RSX-11M

Guide to Writing an 170 Driver

Order No. AA-2600D-TC -
and
Update Notice No. 1 (AD-2600D-T1)

RSX-11 M Version 3.2

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, April 1975

Revised: September 1975
November 1976
December 1977
Updated: May 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1975, 1976, 1977, 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

4/80-14

PREFACE

CHAPTER

CHAPTER

CHAPTER

. e
N

e e e @ e ® 8 © ° e e ° s ° e e e 6 o e 6 e e o o o S o e s v o °o .

NN N N DDNVNNDODNDNNNNODNNNNDDONODNNNNNNDNDNNNDNNNNNDNDODNODNDNDONNN N [l ol [od

w

e o o o o ° o & o o
« o
wN =

AU W

® e o o o e o o

e o e o o o

wWwN - (SR S VN SR VY NoundwwhE MO HEFERE
.
[

o o o o
W

e« e e e
w

¢« e
N

CONTENTS

INTRODUCTION TO I/O DRIVERS

RESIDENT AND LOADABLE DRIVERS
FUNCTION OF AN I/O DRIVER

THE RSX-11M I/0 SYSTEM~-PHILOSOPHY AND
STRUCTURE
I/0 PHILOSOPHY
STRUCTURE
I/0 Hierarchy
FCS/RMS
QIO
Executive I/O Processing
Role of I/O Driver in RSX-11M
Device Interrupt
I/0 Initiator
Device Timeout
Cancel I/O
Power Failure
Summary--Role of an I/0 Driver
DATA STRUCTURES
The Device Control Block (DCB)
The Unit Control Block (UCB)
The Status Control Block (SCB)
Interrelation of the I/O Control Blocks
The I/0 Packet
The I/0O Queue
The Fork List
The Device Interrupt Vector
EXECUTIVE SERVICES
Pre-Driver Initiation Processing
Post-Driver Initiation Services
Interrupt Save ($INTSV)
Get Packet ($GTPKT)
Create Fork Process (SFORK)
I/0 Done (SIODON or S$IOALT)
PROGRAMMING STANDARDS
Process-Like Characteristics of a Driver
Programming Conventions
Programming Protocol
Processing at Priority 7 with Interrupts
Locked Out
Processing at the Priority of the
Interrupting Source
Processing at Fork Level
Programming Protocol Summary
FLOW OF AN I/0 REQUEST
DATA STRUCTURES AND THEIR INTERRELATIONSHIPS
Data Structures Summary

INCORPORATING USER-WRITTEN DRIVERS INTO
RSX-11M

iii

Page

vii

R
HE P

NN]
HHOOVOPOOANAUITNE BB EBWWWNHERHF

NN DNDNNNDNNNDNNNNNDNDNDNDDNODNDNON
|

2-15
2=17
2-20

May 1979

CONTENTS

OVERVIEW OF USER-WRITTEN DRIVERS
Overview of User-Written Code
Overview of User-Written Driver Data Bases
USER-WRITTEN RESIDENT DRIVERS
Creating the Data Base for a Resident Driver
Incorporating a Resident Driver
USER-WRITTEN LOADABLE DRIVERS
Creating the Data Base for a Loadable Driver
Assembling a Loadable Driver and Its Data
Base
Adding the Driver and Its Data Base to the
System Library
Task-Building a Loadable Driver
Task~Building a Loadable Driver on a
Mapped System
Task-Building a Loadable Driver on a
Unmapped System
Loading a User-Written Loadable Driver
DRIVER DEBUGGING
Debugging Aids
.1 Executive Stack and Register Dump Routine
.2 XDT - The Executive Debugging Tool
.3 Panic Dump
.3.1 Using PANIC on Processors with Console Switch
.3.2 Using PANIC on Processors Without Console
Switch

« o
PO . .
N =

.
[\ ol N

WWwwwwwwww
« s e e o e o
WWWHNONDNNDKF -

ww w

P .

w W w
.

[w

.

[

w
.
w
.
.
[8]

L] . .] . . . L]
. .
RFREHEEE 0 S

WWwWwwwwww
BB D DD W

3.3 Sample Output from Panic Dump

4 Crash Dump Analysis Support Routine
Fault Isolation

1 Immediate Servicing

2 Pertinent Fault Isolation Data
Fault Tracing

.1 Tracing Faults Using the Executive Stack
and Register Dump

3.4.3.2 Tracing Faults When the Processor Halts

Without Display

3.4.3.3 Tracing Faults After an Unintended Loop
3.4.3.4 Additional Hints for Tracing Faults
3.4.4 Rebuilding and Reincorporating a Driver
3.4.4.1 Rebuilding and Reincorporating a Resident
Driver
3.4.4.2 Rebuilding and Reincorporating a Loadable
Driver
CHAPTER 4 WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS
4.1 DATA STRUCTURES
4,1.1 The I/0 Packet
4,1.1.1 I/0 Packet Details
4.1.1.2 The QIO Directive Parameter Block (DPB)
4.1.2 The Device Control Block (DCB)
4.1.2.1 DCB Details
4.1.2.2 Establishing I/0O Function Masks
4.1.3 The Status Control Block (SCB)
4.1.3.1 SCB Details
4.1.4 The Unit Control Block (UCB)
4,1.4.1 UCB Details
4.1.5 The Device Interrupt Vector

w
N
N}

| I T T O O T |
HHONANMDNDEFE -

S N N N N N N O

iv May 1979

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

INDEX

Figure

ot

[e)N e Ne We e (o)} (SIS ;|

NDNONDN

e BB WWWWWIN

WNNDN

11
S W

| HNN T U N N A BN I B |
S whEHOOS_WNDREO

wN =

[\

o o

CONTENTS

Page
MULTICONTROLLER DRIVERS 4-27
THE INTSVS$ MACRO 4-28
Format 4-29
EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS 5-1
SYSTEM-STATE REGISTER CONVENTIONS 5-1
CONDITIONAL ROUTINES 5-1
SERVICE CALLS 5-1
INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES 6-1
DEVICE DESCRIPTION 6-1
DATA BASE AND DRIVER SOURCE 6-2
The Data Base 6-2
Driver Code . 6-4
HANDLING SPECIAL USER BUFFERS 6-8
DEVELOPMENT OF THE ADDRESS DOUBLEWORD A-1
INTRODUCTION A-1
CREATING THE ADDRESS DOUBLEWORD A-1
PDP-11/70 DRIVERS FOR NPR DEVICES B-1
CALLING $STMAP AND $MPUBM OR $STMP1l AND SMPUB1 B-1
Allocating a Mapping Register Assignment
Block B-2
Calling $STMAP or $STMP1l B-2
Calling $MPUBM or $MPUBL B-2
CALLING $ASUMR AND SDEUMR B-3
STATICALLY ALLOCATING UMRs DURING SYSTEM
GENERATION B-3
SYSTEM DATA STRUCTURES AND SYMBOLIC
DEFINITIONS C-1
Index-1
FIGURES
I/0 Control Flow 2=2
DH11l Terminal I/0 Data Structure 2~7
RK11l Disk I/O Data Structure 2-7
I/0 Data Structure for Two RK1l1l Disk
Controllers 2-8
I/0 Data Structure 2-18
Task Header on an Unmapped System 3-21
Task Header on a Mapped System 3-21
Stack Structure: Internal SST Fault 3-22
Stack Structure: Abnormal SST Fault 3-23
Stack Structure: Data Items on Stack 3-24

I1/0 Packet Format

QIO Directive Parameter Block (DPB)

Device Control Block

Status Control Block

Unit Control Block

Conditional Code for a Multicontroller Driver

v May

1979

CONTENTS
Page
FIGURES (Cont.)

FIGURE B-1 Mapping Register Assignment Block B-3

TABLES

TABLE 3-1 Required DCB Fields 3-4
3-2 Required UCB Fields 3-4
3-3 Required SCB Fields 3-5
4-1 Mask Values for Standard I/O Functions 4-1

vi May 1979

PREFACE

MANUAL OBJECTIVES

The goal of this manual is to provide information necessary to prepare
a conventional I/O driver for RSX-11lM and subseguently incorporate it
into an operational user-tailored system. A "conventional" driver |is
best explained by example, Disks and wunit record devices are
considered conventional; the LPS-11, UDC-11l, and TM1ll are <considered
unconventional, Complexity of device servicing reguirements sets the
dividing line, a line not easily established in black-and-white terms.

INTENDED AUDIENCE

The manual assumes that you understand the device for which you are
writing a driver, and that you are familiar with the PDP-11 computer,
its peripheral devices, and the software supplied with an RSX-11M
system, Although this manual is organized tutorially, the intended
audience is assumed to be at a system programmer level of expertise;
thus, the manual does not contain definitions of data processing terms
and concepts familiar to senior level professionals.

ASSOCIATED DOCUMENTS

Familiarity with the system implies an in-depth exposure to the
following RSX-11M manuals:

1. System Generation Manual

2. 1/0 Drivers Reference Manual

3. Executive Reference Manual

4. Utilities Procedures Manual

5. I/0 Operations Reference Manual

As adjuncts to this manual, you are advised to study existing 1I/O
drivers. The RF-11 disk driver is a good example of an NPR device and
the TA-11 (cassette) is illustrative of a programmed I/0O device. In
addition, a perusal of Executive source code contained in the files

IOSUB, SYSXT, DRQIO, BFCTL, and DRDSP (stored under UIC [11,10] on the
Executive source disk) is recommended.

Other manuals closely allied to the purposes of this document are
described briefly in the RSX-11M/RSX-11S Documentation Directory. The

vii May 1979

Documentation Directory defines the intended readership of each manual
in the RSX-11M/RSX-11S set and provides a brief synopsis of each
manual's contents.

STRUCTURE OF THIS DOCUMENT

This document proceeds from chapter to chapter toward increasing
levels of implementation detail.

Chapter 1 is a general introduction to I/O drivers in the RSX-11M
system.

Chapter 2 is a functional description of the RSX-11M device-level 1I/0
system. It discusses both data structure and code requirements.

Chapter 3 details how to incorporate a user-written driver into the
system.

Together, Chapters 1, 2, and 3 provide a complete understanding of the
requirements that must be met in creating a system that contains a
user-written driver.

Chapter 4 provides programming-level details on I/O data structures
and on drivers that service several controllers.

Chapter 5 discusses all the I/0-related Executive services.
Chapter 6 gives two examples of user-written drivers.
Appendix A describes the Address Doubleword.

Appendix B outlines special considerations for PDP-11/70 NPR device
drivers.

Appendix C lists system macros that supply symbolic offsets for system
data structures.

viii May 1979

CHAPTER 1

INTRODUCTION TO I/OvDRIVERS

The software supplied by DIGITAL for an RSX~11lM system includes I/O
drivers for a number of standard I/0 devices. An I/0 driver is a part
of the RSX-11M Executive that services one type of I/0 device. A
driver may handle one or several controllers, each with one or several
device~units attached.

1.1 RESIDENT AND LOADABLE DRIVERS

A driver can be resident or loadable. A resident driver is a
permanent part of the Executive, built in at SYSGEN. A loadable
driver, while also part of the Executive, can be added to or wunloaded
from a system almost at will by means of MCR or VMR commands. During
the SYSGEN dialog, you can specify that you want this facility.

Making drivers loadable can result in a smaller Executive, and thus
more space for user tasks. Any driver that is not needed for a period
of time can be unloaded from the system. For example, suppose your
system has both a paper-tape reader and a card reader. Suppose that
only one of them is connected to the system at any one time. You
could 1load the driver for the online device and unload the other
driver, thus reducing the size of the Executive.

A loadable user-written driver is easier to incorporate into a system
and easier to debug than a resident one. A resident driver can only
be incorporated into a system at SYSGEN; the Executive must be
rebuilt and the system bootstrapped each time it is reincorporated
during debugging. A loadable driver can be incorporated into a system
with a single MCR command. Incorporating and debugging user-written
drivers are discussed in Chapter 3.

1.2 FUNCTION OF AN I/0 DRIVER
An I1/0 driver is an asynchronous process (not a task) that calls and
is called by the Executive to service an external I/0 device or
devices. The role of an I/0 driver in the RSX-11M I/0 structure is
specific and limited. A driver performs the following functions:

° Receives and services interrupts from its I/O device(s).

® Initiates I/O operations when requested to do so by the
Executive.

° Cancels in-progress I/0 operations.

° Performs other (device-specific) functions upon power failure
and device timeout.

INTRODUCTION TO I/O DRIVERS

As an integral part of the Executive, a driver possesses its own
context, allows or disallows interrupts, and synchronizes its access

to shared data bases with that of other Executive processes. (It may
also synchronize with itself: a driver can handle several device
controllers, each with several device-units, all operating in

parallel.) A wuser-written driver must adhere to RSX-11lM programming
conventions in order to ensure the integrity of the Executive.
Section 2.5 and Chapter 4 discuss these conventions.

CHAPTER 2

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

2.1 I/O PHILOSOPHY

Memory constraints and RSX-11D compatibility requirements dominated
the design philosophy and strategy used in creating RSX-11M. To meet
its performance and space goals, the RSX-11M I/0 system attempts to
centralize common functions, thus eliminating the inclusion of
repetitive code in each and every driver in the systen. To achieve
this centralization, a substantial effort has been expended in
designing RSX-11M's data structures. These structures are used to
drive the centralized routines; the effect is to reduce substantially
the size of individual I/0O drivers. The table structures require
space and must be considered with the total size of the I/O system.
Nevertheless, the size reduction effected by the <centralization of
functions, combined with table-driven design, enables RSX-11M to meet
its intended memory and performance goals.

2.2 STRUCTURE
This section:

1. Places an I/0 driver in the context of the overall RSX-11M
I/0 system;

2. Establishes the responsibilities of an I/0 driver, and

3. Functionally describes the driver's interface to the
Executive subroutines and the I/0 data structures.

2.2.1 1I/0 Hierarchy

The RSX~11M I/O system is structured as a loose hierarchy. The term
"loose" indicates that the hierarchy can be entered at any of its
levels; this characteristic is contrasted to "tight" hierarchies that
permit entry only from the top level. Tight hierarchies exist
principally for security and protection, but are costly in their
consumption of equipment resources. Figure 2-1 shows the loose I/O
system hierarchy.

2.2.1.1 FCS/RMS - At the top of the hierarchy are File Control
Services (FCS) and Record Management Services (RMS), which provide
device-independent access to devices included in a given system
configuration. The user task has two levels with which to interface
with FCS or RMS; Get/Put and Read/Write. Get/Put facilitates the

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

movement of data records, whereas Read/Write provides a more basic
level of access affording more direct control over data movement
between a task and peripheral devices.

Privileged | Non-privileged
I
| FCS/RMS User 1/0
FCP | request
|
I Device-
| independent
I Device-
| dependent
Qlo Qlo
directive | directive
|
| User state
R — _F _— — — e e e e Vel] — _— e—— e —— e e e e e— e — -
y Y System state
Qlo
directive
service
\
o Executive

1/0 subroutines

Device interrupt ————sm{
1/0
driver

Figure 2-1 1I/0 Control Flow

The discussion of FCS and RMS is brief because their existence is
completely transparent to the driver and rarely concerns the writer of
a conventional driver. FCS or RMS accepts a user request, interprets

it, and translates it 1into a series of low-level system directives
known as QIOs.

2.2.1.2 QIO - The QIO directive is the lowest level of task I/0. Any
task may 1issue a QIO directive. The QIO directive allows direct
control over devices that are connected to a system and that have an
I/0 driver. The QIO directive forces all I/O requests from user tasks
to go through the Executive. The Executive works to prevent tasks

from destructively interfering with each other and with the Executive
itself.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

2.2.1.3 Executive I/0 Processing - The processing of I/O requests by
the Executive I/O system is accomplished by means of:

1. File Control Primitives (FCP), and

2. A collection of Executive components consisting of:
a. QIO directive processing;
b. I/0-related subroutines, and
¢c. The I/0 drivers.

FCP is responsible for maintaining the structure and integrity of data
stored on file-structured volumes. It maps virtual block numbers to
logical block numbers, extends files, and makes volume-protection
checks. The driver «converts a logical block number into a physical
address on a file-structured device. No direct connection exists
between FCP and a driver.

FCP is a privileged task, and requires a partition in which to
execute. Drivers, on the other hand, are specialized system
processes, not tasks.

The I/0 services provided by the Executive consist of QIO directive
processing, and a collection of subroutines used by drivers to obtain
I/0 requests, facilitate interrupt handling, and return status upon
completion of an I/O request (actual control of the device is
performed by the driver). These subroutines are examined in detail in
Chapter 5. Executive subroutine services and QIO directive processing
are shown as distinct components but are, in fact, both part of the
Executive. These subroutines centralize common driver functions, thus
eliminating duplicate code sequences among drivers.

2.2.2 Role of I/0 Driver in RSX-11M
Every I/0 driver in the RSX-11M system has five entry points:
l. Device interrupt*
2. I/0 initiator
3. Device timeout
4. Cancel I/0
5. Power failure
The first entry point is entered by a hardware interrupt; the other

four are entered by calls from the Executive. Functional details
regarding these entry points follow.

2.2.2.1 Device Interrupt - Control passes to this entry point when a
device previously initiated by the driver completes an I/O operation
and causes an interrupt in the central processor. The connection
between the device and the driver in this instance is direct; the
Executive is not involved.

* A device may trigger more than one distinct interrupt entry. For
example, a full-duplex device would have two.

2-3

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

2.2.2.2 1/0 Initiator - The Executive calls this entry point to
inform the driver that work for it is waiting to be done. 1In effect,
this is a wakeup signal for the driver.

2.2.2.3 Device Timeout - When a driver initiates an I/0 operation, it
can establish a timeout count. If the function then fails to complete
within the specified time interval, the Executive notes the time lapse
and calls the driver at this entry point.

2.2.2.4 Cancel I/0 - A number of circumstances arise within the
system that require a driver to terminate an in-progress 1I/0
operation. When such a termination becomes necessary, a task so
informs the Executive, which then relays the request to the driver by
calling it at the cancel 1/0 entry point.

2.2.2.5 Power Failure - The Executive «calls the driver's power-
failure entry point in three different circumstances:

1. When power is restored after a failure
2. When the system is bootstrapped

3. When the driver is loaded (if it is a loadable, as opposed to
a resident, driver)

Power Restore - Two conditions can initiate a call to the driver when
power 1is restored following a power failure. First, the Executive
automatically calls the power-failure entry point when power is
restored any time the controller is busy (that is, when I/O is in
progress). Second, a driver has the option to be called regardless of
the existence of an outstanding I/0 operation at the time the power is
restored (refer to the description of the UC.PWF bit symbol in Section
4.1.4.1). Frequently, a driver's response to a power failure or to an
I/0 failure is identical to that when its device times out; in such a
case, the power-failure entry point may simply be a return, because
recovery will eventually be effected by means of the timeout entry
point.

Bootstrap - When the system is bootstrapped, a power-failure interrupt
is simulated. This simulation gives drivers the opportunity to carry
out any appropriate pre-operational initialization.

Load - The MCR command LOA[D] calls a loadable driver at its

power-failure entry point if the device is online and UC.PWF (refer to
Section 4.1.4.1) is set.

2.2.2.6 Summary---Role of an I/O Driver - Functionally, the driver in
RSX~11M is respounsible for:

1. Servicing device interrupts
2. 1Initiating I/O operations
3. Cancelling in-progress I/0 operations

4, Performing device-related furictions upon the occurrence of
timeout or power failure

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

A driver exists as an integral part of the Executive; it can call,
and be called by, the Executive. The driver initiates device I/O
operations directly and receives device interrupts directly. All
other entry points are entered by means of Executive calls. A driver
never receives a QIO request directly, and has no direct interaction
with FCP.

2.3 DATA STRUCTURES
An I/0 driver interacts with seven data structures:
1. Device Control Blocks (DCBs)
2. Unit Control Blocks (UCBs)
3. Status Control Blocks (SCBs)
4. The I/0 Packet
5. The I/0 Queue
6. The Fork List
7. Device Interrupt Vector

The first four of these data structures are especially important to
the driver, because it is by means of these data structures that all
I/0 operations are effected. They also serve as communication and
coordination vehicles between the Executive and individual drivers.

The I/O Queue and the Fork List are actually Executive data
structures, but to convey the complete interaction of an I/O driver
with the Executive, we will also describe their role in the system.
The I/O0 Queue 1is a list of I/O packets built by the QIO directive,
principally from information in the caller's Directive Parameter Block
(DPB) . The Fork List synchronizes access to shared Executive data
structures.

Entry to a driver following a device interrupt is accomplished through
the appropriate hardware device interrupt vector. As will be seen,
writers of resident drivers are responsible for properly initializing
this vector. It is discussed in conjunction with the data structures
associated with a driver.

2.3.1 The Device Control Block (DCB)

At least one DCB exists for each type of device appearing in a system
(device type should not be equated with device-unit).. The function of
the DCB is to describe the static characteristics (rather than
execution—-time information) of both the device controller and the
units attached to the controller. All the DCBs in a system form a
forward-linked list, with the last DCB having a link of zero. Most of
the data in the DCB is established in the assembly source for the
driver data structure. The DCB is wused by the QIO directive
processing code in the Executive and not by the driver.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

2.3.2 The Unit Control Block (UCB)

One UCB exists for each device-unit attached to a system. Much of the
information in the UCB 1is static, though a few dynamic parameters
exist.* For example, the redirect pointer, which reflects the results
of an MCR Redirect command, is updated dynamically. As with the DCB,
most of the UCB is established in the assembly source; however, its
contents are used and modified by both the Executive and the driver,
though modification of a given datum is usually done by either the
Executive or the driver, but not both.

2.3.3 The Status Control Block (SCB)

One SCB exists for each device controller in the system. This is true
even 1f the «controller handles more than one device-unit (like the
RK1l1l Controller). Line multiplexers such as the DH11l and DJ1l are
considered to have one controller for each line because all lines may
transfer in parallel. Most of the information in the SCB is dynamic.
Both the Executive and the driver use the SCB.

2.3.3.1 Interrelation of the I/0 Control Blocks - This section
represents the interrelationship among the DCB, UCB, and SCB without
entering into the detailed contents of the control blocks, leaving
such a discussion to be pursued in Chapter 4.

Figure 2-2 shows the data structure that would result for three LA36
DECwriters interfaced by means of a DH1l multiplexer. The structure
requires one DCB, three UCBs, and three SCBs, because the activity on
all three units can proceed in parallel.

Figure 2-3 depicts the internal data structure for an RK1l1l disk
controller with three units attached. Note that only one SCB exists
because only one of the three units can be active at any given time.

Figure 2-4 shows the data structure for two RK1ll disk controllers,
each of which has two drives attached. Here, there are two SCBs,
because both of the disk controllers can operate in parallel.

Taken together, Figures 2-2, 2-3, and 2-4 illustrate the strategy
underlying the existence of three basic I/0O control blocks. There
need be only one DCB for each device type. There may be one or more
SCBs, depending on the degree of parallelism that is desired or
possible: one for each device-unit, or one for each controller
servicing several device-units. The number of UCBs and SCBs, and
their interrelationships, are uniquely determined by the hardware
these data structures describe.

This data structure provides considerable flexibility in configuring
I/0 devices, and, because of the information density in the structures
themselves, substantially reduces the code requirements of the
associated drivers.

* From the UCB, however, it is possible to access most of the
other structures in the I/0O data base (see Figure 2-5). In this
sense the UCB gives access to a large amount of dynamic data.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

DCB
]

ucB ucs uCB
1

SCB SCB SCB

Figure 2-2 DH11l Terminal I/O Data Structure

DCB

ucs ucs ucs

SCB

Figure 2-3 RK1l1l Disk I/O Data Structure

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

DCB

uce uce ucs ucB

SCB ht SCB

Figure 2-4 1I/0 Data Structure for Two RK1ll Disk Controllers

2.3.4 The I/0 Packet

An I/0O Packet contains information extracted from the QIO DPB, as well
as other information needed to initiate and terminate I/O requests.

2.3.5 The I/0 Queue

Each time a task makes an I/0 request, the Executive performs a series
of wvalidity checks on the DPB parameters. If these checks prove
successful, the Executive generates a data structure called an 1I/0
Packet. The Executive then inserts the packet into a device-specific,
priority-ordered list of packets called the I/0 Queue. Each 1I/0
Queue's 1listhead 1is located in the SCB to which the I/O requests

apply.

When a device driver needs work, it requests the Executive to dequeue
the next I/0 Packet and deliver it to the requesting driver.
Normally, the driver does not directly manipulate the I/O Queue.*

* An exception is the case in which a driver needs to examine an I/0
packet before it is queued, or in place of having it queued. For the
driver to accomplish this examination, you must set the bit UC.QUE 1in
the control byte (U.CTL) of the UCB (described in Section 4.1.4).

The most common reason for a driver to examine a packet before queuing
is that the driver employs a special user buffer, other than the
normal buffer used in a transfer request. Within the context of the
requesting task, the driver must address-check and relocate such a
special buffer. See Section 6.3 for an example of a driver that does
this.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

2.3.6 The Fork List

The Fork List is a mechanism by which RSX-11M splits off processes
that require access to shared data bases, or that require more CPU
time to process an interrupt than is compatible with fast, real-time
response of the overall system.

A process that calls $FORK requests the Executive to transform it into
a "fork process" and place it on the Fork List. What this means is
that a call to $FORK saves a "snapshot" of the process (registers R4,
R5, and the PC) in a Fork block. This Fork block is queued on the
Fork List in FIFO order.

When a fork process has worked its way to the front of the Fork List,
R4 and R5 are restored and execution restarts at the statement after
CALL S$SFORK. The process is unaware that a pause of indeterminate
length has elapsed.

A fork process exists in a status intermediate between an interrupting
routine and an ordinary task requesting system resources. Routines in
the system stack--requests for interrupt processing--are run first.
They can be interrupted only by higher-priority requests. Routines in
the Fork List are run when the system stack is empty--that is, they
are completely interruptable. Finally, other tasks are run only when
both the system stack and the Fork List are empty.

Driver interrupts are processed at priority 7 and are thus
noninterruptable. By = system convention, no process should run in a
noninterruptable mode for more than 100 microseconds. This convention
ensures prompt attention to interrupting real-time events.

In practice, drivers servicing interrupts drop from priority 7 to a
lower priority (namely, that of the interrupting source) after issuing
a few instructions. Another system convention states that processing
at this partially interruptable level should not exceed 500
microseconds. Often, more time than this is required to process an
interrupt. The Fork List mechanism provides a secondary interrupt
stack whose members are processed first-in-first-out (FIFO) whenever
the system stack is empty.

A process can also call $FORK to access a shared data base--a system
table, for example. Such access must be strictly controlled to avoid
conflicts. Under RSX-11M, many drivers can run in ©parallel; a
multicontroller driver can run in parallel with itself. In these
circumstances access to common data bases must be controlled.

Of the two available methods of controlling such access--interrupt
lockout and priority queuing--RSX-11M uses priority gqueuing. The Fork
List is the queue of requests for such access. Fork processes are
granted FIFO access to common data bases. Once granted such access, a
process is guaranteed control of the data base until it exits.

2.3.7 The Device Interrupt Vector

The device interrupt vector consists of two consecutive words giving
the address of the interrupt-service routine and the priority at which
it is to run (always set to PR7). The low 4 bits of the second word
of the interrupt vector must contain the number of the controller that
interrupts through the vector. This requirement enables a driver to
service several controllers with few code changes (see Sections 4.2
and 4.3 for an example and discussion of multicontroller driver
coding). Generally, these bits are 0.

2-9

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

2.4 EXECUTIVE SERVICES

The Executive provides services related to I/O drivers that can be
categorized as pre- and post-driver initiation. The pre-initiation
services are those performed by the Executive during its processing of
a QIO directive; these services are not available as Executive calls.

The goal of pre-driver-initiation processing is to extract from the
QIO directive all 1I/O support functions not directly related to the
actual issuance of a function request to a device. If the outcome of
pre-driver-initiation processing does not result in the queuing of an
I/0 Packet to a driver, the driver is unaware that a QIO directive was
issued. Many QIO directives do not result in the initiation of an I/0
operation.

The post-initiation services are those available to the driver after
it has been given control, either by the Executive or as the result of
an interrupt. They are available as needed by means of Executive
calls.

An important concept used in this section and in Section 2.5 is the
"state" of a process. In RSX-11M, a process can run in one of two
states, user or system. Drivers operate almost entirely in the system
state; the programming standards described in Section 2.5 apply to
system-state processes.

2.4.1 Pre-Driver Initiation Processing

In processing a QIO directive, the Executive module DRQIO performs the
following pre-driver initiation services:

1. Checks to verify whether the supplied 1logical unit number
(LUN) is legal. If not, the directive is rejected.

2. If the LUN is valid, checks to verify whether a valid UCB
pointer exists in the Logical Unit Table (LUT) for the
specified LUN. This test determines if the LUN is assigned.
If the test fails, the directive is rejected.

3. If steps 1 and 2 are successful, traces down the redirect
chain to 1locate the correct UCB to which the I/O operation
will actually be directed.

4. Checks the event flag number (EFN) and the address of the I/O
Status Block (IOSB). If either is illegal, the directive is
rejected. Immediately following validation, the Executive
resets the subject event flag and clears the IOSB.

5. Obtains 18 words of dynamic storage and builds the
device-independent portion of an I/O Packet.

If steps 1 thru 5 succeed, the Executive sets the directive
status to +1.

Note that directive rejections in any of the above steps are
completely transparent to the driver. Such rejections cause
a return of carry bit set.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

6. Checks the validity of the function being requested and, if
appropriate, checks the buffer address, byte count, and
alignment requirements for the specified device.

If any of these checks fails, the Executive <calls the 1I/0
Finish routine (SIOFIN). SIOFIN sets the I/0 status and
clears the QIO request from the system.

7. If the requested function does not require a <call to the
driver, the Executive takes the appropriate actions and calls
SIOFIN.

8. If all I/0 Packet checks are positive, the Executive places
the I/0 Packet in the driver queue according to the priority
of the requesting task, or gives the packet to the driver (if
bit UC.QUE is set--described in Section 4.1.4.1).

2.4.2 Post-Driver Initiation Services

Once a driver is given control following an I/O interrupt or by the
Executive itself, a number of Executive services are available to the
driver. These services are discussed in detail in Chapter 5.

However, four Executive services merit special emphasis because
virtually every driver in the system uses them:

1. Interrupt Save (SINTSV)
2. Get Packet ($GTPKT)
3. Create Fork Process (SFORK)

4, 1I/0 Done (SIODON or SIOALT)

2.4.2.1 Interrupt Save (SINTSV)* - Interrupts from a device are
fielded by the driver. Immediately following the interrupt, the
driver operates at hardware priority 1level 7 and is, therefore,
noninterruptable. If the driver needs a lengthy processing cycle
(greater than 100 microseconds) to process the interrupt, or if it
requires the use of any general-purpose registers, it calls S$INTSV.
This call queues external interrupts, alters the hardware priority,
and provides the <calling routine with two free registers to use in
processing the interrupt. $INTSV is discussed in more detail in
Section 2.5.

2.4.2.2 Get Packet (SGTPKT) - The Executive, after it has queued an
I/0 Packet, calls the appropriate driver at its I/O-initiator entry
point. The driver then immediately calls the Executive routine $GTPKT
to obtain work.** If work is available, S$GTPKT delivers to the driver
the highest-priority, executable I/O Packet in the driver's I/O queue,
and sets the SCB status to "busy." If the driver's I/0 Queue is empty,
SGTPKT returns a no-work indication.

* A loadable driver on a mapped system may not call $INTSV directly.
See Section 4.3.

** An exception is a driver that handles special user buffers. Such a
driver must call certain other Executive routines before calling
SGTPKT. See Section 6.3 for an example.

2-11

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

If the SCB related to the device is already busy, S$GTPKT so informs
the driver, and the driver immediately returns control to the
Executive.

Note that, from the driver's point of wview, no distinction exists
between no-work and SCB busy, because an I/O operation cannot be
initiated in either case.

2.4.2.3 Create Fork Process ($FORK) - Synchronization of access to
shared data bases is accomplished by creating a fork process. When a
driver needs to access a shared data base, it must do so as a fork
process; the driver becomes a fork process by calling $FORK. The SCB
contains preallocated storage for a 4- or 5-word "fork block". See
Section 4.1.3.1 for a description of the fork block. Section 5.3
contains details on S$FORK.

An interrupt routine may ncot call S$FORK directly; the routine must
first switch to system state by using the INTSVS$ macro or calling
SINTSV (as described in Section 2.4.2.l1). Further, the interrupting
routine's priority is lowered to that of the requesting source.

After calling $FORK, a routine is fully interruptable (priority 0),
and its access to shared system data bases is strictly linear.

2.4.2.4 1I/0 Done ($IODON or S$IOALT) - at the completion of an 1I/0
request, the subroutines S$IODON or SIOALT perform a number of
centralized checks and additional functions:

-~ Store status if an IOSB address was specified
- Set an event flag, if one was requested
— Determine if a checkpoint request can now be honored
- Determine if an AST should be queued
SIODON and SIOALT also declare a significant event, resets the SCB and

device unit status to "idle," and releases the dynamic storage used by
the completed I/O operation.

2.5 PROGRAMMING STANDARDS

RSX-11M I/0 drivers function as integral components of the RSX-11M
Executive. They must follow the same conventions and protocol as the
Executive itself if they are to avoid complete disruption of system
service. This manual has been written to enable you to incorporate
I/0 drivers into your system. Failure to observe the internal
conventions and protocol can result in poor service and reductions in
system efficiency.

2-12

THE RSX~-11M I/0 SYSTEM-~-PHILOSOPHY AND STRUCTURE

2.5.1 Process-Like Characteristics of a Driver

A driver is an asynchronous Executive process. As a process, it
possesses its own context, allows or disallows interrupts, and
synchronizes functions within itself (all drivers can be parallel,
multiunit, multicontroller) and with other Executive processes
executing in parallel,.

Most RSX-11M drivers are small; their small size is made possible by
a comprehensive complement of centralized services available by calls
to the Executive, and by the availability of an information-dense,
highly formalized I/O data structure.

2,5.2 Programming Conventions

Appendix E of the IAS/RSX-1l1l MACRO-1l1 Reference: Manual describes
program coding standards. DIGITAL recommends that users refer to
these standards to assist 1in preparing standards for their own
installations.

2,5,3 Programming Protocol

Because an I/O driver accepts interrupts directly from the devices it
controls, the central Executive relies on the driver to follow strict
programming protocol so that system performance is not degraded.
Furthermore, the protocol ensures that the driver properly distributes
shared resources according to user-specified priorities. The protocol
is summarized in Section 2.5.3.4.

When a device interrupts, an I/O driver is entered. The driver
usually calls SINTSV or issues the INTSVS macro* for common save and
state-switching services. At the completion of the services provided
by 1INTSV$S or SINTSV, the interrupt routine is again given control to
complete the interrupt service. The exit routine $INTXT restores the
state prior to switching to the system state, controls the un-nesting
of interrupts, and makes checks on the state of the system (for
example, it checks to determine whether it is necessary to switch

stacks). The Fork Processor linearizes access to shared system data
bases. The details of all these routines are given in Chapter 5.

The interrupt vectors for each controller type in low memory contain a
Program Counter (PC) unique to each interrupting source and a
Processor Status Word (PS) set with a priority of 7. It is a system
software convention to use the low-order 4 bits of the PS word to
encode the controller number for multicontroller drivers. When a
device interrupt occurs, the hardware pushes the current PS and PC
onto the current stack and loads the new PC and PS (set at PR7 with
the controller number in the condition-code bits) from the appropriate
interrupt vector. The driver then starts executing with interrupts

locked out. A driver itself may be executing at one of three levels
of interrupt sensitivity:

* The system macro INTSVS simplifies the <coding of standard
interrupt-entry processing (see Section 4.3).

2-13 May 1979

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

1. At priority 7 with interrupts locked out;

2. At the priority of the interrupting source; thus, interrupt
levels greater than the priority of the interrupting source
are permitted, or

3. At fork level, which is at priority 0.

2.5.3.1 Processing at Priority 7 with Interrupts Locked Out - By
internal convention, processing at this level 1is 1limited to 100
microseconds. If processing can be completed in this time, either
without using general-purpose registers or by saving and restoring the
registers used, then the driver simply dismisses the interrupt by
executing an RTI instruction. The interrupt 1is processed and
dismissed with minimal overhead.

