characters per
line. If not specified, the number defaults to the
buffer size of the output device.

The /FU switch lists the following information:

1. filename,filetype;version

2., file identification number in the format:

(file number, file sequence number)

3. number of blocks used/allocated (decimal)

(continued on next page)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-4 (Cont.)
List Subswitches

Subswitch Description
/FU[:n[.1] 4. file code:
(Cont.)
(null) = noncontiguous
C = contiguous
L = locked

5. creation date and time

6. owner UIC and file protection in the format:
[group,member] [system,owner,group,world]

These protection fields can contain the values
R, W, E, or D.
where:

R = Read access permitted

W = Write access permitted

E = Extend privilege permitted

D = Delete privilege permitted

7. date and time of the last update plus the number
of revisions.

8. summary line, which contains the number of
blocks used, the number of blocks allocated, and
the number of files used.

/TB This switch only outputs the summary 1line in the

following format:

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

where:

nnnn = blocks used
mmmm = blocks allocated
xxxx = number of files

Figure 3-3 contains sample directory listings in the various formats.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Total Blocks (/TB) Format

STORAGE USED/ALLOCATED FOR DIRECTORY DK2:[200,2701

15-JUL-73 15246

TOTAL OF 1435./150. BLOCKS IN 5.

FILES

Brief (/BR) Format

DIRECTORY DK2:[200,2703

CKTST.MACs3 6
IDTST.MACH4
IOTST.T8K#1
CKTST.TSKi#1
CKTST.MAC37

Standard (/LI) Format

DIRECTORY DK2:L200,2701]
15~JUL-75 15346

CKTST.MAC}6 3.
I0TST.MACH4 a,
10TST.TSK#1 69 c
CKTST.TSKs1 69. c
CKTST.MACH7 0.

L

15-JUL-75
15-JuL-75
15~-JUL-75
15-JUL-75
15-JUL~73

TOTAL OF 145. BLOCKS IN S. FILES

15239
15:39
15:39
15240
15:40

Full (/FU) Format

DIRECTORY DK2:L200,27Q1
15-JUL-75 15:46

CKTST.MAC$6 (10-10)
£20052701CRWEDsRWED»RWED »R1]
I0OTST.MACH4 (11,11)
£200+,2701LRWEDYRWED»RWEDsR1]
IOTST.TSK#1 (7+12)
£200y2701CRWEDsRWEDyRWEDyR]
CKTST.TEK#1 (12513)
£200,2701CRWEDRWED,RUWEDsR]
CKTST.MACS7 (13,14)

£20052701CRWED»RWEDyRWED»R1]

3./3
4./74
69./
&9./

0./5

TOTAL OF 145./150. BLOCKS IN 5.

*

*

&9.

69,

*

FILES

15-JUL-73
15-JUL-73
C 15-JuL-73
C 15-JuL-75
L 15-JUL-75

Figure 3-3 Directory Listing Examples

15139
15:3¢9
15139
15340
15240

ZK-176-81

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Examples
1. PIP>/LI

Lists the directory of the current default device and
directory. (This is equivalent to TI:=*_ *;*/LI,)

2., PIPM.P:=[%*,*] /FU:132,

Lists on the 1line printer in full format (132-column
listing), all of the directories on the current default
device.

R AR

3. PIP>TI:=TEST.DAT/FU

Lists on TI: the full directory 1listing for the 1latest
version of TEST.DAT in the current default device and
directory.

4. PIP>JUL13.DIR=([200,200]*.*/LI
Lists the latest version of all files in directory [200,200]
on the current default device to file JUL13.DIR in the
default directory on the default device.

5. PIP>LP:=[11,*]*.CMD;*/LI

Lists on the line printer all versions of all files with the
file type .CMD in all directories in group 11.

6. PIP>LP:/BR=[11,11]*.CMD;*,* DAT;*,*.MAC;1

Lists on the line printer in brief format all versions of all
files with a file type of .CMD, all versions of all files
with a file type of .DAT, and all files of file type .MAC
with a wversion number of 1. These files all reside in the
directory [11,11] on the current default device.

3.2.2.14 /ME —- Merge Switch - The Merge switch (/ME) creates a
single file from twe or more existing files. The /ME switch is used
in copying Files-11 files and is described in Section 3.2.1.

3.2.2.15 /NM —-- No Message Switch - The No Message switch (/NM)
suppresses the PIP error messages, NO SUCH FILES(S) and FILE NOT
LOCKED, when you are manipulating files. Specify the /NM switch in
the following format:

infilel[,infile2,...infilen] [/sw]/NM

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

The input file specification.

/sw
Any combination of appropriate switches and subswitches, for
example, the /LI, /DE, /PU, or /UN switches and any of their
respective subswitches.

/NM
The No Message switch.
The /NM switch applies not only to the file specification
preceding it, but also to all file specifications to the right of
it.

Example

PIP>*.MAC; */NM, TEST.DAT;1,FILES.OBJ; */DE

If none of these files exists in the default directory, you will
not get the error message, NO SUCH FILE (S), when PIP tries to
delete them.

3.2.2.16 /PR —-- Protect Switch - The Protect switch (/PR) allows you
to set the protection status of a file. File protection is provided
for four categories:

System

Specifies which categories of access the system UICs are allowed
to the file (that is, UICs with group numbers less than or equal
to 10 octal).

Owner
Specifies which categories of access the owner has allowed.
Group

Specifies which categories of access other members in the same
group have.

World
Specifies categories of access given all other UICs.

For each category, you can specify whether that category can read,
write, extend, or delete the file. To alter the protection level of a
file, you can use either the /PR subswitches (/SY, /OW, /GR, /WO) or
octal representation (/PR:n). For either method, if you are the file
owner or have a system-level UIC, you can alter the protection 1level
without having read or write access. However, because the protection
level of a file is a protected attribute, you cannot alter the
protection level 1if vyou are group or world to the file owner's UIC.
(You can read protected attributes if you have read access.)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Specify the /PR switch in the following format:

infile/PR[/SY[:RWED]] [/OW[:RWED]] [/GR[:RWED]] [/WO[:RWED]] [/FO]

infile

/PR

The file specification for the file whose protection is beiné
changed in the format:

dev:[ufd]filename.filetype;version

File specification must be issued because an unspecified file
name, file type, and version do not default to *.*;*,

The Protect switch.

/SY,/OW,/GR, and /WO

/FO

The subswitches that specify protection level for a file. These
subswitches specify which protection level 1is to be altered
(others are left intact). The values that follow the switch are
any of the four letters, R, W, E, and D (for read, write, extend,
and delete), in any order. They specify which privileges the
respective categories can have. If you enter the subswitch and
do not specify a value, no privileges are granted £for that
category.

The subswitches are identified as follows:

/8Y is the System subswitch.
/OW is the Owner subswitch.
/GR is the Group subswitch.
/WO is the World subswitch.

Protection can also be specified by an optional octal value on
the /PR switch, in the format:

/PR:n
The variable n is the octal representation of the protection to

be assigned to the file. This octal number is taken as the new
protection word. (See the RSX-11M or RSX-11M-PLUS Mini-Reference

Manual for the list of octal codes.) The format of the protection

word is shown in Figure 3-4.

The Set File Ownership subswitch, which allows vyou to set the
ownership of a file to that of the UIC of the directory in which
it is entered. (You can change the file ownership at the same
time you set the ©protection value.) If there are files in the
[200,200] directory that are owned by another UIC, the command

PIP>[200,200]*.*; */PR/FO

causes all files to be owned by [200,200] without changing their
protection.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

15 12 11 8 7 4 3 0
Protection [WORLD] GROUP | OWNER [SYSTEM
word JRs -

, P

3210 _.-

-
-

(bit set means NO access permitted.)

Example

TEST.DAT;5/PR:3

(bits 0 & 1 set)
deny write and read access to the system
for file TEST.DAT;5.

ZK-177-81

Figure 3-4 Format of Protection Word

Examples
l. PIP)TEST.DAT;5/PR/OW:RWE/GR:RWE/WO
Sets the protection level so that the owner and group have
RWE privileges (not delete), world has no access privileges,
and system privileges are unchanged.

2. PIPM[*,*]* . *;*/PR:0

Sets the protection level of all files so that all categories
are granted all access privileges.

3. PIPMDKO:[*,*]* *;*/PR/FO

Causes all file owners to be the same UIC as the UFD in which
the files are entered.

3.2.2.17 /PU ~-- Purge Switch - The Purge switch (/PU) deletes a

specified range of obsolete versions of a file. Optionally, you can

specify that the names of deleted files be listed on your terminal.

Specify the /PU switch in the following format:
infilel[,infile2...,infilen] /PU[:n] [/LD]

infile

The file specification for the file(s) to be deleted. The file
specification takes the form:

dev:[ufd]filename.filetype

Note that a version number is not needed. If specified, it |is
ignored.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/PU[:n[.]]

The Purge switch. If you specify the optional value n and the
latest version of the file is m, then all existing versions less
than or equal to m-n are deleted (see Figure 3-5). Although it
is useful to think of this command as deleting all but the n most
recent versions, it 1is important to understand that 1if any
versions are already deleted between m-n and m, fewer than n
versions will be retained. The most recent version of the file
is always retained.

If you omit the value n, PIP defaults to 1, and all but the
latest version of the file are deleted. If n is greater than the
number of versions of the specified files, no files are deleted.

The value n is local and defaults from left to right. This means
that if you specify n at the end of the command line, it only
applies to the infile immediately preceding it. All other
infiles default to one. However, n applies to all following
infiles until you make a new specification for n.

/LD
The List Deleted files subswitch.
Examples
1. PIP>*,0BJ,*.MAC/PU:2/LD
Deletes all but the highest version of all files with a file
type of .OBJ, and all but the two highest versions of all
files with a file type of .MAC. Lists all deleted files.
2. PIP>*,0BJ/PU:2/LD,*.MAC
Deletes all but the two highest versions of all files with
file types of .0OBJ and .MAC. Lists all deleted files.
Directory Before Purge Directory After Purge
GARY;1 GARY; 3
GARY; 2 GARY; 4
GARY; 3 GARY;S5
GARY; 4 RICK;7
GARY; 5 [GARY/PU:3,RICK/PU:2 [
RICK; 4
RICK;S
RICK;7

In the case of the files named GARY, the three latest versions (3, 4, and 5)
are retained; versions 1 and 2 are deleted. In the case of the files named
RICK, since version 6 did not exist, only version 7 is retained; and all
existing versions less than or equal to 5, for example, versions 4 and 5,
are deleted.

ZK-178-81

Figure 3-5 Use of the Purge Switch

3-32

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.18 /RE -- Rename Switch - The Rename switch (/RE) changes the
name of a file. There 1is also a New Version subswitch (/NV) that
forces the renamed file to have a version number one greater than the
latest version of the previously existing file with the same name (see
Figure 3-6). Note that you cannot rename a file that is copied from
one device to another device. Specify the Rename switch in the
following format:

outfile=infilel([,infile2...,infilen}/RE[/NV]
outfile

The file specification to be given to the new file. The output
file specification has a special property in that the file name,
file type, and version are each allowed to be explicit, wildcard
(*), or defaulted (null). A UFD, filename, filetype, or version
field that is either wildcard (*) or defaulted (null) means that
the corresponding field of the input file is to be used. Thus,
the Rename switch can change one or more fields while ©preserving
the others. The output file specification takes the following
form:

dev:[ufdlfilename.filetype;version
infile

The file specification of the file to be renamed. The input file
specifications are standard and allow wildcards in all fields,
including UFD. The input file specification takes the following
form:

dev:{ufd]filename.filetype;version

An unspecified file name, file type, and version defaults to
* ko %k
Kk,

The /RE switch does not transfer data. The file 1is entered in
the new directory and deleted from the old directory. The
directories must be on the same device because data is not
transferred. You can move files out of one directory into
another, preserving the file name, file type, and version, or
changing them if desired. (This 1is permitted only if PIP is
running under a UIC with write privileges for each of the
directories involved.)

If you specify a device on either the input or output side, that
device sets the default for the other side. If both the input
side and the output side explicitly reference different devices,
PIP returns an error message and requests that you reenter the
line.

/RE

The Rename switch.

3-33

/NV

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The New Version subswitch. The /NV subswitch forces the version
number of the renamed file to a number one greater than the
latest version for the file.

The /NV subswitch may appear on either side of the equal sign.
If it appears on the output side, all of the version numbers of
files being renamed are forced to a number one greater than the
latest version for the file. If it appears on the input side,
only the file that has the subswitch appended to it has its
version number forced to one greater than the latest version of
the file. (Specifying /NV is not necessary when both the input
and output files are under the same directory file.)

Examples

1. PIP>TESTFILE.DAT;1=TEST.DAT;5/RE
Renames TEST.DAT;5 to TESTFILE.DAT;l.
2. PIP>BACKUP.*; *=TEST.*; */RE

Renames all versions of all files with file names TEST to
BACKUP, preserving the file type and version of each file.

3. PIP>* *;1=% _%,;*/RE
Renames all copies of all files to version 1.
4. PIP>[200,220]=[200,200]/RE

Renames all files from [200,200] to [200,220], preserving the
file name, file type, and version of each file.

5. PIP>EXAMPLE.*; *=TEST.*; */RE

Renames all versions of all files with the file name TEST to
the file name EXAMPLE, preserving the file type and version
of each file.

6. PIP>SAVE.DAT/RE/NV=0UTPUT.DAT;1

Renames OUTPUT.DAT;1l and forces the version number to one
greater than the 1latest version of SAVE.DAT. Figure 3-6
illustrates the results with and without the /NV switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directory Before Rename

SAVE.DAT; 2
SAVE.DAT;3
SAVE.DAT; 4
OUTPUT.DAT;1
OUTPUT.DAT; 2

Directory After Rename Without /NV Switch Set

SAVE.DAT; 2
SAVE.DAT;3
SAVE.DAT; 4
SAVE.DAT;1
OUTPUT.DAT; 2

Directory After Rename With /NV Switch Set

SAVE.DAT; 2
SAVE.DAT; 3
SAVE.DAT; 4
SAVE.DAT;5
OUTPUT.DAT; 2

ZK-179-81

Figure 3-6 Results of Rename Switch With and Without /NV Specified

3.2.2.19 /RM -- Remove Switch - The Remove switch (/RM) removes an
entry from a UFD, but does not delete the file associated with that
entry. The Remove switch 1is particularly useful for deleting
directory entries which, for whatever reason, point to nonexistent
files, It is also used to delete synonyms generated by the Enter
switch. If the last entry for an existing file is removed, that file
can be located only by using the VFY utility with its /LO switch (see
Chapter 9). Specify the /RM switch in the following format:

infilel[,infile2...,infilen]/RM
infile

The file specification for the directory file entry to be
removed. The file specification takes the form:

dev:[ufd]filename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*,

/RM

The Remove switch.

Example
PIP>DK1:[10,10]RICKSFILE.DAT;1/RM

Removes the file entry RICKSFILE.DAT;1l from the directory [10,10]
on DKl:.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.20 /RW —-- Rewind Switch - The Rewind switch (/RW) directs PIP
to rewind magnetic tape. (The /RW switch cannot be used for
DECtapes.) You can apply this switch to both input and output
specifications. When you specify the /RW switch with the output
specification, PIP begins writing the file at the beginning of the
tape. You can use this technique to erase a tape before writing files
on it. Specify the /RW switch in the following format:

outfile/RW=infile

or

outfile=infile/RW
outfile

The output file specification.
infile

The input file specification.
/RW

The Rewind switch.
When you apply the /RW switch to the input specification, it rewinds
the tape before searching for the input file. The magnetic tape
processor performs the following process when it searches for a file
to open:

1. Searches from the current position to end of tape

2. Rewinds the tape

3. Searches from the beginning of tape to the point where search
processing began

You can use /RW with the input specification to save search time. If
you know a file is behind the tape's current position, /RW rewinds the
tape before searching for the file to open. This saves the time that
otherwise would have been taken to search for the file between the
current position and the end of the tape.

Example

PIP>MT:/RW=[200, 200]

Starts the beginning of the tape and outputs all files 1in the
directory {200, 200].

PI P>AMBER.DOC=MT:AB.DCC/RW

Rewinds the tape, then searches the tape for the file AB.DOC and
outputs the file renaming it AMBER.DOC.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.,21 /SB -- Span Blocks Switch - The Span Blocks switch (/SB)
allows you to control whether records copied from magnetic tape to
disk will cross block boundaries. If you omit this switch, the file
is copied with records possibly crossing block boundaries. If you
specify /-SB, the records will not cross block boundaries.
Specify the Span Blocks switch in the following format:
outdsk:outfile/SB=inmag:infile
outfile
The disk output file.
infile
The magnetic tape input file.

/SB

The Span Blocks switch.

Example
PIP>DK1:FILES.DAT/-SB=MMO: FILES.DAT

Copies FILES.DAT records to the disk from magnetic tape. Records
on the disk will not cross block boundaries.

3.2.2.22 /SD —- Selective Delete Switch - The Selective Delete switch
(/SD) prompts for your response before deleting a file that you have
specified in the command line for deletion. The response choices are
carriage return (<RET>) or control-Z (°“Z), or Y, N, G, or Q, each
followed by either a carriage return (<KRET>) or control-Z ("Z). Table
3-5 describes the effect of each combination of letter and terminator.

Specify the /SD switch in the following format:

infilel[,infile2...,infilen]/SD
infile
The input file specification in the form:
dev:[ufd]filename.filetype;version
The file specification must be issued because a null file name,
file type, and version do not default to *.,*;%*,
/SD

The Selective Delete switch.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-5
Response Choices for the Selective Delete Switch
Letter Terminator Operation

Y Delete this file and continue.

Y Delete this file and exit from PIP.

[N] ®ED Save this file and continue.

[N] Save this file and exit from PIP.

0 Save this file and return to command mode.

0 Save this file and exit from PIP.

G RED Delete this and all remaining candidates,
list deleted files, and return to PIP
command mode.

G €L Delete this and all remaining candidates,
list deleted files, and exit from PIP.

Examples

1. PIP>YFILE.DAT;*/SD

DELETE FILE DBl:[200,200]MYFILE.DAT;1 [Y/N/G/Q]? Y @&
DELETE FILE DBl:[200, 200JMYFILE.DAT;2 [Y/N/G/Q0]? G @&

THE FOLLOWING FILES HAVE BEEN DELETED:
DB1:[200, 200JMYFILE.DAT;?2

DB1l: {200, 200JMYFILE.DAT;3

PIP>

Deletes MYFILE.DAT;1l and PIP goes to the next candidate,
MYFILE.DAT;2. Deletes this file and all remaining versions
of MYFILE.DAT. Lists the deleted files and then PIP prompts
for the next command.

2. PIP>TEST.*;*/SD

DELETE FILE DB1l:([200,200]TEST.DAT;1 [Y/N/G/Q]? N GO
DELETE FILE DB1:[200,200]TEST.TXT;3 [Y/N/G/Q]? Q ¢mm

Saves TEST.DAT;1l. PIP goes on to the next candidate,
TEST.TXT; 3. Saves this file and all remaining files with
file name TEST and then exits from PIP.

3.2.2.23 /SP —-- Spool Switch - The Spool switch
. £ S . N iteh

(/SP) directs a file
t 1i Th 1i if

1

installed. (For : ' /
Spooler, see the RSX-11M/11M-PLUS Batch and Queue Operations Manual.)
Specify the /SP switch in the following format:

infilel[,infile2...,infilen]/SP[:n]

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile

The file specification of the file to be spooled for printing.
The file specification takes the form:

dev:[ufd]filename.filetype;version

The file specification must be issued because a null file name,
file type, and version do not default to *.*;*,

If the file 1is specified by 1its file identification number

(file-ID), it will be printed. File identification numbers are
discussed in Section 3.2.2.10.

The Spool switch.

The number of copies you want spooled. (If a deleting spooler
was specified during system generation, only one copy of a file
is printed, regardless of the value of n. The file 1is deleted
after the first copy has been printed.) If n is omitted, a value
of 1 is assumed.

Example
PIP>RICK1.LST;1,KATHY.LST;1,/FI:12:22/SP
Spools the files RICK1.LST;1, KATHY.LST;1, and the file whose

file 1identification number (file-ID) is 12:22 for asynchronous
printing.

3.2.2.24 /SR —- Shared Reading Switch - The Shared Reading switch
(/SR) allows you to read a file that has already been opened for
writing by another task. You have no guarantee that you will get the
information you want since the EOF pointer may be incorrect at the
time you open the file. Specify the /SR switch in the following
format:

outfile=infile/SR
outfile

The output file specification.
infile

The input file specification.

/SR

The Shared Reading switch.

Example
PIP>TI:={210,20]FILES.DAT/SR

Enables you to read FILES.DAT even though another task may have
already opened it for writing.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3.2.2.25 /TD -- Today Default Switch - The Today Default switch (/TD)
restricts file searches to files created on the current day. Specify
the /TD switch in the following format:

/TD
/TD
The Today Default switch

Note that specifying the wildcard for both startdate and enddate of
the /DD switch (/DD:*:*) alsoc negates /the TD switch (/DD, see Section
3.2.2.4).

Examples

PIPY /TD/LTI
M A /7 ==
DIRECTORY DB2: [301,357]
20-JAN-81 11:02
DAY OF 20-JAN-81

TEST.DAT;1 1. 20-JAN-81 10:40
FILES.TXT;1 1. 20-JAN-81 10:41
INFO.DAT;1 1. 20-JAN-81 10:50

TOTAL OF 3./15. BLOCKS IN 3. FILES

3.2.2.26 /TR —-- Truncate Switch - The Truncate switch (/TR) allows
you to truncate files back to their logical end-of-file point. Note
that RMS-11 files other than those that are fixed-length,
variable-length, or sequenced cannot be truncated. Specify /TR in the
following format:

infilel[,infile2...,infilen] /TR
infile
The input file specification.

The file specification must be issued because an unspecified file
name, file type, and version do not default to *.,*;%*,

/TR

The Truncate switch.

Example
PIP>#* MAC/LI

DIRECTORY DR2:[301,7]
2-AUG-81 15:32

A.MAC;1 3. 20-SEP-80 14:02
B.MAC;1 2. 20-SEP-80 15:38
C.MAC;2 5. 28-SEP-80 09:54

TOTAL OF 10./15. BLOCKS IN 3. FILES

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>*.MAC/TR
PIP>*.MAC/LI

DIRECTORY DR2:[301,7]
2-AUG-81 15:33

A MAC;1 3. 20-SEP-80 14:02
B.MAC;1 2. 20-SEP-80 15:38
C.MAC;2 5. 28-SEP-80 09:54

TOTAL OF 10./10. BLOCKS IN 3. FILES

FCS allocates a certain number of blocks to a file. The file may
or may not use the number of blocks allocated to it. The /TR
switch moves the EOF pointer to the end of the file and frees the
unused blocks for use by other files.

3.2.2.27 /UF —- User File Directory Switch - The User File Directory
switch (/UF) creates a UFD entry in the Master File Directory (MFD) on
the volume to which you are transferring a file. You must also
transfer ownership of the file to access the file. Use the /FO
subswitch to transfer file ownership, and use [*,*] as the UFD in the
output file specification if you want to create the UFD(s) from which
you are obtaining the files being transferred. Specify the /UF switch
in the following format:

outfile/UF[/FO]=infilel...,infilen
outfile

The file specification for the output file.
infile

The file specification for the input file.

/UF
The User File Directory switch.

/FO
The File Ownership subswitch. The /FO subswitch is described in
Section 3.2.1.

Example

PIP>DK6: [*,*] /JUF/FO=SY: [104, 201 *.MAC,*.0BJ

To use the /UF switch, you must have write access to the Master File
Directory of the volume on which the files are being written. If that
volume is a system volume, you must have a system-level UIC to use the
JUF switch. If the wvolume to which you are writing files is your
private volume, use the following procedure to change your UIC so that
you can write to it.

1. Log onto the system under your UIC.
2, Reset your UIC to a privileged class using the SET command:
SET /UIC={group,member]

where group and member specify a privileged class.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

A typical use of the /UF switch is creation of a backup volume. In
the following command, you are writing all files with file types .OBJ
and .MAC in UFD [104,20] to a backup volume called DKé6:.

3.2.2.28 JUN -- Unlock Switch - The Unlock switch (/UN) unlocks
(gives permission to open) a file that was locked because it was
improperly closed. If a program using File Control Services (FCS) has
a file open with write access and exits without first closing the
file, the file is locked against further access as a warning that it
may not contain proper information. Typically, the following
information is not written to the file:

1. The current block buffer being altered

2. The record attributes that contain the end-of-file
information

After you have used the /UN switch, you can access the file, determine
the extent of the damage, and, if possible, take corrective action.
Specify the Unlock switch in the following format:

infilel[,infile2...,infilen] /UN
infile

The file specification for the file to be unlocked. The file
specification takes the form:

dev:[ufd]lfilename.filetype;version

The file specification must be given because a null file name,
file type, and version do not default to *.*;*,

You must run PIP under the UIC of the file owner or under a
system-level UIC.

/UN
The Unlock switch.
Exampie
PIP>DK1: [100,100]JRICK1.0BJ;3/UN

Unlocks the file RICK1.O0BJ;3 in directory [100,100] on device
DK1l:.

3.2.2.29 /UP —-- Update Switch - The Update switch (/UP) is similar to
the basic PIP copy function or the Merge switch except that an
existing file is opened and new data is written 1into it from the
beginning. Existing data in the output file is destroyed and replaced
by the data that constitutes the input file(s). Unlike the Supersede
switch /SU, (Section 3.2.1) /UP does not delete the existing file
before rewriting the data. Therefore, its file identification number
(File-ID) remains the same. Also, the number of blocks allocated to
the output file can be the same or greater, but never 1less than the
number of blocks allocated to the existing file. However, as with the
/SU switch, the file's name, type, and version number remain the same.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Specify the Update switch in the format:

outfile=infilel[,infile2...,infilen] /UP[/FO]

outfile

The file specification for the file to be rewritten. The file
specification takes the form:

dev:[ufd]filename.filetype;version
As for the Merge and the"Append switches, the output file
specification must be explicit, that 1is, no wildcards are

allowed.

The characteristics and record attributes of the output file are
taken from the first input file.

infile

The file specification for the file to be copied 1into the file
that 1is being rewritten. The input file specification(s) take
the form:

dev:[ufd]filename.filetype;version

An unspecified file name, file type, and version default to *,*;%*

/UP
The Update switch.

/FO
The Set File Ownership subswitch, which specifies that the owning
UIC of the output file corresponds to the directory into which
the file was entered. If you do not specify the /FO switch, the
owning UIC of all new files 1is the UIC under which PIP is
running, regardless of the directory into which the file was
entered. Refer to Section 3.2.1 for examples for using the /FO
subswitch.

Example
PIP>DK1:SAMPLE.DAT;1=TEST1.DAT;1,TEST2.DAT;1,TEST3.DAT;1/UP
Opens SAMPLE.DAT;1 on DKl: and replaces the data currently in
the file with the contents of files TEST1.DAT;1l, TEST2.DAT;1 and
TEST3.DAT;1.

3.3 PIP ERROR MESSAGES

Errors encountered by PIP during processing are displayed in the
following format:

PIP —-- <main error message>

<filename or filespec> - <secondary error message>

3-43

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The file name or file specification, if present, identifies the file
or set of files being processed when the error occurred. If the error
was detected by the operating system, file system, or device driver,
the secondary error message is included to explain the cause of the
error.

PIP error messages are contained in a message file on the system
device. TIf PIP cannot access the message file, errors are reported in
the following format:

PIP ~- ERROR CODE nn.

<filename or filespec> - <driver Code -mm.>

or

<QIO Error Code -qq.>

nn
One of the PIP error codes contained in Table 3-6.

-mm
One of the standard system, file primitive, or FCS codes 1listed
in the IAS/RSX-11 I/0 Operations Reference Manual.

-dqq

One of the directive error codes 1listed 1in IAS/RSX-11 1I/0
Operations Reference Manual.

The PIP error messages, their descriptions and suggested user actions
are as follows:

PIP -- ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Explanation: Not enough contiguous space was available on the
output volume for the file being copied.

User Action: Delete all files that are no longer required on the
output volume, then reenter the command line. Also, use the BRU
or DSC utilities to compress the files on your disk. BRU is
described in Chapter 7 and DSC is described in Chapter 8.

PIP —- ALLOCATION FAILURE ON OUTPUT FILE

or
PIP —— ALLOCATION FAILURE - NC SPACE AVAILABLE

Explanation: Not enough space was available on the output volume
for the file being copied.

User Action: Delete all files that are no longer required on the
cutput volume, then reenter the command line. Also, use the BRU
or DSC utilities to compress the files on your disk. BRU 1is
described in Chapter 7 and DSC is described in Chapter 8.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP —-- BAD USE OF WILD CARDS/CHARACTERS IN DESTINATION FILE NAME

Explanation: A wildcard/character was specified for an output
file name when use of a wildcard/character was explicitly

disallowed.

User Action: Reenter the command 1line with the output
explicitly specified.

PIP —- CANNOT EXCLUDE #*,%;%*

Explanation: The /EX switch does not accept all wildcards as the

input file specification.

User Action: Determine the files to be excluded and reenter
command line.

PIP -— CANNOT FIND DIRECTORY FILE

Explanation: The specified UFD does not exist on the volume.

User Action: Reenter the command line, specifying the correct

UFD or the correct volume.

PIP -- CANNOT FIND FILE (S)

Explanation: The file(s) specified in the command line was(were)

not found in the designated directory.
User Action: Check the file specification and reenter
command line.
PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER
Explanation: You attempted to rename a file across devices.

User Action: Reenter the command line, renaming the file on

input volume, then enter another command to transfer the file to

the intended volume.

PIP -- CANNOT TRUNCATE THIS FILETYPE

Explanation: PIP can only truncate files containing

fixed-length, variable~length, and sequenced records.

User Action: Check the file specification and reenter
command line.

PIP

PIP

PIP

PIP

PIP

PIP

PERIPHERAL INTERCHANGE PROGRAM (PIP)

-— CLOSE FAILURE ON INPUT FILE
or

-— CLOSE FAILURE ON OUTPUT FILE

Explanation: The input or output file could not be properly
closed. If the failure is on the output file, the output file is
then locked to indicate possible corruption.

User Action: Reenter the command line. If the error recurs, run
a wvalidity check of the file structure using the Verify utility

(VFY) on the volume in question to determine if it is corrupted.
VFY is described in Chapter 9.

Explanation: Command did not conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

—-— DEVICE NOT MOUNTED/ALLOCATED

Explanation: The drive had not been allocated, the device was
not mounted, or another user had mounted the device.

User Action: Allocate the drive and/or mount the device, then
reenter the command line.

—-—- DIRECTORY WRITE PROTECTED

Explanation: PIP could not remove an entry £from a directory
because the device was write-protected or because of a privilege
violation.

User Action: Enable the device for write operations or have the
owner of the directory change its protection.

-- ERROR FROM PARSE

Explanation: The specified directory file does not exist.

User Action: Reenter the command 1line with the correct UIC
specified.

-~ EXPLICIT OUTPUT FILENAME REQUIRED

Explanation: Self-explanatory.

User Action: Reenter the command line with the output filename
explicitly specified.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO ATTACH OUTPUT DEVICE
or

PIP -- FAILED TO DETACH OUTPUT DEVICE
Explanation: An attempt to attach/detach a record-oriented
output device failed. This is usually caused by the device being
off-line or nonresident.
User Action: Ensure that the device is on-line and reenter the
command line.

PIP -- FAILED TO ATTACH TERMINAL

Explanation: PIP could not attach a terminal, probably because
of a privilege violation.

User Action: Determine the cause of the failure and correct it.
Reenter the command line.

PIP -- FAILED TO CREATE OUTPUT UFD
Explanation: PIP could not create an entry in a directory
because the device was write-protected or because of a privilege
violation.
User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP -~ FAILED TO DELETE FILE

or

PIP -- FAILED TO MARK FILE FOR DELETE
Explanation: You attempted to delete a protected file.
User Action: Request PIP under the correct UIC and reenter the
command line.

PIP -- FAILED TO ENTER NEW FILE NAME
Explanation: You specified a file that already exists 1in the
directory file, or you did not have the necessary privileges to
make entries in the specified directory file.
User Action: Reenter the command line, ensuring that the file
name and UFD are specified correctly, or request PIP under the
correct UIC and reenter the command line.

PIP -- FAILED TO FIND FILE (S)

Explanation: The file(s) specified in the command line was(were)
not found in the designated directory.

User Action: Check the file specification and reenter the
command line.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO GET TIME PARAMETERS

Explanation: An internal system failure occurred while PIP was
trying to obtain the current date and time.

User Action: Reenter the command line. If the problem persists,
submit a Software Performance Report (SPR).

PIP -- FAILED TO OPEN INDEX FILE

Explanation: PIP was unable to read the 1index file, probably
because of a privilege violation.

User Action: Retry the operation by running PIP under a system
UIC, or have the system manager change the protection on the

indevw file
incex

Lialoe

PIP -- FAILED TO OPEN STORAGE BITMAP FILE

Explanation: PIP could not read the specified volume's storage
bit map, probably because of a privilege violation.

User Action: Retry the operation by running PIP under a system
UIC, or have the system manager change the protection on the
storage bit map.

PIP -- FAILED TO READ ATTRIBUTES

Explanation: The volume you specified was corrupted or you did
not have the necessary privileges to access the file.

User Action: Ensure that PIP is running under the correct UIC.
If the UIC 1is correct, then run the validity check of the File
Structure Verification Utility (VFY) against the volume in
question to determine where and to what extent the volume is
corrupted. VFY is described in Chapter 9.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

Explanation: PIP could not remove an entry from a directory
because the wunit was write-protected or because of a privilege
violation.

User Action: Enable the unit for write operations or have the
owner of the directory change its protection.

PIP -- FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST

Explanation: PIP has removed a file from a directory, failed to
enter it (using /RE) 1into another directory, and failed to
replace the original directory entry.

User Action: Run the 1lost check of the File Structure
Verification Utility (VFY) to recover the file name. VFY is
described in Chapter 9.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP —-- FAILED TO SPOOL FILE FOR PRINTING

Explanation:

User Action:
line.

The Queue Manager is not installed.

Install the Queue Manager and reenter the command

PIP -- FAILED TO TRUNCATE FILE

Explanation:

The volume you specified is corrupted or vyou did

not have the necessary privileges (write, extend) to truncate

this file.

User Acticn:

s o
If the UIC

Ensure tha correct UIC.

e
is correct, then run the validity check of the File

o
o

IP is running under th

Structure Verification Utility (VFY) against the wvolume 1in

question to

determine where and to what extent the volume is

corrupted. VFY is described in Chapter 9.

PIP -- FAILED TO WRITE ATTRIBUTES

Explanation:
not have the

User Action:
If the UIC

The volume you specified is corrupted or vyou did
necessary privileges to write the file attributes.

Ensure that PIP is running under the correct UIC,
is correct, then run the validity check of the File

Structure Verification Utility (VFY) against the wvolume in

question to

determine where and to what extent the volume is

corrupted. VFY is described in Chapter 9.

PIP -- FILE IS LOST

Explanation:
to delete it,

User Action:
Verification
described in

PIP has removed a file from its directory, failed
and failed to restore the directory entry.

Run the 1lost check of the File Structure
Utility (VFY) to recover the file name. VFY is
Chapter 9.

PIP —-- FILE NOT LOCKED

Explanation:
locked.

User Action:
file.

The /UN switch was entered for a file that was not

Reenter the command line, specifying the correct

PIP -- GET COMMAND LINE - BAD @ FILE NAME

Explanation:
specified.

User Action:
name for the

An illegal indirect command file name was

Reenter the command line, specifying the correct
indirect command file.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP - GET COMMAND LINE - FAILED TO OPEN @ FILE

Explanation: PIP could not find the specified indirect
file.

User Action: Check the specification for the indirect
file and reenter the command line.

PIP -- GET COMMAND LINE - I/0 ERROR

Explanation: An I/O error occurred during an attempt to
command line.

command

command

read a

User Action: Check the command to ensure that you entered it
correctly, then reenter the command line. If the error persists,

submit a Software Performance Report (SPR).

PIP -- GET COMMAND LINE - MAX @ FILE DEPTH EXCEEDED

Explanation: The maximum level of nesting for indirect
files (4) was exceeded.

User Action: Reduce the level of nesting.

PIP --~ ILLEGAL COMMAND
Explanation: The command was not recognized by PIP.
User Action: Reenter the command 1line with the PIP

correctly specified.

PIP -- ILLEGAL EOF VALUE

command

command

Explanation: You specified an illegal block and/or byte value in

the command line.

User Action: Reenter the command line with the correct values.

PIP —-- ILLEGAL RESPONSE - TRY AGAIN

Explanation: Self-explanatory.

User Action: Check which response you want and enter it when PIP

prompts you.

P -- ILLEGAL SWITCH

ae]
—

Explanation: The specified switch was not a legal PIP switch.

User Action: Reenter the command line with the correct
specification.

switch

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -~ ILLEGAL "#*" COPY TO SAME DEVICE AND DIRECTORY
Explanation: You attempted to copy all versions of a file into
the same directory that is being scanned for input files. This
would result in an infinite number of versions of the same file,
so is not allowed.
User Action: Reenter the command line, renaming the files or
copying them into a different directory.

PIP -- ILLEGAL USE OF WILDCARD VERSION OR LATEST VERSION
Explanation: The use of either a wildcard versicn number or a
latest wversion number in the attempted operation would result in
inconsistent or unpredictable output.
User Action: Reenter the command line with different options or
with an explicit or default version number.

PIP -- INPUT FILES HAVE CONFLICTING ATTRIBUTES
Explanation: The input files specified in a Merge, Update, or
Supersede command had conflicting attributes or the attributes of
the input file(s) specified in an Append command conflicted with
those of the output file.
User Action: The message 1is a warning only. The specified
action was completed despite the conflict. With a Merge, Update,
or Supersede command, the attributes of the output file will be
those of the first input file. With an Append command, the
attributes of the output file are unchanged. The resulting file
should, however, be suspect because 1its attributes may not
correctly represent all the records in the file.

PIP -- I/0 ERROR ON INPUT FILE

or

PIP -- I/0 ERROR ON OUTPUT FILE
Explanation: One of the following conditions may exist:
e¢ The device is not on-1line
e The device is not mounted
e The hardware has failed
e The volume is full (output only)

e The input file is corrupted

Note that these are the most common conditions. Conditions other
than those listed may have caused the message.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

3-51

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- NOT A DIRECTORY DEVICE

Explanation: A directory-oriented command was issued to a device
that does not have directories (such as a printer).

A}
User Action: Reenter the command line without specifying a UFD.

PIP -~ NOT ENOUGH BUFFER SPACE AVAILABLE

Explanation: PIP did not have enough I/O buffer space to perform
the requested command.

User Action: Have the system manager install PIP in a larger
partition or increase the size specified by the /INC switch with
the MCR INSTALL command. See the RSX-11M/M-PLUS MCR Operations
Manual.

PIP —- NO SUCH FILE (S)

Explanation: The file(s) specified in the command was(were) not
found in the designated directory.

User Action: Check the file specification and reenter the
command line.
PIP -- ONLY [#,*] IS LEGAL AS DESTINATION UIC

Explanation: A UFD other than [*,*] was specified as the output
file UFD for a copy operation.

User Action: Reenter the command line with {[#*,*] specified as
the output UFD.
PIP -- OPEN FAILURE ON INPUT FILE
or
PIP -- OPEN FAILURE ON OUTPUT FILE

Explanation: The specified file could not be opened. One of the
following conditions may exist:

e The file is protected against access.

® A problem on the physical device (for example, device down).
@ The volume is not mounted.

e The specified file directory does not exist.

e The named file does not exist in the specified directory.

Note that these are the most common conditions. Conditions other
than those listed may have caused the message.

User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- OUTPUT FILE ALREADY EXISTS -- NOT SUPERSEDED

Explanation: An output file of the same name, type, and version
as the file specified already exists.

User Action: Retry the copy with /NV to assign a new version
number or use /SU to supersede the output file.
PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

Explanation: Too many switches were specified or the switches
conflict.

User Action: Reenter the command line, specifying the correct
set of switches.
PIP -- VERSION MUST BE EXPLICIT OR "=*"

Explanation: The version number of the specified file must be
expressed explicitly or as a wildcard (*).

User Action: Reenter the command line with the version number
correctly expressed.

3.4 PIP ERROR CODES

Table 3-6 identifies the error codes PIP issues when it does not have
access to the message file. The descriptions and suggested user
actions for these error codes are identical to those described 1in
Section 3.3.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 3-6
PIP Error Codes

Error Code

Error Message

O oo~y W N

COMMAND SYNTAX ERROR

ILLEGAL SWITCH

TOO MANY COMMAND SWITCHES - AMBIGUOUS
ONLY [*,*] IS LEGAL AS DESTINATION UIC
ILLEGAL COMMAND

ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY
BAD USE OF WILDCARDS/CHARACTERS IN DESTINATION FILE NAME
EXPLICIT OUTPUT FILE NAME REQUIRED
ALLOCATION FAILURE - NO CONTIGUOUS SPACE
ALLOCATION FAILURE - NO SPACE AVAILABLE
ALLOCATION FAILURE ON OUTPUT FILE

I/0 ERROR ON INPUT FILE

I/0 ERROR ON OUTPUT FILE

ILLEGAL USE OF WILDCARD VERSION OR LATEST VERSION
FAILED TO CREATE OUTPUT UFD

INPUT FILES HAVE CONFLICTING ATTRIBUTES
OPEN FAILURE ON INPUT FILE

OPEN FAILURE ON OUTPUT FILE

CLOSE FAILURE ON INPUT FILE

CLOSE FAILURE ON OUTPUT FILE

FAILED TO DETACH OUTPUT DEVICE

DEVICE NOT MOUNTED/ALLOCATED

OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED
FAILED TO MARK FILE FOR DELETE

FILE IS LOST

VERSION MUST BE EXPLICIT OR "*"

ERROR FROM PARSE

FAILED TO DELETE FILE

FAILED TO ATTACH TERMINAL

ILLEGAL RESPONSE - TRY AGAIN

CANNOT EXCLUDE *,*;*

CANNOT FIND DIRECTORY FILE

FAILED TO ATTACH OUTPUT DEVICE

FAILED TO GET TIME PARAMETERS

NOT A DIRECTORY DEVICE

FAILED TO WRITE ATTRIBUTES

FAILED TO READ ATTRIBUTES

FILE NOT LOCKED

FAILED TO ENTER NEW FILE NAME

FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST
CANNOT RENAME FROM ONE DEVICE TO ANOTHER
FAILED TO SPOOL FILE FOR PRINTING

CANNOT SPOOL BY FILE ID (RSX-11D only)
FAILED TC OPEN STORAGE BITMAP FILE
FAILED TO OPEN INDEX FILE

FAILED TO FIND FILE (S)

CANNOT FIND FILE (S)

NO SUCH FILE (S)

FAILED TO REMOVE DIRECTORY ENTRY
DIRECTORY WRITE PROTECTED

NOT ENOUGH BUFFER SPACE AVAILABLE

FAILED TO TRUNCATE FILE

CANNOT TRUNCATE THIS FILETYPE

ILLEGAL EOF VALUE

CHAPTER 4

LE TRANSFER PROGRAM (FLX)

The File Transfer Utility Program (FLX) allows you to wuse foreign
volumes (not in Files-11 format) in DIGITAL's DOS-11 or RT-11 format.
FLX converts the format of a file to the format of the volume the file
is being transferred to.

FLX can be used to initialize and list directories of cassettes and
RT-11 or DOS-11 file-structured volumes. FLX can also be used to
delete files from RT-11 or DOS-11 formatted volumes.

FLX performs file transfers (and format conversions, as appropriate)
from:

e DOS-11 to Files-11 volumes

e Files-11 to DOS-11 volumes

e DOS-11 to DOS-11 volumes

o Files-11 to Files-11 volumes
e Files-11 to RT-11 volumes

e RT-11 to RT-11 volumes

e RT-11 to Files-11 volumes

Valid DOS-11 devices are:

Device Device Abbreviation
PCll paper tape punch PP
PCll or PR11 paper tape reader PR
RK05 cartridge disk DK
TU78 magnetic tape MF
TE16, TU16, TU45, or TU77 magnetic tape MM
TS04 magnetic tape MS
TU10, or TS03 magnetic tape MT
TU56 DECtape DT
TU60 tape cassette CT

FILE TRANSFER PROGRAM (FLX)

Valid RT-11 devices are:

Device Device Abbreviation
RLO1/RL0O2 cartridge DL
RKO5 cartridge disk DK
RK06 or RKO7 cartridge disk DM
RX01 floppy disk DX
RX02 floppy disk DY
TU56 DECtape DT
TUS58 DECtape II data cartridge DD

FLX supports all Files-11 devices, including RSX-format cassettes.
They are volumes that you have initialized using the MCR INITVOL or
DCL INITIALIZE command. DOS-11 and RT-11 volumes are initialized
using FLX. On RSX-11M-PLUS, DOS-11 and RT-11 volumes must be mounted
with foreign characteristics before you can use FLX. On RSX-11M, such
volumes must be unmounted.

