RSTS/E
System Directives Manual

Order No. AA-EZ10A-TC

June 1985

This manual contains general information on run-time systems and describes
RSTS/E monitor, RSX emulator, and RT11 emulator directives for the
assembly-language programmer.

OPERATING SYSTEM AND VERSION: RSTS/E V9.0
SOFTWARE VERSION: RSTS/E V9.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1981, 1985 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER’S COMMENTS form on the last page of this docu-
ment requests your critical evaluation to assist us in preparing future documenta-
tion.

The following are trademarks of Digital Equipment Corporation:

mﬂaﬂan ™ DIBOL ReGIS
FMS-11 RSTS
DEC LA RSX
DECmail MASSBUS RT
DECmate PDP UNIBUS
DECnet P/OS VAX
DECtape Professional VMS
DECUS Q-BUS VT

DECwriter Rainbow Work Processor

PREFACE

CONTENTS

SUMMARY OF TECHNICAL CHANGES

Part I

Chapter 1

Chapter 2

Part II

Chapter 3

INTRODUCTION
Introduction
Run-Time Systems e e e e e
User Environment ¢« .+ .+ ¢ & +« ¢ « « o .
Program Environment
High-Level Languages . . . « « « + « o« o + &
Program Development Tools
Resident Libraries . . . o« e e e e e e e

Instruction and Data Space e e e e e e e e
Directives for Each Programming Environment . .
Writing or Modifying a Run-Time System . ..

JObSs . .t s i e i e e e e e e e e e e e e e e e e

General RSTS/E Environment

How RSTS/E Allocates Memory: Physical and Virtual

Addressing

Job Space: High Segment and Low Segment . e
Low-Segment Details: First 512. Bytes of the Low
Segment e e e
High-Segment Details: Pseudovectors

Run-Time System Capability and Default
Definitions
Synchronous Exceptlon Handler Addresses
Asynchronous Exception Handler Addresses
Entry Points« . < .+ .+ . . .

MONITOR DIRECTIVES

General Monitor Directives

Introduction e . e e e e .
Summary of General Monltor Dlrectlves
Prefix File COMMON.MAC e e e e .
How to Assemble with COMMON. MAC e e e e .
Macros Provided in COMMON.MAC
Error Mnemonics: Symbol Table File ERR.STB
Programming Hints . . . e e e e e e e e e e
.AST -~ Enable/Disable AST Dellvery e e e e e e e .
.ASTX -- Exit from AST Routine

iii

.
w W
1

Xi

xiii

[T T [I T
AUV D WNDN -

PR TR NP R S P W W
1

rTwWwwWwwWwwww
1

Ll '
Wt WH

CALFIP -- Call the File Processor . . « +« « « « « o 3-14

ASSFQ (Allocate a Device) 3-15
CLSFQ (Close a Channel) . . . 3-19
CRBFQ (Create a Binary [Executable] F11e and Open

It on a Channel) 3-22

CREFQ (Create a File and Open It on a Channel) . 3-29
CRTFQ (Create and Open a Temporary Flle) « « .« . 3-38
DALFQ (Deallocate All Devices) 3-44
DEAFQ (Deallocate a Device) 3-46
DIRFQ (Get Directory Information) e e« « « . . 3-49

DLNFQ (Delete a File) . e e e e« « « e « . 3-57
ERRFQ (Return Error Message Text) e « « « « « « 3-60
LOKFQ (Disk File/Wildcard Lookup) 3-63
OPNFQ (Open a File/Device on a Channel) e « « o 3-73
RENFQ (Rename a File) e e v e e e e e e e e 4« . 3-82

RSTFQ (Reset a Channel) e« « ¢ +« e« + « e« « . . 3-86
UUOFQ (Hook to File Processor) « . . . 3-89

.CCL -- Check String for CCL Command 3-90
.CHAIN -- Execute Under Same RTS 3-95
.CLEAR -- Clear Keyword Bits 3-96
.CMDLN -- Read/Write Command Line 3-98
.CORE -- Change Memory Size « + « « « « .« . 3-100
.DATE -- Return Current Date and Time 3-104
.ERLOG -- Log an Error from RTS« « . . 3-106
.EXIT -- Exit to Default Keyboard Monltor « « « . . 3-107
.FSS -- Check File Specification String 3-108
.LOGS -- Check for Logical Device Names 3-123
.MESAG -- Message Send/Receive 3-131

Declare Receiver Subfunction 3-131

Remove Receiver Subfunction . . c « « + + . . 3-134

Send Local Data Message Subfunctlon « « « « . . 3-135

Receive Subfunction . . « e+« e« « « « . . 3-140

Send Privileges Subfunctlon e+ &« 4 e« « « « « . 3-143
.NAME -- Set Program Name« « . . . 3-148
.PEEK -- Look at Monitor Memory 3-151
.PLAS -- Access Resident Library 3-154

ATRFQ (Attach Resident Library) .« e + « &« « « o« 3-156
CRAFQ (Create Address Window) e e « + « « « « « 3-160
DTRFQ (Detach Resident Library) 3-167
ELAFQ (Eliminate Address Window) 3-171
MAPFQ (Map Address Window) « 3-175

UMPFQ (Unmap Address Window) e « + . 3-182
.POSTN -- Return Current Horizontal P051t10n . « .« . 3-186
.READ -- Read Data from File or Device« . 3-188
.READA -- Read Data from a Device (Asynchronous) . . 3-194
.RTS -- Pass Control to Run-Time System 3-204
.RUN -- Run a Program +. « + +« « o« o« « « + o« 3-210
.SET -- Set Keyword Bits 3-214
.SLEEP -- Suspend Job . . . e e e e e e e .. 3-217
.SPEC -- Special Functions for I/O e e e e e e e « . 3-219

.SPEC for Disk . . e e e e e e e < < . . 3-220
.SPEC for Flexible Dlskette e e« « e « e « . . 3-223
.SPEC for Line Printer 3-226

iv

.SPEC for Magnetic Tape
.SPEC for Pseudo Keyboards

.SPEC for Terminal
.STAT -- Return Job Statlstlcs
.TIME -- Return Timing Information
.TTAPE -- Enter Tape Mode ..
.TTDDT -- Disable Full-Line Bufferlng
.TTECH -- Undo .TTAPE or .TTNCH .
.TTNCH -- Stop Echo .
.TTRST -- Restart Output . .
.ULOG - - Allocate/Reallocate/Deallocate Dev1ce or

Assign/Deassign User Logical N .
UU.ASS (Allocate/Reallocate a Dev1ce, or Assign
User Logical)

UU.DAL - - Deallocate All Dev1ces and Dea551gn
User Logicals . . .
UU.DEA - - Deallocate a Dev1ce or Deas51gn a User
Logical

.UUO -- Execute BASIC PLUS SYS Call

UU.ACT (Accounting Information Dump)
UU.ASS (Allocate/Reallocate Device)
UU.ATR (Read/Write Attributes)

UU.ATT (Attach/Reattach Job/Swap Console)
UU.BCK (Change File Statistics)

UU.BYE (Logout) . e

UU.CCL (Add/Delete CCL Command)

UU.CFG (Set Device/System Default
Characteristics)

UU.CHE (Enable/Dlsable DlSk Cachlng)
UU.CHK (Check File Access/Privilege
Name/Privilege Mask Handling)

UU.CHU (Set Password, Change
Password/Quota/Expiration Date, Disable
Terminal,Kill Job) e e ..
UU.CNV (Date and Time Conver51on) . e .
UU.DAL (Deallocate All Devices) . e
UU.DAT (Change System Date/Time)

UU.DEA (Deallocate Device) .

UU.DET (Detach) . e e e e e e e e e
UU.DIE (System Shutdown) e e e e e e e e e e
UU.DIR (Directory Lookup)
UU.DLU (Delete User Account)« . .

UU.DMP (Snap Shot Dump) e e e e e e e e e e e
UU.ERR (Return Error Messages) . .
UU.FCB (Get Open Channel Statistics:

WCB/DDB/FCB) .
UU.FIL (File Placement and Modlflcatlon)
UU.HNG (Hang Up a Dataset)

UU.JOB (Create Job)

UU.LIN (Login) .

UU.LOG (Set Number of Loglns)

UU.LOK (Disk Directory Lookup by Flle
Name,/Wildcard Lookup) e v e .

v

3-229
3-234
3-237
3-251
3-254
3-256
3-257
3-259
3-260
3-261

3-262
3-263
3-270

3-274
3-279
3-284
3-286
3-288
3-299
3-304
3-306
3-310

3-312
3-325

3-328

3-336
3-344
3-346
3-347
3-349
3-351
3-353
3-355
3-361
3-363
3-365

3-367
3-371
3-375
3-377
3-385
3-392

3-394

PART III

CHAPTER 4

CHAPTER 5

UU.MNT (Disk Pack Status)

UU.NAM (Associate a Run-Time System Wlth a File)

UU.NLG (Disable Further Logins)
UU.ONX (Open Next Disk File)
UU.PAS (Create User Account)
UU.POK (Poke Memory) . . . e e e e e e e .
UU.PPN (Wildcard PPN Lookup) e e e . .
UU.PRI (Change Priority/Run Burst/Job Slze)
UU.PRV (Set/Clear/Read Current Privileges) .

UU.RAD (Read or Read-and-Reset Accounting Data)
UU.RTS (Add/Remove/Run-Time System or Resident

Library, or Create Dynamic Region)
UU.SLN (System Logical Names)
UU.SPL (Spooling) . . e e e e e e e e
UU.STL (Stall/Unstall System) e e e .
UU.SWP (Add, Remove, and List System Flles)
UU.SYS (Return Job Status Information) .
UU.TBl1 (Get Monitor Tables, Part I) e e e .
UU.TB2 (Get Monitor Tables, Part II) . .
UU.TB3 (Get Monitor Tables, Part III) .
UU.TRM (Set Terminal Characteristics) . .
UU.YLG (Enable Logins) . . . « ¢« « ¢« « « .
UU.ZER (Zero Device) e e e
UU.3PP (Third-Party Privilege Checklng)
.WRITA -- Write Data to File or Device
(Asynchronously) . . . e e e e .
.WRITE -- Write Data to F11e or Dev1ce e e e .

RSX and RT1ll EMULATOR DIRECTIVES

RSX Run-Time System Environment

Advantage: Transportable Code
General Services
RSX Directive Emulatlon W1th1n RSTS/E Monltor
System Macro Library o o o o .
Directive Processing
Directive Forms ($, $C, $S) and Thelr Expan51ons
$ Form (and DIRS Directive) e e e e e
SC FOIM . . v v ¢ e o o o o o o o« o o« o o .
$S FOIM . v v v v ¢ o o o o o o o o o o =
First 512. Bytes of Low Segment for RSX

RSX Emulator Directives

ABRTS -- Abort e e e e e e

ALUNS -- Assign Logical Unlt Number

ASTXS$ -- Asynchronous Exception Exit

ATRGS -- Attach Resident Library e e e e e
CRAWS -- Create Address Window
CRRGS -- Create Dynamic Region

DTRGS -- Detach Resident Library .

vi

3-399
3-403
3-405
3-406
3-411
3-416
3-418
3-420
3-422
3-425

3-430
3-443
3-449
3-453
3-455
3-462
3-467
3-469
3-471
3-474
3-484
3-486
3-488

3-490
3-497

[

L ~ Y N S~ - > Y~ N
L]

|] [
DWW N DN

.
[~

LS AR IO,)
'

(SO0]
)
[3SR e]

CHAPTER 6

CHAPTER 7

ELAWS -- Eliminate Address Window
EXIT$ -- Task Exit . . e e e e e e e e e e e e
EXSTS -- Exit with Status e e e e e e e e e e e e
EXTKS -- Extend Task ¢« « ¢ « v o« « o v « o .
GLUNS -- Get LUN Information . . e e e e
GMCRS -- Get MCR (CCL) Command L1ne e e e e e e
GPRTS -- Get Partition (Job) Parameters
GTIMS -- Get Time Parameters « « & « « .
GTSKS -- Get Task (Job) Parameters
MAPS -- Map Address Window

QIOS and QIOWS -- Queue I/0 Request (and Walt)
RDBBKS$ and RDBDFS -- Define and Fill RDBs .

SCCAS$SS -- Specify Control/C AST e e
SFPAS -- Specify Floatlng Point-Processor Exceptlon
Address . . e e e e e e e e e e e e e e e
SPND$S - - Suspend e e e . .. e e e .
SVDBS -- Specify SST Vector Table for Debugglng Aid
SVTKS -- Specify SST Vector Table for Task
UMAPS -- Unmap an Address Window . . . e e e e .
WDBBKS and WDBDF$ -- Define and Fill WDBs C e e e s
WSIGS -- Wait for Significant Event Flag
WTSES -- Wait for Single Event Flag

RT1l Run-Time System Environment

Advantage: Transportable Code

General Services + ¢ 4 v v e 4 e e e e e
System Macro Library « « « « « « + o . .
Directive Processing « . . « . o o . .
Call Forms . . . e e e . e e e e
Format for Calls Uszng Argument Blocks e e e .
Format for Calls Not Using Argument Blocks . . .
Channel Number and Device Block Arguments
Channel Number Arguments « . . .
Device Block Arguments . . . e e e e e e
Low 512. Bytes for RT1l Run-Time System . e
Scratch Pad Area in User Job Image .

RT1l Emulator Directives

.CHAIN -- Pass Control to Another Program Under RT11l
.CLOSE -- Close a Channel
.CLRFQB -- Clear the FIRQB

.CLRXRB -- Clear the XRB . . e e

.CSIGEN -- Examine String for RT Command Open Flles
.CSISPC -- Examine String for RT Command, Create
Devblk . .+ . .+ ¢ . . 0 e e e e e e e e e e e e e
.DATE -- Return Current Date to RO
.DATTIM -- Return Date or Time . . e o e .
.DELETE -- Delete File from Disk or DECtape . e e
.DOCCL -- Do a RSTS/E .CCL .

.DOFSS -- Do a RSTS/E .FSS « . .

.DORUN -- Chain to Non-RT1ll RTS Program

vii

oo O
1
o

5-23
5-25
5-27
5-29
5-31
5-34
5-35
5-37
5-39
5-43
5-46
5-53
5-55

5-57
5-59
5-60
5-63
5-66
5-68
5-70
5-71

[N '
WHEOWWWOWSINI DWW

T AT O
1

r J

~
1] 1]
o
MO W

7-17
7-21
7-23
7-25
7-27
7-28
7-29

APPENDIX A

APPENDIX B

INDEX

.DSTATUS -- Return Device Status . e . . .
.ENTER -- Open File for Output . . .
.ERRPRT -- Print RSTS/E Error Message . .

.EXIT -- Program Exit . .,
.FETCH -- Check Whether Dev1ce Ex1sts . .
.GETCOR -- Changes Job Image Size . .

.GTIM -- Return Time-of-Day

.GTJB -- Return Job High Limit
.GTLIN -- Get Line from Job’s Terminal .
.GVAL -- Get Value from Scratch Pad .
.HRESET -- Hardware Reset . e e e . . .
.LOOKUP -- Open File for Input
.PRINT -- Display String on Job’'s Termlnal .
.PURGE -- Release Channel . . . e v e e
.RCTRLO -- Reset CTRL/O
.READ/.READW/.READC -- Read Data . .
.RENAME -- Rename a File . . . c e .
.REOPEN -- Reopen File Closed w1th .SAVESTATUS e
.SAVESTATUS -- Save Status of File for Later .REOPEN
.SCCA -- Pass CTRL/Z to User Program . . .

.SETCC -- Process CTRL/C . . . e e e e e e e
.SETFQB -- Set Up FIRQB . e . . .

.SETTOP -- Expand to Start of Scratch Pad

.SFPA -- Set Floating-Point Error Address .
.SPFUN -- Special Functions for I/O . .
.SRESET -- Software Reset . . .

.TRPSET -- Intercept Traps to 4 and 10 . .
.TTYIN/.TTINR -- One-Character Read From Termlnal
.TTYOUT/.TTOUTR -- Transfer One Character to Job’s

Terminal . e e s . e

.TWAIT -- Timed Wait

.WAIT -- Check for Channel Open

.WRITE/.WRITW/.WRITC -- Write Data e e e e e e .

./+.V2.. -- Use Version 1l/Version 2 Expansion

Full List of Error

Device Information

Disks
Flexible Dlskettes
Magnetic Tape .
Line Printers . . .
Terminals
Pseudo Keyboards

S

viii

7-31
7-33
7-35
7-36
7-37
7-38
7-40
7-41
7-42
7-44
7-45
7-46
7-48
7-49
7-50
7-51
7-53
7-55
7-57
7-59
7-61
7-62
7-63
7-64
7-66
7-68
7-69
7-71

7-73
7-74
7-75
7-76
7-78

FIGURES

. TABLES

BB
1
w N

BN DO N
1
N OO0 D

WWWwwwwwwwwhH
1]
HOooJoumds WK

0

1

3-1
4-1
5-1
5-2
6-1

WYy JJdoo
]

o
B

How a Physical Address Is Formed
Memory Mapping with the APRs . .

NN
L}
U w

Conventional Task Linked to a lerary in an I&D Space

System
I&D-Space Task Mapplng in an I&D Space System

Job Area in Virtual Memory

First 512. Bytes of Low Segment
General FIRQB Format « + +« + « « « .
General XRB Format

Format of Pseudovector Reglon of ngh Segment
General Form of the Directive Parameter Block
Example of RSX Directive Forms

RSX and RT1ll Development Tools
Summary of General Monitor Calls
Summary of CALFIP Subfunctions
Fixed Monitor Locations
Summary of .PLAS Subfunctions

Data Input with .READ« e e e e
Special Functions for Magnetic Tape e e e e e e e
Value Returned by .SPEC for Magnetic Tape

Private Delimiter Masks . . . ¢« . ¢« ¢« « « v « « « .
Summary of .ULOG Subfunctions e e e
.UUO Subfunctions -- Calls to the Flle Processor
(FIP) e e e 4 e s e e e e e e e

Data Output w1th WRITE e e e . .

First 512. Bytes of Low Segment for RSX e e e e e .
Summary of the RSX Directives « . . .

Vertical Format Control Characters c e e .
EMT Instructions Recognlzed by the RT11 Run- Tlme
System« . . . e .

Locations in Flrst 512 Bytes That RTll Uses . .
Offsets to Important Scratch Pad Area Locations
RT-11 Calls Not Functional on RSTS/E e e e .

RT11 Run-Time System Directives
RSTS/E Errors

MODE Values for Flle Structured Dlsk Access
(FIRQB+FQMODE) . . . e e e e .
MODE Values for Non- Flle Structured DlSk Access
(FIRQB4+FQMODE) . v « ¢ ¢ o ¢ o« o o o o o o o o « =
Disk Device Sizes . . . e . . e .

Flexible Diskette MODE Values (FIRQB+FQMODE) . .
Flexible Diskette RECORD Values (XRB+XRBLK) . .
MODE Values for File-Structured Magnetic Tape
(FIRQB+FQMODE)

CLUSTERSIZE Values for Flle Structured Magnetlc Tape
Files e e e e
Line Prlnter MODE Values (FIRQB+FQMODE)

ix

LI S 2 S 2N oV
L}

VNN
[N O | [1
N
UWORNUFOJO

1-3
. 3-1
3-14
3-152
3-155
3-189
3-230
3-232
3-242
3-262

3-279
3-497
4-11

5-49

B-9 Line Printer RECORD Values (XRB+XRMOD)

B-10
B-11
B-12
B-13
B-14
B-15

B-16

Terminal MODE Values (FIRQB+FQMODE)

RECORD Values for Terminal Input (XRB+XRMOD) . e .
RECORD Values for Terminal Output (XRB+XRMOD) e e .
Echo Control Mode Character Set . . .« e .
Pseudo Keyboard MODE Values (FIRQB+FQMODE) . e .

RECORD Option Bit Values for Pseudo Keyboard Output
(XRB+XRMOD)
Possible Errors on Pseudo Keyboard Output Request .

Preface

Obectives

This manual describes directives to the RSTS/E monitor, the RSX
emulator, and the RT11l emulator that you can use in MACRO programs.

To use these directives, you should be familiar with the MACRO-11
assembly language. MACRO is the standard assembler for DIGITAL PDP-11
computers and is available under various operating systems for the
PDP-11. Note that the syntax is basically the same for all operating
systems.

- Manual Structure

This manual contains seven chapters and two appendixes:

Chapter 1 Gives an overview of run-time systems and jobs as they
relate to the system directives.

Chapter 2 Describes the RSTS/E environment (memory allocation and
job space) for the general monitor directives.

Chapter 3 Contains reference material for the general monitor
directives that you can use in programs compiled under
either the RSX or RT1ll run-time systems.

Chapter 4 Describes the RSX environment for the RSX directives.

Chapter 5 Contains reference material for the directives processed
by the RSX emulator or the RSX run-time system.

Chapter 6 Describes the RT11l environment for the RT11l directives.

Chapter 7 Contains reference material for the directives processed
by the RT1l emulator in the RT1ll run-time system.

Appendix A Lists the RSTS/E errors you can get during directive
processing.

Appendix B Summarizes MODE and RECORD values and other useful
information for disks, flexible diskettes, magnetic
tape, line printers, terminals, and pseudo keyboards.

Related Documents
For information about the syntax of MACRO assembly language, see the

PDP-11 MACRO-11 Language Reference Manual.

Xi

Where appropriate, this manual references the following manuals from
the RSTS/E documentation set:

RSTS/E System Installation and Update Guide

RSTS/E System Manager’s Guide

RSTS/E System User’s Guide

BASIC-PLUS Language Manual

RSTS/E Programming Manual

RSTS/E Programmer’s Utilities Manual

RSTS/E Task Builder Reference Manual

Conventions

This manual uses the following conventions:

—

()

(1]

{}

<>

The arrow means points to, or contains the address of, as when
the stack pointer register points to the first item in the
stack. For example:

SP—> item at top of stack
item one word down from top of stack

Parentheses mean the contents of the item that the parentheses
surround. For example, the contents of the program counter
would be represented as:

(PC)

Brackets around an item indicate that the item is optional.
For example:

QIO$ paraml [,param2]

Braces around two or more items indicate that you must choose
one of the enclosed items. For example:

QI0$
QIOWS

Angle brackets around two or more items tell the MACRO
assembler that the items make up a list. For example:

GLOBAL<namel|[,name2,...]>

Xii

Summary of Technical Changes

The functions of several RSTS/E monitor directives have been expanded
for v9.0, and some new directives have been added. The following is a
summary:

.AST

A new directive to enable or disable asynchronous AST deliveries
from the user program.

LASTX

A new directive to return control to the calling program when an
asynchronous routine completes its operation.

.CMDLN

A new directive to let you pass up to 1K words of data when
chaining.

.CORE

Quotas and I&D space.

.MESAG (Message Send/Receive)

A new subfunction (-11) of .MESAG, sends privilege data. A new
qgualifier, "conditional remove" was added to the Remove Receiver
subfunction.

.READA

A new directive, performs asynchronous read and/or read-check
operations.

.SPEC (line printers)

New .SPEC functions return the current value of a 32-bit page
counter, or the current vertical and horizontal line position.

.SPEC (magnetic tape)

uu.

uu.

uu.

uu.

New .SPEC functions return end-of-volume (EOV) and error condition
acknowledge (ECA) data.

CFG (Change system characteristics)
A new directive, lets you change the system default characteristics
if you have the necessary privileges.

CHK (Check access function)
A new directive, performs privilege checking functions.

LOK
A new subfunction, lets you look up marked-for-delete files.

ONX (Open next file)
A new directive, performs an open next disk file on an I/O channel.

The file specification can be for a single file or a series of
files.

xiii

UU.PRV (Set/clear/read current privileges)
A new directive to let you read the current privilege mask. You
can also selectively set or clear bits in the current privilege
mask.

UU.RTS
A new subfunction to let you create dynamic regions in memory.

UU.TBl1 (Get Monitor Tables - Part 1)
Some of the monitor tables have been expanded.

UU.TB3 (Get Monitor Tables - Part 3)
Some of the monitor tables have been expanded.

UuU.TRM
Calls to UU.TRM have been extended for new features.

UU.3PP (Third-party privilege check)
A new directive, enables or disables third-party privilege
checking.

.WRITE
A new error condition, end-of-file (EOF), was added for an attempt
to write beyond the end of the disk when the disk was opened
non-file-structured. Also, additional reasons for getting a PRVIOL
error condition have been documented.

.WRITA
A new directive, performs asynchronous write operations.

Five new RSX emulation directives were added:

CRRGS
Creates a dynamic region and optionally attaches to it.

RDBBKS

RDBDFS$
Two new directives for use with resident library definition blocks
(RDBs) .

WDBBKS

WDBDFS
Two new directives for use with window definition blocks (WDBs).

xiv

PART |
Introduction

Chapter 1: Introduction

There are two MACRO assemblers available for the run-time systems on
RSTS/E: one for RSX and one for RT1l. You will use one of these two
run-time systems to assemble and, in most cases, run your programns.
In addition to user programs, you can also write or modify run-time
systems that run under direct control of the RSTS/E monitor.

This manual describes the three types of system directives available
to RSTS/E assembly language programmers:

o General monitor directives
o RSX emulator directives
o RTll emulator directives

Before you start using these directives, it is helpful to understand
some basic concepts about RSTS/E run-time systems and jobs.

Run-Time Systems

A run-time system lets you write code that can be shared by many users
when it is in memory. 1In a time-sharing system such as RSTS/E,
shareable code is an important consideration.

Run-time systems are normally written as pure code. This means they
have only instructions and fixed data, and contain no variable data.
Such code saves space, since many jobs can use it. It also saves time
since run-time systems are not swapped in and out of memory like user
programs. Because the run-time systems contain no variable data, they
do not need to be swapped out to disk; they are simply reloaded when
they are needed again.

RSTS/E always has at least one permanently resident run-time system.
It is called the primary run-time system, because it is the first (and
only) run-time system at system start-up. RSTS/E loads other run-time
systems when programs request them, and they remain in memory only as
long as necessary.

User Environment

The DCL, BASIC-PLUS, RSX, and RTll run-time systems all have a
keyboard monitor. That is, they can accept, analyze, and act on
commands you type at a terminal keyboard. The RSTS/E System User’s
Guide gives an overview of the user environment these run-time systems
provide.

1-1

Introduction

Program Environment

Run-time systems also provide an environment for programs. MACRO
programmers are concerned with the program environment provided by the
RT11l run-time system. This run-time system includes:

o A loader. This code loads a program from disk into memory
and starts its execution.

o An emulator. This code emulates directives handled by
DIGITAL's RT-11 operating system for the PDP-11 computer.

Note

The RSX run-time system only provides a user
(command) environment. Both the program loader and
the emulation functions for the RSX environment are
built into the RSTS/E V9.0 monitor.

A run-time system usually takes up space in the 32K-word area called
the user job area. Therefore, a run-time system limits the size of
your program to less than 32K words. The RT1l run-time system takes
4K words of virtual memory. The RSX run-time system is in the
monitor. Chapter 2 explains space requirements in greater detail.

Should you program under the RSX or RT1ll run-time system? RSX is
usually a better choice because it is in the monitor and it offers
easy access to most resident libraries. Your decision depends on:

o Whether you are coding MACRO subroutines for use in a
high-level language program

o Which set of program development tools better satisfies your
needs

o Whether you want to use resident libraries

o Whether you need separate instruction and data space (I&D
space) support for programs larger than 32K words

High-Level Languages

When you write MACRO subroutines for use in high-level language
programs, the high-level language dictates which run-time system you
must use. BASIC-PLUS-2, COBOL-81, PDP-11 COBOL, DIBOL, and FORTRAN-77
all run under the RSX emulator, while FORTRAN-IV runs under the RT1l1l
run-time system. You must compile, link, and run all the modules in
your program under the same run-time system, whether your program is

1-2

Introduction

written in MACRO or in a high-level language.

Program Development Tools

As Table 1-1 shows, RSTS/E provides one set of program development
tools for the RSX environment and another set for the RT11
environment.

Table 1-1: RSX and RT1ll Development Tools

I R R dommmmea +
t Tool | RSX | RT11 |
R e o +
l | | |
| Assembler | MAC | MACRO |
| | | l
| Linker | TKB | LINK |
} I l |
| Librarian | LBR | LIBR |
I | | |
| Patch Utility | PAT | PAT |
I I R +

While the tools for each environment perform similar functions, they
differ in their speed and capabilities:

o Assemblers -- RSTS/E supports two MACRO-11 assemblers, the
RSX-based MAC assembler and the RTll-based MACRO assembler.
The two assemblers are nearly identical in function and
performance and produce similar output.

o Linkers -- RSTS/E supports two linkers: the Task Builder
(TKB) for RSX-based programs and LINK for RTll-based
programs. While LINK is faster than the Task Builder, the
Task Builder is more powerful. It can link much larger and
more complex overlay structures (including co-trees) than
LINK. Unlike LINK, the Task Builder has options for linking
to resident libraries and support for separation of
instructions and data.

o Librarians -- RSTS/E provides LBR for RSX-based programs and
LIBR for RTll-based programs. You can create object and
macro libraries with either utility. LBR also lets you
create universal libraries, which can contain any type of
file, including text files.

0 Object module patch utilities -- RSTS/E provides a PAT
utility for each environment. Both let you update code in a
relocatable binary object module.

1-3

Introduction

For details on these program development tools, see the:

0 RSTS/E Task Builder Reference Manual -- Describes the Task
Builder

0 RSTS/E Programmer’s Utilities Manual -- Describes the
RSX-based MACRO assembler, librarian, and object module patch
utilities

0 RSTS/E RT11 Utilities Manual -- Describes the RTll-based
MACRO assembler, librarian, linker, and object module patch
utilities

o PDP-11 MACRO-11 Language Reference Manual -- Describes the

MACRO-11 relocatable assembler

Resident Libraries

When you program under RSX, you can easily use DIGITAL-supplied
resident libraries (such as RMS-11 and FMS-11) as well as create your
own resident libraries. Also, because of the Task Builder’s cluster
library feature, many resident libraries can share the same virtual
address space in your program.

You can also use resident libraries under the RT1ll emulator, but the
coding is more difficult. Unlike RSX, you must use .PLAS directives
to map and create address windows inside your task. Coding these
directives can be quite complex. The Task Builder, on the other hand,
has options that build tables describing your task and the window to
map, and automatically includes the code to perform the necessary
.PLAS directives for you. Thus, RSX is a more practical choice than
RT11 if you plan to use resident libraries.

Instruction and Data Space

The manipulation of Instruction and Data Space (I&D Space) is an
advanced programming technique that effectively doubles the user’s
virtual address range from 32K words to 64K words. The memory
management unit in some PDP-11 processors can relocate data and
instruction references with separate base address values. Thus, it is
possible to have a user program of 64K words consisting of 32K words
of pure instructions or procedure code and 64K words of data -- all
within a program’s virtual address range.

Introduction

Directives for Each Programming Environment
RSTS/E has three types of directives:
0 Monitor ("native" RSTS/E directives)
o RSX emulator
0 RT1ll emulator

Monitor directives are processed directly by the RSTS/E monitor (see
Chapter 3). You can assemble monitor directives using either the
RSX-based or the RTll-based MACRO assembler, and you can use these
directives in both user programs and run-time systems. (When you
write a program to run under the RT1ll run-time system, you must
'precede all monitor directives with a special "prefix EMT"; see
Chapter 6 for details.)

The RSX emulator, which is part of the RSTS/E monitor, processes the
RSX emulator directives. These directives, which have basically the
same form and function as a subset of the RSX-11M-PLUS operating
system monitor directives, perform non-file-structured 1/0 and trap
handling. You must use the RSX-based MAC assembler to assemble the
RSX emulator directives, and you can use them only in a user program
that runs under the RSX emulator. Chapters 4 and 5 describe the RSX
run-time system environment and emulator directives in detail.

RT1l emulator directives are processed by the RT1ll emulator, which is
in the RT1l1l run-time system. These directives provide most of the
single-job programmed requests available to MACRO programmers using
the RT-11 operating system. The RT1l run-time system also provides
directives for the RSTS/E environment not available under the RT-1l1
operating system. You must use the RTll-based MACRO assembler to
assemble RT1l emulator directives; you can use them only in a user
program that runs under the RT1ll run-time system. Chapters 6 and 7
describe the RT1l run-time system environment and emulator directives
in detail.

Writing or Modifying a Run-Time System

If you want to modify an existing run-time system or code your own
run-time system, you can use either assembler. You may find the
RT11l-based programming tools easier to use for this purpose than the
RSX-based programming tools, mainly because it is easier to link
run-time systems with the LINK program than with the Task Builder.
Run-time systems always have a specific address for their top
(highest) address. When you use LINK, you can specify the top address
the first time you link the run-time system. But when you use the

1-5

Introduction

Task Builder, you have to link your run-time system twice -- once to
find its size, and again to adjust its top address to the value you
want.

Unlike a program, a run-time system can contain monitor directives
only, not RSX or RT1l1l emulator directives. 1In addition, you must
store the run-time system file (the product of assembling and linking)
on the system disk in save image library (SIL) format. To create a
SIL file, use:

O MAKSIL -- For run-time systems assembled with MAC and linked
with the Task Builder

0o SILUS -- For run-time systems assembled with MACRO and linked
with LINK.

Jobs

Like run-time systems, you can view "jobs" from several angles. To
the RSTS/E monitor, a job is a unit of work generally associated with
activity at a terminal. For example, suppose that a user types a line
at a previously inactive terminal. The monitor creates a job,
assigning a job number and allocating internal tables for bookkeeping.
The monitor then passes control to a new-user entry point in the
primary run-time system.

The primary run-time system has code at this entry point that causes
the LOGIN program to be loaded from the system disk and executed.
LOGIN analyzes what was typed and performs the normal log-in dialogue.
When LOGIN exits for a valid login, control passes to the default
keyboard monitor, which waits for further input from the terminal.

The monitor considers running the LOGIN program and the default
keyboard monitor, and whatever else occurs at the terminal until the
user logs out as the same job. (If the log-in sequence was not valid,
LOGIN exits with the job still logged out. The monitor destroys the
job and releases the job number.)

As a MACRO programmer, your awareness of the job concept probably
focuses on the work space RSTS/E provides for each job, and the fact
that the run-time system can take part of this work space. Chapter 2
describes the allocation of work space.

Chapter 2: General RSTS/E Environment

This chapter explains how and why one copy of a run-time system,
shared by many users, can still take up space in each user’s work
area. The sections in this chapter and their purposes are:

o How RSTS/E Allocates Memory: Physical and Virtual Addressing

This section provides some background on memory accessing in
the PDP-11.

o Job Space: High Segment and Low Segment

This section explains how RSTS/E uses memory accessing to
define a job space for each user to run programs.

o Important Installation Options

This section briefly describes resident libraries and the
special-case disappearing RSX run-time system.

o Low-Segment Details: First 512. Bytes of the Low Segment

This section gives specifics on how the monitor uses the low
512. bytes of virtual address space.

o High-Segment Details: Pseudovectors

This section explains how the monitor and the run-time
systems use pseudovectors to communicate with each other.

