
RSX-11M
FORTRAN-IV User's Guide

Order No. DEC-II-LMFUA-A-D

RSX-IIM Version 1

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment. corporation · maynard. massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in thi .. s document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

ASSOCIATED DOCUMENTS

Refer to User's Guide to RSX-llM Manuals, DEC-ll-OMUGA-A-D.

Copyright ~ 1974, by Digital Equipment Corporation, Maynard, Mass.

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

COP DIGITAL INDAC PS/8
COMPUTER LAB DNC KA10 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS
DOT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNI~US

(

CHAPTER 1

1.1
1.1.1
1.1.2

1.2
1.2.1
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3

1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4
1.3.2.5
1.3.2.6
1.3.2.7
1.3.2.8
1.3.2.9
1.3.2.10
1.3.3
1.3.3.1
1.3.3.2
1.3.3.3
1.3 ct 3.4
1.3.4

1.4

1.5

1.6

CHAPTER 2

2.1

2.3

2.4

2.5

CHAPTER 3

3.1

3.2

CONTENTS

OPERATING PROCEDURES

USING THE FORTRAN-IV SYSTEM
Command Strinq
File Specifications

USING THE FORTRAN-IV COMPILER
Compiler Switches /
List Formats
Source Listing
Storaqe Map Listinq
Generated Code Listinq
Compiler Memory Requirements

USING THE TASK BUILDER TO LINK FORTRAN PROGRAMS
Task Builder Switch Options for FORTRAN Proqrams
Task Builder Options for FORTRAN Proqrams
ACTFIL
COMMON
LIBR
MAXBUF
TASK
UIC
UNITS
FMTBUF
ASG
PAR
FORTRAN Library Usage
Re1ocatab1e Libraries
Shared Libraries
System Libraries
User Libraries
Overlays

USING MCR TO INITIATE TASK EXECUTION

EXAMPLES

DEBUGGING A FORTRAN PROGRAM

FORTRAN-IV OPERATING ENVIRONMENT

FORTRAN-IV OBJECT TIME SYSTEM

OBJECT CODE

SUBROUTINE LINKAGE

SUBPROGRAM REGISTER USAGE

VECTORED ARRAYS

RSX-11M FORTRAN-IV SPECIFIC CHARACTERISTICS

VARIABLE NAMES

INITIALIZATION OF COMMON

iii

1-1
1-1
1-2

1-4
1-6
1-7
1-7
1-7
1-8
1-10

1-10
1-11
1'!'"11
1-12
1-12
1-12
1-13
1-13
1-13
1-13
1-13
1-14
1-14
1-14
1-14
1-15
1-15
1-15
1-15

1-17

1-18

1-19

2-1

2-1

2-3

2-4

2-5

3-1

3-1

3.3

3.4

3.5

3.6

APPENDIX A

A.l

A.2
A.2.l
A.2.2
A. 2.3

A.3

A.4

A.5

A.6

APPENDIX B

B.l

B.2

B.5

B.6

B.?

B.8

B.9

B.10

B.ll

B.12

B.13

B.14

B.15

B.16

B.l?

CONTINUATION LINES

DEFAULT LOGICAL UNIT-DEIVCE!FILE NAMES

STATEMENT ORDERING RESTRICTIONS

OTS/FCS FILE OPEN CONVENTIONS

FORTRAN DATA REPRESENTATION

INTEGER FORMAT

FLOATING-POINT FORMATS
Real Format
Double-Precision Format
Complex Format

LOGICAL*l

HOLLERITH FORMAT

LOGICAL FORMAT

RADIX-50 FORMAT

SYSTEM SUBROUTINES

SYSTEM SUBROUTINE SUMMARY

ASSIGN

CLOSE

DATE

I DATE

ERRSET

ERRSNS

ERRTST

EXIT

USEREX

FDBSET

RAD50

lRAD50

R50ASC

RANDU, RAN

SECNDS

TIME

iv

3-1

3-1

3-2

3-3

A-l

A-l

A-l
A-2
A-2
A-3

A-3

A-3

A-4

A-4

B-1

B-1

B-2

B-3

B-3

B-4

B-4

B-5

B-6

B-6

B-6

B-?

B-8

B-8

B-9

B-10

B-10

B-ll

(

"

(

APPENDIX C

C.l
C.l.l

C.l.2

C.l.3
C.l.4

C.2
C.2.l
C.2.2
C.2.2.l
C.2.3
C.2.3.l
C.2.3.2
C.2.4

APPENDIX 0

0.1

0.1.1
0.1.2
0.1.3
0.1.4

0.2

APPENDIX E

E.l
E.l.l
E.l.2
E.l.3
E.l.4

E.2

APPENDIX F

FORTRAN ERROR DIAGNOSTICS

COMPILER ERROR DIAGNOSTICS
Errors Reported by the Initial Phase of the
Compiler
Errors Reported by Secondary Phases of the
Compiler
Warning Diagnostics
Fatal Compiler Error Diagnostics

OBJECT TIME SYSTEM ERROR DIAGNOSTICS
Error Processing Algorithm
Object Time System Error Message Format
Short Message File
Object Time System Error Codes
Initial Control Bit Settings
Error Messages
Notes on OTS Error Processing Implementation

COMPATIBILITY WITH OTHER PDP-II FORTRANS

COMPATIBILITY WITH PDP-II FORTRAN V08.04 UNDER

C-l

C-l

C-3

C-4
C-8
C-9

C-lO
C-lO
C-12
C-13
C-13
C-13
C-lS
C-2·1

D-l

RSX-IID V4A 0-1
Language Differences 0-1
Object Time System Differences 0-2
Implementation Differences D-2
Operational Differences D-3

COMPATIBILITY WITH PDP-II FORTRAN IV-PLUS

BIT STRING MANIPULATIONS

LOGICAL OPERATIONS
Inclusive OR
Logical Product
Logical Complement
Exclusive OR

SHIFT OPERATIONS

SOFTWARE PERFORMANCE REPORTS

v

0-4

E-l

E-l
E-l
E-l
E-l
E-2

E-2

F-l

(
,-

P~F~E

This document provides information necessary to compile, task build,
execute, and debug a FORTRAN program under the RSX-llM operating
system. Chapter one describes the operational procedures. Chapter
two provides information about the Object Time System (OTS). This
system is a collection of routines selectively linked to the user's
program which perform certain arithmetic input/output, and system
dependent service operations. It also detects and reports run-time
error conditions. Chapter three describes system dependent
information not included in the PDP-ll FORTRAN Language Reference
Manual. The Appendices provide reference information about internal
data representations, system subroutines, error diagnostics, and
compatibility of FORTRAN-IV with otherPDP-ll FORTRAN processors.

This manual should be used only after some knowledge of the FORTRAN
Language, as implemented on the PDP-ll, has been acquired. The
associated document which may be used for this purpose is titled
PDP-ll FORTRAN Reference Manual (DEC-ll-LFLRA-A-D). The user should
also be familiar with the RSX-llM Operating System as described in the
RSX-llM Operations Procedure Manual (DEC-ll-OMOGA-A-D).

NOTE

Subroutines are provided in the FORTRAN
library to enable real-time process
control, process I/O, and RSX-llM
system directives to be performed by
means of FOR~RAN. These routines and
their ISA-standard calls are fully
described in the RSX-llM Executive
Reference Manual and the RSX-llM I/O
Drivers Manual.

DOCUMENTATION CONVENTIONS

All RSX-llM executive and system program command lines are terminated
by a RETURN. Since this is a non-printing character, at certain
places in the text the notation <CR> represents the RETURN key.

Some special keyboard characters require that the CTRL (control) key
be pressed simultaneously with a second character. These characters
are denoted by t (up arrow): e.g., tz (CTRL Z).

In all examples, text printed by the RSX-llM executive or system
program is underlined, text typed by the user is not underlined.

vii

(
\.

CHAPTER 1

OPERATING PRocEDURES

1.1 USING THE FORTRAN~IV SYSTEM

Three steps are required to transform a F()RTRAN source program int.o an
executing Task. These steps are:

1. Compilation
2. Task Build (or Linkage)
3. Initiation of Execution

Compilation is accomplished by invoking the FORTRAN-IV C:o*,plle:r.
Next, the Task Builder is used to construct a task image. Finally,
task execu~ion is. ini tiated by using. th~,. ~ppropri~te Monitor Console
Routine (MCR) commands. Each step in this procedure involves several
required and optional command inputs and produces an output to be used
in the next step. Other optionaL outputs are also possible.

A di.agram depicting this process is giveh in Figure l-l.The remainder
of this chapter discusses each step of' the process ih detail and gives
some simple examples.

Figure i-l

MeR
COMMANDS

Preparing a FORTRAN Source for Execution

1.1.1 Command String

System programs rUnning under RSX-llM usually require a command string
to specify such things as input files and various options. A standard
command string has one of the following formsi

output-files-listminput-files-list
or

@command-file

1-1

CHAPTER 1. OPERATING PROCEDURES

Both output-files-list and input-files-list are strings consisting of
file specifications separated by commas. Each file specification
selects a file to be used as an output or input file by the system
program. A @command-file is an indirect command file which contains
multiple command strings.

Any number of file specifiers is possible, the actual number being
determined by the system program which will use the file command
string.

1.1.2 File Specifications

Each file specifier (whether input or output) has the following
format:

where:

dev:[g,o]filename.type;version!switchl ••• /switchn

dev:

[g ,0]

filename

type

version

/switch

= The physical device unit on which the volume
containing the desired file is mounted, e.g.,
ORO:. The name consists of two ASCII
characters followed by an optional one or two
digit (octal) unit number and a colon. The
default value is SY:, the system disk. Table
1-1 depicts the legal device list.

= The User Identification Code (UIC) associated
with the user file directory containing the
desired file. This consists of a group
number and a user number. The default value
of UIC is the identification code under which
the system program is running, usually
[200,200] •

= The name of the file. In RSX-llM, a filename
can be up to nine alphanumeric characters in
length. Filename and type are always
separated by a period (.).

= A means of distinguishing among forms of one
file. System programs default the file type
to an appropriate standard type, (e.g., FTN)
so the typical user will not need to
explicitly specify it. File type and version
are always separated by a semicolon (;).

m An octal number used to differentiate among
versions of a file. When a file is first
created using the editor, it is assigned a
version number of 1. If the file is
subsequently opened for editing, the file
system retains the original file for backup
and creates a new file with the same filename
and type, but with a version number of 2.
Version is in the range 0-77777.

= A one or two character ASCII name identifying
the switch option. The switch itself may

1-2

(

CHAPTER 1. OPERATING PROCEDURES

have three forms. If the switch designator,
for example, is SW. Then:

/SW sets the switch action;
/-SW, negates the switch action, and
/NOSW also negates the switch action.

in addition the switch identifier may be
followed by any number of values. The
permitted values are ASCII strings, octal
numbers, and decimal numbers. The default
for a value is octal. Decimal values must be
terminated by a decimal point. Values
preceded by a number sign (I) are octal; the
octal option is included for explicit
documentation purposes. Any numeric value
may be preceded with a + or - sign; if the
number sign (I) is used, the + or must
precede it. The following are valid switch
specifications.

/SW:27:MAP:29.
/-SW
/NOSW:NOSWITCH:-#50

Although the filename command string
interpretation of the string and
dependent.

1-3

has a standard syntax, the
permissible options is program

CHAPTER 1. OPERATING PROCEDURES

Table 1-1
RSX-llM Devices

PERIPHERAL DEVICES

Analog to Digital Converter (ADO I-D)

Analog to Digital Converter (AFCll)

Card Reader (CRll)

Cassette (TAll)

DECtape (TCll)

Disk (RP04)

(RFll)

(RKll)

(RPOJ)

(RSOJ/RS04)

Laboratory Peripheral System (LPSll)

Line Printer (LPll/LSll/LVll)

Magtape (TU16)

Magtape (TMll)

Synchronous Line Interface (DP-ll)

(DU-ll)

Asynchronous Line Interface (DLIl-E)

Terminal (DLll/DHll/DJll)

Universal Digital Controller (UDell)

PSEUDO DEVICES

Console Listing

Console Output

Pseudo Input Terminal

System Default Device

1.2 USING THE FORTRAN-IV COMPILER

DEVICE-UNIT

ADnn:

AFnn:

CRnn:

CTnn:

DTnn:

DBnn:

DFnn:

DKnn:

DPnn:

DSnn:

LSnn:

LPnn:

MMnn:

MTnn:

XPnn:

XUnn:

XLnn:

TTnn:

UDnn:

CL:

CO:

TI:

SY:

The FORTRAN-IV Compiler is an RSX-llM system program initiated via the
FOR MCR-command. It produces relocatable object modules from FORTRAN
source programs.

1-4

-

(

CHAPTER 1. OPERATING PROCEDURES

To invoke the Compiler enter the following MCR command. (All
characters typed by the system are underlined).

tC
MCR)FOR<CR)

The FORTRAN-IV Compiler then prints "FOR)ft to indicate that it is
ready to accept a command string.

A standard command string as described in Section 1.1.1 is used to
specify input and output files to the Compiler. None, one or two
output files may be specified. The first output file is the object
module file and the second is the listing file. Only one input file
may be specified. This is the FORTRAN source file. It may contain
one or more FORTRAN program units (Main Program and/or Subprograms).
File types default as shown in Table 1-2.

Table 1-2
FORTRAN Compiler Default File Types

File Default Type

Object OBJ
Listing LST
Source FTN
Command CMD

Up to two levels of indirect command files are permitted.

An example FORTRAN command sequence is shown below:

2FOR
FOR)OBJECT,LIST=FILEl

This command string directs the Compiler to take the source file
FILE1.FTN from the system device and output the files LIST.LST and
OBJECT.OBJ to the system device. When the compilation is complete the
Compiler again prompts with ftFOR)ft. At this point another command
string may be entered or tZ may be typed to cause the Compiler to
terminate execution.

An alternate way to specify a single command line is to enter the
command string on the line containing the MCR command. For example
the following performs the same function as the example above:

2FOR OBJECT,LIST=FILEl

Only a single compilation per FOR command may be specified in this
manner. Upon completion of the compilation the compiler exits to the
RSX-llM Executive which will prompt with a)".

Either of the output files can be omitted by omitting
specification from the command string. For example:

)FOR
FOR)FlLE1=FlLEl

produces FlLE1.OBJ on the system device but no listing file.

1-5

the file

CHAPTER 1. OPERATING PROCEDURES

~,LP:=FlLEl

produces a listing on the line printer, but no object module.

1.2.1 Compiler Switches

The FORTRAN Compiler command strings may contain switch options on the
input and output file specifications. The switches are as follows:

Switch

ILl:n

Description

Specifies the listing options.
encoded as follows:

The argument n is

ILl:O or I-Ll list d~agnostics only
ILl:l or ILl:SRC list source program and diagnostics

only
ILl:2 or ILl:MAP list storage map and diagnostics

only
ILl:4 or ILl:COD list generated code and diagnostics

only

Any combination of the above list options may be
specified by summing the numeric argument values for
the desired list options. For example:

ILI:7 or ILI:ALL or ILl

requests a source listing, a storage map listing, and
a generated code listing. If this switch is omitted
the default list option is ILI:3, source and storage
map. (See section 1.2.2.) If no listing output is
specified the following is assumed:

TI:LIST.LST/-LI

ISP Automatically spool listing file. The default (/SP)
is to spool.

IDE Compile lines with a 0 in column one. These lines are
treated as comment lines by default (I-DE) (see
section 1.6).

lEX Read a full 80 columns of each record in the source
file. Only the first 72 columns are read by default
(I-EX).

lID Print FORTRAN identification and version number. The
default (/-ID) causes the identification and version
number not to be printed.

lOP Enable the Common Subexpression (CSE) Optimizer. In
general the CSE optimizer will make the program run
faster. However, the size of the program may be
different than with no optimization (/-OP). The default
is to optimize (lOP).

1-6

(

CHAPTER 1. OPERATING PROCEDURES

/SN Include internal sequence numbers (ISN) • The /-SN
option reduces storage requirements for generated code
and slightly increases execution speed but disables
line number information during Traceback. The default
(/SN) is to use ISNs.

/14 Two word default allocation for integer variables.
Normally, single storage words will be the default
allocation for integer variables not given an explicit
length specification (i.e., INTEGER*2 or INTEGER*4).
Only one word is used for computation. /-14 is the
default.

IVA Enable vectoring of arrays (see section 2.5). The
default (/VA) is to vector arrays.

/WR Enable compiler warning diagnostics.
(/WR) is to issue warning diagnostics.

Switch default summary:

/LI:3/SP/-DE/-EX/-ID/OP/SN/-I4/VA/WR

1.2.2 List Formats

The default

There are three optional sections that may be included in the list
file. By default the source program and the storage map are included.
The generated code may also be included. Any combination of these
sections can be requested by using switches in the Compiler command
string (see section 1.2.1). A description of each section is given
below. Figure 1-2 provides a sample of the information included in
each section.