You can use FLX interactively or by means of an indirect commmand
file. FLX allows only one 1level of indirect command file
specification.
You can invoke FLX in two ways: by specifying FLX or by specifying
FLX and a command line. If you only specify FLX, the utility responds
with the prompt:
FLX>
FLX can also access an indirect command file in the following manner:
>FLX @F00.CMD

or

FLX>@F0O0.CMD

4.1 FLX COMMAND FORMAT

Although formats for specifying FLX functions vary, the general format
for entering FLX command lines is:

devicespec/sw=infile/sw,...,infilen/sw
devicespec

The device specification for the FLX output device, which takes
the form:

dev: [ufd]
The [ufd] field is optional; if it is not specified, FLX uses

the current UIC. Do not specify a UFD if the output device is in
RT-11 format.

FILE TRANSFER PROGRAM (FLX)
If you explicitly enter the output device specification, you must
enter the equal sign.

FLX does not permit output file specifications. The output files
take the names of the input files.

infilen
The input file specifications, which take the form:
dev: [ufdlfilename.filetype;version
The UFD is not specified for RT-11 volumes.
/sw

One of three types of FLX switches described below 1in Section
4.2,

FLX supports 9-character file names for DOS-ll-format magnetic tapes.
When vyou transfer the file back to Files-11 format, (which uses a
l2-character filename) FLX will recover the last three characters.

Wildcards are valid only for input file specifications.
Version numbers are valid only for Files-11 files and cannot be

specified as wildcards. The standard rules for updating version
numbers apply (see the RSX-11M/M-PLUS MCR Operations Manual).

4,2 PLX SWITCHES
FLX provides three types of switches for file transfers:

e Volume format switches

e Transfer mode switches

e Control switches
Volume format switches specify the format of the volume on which files
are stored; that is, Files-11, DOS-11, or RT-11 volumes.
Transfer mode switches provide the means for specifying the format of
a file on a non-Files-1l1 volume. Files can be in formatted ASCII,
formatted binary, or file image format.
Control switches provide control functions useful during file
transfers. Using file control switches, you can specify, for example,

the number of blocks to be allocated to an output file or the UFD for
an output file.

FILE TRANSFER PROGRAM (FLX)

4.2.1 Volume Format Switches

FLX has three volume format switches that define the format of the
specified volumes.

/DO Identifies the volume as a DOS-11 formatted volume.
/RS Identifies the volume as a Files-1l1 formatted volume.
/RT Identifies the volume as an RT-11 formatted volume.

Initially, input volumes default to DOS-11 format and output volumes
default to Files-11l format FLX assumes these default volume formats

.
sz cror fy cwit~hao §m i
if you do not specify switches in the command line.

You can change the initial default by entering /RS or /DO on a command
line by itself. /RS sets the default for input volumes to Files-11
format and output volumes to DOS-11 format. /DO sets the default for
input volumes to DOS-11 format and output volumes to Files-11 format.

For example, to specify the default transfer direction from Files-11
to DOS-11, type:

FLX>/RS

To specify the default transfer direction from DO0OS-11 to Files-11,
type:

FLX>/DO

If /RT is specified on one side of a command line, the default entry
for the other side is /RS.

Examples
1. FLX>DK0:=DT0:SYS1.MAC/RT
The output is defaulted to /RS.

2. FLX>DKO:/RT=DKO0:SYS1.MAC

The input is defaulted to /RS.

4,2.2 Transfer Mode Switches

FLX has three transfer mede switches; one for each type of file
format. Files can be in formatted ASCII, formatted binary, or file
image format. Format conversions can be in either direction, and are
between DOS-11 files and Files-11 files or between RT-11 files and
Files-11 files. Specifying a transfer mode switch determines which
format the output file will be in after the conversion of the file.
Table 4-1 describes the transfer mode switches.

FILE TRANSFER PROGRAM (FLX)

Table 4-1
FLX Transfer Mode Switches

Switch

Description

/FA:n

/FB:n

/IM:n

Formatted ASCII

The DOS-11 or RT-11 output file is to be formatted ASCII.
Formatted ASCII is defined as ASCII data records
terminated by a carriage return/line feed (RET-LF), form
feed (FF), or wvertical tab (VT). In transfers from
DOS~-11.or RT-11 files to Files-11 files, RET-LF pairs are
removed from the end of records. In transfers from
Files-11 files to DOS-11 or RT-11 files, RET-LF pairs are
added to the end of each record that does not already end
with LF or FF. In both directions, all nulls, rubouts,
and vertical tabs are removed from input records.

If you specify /FA:n with Files-11 output, fixed-length
records of size n are generated. Output records are
padded with nulls, if necessary.

If you do not specify /FA:n with Files-11 output, FLX
generates variable-length records. The output record
size equals the input record size.

ASCII data is transferred as 7-bit values. Bit 8 of each
byte 1is masked off before transfer. CTRL/Z (ASCII 032
octal) is treated as the logical end-of-input file for
formatted ASCII transfers from DOS-11 cassette or paper
tape to Files-11.

Formatted Binary

The DOS-11 or RT-11 output file is to be formatted
binary. In this mode, formatted binary headers and
checksums are added to records that are output to DOS-11
or RT-11 files, and removed when transferred to Files-11
files.

If you specify /FB:n with Files-11 output, fixed-length
records of size /FB:n are output (512 (10) bytes is the
maximum). FLX pads records with nulls to <create the
specified length.

If you do not specify /FB:n with Files-11 output, FLX
generates variable-length records. The output record
size equals the input record size.

Image Mode

The transfer is to be in image mode. Image mode forces
fixed-length records. You can wuse the value n to
indicate the desired record length (in decimal bytes) for
Files-11 output (512 (10) bytes maximum). If you do not
specify n, FLX assumes a record length of 512(10) bytes.

FILE TRANSFER PROGRAM (FLX)

FLX assumes the following default transfer modes for these file types
(with the exception of paper tape transfers described in Section 4.6).

Mode Switch File Type

Image

/IM:n .TSK, .OLB, .MLB, .SYS,
.SML, .ULB, .EXE

Formatted Binary /FB:n .OBJ, .STB, .BIN, .LDA

Formatted ASCII /FA:n All others

If you specify n with /FA, /FB, or /IM when the output file is not a
Files-11 file, FLX ignores n.

The RSX-11M/M-PLUS MCR Operations Manual defines the above file types.

4.2,3 <Tontrol Switches

FLX provides a number of control switches to control file processing.
Table 4-2 describes these switches.

Table 4-2
FLX Control Switches

Switch

Description

/BL:n[.]

/BS:n

/C0

Indicates the number of contiguous blocks (n) in octal or
decimal to be allocated to the output file.

This switch 1is normally used with the /CO switch
(described 1later in the table). Because all RT-11 files
are contiguous, the /CO switch is not required with the
/BL:n switch for RT-11 output.

If you do not specify /BL, the input file size is used as
the output file size.

The file allocation scheme used for RT-11 volumes
normally allocates the 1largest available space on the
volume for a new file. Using /BL:n with the /RT switch
for the output file causes the output file to be
allocated the first unused space of size n. However,
when the RT-11 file 1is closed, the input file size is
used as the output file size. If the input file 1is not

n, anh error results.

Specifies the block size n. 1in bytes for <cassette tape
output.

If you do not specify /BS, a block size of 128(10) is
assumed. /BS is only wvalid in a cassette tape (CT)
output file specification with /RS specified.

Indicates that the output file is to be contiguous. The
/CO switch is used only with disks and DECtapes.

If the input file is on paper tape, cassette, or DO0S-11

. ~ 2 - /DT -~ o v 3
magnetic tape, /BL is also required. FLX transfers the

(continued on next page)

FILE TRANSFER PROGRAM (FLX)

Table 4-2 (Cont.)
FLX Control Switches

Switch

Description

/CO
(Cont.)

/DE

/DI

/DNS:n

/FC

/1D

/LI

/NU:n[.]

file types .TSK, .SYS, and .OLB to Files-11 volumes with
/CO implied when the input is a Files-11 volume, or a
DOS-11 or RT-11 DECtape or disk.

Deletes files from a DOS-11 DECtape or disk. It is used
also with /RT to delete files from an RT-11 DECtape or
disk. When vou specify /DE, the FLX command line has no
output specification.

Causes a directory listing of cassettes or DOS volumes to
be 1listed on a specified output file. It is used alsc
with /RT to generate a directory listing of RT-11 volumes
in a specified output file.

You cannot list Files-11 volume directories using FLX.

If you do not specify an output device, the directory 1is
sent to TI:. If you do not specify file name and file
type on the input file specification, a wildcard is
assumed.

See Section 4.3 for information on DOS-11-volume
directory manipulation. See Section 4.4 for information
on RT-1l-volume directory manipulation.

Specifies the density of the magnetic tape; where n is
800, 1600 or 6250 bpi. If n is any other value or not
specified, FLX prints an error message. If you do not
specify /DNS:n, the magnetic tape density defaults to
6250 bpi for the TU78, 1600 bpi for the TS04, and 800 bpi
for all other Magtape devices. If you specify /DNS with
a nonmagnetic device, FLX ignores the switch.

When using FORTRAN files, indicates that FORTRAN carriage
control conventions are to be used. The /FC switch
applies only to Files-11 output files. (If you have the
PDP-11 FORTRAN Language Reference Manual, refer to it for
more information on FORTRAN carriage control conventions.
Otherwise, refer to the IAS/RSX-1l1 I/0O Operations
Reference Manual for a discussion of the file data block

and record attributes, of which setting carriage control
is a part.)

Requests the current version number of FLX to be printed.
You can specify /ID as part of an output or input
specification or type it in response to the FLX prompt
(FLX>).

Same as /DI.

Used with the /ZE and /RT switches to specify the number
of directory blocks (n) in octal or decimal to allocate
when initializing an RT-11 disk or DECtape. If you do
not specify /NU:n, four directory blocks are allocated.
The maximum number of blocks that can be allocated is
37(8) 31 (10).

(continued on next page)

FILE TRANSFER PROGRAM (FLX)

Table 4-2 (Cont.)
FLX Control Switches

Switch Description

/RW Rewinds the magnetic tape before beginning the file
transfer. Specifying: /-RW causes FLX to begin the
transfer without first rewinding the magnetic tape. If
you do not specify either rewind option, the switch
defaults to /RW. If you specify the /RW switch with a
non-magnetic-tape device, or with /LI, /DI, or /ZE, FLX
ignores /RW.

N
wn
vl
-

\dicates that the converted file is to be spooled by the
rint spooler task or the queue management system. The
/SP switch applies only to Files-11 output files.

nd
i

e}

/UL Indicates that the output file is to have the same UFD as
the input file. FLX ignores the /UI switch if the output
specification contains an explicit UFD. /ULl is wvalid
only for output files in DOS-~11 or Files-11 format.

/VE Causes each record written to a cassette to be read and
verified. The /VE switch is only valid with a CT output
file specification.

/ZE[:n.} Initializes cassettes or DOS-11 volumes. It is also used
with /RT (and /NU) to initialize RT-11 volumes.
Initializing erases any files already on the device. The
/2ZE switch does not require a file specification.

For DOS-11 DECtape, /ZE creates an entry for the current
UIC.

4.3 DOS-11 VOLUME DIRECTORY MANIPULATION

This section contains examples that show how to display DOS-11
directory listings, delete DOS-11 files, and initialize DOS-11 volumes
using the FLX switches.

On RSX-11M-PLUS, DO0S-11 wvolumes must be mounted with foreign
characteristics before you can use FLX. On RSX-11M, the volumes must
be unmounted.

4.3.1 Displaying DOS-11 Directory Listings

The /LI or the /DI switch instructs FLX to send the directory of the
cassette or DOS-11 volume specified in the input specification to the
Files-11 file specified in the output specification. If vyou do not
enter an output specification, FLX sends the directory to TI:. For
example:

FLX>DTO: [100,100] *.MAC/LI

This command line lists on your terminal the directory of all .MAC
files under UFD [100,100] on the DOS-11 DECtape on DTO:.

Figure 4-1 shows sample directory listings for a DOS-11 DECt
TU60 cassette.

(g}
t
@
ol
®
o
o
e}
[V

FILE TRANSFER PROGRAM (FLX)

DECtape Directory Listing

© pirecrory @ pr:[200,200) ©

© 19-sep-78

© rrx.TsK Qi0s. @19-sEP-78 <233>Q
UFD.TSK 8. 19-SEP-78 <233>
TKN.TSK 6. 19-SEP-78 <233>
MOU.TSK 14, 19-SEP-78 <233>

© roraL OF 132. BLOCKS IN 4. FILES
Cassette Directory Listing

© pirecTory @ cr:[200,2001 ©

O 19-sEP-78

© urp.TSK-0 Q2. @19-sEr-78 128.Q
TKN . TSK-0 20. 19-SEP-78 128.
MOU.TSK-0 52. 19-SEP-78 128.

© roTAL OF 100. BLOCKS IN 3. FILES

Notes on

ZK-180-81

Figure 4-1 DOS-11 Directory Listings

Figure 4-1:

This line identifies the listing as a directory listing.
The device name and unit number.

The User File Directory.

The date the directory was listed.

The file name, file type, version number, and sequence number
(cassettes only).

The file size in decimal blocks.
The file creation date.

The record size in decimal bytes for the file (cassettes
only.)

A total of the actual file sizes and the total number of
files in the directory.

The default protection code provided by the system.

4-9

FILE TRANSFER PROGRAM (FLX)

4.3.2 Deleting DOS-11 Files

You can delete files from DOS-11 disks or DECtapes using the Delete
switch (/DE). The /DE switch requires only the file specification for
the file you are deleting. For example:

FLX>DK1:[100,100]SYS1.MAC/DE

This command line deletes SYS1.MAC under UFD [100,100] from the DOS-11
disk on DKl:.

4.3.3 1Initializing DOS-11 Volumes

You can initialize cassettes and DOS-11 volumes using the /ZE switch.
This switch requires only the device specification for the volume you
are initializing. For example:

FLX>DT1:/ZE

This command line initializes the DECtape on DT1l: in DOS-11 format.

4.4 RT-11 VOLUME DIRECTORY MANIPULATION

You can display RT-11 directory 1listings, delete RT-11 files, and
initialize RT-11 volumes using the FLX switches described in this
section.

On RSX-11M-PLUS, RT-11 volumes must be mounted with foreign
characteristics before you can use FLX. On RSX-11M, the volumes must
be unmounted.

4.4.1 Displaying RT-11 Directory Listings

The /LI or the /DI switch, when combined with the /RT switch,
instructs FLX to send the directory of the RT-11 volume in the input
specification to the Files-11 file in the output specification. If
you do not enter an output specification, FLX sends the directory to
TI:. For example:

FLX>DTO:*.MAC/LI/RT

This command lists on your terminal all .MAC files on the RT-11 volume
on DTO:.

Figure 4-2 shows a sample directory listing for an RT-11 disk.

4-10

FILE TRANSFER PROGRAM (FLX)

@ orrecrory @ pk:
4-JUN-78

SIPBOO.MAC e 49, o 4-JUN-78
< UNUSED > 6.
SIP +MAC 10. 4-JUN-78
SIPCD .MAC 7. 4-JUN-78
< UNUSED > 21.
SIPQIO.MAC 7. 4-JUN-78
< UNUSED > 4686.

0 4713. FREE BLOCKS

t’ TOTAL OF 73. BLOCKS IN 4. FILES

ZK-181-81

Figure 4-2 RT-11 RKO5 Cartridge Disk Directory Listing

Notes on Figure 4-2:

This line identifies the listing as a directory listing.

The device name and unit number.

The date the directory was listed.

The file name and file type; <UNUSED> indicates free space.
The number of blocks in the file or free space.

The file creation date, or blank for free space.

The total number of free blocks on the volume.

The total number of blocks allocated to files on the volume.

FILE TRANSFER PROGRAM (FLX)

4,4.2 Deleting RT-11 Files

You can delete files from RT-11 disks or DECtapes using the Delete
switch (/DE) with the RT-11 switch (/RT). The command line on which
you specify /DE/RT requires only the file specification for the file
you are deleting. For example:

FLX>DK1:SYS/.MAC/DE/RT

This command line deletes SYS/.MAC from the RT-11 volume on DKl:.

4.4.3 I

2
ot
o
-
Ny
[}
Y
[

&
-
-

|
[
(=]
L
C
v
5
o
©n

You can initialize RT-11 volumes using the /ZE switch with the /RT
switch. The /ZE switch requires only the device specification for the
volume you are initializing. For example:

FLX>DT1:/ZE/RT

This command line initializes the DECtape on DT1l: in RT-11 format.
When vyou 1initialize RT-11 volumes, the /ZE switch takes an optional
argument in the form:

/ZE:n

The value n specifies the number of extra words per directory entry.
A directory segment consists of two disk blocks with a total of
512(10) words. The directory header uses five words, leaving 507(10)
words for directory entries.

Normally, each directory entry uses seven words; two directory
entries within each directory segment are allocated to the file
system. Therefore, the number of entries in each segment (when no
extra words are specified) is determined as follows:

Directory entries (507/7)-2

72-2
70

Some RT-11 applications require extra words in the directory entries.
When you specify extra words for directory entries (/ZE:n), the number
of directory entries is determined as follows:

Directory entries = [507/(n+7)]-2

For example, 61 (10) entries can be made per directory segment if vyou
specify /ZE:1.

Use of the /NU switch with the /ZE and /RT switches specifies the
number of directory segments to allocate to the RT-11 volume. The /NU
switch has the following form:

/NU:n

FILE TRANSFER PROGRAM (FLX)

The value n specifies the number of directory segments to allocate.
Four directory segments are allocated by default. The maximum number
of segments that can be allocated is 37(8) or 31(10). For example:

FLX>DTO:/ZE: 2/NU: 6/RT

This command line initializes the DECtape on DTO: in RT-11 format,
allocates two extra words per directory entry, and allocates six
directory segments. This results in a total of 54(10) directory
entries, each of which uses 9 words.

4.5 FLX TAll/TU60 CASSETTE SUPPORT

FLX supports the DIGITAL standard cassette file structure. Files can
be transferred to and from cassettes in either Files-11 format (/RS)
or DOS-11 format (/DO). The transfer mode selected depends on the
file format requirements.

The file formats for Files-11l or DOS-1l1l cassette files are almost the
same; that 1is, they both conform to the DIGITAL standard cassette
file format. The differences between the Files-11 and D0OS-11 cassette
file formats are shown in Table 4-3.

Table 4-3
Differences Between Files-11 and DOS-11 Cassette Files Format
Files-1l1l Format DOS-11 Format

Standard level 2 Standard level 0
12-character file name (9- 9-character file name (6-
character file name and 3- character file name and 3-
character file type) character file type)
Blocks of any size up to 128(10)-byte blocks
512(10) bytes (128 decimal

bytes default)

Version numbers No version numbers

Files~-11 cassette file format (level 2) is a superset of the DO0S-11
cassette file format (level 0). Therefore, any cassette written in
DOS-11 format can be read in Files-11 format. The reverse of this,
however, is true only when:

e The Files-11 file is written with 128(10)-byte blocks.

o The extra file header data (such as version number), which
does not appear in DOS-11 files, can be ignored.

Files-11 files and DOS-11 files can be mixed on a given cassette as
long as you use a proper retrieval mode when you access the file.
Files of various block sizes can also share a given cassette. FLX
uses the block size contained in the file label data when reading a
file.

4-13

FILE TRANSFER PROGRAM (FLX)

4.5.1 Multivolume Cassette Support

FLX supports multivolume cassette files in both Files-11 and DO0S-11
formats. No special switches are required to notify FLX that a
multivolume file is being accessed.

4.5.2 FLX Cassette Output Files

When FLX detects the physical end-of-tape for an output cassette, the
following sequence of events occurs.

1. FLX issues the following message:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g,m]

The variables n, g, and m specify the unit number, group
number, and member number.

2. The cassette is rewound.
3. FLX issues an additional message:

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4, At this point, you have three alternatives:

a. Mount the next output cassette volume and type Y,
followed by a carriage return. If you select this
alternative, the new output cassette 1is rewound, FLX
searches for the logical end-of-tape (end of the last
file), and then continues transferring data onto the
tape. If FLX, while searching for logical end-of-tape,
encounters a file with the same file name as the current
input file, it displays the following message:

FLX -- FILE ALREADY EXISTS

FLX then returns to step 3.

b. Mount the next output cassette volume and type Z,
followed by a carriage return. The new output cassette
is rewound, and FLX continues by transferring data onto
it. Thus, the tape is effectively zeroed (initialized)
before data is transferred to it.

c. Enter a carriage return to terminate the transfer.
If you select this alternative, FLX assumes that
end-of-file (EOF) 1is desired and issues the following
message:

FLX —- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

This message indicates that the 1last input file block
processed was not written onto the tape.

4-14

FILE TRANSFER PROGRAM (FLX)

4.5.3 FLX Cassette Input Files

When FLX detects the physical end-of-tape for an input cassette, the
following sequence of events occurs:

1. FLX issues the following message, including the input file
specification on which the end-of-tape was detected:

FLX -- END OF VOLUME ON CASSETTE
CTn:[g,m]filename.type

The variables n, g, and m specify the wunit number. garoup
number, and member number.

2. The cassette is rewound.
3. FLX issues an additional message:

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4, At this point you have two alternatives:

a. Mount the next input cassette volume and type Y, followed
by a carriage return to continue. If you select this
alternative, the new input cassette is rewound, and a
validity check 1is performed on the file 1label and
sequence number. If the file label and sequence number
are correct, FLX begins processing data from the volume.
If, however, the file label and sequence number are not
correct, FLX issues the following message:

FLX —— FILE NOT FOUND
The process then returns to step 3.

b. Type a carriage return to terminate the transfer. If you
select this alternative, FLX assumes that end-of-file
(EOF) is desired, and the transfer is terminated. If the
input file is being processed as a formatted binary or an

ASCII file, a format error may occur.
If you enter Z, FLX prints the message:

FLX —- BAD RESPONSE

The process then returns to step 3.

4.6 FLX PAPER TAPE SUPPORT

FLX supports the DIGITAL standard paper tape devices, such as the

PC-11 Paper Tape Reader/Punch and the PR-11 Paper Tape Reader, as
D0OS-11 devices.

FLX lets you delimit records on paper tape for files 1in formatted
binary mode or in formatted ASCII mode. Formatted binary records are
delimited by standard DOS-11 4-byte headers and a trailing checksum.
Formatted ASCII records that do not already end with line feeds or
form feeds are delimited by carriage return-line feed pairs.

4-15

FILE TRANSFER PROGRAM (FLX)

FLX gives special treatment to files that normally default to image
mode transfers, that is; .TSK, .0OLB, .MLB, .SYS, .SML, .EXE, and .ULB
files. On output to paper tape, these files are written, by default,
in formatted binary. When read back from paper tape to a Files-11
volume, the file 1is written by default, with fixed-length,
512(10)-byte records.

These defaults ensure that when the files are read back from paper
tape they are in the same format as they were before being punched.
However, the new files are not contiguous unless you specify /CO/BL:n
with the output file specification. You must know an appropriate
value for n (the number of contiguous blocks to allocate) before
issuing the command. You can also use PIP to create a contiguous file
from the file that is read back from tape (see Chapter 3).

The use of explicit transfer mode switches to transfer .TSK, .OLB,
.MLB, .SY¥S, .SML, .EXE, and .ULB files between paper tape and Files-11
volumes can cause files read back from paper tape to be different from
the files that were originally written out.

For FLX paper tape transfer commands, you cannot specify file names in
the output specification. The file name entered for the input file

specification is used as the file name for the output file. For
example:

FLX>DK1:/RS=PR:CRTMAC.DAT/DO

This command 1line writes an output file whose file name is
DK1:CRTMAC,.DAT.

If you do not specify a file name on the input file specification, the
default file name is .;n where n represents the latest version number.

RSX-11M and RSX-11M-PLUS systems support paper tapes only as DOS-11
devices. Therefore, you must specify the /DO switch with paper tape
file specifications. The following examples show paper tape
specifications for input and output file specifications:

FLX>PP:/DO-CRTMAC.DAT/RS
FLX>DK:/RS=PR:CRTMAC.DAT/DO

To copy from one paper tape to another, use the Image-Mode switch
(/IM) regardless of the format of the paper tapes. For example:

FLX>PP:/DO/IM=PR:/DO

4,7 FORTRAN DIRECT ACCESS FILES

FORTRAN direct access files must be transferred in Image mode. For
example:

FLX>DK0:/D0/IM=F00.TJP/RS

To recover the file, you must specify the record length in bytes (not
to exceed 512(10) bytes). For example:

FLX> /RS/IM:n=DK0:F00. TJP/DO

The variable n specifies the record length in bytes.

FILE TRANSFER PROGRAM (FLX)

4.8 FLX ERROR MESSAGES
Errors encountered by FLX during processing are reported on the

initiating terminal. The FLX error messages, their explanations, and
suggested user actions are described in this section.

FLX -- BAD LIST FILE SPEC
Explanation: One of the following was specified:
1. More than cne output file for an /LI or /DI operaticn.

2. Wildcards in the output file specification for an /LI or /DI
operation.

User Action: Reenter the command line correctly.

FLX —-- BAD RESPONSE

Explanation: Z was entered in response to the message:

MOUNT NEW CASSETTE (Y, Z (OUTPUT ONLY) OR CR)
FLX>

The cassette in question is an input volume.
User Action: Respond with Y or CR after the message is
redisplayed.

FLX -- CAN'T OPEN @& FILE

Explanation: The specified indirect command file could not be
opened for one of the following reasons:

e The file is protected against access.

® A problem exists on the physical device (for example, the disk
is not spinning).

e The volume is not mounted or is allocated to another user.
e The volume is not on-line.

e The specified file directory does not exist.

® The named file does not exist in the specified directory.

User Action: Correct the condition and reenter the command line.

FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Explanation: An illegal output device (for example, magnetic
tape) was entered with the /CO switch.

User Action: Reenter the command line without specifying the /CO
switch.

4-17

FILE TRANSFER PROGRAM (FLX)

FLX -- CASSETTE ERROR I/O TERMINATED

Explanation: A hardware error occurred during the end-of-volume

sequence on a cassette volume. The transfer was aborted.

User Action: Reenter the command line using a new cassette.

FLX -- COMMAND SYNTAX ERROR

Explanation: The command was entered in a format that does
conform to syntax rules.

not

User Action: Reenter the command line with the correct syntax.

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Explanation: Conflicting transfer mode qualifiers were entered.

For example:

SY0:=DT0:F00.0BJ/IM/FB

User Action: Reenter the command line with only one transfer

mode switch specified.

FLX -- DOS-11 OR RT-11 DEVICE NOT VALID FORMAT
Explanation: The device specified with the /DO switch has
incorrect DOS-11 file structure, or the device specified with
/RT switch has an incorrect RT-11 file structure.
User Action: Correctly identify the file structure on
volume, and then reenter the command line.

FLX -- DT: UFD FULL
Explanation: The DECtape directory is full.
User Action: Delete all unnecessary files, and reenter
command line.

FLX -- END OF VOLUME ON CASSETTE

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Explanation: Physical end-of-tape was encountered during

an
the

each

the

a

cassette transfer. The tape is rewound and you are asked to

mount the next cassette.

User Action: See Section 4.5.2 if an output transfer is being
performed or Section 4.5.3 if an input transfer 1is being

performed.

FILE TRANSFER PROGRAM (FLX)

FLX -- ERROR DURING DIRECTORY I/O

FLX

FLX

FLX

FLX

Explanation: One of the following conditions may exist:

1. The volume is not write-enabled.

2. The /DO, /RT br /RS switches were incorrectly specified.
3. The volume is not in the proper format.

4. A hardware error occurred during a directory I/0 operation
(for example, bad tape).

User Action: The following responses correspond (by number) to
the conditions listed above.

1. Write-enable the volume.

2. Respecify /DO, /RT, or /RS correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume that 1is in the proper format and retry the

operation.

4., Reenter the command line.

-- FILE ALREADY EXISTS

Explanation: The specified output file already exists on the
output device.

User Action: Reenter the file specification using a new or
corrected file name.
-- FILE NOT FOUND

Explanation: The named file does not appear, as specified, in
the requested directory.

User Action: Retry the operation with the file name and
directory correctly specified.
—— WARNING -- INPUT FILE OUT OF SEQUENCE

Explanation: A multivolume cassette file is being accessed out
of sequence.

User Action: This is a warning message. The transfer will
continue unless you terminate it by means of the ABORT command.
—— @ FILE NESTING EXCEEDED

Explanation: More than one level of indirect command file was
specified.

ter the command line with only one level of
le specified.

4-19

FILE TRANSFER PROGRAM (FLX)

FLX -- @ FILE SYNTAX ERROR

Explanation: A syntax error occurred in the indirect command
file.

User Action: Edit the indirect command file. Rerun FLX using
the corrected indirect command file.
FLX -—- FMTD ASCII RECORD FORMAT BAD
or
FLX -- FMTD BINARY RECORD FORMAT BAD

Explanation: Either the file is corrupted or 1is not of the
specified type.

User Action: If the file is corrupted, no recovery is possible.
If the file type 1is 1incorrect, reenter the command 1line
specifying the correct transfer mode switch.

FLX -- ILLEGAL /BS SIZE -- USE 0<N<=512, AND EVEN

Explanation: An illegal block size was specified with /BS on
cassette output.

User Action: Reenter the command line with a legal block size.

FLX —- INCORRECT # IN/OUT SPECS

Explanation: More than one input or output specification in a
command was entered where only one is allowed.

User Action: Reenter the command line with the proper syntax.

FLX -- INVALID DEVICE
Explanation: A device was specified that cannot be used for the
purpose specified. For example, a line printer was specified as
an input device.
User Action: Reenter the command 1line with a wvalid device
specified.

FLX -- INVALID DOS OR RT-11 FILE SPEC

or

FLX -- INVALID RSX FILE SPEC
Explanation: The file specification does not conform to proper
syntax or the specified operation could not be performed on the

specified device.

User Action: Reenter the command line with the proper.syntax.

FILE TRANSFER PROGRAM (FLX)

FLX -- INVALID SWITCH

Explanation: A switch was entered that is not a valid FLX switch
or does not conform to proper syntax.

User Action: Reenter the command 1line with a correct switch
specification.

FLX -- I/0 ERROR
Explanation: One of the following conditions may exist:
e The specified device is off-line.
e A hardware error occurred (for example, bad tape).
User Action: Ensure that the device 1is on-line. Reenter the
command line. If a hardware error recurs, recovery may not be
possible.

FLX -- I/0 ERROR DELETING LINKED FILE

Explanation: An uncorrectable error occurred while a DOS 1linked
file was being deleted.

User Action: No action required. The file 1is effectively
deleted, but the volume may be corrupted.

FLX -- I/0 ERROR INITIALIZING DIRECTORY
Explanation: One of the following conditions may exist:
e The specified device is not on-line.
e¢ The specified volume is not mounted.
e A hardware error occurred (for example, bad tape).
User Action: Ensure that the device is on-line and is operable.
Reenter the command line with the required switch specified.

FLX -- I/0 ERROR ON COMMAND INPUT
Explanation: An unexpected error in command input was
encountered from either an indirect command file or from the
initiating terminal; FLX exits.

User Action: Restart FLX.

FLX

FLX

FLX

FLX

FLX

FILE TRANSFER PROGRAM (FLX)

——- I/0 ERROR ON FLX TEMPORARY FILE

Explanation: FLX encountered an error condition with its
temporary file. FLX creates a temporary file on SY0: for
operations involving DOS-11 CT, DT, or MT volumes. This error
occurs when one of the following conditions exists:

e SY0: 1is not on-line and mounted.

e ©SY0: 1is write-locked.

e A protection violation occurred.

e A hardware error was encountered.

User Action: Correct the error condition and reenter the command
line.

-- I/0 ERROR ON LIST FILE

Explanation: An error occurred on the output device during a /DI
or /LI operation. There is a hardware problem with the output
device (for example, a device powered down).

User Action: Correct the condition. Reenter the command line.

-- OUTPUT DEVICE FULL

Explanation: The DOS~-11 or RT-11 output volume does not contain
enough space for the output file.

User Action: Delete all wunnecessary files and reenter the
command line.
-— OUTPUT FILE SPEC NOT ALLOWED

Explanation: An output file specification was entered for an
operation that does not allow one.

User Action: Reenter the command line without an output file
specification.

—-- RECORD TOO LARGE

Explanation: FLX detected an input record in a Files-11 transfer
that 1is larger than the specified or implied record size for the
file; that is, the file is corrupted.

User Action: The file in question is unusable.

FILE TRANSFER PROGRAM (FLX)

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN
Explanation: A carriage return was given to indicate that no new
volume would be mounted when an end-of-volume was encountered on
cassette output. The block that FLX was attempting to write when
it encountered the end of the cassette has not been written.
Therefore, the output file is incomplete.
User Action: This message 1is informational. No action is
required.

FLX -- WARNING -- SPECIFIED RECORD SIZE BAD, 512. USED
Explanation: The record size n specified with the /FA, /FB, or
/IM switch is not acceptable. A record size of 512(10) bytes is
assumed.

User Action: This is a warning message. No action is required.

FLX --UNABLE TO ALLOCATE FILE

Explanation: No space is available on the DO0S-11 or Files-11
volume for the specified file.

User Action: Delete all unnecessary £files and reenter the
command line.
FLX -- UNABLE TO OPEN FILE

Explanation: A specified input or output Files-11 file could not
be opened. Possible reasons are:

e The input file does not exist.
e The volume is not mounted.
e A protection violation occurred.

User Action: Correct the condition and reenter the command line.

FLX -- UNABLE TO OPEN LIST FILE

Explanation: The list file cannot be opened under the specified
file name and directory, or the specified volume may not be a
valid Files-11 volume.

User Action: Reenter the command 1line specifying the correct
file name and directory.

FILE TRANSFER PROGRAM (FLX)

FLX -~ UNDIAGNOSABLE REQUEST
Explanation: FLX does not recognize the command line syntax.

User Action: Reenter the command line with the proper syntax.

FLX -- /CO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC
Explanation: When transferring files from MT, PR, or CT volumes,
the /CO switch can only be specified when the /BL switch is also
specified.

User Action: Reenter the command 1line, specifying the /BL
switch.

FLX -— *# IN VERSION NUMBER NOT ALLOWED

Explanation: A wildcard was detected in the version number field
of a file specification.

User Action: Reenter the command line with all version numbers
explicitly specified.

FLX -- ILLEGAL DENSITY VALUE
Explanation: Either the specified density value is not supported
by the target tape drive or some value other than 800, 1600 or
6250 was input.

User Action: Reenter the command with the proper density value.

CHAPTER 5

DISK VOLUME FORMATTER (FMT)

The Disk Volume Formatter (FMT) utility formats and verifies disk
cartridge, disk pack, fixed media disk, and flexible disk volumes
under any RSX-11M or RSX-11M-PLUS operating system that 1includes on
line formatting support in the Executive. (Check with your system
manager to determine whether your system includes this feature.)

In general, FMT performs the following functions:

e Writes a complete header for each sector of the volume it is
formatting.

e Verifies the address contents of each sector header.

e Sets the density for RX02 floppy disks (DY).

o Lets you specify an error 1limit for the volume being
formatted. FMT terminates processing when the error limit is

reached.

e Lets the Bad Block Locator task (BAD) run (spawn) 1if vyour
system permits spawned tasks.

5.1 INITIATING AND TERMINATING FMT

To initiate FMT, enter the appropriate command following the system
monitor prompt, as explained in Chapter 1 of this manual.

The general form of the FMT command line is:
>FMT ddn:[/switch l.../switch m]

The variable dd is the abbreviation for the volume you are formatting
and n is the unit number of the volume. The possible switches are:

/BAD

Runs the Bad Block Locator task (BAD) if it is installed on the
system.

Note that the /BAD switch can only be used w1th operatlng systems
that allow spawnlng of tasks. X W :
option.

/DENSITY or /DENS

Selects high (dcuble) or low (single) density for RX02 floppy
disks.

/ERL

Determines the number of errors FMT will allow on the volume.
/MANUAL or /MAN

Enters manual operating mode and formats the sector or track you
specify.

/NOVERIFY or /NOVE or /-VERIFY or /-VE
Inhibits the default verification of a successful FMT operation.
/OVR

Overrides or ignores the Manufacturer's Defined Bad Sector File
(MDBSF) .

/WLT

Rewrites the MDBSF (on the last track of the device) to add bad
sectors found during FMT operation.

/VERIFY or /VE

Verifies that an FMT operation was successfully completed. This
switch is the default.

/ey

Informs FMT that it is receiving input from an indirect command
file that you have created. A FMT command in this form does not
allow operator intervention in the process.

These switches are described in detail in Section 5.4.

To terminate FMT, type CTRL/Z ("Z) following the FMT prompt, as
explained in Chapter 1 of this manual.

5.2 MODES OF FMT OPERATION

FMT lets you format volumes in two operating modes: normal and
manual. In normal operating mode, FMT formats the entire volume. In
manual operating mode, FMT permits you to format individual sectors
(or tracks for DM:-type disks) that you specify in response to FMT
prompts. FMT uses normal operating mode unless you specify manual
mode with the /MAN switch in the command line.

FMT normally retries an operation when it encounters an error. If the
operation still fails, FMT flags the sector as bad and displays the
following message:

Error writing header

DISK VOLUME FORMATTER (FMT)
If FMT encounters an error during the wverification operation, it
prints one of the following messages on your terminal:
Error reading header
or
Header compare error

FMT then continues the verification operation.

5.2.1 Normal Operating Mode

When you invoke FMT in normal operating mode (without the /MANUAL
switch), FMT prints the following message:

*% WARNING - Data will be lost on ddn: *%*
Continue? [Y or NJ
CAUTION
If you answer yes, FMT erases all data
previously stored on the disk.
After a Y (yes) response, FMT returns the message:
Start formatting
It then performs the formatting functions you specify with switches in
the FMT command. After an N (no) response or a carriage return, FMT

returns control to the system monitor.

Normal FMT operation varies slightly according to the volume you are
formatting (see Section 5.3).

5.2.2 Manual Operating Mode
If you specify manual operating mode (/MAN), FMT prints:
% WARNING - Data will be lost on ddn: **
Continue? [Y or N]
CAUTION
If you answer yes, FMT erases all data
previously stored on the disk.
After a Y (yes) response, FMT returns the message:
Entering manual mode
It then displays the following prompts:
Cylinder=

Track
Sector

DISK VOLUME FORMATTER (FMT)

After you enter your response to the prompts, FMT formats the sector
or track you specify. FMT assumes the responses are in decimal unless
they are preceded by a pound sign (#) to indicate an explicit octal
response. If you enter a parameter that is out of the range for the
volume, FMT returns an error message and exits. Table 5-1 1lists the
valid ranges for FMT manual mode operations.

Note that FMT manual operating mode cannot be used with RX02 £floppy
disks.

FMT manual operating mode works the same on all disk volumes, with one
exception: On DM:-type volumes (RK06 and RKO07), FMT formats a
specific track.
For example:

FMT>DMO: /MAN

This command causes FMT to prompt:

** WARNING - Data will be lost on DMQO: **
Continue? [Y or N] ¥

Entering manual mode
Cylinder= 237
Track =1

FMT then formats the entire track you specified.

Table 5-1
Ranges for Manual FMT Operations
Devicel Sectors Tracks | Cylinders
RP02/RPRO2 0-9 O—lé 0-199
RPO3 0-9 0-19 0-399
RP0O4 0-21 0-18 0-410
RPO5 0-21 0-18 - 0-410
RPO6 0-21 0-18 0-814
RKO0O5/RKOSF 0-11 0-1 b—l9§
RKO06 0-21 0-2 0-410
RKO07 ’ 0-21 : 0-2 0-814
RM02 0-31 0-4 0-822
RMO3 0-31 - 0-4- » 0-822
RMO5 0-31 0-18 0-822
RM80 0-31 0-13 0-558

DISK VOLUME FORMATTER (FMT)

5.3 FMT SUPPORTED DISK VOLUMES

The following sections describe using normal FMT operating mode with
the different types of FMT supported devices. Table 5-2 lists the
disk volumes that allow formatting and their device mnemonics.

Table 5-2
FMT-Supported Disk Volumes
Disk Volumes Device Mnemonic

RP04 disk pack DB:
RP05 disk pack DB:
RP06 disk pack DB:
RKO5 disk cartridge DK:
RKOSF fixed media disk DK:
RLO1 disk cartridge DL:
RLO2 disk cartridge DL:
RK06 disk cartridge DM:
RKO7 disk cartridge DM:
RPR02 disk pack DP:
RP02 disk pack DP:
RP03 disk pack DP:
RMO02 disk pack DR:
RMO03 disk pack DR:
RMO5 disk pack DR:
RM80 fixed media disk DR:
RX02 floppy disks DY:

The status‘FMT

requires for the disk volumes varies with the operating
em > s

5.3.1 DB:-type Devices (RP04/RP05/RP06 Disk Packs)

When FMT formats a DB:-type volume, it tries to write 22 sector
headers at a time until it has formatted the entire volume. If FMT
encounters an error, it attempts to write each header individually and
designates which headers are bad.

Unless you specify the /-VE switch, FMT verifies 11 headers at a time
until it has wverified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad headers and continues the
operation.

DISK VOLUME FORMATTER (FMT)

5.3.2 DK:-type Devices (RK0S5 Disk Cartridge or RKOS5F Fixed Media Disks)

When FMT formats a DK:-type volume, it tries to write each sector
header 1individually until it has formatted the entire volume. If FMT
encounters an error, it retries each header before reporting the
header as bad.

Unless you specify the /-VE switch, FMT verifies 12 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad headers and continues the
operation.

5.3.3 DL:-type Devices (RLO1/RLO02 Disk Cartridges)

FMT does not format a DL:-type volume, but reads each block, one track
at a time, and determines which blocks were marked as bad by the
manufacturer's formatting process. If the MDBSF is corrupt or has
been written over, FMT then rewrites the Manufacturer Detected Bad
Sector File (MDBSF) on the last track with this information. When
using FMT on a DL:-type device, the Write Last Track switch (/WLT)
must be specified.

5.3.4 DM:-type Devices (RK06/RK07 Disk Cartridges)

FMT writes DM:-type headers one track (22 sectors) at a time and sets
the header flags of those sectors marked bad in the MDBSF, If FMT
encounters errors, it retries the operation before it designates which
headers are bad.

Unless you specify the /-VE switch, FMT verifies that each sector from
0 to 21 1is addressable. It does this by issuing a full 256-word
write, made up of the 2-word address pattern (the sector number and
its complement) 1into each sector. Once the track has been written,
each sector is read and the full 256 words of data are compared with
the expected data pattern. If an error occurs during this operation,
FMT reports that sector as bad and continues the operation.

When FMT writes headers on DM:-type devices, it sets bad sector flags
in the headers already marked as bad in the MDBSF. Unless you specify
the /-VE switch, FMT indicates whether the bad sector was flagged in
the MDBSF.

5.3.5 DP:-type Devices (RPR02/RP02/RP03 Disk Packs)

When FMT formats a DP:-type volume, it tries to write 10 headers at a
time until it has formatted the volume. If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

Unless you specify the /-VE switch, FMT verifies 10 headers at a time
until it has verified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. FMT reports that sector as bad and continues the
operation.

DISK VOLUME FORMATTER (FMT)

5.3.6 DR:-type Devices (RM02/RM03/RM05/RM80 Disk Packs)

When FMT formats a DR:-type volume, it tries to write 32 headers at a
time wuntil it has formatted the volume. If FMT encounters an error,
it attempts to write each header individually and designates which
headers are bad.

Unless you specify the /-VE switch, FMT verifies 16 headers at a time
until it has wverified the volume. If FMT encounters an error, it
attempts to verify the headers individually to determine where the
error occurred. It then reports any bad sectors and continues the
verification operation.