2.5.3.2 Processing at the Priority of the Interrupting Source - If
the driver requires additional processing time or requires the use of
general-purpose registers, it «calls the Interrupt Save routine.
Loadable drivers on mapped systems must use the INTSVS$ macro. All
other drivers can use the INTSVS macro or call the S$INTSV routine
directly. The priority at which the caller is to run is included in
the call to the Interrupt Save routine. The driver sets this priority
level to that of the interrupting source.

The Interrupt Save routine sets up the interrupt routine so that it
can be interrupted by devices with priorities higher than that of the
interrupting source, and switches to system state if the processor is
not already in system state.

The Interrupt Save routine also saves registers R4 and R5 to free
these registers for the driver. (A standard practice is for the
driver to set R4 to the address of the interrupting device's SCB, and
R5 to its UCB address.) An internal programming convention assumes
that the driver will not require more than these two registers during
interrupt processing. If it does, the driver must save and restore
any additional registers it uses. Processing time following the
return from the Interrupt Save routine should not exceed 500
microseconds*.

NOTE

In actual practice, every driver in the
system calls the Interrupt Save routine
on every interrupt. This practice is
due to two factors:

1. It 1is difficult to service an
interrupt without wusing one or two
registers.

* The 500-microsecond period is a guideline. The longer the period
of time a real-time executive spends at an elevated priority level,
the less responsive is the system to devices of equal or lower
priority. This guideline is especially important if the device being
serviced is at the same or higher priority than a character-interrupt
device such as the DUll, which is vulnerable to data loss due to
interrupt lockout.

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

2. Most interrupt code can safely be
executed at the priority of the
interrupting source. Execution at
that priority is more desirable in
terms of system response than
continuing to execute at the highest
priority.

2.5.3.3 Processing at Fork Level - A driver calls $FORK to become
fully interruptable (so that it conforms to the 500-microsecond time
limit), or to access the shared system data base. The INTSVS macro
must be issued or the S$INTSV routine must be called prior to calling
SFORK.,

By calling $FORK, the routine becomes fully interruptable and its
access to system data bases is strictly linear. At fork level, all
registers are available to the process, and R4 and R5 retain the
contents they had on entrance to $FORK.

2.5.3.4 Programming Protocol Summary - Drivers are required to adhere
to the following internal conventions when processing device
interrupts:

1. No registers are available for use unless $INTSV has been
called or the driver explicitly performs save and restore
operations. If S$INTSV is called, registers R4 and R5 are
available; any other registers must be saved and restored.

2. Noninterruptable processing must not exceed twenty
instructions, and processing at the priority of the
interrupting source must not exceed 500us.

3. All modifications to system data bases must be done by a fork
process.

2.6 FLOW OF AN I/O REQUEST

Following an I/0 request through the system at the functional 1level
(the 1level at which this chapter is directed) requires that limiting
assumptions be made about the state of the system when a task issues a
QIO directive. The following assumptions apply:

° The system is up and ready to accept an I/0 request. All
required data structures for supporting devices attached to
the system are intact.

° The only I/0 request in the system 1is the sample request
under discussion.

) The example progresses without encountering any errors that

would prematurely terminate 1its data transfer; thus, no
error paths are discussed.

2-15

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

The I/0 flow proceeds as described below:

1.

la.

1b.

1c.

[Task issues QIO directive]

All Executive directives are called by means of EMT 377. The
EMT causes the processor to push the PS and PC on the stack
and to pass control to the Executive's directive processor.

[First-level validity checks]

The QIO directive processor validates the LUN and UCB
pointer.

[Redirect algorithm]

Because the UCB may have been dynamically redirected by an
MCR Redirect command, QIO directive processing traces the
redirect linkage until the target UCB is found.

[Additional validity checks]

The EFN is validated, as well as the address of the 1I/0
Status Block (IOSB). The event flag is reset and the I/0
status block is cleared.

[Obtain storage for and create an I/0O Packet]

The QIO directive processor now acquires an 18-word block of
dynamic storage for use as an I/0 Packet. It inserts into
the packet data items that are used subsequently by both the
Executive and the driver in fulfilling the I/0 request. Most
items originate in the requesting task's Directive Parameter
Block (DPB).

[Validate the function requested]
The function is one of four possible types:
Control
No-op
ACP
Transfer

Control functions, with the exception of Attach/Detach, are
gueued to the driver. If the bit UC.ATT is set,
Attach/Detach will also be queued to the driver.

No-op functions do not result 1in data transfers. The
Executive "performs" them without calling the driver. No-ops
return a status of IS.SUC in the I/0 status block.

ACP functions may require processing by the file system.
More typically, the request 1is a read or write virtual
function that is transformed into a read or write logical
function without requiring file-system intervention. When
transformed into a read or write 1logical, the function
becomes a transfer function (by definition).

Transfer functions are address checked and queued to the
proper driver. Then the driver is called at its initiator
entry point.

4a.

4b.

THE RSX-11lM I/O SYSTEM--PHILOSOPHY AND STRUCTURE

[Driver processing]
[Request work]

To obtain work, the driver calls Get Packet (SGTPKT). S$GTPKT
either provides work, if it exists, or informs the driver
that no work is available, or that the SCB is busy; if no
work exists, the driver returns to its caller. If work is
available, SGTPKT sets the device controller and unit to
"busy," dequeues an I/0 request packet, and returns to the
driver.

[Issue I/0]

From the available data structures, the driver initiates the
required I/0 operation and returns to its caller. A
subsequent interrupt may inform the driver that the initiated
function is complete, assuming the device is interrupt-
driven.

[Interrupt processing]

When a previously issued 1I/0 operation interrupts, the
interrupt causes a direct entry into the driver, which
processes the interrupt according to the programming protocol
described in Section 2.5, According to the protocol, the
driver may process the interrupt at priority 7, at the
priority of the interrupting device, or at fork level. If
the processing of the I/0 request associated with the
interrupt is still incomplete, the driver initiates further
I/0 on the device (step 4b). When the processing of an I/O
request is complete, the driver calls S$IODON.

[X/0 Done processing]

$XODON removes the "busy" status from the device wunit and
controller, queues an AST, if required, and determines if a
checkpoint request pending for the issuing task can now be
effected. The IOSB and event flag, 1if specified, are
updated, and S$IODON returns to the driver. The driver
branches to its initiator entry point and looks for more work
(step 4a). This procedure is followed until the driver finds
the queue empty, whereupon the driver returns to its caller.

Eventually, the processor is granted to another ready-to-run
task that issues a QIO directive, starting the I/0 flow anew.

2.7 DATA STRUCTURES AND THEIR INTERRELATIONSHIPS

This section introduces all the individual control blocks, as well as
their 1linkages and use within the system. The following data
structures comprise the complete set for I/0 processing:

Task Header
Window Block (WB)
File Control Block (FCB)

$SDEVHD word, the Device Control Block (DCB), and the Driver
Dispatch Table (DDT)

THE RSX-11M I/O SYSTEM--PHILOSOPHY AND STRUCTURE

5. Unit Control Block (UCB)
6. Status Control Block (SCB)
7. Volume Control Block (VCB)

Figure 2-5, which provides the structure for the following discussion,
shows all the individual data structures and the important link fields
within them. The numbers on the figure are keyed to the text to

simplify the discussion and to guide the reader through the data
structures.

1. The Task Header 1is constructed during the task-build
process.* (It is one of two independent entries in the I/0
data structure, the other being $DEVHD.) The Task Header
entry of interest, the Logical Unit Table (LUT), is allocated
by the Task Builder and filled in at task installation. The
number of LUT entries is established by the UNITS= keyword
option; this number is an upper 1limit on the number of
device units a task may have active simultaneously. Each LUT
entry contains a pointer to an associated UCB, and a pointer
to a Window Block if a file is accessed by that logical unit
number (LUN).

SYSCM @
$DEVHD:
——— S

DCB

DDT
Nt
i
™ | | 5B
@ Task PF D
Header

1/0 Queue

UCB's Block

\E—_’ TCB C?/ @

ACP \ R
FCB (ind
Task VCB (index)

N Y

@ \ WB (volume)

FCB (task)

LuT Fork 7 /
L]

-
WB (task) MOUnted
@ volume

Figure 2-5 1I/0 Data Structure

* In mapped systems, a copy of the Task Header (located in the task's
partition) 1s made in the Executive's dynamic storage region. This
copy is then used by the Executive. To access the current information

in this copy, a task must be privileged and have mapping to the
Executive.

)

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

A Window Block (WB) exists for each active access to files on
a mounted volume. 1Its function is to speed up the process of
retrieving data items in the file; entries in a WB consist
mainly of pointers to contiguous areas on the device on which
the file resides. The driver is not concerned with the WB.

Each wuniquely opened file on a mounted volume has an
associated File Control Block (FCB). The file system uses
the FCB to control access to the file.

SDEVHD is a word located in system common (SYSCM) and is the
other independent entry in the I/0 data structure. S$DEVHD
points to a singly 1linked, wunidirectional 1list of Device
Control Blocks (DCBs). Each device type in a system has at
least one associated DCB. The DCB list is terminated by a
zerc in the link word.

Linked to each DCB is a Driver Dispatch Table (DDT), which is
part of the driver. The DDT contains the addresses of the
driver's four entry points that the Executive can call.

A key data structure is the Unit Control Block (UCB). All
the UCBs associated with a DCB appear in consecutive memory
locations. During internal processing of an I/0 request,
most drivers set R5 to the address of the related UCB; it is
by means of pointers in the UCB that other control blocks in
the data structure are accessed. In particular, the UCB
contains pointers to the DCB, SCB, VCB, and to the UCB to
which it may have been redirected. 1If a Redirect command has
not been issued for the device-unit, the UCB redirect pointer
points to the UCB itself. When servicing a request for one
of its UCBs, the driver is unaware of whether I/0 was issued
directly to its own UCB or to a UCB that had been redirected
to its UCB.

One Status Control Block (SCB) exists for each controller in
a system. A unique SCB must exist for each
controller/device-unit capable of performing parallel 1I/0.
The SCB contains the fork-block storage required when a
driver calls $FORK to transfer itself to the fork processing
level. The I/0 request queue listhead is also contained in
the SCB. Generally, register R4 contains the address of the
SCB during processing of an I/0 request.

One Volume Control Block (VCB) exists for each mounted volume
in a system. The VCB maintains volume-dependent control
information. It contains pointers to the File Control Block
(FCB) and Window Block (WB), which control access to the
volume's index file. (The index file is a file of file
headers.) The WB for the index file serves the same function
as the WB for a wuser file. (See the IAS/RSX-11 1I/0
Operations Reference Manual for more information on the index
file.) All unique FCBs for a volume form a linked 1list
emanating from the index file FCB. This linkage aids in
keeping file access time short. Further, since the window
that contains the mapping pointers is variable in length, the
user can increase file access speed by adding more access
pointers (greater speed requires more main memory) to
whatever extent the application requires.

THE RSX-11M I/0 SYSTEM--PHILOSOPHY AND STRUCTURE

2.7.1 Data Structures Summary

As the writer of a conventional driver, you do not manipulate the
entire I/0O data structure. In fact, you are usually involved only
with the I/0 Packet, the UCB, and the SCB. The entire structure has
been presented to add depth to your understanding of the I/O systenm,
to emphasize the relationships among individual control blocks, and to
clarify further the role a given driver fulfills in the processing of
an I/0 request.

CHAPTER 3

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

If you want to support an I/0 device for which DIGITAL has not
supplied a driver, you can write your own driver. While we have not
yet presented explicit details for writing such a driver, you now have
enough conceptual information to consider incorporating one of your
own drivers into your system. As will be seen, many considerations
for writing a driver are best presented in a discussion of
incorporating one.

NOTE

An alternative approach to writing your
own device driver may be the CONNECT TO
INTERRUPT VECTOR directive. Refer to
the description of the CINTS$ directive
in the RSX-11M Executive Reference

Manual. For examples of the wuse of
CINTS, examine the task-level support
routines for K-series laboratory

peripheral modules.

3.1 OVERVIEW OF USER-WRITTEN DRIVERS
Incorporating a user-written driver is accomplished by means of the
standard system generation process. Phase 1 of system generation
includes queries that condition Phase 2 for the inclusion of
user-written drivers. Specifically, the query

ARE YOU PLANNING TO INCLUDE A USER WRITTEN DRIVER? [Y/N]:

if answered affirmatively, results in at least one additional query.
This query is:

WHAT IS THE ADDRESS OF THE HIGHEST DEVICE INTERRUPT VECTOR? [O]:
Phase 1 uses the specified address or 400, whichever 1is greater, to
allocate sufficient vector space in the Executive to avoid run-time
destruction of the system stack and to avoid hardware trapping (which
occurs when the SP goes below 400).

The following two additional queries may also appear (refer to Section
5.3):

IS THE EXECUTIVE ROUTINE $GTWRD REQUIRED? [Y/N]:

IS THE EXECUTIVE ROUTINE $PTWRD REQUIRED? [Y/N]:

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

NOTE

These additional queries are suppressed
when certain standard drivers, which
require the S$SGTWRD and $PTWRD routines,
are included during SYSGEN.

During the same phase of system generation, there is an additional
decision you must make on behalf of the driver you are planning to
incorporate into the system. Your driver, similar to most (but not
all) DIGITAL supplied drivers, can be resident or loadable. Loadable
drivers require extra Executive features to support them (for example,
the MCR/VMR LOAD and UNLOAD commands). You can choose support for
loadable drivers by answering in the affirmative the following Phase 1
system generation question:

DO YOU WANT LOADABLE DRIVER SUPPORT? [Y/N]:

3.1.1 Overview of User-Written Driver Code

When you decide to add a driver to your system, you share
responsibility for the integrity of the Executive. Errors in your
driver code can cause a system failure and bring to a halt all user
service.

To create the source code to drive a device, you must perform these
steps:

1. Thoroughly read and understand this manual.

2, Familiarize yourself in detail with the physical device and
its operational characteristics.

3. Determine the level of support required for the device.
4. Create the data base source code for the device.

5. Determine actions to be taken at the five driver entry
points:

a. Initiator
b. Cancel 1/0
c. Timeout
d. Powerfail
e. Interrupt
6. Create the driver source code. This code will contain the
following global symbols (where xx is the 2-character device

mnemonic) :

SxxTBL: : address of the driver dispatch table (see
Section 4.1.2.1)

SXXINT:: address of the driver interrupt entry point
$xxINP:: addresses of input and output interrupt
$xx0UT:: entry points (for full-duplex devices).

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Loadable drivers have one additional requirement, Either
within the driver source code itself or in file RSXMC.MAC,
the conditional assembly symbol LDS$xx must be defined. The
INTSVS macro (refer to Section 4.3) uses this symbol (and
others in RSXMC.MAC) to determine if the <call to S$INTSV
should be omitted from the driver.

The symbols used to name interrupt entries are different for
Error Logging devices. See the RSX-11M/M-PLUS Error Logging
Reference Manual for information on modifying device drivers
for error logging. Note that Error Logging must be modified
to handle user-written drivers.

The DIGITAL-supplied terminal driver (TTDRV) is treated as a

special case by VMR LOA[D}], in terms of the naming of its
interrupt entries.

When adding a resident driver to the system, you should assemble the
driver with padding space for possible expansion during the debugging
process. This padding space is necessary because the system may crash
upon exiting VMR if the new Executive is larger than the 0ld one (see
the note in Section 3.4.1.5). For a loadable driver, however, you do
not need to include padding space in the assembly source.

3.1.2 Overview of User-Written Driver Data Bases

Of the structures associated with an I/0 driver, four reguire assembly
source:

1. The DCB
2. The UCB(s)
3. The SCB(s)

4. The device interrupt vector (assembly source reqguired for
resident drivers only)

A single DCB can service multiple UCBs and SCBs. The existence of
multiple UCBs and SCBs is determined by the actual device subsystem
being supported by a given driver in your hardware configuration.
Figures 2-2, 2-3, and 2-4 1illustrate possible DCB, UCB, and SCB
structural relationships.

Within the DCB, UCBs, and SCBs, only those fields that are static or

that need initialization must be supplied in yvour assembly source.
The following three tables list these required fields.

3-3 May 1979

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Table 3-1
Required DCB Fields

Offset

Description

D.LNK

D.UCB

D.NAM

D.UNIT

D.UCBL

D.DSP

D.MSK

D.PCB

Link to next DCB. This field is zero if this is the
last (or only) DCB. If you are incorporating more
than one user-written driver at one time, then this
field should point to another DCB in a DCB chain.

Address of the first word (U.DCB) of the first UCB
associated with this DCB.

Two-character ASCII generic device name.

Highest and lowest logical unit numbers controlled by
this DCB.

Length of the UCB (including prefix words, if any).
If a given DCB has multiple UCBs, all UCBs must be of
the same length.

Address of the driver dispatch table. The dispatch
table 1is located within the driver code. This field
contains a global reference to the 1label associated
with this table. The field is 0 if the driver is
loadable.

I/0 function masks. You must supply bit-by-bit
mapping for these four I/0 function masks. Note that
the format of the mask words is split into two groups
of 4 words. Functions 0-15 are covered by the first
group, and functions 16-31 by the second.

Address of driver Partition Control Block (PCB).
This field is required only if 1loadable driver
support is included in the system. It must be
initialized to O.

Table 3-2
Required UCB Fields

Offset

Description

U.LUIC

U.OWN

U.DCB

U.RED

Log-on UIC. This field 1is located at a negative
offsét from the start of the UCB. It is present in
terminal UCBs on multiuser systems only.

Owning terminal UCB address. This field 1is 1located
at a negative offset from the start of the UCB. It
is present on multiuser systems only.

Backpointer to the associated DCB.

Redirect pointer--initially contains the address of
this UCB.

(continued on next page)

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Table 3-2 (Cont.)
Required UCB Fields

-’
Offset Description
U.CTL Control bits that must be established by the driver
writer with the UCB source.
U.STS Unit status byte.
i} U.UNIT Physical unit number serviced by this UCB.
U.ST2 Unit status byte extension.
U.CWl Characteristics word 1. Standard description
(Section 4.1.4.1) applies.
U.CW2 Driver-dependent.
- U.CW3 Driver-dependent.
U.Cw4 Default buffer size.
U.SCB Address of the SCB for this UCB.
U.ATT TCB address of attached task (initially 0).
Table 3-3
L — Required SCB Fields
Offset Description
S.LHD I/0 Queue listhead.
S.PRI Priority of interrupting source.
S.vCT Interrupt vector address divided by 4.
e S.ITM Initial timeout count.
5.CON Controller index (that is, controller number
multiplied by 2).
S.8TS Controller status.
S.CSR Address of control and status register.
S.FRK Fork block.
S.MPR Mapping register block. Needed only by UNIBUS NPR
devices running on a PDP-11/70 in extended-addressing
(22-bit) mode.
-’

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.2 USER-WRITTEN RESIDENT DRIVERS

The general procedure for incorporating a user-written resident driver
into your system is as follows:

1. Bootstrap the source disk and run SYSGEN Phase 1.

2. Bootstrap the object disk.

3. Create the assembly source for the driver.

4. Create the assembly source for the driver's data base.
5. Run SYSGEN Phase 2.

The following subsections present details of steps 4 and 5 above.

3.2.1 Creating the Data Base for a Resident Driver

1. Use UIC [200,200] to create scurce code for your driver's
data base on the object disk.

2. Use USRTB.MAC as the filename and file type of the assembly
source file. USRTB as a filename is not actually required.
It is, however, a useful convention--one that you will see
reflected in the sample dialog in Section 3.2.2.

3. There is no mandatory ordering of the different control
blocks in the data base for your resident driver. It is
suggested that you follow the convention of placing the DCB
first, followed by the UCB(s), followed by the SCB(s).
However, it is required that all UCB(s) associated with a
particular DCB must be contiguous. DIGITAL-supplied RSX-11M
drivers use this ordering scheme--for examples see the file
[11,10] SYSTB.MAC, created by Phase 1 of SYSGEN. If you are
incorporating multiple resident drivers into your system, you
will have more than one instance of a DCB with UCB(s) and
SCB(s) .

4. 1Initialize the device interrupt vector (refer to Section
4.1.5 for description of this process).

5. Use the global label $USRTB:: as the address of your first
(or only) DCB. This is absolutely required.

3.2.2 Incorporating a Resident Driver
During the execution of system generation Phase 2, the query
*DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC? [Y/N]:

is posed. If the answer is affirmative, then subsequent dialog guides
you through the process of adding the driver to the generated system.
Operations performed include assembly of the driver and its data
structure, inclusion of the resultant object modules into the
Executive object module library, and editing of the RSX-11lM task-build
command file.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

The following sample dialog illustrates the addition of a driver for
device XX. All user responses are underlined. The notation [1,2x]
indicates that the appropriate UIC is to be substituted: [1,20] for
an unmapped system and [l1,24] for a mapped system.

>* DO YOU WISH TO ADD USER WRITTEN DRIVER(S) TO THE EXEC? [Y/N]:Y

>* WAS LOADABLE DRIVER SUPPORT SELECTED DURING SYSGEN PHASE 1? [YVN]:X
>SET /UIC=[200,200]

>3

>; WE WILL PAUSE WHILE YOU ASSEMBLE YOUR DRIVER(S) AND USRTB

>; MODULE. THE EXEC ASSEMBLY PREFIX FILE RSXMC.MAC IS ALREADY

>; LOCATED UNDER UIC [200,200]. ASSUMING YOUR DRIVER(S) NAME IS

>; XXDRV, WHERE XX IS THE DEVICE NAME (E.G., DK) THE FOLLOWING

>; COMMANDS WILL ASSEMBLE THE DRIVER(S) AND THE USRTB MODULE.

>3

>3 >RUN $MAC

>3 MAC>XXDRV=[1,1] EXEMC/ML, [200,200] RSXMC ,XXDRV
>3 MAC>USRTB=[1,1] EXEMC/ML, [200,200] RSXMC,USRTB
>3 MAC>"Z

>

>

AT. -- PAUSING. TO CONTINUE TYPE "RES ...AT."

>RUN $MAC

MAC>XXDRV=[1,1] EXEMC/ML, [200,200] RSXMC , XXDRV
MAC>USRTB=[1,1]EXEMC/ML, [200,200] RSXMC ,USRTB
MAC> %

>RES ...AT.
AT. —-- CONTINUING

>3

>; NOW YOU MUST ADD YOUR DRIVER(S) AND USRTB MODULE

>; TO THE EXEC OBJECT MODULE LIBRARY. THE FOLLOWING IS AN EXAMPLE:
>3

>3 LBR>RSX11M/RP=[200,200] XXDRV, USRTB
>3 LBR>"%

>

>SET /UIC=[1,2x]

>LER

LBR>RSX11M/RP=[200,200]} XXDRV, USRTB

LBR>"Z

>; YOU MUST NOW ADD COMMANDS TO INCLUDE YOUR DRIVER(S) AND USRTB
>; MODULE INTO THE EXEC BY EDITING THE EXEC TASK BUILD COMMAND FILE.
; TO ADD DRIVER(S), INSERT COMMANDS OF THE FORM:

H R5X11M/LB: XXDRV
4
>; INTO THE COMMAND FILE IN THE PLACE WHERE THE

>; OTHER DRIVERS ARE REFERENCED. XXDRV REPRESENTS THE NAME OF
>; YOUR DRIVER(S).

>3

>3 NOTE: FOR THOSE DRIVERS WHICH YOU WANT TO BE LOADABLE,
> DO NOT INCLUDE CORRESPONDING COMMANDS TO ADD THEM TO
>3 THE EXECUTIVE.

>.

>; THEN LOCATE THE LINE IN WHICH THE MODULE SYSTB IS
>; REFERENCED AND ADD THE ENTRY FOR YOUR
; USRTB MODULE IMMEDIATELY AFTER IT. EG:
>3 [1,2x]RSX11M/LB:LOADR:NULTK:SYSTB:USRTB:SYTAB: INITL

>; FINALLY, LOCATE THE LINE:

VvV Vv
~e ~e ~e

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

GBLDEF=$USRTB:0

>; AND DELETE IT.

>3

>EDI RSXBLD.CMD

[PAGE

1]

*PL TTDRV
[1,2x]RSX11M/LB:TTDRV

*1

(I,2x]RSX11M/LB:XXDRV

-/

*PL, SYSTB
[1,2x]RSX11M/LB:LOADR:NULTK:SYSTB:SYTAE: INITL
*C/SYSTB/SYSTB:USRTB/

[1,2x]RSX11M/LB:LOADR:NULTK:SYSTB:USRTB:SYTAB: INITL
*PL SUSRTB
GBLDEF=$USRTB:0

*D
*EX
[EXIT]
>

r
>; YOUR NON-LOADABLE DRIVERS WILL AUTOMATICALLY BE LINKED

>; WITH THE EXECUTIVE YOU ARE BUILDING.

This completes the user-written resident driver section of Phase 2,
which then continues.

3.3 USER-WRITTEN LOADABLE DRIVERS

The procedure for incorporation of a wuser-written 1loadable driver

depends

on the nature of the data base associated with the driver.

The data base for such a driver can be either resident or loadable.

In deciding whether the data base for your 1loadable driver will be
resident or loadable, you should consider the following limitations on
loadable data bases:

1.

A loadable data base is only loaded once; thereafter it is
resident until the system 1is bootstrapped again. The
UNL[OAD] command does not remove a data base from memory even
if the data base was loaded with the LOA[D] command.

When installing a loadable driver in memory, the LOA[D]
command searches first for a resident data base. If it finds
one, it uses that and ignores the loadable version of the
data base that may accompany the driver image on disk.

When loading a data base, LOA[D] relocates certain known
pointers within the control blocks.* If the data base
requires relocation of additional address pointers beyond the
standard ones, it cannot be loaded with LOA[D]. It must be
incorporated into the system as a resident data base by means
of SYSGEN.

* The pointers are: (DCB) D.LNK, D.UCB; (UCB) U.DCB, U.RED, U.SCB.

(SCB)

S.LHD+2. Chapter 4 gives details on these and other fields in

the data base.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

During debugging of a loadable driver (with loadable data base), you
can correct errors in the coding of the driver itself by unloading it,
modifying, assembling, task-building, and reloading the driver.
However, 1if the data base must be replaced, the system must be
bootstrapped to remove it. You can then modify, assemble, and

task-build the data base, and reload it along with the (corrected)
driver.

The subsections below describe the procedure for incorporation of a
user-written loadable driver as follows:

1. Creating the data base for a loadable driver.

2, Assembling a loadable driver and its data base.

3. Adding the driver and its data base to the system library.
4, Task-building a loadable driver.

5. Loading a user-written loadable driver.

3.3.1 Creating the Data Base for a Loadable Driver

In creating the data base for your loadable driver, vyou must decide
whether the data base will be resident or loadable. If you decide
upon a resident data base, you follow the procedure for «creating the
data base of a resident driver with the exception of initializing the
device interrupt vector (see Section 3.2.1). 1If, however, you decide
upon a loadable data base for your driver, you take the following
steps:

1. While both the loadable driver and its data base can be
contained in the same source module, it is recommended that
you create separate sources for vyour driver and its data
base. If, however, vyou place both the data base and the
driver in the same module, you must ensure that, when linked,
the data base follows the driver code. You can do this by
physically placing the data base code after the driver code
or by using .PSECT names to force proper allocation.

2. A useful convention is to name your data base source xxTAB

and your driver source xxXDRV where xx is the 2-character
device mnemonic.

3. Place the DCB first 1in the assembly source. This is
absolutely required. In a multiuser protection system, the
DCB must be followed first by the associated UCB(s) and then
by the SCB(s). All UCB(s) associated with a particular DCB
must be contiguous. DIGITAL-supplied drivers use this
ordering scheme--for examples see the file [11,10] SYSTB.MAC
created by Phase 1 of SYSGEN. Since you are creating a
loadable data base for a single driver, your source code will
contain a single DCB with associated UCB(s) and SCB(s).

4. The global label $xxDAT:: marks the start of vyour driver's
data base (the DCB). The global label $xxEND:: marks the
end of the data base (i.e., immediately following the final
word of the data base). These labels are absolutely
required. xXx represents the 2-character device mnemonic.

3-9 May 1979

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.3.2 Assembling a Loadable Driver and Its Data Base

During SYSGEN Phase 2, you can assemble your loadable drivers at the
same time that you assemble resident drivers. To do this, you would
use the following command line:

MAC>xxDRV,xxDRV=[1,1] EXEMC/ML, [200,200] RSXMC/PA:1,xXDRV

If you decided upon a resident data base for your 1loadable driver,
assembly of the data base during SYSGEN Phase 2 is described in
Section 3.2.2. If, however, you are using a loadable data base for
your driver (and assuming that you choose to assemble it at the same
point during SYSGEN Phase 2), use the following input to MAC:

MAC>xxTAB,xxTAB=[1,1] EXEMC/ML, [200,200] RSXMC/PA:1,xxTAB

3.3.3 Adding the Driver and Its Data Base to the System Library

If you are using a resident data base for your driver, the data base
is added to the Executive object module library during SYSGEN Phase 2.
For loadable data bases, however, you use the following command to add
both the driver and its data base to the same library:

LBR>RSX11M/RP = [200,200] xxDRV,xxTAB

3.3.4 Task-Building a Loadable Driver

In this section, two examples of task-building a loadable driver with
a loadable data base are presented: one for a mapped system and one
for an unmapped system.

3.3.4.1 Task-Building a Loadable Driver on a Mapped System - The
following seven requirements apply to task-building any loadable
driver, whether user-written or DIGITAL-supplied.

1. You must specify a task-—-image filename and a symbol-
definition filename as TKB output. Both files must be placed
in the UFD corresponding to the system UIC that will be in
effect when the LOA[D] command is issued. The filenames must
both be xxDRV, where xx is the device mnemonic.: The Task
Builder produces output files named xxDRV.TSK and xxDRV.STB.
For example, the beginning of input to TKB to build a
paper-tape reader driver for a mapped system might look like
this (user input underlined}:

>TKB
TKB>[1,54] PRDRV/-HD/~-MM, , [1,54] PRDRV=
t tot
Task image. Switches: see Symbol
items 2 & 3 definition.
below.

2. You must not have a task header. Use the switch /-HD, as 1in
the example above. A driver is not really a task, but an
extension of the Executive, and as such needs no task header.

3-10

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

You must use the /-MM switch, whether in fact the driver is
destined for a mapped or an unmapped system.

You must link to the system symbol-table file that contains
definitions of Executive global symbols. Continuing the
paper—-tape reader driver example from Item 1 above, further
TKB input might look like this:

TKB>[1,24] RSX11M/LB:PRDRV:PRTAB
TKB>[1,54] RSX11M.STB/SS

The first line above specifies the 1library £file (/LB) in
which the input driver object module and the object file for
the loadable data base can be found. The object module
specification for the driver must always precede the
specification for the data base in the TKB command line.

You omit the data-base file specifier when task-building any
DIGITAL-supplied driver or one of your own drivers if it has
a resident data base. All DIGITAL-supplied drivers that are
declared loadable at SYSGEN use resident data bases.

The second 1line in item 4, above, indicates that the
symbol-table file RSX11M.STB is to be searched selectively
(/SS) for definitions of Executive global symbols. Note that
the /SS switch must appear in this context. It cannot be
omitted.

You must link to the system library file that defines masks
and offsets used in the Executive. Continuing the example:

TKB>[1,1] EXELIB/LB
TKB>/

The single slash begins the option phase of the Task Builder.

You must direct the Task Builder not to allocate space for a
stack within the driver:

TKB>STACK=0

You must specify a partition for the driver. The
specification differs for mapped and unmapped systems.
Continuing the mapped-system example:

TKB>PAR=DRVPAR:120000:4000
TKB>//
5 4L

On mapped systems the starting address of the partition must
be 120000 octal. That is, the loadable driver must be mapped
to kernel APRS.

On unmapped systems, the second parameter must be the
physical starting address of the partition.

On either mapped or unmapped systems the 1length of the
partition may not exceed 4K words (20000 octal bytes).

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.3.4.2 Task-Building a Loadable Driver on an Unmapped System - In
the example below, we build a magtape driver for an unmapped system.
The only differences from the mapped-system example are the partition
starting address and the UIC of some of the files ([1,50] and [1,20]
instead of [1,54] and [1,241).

>TKB
TKB>[1,50] MTDRV/-HD/-MM, , [1,50] MTDRV=
TKB> [1,20] RSX11M/LB:MTDRV: MTTAB
TKB>[1,50] RSX11M.STB/SS

TKB> [1,1]EXELIB/LB

TKB>/

ENTER OPTIONS:<

TKB>STACK=0

TKB>PAR=DRVPAR:34000:4000

TKB>//

>

3.3.5 Loading a User-Written Loadable Driver

Loading is done by using the privileged MCR command LOA[D]. 1Its form
is:

LOA[D] xx:[/PAR=partition]

where xx is the 2-character device mnemonic. Specifying a partition
is optional. If none is specified, the partition input to the Task
Builder is used.

The LOA[D] command requires that the two files xxDRV.TSK and xxDRV.STB
reside wunder the system UIC (i.e., the UIC established by the SET
/SYSUIC command). Typically, this UIC is [1,50] for unmapped systems
and [1,54] for mapped systems.

LOA[D] searches first for a resident data base for the driver being
loaded. If none is found, LOA[D] looks for the following global
symbols in the file xxDRV.STB:

$xxDAT: : address of the start of the data base (the DCB)
associated with the driver

$SXXEND: : address+2 of the 1last word of the data base
associated with the driver.

3.4 DRIVER DEBUGGING
Because the protection checks provided for wuser programs are not
available to system modules, driver errors are more difficult to
isolate than user-program errors. But conventional drivers, because
they are modular and short, should be easily debugged. This debugging
process requires that you understand the following topics, each of
which is discussed in a separate subsection:

1. Debugging aids and tools.

2. PFault isolation.

3. Fault tracing

4. Rebuilding and reincorporating a driver.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.4.1 Debugging Aids

Adding a user-written driver carries with it the risk of introducing
obscure bugs into an RSX-11M system. Since the driver runs as part of
the Executive, special debugging tools are both desirable and
necessary. RSX-11M provides several such aids, which can be
incorporated into your system during SYSGEN:

1. Executive stack and register dump

2. XDT

3. Panic dump

4. Crash dump analysis (CDA) support routine.

You need not select any of this software during SYSGEN. 1If, however,
you do require the facilities they offer, you can select from one to
three of them for incorporation in your system (panic dump and the CDA
support routine are mutually exclusive). The following subsections
describe the features and use of each debugging aid.

3.4.1.1 Executive Stack and Register Dump Routine - At SYSGEN, you
can indicate that you want a dump of the Executive stack and the
registers when a crash occurs. This dump will be provided in the
following manner:

1. A system error, or the XDT X command (described in the next
section), or operator manipulation of the switch register
following a halt causes processing to resume at location
40(8) .

2. Location 40(8) contains a JMP to location S$CRASH.

3. SCRASH invokes the routine that dumps the Executive stack and
registers as shown below:

SYSTEM CRASH AT LOCATION 047622
REGISTERS

R0=000340 R1=177753 R2=000353 R3=000000
R4=000004 R5=046712 SP=000472 PS=000340
SYSTEM STACK DUMP

LOCATION CONTENTS

000472 000004
000474 000000
000476 001514
000500 000340
000502 177753
000504 000353
000506 000000
000510 000000
000512 057750
000514 002504
000516 030011
000520 100340
000522 000340

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

LOCATION CONTENTS

000524 056446
000526 000000
000530 102144
000532 000000
000534 101376
000536 101372
000540 102022
000542 170000

Following this display, either the CDA support routine or panic dump

is invoked -- if either is present 1in the system. Otherwise, the
system halts.

3.4.1.2 XDT - The Executive Debugging Tool - An interactive debugging
tool has been developed for RSX-11M to aid in debugging Executive
modules, I/0 drivers, and interrupt service routines. This debugging
aid, called XDT, is a version of RSX-11 ODT. XDT does not contain the
following features and commands available on ODT:

No $M - (Mask) register

No $X ~ (Entry Flag) registers

No $V - (SST vector) registers

No $D - (I/O LUN) registers

No SE (SST data) registers

No SW - (Directive status word) $DSW word

No E =~ (Effective Address Search) command
No F -~ (Fill Memory) command

No N - (Not word search) command

No V - (Restore SST vectors) command

No W - (Memory word search) command

In addition, the X (Exit) ODT command has been changed for XDT. The X
command causes a jump to the crash reporting routine.