1.2.2.1 Source Listing - The source program unit is listed in this
sec~ion as it appeared in the input file. Internal sequence numbers
are added by the compiler for easy reference. Note that internal
sequence numbers are not always incremental. For example the
statement following a logical IF will have an internal sequence number
2 greater than that of the IF. The IF statement has internally been
assigned 2 sequence numbers: one for the comparison and one for the
associated statement. Comments, uncompiled statements, and
continuation lines do not receive internal sequence numbers.

1.2.2.2 Storag~p' Listin~- This section includes a list of all
symbolic names referenced in the program unit. A location offset from
the base of the program unit (subject to relocation during task
building) is given for all local symbols. There is also a description
of the symbolic name including usage, data type, and in the case of
COMMON blocks and array names, the defined size.

Blank
BLOCK

COMMON
/ / in

NOTE

is described as COMMON
the storage map, but is

1-7

CHAPTER 1. OPERATING PROCEDURES

located on a Task Builder map under the
Program Section named .$$$$.

1.2.2.3 Generated Code Listin9L - This section of the list file
contains a symbolic representation of the object code generated by the
compiler (see section 2.2) including a location offset from the base
of the program unit, the symbolic Object Time System (OTS) routine
name, and routine arguments. The code generated for each statement is
labeled with the same internal sequence number as that in the source
program listing, providing easy cross reference.

1-8

(

(

l

CHAPTER 1. OPERATING PROCEDURES

FORTRAN IV

ISN '0006
000066 LSNS
000012 MorSMS
000016 CHISIS
000102 CPt!SM
000106 eFIS
000110 AnFSIS
00011. MOFI8M

ISN .0001
000120 rSNS
000122 MO'SMS
000126 otF~IS
000132 AOFSMS
00013e CO'S
11100140 MO"SSM

ISN .0008
0e0t44 ISNS
00111146 RfLS
0001!52 RELI
000te6 CALS
000164 MODIRM

ISN '0009
Ul"17" ISNS
000112 MOISMS
000176 COIS
000200 AODSMS
000204 MOFSI!
000210 CDFS
000212 AODtSS
000214 MOOISM

ISN '0010
PlIU220 I·SNS
00111222 RELS
000226 RELS
01U232 IFill!
000234 RELS
0002'121 TVel
11100242 MOFSI!
0002'6 CDFS
1110.02150 MUDSMS
0002154 MOOISM
000260 ~ELS
00026. TVOS
000266 fOLI

ISN *0012
00021111 LSNS
000214 STPt

ISN .0013
000276 ISNS
000300 RETS

GENERATED CODE

*000006 FORTRAN IV M01-"! SOURCE LISTING
~000~!
*000002 0001 INTEGER tNT
ClI000e4 00"2 REAL. REAL

0OO3 COMPLEX 1M"
*040640 IIJ0fU DOUBLE PRECISION D8L.E
000030 000S DATA INT/10Q11

0006 REAL. • INT/2 • S.
0001 OSL.E • R[AL./2 •• 3.1415g682516
121008 IMA' • CMPL~(REAL., 3,21)

000030 0009 OBL.E • DeL.E + tNT/2 • 5,
*0.0400 0010 PRINT 10,I~AG,DBL[• 10,
12100020 0011 10 FORMAT(lx,3F12.6)

0012 STOP
e000.4 0013 END

e00024
000030
*000002 CMPLX.'000000
Cl.I00034

000064

000044
UJ40640

000044

000016
000010

000034

*041040

000044
000C'!'e.t
9000!4

.000014

FORTRAN IV

INT 000006
REAL 000030 1M', 000034
DBI.E 0000.'
CMPL)(00121000

Figure 1-2
Sample Listings

1-9

STORAGE MAP

INTEGER.2 VARIABLl
REAL.4 VARIABL.E
COMPL[X·8 VARIABLE
REAL·8 VARIABLE
COMPLEX.! PROCfDURE

CHAPTER 1. OPERATING PROCEDURES

.'__ -l... 2 • ~ Compiler Memory Requirements

The FORTRAN Compiler runs in a minimum partition of 7K words. If run
in a larger partition it uses the extra space for program and symbol
storage. If available storage is exceeded during the compilation
process, a FATAL ERROR T is issued.

1.3 USING THE TASK BUILDER TO LINK FORTRAN PROGRAMS

The Task Builder links relocatable object modules together to create a
task image. The object modules may come from user specified input
files, user libraries, or system libraries. References to global
symbols defined in one module and referenced in other modules are
resolved. The system object module library (SY:[l,l]SYSLIB.OLB) is
automatically searched to resolve any remaining undefined symbols.

References to resident common blocks and shared libraries are also ,,-- .
resolved. Thus, the task image produced is ready to be run under the qz'~~~
RSX-llM executive. The Task Builder also allows the building of tasks
with overlay structures.

For a more complete description of the Task Builder refer to the Task
Builder reference manual (DEC-ll-OMTBA-A-D).

The Task Builder is a system program invoked by the TKB MCR command.
The user initiates it by typing

>TKB

The Task Builder then prints "TKB)" to indicate that it is ready to
accept a command string. Alternatively the command string may be
typed on the same line as the TKB MeR command. The command string
should be a standard string as described in Section 1.1.1.

The first output file specifies the task image file. A second file
may be specified if a memory allocation map is desired. A third file
may be specified to contain the program sections and global symbol
definitions in relocatable object module format. This file is
described in the RSX-llM Task Builder Reference Manual. The input
files contain the object modules to be linked. Additional lines of
input file specifications may also be entered. After all input files
have been typed, the user should type a line consisting only of "II"
(unnecessary if command string is specified as part of MCR command).
The Task Builder will then build the task image. The default file
types used by the Task Builder are shown in Table 1-3.

Standard indirect command file specifications are also acceptable to
the Task Builder.

1-10

(

CHAPTER 1. OPERATING PROCEDURES

Table 1-3
Task Builder Default File Types

File Default Type

Task Image TSK
Map MAP
Input OBJ
Library OLB
Overlay
Description ODL

Command CMD

The following simple example builds a task image for the object file
OBJECT.OBJ created by the first example in Section 1.2.

HCIDTKB
~TASK,LP:-OBJECT
TKB>/I

or 2TKB TASK ,LP: -OBJECT

This creates the task image file TASK.TSK on the system device and
lists the memory allocation map on the line printer. Any references

, in OBJECT.OBJ to FORTRAN OTS routines are resolved automatically
because the OTS resides in the system object module library.

1.3.1 Task Builder Switch options for FORTRAN Programs

A FORTRAN programmer should be aware of several Task Builder
options. Some of these are necessary for correct linking of
programs. Others select options which some users may find
Detailed descriptions of these switches and other Task
switches may be found in the Task Builder Reference Manual.

switch
FORTRAN
useful.
Builder

The lEA switch must be used on the task image file if the task uses
the KEll Extended Arithmetic Element.

The /FP switch must be used on the task image file if the task uses
the PDP-ll/45 Floating Point Processor.

An abbreviated form of memory allocation map may be selected by
specifying ISH on the map file. See the Task Builder Reference Manual
for a description of both the long and short map formats.

The ILB and /MP switches when specified with an input file indicate an
object module library and overlay description file, respectively.
These two switches will be discussed in more detail in the following
sections.

The /SP switch may be used to cause automatic spooling of the Task
Builder map file.

1.3.2 Task Builder Options for FORTRAN Programs

The Task Builder allows numerous keyword options to be' specified in
addi tion to the swi tches described above. Several of these are of
particular interest to the FORTRAN user.

1-11

CHAPTER 1. OPERATING PROCEDURES

If keyword options are to be specified,the user must not specify the
command string with the MCR command and must terminate his command
input with a line consisting of a single slash, "I", instead of a
double slash as described previously. This causes the Task Builder to
solicit option information by printing:

ENTER OPTIONS:
~

At this point Task Builder options may be entered, one option per
line. After each option is entered the Task Builder prompts with
"TKB)" indicating that it is ready to accept the next option. After
specifying the desired options a single slash, "I", should be entered
to indicate no more options. The Task Builder then proceeds to build
the task and produce the requested output files. When it has finished
it again types "TKB)" and is ready to accept a new command string. To
exit from the Task Builder type tz (Control Z).

The Task Builder options particularly relevant to FORTRAN programmers
are described below.

1.3.2.1 ACTFIL - The number of files that may be simultaneously open
by a task is defaulted to 4. Buffer space is allocated in the task
image for this many files. When multibuffering is used via a call to
FDBSET, the number of buffers needed by the FORTRAN task will be
greater than the number of files. The number of buffers may be made
smaller to conserve memory or larger to allow more files to be open
simultaneously by means of the Task Builder option:

ACTFIL .. n

where n is the decimal number of buffers desired. (An attempt to open
a file when space is not available may cause a fatal error at
run-time.)

1.3.2.2 COMMON - If a shared common block is to be referenced by the
FORTRAN program this intention must be declared by specifying the
following option:

COMMON a name:access

where name is the name associated with the resident common block and
access is either RO for Read Only (meaningful for mapped systems only)
or RW for Read/Write. The FORTRAN common with the same name is used
to refere~ce the data in the resident common.

1.3.2.3 LIBR - If a shared library is to be referenced by the FORT~
program the following option must be used:

LIBR- name:access

where name is the library' s name and access is either RO for Read Only
(meaningful for mapped systems only) or RW for Read/Write. Libraries
are discussed in more detail in Section 1.3.3.

1-12

(

CHAPTER 1. OPERATING PROCEDURES

1.3.2.4 MAXBUF - The maximum record size that can be handled by the
FORTRAN object time system for input/output is defaulted to 132
(decimal) bytes. This may be increased by specifying the Task Builder
option:

MAXBUF = n

where n is the number of bytes. The default generally is adequate for
formatted input/output. If direct access operations are performed
using records larger than 132 bytes, the user must employ this option
to specify the size of the largest record which will be handled.

1.3.2.5 TASK - The task image being built may be given an explicit
task name by specifying the following option:

TASK == name

where name may be from one to six alphanumeric characters the first of
which must be alphabetic. If no task name is specified at task build
time, it may be explicitly specified at install time, or the Task
Builder will use the first six characters of the task image file name
as the task name.

1.3.2.6 UIC - The default Ule under which the task will execute may
be set by specifying the option:

Ule - [g,o]

where g,o is a valid group and owner number combination.
option is not specified the default Ule is [200,200].

If this

1.3.2.7 UNITS - The default number of logical units available to the
FORTRAN program is 6, that is, logical units 1 through 6 inclusive.
This number may be set explicitly smaller or larger at task build time
by specifying the option:

UNITS =- n

where n is the number of logical units desired.

The default device and file name associated with a logical unit number
is discussed in Section 3.4. If a smaller number of units than the
default is desired, a UNITS command must be given before any ASG
commands.

1.3.2.8 FMTBUF - The default size (32 words) of the buffer used for
object time format compilation may be changed by use of the following
Task Builder option:

1-13

CHAPTER 1. OPERATING PROCEDURES

FMTBUF - n

where n is the decimal size, in words, of the object time format
compilation buffer. The total size needed for format compilation is
approximately equal to the number of characters in the largest object
time format used by the program.

1.3.2.9 ASG - Logical unit numbers may be assigned to physical device
units by use of the following option:

ASG - devl:nlln21 ••• ,dev2:ml:m2: ••• , •••

where each dev is a physical device unit name and each n and m i8 a
valid logical unit number. The default device assignments would
appear as:

ASG - SY:l:2:3:4,TI:5,CL:6

1.3.2.10 PAR - A task may be built to execute in a specific partition
by use of the following option:

where:

pname

start

PAR - pname[:start:length]

- is the name of the partition for which this task is
being built. In unmapped systems, the task must run in
this partition.

- the octal starting address of the partition. This
address must be on a 32-word boundary if unmapped, 4K
boundary if mapped.

length - the octal length of the partition in bytes. The
specified length must be divisible by 64.

The optional argument's start and length must be specified when the
task is being built on a system that does not have the partition named
by the pname parameter.

Normally a task is built to execute from the default partition GEN.
When PAR is not specified the default assumed is:

1.3.3 FORTRAN Library Usage

An RSX-llM Library consists of a collection of object modules. Two
kinds of libraries exist, shared and relocatable. The Task Builder is
used to include modules from relocatable libraries in a task image.

1.3.3.1 Relocatable Libraries - Relocatable libraries are stored in
files on a file structured volume such as a disk. Object modules from

1-14

CHAPTER 1. OPERATING PROCEDURES

relocatable libraries are copied into the task image of each task
referencing the module. A relocatable library may be specified as an
input file to the Task Builder. Such a file specification must
include the /LB switch to indicate that the file is a library file.
When a library specification is encountered, those modules in the
library which contain definitions of any currently undefined global
symbols are included in the task image.

1.3.3.2 Shared Libraries - Shared libraries are located in main
memory and a single copy of each library is utilized by all
referencing tasks. Access to a shared library is gained by using the
LIBR option as described in Section 1.3.2.3. Shared libraries are
built by the user with the Task Builder; they must contain shareable
(reentrant) code.

1.3.3.3 §ystem Libraries - Each RSX-llM system has a system
re10catable library. The system relocatable library, SY:[l,l]
SYSLIB.OLB is automatically searched by the Task Builder if any
undefined global references are left after processing all user
specified input files. If the definition of one of these undefined
global symbols is found, the appropriate object module is included in
the task. The FORTRAN OTS is included in the system object library
and hence is loaded automatically with FORTRAN programs.

1.3.3.4 User Libraries - The user can construct his own relocatab1e
libraries of assembly language and FORTRAN routines by using the
RSX-llM Librarian. These libraries are accessed by using the /LB
switch as described in preceding sections.

If MATRIXLIB.OLB is a relocatable library containing matrix
manipulation routines and PROG.OBJ is the object file of a compiled
FORTRAN program which calls the matrix routines, the following command
string might be given to the Task Builder: '

TKB>PROG,LP:aPROG.OBJ,MATRIXLIB.OLB/LB
TKB>//

1.3.4 Overlays

The ov~rlay facility supplied by RSX-llM allows large programs to be
executed in relatively small partitions of main memory. The overlay
system is virtually invisible to the FORTRAN programmer. All he must
do is specify the overall overlay structure, indicate which
subprograms are to reside in various parts of the structure and
specify, using the overlay description language COOL), which routines
are to be autoloadable. Overlay loading may be performed
automatically (autoload) or via explicit load requests (manual load).
A complete description of manual loading can be found in the Task
Builder Reference Manual.

The overlay structure is specified as a tree structure in terms of the
Task Builder's Overlay Description Language' (ODL). If an overlay
structure is to be built then only one input file can be specified to

1-15

CHAPTER 1. OPERATING PROCEDURES

the Task Builder. This file must contain the appropriate ODL
statements. The specification of this file in a command string must
be followed by the IMP switch to identify it as an ODL file.

Simple overlay structures may be constructed using only two ODL
statements, .ROOT and .END. The following short examples demonstrate
how to build overlays. For a more detailed explanation of this
facility refer to the Task Builder Reference Manual.

Suppose a FORTRAN program consists of a main program (MAIN.OBJ) which
performs input and output and calls three subroutines, one which does
pre-processing of the data (PRE.OBJ), one which performs the primary
processing function of the program (PROC.OBJ), and one which does
post-processing of the data (POST.OBJ). The following ODL statements
specity an overlay structure which has a resident portion which
consists of the main program and three overlays which share the same
memory locations. Each overlay contains a single subroutine. Figure
1-4 is a diagram of the overlay structure. The ODL statements to
create this structure, are as followS1

• ROOT
.END

MAIN-* (PRE,PROC,POST)

The .ROOT statement is used to declare the tree structure. The • END
statement indicates the end of the ODL statements. The names specify
object file names (default file type is OBJ). Commas separate
descriptions of overlay segments which occupy the same storage.
Parentheses are used to group these descriptions. Dashes separate
descriptions of modules which are concatenated. If automatic loading
of overlays is desired, an asterisk must precede the name of each file
which contains a subprogram invoked from a point in the overlay
structure which is closer to the root of the structure than the
subprogram. If all files within a pair of parentheses are to be
automatically loaded, a single asterisk placed in front of the opening
parenthesis may be used instead. This indicates that the segment
containing the module will be automatically loaded whenever a call is
made to a subroutine in the file.

MAIN

B
------~-------~

PRE
PROC POST

Figure 1-3
Simple OVerlay Structure

1-16

/
d
\

/

\

CHAPTER 1. OPERATING PROCEDURES

A path of an overlay structure is any route from the root of the
structure which follows a series of branches to an outermost segment
of the tree. Figure 1-4 has only three short paths, MAIN-PRE,
MAIN-PROC, and MAIN-POST. A program in one overlay segment may call a
subprogram in another segment if and only if the two segments occur on
a common path. Thus, MAIN may call PRE, PROC or POST, but the three
subroutines cannot call each other.