When FMT writes headers on DR:-type volumes, it sets bad sector flags
in headers already designated as bad by the MDBSF. Unless you specify
the /-VE switch, FMT indicates whether the sector was marked bad in
the MDBSF.

On the RM80 disk, in addition to performing the functions indicated
for other DR: devices, FMT reads a Skipped Sector File to identify
the sectors the manufacturer's formatter designated as "skipped
sectors,”" and then sets the skipped sector flag bit in the appropriate
sector headers. All data originally intended for a sector designated
as a skipped sector is moved to the following sector (for more
information, see the RSX-11M/M-PLUS I/0 Drivers Reference Manual).

5.3.7 DY:~type Devices (RX02 Floppy Disks)

You can use FMT to set an RX02 floppy disk to either high (double) or
low (single) density by using the /DENS switch. Unless you specify
the /-VE switch, FMT writes and reads block 0 and the 1last block on
the disk to determine that the density is consistent.

Note that manual operating mode cannot be used with DY:-type devices.

5.4 FMT SWITCH DESCRIPTIONS

The following sections describe the switches you can use with FMT
commands. The descriptions include information on restrictions for
formatting specific devices and default values for the switches, where
appropriate.

/BAD

The Bad switch spawns the Bad Block Locator task (BAD) after FMT
completes its processing. The BAD operation tests for the number
and location of any unusable blocks. BAD records this bad-block
information which 1is used by the initializing function. If BAD
is not installed on the system, FMT prints a warning message on
your terminal and exits.

Note that the /BAD switch can only be used with operating systems
that allow spawning of tasks. RSX-11M and RSX-11M-PLUS provide
spawned tasks as a system generation option.

The format for an FMT command using the /BAD switch is:

FMT>ddn:/BAD

DISK VOLUME FORMATTER (FMT)

/DENSITY

/ERL

The Density switch sets DY:-type floppy disks to either high
{(double) or 1low (single) density. The default is low density.
(This switch can also use SINGLE and DOUBLE as options.)

The formats for an FMT command using the /DENS switch are:

FMT>DYn : /DENS=HIGH (or DOUBLE)
FMT>DYn : /DENS=LOW (or SINGLE)

The Error Limit Switch sets an error limit for the volume you are
formatting. 1If the error count reaches this 1limit, FMT generates
an appropriate message and terminates the operation. The default
error 1limit is 256(10) errors. Any value greater than 0 or less
than or equal to 256(10) is valid.

The format for an FMT command using the /ERL switch is:

FMT>ddn:/ERL=n.

/MANUAL

The Manual switch puts FMT in manual operating mode and permits
you to format an individual sector (or track for DM:-type disk
cartridges) of a device. FMT assumes cylinder, track, and sector
numbers are decimal - values unless they are preceded by a pound
sign (#), which indicates octal values.

Note that manual operating mode cannot be wused with DY:-type
devices.

In manual operating mode, FMT displays the following prompts:

*% WARNING - Data will be lost on ddn: **

Continue [Y OR NJ]?
Entering manual mode
Cylinder=

Track =

Sector =

Operation complete
The format for an FMT command using the /MAN switch is:

FMT>ddn:/MAN

/NOVERIFY

The Noverify switch inhibits the operation performed by the
default /VERIFY switch.

The format for an FMT command using the /NOVERIFY switch is:

FMT> ddn:/NOVERIFY

/OVR

DISK VOLUME FORMATTER (FMT)

The Override switch causes FMT to 1ignore the Manufacturer's
Detected Bad Sector File (MDBSF) on DM:- and DR:-type disk
volumes. When FMT writes headers on these disks, it normally
sets bad sector flags in those headers marked bad in the MDBSF.
When the verification process discovers a bad sector, it reports
that the sector was marked in the MDBSF. The Override switch
inhibits the reporting operation.

The format for an FMT command using the /OVR switch is:

FMT>ddn:/0VR

/VERIFY

/WLT

/ey

The Verify switch confirms that an FMT operation was successful.
It does this by reading back the headers and determining that
they were written correctly. This switch is the default.

The format for an FMT command using the /VE switch is:

FMT>ddn:/VE

The Write Last Track switch, when used with the Verify switch on

t— and DR:-type volumes, rewrites the MDBSF to add the bad
sectors that FMT found to the bad sectors already in the MDBSF.
FMT also rewrites each bad sector's header to flag it as a bad
sector.

The /WLT switch must be specified when using FMT on a DL:-type
device.

The /WLT switch requires a decimal number (n below) which is used
as the volume's pack serial number.

The format for an FMT command using the /WLT switch is:

FMT>ddn:/WLT=n

If you specify the @Y switch, FMT receives input from an indirect
command file that you have created. In this method of operation,
FMT will not generate any operational messages or warnings to
your terminal. No user intervention is possible until the FMT
operation is complete.

The format for an FMT command using the /@Y switch in an indirect
command file is:

FMT ddn:/eY
Note that to run FMT from an indirect command file, FMT must be

installed before hand. Otherwise, you will receive an error
message and the FMT operation will discontinue.

DISK VOLUME FORMATTER (FMT)

Example
To format a DK:-type volume using an indirect command file,
create the indirect command file FMTIND.CMD (you can specify any
file name) which contains the following:
FMT DK3:/@Y
Then issue the following indirect command from the prompt:
>@FMTIND
FMT will start to format the disk, DK3: and the /@Y switch will

inhibit any FMT message from printing on your terminal until
after FMT has finished.

5.5 FMT MESSAGES

This section describes the messages FMT generates, and possible user
responses.

Command I/O error

Explanation: A hardware transmission error occurred from the
keyboard.

User Action: Reenter the command.

Command too long
Explanation: The command was longer than 80(10) characters.

User Action: Enter a shorter command.

Device does not support formatting

Explanation: A device was specified that does not allow the use
of FMT.

User Action: Determine the correct device and, if FMT operation
is legal, reenter the command.

Device driver missing
Explanation: The disk device driver is not loaded.

User Action: Load the driver (if it is loadable) and reenter the
command, or use a different device in the command line.

Device not in system
Explanation: The specified device was not identified as part of
the system during system generation or the device does not exist
on the system hardware configuration.
User Action: Determine the correct command line with the correct

device mnemonic and reenter the command.

5-10

DISK VOLUME FORMATTER (FMT)

Device not ready

Explanation: The disk volume was not at operating speed when FMT
attempted to access it.

User Action: Allow the volume to reach operating speed, then
reenter the FMT command.

Device offline

Explanation: The device 1is not in the system hardware
configuration.

User Action: Determine the correct command line with the correct
device abbreviation and reenter the command.
Device write locked

Explanation: The volume is write-locked; any write access is
prohibited.

User Action: Write-enable the unit and reenter the FMT command.

Disk is an alignment cartridge
Explanation: The device is a factory-created disk used to align
the heads in a disk drive and should not be used for other
purposes.
User Action: Use a disk that is not an alignment cartridge and
reenter the FMT command.

Error limit exceeded
Explanation: The number of errors FMT found on the disk exceeded
either the number of errors specified with the /ERL switch or the
default 256 (10) error limit that FMT sets.
User Action: Set a higher error limit if the /ERL switch was
used.

Error reading data

Explanation: FMT encountered an error when it tried to read data
from a disk.

User Action: None required. FMT retries the operation and
continues the verification.
Error reading header

Explanation: FMT encountered an error when it tried to read a
header during a verification operation.

None required. FMT retries the operation and

.
.
ha eroa=d

Use
~an fication
(10543 ne verilrLiCatloOl.

5-11

Error setting diskette density

Explanation: FMT tried to format a RX02 floppy disk but the
operation failed.

User Action: Check the syntax and reenter the command, resetting
the density.
Error writing data

Explanation: FMT encountered an error when it tried to write
sector headers.

User Action: None required. FMT retries the operation and
continues the verification.
Error writing header

Explanation: FMT encountered an error when it tried to write a
header.

User Action: None required. FMT retries the operation.

Failed to attach device
Explanation: FMT could not attach the device to be formatted.
User Action: Determine whether another task has attached the
device. If so, wait until the task exits or abort the task and
run FMT again.

Failed to read Manufacturer's Bad Sector File

Explanation: A disk hardware error occurred while FMT tried to
read the MDBSF on the last track of a device.

User Action: Reenter the command, including the Override switch
(/OVR) .
Fatal hardware error

Explanation: A fatal error occurred 1in the system hardware
configuration.

T~

User Action: Contact your DIGITAL Field Service representative.

Header compare error

Explanation: FMT found an error when it tried to compare headers
with the expected value during a verification error.

User Action: ©None required. FMT retries the operation.

Invalid switch

Explanation: An illegal switch or a switch not wvalid for the
specified device was used in an FMT command.

User Action: Check the syntax and reenter the command.

5-12

DISK VOLUME FORMATTER (FMT)

Manufacturer's Bad Sector File corrupt

Explanation: The factory-written bad block data file (MDBSF) on
the last track of the disk is in an unusable format.

User Action: Reenter the command with the Override switch (/OVR)
to prevent FMT from trying to use the corrupt bad block data.
Marked bad in Manufacturer's Bad Sector File

Explanation: 1Indicates that bad block information is recorded in
the MDBSF on the disk.

User Action: None required. This message is for your
information only.
Privilege violation

Explanation: FMT attempted an operation on a device that was
mounted or allocated to another user.

User Action: Reenter the FMT command, using a device that is not
mounted or allocated to another user.
Response out of range

Bxplanation: Parameters entered for manual formatting of an
individual sector or track were out of the range for the volume.

User Action: Check Table 5-1 (Section 5.2.2) for valid
parameters and reenter the command.

Syntax error
Explanation: FMT detected a syntax error in the command line.
User Action: Determine the correct command syntax and reenter
the command.

Unable to run badblock utility
Explanation: An FMT command specified the Bad switch (/BAD), but
BAD could not be spawned. Either the operating system does not
spawn tasks or BAD is not installed.
User Action: Run the BAD utility separately (see Chapter 6 for
more information).

Unrecoverable error - n
Explanation: An I/O error (number n) caused FMT to terminate.
User Action: Reenter the FMT command and, if the error occurs
again, try the command specifying a different device, or refer to

the error codes in the IAS/RSX-11 I/0 Operations Reference
Manual.

5-13

CHAPTER 6

The Bad Block Locator Utility (BAD) tests disks and DECtapes for the
location and number of bad blocks. BAD then records this bad block
information on the volume. Then you use the MCR Initialize Volume
command (INI), which allocates the bad blocks to the file
{0,0]BADBLK.SYS. The bad blocks are marked as 1in-use and therefore
cannot be allocated to other files.

BAD supports any last-track device as well as vendor-supplied
cartridges that do not have a prerecorded manufacturer's bad-sector
file on the last track (see Sections 6.4.1.1 and 6.4.1.2). You can
use BAD in its task version, which runs at the same time as other
tasks, or in its stand-alone version ([1,51]BADSYS.SYS), which runs by
itself on the computer. The stand-alone version is required if you
have a system with a single disk drive.

6.1 BAD COMMAND FORMAT
The command line for BAD is in the following format:

BAD>dev:[/swW] ...

dev
Specifies a physical device. The specification consists of two
alphanumeric characters followed by a 1- to 3-digit octal unit
number and colon.

/SwW

Specifies an optional switch that qualifies the BAD command line.
Multiple BAD switches for a device must be specified on one line.
If you do not specify any switch, BAD begins its pattern checking
of individual blocks.

6.2 BAD SWITCHES

Table 6-1 contains a reference list of BAD switches along with a brief
description of each. For a detailed description of BAD switches see
Section 6.6.

BAD BLOCK LOCATOR UTILITY (BAD)

Table 6-1
BAD Switches

Switch Function

For Task and Stand-Alone Versions

/ALLOCATE:volume label Prompts you for blocks to be allocated

or /ALO:volume label to BADBLK.SYS and to be entered in the
bad block descriptor file.

/LIST Lists bad blocks as they are located.

or /LI

/MANUAL Prompts you for additional bad blocks

or /MAN which are entered in the bad block
descriptor file.

/OVERRIDE Creates the bad block descriptor file on

or /OVR a last-track device.

/PATTERN=m:n Specifies the double word data pattern

or /PAT=m:n used to locate bad blocks.

/RETRY Recovers soft errors.

/UPDATE Reads the bad block descriptor file

or /UPD and prompts for input.

For Stand-Alone Version Only

/CSR=nnnnnn Specifies the CSR address of a device
that is not in a standard location.

/VEC=nnn Specifies the interrupt vector address
of a device that is not in a standard
location.

/WCHK Causes a write check.

/NOWCHK Negates /WCHK.

6.3 BAD AND INDIRECT COMMAND FILES

BAD can access an indirect command file that contains a series of BAD
command lines in the following manner:

BAD>@BADCMDS.CMD

In this example, BAD is invoked and accesses the file BADCMDS.CMD,
which contains a sequence of BAD command lines. BAD executes the
comands and returns with the BAD prompt. BAD allows nested command
files -- one command file can invoke another to a maximum depth of

+hraa
Ciirele.

BAD BLOCK LOCATOR UTILITY (BAD)

BAD can also be invoked within an indirect command file. Such a
command file can contain command lines for more than one utility and
is accessed by entering only the file specification preceded by the at
sign. For example:

>@INDIRECT.CMD

The default values for indirect command file specifications are:

dev SYO0:

ufqd The current UIC

file name No default

file type .CMD

version The latest version of the file

For complete information on how to use indirect command files, see the
RSX-11M/M-PLUS MCR Operations Manual.

6.4 PROCESSING BAD BLOCK DATA

This section contains information on how BAD tests the reliability of
disks and DECtapes and formats bad block descriptor entries and how
the MCR INI command uses bad block information.

6.4.1 Verifying Devices

BAD verifies disks and DECtapes by writing a test pattern onto each of
the blocks on the device, reading the pattern into a buffer in memory,
and comparing the pattern written with the pattern read. When BAD
processes a disk or DECtape, all existing data is destroyed.

BAD writes the test pattern to several blocks in a single write
operation. If an error occurs in writing, reading, or comparing any
of these blocks, BAD tests each of the blocks individually. The
/PATTERN switch may be used to specify the double-word test pattern.
Its default values are 165555(8) and 133333(8), which are replicated
128(10) times per block. If BAD finds no bad blocks during individual
testing, the error logging subsystem may still log errors due to 1long
data transfers.

6.4.1.1 BAD and Non-Last-Track Devices - As BAD locates bad blocks,
it stores their addresses in a memory buffer. After locating all bad
blocks on a device, BAD records the addresses of the bad blocks on the
last good block of the device. Consecutive bad blocks are recorded as
single entries. On non-last-track devices, BAD storage allows 126(10)
entries of bad block addresses. If more than the maximum number of
entries is recorded, BAD terminates with an error message. There must
be at least one good block in the last 256 (10) blocks of the volume
for BAD to create this file, which is called the bad block descriptor
file.

6.4.1.2 BAD and Last-Track Devices - BAD records bad block
information differently on last-track devices than on non-last-track
devices. Last~track devices include the RK06/07, RL01/02, RP07 and
the RM02/03/05/80. The 1last track 1is divided into two areas, the
Manufacturer's Detected Bad Sector File (MDBSF) and the Software
Detected Bad Sector File (SDBSF). The MDBSF is created when the
manufacturer formats the pack. This operation also sets bits in any

6-3

BAD BLOCK LOCATOR UTILITY (BAD)

header that is marked bad in the MDBSF and sets the SDBSF to be empty.
When you run BAD, entries are made in the SDBSF. BAD storage allows
126(10) entries of bad block addresses. The information contained in
the two last-track files is combined to form [0,0]BADBLK.SYS when you
issue the MCR INI command.

6.4.2 Format of Bad Block Descriptor Entries

For non-last-track devices, BAD uses the 1last good block as a
descriptor file for bad blocks. The address of a bad block, or the
first address in a sequence of consecutive bad blocks, is stored as a
double-word entry in the bad block descriptor file. The first word of
this double-word contains two entries: the high-order byte contains
the number of bad blocks minus 1 and the low-order byte contains bits
16 through 23 of the logical block number of a bad block or a range of
bad blocks. The second word of the double-word contains bits 0
through 15 of that block number.

For last-track devices, bad block descriptor entries are recorded as a
double-word in the SDBSF. The first word of the double word contains
the address of the cylinder on which the bad block exists. The
high-order and low-order bytes of the second word contain,
respectively, the track and sector addresses of the bad block.

6.4.3 The INI Command and BAD

Use BAD followed by the MCR INI command to produce a Files-1l1l volume.
The INI command uses the bad block information to create the file
[0,0]BADBLK.SYS. The [0,0] BADBLK.SYS file has allocated to it those
blocks found to be bad, thus ensuring that the file system does not
allocate a known bad block to a file.

For information on how to use the INI command, see the RSX-11M/M-PLUS
MCR Operations Manual.

6.5 USING BAD

Before BAD can validate a device, that device must be formatted by the
manufacturer or by FMT (see Chapter 5).

The following example illustrates a typical sequence of steps for
introducing a disk (DKl:) to an RSX~11M or RSX-11M-PLUS system.

ALL DK1: ALL DK1: @D

FMT DK1: [/sw] ®ED MOU DK1l:/FOR G

BAD DK1: [/sw] G FMT DK1l: [/sw]

INI DK1:[labell] [/sw] G BAD DK1l: [/sw] G

MOU DK1: {label] [/sw] @D INI DK1l:[label] [/sw] @D

DMOU DK1l:
MOU DK1: [label] [/sw] GD

BAD BLOCK LOCATOR UTILITY (BAD)

You may execute BAD while other RSX-11M/M-PLUS tasks are executing.

Note that if the /ALO switch (Section 6.6.1) is used with BAD, the
volume must be mounted as a Files-11l device and the user must have a
privileged account.

6.5.1 Programming Considerations

This section contains information you should know before you use BAD.

6.5.1.1 Use of Block Zero - On bootable disks, block 2zero contains
the bootstrap block. If block =zero 1is bad, BAD prints a message
warning the operator not to use the disk for a bootable system image.

6.5.1.2 Device Controller Errors - The error 1logging subsystem may
log errors even though BAD is not reporting bad blocks. These errors
may be encountered during long data transfers and may originate with
the device controller.

6.6 BAD SWITCH DESCRIPTIONS

The following sections describe the switches you can use with BAD
commands. The command format is described in Section 6.1.

6.6.1 Switches for Both Task and Stand-Alone Versions of BAD
/ALLOCATE:volume label

Causes BAD to prompt you for additional bad blocks which are
added to the bad block descriptor file and allocated to [0, 0]
BADBLK. SYS. The /ALLOCATE switch eliminates the need to
reinitialize the disk after updating the bad block descriptor
file. This switch does not cause BAD to write pattern checks.

NOTE

To use this switch, the volume must be
mounted as a Files-1l1 device and the
user must be privileged.

/LIST

Causes all bad blocks to be printed by number (in decimal) on
your terminal. The bad blocks are listed as BAD performs a data
pattern check on each block. BAD does not list manually entered
blocks that are tested as reliable. This switch is valid for all
devices.

BAD BLOCK LOCATOR UTILITY (BAD)

/MANUAL

Causes BAD to first prompt you for bad block information and to
then perform data pattern checking. Any block that you enter is
included in the bad block descriptor file or the SDBSF.

/OVERRIDE

Causes BAD to ignore last track information and write a bad block
descriptor file on the last good block before the last track. 1In
other words, the /OVERRIDE switch causes BAD to treat a
last—-track device as a non-last-track device. If your device has
no bad block file on the 1last track, or if you suspect the
reliability of the 1last track, use the /OVERRIDE switch before
using the MCR INI command. The /OVERRIDE switch is wvalid only
for last-track devices.

NOTE

If you use this switch, the /BAD=[OVR]
option for initializing a volume must
also be used with the INI command to
construct the bad block file
[0,0]BADBLK.SYS. See the RSX-11M/M-PLUS
MCR Operations Manual for a description
of the MCR INI command.

/PATTERN=m:n

Causes BAD to locate bad blocks by means of a user-specified
double word data pattern.

The variable m:n represents the two 16-bit octal numbers used as
the double word data pattern. A decimal number may be specified
by placing a period after the number.

/RETRY

Causes BAD to attempt a recovery of hardware errors by means of
the device driver. This also means that soft errors, such as an
ECC (Error Correction Code) correctable error, will be recovered
and the block will be marked as good.

/UPDATE

Causes BAD to immediately read the bad block decriptor file and
prompt you for additional bad blocks. This switch does not cause
BAD to write pattern checks.

NOTE

Updating the bad block descriptor £file
on file-structured volumes does not
cause the file [0,0]BADBLK.SYS to be
updated.

Examples of the /MANUAL, /ALLOCATE and /UPDATE Switches, which require
user input, are described in the following sections.

6-6

BAD BLOCK LOCATOR UTILITY (BAD)

6.6.2 The /MANUAL, /ALLOCATE and /UPDATE Switches: Examples

If you enter bad blocks by using the /MANUAL, /ALLOCATE or /UPDATE
switches, BAD will prompt you as follows:

BAD>LBN (S)=
You may then enter bad blocks in the format:
blocknum:number

The variable number specifies the number of sequential bad blocks
beginning at the specified block number blocknum. The colon is
required when you specify a sequence of bad blocks in this format.
Both blocknum and number default to decimal values unless preceded by
a pound sign (#), which indicates an octal value. For example:

BAD>LBN (S)=70: 3D

This command enters the block numbers 70, 71, and 72 in the bad block
descriptor file. If you are using the /ALLOCATE switch, the blocks
are also allocated to [0, 0]BADBLK.SYS.

You can also specify a single bad block. For example:
BAD>LBN (S)=3 @D

This command enters block 3 in the bad block descriptor file. The
/ALO switch also allocates block 3 to BADBLK.SYS.

You can use both of these forms on the same command 1line. For
example:

BAD>LBN(S)= 100:2,3, 200:100 45:1

This command enters blocks 100, 101, 3, 200 through 299, and 45 in the
bad block descriptor file. The /ALO switch also allocates these
blocks to [0,0] BADBLK.SYS. You can separate bad block sequences with
a space, tab, or comma.

If you are using the Manual or Update switches, and enter a carriage
return 1in response to the prompt, BAD will list all the sequences in
the bad block descriptor file. For example:

BAD>LBN(S)=6D
000100: 002
000003:001
000200: 100
000045: 001

BAD>LBN(S)=

The first number in the display represents the beginning block of the
sequence. The second number represents the number of bad blocks. Bad
block numbers are listed in decimal.

BAD BLOCK LOCATOR UTILITY (BAD)

If you are using the /ALLOCATE switch and enter a carriage return in
response to the prompt, BAD will 1list all the LBNs allocated to
BADBLK.SYS before it will 1list the LBNs in the bad block descriptor
file. For example:

BAD>LBN (s) =6
LBNs allocated to BADBLK.SYS =

004799: 001
000100: 002
000003: 001
000200: 001

LBNs in BAD BLOCK File =

000100: 002
000003:001
000200: 001
000045: 001

BAD> LBN(s) =

In this example, LBNs 100, 101, 003, and 200 are allocated to [0,0]
BADBLK.SYS, as is LBN 4799 which 1is the LBN for the bad block
descriptor file on this particular disk. Note that the LBN for the
bad block descriptor file does not appear in the Bad Block file.
However, this disk has one LBN (LBN 45) which is contained in the Bad
Block file but is not yet allocated to [0,0] BADBLK.SYS. You can now
allocate LBN 45 by entering it in response to the LBN(s)= prompt.
(The "Duplicate block number"™ message will appear because the LBN
already exists in the Bad Block file.)

When a bad block sequence is entered, BAD determines if these bad
blocks are adjacent to an already existing sequence. If you are using
a non-last-track device, BAD appends your bad block entry to the
existing sequence. If you are using a last-track device, BAD records
individual bad blocks in core memory, but 1lists entries at vyour
terminal as part of existing bad block sequences.

When vyou have finished supplying information for the /MANUAL,
/ALLOCATE, or /UPDATE switch, enter ESCAPE, ALTMODE, or CTRL/Z in
response to the prompt. The bad block descriptor file will then
either be rewritten with the new bad block information (if you are
using the /UPDATE or /ALLOCATE switch) or pattern checking will start
(if you are using the /MANUAL switch). Blocks that you enter manually
and that BAD decides are reliable are included in the bad block
descriptor file.

6.6.3 Switches for Stand-Alone System Version Only

/CSR=nnnnnn
The variable nnnnnn is a new CSR address.
This switch allows you to specify the CSR address of the device
so that it conforms to that of the device in the user's system.

The /CSR switch remains in effect and need not be repeated if
more command lines are issued.

BAD BLOCK LOCATOR UTILITY (BAD)

/VEC=nnn
The variable nnn is a new interrupt vector address.

This switch allows you to specify the interrupt vector address so
that it conforms to the vector address of the device in the
user's system. The /VEC switch remains in effect if more command
lines are issued.

/WCHK

This switch causes a write-check operation to occur after each
write operation. The switch is not available for DT:-, DX:-, or
DY: -type devices.

/NOWCHK

This switch negates the /WCHK switch.

BAD expects to see all switches on a single command 1line. For
example:

BAD>DM3: /OVR/LI/VEC=300/CSR=174406

This command 1line locates all bad blocks on DM3:, ignores the
last-track data, lists all bad blocks, specifies 300 as the interrupt
vector, and specifies 174406 as the CSR address. All switches are
validated for proper syntax before the actual bad block detection
takes place.

6.7 DEVICES SUPPORTED BY BAD

The devices in Table 6-2 are supported by the stand-alone version of
BAD. If you have a task version of BAD, the Executive will support
any device suitable to your system's configuration.

Table 6-2
Devices Supported by Stand-alone BAD
Mnemonic Type CSR Vector
DB RP04/05/06 176700 254
DD TUS58 DECtape II 175600 300
DF RF11 Fixed-Head Disk 177460 204
DK RK03/05/05F Cartridge Disk 177404 220
DL RLO1/RL0O2 Cartridge Disk Pack 174400 160
DM RK06/07 Cartridge Disk Pack 177440 210
DP RPR02/RP02/03 Disk Pack 176714 3201

1. Nonstandard Vector Address .
(continued on next page)

BAD BLOCK LOCATOR UTILITY (BAD)

Table 6-2 (Cont.)
Devices Supported by Stand-alone BAD

Mnemonic Type CSR Vector
DR RM02, and RMO3, 176700 3401
RM05, RM80, RP0O7 Disk Pack

DS RS03/04 172040 3101
DT TU56 DECtape 177342 214

DU RA80 Fixed Media Disk 177510 154

DX RX01 Floppy Disk 177170 264

DY RX02 Floppy Disk 177170 3501
EM ML1l Electronic Memory 172000

1. Nonstandard Vector Address

6.8 BAD MESSAGES

This section lists the BAD messages, gives a brief description of the
condition that causes each message, and suggests a response to the
condition. BAD messages are arranged alphabetically beginning with
the text following the device symbol (ddu:).

BAD --ddu: Allocation Failure

Explanation: BAD failed to allocate the block number sequence
you entered. The I/O failed for a reason other than because the
block number was already allocated to another file. This message
applies to the /ALLOCATE switch only.

User Action: Either the volume is bad or the drive requires
maintenance. Use another volume or contact your DIGITAL Field
Service Representative to fix the drive.

BAD -- ddu: Bad block file not found

Explanation: The bad block descriptor file could not be read in
/UPDATE mode.

User Action: You must use the device without updating the bad
block file, or reformat the device and destroy all data.
BAD -- ddu: Bad block file overflow

Explanation: BAD detected more than 126(10) entries of bad
blocks. This message usually indicates a device unit failure.

User Action: Either the volume is bad or the drive requires

maintenance. Use another volume or contact your DIGITAL Field
Service Representative to fix the drive.

6-10

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD BLOCK LOCATOR UTILITY (BAD)

—— ddu: Bad block found - LBN= nnnnnn.

Explanation: Bad blocks are reported in this format, where LBN
is the Logical Block Number (decimal).

User Action: None. This message is informational and applies to
the /LI switch only.

—— ddu: Block already allocated - LBN= numb

Explanation: The block number sequence you entered is already
allocated to a file (the file may or may not be BADBLK.SYS). The
value numb is the sequence you entered. The bleck sequence
indicated by numb and 1ist of block numbers which follow numb
were neither allocated to [0,0]BADBLK.SYS nor entered into the
bad block descriptor file. This message only applies to the
/ALLOCATE switch.

User Action: Reenter the command line with another wvalue.

~— ddu: Block 0 bad - Do not use as system disk

Explanation: This is a warning message. When block zero is bad,
a bootstrap block cannot be written on the disk, making it
useless as a system disk.

User Action: Label the disk to ensure that no one attempts to
use it as a system disk.

-- Command I/0 error

Explanation: BAD did not recognize the command line entered from
the keyboard.

User Action: Reenter the command line.

—-- Command too long
Explanation: The command was longer than 80. characters.

User Action: Reenter the command line.

~— ddu: CSR address not in system

Explanation: Self-explanatory. This message occurs only in the
stand-alone system version of BAD.

User Action: Reenter the command 1line, specifying the proper
value for the /CSR switch.

—- ddu: Device offline

Explanation: 1In the stand-alone version of BAD, the specified
device 1is not in the hardware configuration, or the /CSR switch
is improperly set.

se
ec

A~
o3
r

T
to

<«

6-11

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- Duplicate block number - numb

Explanation: The block number sequence you entered is already
present in the bad block file. The value numb is the sequence
you entered. BAD ignores any block number sequences you may have
entered after the duplicate block numbers.

This message applies only to the /ALLOCATE, /MANUAL and /UPDATE
switches. If this message appears when using the /ALLOCATE
switch, it means that the block number which was allocated to
[0,0]BADBLK.SYS already existed in the bad block descriptor file.
User Action: Reenter the command line with another value. This
message applies to the /MANUAL, /ALLOCATE and /UPDATE switches
only.
BAD -~ ddu: Failed to attach

Explanation: BAD could not gain control of the device to be
tested.

User Action: Determine if another task has attached the device.
If so, wait wuntil the task exits or abort the task to gain
control of the device for BAD.

BAD ~~ ddu: Failed to read BADBLK.SYS header

Explanation: Self-explanatory. This message only applies to the
/ALLOCATE switch.

User Action: The disk must be 1initialized wusing the MCR INI
command .

BAD ~- ddu: Failed to read Manufacturer's Bad Sector File
Explanation: A disk-read hardware error occurred while BAD was
attempting to read the factory-written bad block data on the
last-track device cartridge.
User Action: Reenter the command line with the /OVERRRIDE switch
included.

BAD -- ddu: Failed to read Software Bad Sector File

Explanation: The software-detected bad sector file could not be
read in update mode.

User Action: Reenter the command line with the /OVERRIDE switch
included.
BAD -- ddu: Failed to write Bad Block File

Explanation: BAD could not write the bad block file. This
condition usually results from a disk write error.

User Action: Reenter the command line. If the problem persists,
the disk pack should be discarded.

6-12

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Fatal hardware error
Explanation: Self-explanatory.

User Action: Contact your DIGITAL Field Service representative.

BAD -- ddu: Handler/Driver missing
Explanation: The disk driver is not loaded.

User Action: Load the disk driver and reenter the command line.

BAD -- ddu: Home block not found
Explanation: BAD was unable to read the home block while
attempting to wvalidate the volume 1label. This message only
applies to the /ALLOCATE switch.
User Action: The disk must be initialized using the MCR INI
command .

BAD -- ddu: Illegal device

Explanation: The device to which bad block processing is
directed does not support a Files-11 structure.

User Action: You must reformat your device before running BAD.

BAD —- Invalid block number - numb

Explanation: You entered an invalid block number sequence. The
value numb is the invalid sequence.

User Action: Type another value and reenter the command 1line.
This message applies to the /MANUAL, /ALLOCATE or /UPDATE
switches only.

BAD -- Invalid switch

Explanation: Self-explanatory

User Action: Reenter the command line with a proper switch.

BAD -- ddu: Is an alignment cartridge
Explanation: The factory-written label on the last track of a
last-track device cartridge indicates an alignment cartridge (for
use only by Field Service).

User Action: Mount and process another cartridge.

BAD -- ddu: Manufacturer's Bad Sector File corrupt

Explanation: The factory-written bad block data in the 1last
track of a last-track device is in an inconsistent format.

User Action: Reenter the command line with the /OVERRIDE switch
included.

6-13

BAD BLOCK LOCATOR UTILITY (BAD)

BAD ~- ddu: Not in system
Explanation: The requested device was not made part of the
system during system generation, or the device does not exist on
the host configuration.
User Action: Ensure that you entered the command line correctly
and specified the right device.

BAD -- ddu: Not ready

Explanation: The unit had not reached operating speed when BAD
attempted to access it.

User Action: Allow the wunit to reach operating speed, then
reenter the command line.
BAD -- ddu: Privilege violation

Explanation: An operation was attempted for a device that was
mounted or allocated to another user.

User Action: Allocate another device, mount the device (if
necessary), and reenter the command line.

BAD -- Syntax error
Explanation: BAD detected a syntax error on the command line.
User Action: Determine the correct syntax and reenter the
command line.

BAD -- ddu: Total bad blocks = n.

Explanation: This is an information message indicating the total
number (in decimal) of bad blocks on the volume.

User Action: Write the bad blocks count on the volume label.

BAD -- ddu: Unrecoverable error n

Explanation: An I/O error caused BAD to terminate. The value
[n] 1is the error code number of the I/O error returned by the
driver.

User Action: See the IAS/RSX-11 I/0 Operations Reference Manua
for an explanation of the error code number. If the same erro
persists, contact your DIGITAL Field Service representive.

Lo B I

BAD -- ddu: Vector not multiple of four
Explanation: Self-explanatory.

User Action: Reenter the command line including the /VEC switch
with the proper value.

BAD BLOCK LOCATOR UTILITY (BAD)

BAD -- ddu: Volume label incorrect

Explanation: The volume label entered with the /ALLOCATE switch
did not match the label on the disk.

User Action: Reenter the command line using the correct volume
label.

BAD -- ddu: Write locked
Explanation: The unit is write-locked.

User Action: Write-enable the unit and reenter the command 1line.

6-15

CHAPTER 7

BACKUP AND RESTORE UTILITY (BRU)

The Backup and Restore Utility (BRU) allows you to back up and restore
Files-11 volumes. You can use BRU to transfer files from a volume to
a backup volume (or volumes) to ensure that a copy of the files Iis
available in case the original files are destroyed. 1If the original
files are destroyed, or if for any other reason the copy needs to be
retrieved, vyou can restore the backup files with BRU. 1In the process
of copying, BRU also reorganizes and compresses files for efficient
storage and access.

You can use BRU stand-alone as well as on-line. BRU64K 1is the
stand-alone version on RSX-11M and BRUSYS is the stand-alone version
on RSX-11M-PLUS.

Backup and restore operations take place on disk and magnetic tape
volumes:

e Disk to tape -- for backup operations
e Tape to disk -- for restore operations
® Disk to disk -- for either backup or restore operations

In addition to these basic data transfer functions, BRU provides
command qualifiers that:

e Initialize disks

e Perform selective backup and restore operations

® Control tape processing such as density, 1length, rewinding,
appending, and 1labeling according to the American National
Standard (ANS) X.327-1978

e Perform volume and data checking

@ Display information such as backup set names and file names

Section 7.9 contains examples of various BRU operations.

BRU can also be invoked through the DCL BACKUP command. For more
information, see the RSX-11M/M-PLUS Command Language Manual.

7.1 ON-LINE BRU DISK AND TAPE DEVICE INFORMATION
BRU uses disk and tape volumes for its backup and restore operations.

Input disks must be in Files-1ll1 format. For tapes and multivolume
backup disks, BRU has its own format.

7-1 April 1983

BACRKUP AND RESTORE UTILITY (BRU)

BRU backs wup from unmounted, mounted, and mounted foreign disk
volumes.

BRU does not use the file system on input disks. However, when you
are using a mounted volume for a backup operation, BRU checks the read
access privileges of UFDs and files against the UIC under which BRU is
running. To back up from a mounted disk volume that is in Files-11
format, you must specify the /MOUNTED qualifier. For unmounted disks
or disks mounted foreign, no qualifier is necessary.

BRU also restores to unmounted and mounted disk volumes. Specify the
/JINITIALIZE qualifier to restore to an unmounted volume on an RSX-11M
system or a volume mounted foreign on an RSX-11M or M-PLUS system.
This qualifier initializes the volume to Files-1l1 format. To restore
to a mounted Files-11 volume on either system, specify the
/NOINITIALIZE qualifier to 1indicate to BRU that the disk is mounted
and already in Files-11 format.

BRU backs up to and restores from tape volumes. The tapes must be
unmounted or mounted foreign on RSX-11M or mounted foreign on
RSX-11M-PLUS. No qualifier is necessary in either case.

Table 7-1 summarizes how to initialize and mount a volume on each

system. BRU returns an error message for any wrong combination of
conditions.

Table 7-1
Mounting and Initializing Volumes
System vVolume Mount Status Mandatory Qualifier
RSX-11M Input disk Not mounted None
Mounted Files-11 /MOUNTED
Mounted foreign None
Output disk | Not mounted /INITIALIZE
Mounted Files-11 /NOINITIALIZE
Mounted foreign /INITIALIZE
Input tape/ | Not mounted None
output tape | Mounted foreign None
RSX-11M-PLUS Input disk Mounted foreign None
Mounted Files-11 /MOUNTED
Output disk | Mounted foreign /INITIALIZE
Mounted Files-11 /NOINITIALIZE
Input tape/ | Mounted foreign None
output tape

For more detailed information on Files-11, refer to the IAS/RSX-11 1/0
Operations Reference Manual.

With BRU, you can also specify that a disk volume contain up to 65,500
(64R-36) files. The default is the value assigned to the input disk.
See the descriptions of the /HEADERS and /MAXIMUM qualifiers in
Section 7.4 for more information.

7-2 April 1983

BACRKUP AND RESTORE UTILITY (BROU)

7.1.1 Backup Sets

A backup set consists of all the data directed to or from a tape or
disk volume (or volumes) during a single backup or restore operation.
Physically, more than one backup set may be contained on a tape or
disk, or a backup set can extend over several tapes or disks.

7.1.2 Tape Sets and Disk Sets

More than one backup set can be contained on a tape or disk, or a
backup set can extend over several tapes or disks. In either case,
the resulting output is called a tape or disk set.

A tape or disk set consists of the tape or disk volume (or volumes) to
which data is transferred during a single backup operation.

7.1.2.1 Tape and Disk Backup Operations - There are several
classifications of disk and tape backup operations to choose from.
You can classify a backup operation by how much of the original tape
or disk you are backing up and also by the format of the output
medium.

The following backup operations are available to you:
e Full backup
@ Selective backup
e Conventional backup
e Image backup (for disks only)

A full backup or a selective backup refers to the files you are
backing up. A conventional backup or an image backup refers to the
format of the output tape or disk. When you choose to do either a
full backup or a selective backup, you may or may not also choose to
do a conventional backup or an image backup.

The following sections explain the different kinds of backup
operations.

7.1.2.2 Full and Selective Backup Operation - A full backup transfers
all the original files to a backup volume (or volumes). Thus, a full
backup ensures that you have a complete copy of the original disk.

A selective backup is a partial backup. If you do a selective backup,
a subset of the original tape or disk is backed up. You select and
identify the files to be backed up by UFD, date, or file
specification.

One type of selective backup 1is the incremental backup. An
incremental backup 1is a backup of files by date only. Incremental
backups and selective backups are helpful over a short time span when
a full backup would take up too much time or system resources.

7-3 April 1983

BACKUP AND RESTORE UTILITY (BRU)

7.1.2.3 Conventional Backup Operation - A conventional backup to tape
copies the files from the original disk to a backup set on a BRU
format tape. The backup set can span multiple tapes and you can
append additional backup sets to a volume (or volumes). You cannot
access the files in the backup set directly. Therefore, you must
restore the backup set to disk before you can access the individual
files contained in it.

A conventional backup to disk copies the files from the original disk
to another Files-11 disk. You can access the files on the input disk
or the output disk directly, eliminating the need to do a restore
operation.

If the output disk already has a Files-11 structure, you can add the
files from the original disk. If the output disk does not have a
Files-11 structure, you must use BRU with the /INITIALIZE qualifier to
create a Files-11 structure on the output disk.

7.1.2.4 Image Backup to Disk Operation - An image backup to disk
copies the original disk to a container file on another Files-11 disk
(or disks). 1Image backups are used for multivolume backup operations.

A disk container file has features similiar to features of tapes
created by a conventional backup to tape. A disk container file can
span multiple disks, and you can add several backup sets to a
container file.

If you want to do a backup operation, you must specify the SAVE option
with the /IMAGE qualifier. If you want to do a restore operation, you
must specify the RESTORE option with the /IMAGE qualifier. In order
to access the files in a backup set, you must restore the backup set
to another disk. (See Section 7.4 for a description of command
qualifiers.)

If the output disk already has a Files-1ll structure, you can add the
container file to it. If the output disk does not have a Files-11
structure, BRU creates its own structure on the disk with the
container file.

7.1.3 Multivolume Tape and Disk Operations

When you specify a magnetic tape drive as the output device or when
you specify a disk for an 1image backup 1in a BRU operation, BRU
transfers the data contents of the input disk to the tape or disk on
the drive. This data transfer often involves more than one reel of
tape or more than one disk and may use more than one tape or disk
drive.

You can specify more than one type of drive in a single BRU command.
However, although you can specify up to eight drives per command, you
can specify an individual tape or disk drive only once.

If the number of volumes required exceeds the number available, BRU
lets vyou replace tapes or disks on the specified drive in round-robin
fashion.

You can only use all 7-track or all 9-track tapes in a multivolume

tape set. You cannot switch from one track type to the other within
the set.

7-4 April 1983

BACKUP AND RESTORE UTILITY (BRU)

You can only use the same disk types when backing up to multiple disk
in image mode. You cannot mix disks.

7.1.4 Supported Devices
Table 7-2 lists all the devices that on-line BRU supports. The disks

from DB through EM are all block-structured devices.

Table 7-2
Devices Supported by On-Line BRU

Mnemonic Type

DB RH11/RP04/RP05/RP06 or RH70/RP04/RPO5/RP06 disk
pack

DD TUS58 cassette (DECtape II)

DF RF11/RS11 fixed head disk

DK RK11/RK05/RK0O5F cartridge pack

DL RL11/RLO1/RL02 cartridge disk

DM RK611/RK06/RK07 cartridge disk

DP RP11/RP02/RP03 disk pack

DR RH70/RM03/RM05/RM80/RP07 or RH11/RM02 disk pack

DS RH11/RS03/RS04 or RH70/RS03/RS04 fixed head disk

DT TC11/TU56 DECtape

DU RA80/RA60/RA81/RC25/RD51/RX50 disk

DX RX11/RX01 floppy disk

DY RX211/RX02 floppy disk

EM ML1ll electronic memory

MF TM78/TU78 magnetic tape

MM RH11/TM02-03/TE16/TUl6/TU45/TU77 and
RH70/TM02-03/TE16/TU16/TU45/TU77
9-track magnetic tape

MS TS11/TSV05/TU80 magnetic tape

MT TM11/TE10/TUl0 7- or 9-track magnetic tape or
TS03 9-track magnetic tape

7.2 COMMAND LINES

This section describes the rules for entering command lines for BRU.
The section defines the command line syntax and describes prompts,
command line parameters, and command qualifiers.

7-5 April 1983

BACKUP AND RESTORE UTILITY (BRU)

7.2.1 Command Line Syntax
BRU command lines have a maximum length of 256 (10) characters except
in one case of using continuation lines (see Section 7.2.2.2). The
general syntax of the BRU command line is:
BRU>/qualifier(s) indevicel:,...[filespec,...] outdevicel:,...
However, if you type only
>BRU @ED)
the following three prompts appear on the terminal:
FROM:
TO:

INITIALIZE [Y/N]:

FROM
Requests that you enter the name (or names) of the devices on
which the input volume (or volumes) reside. The names should
be in the form specified in the description of the command line
parameters (see Section 7.2.2). If you want, you may specify a
UIC, but this is not required.

TO

Requests that you enter the name (or names) of the output
devices. The names should be in the form specified in the
description of the command line parameters (see Section 7.2.2).
The UIC should not be specified in the command line because BRU
tries to copy the entire UIC.

IRITIALIZE {Y¥/N]
Enter Y (for YES) if you want to initialize the output volume.

Enter N (for NO) if you do not want to initialize the output
volume. .

There is no default answer. You must respond with either Y or
N.

7.2.2 Command Line Parameters

The parameters for BRU command 1lines are gquaiifiers, device
specifications, and file specifications.