Except for the omitted features and the change in the X command, XDT
is command-compatible with RSX-11] ODT; consequently, the RSX-11 ODT
Manual can be used as a guide to XDT operation.

XDT may be included in a system during Phase 1 of system generation.
The query:

DO YOU WANT TO INCLUDE THE EXECUTIVE DEBUGGING TOOL? [Y/N]:
is posed. 1If the answer is affirmative, then XDT 1is automatically
included in the generated system. When the resultant system is
bootstrapped, XDT gains control and types on the console terminal:
XDT: <system version>

followed by the prompting symbol

XDT>

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

You can set breakpoints at this time, and then give a G command,
passing control to the RSX-11M Executive initialization code.
Whenever control reaches a breakpoint, a printout similar to that of
RSX-11 ODT occurs.

A forced entry to XDT can be executed at any time from a privileged
terminal by means of the MCR Breakpoint (BRK) command. Thus, the
normal procedure is to type G when the system is bootstrapped without
setting any breakpoints. When it becomes necessary to use XDT, the
MCR Breakpoint command is executed, causing a forced breakpoint. XDT
then prints on the console terminal:

BE:XXXXXX
followed by the prompting symbol
XDT>

You <can then set breakpoints and/or issue other XDT commands.
Continue system operation by typing the P (Proceed) command to XDT.

Note that XDT runs entirely at priority level 7 and does not interfere
with user-level RSX-11] ODT. 1In other words, user-level RSX-11 ODT can
be in use with several tasks, while XDT is being used to debug
Executive modules.

All XDT command I/0 goes to and from the console terminal, and the L
(List Memory) command can 1list on either the console or the line
printer.

Using XDT to debug a loadable driver on a mapped system has special
pitfalls. One problem that can arise is a T-bit error:

TE:XXXXXX
XDT>

This error results when control reaches a breakpoint that you have
set, wusing XDT, in a loaded driver on a mapped system. The T-bit
error, rather than the expected BE: error, occurs unless register
APR5 is mapped to the driver at the time XDT sets the breakpoint.

To avoid this T-bit error, assemble the driver with an embedded BPT
instruction or use either the ZAP utility or the MCR OPEN function to
set the breakpoint by replacing a word of code with the BPT
instruction. When control reaches a breakpoint set in this manner,
XDT prints:

BE:XXXXXX
XDT>

Recover as follows: using XDT, replace the BPT instruction with the
desired instruction. Decrement the PC by subtracting 2 from the
contents of register R7. Then proceed by using the P or S commands.

NOTE

You should not set breakpoints in more
than one module that maps into the
Executive through APR 5 or APR 6. In
particular, do not set breakpoints in
more than one loadable driver at a time
or XDT will overwrite words of main
memory when it attempts to restore the
contents of breakpoints.

3-15

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.4.1.3 Panic Dump - The Panic Dump routine (PANIC) saves registers
RO through R6 and then halts, awaiting dump limits to be entered.

The procedure for entering dump limits depends on whether or not your
processor has a console switch register. The subsections that follow
describe the procedure in each instance.

3.4.1.3.1 Using PANIC on Processors with Console Switch
Registers - For ©processors with console switch registers, you can
obtain dumps of selected blocks of memory by using the following
procedure:

1. Enter the low dump limit in the console switch register and
press CONT. The processor will immediately halt again.

2. Enter the high dump limit in the console switch register and
press CONT. The dump will begin on the device whose CSR
address 1is D$$BUG (usually 177514, which 1is the line
printer). The actual value of D$$BUG is determined during
system generation when answering the panic dump question. At
the end of the dump, the processor will again halt, awaiting
the input of another set of dump limits.

If your system does not have the Executive routine stack and
register dump, enter the dump limits 0-520(8) when the Panic
Dump routine first halts. This causes dump of the system
stack and the general registers. The limit 520(8) changes if
the highest interrupt vector is above 400(8). The actual
upper limit is always the value of the global symbol $STACK
and can be obtained from the global symbol 1listing 1in the
Executive memory allocation map.

3.4.1.3.2 Using PANIC on Processors Without Console Switch
Registers - A number of PDP-11 processors are being delivered without
a console switch register; they are configured with the M9301 Console
Emulator and Bootstrap. This presents no problem for the normal
operation of RSX-11M, because it does not require a switch register.
However, the panic dump routine usually reads its arguments from the
switch register. 1In systems that have been generated for processors
that have no switch register, the panic dump module has been altered
to read its arguments from location 0. The following instructions are
designed to allow you to enter the proper information to the panic
dump routine on processors equipped with the M9301 Console Emulator.

1. When PANIC halts, the RUN light will go out. At this time
press and release the BOOT switch.

The Console Emulator should display:

XXXXXX XXXXXX XXXXXX nnnnnn
$

Where nnnnnn is the address+2 of the HALT instruction.
2. You should enter the following:
SL 0<CR>
$D low-address<CR>

$L nnnnnn<CR>
$§S <KCR>

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3. The processor should again halt. Press and release the BOOT
switch.

The Console Emulator should display:

XXXXXX XXXXXX XXXXXX mmmmmm
$

4. You should then enter:

SL 0<KCR>

$D high-address<CR>
$L mmmmmm<CR>

$S <CR>

At this time the dump should commence. When it is finished, the
processor will halt and wait for additional input.

3.4.1.3.3 Sample Output from Panic Dump - A portion of the output
from Panic Dump 1is shown below. Output is in 3-line groupings. In
the left-hand column, two addresses are shown. The first address is
the absolute address; the second address 1is the dump relative
address. The first line in a 3-line group gives the octal word value;
the second line gives the two octal byte values of the word; the
third line contains the ASCII representation of the bytes. The ASCII
representations in each word are reversed to improve readability. The
first output grouping from Panic Dump shows, proceeding from right to
left, PS, RO, R1, R2, R3, R4, R5, and the SP.

000544 000000 046076 000066 000000 000000 000000 000000 045316
000000 000 000 114 076 000 066 000 000 000 000 000 000 000 000 112 316
e e > L 6 "@ "e "e "e "e "e "e "e "¢ N J

000000 022646 000340 045770 000340 045770 000340 045770 000340
000000 045 246 000 340 113 370 000 340 113 370 000 340 113 370 000 340
& % ~e K ~@ K ~@ K "@

000020 045776 000340 011124 000340 045770 000340 050500 000340
000020 113 376 000 340 022 124 000 340 113 370 000 340 121 100 000 340
K "e T "R "@ K G @ Q "e

000040 000167 000543 000001 000001 000000 000000 000000 000353
000040 000 167 001 143 000 001 000 001 000 000 00O 000 000 000 000 353
“@ A A "@ A "@ "@ @ "e "e e e ~@

000060 035444 000340 034034 000340 032776 000340 032402 000340
000060 073 044 000 340 070 034 000 340 065 376 000 340 065 002 000 340
$; e "\ 8 "e 5 “e B 5 "e

3.4.1.4 Crash Dump Analysis Support Routine - The crash dump analysis
(CDA) support routine, when entered, prints the following message on a
notification device specified at SYSGEN:

CRASH - CONT WITH SCRATCH MEDIA ON device mnemonic

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

You can then put the secondary crash dump device on-line and depress
the CONT switch on the operator's console. The Executive Crash Dump
routine will dump memory to the crash dump device and halt the
processor upon completion.

The procedure for subsequently invoking the Crash Dump Analyzer, which
reads and formats the memory dump, is fully documented in the RSX-11M
Crash Dump Analyzer Reference Manual.

3.4.2 Fault Isolation
Four causes can be identified when the system faults:

1. A user-state task has faulted in such a way that it causes
the system to fault.

2. The user-written driver has faulted in such a way that it
causes the system to fault.

3. The RSX-11M system software itself has faulted.
4. The host hardware has faulted.

When the system faults, you must immediately determine which of these
four causes 1is responsible. In this section we present some
procedures that can help you isolate the source of the fault.
Correcting the fault itself is your responsibility.

3.4.2.1 1Immediate Servicing - Faults manifest themselves in roughly
four ways (they are listed here in order of increasing difficulty of
isolation):

1. If XDT is included, an unintended trap to XDT occurs.

2. The system displays text indicating a crash has occurred and
halts.

3. The system halts but displays nothing.
4. The system is in an unintended loop.

The following discussions assume the existence of a system built with
at least one of the debugging aids described in Section 3.4.1. (Note
that the minimal system does not have space for these routines.)

The immediate aim, regardless of the fault manifestation, is to get to
the point where you can obtain pertinent fault isolation data.

Case 1--The system has trapped to XDT:

The trap may or may not be intended (for example, a previously set
breakpoint) . If it is not intended, type the X command, causing XDT
to exit to location 40(8), from which the Executive stack and register
dump routine (if present) followed by either Panic Dump or the CDA
support routine (if present) will be invoked. 1If, however, you have
some idea of the source of the problem (for example, a recent coding
change), then you may use XDT to examine pertinent data structures and
code.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Case 2--The system has displayed text indicating a crash has occurred:

If the text consists of output from the Executive stack and register
dump routine (refer to Section 3.4.1.1), all the basic information
describing the state of the system has been displayed. If the text
has been produced by the CDA support routine, follow the procedure for
obtaining and formatting a memory dump as outlined in the RSX-11 Crash
Dump Analyzer Reference Manual.

Cagse 3--The system has halted but displays no information:

Before taking any action, preserve the current PS and PC and the
pertinent device registers (that 1is, examine and record the
information these registers contain). The procedure depends on the
particular PDP-11 processor. Consult the appropriate PDP-11 Processor
Handbook for details.

After preserving the PS and PC, invoke your resident debugging aid:
enter 40(8) in the switch register, press LOAD ADDR, and then press
START. The contents of 40(8) cause the successive invocation of:

1. The Executive stack and register dump routine (if present).
2. Either Panic Dump or CDA support routine (if present).

Case 4--The system is in an unintended loop:

Proceed as follows:
1. Halt the processor.

2. Record the PC, the PS, and any pertinent device registers, as
in Case 3 above.

You may then want to step through a number of instructions in an
attempt to locate the 1loop. For this attempt to be meaningful you
must first disable the system clock. Proceed as follows: Examine the
contents of word 777546 (if your system has a line-frequency clock) or
word 772540 (if a programmable clock). Clear bit 6 in this word and
redeposit the word. Note: the system will not run until you have
reenabled the clock.

After trying to locate the loop and reenabling the clock, transfer to
location 40(8) as in Case 3.

This brings us to an equivalent status for the four fault situations.

3.4.2.2 Pertinent Fault Isolation Data - Before you attempt to locate
the fault, we strongly advise you to dump system common (SYSCM).
SYSCM contains a number of critical pointers and listheads. Find the
appropriate 1limits for the module SYSCM by examining the Executive
memory allocation map. Enter these limits to the Panic Dump routine
or specify them in the command line used to invoke the Crash Dump
Analyzer.

In addition, we advise you to dump the dynamic storage region and the
device tables. The dynamic storage region is the module INITL and any
additional space gained from the SET /POOL command and the device
tables are in SYSTB.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

At this point, you have the following data:
PS
PC
The Stack
RO through R6
Pertinent device registers
The dynamic storage region
The device tables
System common

These data represent a minimal requirement for effectively tracing the
fault.

3.4.3 Fault Tracing

Three pointers in SYSCM are critical in fault tracing. These pointers
are described below:

$STKDP - Stack Depth Indicator

This data item indicates which stack was being used at the time
of the crash. S$STKDP plays an important role in determining the
origin of a fault. The following values apply:

+1--User (task-state) stack
0 or less--System stack

If the stack depth is +1, then the user has crashed the system.
In a system with brickwall protection (for example, the mapped
RSX-11M system), the nonprivileged user should not be able to
crash the system.

STKTCB - Pointer to the Current Task Control Block (TCB)
This is the TCB of the user-level task in control of the CPU.
SHEADR =~ Pointer to the Current Task Header.

The $HEADR word points to the header of the task currently
running. The task header provides additional data to help
isolate a fault. Figures 3-1 and 3-2 show the layout of task
headers for unmapped and mapped systems, respectively.

The first word in the header is the user's stack pointer (SP) the
last time it was saved. If the user branches wildly into the
Executive, the Executive terminates the user task, but the system
continues to function (possibly erroneously). Knowing the user's
stack pointer provides one more link in the chain that may lead
to the resolution of the fault.

The header (as pointed to by S$HEADR) also contains the last-saved
register set, just before the header guard word (the last word in
the header--pointed to by H.GARD).

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

0 -
RO
R1
R2
R3
H.NLUN N
H.GARD
. PS
. PC
H.HDLN Length in bytes R5
SP - R4

Figure 3-1 Task Header on an Unmapped System

R5E

PC

PS

H.NLUN N

H.GARD

H.HDLN Length in bytes

SP

Figure 3-2 Task Header on a Mapped System

3-21

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

3.4.3.1 Tracing Faults Using the Executive Stack and Register
Dump - To trace a fault after a display of the Executive stack and
register contents, first examine the system stack pointer. Usually an
Executive failure 1is the result of an SST-type trap within the
Executive. If an SST does occur within the Executive, then the origin
of the call on the crash-reporting routine is in the SST service
module. (The crash call is initiated by issuing an IOT at a stack
depth of zero or less.)

A call to crash also occurs in the Directive Dispatcher when an EMT is
issued at a stack depth of zero or less, or a trap instruction is
executed at a stack depth of less than zero. The stack structure in
the case of an internal SST fault is shown in Figure 3-3.

PS

PC

R5

R4

R3

R2

R1

RO

Return to system exit

Zero or more SST parameters

SST fault code

Number of bytes - SP

Figure 3-3 Stack Structure: Internal SST Fault

The fault codes are:

0 ;ODD ADDRESS AND TRAPS TO 4

2 i MEMORY PROTECT VIOLATION

4 s BREAK POINT OR TRACE TRAP

6 ; IOT INSTRUCTION

10 ; ILLEGAL OR RESERVED INSTRUCTION
12 ;NON RSX EMT INSTRUCTION

14 ;TRAP INSTRUCTION

16 ;11/40 FLOATING POINT EXCEPTION
20 ;5ST ABORT-BAD STACK

22 ;AST ABORT-BAD STACK

24 ;ABORT VIA DIRECTIVE

26 ;s TASK LOAD READ FAILURE

30 ; TASK CHECKPOINT READ FAILURE
32 ;TASK EXIT WITH OUTSTANDING I/O
34 ; TASK MEMORY PARITY ERROR

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

The PC points to the instruction following the one that caused the SST
failure. The number of bytes is the number normally transferred to
the user stack when the particular type of SST occurs. If the number
is 4, then a non-normal SST fault occurred, and only the PS and PC are
transferred. There are no SST parameters.

If the failure is detected in $DRDSP, the stack is the same as shown
in Figure 3-3, except that the number of bytes, the SST fault code
(the fault codes are listed above), and the SST parameters are not
present. The <crash report message, however, will indicate that the
failure occurred in $DRDSP.

One SST-type failure, stack underflow, does not result in the stack
structure of Figure 3-3. To determine where the crash occurred, first
establish the stack structure; this can be deduced by the value of
the 8P and the contents of the top word on the stack. If the stack
structure is that of Figure 3-3, then the failure occurred in $DRDSP,
or was a normal SST crash. If the stack structure is that of Figure
3-4, then an abnormal SST crash has occurred.

PS

PC

Figure 3-4 Stack Structure: Abnormal SST Fault

Abnormal SST failures occur when it 1is not possible to push
information on the stack without forcing another SST fault. When this
situation occurs, a direct jump to the crash-reporting routine is made
rather than an IOT crash. The PS and PC on the stack are those of the
actual crash, and the address printed out by the crash-reporting
routine is the address of the fault rather than the address of the IOT
that crashes the system. Note that the crash-reporting routine
removes the PC and PS of the IOT instruction from the stack, which in
this case is incorrect. Thus, the SP appears to be 4 bytes greater
than it really is (as in Figure 3-4).

You now have all the information needed to isolate the cause of the
failure. From this point on, rely on personal experience and a
knowledge of the interaction between the driver and the services
provided by the Executive.

3.4.3.2 Tracing Faults When the Processor Halts Without Display - To
trace a fault when the processor halts but displays no information
(case 3 1in Section 3.4.2.1 above), first examine $STKDP, S$TKTCB, and
SHEADR. The difficulty in tracing failures in this case is that the
system stack is not directly associated with the cause of a failure.

By examining $STKDP, you can determine the system state at the time of
failure. If it was in user state, the next step is to examine the
user's stack. The examination focuses on scanning the stack for
addresses that may be subroutine links that can ultimately lead to a
thread of events isolating the fault. This is essentially the aim of
looking at the system stack if $STKDP is zero or less.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

Frequently, a fault can occur that causes the SP to point to Top of
Stack (TOS) +4. This fault results from issuing an RTI when the top
two items on the stack are data. The result is a wild branch and
then, most probably, a halt. Figure 3-5 shows a case in which two
data items are on the stack when the program executes an RTI. TOS
points to a word containing 40100. Suppose that location 40100
contains a halt. This indicates that the original SP was four bytes
below the final SP, and fault tracing should begin from the original
SP.

40100 - SP

Figure 3-5 Stack Structure: Data Items on Stack

This type of fault also occurs when an RTS instruction 1is executed
with an inconsistent stack. However, in that case, SP points to
TOS+2.

A scan of the contents of the general registers may give some hint as
to the neighborhood in which a fault (or the sequence of events
leading up to the fault) occurred.

If the fault occurred in a new driver, a frequent source of clues 1is
the buffer address and count words in the UCB (U.BUF, U.BUF+2, U.CNT),
as are the activity flags (US.BSY and S5.STS). Other locations in both
the UCB and SCB may also provide information that may help locate the
source of the fault.

3.4.3.3 Tracing Faults After an Unintended Loop - To trace a fault
when an unintended loop has occurred, first halt the processor.

After you halt the processor, the same state exists as was discussed
in Section 3.4.3.2. Follow the same tracing procedure described
there. A specific suggestion is to check for a stack overflow loop.
Patterns of data successively duplicated on the stack indicate a stack
looping failure.

3.4.3.4 Additional Hints for Tracing Faults - Another item to check
is the current (or last) I/O Packet, the address of which is found in
S.PKT of the SCB. The packet function (I.FCN) defines the last
activity performed on the unit.

If trouble occurred in terminating an I/0 request, a scan of the
system dynamic memory region may provide some insight. This region
starts at the address contained in $CRAVL, a cell in SYSCM. Because
all 1I/0 packets are built in system dynamic memory, their memory is
returned to the dynamic memory region when they are successfully
terminated. Following the 1link pointers in this region may reveal
whether I/0 completion proceeded to that point. 1In systems with QIO
optimization, $PKAVL (SYSCM) points to a list of I/O packet-sized
blocks of dynamic memory that are not linked into the $CRAVL chain.

INCORPORATING USER-WRITTEN DRIVERSS INTO RSX-11M

A frequent error for an interrupt-driven device is to terminate an I/O
Packet twice when the device 1is not properly disabled on 1I/0
completion and an unexpected interrupt occurs. This action ultimately
produces a double deallocation of the same packet of dynamic memory.
Double deallocation of a dynamic buffer in RSX-11M causes a loop 1in
the module S$DEACB on the next deallocation (of a block of higher
address) after the second deallocation of the same block. At that
time, R2 and R3 both contain the address of the I/O Packet memory that
has been doubly deallocated. If XDT has been included in the system,
the deallocation routine checks for bad deallocation and crashes the
system if it occurs.

3.4.4 Rebuilding and Reincorporating a Driver

The procedure for rebuilding and reincorporating a driver into your
system depends on whether the driver is resident or loadable. The two
subsections that follow describe the procedure for each kind of
driver.

3.4.4.1 Rebuilding and Reincorporating a Resident Driver - The
procedure for rebuilding and reincorporating a resident driver
involves five steps:

1. Correct and assemble the driver and/or device data
structures.

Assuming that the object system has been bootstrapped,
appropriate volumes have been MOUnted, and the source code
for the user driver and/or device data base has been updated,
then the following commands effect the reassembly of both the
driver and the data base:

>SET /UIC=[200,200]

>RUN SMAC ! OR RUN $BIGMAC
MAC>XXDRV=[1,1] EXEMC/ML, [200,200] RSXMC/PA:1,XXDRV
MAC>USRTB=[1,1]EXEMC/ML, [200,200] RSXMC/PA:1,USRTB
MAC> " Z

2. Update the Executive object module library.

After reassembling the user driver and/or data base, you must
update the Executive object module library. The following
commands will accomplish this:

>SET /UIC=[1,2x]

>RUN_SLBR
LBR>RSX11M/RP=[200,200] XXDRV, USRTB
LBR>"Z

3. Rebuild the Executive.

Because an updated driver 1is to be reinserted into the
system, the Executive, of which the driver is a part, must be
relinked. The following commands are an example of this
relinking:

4.

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

>SET /UIC=[1,2x]

>RUN_STKB 1 OR RUN $BIGTKB
TKB>@RSXBLD

TKB>" 2

>SET /UIC=[1,5x]

>RUN_SPIP
PIP>RSX11M.SYS/NV=RSX11M.TSK
PIP>"2

Incorporate tasks into the system using Virtual MCR.

Run Virtual MCR (VMR) to incorporate tasks into the system.
This step in the procedure requires that you:

e Establish system partitions

® Release all wunused space to the dynamic storage
region

e Install tasks (at least FCP, INS, MOU, and MCR)
e Exit from Virtual MCR
The following is an example of this step:

>RUN $VMR/UIC=[1,5x] { RUN VIRTUAL MCR

ENTER FILENAME:RSX11M.SYS ! VMR PROMPTS FOR FILE NAME
VMR>SET /MAIN=SYSPAR:1300:100:TASK ! SET UP SYSTEM PARTITION
VMR>SET /MAIN=PAR14K:400:700:TASK SET UP 14K PARTITION
VMR>SET /SUB=PAR14K:GEN:400:400 ! SET UP 8K SUB PARTITION
VMR>SET /POOL=400 " ADD FREE SPACE TO POOL

VMR>INS BOO INSTALL BOOT

VMR>INS DMO INSTALL DISMOUNT

VMR>INS FCPNMH INSTALL FILE SYSTEM

VMR>INS IND INSTALL INDIRECT FILE PROCESSOR
VMR>INS INI INSTALL INITVOLUME

VMR>INS INS INSTALL INSTALL

VMR>INS MCR INSTALL MCR

VMR>INS MOU INSTALL MOUNT

VMR>INS SAV INSTALL SAVE

VMR>INS TKN INSTALL TASK TERMINATION TASK
VMR>INS UFD INSTALL USER FILE DIRECTORY BUILDER
VMR>"Z EXIT FROM VIRTUAL MCR

The eleven INStall commands above can be placed in an
indirect VMR file by Phase 2 of SYSGEN. Instead of entering
each command, you could then enter, for example, the
following:

@[200,200] INSTALL

Bootstrap the new system.
The new system can now be bootstrapped with the MCR BOOt
command. If you are using the baseline system, first issue
the following command:

>INS BOO;-1

Then issue the following command:

>BOO [1,5x]RSX11M

INCORPORATING USER-WRITTEN DRIVERS INTO RSX-11M

NOTE

If the newly created Executive is larger
or smaller than the old one, the system
may not run properly after exiting VMR.
In this case the procedure outlined
above amounts to supporting two systems
on the same volume. See the RSX-11M
System Generation Manual for the
procedure to follow to support multiple
systems on one volume.

3.4.4.2 Rebuilding and Reincorporating a Loadable Driver - A loadable
driver 1is easier to reincorporate during debugging than a resident
driver. After correcting and assembling the driver source, simply
unload the old version, using the MCR command UNL, task-build the new
one, and load it using the LOA command.

The data structure, once loaded, becomes a permanent part of the
Executive. It is not removed by the UNL command. If the data
structure is in error and cannot be patched, correct its source,
reassemble, and task-build it. Then bootstrap the system before
loading the corrected driver.

CHAPTER 4

WRITING AN I/0O DRIVER--PROGRAMMING SPECIFICS

In Chapter 2, overviews were given for:

Data structures;

Executive services, and

Programming protocol.
This chapter gives details for the data structures, and in addition
discusses specifics of multicontroller drivers and the INTSVS macro.
Executive services are covered in Chapter 5. The protocol coverage in

the discussion of programming protocol in Chapter 2 is detailed enough
to make further elaboration unnecessary.

4.1 DATA STRUCTURES

The following elements in the I/O data structure are of concern to the
programmer writing a driver:

1. The I/O packet

2. The DCB

3. The UCB

4. The SCB

5. The device interrupt vector
The I/0 data structure, and the first four control blocks listed above
in particular, contain an abundance of data pertaining to input/output

operations. Drivers themselves are involved with only a subset of the
data.

In the detailed descriptions of the I/0 packet, the DCB, the UCB, and
the SCB that follow, most data fields (words or bytes) are classified
by one of five descriptions. Two items in each description indicate:

° Whether the field is initialized in the data-structure
source, and

° What sort of access the driver has to the field during
execution.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

The five descriptions are:

<initialized, not referenced>
Field is supplied in the data-structure source code, and 1is
not referenced by the driver during execution.

<initialized, read-only>
Field is supplied in the data-structure source code, and may
be read by the driver.

<not initialized, read-only>
Either an agent other than the driver establishes this field,
or the driver sets it up once, and thereafter references it
read-only.

<not initialized, read-write>
Either the driver or some other agent establishes this field,
and the driver may read it or write over it.

<not initialized, not referenced>
Field does not involve the driver in any way.

These five descriptions cover most of the fields in the four control
blocks described in this section. Exceptions are noted in the text.

The final discussion in this section deals with the device interrupt
vector.

4.1.1 The I/0 Packet

Figure 4-1 shows the layout of the 18-word 1I/O0O Packet, which 1is
constructed and placed in the driver I/0 gueue by QIO directive
processing, and is subsequently delivered to the driver by a call to
SGTPKT. The DPB from which the I/0 Packet is generated is illustrated
in Figure 4-2 (see Section 4.1.1.2).

4.1.1.1 1I/0 Packet Details - The I/0 Packet is built dynamically by
QIO directive processing. Thus, no static fields exist with respect
to a driver. I/0 Packets are created dynamically, and therefore the
first parameter (I.LNK) does not apply. Fields in the I/0O Packet
(described below) are classified as:

Not referenced,
read-only, or
read-write.
I.LNK
Driver access:
Not referenced.

Description:

Links I/0 Packets queued for a driver. A zero ends the
chain. The listhead is in the SCB (S.LHD).

WRITING AN I/O DRIVER~--PROGRAMMING SPECIFICS

I.EFN
Driver access:
Not referenced.
Description:

Contains the event flag number as copied by QIO directive
processing from the reguester's DPB.

ILLNK Link to next 1/O packet 0

PRI } EFN PRI 2
ILEFN

1.TCB TCB address of requester 4

LLN2 Address of second LUT word 6

1.UCB Address of redirect UCB 10

I.FCN Function code Modifier 12

1.10SB Virtual address of 1/O status block 14

Relocation bias of 10SB 16

Real address of 10SB 20

LLAST Virtual address of AST service routine 22

I.PRM 24

Device
[parameters —

Figure 4-1 1/0 Packet Format

I.PRI
Driver access:
Not referenced.
Description:

Priority copied from the TCB of the requesting task.

I.TCB

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Driver access:

I.LN2

I.UCB

I.FCN

I.IOSB

Not referenced.

Description:

TCB address of the requesting task.

Driver access:

Not referenced.

Description:

Contains the address of the second word of the LUT entry in
the task header to which the I/0 request is directed. For
open files on file-structured devices, this word contains the
address of the Window Block; otherwise, it is zero.

Driver access:

Not referenced.

Description:

Contains the address of the unit to which I/0 1is to be
directed. I.UCB 1is the address of the Redirect UCB if the
starting UCB has been subject to an MCR Redirect command.

Driver access:

Read-only.

Description:

Contains the function code (see Table 4-1, Section 4.1.2.2)
for the 1I/0 request. The modifier byte 1is one or more
subfunction bits that may be set.

Driver access:

Not referenced.

Description:

I.IOSB contains the virtual address of the I/0 Status Block
(I0SB), if one is specified, or zero if one is not specified.

I.IOSB+2 and I.I0SB+4 contain the address doubleword for the
IOSB (see Appendix A for a detailed description of the
address doubleword). On an unmapped system, the first word
is zero; the second word is the real address of the IOSB.

I.AST

I.PRM

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

In a mapped system, the first word contains the relocation
bias of the I0SB; the bias is, in effect, the number of the
32-word block in which the IOSB starts. This block number is
derived by viewing available real memory as a collection of
32~word blocks numbered consecutively, starting with 0.
Thus, 1if the IOSB starts at physical location 3210(8), its
block number is 32(8).

The second word is formatted as follows:

Bits 0-5 Displacement in block (DIB)
Bits 6-12 All zeros
Bits 13-15 6

The displacement in block is the offset from the block base.
In the above example, in which the IOSB starts at 3210(8),
the DIB is equal to 10(8).

The value 6 in bits 13-15 is constant. It is used to cause
an address reference through Kernel Address Page Register 6
(APR6) . Again, see Appendix A for details.

We defer discussion of the address doubleword to an appendix
because you seldom have to be concerned with its contents or
format in writing a conventional driver. Its construction
and subsequent manipulation are normally external to the
driver. Subroutines are provided as Executive services for
programmed I/O to render the manipulations of I/0 transfers
transparent to the driver itself.

Driver access:

Not referenced.

Description:

Contains the virtual address of the AST service routine to be
executed at I/O completion. If no address is specified, the
field contains zero.

Driver access:

Not initialized, read-only.

Description:

Device-dependent parameters constructed from the last 6 words
of the DPB. Note that if the I/O function is a transfer
(refer to the description of D.MSK in Section 4.1.2.1), the
buffer address (first DPB device-dependent parameter) is
translated to an equivalent address doubleword. Therefore,
device-dependent parameter n is copied to I.PRM +(2%*n)+2.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS
4.1.1.2 The QIO Directive Parameter Block (DPB) - The QIO DPB is
constructed as shown in Figure 4-2. 4!§N
The parameters in the DPB have the fcllowing meanings.
Length (required):

The length of the DPB, which for the RSX-11M QIO directive is
always fixed at 12 words.

DIC (required):

Directive Identification Code. For the QIO directive, this value
is 1. For QIOW it is 3. "

Function Code (required):

The code of the requested I/0 function (0 through 31.).

-_
Length DIC 0
Function code Modifier 2
Reserved LUN 4
Priority EFN 6
1/0 status block address 10 -,
AST address 12 .
14
_—' T
[Device- T
. dependent 1
parameters
Figure 4-2 QIO Directive Parameter Block (DPB)
Modifier:
Device-dependent modifier bits.
Reserved: .
Reserved byte; must not be used.
LUN (required):
Logical Unit Number.

WRITING AN I/0O DRIVER--PROGRAMMING SPECIFICS

Priority:

| - Request priority. Ignored by RSX-11M, but space must be
allocated for RSX-11D compatibility.

EFN (optional):
Event flag number. Zero indicates no event flag.
I/0 Status Block Address (optional):

This word contains a pointer to the I/O status block, which is a
2-word, device-dependent I/0O-completion data packet formatted as:

Byte 0
I/0 status byte.

Byte 1
Augmented data supplied by the driver.

-’ Bytes 2 and 3

The contents of these bytes depend on the value of byte 0.
If byte 0 = 1, then these bytes wusually contain the
processed byte count. If byte 0 does not equal 0, then the
contents are device-dependent.

AST Address (optional):

Address of an AST service routine.

Device Dependent Parameters:
Up to six parameters specific to the device and I/O function to
be performed. Typically, for data transfer functions, the
following four are used:
Buffer address
Byte count
, p Carriage control type
A4 9 YP
Logical block number
The fields for any optional parameters not specified must be filled
with zeros.
4.1.2 The Device Control Block (DCB)
Figure 4-3 is a schematic layout of the DCB. The DCB describes the
* static characteristics of a device controller and the units attached
to the controller. All fields must be specified except D.PCB, which
is required only if the loadable~driver option has been selected.
" g

4-7

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

4.1.2.1 DCB Details - The fields in the DCB are described below:
D.LNK (link to next DCB)* ﬁ;
Driver access:

Initialized, not referenced.

Description: R

Address link to the next DCB. A zero in this field indicates
the last (or only) DCB in the chain.

D.UCB (pointer to first UCB)
Driver access:

Initialized, not referenced.

s N
D.LNK Link to next DCB (0=last) 0
D.UCB Link to first UCB 2
D.NAM Generic device name 4
D.UNIT Highest unit no. Lowest unit no. 6
D.UCBL. Length of UCB 10 Ay,
D.DSP Address of driver dispatch table 12 ‘
D.MSK Legal function mask bits 0 - 15. 14
Control function mask bits O - 15. 16
No-op‘ed function mask bits O - 15. 20
ACP function mask bits 0 - 15, 22
Legal function mask bits 16. - 31, 24 Mﬁ
Control function mask bits 16. - 31. 26
No-op’ed function mask bits 16. - 31. 30
ACP function mask bits 16. - 31. 32
D.PCB | Address of partition control block : 34 v
M S 1
Figure 4-3 Device Control Block

* Parenthesized contents indicate value to be initialized in the data
base source code.

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

Description:

Address link to the U.DCB field of the first, and possibly
the only, UCB associated with the DCB. For a given DCB, all
UCBs are in contiguous memory locations and must all have the
same length.

D.NAM (ASCII device name)

Driver access:

Initialized, not referenced.
Description:

Generic device name in ASCII by which device units are
mnemonically referenced.

D.UNIT (unit number range)
Driver access:
Initialized, not referenced.

Description:

Unit number range for the device. This range covers those
logical wunits available to the user for device assignment.
Typically, the lowest number is zero, and the highest is n-1,
where n is the number of device-units described by the DCB.

D.UCBL (UCB length)
Driver access:
Initialized, not referenced.
Description:
The UCB can have any length to meet the needs of the driver
for variable storage. However, all UCB's for a given DCB
must have the same length. The specified length must include
prefix words (U.LUIC and U.OWN) if present.
D.DSP (dispatch table pointer)
Driver access:
Initialized, not referenced.
Description:

Address of the driver dispatch table.

When the Executive wishes to enter the driver at any of the
four entry points contained in the driver dispatch table, it

accesses D.DSP, locates the appropriate address in the table,
and calls the driver at that address. A zero table address

indicates that the (loadable) driver is not in memory. For a
loadable driver, then, this field must be initialized to
zero., If the driver does not process a given function, then
it simply supplies the address of a return.

4-9 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

You must provide a driver dispatch table in the driver
source. The 1label on this table is of the form $xxTBL; it
must be a global 1label. The designation xx is the
2-character generic device name for the device. Thus, S$STTTBL
is the global label on the driver dispatch table for the
generic device name TT. This table is an ordered, 4-word
table containing the following entry points:

I/0 Initiator

Cancel I/0

Device Timeout

Power failure

When a driver is entered at one of these entry points, entry
conditions are as follows:

At Initiator:

If UC.QUE=1

R5 = UCB address

R4 = SCB address

Rl = Address of the I/0 Packet
If UC.QUE=0

R5 = UCB address

Interrupts are allowed. (UC.QUE is a bit in U.CTL in the
UCB. See Section 4.1.4.1.)

At Cancel I/O:

R5 = UCB address

R4 = SCB address

R3 = Controller index

Rl = Address of TCB of current task
R0 = Address of active I/O packet

Device interrupts at or below the priority of the
reqguesting device are locked out.

At Device Timeout:

R5 = UCB address

R4 = SCB address

R3 = Controller index

R2 = Address of device CSR

RO = I/0 status code IE.DNR (Device Not Ready)

Device interrupts at or below the priority of the
requesting device are locked out.