How RSTS/E Allocates Memory: Physical and Virtual Addressing

All RSTS/E systems use the memory management feature available on
PDP-11 computers. This feature extends the addressable memory range
of the PDP-11 processor by using hardware registers called Active Page
Registers (APRS).

The PDP-11 processor handles 16-bit operand addresses, allowing
reference to 32K words. The PDP-11 is byte-addressable, so the
address range is from 0 through 216 -1 (65535 decimal, 177777 octal),
which equals 64K bytes or 32K words. With the memory management unit,
RSTS/E treats a 16-bit address as a relocatable (virtual) address that
is combined with information in an APR to form an 18-bit (22-bit, for
the PDP-11,/23-PLUS, 24, 44, 70, 73, and 84) physical address.

General RSTS/E Environment

On some PDP-11s (11,44, 11,45, 11,50, 11,/55, 11,70, 11,73, and 11/84),
the memory management unit gives you two areas of 32K words each. You
can put code (instructions) in one of these areas and data in the
other. RSTS/E requires that you write your program using special
techniques to take advantage of both of these areas. This capability
is known as Instruction and Data (I&D) Space. You have to use the RSX
tools (specifically TKB) to build programs with separate instruction
and data sections.

The PDP-11 Architecture Handbook explains in detail how the APRs
function. Briefly, an APR consists of two 16-bit registers. These
registers define a page of contiguous memory. The Page Address
Register (PAR) defines the physical memory location where the page
begins. The Page Descriptor Register (PDR) defines, among other
things, the maximum length of the page and how you can access it (for
example, read/write or read-only).

In Figure 2-1, the virtual address of 72322 (octal) identifies APR 3
and byte 12322 (octal) of the page defined by APR 3. The PAR of APR 3
indicates a starting address of 146000 (octal) for the page. The
physical address obtained is 146000+012322, or 160322 (octal). The
byte offset field in the virtual address is 13 bits long. The maximum
size of a page, then, is 2713 bytes, or 4096 words. 1In other words,
one APR can map a virtual address range of up to 4K words into an
equal extent of physical memory.

Figure 2-1 shows how you can combine a virtual address and a PAR to
form a physical address in memory.

General RSTS/E Environment

Virtual Address

15 13|12 0
R I I +
/0 1 1,1 0 1 0 0 1 1 0 1 0O O 1 0 |
I R L +

3 1 2 3 2 2
APR byte offset within page

Page Address Register

(21) (18 17) (6) (0)
15 12 11 0
R I i e +
/0 0 0 00 0 1 1 0 0 1 1 0 O O OO O O O O O]
R R L LR +
1 4 6 0 0 0

Physical Address

Figure 2-1: How a Physical Address Is Formed

General RSTS/E Environment

The 16-bit virtual address defines which APR the system uses and the
byte offset within that page. The system handles the PAR of the
indicated APR as though it contains bits 6-17 (6-21 for the
PDP-11,/23-PLUS, 24, 44, 70, 73, and 84) of an 18-bit (or 22-bit)
physical address, defining the start of the page.

The memory management unit on the PDP-11 consists of two sets of APRs;
eight in each set on machines without I&D Space, 16 in each set on
machines with separate I&D Space. Since each APR can map a 4K segment
of virtual memory to physical memory, each set of APRs can provide
access to 32K words of physical memory on non-1&D Space machines, or
64K words on machines with I&D Space capability.

Note

The PDP-11/44, 45, 50, 55, 70, 73, and 84 have three

sets of APRs; the additional set is for supervisor

mode mapping, which RSTS/E does not use.
The monitor uses one set, called the "kernel mode APRs," to map itself
in physical memory. It uses the other set, called the "user mode
APRs," to map the job that is active during the current time slice of
time-shared processing.

Figure 2-2 shows the concept of mapping with the APRs.

2-4

Figure

General RSTS/E Environment

ACTUAL ADDRESSES
(PHYSICAL MEMORY)

i

PERMANENTLY
MAPPED PART

/' OF RSTS/E
//MONII:)/R//4
/.

EMT

1 00 0000 0
o XBUF
0O 00 0 O 0 0O

AN oo

of
Of
o

MONITOR'S VIRTUAL
ADDRESS RANGE

aKw4 / APRs ‘ PROGRAM APRs
g AN \ A

"1/ A MRy
RSTS/E \;

- MONITOR 2/ _ %‘\

16KW ~ /4 /
5
20KkW Al L L /__ °c>°63°5'
X 1 TT
= Lol
o o 0o Pod
(] oo Al
0 00DO0 000
28KW TN
I/0 PAGE
32KW [HITNTENNEE
(NON-EXISTENT
MEMORY)
124KW ALRRAARAR
1710 PA
128KW llqllllclilEl

2-2: Memory Mapping with the APRs

2-5

USER'S VIRTUAL
ADDRESS RANGE

LOW SEGMENT)

AT

 AKW

- BKW

(INACCESSIBLE
MEMORY --
NOT MAPPED TO
ACTUAL MEMORY)

- 12KW

- 16KW

20KW

24KW

28KW

I2KW

General RSTS/E Environment

Oon the PDP 11,44, 45, 50, 55, 70, 73, and 84, the RSTS/E monitor can
take advantage of a hardware function, called 1&D space. This
function lets a program separate its instructions and data into their
own virtual address space. On these processors, there are actually
two sets of eight APRs for each mode. RSTS/E uses one set to map
instructions, and the other set to map data. So, instead of 32K
maximum job size, there can be 32K of I-space and 32K of D-space.

The monitor may use this type of mapping, depending on the number of
small buffers the system manager selects with the INIT option. (The
RSTS/E System Installation and Update Guide describes INIT.) For
example, if the number of requested small buffers is large enough, the
monitor may use D-space APR 1 to map small buffers and I-space APR 1
to map common routines.

Figure 2-3 shows a task executing on an I&D-space system without using
separate I&D space. Note how the I-space APRs and the D-space APRSs
point to the same physical memory.

PHYSICAL
MEMORY
VIRTUAL
ADDRESS
SPACE
Library

Figure 2-3: Conventional Task Linked to a Library in an I&D-Space
System

2-6

General RSTS/E Environment

Figure 2-4 shows a task using separate I&D Space. Note how the tasks
I Space APRs and D Space APRs point to different physical memory.
User programs can also take advantage of I&D space to increase their
available virtual address space.

32KW PHYSICAL
MEMORY
24KW I
|
I
12KW +----mmmed . N e mmmm e drereeeeee—ee———- - = = = = = - +
|
8K |
LIBRARY |
|
A e W I Y @2 S RRREEEE +
|
|
|
|
32KW +--=--==codo xS SHe-eeeaa- +
l
|
|
24KW +-------- |
20K |
TASK |
|
|
8KW +-------- + |
|
| I-spacel |O | b m - - +
| | |
OKW +---=----- + -

Figure 2-4: 1I&D-Space Task Mapping in an I&D-Space System

Job Space: High Segment and Low Segment

The RSTS/E monitor is designed to handle work requested by a user
through an interface: the run-time system. For example, the
BASIC-PLUS, DCL, RSX, and RTll run-time systems (available as part of
a RSTS/E system) each provide their own keyboard monitor to accept and
process user commands.

General RSTS/E Environment

Some of these run-time systems also contain code to handle their own
sets of directives, accepting and expanding user program calls to the
monitor. For example, the RT1ll run-time system provides I/0 calls to
the monitor using the monitor requests native to RT-11, which the
run-time system translates to the equivalent requests known to RSTS/E,
which are handled directly by the monitor.

Thus, the run-time system communicates with both the user program and
the monitor. Execution control passes back and forth between these
three independent elements; data is passed between them using
established ranges of virtual addresses. The monitor must be able to
access both the run-time system and the user job image at any given
time. The monitor does this by setting up the run-time system as part
of the 32K words accessible through the eight user APRs.

The monitor assigns an area for the run-time system in the high
portion of virtual address space, called the high segment. The user
job image (that is, the utility program, compiler, assembler, or
executable user program that is currently being executed for the job)
is in the low portion of virtual address space, called the low
segment.

Note

If you are using the monitor’s RSX emulation, there
is no high segment at all.

As part of its housekeeping for each job, the monitor keeps track of:
0 Where the currently appropriate run-time system is
o Where the user job image is

o What the values were in the program counter register (PC),
program status word (PSW), and other job-context information
at the end of the last time slice

Before the next time slice for the job, the monitor loads the APRs
with the correct values for the job and loads the PC, PSW, and so
forth, so execution continues where it left off.

In any case, the high segment or run-time system takes up some
multiple of 4K words of virtual address space, due to the APR mapping
(see the previous section). For example, the BASIC-PLUS run-time
system, can take from 13 to 16K words of physical memory, depending on
options selected when the system is installed. Even though the
physical memory required may be only 13K words, it still requires four
APRs to map this range, leaving four APRs (or a maximum of 16K words)
for a user program.

The monitor uses certain

General RSTS/E Environment

areas within the high segment and the low

segment to get information from the job (defining what work the

monitor is to do for it)

Figure 2-5 shows the job
first 512. bytes to pass
system, and the user job
directives. The monitor
memory to determine, for

job is initially entered.

and to pass information back to the job.

area in virtual addresses. RSTS/E uses the

information between the monitor, the run-time

image for certain types of monitor

uses the pseudovector region in high virtual

example, where control is to be passed when a
The run-time system loads this area with

entry points and values to define itself to the monitor.

L I LI +
: :
| Used by monitor, run-time |
| system, and user job image | User
| to exchange information | Job Image
VA R i I I I + (Low
| | Segment)
I |
| |
| |
| !
B e LI I I +
[//77/77777777777//777////777/77777777 | ﬁ. B"
(/7777777777777 77777777777777/77777777] t3°
\////////////(Unused Space)////////// 7] ngs E
(/7777777777777 7/ /77 /77 /
/7777777777777 7777777777777/ 77
L I +
| |
I I
| | Run-Time
| | System
| | (High
I I I I I I I I + Segment)
| Pseudovector region used by the I
| monitor and the run-time system |
| |
Ry A i By By B S A I I +

Figure 2-5: Job Area in Virtual Memory

2-9

General RSTS/E Environment

The following subsections give more detail on these areas:

o If you are interested in using the general monitor directives
Chapter 3 describes, you should read "Low-Segment Details:
First 512. Bytes of the Low Segment."

o If you want to code your own run-time system or modify one of
the existing ones and need to know about the pseudovector
region, you should read "High-Segment Details:
Pseudovectors."

o If you are using only the directives Chapters 5 or 7
describe, the RSX and RT1ll run-time system directives set up
the first 512. bytes of memory for you.

Low-Segment Details: First 512. Bytes of the Low Segment

The monitor attaches special significance to the first 512. bytes of
virtual address space in the low segment. The RSX Task Builder and
RT11 Linker automatically allocate this space. These programs always
assign relocatable addresses beginning at location 1000 unless you
request otherwise. 1If you want to use the general monitor directives
Chapter 3 describes, your program must fill parts of this area with
information for the monitor; the monitor passes information back in
this area.

Rather than use octal addresses, you can use the COMMON.MAC prefix
file, which Chapter 3 describes ("Prefix File COMMON.MAC") to assign
mnemonic names to commonly used addresses and offsets. COMMON.MAC
does not allocate space, but rather assigns mnemonic names to areas
within the first 512. bytes of virtual address space. Use the
mnemonics assigned with COMMON.MAC to make the code more readable and
easier to maintain.

Figure 2-6 shows the general regions in this area. Note that a
run-time system may use some of the areas differently when it assumes
control. For example, the RSX emulator uses the memory labeled
default SP stack area as a table of logical units. The Task Builder
automatically generates a user stack after the first 512. bytes of
virtual address space. "First 512, Bytes of Low Segment for RSX" in
Chapter 4 briefly describes how RSX uses the first 512. bytes.

If you use the general RSTS/E directives, you should reference only
the areas that are shown with mnemonics provided by COMMON.MAC. The
mnemonics to the right in Figure 2-6 are assigned through COMMON.MAC.
A general description of the mnemonics follows Figure 2-6. The
general monitor calls in Chapter 3 describe specific formats for the
areas the calls use.

General RSTS/E Environment

| controlled solely by job -- user job [
| image or run-time system |

| used by monitor for job |
| context information to make job swappable |
I I I I + 110
| used by monitor for |
| hardware floating-point context information |
| to make job swappable |
I I I I + 170

d---cecmecssscecmemcaccce-cececeasc-mea-eaa-nn- + 400 KEY USRSP
| keyword |

I |

B T T T T T T IS + 402 FIRQB

| file request block |

| l
mmmemeseeeaecstssen e u e canaceaoao oo + 442 XRB

| transfer request block |
et + 460 CORCMN

R e + 660

| controlled solely by job |

R e + 734 USRPPN
| user-assignable project-programmer number |

R R L + 736 USRPRT
| user-assignable default protection code |

R e + 740 USRLOG
| user logical device name table |

R I + 776

Figure 2-6: First 512. Bytes of Low Segment

KEY (Keyword)

The keyword defines the job’s status in the time-sharing environment;
for example, the job’s privilege. Bits in the keyword can be set and
cleared by the monitor or by the job (either the run-time system or
the user job image). The job can manipulate some bits in the keyword
with the .SET and .CLEAR directives.

The keyword is "refreshed" by the monitor at certain points; for
example, when a run-time system is entered at P.RUN, where the intent
is to load and execute a program file in the user job image (.RUN
directive). For a keyword refresh, the monitor clears bit 15 and bits
7-0 and sets the remaining bits to indicate the job’s current status.

2-11

General RSTS/E Environment

Only seven bits (8-14) are significant to the monitor. You can use
the other bits in whatever manner you want. ~

JFSPRI-----eeee-n- +
JFFPP--~--=-=-c=--. + |
JFPRIV--=c=-c-c-- + | |
JFSYS---=----- + | | |
JFNOPR--- - - + | | | |
JFBIG----+ | [| [|
JFLOCK-+ | | | | | |
| 1 | | | | |

15 14 13 12 11 10 9 8 7 0

4-teccmmecccsrasasscccacneanaana e maanasaa e +

[status bits | |

o eeeeeeesesiiescseaaaaan #---ccccsenesesscomaascaneannann +

The following descriptions apply when the keyword is set to one:

JFLOCK The job does not want to be swapped. You can change this
bit with .SET and .CLEAR. When this bit is set, the only
normal condition that causes the job to be swapped is when
the job asks for a memory size expansion (see .CORE
directive) and there is not enough room to do the expansion
where the job now is in memory.

JFBIG The job can exceed its private memory maximum (see .CORE
directive). This bit is set if the job currently has EXQTA
privilege, usually because the job is running a privileged
program. JFBIG is an informational bit that the system
updates whenever the EXQTA privilege is turned on or off.

JFNOPR The job is not yet logged in. JFNOPR is an informational
bit that the monitor can alter when the job is logged in.

JFSYS The job is currently running with temporary privileges. The
monitor sets JFSYS when a job with insufficient privileges
needs to run a privileged program. Once the program is run,
the job can regain temporary privilege by setting this bit
and can drop privilege temporarily by clearing it.

Note

When a job exits from a privileged utility that can
be executed by users with insufficient privileges,
the monitor clears this bit so another user cannot
use the temporary privilege set up for the job.

General RSTS/E Environment

JFPRIV This bit is only for compatibilty with RSTS/E releases prior
to v9.0. JFPRIV is set if the current job has all of the
following privileges: HWCFG, SWCFG, SYSIO, RDMEM, and
WWRITE.

Note
Any new software should not reference JFPRIV.

JFFPP The contents of the hardware floating-point unit (if any)
should be part of the context of this job. That is,
information in the floating-point registers should be saved
and restored along with the rest of the user job image
during swapping. Any program that uses the hardware
floating-point unit should set this bit. It can be changed
with the .SET and .CLEAR directives.

JFSPRI The job is running with a special run priority: 1/2 level
higher than normal. This bit can be changed with the .SET
and .CLEAR directives. The monitor clears JFSPRI when the
program exits.

USRSP (User Space)

COMMON.MAC assigns the value 400 to USRSP. The monitor automatically
loads this value into the stack pointer register (SP) when a job is
created. SP is also reset to this value under certain conditions,
effectively establishing a default user stack area for the job
beginning at word 376. The user stack area ends at location 170. Any
attempt to push the stack past location 170 results in a stack
overflow error that is handled by the run-time system (see the
description of P.BAD later in this chapter).

You can change SP if you want. However, any attempt to reset SP to
any location between 0 and 167 causes a stack overflow error. 1In
addition, the monitor resets SP to 400 when a run-time system is
entered with a .RUN, .CCL, or .RTS directive, and when certain
catastrophic errors occur, such as a fatal disk error while the user
job image was being swapped.

Note

You need to be aware that the monitor resets SP at
these times only if you are coding or modifying a
run-time system. The system does not return control
to a user program under these conditions, because the
program cannot recover.

2-13

General RSTS/E Environment

FIRQB (File Request Block)

The FIRQB is the main communication area between the monitor and the
job for monitor directives that involve file or device operations such
as open, close, and so forth. Either the run-time system or the user
job image can use this area:

o If you use the general monitor directives that Chapter 3
describes, your MACRO program must store values in the FIRQB
before issuing some of the directives.

o If you choose to use the directives in the RSX emulator or
the RT1ll run-time system, the RSX or RT1ll emulation code
intercepts the request, sets up the FIRQB and other relevant
areas, then calls the monitor to handle the request.

Figure 2-7 shows the general format of the FIRQB, with all mnemonics
that COMMON.MAC assigns. In addition, the size of the FIRQB (32.
bytes) has the mnemonic FQBSIZ.

General RSTS/E Environment

;Mne- Octal Octal Mne-
monic Offset Offset monic
R R I +
Y [////777/77777/7/7777777] returned status | 0 FIRQB

R R +
FQFUN 3 | CALFIP/.UUO subfnc. | job number * 2 | 2 FQJOB
R I I R +
FQSIZM 5 | MSB of file size | channel number * 2 | 4 FQFIL/
e LR T + FQERNO
7 | project number | programmer number | 6 FQPPN
R L I R I +
11 | file name in RAD50 format | 10 FQONAM1
| (2 words) |
13 | | 12
I R +
15 | file type in RAD50 format (1 word) | 14 FQEXT
I I +
17 | LSB of file size | 16 FQSIZ
R I +
21 | buffer length | 20 FQBUFL/
R I e + FQONAM2
23 | mode | 22 FQMODE
I R I +
25 | status flags | 24 FQFLAG
L I +
FQPROT 27 | protection code | =0, prot. code real | 26 FQPFLG
L I +
31 | device name (2 ASCII characters) | 30 FQDEV
P T +
33 | =0,unit number real | device unit number | 32 FQDEVN
R R R I +
35 | cluster size | 34 FQCLUS
R R R +
37 | number of entries in directory lookup | 36 FQNENT
R I +

Figure 2-7: General FIRQB Format

XRB (Transfer Request Block)

The XRB is the main communication area between the monitor and the
user for monitor directives handling file or device I/0. It is also
the area in which the monitor stores information requested by
straightforward information-request calls. As with the FIRQB, the
general monitor directives (see Chapter 3) require that you store and
retrieve information directly to and from the XRB. The RSX and RT1l1
emulators handle additional directives, which they translate to calls
using the XRB (see Chapters 5 and 7).

General RSTS/E Environment

Figure 2-8 shows the general format of the XRB, with all mnemonics
that COMMON.MAC assigns. 1In addition, the size of the XRB (l4. bytes)
has the mnemonic XRBSIZ.

Mne- Octal Octal Mne-
monic Offset Offset monic
R I I D I I +
1 | buffer size in bytes | 0 XRLEN

e R +
3 | number of bytes transferred | 2 XRBC
I I I +
5 | buffer address | 4 XRLOC
R R +
XRBLKM 7 | MSB of block number | channel number * 2 | 6 XRCI
e R +
11 | LSB of block number | 10 XRBLK
R i +
13 | wait time for terminals | 12 XRTIME
I I I +
15 | device modifier | 14 XRMOD
R I I I +

Figure 2-8: General XRB Format

A buffer, as defined by XRLOC for its start and (XRLOC+XRLEN)-1 for
its last byte, can be either an input buffer or an output buffer.
RSTS/E uses input buffers to read data into user memory and output
buffers to write data from user memory. These buffers must lie wholly
within either the job image (low segment), or the run-time system
(high segment), or in a window mapped to some library.

For input buffers, the value passed in XRB+XRBC must be zero. For

output buffers, the value passed in XRB+XRBC is the number of bytes to
be sent and cannot be zero if the value in XRB+XRLEN is nonzero.

2-16

General RSTS/E Environment

In addition, input buffers are subject to the following rules:

o If the buffer is in the low segment, the address defined by
the contents of XRB+XRLOC must be greater than 170 to avoid
destroying the job-context data used in swapping the job.

o If the buffer is in the high segment, it must not fall within
the pseudovector region. That is, it must not fall above the
location P.OFF. 1In addition, the run-time system must
currently be mapped read/write because the monitor is writing
data to the buffer for the receive (see PF.RW bit description
in P.FLAG word).

o If the buffer is in a library window, the library must be
installed as read/write and must be attached and mapped
read/write.

CORCMN (Core Common Area)

The CORCMN is used as a common data exchange area when it is necessary
to exchange lengthy data (such as strings) between the monitor and the
job or between programs running under the same job number.

For example, the monitor uses CORCMN to pass to the job a string that
is the full name of a command that has been recognized as a valid
Concise Command Language (CCL) command. The RSTS/E CCL lets users
type one-line commands to call utilities that might otherwise require
several input lines from the terminal. For example:

CCL Form
$ PIP FILEl.=FILE2.

$

Regular Form

$ RUN SPIP
*FILEl.=FILE2.
*CTRL,/Z

$

To centralize decoding, the monitor analyzes CCL commands by comparing
them to those defined by the system manager (usually during system
start-up). With the .CCL directive, a job can ask the monitor to
analyze a string to see if it is an acceptable command. 1If it is, the
monitor passes control to the run-time system associated with that CCL
command and passes the command and any arguments to the job in the
CORCMN area.

2-17

General RSTS/E Environment

The general format of the CORCMN area is:

I I R I I +

| byte 1 of string | number of bytes | 460 CORCMN
| | in string

I R +

| byte 3 of string | byte 2 of string | 462

R I +

USRPPN, USRPRT, USRLOG

This area is set up using the .ULOG directive to store the assigned
project-programmer number (USRPPN), default protection code (USRPRT),
and assigned logical device names (USRLOG), which the monitor then
uses when an .FSS directive is executed. The .FSS directive causes
the monitor to convert a file name string to the standard RSTS/E file
specification format; that is, to the FIRQB format.

The .ULOG and .FSS directives also let you define and use some

nonstandard area to contain these values (see Chapter 3). However,
the .ULOG directive sets up 18. words in the same basic format; the
.FSS directive expects these values in the same relative locations.

Note

All manipulation of this data must be done using the
.ULOG directive. Direct program access to this data
will not be compatible with possible future
enhancements and will not be supported.

High-Segment Details: Pseudovectors

The monitor and the run-time system use the pseudovector region to
communicate with each other. Figure 2-9 shows the general layout of
this area. As with the low 512. bytes of virtual address space, the
file COMMON.MAC assigns mnemonic names to locations in this area.
These names are shown to the right in Figure 2-9. The following text
describes each of these areas in detail. If you want to modify or
code your own run-time system, the format and meaning of these areas
is important. Otherwise, you might want to examine them to see how
the run-time system and the monitor communicate.

General RSTS/E Environment

B T I I P + ‘

| flags describing the run-time system | 177732 P.FLAG/
R I + P.OFF
| normal executable file type | 177734 P.DEXT
R I I I I I +

| (reserved) | 177736
I +

| minimum size, in K words, of user job image | 177740 P.MSIZ
I i I I +

| exception address for FIS hardware option | 177742 P.FIS
I I +

| (reserved) | 177744

R i e I I A +

| (reserved) | 177746
i L +

l entry point for new user | 177750 P.NEW
I I I I I I +

| entry point for new user with program to run | 177752 P.RUN
IR I I T I +

| exception address for various "bad" errors | 177754 P.BAD
R I i I +

|exception address for BPT instruction and T-bit | 177756 P.BPT
T +

| exception address for IOT instruction | 177760 P.IOT
I e I I I +

|exception address for nonmonitor EMT instruction| 177762 P.EMT
T +

| exception address for all TRAP instructions | 177764 P.TRAP
T T T +

| exception address for FPP or FPU | 177766 P.FPP
+ .. +

| exception address when user types one CTRL/C | 177770 P.CC

T T T T I I L I I +

| exceptlon address when user types two CTRL/Cs | 177772 P.2CC
B T T T T T e e +

| maximum size (in K words) of user job image | 177774 P.SIZE
T T T T T +

| (reserved) | 177776

B T T LTI T T T R T L I A IR +

Figure 2-9: Format of Pseudovector Region of High Segment

In general, the pseudovector region contains:
o Values and flags that define the capabilities of the run-time
system for the monitor. For example, one flag indicates
whether the run-time system has a keyboard monitor.

o Addresses pointing to locations in the run-time system where
the monitor is to pass control when certain conditions occur.

2-19

General RSTS/E Environment

These addresses fall into three categories:

- Addresses for Synchronous Exceptions. Control passes to
these locations when the job executes an instruction that
causes a trap to the monitor. The monitor passes control
to the run-time system along with the contents of the
program counter (PC) and program status word (PSW). The
term "synchronous" is used in the sense that the trap
occurs at the same time as (and is a direct result of)
some instruction executed by the job. These traps may or
may not indicate an error. For example (except for the
PDP-11/23 PLUS or 11/24, if the job executes an
instruction with an odd address, control passes to one of
these trap addresses. If the job simply executes a BPT
instruction, control passes to another of these
addresses.

- Addresses for Asynchronous Exceptions. Control passes to
these locations as a result of some event, which can be
either of the following:

o External to the execution of the job (for example,
the user types a CTRL/C at the terminal)

o Internal but asynchronous process (such as an error
in the hardware floating-point processor, whose
execution overlaps that of the PDP-11 CPU)

When such conditions occur, control passes to the
monitor, which passes control to the run-time system,
along with the contents of the PC and PSW. 1If a
floating-point trap occurred, the monitor also passes
along the floating exception code (FEC) and floating
exception address (FEA). For the asynchronous traps, the
PC and PSW do not refer to the instruction that caused
the trap, but to the instruction that was executing in
the central processor when the trap occurred.

- Entry Point Addresses. The monitor passes control to the
run-time system at entry-point addresses when some major
transition point is reached for the job. For example,
when you type a RUN or CCL command at the terminal, the
monitor passes control to an entry point in the
appropriate run-time system, to load and execute the
requested program.

General RSTS/E Environment

Note

The term pseudovector arises from the relationship of
some of these (one-word) trap addresses in the
pseudovector region to the (two-word) vector
addresses in kernel-mode memory set up to handle
error traps and interrupts in the PDP-11. When the
RSTS/E monitor receives control as a result of a trap
to certain of these vector addresses, it passes
control on to the run-time system at addresses
specified in the pseudovector region.

Normally, you code the contents of the pseudovector region as part of
the run-time system file. However, the INSTALL/RUNTIME_SYSTEM
command, used to define a file as an auxiliary run-time system, has
qualifiers that cause the monitor to override certain portions of the
- pseudovector region in the file and use values assigned in the INSTALL
command. For example, one bit in one word of the pseudovector region
states whether the run-time system is read/write or read-only when it
is loaded in memory. Normally, this would be read-only, but for
debugging a run-time system with the Octal Debugging Tool (ODT), which
allows you to change memory, the run-time system must be read/write.
The /NOREAD_ONLY qualifier in the INSTALL command lets you tell the
monitor that until further notice, this run-time system is read/write,
regardless of what is specified in the pseudovectors. The RSTS/E
System Manager’s Guide describes the INSTALL/RUNTIME_SYSTEM command.

Run-Time System Capability and Default Definitions

The following mnemonics refer to values and flags that define run-time
system capabilities for the monitor.

P.OFF

Use the P.OFF mnemonic to define the first word of the pseudovector
region. It is currently set equivalent to 177732, the same as P.FLAG.

2-21

General RSTS/E Environment

P.FLAG

The monitor expects the P.FLAG word to be set with flags that define
the capabilities of the run-time system:

PF.KBM------------- +
PF.lUS------c---- + |
PF.RW---------- + | |
PF.NER------- + | | |
PF.REM----- + | | | |
PF.CSZ---+ | | | | |
S TS T T A
15 14 13 12 11 10 9 8 7 0
R L e I +
| flags | (prefix EMT code if PF.EMT=1) |
R e D I I +

PF.EMT

This bit is set to indicate that the run-time system wants to handle a
call that would normally be handled by the monitor. To show how the
bit works, it is necessary to first describe what normally happens
when a monitor directive is translated and executed.

All of the monitor directives that this manual describes are
translated to emulator trap (EMT) instructions. The direct monitor
calls are one-for-one translations; that is, one call is translated to
one EMT (see Chapter 3). The code to process the call is in the
monitor itself.

The RSX and RT11l emulator calls may be translated to more than one
instruction, but the code always contains an EMT. In addition, the
direct monitor calls are translated to an EMT with a low byte that is
an even number within the range 0 to 114 (octal). When such an
instruction is executed, control transfers directly to the monitor,
the call is processed, and control returns to the instruction
following the EMT.

An EMT instruction with an odd value in the range 1 to 113 in the low
byte, or any value in the range 115 to 377, also transfer control to
the monitor. The monitor examines the low byte, discovers that the
EMT is not one of its own, and transfers control to the run-time
system at the entry point defined by location P.EMT in the
pseudovector region.

Now the PF.EMT bit is set to one to indicate that the run-time system
wants to process EMTs that are normally processed by the monitor, that
is, with an even low byte in the range 0 to 114. When PF.EMT is set
to one, all EMTs cause control to pass to the run-time system at the
P.EMT entry point, except those immediately preceded by a special

2-22

General RSTS/E Environment

prefix EMT -- an EMT whose low byte is equal to the low byte of

P.FLAG.

Specifically, when PF.EMT equals one, the monitor handles all EMT
instructions as follows:

(o]

Any EMT whose low byte is not equal to the low byte of P.FLAG
causes control to pass throcugh the monitor (unprocessed
except for examination), and back to the run-time system at
the address contained in the P.EMT word.

An EMT whose low byte is equal to the low byte of P.FLAG
causes control to pass to the monitor, which looks at the
word following the EMT with the special code; that is, at the
word in location (PC)+2. Action is taken according to the

value of this word:

TN NUS ,

(PCY+2 = NO | Pass control to |
\\\\\~ It (P.EMT) |

an EMT instruction?
/////ri L +

YES
L +
\\\\\» NO | Pass control to
Low byte of (PC)+2 | (P.EMT)
even, 0 - 1142 R +

Execute second EMT |
@(PC)+2 as normal, |
return control to (PC)+4|

In other words, the run-time system does special processing for all

EMTs,

except those preceded by a special prefix EMT. The RT11l

run-time system uses this feature so it can emulate the RT-11
operating system’s directives properly.

2-23

General RSTS/E Environment

PF.CSZ

For a user job image executed as a result of a .RUN directive, the
monitor preallocates memory based on information provided by the
run-time system under which the image is executing. When this bit is
set, the monitor preallocates memory based on the size of the file
referenced in the .RUN directive:

space (in K words) = (filesize + 3)/4

Filesize is the number of 512-byte blocks required for the file on
disk. (The division by four is performed because there are four
512-byte blocks in 1K word. The addition of three rounds any fraction
of the integer divide to the next whole integer.)

When PF.CSZ is clear, the monitor preallocates memory for the image
according to the value specified in the P.MSIZ word of the
. pseudovector region.

PF.REM

When the PF.REM bit is set, the monitor immediately removes the
run-time system from memory when no job is using it. When this bit is
clear, the monitor leaves the run-time system in memory until the
space is actually needed by something else.

PF.NER

When this bit is set, the monitor does not log errors occurring within
the run-time system to the system error log.

PF.RW

When this bit is set, the monitor maps the run-time system as
read/write. (See the read/write feature of the Page Descriptor
Register of an APR, in the section, "How RSTS/E Allocates Memory:
Physical and virtual Addressing.") This is a useful feature when
debugging a run-time system. In normal operation, this bit should be
clear, indicating that the run-time system is to be mapped read-only.

PF.lUS

When the PF.1US bit is set, the monitor allows only one job to use the
run-time system; that is, it is not handled as shareable code.

PF .KBM

When this bit is set, the monitor expects that the run-time system can
function as a keyboard monitor. Note that the run-time system can

function as a job keyboard monitor only when this bit is set. See the
.RTS directive in Chapter 3 for a discussion of job keyboard monitors.

2-24

General RSTS/E Environment

P.FLAG COMBINATIONS

The PF.1lUS, PF.RW, PF.NER, and PF.REM bits are useful flags when you
are debugging a run-time system:

o0 PF.1US limits access to the run-time system to one user.

o PF.RW is necessary if you want to use the ODT routine to
change memory.

0 PF.NER keeps the run-time system from logging useless errors
while debugging.

0o PF.REM ensures that the run-time system will be reloaded each
time it is used. (Otherwise, an o0ld copy might still remain
in memory when you really wanted to debug a new copy.)

P.DEXT

You can set this word to three Radix-50 characters that the monitor
uses as a default runnable file type. If a .RUN directive executes
with no file type given, the monitor scans its list of installed
run-time systems in the order they were installed (see Chapter 3).

Note

The order of installation shows up in the display
that the SHOW RUNTIME_SYSTEM command produces.

For the first run-time system in the list (the primary run-time
system), the monitor looks for a file with the file name given in the
.RUN and a type that is the default type for the run-time system.

(For example, the BASIC-PLUS run-time system fills this word with
.BAC; RT1ll, with .SAV; and RSX, with .TSK. If the run-time system has
no runnable file type, this word should be set to zero.) If such a
file is found, it is set up for the .RUN. If no such file is found,
the monitor searches for a file with the given file name and the next
run-time system’s default runnable file type, and so forth. Note that
the order in which the file types are chosen does not depend in any
way on the run-time system executing the .RUN.

P.MSIZ

The P.MSIZ word gives the minimum allowable size for a user job image,
in K words, for this run-time system. The monitor uses this value as
a check when the job issues a .CORE directive to change the size of
the user job image in memory (see Chapter 3). The value of P.MSIZ
must be an integer between 1 and the value in P.SIZE, inclusive.