A more complex structure is given in Figure 1-5 and is specified by
the ODL statements

• ROOT A-B-*(C,D-(E,F,G»

• END

The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and A-B-D-G.
A possible sequence of calls is the following,

A calls G,

A

B

I
I

c

G calls B, B calls D

I

E

Figure 1-4
OVerlay Structure

1.4 USING MCR TO INITIATE TASK EXECUTION

I
0

I
F

G

Once a task image has been built, MCR may be utilized to start the
execution of that task. First, the task must be installed in the
system by typing

1-17

CHAPTER 1. OPERATING PROCEDURES

lINS Filespec

where Filespec is a specification of the file containing the task
image. The default device is the system disk and the default file
type is TSK. The task is installed in the partition to. which it is
bound. In an unmapped system it may be installed in this partition
only. In a mapped system the /pAR - pamame keyword may be used to
install the task in any partition of sufficient size. An error will
result if the partition is larger than the checkpoint area in which
the task was built. The default task priority is 50. The task name
may be specified by using the /TASK-name switch.

The execution of an installed task is initiated by typing the RUN MeR
command:

2RUN tsk

where tsk is the task name which was specified when the task was
installed or, if none was given then, the name specified when the task
was built, or if none was given then, the first six characters of the
task image filename.

A task may be terminated prior to its normal termination by typing the
ABORT MeR commands

1ABO tsk

Execution of a task may be suspended by a FORTRAN pause statement, or
ended by a STOP statement. When this occurs, the Object Time System
will type a line with the task name, the statement which caused the
execution halt, and the contents of the display (text following STOP
or PAUSE). To continue execution after a pause, type in the RESUME MeR
conunand, which takes the form s

>RES ts~

A task which terminates as a result of a CALL EXIT statement will not
produce any output indicating it is terminating.

1.5 EXAMPLES

The following sequence might be used to compile, link and execute a
FORTRAN task consisting of:

a. the FORTRAN main program MAIN.FTN,

b. the FORTRAN subroutine SOORl. FTN ,

c. several FORTRAN subroutines in the file UTILITY .FTN,

d. some subroutines in the object module library MATLIB.OLB, and

e. the resident common block named PARM.

,2 FOR
FOR)MAIN,MAIN-MAIN
~SUBR1,SOORl-SUBRl
ZQB}UTILITY,UTILITY-UTILITY

1-18

CHAPTER 1. OPERATING PROCEDURES

FOR>tz
>TKB
TKB>TSKIMAGE=MAIN,SUBRl,UTILITY,MATLIB.OLB/LB
TKB>/
ENTER OPTIONS:
TKB>COMMON=PARM:RO
TKB>TASK=FSYS
TKB>//
2INS TSKIMAGE
2RUN FSYS

The listing files produced by the Compiler, MAIN.LST, SUBRl.LST and
UTILITY.LST, are automatically printed by the line printer spooler
task and are deleted after printing. All files reside or are created
on the system disk.

The preceding procedure could be accomplished through the use of
indirect command files. Suppose the file COMPILE.CMD contains the
following:

MAIN,MAIN=MAIN
SUBR1,SUBR1=SUBR1
UTILITY,UTILITY=UTILITY

and the file TASKBLD.CMD contains the following:

TSKIMAGE=MAIN,SUBR1,UTILITY,MATLIB.OLB/LB
/
COMMONaaPARM:RO

The following is then equivalent to the previous example.

2FOR @COMPILE
>TKB
~@TASKBLD
TKB>TASK=FSYS
TKB>//
2INS TSKIMAGE
2RUN FSYS

1.6 DEBUGGING A FORTRAN PROGRAM

The RSX-11M debugging program, ODT, usually cannot be effectively used
with a FORTRAN program due to the nature of the object code generated
by the FORTRAN Compiler (see section 2.2).

However, in addition to the FORTRAN OTS error diagnostics which
include the Traceback Feature (see section 2.5), there is another
debugging tool available to the FORTRAN programmer. Placing a D in
column one of a FORTRAN statement allows that statement to be
conditionally compiled. These statements are considered comment lines
by the FORTRAN Compiler unless the /DE switch is used in the Compiler
command string. In this case the lines are compiled as reg~lar
FORTRAN statements. Liberal use of PAUSE statements and selective
variable printout can provide the user with a method of monitoring
program execution. This feature allows the inclusion of debugging
aids that can be compiled in the early program development stages and
later treated as comment lines.

1-19

CHAPTER 2

FORTRAN-IV OPERATING ENVIRONMENT

2.1 FORTRAN-IV OBJECT TIME SYSTEM

The FORTRAN Object Time System (OTS) is composed of the following:

1. Math routines, including the FORTRAN library functions and
other arithmetic routines (e.g., floating point routines),

2. Miscellaneous utility routines (ASSIGN, DATE, ERRSET, etc.),

3. Routines which handle various types of FORTRAN I/O,

4. Error handling routines which process arithmetic errors, I/O
errors, and system errors,

5. Miscellaneous routines required by the compiled code,

6. Process I/O routines (AFC, UDC, etc),

7. Laboratory Peripheral Routines (LPS), and

8. RSX-1IM executive directives.

The FORTRAN Library is designed as a collection of many small modules
so that unnecessary routines can be omitted during task building. For
example, if the user program performs only sequential formatted I/O,
none of the direct access I/O routines are included in the task.

2.2 OBJECT COPE

Typical FORTRAN operations often require common sequences of PDP-ll
machine instructions. For example, at the end of any DO-loop, the
index variable must be incremented, compared with the limit value, and
a conditional branch taken. Other standard sequences might be
generated to locate an element of a multidimensional array, initialize
an input/output operation, or simulate a floating-point operation not
supported by the hardware configuration.

These common sequences of PDP-ll instructions are contained in a
library known as the Object Time System. The FORTRAN Compiler selects

2-1

CHAPTER 2. OPERATING ENVIRONMENT

a certain combination of these instruction sequences to implement a
FORTRAN program. During program execution, these sequences are
threaded together and effect the desired result.

The Compiler references a library instruction sequence by generating a
word containing the address of the first instruction in the sequence,
followed by information upon which the instructions are to operate.
In the case of the end-of-Do-loop sequence the information required is
the location of the index variable, the limit value, and the address
of the beginning of the loop. At runtime, register R4 is used to
thread together the various references to library instruction
sequencesJ the last instruction executed by each instruction sequence
is JMP @(R4)+, which transfers control to the next library instruction
sequence.

The mnemonics (global names) used for the library routine names follow
a logically consistent format. The mnemonics are usually six
characters in length. The first two characters specify an operation.
The third character specifies the mOde of the operation, i.e.,
integer, floating, double precision, complex, or logical. The fourth
character is always a dollar sign ($). The fifth and sixth characters,
if present, specify, respectively, a source and destination for the
operation. The source element for the operation can be a memory
location, the hardware stack, the hardware registers, or an in-line
argument which can be referenced through R4. The destination element
for an operation can be a memory location, the hardware stack, or a
location specified' as an in-line argument which can be referenced
through R4.

The library routines perform arithmetic operations, compare values,
test values, calculate subscripts, convert from one mode type to /
another, and trans~.er program control. There are special routines to \
handle internal statement numbers (ISNs), enabling the FORTRAN
Traceback feature, a routine to handle subprogram control transfer,
~d a routine to push the address of variables on the hardware stack.
There are also sever~l routines to handle special FORTRAN runtime
operations such as PAUSE, STOP, I/O initialization, and I/O data
transfers.

For example, the following FORTRAN program:

0001
0002
0003
0004
0005
0006

c
C PROGRAM TO DEMONSTRATE THE CODE GENERATED BY
C THE FORTRAN COMPILER.
C

DIMENSION RARRAY (10,10)
I - (3*2 - 5) + I
J = (I+100)*(N**2)
A - 2.0
RARRAY(2,1) = RARRAY(l,l)
END

I ALLOCATE A REAL*4 ARRAY
I ADD ONE TO I
I COMPUTE AN EXPRESSION
I ASSIGN A VALUE TO A REAL

+ A I SUM OF TWO REAL VALUES

would generate object code that can be symbolically represented as
follows (the storage map is included for reference):

FORTRAN

NAME

RARRAY
I

OFFSET

000006
000626

STORAGE MAP

ATTRIBUTES

REAL * 4
INTEGER*2

ARRAY (10,10)
VARIABLE

2-2

(

CHAPTER 2. OPERATING ENVIRONMENT

J
N
A

FORTRAN

ISN 10002

000630
000632
000634

IN'l'EGER*2
INTEGER*2
REAL * 4

000640 ICI$M 000626

ISN 10003

000644 MOI$MS 000626
000650 ADI$IS '000144
000654 MOI$MS 000632
000660 MUI$MS 000632
000664 MUI$SS
000666 MOI$SM 000630

ISN 10004

000672 MOF$IM 1040400 000634

ISN 10005

000700 MOF$MM 000006 000012
000706 ADF$MM 000634 000012

ISN 10006

000714 RET$

2.3 SUBROUTINE LINKAGE

VARIABLE
VARIABLE
VARIABLE

GENERATED CODE

1 INCREMENT THE INTEGER WHOSE ADDRESS
, IS 000626 (I)

MOVE VALUE OF INTEGER I ONTO STACK
; ADD 100 TO VALUE ON TOP OF STACK
; MOVE VALUE OF INTEGER N ONTO STACK
, AND SQUARE IT (MULTIPLY BY ITSELF)
, MULTIPLY (I+100) AND (N**2)
1 STORE VALUE ON TOP OF STACK INTO J

, MOVE AN IMMEDIATE FLOATING CONSTANT
, (2.0) TO A

1 MOVE RARRAY (1,1) TO RARRAY (2,1)
, AND ADD A TO RARRAY (2,1)

RETURN TO RSX-11M
(EXIT FROM PROGRAM)

All instances of subprogram linkage are performed in the same manner,
including linkage of user written FORTRAN subprograms, and Assembly
language subprograms. Control is passed to the subprogram via the
following instruction:

JSR PC,routine

Register 5 (RS) contains the address of an argument list having the
following formatz

2-3

CHAPTER 2. OPERATING ENVIRONMENT

R5 ,
Undefined I I of arquments

address of argument 11

address of argument 12

· · ·
address of argument In

The value -1 is stored in the argument list as the address of any null
arguments. Null argwnents in CALL statements appear as successive
commas, e.g., CALL SUB (A"B)

Control is returned to the calling program via the instruction I

RTS PC

An assembly language subroutine to find the sum of any number of
integers using the following calli

CALL IADD (numl,num2, ••• ,numn,isum)

might look like the following:

• TITLE lADDER
IADD: : MOV (RS) +,RO ,GET t OF ARGUMENTS

CLR Rl , PREPARE WORKING REG.
DECB RO I CALCULATE t OF TERMS TO ADD

1$: ADD - @ (R5) +,Rl ,ADD NEXT TERM
DECB RO , DECREMENT COUNTER
BNE 1$, LOOP IP NOT DONE
MOV Rl,@(RS)+ ,RETURN RESULT
RTS PC , RETURN CONTROL
.END

2.4 SUBPROGRAM REGISTER USAGE

A subprogram that is called by e FORTRAN program need not preserve any
registers. However, the contents of the hardwar~ stack must be kept
such that each 'push' onto the stack will be matched by a 'pop' from
the stack prior to exiting the routine.

User-written assembly language programs that call FORTRAN subprograms
must preserve any pertinent registers before calling the PORT RAN
routine and restore the registers, if necessary, upon return.

Function subprograms return a single result in the hardware registers.
The register assignments for returning the different variable types
are listed below:

2-4

f

~,

CHAPTER 2. OPERATING ENVIRONMENT

Integer and Logical functions - result in RO

Real functions - high order result in RO, low order result in Rl

Double Precision functions - result in RO-R3, lowest order
result in R3

Complex functions - high order real result in RO, low order real
result in Rl, high order imaginary result in R2, low
order imaginary result in R3

2.5 VECTORED ARRAYS

Array vectoring is a process which decreases the time necessary to
reference elements of a multidimensional array by using additional
memory to store the array.

Multidimensional arrays, which are actually stored sequentially in
memory, require certain address calculations to determine the location
of individual elements of the array. Typically, a mapping function is
used to perform this calculation. For example to locate the element
LIST(1,2,3) in an array dimensioned LIST(4,5,6) a function equivalent
to the following may be used. This function identifies a location as
an offset from the origin of the array storage.

(sl-l) + dl * (s2 - 1) + dl * d2 * (s3 - 1) -
(0) + 4 * (1) + 4 * 5 * (2) - 44

where si - subscript i
di - dimension i

Since such a mapping function requires multiplication operation(s),
and since some PDP-ll hardware configurations do not have the MOL
instruction, the compiler may 'vector' some arrays and thereby reduce
execution time at the expense of memory storage.

,-

If an array is vectored, a particular element in the array can be
located by a simplified mapping function, without the need for
multiplication. Instead, a table lookup is performed to determine the
location of a particular element. For example, a vectored, two
dimensional array B(5,5) automatically has associated with it a one
dimensional vector that would contain relative pointers to each column
of array B. The location of the element B(m.n), relative to the
beginning of the array, could then be computed as:

Vector(n) + m

using only addition operations. Figure 2-2 graphically depicts the
array vectoring process.

The compiler decides whether to vector a multi-dimensional array based
on the ratio of the amount of space required to vector the array to
the total storage space required by the array. If this ratio is
greater than 251, the array is not vectored and a standard mapping
function is used instead. Arrays with adjustable dimensions are never
vectored. vectored arrays are noted as such in the storage map
listing.

2-5

CHAPTER 2. OPERATING ENVIRONMENT

The Compiler I-VA switch can be used to suppress all array vectoring.

The amount of memory required to vector an array can be computed as
the sum of all array dimensions except the first. Por example, the
array X(50,10,30) requires 10+30-40 words of vector table. Note that
the array V(5,100) requires 100 words of vector storage, whereas the
array Y(lOO,S) requires only 5 words of vector storage. It is
therefore advantageous to place an array's largest dimension first if
it is to be vectored.

Wherever possible, vector tables are shared among several different
arrays. The compiler arranges sharable vectors under the following
conditions:

1. Arrays are in the same program unit

2. For the i th dimension vector to be
shared by the arrays, dimensions to
the left of the ith dimension must
be equivalent in each array_

For example, given the statement DIMENSION A(10,10),B(10,20), A and B
share a 20 word vector for the second dimension that contains the
values 0, 10, 20, 30, 40, SO, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 190, of which the array A uses only the first ten
elements.

Array B

B (1 ,1) P1
B(2,1)
B(3,1)
B(4,1)
B (5 ,1)
B(1,2) P2
B(2,2)
B(3,2)

· •
•
•

B(1,5) P5
B(2,5)
B(3,5)
B(4,5)
B(5,5)

Associated
Vector

P1
P2
P3
P4
P5

The location of element

Vector(n) + m

Figure 2-2
Array Vectoring

2-6

B(m,n) -

CHAPTER 3

~X-llM FORTRAN-IV SPECIFIC CHARACTERISTICS

'l'hie chapter deals with information specific to RSX-llH FORTRAN-IV
that ~s Q~i.tted from or relaxes r.est~iQtion8 included in the PDP-ll
FORTRAN Language Referenqe Manual.

It S~9~~d b~ noted that d~vi,ations f~om FORTRAN syntax requirements
outlil.l~d ip the PDP-ll FORT~ Lanqu~ge Reference Manual, even if
accept~~~ ~n RSX-llM FORTRAN, 4ecrease the portability of the
prog;am, and may J?~Ohibit successful execution on another PDP-ll
system.

~ 4! ~ VNUMLEf .. ~~s.
~.~~l..~.r.t 'QR'l'~ ~.llQWt:I v~~i.~le names t.o extend Past six characters in
~@l.lg1;~. flow,'VEtl;', Qnly the. ti,rsi; si.x Qhaxoaoters are significant and
should be upi,q~e. ~Qng· ~ll var-iable n8Jlles in the program unit. A
warning diagnostic is given for each variable name which exceeds six
characters in length. The diagnostic will be suppressed if (/-WR) is
included in the compiler command string'.

3.2 INITIALIZATION OF COMMON VARIABLES

RSX-llM FORTRAN
CO~o~, to be
~tatement.

allows any variables in COMMON, i.ncluding blank
ini.ti_lize.d i.n any program uni.t by use of the DATA

3~~ CONTINUATION LINES

RSX-llM FORTRAN does not place any limi.ts on the number of
continuation iines that a statement may oont.ain.