At Power Failure:

R5 = UCB address
R4 = SCB address
R3 = Controller index

Interrupts are allowed. The power failure entry point of
a loadable driver is called by LOAd only for units that
are online and have UC.PWF set.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

D.MSK (function masks)
Driver access:
Initialized, not referenced.
Description:

There are 8 words, beginning at D.MSK, that are «critical to
the proper functioning of a device driver. The Executive
uses these words to validate and dispatch the I/0 redguest
specified by a QIO directive. The following description
applies only to non-file-structured devices.* Four masks,
with 2 words per mask, are described by the bit
configurations that you establish for these words:

1. Legal function mask
2. Control function mask

3. No-op'ed function mask
4, ACP function mask

The QIO directive allows for 32 possible I/O functions. The
masks, as stated, are filters to determine validity and 1I/0
requirements for the subject driver.

The Executive filters the function code in the 1I/0 request
through the four masks. The I/0 function code 1is the
high-order byte of the function parameter issued with the QIO
directive. The decimal representation of that high-order
byte is equivalent to the decimal bit number of the mask. If
you want the function to be true in one of the four masks,
you must set the bit in that mask in the position that
numerically corresponds to the function code. For example,
the code for IO.RVB 1is 21 (octal) and its decimal
representation is 17, If you want IO.RVB to be true for a
mask, you must set bit number 17 in the mask.

The masks are laid out in memory in two 4-word groups. Each
4-word group covers 16 . function codes. The first 4 words
cover the function codes 0-15; the second 4 words cover
codes 16-31. Below is the exact layout used for the driver
example in Section 6.2.2.

.WORD 140033 ; LEGAL FUNCTION MASK CODES 0-15.
.WORD 30 ; CONTROL FUNCTION MASK CODES 0-15.
.WORD 140000 :NO-OP'ED FUNCTION MASK CODES 0-15.
.WORD O ;ACP FUNCTION MASK CODES 0-15.

WORD 5 ; LEGAL FUNCTION MASK CODES 16.-31.
.WORD O ; CONTROL FUNCTION MASK CODES 16.-31.
.WORD 1 ;NO-OP'ED FUNCTION MASK CODES 16.-31.
.WORD 4 ;ACP FUNCTION MASK CODES 16.-31.

* Although no DIGITAL publication describes writing drivers for
file-structured devices (drivers that interface with F11ACP), many
users have successfully written a disk/drum driver by wusing a
DIGITAL-supplied driver as a template. For example, the RF1ll driver
(DFDRV) could be modified to be a drum driver.

4-11 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

The mask words filter sequentially as follows:
Legal Function Mask:

Legal function values have the corresponding bit position in
this word set to 1. Function codes that are not legal are
rejected by QIO directive processing, which returns IE.IFC in
the I/0 status block, provided an IOSB address was specified.

Control Function Mask:

If any device-dependent data exists in the DPB, and this data
does not reguire further checking by the QIO directive
processor, the function 1is considered to be a control
function. Such a function allows QIO directive processing to
copy the DPB device-dependent data directly into the 1I/O
Packet.

No-op'ed Function Mask:

A no-op function is any function that is considered
successful as soon as it is issued. If the function is a
no-op, QIO directive processing immediately marks the request
successful; no additional filtering occurs.

ACP Function Mask:

If a function code is legal, but specifies neither a control
function nor a no-op, then it specifies either an ACP
function or a transfer function. If a function code requires
intervention of an Ancillary Control Processor (ACP), the
corresponding bit in the ACP function mask must be set. ACP
function codes must have a value greater than 7.

In the specific case of read-write wvirtual functions, the
corresponding mask bits may be set at your option. If the
corresponding mask bits for a read-write virtual function are
set, QIO directive processing recognizes that a file-oriented
function is being requested to a non-file-structured device
and converts the regquest to a read-write logical function,

This conversion is particularly useful. Consider a
read-write virtual function to a specific device:

1. If the device is file-structured and a file 1is open
on the specified LUN, the block number specified is
converted from a virtual block number in the file to
a logical block number on the medium, and the reguest
is queued to the driver as a read-write logical
function.

2. If the device is file-structured and no file is open
on the specified LUN, then an error is returned and
no further action is taken.

3. If the device 1is not file-structured, then the
request is simply transformed to a read-write logical
function and is queued to the driver. (Specified
block number is unchanged.)

4-12 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Transfer Function Processing:

Finally, if the function is not an ACP function, then, by
default, it 1is a transfer function. All transfer functions
cause the QIO directive processor to check the specified
buffer for legality (that is, inclusion within the address
space of the reguesting task) and proper alignment (word or
byte). In addition, the processor checks the number of bytes
being transferred for proper modulus (that is, nonzero and a
proper multiple).

4-12.1 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Creating Mask Words:

Creating Ffunction mask words involves five steps:

1.

2.

D.PCB (Partition

Establish the I/0 functions available on the device
for which driver support is to be provided.

Build the Legal Function mask: Check the standard
RSX-11M function mask values in Table 4-1 for
equivalencies. Only the I0.KIL function is

mandatory. IO.ATT and IO.DET functions, if used,
must have the RSX-11M system interpretation. Digital
suggests that functions having an RSX-11M system
counterpart use the RSX-11M code, but this is
required only when the device 1is to be used in
conjunction with an ACP. From the supported function
list 1in Table 4-1, vyou <can build the two Legal
Function mask words.

Build the Control Function mask by asking:

Does this function carry a standard buffer address
and byte count in the first two device-dependent
parameter words?

If it does not, then either it qgualifies as a control
function, or the driver itself must effect the
checking and conversion of any addresses to the
format required by the driver. See Section 6.3 for
an example of a driver that does this. (Buffer
addresses in standard format are automatically
converted to Address Doubleword format.)

Control functions are essentially those functions
whose DPBs do not contain buffer addresses or counts.

Create the No-op Function mask by deciding which
legal functions are to be no-op'ed. Typically, for
compatibility with File Control Services (FCS) or
Record Management Services (RMS) on
non-file~structured devices, the file access/deaccess
functions are selected as 1legal functions, even
though no specific action is required to access or
deaccess a non-file-structured device; thus, the
access/deaccess functions are no-op'ed.

Finally, include the ACP functions Write Virtual
Block and Read Virtual Block for those drivers that
support both read and write. (Include only one
related ACP function if the driver supports only read
or write.) Other ACP functions that might be included
fall into the non-conventional driver classification
and are beyond the scope of this document.

Control Block)

Driver access:

Initialized, not referenced.

Description:

Address
word is

of the driver's Partition Control Block (PCB). This
present in the DCB if and only if the loadable-driver

4-13 May 1979

WRITING AR I/0 DRIVER--PROGRAMMING SPECIFICS

SYSGEN option has been selected. It must be initialized to
zero. The DCB can be extended by adding words after D.PCB.

A PCB exists for every partition in a system. MCR creates a
PCB when the SET /MAIN or SET /SUB commands are given. If a

driver is loadable, its PCB describes the partition in which
it resides.

The Executive uses D.PCB together with D.DSP (the address of
the driver dispatch table) to determine whether a driver is
loadable or resident, and, if loadable, whether or not it is
in memory. Zero and nonzero values for these two pointers
have the following meanings:

D.DSP:
D.PCB: =0 #0

Loadable

=0 driver, Resident
not in driver
memory
(not Loadable

40 possible) driver,

in memory

4.1.2.2 Establishing I/0 Function Masks - Table 4-1 1is supplied to
assist you in determining the proper values to set in the function
masks. The mask values are dgiven for each I/0 function used by
DIGITAL-supplied drivers. The bit number allows you to determine
which mask group to use: for bits numbered 0 through 15, use the mask
value for a word in the first 4-word group; for bits numbered 16
through 31, use the mask value for a word in the second 4-word group.

Table 4-1
Mask Values for Standard I/0O Functions
Bit Mask Related 1/0
Value Symbolic Function
0 1 IO.KIL Cancel 1/0
1 2 I0.WLB Write Logical Block
2 4 I0.RLB Read Logical Block
3 10 IO.ATT Attach Device
4 20 IO.DET Detach Device
5 40 General Device Control
6 100 General Device Control
7 200 General Device Control
8 400 Diagnostics
9 1000 IO0.FNA Find File in Directory
10 2000 I0.ULK Unlock Block
11 4000 I0.RNA Remove File from Directory
12 10000 IO0.ENA Enter File in Directory
13 20000 I0.ACR Access File for Read
14 40000 IO.ACW Access File for Read/Write
15 100000 I0.ACE Access File for Read/Write/Extend

(continued on next page)

4-14 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Table 4-1 (Cont.)
Mask Values for Standard I/O Functions

Bit Mask Related 1/0
Value Symbolic Function
16 1 I0O.DAC Deaccess File
17 2 IO.RVB Read Virtual Block
18 4 I0.WVB Write Virtual Block
19 10 I0.EXT Extend File
20 20 IO0.CRE Create File
21 40 I0.DEL Mark File for Delete
22 100 IO.RAT Read File Attributes
23 200 IO.WAT Write File Attributes
24 400 I0.APC ACP Control
25 1000 Unused
26 2000 Unused
27 4000 Unused
28 10000 Unused
29 20000 Unused
30 40000 Unused
31 100000 Unused

Of the function mask values 1listed in Table 4-1, only IO.KIL is
mandatory and has a fixed interpretation, However, if IO.ATT and
IO.DET are used, they must have the standard meaning. (Refer to the
RSX-11M/M=-PLUS I/O Drivers Reference Manual for a description of
standard I/0 functions.) If QIO directive processing encounters a
function code of 3 or 4 and the code is not no-op'ed, QIO assumes that
these codes represent Attach Device and Detach Device, respectively.
The other c¢odes are suggested but not mandatory. You are free to
establish all other function-code values on non-file-structured
devices. The mask words must reflect the proper filtering process.

If a driver is being written for a file-structured device, the
standard function mask values of Table 4-1 must be established.

4,1.3 The Status Control Block (SCB)

Figure 4-4 is a layout of the SCB. The SCB describes the status of a
control unit that can run in parallel with all other control units.

4-15 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

S.LHD
Device 1/0 queue 0
listhead 2
S.PRI . . -
SveT } Vector address+4 Device priority 4
S.CTM Timeout count: 6
S.AT™M Initial Current
S.CON
S.STS } Controller status Controller index 10
S.CSR Address of control status register 12
S.PKT Address of current I/C packet 14
S.FRK Fork link word 16
Fork PC 20
Fork R5 22
Fork R4 24
I
| Relocation base of driver’s partition I 26
e m e e e e — e ————————— J
[
S.MPR 1 30

|
I
j— == Storage required for -l
| NPR UNIBUS devices)
:— - with 22-bit addressing ==
I

Figure 4-4 Status Control Block

4.1.3.1 SCB Details - The fields in the SCB are described below:
S.LHD (first word equals zero; second word points to first)*
Driver access:
Initialized, not referenced.
Description:
Two words forming the I/0O queue 1listhead. The first word
points to the first I/O Packet in the queue, and the second
word points to the last I/0 Packet in the queue. If the

qgueue 1is empty, the first word is zero, and the second word
points to the first word.

* Parenthesized contents indicate values to be initialized in the
data base source code.

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

S.PRI (device priority)
Driver access:
Initialized, read-only.
Description:

Contains the priority at which the device interrupts. Use
symbolic values (for example, PR4) to initialize this field
in your data base source. These symbolic values are defined
by issuing the HWDDF$ macro (refer to the sample data base in
Section 6.2.1 and the listing of the HWDDF$ macro in Appendix
C).

S.VCT (interrupt vector divided by four)
Driver access:
Initialized, not referenced.
Description:

Interrupt vector address divided by four. For loadable
drivers, the MCR/VMR LOA[D] function uses this field and the
existence of driver symbol(s) $xxINT, S$xxINP, and $xxOUT to
initialize the device interrupt vector.

S.CTM (initialize to zero)
Driver access:
Not initialized, read-write.
Description:

RSX~-11M supports device timeout, which enables a driver to
limit the time that elapses between the issuing of an I/0O
operation and its termination. The current timeout count (in
seconds) 1is initialized by moving S.ITM (initial timeout
count) into S.CTM. The Executive clock service (in module
TDSCH) examines active times, decrements them, and, if they
reach 0, calls the driver at its device timeout entry point.

The internal clock count is kept in 1l-second increments.
Thus, a time count of 1 is not precise because the internal
clocking mechanism is operating asynchronously with driver
execution. The minimum meaningful clock interval is 2 if you
intend to treat timeout as a consistently detectable error

condition. Note, if the count is 0, that no timeout occurs;
a zero value is, in fact, an indication that timeout 1is not
operative. The maximum count is 255. You are responsible

for setting this field. Resetting occurs at actual timeout
or within S$FORK.

S.ITM (set to initial timeout count)
Driver access:
Initialized, read-only.
Description:

Contains the initial timeout wvalue.

4-17

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

S.CON (controller number times 2)
Driver access:
Initialized, read-only.
Description:

Controller number multiplied by 2. This field is used by
drivers that are written to support more than one controller.
A driver may use S.CON to index into a controller table
created and maintained internally by the driver itself. By
indexing the controller table, the driver can service the
correct controller when a device interrupts. See Section 4.2
for an example.

S.STS (initialize to zero)
Driver access:
Initialized, not referenced.
Description:

Establishes the controller as busy/not busy (nonzero/zero).
This byte is the interlock mechanism for marking a driver as
busy for a specific controller. The byte is tested and set
by SGTPKT and reset by $IODON.

S.CSR (Control Status Register address)
Driver access:
Initialized, read-only.
Description:

Contains the address of the Control Status Register (CSR) for
the device controller. The driver uses S.CSR to initiate I/O
operations and to access, by indexing, other registers
related to the device that are located in the I/0 page. This
address need not be a CSR; it need only be a member of the
device's register set. It is accessed at system bootstrap
time to determine if the interface exists on the system
hosting the Executive. The Executive uses S.CSR to set the
offline bit at bootstrap so that system software can be
interchanged between systems without an intervening system
generation. The MCR LOAD function also references S.CSR when
it processes a 1loadable data Dbase. Otherwise, only the
driver itself accesses S.CSR,

S.PKT (reserve 1 word of storage)
Driver access:
Not initialized, read-only.
Description:
Address of the current I/O Packet established by $GTPKT. The
Executive wuses this field to retrieve the I/O Packet address

upon the completion of an I/0 request. S.PKT is not zeroed
after the packet is completed.

WRITING AN I/0O DRIVER--PROGRAMMING SPECIFICS

S.FRK (reserve 4 or 5 words of storage)

Driver access:
Not initialized, not referenced.

Description:
The 4 words starting at S.FRK are used for fork-block storage
if and when the driver deems it necessary to establish itself
as a Fork process. Fork-block storage preserves the state of
the driver, which is restored when the driver regains control
at fork level. This area is automatically used if the driver
calls SFORK.

The fork block is 5 words long instead of 4 if two conditions
are met:

1. Loadable drivers have been selected as a SYSGEN
option; and

2. The system is mapped.
If these conditions are met, and the fork block 1is 5 words
long, you must not use the fork block for any other purpose.
In other words, you may not share the space reserved for the
fork block; if you attempt to do so, you will destroy the
loadable driver's relocation base. In addition, the 5-word
fork block should always be part of the SCB if the two above
conditions are met.
S.MPR (reserve 6 words of storage)

Driver access:
Initialized, read-only.

Description:
Drivers use the 6 words starting at S.MPR for non-processor
request (NPR) devices attached to a PDP-11/70 with 22-bit

addressing. See Appendix B for details on initializing
S.MPR.

4.1.4 The Unit Control Block (UCB)
Figure 4-5 is a layout of the UCB (a variable-length control block).
One UCB exists for each physical device-unit generated into a system

configuration. For user-added drivers, this control block is defined
as part of the source code for the driver data structure.

4,1.4.1 UCB Details - The fields in the UCB are described below:
U.LUIC
Driver access:

Not initialized, not referenced.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Description:

For terminal UCB's only, and only in multiuser systems: the

logon UIC of the user at the particular terminal.

5 1
u.LuIC | Log-on UIC 1
it 4
U.OWN : Owning terminal UCB address
u.DCB Back pointer to DCB
U.RED Redirect UCB pointer
35;; } Unit status Control flags
3;;.\21- } Unit status Physical unit no.
U.CW1 Characteristics word 1
u.cw2 Characteristics word 2
U.Cw3 Characteristics word 3
u.Cw4 Characteristics word 4
u.scs Pointer to SCB
U.ATT TCB address of attached task
U.BUF Buffer relocation bias
U.BUF+2 Buffer address
U.CNT Byte count
o Device- 1
dependent
[storage]
Figure 4-5 Unit Control Block

U.OWN (initialize to
Driver access:
Initialized,

Description:

zZero)

not referenced.

10

12

14

16

20

22

24

26

30

32

Only in multiuser systems: the UCB address
terminal for allocated devices.

of

the

owning

May 1979

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

U.DCB (pointer to associated DCB)
Driver access:
Initialized, not referenced.

Description:

Backpointer to the corresponding DCB. Because the UCB is a
key control block in the I/0 data structure, access to other
control blocks usually occurs by means of links implanted 1in
the UCB.

U.RED (redirect pointer—-initialized to point to U.DCB of the UCB)
Driver access:
Initialized, not referenced.
Description:

Contains a pointer to the UCB to which this device-unit has
been redirected. This field is updated as the result of an

MCR Redirect command. The redirect chain ends when this word
points to the beginning of the UCB itself (U.DCB of the UCB

to be precise).
U.CTL (set by you)
Driver access:
Initialized, not referenced.

Description:

U.CTL -and the function mask words in the DCB drive O0IO
directive ©processing. You are responsible for setting up
this bit pattern. Any inaccuracy in the bit setting of U.CTL
produces erroneous I/O processing. Bit symbols and their
meanings are as follows:

UC.ALG - Alignment bit.

If this bit = 0, then byte alignment of data buffers is

allowed. If UC.ALG =1, then buffers must be
word-aligned.

UC.ATT - Attach/Detach notification.

If this bit is set, then the driver is called when S$GTPKT
processes an Attach/Detach I/0 function. Typically, the
driver does not need to obtain control for Attach/Detach
requests, and the Executive performs the entire function
without any assistance from the driver.

UC.KIL - Unconditional Cancel I/O call bit.

If sel:, the driver is called on a Cancel 1I/0O request,
even 1if the unit specified is not busy. Typically, the
driver is called on Cancel I/O only if an I/O operation
is in progress.

4-21 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

UC.QUE -~ Queue bypass bit.

If set, the QIO directive processor calls the driver
prior to queuing the 1I/0 packet. After the processor
makes this call, the driver is responsible for the
disposition of the I/0 packet. Typically, the processor
queues an I/0 Packet prior to calling the driver, which
later retrieves it by a call to $GTPKT.

UC.PWF - Unconditional call on power failure bit.

If set and the unit is online, the driver is always to be
called when the system 1is bootstrapped or power is
restored after a power failure occurs. Typically, the
driver 1is called on power restoration only when an I/O
operation is in progress. Additionally, for loadable
drivers, the driver is called when LOAded if the unit is
online and UC.PWF is set.

UC.NPR - NPR device bit.

If set, the device is an NPR device. This bit determines
the format of the 2-word address in U.BUF (details given
in the discussion of U.BUF below).

UC.LGH - Buffer size mask bits (2 bits).

These two bits are used to check whether the byte c¢ount
specified in an I/0 request is a legal buffer modulus.
You select one of the values below by ORing into the byte
ao, 1, 2, or 3.

00 - Any buffer modulus valid

01 - Must have word alignment modulus

10 - Combination invalid

11 - Must have double word-alignment modulus

UC.ALG and UC.LGH are independent settings.

UC.ATT, UC.KIL, UC.QUE, and UC.PWF are usually zero,
especially for conventional drivers. Every driver, however,
must be concerned with its particular values for UC.ALG,
UC.NPR, and UC.LGH. You are totally responsible for the
values in these bits, and erroneous values are 1likely to
produce unpredictable results.

U.STS (initialize to zero)
Driver access:
Initialized, not referenced.
Description:

This byte contains device~-independent status information.
The bit meanings are as follows:

US.BSY - If set, device-unit is busy.
US.MNT - If set, volume is not mounted.

US.FOR

If set, volume is foreign.

US.MDM If set, device is marked for dismount.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

The unused bits in U.STS are reserved for system use and
expansion. US.MDM, US.MNT, and US.FOR apply only to
mountable devices.
U.UNIT (unit number)
Driver access:
Initialized, read-only.
Description:
This byte contains the physical unit number of the
device-unit. If the controller for the device supports only
a single unit, the unit number is always zero.
U.ST2 (set by you)
Driver access:
Initialized, not referenced.
Description:
This byte contains additional device-independent status
information. The bit meanings are as follows:
US.OFL - If set, the device is offline (that is, not in

the configuration).

US.RED - If set, the device cannot be redirected.
US.PUB - If set, the device is a public device.
US.UMD - If set, the device is attached for diagnostics.

The remaining bits are reserved for system use and expansion.

U.CW1l (set by you)
Driver access:
Initialized, not referenced.
Description:

The first of a 4-word contiguous cluster of

device

characteristics information. U.Cwl and U.CwW4
device-independent. U.CW2 and U.CW3 are device-dependent.
The four characteristics words are retrieved from the UCB and

placed in the requester's buffer on issuance of a
information (GLUNS) Executive directive. It

responsibility to supply the contents of these four words
the assembly source code of the driver's data structure.

U.CW1l is defined as follows. (If a bit 1is set to
corresponding characteristic is true for the device.)

are

Get LUN
is your
in

1, the

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

DV.REC Bit O0--Record-oriented device

DV.CCL Bit 1=--Carriage=-control device

DV.TTY Bit 2--Terminal device

DV.DIR Bit 3-~-Directory device

DV.SDI Bit 4--Single directory device

DV.SQD Bit 5--Sequential device

DV.UMD Bit 7--Device supports user-mode diagnostics

DV.MBC Bit 8--Device attached to a 22-bit MASSBUS
controller

DV.SWL Bit 9--Unit is software write-locked

DV.PSE Bit 12--Pseudo device

DV.COM Bit 13--Device mountable as a communications channel
DV.F1ll Bit 14--Device mountable as a FILES-11 device
DV.MNT Bit 15--Device mountable
U.CW2 (initialize to zero)
Driver access:
Initialized, read-write.

Description:

Specific to a given device driver (available for working
storage or constants).*

U.CW3 (initialize to 'zero)
Driver access:
Initialized, read-write.
Description:

Specific to a given device driver (available for working
storage or constants).*

U.CW4 (set by you)
Driver access:
Initialized, read=-only.
Description:

Default buffer size. This word is changed by the MCR command
SET /BUF=,

U.SCB (SCB pointer)
Driver access:

Initialized, read-only.

* Exception: for block-structured devices, U.CW2 and U.CW3 may not
be wused for working storage. In drivers for block-structured devices
(disks and DECtape), these two words must be initialized to a
double-precision number giving the total number of blocks on the
device. Place the high-order bits in the low-order byte of U.CW2 and
the low-order bits in U.CW3.

4-24 May 1979

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

Description:

This field contains a pointer to the SCB for this UCB. In
general, R4 contains the value in this word when the driver
is entered by way of the driver dispatch table, because
service routines frequently reference the SCB.

U.ATT (initialize to zero)
Driver access:
Initialized, not referenced.
Description:

If a task has attached itself to the device-unit, this field
contains its TCB address.

U.BUF (reserve 2 words of storage)
Driver access:
Not initialized, read-write.
Description:

U.BUF 1labels 2 consecutive words that serve as a
communication region between SGTPKT and the driver. If a
non-transfer function is indicated (in D.MSK), then U.BUF,
U.BUF+2, and U.CNT receive the first 3 parameter words from
the I/0 Packet.

For transfer operations, the format of these 2 words depends
on the setting of UC.NPR in U.CTL. The driver does not
format the words; all formatting is completed before the
driver receives control. For unmapped systems, the first
word is zero, and the second word is the physical address of
the buffer. For mapped systems, the format is determined by
the UC.NPR bit, which is set for an NPR device and reset for
a program-transfer device.

The format for program-transfer devices is identical to that
for the second 2 words of I.IOSB in the I/O Packet. See
Section 4.1.1.1.

In general, the driver does not manipulate these words when
performing I/0 to a program-transfer device. Instead, it
uses the Executive routines Get Byte, Get Word, Put Byte, and
Put Word to effect data transfers between the device and the
user's buffer.

For NPR device drivers, the word layout is as follows:

Word 1

Bit 0 Go bit initially set to zero

Bits 1-3 Function code--set to zeros

Bits 4,5 Memory extension bits

Bits 6 Interrupt enable--set to zero

Bits 7-15 zZero

Word 2

Bits 0-15 Low-order l16-bits of physical address

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

It is your responsibility to set the function code, interrupt
enable, and go bits. This action must be accomplished by a
Bit Set (BIS) operation so that the extension bits are not
disturbed. The driver must move these words into the device
control registers to initiate the I/O operation.

Note that when the system is unmapped, bits 4 and 5 are
always =zero, but this fact 1is transparent to the driver.
Thus, NPR device drivers are not cognizant of the mapping
state in the system.

The construction of U.BUF, U.BUF+2, and U.CNT occurs only 1if
the requested function is a transfer function; if it is not,
these 3 words contain the first 3 words of the I/O Packet.

The details of the construction of the Address Doubleword
appear in Appendix A.

U.CNT (reserve 1 word of storage)
Driver access:
Not initialized, read-write.
Description:

Contains the byte count of the buffer described by U.BUF.
The driver uses this field in constructing the actual device
request.

U.BUF and U.CNT keep track of the current data item in the
buffer for the current transfer (except for NPR transfers).
Because this field is being altered dynamically, the I/0
Packet may be needed to reissue an I/0O operation, for
instance after a powerfail or error retry.

Device-Dependent Words:
Driver access:
Not initialized, read-write.
Description:

You establish this variable-length block of words to suit
device-specific requirements.

4.1.5 The Device Interrupt Vector

For resident drivers only, the device interrupt vector must be
initialized when defining data structures, and not dynamically. This
practice makes the driver code independent of device register address
assignments and of the actual location of the interrupt vector. The
driver data structure must include a storage assignment and
initialization for the interrupt vector with the priority set to PR7.
See lines 81 thru 85 in Section 6.2.1 (Section 6.2.1 contains the
source code for the data structure of a sample resident driver).

Writers of loadable drivers do not initialize the device interrupt
vector. The vector is dynamically established by LOA[D] when the
driver is loaded. When a driver is unloaded, UNLoad sets the vector
to the system nonsense interrupt entry point.

WRITING AN I/O DRIVER--PROGRAMMING SPECIFICS

4.2 MULTICONTROLLER DRIVERS

This section discusses the conditional code needed at the interrupt
entry point of a driver that may handle one or several device
controllers. This discussion leads to a description in the next
section of the system macro INTSVS$. INTSV$ contains multicontroller
conditionals and other features to simplify interrupt-entry coding.

Figure 4-6 shows the interrupt-entry coding from the paper-tape-punch
driver. This 1s an earlier version of the driver presented in its
entirety in Section 6.2.2,

The <coding is <c¢onditionalized on P$$P11-1. The symbol PSSP11
represents the number of controllers and is set at SYSGEN.

In a multicontroller device configuration, the controllers are
numbered starting with 0. The code for a multicontroller driver
contains a table (called CNTBL in the example in Figure 4-6) whose
length in words 1is equal to the number of controllers. A number
called the controller index--equal to the controller number times
2--is stored in the SCB for each controller, in byte S.CON.

When an I/O request occurs, and the driver is called at its initiator
entry point, the driver first calls $GTPKT to obtain an I/0 packet to
process. Among the values returned by S$GTPKT are the controller index
(obtained from S.CON in the SCB) and the address of the UCB for the
unit requesting I/0 service.

The driver stores the requesting unit's UCB address in the controller
table (CNTBL) at an offset equal to the controller index. Thus, for
the driver at its interrupt entry point to access the requesting UCB,
it needs simply to obtain the controller index.

The controller index is obtained from the controller number, which 1is
encoded in the lowest 4 bits of the PS word in the device's interrupt
vector. At its interrupt entry point the driver first saves the PS
(line 9 in Figure 4-6), which was set from the device's interrupt
vector wupon interrupt. The PS must be saved with the first
instruction of interrupt code because its lower 4 bits are the
processor condition code bits, which generally change after each
instruction 1is issued. Later, after the call to $INTSV, the driver
constructs the controller index from the saved PS (lines 17-19). It
then uses this index to obtain the UCB address (line 20).

For single-controller devices, CNTBL is 1 word, TEMP is not needed to
store the PS, and the UCB address is always the first (and only) entry
in CNTBL.

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

1 ;+

2 ; **-$PPINT-PC1l PAPER TAPE PUNCH CONTROLLER INTERRUPTS

3 ;-

4

5 SPPINT:: ; 7 s REF LABEL

6

7 .IF GT P$$P11-1

8

9 MOV PS,TEMP :7;SAVE CONTROLLER NUMBER

10

11 . IFTF

12

13 CALL $INTSV,PR4 33 ;SAVE REGISTERS AND SET PRIORITY
14

15 JIFT

16

17 MOV TEMP,R4 : s RETRIEVE CONTROLLER NUMBER
18 BIC #177760,R4 3 ;CLEAR ALL BUT CONTROLLER NUMBER
19 ASL R4 3 7 ;CONVERT TO CONTROLLER INDEX
20 MOV CNTBL (R4) ,R5 s ; 7 RETRIEVE ADDRESS OF UCB

21

22 .IFF

23

24 MOV CNTBL,R5 ;s sRETRIEVE ADDRESS OF UCB

25

26 .ENDC

Figure 4-6 Conditional Code for a Multicontroller Driver

4.3 THE INTSV$ MACRO

INTSVS is a system macro that minimizes coding differences between
loadable and resident drivers. INTSVS contains conditionally
assembled code to handle:

1. Single or multiple controllers
2. Loadable or resident drivers
3. Mapped or unmapped systems

All the code in Figure 4-6 between lines 7 and 26 may be replaced by
the INTSVS macro (as 1is done 1in the sample driver illustrated in
Section 6.2.2). This is required for 1loadable drivers on mapped
systems, because interrupts from hardware devices must be processed in
kernel address space. In particular, the decoding of the PS word and
the call to $INTSV must be done before entering the driver. Thus, a
call to the Executive routine S$INTSV within a 1loadable driver is
illegal, and the MCR LOA[D] function returns an error if loading is
attempted.

When the INTSVS macro is used for a loadable driver in a mapped
system, the code from lines 9 to 19 inclusive (Figure 4-6) is not
assembled as part of the driver. Instead, the LOA[D] function
allocates a block of dynamic memory in kernel address space to contain
the interrupt coding. This block, called the Interrupt Control Block
(ICB), also contains coding to:

WRITING AN I/0 DRIVER--PROGRAMMING SPECIFICS

1. Save the kernel mapping (APR5)
2. Load APR5 to map the driver

3. Transfer to the driver

4. Restore the mapping after return

The LOA[D] function also sets up the controller's interrupt vector so
that hardware interrupts point to the ICB.

Finally, the use of the INTSVS$ macro in a loadable driver on a mapped
system requires that the symbol LD$xx (where xx is the 2-character

device mnemonic) be defined either 1in the driver source or the
assembly prefix file RSXMC.MAC.

4.3.1 Format
The format of the INTSVS$ macro is:
INTSVS xx,pri,nctlr[,pssave,ucbsave]
where:
XX is the 2-character device mnemonic.

pri is the priority of the device (the priority that would
be used in a call to $INTSV).

nctlr is the number of controllers the driver services.

pssave 1is an optional argument specifying a variable in which
to save the PS word. If omitted, a variable named TEMP
is used.

ucbsave is an optional argument specifying a block of
contiguous words in which to retrieve the interrupting
device's UCB address. If omitted, a block of
contiguous words named CNTBL is used.

Outputs: R4 is the controller index, only if nctlr is greater than
1.

R5 1is the UCB address.
Example:
INTSVS PP,PR4,PSSSP11
This usage of INTSVS would effectively replace lines 7 through 26 in

Figure 4-6. (P$SP11 is a symbol equated to the number of
controllers.)

CHAPTER 5

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

This section contains the Executive routines typically used by 1I/0
drivers. They are listed in alphabetical order. The descriptions are
taken directly from the source code for the associated services.

We describe only the most widely wused subroutines. Many other
Executive service subroutines are available in modules IOSUB.MAC,
SYSXT.MAC, QUEUE.MAC, CORAL.MAC, and REQSB.MAC under UIC [11,10].

5.1 SYSTEM~-STATE REGISTER CONVENTIONS

In system state, R5 and R4 are, by convention, nonvolatile registers.
This means that an internally called routine is required to save and
restore these two registers if the routine destroys their contents.
R3, R2, R1l, and RO are volatile registers and may be used by a called
routine without save and restore responsibilities.

When a driver is entered directly from an interrupt, it 1is operating
at interrupt 1level, not at system state. At interrupt level, any
register the driver uses must be saved and restored. INTSVS$ preserves
R5 and R4 for the driver's use.

A routine may violate these conventions as long as an explicit
statement exists 1in the program preface detailing the departure from
conventions. Such departures should be avoided; they should be
employed only when you can demonstrate that a departure from
convention can improve overall system performance.

See D.DSP in Section 4.1.2,1 for the contents of registers when a
driver is entered.

5.2 CONDITIONAL ROUTINES

Two of the routines discussed in this chapter (Get Word and Put Word)
normally are assembled conditionally out of the Executive code. If a
user~-written driver requires either of these routines, the appropriate
question must be answered affirmatively in the SYSGEN dialog. This
requirement is spelled out in the descriptions that follow.

5.3 SERVICE CALLS

In the following descriptions, the filenames mentioned are source
modules found on the Executive source disk as [11,10] filename.MAC.

5-1

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$SACHKB/$ACHCK

ADDRESS CHECK

These routines are in the file 1IOSUB. A driver may call either
routine to address~check a task buffer while the task is the current
task. The Address Check routines are normally used only by drivers
setting UC.QUE in U.CTL. See Section 6.3 for an example.
Calling Sequences:

CALL S$ACHKB

or
CALL S$ACHCK

Description:

+

**-SACHKB-ADDRESS CHECK BYTE ALIGNED
**~5SACHCK-ADDRESS CHECK WORD ALIGNED

THIS ROUTINE IS CALLED TO ADDRESS CHECK A BLOCK OF MEMORY TO SEE
WHETHER IT LIES WITHIN THE ADDRESS SPACE OF THE CURRENT TASK.

INPUTS:

RO=STARTING ADDRESS OF THE BLOCK TO BE CHECKED.
R1=LENGTH OF THE BLOCK TO BE CHECKED IN BYTES.

OUTPUTS:

C=1 IF ADDRESS CHECK FAILED.
C=0 IF ADDRESS CHECK SUCCEEDED.

RO AND R3 ARE PRESERVED ACROSS CALL.

O O MO NE e NS NP NS NS NE we N NE Ne Ne NE N6 we e

EXECUTIVE SERVICES AVAILABLE TO I/0O DRIVERS

$SALOCB

ALLOCATE CORE BUFFER
This routine is in the file CORAL.
Calling Sequences:
CALL $ALOCB
or

CALL $ALOC1

+

**-SALOCB~ALLOCATE CORE BUFFER
**-SALOC1-ALLOCATE CORE BUFFER (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED TO ALLOCATE AN EXEC CORE BUFFER. THE
ALLOCATION ALGORITHM IS FIRST FIT AND BLOCKS ARE ALLOCATED IN
MULTIPLES OF FOUR BYTES.

INPUTS:

RO=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT S$ALOCl.
R1=SIZE OF THE CORE BUFFER TO ALLOCATE IN BYTES.

OUTPUTS:

C=1 IF INSUFFICIENT CORE IS AVAILABLE TO ALLOCATE THE BLOCK.
C=0 IF THE BLOCK IS ALLOCATED.

RO=ADDRESS OF THE ALLOCATED BLOCK.

R1=LENGTH OF BLOCK ALLOCATED.