General RSTS/E Environment

P.SIZE

The P.SIZE word contains the maximum size, in K words, that a user job
image can be for this run-time system. The monitor uses this value as
a check when a job issues a .CORE directive to change the size of the
user job image in memory. P.SIZE must be an integer between 1. and
32., inclusive. The effective upper limit is 32. minus the size of
the run-time system, rounded up to a multiple of four. (Remember that
the APR mapping requires that space for the run-time system be
allocated in units of 4K words.) Thus, a run-time system that required
5K words could set an upper limit here of 24. (32.-8.). However, it
could set P.SIZE to some smaller value.

Synchronous Exception Handler Addresses

These mnemonics refer to locations in the run-time system where
control is to pass for synchronous exceptions.

P.FIS

The monitor interprets the P.FIS word as the trap address for the
hardware floating-point instruction set available on the PDP-11/35 and
40. Whenever an instruction from this set is executed that causes a
trap to the kernel mode vector at 244, the monitor passes control to
the run-time system at the location specified by the contents of the
P.FIS word.

This exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers at the time of the exception. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

Whatever action the run-time system wants to take for this exception
should be done at the location specified by the contents of P.FIS. A
return from interrupt (RTI) instruction returns control to the point
where it was when the exception occurred.

P.BAD - Synchronous Exceptions
The monitor passes control to the run-time system at the location
specified by the contents of P.BAD when any of the following

synchronous exceptions occur:

0 Memory management unit exception (trapped to kernel mode
vector at 250).

o The job tries to execute a reserved instruction (trapped to
kernel mode vector at 10).

2-26

General RSTS/E Environment

o The job issues an instruction with an odd address (trapped to
kernel mode vector at 4).

This exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers at the time of the exception. For example:

SP-—=> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The monitor returns an error code in the first byte of the FIRQB so
the run-time system can determine which error occurred. The error
codes are:

B.4 0dd address
B.10 Reserved instruction
B.250 Memory management unit exception

The run-time system is responsible for processing these errors in
whatever manner it sees fit. 1In general, most run-time systems
provided with RSTS/E systems report the error, using the UU.ERR
subfunction of the .UUO directive and perhaps print the PC value from
the top of the stack. You can use an RTI instruction to return
control to the point where it left off when the exception occurred.
Note that some asynchronous exceptions also use this address.

P.BPT

The P.BPT word contains the exception address for a BPT instruction
and for T-bit exceptions. When the job issues a BPT instruction or a
T-bit exception occurs (to the kernel mode vector at 14), the monitor
passes control to the run-time system for the job at the address
specified by the contents of this word.

This exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system processes these exceptions in any fashion it sees
fit at the location specified by the contents of P.BPT. The RTI or
RTT instructions can be used to return control to the user’s program
at the point where it was when the exception occurred.

P.IOT

The P.IOT word contains the exception address for an IOT instruction.
Whenever the job issues an IOT instruction (trapped to kernel mode
vector at 20), the monitor passes control on to the run-time system at
the address specified by the contents of this word.

2-27

General RSTS/E Environment

This exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers at the time of the exception. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the exception in any fashion it sees
fit. You can use an RTI instruction to return control to the point
where it was when the exception occurred.

P.EMT

This word contains the location to which control is transferred for
nonmonitor EMT instructions; that is, for EMT instructions whose low
byte is odd within the range 1 to 113 or any value in the range 115 to
377. 1If the PF.EMT bit is set in the P.FLAG word in the pseudovector
region, control is transferred here for all EMT instructions except
those preceded by the special prefix EMT, as described previously.

The exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers at the time of the exception. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system is responsible for processing the EMT as it sees
fit. You can use the RTI instruction to return control to the point
where it was when the exception occurred.

Note
All EMT instructions are reserved for use by DIGITAL.
P.TRAP

This is the location to which control is transferred for all TRAP
instructions (operation codes 104400 through 104777, inclusive).
Whenever the job executes such an instruction (trapped to kernel mode
vector 34), the monitor passes control to the run-time system at the
location specified by the contents of this word.

This exception pushes two words onto the user’s SP stack: the contents
of the PC and PS registers at the time of the exception. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system is responsible for processing the exception as it
sees fit. You can use an RTI instruction to return control to the

2-28

General RSTS/E Environment

point where it was when the exception occurred.

Asynchronous Exception Handler Addresses

These mnemonics refer to locations within the run-time system where
control is to pass for asynchronous exceptions.

P.FPP

This location is the exception address for the hardware floating-point
processor (FPP) for the PDP-11,/34A, 44, 45, 50, 55, 60, 70, 73, and 84
asynchronous unit or the KEFll-AA or FPF-11 for the PDP-11/23-PLUS and
24. Whenever the unit takes an exception trap (to kernel mode vector
at 244), the monitor passes control to the run-time system at the
location specified by the contents of this word. The Floating-point
Exception Code (FEC) and Floating-point Error Address (FEA) of this
unit are not otherwise accessible.

Therefore, the monitor pushes these two values onto the user’s SP
stack, in addition to the contents of the PC and PS registers at the
time of the interrupt. For example:

SP—» FEC
FEA
(PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the exception as appropriate, clean
the stack (remove the FEC and FEA), and issue an RTI instruction to
return control to the user’s program at the point where it was when
the exception occurred.

P.CC

This is the location to which control passes when a CTRL/C is entered
at any terminal on any channel that this job accepts. The monitor
stops further programmed output for the job (CTRL/0O effect) and
cancels any pending character output.

The user’s SP stack is modified at entry. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the CTRL/C as you want. All run-time
systems supplied with a RSTS/E system abort the job, unless the user
job image has indicated that it wants to handle CTRL/C traps itself
(see the SCCASS and the .SETCC directives).

2-29

General RSTS/E Environment

P.2CC

This is the exception address taken when the user enters a second
CTRL/C before the run-time system has been able to respond to the
first CTRL/C. (That is, the monitor has received two CTRL/Cs before
it has been able to pass control to the run-time system at the
location specified by the contents of P.CC in the time-sharing
environment.)

As with one CTRL/C, when the P.2CC point is entered, further
programmed output is canceled (CTRL/O effect), and any pending
character output is canceled. Two words are pushed onto the user’s SP
stack. For example:

SP—> (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the condition as you want (BASIC-PLUS
exits immediately, returning control to the P.NEW entry point in the
default keyboard monitor). An RTI instruction would return control to
the point where the program left off, but this annoys the user who
entered the two CTRL/Cs expecting to get out.

P.BAD - Asynchronous Exceptions

The monitor passes control to the location specified by P.BAD whenever
any of the following asynchronous errors occur:

0 The user’s SP stack overflows.

o A fatal disk error occurs when the job is swapped. The
original contents of the user job image are lost.

0 A memory parity fault occurs in the user job image. The
original contents of the user job image are lost.

o A fatal disk error occurs when a run-time system or resident
library is loaded. Control passes to P.BAD in the default
keyboard monitor when the load error occurs for a run-time
system.

None of these errors are recoverable. An error is returned in the
first byte of the FIRQB to indicate which error occurred, KEY is
refreshed, and the contents of the general registers (RO through R5)
are random. SP is reset to the value USRSP.

In general, most run-time systems provided with RSTS/E systems report
the error, using the UU.ERR subfunction of the .UUO directive, and
also the ??Program lost-sorry message (UU.ERR call with FUCORE value).
Then, the run-time systems exit to the job keyboard monitor, using
.RTS. The ??Program lost-sorry message prints to warn you that user
logical values have been destroyed.

2-30

General RSTS/E Environment

!/ The error codes that RSTS/E returns in the first byte of the FIRQB
are:

B.STAK The user’s SP stack overflowed

B.SWAP Fatal disk error on swap

B.PRTY Memory parity fault

NRRTS Fatal disk error on run-time system or resident library load

Control is also transferred to P.BAD for some synchronous exceptions.

Entry Points

These mnemonics refer to locations within the run-time system where
,control is to pass at certain transition points for the job.

P.NEW

The monitor passes control to this entry point under the assumption
that new user or next request processing is to be done. Compare this
to the P.RUN entry point, where a specific program is to be run under
this run-time system. P.NEW is commonly used as the entry point to
switch back to a job’s keyboard monitor. For example, the .EXIT
directive passes control to this entry point in the system default
keyboard monitor. You can use the .RTS directive to pass control to
P.NEW in a job’s keyboard monitor or a specifically named run-time
system. Note that a job can establish its own job keyboard monitor,
which is different from the default keyboard monitor (see Chapter 3).

By examining KEY and the XRB, the run-time system can determine how
and by whom it was entered at P.NEW, if this is significant.
(Run-time systems that do not have keyboard monitors would probably
want to exit (using .EXIT) to the default keyboard monitor at P.NEW.)

The three conditions under which control passes to the P.NEW entry
are:

o Brand new job on the system -- In this case, JFNOPR (bit 12
in KEY) is set (the job is not yet logged in), and the words
at location XRB+2 and XRB+4 are zero (the monitor requested
the entry, not a run-time system). This indicates that the
monitor has passed control to this location, having received
input over channel zero in a logged-out state (occurs only
for the primary run-time system).

The run-time system should run some predetermined program to
read (.READ directive) the input line that the monitor has
buffered. For example, DCL executes SY:[1,2]LOGIN.* (the
LOGIN utility) in this case.

General RSTS/E Environment

o Switch to this run-time system when job logged out -- In this
case, JFNOPR (bit 12 in KEY) is set, and the name of the
calling run-time system is given as two RAD50 words in
locations XRB+2 and XRB+4. The calling run-time system is
the run-time system under whose control the directive was
issued that caused the switch.

For this case, the run-time system should issue a logged-out
prompt message. For example, the BASIC-PLUS run-time system
prints "Bye" and returns control to the monitor. (Normally,
control does not pass to the run-time system in this case.
If LOGIN does not recognize the line that it read (as in
previous case), it kills itself, destroying the job and
returning control to the monitor.)

o Switch to this run-time system when job logged in -- In this
case, JFNOPR (bit 12 in KEY) will be clear. The name of the
calling run-time system is given as two words of RAD50 in
locations XRB+2 and XRB+4 or is zero if this job was just
created by UU.JOB (see Chapter 3).

For this situation, the run-time system should issue its
logged-in prompt and attempt to read the next command from
the terminal open on channel zero. BASIC-PLUS prints
"Ready", DCL prints "$", RSX prints ">»", and RTl1ll prints ".".
Then, all wait for further input.

Keyboard monitors should read channel zero (the job’s terminal) using
the keyboard monitor wait feature of .READ. The monitor will kill
jobs that execute this read in a logged-out state; otherwise, it is an
infinite-wait read.

The monitor usually does some housekeeping for the job at the time the
P.NEW entry point is entered. Specifically, the word at location
FIRQB+FQJOB is always set to two times the job number assigned by the
monitor when the job was created, and KEY is refreshed with current
information about the job. Third-part privilege checking is turned
off if it was on (see UU.3PP). Furthermore, SP is reset to 400 (see
USRSP description), and all the general registers (RO through R5)
contain zero. Note, however, that I/0 channels are left open.
Therefore, the run-time system should reset all I/O channels.

On exit from privileged programs, some additional clean-up is done:
0o Temporary privileges are dropped
0 User memory is cleared (upwards from location 1000)

o User job image size is reset to the value in P.MSIZ

General RSTS/E Environment

Note

This housekeeping is not done if a specific request
is made to pass control to a run-time system without
changing the job-context information (see the .RTS
directive).

The following information exists in the XRB at the time the P.NEW
entry point is entered:

XRB on P.NEW Entry

Mne- Octal Octal Mne-
monic Offset Offset monic
R I i I +
1 | 1 for switch without housekeeping; else 0 | 0
I |
I R A I I + 2
| name of the calling run-time system |
5 | (2 words in RAD50 format) | 4
R e +
7 | -1 if calling RTS = new RTS; else 0 | 6
| t
I I I I I + 10
| whatever values were here |
13 | when the switch was made | 12
| |
R I I R I I I + 14
XRB+0 This word contains a value of one, if control was

transferred by an .RTS directive using the switch without
changing the job-context option (see Chapter 3).

XRB+2 The two words beginning here contain the name of the calling
run-time system, in RAD50 format. 1If control was
transferred here directly by the monitor, these two words
contain zero.

XRB+6 This word contains minus one if the calling run-time system
is the same as the one that now has control. This word is
zero otherwise; that is, if the calling run-time system is
not the same as the called run-time system.

XRB+10 The contents of the next three words will be the same as
they were when the switch occurred. That is, data can be
passed from run-time system to run-time system here. If
control has been transferred to P.NEW directly by the
monitor, these three words are zero.

General RSTS/E Environment

P.RUN

The monitor passes control to the P.RUN entry point when an executable
program is to be run for a job under control of this run-time system.
This can occur as the result of either a .RUN or a .CHAIN directive
(in which a job has directly asked for a file to be run) or a .CCL
directive (in which a job has asked the monitor to check a string to
see if it is a valid CCL command, and if so, execute the appropriate
file).

The monitor opens the file to be run (a disk file) on channel 15.
However, the file has not been read; it is up to the run-time system
to load and execute the file. The run-time system should also reset
all I1/0 channels except 15, in case they are open.

The monitor performs the same housekeeping operations as with P.NEW
(reset the stack, and so on). In addition, if the program to be run
is a privileged program, and the caller does not have all of the
program’s privileges, the monitor sets the JFSYS bit in KEY, saves the
current privileges, and adds the program’s privileges to the current
privileges.

The monitor passes data to the run-time system in the XRB, FIRQB, and
KEY areas of the user job image (low segment).

XRB on P.RUN Entry

Mne- Octal Octal Mne-
monic Offset Offset monic
R R R L +
1 | flag bits describing entry conditions | O
R I +
3 | | 2
| name of run-time system which issued |
5 | the call to this one | 4
R I +
7 | random value | 6
e T +
11 | | 10
| |
13 | same value as when the caller | 12
| issued the .RUN or .CCL
R I I e + 14

XRB+0

XRB+2

XRB+6

XRB+10

General RSTS/E Environment

This word contains flag bits that describe the entry
conditions. (The STATUS variable in BASIC-PLUS returns
these values.)

Bit Meaning

15 When set, indicates the entry was made as the result
of a .CCL directive. When clear, indicates the entry
was made as the result of a .RUN or a .CHAIN
directive.

14 When set, indicates the caller issued a .CCL
directive with a /DETACH switch, with the intent that
this run-time system executes the file in detached
mode. It is up to the run-time system to take action
on this flag. You can detach a job by using the
UU.DET subfunction of the .UUO directive; see Chapter
3.

13 When set, indicates that the caller issued a
directive with a /SIZE switch; that is, the file is
to be run at a specific size. The size is given in
bits 0-7. It is up to the run-time system to set the
size as indicated (see the .CORE directive).

12-8 Reserved for future use.

7-0 If the value of these bits is zero, then no special
size for this program run is called for. If the
value is greater than zero, it indicates the size, in
K words, that the program should be run at. 1If the
value is less than zero, the absolute value indicates
an increment, in K words, to the size that the
program would normally run at.

These two words contain the name of the run-time system
under which the .RUN, .CHAIN, or .CCL directive to this
run-time system was issued, in RAD50 format.

The contents of this word are random.
The three words beginning here contain the same information

that they held when the job issued the .RUN, .CHAIN, or .CCL
directive.

General RSTS/E Environment

Mne- Octal

monic Offset

FIRQB on P.RUN Entry

Octal Mne-
Offset monic

I Lt S +
1 I///| 0
I I +
3 |/////////////////////l job number * 2 | 2 FQJOB
B T T T T I T R +
5 |///| 4
I I I +
7 | project number | programmer number | 6 FQPPN
L L I +
11 | file name in RADS50 format | 10 FQNAMI1
| (2 words) |
13 | | 12
I I I R I I I +
15 | file type in RADS50 format (1 word) | 14 FQEXT
R I R R I I +
17 | file size in 512-byte blocks | 16 FQSIZ
I R I +
21 | default buffer size for dlSk | 20 FQBUFL
I Lt R I +
23 |///| 22
R L I I +
25 | device descrlptlon | 24 FQFLAG
R R +
FQPROT 27 | * protection code | cluster size | 26 FQPFLG
I I L +
31 | device name (2 ASCII characters) | 30 FQDEV
R R I I +
33 | flag byte | device unit number | 32 FQDEVN
R I L +
35 | file identification index | 34 FQCLUS
I R I +
37 | entry parameter | 36 FQNENT
I LI I +
FIRQB+FQJOB The job number (assigned by the monitor when this
job was created) times two.
FIRQB+FQPPN The project-programmer number for the file that is
to be run.
FIRQB+FQNAM1 The name of the file that is to be run, as two
words in RADS50 format.
FIRQB+FQEXT The type of the file that is to be run, as one
word in RADS0 format.
FIRQB+FQSIZ The file size, in 512-byte blocks.

2-36

. FIRQB+FQBUFL

FIRQB+FQFLAG

FIRQB+FQPROT-1

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQDEVN+1

FIRQB+FQCLUS

General RSTS/E Environment

The recommended size, in bytes, for the buffer
size in a .READ directive for this file.

Flag bits defining the device. They are set to
indicate that this is a disk file. (See the
FQFLAG description in the open function of the
CALFIP directive.)

The file cluster size, modulo 256. (That is, a
file cluster size of 256 is indicated by a zero
byte here.) This byte is the same as the FQCLUS
value supplied in the open functions of the CALFIP
directive, except that it is returned in a byte
instead of a word.

The protection code of the file.

The device name of the disk device, as two ASCII
characters.

The unit number of the disk device.
The low-order two bits of this byte are set to
indicate whether or not the device is part of the

public structure:

Bit 0 = 0 The device is in the public structure.
1 The device is a private disk.

]
o

Bit 1 A specific device was not specified in
the open function.
= 1 A specific device was specified in the

open function.

The file identification index of this file. This
word is significant in that you can use it in
place of the file name in subsequent opens of the
file on disk. You can open the file with the
OPNFQ subfunction of CALFIP, using:

0 An explicit PPN in FIRQB+FQPPN

0o A zero word in FIRQB+FQNAM1

0 An explicit device name in FQDEV and FQDEVN

o The file identification index in
FIRQB+FQONAM1+2.

General RSTS/E Environment

FIRQB+FQNENT

Parameter word from the caller. The .RUN or
.CHAIN directive, which causes entry at P.RUN in a
run-time system, allows the caller to specify a
parameter word to be passed to the run-time
system. Bit 15 of this word may or may not be the
same as the caller passed, however. 1If the .RUN
or .CHAIN directive was issued from a privileged
program with temporary privileges enabled, bit 15
is passed by the caller. Otherwise, bit 15 is
cleared.

For .CCL entries, bit 15 is set by the monitor.
If the CCL definition for the CCL being executed
has the /PRIVILEGED gualifier included in it, the
bit 15 is set; otherwise, it is cleared.

PART I
Monitor
Directives

Chapter 3: General Monitor Directives

Introduction

This chapter describes the general directives to the RSTS/E monitor.
These directives are available to the MACRO programmer under both the
RSX and RT1ll run-time systems. They are Emulator Trap (EMT)
instructions that are processed directly by the monitor. A run-time
system does not examine or process these general directives.

Summary of General Monitor Directives

- Table 3-1 summarizes the general monitor directives. Detailed

" descriptions are given in the sections that follow this introductory
material. The descriptions are arranged alphabetically by mnemonic
name.

Some directives, which cause a change in run-time system or change in
job size, should not be executed by a program (user job image) running
under the RT11l run-time system, or unpredictable results may occur.
These directives are marked with an asterisk (*) in Table 3-1. (Note,
however, that these are not restrictions for assembling using MACRO --
the assembler for the RT1l run-time system. If you are coding a
run-time system, you use these directives and assemble under either
MACRO or MAC.)

Table 3-1: Summary of General Monitor Calls

R I R R i T +
I EMT		
	Code	
Name	(Octal)	Description
R SRR R i +
CALFIP 0 Call the File Processor portion of the RSTS/E

monitor. Includes "housekeeping" functions
for file/device I/0 such as OPEN, CLOSE.

| I | |
l ! | |
| | | |
l | | I
1 | I |
| .READ | 2 | Read from a previously opened file or device. |
I | | !
| .WRITE | 4 | Write to a previously opened file or device. |
1 l l l
| .CORE#* | 6 | Change memory size allocated for user job

| | | image. |
| | l !
| .SLEEP | 10 | Sleep job for n seconds. |
I | | I
| .PEEK | 12 | Peek at the monitor’s memory. |

3-1

General Monitor Directives

Table 3-1: Summary of General Moniter Calls (Cont.)

I R L e
| | EMT |

| | Code |

| Name | (Octal) | Description
R R R I
| | I

| .SPEC | 14 | Special function.

I I I

| .TTAPE | 16 | Enter tape mode.

| | |

| .TTECH | 20 | Enable echo on a channel.

I | I

| .TTNCH | 22 | Disable echo on a channel.

I I |

| .TTDDT | 24 | Enter ODT submode on a channel.

| I I

| .TTRST | 26 | Cancel CTRL/O effect.

I | I

| .TIME | 30 | Get timing information.

I | |

| .POSTN | 32 | Get device’s horizontal position.
| | I

| .DATE | 34 | Get current date.

I | |

| .SET | 36 | Set keyword bits.

I | I

| .STAT | 40 | Get statistics for job.

| | |

| .RUN¥* I 42 | Run new program (user job image).
| | |

| .NAME | 44 | Install a new program name.

| I |

| .EXITx* | 46 | Exit to default keyboard monitor.
I I |

| .RTS* | 50 | Switch to new run-time systemn,.

| | I

| .ERLOG | 52 | Log an error from run-time system.
| | I

| .LOGS | 54 | Check for logical devices.

| | |

| .CLEAR | 56 | Clear keyword bits.

| I I

| .MESAG | 60 | Message send/receive.

I I I

| .CCL* | 62 | Check string to see if Concise Command
| | i Language (CCL).

| I I

| .FSS* I 64 | Scan a string for valid RSTS/E file
I | I

specifications.

3-2

General Monitor Directives

Table 3-1: Summary of General Monitor Calls (Cont.)

IR o I I I PP +
I | EMT | l
| | Code | 1
| Name | (Octal) | Description

I R R I T I I +
| I | !
| .UUO | 66 | Execute monitor FIP call (access to

| | | BASIC-PLUS SYS calls to FIP).

| | | |
| .CHAIN** | 70 | Execute user job image under same run-time

I | | system. |
.PLAS	72	Access a shared library.
.ULOG	76	Assign/reassign/deassign device or user

| | | logical.

l I | |
| .READA 1 102 | Asynchronous read.

| I | l
| .WRITA | 104 | Asynchronous write.

| | t |
| .ASTX | 106 | AST exit.

l | l |
{ .CMDLN | 112 | Read/write command line buffer.

| | | 1
| AST | 114 | AST enable/disable.

R I T L LI IR A A +
| * This directive should not be used by a program running under |
| control of either the RTl1l run-time system or the RSX emulator. |
| |
| ** These directives should not be used by a program running under |
| control of the RTll run-time system. |
R I T T I I I P P ST AP +

Prefix File COMMON.MAC

The monitor directives that this chapter describes require that you
pass parameters to the monitor in the FIRQB and XRB; values are also
returned to your program in these areas. The file COMMON.MAC,
provided with all RSTS/E kits, relates mnemonics to often-used

addresses, offset values,

and function codes, eliminating the need for

octal coding and addressing. These mnemonics are used in the
directive descriptions that follow; DIGITAL recommends their use for
readable, maintainable code.

How to Assemble with COMMON.MAC

COMMON.MAC is a prefix file; it is assembled with your other MACRO
source files under either the RSX or RTll run-time systems. For
example, under the RTll run-time system, the following sequence would
assemble the files COMMON.MAC, SRC1l.MAC, and SRC2.MAC into the object
module file OBJ.OBJ with an assembly listing file OBJ.LST:

RUN $MACRO
*OBJ, 0OBJ=COMMON, SRC1, SRC2

Similarly, under the RSX run-time system, this sequence would assemble
the files COMMON.MAC, SRC1.MAC, and SCR2.MAC into the object module
file OBJ.OBJ with an assembly listing file OBJ.LST:

RUN SMAC
MAC>OBJ,0BJ=COMMON, SRC1, SRC2

Macros Provided in COMMON.MAC

In addition to providing mnemonics, the COMMON.MAC file contains
macros that can be used in programs assembled under either the RSX or
RT11 run-time systems, as long as COMMON.MAC is assembled with the
source, as described previously. These macros are:

TITLE name ,desc,nn,date,editors

The TITLE macro sets a title (.TITLE) from the name and
description (desc) parameters and builds an
identification (.IDENT) from the specified number nn.
The IDENT has the form xx.xnn, where xx.x is the
current RSTS/E version number (09.0 for v9.0), and nn
is the edit level you specify. Descriptive information
is placed in the table of contents as follows:

EDIT: DATE: BY:
nn date editors
ORG section| ,offset]

ORG defines the origin address of a program section.
The first occurrence of an ORG with a given section
name causes all instructions requiring memory space
following the ORG to be assigned consecutive
relocatable addresses starting with zero or, if an
offset is given, with the octal address given.
Following occurrences of an ORG with the same section
name causes resumption of addressing wherever it left
off before, because of an intervening ORG.

3-4

DEFORG

TMPORG

UNORG

INCLUDE

.DSECT

General Monitor Directives

The ORG macro also defines a symbol with the same name
as the section at the first relative location within
the section. Every invocation of ORG also defines (or
redefines) the section to be returned to by the macro
UNORG.

section

The DEFORG macro is the same as the ORG macro except
that the symbol at relative 0 (the section name) is
declared as a global symbol. By convention, the module
that defines the section (rather than just uses it)
issues the DEFORG macro.

section[,o0ffset]

TMPORG is the same as ORG except that it does not
define (or redefine) the section to be reentered by the
UNORG macro. In this way, the module can temporarily
enter a new section and then return to the main section
using UNORG without having to know the main section
name.

The UNORG macro will reenter the section most recently
declared in an ORG or DEFORG macro.

namel{ ,name2,...]

The INCLUDE macro indicates that the module issuing the
INCLUDE requires the named modules (namel, ...). The
name(s) should be declared with DEFORG(s) in the
required modules.

INCLUDE declares the listed section names as global
symbols and issues the macro directive .SBTTL with the
heading "INCLUDE FROM LIBRARY ’'name’" to be inserted in
the assembly listing table of contents. INCLUDE
documents the named sections as required by this
section.

[start][,cref]

The .DSECT macro starts a dummy program section (with
the MACRO directive .ASECT) at relocatable address 0 or
at the address given by the optional argument start.

If the cross-reference (cref) parameter is given
(nonblank), the program section is included in the
cross-reference listing, if you request one for the
assembly.

The .DSECT macro is used in the file COMMON.MAC to
define the system parameters and offsets.

3-5

General Monitor Directives

.BSECT

.EQUATE

For example, coding of this form is used in COMMON.MAC
to assign the proper values to the mnemonics in the
pseudo-vector region:

.DSECT 177776 ,NOCREF
.BLKW -1
P.SIZE: .BLKW -1
P.2CC: .BLKW -1
P.CC: .BLEKW -1

Note

A .DSECT is used at the end of the file
COMMON.MAC. This means that you must
explicitly start your MACRO program with an 'ORG
macro or .PSECT directive to begin your program
at relocatable address 0. Otherwise, your code
will be regarded as a continuation of the
.DSECT, and the program will not assemble
properly.

[HIGH][,cref]

The .BSECT macro is like the .DSECT macro except that
the default starting address is 1 instead of 0. If the
argument HIGH is used, the starting address is 400
(octal). This starting address lets you use .BSECT to
generate bit values. The .BSECT macro is used in
COMMON.MAC to define mnemonics for bit locations. For
example, the following coding assigns the mnemonics to
the bit locations in the keyword (KEY; see Chapter 2).
Note that the period (.) after .BLKB is required.

.BSECT HIGH,NOCREF
JFSPR1: .BLKB .
JFPP: .BLKB .

symbol,value

.EQUATE defines the given symbol to have the supplied
value (which may be an expression) by using the
equivalent of:

.DSECT value
.symbol:
UNORG

3-6

.BLKWO

.BLKBO

GLOBAL

RETURN

JMPX

CALL

CALLR

CALLX

General Monitor Directives

[amount][,value]

The .BLKWO macro is similar to the MACRO directive
.BLKW, which reserves a specified number of words of
storage space. The amount can be any expression, the
default is one. While .BLKW just reserves space,
.BLKWO fills the space with the value you specify; the
default is zero.

[amount][,value]

The .BLKBO macro is similar to the MACRO directive
.BLKB, which reserves a specified number of bytes of
storage space. The amount can be any expression, the
default is one. .BLKBO fills the space with the value
you specify; the default is zero.

<namel[,name2,...]>

GLOBAL declares the name symbols as external global
symbols.

[register]

The RETURN macro generates an RTS PC by default but can
generate any other RTS instruction if you specify an
explicit register.

label

JMPX is just like the JMP instruction but will also
declare the label to be an external global (that is,
jump external).

subroutine[,register[,argument list]]

You can use CALL instead of JSR PC to call subroutines.
If an explicit register is specified, then the call is
JSR using that register. 1If an argument list is
specified, it generates a list of .WORD arguments in
line with the subroutine call.

subroutine

CALLR is equivalent to a CALL to a subroutine
immediately followed by a RETURN. CALLR generates a
JMP instruction.

subroutine

CALLX is just like CALL, but it also declares the
subroutine name as an external global symbol.

3-7

General Monitor Directives

CALLRX subroutine

CALLRX is just like CALLR except that the subroutine
name is declared as an external global symbol.

Error Mnemonics: Symbol Table File ERR.STB

When the monitor processes the directives that this chapter describes,
any errors that it detects are passed back to the job in the first
byte of the FIRQB as a binary value. The ERR.STB file, provided with
all RSTS/E kits, relates mnemonic values to these binary codes, so you
do not have to analyze and process errors in octal. The descriptions
in this chapter all refer to the mnemonics provided by ERR.STB. See
Appendix A for a list of all possible errors.

The symbols are automatically resolved at link time if you include
ERR.STB with the files you link with either TKB (the Task Builder for
the RSX run-time system) or LINK (the linker for the RT1l run-time
system). For example, under the RSX run-time system, the following
code links ERR.STB and MAIN.OBJ to produce the executable file
IMG1l.TSK, a memory allocation file MP1.MAP, and a symbol definition
file SF1.STB:

RUN $TKB
TKB>IMG1l,MPl,SF1=ERR.STB,MAIN

Similarly, under the RT1ll run-time system, the following sequence
links ERR.STB and MAIN.OBJ to produce the executable file IMGl.SAV, a
memory allocation file MP1.MAP, and a symbol definition file SF1.STB:

RUN SLINK
*IMGl,MPl,SF1=ERR.STB,MAIN

Programming Hints

Preset the FIRQB and XRB to Zero

The monitor directives in this chapter pass information to the monitor
in the FIRQB and XRB areas of the low 512. bytes of memory. It is
usually a good idea to clear the entire FIRQB and XRB before issuing a
call, to ensure that no extraneous information (for example, from data
returned on a call) has been left in the areas that could affect how
the call executes.

In some cases, however, you may want to leave the FIRQB and XRB alone.
The .FSS call, for example, scans a string and, if it is a valid file
specification, returns to the FIRQB the information needed to open the

3-8

General Monitor Directives

file with the CALFIP call. You do not want to clear the FIRQB before
opening the file with CALFIP.

Note
To ensure compatibility with future releases of
RSTS/E, you should always set to zero any fields in
the FIRQB and XRB diagrams that are shaded or are
documented as reserved or not used.

The following example contains three routines that clear the FIRQB and
XRB:

CLRFQX Clears both the FIRQB and XRB.
CLRFQB Clears the FIRQB.
CLRXRB Clears the XRB.

The values FQBSIZ and XRBSIZ used in these routines are defined in
COMMON.MAC.

.ENABL LSB

CLRFQX: : PUSH <RO,R1> ;Save RO,R1
MOV $FIRQB,RO ;Point to FIRQB.
MOV $<<FQBSIZ+XRBSIZ>/2>,Rl1 ;Compute how many words
BR 108 sto clear.
CLRFQB:: PUSH <RO,R1> ;Save RO,R1
MOV #FIRQB, RO ;Point to FIRQB.
MOV #<FQBSI1Z/2>,R1 ;Compute how many words
BR 108 ;to clear.
CLRXRB:: PUSH <R0O,R1> ;Save RO,R1
MOV #XRB, RO ;Point to XRB
MOV $#<XRBSI1z/2>,R1 ;Compute how many words
;to clear.
10$: CLR (RO)+ ;Zero it out ...
SOB R1,108 ;'til all done
POP <R1l,R0> ;Restore RO,R1l.
RETURN

.DSABL LSB

General Monitor Directives

Data Returned to FIRQB and XRB

If a call completes without error, the monitor sets byte 0 of the
FIRQB to zero. If an error occurs on a call, the monitor sets byte 0
of the FIRQB to an error code. Likewise, the monitor always sets the
byte at FIRQB+2 to the current job number times two when a call
completes.

In some circumstances, it may be useful to know what happens to the
passed-data when a call completes. For instance, is the file name
still there? Bytes not specified as containing returned-data are
undefined. Do not rely on these values when coding your programs
because DIGITAL reserves the right to change the values returned in
these bytes at any time. 1In addition, if an error occurs, the data
returned may or may not have replaced the data passed. It depends on
how far processing for the call got before the error occurred.

Channel Numbers for I/O

Directives that handle I/0 use a channel number to refer to a device.
In device or file opens, a channel number is related to a specific
device defined in the call. Directives that transfer data (.READ,
.WRITE, .READA, .WRITA) can then refer to a channel number rather than
define a device or file.

Valid channel numbers range from 0 through 17. Channel 0 is the job’s
terminal; for example, a .WRITE to channel 0 writes to the terminal
which is running the job. Channel 0 is always open. Similarly, the
monitor opens a file to be run on channel 17 when control transfers to
the P.RUN entry point in a run-time system. Thus, user jobs may
define and use channels 1 to 16.

Directives That Do I/O

The CALFIP subfunctions OPNFQ, CREFQ, CRBFQ, and CRTFQ open a file or
device and relate the specified channel number to that file or device:

o OPNFQ opens a file or device for input

o CREFQ creates a file, that is, opens a file or device for
output

o CRBFQ creates a binary (executable) output file on disk
0 CRTFQ creates a temporary file on disk

The directives .READ and .WRITE transfer data between memory and a
device or file specified by channel number.

The CLSFQ (close) and RSTFQ (reset) subfunctions of CALFIP close a
device or file and free the associated channel number so it can be
used with another device or file.

3-10

General Monitor Directives

' Directives That Support I/O

The file string scan (.FSS) directive is useful for programs that
process files specified by a terminal user. The .FSS directive
examines a string of characters and, if it is a valid RSTS/E file
specification, converts it to the FIRQB format used to open a file.
Thus, your program can accept a typed string from the job’s terminal
and use .FSS to convert the string to the FIRQB format to do I/O on
the file.