/qualifier (s)

Specifies any of the command qualifiers listed in Section 7.3.
if two or more gualifiers are specified, they must be
contiguous, that is, separated with a slash only. The
qualifiers can appear in any order.

You can use a shorter form of a qualifier as 1long as it is
unique. All BRU qualifiers are unique to three characters,
For example:

BRU>/REW/INI/OUT:BACKUP MMO: DBO:

7-6 April 1983

BACRKUP AND RESTORE UTILITY (BRU)

When a qualifier has options, you must separate the qualifier
from the option by a colon in the form:

/qualifier:option
indevice

Specifies the physical device (or devices) from which data is
transferred. For tapes and for disks (if you are using the
/IMAGE qualifier) you can specify more than one input device
and more than one type of drive. Devices are specified in the
form:

dd[nnl:
The variable dd represents the device mnemonic and nn

represents the octal unit number associated with that device.
The unit number is specified as one or two digits; the default

unit number is 0. For example, a TU77 tape drive can be
referenced as MM0O0O:, MMO:, MM:, MMO0l:, MMl:, and so forth,
depending on your configuration. The colon 1is a required

delimiter.

Separate the device specifications with commas when you specify
more than one device.

filespec

Indicates the file specification wused to select particular
files or categories of files to be backed up or restored. The
file specification is in the following format:

[ufd] filename.filetype;version

You can specify up to 16(10) file specifications in each
command line. When you enter a command line with no file
specifications, all the files on the input volume are copied to
the output volume.

Files can be backed up or restored selectively by UFD, file
name, file type, or version number. When backing up or
restoring selectively by version number, you must specify
either an explicit version number or no version number at all
or a wildcard (*). The wildcard has the same effect as no
version number. BRU does not support 0 or -1 as version
numbers.

outdevice

Specifies the output device to which data is being transferred.
For tapes and for disks (if you are using the /IMAGE qualifier)
you can specify more than one output device. The form 1is the
same as for indevice (described previously).

7.2.2.1 Wildcards in Input Specifications - The following wildcard
(*) features are provided for input file UFD specifications:

[*,*] means all group,member combinations.
[nl,*] means all member numbers for group nl.
[*,n2] means all group numbers for member n2.

BRU also supports the wildcard in the remaining elements of a file
specification: file name, file type, and version number. BRU

7-7 April 1983

BACKUP AND RESTORE UTILITY (BRU)

generally follows the rules for use of wildcards (see the
RSX-11M/M-PLUS MCR Operations Manual), except in the following two
instances:

e When you omit a file specification element, BRU treats the
omitted element as if it were a wildcard. For example, when
you specify only file name and file type in a file
specification, all version numbers are transferred in the
backup or restore operation. However, when you omit the
UFD, it defaults to your current UIC.

® When you specify particular UFDs on a command line but do
not specify file names and/or file types, all the files in
those UFDs are transferred in the backup or restore
operation. That is, you do not have to specify [ufd]*.*.

7.2.2.2 Continuation Lines - BRU command 1lines have a maximum
length of 256 (10) characters. BRU allows you to continue a command
line onto more than one 1line by wusing a hyphen (-) as the
continuation character.

Section 7.9 gives examples of continuation 1lines on RSX-11M and
RSX-11M-PLUS.

7.3 SUMMARY OF COMMAND QUALIFIERS, OPTIONS, AND DEFAULTS

Table 7-3 lists the command qualifiers available for backup and
restore operations. For a detailed explanation of each qualifier,
see Section 7.4. Examples of using various qualifiers are given 1in
Section 7.9.

Table 7-3
Summary of BRU Command Qualifiers

Command Qualifiers Options Default
/APPEND None
/BACKUP_SET:name Volume name

of the disk
being backed
up

(continued on next page)

7-8 April 1983

BACKUP AND RESTORE UTILITY (BRD)

Table 7-3 (Cont.)

Summary of BRU Command Qualifiers

Command Qualifiers Options Default
/BAD: MANUAL BAD:AUTOMATI
AUTOMATIC
OVERRIDE
/BUFFERS :number Number of
FCBs from the
input disk
/COMPARE None
/CREATED: BEFORE: (dd-mmm-yy hh:mm:ss) Current date

/DENSITY :number

/DIRECTORY
/DISPLAY
/ERRORS :number
/EXCLUDE

/EXTEND :number

/HEADERS :number

/IMAGE:

/INITIALIZE
/INVOLUME:name

/LENGTH : number

BEFORE :dd-mmm-yy
BEFORE:hh:mm:ss

AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

SAVE
RESTORE

Default
density of
drive

None

None
/ERRORS:25.
None

Number of
blocks from
the input
disk

Number of
headers
allocated
to the input
volume

None

None
None
The length of

the output
tape

(continued

on next page)

April 1983

BACKUP ANRD RESTORE UTILITY (BRU)

Table 7-3 (Cont.)
Summary of BRU Command Qualifiers

Command Qualifiers Options Default
/MAXIMUM:number Max imum
number of
files allowed
on input the
volume
/MOUNTED None
/NEW_VERSION /NOSUPERSEDE
/NOINITIALIZE None
/NOPRESERVE None
/NOSUPERSEDE /NOSUPERSEDE
/OUTVOLUME : name Input disk
volume name
/POSITION: BEGINNING Index file
MIDDLE position on
END the input
BLOCK:number disk
/PROTECTION: SYSTEM:value Protection of
OWNER:value the input
GROUP:value disk
WORLD:value
/REVISED: BEFORE: (dd-mmm-yy hh:mm:ss) Current date
BEFORE :dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:imm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss
/REWIND None
/SUPERSEDE /NOSUPERSEDE
/TAPE _LABEL:label None
/UFD None
/VERIFY None
/WINDOWS:value Number of
mapping
pointers on
the input
disk

BACKUP AND RESTORE UTILITY (BRU)

7.3.1 Command Qualifier Functions

When you initialize a disk using the BRU /INITIALIZE qualifier, use
the following qualifiers to specify various characteristics for the
output disk.

/BAD /NOPRESERVE
/BUFFERS /OUTVOLUME
/EXTEND /POSITION
/HEADERS /PROTECTION
/MAXIMUM /WINDOWS

The /MOUNTED command qualifier allows you to copy files from a mounted
disk.

The following command qualifiers allow you to copy files to a mounted
disk with various results. Note that these qualifiers are not
available in stand-alone BRU (see Section 7.5).

/NEW_VERSION

/NOINITIALIZE

/NOSUPERSEDE

/SUPERSEDE

/UFD
The following command qualifiers allow you to backup or restore data
according to:

® File specification

e Date and time of creation

e Date and time of revision
The qualifiers are:

/CREATED

/EXCLUDE

/REVISED
The fol}owing qualifiers allow you to control backup and restore tape
processing:

/APPEND /LENGTH

/BACKUP_SET /REWIND

/DENSITY /TAPE LABEL

/ERRORS

BACKOP AND RESTORE OUTILITY (BRO)

The following command qualifiers allow you to detect differences
between data on the input volume and data on the output volume:

/COMPARE
/INVOLUME

/VERIFY

The /DIRECTORY and /DISPLAY command qualifiers display information
about the files being transferred.

The /IMAGE command qualifier is for both disk image backups and all
restore operations.

7.4 DESCRIPTIONS OF COMMAND QUALIFIERS

The following paragraphs describe the BRU command gqualifiers in
detail.

/APPEND

Directs BRU to append a backup set from the input disk volume to
the 1last backup set on the output tape, or on the output disk if
you are using the /IMAGE qualifier.

If the output tape was positioned at the beginning the /APPEND
qualifier causes BRU to skip to the logical end-of-tape before it
writes the new backup set. BRU searches the output volume for
the last logical end-of-file.

If the output tape 1is already positioned at the logical
end-of-tape, /APPEND causes BRU to start writing where the device
is currently positioned.

If the output tape is not positioned at the beginning, or if it
is not at the 1logical end-of-tape, you can use the /REWIND
qualifier with /APPEND to rewind the tape and then space forward
until the logical end-of-tape.

If the tape is a continuation tape (that is, not the first tape
in a set) or if the last backup set does not end on the tape, BRU
displays an error message.

I1f the output device is a disk and you are wusing the /IMAGE
gualifier, /APPEND causes BRU to check the container file header
for the logical end-of-file on the output disk. BRU then starts
writing at the logical end-of-file.

If the output disk is a continuation disk (that is, not the first
disk in a set) or 1if the last backup set does not end on the
disk, BRU displays an error message.

You cannot use the /APPEND qualifier during a backup operation to
a mounted disk.

7-12 April 1983

BACKUP AND RESTORE UTILITY (BRU)

/BACKUP_SET:name

Specifies the name of the backup set (refer to Section 7.1.l1) to
be placed on tape or disk. For tape and for an unmounted disk,
the default name is the volume name of the disk being backed up.
This name may be up to 12(10) characters long. For a mounted
input or output disk during an image backup or restore operation,
you can specify the full backup set £file name with the
/BACKUP SET qualifier. If you do not specify the file name, the
default is [0,0]BACKUP.SYS.

When applied to an output volume, the backup set name assigns the
name of the backup set being placed on the volume. BRU supports
multiple backup sets on a single volume.

When this qualifier is applied to an 1input tape vd&lume, BRU
searches the first tape for the specified backup set name. If
you do not specify a backup set name with the input volume, BRU
restores the first backup set it finds on the tape. You can
restore several sequential backup sets from the same tape without
rewinding the tape between BRU operations. BRU does not rewind
the first device in a backup set unless you specify the /REWIND
qualifier.

When this qualifier is applied to an input disk volume, BRU
searches the entire disk for each backup set you specify. Each
backup set is then restored in the order of the backup set names
you provided.

/BAD:AUTOMATIC
OVERRIDE
MANUAL

The /BAD qualifier creates the file BADBLK.SYS on the output
disk. The qualifier is wused with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

For complete information on how to use the options for /BAD, see
Section 7.6. The following are summary descriptions only.

For last-track devices, the AUTOMATIC option causes BRU to use
the manufacturer-written bad block information and the
software-detected bad sector file to create BADBLK.SYS. For
nonlast-track devices, it uses the software bad block descriptor
block to create BADBLK.SYS. AUTOMATIC is the default option.

The OVERRIDE option applies only to last-track devices, causing
the last-track device to appear to be a nonlast-track device.
When OVERRIDE is specified, BRU uses the software bad block
descriptor block to create BADBLK.SYS and ignores the
manufacturer-written information.

The MANUAL option accepts the addresses of bad blocks you enter
interactively at your terminal. It also specifies that BRU use
either the manufacturer-written bad block information and the
software-detected bad sector file (for last-track devices) or the
bad block descriptor block (for nonlast-track devices) to create
BADBLK.SYS.

7-13 April 1983

BACKUP AND RESTORE UTILITY (BRU)

/BUFFERS :number

Specifies the default number of directory File Control Blocks
(FCBs) on each volume. The FCBs are stored in memory by the
Ancillary Control Processor (ACP) when the volume 1is mounted.
The more FCBs there are stored in memory, the faster that files
contained in heavily used directories are found. The default
number of buffers is the same as for the input disk.

The /BUFFERS qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

/COMPARE

Compares the data on the output device with the data on the input
device and reports any differences. No data transfer takes place
during a compare operation. The command line specifying the
compare operation must be identical to that entered when the data
on the output disk or tape was created, with the exception of the
/INITIALIZE, /NOINITIALIZE, and /APPEND qualifiers.

/COMPARE Output

When the compare operation detects differences, it displays
a message at your terminal. The compare operation always
displays the mnemonic of the device on which the difference
was detected and the type of record in which the difference
was encountered (a control record, a header record, or a
data record).

If the record type is a header record, the compare operation
also displays the file-ID for the file. If the record type
is a data record, the compare operation also displays the
file-1D, the Logical Block Number (LBN) of the block in
error, and the name of the file if it is available.

/CREATED :BEFORE: (dd-mmm-yy hh:mm:ss)
BEFORE :dd-mmm-yy
BEFORE:hh:mm:ss
AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

Backs up or restores files created before or after the specified
date and/or time.

If you use the BEFORE option, BRU copies any files created before
the specified date and/or time.

If you use the AFTER option, BRU copies any files created on or
after the specified date and/or at or after the specified time.

If you specify both a date and a time, the date and time must be
enclosed in parentheses. If you specify only a date or only a
time, the parentheses are not necessary. If you specify only a
time, BRU uses the current date as the default. 1If you specify
only a date, the time defaults to 00:00.

/DENSITY :number

Specifies the density (bpi) at which BRU writes to tape. The
following chart shows the values you can specify.

BACKUP ARD RESTORE UTILITY (BRU)

Drive Default Density Optional Density
TU10/TE10 800 None
TUl6/TEl6 800 1600
TU45 800 1600
TO77 800 1600
TS11 1600 None
TSVO0S 1600 None
TU78 6250 1600
TU80 1600 None

If you specify /DENSITY with /APPEND, vyou must specify the
density at which the existing tape data was written. For
example, if the tape was first written at a density of 800 bpi,
you must specify a density of 800. If you specify a density
other than the original density, BRU displays a message and
continues processing at the correct density.

If you enter an incorrect density for a restore operation, BRU
displays an error message and terminates the operation.

/DIRECTORY

Lists at your terminal the backup set names or files on the
specified tape or disk volume. In a multivolume tape set, the
directory is on the first tape of the set. In a multivolume disk
set, the directory is on the first disk of the set.

Using /DIRECTORY to Display Backup Set Names:

When specified with no backup set name, /DIRECTORY lists all
the backup sets on the volume:

BRU>/DIRECTORY MMO:

VOL1 BACKUPl LABELl1 2-JAN-83
VOL1 BACKUP2 LABELl1 3-JAN-83

BRU>/DIRECTORY DUO:

VOL1 BACKUP1 LABELl1 13-JUN-83
VOL2 BACKUP1l LABEL2 14-JUN-83

Using /DIRECTORY to Display File Names:

To display the names of files in a backup set, enter the
backup set name with /DIRECTORY in the form shown below.

If the backup set is not on the tape or disk, BRU halts
execution and displays a message at your terminal.

An example with tape follows:

>
>RUN BRU

BRU> /BACKUP SET:23MAY82A/DIRECTORY MM1:

VOL1l. 23MAYS82A HWHDOC 13-JUN-82 23:37:11
[000,000]

[303,013]

27DECE.LST;1

2JANA.LST;1

18JANC.LST;1

4JANA.LST; 2

7-15 April 1983

BACKOP AND RESTORE UTILITY (BRU)

25DECA.MAC;1
9DECA.LST; 2
X.MAC;1
X.0BJ;1
X.TSK;1
APNDXC.TXT; 1
X.MAP;1
[001,054]
RSX11M.STB;45
[002,054]
RSX11M.STB; 36
[003,054]

RSX11M.STB;3

[005,054]

[306,006]

APNDXB.MAC;1

BRU - COMPLETED ON MMl:

BRU>
>

/DISPLAY

Prints at your terminal the file name and UFD of each file as the
header for that file is being transferred by BRU.

/ERRORS :number

Terminates a restore operation after the specified number of
nonfatal tape read errors. The range for number is 0 to 65535.
The default number of errors before termination is 25(10).

/EXCLUDE

Backs up or restores all of the files on the tape or disk except
the files specified on the command line.

/EXTEND :number

Specifies the default number of blocks by which a file is
extended when that file has exhausted its allocated space. This
value is used by an ACP when the volume is mounted. The default
is the number of blocks from the input disk.

The /EXTEND qualifier is wused with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

/HEADERS :number

Specifies the number cf file headers to allocate initially to the
index file. The primary reason for preallocating file headers is
to locate them near the storage bitmap file. (The storage bitmap
file 1is generally 1located 1in the middle of the disk.) Proper
placement of file headers can help reduce head motion during 1I/0
operations. The default is the number of headers allocated to
the input volume.

The /HEADERS qualifier is used with the /INITIALIZE qualifier
during tape-to-disk or disk-to-disk operations.

If you want to copy files from a disk with a single-header index
file (structure level 401) to a disk with a multiheader index
file (structure level 402), specify a number of file headers with
/HEADERS and a number of files with the /MAXIMUM qualifier that

7-16 April 1983

BACKUP AND RESTORE UTILITY (BRU)

are both large enough to make the output disk contain a
multiheader index file. See the description of the INI command
in the RSX-11M/M-PLUS MCR Operations Manual for a table of
maximum and default values.

/IMAGE:SAVE
:RESTORE

Specifies that you want to do a multiple disk-to-disk backup or
restore operation. I1If you are doing a backup operation, you
must specify the SAVE option on the command line. If you want
to do a restore operation, you must specify the RESTORE option
on the command line.

If you want to do a backup operation, you must use this
qualifier when you create the backup file that represents the
image copy of the input disk or disks. For example, this
qualifier must be used when you copy a large disk to several
small disks, or if you copy several small disks to a mounted
large disk.

If you want to do a restore operation, you must use this
qualifier when restoring from a backup file that represents the
image copy of the original disk.

/INITIALIZE

Specifies that you want to initialize the output disk during a
tape-to-disk or disk-to-disk operation. 1Initialization places a
Files-11 structure on the disk, including the boot block, the
home block, and such files as INDEXF.SYS, BADBLK.SYS, and
000000.DIR.

The conditions for initializing an output volume differ between
RSX-11M and RSX-11M-PLUS. BRU returns a privilege violation if
the conditions are not met satisfactorily (see Table 7-1).

Along with the /INITIALIZE qualifier, you can specify the
following qualifiers when you are initializing a disk:

/BAD /NOPRESERVE
/BUFFERS /OUTVOLUME
/EXTEND /POSITION
/HEADERS /PROTECTION
/MAXIMUM /WINDOWS

If you do not specify any of these qualifiers, BRU defaults to
the characteristics of the input volume except for the /BAD
qualifier and the /NOPRESERVE qualifier. For the /BAD qualifier,
the default is AUTOMATIC. For the /NOPRESERVE qualifier, there
is no default.

/INVOLUME :name

Specifies the volume label of the input disk. This name can be
up to 12(10) characters long.

For disk-to-tape or disk-to-disk operations, the /INVOLUME
qualifier directs BRU to look for the volume label of the input
volume to verify that the disk has the correct label. This check
ensures that you do not back up the wrong volume.

7-17 April 1983

BACKUP AND RESTORE UTILITY (BRU)

For restore operations, /INVOLUME directs BRU to check the volume
label of the disk that is stored in the backup set on tape or in
the image backup set file on the disk.

/LENGTH :number

Specifies the length of the output tape in decimal feet. 1If the
length specified exceeds the 1length of the tape, the entire
length of the output tape is used. In cases where you know the
end of a tape must not be used, you can specify a shorter length
to ensure that you do not write on that part of the tape.

/MAXIMUM:number

Specifies the maximum number of files that can be placed on a
volume as determined by the number of file headers in the
volume's index file. (BRU supports up to 65,500 files on a
volume.) The default maximum is the maximum number of files on
the input disk. The /MAXIMUM qualifier and the /HEADERS
qualifier are particularly useful when you are initializing an
output disk that is different in size from the input disk.

If you want to copy files from a disk with a single-header index
file (structure level 401) to a disk with a multiheader index
file (structure level 402), specify a number of files with
/MAXIMUM and a number of file headers with the /HEADERS qualifier
that are both large enough to make the output disk contain a
multiheader index file. See the description of the INI command
in the RSX-11M/M-PLUS MCR Operations Manual for a table of
maximum and default values.

/MOUNTED

Allows you to back up files from a disk that is mounted as a
Files-11 volume (by means of the MCR or DCL MOUNT commands). If
you use the /MOUNTED qualifier when the input device is a tape,
BRU issues a syntax error.

BRU does not use the file system to read files from the input
disk. Instead, it issues logical queue I/0s (such as IO.RLB).
To issue these QIOs to a mounted Files-11 disk, BRU must be built
as a privileged task (PR:0). (BRU does not have to be privileged
for operations on unmounted volumes or volumes mounted foreign.)
However, when you are restoring to a mounted disk (and you have
specified the /NOINITIALIZE qualifier), BRU uses the file system
to access the output disk. Therefore, a restore operation to a
mounted disk is slower than a restore to an unmounted disk.

BRU must also be privileged to back up a disk that 1is being
accessed by other users. The /MOUNTED gqualifier must be
specified in the command line.

When backing up files from a mounted volume, disk activity
(changes to or addition or deletion of files) while BRU is
running causes the following results:

e If the file is being changed while BRU is backing up the
disk, BRU copies only the data that comprises the file at
the time of the transfer. Any changes made to the file
after the transfer will not appear in the file on the
output volume.

e If the file is deleted while BRU is backing up the disk,
the data that comprises the file may be corrupted.

7-18 April 1983

BACKUP AND RESTORE UTILITY (BRU)

If the file-ID from the deleted file is reused in a UFD
that BRU has not yet backed up, BRU will back up the new
file (with the previously allocated file-ID) when that
file is encountered. When restored, this new file (with
the reused file-ID) will appear as a synonym for the old
file with the same file-ID.

e If the disk is changed (files are deleted or changed)
after BRU generates the directory, the directory on the
first tape of the tape set or the directory in the backup
set file on the disk will not be accurate. Because BRU
generates the directory for the backup set as its first
processing step, changes to the disk after the directory
is generated will not be reflected in the directory.

e If the file or data are being changed during a transfer
operation, BRU will not be able to verify the accuracy of
the operation. Do not attempt a verify operation in this
case.

Note that this restriction also includes the file being
used by the error logger. The error logger file changes
when any hardware errors occur, which can cause the
verify operation to fail. To ensure that the verify
operation succeeds, switch the error 1logger file to a
different disk or exclude it with the /EXCLUDE qualifier.

/NEW_VERSION

Resolves file specification conflicts that occur during restore
operations and during backups to a mounted disk wusing the
/IMAGE:SAVE qualifier. When a file already exists on the output
disk volume, /NEW VERSION creates a new version of the file.

/NOINITIALIZE

Specifies that you do not want to initialize the output disk
because it 1is already in Files-11 format. The output disk must
be mounted as a Files-11 volume. You cannot enter any of the
initialization qualifiers when you specify /NOINITIALIZE. If you
enter any of these qualifiers, BRU issues an error message.

/NOPRESERVE

Specifies that you do not want to preserve file-IDs (file-IDs are
generally preserved). If you specify the /NOPRESERVE qualifier,
BRU suppresses the message that file-IDs are not being preserved.
Note that in restoring to a mounted disk, not preserving file-IDs
is BRU's default action. /NOPRESERVE 1is wused only with the
/INITIALIZE qualifier.

When file-IDs are not preserved, BRU assigns new file-IDs,
incrementing them sequentially.

/NOSUPERSEDE

Specifies that when file specifications on the mounted output
disk are identical to those on the input volume, the file on the
input volume is not transferred. That is, the file on the cutput
disk is not superseded by the file on the input volume.
/NOSUPERSEDE is the default.

7-19 April 1983

BACKUP AND RESTORE UTILITY (BRU)

/OUTVOLUME : name

Specifies the volume label of the output disk. This label can be
up to 12(10) characters long.

For disk-to-tape backup operations, the name of the input disk
volume stored on the output tape volume is changed to the name
specified with the /OUTVOLUME qualifier.

For tape-to-disk restore operations or for disk-to-disk
transfers, the name of the output disk volume is changed to the
name specified with the /OUTVOLUME qualifier.,

When you omit /OUTVOLUME, BRU provides the following defaults:

e In backup operations, the input disk volume name is used
as the volume name stored on the output tape volume.

e In restore operations, the volume name stored on the
input tape volume is used as the name of the output disk
volume.

e In disk-to-disk transfers, the volume name of the input
volume is used as the volume name of the output volume.

/POSITION: BEGINNING
MIDDLE
END
BLOCK:number

Specifies the location of the index file on the output disk
volume being initialized, usually to minimize access time. The
BEGINNING, MIDDLE, and END options specify the beginning, middle,
and end of a volume. The BLOCK:number option specifies a block
number where the index file is to be placed. The BEGINNING or
END option 1is generally used only when a disk mostly contains
large contiguous files. MIDDLE is recommended to minimize access
time.

When you use the BLOCK:number option, the number 1is decimal by
default (the period is optional). To specify an octal number,
place a pound sign (#) in front of the number. If there are any
conflicts, BRU issues a warning message.

When you do not use the /POSITION qualifier, BRU places the index
file in the same location as that on the input volume.

/PROTECTION: SYSTEM:value
OWNER:value
GROUP:value
WORLD:value

Specifies the default protection status for all files created on
the output volume being initialized. This protection value does
not apply to files being transferred by BRU, but rather to
subsequent files created on the output volume by an ACP when the
volume is mounted. If you do not specify any values, they
default to the protection values of the input disk.

The protection value can be R(ead), W(rite), E(xtend), or
D(elete), or any combination of the four. See the RSX-11M/M-PLUS
MCR Operations Manual for an explanation of file protection.

BACKUP AND RESTORE UTILITY (BRU)

/REVISED: BEFORE: (dd-mmm~-yy hh:mm:ss)

BEFORE :dd-mmm-yy
BEFORE:hh:mm:ss

AFTER: (dd-mmm-yy hh:mm:ss)
AFTER:dd-mmm-yy
AFTER:hh:mm:ss

Backs up or restores files revised or created on, before, or
after the specified date and time.

I1f you use the BEFORE option, BRU copies any files revised or
created at or before the specified date and/or time.

if you use the AFTER option, BRU copies any files revi
created on or after the specified date and/or at or af
specified time.

As with the /CREATED qualifier, if you specify both a date and
time, the date and time must be enclosed in parentheses. If you
specify only a date or time, the parentheses are not necessary.
If you specify only a time, BRU uses the current date as a
default. 1If you specify only a date, the time defaults to 00:00.

/REWIND

Rewinds the first magnetic tape of a tape set before executing a
backup or restore operation.

When specified with an input tape, BRU rewinds the first tape of
the tape set before searching for a backup set.

When specified with the /APPEND qualifier, BRU rewinds the output
tape and then searches for the 1logical end-of-tape before
executing the backup operation.

/SUPERSEDE

Specifies that when file specifications on the mounted output
volume are identical to file specifications on the input volume,
the file on the output volume is deleted and replaced with the
file from the input volume.

For an /IMAGE operation, if you create a backup set file on a
mounted volume and a file with the same name exists, /SUPERSEDE
replaces this file.

/NOSUPERSEDE is the default.

/TAPE_LABEL:label

/UFD

Specifies the 6-character volume identifier on the American
National Standard (ANS) X.327-1978 label to be placed on a tape
during a backup operation or to be compared with the label on the
tape for append and restore operations. This allows you to check
that you are using the correct tape.

Directs BRU to create UFDs (if they do not already exist) on a
mounted output volume, then copy into it the files from the same
UFD on the input volume. If you do not specify /UFD, BRU does
not copy the files. /JUFD is used only with the /NOINITIALIZE
qualifier,

7-21 April 1983

BACKUP AND RESTORE UTILITY (BRU)

/VERIFY

Copies data from the input volume, performs a compare operation
between the input volume and the output volume after the
transfer, and reports any differences.

/WINDOWS :number

Specifies the default number of mapping pointers to be allocated
for file windows when initializing an output disk. This value is
used by an ACP when the volume 1is mounted. A file window
consists of a number of pointers and is stored in memory when the
file is opened. The default number of mapping pointers 1is the
same as for the input disk.

Choosing a large number of mapping pointers may speed up file
access., However, a large file window also uses up system dynamic
memory (pool space). If pool space is more «critical than file
access time, choose a smaller number of pointers.

Refer to the I1AS/RSX-11 1/0 Operations Reference Manual for more
information.

7.5 STAND-ALONE BRU

You can also run BRU stand-alone. On RSX-11lM, the stand-alone system
is called BRU64K. On RSX-11M-PLUS, it is BRUSYS. The difference
between the BRU task contained in these stand-alone systems and the
on-line BRU described in the preceding sections is that stand-alone
BRU does not support a restore operation to a mounted volume.
Therefore, BRU will always initialize the output disk volume. There
is no /INITIALIZE qualifier and the BRU task does not ask if you want
to initialize the output volume.

Other qualifiers that cannot be used in the stand-alone BRU systems
are /NEW_VERSION, /NOINITIALIZE, /NOSUPERSEDE, /SUPERSEDE, and /UFD.

Unlike other stand-alone systems, the BRU systems contain other tasks
besides the BRU task. You invoke these other tasks before invoking
the BRU task. (One task, CNF, is first invoked automatically when you
boot the stand-alone BRU system.)

7-22

After vyo
automatic

you firs
system.

Ente
Dev

DB
DK
DL
DM
DP
DR
DU
MF
MM
MS
MT

Ente

You can a
addresses
formatter
example:

BACKUP AND RESTORE UTILITY (BRU)

u boot the stand-alone BRU sys
ally. It lists the switches available for your use and
prompts you for the devices you will be using. It i

tem, the CNF task

s recommended

t specify /DEV to find out the status of the devices on

For example:
r first device: /DEV
ice CSR

176700
177404
174400
177440
176714
176300
172150
FOR=0 175400
FOR=0 172440
172522
172522

r first device:

Vect

254
220
160
210
300
150
154
260
224
330
320

1so use CNF and its switches to
of devices present on your system or to change the default
number (FOR=n) for some of the magnetic tape devices.

or

set the

Enter first device: DM2:/CSR=177450/VEC=274

Ente

r second device: DL:

The CNF switches are:

CSR Status

Present
Present
Not Present
Present
Present
Present
Not Present
Not Present
Present
Not Present
Not Present

runs
then
that
your

CSR and vector

For

the

/CSR=nnnnnn
Changes the default CSR for the device.

/DEV
Lists the default CSR and vector addresses for all of
devices. It is recommended that you use this switch first
to find out what devices are present on your system.

/FOR=n

Changes the default formatter

magnetic tape devices.
MF:- and MM:-type devices.

/VEC=nnn

number

for some of

the

The switch is valid for only the
The initial default for n is 0.

Changes the default vector for the device.

7-23

April

1983

BACKUP AND RESTORE UTILITY (BRDU)

On both RSX-11M and RSX-11M-PLUS, you can bootstrap the stand-alone
BRU system in one of two ways:

1. Software boot stand-alone BRU by using the privileged MCR
BOOT command as follows:

For RSX-11lM mapped systems

>INS $BOO
>BOO [1,51]BRU64K

For RSX-11M-PLUS

>INS $BOO
>BOO [6,54]BRUSYS

2. Hardware boot stand-alone BRU following the hardware
bootstrap procedure for your processor.

To create a hardware-bootable stand-alone BRU tape from the
distribution disk, wuse the Virtual Monitor Console Routine
(VMR) to save the system image to tape as follows:

For RSX-11M

>SET /UIC=[1,54]

RUN [1,54]VMR

ENTER FILENAME: BRU64K
VMR>SAVE MT:BRU64K
VMR> CRL2)

For RSX-11M-PLUS

>SET /UIC=[6,54]

RUN VMRM41

ENTER FILENAME: BRUSYS
VMR>SAVE MT:BRUSYS
VMR>

This tape contains a hardware-bootable image of the
stand-alone BRU system. {See the RSX-11M/M-PLUS System
Management Guide for information on VMR.)

7.6 ON-LINE BRD BAD BLOCK PROCESSING

After you have formatted a disk with the Disk Volume Formatter Utility

(FMT; see Chapter 5) and marked any bad blocks on it with the Bad

Block Locator Utility (BAD; see Chapter 6), you can initialize it
with BRU.

If you specify the /BAD qualifier with the /INITIALIZE qualifier, BRU
uses the bad block information from running BAD on the disk to create
the file BADBLK.SYS. This file has allocated to it all of the bad
blocks on the disk so that other files will not try to use them.

7-24 April 1983

BACKUP AND RESTORE UTILITY (BRU)

The /BAD qualifier has three options: AUTOMATIC, which is the default
option, OVERRIDE, and MANUAL. The following sections describe how to
use these options.

7.6.1 Using the AUTOMATIC Option

The AUTOMATIC option specifies that BRU use the existing bad block
information on the disk to create the file BADBLK.SYS. For last-track
devices, BRU uses the manufacturer-written bad block information and
the software bad sector file. For nonlast-track devices, BRU uses the
bad block descriptor block.

7.6.2 Using the OVERRIDE Option

The OVERRIDE option applies only to last-track devices. It makes the
disk appear to be a nonlast-track device.

When you wuse OVERRIDE with BRU, ensure that the disk you are
processing has previously been processed by the BAD utility with the
BAD /OVR switch specified. Using the BAD /OVR switch makes last-track
devices 1look 1like nonlast-track devices by using the last good block
before the last track as the bad block descriptor block. /OVR
processing includes that last track as bad data when it creates the
bad block descriptor block.

OVERRIDE processing for BRU assumes that the bad block descriptor
block written by BAD exists on the disk being processed.

7.6.3 Using the MANUAL Option

The MANUAL option accepts the addresses of bad blocks you enter
interactively at your terminal. It also specifies that BRU use either
the manufacturer-written bad block information and the
software-detected bad sector file (for last-track devices) or the bad
block (for nonlast-track devices) descriptor block to create
BADBLK.SYS. If there is no software-written bad block information, a
message will be displayed informing you that BAD has not processed the
disk.

When you specify /BAD:MANUAL, BRU issues a prompt at your terminal.
To enter bad blocks, respond to the prompt with the starting logical
block number, followed by a count of how many consecutive blocks are
bad, in the following format:

LBN[:count[.]]

BRU interprets both the LBN and the count as decimal numbers. You can
specify the LBN in octal, but you must specify the count in decimal.
To specify an octal value for the LBN, precede it with a number sign
(#). If you do not specify count, it defaults to 1.

If you enter a bad block that is already in the bad block file, BRU
generates an error message.

To get a list of the LBNs you have entered so far, type one slash (/).
To copy the LBNs into BADBLK.SYS, type two slashes (//).

When you have finished entering bad blocks, press the RETURN key to
return to BRU command level.

BACKUP AND RESTORE UTILITY (BRU)

7.7 USING BRU TO COPY DISKS CONTAINING SYSTEM IMAGES

When you copy a bootable system disk to a disk of the same controller
type, BRU automatically produces a bootable output disk for you.

1f, however, you are copying an unsaved (virgin) system or copying a
saved system to a smaller disk or to a disk of a different controller
type, you can use the procedures described in the following sections
to ensure that BRU produces a bootable output disk.

7.7.1 Copying an Unsaved (Virgin) System

In an unsaved system, installed tasks are pointed to by the physical
LBN of the task image on the disk. When you copy an unsaved system
with BRU, BRU assigns new LBNs for the task images on the output disk.
Therefore, 1if you want to be able to software boot the copied system,
you must first use VMR to remove and reinstall any tasks. (VMR, the
Virtual Monitor Console Routine, is described in the RSX-11M/M-PLUS
System Management Guide.)

7.7.2 Copying a Saved System

In a saved system, installed tasks are pointed to by the file-ID of
the task image on the disk. To copy a saved system to a smaller disk
or to a disk of a different controller type, use the following
procedures.

7.7.2.1 Copying to a Smaller Disk - If you want to copy a disk with a
saved system to a smaller disk, the most common method is to first use
the /MAXIMUM and /HEADERS qualifiers (described in Section 7.4) to
decrease the size of the index file. BRU is then unable to preserve
the file-IDs of the files, so you must use VMR to remove and reinstall
any tasks in the copied system image (the image on the output disk).

7.7.2.2 Copying to a Different Controller Type - If you have used BRU
to copy a hardware-bootable disk to a disk of a different controller
type and you want the output disk to also be hardware-bootable, you
must use the MCR BOOT command to boot the saved system on the output
disk. Then you use the MCR SAVE /WB command to write the correct boot
block on the output disk.

MCR SAV /WB

7.8 BRU FILE TREATMENT

The following sections describe how BRU treats file dates, file
headers,; file synonyms, and lost files.

i

~J
|
N
o)}
[
el
a3
-
=
-
O
[0}
[’

BACKUP AND RESTORE UTILITY (BRU)

7.8.1 Creation and Revision Dates of Files

BRU always preserves the creation and revision dates of files that it
transfers. However, since BRU creates UFDs during a restore operation
to a disk being initialized, and also when the /UFD qualifier is
specified, the creation date of the UFD is the date on which BRU
created it. :

7.8.2 File Headers

BRU preserves all characteristics of a file, if possible. There are
three exceptions:

e If there is insufficient room on the output volume to restore
the file contiguously, it is restored noncontiguously.

e The file name is updated on the file's header to match the UFD
entry.

e The physical end-of-file in the user attribute area is updated
to correctly reflect the file's size.

7.8.3 File Synonyms

File synonyms are files that have different names but share the same
file-ID and data. They can be created with the PIP utility but also
occur when a file-ID from a deleted file is reused in a UFD that BRU
has not yet copied. If you restore files with synonyms to an
unmounted volume and you preserve file-IDs, the £file synonyms are
restored as synonyms. However, if you do not preserve file-IDs or you
restore to a mounted volume, file synonyms are restored as separate
files.

7.8.4 Lost Files

A file that is not contained in any UFD is known as a lost file. BRU
does not find lost files. To find lost files, use the File Structure
Verification Utility (VFY) with its /LOst switch before using BRU to
back up the disk (VFY is described in Chapter 9).

7.9 EXAMPLES

This section gives examples of various BRU operations and command
lines. Note that the qualifiers used in the command lines have been
truncated to three characters. All of the BRU qualifiers are unique
to three characters.

Examples 1 through 6 and examples 11 and 12 also show informational
messages that BRU returns during some operations. The remaining
examples do not include these messages.

The following list is a summary of the operations and command lines
shown in the examples:

1. Disk-to-tape backup (with verification) and tape-to-disk
restore operations.

7-27 April 1983

BACKUP ARD RESTORE UTILITY (BRU)

2. Disk-to-disk backup operation.

3. Disk-to-disk backup operation including changing the maximum
number of files and initial header allocation for the output
disk.

4. Disk-to-disk multivolume backup operation.

5. Disk-to-disk multivolume restore operation.

6. Disk-to-disk multivolume backup (with appending) and disk to
disk restore operation.

7. Disk-to-tape incremental backup operation (by date) with tape
verification.

8. Disk-to-tape selective backup operation (by file
specification).

9. Mounted disk-to-tape backup and tape-to-mounted disk restore
operations.

10. Disk-to-tape backup (with appending) and tape-to-mounted disk

restore operations.

11. Exclusion of certain files during a backup operation.

12, Manually entering bad blocks and displaying them.

13. Continuation command lines on RSX-11M and RSX-11M-PLUS.

14. Continuation command lines on RSX-11M-PLUS only.
Example 1 shows how to use BRU to back up an entire disk volume onto
two 1600 bpi magnetic tapes and then how to restore the disk. For the
backup operation, BRU verifies the output volumes as part of the
operation. (Verifying volumes is specified with the /VERIFY
qualifier.) If files do not verify, BRU returns an error messade.

To back up DM2: onto the magnetic tapes on MMO: and MM1l:, |use

the following command line:

BRU>/DEN:1600/VER DM2: MMO:,MM1:@ED

BRU - STARTING TAPE 1 ON MMO:

BRU - END OF TAPE 1 ON MMO:

BRU - STARTING VERIFY PASS TAPE 1 ON MMO:
BRU - END OF TAPE 1 ON MMOQ:

BRU - STARTING TAPE 2 ON MM1:

BRU - END OF TAPE 2 ON MMl:

BRU - STARTING VERIFY PASS TAPE 2 ON MMl:
BRU - END OF TAPE 2 ON MMI1:

BRU - COMPLETED

BRU> C1RLZ)

e

April 1983

BACKUP AND RESTORE UTILITY (BRU)

To restore the entire disk and rewind the first input tape, use
the following command 1line (the /INI qualifier specifies that
DM2: will be initialized before the restore operation begins):

BRU> /REW/DEN:1600/INI MM:,MM1: DM2: @ED

BRU - STARTING TAPE 1 ON MMO:

BRU ~- *WARNING* -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM
BRU - END OF TAPE 1 ON MMO:

BRU - STARTING TAPE 2 ON MMI1:

BRU - END OF TAPE 2 ON MM1:

BRU - COMPLETED

BRU> €TRLZ)
>

Example 2 shows how to do a disk-to-disk backup operation for an
entire disk. The characteristics of the output disk default to those
of the input disk. This operation (and every other BRU operation) can
be done in two ways.

>BRU/INI DM: DM1: @D
BRU - COMPLETED

or

>BRU @GED

BRU> BED

FROM: DM: RED

TO: DM1: GED

INITIALIZE OUTPUT DISK [Y/N]:YG®ED
BRU - COMPLETED

BRU>

These two command lines tell BRU to initialize the output disk
(DM1:) and then back up all of the files on the input disk (DMO:)
onto it.

Example 3 shows another disk-to-disk backup operation. This time, the
maximum number of files and initial file header allocation for the
output disk are changed. This information is contained in the index
file, which can be placed at different locations on the disk.

BRU>/INI/MAX:10000/HEA:5000/POS:BEG DM: DMl :RED
BRU -~ COMPLETED

This command initializes the output disk (DMl:) and tells BRU
that the maximum number of files allowed on the disk will be
10000(10) and the initial file header allocation will be 5000(10)
headers. The 1index file, which contains this information, will
be placed at the beginning of the disk. When the output disk has
been initialized, all of the files on the input disk (DM:) will
be copied onto it.

BACKUP AND RESTORE UTILITY (BRU)

Example 4 shows a multiple disk-to-disk backup operation.

use the

SAVE option with the /IMAGE qualifier when doing

disk-to-disk backup operation.

BRU>/INI/IMA:SAV/VER/MOU DL: DY:

BRU - MOUNT DISK 1 ON DY0:. PRESS "RETURN" WHEN DONE

BRU - STARTING DISK 1 ON DYO:

BRU - END OF DISK 1 ON DYO:

BRU - STARTING VERIFY PASS DISK 1 ON DYO:

BRU - END OF DISK 1 ON DYO:

BRU - MOUNT DISK 2 ON DY0: . PRESS "RETURN" WHEN DONE
BRU - STARTING DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU - STARTING VERIFY PASS DISK 2 ON DYO:

BRU - END OF DISK 2 ON DYO:

BRU - MOUNT DISK 3 ON DY0: . PRESS "RETURN" WHEN DONE
BRU - STARTING DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - STARTING VERIFY PASS DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - COMPLETED

BRU>

Example 5 shows a multiple disk-to-disk restore operation.
specify the RESTORE option on the command line with the /IMAGE
qualifier.

BRU> /INI/IMA:RES/VER DY: DL:

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BROU

MOUNT DISK 1 ON DYO: . PRESS "RETURN" WHEN DONE

TARTING DISK 1 ON DYO:

You must
a multiple

You must

THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

END OF DISK 1 ON DYO:

MOUNT DISK 2 ON DYO: . PRESS "RETURN" WHEN DONE
STARTING DISK Z ON DYO:

END OF DISK 2 ON DYO:

MOUNT DISK 3 ON DYO: . PRESS "RETURN" WHEN DONE

April 1983

BACKUP AND RESTORE UTILITY (BRO)

BRU - STARTING DISK 3 ON DYO:

BRU - END OF DISK 3 ON DYO:

BRU - MOUNT DISK 1 ON DYO: . PRESS "RETURN"
BRU - STARTING VERIFY PASS DISK 1 ON DYO:
BRU - END OF DISK 1 ON DYO:

BRU - MOUNT DISK 2 ON DY0: . PRESS "RETURN"
BRU ~ STARTING VERIFY PASS DISK 2 ON DYO:
BRU - END OF DISK 2 ON DYO:

BRU - MOUNT DISK 3 ON DYO: . PRESS "RETURN"
BRU - STARTING VERIFY PASS DISK 3 ON DYO:
BRU - END OF DISK 3 ON DYO:

BRU - COMPLETED

BRU>

WHEN DONE

WHEN DONE

WHEN DONE

Example 6 show how to append backup sets on a multivolume disk, plus
restore the multivolume disk set. If your multivolume backup disk
contains a backup set that does not occupy the entire disk,
append backup sets on the same disk using the /APPEND qualifier.

BRU> /APP/IMA:SAVE/BACKUP:SECOND/INI

A

FROM: DB: GED

TO: DK:,DK1: D

BRU - MOUNT DISK 1 on DKO: . PRESS "RETURN"
BRU - STARTING DISK 1 on DKO:

BRU ~ END OF DISK 1 on DKO:

BRU - MOUNT DISK 2 ON DKl: . PRESS "RETURN"
BRU - STARTING DISK 2 ON DKl:

BRU - END OF DISK 2 ON DKl:

BRU - COMPLETED

BRU> (LD

To restore the appended backup set from the
you have to specify the following:

BRU> /IMA:RES/BACKUPSET:SECOND/INI DK:,DKl:
BRU - MOUNT DISK 1 ON DKO: . PRESS "RETURN"

BRU STARTING DISK 1 ON DKO:

1

BRU - END OF DISK 1 ON DKO:

BRU MOUNT DISK 2 ON DKO: . PRESS "RETURN"

WHEN DONE.