NE N NS NG NE Me NG NG NE NE NS NE NG WO We WS We We we o

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$ASUMR

ASSIGN UNIBUS MAPPING REGISTERS
This routine is in the file IOSUB. It is used only for PDP-11/70 NPR
devices requiring UNIBUS Mapping Registers. Normally, it is not
called directly by an I/O driver. Rather, it is called from within
the $STMAP routine. Refer to Appendix B for a discussion.
Calling Sequence:

CALL $ASUMR

Description:

-+

**~SSASUMR-ASSIGN UNIBUS MAPPING REGISTERS

THIS ROUTINE IS CALLED TO ASSIGN A CONTIGUOUS SET OF UMR'S. NOTE THAT
FOR THE SAKE OF SPEED, THE LINK WORD OF EACH MAPPING ASSIGNMENT BLOCK
POINTS TO THE UMR ADDRESS (2ND) WORD OF THE BLOCK, NOT THE FIRST WORD.
THE CURRENT STATE OF UMR ASSIGNMENT IS REPRESENTED BY A LINKED LIST OF
MAPPING ASSIGNMENT BLOCKS, EACH BLOCK CONTAINING THE ADDRESS OF THE
FIRST UMR ASSIGNED AND THE NUMBER OF UMR'S ASSIGNED TIMES 4. THE
BLOCKS ARE LINKED IN THE ORDER OF INCREASING FIRST UMR ADDRESS.

INPUTS:

Ne WO Ne NGO NE NS Ne Ne NE Ve N N e

RO=POINTER TO A MAPPING REGISTER ASSIGNMENT BLOCK.
M.UMRN (RO) =NUMBER OF UMR'S REQUIRED * 4.

OUTPUTS:
ALL REGISTERS ARE PRESERVED.

C=0 IF THE UMR'S WERE SUCCESSFULLY ASSIGNED.
ALL FIELDS OF THE MAPPING REGISTER ASSIGNMENT BLOCK
ARE INITIALIZED AND THE BLOCK IS LINKED INTO
THE ASSIGNMENT LIST.
C=1 IF THE UMR'S COULD NOT BE ASSIGNED.

NS NE Ne NE Ne NE NE N6 Ne WO N we N

-

EXECUTIVE SERVICES AVAILABLE TO I/0O DRIVERS

$CLINS

CLOCK QUEUE INSERTION
This routine is in the file QUEUE.
Calling Sequence:

CALL SCLINS

Description:

<+

**-SCLINS-CLOCK QUEUE INSERTION

THIS ROUTINE IS CALLED TO MAKE AN ENTRY IN THE CLOCK QUEUE. THE ENTRY
IS INSERTED SUCH THAT THE CLOCK QUEUE IS ORDERED IN ASCENDING TIME.
THUS THE FRONT ENTRIES ARE MOST IMMINENT AND THE BACK LEAST.

INPUTS:

RO=ADDRESS OF THE CLOCK QUEUE ENTRY CORE BLOCK.
R1=HIGH ORDER HALF OF DELTA TIME.

R2=LOW ORDER HALF OF DELTA TIME.

R4=REQUEST TYPE.

R5=ADDRESS OF REQUESTING TCB OR REQUEST IDENTIFIER.

OUTPUTS:

THE CLOCK QUEUE ENTRY IS INSERTED IN THE CLOCK QUEUE ACCORDING
TO THE TIME THAT IT WILL COME DUE.

NE WE N N N NS NE NE Ne NE N W WO Ne NG e e “o we wo

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$DEACB

DEALLOCATE CORE BUFFER
This routine is in the file CORAL.
Calling sequences:
CALL S$DEACB
or

CALL $DEAC1

-+

**-SDEACB-DEALLOCATE CORE BUFFER
**~SDEAC1-DEALLOCATE CORE BUFFER (ALTERNATE ENTRY)

;
;
; Aﬂ%a
; THIS ROUTINE IS CALLED TO DEALLOCATE AN EXEC CORE BUFFER. THE BLOCK
; IS INSERTED INTO THE FREE BLOCK CHAIN BY CORE ADDRESS. 1IF AN
; ADJACENT BLOCK IS CURRENTLY FREE, THEN THE TWO BLOCKS ARE MERGED
;s AND INSERTED IN THE FREE BLOCK CHAIN.
H
;s INPUTS:
i
; RO=ADDRESS OF THE CORE BUFFER TO BE DEALLOCATED.
; R1=SIZE OF THE CORE BUFFER TO DEALLOCATE IN BYTES.
H R3=ADDRESS OF CORE ALLOCATION LISTHEAD-2 IF ENTRY AT S$DEAC1. _—,
; 1]
; OUTPUTS:
H
H THE CORE BLOCK IS MERGED INTO THE FREE CORE CHAIN BY CORE
: ADDRESS AND IS MERGED IF NECESSARY WITH ADJACENT BLOCKS.
;=
-

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

$DEUMR

DEASSIGN UNIBUS MAPPING REGISTERS
This routine is in the file IOSUB. It is used only for PDP-11/70 NPR
devices requiring UNIBUS Mapping Registers. Normally, it is not
called directly by an I/0 driver. Rather, it is called from within
the $IODON routine. Refer to Appendix B for a discussion.
Calling Sequence:

CALL $DEUMR

Description:

+

**~-SDEUMR-DEASSIGN UNIBUS MAPPING REGISTERS

THIS ROUTINE IS CALLED TO DEASSIGN A CONTIGUOUS BLOCK OF UMR'S. IF
THE MAPPING ASSIGNMENT BLOCK IS NOT IN THE LIST, NO ACTION IS TAKEN.
NOTE THAT FOR THE SAKE OF ASSIGNMENT SPEED, THE LINK WORD POINTS TO
THE UMR ADDRESS (2ND) WORD OF THE ASSIGNMENT BLOCK.

INPUTS:
R2=POINTER TO ASSIGNMENT BLOCK.

OUTPUTS:

RO AND R1 ARE RESERVED.

Ne Ne Ne Ne Ne Ne Ne we Ve N Nb Np we we ~wo

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

$DVMSG

DEVICE MESSAGE OUTPUT
Device Message Output is in file IOSUB.
Calling Sequence:

CALL $DVMSG

Description:

-+

**-SDVMSG-DEVICE MESSAGE OUTPUT

THIS ROUTINE IS CALLED TO SUBMIT A MESSAGE TO THE TASK TERMINATION
NOTIFICATION TASK. MESSAGES ARE EITHER DEVICE RELATED OR A
CHECKPOINT WRITE FAILURE FROM THE LOADER.

INPUTS:

RO=MESSAGE NUMBER.
R5=ADDRESS OF THE UCB OR TCB THAT THE MESSAGE APPLIES TO.

OUTPUTS:

A FOUR WORD PACKET IS ALLOCATED, RO AND R5 ARE STORED IN THE
SECOND AND THIRD WORDS, RESPECTIVELY, AND THE PACKET IS
THREADED INTO THE TASK TERMINATION NOTIFICATION TASK MESSAGE
QUEUE.

NOTE: IF THE TASK TERMINATION NOTIFICATION TASK IS NOT
INSTALLED OR NO STORAGE CAN BE OBTAINED, THEN THE
MESSAGE REQUEST IS IGNORED.

NE NE NG NP NE Ne Ve NE NS N NS NE Ne NE Ne NS Ne Ne Ne we Ne e “o

Note:
Drivers use only two codes in calling $DVMSG: T.NDNR (device not
ready), and T.NDSE (select error). SDVMSG can be set up and
called as follows:
MOV #T.NDNR,RO

or

MOV #T .NDSE, RO
CALL $DVMSG

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$FORK

FORK

Fork 1is in the file SYSXT. A driver calls S$FORK to switch from a
partially interruptable level (its state following a call on $INTSV)
to a fully interruptable level.

Calling sequence:

CALL $FORK

Description:

-+

**~SFORK-FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS CALLED FROM AN I/O DRIVER TO CREATE A SYSTEM PROCESS THAT
WILL RETURN TO THE DRIVER AT STACK DEPTH ZERO TO FINISH PROCESSING.

INPUTS:
R5=ADDRESS OF THE UCB FOR THE UNIT BEING PROCESSED.
OUTPUTS:
REGISTERS R5 AND R4 ARE SAVED IN THE CONTROLLER FORK BLOCK AND

A SYSTEM PROCESS IS CREATED. THE PROCESS IS LINKED TO THE FORK
QUEUE AND A JUMP TO SINTXT IS EXECUTED.

WO NS N N NE NS NE NG NE Ne e N Ve Ne we N

Notes:

1. SFORK cannot be called wunless $INTSV has been previously
called. The fork-processing routine assumes that $INTSV has
set up entry conditions.

2. A driver's current timeout count is cleared in calls to
SFORK. This protects the driver from synchronization
problems that can occur when an I/0 request and the timeout
for that request happen at the same time. After a return
from a call to $FORK, a driver's timeout code will not be
entered.

If the clearing of the timeout count is not desired, a driver
has two alternatives:

a. Perform timeout operations by directly inserting elements
in the «c¢lock queue (refer to the description of the
SCLINS routine).

b. Perform necessary initialization, including clearing
5.STS in the SCB to zero (establishing the controller as
not busy), and call the $FORK1l routine rather than S$FORK.
Calling $FORKl1 bypasses the clearing of the current
timeout count.

3. The driver must not have any information on the stack when
SFORK is called.

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$FORK1

FORK1
Forkl is in the file SYSXT. A driver <calls $FORKl1 to bypass the
clearing of 1its timeout count when it switches from a partially
interruptable level to a fully interruptable level (refer also to the
description of the $FORK routine).
Calling Sequence:

CALL SFORK1

Description:

-+

**-SFORK1-FORK AND CREATE SYSTEM PROCESS

THIS ROUTINE IS AN ALTERNATE ENTRY TO CREATE A SYSTEM PROCESS AND
SAVE REGISTER R5.

INPUTS:
R4=ADDRESS OF THE LAST WORD OF A 3 WORD FORK BLOCK PLUS 2.
R5=REGISTER TO BE SAVED IN THE FORK BLOCK.

OUTPUTS:

REGISTER R5 IS SAVED IN THE SPECIFIED FORK BLOCK AND A SYSTEM
PROCESS IS CREATED. THE PROCESS IS LINKED TO THE FORK QUEUE
AND A JUMP TO SINTXT IS EXECUTED.

MO NG N NS NE NE NG N %O Ne We N WS NS we o

Notes:

1. For mapped systems with loadable driver support, a 5-word
fork block is required for calls to $FORKI.

2. When a 5-word fork block is used, the driver must . initialize
the fifth word with the base address (in 32-word blocks) of
the driver partition. This address can be obtained from the
fifth word of the standard fork block in the SCB.

3. The driver must not have any information on the stack when
$FORK1 is called.

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$SGTBYT

GET BYTE

Get Byte is in the file BFCTL. Get byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling sequence:
CALL S$GTBYT

Description:

-+

**-$SGTBYT-GET NEXT BYTE FROM USER BUFFER
THIS ROUTINE IS CALLED TO GET THE NEXT BYTE FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE BYTE HAS BEEN
FETCHED, THE NEXT BYTE ADDRESS IS INCREMENTED.
INPUTS:
R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS:
THE NEXT BYTE IS FETCHED FROM THE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK. THE NEXT BYTE ADDRESS IS
INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

NS NG NE Ne MO Ne wE MO NG NE NE NG N NG WO Ne N we wo

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$GTPKT)

GET PACKET
Get Packet is in the file IOSUB.
Calling sequence:

CALL SGTPKT

Description:

+

**-SGTPKT-GET I/0 PACKET FROM REQUEST QUEUE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS TO DEQUEUE THE NEXT I/0

REQUEST TO PROCESS. IF THE DEVICE CONTROLLER IS BUSY, THEN A CARRY

SET INDICATION IS RETURNED TO THE CALLER. ELSE AN ATTEMPT IS MADE TO -
DEQUEUE THE NEXT REQUEST FROM THE CONTROLLER QUEUE. IF NO REQUEST ty
CAN BE DEQUEUED, THEN A CARRY SET INDICATION IS RETURNED TO THE '
CALLER. ELSE THE CONTROLLER IS SET BUSY AND A CARRY CLEAR

INDICATION IS RETURNED TO THE CALLER.

INPUTS:

R5=ADDRESS OF THE UCB OF THE CONTROLLER TO GET A PACKET FOR.

WO NS NE NG NE Ne NE NE NE We MO NG e NG N NE Ve Ne NG NG NP WG NE we NE we NS

OUTPUTS:
A~
C=1 IF CONTROLLER IS BUSY OR NO REQUEST CAN BE DEQUEUED. ;
C=0 IF A REQUEST WAS SUCCESSFULLY DEQUEUED.
R1=ADDRESS OF THE I/O PACKET.
R2=PHYSICAL UNIT NUMBER.
R3=CONTROLLER INDEX.
R4=ADDRESS OF THE STATUS CONTROL BLOCK.
R5=ADDRESS OF THE UNIT CONTROL BLOCK.
NOTE: R4 AND R5 ARE DESTROYED BY THIS ROUTINE.
H

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$GTWRD

GET WORD

Get Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2

i

n the UCB. Get Word is conditionally assembled. If a user-written

driver requires this routine, the following question must be answered
affirmatively in Phase 1 of SYSGEN:

IS THE EXECUTIVE ROUTINE S$SGTWRD REQUIRED? [Y/N]:

This question is asked only if you have answered "yes" to the
question:

ARE YOU PLANNING TO INCLUDE A USER WRITTEN DRIVER? [Y/N]:

Calling sequence:

CALL $GTWRD

Degcription:

O NE e NS N We NE Ne NG NG Ne N6 NS NG we e wo wo

-+

**-SGTWRD--GET NEXT WORD FROM USER BUFFER
THIS ROUTINE IS CALLED TO GET THE NEXT WORD FROM THE USER BUFFER
AND RETURN IT TO THE CALLER ON THE STACK. AFTER THE WORD HAS BEEN
FETCHED, THE NEXT WORD ADDRESS IS CALCULATED.
INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
OUTPUTS:

THE NEXT WORD IS FETCHED FROM THE USER BUFFER AND RETURNED
TO THE CALLER ON THE STACK. THE NEXT WORD ADDRESS IS CALCULATED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

SINTSV

INTERRUPT SAVE
Interrupt Save is in the file SYSXT.
Calling sequence:
CALL $INTSV,PRn
n has a range of 0-7.

Description:

<+

**-SINTSV-INTERRUPT SAVE

THIS ROUTINE IS CALLED FROM AN INTERRUPT SERVICE ROUTINE WHEN AN
INTERRUPT IS NOT GOING TO BE IMMEDIATELY DISMISSED. A SWITCH TO

THE SYSTEM STACK IS EXECUTED IF THE CURRENT STACK DEPTH IS +1. WHEN

THE INTERRUPT SERVICE ROUTINE FINISHES ITS PROCESSING, IT EITHER FORKS,
JUMPS TO SINTXT, OR EXECUTES A RETURN.

INPUTS:

4 (SP)=PS WORD PUSHED BY INTERRUPT.

2 (SP)=PC WORD PUSHED BY INTERRUPT.

0 (SP)=SAVED R5 PUSHED BY 'JSR R5,$INTSV'.
0 (R5)=NEW PROCESSOR PRIORITY.

OUTPUTS:

REGISTER R4 IS PUSHED ONTO THE CURRENT STACK AND THE CURRENT
STACK DEPTH IS DECREMENTED. IF THE RESULT IS ZERO, THEN

A SWITCH TO THE SYSTEM STACK IS EXECUTED. THE NEW PROCESSOR
STATUS IS SET AND A CO-ROUTINE CALL TO THE CALLER IS EXECUTED.

WO MO MO NG MO NE Ve NE NE MO MO NS NG NG NG NS N NE NS N %O N4 Ne

Note:

A system macro, INTSVS, is provided to simplify the coding of
standard interrupt entry processing. See Section 4.3.

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

SINTXT

INTERRUPT EXIT
Interrupt Exit is in the file SYSXT.
Calling sequence:

JMP SINTXT

Description:

+

**-SINTXT-INTERRUPT EXIT

THIS ROUTINE IS CALLED VIA A RETURN TO EXIT FROM AN INTERRUPT. IF THE
STACK DEPTH IS NOT EQUAL TO ZERO, THEN REGISTERS R4 AND R5 ARE
RESTORED AND AN RTI IS EXECUTED. ELSE A CHECK IS MADE TO SEE

IF THERE ARE ANY ENTRIES IN THE FORK QUEUE. IF NONE, THEN R4 AND

R5 ARE RESTORED AND AN RTI IS EXECUTED. ELSE REGISTERS R3 THRU

RO ARE SAVED ON THE CURRENT STACK AND A DIRECTIVE EXIT IS EXECUTED.

INPUTS: (MAPPED SYSTEM)
06 (SP)=PS WORD PUSHED BY INTERRUPT.
04 (SP)=PC WORD PUSHED BY INTERRUPT.
02 (SP)=SAVED R5.
00 (SP)=SAVED R4.

INPUTS: (REAL MEMORY SYSTEM)

NONE.

WO Ne NI WE NE Ve N N NE NI NG NE Ne NP W We Ne We we we wo

EXECUTIVE SERVICES AVAILABLE TO 1/0 DRIVERS

$SIOALT/$IODON

I/0 DONE ALTERNATE ENTRY and I/0 DONE
These routines are in the file IOSUB.
Calling sequences:

CALL $IOALT
CALL $IODON

Description:

+

**-STIOALT-I/O DONE (ALTERNATE ENTRY)
**-STODON-I/0O DONE

THIS ROUTINE IS CALLED BY DEVICE DRIVERS AT THE COMPLETION OF AN I/O REQUEST
TO DO FINAL PROCESSING. THE UNIT AND CONTROLLER ARE SET IDLE AND $IOFIN IS -
ENTERED TO FINISH THE PROCESSING. hh
INPUTS:
RO=FIRST I/O STATUS WORD.
R1=SECOND I/O STATUS WORD.
R2=STARTING AND FINAL ERROR RETRY COUNTS IF ERROR LOGGING DEVICE.
R5=ADDRESS OF THE UNIT CONTROL BLOCK OF THE UNIT BEING COMPLETED.

NOTE: IF ENTRY IS AT $IOALT, THEN R1 IS CLEARED TO SIGNIFY THAT THE
SECOND STATUS WORD IS ZERO. PN

OUTPUTS:
THE UNIT AND CONTROLLER ARE SET IDLE.

R3=ADDRESS OF THE CURRENT I/O PACKET.

MO Ne NE Ve Ne Ne Ve NE WO NE Ne Ve NP N6 N N Ne Ne W6 Ne W6 “e we N

NOTE

R4 is destroyed when either of these routines is called. The -,
routine call $IOFIN, which destroys R4. oo

These routines push the address of routine $DQUMR on to the stack
before returning to the driver. This precludes the use of the
stack for temporary data storage by divers when calling these
routines.

5-16 May 1979

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

SIOFIN

I/0 FINISH

I/0 Finish is in the file IOSUB. Most drivers do not call I/0 Finish,
but you should be aware that this routine is executed when a driver
calls S$IOALT or SIODON. A driver that references an I/0 packet before
it 1is queued (bit UC.QUE set--see Section 6.3 for an example) calls
I/0 Finish if the driver finds an error while preprocessing the I/0
packet.

Calling sequence:
CALL S$IOFIN

Description:

+

**-.STOFIN-~-I/O FINISH

CONTROLLER ARE NOT TO BE DECLARED IDLE.

INPUTS:

e wer we we we wms we we

RO=FIRST I/O STATUS WORD.

R1=SECOND I/O STATUS WORD.

R3=ADDRESS OF THE I/O REQUEST PACKET.

R5=ADDRESS OF THE UNIT CONTROL BLOCK.
OUTPUTS:

THE FOLLOWING ACTIONS ARE PERFORMED:

ONE WAS SPECIFIED.

ZERO, THEN 'TS.RDN' IS CLEARED IN CASE THE TASK WAS
STOPPED FOR I/O RUNDOWN.

TASK IS INITIATED.

FOR THE TASK. ELSE THE I/O PACKET IS DEALLOCATED.
5-A SIGNIFICANT EVENT OR EQUIVALENT IS DECLARED.

NOTE: R4 IS DESTROYED BY THIS ROUTINE.

NE NE N N e NE NE NE N N W WS N W WE WE W Me We W M M wa w2 Wwe wa

THIS ROUTINE IS CALLED TO FINISH I/O PROCESSING IN CASES WHERE THE UNIT AND

1-THE FINAL I/0 STATUS VALUES ARE STORED IN THE I/O STATUS BLOCK IF

2-THE I/O REQUEST COUNT IS DECREMENTED. IF THE RESULTANT COUNT IS

3-IF 'TS.CKR' IS SET, THEN IT IS CLEARED AND CHECKPOINTING OF THE

4-IF AN AST SERVICE ROUTINE WAS SPECIFIED, THEN AN AST IS QUEUED

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$SMPUBM

MAP UNIBUS TO MEMORY

This routine is in the file IOSUB. It is used only for PDP-11/70 NPR
devices requiring UNIBUS Mapping Registers. See Appendix B for a
discussion.

Calling Sequence:

CALL $MPUBM

Description:

MO NE Ve NE ME NG NG NE NG Ne e NS NE NP Ne we wo N8 we

+

**-SMPUBM-MAP UNIBUS TO MEMORY

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO LOAD THE
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN MEM-
ORY ON AN 11/70 PROCESSOR WITH EXTENDED MEMORY.

INPUTS:

R4=ADDRESS OF DEVICE SCB.
R5=ADDRESS OF DEVICE UCB.

OUTPUTS:

THE UNIBUS MAP REGISTERS NECESSARY TO EFFECT THE TRANSFER
ARE LOADED.

NOTE: REGISTER R3 IS PRESERVED ACROSS CALL.

5-18

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

$MPUBH1

MAP UNIBUS TO MEMORY (ALTERNATE ENTRY)

This routine is in file IOSUB. It is wused only for PDP-11/70 NPR
devices that require UNIBUS Mapping Registers and support parallel
operations. See Appendix B for a discussion of using this routine.

Calling Seguence:

CALL $MPUB1

Description:

N0 WE NE WS WE NS NG WS Mo NI WE e NS We WS We We e we

+

**-SMPUB1-MAP UNIBUS TO MEMORY (ALTERNATE ENTRY)

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO LOAD THE
NECESSARY UNIBUS MAP REGISTERS TO EFFECT A TRANSFER TO MAIN

MEMORY ON AN 11/70 PROCESSOR WITH EXTENDED MEMORY, THIS ALTERNATE
ENTRY POINT ALLOWS THE DRIVER TO SPECIFY A NON-STANDARD UMR MAPPING
ASSIGNMENT BLOCK.

INPUTS:
RO=ADDRESS OF A UMR MAPPING ASSIGNMENT BLOCK

OUTPUTS:

THE UNIBUS MAP REGISTERS NECESSARY TO EFFECT THE
TRANSFER ARE LOADED

NOTE: REGISTER R3 IS PRESERVED ACROSS CALL.

5-18.1 May 1979

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

SPTBYT

PUT BYTE

Put Byte is in the file BFCTL. Put Byte manipulates words U.BUF and
U.BUF+2 in the UCB.

Calling sequence:
CALL SPTBYT

Description:

+

**~SPTBYT-PUT NEXT BYTE IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A BYTE IN THE NEXT LOCATION IN

USER BUFFER. AFTER THE BYTE HAS BEEN STORED, THE NEXT BYTE ADDRESS
IS INCREMENTED.

INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(8P)=BYTE TO BE STORED IN THE NEXT LOCATION OF THE USER BUFFER.

OUTPUTS:

THE BYTE IS STORED IN THE USER BUFFER AND REMOVED FROM
THE STACK. THE NEXT BYTE ADDRESS IS INCREMENTED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

WO NG NE MO NE NE N N Ne NE Ne e Ne WO N6 wp wo wo “o

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$PTWRD

PUT WORD
Put Word is in the file BFCTL. It manipulates words U.BUF and U.BUF+2
in the UCB. Put Word is conditionally assembled. If a user-written
driver requires this routine, the following question must be answered
affirmatively in Phase 1 of SYSGEN:

IS THE EXECUTIVE ROUTINE $SPTWRD REQUIRED? [Y/N]:

This question is asked only if you have answered "yes" to the
question:

ARE YOU PLANNING TO INCLUDE A USER WRITTEN DRIVER? [Y/N]:
Calling sequence:
CALL SPTWRD

Description:

-+

**—SPTWRD-PUT NEXT WORD IN USER BUFFER

THIS ROUTINE IS CALLED TO PUT A WORD IN THE NEXT LOCATION IN

USER BUFFER. AFTER THE WORD HAS BEEN STORED, THE NEXT WORD ADDRESS
IS CALCULATED.

INPUTS:

R5=ADDRESS OF THE UCB THAT CONTAINS THE BUFFER POINTERS.
2(SP)=WORD TO BE STORED IN THE NEXT LOCATION OF THE BUFFER.

OUTPUTS:

THE WORD IS STORED IN THE USEER BUFFER AND REMOVED FROM
THE STACK. THE NEXT WORD ADDRESS IS CALCULATED.

ALL REGISTERS ARE PRESERVED ACROSS CALL.

e NE NS NS NG N N NS NS NG NS Ne NS N Ne N e N “e

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$QINSP

QUEUE INSERTION BY PRIORITY

Thig routine is in the file QUEUE. A driver may call $QINSP to insert
into the 1I/0 queue an I/0 packet that the Executive has not already
placed in the queue. Queue Insertion by Priority is wused only by
drivers setting UC.QUE in U.CTL. See Section 6.3 for an example.
Calling Sequence:

CALL SQINSP

Description:

+

**~SQINSP-QUEUE INSERTION BY PRIORITY
THIS ROUTINE IS CALLED TO INSERT AN ENTRY IN A PRIORITY ORDERED
LIST. THE LIST IS SEARCHED UNTIL AN ENTRY IS FOUND THAT HAS A
LOWER PRIORITY OR THE END OF THE LIST IS REACHED. THE NEW
ENTRY IS THEN LINKED INTO THE LIST AT THE APPROPRIATE POINT.
INPUTS:

RO=ADDRESS OF THE TWO WORD LISTHEAD.

R1=ADDRESS OF THE ENTRY TO BE INSERTED.
OUTPUTS:

THE ENTRY IS LINKED INTO THE LIST BY PRIORITY.

RO AND R1 ARE PRESERVED ACROSS CALL.

NE NE NS NE e N NE Ne Ne Ne Ne N Ne NS N WO Ne e “e “o

EXECUTIVE SERVICES AVAILABLE TO I/0 DRIVERS

$RELOC

RELOCATE
Relocate is in the file IOSUB. A driver may call $RELOC to relocate a
task virtual address while the task is the current task. Relocate is
normally used only by drivers setting UC.QUE in U.CTL. See Section
6.3 for an example.
Calling Sequence:

CALL SRELOC

Description:

<+

**~-SRELOC-RELOCATE USER VIRTUAL ADDRESS

THIS ROUTINE IS CALLED TO TRANSFORM A 16 BIT USER VIRTUAL ADDRESS
INTO A RELOCATION BIAS AND DISPLACEMENT IN BLOCK RELATIVE TO APR6.

INPUTS:
RO=USER VIRTUAL ADDRESS TO RELOCATE.
OUTPUTS:

R1=RELOCATION BIAS TO BE LOADED INTO PAR6.
R2=DISPLACEMENT IN BLOCK PLUS 140000 (PAR6 BIAS).

RO AND R3 ARE PRESERVED ACROSS CALL.

e WO NS MO NE NP NS NS NS N NE NS NS Np Ne e N

EXECOTIVE SERVICES AVAILABLE TO I/O DRIVERS

$STMAP

SET UP UNIBUS MAPPING ADDRESS

This routine is in the file IOSUB. It is used only for PDP-11/70 NPR
devices requiring UNIBUS Mapping Registers., See Appendix B for a
discussion.

Calling Sequence:

CALL $STMAP

Description:

+

**-$STMAP-SET UP UNIBUS MAPPING ADDRESS

THIS ROUTINE IS CALLED BY UNIBUS NPR DEVICE DRIVERS TO SET UP THE
UNIBUS MAPPING ADDRESS, FIRST ASSIGNING THE UMR'S. IF THE UMR'S
CANNOT BE ALLOCATED, THE DRIVER'S MAPPING ASSIGNMENT BLOCK IS PLACED
IN A WAIT QUEUE AND A RETURN TO THE DRIVER'S CALLER IS EXECUTED. THE
ASSIGNMENT BLOCK WILL EVENTUALLY BE DEQUEUED WHEN THE UMR'S ARE
AVAILABLE AND THE DRIVER WILL BE REMAPPED AND RETURNED TO WITH R1-R5
PRESERVED AND THE NORMAL OUTPUTS OF THIS ROUTINE. THE DRIVER'S
CONTEXT IS STORED IN THE ASSIGNMENT BLOCK AND FORK BLOCK WHILE IT IS
BLOCKED AND IN THE WAIT QUEUE. ONCE A DRIVER'S MAPPING ASSIGNMENT
BLOCK IS PLACED IN THE UMR WAIT QUEUE, IT IS NOT REMOVED FROM THE
QUEUE UNTIL THE UMR'S ARE SUCCESSFULLY ASSIGNED. THIS STRATEGY
ASSURES THAT WAITING DRIVERS WILL BE SERVICED FIFO AND THAT DRIVER'S
WITH LARGE REQUESTS FOR UMR'S WILL NOT WAIT INDEFINITELY.

INPUTS:
R4=ADDRESS OF DEVICE SCB.
R5=ADDRESS OF DEVICE UCB.
(SP)=RETURN TO DRIVER'S CALLER.
OUTPUTS:

UNIBUS MAP ADDRESSES ARE SET UP IN THE DEVICE UCB AND THE
ACTUAL PHYSICAL ADDRESS IS MOVED TO THE SCB.

NOTE: REGISTERS R1l, R2, AND R3 ARE PRESERVED ACROSS CALL.

O Mo NE N NE Ne Ne NE NE N e WE e e NE We NE We e Ne Ne We We WO We Ne e W we wo

NOTE

This routine pushes the address of
routine $DQUMR+2 on to the stack before
returning to the caller. A driver,
therefore, should not use the stack for
temporary data storage when calling this
routine.

5-23 May 1979

EXECUTIVE SERVICES AVAILABLE TO I/O DRIVERS

$STMP1

SET UP UNIBUS MAPPING ADDRESS (ALTERNATE ENTRY)

This routine is in file IOSUB. It is used only for PDP-11/70 NPR
devices that require UNIBUS Mapping Registers and support parallel
operations. See Appendix B for a discussion of using this routine.
Calling Segquence:

CALL $STMP1

Description:

+

*%¥-$SSTMP1-SET UP UNIBUS MAPPING ADDRESS (ALTERNATE ENTRY)

THIS ENTRY CODE SETS UP AN ALTERNATE DATA STRUCTURE USED AS
A UMR MAPPING ASSIGNMENT BLOCK AND CONTEXT STORAGE BLOCK, IN
THE SAME MANNER AS $STMAP USES THE FORK BLOCK AND MAPPING
BLOCK IN THE SCB. THE FORMAT OF THE STRUCTURE IS AS FOLLOWS:

e we we wo we wo “e

————————————————————— 4 WORDS USED FOR SAVING
! DRIVER'S CONTEXT IN CASE
! UMR'S CAN'T BE MAPPED

! IMMEDIATELY.

!

!

! 6 WORDS USED AS A UMR

! MAPPING ASSIGNMENT BLOCK.
!
!
!

INPUTS:
RO=ADDRESS OF THE DATA STRUCTURE DEPICTED ABOVE
R4=ADDRESS OF DEVICE SCB
R5=ADDRESS OF DEVICE UCB

OUTPUTS:

DATA STRUCTURE POINTERS SET UF FOR ENTRY TO $STMP2 IN S$STMAP

WO MO NE NP NE YO NE NG NS NE Ne N6 e WO W NE W WO Ne we N6 Ne we Ne No e

NOTE

This routine pushes the address of
routine S$DQUMR+2 on tc the stack before
returning to the caller. A driver,
therefore, should not use the stack for

temporary data storage when calling this
routine.

5-24 May 1979

CHAPTER 6

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

The first example that follows is a complete illustration of the
procedures required to add a resident driver and resident data base to
an RSX-11M system to run on a system without support for loadable
drivers and without multiuser protection. The driver in the example
supports the punch capability of the PCll Paper Tape Reader/Punch.

Section 6.3 gives a coding example from a resident driver that
inhibits the automatic packet queuing in QIO processing to
address—-check and relocate a special user buffer.

In addition to the examples shown in this chapter, you should review
the source code for one or more standard DIGITAL-supplied drivers.
Also, examine file SYSTB.MAC, which contains SYSGEN created data
structures.

6.1 DEVICE DESCRIPTION

The PCll Paper Tape Reader/Punch 1is capable of reading 8-hole,
unoiled, perforated paper tape at 300 characters-per-second, and
punching tape at 50 characters-per-second. The system consists of a
Paper Tape Reader/Punch and Controller. A unit containing only a
reader (PR1ll) is also available.

In reading tape, a set of photodiodes translates the presence or
absence of holes in the tape to logic levels representing 1l's and 0's.
In punching tape, a mechanism translates logic levels representing 1l's
and 0's to the presence or absence of holes 1in the tape. Any
information read or punched 1is parallel-transferred through the

Controller. When an address is placed on the UNIBUS, the Controller
decodes the address and determines if the reader or punch has been
selected. If one of the four device-register addresses has been

selected, the Controller determines whether an input or an output
operation should be performed. An input operation from the reader is
initiated when the processor transmits a command to the Paper Tape
Reader status register, An output operation is initiated when the
processor transfers a byte to the Paper Tape Punch buffer register.

The Controller enables the PDP-11 System to control the reading or
punching of paper tape in a flexible manner. The reader can be
operated independently of the punch; either device can be under
direct program control or can operate without direct supervision,
through the use of interrupts, to maintain continuous operation.

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

6.2 DATA BASE AND DRIVER SOURCE

The simplicity of writing a conventional driver for RSX-11M is
obscured by the volume of explanation required to cover the universal
case. As you will see below, in a particular case, building a
conventional driver is a straightforward and modest undertaking.

6.2.1 The Data Base

The resident data base source shown below is self-explanatory. Take
special note of the legal function mask words, starting at line 45.
The standard function codes listed in Table 4-1 were used in creating
the mask. Thus, the Punch driver accepts the following I/0 functions:

Cancel I/0

Write Logical Block

Attach Device

Detach Device

Access File For Read/Write

Access File For Read/Write/Extend
Deaccess File

Write Virtual Block

Cancel I/O is mandatory. Write Logical Block 1is the only transfer
function actually supported.

Attach/Detach are control functions. The three Access/Deaccess
functions are legal for FCS and RMS compatibility, but are no-op'ed.
Write Virtual Block is legal but is converted to Write Logical Block
by QIO directive processing.

The Bit Mask for each function is as follows:

FUNCTION FUNCTION CODE (OCTAL) MASK(OCTAL) BIT RANGE (DECIMAL)

CAN 0 000001 0-15.
WLB 1 000002 0-15.
ATT 3 000010 0-15.
DET 4 000020 0-15.
ACW 16 040000 0-15.
ACE 17 100000 0-15.
DAC 20 000001 16.-31.
WVB 22 000004 16.-31.

The legal masks result from adding the 0-15(10) bit-range words to
form a mask and all the 16-31(10) bit-range words to form the second
mask.

The control, no-op, and ACP masks are created in an analogous fashion,
matching bit positions with legal function-code meanings.

The complete set of mask words appears on lines 45 through 52 in the
data—-structure source.

The function code selections for record-oriented devices are intended
to match FCS and RMS requirements for file-structured devices. When
FCS or RMS executes an Access For Write, it is simply marked a no-op.
This tends to minimize FCS and RMS device-dependent logic.

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

Note also on line 84 that the controller number, which is encoded in
the 1low byte of the interrupt vector PS word in RSX-11M, is set ‘to
zero, Finally, since the code represents a resident data base, note
that lines 78 through 85 would be omitted for a loadable data base.