You can use the LOKFQ subfunction of CALFIP to search for disk files
that meet wildcard file specifications. For example, you could search
an account on disk for all files with names beginning with the
characters DD.

- AST

.AST - Enable/Disable AST Delivery
Form

LAST
Function
The .AST directive has two functions: disable AST delivery and enable
AST delivery. The .AST disable function stalls all AST deliveries
from the monitor until the user explicitly enables them with the .AST
enable directive.
Privileges Required
None

Data Passed

The only data passed for this directive is the byte 0 of the FIRQB.
If zero, enable AST deliveries. 1If minus one, disable AST deliveries.

Data Returned

Except for a possible error code in byte 0 of the FIRQB, this
directive does not return any meaningful data.

Errors

BADFUO Illegal function code.

3-12

-ASTX

LASTX - Exit from AST Routine
Form

LASTX
Function

The .ASTX directive is similar to a RETURN in a normal subroutine. It
instructs the monitor that the asynchronous routine has completed and
that control should return to the job at the point it was interrupted.
All AST routines must finish with a .ASTX directive.

When an AST routine issues the .ASTX directive, the PSW previously
stored on the user’s stack is validated. The PSW is forced into the
standard mode (previous user/current user mode, register set 1, and
priority 0). The PC and PSW are then used to return control to the
program at the point where it was interrupted.

The XRB and bytes 0, 6, and 7 of the FIRQB are restored. 1If the user
has altered the PC, PSW, or destroyed the stack contents, no specific
error is returned. 1Instead, bad PC and/or stack causes fatal errors

which are handled in the usual way (entry to P.BAD in the RTS).

To make sure this directive behaves correctly, the AST routine must
make sure all general registers (RO to R5) and the stack pointer have
the same contents as on entry to the AST routine. 1In addition, if any
part of the FIRQB other than bytes 0, 6, and 7 has been used, the AST
routine must restore the contents of the FIRQB to what it had on
entry. Failure to observe these rules may produce unexpected results.

CALFIP

CALFIP - Call the File Processor

Form

CALFIP

Function

The CALFIP directive to the RSTS/E monitor handles housekeeping
necessary for input/output on RSTS/E. For example, CALFIP lets you
open a channel for file or device I/O.

You select the particular function by setting a function field in the

FIRQB (at offset FQFUN). Other parameters are also passed to the
monitor in the FIRQB, depending on the function requested.

Table 3-2 lists the CALFIP subfunctions by function code. The
sections following Table 3-2 describe the subfunctions in alphabetical

order.

Table 3-2: Summary of CALFIP Subfunctions

R L e
| FQFUN |

| Value |

| (Octal) | Mnemonic
R e
| I

l 0 | CLSFQ

| 2 | OPNFQ

| 4 | CREFQ

| l

| 6 | DLNFQ

| 10 | RENFQ

| 12 [DIRFQ

| 14 | UUOFQ

| 16 | ERRFQ

| 20 | RSTFQ

| i

| 22 | LOKFQ

| 24 | ASSFQ

| 26 | DEAFQ

| 30 | DALFQ

| 32 | CRTFQ

| 34 | CRBFQ

| I

| l
L I

Close an open channel (CLOSE)

Open a channel (OPEN FOR INPUT)
Create/extend a file (file-structured OPEN
FOR OUTPUT)

Delete a file by name (KILL)

Rename a file (NAME...AS)

Get directory information

Process UUO

Get error message text

Reset (close) a channel or all channels
(except channel 0)

Look up a file

Allocate a device

Deallocate a device

Deallocate all devices

Create/extend a temporary file on disk
Create/extend a compiled image file on disk
(file-structured OPEN FOR OUTPUT, protection
code bit 6 always set)

CALFIP
ASSFQ

 ASSFQ (Allocate a Device)
Form

MOVB #ASSFQ, FIRQB+FQFUN
(Set up FIRQB to define device)

CALFIP
Function

' The ASSFQ subfunction reserves a physical device for a job or
transfers assignment of a currently owned device to another job.

Privileges Required

DEVICE to allocate a device for the current job if the requested
device is restricted. HWCTL to seize a device or reallocate a device
to a job in another account.

CALFIP
ASSFQ

Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 l///| 0
FQFUN 3 | ASSFQ (= 24) I/////////////////////I 2
5 |///| 4
7 |///l 6
11 |/////////////////////| =0,assign;#0,job no.| 10 FQNAM1
13 I///| 12
15 |° DOS or ANS (1 word RADSO) or 0 (magtape) | 14 EQEXT
17 |///I 16
21)///| 20
23 1100001 for snagging a551gn/rea551qn, else 0| 22 FQMODE
25 |///l 24
27 I///1 26

31 | device name (2 ASCII characters) | 30 FQDEV

33 | #0, unit no. real | device unit number | 32 FQDEVN

35 I///| 34
37 |///| 36

FIRQB+FQFUN The function code ASSFQ (octal value = 24).

FIRQB+FQNAM1 This byte is set to zero to indicate an assign; if
nonzero, it is used as the job number to which the
device is to be reassigned. The high byte of this word
(FIRQB+11l) must be set to zero.

If you do not have HWCTL privilege, you can reassign a
device only to a job that is logged in to the same
account as your current account.

FIRQB+FQEXT

FIRQB+FQMODE

FIRQB+FQDEV

FIRQB+FQDEVN

Data Returned

CALFIP
ASSFQ

When the device is magnetic tape, this word can contain
either DOS or ANS in RAD50 format, to indicate DOS or
ANSI label format for the tape drive. It can also be
set to zero to indicate the system default for the
drive.

This word is set to 100001 to assign a device that is
currently assigned to another user. This is a snagging
assign and is available only to users with HWCTL
privilege. If you do not want a snagging assign, this
word must be zero.

Device name, as two ASCII characters.

The device unit number is passed here in binary. A
nonzero value in FIRQB+FQDEVN+l indicates an explicit
device unit number. A zero value in FIRQB+FQDEVN+1l
indicates no unit number.

Other than a possible error code in byte 0 of the FIRQB, the ASSFQ
subfunction returns the previous owner of the device in FIRQB+FQFIL.

Errors

For Assign (byte at FIRQB+FQNAMl1l = 0):

NODEVC

NOTAVL

PRVIOL

The device name specified at FIRQB+FQDEV is not a valid
device name.

The device and unit specified exists on the system, but
the attempt to reserve it is prohibited because:

0 The device is currently reserved by another job.

o The device or its controller has been disabled by
the system manager.

0o The device is a keyboard line for a pseudo keyboard
only.

The device requires DEVICE privilege to allocate.

CALFIP
ASSFQ

For Reassign (byte at FIRQB+FQNAM1 # 0):

BDNERR

INUSE

NODEVC

NOTAVL

PRVIOL

Example

The job number specified does not exist.

The device specified is currently open or has an open

file.

The device name is a logical device name for which a
physical device is not currently assigned.

(See previous description for Assign.)

You do not have HWCTL privilege and you tried to
reallocate a device to a job that is logged in to an
account other than your current account.

The following code reassigns magnetic tape unit 0 (MTO:) to job 12:

MAGT:

LASCII /MT/

CALL CLRFQB

MOVB $#ASSFQ, FIRQB+FQFUN
MOVB $12.,FIRQB+FQNAM1
MOV #” RANS,FIRQB+14
MOV MAGT, FIRQB+FQDEV
CLRB FIRQB+FQDEVN

MOVB $#377,FIRQB+FQDEVN+1
CALFIP

TSTB FIRQB

BNE ERRTN

;CALL ROUTINE TO CLEAR FIRQOB
7SET FUNCTION CODE

;ASSIGN TO JOB 12
;ANSI-LABEL TAPE

;MAGTAPE DEVICE

;UNIT NO. O

;UNIT NO. REAL

;ANY ERRORS?
;BRANCH TO PROCESS ERROR

See Programming Hints for information on the CLRFQB routine.

CALFIP
CLSFQ

CLSFQ (Close a Channel)

Form/Example
CHANO=8. ; Set value for channel
MOVB #CLSFQ, FIRQB+FQFUN ; Set function code in FIRQB
MOVB #$CHANO*2 ,FIRQB+FQFIL ; Set channel 8 for CLOSE
CALFIP ; Execute monitor directive
Function

The CLSFQ function closes a channel. The specific action taken
depends on the device or file that was previously opened on the
channel and whether it was opened for input or output, as well as the
mode with which it was opened. For example, closing a channel on
which a magnetic tape was opened for input in file-structured mode
‘causes the monitor to position the tape at the end-of-file (EOF). See
the RSTS/E Programming Manual for a description of the actions taken
on closing various devices/files.

Requesting CLSFQ for a channel that is not currently open returns with
no action taken and no error is indicated.

Privileges Required

None

3-19

CALFIP
CLSFQ

Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 l///| 0
FQFUN 3 | CLSFQ (= 0) I/////////////////////I 2
: T}}}}}}}}}}}}}}}}}}}}}T"'ér};;u;;i';;";'é'"T 4 PoFIL
7 l///| 6
11 |///| 10
13 l///I 12
15 I///I 14
17 |///l 16
21 I///I 20
23 |///l 22
25 I///1 24
27 |///l 26
31 !///I 30
33 |///l 32
35 |///| 34

37 l///| 36

FIRQB+FQFUN The function code CLSFQ (octal value = 0).

FIRQB+FQFIL Channel number times two; defines the channel to be
closed.

Data Returned

Except for a possible error in byte 0 of the FIRQB, the CLSFQ function
of CALFIP does not return any meaningful data.

3-20

CALFIP
CLSFQ

.Errors

All errcrs with the CLSFQ function of CALFIP are device- dependent.
See Appendix A for a full list of errors.

Example

The following MACRO code closes the file or device on channel 12:

CALL CLRFQB ;CLEAR FIRQB

MOVB #CLSFQ, FIRQB+FQFUN ;SET FUNCTION CODE IN FIRQB
MOVB #12.*2 ,FIRQB+FQFIL ;SET CHANNEL 12 FOR CLOSE
CALFIF ;EXECUTE MONITOR DIRECTIVE
TSTB FIRQB ;TEST BYTE 0 FOR ERROR

BNE ERRTN ;BRANCH TO PROCESS ERROR

See Programming Hints for information on the CLRFQB routine.

3-21

CALFIP
CRBFQ

CRBFQ (Create a Binary [Executable] File and Open It on a Channel)
Form

MOVB #CRBFQ,FIRQB+FQFUN ;SET FUNCTION CODE

(Set parameters in FIRQB appropriate to device)

.
-

CALFIP
Function

The CRBFQ function creates and opens a binary (executable) file. It
is identical to the CREFQ function, except that the protection code is
automatically set to indicate an executable file, and the file must be
opened on a disk device.

Privileges Required

TUNE to set caching mode. SYSIO to set the privileged-program bit
(bit 7 in FQPROT). A matching PPN, GWRITE, or WWRITE, and/or SYSIO to
create or rename a file. You also need write access (by protection
code, GWRITE, WWRITE, and/or SYSIO) to supersede an existing file.

Data Passed

CALFIP

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
i ST +
1 |///! 0
R I L +
FQFUN 3 | CRBFQ (= 34) I/////////////////////I 2
I I I I I I +
FQSIZM 5 | (must = 0) | channel no. * 2 | 4 FQFIL
L T R L +
7 project number | programmer number | 6 FQPPN
L I I +
11 | file name in RAD50 format | 10 FQONAM1
+ +
13 | (2 words) | 12
R R I R I I IR +
15 | file type in RADS50 format (1 word) | 14 FQEXT
R R I A R I I I I +
17 | (file size in 512 -byte blocks) | 16 FQSIZ
Lk S I I R +
21 |///| 20
R I Tk d I +
23 | mode | 22 FQMODE
R ik e +
25 |///I 24
I I T I I I +
FQPROT 27 | file protection | #0, prot.code.real | 26 FQPFLG
e L I I +
31 device name (2 ASCII characters) | 30 FQDEV
R I P I +
33 | #0, unit no. real | device unit number | 32 FQDEVN
o et B I I I +
35 | file clustersize | 34 FQCLUS
L e it e e s e e +
37 | device cluster number for first block | 36 FQNENT
R R R R +
FIRQB+FQFUN The function code CRBFQ (octal value = 34).
FIRQB+FQFIL Channel number times two; defines the channel upon
which the file is to be opened.
FIRQB+FQSIZM On other types of create opens, this byte contains the
most significant bits (MSB) of the file size.
Executable (binary) files cannot be greater than 65,535
blocks so this byte must always be passed as zero.
FIRQB+FQPPN The PPN with which the file is to be created. The

project number is in the high byte (FQPPN+1) and the
programmer number in the low byte (FQPPN). A value of

3-23

CALFIP
CRBFQ

FIRQB+FQNAM1
FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQMODE

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

FIRQOB+FQNENT

zero in both bytes defaults to the PPN under which the
calling program is running.

The file name created, as two words of RADS50 data.
The file type, as one word of RAD50 data.

The desired file size, in 512-byte blocks. The file is
preextended to the specified size; that is, the space
for the file is allocated when the file is opened,
rather than as it is written.

The mode with which the file is to be opened; values
and actions taken are as described for the MODE
modifier in file-structured OPEN FOR OUTPUT statements
for disk, as the RSTS/E Programming Manual describes.
If a mode value is used, bit 15 of this word must be
set to 1.

File protection code; values for this field define
read/write and execute access to the created file (see
the RSTS/E System User’s Guide). If you want a default
protection code, then set a full word of zeros at
FIRQB+FQPFLG. In this case, either the system default
for protection code will be used, or, if the CRBFQ will
be deleting a previously existing file with the same
file name, type, PPN, and device, the file protection
code of the previously existing file will be used.

To assign a specific file protection code, a nonzero
value is passed in byte FIRQB+FQPFLG (by convention,
255) and the specific file protection code in byte
FIRQB+FQPROT. Bit 6 is automatically set, indicating
that the file is executable. The RSTS/E System User’s
Guide describes the protection codes for executable
files.

The device name is passed here as two ASCII characters;
it must be a disk device. If this word is zero, the
public disk structure is assumed.

The device unit number is passed here in binary. A
nonzero value in FQDEVN+l indicates an explicit device
unit number. A zero value in FQDEVN+l indicates no
unit number.

This parameter has the same function as the CLUSTERSIZE
option in BASIC-PLUS. The BASIC-PLUS Language Manual
describes the CLUSTERSIZE option for disks.

Device cluster number for placement of block 1 of the
file. When you are creating a new file, you can place

3-24

CALFIP
CRBFQ

block 1 of the file on a particular block by specifying
the disk device cluster number in this word. 1If this
word is zero, no placement is done. 1If it is nonzero,
the monitor will try to place the file at the specified
device cluster or as near after it as possible. If the
first block of the file can be placed at or after the
specified device cluster number, the monitor sets a bit
in the file’s entry in the User File Directory (UFD).
If the first block of the file cannot be placed at or
after the specified device cluster number, the file is
placed at the lowest free block on the disk, the bit in
the file’s entry in the UFD is not set, and no error is
returned.

A value of -1 specifies the center of the disk; a value
of -2 means immediately after the directory.

CALFIP
CRBFQ

Data Returned

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
I LT I N +
1 |///| 0
I R I I +
3 1/////////////////////| current job no. * 2 | 2 FQJOB
L I R +
FQSIZM 5 | (always 0) | channel number * 2 | 4 FQFIL
R I I I I +
7 | project number | programmer number | 6 FQPPN
L I R R +
11 | file name in RAD50 format | 10 FQNAM1
+ +
13 | (2 words) | 12
B L +
15 | file type in RADS50 format (1 word) | 14 FQEXT
I I R I I +
17 | (file size in 512-byte blocks) | 16 FQSIZ
oo I +
21 | reasonable buffer size for dev1ce | 20 FQBUFL
I I +
23 | (as passed) | 22 FQMODE
R I IR AR dammme e R +
25 | device description | 24 FQFLAG
R I I R e +
FQPROT 27 | protection code | clustersize, mod256 | 26 FQPFLG
I I +
31 | device name (2 ASCII characters) | 30 FQDEV
R R I +
33 | flag byte | device unit number | 32 FQDEVN
e e +
35 | file identification index | 34 FQCLUS
I e L +
37 | (as passed) | 36 FQNENT
I L I I +
FIRQB+FQJOB Current job number times two.
FIRQB+FQFIL Channel number times two; defines the channel on which

the file is open.

FIRQB+FQPPN The PPN under which the file is open. An actual PPN is
returned here even if this word was passed as zero.

FIRQB+FQNAM1 The file name created, as two words of RADS50 data.

FIRQB+FQEXT The file type created, as one word of RAD50 data.

3-26

" FIRQB+FQSIZ

FIRQB+FQBUFL

FIRQB+FQFLAG

FIRQB+FQPFLG

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

CALFIP
CRBFQ

The size to which the file was preextended, in 512-byte
blocks.

Reasonable buffer size for disk reads and writes, in
bytes. (Always 512 for disk.)

Description of the device just opened (the same
information as the BASIC-PLUS STATUS variable). The
low byte contains the device’s handler index, always
zero (DSKHND) for disk. The high byte contains a set
of status flags, irrelevant here since the device is
always disk. (See the OPNFQ subfunction for more
information on these settings.)

The file cluster size, modulo 256. That is, a file
cluster size of 256 is indicated by zero. This is the
same as the value passed at FIRQB+FQCLUS, except that
it is returned in a byte instead of a word.

The protection code of the file. Bit 6 is 1, and bits
5 through 0 are as passed. Bit 7 is as passed if the
caller has SYSIO privilege; otherwise it is 0.

The device name of the disk device, as two ASCII
characters. The actual device name is returned here,
even if this word was passed as zero.

The device unit number. The actual unit number is
returned here, even if FIRQB+FQDEVN+l was passed as
Zero.

The file identification index of this file. This word
is significant mainly in that it can be used in place
of the file name in subsequent opens of the file on
disk. You can open the file with the OPNFQ subfunction
of CALFIP using an explicit PPN in FIRQB+FQPPN, a zero
word in FIRQB+FQNAM1l, an explicit device name in FQDEV
and FQDEVN, and the file identification index in
FIRQB+FQNAM1+2.

Note that there is no performance gain for using the
file identification index instead of the file name.

The file identification index is provided for
compatibility with RSX. Furthermore, the file
identification index is changed when the REORDR utility
is run (see the RSTS/E System Manager’s Guide).

3-27

CALFIP

CRBFQ

Errors

NOTCLS The specified channel is already open. It must be
closed before it can be opened again.

PRVIOL The specified device is not a disk device. The CRBFQ
function can be executed only for a disk device.

QUOTA Extending the file causes the disk quota to be
exceeded. This error does not occur if the user has
EXQTA privilege.

XXXXX Other errors are device-dependent. See Appendix A for
a full list of possible error codes.

Example

The following MACRO code sets up the FIRQB for the CRBFQ function of
CALFIP. The PPN is set to 2,210; the file name and type are set to
FILNAM.TYP. The protection code is set such that the file is
read/write-protected against everyone but the caller (user with PPN
2,210), and execute-protected against all but the caller and those in
the caller’s project (users with project number = 2). The file is
opened on disk unit 2 (DK2:). File size and cluster size are not
specified. The cluster size defaults to the pack cluster size and the
file size is not preallocated.

DK: .ASCII /DK/

CALL CLRFQB ;CLEAR FIRQB

MOVB #CRBFQ, FIRQB+FQFUN ;SET FUNCTION CODE

MOVB $4*2, FIRQB+FQFIL ;SET CHANNEL = 4

MOVB $2,FIRQB+FQPPN+1 ;SET PROJECT NUMBER =2
MOVB #210.,FIRQB+FQPPN ;SET PROG. N0.=210.

MOV 4" RFIL,FIRQB+FQNAM1 ;SET FILE NAME AND

MOV #" RNAM, FIRQB+FQNAM1+2 ;TYPE TO

MOV 4" RTYP, FIRQB+FQEXT ;"FILNAM.TYP"

MOVB $<8.+16.+32.>,FIRQB+FQPROT ;SET PROTECTION CODE
MOVB $255.,FIRQB+FQPFLG ;SET PROTECTION CODE REAL
MOV DK, FIRQB+FQDEV ;SET DEVICE TO DISK,

MOVB $#2,FIRQB+FQDEVN ;UNIT 2

MOVB #255.,FIRQB+FQDEVN+1 ;(EXPLICIT DEVICE NO.)
CALFIP

See Programming Hints for information on the CLRFQB routine.

CALFIP
CREFQ

CREFQ (Create a File and Open It on a Channel)

Form

MOVB #CREFQ, FIRQB+FQFUN ;SET FUNCTION CODE

(set parameters appropriate to device)

CALFIP
Function

The CREFQ function performs the same action as a file-structured OPEN
FOR OUTPUT statement in BASIC-PLUS. Parameters defining the device,
file name and type, protection code, mode, file size, and cluster size
can be used by setting values in the FIRQB. The choice depends upon
the device.

For example, CREFQ with a file name and type on a magtape device with
mode = 128 causes an OPEN for APPEND operation. A search for an
existing file with the specified name and on the specified device is
made; the file would have to be the last file on the tape. When
found, the tape is positioned after the last record in the file, ready
for data to be written and appended. The RSTS/E Programming Manual
describes the file-structured OPEN for OUTPUT operation for the
various devices.

Privileges Required

TUNE to set caching mode. SYSIO to set the privilege bit (bit 7 in
FQPROT). A matching PPN, GWRITE, WWRITE, and/or SYSIO to create or
rename a file. You also need write access (by protection code,
GWRITE, WWRITE, and/or SYSIO) to supersede an existing file.

CALFIP
CREFQ

Data Passed

FIRQB '

Mne- Octal Octal Mne-
monic Offset Offset monic
I I I I +
1 I///l 0
I I +

FQFUN 3 | CRBFQ (= 4) |/////////////////////| 2
I L I +
FQSIZM 5 | MSB of file size | channel no. * 2 | 4 FQFIL
R I I P +
7 | project number | programmer number | 6 FQPPN
R LI I I I +
11 | file name in RAD50 format | 10 FQNAM1
+ +
13 | (2 words) | 12
I I I P P R I I P +
15 | file type in RAD50 format (1 word) | 14 FQEXT
R I PP AN R +
17 | LSB of file size | 16 FQSIZ
R L S +
21 |///I 20
e e R +
23 | mode | 22 FQMODE
R I T A LI I I I +
25 |///| 24
R R R +
FQPROT 27 | file protection | #0, prot.code.real | 26 FQPFLG
I I I +
31 | device name (2 ASCII characters) | 30 FQDEV
I I PP L +
33 | #0, unit no. real | device unit number | 32 FQDEVN
R I I I I I +
35 | file clustersize | 34 FQCLUS
R I I +
37 | device cluster number for first block | 36 FQONENT
e P +
FIRQB+FQFUN The function code CREFQ (octal value = 4).
FIRQB+FQFIL Channel number times two; defines the channel upon

which the file is to be opened.

FIRQB+FQSIZM For large disk files (greater than 65,535 blocks), this
byte contains the most significant bits (MSB) of the
file size. See FIRQB+FQSIZ, for a discussion of the
entire 24-bit field used for large files on disk.

FIRQB+FQPPN

FIRQB+FQNAM1
FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQMODE

FIRQB+FQPROT

FIRQB+FQDEV

CALFIP
CREFQ

The PPN with which the file is to be created. The
project number is in the high byte (FIRQB+FQPPN+1), and
the programmer number in the low byte (FIRQB+FQPPN). A
value of zero defaults to the PPN under which the
calling program is running.

The file name to create, as two words of RAD50 data.
The file type, as one word of RAD50 data.

The desired file size, in 512-byte blocks. This
parameter is relevant only for disk and ANSI magtape
files. For disk files, this word forms the least
significant bits (LSB) of the file size. It is
combined with the byte at FIRQB+FQSIZM to form a 24-bit
integer. The disk file is automatically preextended to
the indicated size. (That is, the space for the file
is allocated when the file is opened, not as it is
written.) If preextending is not desired then this
value and FIRQB+FQSIZM should be zero.

For ANSI magtape, this word has the same function as
the FILESIZE option in BASIC-PLUS (see the RSTS/E
Programming Manual).

The mode with which the file is to be opened; values
and actions taken for specific devices are as described
for the MODE modifier for file-structured OPEN for
OUTPUT statements in the RSTS/E Programming Manual. If
a mode value is used, bit 15 of this word must be set
to 1.

File protection code; values for this field define
subsequent read and write access to the opened file
(see the RSTS/E System User’s Guide). If you want a
default protection code, then set a full word of zeros
at FIRQB+FQPFLG. In this case, either the system
default for protection code will be used, or, if the
CREFQ will be deleting a previously existing file with
the same file name, type, ppn, and device, the file
protection code of the previously existing file will be
used.

To assign a specific file protection code, put a
nonzero value in byte FIRQB+FQPFLG (by convention, 255)
and the specific file protection code in byte
FIRQB+FQPROT. This allows an explicit file protection
code of 0.

The device name is passed here as two ASCII characters.
A zero word indicates the public disk structure.

3-31

CALFIP
CREFQ

FIRQB+FQDEVN

FIRQB+FQCLUS

FIRQB+FQNENT

The device unit number is passed here in binary. A
nonzero value in FIRQB+FQDEVN+1l indicates an explicit
device unit number. A zero value in FIRQB+FQDEVN+1l
indicates no unit number.

This parameter has the same function as the CLUSTERSIZE
option in BASIC-PLUS. It is relevant only for disk
files and ANSI magtape files. A description of the
CLUSTERSIZE option for disk is given in the BASIC-PLUS
Language Manual; for ANSI magtape, in the RSTS/E
Programming Manual.

For disk files, the device cluster number for placement
of block 1 of the file. When creating a new file, you
can place block 1 of the file on a particular block by
specifying the disk device cluster number in this word.
If this word is zero, no placement is done. If it is
nonzero, the monitor will try to place the file at the
specified device cluster or as near after it as
possible. 1If the first block of the file can be placed
at or after the specified device cluster number, the
monitor sets a bit in the file’s entry in the UFD. 1If
the first block of the file cannot be placed at or
after the specified device cluster number, the file is
placed at the lowest free block on the disk, the bit in
the file’s entry in the UFD is not set, and no error is
returned.

A value of -1 means the center of the disk; a value of
-2 means immediately after the directory.

CALFIP

CREFQ
Data Returned
FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
R e S I P +
1 |///I 0
R I A +
3 I/////////////////////I current job no. * 2 | 2 FQJOB
R I R +
FQSIZM 5 | MSB of file size | <channel number * 2 | 4 FQFIL
R I R I +
7 | project number | programmer number | 6 FQPPN
I I I +
11 | file name in RADS0 format | 10 FQNAM1
+ +
13 | (2 words) | 12
T R +
15 | file type in RADS50 format (1 word) | 14 FQEXT
R I R L +
17 | LSB of file size | 16 FQSIZ
R I +
21 | reasonable buffer size for device | 20 FQBUFL
I I R I +
23 | (as passed) | 22 FQMODE
R I R I +
25 device description | 24 FQFLAG
R e PP R I +
FQPROT 27 | protection code | clustersize, mod256 | 26 FQPFLG
R I I I I +
31 | device name (2 ASCII characters) | 30 FQDEV
R I I +
33 | flag byte | device unit number | 32 FQDEVN
R I I +
35 | file identification index | 34 FQCLUS
B I I AP A I +
37 | (as passed) | 36 FQNENT
R I R I +
Note
For nondisk devices, the relevant information returned
with the CREFQ subfunction is in the two words at
FIRQB+FQBUFL and FIRQB+FQFLAG. All other words are
simply returned as passed.
FIRQB+FQJOB Current job number times two.
FIRQB+FQFIL Channel number times two; defines the channel on which

the file is open.

CALFIP
CREFQ

FIRQB+FQSIZM

FIRQB+FQPPN

FIRQB+FQNAM1
FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQBUFL

FIRQB+FQFLAG

FLGFRC
FLGKB |
FLGRND | |

o

FLGPOS |
FLGMOD

|
|
l
|

.
.
.
|
|
15 14 13 12 11 10

For large files, this byte contains the MSB of the size
to which the file was preextended, in 512-byte blocks.
This byte is combined with the word at FIRQB+FQSIZ to
form a 24-bit field giving the file size.

The PPN under which the file is open. An actual PPN is
returned here even if this word was passed as zero.

The file name created, as two words of RAD50 data.
The file type created, as one word of RAD50 data.

The size to which the file was preextended, in 512-byte
blocks.

Reasonable buffer size for this device, in bytes. If
you are doing device-independent I/O (that is, if you
do not want to keep track of which device is being
opened and perform specific opens, reads, and writes,
depending on the device), this value is the monitor’s
best guess for a buffer size to use in subsequent reads
and writes on the opened channel. {See the .READ and
.WRITE directives.)

Description of the device just opened (same information
as the BASIC-PLUS STATUS variable). The low byte
contains the device’s handler index. There is one
unique handler index for all device types. The high
byte contains a set of status flags to allow for
device-independent I/0 routines.

DDNFS
DDRLO
DDWLO |

00— —— — — ——_—

High Byte - Device-Type Flags

The bits in the high byte of the flags word are set to
indicate the type of file or device just opened:
FLGRND 1 The device or file is random-access.
0 The device or file is sequential.

3-34

FLGKB =

FLGFRC =

FLGMOD =

FLGPOS =

DDWLO

DDRLO =

DDNFS =

Low Byte

CALFIP
CREFQ

The file or device is a terminal-type file
or device (or is generically a terminal).

The file or device is not a terminal-type

file or device.

The file or device is byte-oriented. That
is, the .READ and .WRITE directives handle
data in byte units.

The file or device is block-oriented. The
.READ and .WRITE directives handle data in
block units.

The file or device accepts modifiers in
.READ and .WRITE directives.

The file or device does not accept modifiers
in .READ and .WRITE directives.

The file or device keeps track of its
horizontal position and expands characters
such as TAB into whatever is appropriate for
the file or device. You can determine the
current horizontal position with the .POSTN
directive.

The file or device does not keep track of
its horizontal position.

The file or device has been write-locked
(with the mode value in the open) or is
generically a read-only device.

The file or device is not write-locked.

The device is generically a write-only
device.
The file or device is not read-locked.

The file or device is non-file-structured
(or is generically not a file-structured
device).

The file or device is file-structured.

Device Handler Index

Bits 0-7 of the flags word contain a handler index that
indicates the generic kind of device. The currently
defined values follow.

CALFIP
CREFQ

FIRQB+FQPFLG

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

+------- +omemmm- I I +
| Octal | | |
| Value | Symbol | Meaning |
+------- +emmeem s B I +

0 DSKHND All disks

2 TTYHND All terminals

4 DTAHND DECtape

6 LPTHND All line printers

| | | |
| | | |
I | | I
| | | |
| | | I
10	PTRHND	Paper tape reader
12	PTPHND	Paper tape punch
14	CDRHND	Card reader
16	MTAHND	Magnetic tape
1 20	PKBHND	Pseudo keyboards
22	RXDHND	Flexible diskettes
24	RJEHND	2780 remote job entry
26	NULHND	The null device
30	DMCHND	The DMC1ll/DMR1]l DDCMP interface
36		Reserved
[40	KMCHND	KMCll
42	IBMHND	IBM interconnect
46	DMPHND	DMPll/DMV11l device
Femmmma I B i T R L ICTEIT IR +

The file cluster size,

cluster size of 256 is indicated by zero.

modulo 256.

That is, a file
This is the

same as the value passed at FIRQB+FQCLUS, except that
it is returned in a byte instead of a word.

The protection code of the file.

the caller has SYSIO privilege,

to 0 are as passed.

The device name of the disk device,

characters.

and 0 otherwise;

Bit 7 is as passed if
bits €

as two ASCII

The actual device name is returned here,

even if this word was passed as zero.

The device unit number.

zZero.

The file identification index of this file.

The actual unit number is
returned here, even if FIRQB+FQDEVN+l was passed as

This word

is significant mainly in that it can be used in place
of the file name in subsequent opens of the file on

disk.

You can open the file with the OPNFQ subfunction

of CALFIP using an explicit PPN in FIRQB+FQPPN, a zero

word in FIRQB+FQNAM1,
in FIRQB+FQNAM1+2.

and the file identification index

CALFIP
CREFQ

Note that there is no performance gain for using the
file identification index rather than the file name.
The file identification index is provided for
compatibility with RSX. Furthermore, the file
identification index is changed when the REORDR utility
is run (see the RSTS/E System Manager'’s Guide).

Errors

NOTCLS The specified channel is already open. It must be
closed before it can be opened again.

QUOTA Extending the file causes the disk quota to be
exceeded. This error does not occur if the user has
EXQTA privilege.

XXXXX Other errors are device-dependent. See Appendix A for
a full list of errors.

Example

The following MACRO code sets up the FIRQB for a CREFQ that opens a
file called FILEO1.LST on the public disk structure. (The assumption
here is that previous code has filled the FIRQB with zeros, so the
words at FIRQB+FQDEV and FIRQB+FQDEVN are zero, indicating the public
disk. Similarly, the mode (FIRQB+FQMODE) and cluster size
(FIRQB+FQCLUS) are 2zero, indicating normal read/write and the default
cluster size.) A protection code of 56 is assigned (write-protected
against all but the owner, read-protected against all but those in the
owner’s project).

MOVB #CREFQ, FIRQB+FQFUN ; Set function code in FIRQB
MOVB #5*%2, FIRQB+FQFIL ; Set channel = 5

MOV #" RFIL,FIRQB+FQNAM1 ; Set file name

MOV #" REO1,FIRQB+FQNAM1+2 ; and type to

MOV #" RLST, FIRQB+FQEXT ; FILEOl.LST

MOVB #56.,FIRQB+FQPROT ; Set protection code to
MOVB #255. ,FIRQB+FQPFLG ; explicit protection code
CALFIP

3-37

CALFIP
CRTFQ

CRTFQ (Create and Open a Temporary File)
Form

MOVB #CRTFQ, FIRQB+FQFUN
(set appropriate parameters)

CALFIP
Function

The CRTFQ function can be used to create and open a temporary file on
disk. The file is temporary only in that the monitor generates a file
name and type for the file, which is recognized by the LOGOUT utility.
LOGOUT destroys such files when the user logs out; the monitor does
not inherently destroy temporary files created with CRTFQ.

Most parameters relevant on an open are defaulted. You do not define
or refer to the file by name; subsequent read and write operations
refer to the channel on which the temporary file is open.

In addition to the function code, you specify a channel and, if
desired, a file size and/or file cluster size. If an explicit cluster
size is specified, it is used. A specified file size may or may not
be used. The monitor attempts to reuse an existing temporary file for
the same job by simply reopening that file. 1In this case, the file’s
size is the size of the previous file. If no previous temporary file
for the job exists, or if one does exist but is already in use by
somebody else, then a new file is created, with the specified file
size. A new file is also created if an explicit device name or
cluster size is given.