WHEN DONE.

multivolume

DBO:

WHEN DONE.

WHEN DONE.

you can

disk set,

April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU - STARTING DISK 2 ON DKl:
BRU - END OF DISK 2 ON DK1l:
BRU - COMPLETED

BRU> CTRLZ)

Examples 7 and 8 show how to do incremental backups with BRU. Example
7 (following) shows a backup-by-date operation (and tape verification)

and Example 8 shows a backup-by-file-specification operation.
BRU> /REV:AFT: (14-FEB-83 17:00) /VERRED
FROM: DM: D
TO: MT: RED
This command line backs up all files on the disk that

revised after 5:00 P.M. on February 24, 1981. After al
files have been copied onto the tape, BRU verifies the tape.

were
1 the
If

files on the tape do not verify, BRU returns an error message.

Example 8 shows a backup-by-file-specification operation:

BRU>DB:[7,10],[301,304]*.MAC,*.CMD @D
TO: MM: @D

In this case, BRU backs up all the files in UFD [7,10] and
the .MAC and .CMD files in UFD [301,304] on the input disk
magnetic tape.

Example 9 shows how to back up files from a mounted disk and then
ways to restore files to a mounted disk.

BRU> /MOU DB:[304,303],[7,326] MM:EED

This command line informs BRU that the input disk is mounted
Files-11l device.

BRU> /NOI MM:[304,303] DB:@E

This command line restores the files 1in UFD [304,303] on
magnetic tape to the mounted disk volume without
initializing it. 1In this case, any file on the tape tha
identical to a file already on the disk is not superseded
input file is not ceopied). Not superseding files is the de
operation for BRU.

BRU> /NOI/NEW MM:[7,326] DB:GEED

This command line restores the files in UFD [7,326] on
magnetic tape to the mounted disk volume without

all
to a

two

as a

the
first
t is
(the
fault

the
first

initializing it. The /NEW (/NEW VERSION) qualifier tells BRU to

create a new version of any duplicate files.

Example 10 shows how to append files from a disk to a tape wi
backup set already on it and then how to restore the set back
mounted disk.

7-32 April

th a
to a

1983

BACKUP AND RESTORE UTILITY (BRU)

BRU>/APP/VER/BAC:TODAY GED
FROM: DB:[7,326]
TO: MM:

This command line appends the files in UFD [7,326] on the input
disk to a magnetic tape. The name of the backup set being
written on the tape is "TODAY". After the backup operation is
completed, BRU verifies the tape.

BRU>/REW/BAC:TODAY/NOI MM: DB:

This command line rewinds the magnetic tape containing the backup
set "TODAY". All of the files in TODAY are then copied back onto
a mounted output disk. If a file already exists on the disk, BRU
defaults to /NOSUPERSEDE to resolve the conflict.

Example 11 shows how to exclude certain files from being copied during
a backup operation.

BRU>/MOU/EXC DM:[1,6] MM1: @D
BRU - STARTING TAPE 1 ON MM1:

BRU - END OF TAPE 1 ON MM1:
BRU - COMPLETED
BRU> CrrLz

This command line backs up all of the files on the input disk,
except for those in UFD [1,6], onto the magnetic tape.

Example 12 shows how to enter bad blocks manually and how to display
them.

BRU>/REW/INI/BAD:MAN MM1: DM:RED
BRU - STARTING TAPE 1 ON MM1:

BRU>LBN (S) =/ GED
053768:022
BRU>LBN (S)=10500:2
BRU>LBN(S)=12000
BRU>LBN (S) =/ GED
053768:022
010500:002
012000:001
BRU>LBN (S)=// GED

BRU ~~- *WARNING* -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

BRU - END OF TAPE 1 ON MM1l:
BRU - COMPLETED

BRU>

This command line first initializes the output disk and then
requests you to enter the 1locations of any bad blocks before
copying the files from the magnetic tape. The first slash (/)

BACKUP AND RESTORE UTILITY (BRU)

displays the bad blocks in the bad sector file on the last track
of the disk. The second slash displays those blocks and the ones
that have been entered manually. Two slashes (//) returns you to
the BRU command level.

In this example, two locations of bad blocks for the disk were
entered: there are 2 bad blocks starting at LBN 10500 and 1
block at LBN 12000. You can enter the LBN in either decimal (the
default) or octal (precede the number with #), but the number of
bad blocks must be in decimal. When you do not specify the
number of bad blocks, it defaults to 1.

Examples 13 and 14 show BRU continuation command lines on RSX-11M and
RSX~11M~-PLUS (see Section 7.2.2.2 for more information).

RSX-11M and RSX-11M-PLUS

>RUN BRU
BRU>/REWIND-
BRU>/INVOLUME : BACKUP-
BRU>/BACKUP SET:25MAY81-
BRU>/TAPE LABEL:BRU123
FROM: DMO :

TO: MMO :

RSX-11M and RSX-11M-PLUS support continuation 1lines when you
invoke BRU and then respond to the BRU> prompt. The command line
can be 256(10) characters long.

>BRU/REWIND-
~->/INVOLUME : BACKUP-

->/BACKUP SET:25MAY81-

~->/TAPE LABEL:BRU123 DM0O: MMO:

7.10 MESSAGES

This section lists BRU information and error messages, describes the
meaning of the message, and suggests actions to correct the errors. A
WARNING message indicates an error that may or may not terminate the
BRU operation. A FATAL message indicates an error that always
terminates the operation.

BRU -- *WARNING* -- ALLOCATION FAILURE [ufd]filename.type;version

Explanation: During a copy to a mounted volume, there was not
enough free space to copy the specified file.

User Action: Create enough free space on the volume by using the
Peripheral Interchange Program (PIP; see Chapter 3) to delete or
truncate some files and then reenter the command line.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- ALLOCATION FOR SYSTEM FILE EXCEEDS VOLUME LIMIT

Explanation: A system file (one of the following files:
INDEXF,.SYS, BITMAP.SYS, BADBLK.SYS, 000000.DIR) requires more
space than is available on the output disk. This will wusually
occur if the output disk is smaller than the input disk.

User Action: Use the /POSITION qualifier to force allocation to
start at the beginning of the disk and/or use the /MAXIMUM and
/HEADERS qualifiers to reduce the size of INDEXF.SYS.

BRU -~ *FATAL* -- AMBIGUOUS OPTION

Explanation: An option specified with a qualifier is not unique.
For example, the "B" in /POSITION:B could mean either BEGINNING
or BLOCK.

User Action: Use a form of the option that is unique. All BRU
options are unique to two characters.

BRU -- *FATAL* -- AMBIGUOUS QUALIFIER

Explanation: A qualifier is not unique. For example, /RE could
mean either /REVISED or /REWIND.

User Action: Use a form of the qualifier that 1is wunique. All
BRU qualifiers are unique to three characters.

BRU -~ *WARNING* -~ APPENDING AT DEFAULT BPI ON ddnn:
or
BRU -- *WARNING* -- APPENDING AT 1600 BPI ON ddnn:

Explanation: The wrong tape density was specified with the
/APPEND qualifier. BRU performs an append operation only at the
density at which the tape was previously written. The default
bpi in the first message is either 800 or 6250, depending on the
type of tape drive.

User Action: None. BRU continues at the correct density.

BRU -~ *FATAL* -- ATTACH FAILED ON ddnn:
Explanation: BRU could not attach the specified device.
User Action: Check to see if another task has the device
attached or if the device has a volume mounted on it.

BRU -~ *FATAL* —-- BACKUP DISK READ ERROR
Explanation: An unrecoverable read error occurred on the output
backup disk, possibly caused by an undetected bad block, or an
error occurred while BRU was sizing the input or output disk for
a multivolume backup operation.
User Action: Use the BAD utility to locate all bad blocks. Then

use BRU with the /BAD:AUTOMATIC qualifier to use the existing bad
block information on the disk to create the file BADBLK.SYS.

7-35 April 1983

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* -- BACKUP DISK WRITE ERROR

Explanation: An unrecoverable write error occurred on the output
backup disk during a multivolume backup operation. The error
could have been caused by an undetected bad block.

User Action: Use the BAD utility to locate all bad blocks (see
Chapter 6). Then use BRU with the /BAD:AUTOMATIC qualifier to
use the existing bad block information on the disk to create the
file BADBLK.SYS.
-- *WARNING* -- BAD BLOCK DATA ERROR

Explanation: A manually entered bad block location, count, or
syntax was incorrect.

User Action: Enter the correct information.

-- *WARNING* -- BAD BLOCK FILE FULL

Explanation: The manual addition of bad blocks has resulted in
more than 204 (10) sets of contiguous bad blocks.

User Action: None. You cannot enter more bad blocks than the
file will hold. You may not want to use the disk anymore.

~- *WARNING* -- BLOCK EXCEEDS VOLUME SIZE

Explanation: You have manually entered a bad block that 1is
larger than the size of the output disk.

User Action: Enter the correct block.

—-— *WARNING* -- BOOT BLOCK IS BAD

Explanation: BRU cannot write to the output boot block.
Therefore, the output disk will not be hardware-bootable.

User Action: None. BRU continues the operation.

-- *WARNING* -- BOOT BLOCK IS CORRUPT

Explanation: The input disk does not contain a valid boot block.
The output disk will not be hardware-bootable.

User Action: None. BRU continues the operation.

-- *WARNING* -~ BOOT BLOCK READ ERROR

Explanation: An error occurred while BRU was reading the boot
block.

User Action: None. BRU continues the operation.

7-36 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- BOOT BLOCK VERIFY ERROR ON ddnn:

Explanation: During a backup operation, the boct Dbleck on the
output device did not match the boot block on the input device.

User Action: None. BRU continues the operation.

BRU-~ *FATAL* -- CANNOT APPEND ON A MOUNTED DISK

Explanation: A multivolume backup operation to disk 1is not
possible because you cannot append to a mounted disk. You can
only use the /APPEND qualifier when doing a multivolume disk
backup operation to an unmounted disk.

User Action: You must use another disk to proceed with your
backup operations.
BRU-- *FATAL* -- CANNOT MIX DIFFERENT TYPES OF DISKS

Explanation: The input disk and the output disk are of different
types for a multivolume disk operation.

User Action: You must specify the same type of disk for the
input and/or output disk when you do a multivolume restore or
backup operation.

BRU-- *WARNING* -- CANNOT RESTORE CONTIGUOUSLY [ufd]filename.type;version

Explanation: The output device does not contain enough
contiguous blocks to restore the indicated contiguous file. The
file will be restored noncontiguously.

User Action: You can use the Peripheral Interchange Program
(PIP; see Chapter 3) to make the file contiguous again. Use the
PIP switches /DE and /TR to reclaim disk space by deletion or
truncation.

BRU -- *WARNING* -- CLOSE OR WRITE ATTRIBUTES ERROR [ufd]filename.type;version
I/0 ERROR CODE number

Explanation: During a copy to a mounted volume, BRU encountered
an error while attempting to close the specified file.

User Action: 1If possible, determine the cause of the error from
the 1I/0 code. (Refer to the IAS/RSX-11 I/0 Operations Reference
Manual.) If it is correctable, delete the portion of the file
that BRU has copied, and reenter the command line.

BRU -- COMPLETED
Explanation: The BRU operation is complete.

User Action: Enter another BRU command line or exit with a
CTRL/Z.

7-37 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- CONFLICTING QUALIFIERS

Explanation: Two or more of the specified qualifiers are
mutually exclusive: for example, /SUPERSEDE and /NOSUPERSEDE.

User Action: Reenter the command line.

BRU -- *WARNING* -- DATA ID RECORD VERIFY ERROR

Explanation: An error occurred while BRU was verifying an
80-byte data-ID record.

User Action: None. BRU continues the operation.

BRU -~ *WARNING* -- DATA RECORD VERIFY ERROR [ufd]filename.,type;version
FILE ID number LBN number
Explanation: There was a difference in a data block on input and
output devices. The file-ID of the file with the error and the
LBN of the block follow the message.
If a UFD is printed with a file name, the UFD is the owner UFD
from the file's header, not the UFD in which the file is

contained.

User Action: None. BRU continues the operation.

BRU -~ *WARNING* -- DATA WAS LOST DUE TO IO ERRORS [ufd]filename.type;version

Explanation: A tape read error resulted in missed data. The
files are restored, but may contain erroneous data.

If a UFD is printed with a file name, the UFD is the owner UFD
from the file's header, not the UFD in which the file is
contained.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- DEVICE CONFLICT

Explanation: Both a tape and a disk drive were specified as part
of the input or output device specification.

User Action: The device must be either a disk or a tape, but not
both. This applies to both input and output specifications.
BRU ~- *FATAL* -- DEVICE NOT IN SYSTEM

Explanation: A device was specified that does not exist 1in the
system.

User Action: Reenter the command line, specifying the <correct
device specification.

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* -- DEVICE NOT SUPPORTED

Explanation: The épecified device was not a tape or a disk, or
it was a disk that is not supported by BRU.

User Action: BRU supports only certain disk and magnetic tape
devices. See Table 7-2 for a list of supported devices. Reenter
the command line, specifying supported devices.
-- *FATAL* -- DIRECTIVE ERROR

Explanation: An internal error occurred in BRU.

User Action: Reenter the command line. If the error persists,
submit a Software Performance Report (SPR) that includes a hard
copy of the BRU operations and error messages.

—- *WARNING* -- DIRECTORY VERIFY ERROR

Explanation: A directory record on the input device did not
match a directory record on the output device.

User Action: None. BRU continues the operation.

-~ *FATAL* -- DISK IS AN ALIGNMENT CARTRIDGE

Explanation: The last track identified the disk as an alignment
cartridge, which cannot be initialized as a Files-11 volume.

User Action: Reenter the command line, using a different output
volume, '

--* —- DISK LABEL ERROR

Explanation: An I/O error occurred while BRU was reading or
writing a disk label. A write error is fatal; a read error is
not fatal as long as BRU can continue reading the disk. See the
IAS/RSX-11 1/0 Operations Reference Manual for the definition of
the I/0 error code number.

User Action: If a write -error occurred, reenter the command
line, specifying a different disk.
-— *WARNING* -- DISK OUT OF SEQUENCE. PLEASE MOUNT CORRECT DISK.

Explanation: The wrong disk volume was mounted on the disk drive
during a restore-from-disk operation from a multivolume backup
set.

User Action: Mount the correct disk on the drive.

7-39 April 1983

BRU

BRU

BRU

BRO

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* —-- DISK READ ERROR

Explanation: An unrecoverable read error occurred on the output
disk, possibly caused by an undetected bad block, or an error
occurred while BRU was sizing the input or output disk.

User Action: Use the BAD utility to locate all bad blocks. Then
use BRU with the /BAD:AUTOMATIC qualifier to use the existing bad
block information on the disk to create the file BADBLK.SYS.

~- *FATAL* -~ DISK WRITE ERROR

Explanation: An unrecoverable write error occurred on the output
disk. The error could have been caused by an undetected bad
block.

User Action: Use the BAD utility to locate all bad blocks (see
Chapter 6). Then use BRU with the /BAD:AUTOMATIC qualifier to
use the existing bad block information on the disk to create the
file BADBLK.SYS.
-- *FATAL* -- DOUBLY DEFINED QUALIFIER

Explanation: The same qualifier was specified more than once on
the command line.

User Action: Reenter the command line, specifying the qualifier
once,
-- *WARNING* -- DUPLICATE BLOCKS FOUND

Explanation: A manually entered bad block was already in the bad
block file.

User Action: ©None. BRU continues the operation.

-~ END OF DISK Number ON ddnn:

Explanation: BRU has finished transferring data or verifying a
disk.

User Action: ©None. This is an informational message.

-~ END OF TAPE number ON ddnn:

Explanation: BRU has finished transferring data or verifying a
tape.

User Action: None. This is an informational message.

—-— *FATAL* —-- END OF VOLUME ENCOUNTERED. BACKUP SET NOT FOUND

Explanation: The backup set specified for a restore operation is
not on the tape or disk volume.

User Action: Mount the correct tape or disk volume or reenter
the command line, specifying the correct backup set name.

7-40 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- EOT MARKER ERROR

Explanation: During a backup operation, an error occurred while
BRU was writing or verifying the end-of-tape label on the output
tape.

After a restore operation, an error occurred while BRU was
positioning the tape at the end cf a backup set for a subsequent
operation.

User Action: On a write error, BRU rewinds the current tape and
places it off-line. BRU then requests that a new tape be mounted
and rewrites the data on the new tape.

On a verify error, BRU continues the operation.

On a positioning error, BRU finishes the operation. If you want
to perform another BRU operation on the tape, use the /REWIND
qualifier to position the tape to beginning-of-tape.

BRU -- *WARNING* -- ERROR ACCESSING FILE
I1/0 ERROR CODE number
FILE ID number

Explanation: An error occurred while BRU was writing data into a
file, or BRU tried to do a compare read on a file that was
already opened. BRU will continue with the next file.

See the IAS/RSX-11 1I/0 Operations Reference Manual for the
definition of the I/0 error code number.

User Action: After BRU has finished, delete the file and then
enter a command line, specifying the file.

BRU -- *WARNING* -- ERROR ACCESSING UFD. SKIPPING [ufd]
I/0 ERROR CODE number

Explanation: During a copy to a mounted volume, an error
occurred when BRU attempted to access a directory. See the
IAS/RSX-11 I/0 Operations Reference Manual for the definition of
the I1/0 error code number.

User Action: 1If possible, determine the cause of the error from

the I/0 error code. If correctable, try the copy operation
again.
BRU ~-- *FATAL* -- ERROR LIMIT EXCEEDED

Explanation: BRU has reached the specified number of tape read
errors and terminated execution.

User Action: Reenter the command line, using a different tape
drive, or reenter the command line after cleaning the tape drive
heads on the original drive.

BRU -- *FATAL* -- ERROR READING COMMAND FILE
Explanation: An I/0 error occurred while BRU was reading the
indirect command file.

User Action: Reenter the command line.

BACKOP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* —-- ERROR READING DATA BLOCKS
I/0 ERROR CODE number
FILE ID number LBN number
or
RECOVERED

Explanation: An I/O error occurred while BRU was reading a data
block from the disk. The file-ID of the file that contains the
block and the LBN of the block are displayed as well as the 1/0
error code. If RECOVERED is printed after the message, the block
was recovered by re-reading the disk.

See the IAS/RSX-11 1I/0 Operations Reference Manual for the
definition of the I/0 error code.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- ERROR READING UFD [ufd]

Explanation: An I/0 error occurred while BRU was reading a block
from the specified UFD. Any files contained in this block of the
UFD are not backed up.

User Action: Reenter the command line. If the error still
occurs, you can find the 1lost files by using the VFY utility
(refer to Chapter 9).

BRU -- *WARNING* -- ERROR READING UFD HEADER [ufd]

Explanation: An error occurred while BRU was reading the header
of the specified UFD. Files in this UFD are not backed up.

User Action: Reenter the command 1line. If the error still
occurs, use the VFY utility to find the lost files (see Chapter
9).

BRU -- *WARNING* -- EXTENDING INDEX FILE

Explanation: The initial number of file headers was too small.
Either 256 (10) or 16(10) more headers will be allocated,
depending on the number of blocks on the output disk.

User Action: None. BRU continues the operation.

BRU -~ *FATAL* -- FAILED TQO READ BAD BLOCK FILE

Explanation: BRU was unable to read the bad block information
from a last-track output disk.

User Action: Reenter the command line, using the /BAD:OVERRIDE
qualifier.

BRU -- *WARNING* -- FILE HEADER READ ERROR {[ufdjfilename.type;version
I1/0 ERROR CODE number

Explanation: An I/0 error occurred while BRU was reading a file
header. That file 1is not backed up. See the IAS/RSX-11 I/0
Operations Reference Manual for the definition of the 1I/0 error
code number.

User Action: None. BRU continues the operation.

7-42

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- FILE HEADER VERIFY ERROR {ufd]filename.type;version

Explanation: The file header of the specified file on the output
device is not the same as that on the input device.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- FILE ID AREA VERIFY ERROR

Explanation: The BRU-generated file-ID area of a data record was
different on the input and output devices.

User Action: None. BRU continues the operation.

BRU -~ *FATAL* -- FILE ID EXCEEDS MAXIMUM NUMBER OF FILES

Explanation: You specified a maximum number of files with the
/MAXIMUM qualifier that was smaller than a file-ID encountered on
the input volume.

User Action: Reenter the command line, specifying a larger value
with the /MAXIMUM qualifier.

BRU -- *WARNING* -- FILE ID SEQUENCE NUMBER ERROR [ufd]filename.type;version
Explanation: The two possible sources of this error are:

1. The sequence number in the file-ID of a file does not
match the sequence number of the file's entry in the
UFD.

2. The sequence number of a UFD does not match the sequence
number of the UFD's entry in the Master File Directory
(MFD) .

Therefore, the file or UFD is not valid and is not copied.

User Action: ©None. BRU continues the operation.

BRU -- *WARNING* -- FILE IDS WILL NOT BE PRESERVED

Explanation: File-IDs cannot be preserved because the index file
bitmap on the output disk is too small. This is because the
value specified with the /MAXIMUM qualifier was too small.

User Action: None. BRU continues the operation without
preserving file-IDs. If your input disk had a hardware-bootable
system on it, your output disk will not be hardware-bootable.

If you want the disk to be hardware-bootable, perform the BRU
operation again, specifying a larger value with the /MAXIMUM
qualifier.

BRU -- *WARNING* -- FILE MARKED FOR DELETE [ufd]filename.type;version

Explanation: The marked-for-delete bit (SC.MDL) of the system
controlled characteristics in the file header was set, indicat
i

that the file was partially deleted. The file is not cop

icating
ed.

User Action: None. BRU continues the operation.

BACKUP AND RESTORE UTILITY (BRU)

BRU -~ *WARNING* -- FILE NOT FOUND [ufd]filename.type;version
Explanation: During a backup operation, BRU cannot find the
header for the specified file or directory in the index file.
The file is not copied.

During the verify or compare pass of a restore operation, BRU
cannot find the specified file on the output device.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- FILE NOT FOUND

Explanation: BRU could not find the specified indirect command
file.

User Action: Reenter the command line, correctly specifying the
indirect command file.

BRU -- *WARNING* -- FILE NOT SUPERSEDED [ufd]filename.type;version

Explanation: During a copy to a mounted volume with /NOSUPERSEDE
specified (or defaulted), the specified file was not restored
because it already existed on the output disk.
User Action: If you want the file to be restored, enter a
command 1line, specifying the file and either /SUPERSEDE or
/NEW_VERSION.

BRU -- *FATAL* -- HANDLER NOT RESIDENT

Explanation: The device driver for the specified device is not
loaded.

User Action: Load the driver for the specified device or reenter
the command line, specifying the correct device name.
BRU -- *WARNING* -- HEADER ID RECORD VERIFY ERROR

Explanation: The BRU-generated header-ID record on the output
device is different from the one on the input device.

User Action: None. BRU continues the operation.
BRU -- *WARNING* -- HEADER READ ERROR [ufdlfilename.type;version
I/0 ERROR CODE number

Explanation: An I/0 error occurred while BRU was reading a file
header in the index file during a backup operation.

If this error occurs during a restore operation, it is fatal.

See the IAS/RSX-11 1/0 Operations Reference Manual for the
definition of the I/0 error code number.

User Action: None.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* —-- HOME BLOCK READ ERROR
I/0 ERROR CODE number

Explanation: An I/0 error occurred while BRU was reading the

home

block on the input device. See the IAS/RSX-11 1I/0

Operations Reference Manual for the definition of the 1I/0 error

code number.

User Action: Reenter the command line.

BRU -- *WARNING* -- HOME BLOCK VERIFY ERROR

-2

Explanation: The home block on the output dJdevice 1is different
from the home block on the input device.

User Action: BRU continues, but it is suggested that you retry
the operation.

BRU -- *FATAL* -- HOME BLOCK WRITE ERROR

Explanation: An unrecoverable I/0 error occurred while BRU was

writing

the home block on the output device.

User Action: Use the BAD utility to find all the bad blocks on
the disk before initializing it.

BRU -- *FATAL* -- ILLEGAL USE OF DIRECTORY QUALIFIER

Explanation: Possible sources for this error are:

1.

2.

3.

The /DIRECTORY qualifier was specified with an output
device.

The /DIRECTORY qualifier was specified with a device
other than a tape or backup disk with the BRU container
file.

The /INITIALIZE qualifier or any of its related
gualifiers were specified with the /DIRECTORY qualifier.

User Action: Refer to Section 7.4 for a description of valid
uses of the /DIRECTORY qualifier.

BRU -- *FATAL* -~ INCONSISTENT INITIALIZE QUALIFIERS

Explanation: The /INITIALIZE qualifier or any of 1its related
qualifiers were specified for the output disk, but the
/NOINITIALIZE qualifier was also used.

User Action: Reenter the command line.

BRU -- *FATAL* -- INDEX FILE HEADER READ ERROR
I/0 ERROR CODE number

Explanation: An I/0 error occurred while BRU was reading the

header

of the index file on the input disk. See the IAS/RSX-11

I/0 Operations Reference Manual for the definition of the 1I/0

error code number.

User Action: Reenter the command line.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- INDEX FILE WRITE ERROR

Explanation: An I/O error occurred while BRU was writing the
index file on the output disk.

User Action: Use the BAD utility (see Chapter 6) to identify the
bad blocks on the output disk, then reenter the command line.

BRU -- *FATAL* -- INDEXF.SYS IS FULL
Explanation: The index file cannot map any more file headers.
User Action: Reenter the command line, specifying a larger value
with the /MAXIMUM qualifier.

BRU -- *FATAL* -- INITIALIZE QUALIFIERS INVALID WHEN OUTPUT IS TAPE
Explanation: The /INITIALIZE qualifier and the other qualifiers
that you can specify with it may be used only when the output

device is a disk.

User Action: Reenter the command line.

BRU -- *FATAL* -- INPUT DEVICE EQUALS OUTPUT DEVICE
Explanation: The input and output devices must be different.
User Action: Reenter the command 1line, specifying different
devices for input and output.

BRU -- *FATAL* —-- INPUT LINE TOO LONG

Explanation: The maximum length of a command line is 256(10)
characters.

User Action: Truncate qualifiers and options to shorten the
line. Make sure the truncated forms are unique. All BRU
qualifiers are unique to three characters; all options are
unique to two characters.

BRU -- *WARNING* -- INPUT VOLUME STRUCTURE LEVEL DIFFERS FROM OUTPUT VOLUME
Explanation: You have initialized the output volume, specifying
with the /MAXIMUM qualifier that the number of files allowed on
the volume be greater than 25593. This causes the index file on

the output volume to have more than one file header.

User Action: None.

BRU -- *FATAL* —-- INTERNAL ERROR

Explanation: BRU has detected an error within itself, Th
should not normally occur.

[
0]

User Action: Please submit a Software Performance Report (SPR)
with a hard copy of the BRU operations and error messages.

BACKOP ARD RESTORE UTILITY (BRU)

BRU -- *FATAL* -- INVALID DATE OR TIME
Explanation: In the command line, a date or time was specified
incorrectly or is out of range.

User Action: Specify the correct date or time.

BRU -- *WARNING* -- INVALID DATE OR TIME [ufd]filename.type;version
Explanation: An invalid date or time was encountered in a file
header during an incremental backup.

User Action: None. BRU continues the operation. The file |is
copied.

BRU -- *FATAL* -~ INVALID DENSITY OR TAPE FORMAT
Explanation: You specified a density that was neither the
default bpi (800 or 6250) nor 1600 bpi or you attempted to use
both 7-track and 9-track tapes in a multivolume tape set.

User Action: 1In the former case, reenter the command line,
specifying the correct density. In the latter case, only use all
7-track or all 9-track tapes for a multivolume tape set.

BRU -~ *FATAL* -- INVALID DISK FORMAT
Explanation: The disk that was mounted for an /IMAGE restore
operation is not a BRU multivolume backup disk.

User Action: Mount the correct disk.

BRU -- *FATAL* -- INVALID FILENAME
Explanation: The name of the indirect command file is not
syntactically correct.

User Action: Reenter the command line.

BRU -- *WARNING* -- INVALID TAPE FORMAT
Explanation: An invalid tape record was read during a restore
operation.

User Action: None. The invalid record is not restored.

BRU -- *FATAL* -- INVALID VALUE OR NAME

Explanation: A value or name specified for a qualifier has

illegal syntax or is out of range.

User Action:
for the parti

Refer to Section 7.4 to determine the legal values
cular gualifier.

7-47 April 1983

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-~ *FATAL* -~ MANUFACTURER BAD SECTOR FILE IS CORRUPT

Explanation: BRU was unable to read the bad block information
from a last-track output disk.

User Action: Reenter the command line, specifying the
/BAD:OVERRIDE qualifier.
-- *FATAL* -~ MFD HEADER READ ERROR

Explanation: An I/0 error occurred while BRU was reading the
header of the Master File Directory.

User Action: Reenter the command line. If the header still
cannot be read, the files on the disk are lost and may be
recovered using the VFY utility (see Chapter 9).
-— *WARNING* -- MFD READ ERROR

Explanation: An I/O error occurred while BRU was reading a block
of the MFD. BRU cannot copy the UFDs in that block of the MFD.

User Action: Reenter the command line. If the block cannot be
read, use the VFY utility to recover the lost files. (Refer to
Chapter 9 for information on VFY.)

-- *FATAL* ~-- MISSING COLON

Explanation: A gqualifier option that accepts a value was not
followed by a colon.

User Action: Reenter the command line.

-~ *FATAL* —-- MORE THAN 1 LEVEL OF INDIRECTION

Explanation: BRU does not support more than one level of
indirect command files.

User Action: Reenter the command line.

-- MOUNT DISK n ON ddnn:. PRESS "RETURN" WHEN DONE

Explanation: This message is issued each time BRU requests a
disk for an image backup or restore operation.

User Action: Mount the disk specified on the drive specified and
then press "RETURN",.
-- MOUNT TAPE n ON ddnn:

Explanation: There is no tape on the specif

ifi
is not at 1load point. This message prin
until the tape is mounted.

ed drive or the tape
ts every twe minutes

User Action: Mount the tape specified on the drive specified.

7-48 April

[~
“
[»o]
(98]

BACKUP AND RESTORE UTILITY (BRU)

BRU -- MOUNT ANOTHER DISK

Explanation: BRU is requesting that a new disk be mounted after
encountering a fatal disk write error.

User Action: Mount a new disk on the drive.

BRU -- MOUNT ANOTHER TAPE

Explanation: BRU is requesting that a new tape be mounted after
encountering a fatal tape write error.

User Action: Mount a new tape on the drive.

BRU -~ *FATAL* —-- NAME EXCEEDS MAXIMUM ALLOWED LENGTH
Explanation: A name, such as a backup set name, is 1longer than
12(10) characters. An exception to this rule is during an /IMAGE
backup operation to a mounted disk. You may specify more than
12(10) characters if you are adding the name of the backup set
filename to the command line. For additional information, ~see
Section 7.4 for a description of the /BACKUP_SET qualifier.

User Action: Specify a name not greater than 12 characters.

BRU -- *WARNING* -- NO BAD BLOCK DATA FILE FOUND

Explanation: The BAD utility has not been run on the output disk
to produce a file of the disk's bad blocks.

User Action: None. BRU continues the operation. Refer to
Section 7.6 for information on bad block processing by BRU.
BRU -- *WARNING* -- NO FILES FOUND

Explanation: During a backup or restore operation, BRU did not
find any files to transfer.

User Action: None.

BRU ~-- *WARNING* -- NONFATAL QUALIFIER CONFLICTS BEING IGNORED
Explanation: You entered a qualifier that conflicts with the
rest of the command 1line, but is not fatal if ignored. For
example, you used the /REWIND qualifier on a disk-to-disk
operation.

User Action: None. BRU continues the operation.

BRU -- *WARNING* -- NO SUCH UFD EXISTS. SKIPPING [ufd]
Explanation: During a copy to a mounted volume, BRU encountered
one or more files in the specified UFD on the input volume, but
there is no corresponding UFD on the output volume.

User Action: Reenter the command line, specifying the /UFD
qualifier to create the UFD.

7-49 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- NUMBER OF HEADERS INCONSISTENT WITH MAXIMUM FILES

Explanation: During an attempt to initialize an output volume,
BRU found that the maximum number of files specified with the
/MAXIMUM qualifier was inconsistent with the number of headers
initially allocated to the index file with the /HEADERS
qualifier.

User Action: See the RSX-11M/M-PLUS MCR Operations Manual (the
INI command) for the legal ranges of values for the /MAXIMUM and
/HEADERS qualifiers.

BRU -- *WARNING* -- OPEN ERROR
I/0 ERROR CODE number
FILE I/D number or [ufd]filename.type;version

Explanation: During a copy operation to a mounted volume, an
error occurred while BRU was attempting to open the specified
file. See the IAS/RSX-11 I/0 Operations Reference Manual for the
definition of the I/0 error code number.

User Action: Determine the cause of the error from the I/0 error
code. If correctable, delete any portion of the file already
copied by BRU, then reenter the command line.
BRU -- *FATAL* -- OUTPUT DISK TOO FRAGMENTED TO RESTORE

Explanation: The internal tables in BRU have overflowed due to
the extreme fragmentation of the output disk. If the output disk
was initialized, then it has an unacceptable number of bad blocks
and should not be used as a backup medium.

User Action: Use a new disk as the output device.

BRU -- *FATAL* -- OUTPUT DEVICE IS FULL

Explanation: There are no free blocks on the output disk. This
can occur when the output disk is smaller than the input disk or
during an append to a tape that is already full.

User Action: 1If the output disk is too small, reenter the
command line, specifying only the files you want. If you were
doing an append to a tape that 1is already £full, reenter the
command line, specifying a new tape.

BRU -- *FATAL* -- OVERRIDE INVALID WITH NON LAST TRACK DEVICE

Explanation: The OVERRIDE option may be used only when the
output disk is a last-track device.

User Action: Refer to Section 7.4.

BRU -- PLEASE ANSWER YES OR NO
Explanation: BRU requires a YES or NO response.

User Action: Enter YES or NO at your terminal.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- PRIVILEGE VIOLATION [ufd]filename.type;version

Explanation: During a backup operation, you attempted to copy a
file that you do not have read access to.

User Action: None. BRU does not copy the file.

BRU -- *FATAL*

-- PRIVILEGE VIOLATION

Explanation: The mount status of one of the devices is
inconsistent with the qualifiers specified in the command line.

User Action: See

abl 7-1 for the correct combinations of

Table
mounted devices and qualifiers, then reenter the command line.

BRU -- *FATAL*

-- RAN OUT OF SPARE FILE IDS

Explanation: The output disk required more file headers than the

input

disk, but no free headers were available. The lack of

headers is probably due to one of the following reasons:

1.

2.

The output disk is too fragmented because of bad blocks.

There are no free file headers on the input disk.

User Action: If you do not need to preserve file-IDs, reenter
the command line, specifying the /NOPRESERVE qualifier.

If you want to preserve file-IDs, do one of the following:

1.

If the output disk 1is too fragmented, run BAD (see
Chapter 6) on it to display the number of bad blocks.
If it contains a large number of bad blocks, you may
want to use a different disk.

Use the PIP /FR switch (see Chapter 3) to display the
number of free file headers on the input disk. If there
are fewer than 4 free headers, delete some of the files
and then reenter the command line. If you still do not
have enough file headers, specify the /NOPRESERVE
qualifier in the command line.

BRU -~ *WARNING* -- RECORD NOT EXPECTED SIZE

Explanation: The record read on the output device during a
verify or compare operation was not the expected size.

User Action: None. BRU continues the operation.

BRU -- *FATAL*

-- REQUIRED INPUT DEVICE MISSING

Explanation: The input device was not specified on the command
line or in response to the prompt.

User Action: Reenter the command line.

BRU

BRU

BRU

BRU

BRU

BRU

BRU

BACKUP AND RESTORE UTILITY (BRU)

-- *FATAL* -- REQUIRED OUTPUT DEVICE MISSING

Explanation: The output device was not specified on the command
line or in response to the prompt.

User Action: Reenter the command line.

-- REWIND ERROR ON ddnn:

Explanation: An I/0 error occurred during a tape rewind. This
error 1is fatal 1if it occurs on the first tape of a tape set or
during a rewind for a verify operation. The error is not fatal
if BRU is rewinding a tape it is finished with.

User Action: If the error is fatal, reenter the command line.
If the error is not fatal, no action is required.

-- *FATAL* -- SEARCH FOR HOME BLOCK FAILED

Explanation: The home block could not be found on the input
disk. Either the home block is bad or the disk is not in
Files-11 format.

User Action: Check to see that you have the correct disk.

-- STARTING TAPE n ON ddnn:

Explanation: This message tells you which tape is being copied
to or from which drive.

User Action: VNone. This is an informational message.

—- STARTING VERIFY PASS

Explanation: This message tells you that the verify pass of a
disk-to-disk operation is beginning.

User Action: None. This is an informational message.

-- STARTING VERIFY PASS TAPE n ON ddnn:

Explanation: This message tells you which tape is being verified
during a backup or restore operation.

User Action: None. This is an informational message.

-~ *FATAL* -- SYNTAX ERROR
Explanation: The command line is invalid.

Oser Action: Reenter the command line.

7-52 April 1983

BACKUP AND RESTORE UTILITY (BRU)

BRU -- TAPE LABEL ERROR ON ddnn:
I/0 ERROR CODE number

Explanation: An I/0 error occurred while BRU was reading or
writing a tape label. A write error is fatal; a read error is
not fatal as long as BRU can continue reading the tape. See the
IAS/RSX-11 1I/0 Operations Reference Manual for the definition of
the I/0 error code number.

User Action: If a write -error occurred, reenter the command
line, specifying a different tape.
BRU —- *WARNING* -~ TAPE LAREL VERIFY ERROR

Explanation: BRU detected an error in the tape 1label of the
input or output tape volume during a verify operation.

User Action: None. BRU continues the operation.

BRU ~-- *WARNING* -- TAPE NOT AT BOT. NO REWIND OR APPEND SPECIFIED

Explanation: For a backup operation to tape, BRU will not
process a tape that is not at BOT unless the /APPEND qualifier
was specified.

User Action: 1If you want to start writing at the beginning of
the tape, use the /REWIND qualifier.

You can append to a tape only at the end of the last backup set
on 1it. If the tape is already positioned there, specify /APPEND
in the command line. 1If it is not, specify both /REWIND and
/APPEND in the command line.

BRU -~ *WARNING* -- TAPE OUT OF SEQUENCE. PLEASE MOUNT CORRECT TAPE

Explanation: The wrong tape volume was mounted on the tape drive
during a restore-from-tape operation.

User Action: Mount the correct tape on the drive.

BRU -- *WARNING* -- TAPE POSITIONING ERROR. BACKSPACE FAILED

Explanation: During a backup operation, the tape was not
positioned properly for a future append operation.

User Action: Rewind the tape before attempting the append
operation.

BRU ~- *FATAL* -- TAPE POSITIONING ERROR. NO EQV ENCOUNTERED
I/0 ERROR CODE number

Explanation: The tape spacing operation to find the
end-of-volume for an append operation failed. See the IAS/RSX-11
I1/0 Operations Reference Manual for the definition of +the 1I/0
error code number.

User Action: Reenter the command line.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *WARNING* -- TAPE READ ERROR
Explanation: An I/O error occurred while BRU was reading a tape.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- TAPE TO TAPE NOT SUPPORTED
Explanation: BRU does not back up a tape to another tape.
User Action: None.
BRU -- *WARNING* -- TAPE WRITE ERROR
I/0 ERROR CODE number
Explanation: An I/O error occurred while BRU was writing to
tape. BRU rewinds the tape and then requests that another tape

be mounted. See the IAS/RSX-11 I/0 Operations Reference Manual
for the definition of the I/O error code number.

User Action: 1If the error 1is related to the tape drive,
terminate BRU and start over on another drive.
BRU -- THIS DISK WILL NOT CONTAIN A HARDWARE BOOTABLE SYSTEM

Explanation: The output disk will not be hardware-bootable.
This can be caused by:

1. The input disk not being bootable
2. The system image not being copied

3. Copying to a disk of different size or type

NOTE
This message is not issued when BRU is
restoring to a mounted volume.

User Action: None.

BRU -- *FATAL* -- TOO MANY DEVICES

Explanation: For a conventional backup a disk may be specified
only once as an input or output device. However, up to eight
tape drives or eight disks in an image backup may constitute the
input or output.

User Action: Reenter the command line, specifying only one disk
or no more than eight tape drives.
BRU -- *FATAL* -- TOO MANY FILE SPECIFICATIONS

Explanation: More than 16(10) file specifications were specified
on the command line.

User Action: Reenter the command line. You can use wildcards to
reduce the number of file specifications on the command line.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- *FATAL* -- UFD OR MFD REQUIRES UNSUPPORTED EXTENSION HEADERS
Explanation: BRU does not support extension headers for MFDs or
UFDs.

User Action: This error should not occur. Please submit a

Software Performance Report (SPR) with a hard copy of the BRU
operations and error messages.
BRU -- *WARNING* -- UFD RECORD VERIFY ERROR

Explanation: There is a difference between input and output
devices on a UFD record.

User Action: None. BRU continues the operation.

BRU -- *FATAL* -- UNKNOWN OPTION

Explanation: An option was specified that was not recognized by
BRU.

User Action: Reenter the command line. See Table 7-3 for a list
of legal options.
BRU -- *FATAL* —-- UNKNOWN QUALIFIER

Explanation: A qualifier was specified that was not recognized
by BRU.

User Action: Reenter the command line. See Table 7-3 for a list
of legal command qualifiers and their options.

BRU -- *FATAL* -- UNSUPPORTED STRUCTURE LEVEL

Explanation: The file structure level on the input disk 1is not
supported by BRU.

User Action: Ensure that you have the correct disk. (See the
descriptions of the /HEADERS and /MAXIMUM qualifiers in Section
7.4 for information on structure levels.)

BRU ~-- *WARNING* -- VBN NOT IN FILE

Explanation: A file-ID was encountered that is larger than the
maximum file-ID in the index file. The file is ignored. This
error messadge occurs if a UFD entry was corrupted on the input
disk.

User Action: None. BRU continues the operation.

BRU -~ *FATAL* -- VERIFY LOST

Explanation: During the verify pass of a disk-to-tape backup
operation, BRU has lost synchronization between the input and the
output. This is usually caused by the tape position being lost
or by backing up from a disk that is mounted and then changed
during the backup operation.

User Action: Reenter the command line.

BACKUP AND RESTORE UTILITY (BRU)

BRU -- -FATAL* -- VOLUME NOT A BACKUP DISK

Explanation: The disk mounted for an append or restore operation
does not contain a backup set file generated by BRU.

User Action: Check to see that you have the correct disk and
reenter the command line.

BRU -- *FATAL* -- VOLUME NOT A BACKUP TAPE
Explanation: The tape mounted for an append or restore operation
was not generated by BRU, or the tape is not positioned correctly
for an append operation.
User Action: Check to see that you have the correct tape, or
reenter the command 1line, specifying the /REWIND qualifier to
position the tape.

BRU -- *FATAL* —-- VOLUME NOT READY
Explanation: The device is not on-line.
User Action: Put the device on-line and reenter the command
line.

BRU -- *FATAL* —-- VOLUME WRITE LOCKED
Explanation: The output device is not write-enabled.
User Action: 1If the output device is a tape, insert a write ring
to make it write-enabled. If it 1is a disk, press the Write
Enable switch on the disk drive.

BRU -~ *FATAL* -- WRONG BACKUP SET
Explanation: During a restore operation from a multireel tape
set or a multivolume disk backup set, BRU found that one of the
tapes or disks does not contain the correct backup set.
User Action: Reenter the command line, specifying the correct
tape.

BRU -- *FATAL* -- WRONG INPUT VOLUME LABEL

Explanation: The input volume label specified with the /INVOLUME
qualifier does not match the volume label of the input device.

Oser Action: Reenter the command line, specifying the correct
input volume label.