~.~ 4 DEFAUL~' LOGI.CAL WIT .. J):EVl.CEIFlLE ASS·I,GNMBNTS

Liste.d: in table 3-1 axe the default 109ica.l. unit. - device and filename
assignments. . The default device assignments may be changed at task
build time via the ASG keyword option or prior to execution via the
REASSIGN MCR command. For example the command:

2REA tsk 3 LP:
3-1

CHAPTER 3. SPECIFIC CHARACTERISTICS

connects logical unit 3 to the physical device unit line printer in
the task named tsk. The device and/or filename assignments may be
changed at execution time by use of the ASSIGN library routine (see
section B.2). The default filename conventions hold for logical units
not listed below, i.e., unit number 12 will have a default filename of
FOR012.DAT.

Table 3-1
FORTRAN Logical Device Assignments

Logical unit Default Device Default Filename
Number

1 System disk, SY: FOROO1.DAT
2 System disk, SY: FOROO2.DAT
3 System disk, SY: FOROO3.DAT
4 System disk, SY: FOROO4.0AT
5 Requestor terminal,TI: FOROO5.0AT
6 Console listing, CL: FOROO6.0AT

Although any combination of valid logical unit numbers may be used,
there is an imposed maximum number of units which may be
simultaneously active. By default, four file structured logical units
may be concurrently active, i.e., four files may be open
simultaneously. The number may be changed by use of the ACTFIL Task
Builder option (see section 1.3.2.1). It should be noted that logical
unit numbers are allocated consecutively. For example, if logical
units 2 and 17 are used, units 1 through 17 will be allocated.

A formatted READ statement of the form:

READ f,list

is equivalent to:

READ (l,f)list

For all purposes these two forms function identically. Assigning
logical unit number 1 to the terminal, for example, in both cases
causes input to come from the terminal.

The ACCEPT, TYPE, and PRINT statements also have similar functional
analogies. Assigning devices to logical units 5, 5, and 6 affects
respectively the ACCEPT, TYPE, and PRINT statements.

3.5 STATEMENT ORDERING RESTRICTIONS

RSX-llM FORTRAN does not impose
requirements as those outlined
Reference Manual. There are
requirements that must be met:

as strict statement
in the PDP-ll FORTRAN

ordering
Language
ordering only three statement

3-2

CHAPTER 3. SPECIFIC CHARACTERISTICS

1. In a Subprogram, the first non-comment line must be a
FUNCTION, SUBROUTINE or BLOCK DATA statement.

2. The last line in a program unit must be an END statement.

3. Statement Functions must be defined
referenced.

before they are

However, if the statement ordering requirements as outlined in the
POP-ll FORTRAN Language Reference Manual are not followed, a warning
diagnostic will be included with the source listing. A /-WR specified
in the Compiler command will surpress the diagnostic.

3.6 FCS/OTS FILE OPEN CONVENTIONS

A file or device is opened for I/O activity (if no file or device is
already open on that logical unit) by the execution of a READ or a
WRITE statement. The type of File Control Services (FCS) open
operation invoked depends upon the type of file being opened. The
file may be explicitly specified as "OLD" or "NEW" in a call to
FDBSET; these specifications are implicit in the use of the READ and
WRITE statements. When no explicit specification is made, and a READ
is the first I/O operation performed on a unit, "OLD" is assumed. If
a WRITE is the first I/O operations, then "NEW" is assumed.

3-3

(
\

{

\

(

APPENDIX A

FORTRAN DATA REPRESENTATION

A.l INTEGER FORMAT

Sign

15 14

B-inary number

o

Integers are stored in a two's complement representation. If the /I4
compiler switch (see section 1.2.1) is used, an integer is assigned
two words, although only the high-order word (i.e., the word having
the lower address) is significant. By default, integers will be
assigned to a single storage word. Explicit length integer
specifications (INTEGER*2 and INTEGER*4) will always take precedence
over the setting of the /14 switch. Integer constants must lie in the
range -32768 to +32767. For example:

+22 = 00026 8 -7 = 177718

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
stored in excess 128 (12008) notation. Binary. exponents from -128 to
+127 are represented by the binary equivalents of 0 through 255 (0
through 3778). Fractions are represented in sign-magnitude notation
with the binary radix point to the left. Numbers are assumed to be
normalized and, therefore, the most significant bit is not stored
because it is redundant (this is called -hidden bit normalization-).
This bit is assumed to be a 1 unless the exponent is 0 (corresponding
to 2-128) in which case it is assumed to be O. The value 0 is
represented by two or four words of zeros. For example, +1.0 would be
represented by:

40200
o

in the 2-word format, or:

40200
o
o
o

A-I.

APPENDIX A. DATA REPRESENTATION

in the 4-word format. -5 would be:

140640
0

in the 2-word format, or:

140640
0
0
0

in the 4-word format.

A.2.1 Real Format (2-Word Floating Point)

word 1:

word 2: Low-order mantissa
15 o

since the high-order bit of the mantissa is always 1, it is discarded,
giving an effective precision of 24 bits, or approximately 7 digits of
accuracy. The magnitude range lies between approximately .29 X 10-38
and .17 X 1039 •

A.2.2 Double Precision Format (4-Word Floating Point)

word 1:

word 2: I Low-order mantissa I
15 0

word 3: I Lower-order mantissa I
15 0

word 4: I Lowest-order mantissa I
15 0

The effective precision is 56 bits or approximately 17 decimal digits
of accuracy. The magnitude range lies between .29 X 10- 8 and .17 X
1039 •

A-2

f
i
\

(

"-

APPENDIX A. DATA REPRESENTATION

A.2.3 Complex Format

word 1:
Si~n

10- B~nary excess
1= 1 8 ~xeQngnt

H!:h-order
m t;L&UIA

15 14 7 6 ° Real
Part

word 2: I Low-order mantissa I
15 °

word 3:
Sir 10= Binary excess
1- 1~8 eX2Qngnt I H~~-or:er m ;Las
15 14 7 6 ° Imaginary

Part

word 4: I Low-order mantissa I
15 °

A.3 LOGI'CAL*l

I Data item I
7 °

Any non-zero value is considered to have a logical value of .TRUE.
The range of numbers from +127 to -128 can be represented in LOGICAL*l
Format. LOGICAL*l array elements are stored in adjacent bytes.

A.4 HOLLERITH FORMAT

word 1: I char 2 I char 1 I
15 8 7 0

word 2: is char 4] char 3 I
8 7 0

•
•
•

I b1ank=4Oa Ichar n (n~255)1
15 8 7 0

A-3

APPENDIX A. DATA REPRESENTATION

Hollerith constants are stored internally one charac~er per byte.
Hollerith values are padded on the right with blanks to fill the
associated data item if necessary. Hollerith constants can only be
used in DATA, FORMAT, and CALL statements. Only the quoted form of
Hollerith constants can be used in STOP and PAUSE statements.

A.5 LOGICAL FORMAT

True: word 1 I 112121212111
15 0

word 2 I uns~cIfIed I
15 0

False: word 1 I 01010101010 I
t

5 0
word 2 unsEecified I

15 0

Logical (LOGlCAL*4) data items are treated as LOGICAL*l values for use
with arithmetic and logical operators. Any non-zero value in the low
order byte is considered to have a logical value of true in logical
expressions.

A.6 RADIX-50 FORMAT

Radix-50 character set

Character Octal Radix-50
ASCII Equivalent Equivalent

space 40 0
A-Z 101-132 1-32

$ 44 33
• 56 34

unused 35
0-9 60-71 36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X-113000
2=002400
B-000002

X2B=-115402

A-4

APPENDIX A. DATA. REPRESENTATION

Single Char.
or Second Third

First Char. Character Character
------------ -------- --------
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
o 056700 o 001130 o 000017
P 062000 P 001200 P 000020
Q 065100 o 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
x 113000 x 001700 x 000030
y 116100 Y 001750 Y 000031
z 121200 z 002020 z 000032
$ 124300 $ 002070 $ 000033
• 127400 • 002140 • 000034

132500 002210 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 00245'0 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

-j"' ...

t_>~

/
(
\.

APPENDIX B

LIBRARY SUBROUTINES

B.l LIBRARY SUBROUTINE SUMMARY

In addition to the functions intrinsic to the FORTRAN system, there
are subroutines in the FORTRAN library which the user may call in the
same manner as a user-written subroutine. These subroutines are:

ASSIGN

CLOSE

DATE

I DATE

ERRSET

ERRSNS

ERRTST

EXIT

USEREX

FDBSET

RADSO

IRADSO

RSOASC

Allows specification at run-time of filename or device
and filename to be associated with a FORTRAN logical unit
number.

Allows the file on a specified logical unit to be closed.

Returns a 9-byte string containing
representation of the current date.

the ASCII

Returns three integer values representing the current
month, day and year.

Allows the user to specify the action to be taken on
detection of certain errors.

Allows the user to obtain information about the most
recently detected error condition.

Allows monitoring of certain error types during program
execution.

Terminates the execution of a program and returns control
to the RSX-I1M executive.

Allows specification of a routine to be invoked as part
of program termination.

Allows specification of special I/O options to be
associated with a logical unit.

Performs conversion of up to six character Hollerith
strings and returns the result as a function value.

Performs conversion of Hollerith strings to Radix-50
representation.

Converts Radix-50 strings to Hollerith strings.

B-1

APPENDIX B. SYSTEM· SUBROUTINES

RANDU,
RAN

SECNDS

TIME

Returns a random real number with a uniform distribution
between 0 and 1.

Provides system time of day or elapsed time as a floating
point value in seconds.

Returns an
representation
seconds.

a-byte string containing the ASCII
of the current time in hours, minutes and

B.2 ASSIGN

The ASSIGN subroutine allows the association of filename information
with a logical unit number. The ASSIGN call, if present, must be
executed before the logical unit is opened for I/O operations (by READ
or WRITE) for sequential access files, or before the associated DEFINE
FILE statement for random-access files. The device assiqnment remains
in effect until a new CALL ASSIGN is performed. The filename
assignment remains in effect only until the file is closed by a
CALL CLOSE. The call to ASSIGN has the general form:

CALL ASSIGN (n, name, icnt)

CALL ASSIGN requires only the first argument, all others are optional,
and if omitted are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included,
all arguments that precede it must also be included.

A description of the arguments to the ASSIGN routine follows:

name

ient

logical unit number expressed as an integer constant,
variable, or expression.

Hollerith or literal string containing any standard
RSX-llM device/filename specification. If the device
is not specified, then the device remains unchanged
from the d~fault assignments, or the MeR REASSIGN
command. If a filename is not specified, the default
names as described in section 3.4 are used.

specifies the number of characters in the string
'name'. If 'icnt' is zero, the string 'name' will be
processed until the first null character is
encountered.

An argument is allowed after icnt to be compatible with previous
forms of CALL ASSIGN.

For example, in the following program:

CALL ASSIGN (3, 'TT:')
WRITE (3,-) ••••
CALL CLOSE (3)
WRITE (3,-) ••••

B-2

- I
~I

I
I
I
I
~
~

APPENDIX B. SYSTEM SUBROUTINES

both WRITE operations will occur on the terminal.
WRITE to revert back to SY:, another CALL
explicitly setting SY: to unit 3.

B.3 CLOSE

To cause the second
ASSIGN must be used,

The CLOSE subroutine allows the currently open file on a logical unit
to be closed. The form of the call is:

CALL CLOSE (n)

where n is an integer value specifying the logical unit. When the
close is completed the buffers and FDB associated with the file are
again available for use.

B.4

The DATE subroutine can be used in a FORTRAN program to obtain the
current date as maintained within the system. The DATE subroutine is
called as follows:

CALL DATE (array)

where array is an array capable of holding a 9-~te string. The array
specification in the call may be expressed as the array name alone:

CALL DATE (a)

in which the first three elements of the real array a are used to hold
the date string, or as:

CALL DATE (a(i»

which causes the 9-byte string to begin at the i(th) element of the
array a.

The date is returned as a 9-~te (9-character) string in the form:

where:

dd-mrnm-yy

dd is the 2-digit date

mmm is the 3-letter month specification

yy is the last two digits of the year

B-3

APPENDIX B. SYSTEM SUBROU'l'INES

For example:

l5-NOV-75

In the case where the array is a real array, 4-1/2 words are used to
contain the data string with the remaining array storage being
untouched. Therefore, the date string is stored in the first nine
bytes in the elements a(i), a(i+l), and a(i+2). The last three bytes
of a(i+2) are untouched and should be filled with blanks by the user
if he intends to print the date with a JA4 format.

B.5 I DATE

IDATE returns three integer values representing the current month,
day, and year. The call has the form:

CALL IDATE (i, j, k)

If the current date were March 19, 1975 the values of the integer
variables upon return would be:

i = 3
j = 19
k = 75

B.6 ERRSET

The ERRSET subroutine allows specification of the action to be taken
when an error is detected by the OTS. The error action to be taken is
specified individually for each error, independent of other errors.
The general form of the call is:

where

CALL ERRSET (number, contin, count, type, log, maxlim)

number

con tin

count

type

is an integer value specifying the error number to
which the following parameters apply.

is a Logical value specifying whether or not to
continue after an error. .TRUE. means continue,
.FALSE. means exit if this error occurs.

is a Logical value specifying whether to count
this error against the task maximum error limit •
• TRUE. means count, • FALSE. means don • t count
it.

is a logical value specifying the type of
continuation to perform. • TRUE. means that an
ERR a transfer is to be taken if available. If
this action is indicated and an ERR - keyword is
not specified in the I/O statement, then the task
will exit when the error occurs. .FALSE. means

B-4

APPENDIX B. SYSTEM SUBROUTINES

log

maxlim

return to the routine that detected the error for
default error recovery.

is a logical value specifying whether to produce
an error message for this error. .TRUE. means
produce message, .FALSE. means don't produce a
message.

is a positive integer value used to set the task's
maximum error limit. The default value is set to
31 at task initialization.

Consult section C.2, OTS Error Processing, for a complete description
of the allowed values and meanings of these arguments.

Null arguments are permitted for all but the first argument and cause
no change in the current state of that control code.

B.7 ERRSNS

The ERRSNS subroutine allows the user to obtain information about the
most recent error that has occurred during program execution. The
general form of the call is:

where

num

CALL ERRSNS (nurn, fcserr, fcserl, iunit)

is an INTEGER*2 variable or array element into which
will be stored the most recent error number.

(A zero will be returned if no error has occurred.)

If the last error occurred as a result of an error indication from
File Control Services, then the next three parameters will receive
selected values from the file descriptor block (FOB). Otherwise,
values of zero will be returned. Consult the I/O Operations Reference
Manual (DEC-ll-OXFSA-A-D) for definitions of the interpretation of the
FCS error return codes.

fcserr is an INTEGER*2 variable or array element into which
will be stored the F.ERR field of the FOB.

fcserl is an INTEGER*2 variable or array element into which
will be stored the F.ERR+l field of the FOB

iunit is an INTEGER*2 variable or array element into which
will be stored the logical unit number.

From zero to four arguments may be specified.
arguments serves to clear ERRSNS from previous calls.
an error occurs in a given section of a program,
technique is suggested;

Specifying zero
To determine if
the fol~owing

1. Call ERRSNS immediately prior to the segment in order to
clear any previous error data:

2. Execute the section

B-5

APPENDIX B. SYSTEM SUBROUTINES

3. Call ERRSNS again and branch on a non-zero argument to error
analysis code.

For example:

CALL ERRSNS
CALL ASSIGN (1, 'NAME.DAT')
CALL FDBSET (l,'OLD','SHARE')
CALL ERRSNS (IERR)
IF (IERR.NE.O) GO TO 100

B.8 ERRTST

The ERRTST subroutine allows the user program to monitor the types
errors detected during program execution. The call is of the form:

CALL ERRTST (i, j)

where i is the error number and the value of j is returned as:

j=l if an error number i has occurred
j=2 if an error number i has not occurred

The sequence:

CALL ERRTST (43,J)
GO TO (lO,20),J

20 CONTINUE

transfers control to statement 10 if an error 43 has occurred.
section C.2.3. for a discussion of error codes and messages.

of

See

The ERRTST routine also resets to 0 the error flag for that error
class (but not the error count used by ERRSET). For example:

CALL ERRTST (I,J)
CALL ERRTST (I,J) •

The second call is guaranteed to return J-2. The ERRTST subroutine is
independent of the ERRSET subroutine; neither directly influences the
other except that ERRSET can cause execution to terminate.

B.9 EXIT

A call to the EXIT subroutine, in the form:

CALL EXIT

terminates execution. It causes all files to be closed and the
issuing task to be terminated.