Privileges Required

TUNE to set caching mode. You also need write access (by protection
code, GWRITE, WWRITE, and/or SYSIO) to supersede an existing file.

CALFIP

CRTFQ
Data Passed
FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
L VLI IIIIIII I I IIIIII I I IIIIII I IIIIIIIIIIIIIIIII O
POFUN 3 | CRERQ (= 320\ IIIIIIIIIIIIIIIIIIIIN 2
FQSIZN 5 | MSB of file size | chanmel no. * 2 | 4 FOFIL
1 LTI IIIIIIII I I I IIIIIII LTI IIIIIIIIII I 100000076

VL VL TIIIII I I IIIII I I I IIIIII LI IIIIII LTI IIIIIII) L0

L3 LI LI IIII I I IIIII I IIIIII I IIIII LTI 10007 | 12

LS LI LI IIIII LI IIII I I IIIII LI IIIII I I AT 00007 | 14

R Lss of file size | 16 rostz

2L L IIIIII I I IIIIII I I IIIIII I I IIIIII I I I 0001777 20

23 | T moae T | 22 romops

25 L IIIIII I I IIIIIII LI IITIII I IIIIIII LTI IIII I 28

21 VL IIIIII I IIIIII LI IIIII I I I IIIIIIIIII I I 1170 26

ST device mame (2 ASCII characters) | 30 FQDEV

33 | 40, unit no. real | device unit mumber | 32 FQDEVN

s file cluster size | 34 rocLus

R R I +
37 | device cluster number for this block | 36 FQNENT
R R +

FIRQB+FQFUN The function code CRTFQ (octal value = 32).
FIRQB+FQFIL Channel number times two; defines the channel on which

the file is to be opened.

FIRQB+FQSIZM For large disk files (greater than 65,535 blocks), this
byte contains the MSB of the file size. See
FIRQB+FQSIZ, for a description of how the entire 24-bit
field is used.

FIRQB+FQSIZ This word contains the LSB of the file’s size in
512-byte blocks. (It is combined with the byte at
FIRQB+FQSIZM.) The file size may or may not be used.

3-39

CALFIP
CRTFQ

FIRQB+FQMODE

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

FIRQB+FQNENT

If a temporary file already exists that is not in use,
the monitor uses the space allocated to the previous
temporary file. However, if cluster size is specified,
a new file is created, and the file size indicated by
the 24-bit file size is used.

The mode with which the file is to be opened. Values
are as described for the MODE modifier in OPEN for
OUTPUT statements for disk (see the RSTS/E Programming
Manual). The only relevant modes are for creating a
tentative file, creating a contiguous file, creating a
conditionally contiguous file, and for data caching.
All other mode bits are ignored, except bit 15. If a
mode value is used, bit 15 of this word must be set to
1.

The device name is passed here as two ASCII characters;
it must be a disk device. A value of zero in this word
indicates _SY:, the public disk.

The device unit number is passed here in binary. A
nonzero value in the high byte (FIRQB+FQDEVN+1l)
indicates an explicit device unit number. A zero value
in FIRQB+FQDEVN+1l indicates no unit number.

File cluster size. Performs the same function as the
CLUSTERSIZE Option in BASIC-PLUS.

The device cluster number for placement of block 1 of
the file on disk. When creating a new file, you can
place block 1 of the file on a particular block by
specifying the disk device cluster number in this word.
If this word is zero, no placement is done. If it is
nonzero, the monitor tries to place the file at the
specified device cluster or as near after it as
possible. If the first block of the file can be placed
at or after the specified device cluster number, the
monitor sets a bit in the file's entry in the UFD. 1If
the first block of the file cannot be placed at or
after the specified device cluster number, the file is
placed at the lowest free block on the disk, the bit in
the file’s entry in the UFD is not set, and no error is
returned.

A value of -1 means the center of the disk; a value of
-2 means immediately after the directory.

CALFIP

CRTFQ
Data Returned
FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
R I et ST I +
1 l///I 0
R e A I I +
3 I/////////////////////I current job no. * 2 | 2 FQJOB
R LI I I I +
FQSIZM 5 | MSB of file size | channel no. * 2 | 4 FQFIL
I I Fom ettt e ee e e +
7 | project number | programmer number | 6 FQPPN
R L I +
11 | file name in RAD50 format | 10 FONAM1
+ +
13 | (2 words) | 12
R i I +
15 | file type in RADS50 format (1 word) | 14 FQEXT
I R L +
17 | LSB of file size | 16 FQSIZ
R I I R I I A +
21 | reasonable buffer size for device | 20 FQBUFL
I R L I I I +
23 | (as passed) | 22 FQMODE
R I I +
25 | device description | 24 FQFLAG
.- R I I +
FQPROT 27 | protectlon code | clustersize, mod256 | 26 FQPFLG
R I L +
31 | device name (2 ASCII characters) | 30 FQDEV
I R L +
33 | flag byte | device unit number | 32 FQDEVN
I L L L +
35 | file identification index | 34 FQCLUS
I LI T R I I I I +
37 | (as passed) | 36 FQNENT
I eI S R +
FIRQB+FQJOB Current job number times two.
FIRQB+FQFIL Channel number times two; defines the channel on which

the file is open.

FIRQB+FQSIZM For large disk files (greater than 65,535 blocks), this
byte contains the MSB of the file size in 512-byte
blocks. It is combined with the word at FIRQB+FQSIZ to
form a 24-bit field giving the file size.

FIRQB+FQPPN The PPN under which the file is open. An actual PPN is
returned here even if this word was passed as zero.

3-41

CALFIP
CRTFQ

FIRQB+FQNAM1
FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQBUFL

FIRQB+FQFLAG

FIRQB+FQPFLG

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

The file name created; two words of RAD50 data.
The file type created; one word of RAD50 data.

The size to which the file was preextended, in 512-byte
blocks.

Reasonable buffer size for disk reads and writes, in
bytes. (Always 512. for disk.)

Description of the device just opened (the same
information as the BASIC-PLUS STATUS variable). The
low byte contains the device’s handler index, always
zero (DSKHND) for disk. The high byte contains a set
of status flags, irrelevant here since the device is
always disk. See the OPNFQ subfunction for more
information about these settings.

The file cluster size, modulo 256. That is, a file
cluster size of 256 is indicated by zero. This is the
same as the value passed at FIRQB+FQCLUS, except that
it is returned in a byte instead of a word.

The protection code of the file.

The device name of the disk device, as two ASCII
characters. The actual device name is returned here,
even if this word was passed as zero.

The device unit number. The actual unit number is
returned here, even if FIRQB+FQDEVN+l was passed as
zero.

The file identification index of this file. This word
is significant mainly in that it can be used in place
of the file name in subsequent opens of the file on
disk. You can open the file with the OPNFQ subfunction
of CALFIP using an explicit PPN in FIRQB+FQPPN, a zero
word in FIRQB+FQNAM1l, and the file identification index
in FIRQB+FQNAM1+2.

Note that there is no performance gain for using the
file identification index rather than the file name.
The file identification index is provided for
compatibility with RSX. Furthermore, the file
identification index is changed when the REORDR utility
is run on the directory (see the RSTS/E System
Manager’s Guide).

CALFIP

CRTFQ

Errors

QUOTA Extending the file causes the disk quota to be
exceeded. This error does not occur if the user has
EXQTA privilege.

XXXXX All other errors for this directive are
device-dependent. See Appendix A for a full list of
errors.

Example

The following MACRO code opens a temporary file on channel 13. Assume
that the FIRQB has been initialized to all zeros. Hence, the
temporary file is created on the public disk structure:

MOVB #CRTFQ,FIRQB+FQFUN ; SET FUNCTION CODE
MOVB #13.*2 ,FIRQB+FQFIL ; SET CHANNEL TO 13
CALFIP

CALFIP
DALFQ

DALFQ (Deallocate All Devices)

Form

MOVB #DALFQ, FIRQB+FQFUN
CALFIP

Function

The DALFQ subfunction deallocates all devices currently allocated to
the job.

Privileges Required

None

3-44

Data Passed

Mne- Octal
monic Offset

Octal
Offset monic

B R R R el R R TR R R R R I R

1 |///|
o

FQFUN 3 | DALFQ (= 30) |/////////////////////|
d-remmeccscacar e s et e e e e et e

5 |///|

7 I///I

11 |///l
13 |///|

w
5
~
~
~
~
:t
~
~
~
~
~
N
~
~
~
R
R
~
N
+ N+
~
~
~
~
~
N
~
R
~
~
~
~
~
E:
N
R
~
N

FIRQOB+FQFUN The function code DALFQ (octal value =

Data Returned

0

Mne-

CALFIP
DALFQ

The DALFQ subfunction of CALFIP does not return any meaningful data.

Errors

No errors are possible with DALFQ.

3-45

CALFIP

DEAFQ

DEAFQ (Deallocate a Device)
Form

MOVB #DEAFQ, FIRQB+FQFUN
(Define device to be deallocated in FIRQB)

CALFIP
Function

The DEAFQ subfunction deallocates (that is, releases it for use by
other jobs) a device from the current job.

Privileges Required

None

CALFIP
DEAFQ

Data Passed
Mne- Octal Octal Mne-
monic Offset Offset monic
1 |///| 0
FQFUN 3 | DEAFQ (= 26) I/////////////////////I 2
5 |///| 4
7 |///I 6
11 | (must = 0) | 10 FQNAM1
13 |///| 12
15 |///| 14
17 |///| 16
21 |///| 20
23 |///| 22
25 l///| 24
27 |///| 26

31 | device name (2 ASCII characters) | 30 FQDEV
33 | #0, unit no. real | device unit number | 32 FQDEVN

35 l///| 34
37 |///I 36

FIRQB+FQFUN The DEAFQ function code (octal value = 26).
FIRQB+FQNAM] The word at this location must be set to zero.

FIRQB+FQDEV The name of the device to be deallocated, as two ASCII
characters.

FIRQB+FQDEVN The device unit number is passed here in binary. A
nonzero value in FIRQB+FQDEVN+l indicates an explicit
device unit number, while a zero value indicates no
device unit number.

CALFIP
DEAFQ

Data Returned

Except for a possible error in byte 0 of the FIRQB, the DEAFQ
subfunction of CALFIP does not return any meaningful data.

Errors

NODEVC The device or its type specified at FIRQB+FQDEV and
FIRQB+FQDEVN is not part of your system configuration.

Example

The following code deallocates LP: from the current job:

CALL CLRFQB ; Clear FIRQB

MOVB #DEAFQ, FIRQB+FQFUN ; Set function code
MOV #"LP,FIRQB+FQDEV ; Device=line printer
CALFIP

See Programming Hints for information on the CLRFQB routine.

CALFIP
DIRFQ
DIRFQ (Get Directory Information)
Form

MOVB #DIRFQ,FIRQB+FQFUN
(Define device for the directory wanted)

CALFIP
Function

The DIRFQ subfunction of CALFIP returns directory information about a
disk, DECtape, or magtape file. Two forms of the call are available.
One leaves a magtape file positioned at the EOF and returns the size
of the file as part of the directory information. The second form,
for magtape only, leaves a magtape file positioned at the beginning of
the file, and does not return the size of the file.

Note

For disk directory lookup on a PPN other than that of
the caller, DIRFQ returns only those files to which
the caller has read or execute access.

Privileges Required

DEVICE to perform a directory lookup or disk lookup on caller’s
account if the referenced device is restricted. You need read or
execute access (by protection code, GREAD, or WREAD) to perform a disk
directory lookup on another account.

CALFIP
DIRFQ

Data Passed -

Mne- Octal

monic Offset

Directory Lookup on Index

FIRQB
Octal Mne-
Offset monic

L UL TIIIIII I IIIIII I I IIIII I I IIIIIII I I 11707 | O
B O T B
""""" index of file to read | 4 FQrIL
'{aééiéé;'m{,;;""T"ééé;;;;r}lé;';;x;é;;"T 6 FQPEN

11 |///| 10

13 |///l 12

15 |///I 14

17 |///| 16
21 |///| 20
23 |///| 22

25 l///| 24

27 I///I 26

31 |

33 |

device name (2 ASCII characters) | 30 FQDEV

#0, unit no. real | device unit number | 32 FQDEVN

35 |///| 34
37 |///I 36

FIRQB+FQFUN

FIRQB+FQFIL

The function code DIRFQ (octal value = 12).

The index of the file to read. 1If this word is zero,
the monitor returns data for the first file in the
directory. For some positive value n, the monitor
returns data for the n+l file in the directory. For
magtape, a value of zero causes the monitor to rewind
the tape before it gets the information for the first
file (by reading the label record of the file). The
monitor then spaces the tape forward to the next EOF
record and calculates the number of records in the
file. The tape is left in that position.

3-50

FIRQB+FQPPN

FIRQB+FQDEV

FIRQB+FQDEVN

CALFIP
DIRFQ

A nonzero value performs the same action, except that
the tape is not rewound.

For DECtape, the first call issued must have a value of
zero in this word to read the directory blocks from the
tape before reading the first file. Subsequent calls
with this word nonzero read the directory from the
BUFF.SYS file. (Directory information for DECtape is
kept in this system file on disk to speed up DECtape
file processing: see the RSTS/E Programming Manual.)

The PPN of the directory to look up, for disk or
magnetic tape. (The monitor does not use these bytes
if the device is DECtape but simply returns information
for each file read on the device.)

If this word is zero and the device is disk, this
directive returns information for the PPN under which
this job is being executed.

If this word is zero and the device is magnetic tape,
this directive returns information for each file read,
regardless of the PPN under which it was written.

The device name, as two ASCII characters. Must be
disk, magnetic tape, or DECtape. If this word is zero,
the public disk structure (_SY:) is used.

The device unit number is passed here in binary. A
nonzero value in FQDEVN+1l indicates an explicit device
unit number. A zero value in FQDEVN+l indicates no
unit number.

CALFIP
DIRFQ

Data Passed - Special Magnetic Tape Lookup

Mne- Octal

monic Offset

FIRQB
Octal Mne-
Offset monic

L DI I IIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIT 0
CUDIRRQ (=120 It 2
""""" index of file to read | 4 FOFIL
‘,;;;;';‘i;;;;;';;;';;;;;;;;';;;;'i;;;;;"T 6 FoPEN
__ .

11 I///| 10
13 l///I 12
15 |///1 14

17 |///l 16

21 I///| 20
23 |///| 22
25 |///| 24
27 |///| 26

31 |

33 |

.. +
device name (2 ASCII characters) | 30 FQDEV

------------------- L s 2

#0, unit no. real | device unit number | 32 FQDEVN

... +

35 I///I 34
37 I///| 36

FIRQB+FQFUN

FIRQB+FQFIL

The function code DIRFQ (octal value = 12).

Index number of the file to be read. 1If this word is
zero, information is returned for the first file in the
directory. If this word is some positive value n,
information is returned for the n+l file in the
directory. A value of zero causes the monitor to
rewind the tape before getting information from the
first file (by reading the label record). It then back
spaces the tape one record, leaving it positioned at
the beginning-of-file (BOF). (This action leaves the
tape positioned such that an open on this file will
succeed on a single read from tape.)

3-52

FIRQB+FQPPN

FIRQB+FQDEV

FIRQB+FQDEVN

CALFIP
DIRFQ

A nonzero value does not cause the tape to be rewound;

the next record is read (it must be a label), and the
tape is backspaced one record. When you are searching
a tape for specific files to read, the normal action is
to execute this directive with a value of zero first.
If the file is one to be read, open the file requesting
no rewind, process the file, and close it to position
the tape at the EOF. If the file is not one to be
read, space the tape forward to the next EOF. (You can
do this in MACRO with the .SPEC directive.) Then issue
the DIRFQ call with a nonzero value in the word
beginning at FIRQB+FQFIL, and continue the process.

This word must be set to 177777 for the special
magnetic tape lookup operation.

The device name as two ASCII characters. The device
must be a magnetic tape drive.

The device unit number, in binary. A nonzero value in
FIRQB+FQDEVN+1l indicates an explicit device unit
number. A zero value in FIRQB+FQDEVN+l1 indicates no
unit number. -

3-53

CALFIP
DIRFQ

Data Returned (Both)

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
I L +
1 |///| 0
L e +
3 |/////////////////////| current job no. * 2 | 2 FQJOB
I e +
5 | (as passed) | 4 FQFIL
L R +
7 | project number | programmer number | 6 FQPPN
I O +
11 | file name in RADS50 format | 10 FQNAM1
+ +
13 | (2 words) | 12
A L +
15 | file type in RADS50 format (1 word) | 14 FQEXT
R L +
17 | LSB of file length in blocks | 16 FQSIZ
R I R +
21 | MSB of file length | protection code | 20 FQNAM2
R R I A +
23 | date of last access | 22 FQMODE
R I A dmmmm et e e +
25 | date of creation | 24 FQFLAG
R IR I T +
27 | time of creation | 26 FQPFLG
R dmmm et e e +
31 | | 30 FQDEV
+ (as passed) +
33 | | 32 FQDEVN
R I I +
35 | file clustersize (disk only) | 34 FQCLUS
R I R +
37 | USTAT byte | number entries ret. | 36 FQNENT
R I I L +
FIRQB+FQJOB The current job number times two.
FIRQB+FQPPN The PPN of the file. The project number is in the high

byte (FIRQB+FQPPN+l1) and the programmer number is in
the low byte (FIRQB+FQPPN).

FIRQB+FQNAM1 The file name; two words in RAD50 format.

FIRQB+FQEXT The file type; one word in RAD50 format.

FIRQB+FQSIZ The LSB of the file size, in 512-byte blocks. This
word is combined with the byte at FIRQB+21 to form a

24-bit value giving the file’'s size.

3-54

FIRQB+FQNAM2

FIRQB+FQNAM2+1

FIRQB+FQMODE

FIRQB+FQFLAG

_ FIRQB+FQPFLG

FIRQB+FQCLUS

FIRQB+FQNENT

FIRQB+FQNENT+1

CALFIP
DIRFQ
The protection code of the file.

The MSB of the file's size in 512-byte blocks (see
FIRQB+FQSIZ).

The date the file was last accessed, in system internal
format:

[(year - 1970) * 1000.] + day-within-year

See the .DATE directive for a discussion of the system
internal format for dates.

The date the file was created, in system internal
format.

The time that the file was created, in system internal
format: minutes before midnight, where midnight =
1440. (See the .DATE directive for a discussion of the
system internal format for time.)

The file cluster size for disk devices. It is not used
for tape.

Number of entries returned: 8 for disk; 6 for tape.

Internal flag information (disk only):

Bit Meaning When Set

1 File is placed

2 Some job has write access now

3 File is open in update mode

4 File is contiguous; no extend allowed
5 No delete or rename allowed

7 File is marked for deletion

CALFIP
DLNFQ

Data Passed

Mne- Octal

monic Offset

Octal Mne-
Offset monic

I I it e +
1 I///| 0
I e R +
FQFUN 3 | DLNFQ (= 6) I/////////////////////I 2
R ek e P +
5 |///I 4
I e S +
7 | project number } programmer number | 6 FQPPN
R I +
11 | file name in RAD50 format | 10 FQNAM1
+ +
13 | (2 words) [12
I L R +
15 | file type in RADSO format (1 word) | 14 FQEXT
R i e I I I +

17 l///l 16

21 I///| 20

23 I///l 22
25 |///| 24
27 |///| 26

31 |

33 |

device name (2 ASCII characters) | 30 FQDEV

#0, unit no. real | device unit number | 32 FQDEVN

35 |///\ 34

37 |///l 36

FIRQB+FQFUN

FIRQB+FQPPN

FIRQB+FQNAM1

FIRQB+FQEXT

The function code DLNFQ (octal value = 6).

The PPN of the file to deleted. The project number is
in the high byte (FIRQB+FQPPN+1l), and the programmer
number is in the low byte (FIRQB+FQPPN). A value of
zero defaults to the PPN under which the calling
program is running.

The name of the file to be deleted, as two words of
RAD50 data.

The file type, as one word of RAD50 data.

FIRQB+FQDEV

FIRQB+FQDEVN

Data Returned

CALFIP
DLNFQ

The name of the device containing the file to be
deleted, as two ASCII characters; it must be a disk or
DECtape device. A value of zero in this word indicates
the public disk structure (_SY:).

The device unit number, in binary. A nonzero value in
FQDEVN+1 indicates an explicit device unit number. A
zero value in FQDEVN+l indicates no unit number.

Except for a possible error in byte 0 of the FIRQB, the DLNFQ function
of CALFIP does not return any meaningful data.

Errors
NOSUCH

PRVIOL

Example

The file specified in the data passed cannot be found.

Protection violation. An attempt was made to delete a
file that is either write-protected against the caller
or marked for no delete.

The following code deletes the file MYFIL.LST from the user’s account
on the public structure. Assume that the FIRQB has been filled with
zeros previously:

MOVB #DLNFQ, FIRQB+FQFUN

MOV #" RMYF, FIRQB+FQNAM1 ;SET FILE NAME
MOV #" RILE, FIRQB+FQNAM1+2 ;AND TYPE

MOV 4" RLST, FIRQB+FQEXT ;TO "MYFILE.LST"
CALFIP

3-59

CALFIP
ERRFQ

ERRFQ (Return Error Message Text)

Form/Example
MOVB #ERRFQ, FIRQB+FQFUN
MOVB #ERR, FIRQB+FQERNO
Function

The ERRFQ subfunction of CALFIP returns error message text from the
system error message file or from the default error message file if an
error message file is not currently installed. The text is associated
with the value of the error code passed as byte 4 of the FIRQB. This
call returns the full RSTS/E error message text associated with errors
returned in byte 0 of the FIRQB on all the monitor directives.

Privileges Required

None

3-60

CALFIP
ERRFQ

'Data Passed
Mne- Octal Octal Mne-
monic Offset Offset monic
1 |///| 0
FQFUN 3 | ERRGF (= 14) I/////////////////////I 2
5 l/////////////////////l error code | 4 FQERNO
7 |///| 6
11 |///| 10
13 I///I 12
15 l///| 14
17 I///| 16
21 |///| 20
23 |///| 22
25 !///I 24
27 I///| 26
31 l///| 30
33 |///| 32
35 |///| 34
37 |///I 36

FIRQB+FQFUN The function code ERRFQ (octal value = 16).

FIRQB+FQERNO The error code value (in binary) for which the
corresponding error message text is to be returned.

Errors

The ERRFQ subfunction of CALFIP does not return any errors.

3-61

CALFIP
ERRFQ

Data Returned

Mne- Octal
monic Offset

Octal Mne-
Offset monic

I I I +

1 \///l 0
I I I I +

3 | KB*2(- KB*2+l,detach)| job number * 2 | 2 FQJOB
R R +
5 | | 4 FQFIL

+ +

7 | | 6
+ +

11 | | 10
+ error message -- padded with nulls +

13 | | 12
+ +

15 | to 28 characters (ASCII format) | 14
+ +

17 | | 16
+ +

21 | | 20
+ +

23 | | 22
+ +

25 | | 24
+ +

27 | | 26
+ +

31 | | 30
+ +

33 | | 32
+ +

35 | | 34
+ +

37 | | 36
R R I +

FIRQB+FQJOB The current job number times two.

FIRQB+3 If the job is attached, two times the currently
attached keyboard number. If the job is detached, the
one’'s complement of two times the currently detached
keyboard number. For example, if the keyboard number
is 5, the value in FIRQB+3 is: 12 for an attached job
and 365 (377-12) for a detached job.

FIRQB+FQFIL The error message text begins in this byte. The text

is padded with zeros to 28 characters, if necessary.

CALFIP
LOKFQ
LOKFQ (Disk File/Wildcard Lookup)
Form

MOVB #LOKFQ, FIRQB+FQFUN
(Set up FIRQB to define file/wildcard)

CALFIP
Function
The LOKFQ subfunction of CALFIP does one of two actions:

o Looks for a file on disk by name and returns directory
information (date of creation, and so forth)

o Performs a wildcard file search

For example, with a file name and type in the FIRQB of *,TXT it
searches an account for a file with any file name and a type of .TXT.
By incrementing an index and reexecuting LOKFQ, you can search through
an entire directory for all such files.

Note

For disk directory lookup on a PPN other than that of
the caller, LOKFQ returns only files to which the
caller has read or execute access.

Privileges Required

DEVICE to perform a disk directory lookup on the caller’s account if
the referenced device is restricted. You need read or execute access
(by protection code, GREAD, or WREAD) to perform a disk directory
lookup on another account.

CALFIP
LOKFQ

Data Passed - Disk Directory Lookup

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
R T Ik Tl I P +
1 |///| 0
B I I e +
FQFUN 3 | LOKFQ (= 22) 5/////////////////////| 2
I L I +
5 (must equal 177777 octal) | 4 FQFIL
I L L +
7 | project number | programmer number | 6 FQPPN
I L I A I R +
11 | file name | 10 FQNAM1
+ in RADS50 format +
13 | (2 words) | 12
I I I I L +
15 | file type in RADSO format (1 word) | 14 FQEXT
I I I R A LI I +
17 |///! 16
T L e, +
21 |///1 20
R I T e I +
23 l///| 22
R I e T I S +
25 I///l 24
R I I T I AP PP +
27 |///1 26
I I I TIPS +
31 | device name (disk) (2 ASCII characters) | 30 FQDEV
L L L I L I I I +
33 | #0, device no. real | device unit number | 32 FQDEVN
R I T T I T T I PP +
35 I///! 34
I I I A T I +
37 I///| 36
R ek I I T I PP +
FIRQB+FQFUN The function code LOKFQ (octal value = 22).
FIRQB+FQFIL The word beginning at this location must be set to

177777 (octal) to indicate the "disk directory lookup
by file name" option of LOKFQ.

FIRQB+FQPPN The PPN for the file to be looked up. A value of zero
for this word defaults to the PPN under which the
calling program is running.

FIRQB+FQNAM1 The file name to be looked up; two words in RADS50
format.

3-64

CALFIP

LOKFQ

FIRQB+FQEXT The file type of the file to be looked up; one word in
RADS0 format.

FIRQB+FQDEV The device name (must be disk), as two ASCII
characters. 1If both bytes are zero, the public disk
structure (8Y:) is used.

FIRQB+FQDEVN The disk device unit number is passed here in binary.

A nonzero value in FQDEVN+l indicates an explicit
device unit number. A zero value in FQDEVN+1 indicates

the system default.

Data Returned - Disk Directory Lookup by File Name

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
L LTI I IIIII I IIII I IIIIIIIIII I IIIIIIIIIIIIIIII0] O
3 1 IIIIII I 00007001 Gob number * 2 2 FouoB
5 | came as data passed (177777 octal) | 4 FQFIL
71 project number | programmer number | 6 FQPEN
TR file name in RADSO format 10 FoNANI
13 T (2 words) 12
I I
15 | file type in RAD50 format (1 word) 14 FQEXT
17 | LSB of file length in 512.-byte blocks | 16 FOSIZ
21 | mSB of file lemgth | protection code | 20 FONAM2
23 | date of last access 22 FQMODE
25 T Gate of creation 24 FQFLAG
2T time of creation 26 FQPFLG
s device mame (2 ASCII characters) 30 FQDEV
33 | #0, unit no. real | device unit number | 32 FQDEVN
s file clustersize 34 FQCLUS
7 file identification imdex 36 FQNENT
R I I R I I
FIRQB+FQJOB The current job number times two.

3-65

CALFIP
LOKFQ

FIRQB+FQFIL

FIRQB+FQPPN

FIRQB+FQNAM1

FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQNAM2

FIRQB+21

FIRQB+FQMODE

FIRQB+FQFLAG

FIRQB+FQPFLG

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

FIRQB+FQNENT

The word at this location is the same as the data
passed, in this case, 177777 (octal).

The PPN of the file (same as data passed).

The file name; two words in RAD50 format (same as data
passed).

The file type; one word in RAD50 format (same as data
passed).

The LSB of the file’s size in 512-byte blocks. This
word is combined with the byte at FIRQB+21 to form a
24-bit field giving the file size.

The file’s protection code, in binary, is returned in
this byte.

The MSB of the file size in 512-byte blocks. It is
combined with the word at FIRQB+FQSIZ to form a 24-bit
field giving the file size.

The date the file was last accessed, in system internal
format:

[(year - 1970) * 1000.] + day-within-year

See the .DATE directive for a discussion of the system
internal format for dates.

The date the file was created,
format (see FIRQB+FQMODE).

in system internal

The time the file was created, in system internal
format: minutes until midnight, with 1440 equal to
midnight.

The device name, as two ASCII characters. Always a
specific name, even if zero was passed here.

The device unit number, in binary. A specific number
is always returned here; FIRQB+FQDEVN+l is always
nonzero.

The file cluster size is returned in this word.

The file identification index is returned in this word.
You can use the file identification index instead of
the file name to open a file on disk with the OPNFQ
subfunction of CALFIP. To do so, specify an explicit
device name at FIRQB+FQDEV, a device unit number at
FIRQB+FQDEVN, an explicit PPN at FIRQB+FQPPN, a zero

3-66

CALFIP
LOKFQ

word at FIRQB+FQNAM1l, and the file identification index
at FIRQB+FQNAM1+2. (The file identification index 1is
used by utilities that access software subroutines in
the RMS libraries, for example.)

Note that there is no performance gain in using the
file identification index instead of the file name.

The file identification index is provided for
compatibility with RS8X. Furthermore, the file
identification index is changed when the REORDR utility
is run on the directory (see the RSTS/E System
Manager’s Guide).

Errors

BADNAM The file name in bytes FIRQB+FQNAM1 through FIRQB+13 is
missing or invalid.

NOSUCH The device specified at FIRQB+FQDEV is not disk, or the
file specified does not exist on the specified disk.
This error also occurs when a user does not have read
or execute access to the specified file.

Example

The following code looks for the file MATRIX.DAT on the system disk:

CALL CLRFQB ;CLEAR FIRQB

MOV #LOKFQ, FIRQB+FQFUN ;SET FUNCTION CODE
MOV 177777 ,FIRQB+FQFIL s FILENAME LOOKUP
CLR FIRQB+FQPPN sCALLER’S ACCOUNT
MOV #” RMAT, FIRQB+FQNAM1 ;SET FILENAME

MOV #" RRIX,FIRQB+FQNAM1+2 ;AND TYPE

MOV #” RDAT,FIRQB+FQEXT ;TO "MATRIX.DAT"
CLR FIRQB+FQDEV ;SYSTEM DISK

CLR FIRQB+FQDEVN ;DEVICE

CALFIP

See Programming Hints for information on the CLRFQB routine.

3-67

CALFIP
LOKFQ

Data Passed - Disk Wildcard Directory Lookup

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
I L e I I +
1 l///| 0
T T T T T T TR
FQFUN 3 | LOKFQ (= 22) |/////////////////////| 2
R I I R I I AR +
5 | 1index: n means search for n+l occurrence | 4 FQFIL
R I R +
7 | project number | programmer number | 6 FQPPN
R LI P I R I I IR A +
11 | wildcard file name | 10 FQNAM1
+ specification in RADS50 format +
13 | (2 words) | 12
I LI I O +
15 |wildcard file type in RAD50 format (1 word)| 14 FQEXT
R L +
17 |///| 16
R e L I +
21 |///| 20
I Lt e +
23 l/////////////////////l marked-for-delete | 22 FQMODE
R i I +
25 I///| 24
B R i T +
27 I///l 26
R it s I I I IR AP +
31 | device name (disk) (2 ASCII characters) | 30 FQDEV
R R I +
33 | #0, device no. real | device unit number | 32 FQDEVN
R T I R R T +
35 |///I 34
R I I e +
37 I///l 36
I I S +
FIRQB+FQFUN The function code LOKFQ (octal value = 22).
FIRQB+FQFIL An index number specifying the occurrence of the file
name meeting the wildcard specifications. A value of
zero in this word causes the monitor to search for the
first file name in the directory that meets the
specification. A value of one causes the monitor to
search for the second file name, and so forth.
FIRQB+FQPPN The PPN of the account whose directory of disk files is

to be searched.

3-68

FIRQB+FQNAM1

FIRQB+FQEXT

FIRQB+FQMODE

FIRQB+FQDEV

FIRQB+FQDEVN

CALFIP
LOKFQ

The wildcard file name; as two words in RADS50 format.
Either an asterisk (*) character can replace the entire
file name, or a question mark (?) character can replace
any character in the file name. For example, a file
name of FILE?? would cause the monitor to search the
directory for any file name beginning with the
characters FILE. An * character indicates that the
file name does not matter in the search.

The wildcard file type; as one word in RAD50 format.

An * character can replace the entire file type, or a ?
character can replace any character in the file type.
For example, a file type of BA? causes the monitor to
search the directory for any file type beginning with
the characters BA. An * character indicates that the
file type does not matter in the search.

If bit 14 is set, LOKFQ returns information about
marked-for-delete files.

The name of the device to be searched (must be disk).
A value of 0 in this word indicates the public disk
structure (SY:).

The device unit number in binary. A nonzero value in
FIRQB+FQDEVN+l indicates an explicit device unit
number. A zero value in FIRQB+FQDEVN+1 indicates the
system default.

CALFIP
LOKFQ

Data Returned - Disk Wildcard Directory Lookup

FIRQB
Mne- Octal Octal
monic Offset Offset
+ ---
1 l///| 0
B T R T T T T L I IR S R
3 l/////////////////////l job number * 2 2
+ +
5 | (as passed) 4
I L e
7 | project number | programmer number 6
R I R I I
11 | file name in RADS50 format 10
+
13 | (2 words) 12
e I i
15 | file type in RAD50 format (1 word) 14
LI IR I I I L
17 | LSB of file length in 512-byte blocks 16
I L I L
21 | MSB of file length | protection code 20
R IR I
23 | date of last access (disk only) 22
I I I I I R
25 | date of creation 24
I I I PP
27 | time of creation 26
L R N R N R L I + ----------------------
31 | 30
, + (as passed)
33 | 32
I I P R I I
35 | file clustersize (disk only) 34
R I I AN R P
37 | USTAT byte \//7///7///7//////7////1 36
L L R
FIRQB+FQJOB The current job number times two.
FIRQB+FQPPN The PPN of the file (same as data passed).
FIRQB+FQNAM1 The actual file name of a file meeting the wildcard
specification in the data passed; two words in RAD50
format.
FIRQB+FQEXT The actual file type of a file meeting the wildcard

Mne-
monic

FQJOB
FQFIL
FQOPPN

FQNAM1

FQEXT
FOSIZ
FQNAM2
FQMODE
FQFLAG
FQPFLG
FQDEV
FODEVN
FQCLUS

FONENT

specification in the data passed; one word in RAD50

format.

FIRQB+FQSIZ

FIRQB+FQNAM2

FIRQB+21

FIRQB+FQMODE

FIRQB+FQFLAG

FIRQB+FQPFLG

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

FIRQB+FQNENT+1

CALFIP
LOKFQ

The LSB of the file’s size in 512-byte blocks. This
word is combined with the byte at FIRQB+21 to form a
24-bit field giving the file'’s size.