.TITLE USRTB
. IDENT /01/

COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.

e
HOWONIAAOULSE WN -

[T
\ 0~ WU B W N
Se Sa wE we me p =@ ms % me & e %F %3 % %s N5 % =2 me me = s

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY

17 OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

18

19 VERSION 01

20

21 T. J. PASCUSNIK 25-NOV-74

22

23 CONTROL BLOCKS FOR PAPER TAPE PUNCH DRIVER

24'

25 MACRO LIBRARY CALLS

26

27

28 .MCALL DCBDFS$,HWDDFS

29 DCBDFS$ sDEFINE DEVICE CONTROL BLOCK OFFSETS*
30 HWDDF$;DEFINE HARDWARE REGISTERS

31

32 ;

33 ; PAPER TAPE PUNCH DEVICE DATA BASE

34 ;

3% ; PAPER TAPE PUNCH DEVICE CONTROL BLOCK

36 ;

37 SUSRTB::

38 PPDCB: .WORD 0 ;LINK TO NEXT DCB

39 .WORD .PP0O ;s POINTER TO FIRST UCB

40 .ASCII /PP/ ;DEVICE NAME

41 .BYTE 0,0 ; LOWEST AND HIGHEST UNIT NUMBERS COVERED
42 H BY THIS DCB

43 .WORD PPND-PPST ;s LENGTH OF EACH UCB IN BYTES

44 .WORD SPPTBL ;POINTER TO DRIVER DISPATCH TABLE

45 .WORD 140033 ;s LEGAL FUNCTION MASK CODES 0-15.

46 .WORD 30 ; CONTROL FUNCTION MASK CODES 0-15.
47 .WORD 140000 ;NO-P'ED FUNCTION MASK CODES 0-15.
48 .WORD 0 : ;ACP FUNCTION MASK CODES 0-15.

49 .WORD 5 s LEGAL FUNCTION MASK CODES 16.-31.
50 .WORD 0 ;s CONTROL FUNCTION MASK CODES 16.-31.
51 .WORD 1 ;NO-OP'ED FUNCTION MASK CODES 16.-31.
52 .WORD 4 ;ACP FUNCTION MASK CODES 16.-31.

53 ;

54 ; PAPER TAPE PUNCH UNIT CONTROL BLOCK

55 ;

56 .PPO::

57 PPST=.

58 +WORD PPDCB ; BACK POINTER TO DCB

59 .WORD -2 ;POINTER TO REDIRECT UNIT UCB

60 .BYTE UC.ATT,O0 ; CONTROL PROCESSING FLAG (PASS CONTROL
61 H ON ATTACH/DETACH), UNIT STATUS

* Appendix C lists all macros that exist in RSX-11M to generate
control block offsets.

6-3 May 1979

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

62 .BYTE 0,0 ;PHYSICAL UNIT NUMBER, UNIT STATUS EXTENSION

63 .WORD DV.REC ;FIRST DEVICE CHARACTERISTICS WORD

64 ; (RECORD-ORIENTED DEVICE) M
65 .WORD 0 s SECOND DEVICE CHARACTERISTICS WORD i "
66 H (FOR INTERNAL USE BY DRIVER)

67 .WORD 0 sTHIRD DEVICE CHARACTERISTICS WORD

68 ; (FOR INTERNAL USE BY DRIVER)

69 .WORD 64. s FOURTH DEVICE CHARACTERISTICS WORD

70 H (DEFAULT BUFFER SIZE IN BYTES)

71 .WORD PPSCB sPOINTER TO SCB

72 .WORD 0 ;s TCB ADDRESS OF ATTACHED TASK

73 .BLKW 1 s RELOCATION BIAS OF BUFFER OF CURRENT

74 ; I/0 REQUEST

75 .BLKW 1 ;ADDRESS OF BUFFER OF CURRENT I/O REQUEST

76 .BLKW 1 ;BYTE COUNT OF CURRENT I/O REQUEST

77 PPND=.

78 ;

79 ; PAPER TAPE PUNCH INTERRUPT VECTOR

80 ;

81 .ASECT

82 .=74

83 +WORD SPPINT ;ADDRESS OF INTERRUPT ROUTINE

84 +WORD PR710 ; INTERRUPT AT PRIORITY 7 (CONTROLLER=0)

85 .PSECT

86 s -,
87 ; PAPER TAPE PUNCH STATUS CONTROL BLOCK A
88 ;

89 PPSCB: .WORD 0 ;s CONTROLLER I/0 QUEUE LISTHEAD

90 ; (POINTER TO FIRST ENTRY)

91 .WORD -2 ; (POINTER TO LAST ENTRY)

92 .BYTE PR4,74/4 :DEVICE PRI, INTERRUPT VECTOR ADDRESS/4

93 .BYTE 0,4 s CURRENT AND INITIAL TIMEOUT COUNTS

94 .BYTE 0,0 ;CONTROLLER INDEX AND STATUS

95 ; (0=IDLE, 1=BUSY)

96 .WORD 177554 ;ADDRESS OF CONTROL STATUS REGISTER

97 .BLKW 1 ;ADDRESS OF CURRENT I/O PACKET

98 .BLKW 4 ; FORK BLOCK ALLOCATION

99 A,
100 . END i

6.2.2 Driver Code

The code shown below for the punch capability of the PCll is typical
for a conventional driver. In fact, many of the descriptive comments
can be used as a template and easily tailored to a driver for another
device.

£,

The structure of the driver follows the classic RSX-11M form, being -
separated into processing code for:

Initiator

Power Failure

Interrupt

Timeout

Cancel 1I/0
The driver itself services only Write Logical, Attach, and Detach I/0
functions. Attach and Detach result in the punching of 170(10) nulls
each for header and trailer.
Power Failure and Cancel I/0O are handled by means of device timeout,
as is the device-not-ready condition. .

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

The PP driver uses the following Executive services:

SINTXT
SGTPKT
$GTBYT
SDVMSG

SINTSV is used indirectly; it is called by INTSVS (line 165). See
Section 4.3.

Comments beginning with ';;;' indicate that the instruction is being
executed at a priority level greater than or equal to 4.

The code contained in lines 139-141 is used to inhibit the punching of
a trailer on ATT/DET if the task is being aborted. This is especially
desirable when the device is not ready (for example, out of paper
tape) and the system has generated the detach for the aborting
process.

1. .TITLE PPDRV
2. JIDENT /02/
3.
4. ;
5. ; COPYRIGHT 1976, DIGITAL EQUIPMENT CORP., MAYNARD, MASS.
6. 3
7. ; THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
&§. ; ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
9. ; OF DEC'S COPYRIGHT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
10. ; AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.
11. ;
12. ; THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
13. ; NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
14. ; EQUIPMENT CORPORATION.
15. ;
1l6é. ; DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY
17. ; OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.
18. ;
19. ; VERSION 02
20. ;
2l. ; T. J. PASCUSNIK 25-NOV-74
22. ;
23. ; MODIFIED BY:
24. ;
25%. 3 C. A. ANDERS 15-MAR-76
26. ;
27. ; CA001 -- ADDITION OF LOADABLE DRIVER SUPPORT.
28. ;
29. ; T. J. PASCUSNIK 4-APR-76
30. ;
31. ; TP031 -- EXECUTIVE DATA STRUCTURE CHANGES.
32. ;
33. ;
34. ; PCll PAPER TAPE PUNCH DRIVER
35.
36. ; MACRO LIBRARY CALLS
37. ;
38.
39. .MCALL ABODFS$,HWDDFS$,PKTDFS,TCBDF$
40. ABODFS ;DEFINE TASK ABORT CODES
41. HWDDF$;sDEFINE HARDWARE REGISTER SYMBOLS
42. PKTDFS sDEFINE I/0 PACKET OFFSETS
43. TCBDFS$;DEFINE TASK CONTROL BLOCK OFFSETS
44.
45, ;
46. ; EQUATED SYMBOLS
47. ;
48. ; PAPER TAPE PUNCH STATUS WORD BIT DEFINITIONS (U.CW2)
49, ;
50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
8l1.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
87.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.

e we we o we

~o wo ~eo

$

N6 Ne Ne Ne N3 Ne N6 N Ne N6 Ne Ne W4 e N N Ne Se we e

NS NE NP NG NP Ne N we NE Ve Ne Ne Ne we s Ne N Ne e

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

WAIT=100000
ABORT=40000
TRAIL=200

LOCAL DATA

;WAITING FOR DEVICE TO COME ON-LINE (1=YES)

;ABORT CURRENT I/O REQUEST (1=YES)
;CURRENTLY PUNCHING TRAILER (1=YES}

CONTROLLER IMPURE DATA TABLES (INDEXED BY CONTROLLER NUMBER)

CNTBL: .BLKW

.IF GT
TEMP: . BLKW

.ENDC

DRIVER DISPATCH

PPTBL:: .WORD
.WORD
.WORD
.WORD

+

PS$SP11 ;ADDRESS OF UNIT CONTROL BLOCK

PS$P11-1

1 ;s TEMPORARY STORAGE FOR CONTROLLER NUMBER
; CA001
; CAOCL

TABLE

PPINI ;DEVICE INITIATOR ENTRY POINT

PPCAN ;CANCEL I/O OPERATION ENTRY POINT

PPOUT ;DEVICE TIMEOUT ENTRY POINT

PPPWF ; POWERFAIL ENTRY POINT

**~-PPINI-PC11 PAPER TAPE PUNCH CONTROLLER INITIATOR

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST
IS QUEUED AND AT THE END OF A PREVIOUS I/0 OPERATION TO PROPAGATE THE EXECU-

TION OF THE DRIVER.

IS MADE TO DEQUEUE THE NEXT I/O REQUEST. ELSE A RETURN TO THE CALLER IS
EXECUTED. IF THE DEQUEUE ATTEMPT IS SUCCESSFUL, THEN THE NEXT I/O OPER-
ATION IS INITIATED. A RETURN TO THE CALLER IS THEN EXECUTED.

INPUTS:

R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.

OUTPUTS:

IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS WAIT~
ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/O OPER-
ATION IS INITIATED.

.ENABL LSB
SGTPKT ;GET AN I/O PACKET TO PROCESS
PPPWF ;IF CS CONTROLLER BUSY OR NO REQUEST

PPINI: CALL
BCS

THE FOLLOWING ARGUMENTS ARE RETURNED BY $GTPKT:

R1=ADDRESS OF THE I/O REQUEST PACKET.

R2=PHYSICAL UNIT NUMBER OF THE REQUEST UCB.
R3=CONTROLLER INDEX.

R4=ADDRESS OF THE STATUS CONTROL BLOCK.

R5=ADDRESS OF THE Uc THE CONTROLLER TO BE INITIATED.

PAPER TAPE PUNCH I/O REQUEST PACKET FORMAT:

WD. 00
WD. 01
WD. 02
WD. 03
WD. 04
WD. 05
WD. 06
WD. 07

I/0 QUEUE THREAD WORD.

REQUEST PRIORITY, EVENT FLAG NUMBER.

ADDRESS OF THE TCB OF THE REQUESTER TASK.

POINTER TO SECOND LUN WORD IN REQUESTER TASK HEADER.
CONTENTS OF THE FIRST LUN WORD IN REQUESTER TASK HEADER
I/0 FUNCTION CODE (IO.WLB, IO.ATT OR IO.DET).

VIRTUAL ADDRESS OF I/0 STATUS BLOCK.

RELOCATION BIAS OF I/O STATUS BLOCK.

IF THE SPECIFIED CONTROLLER IS NOT BUSY, THEN AN ATTEMPT

(UCB)

124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

141.
l42.

143.
144.
145.
146.
147.
148.
149.
150.
151.

152.
153.
154.

155.
156.
157.
158.
159.

160.
161.
l62.
163.
164.
165.
166.
167.

168.
169.
170.
171.
172.

173.
174.
175.
176.
177.
178.
179.
180.

181.

182.

183.

184.

185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.

e N6 N3 Ne Ne Ne e e we e

108:

208:

~o we e v~

PPPWF:

+

~e we ~e

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.
WD.

MOV
CLR
CMPB
BEQ
MOV
BIT
BNE
BIS

MOV
BIS
TST
BMI
BIC
MOVB
MOV

SPPINT::

308:

408:
508:
60S$:

65$:
708:

~ ~e o we

MINUTE.

10
11
12
13
14
15
16
17
20

RETURN

INTSVS

MOV
MOVB
MOV
MOV
BMI
SUB
BCS
TSTB
BPL
CLRB
BR
CALL
MOVB
JMP
INC
CLR
CALL
MOV
MOV
MOV
SUB
MOV
TST
BPL
MOV
CALL
BR

-- I/0 STATUS BLOCK ADDRESS (REAL OR DISPLACEMENT + 140000).
—-- VIRTUAL ADDRESS OF AST SERVICE ROUTINE.

—-- RELOCATION BIAS OF I/O BUFFER.

-- BUFFER ADDRESS OF I/O TRANSFER.

—-- NUMBER OF BYTES TO BE TRANSFERED.

-- NOT USED.

-- NOT USED.

-- NOT USED.

-- NOT USED.

R5,CNTBL (R3)
U.CW2(R5)

I.FCN+1(R1),#IO.

108
I.TCB(R1l),RO

#T2.ABO,T.ST2(R0)

658

#TRAIL,U.CW2{R5)

#170.,U.CNT(R5)
#WAIT,U.CW2(R5)
@S.CSR(R4)

80%
#WAIT,U.CW2(R5)

S.ITM(R4) ,S.CTM(R4)

#100,@S.CSR(R4)

PP,PR4,PSSP11
U.SCB(R5) ,R4

S.ITM(R4),S.CTM(

S.CSR(R4) ,R4
(R4)+,U.CW3 (R5)
60S
#1,U.CNT(R5)
508

U.CW2 (R5)

308

(R4)

408

SGTBYT

(SP)+, (R4)
SINTXT

U.CNT (R5)

- (R4)

$FORK
U.SCB(R5) ,R4
S.PKT (R4) ,R1
I.PRM+4(R1),R1
U.CNT(R5) ,R1
#1S.5UC&377,R0
U.CW3 (R5)

708
#IE.VER&377,R0
$IODON

PPINI

DEVICE TIMEOUT RESULTS IN A NOT
TIMEOUTS ARE CAUSED BY POWERFAILURE AND PUNCH FAULT CONDITIONS.

;SAVE UCB POINTER FOR INTERRUPT ROUTINE
;CLEAR ALL SWITCHES

WLB/256. ;WRITE LOGICAL BLOCK FUNCTION?
;IF EQ YES

;GET REQUESTOR TCB ADDRESS

;TASK BEING ABORTED? ; TPO31

;IF NE YES - DON'T PUNCH TRAILER
;OTHERWISE FUNCTION IS ATTACH OR DETACH
H SET FLAG TO PUNCH TRAILER

;SET COUNT FOR 170 NULLS

;ASSUME WAIT FOR DEVICE OFF LINE
;DEVICE OFF LINE?

;IF MI YES

;DEVICE ON LINE, CLEAR WAIT CONDITION
;SET TIMEOUT COUNT

; ENABLE INTERRUPTS

POWERFAIL IS HANDLED VIA THE DEVICE TIMEOUT FACILITY AND THEREFORE CAUSES
NO IMMEDIATE ACTION ON THE DEVICE. THIS IS DONE TO AVOID A RACE CONDITION
THAT COULD EXIST IN RESTARTING THE I/O OPERATION

~

**-SPPINT-PC11l PAPER TAPE PUNCH CONTROLLER INTERUPTS

REF LABEL
GENERATE INTERRUPT SAVE CODE ; CA001
GET ADDRESS OF STATUS CONTROL BLOCK
;3 tRESET TIMEOUT COUNT
OINT R4 TO CONTROL STATUS REGISTER
AVE STATUS
F MI, ERROR
ECREMENT CHARACTER COUNT
F CS, THEN DONE
URRENTLY PUNCHING TRAILER?
F PL NO
OAD NULL INTO OUTPUT REGISTER
RANCH TO LOAD IT
GET NEXT BYTE FROM USER BUFFER
LOAD BYTE INTO OUTPUT REGISTER
~EXIT FROM INTERRUPT
;RESET BYTE COUNT
; ;DISABLE PUNCH INTERRUPTS
;: ;CREATE SYSTEM PROCESS
;POINT R4 TO SCB
;POINT R1 TO I/O PACKET
; AND PICK UP CHARACTER COUNT
;CALCULATE CHARACTERS TRANSFERRED
;ASSUME SUCCESSFUL TRANSFER
;DEVICE ERROR?
;IF PL NO
; UNRECOVERABLE HARDWARE ERROR CODE
;INITIATE I/0 COMPLETION
;BRANCH BACK FOR NEXT REQUEST

- OHOH=HWD™

"“"""“"“"“‘"“"W‘“‘
Ne Ne Ne N e e Ne e Ne e wo v we Se [N we wo Ne
~.--o-.~.-~o~ov~o~o-

READY MESSAGE BEING PUT OUT 4 TIMES A

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

198.

199. PPOUT: CLRB @S.CSR(R4) ;;;DISABLE PUNCH INTERRUPT

200. CLRB PS ;3 ;ALLOW INTERRUPTS

201. 80S: MOV #IE.DNR&377,R0 ;ASSUME DEVICE NOT READY ERROR
202. MOV U.CW2(R5) ,R1 sARE WE WAITING FOR DEVICE READY?
203. BPL 708 ;IF PL NO, TERMINATE I/0 REQUEST
204. MOV #IE.ABO&377,R0 ;ASSUME REQUEST IS TO BE ABORTED
205. ASL R1 ;ABORT REQUEST?

206. BMI 708 ;IF MI YES

207. TST @S.CSR(R4) ;s PUNCH READY?

208. BPL 208 ;IF PL YES

209. MOV #T.NDNR,RO ;SET FOR NOT READY MESSAGE

210. MOVB #1,S.CTM(R4) s SET TIMEOUT FOR 1 SECOND

211. DECB S.STS(R4) ;TIME TO OUTPUT MESSAGE?

212. BNE PPPWF :IF NE NO

213. MOVB #15.,5.STS(R4) ;SET TO OUTPUT NEXT MESSAGE IN 15. SECONDS
214. CALLR $DVMSG ;OUTPUT MESSAGE AND RETURN

215. .DSABL LSB

216.

217. ;

218. ; CANCEL I/O OPERATION~FORCE I/0O TO COMPLETE IF DEVICE IS NOT READY
219. ;

220.

221. PPCAN: CMP R1,I.TCB(ROQ) ;1 s REQUEST FOR CURRENT TASK?

222. BNE 108 ;33:IF NE NO

223. BIS #ABORT,U.CW2(R5) ;;;SET FOR ABORT IF DEVICE NOT READY
224. 10S: RETURN 11

225.

226. .END

6.3 HANDLING SPECIAL USER BUFFERS

Some drivers need to handle user buffers in addition to the buffer
that the Executive address-checks and relocates in a normal transfer
request. Address-checking and relocation operations must take place
in the <context of the task issuing the I/O request, because the
mapping registers are set for the issuing task. However, in the
normal driver interface, the task context after the call to S$GTPKT is
not, in general, that of the issuing task.

Thus, drivers that need to handle special buffers must be able to
reference the I/0 packet before it is queued, while the context of the
issuing task is still intact.

The following coding excerpts from a standard RSX-11M driver (the
AFC1ll driver) 1illustrate the handling of a special user buffer. The
key points are:

1. The UC.QUE bit has been set in the control byte (U.CTL) of
the UCB for each device/unit. (This is not shown in the
coding excerpts below.)

2. The routine that is referenced as the initiator entry point
in the driver dispatch table performs the following actions:

a. Picks up the wuser virtual address and conditionally
address—-checks it.

b. Relocates the virtual address, storing the result back
into the packet.

¢. Inserts the packet into the I/O queue and falls through
to the entry point AFINI, which calls S$GTPKT.

3. The driver propagates its own execution by branching back to
AFINI to call SGTPKT.

~e we ~e

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

DRIVER DISPATCH TABLE

SAFTBL::.WORD AFCHK ;DEVICE INITIATOR ENTRY POINT
.WORD AFCAN ;CANCEL I/O OPERATION ENTRY POINT
.WORD AFOUT ;DEVICE TIMEOUT ENTRY POINT
.WORD AFPWF ; POWERFAIL ENTRY POINT

NB NS NG N6 NG NE VO Ne NE e Ne e Ne Ne N Ne NS SNe Ne N8 Ne w8 W Ne wo

AF

10

+

e NE Ne N wE O Ne Ne e Ve N NG e N6 Ne NE Ve e w6 Ne

+

**.AFCHK-AFC11 ANALOG TO DIGITAL CONVERTER CONTROLLER PARAMETER CHECKING

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST

IS RECEIVED FOR THE AFCl1l ANALOG TO DIGITAL CONVERTOR. AFCll I/O REQUESTS
CONTAIN DEVICE DEPENDENT INFORMATION THAT MUST BE CHECKED IN THE CONTEXT

OF THE ISSUING TASK. THEREFORE THE I/O REQUEST IS NOT QUEUED BEFORE CALLING
THE DRIVER.

INPUTS:

R1=ADDRESS OF THE I/O REQUEST PACKET.
R4=ADDRESS OF THE STATUS CONTROL BLOCK.
R5=ADDRESS OF THE UCB OF THE CONTROLER TO BE INITIATED.

OUTPUTS:

THE CONTROL BUFFER IS ADDRESS CHECKED TO DETERMINE WHETHER IT LIES
WITHIN THE ISSUING TASK'S ADDRESS SPACE. IF THE ADDRESS CHECK
SUCCEEDS, THEN THE CONTROL BUFFER ADDRESS IS RELOCATED AND STORED
IN THE I/O PACKET, THE I/O PACKET IS INSERTED IN THE CONTROLLER
QUEUE, AND THE DEVICE INITIATOR IS ENTERED TO START THE CONTROLLER.
ELSE AN ILLEGAL BUFFER STATUS IS RETURNED AS THE FINAL I/O STATUS
OF THE REQUEST.

CHK: MOV R1,R3 ;COPY ADDRESS OF I/O PACKET
MOV I.PRM+6(R3),R0 ;GET VIRTUAL ADDRESS OF CONTROL BUFFER
.IF DF AS$$SCHK!M$SMGE
MoV I.PRM+4(R3),Rl ;SET LENGTH OF BUFFER TO CHECK
CALL SACHCK ;ADDRESS CHECK CONTROL BUFFER
BCC 108§ ; IF CC ADDRESS OKAY
MOV #IE.SPC&377,R0 ;SET ILLEGAL BUFFER STATUS
CALLR $IOFIN ;FINISH I/0 OPERATION
.ENDC
$: CALL SRELOC ;RELOCATE CONTROL BUFFER ADDRESS
MOV R1,I.PRM+6(R3) ;SET RELOCATION BIAS OF CONTROL BUFFER
MOV R2,I.PRM+10(R3) ;SET ADDRESS OF CONTROL BUFFER
MOV R3,R1 ;SET ADDRESS OF I/O PACKET
MOV R4,R0O ;SET ADDRESS OF I/O QUEUE LISTHEAD
CALL SQINSP ; INSERT I/O PACKET IN REQUEST QUEUE

**~AFINI-AFC1ll ANALOG TO DIGITAL CONVERTOR CONTROLLER INITIATOR

THIS ROUTINE IS ENTERED FROM THE QUEUE I/O DIRECTIVE WHEN AN I/O REQUEST

IS QUEUED AND AT THE END OF A PREVIOUS I/0O OPERATION TO PROPAGATE THE EXECU-
TION OF THE DRIVER. IF THE SPECIFIED CONTROLLER IS NOT BUSY, THEN AN ATTEMPT
IS MADE TO DEQUE THE NEXT I/0 REQUEST. ELSE A RETURN TO THE CALLER IS
EXECUTED. IF THE DEQUEUE ATTEMPT IS SUCCESSFUL, THEN THE NEXT I/O OPER-
ATION IS INITIATED. A RETURN TO THE CALLER IS THEN EXECUTED.

INPUTS:
R5=ADDRESS OF THE UCB OF THE CONTROLLER TO BE INITIATED.
OUTPUTS:
IF THE SPECIFIED CONTROLLER IS NOT BUSY AND AN I/O REQUEST IS WAIT

ING TO BE PROCESSED, THEN THE REQUEST IS DEQUEUED AND THE I/O OPER-
ATION IS INITIATED.

AFINI:

~s e e

~ wo S

.ENABL
CALL
BCS

CALL
BR

INCLUDING A USER-WRITTEN DRIVER--TWO EXAMPLES

LSB

SGTPKT ;GET AN I/O PACKET TO PROCESS

AFCAN ;IF CS CONTROLLER BUSY OR NO REQUEST
;I/0 CANCEL (AFCAN) IS A NO-OP FOR AFCll

$IODON ;FINISH I/O OPERATION

AFINI ;GO AGAIN

6-10

APPENDIX A

DEVELOPMENT OF THE ADDRESS DOUBLEWORD

A.1] INTRODUCTION

RSX~11M can be generated as a mapped or an unmapped system. Mapped
systems can accommodate configurations whose maximum physical memory
is 4096K bytes. 1Individual tasks, however, are limited to 64K bytes.
The addressing in a mapped system is accomplished by using virtual
addresses and memory mapping hardware. I/O transfers, however, use
physical addresses 18 bits in length. Since the PDP-11 word size is
16 bits, some scheme is necessary to represent an address internally
until it is actually used in an I/0 operation. The choice was made to
encode 2 words as the internal representation of a physical address,
and to transform virtual addresses for I/0O operations into the
internal doubleword format.

A.2 CREATING THE ADDRESS DOUBLEWORD

For unmapped systems, the doubleword is simply a word of =zeros
followed by a word containing the real address.

On receipt of a QIO directive for mapped systems, the buffer address
in the DPB, which contains a task virtual address, is converted to
address doubleword format.

The virtual address in the DPB is structured as follows:

Bits 0-5 Displacement in terms of 32-word blocks
Bits 6-12 Block number
Bits 13-15 Page Address Register Number (PAR#)

The internal RSX-11M translation restructures this wvirtual address
into an address doubleword as follows:

The relocation base contained in the PAR specified by the PAR# in the
virtual address in the DPB is added to the block number in the virtual
address. The result becomes the first word of the address doubleword.
It represents the nth 32-word block in a memory viewed as a collection
of 32-word blocks. Note that at the time the address doubleword 1is
computed, the wuser 1issuing the QIO directive is mapped into the
processor's memory management registers.

DEVELOPMENT OF THE ADDRESS DOUBLEWORD

The second word is formed by placing the displacement in block (bits
0-5 of wvirtual address) into bits 0-5. The block number field was
accommodated in the first word and bits 6-12 are cleared. Finally, a
6 is placed in bits 13-15 to enable use of PAR #6, which the Executive
uses to service I1/0 for program transfer devices.

For non-processor request (NPR) devices, the driver requirements for
manipulating the address doubleword are direct and are discussed with
the description of U.BUF in Section 4.1.4.1.

APPENDIX B

PDP-11/70 DRIVERS FOR NPR DEVICES

Special features must be built into drivers for non-MASSBUS NPR
(non-processor request) devices attached to a PDP-11/70 with
extended-memory support (22-bit addressing).

Non-MASSBUS NPR devices on the 11/70 must perform I/O transfers via

UNIBUS Mapping Registers (UMRs) as described in the PDP-11/70
Processor Handbook. One UMR is required for each 4K words involved 1in

the transfer--as specified by the contents of U.CNT in the UCB. When
multiple UMRs are required for a transfer, they must be contiguous.

A driver can be assigned UMRs through one of three procedures. These
procedures involve:

1. Dynamically allocating UMRs for the duration of the data
transfer, or

2, Dynamically allocating UMRs for longer periods of time, or

3. Statically allocating UMRs during system generation.

NOTE

In large systems, use of the second and
third procedures above to hold UMRs for
longer periods than necessary can result
in the blocking of other drivers and a
reduction in system throughput.

B.1l CALLING $STMAP AND $MPUBM OR $STMP1l AND S$MPUB1

To obtain UMRs through use of the $STMAP and SMPUBM or $STMP1 and
SMPUBl routines, a driver must:

1. If it uses $STMAP and $SMPUBM or $STMPl and $MPUBl, allocate 6
additional words for a mapping register assignment block at
the end of the device's SCB (at S.MPR). If it uses $STMP1
and $MPUBl, also provide a 10-word block.

2. Call the routine $STMAP or S$STMPl (Set Up UNIBUS Mapping
Address) after getting the I/O packet.

3. Call the routine $MPUBM or $MPUBl1 (Map UNIBUS to Memory)
before initiating a transfer,.

These requirements are detailed in the following three subsections.

B-1 May 1979

FDP-11/70 DRIVERS FOR NPR DEVICES

Note that these routines are only regquired when the driver is
performing a data transfer.

B.1l.1 Allocating a Mapping Register Assignment Block

The status control hlock (SCB) of an NPR device reguires an additional
6 words. This 6-word mapping register assignment block is located at
S.MPR, at the end of the SCB. It does not have to be initialized.
Any initial contents are simply overwritten.

The following example shows the allocation of a mapping register
assignment block. The code is conditionalized on the AND of the two
symbols M$SEXT and MSSMGE (representing extended-memory support and
memory-management unit support, respectively).

.IF DF MS$SSEXT&MSSMGE
.BLKW 6 ;UMR WORK AREA
.ENDC

If the driver does not support parallel NPR operations reguiring UMR
mapping, it calls $STMAP and SMPUBM. If the driver supports parallel

NPR operations requiring UMR mapping, it must call $STMP1l and $MPUBI.
In the latter situation, the six additional words starting at S.MPR in
the SCB are not used but must still be present. In addition, the
driver must provide a 10-word mapping register assignment block for
each data transfer to be mapped as specified in the description of
$STMP1 in Chapter 5.

B.1.2 Calling $STMAP or STMP1

In the coding at the initiator entry point, after the call to S$GTPKT,
the NPR-device driver must call the routine $STMAP or S$STMPl. These
routines dynamically allocate required UMRs. If UMRs are not
available immediately, the driver is blocked. Such blocking, if it
occurs, is completely transparent to the driver. The driver resumes
processing at fork level when the UMRs have been allocated. The
register returns are absolutely identical whether or not blocking has
occurred.

$STMAP or $STMPl stores into U.BUF and U.BUF+2 (in the UCB) a UNIBUS

address that causes the appropriate UMR to be selected for mapping the
transfer. The call to $STMAP or $STMP1l must be conditionalized on
MSSEXT&M$SMGE.

Because $STMAP and $STMPl push the address of routine $SDOUMR+2 on to
the stack before returning to the caller, the driver should not use
the stack for temporary data storage when it calls $STMAP or S$STMPIl.

B.1.3 Calling $MPUBM or $MPUB1

Before executing the transfer, the driver must call $MPUBM or $MPUBI.
These routines get the buffer's 22-bit physical address, and load the
UNIBUS mapping registers so that transfers are mapped directly to the
task's space. The call to $MPUBM or $MPUBl must be conditionalized on
MSSEXT&MS$ SMGE.

B-2 May 1979

PDP-11/70 DRIVERS FOR NPR DEVICES

If the driver calls $STMAP and $MPUBM, the UMRs allocated to it are
deallocated during the call to $IODON or $IOALT. If the driver calls

$STMP1 and 5MPUBl, it must call $DEUMR to deallocate any allocated
UMRs before calling $IODON or S$IOALT.

B.2 CALLING $ASUMR and $DEUMR

Some drivers may not require UMRs to be allocated all of the time, and
yet require UMRs for periods of time longer than the normal time-frame
between $GTPKT and $IODON (or $IOALT). In such cases, there 1is a
second procedure for allocating UMRs.

Through use of the Executive routines $ASUMR and $DEUMR, a driver can
dynamically allocate, retain over a desired time-frame, and deallocate
UMRs. Refer to Section 5.3 for a description of the $ASUMR and $DEUMR
routines.

Similar to the $STMAP/$MPUBM procedure, the use of $SASUMR and $DEUMR
also regquires the allocation of a 6-~word mapping register assignment
block. 1In this instance, however, the block must not be 1located at
offset S.MPR in the SCB. $IODON or $IOALT, when called, will attempt
to deallocate the UMRs of a block found at location S.MPR. To avoid
this, the mapping register assignment block could, for convenience, be
located at S.MPR+2., Alternatively, it could be dynamically allocated
from the pool. Figure B-1 details the format of the 6-word block.

M.LNK Link Word

M.UMRA Address of first assigned UMR

M.UMRN Number of assigned UMRs *4

M.UMVL Low 16 bits mapped by first assigned UMR
M.UMVH High 6 bits of High 2 bits mapped by
M.BFVH physical buffer address UMR (in bits 4 and 5)
M.BFVL L.ow 16 bits of physical buffer address

Figure B-1 Mapping Register Assignment Block

B.3 STATICALLY ALLOCATING UMRs DURING SYSTEM GENERATION

UMRs can be statically assigned during system generation. For systems
with extended-memory support and memory-management unit support, the
system generation procedure defines the symbol N$SUMR egual to a fixed
number of UMRs, multiplied by 4, that are statically assigned to the
system. Before assembling the Executive, the user can cause the
static allocation of an additional number of UMRs by editing file
RSXMC.MAC. The value of the symbol N$SUMR can then be increased to
represent the additional number of desired UMRs multiplied by 4.

RSXMC.MAC further defines the following three symbols, which describe
the first UMR statically allocated during system generation:

US$MRN is the I/O page address of the first UMR register
available for allocation to the user.

B-3 May 1979

PDP-11/70 DRIVERS FOR NRPR DEVICES
USSMLO represents the low-order 16 bits of the 18-bit UNIBUS
address mapped by this UMR.

USSMHI represents the high-order 2 bits of the 18-bit UNIBUS
address. These 2 bits are in bit positions 4 and 5.

These three symbols are not used by the system itself. They are
available for the user's information.

B-4 May 1979

Ne Ne %o Ne N6 W4 We W Ve W& N4 e e e Ve We e W Ve e

“e S Se we we

APPENDIX C

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«11F NDF S$SYDF , oNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CURPORATION, MAYNARD, MASS,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FUR USE UNLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSIUN OF THE ABUVE CUPYRIGHT NOTICE. THIS SUFTWARE, OR
ANY OTHER COP1ES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSUN EXCEPT FOR USE ON SUCH
SYSTEM AND 10 ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMA1ION IN THIS DOCUMENT 1S SUBJECT 10 CHANGE WITHOUT

NOTICE AND SHOULD NOT BE CUNSTRUED AS A COMMITMENT dY DIGITAL

EQUIPMENT CORPORATION.