B-6

(

"

(

APPENDIX B. SYSTEM SUBROUTINES

B.lO USEREX

USEREX is a subroutine which allows specification of a routine to be
invoked as part of program termination. This allows clean up
operations in non-FORTRAN routines. The form of the subroutine call
is:

CALL USEREX (name)

Where 'name' is the routine which will be called at exit time and
should appear in an EXTERNAL statement somewhere in the program unit.
Control is transferred with a JSR PC,name instruction after all
procedures required for FORTRAN program termination have been
completed. The transfer of control takes place instead of the normal
exit to the RSX-llM executive. The routine specified by USEREX may
perform the exit procedure itself or return with an RTS PC.

Boll FDBSET

The FDBSET subroutine permits specification of special input/output
options available through File Control Services under RSX-llM.

where

CALL FDBSET (unit, mode, share, numbuf, initsz, extend)

unit

mode

share

is an integer value specifying the logical
unit to which the subsequent arguments apply

is one of the following literals specifying
the type of access to be used (only the first
letter is checked for validity):

'READONLY'
'NEW'
'OLD'
'APPEND'

'UNKNOWN'

'MODIFY'

'ISUP'

For read only access
For creating a new file
For accessing an existing file
For appending to an existing
file (meaningful) for
sequential files only)
When it is not known whether a
file exists: this option
searches for it, opens it if
it already exists, or creates
the file if it does not.
Open an old file for updating.
The file can not be extended.
Open a new file (for output)
but inhibit superseding of the
previous version. This file
will replace the current
version.

If this argument is omitted the default is
determined by the first I/O operation
performed on that unit. If a WRITE operation
is the first I/O operation performed on that
unit, 'NEW' is assumed. If a READ operation
is the first I/O operation performed on that
unit, 'OLD' is assumed.

is the literal 'SHARE' indicating the FCS
shared access bit should be set.

B-7

APPENDIX B. SYSTEM SUBROUTINES

numbuf*

initsz

extend

is an integer value indicating the number of
internal buffers to be used for multibuffered
input/output. If this argument is omitted,
one internal buffer is used. The ACTFIL
option in the Task Builder command sequence
is used to extend the buffer area.

is an integer value indicating the initial
allocation, in disk blocks, of a new file.

is an integer value specifying the number of
blocks by which to extend a file.

FDBSET may only be called prior to opening the unit specified in the
first argument. CALL FDBSET, CALL ASSIGN, and the DEFINEFILE
statement may be used together.

The unit number argument is required. All other arguments may be null
or missing to indicate no specification for that argument.

B.12 RADSO

The RADSO function subprogram provides a simplified way to encode
RSX-ILM task names in Radix-50 notation. The form of the call is

where

RADSO (name)

name is the variable name or array element corresponding to
an ASCII string.

Note that the RADSO function may be used as an argument to an RSX-llM
system directive sUbroutine, e.g.,

DATA A/'JOE'/

CALL REQUES (RADSO(A), •••)

THE RADSO function is equivalent to the following FORTRAN function
subprogram:

FUNCTION RADSO(A)
CALL IRADSO (6,A,RADSO)
RETURN
END

B.13 IRADSO

The IRADSO subprogram performs conversions between
strings and Radix-50 representation. Radix-50

Hollerith (text)
representation is

*Multi-buffering is not implemented in the current release of RSX-llM.
It will be included in a subsequent release.

B-8

APPENDIX B. SYSTEM SUBROUTINES

required by the ISA Process Control and System Directives Subroutines
for the specification of task names within the RSX-llM system. (See
the PDP-II FORTRAN Language Manual for details of the Radix-50
representation.)

lRADSO may be called as a FUNCTION subprogram if the return value is
desired, or as a SUBROUTINE subprogram if no return value is desired.
The form of the call is

n a lRADSO (icnt, input, output)

or

CALL lRADSO (icnt, input, output)

where

icnt is the (integer) maximum number of characters to
convert.

input is an ASCII (Hollerith) text string to be
converted to Radix-50.

output is the location for storing the results of the
conversion.

n is the number of characters actually converted.

Three characters of text are packed into each word of output. The
number of output words modified is computed by the expression (in
integer mode)

(ICNT+2) /3

Thus if a count of four is specified, two words of output will be
written even if only a l-character input string is given as an
argument.

Scanning of input characters will terminate on the first non-radix-SO
character encountered in the input string.

B.14 RSOASC

The RSOASC subprogram provides decoding of Radix-50 encoded values
into ASCII strings. The form of the call is:

where

CALL RSOASC (icnt, input, output)

icnt

input

is the number of output
converted.

characters to be

is the variable or array containing the encoded
input. Note that (icnt+2)/3 words will be read
for conversion.

B-9

APPENDIX B. SYSTEM SUBROUTINES

output is the variable or array into
characters (bytes) will be placed.

which icnt

If the undefined Radix-50 code is detected, or the Radix-50 word
exceeds the maximum value 174777 (octal) then question mark(s) (ft?ft)·
will be placed in the output.

B.15 RANDU,RAN

The random number generator can be called as a subroutine, RANDU, or
as an intrinsic function, RAN. The subroutine call is performed as
follows:

CALL RANDU (iI, i2, x)

where il and i2 are previously defined integer variables and x is the
real variable name in which is returned a random number between 0 and
1. il and i2 should be initially set to O. II and i2 are updated to a
new generator base during each call. Resetting il and i2 to 0 repeats
the random number sequence. The values of il and i2 have a special
form; only 0 or saved values of il and i2 should be stored in these
variables.

Use of the random number subroutines is similar to the use of the RAN
function where:

x = RAN (iI, i2)

is the functional form of the random number generator.

B.16 SECNDS

The SECNDS FUNCTION subprogram returns the system time as a single
precision floating point value less the value of its single argument.
For example:

TIM=SECNDS (0.)

will return the number of seconds since midnight, that is, the current
time of day. It may be called with a non-zero argument for performing
elapsed time computations as in

C

C
C
C

START OF TIMED SEQUENCE
Tl II: SECNDS(O.)

CODE TO BE TIMED

DELTA = SECNDS(Tl)

where DELTA will give the elapsed time.

B-lO

(

APPENDIX B. SYSTEM SUBROUTINES

The value of SECNDS is accurate to not less than the resolution of the
system clock: 0.0166 ••• seconds for a 60-cycle clock and 0.02 seconds
for a 50-cycle clock. Systems with a programmable clock have resolu
tion not less than the clock tick as set at SYSGEN.

With 24 bits of precision for
accurate to the clock tick
duration.

B.17 TIME

real
for

values,
values

this
up to

representation is
about two days in

The TIME subroutine allows the user to access the current system time
as an ASCII String. Its form is as follows:

CALL TIME (a)

The TIME call returns the time as an 8-byte (8-character, including
colons) ASCII string of the form:

where

hh:mm:ss

hh is the two-digit hour indication
mm is the two-digit minute indication
ss is the two-digit second indication

For example:

10:45:23

A 24-hour clock is used. This quantity is typically output with a 2A4
format specification.

B-ll

(
\

(
\.

APPENDIX C

FORTRAN ERROR DIAGNOSTICS

C.l COMPILER ERROR DIAGNOSTICS

The RSX-llM FORTRAN Compiler, while reading and processing the FORTRAN
source program, can detect syntax errors (or errors in general form)
such as unmatched parentheses, illegal characters, unrecognizable key
words, missing or illegal statement parameters.

The error diagnosti'cs are generally clear in specifying the exact
nature of the error. In most cases, a check of the general form of
the statement in question as described in the PDP-II FORTRAN Language
Reference Manual will help determine the location of the error.

Some of the most common causes of syntax errors, however, are typing
mistakes. A typing mistake can sometimes cause the Compiler to give
very misleading error diagnostics. The user should be careful of the
following common typing mistakesl

1. Missing commas or parentheses in a complicated expression or
FORMAT Statement.

2. Misspelling of particular instances of variable names. If
the Compiler does not detect this error (it usually cannot),
execution may also be affected.

3. An inadvertent line continuation signal on the line following
the statement in error.

4. If the user terminal does not clearly differentiate between 0
(zero) and the letter 0, what appear to be identical
spellings of variable names may not appear so to the
Compiler, and what appears to be a constant expression may
not appear so to the Compiler.

If any errors were detected in a compilation, the message:

ERRORS DETECTED: n

will be printed on the initiating terminal; n is the number of
errors, not including warnings, detected by the compiler.

The next three sections describe the initial phase and secondary phase
error diagnostics and the fatal FORTRAN Compiler error diagnostics.

C-l

APPENDIX C. ERROR DIAGNOSTICS

The following is an example of a FORTRAN program with diagnostics
issued by the Compiler.

FORTRAN IV

0001
0002
0003
0004
0005 10
0006 10
.* •• * M
0007

C
.* •• * E

FORTRAN IV

M01-01 SOURCf LISTING PAGE 001

DOUBLE P~!CIStON OBlE D8l£2 MISSING COMMA
DATA INT/100/0BLE/500.1 MISSING COMMA
OBLE2 • INT/2. 5 •• 0SlE
WRITE,(6,10) DeLE,oelE EXTRA COMMA
FORMAT(lX,2F12.6) .
STOP lABEL DEFINEO PREVIOUSLY

INTEGER INT NOT STANDARD ORDERING
END NO END STATEMENT

DIAGNOSTICS

tN lINE 0002 MSG *030
I~ lINE 0004 MSG *049
[~'RNING] MSG *091
[WARNING J MSG *093

EXTRA CHARACTERS AT END OF STATEMENT
SYNTAX ERROR
VA~I'BlE "DBlEOB" NAME EXCEEOS 6 C~'RACTERS
NON-STANDARD STATEMENT ORDERING

C-2

APPENDIX C. ERROR DIAGNOSTICS

C.l.l Errors Reported by the Initial Phase of the Compiler

Some of the easily recognizable FORTRAN syntax errors are detected by
the initial phase of the Compiler. These errors are reported in the
source program listing. They are not reported if a source listing is
not requested.

The error diagnostics are printed after the source statement to which
they apply (the L error diagnostic is an exception). The general form
of the diagnostic is as follows:

***** c

Where c i2 a code letter whose meaning is described below:

Code Letter

B

C

E

H

I

K

L

M

P

S

u

INITIAL PHASE ERROR DIAGNOSTICS

Description

Columns 1-5 of continuation line are not blank.
Columns 1-5 of a continuation line must be blank
except for a possible '0' in column 1.

Illegal continuation. Comments cannot be
continued and the first line of any program unit
cannot be a continuation line.

Missing END
supplied by
encountered.

statement. An
the Compiler

END statement
if end-of-file

is
is

Hollerith string or quoted literal string longer
than 255 characters or longer than the remainder
of the statement.

Non-FORTRAN character used. The line contains a
character that is not in the FORTRAN character set
and is not used in a Hollerith string or comment
line.

Illegal statement label definition. Illegal
(non-numeric) character in statement label.

Line too long to print. There are more than 80
characters (including spaces and tabs) in a line.
Note: this diagnostic is issued preceding the
line containing too many characters.

Multiply defined label.

Statement contains unbalanced parentheses.

Syntax error.
Statement not
form.

Multiple equal signs, etc.
of the general FORTRAN statement

Statement could not be identified as a legal
FORTRAN statement.

C-3

APPENDIX C. ERROR DIAGNOSTICS

C.l.2 Errors Reported by Secondary Phases of the Compiler

Those Compiler error diagnostics not reported by the initial phase of
the Compiler will appear immediately after the source listing and
immediately before the storage map. Since the diagnostics appear
after the entire source program has been listed, they must reference
the statement to which they apply by using the internal sequence
numbers assigned by the Compiler.

The general form of the diagnostic is:

IN LINE nnnn'MSGlm text

Where nnnn is the internal sequence number of the statement in
question, m is an integer constant specifying the error number, and
text is a short description of the error.

Below, listed alphabetically, are the error diagnostics. Included
with each diagnostic is a brief explanation. Refer to the PDP-ll
FORTRAN Language Reference Manual for information to help correct the
error.

The notation **** signifies that a particular variable name or
statement label will appear at that place in the text.

SECONDARY PHASE ERROR DIAGNOSTICS

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ****
All arrays must be dimensioned with integer constants
except as specified in the Language Reference Manual.

ARRAY **** HAS TOO MANY DIMENSIONS
An array can have up to seven dimensions.

ATTEMPT TO EXTEND COMMON BACKWARDS
While attempting to equivalence arrays in COMMON, an
attempt was made to extend COMMON past the recognized
beginning of COMMON storage.

COMMON BLOCK EXCEEDS MAXIMUM SIZE
An attempt was made to allocate more space to COMMON
than is physically addressable ()32k words).

DANGLING OPERATOR
An operator (+,-,*,/, etc.) is missing an operand.
Example: I=J+

DEFECTIVE DOTTED KEYWORD
A dotted relational operator was not recognized. Also,
possible misuse of decimal point.

DO TERMINATOR **** PRECEDES DO STATEMENT
The statement specified as the terminator of a DO loop
must come after the DO statement.

EXPECTING LEFT PARENTHESES AFTER ****
An array name or Function name reference is not
followed by a left parenthesis.

C-4

APPENDIX C. ERROR DIAGNOSTICS

EXTRA CHARACTERS AT END OF STATEMENT
All the necessary information for a syntactically
correct FORTRAN statement has been found on this line,
but more information exists. Possibly due to
inadvertent continuation signal on next line, or a
missing comma.

FLOATING CONSTANT TOO SMALL
A floating constant in an expression is too close to
zero to be represented in the internal format. Use
zero if possible.

ILLEGAL ADJACENT OPERATOR
Two operators (*,/, logical operators, etc.) are
illegally placed next to each other. Example I I/*J.

ILLEGAL ELEMENT IN I/O LIST
An item, expression, or implied DO specifier in an I/O
list is of illegal syntax.

ILLEGAL DO TERMINATOR STATEMENT ****
A DO statement terminator must not be a GO TO,
arithmetic IF, RETURN, or DO statement or logical IF
containing one of these statements.

ILLEGAL STATEMENT ON LOGICAL IF
The statement contained in a logical IF must not be
another logical IF or DO statement.

ILLEGAL TYPE FOR OPERATOR
An illegal variable type has been used with an
exponentiation or logical operator.

ILLEGAL USAGE OF OR MISSING LEFT PARENTHESIS
A left parenthesis was required but not found, or a
variable reference or constant is illegally followed by
a left parenthesis.

INTEGER OVERFLOW
An integer constant or expression value must not fall
outside the range -32767 to +32767.

INVALID COMPLEX CONSTANT
A complex constant has been improperly formed.

INVALID DIMENSIONS FOR ARRAY
An attempt was made while dimensioning an array to
explicitly specify zero as one of the dimensions.

INVALID DO TERMINATOR ORDERING AT LABEL ****
Do loops are incorrectly nested.

INVALID EQUIVALENCE
Illegal equivalence, or equivalence
contradictory to a previous equivalence.

INVALID FORMAT SPECIFIER

that is

A format specifier is not the label of a FORMAT
statement or an array name.

c-s

APPENDIX C. ERROR DIAGNOSTICS

INVALID IMPLICIT RANGE SPECIFIER
Illegal implicit range specifier, i.e., non-alphabetic
specifier, or specifier range is in reverse alphabetic
order.

INVALID LOGICAL UNIT
A logical unit reference must be an integer variable or
constant in the range 1 to 99.

INVALID OCTAL CONSTANT
An octal constant is too large or contains a digit
other than 0-7.

INVALID OPTIONAL LENGTH SPECIFIER
A data type declaration optional length specifier is
illegal. For example, REAL*4 and REAL*8 are legal, but
REAL*6 is not.

INVALID RADIXSO CONSTANT
Illegal character detected in a RADIXSO constant.

INVALID RECORD FORMAT
The third parenthetical argument in a DEFINE FILE
statement must be the single character U.

INVALID STATEMENT IN BLOCK DATA
It is illegal to have any executable or FORMAT
statements in a BLOCK DATA Subprogram.

INVALID STATEMENT LABEL REFERENCE
Reference has been made to a statement number that is
of illegal construction. GO TO 999999 is illegal since
the statement number is too long.

INVALID SUBROUTINE OR FUNCTION NAME
A name used in a CALL statement or function reference
is not valid. Example: use of an array name in a CALL
statement routine name reference.

INVALID TARGET FOR ASSIGNMENT
The left side of an arithmetic assignment statement is
not a variable name or array element reference.

INVALID TYPE SPECIFIER
An unrecognizable data type was used.

INVALID USAGE OF FUNCTION OR SUBROUTINE NAME
A function name cannot appear in a DIMENSION, COMMON,
DATA, OR EQUIVALENCE statement.

INVALID VARIABLE NAME
A variable name contains an illegal character.

LABEL ON DECLARATIVE STATEMENT
It is illegal to place a label on a declarative
statement.

MISSING ASSIGNMENT OPERATOR
The first operator seen in an arithmetic assignment
statement was not an equal sign (=). Example: I+J=K.