7-56 April 1983

CHAPTER 8

DISK SAVE AND COMPRESS (DSCj

The Disk Save and Compress (DSC) utility copies a Files-11 structured
disk either to disk or to tape and from DSC-created tape back onto
disk. At the same time, DSC reallocates and consolidates the disk
data storage area: it concatenates files and their extensions into
contiguous blocks whenever possible and, therefore, reduces the number
of retrieval pointers and file headers required for the same files on
the new volume.

DSC copies files that are randomly scattered over a disk volume to a
new volume, without the intervening spaces. This eliminates unused
space between files and reduces the time required to access them.

A complete DSC operation is a cycle that begins with data on one disk
and ends with the same data in compressed form on another disk. The
operation can use one command (for a disk-to-disk <cycle) or two
commands (for a disk-to-tape and tape-to-disk cycle). You can use DSC
on-line or in either of 1its stand-alone versions (DSCSY¥S.SY¥S or
DSC64K.SY¥S).

After a DSC copy operation, individual files are written in available
contiguous blocks and the blocks available for new files are located
in a contiguous area at the end of the new volume. If the contents of
one disk are transferred to a disk with a larger capacity, the new
disk takes on the attributes of the original disk except that
additional storage space is available.

DSC reads and writes data to its two buffers when it performs copy or
compare operations. (See Figures 8-1 and 8-2.) Each buffer normally
is large enough to contain four disk blocks and a 1l6-byte buffer
prefix. However, the /Block Factor switch (/BL) in a DSC command line
allows you to increase the number of blocks in each buffer, up to. the
maximum space available for DSC on your system. The maximum blocking
factor is 4 for both stand-alone versions.

In a disk-to-disk copy operation, DSC:
1. Copies data from disk to a DSC buffer

2. Copies data from the DSC buffer to another disk

DISK SAVE AND COMPRESS (DSC)

In a disk-to-tape and tape-to-disk operation, DSC:
1. Copies data from disk to a DSC buffer
2. Writes data from the DSC buffer to tape
3. Copies data from tape to a DSC buffer
4. Writes data from the DSC buffer to another disk

You can execute operations 3 and 4 to restore data to disk at any
time.

BLOCKS OF DATA

——..._h
@
g DSC] _
- BUFFER 1 I
|
o |
ST .
DSC --=-4d
- BUFFER 2
Y

DISK INPUT DEVICE DISK OUTPUT DEVICE

0 DSC reads eight (default) or more blocks of data from the disk input device to two
buffers.

9 In disk-to-tape copy operations, DSC writes data from the buffers to magnetic tape.

9 In disk-to-disk copy operations, DSC writes data from the buffers to the disk output
device.

DSC repeats steps @ and @ or © until it copies the entire input device.
ZK-182-81

Figure 8-1 Data Transfer for DSC Copy Operation

DISK SAVE AND COMPRESS (DSC)

BLOCKS OF DATA

Y

0 | [.=
BUFFER 1

DSC

BUFFER 2 - e

/
/
o

DISK INPUT DEVICE o DISK QUTPUT DEVICE

0 DSC reads four blocks (default) of data from the disk input device to a buffer.
g DSC reads four blocks (default) of data from the disk output device to the second buffer.
9 DSC compares the contents of the two buffers.

6 DSC prints the differences on your terminal.

DSC repeats steps @ through @ until it has compared the entire device.
ZK-183-81

Figure 8-2 Data Transfer for DSC Compare Operation

After a disk-to-disk copy operation, you can access the data on the
new disk directly. However, after a disk-to-tape operation you cannot
access the data on tape directly because it 1is stored in a format
recognizable only to DSC. To access this data, you must perform a
second DSC copy operation and transfer the data to another disk
volume.

When DSC copies and compresses a disk containing a saved system (a
task image file created from an RSX-11M or RSX-11M-PLUS system image
by an MCR SAVE command), it moves all task files to different physical
addresses. However, because the Task Control Block (TCB) entries for
each task contain file identifications rather than Logical Block
Numbers (LBNs), such a saved system can function normally when it is
rebooted.

You can also use DSC to reccover from hardware malfunctions that have
made a portion of a disk volume unreadable. If the contents of a
block allocated to a data file cause a read error, you can use DSC to
copy the garbled contents to the output device and to generate a
warning message labeling the garbled data block. You can then access
the block and correct its contents.

8-3

DISK SAVE AND COMPRESS (DSC)

8.1 DSC-SUPPORTED VOLUMES

You can use DSC with a wvariety of mass storage or magnetic tape
devices. The status DSC requires for the devices varies with the
operating system.

Table 8-1 lists the devices that can be used with DSC operations.

Table 8-1
DSC-Supported Devices

Abbreviation Type Class
DB RP04/RP0OS5/RP06 disk pack Block structured
ppl TUS58 cassette (DECtape II) Block structured
pF 1 RF11/RS11 fixed head disk Block structured
DK RKO5/RKO5F cartridge disk Block structured
DL RLO1/RL0O2 cartridge disk Block structured
DM RKO6/RK07 cartridge Block structured
disk
DP RP02/RP03 disk pack Block structured
DR RM02/RM03/RM05/RM80/RPQ7 Block structured
disk pack
psl RH70/RS03/RS04 and RH70/RS03/ Block structured
fixed-head disk
' prl TUS56 DECtape Block structured
Dy 2 RA80 Fixed media disk Block structured
px1 _RX01 floppy disk Block structured
py L’ RX02 floppy disk Block Structured
MM TE16/TUl6/TUAS/TU77 Tape
9-track magnetic tape
MS TS1l magnetic tape Tape
MT TU10/TE10 7- or 9-track Tape

magnetic tape and TS03
9~-track magnetic tape

MF 2 TU78 magnetic tape Tape

1. Indicates that the device cannot be used with either stand-alone
DSC.

2. Indicates that the device cannot be used with DSCSYS.SYS.

DISK SAVE AND COMPRESS (DSC)

8.2 INITIATING AND TERMINATING ON-LINE DSC

You can initiate the on-line DSC in any of the ways explained in
Chapter 1 of this manual. To terminate on-line DSC, type CTRL/Z.

8.3 INITIATING AND TERMINATING STAND-ALONE DSC

You can bootstrap stand-alone DSC (DSCSYS.SYS or DSC64K.SYS) from disk
or from tapes supplied with the operating system.

You can bootstrap stand-alone DSC in one of two ways:

1. Software boot stand-alone DSC by entering the privileged MCR
BOOT command as follows:

For Unmapped

>INS $B0O
>BOO[T] [l,50]DSCSYS.SYS

For Mapped

>INS $BOO
>BOO([T] [1,51]DSC64K.SYS

2. Hardware boot stand-alone DSC by loading the appropriate
beginning bootstrap address.

To create a hardware-bootable stand-alone DSC tape from the
distribution disk, wuse the Virtual Monitor Console Routine
(VMR) to save the system image to tape.

When stand-alone DSC is booted, it displays the message:

RSX-11S V3.0 BL32 DISK SAVE AND COMPRESS UTILITY V4.0
DSC>

The prompt indicates that DSC is ready to accept commands. Terminate
stand-alone DSC by halting the processor.

When DSC64K.SYS is booted, the Stand-alone Configuration and Disk
Sizing Program (CNF) 1is active. Type the following for the DSC
prompt:

>RUN DSC

Section 8.8 describes stand-alone DSC64K.SYS.

8.4 DSC COMMAND FORMAT
Commands for DSC use the format:
DSC>outdev(s]:[filelabel] [/switch]l=indev[s]:[filelabel] [/switch]
The parameters of this command format are:
Output Parameters
outdev:
The physical volume(s) to which data is copied. The format for

outdev: is dd[nn]: where dd are the ASCII characters for the

8-5

DISK SAVE AND COMPRESS (DSC)

volume abbreviation, [nn] is an optional 1- or 2-digit octal unit
number for the volume, and the colon (:) is required syntax for a
device specification. If you omit the unit number, 0 1is the
default.

DSC uses tape drives in the order specified in the command 1line.
If more tapes are required than specified, DSC accesses the tape
drives available 1in round-robin fashion. Up to eight tape
drives, separated by commas, can be specified as output devices
in an on-line DSC operation. Stand-alone DSC permits only two
tapes to be used as output devices.

DSC ignores multiple disk specifications.
file label

Identifies the output disk's volume-ID, the tape file, or tape
set that DSC creates in a data transfer. You can specify a file
label with either disk or tape output volumes. If you do not
specify a file 1label, and you copy a disk to tape, DSC records
the volume ID of the input disk on the tape. When the copy is
from tape to disk, the output volume ID defaults to the ID
recorded on the tape. 1In a disk to disk copy operation, the
output volume ID will default to the ID of the input disk.

switch

One or more of the optional switches described in Section 8.5.
Input Parameters
indev:

The physical volume(s), in the format dd{nn]:, from which data is
copied (see outdev:).

file label

Identifies the DSC-created tape file that is being transferred to
disk or compared. If you do not specify a file label, DSC
transfers the first file it encounters after its current position
on the tape. DSC ignores the specification of an input file
label when the input volume is a disk.

NOTE
Each file on a DSC-created tape set
contains the contents of the disk copied
by DSC.
switch

One or more of the optional switches described in Section 8.5.

8.5 DSC FILE LABELS, SWITCHES, AND OPTIONS

DSC commands can contain file labels and switches. Some switches also
use options to specify values. Table 8-2 summarizes the DSC switches
and options. ©Note that all of these switches can be used with both
on-line and stand-alone DSC. See Table 8-5 for switches available
only for stand-alone DSCSYS.

8-6

DISK SAVE AND COMPRESS (DSC)

Table 8-2

DSC Switches and Options

Switch

Format

Description

Append

Bad Block

Block Factor

Compare

Density

Rewind

Verify

/AP

(MAN

NOAUTO
/BAD=¢{ MAN:NOAUTO

OVR

MAN:OVR

/BL=n
or
/BL:n

/CMP

/DENS=1600

/DENS=800: 1600
or

/DENS: 1600

/DENS:800: 1600

/DENS = 6250

/RW

/VE

Appends a DSC file to the
first volume of a,

tape set that already
contains a DSC file. The

3 3 o PR
latter file is currently

the last file of the set.

Allows manual entry of
bad block locations; can
supplement, override, or
ignore the disk's bad
block file.

Sets the number of 256-word
blocks DSC can include in
each of its two buffers.

Compares input and output
volumes for differences.

Overrides the DSC default
storage density for magnetic
tapes of 800 bits per inch.
DENS=1600 creates magnetic
tapes at 1600 bits per inch
density and 800:1600 (the
split density switch)
creates tapes with volume
headers at 800 bits per inch
and the rest of the tape at
1600 bits per inch.

Note that the DENS=1600
switch is valid with TUlse,
TU77, TEl6, or TU45 drives.
The DENS=800:1600 switch

is valid with TUl6 or TU45
drives when they are not
controlled by the TMO03
formatter. The /DENS = 6250
switch is only valid with
TU78 drives.

Rewinds all magnetic tapes
before DSC executes the
current command.

Copies data from the input
volume and compares it with
data in the output volume.

8.5.1 File Label

The file label identifies the data copied from a disk and stored on
one or more tapes or on another disk. If you do not specify a file
label, DSC uses the volume-ID of the input disk volume 1label as the
output volume label.

The file label can consist of from 1 to 12 alphanumeric characters.
However, when copying to tape, DSC uses 9 characters to identify the
file it creates which contains the disk's contents. Place the file
label after the device specification and before any switches.
Terminate the file label with one of the following:

e An option switch

e 2An equal sign (indicating the end of the output side of the
command line)

e A carriage return (indicating the end of the command line)
For example:
DSC>MMO01: ,MM02:SYSFILE=DB1:

DSC uses the file label SYSFILE in the command line to 1identify the
file on tape that will contain the data to be copied from the input
disk, DBl:.

You can also use the file label when restoring data from tape to disk.
If you enter a file 1label as part of the input specification, DSC
searches the first volume for a file with that name. When it finds
that file, DSC transfers it to the output volume. If, however, you do
not specify an input file label, DSC transfers the first DSC-created
file it 1locates on the first input volume. 1In both cases, using the
/Rewind switch on the input side of the command causes the tape to be
rewound before the search for the file starts.

If you use a file label as part of the output specification, it will
be used as the volume label of the output disk. If you do not specify
an output file label, the default file label is that of the original
input disk, (as recorded in its Home Block).

For example:
DSC>DB1l:=MM01l:,MM02:SYSFILE

In this command line, the /Rewind switch is not specified on the input
side. Therefore, DSC searches the first volume specified, MMOl:,
beginning at the current position, for a DSC-created file named
SYSFILE. If DSC finds SYSFILE on MMOl:, it completes the data
transfer. If, however, SYSFILE is not found on the first volume, DSC
issues an error message and terminates the operation.

If you enter the command line without a file label, DSC transfers the
first DSC-created file it finds to DBl: regardless of the file name.
(This file may or may not be SYSFILE.) If you do not specify the
/Rewind switch, the tape may or may not be positioned at the beginning
before DSC begins its operation.

DISK SAVE AND COMPRESS (DSC)

8.5.2 /Append Switch

The /Append switch (/AP) directs DSC to begin writing a file to the
first specified volume of a tape set that contains only DSC-created
files.

Enter the /Append switch as part of the output specification. The
volume to which files will be appended must be specified as the first
volume of the output side of the command line, as follows:

outdev: [filelabel] /AP=indev:[filelabel] [/switch]

When vou use the /Append switch with the output specification, DSC
searches from the current position on the first specified tape output
volume for the last logical end-of-file (EOF) created by a previous
DSC command. If the last DSC-created file does not end on that
volume, DSC terminates the operation and issues the following message:

OUTPUT TAPE ddnn: IS FULL

If the first specified tape output volume contains a portion of a DSC
file that began on a previous volume, DSC terminates the operation and
issues the following error message:

OUTPUT TAPE ddnn: IS A CONTINUATION TAPE

If DSC locates the end of a file on the tape that began on another
volume, DSC terminates the operation and issues the following error
message:

OUTPUT TAPE ddnn: IS NOT THE ONLY REEL IN ITS SET
For example:
DSC>MM01: ,MM:SYSFILE/RW/AP=DX1:

This command 1line appends the contents of DXl: to the last
DSC-created file already present on the first output volume specified,
MMO0l:. Since the /Rewind switch is specified (see Section 8.5.7), DSC
first rewinds the tape on MM0Ol: and searches for the last EOF block
on the tape. When it determines that only complete DSC-created files
exist on the wvolume on MMOl:, DSC appends the new file, SYSFILE, to
the file or files already on the tape. If necessary, DSC extends
SYSFILE to additional volumes.

You can only use the /Append switch with output tape volumes. Any

other use of the switch causes DSC to generate an error message and
terminate the operation.

8.5.3 /Bad Block Switch

Use the /Bad Block switch (/BAD) with output disk volumes to control
the way DSC uses bad block information.

The options for the /BAD switch allow you to:

1. Supplement the output disk bad block file with manually
entered bad block data.

-
(0]
’..

A 193

ist of bad

N\
=

1
n

c
lock

s
gncre or overr
r's

(manufacture
devices.

m

bl file on st track
s) or non-la

o
b st-track

3. Use only manually entered bad blocks.

8-9

The bad block descriptor of the disk is never altered by DSC.

If the /BAD switch is not specified, DSC will access the bad block
descriptor area (the 1last good block on non-last-track disks or the
entire last track on last-track disks) to obtain the information to
create the bad block file, BADBLK.SYS. If DSC determines that the
descriptor area is invalid, DSC displays a warning message (see
Message 59).

The format for the /BAD switch and its options are:

/BAD=MAN
/BAD=NOAUTO
/BAD=MAN:NCAUTO
/BAD=0VR
/BAD=MAN:OVR

MAN
Supplements BADBLK.SYS with manually entered bad block data.
This option may be combined with either NOAUTO or OVR to produce
two more options.

NOAUTO
Ignores the bad block descriptor area on the disk. Note that 1in
this case, DSC will attempt to write in any block it selects.
This option may be combined with MANUAL to produce the option
MAN: NOAUTO.

MAN:NOAUTO
Enters only manually entered bad block data in the bad block file
BADBLK. SYS. Thus, DSC bypasses only manually entered bad blocks
when selecting blocks to write in.

OVR
Ignores the bad block descriptor area and accesses the substitute
descriptor area (the last good block on the next to the last
track on the disk) to obtain the data for the creation of
BADBLK. SYS. This option 1is wvalid only on last-track devices.
This option may also be combined with MAN to produce the option
MAN: OVR.

MAN:OVR

Allows manual entry of bad block data to the bad block file
BADBLK, SYS.

When you specify MAN, MAN:NOAUTO, or MAN:OVR with the /Bad switch, DSC
responds with the following prompt:

DSC>LBN(S)=

DSC issues this prompt after it accepts the original command line but
before it transfers any data.

Enter the locations of bad blocks after the LBN(S)= prompt as follows:

DSC>LBN(S)=n:m

DISK SAVE AND COMPRESS (DSC)

The logical block number (LBN), in octal, of the 1initial bad
block in the group.

The number, in octal, of consecutive blocks contained in the
group. If you do not specify m, it defaults to 1.

To specify a decimal number for either m or n, place a period (.)
after the number.

You can specify multiple bad block entries on one command line using
either a space, tab, or comma to separate each entry. You can also
use separate lines for each entry.

After you enter the first group of bad blocks, DSC reissues the
LBN(S)= prompt. At this point, you can enter additional bad blocks.

To terminate manual bad block entrv, enter a carriage return after the
LBN(S)= prompt.

When you have entered all the bad blocks and terminated the entry
process, DSC begins the data transfer.

For example:

DSC>DB1:/BAD=MAN:NOAUTO=MMOl:,MM02:SYSFILE/RW
DSC>LBN (S)=702: 7<TAB>644: 2

DSC>LBN (S)=4057,5001: 3

DSC>LBN (S)=<RET>

DSC>

DSC restores the output disk, DBl:, from the tape £file SYSFILE
contained on MMOl: and MM02:, skipping only the blocks you entered
manually. In the previous example, the following blocks will not be
used:

702 644 4057 5001
703 645 5002
704 5003
705
706
707
710

Compare the previous example with the following example:
DSC>DB1: /BAD=NOAUTO=DBO:

This example transfers data to the lowest LBNs on DBl: regardless of
the content of the resident bad block descriptor.

If you specify /BAD=0OVR on a last track device, DSC reads the 1last
good block written by BAD on the next to the last track of the device.
The information in this substitute descriptor block is used to create
the bad block file. If MAN:OVR is specified, manually entered blocks
will be added to the bad block file.

8-11

DISK SAVE AND COMPRESS (DSC)

8.5.3.1 Obtaining Bad Block Information - You can obtain bad block
information in two ways:

1. Running the Bad Block Locator program (BAD), described in
this manual

2. Running the DIGITAL Field Service stand-alone diagnostic

The BAD utility automatically provides bad block information and
creates a bad block file that DSC can use.

The Field Service stand-alone diagnostic reads every word in a block
and displays bad block messages on the console terminal. (This
diagnostic is recommended for the user who wants more comprehensive
testing of a wvolume). However, since the output is the physical
address of each bad block, you must convert this address to logical
block numbers before DSC can use it.

8.5.3.2 Conversion to Logical Block Numbers - All DSC bad block
information must identify bad blocks by LBN.

The manufacturer-furnished or diagnostic bad block information usually
identifies bad blocks by physical address (sector-track-cylinder).
Before you enter this 1information manually for DSC, convert the
physical addresses to LBNS. Use the following formula:

({(cylinder number*tracks/cylinder)+track number) *sectors/track)+sector number

For example, suppose a bad sector of an RP06 (19 tracks per cylinder
and 22 sectors per track) has the following physical address:

Octal Decimal
Cylinder Number = 536(8) 350.
Track Number = 16(8) (14.)
Sector Number = 13(8) (11.)

The LBN for the example is calculated as follows:

(((350.*%19.)+14.)%22.)+11.=1466109.

8.5.4 /Block Factor Switch

The /Blecck Facteor switch (/BL) allows you to set the number of blocks
DSC uses in each of its buffers during I/0 operations. The default
DSC block factor is four blocks or the last value specified with the
/BL switch.

8.5.4.1 Using the /BL Switch - The format for the /Block Factor
switch is:

outdev:[filelabel] /BL=n=indev:[filelabel]

Note: /BL:n will also be accepted.

The value ¢of n can be any positive integer, decimal or octal, less
than or equal to the maximum block factor available to DSC. This
maximum depends on the amount of memory DSC can access under the

system configuration. (See your system manager for this information.)

8-12

DISK SAVE AND COMPRESS (DSC)

The /BL switch can be specified either on the input or output side of
a DSC command line.

Note, if the input volume is tape, DSC determines the block factor
from the header label of the input file and ignores the /BL switch.

If you specify the /BL switch on both sides of a DSC command line with
a disk volume, DSC uses the last value it receives, that is, the one
from the input side of the command line. However, if you specify the
/BL switch only on the output side of a command line, DSC uses that
value.

DSC requires 2020(8) bytes of memory for each additional block of
buffer space you specify. If the /BL switch in a DSC command line
requires more memory than DSC has available, DSC displays the message
BAD BLOCKING FACTOR and exits.

For example:
DSC>DB1:/BL=11=DB0: or DSC>DB1l:/BL:11=DBO0:

In this example, DSC attempts to increase the number of blocks in each
of 1its buffers to 11. DSC requires an additional 16160 (8) bytes of
memory for the expansion (7 additional blocks times 2020(8) bytes).

If DSC does not have access to 16160 (8) additional bytes of memory on
your system, it will display the error message BAD BLOCKING FACTOR.

If the expansion succeeds, DSC reads and writes 11 blocks of data at
one time during an I/0 operation instead of 4. This decreases the
time required for DSC operations.

Once DSC has expanded its buffers to the value of the /BL switch, that
value becomes the default value. DSC does not reduce its task image
size if a command line is executed at a lower block factor. However,
if vyou specify a lower block factor in a subsequent command line, DSC
will create that volume at the lower factor.

8.5.4.2 System-Dependent Requirements for /BL Switch - On-line DSC on
a mapped system expands automatically if memory is available. (See
the RSX-11M System Generation and Installation Guide for details of
building DSC with additional memory.)

Table 8-3
Operating System Limits for DSC Block Factor
Default Maximum Max imum
Blocking DSC Blocking
Operating System Factor Size Factor
RSX-11M/M-PLUS
Mapped Systems 4 32K words 36(10)
RSX-11M
Unmapped Systems1 4 20K words 10(10)

l. On unmapped RSX-11M systems, the DSC task must be rebuilt with
additional memory for the block factor to be increased beyond 4.

8-13

DISK SAVE AND COMPRESS (DSC)

8.5.5 /Compare Switch

The /Compare switch (/CMP) directs DSC to compare the contents of two
disks or a disk and a tape set. Multiple tape specifications are
valid, but multiple disks are not. The /Compare switch 1is always
specified on the output side of the DSC command 1line. If the
comparison involves tape and disk, specify the tape as the input
device. The /Compare switch performs only comparison operations; no
copy operation is involved.

To perform both a copy and compare operation, use the DSC /Verify
switch (see Section 8.5.8).

Specify the /Compare switch as follows:
outdev:[filelabel] /CMP=indev:[filelabell

When DSC finds a difference between the volumes it 1is comparing, it
displays a warning message on your terminal. This warning message
lists the output volume number, file identification, and the Virtual
Block Number (VBN) where the difference was found. DSC then continues
the comparison.

When DSC detects an end-of-volume (EOV) on any reel or end-of-file
(EOF) on other than the first reel of a tape set, the /CMP switch
causes DSC to rewind and wunload the current volume and resume
comparison with the next volume until it detects an EOF.

When DSC begins a comparison involving tape, it first positions the
specified or implied file as described 1in Section 8.5.7. DsC
positions a single volume tape at the end of the current file when the
comparison ends. Each reel of a tape set is rewound and unloaded as
the compare operation for it 1is completed. DSC then resumes the
comparison using the next volume of the set.

8.5.6 /Density Switch

The Density switch, with its two options, allows you to override the
DSC default storage density of 800 bpi for TUl6, TEl6, TU77, and TU45
tape drives and 6250 bpi for the TU78. The following two sections
discuss these options. Although you can use other tape drives with
DSC, only these drives can support the /Density switch.

You doc nct have tc specify the /Density switch when a tape is the
input device. DSC determines the density of all input tapes by first
reading the tape at 800 bpi and then, if that fails, reading it at
1600 bpi. In the case of the TU78, DSC first reads the tape at 6250
bpi, then, if that fails, it reads the tape at 1600 bpi.

If you specify the /Density switch with a disk, DSC 1issues an error
message and halts the operation.

DISK SAVE AND COMPRESS (DSC)

If you specify the /Density switch with tape drives other than those
above, DSC ignores the switch and does not alter the default density.
Note that TS11 (TS04) drives write all tapes at 1600 bpi and cannot
support 800:1600. The TS11 (TS04) ignores the /Density switch,
therefore do not use it with these devices.

8.5.6.1 1600 bpi Option - The 1600 bpi Option directs the TUl6, TElG6,
TU77, TU78, or TU45 drive to operate as an output volume at a density
of 1600 bpi. The drive then writes all volumes in the tape set at
that density. For example:

DSC>MM01: ,MM02:SYSFILE/RW/AP/DENS=1600=DB1:

In this example, MMOl: and MMO2:, are written at 1600 bpi density.

8.5.6.2 8Split Density Option - The Split Density Option
(/DENS=800:1600) directs the TUl6 or TU45 drives (using the TMO02 tape
formatter) to write the entire tape set, except for the first two
blocks on the first volume, at 1600 bpi. The first block on the file
contains the volume label and the second block is a dummy boot block
that displays the following error message if an attempt is made to
boot the volume:

THIS VOLUME DOES NOT CONTAIN A BOOTABLE SYSTEM

In the following example, DSC records the first two blocks of the
first volume at 800 bpi and the remainder of the file at 1600 bpi.

DSC>MMO01:,MM02: SYSFILE/RW/DENS=800:1600=DB1:

NOTE

Magnetic tapes created using the Split
Density Option do not comply with
American National Standard X3.27-1978.

You cannot use the Split Density Option with the TEl6 magnetic tape
drive. Tape drives controlled by a TM03 also cannot use the split
density option. The TMO02 controller, however, does support the split
density option.

8.5.7 /Rewind Switch

The Rewind switch (/RW) directs DSC to rewind all volumes in a tape
set before performing any other DSC operation, such as a copy or a
compare operation. You can use it to rewind either input or output
volumes (see Table 8-4).

The /RW switch can be used only with magnetic tapes. If you wuse it
with any other volume, DSC prints an error message.

DISK SAVE AND COMPRESS (DSC)

INPUT

If you enter the /RW switch as part of the input specification, DSC
rewinds only the first tape before the DSC operation begins. The
other tapes are rewound before they are about to be accessed. If vyou
specify a file label with the /RW switch, DSC rewinds the tapes and
searches for the file you specified from the Beginning of Tape (BOT)
on the first wvolume. If you do not specify a file label, DSC
transfers the first DSC-created file it encounters on the first
volume.

After a volume of a tape set has been copied, DSC rewinds it and
places it offline. 1If, however, the current file ends on the first or
only tape of a set, the tape is positioned to read the next file on
the input tape. The /RW switch only rewinds tapes at the beginning of
a DSC operation.

OUTPUT

If you enter the /RW switch as part of the output specification, DSC
rewinds the output tape before beginning a copy or compare function.
The default is no rewind and the tape is not moved.

If you do not enter the /RW switch with the output specification and
the first wvolume 1is not positioned at BOT, DSC begins its operation
after the last DSC-created EOF it finds on that volume.

After the output tape has been rewound, DSC determines if the tape is
positioned at the beginning (BOT). For a compare function, a search
for the next file or a specific file begins at the current tape
position. For a copy function, if the /Append switch was specified or
if the tape is not positioned at BOT, the search for the current end
of DSC created files begins (see Section 8.5.2); otherwise, the copy
operation will overwrite any data previously stored on the tape.

Table 8-4 summarizes the use of the /Rewind switch with wvarious DSC
operations, with and without a file label.

An example of the use of the /Rewind switch follows:
DSC>MMO1:SYSFILE/RW=DB1l:

DSC rewinds the volume on drive MM0l: and overwrites any data on the
tape. The contents of DBl: are written to a single file identified
as SYSFILE. DSC does not rewind the tape when the operation is
finished unless the file extends to another volume. If the file does
extend, DSC rewinds and unloads the filled tape. DSC ensures that
subsequent tapes are at BOT before using them for read or write
operations. Each subsequent volume, including the last c¢ne in the

tape set, is rewound and unloaded when it is filled.
The following example shows the restoration of a DSC-created file:

DSC>DB1l:=MM02: ,MMOl:SYSFILE/RW

8-16

DISK SAVE AND COMPRESS (DSC)

Table 8-4

The /Rewind Switch and DSC Operations

Switch Specification File Label Action
/RW Input/Output With/without Rewinds first tape
before copy
operation begins.

/RW Input With DSC searches for

specified file
from the beginning
of the first tape
volume before a
copy/compare
operation begins.

/RW Input Without DSC copies/

compares the first
file it encounters
on the first
volume.

/RW Output/With File labels DSC writes data,
specified when starting at the
tape is output beginning of the
volume are first tape volume,
ignored when unless /AD is
the tape is specified.
restored to
disk.

No Output If the tape is not

Rewind at BOT, DSC writes

Switch data, beginning

after the last
end-of-file block
it encounters.

(If tape is
already at BOT,
and the /AP switch
is not specified,
DSC starts there.)

During copy
operations to
multiple tapes,
DSC rewinds the
tape as it is
filled and takes
it offline.

In this example, DSC restores a volume (DBl:) by using a tape set
created by a previous DSC operation. DSC rewinds the first volume on
MMO02: and searches for a previously created DSC file labeled SYSFILE.
If the file 1is found, DSC transcribes it. If it is not found on
MMO2:, DSC issues a message and terminates the operation. DSC will
not search MMOl: 1if the file does not begin on MMO02:. Each volume of
the tape set is rewound and unloaded when the data it contains has
been copied or compared. If SYSFILE ended on MMO02: the first time it
was accessed, the tape is not rewound and unloaded but 1is positioned
to access the next file.

NOTE

When you refer to tapes after vyour
system is booted, you must wuse the
/Rewind switch. If you do not wuse the
switch, the tape driver will return an
error message.

8.5.8 /Verify Switch

The /Verify switch (/VE), entered as part of the output specification,
directs DSC to perform a copy operation followed by a compare
operation to verify that the two volumes are the same. (DSC does not
allow you to specify either the /Verify or /Compare switch if both
input and output volumes are tape.)

If either the input or output volume is tape, the Verify operation
takes place at the end of the Copy operation for each volume. In
other words, DSC writes MMOl: and compares MM(QOl:, then writes MMO02:
and compares MM02:, after which the entire DSC operation is complete.
In a disk-to-disk DSC operation, the verify operation begins when the
copy operation is finished.

You specify the /Verify switch as follows:
outdev:[filelabel] /VE=indev:[filelabel] [/switch]

If you do not specify a file label for an input tape set, DSC will
copy the first file it finds on the first volume of the set.

When DSC detects EOV or EOF on any volume of a tape set during a copy
operation, it repositions the volume to the beginning of the current
file segment and begins the verify operation.

During a verify operation, if DSC detects EOV on any volume, or EOF on
other than the first volume of a tape set, it rewinds and unloads the
tape when the operation is complete. After an EOV, the copy operation
resumes using the next volume from the beginning of the tape.

NOTE

If you specify a tape as one of the
volumes, DSC requires extra time after
the copy operation to rewind the tape
and search for the current file before
it begins to verify.

DISK SAVE AND COMPRESS (DSC)

8.6 DSC OPERATION OVERVIEW

DSC initially accesses the first primary file header and writes the
blocks mapped by 1its retrieval pointers to the output volume. DSC
then checks the primary file header to determine whether it points to
any extension headers. If extension headers exist, DSC transcribes
them and the blocks they map until the entire file, with all of its
extensions, has been written to the output volume. DSC then accesses
the remaining primary file headers in numerical order. For example:

DSC>DB1l:=DB2:

— 3~ P | PRy R =11 -~ -~ 1
In this example, DSC copies all the to DBl

o

iles on DB2

o

When DSC copies file extensions it wupdates the output retrieval
pointers and file linkages involved in the transfer as required. This
not only involves collapsing retrieval pointers, but alsoc reduces the
number of file extensions required as the retrieval pointers are
eliminated.

As a result of a copy operation, each primary file header is followed
by all of its extensions. Volumes created in a copy operation have
complete files written to contiguous blocks (except where blocks have
been flagged as bad in earlier operations on the volume). DSC writes
data, beginning at the lowest LBN possible on the disk.

If an input file is contiguous, DSC will search for an area on the
output wvolume with enough contiguous blocks to contain the file. If
no such area exists, DSC will 1issue an appropriate message and
terminate the copy operation.

If an input file is not contiguous, data is allocated in as few
contiguous sections as possible, in the first uncccupied blocks
avallable on the output volume.

Before the actual copying of data to a disk begins, DSC must, in
effect, 1initialize the disk. This process might take several minutes
if there is a maximum number of files allocated in the 1Index file.
Although it might appear that DSC is in a loop during this period, it
is actually zeroing out all headers in the Index file.

8.7 STAND-ALONE DSC - DSCSYS.SYS

Stand-alone DSC DSCSYS.SYS does not suppert all the features of the
on-line version. DECtapes, floppy diskettes, DF/DS fixed-head disks,
and TUS8 cassettes cannot be used with the standalone version. In
data transfer operations, stand-alone DSC uses all of the switches
described in Section 8.5.

The system data base in the stand-alone version has a Device Control
Block (DCB) for each supported device type. The DCB points to a Unit
Control Block (UCB) for logical unit 0 and for logical unit 1. Except
for MS tapes, the UCBs for a specific device type point to a common
Status Control Block (SCB) which contains the CSR and Vector Addresses
associated with the related controller as listed in Table 8-6.

DISK SAVE AND COMPRESS (DSC)

Since MS0: and MSl: require unique CSR and Vector addresses, their
respective UCBs point to separate SCBs. The format of the system data
base imposes the following restrictions:

e Logical unit numbers are limited to 0 and 1.

e Only one controller per device type (except MS tapes) Iis
supported per command.

e DP and DR type devices have been assigned nonstandard vector
addresses to avoid ©possible conflict with DB devices.
Similarly, MT and MS tapes have been assigned nonstandard
vector addresses to avoid possible conflict with MM tapes.

You can overcome some of these limitations by using the four switches
listed 1in Table 8-5 to alter the system data base default values to
match your system. A mismatch of either the CSR or Vector address
will cause the stand-alone system to fail. The switches can be used
only with stand-alone DSC.

Table 8-5
Stand-Alone DSCSY¥S.SYS Switches

Format Switch Description
/CSR=xxxXx /Control Status Specifies control status
Register switch addresses for a specific
SCB.
/TM02=x /TM02/TM03 Formatter Specifies the physical
switch unit number of the

formatter on the
RH11/RH70 controller.

/UNIT=x /Unit switch Specifies the physical
unit that will be
referenced by the
indicated UCB.

/VEC=xxx /Vector Address Specifies the vector
switch address for a specific SCB.

The four switches supplied with stand-alone DSC can appear together in
a single command 1line to specify the appropriate values of a single
device or device type. However, you can only specify values for one
device type or generate one data transfer operation in a single
stand-alone DSC command line.

Therefore, when you use these switches, you must enter at least two
command lines: one to specify the switches with a device or device
type and one to initiate the DSC data transfer operation.

NOTE

Once you use the switches, DSC uses them
in all subsequent command lines until
you either specify new switches in a new
command line or terminate DSC.

DISK SAVE AND COMPRESS (DSC)

The general format for a stand-alone DSC command with switches is:
DSC>ddnn:/switchl=x.../switchn=y
ddnn:
The device identifier and unit number specifying the DCB and UCB
/switchl.../switchn

One or more of the stand-alone switches described 1in the
following sections

XY

The values you assign to the switch(es)

8.7.1 /Control Status Register Switch

Use the Control Status Register switch (/CSR) to alter the device
Control Status Register address generated by stand-alone DSC so that
it conforms to the address required by your system for a ©particular
device.

Table 8-6 lists the CSR and vector addresses of the device types
supported by stand-alone DSCSYS.SYS.

Table 8-6
System-Generated CSR and Vector Addresses
Device Type CSR Vector
DB: 176700 254
DK: 177404 220
DL: 174400 160
DM: 177440 210
DP: 176714 3001
DR: 176700 3201
MM: 172440 224
MT: 172522 3201
MSO: 172522 3201
MS1: 172526 3301
MF: 175400 260

1. Indicates nonstandard vector address.

8-21

DISK SAVE AND COMPRESS (DSC)

The following example illustrates the correct use of the /CSR switch:

DSC>MM1: /CSR=160546
DSC>DB0: /CSR=160646

In this example, DSC has set the CSR addresses of the MM1l: tape drive
and the DBO: disk drive to 160546 and 160646, respectively. After
you enter these values, you can enter another DSC command 1line to
initiate a copy and/or compare operation. Neither of the commands
that use the /CSR switch in the example cause a copy operation to
begin.

If a DSC operation involves multiple devices of the same type, only
specify the /CSR switch once for each device type. (The exception is
the MS: tape drive; each drive must be set to its correct CSR on the
host system.)

8.7.2 /TM02 Switch

Use the /TM02 switch (/TM02) to specify the physical wunit number of
the TM02/TM03 formatter, associated with a particular UCB on the RH
controller for your system. This switch need only be used if that
physical number differs from the current value. Do not confuse this
number with the physical number assigned to a particular tape drive.

Stand-alone DSC is created with a physical unit number of 0 assigned
to the TM02/TM03 formatter on the RH controller. This assignment
affects each of the two UCB's for MM tapes. You can change this to
any octal digit from 1 to 7 for each MM: device. For example:

DSC>MM1:/TM02=1

This command line alters the physical unit number of the formatter
associated with MM1l: from its current assignment on the RH controller
to 1. The /TM02 switch affects only the specified device. If MMO:
also requires a change, the command must be repeated specifying MMO:.
If MMO: and MM1l: are associated with different RH controllers, they
cannot appear in the same command line. The /TM02 switch only works
with MM: devices. It cannot be specified with an MT:, MS:, or a disk
device.

8.7.3 /Unit Switch

You can use the /Unit switch (/UNIT) to change the unit numbers DSC
accepts for device specifications. Stand-alone DSC is generated with,
and accepts only, two logical unit numbers, 0 and 1. This constraint
can be amended somewhat with the /UNIT switch. The numbers 0 and 1
must still be specified in the command line, and the number of devices
cannot be increased. However, DSC can access devices with physical
numbers other than 0 and 1. For example:

DSC>DP1: /UNIT=5

This command will initiate a copy from the DP currently designated as
physical unit 5 to DPl:.

DSC>DP1:=DPO:

In this command, the output device is the DP currently designated as
unit 1 unless the /UNIT switch had previously been applied to DP1l:,

8-22

DISK SAVE AND COMPRESS (DSC)

8.7.4 /Vector Address Switch

Use the /Vector Address switch (/VEC) to change the stand-alone DSC
vector addresses to the addresses required by your system. Each unit
of the device type is accessed by the specified vector address. For
example:

DSC>DB1:/VEC=320

After you enter this command 1line, all DB:-type devices will be
accessed with a vector address of 320.

Stand-alone DSC uses nonstandard vector addresses to resolve
conflicting unit configurations. These conflicts occur when a system
contains:

e MM, MT, or MS device types such as a TUl6, TE10/TUl0 or a TSO03
drive, for example.

e Any combination of RP02/03, RP04,05/06/07, and RM02/03/05/80
(such as an RP02 disk and an RP04 disk).

For example, before you can reference MM, MT, or MS tapes, you must
use the /VEC switch to change the DSC vector setting of 320 to the
correct value for your system.

DSC>MT1: /VEC=224

After you enter this command line, all MT devices will be accessed
with a vector address of 224 (instead of the DSC-generated vector
address of 320).

The /VEC switch applies to all drives of the same type except in the
case of MS:, where only the specified device is affected.

If the /VEC switch is not used to alter the DSC setting, DSC waits for

a response from the incorrect vector address. This response never
comes.

8.8 STAND-ALONE DSC - DSC64K.SYS

DSC64K is similar to the on-line version of DSC with the following
exceptions:

e DSC64K is not overlaid

e DT, DX, DY, DD, DF, DS devices are not supported

e Only one tape may be referenced either as input or output

e The maximum blocking factor is 4
This version is essentially an RSX~11M system with BAD, FMT, DSC, and
CNF fixed in memory, and requires 64KW of memory. When

[1,51]DSC64K.SYS is software booted, the system comes up with CNF
active.

DISK SAVE AND COMPRESS (DSC)

CNF is the Stand-alone Configuration and Disk 8izing Program. It
lists the switches vyou can use and then prompts you for the first
device type for which you would like the CSR and vector information.
It is recommended that you first specify /DEV to find out the status
of devices on your system. You can also use CNF and its switches to
set the CSR and vector addresses of devices in your system or to
change the default formatter number (FOR=n) for some of the magnetic
tape devices. (The functions of these switches correspond to the
switches listed in Table 8-5 for DECSYS.SYS.)

The CNF switches are:
/CSR=nnnnnn
Changes the default CSR for the device.
/DEV

Lists the default CSR and vector addresses for all of the
devices.

/FOR=n

Changes the default formatter number for some of the
magnetic tape devices. The switch is only valid for MF:-and
MM:- type devices. The initial default for n is 0.

/VEC=nnn
Changes the default for the device.

CNF will prompt you for the first device you want to reference. If
adjustments are required for the device, use the appropriate CNF
switch(es). For example, to alter the vector and CSR values for MT:,
type the following:

MT:/VEC=nnn/CRS=nnnnnn

After the system data base has been adjusted with the new values, CNF
prompts you for the second device. The response will be similar to
the response for the first device. CNF will then request that you
press the RETURN key to return control to MCR. Use the RUN command to
activate any one of the four installed utilities.

The DSC64K system image (DSC64K.SYS) and symbol table (DSC64K.STB) are
located in UFD [1,51] on the following disk volumes:

BIG DISK KIT - RSXMBL31
RK06/RK07 KIT - CLISRC
RLO1/RL0O2 KIT - RLUTIL
RKO05 KIT - DCLSRC

8.9 DSC DATA TRANSFERS

As outlined in the beginning of this chapter, DSC's complete data
transfer process consists of either a direct disk-to-disk operation or
a two-step, disk-to-tape/tape-to-disk operation. DSC reads and writes
data to and from its own internal buffers during these operations.

The following sections describe DSC's operation in each of these data
transfers.
8-24

DISK SAVE AND COMPRESS (DSC)

8.9.1 Data Transfer from Disk

After you enter a DSC command line specifying a copy operation from a
disk, DSC scans the input disk to ensure that it is in Files-1l1
format. DSC begins by copying an approximation of the disk index
file. Because this file is updated to reflect the status and location
of blocks as they are allocated on the new disk, the 1index file bit
map, the storage bit map file, and the bad block file are not
transcribed exactly: DSC transcribes only the data necessary for the
construction of these files on the new disk. However, the index file
bit map still reflects the maximum number of files on the input disk.

DSC accesses the input volume index file's active file headers in
numerical order to 1locate the next active primary file header. DSC
transfers that header, the blocks it maps, and all extension headers
and related blocks that are part of the file, tc the output medium.
It then accesses the next active primary file header from the index
file. DSC continues this operation, each time writing a complete
file, until it has transferred all the active files.

DSC accesses and transcribes only the blocks allocated to active
files. It 1ignores unallocated blocks interspersed throughout the
input disk. This results in contiguous data blocks on the output disk
following the copied files.

If DSC accesses a file that contains bad data, DSC transcribes
whatever it reads from the block. When DSC restores the file to disk,

it writes the block's contents as it originally read them. The
logical block still contains garbled data, but the new physical block
can be accessed and its contents corrected. A message identifying

these bad areas is displayed on the console terminal.

In summary, to transfer data from a disk, DSC:
1. Verifies that the disk is on line and in Files-1l1 format.
2. Transcribes disk index files, updated for their new status.

3. Reads the data to a DSC buffer.

8.9.2 Data Transfer to Tape

When the output volume in a DSC operation is tape, DSC writes the
contents of the input disk to a tape on the drive you specify. This
data transfer usually involves multiple reels of tape {(a tape set) and
multiple tape drives.

The tapes that DSC creates serve as a backup of the disk's contents.
You can only use DSC-created tapes by copying them back to a disk and
restoring the disk's contents to their original form. Although the
tapes <contain many individual files from the input disk, DSC treats
the tapes as if they contained a single file -- a file of the disk's
entire contents.