The file’s protection code, in binary, is returned in
this byte.

The MSB of the file’s size in 512-byte blocks. The
byte is combined with the word at FIRQB+FQSIZ to give
the file’s size.

The date the file was last accessed, in system internal
format:

[(year - 1970) * 1000.] + day-within-year

See the .DATE directive for a discussion of the system
internal format for dates.

The date the file was created, in system internal
format (see FIRQB+FQMODE).

The time the file was created, in system internal
format: minutes until midnight, with 1440 eqgual to
midnight.

The device name, as two ASCII characters. Always a
specific name, even if zero was passed here.

The device unit number, in binary. A specific number
is always returned here; FIRQB+FQDEVN+1l is always
nonzero.

The file cluster size is returned in this word.

Internal flag information:

Bit Meaning When Set
1 File is placed
2 Some job has write access now
3 File is open in update mode
4 File is contiguous; no extend allowed
5 No delete or rename allowed
7 File is marked for deletion

CALFIP

LOKFQ

Errors

BADNAM No file specification appears at FIRQB+FQNAMl1 or the
file name is invalid.

NOSUCH Either the device specified at FIRQB+FQDEV and
FIRQOB+FQDEVN is not a disk, or no match exists for the
occurrence specified in the word at FIRQB+FQFIL.

PAKLCK The disk is restricted and the caller does not have
DEVICE privilege.

Example

The following code asks the monitor to search the directory for
account [2,130) for the first occurrence of a file specification
beginning with the letter X:

CALL CLRFQB sMAKE SURE FIRQB

CALL CLRXRB ;AND XRB ARE CLEAR

MOV #FILNAM, XRB+XRLOC ;POINT TO FILE NAME

MOV #NAMSIZ ,XRB+XRLEN ;SET ITS LENGTH

MOV #NAMSIZ, XRB+XRBC ;AND AGAIN

.FSS ; CONVERT TO FIRQB FORMAT
MOVB #LOKFQ, FIRQB+FQFUN ;SET FUNCTION CODE

CALFIP

FILNAM: LASCII "[2,130]}X?2?2?222.*" + STRING FOR .FSS TO CONVERT
NAMSIZ = ._FILNAM ;AND ITS LENGTH

See Programming Hints for information about the CLRFQB and CLRXRB
routines.

3-72

CALFIP
OPNFQ

OPNFQ (Open a File/Device on a Channel)
Form

MOVB #OPNFQ,FIRQB+FQFUN
(Set parameters appropriate to file or device)

CALFIP
Function

The OPNFQ function has the same effect as an OPEN FOR INPUT statement
in BASIC-PLUS; it opens a device or existing file on a channel.
Parameters defining the device, file name and type, protection code,
and mode are passed to the monitor in the FIRQB. If a file name is
given in the FIRQB, a file-structured open for input is performed. 1If
no file name is given, a non-file-structured open for input is
performed. The RSTS/E Programming Manual describes file- and
non-file-structured OPEN FOR INPUT statement and the actions taken for
the mode parameter (MODE modifier in BASIC-PLUS) for each device.

Note

Privileges are required to open a disk for
non-file-structured processing. Whenever you use a
disk as a non-file structured device, be aware that
all RSTS/E data structures you access are subject to
change at any time. The same applies if you open a
UFD as a file.

Privileges Required

No privileges are required to open the caller’s UFD for read-only
access. Privileges are needed to perform the following:

0 GREAD to open the UFD of any other account in the caller’s
group for read-only access

0 WREAD to open the UFD of any account outside the caller’'s
group for read-only access

o DEVICE to open a restricted device

o Read access (protection code, GREAD, or WREAD) to open a disk
file for read-only access

3-73

CALFIP
OPNFQ

o Write access (protection code, GWRITE, WWRITE, and/or SYSIO)
to open a disk file for write access

0 EXQTA to specify detach on close option on a pseudo keyboard

o TUNE to select data caching mode on open

o RDNFS to gain non-file-structured read access to a disk

O SYSMOD to gain non-file-structured write access to a mounted
disk

0 WRTNFS to gain non-file-structured write access to a disk, or
to gain write access to a UFD

CALFIP

OPNFQ
Data Passed
FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
R A L +
1 I///| 0
I LI I PP R +
FQFUN 3 | OPNFQ (= 2) I/////////////////////I 2
L I I +
5 \/////7///////////////7] channel number * 2 | 4 FQFIL
R I I I L +
7 | project number | programmer number | 6 FQPPN
I I I +
11 | file name in RAD50 format | 10 FQNAMI1
+ +
13 | (2 words) | 12
R I T P R I I R +
15 | file type in RAD50 format (1 word) | 14 FQEXT
I I I PP +
17 | receive buffer size for DMCl1/DMR11 | 16 FQSIZ
R T I +
21 l///| 20
I T S T I I +
23 | mode | 22 FQMODE
R I A e I +
25 |///| 24
I I T L +
27 I///| 26
I I LI +
31 | device name (2 ASCII characters) | 30 FQDEV
R L I R R +
33 | 0, unit no. real | device unit number | 32 FQDEVN
I I I S +
35 | no. rec. bfrs. to allocate for DMC1l1l/DMR11| 34 FQCLUS
I I I L L +
37 |///l 36
R I I A I I P +
FIRQB+FQFUN The function code OPNFQ (octal value = 2).
FIRQB+FQFIL Channel number times two; defines the channel on which
the file is to be opened.
FIRQB+FQPPN The PPN of the file to be opened. The project number

is in the high byte (FQPPN+1l), and the programmer
number in the low byte (FQPPN). A value of zero
defaults to the PPN under which the calling program is
running. (Zero for non-file-structured open.)

3-75

CALFIP
OPNFQ

FIRQB+FQNAM1

FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQMODE

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

The file name to be opened; two words of RADS50 data.
May also be specified as a zero word followed by the
file identification index (see LOKFQ).

(Must be two zero words for a non-file-structured
open.)

The file type; one word of RAD50 data. (Must be zero
for a non-file-structured open.)

This parameter has the same function as the FILESIZE
option in BASIC-PLUS. It is only used for the
DMC1l1/DMR11l, where it specifies the receive buffer
size. <You can specify a value between 1 and 632 (1170
octal). See the RSTS/E Programming Manual for more
information.

The mode with which the file is to be opened; values
and actions taken are as described for the MODE
modifier in OPEN FOR INPUT and non-file-structured OPEN
statements for various devices, as described in the
RSTS/E Programming Manual. If you use a mode value at
all, you must set bit 15 of this word to 1.

The device name is passed here as two ASCII characters.
A value of zero indicates "SY", public disk.

The device unit number is passed here in binary. A
nonzero value in the high byte of this word
(FIRQB+FQDEVN+l) indicates an explicit device unit
number. A zero value in FIRQB+FQDEVN+l indicates no
unit number.

This parameter has the same function as the CLUSTERSIZE
option in BASIC-PLUS. For OPNFQ, it is used only for
the DMC1l1/DMR1l1l, where it specifies the number of
receive buffers to allocate. You can specify a value
between 1 and 127, but values greater than four are not
recommended. See the RSTS/E Programming Manual for
more information.

CALFIP

*\ OPNFQ
Data Returned
FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
I i LI +
1 |///| 0
I LI I I T I I +
3 I/////////////////////I current job no. * 2 | 2 FQJOB
I R I I +
FQSIZM 5 | MSB of file size | channel no. * 2 | 4 FQFIL
I I I R I I +
7 | project number | programmer number | 6 FQPPN
R LI R I +
11 | file name in RADS0 format | 10 FQNAM1
+ +
13 | (2 words) | 12
R I +
15 | file type in RAD50 format (1 word) | 14 FQEXT
R PP R +
17 | LSB of file size | 16 FQSIZ
R I R +
21 | reasonable buffer size for device | 20 FQBUFL
I I +
23 | (as passed) | 22 FQMODE
+ ---------------------- + ---------------------- +
25 | device description | 24 FQFLAG
o m e e e I +
FQPROT 27 | protection code | clustersize, mod256 | 26 FQPFLG
LRI R R LI I I I +
31 | device name (2 ASCII characters) | 30 FQDEV
I LI I I +
33 | flag byte | device unit number | 32 FQDEVN
R I A R I S +
35 | file identification index | 34 FQCLUS
I Lt I +
37 I/////////’//////////////////////////////////| 36 FQNENT
I It S +
Note
For nondisk devices, the relevant information
returned with the OPNFQ subfunction is in the two
words at FIRQB+FQOBUFL and FIRQB+FQFLAG. All other
words are returned as passed.
FIRQB+FQJOB The current job number times two.
FIRQB+FQFIL Channel number times two; defines the channel on which

the file is open.

CALFIP
OPNFQ

FIRQB+FQSIZM

FIRQB+FQPPN

FIRQB+FQNAM1
FIRQB+FQEXT

FIRQB+FQBUFL

FIRQB+FQFLAG

FLGFRC
FLGKB |
FLGRND | |

L
15 14 13

FLGPOS |
FLGMOD

l

For large disk files (greater than 65,535 blocks), this
byte contains the MSB of the file’s size in 512-byte
blocks. This byte is combined with the word at
FIRQB+FQSIZ to form a 24-bit field giving the file
size.

The PPN under which the file is open. An actual PPN is
returned here even if this word was passed as zero.

The file name; two words of RADS50 data.
The file type; one word of RAD50 data.

Reasonable buffer size for this device, in bytes. If
you are doing device-independent I/O (that is, if you
do not want to keep track of which device is being
opened and perform specific opens, reads, and writes,
depending on the device), this value is the monitor’s
best guess for a buffer size to use in subsequent reads
and writes on the opened channel. (See the .READ and
.WRITE directives.)

Description of the device just opened. The low byte
contains the device’s handler index. There is one
unique handler index for all device types. The high
byte contains a set of status flags to allow for
device-independent I/0 routines.

DDNFS
DDRLO
DDWLO |

m_______._____

High Byte - Device-Type Flags

The bits in the high byte of the flags word are set to
indicate the type of file or device just opened.
FLGRND 1 The device or file is random-access.
0 The device or file is sequential.

FLGKB =

FLGFRC =

FLGMOD =

FLGPOS =

DDWLO =

DDRLO =

DDNFS =

Low Byte

CALFIP
OPNFQ

The file or device is a terminal-type file
or device (or is generically a terminal).

The file or device is not a terminal-type

file or device.

The file or device is byte-oriented. That
is, the .READ and .WRITE directives handle
data in byte units.

The file or device is block-oriented. The
.READ and .WRITE directives handle data in
block units.

The file or device accepts modifiers in
.READ and .WRITE directives.

The file or device does not accept modifiers
in .READ and .WRITE directives.

The file or device keeps track of its
horizontal position and expands characters
such as TAB into whatever is appropriate for
the file or device. You can determine the
current horizontal position with the .POSTN
directive.

The file or device does not keep track of
its horizontal position.

The file or device has been write-locked
(with the protection code or mode value in
the open) or is generically a read-only
device.

The file or device is not write-locked.

The file or device has been read-locked
(with the protection code in the open) or is
generically a write-only device.

The file or device is not read-locked.

The file or device is non-file-structured
(or is generically not a file-structured
device).

The file or device is file-structured.

Device Handler Index

Bits 0-7 of the flags word contain a handler index that
indicates the generic kind of device. The currently
defined values follow.

CALFIP
OPNFQ

+------- R R I I I I +
| Octal | | |
| Value | Symbol | Meaning
o domeem R LI +
0 DSKHND All disks
2 TTYHND All terminals
4 DTAHND | DECtape
6 LPTHND All line printers
10 PTRHND Paper tape reader
12 PTPHND Paper tape punch

| l
! |
| |
l |
| |
g
14 | CDRHND | Card reader
| |
I |
| |
| I
| I
I |
| |
| I
| I
l |

I
|
|
|
1
\
|
|
Pseudo keyboards l
|
;
|
l
}
|

MTAHND Magnetic tape
20 PKBHND
22 RXDHND Flexible diskettes
24 RJEHND 2780 remote job entry
26 NULHND The null device
30 DMCHND The DMCll/DMR11 DDCMP interface
36 Reserved
40 KMCHND KMC11
42 IBMHND IBM interconnect
46 DMPHND DMPll/DMV11l device
e e I I +

FIRQB+FQPFLG The file cluster size, modulo 256. That is, a file
cluster size of 256 is indicated a zero.

FIRQB+FQPROT The protection code of the file.

FIRQB+FQDEV The device name; two ASCII characters. (For disk, the
actual device name is returned, even if a zero word was
passed in this word.)

FIRQB+FQDEVN The device unit number. (For disk devices, the actual
unit number is returned here, even if FIRQB+FQDEVN+1l
was passed as zero.)

FIRQB+33 For a file-structured open, this byte contains two
relevant bits:

Bit 0 = 0 The device is in the public structure
Bit 0 = 1 The device is a private disk

Bit 1 =0 A specific device was not specified
Bit 1 =1 A specific device was specified

These bits are meaningless for a non-file-structured
open.

FIRQB+FQCLUS The file identification index of this file. This word
is significant mainly in that it can be used in place
of the file name in subsequent opens of the file on
disk. You can open the file with the OPNFQ subfunction

3-80

CALFIP
OPNFQ

by using an explicit PPN in FIRQB+FQPPN, a zero word in
FIRQB+FQNAM1, and the file identification index in
FIRQB+FQONAM1+2.

Note that there is no performance gain in using the
file identification index instead of the file name.

The file identification index is provided for
compatibility with RSX. PFurthermore, the file
identification index is changed when the REORDR utility
is run on the directory (see the RSTS/E System
Manager’s Guide).

Errors
NOTCLS The specified channel is already open. It must be
closed before it can be opened again.
PRVIOL You do not have the necessary privilege and you tried
to:
0o Open a disk for non-file-structured access.
0 Open a device that the system manager has
restricted to users with DEVICE privilege.
XXXXX All other possible errors are device-dependent. See
Appendix A for a full list of errors.
Example

The following MACRO code sets up the FIRQB for the OPNFQ function. A
non-file-structured open of magnetic tape unit 2 is done on channel 3:

MAG: L.ASCII MT
CALL CLRFQOB ;CLEAR FIRQB
MOVB #OPNFQ, FIRQB+FQFUN ;SET FUNCTION CODE
MOVB $3%2,FIRQB+FQFIL ;SET CHANNEL = 3
MOV MAG,FIRQB+FQDEV ;SET DEVICE = MT
MOVB #377,FIRQB+FQDEVN+1 ;SET FLAG DEVICE NO. EXPLICIT
MOVB #2,FIRQB+FQDEVN ;SET DEVICE NO. = 2
CALFIP

See Programming Hints for information on the CLRFQB routine.

3-81

CALFIP

RENFQ

RENFQ (Rename a File)

Form
MOVB #RENFQ, FIRQB+FQFUN
(Define file to be renamed and new name in FIRQB)
CALFIP

Function

The RENFQ function renames an existing file on disk or DECtape and, if
requested, deletes any existing file with the new name.

Privileges Required
DEVICE is required if the device is restricted. Create/rename access

(GWRITE, WWRITE, and/or SYSIO) to rename a disk file outside the
caller’'s account. SYSIO to set the privilege bit (bit 7 in FQPROT).

3-82

CALFIP

RENFQ
; Data Passed
FIRQB
Mne- Octal Octal. Mne-
monic Offset Offset monic
R i I L +
1 l///| 0
I I +
FQFUN 3 | RENFQ (= 10) l/////////////////////l 2
R I I e i I +
5 |///| 4
L I +
7 | project number | programmer number | 6 FQPPN
I I I I +
11 | file name | 10 FQNAM1
+ in RADS50 format +
13 | (2 words) [12
R R I +
15 | file type in RAD50 format (1 word) | 14 FQEXT
I A I +
17 | -1 to delete existing file (disk only) | 16 FQSIZ
I I +
21 | new file name | 20 FQNAM1
+ in RAD50 format +
23 | (2 words) | 22
B R +
25 | new file type in RADS50 format (1 word) | 24 FQFLAG
R L +
FQPROT 27 | flle protection | = 0 if no change | 26 FQPFLG
I I I I I I I +
31 | device name (disk) (2 ASCII characters) | 30 FQDEV
R I I I P A +
33 | #0, device no. real J device unit number | 32 FQDEVN
e e +
35 |///I 34
e I +
37 |///I 36
T T T T R +
FIRQB+FQFUN The function code RENFQ (octal value = 10).
FIRQB+FQPPN The PPN of the existing file to be renamed. The

project number is in the high byte (FIRQB+FQPPN+1), and
the programmer number is in the low byte (FIRQB+FQPPN).
A value of zero defaults to the PPN under which the
calling program is running.

FIRQB+FQNAM1 The old (existing) name for the file; two words of
RAD50 data.

FIRQB+FQEXT The old (existing) type for the file; one word of RAD50
data.

3-83

CALFIP
RENFQ

FIRQB+FQSIZ

FIRQB+FQNAM2

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

Data Returned

This word is set to -1 to indicate that any existing
file on the specified device with the new name is to be
deleted. If any other value is given here and a file
already exists with the new name, the RENFQ function
will return an error.

The new file name and type; three words of RADS50 data.
You can use RENFQ to change the protection code on a
file by setting FQPROT and making these three words the
same as the three words beginning at FIRQB+FQNAM1.

The new protection code for the file, if any, is
specified in this byte. To retain the old protection
code, this entire word (FIRQB+FQPFLG and FIRQB+FQPROT)
must be zero. If the word is nonzero, the high byte
will be used as the new protection code.

The device name is passed here as two ASCII characters.
It must be a disk or DECtape device. A value of zero
in this word indicates the public disk structure
(_8Y:).

The device unit number is passed here in binary. A
nonzero value in FIRQB+FQDEVN+l indicates an explicit
device unit number. A zero value in FIRQB+FQDEVN+1l
indicates the system default.

Other than a possible error in byte 0 of the FIRQB, the RENFQ function
of CALFIP does not return any meaningful data.

Errors

FIEXST

NOSUCH

The new file name specified already exists.

The old file specified cannot be found.

3-84

‘Example

The following code renames the file OLDNAM.TXT to
public disk structure under the caller’s account.

so any existing file named NEWNAM.TXT is deleted:

CALL
MOVB
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALFIP

See Programming Hints for information about the CLRFQB routine.

CLRFQEBE

#RENFQ, FIRQB+FQFUN

#” ROLD, FIRQB+FQNAM1
#” RNAM, FIRQB+FQNAM1+2
#” RTXT, FIRQB+FQEXT
$#-1,FIRQB+FQSIZ

#” RNEW, FIRQB+FQNAM2
$#” RNAM, FIRQB+FQNAM2+2
#” RTXT,FIRQB+FQNAM2+4

3-85

;CLEAR FIRQB

;SET FUNCTION CODE
;SET OLD FILE NAME
;AND TYPE

;TO "OLDNAM.TXT"
;DELETE EXISTING FILE
;SET NEW FILE NAME
sAND TYPE

; TO "NEWNAM,TXT"

CALFIP
RENFQ

NEWNAM.TXT on the
FQSIZ is set to -1,

CALFIP
RSTFQ

RSTFQ (Reset a Channel)

Form

MOVB #RSTFQ, FIRQB+FQFUN

(Define channel to be reset)

CALFIP
Function

The RSTFQ function closes a channel, all channels, or all channels
except one without performing any of the normal clean-up operations.
For example, no trailer tape is written to paper tape punch; no form
feed is given on the line printer; and no trailer labels are written
to magnetic tape. This function is useful as a backup to a normal
close operation. 1If a normal close fails, RSTFQ will close the
channel regardless. You can also use RSTFQ to closes a channel on
which a tentative file is open if you do not want to make the file
permanent. The RSTFQ directive functions the same as a CLOSE
statement with a negative channel number in BASIC-PLUS. See the
RSTS/E Programming Manual for description of tentative files.

Privileges Required

None

3-86

CALFIP
RSTFQ

Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 I///| 0
FQFUN 3 | RSTFQ (= 20) |/////////////////////| 2
5 I/////////////////////I channel number * 2 | 4 FQFIL
7 |///I 6
11 |///l 10
13 |///l 12
15 |///| 14
17 I///l 16
21 I///| 20
23 I///I 22
25 I///l 24
27 l///l 26
31 |///| 30
33 f///i 32
35 I///| 34
37 f///| 36

FIRQB+FQFUN The function code RSTFQ (octal value

[
o
o

FIRQB+FQFIL The value is set as follows:

o To reset one channel, set FIRQB+FQFIL to the
channel number to reset times two

o To reset all channels, set FIRQB+FQFIL to zero
o To reset all but one channel, set FIRQB+FQFIL to

- (channel number times two); that is, the negative
of two times the channel number to remain open

3-87

CALFIP
RSTFQ

.CCL

.CCL - Check String for CCL Command
Form

.CCL
Function

The .CCL directive asks the monitor to check a string (defined in the
XRB) to see if it is a valid Concise Command Language (CCL) command.
If the string is a valid CCL command, the monitor passes control to
the appropriate run-time system for that CCL (as defined by the system
manager), using the equivalent of a .RUN directive. 1If the directive
is successful, control does not return in line.

Control passes to the run-time system at the location specified in the
P.RUN word in the pseudovector region (Chapter 2). Data in the job’s
CORCMN, XRB, FIRQB, and KEY areas in the low segment are passed to the
run-time system because they are of interest to the run-time system
being entered as a result of a .CCL, not to the caller. The file
containing the program to be run as a result of the .CCL command is
opened on channel 15. See Chapter 2 for a description of these areas
in the P.RUN word.

If the string is not a valid CCL command, the monitor returns control
to the caller (the run-time system or user job image that issued the
.CCL directive) with no error. Control resumes with the instruction
following the .CCL. Since control would not be returned here
otherwise, the program does whatever housekeeping it deems necessary
here for an unsuccessful CCL.

The system manager defines the CCL command, an abbreviation point, the
name of the file that is to be executed when the command is given, and
an entry point for the program (see the RSTS/E System Manager'’s
Guide).

The command can be a string from one to nine characters long. The
allowed single-character commands are A through Z, @, $, and #.
Commands that are longer than one character must begin with a letter;
the remaining characters can be letters or digits.

The abbreviation point defines how many characters must be specified
before the command is accepted as valid. For example, if "DIRECTORY"
were defined as a CCL command, the system manager could indicate three
characters as the abbreviation point for the command. Then DIR, DIRE,
DIREC and so forth, up to the full DIRECTORY, would all be interpreted
by the monitor as correct CCL commands. (The monitor always fills in
the full CCL command in CORCMN when it passes control to the
appropriate run-time svstem.)

L d CCL

When you issue a .CCL directive, the monitor compares the indicated
string with the commands defined by the system manager:

0 All null (ASCII code 000) and delete (ASCII code 177)
characters are ignored and are never passed on to the
run-time system in CORCMN.

o0 ASCII code 200 is ignored and is never passed on to the
run-time system in CORCMN.

o Leading spaces (ASCII code 040) and tabs (ASCII code 01l1l) are
ignored and are never passed on to the run-time system in
CORCMN.

o When not enclosed by the quote characters " (ASCII code 042)
and * (ASCII code 047):

- All tabs (ASCII code 0ll1l) are changed to spaces (ASCII
code 040).

- All control characters (ASCII codes 001 through 037,
inclusive, and ASCII codes 201 through 237, inclusive)
are ignored and never passed in CORCMN.

- Adjacent spaces (ASCII code 040) are merged into a single
space.

- All lowercase alphabetics (ASCII codes 141 through 172,
inclusive, and ASCII codes 341 through 376, inclusive)
are changed into their uppercase equivalents (ASCII codes
101 through 132, inclusive, and ASCII codes 301 through
336, inclusive).

o When enclosed by the qguote characters " (ASCII code 042) and
' (ASCII code 047), all characters are kept as is and passed
on to the run-time system in CORCMN.

Immediately following the CCL command text (for example, DIR/SI:n/DET)
the monitor also analyzes two switches. These switches are passed on
to the run-time system as status flags set in the XRB (see the P.RUN
description in Chapter 2). The two switches may appear in either
order, but must immediately follow the command. Both are optional
switches.

The /SIZE switch has the format:

[space]/SI[Z[E]}]):[+][#]n[.]

where n indicates the size, in K words, of the user job image that the
program, when executed, will require. If the + sign is given, n

indicates the additional amount of space, in K words, that the file

3-91

.CCL

will require over that indicated by the computed size or minimum size
(see the description of the PF.CSZ bit in P.FLAGS word, Chapter 2).
If the + sign is omitted, then n simply indicates the size, in K
words, at which the invoked file should run. 1If the # sign is given,
n is assumed to be octal. 1If the period (.)is given, n is assumed to
be decimal. If both are given, an error is returned, and if neither
is given, n is assumed to be decimal. The value of n must be between
1 and the system-wide maximum for a user job image (see the SWAP MAX
discussion in the RSTS/E System Installation and Update Guide).

The /DETACH switch has the format:
[space]/DET[A[C[H]]]

This switch indicates that the invoked program should be run detached.
In this state, channel 0 (the terminal associated with the job) is
marked as detached while the program is running. This switch is
useful for noninteractive programs; it frees the terminal for other
use and prevents the user from interrupting the job by entering a
CTRL/C.

Remember that the monitor simply examines these switches and passes
the information on to the run-time system. The run-time system is
responsible for doing the appropriate processing. For more

information on the CCL facility, see the RSTS/E Programming Manual.

Note
Do not use this directive from a user job image
running under the RT11l run-time system, since the
lowest 512. bytes are used by RT11 differently from
other run-time systems. 1Instead, use .DOCCL (see
Chapter 7).
Privileges Required

Execute access (by protection code, GREAD, or WREAD) is needed to
execute a program for a CCL command.

3-92

.CCL

Data Passed

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
I P R A +
1l | length of proposed command string, bytes | 0 XRLEN
I L P e +
3 | length of proposed command string, bytes | 2 XRBC
I I L +
5 | starting address of command string | 4 XRLOC
I A +
7 |///| 6
e I +
11 | | 10 XRBLK
+ (passed to +
13 | new run-time system | 12
+ unaltered) +
15 | | 14
R I I I I +
XRB+XRLEN The length of the proposed CCL command string, in
bytes.
XRB+XRBC The length of the proposed CCL command string, in
bytes, is also passed in this word.
XRB+XRLOC The starting address of the proposed CCL command
string. (See the section "XRB (Transfer Request
Block)" in Chapter 2 for more information.)
XRB+XRBLK The remaining three words are unaltered here if the

string is indeed a CCL command and the monitor takes
over and does the equivalent of a .RUN directive. That
is, the run-time system that is given control as a
result of this command finds the same three words here
that the caller left. These three words are also be
unchanged if control returns back to the caller for any
reason. See the .RUN monitor call in this Chapter and
the P.RUN entry point in Chapter 2 for details.

Data Returned

No useful data is returned to the calling program. (The P.RUN
description describes the data passed to the run-time system if the
call is successful.) If the call is unsuccessful, the last three words
of the XRB are unaltered, but the first four words are random. In
addition, an error code is returned in the first byte of the FIRQB.

3-93

.CCL

Errors

(none)

BADCNT

BADSWT

BDNERR

LINERR

XXXXXX

Example

No error is returned if the command part of the string
passed was not a valid CCL command. The contents of
CORCMN have not been altered; the XRB (except for the
last three words) has been altered.

The first three words of the XRB, which describe the
CCL command string, are illegal.

An illegal switch was given in the CCL command string.

An illegal number was the argument to one of the
switches found in the CCL command string. For example,
the n value in the /SIZE switch was greater than the
system-wide maximum for a user job image (see the SWAP
MAX discussion in the RSTS/E System Installation and
Update Guide).

The indicated string is too long to be passed in
CORCHMN.

Any other error returned results from the monitor’s
execution of a .RUN directive for the program. See the
.RUN directive in this chapter.

The following example asks the monitor to check a 72-byte string
beginning at location BUFFER to see if it is a CCL command:

BUFFER:

.BLKB

CALL
MOV
MOV
MOV
.CCL

72.
CLRXRB Clear XRB
#72.,XRB+XRLEN Set length

#72.,XRB+XRBC
#BUFFER ,XRB+XRLOC

Set length again
Set starting address

~e we weo we

See Programming Hints for information on the CLRXRB routine.

3-94

.CHAIN

.CHAIN - Execute Under Same RTS
Form

.CHAIN
Function

The .CHAIN directive is the same as the .RUN directive, except that it
returns an error if the program to be run would cause a new run-time
system to be entered. That is, if the call succeeds, the current
run-time system is entered at the P.RUN entry point (see Chapter 2).
In addition, there is no change in the user job image size.

Otherwise, the error code NORTS is returned in byte 0 of the FIRQB.

Use this call to bypass the special protection afforded by the
compiled-file bit in the protection code. The run-time system can use
this directive to access an executable file without the problem of
possibly losing control (unlike .RUN, which can transfer control to a
different run-time system). The .CHAIN directive reenters the
run-time system so a user cannot take control of the file once it is
open on channel 15.

See the .RUN directive, for Data Passed, Data Returned, and Errors.
For the example, substitute .CHAIN for .RUN.

Note
Do not use this directive from a user job image
running under the RT1l run-time system. Use the RT1l
.CHAIN directive (see Chapter 7) to transfer control
to another program running under RT11l.

Privileges Required

Execute access (by protection code, GREAD, or WREAD) is required to
execute a program.

3-95

-CLEAR
.CLEAR - Clear Keyword Bits
Form

.CLEAR
Function

Use the

location in the user job image.

to the monitor.
Privileges Required
None

Data Passed

.CLEAR directive to clear certain bits in the keyword (KEY)

The XRB passes the bits to be cleared

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
R I R i +
1 | bits to be cleared are set to 1 here | 0 XRLEN
R I I I +
3 |///! 2
e L I +
5 |///| 4
T T LI I P +
7 i///l 6
B T T e ik T T T T +
11 l///| 10
R k dh I I I +
13 P///l 12
I I i I I I +
15 |///l 14
T ok T I T +
XRB+XRLEN The bits to be cleared are set to 1 here
JFSPRI--------- +
JFFPP---w-c--- + |
JFPRIV------- + | |
JFSYS------- + | | |
JFNOPR- - - - - + | | | |
JFBIG----- + | | | | |
JFLOCK- - -+ | | | ! I |
| | | l | | l
15 14 13 12 11 10 9 8 | 7 6 5 4 3 2 1 0
R Lk I R N i T R A e i r I S
| | | | I | | l l I I | I | | | |
I I R I R R R I I R CE I

; JFLOCK

JFBIG

JEFNOPR

JFSYS

 JFPRIV

JFFPP

JFSPRI

.CLEAR

Clearable by any caller. Clearing JFLOCK indicates
that the job wants to be swapped. When JFLOCK is
clear, the monitor swaps the job (that is, the user job
image) to and from disk as necessary.

Not clearable by any caller; masked off. That is, the
corresponding bits in KEY cannot be cleared by the job
with the .CLEAR directive.

Not clearable by any caller; masked off.

Clearable by any caller. If the job has temporary
privileges and this bit is cleared in a .CLEAR call,
the temporary privileges are temporarily lost.

If a .CLEAR directive is issued with this bit indicated
for clearing, any temporary privileges that the job has
or had are permanently lost.

Clearable by any caller. Clearing JFFPP indicates that
this job no longer wants the state of the hardware
floating-point unit (if any) to be swapped along with
the job’s normal context information.

Clearable by any caller. Clearing JFSPRI lowers the
job’s run priority by one-half step. That is, it
clears bit 2 of the system- controlled low-order three
bits of the run priority. See the SET JOB command
RSTS/E System Manager’s Guide.

All other bits in the XRB are masked off.

Data Returned

The .CLEAR directive does not return any meaningful data.

Errors

No errors are possible with the .CLEAR directive.

Example

The following code clears the JFLOCK bit:

CALL
Mov

.CLEAR

CLRXRB ;CLEAR XRB
#JFLOCK, XRB+XRLEN ;SET JFLOCK FOR CLEAR

See Programming Hints for information on the CLRXRB routine.

+«CMDLN

.CMDLN - Read/Write Command Line
Form
.CMDLN
Function
The .CMDLN directive lets programs pass up to 1K words of data (2048
characters) when chaining to another program. DCL uses this
capability to pass long command lines to some server programs. If
possible, the .CMDLN directive stores the data in core common. If
not, it stores the data in XBUF.
Note

The read function deletes the command line after it

has been read, therefore the command line can only be

read once.
Privileges Required

None

Data Passed (Write a Command Line)

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
R I R I +
1 | length of command line to write | 0 XRLEN
R I R I +
3 | length of command line to write | 2 XRBC
R I +
5 | address of command line to write | 4 XRLOC
R I R L +
7 |///| 6
R R I R I +
11 |///| 10
R it S I I I I +
13 F///! 12
R I L +
15 ‘///l 14
R I R +
XRB+XRLEN The length of the command line to be written, in bytes.
XRB+XRBC The length of the command line to be written, in bytes.
XRB+XRLOC The starting address of the command line to be written.

(See the section "XRB (Transfer Request Block)" in
Chapter 2 for more information.)

3-98

Errors

BADCNT

NOBUFS

.CMDLN

XRB parameters were invalid, or the command line was

too long.

Not enough XBUF was available to store the command
line.

Data Passed (Read a Command Line)

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
e I +
1 | length of buffer to receive command line | 0 XRLEN
R R I I +
3] zero | 2 XRBC
I I I I +
5 | address to place command line | 4 XRLOC
R L +

7 |///I 6

11 I///I 10

13 I///| 12

15 |///| 14

XRB+XRLEN

XRB+XRBC

XRB+XRLOC

Data Returned
XRB+XRBC
Errors

NOSUCH

LINERR

The length of the buffer to receive the command line,
in bytes.

Zero to indicate a read operation.
Starting address of the area where the command line is

placed. (See the section "XRB (Transfer Request
Block)" in Chapter 2 for more information.)

The length of the command line read,

in bytes.

There was no command line to be read.

The command line was too long for the user’s buffer.

3-99

«CORE

.CORE - Change Memory Size
Form

.CORE
Function
The .CORE directive asks the monitor to change the amount of memory
currently allocated for the user job image (low segment) for this job.
The monitor preallocates space for a user job image at the time a .RUN
directive is issued. The space is based on the size of the file (if
PF.CSZ = 1 in the P.FLAG word of the pseudovector region) or is equal
to the P.MSIZ word in the pseudovector region.

Note

If the I&D space split is enabled, .CORE alters only
the size of the D-space.