C-6

APPENDIX C. ERROR DIAGNOSTICS

MISSING COMMA
The conuna
See the
describes
question.

delimiter was expected but was not found.
section of the FORTRAN Reference Manual that
the general form of the statement in

MISSING DELIMITER IN EXPRESSION
Two operands have been placed next to each other in an
expression with no operator between them.

MISSING LABEL
Expecting a statement label but one was not found.
Example: ASSIGN J TO I. A valid statement label
reference should precede 'TO' but does not.

MISSING RIGHT PARENTHESIS
Expecting a right parenthesis
Example: READ(5,100,). The
after the format reference
parenthesis but is not.

MISSING QUOTATION MARK

but one was not found.
first non-blank character

should be a right

In a FIND statement, the logical unit number and record
number must be separated by a single quotation mark.

MISSING VARIABLE
Expecting a variable, but one was not found. Example:
ASSIGN 100 TO 1. A variable name should follow the 'TO'
but one does not.

MISSING VARIABLE OR CONSTANT
Looking for an operand (variable or constant) but found
a delimiter (comma, parenthesis, etc.). Example:
WRITE(). A unit number should follow the open
parenthesis, but a delimiter (close parenthesis) is
encountered instead.

MODES OF VARIABLE **** AND DATA ITEM DIFFER
The data type of each variable and its associated data
list item must agree in a DATA Statement.

MULTIPLE DECLARATION FOR VARIABLE ****
A variable cannot appear in more than one data type
declaration statement or dimensioning statement.
Subsequent declarations are ignored.

NUMBER IN FORMAT STATEMENT NOT IN RANGE
An integer constant in a FORMAT statement is greater
than 255 or is zero.

PARENTHESES NESTED TOO DEEPLY
Group repeats in a FORMAT statement have been nested
too deeply.

P-SCALE FACTOR NOT IN RANGE -127 TO +127
P-scale factors must fall in the range -127 to +127.

REFERENCE TO INCORRECT TYPE OF LABEL ****
A statement label reference that should be a label on a
FORMAT statement is not such a label, or a statement
label reference that should be a label on an executable
statement is not such a label.

C-7

REFERENCE TO UNDEFINED STATEMENT LABEL
A reference has been made to a statement number that
has not been defined anywhere in the program unit.

STATEMENT MUST BE UNLABELED
A DATA, SUBROUTINE, FUNCTION, BLOCK DATA, arithmetic
statement function definition, or declarative statement
must not be labeled.

STATEMENT TOO COMPLEX
An arithmetic statement function has more than 10 dummy
arguments. Or the statement is too long to compile.
Break it up into 2 or more smaller statements.

SUBROUTINE OR FUNCTION STATEMENT MUST BE FIRST
A SUBROUTINE, FUNCTION or BLOCK DATA Statement, if
present, must be the first statement in a program unit.

SYNTAX ERROR
Check the general form of the statement with the
general form outlined in the Language Reference Manual
section that describes that type of statement.

TARGET MUST BE ARRAY
The third argument in an ENCODE or DECODE statement
must be an array name.

SYNTAX ERROR IN INTEGER OR FLOATING CONSTANT
An integer or floating constant has been incorrectly
formed. For example, 1.23.4 is an illegal floating
constant because it contains two decimal points.

UNLABELED FORMAT STATEMENT
All FORMAT Statements must be labeled.

USAGE OF VARIABLE **** INVALID
An attempt was made to EXT!RNAL a common variable, an
array variable, or a dummy argument. Or an attempt was
made to place in COMMON a dummy argument or external
name.

VARIABLE **** INVALID IN ADJUSTABLE DIMENSION
A variable used as an adjustable dimension must be an
integer dummy argument in the subprogram unit.

WRONG NUMBER OF SUBSCRIPTS FOR ARRAY ****
An array reference does not have the same number of
subscripts as specified when the array was dimensioned.

C.l.3 Warning Diagnostics

Warning diagnostics report conditions which are not true error
conditions, but which may be potentially dangerous at execution time,
or which may present compatibility problems with FORTRAN Compilers
running on other PDP-ll Operating Systems. The warning diagnostics
are normally enabled, but may be suppressed by use of the /-WR

C-8

(

(

APPENDIX C. ERROR DIAGNOSTICS

Compiler switch. The form and placement of the warning diagnostics
are the same as those for the secondary phase error diagnostics (see
section C.l.2) except that the line number reference is replaced with
"WARNING". A listing of the warning diagnostics follows:

ADJUSTABLE DIMENSIONS ILLEGAL FOR ARRAY ****
Adjustable arrays must be a dummy argument in a
subprogram, and the adjustable dimensions must be
integer dummy arguments in the subprogram. Any
variation from this rule will cause a dimension of 1 to
be used and this warning message to be issued.

NON~STANDARD STATEMENT ORDERING
Although the RSX-llM FORTRAN IV Compiler has
less-restrictive statement ordering requirements than
those outlined in chapter 7 of the PDP-ll FORTRAN
Language Reference Manual, non-adherence to the
stricter requirements may cause error conditions on
other FORTRAN Compilers. See section 3.5 of this
document.

VARIABLE **** IS NOT WORD ALIGNED
Placing a non-LOGICAL*l variable or array after a
LOGICAL*l variable or array in COMMON or equivalencing
non-LOGICAL*l variables or arrays to LOGICAL*l
variables or arrays may cause this condition. An
attempt to reference the variable at runtime will cause
an error condition.

VARIABLE **** NAME EXCEEDS SIX CHARACTERS
A variable name of more than six characters was
specified. The first six characters were used as the
true variable name. Other FORTRAN Compilers may treat
this as an error condition. See section 3.1 of this
document.

C.l.4 Fatal Compiler Error Diagnostics

Listed below are the fatal Compiler error diagnostics. These
diagnostics, which are sent directly to the initiating terminal,
report hardware error conditions, conditions which may require
rewriting of the source program, and conditions which may require
attention from DEC Software Support. The form of the diagnostic is:

FATAL ERROR n

where n is an error code having one of the following values:

Code Meaning

C Constant subscript overflow. Too many constant
subscripts have been employed in a statement.

SOLUTION - simplify the statement

L More than 80 characters in input record.

SOLUTION - simplify statement or
lines.

C-9

use continuation

APPENDIX C. ERROR DIAGNOSTICS

o Unrecoverable error occurred while the Compiler was
writing the object file (.OBJ). Possibly, insufficient
output file space.

SOLUTION - rectify hardware problem, or make more space
available for output by deleting unnecessary files.

P Optimizer push down overflow - statement too complex,
or too many common subexpressions occurred in one basic
block of a program.

R

S

SOLUTION - simplify complex statements; report the
error to your local software support representative.

Unrecoverable hardware error occurred
Compiler was reading ,source file.

SOLUTION - rectify hardware problem.

while the

Subexpression stack overflow - statement too complex.

SOLUTION - simplify complex statements.

T Memory Overflow

w

SOLUTION - break up program into subprograms or compile
in a larger partition.

Unrecoverable error occurred while the Compiler was
writing listing file. Possibly, listing file space is
not large enough.

SOLUTION - rectify hardware problem, or make more space
available for listing file by deleting unnecessary
files.

Y Code generation stack overflow - statement too complex.

SOLUTION - simplify complex statements.

Z Compiler error

SOLUTION - report this error to your local
support representative. Please include
listing.

C.2 OBJECT TIME SYSTEM ERROR DIAGNOSTICS

C.2.l Error Processing Algorithm

software
program

The Object Time System detects many Input/Output, arithmetic, invalid
argument and other kinds of errors and reports them on the user's
terminal via logical device TI:. The action taken for each error is
determined by an error control table within the OTS. (This table may
be modified during program execution by means of the ERRSET
subroutine, see section B.S.)

C-10

(
\

APPENDIX C. ERROR DIAGNOSTICS

Error processing for each error is controlled by a control byte.
Significant bits are as followsz

Continuation Bit

Count Bit

Continuation Type Bit

If not set, this bit directs the task to
exit as a result of this error. If set,
the task will continue provided certain
other conditions are met.

If set, this error is counted against
the task error count limit. If that
limit is exceeded, the task will exit.

Two types of continuation action are
possible:

1) Return to routine that reported the
error to take appropriate recovery
action and proceed, or

2) Take an ERR- transfer in an I/O
statement. If an ERR = transfer is
specified for the error and none
was included in the Input/Output
statement, the task will exit.

The above three conditions must all be satisfied for the task to
continue.

Log Bit If the task continues, then the log bit
is tested. If the bit is set, an error
message is produced before continuing;
otherwise, the task continues.

If any of the above conditions is not satisfied, the task will exit
~d an error message will always be produced. In this case, the
additional text "EXITING DUE TO" is included in the error message so
that it is clear why a task is abnormally terminating.

Two additional bits are of interest here since they control the
acceptability of ERRSET arguments.

Return permitted bit

ERRa permitted bit

If set, then the continuatio~ type bit
may be set by ERRSET to specify return.
If set, then the contination type bit
may be set by ERRSET to specify that an
ERR- transfer is to occur.

These two bits are used by ERRSET to check the validity of ERRSET
arquments. At least one of these must be set in order to set the
continuation bit. Also the continuation type argument is checked
against these bits for acceptability.

All four combinations of these two bits occur in the OTS, although
most errors are in one of two groups.

1)

2)

I/O errors generally permit ERR
return continuation.
Most other errors per.mit return
transfer continuation (even
statement processing.)

C-ll

continuation type but

continuation but not
if they occur during

not

ERRa
I/O

APPENDIX Cs ERROR DIAGNOSTICS

Notable exceptions are the synchronous system trap errors (numbers 3
through 10) and recursive Input/Output error (number 40) which will
always result in task termination, and the Input and Output Formatted
Conversion Errors (numbers 63 and 64) which allow both types of
continuation.

The initial setting of the error control bits is shown together with
error messages in section C.2.3.

C.2.2 Object Time System Error Message Format

An OTS error message consists of several lines of information
formatted as follows:

tsknarn [EXISTING DUE TO] ERROR number
text
[AT PC = address]

[FCS: f.err f.errl filename unit]
IN xxxxxx AT yyy
FROM xxxxxx AT yyy
•••
FROM • MAIN. AT yyy

(In the above message prototype, fixed parts of the message are shown
in capital letters and variable parts in lower case letters.)

The variable parts of the message are:

tsknam -the name of the task in which the error occurred.

number -the error number

text -a one-line description of the error.

If the OTS error resulted from one of the synchronous system traps,
then the program counter will be shown in the line "AT PC =". This
line is only produced for errors numbered 5 through 12.

If the OTS error resulted from an error reported to it by File Control
Services, the line beginning "FCS:" will be included. Consult the I/O
Operations Reference Manual for a description of the FCS error codes.

f.err

f.errl

filename

unit

the value of the F.ERR field of the File
Descriptor Block (FDB).

the value of the F.ERR+l field of the FDB.

the name of the file (not including type or
version)

the logical unit on which this error occurred.

Next follows a traceback of the subprogram calling nest at the time of
the error. Each line represents one level of subprogram call and
shows

xxxxxx the name of the subprogram.

C-12

(

(

(

APPENDIX C. ERROR DIAGNOSTICS

The name of the main program is shown as .MAIN.
The name of a subprogram is the same as the name
used in the SUBROUTINE or FUNCTION statement.
Arithmetic statement functions, OTS system
routines and routines written in assembly language
will not be shown in the traceback.

the internal sequence number of the subprogram at
which the error, call statement, or function
reference occurred.

A question mark, "?", instead of a number
indicates that the subprogram was compiled with
the /-SN compiler switch (suppress sequence number
accounting) in effect and hence the line number is
not known for that program unit.

C.2.2.1 Short Message File - In order to save space, a short message
file may be included which prints only the error number. This may be
used by specifying the module $SHORT at task build time; e.g.,

>TKB
TKB>MAIN=[l,l]SYSLIB/LB:$SHORT,MAIN

C.2.3 Object Time System Error Codes

C.2.3.1 Initial Control Bit Settings - The following table shows the
initial settings of the significant bits in the error control byte as
described in section C.2.l.

C-13

APPENDIX C. ERROR DIAGNOSTICS

Table C-l
Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE L.OG? PERMITTED
NUMBER TYPE ERRa? RETURN?

1 NO NO FATAL YES NO NO
2 NO NO FATAL YES NO NO
3 NO NO FATAL YES NO NQ
4 NO NO FATAL. VES NO NO
5 NO NO FATAL, VES NO NO
ft NO NO FATAL. YES NO NO
7 NO NO FATAL YES NO NO
8 NO NO FATAL YES NO NO
q NO NO FATAL YES NO NO

10 NO NO FATAL YES NO NO

20 YES YES ERR- VES YES NO
21 VES YES ERR= VES VES NO
22 VES YES ERR. YES YES NO
23 YES YES ERR. YES YES NO
24 YES YES ERRa YES YES NO
25 YES YES ERR. VES YES NO
2ft YES YES ERR- YES YES NO
27 VES YES ERR. VES YES NO
28 YES YES ERR= YES YES NO
2q VES YES ERR- YES YES NO
30 YES VES ERR_ YES VES NO
31 YES YES ERR= YES YES NO
32 VES YES ERR. YES YES NO
33 YES NO RETURN YES NO ¥€S
34 VES YES ERRD YES YES NO

37 YES YES ERR. YES YES NO
38 YES VES ERR- YES YES NO
3q YES VES ERR. YES YES NO
40 NO NO FATAL. YES NO NO
41 VES YES ERR= YES YEI NO
42 VES YES ERR= VES YES NG
43 VES YES RETURN YES NO YES
44 YES YES ERR. YES YEI NO

C-14

APPENDIX C. ERROR DIAGNOSTICS

Table C-l (Cont.)
Error Control Bit Settings

ERROR CONTINUE?
NUMBER

60 YES
61 YES
6c YES
63 YES
64 YES
65 YES
66 YES
67 YES

70 YES
71 YES
72 YES
73 YES
74 YES

80 YES
81 YES
8e YES
83 YES
84 YES
85 YES
86 YES

q0 NO
CJl YES

100 NO
101 NO

C.2.3.2 Error Messages

Group 0 - Severe Errors

COUNT?

YES
YES
YES
NO
YES
YES
YES
YES

YES
YES
YES
YES
NO

YES
YES
YES
YES
YES
YES
YES

NO
NO

NO
NO

CONTINUE 1.0G?
TYPE

ERRc YES
ERRc YES
ERR: YES
RETURN NO
ERR= YES
ERRc YES
ERR- YES
ERRI: YES

RETURN YES
RETURN YES
RETURN YES
RETURN YES
RETURN NO

RETURN YES
RETURN YES
RETURN YES
RETURN YES
RETURN YES
RETURN YES
RETURN YES

FATAl. YES
RETURN NO

FATAl. YES
FATAl. YES

P(RMITTEO
ERR:? RETURN?

YES NO
YES YES
YES NO
YES YES
YES YES
YES NO
YES NO
YES NO

NO YES
NO YES
NO YES
NO YES
NO YES

NO YES
NO YES
NO YES
NO YES
NO YES
NO YES
NO YES

NO NO
NO YES

NO NO
NO NO

These messages result from severe error conditions for which no error
recovery is possible. Consult the RSX-llM Executive Reference Manual
for details of what error conditions will cause traps to the System
Synchronous Trap Table entries cited below.

C-lS

APPENDIX C. ERROR DIAGNOSTICS

1

2

3

4

5

6

7

8

9

10

11

12

INVALID ERROR CALL

A TRAP instruction has been executed whose low
byte is within the range used by the OTS for error
reporting (see Section C.2.4) but for which no
error condition is defined.

TASK INITIALIZATION FAILURE

Task start up has failed for one of the following
reasons:

1. The directive to initialize synchronous system
trap handling (SVTK$S) has returned an error
indication.

2. The executive directive to enable the FPP
asynchronous trap (SFPA$S) has returned an
error indication.

3. The File Control Services initialization call
(FINIT$) has returned an error indication.

ODD ADDRESS TRAP (SST 0)

SEGMENT FAULT (SST 1)
This is most likely due to a subscript value out
of range on an array reference.

T-BIT OR BPT TRAP (SST 2)

lOT TRAP (SST 3)

RESERVED INSTRUCTION (SST 4)
The program has attempted to execute an illegal
instruction. This may be caused by task building
with the wrong FORTRAN library for the given
hardware configuration. Hardware may have been
linked.

NON-RSX EMT (SST 5)
The program has executed an EMT instruction whose
low byte is not in the range used by the RSX-llM
executive.

TRAP INSTRUCTION TRAP (SST 6)
A trap instruction has been executed whose low
byte is outside the range used for OTS error
messages (see C.2.4 below).

PDPll/40 FIS TRAP (SST 7)
A module using FIS was linked with a non-FIS
FORTRAN library.

FPP HARDWARE FAULT
The FPP Floating Exception Code (FEC) register
contained the value 0 following an FPP interrupt.
This is probably a hardware malfunction.