When DSC begins writing the disk's contents to tape, it allows writing
to more than one volume. The first block DSC writes to tape is a
header that contains the volume name (obtained from the file label)
and the relative volume number. This header identifies the tape set
and the volume's place within that set. It ensures that when DSC
begins to restore the disk, it will load each volume in the tape set
in order.

DISK SAVE AND COMPRESS (DSC)

After the header, the tape set 1includes the data required to
reconstruct directory files, maps and pointers, and the actual files
copied from the disk.

NOTE

When the disk is restored, the directory
files are at the beginning of the disk,
regardless of their position on the
original disk.

To initiate the copy operation, first ensure that the tape devices are
online. You can specify multiple tape drives in the following way:

DSC>ddnn(0):,ddnn(l):,...ddnn{7): [filelabel]=indev:
An example of a command in this format is:
DSC>MMO: ,MM1: ,MM4: ,MM2: SYSFILE=DB1:

You have the option of entering a file 1label 1in this command 1line
after specifying the 1last device. You can specify only one type of
tape drive, either MM or MT or MS, in a single DSC command line.
Although you can specify up to eight drives on the output side of the
command line (two drives in stand-alone DSC), vyou can specify each
drive only once.

If the number of volumes in the tape set exceeds the number of tape
drives available, DSC uses volumes on the specified drives in
round-robin fashion. Using the previous example, the order of
replacement until an end-of-file is reached would be as follows:

MMQ: MM1l: MM4: MM2: MMO: MM1l: MM4: MM2: ...
In summary, to transfer data to tape, DSC:

1. Verifies that the first or only volume of a tape set is
on-line and write-enabled.

2., Verifies that subsequent volumes of a tape set are at
Beginning of Tape (BOT), on-line when required, and
write—enabled.

3. Transcribes data from a DSC buffer to the tape.

8.9.3 Data Transfer from Tape

DSC can only use the tapes it creates to (1) reconstruct a disk or (2)
perform compare and verify operations.

When you mount the tapes and specify tape drives as input devices, DSC
sequentially accesses and writes the tape contents to the output
volume. Up to eight drives may be specified on the input side; they
will be referenced 1in round-robin fashion as described in Section
8.9.2. As it transfers the data, DSC creates and updates directory
files.

Tape drives specified as input devices must be on line. The volumes
in the tape set must be referenced in the correct order in the command
line.

DISK SAVE AND COMPRESS (DSC)

If you specify a file label, DSC transfers only the contents of the
file 1identified by that label. TIf you do not specify a file label,
DSC transfers only the first DSC-created file it encounters on the
first volume of a set.

In summary, to transfer data from tape, DSC:
1. Verifies that the tape drives are on line.
2. Accesses the volumes in a tape set in round-robin order.
3. Creates directory files.

4. Reads the data to a DSC buffer.

8.9.4 Data Transfer to Disk

A DSC operation is not complete until the data involved in the
transfer is restored to disk.

To receive input, a disk must be on line. Any disk 1large enough to
contain all the input data can be specified as the output disk when
the data is restored to the original disk.

The disk should have an up-to-date bad block descriptor or have bad
block data entered in a DSC command line with the /BAD switch. This
ensures that the data written on the disk will be accessible. You can
update the bad block descriptor before a DSC operation by running the
BAD program (see Chapter 6).

After identifying the bad blocks on the output disk, DSC examines that
disk to ensure that it has enough free blocks to contain all the data
to be transferred. DSC compares the number of blocks to be
transferred from the input disk(s) with the number of blocks available
on the output disk. DSC issues an error message and exits if too few
blocks are available.

DSC constructs the index and storage bit map files when it begins
transcribing files. DSC wupdates the file headers to reflect the
location of the data on the new disk. This wupdating 1is required
because blocks that were previously scattered are now copied to a
contiguous set of blocks, beginning at the lowest LBN available on the
disk. DSC will write the primary file header, its contents, and
associated file extension headers and the extensions they map as a
unit to a contiguous series of blocks. Note that the ocutput disk
contains an index file of the same size as the original disk. This is
especially important when the contents of a large disk (such as an
RP04) are restored to a smaller disk (such as an RK05) or vice versa.

Compressing files in this manner is beneficial when retrieval pointers
for a noncontiguous file header are almost used up. Because DSC
creates each retrieval pointer to map as many contiguous blocks as
possible (max imum is 256.), the number of pointers may be
significantly reduced. DSC can also reduce the number of file
extensions and extension headers.

DISK SAVE AND COMPRESS (DSC)

Note that when DSC writes to a disk, it begins writing data into the
lowest LBN possible. Free blocks generally have higher LBNs and are
in a contiguous section of the disk.

The data presently on the disk is overwritten by the new data.
Therefore, you cannot use DSC to transfer the contents of several
small disks to a single large disk. Each copy operation eliminates
whatever previously occupied the disk.

In summary, to transfer data to a disk, DSC:
l. Verifies that the disk is on line.

2. Verifies that the disk has an up-to-date bad block descriptor
or that bad blocks are specified manually (through the
/BAD=NOAUTO switch). Displays a warning message if no bad
block information 1is available and the /BAD switch was not
specified.

3. Verifies that the disk has enough free blocks to contain all
the data to be transferred.

4., Creates index and directory files (in the first part of the
disk).

5. Writes the data from a buffer.

8.10 DSC MESSAGES

DSC notifies you of fatal error conditions as well as 1less serious
conditions that could cause difficulties 1in DSC operations. Each
message generated by DSC has the prefix DSC--, and each is 1identified
by a numeric code.

DSC messages are displayed on your terminal in either a 1long or a
short form: on-line DSC displays the long form and stand-alone DSC
displays the short form. You can determine the meaning of the short
form message from the number provided with the message. Use the
number to find the long form message in Section 8.10.1. The text
accompanying the long form message of that number explains the error.

For example, specifying a tape in the wrong format generates the
following message in long form from DSC:

FATAL #**%* 17 OUTPUT TAPE MMl: NOT ANSI FORMAT

The same error generates the following message in short form on
stand-alone DSC:

FATAL *** 17 - MM1

Error messages which only appear with the stand-alone versions of DSC
are described in Section 8.10.3.

Table 8-7 is a quick reference to the single 1letter codes used in
general messages and in I/O messages (Section 8.10.2).

8-28

DISK SAVE AND COMPRESS (DSC)

Table 8-7
General Error and I/0 Error Message Codes

Type of
Code Symbol Meaning

General Code
Error Code
Message Code
Code
Code
Code

Failed to read storage bit map header
Input data out of phase

Nondata block encountered

Input file out of phase

File attributes out of phase

File header out of phase

MEoOw»

I/0
Error
Message

Reading index file bit map
Reading index file header
Reading storage bit map
Reading boot or home block
Reading file header

Input (or output device)
Writing index file bit map
Writing storage bit map header
Reading data

Reading input tape labels
Reading file attributes
Reading file header
Reading index file data
Reading summary data
Writing file header

OZRrRUHINOMEUO O WP

When DSC identifies a file in which a problem has been detected, it
provides only the file-ID (file number, file sequence number) of that
file. Use the Dump utility (DMP) (described in Chapter 11) with the
/FI switch and /HD switch to obtain the name of the file and other
information contained in the file header. For example:

DMP>TI:=devid:/FI:x:y/HD/BL: 0
This command line will cause DMP to output to a terminal the header(s)
of file x, y. The variables x and y, displayed in certain DSC error

messages, represent the file number and file sequence number
respectively.

8.10.1 DSC General Messages

The following are the general messages DSC can return.

2 CONFLICTING DEV. TYPES

Explanation: An illegal combination of device types was
specified.

User Action: Check for typographical errors in device
abbreviations and make sure that the disks and tape drives are
not specified on the same side of the command line.

DISK SAVE AND COMPRESS (DSC)

MIXED TAPE TYPES

Explanation: Two different types of tape drives were
specified in the command line.

User Action: Reenter the command line, specifying only one
type of tape drive.
ILLEGAL SWITCH

Explanation: The command line was entered with a switch that
cannot be used with that command line.

User Action: Reenter the command 1line, specifying only
correct switches.
FILE LABEL TOO LONG

Explanation: A file label consisting of more than 12(10)
alphanumeric characters was specified.

User Action: Reenter the command line, specifying a shorter
file label.

SYNTAX ERROR

Explanation: An error occurred in the command line format.

User Action: Reenter the command, specifying the right order.

DUP. DEV. NAME;

Explanation: The same device was entered more than once in
the command line.

User Action: Reenter the command line, specifying each device
only once.
TOO MANY DEV'S

Explanation: More than the 1legal number of devices were
specified on one side of the command line.

User Action: Reenter the command 1line, specifying no more
than eight devices per side.
DEV. ddnn: NOT IN SYSTEM

Explanation: The specified device 1is not present in the
configuration of the operating system being used.

User Action: Check the device identifier that was entered in
the command line. Reenter the command line.

10

11

12

13

15

16

17

DISK SAVE AND COMPRESS (DSC)

DEV. ddnn: NOT FILES-11

Explanation: The specified input device is not formatted as a
Files-11 device.

User Action: Check the input device that was entered in the
command line. Reenter the command line.
BAD BLOCK SYNTAX ERROR

Explanation: A syntax error occurred when bad block data was
manually entered.

User Action: Check the command 1line that was entered.
Reenter it.
BAD BLOCK COUNT TOO LARGE

Explanation: There are too many groups of bad blocks (Maximum
is 125.) on the output disk for DSC to handle.

User Action: Use a different output disk.

BAD BLOCK CLUSTER OUT OF RANGE

Explanation: A manually entered bad block or group of bad
blocks does not exist on the output disk.

User Action: Check the numbers of the blocks .entered.
Reenter the command line.
OUTPUT TAPE ddnn: FULL

Explanation: The specified tape is full and files cannot be
appended to it.

User Action: Change the output tape. Reenter a command 1line
to begin a new tape set.
OUTPUT TAPE ddnn: NOT ONLY REEL IN SET

Explanation: The /Append switch was used with a tape that was
not the first tape of a set created by DSC.

User Action: Change tapes. Reenter the command 1line (see
message 15).
TAPE ddnn: NOT ANSI FORMAT

OUTPUT TAPE

Explanation: If the medium is an output tape, the /Append
switch was specified and the tape is not in ANSI format.

User Action: Reenter the command line and either
switch to write the specified tape or change tc a

18

19

21

22

23

24

DISK SAVE AND COMPRESS (DSC)

INPUT TAPE
Explanation: If the medium is an input tape, the tape is not
in the <correct format for a DSC operation (that is, the tape
was not created by DSC).
User Action: Check the tape and change 1it, if necessary.
Reenter the command line.

OUTPUT TAPE ddnn: NOT DSC TAPE

Explanation: An /Append switch was specified with a tape that
was not created by DSC.

User Action: Reenter the command line and either omit the
/Append switch or change to a DSC-created tape.
TAPE ddnn: A CONTINUATION TAPE

Explanation: If the medium is an input tape, the tape was
mounted out of sequence and is not the first of a set.

User Action: Reenter the command line and specify input tapes
in the proper order.

FAILED TO FIND HOME BLOCK

Explanation: DSC failed to find the home block on the input
disk. Either the disk is bad, the home block is bad, or the
disk is not in Files-11 format.

User Action: Check the disk in question, change drives if

possible, and reenter the command line.

FILE STRUCTURE LEVEL ON ddnn: NOT SUPPORTED

Explanation: The device is not a Files-11 Structure Level
disk, so it cannot be used.

User Action: Replace the device, and reenter the command
line.

I/0 ERROR A ON ddnn:
«es (Additional error information)

Explanation: The I/O error indicated explains why the index
file bit map on the device could not be read.

User Action: 1If possible, correct the cause of the error.
Reenter the command line.

I/0 ERROR B ON ddnn:
.o« (Additional error information)

Explanation: The I/0 error indicated explains why the index
file header on the device could not be read. The specified
file is lost.

User Action: If possible, correct the cause of the error on
the device. Reenter the command line.

8-32

25

26

27

31

32

33

34

DISK SAVE AND COMPRESS (DSC)

CODE A

Explanation: The.file header for the storage bit map file
cannot be read.

User Action: The disk is unusable and, therefore, cannot be
copied. Replace the disk and reenter the command line.
I/0 ERROR C ON ddnn:

... (Additional error information)

Explanation: The I/0 error indicated explains the error that
occurred when DSC read the specified file.

User Action: Reenter the command line.

I/0 ERROR D ON ddnn:

«s+ (Additional error information)

Explanation: The I/O error indicated explains the read error
that occurred when DSC read the home or boot block of the
disk.

User Action: Reenter the command 1line, specifying a new
drive.

I/0 ERROR E ON ddnn: file ID

..+ (Additional error information)

Explanation: The I/0 error indicated explains why the
specified file header could not be read.

User Action: If possible, correct the cause of the error.
Reenter the command line.
INPUT DEVICE ddnn: file ID, y, y NOT PRESENT

Explanation: The specified file does not have a file header
in the index file. The file is not copied.

User Action: This 1is a warning only. If desired, the
operation can be retried on a different drive.
INPUT DEVICE ddnn: File ID y, y IS DELETED

Explanation: The specified file was partially deleted on the
input disk and was not copied.

User Action: This is a warning only. No action is required.

INPUT DEVICE ddnn: File ID y, y UNSUPPORTED STRUCTURE LEVEL

Explanation: The header of the file indicated by the message
does not contain 000401 in its File Structure Level Field
(indicates ODS-1 structure). DSC only copies ODS-1 files,
therefore this file will not be copied.

User Action: This message is only a warning. DSC will
attempt to copy the remainder of the input.

8-33

35

36

37

38

39

40

41

DISK SAVE AND COMPRESS (DSC)

INPUT DEVICE ddnn: File ID y, y FILE NUMBER CHECK

Explanation: An incorrect file header was read from the disk,
causing the specified file to be lost.

User Action: Reenter the command line.

INPUT DEVICE ddnn: File ID, y, y FILE HEADER CHECKSUM ERROR

Explanation: Incorrect £file header contents caused the
specified file to be lost.

User Action: Reenter the command line.

INPUT DEVICE ddnn: File ID y, y SEQUENCE NUMBER CHECK
Explanation: The sequence number is incorrect.

User Action: Replace the disk and reenter the command line.

INPUT DEVICE ddnn: File ID y, y SEGMENT NUMBER CHECK

Explanation: The linkage connecting file segments was broken;
the specified file is lost.

User Action: Reenter the command line.

DIRECTIVE ERROR error number

Explanation: An internal error occurred, usually the result
of a system overload.

User Action: Reenter the command line.

I/0 ERROR F
cee (Additional error information)

Explanation: The I/O error indicated explains that an
uncorrectable read/write error occurred on the specified input
or output device.

User Action: This message is a warning only. No action Iis
required unless ancther error message 1is displaved. If
another error message is displayed, correct the cause of the
error and reenter the command line.

I/0 ERROR I on ddnn:
File IDy, y VBN z, z
... (Additional error information)

Explanation: An I/0 error occurred that resulted in bad data
being read from the specified wvirtual block number of the
indicated file on the indicated device.

User Action: This is a warning message only. You should
examine the block specified to determine the extent of the
error.

42

43

44

45

46

47

DISK SAVE AND COMPRESS (DSC)
VERIFICATION ERROR ON ddnn:
File IDy, vy, ¥y VBN z, z

Explanation: The input and output devices specified for a
verification operation did not match.

User Action: This is a warning message only. No User Action
is necessary.

BAD DATA BLOCK ON ddnn:

FILE ID, ¥y, ¥y, ¥ VBN z, z

Explanation: A parity error occurred when DSC copied the
contents of a block from a disk. The block specified on the
output disk contains erroneous data.

User Action: When the copy operation is completed, the data
contained in the specified block should be examined and
corrected.

MOUNT REEL x ON ddnn: AND HIT RETURN

Explanation: This is an instruction only.

User Action: Mount the volume number requested on the

specified tape drive and press the RETURN key when ready.

STARTING VERIFY PASS

Explanation: The <copy operation is complete and DSC is
beginning the wverify operation (specified with the /Verify
switch).

User Action: This 1is an 1informational message only. No
User Action is required.

RESUME COPYING

Explanation: The verify operation (specified with the /Verify
switch) 1is complete and DSC is continuing the copy operation
(if there is more material to copy).

User Action: This 1is an informational message only. No
User Action is required.

ddnn: IS WRITE LOCKED. INSERT WRITE RING AND HIT RETURN.
Explanation: The indicated device is write-locked.

User Action: Make sure the device 1is the one you want,

write—-enable it, and press the RETURN key. Reenter the
command line.

48

49

50

51

52

DISK SAVE AND COMPRESS (DSC)

INPUT FILE ON ddnn: WILL BE RESYNCHRONIZED

Explanation: The tape position was lost while DSC was reading
the input tape. The file specified in the message, as well as
some subsequent files, may be lost. DSC may display
additional error messages.

User Action: Reenter the command line.

OUTPUT DEVICE ddnn: FULL
FILE ID v, V¥, ¥

Explanation: The specified device cannot accommodate the
indicated contiguous file in a contiguous set of blocks. This
may mean that there is an inconsistency in the input tapes.

User Action: Reenter the command 1line, specifying a 1less
fragmented output disk.

OUTPUT FILE HEADER FULL ON ddnn: x, FILE ID vy, y, y

Explanation: Too many bad blocks on the output disk have
caused the generation of more retrieval pointers than can be
stored in the current header(s) of the file. The allocation
of blocks to the current output header is aborted. DSC will
copy as many blocks as it has mapped to that header before it
continues to allocate blocks to the header of the next output
file. Note that some blocks will not be copied during this
operation.

User Action: After DSC completes the copy operation, use PIP
to delete the unusable file on the output volume and to copy
the file from the input volume to the output volume.

PIP will assign a different file number to the output, other
than the original input file number, therefore the files will
not compare when you use the DSC /Compare switch.

OUTPUT FILE HEADER ON ddnn: NOT MAPPED - FILE ID y, y, y

Explanation: Space for the specified file header was not
allocated. The file is lost.

User Action: Reenter the command line; a new disk may be
required.
I/0 ERROR G ON ddnn:

... (Additional error information)

Explanation: The I/0 error indicated explains why the 1Index
File Bitmap could not be written.

User Action: Reenter the command line.

53

55

56

57

58

59

DISK SAVE AND COMPRESS (DSC)

FAILED TO READ FILE EXTENSION HEADER ON ddnn: FILE IDvy, v, Y
Explanation: When copying from the input disk, DSC searched
for an extension header, but d4id not find one. The remainder
of the specified file was lost. A problem may exist with the
input disk or a preceding I/O error may have caused an
inconsistency.

User Action: Reenter the command line.

FAILED TO ALLOCATE HCOME BLOCK

Explanation: The home block cannot be created on the
specified disk device because it has too many bad blocks.

User Action: Replace the disk then reenter the command line.

INDEX FILE ALLOCATION FAILURE

Explanation: Too many bad blocks exist to allow the
allocation for the specified file.

User Action: Replace the disk, then reenter the command line.

OUTPUT DISK ddnn: IS NOT BOQTABLE

Explanation: Logical block number 0, which is the bootstrap
block, of the specified disk or tape is bad. (This message
will always be proceeded by message 84 and/ocr 86 indicating
the reason for the error.)

User Action: This is a warning only. No action is required.

INVALID BAD BLOCK DATA

Explanation: The bad block data on the output disk is
invalid.

User Action: Run the BAD program on the disk and manually

enter bad block data or reenter the command line specifying
another disk.

BAD BLOCK FILE FULL
Explanation: Too many bad blocks exist on the output disk.

User Action: Replace the disk then reenter the command line.

NO BAD BLOCK DATA FOUND

Explanation: No bad block data exists for the specified
output disk.

User Action: If bad block data is not desired, ignore the
message. Otherwise, run the BAD program on the disk;
manually enter bad block data; or reenter the command 1line,

specifying a new disk.

60

61

62

63

64

65

DISK SAVE AND COMPRESS (DSC)

OUTPUT DEVICE ddnn: IS A DIAGNOSTIC PACK. DO NOT USE IT!

Explanation: The specified output disk is a diagnostic pack
and cannot be used.

User Action: Mount a new output disk and reenter the command
line.

CODE B ON ddnn:
File IDy, ¥, ¥y VBN z, z

Explanation: The tape position was lost when DSC read the
virtual block number specified. Some data may be lost.

User Action: Determine the extent of the error. If
necessary, try the tape on another drive or create another
tape.

CODE C ON ddnn:
File IDy, y, ¥ VBN z, z

Explanation: The tape position was lost when DSC read the
data file specified. Data beyond the VBN mentioned is lost.

User Action: Re-create the tape or reenter the command 1line
specifying a different tape drive.

CODE D ON ddnn:

File ID y, vy, y EXPECTED p, p, p FOUND y

Explanation: The tape position was lost while DSC read the
tape specified in the message. All of "y, vy, y" and some of
"ps, P, P" are lost.

User Action: Reenter the command line.

FAILED TO MAP OUTPUT FILE ON ddnn:

File ID p, p, p VBN z, 2z

Explanation: An inconsistency occurred when DSC was writing
the specified file to output disk. The file header did not
specify the correct number of virtual blocks required to write

the file and the file is lost.

User Action: Reenter the command line.

OUTPUT DISK ddnn: IS TOO SMALL -- nn BLOCKS NEEDED

Explanation: The output disk is not large enough to
accommodate the data to be transferred.

User Action: Reenter the command line, specifying a larger
output disk.

66

67

68

69

70

71

DISK SAVE AND COMPRESS (DSC)
I/0 ERROR C ON ddnn:
.»+ (Additional error information)

Explanation: The I/0 error indicated explains why the storage
bit map could not be read.

User Action: Reenter the command line.

I/0 ERROR H ON ddnn:

Explanation: The message that follows explains why the header
of the storage bit map file could not be written.

User Action: Reenter the command line.
I/0 ERROR J ON ddnn:
«es (Additional error information)

Explanation: The I/O error indicated explains why the tape
labels on the specified device could not be read.

User Action: Reenter the command line, specifying a different
tape drive.

INPUT TAPE ON ddnn: MUST BE AT BOT

Explanation: The specified tape must be at Beginning of Tape
(BOT). This message 1is also displayed during a verify
operation to indicate that the current volume is rewinding to
enable the verify operation.

User Action: If the /Verify switch was not specified, check
the tape and remount at BOT.

WRONG INPUT TAPE ON ddnn:

EXPECTING File ID, FOUND File ID

Explanation: The input tapes were specified out of sequence.
User Action: Check the tapes, then reenter them in proper
order after receiving the mount instructions.

CODE E ON ddnn: AFTER File ID vy, y, ¥y

Explanation: This message is the result of a read error from
tape. When trying to read an attribute block, DSC accessed
some other block. The file following the file specified 1in

the error message is lost.

User Action: Reenter the command line.

72

73

74

75

76

77

DISK SAVE AND COMPRESS (DSC)

I/0 ERROR K ON ddnn:
AFTER File ID vy, v, ¥
.+« (Additional error information)

Explanation: The I/O error indicated explains why the
attributes of the specified file could not be read.

User Action: Reenter the command line.
I/0 ERROR L ON ddnn:
AFTER File ID vy, v, ¥

«es (Additional error information)

Explanation: The message that follows explains the I/O error
that occurred while DSC was reading the file header from tape.

User Action: Reenter the command line.

INPUT TAPE ddnn: RESYNCHRONIZED AT File IDy, vy, ¥

Explanation: The tape position has been recovered. Some data
preceding the file specified was lost.

This message is wusually received with one or more error
messages, all indicating that the input tape was either read
incorrectly or recorded badly.

User Action: The tape should be re-created and the operation
reinitiated.

TAPE FILE filelabel NOT FOUND

Explanation: The input tape specified does not contain the
file identified as "filelabel."

User Action: Check the file label and the tape, then reenter
the command specifying the correct tape and file label.
EXPECTED EXTENSION HEADER NOT PRESENT ON ddnn: File IDy, v, VY

Explanation: A required file extension header could not be
found on the tape being read.

User Action: If the error message was preceded by one or more
I/0 warning messages. Reenter the command line. If not, the
input tape is bad and should be regenerated.

CODE F ON ddnn: AFTER File ID vy, v, ¥

Explanation: This is the result of a read error from tape.
When trying to read a file header, DSC accessed some other
block type. The file following the file specified 1in the

error message is lost.

User Action: Reenter the command line.

78

80

81

82

83

84

DISK SAVE AND COMPRESS (DSC)
I/0 ERROR M ON ddnn:
.+« (Additional error information)

Explanation: The message following the device name explains
why the Index File data could not be read.

User Action: Reenter the command line.

INDEX FILE DATA NOT PRESENT

Explanation: When reading the input tape, DSC accessed a file
other than the 1index file. This message is the result of a
tape error or an I/0 error.

User Action: Re-create the tape or retry the same tape on a
different tape drive.

I/0O ERROR N ON ddnn:

.es (Additional error information)

Explanation: The I/0 error indicated explains why the index
and storage bitmap files from the specified input tape could
not be restored.

User Action: Reenter the command line, specifying a different
input tape drive.

VOLUME SUMMARY DATA NOT PRESENT

Explanation: Either DSC did not create the input tape or the
tape contains incomplete data.

User Action: Check the tape and reenter the command line.
I/0 ERROR O ON ddnn: -~ File ID vy, VY, ¥
«es (Additional error information)

Explanation: The I/0 error indicated explains why the
specified file header could not be written.

User Action: Reenter the command line.

BAD BLOCKING FACTOR

Explanation: The specified blocking factor is too 1large for
the current operating system.

User Action: Specify a smaller blocking factor and reenter
the command 1line.
INPUT DISK NOT BOOTABLE

Explanation: The input disk does not have a valid boot block,
therefore the output disk will not be bootable. This message

i i 3 e & PRI S T T
will always be accompanied with message 56 stating that the

output disk will not be bootable.

User Action: This is a warning only. No action is required.

8-41

DISK SAVE AND COMPRESS (DSC)

85 INPUT/OUTPUT DISKS DIFFER

Explanation: The boot block is wusually different for each
disk type, therefore the output disk may not have a valid boot
block and may not be bootable. (This message will always be
accompanied by other messages pertaining to the bootability of
the output disk.)

User Action: This is a warning only. If message 84 1is also
displayed, a copy from the output disk to another disk that is
the same type as the original input disk will vyield a disk
that is bootable.

86 BAD LBN # O

Explanation: The output disk has a bad LBN 0 which 1is the
boot block; therefore, the output disk will not be bootable.

User Action: This is a warning only. A copy from the output
disk to another disk with a good LBN 0 will yield a disk that
is bootable.

87 OUTPUT DISK ddnn: MAY NOT BE BOOTABLE

Explanation: This message is always preceeded by message 85
which indicates the reason for the error. Other messages
concerning the bootability of the output disk may proceed this
message. (If message 56 is displayed, the output disk will
not be bootable.

User Action: Refer to message 56 and messages 84, 85, and 86
for more detail.

8.10.2 DSC I/0O Messages

In on-line and both stand-alone versions of DSC, 1I/0 errors are
identified by one or more of the following messages which explain the
type of I/0 error that occurred.

BAD BLOCK NUMBER

Explanation: The block does not exist on the disk; an
internal DSC error has occurred.

BAD BLOCK ON D

tz3

VICE

Explanation: A bad area was encountered on the device,
resulting in a block that cannot be read or written without
error.

BLOCK CHECK OR CRC CHECK

Explanation: A parity error occurred indicating that bad data
may have been transferred.

User Action: Reenter the command line.

DISK SAVE AND COMPRESS (DSC)

DATA OVERRUN

DEVICE

DEVICE

DEVICE

END OF

END OF

END OF

Explanation: A physical block on tape contains more bytes
than were requested.

NOT READY

Explanation: The device is not ready or not up to speed.
OFFLINE

Explanation: The device is not in the system.

User Action: Check the device and the device specification in
the command line, then reenter the command line.

WRITE LOCKED
Explanation: The disk drive is write-locked.

User Action: Write-enable the disk drive and reenter the
command line.

FILE DETECTED

Explanation: The tape position was lost.
User Action: Reenter the command line.
TAPE DETECTED

Explanation: The tape position was lost.
User Action: Reenter the command line.
VOLUME DETECTED

Explanation: The tape position was lost.

User Action: Reenter the command line.

FATAL HARDWARE ERROR

Explanation: A hardware malfunction occurred.

User Action: Reenter the command line. 1If the error repeats,
call your DIGITAL Field Service representative.

HANDLER NOT RESIDENT

Explanation: The device driver (handler) was not loaded.

User Action: Load the appropriate device driver and reenter
the command line.

INSUFFICIENT POOL SPACE

Explanation: The operating system is overloaded.

User Action: Reenter the command line.

DISK SAVE AND COMPRESS (DSC)

PARITY ERROR ON DEVICE
Explanation: An uncorrectable read error occurred.
User Action: Reenter the command line.

PRIVILEGE VIOLATION

Explanation: A device was mounted as Files-11 or is allocated
to a different user.

User Action:

RSX~-11M Users: Dismount the disk, allocate the device to
yourself, and reenter the command line.

RSX-11M-PLUS Users: Dismount the disk, mount it as a foreign
device and reenter the command line.

ERROR CODE IS <Driver code>
Explanation: An I/O error that DSC cannot translate occurred.

User Action: If possible, translate the error code and
reenter the command line.

ILLEGAL FUNCTION

Explanation: Tapes on drives have not been rewound since the
system was booted.

User Action: Rewind the tapes, using the /Rewind switch in a
DSC command line.

8.10.3 Stand-Alone DSC Messages
The following messages appear only with the stand-alone version
DSCSYS. SYS. (Similar messages are dgenerated by DSC64K.SYS if you
specify invalid values.)
ILLEGAL VECTOR ADDRESS
Explanation: An illegal vector address was specified.
User Action: Correct the vector specification and reenter the
command line. Vector addresses must be a multiple of 4 and
less than or equal to 374(8).

INVALID CSR ADDRESS

Explanation: A system trap occurred when the specified CSR
address was referenced. :

User Action: Correct the address and reenter the command
line.

DISK SAVE AND COMPRESS (DSC)

INVALID TM02 ASSIGNMENT

Explanation: The /TM02 switch applies only to TUl6/TEl16/TU45
tapes and cannot specify an assignment greater than seven.

User Action: Correct the error and reenter the command line.

SPECIFIED UNIT NUMBER EXCEEDS MAX. OF 1

Explanation: Stand-alone DSC does not accept unit numbers
greater than 1.

User A

ct
Specify

ion: Correct the error and reenter the command 1line.
the /Unit switch if required.

8-45

CHAPTER 9

FILE STRUCTURE VERIFICATION UTILITY (VFY)

The File Structure Verification Utility (VFY) for Files-11 volumes
provides the ability to:

e Check the readability and validity of a file-structured volume
(default function).

e Print the number of available blocks on a file-structured
volume (/FR).

e Search for files in the index file that are not 1in any
directory; that 1is, files that are "lost" in the sense that
they cannot be accessed by file name (/LO). (See the
IAS/RSX-11 1I/0 Operations Reference Manual for a description
of the index file.)

e Validate directories against the files they list (/DV).

@ List all files in the index file, showing the file 1ID, file
name, and owner (/LI).

e Mark as "used" all the blocks that appear to be available but
are actually allocated to a file (/UP).

e Rebuild the storage allocation bitmap so that it properly
reflects the information in the index file (/RE).

® Restore files that are marked for deletion (/DE}).
e Delete bad file headers (/HD).

e Perform a read check on every allocated block on a
file-structured volume (/RC).

The volume to be verified must be mounted as a Files-11 device.

There should be no other activity on the volume while VFY is
executing. In particular, activities that create new files, extend
existing files, or delete files should not be attempted while VFY |is
executing a function.

VFY must not be aborted while a /UP, /RE, /DE, or /HD switch is being
processed. Aborting VFY while it is modifying the storage allocation
or index files can seriously endanger the integrity of that volume.

9.1 VFY COMMAND FORMAT

The command line for VFY uses the format:

hdevﬁindéV/shitch ;
The parameters of this command format are:
Output Parameters
listfile
Specifies the output listing file in the following format:

dev:{ufd]filename.filetype;ver

If you do not specify a dev1ce,a_the . for the output
listing device is the lissikipighice ﬁﬁdﬁﬂwTI:). The [ufd] is the
UIC under which VFY is currently runnlng. You must, however,
specify the file name and file type of the output file. The
default version number will be the latest version plus one.

scratchdev

Specifies the device on which the scratch file produced by VFY is
to be written. This parameter is in the following format:

dev:

The scratch file is used by VFY during the verification scan and
during the 1lost file scan. It is created but not entered in a
directory. Therefore, it is transparent to vyou. The scratch
file 1is automatically deleted when VFY is terminate If you do
not specify a scratch device the .

If the user's default system disk is faulty or full, use this
parameter to direct the scratch file to another device. The
scratch file should always be assigned to a volume other than the
indev wvolume. The scratch file is not used with the /FR and /LI
switches.

Input Parameters

indev

Specifies the volume to be verified in the format dev:. If you
do not specify the volume, the default is SYO0:.

/switch
Specifies the function to be performed by VFY.

The VFY switches are described in detail in Section 9.4.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

8.2 VFY MODE OF OPERATION

VFY normally operates in read-only mode, where the scratch file, if
required, is on another device. VFY requires write access under the
following conditions:

1. If the /UP or /RE switch is used, VFY requires write access
to the storage allocation map ([0,0]BITMAP.SYS).

2. If the /DE or /HD switch is specified, VFY requires write
access to the index file ([0,0]INDEXF.SYS).

3. If the /LO switch is specified and lost files are found, VFY
requires write access to the [1,3] User File Directory which
is the directory containing "lost" files.

If write access to the volume index or bitmap files 1is required for

the desired operation, the user must mount the volume using the

/UNLOCK switch with the MCR or DCL MOUNT command.

VFY may be run under any UIC if only read access 1is required. If
write access is required, VFY must run under a system UIC.

9.3 VFY VALIDITY CHECK
VFY checks the readability and validity of the volume mounted on the
specified device. This function is the default function and entails
reading all the file headers in the index file and ensuring that all
the disk blocks referenced in the map area of each file header are
allocated to that file in the volume bitmap.
The volume may be write-protected if it is not the system volume, or
if the required scratch file is directed to another file-structured
volume.
A validity check is specified in the following format:

listfile,scratchdev=indev<RET>

or

indev<RET>
Example

>VFY DRO:

CONSISTENCY CHECK OF INDEX AND BITMAP ON DRO:

INDEX INDICATES 114524, BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.
BITMAP INDICATES 114524, BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.

9.4 VFY SWITCHES

VFY functions are specified with switches appended to the VFY command
line. The switches and their functions are summarized in Table 9-1.

9-3

FILE STRUCTURE VERIFICATION UTILITY (VFY)
Table 9-1
VFY Switches and Functions
Switch Format Description
Delete /DE Resets the marked-for-delete
indicators.
Directory Validation /DV Validates directories against

the files they list.

Free /FR Prints out the available space
on a volume.

Header Delete /HD Deletes bad file headers on a
volume. The subswitch /AL
allows the /HD switch to
delete bad file headers
without prompting the user.

Identify /1D Identifies the VFY version.
This switch may be specified
on a command line by itself at
any time.

List /LI Lists the index file by file
ID.
Lost /L0 Scans the file structure

looking for files which are
not in any directory.

Read Check /RC Checks the volume to see 1if
every block of every file can
be read.

Rebuild /RE Recovers blocks that appear to

be allocated but are not
contained in a file.

Update /UP Allocates blocks that appear
to be available but have been
allocated to a file.

9.4.1 Delete Switch (/DE)

The Delete switch (/DE) resets the marked-for-delete indicators in the
file header area of files that were marked for deletion but never
deleted.

VFY must be running under a system UIC and the volume must be mounted
with the /UNLOCK switch.

9-4

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.2 Directory Validation Switch (/DV)

The Directory Validation Switch (/DV) examines each directory on the
volume. (VFY considers any file on the volume with the file type .DIR
and a fixed record length of 16 bytes to be a directory.) It then
reports any errors found that could be attributed to a corrupt
directory or a nonexistent file listed in the directory. For example:

>VFY DX:/DV

THE FOLLOWING DIRECTORY ENTRIES WERE INVALID

[301,333] FILE ID 13,2,0 DELETED.FIL;l1 - FILE NOT FOUND
[301,333] FILE ID 12345,3,0 CORRUPTED,FID;1 - FILE NOT FOUND

{301,333] FILE ID 14,2,0 GARBAGE.VER;123456 - INVALID VERSION NUMBER
[301,333] FILE ID 15,1,444 RELVOLNEZ.ERO;1 - RESERVED FIELD WAS NON-ZERO

4, INVALID DIRECTORY ENTRIES WERE FOUND

Directory entries may be invalid due to the following conditions:

FILE NOT FOUND
The file was either deleted without the corresponding directory
entry being removed or the file ID field in the directory entry
was corrupted. If the file does exist, it cannot be accessed
with this directory entry.
Remove the directory entry using the PIP /RM command.

INVALID VERSION NUMBER

The directory entry was corrupted. If the file does exist, it
cannot be accessed with this directory entry.

Remove version zero of the file with the PIP /RM command.
RESERVED FIELD WAS NON-ZERO
The third word of the file ID field in a directory entry is a

reserved field and should always be zero. Remove the directory
entry with PIP /RM and then reenter it with the PIP /EN command.

9.4.3 Free Switch (/FR)

The Free switch (/FR) displays the available space on a specified
volume with the following message:

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

9.4.4 Header Delete Switch (/HD)

The Header Delete switch (/HD) recognizes all bad file headers on a
volume. If you specify the /AL subswitch, all bad file headers will
automatically be deleted.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

If you do not specify the /AL subswitch, VFY prompts you as follows:
>VFY DX1l:/HD
CONSISTENCY CHECK OF INDEX AND BITMAP ON DX1l:
FILE ID 000015,000003 007334.DIR;1 OWNER [7,334]
BAD FILE HEADER
DELETE THIS HEADER [Y/N/Q/G]1?

You may respond as follows:

Y<RET> deletes the header and proceeds

N<RET> does not delete the header and proceeds

Q<RET> does not delete the header and does not proceed

G<RET> deletes the header and all subsequent bad headers
<RET> does not delete the header and proceeds

If you give any other response, the following message will appear:

VFY -- ILLEGAL RESPONSE -~ TRY AGAIN
9.4.5 List Switch (/LI)
The List switch (/LI) lists the index file. The output for each file

specifies the file number, file sequence number, file name, and owner
UIC, as shown in the following example:

VFY>DK: /LI

LISTING OF INDEX ON DKO:

FILE ID 000001, 000001 INDEXF.SYS;1l OWNER [1,1]
FILE ID 000002, 000002 BITMAP.SYS;1 OWNER [1,1]
FILE ID 000003, 000003 BADBLK.SYS;1 OWNER [1,1]
FILE ID 000004,000004 000000.DIR;1 OWNER [1,1]
FILE ID 000005, 000005 CORIMG.SYS;1 OWNER [1,1]
FILE ID 000006,000006 001001.DIR;1 OWNER [1,1]
FILE ID 000007,000007 001002.DIR;1 OWNER [1, 2]
FILE ID 000010,000010 EXEMC.MLB;1 OWNER [1,1]
FILE ID 000011,000011 RSXMAC.SML;1 OWNER [1,1]
FILE ID 000012,000012 NODES.TBL;1 OWNER [1,1]
FILE ID 000013,000036 QIOSYM.MSG;311 OWNER [1, 2]
FILE ID 000014,000037 F4PCOM.MSG;1 OWNER [1, 2]

9.4.6 Lost Switch (/LO)

The Lost switch (/LO) scans the file structure looking for files
not in any directory and cannot be referenced by file name.
considers any file on the volume with the filetype .DIR

are

record length of 16 bytes to be a directory.) A list of the files is
produced, and if the "lost file directory" [1,3]
volume, the files will be entered in that directory. If an I/0 error

occurs, however, on a directory file operation, the files will not be

entered into [1,3]. The following error message will appear:

FAILED TO OPEN DIRECTORY FILE

ERROR CODE

-16.

- DIRECTORY
AS A RESULT, NO FILES WILL BE

f30
EN

1,333]
TERED IN [1,3]

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.7 Read Check Switch (/RC)

The Read Check switch (/RC) checks to ensure that every block of every
file on a specified volume can be read.

The optional parameter [:n] is the blocking factor that indicates the
number of file blocks to be read at a time. The default value is the
maximum number of blocks available in VFY's buffer area. The buffer
area available may be increased by installing VFY in a larger
partition. Four blocks are available when VFY is installed in an 8K
partition, and four blocks are added for each 1lK increment.

For the fastest read check, the maximum biock factor should be used.
Whenever an error is encountered, each block of the portion in error
is reread to determine which data block(s) cannot be read.

When an error is detected, a file identification line is displayed in
the following format:

FILE ID nn,nn filename.typ;ver. n blocks used/n blocks allocated

Following this line, an error message is displayed. If a blocking
factor other than 1 is in use, an error message in the following form
will be issued:

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

Following the first error message, there should be one or more error
messages indicating the exact block(s) in error. The second error
message line(s) will be in the following form:

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

If an ERROR STARTING AT line is displayed without one or more ERROR AT
lines, a multiblock read operation on the selected device has failed,
but the data blocks appear to be individually readable.

If the VBN of the unreadable block listed in the ERROR AT 1line is
beyond the block-used-count, the data portion of the file is readable.

The negative number ‘printed after the ERROR CODE message is usually -4
to indicate a device parity error. Other error codes are contained in
the IAS/RSX~-11 I1/0 Operations Reference Manual.

9.4.8 Rebuild Switch (/RE)

The Rebuild switch (/RE) recovers lost blocks; that is, blocks that
appear to be allocated but are not contained in any file.

Multiply-allocated blocks must be deleted from the file structure
before the Rebuild switch can take effect.

You must run VFY under a system UIC and write-—-enable the volume. The
scratch file should be on another volume.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.4.9 Update Switch (/UP)

The Update switch (/UP) allocates blocks that appear to be available
but are actually allocated to a file.

Files with multiply-allocated blocks must be deleted from the file
structure before the Update switch can take effect.

You must run VFY under a system UIC and write-enable the volume. The
scratch file should be on another volume.

9.5 FILE ERROR REPORTING
As VFY verifies a volume, error conditions are reported. Errors for a
given file are preceded by a line that identifies the file in error.
This line is formatted as follows:

FILE ID nn,mm filename.filetype;version OWNER {uic]

nn,mm

Represents the unique file identification number assigned to the
file by the system at file-creation time.

filename
Represents the file name.
.filetype
Represents the file type (for example, .0BJ for object file).
;version
Represents the version number of the file.
[uic]
Represents the UIC for the file.

This file identification line is followed by one or more of the
following messages:

I/0 ERROR READING FILE HEADER-ERROR CODE -32

e header for the

il
ed or igs off-1ine. or
1teq ¢ 1 e; Cr

Explanation: VFY failed to read the f£i
specified file ID. The device is n t

the hardware has failed.
BAD FILE HEADER

Explanation: VFY checks on the wvalidity of the file header
indicate that the header has been corrupted.

MULTIPLE ALLOCATION n,m

Explanation: The specified (double-precision) 1logical block
number is allocated to more than one file. If this error occurs,
a second pass is automatically taken which will indicate all
files that share each multiply-allocated block. The second pass
is taken after all file headers have been checked (see Section
9.5.2).

FILE STRUCTURE VERIFICATION UTILITY (VFY)

BLOCK IS MARKED FREE n,m

Explanation: The specified logical block number is allocated to
the indicated file but is not marked as allocated in the storage
allocation map (see Section 9.5.4).

BAD BLOCK NUMBER n,m

Explanation: The specified block number was found in the header
for this file but is illegal for the device (out of range). This
indicates a corrupted file header.

FILE IS MARKED FOR DELETE

Explanation: A system failure occurred while the specified file
was being deleted. The deletion was not completed and the file
header still exists (see Section 9.5.1).

HEADER MAP ERROR

Explanation: VFY detected an error in the header map area that
also indicates a corrupted file header.

The last error message for the file is followed by a summary line for
that file, as follows:

SUMMARY: MULT=nn, FREE=nn, BAD=nn.
MULT

Specifies the number of multiple block allocations.
FREE

Specifies the number of blocks marked free that should have been
allocated.

BAD

Specifies the number of errors encountered in the the map area of
the file header.

If the output for VFY is directed to a terminal and you do not wish to
see the error messages for a given file, enter CTRL/O. This
terminates the listing of error messages for that file that 1is, all
messages but the summary line.