DEC ASSUMiS NU RESPUNSIBILITY FOR THE USE UR RELIABILILITY OF

1TSS SOFTWARE ON EQUIPMENT WH1CH IS NUT SUPPLIED BY DEC.
«MACKL ABOD¥s,L,B

TASK ABORT CODES

NOTE: S8.COAD=S.CFLT ARE ALSO SST VECTOKR OFFSETS

<

S.COAD=’B’0, ;0DD ADDRESS AND TRAPS TU 4
S.CS8GF='B’2. ;s SEGMENT FAULT

S«.CBPT='B’4. sBREAK POINT OR TRACE TRAP
5.C10T="B"'b. s I0T INSTRUCTION

S.CILI="B’8. s ILLEGAL OR RESERVED INSTRUCTIiON
S.CEMT='B’10, 3NON RSX EMT INSTRUCTION
S.CTRP=‘B’12. :TRAP INSTRUCTION

S.CFLT=’B'14. $11/40 FLOATING POINT EXCEPTION
S.CS8T='B’16. 35ST ABORT=BAD STACK
S.CAST="B"18. $AST ABURT=-BAL STACK
S.CABG='B*20. $ABORT VIA DIRECTIVE
S.CLRF=’B’22. ;TASK LOAD REQUEST FAILURE
S.CCRF=°B’24., $TASK CHECKPOINT READ FAILURE
S.I0MG=’B*26. JTASK EXIT WITH OUTSTANDING I/0
S.PRIY="B"'28. s TASK MEMURY PARITY ERROR

we we we

TASK TERMINATION NUTIFICATION MESSAGE CODES

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

T.NDNR=’B’0
T.NDSE=‘B*2
T.NCWF="B*4
T.NCRE='B’6
T.NDMO='B"8,
T.NLDN='B*12.
T.NLUP="B’14,

«MACRO ABOLFS X,X
+ENDM
«lLNDM

«1IF NDF S$$YDF , .LIST

:DEVICE NOT READY

sLDEVICE SELECT ERROR
$CHECKPUINT WRITE FAILURE
sCARD READER HARDWARE ERRUR
sDISMUOUNT COMPLETE

sLINK DOWN (NETwWORKS)

JLINK UP (NETWURKS)

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF S$SYDF , JNLIST

COPYRIGHYT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE 18 FURNISHED UNDEK A LICENSE FUR USE ONLY UN A
SINGLE COMPUTER SYSTkM AND MAY BE COPIED ONLY WITH THE
INCLUSION UF TRE ABOVE CUPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEKEOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE wHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAILN
IN DEC,

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE wITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS wOT SUPPLIED BY DEC,

e N6 NS W N6 e Ve Ne Va % e Vs We W5 e wa We e v wo

«MACRU CLKDF$,L,B

+

CLOCK QUEUE CONTROL BLOCK UFFSET DEFINITIONS
CLOCK QUEUE CONTRUL BLOCK

THERE ARE FIVE TYPES OF CLOCK QUEUE CONTROL BLOCKS. EACH CONTROL BLOCK HAS
THE SAME FORMAT IN THE FIRST FIVE WORDS AND DIFFERS 1IN THE REMAINING THREE,

THE FOLLOWING CONTROL BLOCK TYPES ARE DEFINED:

Ne %o e We % we “e we w» v

C.MRKT=’B"’0 sMARK TIME REQUEST

C.SCHD='B"'2 sTASK REQUEST WITH PEKIODIC RESCHEDULING
C.SSHT='B’4 $SINGLE SHOT TASK REQUEST

C.SYST=’B’6 sSINGLE SHOT INTERNAL SYSTEM SUBROUTINE (IDENT)
C.8YTK='B’8, sSINGLE SHOT INTERWAL SYSTEM SUBROUTINE (TASK)
C.CSTP='B"10. sCLEAR STOP B1T (CONDITIONALIZED UN SHUFFLING)

CLOCK QUEUE CONTROL BLOCK TYPE INDEPENDENT OFFSET DEFINTIONS

. e we

+ASECT
=0
C.LNK: ‘L’ .BLKW
C.RQT:°L’ .BLKB
C.EFN:‘L’ .BLKB
C.TCB:’L’ oBLKW
C.TIM:’L® .BLKW

-#CLOCK QUEUE THREAD WURD

JREQUEST TYPE

sEVENT FLAG NUMBER (MARK TIME ONLY)

s TCB ADDRESS OR SYSTEM SUBROUTINE IDENTIFICATION
JABSOLUTE TIME wHEN REQUEST COMES DUE

[SEENN N

CLOCK QUEUE CONTROL BLOCK=MARK TIME DEPENDENT OFFSET DEFINITIONS

- we W

«=C.TIM+4 s START OF DEPENDENT AREA
C.AST: L°® «BLKW 1 sAST ADDRESS

C.SRC:‘L’ «BLKW 1 sFLAG MASK WURD FOR °*BIS*® SOUKRCE
CeDST:’L’ <BLKW 1 sADDRESS OF °‘BIS’ DESTINATION

CLOCK QUEUE CONTROL BLOCK=PERIODIC RESCHEDULING DEPENDENT OFFSET DEFINITIONS

~e w we

«=C.TIM+4 $START OF DEPENDENT AREA
C.RSI:°L’ .BLKW 2 s RESCHEDULE INTERVAL IN CLOCK TICKS
C.UIC: ‘L’ -BLKW 1 3 SCHEDULING UIC

CLOCK QUEUE CONTROL BLOCK=SINGLE SHOT DEPENDENT OFFSET DEFINITIONS

. we we

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«=CTIN+4 ?START OF DEPENDENT AREA
+BLKW 2 ;TWU UNUSED wORDS A
+BLKW 1 $ SCHEDULING UIC) ‘

CLOCK OQUEUE CONTROL BLOCK=SINGLE SHOT INTERNAL SUBROUTINE OFFSET DEFINITIONS
THERE ARE TwWO TYPE CUDES FOR THIS TYPE OF REQUEST:’L’

TYPE 6=SINGLE SHUT INTERNAL SUBROUTINE WITH A 16 BIT VALUE AS AN IDENTIFIER.
TYPE 8=SINGLE SHOT INTERNAL SUBROUTINE WITH A TCB ADDRESS AS AN IDENTIFIER.

~e Ne %o Ve wa Se ve wa

«=C.TIM+4 s START UF DEPENDENT AREA
C.SUB:‘L’ .BLKWw 1 ;SUBRUOUTINE ADDRESS
C.AR5:°L* .BLKW 1 sRELOCATIUN BASE (FOR LUADABLE DRIVERS) .
« BLRW 1 JUNE UNUSED WORD ’
C.LGTH='B". $LENGTH UF CLUCK QUEUE CONTROL BLOCK
«PSECT
+.MACRU CLKDFKF$ X,Y
+ENDM
«ENDM
+11F NDF S&SYDF , «LIST Ay,

e %e Ws %a W V6 e Ve Ve Vs We % Ve Ve Ve Ve Ve Ve We we

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«I1F NDF S8$YDF , oNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CURPORATIUN, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND mAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COrIES THEREOFK, MAY NOT BE PRUVIDED OR UOTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TUO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SUFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE wWITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A CUMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTwWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC,

«MACRU DCBDFs,L.,B

DEVICE CONTROL BLOCK

THE DEVICE CONTKROL BLUCK (DCB) DEFINES GENERIC INFORMATION ABOUT A DEVICE
TYPE AND THE LOWEST AND HIGHEST UNIT NUMBERS. THERE IS AT LEAST ONE DCB
FOR EACH DEVICE TYPE IN A SYSTEM. FOR EXAMPLE, IF THERE ARE TELETYPES IN A

SYSTEM, THEN THERE 18 AT LEAST ONE DCB WITH THE DEVICE NAME °‘TT’.

1F PART

OF THE TELETYPES WERE INTERFACED VIA DL11«A‘’S AND THE REST VIA A DH11, THEN

THERE WOULD BE TwWO DCB’S. ONE FOR ALL DL11=A INTERFACED TELETYPES,

FOR ALL DH11 INTERFACED TELETYPES,

AND ONE

Ne We w5 We W we We U5 We ws we e

<ASECT
.=0
D.LNK:’L* BLKW
D.UCB:‘L’ JBLKW
D.NAM:’L® JBLKW

D.UNIT:‘L* .BLKB 1

+«BLKB

D.UCBL: ‘L’ +BLKW 1

D.DSP:’L’ JBLKW
D.MSK: ‘L’ JBLKW

1
1
1

1

1
1

sLINK TO NEXT DCB

JPOINTER TO FIRST UNIT CONTROL BLOCK

s GENERIC DEVICE NAME

;LOWEST UNIT NUMBER COVERED BY THIS DCB
sHIGHEST UNIT NUMBER COVERED BY THIS DCB
sLENGTH OF EACH UNIT CONTROL BLOCK IN BYTES
sPOINTER TU DRIVER DISPATCH TABLE

sLEGAL FUNCTION MASK CODES 0=15.

«BLKw 1 $CONTROL FUNCTION MASK CODES 0-15,

«BLKW 1 3NOP’ED FUNCTION MASK CUDES 0=15.

«BLKW 1 ;ACP FUNCTION MASK CODES 0=15,

«BLKw 1 sLEGAL FUNCTION MASK CODES 16.-31.

o« BLKW 1 sCONTROL FUNCTION MASK CUDES 16.-31.

«BLKW 1 sNOP’ED FUNCTION MASK CODES 16.=-31.

«BLKW 1 JACP FUNCTIUN MASK CODES 16.-31.
D.FCB:‘L’ .BLKW 1 sLOADABLE DRIVER PCB ADDRESS

«PSECT
+

~. we we

D.VINI="B‘0
D.VCAN=°B’2
D.VOUT=’B’4
D.VPWF='B’®

«MACRO DCBDFs,X,Y

+ENDM
+ENDM

«IIF

NDF

DRIVER DISPATCH TABLE OFFSET DEFINITIONS

sDEVICE INITIATOR

3CANCEL CURRENT 1/0 FUNCTION
JDEVICE TIMEOUT

sPOWERFAIL RECOVERY

«LIST

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF,S$$YDF, .NLIST
.TITLE F11TBL FILES i1 TABLE DEFINITIONS
«IDENT 70022/

COPYRIGHT (C) 1976, DIGITAL EQUIPMENT (ORP., MAYNARD, MASS.

THIS SOFTWARE 1S FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
OF DEC’S COPYRIGHT NOTICE) ONLY FOR USk IN SUCH SYSTEM, EXCEPT
AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE wITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A CUOMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE WSE OR RELIABILITY
OF ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC,

ELLEN R SIMICH 16=JUN=76 3=MAR=77 1iM LOCK CHANGE
ANDREW C, GOLDSTEIN 30 OCT 75 17:55
PETER H. LIPMAN 12/27/73

e e e W W We Ne Ve Ve e We e Ve Ve e Ve Ve e

«MACRO F11DFs

VOLUME CONTROL BLOCK

~e o ws

«ASECT
.=0
V.TRCT: o BLKW 1 $ TRANSACTION COUNT
V.IFWI: .BLKw 1 s INDEX FILE WINDOw
« IF DF,R$$11D
V.S5TD: .BLKW 1 3STD OF TASK CHARGED WITH NODE
<ENDC
V.FCB: .BLKW 2 sFILE CONTROL BLOCK LIST HEAD
V.IBLB: .BLKB 1 sINDEX BIT MAP 18T LBN HIGH BYTE
V.IBSZ: .BLKB 1 s INDEX BIT MAP SIZE IN BLOCKS
«BLKW 1 s INDEX BITMAP 1ST LBN LOW BITS
V.FMAX: .BLKW 1 $MAX NO. OF FILES ON VOLUME
V.WISZ: .BLKB 1 $DFLT SIZE OF WINDOW IN NO, OF RTRV PTRS
sVALUE Is < 128.
V.SBCL: .BLKB 1 sSTORAGE BIT MAP CLUSTER FACTOR
V.SBSZ: .BLKW 1 sSTORAGE BIT MAP SIZE IN BLOCKS
V.SBLB: .BLKB 1 sSTORAGE BIT MAP 1ST LBN HIGH BYTE
V.FIEX: .BLKB 1 sDEFAULT FILE EXTEND SIZE
«BLKW 1 $STORAGE BIT MAP 1ST LBN LOw BITS
IF DF,R$$11M
V.VOWN: .BLKw 1 3 VOLUME OWVER'S UIC
V.VPRO: .BLKW 1 ;VOLUME PROTECTION
V.VCHA: .BLKW 1 ; VOLUME CHARACTERISTICS
«IFTF
V.FPRO: .BLKW 1 :VOLUME DEFAULT FILE PROTECTION
LIFT
V.VFSQ: .BLKw 1 sVOLUME FILE SEQUENCE NUMBER
«IFF
«BLKW 1 ;NOT USED
<ENDC
V.FRBK: ,BLKB 1 sNUMBER OF FREE BLOCKS ON VOLUME HIGH BYTE
V.LRUC: .BLKB 1 ;COUNT OF AVAILABLE LRU SLOTS IN FCB LIST
«BLKW 1 sNUMBER OF FREE BLOCKS ON VOLUME LOW BITS
«IF DF,R$811D
V.LABL: .BLKB 12. ¢ VOLUME LABEL (ASCII)
«ENDC
V.STAT: .BLKB 1 3 VOLUME STATUS BYTE, CONTAINING THE FOLLOWING
VC.IFw= 1 ; INDEX FILE IS WRITE ACCESSED
VC.BMw= 2 : STORAGE BITMAP FILE IS WRITE ACCESSED
V.FFNU: .BLKB 1 7 FIRST FREE INDEX FILE BITMAP BLOCK
V.LGTH: :SIZE IN BYTES OF VCB

FILE CUNTROL BLUCK

w~e %o we

«ASECT
«=0
F.LINK: .BLKw 1 ;FCB CHAIN POINTER
o IF DF,R$$11D
F.FEXT: J.BLKW 1 sPUINTER TO EXTENSION FCB
F.STD: BLKW 1 :STD UF TASK CHARGED WITH NODE
<ENDC

C-6

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

FoFNUM: BLKW
F.FSEQ: .BLKw

F.FSON: .BLKB
F.FCWNS: .BLKW
F.FPRO: BLKw
F.UCHA: .BLKB
F+SCHA: .BLKB
F.HDLB: .BLKW

F.LBN: .BLKW

F.SIZE: .BLKW
F.NACS: .BLKB
F.NLCK: .BLKbB

S5.5TBK=.
F.STAT:

F.NWAC: .BLKB
+«BLKB

I e

~N

- -

=F.LBN

1
1

sFILE NUMBER

JFILE SEQUENCE NUMBER

$NOT USED

sFILE SEGMENT NUMBER

sF1lLe OWNER'S UIC

sFILE PROTECTION CODE

;USER CONTROLLED CHARACTERISTICS
3SYSTEM CONTROLLED CHARACTERISTICS
sFILE HEADER LUGICAL BLOCK NUMBER
SBEGINNING OF STATISTICS BLOCK
sLBN OF VIRTUAL BLOCK 1 IF CONTIGUOUS
30 IF NON CONTIGUOUS

$SIZE OF FILE IN BLOCKS

sNO. OF ACCESSES

sNO. OF LOCKS

3SIZE OF STATICS BLOCK

;FCB STATUS WORD

sNUMBER OF wRITE ACCESSORS
#STATUS BITS FOR FCB CONSISTING OF

FC.WAC=100000
FC.DIR=40000
FC.CEF=20000
FC.FC0=10000

F.DREF: oBLKW 1
F.DRNM: .BLKW 1
«lF DF,R$S11M
F.FEXT: .BLKWw 1
+ENDC
F.FVBN: .BLKW 2
F.LKL: .BLKW 1
FeLGTH:
;
;7 WINDOW
’
«ASECT
=0
W.CTL: .BLKW 1
WI.RDV=400

WI.WRV=1000
WI.EXT=2000
WI.LCK=4000

sSET IF
$SET IF
sSET IF
sSET IF

FILE ACCESSED FOR WRITE

FCB 1S IN DIRECTORY LRU
DIRECTORY EOF NEEDS UPDATING
TRYING TO FORCE DIRECTORY CONTIG

sDIRECTORY EOF BLOCK NUMBER
$1ST WORD OF DIRECTORY NAME

sPOINTER TO EXTENSION FCB

JSTARTING VBN OF THLS FILE SEGMENT
sPOINTER TO LOCKED BLOCK LIST FOR FILE
;S1IZE IN BYTES OF FCB

sLOW BYTE = # OF MAP ENTRIES ACTIVE
sHIGH BYTE CONSISTS OF THE FOLLOWING BITS
sREAD VIRTUAL BLOCK ALLOWED IF SET
swRITE VIRTUAL BLOCK ALLOWED IF SET

sEXTEND
$SET IF
sSET IF
¢SET IF
;BYPASS

ALLOWED IF SET

LOCKED AGAINST SHARED ACCESS
DEACCESS LOCK ENABLED

MANUAL UNLOCK DESIRED

ACCESS INTERLOCK IF SET

W1.,DLK=10000
WI.EXL=40000
WI.BPS=100000
o 1IF DF,R$811M
W.VBN: .BLKB 1
W.WISZ: .BLKB 1
o« BLKW 1
W.,FCB: .BLKW 1
«ENDC
«IF DF,R$$11D
W.FCB: o BLKW 1
WeSTD: <BLKW 1
W.VBN: .BLKB 1
W.WISZ: .BLKB 1
« BLKW 1
«ENDC
WeLKL: oBLKW 1

W.RTRV:

we we wo

«ASECT
«=0
L.LNK: oBLKW
L.wIl: LBLKW
'IP‘
L.STD: +BLKW
LeVB1: oBLKw
L.¥B2: JBLKW
L+.CNT: .BLKBE
«BLKB
«1FF

LOCKED BLOCK LIST NODE

1
DF,Rss11D

- N e

sHIGH BYTE OF 1ST VBN MAPPED BY WINDOW
;SIZE IN RTRV PTRS OF WINDOW (7 BITS)
sLOW ORDER WURD OF 1ST VBN MAPPED
sFILE CONTROL BLOCK ADDRESS

sFILE CONTROL BLOCK ADDRESS

$STD OF TASK CHARGED WITH WIDOW NODE
sHIGH BYTE OF 1ST VBN MAPPED BY WINDOW
$SIZE IN RTRV PTRS UF WINDOW (7 BITS)
sLOW ORDER WORD OF 1ST VBN MAPPED

$POINTER TO LIST OF USERS LOCKED BLOCKS
sOFFSET TO 1ST RETRIEVAL POINTER IN WINDOW

sLINK TO NEXT NODE IN LIST
;POINTER TO WINDOW FOR FIRST ENTRY

;POINTER TO STD OF TASK NODE CHARGED TO
$STARTING VBN OF FIRST ENTRY

s STARTING VBN OF SECOND ENTRY

sCOUNT FOR FIRST ENTRY

$COUNT FOR SECOND ENTRY

L.vB1:
L.CNT:

«BLKB
«BLKB
«BLKW
+ENDC

«PSECT
«MACRO
«ENDM
«ENDM
«1IF

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

1 sHIGH ORDER VBN BYTE
1 sCOUNT FOR ENTRY

1

F11DFs

F11DFs

F11DFs

NDF ,588YDF,.LIST

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«I1F NDF S$8YDF , oNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT 15 SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

e W6 W6 e N Ve Ve Te Ve Ve Ve e Ve T Ve We e Ve Ve we

+«MACRO HDRDFS,L,B

+

we we weo

«ASECT
‘=0
H.CSP:"L‘.BLKW
HeHDLN3: ‘L * ,BLKW
H.EFLM: L’ .BLKW
HeCUXC:’L’ BLKW
HeDUIC: ‘L’ .BLKW
HeIPS:’L’ .BLKW
H IPC: L .BLKW
H.ISP: 'L’ BLKW
He.ODVA:’L’,BLKW
H.ODVL:‘L* .BLKW
H.TKVA:‘’L’ .,BLKW
HeTKVL:’L’.BLKW
HePFVA: ‘L’ (BLKW
HeFPVA:‘L’.BLKW
HeRCVA: ‘'L’ ,BLKW
H.EFSV: 'L’ .BLKW
HoFPSA: L’ +BLKW
HoWND: L’ BLKW
HeDSW? ‘L’ .BLKW
H.FCS5:°L°.BLKW
H.FORT: L* BLKwW
He.OVLY: ‘L’ .BLKW
H,VEXT: 'L’ .BLKW
H.SPRI:‘L’.BLKB
H,NML: ‘L’ .,BLKB
HeRRVA: ‘L’ ,BLKW

«BLKW
HeGARD: ‘L’ .BLKW
HoNLUN:'L‘.BLKW
HeLUN: 'L’ .BLKW

+

s we ®e

.=0

W.BPCB: 'L’ .BLKW
WeBLVRS ‘L’ BLKW
WeBHVR: ‘L’ .BLKW
W.BATT: ‘L’ .BLKW
WeBSIZ:’L’.BLKW
WeBOFF3: ‘L’ .BLKW
W.BFPD:°L‘.BLKB
WeBNPD:’L’ .BLKB

TASK HEADER OFFSET DEFINITIONS

Y T N R o e T S o e i e e S SR

WINDOW BLOCK OFFSETS

e b e e e b

sCURRENT STACK POINTER

SHEADER LENGTH IN BYTES

$EVENT FLAG MASK wWORD AND ADDRESS
sCURRENT TASK UIC

sDEFAULT TASK UIC

sINITIAL PROCESSOR STATUS WORD (PS)
sINITIAL PROGRAM COUNTER (PC)

s INITIAL STACK POINTER (SP)

;0DT SST VECTOR ADDRESS

30ODT SST VECTOR LENGTH

$TASK SST VECTOR ADDRESS

s TASK SST VECTOR LENGTH

sPOWER FAIL AST CONTROL BLOCK ADDRESS

sFLOATING POINT AST CONTROL BLOCK ADDRESS

$RECIEVE AST CONTROL BLOCK ADDRESS
JEVENT FLAG ADDRESS SAVE ADDRESS

JPOINTER TO FLOATING POINT/EAE SAVE AREA

sPOINTER TO NUMBER OF WINDOW BLOCKS
sTASK DIRECTIVE STATUS WORD

sFCS IMPURE POINTER

sFORTRAN IMPURE POINTER

sOVERLAY IMPURE POINTER

sWORK AREA EXTENSION VECTOR POINTER
sPRIORITY DIFFERENCE FOR SWAPPING
sNETWORK MAILBOX LUN -

JRECEIVE BY REFERENCE AST CONTROL BLOCK ADDRESS

sRESERVED WORDS

sPOINTER TO HEADER GUARD WORD
sNUMBER OF LUN’S

}START OF LOGICAL UNIT TABLE

sPARTITION CONTROL BLOCK ADDRESS

sLOW VIRTUAL ADDRESS LIMIT

sHIGH VIRTUAL ADDRESS LIMIT

sADDRESS OF ATTACHMENT DESCRIPTOR
7SIZE OF WINDOW IN 32W BLOCKS
sPHYSICAL MEMORY OFFSET IN 32W BLOCKS
sFIRST PDR ADDRESS

;NUMBER OF PDR’S TU MAP

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

W.BLPD: L’.BLKW 1
W.BLGH: 'L’
«PSECT

«MACRU HDRDFs$ X,X
+ENDM
+«ENDM

«IIF NDF S$SYDF , .LIST

sCONTENTS OF LAST PDR
sLENGTH OF WINDOW DESCRIPTOR

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF S88YDF , JNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

e e W2 Ve W6 Ve We Ve Ve Ve %o Vs e Ve e e Ve we s Wy

+MACRO HWDDFs,L,B

+
HARDWARE REGISTER ADDRESSES AND STATUS CODES

w~e e wa

MPCSR=’B’177746 s ADDRESS OF PDP=11/70 MEMORY PARITY REGISTER

MPAR=’B*172100 s ADDRESS OF FIRST MEMORY PARITY REGISTER

PIRQ=’B’177772 ;PROGRAMMED INTERRUPT REQUEST REGISTER

PRO=°B’0 sPROCESSOR PRIORITY 0

PR1=‘B‘40 sPROCESSOR PRIORITY 1

PR4=°B°200 sPROCESSOR FPRIORITY 4

PR5=°B’240 sPROCESSOR PRIORITY 5

PR6=°B’300 sPROCESSOR PRIORITY 6

PR7=‘B’340 sPROCESSOR PRIORITY 7

PS='B*177776 sPROCESSOR STATUS WORD

SWR=‘’B’177570 ;CONSOLE SWITCH AND DISPLAY REGISTER

TPS5=’B*177564 sCONSOLE TERMINAL PRINTER STATUS REGISTER
+

o we we

EXTENDED ARITHMETIC ELEMENT REGISTERS

«IF DF
AC=°B°177302 s ACCUMULATOR
MQ=’B’177304 sMULTIPLIER=QUOTIENT
SC='B'177310 $SHIFT COUNT

+ENDC

+

~e e we

«IF DF MS$SMGE

MEMORY MANAGEMENT HARDWARE REGISTERS AND STATUS CODES

KDSAR0=°B*172360 sKERNEL D PAR 0
KDSDRO=°B*172320 $KERNEL D PDR 0
KISAR0=°B*172340 JKERNEL I PAR 0
KISAR5=°B"172352 JKERNEL I PAR 5
KISAR6=‘B’172354 JKERNEL I PAR 6
KISAR7=’B*172356 3KERNEL I PAR 7
KISDR0=°B’172300 sKERNEL I PDR 0
KISDR6=°B°172314 sKERNEL I PDR 6
KISDR7="B*172316 $KERNEL I PAR 7
SISDRO=’B*172200 s SUPERVISOR I PDR 0
UDSARO=’B’177660 sUSER D PAR O
UDSDRO='B*177620 sUSER D PDR 0
UISARO=’B‘177640 SUSER I PAR O
UISAR4=°B’177650 sUSER I PAR 4
UISAR5='B°177652 JUSER I PAR 5

Cc-11

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

UISAR6=‘'B’177654 sUSER I PAR 6
UISAR7='B*177656 SUSER I PAR 7
UISDRO="B’177600 JUSER I PDR 0
UISDR4='B’177610 JUSER I PDR 4
UISDR5="B’177612 $USER I PDR 5
UISDR6=‘'B’177614 SUSER I PDR 6
UISDR7=’B’177616 sUSER I PDR 7
UBMPR=‘B*170200 JUNIBUS MAPPING REGISTER 0
CMODE=’B°140000 $CURRENT MODE FIELD OF PS WORD
PMODE='B*30000 :sPREVIOUS MODE FIELD OF PS WORD
SR0=°B’177572 s SEGMENT STATUS REGISTER 0
SR3=‘’B’172516 sSEGMENT STATUS REGISTER 3
«ENDC
Hhs
¢ FEATURE SYMBOL DEFINITIONS
’-
FE.EXT=‘'B’1 311770 EXTENDED MEMORY SUPPORT
FE.MUP='B’2 sMULTI=-USER PROTECTION SUPPORT
FE.EXV='B‘4 sEXECUTIVE IS5 SUPPORTED TO 20K
FE.DRV='B‘10 s LOADABLE DRIVER SUPPORT
FE.PLA=’B°20 sPLAS SUPPORT
FE.CAL='B’40 sDYNAMIC CHECKPOINT SPACE ALLOCATION
FE.,PKT=’B*100 s PREALLOCATION OF 1/0 PACKETS
FE.EXP='B*200 JEXTEND TASK DIRECTIVE SUPPORTED
FE.LSI="B’'400 sPROCESSOR IS AN LSI-11
FE.CEX='B°20000 sCOM EXEC IS LOADED
FE.MXT='B°40000 sMCR EXIT AFTER EACH COMMAND MODE
FE.NLG=°B’100000 sLOGINS DISABLED = MULTI-USER SUPPORT
+MACRO HWDDFs X,Y
<ENDM
<ENDM

«LIF NDF S8SYDF , .LIST

Cc-12

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«LIF NDF S$$YDF , .NLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CURPORATIOUN, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS., TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT wHICH IS NOT SUPPLIED BY DEC.

e Ve Ve W6 e W6 We e Mg Ve Ve Ve Ve Vs We %o Ve Ve Vo we

«MACRU LCBDFs,L,B
LOGICAL ASSIGNMENT CONTROL BLOCK

THE LOGICAL ASSIGNMENT CONTROL BLOCK (LCB) IS USED TO ASSOCIATE A
LOGICAL NAME WITH A PHYSICAL DEVICE UNIT. LCB°S ARE LINKED TOGETHER
TO FORM THE LOGICAL ASSIGNMENTS OF A SYSTEM. ASSIGNMENTS MAY BE ON
A SYSTEM WIDE OR LOCAL (TERMINAL) BASIS.

Ne %6 %e %e Ve Ve We %

«ASECT
«=0
L.LNK:'L’ oBLKW 1 sLINK TO NEXT LCB
L.NAM:‘L’ BLKW 1 sLOGICAL NAME OF DEVICE
L.UNIT:°L’ .BLKB 1 s LOGICAL UNIT NUMBER
L.TYPE: ‘L’ BLKB 1 sTYPE OF ENTRY (0=SYSTEM WIDE)
L.UCB: ‘L’ BLKW 1 3TI UCB ADDRESS
LeASG:‘L’ BLKW 1 sASSIGNMENT UCB ADDRESS
L.LGTH=’B’.=LJ.LNK $LENGTH OF LCB

«PSECT

«MACRO LCBDF§,X,Y

«ENDM

+ENDM

JIIF NDF S$$YDF , o LIST

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF S8S8YDF , oNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
1TS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

e %o W %e T3 Ne NE e Ve Ve Ve Vs Ve We e We We e e we

«MACRO PCBDF$ L,B,SYSDEF

+
PARTITION CONTROL BLOCK OFFSET DEFINITIONS

. e ws

«ASECT
«=0
P.LNK:‘L’.BLKW 1 sLINK TO NEXT PARTITION PCB
P.PRI:‘L’.BLKB 1 sPRIORITY OF PARTITION
P.I0C:‘L’.BLKB 1 31/0 + 1L/0 STATUS BLOCK COUNT
P.NAM:‘L’.BLKw 2 sPARTITION NAME IN RADS50
P.SUB:’'L’.BLKW 1 sPOINTER TO NEXT SUBPARTITION
P.MAIN:‘L’.BLKwW 1 sPOINTER TO MAIN PARTITION

«IF NB SYSDEF

«IF NDF Ms$$SMGE

P.HDR: ‘L’ tPOINTER TO HEADER CONTROL BLOCK

«ENDC

«IFTF
P.REL:“L’.BLKW 1 3 STARTING PHYSICAL ADDRESS OF PARTITION
P.BLKS: ‘L’
P.SIZE:’L'".BLKw 1 3SIZE OF PARTITION IN BYTES
P.WAIT:’L’.BLKW 1 sPARTITION WAIT QUEUE LISTHEAD (2 WORDS)
P.SWSZ:’L*.BLKW 1 sPARTITION SWAP SIZE (SYSTEM ONLY)
P,BUSY:‘L’.BLKB 2 sPARTITION BUSY FLAGS

P.OWN: 'L’
P.TCB: 'L’ .BLKW
P.STAT:’L’.BLKW

sTCB ADDRESS OF OWNER TASK
sPARTITION STATUS FLAGS

[y

«IFT

«IF DF MSSMGE
P.HDR:‘L’ .BLKW 1 sPOINTER TO HEADER CONTROL BLOCK
«ENDC

P.PRO: ‘L’ +BLKW
P.ATT: L’ JBLKW

sPROTECTION WORD [DEWR,DEWR,DEWR,DEWR)
$ATTACHMENT DESCRIPTOR LI1STHEAD

N -

«1F NDF PSSLAS

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

P.LGTH=’B‘P.PRO sLENGTH OF PARTITION CONTROL BLOCK
«IFF
P.LGTH='B"’, s LENGTH OF PARTITION CONTROL BLOCK

«ENDC

«IFF
«PSECT

+
PARTITION STATUS WORD BIT DEFINITIONS

w5 we we

PS.0UT='B’100000 sPARTITION IS OUT OF MEMORY(1=YES)
PS.CKP=°B'40000 sPARTITION CHECKPOINT IN PROGRESS (1sYES)
PS.CKR=’B*20000 sPARTITION CHECKPOINT IS REQUESTED (1=YES)
PS.CHK=’B*10000 sPARTITION IS NOT CHECKPOINTABLE (1=YES)
PS.FXD='B*4000 sPARTITION IS FIXED (1=YES)

PS.PER=‘B’2000 sPARITY ERROR IN PARTITION (1=YES)
PS.LIO="B*1000 sMARKED BY SHUFFLER FOR LONG I/0 (1=YES)
PS.NSF="B*400 sPARTITION 1S NOT SHUFFLEABLE (1=YES)
PS.COM=°B’200 sLIBRARY OR COMMON BLOCK (1=YES)

PS.,PIC=°B*100 sPOSITION INDEPENDENT LIBRARY OR COMMON (1=YES)
PS.518="B"'40 $SYSTEM CONTROLLED PARTITION (1=YES)
PS.DRV="B’20 sDRIVER IS LOADED IN PARTITION (1=YES)
PS.DEL=’B’10 sPARTITION SHOULD BE DELETED WHEN NOT ATTACHED (1=YES)
PS.APR=‘B’7 sSTARTING APR NUMBER MASK

+
ATTACHMENT DESCRIPTOR OFFSETS

~o we ws

«ASECT
=0
A.PCBL:‘L’.BLKW 1 sPCB ATTACHMENT QUEUE THREAD WORD
A.PRI:‘L’,BLKB 1 sPRIORITY OF ATTACHED TASK
A.IOC: ‘L’ .BLKB 1 51/0 COUNT THROUGH THIS DESCRIPTOR
A.TCB:‘L’°.BLKW 1 s TCB ADDRESS OF ATTACHED TASK
A.TCBL:'L’.BLKW 1 ;TCB ATTACHMENT QUEUE THREAD WORD
A.STAT:’L’.BLKE 1 s STATUS BYTE
AJMPCT:’L’.BLKBE 1 sMAPPING COUNT OF TASK THRU THIS DESCRIPTOR
A.PCB:‘L’,BLKW 1 sPCB ADDRESS OF ATTACHED TASK
A.LGTH=‘B°’, sLENGTH OF ATTACHMENT DESCRIPTOUR

+
ATTACHMENT DESCRIPTOR STATUS BYTE BIT DEFINITIONS

we %o e

«PSECT
AS.DEL=’B’10 :TASK HAS DELETE ACCESS (1=YES)
AS.EXT='B’4 ;TASK HAS EXTEND ACCESS (1=YES)
AS.WRT='B’2 3 TASK HAS WRITE ACCESS (1=YES)
AS.RED=‘B’1 sTASK HAS READ ACCESS (1=YES)
«ENDC

+MACRO PCBDFS$ X,¥,2
<ENDM
+ENDM

«IIF NDF S$$YDF , .LIST

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF S$$YDF , oNLIST

COPYRIGHT (C) 1974, 1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPLES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE wHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WwITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

e We W2 N N We e Vs e We Ve Ve We V2 Ve Ve Ve W VI g

«MACRO PKTDF$,L,B,SYSDEF

+
ASYNCHRONOUS SYSTEM TRAP CONTROL BLOCK OFFSET DEFINITIONS

ARE RELIED UPON IN THE ROUTINE SFINXT IN THE MODULE SYSXT.

Na v w2 % %o wa

«ASECT
«=177774
A.KSR5:‘L’ BLKW 1 :SUBROUTINE KISARS BIAS (A.CBL=0)
A.DQSR:‘L* BLKW 1 sDEQUEUVE SUBROUTINE ADDRESS (A.CBL=0)

«BLKW
A.CBL:‘L’ JBLKW
A.BYT:'L*® .BLKW

1 $AST QUEUE THREAD wORD
1
1

A.AST:’L’ BLKW 1 $AST TRAP ADDRESS
1
1

sLENGTH OF CONTROL BLOCK IN BYTES

A.NPR:‘L’ .BLKW :NUMBER OF AST PARAMETERS
A.PRM:'L*° .BLKW $FIRST AST PARAMETER

+
I/0 PACKET OFFSET DEFINITIONS

~e v v

+ASECT
«=0
I.LNK:‘L® .BLKW 1 ;1/0 QUEUE THREAD WORD
I.PRI:’L’ .BLKB 1 JREQUEST PRIORITY
I.EFN:‘L° .BLKB 1 JEVENT FLAG NUMBER
I.TCB:'L’ oBLKW 1 s TCB ADDRESS OF REQUESTOR
I.LN2:°L’ «BLKW 1 sPOINTER TO SECOND LUN WORD
I.UCB: L’ +BLKW 1 sPOINTER TO UNIT CONTROL BLOCK
I.FCN:’L® .BLKW 1 31/0 FUNCTION CODE
1.10S8B:°L’ «BLKW 1 :VIRTUAL ADDRESS OF 1/0 STATUS BLOCK
« BLKW 1 :I/0 STATUS BLOCK RELOCATON BIAS
«BLKW 1 ;I/0 STATUS BLOCK ADDRESS
I.AST:’L’ +BLKW 1 ;AST SERVICE ROUTINE ADDRESS
I.PRM:°L* .BLKW 1 JRESERVED FOR MAPPING PARAMETER #1
«BLKW 6 :PARAMETERS 1 TO 6
«BLKW 1 ;USER MODE DIAGNOSTIC PARAMETER WORD
I.ATTL='B’. sMINIMUM LENGTH OF 1/0 PACKET (USED BY
sFILE SYSTEM TO CALCULATE MAXIMUM
C sNUMBER OF ATTRIBUTES)
I1.LGTH='B’. sLENGTH OF 1/0 REQUEST CONTROL BLOCK
+PSECT
«MACRO PKTDFS$ X,Y,Z
+ENDM
<ENDM

«1IF NDF S$SYDF , JLIST

SOME POSITIONAL DEPENDENCIES BETWEEN THE (OCB AND THE AST CONTROL BLOCK

sNUMBER OF BYTES TO ALLOCATE ON TASK STACK

e Ne N6 Ve Ne We Ve Ve e We W Ve Ve Ve Ve %o e Ve e Na

NS e Vs We W We e e ws we we

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

<IIF NDF 58$YDF , «NLIST
COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATIUN, MAYNARD, MASS.