You can change this initial size with the .CORE directive as many
times as you want, as long as the requested size:

o Falls within a maximum and minimum value
o Does not overlap any address windows created by the job for
use with resident libraries (see the .PLAS directive in this

chapter)

The monitor first checks the size requested against maximum and
minimum values, using this algorithm:

R +

lKword < P.MSIZ < | size requested | < private < P.SIZE system
| with .CORE 1 maximum maximum
R I I + for job

The monitor determines the maximum allowable amount of space for a
user job image as follows:

0 Set <max> (the maximum size that a job image can be) to the
system-wide maximum. This maximum is set by the system
manager at startup time (see the SWAP MAX discussion in the
RSTS/E System Installation and Update Guide).

o If the maximum user job image size imposed by the run-time
system (P.SIZE in the pseudovectors) is less than the current
<max>, set <max> to P.SIZE.

o If the job’s private memory maximum is less than <max> and if
the caller does not have EXQTA privilege, then set <max> to
the job’s private memory maximum. The system manager can set

3-100

«CORE

a particular job’'s private memory maximum with the SET
JOB/SIZE=n command. You can also set a private memory
maximum with the UU.PRI subfunction of the .UUO directive (in
this chapter). A job’s private memory maximum is initially
defaulted to the system maximum.

0o The size of I-space and the size of D-space can not exceed
32K words each.

Thus, the size requested with .CORE is checked against <max>, as
determined by the four previous steps. The size requested with .CORE
is also checked against a minimum (the P.MSIZ word in the pseudo
vectors, which must be greater than or equal to 1K words). Any size
between P.MSIZ and <max>, inclusive, is legal.

There are two special cases:

o If the size requested with .CORE is exactly equal to the
run-time system’s minimum size (P.MSIZ), that request is
considered legal even if the requested size is greater than
the job’s private maximum.

o If the size requested with .CORE is less than the job image’s
current size and within the allowable bounds for the run-time
system, but it is still larger than the private maximum, that
request is considered legal. This could happen if the caller
had EXQTA privilege, allowing the current size to be greater
than the private maximum, and then dropped EXQTA privilege.
The monitor would still allow the size greater than the
private maximum.

If .CORE requests a decrease in job image size, no further checks are
made. If .CORE requests an expansion and the size is legal according
to the cases previously described, the monitor then checks the base
APRs of any address windows created by the job (see the CRAFQ
subfunction of .PLAS in this chapter). Windows created by the CRAFQ
subfunction of .PLAS require both I&D APRs for mapping. Therefore, if
a task contained 20K words of I-space and 16K words of D-space, only
12K words is available for windows. 1If the size requested in the
.CORE overlaps a created address window, the .CORE fails and returns
an error.

If .CORE requests a legal expansion that cannot be made in place, that
is, if there is not enough free memory available for the expansion,
the job is swapped out and swapped back in at the larger size. (This
swap occurs even when JFLOCK = 1 in the keyword (KEY).)

When a user job image expands, the content of the newly added memory

is zeroed as protection against a malicious user reading memory to
look for passwords.

3-101

.CORE

Note

Do not use this directive from a user job image

running under the RT1l run-time system. Expanding

memory size should be done through the RT1l emulator,

using the appropriate RT11l directive.
When the image runs under the RSX run-time system, use the EXTKS
directive to extend the task size, so that subsequent GTSKS$ directives
can return the task size correctly.
Privileges Required
EXQTA to exceed private memory maximum.

Data Passed

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
R I e I I +
1 | I&D flag |desired size, K words| 0 XRLEN
I Lt T I +
3 |///| 2
e +
S N/////777 777777777777 7777777777777777777/7777) 4
R I +
T NS/ 77777776
R I I +
LY | //77777/777777/777777/77//7///777//7/////7/7/71 10
I i L R +
Y3 | /7777777777777 777777777/777/7//777777/777/7/1 12
I I +
15 |///| 14
I i +
XRB+XRLEN The desired size for the user job image, in K words.
XRB+XRLEN+1 If this byte contains a -1, the user is requesting that

the I&D APRs be split to map different physical memory.
XRB+XRLEN is the requested size of the D-space. The
I-space size is fixed at the job’s current size.

If this byte contains a -1 and XRB+XRLEN contains a
zero, the I&D split is disabled.

Data Returned

Other than a possible error in the byte 0 of the FIRQB, the .CORE
directive does not return any meaningful data.

3-102

«CORE

Errors

EDBMCE The requested user job image size is illegal. It is
either too large or too small, or it overlaps a mapped
window.

ERRERR The program is reguesting use of separate I&D space but
the hardware does not exist on this system.

INUSE There is outstanding asynchronous I/0 for this job.

Example

The following code requests a user job image of 24K words:

CALL CLRXRB ;CLEAR THE XRB
MOVB #24.,XRB+XRLEN ;SET XRB TO INDICATE 24K WORDS
.CORE

See Programming Hints for information on the CLRXRB routine.

3-103

«DATE

.DATE - Return Current Date and Time
Form
.DATE
Function
The .DATE directive returns the current date and time, the current
program name (as installed by the .NAME directive), and the current
run-time system name in the XRB.
Privileges Required
None
Data Passed

The .DATE directive does not pass any meaningful data.

Data Returned

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
L R I +
1 | current date, in system internal format | 0 XRLEN
I I I I L +
3 minutes until midnight | 2 XRBC
e I +
5 | ticks until second | seconds until minute| 4 XRLOC
R i I R I I I R I +
7 | program name in RADS50 format | 6 XRCI
+ (2 words) +
11 | (as installed with .NAME) | 10
R I I +
13 | run-time system name in RAD50 format | 12 XRTIME
+ (2 words) +
15 | | 14
R I R +
XRB+XRLEN The current date, in system internal format. The

monitor calculates the date as:

[(year - 1970) * 1000] + (day-within-year)
where day-within-year is 1 for January 1, 2 for January
2, and so forth. (Every leap year, the day-within-year

value for March 1 and following is one higher than in
other years.)

3-104

XRB+XRBC

XRB+XRLOC

XRB+5

XRB+XRCI

XRB+XRTIME

Errors

-DATE

The number of minutes until midnight. A value of 1440
is midnight; 720 is noon; 0 is never returned.

The number of seconds until the next minute. A value
of 60 is xx:xx:00; 1 is xx:xx:59; 0 is never returned.

The number of ticks until the next second. A tick is
either 1,/60th or 1/50th of a second, depending on the
clock in use and/or the line frequency. (Systems
running with the KW1llP clock at crystal speeds, rather
than at line frequency, have a tick of 1/50th of a
second. Otherwise, if the system is operating with a
60 Hz power line, a tick is 1/60th of a second.)

The current program name (as set by the most recent
.NAME directive); two words in RAD5S0 format.

The current run-time system name; two words in RADS0
format.

No errors are possible with the .DATE monitor call.

Example

Since no data is passed to the monitor, the call is:

.DATE

« ERLOG

.ERLOG - Log an Error from RTS
Form

. ERLOG
Function
You can issue the .ERLOG directive only from the high segment
(run-time system). It allows the run-time system to log an error into
the RSTS/E error log file, which can then be printed by the system
manager (see the RSTS/E System Manager’s Guide). For example, you
might want to place an entry into the RSTS/E error logging scheme on a
hardware floating-point unit exception that has an illegal error code
because the monitor makes no such checks.
You can issue this directive only from the job’s current run-time
system (high segment). Since this call does not require privilege,
the monitor does not to let users fill up the system error log with
unimportant errors. If .ERLOG is issued from the user job image (low
segment), RSTS/E ignores it.
Privileges Required
None
Data Passed
The .ERLOG directive records in the system error log file the contents
of the program counter (PC) and program status word (PS) at the time
of the call, as well as the contents of the general registers (RO
through R5). These registers will then be_ displayed at the system
manager’'s request. Hence, the registers should contain whatever
information you want to record when the .ERLOG is executed.
Data Returned
The .ERLOG directive does not return any meaningful data.
Errors
No error is possible with .ERLOG.
Example

If the general registers contain relevant information, the call is:

. ERLOG

3-106

<EXIT

.EXIT -~ Exit to Default Keyboard Monitor
Form

.EXIT
Function
The .EXIT directive returns control to the system default keyboard
monitor (DCL) at the P.NEW entry point (see Chapter 2). When a
program exits, it normally passes control to the job’s keyboard
monitor with the .RTS directive. You can use the .EXIT call as a
backup to return control to the default keyboard monitor if the .RTS
fails, or for any other reason when you want to enter the default
keyboard monitor at the entry point specified by P.NEW. The .EXIT
directive needs no arguments and never returns in line to the caller.
Privileges Required
None
Data Passed
The .EXIT directive needs no arguments; however, the three words
beginning at XRB+1l0 are passed unaltered to the default keyboard
monitor. The monitor also passes information to the default keyboard
monitor when .EXIT is executed. See the discussion of the P.NEW entry
point in Chapter 2.
Data Returned

The .EXIT directive does not return any meaningful data; control never
returns in line.

Errors

No errors are possible with .EXIT.

Example

Since no data is passed or returned with .EXIT, the cali is:

LEXIT
Note

Do not use this RSTS/E directive from a user job
image running under the RT1ll run-time system. The
correct way to terminate such a program is to exit to

the RT11 emulator, which then returns control to the
job’s keyboard monitor.

3-107

.FSS

.FSS - Check File Specification String
Form

.FSS
Function
The .FSS directive examines a string of characters presumed to be a
file specification and, if possible, converts it to the internal
RSTS/E file specification format (FIRQB format). The monitor returns
information to the XRB describing what it found in the string and
returns the converted file specification to the FIRQB. Thus, programs

that manipulate files can use .FSS to translate a user-typed string to
the FIRQB format.

The monitor examines the string from left to right and stops without
error when it finds:

o The end of the string.

o An equal sign (=), which is ASCII code 075.

o A semicolon (;), which is ASCII code 073.

o A slash (/), which is ASCII code 057, that is followed by
anything other than the following switches, which the monitor
translates to the FIRQB format:

- /CL[USTERSIZE]:[-][#]n[.]
where n is the cluster size used in opening files and
devices. The variable n can specify a value ranging from
-32768 through 32767.

- /MO[DE]:[#]n[.]

where n is the mode used in opening files and devices.
The variable n can specify a value between 0 and 32767.

- /FI[LESIZE]:[#In[.] or /SI[ZE)}:[#]n[.]

where n is the filesize used in opening files and
devices. The value of n defines the file’s size in
512-byte blocks and can be in the range 0 to 8,388,607
blocks.

- /PO[SITION]:n
where n is the position used in creating files (to
position block 1 of the file at a device cluster). The

variable n can specify a value between -2 and 65,535.

3-108

.FSS

- /PR[OTECTION]:[#]n[.]

where n is the protection code used in opening or
creating files. The variable n can specify a value
between 0 and 255. The value of n determines the file’s
protection from users; see the RSTS/E System User’s
Guide. AN
The brackets ([]) in the previous switches enclose optional
characters. Where more than one character is enclosed in
brackets, any or all of the enclosed characters can be
omitted. For example, MO, MOD, and MODE would all be
accepted and the following guantity translated to the mode
location in the FIRQB.

The value n is assumed to be decimal, unless the optional
pound sign [#] appears, indicating that n is octal. The
optional decimal point also indicates a decimal value.

o A comma (,), which is ASCII code 054. An exception is the
comma separating the project and programmer numbers in a PPN.

The monitor translates the components in a file specification string
as follows:

device name A device name can be either a logical device name or a
physical device name:

logical A logical device name is a string of
alphanumeric characters or $ terminated with
a colon (:). The logical name can contain
the $ character anywhere except as the first
character. Only the first nine characters
are examined; the remainder are ignored. If
the logical name does not contain a $
character, the monitor checks the name
against the user’s own logical device name
assignments in USRLOG (or its equivalent, as
defined in the XRB). If the monitor finds a
definition, it returns the physical device
name associated with that logical device name
to the FIRQB. If the logical name is not
found in the user-logical area or if the
logical name contains a $ character, the
monitor makes a search of system-wide logical
names. If the logical name is not found, the
monitor returns the logical device name and
sets a flag in the XRB to indicate that it
could make no association. For a logical
device name beginning with an underscore (_),
the monitor does not attempt any translation
to a physical device name.

3-109

.FSS

physical

A physical device name consists of two
alphabetic characters optionally followed by
digits and ended with a colon (:). The
digits are translated as decimal and must
have a value between 0 and 127 (decimal).
Leading zeros are allowed.

For some devices (for example, terminals) a
physical name can also be specified as a
two-letter device name, a one-letter
controller identifier, and a number
specifying the unit on that controller. For
example, TTG2: is the third terminal on a
Dz11 controller.

account or PPN A PPN can be expressed either as a single special
character or as two separate numbers enclosed in square
brackets ([]) or parentheses () and separated by a

comma.

The following special characters are translated as:

$

o\

The dollar sign ($) is equivalent to [1,2].

The exclamation point (!) is equivalent to
{1,3].

The percent sign (%) is equivalent to [1,4].
The ampersand (&) is equivalent te [1,5].

The number sign (#) is translated to the
caller’s group library. It is always
equivalent to [proj,0] where proj is the
project number of the user issuing the .FSS
directive.

The at sign (@) is translated to the caller’s
assignable PPN, the USRPPN value (see Chapter
2). If USRPPN is set, its value is placed in
the FIRQB at offset FQPPN. If USRPPN 1is
zero, a string with an @ causes an error.

Note

DIGITAL does not recommend the use of
the special characters !, %, &, #, or
@. They are provided only for
compatibility with pre-v9.0 releases
of RSTS/E.

3-110

file name

type

.FS8

[n,m] This is the explicit construct for a PPN.
The value n specifies the project number, and
m specifies the programmer number. The
variables n and m can specify any value from
0 through 254, except for [0,0]. If a number
sign (#) precedes either n or m, the string
is assumed to specify an octal value. Either
n or m, or both, can also be the asterisk
(*). The * is converted to 255 and placed in
its corresponding FIRQB location. The
asterisk character indicates a wildcard
specification.

Either n or m, or both, can be omitted; in
that case, the monitor uses the corresponding
part of the user’s PPN. For example, [,] or
[]1] specifies the user’s PPN; [,0] is
equivalent to #.

(n,m) This is an alternate way to specify an
explicit PPN. The same rules for n and m
apply as when they are enclosed by brackets.

Note

DIGITAL does not recommend the use of
parentheses in the PPN specification.
This format is provided only for
compatibility with pre-v9.0 releases
of RSTS/E.

A file name can consist of alphanumeric characters and
the question mark (?). It is the only field in the
file specification with no explicit delimiter. Only
the first six characters are examined; the rest are
ignored. The asterisk character (*) is also an
acceptable file name. It is translated to two words of
RAD50, where each RADS50 character is the unused code
(29). Each ? character is also converted to this
unused code. This indicates that the file name field
is a wildcard. (The LOKFQ subfunction of CALFIP and
UU.LOK subfunction of .UUO can be used to look up
wildcard files.)

A file type can consist of alphanumeric characters and
the ? character, preceded by a . character. The *
character is also an acceptable file type. It is
translated to one word of RADS50, where each RADS50 code
is the unused code (29). Each ? character in the file
type is also converted to this unused code. This
indicates that the file type field, or character in the
file type field, is a wildcard.

3-111

.FSS

If given, the file type must always follow the file

name.
protection A file protection code can consist of numeric digits
code enclosed by angle brackets (<>). The general form of a

protection code is <nnn>, where n may be numeric
characters indicating a value from 0 through 255. If
the numeric characters are preceded by a # character,
they are converted as specifying an octal value.
Alternatively, the protection code can be specified
using the /PROTECTION switch. 1If no file protection
code is specified in the string and a default value has
been assigned in USRPRT (see Chapter 2), the default
value is placed in the FIRQB.

These special characters can appear in the string in any order, with
the exception of the file type and PPN. The file type must follow the
file name, if specified.

In addition, if the device name is a system or user logical device
name that has an account (PPN) associated with it, the position of an
explicit PPN in the file specification string is significant. 1If the
order is device:[PPN], then the explicit PPN overrides the PPN
associated with the logical device name. If the order is
[PPN])device:, RSTS/E displays the error message ?Illegal device name.

Note
Do not use this directive from a user job image
running under the RT11l run-time system, since the
user logical area is not in the standard location.

Privileges Required

None

3-112

Data Passed

Mne- Octal
monic Offset

1

3

~J

11

13

15

XRB+XRLEN

XRB+XRBC

XRB+XRLOC

XRB+XRBLK

XRB+XRTIME

.FSS

XRB
Octal Mne-
Offset nmonic
--------------------- I i iin =
length of the string, bytes | 0 XRLEN
--------------------- I s
length of the string, bytes | 2 XRBC
--------------------- I i s
starting address of the string | 4 XRLOC
--------------------- I IR
|///| 6
... +
Length of nonstandard user defaults | 10 XRBLK
--------------------- I I =
starting address of nonstandard users | 12 XRTIME
.. +
|///| 14
.. +

The length of the character string to be translated, in
bytes.

The length of the character string to be translated, in
bytes.

The starting address of the string to be translated.
(See the section "XRB (Transfer Request Block)" in
Chapter 2 for more information.)

If the user logical information (USRPPN, USRPRT, and
USRLOG) is in its standard location, this word is
passed as zero. If some nonstandard set of locations
is being used, then the length of that information, in
bytes, is specified here.

If the word at XRB+XRBLK is nonzero, then this word
defines the starting location for the user logical
information. (The order of the information is assumed
to be the same as in its standard location; that is,
the user logical PPN, user logical protection code,
user logical device name table. The format is also
expected to be the same (see the USRPPN, USRPRT, and
USRLOG descriptions in Chapter 2 for details).

3-113

.FSS

Data Returned

Mne- Octal

monic Offset

1

3

5

7

11

13

15

XRB+XRBC

XRB+XRLOC

XRB+XRBLK

Bit

XRB
Octal Mne-
Offset monic

I I A I +
|///| 0
L S L +

|number of untranslated characters in string| 2 XRBC

--------------------- I D &

| address of first untranslated character | 4 XRLOC

-- +

|///l 6

.. +

| flag word 2 | 10 XRBLK

..................... I I T N I

| flag word 1 | 12 XRTIME

--------------------- R Lt -

! device description | 14 XRMOD

--------------------- I

A count of the untranslated characters in the string.
If all characters were translated, the value of this
word is zero.

The address of the first untranslated byte of the
string. If XRB+XRBC is zero, this word identifies the
end of the string. (See the section "XRB (Transfer
Request Block)" in Chapter 2 for more information.)
Bit flags describing the translated string. Note that
this word is the same as "flag word 2" for the
BASIC-PLUS file name string scan SYS call (see the
RSTS/E Programming Manual).

Setting Meaning

Set A file name was found in the source string; two
words in RADS50 format at FIRQB+FQNAM1.

Clear No file name was found (and bits 1 and 2 of this
word are also 0).

Set The translated file name consisted of a single *
character and has been translated to two words at
FIRQB+FQNAM1 consisting of the RAD50
representation of the string "?2?2222?2".

Clear The translated file name was not an * character.

Set The file name contained at least one ? character.

3-114

Bit

10

11

Setting
Clear
Set

Clear

Set

Clear

Set

Clear
Set
Clear
Set

Clear

Set

Clear

Set

Clear
Set
Clear

Set

.FSS

Meaning
The file name did not contain any ? characters.
A period (.) was found in the source string.
No period was found, implying that no file type
was specified (and bits 4, 5, and 6 of this word

are also 0).

A file type was found; that is, the field after
the period was not null.

No file type was found (the field after the
period was null), and bits 5 and 6 of this word
are also 0.

The file type was an * character and is returned
in the word at FIRQB+FQEXT as the RAD50
representation of the string "?2?2?2".

The file type was not an * character.

The file type contained at least one ? character.
The file type did not contain any ? characters.

A PPN was found in the source string.

No PPN was found (and bits 8 and 9 of this word
are also 0).

The project number was an * character. That is,
the PPN was of the form [*,n]. RSTS/E returns a
value of 377 at FIRQB+FQPPN+1.

The project number was not an * character.

The programmer number was an * character. That
is, the PPN was of the form [n,*]. RSTS/E returns
a value of 377 at FIRQB+FQPPN.

The programmer number was not an * character.

A valid protection code was found.

No protection code was found.

No file protection code was found in the string,
but there was a default output file protection
code in location USRPRT. The default has been
returned in the FIRQB.

3-115

.FSS

Bit

12

13

14

15

Setting

Clear

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Meaning

The user-assignable default protection code (at
location USRPRT) was not used. Either zero or the
protection code given in the string is returned
to the FIRQB.

A colon (:), but not necessarily a device name,
was found in the source string.

No colon was found (no device was specified);
bits 13, 14, and 15 of this word are also 0.

A device name was found in the source string.

No device name was found; bits 14 and 15 of this
word are also 0.

The device name in the string was a logical
device name.

The device name in the string was an actual
device name; bit 15 of this word is also 0.

This bit set indicates an invalid device name.
(The characters that were specified are simply
returned at FIRQB+FQDEV, FIRQB+FQDEVN, and
FIRQB+FQFLAG as three words in RAD50 format.)
This bit can be set in one of two ways:

o If the device name contained an underscore
but was not a recognizable device name for
any device on the system, this bit is set.

o If the device name did not contain an
underscore but the name could not be
translated to a physical device name, this
bit is set.

The device name specified, if any, was either an
actual device name or a logical device name to
which a physical device has been assigned. The
physical device name has been returned to the
word at FIRQB+FQDEV as two ASCII characters, and
the unit information has been returned
appropriately at FIRQB+FQDEVN.

3-116

. XRB+XRTIME

Bit

10

.FS8

Remaining bit flags describing what was translated.
Some of these bits duplicate information returned at
XRB+XRBLK. DIGITAL recommends that you use the bits at
XRB+XRBLK to allow for enhancements in future releases.
Note that this word is the same as "flag word 1" for
the BASIC-PLUS file name string scan SYS call, see the
RSTS/E Programming Manual.

Setting

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Meaning
The /CLUSTERSIZE:n switch was specified.
The /CLUSTERSIZE:n switch was not specified.

Either the /MODE:n or /RONLY switch was
specified.

Neither the /MODE:n nor the /RONLY switch was
specified.

The /FILESIZE:n or /SIZE:n switch was specified.

Neither the /FILESIZE:n nor the /SIZE:n switch
was specified.

The /POSITION:n switch was specified.

No /POSITION:n switch was specified.

(Not currently used.)

A file name was found in the source string; two
words in RADS50 format at FIRQB+FQNAM1l. Note that
this is the same meaning as for bit 0 at
XRB+XRBLK.

No file name was found in the source string.

A period (.) was found in the source string. Note
that this is the same meaning as for bit 3 at

XRB+XRBLK.

No period was found in the source string,
implying that no file type was specified either.

A PPN was found in the source string. Note that
this is the same meaning as for bit 7 at
XRB+XRBLK.

No PPN was found.

3-117

.FSS

Bit

11

12

13

14

15

XRB+XRMOD

Setting

Set

Clear

Set

Clear

Set

Clear

Set

Clear

Meaning

A valid protection code was found. Note that this
is the same meaning as for bit 10 at XRB+XRBLK.

No protection code was found.

A colon (but not necessarily a device name) was
found in the source string. Note that this is the
same meaning as for bit 12 at XRB+XRBLK.

No colon was found, implying that no device could
have been specified.

Device name was specified and was a logical
device name. Note that this is the same meaning
as for bit 14 at XRB+XRBLK.

Device name (if specified) was an actual device
name. (If device name was not specified, this bit
is also 0.)

(Not currently used.)

Source string contained wildcard characters
(either ?, *, or both) in file name, type, or PPN
fields. In addition, the device name specified,
although a valid logical device name, does not
correspond to any of the logical device
assignments currently in effect or contains an
underscore as the first character. Flag word 2
contains more specific information.

None of the above.

The device description (the same information returned
by the BASIC-PLUS STATUS variable and returned at
FIRQB+FQFLAG when a file or device is opened with the
OPNFQ or CREFQ subfunctions of CALFIP). The device
handler index is in the low byte and descriptive flags
are in the high byte.

3-118

.FSS

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
+ ... +
1 |///| 0
L R R T R A R I R R +
3 I/////////////////////I current job no. * 2 | 2 FQJOB
R I R I +
FQSIZM 5 | MSB of file size [///777/7/7///77//77777] 4
B T T T T e B T T T +
7 | progect number | programmer number | 6 FQPPN
R I I +
11 | file name in RADS50 format | 10 FQNAM1
+ +
13 | (first 2 words) | 12
R I I +
15 | flle type in RADS50 format (1 word) | 14 FQEXT
R I R I +
17 | LSB of file sige | 16 FQSIZ
I i +
21 |///| 20
R I +
23 | mode parameter | 22 FQMODE
R I R IR +
25 | 3rd word of logical name (not translated) | 24 FQFLAG
R I R +
FQPROT 27 | protection code | =255, explicit prot.| 26 FQPFLG
R R +
31 | device name (2 ASCII characters) | 30 FQDEV
R I I IR R I +
33 | #0, unit no. real | device unit number | 32 FQDEVN
R I I R +
35 | cluster size parameter | 34 FQCLUS
I R I +
37 | position parameter (DCN for first block) | 36 FQNENT
I R I +
Note
For each of the following field definitions that
begin with the word "If," a corresponding statement
applies: "If not, the field is left alone." That is,

FIRQB+FQJ

FIRQB+FQS

you can insert values in the FIRQB before executing
the .FSS to serve as default values for fields when

the .FSS returns no result.

OB The current job number times two.

IZM If a /FILESIZE:n or /SIZE:n switch was specified, the
most significant bits of the file size are contained in

this byte.

3-119

.FSS

FIRQB+FQPPN

FIRQB+FQNAM1

FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQMODE

FIRQB+FQPFLG

FIRQB+FQDEV

FIRQB+FQDEVN

If a PPN was part of the translated string or if a
logical name was found to be the same as a system or

user logical
contains the
number is in
the low byte.

the high byte;

name with an associated PPN,
binary value of that PPN.

this word
The project
the programmer number in

Any value returned here by .FSS has been

verified by the monitor as being within the range for

PPNs on a RSTS/E system.

If a file name was encountered,
words of RAD50, beginning at this location.
the file name is left-justified and

than 6 characters,
padded with blanks (0 RADS50

If a file type was encountered,

word of RADS50, beginning at
than 3 characters, the file
padded with blanks (0 RADS50

If a /FILESIZE:n or /SIZE:n
value of n is translated to

it is translated to two
If less

characters).

it is translated to one
this location. 1If less
type is left-justified and
characters).

switch was encountered, the
binary and the LSB of the

value are placed in this word.
the byte at FIRQB+FQSIZM.

The MSB are placed in

If a /MODE:n switch was encountered, the value
specified is translated to binary and returned in this
word. Bit 15 is set to indicate that a mode switch was
translated and to differentiate between a mode of 0 and
no mode at all. (Note that bit 15 must be set for a
mode value to work on opens.)

If a file protection code was encountered, a word is

returned here. The high byte (FIRQB+FQPROT) is the
binary value of the protection code, and the low byte
(FIRQB+FQPFLG) is 255. Setting the low byte indicates

that a protection code was specified and differentiates
a protection code of zero from no protection code at
all.

If a device name was specified, it is returned here as

two ASCII characters. If less than two characters were
specified, the device name is left-justified and padded
with spaces (ASCII 32.).

If a device name but no explicit unit number was
specified, this word is zero. If an explicit unit
number was specified, then that unit number is in the
low byte and 255 is in the high byte. Setting the high
byte indicates an explicit device number and
differentiates a device number of zero from no device
number at all.

3-120

FIRQB+FQCLUS

FIRQB+FQNENT

Errors

BADCNT

BADNAM

BADSWT

BDNERR

.FSS

Note

If a syntactically correct logical device name
was encountered that could not be translated to
a physical device name, then the first six
characters of the logical device name is
returned as two words of RAD50 starting at
offset FQDEV and the next three characters are
returned as one word of RAD50 at offset FQFLAG.
A status bit in the XRB is set to indicate that
this was done.

If a /CLUSTERSIZE:n switch was encountered, the value
of n is returned here, in binary.
If a /POSITION:n switch was encountered, the value of n

is returned here, in binary. (The value n is the
device cluster number for the first block of the file.)

The first three words of the XRB are illegal, or an odd
or illegal address for nonstandard user logical table.

Some illegal specification occurred in the string.
.FSS found a sign bit set on at least one character.

Some .FSS switch was encountered, but it was in an
illegal format.

The numeric argument to one of the .FSS switches was
illegal.

3-121

.FSS

Example

The following code causes the monitor to scan a string beginning at
location BUFFER as a possible file name. BUFFER is defined as an
80-byte area and is filled with zeros to terminate the string scan if
what the user typed did not £fill the buffer. For example:

BUFFER: .BLKWO 40.

(read string into BUFFER from terminal)

CALL CLRXRB

MOV #80.,XRB+XRLEN ;DEFINE LENGTH

MoV #80.,XRB+XRBC ;DEFINE LENGTH AGAIN
MOV #BUFFER, XRB+XRLOC ; START OF BUFFER
.FSS

(test for error; if none, try open)

3-122

.LOGS

.LOGS - Check for Logical Device Names
Form
.LOGS
Function
The .LOGS directive:

o Translates a system logical device name to a physical device
name

o Verifies that a physical device name is valid
o Obtains generic information about a particular device

You specify either a logical device name, a physical device
designation (name and, if relevant, unit number), or both, in the XRB
and the FIRQB. The monitor compares the logical device name
specified, if any, against the system-wide logical device names
defined by the system manager. (This directive does not check
user-specified logical names.) If it finds a match, the monitor
returns the device designation associated with the logical device name
to the FIRQB. This physical device designation consists of a name,
unit number, and in some cases, a PPN.

Next, the monitor checks the physical device designation (either the
one passed or the one returned by the monitor in the logical-name
translation) to be sure it is valid. 1If so, information describing
the device is returned in the FIRQB.

Privileges Regquired

None

2-123

.LOGS

Data Passed

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
P I +
1 | logical device name in RADS50 format | 0 XRLEN
+ (3 words) +
3 | | 2
+ +
5 | | 4
T I I Ik S +

7 |///| 6
A

1Y (/7777777777777 777777777 /777/77777//777////77] 10
/LSS S+

13 (/77777777777 777777777777777777777777777777/71 12
/LSS S+

15 l///| 14

XRB+XRLEN The logical device name to be checked is passed as two
words in RAD50 format beginning at this location. If
only a physical device name check or description is
needed, then the first word of the XRB should be passed
as zero. The physical device name is passed in the
FIRQB.

3-124

Mne- Octal
monic Offset

.LOGS

Octal Mne-
Offset monic

1 |///| 0
3 |///| 2

5 |///| 4
7 |///| 6
11 |///| 10
13 I///l 12
15 |///I 14
17 |///I 16
21 l///I 20
23 |///| 22
25 |///| 24
27 |///| 26

31 |

33 |

physical device name (ASCII format) | 30 FQDEV

#0, real dev. no. | device unit number | 32 FQDEVN

35 !///| 34

37 |///| 36

FIRQB+FQDEV

FIRQB+FQDEVN

The physical device name, as two ASCII characters. A
value of 0 (and at offset FIRQB+FQDEVN) indicates the
public disk structure (SY:). If you only want a
translation from a logical device name to a physical
device name, you can pass a value of -1 here. (A -1 is
guaranteed not to be a valid physical device name.)

The unit number of the physical device name is passed
in this byte, in binary. To indicate an explicit
device number, set the high byte (at FIRQB+FQDEVN+l) to
some nonzero value. If the physical device name is of
the form "XY:" (that is, no unit number is specified),
then set the entire word at this offset to zero to
indicate no explicit unit number.

3-125

.LOGS

Data Returned

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
e I I P +
1 |///| 0

3 I///I 2

5 1 logical device flag. -1=N, -2=Y, 0=N.A. | 4 XRLOC
P R I +
7 | device description | 6 XRCI
R I A +
11 | reasonable buffer size for device | 10 XRBLK
e I +
13 l///| 12
D I +
15 I///| 14
D R +
XRB+XRLOC If there was no logical device name specified or if the

logical device name cannot be translated to a physical
device name, this word is returned as zero. 1If the
passed logical device name has a PPN associated with
it, this word is returned as -2. 1If not, -1 is
returned.

XRB+XRCI Description of the device. The low byte contains the
device’s handler index. The high byte contains a set
of status flags.

DDNFS

DDRLO |

DDWLO | |

FLGPOS | | |

FLGMOD | | | |

FLGFRC | | | | |

FLGKB | | | | | |

A R B
15 14 13 12 11 10 9 8} 7 0
R R R R R +
| device-type flags | device handler index |
R I +

3-126

.LOGS

High Byte - Device-Type Flags

The bits
indicate

FLGRND =

in the high byte of the flag word are set to
the type of device specified:

1

= 0

FLGKB

FLGFRC

FLGMOD =

FLGPOS =

DDWLO

DDRLO

DDNFS

Low Byte

1
0

The device is random-access.
The device is sequential.

The device is a terminal-type device.
The device is not a terminal-type device.

The device is byte-oriented. That is, the
.READ and .WRITE directives handle data in
byte units.

The device is block-oriented. The .READ and
.WRITE directives handle data in block
units.

The device accepts modifiers in .READ and
.WRITE directives.

The device does not accept modifiers in
.READ and .WRITE directives.

The device keeps track of its horizontal
position and expands characters such as TAB
to whatever is appropriate for the device.
You can determine the current horizontal
position with the .POSTN directive.

The device does not keep track of its
horizontal position.

The device is a read-only device.
The device is not write-locked.

The device is a write-only device.
The device is not read-locked.

The device is non-file-structured.
The device is file-structured.

Device Handler Index

Bits 0-7 of the flags word contain a handler index that
indicates the generic kind of device. The currently
defined values follow.

3-127

.LOGS

+------ - I +
| Octal | | |
| Value | Symbol | Meaning |
+------ - R I I +
| I l i
0	DSKHND	All disks
2	TTYHND	All terminals
4	DTAHND	DECtape
6	LPTHND	All line printers
10	PTRHND	Paper tape reader
12	PTPHND	Paper tape punch
14	CDRHND	Card reader
16	MTAHND	Magnetic tape
20	PKBHND	Pseudo keyboards
22	RXDHND	Flexible diskettes
24	RJEHND	2780 remote job entry
26	NULHND	The null device
30	DMCHND	The DMCll/DMR11 DDCMP interface
36		Reserved
40	KMCHND	KMCll
42	IBMHND	IBM interconnect
46	DMPHND	DMPll/DMV1l device
R R R I I +

XRB+XRBLK If the physical device name is valid (either the one

returned by the monitor’s translation of logical device
name or the one passed), this word contains the
monitor’s "best guess" as a reasonable buffer size for
this device. See the .READ and .WRITE directives in
this Chapter.