FPP ILLEGAL OPCODE TRAP
The FPP has detected an illegal floating point
instruction.

C-16

(

APPENDIX C. ERROR DIAGNOSTICS

13

14

FPP UNDEFINED VARIABLE TRAP
The FPP loaded an illegal value (-0.0). This trap
should not occur since the OTS initialization
routine does not enable this trap condition. A
negative zero value should never be produced by
any FORTRAN operation.

FPP MAINTENANCE MODE TRAP
The FPP has interrupted with a Floating Point
Exception Code register value of 14 (octal). This
is probably a hardware malfunction.

Group 1 - General Input/Output Errors

These messages result from errors related to the file system.

20

21

22

23

24

25

26

REWIND ERROR
An error condition was detected by FCS during the
.POINT operation used to position to the beginning
of a file.

DEFINEFILE ALREADY DONE
A DEFINEFILE statement was attempted on
which one has already been done.
DEFINEFILE is ignored. To change a
specification a CLOSE operation may be

RECORD TOO LONG

a unit for
The second
DEFINEFILE
performed.

A record has been read which is too large to fit
into the buffer specified by the MAXBUF TKB
option. Rebuild the task using a larger MAXBUF
specification.

BACKSPACE ERROR
One of the following errors has occurred:

a. BACKSPACE was attempted on a file opened
for appending

b. FCS has detected an error condition
during the .POINT operation used to
rewind the file

c. FCS has detected an error condition
while reading forward to the desired
record.

END-OF-FILE DURING READ
Either an end-file record produced by the ENDFILE
statement or the FCS end-of-file condition has
been encountered during a READ statement and no
END= transfer specification was provided.

INVALID RECORD NUMBER
A direct-access READ, WRITE, or FIND statement has
specified a record number outside the rang~ from
one to the value specified in a DEFINEFILE
statement.

DEFINEFILE NOT DONE
A direct access READ, WRITE, or FIND operation was
attempted before a DEFINE FILE was performed.

C-17

APPENDIX C. ERROR DIAGNOSTICS

27

28

29

30

31

32

33

34

37

38

39

40

41

MORE THAN ONE RECORD
An attempt was made to read or write more than a
single record in an ENCODE or DECODE statement.

CLOSE ERROR
An error condition has been detected by FCS during
a CLOSE operation when attempting to close a file.

NO SUCH FILE
A file with the specified name could not be found
during an open operation.

OPEN FAILURE
FCS has detected an error condition during an open
operation. (This message is used when the error
condition is not one of the more common conditions
for which specific error messages are provided.)

MIXED ACCESS MODES
An attempt was made to use both formatted and
unformatted operations, or both sequential and
direct access operations, on the same unit.

INVALID LOGICAL UNIT NUMBER
A logical unit number was used which is outside
the range specified by the TKB UNITS= option.

ENDFILE TO DIRECT ACCESS FILE
An end-file record may not be written to a direct
access file.

UNIT ALREADY OPEN
A DEFlNEFlLE statement, CALL ASSIGN, or CALL
FDBSET was attempted which specified a logical
unit already opened for input/output.

INCONSISTENT RECORD LENGTH
An existing direct access file has been opened
whose record length attribute is not the same as
specified in the DEFINEFILE or OPEN statement.
The record length is not changed.

ERROR DURING WRITE
FCS has detected an error condition while writing.

ERROR DURING READ
FCS has detected an error condition while reading.

RECURS lVE I/O ATTEMPT
An expression in the I/O list of a READ or WRITE
statement has caused initiation of another READ or
WRITE operation. This can happen if a FUNCTION
that performs I/O is referenced in an expression
in a READ or WRITE statement I/O list.

NO FCS BUFFER ROOM
There is not enough free core left in the File
Control Services buffer area to set up required
I/O buffers •. Rebuild the task with a larger
ACTFIL declaration or reduce the level of
multibuffering.

C-18

(

APPENDIX C. ERROR DIAGNOSTICS

42

43

44

DE~CE HANDLER NOT RESIDENT
During open operation, the filename specifiction
included a device for which no handler task is
resident.

FILE NAME SPECIFICATION ERROR
The file name string used in a CALL ASSIGN is
syntactically invalid, contains a switch
specification, references an undefined device
mnemonic -, or is _ otherwise not acceptable to the
RSX-IIM operating system.

RECORDSIZE TOO BIG FOR 'MAXBUF'
A DEFINEFILE statement has specified a record size
which exceeds the size available in the record
buffer. Rebuild the task using a larger TKB
MAXBUF specification.

Group 2 - Element Transmission Errors

These messages result from errors related to transmitting data between
a FORTRAN program and an internal record.

60

61

62

63

64

65

66

INFINITE FORMAT LOOP
The format associated with an I/O statement that
includes an I/O list has no field descriptors to
use in transferring those variables.

FORMAT/VARIABLE - TYPE MISMATCH
An attempt was made to output a real variable with
an integer field descriptor or an integer variable
with a real field descriptor.

SYNTAX ERROR IN FORMAT
A syntax error was encountered while the OTS was
scanning format specifications stored in an array.

OUTPUT CONVERSION ERROR
During a formatted output operation, the value of
a particular number could not be output in the
specified field length without loss of significant
digits. The field is filled with ·'s.

INPUT CONVERSION ERROR
During a formatted input operation an illegal
character was detected in an input field or the
input value overflowed the range representable in
the input variable. The value of the variable is
set to zero.

FORMAT TOO BIG FOR 'FMTBUP'
The OTS has run out of memory while scanning an
array format that was generated at run time. The
default internal format buffer length is 64 bytes.
This may be increased by using the FMTBUF TKB
option (see section 1.3.2.8).

RECORD TOO BIG FOR 'MAXBUP'
During an output operation a record was specifie~
that was longer than the maximum record length.
The default maximum record length is 132 (decimal)

C-l9

APPENDIX C. ERROR DIAGNOSTICS

67

bytes. This may be changed by use of the MAXBUF
Task Builder option (see section 1.3.2.4).

RECORD TOO SMALL FOR I/O LIST
A READ statement has attempted to input more data
than existed in the record being read. For
example, the I/O list might have too many
elements.

Group 3 - Arithmetic Errors

These messages result from arithmetic
conditions.

overflow and underflow

70

71

72

73

74

75

INTEGER OVERFLOW
During an arithmetic operation
magnitude has exceeded 32767.

INTEGER ZERO DIVIDE

an integer's

During an integer mode arithmetic operation an
attempt was made to divide by zero.

FLOATING OVERFLOW
During an arithmetic operation a real value has
exceeded the largest representable real number.
The result of the operation is set to zero.

FLOATING ZERO DIVIDE
During a real mode arithmetic operation an attempt
was made to divide by zero. The result of the
operation is set to zero.

FLOATING UNDERFLOW
During an arithmetic operation a real value has
become less than the smallest representable real
number, and has been replaced with a value of
zero.

FPP FLOATING TO INTEGER CONVERSION OVERFLOW
During a type conversion, an FPP overflow trap
occurred.

Group 4 - Argument Errors

These messages result from incorrect calls to FORTRAN-IV supplied
functions or subprograms.

80

81

82

WRONG NUMBER OF ARGUMENTS
An improper number of arguments were used in a
call to a FORTRAN library function or system
subroutine.

INVALID ARGUMENT
One of the FORTRAN Library
Subroutines has detected
value. See Appendix B.

UNDEFINED EXPONENTIATION

Functions or System
an invalid argument

An exponentiation has been attempted which is
mathematically undefined: e.g., 0.**0.

C-20

APPENDIX C. ERROR DIAGNOSTICS

83

84

85

86

LOGARITHM OF NEGATIVE VALUE
An attempt was made to take the logarithm of a
negative number. The result returned is zero.

,SQUARE ROOT OF NEGATIVE VALUE
An attempt was made to evaluate the square root of
a negative value. Zero is returned as the result.

INVALID ARGUMENT TO LIBRARY FUNCTION
An invalid argument was used in a call to a
FORTRAN library function.

INVALID ERROR NUMBER
The error number argument to one of the
subroutines ERRSET or ERRTST is not a valid error
number.

Group 7 - Miscellaneous Errors

90

91

COMPILER DETECTED ERROR
If an attempt is made to link and run an object
file, with errors reported during compilation,
generated by the FORTRAN Compiler, this error will
result when the illegal source statement is
executed.

COMPUTED GO TO OUT OF RANGE
The integer variable or express~on in a computed
GO TO statement was less than 1 or greater than
the number of statement label references in the
list. Control is passed to the next executable
statement (see the PDP-II FORTRAN Language
Reference Manual).

Group 8 - System Directive Subroutine Errors

These messages result from incorrect calls to RSX-lIM system directive
subroutines.

100

101

DIRECTIVE: MISSING ARGUMENTS
A call to a system directive subroutine was made
in which one or more of the arguments required for
directive execution was not given.

DIRECTIVE: INVALID EVENT FLAG NUMBER.
A call to a system directive subroutine was made
in which the argument used for event flag
specification was not in the valid range (1 to
64) •

C.2.4 Notes on OTS Error Processing Implementation

OTS error reports are initiated by execution of a TRAP instruction in
which the low byte of the instruction contains the internal error
code. Internal error codes are 128 (decimal) greater than the
externally printed error code.

C-2l

APPENDIX C. ERROR DIAGNOSTICS

UsaX's who wish to do 110 may use the fir.t 128 (0 to 127) trap codes .a
follows. TRAP instruetions tran.fer control to the OTS error
proce.sor by means of a System Synohronou8 Trap Table locAted in the
O'l'S impure work area. The first word of this table ha~ the q10bal
symbol $SST. Codin9 similar to the following miqht be used to
interoept aontrol.

,
, INITIALIZATION ,
INtTI MOV

MOV

•••

SST61 • WORD
••• ,

, TRAP HANDLER ,
INTCEP. CMP

BHI
JMP

1$. •••
TST
RTI

$SST+14,S~T6
• ItfrCEP , $S8T+14

0

f128.*2,@SP

1$
@SST6

(SP)+

,SAVE a~s TRAP ADDR
, PU'l' NEW ADDR IN SST
TABLE

,LOW BYTE *2 OF TRAP
INSTRC.

,BRANCH IF USER CODE
,00'1'0 OTS
,USER PROCESSING

,DISCARD EXTRA WORD
,EXIT INTERRUPT

Similar techniques could be used to intercept the other synchronous
traps.

OTS error m8S8aqes are output to loqical devic.e TI. by means of a LON
automatically provided by the task builder in addition to those
specified by the UNITS direotive. If for any reason the QIO direotive
used to write the error lines reoeives an error condition return, then
an immediate exit is taken to the RSX-1IM Executive.

C-22

APPENDIX 0

COMPATIBILITY WITH OTHER PDP-II FORTRANS

0.1 COMPATIBILITY WITH PDP-II FORTRAN V08.04 UNDER RSX-IID V4A

FORTRAN IV (FOR) is a new implementation of FORTRAN for the PDP-II. It
has been designed to be compatible with the earlier FORTRAN (MOP, FTN)
on RSX-IID. However, some differences exist as a result of

1. Correcting deficiencies in FTN FORTRAN.

2. Language specification decisions necessary to promote the
goal of an upward compatible line of FORTRANs, including
FORTRAN IV under RT-ll and RSX-IIM, FORTRAN IV-PLUS under
RSX-IID,' and FORTRAN-IO on the DECsystem-lO.

3. Providing significant extensions to FTN FORTRAN in a manner
consistent with the remainder of the FORTRAN language.

This section summarizes the differences that may affect conversion of
programs from FTN to FOR.

0.1.1 Language Differences

1. FTN permits transfer of control to FORMAT' statements, which
execute as CONTINUE statements. FOR does not, and will issue
compile-time error messages.

2. FTN V07.14 provides an uncounted form for Radix-SO constants
used in DATA statements. V08.04 added the counted form and
promised de-support of the uncounted form. Only the counted
form is provided in FOR.

3. FTN logical tests treat any non-zero bit pattern as .TRUE.
and an all-zero bit pattern as .FALSE •• FOR tests only the
lowest-order byte of a variable.

4. The FTN BYTE statement and data type do not exist' in FOR.
LOGI CAL * 1 is equivalent to BYTE in most respects, LOGICAL * 1
does not force alignment on a word boundary.

S. The syntax of the IMPLICIT statement is not the same in FOR
and FTN.

0-1

APPENDIX D. COMPATIBILITIES

6. FTN provides expressions in FORMAT statements
variable format expressions): FOR does not.

(called

7. FTN permits Hollerith strings in certain expressions: FOR
does not. DATA statements may be used to initialize variable
with strings to achieve the same result.

D.l.2 Object Time System Differences

1. FTN allows both formatted and unformatted records in the same
file by means of the MXDFUF subroutine call. This is not
supported by FOR.

2. The FTN service subroutines PDUMP and SETPDU are not provided
in FOR. Similar but more flexible debugging output may be
obtained by using WRITE statements in debug lines.

3. The TRCLIB library for statement level execution tracing is
not available in FOR.

4. Some FTN service subroutines are not available, but their
function is provided in a different manner:

FTN FOR

SETERR ERRSET subroutine
TSTERR ERRTST subroutine
APPEND FDSSET subroutine

5. Default format width and number of digits for A, 0, E, F, G,
I, L, and 0 formats are supported in FTN. There are no
format defaults under FOR.

6. Under FTN, Q format returns the number of characters in the
input record (i.e., the record length) independent of the
current scan position. Under FOR, Q format returns the
number of characters remaining in the input record following
the scan position. The record length may be obtained by
using the Q format first in the format specification.

0.1.3 Implementation Differences

1. FTN performs the following actions when opening a unit for
direct access I/O: first check if a file already exists: if
so, use it. If not, create a new file for use.

In FOR the type of open depends on whether a READ or WRITE
statement is causing the open operation. If it is a READ,
then the file must already exist, or an error will result.
If it is a WRITE, then a new file is created.

The action sequence described above for FTN may
by using 'UNKNOWN' as the second argument
FDBSET.

be obtained
in a call to

2. The implementation of error handling in FOR is significantly
different from that in FTN. In particular, the use of error

0-2

F -"

(

/
{

'\

(

APPENDIX D. COMPATIBILITIES

classes fo~ controlling error handling is replaced by control
over each individual error condition. FOR provides much more
complete error information to the executing program if
desired.

3. The FTN ASSIGN service subroutine returns a success/error
indication in its fourth argument. The FOR ASSIGN subroutine
ignores the fourth argument. Errors may be detected by means
of CALL ERRTST or CALL ERRSNS.

4. FTN does not compile format specifications for use at
run-time, whereas FOR does. Two differences result:

a. A special internal buffer is provided in FOR to contain
the compiled form of format specifications stored in
arrays which must be compiled at run-time. This may
require the use of the FMTBUF TKB option to obtain a
sufficiently large buffer area for this purpose.

b. Format specifications stored in arrays are re-compiled at
run-time each time they are used. If an H format is used
in a READ statement to read data into the format itself,
that data does not get copied back into the original
array. Hence, it will not be available on a subsequent
use of that array as a format specification in FOR.

These considerations do not apply to format specifications
defined in FORMAT statements.

5. FTN does 'not enforce the restriction against using a
DEFlNEFILE statement referring to an existing file to
designate a record size different from that specified when
the file was created. Most of the time the new record size
appeared to work as expected, but it was subject to obscure
errors if references were made to records nearly at the
end-of-file. This restriction is detected and enforced by
FOR.

6.

7.

FTN implements REWIND as
repositions the file at
.POINT operation.

a close, open sequence. FOR
its beginning by means of an FCS

FTN implements the ENDFILE statement as a close
FOR implements the ENDFILE statement by
end-of-file record on a file.

operation.
writing an

8. FOR checks that the labels used in an assigned GO TO are
valid labels in the program unit, but it does not check at
run time whether an assigned label is in the list in the GO
TO statement. FTN checks at run time.

0.1.4 Operational Differences

1. Under FTN a task which has suspended execution as a result of
a PAUSE statement resumes execution by means of the CON
(continue) MeR command. Under FOR, the RES (reswne) MCR
command must be used.

0-3

APPENDIX D. COMPATIBILITIES

2. The default device assignments for logical units 5 and 6 are
CL: and TI: respectively on RSX-llD V4A. The default
assignments on RSX-llM are TI:S and CL:6.

D.2 COMPATIBILITY WITH PDP-II FORTRAN IV-PLUS

1. FORTRAN IV-PLUS (F4P) logical tests check only the
highest-order bit of the value, and it treats a one as .TRUE.
and a zero as • FALSE.

FOR treats any non-zero bit pattern in the lowest-order byte
of a variable as .TRUE. and an all-zero bit pattern as
.FALSE ••

2. The FOR implementation of DO loops does not enforce the
restrictions, stated in the language manual, concerning
changing DO loop parameters, including the control variable,
within the range of the loop. FORTRAN IV-PLUS permits DO
parameters other than the control variable to be changed.
Such changes do not affect the number of times the loop is
executed (the iteration count computed at the start for the
loop). FORTRAN programs which violate the FOR rules but
execute as desired may behave differently under F4P.