THIS SOFTWARE 1S FURNISHED UNDEK A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE

INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR

ANY OTHER COPIES THEREOF, MAY NUT BE PROVIDED OUR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS., TITLE

" TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN

IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TU CHANGE wITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

«MACR() SCBDF$,L,B,SYSDEF

STATUS CONTROL BLOCK

THE STATUS CONTROL BLOCK (SCB) DEFINES THE STATUS OF A DEVICE CONTROLLER.
THERE 1S5 ONE SCB FOR EACH CONTROLLER IN A SYSTEM. THE SCB IS POINTED TO

BY UNIT CONTROL BLOCKS., TO EXPAND ON THE TELETYPE EXAMPLE ABOVE, EACH TELE-
TYPE INTERFACED VIA A DL11=A WOULD HAVE A SCB SINCE EACH DL1l1~A IS AN IN~
DEPENDENT INTERFACE UNIT. THE TELETYPES INTERFACED VIA THE DH1il1 WOULD ALSO
EACH HAVE AN SCB SINCE THE DH11 IS A SINGLE CONTROLLER BUT MULTIPLEXES MANY
UNITS IN PARALLEL.

«ASECT
«=177772
S.RCNT:‘L’ BLKB 1 sNUMBER OF REGISTERS TO COPY ON ERROR
S.ROFF: ‘L’ .BLKB 1 ;OFFSET TO FIRST DEVICE REGISTER
S.BMSV:‘L’ BLKW 1 3SAVED I/0 ACTIVE BITMAP AND PUINTER TO EMB
S.BMSK:‘L° .BLKW 1 JDEVICE 170 ACTIVE BIT MASK
S.LHD3’L’ .BLKw 2 sCONTROLLER I/0 QUEUE L1STHEAD
S.PRI:‘L’ .BLKB 1 sDEVICE PRIORITY
S.VCT:’L’ .BLKB 1 ; INTERRUPT VECTOR ADDRESS /4
S.CTM:‘°L’ .BLKB 1 sCURRENT TIMEQUT COUNT
S.ITM:‘'L’ .BLKB 1 sINITIAL TIMEOUT COUNT
S.CON:’L* .BLKB 1 sCONTROLLER INDEX
S5.5TS: 'L’ oBLKB 1 sCONTROLLER STATUS (0=IDLE,1=BUSY)
S.CSR:‘L’ +BLKW 1 sADDRESS OF CONTROL STATUS REGISTER
S.PKT:°L’ +BLKW 1 s ADDRESS OF CURRENT I/0 PACKET
S.FRK:‘L’ BLKW 1 $FORK BLOCK LINK WORD

«BLKW 1 $FORK=PC

«BLKW 1 s FORK=RS

«BLKW 1 sFORK=R4

«IF NB SYSDEF

«IF DF LS$SDRV & MS$SMGE

«BLKwW 1 $FORK=DRIVER RELOCATION BASE

«ENDC
S.CCB: L’ 3MIXED MASSBUS CHANNEL CONTROL BLOCK
S.MPR: ‘L’ .BLKW 6 $11/70 EXTENDED MEMORY UNIBUS DEVICE C=BLOCK

. IFF‘

«PSECT

+

.. e we

SP.EIP='B"’1
SP.ENB=‘B‘2
SP.LOG="B‘4
SPARE=10

+

o ws we

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«ASECT

=0
M.LNK:‘L*
M.UMRA:’L’
M.UMRN: ‘L’
M.UMVL:L"‘
M.UMVH:'L"
M.BFVH:’L"’
M.BFVL:°L’
M.LGTH=‘B°,

«BLKW
«BLKwW
« BLKW
«BLKW
«BLKB
+BLKB
«BLKW

+«ENDC

«PSECT

«MACRO
«ENDM
«ENDM

«LIF

et R e

SCBDFs,X,Y,2

NDF SS$SYDF

STATUS CONTROL BLOCK PRIORITY BYTE CONDITIGON CODE STATUS BIT DEFINITIONS

JERROR IN PROGRESS (1=YES)
$ERROR LOGGING ENABLED (0=YES)
JERROR LOGGING AVAILABLE (1=YES)
$SPARE BIT

MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT)

JLINK WORD

$ADDRESS OF FIRST ASSIGNED UMR

}NUMBER OF UMR*’S ASSIGNED ¥ 4

sLOw 16 BITS MAPPED BY 1ST ASSIGNED UMR
JHIGH 2 BITS MAPPED IN BITS 4 AND 5
sHIGH 6 BITS OF PHYSICAL BUFFER ADDRESS
sLOw 16 BITS OF PHYSICAL BUFFER ADDRESS
JLENGTH OF MAPPING ASSIGNMENT BLUCK

+LIST

-~

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF SSS$YDF , NLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTwARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EEQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIEDO BY DEC.

NE TE VS N6 Ve Ve Ve e e Ve Ve e Ve Ve Ve VE We s 3 we

«MACRO TCBDFS,L,B,SYSDEF

+
TASK CONTROL BLOCK OFFSET AND STATUS DEFINITIONS

TASK CONTROL BLOCK

«e wa ws W we

+ASECT
.=°
T.LNK: ‘L’ «BLKW 1 sUTILITY LINK WORD
T.PRI:‘L’ +BLKB 1 s TASK PRIORITY
T.I0C:°L’ LBLKB 1 3 1/0 PENDING COUNT
T.CPCB:’L’ .BLKW 1 sPOINTER TO CHECKPOINT PCB
T.NAM:'L" .BLKW 2 sTASK NAME IN RADS0
T.RCVL:’L® JBLKW 2 sRECEIVE QUEUE LISTHEAD
T.ASTL:’L’ BLKW 2 sAST QUEUE LISTHEAD
T.EFLG: ‘L’ .BLKW 2 s TASK LOCAL EVENT FLAGS 1-32
T.UCB:'L® «BLKW 1 sUCB ADDRESS FOR PSEUDO DEVICE ‘TI’
T.TCBL: 'L’ BLKW 1 sTASK LIST THREAD WORD
T.STAT:'L® BLKW 1 sFIRST STATUS WORD (BLOCKING BITS)
TeS5T23'L’ BLKW 1 ;SECOND STATUS WORD (STATE BITS)
TeST33'L° BLKW 1 s THIRD STATUS WORD (ATTRIBUTE BITS)
T<DPRI:’L’ +BLKB 1 ;s TASK’S DEFAULT PRIOQRITY
T.LBN:‘L’ .BLKB 3 sLBN OF TASK LOAD IMAGE
T.LDVE:'L’ JBLKW 1 sUCB ADDRESS OF LOAD DEVICE
T.PCB:’L’ .BLKwW 1 ;PCB ADDRESS OF TASK PARTITION
T.MXSZ:°L’ BLKW 1 3MAXIMUM SIZE OF TASK IMAGE (MAPPED ONLY)
T.ACTL:2’L® BLKW 1 ADDRESS OF NEXT TASK IN ACTIVE LIST
T.ATT: L’ <BLKW 2 sATTACHMENT DESCRIPTOR LISTHEAD
T.OFF:°L’* JBLKW 1 sOFFSET TO TASK IMAGE IN PARTITION
+«BLKB 1 $RESERVED
T«SRCT:’L’ oBLKB 1 :SREF WITH EFN COUNT IN ALL RECEIVE QUEUES
ToRRFL:‘L® +BLKW 2 sRECEIVE BY REFERENCE LISTHEAD

«1F NB SYSDEF
+«IF NDF PSSLAS

T.LGTH="B°TJATT

«IFF

T.LGTH='B", ¢ LENGTH OF TASK CONTROL BLOCK
«ENDC

T.EXT=’B*0 $LENGTH OF TCB EXTENSION
« IFF

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

+

TASK STATUS DEFINITIOUNS

FIRST STATUS WORD (BLUCKING BITS)

e %o % ws we

TS.EXE='B*100000 $TASK NOT IN EXECUTION (1=YES)
TS.RDN='B°40000 $1/0 RUN DUWN IN PROGRESS (1=YES)
TS.MSG=°B°20000 ;ABORT MESSAGE BEING OUTPUT (1=YES)
TS.NRP='B*10000 3TASK MAPPED TO NONRESIDENT PARTITION (1=YES)
TS<RUN=°B°4000 s TASK IS RUNNING ON ANOTHER PROCESSOR (1=YES)
TS.0UT="B"400 sTASK IS OUT OF MEMORY (1=YES)

TS.CKP='B’200 :TASK IS BEING CHECKPOINTED (1=YES)
TS.CKR='B’100 $ TASK CHECKPOINT REQUESTED (1=YES)

+
TASK BLOCKING STATUS MASK

~e %o wa

TSeBLK='B’TS«CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP!TS.OUT!TS.RDN ;

+
SECOND STATUS WORD (STATE BITS)

~e ne we

T2.AST='B’100000 $AST IN PROGRESS (1sYES)
T2.DST=’B’40000 #AST RECOGNITION DISABLED (1=YES)
T2.CHK=’B*20000 $TASK NOT CHECKPOINTABLE (1=YES)
T2.CKD=°B"10000 sCHECKPOINTING DISABLED (1=YES)
T2.BFX='B’4000 s TASK BEING FIXED IN MEMORY (1=YES)
T2.FXD=‘B*2000 sTASK FIXED IN MEMORY (1=YES)
T2.TI0=’B’1000 :TASK IS ENGAGED IN TERMINAL I/O
T2.CAF='B°400 sDYN CHECKPOINT SPACE ALLOCATION FAILURE
T2.HLT='B"200 sTASK IS BEING HALTED (1=YES)
T2.ABO='B’100 sTASK MARKED FOR ABORT (1=YES)
T2.STP='B’40 s TASK STOPPED (1=YES)

T2.STP='B’20 $TASK STOPPED (1=YES)

T2.8PN=’B’10 :SAVED TS.SPN ON AST IN PROGRESS
T2.SPN=‘B’4 s TASK SUSPENDED (1=YES)

T2.WFR=‘B°’2 :SAVED TS.WFR ON AST IN PROGRESS
T2.WFR=’B’1 s TASK IN WAITFOR STATE (1=YES)

+
THIRD STATUS WORD (A1TRIBUTE BITS)

. v ne

T3.ACP=’B’100000 sANCILLARY CONTROL PROCESSOR (1=YES)
T3.PMD=°B*40000 $DUMP TASK ON SYNCHRONOUS ABORT (0=YES)
T3.REM=’B’20000 JREMOVE TASK ON EXIT (1=YES)
T3.PRV='B’10000 sTASK IS PRIVILEGED (1=YES)
T3.MCR=’B°4000 sTASK REQUESTED AS EXTERNAL MCR FUNCTION (1=YES)
T3.,5LV="B"2000 JTASK IS A SLAVE TASK (1=YES)
T3.CLI='B°i000 sTASK IS A COMMARND LINE INTERPRETER (1=2YES)
T3.RST='B"400 ;TASK IS RESTRICTED (1=YES)
T3.NSD=’B°200 sTASK DOES NOT ALLOW SEND DATA
T3.CAL='B"100 :TASK HAS CHECKPOINT SPACE IN TASK IMAGE
T3.ROV="B"‘40 sTASK HAS RESIDENT OVERLAYS
T3.NET="B°20 sNETWORK PROTOCOL LEVEL

«ENDC

«PSECT

«MACRO TCBDFs X,Y,Z

+«ENDM

«ENDM

«1IF NDF S$8YDF , .LIST

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

«IIF NDF S$8YDF , oNLIST

COPYRIGHT (C) 1974,1976,1977
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHU AGREES TU THESE LICENSE TERMS. TITLE
TO AND OWNERSHIP OF THE SOFTWARE SHALL AT ALL TIMES REMAIN
IN DEC,

THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
MOTICE AND SHOULD NUT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION,

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EOUIPMENT WHICH IS NOT SUPPLIED BY DEC.

e e Ve W Ve Ve Ve Ve e Ve W Ve Ve e Vs Ve V6 e Ve we

+MACRO UCBDFs$,L,B

UNIT CONTROL BLOCK

THE UNIT CONTROL BLOCK (UCB) DEFINES THE STATUS OF AN INDIVIDUAL DEVICE
UNIT AND 1S5 THE CONTROL BLOCK THAT IS POINTED TU BY THE FIRST WORD OF

AN ASSIGNED LUN. THERE IS ONE UCB FOR EACH DEVICE UNIT OF EACH DCB. THE
UCB’S ASSOCIATED WITH A PARTICULAR DCB ARE CONTIGUOUS IN MEMORY AND ARE
POINTED TO BY THE DCB. UCB’S ARE VARIABLE LENGTH BETWEEN DCB’S BUT ARE

OF THE SAME LENGTH FOR A SPECIFIC DCB., TO FINISH THE TELETYPE EXAMPLE ABOVE,
EACH UNIT ON BOTH INTERFACES WOULD HAVE A UCB.,

e We W Ve Te e We Ne Ve we W

«ASECT
«=177774
U.LUIC:‘L’ .BLKw 1 sLOGIN UIC = MULTI USER SYSTEMS ONLY
U+OWN: 'L’ .BLKW 1 JOWNING TERMINAL = MULTI USER SYSTEMS ONLY
U.DCB: ‘L’ +BLKW 1 sBACK POINTER T0 DCB
U.RED: ‘L’ BLKW 1 sPOINTER TO REDIRECT UNIT uCB
U.CTL:'L’ BLKB 1 sCONTROL PROCESSING FLAGS
U.,STS:’L’ BLKB 1 sUNIT STATUS
U.UNIT:’L’ .BLKB 1 sPHYSICAL UNIT NUMBER
U.8T2:'L’ +BLKB 1 SUNIT STATUS EXTENSION
U.CW1:’L* .BLKW 1 sFIRST DEVICE CHARACTERISTICS WORD
Us.CW2: ‘'L’ .BLKW 1 $SECOND DEVICE CHARACTERISTICS WORD
U.CW3:°L° +BLKW 1 $THIRD DEVICE CHARACTERISTICS WORD
U.CW4:‘L° .BLKW 1 3FOURTH DEVICE CHARACTERISTICS WORD
UesSCB:'L® oBLKW 1 sPOINTER TO SCB
U+ATT:’L’ oBLKW 1 ;TCB ADDRESS OF ATTACHED TASK
U.BUF:‘L’ «BLKWw 1 sRELOCATION BIAS OF CURRENT 1/0 REQUEST

«BLKW 1 $BUFFER ADDRESS OF CURRENT I/0 REQUEST
U.CNT: L’ <BLKW 1 sBYTE COUNT OF CURRENT I/0 REQUEST
U.ACP="B°U.CNT+2 $ADDRESS 0F TCB OF MOUNTED ACP
U.VCB="B’U.CNT+4 $ADDRESS OF VOLUME CONTROL BLOCK
U.CBF="B°U.CNT+2 ;CONTROL BUFFER RELOCATION AND ADDRESS
U, UIC='B U.CNT+<9,.%2> s TERMINAL UIC (TERMINALS ONLY)

«PSECT

e

DEVICE TABLE STATUS DEFINITIONS

DEVICE CHARACTERISTICS WORD 1 (U.Cw1) DEVICE TYPE DEFINITION BITS.

~e we %o %o we
H

DV.,REC='B°’1 sRECORD ORIENTED DEVICE (1=YES)
DYV.CCL='B"2 $CARRIAGE CONTROL DEVICE (1=YES)
DV.TTY=’B"4 s TERMINAL DEVICE (1=YES)
DV.DIR=’B’10 sFILE STRUCTURED DEVICE (1=YES)
DV.SDI='B’20 $SINGLE DIRECTORY DEVICE (1=YES)
DV.SQD='B’40 sSEQUENTIAL DEVICE (1=YES)
DV.MXD=‘’B‘100 $MASS BUS DEVICE (1=YES)

c-21

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

DV.UMD='B*200
DV.SWL=’B’1000
DV.ISP='B’2000
DV.OSP='B’4000
DV,PSE="B’10000
DV.COM=’B*20000
DV.F11='B"40000
DV.MNT=°B*100000

+

e we we

U2.DH1='B’100000
U2.DJ1=°B"40000
U2.RMT='B"20000
U2.L8S="'B"10000
U2.NEC="B 4000
U2.CRT='B’2000
U2.E8C="8"1000
U2.L0G='B"400
U2.,SLV="B"200
U2.DZ1=’B’100
U2.HLD='B"40
U2,AT.="B"20
U2,PRV="B’10
U2.L35=°B’4
U2.VT5='B’2
U2.LwC='B’1

+

ne ue %

U2.R04="B°100000

+

~ e e

U2.7CH="B°10000

+

“e we “we

UCL,ALG=’B"200
UC.NPR="B*100
UC.QUE="B’40
UC.PWF='B’20
UC.ATT=*B*10
UC.KIL='B’4
UC.LGH='B"*3

+
UNIT STATUS BIT DEFINTIONS

we wo wa

Us,.BSY='B*200
US.MNT=’B’100
US.FOR='B’40
US,MDM=°B’20

+

we we e

US.ABO="B’1
US.MDE=°B*2

+

o %o wo

US.WCK=‘'B°10
US.SPU='B"2

JUSER MODE DIAGNOSTICS SUPPORTED (1=YES)
;UNIT SOFTWARE WRITE LOCKED (1=YES)

; INPUT SPOOLED DEVICE (1=YES)

sOUTPUT SPOOLED DEVICE (1=YES)

sPSEUDD DEVICE (1=YES)

sDEVICE IS MOUNTABLE AS COM CHANNEL (1=YES)
sDEVICE IS MOUNTABLE AS F11 DEVICE (1=YES)
sDEVICE 1S MOUNTABLE (t=YES)

TERMINAL DEPENDENT CHARACTERISTICS WORD 2 (U.Cw2) BIT DEFINITIONS

JUNIT IS A MULTIPLEXER (1=YES)

JUNIT IS A DJ11 (1=YES)

sUNIT IS REMOTE (1=YES)

JUNIT IS LA180S (1=YES)

sDON’T ECHO SOLICITED INPUT (1=YES)
JUNIT IS A CRT (1=YES)

JUNIT GENERATES ESCAPE SEQUENCES (1=YES)
7USER LOGGED ON TERMINAL (O0=YES)

JUNIT IS A SLAVE TERMINAL (1=YES)

JUNIT 1S A DZi1 (1=YES)

$ TERMINAL IS IN HOLD SCREEN MODE (1=YES)
?MCR COMMAND AT, BEING PROCESSED (1=YES)
JUNIT IS A PRIVILEGED TERMINAL (1=YES)
sUNIT IS A LA39S TERMINAL (1=YES)

JUNIT IS A VIO5B TERMINAL (1sYES)

sLOWER CASE TO UPPER CASE CONVERSION (1=YES)

RH11=RS03/RS04 CHARACTERISTICS WORD 2 (U.CW2) BIT DEFINITIONS

JUNIT IS A RS04 (1=YES)

RH11=TU16 CHARACTERISTICS WORD 2 (U.Cw2) BIT DEFINITIONS

JUNIT IS A 7 CHANNEL DRIVE (1=YES)

UNIT CONTROL PROCESSING FLAG DEFINITIONS

sBYTE ALIGNMENT ALLOWED (1=NO)

sDEVICE IS AN NPR DEVICE (1=YES)

sCALL DRIVER BEFORE QUEUING (1=YES)
JCALL DRIVER AT POWERFAIL ALWAYS (1=YES)
sCALL DRIVER ON ATTACH/DETACH (1=YES)
sCALL DRIVER AT I/0 KILL ALWAYS (1=YES)
sTRANSFER LENGTH MASK BITS

JUNIT IS BUSY (1=YES)

sUNIT IS MOUNTED (0=YES)

JUNIT IS MOUNTED AS FOREIGN VOLUME (1=YES)
sUNIT IS MARKED FOR DISMOUNT (1=YES)

CARD READER DEPENDENT UNIT STATUS BIT DEFINITIONS

JUNIT IS8 MARKED FOR ABORT IF NOT READY (1=YES)

SUNIT IS IN 029 TRANSLATION NODE (1=YES)

FILES=11 DEPENDENT UNIT STATUS BITS

JWRITE CHECK ENABLED (1=YES)
;UNIT IS SPINNING UP (1=YES)

SYSTEM DATA STRUCTURES AND SYMBOLIC DEFINITIONS

P+
’
¢+ TERMINAL DEPENDENT UNIT STATUS BIT DEFINITIONS

’-

US.DSB="B‘10 sUNIT IS DISABLED (1=YES)

US.CRW=‘’B’4 sUNIT IS WAITING FOR CARRIER (1=YES)
US.ECH='B’2 $UNIT HAS ECHO IN PROGRESS (1=YES)
Us.0uT='B’1 SUNIT IS EXPECTING OUTPUT INTERRUPT (1sYES)
+

LPS11 DEPENDENT UNIT STATUS BIT DEFINITIONS

we %o we

US.FRK='B ‘2 sFORK IN PROGRESS (1=YES)
US.SHR='B"1 1 SHAREABLE FUNCTION IN PROGRESS (0=‘B°YES)
s+
: ANSI MAGTAPE DEPENDANT UNIT STATUS BITS
;-
US.LAB="B"4 : UNIT HAS LABELED TAPE ON IT (1=YES)
+

UNIT STATUS EXTENSION (U.ST2) BIT DEFINITIONS

we we we

US.0FL='B"’1 ;UNIT OFFLINE (1=YES)
US.RED='B’2 sUNIT REDIRECTABLE (0=YES)
US.PUB=‘B‘4 JUNIT IS PUBLIC DEVICE (1=YES)
US.UMD=’B’10 JUNIT ATTACHED FOR DIAGNGSTICS (1=YES)
«MACRO UCBDFS§,X,Y
«ENDM
<ENDM

«IIF NDF SS$YDF , oNLIST

C-23

Accessing shared data bases, 2-9
$ACHCK, 5-2
SACHKB, 5-2
ACP function, 2-16
ACP function mask, 4-12
Address check,
(SACHKB/SACHCK) , 5-2
Address-checking and relocation,
6-9
Address doubleword, A-1
Addressing, 22-bit, B-1
Allocate Core Buffer ($ALOCB),
5-3
SALOCB, 5-3
APR 5, 3-11, 3-15, 4-29
APR 6, 3-15, 4-5
Assign UNIBUS Mapping Registers,
($ASUMR), 5-4, B-3
$ASUMR, 5-4, B-3

Bootstrapping, 2-4, 3-26

Cancel I/0 entry point, 2-4,
3-2, 4-10

CDA, 3-17

Characteristics, device, 4-23,
4-24

CINTS directive, 3-1

SCLINS, 5-5

Clock Queue Insertion ($CLINS),
5-5

Conditional routines, 5-1

Connect to interrupt vector
directive, 3-1

Control function, 2-16

Control function mask, 4-12

Control status register (CSR),
4-18

Controller number, 2-13, 4-18,
4-27

Conventions, programming, 2-13

Crash dump analysis support
routine (CDA), 3-17

$CRAVL, 3-24

CSR, 4-18

Data bases, accessing shared,
2-9
Data structures, 2-5 to 2-9
interrelation of, 2-17
summary, 2-20
system, C-1
pcB, 2~5, 2-17, 2-19, 3-3, 4-7

Index-1

INDEX

DCB fields,
D.DSP, 3-4, 4-9
DoLNK, 3_4, 3_8, 4_8
D.MSK, 3-4, 4-5, 4-11
D.NAM, 3-4, 4-9
D.PCB, 3-4, 4-7, 4-13
D.UCB, 3-4, 3-8, 4-8
D.UCBL, 3-4, 4-9
D.UNIT, 3-4, 4-9
DCB fields, required, 3-4
ppT, 2-17, 2-19, 3-2, 4-9, 4-10
$DEACB, 3-25, 5-6
Deallocate Core Buffer ($DEACB),
3-25, 5-6
Deassign UNIBUS Mapping Registers,
($DEUMR), 5-7, B-3
Debugging, driver, 3-12 to 3-25,
aids, 3-13 to 3-18
fault isolation, 3-18 to 3-20
fault tracing,
after unintended loop, 3-24
critical pointers, 3-20
using stack and register
dump, 3-22
without display, 3-23
Debugging aids, 3-13 to 3-18
Definitions, symbolic, C-1
$SDEUMR, 5-7, B-3
$DEVHD word, 2-17, 2-18, 2-19
Device characteristics, 4-23,
4-24
Device Control Block (DCB),
2-5, 2-17, 2-19, 3-3, 4-7
Device interrupt entry point,
2-3, 3-2
Device interrupt vector, 2-9,
2-13, 3-3, 3-6, 4-17, 4-26
Device Message Output ($DVMSG),
5-8
Device timeout, 4-17
Device timeout entry point, 2-4,
3-2, 4-10
Directive Parameter Block (DPB),
2-5, 2-8, 2-16, 4-5
DPB, 2-5, 2-8, 2-16, 4-5
$DRDSP, 3-23
Driver,
coding example, 6-1
debugging, 3-12 to 3-25
entry points, 2-3, 2-4, 3-2
function, 1-1 :
loadable, see loadable drivers
multicontroller, 2-13, 4-27
Non-MASSBUS NPR, B-1
resident, see resident drivers
role in RSX-11M, 2-3, 2-4
Driver code, ' '
loadable, 3-2, 3-3

May 1979

INDEX

Driver code (Cont.),
overview, 3-2
resident, 3-2, 3-3

Driver dispatch table (DDT), 2-17,

2-19' 3-2, 4_9, 4"10
DRQIO, 2-10
$DVMSG, 5-8

Error logging, 3-3

Executive debugging tool (XDT),
3-14, 3-15, 3-18

Executive services, 2-10 to 2-12

Executive stack and register
dump routine, 3-13, 3-14,
3-19

Fault isolation, 3-18 to 3-20

Fault tracing, 3-20

FCB, 2-~17, 2-19

FCP, 2-3

FCS, 2-1, 2-2

File control block (FCB), 2-17,
2-19

File control primitives (FCB),
2-3

File control services (FCS), 2-1,
2=-2

Flow of an I/0 request, 2-15

$FORK, 2-9, 2-12, 2-15, 4-17,
4-19, 5-9

Fork block, 4-19

Fork level processing, 2-9, 2-15

Fork list, 2-9

$FORK1l, 5-10

Function mask values, I/0, 4-14

Get Byte ($GTBYT), 5-11
Get Packet,
($GTPKT), 2-11, 2-17, 4-18,

4-25, 4-27, 5«12

Get Word ($SGTWRD), 5-13

GLUNS$ directive, 4-23

$GTBYT, 5-11

$GTPKT, 2-11, 2-17, 4-18, 4-25,
4-27, 5-12

$GTWRD, 5-13

SHEADR pointer, 3-20, 3-23
HWDDF$ macro, 4-17

I/0 Done and I/0 Done Alternate
Entry,
(SIODON/SIOALT), 2-12, 5-16

Index~-2

I/0 Finish,
(SIOFIN), 2-11, 5-17
I/0 function mask values, 4-14
I/0 hierarchy, 2-1
I/0 initiator entry point, 2-4,
2-11, 3-2, 4-10
I/0 Packet, 2-8, 2-16, 4-2, 4-18
I1/0 Packet fields,
I.AST, 4-5
I.EFN, 4-3
I.FCN, 3-24, 4-4
I.I0SB, 4-4
I.LNK, 4-2
I.LN2, 4-4
I.PRI, 4-3
I.PRM, 4-5
I.TCB, 4-4
I.0CB, 4-4
1/0 Queuve, 2-8, 4-16
1/0 request,
flow of, 2-15
I/0 status Block (IOSB), 2-10,
2-16, 2~17, 4-4, 4-7
ICB, 4-28, 4-29
Initiator entry point, I/0, 2-4,
2-11, 3-2, 4-10
INITL module, 3-19
Interrupt control block (ICB),
4-28, 4-29
Interrupt entry point, device,
2=-3, 3-2
Interrupt Exit,
(SINTXT), 2-13, 5-15
Interrupt Save,
($INTSV), 2-11, 2-12, 2-13 to
2-15, 4-28, 5-14
Interrupt vector, device, 2-9,
2-13, 3-3, 3-6, 4-17, 4-26
$INTSV, 2-11, 2-12, 2-13 to 2-15,
4-28, 5-14
INTSVS$ macro, 2-12 to 2-15,
4-27 to 4-29
$INTXT, 2-13, 5-15
$IOALT, 2-12, 5-16
$IODON, 2-12, 2-17, 4-18, 5-16
$IOFIN, 2-11, 5-17
I0sB, 2-10, 2-16, 2-17, 4-4, 4-7

Legal function mask, 4-11
.OAD command, 2-4, 3-8, 3-10,
3-12, 3-27, 4-17, 4-18,
4-26, 4-28
Loadable drivers,
adding to system library, 3-10
assembling, 3-10
creating the data base for,
3-9

May 1979

INDEX

Loadable drivers (Cont.),
dynamic initialization of
interrupt vector, 4-26
LD$xx symbol for, 3-3
loading, 3-12
nature of data base for, 3-8
rebuilding and reincorporating,
3-27
source code, 3-2, 3-3
specifying support for, 3-2
task building, 3-10 to 3-12
Logical unit table (LUT), 2-18,
4-4
LUT, 2-18, 4-4

Map UNIBUS to memory,
($MPUBM, $MPUBl), 5-18,
B-2

Mapping register assignment
block, B-2, B-3

Masks, I/0 function, 4-11

establishing, 4-14

$MPUBM, 5-18, B-=2

$MPUB1, 5-18.1, B-2

Multicontroller drivers, 2-13,
4-27

Non-MASSBUS NPR device drivers,
B-1

No-op function, 2-16

No-op function mask, 4-12

NPR device drivers, 4-25, B-1

Panic dump, 3-16, 3-17, 3-19
Paper tape punch driver, 6-3
Partition control block (PCB),
: 4-13, 4-14
PCB, 4-13, 4-14
$PKAVL, 3-24
Power failure entry point, 2-4,
3-2, 4-10
Process,
characteristics, 2-13
states, 2-10
Processing,
at fork level, 2-9, 2-15
at priority 7, 2-9, 2-11, 2-14
at priority of interrupting
source, 2-9, 2-14, 4-17
Programming conventions, 2-13
Programming protocol, 2-13
Protocol, programming, 2-13
$PTBYT, 5-19
$SPTWRD, 5-20

Index~3

Put Byte ($PTBYT), 5-19
Put Word (SPTWRD), 5-20

$QINSP, 5-21

QIO directive, 2-2, 2-16

Queue Insertion by Priority
($QINSP), 5-21

Record management services
(RMS), 2-1, 2-2
REDIRECT command, 4-21
Register conventions, system-
state, 5-1
S$RELOC, 5-22
Relocate (SRELOC), 5-22
Relocating and address-checking,
6-9
Resident drivers,
creating the data base for, 3-6
incorporating, 3-6
initializing the device
interrupt vector, 3-6, 4-26
padding space in, 3-3
rebuilding and reincorporating,
3-25
source code, 3-2, 3-3
RMS, 2-1, 2-2

sCcB, 2-6, 2-~18, 2-19, 3-3, 4-1le,
B-2
SCB fields,
S.CON, 3-5, 4-18, 4-27
S.CSR, 3-5, 4-18
sS.CTM, 3-5, 4-17
S.FRK, 3-5, 4-19
S.ITM' 3_51 4"'17
S.LHD, 3-5, 3-8, 4-~2, 4-16
S.MPR, 3-5, 4-19, B-2, B-3
S.PKT, 3-5, 3-24, 4-18
S.PRI, 3-5, 4-17
S.8TS, 3-5, 4-18
S.VCT, 3-5, 4-17
SCB fields, required, 3-5
Set Up UNIBUS Mapping Address,
($STMAP, S$STMPl), 5-23, B-2
Shared data bases, accessing,
2-9
Special user buffers, 6-9
ssT fault, 3-22, 3-23
Stack and register dump routine,
3-13, 3-14, 3-19
Stack structure, 3-22, 3-23
Status Control Block (SCB), 2-6,
2-18, 2-19, 3-3, 4-16, B-2

May 1979

Status information, device-
independent, 4-22, 4-23
$STKDP pointer, 3-20, 3-23
$STMAP, 5-23, B-2
$STMP1, 5-24, B-2
Symbolic definitions, C-1
Symbolic UMR addresses, B-3
Symbols,
ILDS$xx, 3-3, 4-29
M$SSEXT, B-2
M$$SMGE, B-2
N$SSUMR, B-2
U$$MHI, B-3
US$SSMLO, B-3
U$$SMRN, B-3
SUSRTB, 3-6
$xxINP, 3-2, 4-7
$xxXINT, 3-2, 4-7
$xxouT, 3-2, 4-7
$xXxTBL, 3-2
SYSCM pointers,
SCRAVL, 3-24
$HEADR, 3-20, 3-23
$STKDP, 3-20, 3-23
$TKTCB, 3-20, 3-23
SYSTB, 3-19
System data structures, C-1

System-state register conventions,

5-1

Task header, 2-17, 2-18, 3-20,
3-21

Timeout entry point, device,
2-4, 3-2, 4-10

S$TKTCB pointer, 3-20, 3-23

Transfer function, 2-16

ucB, 2-6, 2-18, 2-19, 3-3, 4-19
UCB fields,

U.ATT, 3~5, 4-25

U.BUF, 3-5, 4-25, B-2

Index-4

INDEX

UCB fields (Cont.),
U.CNTI 3-5, 4_26
U.CTL, 2-8, 3-5, 4-21
U.Cwl, 3-5, 4-23
U.CW2, 3-5, 4-24
U.CW3, 3-5, 4-24
U.CW4, 3-5, 4-24
U.DCB, 3-4, 3-8, 4-9, 4-21
U.LUIC, 3-4, 4-9, 4-19
U.OWN, 3-4, 4-9, 4-20
U.RED, 3-4, 3-8, 4-21
U.sCB, 3-5, 3-8, 4-24
U.sTs, 3-5, 4-22
U.ST2, 3-5, 4-23
U.UNIT, 3-5, 4-23
UCB fields, required, 3-4, 3-5
UMR addresses, symbolic, B-3
UMRs, B-1
UMRs, allocating during system
generation, B-2
UNIBUS Mapping Registers (UMRs),
B-1
Unit control block (UCB), 2-6,
2-18, 2-19, 3-3, 4-19

" UNLOAD command, 3-8, 3-27, 4-26

User buffers, special, 6-9
SUSRTB, 3-6
USRTB, 3-6

VCB, 2-18, 2-19
Virtual MCR (VMR), 3-26

Volume control block (VCB), 2-18,

2-19

Window block (WB), 2-17, 2-18,
2-19, 4-4

XDT, 3-14, 3-15, 3-18

May 1979

-

Please cut along this line.

Update No.l

RSX-11M

Guide to Writing an I/O Driver
AA-2600D-TC, AD-2600D-T1

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

oogoood

Other (please specify)

Name__. Date

Organization

Street

City State Zip Code
or
Country

— — DoNot Tear- Fold Hereand Tape —

— — Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

)

UPDATE NOTICE NO.1

RSX-11M Guide to Writing an I/O Driver
AD-2600D-TL

May 1979

Insert this Update Notice page in the manual as a means of maintaining
an up-to-date record of changes to the manual.

NEW AND CHANGED INFORMATION

This update reflects software changes and additions made in RSX-11M
Version 3.2.

Copyright C) 1979 Digital Equipment Corporation

INSTRUCTIONS

Place the following pages in the RSX-11M Guide to
Writing an I/0 Driver as replacements for, or
additions to, current pages. The changes made on
replacement pages are indicated in the outside
margin by change bars (@) for additions, and
bullets (o) for deletions.

0ld Page New Page
Title Page/Copyright Page Title Page/Copyright Page
iii/iv through vii/viii iii/iv through vii/viii
2-13/2-14 2-13/2-14
3-3/3-4 3-3/3-4
3-9/3-10 3-9/3-10
4-9/4-10 4-9/4-10
4--11/4-12 4-11/4-12
- 4-12.1/blank
4-13/4-14 4-13/4-14
4--15/4-16 4-15/4-16
4-19/4-20 through 4-23/4-24 4-19/4-20 through 4-23/4-24
5-15/5-16 5-15/5-16
- 5-18.1/blank

5-23/5-24 5-23/5-24
6-3/6-4 6-3/6-4

B-1/B-2 B-1/B-2

B-3/B-4 B-3/B-4

Index-1/Index=-2 Index~1/Index-2
Index-3/Index-4 Index-3/Index-4
Reader's Comments Reader's Comments

Additional copies of this update to the RSX-11M Guide to Writing
an I/0 Driver may be ordered from the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts
01754. Order Code: AD-2600D-T1. The order code of the base
manual is AA-2600D-TC.