3-128

Mne- Octal
monic Offset

.LOGS

FIRQB
Octal Mne-
Offset monic
------------------- +--.,----_-_-----_----_+

1 l///l 0
3 I///| 2
5 l///i 4

project number | programmer number | 6 FQPPN

11 |///| 10
13 |///I 12
15 |///| 14
17 |///l 16

FIRQB+FQPPN

FIRQB+FQDEV

FIRQB+FQDEVN

device name (2 ASCII characters) | 30 FQDEV

#0, unit no. real | device unit number | 32 FQDEVN

If a logical device name was passed and it was
translated to a device designation with an associated
PPN, the PPN is returned in this word. Otherwise, this
word is the same as before the .LOGS call was executed.

The physical device name, either the one returned when
a successful translation of logical device name is made
or the one passed, if no logical device name was
passed. The physical device name is returned as two
ASCII characters.

The physical device unit number, either the one
returned when a successful translation of logical
device name is made or the one passed, if no logical
device name was passed. The low byte contains the unit

3-129

.LOGS

number, in binary. The high byte (at FIRQB+FQDEVN+1l)
is either zero, to indicate no explicit device number,
or nonzero, to indicate an explicit device number.

Errors

NODEVC The physical device name (either the one passed or the
one corresponding to the logical device name) is
invalid.

Example

The following code asks the monitor to check the name SYSDEV to see if
it is a defined system logical device name and, if so, to return the
physical device name and characteristics to the XRB and FIRQB:

CALL CLRXRB

MOV $#” RSYS, XRB+XRLEN ;SET XRB TO TRANSLATE LOGICAL
MOV #” RDEV, XRB+XRBC ;DEVICE NAME "SYSDEV"

.LOGS

3-130

-MESAG

+.MESAG - Message Send/Receive

Form

(Load FIRQB and/or XRB for appropriate subfunction)

.MESAG
Function
The .MESAG directive provides access from a MACRO program to the
RSTS/E local message send/receive services and, if your system is a
DECnet/E system, to DECnet/E network message send/receive services.
This section contains FIRQB and XRB formats and error descriptions for
local message send/receive. (Unless data passed and returned show
specific values for the XRB, it should be all zeros.) For detailed
information about each call, see the RSTS/E Programming Manual. For

information about network message send/receive, see RSTS/E DECnet/E
Network Programming in MACRO-11.

Declare Receiver Subfunction
Privileges Required

SYSIO to declare a receiver with an unrestricted name, network server,
or local object. EXQTA to suppress RIB or message quota checks.

3-131

+MESAG

Data Passed

Mne- Octal
monic Offset

Octal Mne-
Offset monic

1 |///| 0

R I I +
3 l///| 2
D I R +
5 |/////////////////////! function code =1 | 4 FQFIL
L T R +
7 | | 6 FQPPN
+ receiver name in ASCII +
11 | | 10
+ (space fill to six bytes) +
13 | | 12
R I R +
15 | access | object type | 14 FQEXT
R I R +
17 | buffer maximum | 16 FQSIZ
R I R +
21 | inbound link max | message max | 20 FQBUFL
I I R +
23 | packet maximum | 22 FQMODE
R I I +
25 | pkts/msg | outbound llnk max | 24 FQFLAG
R I I I +

27 |///| 26

I il I +
31 |///l 30
I I +
33 |/////////////////////| RIB number | 32 FQDEVN
I I I +
35 |///I 34
R e I +
37 |///l 36
R e A I +
FIRQB+FQPPN If the caller does not have SYSIO privilege, the fifth
and sixth characters of the receiver name must be the
caller’s job number as two ASCII digits.
FIRQB+FQMODE Specifies the maximum number of packets that can be
queued at any one time. See the RSTS/E Programming
Manual for more information. Used only in an EMT
logging program.
FIRQB+FQFLAG+1 Specifies the number of packets that make up a complete

message. See the RSTS/E Programming Manual for more
information. Used only in an EMT logging program.

3-132

+MESAG

‘" Data Returned

Except for a possible error code in byte 0 of the FIRQB, the declare
receiver subfunction of .MESAG does not return any meaningful data.

Errors
BADCNT The specified packet maximum is out of range.

BADFUO The receiver name, object type, and access parameters
passed are inconsistent.

BADNAM This error can occur for one of the following reasons:

o The receiver name passed contains nonprintable
characters or leading or embedded spaces

o A job without SYSIO privilege passed a nonblank
receiver name whose fifth and sixth characters are
not its job number

o The specified local object type is invalid

ERRERR The call you attempted requires an optional feature
(such as EMT logging or DECnet) that is not available
on your system.

FIEXST The receiver name passed is being used by another
receiver, or the local object type you specified is
single instance and is already in use.

INUSE The calling job already exists in the system’s list of
declared receivers. This error may indicate a logic
error in the program or that a previous program running
under the same job number failed to remove itself from
the receiver list before terminating. 1In the last
case, issue a remove receiver call, and then reissue
the declare receiver. (It is common practice to code a
remove receiver immediately before the declare receiver
call.)

NOBUFS There were no small buffers available to hold the
arguments passed ‘in the declaration. Since the
system’s use of small buffers is dynamic, a retry may
succeed.

PRVIOL This can occur for one of the following reasons:

o The specified RIB number is out of range

o The caller does not have the privilege required for
a particular option

3-133

+MESAG
QUOTA You have exceeded the RIB or message quotas.

Remove Receiver Subfunction

Privileges Required

JOBCTL to remove the RIB of another job.
Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 I///| 0
3 |///| 2
FQSIZM 5 | (See discussion.) | function code = 0 | 4 FQFIL

? I///1 6

11 l///| 10
13 i///| 12
15 $///I 14

17 l///l 16
21 |///l 20

23 |///| 22
25 |///| 24
27 l///| 26

31 I///| 30

33 | #0, remove all RIBs | RIB number | 32 FQDEVN
35 |///l 34

37 l///i 36
FIRQB+FQSIZM The value is two times the job number of the
receiver(s) you want to remove or zero if the

receiver(s) belong to your own job. To specify a

3-134

Data Returned

-MESAG

conditional remove, set the sign bit. For example, to
conditionally remove receivers for your own job, set
this byte equal to 200.

When the sign bit is set, the remove operation is
rejected if there are any messages pending for the
receiver.

Except for a possible error code in byte 0 of the FIRQB, the remove
receiver subfunction of .MESAG does not return any meaningful data.

Errors

BADFUO

INUSE

PRVIOL

The argument at FIRQB+FQSIZM was odd. It must be zero
to remove the calling program or job number times two
to remove another job.

Occurs on a conditional remove if there are messages
pending for the receiver.

The caller does not have JOBCTL privilege and has
attempted to remove the receiver ID block (RIB) of
another job (that is, FIRQB+FQSIZM is nonzero).

Send Local Data Message Subfunction

Privileges Required

SEND to send to a restricted receiver.

3-135

.MESAG

Data Passed

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
I A I +
1 |///l 0
T I +
3 |///| 2
I e I I +
FQSIZM 5 | destination | function code = -1 | 4 FQFIL
R I IR P I I +
7 | | 6 FQPPN
+ receiver name in ASCII +
11 | | 10
+ (space fill to six bytes) +
13 | | 12
I I R I +
15 | | 14 FQEXT
+ +
17 | optional user parameter string -- | 16
+ up to 20 bytes of additional +
21 | user data can be specified here | 20
+ +
23 | (zero £ill to 20 bytes) | 22
+ +
25 | | 24
+ +
27 | | 26
+ +
31 | | 30
+ +
33 | | 32
+ +
35 | | 34
+ +
37 | | 36
I G R I +
FIRQB+FQSIZM You can specify the destination in one of three ways:

A zero value indicates that the destination is the
receiver name that starts at FIRQB+FQPPN.

A value equal to the job number times two indicates
that the destination is this job number. If you do
not specify a name (FIRQB+FQPPN = 0), the system
locates the receiver by job number; this works only
when the the receiving job is receiving messages on
RIB 0.

3-136

.MESAG

If you specify a name, the system sends to the
specified receiver name. However, the system also
checks that the receiver’s job number matches the
value in FIRQB+FQSIZM.

0 A value equal to the local object type (LOT) plus
200 indicates that the destination is the receiver
for the specified local object type number. Only
single-instance object types are valid (see the
RSTS/E Programming Manual). Legal values are:

+----- R R +
| Lot | Receiver |
+----- I I +
I | |
1	Error logger
2	EMT logger
3	PBS -- command interpreter
4	PBS -- server interpreter
5	PBS -- user request packet
6	OPSER
4= R I I I I +
FIRQB+FQPPN Specifies the receiver name. If FIRQB+FQSIZM is zero,
this field must be nonzero.
XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
R I R I I +
1 | length of output buffer, in bytes, 0-512 | 0 XRLEN
L I +
3 |number of bytes to send, 0 to buffer length| 2 XRBC
R I L +
5 | starting address of buffer | 4 XRLOC
R I I I I +
7 l///| 6
I I +
11 l///| 10
R i I I I +
13 i///| 12
R Tt I PP +
15 l///I 14
R i +
XRB+XRLEN Length of the output buffer, in bytes. This value can
range from zero through 512.
XRB+XRBC The number of bytes to be sent. This value can range

from zero through the size of the buffer, as specified
at XRB+XRLEN.

3-137

«MESAG

XRB+XRLOC Starting address of the output buffer. (See the
section "XRB (Transfer Request Block)" in Chapter 2 for
more information.)

Data Returned

Mne- Octal Octal Mne-
monic Offset Offset monic

1 |///| 0

FQSIZM 5 |job no.*2 of rec. JOb|/////////////////////I 4

11 I///l 10
13 l///| 12
15 |///| 14
17 |///| 16
21 |///l 20
23 |///| 22
25 |///1 24
27 |///| 26
31 |///| 30
33 |///l 32
35 l///l 34
37 |///I 36

3-138

Errors

BADCNT

BADFUO

NOBUFS

NOROOM

NOSUCH

PRVIOL

-.MESAG

The XRB+XRLEN value is illegal. It can range from 0
through 512,

The value at FIRQB+FQSIZM is odd. It must be zero or
the receiver’s job number times two.

System buffers are currently not available to store
this message for the intended local receiver. A later
retry may proceed without error.

The number of pending messages for the intended local

receiver is at its declared maximum, or the receiving

program is hibernating. This program should try again
later. 1If this error occurs repeatedly, the receiver

is not processing messages often enough.

The intended local receiver could not be located in the
system’s list of declared receivers. The receiver must
be declared (with a declare receiver) before any data
can be transmitted to it.

Some access violation has occurred. Either the
receiver does not allow any local senders, or the
sender does not have SEND privilege and the receiver
allows only restricted senders.

3-139

-MESAG

Receive Subfunction

Privileges Required

None

Data Passed

Mne- Octal Octal Mne-

monic Offset Offset monic
1 |///! 0
3 I///I 2

FQSIZM 5 | receive modifier | function code = 2 | 4 FQFIL
7 | gqualifier (norm = 0)| sender select | 6 FQPPN
11 I///I 10
13 I///| 12
15 I///| 14
17 |///I 16
21 l///I 20
23 | sleep tlme, in seconds | 22 FQMODE
25 |///| 24
27 |///l 26
31 |///! 30
33 |/////////////////////! RIB number | 32 FQDEVN
35 |///| 34
37 |///l 36

3-140

«MESAG

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
I L T T e +
1 | buffer size in bytes, or 0 | 0 XRLEN
I I I I +
3 | must be 0 | 2 XRBC
R L I e +
5 | starting address of buffer | 4 XRLOC
T TR e T +
7 I///J 6
I I . T TP +
11 l///I 10
I R I T TIPS +
13 i///# 12
R T T +
15 |///! 14
I I L L T T +
XRB+XRLEN The size of the receive buffer, in bytes. This word

can be zero if no user data is desired on the receive.
The amount of data transferred from a pending message
will never be greater than the buffer size.

XRB+XRBC This word must be passed as zero. The monitor returns
the actual number of bytes of user data transferred in
this word location, as shown in the Data Returned
sections.

XRB+XRLOC The starting address of the receive buffer. (See the
section "XRB (Transfer Request Block)" in Chapter 2 for
more information.)

Data Returned

The Receive call returns data to the FIRQB and XRB, identifying the

type of message received and user data, if any, to the buffer defined

in the data passed.

The FIRQB and XRB formats for the local data message follow.

3-141

-MESAG

Data Returned (Local Data Message)

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
R LI I I I S +
1 I///| 0
I I I R +
3 |///| 2
.. +
FQSIZM 5 | job number * 2 | function code = -1 | 4 FQFIL
I I R LI +
7 | project number | programmer number | 6 FQPPN
R R I I I A +
11 \////7//7/7//7/7//7/////////| sender KB no. or 377 | 10 FQNAM1
R R +
13 |remainder (number of bytes not transferred)| 12
R I I R +
15 | | 14 FQEXT
+ +
17 | Data passed as parameters by the | 16
+ sender of this message. +
21 | | 20
+ +
23 | | 22
+ +
25 | | 24
+ +
27 | | 26
+ +
31 | | 30
+ +
33 | | 32
+ +
35 | | 34
+ +
37 | | 36
I I I I I LI A I +

FIRQB+FQNAM1 A value of 377 means the sender is detached.

FIRQB+FQEXT For an EMT logger message, the monitor returns three
. values:

o Bytes 14-15 contain the number of data packets not
transferred.

o Bytes 16-17 contain the number of EMTs your program
missed, either because it is not processing data
packets quickly enough, or because not enough XBUF
is available to store all the data packets that the
monitor is creating.

3-142

Mne- Octal
monic Offset

Errors

BADCNT

BADFUO

NOSUCH

1

3

5

7

11

13

15

-MESAG

o Bytes 20-21 contain the number of data packets
transferred.

See the RSTS/E Programming Manual for more information.

XRB
Octal Mne-
Offset monic

l///| 0
|length (actual number of bytes transferred)| 2 XRBC
|///! 4
|///| 6
I///| 10
|///! 12
I///! 14

The buffer descriptor in the first three words of the
XRB is invalid.

Not a declared receiver. Before any receive can
succeed, you must execute a declare receiver call to
define the RIB number you want to use.

For a receive without sleep (bit 0 in receive modifier
= 0), this error indicates that no appropriate messages
are pending. For a receive with sleep (bit 0 in
receive modifier = 1), this error is returned when the
program is awakened from the sleep. The program must
execute another receive call to retrieve any pending
messages.

Send Privileges Subfunction

This subfunction provides a method for a program to tell another
program about a job’s current privileges and guarantees that the data
cannot be falsified. Data can be sent at the same time.

Privileges Required

SEND to send to a restricted receiver.

3-143

-.MESAG

Data Passed - Send Privileges

Mne- Octal
monic Offset

1
3

FQSIZM 5

11
13
15
17
21
23
25
27
31
33
35

37

receiver name in ASCII

(space fill to six bytes)

|///|
WA A A A A N A s
/17777777777 7777 7777777777 7//7777/777/7/7//7]
A A A A A A A A A A A A A A A e
/7777777777777 777777 7 /77777 777777777
N2 A A A A A A A A A A s
/177777777777 777777777

optional user parameter string

|

+

|

+ (up to 12 bytes of additional

| user data can be specified here,
+ zero fill to 12 bytes)
|
I
+
|
+
1

+—F—+—+—+ — +— +

Octal
Offset monic

0

2

4

6
10
12
14
16
20
22
24
26
30
32
34

36

Mne-

FQFIL

FQPPN

FQEXT

FIRQB+FQSIZM

You can specify the destination in one of three ways:

0 A zero value indicates that the destination is the
receiver name that starts at FIRQB+FQPPN.

o A value equal to the job number times two indicates
that the destination is this job number. If you do
not specify a name (FIRQB+FQPPN = 0), the system
locates the receiver by job number; this works only
when the the receiving job is receiving messages on
RIB 0.

3-144

FIRQB+FQPPN

Mne- Octal
monic Offset

1

3

11

13

15

XRB+XRLEN

XRB+XRBC

-MESAG

If you specify a name, the system sends to the
specified receiver name. However, the system also
checks that the receiver’s job number matches the
value in FIRQB+FQSIZM.

o A value equal to the local object type (LOT) plus
200 indicates that the destination is the receiver
for the specified local object type number. Only
single-instance object types are valid (see the
RSTS/E Programming Manual). Legal values are:

+----- I I I +
| Lot | Receiver |
+----- R I I I IR +
| | l
1	Error logger
2	EMT logger
3	PBS -- command interpreter
4	PBS -- server interpreter
5	PBS -- user request packet
6	OPSER
4. I I +

Specifies the receiver name. If FIRQB+FQSIZM is zero,
this field must be nonzero.

XRB
Octal Mne-
Offset monic
--------------------- I S
length of output buffer, in bytes, 0-512 | 0 XRLEN
--------------------- I P
[number of bytes to send, 0 to buffer length| 2 XRBC
--------------------- I
starting address of buffer | 4 XRLOC
.. +
I///| 6
.. +
I///l 10
.. +
I///l 12
.. +
|///| 14
... +

Length of the output buffer, in bytes. This value can
range from zero through 512.

The number of bytes to be sent. This value can range

from one through the size of the buffer, as specified

at XRB+XRLEN. If the value in XRB+XRLEN is zero, this
value must be zero.

3-145

-MESAG

- NAME

«NAME - Set Program Name
Form

.NAME
Function

The .NAME directive sets the program name in the monitor tables. The
monitor enters the name in an internal table; otherwise, it makes no
use of the program name. However, the SHOW USERS command uses the
names in listing current information for jobs (under the "What"
column) on the system. The BASIC-PLUS run-time system uses this
directive when the user issues an OLD, NEW, or RENAME command.

The program name is passed as two words of RAD50 data in the FIRQB.
Note that the data is passed in the same location in the FIRQB where
the file name exists at the P.RUN entry point into a run-time system.
If you are coding or modifying a run-time system, one of the first
things to do on entry at P.RUN is to set the program’s name. Thus,
the file name’s position in the FIRQB at this point is convenient for

use.

Privileges Required

None

- NAME

. Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 l///| 0
3 I///l 2
5 |///l 4
7 l///! 6

11 | program name in RAD50 format | 10 FQNAM1
+ (2 words) +
13 | | 12
15 I///| 14
17 |///I 16
21 !///l 20
23 l///| 22
25 |///| 24
27 l///| 26
31 |///l 30
33 |///| 32
35 l///! 34

37 |//////AAGOOVVV////////////////////////////l 36

FIRQB+FQNAM1 The program name to be set; two words in RAD50 format.
Data Returned

The .NAME directive does not return any meaningful data.

3-149

« NAME

Errors
No errors are possible with the .NAME directive.
Example

The following code sets the name PROGRM in the monitor tables:

MOV $#" RPRO, FIRQB+FQNAM1 ; Set FIRQB to declare
MOV #” RGRM, FIRQB+FQNAM1 +2 ; Name of "PROGRM"
.NAME

3-150

«PEEK

- «PEEK - Look at Monitor Memory
Form

.PEEK
Function

The .PEEK directive returns the contents of one word of the monitor’s
memory; that is, the memory mapped by the kernel mode APRs (see
Chapter 2). Only a job with the required privileges can execute the
.PEEK directive. (However, you should not base any of your code on
the contents of monitor memory because DIGITAL reserves the right to
change the monitor structure and internal addresses at any time,
except for the addresses listed in Table 3-3.)

Privileges Required

RDMEM to read kernel memory other than the I/0 page and WRTMEM to read
the 1/0 page.

Data Passed

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic

1 | wvirtual address of desired monitor word | 0 XRLEN

3 !///l 2
5 I///| 4
7 I///l 6
11 4///i 10
13 |///| 12
15 I///| 14

XRB+XRLEN The virtual address of the data word in monitor memory
whose contents are to be returned. The value must be
even, since word addresses on the PDP-11 are always
even. Peeking at data in the 1,/0 page (kernel APR 7,
or 111 (binary) in bits 15, 14, and 13) can cause
unpredictable system results; DIGITAL does not
recommend this. Furthermore, using .PEEK to obtain
data in APRs 5 or 6 returns data in the file
processor’s private buffer pool.

3-151

«PEEK

Use .PEEK to examine addresses returned by get monitor tables calls or
addresses of fixed monitor locations.

Table 3-3 shows fixed monitor locations and their addresses.

Table 3-3: Fixed Monitor Locations

| Address
| (Octal)

44 (word)

46 (word)

1000(word)
1002 (word)

1006 (byte)

1010 (word)

1012 (word)

1014 (word)

ITIME

DATE

TIME

JOB

JOBDA

JOBF

IOSTS

The date when the system was last started by
START.

The time of day when the system was last
started by START.

Current system date.
Current time of day.

Job number times 2 of the job currently
running (always the user’s own job number.)

Address of the job data block (JDB) of the
currently running job (always the user’s own
JDB) .

Address of the JDFLG word in the JDB of the
currently running job (always the user’s own
JDB).

Address of the JDIOST (low) byte and JDPOST
(high) byte in the JDB of the currently
running job (always the user’s own JDB).

3-152

+« PEEK

 Data Returned

XRB
Mne- Octal Octal Mne-
monic Offset Offset monic
R R +
1 | contents of the monitor memory word | 0 XRLEN
e I +
3 |///| 2
R I I it ST +
5 |///| 4
L e S +
7 |///l 6
I et i +
11 |///! 10
B T T T T T T
13 |///| 12
-- +
15 |///I 14
R I it I +
XRB+XRLEN The contents of the requested monitor memory location.
Errors
B.4 The address specified caused a trap to the kernel mode
vector at 4 (UNIBUS timeout, odd address, and so
forth).
B.250 The address specified caused a memory management unit
violation (trap to the kernel mode vector at 250).
PRVIOL The caller does not have the required privilege.
Example

The following code obtains the contents of monitor memory location
1006 (the low byte of which is the current job number times two):

MOV #J0OB, XRB+XRLEN ; Set address to that of "JoB"
.PEEK

3-153

.PLAS

.PLAS - Access Resident Library

The .PLAS (Program Logical Address Space) directive has six
subfunctions that allow a MACRO program to access a resident library.
Resident libraries must be so defined by the system manager with the
INSTALL LIBRARY command (see the RSTS/E System Manager’s Guide). As
noted in Chapter 2, the easiest way to do this is to link the resident
library to your program using TKB, the Task Builder that links modules
assembled or compiled under the RSX run-time system or its
derivatives. However, you can use .PLAS subfunctions to directly
access resident libraries.

Table 3-4 lists the .PLAS subfunctions by function code. The
following subsections describe the subfunctions in alphabetical order.

3-154

Table 3-4: Summary of

R R +
| FQFUN |

| Value | |
| (Octal) | Mnemonic |
R L I +
| | |
| 0 | ATRFQ |
I | f
| | |
! | |
| 2 | DTRFQ |
I | |
| | |
l 4 | CRAFQ |
! | I
! | |
l I |
l	
6	ELAFQ
A	
10	MAPFQ
l I	
I	
12	UMPFQ
! l	
	l
e demmmm e +

-PLAS

.PLAS Subfunctions

Attach resident library. Attaches the job to
a resident library; necessary before the job
can map a window to the library.

Detach resident library. Detach the job from
a resident library.

Create address window. Defines a range of
virtual addresses to be a window for looking
at all or some portion of a resident library.
Optionally, CRAFQ maps the window to all or
some portion of a resident library. (The
mapping can be done separately with MAPFQ.)
The CRAFQ subfunction reserves one or more
APRs, so CRAFQ takes space in the job area
even though the window may not actually be
mapped.

Eliminate address window. Releases the APRs
used by a particular window.

Map window. Map an already created address
window of virtual addresses to actual memory
locations in an attached resident library.
The monitor loads the library from disk if
necessary.

Unmap address window. Releases a window of
virtual addresses from a mapping to actual
memory locations.

--

When a program exits or a user logs out, the monitor automatically

detaches all libraries and unmaps and eliminates all windows for the

job.

Privileges Required

Depends on the subfunction;

follow this introductory information on the .PLAS directive.

3-155

refer to the individual descriptions that

.PLAS
ATRFQ

ATRFQ (Attach Resident Library)

Form

MOVB #ATRFQ, FIRQB+FQFIL

(set appropriate parameters)

.PLAS
Function

The ATRFQ subfunction of .PLAS declares your intent to access a
resident library. The type of access is specified in the call. The
number of resident libraries that can be attached to a job at any
given time is unlimited (subject to the availability of system small
buffers).

The job’s ability to access the resident library depends upon the
protection assigned to the library by the system manager when the
library was installed. The default protection grants read access to
all users and denies write access to all users.

If the calling job can access the library in the specified fashion,
the monitor sets up its own internal tables, which lay the groundwork
for the job to map windows to the library. Note, however, that the
resident library does not take up space in the job area (virtual
memory) with an attach. APRs are assigned (virtual memory in the job
area is taken) when a window is created (using CRAFQ).

Privileges Required
Read-only or read/write access to the library. The protection code is
interpreted exactly like a file protection code; as with files, access

is granted either on the basis of the protection code or because of
GREAD, GWRITE, WREAD, or WWRITE privileges.

3-156

+ Data Passed

Mne- Octal

monic Offset

+PLAS
ATRFQ

Octal Mne-
Offset monic

1 I///| 0
3 l///l 2
5 |/////////////////////| ATRFQ (= 0) | 4 FQFIL
7 |///| 6

L I +
11 I///| 10
e I +
13 | resident library name in RAD50 format | 12
+ (2 words) +
15 | | 14
I I +

17 l///l 16

23 |

.. +
21 I///l 20
.. +
access mode | 22 FQMODE
.. +

25 |///| 24
27 I///l 26
31 |///| 30
33 l///| 32
35 l///I 34
37 I///I 36

FIRQB+FQFIL

FIRQB+12

The function code ATRFQ (octal value = 0).

The name of the resident library to which the job is to
be attached; two words in RAD50 format.

Resident libraries are made known to the monitor by the
system manager with the INSTALL/LIBRARY command (see
the RSTS/E System Manager’s Guide). With this command,
the system manager defines a file (filename.LIB) as a
resident library. The monitor regards "filename" as
the resident library’s name.

3-157

.PLAS
ATRFQ

FIRQB+FQMODE The low-order two bits of this word define the way the
job wants to access the library:

Bit 0 1 Read-only access is desired.

Bit 1 1 Read/write access is desired.

Data Returned

Mne- Octal Octal Mne-
monic Offset Offset monic

1 |///| 0
3 I/////////////////////I current job no. * 2 | 2 FQJOB

7 | resident 11brary identification | 6 FQPPN
11 | size, in 32-word blocks, of the library | 10 FQNAM1
13 |///| 12
15 I///| 14
17 |///| 16
21 |///| 20
23 |///| 22
25 |///l 24
27 I///l 26
31 i///l 30
33 I///| 32
35 I///l 34
37 |///| 36

3-158

FIRQB+FQJOB

FIRQB+FQPPN

FIRQB+FQNAM1
Errors

NOSUCH

PRVIOL

Example

.PLAS
ATRFQ

The current job number times two.

This word is an identifier that must be used, rather
than the resident library name, in subsequent calls to
identify a resident library. Thus, you use this
identifier to detach the job from the library (DTRFQ)
and map and unmap windows to the library (MAPFQ and
UMPFQ) .

The size of the resident library, in 32-word blocks.

The resident library specified in the data passed is
not known to the monitor. The system manager must
install a resident library before it can be used.

The attach did not succeed because the caller’s
privilege did not allow the access specified in the
data passed. This could happen either:

0 Because the access code specified in the data
passed is not compatible with the possible access
defined when the library was installed by the
system manager.

0 Because the protection code associated with the
resident library file excludes access by the user.

The following code attaches the job to a resident library called
DATBAS. The access desired is defined as read/write:

MOVB $ATRFQ,FIRQB+FQFIL ;DEFINE FUNCTION CODE
MOV #" RDAT, FIRQB+12 ;LIBRARY NAME IS

MOV #” RBAS, FIRQB+FQEXT ;DEFINED AS "DATBAS"
MOV $#2,FIRQB+FQMODE ;ACCESS=READWRITE
.PLAS

3-159

«PLAS
CRAFQ

CRAFQ (Create Address Window)
Form

MOVB #CRAFQ,FIRQB+FQFIL

(set up parameters)

.PLAS
Function

The CRAFQ subfunction of .PLAS can be used either to create a window
(a range of virtual addresses) or to create a window of virtual
addresses and map it to a range of actual addresses in an attached
library. You define the range of addresses by:

o Naming a base APR (which defines the starting address of the
window)

o Specifying the size of the window in 32-word blocks

Thus, a window always begins on a 4K-word boundary in virtual memory
and always takes at least 4K words. It may take more than 4K words,
depending on the size of the window.

If the address range overlaps the user job image, the call fails with
an error. The address range cannot overlap the run-time system (high
segment). However, if the job is currently running under RSX
emulation, this is not a consideration. APR 7, normally used to map a
run-time system, can be used instead to map a window to a resident
library. 1If the address range overlaps an existing window, the
previously created window is eliminated.

The difference between creating a window and creating and mapping a
window is best shown by example. By using create without map, you can
define one window, which can be mapped to a library or portion of a
library and then remapped to another portion of the same library or
another library, as many times as desired, using the MAPFQ subfunction
of .PLAS.

For example, suppose your program takes up 24K words and you want to
access a 24K-word resident library of data values. You can use create
without map to set up a 4K-word window in APR 6. You can then map the
window (using MAPFQ) to the first 4K words of the library, process the
data, map to the next 4K words of the library, and so forth.

3-160

+«PLAS
CRAFQ

If, on the other hand, you had a 4K program and still wanted to access
a 24K-word library, you could use CRAFQ to create a 24K-word window
and map it to the entire library in APR 1 to 6.

A job can create a maximum of seven windows. A window takes at least
one APR (it may take more, depending on the size you specify for the
window). Thus, the maximum of seven assumes seven windows in APR 1 to
7. APR 0 can never be used to create a window, since the user program
takes at least this much space. As mentioned previously, a window
cannot overlap the user job image; thus, the size of the user job
image determines the lowest base APR that can be used. 1If the program
(user job image) is less than 4K words, APR 1 and up (to the limit
imposed by the run-time system boundary) can be used to create
windows. If the user job image is between 4K words and 8K words, APR
2 and up can be used to create windows, and so forth.

If a window is created that overlaps an already existing window, the
old window is eliminated. For example, if you create a 6K-word window
using a base APR of 5, the window uses APR 5 and APR 6. If you then
create a 4K-word window using a base APR of 6, the entire old window
is eliminated. APR 5 is then free for other use; APR 6 is used for
the new window.

Privileges Required

RDMEM to map physical memory other than I/O page read-only. SYSMOD to
map physical memory read/write or to map the I/0 page read/only.

3-161

-PLAS
CRAFQ

Data Passed

Mne- Octal Octal Mne-
monic Offset Offset monic

1 |///| 0

3 |///I 2

5 I/////////////////////I CRAFQ (= 4) | 4 FQFIL
7 | base APR (1-7) I/////////////////////l 6
11 |///| 10

13 | size of w1ndows, in 32-word blocks | 12

15 | library identification (for map only) | 14 FQEXT

17 | offset, in 32-word blocks (for map only) | 16 FQSIZ

21 | 1length, in 32-word blocks (for map only) | 20 FQBUFL
23 | access flags | 22 FQMODE
25 I///| 24

27 l///I 26

31 |///| 30

33 |///l 32

35 |///I 34

37 I///I 36

FIRQB+FQFIL The function code CRAFQ (octal value = 4).

FIRQB+7 The base APR of the window, 1 to 7. 1Implicitly defines
the starting virtual address of the window. This byte
cannot be zero; in addition, it cannot name an APR
already being used to map the user job image.

FIRQB+12 The desired size of the window, in 32-word blocks. For
example, a value of 128. equals 4K words.

3-162

FIRQB+FQEXT

FIRQB+FQSIZ

FIRQB+FQBUFL

FIRQB+FQMODE

+«PLAS
CRAFQ

The identifier of the resident library to which the
window is to be mapped. (This is the value returned by
the ATRFQ function of .PLAS at FIRQB+FQPPN.) This word
is ignored for calls requesting a create without
mapping (bit 7 at FIRQB+FQMODE equals 0).

You can also map the window to physical memory by
passing a value of -4. See MAPFQ for details.

The offset, in 32-word blocks, from the start of the
library where the mapping is to begin. This word is
ignored if no mapping is requested (bit 7 at
FIRQB+FQMODE equals 0). A value of zero for this word
indicates the window is to be mapped beginning at the
first byte of the library. A value of one indicates
the window is to be mapped beginning at the 33rd word
of the library (starting address + 64), and so forth.

The length, in 32-word blocks, of the area to be mapped
(ignored if bit 7 at FIRQB+FQMODE equals 0). This
value cannot be greater than the size of the window
specified at FIRQB+12. Furthermore, this value,
combined with the offset value at FIRQB+FQSIZ, cannot
indicate an address beyond the end of the library or
into the high segment (run-time system).

A value of zero for this word defaults to either the
size of the window (specified at FIRQB+FQEXT) or the
space remaining in the library, whichever is smaller.

Two bits in this word define whether the window is to
be mapped and whether write access to the window is
desired:

bit 1 =1 Write access to the window is desired.
=0 No write access to the window is desired.
bit 7 The window is to be mapped.

1
0 The window is not to be mapped.

The octal value to set bit 7 is 200; the value to set
bit 1 is 2. Thus, an octal value of 202 for this word
requests mapping and write access. A separate setting
for write access in CRAFQ and in ATRFQ allows you to
attach to a library read/write and map a portion of the
library read-only.

3-163

.PLAS
CRAFQ

Data Returned

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
L N IIIIIIII I IIIIIII I I IIIIIIII I IIIIIIIIII00I 7 O
3 1 LIIIII I I I i) | curtent job mo. * 2 | 2 FQuoB
S L LIIIIIIIIIIIIIIIIIII LI TIIIIIIIIIIII LI 4
VNI 00002700 window 1| 6 roeew
11 | starting virtual address of new window | 10 FONAMI
L3 1 IIIIIIIIIII I I I IIII I I IIIIII I IIIIII I I 000107 12
15 I}}}}}}}}}}}}}}}}}}}}}/}}}}}}}}}}}}}}}}}}}}}I 14

17 l///| 16

21 | mapped length, in 32-word blocks | 20 FQBUFL
23 | status flags | 22 FQMODE
25 |///I 24
27 l///| 26
31 |///| 30
33 |///| 32
35 |///I 34
37 |///I 36

FIRQB+FQJOB The current job number times two.

FIRQB+FQPPN The window ID. Use in later MAPFQ calls to map the
newly created window; it must be used in any ELAFQ
calls to eliminate the newly created windows. The
value returned may be from 1 to 7.

FIRQB+FQNAM1 The starting virtual address of the new window.

FIRQB+FQBUFL Length actually mapped by the window, in 32-word
blocks.

3-164

FIRQB+FQMODE

Errors

BADFUO

NOBUFS

NOROOM

NOSUCH

PRVIOL

« PLAS
CRAFQ

Status flags. The monitor returns the status of the
new window as follows:

bit 15

1 WwWindow was