9.5.1 Files Marked-for-Delete

If a file has been marked for delete but the deletion process was not
completed, you can either restore the file, 1f you still need it, or
you can delete the file to recover the space it was occupying. This
situation only occurs when the system crashes during file processing.
Once files have been restored or deleted, run VFY with the /RE switch
to assure the consistency of the volume's storage allocation bitmap.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.5.1.1 Restoring a File Marked-for-Delete - To restore a file
marked-for-delete, mount the disk volume using the MCR or DCL MOUNT
command and the /UNLOCK switch. For example:

>MOU DKO:/UNL

Then, run VFY specifying the /DE switch to reset the marked-for-delete
indicators in file headers. Once the delete indicator has been reset,
run VFY specifying the /LO switch to scan the entire file structure.

The deletion process may have proceeded partially and a portion at the
end of the file may be missing. This condition can be detected by a
directory listing obtained using the PIP /FU command.

9.5.1.2 Deleting a File Marked-for-Delete - Files that are
marked-for-delete can be deleted directly with PIP, once their unique
file ID has been obtained by doing a wvalidity check. The file 1ID
appears as the first entry in the file identification line that
precedes each list of file errors (see Section 9.5). The following
example shows how the file ID is used with PIP to delete a file:

>PIP /FI:12:20/DE

In this example, the file with file ID 12,20 is deleted from the
system device. PIP issues the error message:

PIP -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE

since the file system denies the existence of files already
marked-for-delete; however, the file is deleted.

9.5.2 Deletion of Bad File Headers

If the volume contains bad file headers, it 1is advisable to delete
them first by using the /HD switch before you address the problem of
multiply-allocated or free blocks. Deleting bad file headers may free
the blocks that were contained in the files with the bad headers. See
Section 9.4.4 for a description of the /HD switch.

9.5.3 Deletion of Multiply-Allocated Blocks

If the file structure contains multiply-allocated blocks, it Iis
necessary to delete files until there are no such blocks. An
automatic rescan of the volume identifies which files share which
blocks. This rescan lists the files which contain the
multiply-allocated blocks. Use this information to determine which,
if any, of the files can be saved and then delete the rest with the
PIP delete function.

After the files have been deleted, VFY should be run once again to
ensure that all of the files containing multiply-allocated blocks have
been deleted.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

9.5.4 Elimination of Free Blocks

Once there are no multiply-allocated blocks, the next concern is the
elimination of blocks that are marked as free 1in the storage
allocation bitmap but are actually allocated to a file. To reallocate
these blocks in the storage allocation bitmap, run the validity check
with the /UP switch. This allocates all blocks that should have been
marked as allocated. See Section 9.4.9 for a description of the /UP
switch.

When you have no multiply-allocated blocks and no blocks marked as
free that are actually in use, the file structure is safe for writing

new files and extending existing files. Files may have data blocks
that have been overwritten as the result of multiple allocation.

9.5.5 Recovering Lost Blocks

To determine whether any blocks have been lost on a file-structured
volume, examine the last two lines of output from the Validity Check
(Section 9.3). The last two lines of output give the free space on
the volume. The first 1line reports the amount of available space
according to the index file (that is, the number of blocks that are
not in wuse by any file in the index file). The second line reports
the amount of available space according to the storage allocation
bitmap.

If there are no errors, these two figures should agree. If the index
file indicates that more blocks are free than the storage allocation
bitmap indicate, then those blocks are "lost" in the sense that they
appear to be allocated, but no file contains them. Lost blocks can be

recovered by rerunning the Validity Check and specifying the /RE
switch. See Section 9.4.8 for a description of the /RE switch.

9.6 VFY ERROR MESSAGES

The VFY error messages, their explanations, and suggested user actions
are described below.

VFY -- COMMAND SYNTAX ERROR

Explanation: The command as entered does not coniorm to command
syntax rules.

User Action: Reenter the command line with the correct syntax
specified.

VFY -- CLOSE FAILURE ON BIT MAP

or

VFY -- CLOSE FAILURE ON INDEX FILE
or
VFY -- CLOSE FAILURE ON TEMPORARY FILE

or

9-11

VFY

FILE STRUCTURE VERIFICATION UTILITY (VFY)

—-—- CLOSE FAILURE ON LISTING FILE

or

-— I/0 ERROR ON INPUT FILE

or

-- I/0 ERROR ON OUTPUT FILE

or

--~ I/0 ERROR READING DIRECTORY FILE
or

-- I/0 ERROR WRITING FILE HEADER
or

—-— FAILED TO CLOSE DIRECTORY FILE

Explanation: One of the following conditions may exist:

° The device is not on-line.
° The device is not mounted.

° The hardware has failed.

User Action: Determine which of the above conditions caused the

message and correct that condition.

Reenter the command line.

VFY -- FAILED TO ALLOCATE SPACE FOR TEMP FILE

Explanation: The volume specified for the temporary scratch file

is full.

User Action: Use PIP to delete unnecessary files and rerun VFY,
or specify another volume as the scratch device when you reenter

the command line.

VFY -- FAILED TO ATTACH DEVICE

or

VFY -- FAILED TO DETACH DEVICE

Explanation: The list file specified a terminal device. VFY was
not able to attach or detach the device.

User Action: Reenter the command line with a 1list file device

that can be attached or detached.

(o]
[
o
N

FILE STRUCTURE VERIFICATION UTILITY (VFY)

VFY -- FAILED TO ENTER FILE
Explanation: One of the following conditions may exist:
e VFY is not running under a system UIC.
e The device is not on-line.
e The device is not mounted.
e The hardware has failed.

User Action: Determine which of the conditions caused the
message and correct that condition. Reenter the command line.

VFY -- FAILED TO FIND INDEXF.SY¥S;l IN MFD - WILL OPEN INDEX BY FILE ID 1,1
or
VFY ~-- FAILED TO FIND BITMAP,SYS;l1 IN MFD - WILL OPEN BITMAP BY FILE ID 2,2
Explanation: The Master File Directory has been corrupted.
gser Action: Copy the disk using the BRU utility (see Chapter
).

VFY -- FAILED TO OPEN DIRECTORY FILE (See OPEN FAILURE error messages)

VFY -~ ILLEGAL DEVICE

Explanation: The input device specified is something other than
a disk or DECtape.

User Action: Reenter the command line with a mounted Files-1l1
device specified.
VFY -~ ILLEGAL SWITCH

Explanation: The switch specified is not a valid VFY switch or a
valid switch is used illegally.

User Action: Reenter the command line with the correct switch
specified.

VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL
Explanation: VFY does not have enough buffer space to run.

User Action: Run VFY in a larger partition (8K minimum).

VFY -- OPEN FAILURE ON BIT MAP
or
VFY -- OPEN FAILURE ON INDEX FILE

or

FILE STRUCTURE VERIFICATION UTILITY (VFY)

VFY -- OPEN FAILURE ON LISTING FILE

or

VFY -- OPEN FAILURE ON TEMPORARY FILE

or

VFY -- FAILED TO OPEN DIRECTORY FILE

or

VFY -- FAILED TO OPEN FILE FOR READ CHECK

Explanation: One of the following conditions may exist:

VFY
The
The
The

The

is not running under a system UIC but should be.
named file does not exist in the specified directory.
volume is not mounted.

specified file is read protected.

specified file does not exist.

User Action: Determine which of the above conditions caused the
message and correct that condition. Reenter the command line.

VFY -- STORAGE CONTROL BLOCK (VBN1l of BITMAP.SYS) IS CORRUPTED

Explanation: The Storage Control Block 1is corrupt. This 1is
harmless, because only VFY and PIP /FR can examine the block.

User Action: Copy the disk using BRU or DSC (see Chapter 7 or 8,
respectively).

VFY -- THEY ARE STILL LOST, COULD NOT FIND DIRECTORY

Explanation: UFD [1,3] did not exist on the volume. UFD [1, 3]
is the "lost files" directory. VFY enters all files found by the
/LO switch into this directory.

User Action: Use the MCR UFD command to enter UFD [1,3] on the
volume.

CHAPTER 10

LIBRARIAN UTILITY PROGRAM (LBR)

The Librarian Utility Program (LBR) allows you to create, update,
modify, 1list, and maintain library files. A library file is a direct
access file that <contains a collection of related files. LBR
organizes files, usually having the same file type, into library
modules so that you have rapid and convenient access to your files.

Library files contain two directory tables: the entry point table
(EPT) and the module name table (MNT). The EPT contains entry point
names that consist of global symbols defined as entry points in MACRO
source programs. The MNT contains names of the modules in the
library. Both tables are alphabetically ordered.

The following paragraphs describe the three types of 1libraries:
object, macro, and universal.

Object library files (.OLB) contain object files (.OBJ). The module
names are derived from .TITLE directives, while the entry point names
are derived from global symbols defined in the module. LBR references
the module code in the library by the module name. The source program
references object library modules by the entry point name. Entry
points apply only to object libraries.

You use object module libraries as input to the Task Builder. The
Task Builder (TKB) searches for definitions of all global symbols
referenced in a program in the following manner. First, TKB searches
the other modules specified, then it searches the specified
user-written object module 1library, and finally, it searches the
system library.

Macro library files (.MLB) contain source macro files (.MAC). The
module names are derived from .MACRO directives. From each macro
definition, LBR extracts the name and creates an entry in the module
name table. The entry in the module name table is the means by which
the assembler finds the associated macro definition in the library.

You use macro library modules as input to the MACRO-11 Assembler. The
assembler searches the specified library for macros listed in .MCALL
statements and called in the source program before searching the
system macro library.

Universal library files (.ULB) contain modules inserted from any kind
of file whether it be a program or text. The module names are either
user-specified in the Insert (/IN) switch or derived from the file
name at the time of insertion.

Primarily, you use universal 1libraries to package related files
together. You can reference a universal library module in a program
by using the Universal Library Access ($SULA) system library routine.
SULA, specified in the macro source program, establishes the necessary

10-1

LIBRARIAN UTILITY PROGRAM (LBR)

conditions for access (read only) to a universal library module. (For
more information on $ULA, see the IAS/RSX-11 System Library Routines
Reference Manual.)

You can invoke LBR using any of the methods for invoking a utility
described in Chapter 1.

10.1 FORMAT OF LIBRARY FILES

A library file consists of a library header, an entry point table, a
module name table, the 1library modules and their headers, and any
available space. The entry point table has zero length for macro and
universal libraries. Figure 10-1 illustrates object and macro library
file format and Figure 10-2 illustrates universal library file format.

10.1.1 Library Header

The header section is a full block in which the first 24(10) words are
used to describe the current status of the library. The header's
contents are updated as the library is modified. This allows LBR to
access the necessary information to perform its functions (for
example, Insert, Compress, and Delete). The twenty-fourth word in the
library header is the default insert file type for universal libraries
and is undefined for macro and object libraries. See Figure 10-3.

10.1.2 Entry Point Table

The entry point table consists of 4-word elements containing an entry
point name (words O0-1]) and a pointer to the module header of the
module where the entry point is defined (words 2-3). (See Figure
10-4.) This table is searched when a library module is referenced by
one of its entry points. The table is sequenced in order of ascending
entry point names. The entry point table applies only to object
library files.

10.1.3 Module Name Table

The module name table 1is searched when the 1library module is
referenced by its module name rather than by one of its entry points.
It is made up of 4-word elements: a module name (words 0-1) and a
pointer to the module header (words 2-3). See Figure 10-5. The
module name table is sequenced in order of ascending module names.

10.1.4 Module Header

Each module starts with a header of eight words for object and macro
modules and 32(10) words for universal modules. The module header
contains information about the module such as the type and status of
the module, its 1length (number of words), and its attributes. See
Figure 10-6 and Figure 10-7.

In object and universal modules, the low-order bit of the attributes

byte is set 1f the module has the selective search attribute. 1In
universal modules, bit 1 of the attributes byte is set if the input

10-2

LIBRARIAN UTILITY PROGRAM (LBR)

file was contiguous. Also, 1in object modules, the two words of
type-dependent information contain the module identification defined
by the .IDENT directive at assembly time. In macro modules, these two
words are undefined.

For universal modules, type-dependent identification is derived from
the file type and version number of the input file.

Universal libraries allow you to change the module header, which
contains optional descriptive information, by means of the Modify
Header switch (/MH).

FIXED- LIBRARY
LENGTH HEADER
RECORDS
ENTRY POINT
TABLE
- | BLOCK
BOUNDARIES
MODULE NAME
TABLE
VARIABLE~ MODULE 1 HEADER
LENGTH
RECORDS MODULE 1
MODULE N HEADER
/ MODULE N
AVAILABLE SPACE
' ZK-184-81

Figure 10-1 General Format for Object and Macro Library Files

10-3

LIBRARIAN UTILITY PROGRAM (LBR)

FIXED- LIBRARY
LENGTH HEADER
RECORDS -
ENTRY POINT
TABLE
BLOCK
BOUNDARIES
MODULE NAME
TABLE
VARIABLE- MODULE 1 HEADER
LENGTH UNUSED SPACE
RECORDS
MODULE 1

UNUSED SPACE

MODULE 2 HEADER
UNUSED SPACE

/ MODULE 2

UNUSED SPACE

MODULE N HEADER
UNUSED SPACE

MODULE N

AVATILABLE SPACE

NOTE

All universal module headers and the
first record of each universal module
will start on a block boundary.

ZK-185-81

Figure 10-2 Universal Library File Format

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET
WORD 0 | NON ZERO ID LIBRARY TYPE
2 LBR (LIBRARIAN) VERSION
4 (.IDENT FORMAT)
6 YEAR
10 DATE AND MONTH
12 | TIME LAST DAY
14 INSERT HOUR
16 MINUTE
20 SECOND
22 | RESERVED SIZE EPT ENTR'S
24 EPT STARTING RELATIVE BLOCK
26 NO. EPT ENTRIES ALLOCATED
30 NO. EPT ENTRIES AVAILABLE
32 RESERVED SIZE MNT ENTR'S
34 MNT STARTING REL BLOCK
36 NO. MNT ENTRIES ALLOCATED
40 NO. MNT ENTRIES AVAILABLE
42 LOGICALLY DELETED
44 AVAILABLE (BYTES)
46 CONTIGUOUS SPACE
50 AVAILABLE (BYTES)
52 NEXT INSERT RELATIVE BLOCK
54 START BYTE WITHIN BLOCK
56 UNIVERSAL DEFAULT INSERT TYPEL

lUNDEFINED FOR MACRO AND OBJECT LIBRARIES
ZK-186-81

Figure 10-3 Contents of Library Header

10-5

WORD

Figure 10-4

WORD

Figure 10-5

OFFSET FROM
START OF
MODULE HEADER

0

.10
=12
14

16

LIBRARIAN UTILITY PROGRAM (LBR)

0 GLOBAL SYMBOL
1 NAME (RADS5S0)
2 ADDRESS OF

MODULE
3 HEADER

RELATIVE BLK.

BYTE IN BLOCK

ZK-187-81

Format of Entry Point Table Element

0 MODULE NAME
1 (RAD50)
2 ADDRESS OF
MODULE
3 HEADER

RELATIVE BLK.

BYTE IN BLOCK

ATTRIBUTES STATUS
SIZE OF

MODULE (BYTES)

DATE YEAR

MODULE

INSERTED MONTH

DAY

TYPE DEPENDENT
INFORMATION

10-6

ZK-188-81

Format of Module Name Table Element

0=NORMAL MODULE
1=DELETED MODULE

ZK-189-81

6 Module Header Format for Object and Macro Libraries

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET FROM
START OF
MODULE HEADER

0 ATTRIBUTES STATUS
2 SIZE OF
4 MODULE (BYTES)
6 DATE YEAR
10 | MODULE MONTH
12 | INSERTED DAY
14 IDENT
SE—
16

20 OPTIONAL

22 INFO 1

24 OPTIONAL

26 INFO 2

30 OPTIONAL

32 INFO 3

34 OPTIONAL

36 INFO 4
40
USER
42 FILE
44 ATTRIBUTES

~l
[»)]

ZK-190-81

Figure 10-7 Module Header Format for Universal Libraries

10-7

LIBRARIAN UTILITY PROGRAM (LBR)

10.2 LBR RESTRICTIONS

The following restrictions apply when using LBR:
e Limit of 65,536 (64.K) words per module.
e Limit of 65,536(64.K) blocks per 1library.

e Tables should be allocated their anticipated maximum

size.

Expanding table allocations requires using the Compress switch

(/CO) to copy the entire file.

e A fatal error results if an attempt is made to insert a module
into a 1library that contains a module with a different name

from, but with the same entry point as, the 1inserted

module.

For further information, refer to the discussion of the /IN

switch in Section 10.5.8.

e The use of wildcards in file specifiers is not allowed

(that

is, forms such as *.0BJ, where the * indicates all modules

with type .0OBJ).

The library's tables must contain enough space for both the

modules

being replaced and their replacements because the new modules are
entered and the o0ld modules are only 1logically (not physically)

deleted.

10.3 LBR COMMAND LINE
LBR accepts command lines in the following general format:
outfile[,listfile]=infilel[,infile2,...infilen]

LBR allows only one level of indirect command file nesting.
complete description of file specifiers, see Chapter 1.

10.4 DEFAULTS FOR LBR FILE SPECIFIERS

Table 10-1 describes the defaults for LBR file specifiers.

For a

Table 10-1
LBR File Specifiers Defaults
Specifier Default
dev: Output File
SYO:

Listing File

file.

Input File

For subsequent input file specifiers,

specifier; otherwise, the default for
previous input file specifier.

The device that was specified for the output
file; otherwise, the default for the output

For the first input file specifier, SYO:.

device specified 1in the previous input file

the

the

(continued on next page)

10-8

LIBRARIAN UTILITY PROGRAM (LBR)

Table 10-1 (Cont.)
LBR File Specifiers Defaults

Specifier

Default

dev:

filename

.type

;ver

/switch

Output File [ufd] Output File
The UIC under which LBR is currently running.

Listing File
The UFD that was specified for the output
file; otherwise, the default for the output
file specifier.

Input File
For the first input file specifier, the UIC
under which LBR is currently running.

For subsequent input file specifiers, the UFD
specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.

No default. Must be specified.

Output File
Depends on the default in effect (see Section
10.5.4), except when the Compress (/CO) or
Create (/CR) switch is specified (see
Sections 10.5.1 and 10.5.2, respectively).

Listing File
.LST

Input File
Refer to the descriptions of Compress
(Section 10.5.1), Insert (Section 10.5.8),
and Replace (Section 10.5.11) switches.

Latest version of the file, or latest version plus 1
for the output file when the Compress (/CO), Create
(/CR), or Extract (/EX) switches are specified.

Output File
/IN (Insert)

List File
/SP/LI (Spool and List module names)

Input File
None.

10.5 LBR SWITCHES

LBR uses switches appended to file specifications to invoke functions.
These switches are summarized in Table 10-2.

LIBRARIAN UTILITY PROGRAM (LBR)

Table 10-2
LBR Switches

Option Switch Function
Compress /CO Compress a library file.
Create /CR Create a library file.
Delete /DE Delete a library module and all of its

entry points.

Default /DF Specify the default library file type.
Delete Global /DG Delete a library module entry point.
Entry Point /EP Include entry point elements in the

library entry point table.

/—-EP Exclude entry point elements in the
library entry point table.

Extract /EX Extract (read) one or more modules from
a library file and write them into a
specified output file.

Insert /IN Insert a module.
List /LI List module names.
/LE List module names and module entry
points.
/FU List module names and full module

description.

Modify Header /MH Modify a universal module header.
Replace /RP Replace a module.

/-RP Do not replace a module.

Spool /SP Spool the listing for printing.
/-SSP Do not spool the listing.

+iyve search attribute in

Selective Search /S8 Set the sel e search attribute
r

the module heade

.

Squeeze /SZ Reduce the size of the macro source.

/-SZ Do not reduce the size of a specific
macro source.

10.5.1 Compress Switch (/CO)

Use the Compress switch (/C0) to physically delete all 1logically
deleted records, to put all free space at the end of the file, and to
make the free space available for new 1library module inserts.
Additionally, the 1library table specification may be altered for the

10-10

LIBRARIAN UTILITY PROGRAM (LBR)

resulting library. LBR accomplishes this by creating a new file that
is a compressed copy of the old library file. The o0ld library file is
not deleted after the new file is created.

The /CO switch can be appended only to the output file specification.
The format for specifying the /CO switch is:

outfile/CO:size:ept:mnt=infile
outfile

Specifies the file that is to become the compressed version of
the input file. The default file type is .OLB if the input file
is an object library, .MLB if the input file is a macro 1library,
or .ULB if the input file is a universal library.

/CO
Specifies the Compress switch.
tsize

Specifies the size of the new 1library file in 256(10)-word
blocks. The size of the old library file is the default size.

tept

Specifies the number of entry point table (EPT) entries to
allocate. If the wvalue specified is not a multiple of 64(10),
the next highest multiple of 64(10) is used. The number of EPTs
in the o0ld library file is the default value. This parameter is
always forced to zero for macro 1libraries and universal
libraries. The maximum number of entries is 4096 (10).

tmnt

Specifies the number of module name table (MNT) entries to
allocate. If the value specified is not a multiple of 64(10),
the next highest multiple of 64(10) is used. The number of MNTs
in the o0ld library file is the default value. The maximum number
of entries is 4096 (10).

infile
Specifies the library file to be compressed. The default file
type 1is .OLB for object libraries, .MLB for macro libraries, and
.ULB for universal libraries. The actual default file type is
determined by the current default library file type (see Section
10.5.4).

Example
LBR>RICKLIB/CO:100,:128.:64.=SHEILA.OLB

In this example, file SHEILA.OLB is compressed, and a new file,
RICKLIB.OLB, is created with the following attributes:

size = 100(10) blocks
ept = 128(10) entry points
mnt = 64(10) module names

The new file, RICKLIB.OLB, receives a version number that is one
version greater than the latest version for the file.

10-11

LIBRARIAN UTILITY PROGRAM (LBR)

Both files, RICKLIB.OLB and SHEILA.OLB, reside in the default
directory file on SYO:.

10.5.2 Create Switch (/CR)

Use the Create switch (/CR) to allocate a contiguous library file on a
direct access device (for example, a disk). The switch initializes
the library file header, the entry point table, and the module name
table.

The /CR switch can be appended only to the output file specification.
The format for specifying the /CR switch is:

outfile/CR:size:ept:mnt:libtype=infiletype
outfile

Specifies the library file being created. The default file type
is .0LB 1if an object library is being created, .MLB if a macro
library is being created, or .ULB if a universal library is being
created.

/CR
Specifies the Create switch.
:size

Specifies the size of the new library file in disk (256(1l0)word)
blocks. The default size is 100(10) blocks.

iept

Specifies the number of entry point table (EPT) entries to
allocate. The default wvalue is 512(10) for object libraries.
This parameter is always forced to zero for macro 1libraries and
universal libraries. The maximum number of entries is 4096(10).

:mnt

Specifies the number of module name table (MNT) entries to
allocate. The default value is 256(10). The maximum number of
entries is 4096(10).

:1libtype

Specifies the type of library to be created. Acceptable values
are OBJ for object libraries, MAC for macro libraries, and UNI
for universal libraries. The default is the last value specified
or implied with the /DF switch (see Section 10.5.4), or OBJ if
/DF has not been specified.

tinfiletype

Specifies the default input file type for the created universal
library. If this value is not specified, the default input file
type for universal libraries is .UNI. This value is not defined
for object or macro libraries.

If the values specified for ept and mnt are not multiples of 64(10),

EPT and MNT are automatically filled out to the next disk block
boundary.

10-12

LIBRARIAN UTILITY PROGRAM (LBR)

Example
LBR>RICKLIB/CR::128, : 64, :0BJ=SHEILA, LAURA, JENNY

In this example, a combination of functions is performed. First,
the 1library file RICKLIB.OLB is created in the default directory
on SY0:., RICKLIB has the following attributes:

size = 100(10) blocks (default sigze)
ept = 128(10) entry points

mnt = 64(10) module names

type = .OBJ

Secondly, object modules from the input files SHEILA,.OBJ,
LAURA,.O0BJ, and JENNY,OBJ, which reside in the default directory
on SY0:, are inserted 1into the newly created library file.
Insert (/IN) 1is the default switch for input files (see Section
10.5.8).

10.5.3 Delete Switch (/DE)

Use the Delete switch (/DE) to logically delete 1library modules and
their associated entry points (global symbols) from a library file.
Up to 15(10) library modules and their associated entry points can be
deleted with one delete command.

When LBR begins processing the /DE switch, it prints the following
message on the initiating terminal:

MODULES DELETED:
As modules are logically deleted from the 1library file, the module
name is printed on the initiating terminal. (See the example at the
end of this section.)
If a specified library module is not contained in the library file, a
message is printed on the initiating terminal and the processing of
the current command is terminated. This message is as follows:

LBR —-- *FATAL*-NO MODULE NAMED "name"
The /DE switch can be appended only to the library file specification.
When LBR deletes a module from a 1library file, the module 1is not
physically removed from the file, but is marked for deletion. This
means that, although the module is no 1longer accessible, the file
space that the module once occupied is not available for use (unless
the deleted module 1is the 1last module that was inserted). To
physically remove the module from the file and make the freed space
available for use, you must compress the library (see Section 10.5.1).
The format for specifying the /DE switch is:

outfile/DE:modulel[:module2...:modulen]
outfile

Specifies the library file.
/DE

Specifies the Delete switch.

10-13

:module
Specifies the name of the module to be deleted.
Example
LBR>RICKLIB/DE:SHEILA: LAURA:JENNY
MODULES DELETED:
SHEILA
LAURA
JENNY
In this example, the modules SHEILA, LAURA, and JENNY and their

associated entry points are deleted from the latest version of
library file SYO:RICKLIB.OLB.

10.5.4 Default Switch (/DF)

Use the Default switch (/DF) to specify the default library file type.
Acceptable default values are OBJ for object libraries, MAC for macro
libraries, and UNI for universal libraries. When a default 1library
file type 1is not specified by the /DF switch, OBJ is the default
library file type.

Specifying a default value:

1. Sets the default file type for the Create switch (/CR).

2., Provides a file type default value of .MLB for macro
libraries, .ULB for universal libraries, and .OLB for object
libraries when opening an output (library) file. Exceptions
to this occur when you use /CO or /CR. When you specify /CO,
the default applies to the 1library input file. When vyou
specify /CR, the default file type 1is .OLB if an cbject
library is being created, .ULB if a universal 1library is
being created, or .MLB if a macro library is being created.
The /DF switch only affects the filetype of the file to be
opened. After that, the library header record information is
used to determine the type of library file being processed.

The /DF switch can be issued alone or appended to a 1library file
specification. The format for specifying the /DF switch is:

outfile/DF:filetype...

or

/DF:filetype
outfiie

Specifies the library file.
/DF

Specifies the Default switch.

10-14

LIBRARIAN UTILITY PROGRAM (LBR)

filetype
Specifies the default library file type: OBJ for object 1library
files, MAC for macro library files, and UNI for universal library
files.

If a value other than OBJ, ULB, or MAC is specified, the current
default 1library type will be set to object libraries and the
following message will be displayed:

LBR —- *FATAL*-INVALID LIBRARY TYPE SPECIFIED

LBR>/DF :MAC
LBRXRICKLIB=infile

The file RICKLIB.MLB is opened for insertion.

LBR>/DF : MAC
LBR>RICKLIB/DF:0BJ=infile

OBJ replaces MAC as the default filetype. The file RICKLIB.OLB
is opened for insertion.

LBR>/DF:MAC
LBR>RICKLIB/CR

The macro library RICKLIB.MLB is created.

LBR>/DF :MAC
LBR>RICKLIB/CR::::0BJ

Because OBJ is specified, it overrides the default (MAC). The
object library RICKLIB.OLB is created.

LBR>/DF:0BJ
LBR>TEMP/CO=RICKLIB.MLB

Because RICKLIB.MLB is a macro library, MAC overrides the default
(0OBJ). The macro library file TEMP.MLB is created to receive the
compressed output.

LBR>/DF : UNI
LBR>RICHLIB=TEST

The file RICHLIB.ULB is opened for insertion.

10.5.5 Delete Global Switch (/DG)

Use the Delete Global switch (/DG) to delete a specified entry point
(global symbol) from the EPT. Up to 15(10) entry points may be
deleted with one command. This command does not affect the object
module that contains the actual symbol definition. You may wish to
delete an entry point if a module to be inserted has the same entry
point.

When LBR begins processing the /DG switch, it prints the following
message on the initiating terminal:

ENTRY POINTS DELETED:

10-15

As entry points are deleted from the library file, the entry point is
printed on the 1initiating terminal. (See the example at the end of
this section.)
If a specified entry point is not contained in the EPT, a message is
printed on the initiating terminal and the processing of the current
command is terminated. This message is as follows:
LBR -- *FATAL* - NO ENTRY POINT NAMED "name"
The /DG switch can only be appended to the library file specification.
The format for specifying the /DG switch is:
outfile/DG:globall[:global2...:globaln]

outfile

Specifies the library file.

/DG

Specifies the Delete Global switch.
global

Specifies the name of the entry point to be deleted.
Example

LBR>RICKLIB/DG:SHEILA:LAURA:JENNY

ENTRY POINTS DELETED:

SHEILA

LAURA

JENNY

In this example, the entry points SHEILA, LAURA, and JENNY are

deleted from the latest version of the 1library file named
SY0:RICKLIB.OLB.

10.5.6 Entry Point Switch (/EP)

Use the Entry Point switch (/EP) to control (include or exclude) the
placement of global symbols in a library entry point table. The
switch can be specified in either a positive or negative format:

/EP Include entry points in the entry point table.
/-EP Do not include entry points in the entry point table.
-/NOEP Do not include entry points in the entry point table.

The positive format {/EP) causes all entry points in & module or
modules to be entered in the library entry point table.

Either negative format (/-EP or /NOEP) provides for a module to be

included in a 1library, but excludes the entry points in that module
from being entered in the library entry point table.

10-16

LIBRARIAN UTILITY PROGRAM (LBR)

/EP is the LBR default. If the switch is not specified, all entry
points are entered into the library entry point table.

The /EP switch has no effect on macro or universal libraries.
The format for specifying the /EP switch is:

outfile[/EP]=infile,...infilen
[/-EP]
[/NOEP]

or

outfile=infile[/EP][,...infilen[/EP]
{-/EP] [-/EP]
[/NOEP] [/NOEP]

outfile

Specifies the output file. When the entry point switch is
applied to this file specification, LBR assumes each of the input
files contains modules for which entry points are to be either
included or excluded.

infile

Specifies an input file. When the /EP switch is applied to an
input file specification, LBR assumes only the input files to
which the switch is applied contain modules for which entry
points are to be either included or excluded.

NOTE

Although not reflected in the command
formats, the positive and negative forms
of the switch may be applied to both the
output and input file specifications.
For example, the effect of /EP applied
to the output file can be overridden by
applying /-EP to a specific input file.

The /-EP switch is useful for including modules that contain duplicate
entry point names in the same library. The /-EP switch provides the
means for entering a module in the library without having its entry
points included in the library entry point table.

The /-EP switch is also useful in the case where the Task Builder uses
only module names to search for modules in an object module library.
In this case, entries in the 1library entry point table are not
required. The /-EP switch can be used to exclude entry points from
being entered in the library entry point table.

Depending on whether the /EP switch 1is applied to the output
specification or to an input specification, it has either a global or
local effect.

When applied to the output file specification, the /EP switch has a
global effect. That is, LBR either includes all entry points in the
entry point table or excludes all entry points from being entered in
the entry point table.

10-17

LIBRARIAN UTILITY PROGRAM (LBR)

When applied to an input file specification, the Entry Point switch
has a local effect. That is, LBR either includes entry points in the
entry point table or excludes entries from being entered in the entry
point table for only those modules to which the switch is applied.

Entry points in an object module are not affected by the /EP switch.
The switch only affects entries in the library entry point table.

10.5.7 Extract Switch (/EX)

Use the Extract switch /EX to extract (read) one or more modules from
an object or macro library file and write them into a specified output
file. If more than one module 1is extracted, the modules are
concatenated 1in the output file. The extract operation has no effect
on the library file from which the modules are extracted; that file
remains intact. Up to eight modules may be specified in one extract
operation for object and macro libraries. However, only one module
may be specified in one extract operation for a universal library.

For object and macro libraries, if no modules are specified 1in the
command line, all modules in the 1library are extracted and
concatenated in the output file in alphabetical order.

For universal 1libraries, RMS fields cannot be extracted to a
record-oriented device, such as a terminal.

The /EX switch may be applied only to input file specifications. The
format for specifying the /EX switch is:

outfile=infile/EX[:modulenamel...:modulenamen]
outfile
Specifies the file into which extracted modules are to be stored.

The default file type for this file is .0OBJ if the input modules
are object modules. The default file type is .MAC if the input

modules are macro modules. If the 1library 1is a universal
library, the outfile retains the infile type of the module
extracted. (However, you are allowed to extract only one

universal library module at a time.)
infile
Specifies the library file from which the modules are to be

extracted. The default file type for this file is .ULB, .OLB, or
.MLB, depending on the current default library type.

/EX
Specifies the Extract switch.

modulename
Specifies the name of the module to be extracted f£from the
library.

Examples

LBR>DRIVERS=RSX11M/EX:DXDRV:DKDRV:TTDRV

The object modules DXDRV, DKDRV, and TTDRV are concatenated in
alphabetical order and written into the file DRIVERS.OBJ.

10-18

LIBRARIAN UTILITY PROGRAM (LBR)

LBR>TI:=[1,1]RSXMAC.SML/EX:QI0S$S
The macro QIOS$S is written to the issuing terminal.
LBR>TEST.OBS=TEST/EX

All of the modules in the library TEST.OLB are written into the
file TEST.OBS in alphabetical order.

10.5.8 Insert Switch (/IN) for Object and Macro Libraries

Use the Insert switch /IN to insert modules into a library file. Any
number of input files can be specified. For object libraries and
macro 1libraries, each input file can contain any number of
concatenated 1input modules. For macro libraries, only first-level
macro definitions are extracted from the input files. All text
outside of the first-level macro definitions is ignored. LBR
recognizes only upper-case characters in macro directives. {The
Insert switch for Universal Libraries, is explained in Section
10.5.9.) The /IN switch is the default library file option and can be
appended only to the library file specification.

If you attempt to insert an input module that already exists in the
library file, the following message 1is printed on the initiating
terminal:
LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename
Likewise, if you attempt to insert a module and a module contains an
entry point that duplicates one that 1is already in the EPT, the
following message is printed on the initiating terminal:
LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename
The format for specifying the /IN switch is:
outfile[/IN]=infilel[,infile2,...infilen]
outfile
Specifies the library file into which the input modules are to be
inserted. The default file type depends on the current default
(see Section 10.5.4). It is .OLB if the current default Iis
object libraries, .MILB if the current default is macro libraries.
/IN
Specifies the Insert switch.
infile
Specifies the input file containing the modules to be inserted
into the 1library file. The default file type is .OBJ if the

outfile is an object library and .MAC if the outfile is a macro
library.

10-19

LIBRARIAN UTILITY PROGRAM (LBR)

Example
LBR>RICKLIB/IN=SHEILA,LAURA, JENNY

In this example, the modules contained in the latest versions of
files SHEILA, LAURA, and JENNY, which reside in the default
directory on SY0:, are inserted into the latest version of the
library file RICKLIB, which also resides in the default directory
on SY0:. The default file type for files SHEILA, LAURA, and
JENNY is .0BJ if RICKLIB is an object module library, or .MAC if
RICKLIB is a macro library.

10.5.9 1Insert Switch (/IN) for Universal Libraries

The Insert switch (/IN) works basically the same for universal
libraries as it does for object 1libraries and macro libraries.
However, when inserting a file 1into a wuniversal 1library, the /IN
switch is applied to the input file rather than the output file. You
can also specify module name and descriptive information as switch
values in the command 1line. In addition, LBR copies input file
attributes to the module header.

The high block indicator (F.HIBK of the file's descriptor block) and
the end of file indicator (F.EFBK of the file's FDB) are included in
the input file's user file attributes. LBR makes the high block
indicator equal to the end of file indicator in the module header.
This means that when a module is extracted to a file, that file will
have as many blocks allocated to it as are used.

The format for specifying the /IN switch for universal libraries is:
outfile=infile/IN:name:op:op:op:op
outfile

Specifies the universal library into which the infile 1is to be
inserted.
infile

Specifies the input file to be inserted into the outfile. The
default for the file type is the value indicated at the universal
library's creation time. (See Section 10.5.2.)

/IN
Specifies the Insert switch.

tname
Optionally specifies the module name (up to six Radix-50
characters). The default 1is the first six characters of the
input file name.

top

Specifies optional descriptive information (up to six Radix-50
characters) to be stored in the module header. The default is
null. If only part of the information set 1is specified, all

. .
preceding colons must be supplied.

10-20

LIBRARIAN UTILITY PROGRAM (LBR)

Example
LBR>RICKLIB.ULB=JOE.TXT/IN:MOD1:THIS:IS:JAN2: TEXT
In this example, LBR inserts JOE.TXT into the wuniversal 1library
RICKLIB.ULB as MODl, "THIS", "IS", "JAN2", and "TEXT" are stored
in the module header.
You can insert JOE.TXT without the /IN switch and its values. As

a result, all the information normally specified by the switch
values defaults as described in this example.

10.5.10 List Switches (/LI, /LE, /FU)

Use the list switches to produce a printed listing of the contents of
a library file. Three switches allow you to select the type of
listing desired. These switches are as follows:

/LI Produces a listing of the names of all modules in the
library file.

/LE Produces a listing of the names of all modules in the
library file and their corresponding entry points.

/FU Produces a listing of the names of all modules in the
library file and gives a full module description for
each: that 1is, size, date of insertion, and
module-dependent information.

These switches can be appended only to the output £file specification
or the 1list file specification.

The /LI switch is the default value. It need not be specified when a
listing file has been specified or when any other list switch is
included in the command line.
The format for specifying list switches is:

outfile[,listfile] /switch(es)
outfile

Specifies the library file whose contents are to be listed.

listfile

Optionally specifies the listing file. If not specified, the
listing is directed to the initiating terminal.

/switch (es)
Specifies the list option(s) selected.
Examples
LBR>RICKLIB/LI
In this example, a listing of the names of all the modules

contained in file SY0:RICKLIB.OLB is printed on the initiating
terminal.

10-21

LBR>RICKLIB/LE

In this example, a listing of the names of all the modules and
their entry points (contained in file SY0:RICKLIB.OLB) is printed
on the initiating terminal.

LBR>RICKLIB/FU

In this example, a listing of the names of all the modules 1in
file SYO:RICKLIB.OLB, and a full description of each one
contained is printed on the initiating terminal.

LBR>DK1: [200, 200]RICKLIB,LP.LST/LE/FU

In this example, LBR creates file LP.LST in directory [200,200]

on DK1l, which lists the module names, their entry points, and a
full description of each module for file RICKLIB.

10.5.11 Modify Header Switch (/MH)

The Modify Header switch pertains only to universal 1libraries and

allows vyou to modify the optional user-specified information in the

module header.

The format for specifying the /MH switch is:
outfile/MH:module:op:op:op:op

outfile

Specifies an output file for the wuniversal 1library. The file
type defaults to .ULB.

/MH
Specifies the Modify Header switch.

tmodule
Specifies the name of the module whose descriptive information is
to be modified.

top
Specifies the optional wuser information (up to six Radix-50
characters) to be stored in the module header. The default is
null and indicates that the corresponding information £field Iis
not to be changed. Also, entering a pound sign (#) clears the
corresponding information field.

Example

The optional descriptive information for module A of RICKLIB.ULB
is:

"MODA"™ "FCHCD" "QF" "FCH"
The LBR command is:

LBR>RICKLIB/MH:A:FCHTS: #::

10-22

LIBRARIAN UTILITY PROGRAM (LBR)

The optional descriptive information for module A in file RICKLIB
is changed to:

" FCHTSII n " n OFll ” FC Hll

10.5.12 Replace Switch (/RP) For Macro and Object Libraries

Use the Replace switch /RP to replace modules in a library file with
input modules of the same name. Any number of input files are allowed
and each file can contain any number of concatenated input modules.

For macro libraries, only first-level macro definitions are extracted
from the replacement files. LBR recognizes only uppercase characters
in macro directives.

When a match occurs on a module name, the existing module is logically
deleted and all of its entries are removed from the EPT.

As each module in the library file is replaced, a message is printed
on the initiating terminal. This message, which contains the name of
the module being replaced, is as follows:

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR
assumes that the input module 1is to be inserted and automatically
inserts it without printing a message.

The /RP switch can be specified in either of the following formats:

e Global format - The /RP switch is appended to the library file
specification and all of the input files are assumed to
contain replacement modules.

e Local format - The /RP switch is appended to an input file
specification and only the file to which the /RP switch is
appended is considered to contain replacement modules.

Global Format
outfile/RP=infilel[,infile2,...infilen]
outfile

Specifies the library file. The default file type depends on the

current default (see Section 10.5.4). It is .OLB if the current

default is object libraries or .MLB if the current default is
macro libraries.

/RP
Specifies the Replace switch.

infile

Specifies the input file that contains replacement modules for

the 1library file. The default type is .OBJ if outfile is an

object library or .MAC if it is a macro library.

The Global format allows you to specify a list of input files without
having to append the /RP switch to each of them.

10-23

To override the global function for a particular input file (that is,
to instruct LBR to ©process a particular file in a list as a file
containing modules to be inserted but not replaced), append /-RP or
/NORP to the desired input file specification.

Local Format
outfile=infilel[/RP][,infile2{/RP],...infilen[/RP]]
outfile

Specifies the library file. The local format default is the same
as the global format default.

infile

Specifies the input file that contains replacement modules for
the output library file. The local format default is the same as
the global format default.

/RP

Specifies the Replace switch. Appending the /RP switch to an
input file specifier constitutes the local format of the switch.
This overrides the LBR default (/IN) and instructs LBR to treat
the module(s) contained 1in the specified file as replacement
modules.

Examples

The files used in the following four examples, and the modules
contained within each file, are depicted in Figure 10-8. These
files are assumed to reside in the default directory on the
default device and the 1initial state of the library file is
assumed to be as shown in Figure 10-8.

1. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY

MODULE "SHEILA"™ REPLACED
MODULE "LAURA1"™ REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the global format for the /RP switch is
used. Object modules from the input files SHEILA, LAURA, and
JENNY replace modules by the same names in the 1library file
named RICKLIB and modules JENNY3 and LAURA3 are inserted.
The resulting library file is shown in Figure 10-9,

2. LBR>RICKLIB=CHRIS,SHEILA/RP
MODULE "SHEILA"™ REPLACED

In this example, the local format of the /RP switch is used.
The object module SHEILA from file SHEILA is replaced in the
library file RICKLIB. The object modules in the file CHRIS
are inserted in the library file. (See the description of
the /IN switch in Section 10.5.8.) The resulting library file
is shown in Figure 10-10.

10-24

LIBRARIAN UTILITY PROGRAM (LBR)

3. LBRORICKLIB/RP=SHEILA,LAURA,JENNY,CHRIS/-RP
MODULE "SHEILA"™ REPLACED
MODULE "LAURAL1"™ REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1"™ REPLACED
MODULE "JENNY2" REPLACED
In this example, the /-RP switch is wused to override the
global format of the command. Object modules in files
SHEILA, LAURA, and JENNY are processed as modules to be
replaced, and file CHRIS is processed as a file that contains
modules to be inserted. The resulting library file is shown
in Figure 10-11.
4, LBRM>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY
MODULE "SHEILA"™ REPLACED
LBR -- *FATAL* -- DUPLICATE MODULE "LAURA1l" IN LAURA.OBJ;1
In this example, only module SHEILA from file SHEILA was
replaced. The user specified that the modules in file LAURA
not be replaced (/-RP), but inserted. One of the modules
contained in file LAURA duplicated an already existing module
in file RICKLIB (see Figure 10-8). Therefore, LBR issued the
fatal error message and terminated the processing of the
current command line.
OUTPUT INPUT FILES
LIBRARY FILES
FILE NAME|RICKLIB.OLB;1l|SHEILA.OBJ; 1|[LAURA.OBJ;1|JENNY.OBJ;1| CHRIS.OBJ;1
JENNY1 SHEILA LAURAL JENNY1 CHRIS1
OBJECT JENNY2 LAURA2 JENNY2 CHRIS2
MODULES LA