3. FOR defines named common blocks in terms of named .CSECTs.
F4P uses .PSECTs with an explicit D attribute. Since .CSECTs
are equivalent to .PSECTs with I attribute specification
assembly language programs which communicate with FORTRAN
programs by means of COMMON blocks must be changed in order
to be successfully linked by TKB. (TKB treats such
conflicting attribute specifications as non-fatal errors.)

4. In F4P, INTEGER*4 causes both 32 bit allocation and 32 bit
computation. Only 16 bits are used for computation in FOR.

S. F4P provides the BYTE statement and data type as a synonym
for LOGICAL*l; F4P also provides LOGlCAL*27 FOR does not.

6. F4P checks the label list in an assigned GO TO at run time;
FOR checks only for the validity of the labels.

D-4

APPENDIX E

BIT STRING MANIPULATIONS

Realtime Process Control, Process I/O, and most of the RSX-IIM system
directives may be performed by means of FORTRAN callable subroutines.
These routines are described in the RSX-llM Executive Reference
Manual, DEC-ll-OMERA-A-D.

Two types of bit string ~anipulations are provided in order to support
these calls: logical and shifting. In order to process words from
arrays it is necessary to be able to manipulate information on a bit
by bit basis.

E.l LOGICAL OPERATIONS

These operations are implemented as function subprograms. In the
following functions, m and n specify integer variables or array
elements. Operations are performed on a full word, bit by bit.

These operations are supported for compatibility purposes only. The
FORTRAN logical operators .AND., .OR., .XOR., X!QV., and ,NOT. are
simpler to use and generate better code.

E.l.l Inclusive OR

lOR (m, n)

Where m and n designate arguments which are logically added.

E.l.2 Logical Product

lAND (m, n)

Where m and n designate arguments which are logically multiplied.

E-I

APPENDIX E. BIT STRING MANIPULATIONS

E.l.3 Logical Complement

NOT (m)

Where m designates the argument which is logically complemented.

E.l.4 Exclusive OR

IEOR (m, n)

Where m and n designate arguments which are exclusively added.

E.2 SHIFT OPERATIONS

The logical shift is implemented as a function subprogram. A right or
left shift can be specified. Zeros are propagated following the
shifted value and the argument's sign is not extended.

ISHFT (m, n)

m designates the argument to be shifted

n n specifies the number of positions to be shifted and
the direction of the shift:

n)O shift right

n(O shift left

naO no shift

The absolute value of n, n, should not exceed fifteen. If it does,
the function result will be zero.

E-2

APPENDIX F

SOFTWARE PERFORMANCE REPORTS

From time to time problems and/or errors will be encountered in the
use of the FORTRAN-IV Compiler or Object Time System. These should be
communicated to Digital Equipment Corporation by means of a Software
Performance Report (SPR). Software Performance Report Forms, such as
the one shown at the end of this section, may be obtained from the
local Digital office.

Software Performance Reports should be submitted directly to Software
Communications, P. O. Box F, Maynard, Mass., 01754 for handling.
Software Support Specialists in each Digital office receive regular
reports on known software problems and will in many cases be able to
provide software ·patches for correcting the problem and/or an
alternate programming technique for temporarily avoiding the problem.

Reports which appear to be new will be dealt with by the appropriate
group within the Software Engineering Department. Every SPR will be
acknowledged upon receipt, and every SPR will be answered in writing.
SPR's that are of general i~terest will be published so that other
Software Specialists and customers may benefit.

In preparing a Software Performance Report, the following guidelines
are recommended:

1. Give as complete a description as possible of the problem
encountered. Often a detail that may seem irrelevant will
give a clue to solving the problem.

2. If possible, isolate the problem to a small example. Large,
unfamiliar programs are difficult to work with and may result
in a misunderstanding of what the problem is or an inability
to duplicate the problem.

3. Include console samples, listings, link maps, and so on with
the SPR. Annotations showing where the error occurred are
extremely helpful.

4. If a program reads input data, include sample input listings
and, if possible, sample output.

S. If an error example cannot be isolated to a single program
unit, include listings, etc., on all program units involved.

F-l

APPENDIX F. SOFTWARE PERFORMANCE REPORTS

Experience shows that as many as one-third of all SPR's db not contain
sufficient information to duplicate the problem. Complete and concise
information will help Digital give accurate and timely service to
software problems.

The OTS version and edit number should be specified when communicating
with DEC Software Support concerning the OTS. The version and edit
numbers can be found in the Task Builder map. They ~ill appear as a
symbol and associated value in the <. ABS.) program section of the
$OTI module map listing and will have the following form:

VOOxc

where

nnnnnn

x - a decimal digit
c = an alphabetic character
n = an octal digit

The Compiler version number appears in the <. ABS.) section of the
module $FORT, and takes the form MF4xxx, where x is a decimal digit.

A system may crash if Task Builder switches such as IFP or lEA are
used which do not match the hardware configuration.

F-2

APPENDIX F. SOFTWARE PERFORMANCE REPORTS

SOFTWARE PERFORMANCE REPORT Page ___ of ____ _
mamalma

SPR # _______ _

Field # _______ _

Name Saftware Specialist

Company Office Cost Center

Address Report type
o Logic/coding error'

Zip o Documentation error
o Suggestion

Phone /Date sent o Inquiry

Computer ISystem device IMemory Other hardware

System program & version / Monitor & version Document Page

Attachments . 0 terminal o obJect o source o Jlstlng o example
printout tape tape

~«,
.... ~V
~' C-.

(
-J

FOR SOFTWARE SPECIALIST USE ONLY FOR SOFTWARE COMMUNICATIONS USE ONLY
DATE REC'O TO S.C" DATE REC'O TO MAINTAINER

DATE ANS'O TO CUSTOMER DATE ANS"D TO Y' __ , •• '

DEC 7-(380)-1044B-R373 UARCO FORM NO. 81-307-34

F-3

(

INDEX

ABORT, 1-19
ACCEPT, 3-2
Accessing an existing file, B-8
ACTFIL (task builder option),

1-12
Algorithm, error processing, C-12
Appending to a file, B-8
Arrays, multi-dimensional, 2-5
Arrays, vectored, 2-5
ASG (task builder option), 1-14
Assembly language programs, 2-5
Assembly language subprograms, 2-3
ASSIGN subroutine, 3-2, B-2
Assignments, logical device, 3-2
Assignment, logical unit, 3-2
Asterisk used in ODL, 1-17

Bit string manipulations, E-l
Blank COMMON, 1-8
Buffers, 1-12

CALL EXIT statement, 1-19
Clock, programmable, B~12
Clocks, line frequency, B-12
CLOSE, B-3
Command string, 1-1
Command file, indirect, 1-2
Command files example, indirect,

1-20
COMMON (task builder option), 1-12
COMMON, blank, 1-8
COMMON, initialization, 3-1
Compatibility with other FORTRANs,

D-l
Compiler, 1-5

Error diagnostics, C-l
Memory requirements, 1-10
Switches, 1-6

See also Switches, compiler
Version number, F-2

Complex format, A-3
Continuation lines, 3-1
Control returned to calling

program, 2-4
Conventions, documentation, vii
Conversion

from FTN to FOR, D-l
from F4P to FOR, D-l

Creating a new file, B-8

Data representation, A-I
DATE, B-3

IDE switch, 1-6, 1-20
Debugging, 1-20
Default file types, 1-5
DEFINEFILE, B-9
Devices,

Peripheral, 1-4
Pseudo, 1-4

Diagnostics
Error, C-l
Warning, C-lO

Documentation conventions, v~~
Double precision format, A-2

lEA switch, 1-11
11/45 Floating point processor, 1-11
.END statement, 1-16
ERR=transfer, C-12
Error action, B-4
Error codes, OTS, C-15
Error control bits, C-12, C-15
Error diagnostics,

Compiler, C-l
Fatal, C-lO
Initial Phase,C-3
OTS, C-12
Secondary phase, C-4
Warning, C-lO

Error handling, OTS, B-4, B-6
Error message, OTS, C-13

Short file, C-14
Error processing,

Algorithm, C-12
Implementation, C-22

Errors, syntax, C-l
ERRSET subroutine, B-4
ERRSNS subroutine, B-5
ERRTST subroutine, B-6
lEX switch, 1-7
EXIT subroutine, B-7
Extended arithmetic element, 1-11

Fatal error diagnostics, C-lO
FCS, B-8, C-14
FCS file control conventions, 3-3
FDBSET subroutine, B-8
File control services (FCS) , B-8,

C-14
File control conventions, FCS, 3-3
File descriptor block (FOB), C-14
Filename, 1-2
File search, B-8
File specifications, 1-2
File type, 1-2

INDEX-l

File types, default, 1-5
File updating, B-8
Floating-point formats, A-I
Floating point processor, 11/45,

1-11
FMTBUF (task bui1d~r option), 1-14
FOR MCR command, 1-5
Format compilation, object time,

1-14
FORTRAN libraries, 1-15
FORTRAN subprograms, 2-3
FTN, D-1
Function subprograms, 2-5
F4P, D-1

Generated code listing, 1-8

Hollerith,
Format, A-4
Strings, B-9

/I4 switch, 1-7, A-I
lAND, E-1
/ID switch, 1-7
IDATE subroutine, B-4
lEaR, E-2
Image, task, 1-10
Implementation differences,

FTN-FOR, D-2
Implementation, error processing,

C-22 '
Ipdirect command file, 1-2

example, 1-20
Initial phase error diagnostics,

C-3
Input file, 1-5
Installing a task, 1-18
Integer .format, A-I
Internal buffers, B-8
Internal Sequence Numbers (ISN),

1-8, 2-2
lOR, E-1
lRAD50 subroutine, B-9
ISNs, internal sequence numbers,

1-8, 2-2

Keyword options, 1-12

Languages differences, FTN-FOR,
D-l

/LB switch, 1-11, 1-15
/LI switch, 1-6
LIBR option, 1-15
Libraries, 1-13, 1-15

Relocatable, 1-15
Shared, 1-13, 1-15
System, 1-15
User, 1-15

Library subroutines, B-1
Summary, B-1

List file, 1-7
List formats, 1-7
Listing

Generated code, 1-8
Source, 1-8
Storage Map, 1-8

Local symbols, 1-8
LOGICAL*l, A-3
Logical device assignments, 3-2
Logical format, A-4
Logical operations, E-1
Logical operators, E-1
Logical shift, E-2
Logical unit numbers, 1-14, B-2
Logical units, 1-13
LUN assignments, 1-14, 3-2, B-2

Map, memory allocation, 1-10
MAXBUF (task builder option), 1-13
Maximum record size, 1-13
MCR, monitor console routine, 1-1,

1-5, 1-10
Memory allocation map, 1-10
Memory requirements, compiler, 1-10
IMP switch, 1-11, 1-16
Monitor console routine, (MCR), 1-1,

1-5, 1-10
Multi-dimensional arrays, 2-5

NOT, E-2
Null arguments, 2-4

Object code, 2-1
Object time format compilation, 1-14
Object time system (OTS), 2-1,

see OTS
ODL, overlay description language,

1-16
ODT, (on-line Debugging Technique) ,

1-20
/Op switch, 1-7
Operational differences, FTN-FOR,

0-4
Operations ,.

Logical, E-1
Shift, E-2

Operators, logical, E-1
Options, keyword, 1-12
Options, task builder, 1-12
COTS), object time system, 2-1

Differences, FTN-FOR, D-2
Edit number, F-2
Error codes, C-15
Error diagnostics, C-12
Error handling, B-4, B-6
Error message format, C-13
Version number, F-2

Output file, 1-5

INDEX-2

[.-.. - :',
~
r---:.. .' \. j

'-

Overlays, 1-16
Overlay description language (ODL) I

1-16
Overlay structure, 1-16
Overlay structure, examples,

1-17, 1-18
Object code, 2-1
Object time format compilation,

1-14
Object time system (OTS) , 2-1

See OTS
ODL, overlay description language,

1-16
ODT, (On-line Debugging Technique) ,

1-20
lop switch, 1-7
Operational differences, FTN-FOR,

0-4
Operations,

Logical, E-1
Shift, E-2

Operators, logical, E-l
Options, keyword, 1-12
Options, task builder, 1-12
(OTS) , object time system, 2-1

Differences, FTN-FORm 0-2
Edit number, F-2
Error codes, C-15
Error diagnostics, C-12
Error handling, B-4, B-6
Error message format, C-13
Version number, F-2

Partition, 1-14
PAUSE statements, 1-20
Peripheral devices, 1-4
PRINT, 3-2
Program termination, B-7
Pseudo devices, 1-4

R50ASC subroutine, B-10
RAD50 subroutine, B-9
RADIX-50

Character set, A-4
Format, A-4
Notation, B-9

RANDU, RAN subroutine, B-11
REASSIGN, 3-2, B-2
Read only access, B-8
Real format (2-word floating point),

A-2
Record size, maximum, 1-13
Relocatable libraries, 1-15
Register usage, subprogram, 2-4
RESUME, 1-19
RETURN, vii
.ROOT statement, 1-16
RUN, 1-19

INDEX-3

SECNDS subroutine, B-ll
Secondary phase error diagnostics,

C-4
ISH switch, 1-11
Shared access, B-8
Shared library, 1-13, 1-15
Shift, logical, E-2
Shift operati9ns, E-2
Short message file, C-14
ISN switch, 1-7
Software performance reports, F-1
Source listing, 1-8
ISP switch, 1-6, 1-11
Statement ordering, 3-3
STOP, 1-19
Storage map listing, 1-8
Subprograms,

Assembly language, 2-3
Function, 2-5
FORTRAN, 2-3
Register usage, 2-4

Subroutines, library, B-1
Subroutine linkage, 2-3
Switches, compiler, 1-6

IDE, 1-6
lEX, 1-7
lID, 1-7
1I4, 1-7, A-I
ILl, 1-6
lop, 1-7
ISN, 1-7
Isp, 1-6
IVA, 1-7, 2-6
IWR, 1-7, C-10

Switch default summary, 1-7
Switch format, 1-3
Switch options, task Builder, 1-11

lEA, 1-11
IFP, 1-11
ILB, 1-11, 1-15
IMP, 1-11, 1-16
ISH, 1-11
Isp, 1-11

Syntax errors, C-1
SYSLIB.OLB (system object library),

1-10, 1-15
System Libraries, 1-15

TASK (task builder option), 1-13
Task builder, 1-10

Exit, 1-10
Task builder options, 1-12

ACTFIL, 1-12, 3-2
ASG, 1-14
COMMON, 1-12
FMTBUF, 1-14
LIBR, 1-13
MAXBUF, 1-13
PAR, 1-14

TASK, 1-13
Ule, 1-2, 1-13
UNITS, 1-13

Task Builder switch options, 1-11
See also Switch options, Task
Builder

Task execution, 1-19
Task image, 1-10
Task Image file, 1-10
Task name, 1-13
TIME subroutine, B-12
TYPE, 3-2

Ule (task builder option), 1-13
UNITS (task builder option), 1-13
Units, logical, 1-13
Unit numbers, logical, 1-14
USEREX subroutine, B-7
User libraries, 1-15

/VA switch, 1-7, 2-6
Variable names, 3-1
Vectored arrays, 2-5
Version, 1-2

Warning diagnostics, e-10
/WR switch, 1-7, e-10

INDEX-4

{
\

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States. In Europe, software problem
reporting centers are in the following cities.

Reading, England
Paris, France
The Hague, Holland
Tel Aviv, Israel

Milan, Italy
Solna, Sweden
Geneva, Switzerland
Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation
Software Distribution Center
146 Main Street
Maynard, Massachusetts 01754

Digital Equipment Corporation
Software Distribution Center
1400 Terra Bella
Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex
change center for user-written programs and technical application in
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

DECUS
Digital Equipment, S.A.
Sl Route de l'Aire
1211 Geneva 26
Switzerland

F

(

READER'S COMMENTS
RSX-IIM FORTRAN-IV

USER'S GUIDE
DEC-II-LMFUA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent:

o Assembly language programmer

o Higher-level language programmer

[] Occasional programmer (experienced)

o User with little programming experience

o Student programmer

o Non-programmer interested in computer concepts and capabilities

Name.,...,..---,...,---.....-________________ Oat.e ____________ _

Organization __ --_._-.....--___ ---------------------

Street_.....-,---___ -----------------------------

Ci ty_~-.,..----~----- State ____ ---Zip Code ______ _
or

Country

If you do not require a written reply, please check here. 0

---Fold lIere--

--.. - Do Not Tear - Fold lIere and Staple ------------------------------~----------------

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

